ath.c revision 1.32.2.12 1 /* $NetBSD: ath.c,v 1.32.2.12 2005/12/11 10:28:50 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15 * redistribution must be conditioned upon including a substantially
16 * similar Disclaimer requirement for further binary redistribution.
17 * 3. Neither the names of the above-listed copyright holders nor the names
18 * of any contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * Alternatively, this software may be distributed under the terms of the
22 * GNU General Public License ("GPL") version 2 as published by the Free
23 * Software Foundation.
24 *
25 * NO WARRANTY
26 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
28 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
29 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
30 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
31 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
34 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
36 * THE POSSIBILITY OF SUCH DAMAGES.
37 */
38
39 #include <sys/cdefs.h>
40 #ifdef __FreeBSD__
41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $");
42 #endif
43 #ifdef __NetBSD__
44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.32.2.12 2005/12/11 10:28:50 christos Exp $");
45 #endif
46
47 /*
48 * Driver for the Atheros Wireless LAN controller.
49 *
50 * This software is derived from work of Atsushi Onoe; his contribution
51 * is greatly appreciated.
52 */
53
54 #include "opt_inet.h"
55
56 #ifdef __NetBSD__
57 #include "bpfilter.h"
58 #endif /* __NetBSD__ */
59
60 #include <sys/param.h>
61 #include <sys/reboot.h>
62 #include <sys/systm.h>
63 #include <sys/types.h>
64 #include <sys/sysctl.h>
65 #include <sys/mbuf.h>
66 #include <sys/malloc.h>
67 #include <sys/lock.h>
68 #include <sys/kernel.h>
69 #include <sys/socket.h>
70 #include <sys/sockio.h>
71 #include <sys/errno.h>
72 #include <sys/callout.h>
73 #include <machine/bus.h>
74 #include <sys/endian.h>
75
76 #include <machine/bus.h>
77
78 #include <net/if.h>
79 #include <net/if_dl.h>
80 #include <net/if_media.h>
81 #include <net/if_types.h>
82 #include <net/if_arp.h>
83 #include <net/if_ether.h>
84 #include <net/if_llc.h>
85
86 #include <net80211/ieee80211_netbsd.h>
87 #include <net80211/ieee80211_var.h>
88
89 #if NBPFILTER > 0
90 #include <net/bpf.h>
91 #endif
92
93 #ifdef INET
94 #include <netinet/in.h>
95 #endif
96
97 #include <sys/device.h>
98 #include <dev/ic/ath_netbsd.h>
99
100 #define AR_DEBUG
101 #include <dev/ic/athvar.h>
102 #include <contrib/dev/ic/athhal_desc.h>
103 #include <contrib/dev/ic/athhal_devid.h> /* XXX for softled */
104
105 /* unaligned little endian access */
106 #define LE_READ_2(p) \
107 ((u_int16_t) \
108 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8)))
109 #define LE_READ_4(p) \
110 ((u_int32_t) \
111 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \
112 (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
113
114 enum {
115 ATH_LED_TX,
116 ATH_LED_RX,
117 ATH_LED_POLL,
118 };
119
120 static int ath_ifinit(struct ifnet *);
121 static int ath_init(struct ath_softc *);
122 static void ath_stop_locked(struct ifnet *, int);
123 static void ath_stop(struct ifnet *, int);
124 static void ath_start(struct ifnet *);
125 static int ath_media_change(struct ifnet *);
126 static void ath_watchdog(struct ifnet *);
127 static int ath_ioctl(struct ifnet *, u_long, caddr_t);
128 static void ath_fatal_proc(void *, int);
129 static void ath_rxorn_proc(void *, int);
130 static void ath_bmiss_proc(void *, int);
131 static int ath_key_alloc(struct ieee80211com *,
132 const struct ieee80211_key *,
133 ieee80211_keyix *, ieee80211_keyix *);
134 static int ath_key_delete(struct ieee80211com *,
135 const struct ieee80211_key *);
136 static int ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
137 const u_int8_t mac[IEEE80211_ADDR_LEN]);
138 static void ath_key_update_begin(struct ieee80211com *);
139 static void ath_key_update_end(struct ieee80211com *);
140 static void ath_mode_init(struct ath_softc *);
141 static void ath_setslottime(struct ath_softc *);
142 static void ath_updateslot(struct ifnet *);
143 static int ath_beaconq_setup(struct ath_hal *);
144 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
145 static void ath_beacon_setup(struct ath_softc *, struct ath_buf *);
146 static void ath_beacon_proc(void *, int);
147 static void ath_bstuck_proc(void *, int);
148 static void ath_beacon_free(struct ath_softc *);
149 static void ath_beacon_config(struct ath_softc *);
150 static void ath_descdma_cleanup(struct ath_softc *sc,
151 struct ath_descdma *, ath_bufhead *);
152 static int ath_desc_alloc(struct ath_softc *);
153 static void ath_desc_free(struct ath_softc *);
154 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
155 static void ath_node_free(struct ieee80211_node *);
156 static u_int8_t ath_node_getrssi(const struct ieee80211_node *);
157 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
158 static void ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
159 struct ieee80211_node *ni,
160 int subtype, int rssi, u_int32_t rstamp);
161 static void ath_setdefantenna(struct ath_softc *, u_int);
162 static void ath_rx_proc(void *, int);
163 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
164 static int ath_tx_setup(struct ath_softc *, int, int);
165 static int ath_wme_update(struct ieee80211com *);
166 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
167 static void ath_tx_cleanup(struct ath_softc *);
168 static int ath_tx_start(struct ath_softc *, struct ieee80211_node *,
169 struct ath_buf *, struct mbuf *);
170 static void ath_tx_proc_q0(void *, int);
171 static void ath_tx_proc_q0123(void *, int);
172 static void ath_tx_proc(void *, int);
173 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
174 static void ath_draintxq(struct ath_softc *);
175 static void ath_stoprecv(struct ath_softc *);
176 static int ath_startrecv(struct ath_softc *);
177 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
178 static void ath_next_scan(void *);
179 static void ath_calibrate(void *);
180 static int ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
181 static void ath_setup_stationkey(struct ieee80211_node *);
182 static void ath_newassoc(struct ieee80211_node *, int);
183 static int ath_getchannels(struct ath_softc *, u_int cc,
184 HAL_BOOL outdoor, HAL_BOOL xchanmode);
185 static void ath_led_event(struct ath_softc *, int);
186 static void ath_update_txpow(struct ath_softc *);
187
188 static int ath_rate_setup(struct ath_softc *, u_int mode);
189 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
190
191 #ifdef __NetBSD__
192 int ath_enable(struct ath_softc *);
193 void ath_disable(struct ath_softc *);
194 void ath_power(int, void *);
195 #endif
196
197 #if NBPFILTER > 0
198 static void ath_bpfattach(struct ath_softc *);
199 #endif
200 static void ath_announce(struct ath_softc *);
201
202 int ath_dwelltime = 200; /* 5 channels/second */
203 int ath_calinterval = 30; /* calibrate every 30 secs */
204 int ath_outdoor = AH_TRUE; /* outdoor operation */
205 int ath_xchanmode = AH_TRUE; /* enable extended channels */
206 int ath_countrycode = CTRY_DEFAULT; /* country code */
207 int ath_regdomain = 0; /* regulatory domain */
208 int ath_debug = 0;
209
210 #ifdef AR_DEBUG
211 enum {
212 ATH_DEBUG_XMIT = 0x00000001, /* basic xmit operation */
213 ATH_DEBUG_XMIT_DESC = 0x00000002, /* xmit descriptors */
214 ATH_DEBUG_RECV = 0x00000004, /* basic recv operation */
215 ATH_DEBUG_RECV_DESC = 0x00000008, /* recv descriptors */
216 ATH_DEBUG_RATE = 0x00000010, /* rate control */
217 ATH_DEBUG_RESET = 0x00000020, /* reset processing */
218 ATH_DEBUG_MODE = 0x00000040, /* mode init/setup */
219 ATH_DEBUG_BEACON = 0x00000080, /* beacon handling */
220 ATH_DEBUG_WATCHDOG = 0x00000100, /* watchdog timeout */
221 ATH_DEBUG_INTR = 0x00001000, /* ISR */
222 ATH_DEBUG_TX_PROC = 0x00002000, /* tx ISR proc */
223 ATH_DEBUG_RX_PROC = 0x00004000, /* rx ISR proc */
224 ATH_DEBUG_BEACON_PROC = 0x00008000, /* beacon ISR proc */
225 ATH_DEBUG_CALIBRATE = 0x00010000, /* periodic calibration */
226 ATH_DEBUG_KEYCACHE = 0x00020000, /* key cache management */
227 ATH_DEBUG_STATE = 0x00040000, /* 802.11 state transitions */
228 ATH_DEBUG_NODE = 0x00080000, /* node management */
229 ATH_DEBUG_LED = 0x00100000, /* led management */
230 ATH_DEBUG_FATAL = 0x80000000, /* fatal errors */
231 ATH_DEBUG_ANY = 0xffffffff
232 };
233 #define IFF_DUMPPKTS(sc, m) \
234 ((sc->sc_debug & (m)) || \
235 (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
236 #define DPRINTF(sc, m, fmt, ...) do { \
237 if (sc->sc_debug & (m)) \
238 printf(fmt, __VA_ARGS__); \
239 } while (0)
240 #define KEYPRINTF(sc, ix, hk, mac) do { \
241 if (sc->sc_debug & ATH_DEBUG_KEYCACHE) \
242 ath_keyprint(__func__, ix, hk, mac); \
243 } while (0)
244 static void ath_printrxbuf(struct ath_buf *bf, int);
245 static void ath_printtxbuf(struct ath_buf *bf, int);
246 #else
247 #define IFF_DUMPPKTS(sc, m) \
248 ((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
249 #define DPRINTF(m, fmt, ...)
250 #define KEYPRINTF(sc, k, ix, mac)
251 #endif
252
253 #ifdef __NetBSD__
254 int
255 ath_activate(struct device *self, enum devact act)
256 {
257 struct ath_softc *sc = (struct ath_softc *)self;
258 int rv = 0, s;
259
260 s = splnet();
261 switch (act) {
262 case DVACT_ACTIVATE:
263 rv = EOPNOTSUPP;
264 break;
265 case DVACT_DEACTIVATE:
266 if_deactivate(&sc->sc_if);
267 break;
268 }
269 splx(s);
270 return rv;
271 }
272
273 int
274 ath_enable(struct ath_softc *sc)
275 {
276 if (ATH_IS_ENABLED(sc) == 0) {
277 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
278 printf("%s: device enable failed\n",
279 sc->sc_dev.dv_xname);
280 return (EIO);
281 }
282 sc->sc_flags |= ATH_ENABLED;
283 }
284 return (0);
285 }
286
287 void
288 ath_disable(struct ath_softc *sc)
289 {
290 if (!ATH_IS_ENABLED(sc))
291 return;
292 if (sc->sc_disable != NULL)
293 (*sc->sc_disable)(sc);
294 sc->sc_flags &= ~ATH_ENABLED;
295 }
296 #endif /* __NetBSD__ */
297
298 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
299
300 int
301 ath_attach(u_int16_t devid, struct ath_softc *sc)
302 {
303 struct ifnet *ifp = &sc->sc_if;
304 struct ieee80211com *ic = &sc->sc_ic;
305 struct ath_hal *ah = NULL;
306 HAL_STATUS status;
307 int error = 0, i;
308
309 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
310
311 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
312
313 ah = ath_hal_attach(devid, sc, sc->sc_st, ATH_BUSHANDLE2HAL(sc->sc_sh),
314 &status);
315 if (ah == NULL) {
316 if_printf(ifp, "unable to attach hardware; HAL status %u\n",
317 status);
318 error = ENXIO;
319 goto bad;
320 }
321 if (ah->ah_abi != HAL_ABI_VERSION) {
322 if_printf(ifp, "HAL ABI mismatch detected "
323 "(HAL:0x%x != driver:0x%x)\n",
324 ah->ah_abi, HAL_ABI_VERSION);
325 error = ENXIO;
326 goto bad;
327 }
328 sc->sc_ah = ah;
329 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */
330
331 /*
332 * Check if the MAC has multi-rate retry support.
333 * We do this by trying to setup a fake extended
334 * descriptor. MAC's that don't have support will
335 * return false w/o doing anything. MAC's that do
336 * support it will return true w/o doing anything.
337 */
338 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
339
340 /*
341 * Check if the device has hardware counters for PHY
342 * errors. If so we need to enable the MIB interrupt
343 * so we can act on stat triggers.
344 */
345 if (ath_hal_hwphycounters(ah))
346 sc->sc_needmib = 1;
347
348 /*
349 * Get the hardware key cache size.
350 */
351 sc->sc_keymax = ath_hal_keycachesize(ah);
352 if (sc->sc_keymax > ATH_KEYMAX) {
353 if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
354 ATH_KEYMAX, sc->sc_keymax);
355 sc->sc_keymax = ATH_KEYMAX;
356 }
357 /*
358 * Reset the key cache since some parts do not
359 * reset the contents on initial power up.
360 */
361 for (i = 0; i < sc->sc_keymax; i++)
362 ath_hal_keyreset(ah, i);
363 /*
364 * Mark key cache slots associated with global keys
365 * as in use. If we knew TKIP was not to be used we
366 * could leave the +32, +64, and +32+64 slots free.
367 * XXX only for splitmic.
368 */
369 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
370 setbit(sc->sc_keymap, i);
371 setbit(sc->sc_keymap, i+32);
372 setbit(sc->sc_keymap, i+64);
373 setbit(sc->sc_keymap, i+32+64);
374 }
375
376 /*
377 * Collect the channel list using the default country
378 * code and including outdoor channels. The 802.11 layer
379 * is resposible for filtering this list based on settings
380 * like the phy mode.
381 */
382 error = ath_getchannels(sc, ath_countrycode,
383 ath_outdoor, ath_xchanmode);
384 if (error != 0)
385 goto bad;
386
387 /*
388 * Setup rate tables for all potential media types.
389 */
390 ath_rate_setup(sc, IEEE80211_MODE_11A);
391 ath_rate_setup(sc, IEEE80211_MODE_11B);
392 ath_rate_setup(sc, IEEE80211_MODE_11G);
393 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
394 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
395 /* NB: setup here so ath_rate_update is happy */
396 ath_setcurmode(sc, IEEE80211_MODE_11A);
397
398 /*
399 * Allocate tx+rx descriptors and populate the lists.
400 */
401 error = ath_desc_alloc(sc);
402 if (error != 0) {
403 if_printf(ifp, "failed to allocate descriptors: %d\n", error);
404 goto bad;
405 }
406 ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
407 ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE);
408
409 ATH_TXBUF_LOCK_INIT(sc);
410
411 TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
412 TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
413 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
414 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
415 TASK_INIT(&sc->sc_bstucktask, 0, ath_bstuck_proc, sc);
416
417 /*
418 * Allocate hardware transmit queues: one queue for
419 * beacon frames and one data queue for each QoS
420 * priority. Note that the hal handles reseting
421 * these queues at the needed time.
422 *
423 * XXX PS-Poll
424 */
425 sc->sc_bhalq = ath_beaconq_setup(ah);
426 if (sc->sc_bhalq == (u_int) -1) {
427 if_printf(ifp, "unable to setup a beacon xmit queue!\n");
428 error = EIO;
429 goto bad2;
430 }
431 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
432 if (sc->sc_cabq == NULL) {
433 if_printf(ifp, "unable to setup CAB xmit queue!\n");
434 error = EIO;
435 goto bad2;
436 }
437 /* NB: insure BK queue is the lowest priority h/w queue */
438 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
439 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
440 ieee80211_wme_acnames[WME_AC_BK]);
441 error = EIO;
442 goto bad2;
443 }
444 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
445 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
446 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
447 /*
448 * Not enough hardware tx queues to properly do WME;
449 * just punt and assign them all to the same h/w queue.
450 * We could do a better job of this if, for example,
451 * we allocate queues when we switch from station to
452 * AP mode.
453 */
454 if (sc->sc_ac2q[WME_AC_VI] != NULL)
455 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
456 if (sc->sc_ac2q[WME_AC_BE] != NULL)
457 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
458 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
459 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
460 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
461 }
462
463 /*
464 * Special case certain configurations. Note the
465 * CAB queue is handled by these specially so don't
466 * include them when checking the txq setup mask.
467 */
468 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
469 case 0x01:
470 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
471 break;
472 case 0x0f:
473 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
474 break;
475 default:
476 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
477 break;
478 }
479
480 /*
481 * Setup rate control. Some rate control modules
482 * call back to change the anntena state so expose
483 * the necessary entry points.
484 * XXX maybe belongs in struct ath_ratectrl?
485 */
486 sc->sc_setdefantenna = ath_setdefantenna;
487 sc->sc_rc = ath_rate_attach(sc);
488 if (sc->sc_rc == NULL) {
489 error = EIO;
490 goto bad2;
491 }
492
493 sc->sc_blinking = 0;
494 sc->sc_ledstate = 1;
495 sc->sc_ledon = 0; /* low true */
496 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */
497 ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE);
498 /*
499 * Auto-enable soft led processing for IBM cards and for
500 * 5211 minipci cards. Users can also manually enable/disable
501 * support with a sysctl.
502 */
503 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
504 if (sc->sc_softled) {
505 ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
506 ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
507 }
508
509 ifp->if_softc = sc;
510 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
511 ifp->if_start = ath_start;
512 ifp->if_watchdog = ath_watchdog;
513 ifp->if_ioctl = ath_ioctl;
514 ifp->if_init = ath_ifinit;
515 IFQ_SET_READY(&ifp->if_snd);
516
517 ic->ic_ifp = ifp;
518 ic->ic_reset = ath_reset;
519 ic->ic_newassoc = ath_newassoc;
520 ic->ic_updateslot = ath_updateslot;
521 ic->ic_wme.wme_update = ath_wme_update;
522 /* XXX not right but it's not used anywhere important */
523 ic->ic_phytype = IEEE80211_T_OFDM;
524 ic->ic_opmode = IEEE80211_M_STA;
525 ic->ic_caps =
526 IEEE80211_C_IBSS /* ibss, nee adhoc, mode */
527 | IEEE80211_C_HOSTAP /* hostap mode */
528 | IEEE80211_C_MONITOR /* monitor mode */
529 | IEEE80211_C_SHPREAMBLE /* short preamble supported */
530 | IEEE80211_C_SHSLOT /* short slot time supported */
531 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */
532 ;
533 /*
534 * Query the hal to figure out h/w crypto support.
535 */
536 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
537 ic->ic_caps |= IEEE80211_C_WEP;
538 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
539 ic->ic_caps |= IEEE80211_C_AES;
540 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
541 ic->ic_caps |= IEEE80211_C_AES_CCM;
542 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
543 ic->ic_caps |= IEEE80211_C_CKIP;
544 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
545 ic->ic_caps |= IEEE80211_C_TKIP;
546 /*
547 * Check if h/w does the MIC and/or whether the
548 * separate key cache entries are required to
549 * handle both tx+rx MIC keys.
550 */
551 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
552 ic->ic_caps |= IEEE80211_C_TKIPMIC;
553 if (ath_hal_tkipsplit(ah))
554 sc->sc_splitmic = 1;
555 }
556 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
557 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
558 /*
559 * TPC support can be done either with a global cap or
560 * per-packet support. The latter is not available on
561 * all parts. We're a bit pedantic here as all parts
562 * support a global cap.
563 */
564 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
565 ic->ic_caps |= IEEE80211_C_TXPMGT;
566
567 /*
568 * Mark WME capability only if we have sufficient
569 * hardware queues to do proper priority scheduling.
570 */
571 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
572 ic->ic_caps |= IEEE80211_C_WME;
573 /*
574 * Check for misc other capabilities.
575 */
576 if (ath_hal_hasbursting(ah))
577 ic->ic_caps |= IEEE80211_C_BURST;
578
579 /*
580 * Indicate we need the 802.11 header padded to a
581 * 32-bit boundary for 4-address and QoS frames.
582 */
583 ic->ic_flags |= IEEE80211_F_DATAPAD;
584
585 /*
586 * Query the hal about antenna support.
587 */
588 sc->sc_defant = ath_hal_getdefantenna(ah);
589
590 /*
591 * Not all chips have the VEOL support we want to
592 * use with IBSS beacons; check here for it.
593 */
594 sc->sc_hasveol = ath_hal_hasveol(ah);
595
596 /* get mac address from hardware */
597 ath_hal_getmac(ah, ic->ic_myaddr);
598
599 if_attach(ifp);
600 /* call MI attach routine. */
601 ieee80211_ifattach(ic);
602 /* override default methods */
603 ic->ic_node_alloc = ath_node_alloc;
604 sc->sc_node_free = ic->ic_node_free;
605 ic->ic_node_free = ath_node_free;
606 ic->ic_node_getrssi = ath_node_getrssi;
607 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
608 ic->ic_recv_mgmt = ath_recv_mgmt;
609 sc->sc_newstate = ic->ic_newstate;
610 ic->ic_newstate = ath_newstate;
611 ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
612 ic->ic_crypto.cs_key_alloc = ath_key_alloc;
613 ic->ic_crypto.cs_key_delete = ath_key_delete;
614 ic->ic_crypto.cs_key_set = ath_key_set;
615 ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
616 ic->ic_crypto.cs_key_update_end = ath_key_update_end;
617 /* complete initialization */
618 ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
619
620 #if NBPFILTER > 0
621 ath_bpfattach(sc);
622 #endif
623
624 #ifdef __NetBSD__
625 sc->sc_flags |= ATH_ATTACHED;
626 /*
627 * Make sure the interface is shutdown during reboot.
628 */
629 sc->sc_sdhook = shutdownhook_establish(ath_shutdown, sc);
630 if (sc->sc_sdhook == NULL)
631 printf("%s: WARNING: unable to establish shutdown hook\n",
632 sc->sc_dev.dv_xname);
633 sc->sc_powerhook = powerhook_establish(ath_power, sc);
634 if (sc->sc_powerhook == NULL)
635 printf("%s: WARNING: unable to establish power hook\n",
636 sc->sc_dev.dv_xname);
637 #endif
638
639 /*
640 * Setup dynamic sysctl's now that country code and
641 * regdomain are available from the hal.
642 */
643 ath_sysctlattach(sc);
644
645 ieee80211_announce(ic);
646 ath_announce(sc);
647 return 0;
648 bad2:
649 ath_tx_cleanup(sc);
650 ath_desc_free(sc);
651 bad:
652 if (ah)
653 ath_hal_detach(ah);
654 sc->sc_invalid = 1;
655 return error;
656 }
657
658 int
659 ath_detach(struct ath_softc *sc)
660 {
661 struct ifnet *ifp = &sc->sc_if;
662 int s;
663
664 if ((sc->sc_flags & ATH_ATTACHED) == 0)
665 return (0);
666
667 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
668 __func__, ifp->if_flags);
669
670 s = splnet();
671 ath_stop(ifp, 1);
672 #if NBPFILTER > 0
673 bpfdetach(ifp);
674 #endif
675 /*
676 * NB: the order of these is important:
677 * o call the 802.11 layer before detaching the hal to
678 * insure callbacks into the driver to delete global
679 * key cache entries can be handled
680 * o reclaim the tx queue data structures after calling
681 * the 802.11 layer as we'll get called back to reclaim
682 * node state and potentially want to use them
683 * o to cleanup the tx queues the hal is called, so detach
684 * it last
685 * Other than that, it's straightforward...
686 */
687 ieee80211_ifdetach(&sc->sc_ic);
688 ath_rate_detach(sc->sc_rc);
689 ath_desc_free(sc);
690 ath_tx_cleanup(sc);
691 sysctl_teardown(&sc->sc_sysctllog);
692 ath_hal_detach(sc->sc_ah);
693 if_detach(ifp);
694 splx(s);
695 powerhook_disestablish(sc->sc_powerhook);
696 shutdownhook_disestablish(sc->sc_sdhook);
697
698 return 0;
699 }
700
701 #ifdef __NetBSD__
702 void
703 ath_power(int why, void *arg)
704 {
705 struct ath_softc *sc = arg;
706 int s;
707
708 DPRINTF(sc, ATH_DEBUG_ANY, "ath_power(%d)\n", why);
709
710 s = splnet();
711 switch (why) {
712 case PWR_SUSPEND:
713 case PWR_STANDBY:
714 ath_suspend(sc, why);
715 break;
716 case PWR_RESUME:
717 ath_resume(sc, why);
718 break;
719 case PWR_SOFTSUSPEND:
720 case PWR_SOFTSTANDBY:
721 case PWR_SOFTRESUME:
722 break;
723 }
724 splx(s);
725 }
726 #endif
727
728 void
729 ath_suspend(struct ath_softc *sc, int why)
730 {
731 struct ifnet *ifp = &sc->sc_if;
732
733 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
734 __func__, ifp->if_flags);
735
736 ath_stop(ifp, 1);
737 if (sc->sc_power != NULL)
738 (*sc->sc_power)(sc, why);
739 }
740
741 void
742 ath_resume(struct ath_softc *sc, int why)
743 {
744 struct ifnet *ifp = &sc->sc_if;
745
746 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
747 __func__, ifp->if_flags);
748
749 if (ifp->if_flags & IFF_UP) {
750 ath_init(sc);
751 #if 0
752 (void)ath_intr(sc);
753 #endif
754 if (sc->sc_power != NULL)
755 (*sc->sc_power)(sc, why);
756 if (ifp->if_flags & IFF_RUNNING)
757 ath_start(ifp);
758 }
759 if (sc->sc_softled) {
760 ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
761 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
762 }
763 }
764
765 void
766 ath_shutdown(void *arg)
767 {
768 struct ath_softc *sc = arg;
769
770 ath_stop(&sc->sc_if, 1);
771 }
772
773 /*
774 * Interrupt handler. Most of the actual processing is deferred.
775 */
776 int
777 ath_intr(void *arg)
778 {
779 struct ath_softc *sc = arg;
780 struct ifnet *ifp = &sc->sc_if;
781 struct ath_hal *ah = sc->sc_ah;
782 HAL_INT status;
783
784 if (sc->sc_invalid) {
785 /*
786 * The hardware is not ready/present, don't touch anything.
787 * Note this can happen early on if the IRQ is shared.
788 */
789 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
790 return 0;
791 }
792 if (!ath_hal_intrpend(ah)) /* shared irq, not for us */
793 return 0;
794 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
795 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
796 __func__, ifp->if_flags);
797 ath_hal_getisr(ah, &status); /* clear ISR */
798 ath_hal_intrset(ah, 0); /* disable further intr's */
799 return 1; /* XXX */
800 }
801 /*
802 * Figure out the reason(s) for the interrupt. Note
803 * that the hal returns a pseudo-ISR that may include
804 * bits we haven't explicitly enabled so we mask the
805 * value to insure we only process bits we requested.
806 */
807 ath_hal_getisr(ah, &status); /* NB: clears ISR too */
808 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
809 status &= sc->sc_imask; /* discard unasked for bits */
810 if (status & HAL_INT_FATAL) {
811 /*
812 * Fatal errors are unrecoverable. Typically
813 * these are caused by DMA errors. Unfortunately
814 * the exact reason is not (presently) returned
815 * by the hal.
816 */
817 sc->sc_stats.ast_hardware++;
818 ath_hal_intrset(ah, 0); /* disable intr's until reset */
819 TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
820 } else if (status & HAL_INT_RXORN) {
821 sc->sc_stats.ast_rxorn++;
822 ath_hal_intrset(ah, 0); /* disable intr's until reset */
823 TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
824 } else {
825 if (status & HAL_INT_SWBA) {
826 /*
827 * Software beacon alert--time to send a beacon.
828 * Handle beacon transmission directly; deferring
829 * this is too slow to meet timing constraints
830 * under load.
831 */
832 ath_beacon_proc(sc, 0);
833 }
834 if (status & HAL_INT_RXEOL) {
835 /*
836 * NB: the hardware should re-read the link when
837 * RXE bit is written, but it doesn't work at
838 * least on older hardware revs.
839 */
840 sc->sc_stats.ast_rxeol++;
841 sc->sc_rxlink = NULL;
842 }
843 if (status & HAL_INT_TXURN) {
844 sc->sc_stats.ast_txurn++;
845 /* bump tx trigger level */
846 ath_hal_updatetxtriglevel(ah, AH_TRUE);
847 }
848 if (status & HAL_INT_RX)
849 TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
850 if (status & HAL_INT_TX)
851 TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
852 if (status & HAL_INT_BMISS) {
853 sc->sc_stats.ast_bmiss++;
854 TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
855 }
856 if (status & HAL_INT_MIB) {
857 sc->sc_stats.ast_mib++;
858 /*
859 * Disable interrupts until we service the MIB
860 * interrupt; otherwise it will continue to fire.
861 */
862 ath_hal_intrset(ah, 0);
863 /*
864 * Let the hal handle the event. We assume it will
865 * clear whatever condition caused the interrupt.
866 */
867 ath_hal_mibevent(ah,
868 &ATH_NODE(sc->sc_ic.ic_bss)->an_halstats);
869 ath_hal_intrset(ah, sc->sc_imask);
870 }
871 }
872 return 1;
873 }
874
875 static void
876 ath_fatal_proc(void *arg, int pending)
877 {
878 struct ath_softc *sc = arg;
879 struct ifnet *ifp = &sc->sc_if;
880
881 if_printf(ifp, "hardware error; resetting\n");
882 ath_reset(ifp);
883 }
884
885 static void
886 ath_rxorn_proc(void *arg, int pending)
887 {
888 struct ath_softc *sc = arg;
889 struct ifnet *ifp = &sc->sc_if;
890
891 if_printf(ifp, "rx FIFO overrun; resetting\n");
892 ath_reset(ifp);
893 }
894
895 static void
896 ath_bmiss_proc(void *arg, int pending)
897 {
898 struct ath_softc *sc = arg;
899 struct ieee80211com *ic = &sc->sc_ic;
900
901 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
902 KASSERT(ic->ic_opmode == IEEE80211_M_STA,
903 ("unexpect operating mode %u", ic->ic_opmode));
904 if (ic->ic_state == IEEE80211_S_RUN) {
905 /*
906 * Rather than go directly to scan state, try to
907 * reassociate first. If that fails then the state
908 * machine will drop us into scanning after timing
909 * out waiting for a probe response.
910 */
911 NET_LOCK_GIANT();
912 ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1);
913 NET_UNLOCK_GIANT();
914 }
915 }
916
917 static u_int
918 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
919 {
920 #define N(a) (sizeof(a) / sizeof(a[0]))
921 static const u_int modeflags[] = {
922 0, /* IEEE80211_MODE_AUTO */
923 CHANNEL_A, /* IEEE80211_MODE_11A */
924 CHANNEL_B, /* IEEE80211_MODE_11B */
925 CHANNEL_PUREG, /* IEEE80211_MODE_11G */
926 0, /* IEEE80211_MODE_FH */
927 CHANNEL_T, /* IEEE80211_MODE_TURBO_A */
928 CHANNEL_108G /* IEEE80211_MODE_TURBO_G */
929 };
930 enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
931
932 KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
933 KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
934 return modeflags[mode];
935 #undef N
936 }
937
938 static int
939 ath_ifinit(struct ifnet *ifp)
940 {
941 struct ath_softc *sc = (struct ath_softc *)ifp->if_softc;
942
943 return ath_init(sc);
944 }
945
946 static int
947 ath_init(struct ath_softc *sc)
948 {
949 struct ifnet *ifp = &sc->sc_if;
950 struct ieee80211com *ic = &sc->sc_ic;
951 struct ath_hal *ah = sc->sc_ah;
952 HAL_STATUS status;
953 int error = 0;
954
955 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
956 __func__, ifp->if_flags);
957
958 ATH_LOCK(sc);
959
960 if ((error = ath_enable(sc)) != 0)
961 return error;
962
963 /*
964 * Stop anything previously setup. This is safe
965 * whether this is the first time through or not.
966 */
967 ath_stop_locked(ifp, 0);
968
969 /*
970 * The basic interface to setting the hardware in a good
971 * state is ``reset''. On return the hardware is known to
972 * be powered up and with interrupts disabled. This must
973 * be followed by initialization of the appropriate bits
974 * and then setup of the interrupt mask.
975 */
976 sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
977 sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
978 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
979 if_printf(ifp, "unable to reset hardware; hal status %u\n",
980 status);
981 error = EIO;
982 goto done;
983 }
984
985 /*
986 * This is needed only to setup initial state
987 * but it's best done after a reset.
988 */
989 ath_update_txpow(sc);
990 /*
991 * Likewise this is set during reset so update
992 * state cached in the driver.
993 */
994 sc->sc_diversity = ath_hal_getdiversity(ah);
995
996 /*
997 * Setup the hardware after reset: the key cache
998 * is filled as needed and the receive engine is
999 * set going. Frame transmit is handled entirely
1000 * in the frame output path; there's nothing to do
1001 * here except setup the interrupt mask.
1002 */
1003 if ((error = ath_startrecv(sc)) != 0) {
1004 if_printf(ifp, "unable to start recv logic\n");
1005 goto done;
1006 }
1007
1008 /*
1009 * Enable interrupts.
1010 */
1011 sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1012 | HAL_INT_RXEOL | HAL_INT_RXORN
1013 | HAL_INT_FATAL | HAL_INT_GLOBAL;
1014 /*
1015 * Enable MIB interrupts when there are hardware phy counters.
1016 * Note we only do this (at the moment) for station mode.
1017 */
1018 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1019 sc->sc_imask |= HAL_INT_MIB;
1020 ath_hal_intrset(ah, sc->sc_imask);
1021
1022 ifp->if_flags |= IFF_RUNNING;
1023 ic->ic_state = IEEE80211_S_INIT;
1024
1025 /*
1026 * The hardware should be ready to go now so it's safe
1027 * to kick the 802.11 state machine as it's likely to
1028 * immediately call back to us to send mgmt frames.
1029 */
1030 ath_chan_change(sc, ic->ic_curchan);
1031 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1032 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
1033 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1034 } else
1035 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1036 done:
1037 ATH_UNLOCK(sc);
1038 return error;
1039 }
1040
1041 static void
1042 ath_stop_locked(struct ifnet *ifp, int disable)
1043 {
1044 struct ath_softc *sc = ifp->if_softc;
1045 struct ieee80211com *ic = &sc->sc_ic;
1046 struct ath_hal *ah = sc->sc_ah;
1047
1048 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1049 __func__, sc->sc_invalid, ifp->if_flags);
1050
1051 ATH_LOCK_ASSERT(sc);
1052 if (ifp->if_flags & IFF_RUNNING) {
1053 /*
1054 * Shutdown the hardware and driver:
1055 * reset 802.11 state machine
1056 * turn off timers
1057 * disable interrupts
1058 * turn off the radio
1059 * clear transmit machinery
1060 * clear receive machinery
1061 * drain and release tx queues
1062 * reclaim beacon resources
1063 * power down hardware
1064 *
1065 * Note that some of this work is not possible if the
1066 * hardware is gone (invalid).
1067 */
1068 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1069 ifp->if_flags &= ~IFF_RUNNING;
1070 ifp->if_timer = 0;
1071 if (!sc->sc_invalid) {
1072 if (sc->sc_softled) {
1073 callout_stop(&sc->sc_ledtimer);
1074 ath_hal_gpioset(ah, sc->sc_ledpin,
1075 !sc->sc_ledon);
1076 sc->sc_blinking = 0;
1077 }
1078 ath_hal_intrset(ah, 0);
1079 }
1080 ath_draintxq(sc);
1081 if (!sc->sc_invalid) {
1082 ath_stoprecv(sc);
1083 ath_hal_phydisable(ah);
1084 } else
1085 sc->sc_rxlink = NULL;
1086 IF_PURGE(&ifp->if_snd);
1087 ath_beacon_free(sc);
1088 if (disable)
1089 ath_disable(sc);
1090 }
1091 }
1092
1093 static void
1094 ath_stop(struct ifnet *ifp, int disable)
1095 {
1096 struct ath_softc *sc = ifp->if_softc;
1097
1098 ATH_LOCK(sc);
1099 ath_stop_locked(ifp, disable);
1100 if (!sc->sc_invalid) {
1101 /*
1102 * Set the chip in full sleep mode. Note that we are
1103 * careful to do this only when bringing the interface
1104 * completely to a stop. When the chip is in this state
1105 * it must be carefully woken up or references to
1106 * registers in the PCI clock domain may freeze the bus
1107 * (and system). This varies by chip and is mostly an
1108 * issue with newer parts that go to sleep more quickly.
1109 */
1110 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP, 0);
1111 }
1112 ATH_UNLOCK(sc);
1113 }
1114
1115 /*
1116 * Reset the hardware w/o losing operational state. This is
1117 * basically a more efficient way of doing ath_stop, ath_init,
1118 * followed by state transitions to the current 802.11
1119 * operational state. Used to recover from various errors and
1120 * to reset or reload hardware state.
1121 */
1122 int
1123 ath_reset(struct ifnet *ifp)
1124 {
1125 struct ath_softc *sc = ifp->if_softc;
1126 struct ieee80211com *ic = &sc->sc_ic;
1127 struct ath_hal *ah = sc->sc_ah;
1128 struct ieee80211_channel *c;
1129 HAL_STATUS status;
1130
1131 /*
1132 * Convert to a HAL channel description with the flags
1133 * constrained to reflect the current operating mode.
1134 */
1135 c = ic->ic_curchan;
1136 sc->sc_curchan.channel = c->ic_freq;
1137 sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
1138
1139 ath_hal_intrset(ah, 0); /* disable interrupts */
1140 ath_draintxq(sc); /* stop xmit side */
1141 ath_stoprecv(sc); /* stop recv side */
1142 /* NB: indicate channel change so we do a full reset */
1143 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
1144 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1145 __func__, status);
1146 ath_update_txpow(sc); /* update tx power state */
1147 sc->sc_diversity = ath_hal_getdiversity(ah);
1148 if (ath_startrecv(sc) != 0) /* restart recv */
1149 if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1150 /*
1151 * We may be doing a reset in response to an ioctl
1152 * that changes the channel so update any state that
1153 * might change as a result.
1154 */
1155 ath_chan_change(sc, c);
1156 if (ic->ic_state == IEEE80211_S_RUN)
1157 ath_beacon_config(sc); /* restart beacons */
1158 ath_hal_intrset(ah, sc->sc_imask);
1159
1160 ath_start(ifp); /* restart xmit */
1161 return 0;
1162 }
1163
1164 static void
1165 ath_start(struct ifnet *ifp)
1166 {
1167 struct ath_softc *sc = ifp->if_softc;
1168 struct ath_hal *ah = sc->sc_ah;
1169 struct ieee80211com *ic = &sc->sc_ic;
1170 struct ieee80211_node *ni;
1171 struct ath_buf *bf;
1172 struct mbuf *m;
1173 struct ieee80211_frame *wh;
1174 struct ether_header *eh;
1175
1176 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
1177 return;
1178 for (;;) {
1179 /*
1180 * Grab a TX buffer and associated resources.
1181 */
1182 ATH_TXBUF_LOCK(sc);
1183 bf = STAILQ_FIRST(&sc->sc_txbuf);
1184 if (bf != NULL)
1185 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1186 ATH_TXBUF_UNLOCK(sc);
1187 if (bf == NULL) {
1188 DPRINTF(sc, ATH_DEBUG_ANY, "%s: out of xmit buffers\n",
1189 __func__);
1190 sc->sc_stats.ast_tx_qstop++;
1191 ifp->if_flags |= IFF_OACTIVE;
1192 break;
1193 }
1194 /*
1195 * Poll the management queue for frames; they
1196 * have priority over normal data frames.
1197 */
1198 IF_DEQUEUE(&ic->ic_mgtq, m);
1199 if (m == NULL) {
1200 /*
1201 * No data frames go out unless we're associated.
1202 */
1203 if (ic->ic_state != IEEE80211_S_RUN) {
1204 DPRINTF(sc, ATH_DEBUG_ANY,
1205 "%s: ignore data packet, state %u\n",
1206 __func__, ic->ic_state);
1207 sc->sc_stats.ast_tx_discard++;
1208 ATH_TXBUF_LOCK(sc);
1209 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1210 ATH_TXBUF_UNLOCK(sc);
1211 break;
1212 }
1213 IFQ_DEQUEUE(&ifp->if_snd, m); /* XXX: LOCK */
1214 if (m == NULL) {
1215 ATH_TXBUF_LOCK(sc);
1216 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1217 ATH_TXBUF_UNLOCK(sc);
1218 break;
1219 }
1220 /*
1221 * Find the node for the destination so we can do
1222 * things like power save and fast frames aggregation.
1223 */
1224 if (m->m_len < sizeof(struct ether_header) &&
1225 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
1226 ic->ic_stats.is_tx_nobuf++; /* XXX */
1227 ni = NULL;
1228 goto bad;
1229 }
1230 eh = mtod(m, struct ether_header *);
1231 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1232 if (ni == NULL) {
1233 /* NB: ieee80211_find_txnode does stat+msg */
1234 m_freem(m);
1235 goto bad;
1236 }
1237 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1238 (m->m_flags & M_PWR_SAV) == 0) {
1239 /*
1240 * Station in power save mode; pass the frame
1241 * to the 802.11 layer and continue. We'll get
1242 * the frame back when the time is right.
1243 */
1244 ieee80211_pwrsave(ic, ni, m);
1245 goto reclaim;
1246 }
1247 /* calculate priority so we can find the tx queue */
1248 if (ieee80211_classify(ic, m, ni)) {
1249 DPRINTF(sc, ATH_DEBUG_XMIT,
1250 "%s: discard, classification failure\n",
1251 __func__);
1252 m_freem(m);
1253 goto bad;
1254 }
1255 ifp->if_opackets++;
1256
1257 #if NBPFILTER > 0
1258 if (ifp->if_bpf)
1259 bpf_mtap(ifp->if_bpf, m);
1260 #endif
1261 /*
1262 * Encapsulate the packet in prep for transmission.
1263 */
1264 m = ieee80211_encap(ic, m, ni);
1265 if (m == NULL) {
1266 DPRINTF(sc, ATH_DEBUG_ANY,
1267 "%s: encapsulation failure\n",
1268 __func__);
1269 sc->sc_stats.ast_tx_encap++;
1270 goto bad;
1271 }
1272 } else {
1273 /*
1274 * Hack! The referenced node pointer is in the
1275 * rcvif field of the packet header. This is
1276 * placed there by ieee80211_mgmt_output because
1277 * we need to hold the reference with the frame
1278 * and there's no other way (other than packet
1279 * tags which we consider too expensive to use)
1280 * to pass it along.
1281 */
1282 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1283 m->m_pkthdr.rcvif = NULL;
1284
1285 wh = mtod(m, struct ieee80211_frame *);
1286 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1287 IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1288 /* fill time stamp */
1289 u_int64_t tsf;
1290 u_int32_t *tstamp;
1291
1292 tsf = ath_hal_gettsf64(ah);
1293 /* XXX: adjust 100us delay to xmit */
1294 tsf += 100;
1295 tstamp = (u_int32_t *)&wh[1];
1296 tstamp[0] = htole32(tsf & 0xffffffff);
1297 tstamp[1] = htole32(tsf >> 32);
1298 }
1299 sc->sc_stats.ast_tx_mgmt++;
1300 }
1301
1302 if (ath_tx_start(sc, ni, bf, m)) {
1303 bad:
1304 ifp->if_oerrors++;
1305 reclaim:
1306 ATH_TXBUF_LOCK(sc);
1307 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1308 ATH_TXBUF_UNLOCK(sc);
1309 if (ni != NULL)
1310 ieee80211_free_node(ni);
1311 continue;
1312 }
1313
1314 sc->sc_tx_timer = 5;
1315 ifp->if_timer = 1;
1316 }
1317 }
1318
1319 static int
1320 ath_media_change(struct ifnet *ifp)
1321 {
1322 #define IS_UP(ifp) \
1323 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
1324 int error;
1325
1326 error = ieee80211_media_change(ifp);
1327 if (error == ENETRESET) {
1328 if (IS_UP(ifp))
1329 ath_init(ifp->if_softc); /* XXX lose error */
1330 error = 0;
1331 }
1332 return error;
1333 #undef IS_UP
1334 }
1335
1336 #ifdef AR_DEBUG
1337 static void
1338 ath_keyprint(const char *tag, u_int ix,
1339 const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1340 {
1341 static const char *ciphers[] = {
1342 "WEP",
1343 "AES-OCB",
1344 "AES-CCM",
1345 "CKIP",
1346 "TKIP",
1347 "CLR",
1348 };
1349 int i, n;
1350
1351 printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1352 for (i = 0, n = hk->kv_len; i < n; i++)
1353 printf("%02x", hk->kv_val[i]);
1354 printf(" mac %s", ether_sprintf(mac));
1355 if (hk->kv_type == HAL_CIPHER_TKIP) {
1356 printf(" mic ");
1357 for (i = 0; i < sizeof(hk->kv_mic); i++)
1358 printf("%02x", hk->kv_mic[i]);
1359 }
1360 printf("\n");
1361 }
1362 #endif
1363
1364 /*
1365 * Set a TKIP key into the hardware. This handles the
1366 * potential distribution of key state to multiple key
1367 * cache slots for TKIP.
1368 */
1369 static int
1370 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1371 HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1372 {
1373 #define IEEE80211_KEY_XR (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1374 static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1375 struct ath_hal *ah = sc->sc_ah;
1376
1377 KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1378 ("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1379 KASSERT(sc->sc_splitmic, ("key cache !split"));
1380 if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1381 /*
1382 * TX key goes at first index, RX key at the rx index.
1383 * The hal handles the MIC keys at index+64.
1384 */
1385 memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1386 KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1387 if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
1388 return 0;
1389
1390 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1391 KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1392 /* XXX delete tx key on failure? */
1393 return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
1394 } else if (k->wk_flags & IEEE80211_KEY_XR) {
1395 /*
1396 * TX/RX key goes at first index.
1397 * The hal handles the MIC keys are index+64.
1398 */
1399 memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
1400 k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
1401 KEYPRINTF(sc, k->wk_keyix, hk, mac);
1402 return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1403 }
1404 return 0;
1405 #undef IEEE80211_KEY_XR
1406 }
1407
1408 /*
1409 * Set a net80211 key into the hardware. This handles the
1410 * potential distribution of key state to multiple key
1411 * cache slots for TKIP with hardware MIC support.
1412 */
1413 static int
1414 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1415 const u_int8_t mac0[IEEE80211_ADDR_LEN],
1416 struct ieee80211_node *bss)
1417 {
1418 #define N(a) (sizeof(a)/sizeof(a[0]))
1419 static const u_int8_t ciphermap[] = {
1420 HAL_CIPHER_WEP, /* IEEE80211_CIPHER_WEP */
1421 HAL_CIPHER_TKIP, /* IEEE80211_CIPHER_TKIP */
1422 HAL_CIPHER_AES_OCB, /* IEEE80211_CIPHER_AES_OCB */
1423 HAL_CIPHER_AES_CCM, /* IEEE80211_CIPHER_AES_CCM */
1424 (u_int8_t) -1, /* 4 is not allocated */
1425 HAL_CIPHER_CKIP, /* IEEE80211_CIPHER_CKIP */
1426 HAL_CIPHER_CLR, /* IEEE80211_CIPHER_NONE */
1427 };
1428 struct ath_hal *ah = sc->sc_ah;
1429 const struct ieee80211_cipher *cip = k->wk_cipher;
1430 u_int8_t gmac[IEEE80211_ADDR_LEN];
1431 const u_int8_t *mac;
1432 HAL_KEYVAL hk;
1433
1434 memset(&hk, 0, sizeof(hk));
1435 /*
1436 * Software crypto uses a "clear key" so non-crypto
1437 * state kept in the key cache are maintained and
1438 * so that rx frames have an entry to match.
1439 */
1440 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1441 KASSERT(cip->ic_cipher < N(ciphermap),
1442 ("invalid cipher type %u", cip->ic_cipher));
1443 hk.kv_type = ciphermap[cip->ic_cipher];
1444 hk.kv_len = k->wk_keylen;
1445 memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1446 } else
1447 hk.kv_type = HAL_CIPHER_CLR;
1448
1449 if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
1450 /*
1451 * Group keys on hardware that supports multicast frame
1452 * key search use a mac that is the sender's address with
1453 * the high bit set instead of the app-specified address.
1454 */
1455 IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
1456 gmac[0] |= 0x80;
1457 mac = gmac;
1458 } else
1459 mac = mac0;
1460
1461 if (hk.kv_type == HAL_CIPHER_TKIP &&
1462 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1463 sc->sc_splitmic) {
1464 return ath_keyset_tkip(sc, k, &hk, mac);
1465 } else {
1466 KEYPRINTF(sc, k->wk_keyix, &hk, mac);
1467 return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
1468 }
1469 #undef N
1470 }
1471
1472 /*
1473 * Allocate tx/rx key slots for TKIP. We allocate two slots for
1474 * each key, one for decrypt/encrypt and the other for the MIC.
1475 */
1476 static u_int16_t
1477 key_alloc_2pair(struct ath_softc *sc,
1478 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1479 {
1480 #define N(a) (sizeof(a)/sizeof(a[0]))
1481 u_int i, keyix;
1482
1483 KASSERT(sc->sc_splitmic, ("key cache !split"));
1484 /* XXX could optimize */
1485 for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1486 u_int8_t b = sc->sc_keymap[i];
1487 if (b != 0xff) {
1488 /*
1489 * One or more slots in this byte are free.
1490 */
1491 keyix = i*NBBY;
1492 while (b & 1) {
1493 again:
1494 keyix++;
1495 b >>= 1;
1496 }
1497 /* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1498 if (isset(sc->sc_keymap, keyix+32) ||
1499 isset(sc->sc_keymap, keyix+64) ||
1500 isset(sc->sc_keymap, keyix+32+64)) {
1501 /* full pair unavailable */
1502 /* XXX statistic */
1503 if (keyix == (i+1)*NBBY) {
1504 /* no slots were appropriate, advance */
1505 continue;
1506 }
1507 goto again;
1508 }
1509 setbit(sc->sc_keymap, keyix);
1510 setbit(sc->sc_keymap, keyix+64);
1511 setbit(sc->sc_keymap, keyix+32);
1512 setbit(sc->sc_keymap, keyix+32+64);
1513 DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1514 "%s: key pair %u,%u %u,%u\n",
1515 __func__, keyix, keyix+64,
1516 keyix+32, keyix+32+64);
1517 *txkeyix = keyix;
1518 *rxkeyix = keyix+32;
1519 return 1;
1520 }
1521 }
1522 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1523 return 0;
1524 #undef N
1525 }
1526
1527 /*
1528 * Allocate a single key cache slot.
1529 */
1530 static int
1531 key_alloc_single(struct ath_softc *sc,
1532 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1533 {
1534 #define N(a) (sizeof(a)/sizeof(a[0]))
1535 u_int i, keyix;
1536
1537 /* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
1538 for (i = 0; i < N(sc->sc_keymap); i++) {
1539 u_int8_t b = sc->sc_keymap[i];
1540 if (b != 0xff) {
1541 /*
1542 * One or more slots are free.
1543 */
1544 keyix = i*NBBY;
1545 while (b & 1)
1546 keyix++, b >>= 1;
1547 setbit(sc->sc_keymap, keyix);
1548 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
1549 __func__, keyix);
1550 *txkeyix = *rxkeyix = keyix;
1551 return 1;
1552 }
1553 }
1554 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
1555 return 0;
1556 #undef N
1557 }
1558
1559 /*
1560 * Allocate one or more key cache slots for a uniacst key. The
1561 * key itself is needed only to identify the cipher. For hardware
1562 * TKIP with split cipher+MIC keys we allocate two key cache slot
1563 * pairs so that we can setup separate TX and RX MIC keys. Note
1564 * that the MIC key for a TKIP key at slot i is assumed by the
1565 * hardware to be at slot i+64. This limits TKIP keys to the first
1566 * 64 entries.
1567 */
1568 static int
1569 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
1570 ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
1571 {
1572 struct ath_softc *sc = ic->ic_ifp->if_softc;
1573
1574 /*
1575 * Group key allocation must be handled specially for
1576 * parts that do not support multicast key cache search
1577 * functionality. For those parts the key id must match
1578 * the h/w key index so lookups find the right key. On
1579 * parts w/ the key search facility we install the sender's
1580 * mac address (with the high bit set) and let the hardware
1581 * find the key w/o using the key id. This is preferred as
1582 * it permits us to support multiple users for adhoc and/or
1583 * multi-station operation.
1584 */
1585 if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
1586 if (!(&ic->ic_nw_keys[0] <= k &&
1587 k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
1588 /* should not happen */
1589 DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1590 "%s: bogus group key\n", __func__);
1591 return 0;
1592 }
1593 /*
1594 * XXX we pre-allocate the global keys so
1595 * have no way to check if they've already been allocated.
1596 */
1597 *keyix = *rxkeyix = k - ic->ic_nw_keys;
1598 return 1;
1599 }
1600
1601 /*
1602 * We allocate two pair for TKIP when using the h/w to do
1603 * the MIC. For everything else, including software crypto,
1604 * we allocate a single entry. Note that s/w crypto requires
1605 * a pass-through slot on the 5211 and 5212. The 5210 does
1606 * not support pass-through cache entries and we map all
1607 * those requests to slot 0.
1608 */
1609 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1610 return key_alloc_single(sc, keyix, rxkeyix);
1611 } else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
1612 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
1613 return key_alloc_2pair(sc, keyix, rxkeyix);
1614 } else {
1615 return key_alloc_single(sc, keyix, rxkeyix);
1616 }
1617 }
1618
1619 /*
1620 * Delete an entry in the key cache allocated by ath_key_alloc.
1621 */
1622 static int
1623 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
1624 {
1625 struct ath_softc *sc = ic->ic_ifp->if_softc;
1626 struct ath_hal *ah = sc->sc_ah;
1627 const struct ieee80211_cipher *cip = k->wk_cipher;
1628 u_int keyix = k->wk_keyix;
1629
1630 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
1631
1632 ath_hal_keyreset(ah, keyix);
1633 /*
1634 * Handle split tx/rx keying required for TKIP with h/w MIC.
1635 */
1636 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1637 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
1638 ath_hal_keyreset(ah, keyix+32); /* RX key */
1639 if (keyix >= IEEE80211_WEP_NKID) {
1640 /*
1641 * Don't touch keymap entries for global keys so
1642 * they are never considered for dynamic allocation.
1643 */
1644 clrbit(sc->sc_keymap, keyix);
1645 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1646 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1647 sc->sc_splitmic) {
1648 clrbit(sc->sc_keymap, keyix+64); /* TX key MIC */
1649 clrbit(sc->sc_keymap, keyix+32); /* RX key */
1650 clrbit(sc->sc_keymap, keyix+32+64); /* RX key MIC */
1651 }
1652 }
1653 return 1;
1654 }
1655
1656 /*
1657 * Set the key cache contents for the specified key. Key cache
1658 * slot(s) must already have been allocated by ath_key_alloc.
1659 */
1660 static int
1661 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
1662 const u_int8_t mac[IEEE80211_ADDR_LEN])
1663 {
1664 struct ath_softc *sc = ic->ic_ifp->if_softc;
1665
1666 return ath_keyset(sc, k, mac, ic->ic_bss);
1667 }
1668
1669 /*
1670 * Block/unblock tx+rx processing while a key change is done.
1671 * We assume the caller serializes key management operations
1672 * so we only need to worry about synchronization with other
1673 * uses that originate in the driver.
1674 */
1675 static void
1676 ath_key_update_begin(struct ieee80211com *ic)
1677 {
1678 struct ifnet *ifp = ic->ic_ifp;
1679 struct ath_softc *sc = ifp->if_softc;
1680
1681 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1682 #if 0
1683 tasklet_disable(&sc->sc_rxtq);
1684 #endif
1685 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */
1686 }
1687
1688 static void
1689 ath_key_update_end(struct ieee80211com *ic)
1690 {
1691 struct ifnet *ifp = ic->ic_ifp;
1692 struct ath_softc *sc = ifp->if_softc;
1693
1694 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1695 IF_UNLOCK(&ifp->if_snd);
1696 #if 0
1697 tasklet_enable(&sc->sc_rxtq);
1698 #endif
1699 }
1700
1701 /*
1702 * Calculate the receive filter according to the
1703 * operating mode and state:
1704 *
1705 * o always accept unicast, broadcast, and multicast traffic
1706 * o maintain current state of phy error reception (the hal
1707 * may enable phy error frames for noise immunity work)
1708 * o probe request frames are accepted only when operating in
1709 * hostap, adhoc, or monitor modes
1710 * o enable promiscuous mode according to the interface state
1711 * o accept beacons:
1712 * - when operating in adhoc mode so the 802.11 layer creates
1713 * node table entries for peers,
1714 * - when operating in station mode for collecting rssi data when
1715 * the station is otherwise quiet, or
1716 * - when scanning
1717 */
1718 static u_int32_t
1719 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
1720 {
1721 struct ieee80211com *ic = &sc->sc_ic;
1722 struct ath_hal *ah = sc->sc_ah;
1723 struct ifnet *ifp = &sc->sc_if;
1724 u_int32_t rfilt;
1725
1726 rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1727 | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1728 if (ic->ic_opmode != IEEE80211_M_STA)
1729 rfilt |= HAL_RX_FILTER_PROBEREQ;
1730 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1731 (ifp->if_flags & IFF_PROMISC))
1732 rfilt |= HAL_RX_FILTER_PROM;
1733 if (ic->ic_opmode == IEEE80211_M_STA ||
1734 ic->ic_opmode == IEEE80211_M_IBSS ||
1735 state == IEEE80211_S_SCAN)
1736 rfilt |= HAL_RX_FILTER_BEACON;
1737 return rfilt;
1738 }
1739
1740 static void
1741 ath_mcastfilter_accum(caddr_t dl, u_int32_t *mfilt)
1742 {
1743 u_int32_t val;
1744 u_int8_t pos;
1745
1746 /* calculate XOR of eight 6bit values */
1747 val = LE_READ_4(dl + 0);
1748 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1749 val = LE_READ_4(dl + 3);
1750 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1751 pos &= 0x3f;
1752 mfilt[pos / 32] |= (1 << (pos % 32));
1753 }
1754
1755 static void
1756 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t *mfilt)
1757 {
1758 struct ifnet *ifp = &sc->sc_if;
1759 struct ether_multi *enm;
1760 struct ether_multistep estep;
1761
1762 mfilt[0] = mfilt[1] = 0;
1763 ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
1764 while (enm != NULL) {
1765 /* XXX Punt on ranges. */
1766 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
1767 mfilt[0] = mfilt[1] = ~((u_int32_t)0);
1768 ifp->if_flags |= IFF_ALLMULTI;
1769 return;
1770 }
1771 ath_mcastfilter_accum(enm->enm_addrlo, mfilt);
1772 ETHER_NEXT_MULTI(estep, enm);
1773 }
1774 ifp->if_flags &= ~IFF_ALLMULTI;
1775 }
1776
1777 static void
1778 ath_mode_init(struct ath_softc *sc)
1779 {
1780 struct ieee80211com *ic = &sc->sc_ic;
1781 struct ath_hal *ah = sc->sc_ah;
1782 u_int32_t rfilt, mfilt[2];
1783 int i;
1784
1785 /* configure rx filter */
1786 rfilt = ath_calcrxfilter(sc, ic->ic_state);
1787 ath_hal_setrxfilter(ah, rfilt);
1788
1789 /* configure operational mode */
1790 ath_hal_setopmode(ah);
1791
1792 /* Write keys to hardware; it may have been powered down. */
1793 ath_key_update_begin(ic);
1794 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1795 ath_key_set(ic,
1796 &ic->ic_crypto.cs_nw_keys[i],
1797 ic->ic_myaddr);
1798 }
1799 ath_key_update_end(ic);
1800
1801 /*
1802 * Handle any link-level address change. Note that we only
1803 * need to force ic_myaddr; any other addresses are handled
1804 * as a byproduct of the ifnet code marking the interface
1805 * down then up.
1806 *
1807 * XXX should get from lladdr instead of arpcom but that's more work
1808 */
1809 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(sc->sc_if.if_sadl));
1810 ath_hal_setmac(ah, ic->ic_myaddr);
1811
1812 /* calculate and install multicast filter */
1813 #ifdef __FreeBSD__
1814 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1815 mfilt[0] = mfilt[1] = 0;
1816 IF_ADDR_LOCK(ifp);
1817 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1818 caddr_t dl;
1819
1820 /* calculate XOR of eight 6bit values */
1821 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
1822 val = LE_READ_4(dl + 0);
1823 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1824 val = LE_READ_4(dl + 3);
1825 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1826 pos &= 0x3f;
1827 mfilt[pos / 32] |= (1 << (pos % 32));
1828 }
1829 IF_ADDR_UNLOCK(ifp);
1830 } else {
1831 mfilt[0] = mfilt[1] = ~0;
1832 }
1833 #endif
1834 #ifdef __NetBSD__
1835 ath_mcastfilter_compute(sc, mfilt);
1836 #endif
1837 ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1838 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
1839 __func__, rfilt, mfilt[0], mfilt[1]);
1840 }
1841
1842 /*
1843 * Set the slot time based on the current setting.
1844 */
1845 static void
1846 ath_setslottime(struct ath_softc *sc)
1847 {
1848 struct ieee80211com *ic = &sc->sc_ic;
1849 struct ath_hal *ah = sc->sc_ah;
1850
1851 if (ic->ic_flags & IEEE80211_F_SHSLOT)
1852 ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
1853 else
1854 ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
1855 sc->sc_updateslot = OK;
1856 }
1857
1858 /*
1859 * Callback from the 802.11 layer to update the
1860 * slot time based on the current setting.
1861 */
1862 static void
1863 ath_updateslot(struct ifnet *ifp)
1864 {
1865 struct ath_softc *sc = ifp->if_softc;
1866 struct ieee80211com *ic = &sc->sc_ic;
1867
1868 /*
1869 * When not coordinating the BSS, change the hardware
1870 * immediately. For other operation we defer the change
1871 * until beacon updates have propagated to the stations.
1872 */
1873 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1874 sc->sc_updateslot = UPDATE;
1875 else
1876 ath_setslottime(sc);
1877 }
1878
1879 /*
1880 * Setup a h/w transmit queue for beacons.
1881 */
1882 static int
1883 ath_beaconq_setup(struct ath_hal *ah)
1884 {
1885 HAL_TXQ_INFO qi;
1886
1887 memset(&qi, 0, sizeof(qi));
1888 qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
1889 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
1890 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
1891 /* NB: for dynamic turbo, don't enable any other interrupts */
1892 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
1893 return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
1894 }
1895
1896 /*
1897 * Setup the transmit queue parameters for the beacon queue.
1898 */
1899 static int
1900 ath_beaconq_config(struct ath_softc *sc)
1901 {
1902 #define ATH_EXPONENT_TO_VALUE(v) ((1<<(v))-1)
1903 struct ieee80211com *ic = &sc->sc_ic;
1904 struct ath_hal *ah = sc->sc_ah;
1905 HAL_TXQ_INFO qi;
1906
1907 ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
1908 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
1909 /*
1910 * Always burst out beacon and CAB traffic.
1911 */
1912 qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
1913 qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
1914 qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
1915 } else {
1916 struct wmeParams *wmep =
1917 &ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
1918 /*
1919 * Adhoc mode; important thing is to use 2x cwmin.
1920 */
1921 qi.tqi_aifs = wmep->wmep_aifsn;
1922 qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
1923 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
1924 }
1925
1926 if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
1927 device_printf(sc->sc_dev, "unable to update parameters for "
1928 "beacon hardware queue!\n");
1929 return 0;
1930 } else {
1931 ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
1932 return 1;
1933 }
1934 #undef ATH_EXPONENT_TO_VALUE
1935 }
1936
1937 /*
1938 * Allocate and setup an initial beacon frame.
1939 */
1940 static int
1941 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
1942 {
1943 struct ieee80211com *ic = ni->ni_ic;
1944 struct ath_buf *bf;
1945 struct mbuf *m;
1946 int error;
1947
1948 bf = STAILQ_FIRST(&sc->sc_bbuf);
1949 if (bf == NULL) {
1950 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
1951 sc->sc_stats.ast_be_nombuf++; /* XXX */
1952 return ENOMEM; /* XXX */
1953 }
1954 /*
1955 * NB: the beacon data buffer must be 32-bit aligned;
1956 * we assume the mbuf routines will return us something
1957 * with this alignment (perhaps should assert).
1958 */
1959 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
1960 if (m == NULL) {
1961 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
1962 __func__);
1963 sc->sc_stats.ast_be_nombuf++;
1964 return ENOMEM;
1965 }
1966 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
1967 BUS_DMA_NOWAIT);
1968 if (error == 0) {
1969 bf->bf_m = m;
1970 bf->bf_node = ieee80211_ref_node(ni);
1971 } else {
1972 m_freem(m);
1973 }
1974 return error;
1975 }
1976
1977 /*
1978 * Setup the beacon frame for transmit.
1979 */
1980 static void
1981 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
1982 {
1983 #define USE_SHPREAMBLE(_ic) \
1984 (((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
1985 == IEEE80211_F_SHPREAMBLE)
1986 struct ieee80211_node *ni = bf->bf_node;
1987 struct ieee80211com *ic = ni->ni_ic;
1988 struct mbuf *m = bf->bf_m;
1989 struct ath_hal *ah = sc->sc_ah;
1990 struct ath_node *an = ATH_NODE(ni);
1991 struct ath_desc *ds;
1992 int flags, antenna;
1993 u_int8_t rate;
1994
1995 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
1996 __func__, m, m->m_len);
1997
1998 /* setup descriptors */
1999 ds = bf->bf_desc;
2000
2001 flags = HAL_TXDESC_NOACK;
2002 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
2003 ds->ds_link = bf->bf_daddr; /* self-linked */
2004 flags |= HAL_TXDESC_VEOL;
2005 /*
2006 * Let hardware handle antenna switching unless
2007 * the user has selected a transmit antenna
2008 * (sc_txantenna is not 0).
2009 */
2010 antenna = sc->sc_txantenna;
2011 } else {
2012 ds->ds_link = 0;
2013 /*
2014 * Switch antenna every 4 beacons, unless the user
2015 * has selected a transmit antenna (sc_txantenna
2016 * is not 0).
2017 *
2018 * XXX assumes two antenna
2019 */
2020 if (sc->sc_txantenna == 0)
2021 antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2022 else
2023 antenna = sc->sc_txantenna;
2024 }
2025
2026 KASSERT(bf->bf_nseg == 1,
2027 ("multi-segment beacon frame; nseg %u", bf->bf_nseg));
2028 ds->ds_data = bf->bf_segs[0].ds_addr;
2029 /*
2030 * Calculate rate code.
2031 * XXX everything at min xmit rate
2032 */
2033 if (USE_SHPREAMBLE(ic))
2034 rate = an->an_tx_mgtratesp;
2035 else
2036 rate = an->an_tx_mgtrate;
2037 ath_hal_setuptxdesc(ah, ds
2038 , m->m_len + IEEE80211_CRC_LEN /* frame length */
2039 , sizeof(struct ieee80211_frame)/* header length */
2040 , HAL_PKT_TYPE_BEACON /* Atheros packet type */
2041 , ni->ni_txpower /* txpower XXX */
2042 , rate, 1 /* series 0 rate/tries */
2043 , HAL_TXKEYIX_INVALID /* no encryption */
2044 , antenna /* antenna mode */
2045 , flags /* no ack, veol for beacons */
2046 , 0 /* rts/cts rate */
2047 , 0 /* rts/cts duration */
2048 );
2049 /* NB: beacon's BufLen must be a multiple of 4 bytes */
2050 ath_hal_filltxdesc(ah, ds
2051 , roundup(m->m_len, 4) /* buffer length */
2052 , AH_TRUE /* first segment */
2053 , AH_TRUE /* last segment */
2054 , ds /* first descriptor */
2055 );
2056 #undef USE_SHPREAMBLE
2057 }
2058
2059 /*
2060 * Transmit a beacon frame at SWBA. Dynamic updates to the
2061 * frame contents are done as needed and the slot time is
2062 * also adjusted based on current state.
2063 */
2064 static void
2065 ath_beacon_proc(void *arg, int pending)
2066 {
2067 struct ath_softc *sc = arg;
2068 struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
2069 struct ieee80211_node *ni = bf->bf_node;
2070 struct ieee80211com *ic = ni->ni_ic;
2071 struct ath_hal *ah = sc->sc_ah;
2072 struct mbuf *m;
2073 int ncabq, error, otherant;
2074
2075 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2076 __func__, pending);
2077
2078 if (ic->ic_opmode == IEEE80211_M_STA ||
2079 ic->ic_opmode == IEEE80211_M_MONITOR ||
2080 bf == NULL || bf->bf_m == NULL) {
2081 DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
2082 __func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
2083 return;
2084 }
2085 /*
2086 * Check if the previous beacon has gone out. If
2087 * not don't don't try to post another, skip this
2088 * period and wait for the next. Missed beacons
2089 * indicate a problem and should not occur. If we
2090 * miss too many consecutive beacons reset the device.
2091 */
2092 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2093 sc->sc_bmisscount++;
2094 DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2095 "%s: missed %u consecutive beacons\n",
2096 __func__, sc->sc_bmisscount);
2097 if (sc->sc_bmisscount > 3) /* NB: 3 is a guess */
2098 TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask);
2099 return;
2100 }
2101 if (sc->sc_bmisscount != 0) {
2102 DPRINTF(sc, ATH_DEBUG_BEACON,
2103 "%s: resume beacon xmit after %u misses\n",
2104 __func__, sc->sc_bmisscount);
2105 sc->sc_bmisscount = 0;
2106 }
2107
2108 /*
2109 * Update dynamic beacon contents. If this returns
2110 * non-zero then we need to remap the memory because
2111 * the beacon frame changed size (probably because
2112 * of the TIM bitmap).
2113 */
2114 m = bf->bf_m;
2115 ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
2116 if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
2117 /* XXX too conservative? */
2118 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2119 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2120 BUS_DMA_NOWAIT);
2121 if (error != 0) {
2122 if_printf(&sc->sc_if,
2123 "%s: bus_dmamap_load_mbuf failed, error %u\n",
2124 __func__, error);
2125 return;
2126 }
2127 }
2128
2129 /*
2130 * Handle slot time change when a non-ERP station joins/leaves
2131 * an 11g network. The 802.11 layer notifies us via callback,
2132 * we mark updateslot, then wait one beacon before effecting
2133 * the change. This gives associated stations at least one
2134 * beacon interval to note the state change.
2135 */
2136 /* XXX locking */
2137 if (sc->sc_updateslot == UPDATE)
2138 sc->sc_updateslot = COMMIT; /* commit next beacon */
2139 else if (sc->sc_updateslot == COMMIT)
2140 ath_setslottime(sc); /* commit change to h/w */
2141
2142 /*
2143 * Check recent per-antenna transmit statistics and flip
2144 * the default antenna if noticeably more frames went out
2145 * on the non-default antenna.
2146 * XXX assumes 2 anntenae
2147 */
2148 otherant = sc->sc_defant & 1 ? 2 : 1;
2149 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2150 ath_setdefantenna(sc, otherant);
2151 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2152
2153 /*
2154 * Construct tx descriptor.
2155 */
2156 ath_beacon_setup(sc, bf);
2157
2158 /*
2159 * Stop any current dma and put the new frame on the queue.
2160 * This should never fail since we check above that no frames
2161 * are still pending on the queue.
2162 */
2163 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2164 DPRINTF(sc, ATH_DEBUG_ANY,
2165 "%s: beacon queue %u did not stop?\n",
2166 __func__, sc->sc_bhalq);
2167 }
2168 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2169 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2170
2171 /*
2172 * Enable the CAB queue before the beacon queue to
2173 * insure cab frames are triggered by this beacon.
2174 */
2175 if (sc->sc_boff.bo_tim[4] & 1) /* NB: only at DTIM */
2176 ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
2177 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
2178 ath_hal_txstart(ah, sc->sc_bhalq);
2179 DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2180 "%s: TXDP[%u] = %p (%p)\n", __func__,
2181 sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc);
2182
2183 sc->sc_stats.ast_be_xmit++;
2184 }
2185
2186 /*
2187 * Reset the hardware after detecting beacons have stopped.
2188 */
2189 static void
2190 ath_bstuck_proc(void *arg, int pending)
2191 {
2192 struct ath_softc *sc = arg;
2193 struct ifnet *ifp = &sc->sc_if;
2194
2195 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2196 sc->sc_bmisscount);
2197 ath_reset(ifp);
2198 }
2199
2200 /*
2201 * Reclaim beacon resources.
2202 */
2203 static void
2204 ath_beacon_free(struct ath_softc *sc)
2205 {
2206 struct ath_buf *bf;
2207
2208 STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
2209 if (bf->bf_m != NULL) {
2210 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2211 m_freem(bf->bf_m);
2212 bf->bf_m = NULL;
2213 }
2214 if (bf->bf_node != NULL) {
2215 ieee80211_free_node(bf->bf_node);
2216 bf->bf_node = NULL;
2217 }
2218 }
2219 }
2220
2221 /*
2222 * Configure the beacon and sleep timers.
2223 *
2224 * When operating as an AP this resets the TSF and sets
2225 * up the hardware to notify us when we need to issue beacons.
2226 *
2227 * When operating in station mode this sets up the beacon
2228 * timers according to the timestamp of the last received
2229 * beacon and the current TSF, configures PCF and DTIM
2230 * handling, programs the sleep registers so the hardware
2231 * will wakeup in time to receive beacons, and configures
2232 * the beacon miss handling so we'll receive a BMISS
2233 * interrupt when we stop seeing beacons from the AP
2234 * we've associated with.
2235 */
2236 static void
2237 ath_beacon_config(struct ath_softc *sc)
2238 {
2239 #define TSF_TO_TU(_h,_l) (((_h) << 22) | ((_l) >> 10))
2240 struct ath_hal *ah = sc->sc_ah;
2241 struct ieee80211com *ic = &sc->sc_ic;
2242 struct ieee80211_node *ni = ic->ic_bss;
2243 u_int32_t nexttbtt, intval;
2244
2245 /* extract tstamp from last beacon and convert to TU */
2246 nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
2247 LE_READ_4(ni->ni_tstamp.data));
2248 /* NB: the beacon interval is kept internally in TU's */
2249 intval = ni->ni_intval & HAL_BEACON_PERIOD;
2250 if (nexttbtt == 0) /* e.g. for ap mode */
2251 nexttbtt = intval;
2252 else if (intval) /* NB: can be 0 for monitor mode */
2253 nexttbtt = roundup(nexttbtt, intval);
2254 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2255 __func__, nexttbtt, intval, ni->ni_intval);
2256 if (ic->ic_opmode == IEEE80211_M_STA) {
2257 HAL_BEACON_STATE bs;
2258 u_int64_t tsf;
2259 u_int32_t tsftu;
2260 int dtimperiod, dtimcount;
2261 int cfpperiod, cfpcount;
2262
2263 /*
2264 * Setup dtim and cfp parameters according to
2265 * last beacon we received (which may be none).
2266 */
2267 dtimperiod = ni->ni_dtim_period;
2268 if (dtimperiod <= 0) /* NB: 0 if not known */
2269 dtimperiod = 1;
2270 dtimcount = ni->ni_dtim_count;
2271 if (dtimcount >= dtimperiod) /* NB: sanity check */
2272 dtimcount = 0; /* XXX? */
2273 cfpperiod = 1; /* NB: no PCF support yet */
2274 cfpcount = 0;
2275 #define FUDGE 2
2276 /*
2277 * Pull nexttbtt forward to reflect the current
2278 * TSF and calculate dtim+cfp state for the result.
2279 */
2280 tsf = ath_hal_gettsf64(ah);
2281 tsftu = TSF_TO_TU((u_int32_t)(tsf>>32), (u_int32_t)tsf) + FUDGE;
2282 do {
2283 nexttbtt += intval;
2284 if (--dtimcount < 0) {
2285 dtimcount = dtimperiod - 1;
2286 if (--cfpcount < 0)
2287 cfpcount = cfpperiod - 1;
2288 }
2289 } while (nexttbtt < tsftu);
2290 #undef FUDGE
2291 memset(&bs, 0, sizeof(bs));
2292 bs.bs_intval = intval;
2293 bs.bs_nexttbtt = nexttbtt;
2294 bs.bs_dtimperiod = dtimperiod*intval;
2295 bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
2296 bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
2297 bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
2298 bs.bs_cfpmaxduration = 0;
2299 #if 0
2300 /*
2301 * The 802.11 layer records the offset to the DTIM
2302 * bitmap while receiving beacons; use it here to
2303 * enable h/w detection of our AID being marked in
2304 * the bitmap vector (to indicate frames for us are
2305 * pending at the AP).
2306 * XXX do DTIM handling in s/w to WAR old h/w bugs
2307 * XXX enable based on h/w rev for newer chips
2308 */
2309 bs.bs_timoffset = ni->ni_timoff;
2310 #endif
2311 /*
2312 * Calculate the number of consecutive beacons to miss
2313 * before taking a BMISS interrupt. The configuration
2314 * is specified in ms, so we need to convert that to
2315 * TU's and then calculate based on the beacon interval.
2316 * Note that we clamp the result to at most 10 beacons.
2317 */
2318 bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
2319 if (bs.bs_bmissthreshold > 10)
2320 bs.bs_bmissthreshold = 10;
2321 else if (bs.bs_bmissthreshold <= 0)
2322 bs.bs_bmissthreshold = 1;
2323
2324 /*
2325 * Calculate sleep duration. The configuration is
2326 * given in ms. We insure a multiple of the beacon
2327 * period is used. Also, if the sleep duration is
2328 * greater than the DTIM period then it makes senses
2329 * to make it a multiple of that.
2330 *
2331 * XXX fixed at 100ms
2332 */
2333 bs.bs_sleepduration =
2334 roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2335 if (bs.bs_sleepduration > bs.bs_dtimperiod)
2336 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2337
2338 DPRINTF(sc, ATH_DEBUG_BEACON,
2339 "%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2340 , __func__
2341 , tsf, tsftu
2342 , bs.bs_intval
2343 , bs.bs_nexttbtt
2344 , bs.bs_dtimperiod
2345 , bs.bs_nextdtim
2346 , bs.bs_bmissthreshold
2347 , bs.bs_sleepduration
2348 , bs.bs_cfpperiod
2349 , bs.bs_cfpmaxduration
2350 , bs.bs_cfpnext
2351 , bs.bs_timoffset
2352 );
2353 ath_hal_intrset(ah, 0);
2354 ath_hal_beacontimers(ah, &bs);
2355 sc->sc_imask |= HAL_INT_BMISS;
2356 ath_hal_intrset(ah, sc->sc_imask);
2357 } else {
2358 ath_hal_intrset(ah, 0);
2359 if (nexttbtt == intval)
2360 intval |= HAL_BEACON_RESET_TSF;
2361 if (ic->ic_opmode == IEEE80211_M_IBSS) {
2362 /*
2363 * In IBSS mode enable the beacon timers but only
2364 * enable SWBA interrupts if we need to manually
2365 * prepare beacon frames. Otherwise we use a
2366 * self-linked tx descriptor and let the hardware
2367 * deal with things.
2368 */
2369 intval |= HAL_BEACON_ENA;
2370 if (!sc->sc_hasveol)
2371 sc->sc_imask |= HAL_INT_SWBA;
2372 ath_beaconq_config(sc);
2373 } else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2374 /*
2375 * In AP mode we enable the beacon timers and
2376 * SWBA interrupts to prepare beacon frames.
2377 */
2378 intval |= HAL_BEACON_ENA;
2379 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */
2380 ath_beaconq_config(sc);
2381 }
2382 ath_hal_beaconinit(ah, nexttbtt, intval);
2383 sc->sc_bmisscount = 0;
2384 ath_hal_intrset(ah, sc->sc_imask);
2385 /*
2386 * When using a self-linked beacon descriptor in
2387 * ibss mode load it once here.
2388 */
2389 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2390 ath_beacon_proc(sc, 0);
2391 }
2392 #undef TSF_TO_TU
2393 }
2394
2395 static int
2396 ath_descdma_setup(struct ath_softc *sc,
2397 struct ath_descdma *dd, ath_bufhead *head,
2398 const char *name, int nbuf, int ndesc)
2399 {
2400 #define DS2PHYS(_dd, _ds) \
2401 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2402 struct ifnet *ifp = &sc->sc_if;
2403 struct ath_desc *ds;
2404 struct ath_buf *bf;
2405 int i, bsize, error;
2406
2407 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2408 __func__, name, nbuf, ndesc);
2409
2410 dd->dd_name = name;
2411 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2412
2413 /*
2414 * Setup DMA descriptor area.
2415 */
2416 dd->dd_dmat = sc->sc_dmat;
2417
2418 error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE,
2419 0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0);
2420
2421 if (error != 0) {
2422 if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2423 "error %u\n", nbuf * ndesc, dd->dd_name, error);
2424 goto fail0;
2425 }
2426
2427 error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg,
2428 dd->dd_desc_len, (caddr_t *)&dd->dd_desc, BUS_DMA_COHERENT);
2429 if (error != 0) {
2430 if_printf(ifp, "unable to map %u %s descriptors, error = %u\n",
2431 nbuf * ndesc, dd->dd_name, error);
2432 goto fail1;
2433 }
2434
2435 /* allocate descriptors */
2436 error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1,
2437 dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2438 if (error != 0) {
2439 if_printf(ifp, "unable to create dmamap for %s descriptors, "
2440 "error %u\n", dd->dd_name, error);
2441 goto fail2;
2442 }
2443
2444 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc,
2445 dd->dd_desc_len, NULL, BUS_DMA_NOWAIT);
2446 if (error != 0) {
2447 if_printf(ifp, "unable to map %s descriptors, error %u\n",
2448 dd->dd_name, error);
2449 goto fail3;
2450 }
2451
2452 ds = dd->dd_desc;
2453 dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr;
2454 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
2455 __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2456 (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2457
2458 /* allocate rx buffers */
2459 bsize = sizeof(struct ath_buf) * nbuf;
2460 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2461 if (bf == NULL) {
2462 if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2463 dd->dd_name, bsize);
2464 goto fail4;
2465 }
2466 dd->dd_bufptr = bf;
2467
2468 STAILQ_INIT(head);
2469 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2470 bf->bf_desc = ds;
2471 bf->bf_daddr = DS2PHYS(dd, ds);
2472 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc,
2473 MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap);
2474 if (error != 0) {
2475 if_printf(ifp, "unable to create dmamap for %s "
2476 "buffer %u, error %u\n", dd->dd_name, i, error);
2477 ath_descdma_cleanup(sc, dd, head);
2478 return error;
2479 }
2480 STAILQ_INSERT_TAIL(head, bf, bf_list);
2481 }
2482 return 0;
2483 fail4:
2484 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2485 fail3:
2486 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2487 fail2:
2488 bus_dmamem_unmap(dd->dd_dmat, (caddr_t)dd->dd_desc, dd->dd_desc_len);
2489 fail1:
2490 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2491 fail0:
2492 memset(dd, 0, sizeof(*dd));
2493 return error;
2494 #undef DS2PHYS
2495 }
2496
2497 static void
2498 ath_descdma_cleanup(struct ath_softc *sc,
2499 struct ath_descdma *dd, ath_bufhead *head)
2500 {
2501 struct ath_buf *bf;
2502 struct ieee80211_node *ni;
2503
2504 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2505 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2506 bus_dmamem_unmap(dd->dd_dmat, (caddr_t)dd->dd_desc, dd->dd_desc_len);
2507 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2508
2509 STAILQ_FOREACH(bf, head, bf_list) {
2510 if (bf->bf_m) {
2511 m_freem(bf->bf_m);
2512 bf->bf_m = NULL;
2513 }
2514 if (bf->bf_dmamap != NULL) {
2515 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2516 bf->bf_dmamap = NULL;
2517 }
2518 ni = bf->bf_node;
2519 bf->bf_node = NULL;
2520 if (ni != NULL) {
2521 /*
2522 * Reclaim node reference.
2523 */
2524 ieee80211_free_node(ni);
2525 }
2526 }
2527
2528 STAILQ_INIT(head);
2529 free(dd->dd_bufptr, M_ATHDEV);
2530 memset(dd, 0, sizeof(*dd));
2531 }
2532
2533 static int
2534 ath_desc_alloc(struct ath_softc *sc)
2535 {
2536 int error;
2537
2538 error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2539 "rx", ATH_RXBUF, 1);
2540 if (error != 0)
2541 return error;
2542
2543 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2544 "tx", ATH_TXBUF, ATH_TXDESC);
2545 if (error != 0) {
2546 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2547 return error;
2548 }
2549
2550 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2551 "beacon", 1, 1);
2552 if (error != 0) {
2553 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2554 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2555 return error;
2556 }
2557 return 0;
2558 }
2559
2560 static void
2561 ath_desc_free(struct ath_softc *sc)
2562 {
2563
2564 if (sc->sc_bdma.dd_desc_len != 0)
2565 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2566 if (sc->sc_txdma.dd_desc_len != 0)
2567 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2568 if (sc->sc_rxdma.dd_desc_len != 0)
2569 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2570 }
2571
2572 static struct ieee80211_node *
2573 ath_node_alloc(struct ieee80211_node_table *nt)
2574 {
2575 struct ieee80211com *ic = nt->nt_ic;
2576 struct ath_softc *sc = ic->ic_ifp->if_softc;
2577 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2578 struct ath_node *an;
2579
2580 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2581 if (an == NULL) {
2582 /* XXX stat+msg */
2583 return NULL;
2584 }
2585 an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
2586 an->an_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
2587 an->an_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
2588 an->an_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
2589 ath_rate_node_init(sc, an);
2590
2591 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2592 return &an->an_node;
2593 }
2594
2595 static void
2596 ath_node_free(struct ieee80211_node *ni)
2597 {
2598 struct ieee80211com *ic = ni->ni_ic;
2599 struct ath_softc *sc = ic->ic_ifp->if_softc;
2600
2601 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2602
2603 ath_rate_node_cleanup(sc, ATH_NODE(ni));
2604 sc->sc_node_free(ni);
2605 }
2606
2607 static u_int8_t
2608 ath_node_getrssi(const struct ieee80211_node *ni)
2609 {
2610 #define HAL_EP_RND(x, mul) \
2611 ((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
2612 u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
2613 int32_t rssi;
2614
2615 /*
2616 * When only one frame is received there will be no state in
2617 * avgrssi so fallback on the value recorded by the 802.11 layer.
2618 */
2619 if (avgrssi != ATH_RSSI_DUMMY_MARKER)
2620 rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
2621 else
2622 rssi = ni->ni_rssi;
2623 /* NB: theoretically we shouldn't need this, but be paranoid */
2624 return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
2625 #undef HAL_EP_RND
2626 }
2627
2628 static int
2629 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2630 {
2631 struct ath_hal *ah = sc->sc_ah;
2632 int error;
2633 struct mbuf *m;
2634 struct ath_desc *ds;
2635
2636 m = bf->bf_m;
2637 if (m == NULL) {
2638 /*
2639 * NB: by assigning a page to the rx dma buffer we
2640 * implicitly satisfy the Atheros requirement that
2641 * this buffer be cache-line-aligned and sized to be
2642 * multiple of the cache line size. Not doing this
2643 * causes weird stuff to happen (for the 5210 at least).
2644 */
2645 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2646 if (m == NULL) {
2647 DPRINTF(sc, ATH_DEBUG_ANY,
2648 "%s: no mbuf/cluster\n", __func__);
2649 sc->sc_stats.ast_rx_nombuf++;
2650 return ENOMEM;
2651 }
2652 bf->bf_m = m;
2653 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2654
2655 error = bus_dmamap_load_mbuf(sc->sc_dmat,
2656 bf->bf_dmamap, m,
2657 BUS_DMA_NOWAIT);
2658 if (error != 0) {
2659 DPRINTF(sc, ATH_DEBUG_ANY,
2660 "%s: bus_dmamap_load_mbuf failed; error %d\n",
2661 __func__, error);
2662 sc->sc_stats.ast_rx_busdma++;
2663 return error;
2664 }
2665 KASSERT(bf->bf_nseg == 1,
2666 ("multi-segment packet; nseg %u", bf->bf_nseg));
2667 }
2668 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2669 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2670
2671 /*
2672 * Setup descriptors. For receive we always terminate
2673 * the descriptor list with a self-linked entry so we'll
2674 * not get overrun under high load (as can happen with a
2675 * 5212 when ANI processing enables PHY error frames).
2676 *
2677 * To insure the last descriptor is self-linked we create
2678 * each descriptor as self-linked and add it to the end. As
2679 * each additional descriptor is added the previous self-linked
2680 * entry is ``fixed'' naturally. This should be safe even
2681 * if DMA is happening. When processing RX interrupts we
2682 * never remove/process the last, self-linked, entry on the
2683 * descriptor list. This insures the hardware always has
2684 * someplace to write a new frame.
2685 */
2686 ds = bf->bf_desc;
2687 ds->ds_link = bf->bf_daddr; /* link to self */
2688 ds->ds_data = bf->bf_segs[0].ds_addr;
2689 ath_hal_setuprxdesc(ah, ds
2690 , m->m_len /* buffer size */
2691 , 0
2692 );
2693
2694 if (sc->sc_rxlink != NULL)
2695 *sc->sc_rxlink = bf->bf_daddr;
2696 sc->sc_rxlink = &ds->ds_link;
2697 return 0;
2698 }
2699
2700 /*
2701 * Extend 15-bit time stamp from rx descriptor to
2702 * a full 64-bit TSF using the current h/w TSF.
2703 */
2704 static __inline u_int64_t
2705 ath_extend_tsf(struct ath_hal *ah, u_int32_t rstamp)
2706 {
2707 u_int64_t tsf;
2708
2709 tsf = ath_hal_gettsf64(ah);
2710 if ((tsf & 0x7fff) < rstamp)
2711 tsf -= 0x8000;
2712 return ((tsf &~ 0x7fff) | rstamp);
2713 }
2714
2715 /*
2716 * Intercept management frames to collect beacon rssi data
2717 * and to do ibss merges.
2718 */
2719 static void
2720 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2721 struct ieee80211_node *ni,
2722 int subtype, int rssi, u_int32_t rstamp)
2723 {
2724 struct ath_softc *sc = ic->ic_ifp->if_softc;
2725
2726 /*
2727 * Call up first so subsequent work can use information
2728 * potentially stored in the node (e.g. for ibss merge).
2729 */
2730 sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
2731 switch (subtype) {
2732 case IEEE80211_FC0_SUBTYPE_BEACON:
2733 /* update rssi statistics for use by the hal */
2734 ATH_RSSI_LPF(ATH_NODE(ni)->an_halstats.ns_avgbrssi, rssi);
2735 /* fall thru... */
2736 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2737 if (ic->ic_opmode == IEEE80211_M_IBSS &&
2738 ic->ic_state == IEEE80211_S_RUN) {
2739 u_int64_t tsf = ath_extend_tsf(sc->sc_ah, rstamp);
2740
2741 /*
2742 * Handle ibss merge as needed; check the tsf on the
2743 * frame before attempting the merge. The 802.11 spec
2744 * says the station should change it's bssid to match
2745 * the oldest station with the same ssid, where oldest
2746 * is determined by the tsf. Note that hardware
2747 * reconfiguration happens through callback to
2748 * ath_newstate as the state machine will go from
2749 * RUN -> RUN when this happens.
2750 */
2751 if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
2752 DPRINTF(sc, ATH_DEBUG_STATE,
2753 "ibss merge, rstamp %u tsf %ju "
2754 "tstamp %ju\n", rstamp, (uintmax_t)tsf,
2755 (uintmax_t)ni->ni_tstamp.tsf);
2756 (void) ieee80211_ibss_merge(ni);
2757 }
2758 }
2759 break;
2760 }
2761 }
2762
2763 /*
2764 * Set the default antenna.
2765 */
2766 static void
2767 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
2768 {
2769 struct ath_hal *ah = sc->sc_ah;
2770
2771 /* XXX block beacon interrupts */
2772 ath_hal_setdefantenna(ah, antenna);
2773 if (sc->sc_defant != antenna)
2774 sc->sc_stats.ast_ant_defswitch++;
2775 sc->sc_defant = antenna;
2776 sc->sc_rxotherant = 0;
2777 }
2778
2779 static void
2780 ath_rx_proc(void *arg, int npending)
2781 {
2782 #define PA2DESC(_sc, _pa) \
2783 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
2784 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
2785 struct ath_softc *sc = arg;
2786 struct ath_buf *bf;
2787 struct ieee80211com *ic = &sc->sc_ic;
2788 struct ifnet *ifp = &sc->sc_if;
2789 struct ath_hal *ah = sc->sc_ah;
2790 struct ath_desc *ds;
2791 struct mbuf *m;
2792 struct ieee80211_node *ni;
2793 struct ath_node *an;
2794 int len, type;
2795 u_int phyerr;
2796 HAL_STATUS status;
2797
2798 NET_LOCK_GIANT(); /* XXX */
2799
2800 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
2801 do {
2802 bf = STAILQ_FIRST(&sc->sc_rxbuf);
2803 if (bf == NULL) { /* NB: shouldn't happen */
2804 if_printf(ifp, "%s: no buffer!\n", __func__);
2805 break;
2806 }
2807 ds = bf->bf_desc;
2808 if (ds->ds_link == bf->bf_daddr) {
2809 /* NB: never process the self-linked entry at the end */
2810 break;
2811 }
2812 m = bf->bf_m;
2813 if (m == NULL) { /* NB: shouldn't happen */
2814 if_printf(ifp, "%s: no mbuf!\n", __func__);
2815 continue;
2816 }
2817 /* XXX sync descriptor memory */
2818 /*
2819 * Must provide the virtual address of the current
2820 * descriptor, the physical address, and the virtual
2821 * address of the next descriptor in the h/w chain.
2822 * This allows the HAL to look ahead to see if the
2823 * hardware is done with a descriptor by checking the
2824 * done bit in the following descriptor and the address
2825 * of the current descriptor the DMA engine is working
2826 * on. All this is necessary because of our use of
2827 * a self-linked list to avoid rx overruns.
2828 */
2829 status = ath_hal_rxprocdesc(ah, ds,
2830 bf->bf_daddr, PA2DESC(sc, ds->ds_link));
2831 #ifdef AR_DEBUG
2832 if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
2833 ath_printrxbuf(bf, status == HAL_OK);
2834 #endif
2835 if (status == HAL_EINPROGRESS)
2836 break;
2837 STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
2838 if (ds->ds_rxstat.rs_more) {
2839 /*
2840 * Frame spans multiple descriptors; this
2841 * cannot happen yet as we don't support
2842 * jumbograms. If not in monitor mode,
2843 * discard the frame.
2844 */
2845 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2846 sc->sc_stats.ast_rx_toobig++;
2847 goto rx_next;
2848 }
2849 /* fall thru for monitor mode handling... */
2850 } else if (ds->ds_rxstat.rs_status != 0) {
2851 if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
2852 sc->sc_stats.ast_rx_crcerr++;
2853 if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
2854 sc->sc_stats.ast_rx_fifoerr++;
2855 if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
2856 sc->sc_stats.ast_rx_phyerr++;
2857 phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
2858 sc->sc_stats.ast_rx_phy[phyerr]++;
2859 goto rx_next;
2860 }
2861 if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
2862 /*
2863 * Decrypt error. If the error occurred
2864 * because there was no hardware key, then
2865 * let the frame through so the upper layers
2866 * can process it. This is necessary for 5210
2867 * parts which have no way to setup a ``clear''
2868 * key cache entry.
2869 *
2870 * XXX do key cache faulting
2871 */
2872 if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
2873 goto rx_accept;
2874 sc->sc_stats.ast_rx_badcrypt++;
2875 }
2876 if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
2877 sc->sc_stats.ast_rx_badmic++;
2878 /*
2879 * Do minimal work required to hand off
2880 * the 802.11 header for notifcation.
2881 */
2882 /* XXX frag's and qos frames */
2883 len = ds->ds_rxstat.rs_datalen;
2884 if (len >= sizeof (struct ieee80211_frame)) {
2885 bus_dmamap_sync(sc->sc_dmat,
2886 bf->bf_dmamap,
2887 0, bf->bf_dmamap->dm_mapsize,
2888 BUS_DMASYNC_POSTREAD);
2889 ieee80211_notify_michael_failure(ic,
2890 mtod(m, struct ieee80211_frame *),
2891 sc->sc_splitmic ?
2892 ds->ds_rxstat.rs_keyix-32 :
2893 ds->ds_rxstat.rs_keyix
2894 );
2895 }
2896 }
2897 ifp->if_ierrors++;
2898 /*
2899 * Reject error frames, we normally don't want
2900 * to see them in monitor mode (in monitor mode
2901 * allow through packets that have crypto problems).
2902 */
2903 if ((ds->ds_rxstat.rs_status &~
2904 (HAL_RXERR_DECRYPT|HAL_RXERR_MIC)) ||
2905 sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
2906 goto rx_next;
2907 }
2908 rx_accept:
2909 /*
2910 * Sync and unmap the frame. At this point we're
2911 * committed to passing the mbuf somewhere so clear
2912 * bf_m; this means a new sk_buff must be allocated
2913 * when the rx descriptor is setup again to receive
2914 * another frame.
2915 */
2916 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
2917 0, bf->bf_dmamap->dm_mapsize,
2918 BUS_DMASYNC_POSTREAD);
2919 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2920 bf->bf_m = NULL;
2921
2922 m->m_pkthdr.rcvif = ifp;
2923 len = ds->ds_rxstat.rs_datalen;
2924 m->m_pkthdr.len = m->m_len = len;
2925
2926 sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
2927
2928 #if NBPFILTER > 0
2929 if (sc->sc_drvbpf) {
2930 u_int8_t rix;
2931
2932 /*
2933 * Discard anything shorter than an ack or cts.
2934 */
2935 if (len < IEEE80211_ACK_LEN) {
2936 DPRINTF(sc, ATH_DEBUG_RECV,
2937 "%s: runt packet %d\n",
2938 __func__, len);
2939 sc->sc_stats.ast_rx_tooshort++;
2940 m_freem(m);
2941 goto rx_next;
2942 }
2943 rix = ds->ds_rxstat.rs_rate;
2944 sc->sc_rx_th.wr_tsf = ath_extend_tsf(sc->sc_ah,
2945 ds->ds_rxstat.rs_tstamp);
2946 sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
2947 sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
2948 sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi;
2949 sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
2950
2951 bpf_mtap2(sc->sc_drvbpf,
2952 &sc->sc_rx_th, sc->sc_rx_th_len, m);
2953 }
2954 #endif
2955
2956 /*
2957 * From this point on we assume the frame is at least
2958 * as large as ieee80211_frame_min; verify that.
2959 */
2960 if (len < IEEE80211_MIN_LEN) {
2961 DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
2962 __func__, len);
2963 sc->sc_stats.ast_rx_tooshort++;
2964 m_freem(m);
2965 goto rx_next;
2966 }
2967
2968 if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
2969 ieee80211_dump_pkt(mtod(m, caddr_t), len,
2970 sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
2971 ds->ds_rxstat.rs_rssi);
2972 }
2973
2974 m_adj(m, -IEEE80211_CRC_LEN);
2975
2976 /*
2977 * Locate the node for sender, track state, and then
2978 * pass the (referenced) node up to the 802.11 layer
2979 * for its use.
2980 */
2981 ni = ieee80211_find_rxnode_withkey(ic,
2982 mtod(m, const struct ieee80211_frame_min *),
2983 ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
2984 IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
2985 /*
2986 * Track rx rssi and do any rx antenna management.
2987 */
2988 an = ATH_NODE(ni);
2989 ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
2990 /*
2991 * Send frame up for processing.
2992 */
2993 type = ieee80211_input(ic, m, ni,
2994 ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
2995 ieee80211_free_node(ni);
2996 if (sc->sc_diversity) {
2997 /*
2998 * When using fast diversity, change the default rx
2999 * antenna if diversity chooses the other antenna 3
3000 * times in a row.
3001 */
3002 if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
3003 if (++sc->sc_rxotherant >= 3)
3004 ath_setdefantenna(sc,
3005 ds->ds_rxstat.rs_antenna);
3006 } else
3007 sc->sc_rxotherant = 0;
3008 }
3009 if (sc->sc_softled) {
3010 /*
3011 * Blink for any data frame. Otherwise do a
3012 * heartbeat-style blink when idle. The latter
3013 * is mainly for station mode where we depend on
3014 * periodic beacon frames to trigger the poll event.
3015 */
3016 if (type == IEEE80211_FC0_TYPE_DATA) {
3017 sc->sc_rxrate = ds->ds_rxstat.rs_rate;
3018 ath_led_event(sc, ATH_LED_RX);
3019 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
3020 ath_led_event(sc, ATH_LED_POLL);
3021 }
3022 rx_next:
3023 STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
3024 } while (ath_rxbuf_init(sc, bf) == 0);
3025
3026 /* rx signal state monitoring */
3027 ath_hal_rxmonitor(ah, &ATH_NODE(ic->ic_bss)->an_halstats);
3028
3029 #ifdef __NetBSD__
3030 /* XXX Why isn't this necessary in FreeBSD? */
3031 if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
3032 ath_start(ifp);
3033 #endif /* __NetBSD__ */
3034
3035 NET_UNLOCK_GIANT(); /* XXX */
3036 #undef PA2DESC
3037 }
3038
3039 /*
3040 * Setup a h/w transmit queue.
3041 */
3042 static struct ath_txq *
3043 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3044 {
3045 #define N(a) (sizeof(a)/sizeof(a[0]))
3046 struct ath_hal *ah = sc->sc_ah;
3047 HAL_TXQ_INFO qi;
3048 int qnum;
3049
3050 memset(&qi, 0, sizeof(qi));
3051 qi.tqi_subtype = subtype;
3052 qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3053 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3054 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3055 /*
3056 * Enable interrupts only for EOL and DESC conditions.
3057 * We mark tx descriptors to receive a DESC interrupt
3058 * when a tx queue gets deep; otherwise waiting for the
3059 * EOL to reap descriptors. Note that this is done to
3060 * reduce interrupt load and this only defers reaping
3061 * descriptors, never transmitting frames. Aside from
3062 * reducing interrupts this also permits more concurrency.
3063 * The only potential downside is if the tx queue backs
3064 * up in which case the top half of the kernel may backup
3065 * due to a lack of tx descriptors.
3066 */
3067 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE | TXQ_FLAG_TXDESCINT_ENABLE;
3068 qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3069 if (qnum == -1) {
3070 /*
3071 * NB: don't print a message, this happens
3072 * normally on parts with too few tx queues
3073 */
3074 return NULL;
3075 }
3076 if (qnum >= N(sc->sc_txq)) {
3077 device_printf(sc->sc_dev,
3078 "hal qnum %u out of range, max %zu!\n",
3079 qnum, N(sc->sc_txq));
3080 ath_hal_releasetxqueue(ah, qnum);
3081 return NULL;
3082 }
3083 if (!ATH_TXQ_SETUP(sc, qnum)) {
3084 struct ath_txq *txq = &sc->sc_txq[qnum];
3085
3086 txq->axq_qnum = qnum;
3087 txq->axq_depth = 0;
3088 txq->axq_intrcnt = 0;
3089 txq->axq_link = NULL;
3090 STAILQ_INIT(&txq->axq_q);
3091 ATH_TXQ_LOCK_INIT(sc, txq);
3092 sc->sc_txqsetup |= 1<<qnum;
3093 }
3094 return &sc->sc_txq[qnum];
3095 #undef N
3096 }
3097
3098 /*
3099 * Setup a hardware data transmit queue for the specified
3100 * access control. The hal may not support all requested
3101 * queues in which case it will return a reference to a
3102 * previously setup queue. We record the mapping from ac's
3103 * to h/w queues for use by ath_tx_start and also track
3104 * the set of h/w queues being used to optimize work in the
3105 * transmit interrupt handler and related routines.
3106 */
3107 static int
3108 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3109 {
3110 #define N(a) (sizeof(a)/sizeof(a[0]))
3111 struct ath_txq *txq;
3112
3113 if (ac >= N(sc->sc_ac2q)) {
3114 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3115 ac, N(sc->sc_ac2q));
3116 return 0;
3117 }
3118 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3119 if (txq != NULL) {
3120 sc->sc_ac2q[ac] = txq;
3121 return 1;
3122 } else
3123 return 0;
3124 #undef N
3125 }
3126
3127 /*
3128 * Update WME parameters for a transmit queue.
3129 */
3130 static int
3131 ath_txq_update(struct ath_softc *sc, int ac)
3132 {
3133 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1)
3134 #define ATH_TXOP_TO_US(v) (v<<5)
3135 struct ieee80211com *ic = &sc->sc_ic;
3136 struct ath_txq *txq = sc->sc_ac2q[ac];
3137 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3138 struct ath_hal *ah = sc->sc_ah;
3139 HAL_TXQ_INFO qi;
3140
3141 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3142 qi.tqi_aifs = wmep->wmep_aifsn;
3143 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3144 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3145 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3146
3147 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3148 device_printf(sc->sc_dev, "unable to update hardware queue "
3149 "parameters for %s traffic!\n",
3150 ieee80211_wme_acnames[ac]);
3151 return 0;
3152 } else {
3153 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3154 return 1;
3155 }
3156 #undef ATH_TXOP_TO_US
3157 #undef ATH_EXPONENT_TO_VALUE
3158 }
3159
3160 /*
3161 * Callback from the 802.11 layer to update WME parameters.
3162 */
3163 static int
3164 ath_wme_update(struct ieee80211com *ic)
3165 {
3166 struct ath_softc *sc = ic->ic_ifp->if_softc;
3167
3168 return !ath_txq_update(sc, WME_AC_BE) ||
3169 !ath_txq_update(sc, WME_AC_BK) ||
3170 !ath_txq_update(sc, WME_AC_VI) ||
3171 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3172 }
3173
3174 /*
3175 * Reclaim resources for a setup queue.
3176 */
3177 static void
3178 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3179 {
3180
3181 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3182 ATH_TXQ_LOCK_DESTROY(txq);
3183 sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3184 }
3185
3186 /*
3187 * Reclaim all tx queue resources.
3188 */
3189 static void
3190 ath_tx_cleanup(struct ath_softc *sc)
3191 {
3192 int i;
3193
3194 ATH_TXBUF_LOCK_DESTROY(sc);
3195 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3196 if (ATH_TXQ_SETUP(sc, i))
3197 ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3198 }
3199
3200 /*
3201 * Defragment an mbuf chain, returning at most maxfrags separate
3202 * mbufs+clusters. If this is not possible NULL is returned and
3203 * the original mbuf chain is left in it's present (potentially
3204 * modified) state. We use two techniques: collapsing consecutive
3205 * mbufs and replacing consecutive mbufs by a cluster.
3206 */
3207 static struct mbuf *
3208 ath_defrag(struct mbuf *m0, int how, int maxfrags)
3209 {
3210 struct mbuf *m, *n, *n2, **prev;
3211 u_int curfrags;
3212
3213 /*
3214 * Calculate the current number of frags.
3215 */
3216 curfrags = 0;
3217 for (m = m0; m != NULL; m = m->m_next)
3218 curfrags++;
3219 /*
3220 * First, try to collapse mbufs. Note that we always collapse
3221 * towards the front so we don't need to deal with moving the
3222 * pkthdr. This may be suboptimal if the first mbuf has much
3223 * less data than the following.
3224 */
3225 m = m0;
3226 again:
3227 for (;;) {
3228 n = m->m_next;
3229 if (n == NULL)
3230 break;
3231 if ((m->m_flags & M_RDONLY) == 0 &&
3232 n->m_len < M_TRAILINGSPACE(m)) {
3233 bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
3234 n->m_len);
3235 m->m_len += n->m_len;
3236 m->m_next = n->m_next;
3237 m_free(n);
3238 if (--curfrags <= maxfrags)
3239 return m0;
3240 } else
3241 m = n;
3242 }
3243 KASSERT(maxfrags > 1,
3244 ("maxfrags %u, but normal collapse failed", maxfrags));
3245 /*
3246 * Collapse consecutive mbufs to a cluster.
3247 */
3248 prev = &m0->m_next; /* NB: not the first mbuf */
3249 while ((n = *prev) != NULL) {
3250 if ((n2 = n->m_next) != NULL &&
3251 n->m_len + n2->m_len < MCLBYTES) {
3252 m = m_getcl(how, MT_DATA, 0);
3253 if (m == NULL)
3254 goto bad;
3255 bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
3256 bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
3257 n2->m_len);
3258 m->m_len = n->m_len + n2->m_len;
3259 m->m_next = n2->m_next;
3260 *prev = m;
3261 m_free(n);
3262 m_free(n2);
3263 if (--curfrags <= maxfrags) /* +1 cl -2 mbufs */
3264 return m0;
3265 /*
3266 * Still not there, try the normal collapse
3267 * again before we allocate another cluster.
3268 */
3269 goto again;
3270 }
3271 prev = &n->m_next;
3272 }
3273 /*
3274 * No place where we can collapse to a cluster; punt.
3275 * This can occur if, for example, you request 2 frags
3276 * but the packet requires that both be clusters (we
3277 * never reallocate the first mbuf to avoid moving the
3278 * packet header).
3279 */
3280 bad:
3281 return NULL;
3282 }
3283
3284 static int
3285 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
3286 struct mbuf *m0)
3287 {
3288 #define CTS_DURATION \
3289 ath_hal_computetxtime(ah, rt, IEEE80211_ACK_LEN, cix, AH_TRUE)
3290 #define updateCTSForBursting(_ah, _ds, _txq) \
3291 ath_hal_updateCTSForBursting(_ah, _ds, \
3292 _txq->axq_linkbuf != NULL ? _txq->axq_linkbuf->bf_desc : NULL, \
3293 _txq->axq_lastdsWithCTS, _txq->axq_gatingds, \
3294 txopLimit, CTS_DURATION)
3295 struct ieee80211com *ic = &sc->sc_ic;
3296 struct ath_hal *ah = sc->sc_ah;
3297 struct ifnet *ifp = &sc->sc_if;
3298 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
3299 int i, error, iswep, ismcast, keyix, hdrlen, pktlen, try0;
3300 u_int8_t rix, txrate, ctsrate;
3301 u_int8_t cix = 0xff; /* NB: silence compiler */
3302 struct ath_desc *ds, *ds0;
3303 struct ath_txq *txq;
3304 struct ieee80211_frame *wh;
3305 u_int subtype, flags, ctsduration;
3306 HAL_PKT_TYPE atype;
3307 const HAL_RATE_TABLE *rt;
3308 HAL_BOOL shortPreamble;
3309 struct ath_node *an;
3310 struct mbuf *m;
3311 u_int pri;
3312
3313 wh = mtod(m0, struct ieee80211_frame *);
3314 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
3315 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3316 hdrlen = ieee80211_anyhdrsize(wh);
3317 /*
3318 * Packet length must not include any
3319 * pad bytes; deduct them here.
3320 */
3321 pktlen = m0->m_pkthdr.len - (hdrlen & 3);
3322
3323 if (iswep) {
3324 const struct ieee80211_cipher *cip;
3325 struct ieee80211_key *k;
3326
3327 /*
3328 * Construct the 802.11 header+trailer for an encrypted
3329 * frame. The only reason this can fail is because of an
3330 * unknown or unsupported cipher/key type.
3331 */
3332 k = ieee80211_crypto_encap(ic, ni, m0);
3333 if (k == NULL) {
3334 /*
3335 * This can happen when the key is yanked after the
3336 * frame was queued. Just discard the frame; the
3337 * 802.11 layer counts failures and provides
3338 * debugging/diagnostics.
3339 */
3340 m_freem(m0);
3341 return EIO;
3342 }
3343 /*
3344 * Adjust the packet + header lengths for the crypto
3345 * additions and calculate the h/w key index. When
3346 * a s/w mic is done the frame will have had any mic
3347 * added to it prior to entry so skb->len above will
3348 * account for it. Otherwise we need to add it to the
3349 * packet length.
3350 */
3351 cip = k->wk_cipher;
3352 hdrlen += cip->ic_header;
3353 pktlen += cip->ic_header + cip->ic_trailer;
3354 if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0)
3355 pktlen += cip->ic_miclen;
3356 keyix = k->wk_keyix;
3357
3358 /* packet header may have moved, reset our local pointer */
3359 wh = mtod(m0, struct ieee80211_frame *);
3360 } else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
3361 /*
3362 * Use station key cache slot, if assigned.
3363 */
3364 keyix = ni->ni_ucastkey.wk_keyix;
3365 if (keyix == IEEE80211_KEYIX_NONE)
3366 keyix = HAL_TXKEYIX_INVALID;
3367 } else
3368 keyix = HAL_TXKEYIX_INVALID;
3369
3370 pktlen += IEEE80211_CRC_LEN;
3371
3372 /*
3373 * Load the DMA map so any coalescing is done. This
3374 * also calculates the number of descriptors we need.
3375 */
3376 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3377 BUS_DMA_NOWAIT);
3378 if (error == EFBIG) {
3379 /* XXX packet requires too many descriptors */
3380 bf->bf_nseg = ATH_TXDESC+1;
3381 } else if (error != 0) {
3382 sc->sc_stats.ast_tx_busdma++;
3383 m_freem(m0);
3384 return error;
3385 }
3386 /*
3387 * Discard null packets and check for packets that
3388 * require too many TX descriptors. We try to convert
3389 * the latter to a cluster.
3390 */
3391 if (error == EFBIG) { /* too many desc's, linearize */
3392 sc->sc_stats.ast_tx_linear++;
3393 m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
3394 if (m == NULL) {
3395 m_freem(m0);
3396 sc->sc_stats.ast_tx_nombuf++;
3397 return ENOMEM;
3398 }
3399 m0 = m;
3400 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3401 BUS_DMA_NOWAIT);
3402 if (error != 0) {
3403 sc->sc_stats.ast_tx_busdma++;
3404 m_freem(m0);
3405 return error;
3406 }
3407 KASSERT(bf->bf_nseg <= ATH_TXDESC,
3408 ("too many segments after defrag; nseg %u", bf->bf_nseg));
3409 } else if (bf->bf_nseg == 0) { /* null packet, discard */
3410 sc->sc_stats.ast_tx_nodata++;
3411 m_freem(m0);
3412 return EIO;
3413 }
3414 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
3415 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
3416 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
3417 bf->bf_m = m0;
3418 bf->bf_node = ni; /* NB: held reference */
3419
3420 /* setup descriptors */
3421 ds = bf->bf_desc;
3422 rt = sc->sc_currates;
3423 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3424
3425 /*
3426 * NB: the 802.11 layer marks whether or not we should
3427 * use short preamble based on the current mode and
3428 * negotiated parameters.
3429 */
3430 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3431 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) {
3432 shortPreamble = AH_TRUE;
3433 sc->sc_stats.ast_tx_shortpre++;
3434 } else {
3435 shortPreamble = AH_FALSE;
3436 }
3437
3438 an = ATH_NODE(ni);
3439 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */
3440 /*
3441 * Calculate Atheros packet type from IEEE80211 packet header,
3442 * setup for rate calculations, and select h/w transmit queue.
3443 */
3444 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3445 case IEEE80211_FC0_TYPE_MGT:
3446 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3447 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
3448 atype = HAL_PKT_TYPE_BEACON;
3449 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3450 atype = HAL_PKT_TYPE_PROBE_RESP;
3451 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
3452 atype = HAL_PKT_TYPE_ATIM;
3453 else
3454 atype = HAL_PKT_TYPE_NORMAL; /* XXX */
3455 rix = 0; /* XXX lowest rate */
3456 try0 = ATH_TXMAXTRY;
3457 if (shortPreamble)
3458 txrate = an->an_tx_mgtratesp;
3459 else
3460 txrate = an->an_tx_mgtrate;
3461 /* NB: force all management frames to highest queue */
3462 if (ni->ni_flags & IEEE80211_NODE_QOS) {
3463 /* NB: force all management frames to highest queue */
3464 pri = WME_AC_VO;
3465 } else
3466 pri = WME_AC_BE;
3467 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
3468 break;
3469 case IEEE80211_FC0_TYPE_CTL:
3470 atype = HAL_PKT_TYPE_PSPOLL; /* stop setting of duration */
3471 rix = 0; /* XXX lowest rate */
3472 try0 = ATH_TXMAXTRY;
3473 if (shortPreamble)
3474 txrate = an->an_tx_mgtratesp;
3475 else
3476 txrate = an->an_tx_mgtrate;
3477 /* NB: force all ctl frames to highest queue */
3478 if (ni->ni_flags & IEEE80211_NODE_QOS) {
3479 /* NB: force all ctl frames to highest queue */
3480 pri = WME_AC_VO;
3481 } else
3482 pri = WME_AC_BE;
3483 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
3484 break;
3485 case IEEE80211_FC0_TYPE_DATA:
3486 atype = HAL_PKT_TYPE_NORMAL; /* default */
3487 /*
3488 * Data frames; consult the rate control module for
3489 * unicast frames. Send multicast frames at the
3490 * lowest rate.
3491 */
3492 if (!ismcast) {
3493 ath_rate_findrate(sc, an, shortPreamble, pktlen,
3494 &rix, &try0, &txrate);
3495 } else {
3496 rix = 0;
3497 try0 = ATH_TXMAXTRY;
3498 txrate = an->an_tx_mgtrate;
3499 }
3500 sc->sc_txrate = txrate; /* for LED blinking */
3501 /*
3502 * Default all non-QoS traffic to the background queue.
3503 */
3504 if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
3505 pri = M_WME_GETAC(m0);
3506 if (cap->cap_wmeParams[pri].wmep_noackPolicy) {
3507 flags |= HAL_TXDESC_NOACK;
3508 sc->sc_stats.ast_tx_noack++;
3509 }
3510 } else
3511 pri = WME_AC_BE;
3512 break;
3513 default:
3514 if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3515 wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3516 /* XXX statistic */
3517 m_freem(m0);
3518 return EIO;
3519 }
3520 txq = sc->sc_ac2q[pri];
3521
3522 /*
3523 * When servicing one or more stations in power-save mode
3524 * multicast frames must be buffered until after the beacon.
3525 * We use the CAB queue for that.
3526 */
3527 if (ismcast && ic->ic_ps_sta) {
3528 txq = sc->sc_cabq;
3529 /* XXX? more bit in 802.11 frame header */
3530 }
3531
3532 /*
3533 * Calculate miscellaneous flags.
3534 */
3535 if (ismcast) {
3536 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */
3537 sc->sc_stats.ast_tx_noack++;
3538 } else if (pktlen > ic->ic_rtsthreshold) {
3539 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */
3540 cix = rt->info[rix].controlRate;
3541 sc->sc_stats.ast_tx_rts++;
3542 }
3543
3544 /*
3545 * If 802.11g protection is enabled, determine whether
3546 * to use RTS/CTS or just CTS. Note that this is only
3547 * done for OFDM unicast frames.
3548 */
3549 if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3550 rt->info[rix].phy == IEEE80211_T_OFDM &&
3551 (flags & HAL_TXDESC_NOACK) == 0) {
3552 /* XXX fragments must use CCK rates w/ protection */
3553 if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3554 flags |= HAL_TXDESC_RTSENA;
3555 else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3556 flags |= HAL_TXDESC_CTSENA;
3557 cix = rt->info[sc->sc_protrix].controlRate;
3558 sc->sc_stats.ast_tx_protect++;
3559 }
3560
3561 /*
3562 * Calculate duration. This logically belongs in the 802.11
3563 * layer but it lacks sufficient information to calculate it.
3564 */
3565 if ((flags & HAL_TXDESC_NOACK) == 0 &&
3566 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
3567 u_int16_t dur;
3568 /*
3569 * XXX not right with fragmentation.
3570 */
3571 if (shortPreamble)
3572 dur = rt->info[rix].spAckDuration;
3573 else
3574 dur = rt->info[rix].lpAckDuration;
3575 *(u_int16_t *)wh->i_dur = htole16(dur);
3576 }
3577
3578 /*
3579 * Calculate RTS/CTS rate and duration if needed.
3580 */
3581 ctsduration = 0;
3582 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
3583 /*
3584 * CTS transmit rate is derived from the transmit rate
3585 * by looking in the h/w rate table. We must also factor
3586 * in whether or not a short preamble is to be used.
3587 */
3588 /* NB: cix is set above where RTS/CTS is enabled */
3589 KASSERT(cix != 0xff, ("cix not setup"));
3590 ctsrate = rt->info[cix].rateCode;
3591 /*
3592 * Compute the transmit duration based on the frame
3593 * size and the size of an ACK frame. We call into the
3594 * HAL to do the computation since it depends on the
3595 * characteristics of the actual PHY being used.
3596 *
3597 * NB: CTS is assumed the same size as an ACK so we can
3598 * use the precalculated ACK durations.
3599 */
3600 if (shortPreamble) {
3601 ctsrate |= rt->info[cix].shortPreamble;
3602 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
3603 ctsduration += rt->info[cix].spAckDuration;
3604 ctsduration += ath_hal_computetxtime(ah,
3605 rt, pktlen, rix, AH_TRUE);
3606 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
3607 ctsduration += rt->info[rix].spAckDuration;
3608 } else {
3609 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
3610 ctsduration += rt->info[cix].lpAckDuration;
3611 ctsduration += ath_hal_computetxtime(ah,
3612 rt, pktlen, rix, AH_FALSE);
3613 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
3614 ctsduration += rt->info[rix].lpAckDuration;
3615 }
3616 /*
3617 * Must disable multi-rate retry when using RTS/CTS.
3618 */
3619 try0 = ATH_TXMAXTRY;
3620 } else
3621 ctsrate = 0;
3622
3623 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3624 ieee80211_dump_pkt(mtod(m0, caddr_t), m0->m_len,
3625 sc->sc_hwmap[txrate].ieeerate, -1);
3626 #if NBPFILTER > 0
3627 if (ic->ic_rawbpf)
3628 bpf_mtap(ic->ic_rawbpf, m0);
3629 if (sc->sc_drvbpf) {
3630 sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
3631 if (iswep)
3632 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3633 sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
3634 sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3635 sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3636
3637 bpf_mtap2(sc->sc_drvbpf,
3638 &sc->sc_tx_th, sc->sc_tx_th_len, m0);
3639 }
3640 #endif
3641
3642 /*
3643 * Determine if a tx interrupt should be generated for
3644 * this descriptor. We take a tx interrupt to reap
3645 * descriptors when the h/w hits an EOL condition or
3646 * when the descriptor is specifically marked to generate
3647 * an interrupt. We periodically mark descriptors in this
3648 * way to insure timely replenishing of the supply needed
3649 * for sending frames. Defering interrupts reduces system
3650 * load and potentially allows more concurrent work to be
3651 * done but if done to aggressively can cause senders to
3652 * backup.
3653 *
3654 * NB: use >= to deal with sc_txintrperiod changing
3655 * dynamically through sysctl.
3656 */
3657 if (flags & HAL_TXDESC_INTREQ) {
3658 txq->axq_intrcnt = 0;
3659 } else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
3660 flags |= HAL_TXDESC_INTREQ;
3661 txq->axq_intrcnt = 0;
3662 }
3663
3664 /*
3665 * Formulate first tx descriptor with tx controls.
3666 */
3667 /* XXX check return value? */
3668 ath_hal_setuptxdesc(ah, ds
3669 , pktlen /* packet length */
3670 , hdrlen /* header length */
3671 , atype /* Atheros packet type */
3672 , ni->ni_txpower /* txpower */
3673 , txrate, try0 /* series 0 rate/tries */
3674 , keyix /* key cache index */
3675 , sc->sc_txantenna /* antenna mode */
3676 , flags /* flags */
3677 , ctsrate /* rts/cts rate */
3678 , ctsduration /* rts/cts duration */
3679 );
3680 bf->bf_flags = flags;
3681 /*
3682 * Setup the multi-rate retry state only when we're
3683 * going to use it. This assumes ath_hal_setuptxdesc
3684 * initializes the descriptors (so we don't have to)
3685 * when the hardware supports multi-rate retry and
3686 * we don't use it.
3687 */
3688 if (try0 != ATH_TXMAXTRY)
3689 ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
3690
3691 /*
3692 * Fillin the remainder of the descriptor info.
3693 */
3694 ds0 = ds;
3695 for (i = 0; i < bf->bf_nseg; i++, ds++) {
3696 ds->ds_data = bf->bf_segs[i].ds_addr;
3697 if (i == bf->bf_nseg - 1)
3698 ds->ds_link = 0;
3699 else
3700 ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
3701 ath_hal_filltxdesc(ah, ds
3702 , bf->bf_segs[i].ds_len /* segment length */
3703 , i == 0 /* first segment */
3704 , i == bf->bf_nseg - 1 /* last segment */
3705 , ds0 /* first descriptor */
3706 );
3707 DPRINTF(sc, ATH_DEBUG_XMIT,
3708 "%s: %d: %08x %08x %08x %08x %08x %08x\n",
3709 __func__, i, ds->ds_link, ds->ds_data,
3710 ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
3711 }
3712 /*
3713 * Insert the frame on the outbound list and
3714 * pass it on to the hardware.
3715 */
3716 ATH_TXQ_LOCK(txq);
3717 if (flags & (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) {
3718 u_int32_t txopLimit = IEEE80211_TXOP_TO_US(
3719 cap->cap_wmeParams[pri].wmep_txopLimit);
3720 /*
3721 * When bursting, potentially extend the CTS duration
3722 * of a previously queued frame to cover this frame
3723 * and not exceed the txopLimit. If that can be done
3724 * then disable RTS/CTS on this frame since it's now
3725 * covered (burst extension). Otherwise we must terminate
3726 * the burst before this frame goes out so as not to
3727 * violate the WME parameters. All this is complicated
3728 * as we need to update the state of packets on the
3729 * (live) hardware queue. The logic is buried in the hal
3730 * because it's highly chip-specific.
3731 */
3732 if (txopLimit != 0) {
3733 sc->sc_stats.ast_tx_ctsburst++;
3734 if (updateCTSForBursting(ah, ds0, txq) == 0) {
3735 /*
3736 * This frame was not covered by RTS/CTS from
3737 * the previous frame in the burst; update the
3738 * descriptor pointers so this frame is now
3739 * treated as the last frame for extending a
3740 * burst.
3741 */
3742 txq->axq_lastdsWithCTS = ds0;
3743 /* set gating Desc to final desc */
3744 txq->axq_gatingds =
3745 (struct ath_desc *)txq->axq_link;
3746 } else
3747 sc->sc_stats.ast_tx_ctsext++;
3748 }
3749 }
3750 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
3751 if (txq->axq_link == NULL) {
3752 ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
3753 DPRINTF(sc, ATH_DEBUG_XMIT,
3754 "%s: TXDP[%u] = %p (%p) depth %d\n", __func__,
3755 txq->axq_qnum, (caddr_t)bf->bf_daddr, bf->bf_desc,
3756 txq->axq_depth);
3757 } else {
3758 *txq->axq_link = bf->bf_daddr;
3759 DPRINTF(sc, ATH_DEBUG_XMIT,
3760 "%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
3761 txq->axq_qnum, txq->axq_link,
3762 (caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
3763 }
3764 txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
3765 /*
3766 * The CAB queue is started from the SWBA handler since
3767 * frames only go out on DTIM and to avoid possible races.
3768 */
3769 if (txq != sc->sc_cabq)
3770 ath_hal_txstart(ah, txq->axq_qnum);
3771 ATH_TXQ_UNLOCK(txq);
3772
3773 return 0;
3774 #undef updateCTSForBursting
3775 #undef CTS_DURATION
3776 }
3777
3778 /*
3779 * Process completed xmit descriptors from the specified queue.
3780 */
3781 static void
3782 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
3783 {
3784 struct ath_hal *ah = sc->sc_ah;
3785 struct ieee80211com *ic = &sc->sc_ic;
3786 struct ath_buf *bf;
3787 struct ath_desc *ds, *ds0;
3788 struct ieee80211_node *ni;
3789 struct ath_node *an;
3790 int sr, lr, pri;
3791 HAL_STATUS status;
3792
3793 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
3794 __func__, txq->axq_qnum,
3795 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3796 txq->axq_link);
3797 for (;;) {
3798 ATH_TXQ_LOCK(txq);
3799 txq->axq_intrcnt = 0; /* reset periodic desc intr count */
3800 bf = STAILQ_FIRST(&txq->axq_q);
3801 if (bf == NULL) {
3802 txq->axq_link = NULL;
3803 ATH_TXQ_UNLOCK(txq);
3804 break;
3805 }
3806 ds0 = &bf->bf_desc[0];
3807 ds = &bf->bf_desc[bf->bf_nseg - 1];
3808 status = ath_hal_txprocdesc(ah, ds);
3809 #ifdef AR_DEBUG
3810 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
3811 ath_printtxbuf(bf, status == HAL_OK);
3812 #endif
3813 if (status == HAL_EINPROGRESS) {
3814 ATH_TXQ_UNLOCK(txq);
3815 break;
3816 }
3817 if (ds0 == txq->axq_lastdsWithCTS)
3818 txq->axq_lastdsWithCTS = NULL;
3819 if (ds == txq->axq_gatingds)
3820 txq->axq_gatingds = NULL;
3821 ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3822 ATH_TXQ_UNLOCK(txq);
3823
3824 ni = bf->bf_node;
3825 if (ni != NULL) {
3826 an = ATH_NODE(ni);
3827 if (ds->ds_txstat.ts_status == 0) {
3828 u_int8_t txant = ds->ds_txstat.ts_antenna;
3829 sc->sc_stats.ast_ant_tx[txant]++;
3830 sc->sc_ant_tx[txant]++;
3831 if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
3832 sc->sc_stats.ast_tx_altrate++;
3833 sc->sc_stats.ast_tx_rssi =
3834 ds->ds_txstat.ts_rssi;
3835 ATH_RSSI_LPF(an->an_halstats.ns_avgtxrssi,
3836 ds->ds_txstat.ts_rssi);
3837 pri = M_WME_GETAC(bf->bf_m);
3838 if (pri >= WME_AC_VO)
3839 ic->ic_wme.wme_hipri_traffic++;
3840 ni->ni_inact = ni->ni_inact_reload;
3841 } else {
3842 if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
3843 sc->sc_stats.ast_tx_xretries++;
3844 if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
3845 sc->sc_stats.ast_tx_fifoerr++;
3846 if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
3847 sc->sc_stats.ast_tx_filtered++;
3848 }
3849 sr = ds->ds_txstat.ts_shortretry;
3850 lr = ds->ds_txstat.ts_longretry;
3851 sc->sc_stats.ast_tx_shortretry += sr;
3852 sc->sc_stats.ast_tx_longretry += lr;
3853 /*
3854 * Hand the descriptor to the rate control algorithm.
3855 */
3856 if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
3857 (bf->bf_flags & HAL_TXDESC_NOACK) == 0)
3858 ath_rate_tx_complete(sc, an, ds, ds0);
3859 /*
3860 * Reclaim reference to node.
3861 *
3862 * NB: the node may be reclaimed here if, for example
3863 * this is a DEAUTH message that was sent and the
3864 * node was timed out due to inactivity.
3865 */
3866 ieee80211_free_node(ni);
3867 }
3868 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
3869 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3870 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3871 m_freem(bf->bf_m);
3872 bf->bf_m = NULL;
3873 bf->bf_node = NULL;
3874
3875 ATH_TXBUF_LOCK(sc);
3876 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
3877 ATH_TXBUF_UNLOCK(sc);
3878 }
3879 }
3880
3881 /*
3882 * Deferred processing of transmit interrupt; special-cased
3883 * for a single hardware transmit queue (e.g. 5210 and 5211).
3884 */
3885 static void
3886 ath_tx_proc_q0(void *arg, int npending)
3887 {
3888 struct ath_softc *sc = arg;
3889 struct ifnet *ifp = &sc->sc_if;
3890
3891 ath_tx_processq(sc, &sc->sc_txq[0]);
3892 ath_tx_processq(sc, sc->sc_cabq);
3893 ifp->if_flags &= ~IFF_OACTIVE;
3894 sc->sc_tx_timer = 0;
3895
3896 if (sc->sc_softled)
3897 ath_led_event(sc, ATH_LED_TX);
3898
3899 ath_start(ifp);
3900 }
3901
3902 /*
3903 * Deferred processing of transmit interrupt; special-cased
3904 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
3905 */
3906 static void
3907 ath_tx_proc_q0123(void *arg, int npending)
3908 {
3909 struct ath_softc *sc = arg;
3910 struct ifnet *ifp = &sc->sc_if;
3911
3912 /*
3913 * Process each active queue.
3914 */
3915 ath_tx_processq(sc, &sc->sc_txq[0]);
3916 ath_tx_processq(sc, &sc->sc_txq[1]);
3917 ath_tx_processq(sc, &sc->sc_txq[2]);
3918 ath_tx_processq(sc, &sc->sc_txq[3]);
3919 ath_tx_processq(sc, sc->sc_cabq);
3920
3921 ifp->if_flags &= ~IFF_OACTIVE;
3922 sc->sc_tx_timer = 0;
3923
3924 if (sc->sc_softled)
3925 ath_led_event(sc, ATH_LED_TX);
3926
3927 ath_start(ifp);
3928 }
3929
3930 /*
3931 * Deferred processing of transmit interrupt.
3932 */
3933 static void
3934 ath_tx_proc(void *arg, int npending)
3935 {
3936 struct ath_softc *sc = arg;
3937 struct ifnet *ifp = &sc->sc_if;
3938 int i;
3939
3940 /*
3941 * Process each active queue.
3942 */
3943 /* XXX faster to read ISR_S0_S and ISR_S1_S to determine q's? */
3944 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3945 if (ATH_TXQ_SETUP(sc, i))
3946 ath_tx_processq(sc, &sc->sc_txq[i]);
3947
3948 ifp->if_flags &= ~IFF_OACTIVE;
3949 sc->sc_tx_timer = 0;
3950
3951 if (sc->sc_softled)
3952 ath_led_event(sc, ATH_LED_TX);
3953
3954 ath_start(ifp);
3955 }
3956
3957 static void
3958 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
3959 {
3960 struct ath_hal *ah = sc->sc_ah;
3961 struct ieee80211_node *ni;
3962 struct ath_buf *bf;
3963
3964 /*
3965 * NB: this assumes output has been stopped and
3966 * we do not need to block ath_tx_tasklet
3967 */
3968 for (;;) {
3969 ATH_TXQ_LOCK(txq);
3970 bf = STAILQ_FIRST(&txq->axq_q);
3971 if (bf == NULL) {
3972 txq->axq_link = NULL;
3973 ATH_TXQ_UNLOCK(txq);
3974 break;
3975 }
3976 ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3977 ATH_TXQ_UNLOCK(txq);
3978 #ifdef AR_DEBUG
3979 if (sc->sc_debug & ATH_DEBUG_RESET)
3980 ath_printtxbuf(bf,
3981 ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
3982 #endif /* AR_DEBUG */
3983 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3984 m_freem(bf->bf_m);
3985 bf->bf_m = NULL;
3986 ni = bf->bf_node;
3987 bf->bf_node = NULL;
3988 if (ni != NULL) {
3989 /*
3990 * Reclaim node reference.
3991 */
3992 ieee80211_free_node(ni);
3993 }
3994 ATH_TXBUF_LOCK(sc);
3995 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
3996 ATH_TXBUF_UNLOCK(sc);
3997 }
3998 }
3999
4000 static void
4001 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4002 {
4003 struct ath_hal *ah = sc->sc_ah;
4004
4005 (void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4006 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4007 __func__, txq->axq_qnum,
4008 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4009 txq->axq_link);
4010 }
4011
4012 /*
4013 * Drain the transmit queues and reclaim resources.
4014 */
4015 static void
4016 ath_draintxq(struct ath_softc *sc)
4017 {
4018 struct ath_hal *ah = sc->sc_ah;
4019 struct ifnet *ifp = &sc->sc_if;
4020 int i;
4021
4022 /* XXX return value */
4023 if (!sc->sc_invalid) {
4024 /* don't touch the hardware if marked invalid */
4025 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4026 DPRINTF(sc, ATH_DEBUG_RESET,
4027 "%s: beacon queue %p\n", __func__,
4028 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
4029 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4030 if (ATH_TXQ_SETUP(sc, i))
4031 ath_tx_stopdma(sc, &sc->sc_txq[i]);
4032 }
4033 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4034 if (ATH_TXQ_SETUP(sc, i))
4035 ath_tx_draintxq(sc, &sc->sc_txq[i]);
4036 ifp->if_flags &= ~IFF_OACTIVE;
4037 sc->sc_tx_timer = 0;
4038 }
4039
4040 /*
4041 * Disable the receive h/w in preparation for a reset.
4042 */
4043 static void
4044 ath_stoprecv(struct ath_softc *sc)
4045 {
4046 #define PA2DESC(_sc, _pa) \
4047 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
4048 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
4049 struct ath_hal *ah = sc->sc_ah;
4050
4051 ath_hal_stoppcurecv(ah); /* disable PCU */
4052 ath_hal_setrxfilter(ah, 0); /* clear recv filter */
4053 ath_hal_stopdmarecv(ah); /* disable DMA engine */
4054 DELAY(3000); /* 3ms is long enough for 1 frame */
4055 #ifdef AR_DEBUG
4056 if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
4057 struct ath_buf *bf;
4058
4059 printf("%s: rx queue %p, link %p\n", __func__,
4060 (caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
4061 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4062 struct ath_desc *ds = bf->bf_desc;
4063 HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
4064 bf->bf_daddr, PA2DESC(sc, ds->ds_link));
4065 if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
4066 ath_printrxbuf(bf, status == HAL_OK);
4067 }
4068 }
4069 #endif
4070 sc->sc_rxlink = NULL; /* just in case */
4071 #undef PA2DESC
4072 }
4073
4074 /*
4075 * Enable the receive h/w following a reset.
4076 */
4077 static int
4078 ath_startrecv(struct ath_softc *sc)
4079 {
4080 struct ath_hal *ah = sc->sc_ah;
4081 struct ath_buf *bf;
4082
4083 sc->sc_rxlink = NULL;
4084 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4085 int error = ath_rxbuf_init(sc, bf);
4086 if (error != 0) {
4087 DPRINTF(sc, ATH_DEBUG_RECV,
4088 "%s: ath_rxbuf_init failed %d\n",
4089 __func__, error);
4090 return error;
4091 }
4092 }
4093
4094 bf = STAILQ_FIRST(&sc->sc_rxbuf);
4095 ath_hal_putrxbuf(ah, bf->bf_daddr);
4096 ath_hal_rxena(ah); /* enable recv descriptors */
4097 ath_mode_init(sc); /* set filters, etc. */
4098 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */
4099 return 0;
4100 }
4101
4102 /*
4103 * Update internal state after a channel change.
4104 */
4105 static void
4106 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4107 {
4108 struct ieee80211com *ic = &sc->sc_ic;
4109 enum ieee80211_phymode mode;
4110 u_int16_t flags;
4111
4112 /*
4113 * Change channels and update the h/w rate map
4114 * if we're switching; e.g. 11a to 11b/g.
4115 */
4116 mode = ieee80211_chan2mode(ic, chan);
4117 if (mode != sc->sc_curmode)
4118 ath_setcurmode(sc, mode);
4119 /*
4120 * Update BPF state. NB: ethereal et. al. don't handle
4121 * merged flags well so pick a unique mode for their use.
4122 */
4123 if (IEEE80211_IS_CHAN_A(chan))
4124 flags = IEEE80211_CHAN_A;
4125 /* XXX 11g schizophrenia */
4126 else if (IEEE80211_IS_CHAN_G(chan) ||
4127 IEEE80211_IS_CHAN_PUREG(chan))
4128 flags = IEEE80211_CHAN_G;
4129 else
4130 flags = IEEE80211_CHAN_B;
4131 if (IEEE80211_IS_CHAN_T(chan))
4132 flags |= IEEE80211_CHAN_TURBO;
4133 sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
4134 htole16(chan->ic_freq);
4135 sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
4136 htole16(flags);
4137 }
4138
4139 /*
4140 * Set/change channels. If the channel is really being changed,
4141 * it's done by reseting the chip. To accomplish this we must
4142 * first cleanup any pending DMA, then restart stuff after a la
4143 * ath_init.
4144 */
4145 static int
4146 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4147 {
4148 struct ath_hal *ah = sc->sc_ah;
4149 struct ieee80211com *ic = &sc->sc_ic;
4150 HAL_CHANNEL hchan;
4151
4152 /*
4153 * Convert to a HAL channel description with
4154 * the flags constrained to reflect the current
4155 * operating mode.
4156 */
4157 hchan.channel = chan->ic_freq;
4158 hchan.channelFlags = ath_chan2flags(ic, chan);
4159
4160 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz) -> %u (%u MHz)\n",
4161 __func__,
4162 ath_hal_mhz2ieee(sc->sc_curchan.channel,
4163 sc->sc_curchan.channelFlags),
4164 sc->sc_curchan.channel,
4165 ath_hal_mhz2ieee(hchan.channel, hchan.channelFlags), hchan.channel);
4166 if (hchan.channel != sc->sc_curchan.channel ||
4167 hchan.channelFlags != sc->sc_curchan.channelFlags) {
4168 HAL_STATUS status;
4169
4170 /*
4171 * To switch channels clear any pending DMA operations;
4172 * wait long enough for the RX fifo to drain, reset the
4173 * hardware at the new frequency, and then re-enable
4174 * the relevant bits of the h/w.
4175 */
4176 ath_hal_intrset(ah, 0); /* disable interrupts */
4177 ath_draintxq(sc); /* clear pending tx frames */
4178 ath_stoprecv(sc); /* turn off frame recv */
4179 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
4180 if_printf(&sc->sc_if, "ath_chan_set: unable to reset "
4181 "channel %u (%u Mhz)\n",
4182 ieee80211_chan2ieee(ic, chan), chan->ic_freq);
4183 return EIO;
4184 }
4185 sc->sc_curchan = hchan;
4186 ath_update_txpow(sc); /* update tx power state */
4187 sc->sc_diversity = ath_hal_getdiversity(ah);
4188
4189 /*
4190 * Re-enable rx framework.
4191 */
4192 if (ath_startrecv(sc) != 0) {
4193 if_printf(&sc->sc_if,
4194 "ath_chan_set: unable to restart recv logic\n");
4195 return EIO;
4196 }
4197
4198 /*
4199 * Change channels and update the h/w rate map
4200 * if we're switching; e.g. 11a to 11b/g.
4201 */
4202 ic->ic_ibss_chan = chan;
4203 ath_chan_change(sc, chan);
4204
4205 /*
4206 * Re-enable interrupts.
4207 */
4208 ath_hal_intrset(ah, sc->sc_imask);
4209 }
4210 return 0;
4211 }
4212
4213 static void
4214 ath_next_scan(void *arg)
4215 {
4216 struct ath_softc *sc = arg;
4217 struct ieee80211com *ic = &sc->sc_ic;
4218 int s;
4219
4220 /* don't call ath_start w/o network interrupts blocked */
4221 s = splnet();
4222
4223 if (ic->ic_state == IEEE80211_S_SCAN)
4224 ieee80211_next_scan(ic);
4225 splx(s);
4226 }
4227
4228 /*
4229 * Periodically recalibrate the PHY to account
4230 * for temperature/environment changes.
4231 */
4232 static void
4233 ath_calibrate(void *arg)
4234 {
4235 struct ath_softc *sc = arg;
4236 struct ath_hal *ah = sc->sc_ah;
4237
4238 sc->sc_stats.ast_per_cal++;
4239
4240 ATH_LOCK(sc);
4241 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: channel %u/%x\n",
4242 __func__, sc->sc_curchan.channel, sc->sc_curchan.channelFlags);
4243
4244 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4245 /*
4246 * Rfgain is out of bounds, reset the chip
4247 * to load new gain values.
4248 */
4249 sc->sc_stats.ast_per_rfgain++;
4250 ath_reset(&sc->sc_if);
4251 }
4252 if (!ath_hal_calibrate(ah, &sc->sc_curchan)) {
4253 DPRINTF(sc, ATH_DEBUG_ANY,
4254 "%s: calibration of channel %u failed\n",
4255 __func__, sc->sc_curchan.channel);
4256 sc->sc_stats.ast_per_calfail++;
4257 }
4258 callout_reset(&sc->sc_cal_ch, ath_calinterval * hz, ath_calibrate, sc);
4259 ATH_UNLOCK(sc);
4260 }
4261
4262 static int
4263 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
4264 {
4265 struct ifnet *ifp = ic->ic_ifp;
4266 struct ath_softc *sc = ifp->if_softc;
4267 struct ath_hal *ah = sc->sc_ah;
4268 struct ieee80211_node *ni;
4269 int i, error;
4270 const u_int8_t *bssid;
4271 u_int32_t rfilt;
4272 static const HAL_LED_STATE leds[] = {
4273 HAL_LED_INIT, /* IEEE80211_S_INIT */
4274 HAL_LED_SCAN, /* IEEE80211_S_SCAN */
4275 HAL_LED_AUTH, /* IEEE80211_S_AUTH */
4276 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */
4277 HAL_LED_RUN, /* IEEE80211_S_RUN */
4278 };
4279
4280 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4281 ieee80211_state_name[ic->ic_state],
4282 ieee80211_state_name[nstate]);
4283
4284 callout_stop(&sc->sc_scan_ch);
4285 callout_stop(&sc->sc_cal_ch);
4286 ath_hal_setledstate(ah, leds[nstate]); /* set LED */
4287
4288 if (nstate == IEEE80211_S_INIT) {
4289 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4290 /*
4291 * NB: disable interrupts so we don't rx frames.
4292 */
4293 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4294 /*
4295 * Notify the rate control algorithm.
4296 */
4297 ath_rate_newstate(sc, nstate);
4298 goto done;
4299 }
4300 ni = ic->ic_bss;
4301 error = ath_chan_set(sc, ic->ic_curchan);
4302 if (error != 0)
4303 goto bad;
4304 rfilt = ath_calcrxfilter(sc, nstate);
4305 if (nstate == IEEE80211_S_SCAN)
4306 bssid = ifp->if_broadcastaddr;
4307 else
4308 bssid = ni->ni_bssid;
4309 ath_hal_setrxfilter(ah, rfilt);
4310 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
4311 __func__, rfilt, ether_sprintf(bssid));
4312
4313 if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
4314 ath_hal_setassocid(ah, bssid, ni->ni_associd);
4315 else
4316 ath_hal_setassocid(ah, bssid, 0);
4317 if (ic->ic_flags & IEEE80211_F_PRIVACY) {
4318 for (i = 0; i < IEEE80211_WEP_NKID; i++)
4319 if (ath_hal_keyisvalid(ah, i))
4320 ath_hal_keysetmac(ah, i, bssid);
4321 }
4322
4323 /*
4324 * Notify the rate control algorithm so rates
4325 * are setup should ath_beacon_alloc be called.
4326 */
4327 ath_rate_newstate(sc, nstate);
4328
4329 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4330 /* nothing to do */;
4331 } else if (nstate == IEEE80211_S_RUN) {
4332 DPRINTF(sc, ATH_DEBUG_STATE,
4333 "%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
4334 "capinfo=0x%04x chan=%d\n"
4335 , __func__
4336 , ic->ic_flags
4337 , ni->ni_intval
4338 , ether_sprintf(ni->ni_bssid)
4339 , ni->ni_capinfo
4340 , ieee80211_chan2ieee(ic, ic->ic_curchan));
4341
4342 switch (ic->ic_opmode) {
4343 case IEEE80211_M_HOSTAP:
4344 case IEEE80211_M_IBSS:
4345 /*
4346 * Allocate and setup the beacon frame.
4347 *
4348 * Stop any previous beacon DMA. This may be
4349 * necessary, for example, when an ibss merge
4350 * causes reconfiguration; there will be a state
4351 * transition from RUN->RUN that means we may
4352 * be called with beacon transmission active.
4353 */
4354 ath_hal_stoptxdma(ah, sc->sc_bhalq);
4355 ath_beacon_free(sc);
4356 error = ath_beacon_alloc(sc, ni);
4357 if (error != 0)
4358 goto bad;
4359 break;
4360 case IEEE80211_M_STA:
4361 /*
4362 * Allocate a key cache slot to the station.
4363 */
4364 if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
4365 sc->sc_hasclrkey &&
4366 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4367 ath_setup_stationkey(ni);
4368 break;
4369 default:
4370 break;
4371 }
4372
4373 /*
4374 * Configure the beacon and sleep timers.
4375 */
4376 ath_beacon_config(sc);
4377 } else {
4378 ath_hal_intrset(ah,
4379 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4380 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4381 }
4382 done:
4383 /*
4384 * Invoke the parent method to complete the work.
4385 */
4386 error = sc->sc_newstate(ic, nstate, arg);
4387 /*
4388 * Finally, start any timers.
4389 */
4390 if (nstate == IEEE80211_S_RUN) {
4391 /* start periodic recalibration timer */
4392 callout_reset(&sc->sc_cal_ch, ath_calinterval * hz,
4393 ath_calibrate, sc);
4394 } else if (nstate == IEEE80211_S_SCAN) {
4395 /* start ap/neighbor scan timer */
4396 callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
4397 ath_next_scan, sc);
4398 }
4399 bad:
4400 return error;
4401 }
4402
4403 /*
4404 * Allocate a key cache slot to the station so we can
4405 * setup a mapping from key index to node. The key cache
4406 * slot is needed for managing antenna state and for
4407 * compression when stations do not use crypto. We do
4408 * it uniliaterally here; if crypto is employed this slot
4409 * will be reassigned.
4410 */
4411 static void
4412 ath_setup_stationkey(struct ieee80211_node *ni)
4413 {
4414 struct ieee80211com *ic = ni->ni_ic;
4415 struct ath_softc *sc = ic->ic_ifp->if_softc;
4416 ieee80211_keyix keyix, rxkeyix;
4417
4418 if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
4419 /*
4420 * Key cache is full; we'll fall back to doing
4421 * the more expensive lookup in software. Note
4422 * this also means no h/w compression.
4423 */
4424 /* XXX msg+statistic */
4425 } else {
4426 /* XXX locking? */
4427 ni->ni_ucastkey.wk_keyix = keyix;
4428 ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
4429 /* NB: this will create a pass-thru key entry */
4430 ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
4431 }
4432 }
4433
4434 /*
4435 * Setup driver-specific state for a newly associated node.
4436 * Note that we're called also on a re-associate, the isnew
4437 * param tells us if this is the first time or not.
4438 */
4439 static void
4440 ath_newassoc(struct ieee80211_node *ni, int isnew)
4441 {
4442 struct ieee80211com *ic = ni->ni_ic;
4443 struct ath_softc *sc = ic->ic_ifp->if_softc;
4444
4445 ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
4446 if (isnew &&
4447 (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
4448 KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
4449 ("new assoc with a unicast key already setup (keyix %u)",
4450 ni->ni_ucastkey.wk_keyix));
4451 ath_setup_stationkey(ni);
4452 }
4453 }
4454
4455 static int
4456 ath_getchannels(struct ath_softc *sc, u_int cc,
4457 HAL_BOOL outdoor, HAL_BOOL xchanmode)
4458 {
4459 struct ieee80211com *ic = &sc->sc_ic;
4460 struct ifnet *ifp = &sc->sc_if;
4461 struct ath_hal *ah = sc->sc_ah;
4462 HAL_CHANNEL *chans;
4463 int i, ix, nchan;
4464
4465 chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
4466 M_TEMP, M_NOWAIT);
4467 if (chans == NULL) {
4468 if_printf(ifp, "unable to allocate channel table\n");
4469 return ENOMEM;
4470 }
4471 if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
4472 cc, HAL_MODE_ALL, outdoor, xchanmode)) {
4473 u_int32_t rd;
4474
4475 ath_hal_getregdomain(ah, &rd);
4476 if_printf(ifp, "unable to collect channel list from hal; "
4477 "regdomain likely %u country code %u\n", rd, cc);
4478 free(chans, M_TEMP);
4479 return EINVAL;
4480 }
4481
4482 /*
4483 * Convert HAL channels to ieee80211 ones and insert
4484 * them in the table according to their channel number.
4485 */
4486 for (i = 0; i < nchan; i++) {
4487 HAL_CHANNEL *c = &chans[i];
4488 ix = ath_hal_mhz2ieee(c->channel, c->channelFlags);
4489 if (ix > IEEE80211_CHAN_MAX) {
4490 if_printf(ifp, "bad hal channel %u (%u/%x) ignored\n",
4491 ix, c->channel, c->channelFlags);
4492 continue;
4493 }
4494 DPRINTF(sc, ATH_DEBUG_ANY,
4495 "%s: HAL channel %d/%d freq %d flags %#04x idx %d\n",
4496 sc->sc_dev.dv_xname, i, nchan, c->channel, c->channelFlags,
4497 ix);
4498 /* NB: flags are known to be compatible */
4499 if (ic->ic_channels[ix].ic_freq == 0) {
4500 ic->ic_channels[ix].ic_freq = c->channel;
4501 ic->ic_channels[ix].ic_flags = c->channelFlags;
4502 } else {
4503 /* channels overlap; e.g. 11g and 11b */
4504 ic->ic_channels[ix].ic_flags |= c->channelFlags;
4505 }
4506 }
4507 free(chans, M_TEMP);
4508 return 0;
4509 }
4510
4511 static void
4512 ath_led_done(void *arg)
4513 {
4514 struct ath_softc *sc = arg;
4515
4516 sc->sc_blinking = 0;
4517 }
4518
4519 /*
4520 * Turn the LED off: flip the pin and then set a timer so no
4521 * update will happen for the specified duration.
4522 */
4523 static void
4524 ath_led_off(void *arg)
4525 {
4526 struct ath_softc *sc = arg;
4527
4528 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
4529 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
4530 }
4531
4532 /*
4533 * Blink the LED according to the specified on/off times.
4534 */
4535 static void
4536 ath_led_blink(struct ath_softc *sc, int on, int off)
4537 {
4538 DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
4539 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
4540 sc->sc_blinking = 1;
4541 sc->sc_ledoff = off;
4542 callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
4543 }
4544
4545 static void
4546 ath_led_event(struct ath_softc *sc, int event)
4547 {
4548
4549 sc->sc_ledevent = ticks; /* time of last event */
4550 if (sc->sc_blinking) /* don't interrupt active blink */
4551 return;
4552 switch (event) {
4553 case ATH_LED_POLL:
4554 ath_led_blink(sc, sc->sc_hwmap[0].ledon,
4555 sc->sc_hwmap[0].ledoff);
4556 break;
4557 case ATH_LED_TX:
4558 ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
4559 sc->sc_hwmap[sc->sc_txrate].ledoff);
4560 break;
4561 case ATH_LED_RX:
4562 ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
4563 sc->sc_hwmap[sc->sc_rxrate].ledoff);
4564 break;
4565 }
4566 }
4567
4568 static void
4569 ath_update_txpow(struct ath_softc *sc)
4570 {
4571 struct ieee80211com *ic = &sc->sc_ic;
4572 struct ath_hal *ah = sc->sc_ah;
4573 u_int32_t txpow;
4574
4575 if (sc->sc_curtxpow != ic->ic_txpowlimit) {
4576 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
4577 /* read back in case value is clamped */
4578 ath_hal_gettxpowlimit(ah, &txpow);
4579 ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
4580 }
4581 /*
4582 * Fetch max tx power level for status requests.
4583 */
4584 ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
4585 ic->ic_bss->ni_txpower = txpow;
4586 }
4587
4588 static int
4589 ath_rate_setup(struct ath_softc *sc, u_int mode)
4590 {
4591 struct ath_hal *ah = sc->sc_ah;
4592 struct ieee80211com *ic = &sc->sc_ic;
4593 const HAL_RATE_TABLE *rt;
4594 struct ieee80211_rateset *rs;
4595 int i, maxrates;
4596
4597 switch (mode) {
4598 case IEEE80211_MODE_11A:
4599 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11A);
4600 break;
4601 case IEEE80211_MODE_11B:
4602 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11B);
4603 break;
4604 case IEEE80211_MODE_11G:
4605 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11G);
4606 break;
4607 case IEEE80211_MODE_TURBO_A:
4608 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_TURBO);
4609 break;
4610 case IEEE80211_MODE_TURBO_G:
4611 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_108G);
4612 break;
4613 default:
4614 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
4615 __func__, mode);
4616 return 0;
4617 }
4618 rt = sc->sc_rates[mode];
4619 if (rt == NULL)
4620 return 0;
4621 if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
4622 DPRINTF(sc, ATH_DEBUG_ANY,
4623 "%s: rate table too small (%u > %u)\n",
4624 __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
4625 maxrates = IEEE80211_RATE_MAXSIZE;
4626 } else
4627 maxrates = rt->rateCount;
4628 rs = &ic->ic_sup_rates[mode];
4629 for (i = 0; i < maxrates; i++)
4630 rs->rs_rates[i] = rt->info[i].dot11Rate;
4631 rs->rs_nrates = maxrates;
4632 return 1;
4633 }
4634
4635 static void
4636 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
4637 {
4638 #define N(a) (sizeof(a)/sizeof(a[0]))
4639 /* NB: on/off times from the Atheros NDIS driver, w/ permission */
4640 static const struct {
4641 u_int rate; /* tx/rx 802.11 rate */
4642 u_int16_t timeOn; /* LED on time (ms) */
4643 u_int16_t timeOff; /* LED off time (ms) */
4644 } blinkrates[] = {
4645 { 108, 40, 10 },
4646 { 96, 44, 11 },
4647 { 72, 50, 13 },
4648 { 48, 57, 14 },
4649 { 36, 67, 16 },
4650 { 24, 80, 20 },
4651 { 22, 100, 25 },
4652 { 18, 133, 34 },
4653 { 12, 160, 40 },
4654 { 10, 200, 50 },
4655 { 6, 240, 58 },
4656 { 4, 267, 66 },
4657 { 2, 400, 100 },
4658 { 0, 500, 130 },
4659 };
4660 const HAL_RATE_TABLE *rt;
4661 int i, j;
4662
4663 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
4664 rt = sc->sc_rates[mode];
4665 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
4666 for (i = 0; i < rt->rateCount; i++)
4667 sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
4668 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
4669 for (i = 0; i < 32; i++) {
4670 u_int8_t ix = rt->rateCodeToIndex[i];
4671 if (ix == 0xff) {
4672 sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
4673 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
4674 continue;
4675 }
4676 sc->sc_hwmap[i].ieeerate =
4677 rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
4678 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
4679 if (rt->info[ix].shortPreamble ||
4680 rt->info[ix].phy == IEEE80211_T_OFDM)
4681 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
4682 /* NB: receive frames include FCS */
4683 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
4684 IEEE80211_RADIOTAP_F_FCS;
4685 /* setup blink rate table to avoid per-packet lookup */
4686 for (j = 0; j < N(blinkrates)-1; j++)
4687 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
4688 break;
4689 /* NB: this uses the last entry if the rate isn't found */
4690 /* XXX beware of overlow */
4691 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
4692 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
4693 }
4694 sc->sc_currates = rt;
4695 sc->sc_curmode = mode;
4696 /*
4697 * All protection frames are transmited at 2Mb/s for
4698 * 11g, otherwise at 1Mb/s.
4699 * XXX select protection rate index from rate table.
4700 */
4701 sc->sc_protrix = (mode == IEEE80211_MODE_11G ? 1 : 0);
4702 /* NB: caller is responsible for reseting rate control state */
4703 #undef N
4704 }
4705
4706 #ifdef AR_DEBUG
4707 static void
4708 ath_printrxbuf(struct ath_buf *bf, int done)
4709 {
4710 struct ath_desc *ds;
4711 int i;
4712
4713 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
4714 printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n",
4715 i, ds, (struct ath_desc *)bf->bf_daddr + i,
4716 ds->ds_link, ds->ds_data,
4717 ds->ds_ctl0, ds->ds_ctl1,
4718 ds->ds_hw[0], ds->ds_hw[1],
4719 !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
4720 }
4721 }
4722
4723 static void
4724 ath_printtxbuf(struct ath_buf *bf, int done)
4725 {
4726 struct ath_desc *ds;
4727 int i;
4728
4729 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
4730 printf("T%d (%p %p) %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
4731 i, ds, (struct ath_desc *)bf->bf_daddr + i,
4732 ds->ds_link, ds->ds_data,
4733 ds->ds_ctl0, ds->ds_ctl1,
4734 ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
4735 !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
4736 }
4737 }
4738 #endif /* AR_DEBUG */
4739
4740 static void
4741 ath_watchdog(struct ifnet *ifp)
4742 {
4743 struct ath_softc *sc = ifp->if_softc;
4744 struct ieee80211com *ic = &sc->sc_ic;
4745
4746 ifp->if_timer = 0;
4747 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
4748 return;
4749 if (sc->sc_tx_timer) {
4750 if (--sc->sc_tx_timer == 0) {
4751 if_printf(ifp, "device timeout\n");
4752 ath_reset(ifp);
4753 ifp->if_oerrors++;
4754 sc->sc_stats.ast_watchdog++;
4755 } else
4756 ifp->if_timer = 1;
4757 }
4758 ieee80211_watchdog(ic);
4759 }
4760
4761 /*
4762 * Diagnostic interface to the HAL. This is used by various
4763 * tools to do things like retrieve register contents for
4764 * debugging. The mechanism is intentionally opaque so that
4765 * it can change frequently w/o concern for compatiblity.
4766 */
4767 static int
4768 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
4769 {
4770 struct ath_hal *ah = sc->sc_ah;
4771 u_int id = ad->ad_id & ATH_DIAG_ID;
4772 void *indata = NULL;
4773 void *outdata = NULL;
4774 u_int32_t insize = ad->ad_in_size;
4775 u_int32_t outsize = ad->ad_out_size;
4776 int error = 0;
4777
4778 if (ad->ad_id & ATH_DIAG_IN) {
4779 /*
4780 * Copy in data.
4781 */
4782 indata = malloc(insize, M_TEMP, M_NOWAIT);
4783 if (indata == NULL) {
4784 error = ENOMEM;
4785 goto bad;
4786 }
4787 error = copyin(ad->ad_in_data, indata, insize);
4788 if (error)
4789 goto bad;
4790 }
4791 if (ad->ad_id & ATH_DIAG_DYN) {
4792 /*
4793 * Allocate a buffer for the results (otherwise the HAL
4794 * returns a pointer to a buffer where we can read the
4795 * results). Note that we depend on the HAL leaving this
4796 * pointer for us to use below in reclaiming the buffer;
4797 * may want to be more defensive.
4798 */
4799 outdata = malloc(outsize, M_TEMP, M_NOWAIT);
4800 if (outdata == NULL) {
4801 error = ENOMEM;
4802 goto bad;
4803 }
4804 }
4805 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
4806 if (outsize < ad->ad_out_size)
4807 ad->ad_out_size = outsize;
4808 if (outdata != NULL)
4809 error = copyout(outdata, ad->ad_out_data,
4810 ad->ad_out_size);
4811 } else {
4812 error = EINVAL;
4813 }
4814 bad:
4815 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
4816 free(indata, M_TEMP);
4817 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
4818 free(outdata, M_TEMP);
4819 return error;
4820 }
4821
4822 static int
4823 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
4824 {
4825 #define IS_RUNNING(ifp) \
4826 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
4827 struct ath_softc *sc = ifp->if_softc;
4828 struct ieee80211com *ic = &sc->sc_ic;
4829 struct ifreq *ifr = (struct ifreq *)data;
4830 int error = 0;
4831
4832 ATH_LOCK(sc);
4833 switch (cmd) {
4834 case SIOCSIFFLAGS:
4835 if (IS_RUNNING(ifp)) {
4836 /*
4837 * To avoid rescanning another access point,
4838 * do not call ath_init() here. Instead,
4839 * only reflect promisc mode settings.
4840 */
4841 ath_mode_init(sc);
4842 } else if (ifp->if_flags & IFF_UP) {
4843 /*
4844 * Beware of being called during attach/detach
4845 * to reset promiscuous mode. In that case we
4846 * will still be marked UP but not RUNNING.
4847 * However trying to re-init the interface
4848 * is the wrong thing to do as we've already
4849 * torn down much of our state. There's
4850 * probably a better way to deal with this.
4851 */
4852 if (!sc->sc_invalid && ic->ic_bss != NULL)
4853 ath_init(sc); /* XXX lose error */
4854 } else
4855 ath_stop_locked(ifp, 1);
4856 break;
4857 case SIOCADDMULTI:
4858 case SIOCDELMULTI:
4859 error = (cmd == SIOCADDMULTI) ?
4860 ether_addmulti(ifr, &sc->sc_ec) :
4861 ether_delmulti(ifr, &sc->sc_ec);
4862 if (error == ENETRESET) {
4863 if (ifp->if_flags & IFF_RUNNING)
4864 ath_mode_init(sc);
4865 error = 0;
4866 }
4867 break;
4868 case SIOCGATHSTATS:
4869 /* NB: embed these numbers to get a consistent view */
4870 sc->sc_stats.ast_tx_packets = ifp->if_opackets;
4871 sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
4872 sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
4873 ATH_UNLOCK(sc);
4874 /*
4875 * NB: Drop the softc lock in case of a page fault;
4876 * we'll accept any potential inconsisentcy in the
4877 * statistics. The alternative is to copy the data
4878 * to a local structure.
4879 */
4880 return copyout(&sc->sc_stats,
4881 ifr->ifr_data, sizeof (sc->sc_stats));
4882 case SIOCGATHDIAG:
4883 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
4884 break;
4885 default:
4886 error = ieee80211_ioctl(ic, cmd, data);
4887 if (error == ENETRESET) {
4888 if (IS_RUNNING(ifp) &&
4889 ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
4890 ath_init(sc); /* XXX lose error */
4891 error = 0;
4892 }
4893 if (error == ERESTART)
4894 error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0;
4895 break;
4896 }
4897 ATH_UNLOCK(sc);
4898 return error;
4899 #undef IS_RUNNING
4900 }
4901
4902 #if NBPFILTER > 0
4903 static void
4904 ath_bpfattach(struct ath_softc *sc)
4905 {
4906 struct ifnet *ifp = &sc->sc_if;
4907
4908 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
4909 sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
4910 &sc->sc_drvbpf);
4911 /*
4912 * Initialize constant fields.
4913 * XXX make header lengths a multiple of 32-bits so subsequent
4914 * headers are properly aligned; this is a kludge to keep
4915 * certain applications happy.
4916 *
4917 * NB: the channel is setup each time we transition to the
4918 * RUN state to avoid filling it in for each frame.
4919 */
4920 sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
4921 sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
4922 sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
4923
4924 sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
4925 sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
4926 sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
4927 }
4928 #endif
4929
4930 /*
4931 * Announce various information on device/driver attach.
4932 */
4933 static void
4934 ath_announce(struct ath_softc *sc)
4935 {
4936 #define HAL_MODE_DUALBAND (HAL_MODE_11A|HAL_MODE_11B)
4937 struct ifnet *ifp = &sc->sc_if;
4938 struct ath_hal *ah = sc->sc_ah;
4939 u_int modes, cc;
4940
4941 if_printf(ifp, "mac %d.%d phy %d.%d",
4942 ah->ah_macVersion, ah->ah_macRev,
4943 ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
4944 /*
4945 * Print radio revision(s). We check the wireless modes
4946 * to avoid falsely printing revs for inoperable parts.
4947 * Dual-band radio revs are returned in the 5Ghz rev number.
4948 */
4949 ath_hal_getcountrycode(ah, &cc);
4950 modes = ath_hal_getwirelessmodes(ah, cc);
4951 if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
4952 if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
4953 printf(" 5ghz radio %d.%d 2ghz radio %d.%d",
4954 ah->ah_analog5GhzRev >> 4,
4955 ah->ah_analog5GhzRev & 0xf,
4956 ah->ah_analog2GhzRev >> 4,
4957 ah->ah_analog2GhzRev & 0xf);
4958 else
4959 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
4960 ah->ah_analog5GhzRev & 0xf);
4961 } else
4962 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
4963 ah->ah_analog5GhzRev & 0xf);
4964 printf("\n");
4965 if (bootverbose) {
4966 int i;
4967 for (i = 0; i <= WME_AC_VO; i++) {
4968 struct ath_txq *txq = sc->sc_ac2q[i];
4969 if_printf(ifp, "Use hw queue %u for %s traffic\n",
4970 txq->axq_qnum, ieee80211_wme_acnames[i]);
4971 }
4972 if_printf(ifp, "Use hw queue %u for CAB traffic\n",
4973 sc->sc_cabq->axq_qnum);
4974 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
4975 }
4976 #undef HAL_MODE_DUALBAND
4977 }
4978