ath.c revision 1.32.2.3 1 /* $NetBSD: ath.c,v 1.32.2.3 2004/08/12 11:41:23 skrll Exp $ */
2
3 /*-
4 * Copyright (c) 2002-2004 Sam Leffler, Errno Consulting
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15 * redistribution must be conditioned upon including a substantially
16 * similar Disclaimer requirement for further binary redistribution.
17 * 3. Neither the names of the above-listed copyright holders nor the names
18 * of any contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * Alternatively, this software may be distributed under the terms of the
22 * GNU General Public License ("GPL") version 2 as published by the Free
23 * Software Foundation.
24 *
25 * NO WARRANTY
26 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
28 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
29 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
30 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
31 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
34 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
36 * THE POSSIBILITY OF SUCH DAMAGES.
37 */
38
39 #include <sys/cdefs.h>
40 #ifdef __FreeBSD__
41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.54 2004/04/05 04:42:42 sam Exp $");
42 #endif
43 #ifdef __NetBSD__
44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.32.2.3 2004/08/12 11:41:23 skrll Exp $");
45 #endif
46
47 /*
48 * Driver for the Atheros Wireless LAN controller.
49 *
50 * This software is derived from work of Atsushi Onoe; his contribution
51 * is greatly appreciated.
52 */
53
54 #include "opt_inet.h"
55
56 #ifdef __NetBSD__
57 #include "bpfilter.h"
58 #endif /* __NetBSD__ */
59
60 #include <sys/param.h>
61 #include <sys/systm.h>
62 #include <sys/types.h>
63 #include <sys/sysctl.h>
64 #include <sys/mbuf.h>
65 #include <sys/malloc.h>
66 #include <sys/lock.h>
67 #ifdef __FreeBSD__
68 #include <sys/mutex.h>
69 #endif
70 #include <sys/kernel.h>
71 #include <sys/socket.h>
72 #include <sys/sockio.h>
73 #include <sys/errno.h>
74 #include <sys/callout.h>
75 #ifdef __FreeBSD__
76 #include <sys/bus.h>
77 #else
78 #include <machine/bus.h>
79 #endif
80 #include <sys/endian.h>
81
82 #include <machine/bus.h>
83
84 #include <net/if.h>
85 #include <net/if_dl.h>
86 #include <net/if_media.h>
87 #include <net/if_arp.h>
88 #ifdef __FreeBSD__
89 #include <net/ethernet.h>
90 #else
91 #include <net/if_ether.h>
92 #endif
93 #include <net/if_llc.h>
94
95 #include <net80211/ieee80211_var.h>
96 #include <net80211/ieee80211_compat.h>
97
98 #if NBPFILTER > 0
99 #include <net/bpf.h>
100 #endif
101
102 #ifdef INET
103 #include <netinet/in.h>
104 #endif
105
106 #include <dev/ic/athcompat.h>
107
108 #define AR_DEBUG
109 #ifdef __FreeBSD__
110 #include <dev/ath/if_athvar.h>
111 #include <contrib/dev/ath/ah_desc.h>
112 #else
113 #include <dev/ic/athvar.h>
114 #include <../contrib/sys/dev/ic/athhal_desc.h>
115 #endif
116
117 /* unaligned little endian access */
118 #define LE_READ_2(p) \
119 ((u_int16_t) \
120 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8)))
121 #define LE_READ_4(p) \
122 ((u_int32_t) \
123 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \
124 (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
125
126 #ifdef __FreeBSD__
127 static void ath_init(void *);
128 #else
129 static int ath_init(struct ifnet *);
130 #endif
131 static int ath_init1(struct ath_softc *);
132 static int ath_intr1(struct ath_softc *);
133 static void ath_stop(struct ifnet *);
134 static void ath_start(struct ifnet *);
135 static void ath_reset(struct ath_softc *);
136 static int ath_media_change(struct ifnet *);
137 static void ath_watchdog(struct ifnet *);
138 static int ath_ioctl(struct ifnet *, u_long, caddr_t);
139 static void ath_fatal_proc(void *, int);
140 static void ath_rxorn_proc(void *, int);
141 static void ath_bmiss_proc(void *, int);
142 static void ath_initkeytable(struct ath_softc *);
143 static void ath_mode_init(struct ath_softc *);
144 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
145 static void ath_beacon_proc(struct ath_softc *, int);
146 static void ath_beacon_free(struct ath_softc *);
147 static void ath_beacon_config(struct ath_softc *);
148 static int ath_desc_alloc(struct ath_softc *);
149 static void ath_desc_free(struct ath_softc *);
150 static struct ieee80211_node *ath_node_alloc(struct ieee80211com *);
151 static void ath_node_free(struct ieee80211com *, struct ieee80211_node *);
152 static void ath_node_copy(struct ieee80211com *,
153 struct ieee80211_node *, const struct ieee80211_node *);
154 static u_int8_t ath_node_getrssi(struct ieee80211com *,
155 struct ieee80211_node *);
156 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
157 static void ath_rx_proc(void *, int);
158 static int ath_tx_start(struct ath_softc *, struct ieee80211_node *,
159 struct ath_buf *, struct mbuf *);
160 static void ath_tx_proc(void *, int);
161 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
162 static void ath_draintxq(struct ath_softc *);
163 static void ath_stoprecv(struct ath_softc *);
164 static int ath_startrecv(struct ath_softc *);
165 static void ath_next_scan(void *);
166 static void ath_calibrate(void *);
167 static int ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
168 static void ath_newassoc(struct ieee80211com *,
169 struct ieee80211_node *, int);
170 static int ath_getchannels(struct ath_softc *, u_int cc, HAL_BOOL outdoor,
171 HAL_BOOL xchanmode);
172
173 static int ath_rate_setup(struct ath_softc *sc, u_int mode);
174 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
175 static void ath_rate_ctl_reset(struct ath_softc *, enum ieee80211_state);
176 static void ath_rate_ctl(void *, struct ieee80211_node *);
177 static void ath_recv_mgmt(struct ieee80211com *, struct mbuf *,
178 struct ieee80211_node *, int, int, u_int32_t);
179
180 #ifdef __NetBSD__
181 int ath_enable(struct ath_softc *);
182 void ath_disable(struct ath_softc *);
183 void ath_power(int, void *);
184 #endif
185
186 #ifdef __FreeBSD__
187 SYSCTL_DECL(_hw_ath);
188 /* XXX validate sysctl values */
189 SYSCTL_INT(_hw_ath, OID_AUTO, dwell, CTLFLAG_RW, &ath_dwelltime,
190 0, "channel dwell time (ms) for AP/station scanning");
191 SYSCTL_INT(_hw_ath, OID_AUTO, calibrate, CTLFLAG_RW, &ath_calinterval,
192 0, "chip calibration interval (secs)");
193 SYSCTL_INT(_hw_ath, OID_AUTO, outdoor, CTLFLAG_RD, &ath_outdoor,
194 0, "enable/disable outdoor operation");
195 TUNABLE_INT("hw.ath.outdoor", &ath_outdoor);
196 SYSCTL_INT(_hw_ath, OID_AUTO, countrycode, CTLFLAG_RD, &ath_countrycode,
197 0, "country code");
198 TUNABLE_INT("hw.ath.countrycode", &ath_countrycode);
199 SYSCTL_INT(_hw_ath, OID_AUTO, regdomain, CTLFLAG_RD, &ath_regdomain,
200 0, "regulatory domain");
201 #endif /* __FreeBSD__ */
202
203 #ifdef __NetBSD__
204 static int ath_dwelltime_nodenum, ath_calibrate_nodenum, ath_outdoor_nodenum,
205 ath_countrycode_nodenum, ath_regdomain_nodenum, ath_debug_nodenum;
206 #endif /* __NetBSD__ */
207
208 static int ath_dwelltime = 200; /* 5 channels/second */
209 static int ath_calinterval = 30; /* calibrate every 30 secs */
210 static int ath_outdoor = AH_TRUE; /* outdoor operation */
211 static int ath_xchanmode = AH_TRUE; /* enable extended channels */
212 static int ath_countrycode = CTRY_DEFAULT; /* country code */
213 static int ath_regdomain = 0; /* regulatory domain */
214
215 #ifdef AR_DEBUG
216 int ath_debug = 0;
217 #ifdef __FreeBSD__
218 SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
219 0, "control debugging printfs");
220 TUNABLE_INT("hw.ath.debug", &ath_debug);
221 #endif /* __FreeBSD__ */
222 #define IFF_DUMPPKTS(_ifp, _m) \
223 ((ath_debug & _m) || \
224 ((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
225 static void ath_printrxbuf(struct ath_buf *bf, int);
226 static void ath_printtxbuf(struct ath_buf *bf, int);
227 enum {
228 ATH_DEBUG_XMIT = 0x00000001, /* basic xmit operation */
229 ATH_DEBUG_XMIT_DESC = 0x00000002, /* xmit descriptors */
230 ATH_DEBUG_RECV = 0x00000004, /* basic recv operation */
231 ATH_DEBUG_RECV_DESC = 0x00000008, /* recv descriptors */
232 ATH_DEBUG_RATE = 0x00000010, /* rate control */
233 ATH_DEBUG_RESET = 0x00000020, /* reset processing */
234 ATH_DEBUG_MODE = 0x00000040, /* mode init/setup */
235 ATH_DEBUG_BEACON = 0x00000080, /* beacon handling */
236 ATH_DEBUG_WATCHDOG = 0x00000100, /* watchdog timeout */
237 ATH_DEBUG_INTR = 0x00001000, /* ISR */
238 ATH_DEBUG_TX_PROC = 0x00002000, /* tx ISR proc */
239 ATH_DEBUG_RX_PROC = 0x00004000, /* rx ISR proc */
240 ATH_DEBUG_BEACON_PROC = 0x00008000, /* beacon ISR proc */
241 ATH_DEBUG_CALIBRATE = 0x00010000, /* periodic calibration */
242 ATH_DEBUG_ANY = 0xffffffff
243 };
244 #define DPRINTF(_m,X) if (ath_debug & (_m)) printf X
245 #else
246 #define IFF_DUMPPKTS(_ifp, _m) \
247 (((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
248 #define DPRINTF(_m, X)
249 #endif
250
251 #ifdef __NetBSD__
252 int
253 ath_activate(struct device *self, enum devact act)
254 {
255 struct ath_softc *sc = (struct ath_softc *)self;
256 int rv = 0, s;
257
258 s = splnet();
259 switch (act) {
260 case DVACT_ACTIVATE:
261 rv = EOPNOTSUPP;
262 break;
263 case DVACT_DEACTIVATE:
264 if_deactivate(&sc->sc_ic.ic_if);
265 break;
266 }
267 splx(s);
268 return rv;
269 }
270
271 int
272 ath_enable(struct ath_softc *sc)
273 {
274 if (ATH_IS_ENABLED(sc) == 0) {
275 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
276 printf("%s: device enable failed\n",
277 sc->sc_dev.dv_xname);
278 return (EIO);
279 }
280 sc->sc_flags |= ATH_ENABLED;
281 }
282 return (0);
283 }
284
285 void
286 ath_disable(struct ath_softc *sc)
287 {
288 if (!ATH_IS_ENABLED(sc))
289 return;
290 if (sc->sc_disable != NULL)
291 (*sc->sc_disable)(sc);
292 sc->sc_flags &= ~ATH_ENABLED;
293 }
294
295 static int
296 sysctl_ath_verify(SYSCTLFN_ARGS)
297 {
298 int error, t;
299 struct sysctlnode node;
300
301 node = *rnode;
302 t = *(int*)rnode->sysctl_data;
303 node.sysctl_data = &t;
304 error = sysctl_lookup(SYSCTLFN_CALL(&node));
305 if (error || newp == NULL)
306 return (error);
307
308 DPRINTF(ATH_DEBUG_ANY, ("%s: t = %d, nodenum = %d, rnodenum = %d\n",
309 __func__, t, node.sysctl_num, rnode->sysctl_num));
310
311 if (node.sysctl_num == ath_dwelltime_nodenum) {
312 if (t <= 0)
313 return (EINVAL);
314 } else if (node.sysctl_num == ath_calibrate_nodenum) {
315 if (t <= 0)
316 return (EINVAL);
317 #ifdef AR_DEBUG
318 } else if (node.sysctl_num == ath_debug_nodenum) {
319 if (t < 0 || t > 2)
320 return (EINVAL);
321 #endif /* AR_DEBUG */
322 } else
323 return (EINVAL);
324
325 *(int*)rnode->sysctl_data = t;
326
327 return (0);
328 }
329
330 /*
331 * Setup sysctl(3) MIB, ath.*.
332 *
333 * TBD condition CTLFLAG_PERMANENT on being an LKM or not
334 */
335 SYSCTL_SETUP(sysctl_ath, "sysctl ath subtree setup")
336 {
337 int rc, ath_node_num;
338 struct sysctlnode *node;
339
340 if ((rc = sysctl_createv(clog, 0, NULL, NULL,
341 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
342 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0)
343 goto err;
344
345 if ((rc = sysctl_createv(clog, 0, NULL, &node,
346 CTLFLAG_PERMANENT, CTLTYPE_NODE, "ath",
347 SYSCTL_DESCR("ath information and options"),
348 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0)
349 goto err;
350
351 ath_node_num = node->sysctl_num;
352
353 /* channel dwell time (ms) for AP/station scanning */
354 if ((rc = sysctl_createv(clog, 0, NULL, &node,
355 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
356 CTLTYPE_INT, "dwell",
357 SYSCTL_DESCR("Channel dwell time (ms) for AP/station scanning"),
358 sysctl_ath_verify, 0, &ath_dwelltime,
359 0, CTL_HW, ath_node_num, CTL_CREATE,
360 CTL_EOL)) != 0)
361 goto err;
362
363 ath_dwelltime_nodenum = node->sysctl_num;
364
365 /* chip calibration interval (secs) */
366 if ((rc = sysctl_createv(clog, 0, NULL, &node,
367 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
368 CTLTYPE_INT, "calibrate",
369 SYSCTL_DESCR("Chip calibration interval (secs)"), sysctl_ath_verify,
370 0, &ath_calinterval, 0, CTL_HW,
371 ath_node_num, CTL_CREATE, CTL_EOL)) != 0)
372 goto err;
373
374 ath_calibrate_nodenum = node->sysctl_num;
375
376 /* enable/disable outdoor operation */
377 if ((rc = sysctl_createv(clog, 0, NULL, &node,
378 CTLFLAG_PERMANENT|CTLFLAG_READONLY, CTLTYPE_INT,
379 "outdoor", SYSCTL_DESCR("Enable/disable outdoor operation"),
380 NULL, 0, &ath_outdoor, 0,
381 CTL_HW, ath_node_num, CTL_CREATE,
382 CTL_EOL)) != 0)
383 goto err;
384
385 ath_outdoor_nodenum = node->sysctl_num;
386
387 /* country code */
388 if ((rc = sysctl_createv(clog, 0, NULL, &node,
389 CTLFLAG_PERMANENT|CTLFLAG_READONLY, CTLTYPE_INT,
390 "countrycode", SYSCTL_DESCR("Country code"),
391 NULL, 0, &ath_countrycode, 0,
392 CTL_HW, ath_node_num, CTL_CREATE,
393 CTL_EOL)) != 0)
394 goto err;
395
396 ath_countrycode_nodenum = node->sysctl_num;
397
398 /* regulatory domain */
399 if ((rc = sysctl_createv(clog, 0, NULL, &node,
400 CTLFLAG_PERMANENT|CTLFLAG_READONLY, CTLTYPE_INT,
401 "regdomain", SYSCTL_DESCR("Regulatory domain"),
402 NULL, 0, &ath_regdomain, 0,
403 CTL_HW, ath_node_num, CTL_CREATE,
404 CTL_EOL)) != 0)
405 goto err;
406
407 ath_regdomain_nodenum = node->sysctl_num;
408
409 #ifdef AR_DEBUG
410
411 /* control debugging printfs */
412 if ((rc = sysctl_createv(clog, 0, NULL, &node,
413 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
414 "debug", SYSCTL_DESCR("Enable/disable ath debugging output"),
415 sysctl_ath_verify, 0, &ath_debug, 0,
416 CTL_HW, ath_node_num, CTL_CREATE,
417 CTL_EOL)) != 0)
418 goto err;
419
420 ath_debug_nodenum = node->sysctl_num;
421
422 #endif /* AR_DEBUG */
423 return;
424 err:
425 printf("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
426 }
427 #endif /* __NetBSD__ */
428
429 int
430 ath_attach(u_int16_t devid, struct ath_softc *sc)
431 {
432 struct ieee80211com *ic = &sc->sc_ic;
433 struct ifnet *ifp = &ic->ic_if;
434 struct ath_hal *ah;
435 HAL_STATUS status;
436 HAL_TXQ_INFO qinfo;
437 int error = 0;
438
439 DPRINTF(ATH_DEBUG_ANY, ("%s: devid 0x%x\n", __func__, devid));
440
441 #ifdef __FreeBSD__
442 /* set these up early for if_printf use */
443 if_initname(ifp, device_get_name(sc->sc_dev),
444 device_get_unit(sc->sc_dev));
445 #else
446 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
447 #endif
448
449 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
450 if (ah == NULL) {
451 if_printf(ifp, "unable to attach hardware; HAL status %u\n",
452 status);
453 error = ENXIO;
454 goto bad;
455 }
456 if (ah->ah_abi != HAL_ABI_VERSION) {
457 if_printf(ifp, "HAL ABI mismatch detected (0x%x != 0x%x)\n",
458 ah->ah_abi, HAL_ABI_VERSION);
459 error = ENXIO;
460 goto bad;
461 }
462 if_printf(ifp, "mac %d.%d phy %d.%d",
463 ah->ah_macVersion, ah->ah_macRev,
464 ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
465 if (ah->ah_analog5GhzRev)
466 printf(" 5ghz radio %d.%d",
467 ah->ah_analog5GhzRev >> 4, ah->ah_analog5GhzRev & 0xf);
468 if (ah->ah_analog2GhzRev)
469 printf(" 2ghz radio %d.%d",
470 ah->ah_analog2GhzRev >> 4, ah->ah_analog2GhzRev & 0xf);
471 printf("\n");
472 sc->sc_ah = ah;
473 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */
474
475 /*
476 * Collect the channel list using the default country
477 * code and including outdoor channels. The 802.11 layer
478 * is resposible for filtering this list based on settings
479 * like the phy mode.
480 */
481 error = ath_getchannels(sc, ath_countrycode, ath_outdoor,
482 ath_xchanmode);
483 if (error != 0)
484 goto bad;
485 /*
486 * Copy these back; they are set as a side effect
487 * of constructing the channel list.
488 */
489 ath_hal_getregdomain(ah, &ath_regdomain);
490 ath_hal_getcountrycode(ah, &ath_countrycode);
491
492 /*
493 * Setup rate tables for all potential media types.
494 */
495 ath_rate_setup(sc, IEEE80211_MODE_11A);
496 ath_rate_setup(sc, IEEE80211_MODE_11B);
497 ath_rate_setup(sc, IEEE80211_MODE_11G);
498 ath_rate_setup(sc, IEEE80211_MODE_TURBO);
499
500 error = ath_desc_alloc(sc);
501 if (error != 0) {
502 if_printf(ifp, "failed to allocate descriptors: %d\n", error);
503 goto bad;
504 }
505 ATH_CALLOUT_INIT(&sc->sc_scan_ch);
506 ATH_CALLOUT_INIT(&sc->sc_cal_ch);
507
508 #ifdef __FreeBSD__
509 ATH_TXBUF_LOCK_INIT(sc);
510 ATH_TXQ_LOCK_INIT(sc);
511 #endif
512
513 ATH_TASK_INIT(&sc->sc_txtask, ath_tx_proc, sc);
514 ATH_TASK_INIT(&sc->sc_rxtask, ath_rx_proc, sc);
515 ATH_TASK_INIT(&sc->sc_rxorntask, ath_rxorn_proc, sc);
516 ATH_TASK_INIT(&sc->sc_fataltask, ath_fatal_proc, sc);
517 ATH_TASK_INIT(&sc->sc_bmisstask, ath_bmiss_proc, sc);
518
519 /*
520 * For now just pre-allocate one data queue and one
521 * beacon queue. Note that the HAL handles resetting
522 * them at the needed time. Eventually we'll want to
523 * allocate more tx queues for splitting management
524 * frames and for QOS support.
525 */
526 sc->sc_bhalq = ath_hal_setuptxqueue(ah,HAL_TX_QUEUE_BEACON,NULL);
527 if (sc->sc_bhalq == (u_int) -1) {
528 if_printf(ifp, "unable to setup a beacon xmit queue!\n");
529 goto bad2;
530 }
531
532 memset(&qinfo, 0, sizeof(qinfo));
533 qinfo.tqi_subtype = HAL_WME_AC_BE;
534 sc->sc_txhalq = ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_DATA, &qinfo);
535 if (sc->sc_txhalq == (u_int) -1) {
536 if_printf(ifp, "unable to setup a data xmit queue!\n");
537 goto bad2;
538 }
539
540 ifp->if_softc = sc;
541 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
542 ifp->if_start = ath_start;
543 ifp->if_watchdog = ath_watchdog;
544 ifp->if_ioctl = ath_ioctl;
545 ifp->if_init = ath_init;
546 #ifdef __FreeBSD__
547 ifp->if_snd.ifq_maxlen = IFQ_MAXLEN;
548 #else
549 #if 0
550 ifp->if_stop = ath_stop; /* XXX */
551 #endif
552 IFQ_SET_READY(&ifp->if_snd);
553 #endif
554
555 ic->ic_softc = sc;
556 ic->ic_newassoc = ath_newassoc;
557 /* XXX not right but it's not used anywhere important */
558 ic->ic_phytype = IEEE80211_T_OFDM;
559 ic->ic_opmode = IEEE80211_M_STA;
560 ic->ic_caps = IEEE80211_C_WEP /* wep supported */
561 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */
562 | IEEE80211_C_HOSTAP /* hostap mode */
563 | IEEE80211_C_MONITOR /* monitor mode */
564 | IEEE80211_C_SHPREAMBLE /* short preamble supported */
565 ;
566
567 /* get mac address from hardware */
568 ath_hal_getmac(ah, ic->ic_myaddr);
569
570 #ifdef __NetBSD__
571 if_attach(ifp);
572 #endif
573 /* call MI attach routine. */
574 ieee80211_ifattach(ifp);
575 /* override default methods */
576 ic->ic_node_alloc = ath_node_alloc;
577 sc->sc_node_free = ic->ic_node_free;
578 ic->ic_node_free = ath_node_free;
579 sc->sc_node_copy = ic->ic_node_copy;
580 ic->ic_node_copy = ath_node_copy;
581 ic->ic_node_getrssi = ath_node_getrssi;
582 sc->sc_newstate = ic->ic_newstate;
583 ic->ic_newstate = ath_newstate;
584 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
585 ic->ic_recv_mgmt = ath_recv_mgmt;
586
587 /* complete initialization */
588 ieee80211_media_init(ifp, ath_media_change, ieee80211_media_status);
589
590 #if NBPFILTER > 0
591 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
592 sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
593 &sc->sc_drvbpf);
594 #endif
595 /*
596 * Initialize constant fields.
597 * XXX make header lengths a multiple of 32-bits so subsequent
598 * headers are properly aligned; this is a kludge to keep
599 * certain applications happy.
600 *
601 * NB: the channel is setup each time we transition to the
602 * RUN state to avoid filling it in for each frame.
603 */
604 sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
605 sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
606 sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
607
608 sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
609 sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
610 sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
611
612 #ifdef __NetBSD__
613 sc->sc_flags |= ATH_ATTACHED;
614 /*
615 * Make sure the interface is shutdown during reboot.
616 */
617 sc->sc_sdhook = shutdownhook_establish(ath_shutdown, sc);
618 if (sc->sc_sdhook == NULL)
619 printf("%s: WARNING: unable to establish shutdown hook\n",
620 sc->sc_dev.dv_xname);
621 sc->sc_powerhook = powerhook_establish(ath_power, sc);
622 if (sc->sc_powerhook == NULL)
623 printf("%s: WARNING: unable to establish power hook\n",
624 sc->sc_dev.dv_xname);
625 #endif
626 return 0;
627 bad2:
628 ath_desc_free(sc);
629 bad:
630 if (ah)
631 ath_hal_detach(ah);
632 sc->sc_invalid = 1;
633 return error;
634 }
635
636 int
637 ath_detach(struct ath_softc *sc)
638 {
639 struct ifnet *ifp = &sc->sc_ic.ic_if;
640 ath_softc_critsect_decl(s);
641
642 if ((sc->sc_flags & ATH_ATTACHED) == 0)
643 return (0);
644 DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags %x\n", __func__, ifp->if_flags));
645
646 ath_softc_critsect_begin(sc, s);
647 ath_stop(ifp);
648 #if NBPFILTER > 0
649 bpfdetach(ifp);
650 #endif
651 ath_desc_free(sc);
652 ath_hal_detach(sc->sc_ah);
653 ieee80211_ifdetach(ifp);
654 #ifdef __NetBSD__
655 if_detach(ifp);
656 #endif /* __NetBSD__ */
657 ath_softc_critsect_end(sc, s);
658 #ifdef __NetBSD__
659 powerhook_disestablish(sc->sc_powerhook);
660 shutdownhook_disestablish(sc->sc_sdhook);
661 #endif /* __NetBSD__ */
662 #ifdef __FreeBSD__
663
664 ATH_TXBUF_LOCK_DESTROY(sc);
665 ATH_TXQ_LOCK_DESTROY(sc);
666
667 #endif /* __FreeBSD__ */
668 return 0;
669 }
670
671 #ifdef __NetBSD__
672 void
673 ath_power(int why, void *arg)
674 {
675 struct ath_softc *sc = arg;
676 int s;
677
678 DPRINTF(ATH_DEBUG_ANY, ("ath_power(%d)\n", why));
679
680 s = splnet();
681 switch (why) {
682 case PWR_SUSPEND:
683 case PWR_STANDBY:
684 ath_suspend(sc, why);
685 break;
686 case PWR_RESUME:
687 ath_resume(sc, why);
688 break;
689 case PWR_SOFTSUSPEND:
690 case PWR_SOFTSTANDBY:
691 case PWR_SOFTRESUME:
692 break;
693 }
694 splx(s);
695 }
696 #endif
697
698 void
699 ath_suspend(struct ath_softc *sc, int why)
700 {
701 struct ifnet *ifp = &sc->sc_ic.ic_if;
702
703 DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags %x\n", __func__, ifp->if_flags));
704
705 ath_stop(ifp);
706 if (sc->sc_power != NULL)
707 (*sc->sc_power)(sc, why);
708 }
709
710 void
711 ath_resume(struct ath_softc *sc, int why)
712 {
713 struct ifnet *ifp = &sc->sc_ic.ic_if;
714
715 DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags %x\n", __func__, ifp->if_flags));
716
717 if (ifp->if_flags & IFF_UP) {
718 ath_init(ifp);
719 #if 0
720 (void)ath_intr(sc);
721 #endif
722 if (sc->sc_power != NULL)
723 (*sc->sc_power)(sc, why);
724 if (ifp->if_flags & IFF_RUNNING)
725 ath_start(ifp);
726 }
727 }
728
729 #ifdef __NetBSD__
730 void
731 ath_shutdown(void *arg)
732 {
733 struct ath_softc *sc = arg;
734
735 ath_stop(&sc->sc_ic.ic_if);
736 }
737 #else
738 void
739 ath_shutdown(struct ath_softc *sc)
740 {
741 #if 1
742 return;
743 #else
744 struct ifnet *ifp = &sc->sc_ic.ic_if;
745
746 DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags %x\n", __func__, ifp->if_flags));
747
748 ath_stop(ifp);
749 #endif
750 }
751 #endif
752
753 #ifdef __NetBSD__
754 int
755 ath_intr(void *arg)
756 {
757 return ath_intr1((struct ath_softc *)arg);
758 }
759 #else
760 void
761 ath_intr(void *arg)
762 {
763 (void)ath_intr1((struct ath_softc *)arg);
764 }
765 #endif
766
767 static int
768 ath_intr1(struct ath_softc *sc)
769 {
770 struct ieee80211com *ic = &sc->sc_ic;
771 struct ifnet *ifp = &ic->ic_if;
772 struct ath_hal *ah = sc->sc_ah;
773 HAL_INT status;
774
775 if (sc->sc_invalid) {
776 /*
777 * The hardware is not ready/present, don't touch anything.
778 * Note this can happen early on if the IRQ is shared.
779 */
780 DPRINTF(ATH_DEBUG_ANY, ("%s: invalid; ignored\n", __func__));
781 return 0;
782 }
783 if (!ath_hal_intrpend(ah)) /* shared irq, not for us */
784 return 0;
785 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
786 DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags 0x%x\n",
787 __func__, ifp->if_flags));
788 ath_hal_getisr(ah, &status); /* clear ISR */
789 ath_hal_intrset(ah, 0); /* disable further intr's */
790 return 1; /* XXX */
791 }
792 ath_hal_getisr(ah, &status); /* NB: clears ISR too */
793 DPRINTF(ATH_DEBUG_INTR, ("%s: status 0x%x\n", __func__, status));
794 status &= sc->sc_imask; /* discard unasked for bits */
795 if (status & HAL_INT_FATAL) {
796 sc->sc_stats.ast_hardware++;
797 ath_hal_intrset(ah, 0); /* disable intr's until reset */
798 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
799 } else if (status & HAL_INT_RXORN) {
800 sc->sc_stats.ast_rxorn++;
801 ath_hal_intrset(ah, 0); /* disable intr's until reset */
802 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
803 } else {
804 if (status & HAL_INT_RXEOL) {
805 /*
806 * NB: the hardware should re-read the link when
807 * RXE bit is written, but it doesn't work at
808 * least on older hardware revs.
809 */
810 sc->sc_stats.ast_rxeol++;
811 sc->sc_rxlink = NULL;
812 }
813 if (status & HAL_INT_TXURN) {
814 sc->sc_stats.ast_txurn++;
815 /* bump tx trigger level */
816 ath_hal_updatetxtriglevel(ah, AH_TRUE);
817 }
818 if (status & HAL_INT_RX)
819 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
820 if (status & HAL_INT_TX)
821 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
822 if (status & HAL_INT_SWBA) {
823 /*
824 * Handle beacon transmission directly; deferring
825 * this is too slow to meet timing constraints
826 * under load.
827 */
828 ath_beacon_proc(sc, 0);
829 }
830 if (status & HAL_INT_BMISS) {
831 sc->sc_stats.ast_bmiss++;
832 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
833 }
834 }
835 return 1;
836 }
837
838 static void
839 ath_fatal_proc(void *arg, int pending)
840 {
841 struct ath_softc *sc = arg;
842
843 device_printf(sc->sc_dev, "hardware error; resetting\n");
844 ath_reset(sc);
845 }
846
847 static void
848 ath_rxorn_proc(void *arg, int pending)
849 {
850 struct ath_softc *sc = arg;
851
852 device_printf(sc->sc_dev, "rx FIFO overrun; resetting\n");
853 ath_reset(sc);
854 }
855
856 static void
857 ath_bmiss_proc(void *arg, int pending)
858 {
859 struct ath_softc *sc = arg;
860 struct ieee80211com *ic = &sc->sc_ic;
861
862 DPRINTF(ATH_DEBUG_ANY, ("%s: pending %u\n", __func__, pending));
863 if (ic->ic_opmode != IEEE80211_M_STA)
864 return;
865 if (ic->ic_state == IEEE80211_S_RUN) {
866 /*
867 * Rather than go directly to scan state, try to
868 * reassociate first. If that fails then the state
869 * machine will drop us into scanning after timing
870 * out waiting for a probe response.
871 */
872 ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1);
873 }
874 }
875
876 static u_int
877 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
878 {
879 enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
880
881 switch (mode) {
882 case IEEE80211_MODE_AUTO:
883 return 0;
884 case IEEE80211_MODE_11A:
885 return CHANNEL_A;
886 case IEEE80211_MODE_11B:
887 return CHANNEL_B;
888 case IEEE80211_MODE_11G:
889 return CHANNEL_PUREG;
890 case IEEE80211_MODE_TURBO:
891 return CHANNEL_T;
892 default:
893 panic("%s: unsupported mode %d\n", __func__, mode);
894 return 0;
895 }
896 }
897
898 #ifdef __NetBSD__
899 static int
900 ath_init(struct ifnet *ifp)
901 {
902 return ath_init1((struct ath_softc *)ifp->if_softc);
903 }
904 #else
905 static void
906 ath_init(void *arg)
907 {
908 (void)ath_init1((struct ath_softc *)arg);
909 }
910 #endif
911
912 static int
913 ath_init1(struct ath_softc *sc)
914 {
915 struct ieee80211com *ic = &sc->sc_ic;
916 struct ifnet *ifp = &ic->ic_if;
917 struct ieee80211_node *ni;
918 enum ieee80211_phymode mode;
919 struct ath_hal *ah = sc->sc_ah;
920 HAL_STATUS status;
921 HAL_CHANNEL hchan;
922 int error = 0;
923 ath_softc_critsect_decl(s);
924
925 DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags 0x%x\n",
926 __func__, ifp->if_flags));
927
928 #ifdef __NetBSD__
929 if ((error = ath_enable(sc)) != 0)
930 return error;
931 #endif
932
933 ath_softc_critsect_begin(sc, s);
934 /*
935 * Stop anything previously setup. This is safe
936 * whether this is the first time through or not.
937 */
938 ath_stop(ifp);
939
940 /*
941 * The basic interface to setting the hardware in a good
942 * state is ``reset''. On return the hardware is known to
943 * be powered up and with interrupts disabled. This must
944 * be followed by initialization of the appropriate bits
945 * and then setup of the interrupt mask.
946 */
947 hchan.channel = ic->ic_ibss_chan->ic_freq;
948 hchan.channelFlags = ath_chan2flags(ic, ic->ic_ibss_chan);
949 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_FALSE, &status)) {
950 if_printf(ifp, "unable to reset hardware; hal status %u\n",
951 status);
952 error = EIO;
953 goto done;
954 }
955
956 /*
957 * Setup the hardware after reset: the key cache
958 * is filled as needed and the receive engine is
959 * set going. Frame transmit is handled entirely
960 * in the frame output path; there's nothing to do
961 * here except setup the interrupt mask.
962 */
963 if (ic->ic_flags & IEEE80211_F_PRIVACY)
964 ath_initkeytable(sc);
965 if ((error = ath_startrecv(sc)) != 0) {
966 if_printf(ifp, "unable to start recv logic\n");
967 goto done;
968 }
969
970 /*
971 * Enable interrupts.
972 */
973 sc->sc_imask = HAL_INT_RX | HAL_INT_TX
974 | HAL_INT_RXEOL | HAL_INT_RXORN
975 | HAL_INT_FATAL | HAL_INT_GLOBAL;
976 ath_hal_intrset(ah, sc->sc_imask);
977
978 ifp->if_flags |= IFF_RUNNING;
979 ic->ic_state = IEEE80211_S_INIT;
980
981 /*
982 * The hardware should be ready to go now so it's safe
983 * to kick the 802.11 state machine as it's likely to
984 * immediately call back to us to send mgmt frames.
985 */
986 ni = ic->ic_bss;
987 ni->ni_chan = ic->ic_ibss_chan;
988 mode = ieee80211_chan2mode(ic, ni->ni_chan);
989 if (mode != sc->sc_curmode)
990 ath_setcurmode(sc, mode);
991 if (ic->ic_opmode != IEEE80211_M_MONITOR)
992 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
993 else
994 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
995 done:
996 ath_softc_critsect_end(sc, s);
997 return error;
998 }
999
1000 static void
1001 ath_stop(struct ifnet *ifp)
1002 {
1003 struct ieee80211com *ic = (struct ieee80211com *) ifp;
1004 struct ath_softc *sc = ifp->if_softc;
1005 struct ath_hal *ah = sc->sc_ah;
1006 ath_softc_critsect_decl(s);
1007
1008 DPRINTF(ATH_DEBUG_ANY, ("%s: invalid %u if_flags 0x%x\n",
1009 __func__, sc->sc_invalid, ifp->if_flags));
1010
1011 ath_softc_critsect_begin(sc, s);
1012 if (ifp->if_flags & IFF_RUNNING) {
1013 /*
1014 * Shutdown the hardware and driver:
1015 * disable interrupts
1016 * turn off timers
1017 * clear transmit machinery
1018 * clear receive machinery
1019 * drain and release tx queues
1020 * reclaim beacon resources
1021 * reset 802.11 state machine
1022 * power down hardware
1023 *
1024 * Note that some of this work is not possible if the
1025 * hardware is gone (invalid).
1026 */
1027 ifp->if_flags &= ~IFF_RUNNING;
1028 ifp->if_timer = 0;
1029 if (!sc->sc_invalid)
1030 ath_hal_intrset(ah, 0);
1031 ath_draintxq(sc);
1032 if (!sc->sc_invalid)
1033 ath_stoprecv(sc);
1034 else
1035 sc->sc_rxlink = NULL;
1036 #ifdef __FreeBSD__
1037 IF_DRAIN(&ifp->if_snd);
1038 #else
1039 IF_PURGE(&ifp->if_snd);
1040 #endif
1041 ath_beacon_free(sc);
1042 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1043 if (!sc->sc_invalid) {
1044 ath_hal_setpower(ah, HAL_PM_FULL_SLEEP, 0);
1045 }
1046 #ifdef __NetBSD__
1047 ath_disable(sc);
1048 #endif
1049 }
1050 ath_softc_critsect_end(sc, s);
1051 }
1052
1053 /*
1054 * Reset the hardware w/o losing operational state. This is
1055 * basically a more efficient way of doing ath_stop, ath_init,
1056 * followed by state transitions to the current 802.11
1057 * operational state. Used to recover from errors rx overrun
1058 * and to reset the hardware when rf gain settings must be reset.
1059 */
1060 static void
1061 ath_reset(struct ath_softc *sc)
1062 {
1063 struct ieee80211com *ic = &sc->sc_ic;
1064 struct ifnet *ifp = &ic->ic_if;
1065 struct ath_hal *ah = sc->sc_ah;
1066 struct ieee80211_channel *c;
1067 HAL_STATUS status;
1068 HAL_CHANNEL hchan;
1069
1070 /*
1071 * Convert to a HAL channel description with the flags
1072 * constrained to reflect the current operating mode.
1073 */
1074 c = ic->ic_ibss_chan;
1075 hchan.channel = c->ic_freq;
1076 hchan.channelFlags = ath_chan2flags(ic, c);
1077
1078 ath_hal_intrset(ah, 0); /* disable interrupts */
1079 ath_draintxq(sc); /* stop xmit side */
1080 ath_stoprecv(sc); /* stop recv side */
1081 /* NB: indicate channel change so we do a full reset */
1082 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status))
1083 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1084 __func__, status);
1085 ath_hal_intrset(ah, sc->sc_imask);
1086 if (ath_startrecv(sc) != 0) /* restart recv */
1087 if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1088 ath_start(ifp); /* restart xmit */
1089 if (ic->ic_state == IEEE80211_S_RUN)
1090 ath_beacon_config(sc); /* restart beacons */
1091 }
1092
1093 static void
1094 ath_start(struct ifnet *ifp)
1095 {
1096 struct ath_softc *sc = ifp->if_softc;
1097 struct ath_hal *ah = sc->sc_ah;
1098 struct ieee80211com *ic = &sc->sc_ic;
1099 struct ieee80211_node *ni;
1100 struct ath_buf *bf;
1101 struct mbuf *m;
1102 struct ieee80211_frame *wh;
1103 ath_txbuf_critsect_decl(s);
1104
1105 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
1106 return;
1107 for (;;) {
1108 /*
1109 * Grab a TX buffer and associated resources.
1110 */
1111 ath_txbuf_critsect_begin(sc, s);
1112 bf = TAILQ_FIRST(&sc->sc_txbuf);
1113 if (bf != NULL)
1114 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
1115 ath_txbuf_critsect_end(sc, s);
1116 if (bf == NULL) {
1117 DPRINTF(ATH_DEBUG_ANY, ("%s: out of xmit buffers\n",
1118 __func__));
1119 sc->sc_stats.ast_tx_qstop++;
1120 ifp->if_flags |= IFF_OACTIVE;
1121 break;
1122 }
1123 /*
1124 * Poll the management queue for frames; they
1125 * have priority over normal data frames.
1126 */
1127 IF_DEQUEUE(&ic->ic_mgtq, m);
1128 if (m == NULL) {
1129 /*
1130 * No data frames go out unless we're associated.
1131 */
1132 if (ic->ic_state != IEEE80211_S_RUN) {
1133 DPRINTF(ATH_DEBUG_ANY,
1134 ("%s: ignore data packet, state %u\n",
1135 __func__, ic->ic_state));
1136 sc->sc_stats.ast_tx_discard++;
1137 ath_txbuf_critsect_begin(sc, s);
1138 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1139 ath_txbuf_critsect_end(sc, s);
1140 break;
1141 }
1142 IF_DEQUEUE(&ifp->if_snd, m);
1143 if (m == NULL) {
1144 ath_txbuf_critsect_begin(sc, s);
1145 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1146 ath_txbuf_critsect_end(sc, s);
1147 break;
1148 }
1149 ifp->if_opackets++;
1150
1151 #ifdef __NetBSD__
1152 #if NBPFILTER > 0
1153 if (ifp->if_bpf)
1154 bpf_mtap(ifp->if_bpf, m);
1155 #endif
1156 #endif
1157 #ifdef __FreeBSD__
1158 BPF_MTAP(ifp, m);
1159 #endif
1160 /*
1161 * Encapsulate the packet in prep for transmission.
1162 */
1163 m = ieee80211_encap(ifp, m, &ni);
1164 if (m == NULL) {
1165 DPRINTF(ATH_DEBUG_ANY,
1166 ("%s: encapsulation failure\n",
1167 __func__));
1168 sc->sc_stats.ast_tx_encap++;
1169 goto bad;
1170 }
1171 wh = mtod(m, struct ieee80211_frame *);
1172 } else {
1173 /*
1174 * Hack! The referenced node pointer is in the
1175 * rcvif field of the packet header. This is
1176 * placed there by ieee80211_mgmt_output because
1177 * we need to hold the reference with the frame
1178 * and there's no other way (other than packet
1179 * tags which we consider too expensive to use)
1180 * to pass it along.
1181 */
1182 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1183 m->m_pkthdr.rcvif = NULL;
1184
1185 wh = mtod(m, struct ieee80211_frame *);
1186 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1187 IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1188 /* fill time stamp */
1189 u_int64_t tsf;
1190 u_int32_t *tstamp;
1191
1192 tsf = ath_hal_gettsf64(ah);
1193 /* XXX: adjust 100us delay to xmit */
1194 tsf += 100;
1195 tstamp = (u_int32_t *)&wh[1];
1196 tstamp[0] = htole32(tsf & 0xffffffff);
1197 tstamp[1] = htole32(tsf >> 32);
1198 }
1199 sc->sc_stats.ast_tx_mgmt++;
1200 }
1201
1202 if (ath_tx_start(sc, ni, bf, m)) {
1203 bad:
1204 ath_txbuf_critsect_begin(sc, s);
1205 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1206 ath_txbuf_critsect_end(sc, s);
1207 ifp->if_oerrors++;
1208 if (ni != NULL)
1209 ieee80211_release_node(ic, ni);
1210 continue;
1211 }
1212
1213 sc->sc_tx_timer = 5;
1214 ifp->if_timer = 1;
1215 }
1216 }
1217
1218 static int
1219 ath_media_change(struct ifnet *ifp)
1220 {
1221 int error;
1222
1223 error = ieee80211_media_change(ifp);
1224 if (error == ENETRESET) {
1225 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
1226 (IFF_RUNNING|IFF_UP))
1227 ath_init(ifp); /* XXX lose error */
1228 error = 0;
1229 }
1230 return error;
1231 }
1232
1233 static void
1234 ath_watchdog(struct ifnet *ifp)
1235 {
1236 struct ath_softc *sc = ifp->if_softc;
1237 struct ieee80211com *ic = &sc->sc_ic;
1238
1239 ifp->if_timer = 0;
1240 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
1241 return;
1242 if (sc->sc_tx_timer) {
1243 if (--sc->sc_tx_timer == 0) {
1244 if_printf(ifp, "device timeout\n");
1245 ath_reset(sc);
1246 ifp->if_oerrors++;
1247 sc->sc_stats.ast_watchdog++;
1248 return;
1249 }
1250 ifp->if_timer = 1;
1251 }
1252 if (ic->ic_fixed_rate == -1) {
1253 /*
1254 * Run the rate control algorithm if we're not
1255 * locked at a fixed rate.
1256 */
1257 if (ic->ic_opmode == IEEE80211_M_STA)
1258 ath_rate_ctl(sc, ic->ic_bss);
1259 else
1260 ieee80211_iterate_nodes(ic, ath_rate_ctl, sc);
1261 }
1262 ieee80211_watchdog(ifp);
1263 }
1264
1265 static int
1266 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1267 {
1268 struct ath_softc *sc = ifp->if_softc;
1269 struct ifreq *ifr = (struct ifreq *)data;
1270 int error = 0;
1271 ath_softc_critsect_decl(s);
1272
1273 ath_softc_critsect_begin(sc, s);
1274 switch (cmd) {
1275 case SIOCSIFFLAGS:
1276 if (ifp->if_flags & IFF_UP) {
1277 if (ifp->if_flags & IFF_RUNNING) {
1278 /*
1279 * To avoid rescanning another access point,
1280 * do not call ath_init() here. Instead,
1281 * only reflect promisc mode settings.
1282 */
1283 ath_mode_init(sc);
1284 } else {
1285 /*
1286 * Beware of being called during detach to
1287 * reset promiscuous mode. In that case we
1288 * will still be marked UP but not RUNNING.
1289 * However trying to re-init the interface
1290 * is the wrong thing to do as we've already
1291 * torn down much of our state. There's
1292 * probably a better way to deal with this.
1293 */
1294 if (!sc->sc_invalid)
1295 ath_init(ifp); /* XXX lose error */
1296 }
1297 } else
1298 ath_stop(ifp);
1299 break;
1300 case SIOCADDMULTI:
1301 case SIOCDELMULTI:
1302 #ifdef __FreeBSD__
1303 /*
1304 * The upper layer has already installed/removed
1305 * the multicast address(es), just recalculate the
1306 * multicast filter for the card.
1307 */
1308 if (ifp->if_flags & IFF_RUNNING)
1309 ath_mode_init(sc);
1310 #endif
1311 #ifdef __NetBSD__
1312 error = (cmd == SIOCADDMULTI) ?
1313 ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
1314 ether_delmulti(ifr, &sc->sc_ic.ic_ec);
1315 if (error == ENETRESET) {
1316 if (ifp->if_flags & IFF_RUNNING)
1317 ath_mode_init(sc);
1318 error = 0;
1319 }
1320 #endif
1321 break;
1322 case SIOCGATHSTATS:
1323 error = copyout(&sc->sc_stats,
1324 ifr->ifr_data, sizeof (sc->sc_stats));
1325 break;
1326 case SIOCGATHDIAG: {
1327 #if 0 /* XXX punt */
1328 struct ath_diag *ad = (struct ath_diag *)data;
1329 struct ath_hal *ah = sc->sc_ah;
1330 void *data;
1331 u_int size;
1332
1333 if (ath_hal_getdiagstate(ah, ad->ad_id, &data, &size)) {
1334 if (size < ad->ad_size)
1335 ad->ad_size = size;
1336 if (data)
1337 error = copyout(data, ad->ad_data, ad->ad_size);
1338 } else
1339 error = EINVAL;
1340 #else
1341 error = EINVAL;
1342 #endif
1343 break;
1344 }
1345 default:
1346 error = ieee80211_ioctl(ifp, cmd, data);
1347 if (error == ENETRESET) {
1348 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
1349 (IFF_RUNNING|IFF_UP))
1350 ath_init(ifp); /* XXX lose error */
1351 error = 0;
1352 }
1353 break;
1354 }
1355 ath_softc_critsect_end(sc, s);
1356 return error;
1357 }
1358
1359 /*
1360 * Fill the hardware key cache with key entries.
1361 */
1362 static void
1363 ath_initkeytable(struct ath_softc *sc)
1364 {
1365 struct ieee80211com *ic = &sc->sc_ic;
1366 struct ath_hal *ah = sc->sc_ah;
1367 int i;
1368
1369 /* XXX maybe should reset all keys when !WEPON */
1370 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1371 struct ieee80211_wepkey *k = &ic->ic_nw_keys[i];
1372 if (k->wk_len == 0)
1373 ath_hal_keyreset(ah, i);
1374 else {
1375 HAL_KEYVAL hk;
1376
1377 memset(&hk, 0, sizeof(hk));
1378 hk.kv_type = HAL_CIPHER_WEP;
1379 hk.kv_len = k->wk_len;
1380 memcpy(hk.kv_val, k->wk_key, k->wk_len);
1381 /* XXX return value */
1382 ath_hal_keyset(ah, i, &hk);
1383 }
1384 }
1385 }
1386
1387 static void
1388 ath_mcastfilter_accum(caddr_t dl, u_int32_t (*mfilt)[2])
1389 {
1390 u_int32_t val;
1391 u_int8_t pos;
1392
1393 val = LE_READ_4(dl + 0);
1394 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1395 val = LE_READ_4(dl + 3);
1396 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1397 pos &= 0x3f;
1398 (*mfilt)[pos / 32] |= (1 << (pos % 32));
1399 }
1400
1401 #ifdef __FreeBSD__
1402 static void
1403 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t (*mfilt)[2])
1404 {
1405 struct ieee80211com *ic = &sc->sc_ic;
1406 struct ifnet *ifp = &ic->ic_if;
1407 struct ifmultiaddr *ifma;
1408
1409 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1410 caddr_t dl;
1411
1412 /* calculate XOR of eight 6bit values */
1413 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
1414 ath_mcastfilter_accum(dl, &mfilt);
1415 }
1416 }
1417 #else
1418 static void
1419 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t (*mfilt)[2])
1420 {
1421 struct ifnet *ifp = &sc->sc_ic.ic_if;
1422 struct ether_multi *enm;
1423 struct ether_multistep estep;
1424
1425 ETHER_FIRST_MULTI(estep, &sc->sc_ic.ic_ec, enm);
1426 while (enm != NULL) {
1427 /* XXX Punt on ranges. */
1428 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
1429 (*mfilt)[0] = (*mfilt)[1] = ~((u_int32_t)0);
1430 ifp->if_flags |= IFF_ALLMULTI;
1431 return;
1432 }
1433 ath_mcastfilter_accum(enm->enm_addrlo, mfilt);
1434 ETHER_NEXT_MULTI(estep, enm);
1435 }
1436 ifp->if_flags &= ~IFF_ALLMULTI;
1437 }
1438 #endif
1439
1440 /*
1441 * Calculate the receive filter according to the
1442 * operating mode and state:
1443 *
1444 * o always accept unicast, broadcast, and multicast traffic
1445 * o maintain current state of phy error reception
1446 * o probe request frames are accepted only when operating in
1447 * hostap, adhoc, or monitor modes
1448 * o enable promiscuous mode according to the interface state
1449 * o accept beacons:
1450 * - when operating in adhoc mode so the 802.11 layer creates
1451 * node table entries for peers,
1452 * - when operating in station mode for collecting rssi data when
1453 * the station is otherwise quiet, or
1454 * - when scanning
1455 */
1456 static u_int32_t
1457 ath_calcrxfilter(struct ath_softc *sc)
1458 {
1459 struct ieee80211com *ic = &sc->sc_ic;
1460 struct ath_hal *ah = sc->sc_ah;
1461 struct ifnet *ifp = &ic->ic_if;
1462 u_int32_t rfilt;
1463
1464 rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1465 | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1466 if (ic->ic_opmode != IEEE80211_M_STA)
1467 rfilt |= HAL_RX_FILTER_PROBEREQ;
1468 if (ic->ic_opmode != IEEE80211_M_AHDEMO)
1469 rfilt |= HAL_RX_FILTER_BEACON;
1470 if (ifp->if_flags & IFF_PROMISC)
1471 rfilt |= HAL_RX_FILTER_PROM;
1472 return rfilt;
1473 }
1474
1475 static void
1476 ath_mode_init(struct ath_softc *sc)
1477 {
1478 #ifdef __FreeBSD__
1479 struct ieee80211com *ic = &sc->sc_ic;
1480 #endif
1481 struct ath_hal *ah = sc->sc_ah;
1482 u_int32_t rfilt, mfilt[2];
1483
1484 /* configure rx filter */
1485 rfilt = ath_calcrxfilter(sc);
1486 ath_hal_setrxfilter(ah, rfilt);
1487
1488 /* configure operational mode */
1489 ath_hal_setopmode(ah);
1490
1491 /* calculate and install multicast filter */
1492 #ifdef __FreeBSD__
1493 if ((ic->ic_if.if_flags & IFF_ALLMULTI) == 0) {
1494 mfilt[0] = mfilt[1] = 0;
1495 ath_mcastfilter_compute(sc, &mfilt);
1496 } else {
1497 mfilt[0] = mfilt[1] = ~0;
1498 }
1499 #endif
1500 #ifdef __NetBSD__
1501 mfilt[0] = mfilt[1] = 0;
1502 ath_mcastfilter_compute(sc, &mfilt);
1503 #endif
1504 ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1505 DPRINTF(ATH_DEBUG_MODE, ("%s: RX filter 0x%x, MC filter %08x:%08x\n",
1506 __func__, rfilt, mfilt[0], mfilt[1]));
1507 }
1508
1509 #ifdef __FreeBSD__
1510 static void
1511 ath_mbuf_load_cb(void *arg, bus_dma_segment_t *seg, int nseg, bus_size_t mapsize, int error)
1512 {
1513 struct ath_buf *bf = arg;
1514
1515 KASSERT(nseg <= ATH_MAX_SCATTER,
1516 ("ath_mbuf_load_cb: too many DMA segments %u", nseg));
1517 bf->bf_mapsize = mapsize;
1518 bf->bf_nseg = nseg;
1519 bcopy(seg, bf->bf_segs, nseg * sizeof (seg[0]));
1520 }
1521 #endif /* __FreeBSD__ */
1522
1523 static struct mbuf *
1524 ath_getmbuf(int flags, int type, u_int pktlen)
1525 {
1526 struct mbuf *m;
1527
1528 KASSERT(pktlen <= MCLBYTES, ("802.11 packet too large: %u", pktlen));
1529 #ifdef __FreeBSD__
1530 if (pktlen <= MHLEN)
1531 MGETHDR(m, flags, type);
1532 else
1533 m = m_getcl(flags, type, M_PKTHDR);
1534 #else
1535 MGETHDR(m, flags, type);
1536 if (m != NULL && pktlen > MHLEN)
1537 MCLGET(m, flags);
1538 #endif
1539 return m;
1540 }
1541
1542 static int
1543 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
1544 {
1545 struct ieee80211com *ic = &sc->sc_ic;
1546 struct ifnet *ifp = &ic->ic_if;
1547 struct ath_hal *ah = sc->sc_ah;
1548 struct ieee80211_frame *wh;
1549 struct ath_buf *bf;
1550 struct ath_desc *ds;
1551 struct mbuf *m;
1552 int error, pktlen;
1553 u_int8_t *frm, rate;
1554 u_int16_t capinfo;
1555 struct ieee80211_rateset *rs;
1556 const HAL_RATE_TABLE *rt;
1557 u_int flags;
1558
1559 bf = sc->sc_bcbuf;
1560 if (bf->bf_m != NULL) {
1561 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1562 m_freem(bf->bf_m);
1563 bf->bf_m = NULL;
1564 bf->bf_node = NULL;
1565 }
1566 /*
1567 * NB: the beacon data buffer must be 32-bit aligned;
1568 * we assume the mbuf routines will return us something
1569 * with this alignment (perhaps should assert).
1570 */
1571 rs = &ni->ni_rates;
1572 pktlen = sizeof (struct ieee80211_frame)
1573 + 8 + 2 + 2 + 2+ni->ni_esslen + 2+rs->rs_nrates + 3 + 6;
1574 if (rs->rs_nrates > IEEE80211_RATE_SIZE)
1575 pktlen += 2;
1576 m = ath_getmbuf(M_DONTWAIT, MT_DATA, pktlen);
1577 if (m == NULL) {
1578 DPRINTF(ATH_DEBUG_BEACON,
1579 ("%s: cannot get mbuf/cluster; size %u\n",
1580 __func__, pktlen));
1581 sc->sc_stats.ast_be_nombuf++;
1582 return ENOMEM;
1583 }
1584
1585 wh = mtod(m, struct ieee80211_frame *);
1586 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
1587 IEEE80211_FC0_SUBTYPE_BEACON;
1588 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1589 *(u_int16_t *)wh->i_dur = 0;
1590 memcpy(wh->i_addr1, ifp->if_broadcastaddr, IEEE80211_ADDR_LEN);
1591 memcpy(wh->i_addr2, ic->ic_myaddr, IEEE80211_ADDR_LEN);
1592 memcpy(wh->i_addr3, ni->ni_bssid, IEEE80211_ADDR_LEN);
1593 *(u_int16_t *)wh->i_seq = 0;
1594
1595 /*
1596 * beacon frame format
1597 * [8] time stamp
1598 * [2] beacon interval
1599 * [2] cabability information
1600 * [tlv] ssid
1601 * [tlv] supported rates
1602 * [tlv] parameter set (IBSS)
1603 * [tlv] extended supported rates
1604 */
1605 frm = (u_int8_t *)&wh[1];
1606 memset(frm, 0, 8); /* timestamp is set by hardware */
1607 frm += 8;
1608 *(u_int16_t *)frm = htole16(ni->ni_intval);
1609 frm += 2;
1610 if (ic->ic_opmode == IEEE80211_M_IBSS)
1611 capinfo = IEEE80211_CAPINFO_IBSS;
1612 else
1613 capinfo = IEEE80211_CAPINFO_ESS;
1614 if (ic->ic_flags & IEEE80211_F_PRIVACY)
1615 capinfo |= IEEE80211_CAPINFO_PRIVACY;
1616 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1617 IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
1618 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1619 if (ic->ic_flags & IEEE80211_F_SHSLOT)
1620 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1621 *(u_int16_t *)frm = htole16(capinfo);
1622 frm += 2;
1623 *frm++ = IEEE80211_ELEMID_SSID;
1624 *frm++ = ni->ni_esslen;
1625 memcpy(frm, ni->ni_essid, ni->ni_esslen);
1626 frm += ni->ni_esslen;
1627 frm = ieee80211_add_rates(frm, rs);
1628 *frm++ = IEEE80211_ELEMID_DSPARMS;
1629 *frm++ = 1;
1630 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
1631 if (ic->ic_opmode == IEEE80211_M_IBSS) {
1632 *frm++ = IEEE80211_ELEMID_IBSSPARMS;
1633 *frm++ = 2;
1634 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */
1635 } else {
1636 /* TODO: TIM */
1637 *frm++ = IEEE80211_ELEMID_TIM;
1638 *frm++ = 4; /* length */
1639 *frm++ = 0; /* DTIM count */
1640 *frm++ = 1; /* DTIM period */
1641 *frm++ = 0; /* bitmap control */
1642 *frm++ = 0; /* Partial Virtual Bitmap (variable length) */
1643 }
1644 frm = ieee80211_add_xrates(frm, rs);
1645 m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
1646 KASSERT(m->m_pkthdr.len <= pktlen,
1647 ("beacon bigger than expected, len %u calculated %u",
1648 m->m_pkthdr.len, pktlen));
1649
1650 DPRINTF(ATH_DEBUG_BEACON, ("%s: m %p len %u\n", __func__, m, m->m_len));
1651 error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m, BUS_DMA_NOWAIT);
1652 if (error != 0) {
1653 m_freem(m);
1654 return error;
1655 }
1656 KASSERT(bf->bf_nseg == 1,
1657 ("%s: multi-segment packet; nseg %u", __func__, bf->bf_nseg));
1658 bf->bf_m = m;
1659
1660 /* setup descriptors */
1661 ds = bf->bf_desc;
1662
1663 if (ic->ic_opmode == IEEE80211_M_IBSS)
1664 ds->ds_link = bf->bf_daddr; /* link to self */
1665 else
1666 ds->ds_link = 0;
1667 ds->ds_data = bf->bf_segs[0].ds_addr;
1668
1669 DPRINTF(ATH_DEBUG_ANY, ("%s: segaddr %p seglen %u\n", __func__,
1670 (caddr_t)bf->bf_segs[0].ds_addr, (u_int)bf->bf_segs[0].ds_len));
1671
1672 /*
1673 * Calculate rate code.
1674 * XXX everything at min xmit rate
1675 */
1676 rt = sc->sc_currates;
1677 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
1678 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1679 rate = rt->info[0].rateCode | rt->info[0].shortPreamble;
1680 else
1681 rate = rt->info[0].rateCode;
1682
1683 flags = HAL_TXDESC_NOACK;
1684 if (ic->ic_opmode == IEEE80211_M_IBSS)
1685 flags |= HAL_TXDESC_VEOL;
1686
1687 if (!ath_hal_setuptxdesc(ah, ds
1688 , m->m_pkthdr.len + IEEE80211_CRC_LEN /* packet length */
1689 , sizeof(struct ieee80211_frame) /* header length */
1690 , HAL_PKT_TYPE_BEACON /* Atheros packet type */
1691 , 0x20 /* txpower XXX */
1692 , rate, 1 /* series 0 rate/tries */
1693 , HAL_TXKEYIX_INVALID /* no encryption */
1694 , 0 /* antenna mode */
1695 , flags /* no ack for beacons */
1696 , 0 /* rts/cts rate */
1697 , 0 /* rts/cts duration */
1698 )) {
1699 printf("%s: ath_hal_setuptxdesc failed\n", __func__);
1700 return -1;
1701 }
1702 /* NB: beacon's BufLen must be a multiple of 4 bytes */
1703 /* XXX verify mbuf data area covers this roundup */
1704 if (!ath_hal_filltxdesc(ah, ds
1705 , roundup(bf->bf_segs[0].ds_len, 4) /* buffer length */
1706 , AH_TRUE /* first segment */
1707 , AH_TRUE /* last segment */
1708 )) {
1709 printf("%s: ath_hal_filltxdesc failed\n", __func__);
1710 return -1;
1711 }
1712
1713 /* XXX it is not appropriate to bus_dmamap_sync? -dcy */
1714
1715 return 0;
1716 }
1717
1718 static void
1719 ath_beacon_proc(struct ath_softc *sc, int pending)
1720 {
1721 struct ieee80211com *ic = &sc->sc_ic;
1722 struct ath_buf *bf = sc->sc_bcbuf;
1723 struct ath_hal *ah = sc->sc_ah;
1724
1725 DPRINTF(ATH_DEBUG_BEACON_PROC, ("%s: pending %u\n", __func__, pending));
1726 if (ic->ic_opmode == IEEE80211_M_STA ||
1727 bf == NULL || bf->bf_m == NULL) {
1728 DPRINTF(ATH_DEBUG_ANY, ("%s: ic_flags=%x bf=%p bf_m=%p\n",
1729 __func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL));
1730 return;
1731 }
1732 /* TODO: update beacon to reflect PS poll state */
1733 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
1734 DPRINTF(ATH_DEBUG_ANY, ("%s: beacon queue %u did not stop?\n",
1735 __func__, sc->sc_bhalq));
1736 /* NB: the HAL still stops DMA, so proceed */
1737 }
1738 ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_PREWRITE);
1739
1740 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
1741 ath_hal_txstart(ah, sc->sc_bhalq);
1742 DPRINTF(ATH_DEBUG_BEACON_PROC,
1743 ("%s: TXDP%u = %p (%p)\n", __func__,
1744 sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc));
1745 }
1746
1747 static void
1748 ath_beacon_free(struct ath_softc *sc)
1749 {
1750 struct ath_buf *bf = sc->sc_bcbuf;
1751
1752 if (bf->bf_m != NULL) {
1753 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1754 m_freem(bf->bf_m);
1755 bf->bf_m = NULL;
1756 bf->bf_node = NULL;
1757 }
1758 }
1759
1760 /*
1761 * Configure the beacon and sleep timers.
1762 *
1763 * When operating as an AP this resets the TSF and sets
1764 * up the hardware to notify us when we need to issue beacons.
1765 *
1766 * When operating in station mode this sets up the beacon
1767 * timers according to the timestamp of the last received
1768 * beacon and the current TSF, configures PCF and DTIM
1769 * handling, programs the sleep registers so the hardware
1770 * will wakeup in time to receive beacons, and configures
1771 * the beacon miss handling so we'll receive a BMISS
1772 * interrupt when we stop seeing beacons from the AP
1773 * we've associated with.
1774 */
1775 static void
1776 ath_beacon_config(struct ath_softc *sc)
1777 {
1778 struct ath_hal *ah = sc->sc_ah;
1779 struct ieee80211com *ic = &sc->sc_ic;
1780 struct ieee80211_node *ni = ic->ic_bss;
1781 u_int32_t nexttbtt, intval;
1782
1783 nexttbtt = (LE_READ_4(ni->ni_tstamp + 4) << 22) |
1784 (LE_READ_4(ni->ni_tstamp) >> 10);
1785 DPRINTF(ATH_DEBUG_BEACON, ("%s: nexttbtt=%u\n", __func__, nexttbtt));
1786 nexttbtt += ni->ni_intval;
1787 intval = ni->ni_intval & HAL_BEACON_PERIOD;
1788 if (ic->ic_opmode == IEEE80211_M_STA) {
1789 HAL_BEACON_STATE bs;
1790 u_int32_t bmisstime;
1791
1792 /* NB: no PCF support right now */
1793 memset(&bs, 0, sizeof(bs));
1794 /*
1795 * Reset our tsf so the hardware will update the
1796 * tsf register to reflect timestamps found in
1797 * received beacons.
1798 */
1799 bs.bs_intval = intval | HAL_BEACON_RESET_TSF;
1800 bs.bs_nexttbtt = nexttbtt;
1801 bs.bs_dtimperiod = bs.bs_intval;
1802 bs.bs_nextdtim = nexttbtt;
1803 /*
1804 * Calculate the number of consecutive beacons to miss
1805 * before taking a BMISS interrupt. The configuration
1806 * is specified in ms, so we need to convert that to
1807 * TU's and then calculate based on the beacon interval.
1808 * Note that we clamp the result to at most 10 beacons.
1809 */
1810 bmisstime = (ic->ic_bmisstimeout * 1000) / 1024;
1811 bs.bs_bmissthreshold = howmany(bmisstime,ni->ni_intval);
1812 if (bs.bs_bmissthreshold > 10)
1813 bs.bs_bmissthreshold = 10;
1814 else if (bs.bs_bmissthreshold <= 0)
1815 bs.bs_bmissthreshold = 1;
1816
1817 /*
1818 * Calculate sleep duration. The configuration is
1819 * given in ms. We insure a multiple of the beacon
1820 * period is used. Also, if the sleep duration is
1821 * greater than the DTIM period then it makes senses
1822 * to make it a multiple of that.
1823 *
1824 * XXX fixed at 100ms
1825 */
1826 bs.bs_sleepduration =
1827 roundup((100 * 1000) / 1024, bs.bs_intval);
1828 if (bs.bs_sleepduration > bs.bs_dtimperiod)
1829 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
1830
1831 DPRINTF(ATH_DEBUG_BEACON,
1832 ("%s: intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u\n"
1833 , __func__
1834 , bs.bs_intval
1835 , bs.bs_nexttbtt
1836 , bs.bs_dtimperiod
1837 , bs.bs_nextdtim
1838 , bs.bs_bmissthreshold
1839 , bs.bs_sleepduration
1840 ));
1841 ath_hal_intrset(ah, 0);
1842 ath_hal_beacontimers(ah, &bs, 0/*XXX*/, 0, 0);
1843 sc->sc_imask |= HAL_INT_BMISS;
1844 ath_hal_intrset(ah, sc->sc_imask);
1845 } else {
1846 ath_hal_intrset(ah, 0);
1847 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */
1848 intval |= HAL_BEACON_ENA;
1849 switch (ic->ic_opmode) {
1850 /* No beacons in monitor, ad hoc-demo modes. */
1851 case IEEE80211_M_MONITOR:
1852 case IEEE80211_M_AHDEMO:
1853 intval &= ~HAL_BEACON_ENA;
1854 /*FALLTHROUGH*/
1855 /* In IBSS mode, I am uncertain how SWBA interrupts
1856 * work, so I just turn them off and use a self-linked
1857 * descriptor.
1858 */
1859 case IEEE80211_M_IBSS:
1860 sc->sc_imask &= ~HAL_INT_SWBA;
1861 nexttbtt = ni->ni_intval;
1862 /*FALLTHROUGH*/
1863 case IEEE80211_M_HOSTAP:
1864 default:
1865 if (nexttbtt == ni->ni_intval)
1866 intval |= HAL_BEACON_RESET_TSF;
1867 break;
1868 }
1869 DPRINTF(ATH_DEBUG_BEACON, ("%s: intval %u nexttbtt %u\n",
1870 __func__, ni->ni_intval, nexttbtt));
1871 ath_hal_beaconinit(ah, nexttbtt, intval);
1872 ath_hal_intrset(ah, sc->sc_imask);
1873 if (ic->ic_opmode == IEEE80211_M_IBSS)
1874 ath_beacon_proc(sc, 0);
1875 }
1876 }
1877
1878 #ifdef __FreeBSD__
1879 static void
1880 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1881 {
1882 bus_addr_t *paddr = (bus_addr_t*) arg;
1883 *paddr = segs->ds_addr;
1884 }
1885 #endif
1886
1887 #ifdef __FreeBSD__
1888 static int
1889 ath_desc_alloc(struct ath_softc *sc)
1890 {
1891 int i, bsize, error;
1892 struct ath_desc *ds;
1893 struct ath_buf *bf;
1894
1895 /* allocate descriptors */
1896 sc->sc_desc_len = sizeof(struct ath_desc) *
1897 (ATH_TXBUF * ATH_TXDESC + ATH_RXBUF + 1);
1898 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &sc->sc_ddmamap);
1899 if (error != 0)
1900 return error;
1901
1902 error = bus_dmamem_alloc(sc->sc_dmat, (void**) &sc->sc_desc,
1903 BUS_DMA_NOWAIT, &sc->sc_ddmamap);
1904
1905 if (error != 0)
1906 goto fail0;
1907
1908 error = bus_dmamap_load(sc->sc_dmat, sc->sc_ddmamap,
1909 sc->sc_desc, sc->sc_desc_len,
1910 ath_load_cb, &sc->sc_desc_paddr,
1911 BUS_DMA_NOWAIT);
1912 if (error != 0)
1913 goto fail1;
1914
1915 ds = sc->sc_desc;
1916 DPRINTF(ATH_DEBUG_ANY, ("%s: DMA map: %p (%lu) -> %p (%lu)\n",
1917 __func__, ds, (u_long) sc->sc_desc_len, (caddr_t) sc->sc_desc_paddr,
1918 /*XXX*/ (u_long) sc->sc_desc_len));
1919
1920 /* allocate buffers */
1921 bsize = sizeof(struct ath_buf) * (ATH_TXBUF + ATH_RXBUF + 1);
1922 bf = malloc(bsize, M_DEVBUF, M_NOWAIT | M_ZERO);
1923 if (bf == NULL) {
1924 printf("%s: unable to allocate Tx/Rx buffers\n",
1925 sc->sc_dev.dv_xname);
1926 error = -1;
1927 goto fail2;
1928 }
1929 sc->sc_bufptr = bf;
1930
1931 TAILQ_INIT(&sc->sc_rxbuf);
1932 for (i = 0; i < ATH_RXBUF; i++, bf++, ds++) {
1933 bf->bf_desc = ds;
1934 bf->bf_daddr = sc->sc_desc_paddr +
1935 ((caddr_t)ds - (caddr_t)sc->sc_desc);
1936 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
1937 &bf->bf_dmamap);
1938 if (error != 0)
1939 break;
1940 TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
1941 }
1942
1943 TAILQ_INIT(&sc->sc_txbuf);
1944 for (i = 0; i < ATH_TXBUF; i++, bf++, ds += ATH_TXDESC) {
1945 bf->bf_desc = ds;
1946 bf->bf_daddr = sc->sc_desc_paddr +
1947 ((caddr_t)ds - (caddr_t)sc->sc_desc);
1948 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
1949 &bf->bf_dmamap);
1950 if (error != 0)
1951 break;
1952 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1953 }
1954 TAILQ_INIT(&sc->sc_txq);
1955
1956 /* beacon buffer */
1957 bf->bf_desc = ds;
1958 bf->bf_daddr = sc->sc_desc_paddr + ((caddr_t)ds - (caddr_t)sc->sc_desc);
1959 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &bf->bf_dmamap);
1960 if (error != 0)
1961 return error;
1962 sc->sc_bcbuf = bf;
1963 return 0;
1964
1965 fail2:
1966 bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
1967 fail1:
1968 bus_dmamem_free(sc->sc_dmat, sc->sc_desc, sc->sc_ddmamap);
1969 fail0:
1970 bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
1971 sc->sc_ddmamap = NULL;
1972 return error;
1973 }
1974 #else
1975 static int
1976 ath_desc_alloc(struct ath_softc *sc)
1977 {
1978 int i, bsize, error = -1;
1979 struct ath_desc *ds;
1980 struct ath_buf *bf;
1981
1982 /* allocate descriptors */
1983 sc->sc_desc_len = sizeof(struct ath_desc) *
1984 (ATH_TXBUF * ATH_TXDESC + ATH_RXBUF + 1);
1985 if ((error = bus_dmamem_alloc(sc->sc_dmat, sc->sc_desc_len, PAGE_SIZE,
1986 0, &sc->sc_dseg, 1, &sc->sc_dnseg, 0)) != 0) {
1987 printf("%s: unable to allocate control data, error = %d\n",
1988 sc->sc_dev.dv_xname, error);
1989 goto fail0;
1990 }
1991
1992 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg,
1993 sc->sc_desc_len, (caddr_t *)&sc->sc_desc, BUS_DMA_COHERENT)) != 0) {
1994 printf("%s: unable to map control data, error = %d\n",
1995 sc->sc_dev.dv_xname, error);
1996 goto fail1;
1997 }
1998
1999 if ((error = bus_dmamap_create(sc->sc_dmat, sc->sc_desc_len, 1,
2000 sc->sc_desc_len, 0, 0, &sc->sc_ddmamap)) != 0) {
2001 printf("%s: unable to create control data DMA map, "
2002 "error = %d\n", sc->sc_dev.dv_xname, error);
2003 goto fail2;
2004 }
2005
2006 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_ddmamap, sc->sc_desc,
2007 sc->sc_desc_len, NULL, 0)) != 0) {
2008 printf("%s: unable to load control data DMA map, error = %d\n",
2009 sc->sc_dev.dv_xname, error);
2010 goto fail3;
2011 }
2012
2013 ds = sc->sc_desc;
2014 sc->sc_desc_paddr = sc->sc_ddmamap->dm_segs[0].ds_addr;
2015
2016 DPRINTF(ATH_DEBUG_XMIT_DESC|ATH_DEBUG_RECV_DESC,
2017 ("ath_desc_alloc: DMA map: %p (%lu) -> %p (%lu)\n",
2018 ds, (u_long)sc->sc_desc_len,
2019 (caddr_t) sc->sc_desc_paddr, /*XXX*/ (u_long) sc->sc_desc_len));
2020
2021 /* allocate buffers */
2022 bsize = sizeof(struct ath_buf) * (ATH_TXBUF + ATH_RXBUF + 1);
2023 bf = malloc(bsize, M_DEVBUF, M_NOWAIT | M_ZERO);
2024 if (bf == NULL) {
2025 printf("%s: unable to allocate Tx/Rx buffers\n",
2026 sc->sc_dev.dv_xname);
2027 error = ENOMEM;
2028 goto fail3;
2029 }
2030 sc->sc_bufptr = bf;
2031
2032 TAILQ_INIT(&sc->sc_rxbuf);
2033 for (i = 0; i < ATH_RXBUF; i++, bf++, ds++) {
2034 bf->bf_desc = ds;
2035 bf->bf_daddr = sc->sc_desc_paddr +
2036 ((caddr_t)ds - (caddr_t)sc->sc_desc);
2037 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
2038 MCLBYTES, 0, 0, &bf->bf_dmamap)) != 0) {
2039 printf("%s: unable to create Rx dmamap, error = %d\n",
2040 sc->sc_dev.dv_xname, error);
2041 goto fail4;
2042 }
2043 TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
2044 }
2045
2046 TAILQ_INIT(&sc->sc_txbuf);
2047 for (i = 0; i < ATH_TXBUF; i++, bf++, ds += ATH_TXDESC) {
2048 bf->bf_desc = ds;
2049 bf->bf_daddr = sc->sc_desc_paddr +
2050 ((caddr_t)ds - (caddr_t)sc->sc_desc);
2051 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
2052 ATH_TXDESC, MCLBYTES, 0, 0, &bf->bf_dmamap)) != 0) {
2053 printf("%s: unable to create Tx dmamap, error = %d\n",
2054 sc->sc_dev.dv_xname, error);
2055 goto fail5;
2056 }
2057 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
2058 }
2059 TAILQ_INIT(&sc->sc_txq);
2060
2061 /* beacon buffer */
2062 bf->bf_desc = ds;
2063 bf->bf_daddr = sc->sc_desc_paddr + ((caddr_t)ds - (caddr_t)sc->sc_desc);
2064 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
2065 &bf->bf_dmamap)) != 0) {
2066 printf("%s: unable to create beacon dmamap, error = %d\n",
2067 sc->sc_dev.dv_xname, error);
2068 goto fail5;
2069 }
2070 sc->sc_bcbuf = bf;
2071 return 0;
2072
2073 fail5:
2074 for (i = ATH_RXBUF; i < ATH_RXBUF + ATH_TXBUF; i++) {
2075 if (sc->sc_bufptr[i].bf_dmamap == NULL)
2076 continue;
2077 bus_dmamap_destroy(sc->sc_dmat, sc->sc_bufptr[i].bf_dmamap);
2078 }
2079 fail4:
2080 for (i = 0; i < ATH_RXBUF; i++) {
2081 if (sc->sc_bufptr[i].bf_dmamap == NULL)
2082 continue;
2083 bus_dmamap_destroy(sc->sc_dmat, sc->sc_bufptr[i].bf_dmamap);
2084 }
2085 fail3:
2086 bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
2087 fail2:
2088 bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
2089 sc->sc_ddmamap = NULL;
2090 fail1:
2091 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_desc, sc->sc_desc_len);
2092 fail0:
2093 bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg);
2094 return error;
2095 }
2096 #endif
2097
2098 static void
2099 ath_desc_free(struct ath_softc *sc)
2100 {
2101 struct ath_buf *bf;
2102
2103 #ifdef __FreeBSD__
2104 bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
2105 bus_dmamem_free(sc->sc_dmat, sc->sc_desc, sc->sc_ddmamap);
2106 bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
2107 #else
2108 bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
2109 bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
2110 bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg);
2111 #endif
2112
2113 TAILQ_FOREACH(bf, &sc->sc_txq, bf_list) {
2114 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2115 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2116 m_freem(bf->bf_m);
2117 }
2118 TAILQ_FOREACH(bf, &sc->sc_txbuf, bf_list)
2119 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2120 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
2121 if (bf->bf_m) {
2122 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2123 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2124 m_freem(bf->bf_m);
2125 bf->bf_m = NULL;
2126 }
2127 }
2128 if (sc->sc_bcbuf != NULL) {
2129 bus_dmamap_unload(sc->sc_dmat, sc->sc_bcbuf->bf_dmamap);
2130 bus_dmamap_destroy(sc->sc_dmat, sc->sc_bcbuf->bf_dmamap);
2131 sc->sc_bcbuf = NULL;
2132 }
2133
2134 TAILQ_INIT(&sc->sc_rxbuf);
2135 TAILQ_INIT(&sc->sc_txbuf);
2136 TAILQ_INIT(&sc->sc_txq);
2137 free(sc->sc_bufptr, M_DEVBUF);
2138 sc->sc_bufptr = NULL;
2139 }
2140
2141 static struct ieee80211_node *
2142 ath_node_alloc(struct ieee80211com *ic)
2143 {
2144 struct ath_node *an =
2145 malloc(sizeof(struct ath_node), M_80211_NODE, M_NOWAIT|M_ZERO);
2146 if (an) {
2147 int i;
2148 for (i = 0; i < ATH_RHIST_SIZE; i++)
2149 an->an_rx_hist[i].arh_ticks = ATH_RHIST_NOTIME;
2150 an->an_rx_hist_next = ATH_RHIST_SIZE-1;
2151 return &an->an_node;
2152 } else
2153 return NULL;
2154 }
2155
2156 static void
2157 ath_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
2158 {
2159 struct ath_softc *sc = ic->ic_if.if_softc;
2160 struct ath_buf *bf;
2161
2162 TAILQ_FOREACH(bf, &sc->sc_txq, bf_list) {
2163 if (bf->bf_node == ni)
2164 bf->bf_node = NULL;
2165 }
2166 (*sc->sc_node_free)(ic, ni);
2167 }
2168
2169 static void
2170 ath_node_copy(struct ieee80211com *ic,
2171 struct ieee80211_node *dst, const struct ieee80211_node *src)
2172 {
2173 struct ath_softc *sc = ic->ic_if.if_softc;
2174
2175 memcpy(&dst[1], &src[1],
2176 sizeof(struct ath_node) - sizeof(struct ieee80211_node));
2177 (*sc->sc_node_copy)(ic, dst, src);
2178 }
2179
2180 static u_int8_t
2181 ath_node_getrssi(struct ieee80211com *ic, struct ieee80211_node *ni)
2182 {
2183 struct ath_node *an = ATH_NODE(ni);
2184 int i, now, nsamples, rssi;
2185
2186 /*
2187 * Calculate the average over the last second of sampled data.
2188 */
2189 now = ATH_TICKS();
2190 nsamples = 0;
2191 rssi = 0;
2192 i = an->an_rx_hist_next;
2193 do {
2194 struct ath_recv_hist *rh = &an->an_rx_hist[i];
2195 if (rh->arh_ticks == ATH_RHIST_NOTIME)
2196 goto done;
2197 if (now - rh->arh_ticks > hz)
2198 goto done;
2199 rssi += rh->arh_rssi;
2200 nsamples++;
2201 if (i == 0)
2202 i = ATH_RHIST_SIZE-1;
2203 else
2204 i--;
2205 } while (i != an->an_rx_hist_next);
2206 done:
2207 /*
2208 * Return either the average or the last known
2209 * value if there is no recent data.
2210 */
2211 return (nsamples ? rssi / nsamples : an->an_rx_hist[i].arh_rssi);
2212 }
2213
2214 static int
2215 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2216 {
2217 struct ath_hal *ah = sc->sc_ah;
2218 int error;
2219 struct mbuf *m;
2220 struct ath_desc *ds;
2221
2222 m = bf->bf_m;
2223 if (m == NULL) {
2224 /*
2225 * NB: by assigning a page to the rx dma buffer we
2226 * implicitly satisfy the Atheros requirement that
2227 * this buffer be cache-line-aligned and sized to be
2228 * multiple of the cache line size. Not doing this
2229 * causes weird stuff to happen (for the 5210 at least).
2230 */
2231 m = ath_getmbuf(M_DONTWAIT, MT_DATA, MCLBYTES);
2232 if (m == NULL) {
2233 DPRINTF(ATH_DEBUG_ANY,
2234 ("%s: no mbuf/cluster\n", __func__));
2235 sc->sc_stats.ast_rx_nombuf++;
2236 return ENOMEM;
2237 }
2238 bf->bf_m = m;
2239 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2240
2241 error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m,
2242 BUS_DMA_NOWAIT);
2243 if (error != 0) {
2244 DPRINTF(ATH_DEBUG_ANY,
2245 ("%s: ath_buf_dmamap_load_mbuf failed;"
2246 " error %d\n", __func__, error));
2247 sc->sc_stats.ast_rx_busdma++;
2248 return error;
2249 }
2250 KASSERT(bf->bf_nseg == 1,
2251 ("ath_rxbuf_init: multi-segment packet; nseg %u",
2252 bf->bf_nseg));
2253 }
2254 ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_PREREAD);
2255
2256 /*
2257 * Setup descriptors. For receive we always terminate
2258 * the descriptor list with a self-linked entry so we'll
2259 * not get overrun under high load (as can happen with a
2260 * 5212 when ANI processing enables PHY errors).
2261 *
2262 * To insure the last descriptor is self-linked we create
2263 * each descriptor as self-linked and add it to the end. As
2264 * each additional descriptor is added the previous self-linked
2265 * entry is ``fixed'' naturally. This should be safe even
2266 * if DMA is happening. When processing RX interrupts we
2267 * never remove/process the last, self-linked, entry on the
2268 * descriptor list. This insures the hardware always has
2269 * someplace to write a new frame.
2270 */
2271 ds = bf->bf_desc;
2272 ds->ds_link = bf->bf_daddr; /* link to self */
2273 ds->ds_data = bf->bf_segs[0].ds_addr;
2274 ath_hal_setuprxdesc(ah, ds
2275 , m->m_len /* buffer size */
2276 , 0
2277 );
2278
2279 if (sc->sc_rxlink != NULL)
2280 *sc->sc_rxlink = bf->bf_daddr;
2281 sc->sc_rxlink = &ds->ds_link;
2282 return 0;
2283 }
2284
2285 static void
2286 ath_rx_proc(void *arg, int npending)
2287 {
2288 #define PA2DESC(_sc, _pa) \
2289 ((struct ath_desc *)((caddr_t)(_sc)->sc_desc + \
2290 ((_pa) - (_sc)->sc_desc_paddr)))
2291 struct ath_softc *sc = arg;
2292 struct ath_buf *bf;
2293 struct ieee80211com *ic = &sc->sc_ic;
2294 struct ifnet *ifp = &ic->ic_if;
2295 struct ath_hal *ah = sc->sc_ah;
2296 struct ath_desc *ds;
2297 struct mbuf *m;
2298 struct ieee80211_frame *wh, whbuf;
2299 struct ieee80211_node *ni;
2300 struct ath_node *an;
2301 struct ath_recv_hist *rh;
2302 int len;
2303 u_int phyerr;
2304 HAL_STATUS status;
2305
2306 DPRINTF(ATH_DEBUG_RX_PROC, ("%s: pending %u\n", __func__, npending));
2307 do {
2308 bf = TAILQ_FIRST(&sc->sc_rxbuf);
2309 if (bf == NULL) { /* NB: shouldn't happen */
2310 if_printf(ifp, "ath_rx_proc: no buffer!\n");
2311 break;
2312 }
2313 ds = bf->bf_desc;
2314 if (ds->ds_link == bf->bf_daddr) {
2315 /* NB: never process the self-linked entry at the end */
2316 break;
2317 }
2318 m = bf->bf_m;
2319 if (m == NULL) { /* NB: shouldn't happen */
2320 if_printf(ifp, "ath_rx_proc: no mbuf!\n");
2321 continue;
2322 }
2323 /* XXX sync descriptor memory */
2324 /*
2325 * Must provide the virtual address of the current
2326 * descriptor, the physical address, and the virtual
2327 * address of the next descriptor in the h/w chain.
2328 * This allows the HAL to look ahead to see if the
2329 * hardware is done with a descriptor by checking the
2330 * done bit in the following descriptor and the address
2331 * of the current descriptor the DMA engine is working
2332 * on. All this is necessary because of our use of
2333 * a self-linked list to avoid rx overruns.
2334 */
2335 status = ath_hal_rxprocdesc(ah, ds,
2336 bf->bf_daddr, PA2DESC(sc, ds->ds_link));
2337 #ifdef AR_DEBUG
2338 if (ath_debug & ATH_DEBUG_RECV_DESC)
2339 ath_printrxbuf(bf, status == HAL_OK);
2340 #endif
2341 if (status == HAL_EINPROGRESS)
2342 break;
2343 TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list);
2344
2345 if (ds->ds_rxstat.rs_more) {
2346 /*
2347 * Frame spans multiple descriptors; this
2348 * cannot happen yet as we don't support
2349 * jumbograms. If not in monitor mode,
2350 * discard the frame.
2351 */
2352
2353 /* enable this if you want to see error frames in Monitor mode */
2354 #ifdef ERROR_FRAMES
2355 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2356 /* XXX statistic */
2357 goto rx_next;
2358 }
2359 #endif
2360 /* fall thru for monitor mode handling... */
2361
2362 } else if (ds->ds_rxstat.rs_status != 0) {
2363 if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
2364 sc->sc_stats.ast_rx_crcerr++;
2365 if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
2366 sc->sc_stats.ast_rx_fifoerr++;
2367 if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT)
2368 sc->sc_stats.ast_rx_badcrypt++;
2369 if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
2370 sc->sc_stats.ast_rx_phyerr++;
2371 phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
2372 sc->sc_stats.ast_rx_phy[phyerr]++;
2373 }
2374
2375 /*
2376 * reject error frames, we normally don't want
2377 * to see them in monitor mode.
2378 */
2379 if ((ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT ) ||
2380 (ds->ds_rxstat.rs_status & HAL_RXERR_PHY))
2381 goto rx_next;
2382
2383 /*
2384 * In monitor mode, allow through packets that
2385 * cannot be decrypted
2386 */
2387 if ((ds->ds_rxstat.rs_status & ~HAL_RXERR_DECRYPT) ||
2388 sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
2389 goto rx_next;
2390 }
2391
2392 len = ds->ds_rxstat.rs_datalen;
2393 if (len < IEEE80211_MIN_LEN) {
2394 DPRINTF(ATH_DEBUG_RECV, ("%s: short packet %d\n",
2395 __func__, len));
2396 sc->sc_stats.ast_rx_tooshort++;
2397 goto rx_next;
2398 }
2399
2400 ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_POSTREAD);
2401
2402 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2403 bf->bf_m = NULL;
2404 m->m_pkthdr.rcvif = ifp;
2405 m->m_pkthdr.len = m->m_len = len;
2406
2407 #if NBPFILTER > 0
2408 if (sc->sc_drvbpf) {
2409 sc->sc_rx_th.wr_rate =
2410 sc->sc_hwmap[ds->ds_rxstat.rs_rate];
2411 sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi;
2412 sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
2413 /* XXX TSF */
2414 bpf_mtap2(sc->sc_drvbpf,
2415 &sc->sc_rx_th, sc->sc_rx_th_len, m);
2416 }
2417 #endif
2418
2419 m_adj(m, -IEEE80211_CRC_LEN);
2420 wh = mtod(m, struct ieee80211_frame *);
2421 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2422 /*
2423 * WEP is decrypted by hardware. Clear WEP bit
2424 * and trim WEP header for ieee80211_input().
2425 */
2426 wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
2427 memcpy(&whbuf, wh, sizeof(whbuf));
2428 m_adj(m, IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN);
2429 wh = mtod(m, struct ieee80211_frame *);
2430 memcpy(wh, &whbuf, sizeof(whbuf));
2431 /*
2432 * Also trim WEP ICV from the tail.
2433 */
2434 m_adj(m, -IEEE80211_WEP_CRCLEN);
2435 /*
2436 * The header has probably moved.
2437 */
2438 wh = mtod(m, struct ieee80211_frame *);
2439 }
2440
2441 /*
2442 * Locate the node for sender, track state, and
2443 * then pass this node (referenced) up to the 802.11
2444 * layer for its use.
2445 */
2446 ni = ieee80211_find_rxnode(ic, wh);
2447
2448 /*
2449 * Record driver-specific state.
2450 */
2451 an = ATH_NODE(ni);
2452 if (++(an->an_rx_hist_next) == ATH_RHIST_SIZE)
2453 an->an_rx_hist_next = 0;
2454 rh = &an->an_rx_hist[an->an_rx_hist_next];
2455 rh->arh_ticks = ATH_TICKS();
2456 rh->arh_rssi = ds->ds_rxstat.rs_rssi;
2457 rh->arh_antenna = ds->ds_rxstat.rs_antenna;
2458
2459 /*
2460 * Send frame up for processing.
2461 */
2462 ieee80211_input(ifp, m, ni,
2463 ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
2464
2465 /*
2466 * The frame may have caused the node to be marked for
2467 * reclamation (e.g. in response to a DEAUTH message)
2468 * so use release_node here instead of unref_node.
2469 */
2470 ieee80211_release_node(ic, ni);
2471 rx_next:
2472 TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
2473 } while (ath_rxbuf_init(sc, bf) == 0);
2474
2475 ath_hal_rxmonitor(ah); /* rx signal state monitoring */
2476 ath_hal_rxena(ah); /* in case of RXEOL */
2477
2478 #ifdef __NetBSD__
2479 if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
2480 ath_start(ifp);
2481 #endif /* __NetBSD__ */
2482 #undef PA2DESC
2483 }
2484
2485 /*
2486 * XXX Size of an ACK control frame in bytes.
2487 */
2488 #define IEEE80211_ACK_SIZE (2+2+IEEE80211_ADDR_LEN+4)
2489
2490 static int
2491 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
2492 struct mbuf *m0)
2493 {
2494 struct ieee80211com *ic = &sc->sc_ic;
2495 struct ath_hal *ah = sc->sc_ah;
2496 struct ifnet *ifp = &sc->sc_ic.ic_if;
2497 int i, error, iswep, hdrlen, pktlen;
2498 u_int8_t rix, cix, txrate, ctsrate;
2499 struct ath_desc *ds;
2500 struct mbuf *m;
2501 struct ieee80211_frame *wh;
2502 u_int32_t iv;
2503 u_int8_t *ivp;
2504 u_int8_t hdrbuf[sizeof(struct ieee80211_frame) +
2505 IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN];
2506 u_int subtype, flags, ctsduration, antenna;
2507 HAL_PKT_TYPE atype;
2508 const HAL_RATE_TABLE *rt;
2509 HAL_BOOL shortPreamble;
2510 struct ath_node *an;
2511 ath_txq_critsect_decl(s);
2512
2513 wh = mtod(m0, struct ieee80211_frame *);
2514 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
2515 hdrlen = sizeof(struct ieee80211_frame);
2516 pktlen = m0->m_pkthdr.len;
2517
2518 if (iswep) {
2519 memcpy(hdrbuf, mtod(m0, caddr_t), hdrlen);
2520 m_adj(m0, hdrlen);
2521 M_PREPEND(m0, sizeof(hdrbuf), M_DONTWAIT);
2522 if (m0 == NULL) {
2523 sc->sc_stats.ast_tx_nombuf++;
2524 return ENOMEM;
2525 }
2526 ivp = hdrbuf + hdrlen;
2527 wh = mtod(m0, struct ieee80211_frame *);
2528 /*
2529 * XXX
2530 * IV must not duplicate during the lifetime of the key.
2531 * But no mechanism to renew keys is defined in IEEE 802.11
2532 * for WEP. And the IV may be duplicated at other stations
2533 * because the session key itself is shared. So we use a
2534 * pseudo random IV for now, though it is not the right way.
2535 *
2536 * NB: Rather than use a strictly random IV we select a
2537 * random one to start and then increment the value for
2538 * each frame. This is an explicit tradeoff between
2539 * overhead and security. Given the basic insecurity of
2540 * WEP this seems worthwhile.
2541 */
2542
2543 /*
2544 * Skip 'bad' IVs from Fluhrer/Mantin/Shamir:
2545 * (B, 255, N) with 3 <= B < 16 and 0 <= N <= 255
2546 */
2547 iv = ic->ic_iv;
2548 if ((iv & 0xff00) == 0xff00) {
2549 int B = (iv & 0xff0000) >> 16;
2550 if (3 <= B && B < 16)
2551 iv = (B+1) << 16;
2552 }
2553 ic->ic_iv = iv + 1;
2554
2555 /*
2556 * NB: Preserve byte order of IV for packet
2557 * sniffers; it doesn't matter otherwise.
2558 */
2559 #if AH_BYTE_ORDER == AH_BIG_ENDIAN
2560 ivp[0] = iv >> 0;
2561 ivp[1] = iv >> 8;
2562 ivp[2] = iv >> 16;
2563 #else
2564 ivp[2] = iv >> 0;
2565 ivp[1] = iv >> 8;
2566 ivp[0] = iv >> 16;
2567 #endif
2568 ivp[3] = ic->ic_wep_txkey << 6; /* Key ID and pad */
2569 memcpy(mtod(m0, caddr_t), hdrbuf, sizeof(hdrbuf));
2570 /*
2571 * The ICV length must be included into hdrlen and pktlen.
2572 */
2573 hdrlen = sizeof(hdrbuf) + IEEE80211_WEP_CRCLEN;
2574 pktlen = m0->m_pkthdr.len + IEEE80211_WEP_CRCLEN;
2575 }
2576 pktlen += IEEE80211_CRC_LEN;
2577
2578 /*
2579 * Load the DMA map so any coalescing is done. This
2580 * also calculates the number of descriptors we need.
2581 */
2582 error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m0, BUS_DMA_NOWAIT);
2583 /*
2584 * Discard null packets and check for packets that
2585 * require too many TX descriptors. We try to convert
2586 * the latter to a cluster.
2587 */
2588 if (error == EFBIG) { /* too many desc's, linearize */
2589 sc->sc_stats.ast_tx_linear++;
2590 MGETHDR(m, M_DONTWAIT, MT_DATA);
2591 if (m == NULL) {
2592 sc->sc_stats.ast_tx_nombuf++;
2593 m_freem(m0);
2594 return ENOMEM;
2595 }
2596 #ifdef __FreeBSD__
2597 M_MOVE_PKTHDR(m, m0);
2598 #else
2599 M_COPY_PKTHDR(m, m0);
2600 #endif
2601 MCLGET(m, M_DONTWAIT);
2602 if ((m->m_flags & M_EXT) == 0) {
2603 sc->sc_stats.ast_tx_nomcl++;
2604 m_freem(m0);
2605 m_free(m);
2606 return ENOMEM;
2607 }
2608 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
2609 m_freem(m0);
2610 m->m_len = m->m_pkthdr.len;
2611 m0 = m;
2612 error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m0,
2613 BUS_DMA_NOWAIT);
2614 if (error != 0) {
2615 sc->sc_stats.ast_tx_busdma++;
2616 m_freem(m0);
2617 return error;
2618 }
2619 KASSERT(bf->bf_nseg == 1,
2620 ("ath_tx_start: packet not one segment; nseg %u",
2621 bf->bf_nseg));
2622 } else if (error != 0) {
2623 sc->sc_stats.ast_tx_busdma++;
2624 m_freem(m0);
2625 return error;
2626 } else if (bf->bf_nseg == 0) { /* null packet, discard */
2627 sc->sc_stats.ast_tx_nodata++;
2628 m_freem(m0);
2629 return EIO;
2630 }
2631 DPRINTF(ATH_DEBUG_XMIT, ("%s: m %p len %u\n", __func__, m0, pktlen));
2632 ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_PREWRITE);
2633 bf->bf_m = m0;
2634 bf->bf_node = ni; /* NB: held reference */
2635
2636 /* setup descriptors */
2637 ds = bf->bf_desc;
2638 rt = sc->sc_currates;
2639 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
2640
2641 /*
2642 * Calculate Atheros packet type from IEEE80211 packet header
2643 * and setup for rate calculations.
2644 */
2645 atype = HAL_PKT_TYPE_NORMAL; /* default */
2646 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
2647 case IEEE80211_FC0_TYPE_MGT:
2648 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2649 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
2650 atype = HAL_PKT_TYPE_BEACON;
2651 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2652 atype = HAL_PKT_TYPE_PROBE_RESP;
2653 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
2654 atype = HAL_PKT_TYPE_ATIM;
2655 rix = 0; /* XXX lowest rate */
2656 break;
2657 case IEEE80211_FC0_TYPE_CTL:
2658 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2659 if (subtype == IEEE80211_FC0_SUBTYPE_PS_POLL)
2660 atype = HAL_PKT_TYPE_PSPOLL;
2661 rix = 0; /* XXX lowest rate */
2662 break;
2663 default:
2664 rix = sc->sc_rixmap[ni->ni_rates.rs_rates[ni->ni_txrate] &
2665 IEEE80211_RATE_VAL];
2666 if (rix == 0xff) {
2667 if_printf(ifp, "bogus xmit rate 0x%x\n",
2668 ni->ni_rates.rs_rates[ni->ni_txrate]);
2669 sc->sc_stats.ast_tx_badrate++;
2670 m_freem(m0);
2671 return EIO;
2672 }
2673 break;
2674 }
2675 /*
2676 * NB: the 802.11 layer marks whether or not we should
2677 * use short preamble based on the current mode and
2678 * negotiated parameters.
2679 */
2680 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2681 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
2682 txrate = rt->info[rix].rateCode | rt->info[rix].shortPreamble;
2683 shortPreamble = AH_TRUE;
2684 sc->sc_stats.ast_tx_shortpre++;
2685 } else {
2686 txrate = rt->info[rix].rateCode;
2687 shortPreamble = AH_FALSE;
2688 }
2689
2690 /*
2691 * Calculate miscellaneous flags.
2692 */
2693 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for wep errors */
2694 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2695 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */
2696 sc->sc_stats.ast_tx_noack++;
2697 } else if (pktlen > ic->ic_rtsthreshold) {
2698 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */
2699 sc->sc_stats.ast_tx_rts++;
2700 }
2701
2702 /*
2703 * Calculate duration. This logically belongs in the 802.11
2704 * layer but it lacks sufficient information to calculate it.
2705 */
2706 if ((flags & HAL_TXDESC_NOACK) == 0 &&
2707 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
2708 u_int16_t dur;
2709 /*
2710 * XXX not right with fragmentation.
2711 */
2712 dur = ath_hal_computetxtime(ah, rt, IEEE80211_ACK_SIZE,
2713 rix, shortPreamble);
2714 *((u_int16_t*) wh->i_dur) = htole16(dur);
2715 }
2716
2717 /*
2718 * Calculate RTS/CTS rate and duration if needed.
2719 */
2720 ctsduration = 0;
2721 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
2722 /*
2723 * CTS transmit rate is derived from the transmit rate
2724 * by looking in the h/w rate table. We must also factor
2725 * in whether or not a short preamble is to be used.
2726 */
2727 cix = rt->info[rix].controlRate;
2728 ctsrate = rt->info[cix].rateCode;
2729 if (shortPreamble)
2730 ctsrate |= rt->info[cix].shortPreamble;
2731 /*
2732 * Compute the transmit duration based on the size
2733 * of an ACK frame. We call into the HAL to do the
2734 * computation since it depends on the characteristics
2735 * of the actual PHY being used.
2736 */
2737 if (flags & HAL_TXDESC_RTSENA) { /* SIFS + CTS */
2738 ctsduration += ath_hal_computetxtime(ah,
2739 rt, IEEE80211_ACK_SIZE, cix, shortPreamble);
2740 }
2741 /* SIFS + data */
2742 ctsduration += ath_hal_computetxtime(ah,
2743 rt, pktlen, rix, shortPreamble);
2744 if ((flags & HAL_TXDESC_NOACK) == 0) { /* SIFS + ACK */
2745 ctsduration += ath_hal_computetxtime(ah,
2746 rt, IEEE80211_ACK_SIZE, cix, shortPreamble);
2747 }
2748 } else
2749 ctsrate = 0;
2750
2751 /*
2752 * For now use the antenna on which the last good
2753 * frame was received on. We assume this field is
2754 * initialized to 0 which gives us ``auto'' or the
2755 * ``default'' antenna.
2756 */
2757 an = (struct ath_node *) ni;
2758 if (an->an_tx_antenna)
2759 antenna = an->an_tx_antenna;
2760 else
2761 antenna = an->an_rx_hist[an->an_rx_hist_next].arh_antenna;
2762
2763 if (ic->ic_rawbpf)
2764 bpf_mtap(ic->ic_rawbpf, m0);
2765 if (sc->sc_drvbpf) {
2766 sc->sc_tx_th.wt_flags = 0;
2767 if (shortPreamble)
2768 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2769 if (iswep)
2770 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2771 sc->sc_tx_th.wt_rate = ni->ni_rates.rs_rates[ni->ni_txrate];
2772 sc->sc_tx_th.wt_txpower = 60/2; /* XXX */
2773 sc->sc_tx_th.wt_antenna = antenna;
2774
2775 bpf_mtap2(sc->sc_drvbpf,
2776 &sc->sc_tx_th, sc->sc_tx_th_len, m0);
2777 }
2778
2779 /*
2780 * Formulate first tx descriptor with tx controls.
2781 */
2782 /* XXX check return value? */
2783 ath_hal_setuptxdesc(ah, ds
2784 , pktlen /* packet length */
2785 , hdrlen /* header length */
2786 , atype /* Atheros packet type */
2787 , 60 /* txpower XXX */
2788 , txrate, 1+10 /* series 0 rate/tries */
2789 , iswep ? sc->sc_ic.ic_wep_txkey : HAL_TXKEYIX_INVALID
2790 , antenna /* antenna mode */
2791 , flags /* flags */
2792 , ctsrate /* rts/cts rate */
2793 , ctsduration /* rts/cts duration */
2794 );
2795 #ifdef notyet
2796 ath_hal_setupxtxdesc(ah, ds
2797 , AH_FALSE /* short preamble */
2798 , 0, 0 /* series 1 rate/tries */
2799 , 0, 0 /* series 2 rate/tries */
2800 , 0, 0 /* series 3 rate/tries */
2801 );
2802 #endif
2803 /*
2804 * Fillin the remainder of the descriptor info.
2805 */
2806 for (i = 0; i < bf->bf_nseg; i++, ds++) {
2807 ds->ds_data = bf->bf_segs[i].ds_addr;
2808 if (i == bf->bf_nseg - 1)
2809 ds->ds_link = 0;
2810 else
2811 ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
2812 ath_hal_filltxdesc(ah, ds
2813 , bf->bf_segs[i].ds_len /* segment length */
2814 , i == 0 /* first segment */
2815 , i == bf->bf_nseg - 1 /* last segment */
2816 );
2817 DPRINTF(ATH_DEBUG_XMIT,
2818 ("%s: %d: %08x %08x %08x %08x %08x %08x\n",
2819 __func__, i, ds->ds_link, ds->ds_data,
2820 ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]));
2821 }
2822
2823 /*
2824 * Insert the frame on the outbound list and
2825 * pass it on to the hardware.
2826 */
2827 ath_txq_critsect_begin(sc, s);
2828 TAILQ_INSERT_TAIL(&sc->sc_txq, bf, bf_list);
2829 if (sc->sc_txlink == NULL) {
2830 ath_hal_puttxbuf(ah, sc->sc_txhalq, bf->bf_daddr);
2831 DPRINTF(ATH_DEBUG_XMIT, ("%s: TXDP0 = %p (%p)\n", __func__,
2832 (caddr_t)bf->bf_daddr, bf->bf_desc));
2833 } else {
2834 *sc->sc_txlink = bf->bf_daddr;
2835 DPRINTF(ATH_DEBUG_XMIT, ("%s: link(%p)=%p (%p)\n", __func__,
2836 sc->sc_txlink, (caddr_t)bf->bf_daddr, bf->bf_desc));
2837 }
2838 sc->sc_txlink = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
2839 ath_txq_critsect_end(sc, s);
2840
2841 ath_hal_txstart(ah, sc->sc_txhalq);
2842 return 0;
2843 }
2844
2845 static void
2846 ath_tx_proc(void *arg, int npending)
2847 {
2848 struct ath_softc *sc = arg;
2849 struct ath_hal *ah = sc->sc_ah;
2850 struct ath_buf *bf;
2851 struct ieee80211com *ic = &sc->sc_ic;
2852 struct ifnet *ifp = &ic->ic_if;
2853 struct ath_desc *ds;
2854 struct ieee80211_node *ni;
2855 struct ath_node *an;
2856 int sr, lr;
2857 HAL_STATUS status;
2858 ath_txq_critsect_decl(s);
2859 ath_txbuf_critsect_decl(s2);
2860
2861 DPRINTF(ATH_DEBUG_TX_PROC, ("%s: pending %u tx queue %p, link %p\n",
2862 __func__, npending,
2863 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, sc->sc_txhalq),
2864 sc->sc_txlink));
2865 for (;;) {
2866 ath_txq_critsect_begin(sc, s);
2867 bf = TAILQ_FIRST(&sc->sc_txq);
2868 if (bf == NULL) {
2869 sc->sc_txlink = NULL;
2870 ath_txq_critsect_end(sc, s);
2871 break;
2872 }
2873 /* only the last descriptor is needed */
2874 ds = &bf->bf_desc[bf->bf_nseg - 1];
2875 status = ath_hal_txprocdesc(ah, ds);
2876 #ifdef AR_DEBUG
2877 if (ath_debug & ATH_DEBUG_XMIT_DESC)
2878 ath_printtxbuf(bf, status == HAL_OK);
2879 #endif
2880 if (status == HAL_EINPROGRESS) {
2881 ath_txq_critsect_end(sc, s);
2882 break;
2883 }
2884 TAILQ_REMOVE(&sc->sc_txq, bf, bf_list);
2885 ath_txq_critsect_end(sc, s);
2886
2887 ni = bf->bf_node;
2888 if (ni != NULL) {
2889 an = (struct ath_node *) ni;
2890 if (ds->ds_txstat.ts_status == 0) {
2891 an->an_tx_ok++;
2892 an->an_tx_antenna = ds->ds_txstat.ts_antenna;
2893 } else {
2894 an->an_tx_err++;
2895 ifp->if_oerrors++;
2896 if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
2897 sc->sc_stats.ast_tx_xretries++;
2898 if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
2899 sc->sc_stats.ast_tx_fifoerr++;
2900 if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
2901 sc->sc_stats.ast_tx_filtered++;
2902 an->an_tx_antenna = 0; /* invalidate */
2903 }
2904 sr = ds->ds_txstat.ts_shortretry;
2905 lr = ds->ds_txstat.ts_longretry;
2906 sc->sc_stats.ast_tx_shortretry += sr;
2907 sc->sc_stats.ast_tx_longretry += lr;
2908 if (sr + lr)
2909 an->an_tx_retr++;
2910 /*
2911 * Reclaim reference to node.
2912 *
2913 * NB: the node may be reclaimed here if, for example
2914 * this is a DEAUTH message that was sent and the
2915 * node was timed out due to inactivity.
2916 */
2917 ieee80211_release_node(ic, ni);
2918 }
2919 ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_POSTWRITE);
2920 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2921 m_freem(bf->bf_m);
2922 bf->bf_m = NULL;
2923 bf->bf_node = NULL;
2924
2925 ath_txbuf_critsect_begin(sc, s2);
2926 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
2927 ath_txbuf_critsect_end(sc, s2);
2928 }
2929 ifp->if_flags &= ~IFF_OACTIVE;
2930 sc->sc_tx_timer = 0;
2931
2932 ath_start(ifp);
2933 }
2934
2935 /*
2936 * Drain the transmit queue and reclaim resources.
2937 */
2938 static void
2939 ath_draintxq(struct ath_softc *sc)
2940 {
2941 struct ath_hal *ah = sc->sc_ah;
2942 struct ieee80211com *ic = &sc->sc_ic;
2943 struct ifnet *ifp = &ic->ic_if;
2944 struct ieee80211_node *ni;
2945 struct ath_buf *bf;
2946 ath_txq_critsect_decl(s);
2947 ath_txbuf_critsect_decl(s2);
2948
2949 /* XXX return value */
2950 if (!sc->sc_invalid) {
2951 /* don't touch the hardware if marked invalid */
2952 (void) ath_hal_stoptxdma(ah, sc->sc_txhalq);
2953 DPRINTF(ATH_DEBUG_RESET,
2954 ("%s: tx queue %p, link %p\n", __func__,
2955 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_txhalq),
2956 sc->sc_txlink));
2957 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
2958 DPRINTF(ATH_DEBUG_RESET,
2959 ("%s: beacon queue %p\n", __func__,
2960 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq)));
2961 }
2962 for (;;) {
2963 ath_txq_critsect_begin(sc, s);
2964 bf = TAILQ_FIRST(&sc->sc_txq);
2965 if (bf == NULL) {
2966 sc->sc_txlink = NULL;
2967 ath_txq_critsect_end(sc, s);
2968 break;
2969 }
2970 TAILQ_REMOVE(&sc->sc_txq, bf, bf_list);
2971 ath_txq_critsect_end(sc, s);
2972 #ifdef AR_DEBUG
2973 if (ath_debug & ATH_DEBUG_RESET)
2974 ath_printtxbuf(bf,
2975 ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
2976 #endif /* AR_DEBUG */
2977 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2978 m_freem(bf->bf_m);
2979 bf->bf_m = NULL;
2980 ni = bf->bf_node;
2981 bf->bf_node = NULL;
2982 ath_txbuf_critsect_begin(sc, s2);
2983 if (ni != NULL) {
2984 /*
2985 * Reclaim node reference.
2986 */
2987 ieee80211_release_node(ic, ni);
2988 }
2989 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
2990 ath_txbuf_critsect_end(sc, s2);
2991 }
2992 ifp->if_flags &= ~IFF_OACTIVE;
2993 sc->sc_tx_timer = 0;
2994 }
2995
2996 /*
2997 * Disable the receive h/w in preparation for a reset.
2998 */
2999 static void
3000 ath_stoprecv(struct ath_softc *sc)
3001 {
3002 #define PA2DESC(_sc, _pa) \
3003 ((struct ath_desc *)((caddr_t)(_sc)->sc_desc + \
3004 ((_pa) - (_sc)->sc_desc_paddr)))
3005 struct ath_hal *ah = sc->sc_ah;
3006
3007 ath_hal_stoppcurecv(ah); /* disable PCU */
3008 ath_hal_setrxfilter(ah, 0); /* clear recv filter */
3009 ath_hal_stopdmarecv(ah); /* disable DMA engine */
3010 DELAY(3000); /* long enough for 1 frame */
3011 #ifdef AR_DEBUG
3012 if (ath_debug & ATH_DEBUG_RESET) {
3013 struct ath_buf *bf;
3014
3015 printf("%s: rx queue %p, link %p\n", __func__,
3016 (caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
3017 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
3018 struct ath_desc *ds = bf->bf_desc;
3019 if (ath_hal_rxprocdesc(ah, ds, bf->bf_daddr,
3020 PA2DESC(sc, ds->ds_link)) == HAL_OK)
3021 ath_printrxbuf(bf, 1);
3022 }
3023 }
3024 #endif
3025 sc->sc_rxlink = NULL; /* just in case */
3026 #undef PA2DESC
3027 }
3028
3029 /*
3030 * Enable the receive h/w following a reset.
3031 */
3032 static int
3033 ath_startrecv(struct ath_softc *sc)
3034 {
3035 struct ath_hal *ah = sc->sc_ah;
3036 struct ath_buf *bf;
3037
3038 sc->sc_rxlink = NULL;
3039 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
3040 int error = ath_rxbuf_init(sc, bf);
3041 if (error != 0) {
3042 DPRINTF(ATH_DEBUG_RECV,
3043 ("%s: ath_rxbuf_init failed %d\n",
3044 __func__, error));
3045 return error;
3046 }
3047 }
3048
3049 bf = TAILQ_FIRST(&sc->sc_rxbuf);
3050 ath_hal_putrxbuf(ah, bf->bf_daddr);
3051 ath_hal_rxena(ah); /* enable recv descriptors */
3052 ath_mode_init(sc); /* set filters, etc. */
3053 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */
3054 return 0;
3055 }
3056
3057 /*
3058 * Set/change channels. If the channel is really being changed,
3059 * it's done by resetting the chip. To accomplish this we must
3060 * first cleanup any pending DMA, then restart stuff after a la
3061 * ath_init.
3062 */
3063 static int
3064 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
3065 {
3066 struct ath_hal *ah = sc->sc_ah;
3067 struct ieee80211com *ic = &sc->sc_ic;
3068
3069 DPRINTF(ATH_DEBUG_ANY, ("%s: %u (%u MHz) -> %u (%u MHz)\n", __func__,
3070 ieee80211_chan2ieee(ic, ic->ic_ibss_chan),
3071 ic->ic_ibss_chan->ic_freq,
3072 ieee80211_chan2ieee(ic, chan), chan->ic_freq));
3073 if (chan != ic->ic_ibss_chan) {
3074 HAL_STATUS status;
3075 HAL_CHANNEL hchan;
3076 enum ieee80211_phymode mode;
3077
3078 /*
3079 * To switch channels clear any pending DMA operations;
3080 * wait long enough for the RX fifo to drain, reset the
3081 * hardware at the new frequency, and then re-enable
3082 * the relevant bits of the h/w.
3083 */
3084 ath_hal_intrset(ah, 0); /* disable interrupts */
3085 ath_draintxq(sc); /* clear pending tx frames */
3086 ath_stoprecv(sc); /* turn off frame recv */
3087 /*
3088 * Convert to a HAL channel description with
3089 * the flags constrained to reflect the current
3090 * operating mode.
3091 */
3092 hchan.channel = chan->ic_freq;
3093 hchan.channelFlags = ath_chan2flags(ic, chan);
3094 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
3095 if_printf(&ic->ic_if, "ath_chan_set: unable to reset "
3096 "channel %u (%u Mhz)\n",
3097 ieee80211_chan2ieee(ic, chan), chan->ic_freq);
3098 return EIO;
3099 }
3100 /*
3101 * Re-enable rx framework.
3102 */
3103 if (ath_startrecv(sc) != 0) {
3104 if_printf(&ic->ic_if,
3105 "ath_chan_set: unable to restart recv logic\n");
3106 return EIO;
3107 }
3108
3109 /*
3110 * Update BPF state.
3111 */
3112 sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
3113 htole16(chan->ic_freq);
3114 sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
3115 htole16(chan->ic_flags);
3116
3117 /*
3118 * Change channels and update the h/w rate map
3119 * if we're switching; e.g. 11a to 11b/g.
3120 */
3121 ic->ic_ibss_chan = chan;
3122 mode = ieee80211_chan2mode(ic, chan);
3123 if (mode != sc->sc_curmode)
3124 ath_setcurmode(sc, mode);
3125
3126 /*
3127 * Re-enable interrupts.
3128 */
3129 ath_hal_intrset(ah, sc->sc_imask);
3130 }
3131 return 0;
3132 }
3133
3134 static void
3135 ath_next_scan(void *arg)
3136 {
3137 struct ath_softc *sc = arg;
3138 struct ieee80211com *ic = &sc->sc_ic;
3139 int s;
3140
3141 /* don't call ath_start w/o network interrupts blocked */
3142 s = splnet();
3143
3144 if (ic->ic_state == IEEE80211_S_SCAN)
3145 ieee80211_next_scan(ic);
3146 splx(s);
3147 }
3148
3149 /*
3150 * Periodically recalibrate the PHY to account
3151 * for temperature/environment changes.
3152 */
3153 static void
3154 ath_calibrate(void *arg)
3155 {
3156 struct ath_softc *sc = arg;
3157 struct ath_hal *ah = sc->sc_ah;
3158 struct ieee80211com *ic = &sc->sc_ic;
3159 struct ieee80211_channel *c;
3160 HAL_CHANNEL hchan;
3161
3162 sc->sc_stats.ast_per_cal++;
3163
3164 /*
3165 * Convert to a HAL channel description with the flags
3166 * constrained to reflect the current operating mode.
3167 */
3168 c = ic->ic_ibss_chan;
3169 hchan.channel = c->ic_freq;
3170 hchan.channelFlags = ath_chan2flags(ic, c);
3171
3172 DPRINTF(ATH_DEBUG_CALIBRATE,
3173 ("%s: channel %u/%x\n", __func__, c->ic_freq, c->ic_flags));
3174
3175 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
3176 /*
3177 * Rfgain is out of bounds, reset the chip
3178 * to load new gain values.
3179 */
3180 sc->sc_stats.ast_per_rfgain++;
3181 ath_reset(sc);
3182 }
3183 if (!ath_hal_calibrate(ah, &hchan)) {
3184 DPRINTF(ATH_DEBUG_ANY,
3185 ("%s: calibration of channel %u failed\n",
3186 __func__, c->ic_freq));
3187 sc->sc_stats.ast_per_calfail++;
3188 }
3189 callout_reset(&sc->sc_cal_ch, hz * ath_calinterval, ath_calibrate, sc);
3190 }
3191
3192 static HAL_LED_STATE
3193 ath_state_to_led(enum ieee80211_state state)
3194 {
3195 switch (state) {
3196 case IEEE80211_S_INIT:
3197 return HAL_LED_INIT;
3198 case IEEE80211_S_SCAN:
3199 return HAL_LED_SCAN;
3200 case IEEE80211_S_AUTH:
3201 return HAL_LED_AUTH;
3202 case IEEE80211_S_ASSOC:
3203 return HAL_LED_ASSOC;
3204 case IEEE80211_S_RUN:
3205 return HAL_LED_RUN;
3206 default:
3207 panic("%s: unknown 802.11 state %d\n", __func__, state);
3208 return HAL_LED_INIT;
3209 }
3210 }
3211
3212 static int
3213 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
3214 {
3215 struct ifnet *ifp = &ic->ic_if;
3216 struct ath_softc *sc = ifp->if_softc;
3217 struct ath_hal *ah = sc->sc_ah;
3218 struct ieee80211_node *ni;
3219 int i, error;
3220 const u_int8_t *bssid;
3221 u_int32_t rfilt;
3222
3223 DPRINTF(ATH_DEBUG_ANY, ("%s: %s -> %s\n", __func__,
3224 ieee80211_state_name[ic->ic_state],
3225 ieee80211_state_name[nstate]));
3226
3227 ath_hal_setledstate(ah, ath_state_to_led(nstate)); /* set LED */
3228
3229 if (nstate == IEEE80211_S_INIT) {
3230 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
3231 ath_hal_intrset(ah, sc->sc_imask);
3232 callout_stop(&sc->sc_scan_ch);
3233 callout_stop(&sc->sc_cal_ch);
3234 return (*sc->sc_newstate)(ic, nstate, arg);
3235 }
3236 ni = ic->ic_bss;
3237 error = ath_chan_set(sc, ni->ni_chan);
3238 if (error != 0)
3239 goto bad;
3240 rfilt = ath_calcrxfilter(sc);
3241 if (nstate == IEEE80211_S_SCAN) {
3242 callout_reset(&sc->sc_scan_ch, (hz * ath_dwelltime) / 1000,
3243 ath_next_scan, sc);
3244 bssid = ifp->if_broadcastaddr;
3245 } else {
3246 callout_stop(&sc->sc_scan_ch);
3247 bssid = ni->ni_bssid;
3248 }
3249 ath_hal_setrxfilter(ah, rfilt);
3250 DPRINTF(ATH_DEBUG_ANY, ("%s: RX filter 0x%x bssid %s\n",
3251 __func__, rfilt, ether_sprintf(bssid)));
3252
3253 if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
3254 ath_hal_setassocid(ah, bssid, ni->ni_associd);
3255 else
3256 ath_hal_setassocid(ah, bssid, 0);
3257 if (ic->ic_flags & IEEE80211_F_PRIVACY) {
3258 for (i = 0; i < IEEE80211_WEP_NKID; i++)
3259 if (ath_hal_keyisvalid(ah, i))
3260 ath_hal_keysetmac(ah, i, bssid);
3261 }
3262
3263 if (nstate == IEEE80211_S_RUN) {
3264 DPRINTF(ATH_DEBUG_ANY, ("%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
3265 "capinfo=0x%04x chan=%d\n"
3266 , __func__
3267 , ic->ic_flags
3268 , ni->ni_intval
3269 , ether_sprintf(ni->ni_bssid)
3270 , ni->ni_capinfo
3271 , ieee80211_chan2ieee(ic, ni->ni_chan)));
3272
3273 /*
3274 * Allocate and setup the beacon frame for AP or adhoc mode.
3275 */
3276 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
3277 ic->ic_opmode == IEEE80211_M_IBSS) {
3278 error = ath_beacon_alloc(sc, ni);
3279 if (error != 0)
3280 goto bad;
3281 }
3282
3283 /*
3284 * Configure the beacon and sleep timers.
3285 */
3286 ath_beacon_config(sc);
3287
3288 /* start periodic recalibration timer */
3289 callout_reset(&sc->sc_cal_ch, hz * ath_calinterval,
3290 ath_calibrate, sc);
3291 } else {
3292 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
3293 ath_hal_intrset(ah, sc->sc_imask);
3294 callout_stop(&sc->sc_cal_ch); /* no calibration */
3295 }
3296 /*
3297 * Reset the rate control state.
3298 */
3299 ath_rate_ctl_reset(sc, nstate);
3300 /*
3301 * Invoke the parent method to complete the work.
3302 */
3303 return (*sc->sc_newstate)(ic, nstate, arg);
3304 bad:
3305 callout_stop(&sc->sc_scan_ch);
3306 callout_stop(&sc->sc_cal_ch);
3307 /* NB: do not invoke the parent */
3308 return error;
3309 }
3310
3311 static void
3312 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
3313 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
3314 {
3315 struct ath_softc *sc = (struct ath_softc*)ic->ic_softc;
3316 struct ath_hal *ah = sc->sc_ah;
3317
3318 (*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
3319
3320 switch (subtype) {
3321 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
3322 case IEEE80211_FC0_SUBTYPE_BEACON:
3323 if (ic->ic_opmode != IEEE80211_M_IBSS ||
3324 ic->ic_state != IEEE80211_S_RUN)
3325 break;
3326 if (ieee80211_ibss_merge(ic, ni, ath_hal_gettsf64(ah)) ==
3327 ENETRESET)
3328 ath_hal_setassocid(ah, ic->ic_bss->ni_bssid, 0);
3329 break;
3330 default:
3331 break;
3332 }
3333 return;
3334 }
3335
3336 /*
3337 * Setup driver-specific state for a newly associated node.
3338 * Note that we're called also on a re-associate, the isnew
3339 * param tells us if this is the first time or not.
3340 */
3341 static void
3342 ath_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
3343 {
3344 if (isnew) {
3345 struct ath_node *an = (struct ath_node *) ni;
3346
3347 an->an_tx_ok = an->an_tx_err =
3348 an->an_tx_retr = an->an_tx_upper = 0;
3349 /* start with highest negotiated rate */
3350 /*
3351 * XXX should do otherwise but only when
3352 * the rate control algorithm is better.
3353 */
3354 KASSERT(ni->ni_rates.rs_nrates > 0,
3355 ("new association w/ no rates!"));
3356 ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
3357 }
3358 }
3359
3360 static int
3361 ath_getchannels(struct ath_softc *sc, u_int cc, HAL_BOOL outdoor,
3362 HAL_BOOL xchanmode)
3363 {
3364 struct ieee80211com *ic = &sc->sc_ic;
3365 struct ifnet *ifp = &ic->ic_if;
3366 struct ath_hal *ah = sc->sc_ah;
3367 HAL_CHANNEL *chans;
3368 int i, ix, nchan;
3369
3370 chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
3371 M_TEMP, M_NOWAIT);
3372 if (chans == NULL) {
3373 if_printf(ifp, "unable to allocate channel table\n");
3374 return ENOMEM;
3375 }
3376 if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
3377 cc, HAL_MODE_ALL, outdoor, xchanmode)) {
3378 if_printf(ifp, "unable to collect channel list from hal\n");
3379 free(chans, M_TEMP);
3380 return EINVAL;
3381 }
3382
3383 /*
3384 * Convert HAL channels to ieee80211 ones and insert
3385 * them in the table according to their channel number.
3386 */
3387 for (i = 0; i < nchan; i++) {
3388 HAL_CHANNEL *c = &chans[i];
3389 ix = ath_hal_mhz2ieee(c->channel, c->channelFlags);
3390 if (ix > IEEE80211_CHAN_MAX) {
3391 if_printf(ifp, "bad hal channel %u (%u/%x) ignored\n",
3392 ix, c->channel, c->channelFlags);
3393 continue;
3394 }
3395 DPRINTF(ATH_DEBUG_ANY,
3396 ("%s: HAL channel %d/%d freq %d flags %#04x idx %d\n",
3397 sc->sc_dev.dv_xname, i, nchan, c->channel, c->channelFlags,
3398 ix));
3399 /* NB: flags are known to be compatible */
3400 if (ic->ic_channels[ix].ic_freq == 0) {
3401 ic->ic_channels[ix].ic_freq = c->channel;
3402 ic->ic_channels[ix].ic_flags = c->channelFlags;
3403 } else {
3404 /* channels overlap; e.g. 11g and 11b */
3405 ic->ic_channels[ix].ic_flags |= c->channelFlags;
3406 }
3407 }
3408 free(chans, M_TEMP);
3409 return 0;
3410 }
3411
3412 static int
3413 ath_rate_setup(struct ath_softc *sc, u_int mode)
3414 {
3415 struct ath_hal *ah = sc->sc_ah;
3416 struct ieee80211com *ic = &sc->sc_ic;
3417 const HAL_RATE_TABLE *rt;
3418 struct ieee80211_rateset *rs;
3419 int i, maxrates;
3420
3421 switch (mode) {
3422 case IEEE80211_MODE_11A:
3423 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11A);
3424 break;
3425 case IEEE80211_MODE_11B:
3426 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11B);
3427 break;
3428 case IEEE80211_MODE_11G:
3429 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11G);
3430 break;
3431 case IEEE80211_MODE_TURBO:
3432 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_TURBO);
3433 break;
3434 default:
3435 DPRINTF(ATH_DEBUG_ANY,
3436 ("%s: invalid mode %u\n", __func__, mode));
3437 return 0;
3438 }
3439 rt = sc->sc_rates[mode];
3440 if (rt == NULL)
3441 return 0;
3442 if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
3443 DPRINTF(ATH_DEBUG_ANY,
3444 ("%s: rate table too small (%u > %u)\n",
3445 __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE));
3446 maxrates = IEEE80211_RATE_MAXSIZE;
3447 } else
3448 maxrates = rt->rateCount;
3449 rs = &ic->ic_sup_rates[mode];
3450 for (i = 0; i < maxrates; i++)
3451 rs->rs_rates[i] = rt->info[i].dot11Rate;
3452 rs->rs_nrates = maxrates;
3453 return 1;
3454 }
3455
3456 static void
3457 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
3458 {
3459 const HAL_RATE_TABLE *rt;
3460 int i;
3461
3462 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
3463 rt = sc->sc_rates[mode];
3464 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
3465 for (i = 0; i < rt->rateCount; i++)
3466 sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
3467 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
3468 for (i = 0; i < 32; i++)
3469 sc->sc_hwmap[i] = rt->info[rt->rateCodeToIndex[i]].dot11Rate;
3470 sc->sc_currates = rt;
3471 sc->sc_curmode = mode;
3472 }
3473
3474 /*
3475 * Reset the rate control state for each 802.11 state transition.
3476 */
3477 static void
3478 ath_rate_ctl_reset(struct ath_softc *sc, enum ieee80211_state state)
3479 {
3480 struct ieee80211com *ic = &sc->sc_ic;
3481 struct ieee80211_node *ni;
3482 struct ath_node *an;
3483
3484 if (ic->ic_opmode != IEEE80211_M_STA) {
3485 /*
3486 * When operating as a station the node table holds
3487 * the AP's that were discovered during scanning.
3488 * For any other operating mode we want to reset the
3489 * tx rate state of each node.
3490 */
3491 TAILQ_FOREACH(ni, &ic->ic_node, ni_list) {
3492 ni->ni_txrate = 0; /* use lowest rate */
3493 an = (struct ath_node *) ni;
3494 an->an_tx_ok = an->an_tx_err = an->an_tx_retr =
3495 an->an_tx_upper = 0;
3496 }
3497 }
3498 /*
3499 * Reset local xmit state; this is really only meaningful
3500 * when operating in station or adhoc mode.
3501 */
3502 ni = ic->ic_bss;
3503 an = (struct ath_node *) ni;
3504 an->an_tx_ok = an->an_tx_err = an->an_tx_retr = an->an_tx_upper = 0;
3505 if (state == IEEE80211_S_RUN) {
3506 /* start with highest negotiated rate */
3507 KASSERT(ni->ni_rates.rs_nrates > 0,
3508 ("transition to RUN state w/ no rates!"));
3509 ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
3510 } else {
3511 /* use lowest rate */
3512 ni->ni_txrate = 0;
3513 }
3514 }
3515
3516 /*
3517 * Examine and potentially adjust the transmit rate.
3518 */
3519 static void
3520 ath_rate_ctl(void *arg, struct ieee80211_node *ni)
3521 {
3522 struct ath_softc *sc = arg;
3523 struct ath_node *an = (struct ath_node *) ni;
3524 struct ieee80211_rateset *rs = &ni->ni_rates;
3525 int mod = 0, orate, enough;
3526
3527 /*
3528 * Rate control
3529 * XXX: very primitive version.
3530 */
3531 sc->sc_stats.ast_rate_calls++;
3532
3533 enough = (an->an_tx_ok + an->an_tx_err >= 10);
3534
3535 /* no packet reached -> down */
3536 if (an->an_tx_err > 0 && an->an_tx_ok == 0)
3537 mod = -1;
3538
3539 /* all packets needs retry in average -> down */
3540 if (enough && an->an_tx_ok < an->an_tx_retr)
3541 mod = -1;
3542
3543 /* no error and less than 10% of packets needs retry -> up */
3544 if (enough && an->an_tx_err == 0 && an->an_tx_ok > an->an_tx_retr * 10)
3545 mod = 1;
3546
3547 orate = ni->ni_txrate;
3548 switch (mod) {
3549 case 0:
3550 if (enough && an->an_tx_upper > 0)
3551 an->an_tx_upper--;
3552 break;
3553 case -1:
3554 if (ni->ni_txrate > 0) {
3555 ni->ni_txrate--;
3556 sc->sc_stats.ast_rate_drop++;
3557 }
3558 an->an_tx_upper = 0;
3559 break;
3560 case 1:
3561 if (++an->an_tx_upper < 2)
3562 break;
3563 an->an_tx_upper = 0;
3564 if (ni->ni_txrate + 1 < rs->rs_nrates) {
3565 ni->ni_txrate++;
3566 sc->sc_stats.ast_rate_raise++;
3567 }
3568 break;
3569 }
3570
3571 if (ni->ni_txrate != orate) {
3572 DPRINTF(ATH_DEBUG_RATE,
3573 ("%s: %dM -> %dM (%d ok, %d err, %d retr)\n",
3574 __func__,
3575 (rs->rs_rates[orate] & IEEE80211_RATE_VAL) / 2,
3576 (rs->rs_rates[ni->ni_txrate] & IEEE80211_RATE_VAL) / 2,
3577 an->an_tx_ok, an->an_tx_err, an->an_tx_retr));
3578 }
3579 if (ni->ni_txrate != orate || enough)
3580 an->an_tx_ok = an->an_tx_err = an->an_tx_retr = 0;
3581 }
3582
3583 #ifdef AR_DEBUG
3584 #ifdef __FreeBSD__
3585 static int
3586 sysctl_hw_ath_dump(SYSCTL_HANDLER_ARGS)
3587 {
3588 char dmode[64];
3589 int error;
3590
3591 strncpy(dmode, "", sizeof(dmode) - 1);
3592 dmode[sizeof(dmode) - 1] = '\0';
3593 error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req);
3594
3595 if (error == 0 && req->newptr != NULL) {
3596 struct ifnet *ifp;
3597 struct ath_softc *sc;
3598
3599 ifp = ifunit("ath0"); /* XXX */
3600 if (!ifp)
3601 return EINVAL;
3602 sc = ifp->if_softc;
3603 if (strcmp(dmode, "hal") == 0)
3604 ath_hal_dumpstate(sc->sc_ah);
3605 else
3606 return EINVAL;
3607 }
3608 return error;
3609 }
3610 SYSCTL_PROC(_hw_ath, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW,
3611 0, 0, sysctl_hw_ath_dump, "A", "Dump driver state");
3612 #endif /* __FreeBSD__ */
3613
3614 #if 0 /* #ifdef __NetBSD__ */
3615 static int
3616 sysctl_hw_ath_dump(SYSCTL_HANDLER_ARGS)
3617 {
3618 char dmode[64];
3619 int error;
3620
3621 strncpy(dmode, "", sizeof(dmode) - 1);
3622 dmode[sizeof(dmode) - 1] = '\0';
3623 error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req);
3624
3625 if (error == 0 && req->newptr != NULL) {
3626 struct ifnet *ifp;
3627 struct ath_softc *sc;
3628
3629 ifp = ifunit("ath0"); /* XXX */
3630 if (!ifp)
3631 return EINVAL;
3632 sc = ifp->if_softc;
3633 if (strcmp(dmode, "hal") == 0)
3634 ath_hal_dumpstate(sc->sc_ah);
3635 else
3636 return EINVAL;
3637 }
3638 return error;
3639 }
3640 SYSCTL_PROC(_hw_ath, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW,
3641 0, 0, sysctl_hw_ath_dump, "A", "Dump driver state");
3642 #endif /* __NetBSD__ */
3643
3644 static void
3645 ath_printrxbuf(struct ath_buf *bf, int done)
3646 {
3647 struct ath_desc *ds;
3648 int i;
3649
3650 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
3651 printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n",
3652 i, ds, (struct ath_desc *)bf->bf_daddr + i,
3653 ds->ds_link, ds->ds_data,
3654 ds->ds_ctl0, ds->ds_ctl1,
3655 ds->ds_hw[0], ds->ds_hw[1],
3656 !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
3657 }
3658 }
3659
3660 static void
3661 ath_printtxbuf(struct ath_buf *bf, int done)
3662 {
3663 struct ath_desc *ds;
3664 int i;
3665
3666 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
3667 printf("T%d (%p %p) %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
3668 i, ds, (struct ath_desc *)bf->bf_daddr + i,
3669 ds->ds_link, ds->ds_data,
3670 ds->ds_ctl0, ds->ds_ctl1,
3671 ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
3672 !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
3673 }
3674 }
3675 #endif /* AR_DEBUG */
3676