ath.c revision 1.4 1 /*-
2 * Copyright (c) 2002, 2003 Sam Leffler, Errno Consulting
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer,
10 * without modification.
11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13 * redistribution must be conditioned upon including a substantially
14 * similar Disclaimer requirement for further binary redistribution.
15 * 3. Neither the names of the above-listed copyright holders nor the names
16 * of any contributors may be used to endorse or promote products derived
17 * from this software without specific prior written permission.
18 *
19 * Alternatively, this software may be distributed under the terms of the
20 * GNU General Public License ("GPL") version 2 as published by the Free
21 * Software Foundation.
22 *
23 * NO WARRANTY
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
27 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
28 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
29 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
32 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
34 * THE POSSIBILITY OF SUCH DAMAGES.
35 */
36
37 #include <sys/cdefs.h>
38 #ifdef __FreeBSD__
39 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.14 2003/09/05 22:22:49 sam Exp $");
40 #endif
41 #ifdef __NetBSD__
42 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.4 2003/10/14 23:13:44 dyoung Exp $");
43 #endif
44
45 /*
46 * Driver for the Atheros Wireless LAN controller.
47 *
48 * This software is derived from work of Atsushi Onoe; his contribution
49 * is greatly appreciated.
50 */
51
52 #include "opt_inet.h"
53
54 #ifdef __NetBSD__
55 #include "bpfilter.h"
56 #endif /* __NetBSD__ */
57
58 #include <sys/param.h>
59 #include <sys/systm.h>
60 #include <sys/types.h>
61 #include <sys/sysctl.h>
62 #include <sys/mbuf.h>
63 #include <sys/malloc.h>
64 #include <sys/lock.h>
65 #ifdef __FreeBSD__
66 #include <sys/mutex.h>
67 #endif
68 #include <sys/kernel.h>
69 #include <sys/socket.h>
70 #include <sys/sockio.h>
71 #include <sys/errno.h>
72 #include <sys/callout.h>
73 #ifdef __FreeBSD__
74 #include <sys/bus.h>
75 #else
76 #include <machine/bus.h>
77 #endif
78 #include <sys/endian.h>
79
80 #include <machine/bus.h>
81
82 #include <net/if.h>
83 #include <net/if_dl.h>
84 #include <net/if_media.h>
85 #include <net/if_arp.h>
86 #ifdef __FreeBSD__
87 #include <net/ethernet.h>
88 #else
89 #include <net/if_ether.h>
90 #endif
91 #include <net/if_llc.h>
92
93 #include <net80211/ieee80211_var.h>
94 #include <net80211/ieee80211_compat.h>
95
96 #if NBPFILTER > 0
97 #include <net/bpf.h>
98 #endif
99
100 #ifdef INET
101 #include <netinet/in.h>
102 #endif
103
104 #include <dev/ic/athcompat.h>
105
106 #define AR_DEBUG
107 #ifdef __FreeBSD__
108 #include <dev/ath/if_athvar.h>
109 #include <contrib/dev/ath/ah_desc.h>
110 #else
111 #include <dev/ic/athvar.h>
112 #include <../contrib/sys/dev/ic/athhal_desc.h>
113 #endif
114
115 /* unalligned little endian access */
116 #define LE_READ_2(p) \
117 ((u_int16_t) \
118 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8)))
119 #define LE_READ_4(p) \
120 ((u_int32_t) \
121 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \
122 (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
123
124 #ifdef __FreeBSD__
125 static void ath_init(void *);
126 #else
127 static int ath_init(struct ifnet *);
128 #endif
129 static int ath_init1(struct ath_softc *);
130 static int ath_intr1(struct ath_softc *);
131 static void ath_stop(struct ifnet *);
132 static void ath_start(struct ifnet *);
133 static void ath_reset(struct ath_softc *);
134 static int ath_media_change(struct ifnet *);
135 static void ath_watchdog(struct ifnet *);
136 static int ath_ioctl(struct ifnet *, u_long, caddr_t);
137 static void ath_fatal_proc(void *, int);
138 static void ath_rxorn_proc(void *, int);
139 static void ath_bmiss_proc(void *, int);
140 static void ath_initkeytable(struct ath_softc *);
141 static void ath_mode_init(struct ath_softc *);
142 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
143 static void ath_beacon_proc(void *, int);
144 static void ath_beacon_free(struct ath_softc *);
145 static void ath_beacon_config(struct ath_softc *);
146 static int ath_desc_alloc(struct ath_softc *);
147 static void ath_desc_free(struct ath_softc *);
148 static struct ieee80211_node *ath_node_alloc(struct ieee80211com *);
149 static void ath_node_free(struct ieee80211com *, struct ieee80211_node *);
150 static void ath_node_copy(struct ieee80211com *,
151 struct ieee80211_node *, const struct ieee80211_node *);
152 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
153 static void ath_rx_proc(void *, int);
154 static int ath_tx_start(struct ath_softc *, struct ieee80211_node *,
155 struct ath_buf *, struct mbuf *);
156 static void ath_tx_proc(void *, int);
157 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
158 static void ath_draintxq(struct ath_softc *);
159 static void ath_stoprecv(struct ath_softc *);
160 static int ath_startrecv(struct ath_softc *);
161 static void ath_next_scan(void *);
162 static void ath_calibrate(void *);
163 static int ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
164 static void ath_newassoc(struct ieee80211com *,
165 struct ieee80211_node *, int);
166 static int ath_getchannels(struct ath_softc *, u_int cc, HAL_BOOL outdoor);
167
168 static int ath_rate_setup(struct ath_softc *sc, u_int mode);
169 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
170 static void ath_rate_ctl_reset(struct ath_softc *, enum ieee80211_state);
171 static void ath_rate_ctl(void *, struct ieee80211_node *);
172
173 #ifdef __NetBSD__
174 int ath_enable(struct ath_softc *);
175 void ath_disable(struct ath_softc *);
176 void ath_power(int, void *);
177 #endif
178
179 #ifdef __FreeBSD__
180 SYSCTL_DECL(_hw_ath);
181 /* XXX validate sysctl values */
182 SYSCTL_INT(_hw_ath, OID_AUTO, dwell, CTLFLAG_RW, &ath_dwelltime,
183 0, "channel dwell time (ms) for AP/station scanning");
184 SYSCTL_INT(_hw_ath, OID_AUTO, calibrate, CTLFLAG_RW, &ath_calinterval,
185 0, "chip calibration interval (secs)");
186 SYSCTL_INT(_hw_ath, OID_AUTO, outdoor, CTLFLAG_RD, &ath_outdoor,
187 0, "enable/disable outdoor operation");
188 SYSCTL_INT(_hw_ath, OID_AUTO, countrycode, CTLFLAG_RD, &ath_countrycode,
189 0, "country code");
190 SYSCTL_INT(_hw_ath, OID_AUTO, regdomain, CTLFLAG_RD, &ath_regdomain,
191 0, "regulatory domain");
192 #endif /* __FreeBSD__ */
193
194 static int ath_dwelltime = 200; /* 5 channels/second */
195 static int ath_calinterval = 30; /* calibrate every 30 secs */
196 static int ath_outdoor = AH_TRUE; /* outdoor operation */
197 static int ath_countrycode = CTRY_DEFAULT; /* country code */
198 static int ath_regdomain = 0; /* regulatory domain */
199
200 #ifdef AR_DEBUG
201 int ath_debug = 0;
202 #ifdef __FreeBSD__
203 SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
204 0, "control debugging printfs");
205 #endif /* __FreeBSD__ */
206 #define IFF_DUMPPKTS(_ifp) \
207 (ath_debug || \
208 ((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
209 static void ath_printrxbuf(struct ath_buf *bf, int);
210 static void ath_printtxbuf(struct ath_buf *bf, int);
211 #define DPRINTF(X) if (ath_debug) printf X
212 #define DPRINTF2(X) if (ath_debug > 1) printf X
213 #else
214 #define IFF_DUMPPKTS(_ifp) \
215 (((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
216 #define DPRINTF(X)
217 #define DPRINTF2(X)
218 #endif
219
220 #ifdef __NetBSD__
221 int
222 ath_activate(struct device *self, enum devact act)
223 {
224 struct ath_softc *sc = (struct ath_softc *)self;
225 int rv = 0, s;
226
227 s = splnet();
228 switch (act) {
229 case DVACT_ACTIVATE:
230 rv = EOPNOTSUPP;
231 break;
232 case DVACT_DEACTIVATE:
233 if_deactivate(&sc->sc_ic.ic_if);
234 break;
235 }
236 splx(s);
237 return rv;
238 }
239
240 int
241 ath_enable(struct ath_softc *sc)
242 {
243 if (ATH_IS_ENABLED(sc) == 0) {
244 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
245 printf("%s: device enable failed\n",
246 sc->sc_dev.dv_xname);
247 return (EIO);
248 }
249 sc->sc_flags |= ATH_ENABLED;
250 }
251 return (0);
252 }
253
254 void
255 ath_disable(struct ath_softc *sc)
256 {
257 if (!ATH_IS_ENABLED(sc))
258 return;
259 if (sc->sc_disable != NULL)
260 (*sc->sc_disable)(sc);
261 sc->sc_flags &= ~ATH_ENABLED;
262 }
263 #endif /* #ifdef __NetBSD__ */
264
265 int
266 ath_attach(u_int16_t devid, struct ath_softc *sc)
267 {
268 struct ieee80211com *ic = &sc->sc_ic;
269 struct ifnet *ifp = &ic->ic_if;
270 struct ath_hal *ah;
271 HAL_STATUS status;
272 int error = 0;
273
274 DPRINTF(("ath_attach: devid 0x%x\n", devid));
275
276 #ifdef __FreeBSD__
277 /* set these up early for if_printf use */
278 ifp->if_unit = device_get_unit(sc->sc_dev);
279 ifp->if_name = "ath";
280 #else
281 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
282 #endif
283
284 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
285 if (ah == NULL) {
286 if_printf(ifp, "unable to attach hardware; HAL status %u\n",
287 status);
288 error = ENXIO;
289 goto bad;
290 }
291 sc->sc_ah = ah;
292 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */
293
294 /*
295 * Collect the channel list using the default country
296 * code and including outdoor channels. The 802.11 layer
297 * is resposible for filtering this list based on settings
298 * like the phy mode.
299 */
300 error = ath_getchannels(sc, ath_countrycode, ath_outdoor);
301 if (error != 0)
302 goto bad;
303 /*
304 * Copy these back; they are set as a side effect
305 * of constructing the channel list.
306 */
307 ath_regdomain = ath_hal_getregdomain(ah);
308 ath_countrycode = ath_hal_getcountrycode(ah);
309
310 /*
311 * Setup rate tables for all potential media types.
312 */
313 ath_rate_setup(sc, IEEE80211_MODE_11A);
314 ath_rate_setup(sc, IEEE80211_MODE_11B);
315 ath_rate_setup(sc, IEEE80211_MODE_11G);
316 ath_rate_setup(sc, IEEE80211_MODE_TURBO);
317
318 error = ath_desc_alloc(sc);
319 if (error != 0) {
320 if_printf(ifp, "failed to allocate descriptors: %d\n", error);
321 goto bad;
322 }
323 ATH_CALLOUT_INIT(&sc->sc_scan_ch);
324 ATH_CALLOUT_INIT(&sc->sc_cal_ch);
325
326 #ifdef __FreeBSD__
327 mtx_init(&sc->sc_txbuflock,
328 device_get_nameunit(sc->sc_dev), "xmit buf q", MTX_DEF);
329 mtx_init(&sc->sc_txqlock,
330 device_get_nameunit(sc->sc_dev), "xmit q", MTX_DEF);
331 #endif
332
333 ATH_TASK_INIT(&sc->sc_txtask, ath_tx_proc, sc);
334 ATH_TASK_INIT(&sc->sc_rxtask, ath_rx_proc, sc);
335 ATH_TASK_INIT(&sc->sc_swbatask, ath_beacon_proc, sc);
336 ATH_TASK_INIT(&sc->sc_rxorntask, ath_rxorn_proc, sc);
337 ATH_TASK_INIT(&sc->sc_fataltask, ath_fatal_proc, sc);
338 ATH_TASK_INIT(&sc->sc_bmisstask, ath_bmiss_proc, sc);
339
340 /*
341 * For now just pre-allocate one data queue and one
342 * beacon queue. Note that the HAL handles resetting
343 * them at the needed time. Eventually we'll want to
344 * allocate more tx queues for splitting management
345 * frames and for QOS support.
346 */
347 sc->sc_txhalq = ath_hal_setuptxqueue(ah,
348 HAL_TX_QUEUE_DATA,
349 AH_TRUE /* enable interrupts */
350 );
351 if (sc->sc_txhalq == (u_int) -1) {
352 if_printf(ifp, "unable to setup a data xmit queue!\n");
353 goto bad;
354 }
355 sc->sc_bhalq = ath_hal_setuptxqueue(ah,
356 HAL_TX_QUEUE_BEACON,
357 AH_TRUE /* enable interrupts */
358 );
359 if (sc->sc_bhalq == (u_int) -1) {
360 if_printf(ifp, "unable to setup a beacon xmit queue!\n");
361 goto bad;
362 }
363
364 ifp->if_softc = sc;
365 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
366 ifp->if_start = ath_start;
367 ifp->if_watchdog = ath_watchdog;
368 ifp->if_ioctl = ath_ioctl;
369 ifp->if_init = ath_init;
370 #ifdef __FreeBSD__
371 ifp->if_snd.ifq_maxlen = IFQ_MAXLEN;
372 #else
373 #if 0
374 ifp->if_stop = ath_stop; /* XXX */
375 #endif
376 IFQ_SET_READY(&ifp->if_snd);
377 #endif
378
379 ic->ic_softc = sc;
380 ic->ic_newassoc = ath_newassoc;
381 /* XXX not right but it's not used anywhere important */
382 ic->ic_phytype = IEEE80211_T_OFDM;
383 ic->ic_opmode = IEEE80211_M_STA;
384 ic->ic_caps = IEEE80211_C_WEP | IEEE80211_C_IBSS | IEEE80211_C_HOSTAP
385 | IEEE80211_C_MONITOR;
386 /* NB: 11g support is identified when we fetch the channel set */
387 if (sc->sc_have11g)
388 ic->ic_caps |= IEEE80211_C_SHPREAMBLE;
389
390 /* get mac address from hardware */
391 ath_hal_getmac(ah, ic->ic_myaddr);
392
393 #ifdef __NetBSD__
394 if_attach(ifp);
395 #endif
396 /* call MI attach routine. */
397 ieee80211_ifattach(ifp);
398 /* override default methods */
399 ic->ic_node_alloc = ath_node_alloc;
400 ic->ic_node_free = ath_node_free;
401 ic->ic_node_copy = ath_node_copy;
402 sc->sc_newstate = ic->ic_newstate;
403 ic->ic_newstate = ath_newstate;
404 /* complete initialization */
405 ieee80211_media_init(ifp, ath_media_change, ieee80211_media_status);
406
407 #if NBPFILTER > 0
408 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
409 sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
410 &sc->sc_drvbpf);
411 #endif
412 /*
413 * Initialize constant fields.
414 *
415 * NB: the channel is setup each time we transition to the
416 * RUN state to avoid filling it in for each frame.
417 */
418 sc->sc_tx_th.wt_ihdr.it_len = sizeof(sc->sc_tx_th);
419 sc->sc_tx_th.wt_ihdr.it_present = ATH_TX_RADIOTAP_PRESENT;
420
421 sc->sc_rx_th.wr_ihdr.it_len = sizeof(sc->sc_rx_th);
422 sc->sc_rx_th.wr_ihdr.it_present = ATH_RX_RADIOTAP_PRESENT;
423
424 if_printf(ifp, "802.11 address: %s\n", ether_sprintf(ic->ic_myaddr));
425
426 #ifdef __NetBSD__
427 sc->sc_flags |= ATH_ATTACHED;
428 /*
429 * Make sure the interface is shutdown during reboot.
430 */
431 #if 0
432 sc->sc_sdhook = shutdownhook_establish(ath_shutdown, sc);
433 if (sc->sc_sdhook == NULL)
434 printf("%s: WARNING: unable to establish shutdown hook\n",
435 sc->sc_dev.dv_xname);
436 #endif
437 sc->sc_powerhook = powerhook_establish(ath_power, sc);
438 if (sc->sc_powerhook == NULL)
439 printf("%s: WARNING: unable to establish power hook\n",
440 sc->sc_dev.dv_xname);
441 #endif
442 return 0;
443 bad:
444 if (ah)
445 ath_hal_detach(ah);
446 sc->sc_invalid = 1;
447 return error;
448 }
449
450 int
451 ath_detach(struct ath_softc *sc)
452 {
453 struct ifnet *ifp = &sc->sc_ic.ic_if;
454 ath_softc_critsect_decl(s);
455
456 DPRINTF(("ath_detach: if_flags %x\n", ifp->if_flags));
457 if ((sc->sc_flags & ATH_ATTACHED) == 0)
458 return (0);
459
460 ath_softc_critsect_begin(sc, s);
461 ath_stop(ifp);
462 #if NBPFILTER > 0
463 bpfdetach(ifp);
464 #endif
465 ath_desc_free(sc);
466 ath_hal_detach(sc->sc_ah);
467 ieee80211_ifdetach(ifp);
468 #ifdef __NetBSD__
469 if_detach(ifp);
470 #endif
471 ath_softc_critsect_end(sc, s);
472 return 0;
473 }
474
475 void
476 ath_power(int why, void *arg)
477 {
478 struct ath_softc *sc = arg;
479 int s;
480
481 DPRINTF(("ath_power(%d)\n", why));
482
483 s = splnet();
484 switch (why) {
485 case PWR_SUSPEND:
486 case PWR_STANDBY:
487 ath_suspend(sc, why);
488 break;
489 case PWR_RESUME:
490 ath_resume(sc, why);
491 break;
492 case PWR_SOFTSUSPEND:
493 case PWR_SOFTSTANDBY:
494 case PWR_SOFTRESUME:
495 break;
496 }
497 splx(s);
498 }
499
500 void
501 ath_suspend(struct ath_softc *sc, int why)
502 {
503 struct ifnet *ifp = &sc->sc_ic.ic_if;
504
505 DPRINTF(("ath_suspend: if_flags %x\n", ifp->if_flags));
506
507 ath_stop(ifp);
508 if (sc->sc_power != NULL)
509 (*sc->sc_power)(sc, why);
510 }
511
512 void
513 ath_resume(struct ath_softc *sc, int why)
514 {
515 struct ifnet *ifp = &sc->sc_ic.ic_if;
516
517 DPRINTF(("ath_resume: if_flags %x\n", ifp->if_flags));
518
519 if (ifp->if_flags & IFF_UP) {
520 ath_init(ifp);
521 #if 0
522 (void)ath_intr(sc);
523 #endif
524 if (sc->sc_power != NULL)
525 (*sc->sc_power)(sc, why);
526 if (ifp->if_flags & IFF_RUNNING)
527 ath_start(ifp);
528 }
529 }
530
531 void
532 ath_shutdown(struct ath_softc *sc)
533 {
534 #if 1
535 return;
536 #else
537 struct ifnet *ifp = &sc->sc_ic.ic_if;
538
539 DPRINTF(("ath_shutdown: if_flags %x\n", ifp->if_flags));
540
541 ath_stop(ifp);
542 #endif
543 }
544
545 #ifdef __NetBSD__
546 int
547 ath_intr(void *arg)
548 {
549 return ath_intr1((struct ath_softc *)arg);
550 }
551 #else
552 void
553 ath_intr(void *arg)
554 {
555 (void)ath_intr1((struct ath_softc *)arg);
556 }
557 #endif
558
559 static int
560 ath_intr1(struct ath_softc *sc)
561 {
562 struct ieee80211com *ic = &sc->sc_ic;
563 struct ifnet *ifp = &ic->ic_if;
564 struct ath_hal *ah = sc->sc_ah;
565 HAL_INT status;
566
567 if (sc->sc_invalid) {
568 /*
569 * The hardware is not ready/present, don't touch anything.
570 * Note this can happen early on if the IRQ is shared.
571 */
572 DPRINTF(("ath_intr: invalid; ignored\n"));
573 return 0;
574 }
575 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
576 DPRINTF(("ath_intr: if_flags 0x%x\n", ifp->if_flags));
577 ath_hal_getisr(ah, &status); /* clear ISR */
578 ath_hal_intrset(ah, 0); /* disable further intr's */
579 return 1; /* XXX */
580 }
581 ath_hal_getisr(ah, &status); /* NB: clears ISR too */
582 DPRINTF2(("ath_intr: status 0x%x\n", status));
583 #ifdef AR_DEBUG
584 if (ath_debug &&
585 (status & (HAL_INT_FATAL|HAL_INT_RXORN|HAL_INT_BMISS))) {
586 if_printf(ifp, "ath_intr: status 0x%x\n", status);
587 ath_hal_dumpstate(ah);
588 }
589 #endif /* AR_DEBUG */
590 if (status & HAL_INT_FATAL) {
591 sc->sc_stats.ast_hardware++;
592 ath_hal_intrset(ah, 0); /* disable intr's until reset */
593 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
594 } else if (status & HAL_INT_RXORN) {
595 sc->sc_stats.ast_rxorn++;
596 ath_hal_intrset(ah, 0); /* disable intr's until reset */
597 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
598 } else {
599 if (status & HAL_INT_RXEOL) {
600 /*
601 * NB: the hardware should re-read the link when
602 * RXE bit is written, but it doesn't work at
603 * least on older hardware revs.
604 */
605 sc->sc_stats.ast_rxeol++;
606 sc->sc_rxlink = NULL;
607 }
608 if (status & HAL_INT_TXURN) {
609 sc->sc_stats.ast_txurn++;
610 /* bump tx trigger level */
611 ath_hal_updatetxtriglevel(ah, AH_TRUE);
612 }
613 if (status & HAL_INT_RX)
614 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
615 if (status & HAL_INT_TX)
616 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
617 if (status & HAL_INT_SWBA)
618 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_swbatask);
619 if (status & HAL_INT_BMISS) {
620 sc->sc_stats.ast_bmiss++;
621 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
622 }
623 }
624 return 1;
625 }
626
627 static void
628 ath_fatal_proc(void *arg, int pending)
629 {
630 struct ath_softc *sc = arg;
631
632 device_printf(sc->sc_dev, "hardware error; resetting\n");
633 ath_reset(sc);
634 }
635
636 static void
637 ath_rxorn_proc(void *arg, int pending)
638 {
639 struct ath_softc *sc = arg;
640
641 device_printf(sc->sc_dev, "rx FIFO overrun; resetting\n");
642 ath_reset(sc);
643 }
644
645 static void
646 ath_bmiss_proc(void *arg, int pending)
647 {
648 struct ath_softc *sc = arg;
649 struct ieee80211com *ic = &sc->sc_ic;
650
651 DPRINTF(("ath_bmiss_proc: pending %u\n", pending));
652 KASSERT(ic->ic_opmode == IEEE80211_M_STA,
653 ("unexpect operating mode %u", ic->ic_opmode));
654 if (ic->ic_state == IEEE80211_S_RUN)
655 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
656 }
657
658 static u_int
659 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
660 {
661 enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
662
663 switch (mode) {
664 case IEEE80211_MODE_AUTO:
665 return 0;
666 case IEEE80211_MODE_11A:
667 return CHANNEL_A;
668 case IEEE80211_MODE_11B:
669 return CHANNEL_B;
670 case IEEE80211_MODE_11G:
671 return CHANNEL_PUREG;
672 case IEEE80211_MODE_TURBO:
673 return CHANNEL_T;
674 default:
675 panic("%s: unsupported mode %d\n", __func__, mode);
676 return 0;
677 }
678 }
679
680 #ifdef __NetBSD__
681 static int
682 ath_init(struct ifnet *ifp)
683 {
684 return ath_init1((struct ath_softc *)ifp->if_softc);
685 }
686 #else
687 static void
688 ath_init(void *arg)
689 {
690 (void)ath_init1((struct ath_softc *)arg);
691 }
692 #endif
693
694 static int
695 ath_init1(struct ath_softc *sc)
696 {
697 struct ieee80211com *ic = &sc->sc_ic;
698 struct ifnet *ifp = &ic->ic_if;
699 struct ieee80211_node *ni;
700 enum ieee80211_phymode mode;
701 struct ath_hal *ah = sc->sc_ah;
702 HAL_STATUS status;
703 HAL_CHANNEL hchan;
704 int error = 0;
705 ath_softc_critsect_decl(s);
706
707 DPRINTF(("ath_init: if_flags 0x%x\n", ifp->if_flags));
708
709 #ifdef __NetBSD__
710 if ((error = ath_enable(sc)) != 0)
711 return error;
712 #endif
713
714 ath_softc_critsect_begin(sc, s);
715 /*
716 * Stop anything previously setup. This is safe
717 * whether this is the first time through or not.
718 */
719 ath_stop(ifp);
720
721 /*
722 * The basic interface to setting the hardware in a good
723 * state is ``reset''. On return the hardware is known to
724 * be powered up and with interrupts disabled. This must
725 * be followed by initialization of the appropriate bits
726 * and then setup of the interrupt mask.
727 */
728 hchan.channel = ic->ic_ibss_chan->ic_freq;
729 hchan.channelFlags = ath_chan2flags(ic, ic->ic_ibss_chan);
730 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_FALSE, &status)) {
731 if_printf(ifp, "unable to reset hardware; hal status %u\n",
732 status);
733 error = -1;
734 goto done;
735 }
736
737 /*
738 * Setup the hardware after reset: the key cache
739 * is filled as needed and the receive engine is
740 * set going. Frame transmit is handled entirely
741 * in the frame output path; there's nothing to do
742 * here except setup the interrupt mask.
743 */
744 if (ic->ic_flags & IEEE80211_F_WEPON)
745 ath_initkeytable(sc);
746 if ((error = ath_startrecv(sc)) != 0) {
747 if_printf(ifp, "unable to start recv logic\n");
748 goto done;
749 }
750
751 /*
752 * Enable interrupts.
753 */
754 sc->sc_imask = HAL_INT_RX | HAL_INT_TX
755 | HAL_INT_RXEOL | HAL_INT_RXORN
756 | HAL_INT_FATAL | HAL_INT_GLOBAL;
757 ath_hal_intrset(ah, sc->sc_imask);
758
759 ifp->if_flags |= IFF_RUNNING;
760 ic->ic_state = IEEE80211_S_INIT;
761
762 /*
763 * The hardware should be ready to go now so it's safe
764 * to kick the 802.11 state machine as it's likely to
765 * immediately call back to us to send mgmt frames.
766 */
767 ni = ic->ic_bss;
768 ni->ni_chan = ic->ic_ibss_chan;
769 mode = ieee80211_chan2mode(ic, ni->ni_chan);
770 if (mode != sc->sc_curmode)
771 ath_setcurmode(sc, mode);
772 if (ic->ic_opmode != IEEE80211_M_MONITOR)
773 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
774 else
775 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
776 done:
777 ath_softc_critsect_end(sc, s);
778 return error;
779 }
780
781 static void
782 ath_stop(struct ifnet *ifp)
783 {
784 struct ieee80211com *ic = (struct ieee80211com *) ifp;
785 struct ath_softc *sc = ifp->if_softc;
786 struct ath_hal *ah = sc->sc_ah;
787 ath_softc_critsect_decl(s);
788
789 DPRINTF(("ath_stop: invalid %u if_flags 0x%x\n",
790 sc->sc_invalid, ifp->if_flags));
791
792 ath_softc_critsect_begin(sc, s);
793 if (ifp->if_flags & IFF_RUNNING) {
794 /*
795 * Shutdown the hardware and driver:
796 * disable interrupts
797 * turn off timers
798 * clear transmit machinery
799 * clear receive machinery
800 * drain and release tx queues
801 * reclaim beacon resources
802 * reset 802.11 state machine
803 * power down hardware
804 *
805 * Note that some of this work is not possible if the
806 * hardware is gone (invalid).
807 */
808 ifp->if_flags &= ~IFF_RUNNING;
809 ifp->if_timer = 0;
810 if (!sc->sc_invalid)
811 ath_hal_intrset(ah, 0);
812 ath_draintxq(sc);
813 if (!sc->sc_invalid)
814 ath_stoprecv(sc);
815 else
816 sc->sc_rxlink = NULL;
817 #ifdef __FreeBSD__
818 IF_DRAIN(&ifp->if_snd);
819 #else
820 IF_PURGE(&ifp->if_snd);
821 #endif
822 ath_beacon_free(sc);
823 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
824 if (!sc->sc_invalid) {
825 ath_hal_setpower(ah, HAL_PM_FULL_SLEEP, 0);
826 }
827 #ifdef __NetBSD__
828 ath_disable(sc);
829 #endif
830 }
831 ath_softc_critsect_end(sc, s);
832 }
833
834 /*
835 * Reset the hardware w/o losing operational state. This is
836 * basically a more efficient way of doing ath_stop, ath_init,
837 * followed by state transitions to the current 802.11
838 * operational state. Used to recover from errors rx overrun
839 * and to reset the hardware when rf gain settings must be reset.
840 */
841 static void
842 ath_reset(struct ath_softc *sc)
843 {
844 struct ieee80211com *ic = &sc->sc_ic;
845 struct ifnet *ifp = &ic->ic_if;
846 struct ath_hal *ah = sc->sc_ah;
847 struct ieee80211_channel *c;
848 HAL_STATUS status;
849 HAL_CHANNEL hchan;
850
851 /*
852 * Convert to a HAL channel description with the flags
853 * constrained to reflect the current operating mode.
854 */
855 c = ic->ic_ibss_chan;
856 hchan.channel = c->ic_freq;
857 hchan.channelFlags = ath_chan2flags(ic, c);
858
859 ath_hal_intrset(ah, 0); /* disable interrupts */
860 ath_draintxq(sc); /* stop xmit side */
861 ath_stoprecv(sc); /* stop recv side */
862 /* NB: indicate channel change so we do a full reset */
863 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status))
864 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
865 __func__, status);
866 ath_hal_intrset(ah, sc->sc_imask);
867 if (ath_startrecv(sc) != 0) /* restart recv */
868 if_printf(ifp, "%s: unable to start recv logic\n", __func__);
869 ath_start(ifp); /* restart xmit */
870 if (ic->ic_state == IEEE80211_S_RUN)
871 ath_beacon_config(sc); /* restart beacons */
872 }
873
874 static void
875 ath_start(struct ifnet *ifp)
876 {
877 struct ath_softc *sc = ifp->if_softc;
878 struct ath_hal *ah = sc->sc_ah;
879 struct ieee80211com *ic = &sc->sc_ic;
880 struct ieee80211_node *ni;
881 struct ath_buf *bf;
882 struct mbuf *m;
883 struct ieee80211_frame *wh;
884 ath_txbuf_critsect_decl(s);
885
886 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
887 return;
888 for (;;) {
889 /*
890 * Grab a TX buffer and associated resources.
891 */
892 ath_txbuf_critsect_begin(sc, s);
893 bf = TAILQ_FIRST(&sc->sc_txbuf);
894 if (bf != NULL)
895 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
896 ath_txbuf_critsect_end(sc, s);
897 if (bf == NULL) {
898 DPRINTF(("ath_start: out of xmit buffers\n"));
899 sc->sc_stats.ast_tx_qstop++;
900 ifp->if_flags |= IFF_OACTIVE;
901 break;
902 }
903 /*
904 * Poll the management queue for frames; they
905 * have priority over normal data frames.
906 */
907 IF_DEQUEUE(&ic->ic_mgtq, m);
908 if (m == NULL) {
909 /*
910 * No data frames go out unless we're associated.
911 */
912 if (ic->ic_state != IEEE80211_S_RUN) {
913 DPRINTF(("ath_start: ignore data packet, "
914 "state %u\n", ic->ic_state));
915 sc->sc_stats.ast_tx_discard++;
916 ath_txbuf_critsect_begin(sc, s);
917 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
918 ath_txbuf_critsect_end(sc, s);
919 break;
920 }
921 IF_DEQUEUE(&ifp->if_snd, m);
922 if (m == NULL) {
923 ath_txbuf_critsect_begin(sc, s);
924 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
925 ath_txbuf_critsect_end(sc, s);
926 break;
927 }
928 ifp->if_opackets++;
929
930 #ifdef __NetBSD__
931 #if NBPFILTER > 0
932 if (ifp->if_bpf)
933 bpf_mtap(ifp->if_bpf, m);
934 #endif
935 #endif
936 #ifdef __FreeBSD__
937 BPF_MTAP(ifp, m);
938 #endif
939 /*
940 * Encapsulate the packet in prep for transmission.
941 */
942 m = ieee80211_encap(ifp, m, &ni);
943 if (m == NULL) {
944 DPRINTF(("ath_start: encapsulation failure\n"));
945 sc->sc_stats.ast_tx_encap++;
946 goto bad;
947 }
948 wh = mtod(m, struct ieee80211_frame *);
949 if (ic->ic_flags & IEEE80211_F_WEPON)
950 wh->i_fc[1] |= IEEE80211_FC1_WEP;
951 } else {
952 /*
953 * Hack! The referenced node pointer is in the
954 * rcvif field of the packet header. This is
955 * placed there by ieee80211_mgmt_output because
956 * we need to hold the reference with the frame
957 * and there's no other way (other than packet
958 * tags which we consider too expensive to use)
959 * to pass it along.
960 */
961 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
962 m->m_pkthdr.rcvif = NULL;
963
964 wh = mtod(m, struct ieee80211_frame *);
965 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
966 IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
967 /* fill time stamp */
968 u_int64_t tsf;
969 u_int32_t *tstamp;
970
971 tsf = ath_hal_gettsf64(ah);
972 /* XXX: adjust 100us delay to xmit */
973 tsf += 100;
974 tstamp = (u_int32_t *)&wh[1];
975 tstamp[0] = htole32(tsf & 0xffffffff);
976 tstamp[1] = htole32(tsf >> 32);
977 }
978 sc->sc_stats.ast_tx_mgmt++;
979 }
980 #if NBPFILTER > 0
981 if (ic->ic_rawbpf)
982 bpf_mtap(ic->ic_rawbpf, m);
983 #endif
984
985 #if NBPFILTER > 0
986 if (sc->sc_drvbpf) {
987 #ifdef __FreeBSD__
988 struct mbuf *mb;
989
990 MGETHDR(mb, M_DONTWAIT, m->m_type);
991 if (mb != NULL) {
992 sc->sc_tx_th.wt_rate =
993 ni->ni_rates.rs_rates[ni->ni_txrate];
994
995 mb->m_next = m;
996 mb->m_data = (caddr_t)&sc->sc_tx_th;
997 mb->m_len = sizeof(sc->sc_tx_th);
998 mb->m_pkthdr.len += mb->m_len;
999 bpf_mtap(sc->sc_drvbpf, mb);
1000 m_free(mb);
1001 }
1002 #else
1003 struct mbuf mb;
1004
1005 M_COPY_PKTHDR(&mb, m);
1006 sc->sc_tx_th.wt_rate =
1007 ni->ni_rates.rs_rates[ni->ni_txrate];
1008
1009 mb.m_next = m;
1010 mb.m_data = (caddr_t)&sc->sc_tx_th;
1011 mb.m_len = sizeof(sc->sc_tx_th);
1012 mb.m_pkthdr.len += mb.m_len;
1013 bpf_mtap(sc->sc_drvbpf, &mb);
1014 #endif
1015 }
1016 #endif
1017
1018 /*
1019 * TODO:
1020 * The duration field of 802.11 header should be filled.
1021 * XXX This may be done in the ieee80211 layer, but the upper
1022 * doesn't know the detail of parameters such as IFS
1023 * for now..
1024 */
1025 if (ath_tx_start(sc, ni, bf, m)) {
1026 bad:
1027 ath_txbuf_critsect_begin(sc, s);
1028 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1029 ath_txbuf_critsect_end(sc, s);
1030 ifp->if_oerrors++;
1031 if (ni && ni != ic->ic_bss)
1032 ieee80211_free_node(ic, ni);
1033 continue;
1034 }
1035
1036 sc->sc_tx_timer = 5;
1037 ifp->if_timer = 1;
1038 }
1039 }
1040
1041 static int
1042 ath_media_change(struct ifnet *ifp)
1043 {
1044 int error;
1045
1046 error = ieee80211_media_change(ifp);
1047 if (error == ENETRESET) {
1048 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
1049 (IFF_RUNNING|IFF_UP))
1050 ath_init(ifp); /* XXX lose error */
1051 error = 0;
1052 }
1053 return error;
1054 }
1055
1056 static void
1057 ath_watchdog(struct ifnet *ifp)
1058 {
1059 struct ath_softc *sc = ifp->if_softc;
1060 struct ieee80211com *ic = &sc->sc_ic;
1061
1062 ifp->if_timer = 0;
1063 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
1064 return;
1065 if (sc->sc_tx_timer) {
1066 if (--sc->sc_tx_timer == 0) {
1067 if_printf(ifp, "device timeout\n");
1068 #ifdef AR_DEBUG
1069 if (ath_debug)
1070 ath_hal_dumpstate(sc->sc_ah);
1071 #endif /* AR_DEBUG */
1072 ath_init(ifp); /* XXX ath_reset??? */
1073 ifp->if_oerrors++;
1074 sc->sc_stats.ast_watchdog++;
1075 return;
1076 }
1077 ifp->if_timer = 1;
1078 }
1079 if (ic->ic_fixed_rate == -1) {
1080 /*
1081 * Run the rate control algorithm if we're not
1082 * locked at a fixed rate.
1083 */
1084 if (ic->ic_opmode == IEEE80211_M_STA)
1085 ath_rate_ctl(sc, ic->ic_bss);
1086 else
1087 ieee80211_iterate_nodes(ic, ath_rate_ctl, sc);
1088 }
1089 ieee80211_watchdog(ifp);
1090 }
1091
1092 static int
1093 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1094 {
1095 struct ath_softc *sc = ifp->if_softc;
1096 struct ifreq *ifr = (struct ifreq *)data;
1097 int error = 0;
1098 ath_softc_critsect_decl(s);
1099
1100 ath_softc_critsect_begin(sc, s);
1101 switch (cmd) {
1102 case SIOCSIFFLAGS:
1103 if (ifp->if_flags & IFF_UP) {
1104 if (ifp->if_flags & IFF_RUNNING) {
1105 /*
1106 * To avoid rescanning another access point,
1107 * do not call ath_init() here. Instead,
1108 * only reflect promisc mode settings.
1109 */
1110 ath_mode_init(sc);
1111 } else
1112 ath_init(ifp); /* XXX lose error */
1113 } else
1114 ath_stop(ifp);
1115 break;
1116 case SIOCADDMULTI:
1117 case SIOCDELMULTI:
1118 /*
1119 * The upper layer has already installed/removed
1120 * the multicast address(es), just recalculate the
1121 * multicast filter for the card.
1122 */
1123 if (ifp->if_flags & IFF_RUNNING)
1124 ath_mode_init(sc);
1125 break;
1126 case SIOCGATHSTATS:
1127 copyout(&sc->sc_stats, ifr->ifr_data, sizeof (sc->sc_stats));
1128 break;
1129 default:
1130 error = ieee80211_ioctl(ifp, cmd, data);
1131 if (error == ENETRESET) {
1132 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
1133 (IFF_RUNNING|IFF_UP))
1134 ath_init(ifp); /* XXX lose error */
1135 error = 0;
1136 }
1137 break;
1138 }
1139 ath_softc_critsect_end(sc, s);
1140 return error;
1141 }
1142
1143 /*
1144 * Fill the hardware key cache with key entries.
1145 */
1146 static void
1147 ath_initkeytable(struct ath_softc *sc)
1148 {
1149 struct ieee80211com *ic = &sc->sc_ic;
1150 struct ath_hal *ah = sc->sc_ah;
1151 int i;
1152
1153 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1154 struct ieee80211_wepkey *k = &ic->ic_nw_keys[i];
1155 if (k->wk_len == 0)
1156 ath_hal_keyreset(ah, i);
1157 else
1158 /* XXX return value */
1159 /* NB: this uses HAL_KEYVAL == ieee80211_wepkey */
1160 ath_hal_keyset(ah, i, (const HAL_KEYVAL *) k);
1161 }
1162 }
1163
1164 static void
1165 ath_mcastfilter_accum(caddr_t dl, u_int32_t (*mfilt)[2])
1166 {
1167 u_int32_t val;
1168 u_int8_t pos;
1169
1170 val = LE_READ_4(dl + 0);
1171 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1172 val = LE_READ_4(dl + 3);
1173 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1174 pos &= 0x3f;
1175 (*mfilt)[pos / 32] |= (1 << (pos % 32));
1176 }
1177
1178 #ifdef __FreeBSD__
1179 static void
1180 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t (*mfilt)[2])
1181 {
1182 struct ieee80211com *ic = &sc->sc_ic;
1183 struct ifnet *ifp = &ic->ic_if;
1184 struct ifmultiaddr *ifma;
1185
1186 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1187 caddr_t dl;
1188
1189 /* calculate XOR of eight 6bit values */
1190 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
1191 ath_mcastfilter_accum(dl, &mfilt);
1192 }
1193 }
1194 #else
1195 static void
1196 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t (*mfilt)[2])
1197 {
1198 struct ether_multi *enm;
1199 struct ether_multistep estep;
1200
1201 ETHER_FIRST_MULTI(estep, &sc->sc_ic.ic_ec, enm);
1202 while (enm != NULL) {
1203 /* XXX Punt on ranges. */
1204 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
1205 (*mfilt)[0] = (*mfilt)[1] = ~((u_int32_t)0);
1206 break;
1207 }
1208 ath_mcastfilter_accum(enm->enm_addrlo, mfilt);
1209 ETHER_NEXT_MULTI(estep, enm);
1210 }
1211 }
1212 #endif
1213
1214 static void
1215 ath_mode_init(struct ath_softc *sc)
1216 {
1217 struct ieee80211com *ic = &sc->sc_ic;
1218 struct ath_hal *ah = sc->sc_ah;
1219 struct ifnet *ifp = &ic->ic_if;
1220 u_int32_t rfilt, mfilt[2];
1221
1222 /* configure operational mode */
1223 ath_hal_setopmode(ah, ic->ic_opmode);
1224
1225 /* receive filter */
1226 rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1227 | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1228 if (ic->ic_opmode != IEEE80211_M_STA)
1229 rfilt |= HAL_RX_FILTER_PROBEREQ;
1230 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1231 (ifp->if_flags & IFF_PROMISC))
1232 rfilt |= HAL_RX_FILTER_PROM;
1233 if (ic->ic_state == IEEE80211_S_SCAN)
1234 rfilt |= HAL_RX_FILTER_BEACON;
1235 ath_hal_setrxfilter(ah, rfilt);
1236
1237 /* calculate and install multicast filter */
1238 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1239 mfilt[0] = mfilt[1] = 0;
1240 ath_mcastfilter_compute(sc, &mfilt);
1241 } else {
1242 mfilt[0] = mfilt[1] = ~0;
1243 }
1244 ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1245 DPRINTF(("ath_mode_init: RX filter 0x%x, MC filter %08x:%08x\n",
1246 rfilt, mfilt[0], mfilt[1]));
1247 }
1248
1249 #ifdef __FreeBSD__
1250 static void
1251 ath_mbuf_load_cb(void *arg, bus_dma_segment_t *seg, int nseg, bus_size_t mapsize, int error)
1252 {
1253 struct ath_buf *bf = arg;
1254
1255 KASSERT(nseg <= ATH_MAX_SCATTER,
1256 ("ath_mbuf_load_cb: too many DMA segments %u", nseg));
1257 bf->bf_mapsize = mapsize;
1258 bf->bf_nseg = nseg;
1259 bcopy(seg, bf->bf_segs, nseg * sizeof (seg[0]));
1260 }
1261 #endif /* __FreeBSD__ */
1262
1263 static struct mbuf *
1264 ath_getmbuf(int flags, int type, u_int pktlen)
1265 {
1266 struct mbuf *m;
1267
1268 KASSERT(pktlen <= MCLBYTES, ("802.11 packet too large: %u", pktlen));
1269 #ifdef __FreeBSD__
1270 if (pktlen <= MHLEN)
1271 MGETHDR(m, flags, type);
1272 else
1273 m = m_getcl(flags, type, M_PKTHDR);
1274 #else
1275 MGETHDR(m, flags, type);
1276 if (m != NULL && pktlen > MHLEN)
1277 MCLGET(m, flags);
1278 #endif
1279 return m;
1280 }
1281
1282 static int
1283 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
1284 {
1285 struct ieee80211com *ic = &sc->sc_ic;
1286 struct ifnet *ifp = &ic->ic_if;
1287 struct ath_hal *ah = sc->sc_ah;
1288 struct ieee80211_frame *wh;
1289 struct ath_buf *bf;
1290 struct ath_desc *ds;
1291 struct mbuf *m;
1292 int error, pktlen;
1293 u_int8_t *frm, rate;
1294 u_int16_t capinfo;
1295 struct ieee80211_rateset *rs;
1296 const HAL_RATE_TABLE *rt;
1297
1298 bf = sc->sc_bcbuf;
1299 if (bf->bf_m != NULL) {
1300 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1301 m_freem(bf->bf_m);
1302 bf->bf_m = NULL;
1303 bf->bf_node = NULL;
1304 }
1305 /*
1306 * NB: the beacon data buffer must be 32-bit aligned;
1307 * we assume the mbuf routines will return us something
1308 * with this alignment (perhaps should assert).
1309 */
1310 rs = &ni->ni_rates;
1311 pktlen = sizeof (struct ieee80211_frame)
1312 + 8 + 2 + 2 + 2+ni->ni_esslen + 2+rs->rs_nrates + 6;
1313 if (rs->rs_nrates > IEEE80211_RATE_SIZE)
1314 pktlen += 2;
1315 m = ath_getmbuf(M_DONTWAIT, MT_DATA, pktlen);
1316 if (m == NULL) {
1317 DPRINTF(("ath_beacon_alloc: cannot get mbuf/cluster; size %u\n",
1318 pktlen));
1319 sc->sc_stats.ast_be_nombuf++;
1320 return ENOMEM;
1321 }
1322
1323 wh = mtod(m, struct ieee80211_frame *);
1324 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
1325 IEEE80211_FC0_SUBTYPE_BEACON;
1326 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1327 *(u_int16_t *)wh->i_dur = 0;
1328 memcpy(wh->i_addr1, ifp->if_broadcastaddr, IEEE80211_ADDR_LEN);
1329 memcpy(wh->i_addr2, ic->ic_myaddr, IEEE80211_ADDR_LEN);
1330 memcpy(wh->i_addr3, ni->ni_bssid, IEEE80211_ADDR_LEN);
1331 *(u_int16_t *)wh->i_seq = 0;
1332
1333 /*
1334 * beacon frame format
1335 * [8] time stamp
1336 * [2] beacon interval
1337 * [2] cabability information
1338 * [tlv] ssid
1339 * [tlv] supported rates
1340 * [tlv] parameter set (IBSS)
1341 * [tlv] extended supported rates
1342 */
1343 frm = (u_int8_t *)&wh[1];
1344 memset(frm, 0, 8); /* timestamp is set by hardware */
1345 frm += 8;
1346 *(u_int16_t *)frm = htole16(ni->ni_intval);
1347 frm += 2;
1348 if (ic->ic_opmode == IEEE80211_M_IBSS)
1349 capinfo = IEEE80211_CAPINFO_IBSS;
1350 else
1351 capinfo = IEEE80211_CAPINFO_ESS;
1352 if (ic->ic_flags & IEEE80211_F_WEPON)
1353 capinfo |= IEEE80211_CAPINFO_PRIVACY;
1354 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1355 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1356 if (ic->ic_flags & IEEE80211_F_SHSLOT)
1357 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1358 *(u_int16_t *)frm = htole16(capinfo);
1359 frm += 2;
1360 *frm++ = IEEE80211_ELEMID_SSID;
1361 *frm++ = ni->ni_esslen;
1362 memcpy(frm, ni->ni_essid, ni->ni_esslen);
1363 frm += ni->ni_esslen;
1364 frm = ieee80211_add_rates(frm, rs);
1365 if (ic->ic_opmode == IEEE80211_M_IBSS) {
1366 *frm++ = IEEE80211_ELEMID_IBSSPARMS;
1367 *frm++ = 2;
1368 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */
1369 } else {
1370 /* TODO: TIM */
1371 *frm++ = IEEE80211_ELEMID_TIM;
1372 *frm++ = 4; /* length */
1373 *frm++ = 0; /* DTIM count */
1374 *frm++ = 1; /* DTIM period */
1375 *frm++ = 0; /* bitmap control */
1376 *frm++ = 0; /* Partial Virtual Bitmap (variable length) */
1377 }
1378 frm = ieee80211_add_xrates(frm, rs);
1379 m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
1380 KASSERT(m->m_pkthdr.len <= pktlen,
1381 ("beacon bigger than expected, len %u calculated %u",
1382 m->m_pkthdr.len, pktlen));
1383
1384 DPRINTF2(("ath_beacon_alloc: m %p len %u\n", m, m->m_len));
1385 error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m, BUS_DMA_NOWAIT);
1386 if (error != 0) {
1387 m_freem(m);
1388 return error;
1389 }
1390 KASSERT(bf->bf_nseg == 1,
1391 ("ath_beacon_alloc: multi-segment packet; nseg %u",
1392 bf->bf_nseg));
1393 bf->bf_m = m;
1394
1395 /* setup descriptors */
1396 ds = bf->bf_desc;
1397
1398 ds->ds_link = 0;
1399 ds->ds_data = bf->bf_segs[0].ds_addr;
1400
1401 DPRINTF2(("%s: segaddr %p seglen %u\n", __func__,
1402 (caddr_t)bf->bf_segs[0].ds_addr, (u_int)bf->bf_segs[0].ds_len));
1403
1404 /*
1405 * Calculate rate code.
1406 * XXX everything at min xmit rate
1407 */
1408 rt = sc->sc_currates;
1409 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
1410 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1411 rate = rt->info[0].rateCode | rt->info[0].shortPreamble;
1412 else
1413 rate = rt->info[0].rateCode;
1414 if (!ath_hal_setuptxdesc(ah, ds
1415 , m->m_pkthdr.len + IEEE80211_CRC_LEN /* packet length */
1416 , sizeof(struct ieee80211_frame) /* header length */
1417 , HAL_PKT_TYPE_BEACON /* Atheros packet type */
1418 , 0x20 /* txpower XXX */
1419 , rate, 1 /* series 0 rate/tries */
1420 , HAL_TXKEYIX_INVALID /* no encryption */
1421 , 0 /* antenna mode */
1422 , HAL_TXDESC_NOACK /* no ack for beacons */
1423 , 0 /* rts/cts rate */
1424 , 0 /* rts/cts duration */
1425 )) {
1426 printf("%s: ath_hal_setuptxdesc failed\n", __func__);
1427 return -1;
1428 }
1429 /* NB: beacon's BufLen must be a multiple of 4 bytes */
1430 /* XXX verify mbuf data area covers this roundup */
1431 if (!ath_hal_filltxdesc(ah, ds
1432 , roundup(bf->bf_segs[0].ds_len, 4) /* buffer length */
1433 , AH_TRUE /* first segment */
1434 , AH_TRUE /* last segment */
1435 )) {
1436 printf("%s: ath_hal_filltxdesc failed\n", __func__);
1437 return -1;
1438 }
1439
1440 /* XXX it is not appropriate to bus_dmamap_sync? -dcy */
1441
1442 return 0;
1443 }
1444
1445 static void
1446 ath_beacon_proc(void *arg, int pending)
1447 {
1448 struct ath_softc *sc = arg;
1449 struct ieee80211com *ic = &sc->sc_ic;
1450 struct ath_buf *bf = sc->sc_bcbuf;
1451 struct ath_hal *ah = sc->sc_ah;
1452
1453 DPRINTF2(("%s: pending %u\n", __func__, pending));
1454 if (ic->ic_opmode == IEEE80211_M_STA ||
1455 bf == NULL || bf->bf_m == NULL) {
1456 DPRINTF(("%s: ic_flags=%x bf=%p bf_m=%p\n",
1457 __func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL));
1458 return;
1459 }
1460 /* TODO: update beacon to reflect PS poll state */
1461 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
1462 DPRINTF(("%s: beacon queue %u did not stop?",
1463 __func__, sc->sc_bhalq));
1464 return; /* busy, XXX is this right? */
1465 }
1466 ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_PREWRITE);
1467
1468 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
1469 ath_hal_txstart(ah, sc->sc_bhalq);
1470 DPRINTF2(("%s: BCDP%u = %p (%p)\n", __func__,
1471 sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc));
1472 }
1473
1474 static void
1475 ath_beacon_free(struct ath_softc *sc)
1476 {
1477 struct ath_buf *bf = sc->sc_bcbuf;
1478
1479 if (bf->bf_m != NULL) {
1480 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1481 m_freem(bf->bf_m);
1482 bf->bf_m = NULL;
1483 bf->bf_node = NULL;
1484 }
1485 }
1486
1487 /*
1488 * Configure the beacon and sleep timers.
1489 *
1490 * When operating as an AP this resets the TSF and sets
1491 * up the hardware to notify us when we need to issue beacons.
1492 *
1493 * When operating in station mode this sets up the beacon
1494 * timers according to the timestamp of the last received
1495 * beacon and the current TSF, configures PCF and DTIM
1496 * handling, programs the sleep registers so the hardware
1497 * will wakeup in time to receive beacons, and configures
1498 * the beacon miss handling so we'll receive a BMISS
1499 * interrupt when we stop seeing beacons from the AP
1500 * we've associated with.
1501 */
1502 static void
1503 ath_beacon_config(struct ath_softc *sc)
1504 {
1505 struct ath_hal *ah = sc->sc_ah;
1506 struct ieee80211com *ic = &sc->sc_ic;
1507 struct ieee80211_node *ni = ic->ic_bss;
1508 u_int32_t nexttbtt;
1509
1510 nexttbtt = (LE_READ_4(ni->ni_tstamp + 4) << 22) |
1511 (LE_READ_4(ni->ni_tstamp) >> 10);
1512 DPRINTF(("%s: nexttbtt=%u\n", __func__, nexttbtt));
1513 nexttbtt += ni->ni_intval;
1514 if (ic->ic_opmode == IEEE80211_M_STA) {
1515 HAL_BEACON_STATE bs;
1516 u_int32_t bmisstime;
1517
1518 /* NB: no PCF support right now */
1519 memset(&bs, 0, sizeof(bs));
1520 bs.bs_intval = ni->ni_intval;
1521 bs.bs_nexttbtt = nexttbtt;
1522 bs.bs_dtimperiod = bs.bs_intval;
1523 bs.bs_nextdtim = nexttbtt;
1524 /*
1525 * Calculate the number of consecutive beacons to miss
1526 * before taking a BMISS interrupt. The configuration
1527 * is specified in ms, so we need to convert that to
1528 * TU's and then calculate based on the beacon interval.
1529 * Note that we clamp the result to at most 10 beacons.
1530 */
1531 bmisstime = (ic->ic_bmisstimeout * 1000) / 1024;
1532 bs.bs_bmissthreshold = howmany(bmisstime,ni->ni_intval);
1533 if (bs.bs_bmissthreshold > 10)
1534 bs.bs_bmissthreshold = 10;
1535 else if (bs.bs_bmissthreshold <= 0)
1536 bs.bs_bmissthreshold = 1;
1537
1538 /*
1539 * Calculate sleep duration. The configuration is
1540 * given in ms. We insure a multiple of the beacon
1541 * period is used. Also, if the sleep duration is
1542 * greater than the DTIM period then it makes senses
1543 * to make it a multiple of that.
1544 *
1545 * XXX fixed at 100ms
1546 */
1547 bs.bs_sleepduration =
1548 roundup((100 * 1000) / 1024, bs.bs_intval);
1549 if (bs.bs_sleepduration > bs.bs_dtimperiod)
1550 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
1551
1552 DPRINTF(("%s: intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u\n"
1553 , __func__
1554 , bs.bs_intval
1555 , bs.bs_nexttbtt
1556 , bs.bs_dtimperiod
1557 , bs.bs_nextdtim
1558 , bs.bs_bmissthreshold
1559 , bs.bs_sleepduration
1560 ));
1561 ath_hal_intrset(ah, 0);
1562 /*
1563 * Reset our tsf so the hardware will update the
1564 * tsf register to reflect timestamps found in
1565 * received beacons.
1566 */
1567 ath_hal_resettsf(ah);
1568 ath_hal_beacontimers(ah, &bs, 0/*XXX*/, 0, 0);
1569 sc->sc_imask |= HAL_INT_BMISS;
1570 ath_hal_intrset(ah, sc->sc_imask);
1571 } else {
1572 DPRINTF(("%s: intval %u nexttbtt %u\n",
1573 __func__, ni->ni_intval, nexttbtt));
1574 ath_hal_intrset(ah, 0);
1575 ath_hal_beaconinit(ah, ic->ic_opmode,
1576 nexttbtt, ni->ni_intval);
1577 if (ic->ic_opmode != IEEE80211_M_MONITOR)
1578 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */
1579 ath_hal_intrset(ah, sc->sc_imask);
1580 }
1581 }
1582
1583 #ifdef __FreeBSD__
1584 static void
1585 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1586 {
1587 bus_addr_t *paddr = (bus_addr_t*) arg;
1588 *paddr = segs->ds_addr;
1589 }
1590 #endif
1591
1592 #ifdef __FreeBSD__
1593 static int
1594 ath_desc_alloc(struct ath_softc *sc)
1595 {
1596 int i, bsize, error;
1597 struct ath_desc *ds;
1598 struct ath_buf *bf;
1599
1600 /* allocate descriptors */
1601 sc->sc_desc_len = sizeof(struct ath_desc) *
1602 (ATH_TXBUF * ATH_TXDESC + ATH_RXBUF + 1);
1603 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &sc->sc_ddmamap);
1604 if (error != 0)
1605 return error;
1606
1607 error = bus_dmamem_alloc(sc->sc_dmat, (void**) &sc->sc_desc,
1608 BUS_DMA_NOWAIT, &sc->sc_ddmamap);
1609
1610 if (error != 0)
1611 goto fail0;
1612
1613 error = bus_dmamap_load(sc->sc_dmat, sc->sc_ddmamap,
1614 sc->sc_desc, sc->sc_desc_len,
1615 ath_load_cb, &sc->sc_desc_paddr,
1616 BUS_DMA_NOWAIT);
1617 if (error != 0)
1618 goto fail1;
1619
1620 ds = sc->sc_desc;
1621 DPRINTF(("ath_desc_alloc: DMA map: %p (%d) -> %p (%lu)\n",
1622 ds, sc->sc_desc_len,
1623 (caddr_t) sc->sc_desc_paddr, /*XXX*/ (u_long) sc->sc_desc_len));
1624
1625 /* allocate buffers */
1626 bsize = sizeof(struct ath_buf) * (ATH_TXBUF + ATH_RXBUF + 1);
1627 bf = malloc(bsize, M_DEVBUF, M_NOWAIT | M_ZERO);
1628 if (bf == NULL) {
1629 printf("%s: unable to allocate Tx/Rx buffers\n",
1630 sc->sc_dev.dv_xname);
1631 error = -1;
1632 goto fail2;
1633 }
1634 sc->sc_bufptr = bf;
1635
1636 TAILQ_INIT(&sc->sc_rxbuf);
1637 for (i = 0; i < ATH_RXBUF; i++, bf++, ds++) {
1638 bf->bf_desc = ds;
1639 bf->bf_daddr = sc->sc_desc_paddr +
1640 ((caddr_t)ds - (caddr_t)sc->sc_desc);
1641 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
1642 &bf->bf_dmamap);
1643 if (error != 0)
1644 break;
1645 TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
1646 }
1647
1648 TAILQ_INIT(&sc->sc_txbuf);
1649 for (i = 0; i < ATH_TXBUF; i++, bf++, ds += ATH_TXDESC) {
1650 bf->bf_desc = ds;
1651 bf->bf_daddr = sc->sc_desc_paddr +
1652 ((caddr_t)ds - (caddr_t)sc->sc_desc);
1653 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
1654 &bf->bf_dmamap);
1655 if (error != 0)
1656 break;
1657 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1658 }
1659 TAILQ_INIT(&sc->sc_txq);
1660
1661 /* beacon buffer */
1662 bf->bf_desc = ds;
1663 bf->bf_daddr = sc->sc_desc_paddr + ((caddr_t)ds - (caddr_t)sc->sc_desc);
1664 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &bf->bf_dmamap);
1665 if (error != 0)
1666 return error;
1667 sc->sc_bcbuf = bf;
1668 return 0;
1669
1670 fail2:
1671 bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
1672 fail1:
1673 bus_dmamem_free(sc->sc_dmat, sc->sc_desc, sc->sc_ddmamap);
1674 fail0:
1675 bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
1676 sc->sc_ddmamap = NULL;
1677 return error;
1678 }
1679 #else
1680 static int
1681 ath_desc_alloc(struct ath_softc *sc)
1682 {
1683 int i, bsize, error = -1;
1684 struct ath_desc *ds;
1685 struct ath_buf *bf;
1686
1687 /* allocate descriptors */
1688 sc->sc_desc_len = sizeof(struct ath_desc) *
1689 (ATH_TXBUF * ATH_TXDESC + ATH_RXBUF + 1);
1690 if ((error = bus_dmamem_alloc(sc->sc_dmat, sc->sc_desc_len, PAGE_SIZE,
1691 0, &sc->sc_dseg, 1, &sc->sc_dnseg, 0)) != 0) {
1692 printf("%s: unable to allocate control data, error = %d\n",
1693 sc->sc_dev.dv_xname, error);
1694 goto fail0;
1695 }
1696
1697 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg,
1698 sc->sc_desc_len, (caddr_t *)&sc->sc_desc, BUS_DMA_COHERENT)) != 0) {
1699 printf("%s: unable to map control data, error = %d\n",
1700 sc->sc_dev.dv_xname, error);
1701 goto fail1;
1702 }
1703
1704 if ((error = bus_dmamap_create(sc->sc_dmat, sc->sc_desc_len, 1,
1705 sc->sc_desc_len, 0, 0, &sc->sc_ddmamap)) != 0) {
1706 printf("%s: unable to create control data DMA map, "
1707 "error = %d\n", sc->sc_dev.dv_xname, error);
1708 goto fail2;
1709 }
1710
1711 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_ddmamap, sc->sc_desc,
1712 sc->sc_desc_len, NULL, 0)) != 0) {
1713 printf("%s: unable to load control data DMA map, error = %d\n",
1714 sc->sc_dev.dv_xname, error);
1715 goto fail3;
1716 }
1717
1718 ds = sc->sc_desc;
1719 sc->sc_desc_paddr = sc->sc_ddmamap->dm_segs[0].ds_addr;
1720
1721 DPRINTF(("ath_desc_alloc: DMA map: %p (%lu) -> %p (%lu)\n",
1722 ds, (u_long)sc->sc_desc_len,
1723 (caddr_t) sc->sc_desc_paddr, /*XXX*/ (u_long) sc->sc_desc_len));
1724
1725 /* allocate buffers */
1726 bsize = sizeof(struct ath_buf) * (ATH_TXBUF + ATH_RXBUF + 1);
1727 bf = malloc(bsize, M_DEVBUF, M_NOWAIT | M_ZERO);
1728 if (bf == NULL) {
1729 printf("%s: unable to allocate Tx/Rx buffers\n",
1730 sc->sc_dev.dv_xname);
1731 error = ENOMEM;
1732 goto fail3;
1733 }
1734 sc->sc_bufptr = bf;
1735
1736 TAILQ_INIT(&sc->sc_rxbuf);
1737 for (i = 0; i < ATH_RXBUF; i++, bf++, ds++) {
1738 bf->bf_desc = ds;
1739 bf->bf_daddr = sc->sc_desc_paddr +
1740 ((caddr_t)ds - (caddr_t)sc->sc_desc);
1741 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1742 MCLBYTES, 0, 0, &bf->bf_dmamap)) != 0) {
1743 printf("%s: unable to create Rx dmamap, error = %d\n",
1744 sc->sc_dev.dv_xname, error);
1745 goto fail4;
1746 }
1747 TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
1748 }
1749
1750 TAILQ_INIT(&sc->sc_txbuf);
1751 for (i = 0; i < ATH_TXBUF; i++, bf++, ds += ATH_TXDESC) {
1752 bf->bf_desc = ds;
1753 bf->bf_daddr = sc->sc_desc_paddr +
1754 ((caddr_t)ds - (caddr_t)sc->sc_desc);
1755 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1756 ATH_TXDESC, MCLBYTES, 0, 0, &bf->bf_dmamap)) != 0) {
1757 printf("%s: unable to create Tx dmamap, error = %d\n",
1758 sc->sc_dev.dv_xname, error);
1759 goto fail5;
1760 }
1761 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1762 }
1763 TAILQ_INIT(&sc->sc_txq);
1764
1765 /* beacon buffer */
1766 bf->bf_desc = ds;
1767 bf->bf_daddr = sc->sc_desc_paddr + ((caddr_t)ds - (caddr_t)sc->sc_desc);
1768 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
1769 &bf->bf_dmamap)) != 0) {
1770 printf("%s: unable to create beacon dmamap, error = %d\n",
1771 sc->sc_dev.dv_xname, error);
1772 goto fail5;
1773 }
1774 sc->sc_bcbuf = bf;
1775 return 0;
1776
1777 fail5:
1778 for (i = ATH_RXBUF; i < ATH_RXBUF + ATH_TXBUF; i++) {
1779 if (sc->sc_bufptr[i].bf_dmamap == NULL)
1780 continue;
1781 bus_dmamap_destroy(sc->sc_dmat, sc->sc_bufptr[i].bf_dmamap);
1782 }
1783 fail4:
1784 for (i = 0; i < ATH_RXBUF; i++) {
1785 if (sc->sc_bufptr[i].bf_dmamap == NULL)
1786 continue;
1787 bus_dmamap_destroy(sc->sc_dmat, sc->sc_bufptr[i].bf_dmamap);
1788 }
1789 fail3:
1790 bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
1791 fail2:
1792 bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
1793 sc->sc_ddmamap = NULL;
1794 fail1:
1795 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_desc, sc->sc_desc_len);
1796 fail0:
1797 bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg);
1798 return error;
1799 }
1800 #endif
1801
1802 static void
1803 ath_desc_free(struct ath_softc *sc)
1804 {
1805 struct ath_buf *bf;
1806
1807 #ifdef __FreeBSD__
1808 bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
1809 bus_dmamem_free(sc->sc_dmat, sc->sc_desc, sc->sc_ddmamap);
1810 bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
1811 #else
1812 bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
1813 bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
1814 bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg);
1815 #endif
1816
1817 TAILQ_FOREACH(bf, &sc->sc_txq, bf_list) {
1818 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1819 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
1820 m_freem(bf->bf_m);
1821 }
1822 TAILQ_FOREACH(bf, &sc->sc_txbuf, bf_list)
1823 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
1824 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
1825 if (bf->bf_m) {
1826 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1827 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
1828 m_freem(bf->bf_m);
1829 bf->bf_m = NULL;
1830 }
1831 }
1832 if (sc->sc_bcbuf != NULL) {
1833 bus_dmamap_unload(sc->sc_dmat, sc->sc_bcbuf->bf_dmamap);
1834 bus_dmamap_destroy(sc->sc_dmat, sc->sc_bcbuf->bf_dmamap);
1835 sc->sc_bcbuf = NULL;
1836 }
1837
1838 TAILQ_INIT(&sc->sc_rxbuf);
1839 TAILQ_INIT(&sc->sc_txbuf);
1840 TAILQ_INIT(&sc->sc_txq);
1841 free(sc->sc_bufptr, M_DEVBUF);
1842 sc->sc_bufptr = NULL;
1843 }
1844
1845 static struct ieee80211_node *
1846 ath_node_alloc(struct ieee80211com *ic)
1847 {
1848 struct ath_node *an =
1849 malloc(sizeof(struct ath_node), M_DEVBUF, M_NOWAIT | M_ZERO);
1850 return an ? &an->an_node : NULL;
1851 }
1852
1853 static void
1854 ath_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
1855 {
1856 struct ath_softc *sc = ic->ic_if.if_softc;
1857 struct ath_buf *bf;
1858
1859 TAILQ_FOREACH(bf, &sc->sc_txq, bf_list) {
1860 if (bf->bf_node == ni)
1861 bf->bf_node = NULL;
1862 }
1863 free(ni, M_DEVBUF);
1864 }
1865
1866 static void
1867 ath_node_copy(struct ieee80211com *ic,
1868 struct ieee80211_node *dst, const struct ieee80211_node *src)
1869 {
1870 *(struct ath_node *)dst = *(const struct ath_node *)src;
1871 }
1872
1873 static int
1874 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
1875 {
1876 struct ath_hal *ah = sc->sc_ah;
1877 int error;
1878 struct mbuf *m;
1879 struct ath_desc *ds;
1880
1881 m = bf->bf_m;
1882 if (m == NULL) {
1883 /*
1884 * NB: by assigning a page to the rx dma buffer we
1885 * implicitly satisfy the Atheros requirement that
1886 * this buffer be cache-line-aligned and sized to be
1887 * multiple of the cache line size. Not doing this
1888 * causes weird stuff to happen (for the 5210 at least).
1889 */
1890 m = ath_getmbuf(M_DONTWAIT, MT_DATA, MCLBYTES);
1891 if (m == NULL) {
1892 DPRINTF(("ath_rxbuf_init: no mbuf/cluster\n"));
1893 sc->sc_stats.ast_rx_nombuf++;
1894 return ENOMEM;
1895 }
1896 bf->bf_m = m;
1897 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
1898
1899 error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m,
1900 BUS_DMA_NOWAIT);
1901 if (error != 0) {
1902 DPRINTF(("ath_rxbuf_init: ath_buf_dmamap_load_mbuf failed;"
1903 " error %d\n", error));
1904 sc->sc_stats.ast_rx_busdma++;
1905 return error;
1906 }
1907 KASSERT(bf->bf_nseg == 1,
1908 ("ath_rxbuf_init: multi-segment packet; nseg %u",
1909 bf->bf_nseg));
1910 }
1911 ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_PREREAD);
1912
1913 /* setup descriptors */
1914 ds = bf->bf_desc;
1915 ds->ds_link = 0;
1916 ds->ds_data = bf->bf_segs[0].ds_addr;
1917 ath_hal_setuprxdesc(ah, ds
1918 , m->m_len /* buffer size */
1919 , 0
1920 );
1921
1922 if (sc->sc_rxlink != NULL)
1923 *sc->sc_rxlink = bf->bf_daddr;
1924 sc->sc_rxlink = &ds->ds_link;
1925 return 0;
1926 }
1927
1928 static void
1929 ath_rx_proc(void *arg, int npending)
1930 {
1931 struct ath_softc *sc = arg;
1932 struct ath_buf *bf;
1933 struct ieee80211com *ic = &sc->sc_ic;
1934 struct ifnet *ifp = &ic->ic_if;
1935 struct ath_hal *ah = sc->sc_ah;
1936 struct ath_desc *ds;
1937 struct mbuf *m;
1938 struct ieee80211_frame *wh, whbuf;
1939 struct ieee80211_node *ni;
1940 int len;
1941 u_int phyerr;
1942 HAL_STATUS status;
1943
1944 DPRINTF2(("ath_rx_proc: pending %u\n", npending));
1945 do {
1946 bf = TAILQ_FIRST(&sc->sc_rxbuf);
1947 if (bf == NULL) { /* NB: shouldn't happen */
1948 if_printf(ifp, "ath_rx_proc: no buffer!\n");
1949 break;
1950 }
1951 m = bf->bf_m;
1952 if (m == NULL) { /* NB: shouldn't happen */
1953 if_printf(ifp, "ath_rx_proc: no mbuf!\n");
1954 continue;
1955 }
1956 ds = bf->bf_desc;
1957 status = ath_hal_rxprocdesc(ah, ds);
1958 #ifdef AR_DEBUG
1959 if (ath_debug > 1)
1960 ath_printrxbuf(bf, status == HAL_OK);
1961 #endif
1962 if (status == HAL_EINPROGRESS)
1963 break;
1964 TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list);
1965 if (ds->ds_rxstat.rs_status != 0) {
1966 ifp->if_ierrors++;
1967 if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
1968 sc->sc_stats.ast_rx_crcerr++;
1969 if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
1970 sc->sc_stats.ast_rx_fifoerr++;
1971 if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT)
1972 sc->sc_stats.ast_rx_badcrypt++;
1973 if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
1974 sc->sc_stats.ast_rx_phyerr++;
1975 phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
1976 sc->sc_stats.ast_rx_phy[phyerr]++;
1977 }
1978 goto rx_next;
1979 }
1980
1981 len = ds->ds_rxstat.rs_datalen;
1982 if (len < sizeof(struct ieee80211_frame)) {
1983 DPRINTF(("ath_rx_proc: short packet %d\n", len));
1984 sc->sc_stats.ast_rx_tooshort++;
1985 goto rx_next;
1986 }
1987
1988 ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_POSTREAD);
1989
1990 wh = mtod(m, struct ieee80211_frame *);
1991 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1992 IEEE80211_FC0_TYPE_CTL &&
1993 ic->ic_opmode != IEEE80211_M_MONITOR) {
1994 /*
1995 * Discard control frame when not in monitor mode.
1996 */
1997 DPRINTF(("ath_rx_proc: control frame\n"));
1998 sc->sc_stats.ast_rx_ctl++;
1999 goto rx_next;
2000 }
2001
2002 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2003 bf->bf_m = NULL;
2004 m->m_pkthdr.rcvif = ifp;
2005 m->m_pkthdr.len = m->m_len = len;
2006
2007 #if NBPFILTER > 0
2008 if (sc->sc_drvbpf) {
2009 #ifdef __FreeBSD__
2010 struct mbuf *mb;
2011
2012 /* XXX pre-allocate space when setting up recv's */
2013 MGETHDR(mb, M_DONTWAIT, m->m_type);
2014 if (mb != NULL) {
2015 sc->sc_rx_th.wr_rate =
2016 sc->sc_hwmap[ds->ds_rxstat.rs_rate];
2017 sc->sc_rx_th.wr_antsignal =
2018 ds->ds_rxstat.rs_rssi;
2019 sc->sc_rx_th.wr_antenna =
2020 ds->ds_rxstat.rs_antenna;
2021 /* XXX TSF */
2022
2023 (void) m_dup_pkthdr(mb, m, M_DONTWAIT);
2024 mb->m_next = m;
2025 mb->m_data = (caddr_t)&sc->sc_rx_th;
2026 mb->m_len = sizeof(sc->sc_rx_th);
2027 mb->m_pkthdr.len += mb->m_len;
2028 bpf_mtap(sc->sc_drvbpf, mb);
2029 m_free(mb);
2030 }
2031 #else
2032 /* XXX pre-allocate space when setting up recv's */
2033 struct mbuf mb;
2034
2035 sc->sc_rx_th.wr_rate =
2036 sc->sc_hwmap[ds->ds_rxstat.rs_rate];
2037 sc->sc_rx_th.wr_antsignal =
2038 ds->ds_rxstat.rs_rssi;
2039 sc->sc_rx_th.wr_antenna =
2040 ds->ds_rxstat.rs_antenna;
2041 /* XXX TSF */
2042
2043 M_COPY_PKTHDR(&mb, m);
2044 mb.m_next = m;
2045 mb.m_data = (caddr_t)&sc->sc_rx_th;
2046 mb.m_len = sizeof(sc->sc_rx_th);
2047 mb.m_pkthdr.len += mb.m_len;
2048 bpf_mtap(sc->sc_drvbpf, &mb);
2049 #endif
2050 }
2051 #endif
2052
2053 m_adj(m, -IEEE80211_CRC_LEN);
2054 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2055 /*
2056 * WEP is decrypted by hardware. Clear WEP bit
2057 * and trim WEP header for ieee80211_input().
2058 */
2059 wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
2060 memcpy(&whbuf, wh, sizeof(whbuf));
2061 m_adj(m, IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN);
2062 memcpy(mtod(m, caddr_t), &whbuf, sizeof(whbuf));
2063 /*
2064 * Also trim WEP ICV from the tail.
2065 */
2066 m_adj(m, -IEEE80211_WEP_CRCLEN);
2067 }
2068
2069 /*
2070 * Locate the node for sender, track state, and
2071 * then pass this node (referenced) up to the 802.11
2072 * layer for its use. We are required to pass
2073 * something so we fall back to ic_bss when this frame
2074 * is from an unknown sender.
2075 */
2076 if (ic->ic_opmode != IEEE80211_M_STA) {
2077 ni = ieee80211_find_node(ic, wh->i_addr2);
2078 if (ni == NULL)
2079 ni = ieee80211_ref_node(ic->ic_bss);
2080 } else
2081 ni = ieee80211_ref_node(ic->ic_bss);
2082 ATH_NODE(ni)->an_rx_antenna = ds->ds_rxstat.rs_antenna;
2083 /*
2084 * Send frame up for processing.
2085 */
2086 ieee80211_input(ifp, m, ni,
2087 ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
2088 /*
2089 * The frame may have caused the node to be marked for
2090 * reclamation (e.g. in response to a DEAUTH message)
2091 * so use free_node here instead of unref_node.
2092 */
2093 if (ni == ic->ic_bss)
2094 ieee80211_unref_node(&ni);
2095 else
2096 ieee80211_free_node(ic, ni);
2097 rx_next:
2098 TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
2099 } while (ath_rxbuf_init(sc, bf) == 0);
2100
2101 ath_hal_rxmonitor(ah); /* rx signal state monitoring */
2102 ath_hal_rxena(ah); /* in case of RXEOL */
2103 }
2104
2105 /*
2106 * XXX Size of an ACK control frame in bytes.
2107 */
2108 #define IEEE80211_ACK_SIZE (2+2+IEEE80211_ADDR_LEN+4)
2109
2110 static int
2111 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
2112 struct mbuf *m0)
2113 {
2114 struct ieee80211com *ic = &sc->sc_ic;
2115 struct ath_hal *ah = sc->sc_ah;
2116 struct ifnet *ifp = &sc->sc_ic.ic_if;
2117 int i, error, iswep, hdrlen, pktlen;
2118 u_int8_t rix, cix, txrate, ctsrate;
2119 struct ath_desc *ds;
2120 struct mbuf *m;
2121 struct ieee80211_frame *wh;
2122 u_int32_t iv;
2123 u_int8_t *ivp;
2124 u_int8_t hdrbuf[sizeof(struct ieee80211_frame) +
2125 IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN];
2126 u_int subtype, flags, ctsduration, antenna;
2127 HAL_PKT_TYPE atype;
2128 const HAL_RATE_TABLE *rt;
2129 HAL_BOOL shortPreamble;
2130 struct ath_node *an;
2131 ath_txq_critsect_decl(s);
2132
2133 wh = mtod(m0, struct ieee80211_frame *);
2134 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
2135 hdrlen = sizeof(struct ieee80211_frame);
2136 pktlen = m0->m_pkthdr.len;
2137
2138 if (iswep) {
2139 memcpy(hdrbuf, mtod(m0, caddr_t), hdrlen);
2140 m_adj(m0, hdrlen);
2141 M_PREPEND(m0, sizeof(hdrbuf), M_DONTWAIT);
2142 if (m0 == NULL) {
2143 sc->sc_stats.ast_tx_nombuf++;
2144 return ENOMEM;
2145 }
2146 ivp = hdrbuf + hdrlen;
2147 /*
2148 * XXX
2149 * IV must not duplicate during the lifetime of the key.
2150 * But no mechanism to renew keys is defined in IEEE 802.11
2151 * WEP. And IV may be duplicated between other stations
2152 * because of the session key itself is shared.
2153 * So we use pseudo random IV for now, though it is not the
2154 * right way.
2155 */
2156 iv = arc4random();
2157 for (i = 0; i < IEEE80211_WEP_IVLEN; i++) {
2158 ivp[i] = iv;
2159 iv >>= 8;
2160 }
2161 ivp[i] = sc->sc_ic.ic_wep_txkey << 6; /* Key ID and pad */
2162 memcpy(mtod(m0, caddr_t), hdrbuf, sizeof(hdrbuf));
2163 /*
2164 * The ICV length must be included into hdrlen and pktlen.
2165 */
2166 hdrlen = sizeof(hdrbuf) + IEEE80211_WEP_CRCLEN;
2167 pktlen = m0->m_pkthdr.len + IEEE80211_WEP_CRCLEN;
2168 }
2169 pktlen += IEEE80211_CRC_LEN;
2170
2171 /*
2172 * Load the DMA map so any coalescing is done. This
2173 * also calculates the number of descriptors we need.
2174 */
2175 error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m0, BUS_DMA_NOWAIT);
2176 if (error != 0) {
2177 sc->sc_stats.ast_tx_busdma++;
2178 m_freem(m0);
2179 return error;
2180 }
2181 /*
2182 * Discard null packets and check for packets that
2183 * require too many TX descriptors. We try to convert
2184 * the latter to a cluster.
2185 */
2186 if (bf->bf_nseg > ATH_TXDESC) { /* too many desc's, linearize */
2187 sc->sc_stats.ast_tx_linear++;
2188 MGETHDR(m, M_DONTWAIT, MT_DATA);
2189 if (m == NULL) {
2190 sc->sc_stats.ast_tx_nombuf++;
2191 m_freem(m0);
2192 return ENOMEM;
2193 }
2194 #ifdef __FreeBSD__
2195 M_MOVE_PKTHDR(m, m0);
2196 #else
2197 M_COPY_PKTHDR(m, m0);
2198 #endif
2199 MCLGET(m, M_DONTWAIT);
2200 if ((m->m_flags & M_EXT) == 0) {
2201 sc->sc_stats.ast_tx_nomcl++;
2202 m_freem(m0);
2203 m_free(m);
2204 return ENOMEM;
2205 }
2206 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
2207 m_freem(m0);
2208 m->m_len = m->m_pkthdr.len;
2209 m0 = m;
2210 error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m0,
2211 BUS_DMA_NOWAIT);
2212 if (error != 0) {
2213 sc->sc_stats.ast_tx_busdma++;
2214 m_freem(m0);
2215 return error;
2216 }
2217 KASSERT(bf->bf_nseg == 1,
2218 ("ath_tx_start: packet not one segment; nseg %u",
2219 bf->bf_nseg));
2220 } else if (bf->bf_nseg == 0) { /* null packet, discard */
2221 sc->sc_stats.ast_tx_nodata++;
2222 m_freem(m0);
2223 return EIO;
2224 }
2225 DPRINTF2(("ath_tx_start: m %p len %u\n", m0, pktlen));
2226 ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_PREWRITE);
2227 bf->bf_m = m0;
2228 bf->bf_node = ni; /* NB: held reference */
2229
2230 /* setup descriptors */
2231 ds = bf->bf_desc;
2232 rt = sc->sc_currates;
2233 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
2234
2235 /*
2236 * Calculate Atheros packet type from IEEE80211 packet header
2237 * and setup for rate calculations.
2238 */
2239 atype = HAL_PKT_TYPE_NORMAL; /* default */
2240 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
2241 case IEEE80211_FC0_TYPE_MGT:
2242 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2243 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
2244 atype = HAL_PKT_TYPE_BEACON;
2245 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2246 atype = HAL_PKT_TYPE_PROBE_RESP;
2247 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
2248 atype = HAL_PKT_TYPE_ATIM;
2249 rix = 0; /* XXX lowest rate */
2250 break;
2251 case IEEE80211_FC0_TYPE_CTL:
2252 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2253 if (subtype == IEEE80211_FC0_SUBTYPE_PS_POLL)
2254 atype = HAL_PKT_TYPE_PSPOLL;
2255 rix = 0; /* XXX lowest rate */
2256 break;
2257 default:
2258 rix = sc->sc_rixmap[ni->ni_rates.rs_rates[ni->ni_txrate] &
2259 IEEE80211_RATE_VAL];
2260 if (rix == 0xff) {
2261 if_printf(ifp, "bogus xmit rate 0x%x\n",
2262 ni->ni_rates.rs_rates[ni->ni_txrate]);
2263 sc->sc_stats.ast_tx_badrate++;
2264 m_freem(m0);
2265 return EIO;
2266 }
2267 break;
2268 }
2269 /*
2270 * NB: the 802.11 layer marks whether or not we should
2271 * use short preamble based on the current mode and
2272 * negotiated parameters.
2273 */
2274 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) {
2275 txrate = rt->info[rix].rateCode | rt->info[rix].shortPreamble;
2276 shortPreamble = AH_TRUE;
2277 sc->sc_stats.ast_tx_shortpre++;
2278 } else {
2279 txrate = rt->info[rix].rateCode;
2280 shortPreamble = AH_FALSE;
2281 }
2282
2283 /*
2284 * Calculate miscellaneous flags.
2285 */
2286 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for wep errors */
2287 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2288 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */
2289 sc->sc_stats.ast_tx_noack++;
2290 } else if (pktlen > ic->ic_rtsthreshold) {
2291 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */
2292 sc->sc_stats.ast_tx_rts++;
2293 }
2294
2295 /*
2296 * Calculate RTS/CTS rate and duration if needed.
2297 */
2298 ctsduration = 0;
2299 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
2300 /*
2301 * CTS transmit rate is derived from the transmit rate
2302 * by looking in the h/w rate table. We must also factor
2303 * in whether or not a short preamble is to be used.
2304 */
2305 cix = rt->info[rix].controlRate;
2306 ctsrate = rt->info[cix].rateCode;
2307 if (shortPreamble)
2308 ctsrate |= rt->info[cix].shortPreamble;
2309 /*
2310 * Compute the transmit duration based on the size
2311 * of an ACK frame. We call into the HAL to do the
2312 * computation since it depends on the characteristics
2313 * of the actual PHY being used.
2314 */
2315 if (flags & HAL_TXDESC_RTSENA) { /* SIFS + CTS */
2316 ctsduration += ath_hal_computetxtime(ah,
2317 rt, IEEE80211_ACK_SIZE, cix, shortPreamble);
2318 }
2319 /* SIFS + data */
2320 ctsduration += ath_hal_computetxtime(ah,
2321 rt, pktlen, rix, shortPreamble);
2322 if ((flags & HAL_TXDESC_NOACK) == 0) { /* SIFS + ACK */
2323 ctsduration += ath_hal_computetxtime(ah,
2324 rt, IEEE80211_ACK_SIZE, cix, shortPreamble);
2325 }
2326 } else
2327 ctsrate = 0;
2328
2329 /*
2330 * For now use the antenna on which the last good
2331 * frame was received on. We assume this field is
2332 * initialized to 0 which gives us ``auto'' or the
2333 * ``default'' antenna.
2334 */
2335 an = (struct ath_node *) ni;
2336 if (an->an_tx_antenna)
2337 antenna = an->an_tx_antenna;
2338 else
2339 antenna = an->an_rx_antenna;
2340
2341 /*
2342 * Formulate first tx descriptor with tx controls.
2343 */
2344 /* XXX check return value? */
2345 ath_hal_setuptxdesc(ah, ds
2346 , pktlen /* packet length */
2347 , hdrlen /* header length */
2348 , atype /* Atheros packet type */
2349 , 60 /* txpower XXX */
2350 , txrate, 1+10 /* series 0 rate/tries */
2351 , iswep ? sc->sc_ic.ic_wep_txkey : HAL_TXKEYIX_INVALID
2352 , antenna /* antenna mode */
2353 , flags /* flags */
2354 , ctsrate /* rts/cts rate */
2355 , ctsduration /* rts/cts duration */
2356 );
2357 #ifdef notyet
2358 ath_hal_setupxtxdesc(ah, ds
2359 , AH_FALSE /* short preamble */
2360 , 0, 0 /* series 1 rate/tries */
2361 , 0, 0 /* series 2 rate/tries */
2362 , 0, 0 /* series 3 rate/tries */
2363 );
2364 #endif
2365 /*
2366 * Fillin the remainder of the descriptor info.
2367 */
2368 for (i = 0; i < bf->bf_nseg; i++, ds++) {
2369 ds->ds_data = bf->bf_segs[i].ds_addr;
2370 if (i == bf->bf_nseg - 1)
2371 ds->ds_link = 0;
2372 else
2373 ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
2374 ath_hal_filltxdesc(ah, ds
2375 , bf->bf_segs[i].ds_len /* segment length */
2376 , i == 0 /* first segment */
2377 , i == bf->bf_nseg - 1 /* last segment */
2378 );
2379 DPRINTF2(("ath_tx_start: %d: %08x %08x %08x %08x %08x %08x\n",
2380 i, ds->ds_link, ds->ds_data, ds->ds_ctl0, ds->ds_ctl1,
2381 ds->ds_hw[0], ds->ds_hw[1]));
2382 }
2383
2384 /*
2385 * Insert the frame on the outbound list and
2386 * pass it on to the hardware.
2387 */
2388 ath_txq_critsect_begin(sc, s);
2389 TAILQ_INSERT_TAIL(&sc->sc_txq, bf, bf_list);
2390 if (sc->sc_txlink == NULL) {
2391 ath_hal_puttxbuf(ah, sc->sc_txhalq, bf->bf_daddr);
2392 DPRINTF2(("ath_tx_start: TXDP0 = %p (%p)\n",
2393 (caddr_t)bf->bf_daddr, bf->bf_desc));
2394 } else {
2395 *sc->sc_txlink = bf->bf_daddr;
2396 DPRINTF2(("ath_tx_start: link(%p)=%p (%p)\n",
2397 sc->sc_txlink, (caddr_t)bf->bf_daddr, bf->bf_desc));
2398 }
2399 sc->sc_txlink = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
2400 ath_txq_critsect_end(sc, s);
2401
2402 ath_hal_txstart(ah, sc->sc_txhalq);
2403 return 0;
2404 }
2405
2406 static void
2407 ath_tx_proc(void *arg, int npending)
2408 {
2409 struct ath_softc *sc = arg;
2410 struct ath_hal *ah = sc->sc_ah;
2411 struct ath_buf *bf;
2412 struct ieee80211com *ic = &sc->sc_ic;
2413 struct ifnet *ifp = &ic->ic_if;
2414 struct ath_desc *ds;
2415 struct ieee80211_node *ni;
2416 struct ath_node *an;
2417 int sr, lr;
2418 HAL_STATUS status;
2419 ath_txq_critsect_decl(s);
2420 ath_txbuf_critsect_decl(s2);
2421
2422 DPRINTF2(("ath_tx_proc: pending %u tx queue %p, link %p\n",
2423 npending, (caddr_t) ath_hal_gettxbuf(sc->sc_ah, sc->sc_txhalq),
2424 sc->sc_txlink));
2425 for (;;) {
2426 ath_txq_critsect_begin(sc, s);
2427 bf = TAILQ_FIRST(&sc->sc_txq);
2428 if (bf == NULL) {
2429 sc->sc_txlink = NULL;
2430 ath_txq_critsect_end(sc, s);
2431 break;
2432 }
2433 /* only the last descriptor is needed */
2434 ds = &bf->bf_desc[bf->bf_nseg - 1];
2435 status = ath_hal_txprocdesc(ah, ds);
2436 #ifdef AR_DEBUG
2437 if (ath_debug > 1)
2438 ath_printtxbuf(bf, status == HAL_OK);
2439 #endif
2440 if (status == HAL_EINPROGRESS) {
2441 ath_txq_critsect_end(sc, s);
2442 break;
2443 }
2444 TAILQ_REMOVE(&sc->sc_txq, bf, bf_list);
2445 ath_txq_critsect_end(sc, s);
2446
2447 ni = bf->bf_node;
2448 if (ni != NULL) {
2449 an = (struct ath_node *) ni;
2450 if (ds->ds_txstat.ts_status == 0) {
2451 an->an_tx_ok++;
2452 an->an_tx_antenna = ds->ds_txstat.ts_antenna;
2453 } else {
2454 an->an_tx_err++;
2455 ifp->if_oerrors++;
2456 if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
2457 sc->sc_stats.ast_tx_xretries++;
2458 if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
2459 sc->sc_stats.ast_tx_fifoerr++;
2460 if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
2461 sc->sc_stats.ast_tx_filtered++;
2462 an->an_tx_antenna = 0; /* invalidate */
2463 }
2464 sr = ds->ds_txstat.ts_shortretry;
2465 lr = ds->ds_txstat.ts_longretry;
2466 sc->sc_stats.ast_tx_shortretry += sr;
2467 sc->sc_stats.ast_tx_longretry += lr;
2468 if (sr + lr)
2469 an->an_tx_retr++;
2470 /*
2471 * Reclaim reference to node.
2472 *
2473 * NB: the node may be reclaimed here if, for example
2474 * this is a DEAUTH message that was sent and the
2475 * node was timed out due to inactivity.
2476 */
2477 if (ni != ic->ic_bss)
2478 ieee80211_free_node(ic, ni);
2479 }
2480 ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_POSTWRITE);
2481 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2482 m_freem(bf->bf_m);
2483 bf->bf_m = NULL;
2484 bf->bf_node = NULL;
2485
2486 ath_txbuf_critsect_begin(sc, s2);
2487 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
2488 ath_txbuf_critsect_end(sc, s2);
2489 }
2490 ifp->if_flags &= ~IFF_OACTIVE;
2491 sc->sc_tx_timer = 0;
2492
2493 ath_start(ifp);
2494 }
2495
2496 /*
2497 * Drain the transmit queue and reclaim resources.
2498 */
2499 static void
2500 ath_draintxq(struct ath_softc *sc)
2501 {
2502 struct ath_hal *ah = sc->sc_ah;
2503 struct ifnet *ifp = &sc->sc_ic.ic_if;
2504 struct ath_buf *bf;
2505 ath_txq_critsect_decl(s);
2506 ath_txbuf_critsect_decl(s2);
2507
2508 /* XXX return value */
2509 if (!sc->sc_invalid) {
2510 /* don't touch the hardware if marked invalid */
2511 (void) ath_hal_stoptxdma(ah, sc->sc_txhalq);
2512 DPRINTF(("ath_draintxq: tx queue %p, link %p\n",
2513 (caddr_t) ath_hal_gettxbuf(ah, sc->sc_txhalq),
2514 sc->sc_txlink));
2515 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
2516 DPRINTF(("ath_draintxq: beacon queue %p\n",
2517 (caddr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq)));
2518 }
2519 for (;;) {
2520 ath_txq_critsect_begin(sc, s);
2521 bf = TAILQ_FIRST(&sc->sc_txq);
2522 if (bf == NULL) {
2523 sc->sc_txlink = NULL;
2524 ath_txq_critsect_end(sc, s);
2525 break;
2526 }
2527 TAILQ_REMOVE(&sc->sc_txq, bf, bf_list);
2528 ath_txq_critsect_end(sc, s);
2529 #ifdef AR_DEBUG
2530 if (ath_debug)
2531 ath_printtxbuf(bf,
2532 ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
2533 #endif /* AR_DEBUG */
2534 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2535 m_freem(bf->bf_m);
2536 bf->bf_m = NULL;
2537 bf->bf_node = NULL;
2538 ath_txbuf_critsect_begin(sc, s2);
2539 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
2540 ath_txbuf_critsect_end(sc, s2);
2541 }
2542 ifp->if_flags &= ~IFF_OACTIVE;
2543 sc->sc_tx_timer = 0;
2544 }
2545
2546 /*
2547 * Disable the receive h/w in preparation for a reset.
2548 */
2549 static void
2550 ath_stoprecv(struct ath_softc *sc)
2551 {
2552 struct ath_hal *ah = sc->sc_ah;
2553
2554 ath_hal_stoppcurecv(ah); /* disable PCU */
2555 ath_hal_setrxfilter(ah, 0); /* clear recv filter */
2556 ath_hal_stopdmarecv(ah); /* disable DMA engine */
2557 DELAY(3000); /* long enough for 1 frame */
2558 #ifdef AR_DEBUG
2559 if (ath_debug) {
2560 struct ath_buf *bf;
2561
2562 DPRINTF(("ath_stoprecv: rx queue %p, link %p\n",
2563 (caddr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink));
2564 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
2565 if (ath_hal_rxprocdesc(ah, bf->bf_desc) == HAL_OK)
2566 ath_printrxbuf(bf, 1);
2567 }
2568 }
2569 #endif
2570 sc->sc_rxlink = NULL; /* just in case */
2571 }
2572
2573 /*
2574 * Enable the receive h/w following a reset.
2575 */
2576 static int
2577 ath_startrecv(struct ath_softc *sc)
2578 {
2579 struct ath_hal *ah = sc->sc_ah;
2580 struct ath_buf *bf;
2581
2582 sc->sc_rxlink = NULL;
2583 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
2584 int error = ath_rxbuf_init(sc, bf);
2585 if (error != 0) {
2586 DPRINTF(("ath_startrecv: ath_rxbuf_init failed %d\n",
2587 error));
2588 return error;
2589 }
2590 }
2591
2592 bf = TAILQ_FIRST(&sc->sc_rxbuf);
2593 ath_hal_putrxbuf(ah, bf->bf_daddr);
2594 ath_hal_rxena(ah); /* enable recv descriptors */
2595 ath_mode_init(sc); /* set filters, etc. */
2596 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */
2597 return 0;
2598 }
2599
2600 /*
2601 * Set/change channels. If the channel is really being changed,
2602 * it's done by resetting the chip. To accomplish this we must
2603 * first cleanup any pending DMA, then restart stuff after a la
2604 * ath_init.
2605 */
2606 static int
2607 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
2608 {
2609 struct ath_hal *ah = sc->sc_ah;
2610 struct ieee80211com *ic = &sc->sc_ic;
2611
2612 DPRINTF(("ath_chan_set: %u (%u MHz) -> %u (%u MHz)\n",
2613 ieee80211_chan2ieee(ic, ic->ic_ibss_chan),
2614 ic->ic_ibss_chan->ic_freq,
2615 ieee80211_chan2ieee(ic, chan), chan->ic_freq));
2616 if (chan != ic->ic_ibss_chan) {
2617 HAL_STATUS status;
2618 HAL_CHANNEL hchan;
2619 enum ieee80211_phymode mode;
2620
2621 /*
2622 * To switch channels clear any pending DMA operations;
2623 * wait long enough for the RX fifo to drain, reset the
2624 * hardware at the new frequency, and then re-enable
2625 * the relevant bits of the h/w.
2626 */
2627 ath_hal_intrset(ah, 0); /* disable interrupts */
2628 ath_draintxq(sc); /* clear pending tx frames */
2629 ath_stoprecv(sc); /* turn off frame recv */
2630 /*
2631 * Convert to a HAL channel description with
2632 * the flags constrained to reflect the current
2633 * operating mode.
2634 */
2635 hchan.channel = chan->ic_freq;
2636 hchan.channelFlags = ath_chan2flags(ic, chan);
2637 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
2638 if_printf(&ic->ic_if, "ath_chan_set: unable to reset "
2639 "channel %u (%u Mhz)\n",
2640 ieee80211_chan2ieee(ic, chan), chan->ic_freq);
2641 return EIO;
2642 }
2643 /*
2644 * Re-enable rx framework.
2645 */
2646 if (ath_startrecv(sc) != 0) {
2647 if_printf(&ic->ic_if,
2648 "ath_chan_set: unable to restart recv logic\n");
2649 return EIO;
2650 }
2651
2652 /*
2653 * Update BPF state.
2654 */
2655 sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
2656 htole16(chan->ic_freq);
2657 sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
2658 htole16(chan->ic_flags);
2659
2660 /*
2661 * Change channels and update the h/w rate map
2662 * if we're switching; e.g. 11a to 11b/g.
2663 */
2664 ic->ic_ibss_chan = chan;
2665 mode = ieee80211_chan2mode(ic, chan);
2666 if (mode != sc->sc_curmode)
2667 ath_setcurmode(sc, mode);
2668
2669 /*
2670 * Re-enable interrupts.
2671 */
2672 ath_hal_intrset(ah, sc->sc_imask);
2673 }
2674 return 0;
2675 }
2676
2677 static void
2678 ath_next_scan(void *arg)
2679 {
2680 struct ath_softc *sc = arg;
2681 struct ieee80211com *ic = &sc->sc_ic;
2682 struct ifnet *ifp = &ic->ic_if;
2683 int s;
2684
2685 /* don't call ath_start w/o network interrupts blocked */
2686 s = splnet();
2687
2688 if (ic->ic_state == IEEE80211_S_SCAN)
2689 ieee80211_next_scan(ifp);
2690 splx(s);
2691 }
2692
2693 /*
2694 * Periodically recalibrate the PHY to account
2695 * for temperature/environment changes.
2696 */
2697 static void
2698 ath_calibrate(void *arg)
2699 {
2700 struct ath_softc *sc = arg;
2701 struct ath_hal *ah = sc->sc_ah;
2702 struct ieee80211com *ic = &sc->sc_ic;
2703 struct ieee80211_channel *c;
2704 HAL_CHANNEL hchan;
2705
2706 sc->sc_stats.ast_per_cal++;
2707
2708 /*
2709 * Convert to a HAL channel description with the flags
2710 * constrained to reflect the current operating mode.
2711 */
2712 c = ic->ic_ibss_chan;
2713 hchan.channel = c->ic_freq;
2714 hchan.channelFlags = ath_chan2flags(ic, c);
2715
2716 DPRINTF(("%s: channel %u/%x\n", __func__, c->ic_freq, c->ic_flags));
2717
2718 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
2719 /*
2720 * Rfgain is out of bounds, reset the chip
2721 * to load new gain values.
2722 */
2723 sc->sc_stats.ast_per_rfgain++;
2724 ath_reset(sc);
2725 }
2726 if (!ath_hal_calibrate(ah, &hchan)) {
2727 DPRINTF(("%s: calibration of channel %u failed\n",
2728 __func__, c->ic_freq));
2729 sc->sc_stats.ast_per_calfail++;
2730 }
2731 callout_reset(&sc->sc_cal_ch, hz * ath_calinterval, ath_calibrate, sc);
2732 }
2733
2734 static HAL_LED_STATE
2735 ath_state_to_led(enum ieee80211_state state)
2736 {
2737 switch (state) {
2738 case IEEE80211_S_INIT:
2739 return HAL_LED_INIT;
2740 case IEEE80211_S_SCAN:
2741 return HAL_LED_SCAN;
2742 case IEEE80211_S_AUTH:
2743 return HAL_LED_AUTH;
2744 case IEEE80211_S_ASSOC:
2745 return HAL_LED_ASSOC;
2746 case IEEE80211_S_RUN:
2747 return HAL_LED_RUN;
2748 default:
2749 panic("%s: unknown 802.11 state %d\n", __func__, state);
2750 return HAL_LED_INIT;
2751 }
2752 }
2753
2754 static int
2755 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2756 {
2757 struct ifnet *ifp = &ic->ic_if;
2758 struct ath_softc *sc = ifp->if_softc;
2759 struct ath_hal *ah = sc->sc_ah;
2760 struct ieee80211_node *ni;
2761 int i, error;
2762 u_int8_t *bssid;
2763 u_int32_t rfilt;
2764
2765 DPRINTF(("%s: %s -> %s\n", __func__,
2766 ieee80211_state_name[ic->ic_state],
2767 ieee80211_state_name[nstate]));
2768
2769 ath_hal_setledstate(ah, ath_state_to_led(nstate)); /* set LED */
2770
2771 if (nstate == IEEE80211_S_INIT) {
2772 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
2773 ath_hal_intrset(ah, sc->sc_imask);
2774 callout_stop(&sc->sc_scan_ch);
2775 callout_stop(&sc->sc_cal_ch);
2776 return (*sc->sc_newstate)(ic, nstate, arg);
2777 }
2778 ni = ic->ic_bss;
2779 error = ath_chan_set(sc, ni->ni_chan);
2780 if (error != 0)
2781 goto bad;
2782 rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
2783 | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
2784 if (ic->ic_opmode != IEEE80211_M_STA)
2785 rfilt |= HAL_RX_FILTER_PROBEREQ;
2786 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
2787 (ifp->if_flags & IFF_PROMISC))
2788 rfilt |= HAL_RX_FILTER_PROM;
2789 if (nstate == IEEE80211_S_SCAN) {
2790 callout_reset(&sc->sc_scan_ch, (hz * ath_dwelltime) / 1000,
2791 ath_next_scan, sc);
2792 bssid = ifp->if_broadcastaddr;
2793 rfilt |= HAL_RX_FILTER_BEACON;
2794 } else {
2795 callout_stop(&sc->sc_scan_ch);
2796 bssid = ni->ni_bssid;
2797 }
2798 ath_hal_setrxfilter(ah, rfilt);
2799 DPRINTF(("%s: RX filter 0x%x bssid %s\n",
2800 __func__, rfilt, ether_sprintf(bssid)));
2801
2802 if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
2803 ath_hal_setassocid(ah, bssid, ni->ni_associd);
2804 else
2805 ath_hal_setassocid(ah, bssid, 0);
2806 if (ic->ic_flags & IEEE80211_F_WEPON) {
2807 for (i = 0; i < IEEE80211_WEP_NKID; i++)
2808 if (ath_hal_keyisvalid(ah, i))
2809 ath_hal_keysetmac(ah, i, bssid);
2810 }
2811
2812 if (nstate == IEEE80211_S_RUN) {
2813 DPRINTF(("%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
2814 "capinfo=0x%04x chan=%d\n"
2815 , __func__
2816 , ic->ic_flags
2817 , ni->ni_intval
2818 , ether_sprintf(ni->ni_bssid)
2819 , ni->ni_capinfo
2820 , ieee80211_chan2ieee(ic, ni->ni_chan)));
2821
2822 /*
2823 * Allocate and setup the beacon frame for AP or adhoc mode.
2824 */
2825 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2826 ic->ic_opmode == IEEE80211_M_IBSS) {
2827 error = ath_beacon_alloc(sc, ni);
2828 if (error != 0)
2829 goto bad;
2830 }
2831
2832 /*
2833 * Configure the beacon and sleep timers.
2834 */
2835 ath_beacon_config(sc);
2836
2837 /* start periodic recalibration timer */
2838 callout_reset(&sc->sc_cal_ch, hz * ath_calinterval,
2839 ath_calibrate, sc);
2840 } else {
2841 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
2842 ath_hal_intrset(ah, sc->sc_imask);
2843 callout_stop(&sc->sc_cal_ch); /* no calibration */
2844 }
2845 /*
2846 * Reset the rate control state.
2847 */
2848 ath_rate_ctl_reset(sc, nstate);
2849 /*
2850 * Invoke the parent method to complete the work.
2851 */
2852 return (*sc->sc_newstate)(ic, nstate, arg);
2853 bad:
2854 callout_stop(&sc->sc_scan_ch);
2855 callout_stop(&sc->sc_cal_ch);
2856 /* NB: do not invoke the parent */
2857 return error;
2858 }
2859
2860 /*
2861 * Setup driver-specific state for a newly associated node.
2862 * Note that we're called also on a re-associate, the isnew
2863 * param tells us if this is the first time or not.
2864 */
2865 static void
2866 ath_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
2867 {
2868 if (isnew) {
2869 struct ath_node *an = (struct ath_node *) ni;
2870
2871 an->an_tx_ok = an->an_tx_err =
2872 an->an_tx_retr = an->an_tx_upper = 0;
2873 /* start with highest negotiated rate */
2874 /*
2875 * XXX should do otherwise but only when
2876 * the rate control algorithm is better.
2877 */
2878 KASSERT(ni->ni_rates.rs_nrates > 0,
2879 ("new association w/ no rates!"));
2880 ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
2881 }
2882 }
2883
2884 static int
2885 ath_getchannels(struct ath_softc *sc, u_int cc, HAL_BOOL outdoor)
2886 {
2887 struct ieee80211com *ic = &sc->sc_ic;
2888 struct ifnet *ifp = &ic->ic_if;
2889 struct ath_hal *ah = sc->sc_ah;
2890 HAL_CHANNEL *chans;
2891 int i, ix, nchan;
2892
2893 sc->sc_have11g = 0;
2894 chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
2895 M_TEMP, M_NOWAIT);
2896 if (chans == NULL) {
2897 if_printf(ifp, "unable to allocate channel table\n");
2898 return ENOMEM;
2899 }
2900 if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
2901 cc, HAL_MODE_ALL, outdoor)) {
2902 if_printf(ifp, "unable to collect channel list from hal\n");
2903 free(chans, M_TEMP);
2904 return EINVAL;
2905 }
2906
2907 /*
2908 * Convert HAL channels to ieee80211 ones and insert
2909 * them in the table according to their channel number.
2910 */
2911 for (i = 0; i < nchan; i++) {
2912 HAL_CHANNEL *c = &chans[i];
2913 ix = ath_hal_mhz2ieee(c->channel, c->channelFlags);
2914 if (ix > IEEE80211_CHAN_MAX) {
2915 if_printf(ifp, "bad hal channel %u (%u/%x) ignored\n",
2916 ix, c->channel, c->channelFlags);
2917 continue;
2918 }
2919 /* NB: flags are known to be compatible */
2920 if (ic->ic_channels[ix].ic_freq == 0) {
2921 ic->ic_channels[ix].ic_freq = c->channel;
2922 ic->ic_channels[ix].ic_flags = c->channelFlags;
2923 } else {
2924 /* channels overlap; e.g. 11g and 11b */
2925 ic->ic_channels[ix].ic_flags |= c->channelFlags;
2926 }
2927 if ((c->channelFlags & CHANNEL_G) == CHANNEL_G)
2928 sc->sc_have11g = 1;
2929 }
2930 free(chans, M_TEMP);
2931 return 0;
2932 }
2933
2934 static int
2935 ath_rate_setup(struct ath_softc *sc, u_int mode)
2936 {
2937 struct ath_hal *ah = sc->sc_ah;
2938 struct ieee80211com *ic = &sc->sc_ic;
2939 const HAL_RATE_TABLE *rt;
2940 struct ieee80211_rateset *rs;
2941 int i, maxrates;
2942
2943 switch (mode) {
2944 case IEEE80211_MODE_11A:
2945 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11A);
2946 break;
2947 case IEEE80211_MODE_11B:
2948 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11B);
2949 break;
2950 case IEEE80211_MODE_11G:
2951 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11G);
2952 break;
2953 case IEEE80211_MODE_TURBO:
2954 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_TURBO);
2955 break;
2956 default:
2957 DPRINTF(("%s: invalid mode %u\n", __func__, mode));
2958 return 0;
2959 }
2960 rt = sc->sc_rates[mode];
2961 if (rt == NULL)
2962 return 0;
2963 if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
2964 DPRINTF(("%s: rate table too small (%u > %u)\n",
2965 __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE));
2966 maxrates = IEEE80211_RATE_MAXSIZE;
2967 } else
2968 maxrates = rt->rateCount;
2969 rs = &ic->ic_sup_rates[mode];
2970 for (i = 0; i < maxrates; i++)
2971 rs->rs_rates[i] = rt->info[i].dot11Rate;
2972 rs->rs_nrates = maxrates;
2973 return 1;
2974 }
2975
2976 static void
2977 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
2978 {
2979 const HAL_RATE_TABLE *rt;
2980 int i;
2981
2982 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
2983 rt = sc->sc_rates[mode];
2984 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
2985 for (i = 0; i < rt->rateCount; i++)
2986 sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
2987 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
2988 for (i = 0; i < 32; i++)
2989 sc->sc_hwmap[i] = rt->info[rt->rateCodeToIndex[i]].dot11Rate;
2990 sc->sc_currates = rt;
2991 sc->sc_curmode = mode;
2992 }
2993
2994 /*
2995 * Reset the rate control state for each 802.11 state transition.
2996 */
2997 static void
2998 ath_rate_ctl_reset(struct ath_softc *sc, enum ieee80211_state state)
2999 {
3000 struct ieee80211com *ic = &sc->sc_ic;
3001 struct ieee80211_node *ni;
3002 struct ath_node *an;
3003
3004 an = (struct ath_node *) ic->ic_bss;
3005 an->an_tx_ok = an->an_tx_err = an->an_tx_retr = an->an_tx_upper = 0;
3006 if (ic->ic_opmode == IEEE80211_M_STA) {
3007 ni = ic->ic_bss;
3008 if (state == IEEE80211_S_RUN) {
3009 /* start with highest negotiated rate */
3010 KASSERT(ni->ni_rates.rs_nrates > 0,
3011 ("transition to RUN state w/ no rates!"));
3012 ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
3013 } else {
3014 /* use lowest rate */
3015 ni->ni_txrate = 0;
3016 }
3017 } else {
3018 TAILQ_FOREACH(ni, &ic->ic_node, ni_list) {
3019 ni->ni_txrate = 0; /* use lowest rate */
3020 an = (struct ath_node *) ni;
3021 an->an_tx_ok = an->an_tx_err = an->an_tx_retr =
3022 an->an_tx_upper = 0;
3023 }
3024 }
3025 }
3026
3027 /*
3028 * Examine and potentially adjust the transmit rate.
3029 */
3030 static void
3031 ath_rate_ctl(void *arg, struct ieee80211_node *ni)
3032 {
3033 struct ath_softc *sc = arg;
3034 struct ath_node *an = (struct ath_node *) ni;
3035 struct ieee80211_rateset *rs = &ni->ni_rates;
3036 int mod = 0, orate, enough;
3037
3038 /*
3039 * Rate control
3040 * XXX: very primitive version.
3041 */
3042 sc->sc_stats.ast_rate_calls++;
3043
3044 enough = (an->an_tx_ok + an->an_tx_err >= 10);
3045
3046 /* no packet reached -> down */
3047 if (an->an_tx_err > 0 && an->an_tx_ok == 0)
3048 mod = -1;
3049
3050 /* all packets needs retry in average -> down */
3051 if (enough && an->an_tx_ok < an->an_tx_retr)
3052 mod = -1;
3053
3054 /* no error and less than 10% of packets needs retry -> up */
3055 if (enough && an->an_tx_err == 0 && an->an_tx_ok > an->an_tx_retr * 10)
3056 mod = 1;
3057
3058 orate = ni->ni_txrate;
3059 switch (mod) {
3060 case 0:
3061 if (enough && an->an_tx_upper > 0)
3062 an->an_tx_upper--;
3063 break;
3064 case -1:
3065 if (ni->ni_txrate > 0) {
3066 ni->ni_txrate--;
3067 sc->sc_stats.ast_rate_drop++;
3068 }
3069 an->an_tx_upper = 0;
3070 break;
3071 case 1:
3072 if (++an->an_tx_upper < 2)
3073 break;
3074 an->an_tx_upper = 0;
3075 if (ni->ni_txrate + 1 < rs->rs_nrates) {
3076 ni->ni_txrate++;
3077 sc->sc_stats.ast_rate_raise++;
3078 }
3079 break;
3080 }
3081
3082 if (ni->ni_txrate != orate) {
3083 printf("%s: %dM -> %dM (%d ok, %d err, %d retr)\n",
3084 __func__,
3085 (rs->rs_rates[orate] & IEEE80211_RATE_VAL) / 2,
3086 (rs->rs_rates[ni->ni_txrate] & IEEE80211_RATE_VAL) / 2,
3087 an->an_tx_ok, an->an_tx_err, an->an_tx_retr);
3088 }
3089 if (ni->ni_txrate != orate || enough)
3090 an->an_tx_ok = an->an_tx_err = an->an_tx_retr = 0;
3091 }
3092
3093 #ifdef AR_DEBUG
3094 #ifdef __FreeBSD__
3095 static int
3096 sysctl_hw_ath_dump(SYSCTL_HANDLER_ARGS)
3097 {
3098 char dmode[64];
3099 int error;
3100
3101 strncpy(dmode, "", sizeof(dmode) - 1);
3102 dmode[sizeof(dmode) - 1] = '\0';
3103 error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req);
3104
3105 if (error == 0 && req->newptr != NULL) {
3106 struct ifnet *ifp;
3107 struct ath_softc *sc;
3108
3109 ifp = ifunit("ath0"); /* XXX */
3110 if (!ifp)
3111 return EINVAL;
3112 sc = ifp->if_softc;
3113 if (strcmp(dmode, "hal") == 0)
3114 ath_hal_dumpstate(sc->sc_ah);
3115 else if (strcmp(dmode, "eeprom") == 0)
3116 ath_hal_dumpeeprom(sc->sc_ah);
3117 else if (strcmp(dmode, "rfgain") == 0)
3118 ath_hal_dumprfgain(sc->sc_ah);
3119 else if (strcmp(dmode, "ani") == 0)
3120 ath_hal_dumpani(sc->sc_ah);
3121 else
3122 return EINVAL;
3123 }
3124 return error;
3125 }
3126 SYSCTL_PROC(_hw_ath, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW,
3127 0, 0, sysctl_hw_ath_dump, "A", "Dump driver state");
3128 #endif /* __FreeBSD__ */
3129
3130 static void
3131 ath_printrxbuf(struct ath_buf *bf, int done)
3132 {
3133 struct ath_desc *ds;
3134 int i;
3135
3136 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
3137 printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n",
3138 i, ds, (struct ath_desc *)bf->bf_daddr + i,
3139 ds->ds_link, ds->ds_data,
3140 ds->ds_ctl0, ds->ds_ctl1,
3141 ds->ds_hw[0], ds->ds_hw[1],
3142 !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
3143 }
3144 }
3145
3146 static void
3147 ath_printtxbuf(struct ath_buf *bf, int done)
3148 {
3149 struct ath_desc *ds;
3150 int i;
3151
3152 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
3153 printf("T%d (%p %p) %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
3154 i, ds, (struct ath_desc *)bf->bf_daddr + i,
3155 ds->ds_link, ds->ds_data,
3156 ds->ds_ctl0, ds->ds_ctl1,
3157 ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
3158 !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
3159 }
3160 }
3161 #endif /* AR_DEBUG */
3162