Home | History | Annotate | Line # | Download | only in ic
ath.c revision 1.47
      1 /*	$NetBSD: ath.c,v 1.47 2005/06/22 06:15:51 dyoung Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer,
     12  *    without modification.
     13  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
     14  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
     15  *    redistribution must be conditioned upon including a substantially
     16  *    similar Disclaimer requirement for further binary redistribution.
     17  * 3. Neither the names of the above-listed copyright holders nor the names
     18  *    of any contributors may be used to endorse or promote products derived
     19  *    from this software without specific prior written permission.
     20  *
     21  * Alternatively, this software may be distributed under the terms of the
     22  * GNU General Public License ("GPL") version 2 as published by the Free
     23  * Software Foundation.
     24  *
     25  * NO WARRANTY
     26  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     28  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
     29  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
     30  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
     31  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
     34  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     36  * THE POSSIBILITY OF SUCH DAMAGES.
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 #ifdef __FreeBSD__
     41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.76 2005/01/24 20:31:24 sam Exp $");
     42 #endif
     43 #ifdef __NetBSD__
     44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.47 2005/06/22 06:15:51 dyoung Exp $");
     45 #endif
     46 
     47 /*
     48  * Driver for the Atheros Wireless LAN controller.
     49  *
     50  * This software is derived from work of Atsushi Onoe; his contribution
     51  * is greatly appreciated.
     52  */
     53 
     54 #include "opt_inet.h"
     55 
     56 #ifdef __NetBSD__
     57 #include "bpfilter.h"
     58 #endif /* __NetBSD__ */
     59 
     60 #include <sys/param.h>
     61 #include <sys/reboot.h>
     62 #include <sys/systm.h>
     63 #include <sys/types.h>
     64 #include <sys/sysctl.h>
     65 #include <sys/mbuf.h>
     66 #include <sys/malloc.h>
     67 #include <sys/lock.h>
     68 #include <sys/kernel.h>
     69 #include <sys/socket.h>
     70 #include <sys/sockio.h>
     71 #include <sys/errno.h>
     72 #include <sys/callout.h>
     73 #include <machine/bus.h>
     74 #include <sys/endian.h>
     75 
     76 #include <machine/bus.h>
     77 
     78 #include <net/if.h>
     79 #include <net/if_dl.h>
     80 #include <net/if_media.h>
     81 #include <net/if_arp.h>
     82 #include <net/if_ether.h>
     83 #include <net/if_llc.h>
     84 
     85 #include <net80211/ieee80211_netbsd.h>
     86 #include <net80211/ieee80211_var.h>
     87 
     88 #if NBPFILTER > 0
     89 #include <net/bpf.h>
     90 #endif
     91 
     92 #ifdef INET
     93 #include <netinet/in.h>
     94 #endif
     95 
     96 #include <dev/ic/ath_netbsd.h>
     97 
     98 #define	AR_DEBUG
     99 #include <dev/ic/athvar.h>
    100 #include <contrib/dev/ic/athhal_desc.h>
    101 #include <contrib/dev/ic/athhal_devid.h>	/* XXX for softled */
    102 
    103 /* unaligned little endian access */
    104 #define LE_READ_2(p)							\
    105 	((u_int16_t)							\
    106 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
    107 #define LE_READ_4(p)							\
    108 	((u_int32_t)							\
    109 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
    110 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
    111 
    112 enum {
    113 	ATH_LED_TX,
    114 	ATH_LED_RX,
    115 	ATH_LED_POLL,
    116 };
    117 
    118 static int	ath_init(struct ifnet *);
    119 static void	ath_stop_locked(struct ifnet *, int);
    120 static void	ath_stop(struct ifnet *, int);
    121 static void	ath_start(struct ifnet *);
    122 static int	ath_media_change(struct ifnet *);
    123 static void	ath_watchdog(struct ifnet *);
    124 static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
    125 static void	ath_fatal_proc(void *, int);
    126 static void	ath_rxorn_proc(void *, int);
    127 static void	ath_bmiss_proc(void *, int);
    128 static void	ath_initkeytable(struct ath_softc *);
    129 static int	ath_key_alloc(struct ieee80211com *,
    130 			const struct ieee80211_key *);
    131 static int	ath_key_delete(struct ieee80211com *,
    132 			const struct ieee80211_key *);
    133 static int	ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
    134 			const u_int8_t mac[IEEE80211_ADDR_LEN]);
    135 static void	ath_key_update_begin(struct ieee80211com *);
    136 static void	ath_key_update_end(struct ieee80211com *);
    137 static void	ath_mode_init(struct ath_softc *);
    138 static void	ath_setslottime(struct ath_softc *);
    139 static void	ath_updateslot(struct ifnet *);
    140 static int	ath_beaconq_setup(struct ath_hal *);
    141 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
    142 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
    143 static void	ath_beacon_proc(void *, int);
    144 static void	ath_bstuck_proc(void *, int);
    145 static void	ath_beacon_free(struct ath_softc *);
    146 static void	ath_beacon_config(struct ath_softc *);
    147 static void	ath_descdma_cleanup(struct ath_softc *sc,
    148 			struct ath_descdma *, ath_bufhead *);
    149 static int	ath_desc_alloc(struct ath_softc *);
    150 static void	ath_desc_free(struct ath_softc *);
    151 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
    152 static void	ath_node_free(struct ieee80211_node *);
    153 static u_int8_t	ath_node_getrssi(const struct ieee80211_node *);
    154 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
    155 static void	ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
    156 			struct ieee80211_node *ni,
    157 			int subtype, int rssi, u_int32_t rstamp);
    158 static void	ath_setdefantenna(struct ath_softc *, u_int);
    159 static void	ath_rx_proc(void *, int);
    160 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
    161 static int	ath_tx_setup(struct ath_softc *, int, int);
    162 static int	ath_wme_update(struct ieee80211com *);
    163 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
    164 static void	ath_tx_cleanup(struct ath_softc *);
    165 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
    166 			     struct ath_buf *, struct mbuf *);
    167 static void	ath_tx_proc_q0(void *, int);
    168 static void	ath_tx_proc_q0123(void *, int);
    169 static void	ath_tx_proc(void *, int);
    170 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
    171 static void	ath_draintxq(struct ath_softc *);
    172 static void	ath_stoprecv(struct ath_softc *);
    173 static int	ath_startrecv(struct ath_softc *);
    174 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
    175 static void	ath_next_scan(void *);
    176 static void	ath_calibrate(void *);
    177 static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
    178 static void	ath_newassoc(struct ieee80211com *,
    179 			struct ieee80211_node *, int);
    180 static int	ath_getchannels(struct ath_softc *, u_int cc,
    181 			HAL_BOOL outdoor, HAL_BOOL xchanmode);
    182 static void	ath_led_event(struct ath_softc *, int);
    183 static void	ath_update_txpow(struct ath_softc *);
    184 
    185 static int	ath_rate_setup(struct ath_softc *, u_int mode);
    186 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
    187 
    188 #ifdef __NetBSD__
    189 int	ath_enable(struct ath_softc *);
    190 void	ath_disable(struct ath_softc *);
    191 void	ath_power(int, void *);
    192 #endif
    193 
    194 static void	ath_bpfattach(struct ath_softc *);
    195 static void	ath_announce(struct ath_softc *);
    196 
    197 int ath_dwelltime = 200;		/* 5 channels/second */
    198 int ath_calinterval = 30;		/* calibrate every 30 secs */
    199 int ath_outdoor = AH_TRUE;		/* outdoor operation */
    200 int ath_xchanmode = AH_TRUE;		/* enable extended channels */
    201 int ath_countrycode = CTRY_DEFAULT;	/* country code */
    202 int ath_regdomain = 0;			/* regulatory domain */
    203 int ath_debug = 0;
    204 
    205 #ifdef AR_DEBUG
    206 enum {
    207 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
    208 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
    209 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
    210 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
    211 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
    212 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
    213 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
    214 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
    215 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
    216 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
    217 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
    218 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
    219 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
    220 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
    221 	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
    222 	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
    223 	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
    224 	ATH_DEBUG_LED		= 0x00100000,	/* led management */
    225 	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
    226 	ATH_DEBUG_ANY		= 0xffffffff
    227 };
    228 #define	IFF_DUMPPKTS(sc, m) \
    229 	((sc->sc_debug & (m)) || \
    230 	    (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
    231 #define	DPRINTF(sc, m, fmt, ...) do {				\
    232 	if (sc->sc_debug & (m))					\
    233 		printf(fmt, __VA_ARGS__);			\
    234 } while (0)
    235 #define	KEYPRINTF(sc, ix, hk, mac) do {				\
    236 	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
    237 		ath_keyprint(__func__, ix, hk, mac);		\
    238 } while (0)
    239 static	void ath_printrxbuf(struct ath_buf *bf, int);
    240 static	void ath_printtxbuf(struct ath_buf *bf, int);
    241 #else
    242 #define	IFF_DUMPPKTS(sc, m) \
    243 	((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
    244 #define	DPRINTF(m, fmt, ...)
    245 #define	KEYPRINTF(sc, k, ix, mac)
    246 #endif
    247 
    248 #ifdef __NetBSD__
    249 int
    250 ath_activate(struct device *self, enum devact act)
    251 {
    252 	struct ath_softc *sc = (struct ath_softc *)self;
    253 	int rv = 0, s;
    254 
    255 	s = splnet();
    256 	switch (act) {
    257 	case DVACT_ACTIVATE:
    258 		rv = EOPNOTSUPP;
    259 		break;
    260 	case DVACT_DEACTIVATE:
    261 		if_deactivate(&sc->sc_if);
    262 		break;
    263 	}
    264 	splx(s);
    265 	return rv;
    266 }
    267 
    268 int
    269 ath_enable(struct ath_softc *sc)
    270 {
    271 	if (ATH_IS_ENABLED(sc) == 0) {
    272 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
    273 			printf("%s: device enable failed\n",
    274 				sc->sc_dev.dv_xname);
    275 			return (EIO);
    276 		}
    277 		sc->sc_flags |= ATH_ENABLED;
    278 	}
    279 	return (0);
    280 }
    281 
    282 void
    283 ath_disable(struct ath_softc *sc)
    284 {
    285 	if (!ATH_IS_ENABLED(sc))
    286 		return;
    287 	if (sc->sc_disable != NULL)
    288 		(*sc->sc_disable)(sc);
    289 	sc->sc_flags &= ~ATH_ENABLED;
    290 }
    291 #endif /* __NetBSD__ */
    292 
    293 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
    294 
    295 int
    296 ath_attach(u_int16_t devid, struct ath_softc *sc)
    297 {
    298 	struct ifnet *ifp = &sc->sc_if;
    299 	struct ieee80211com *ic = &sc->sc_ic;
    300 	struct ath_hal *ah;
    301 	HAL_STATUS status;
    302 	int error = 0, i;
    303 
    304 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
    305 
    306 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
    307 
    308 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
    309 	if (ah == NULL) {
    310 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
    311 			status);
    312 		error = ENXIO;
    313 		goto bad;
    314 	}
    315 	if (ah->ah_abi != HAL_ABI_VERSION) {
    316 		if_printf(ifp, "HAL ABI mismatch detected "
    317 			"(HAL:0x%x != driver:0x%x)\n",
    318 			ah->ah_abi, HAL_ABI_VERSION);
    319 		error = ENXIO;
    320 		goto bad;
    321 	}
    322 	sc->sc_ah = ah;
    323 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
    324 
    325 	/*
    326 	 * Check if the MAC has multi-rate retry support.
    327 	 * We do this by trying to setup a fake extended
    328 	 * descriptor.  MAC's that don't have support will
    329 	 * return false w/o doing anything.  MAC's that do
    330 	 * support it will return true w/o doing anything.
    331 	 */
    332 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
    333 
    334 	/*
    335 	 * Check if the device has hardware counters for PHY
    336 	 * errors.  If so we need to enable the MIB interrupt
    337 	 * so we can act on stat triggers.
    338 	 */
    339 	if (ath_hal_hwphycounters(ah))
    340 		sc->sc_needmib = 1;
    341 
    342 	/*
    343 	 * Get the hardware key cache size.
    344 	 */
    345 	sc->sc_keymax = ath_hal_keycachesize(ah);
    346 	if (sc->sc_keymax > sizeof(sc->sc_keymap) * NBBY) {
    347 		if_printf(ifp,
    348 			"Warning, using only %zu of %u key cache slots\n",
    349 			sizeof(sc->sc_keymap) * NBBY, sc->sc_keymax);
    350 		sc->sc_keymax = sizeof(sc->sc_keymap) * NBBY;
    351 	}
    352 	/*
    353 	 * Reset the key cache since some parts do not
    354 	 * reset the contents on initial power up.
    355 	 */
    356 	for (i = 0; i < sc->sc_keymax; i++)
    357 		ath_hal_keyreset(ah, i);
    358 	/*
    359 	 * Mark key cache slots associated with global keys
    360 	 * as in use.  If we knew TKIP was not to be used we
    361 	 * could leave the +32, +64, and +32+64 slots free.
    362 	 * XXX only for splitmic.
    363 	 */
    364 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
    365 		setbit(sc->sc_keymap, i);
    366 		setbit(sc->sc_keymap, i+32);
    367 		setbit(sc->sc_keymap, i+64);
    368 		setbit(sc->sc_keymap, i+32+64);
    369 	}
    370 
    371 	/*
    372 	 * Collect the channel list using the default country
    373 	 * code and including outdoor channels.  The 802.11 layer
    374 	 * is resposible for filtering this list based on settings
    375 	 * like the phy mode.
    376 	 */
    377 	error = ath_getchannels(sc, ath_countrycode,
    378 			ath_outdoor, ath_xchanmode);
    379 	if (error != 0)
    380 		goto bad;
    381 	/*
    382 	 * Setup dynamic sysctl's now that country code and
    383 	 * regdomain are available from the hal.
    384 	 */
    385 	ath_sysctlattach(sc);
    386 
    387 	/*
    388 	 * Setup rate tables for all potential media types.
    389 	 */
    390 	ath_rate_setup(sc, IEEE80211_MODE_11A);
    391 	ath_rate_setup(sc, IEEE80211_MODE_11B);
    392 	ath_rate_setup(sc, IEEE80211_MODE_11G);
    393 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
    394 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
    395 	/* NB: setup here so ath_rate_update is happy */
    396 	ath_setcurmode(sc, IEEE80211_MODE_11A);
    397 
    398 	/*
    399 	 * Allocate tx+rx descriptors and populate the lists.
    400 	 */
    401 	error = ath_desc_alloc(sc);
    402 	if (error != 0) {
    403 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
    404 		goto bad;
    405 	}
    406 	ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
    407 	ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE);
    408 
    409 	ATH_TXBUF_LOCK_INIT(sc);
    410 
    411 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
    412 	TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
    413 	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
    414 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
    415 	TASK_INIT(&sc->sc_bstucktask, 0, ath_bstuck_proc, sc);
    416 
    417 	/*
    418 	 * Allocate hardware transmit queues: one queue for
    419 	 * beacon frames and one data queue for each QoS
    420 	 * priority.  Note that the hal handles reseting
    421 	 * these queues at the needed time.
    422 	 *
    423 	 * XXX PS-Poll
    424 	 */
    425 	sc->sc_bhalq = ath_beaconq_setup(ah);
    426 	if (sc->sc_bhalq == (u_int) -1) {
    427 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
    428 		error = EIO;
    429 		goto bad2;
    430 	}
    431 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
    432 	if (sc->sc_cabq == NULL) {
    433 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
    434 		error = EIO;
    435 		goto bad2;
    436 	}
    437 	/* NB: insure BK queue is the lowest priority h/w queue */
    438 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
    439 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
    440 			ieee80211_wme_acnames[WME_AC_BK]);
    441 		error = EIO;
    442 		goto bad2;
    443 	}
    444 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
    445 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
    446 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
    447 		/*
    448 		 * Not enough hardware tx queues to properly do WME;
    449 		 * just punt and assign them all to the same h/w queue.
    450 		 * We could do a better job of this if, for example,
    451 		 * we allocate queues when we switch from station to
    452 		 * AP mode.
    453 		 */
    454 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
    455 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
    456 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
    457 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
    458 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
    459 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
    460 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
    461 	}
    462 
    463 	/*
    464 	 * Special case certain configurations.  Note the
    465 	 * CAB queue is handled by these specially so don't
    466 	 * include them when checking the txq setup mask.
    467 	 */
    468 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
    469 	case 0x01:
    470 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
    471 		break;
    472 	case 0x0f:
    473 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
    474 		break;
    475 	default:
    476 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
    477 		break;
    478 	}
    479 
    480 	/*
    481 	 * Setup rate control.  Some rate control modules
    482 	 * call back to change the anntena state so expose
    483 	 * the necessary entry points.
    484 	 * XXX maybe belongs in struct ath_ratectrl?
    485 	 */
    486 	sc->sc_setdefantenna = ath_setdefantenna;
    487 	sc->sc_rc = ath_rate_attach(sc);
    488 	if (sc->sc_rc == NULL) {
    489 		error = EIO;
    490 		goto bad2;
    491 	}
    492 
    493 	sc->sc_blinking = 0;
    494 	sc->sc_ledstate = 1;
    495 	sc->sc_ledon = 0;			/* low true */
    496 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
    497 	ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE);
    498 	/*
    499 	 * Auto-enable soft led processing for IBM cards and for
    500 	 * 5211 minipci cards.  Users can also manually enable/disable
    501 	 * support with a sysctl.
    502 	 */
    503 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
    504 	if (sc->sc_softled) {
    505 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
    506 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
    507 	}
    508 
    509 	ifp->if_softc = sc;
    510 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
    511 	ifp->if_start = ath_start;
    512 	ifp->if_watchdog = ath_watchdog;
    513 	ifp->if_ioctl = ath_ioctl;
    514 	ifp->if_init = ath_init;
    515 	IFQ_SET_READY(&ifp->if_snd);
    516 
    517 	ic->ic_ifp = ifp;
    518 	ic->ic_reset = ath_reset;
    519 	ic->ic_newassoc = ath_newassoc;
    520 	ic->ic_updateslot = ath_updateslot;
    521 	ic->ic_wme.wme_update = ath_wme_update;
    522 	/* XXX not right but it's not used anywhere important */
    523 	ic->ic_phytype = IEEE80211_T_OFDM;
    524 	ic->ic_opmode = IEEE80211_M_STA;
    525 	ic->ic_caps =
    526 		  IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
    527 		| IEEE80211_C_HOSTAP		/* hostap mode */
    528 		| IEEE80211_C_MONITOR		/* monitor mode */
    529 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
    530 		| IEEE80211_C_SHSLOT		/* short slot time supported */
    531 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
    532 		;
    533 	/*
    534 	 * Query the hal to figure out h/w crypto support.
    535 	 */
    536 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
    537 		ic->ic_caps |= IEEE80211_C_WEP;
    538 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
    539 		ic->ic_caps |= IEEE80211_C_AES;
    540 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
    541 		ic->ic_caps |= IEEE80211_C_AES_CCM;
    542 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
    543 		ic->ic_caps |= IEEE80211_C_CKIP;
    544 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
    545 		ic->ic_caps |= IEEE80211_C_TKIP;
    546 		/*
    547 		 * Check if h/w does the MIC and/or whether the
    548 		 * separate key cache entries are required to
    549 		 * handle both tx+rx MIC keys.
    550 		 */
    551 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
    552 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
    553 		if (ath_hal_tkipsplit(ah))
    554 			sc->sc_splitmic = 1;
    555 	}
    556 	/*
    557 	 * TPC support can be done either with a global cap or
    558 	 * per-packet support.  The latter is not available on
    559 	 * all parts.  We're a bit pedantic here as all parts
    560 	 * support a global cap.
    561 	 */
    562 	sc->sc_hastpc = ath_hal_hastpc(ah);
    563 	if (sc->sc_hastpc || ath_hal_hastxpowlimit(ah))
    564 		ic->ic_caps |= IEEE80211_C_TXPMGT;
    565 
    566 	/*
    567 	 * Mark WME capability only if we have sufficient
    568 	 * hardware queues to do proper priority scheduling.
    569 	 */
    570 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
    571 		ic->ic_caps |= IEEE80211_C_WME;
    572 	/*
    573 	 * Check for frame bursting capability.
    574 	 */
    575 	if (ath_hal_hasbursting(ah))
    576 		ic->ic_caps |= IEEE80211_C_BURST;
    577 
    578 	/*
    579 	 * Indicate we need the 802.11 header padded to a
    580 	 * 32-bit boundary for 4-address and QoS frames.
    581 	 */
    582 	ic->ic_flags |= IEEE80211_F_DATAPAD;
    583 
    584 	/*
    585 	 * Query the hal about antenna support.
    586 	 */
    587 	if (ath_hal_hasdiversity(ah)) {
    588 		sc->sc_hasdiversity = 1;
    589 		sc->sc_diversity = ath_hal_getdiversity(ah);
    590 	}
    591 	sc->sc_defant = ath_hal_getdefantenna(ah);
    592 
    593 	/*
    594 	 * Not all chips have the VEOL support we want to
    595 	 * use with IBSS beacons; check here for it.
    596 	 */
    597 	sc->sc_hasveol = ath_hal_hasveol(ah);
    598 
    599 	/* get mac address from hardware */
    600 	ath_hal_getmac(ah, ic->ic_myaddr);
    601 
    602 	if_attach(ifp);
    603 	/* call MI attach routine. */
    604 	ieee80211_ifattach(ic);
    605 	/* override default methods */
    606 	ic->ic_node_alloc = ath_node_alloc;
    607 	sc->sc_node_free = ic->ic_node_free;
    608 	ic->ic_node_free = ath_node_free;
    609 	ic->ic_node_getrssi = ath_node_getrssi;
    610 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
    611 	ic->ic_recv_mgmt = ath_recv_mgmt;
    612 	sc->sc_newstate = ic->ic_newstate;
    613 	ic->ic_newstate = ath_newstate;
    614 	ic->ic_crypto.cs_key_alloc = ath_key_alloc;
    615 	ic->ic_crypto.cs_key_delete = ath_key_delete;
    616 	ic->ic_crypto.cs_key_set = ath_key_set;
    617 	ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
    618 	ic->ic_crypto.cs_key_update_end = ath_key_update_end;
    619 	/* complete initialization */
    620 	ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
    621 
    622 	ath_bpfattach(sc);
    623 
    624 #ifdef __NetBSD__
    625 	sc->sc_flags |= ATH_ATTACHED;
    626 	/*
    627 	 * Make sure the interface is shutdown during reboot.
    628 	 */
    629 	sc->sc_sdhook = shutdownhook_establish(ath_shutdown, sc);
    630 	if (sc->sc_sdhook == NULL)
    631 		printf("%s: WARNING: unable to establish shutdown hook\n",
    632 			sc->sc_dev.dv_xname);
    633 	sc->sc_powerhook = powerhook_establish(ath_power, sc);
    634 	if (sc->sc_powerhook == NULL)
    635 		printf("%s: WARNING: unable to establish power hook\n",
    636 			sc->sc_dev.dv_xname);
    637 #endif
    638 	if (boothowto & AB_VERBOSE)
    639 		ieee80211_announce(ic);
    640 	ath_announce(sc);
    641 	return 0;
    642 bad2:
    643 	ath_tx_cleanup(sc);
    644 	ath_desc_free(sc);
    645 bad:
    646 	if (ah)
    647 		ath_hal_detach(ah);
    648 	sc->sc_invalid = 1;
    649 	return error;
    650 }
    651 
    652 int
    653 ath_detach(struct ath_softc *sc)
    654 {
    655 	struct ifnet *ifp = &sc->sc_if;
    656 	int s;
    657 
    658 	if ((sc->sc_flags & ATH_ATTACHED) == 0)
    659 		return (0);
    660 
    661 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
    662 		__func__, ifp->if_flags);
    663 
    664 	s = splnet();
    665 	ath_stop(ifp, 1);
    666 #if NBPFILTER > 0
    667 	bpfdetach(ifp);
    668 #endif
    669 	/*
    670 	 * NB: the order of these is important:
    671 	 * o call the 802.11 layer before detaching the hal to
    672 	 *   insure callbacks into the driver to delete global
    673 	 *   key cache entries can be handled
    674 	 * o reclaim the tx queue data structures after calling
    675 	 *   the 802.11 layer as we'll get called back to reclaim
    676 	 *   node state and potentially want to use them
    677 	 * o to cleanup the tx queues the hal is called, so detach
    678 	 *   it last
    679 	 * Other than that, it's straightforward...
    680 	 */
    681 	ieee80211_ifdetach(&sc->sc_ic);
    682 	ath_rate_detach(sc->sc_rc);
    683 	ath_desc_free(sc);
    684 	ath_tx_cleanup(sc);
    685 	ath_hal_detach(sc->sc_ah);
    686 	if_detach(ifp);
    687 	splx(s);
    688 	powerhook_disestablish(sc->sc_powerhook);
    689 	shutdownhook_disestablish(sc->sc_sdhook);
    690 
    691 	return 0;
    692 }
    693 
    694 #ifdef __NetBSD__
    695 void
    696 ath_power(int why, void *arg)
    697 {
    698 	struct ath_softc *sc = arg;
    699 	int s;
    700 
    701 	DPRINTF(sc, ATH_DEBUG_ANY, "ath_power(%d)\n", why);
    702 
    703 	s = splnet();
    704 	switch (why) {
    705 	case PWR_SUSPEND:
    706 	case PWR_STANDBY:
    707 		ath_suspend(sc, why);
    708 		break;
    709 	case PWR_RESUME:
    710 		ath_resume(sc, why);
    711 		break;
    712 	case PWR_SOFTSUSPEND:
    713 	case PWR_SOFTSTANDBY:
    714 	case PWR_SOFTRESUME:
    715 		break;
    716 	}
    717 	splx(s);
    718 }
    719 #endif
    720 
    721 void
    722 ath_suspend(struct ath_softc *sc, int why)
    723 {
    724 	struct ifnet *ifp = &sc->sc_if;
    725 
    726 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
    727 		__func__, ifp->if_flags);
    728 
    729 	ath_stop(ifp, 1);
    730 	if (sc->sc_power != NULL)
    731 		(*sc->sc_power)(sc, why);
    732 }
    733 
    734 void
    735 ath_resume(struct ath_softc *sc, int why)
    736 {
    737 	struct ifnet *ifp = &sc->sc_if;
    738 
    739 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
    740 		__func__, ifp->if_flags);
    741 
    742 	if (ifp->if_flags & IFF_UP) {
    743 		ath_init(ifp);
    744 #if 0
    745 		(void)ath_intr(sc);
    746 #endif
    747 		if (sc->sc_power != NULL)
    748 			(*sc->sc_power)(sc, why);
    749 		if (ifp->if_flags & IFF_RUNNING)
    750 			ath_start(ifp);
    751 	}
    752 }
    753 
    754 void
    755 ath_shutdown(void *arg)
    756 {
    757 	struct ath_softc *sc = arg;
    758 
    759 	ath_stop(&sc->sc_if, 1);
    760 }
    761 
    762 /*
    763  * Interrupt handler.  Most of the actual processing is deferred.
    764  */
    765 int
    766 ath_intr(void *arg)
    767 {
    768 	struct ath_softc *sc = arg;
    769 	struct ifnet *ifp = &sc->sc_if;
    770 	struct ath_hal *ah = sc->sc_ah;
    771 	HAL_INT status;
    772 
    773 	if (sc->sc_invalid) {
    774 		/*
    775 		 * The hardware is not ready/present, don't touch anything.
    776 		 * Note this can happen early on if the IRQ is shared.
    777 		 */
    778 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
    779 		return 0;
    780 	}
    781 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
    782 		return 0;
    783 	if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
    784 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
    785 			__func__, ifp->if_flags);
    786 		ath_hal_getisr(ah, &status);	/* clear ISR */
    787 		ath_hal_intrset(ah, 0);		/* disable further intr's */
    788 		return 1; /* XXX */
    789 	}
    790 	/*
    791 	 * Figure out the reason(s) for the interrupt.  Note
    792 	 * that the hal returns a pseudo-ISR that may include
    793 	 * bits we haven't explicitly enabled so we mask the
    794 	 * value to insure we only process bits we requested.
    795 	 */
    796 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
    797 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
    798 	status &= sc->sc_imask;			/* discard unasked for bits */
    799 	if (status & HAL_INT_FATAL) {
    800 		/*
    801 		 * Fatal errors are unrecoverable.  Typically
    802 		 * these are caused by DMA errors.  Unfortunately
    803 		 * the exact reason is not (presently) returned
    804 		 * by the hal.
    805 		 */
    806 		sc->sc_stats.ast_hardware++;
    807 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
    808 		TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
    809 	} else if (status & HAL_INT_RXORN) {
    810 		sc->sc_stats.ast_rxorn++;
    811 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
    812 		TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
    813 	} else {
    814 		if (status & HAL_INT_SWBA) {
    815 			/*
    816 			 * Software beacon alert--time to send a beacon.
    817 			 * Handle beacon transmission directly; deferring
    818 			 * this is too slow to meet timing constraints
    819 			 * under load.
    820 			 */
    821 			ath_beacon_proc(sc, 0);
    822 		}
    823 		if (status & HAL_INT_RXEOL) {
    824 			/*
    825 			 * NB: the hardware should re-read the link when
    826 			 *     RXE bit is written, but it doesn't work at
    827 			 *     least on older hardware revs.
    828 			 */
    829 			sc->sc_stats.ast_rxeol++;
    830 			sc->sc_rxlink = NULL;
    831 		}
    832 		if (status & HAL_INT_TXURN) {
    833 			sc->sc_stats.ast_txurn++;
    834 			/* bump tx trigger level */
    835 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
    836 		}
    837 		if (status & HAL_INT_RX)
    838 			TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
    839 		if (status & HAL_INT_TX)
    840 			TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
    841 		if (status & HAL_INT_BMISS) {
    842 			sc->sc_stats.ast_bmiss++;
    843 			TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
    844 		}
    845 		if (status & HAL_INT_MIB) {
    846 			sc->sc_stats.ast_mib++;
    847 			/*
    848 			 * Disable interrupts until we service the MIB
    849 			 * interrupt; otherwise it will continue to fire.
    850 			 */
    851 			ath_hal_intrset(ah, 0);
    852 			/*
    853 			 * Let the hal handle the event.  We assume it will
    854 			 * clear whatever condition caused the interrupt.
    855 			 */
    856 			ath_hal_mibevent(ah,
    857 				&ATH_NODE(sc->sc_ic.ic_bss)->an_halstats);
    858 			ath_hal_intrset(ah, sc->sc_imask);
    859 		}
    860 	}
    861 	return 1;
    862 }
    863 
    864 static void
    865 ath_fatal_proc(void *arg, int pending)
    866 {
    867 	struct ath_softc *sc = arg;
    868 	struct ifnet *ifp = &sc->sc_if;
    869 
    870 	if_printf(ifp, "hardware error; resetting\n");
    871 	ath_reset(ifp);
    872 }
    873 
    874 static void
    875 ath_rxorn_proc(void *arg, int pending)
    876 {
    877 	struct ath_softc *sc = arg;
    878 	struct ifnet *ifp = &sc->sc_if;
    879 
    880 	if_printf(ifp, "rx FIFO overrun; resetting\n");
    881 	ath_reset(ifp);
    882 }
    883 
    884 static void
    885 ath_bmiss_proc(void *arg, int pending)
    886 {
    887 	struct ath_softc *sc = arg;
    888 	struct ieee80211com *ic = &sc->sc_ic;
    889 
    890 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
    891 	KASSERT(ic->ic_opmode == IEEE80211_M_STA,
    892 		("unexpect operating mode %u", ic->ic_opmode));
    893 	if (ic->ic_state == IEEE80211_S_RUN) {
    894 		/*
    895 		 * Rather than go directly to scan state, try to
    896 		 * reassociate first.  If that fails then the state
    897 		 * machine will drop us into scanning after timing
    898 		 * out waiting for a probe response.
    899 		 */
    900 		NET_LOCK_GIANT();
    901 		ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1);
    902 		NET_UNLOCK_GIANT();
    903 	}
    904 }
    905 
    906 static u_int
    907 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
    908 {
    909 #define	N(a)	(sizeof(a) / sizeof(a[0]))
    910 	static const u_int modeflags[] = {
    911 		0,			/* IEEE80211_MODE_AUTO */
    912 		CHANNEL_A,		/* IEEE80211_MODE_11A */
    913 		CHANNEL_B,		/* IEEE80211_MODE_11B */
    914 		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
    915 		0,			/* IEEE80211_MODE_FH */
    916 		CHANNEL_T,		/* IEEE80211_MODE_TURBO_A */
    917 		CHANNEL_108G		/* IEEE80211_MODE_TURBO_G */
    918 	};
    919 	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
    920 
    921 	KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
    922 	KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
    923 	return modeflags[mode];
    924 #undef N
    925 }
    926 
    927 static int
    928 ath_init(struct ifnet *ifp)
    929 {
    930 	struct ath_softc *sc = (struct ath_softc *)ifp->if_softc;
    931 	struct ieee80211com *ic = &sc->sc_ic;
    932 	struct ieee80211_node *ni;
    933 	struct ath_hal *ah = sc->sc_ah;
    934 	HAL_STATUS status;
    935 	int error = 0;
    936 
    937 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
    938 		__func__, ifp->if_flags);
    939 
    940 	ATH_LOCK(sc);
    941 
    942 	if ((error = ath_enable(sc)) != 0)
    943 		return error;
    944 
    945 	/*
    946 	 * Stop anything previously setup.  This is safe
    947 	 * whether this is the first time through or not.
    948 	 */
    949 	ath_stop_locked(ifp, 0);
    950 
    951 	/*
    952 	 * The basic interface to setting the hardware in a good
    953 	 * state is ``reset''.  On return the hardware is known to
    954 	 * be powered up and with interrupts disabled.  This must
    955 	 * be followed by initialization of the appropriate bits
    956 	 * and then setup of the interrupt mask.
    957 	 */
    958 	sc->sc_curchan.channel = ic->ic_ibss_chan->ic_freq;
    959 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_ibss_chan);
    960 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
    961 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
    962 			status);
    963 		error = EIO;
    964 		goto done;
    965 	}
    966 
    967 	/*
    968 	 * This is needed only to setup initial state
    969 	 * but it's best done after a reset.
    970 	 */
    971 	ath_update_txpow(sc);
    972 
    973 	/*
    974 	 * Setup the hardware after reset: the key cache
    975 	 * is filled as needed and the receive engine is
    976 	 * set going.  Frame transmit is handled entirely
    977 	 * in the frame output path; there's nothing to do
    978 	 * here except setup the interrupt mask.
    979 	 */
    980 	ath_initkeytable(sc);		/* XXX still needed? */
    981 	if ((error = ath_startrecv(sc)) != 0) {
    982 		if_printf(ifp, "unable to start recv logic\n");
    983 		goto done;
    984 	}
    985 
    986 	/*
    987 	 * Enable interrupts.
    988 	 */
    989 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
    990 		  | HAL_INT_RXEOL | HAL_INT_RXORN
    991 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
    992 	/*
    993 	 * Enable MIB interrupts when there are hardware phy counters.
    994 	 * Note we only do this (at the moment) for station mode.
    995 	 */
    996 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
    997 		sc->sc_imask |= HAL_INT_MIB;
    998 	ath_hal_intrset(ah, sc->sc_imask);
    999 
   1000 	ifp->if_flags |= IFF_RUNNING;
   1001 	ic->ic_state = IEEE80211_S_INIT;
   1002 
   1003 	/*
   1004 	 * The hardware should be ready to go now so it's safe
   1005 	 * to kick the 802.11 state machine as it's likely to
   1006 	 * immediately call back to us to send mgmt frames.
   1007 	 */
   1008 	ni = ic->ic_bss;
   1009 	ni->ni_chan = ic->ic_ibss_chan;
   1010 	ath_chan_change(sc, ni->ni_chan);
   1011 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   1012 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
   1013 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   1014 	} else
   1015 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   1016 done:
   1017 	ATH_UNLOCK(sc);
   1018 	return error;
   1019 }
   1020 
   1021 static void
   1022 ath_stop_locked(struct ifnet *ifp, int disable)
   1023 {
   1024 	struct ath_softc *sc = ifp->if_softc;
   1025 	struct ieee80211com *ic = &sc->sc_ic;
   1026 	struct ath_hal *ah = sc->sc_ah;
   1027 
   1028 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
   1029 		__func__, sc->sc_invalid, ifp->if_flags);
   1030 
   1031 	ATH_LOCK_ASSERT(sc);
   1032 	if (ifp->if_flags & IFF_RUNNING) {
   1033 		/*
   1034 		 * Shutdown the hardware and driver:
   1035 		 *    reset 802.11 state machine
   1036 		 *    turn off timers
   1037 		 *    disable interrupts
   1038 		 *    turn off the radio
   1039 		 *    clear transmit machinery
   1040 		 *    clear receive machinery
   1041 		 *    drain and release tx queues
   1042 		 *    reclaim beacon resources
   1043 		 *    power down hardware
   1044 		 *
   1045 		 * Note that some of this work is not possible if the
   1046 		 * hardware is gone (invalid).
   1047 		 */
   1048 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   1049 		ifp->if_flags &= ~IFF_RUNNING;
   1050 		ifp->if_timer = 0;
   1051 		if (!sc->sc_invalid) {
   1052 			if (sc->sc_softled) {
   1053 				callout_stop(&sc->sc_ledtimer);
   1054 				ath_hal_gpioset(ah, sc->sc_ledpin,
   1055 					!sc->sc_ledon);
   1056 				sc->sc_blinking = 0;
   1057 			}
   1058 			ath_hal_intrset(ah, 0);
   1059 		}
   1060 		ath_draintxq(sc);
   1061 		if (!sc->sc_invalid) {
   1062 			ath_stoprecv(sc);
   1063 			ath_hal_phydisable(ah);
   1064 		} else
   1065 			sc->sc_rxlink = NULL;
   1066 		IF_PURGE(&ifp->if_snd);
   1067 		ath_beacon_free(sc);
   1068 		if (disable)
   1069 			ath_disable(sc);
   1070 	}
   1071 }
   1072 
   1073 static void
   1074 ath_stop(struct ifnet *ifp, int disable)
   1075 {
   1076 	struct ath_softc *sc = ifp->if_softc;
   1077 
   1078 	ATH_LOCK(sc);
   1079 	ath_stop_locked(ifp, disable);
   1080 	if (!sc->sc_invalid) {
   1081 		/*
   1082 		 * Set the chip in full sleep mode.  Note that we are
   1083 		 * careful to do this only when bringing the interface
   1084 		 * completely to a stop.  When the chip is in this state
   1085 		 * it must be carefully woken up or references to
   1086 		 * registers in the PCI clock domain may freeze the bus
   1087 		 * (and system).  This varies by chip and is mostly an
   1088 		 * issue with newer parts that go to sleep more quickly.
   1089 		 */
   1090 		ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP, 0);
   1091 	}
   1092 	ATH_UNLOCK(sc);
   1093 }
   1094 
   1095 /*
   1096  * Reset the hardware w/o losing operational state.  This is
   1097  * basically a more efficient way of doing ath_stop, ath_init,
   1098  * followed by state transitions to the current 802.11
   1099  * operational state.  Used to recover from various errors and
   1100  * to reset or reload hardware state.
   1101  */
   1102 int
   1103 ath_reset(struct ifnet *ifp)
   1104 {
   1105 	struct ath_softc *sc = ifp->if_softc;
   1106 	struct ieee80211com *ic = &sc->sc_ic;
   1107 	struct ath_hal *ah = sc->sc_ah;
   1108 	struct ieee80211_channel *c;
   1109 	HAL_STATUS status;
   1110 
   1111 	/*
   1112 	 * Convert to a HAL channel description with the flags
   1113 	 * constrained to reflect the current operating mode.
   1114 	 */
   1115 	c = ic->ic_ibss_chan;
   1116 	sc->sc_curchan.channel = c->ic_freq;
   1117 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
   1118 
   1119 	ath_hal_intrset(ah, 0);		/* disable interrupts */
   1120 	ath_draintxq(sc);		/* stop xmit side */
   1121 	ath_stoprecv(sc);		/* stop recv side */
   1122 	/* NB: indicate channel change so we do a full reset */
   1123 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
   1124 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
   1125 			__func__, status);
   1126 	ath_update_txpow(sc);		/* update tx power state */
   1127 	if (ath_startrecv(sc) != 0)	/* restart recv */
   1128 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
   1129 	/*
   1130 	 * We may be doing a reset in response to an ioctl
   1131 	 * that changes the channel so update any state that
   1132 	 * might change as a result.
   1133 	 */
   1134 	ath_chan_change(sc, c);
   1135 	if (ic->ic_state == IEEE80211_S_RUN)
   1136 		ath_beacon_config(sc);	/* restart beacons */
   1137 	ath_hal_intrset(ah, sc->sc_imask);
   1138 
   1139 	ath_start(ifp);			/* restart xmit */
   1140 	return 0;
   1141 }
   1142 
   1143 static void
   1144 ath_start(struct ifnet *ifp)
   1145 {
   1146 	struct ath_softc *sc = ifp->if_softc;
   1147 	struct ath_hal *ah = sc->sc_ah;
   1148 	struct ieee80211com *ic = &sc->sc_ic;
   1149 	struct ieee80211_node *ni;
   1150 	struct ath_buf *bf;
   1151 	struct mbuf *m;
   1152 	struct ieee80211_frame *wh;
   1153 	struct ether_header *eh;
   1154 
   1155 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
   1156 		return;
   1157 	for (;;) {
   1158 		/*
   1159 		 * Grab a TX buffer and associated resources.
   1160 		 */
   1161 		ATH_TXBUF_LOCK(sc);
   1162 		bf = STAILQ_FIRST(&sc->sc_txbuf);
   1163 		if (bf != NULL)
   1164 			STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
   1165 		ATH_TXBUF_UNLOCK(sc);
   1166 		if (bf == NULL) {
   1167 			DPRINTF(sc, ATH_DEBUG_ANY, "%s: out of xmit buffers\n",
   1168 				__func__);
   1169 			sc->sc_stats.ast_tx_qstop++;
   1170 			ifp->if_flags |= IFF_OACTIVE;
   1171 			break;
   1172 		}
   1173 		/*
   1174 		 * Poll the management queue for frames; they
   1175 		 * have priority over normal data frames.
   1176 		 */
   1177 		IF_DEQUEUE(&ic->ic_mgtq, m);
   1178 		if (m == NULL) {
   1179 			/*
   1180 			 * No data frames go out unless we're associated.
   1181 			 */
   1182 			if (ic->ic_state != IEEE80211_S_RUN) {
   1183 				DPRINTF(sc, ATH_DEBUG_ANY,
   1184 					"%s: ignore data packet, state %u\n",
   1185 					__func__, ic->ic_state);
   1186 				sc->sc_stats.ast_tx_discard++;
   1187 				ATH_TXBUF_LOCK(sc);
   1188 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1189 				ATH_TXBUF_UNLOCK(sc);
   1190 				break;
   1191 			}
   1192 			IFQ_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
   1193 			if (m == NULL) {
   1194 				ATH_TXBUF_LOCK(sc);
   1195 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1196 				ATH_TXBUF_UNLOCK(sc);
   1197 				break;
   1198 			}
   1199 			/*
   1200 			 * Find the node for the destination so we can do
   1201 			 * things like power save and fast frames aggregation.
   1202 			 */
   1203 			if (m->m_len < sizeof(struct ether_header) &&
   1204 			   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
   1205 				ic->ic_stats.is_tx_nobuf++;	/* XXX */
   1206 				ni = NULL;
   1207 				goto bad;
   1208 			}
   1209 			eh = mtod(m, struct ether_header *);
   1210 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   1211 			if (ni == NULL) {
   1212 				/* NB: ieee80211_find_txnode does stat+msg */
   1213 				m_freem(m);
   1214 				goto bad;
   1215 			}
   1216 			if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
   1217 			    (m->m_flags & M_PWR_SAV) == 0) {
   1218 				/*
   1219 				 * Station in power save mode; pass the frame
   1220 				 * to the 802.11 layer and continue.  We'll get
   1221 				 * the frame back when the time is right.
   1222 				 */
   1223 				ieee80211_pwrsave(ic, ni, m);
   1224 				goto reclaim;
   1225 			}
   1226 			/* calculate priority so we can find the tx queue */
   1227 			if (ieee80211_classify(ic, m, ni)) {
   1228 				DPRINTF(sc, ATH_DEBUG_XMIT,
   1229 					"%s: discard, classification failure\n",
   1230 					__func__);
   1231 				m_freem(m);
   1232 				goto bad;
   1233 			}
   1234 			ifp->if_opackets++;
   1235 
   1236 #if NBPFILTER > 0
   1237 			if (ifp->if_bpf)
   1238 				bpf_mtap(ifp->if_bpf, m);
   1239 #endif
   1240 			/*
   1241 			 * Encapsulate the packet in prep for transmission.
   1242 			 */
   1243 			m = ieee80211_encap(ic, m, ni);
   1244 			if (m == NULL) {
   1245 				DPRINTF(sc, ATH_DEBUG_ANY,
   1246 					"%s: encapsulation failure\n",
   1247 					__func__);
   1248 				sc->sc_stats.ast_tx_encap++;
   1249 				goto bad;
   1250 			}
   1251 		} else {
   1252 			/*
   1253 			 * Hack!  The referenced node pointer is in the
   1254 			 * rcvif field of the packet header.  This is
   1255 			 * placed there by ieee80211_mgmt_output because
   1256 			 * we need to hold the reference with the frame
   1257 			 * and there's no other way (other than packet
   1258 			 * tags which we consider too expensive to use)
   1259 			 * to pass it along.
   1260 			 */
   1261 			ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
   1262 			m->m_pkthdr.rcvif = NULL;
   1263 
   1264 			wh = mtod(m, struct ieee80211_frame *);
   1265 			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
   1266 			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
   1267 				/* fill time stamp */
   1268 				u_int64_t tsf;
   1269 				u_int32_t *tstamp;
   1270 
   1271 				tsf = ath_hal_gettsf64(ah);
   1272 				/* XXX: adjust 100us delay to xmit */
   1273 				tsf += 100;
   1274 				tstamp = (u_int32_t *)&wh[1];
   1275 				tstamp[0] = htole32(tsf & 0xffffffff);
   1276 				tstamp[1] = htole32(tsf >> 32);
   1277 			}
   1278 			sc->sc_stats.ast_tx_mgmt++;
   1279 		}
   1280 
   1281 		if (ath_tx_start(sc, ni, bf, m)) {
   1282 	bad:
   1283 			ifp->if_oerrors++;
   1284 	reclaim:
   1285 			ATH_TXBUF_LOCK(sc);
   1286 			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1287 			ATH_TXBUF_UNLOCK(sc);
   1288 			if (ni != NULL)
   1289 				ieee80211_free_node(ni);
   1290 			continue;
   1291 		}
   1292 
   1293 		sc->sc_tx_timer = 5;
   1294 		ifp->if_timer = 1;
   1295 	}
   1296 }
   1297 
   1298 static int
   1299 ath_media_change(struct ifnet *ifp)
   1300 {
   1301 #define	IS_UP(ifp) \
   1302 	((ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP))
   1303 	int error;
   1304 
   1305 	error = ieee80211_media_change(ifp);
   1306 	if (error == ENETRESET) {
   1307 		if (IS_UP(ifp))
   1308 			ath_init(ifp);		/* XXX lose error */
   1309 		error = 0;
   1310 	}
   1311 	return error;
   1312 #undef IS_UP
   1313 }
   1314 
   1315 #ifdef AR_DEBUG
   1316 static void
   1317 ath_keyprint(const char *tag, u_int ix,
   1318 	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
   1319 {
   1320 	static const char *ciphers[] = {
   1321 		"WEP",
   1322 		"AES-OCB",
   1323 		"AES-CCM",
   1324 		"CKIP",
   1325 		"TKIP",
   1326 		"CLR",
   1327 	};
   1328 	int i, n;
   1329 
   1330 	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
   1331 	for (i = 0, n = hk->kv_len; i < n; i++)
   1332 		printf("%02x", hk->kv_val[i]);
   1333 	printf(" mac %s", ether_sprintf(mac));
   1334 	if (hk->kv_type == HAL_CIPHER_TKIP) {
   1335 		printf(" mic ");
   1336 		for (i = 0; i < sizeof(hk->kv_mic); i++)
   1337 			printf("%02x", hk->kv_mic[i]);
   1338 	}
   1339 	printf("\n");
   1340 }
   1341 #endif
   1342 
   1343 /*
   1344  * Set a TKIP key into the hardware.  This handles the
   1345  * potential distribution of key state to multiple key
   1346  * cache slots for TKIP.
   1347  */
   1348 static int
   1349 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
   1350 	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
   1351 {
   1352 #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
   1353 	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
   1354 	struct ath_hal *ah = sc->sc_ah;
   1355 
   1356 	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
   1357 		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
   1358 	KASSERT(sc->sc_splitmic, ("key cache !split"));
   1359 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
   1360 		/*
   1361 		 * TX key goes at first index, RX key at +32.
   1362 		 * The hal handles the MIC keys at index+64.
   1363 		 */
   1364 		memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
   1365 		KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
   1366 		if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
   1367 			return 0;
   1368 
   1369 		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
   1370 		KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
   1371 		/* XXX delete tx key on failure? */
   1372 		return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
   1373 	} else if (k->wk_flags & IEEE80211_KEY_XR) {
   1374 		/*
   1375 		 * TX/RX key goes at first index.
   1376 		 * The hal handles the MIC keys are index+64.
   1377 		 */
   1378 		KASSERT(k->wk_keyix < IEEE80211_WEP_NKID,
   1379 			("group key at index %u", k->wk_keyix));
   1380 		memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
   1381 			k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
   1382 		KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
   1383 		return ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid);
   1384 	}
   1385 	/* XXX key w/o xmit/recv; need this for compression? */
   1386 	return 0;
   1387 #undef IEEE80211_KEY_XR
   1388 }
   1389 
   1390 /*
   1391  * Set a net80211 key into the hardware.  This handles the
   1392  * potential distribution of key state to multiple key
   1393  * cache slots for TKIP with hardware MIC support.
   1394  */
   1395 static int
   1396 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
   1397 	const u_int8_t mac[IEEE80211_ADDR_LEN])
   1398 {
   1399 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1400 	static const u_int8_t ciphermap[] = {
   1401 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
   1402 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
   1403 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
   1404 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
   1405 		(u_int8_t) -1,		/* 4 is not allocated */
   1406 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
   1407 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
   1408 	};
   1409 	struct ath_hal *ah = sc->sc_ah;
   1410 	const struct ieee80211_cipher *cip = k->wk_cipher;
   1411 	HAL_KEYVAL hk;
   1412 
   1413 	memset(&hk, 0, sizeof(hk));
   1414 	/*
   1415 	 * Software crypto uses a "clear key" so non-crypto
   1416 	 * state kept in the key cache are maintained and
   1417 	 * so that rx frames have an entry to match.
   1418 	 */
   1419 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
   1420 		KASSERT(cip->ic_cipher < N(ciphermap),
   1421 			("invalid cipher type %u", cip->ic_cipher));
   1422 		hk.kv_type = ciphermap[cip->ic_cipher];
   1423 		hk.kv_len = k->wk_keylen;
   1424 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
   1425 	} else
   1426 		hk.kv_type = HAL_CIPHER_CLR;
   1427 
   1428 	if (hk.kv_type == HAL_CIPHER_TKIP &&
   1429 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
   1430 	    sc->sc_splitmic) {
   1431 		return ath_keyset_tkip(sc, k, &hk, mac);
   1432 	} else {
   1433 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
   1434 		return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
   1435 	}
   1436 #undef N
   1437 }
   1438 
   1439 /*
   1440  * Fill the hardware key cache with key entries.
   1441  */
   1442 static void
   1443 ath_initkeytable(struct ath_softc *sc)
   1444 {
   1445 	struct ieee80211com *ic = &sc->sc_ic;
   1446 	struct ifnet *ifp = &sc->sc_if;
   1447 	struct ath_hal *ah = sc->sc_ah;
   1448 	const u_int8_t *bssid;
   1449 	int i;
   1450 
   1451 	/* XXX maybe should reset all keys when !PRIVACY */
   1452 	if (ic->ic_state == IEEE80211_S_SCAN)
   1453 		bssid = ifp->if_broadcastaddr;
   1454 	else
   1455 		bssid = ic->ic_bss->ni_bssid;
   1456 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
   1457 		struct ieee80211_key *k = &ic->ic_nw_keys[i];
   1458 
   1459 		if (k->wk_keylen == 0) {
   1460 			ath_hal_keyreset(ah, i);
   1461 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: reset key %u\n",
   1462 				__func__, i);
   1463 		} else {
   1464 			ath_keyset(sc, k, bssid);
   1465 		}
   1466 	}
   1467 }
   1468 
   1469 /*
   1470  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
   1471  * each key, one for decrypt/encrypt and the other for the MIC.
   1472  */
   1473 static u_int16_t
   1474 key_alloc_2pair(struct ath_softc *sc)
   1475 {
   1476 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1477 	u_int i, keyix;
   1478 
   1479 	KASSERT(sc->sc_splitmic, ("key cache !split"));
   1480 	/* XXX could optimize */
   1481 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
   1482 		u_int8_t b = sc->sc_keymap[i];
   1483 		if (b != 0xff) {
   1484 			/*
   1485 			 * One or more slots in this byte are free.
   1486 			 */
   1487 			keyix = i*NBBY;
   1488 			while (b & 1) {
   1489 		again:
   1490 				keyix++;
   1491 				b >>= 1;
   1492 			}
   1493 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
   1494 			if (isset(sc->sc_keymap, keyix+32) ||
   1495 			    isset(sc->sc_keymap, keyix+64) ||
   1496 			    isset(sc->sc_keymap, keyix+32+64)) {
   1497 				/* full pair unavailable */
   1498 				/* XXX statistic */
   1499 				if (keyix == (i+1)*NBBY) {
   1500 					/* no slots were appropriate, advance */
   1501 					continue;
   1502 				}
   1503 				goto again;
   1504 			}
   1505 			setbit(sc->sc_keymap, keyix);
   1506 			setbit(sc->sc_keymap, keyix+64);
   1507 			setbit(sc->sc_keymap, keyix+32);
   1508 			setbit(sc->sc_keymap, keyix+32+64);
   1509 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
   1510 				"%s: key pair %u,%u %u,%u\n",
   1511 				__func__, keyix, keyix+64,
   1512 				keyix+32, keyix+32+64);
   1513 			return keyix;
   1514 		}
   1515 	}
   1516 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
   1517 	return IEEE80211_KEYIX_NONE;
   1518 #undef N
   1519 }
   1520 
   1521 /*
   1522  * Allocate a single key cache slot.
   1523  */
   1524 static u_int16_t
   1525 key_alloc_single(struct ath_softc *sc)
   1526 {
   1527 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1528 	u_int i, keyix;
   1529 
   1530 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
   1531 	for (i = 0; i < N(sc->sc_keymap); i++) {
   1532 		u_int8_t b = sc->sc_keymap[i];
   1533 		if (b != 0xff) {
   1534 			/*
   1535 			 * One or more slots are free.
   1536 			 */
   1537 			keyix = i*NBBY;
   1538 			while (b & 1)
   1539 				keyix++, b >>= 1;
   1540 			setbit(sc->sc_keymap, keyix);
   1541 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
   1542 				__func__, keyix);
   1543 			return keyix;
   1544 		}
   1545 	}
   1546 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
   1547 	return IEEE80211_KEYIX_NONE;
   1548 #undef N
   1549 }
   1550 
   1551 /*
   1552  * Allocate one or more key cache slots for a uniacst key.  The
   1553  * key itself is needed only to identify the cipher.  For hardware
   1554  * TKIP with split cipher+MIC keys we allocate two key cache slot
   1555  * pairs so that we can setup separate TX and RX MIC keys.  Note
   1556  * that the MIC key for a TKIP key at slot i is assumed by the
   1557  * hardware to be at slot i+64.  This limits TKIP keys to the first
   1558  * 64 entries.
   1559  */
   1560 static int
   1561 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k)
   1562 {
   1563 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1564 
   1565 	/*
   1566 	 * Group key allocation must be handled specially for
   1567 	 * parts that do not support multicast key cache search
   1568 	 * functionality.  For those parts the key id must match
   1569 	 * the h/w key index so lookups find the right key.  On
   1570 	 * parts w/ the key search facility we install the sender's
   1571 	 * mac address (with the high bit set) and let the hardware
   1572 	 * find the key w/o using the key id.  This is preferred as
   1573 	 * it permits us to support multiple users for adhoc and/or
   1574 	 * multi-station operation.
   1575 	 */
   1576 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
   1577 		u_int keyix;
   1578 
   1579 		if (!(&ic->ic_nw_keys[0] <= k &&
   1580 		      k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
   1581 			/* should not happen */
   1582 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
   1583 				"%s: bogus group key\n", __func__);
   1584 			return IEEE80211_KEYIX_NONE;
   1585 		}
   1586 		keyix = k - ic->ic_nw_keys;
   1587 		/*
   1588 		 * XXX we pre-allocate the global keys so
   1589 		 * have no way to check if they've already been allocated.
   1590 		 */
   1591 		return keyix;
   1592 	}
   1593 
   1594 	/*
   1595 	 * We allocate two pair for TKIP when using the h/w to do
   1596 	 * the MIC.  For everything else, including software crypto,
   1597 	 * we allocate a single entry.  Note that s/w crypto requires
   1598 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
   1599 	 * not support pass-through cache entries and we map all
   1600 	 * those requests to slot 0.
   1601 	 */
   1602 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
   1603 		return key_alloc_single(sc);
   1604 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1605 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
   1606 		return key_alloc_2pair(sc);
   1607 	} else {
   1608 		return key_alloc_single(sc);
   1609 	}
   1610 }
   1611 
   1612 /*
   1613  * Delete an entry in the key cache allocated by ath_key_alloc.
   1614  */
   1615 static int
   1616 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
   1617 {
   1618 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1619 	struct ath_hal *ah = sc->sc_ah;
   1620 	const struct ieee80211_cipher *cip = k->wk_cipher;
   1621 	u_int keyix = k->wk_keyix;
   1622 
   1623 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
   1624 
   1625 	ath_hal_keyreset(ah, keyix);
   1626 	/*
   1627 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
   1628 	 */
   1629 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1630 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
   1631 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
   1632 	if (keyix >= IEEE80211_WEP_NKID) {
   1633 		/*
   1634 		 * Don't touch keymap entries for global keys so
   1635 		 * they are never considered for dynamic allocation.
   1636 		 */
   1637 		clrbit(sc->sc_keymap, keyix);
   1638 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1639 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
   1640 		    sc->sc_splitmic) {
   1641 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
   1642 			clrbit(sc->sc_keymap, keyix+32);	/* RX key */
   1643 			clrbit(sc->sc_keymap, keyix+32+64);	/* RX key MIC */
   1644 		}
   1645 	}
   1646 	return 1;
   1647 }
   1648 
   1649 /*
   1650  * Set the key cache contents for the specified key.  Key cache
   1651  * slot(s) must already have been allocated by ath_key_alloc.
   1652  */
   1653 static int
   1654 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
   1655 	const u_int8_t mac[IEEE80211_ADDR_LEN])
   1656 {
   1657 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1658 
   1659 	return ath_keyset(sc, k, mac);
   1660 }
   1661 
   1662 /*
   1663  * Block/unblock tx+rx processing while a key change is done.
   1664  * We assume the caller serializes key management operations
   1665  * so we only need to worry about synchronization with other
   1666  * uses that originate in the driver.
   1667  */
   1668 static void
   1669 ath_key_update_begin(struct ieee80211com *ic)
   1670 {
   1671 	struct ifnet *ifp = ic->ic_ifp;
   1672 	struct ath_softc *sc = ifp->if_softc;
   1673 
   1674 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
   1675 #if 0
   1676 	tasklet_disable(&sc->sc_rxtq);
   1677 #endif
   1678 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
   1679 }
   1680 
   1681 static void
   1682 ath_key_update_end(struct ieee80211com *ic)
   1683 {
   1684 	struct ifnet *ifp = ic->ic_ifp;
   1685 	struct ath_softc *sc = ifp->if_softc;
   1686 
   1687 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
   1688 	IF_UNLOCK(&ifp->if_snd);
   1689 #if 0
   1690 	tasklet_enable(&sc->sc_rxtq);
   1691 #endif
   1692 }
   1693 
   1694 /*
   1695  * Calculate the receive filter according to the
   1696  * operating mode and state:
   1697  *
   1698  * o always accept unicast, broadcast, and multicast traffic
   1699  * o maintain current state of phy error reception (the hal
   1700  *   may enable phy error frames for noise immunity work)
   1701  * o probe request frames are accepted only when operating in
   1702  *   hostap, adhoc, or monitor modes
   1703  * o enable promiscuous mode according to the interface state
   1704  * o accept beacons:
   1705  *   - when operating in adhoc mode so the 802.11 layer creates
   1706  *     node table entries for peers,
   1707  *   - when operating in station mode for collecting rssi data when
   1708  *     the station is otherwise quiet, or
   1709  *   - when scanning
   1710  */
   1711 static u_int32_t
   1712 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
   1713 {
   1714 	struct ieee80211com *ic = &sc->sc_ic;
   1715 	struct ath_hal *ah = sc->sc_ah;
   1716 	struct ifnet *ifp = &sc->sc_if;
   1717 	u_int32_t rfilt;
   1718 
   1719 	rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
   1720 	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
   1721 	if (ic->ic_opmode != IEEE80211_M_STA)
   1722 		rfilt |= HAL_RX_FILTER_PROBEREQ;
   1723 	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
   1724 	    (ifp->if_flags & IFF_PROMISC))
   1725 		rfilt |= HAL_RX_FILTER_PROM;
   1726 	if (ic->ic_opmode == IEEE80211_M_STA ||
   1727 	    ic->ic_opmode == IEEE80211_M_IBSS ||
   1728 	    state == IEEE80211_S_SCAN)
   1729 		rfilt |= HAL_RX_FILTER_BEACON;
   1730 	return rfilt;
   1731 }
   1732 
   1733 static void
   1734 ath_mcastfilter_accum(caddr_t dl, u_int32_t *mfilt)
   1735 {
   1736 	u_int32_t val;
   1737 	u_int8_t pos;
   1738 
   1739 	/* calculate XOR of eight 6bit values */
   1740 	val = LE_READ_4(dl + 0);
   1741 	pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1742 	val = LE_READ_4(dl + 3);
   1743 	pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1744 	pos &= 0x3f;
   1745 	mfilt[pos / 32] |= (1 << (pos % 32));
   1746 }
   1747 
   1748 static void
   1749 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t *mfilt)
   1750 {
   1751 	struct ifnet *ifp = &sc->sc_if;
   1752 	struct ether_multi *enm;
   1753 	struct ether_multistep estep;
   1754 
   1755 	mfilt[0] = mfilt[1] = 0;
   1756 	ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
   1757 	while (enm != NULL) {
   1758 		/* XXX Punt on ranges. */
   1759 		if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
   1760 			mfilt[0] = mfilt[1] = ~((u_int32_t)0);
   1761 			ifp->if_flags |= IFF_ALLMULTI;
   1762 			return;
   1763 		}
   1764 		ath_mcastfilter_accum(enm->enm_addrlo, mfilt);
   1765 		ETHER_NEXT_MULTI(estep, enm);
   1766 	}
   1767 	ifp->if_flags &= ~IFF_ALLMULTI;
   1768 }
   1769 
   1770 static void
   1771 ath_mode_init(struct ath_softc *sc)
   1772 {
   1773 	struct ieee80211com *ic = &sc->sc_ic;
   1774 	struct ath_hal *ah = sc->sc_ah;
   1775 	u_int32_t rfilt, mfilt[2];
   1776 
   1777 	/* configure rx filter */
   1778 	rfilt = ath_calcrxfilter(sc, ic->ic_state);
   1779 	ath_hal_setrxfilter(ah, rfilt);
   1780 
   1781 	/* configure operational mode */
   1782 	ath_hal_setopmode(ah);
   1783 
   1784 	/*
   1785 	 * Handle any link-level address change.  Note that we only
   1786 	 * need to force ic_myaddr; any other addresses are handled
   1787 	 * as a byproduct of the ifnet code marking the interface
   1788 	 * down then up.
   1789 	 *
   1790 	 * XXX should get from lladdr instead of arpcom but that's more work
   1791 	 */
   1792 	IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(sc->sc_if.if_sadl));
   1793 	ath_hal_setmac(ah, ic->ic_myaddr);
   1794 
   1795 	/* calculate and install multicast filter */
   1796 #ifdef __FreeBSD__
   1797 	if ((sc->sc_if.if_flags & IFF_ALLMULTI) == 0)
   1798 		ath_mcastfilter_compute(sc, mfilt);
   1799 	else
   1800 		mfilt[0] = mfilt[1] = ~0;
   1801 #endif
   1802 #ifdef __NetBSD__
   1803 	ath_mcastfilter_compute(sc, mfilt);
   1804 #endif
   1805 	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
   1806 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
   1807 		__func__, rfilt, mfilt[0], mfilt[1]);
   1808 }
   1809 
   1810 /*
   1811  * Set the slot time based on the current setting.
   1812  */
   1813 static void
   1814 ath_setslottime(struct ath_softc *sc)
   1815 {
   1816 	struct ieee80211com *ic = &sc->sc_ic;
   1817 	struct ath_hal *ah = sc->sc_ah;
   1818 
   1819 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   1820 		ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
   1821 	else
   1822 		ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
   1823 	sc->sc_updateslot = OK;
   1824 }
   1825 
   1826 /*
   1827  * Callback from the 802.11 layer to update the
   1828  * slot time based on the current setting.
   1829  */
   1830 static void
   1831 ath_updateslot(struct ifnet *ifp)
   1832 {
   1833 	struct ath_softc *sc = ifp->if_softc;
   1834 	struct ieee80211com *ic = &sc->sc_ic;
   1835 
   1836 	/*
   1837 	 * When not coordinating the BSS, change the hardware
   1838 	 * immediately.  For other operation we defer the change
   1839 	 * until beacon updates have propagated to the stations.
   1840 	 */
   1841 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
   1842 		sc->sc_updateslot = UPDATE;
   1843 	else
   1844 		ath_setslottime(sc);
   1845 }
   1846 
   1847 /*
   1848  * Setup a h/w transmit queue for beacons.
   1849  */
   1850 static int
   1851 ath_beaconq_setup(struct ath_hal *ah)
   1852 {
   1853 	HAL_TXQ_INFO qi;
   1854 
   1855 	memset(&qi, 0, sizeof(qi));
   1856 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
   1857 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
   1858 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
   1859 	/* NB: don't enable any interrupts */
   1860 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
   1861 }
   1862 
   1863 /*
   1864  * Allocate and setup an initial beacon frame.
   1865  */
   1866 static int
   1867 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
   1868 {
   1869 	struct ieee80211com *ic = ni->ni_ic;
   1870 	struct ath_buf *bf;
   1871 	struct mbuf *m;
   1872 	int error;
   1873 
   1874 	bf = STAILQ_FIRST(&sc->sc_bbuf);
   1875 	if (bf == NULL) {
   1876 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
   1877 		sc->sc_stats.ast_be_nombuf++;	/* XXX */
   1878 		return ENOMEM;			/* XXX */
   1879 	}
   1880 	/*
   1881 	 * NB: the beacon data buffer must be 32-bit aligned;
   1882 	 * we assume the mbuf routines will return us something
   1883 	 * with this alignment (perhaps should assert).
   1884 	 */
   1885 	m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
   1886 	if (m == NULL) {
   1887 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
   1888 			__func__);
   1889 		sc->sc_stats.ast_be_nombuf++;
   1890 		return ENOMEM;
   1891 	}
   1892 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
   1893 				     BUS_DMA_NOWAIT);
   1894 	if (error == 0) {
   1895 		bf->bf_m = m;
   1896 		bf->bf_node = ieee80211_ref_node(ni);
   1897 	} else {
   1898 		m_freem(m);
   1899 	}
   1900 	return error;
   1901 }
   1902 
   1903 /*
   1904  * Setup the beacon frame for transmit.
   1905  */
   1906 static void
   1907 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
   1908 {
   1909 #define	USE_SHPREAMBLE(_ic) \
   1910 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
   1911 		== IEEE80211_F_SHPREAMBLE)
   1912 	struct ieee80211_node *ni = bf->bf_node;
   1913 	struct ieee80211com *ic = ni->ni_ic;
   1914 	struct mbuf *m = bf->bf_m;
   1915 	struct ath_hal *ah = sc->sc_ah;
   1916 	struct ath_node *an = ATH_NODE(ni);
   1917 	struct ath_desc *ds;
   1918 	int flags, antenna;
   1919 	u_int8_t rate;
   1920 
   1921 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
   1922 		__func__, m, m->m_len);
   1923 
   1924 	/* setup descriptors */
   1925 	ds = bf->bf_desc;
   1926 
   1927 	flags = HAL_TXDESC_NOACK;
   1928 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
   1929 		ds->ds_link = bf->bf_daddr;	/* self-linked */
   1930 		flags |= HAL_TXDESC_VEOL;
   1931 		/*
   1932 		 * Let hardware handle antenna switching.
   1933 		 */
   1934 		antenna = 0;
   1935 	} else {
   1936 		ds->ds_link = 0;
   1937 		/*
   1938 		 * Switch antenna every 4 beacons.
   1939 		 * XXX assumes two antenna
   1940 		 */
   1941 		antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
   1942 	}
   1943 
   1944 	KASSERT(bf->bf_nseg == 1,
   1945 		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
   1946 	ds->ds_data = bf->bf_segs[0].ds_addr;
   1947 	/*
   1948 	 * Calculate rate code.
   1949 	 * XXX everything at min xmit rate
   1950 	 */
   1951 	if (USE_SHPREAMBLE(ic))
   1952 		rate = an->an_tx_mgtratesp;
   1953 	else
   1954 		rate = an->an_tx_mgtrate;
   1955 	ath_hal_setuptxdesc(ah, ds
   1956 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
   1957 		, sizeof(struct ieee80211_frame)/* header length */
   1958 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
   1959 		, ni->ni_txpower		/* txpower XXX */
   1960 		, rate, 1			/* series 0 rate/tries */
   1961 		, HAL_TXKEYIX_INVALID		/* no encryption */
   1962 		, antenna			/* antenna mode */
   1963 		, flags				/* no ack, veol for beacons */
   1964 		, 0				/* rts/cts rate */
   1965 		, 0				/* rts/cts duration */
   1966 	);
   1967 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
   1968 	ath_hal_filltxdesc(ah, ds
   1969 		, roundup(m->m_len, 4)		/* buffer length */
   1970 		, AH_TRUE			/* first segment */
   1971 		, AH_TRUE			/* last segment */
   1972 		, ds				/* first descriptor */
   1973 	);
   1974 	/* XXX bus_dmamap_sync? -dcy */
   1975 #undef USE_SHPREAMBLE
   1976 }
   1977 
   1978 /*
   1979  * Transmit a beacon frame at SWBA.  Dynamic updates to the
   1980  * frame contents are done as needed and the slot time is
   1981  * also adjusted based on current state.
   1982  */
   1983 static void
   1984 ath_beacon_proc(void *arg, int pending)
   1985 {
   1986 	struct ath_softc *sc = arg;
   1987 	struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
   1988 	struct ieee80211_node *ni = bf->bf_node;
   1989 	struct ieee80211com *ic = ni->ni_ic;
   1990 	struct ath_hal *ah = sc->sc_ah;
   1991 	struct mbuf *m;
   1992 	int ncabq, error, otherant;
   1993 
   1994 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
   1995 		__func__, pending);
   1996 
   1997 	if (ic->ic_opmode == IEEE80211_M_STA ||
   1998 	    ic->ic_opmode == IEEE80211_M_MONITOR ||
   1999 	    bf == NULL || bf->bf_m == NULL) {
   2000 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
   2001 			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
   2002 		return;
   2003 	}
   2004 	/*
   2005 	 * Check if the previous beacon has gone out.  If
   2006 	 * not don't don't try to post another, skip this
   2007 	 * period and wait for the next.  Missed beacons
   2008 	 * indicate a problem and should not occur.  If we
   2009 	 * miss too many consecutive beacons reset the device.
   2010 	 */
   2011 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
   2012 		sc->sc_bmisscount++;
   2013 		DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
   2014 			"%s: missed %u consecutive beacons\n",
   2015 			__func__, sc->sc_bmisscount);
   2016 		if (sc->sc_bmisscount > 3)		/* NB: 3 is a guess */
   2017 			TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask);
   2018 		return;
   2019 	}
   2020 	if (sc->sc_bmisscount != 0) {
   2021 		DPRINTF(sc, ATH_DEBUG_BEACON,
   2022 			"%s: resume beacon xmit after %u misses\n",
   2023 			__func__, sc->sc_bmisscount);
   2024 		sc->sc_bmisscount = 0;
   2025 	}
   2026 
   2027 	/*
   2028 	 * Update dynamic beacon contents.  If this returns
   2029 	 * non-zero then we need to remap the memory because
   2030 	 * the beacon frame changed size (probably because
   2031 	 * of the TIM bitmap).
   2032 	 */
   2033 	m = bf->bf_m;
   2034 	ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
   2035 	if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
   2036 		/* XXX too conservative? */
   2037 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   2038 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
   2039 					     BUS_DMA_NOWAIT);
   2040 		if (error != 0) {
   2041 			if_printf(&sc->sc_if,
   2042 			    "%s: bus_dmamap_load_mbuf failed, error %u\n",
   2043 			    __func__, error);
   2044 			return;
   2045 		}
   2046 	}
   2047 
   2048 	/*
   2049 	 * Handle slot time change when a non-ERP station joins/leaves
   2050 	 * an 11g network.  The 802.11 layer notifies us via callback,
   2051 	 * we mark updateslot, then wait one beacon before effecting
   2052 	 * the change.  This gives associated stations at least one
   2053 	 * beacon interval to note the state change.
   2054 	 */
   2055 	/* XXX locking */
   2056 	if (sc->sc_updateslot == UPDATE)
   2057 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
   2058 	else if (sc->sc_updateslot == COMMIT)
   2059 		ath_setslottime(sc);		/* commit change to h/w */
   2060 
   2061 	/*
   2062 	 * Check recent per-antenna transmit statistics and flip
   2063 	 * the default antenna if noticeably more frames went out
   2064 	 * on the non-default antenna.
   2065 	 * XXX assumes 2 anntenae
   2066 	 */
   2067 	otherant = sc->sc_defant & 1 ? 2 : 1;
   2068 	if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
   2069 		ath_setdefantenna(sc, otherant);
   2070 	sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
   2071 
   2072 	/*
   2073 	 * Construct tx descriptor.
   2074 	 */
   2075 	ath_beacon_setup(sc, bf);
   2076 
   2077 	/*
   2078 	 * Stop any current dma and put the new frame on the queue.
   2079 	 * This should never fail since we check above that no frames
   2080 	 * are still pending on the queue.
   2081 	 */
   2082 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
   2083 		DPRINTF(sc, ATH_DEBUG_ANY,
   2084 			"%s: beacon queue %u did not stop?\n",
   2085 			__func__, sc->sc_bhalq);
   2086 	}
   2087 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   2088 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2089 
   2090 	/*
   2091 	 * Enable the CAB queue before the beacon queue to
   2092 	 * insure cab frames are triggered by this beacon.
   2093 	 */
   2094 	if (sc->sc_boff.bo_tim[4] & 1)		/* NB: only at DTIM */
   2095 		ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
   2096 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
   2097 	ath_hal_txstart(ah, sc->sc_bhalq);
   2098 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
   2099 		"%s: TXDP[%u] = %p (%p)\n", __func__,
   2100 		sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc);
   2101 
   2102 	sc->sc_stats.ast_be_xmit++;
   2103 }
   2104 
   2105 /*
   2106  * Reset the hardware after detecting beacons have stopped.
   2107  */
   2108 static void
   2109 ath_bstuck_proc(void *arg, int pending)
   2110 {
   2111 	struct ath_softc *sc = arg;
   2112 	struct ifnet *ifp = &sc->sc_if;
   2113 
   2114 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
   2115 		sc->sc_bmisscount);
   2116 	ath_reset(ifp);
   2117 }
   2118 
   2119 /*
   2120  * Reclaim beacon resources.
   2121  */
   2122 static void
   2123 ath_beacon_free(struct ath_softc *sc)
   2124 {
   2125 	struct ath_buf *bf;
   2126 
   2127 	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
   2128 		if (bf->bf_m != NULL) {
   2129 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   2130 			m_freem(bf->bf_m);
   2131 			bf->bf_m = NULL;
   2132 		}
   2133 		if (bf->bf_node != NULL) {
   2134 			ieee80211_free_node(bf->bf_node);
   2135 			bf->bf_node = NULL;
   2136 		}
   2137 	}
   2138 }
   2139 
   2140 /*
   2141  * Configure the beacon and sleep timers.
   2142  *
   2143  * When operating as an AP this resets the TSF and sets
   2144  * up the hardware to notify us when we need to issue beacons.
   2145  *
   2146  * When operating in station mode this sets up the beacon
   2147  * timers according to the timestamp of the last received
   2148  * beacon and the current TSF, configures PCF and DTIM
   2149  * handling, programs the sleep registers so the hardware
   2150  * will wakeup in time to receive beacons, and configures
   2151  * the beacon miss handling so we'll receive a BMISS
   2152  * interrupt when we stop seeing beacons from the AP
   2153  * we've associated with.
   2154  */
   2155 static void
   2156 ath_beacon_config(struct ath_softc *sc)
   2157 {
   2158 	struct ath_hal *ah = sc->sc_ah;
   2159 	struct ieee80211com *ic = &sc->sc_ic;
   2160 	struct ieee80211_node *ni = ic->ic_bss;
   2161 	u_int32_t nexttbtt, intval;
   2162 
   2163 	nexttbtt = (LE_READ_4(ni->ni_tstamp.data + 4) << 22) |
   2164 	    (LE_READ_4(ni->ni_tstamp.data) >> 10);
   2165 	intval = ni->ni_intval & HAL_BEACON_PERIOD;
   2166 	if (nexttbtt == 0)		/* e.g. for ap mode */
   2167 		nexttbtt = intval;
   2168 	else if (intval)		/* NB: can be 0 for monitor mode */
   2169 		nexttbtt = roundup(nexttbtt, intval);
   2170 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
   2171 		__func__, nexttbtt, intval, ni->ni_intval);
   2172 	if (ic->ic_opmode == IEEE80211_M_STA) {
   2173 		HAL_BEACON_STATE bs;
   2174 
   2175 		/* NB: no PCF support right now */
   2176 		memset(&bs, 0, sizeof(bs));
   2177 		bs.bs_intval = intval;
   2178 		bs.bs_nexttbtt = nexttbtt;
   2179 		bs.bs_dtimperiod = bs.bs_intval;
   2180 		bs.bs_nextdtim = nexttbtt;
   2181 		/*
   2182 		 * The 802.11 layer records the offset to the DTIM
   2183 		 * bitmap while receiving beacons; use it here to
   2184 		 * enable h/w detection of our AID being marked in
   2185 		 * the bitmap vector (to indicate frames for us are
   2186 		 * pending at the AP).
   2187 		 */
   2188 		bs.bs_timoffset = ni->ni_timoff;
   2189 		/*
   2190 		 * Calculate the number of consecutive beacons to miss
   2191 		 * before taking a BMISS interrupt.  The configuration
   2192 		 * is specified in ms, so we need to convert that to
   2193 		 * TU's and then calculate based on the beacon interval.
   2194 		 * Note that we clamp the result to at most 10 beacons.
   2195 		 */
   2196 		bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
   2197 		if (bs.bs_bmissthreshold > 10)
   2198 			bs.bs_bmissthreshold = 10;
   2199 		else if (bs.bs_bmissthreshold <= 0)
   2200 			bs.bs_bmissthreshold = 1;
   2201 
   2202 		/*
   2203 		 * Calculate sleep duration.  The configuration is
   2204 		 * given in ms.  We insure a multiple of the beacon
   2205 		 * period is used.  Also, if the sleep duration is
   2206 		 * greater than the DTIM period then it makes senses
   2207 		 * to make it a multiple of that.
   2208 		 *
   2209 		 * XXX fixed at 100ms
   2210 		 */
   2211 		bs.bs_sleepduration =
   2212 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
   2213 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
   2214 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
   2215 
   2216 		DPRINTF(sc, ATH_DEBUG_BEACON,
   2217 			"%s: intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
   2218 			, __func__
   2219 			, bs.bs_intval
   2220 			, bs.bs_nexttbtt
   2221 			, bs.bs_dtimperiod
   2222 			, bs.bs_nextdtim
   2223 			, bs.bs_bmissthreshold
   2224 			, bs.bs_sleepduration
   2225 			, bs.bs_cfpperiod
   2226 			, bs.bs_cfpmaxduration
   2227 			, bs.bs_cfpnext
   2228 			, bs.bs_timoffset
   2229 		);
   2230 		ath_hal_intrset(ah, 0);
   2231 		ath_hal_beacontimers(ah, &bs);
   2232 		sc->sc_imask |= HAL_INT_BMISS;
   2233 		ath_hal_intrset(ah, sc->sc_imask);
   2234 	} else {
   2235 		ath_hal_intrset(ah, 0);
   2236 		if (nexttbtt == intval)
   2237 			intval |= HAL_BEACON_RESET_TSF;
   2238 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
   2239 			/*
   2240 			 * In IBSS mode enable the beacon timers but only
   2241 			 * enable SWBA interrupts if we need to manually
   2242 			 * prepare beacon frames.  Otherwise we use a
   2243 			 * self-linked tx descriptor and let the hardware
   2244 			 * deal with things.
   2245 			 */
   2246 			intval |= HAL_BEACON_ENA;
   2247 			if (!sc->sc_hasveol)
   2248 				sc->sc_imask |= HAL_INT_SWBA;
   2249 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   2250 			/*
   2251 			 * In AP mode we enable the beacon timers and
   2252 			 * SWBA interrupts to prepare beacon frames.
   2253 			 */
   2254 			intval |= HAL_BEACON_ENA;
   2255 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
   2256 		}
   2257 		ath_hal_beaconinit(ah, nexttbtt, intval);
   2258 		sc->sc_bmisscount = 0;
   2259 		ath_hal_intrset(ah, sc->sc_imask);
   2260 		/*
   2261 		 * When using a self-linked beacon descriptor in
   2262 		 * ibss mode load it once here.
   2263 		 */
   2264 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
   2265 			ath_beacon_proc(sc, 0);
   2266 	}
   2267 }
   2268 
   2269 static int
   2270 ath_descdma_setup(struct ath_softc *sc,
   2271 	struct ath_descdma *dd, ath_bufhead *head,
   2272 	const char *name, int nbuf, int ndesc)
   2273 {
   2274 #define	DS2PHYS(_dd, _ds) \
   2275 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
   2276 	struct ifnet *ifp = &sc->sc_if;
   2277 	struct ath_desc *ds;
   2278 	struct ath_buf *bf;
   2279 	int i, bsize, error;
   2280 
   2281 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
   2282 	    __func__, name, nbuf, ndesc);
   2283 
   2284 	dd->dd_name = name;
   2285 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
   2286 
   2287 	/*
   2288 	 * Setup DMA descriptor area.
   2289 	 */
   2290 	dd->dd_dmat = sc->sc_dmat;
   2291 
   2292 	error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE,
   2293 	    0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0);
   2294 
   2295 	if (error != 0) {
   2296 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
   2297 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
   2298 		goto fail0;
   2299 	}
   2300 
   2301 	error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg,
   2302 	    dd->dd_desc_len, (caddr_t *)&dd->dd_desc, BUS_DMA_COHERENT);
   2303 	if (error != 0) {
   2304 		if_printf(ifp, "unable to map %u %s descriptors, error = %u\n",
   2305 		    nbuf * ndesc, dd->dd_name, error);
   2306 		goto fail1;
   2307 	}
   2308 
   2309 	/* allocate descriptors */
   2310 	error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1,
   2311 	    dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap);
   2312 	if (error != 0) {
   2313 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
   2314 			"error %u\n", dd->dd_name, error);
   2315 		goto fail2;
   2316 	}
   2317 
   2318 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc,
   2319 	    dd->dd_desc_len, NULL, BUS_DMA_NOWAIT);
   2320 	if (error != 0) {
   2321 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
   2322 			dd->dd_name, error);
   2323 		goto fail3;
   2324 	}
   2325 
   2326 	ds = dd->dd_desc;
   2327 	dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr;
   2328 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
   2329 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
   2330 	    (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
   2331 
   2332 	/* allocate rx buffers */
   2333 	bsize = sizeof(struct ath_buf) * nbuf;
   2334 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
   2335 	if (bf == NULL) {
   2336 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
   2337 			dd->dd_name, bsize);
   2338 		goto fail4;
   2339 	}
   2340 	dd->dd_bufptr = bf;
   2341 
   2342 	STAILQ_INIT(head);
   2343 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
   2344 		bf->bf_desc = ds;
   2345 		bf->bf_daddr = DS2PHYS(dd, ds);
   2346 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc,
   2347 				MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap);
   2348 		if (error != 0) {
   2349 			if_printf(ifp, "unable to create dmamap for %s "
   2350 				"buffer %u, error %u\n", dd->dd_name, i, error);
   2351 			ath_descdma_cleanup(sc, dd, head);
   2352 			return error;
   2353 		}
   2354 		STAILQ_INSERT_TAIL(head, bf, bf_list);
   2355 	}
   2356 	return 0;
   2357 fail4:
   2358 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
   2359 fail3:
   2360 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
   2361 fail2:
   2362 	bus_dmamem_unmap(dd->dd_dmat, (caddr_t)dd->dd_desc, dd->dd_desc_len);
   2363 fail1:
   2364 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
   2365 fail0:
   2366 	memset(dd, 0, sizeof(*dd));
   2367 	return error;
   2368 #undef DS2PHYS
   2369 }
   2370 
   2371 static void
   2372 ath_descdma_cleanup(struct ath_softc *sc,
   2373 	struct ath_descdma *dd, ath_bufhead *head)
   2374 {
   2375 	struct ath_buf *bf;
   2376 	struct ieee80211_node *ni;
   2377 
   2378 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
   2379 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
   2380 	bus_dmamem_unmap(dd->dd_dmat, (caddr_t)dd->dd_desc, dd->dd_desc_len);
   2381 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
   2382 
   2383 	STAILQ_FOREACH(bf, head, bf_list) {
   2384 		if (bf->bf_m) {
   2385 			m_freem(bf->bf_m);
   2386 			bf->bf_m = NULL;
   2387 		}
   2388 		if (bf->bf_dmamap != NULL) {
   2389 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
   2390 			bf->bf_dmamap = NULL;
   2391 		}
   2392 		ni = bf->bf_node;
   2393 		bf->bf_node = NULL;
   2394 		if (ni != NULL) {
   2395 			/*
   2396 			 * Reclaim node reference.
   2397 			 */
   2398 			ieee80211_free_node(ni);
   2399 		}
   2400 	}
   2401 
   2402 	STAILQ_INIT(head);
   2403 	free(dd->dd_bufptr, M_ATHDEV);
   2404 	memset(dd, 0, sizeof(*dd));
   2405 }
   2406 
   2407 static int
   2408 ath_desc_alloc(struct ath_softc *sc)
   2409 {
   2410 	int error;
   2411 
   2412 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
   2413 			"rx", ATH_RXBUF, 1);
   2414 	if (error != 0)
   2415 		return error;
   2416 
   2417 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
   2418 			"tx", ATH_TXBUF, ATH_TXDESC);
   2419 	if (error != 0) {
   2420 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2421 		return error;
   2422 	}
   2423 
   2424 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
   2425 			"beacon", 1, 1);
   2426 	if (error != 0) {
   2427 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
   2428 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2429 		return error;
   2430 	}
   2431 	return 0;
   2432 }
   2433 
   2434 static void
   2435 ath_desc_free(struct ath_softc *sc)
   2436 {
   2437 
   2438 	if (sc->sc_bdma.dd_desc_len != 0)
   2439 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
   2440 	if (sc->sc_txdma.dd_desc_len != 0)
   2441 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
   2442 	if (sc->sc_rxdma.dd_desc_len != 0)
   2443 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2444 }
   2445 
   2446 static struct ieee80211_node *
   2447 ath_node_alloc(struct ieee80211_node_table *nt)
   2448 {
   2449 	struct ieee80211com *ic = nt->nt_ic;
   2450 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   2451 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
   2452 	struct ath_node *an;
   2453 
   2454 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
   2455 	if (an == NULL) {
   2456 		/* XXX stat+msg */
   2457 		return NULL;
   2458 	}
   2459 	an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
   2460 	an->an_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
   2461 	an->an_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
   2462 	an->an_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
   2463 	ath_rate_node_init(sc, an);
   2464 
   2465 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
   2466 	return &an->an_node;
   2467 }
   2468 
   2469 static void
   2470 ath_node_free(struct ieee80211_node *ni)
   2471 {
   2472 	struct ieee80211com *ic = ni->ni_ic;
   2473         struct ath_softc *sc = ic->ic_ifp->if_softc;
   2474 
   2475 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
   2476 
   2477 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
   2478 	sc->sc_node_free(ni);
   2479 }
   2480 
   2481 static u_int8_t
   2482 ath_node_getrssi(const struct ieee80211_node *ni)
   2483 {
   2484 #define	HAL_EP_RND(x, mul) \
   2485 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
   2486 	u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
   2487 	int32_t rssi;
   2488 
   2489 	/*
   2490 	 * When only one frame is received there will be no state in
   2491 	 * avgrssi so fallback on the value recorded by the 802.11 layer.
   2492 	 */
   2493 	if (avgrssi != ATH_RSSI_DUMMY_MARKER)
   2494 		rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
   2495 	else
   2496 		rssi = ni->ni_rssi;
   2497 	/* NB: theoretically we shouldn't need this, but be paranoid */
   2498 	return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
   2499 #undef HAL_EP_RND
   2500 }
   2501 
   2502 static int
   2503 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
   2504 {
   2505 	struct ath_hal *ah = sc->sc_ah;
   2506 	int error;
   2507 	struct mbuf *m;
   2508 	struct ath_desc *ds;
   2509 
   2510 	m = bf->bf_m;
   2511 	if (m == NULL) {
   2512 		/*
   2513 		 * NB: by assigning a page to the rx dma buffer we
   2514 		 * implicitly satisfy the Atheros requirement that
   2515 		 * this buffer be cache-line-aligned and sized to be
   2516 		 * multiple of the cache line size.  Not doing this
   2517 		 * causes weird stuff to happen (for the 5210 at least).
   2518 		 */
   2519 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
   2520 		if (m == NULL) {
   2521 			DPRINTF(sc, ATH_DEBUG_ANY,
   2522 				"%s: no mbuf/cluster\n", __func__);
   2523 			sc->sc_stats.ast_rx_nombuf++;
   2524 			return ENOMEM;
   2525 		}
   2526 		bf->bf_m = m;
   2527 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
   2528 
   2529 		error = bus_dmamap_load_mbuf(sc->sc_dmat,
   2530 					     bf->bf_dmamap, m,
   2531 					     BUS_DMA_NOWAIT);
   2532 		if (error != 0) {
   2533 			DPRINTF(sc, ATH_DEBUG_ANY,
   2534 			    "%s: bus_dmamap_load_mbuf failed; error %d\n",
   2535 			    __func__, error);
   2536 			sc->sc_stats.ast_rx_busdma++;
   2537 			return error;
   2538 		}
   2539 		KASSERT(bf->bf_nseg == 1,
   2540 			("multi-segment packet; nseg %u", bf->bf_nseg));
   2541 	}
   2542 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   2543 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2544 
   2545 	/*
   2546 	 * Setup descriptors.  For receive we always terminate
   2547 	 * the descriptor list with a self-linked entry so we'll
   2548 	 * not get overrun under high load (as can happen with a
   2549 	 * 5212 when ANI processing enables PHY error frames).
   2550 	 *
   2551 	 * To insure the last descriptor is self-linked we create
   2552 	 * each descriptor as self-linked and add it to the end.  As
   2553 	 * each additional descriptor is added the previous self-linked
   2554 	 * entry is ``fixed'' naturally.  This should be safe even
   2555 	 * if DMA is happening.  When processing RX interrupts we
   2556 	 * never remove/process the last, self-linked, entry on the
   2557 	 * descriptor list.  This insures the hardware always has
   2558 	 * someplace to write a new frame.
   2559 	 */
   2560 	ds = bf->bf_desc;
   2561 	ds->ds_link = bf->bf_daddr;	/* link to self */
   2562 	ds->ds_data = bf->bf_segs[0].ds_addr;
   2563 	ath_hal_setuprxdesc(ah, ds
   2564 		, m->m_len		/* buffer size */
   2565 		, 0
   2566 	);
   2567 
   2568 	if (sc->sc_rxlink != NULL)
   2569 		*sc->sc_rxlink = bf->bf_daddr;
   2570 	sc->sc_rxlink = &ds->ds_link;
   2571 	return 0;
   2572 }
   2573 
   2574 static uint64_t
   2575 ath_tsf_extend(struct ath_hal *ah, uint32_t rstamp)
   2576 {
   2577 	uint64_t tsf;
   2578 
   2579 	KASSERT((rstamp & 0xffff0000) == 0,
   2580 	    ("rx timestamp > 16 bits wide, %" PRIu32, rstamp));
   2581 
   2582 	tsf = ath_hal_gettsf64(ah);
   2583 
   2584 	/* Compensate for rollover. */
   2585 	if ((tsf & 0xffff) <= rstamp)
   2586 		tsf -= 0x10000;
   2587 
   2588 	return (tsf & ~(uint64_t)0xffff) | rstamp;
   2589 }
   2590 
   2591 /*
   2592  * Extend 15-bit time stamp from rx descriptor to
   2593  * a full 64-bit TSF using the current h/w TSF.
   2594  */
   2595 static __inline u_int64_t
   2596 ath_extend_tsf(struct ath_hal *ah, u_int32_t rstamp)
   2597 {
   2598 	u_int64_t tsf;
   2599 
   2600 	tsf = ath_hal_gettsf64(ah);
   2601 	if ((tsf & 0x7fff) < rstamp)
   2602 		tsf -= 0x8000;
   2603 	return ((tsf &~ 0x7fff) | rstamp);
   2604 }
   2605 
   2606 /*
   2607  * Intercept management frames to collect beacon rssi data
   2608  * and to do ibss merges.
   2609  */
   2610 static void
   2611 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
   2612 	struct ieee80211_node *ni,
   2613 	int subtype, int rssi, u_int32_t rstamp)
   2614 {
   2615 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   2616 
   2617 	/*
   2618 	 * Call up first so subsequent work can use information
   2619 	 * potentially stored in the node (e.g. for ibss merge).
   2620 	 */
   2621 	sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
   2622 	switch (subtype) {
   2623 	case IEEE80211_FC0_SUBTYPE_BEACON:
   2624 		/* update rssi statistics for use by the hal */
   2625 		ATH_RSSI_LPF(ATH_NODE(ni)->an_halstats.ns_avgbrssi, rssi);
   2626 		/* fall thru... */
   2627 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
   2628 		if (ic->ic_opmode == IEEE80211_M_IBSS &&
   2629 		    ic->ic_state == IEEE80211_S_RUN) {
   2630 			u_int64_t tsf = ath_tsf_extend(sc->sc_ah, rstamp);
   2631 
   2632 			/*
   2633 			 * Handle ibss merge as needed; check the tsf on the
   2634 			 * frame before attempting the merge.  The 802.11 spec
   2635 			 * says the station should change it's bssid to match
   2636 			 * the oldest station with the same ssid, where oldest
   2637 			 * is determined by the tsf.  Note that hardware
   2638 			 * reconfiguration happens through callback to
   2639 			 * ath_newstate as the state machine will go from
   2640 			 * RUN -> RUN when this happens.
   2641 			 */
   2642 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
   2643 				DPRINTF(sc, ATH_DEBUG_STATE,
   2644 				    "ibss merge, rstamp %u tsf %ju "
   2645 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
   2646 				    (uintmax_t)ni->ni_tstamp.tsf);
   2647 				(void) ieee80211_ibss_merge(ic, ni);
   2648 		}
   2649 		}
   2650 		break;
   2651 	}
   2652 }
   2653 
   2654 /*
   2655  * Set the default antenna.
   2656  */
   2657 static void
   2658 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
   2659 {
   2660 	struct ath_hal *ah = sc->sc_ah;
   2661 
   2662 	/* XXX block beacon interrupts */
   2663 	ath_hal_setdefantenna(ah, antenna);
   2664 	if (sc->sc_defant != antenna)
   2665 		sc->sc_stats.ast_ant_defswitch++;
   2666 	sc->sc_defant = antenna;
   2667 	sc->sc_rxotherant = 0;
   2668 }
   2669 
   2670 static void
   2671 ath_rx_proc(void *arg, int npending)
   2672 {
   2673 #define	PA2DESC(_sc, _pa) \
   2674 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
   2675 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
   2676 	struct ath_softc *sc = arg;
   2677 	struct ath_buf *bf;
   2678 	struct ieee80211com *ic = &sc->sc_ic;
   2679 	struct ifnet *ifp = &sc->sc_if;
   2680 	struct ath_hal *ah = sc->sc_ah;
   2681 	struct ath_desc *ds;
   2682 	struct mbuf *m;
   2683 	struct ieee80211_node *ni;
   2684 	struct ath_node *an;
   2685 	int len, type;
   2686 	u_int phyerr;
   2687 	HAL_STATUS status;
   2688 
   2689 	NET_LOCK_GIANT();		/* XXX */
   2690 
   2691 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
   2692 	do {
   2693 		bf = STAILQ_FIRST(&sc->sc_rxbuf);
   2694 		if (bf == NULL) {		/* NB: shouldn't happen */
   2695 			if_printf(ifp, "%s: no buffer!\n", __func__);
   2696 			break;
   2697 		}
   2698 		ds = bf->bf_desc;
   2699 		if (ds->ds_link == bf->bf_daddr) {
   2700 			/* NB: never process the self-linked entry at the end */
   2701 			break;
   2702 		}
   2703 		m = bf->bf_m;
   2704 		if (m == NULL) {		/* NB: shouldn't happen */
   2705 			if_printf(ifp, "%s: no mbuf!\n", __func__);
   2706 			continue;
   2707 		}
   2708 		/* XXX sync descriptor memory */
   2709 		/*
   2710 		 * Must provide the virtual address of the current
   2711 		 * descriptor, the physical address, and the virtual
   2712 		 * address of the next descriptor in the h/w chain.
   2713 		 * This allows the HAL to look ahead to see if the
   2714 		 * hardware is done with a descriptor by checking the
   2715 		 * done bit in the following descriptor and the address
   2716 		 * of the current descriptor the DMA engine is working
   2717 		 * on.  All this is necessary because of our use of
   2718 		 * a self-linked list to avoid rx overruns.
   2719 		 */
   2720 		status = ath_hal_rxprocdesc(ah, ds,
   2721 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
   2722 #ifdef AR_DEBUG
   2723 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
   2724 			ath_printrxbuf(bf, status == HAL_OK);
   2725 #endif
   2726 		if (status == HAL_EINPROGRESS)
   2727 			break;
   2728 		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
   2729 		if (ds->ds_rxstat.rs_more) {
   2730 			/*
   2731 			 * Frame spans multiple descriptors; this
   2732 			 * cannot happen yet as we don't support
   2733 			 * jumbograms.  If not in monitor mode,
   2734 			 * discard the frame.
   2735 			 */
   2736 			if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   2737 				sc->sc_stats.ast_rx_toobig++;
   2738 				goto rx_next;
   2739 			}
   2740 			/* fall thru for monitor mode handling... */
   2741 		} else if (ds->ds_rxstat.rs_status != 0) {
   2742 			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
   2743 				sc->sc_stats.ast_rx_crcerr++;
   2744 			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
   2745 				sc->sc_stats.ast_rx_fifoerr++;
   2746 			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
   2747 				sc->sc_stats.ast_rx_phyerr++;
   2748 				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
   2749 				sc->sc_stats.ast_rx_phy[phyerr]++;
   2750 				goto rx_next;
   2751 			}
   2752 			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
   2753 				/*
   2754 				 * Decrypt error.  If the error occurred
   2755 				 * because there was no hardware key, then
   2756 				 * let the frame through so the upper layers
   2757 				 * can process it.  This is necessary for 5210
   2758 				 * parts which have no way to setup a ``clear''
   2759 				 * key cache entry.
   2760 				 *
   2761 				 * XXX do key cache faulting
   2762 				 */
   2763 				if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
   2764 					goto rx_accept;
   2765 				sc->sc_stats.ast_rx_badcrypt++;
   2766 			}
   2767 			if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
   2768 				sc->sc_stats.ast_rx_badmic++;
   2769 				/*
   2770 				 * Do minimal work required to hand off
   2771 				 * the 802.11 header for notifcation.
   2772 				 */
   2773 				/* XXX frag's and qos frames */
   2774 				len = ds->ds_rxstat.rs_datalen;
   2775 				if (len >= sizeof (struct ieee80211_frame)) {
   2776 					bus_dmamap_sync(sc->sc_dmat,
   2777 					    bf->bf_dmamap,
   2778 					    0, bf->bf_dmamap->dm_mapsize,
   2779 					    BUS_DMASYNC_POSTREAD);
   2780 					ieee80211_notify_michael_failure(ic,
   2781 					    mtod(m, struct ieee80211_frame *),
   2782 					    sc->sc_splitmic ?
   2783 					        ds->ds_rxstat.rs_keyix-32 :
   2784 					        ds->ds_rxstat.rs_keyix
   2785 					);
   2786 				}
   2787 			}
   2788 			ifp->if_ierrors++;
   2789 			/*
   2790 			 * Reject error frames, we normally don't want
   2791 			 * to see them in monitor mode (in monitor mode
   2792 			 * allow through packets that have crypto problems).
   2793 			 */
   2794 			if ((ds->ds_rxstat.rs_status &~
   2795 				(HAL_RXERR_DECRYPT|HAL_RXERR_MIC)) ||
   2796 			    sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
   2797 				goto rx_next;
   2798 		}
   2799 rx_accept:
   2800 		/*
   2801 		 * Sync and unmap the frame.  At this point we're
   2802 		 * committed to passing the mbuf somewhere so clear
   2803 		 * bf_m; this means a new sk_buff must be allocated
   2804 		 * when the rx descriptor is setup again to receive
   2805 		 * another frame.
   2806 		 */
   2807 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
   2808 		    0, bf->bf_dmamap->dm_mapsize,
   2809 		    BUS_DMASYNC_POSTREAD);
   2810 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   2811 		bf->bf_m = NULL;
   2812 
   2813 		m->m_pkthdr.rcvif = ifp;
   2814 		len = ds->ds_rxstat.rs_datalen;
   2815 		m->m_pkthdr.len = m->m_len = len;
   2816 
   2817 		sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
   2818 
   2819 #if NBPFILTER > 0
   2820 		if (sc->sc_drvbpf) {
   2821 			u_int8_t rix;
   2822 
   2823 			/*
   2824 			 * Discard anything shorter than an ack or cts.
   2825 			 */
   2826 			if (len < IEEE80211_ACK_LEN) {
   2827 				DPRINTF(sc, ATH_DEBUG_RECV,
   2828 					"%s: runt packet %d\n",
   2829 					__func__, len);
   2830 				sc->sc_stats.ast_rx_tooshort++;
   2831 				m_freem(m);
   2832 				goto rx_next;
   2833 			}
   2834 			rix = ds->ds_rxstat.rs_rate;
   2835 			sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
   2836 			sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
   2837 			sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi;
   2838 			sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
   2839 			/* XXX TSF */
   2840 
   2841 			bpf_mtap2(sc->sc_drvbpf,
   2842 				&sc->sc_rx_th, sc->sc_rx_th_len, m);
   2843 		}
   2844 #endif
   2845 
   2846 		/*
   2847 		 * From this point on we assume the frame is at least
   2848 		 * as large as ieee80211_frame_min; verify that.
   2849 		 */
   2850 		if (len < IEEE80211_MIN_LEN) {
   2851 			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
   2852 				__func__, len);
   2853 			sc->sc_stats.ast_rx_tooshort++;
   2854 			m_freem(m);
   2855 			goto rx_next;
   2856 		}
   2857 
   2858 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
   2859 			ieee80211_dump_pkt(mtod(m, caddr_t), len,
   2860 				   sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
   2861 				   ds->ds_rxstat.rs_rssi);
   2862 		}
   2863 
   2864 		m_adj(m, -IEEE80211_CRC_LEN);
   2865 
   2866 		/*
   2867 		 * Locate the node for sender, track state, and then
   2868 		 * pass the (referenced) node up to the 802.11 layer
   2869 		 * for its use.
   2870 		 */
   2871 		ni = ieee80211_find_rxnode(ic,
   2872 			mtod(m, const struct ieee80211_frame_min *));
   2873 
   2874 		/*
   2875 		 * Track rx rssi and do any rx antenna management.
   2876 		 */
   2877 		an = ATH_NODE(ni);
   2878 		ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
   2879 		if (sc->sc_diversity) {
   2880 			/*
   2881 			 * When using fast diversity, change the default rx
   2882 			 * antenna if diversity chooses the other antenna 3
   2883 			 * times in a row.
   2884 			 */
   2885 			if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
   2886 				if (++sc->sc_rxotherant >= 3)
   2887 					ath_setdefantenna(sc,
   2888 						ds->ds_rxstat.rs_antenna);
   2889 			} else
   2890 				sc->sc_rxotherant = 0;
   2891 		}
   2892 
   2893 		/*
   2894 		 * Send frame up for processing.
   2895 		 */
   2896 		type = ieee80211_input(ic, m, ni,
   2897 			ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
   2898 
   2899 		if (sc->sc_softled) {
   2900 			/*
   2901 			 * Blink for any data frame.  Otherwise do a
   2902 			 * heartbeat-style blink when idle.  The latter
   2903 			 * is mainly for station mode where we depend on
   2904 			 * periodic beacon frames to trigger the poll event.
   2905 			 */
   2906 			if (type == IEEE80211_FC0_TYPE_DATA) {
   2907 				sc->sc_rxrate = ds->ds_rxstat.rs_rate;
   2908 				ath_led_event(sc, ATH_LED_RX);
   2909 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
   2910 				ath_led_event(sc, ATH_LED_POLL);
   2911 		}
   2912 
   2913 		/*
   2914 		 * Reclaim node reference.
   2915 		 */
   2916 		ieee80211_free_node(ni);
   2917 rx_next:
   2918 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
   2919 	} while (ath_rxbuf_init(sc, bf) == 0);
   2920 
   2921 	/* rx signal state monitoring */
   2922 	ath_hal_rxmonitor(ah, &ATH_NODE(ic->ic_bss)->an_halstats);
   2923 
   2924 #ifdef __NetBSD__
   2925 	/* XXX Why isn't this necessary in FreeBSD? */
   2926 	if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
   2927 		ath_start(ifp);
   2928 #endif /* __NetBSD__ */
   2929 
   2930 	NET_UNLOCK_GIANT();		/* XXX */
   2931 #undef PA2DESC
   2932 }
   2933 
   2934 /*
   2935  * Setup a h/w transmit queue.
   2936  */
   2937 static struct ath_txq *
   2938 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
   2939 {
   2940 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   2941 	struct ath_hal *ah = sc->sc_ah;
   2942 	HAL_TXQ_INFO qi;
   2943 	int qnum;
   2944 
   2945 	memset(&qi, 0, sizeof(qi));
   2946 	qi.tqi_subtype = subtype;
   2947 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
   2948 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
   2949 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
   2950 	/*
   2951 	 * Enable interrupts only for EOL and DESC conditions.
   2952 	 * We mark tx descriptors to receive a DESC interrupt
   2953 	 * when a tx queue gets deep; otherwise waiting for the
   2954 	 * EOL to reap descriptors.  Note that this is done to
   2955 	 * reduce interrupt load and this only defers reaping
   2956 	 * descriptors, never transmitting frames.  Aside from
   2957 	 * reducing interrupts this also permits more concurrency.
   2958 	 * The only potential downside is if the tx queue backs
   2959 	 * up in which case the top half of the kernel may backup
   2960 	 * due to a lack of tx descriptors.
   2961 	 */
   2962 	qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE | TXQ_FLAG_TXDESCINT_ENABLE;
   2963 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
   2964 	if (qnum == -1) {
   2965 		/*
   2966 		 * NB: don't print a message, this happens
   2967 		 * normally on parts with too few tx queues
   2968 		 */
   2969 		return NULL;
   2970 	}
   2971 	if (qnum >= N(sc->sc_txq)) {
   2972 		device_printf(sc->sc_dev,
   2973 			"hal qnum %u out of range, max %zu!\n",
   2974 			qnum, N(sc->sc_txq));
   2975 		ath_hal_releasetxqueue(ah, qnum);
   2976 		return NULL;
   2977 	}
   2978 	if (!ATH_TXQ_SETUP(sc, qnum)) {
   2979 		struct ath_txq *txq = &sc->sc_txq[qnum];
   2980 
   2981 		txq->axq_qnum = qnum;
   2982 		txq->axq_depth = 0;
   2983 		txq->axq_intrcnt = 0;
   2984 		txq->axq_link = NULL;
   2985 		STAILQ_INIT(&txq->axq_q);
   2986 		ATH_TXQ_LOCK_INIT(sc, txq);
   2987 		sc->sc_txqsetup |= 1<<qnum;
   2988 	}
   2989 	return &sc->sc_txq[qnum];
   2990 #undef N
   2991 }
   2992 
   2993 /*
   2994  * Setup a hardware data transmit queue for the specified
   2995  * access control.  The hal may not support all requested
   2996  * queues in which case it will return a reference to a
   2997  * previously setup queue.  We record the mapping from ac's
   2998  * to h/w queues for use by ath_tx_start and also track
   2999  * the set of h/w queues being used to optimize work in the
   3000  * transmit interrupt handler and related routines.
   3001  */
   3002 static int
   3003 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
   3004 {
   3005 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   3006 	struct ath_txq *txq;
   3007 
   3008 	if (ac >= N(sc->sc_ac2q)) {
   3009 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
   3010 			ac, N(sc->sc_ac2q));
   3011 		return 0;
   3012 	}
   3013 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
   3014 	if (txq != NULL) {
   3015 		sc->sc_ac2q[ac] = txq;
   3016 		return 1;
   3017 	} else
   3018 		return 0;
   3019 #undef N
   3020 }
   3021 
   3022 /*
   3023  * Update WME parameters for a transmit queue.
   3024  */
   3025 static int
   3026 ath_txq_update(struct ath_softc *sc, int ac)
   3027 {
   3028 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
   3029 #define	ATH_TXOP_TO_US(v)		(v<<5)
   3030 	struct ieee80211com *ic = &sc->sc_ic;
   3031 	struct ath_txq *txq = sc->sc_ac2q[ac];
   3032 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
   3033 	struct ath_hal *ah = sc->sc_ah;
   3034 	HAL_TXQ_INFO qi;
   3035 
   3036 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
   3037 	qi.tqi_aifs = wmep->wmep_aifsn;
   3038 	qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
   3039 	qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
   3040 	qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
   3041 
   3042 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
   3043 		device_printf(sc->sc_dev, "unable to update hardware queue "
   3044 			"parameters for %s traffic!\n",
   3045 			ieee80211_wme_acnames[ac]);
   3046 		return 0;
   3047 	} else {
   3048 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
   3049 		return 1;
   3050 	}
   3051 #undef ATH_TXOP_TO_US
   3052 #undef ATH_EXPONENT_TO_VALUE
   3053 }
   3054 
   3055 /*
   3056  * Callback from the 802.11 layer to update WME parameters.
   3057  */
   3058 static int
   3059 ath_wme_update(struct ieee80211com *ic)
   3060 {
   3061 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   3062 
   3063 	return !ath_txq_update(sc, WME_AC_BE) ||
   3064 	    !ath_txq_update(sc, WME_AC_BK) ||
   3065 	    !ath_txq_update(sc, WME_AC_VI) ||
   3066 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
   3067 }
   3068 
   3069 /*
   3070  * Reclaim resources for a setup queue.
   3071  */
   3072 static void
   3073 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
   3074 {
   3075 
   3076 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
   3077 	ATH_TXQ_LOCK_DESTROY(txq);
   3078 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
   3079 }
   3080 
   3081 /*
   3082  * Reclaim all tx queue resources.
   3083  */
   3084 static void
   3085 ath_tx_cleanup(struct ath_softc *sc)
   3086 {
   3087 	int i;
   3088 
   3089 	ATH_TXBUF_LOCK_DESTROY(sc);
   3090 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   3091 		if (ATH_TXQ_SETUP(sc, i))
   3092 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
   3093 }
   3094 
   3095 /*
   3096  * Defragment an mbuf chain, returning at most maxfrags separate
   3097  * mbufs+clusters.  If this is not possible NULL is returned and
   3098  * the original mbuf chain is left in it's present (potentially
   3099  * modified) state.  We use two techniques: collapsing consecutive
   3100  * mbufs and replacing consecutive mbufs by a cluster.
   3101  */
   3102 static struct mbuf *
   3103 ath_defrag(struct mbuf *m0, int how, int maxfrags)
   3104 {
   3105 	struct mbuf *m, *n, *n2, **prev;
   3106 	u_int curfrags;
   3107 
   3108 	/*
   3109 	 * Calculate the current number of frags.
   3110 	 */
   3111 	curfrags = 0;
   3112 	for (m = m0; m != NULL; m = m->m_next)
   3113 		curfrags++;
   3114 	/*
   3115 	 * First, try to collapse mbufs.  Note that we always collapse
   3116 	 * towards the front so we don't need to deal with moving the
   3117 	 * pkthdr.  This may be suboptimal if the first mbuf has much
   3118 	 * less data than the following.
   3119 	 */
   3120 	m = m0;
   3121 again:
   3122 	for (;;) {
   3123 		n = m->m_next;
   3124 		if (n == NULL)
   3125 			break;
   3126 		if ((m->m_flags & M_RDONLY) == 0 &&
   3127 		    n->m_len < M_TRAILINGSPACE(m)) {
   3128 			bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
   3129 				n->m_len);
   3130 			m->m_len += n->m_len;
   3131 			m->m_next = n->m_next;
   3132 			m_free(n);
   3133 			if (--curfrags <= maxfrags)
   3134 				return m0;
   3135 		} else
   3136 			m = n;
   3137 	}
   3138 	KASSERT(maxfrags > 1,
   3139 		("maxfrags %u, but normal collapse failed", maxfrags));
   3140 	/*
   3141 	 * Collapse consecutive mbufs to a cluster.
   3142 	 */
   3143 	prev = &m0->m_next;		/* NB: not the first mbuf */
   3144 	while ((n = *prev) != NULL) {
   3145 		if ((n2 = n->m_next) != NULL &&
   3146 		    n->m_len + n2->m_len < MCLBYTES) {
   3147 			m = m_getcl(how, MT_DATA, 0);
   3148 			if (m == NULL)
   3149 				goto bad;
   3150 			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
   3151 			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
   3152 				n2->m_len);
   3153 			m->m_len = n->m_len + n2->m_len;
   3154 			m->m_next = n2->m_next;
   3155 			*prev = m;
   3156 			m_free(n);
   3157 			m_free(n2);
   3158 			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
   3159 				return m0;
   3160 			/*
   3161 			 * Still not there, try the normal collapse
   3162 			 * again before we allocate another cluster.
   3163 			 */
   3164 			goto again;
   3165 		}
   3166 		prev = &n->m_next;
   3167 	}
   3168 	/*
   3169 	 * No place where we can collapse to a cluster; punt.
   3170 	 * This can occur if, for example, you request 2 frags
   3171 	 * but the packet requires that both be clusters (we
   3172 	 * never reallocate the first mbuf to avoid moving the
   3173 	 * packet header).
   3174 	 */
   3175 bad:
   3176 	return NULL;
   3177 }
   3178 
   3179 static int
   3180 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
   3181     struct mbuf *m0)
   3182 {
   3183 #define	CTS_DURATION \
   3184 	ath_hal_computetxtime(ah, rt, IEEE80211_ACK_LEN, cix, AH_TRUE)
   3185 #define	updateCTSForBursting(_ah, _ds, _txq) \
   3186 	ath_hal_updateCTSForBursting(_ah, _ds, \
   3187 	    _txq->axq_linkbuf != NULL ? _txq->axq_linkbuf->bf_desc : NULL, \
   3188 	    _txq->axq_lastdsWithCTS, _txq->axq_gatingds, \
   3189 	    txopLimit, CTS_DURATION)
   3190 	struct ieee80211com *ic = &sc->sc_ic;
   3191 	struct ath_hal *ah = sc->sc_ah;
   3192 	struct ifnet *ifp = &sc->sc_if;
   3193 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
   3194 	int i, error, iswep, ismcast, keyix, hdrlen, pktlen, try0;
   3195 	u_int8_t rix, txrate, ctsrate;
   3196 	u_int8_t cix = 0xff;		/* NB: silence compiler */
   3197 	struct ath_desc *ds, *ds0;
   3198 	struct ath_txq *txq;
   3199 	struct ieee80211_frame *wh;
   3200 	u_int subtype, flags, ctsduration;
   3201 	HAL_PKT_TYPE atype;
   3202 	const HAL_RATE_TABLE *rt;
   3203 	HAL_BOOL shortPreamble;
   3204 	struct ath_node *an;
   3205 	struct mbuf *m;
   3206 	u_int pri;
   3207 
   3208 	wh = mtod(m0, struct ieee80211_frame *);
   3209 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
   3210 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
   3211 	hdrlen = ieee80211_anyhdrsize(wh);
   3212 	/*
   3213 	 * Packet length must not include any
   3214 	 * pad bytes; deduct them here.
   3215 	 */
   3216 	pktlen = m0->m_pkthdr.len - (hdrlen & 3);
   3217 
   3218 	if (iswep) {
   3219 		const struct ieee80211_cipher *cip;
   3220 		struct ieee80211_key *k;
   3221 
   3222 		/*
   3223 		 * Construct the 802.11 header+trailer for an encrypted
   3224 		 * frame. The only reason this can fail is because of an
   3225 		 * unknown or unsupported cipher/key type.
   3226 		 */
   3227 		k = ieee80211_crypto_encap(ic, ni, m0);
   3228 		if (k == NULL) {
   3229 			/*
   3230 			 * This can happen when the key is yanked after the
   3231 			 * frame was queued.  Just discard the frame; the
   3232 			 * 802.11 layer counts failures and provides
   3233 			 * debugging/diagnostics.
   3234 			 */
   3235 			m_freem(m0);
   3236 			return EIO;
   3237 		}
   3238 		/*
   3239 		 * Adjust the packet + header lengths for the crypto
   3240 		 * additions and calculate the h/w key index.  When
   3241 		 * a s/w mic is done the frame will have had any mic
   3242 		 * added to it prior to entry so skb->len above will
   3243 		 * account for it. Otherwise we need to add it to the
   3244 		 * packet length.
   3245 		 */
   3246 		cip = k->wk_cipher;
   3247 		hdrlen += cip->ic_header;
   3248 		pktlen += cip->ic_header + cip->ic_trailer;
   3249 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0)
   3250 			pktlen += cip->ic_miclen;
   3251 		keyix = k->wk_keyix;
   3252 
   3253 		/* packet header may have moved, reset our local pointer */
   3254 		wh = mtod(m0, struct ieee80211_frame *);
   3255 	} else
   3256 		keyix = HAL_TXKEYIX_INVALID;
   3257 
   3258 	pktlen += IEEE80211_CRC_LEN;
   3259 
   3260 	/*
   3261 	 * Load the DMA map so any coalescing is done.  This
   3262 	 * also calculates the number of descriptors we need.
   3263 	 */
   3264 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
   3265 				     BUS_DMA_NOWAIT);
   3266 	if (error == EFBIG) {
   3267 		/* XXX packet requires too many descriptors */
   3268 		bf->bf_nseg = ATH_TXDESC+1;
   3269 	} else if (error != 0) {
   3270 		sc->sc_stats.ast_tx_busdma++;
   3271 		m_freem(m0);
   3272 		return error;
   3273 	}
   3274 	/*
   3275 	 * Discard null packets and check for packets that
   3276 	 * require too many TX descriptors.  We try to convert
   3277 	 * the latter to a cluster.
   3278 	 */
   3279 	if (error == EFBIG) {		/* too many desc's, linearize */
   3280 		sc->sc_stats.ast_tx_linear++;
   3281 		m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
   3282 		if (m == NULL) {
   3283 			m_freem(m0);
   3284 			sc->sc_stats.ast_tx_nombuf++;
   3285 			return ENOMEM;
   3286 		}
   3287 		m0 = m;
   3288 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
   3289 					     BUS_DMA_NOWAIT);
   3290 		if (error != 0) {
   3291 			sc->sc_stats.ast_tx_busdma++;
   3292 			m_freem(m0);
   3293 			return error;
   3294 		}
   3295 		KASSERT(bf->bf_nseg <= ATH_TXDESC,
   3296 		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
   3297 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
   3298 		sc->sc_stats.ast_tx_nodata++;
   3299 		m_freem(m0);
   3300 		return EIO;
   3301 	}
   3302 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
   3303 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   3304             bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
   3305 	bf->bf_m = m0;
   3306 	bf->bf_node = ni;			/* NB: held reference */
   3307 
   3308 	/* setup descriptors */
   3309 	ds = bf->bf_desc;
   3310 	rt = sc->sc_currates;
   3311 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
   3312 
   3313 	/*
   3314 	 * NB: the 802.11 layer marks whether or not we should
   3315 	 * use short preamble based on the current mode and
   3316 	 * negotiated parameters.
   3317 	 */
   3318 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
   3319 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
   3320 		shortPreamble = AH_TRUE;
   3321 		sc->sc_stats.ast_tx_shortpre++;
   3322 	} else {
   3323 		shortPreamble = AH_FALSE;
   3324 	}
   3325 
   3326 	an = ATH_NODE(ni);
   3327 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
   3328 	/*
   3329 	 * Calculate Atheros packet type from IEEE80211 packet header,
   3330 	 * setup for rate calculations, and select h/w transmit queue.
   3331 	 */
   3332 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
   3333 	case IEEE80211_FC0_TYPE_MGT:
   3334 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   3335 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
   3336 			atype = HAL_PKT_TYPE_BEACON;
   3337 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
   3338 			atype = HAL_PKT_TYPE_PROBE_RESP;
   3339 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
   3340 			atype = HAL_PKT_TYPE_ATIM;
   3341 		else
   3342 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
   3343 		rix = 0;			/* XXX lowest rate */
   3344 		try0 = ATH_TXMAXTRY;
   3345 		if (shortPreamble)
   3346 			txrate = an->an_tx_mgtratesp;
   3347 		else
   3348 			txrate = an->an_tx_mgtrate;
   3349 		/* NB: force all management frames to highest queue */
   3350 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
   3351 			/* NB: force all management frames to highest queue */
   3352 			pri = WME_AC_VO;
   3353 		} else
   3354 			pri = WME_AC_BE;
   3355 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
   3356 		break;
   3357 	case IEEE80211_FC0_TYPE_CTL:
   3358 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
   3359 		rix = 0;			/* XXX lowest rate */
   3360 		try0 = ATH_TXMAXTRY;
   3361 		if (shortPreamble)
   3362 			txrate = an->an_tx_mgtratesp;
   3363 		else
   3364 			txrate = an->an_tx_mgtrate;
   3365 		/* NB: force all ctl frames to highest queue */
   3366 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
   3367 			/* NB: force all ctl frames to highest queue */
   3368 			pri = WME_AC_VO;
   3369 		} else
   3370 			pri = WME_AC_BE;
   3371 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
   3372 		break;
   3373 	case IEEE80211_FC0_TYPE_DATA:
   3374 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
   3375 		/*
   3376 		 * Data frames; consult the rate control module.
   3377 		 */
   3378 		ath_rate_findrate(sc, an, shortPreamble, pktlen,
   3379 			&rix, &try0, &txrate);
   3380 		sc->sc_txrate = txrate;			/* for LED blinking */
   3381 		/*
   3382 		 * Default all non-QoS traffic to the background queue.
   3383 		 */
   3384 		if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
   3385 			pri = M_WME_GETAC(m0);
   3386 			if (cap->cap_wmeParams[pri].wmep_noackPolicy) {
   3387 				flags |= HAL_TXDESC_NOACK;
   3388 				sc->sc_stats.ast_tx_noack++;
   3389 			}
   3390 		} else
   3391 			pri = WME_AC_BE;
   3392 		break;
   3393 	default:
   3394 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
   3395 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
   3396 		/* XXX statistic */
   3397 		m_freem(m0);
   3398 		return EIO;
   3399 	}
   3400 	txq = sc->sc_ac2q[pri];
   3401 
   3402 	/*
   3403 	 * When servicing one or more stations in power-save mode
   3404 	 * multicast frames must be buffered until after the beacon.
   3405 	 * We use the CAB queue for that.
   3406 	 */
   3407 	if (ismcast && ic->ic_ps_sta) {
   3408 		txq = sc->sc_cabq;
   3409 		/* XXX? more bit in 802.11 frame header */
   3410 	}
   3411 
   3412 	/*
   3413 	 * Calculate miscellaneous flags.
   3414 	 */
   3415 	if (ismcast) {
   3416 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
   3417 		sc->sc_stats.ast_tx_noack++;
   3418 	} else if (pktlen > ic->ic_rtsthreshold) {
   3419 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
   3420 		cix = rt->info[rix].controlRate;
   3421 		sc->sc_stats.ast_tx_rts++;
   3422 	}
   3423 
   3424 	/*
   3425 	 * If 802.11g protection is enabled, determine whether
   3426 	 * to use RTS/CTS or just CTS.  Note that this is only
   3427 	 * done for OFDM unicast frames.
   3428 	 */
   3429 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
   3430 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
   3431 	    (flags & HAL_TXDESC_NOACK) == 0) {
   3432 		/* XXX fragments must use CCK rates w/ protection */
   3433 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
   3434 			flags |= HAL_TXDESC_RTSENA;
   3435 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
   3436 			flags |= HAL_TXDESC_CTSENA;
   3437 		cix = rt->info[sc->sc_protrix].controlRate;
   3438 		sc->sc_stats.ast_tx_protect++;
   3439 	}
   3440 
   3441 	/*
   3442 	 * Calculate duration.  This logically belongs in the 802.11
   3443 	 * layer but it lacks sufficient information to calculate it.
   3444 	 */
   3445 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
   3446 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
   3447 		u_int16_t dur;
   3448 		/*
   3449 		 * XXX not right with fragmentation.
   3450 		 */
   3451 		if (shortPreamble)
   3452 			dur = rt->info[rix].spAckDuration;
   3453 		else
   3454 			dur = rt->info[rix].lpAckDuration;
   3455 		*(u_int16_t *)wh->i_dur = htole16(dur);
   3456 	}
   3457 
   3458 	/*
   3459 	 * Calculate RTS/CTS rate and duration if needed.
   3460 	 */
   3461 	ctsduration = 0;
   3462 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
   3463 		/*
   3464 		 * CTS transmit rate is derived from the transmit rate
   3465 		 * by looking in the h/w rate table.  We must also factor
   3466 		 * in whether or not a short preamble is to be used.
   3467 		 */
   3468 		/* NB: cix is set above where RTS/CTS is enabled */
   3469 		KASSERT(cix != 0xff, ("cix not setup"));
   3470 		ctsrate = rt->info[cix].rateCode;
   3471 		/*
   3472 		 * Compute the transmit duration based on the frame
   3473 		 * size and the size of an ACK frame.  We call into the
   3474 		 * HAL to do the computation since it depends on the
   3475 		 * characteristics of the actual PHY being used.
   3476 		 *
   3477 		 * NB: CTS is assumed the same size as an ACK so we can
   3478 		 *     use the precalculated ACK durations.
   3479 		 */
   3480 		if (shortPreamble) {
   3481 			ctsrate |= rt->info[cix].shortPreamble;
   3482 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
   3483 				ctsduration += rt->info[cix].spAckDuration;
   3484 			ctsduration += ath_hal_computetxtime(ah,
   3485 				rt, pktlen, rix, AH_TRUE);
   3486 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
   3487 				ctsduration += rt->info[cix].spAckDuration;
   3488 		} else {
   3489 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
   3490 				ctsduration += rt->info[cix].lpAckDuration;
   3491 			ctsduration += ath_hal_computetxtime(ah,
   3492 				rt, pktlen, rix, AH_FALSE);
   3493 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
   3494 				ctsduration += rt->info[cix].lpAckDuration;
   3495 		}
   3496 		/*
   3497 		 * Must disable multi-rate retry when using RTS/CTS.
   3498 		 */
   3499 		try0 = ATH_TXMAXTRY;
   3500 	} else
   3501 		ctsrate = 0;
   3502 
   3503 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
   3504 		ieee80211_dump_pkt(mtod(m0, caddr_t), m0->m_len,
   3505 			sc->sc_hwmap[txrate].ieeerate, -1);
   3506 
   3507 	if (ic->ic_rawbpf)
   3508 		bpf_mtap(ic->ic_rawbpf, m0);
   3509 	if (sc->sc_drvbpf) {
   3510 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
   3511 		if (iswep)
   3512 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
   3513 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
   3514 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
   3515 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
   3516 
   3517 		bpf_mtap2(sc->sc_drvbpf,
   3518 			&sc->sc_tx_th, sc->sc_tx_th_len, m0);
   3519 	}
   3520 
   3521 	/*
   3522 	 * Determine if a tx interrupt should be generated for
   3523 	 * this descriptor.  We take a tx interrupt to reap
   3524 	 * descriptors when the h/w hits an EOL condition or
   3525 	 * when the descriptor is specifically marked to generate
   3526 	 * an interrupt.  We periodically mark descriptors in this
   3527 	 * way to insure timely replenishing of the supply needed
   3528 	 * for sending frames.  Defering interrupts reduces system
   3529 	 * load and potentially allows more concurrent work to be
   3530 	 * done but if done to aggressively can cause senders to
   3531 	 * backup.
   3532 	 *
   3533 	 * NB: use >= to deal with sc_txintrperiod changing
   3534 	 *     dynamically through sysctl.
   3535 	 */
   3536 	if (flags & HAL_TXDESC_INTREQ) {
   3537 		txq->axq_intrcnt = 0;
   3538 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
   3539 		flags |= HAL_TXDESC_INTREQ;
   3540 		txq->axq_intrcnt = 0;
   3541 	}
   3542 
   3543 	/*
   3544 	 * Formulate first tx descriptor with tx controls.
   3545 	 */
   3546 	/* XXX check return value? */
   3547 	ath_hal_setuptxdesc(ah, ds
   3548 		, pktlen		/* packet length */
   3549 		, hdrlen		/* header length */
   3550 		, atype			/* Atheros packet type */
   3551 		, ni->ni_txpower	/* txpower */
   3552 		, txrate, try0		/* series 0 rate/tries */
   3553 		, keyix			/* key cache index */
   3554 		, sc->sc_txantenna	/* antenna mode */
   3555 		, flags			/* flags */
   3556 		, ctsrate		/* rts/cts rate */
   3557 		, ctsduration		/* rts/cts duration */
   3558 	);
   3559 	/*
   3560 	 * Setup the multi-rate retry state only when we're
   3561 	 * going to use it.  This assumes ath_hal_setuptxdesc
   3562 	 * initializes the descriptors (so we don't have to)
   3563 	 * when the hardware supports multi-rate retry and
   3564 	 * we don't use it.
   3565 	 */
   3566 	if (try0 != ATH_TXMAXTRY)
   3567 		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
   3568 
   3569 	/*
   3570 	 * Fillin the remainder of the descriptor info.
   3571 	 */
   3572 	ds0 = ds;
   3573 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
   3574 		ds->ds_data = bf->bf_segs[i].ds_addr;
   3575 		if (i == bf->bf_nseg - 1)
   3576 			ds->ds_link = 0;
   3577 		else
   3578 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
   3579 		ath_hal_filltxdesc(ah, ds
   3580 			, bf->bf_segs[i].ds_len	/* segment length */
   3581 			, i == 0		/* first segment */
   3582 			, i == bf->bf_nseg - 1	/* last segment */
   3583 			, ds0			/* first descriptor */
   3584 		);
   3585 		DPRINTF(sc, ATH_DEBUG_XMIT,
   3586 			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
   3587 			__func__, i, ds->ds_link, ds->ds_data,
   3588 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
   3589 	}
   3590 	/*
   3591 	 * Insert the frame on the outbound list and
   3592 	 * pass it on to the hardware.
   3593 	 */
   3594 	ATH_TXQ_LOCK(txq);
   3595 	if (flags & (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) {
   3596 		u_int32_t txopLimit = IEEE80211_TXOP_TO_US(
   3597 			cap->cap_wmeParams[pri].wmep_txopLimit);
   3598 		/*
   3599 		 * When bursting, potentially extend the CTS duration
   3600 		 * of a previously queued frame to cover this frame
   3601 		 * and not exceed the txopLimit.  If that can be done
   3602 		 * then disable RTS/CTS on this frame since it's now
   3603 		 * covered (burst extension).  Otherwise we must terminate
   3604 		 * the burst before this frame goes out so as not to
   3605 		 * violate the WME parameters.  All this is complicated
   3606 		 * as we need to update the state of packets on the
   3607 		 * (live) hardware queue.  The logic is buried in the hal
   3608 		 * because it's highly chip-specific.
   3609 		 */
   3610 		if (txopLimit != 0) {
   3611 			sc->sc_stats.ast_tx_ctsburst++;
   3612 			if (updateCTSForBursting(ah, ds0, txq) == 0) {
   3613 				/*
   3614 				 * This frame was not covered by RTS/CTS from
   3615 				 * the previous frame in the burst; update the
   3616 				 * descriptor pointers so this frame is now
   3617 				 * treated as the last frame for extending a
   3618 				 * burst.
   3619 				 */
   3620 				txq->axq_lastdsWithCTS = ds0;
   3621 				/* set gating Desc to final desc */
   3622 				txq->axq_gatingds =
   3623 					(struct ath_desc *)txq->axq_link;
   3624 			} else
   3625 				sc->sc_stats.ast_tx_ctsext++;
   3626 		}
   3627 	}
   3628 	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
   3629 	if (txq->axq_link == NULL) {
   3630 		ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
   3631 		DPRINTF(sc, ATH_DEBUG_XMIT,
   3632 			"%s: TXDP[%u] = %p (%p) depth %d\n", __func__,
   3633 			txq->axq_qnum, (caddr_t)bf->bf_daddr, bf->bf_desc,
   3634 			txq->axq_depth);
   3635 	} else {
   3636 		*txq->axq_link = bf->bf_daddr;
   3637 		DPRINTF(sc, ATH_DEBUG_XMIT,
   3638 			"%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
   3639 			txq->axq_qnum, txq->axq_link,
   3640 			(caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
   3641 	}
   3642 	txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
   3643 	/*
   3644 	 * The CAB queue is started from the SWBA handler since
   3645 	 * frames only go out on DTIM and to avoid possible races.
   3646 	 */
   3647 	if (txq != sc->sc_cabq)
   3648 		ath_hal_txstart(ah, txq->axq_qnum);
   3649 	ATH_TXQ_UNLOCK(txq);
   3650 
   3651 	return 0;
   3652 #undef updateCTSForBursting
   3653 #undef CTS_DURATION
   3654 }
   3655 
   3656 /*
   3657  * Process completed xmit descriptors from the specified queue.
   3658  */
   3659 static void
   3660 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
   3661 {
   3662 	struct ath_hal *ah = sc->sc_ah;
   3663 	struct ieee80211com *ic = &sc->sc_ic;
   3664 	struct ath_buf *bf;
   3665 	struct ath_desc *ds, *ds0;
   3666 	struct ieee80211_node *ni;
   3667 	struct ath_node *an;
   3668 	int sr, lr, pri;
   3669 	HAL_STATUS status;
   3670 
   3671 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
   3672 		__func__, txq->axq_qnum,
   3673 		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
   3674 		txq->axq_link);
   3675 	for (;;) {
   3676 		ATH_TXQ_LOCK(txq);
   3677 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
   3678 		bf = STAILQ_FIRST(&txq->axq_q);
   3679 		if (bf == NULL) {
   3680 			txq->axq_link = NULL;
   3681 			ATH_TXQ_UNLOCK(txq);
   3682 			break;
   3683 		}
   3684 		ds0 = &bf->bf_desc[0];
   3685 		ds = &bf->bf_desc[bf->bf_nseg - 1];
   3686 		status = ath_hal_txprocdesc(ah, ds);
   3687 #ifdef AR_DEBUG
   3688 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
   3689 			ath_printtxbuf(bf, status == HAL_OK);
   3690 #endif
   3691 		if (status == HAL_EINPROGRESS) {
   3692 			ATH_TXQ_UNLOCK(txq);
   3693 			break;
   3694 		}
   3695 		if (ds0 == txq->axq_lastdsWithCTS)
   3696 			txq->axq_lastdsWithCTS = NULL;
   3697 		if (ds == txq->axq_gatingds)
   3698 			txq->axq_gatingds = NULL;
   3699 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
   3700 		ATH_TXQ_UNLOCK(txq);
   3701 
   3702 		ni = bf->bf_node;
   3703 		if (ni != NULL) {
   3704 			an = ATH_NODE(ni);
   3705 			if (ds->ds_txstat.ts_status == 0) {
   3706 				u_int8_t txant = ds->ds_txstat.ts_antenna;
   3707 				sc->sc_stats.ast_ant_tx[txant]++;
   3708 				sc->sc_ant_tx[txant]++;
   3709 				if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
   3710 					sc->sc_stats.ast_tx_altrate++;
   3711 				sc->sc_stats.ast_tx_rssi =
   3712 					ds->ds_txstat.ts_rssi;
   3713 				ATH_RSSI_LPF(an->an_halstats.ns_avgtxrssi,
   3714 					ds->ds_txstat.ts_rssi);
   3715 				pri = M_WME_GETAC(bf->bf_m);
   3716 				if (pri >= WME_AC_VO)
   3717 					ic->ic_wme.wme_hipri_traffic++;
   3718 				ni->ni_inact = ni->ni_inact_reload;
   3719 			} else {
   3720 				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
   3721 					sc->sc_stats.ast_tx_xretries++;
   3722 				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
   3723 					sc->sc_stats.ast_tx_fifoerr++;
   3724 				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
   3725 					sc->sc_stats.ast_tx_filtered++;
   3726 			}
   3727 			sr = ds->ds_txstat.ts_shortretry;
   3728 			lr = ds->ds_txstat.ts_longretry;
   3729 			sc->sc_stats.ast_tx_shortretry += sr;
   3730 			sc->sc_stats.ast_tx_longretry += lr;
   3731 			/*
   3732 			 * Hand the descriptor to the rate control algorithm.
   3733 			 */
   3734 			ath_rate_tx_complete(sc, an, ds, ds0);
   3735 			/*
   3736 			 * Reclaim reference to node.
   3737 			 *
   3738 			 * NB: the node may be reclaimed here if, for example
   3739 			 *     this is a DEAUTH message that was sent and the
   3740 			 *     node was timed out due to inactivity.
   3741 			 */
   3742 			ieee80211_free_node(ni);
   3743 		}
   3744 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   3745 		    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   3746 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   3747 		m_freem(bf->bf_m);
   3748 		bf->bf_m = NULL;
   3749 		bf->bf_node = NULL;
   3750 
   3751 		ATH_TXBUF_LOCK(sc);
   3752 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   3753 		ATH_TXBUF_UNLOCK(sc);
   3754 	}
   3755 }
   3756 
   3757 /*
   3758  * Deferred processing of transmit interrupt; special-cased
   3759  * for a single hardware transmit queue (e.g. 5210 and 5211).
   3760  */
   3761 static void
   3762 ath_tx_proc_q0(void *arg, int npending)
   3763 {
   3764 	struct ath_softc *sc = arg;
   3765 	struct ifnet *ifp = &sc->sc_if;
   3766 
   3767 	ath_tx_processq(sc, &sc->sc_txq[0]);
   3768 	ath_tx_processq(sc, sc->sc_cabq);
   3769 	ifp->if_flags &= ~IFF_OACTIVE;
   3770 	sc->sc_tx_timer = 0;
   3771 
   3772 	if (sc->sc_softled)
   3773 		ath_led_event(sc, ATH_LED_TX);
   3774 
   3775 	ath_start(ifp);
   3776 }
   3777 
   3778 /*
   3779  * Deferred processing of transmit interrupt; special-cased
   3780  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
   3781  */
   3782 static void
   3783 ath_tx_proc_q0123(void *arg, int npending)
   3784 {
   3785 	struct ath_softc *sc = arg;
   3786 	struct ifnet *ifp = &sc->sc_if;
   3787 
   3788 	/*
   3789 	 * Process each active queue.
   3790 	 */
   3791 	ath_tx_processq(sc, &sc->sc_txq[0]);
   3792 	ath_tx_processq(sc, &sc->sc_txq[1]);
   3793 	ath_tx_processq(sc, &sc->sc_txq[2]);
   3794 	ath_tx_processq(sc, &sc->sc_txq[3]);
   3795 	ath_tx_processq(sc, sc->sc_cabq);
   3796 
   3797 	ifp->if_flags &= ~IFF_OACTIVE;
   3798 	sc->sc_tx_timer = 0;
   3799 
   3800 	if (sc->sc_softled)
   3801 		ath_led_event(sc, ATH_LED_TX);
   3802 
   3803 	ath_start(ifp);
   3804 }
   3805 
   3806 /*
   3807  * Deferred processing of transmit interrupt.
   3808  */
   3809 static void
   3810 ath_tx_proc(void *arg, int npending)
   3811 {
   3812 	struct ath_softc *sc = arg;
   3813 	struct ifnet *ifp = &sc->sc_if;
   3814 	int i;
   3815 
   3816 	/*
   3817 	 * Process each active queue.
   3818 	 */
   3819 	/* XXX faster to read ISR_S0_S and ISR_S1_S to determine q's? */
   3820 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   3821 		if (ATH_TXQ_SETUP(sc, i))
   3822 			ath_tx_processq(sc, &sc->sc_txq[i]);
   3823 
   3824 	ifp->if_flags &= ~IFF_OACTIVE;
   3825 	sc->sc_tx_timer = 0;
   3826 
   3827 	if (sc->sc_softled)
   3828 		ath_led_event(sc, ATH_LED_TX);
   3829 
   3830 	ath_start(ifp);
   3831 }
   3832 
   3833 static void
   3834 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
   3835 {
   3836 	struct ath_hal *ah = sc->sc_ah;
   3837 	struct ieee80211_node *ni;
   3838 	struct ath_buf *bf;
   3839 
   3840 	/*
   3841 	 * NB: this assumes output has been stopped and
   3842 	 *     we do not need to block ath_tx_tasklet
   3843 	 */
   3844 	for (;;) {
   3845 		ATH_TXQ_LOCK(txq);
   3846 		bf = STAILQ_FIRST(&txq->axq_q);
   3847 		if (bf == NULL) {
   3848 			txq->axq_link = NULL;
   3849 			ATH_TXQ_UNLOCK(txq);
   3850 			break;
   3851 		}
   3852 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
   3853 		ATH_TXQ_UNLOCK(txq);
   3854 #ifdef AR_DEBUG
   3855 		if (sc->sc_debug & ATH_DEBUG_RESET)
   3856 			ath_printtxbuf(bf,
   3857 				ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
   3858 #endif /* AR_DEBUG */
   3859 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   3860 		m_freem(bf->bf_m);
   3861 		bf->bf_m = NULL;
   3862 		ni = bf->bf_node;
   3863 		bf->bf_node = NULL;
   3864 		if (ni != NULL) {
   3865 			/*
   3866 			 * Reclaim node reference.
   3867 			 */
   3868 			ieee80211_free_node(ni);
   3869 		}
   3870 		ATH_TXBUF_LOCK(sc);
   3871 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   3872 		ATH_TXBUF_UNLOCK(sc);
   3873 	}
   3874 }
   3875 
   3876 static void
   3877 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
   3878 {
   3879 	struct ath_hal *ah = sc->sc_ah;
   3880 
   3881 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
   3882 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
   3883 	    __func__, txq->axq_qnum,
   3884 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
   3885 	    txq->axq_link);
   3886 }
   3887 
   3888 /*
   3889  * Drain the transmit queues and reclaim resources.
   3890  */
   3891 static void
   3892 ath_draintxq(struct ath_softc *sc)
   3893 {
   3894 	struct ath_hal *ah = sc->sc_ah;
   3895 	struct ifnet *ifp = &sc->sc_if;
   3896 	int i;
   3897 
   3898 	/* XXX return value */
   3899 	if (!sc->sc_invalid) {
   3900 		/* don't touch the hardware if marked invalid */
   3901 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
   3902 		DPRINTF(sc, ATH_DEBUG_RESET,
   3903 		    "%s: beacon queue %p\n", __func__,
   3904 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
   3905 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   3906 			if (ATH_TXQ_SETUP(sc, i))
   3907 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
   3908 	}
   3909 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   3910 		if (ATH_TXQ_SETUP(sc, i))
   3911 			ath_tx_draintxq(sc, &sc->sc_txq[i]);
   3912 	ifp->if_flags &= ~IFF_OACTIVE;
   3913 	sc->sc_tx_timer = 0;
   3914 }
   3915 
   3916 /*
   3917  * Disable the receive h/w in preparation for a reset.
   3918  */
   3919 static void
   3920 ath_stoprecv(struct ath_softc *sc)
   3921 {
   3922 #define	PA2DESC(_sc, _pa) \
   3923 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
   3924 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
   3925 	struct ath_hal *ah = sc->sc_ah;
   3926 
   3927 	ath_hal_stoppcurecv(ah);	/* disable PCU */
   3928 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
   3929 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
   3930 	DELAY(3000);			/* 3ms is long enough for 1 frame */
   3931 #ifdef AR_DEBUG
   3932 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
   3933 		struct ath_buf *bf;
   3934 
   3935 		printf("%s: rx queue %p, link %p\n", __func__,
   3936 			(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
   3937 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
   3938 			struct ath_desc *ds = bf->bf_desc;
   3939 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
   3940 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
   3941 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
   3942 				ath_printrxbuf(bf, status == HAL_OK);
   3943 		}
   3944 	}
   3945 #endif
   3946 	sc->sc_rxlink = NULL;		/* just in case */
   3947 #undef PA2DESC
   3948 }
   3949 
   3950 /*
   3951  * Enable the receive h/w following a reset.
   3952  */
   3953 static int
   3954 ath_startrecv(struct ath_softc *sc)
   3955 {
   3956 	struct ath_hal *ah = sc->sc_ah;
   3957 	struct ath_buf *bf;
   3958 
   3959 	sc->sc_rxlink = NULL;
   3960 	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
   3961 		int error = ath_rxbuf_init(sc, bf);
   3962 		if (error != 0) {
   3963 			DPRINTF(sc, ATH_DEBUG_RECV,
   3964 				"%s: ath_rxbuf_init failed %d\n",
   3965 				__func__, error);
   3966 			return error;
   3967 		}
   3968 	}
   3969 
   3970 	bf = STAILQ_FIRST(&sc->sc_rxbuf);
   3971 	ath_hal_putrxbuf(ah, bf->bf_daddr);
   3972 	ath_hal_rxena(ah);		/* enable recv descriptors */
   3973 	ath_mode_init(sc);		/* set filters, etc. */
   3974 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
   3975 	return 0;
   3976 }
   3977 
   3978 /*
   3979  * Update internal state after a channel change.
   3980  */
   3981 static void
   3982 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
   3983 {
   3984 	struct ieee80211com *ic = &sc->sc_ic;
   3985 	enum ieee80211_phymode mode;
   3986 	u_int16_t flags;
   3987 
   3988 	/*
   3989 	 * Change channels and update the h/w rate map
   3990 	 * if we're switching; e.g. 11a to 11b/g.
   3991 	 */
   3992 	mode = ieee80211_chan2mode(ic, chan);
   3993 	if (mode != sc->sc_curmode)
   3994 		ath_setcurmode(sc, mode);
   3995 	/*
   3996 	 * Update BPF state.  NB: ethereal et. al. don't handle
   3997 	 * merged flags well so pick a unique mode for their use.
   3998 	 */
   3999 	if (IEEE80211_IS_CHAN_A(chan))
   4000 		flags = IEEE80211_CHAN_A;
   4001 	/* XXX 11g schizophrenia */
   4002 	else if (IEEE80211_IS_CHAN_G(chan) ||
   4003 	    IEEE80211_IS_CHAN_PUREG(chan))
   4004 		flags = IEEE80211_CHAN_G;
   4005 	else
   4006 		flags = IEEE80211_CHAN_B;
   4007 	if (IEEE80211_IS_CHAN_T(chan))
   4008 		flags |= IEEE80211_CHAN_TURBO;
   4009 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
   4010 		htole16(chan->ic_freq);
   4011 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
   4012 		htole16(flags);
   4013 }
   4014 
   4015 /*
   4016  * Set/change channels.  If the channel is really being changed,
   4017  * it's done by reseting the chip.  To accomplish this we must
   4018  * first cleanup any pending DMA, then restart stuff after a la
   4019  * ath_init.
   4020  */
   4021 static int
   4022 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
   4023 {
   4024 	struct ath_hal *ah = sc->sc_ah;
   4025 	struct ieee80211com *ic = &sc->sc_ic;
   4026 	HAL_CHANNEL hchan;
   4027 
   4028 	/*
   4029 	 * Convert to a HAL channel description with
   4030 	 * the flags constrained to reflect the current
   4031 	 * operating mode.
   4032 	 */
   4033 	hchan.channel = chan->ic_freq;
   4034 	hchan.channelFlags = ath_chan2flags(ic, chan);
   4035 
   4036 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz) -> %u (%u MHz)\n",
   4037 	    __func__,
   4038 	    ath_hal_mhz2ieee(sc->sc_curchan.channel,
   4039 		sc->sc_curchan.channelFlags),
   4040 	    	sc->sc_curchan.channel,
   4041 	    ath_hal_mhz2ieee(hchan.channel, hchan.channelFlags), hchan.channel);
   4042 	if (hchan.channel != sc->sc_curchan.channel ||
   4043 	    hchan.channelFlags != sc->sc_curchan.channelFlags) {
   4044 		HAL_STATUS status;
   4045 
   4046 		/*
   4047 		 * To switch channels clear any pending DMA operations;
   4048 		 * wait long enough for the RX fifo to drain, reset the
   4049 		 * hardware at the new frequency, and then re-enable
   4050 		 * the relevant bits of the h/w.
   4051 		 */
   4052 		ath_hal_intrset(ah, 0);		/* disable interrupts */
   4053 		ath_draintxq(sc);		/* clear pending tx frames */
   4054 		ath_stoprecv(sc);		/* turn off frame recv */
   4055 		if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
   4056 			if_printf(&sc->sc_if, "ath_chan_set: unable to reset "
   4057 				"channel %u (%u Mhz)\n",
   4058 				ieee80211_chan2ieee(ic, chan), chan->ic_freq);
   4059 			return EIO;
   4060 		}
   4061 		sc->sc_curchan = hchan;
   4062 		ath_update_txpow(sc);		/* update tx power state */
   4063 
   4064 		/*
   4065 		 * Re-enable rx framework.
   4066 		 */
   4067 		if (ath_startrecv(sc) != 0) {
   4068 			if_printf(&sc->sc_if,
   4069 				"ath_chan_set: unable to restart recv logic\n");
   4070 			return EIO;
   4071 		}
   4072 
   4073 		/*
   4074 		 * Change channels and update the h/w rate map
   4075 		 * if we're switching; e.g. 11a to 11b/g.
   4076 		 */
   4077 		ic->ic_ibss_chan = chan;
   4078 		ath_chan_change(sc, chan);
   4079 
   4080 		/*
   4081 		 * Re-enable interrupts.
   4082 		 */
   4083 		ath_hal_intrset(ah, sc->sc_imask);
   4084 	}
   4085 	return 0;
   4086 }
   4087 
   4088 static void
   4089 ath_next_scan(void *arg)
   4090 {
   4091 	struct ath_softc *sc = arg;
   4092 	struct ieee80211com *ic = &sc->sc_ic;
   4093 	int s;
   4094 
   4095 	/* don't call ath_start w/o network interrupts blocked */
   4096 	s = splnet();
   4097 
   4098 	if (ic->ic_state == IEEE80211_S_SCAN)
   4099 		ieee80211_next_scan(ic);
   4100 	splx(s);
   4101 }
   4102 
   4103 /*
   4104  * Periodically recalibrate the PHY to account
   4105  * for temperature/environment changes.
   4106  */
   4107 static void
   4108 ath_calibrate(void *arg)
   4109 {
   4110 	struct ath_softc *sc = arg;
   4111 	struct ath_hal *ah = sc->sc_ah;
   4112 
   4113 	sc->sc_stats.ast_per_cal++;
   4114 
   4115 	DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: channel %u/%x\n",
   4116 		__func__, sc->sc_curchan.channel, sc->sc_curchan.channelFlags);
   4117 
   4118 	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
   4119 		/*
   4120 		 * Rfgain is out of bounds, reset the chip
   4121 		 * to load new gain values.
   4122 		 */
   4123 		sc->sc_stats.ast_per_rfgain++;
   4124 		ath_reset(&sc->sc_if);
   4125 	}
   4126 	if (!ath_hal_calibrate(ah, &sc->sc_curchan)) {
   4127 		DPRINTF(sc, ATH_DEBUG_ANY,
   4128 			"%s: calibration of channel %u failed\n",
   4129 			__func__, sc->sc_curchan.channel);
   4130 		sc->sc_stats.ast_per_calfail++;
   4131 	}
   4132 	callout_reset(&sc->sc_cal_ch, ath_calinterval * hz, ath_calibrate, sc);
   4133 }
   4134 
   4135 static int
   4136 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
   4137 {
   4138 	struct ifnet *ifp = ic->ic_ifp;
   4139 	struct ath_softc *sc = ifp->if_softc;
   4140 	struct ath_hal *ah = sc->sc_ah;
   4141 	struct ieee80211_node *ni;
   4142 	int i, error;
   4143 	const u_int8_t *bssid;
   4144 	u_int32_t rfilt;
   4145 	static const HAL_LED_STATE leds[] = {
   4146 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
   4147 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
   4148 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
   4149 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
   4150 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
   4151 	};
   4152 
   4153 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
   4154 		ieee80211_state_name[ic->ic_state],
   4155 		ieee80211_state_name[nstate]);
   4156 
   4157 	callout_stop(&sc->sc_scan_ch);
   4158 	callout_stop(&sc->sc_cal_ch);
   4159 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
   4160 
   4161 	if (nstate == IEEE80211_S_INIT) {
   4162 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
   4163 		/*
   4164 		 * NB: disable interrupts so we don't rx frames.
   4165 		 */
   4166 		ath_hal_intrset(ah, sc->sc_imask &~ ~HAL_INT_GLOBAL);
   4167 		/*
   4168 		 * Notify the rate control algorithm.
   4169 		 */
   4170 		ath_rate_newstate(sc, nstate);
   4171 		goto done;
   4172 	}
   4173 	ni = ic->ic_bss;
   4174 	error = ath_chan_set(sc, ni->ni_chan);
   4175 	if (error != 0)
   4176 		goto bad;
   4177 	rfilt = ath_calcrxfilter(sc, nstate);
   4178 	if (nstate == IEEE80211_S_SCAN)
   4179 		bssid = ifp->if_broadcastaddr;
   4180 	else
   4181 		bssid = ni->ni_bssid;
   4182 	ath_hal_setrxfilter(ah, rfilt);
   4183 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
   4184 		 __func__, rfilt, ether_sprintf(bssid));
   4185 
   4186 	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
   4187 		ath_hal_setassocid(ah, bssid, ni->ni_associd);
   4188 	else
   4189 		ath_hal_setassocid(ah, bssid, 0);
   4190 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
   4191 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
   4192 			if (ath_hal_keyisvalid(ah, i))
   4193 				ath_hal_keysetmac(ah, i, bssid);
   4194 	}
   4195 
   4196 	/*
   4197 	 * Notify the rate control algorithm so rates
   4198 	 * are setup should ath_beacon_alloc be called.
   4199 	 */
   4200 	ath_rate_newstate(sc, nstate);
   4201 
   4202 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
   4203 		/* nothing to do */;
   4204 	} else if (nstate == IEEE80211_S_RUN) {
   4205 		DPRINTF(sc, ATH_DEBUG_STATE,
   4206 			"%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
   4207 			"capinfo=0x%04x chan=%d\n"
   4208 			 , __func__
   4209 			 , ic->ic_flags
   4210 			 , ni->ni_intval
   4211 			 , ether_sprintf(ni->ni_bssid)
   4212 			 , ni->ni_capinfo
   4213 			 , ieee80211_chan2ieee(ic, ni->ni_chan));
   4214 
   4215 		/*
   4216 		 * Allocate and setup the beacon frame for AP or adhoc mode.
   4217 		 */
   4218 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
   4219 		    ic->ic_opmode == IEEE80211_M_IBSS) {
   4220 			/*
   4221 			 * Stop any previous beacon DMA.  This may be
   4222 			 * necessary, for example, when an ibss merge
   4223 			 * causes reconfiguration; there will be a state
   4224 			 * transition from RUN->RUN that means we may
   4225 			 * be called with beacon transmission active.
   4226 			 */
   4227 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
   4228 			ath_beacon_free(sc);
   4229 			error = ath_beacon_alloc(sc, ni);
   4230 			if (error != 0)
   4231 				goto bad;
   4232 		}
   4233 
   4234 		/*
   4235 		 * Configure the beacon and sleep timers.
   4236 		 */
   4237 		ath_beacon_config(sc);
   4238 	} else {
   4239 		ath_hal_intrset(ah,
   4240 			sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
   4241 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
   4242 	}
   4243 done:
   4244 	/*
   4245 	 * Invoke the parent method to complete the work.
   4246 	 */
   4247 	error = sc->sc_newstate(ic, nstate, arg);
   4248 	/*
   4249 	 * Finally, start any timers.
   4250 	 */
   4251 	if (nstate == IEEE80211_S_RUN) {
   4252 		/* start periodic recalibration timer */
   4253 		callout_reset(&sc->sc_cal_ch, ath_calinterval * hz,
   4254 			ath_calibrate, sc);
   4255 	} else if (nstate == IEEE80211_S_SCAN) {
   4256 		/* start ap/neighbor scan timer */
   4257 		callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
   4258 			ath_next_scan, sc);
   4259 	}
   4260 bad:
   4261 	return error;
   4262 }
   4263 
   4264 /*
   4265  * Setup driver-specific state for a newly associated node.
   4266  * Note that we're called also on a re-associate, the isnew
   4267  * param tells us if this is the first time or not.
   4268  */
   4269 static void
   4270 ath_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
   4271 {
   4272 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   4273 
   4274 	ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
   4275 }
   4276 
   4277 static int
   4278 ath_getchannels(struct ath_softc *sc, u_int cc,
   4279 	HAL_BOOL outdoor, HAL_BOOL xchanmode)
   4280 {
   4281 	struct ieee80211com *ic = &sc->sc_ic;
   4282 	struct ifnet *ifp = &sc->sc_if;
   4283 	struct ath_hal *ah = sc->sc_ah;
   4284 	HAL_CHANNEL *chans;
   4285 	int i, ix, nchan;
   4286 
   4287 	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
   4288 			M_TEMP, M_NOWAIT);
   4289 	if (chans == NULL) {
   4290 		if_printf(ifp, "unable to allocate channel table\n");
   4291 		return ENOMEM;
   4292 	}
   4293 	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
   4294 	    cc, HAL_MODE_ALL, outdoor, xchanmode)) {
   4295 		u_int32_t rd;
   4296 
   4297 		ath_hal_getregdomain(ah, &rd);
   4298 		if_printf(ifp, "unable to collect channel list from hal; "
   4299 			"regdomain likely %u country code %u\n", rd, cc);
   4300 		free(chans, M_TEMP);
   4301 		return EINVAL;
   4302 	}
   4303 
   4304 	/*
   4305 	 * Convert HAL channels to ieee80211 ones and insert
   4306 	 * them in the table according to their channel number.
   4307 	 */
   4308 	for (i = 0; i < nchan; i++) {
   4309 		HAL_CHANNEL *c = &chans[i];
   4310 		ix = ath_hal_mhz2ieee(c->channel, c->channelFlags);
   4311 		if (ix > IEEE80211_CHAN_MAX) {
   4312 			if_printf(ifp, "bad hal channel %u (%u/%x) ignored\n",
   4313 				ix, c->channel, c->channelFlags);
   4314 			continue;
   4315 		}
   4316 		DPRINTF(sc, ATH_DEBUG_ANY,
   4317 		    "%s: HAL channel %d/%d freq %d flags %#04x idx %d\n",
   4318 		    sc->sc_dev.dv_xname, i, nchan, c->channel, c->channelFlags,
   4319 		    ix);
   4320 		/* NB: flags are known to be compatible */
   4321 		if (ic->ic_channels[ix].ic_freq == 0) {
   4322 			ic->ic_channels[ix].ic_freq = c->channel;
   4323 			ic->ic_channels[ix].ic_flags = c->channelFlags;
   4324 		} else {
   4325 			/* channels overlap; e.g. 11g and 11b */
   4326 			ic->ic_channels[ix].ic_flags |= c->channelFlags;
   4327 		}
   4328 	}
   4329 	free(chans, M_TEMP);
   4330 	return 0;
   4331 }
   4332 
   4333 static void
   4334 ath_led_done(void *arg)
   4335 {
   4336 	struct ath_softc *sc = arg;
   4337 
   4338 	sc->sc_blinking = 0;
   4339 }
   4340 
   4341 /*
   4342  * Turn the LED off: flip the pin and then set a timer so no
   4343  * update will happen for the specified duration.
   4344  */
   4345 static void
   4346 ath_led_off(void *arg)
   4347 {
   4348 	struct ath_softc *sc = arg;
   4349 
   4350 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
   4351 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
   4352 }
   4353 
   4354 /*
   4355  * Blink the LED according to the specified on/off times.
   4356  */
   4357 static void
   4358 ath_led_blink(struct ath_softc *sc, int on, int off)
   4359 {
   4360 	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
   4361 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
   4362 	sc->sc_blinking = 1;
   4363 	sc->sc_ledoff = off;
   4364 	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
   4365 }
   4366 
   4367 static void
   4368 ath_led_event(struct ath_softc *sc, int event)
   4369 {
   4370 
   4371 	sc->sc_ledevent = ticks;	/* time of last event */
   4372 	if (sc->sc_blinking)		/* don't interrupt active blink */
   4373 		return;
   4374 	switch (event) {
   4375 	case ATH_LED_POLL:
   4376 		ath_led_blink(sc, sc->sc_hwmap[0].ledon,
   4377 			sc->sc_hwmap[0].ledoff);
   4378 		break;
   4379 	case ATH_LED_TX:
   4380 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
   4381 			sc->sc_hwmap[sc->sc_txrate].ledoff);
   4382 		break;
   4383 	case ATH_LED_RX:
   4384 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
   4385 			sc->sc_hwmap[sc->sc_rxrate].ledoff);
   4386 		break;
   4387 	}
   4388 }
   4389 
   4390 static void
   4391 ath_update_txpow(struct ath_softc *sc)
   4392 {
   4393 	struct ieee80211com *ic = &sc->sc_ic;
   4394 	struct ath_hal *ah = sc->sc_ah;
   4395 	u_int32_t txpow;
   4396 
   4397 	if (sc->sc_curtxpow != ic->ic_txpowlimit) {
   4398 		ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
   4399 		/* read back in case value is clamped */
   4400 		ath_hal_gettxpowlimit(ah, &txpow);
   4401 		ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
   4402 	}
   4403 	/*
   4404 	 * Fetch max tx power level for status requests.
   4405 	 */
   4406 	ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
   4407 	ic->ic_bss->ni_txpower = txpow;
   4408 }
   4409 
   4410 static int
   4411 ath_rate_setup(struct ath_softc *sc, u_int mode)
   4412 {
   4413 	struct ath_hal *ah = sc->sc_ah;
   4414 	struct ieee80211com *ic = &sc->sc_ic;
   4415 	const HAL_RATE_TABLE *rt;
   4416 	struct ieee80211_rateset *rs;
   4417 	int i, maxrates;
   4418 
   4419 	switch (mode) {
   4420 	case IEEE80211_MODE_11A:
   4421 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11A);
   4422 		break;
   4423 	case IEEE80211_MODE_11B:
   4424 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11B);
   4425 		break;
   4426 	case IEEE80211_MODE_11G:
   4427 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11G);
   4428 		break;
   4429 	case IEEE80211_MODE_TURBO_A:
   4430 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_TURBO);
   4431 		break;
   4432 	case IEEE80211_MODE_TURBO_G:
   4433 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_108G);
   4434 		break;
   4435 	default:
   4436 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
   4437 			__func__, mode);
   4438 		return 0;
   4439 	}
   4440 	rt = sc->sc_rates[mode];
   4441 	if (rt == NULL)
   4442 		return 0;
   4443 	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
   4444 		DPRINTF(sc, ATH_DEBUG_ANY,
   4445 			"%s: rate table too small (%u > %u)\n",
   4446 			__func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
   4447 		maxrates = IEEE80211_RATE_MAXSIZE;
   4448 	} else
   4449 		maxrates = rt->rateCount;
   4450 	rs = &ic->ic_sup_rates[mode];
   4451 	for (i = 0; i < maxrates; i++)
   4452 		rs->rs_rates[i] = rt->info[i].dot11Rate;
   4453 	rs->rs_nrates = maxrates;
   4454 	return 1;
   4455 }
   4456 
   4457 static void
   4458 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
   4459 {
   4460 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   4461 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
   4462 	static const struct {
   4463 		u_int		rate;		/* tx/rx 802.11 rate */
   4464 		u_int16_t	timeOn;		/* LED on time (ms) */
   4465 		u_int16_t	timeOff;	/* LED off time (ms) */
   4466 	} blinkrates[] = {
   4467 		{ 108,  40,  10 },
   4468 		{  96,  44,  11 },
   4469 		{  72,  50,  13 },
   4470 		{  48,  57,  14 },
   4471 		{  36,  67,  16 },
   4472 		{  24,  80,  20 },
   4473 		{  22, 100,  25 },
   4474 		{  18, 133,  34 },
   4475 		{  12, 160,  40 },
   4476 		{  10, 200,  50 },
   4477 		{   6, 240,  58 },
   4478 		{   4, 267,  66 },
   4479 		{   2, 400, 100 },
   4480 		{   0, 500, 130 },
   4481 	};
   4482 	const HAL_RATE_TABLE *rt;
   4483 	int i, j;
   4484 
   4485 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
   4486 	rt = sc->sc_rates[mode];
   4487 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
   4488 	for (i = 0; i < rt->rateCount; i++)
   4489 		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
   4490 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
   4491 	for (i = 0; i < 32; i++) {
   4492 		u_int8_t ix = rt->rateCodeToIndex[i];
   4493 		if (ix == 0xff) {
   4494 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
   4495 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
   4496 			continue;
   4497 		}
   4498 		sc->sc_hwmap[i].ieeerate =
   4499 			rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
   4500 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
   4501 		if (rt->info[ix].shortPreamble ||
   4502 		    rt->info[ix].phy == IEEE80211_T_OFDM)
   4503 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
   4504 		/* NB: receive frames include FCS */
   4505 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
   4506 			IEEE80211_RADIOTAP_F_FCS;
   4507 		/* setup blink rate table to avoid per-packet lookup */
   4508 		for (j = 0; j < N(blinkrates)-1; j++)
   4509 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
   4510 				break;
   4511 		/* NB: this uses the last entry if the rate isn't found */
   4512 		/* XXX beware of overlow */
   4513 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
   4514 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
   4515 	}
   4516 	sc->sc_currates = rt;
   4517 	sc->sc_curmode = mode;
   4518 	/*
   4519 	 * All protection frames are transmited at 2Mb/s for
   4520 	 * 11g, otherwise at 1Mb/s.
   4521 	 * XXX select protection rate index from rate table.
   4522 	 */
   4523 	sc->sc_protrix = (mode == IEEE80211_MODE_11G ? 1 : 0);
   4524 	/* NB: caller is responsible for reseting rate control state */
   4525 #undef N
   4526 }
   4527 
   4528 #ifdef AR_DEBUG
   4529 static void
   4530 ath_printrxbuf(struct ath_buf *bf, int done)
   4531 {
   4532 	struct ath_desc *ds;
   4533 	int i;
   4534 
   4535 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
   4536 		printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n",
   4537 		    i, ds, (struct ath_desc *)bf->bf_daddr + i,
   4538 		    ds->ds_link, ds->ds_data,
   4539 		    ds->ds_ctl0, ds->ds_ctl1,
   4540 		    ds->ds_hw[0], ds->ds_hw[1],
   4541 		    !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
   4542 	}
   4543 }
   4544 
   4545 static void
   4546 ath_printtxbuf(struct ath_buf *bf, int done)
   4547 {
   4548 	struct ath_desc *ds;
   4549 	int i;
   4550 
   4551 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
   4552 		printf("T%d (%p %p) %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
   4553 		    i, ds, (struct ath_desc *)bf->bf_daddr + i,
   4554 		    ds->ds_link, ds->ds_data,
   4555 		    ds->ds_ctl0, ds->ds_ctl1,
   4556 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
   4557 		    !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
   4558 	}
   4559 }
   4560 #endif /* AR_DEBUG */
   4561 
   4562 static void
   4563 ath_watchdog(struct ifnet *ifp)
   4564 {
   4565 	struct ath_softc *sc = ifp->if_softc;
   4566 	struct ieee80211com *ic = &sc->sc_ic;
   4567 
   4568 	ifp->if_timer = 0;
   4569 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
   4570 		return;
   4571 	if (sc->sc_tx_timer) {
   4572 		if (--sc->sc_tx_timer == 0) {
   4573 			if_printf(ifp, "device timeout\n");
   4574 			ath_reset(ifp);
   4575 			ifp->if_oerrors++;
   4576 			sc->sc_stats.ast_watchdog++;
   4577 		} else
   4578 			ifp->if_timer = 1;
   4579 	}
   4580 	ieee80211_watchdog(ic);
   4581 }
   4582 
   4583 /*
   4584  * Diagnostic interface to the HAL.  This is used by various
   4585  * tools to do things like retrieve register contents for
   4586  * debugging.  The mechanism is intentionally opaque so that
   4587  * it can change frequently w/o concern for compatiblity.
   4588  */
   4589 static int
   4590 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
   4591 {
   4592 	struct ath_hal *ah = sc->sc_ah;
   4593 	u_int id = ad->ad_id & ATH_DIAG_ID;
   4594 	void *indata = NULL;
   4595 	void *outdata = NULL;
   4596 	u_int32_t insize = ad->ad_in_size;
   4597 	u_int32_t outsize = ad->ad_out_size;
   4598 	int error = 0;
   4599 
   4600 	if (ad->ad_id & ATH_DIAG_IN) {
   4601 		/*
   4602 		 * Copy in data.
   4603 		 */
   4604 		indata = malloc(insize, M_TEMP, M_NOWAIT);
   4605 		if (indata == NULL) {
   4606 			error = ENOMEM;
   4607 			goto bad;
   4608 		}
   4609 		error = copyin(ad->ad_in_data, indata, insize);
   4610 		if (error)
   4611 			goto bad;
   4612 	}
   4613 	if (ad->ad_id & ATH_DIAG_DYN) {
   4614 		/*
   4615 		 * Allocate a buffer for the results (otherwise the HAL
   4616 		 * returns a pointer to a buffer where we can read the
   4617 		 * results).  Note that we depend on the HAL leaving this
   4618 		 * pointer for us to use below in reclaiming the buffer;
   4619 		 * may want to be more defensive.
   4620 		 */
   4621 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
   4622 		if (outdata == NULL) {
   4623 			error = ENOMEM;
   4624 			goto bad;
   4625 		}
   4626 	}
   4627 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
   4628 		if (outsize < ad->ad_out_size)
   4629 			ad->ad_out_size = outsize;
   4630 		if (outdata != NULL)
   4631 			error = copyout(outdata, ad->ad_out_data,
   4632 					ad->ad_out_size);
   4633 	} else {
   4634 		error = EINVAL;
   4635 	}
   4636 bad:
   4637 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
   4638 		free(indata, M_TEMP);
   4639 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
   4640 		free(outdata, M_TEMP);
   4641 	return error;
   4642 }
   4643 
   4644 static int
   4645 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
   4646 {
   4647 #define	IS_RUNNING(ifp) \
   4648 	((ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP))
   4649 	struct ath_softc *sc = ifp->if_softc;
   4650 	struct ieee80211com *ic = &sc->sc_ic;
   4651 	struct ifreq *ifr = (struct ifreq *)data;
   4652 	int error = 0;
   4653 
   4654 	ATH_LOCK(sc);
   4655 	switch (cmd) {
   4656 	case SIOCSIFFLAGS:
   4657 		if (IS_RUNNING(ifp)) {
   4658 			/*
   4659 			 * To avoid rescanning another access point,
   4660 			 * do not call ath_init() here.  Instead,
   4661 			 * only reflect promisc mode settings.
   4662 			 */
   4663 			ath_mode_init(sc);
   4664 		} else if (ifp->if_flags & IFF_UP) {
   4665 			/*
   4666 			 * Beware of being called during attach/detach
   4667 			 * to reset promiscuous mode.  In that case we
   4668 			 * will still be marked UP but not RUNNING.
   4669 			 * However trying to re-init the interface
   4670 			 * is the wrong thing to do as we've already
   4671 			 * torn down much of our state.  There's
   4672 			 * probably a better way to deal with this.
   4673 			 */
   4674 			if (!sc->sc_invalid && ic->ic_bss != NULL)
   4675 				ath_init(ifp);	/* XXX lose error */
   4676 		} else
   4677 			ath_stop_locked(ifp, 1);
   4678 		break;
   4679 	case SIOCADDMULTI:
   4680 	case SIOCDELMULTI:
   4681 		error = (cmd == SIOCADDMULTI) ?
   4682 		    ether_addmulti(ifr, &sc->sc_ec) :
   4683 		    ether_delmulti(ifr, &sc->sc_ec);
   4684 		if (error == ENETRESET) {
   4685 			if (ifp->if_flags & IFF_RUNNING)
   4686 				ath_mode_init(sc);
   4687 			error = 0;
   4688 		}
   4689 		break;
   4690 	case SIOCGATHSTATS:
   4691 		/* NB: embed these numbers to get a consistent view */
   4692 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
   4693 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
   4694 		sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
   4695 		ATH_UNLOCK(sc);
   4696 		/*
   4697 		 * NB: Drop the softc lock in case of a page fault;
   4698 		 * we'll accept any potential inconsisentcy in the
   4699 		 * statistics.  The alternative is to copy the data
   4700 		 * to a local structure.
   4701 		 */
   4702 		return copyout(&sc->sc_stats,
   4703 				ifr->ifr_data, sizeof (sc->sc_stats));
   4704 	case SIOCGATHDIAG:
   4705 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
   4706 		break;
   4707 	default:
   4708 		error = ieee80211_ioctl(ic, cmd, data);
   4709 		if (error == ENETRESET) {
   4710 			if (IS_RUNNING(ifp) &&
   4711 			    ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
   4712 				ath_init(ifp);	/* XXX lose error */
   4713 			error = 0;
   4714 		}
   4715 		if (error == ERESTART)
   4716 			error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0;
   4717 		break;
   4718 	}
   4719 	ATH_UNLOCK(sc);
   4720 	return error;
   4721 #undef IS_RUNNING
   4722 }
   4723 
   4724 static void
   4725 ath_bpfattach(struct ath_softc *sc)
   4726 {
   4727 	struct ifnet *ifp = &sc->sc_if;
   4728 
   4729 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
   4730 		sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
   4731 		&sc->sc_drvbpf);
   4732 	/*
   4733 	 * Initialize constant fields.
   4734 	 * XXX make header lengths a multiple of 32-bits so subsequent
   4735 	 *     headers are properly aligned; this is a kludge to keep
   4736 	 *     certain applications happy.
   4737 	 *
   4738 	 * NB: the channel is setup each time we transition to the
   4739 	 *     RUN state to avoid filling it in for each frame.
   4740 	 */
   4741 	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
   4742 	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
   4743 	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
   4744 
   4745 	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
   4746 	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
   4747 	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
   4748 }
   4749 
   4750 /*
   4751  * Announce various information on device/driver attach.
   4752  */
   4753 static void
   4754 ath_announce(struct ath_softc *sc)
   4755 {
   4756 #define	HAL_MODE_DUALBAND	(HAL_MODE_11A|HAL_MODE_11B)
   4757 	struct ifnet *ifp = &sc->sc_if;
   4758 	struct ath_hal *ah = sc->sc_ah;
   4759 	u_int modes, cc;
   4760 
   4761 	if_printf(ifp, "mac %d.%d phy %d.%d",
   4762 		ah->ah_macVersion, ah->ah_macRev,
   4763 		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
   4764 	/*
   4765 	 * Print radio revision(s).  We check the wireless modes
   4766 	 * to avoid falsely printing revs for inoperable parts.
   4767 	 * Dual-band radio revs are returned in the 5Ghz rev number.
   4768 	 */
   4769 	ath_hal_getcountrycode(ah, &cc);
   4770 	modes = ath_hal_getwirelessmodes(ah, cc);
   4771 	if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
   4772 		if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
   4773 			printf(" 5ghz radio %d.%d 2ghz radio %d.%d",
   4774 				ah->ah_analog5GhzRev >> 4,
   4775 				ah->ah_analog5GhzRev & 0xf,
   4776 				ah->ah_analog2GhzRev >> 4,
   4777 				ah->ah_analog2GhzRev & 0xf);
   4778 		else
   4779 			printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
   4780 				ah->ah_analog5GhzRev & 0xf);
   4781 	} else
   4782 		printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
   4783 			ah->ah_analog5GhzRev & 0xf);
   4784 	printf("\n");
   4785 	if (bootverbose) {
   4786 		int i;
   4787 		for (i = 0; i <= WME_AC_VO; i++) {
   4788 			struct ath_txq *txq = sc->sc_ac2q[i];
   4789 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
   4790 				txq->axq_qnum, ieee80211_wme_acnames[i]);
   4791 		}
   4792 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
   4793 			sc->sc_cabq->axq_qnum);
   4794 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
   4795 	}
   4796 #undef HAL_MODE_DUALBAND
   4797 }
   4798