ath.c revision 1.52 1 /* $NetBSD: ath.c,v 1.52 2005/07/03 19:44:50 dyoung Exp $ */
2
3 /*-
4 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15 * redistribution must be conditioned upon including a substantially
16 * similar Disclaimer requirement for further binary redistribution.
17 * 3. Neither the names of the above-listed copyright holders nor the names
18 * of any contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * Alternatively, this software may be distributed under the terms of the
22 * GNU General Public License ("GPL") version 2 as published by the Free
23 * Software Foundation.
24 *
25 * NO WARRANTY
26 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
28 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
29 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
30 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
31 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
34 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
36 * THE POSSIBILITY OF SUCH DAMAGES.
37 */
38
39 #include <sys/cdefs.h>
40 #ifdef __FreeBSD__
41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.88 2005/04/12 17:56:43 sam Exp $");
42 #endif
43 #ifdef __NetBSD__
44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.52 2005/07/03 19:44:50 dyoung Exp $");
45 #endif
46
47 /*
48 * Driver for the Atheros Wireless LAN controller.
49 *
50 * This software is derived from work of Atsushi Onoe; his contribution
51 * is greatly appreciated.
52 */
53
54 #include "opt_inet.h"
55
56 #ifdef __NetBSD__
57 #include "bpfilter.h"
58 #endif /* __NetBSD__ */
59
60 #include <sys/param.h>
61 #include <sys/reboot.h>
62 #include <sys/systm.h>
63 #include <sys/types.h>
64 #include <sys/sysctl.h>
65 #include <sys/mbuf.h>
66 #include <sys/malloc.h>
67 #include <sys/lock.h>
68 #include <sys/kernel.h>
69 #include <sys/socket.h>
70 #include <sys/sockio.h>
71 #include <sys/errno.h>
72 #include <sys/callout.h>
73 #include <machine/bus.h>
74 #include <sys/endian.h>
75
76 #include <machine/bus.h>
77
78 #include <net/if.h>
79 #include <net/if_dl.h>
80 #include <net/if_media.h>
81 #include <net/if_arp.h>
82 #include <net/if_ether.h>
83 #include <net/if_llc.h>
84
85 #include <net80211/ieee80211_netbsd.h>
86 #include <net80211/ieee80211_var.h>
87
88 #if NBPFILTER > 0
89 #include <net/bpf.h>
90 #endif
91
92 #ifdef INET
93 #include <netinet/in.h>
94 #endif
95
96 #include <sys/device.h>
97 #include <dev/ic/ath_netbsd.h>
98
99 #define AR_DEBUG
100 #include <dev/ic/athvar.h>
101 #include <contrib/dev/ic/athhal_desc.h>
102 #include <contrib/dev/ic/athhal_devid.h> /* XXX for softled */
103
104 /* unaligned little endian access */
105 #define LE_READ_2(p) \
106 ((u_int16_t) \
107 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8)))
108 #define LE_READ_4(p) \
109 ((u_int32_t) \
110 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \
111 (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
112
113 enum {
114 ATH_LED_TX,
115 ATH_LED_RX,
116 ATH_LED_POLL,
117 };
118
119 static int ath_init(struct ifnet *);
120 static void ath_stop_locked(struct ifnet *, int);
121 static void ath_stop(struct ifnet *, int);
122 static void ath_start(struct ifnet *);
123 static int ath_media_change(struct ifnet *);
124 static void ath_watchdog(struct ifnet *);
125 static int ath_ioctl(struct ifnet *, u_long, caddr_t);
126 static void ath_fatal_proc(void *, int);
127 static void ath_rxorn_proc(void *, int);
128 static void ath_bmiss_proc(void *, int);
129 static void ath_initkeytable(struct ath_softc *);
130 static int ath_key_alloc(struct ieee80211com *,
131 const struct ieee80211_key *);
132 static int ath_key_delete(struct ieee80211com *,
133 const struct ieee80211_key *);
134 static int ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
135 const u_int8_t mac[IEEE80211_ADDR_LEN]);
136 static void ath_key_update_begin(struct ieee80211com *);
137 static void ath_key_update_end(struct ieee80211com *);
138 static void ath_mode_init(struct ath_softc *);
139 static void ath_setslottime(struct ath_softc *);
140 static void ath_updateslot(struct ifnet *);
141 static int ath_beaconq_setup(struct ath_hal *);
142 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
143 static void ath_beacon_setup(struct ath_softc *, struct ath_buf *);
144 static void ath_beacon_proc(void *, int);
145 static void ath_bstuck_proc(void *, int);
146 static void ath_beacon_free(struct ath_softc *);
147 static void ath_beacon_config(struct ath_softc *);
148 static void ath_descdma_cleanup(struct ath_softc *sc,
149 struct ath_descdma *, ath_bufhead *);
150 static int ath_desc_alloc(struct ath_softc *);
151 static void ath_desc_free(struct ath_softc *);
152 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
153 static void ath_node_free(struct ieee80211_node *);
154 static u_int8_t ath_node_getrssi(const struct ieee80211_node *);
155 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
156 static void ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
157 struct ieee80211_node *ni,
158 int subtype, int rssi, u_int32_t rstamp);
159 static void ath_setdefantenna(struct ath_softc *, u_int);
160 static void ath_rx_proc(void *, int);
161 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
162 static int ath_tx_setup(struct ath_softc *, int, int);
163 static int ath_wme_update(struct ieee80211com *);
164 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
165 static void ath_tx_cleanup(struct ath_softc *);
166 static int ath_tx_start(struct ath_softc *, struct ieee80211_node *,
167 struct ath_buf *, struct mbuf *);
168 static void ath_tx_proc_q0(void *, int);
169 static void ath_tx_proc_q0123(void *, int);
170 static void ath_tx_proc(void *, int);
171 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
172 static void ath_draintxq(struct ath_softc *);
173 static void ath_stoprecv(struct ath_softc *);
174 static int ath_startrecv(struct ath_softc *);
175 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
176 static void ath_next_scan(void *);
177 static void ath_calibrate(void *);
178 static int ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
179 static void ath_newassoc(struct ieee80211com *,
180 struct ieee80211_node *, int);
181 static int ath_getchannels(struct ath_softc *, u_int cc,
182 HAL_BOOL outdoor, HAL_BOOL xchanmode);
183 static void ath_led_event(struct ath_softc *, int);
184 static void ath_update_txpow(struct ath_softc *);
185
186 static int ath_rate_setup(struct ath_softc *, u_int mode);
187 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
188
189 #ifdef __NetBSD__
190 int ath_enable(struct ath_softc *);
191 void ath_disable(struct ath_softc *);
192 void ath_power(int, void *);
193 #endif
194
195 static void ath_bpfattach(struct ath_softc *);
196 static void ath_announce(struct ath_softc *);
197
198 int ath_dwelltime = 200; /* 5 channels/second */
199 int ath_calinterval = 30; /* calibrate every 30 secs */
200 int ath_outdoor = AH_TRUE; /* outdoor operation */
201 int ath_xchanmode = AH_TRUE; /* enable extended channels */
202 int ath_countrycode = CTRY_DEFAULT; /* country code */
203 int ath_regdomain = 0; /* regulatory domain */
204 int ath_debug = 0;
205
206 #ifdef AR_DEBUG
207 enum {
208 ATH_DEBUG_XMIT = 0x00000001, /* basic xmit operation */
209 ATH_DEBUG_XMIT_DESC = 0x00000002, /* xmit descriptors */
210 ATH_DEBUG_RECV = 0x00000004, /* basic recv operation */
211 ATH_DEBUG_RECV_DESC = 0x00000008, /* recv descriptors */
212 ATH_DEBUG_RATE = 0x00000010, /* rate control */
213 ATH_DEBUG_RESET = 0x00000020, /* reset processing */
214 ATH_DEBUG_MODE = 0x00000040, /* mode init/setup */
215 ATH_DEBUG_BEACON = 0x00000080, /* beacon handling */
216 ATH_DEBUG_WATCHDOG = 0x00000100, /* watchdog timeout */
217 ATH_DEBUG_INTR = 0x00001000, /* ISR */
218 ATH_DEBUG_TX_PROC = 0x00002000, /* tx ISR proc */
219 ATH_DEBUG_RX_PROC = 0x00004000, /* rx ISR proc */
220 ATH_DEBUG_BEACON_PROC = 0x00008000, /* beacon ISR proc */
221 ATH_DEBUG_CALIBRATE = 0x00010000, /* periodic calibration */
222 ATH_DEBUG_KEYCACHE = 0x00020000, /* key cache management */
223 ATH_DEBUG_STATE = 0x00040000, /* 802.11 state transitions */
224 ATH_DEBUG_NODE = 0x00080000, /* node management */
225 ATH_DEBUG_LED = 0x00100000, /* led management */
226 ATH_DEBUG_FATAL = 0x80000000, /* fatal errors */
227 ATH_DEBUG_ANY = 0xffffffff
228 };
229 #define IFF_DUMPPKTS(sc, m) \
230 ((sc->sc_debug & (m)) || \
231 (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
232 #define DPRINTF(sc, m, fmt, ...) do { \
233 if (sc->sc_debug & (m)) \
234 printf(fmt, __VA_ARGS__); \
235 } while (0)
236 #define KEYPRINTF(sc, ix, hk, mac) do { \
237 if (sc->sc_debug & ATH_DEBUG_KEYCACHE) \
238 ath_keyprint(__func__, ix, hk, mac); \
239 } while (0)
240 static void ath_printrxbuf(struct ath_buf *bf, int);
241 static void ath_printtxbuf(struct ath_buf *bf, int);
242 #else
243 #define IFF_DUMPPKTS(sc, m) \
244 ((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
245 #define DPRINTF(m, fmt, ...)
246 #define KEYPRINTF(sc, k, ix, mac)
247 #endif
248
249 #ifdef __NetBSD__
250 int
251 ath_activate(struct device *self, enum devact act)
252 {
253 struct ath_softc *sc = (struct ath_softc *)self;
254 int rv = 0, s;
255
256 s = splnet();
257 switch (act) {
258 case DVACT_ACTIVATE:
259 rv = EOPNOTSUPP;
260 break;
261 case DVACT_DEACTIVATE:
262 if_deactivate(&sc->sc_if);
263 break;
264 }
265 splx(s);
266 return rv;
267 }
268
269 int
270 ath_enable(struct ath_softc *sc)
271 {
272 if (ATH_IS_ENABLED(sc) == 0) {
273 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
274 printf("%s: device enable failed\n",
275 sc->sc_dev.dv_xname);
276 return (EIO);
277 }
278 sc->sc_flags |= ATH_ENABLED;
279 }
280 return (0);
281 }
282
283 void
284 ath_disable(struct ath_softc *sc)
285 {
286 if (!ATH_IS_ENABLED(sc))
287 return;
288 if (sc->sc_disable != NULL)
289 (*sc->sc_disable)(sc);
290 sc->sc_flags &= ~ATH_ENABLED;
291 }
292 #endif /* __NetBSD__ */
293
294 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
295
296 int
297 ath_attach(u_int16_t devid, struct ath_softc *sc)
298 {
299 struct ifnet *ifp = &sc->sc_if;
300 struct ieee80211com *ic = &sc->sc_ic;
301 struct ath_hal *ah;
302 HAL_STATUS status;
303 int error = 0, i;
304
305 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
306
307 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
308
309 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
310 if (ah == NULL) {
311 if_printf(ifp, "unable to attach hardware; HAL status %u\n",
312 status);
313 error = ENXIO;
314 goto bad;
315 }
316 if (ah->ah_abi != HAL_ABI_VERSION) {
317 if_printf(ifp, "HAL ABI mismatch detected "
318 "(HAL:0x%x != driver:0x%x)\n",
319 ah->ah_abi, HAL_ABI_VERSION);
320 error = ENXIO;
321 goto bad;
322 }
323 sc->sc_ah = ah;
324 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */
325
326 /*
327 * Check if the MAC has multi-rate retry support.
328 * We do this by trying to setup a fake extended
329 * descriptor. MAC's that don't have support will
330 * return false w/o doing anything. MAC's that do
331 * support it will return true w/o doing anything.
332 */
333 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
334
335 /*
336 * Check if the device has hardware counters for PHY
337 * errors. If so we need to enable the MIB interrupt
338 * so we can act on stat triggers.
339 */
340 if (ath_hal_hwphycounters(ah))
341 sc->sc_needmib = 1;
342
343 /*
344 * Get the hardware key cache size.
345 */
346 sc->sc_keymax = ath_hal_keycachesize(ah);
347 if (sc->sc_keymax > sizeof(sc->sc_keymap) * NBBY) {
348 if_printf(ifp,
349 "Warning, using only %zu of %u key cache slots\n",
350 sizeof(sc->sc_keymap) * NBBY, sc->sc_keymax);
351 sc->sc_keymax = sizeof(sc->sc_keymap) * NBBY;
352 }
353 /*
354 * Reset the key cache since some parts do not
355 * reset the contents on initial power up.
356 */
357 for (i = 0; i < sc->sc_keymax; i++)
358 ath_hal_keyreset(ah, i);
359 /*
360 * Mark key cache slots associated with global keys
361 * as in use. If we knew TKIP was not to be used we
362 * could leave the +32, +64, and +32+64 slots free.
363 * XXX only for splitmic.
364 */
365 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
366 setbit(sc->sc_keymap, i);
367 setbit(sc->sc_keymap, i+32);
368 setbit(sc->sc_keymap, i+64);
369 setbit(sc->sc_keymap, i+32+64);
370 }
371
372 /*
373 * Collect the channel list using the default country
374 * code and including outdoor channels. The 802.11 layer
375 * is resposible for filtering this list based on settings
376 * like the phy mode.
377 */
378 error = ath_getchannels(sc, ath_countrycode,
379 ath_outdoor, ath_xchanmode);
380 if (error != 0)
381 goto bad;
382 /*
383 * Setup dynamic sysctl's now that country code and
384 * regdomain are available from the hal.
385 */
386 ath_sysctlattach(sc);
387
388 /*
389 * Setup rate tables for all potential media types.
390 */
391 ath_rate_setup(sc, IEEE80211_MODE_11A);
392 ath_rate_setup(sc, IEEE80211_MODE_11B);
393 ath_rate_setup(sc, IEEE80211_MODE_11G);
394 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
395 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
396 /* NB: setup here so ath_rate_update is happy */
397 ath_setcurmode(sc, IEEE80211_MODE_11A);
398
399 /*
400 * Allocate tx+rx descriptors and populate the lists.
401 */
402 error = ath_desc_alloc(sc);
403 if (error != 0) {
404 if_printf(ifp, "failed to allocate descriptors: %d\n", error);
405 goto bad;
406 }
407 ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
408 ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE);
409
410 ATH_TXBUF_LOCK_INIT(sc);
411
412 TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
413 TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
414 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
415 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
416 TASK_INIT(&sc->sc_bstucktask, 0, ath_bstuck_proc, sc);
417
418 /*
419 * Allocate hardware transmit queues: one queue for
420 * beacon frames and one data queue for each QoS
421 * priority. Note that the hal handles reseting
422 * these queues at the needed time.
423 *
424 * XXX PS-Poll
425 */
426 sc->sc_bhalq = ath_beaconq_setup(ah);
427 if (sc->sc_bhalq == (u_int) -1) {
428 if_printf(ifp, "unable to setup a beacon xmit queue!\n");
429 error = EIO;
430 goto bad2;
431 }
432 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
433 if (sc->sc_cabq == NULL) {
434 if_printf(ifp, "unable to setup CAB xmit queue!\n");
435 error = EIO;
436 goto bad2;
437 }
438 /* NB: insure BK queue is the lowest priority h/w queue */
439 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
440 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
441 ieee80211_wme_acnames[WME_AC_BK]);
442 error = EIO;
443 goto bad2;
444 }
445 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
446 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
447 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
448 /*
449 * Not enough hardware tx queues to properly do WME;
450 * just punt and assign them all to the same h/w queue.
451 * We could do a better job of this if, for example,
452 * we allocate queues when we switch from station to
453 * AP mode.
454 */
455 if (sc->sc_ac2q[WME_AC_VI] != NULL)
456 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
457 if (sc->sc_ac2q[WME_AC_BE] != NULL)
458 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
459 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
460 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
461 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
462 }
463
464 /*
465 * Special case certain configurations. Note the
466 * CAB queue is handled by these specially so don't
467 * include them when checking the txq setup mask.
468 */
469 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
470 case 0x01:
471 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
472 break;
473 case 0x0f:
474 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
475 break;
476 default:
477 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
478 break;
479 }
480
481 /*
482 * Setup rate control. Some rate control modules
483 * call back to change the anntena state so expose
484 * the necessary entry points.
485 * XXX maybe belongs in struct ath_ratectrl?
486 */
487 sc->sc_setdefantenna = ath_setdefantenna;
488 sc->sc_rc = ath_rate_attach(sc);
489 if (sc->sc_rc == NULL) {
490 error = EIO;
491 goto bad2;
492 }
493
494 sc->sc_blinking = 0;
495 sc->sc_ledstate = 1;
496 sc->sc_ledon = 0; /* low true */
497 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */
498 ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE);
499 /*
500 * Auto-enable soft led processing for IBM cards and for
501 * 5211 minipci cards. Users can also manually enable/disable
502 * support with a sysctl.
503 */
504 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
505 if (sc->sc_softled) {
506 ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
507 ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
508 }
509
510 ifp->if_softc = sc;
511 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
512 ifp->if_start = ath_start;
513 ifp->if_watchdog = ath_watchdog;
514 ifp->if_ioctl = ath_ioctl;
515 ifp->if_init = ath_init;
516 IFQ_SET_READY(&ifp->if_snd);
517
518 ic->ic_ifp = ifp;
519 ic->ic_reset = ath_reset;
520 ic->ic_newassoc = ath_newassoc;
521 ic->ic_updateslot = ath_updateslot;
522 ic->ic_wme.wme_update = ath_wme_update;
523 /* XXX not right but it's not used anywhere important */
524 ic->ic_phytype = IEEE80211_T_OFDM;
525 ic->ic_opmode = IEEE80211_M_STA;
526 ic->ic_caps =
527 IEEE80211_C_IBSS /* ibss, nee adhoc, mode */
528 | IEEE80211_C_HOSTAP /* hostap mode */
529 | IEEE80211_C_MONITOR /* monitor mode */
530 | IEEE80211_C_SHPREAMBLE /* short preamble supported */
531 | IEEE80211_C_SHSLOT /* short slot time supported */
532 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */
533 ;
534 /*
535 * Query the hal to figure out h/w crypto support.
536 */
537 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
538 ic->ic_caps |= IEEE80211_C_WEP;
539 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
540 ic->ic_caps |= IEEE80211_C_AES;
541 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
542 ic->ic_caps |= IEEE80211_C_AES_CCM;
543 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
544 ic->ic_caps |= IEEE80211_C_CKIP;
545 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
546 ic->ic_caps |= IEEE80211_C_TKIP;
547 /*
548 * Check if h/w does the MIC and/or whether the
549 * separate key cache entries are required to
550 * handle both tx+rx MIC keys.
551 */
552 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
553 ic->ic_caps |= IEEE80211_C_TKIPMIC;
554 if (ath_hal_tkipsplit(ah))
555 sc->sc_splitmic = 1;
556 }
557 /*
558 * TPC support can be done either with a global cap or
559 * per-packet support. The latter is not available on
560 * all parts. We're a bit pedantic here as all parts
561 * support a global cap.
562 */
563 sc->sc_hastpc = ath_hal_hastpc(ah);
564 if (sc->sc_hastpc || ath_hal_hastxpowlimit(ah))
565 ic->ic_caps |= IEEE80211_C_TXPMGT;
566
567 /*
568 * Mark WME capability only if we have sufficient
569 * hardware queues to do proper priority scheduling.
570 */
571 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
572 ic->ic_caps |= IEEE80211_C_WME;
573 /*
574 * Check for frame bursting capability.
575 */
576 if (ath_hal_hasbursting(ah))
577 ic->ic_caps |= IEEE80211_C_BURST;
578
579 /*
580 * Indicate we need the 802.11 header padded to a
581 * 32-bit boundary for 4-address and QoS frames.
582 */
583 ic->ic_flags |= IEEE80211_F_DATAPAD;
584
585 /*
586 * Query the hal about antenna support.
587 */
588 if (ath_hal_hasdiversity(ah)) {
589 sc->sc_hasdiversity = 1;
590 sc->sc_diversity = ath_hal_getdiversity(ah);
591 }
592 sc->sc_defant = ath_hal_getdefantenna(ah);
593
594 /*
595 * Not all chips have the VEOL support we want to
596 * use with IBSS beacons; check here for it.
597 */
598 sc->sc_hasveol = ath_hal_hasveol(ah);
599
600 /* get mac address from hardware */
601 ath_hal_getmac(ah, ic->ic_myaddr);
602
603 if_attach(ifp);
604 /* call MI attach routine. */
605 ieee80211_ifattach(ic);
606 /* override default methods */
607 ic->ic_node_alloc = ath_node_alloc;
608 sc->sc_node_free = ic->ic_node_free;
609 ic->ic_node_free = ath_node_free;
610 ic->ic_node_getrssi = ath_node_getrssi;
611 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
612 ic->ic_recv_mgmt = ath_recv_mgmt;
613 sc->sc_newstate = ic->ic_newstate;
614 ic->ic_newstate = ath_newstate;
615 ic->ic_crypto.cs_key_alloc = ath_key_alloc;
616 ic->ic_crypto.cs_key_delete = ath_key_delete;
617 ic->ic_crypto.cs_key_set = ath_key_set;
618 ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
619 ic->ic_crypto.cs_key_update_end = ath_key_update_end;
620 /* complete initialization */
621 ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
622
623 ath_bpfattach(sc);
624
625 #ifdef __NetBSD__
626 sc->sc_flags |= ATH_ATTACHED;
627 /*
628 * Make sure the interface is shutdown during reboot.
629 */
630 sc->sc_sdhook = shutdownhook_establish(ath_shutdown, sc);
631 if (sc->sc_sdhook == NULL)
632 printf("%s: WARNING: unable to establish shutdown hook\n",
633 sc->sc_dev.dv_xname);
634 sc->sc_powerhook = powerhook_establish(ath_power, sc);
635 if (sc->sc_powerhook == NULL)
636 printf("%s: WARNING: unable to establish power hook\n",
637 sc->sc_dev.dv_xname);
638 #endif
639 if (boothowto & AB_VERBOSE)
640 ieee80211_announce(ic);
641 ath_announce(sc);
642 return 0;
643 bad2:
644 ath_tx_cleanup(sc);
645 ath_desc_free(sc);
646 bad:
647 if (ah)
648 ath_hal_detach(ah);
649 sc->sc_invalid = 1;
650 return error;
651 }
652
653 int
654 ath_detach(struct ath_softc *sc)
655 {
656 struct ifnet *ifp = &sc->sc_if;
657 int s;
658
659 if ((sc->sc_flags & ATH_ATTACHED) == 0)
660 return (0);
661
662 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
663 __func__, ifp->if_flags);
664
665 s = splnet();
666 ath_stop(ifp, 1);
667 #if NBPFILTER > 0
668 bpfdetach(ifp);
669 #endif
670 /*
671 * NB: the order of these is important:
672 * o call the 802.11 layer before detaching the hal to
673 * insure callbacks into the driver to delete global
674 * key cache entries can be handled
675 * o reclaim the tx queue data structures after calling
676 * the 802.11 layer as we'll get called back to reclaim
677 * node state and potentially want to use them
678 * o to cleanup the tx queues the hal is called, so detach
679 * it last
680 * Other than that, it's straightforward...
681 */
682 ieee80211_ifdetach(&sc->sc_ic);
683 ath_rate_detach(sc->sc_rc);
684 ath_desc_free(sc);
685 ath_tx_cleanup(sc);
686 sysctl_teardown(&sc->sc_sysctllog);
687 ath_hal_detach(sc->sc_ah);
688 if_detach(ifp);
689 splx(s);
690 powerhook_disestablish(sc->sc_powerhook);
691 shutdownhook_disestablish(sc->sc_sdhook);
692
693 return 0;
694 }
695
696 #ifdef __NetBSD__
697 void
698 ath_power(int why, void *arg)
699 {
700 struct ath_softc *sc = arg;
701 int s;
702
703 DPRINTF(sc, ATH_DEBUG_ANY, "ath_power(%d)\n", why);
704
705 s = splnet();
706 switch (why) {
707 case PWR_SUSPEND:
708 case PWR_STANDBY:
709 ath_suspend(sc, why);
710 break;
711 case PWR_RESUME:
712 ath_resume(sc, why);
713 break;
714 case PWR_SOFTSUSPEND:
715 case PWR_SOFTSTANDBY:
716 case PWR_SOFTRESUME:
717 break;
718 }
719 splx(s);
720 }
721 #endif
722
723 void
724 ath_suspend(struct ath_softc *sc, int why)
725 {
726 struct ifnet *ifp = &sc->sc_if;
727
728 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
729 __func__, ifp->if_flags);
730
731 ath_stop(ifp, 1);
732 if (sc->sc_power != NULL)
733 (*sc->sc_power)(sc, why);
734 }
735
736 void
737 ath_resume(struct ath_softc *sc, int why)
738 {
739 struct ifnet *ifp = &sc->sc_if;
740
741 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
742 __func__, ifp->if_flags);
743
744 if (ifp->if_flags & IFF_UP) {
745 ath_init(ifp);
746 #if 0
747 (void)ath_intr(sc);
748 #endif
749 if (sc->sc_power != NULL)
750 (*sc->sc_power)(sc, why);
751 if (ifp->if_flags & IFF_RUNNING)
752 ath_start(ifp);
753 }
754 }
755
756 void
757 ath_shutdown(void *arg)
758 {
759 struct ath_softc *sc = arg;
760
761 ath_stop(&sc->sc_if, 1);
762 }
763
764 /*
765 * Interrupt handler. Most of the actual processing is deferred.
766 */
767 int
768 ath_intr(void *arg)
769 {
770 struct ath_softc *sc = arg;
771 struct ifnet *ifp = &sc->sc_if;
772 struct ath_hal *ah = sc->sc_ah;
773 HAL_INT status;
774
775 if (sc->sc_invalid) {
776 /*
777 * The hardware is not ready/present, don't touch anything.
778 * Note this can happen early on if the IRQ is shared.
779 */
780 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
781 return 0;
782 }
783 if (!ath_hal_intrpend(ah)) /* shared irq, not for us */
784 return 0;
785 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
786 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
787 __func__, ifp->if_flags);
788 ath_hal_getisr(ah, &status); /* clear ISR */
789 ath_hal_intrset(ah, 0); /* disable further intr's */
790 return 1; /* XXX */
791 }
792 /*
793 * Figure out the reason(s) for the interrupt. Note
794 * that the hal returns a pseudo-ISR that may include
795 * bits we haven't explicitly enabled so we mask the
796 * value to insure we only process bits we requested.
797 */
798 ath_hal_getisr(ah, &status); /* NB: clears ISR too */
799 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
800 status &= sc->sc_imask; /* discard unasked for bits */
801 if (status & HAL_INT_FATAL) {
802 /*
803 * Fatal errors are unrecoverable. Typically
804 * these are caused by DMA errors. Unfortunately
805 * the exact reason is not (presently) returned
806 * by the hal.
807 */
808 sc->sc_stats.ast_hardware++;
809 ath_hal_intrset(ah, 0); /* disable intr's until reset */
810 TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
811 } else if (status & HAL_INT_RXORN) {
812 sc->sc_stats.ast_rxorn++;
813 ath_hal_intrset(ah, 0); /* disable intr's until reset */
814 TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
815 } else {
816 if (status & HAL_INT_SWBA) {
817 /*
818 * Software beacon alert--time to send a beacon.
819 * Handle beacon transmission directly; deferring
820 * this is too slow to meet timing constraints
821 * under load.
822 */
823 ath_beacon_proc(sc, 0);
824 }
825 if (status & HAL_INT_RXEOL) {
826 /*
827 * NB: the hardware should re-read the link when
828 * RXE bit is written, but it doesn't work at
829 * least on older hardware revs.
830 */
831 sc->sc_stats.ast_rxeol++;
832 sc->sc_rxlink = NULL;
833 }
834 if (status & HAL_INT_TXURN) {
835 sc->sc_stats.ast_txurn++;
836 /* bump tx trigger level */
837 ath_hal_updatetxtriglevel(ah, AH_TRUE);
838 }
839 if (status & HAL_INT_RX)
840 TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
841 if (status & HAL_INT_TX)
842 TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
843 if (status & HAL_INT_BMISS) {
844 sc->sc_stats.ast_bmiss++;
845 TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
846 }
847 if (status & HAL_INT_MIB) {
848 sc->sc_stats.ast_mib++;
849 /*
850 * Disable interrupts until we service the MIB
851 * interrupt; otherwise it will continue to fire.
852 */
853 ath_hal_intrset(ah, 0);
854 /*
855 * Let the hal handle the event. We assume it will
856 * clear whatever condition caused the interrupt.
857 */
858 ath_hal_mibevent(ah,
859 &ATH_NODE(sc->sc_ic.ic_bss)->an_halstats);
860 ath_hal_intrset(ah, sc->sc_imask);
861 }
862 }
863 return 1;
864 }
865
866 static void
867 ath_fatal_proc(void *arg, int pending)
868 {
869 struct ath_softc *sc = arg;
870 struct ifnet *ifp = &sc->sc_if;
871
872 if_printf(ifp, "hardware error; resetting\n");
873 ath_reset(ifp);
874 }
875
876 static void
877 ath_rxorn_proc(void *arg, int pending)
878 {
879 struct ath_softc *sc = arg;
880 struct ifnet *ifp = &sc->sc_if;
881
882 if_printf(ifp, "rx FIFO overrun; resetting\n");
883 ath_reset(ifp);
884 }
885
886 static void
887 ath_bmiss_proc(void *arg, int pending)
888 {
889 struct ath_softc *sc = arg;
890 struct ieee80211com *ic = &sc->sc_ic;
891
892 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
893 KASSERT(ic->ic_opmode == IEEE80211_M_STA,
894 ("unexpect operating mode %u", ic->ic_opmode));
895 if (ic->ic_state == IEEE80211_S_RUN) {
896 /*
897 * Rather than go directly to scan state, try to
898 * reassociate first. If that fails then the state
899 * machine will drop us into scanning after timing
900 * out waiting for a probe response.
901 */
902 NET_LOCK_GIANT();
903 ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1);
904 NET_UNLOCK_GIANT();
905 }
906 }
907
908 static u_int
909 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
910 {
911 #define N(a) (sizeof(a) / sizeof(a[0]))
912 static const u_int modeflags[] = {
913 0, /* IEEE80211_MODE_AUTO */
914 CHANNEL_A, /* IEEE80211_MODE_11A */
915 CHANNEL_B, /* IEEE80211_MODE_11B */
916 CHANNEL_PUREG, /* IEEE80211_MODE_11G */
917 0, /* IEEE80211_MODE_FH */
918 CHANNEL_T, /* IEEE80211_MODE_TURBO_A */
919 CHANNEL_108G /* IEEE80211_MODE_TURBO_G */
920 };
921 enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
922
923 KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
924 KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
925 return modeflags[mode];
926 #undef N
927 }
928
929 static int
930 ath_init(struct ifnet *ifp)
931 {
932 struct ath_softc *sc = (struct ath_softc *)ifp->if_softc;
933 struct ieee80211com *ic = &sc->sc_ic;
934 struct ieee80211_node *ni;
935 struct ath_hal *ah = sc->sc_ah;
936 HAL_STATUS status;
937 int error = 0;
938
939 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
940 __func__, ifp->if_flags);
941
942 ATH_LOCK(sc);
943
944 if ((error = ath_enable(sc)) != 0)
945 return error;
946
947 /*
948 * Stop anything previously setup. This is safe
949 * whether this is the first time through or not.
950 */
951 ath_stop_locked(ifp, 0);
952
953 /*
954 * The basic interface to setting the hardware in a good
955 * state is ``reset''. On return the hardware is known to
956 * be powered up and with interrupts disabled. This must
957 * be followed by initialization of the appropriate bits
958 * and then setup of the interrupt mask.
959 */
960 sc->sc_curchan.channel = ic->ic_ibss_chan->ic_freq;
961 sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_ibss_chan);
962 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
963 if_printf(ifp, "unable to reset hardware; hal status %u\n",
964 status);
965 error = EIO;
966 goto done;
967 }
968
969 /*
970 * This is needed only to setup initial state
971 * but it's best done after a reset.
972 */
973 ath_update_txpow(sc);
974
975 /*
976 * Setup the hardware after reset: the key cache
977 * is filled as needed and the receive engine is
978 * set going. Frame transmit is handled entirely
979 * in the frame output path; there's nothing to do
980 * here except setup the interrupt mask.
981 */
982 ath_initkeytable(sc); /* XXX still needed? */
983 if ((error = ath_startrecv(sc)) != 0) {
984 if_printf(ifp, "unable to start recv logic\n");
985 goto done;
986 }
987
988 /*
989 * Enable interrupts.
990 */
991 sc->sc_imask = HAL_INT_RX | HAL_INT_TX
992 | HAL_INT_RXEOL | HAL_INT_RXORN
993 | HAL_INT_FATAL | HAL_INT_GLOBAL;
994 /*
995 * Enable MIB interrupts when there are hardware phy counters.
996 * Note we only do this (at the moment) for station mode.
997 */
998 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
999 sc->sc_imask |= HAL_INT_MIB;
1000 ath_hal_intrset(ah, sc->sc_imask);
1001
1002 ifp->if_flags |= IFF_RUNNING;
1003 ic->ic_state = IEEE80211_S_INIT;
1004
1005 /*
1006 * The hardware should be ready to go now so it's safe
1007 * to kick the 802.11 state machine as it's likely to
1008 * immediately call back to us to send mgmt frames.
1009 */
1010 ni = ic->ic_bss;
1011 ni->ni_chan = ic->ic_ibss_chan;
1012 ath_chan_change(sc, ni->ni_chan);
1013 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1014 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
1015 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1016 } else
1017 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1018 done:
1019 ATH_UNLOCK(sc);
1020 return error;
1021 }
1022
1023 static void
1024 ath_stop_locked(struct ifnet *ifp, int disable)
1025 {
1026 struct ath_softc *sc = ifp->if_softc;
1027 struct ieee80211com *ic = &sc->sc_ic;
1028 struct ath_hal *ah = sc->sc_ah;
1029
1030 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1031 __func__, sc->sc_invalid, ifp->if_flags);
1032
1033 ATH_LOCK_ASSERT(sc);
1034 if (ifp->if_flags & IFF_RUNNING) {
1035 /*
1036 * Shutdown the hardware and driver:
1037 * reset 802.11 state machine
1038 * turn off timers
1039 * disable interrupts
1040 * turn off the radio
1041 * clear transmit machinery
1042 * clear receive machinery
1043 * drain and release tx queues
1044 * reclaim beacon resources
1045 * power down hardware
1046 *
1047 * Note that some of this work is not possible if the
1048 * hardware is gone (invalid).
1049 */
1050 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1051 ifp->if_flags &= ~IFF_RUNNING;
1052 ifp->if_timer = 0;
1053 if (!sc->sc_invalid) {
1054 if (sc->sc_softled) {
1055 callout_stop(&sc->sc_ledtimer);
1056 ath_hal_gpioset(ah, sc->sc_ledpin,
1057 !sc->sc_ledon);
1058 sc->sc_blinking = 0;
1059 }
1060 ath_hal_intrset(ah, 0);
1061 }
1062 ath_draintxq(sc);
1063 if (!sc->sc_invalid) {
1064 ath_stoprecv(sc);
1065 ath_hal_phydisable(ah);
1066 } else
1067 sc->sc_rxlink = NULL;
1068 IF_PURGE(&ifp->if_snd);
1069 ath_beacon_free(sc);
1070 if (disable)
1071 ath_disable(sc);
1072 }
1073 }
1074
1075 static void
1076 ath_stop(struct ifnet *ifp, int disable)
1077 {
1078 struct ath_softc *sc = ifp->if_softc;
1079
1080 ATH_LOCK(sc);
1081 ath_stop_locked(ifp, disable);
1082 if (!sc->sc_invalid) {
1083 /*
1084 * Set the chip in full sleep mode. Note that we are
1085 * careful to do this only when bringing the interface
1086 * completely to a stop. When the chip is in this state
1087 * it must be carefully woken up or references to
1088 * registers in the PCI clock domain may freeze the bus
1089 * (and system). This varies by chip and is mostly an
1090 * issue with newer parts that go to sleep more quickly.
1091 */
1092 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP, 0);
1093 }
1094 ATH_UNLOCK(sc);
1095 }
1096
1097 /*
1098 * Reset the hardware w/o losing operational state. This is
1099 * basically a more efficient way of doing ath_stop, ath_init,
1100 * followed by state transitions to the current 802.11
1101 * operational state. Used to recover from various errors and
1102 * to reset or reload hardware state.
1103 */
1104 int
1105 ath_reset(struct ifnet *ifp)
1106 {
1107 struct ath_softc *sc = ifp->if_softc;
1108 struct ieee80211com *ic = &sc->sc_ic;
1109 struct ath_hal *ah = sc->sc_ah;
1110 struct ieee80211_channel *c;
1111 HAL_STATUS status;
1112
1113 /*
1114 * Convert to a HAL channel description with the flags
1115 * constrained to reflect the current operating mode.
1116 */
1117 c = ic->ic_ibss_chan;
1118 sc->sc_curchan.channel = c->ic_freq;
1119 sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
1120
1121 ath_hal_intrset(ah, 0); /* disable interrupts */
1122 ath_draintxq(sc); /* stop xmit side */
1123 ath_stoprecv(sc); /* stop recv side */
1124 /* NB: indicate channel change so we do a full reset */
1125 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
1126 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1127 __func__, status);
1128 ath_update_txpow(sc); /* update tx power state */
1129 if (ath_startrecv(sc) != 0) /* restart recv */
1130 if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1131 /*
1132 * We may be doing a reset in response to an ioctl
1133 * that changes the channel so update any state that
1134 * might change as a result.
1135 */
1136 ath_chan_change(sc, c);
1137 if (ic->ic_state == IEEE80211_S_RUN)
1138 ath_beacon_config(sc); /* restart beacons */
1139 ath_hal_intrset(ah, sc->sc_imask);
1140
1141 ath_start(ifp); /* restart xmit */
1142 return 0;
1143 }
1144
1145 static void
1146 ath_start(struct ifnet *ifp)
1147 {
1148 struct ath_softc *sc = ifp->if_softc;
1149 struct ath_hal *ah = sc->sc_ah;
1150 struct ieee80211com *ic = &sc->sc_ic;
1151 struct ieee80211_node *ni;
1152 struct ath_buf *bf;
1153 struct mbuf *m;
1154 struct ieee80211_frame *wh;
1155 struct ether_header *eh;
1156
1157 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
1158 return;
1159 for (;;) {
1160 /*
1161 * Grab a TX buffer and associated resources.
1162 */
1163 ATH_TXBUF_LOCK(sc);
1164 bf = STAILQ_FIRST(&sc->sc_txbuf);
1165 if (bf != NULL)
1166 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1167 ATH_TXBUF_UNLOCK(sc);
1168 if (bf == NULL) {
1169 DPRINTF(sc, ATH_DEBUG_ANY, "%s: out of xmit buffers\n",
1170 __func__);
1171 sc->sc_stats.ast_tx_qstop++;
1172 ifp->if_flags |= IFF_OACTIVE;
1173 break;
1174 }
1175 /*
1176 * Poll the management queue for frames; they
1177 * have priority over normal data frames.
1178 */
1179 IF_DEQUEUE(&ic->ic_mgtq, m);
1180 if (m == NULL) {
1181 /*
1182 * No data frames go out unless we're associated.
1183 */
1184 if (ic->ic_state != IEEE80211_S_RUN) {
1185 DPRINTF(sc, ATH_DEBUG_ANY,
1186 "%s: ignore data packet, state %u\n",
1187 __func__, ic->ic_state);
1188 sc->sc_stats.ast_tx_discard++;
1189 ATH_TXBUF_LOCK(sc);
1190 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1191 ATH_TXBUF_UNLOCK(sc);
1192 break;
1193 }
1194 IFQ_DEQUEUE(&ifp->if_snd, m); /* XXX: LOCK */
1195 if (m == NULL) {
1196 ATH_TXBUF_LOCK(sc);
1197 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1198 ATH_TXBUF_UNLOCK(sc);
1199 break;
1200 }
1201 /*
1202 * Find the node for the destination so we can do
1203 * things like power save and fast frames aggregation.
1204 */
1205 if (m->m_len < sizeof(struct ether_header) &&
1206 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
1207 ic->ic_stats.is_tx_nobuf++; /* XXX */
1208 ni = NULL;
1209 goto bad;
1210 }
1211 eh = mtod(m, struct ether_header *);
1212 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1213 if (ni == NULL) {
1214 /* NB: ieee80211_find_txnode does stat+msg */
1215 m_freem(m);
1216 goto bad;
1217 }
1218 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1219 (m->m_flags & M_PWR_SAV) == 0) {
1220 /*
1221 * Station in power save mode; pass the frame
1222 * to the 802.11 layer and continue. We'll get
1223 * the frame back when the time is right.
1224 */
1225 ieee80211_pwrsave(ic, ni, m);
1226 goto reclaim;
1227 }
1228 /* calculate priority so we can find the tx queue */
1229 if (ieee80211_classify(ic, m, ni)) {
1230 DPRINTF(sc, ATH_DEBUG_XMIT,
1231 "%s: discard, classification failure\n",
1232 __func__);
1233 m_freem(m);
1234 goto bad;
1235 }
1236 ifp->if_opackets++;
1237
1238 #if NBPFILTER > 0
1239 if (ifp->if_bpf)
1240 bpf_mtap(ifp->if_bpf, m);
1241 #endif
1242 /*
1243 * Encapsulate the packet in prep for transmission.
1244 */
1245 m = ieee80211_encap(ic, m, ni);
1246 if (m == NULL) {
1247 DPRINTF(sc, ATH_DEBUG_ANY,
1248 "%s: encapsulation failure\n",
1249 __func__);
1250 sc->sc_stats.ast_tx_encap++;
1251 goto bad;
1252 }
1253 } else {
1254 /*
1255 * Hack! The referenced node pointer is in the
1256 * rcvif field of the packet header. This is
1257 * placed there by ieee80211_mgmt_output because
1258 * we need to hold the reference with the frame
1259 * and there's no other way (other than packet
1260 * tags which we consider too expensive to use)
1261 * to pass it along.
1262 */
1263 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1264 m->m_pkthdr.rcvif = NULL;
1265
1266 wh = mtod(m, struct ieee80211_frame *);
1267 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1268 IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1269 /* fill time stamp */
1270 u_int64_t tsf;
1271 u_int32_t *tstamp;
1272
1273 tsf = ath_hal_gettsf64(ah);
1274 /* XXX: adjust 100us delay to xmit */
1275 tsf += 100;
1276 tstamp = (u_int32_t *)&wh[1];
1277 tstamp[0] = htole32(tsf & 0xffffffff);
1278 tstamp[1] = htole32(tsf >> 32);
1279 }
1280 sc->sc_stats.ast_tx_mgmt++;
1281 }
1282
1283 if (ath_tx_start(sc, ni, bf, m)) {
1284 bad:
1285 ifp->if_oerrors++;
1286 reclaim:
1287 ATH_TXBUF_LOCK(sc);
1288 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1289 ATH_TXBUF_UNLOCK(sc);
1290 if (ni != NULL)
1291 ieee80211_free_node(ni);
1292 continue;
1293 }
1294
1295 sc->sc_tx_timer = 5;
1296 ifp->if_timer = 1;
1297 }
1298 }
1299
1300 static int
1301 ath_media_change(struct ifnet *ifp)
1302 {
1303 #define IS_UP(ifp) \
1304 ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP))
1305 int error;
1306
1307 error = ieee80211_media_change(ifp);
1308 if (error == ENETRESET) {
1309 if (IS_UP(ifp))
1310 ath_init(ifp); /* XXX lose error */
1311 error = 0;
1312 }
1313 return error;
1314 #undef IS_UP
1315 }
1316
1317 #ifdef AR_DEBUG
1318 static void
1319 ath_keyprint(const char *tag, u_int ix,
1320 const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1321 {
1322 static const char *ciphers[] = {
1323 "WEP",
1324 "AES-OCB",
1325 "AES-CCM",
1326 "CKIP",
1327 "TKIP",
1328 "CLR",
1329 };
1330 int i, n;
1331
1332 printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1333 for (i = 0, n = hk->kv_len; i < n; i++)
1334 printf("%02x", hk->kv_val[i]);
1335 printf(" mac %s", ether_sprintf(mac));
1336 if (hk->kv_type == HAL_CIPHER_TKIP) {
1337 printf(" mic ");
1338 for (i = 0; i < sizeof(hk->kv_mic); i++)
1339 printf("%02x", hk->kv_mic[i]);
1340 }
1341 printf("\n");
1342 }
1343 #endif
1344
1345 /*
1346 * Set a TKIP key into the hardware. This handles the
1347 * potential distribution of key state to multiple key
1348 * cache slots for TKIP.
1349 */
1350 static int
1351 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1352 HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1353 {
1354 #define IEEE80211_KEY_XR (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1355 static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1356 struct ath_hal *ah = sc->sc_ah;
1357
1358 KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1359 ("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1360 KASSERT(sc->sc_splitmic, ("key cache !split"));
1361 if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1362 /*
1363 * TX key goes at first index, RX key at +32.
1364 * The hal handles the MIC keys at index+64.
1365 */
1366 memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1367 KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1368 if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
1369 return 0;
1370
1371 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1372 KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1373 /* XXX delete tx key on failure? */
1374 return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
1375 } else if (k->wk_flags & IEEE80211_KEY_XR) {
1376 /*
1377 * TX/RX key goes at first index.
1378 * The hal handles the MIC keys are index+64.
1379 */
1380 KASSERT(k->wk_keyix < IEEE80211_WEP_NKID,
1381 ("group key at index %u", k->wk_keyix));
1382 memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
1383 k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
1384 KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1385 return ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid);
1386 }
1387 /* XXX key w/o xmit/recv; need this for compression? */
1388 return 0;
1389 #undef IEEE80211_KEY_XR
1390 }
1391
1392 /*
1393 * Set a net80211 key into the hardware. This handles the
1394 * potential distribution of key state to multiple key
1395 * cache slots for TKIP with hardware MIC support.
1396 */
1397 static int
1398 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1399 const u_int8_t mac[IEEE80211_ADDR_LEN])
1400 {
1401 #define N(a) (sizeof(a)/sizeof(a[0]))
1402 static const u_int8_t ciphermap[] = {
1403 HAL_CIPHER_WEP, /* IEEE80211_CIPHER_WEP */
1404 HAL_CIPHER_TKIP, /* IEEE80211_CIPHER_TKIP */
1405 HAL_CIPHER_AES_OCB, /* IEEE80211_CIPHER_AES_OCB */
1406 HAL_CIPHER_AES_CCM, /* IEEE80211_CIPHER_AES_CCM */
1407 (u_int8_t) -1, /* 4 is not allocated */
1408 HAL_CIPHER_CKIP, /* IEEE80211_CIPHER_CKIP */
1409 HAL_CIPHER_CLR, /* IEEE80211_CIPHER_NONE */
1410 };
1411 struct ath_hal *ah = sc->sc_ah;
1412 const struct ieee80211_cipher *cip = k->wk_cipher;
1413 HAL_KEYVAL hk;
1414
1415 memset(&hk, 0, sizeof(hk));
1416 /*
1417 * Software crypto uses a "clear key" so non-crypto
1418 * state kept in the key cache are maintained and
1419 * so that rx frames have an entry to match.
1420 */
1421 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1422 KASSERT(cip->ic_cipher < N(ciphermap),
1423 ("invalid cipher type %u", cip->ic_cipher));
1424 hk.kv_type = ciphermap[cip->ic_cipher];
1425 hk.kv_len = k->wk_keylen;
1426 memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1427 } else
1428 hk.kv_type = HAL_CIPHER_CLR;
1429
1430 if (hk.kv_type == HAL_CIPHER_TKIP &&
1431 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1432 sc->sc_splitmic) {
1433 return ath_keyset_tkip(sc, k, &hk, mac);
1434 } else {
1435 KEYPRINTF(sc, k->wk_keyix, &hk, mac);
1436 return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
1437 }
1438 #undef N
1439 }
1440
1441 /*
1442 * Fill the hardware key cache with key entries.
1443 */
1444 static void
1445 ath_initkeytable(struct ath_softc *sc)
1446 {
1447 struct ieee80211com *ic = &sc->sc_ic;
1448 struct ifnet *ifp = &sc->sc_if;
1449 struct ath_hal *ah = sc->sc_ah;
1450 const u_int8_t *bssid;
1451 int i;
1452
1453 /* XXX maybe should reset all keys when !PRIVACY */
1454 if (ic->ic_state == IEEE80211_S_SCAN)
1455 bssid = ifp->if_broadcastaddr;
1456 else
1457 bssid = ic->ic_bss->ni_bssid;
1458 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1459 struct ieee80211_key *k = &ic->ic_nw_keys[i];
1460
1461 if (k->wk_keylen == 0) {
1462 ath_hal_keyreset(ah, i);
1463 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: reset key %u\n",
1464 __func__, i);
1465 } else {
1466 ath_keyset(sc, k, bssid);
1467 }
1468 }
1469 }
1470
1471 /*
1472 * Allocate tx/rx key slots for TKIP. We allocate two slots for
1473 * each key, one for decrypt/encrypt and the other for the MIC.
1474 */
1475 static u_int16_t
1476 key_alloc_2pair(struct ath_softc *sc)
1477 {
1478 #define N(a) (sizeof(a)/sizeof(a[0]))
1479 u_int i, keyix;
1480
1481 KASSERT(sc->sc_splitmic, ("key cache !split"));
1482 /* XXX could optimize */
1483 for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1484 u_int8_t b = sc->sc_keymap[i];
1485 if (b != 0xff) {
1486 /*
1487 * One or more slots in this byte are free.
1488 */
1489 keyix = i*NBBY;
1490 while (b & 1) {
1491 again:
1492 keyix++;
1493 b >>= 1;
1494 }
1495 /* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1496 if (isset(sc->sc_keymap, keyix+32) ||
1497 isset(sc->sc_keymap, keyix+64) ||
1498 isset(sc->sc_keymap, keyix+32+64)) {
1499 /* full pair unavailable */
1500 /* XXX statistic */
1501 if (keyix == (i+1)*NBBY) {
1502 /* no slots were appropriate, advance */
1503 continue;
1504 }
1505 goto again;
1506 }
1507 setbit(sc->sc_keymap, keyix);
1508 setbit(sc->sc_keymap, keyix+64);
1509 setbit(sc->sc_keymap, keyix+32);
1510 setbit(sc->sc_keymap, keyix+32+64);
1511 DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1512 "%s: key pair %u,%u %u,%u\n",
1513 __func__, keyix, keyix+64,
1514 keyix+32, keyix+32+64);
1515 return keyix;
1516 }
1517 }
1518 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1519 return IEEE80211_KEYIX_NONE;
1520 #undef N
1521 }
1522
1523 /*
1524 * Allocate a single key cache slot.
1525 */
1526 static u_int16_t
1527 key_alloc_single(struct ath_softc *sc)
1528 {
1529 #define N(a) (sizeof(a)/sizeof(a[0]))
1530 u_int i, keyix;
1531
1532 /* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
1533 for (i = 0; i < N(sc->sc_keymap); i++) {
1534 u_int8_t b = sc->sc_keymap[i];
1535 if (b != 0xff) {
1536 /*
1537 * One or more slots are free.
1538 */
1539 keyix = i*NBBY;
1540 while (b & 1)
1541 keyix++, b >>= 1;
1542 setbit(sc->sc_keymap, keyix);
1543 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
1544 __func__, keyix);
1545 return keyix;
1546 }
1547 }
1548 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
1549 return IEEE80211_KEYIX_NONE;
1550 #undef N
1551 }
1552
1553 /*
1554 * Allocate one or more key cache slots for a uniacst key. The
1555 * key itself is needed only to identify the cipher. For hardware
1556 * TKIP with split cipher+MIC keys we allocate two key cache slot
1557 * pairs so that we can setup separate TX and RX MIC keys. Note
1558 * that the MIC key for a TKIP key at slot i is assumed by the
1559 * hardware to be at slot i+64. This limits TKIP keys to the first
1560 * 64 entries.
1561 */
1562 static int
1563 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k)
1564 {
1565 struct ath_softc *sc = ic->ic_ifp->if_softc;
1566
1567 /*
1568 * Group key allocation must be handled specially for
1569 * parts that do not support multicast key cache search
1570 * functionality. For those parts the key id must match
1571 * the h/w key index so lookups find the right key. On
1572 * parts w/ the key search facility we install the sender's
1573 * mac address (with the high bit set) and let the hardware
1574 * find the key w/o using the key id. This is preferred as
1575 * it permits us to support multiple users for adhoc and/or
1576 * multi-station operation.
1577 */
1578 if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
1579 u_int keyix;
1580
1581 if (!(&ic->ic_nw_keys[0] <= k &&
1582 k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
1583 /* should not happen */
1584 DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1585 "%s: bogus group key\n", __func__);
1586 return IEEE80211_KEYIX_NONE;
1587 }
1588 keyix = k - ic->ic_nw_keys;
1589 /*
1590 * XXX we pre-allocate the global keys so
1591 * have no way to check if they've already been allocated.
1592 */
1593 return keyix;
1594 }
1595
1596 /*
1597 * We allocate two pair for TKIP when using the h/w to do
1598 * the MIC. For everything else, including software crypto,
1599 * we allocate a single entry. Note that s/w crypto requires
1600 * a pass-through slot on the 5211 and 5212. The 5210 does
1601 * not support pass-through cache entries and we map all
1602 * those requests to slot 0.
1603 */
1604 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1605 return key_alloc_single(sc);
1606 } else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
1607 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
1608 return key_alloc_2pair(sc);
1609 } else {
1610 return key_alloc_single(sc);
1611 }
1612 }
1613
1614 /*
1615 * Delete an entry in the key cache allocated by ath_key_alloc.
1616 */
1617 static int
1618 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
1619 {
1620 struct ath_softc *sc = ic->ic_ifp->if_softc;
1621 struct ath_hal *ah = sc->sc_ah;
1622 const struct ieee80211_cipher *cip = k->wk_cipher;
1623 u_int keyix = k->wk_keyix;
1624
1625 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
1626
1627 ath_hal_keyreset(ah, keyix);
1628 /*
1629 * Handle split tx/rx keying required for TKIP with h/w MIC.
1630 */
1631 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1632 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
1633 ath_hal_keyreset(ah, keyix+32); /* RX key */
1634 if (keyix >= IEEE80211_WEP_NKID) {
1635 /*
1636 * Don't touch keymap entries for global keys so
1637 * they are never considered for dynamic allocation.
1638 */
1639 clrbit(sc->sc_keymap, keyix);
1640 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1641 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1642 sc->sc_splitmic) {
1643 clrbit(sc->sc_keymap, keyix+64); /* TX key MIC */
1644 clrbit(sc->sc_keymap, keyix+32); /* RX key */
1645 clrbit(sc->sc_keymap, keyix+32+64); /* RX key MIC */
1646 }
1647 }
1648 return 1;
1649 }
1650
1651 /*
1652 * Set the key cache contents for the specified key. Key cache
1653 * slot(s) must already have been allocated by ath_key_alloc.
1654 */
1655 static int
1656 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
1657 const u_int8_t mac[IEEE80211_ADDR_LEN])
1658 {
1659 struct ath_softc *sc = ic->ic_ifp->if_softc;
1660
1661 return ath_keyset(sc, k, mac);
1662 }
1663
1664 /*
1665 * Block/unblock tx+rx processing while a key change is done.
1666 * We assume the caller serializes key management operations
1667 * so we only need to worry about synchronization with other
1668 * uses that originate in the driver.
1669 */
1670 static void
1671 ath_key_update_begin(struct ieee80211com *ic)
1672 {
1673 struct ifnet *ifp = ic->ic_ifp;
1674 struct ath_softc *sc = ifp->if_softc;
1675
1676 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1677 #if 0
1678 tasklet_disable(&sc->sc_rxtq);
1679 #endif
1680 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */
1681 }
1682
1683 static void
1684 ath_key_update_end(struct ieee80211com *ic)
1685 {
1686 struct ifnet *ifp = ic->ic_ifp;
1687 struct ath_softc *sc = ifp->if_softc;
1688
1689 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1690 IF_UNLOCK(&ifp->if_snd);
1691 #if 0
1692 tasklet_enable(&sc->sc_rxtq);
1693 #endif
1694 }
1695
1696 /*
1697 * Calculate the receive filter according to the
1698 * operating mode and state:
1699 *
1700 * o always accept unicast, broadcast, and multicast traffic
1701 * o maintain current state of phy error reception (the hal
1702 * may enable phy error frames for noise immunity work)
1703 * o probe request frames are accepted only when operating in
1704 * hostap, adhoc, or monitor modes
1705 * o enable promiscuous mode according to the interface state
1706 * o accept beacons:
1707 * - when operating in adhoc mode so the 802.11 layer creates
1708 * node table entries for peers,
1709 * - when operating in station mode for collecting rssi data when
1710 * the station is otherwise quiet, or
1711 * - when scanning
1712 */
1713 static u_int32_t
1714 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
1715 {
1716 struct ieee80211com *ic = &sc->sc_ic;
1717 struct ath_hal *ah = sc->sc_ah;
1718 struct ifnet *ifp = &sc->sc_if;
1719 u_int32_t rfilt;
1720
1721 rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1722 | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1723 if (ic->ic_opmode != IEEE80211_M_STA)
1724 rfilt |= HAL_RX_FILTER_PROBEREQ;
1725 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1726 (ifp->if_flags & IFF_PROMISC))
1727 rfilt |= HAL_RX_FILTER_PROM;
1728 if (ic->ic_opmode == IEEE80211_M_STA ||
1729 ic->ic_opmode == IEEE80211_M_IBSS ||
1730 state == IEEE80211_S_SCAN)
1731 rfilt |= HAL_RX_FILTER_BEACON;
1732 return rfilt;
1733 }
1734
1735 static void
1736 ath_mcastfilter_accum(caddr_t dl, u_int32_t *mfilt)
1737 {
1738 u_int32_t val;
1739 u_int8_t pos;
1740
1741 /* calculate XOR of eight 6bit values */
1742 val = LE_READ_4(dl + 0);
1743 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1744 val = LE_READ_4(dl + 3);
1745 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1746 pos &= 0x3f;
1747 mfilt[pos / 32] |= (1 << (pos % 32));
1748 }
1749
1750 static void
1751 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t *mfilt)
1752 {
1753 struct ifnet *ifp = &sc->sc_if;
1754 struct ether_multi *enm;
1755 struct ether_multistep estep;
1756
1757 mfilt[0] = mfilt[1] = 0;
1758 ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
1759 while (enm != NULL) {
1760 /* XXX Punt on ranges. */
1761 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
1762 mfilt[0] = mfilt[1] = ~((u_int32_t)0);
1763 ifp->if_flags |= IFF_ALLMULTI;
1764 return;
1765 }
1766 ath_mcastfilter_accum(enm->enm_addrlo, mfilt);
1767 ETHER_NEXT_MULTI(estep, enm);
1768 }
1769 ifp->if_flags &= ~IFF_ALLMULTI;
1770 }
1771
1772 static void
1773 ath_mode_init(struct ath_softc *sc)
1774 {
1775 struct ieee80211com *ic = &sc->sc_ic;
1776 struct ath_hal *ah = sc->sc_ah;
1777 u_int32_t rfilt, mfilt[2];
1778
1779 /* configure rx filter */
1780 rfilt = ath_calcrxfilter(sc, ic->ic_state);
1781 ath_hal_setrxfilter(ah, rfilt);
1782
1783 /* configure operational mode */
1784 ath_hal_setopmode(ah);
1785
1786 /*
1787 * Handle any link-level address change. Note that we only
1788 * need to force ic_myaddr; any other addresses are handled
1789 * as a byproduct of the ifnet code marking the interface
1790 * down then up.
1791 *
1792 * XXX should get from lladdr instead of arpcom but that's more work
1793 */
1794 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(sc->sc_if.if_sadl));
1795 ath_hal_setmac(ah, ic->ic_myaddr);
1796
1797 /* calculate and install multicast filter */
1798 #ifdef __FreeBSD__
1799 if ((sc->sc_if.if_flags & IFF_ALLMULTI) == 0)
1800 ath_mcastfilter_compute(sc, mfilt);
1801 else
1802 mfilt[0] = mfilt[1] = ~0;
1803 #endif
1804 #ifdef __NetBSD__
1805 ath_mcastfilter_compute(sc, mfilt);
1806 #endif
1807 ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1808 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
1809 __func__, rfilt, mfilt[0], mfilt[1]);
1810 }
1811
1812 /*
1813 * Set the slot time based on the current setting.
1814 */
1815 static void
1816 ath_setslottime(struct ath_softc *sc)
1817 {
1818 struct ieee80211com *ic = &sc->sc_ic;
1819 struct ath_hal *ah = sc->sc_ah;
1820
1821 if (ic->ic_flags & IEEE80211_F_SHSLOT)
1822 ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
1823 else
1824 ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
1825 sc->sc_updateslot = OK;
1826 }
1827
1828 /*
1829 * Callback from the 802.11 layer to update the
1830 * slot time based on the current setting.
1831 */
1832 static void
1833 ath_updateslot(struct ifnet *ifp)
1834 {
1835 struct ath_softc *sc = ifp->if_softc;
1836 struct ieee80211com *ic = &sc->sc_ic;
1837
1838 /*
1839 * When not coordinating the BSS, change the hardware
1840 * immediately. For other operation we defer the change
1841 * until beacon updates have propagated to the stations.
1842 */
1843 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1844 sc->sc_updateslot = UPDATE;
1845 else
1846 ath_setslottime(sc);
1847 }
1848
1849 /*
1850 * Setup a h/w transmit queue for beacons.
1851 */
1852 static int
1853 ath_beaconq_setup(struct ath_hal *ah)
1854 {
1855 HAL_TXQ_INFO qi;
1856
1857 memset(&qi, 0, sizeof(qi));
1858 qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
1859 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
1860 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
1861 /* NB: don't enable any interrupts */
1862 return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
1863 }
1864
1865 /*
1866 * Allocate and setup an initial beacon frame.
1867 */
1868 static int
1869 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
1870 {
1871 struct ieee80211com *ic = ni->ni_ic;
1872 struct ath_buf *bf;
1873 struct mbuf *m;
1874 int error;
1875
1876 bf = STAILQ_FIRST(&sc->sc_bbuf);
1877 if (bf == NULL) {
1878 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
1879 sc->sc_stats.ast_be_nombuf++; /* XXX */
1880 return ENOMEM; /* XXX */
1881 }
1882 /*
1883 * NB: the beacon data buffer must be 32-bit aligned;
1884 * we assume the mbuf routines will return us something
1885 * with this alignment (perhaps should assert).
1886 */
1887 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
1888 if (m == NULL) {
1889 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
1890 __func__);
1891 sc->sc_stats.ast_be_nombuf++;
1892 return ENOMEM;
1893 }
1894 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
1895 BUS_DMA_NOWAIT);
1896 if (error == 0) {
1897 bf->bf_m = m;
1898 bf->bf_node = ieee80211_ref_node(ni);
1899 } else {
1900 m_freem(m);
1901 }
1902 return error;
1903 }
1904
1905 /*
1906 * Setup the beacon frame for transmit.
1907 */
1908 static void
1909 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
1910 {
1911 #define USE_SHPREAMBLE(_ic) \
1912 (((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
1913 == IEEE80211_F_SHPREAMBLE)
1914 struct ieee80211_node *ni = bf->bf_node;
1915 struct ieee80211com *ic = ni->ni_ic;
1916 struct mbuf *m = bf->bf_m;
1917 struct ath_hal *ah = sc->sc_ah;
1918 struct ath_node *an = ATH_NODE(ni);
1919 struct ath_desc *ds;
1920 int flags, antenna;
1921 u_int8_t rate;
1922
1923 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
1924 __func__, m, m->m_len);
1925
1926 /* setup descriptors */
1927 ds = bf->bf_desc;
1928
1929 flags = HAL_TXDESC_NOACK;
1930 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
1931 ds->ds_link = bf->bf_daddr; /* self-linked */
1932 flags |= HAL_TXDESC_VEOL;
1933 /*
1934 * Let hardware handle antenna switching.
1935 */
1936 antenna = 0;
1937 } else {
1938 ds->ds_link = 0;
1939 /*
1940 * Switch antenna every 4 beacons.
1941 * XXX assumes two antenna
1942 */
1943 antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
1944 }
1945
1946 KASSERT(bf->bf_nseg == 1,
1947 ("multi-segment beacon frame; nseg %u", bf->bf_nseg));
1948 ds->ds_data = bf->bf_segs[0].ds_addr;
1949 /*
1950 * Calculate rate code.
1951 * XXX everything at min xmit rate
1952 */
1953 if (USE_SHPREAMBLE(ic))
1954 rate = an->an_tx_mgtratesp;
1955 else
1956 rate = an->an_tx_mgtrate;
1957 ath_hal_setuptxdesc(ah, ds
1958 , m->m_len + IEEE80211_CRC_LEN /* frame length */
1959 , sizeof(struct ieee80211_frame)/* header length */
1960 , HAL_PKT_TYPE_BEACON /* Atheros packet type */
1961 , ni->ni_txpower /* txpower XXX */
1962 , rate, 1 /* series 0 rate/tries */
1963 , HAL_TXKEYIX_INVALID /* no encryption */
1964 , antenna /* antenna mode */
1965 , flags /* no ack, veol for beacons */
1966 , 0 /* rts/cts rate */
1967 , 0 /* rts/cts duration */
1968 );
1969 /* NB: beacon's BufLen must be a multiple of 4 bytes */
1970 ath_hal_filltxdesc(ah, ds
1971 , roundup(m->m_len, 4) /* buffer length */
1972 , AH_TRUE /* first segment */
1973 , AH_TRUE /* last segment */
1974 , ds /* first descriptor */
1975 );
1976 /* XXX bus_dmamap_sync? -dcy */
1977 #undef USE_SHPREAMBLE
1978 }
1979
1980 /*
1981 * Transmit a beacon frame at SWBA. Dynamic updates to the
1982 * frame contents are done as needed and the slot time is
1983 * also adjusted based on current state.
1984 */
1985 static void
1986 ath_beacon_proc(void *arg, int pending)
1987 {
1988 struct ath_softc *sc = arg;
1989 struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
1990 struct ieee80211_node *ni = bf->bf_node;
1991 struct ieee80211com *ic = ni->ni_ic;
1992 struct ath_hal *ah = sc->sc_ah;
1993 struct mbuf *m;
1994 int ncabq, error, otherant;
1995
1996 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
1997 __func__, pending);
1998
1999 if (ic->ic_opmode == IEEE80211_M_STA ||
2000 ic->ic_opmode == IEEE80211_M_MONITOR ||
2001 bf == NULL || bf->bf_m == NULL) {
2002 DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
2003 __func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
2004 return;
2005 }
2006 /*
2007 * Check if the previous beacon has gone out. If
2008 * not don't don't try to post another, skip this
2009 * period and wait for the next. Missed beacons
2010 * indicate a problem and should not occur. If we
2011 * miss too many consecutive beacons reset the device.
2012 */
2013 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2014 sc->sc_bmisscount++;
2015 DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2016 "%s: missed %u consecutive beacons\n",
2017 __func__, sc->sc_bmisscount);
2018 if (sc->sc_bmisscount > 3) /* NB: 3 is a guess */
2019 TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask);
2020 return;
2021 }
2022 if (sc->sc_bmisscount != 0) {
2023 DPRINTF(sc, ATH_DEBUG_BEACON,
2024 "%s: resume beacon xmit after %u misses\n",
2025 __func__, sc->sc_bmisscount);
2026 sc->sc_bmisscount = 0;
2027 }
2028
2029 /*
2030 * Update dynamic beacon contents. If this returns
2031 * non-zero then we need to remap the memory because
2032 * the beacon frame changed size (probably because
2033 * of the TIM bitmap).
2034 */
2035 m = bf->bf_m;
2036 ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
2037 if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
2038 /* XXX too conservative? */
2039 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2040 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2041 BUS_DMA_NOWAIT);
2042 if (error != 0) {
2043 if_printf(&sc->sc_if,
2044 "%s: bus_dmamap_load_mbuf failed, error %u\n",
2045 __func__, error);
2046 return;
2047 }
2048 }
2049
2050 /*
2051 * Handle slot time change when a non-ERP station joins/leaves
2052 * an 11g network. The 802.11 layer notifies us via callback,
2053 * we mark updateslot, then wait one beacon before effecting
2054 * the change. This gives associated stations at least one
2055 * beacon interval to note the state change.
2056 */
2057 /* XXX locking */
2058 if (sc->sc_updateslot == UPDATE)
2059 sc->sc_updateslot = COMMIT; /* commit next beacon */
2060 else if (sc->sc_updateslot == COMMIT)
2061 ath_setslottime(sc); /* commit change to h/w */
2062
2063 /*
2064 * Check recent per-antenna transmit statistics and flip
2065 * the default antenna if noticeably more frames went out
2066 * on the non-default antenna.
2067 * XXX assumes 2 anntenae
2068 */
2069 otherant = sc->sc_defant & 1 ? 2 : 1;
2070 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2071 ath_setdefantenna(sc, otherant);
2072 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2073
2074 /*
2075 * Construct tx descriptor.
2076 */
2077 ath_beacon_setup(sc, bf);
2078
2079 /*
2080 * Stop any current dma and put the new frame on the queue.
2081 * This should never fail since we check above that no frames
2082 * are still pending on the queue.
2083 */
2084 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2085 DPRINTF(sc, ATH_DEBUG_ANY,
2086 "%s: beacon queue %u did not stop?\n",
2087 __func__, sc->sc_bhalq);
2088 }
2089 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2090 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2091
2092 /*
2093 * Enable the CAB queue before the beacon queue to
2094 * insure cab frames are triggered by this beacon.
2095 */
2096 if (sc->sc_boff.bo_tim[4] & 1) /* NB: only at DTIM */
2097 ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
2098 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
2099 ath_hal_txstart(ah, sc->sc_bhalq);
2100 DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2101 "%s: TXDP[%u] = %p (%p)\n", __func__,
2102 sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc);
2103
2104 sc->sc_stats.ast_be_xmit++;
2105 }
2106
2107 /*
2108 * Reset the hardware after detecting beacons have stopped.
2109 */
2110 static void
2111 ath_bstuck_proc(void *arg, int pending)
2112 {
2113 struct ath_softc *sc = arg;
2114 struct ifnet *ifp = &sc->sc_if;
2115
2116 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2117 sc->sc_bmisscount);
2118 ath_reset(ifp);
2119 }
2120
2121 /*
2122 * Reclaim beacon resources.
2123 */
2124 static void
2125 ath_beacon_free(struct ath_softc *sc)
2126 {
2127 struct ath_buf *bf;
2128
2129 STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
2130 if (bf->bf_m != NULL) {
2131 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2132 m_freem(bf->bf_m);
2133 bf->bf_m = NULL;
2134 }
2135 if (bf->bf_node != NULL) {
2136 ieee80211_free_node(bf->bf_node);
2137 bf->bf_node = NULL;
2138 }
2139 }
2140 }
2141
2142 /*
2143 * Configure the beacon and sleep timers.
2144 *
2145 * When operating as an AP this resets the TSF and sets
2146 * up the hardware to notify us when we need to issue beacons.
2147 *
2148 * When operating in station mode this sets up the beacon
2149 * timers according to the timestamp of the last received
2150 * beacon and the current TSF, configures PCF and DTIM
2151 * handling, programs the sleep registers so the hardware
2152 * will wakeup in time to receive beacons, and configures
2153 * the beacon miss handling so we'll receive a BMISS
2154 * interrupt when we stop seeing beacons from the AP
2155 * we've associated with.
2156 */
2157 static void
2158 ath_beacon_config(struct ath_softc *sc)
2159 {
2160 struct ath_hal *ah = sc->sc_ah;
2161 struct ieee80211com *ic = &sc->sc_ic;
2162 struct ieee80211_node *ni = ic->ic_bss;
2163 u_int32_t nexttbtt, intval;
2164
2165 nexttbtt = (LE_READ_4(ni->ni_tstamp.data + 4) << 22) |
2166 (LE_READ_4(ni->ni_tstamp.data) >> 10);
2167 intval = ni->ni_intval & HAL_BEACON_PERIOD;
2168 if (nexttbtt == 0) /* e.g. for ap mode */
2169 nexttbtt = intval;
2170 else if (intval) /* NB: can be 0 for monitor mode */
2171 nexttbtt = roundup(nexttbtt, intval);
2172 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2173 __func__, nexttbtt, intval, ni->ni_intval);
2174 if (ic->ic_opmode == IEEE80211_M_STA) {
2175 HAL_BEACON_STATE bs;
2176
2177 /* NB: no PCF support right now */
2178 memset(&bs, 0, sizeof(bs));
2179 bs.bs_intval = intval;
2180 bs.bs_nexttbtt = nexttbtt;
2181 bs.bs_dtimperiod = bs.bs_intval;
2182 bs.bs_nextdtim = nexttbtt;
2183 /*
2184 * The 802.11 layer records the offset to the DTIM
2185 * bitmap while receiving beacons; use it here to
2186 * enable h/w detection of our AID being marked in
2187 * the bitmap vector (to indicate frames for us are
2188 * pending at the AP).
2189 */
2190 bs.bs_timoffset = ni->ni_timoff;
2191 /*
2192 * Calculate the number of consecutive beacons to miss
2193 * before taking a BMISS interrupt. The configuration
2194 * is specified in ms, so we need to convert that to
2195 * TU's and then calculate based on the beacon interval.
2196 * Note that we clamp the result to at most 10 beacons.
2197 */
2198 bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
2199 if (bs.bs_bmissthreshold > 10)
2200 bs.bs_bmissthreshold = 10;
2201 else if (bs.bs_bmissthreshold <= 0)
2202 bs.bs_bmissthreshold = 1;
2203
2204 /*
2205 * Calculate sleep duration. The configuration is
2206 * given in ms. We insure a multiple of the beacon
2207 * period is used. Also, if the sleep duration is
2208 * greater than the DTIM period then it makes senses
2209 * to make it a multiple of that.
2210 *
2211 * XXX fixed at 100ms
2212 */
2213 bs.bs_sleepduration =
2214 roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2215 if (bs.bs_sleepduration > bs.bs_dtimperiod)
2216 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2217
2218 DPRINTF(sc, ATH_DEBUG_BEACON,
2219 "%s: intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2220 , __func__
2221 , bs.bs_intval
2222 , bs.bs_nexttbtt
2223 , bs.bs_dtimperiod
2224 , bs.bs_nextdtim
2225 , bs.bs_bmissthreshold
2226 , bs.bs_sleepduration
2227 , bs.bs_cfpperiod
2228 , bs.bs_cfpmaxduration
2229 , bs.bs_cfpnext
2230 , bs.bs_timoffset
2231 );
2232 ath_hal_intrset(ah, 0);
2233 ath_hal_beacontimers(ah, &bs);
2234 sc->sc_imask |= HAL_INT_BMISS;
2235 ath_hal_intrset(ah, sc->sc_imask);
2236 } else {
2237 ath_hal_intrset(ah, 0);
2238 if (nexttbtt == intval)
2239 intval |= HAL_BEACON_RESET_TSF;
2240 if (ic->ic_opmode == IEEE80211_M_IBSS) {
2241 /*
2242 * In IBSS mode enable the beacon timers but only
2243 * enable SWBA interrupts if we need to manually
2244 * prepare beacon frames. Otherwise we use a
2245 * self-linked tx descriptor and let the hardware
2246 * deal with things.
2247 */
2248 intval |= HAL_BEACON_ENA;
2249 if (!sc->sc_hasveol)
2250 sc->sc_imask |= HAL_INT_SWBA;
2251 } else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2252 /*
2253 * In AP mode we enable the beacon timers and
2254 * SWBA interrupts to prepare beacon frames.
2255 */
2256 intval |= HAL_BEACON_ENA;
2257 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */
2258 }
2259 ath_hal_beaconinit(ah, nexttbtt, intval);
2260 sc->sc_bmisscount = 0;
2261 ath_hal_intrset(ah, sc->sc_imask);
2262 /*
2263 * When using a self-linked beacon descriptor in
2264 * ibss mode load it once here.
2265 */
2266 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2267 ath_beacon_proc(sc, 0);
2268 }
2269 }
2270
2271 static int
2272 ath_descdma_setup(struct ath_softc *sc,
2273 struct ath_descdma *dd, ath_bufhead *head,
2274 const char *name, int nbuf, int ndesc)
2275 {
2276 #define DS2PHYS(_dd, _ds) \
2277 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2278 struct ifnet *ifp = &sc->sc_if;
2279 struct ath_desc *ds;
2280 struct ath_buf *bf;
2281 int i, bsize, error;
2282
2283 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2284 __func__, name, nbuf, ndesc);
2285
2286 dd->dd_name = name;
2287 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2288
2289 /*
2290 * Setup DMA descriptor area.
2291 */
2292 dd->dd_dmat = sc->sc_dmat;
2293
2294 error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE,
2295 0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0);
2296
2297 if (error != 0) {
2298 if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2299 "error %u\n", nbuf * ndesc, dd->dd_name, error);
2300 goto fail0;
2301 }
2302
2303 error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg,
2304 dd->dd_desc_len, (caddr_t *)&dd->dd_desc, BUS_DMA_COHERENT);
2305 if (error != 0) {
2306 if_printf(ifp, "unable to map %u %s descriptors, error = %u\n",
2307 nbuf * ndesc, dd->dd_name, error);
2308 goto fail1;
2309 }
2310
2311 /* allocate descriptors */
2312 error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1,
2313 dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2314 if (error != 0) {
2315 if_printf(ifp, "unable to create dmamap for %s descriptors, "
2316 "error %u\n", dd->dd_name, error);
2317 goto fail2;
2318 }
2319
2320 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc,
2321 dd->dd_desc_len, NULL, BUS_DMA_NOWAIT);
2322 if (error != 0) {
2323 if_printf(ifp, "unable to map %s descriptors, error %u\n",
2324 dd->dd_name, error);
2325 goto fail3;
2326 }
2327
2328 ds = dd->dd_desc;
2329 dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr;
2330 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
2331 __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2332 (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2333
2334 /* allocate rx buffers */
2335 bsize = sizeof(struct ath_buf) * nbuf;
2336 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2337 if (bf == NULL) {
2338 if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2339 dd->dd_name, bsize);
2340 goto fail4;
2341 }
2342 dd->dd_bufptr = bf;
2343
2344 STAILQ_INIT(head);
2345 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2346 bf->bf_desc = ds;
2347 bf->bf_daddr = DS2PHYS(dd, ds);
2348 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc,
2349 MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap);
2350 if (error != 0) {
2351 if_printf(ifp, "unable to create dmamap for %s "
2352 "buffer %u, error %u\n", dd->dd_name, i, error);
2353 ath_descdma_cleanup(sc, dd, head);
2354 return error;
2355 }
2356 STAILQ_INSERT_TAIL(head, bf, bf_list);
2357 }
2358 return 0;
2359 fail4:
2360 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2361 fail3:
2362 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2363 fail2:
2364 bus_dmamem_unmap(dd->dd_dmat, (caddr_t)dd->dd_desc, dd->dd_desc_len);
2365 fail1:
2366 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2367 fail0:
2368 memset(dd, 0, sizeof(*dd));
2369 return error;
2370 #undef DS2PHYS
2371 }
2372
2373 static void
2374 ath_descdma_cleanup(struct ath_softc *sc,
2375 struct ath_descdma *dd, ath_bufhead *head)
2376 {
2377 struct ath_buf *bf;
2378 struct ieee80211_node *ni;
2379
2380 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2381 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2382 bus_dmamem_unmap(dd->dd_dmat, (caddr_t)dd->dd_desc, dd->dd_desc_len);
2383 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2384
2385 STAILQ_FOREACH(bf, head, bf_list) {
2386 if (bf->bf_m) {
2387 m_freem(bf->bf_m);
2388 bf->bf_m = NULL;
2389 }
2390 if (bf->bf_dmamap != NULL) {
2391 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2392 bf->bf_dmamap = NULL;
2393 }
2394 ni = bf->bf_node;
2395 bf->bf_node = NULL;
2396 if (ni != NULL) {
2397 /*
2398 * Reclaim node reference.
2399 */
2400 ieee80211_free_node(ni);
2401 }
2402 }
2403
2404 STAILQ_INIT(head);
2405 free(dd->dd_bufptr, M_ATHDEV);
2406 memset(dd, 0, sizeof(*dd));
2407 }
2408
2409 static int
2410 ath_desc_alloc(struct ath_softc *sc)
2411 {
2412 int error;
2413
2414 error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2415 "rx", ATH_RXBUF, 1);
2416 if (error != 0)
2417 return error;
2418
2419 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2420 "tx", ATH_TXBUF, ATH_TXDESC);
2421 if (error != 0) {
2422 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2423 return error;
2424 }
2425
2426 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2427 "beacon", 1, 1);
2428 if (error != 0) {
2429 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2430 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2431 return error;
2432 }
2433 return 0;
2434 }
2435
2436 static void
2437 ath_desc_free(struct ath_softc *sc)
2438 {
2439
2440 if (sc->sc_bdma.dd_desc_len != 0)
2441 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2442 if (sc->sc_txdma.dd_desc_len != 0)
2443 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2444 if (sc->sc_rxdma.dd_desc_len != 0)
2445 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2446 }
2447
2448 static struct ieee80211_node *
2449 ath_node_alloc(struct ieee80211_node_table *nt)
2450 {
2451 struct ieee80211com *ic = nt->nt_ic;
2452 struct ath_softc *sc = ic->ic_ifp->if_softc;
2453 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2454 struct ath_node *an;
2455
2456 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2457 if (an == NULL) {
2458 /* XXX stat+msg */
2459 return NULL;
2460 }
2461 an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
2462 an->an_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
2463 an->an_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
2464 an->an_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
2465 ath_rate_node_init(sc, an);
2466
2467 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2468 return &an->an_node;
2469 }
2470
2471 static void
2472 ath_node_free(struct ieee80211_node *ni)
2473 {
2474 struct ieee80211com *ic = ni->ni_ic;
2475 struct ath_softc *sc = ic->ic_ifp->if_softc;
2476
2477 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2478
2479 ath_rate_node_cleanup(sc, ATH_NODE(ni));
2480 sc->sc_node_free(ni);
2481 }
2482
2483 static u_int8_t
2484 ath_node_getrssi(const struct ieee80211_node *ni)
2485 {
2486 #define HAL_EP_RND(x, mul) \
2487 ((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
2488 u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
2489 int32_t rssi;
2490
2491 /*
2492 * When only one frame is received there will be no state in
2493 * avgrssi so fallback on the value recorded by the 802.11 layer.
2494 */
2495 if (avgrssi != ATH_RSSI_DUMMY_MARKER)
2496 rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
2497 else
2498 rssi = ni->ni_rssi;
2499 /* NB: theoretically we shouldn't need this, but be paranoid */
2500 return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
2501 #undef HAL_EP_RND
2502 }
2503
2504 static int
2505 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2506 {
2507 struct ath_hal *ah = sc->sc_ah;
2508 int error;
2509 struct mbuf *m;
2510 struct ath_desc *ds;
2511
2512 m = bf->bf_m;
2513 if (m == NULL) {
2514 /*
2515 * NB: by assigning a page to the rx dma buffer we
2516 * implicitly satisfy the Atheros requirement that
2517 * this buffer be cache-line-aligned and sized to be
2518 * multiple of the cache line size. Not doing this
2519 * causes weird stuff to happen (for the 5210 at least).
2520 */
2521 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2522 if (m == NULL) {
2523 DPRINTF(sc, ATH_DEBUG_ANY,
2524 "%s: no mbuf/cluster\n", __func__);
2525 sc->sc_stats.ast_rx_nombuf++;
2526 return ENOMEM;
2527 }
2528 bf->bf_m = m;
2529 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2530
2531 error = bus_dmamap_load_mbuf(sc->sc_dmat,
2532 bf->bf_dmamap, m,
2533 BUS_DMA_NOWAIT);
2534 if (error != 0) {
2535 DPRINTF(sc, ATH_DEBUG_ANY,
2536 "%s: bus_dmamap_load_mbuf failed; error %d\n",
2537 __func__, error);
2538 sc->sc_stats.ast_rx_busdma++;
2539 return error;
2540 }
2541 KASSERT(bf->bf_nseg == 1,
2542 ("multi-segment packet; nseg %u", bf->bf_nseg));
2543 }
2544 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2545 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2546
2547 /*
2548 * Setup descriptors. For receive we always terminate
2549 * the descriptor list with a self-linked entry so we'll
2550 * not get overrun under high load (as can happen with a
2551 * 5212 when ANI processing enables PHY error frames).
2552 *
2553 * To insure the last descriptor is self-linked we create
2554 * each descriptor as self-linked and add it to the end. As
2555 * each additional descriptor is added the previous self-linked
2556 * entry is ``fixed'' naturally. This should be safe even
2557 * if DMA is happening. When processing RX interrupts we
2558 * never remove/process the last, self-linked, entry on the
2559 * descriptor list. This insures the hardware always has
2560 * someplace to write a new frame.
2561 */
2562 ds = bf->bf_desc;
2563 ds->ds_link = bf->bf_daddr; /* link to self */
2564 ds->ds_data = bf->bf_segs[0].ds_addr;
2565 ath_hal_setuprxdesc(ah, ds
2566 , m->m_len /* buffer size */
2567 , 0
2568 );
2569
2570 if (sc->sc_rxlink != NULL)
2571 *sc->sc_rxlink = bf->bf_daddr;
2572 sc->sc_rxlink = &ds->ds_link;
2573 return 0;
2574 }
2575
2576 static uint64_t
2577 ath_tsf_extend(struct ath_hal *ah, uint32_t rstamp)
2578 {
2579 uint64_t tsf;
2580
2581 KASSERT((rstamp & 0xffff0000) == 0,
2582 ("rx timestamp > 16 bits wide, %" PRIu32, rstamp));
2583
2584 tsf = ath_hal_gettsf64(ah);
2585
2586 /* Compensate for rollover. */
2587 if ((tsf & 0xffff) <= rstamp)
2588 tsf -= 0x10000;
2589
2590 return (tsf & ~(uint64_t)0xffff) | rstamp;
2591 }
2592
2593 /*
2594 * Extend 15-bit time stamp from rx descriptor to
2595 * a full 64-bit TSF using the current h/w TSF.
2596 */
2597 static __inline u_int64_t
2598 ath_extend_tsf(struct ath_hal *ah, u_int32_t rstamp)
2599 {
2600 u_int64_t tsf;
2601
2602 tsf = ath_hal_gettsf64(ah);
2603 if ((tsf & 0x7fff) < rstamp)
2604 tsf -= 0x8000;
2605 return ((tsf &~ 0x7fff) | rstamp);
2606 }
2607
2608 /*
2609 * Intercept management frames to collect beacon rssi data
2610 * and to do ibss merges.
2611 */
2612 static void
2613 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2614 struct ieee80211_node *ni,
2615 int subtype, int rssi, u_int32_t rstamp)
2616 {
2617 struct ath_softc *sc = ic->ic_ifp->if_softc;
2618
2619 /*
2620 * Call up first so subsequent work can use information
2621 * potentially stored in the node (e.g. for ibss merge).
2622 */
2623 sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
2624 switch (subtype) {
2625 case IEEE80211_FC0_SUBTYPE_BEACON:
2626 /* update rssi statistics for use by the hal */
2627 ATH_RSSI_LPF(ATH_NODE(ni)->an_halstats.ns_avgbrssi, rssi);
2628 /* fall thru... */
2629 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2630 if (ic->ic_opmode == IEEE80211_M_IBSS &&
2631 ic->ic_state == IEEE80211_S_RUN) {
2632 u_int64_t tsf = ath_tsf_extend(sc->sc_ah, rstamp);
2633
2634 /*
2635 * Handle ibss merge as needed; check the tsf on the
2636 * frame before attempting the merge. The 802.11 spec
2637 * says the station should change it's bssid to match
2638 * the oldest station with the same ssid, where oldest
2639 * is determined by the tsf. Note that hardware
2640 * reconfiguration happens through callback to
2641 * ath_newstate as the state machine will go from
2642 * RUN -> RUN when this happens.
2643 */
2644 if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
2645 DPRINTF(sc, ATH_DEBUG_STATE,
2646 "ibss merge, rstamp %u tsf %ju "
2647 "tstamp %ju\n", rstamp, (uintmax_t)tsf,
2648 (uintmax_t)ni->ni_tstamp.tsf);
2649 (void) ieee80211_ibss_merge(ic, ni);
2650 }
2651 }
2652 break;
2653 }
2654 }
2655
2656 /*
2657 * Set the default antenna.
2658 */
2659 static void
2660 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
2661 {
2662 struct ath_hal *ah = sc->sc_ah;
2663
2664 /* XXX block beacon interrupts */
2665 ath_hal_setdefantenna(ah, antenna);
2666 if (sc->sc_defant != antenna)
2667 sc->sc_stats.ast_ant_defswitch++;
2668 sc->sc_defant = antenna;
2669 sc->sc_rxotherant = 0;
2670 }
2671
2672 static void
2673 ath_rx_proc(void *arg, int npending)
2674 {
2675 #define PA2DESC(_sc, _pa) \
2676 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
2677 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
2678 struct ath_softc *sc = arg;
2679 struct ath_buf *bf;
2680 struct ieee80211com *ic = &sc->sc_ic;
2681 struct ifnet *ifp = &sc->sc_if;
2682 struct ath_hal *ah = sc->sc_ah;
2683 struct ath_desc *ds;
2684 struct mbuf *m;
2685 struct ieee80211_node *ni;
2686 struct ath_node *an;
2687 int len, type;
2688 u_int phyerr;
2689 HAL_STATUS status;
2690
2691 NET_LOCK_GIANT(); /* XXX */
2692
2693 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
2694 do {
2695 bf = STAILQ_FIRST(&sc->sc_rxbuf);
2696 if (bf == NULL) { /* NB: shouldn't happen */
2697 if_printf(ifp, "%s: no buffer!\n", __func__);
2698 break;
2699 }
2700 ds = bf->bf_desc;
2701 if (ds->ds_link == bf->bf_daddr) {
2702 /* NB: never process the self-linked entry at the end */
2703 break;
2704 }
2705 m = bf->bf_m;
2706 if (m == NULL) { /* NB: shouldn't happen */
2707 if_printf(ifp, "%s: no mbuf!\n", __func__);
2708 continue;
2709 }
2710 /* XXX sync descriptor memory */
2711 /*
2712 * Must provide the virtual address of the current
2713 * descriptor, the physical address, and the virtual
2714 * address of the next descriptor in the h/w chain.
2715 * This allows the HAL to look ahead to see if the
2716 * hardware is done with a descriptor by checking the
2717 * done bit in the following descriptor and the address
2718 * of the current descriptor the DMA engine is working
2719 * on. All this is necessary because of our use of
2720 * a self-linked list to avoid rx overruns.
2721 */
2722 status = ath_hal_rxprocdesc(ah, ds,
2723 bf->bf_daddr, PA2DESC(sc, ds->ds_link));
2724 #ifdef AR_DEBUG
2725 if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
2726 ath_printrxbuf(bf, status == HAL_OK);
2727 #endif
2728 if (status == HAL_EINPROGRESS)
2729 break;
2730 STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
2731 if (ds->ds_rxstat.rs_more) {
2732 /*
2733 * Frame spans multiple descriptors; this
2734 * cannot happen yet as we don't support
2735 * jumbograms. If not in monitor mode,
2736 * discard the frame.
2737 */
2738 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2739 sc->sc_stats.ast_rx_toobig++;
2740 goto rx_next;
2741 }
2742 /* fall thru for monitor mode handling... */
2743 } else if (ds->ds_rxstat.rs_status != 0) {
2744 if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
2745 sc->sc_stats.ast_rx_crcerr++;
2746 if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
2747 sc->sc_stats.ast_rx_fifoerr++;
2748 if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
2749 sc->sc_stats.ast_rx_phyerr++;
2750 phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
2751 sc->sc_stats.ast_rx_phy[phyerr]++;
2752 goto rx_next;
2753 }
2754 if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
2755 /*
2756 * Decrypt error. If the error occurred
2757 * because there was no hardware key, then
2758 * let the frame through so the upper layers
2759 * can process it. This is necessary for 5210
2760 * parts which have no way to setup a ``clear''
2761 * key cache entry.
2762 *
2763 * XXX do key cache faulting
2764 */
2765 if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
2766 goto rx_accept;
2767 sc->sc_stats.ast_rx_badcrypt++;
2768 }
2769 if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
2770 sc->sc_stats.ast_rx_badmic++;
2771 /*
2772 * Do minimal work required to hand off
2773 * the 802.11 header for notifcation.
2774 */
2775 /* XXX frag's and qos frames */
2776 len = ds->ds_rxstat.rs_datalen;
2777 if (len >= sizeof (struct ieee80211_frame)) {
2778 bus_dmamap_sync(sc->sc_dmat,
2779 bf->bf_dmamap,
2780 0, bf->bf_dmamap->dm_mapsize,
2781 BUS_DMASYNC_POSTREAD);
2782 ieee80211_notify_michael_failure(ic,
2783 mtod(m, struct ieee80211_frame *),
2784 sc->sc_splitmic ?
2785 ds->ds_rxstat.rs_keyix-32 :
2786 ds->ds_rxstat.rs_keyix
2787 );
2788 }
2789 }
2790 ifp->if_ierrors++;
2791 /*
2792 * Reject error frames, we normally don't want
2793 * to see them in monitor mode (in monitor mode
2794 * allow through packets that have crypto problems).
2795 */
2796 if ((ds->ds_rxstat.rs_status &~
2797 (HAL_RXERR_DECRYPT|HAL_RXERR_MIC)) ||
2798 sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
2799 goto rx_next;
2800 }
2801 rx_accept:
2802 /*
2803 * Sync and unmap the frame. At this point we're
2804 * committed to passing the mbuf somewhere so clear
2805 * bf_m; this means a new sk_buff must be allocated
2806 * when the rx descriptor is setup again to receive
2807 * another frame.
2808 */
2809 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
2810 0, bf->bf_dmamap->dm_mapsize,
2811 BUS_DMASYNC_POSTREAD);
2812 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2813 bf->bf_m = NULL;
2814
2815 m->m_pkthdr.rcvif = ifp;
2816 len = ds->ds_rxstat.rs_datalen;
2817 m->m_pkthdr.len = m->m_len = len;
2818
2819 sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
2820
2821 #if NBPFILTER > 0
2822 if (sc->sc_drvbpf) {
2823 u_int8_t rix;
2824
2825 /*
2826 * Discard anything shorter than an ack or cts.
2827 */
2828 if (len < IEEE80211_ACK_LEN) {
2829 DPRINTF(sc, ATH_DEBUG_RECV,
2830 "%s: runt packet %d\n",
2831 __func__, len);
2832 sc->sc_stats.ast_rx_tooshort++;
2833 m_freem(m);
2834 goto rx_next;
2835 }
2836 rix = ds->ds_rxstat.rs_rate;
2837 sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
2838 sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
2839 sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi;
2840 sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
2841 /* XXX TSF */
2842
2843 bpf_mtap2(sc->sc_drvbpf,
2844 &sc->sc_rx_th, sc->sc_rx_th_len, m);
2845 }
2846 #endif
2847
2848 /*
2849 * From this point on we assume the frame is at least
2850 * as large as ieee80211_frame_min; verify that.
2851 */
2852 if (len < IEEE80211_MIN_LEN) {
2853 DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
2854 __func__, len);
2855 sc->sc_stats.ast_rx_tooshort++;
2856 m_freem(m);
2857 goto rx_next;
2858 }
2859
2860 if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
2861 ieee80211_dump_pkt(mtod(m, caddr_t), len,
2862 sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
2863 ds->ds_rxstat.rs_rssi);
2864 }
2865
2866 m_adj(m, -IEEE80211_CRC_LEN);
2867
2868 /*
2869 * Locate the node for sender, track state, and then
2870 * pass the (referenced) node up to the 802.11 layer
2871 * for its use.
2872 */
2873 ni = ieee80211_find_rxnode(ic,
2874 mtod(m, const struct ieee80211_frame_min *));
2875
2876 /*
2877 * Track rx rssi and do any rx antenna management.
2878 */
2879 an = ATH_NODE(ni);
2880 ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
2881 if (sc->sc_diversity) {
2882 /*
2883 * When using fast diversity, change the default rx
2884 * antenna if diversity chooses the other antenna 3
2885 * times in a row.
2886 */
2887 if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
2888 if (++sc->sc_rxotherant >= 3)
2889 ath_setdefantenna(sc,
2890 ds->ds_rxstat.rs_antenna);
2891 } else
2892 sc->sc_rxotherant = 0;
2893 }
2894
2895 /*
2896 * Send frame up for processing.
2897 */
2898 type = ieee80211_input(ic, m, ni,
2899 ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
2900
2901 if (sc->sc_softled) {
2902 /*
2903 * Blink for any data frame. Otherwise do a
2904 * heartbeat-style blink when idle. The latter
2905 * is mainly for station mode where we depend on
2906 * periodic beacon frames to trigger the poll event.
2907 */
2908 if (type == IEEE80211_FC0_TYPE_DATA) {
2909 sc->sc_rxrate = ds->ds_rxstat.rs_rate;
2910 ath_led_event(sc, ATH_LED_RX);
2911 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
2912 ath_led_event(sc, ATH_LED_POLL);
2913 }
2914
2915 /*
2916 * Reclaim node reference.
2917 */
2918 ieee80211_free_node(ni);
2919 rx_next:
2920 STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
2921 } while (ath_rxbuf_init(sc, bf) == 0);
2922
2923 /* rx signal state monitoring */
2924 ath_hal_rxmonitor(ah, &ATH_NODE(ic->ic_bss)->an_halstats);
2925
2926 #ifdef __NetBSD__
2927 /* XXX Why isn't this necessary in FreeBSD? */
2928 if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
2929 ath_start(ifp);
2930 #endif /* __NetBSD__ */
2931
2932 NET_UNLOCK_GIANT(); /* XXX */
2933 #undef PA2DESC
2934 }
2935
2936 /*
2937 * Setup a h/w transmit queue.
2938 */
2939 static struct ath_txq *
2940 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
2941 {
2942 #define N(a) (sizeof(a)/sizeof(a[0]))
2943 struct ath_hal *ah = sc->sc_ah;
2944 HAL_TXQ_INFO qi;
2945 int qnum;
2946
2947 memset(&qi, 0, sizeof(qi));
2948 qi.tqi_subtype = subtype;
2949 qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
2950 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
2951 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
2952 /*
2953 * Enable interrupts only for EOL and DESC conditions.
2954 * We mark tx descriptors to receive a DESC interrupt
2955 * when a tx queue gets deep; otherwise waiting for the
2956 * EOL to reap descriptors. Note that this is done to
2957 * reduce interrupt load and this only defers reaping
2958 * descriptors, never transmitting frames. Aside from
2959 * reducing interrupts this also permits more concurrency.
2960 * The only potential downside is if the tx queue backs
2961 * up in which case the top half of the kernel may backup
2962 * due to a lack of tx descriptors.
2963 */
2964 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE | TXQ_FLAG_TXDESCINT_ENABLE;
2965 qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
2966 if (qnum == -1) {
2967 /*
2968 * NB: don't print a message, this happens
2969 * normally on parts with too few tx queues
2970 */
2971 return NULL;
2972 }
2973 if (qnum >= N(sc->sc_txq)) {
2974 device_printf(sc->sc_dev,
2975 "hal qnum %u out of range, max %zu!\n",
2976 qnum, N(sc->sc_txq));
2977 ath_hal_releasetxqueue(ah, qnum);
2978 return NULL;
2979 }
2980 if (!ATH_TXQ_SETUP(sc, qnum)) {
2981 struct ath_txq *txq = &sc->sc_txq[qnum];
2982
2983 txq->axq_qnum = qnum;
2984 txq->axq_depth = 0;
2985 txq->axq_intrcnt = 0;
2986 txq->axq_link = NULL;
2987 STAILQ_INIT(&txq->axq_q);
2988 ATH_TXQ_LOCK_INIT(sc, txq);
2989 sc->sc_txqsetup |= 1<<qnum;
2990 }
2991 return &sc->sc_txq[qnum];
2992 #undef N
2993 }
2994
2995 /*
2996 * Setup a hardware data transmit queue for the specified
2997 * access control. The hal may not support all requested
2998 * queues in which case it will return a reference to a
2999 * previously setup queue. We record the mapping from ac's
3000 * to h/w queues for use by ath_tx_start and also track
3001 * the set of h/w queues being used to optimize work in the
3002 * transmit interrupt handler and related routines.
3003 */
3004 static int
3005 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3006 {
3007 #define N(a) (sizeof(a)/sizeof(a[0]))
3008 struct ath_txq *txq;
3009
3010 if (ac >= N(sc->sc_ac2q)) {
3011 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3012 ac, N(sc->sc_ac2q));
3013 return 0;
3014 }
3015 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3016 if (txq != NULL) {
3017 sc->sc_ac2q[ac] = txq;
3018 return 1;
3019 } else
3020 return 0;
3021 #undef N
3022 }
3023
3024 /*
3025 * Update WME parameters for a transmit queue.
3026 */
3027 static int
3028 ath_txq_update(struct ath_softc *sc, int ac)
3029 {
3030 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1)
3031 #define ATH_TXOP_TO_US(v) (v<<5)
3032 struct ieee80211com *ic = &sc->sc_ic;
3033 struct ath_txq *txq = sc->sc_ac2q[ac];
3034 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3035 struct ath_hal *ah = sc->sc_ah;
3036 HAL_TXQ_INFO qi;
3037
3038 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3039 qi.tqi_aifs = wmep->wmep_aifsn;
3040 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3041 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3042 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3043
3044 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3045 device_printf(sc->sc_dev, "unable to update hardware queue "
3046 "parameters for %s traffic!\n",
3047 ieee80211_wme_acnames[ac]);
3048 return 0;
3049 } else {
3050 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3051 return 1;
3052 }
3053 #undef ATH_TXOP_TO_US
3054 #undef ATH_EXPONENT_TO_VALUE
3055 }
3056
3057 /*
3058 * Callback from the 802.11 layer to update WME parameters.
3059 */
3060 static int
3061 ath_wme_update(struct ieee80211com *ic)
3062 {
3063 struct ath_softc *sc = ic->ic_ifp->if_softc;
3064
3065 return !ath_txq_update(sc, WME_AC_BE) ||
3066 !ath_txq_update(sc, WME_AC_BK) ||
3067 !ath_txq_update(sc, WME_AC_VI) ||
3068 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3069 }
3070
3071 /*
3072 * Reclaim resources for a setup queue.
3073 */
3074 static void
3075 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3076 {
3077
3078 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3079 ATH_TXQ_LOCK_DESTROY(txq);
3080 sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3081 }
3082
3083 /*
3084 * Reclaim all tx queue resources.
3085 */
3086 static void
3087 ath_tx_cleanup(struct ath_softc *sc)
3088 {
3089 int i;
3090
3091 ATH_TXBUF_LOCK_DESTROY(sc);
3092 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3093 if (ATH_TXQ_SETUP(sc, i))
3094 ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3095 }
3096
3097 /*
3098 * Defragment an mbuf chain, returning at most maxfrags separate
3099 * mbufs+clusters. If this is not possible NULL is returned and
3100 * the original mbuf chain is left in it's present (potentially
3101 * modified) state. We use two techniques: collapsing consecutive
3102 * mbufs and replacing consecutive mbufs by a cluster.
3103 */
3104 static struct mbuf *
3105 ath_defrag(struct mbuf *m0, int how, int maxfrags)
3106 {
3107 struct mbuf *m, *n, *n2, **prev;
3108 u_int curfrags;
3109
3110 /*
3111 * Calculate the current number of frags.
3112 */
3113 curfrags = 0;
3114 for (m = m0; m != NULL; m = m->m_next)
3115 curfrags++;
3116 /*
3117 * First, try to collapse mbufs. Note that we always collapse
3118 * towards the front so we don't need to deal with moving the
3119 * pkthdr. This may be suboptimal if the first mbuf has much
3120 * less data than the following.
3121 */
3122 m = m0;
3123 again:
3124 for (;;) {
3125 n = m->m_next;
3126 if (n == NULL)
3127 break;
3128 if ((m->m_flags & M_RDONLY) == 0 &&
3129 n->m_len < M_TRAILINGSPACE(m)) {
3130 bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
3131 n->m_len);
3132 m->m_len += n->m_len;
3133 m->m_next = n->m_next;
3134 m_free(n);
3135 if (--curfrags <= maxfrags)
3136 return m0;
3137 } else
3138 m = n;
3139 }
3140 KASSERT(maxfrags > 1,
3141 ("maxfrags %u, but normal collapse failed", maxfrags));
3142 /*
3143 * Collapse consecutive mbufs to a cluster.
3144 */
3145 prev = &m0->m_next; /* NB: not the first mbuf */
3146 while ((n = *prev) != NULL) {
3147 if ((n2 = n->m_next) != NULL &&
3148 n->m_len + n2->m_len < MCLBYTES) {
3149 m = m_getcl(how, MT_DATA, 0);
3150 if (m == NULL)
3151 goto bad;
3152 bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
3153 bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
3154 n2->m_len);
3155 m->m_len = n->m_len + n2->m_len;
3156 m->m_next = n2->m_next;
3157 *prev = m;
3158 m_free(n);
3159 m_free(n2);
3160 if (--curfrags <= maxfrags) /* +1 cl -2 mbufs */
3161 return m0;
3162 /*
3163 * Still not there, try the normal collapse
3164 * again before we allocate another cluster.
3165 */
3166 goto again;
3167 }
3168 prev = &n->m_next;
3169 }
3170 /*
3171 * No place where we can collapse to a cluster; punt.
3172 * This can occur if, for example, you request 2 frags
3173 * but the packet requires that both be clusters (we
3174 * never reallocate the first mbuf to avoid moving the
3175 * packet header).
3176 */
3177 bad:
3178 return NULL;
3179 }
3180
3181 static int
3182 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
3183 struct mbuf *m0)
3184 {
3185 #define CTS_DURATION \
3186 ath_hal_computetxtime(ah, rt, IEEE80211_ACK_LEN, cix, AH_TRUE)
3187 #define updateCTSForBursting(_ah, _ds, _txq) \
3188 ath_hal_updateCTSForBursting(_ah, _ds, \
3189 _txq->axq_linkbuf != NULL ? _txq->axq_linkbuf->bf_desc : NULL, \
3190 _txq->axq_lastdsWithCTS, _txq->axq_gatingds, \
3191 txopLimit, CTS_DURATION)
3192 struct ieee80211com *ic = &sc->sc_ic;
3193 struct ath_hal *ah = sc->sc_ah;
3194 struct ifnet *ifp = &sc->sc_if;
3195 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
3196 int i, error, iswep, ismcast, keyix, hdrlen, pktlen, try0;
3197 u_int8_t rix, txrate, ctsrate;
3198 u_int8_t cix = 0xff; /* NB: silence compiler */
3199 struct ath_desc *ds, *ds0;
3200 struct ath_txq *txq;
3201 struct ieee80211_frame *wh;
3202 u_int subtype, flags, ctsduration;
3203 HAL_PKT_TYPE atype;
3204 const HAL_RATE_TABLE *rt;
3205 HAL_BOOL shortPreamble;
3206 struct ath_node *an;
3207 struct mbuf *m;
3208 u_int pri;
3209
3210 wh = mtod(m0, struct ieee80211_frame *);
3211 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
3212 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3213 hdrlen = ieee80211_anyhdrsize(wh);
3214 /*
3215 * Packet length must not include any
3216 * pad bytes; deduct them here.
3217 */
3218 pktlen = m0->m_pkthdr.len - (hdrlen & 3);
3219
3220 if (iswep) {
3221 const struct ieee80211_cipher *cip;
3222 struct ieee80211_key *k;
3223
3224 /*
3225 * Construct the 802.11 header+trailer for an encrypted
3226 * frame. The only reason this can fail is because of an
3227 * unknown or unsupported cipher/key type.
3228 */
3229 k = ieee80211_crypto_encap(ic, ni, m0);
3230 if (k == NULL) {
3231 /*
3232 * This can happen when the key is yanked after the
3233 * frame was queued. Just discard the frame; the
3234 * 802.11 layer counts failures and provides
3235 * debugging/diagnostics.
3236 */
3237 m_freem(m0);
3238 return EIO;
3239 }
3240 /*
3241 * Adjust the packet + header lengths for the crypto
3242 * additions and calculate the h/w key index. When
3243 * a s/w mic is done the frame will have had any mic
3244 * added to it prior to entry so skb->len above will
3245 * account for it. Otherwise we need to add it to the
3246 * packet length.
3247 */
3248 cip = k->wk_cipher;
3249 hdrlen += cip->ic_header;
3250 pktlen += cip->ic_header + cip->ic_trailer;
3251 if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0)
3252 pktlen += cip->ic_miclen;
3253 keyix = k->wk_keyix;
3254
3255 /* packet header may have moved, reset our local pointer */
3256 wh = mtod(m0, struct ieee80211_frame *);
3257 } else
3258 keyix = HAL_TXKEYIX_INVALID;
3259
3260 pktlen += IEEE80211_CRC_LEN;
3261
3262 /*
3263 * Load the DMA map so any coalescing is done. This
3264 * also calculates the number of descriptors we need.
3265 */
3266 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3267 BUS_DMA_NOWAIT);
3268 if (error == EFBIG) {
3269 /* XXX packet requires too many descriptors */
3270 bf->bf_nseg = ATH_TXDESC+1;
3271 } else if (error != 0) {
3272 sc->sc_stats.ast_tx_busdma++;
3273 m_freem(m0);
3274 return error;
3275 }
3276 /*
3277 * Discard null packets and check for packets that
3278 * require too many TX descriptors. We try to convert
3279 * the latter to a cluster.
3280 */
3281 if (error == EFBIG) { /* too many desc's, linearize */
3282 sc->sc_stats.ast_tx_linear++;
3283 m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
3284 if (m == NULL) {
3285 m_freem(m0);
3286 sc->sc_stats.ast_tx_nombuf++;
3287 return ENOMEM;
3288 }
3289 m0 = m;
3290 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3291 BUS_DMA_NOWAIT);
3292 if (error != 0) {
3293 sc->sc_stats.ast_tx_busdma++;
3294 m_freem(m0);
3295 return error;
3296 }
3297 KASSERT(bf->bf_nseg <= ATH_TXDESC,
3298 ("too many segments after defrag; nseg %u", bf->bf_nseg));
3299 } else if (bf->bf_nseg == 0) { /* null packet, discard */
3300 sc->sc_stats.ast_tx_nodata++;
3301 m_freem(m0);
3302 return EIO;
3303 }
3304 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
3305 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
3306 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
3307 bf->bf_m = m0;
3308 bf->bf_node = ni; /* NB: held reference */
3309
3310 /* setup descriptors */
3311 ds = bf->bf_desc;
3312 rt = sc->sc_currates;
3313 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3314
3315 /*
3316 * NB: the 802.11 layer marks whether or not we should
3317 * use short preamble based on the current mode and
3318 * negotiated parameters.
3319 */
3320 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3321 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) {
3322 shortPreamble = AH_TRUE;
3323 sc->sc_stats.ast_tx_shortpre++;
3324 } else {
3325 shortPreamble = AH_FALSE;
3326 }
3327
3328 an = ATH_NODE(ni);
3329 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */
3330 /*
3331 * Calculate Atheros packet type from IEEE80211 packet header,
3332 * setup for rate calculations, and select h/w transmit queue.
3333 */
3334 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3335 case IEEE80211_FC0_TYPE_MGT:
3336 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3337 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
3338 atype = HAL_PKT_TYPE_BEACON;
3339 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3340 atype = HAL_PKT_TYPE_PROBE_RESP;
3341 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
3342 atype = HAL_PKT_TYPE_ATIM;
3343 else
3344 atype = HAL_PKT_TYPE_NORMAL; /* XXX */
3345 rix = 0; /* XXX lowest rate */
3346 try0 = ATH_TXMAXTRY;
3347 if (shortPreamble)
3348 txrate = an->an_tx_mgtratesp;
3349 else
3350 txrate = an->an_tx_mgtrate;
3351 /* NB: force all management frames to highest queue */
3352 if (ni->ni_flags & IEEE80211_NODE_QOS) {
3353 /* NB: force all management frames to highest queue */
3354 pri = WME_AC_VO;
3355 } else
3356 pri = WME_AC_BE;
3357 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
3358 break;
3359 case IEEE80211_FC0_TYPE_CTL:
3360 atype = HAL_PKT_TYPE_PSPOLL; /* stop setting of duration */
3361 rix = 0; /* XXX lowest rate */
3362 try0 = ATH_TXMAXTRY;
3363 if (shortPreamble)
3364 txrate = an->an_tx_mgtratesp;
3365 else
3366 txrate = an->an_tx_mgtrate;
3367 /* NB: force all ctl frames to highest queue */
3368 if (ni->ni_flags & IEEE80211_NODE_QOS) {
3369 /* NB: force all ctl frames to highest queue */
3370 pri = WME_AC_VO;
3371 } else
3372 pri = WME_AC_BE;
3373 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
3374 break;
3375 case IEEE80211_FC0_TYPE_DATA:
3376 atype = HAL_PKT_TYPE_NORMAL; /* default */
3377 /*
3378 * Data frames; consult the rate control module for
3379 * unicast frames. Send multicast frames at the
3380 * lowest rate.
3381 */
3382 if (!ismcast) {
3383 ath_rate_findrate(sc, an, shortPreamble, pktlen,
3384 &rix, &try0, &txrate);
3385 } else {
3386 rix = 0;
3387 try0 = ATH_TXMAXTRY;
3388 txrate = an->an_tx_mgtrate;
3389 }
3390 sc->sc_txrate = txrate; /* for LED blinking */
3391 /*
3392 * Default all non-QoS traffic to the background queue.
3393 */
3394 if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
3395 pri = M_WME_GETAC(m0);
3396 if (cap->cap_wmeParams[pri].wmep_noackPolicy) {
3397 flags |= HAL_TXDESC_NOACK;
3398 sc->sc_stats.ast_tx_noack++;
3399 }
3400 } else
3401 pri = WME_AC_BE;
3402 break;
3403 default:
3404 if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3405 wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3406 /* XXX statistic */
3407 m_freem(m0);
3408 return EIO;
3409 }
3410 txq = sc->sc_ac2q[pri];
3411
3412 /*
3413 * When servicing one or more stations in power-save mode
3414 * multicast frames must be buffered until after the beacon.
3415 * We use the CAB queue for that.
3416 */
3417 if (ismcast && ic->ic_ps_sta) {
3418 txq = sc->sc_cabq;
3419 /* XXX? more bit in 802.11 frame header */
3420 }
3421
3422 /*
3423 * Calculate miscellaneous flags.
3424 */
3425 if (ismcast) {
3426 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */
3427 sc->sc_stats.ast_tx_noack++;
3428 } else if (pktlen > ic->ic_rtsthreshold) {
3429 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */
3430 cix = rt->info[rix].controlRate;
3431 sc->sc_stats.ast_tx_rts++;
3432 }
3433
3434 /*
3435 * If 802.11g protection is enabled, determine whether
3436 * to use RTS/CTS or just CTS. Note that this is only
3437 * done for OFDM unicast frames.
3438 */
3439 if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3440 rt->info[rix].phy == IEEE80211_T_OFDM &&
3441 (flags & HAL_TXDESC_NOACK) == 0) {
3442 /* XXX fragments must use CCK rates w/ protection */
3443 if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3444 flags |= HAL_TXDESC_RTSENA;
3445 else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3446 flags |= HAL_TXDESC_CTSENA;
3447 cix = rt->info[sc->sc_protrix].controlRate;
3448 sc->sc_stats.ast_tx_protect++;
3449 }
3450
3451 /*
3452 * Calculate duration. This logically belongs in the 802.11
3453 * layer but it lacks sufficient information to calculate it.
3454 */
3455 if ((flags & HAL_TXDESC_NOACK) == 0 &&
3456 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
3457 u_int16_t dur;
3458 /*
3459 * XXX not right with fragmentation.
3460 */
3461 if (shortPreamble)
3462 dur = rt->info[rix].spAckDuration;
3463 else
3464 dur = rt->info[rix].lpAckDuration;
3465 *(u_int16_t *)wh->i_dur = htole16(dur);
3466 }
3467
3468 /*
3469 * Calculate RTS/CTS rate and duration if needed.
3470 */
3471 ctsduration = 0;
3472 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
3473 /*
3474 * CTS transmit rate is derived from the transmit rate
3475 * by looking in the h/w rate table. We must also factor
3476 * in whether or not a short preamble is to be used.
3477 */
3478 /* NB: cix is set above where RTS/CTS is enabled */
3479 KASSERT(cix != 0xff, ("cix not setup"));
3480 ctsrate = rt->info[cix].rateCode;
3481 /*
3482 * Compute the transmit duration based on the frame
3483 * size and the size of an ACK frame. We call into the
3484 * HAL to do the computation since it depends on the
3485 * characteristics of the actual PHY being used.
3486 *
3487 * NB: CTS is assumed the same size as an ACK so we can
3488 * use the precalculated ACK durations.
3489 */
3490 if (shortPreamble) {
3491 ctsrate |= rt->info[cix].shortPreamble;
3492 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
3493 ctsduration += rt->info[cix].spAckDuration;
3494 ctsduration += ath_hal_computetxtime(ah,
3495 rt, pktlen, rix, AH_TRUE);
3496 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
3497 ctsduration += rt->info[cix].spAckDuration;
3498 } else {
3499 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
3500 ctsduration += rt->info[cix].lpAckDuration;
3501 ctsduration += ath_hal_computetxtime(ah,
3502 rt, pktlen, rix, AH_FALSE);
3503 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
3504 ctsduration += rt->info[cix].lpAckDuration;
3505 }
3506 /*
3507 * Must disable multi-rate retry when using RTS/CTS.
3508 */
3509 try0 = ATH_TXMAXTRY;
3510 } else
3511 ctsrate = 0;
3512
3513 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3514 ieee80211_dump_pkt(mtod(m0, caddr_t), m0->m_len,
3515 sc->sc_hwmap[txrate].ieeerate, -1);
3516
3517 if (ic->ic_rawbpf)
3518 bpf_mtap(ic->ic_rawbpf, m0);
3519 if (sc->sc_drvbpf) {
3520 sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
3521 if (iswep)
3522 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3523 sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
3524 sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3525 sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3526
3527 bpf_mtap2(sc->sc_drvbpf,
3528 &sc->sc_tx_th, sc->sc_tx_th_len, m0);
3529 }
3530
3531 /*
3532 * Determine if a tx interrupt should be generated for
3533 * this descriptor. We take a tx interrupt to reap
3534 * descriptors when the h/w hits an EOL condition or
3535 * when the descriptor is specifically marked to generate
3536 * an interrupt. We periodically mark descriptors in this
3537 * way to insure timely replenishing of the supply needed
3538 * for sending frames. Defering interrupts reduces system
3539 * load and potentially allows more concurrent work to be
3540 * done but if done to aggressively can cause senders to
3541 * backup.
3542 *
3543 * NB: use >= to deal with sc_txintrperiod changing
3544 * dynamically through sysctl.
3545 */
3546 if (flags & HAL_TXDESC_INTREQ) {
3547 txq->axq_intrcnt = 0;
3548 } else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
3549 flags |= HAL_TXDESC_INTREQ;
3550 txq->axq_intrcnt = 0;
3551 }
3552
3553 /*
3554 * Formulate first tx descriptor with tx controls.
3555 */
3556 /* XXX check return value? */
3557 ath_hal_setuptxdesc(ah, ds
3558 , pktlen /* packet length */
3559 , hdrlen /* header length */
3560 , atype /* Atheros packet type */
3561 , ni->ni_txpower /* txpower */
3562 , txrate, try0 /* series 0 rate/tries */
3563 , keyix /* key cache index */
3564 , sc->sc_txantenna /* antenna mode */
3565 , flags /* flags */
3566 , ctsrate /* rts/cts rate */
3567 , ctsduration /* rts/cts duration */
3568 );
3569 /*
3570 * Setup the multi-rate retry state only when we're
3571 * going to use it. This assumes ath_hal_setuptxdesc
3572 * initializes the descriptors (so we don't have to)
3573 * when the hardware supports multi-rate retry and
3574 * we don't use it.
3575 */
3576 if (try0 != ATH_TXMAXTRY)
3577 ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
3578
3579 /*
3580 * Fillin the remainder of the descriptor info.
3581 */
3582 ds0 = ds;
3583 for (i = 0; i < bf->bf_nseg; i++, ds++) {
3584 ds->ds_data = bf->bf_segs[i].ds_addr;
3585 if (i == bf->bf_nseg - 1)
3586 ds->ds_link = 0;
3587 else
3588 ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
3589 ath_hal_filltxdesc(ah, ds
3590 , bf->bf_segs[i].ds_len /* segment length */
3591 , i == 0 /* first segment */
3592 , i == bf->bf_nseg - 1 /* last segment */
3593 , ds0 /* first descriptor */
3594 );
3595 DPRINTF(sc, ATH_DEBUG_XMIT,
3596 "%s: %d: %08x %08x %08x %08x %08x %08x\n",
3597 __func__, i, ds->ds_link, ds->ds_data,
3598 ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
3599 }
3600 /*
3601 * Insert the frame on the outbound list and
3602 * pass it on to the hardware.
3603 */
3604 ATH_TXQ_LOCK(txq);
3605 if (flags & (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) {
3606 u_int32_t txopLimit = IEEE80211_TXOP_TO_US(
3607 cap->cap_wmeParams[pri].wmep_txopLimit);
3608 /*
3609 * When bursting, potentially extend the CTS duration
3610 * of a previously queued frame to cover this frame
3611 * and not exceed the txopLimit. If that can be done
3612 * then disable RTS/CTS on this frame since it's now
3613 * covered (burst extension). Otherwise we must terminate
3614 * the burst before this frame goes out so as not to
3615 * violate the WME parameters. All this is complicated
3616 * as we need to update the state of packets on the
3617 * (live) hardware queue. The logic is buried in the hal
3618 * because it's highly chip-specific.
3619 */
3620 if (txopLimit != 0) {
3621 sc->sc_stats.ast_tx_ctsburst++;
3622 if (updateCTSForBursting(ah, ds0, txq) == 0) {
3623 /*
3624 * This frame was not covered by RTS/CTS from
3625 * the previous frame in the burst; update the
3626 * descriptor pointers so this frame is now
3627 * treated as the last frame for extending a
3628 * burst.
3629 */
3630 txq->axq_lastdsWithCTS = ds0;
3631 /* set gating Desc to final desc */
3632 txq->axq_gatingds =
3633 (struct ath_desc *)txq->axq_link;
3634 } else
3635 sc->sc_stats.ast_tx_ctsext++;
3636 }
3637 }
3638 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
3639 if (txq->axq_link == NULL) {
3640 ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
3641 DPRINTF(sc, ATH_DEBUG_XMIT,
3642 "%s: TXDP[%u] = %p (%p) depth %d\n", __func__,
3643 txq->axq_qnum, (caddr_t)bf->bf_daddr, bf->bf_desc,
3644 txq->axq_depth);
3645 } else {
3646 *txq->axq_link = bf->bf_daddr;
3647 DPRINTF(sc, ATH_DEBUG_XMIT,
3648 "%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
3649 txq->axq_qnum, txq->axq_link,
3650 (caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
3651 }
3652 txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
3653 /*
3654 * The CAB queue is started from the SWBA handler since
3655 * frames only go out on DTIM and to avoid possible races.
3656 */
3657 if (txq != sc->sc_cabq)
3658 ath_hal_txstart(ah, txq->axq_qnum);
3659 ATH_TXQ_UNLOCK(txq);
3660
3661 return 0;
3662 #undef updateCTSForBursting
3663 #undef CTS_DURATION
3664 }
3665
3666 /*
3667 * Process completed xmit descriptors from the specified queue.
3668 */
3669 static void
3670 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
3671 {
3672 struct ath_hal *ah = sc->sc_ah;
3673 struct ieee80211com *ic = &sc->sc_ic;
3674 struct ath_buf *bf;
3675 struct ath_desc *ds, *ds0;
3676 struct ieee80211_node *ni;
3677 struct ath_node *an;
3678 int sr, lr, pri;
3679 HAL_STATUS status;
3680
3681 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
3682 __func__, txq->axq_qnum,
3683 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3684 txq->axq_link);
3685 for (;;) {
3686 ATH_TXQ_LOCK(txq);
3687 txq->axq_intrcnt = 0; /* reset periodic desc intr count */
3688 bf = STAILQ_FIRST(&txq->axq_q);
3689 if (bf == NULL) {
3690 txq->axq_link = NULL;
3691 ATH_TXQ_UNLOCK(txq);
3692 break;
3693 }
3694 ds0 = &bf->bf_desc[0];
3695 ds = &bf->bf_desc[bf->bf_nseg - 1];
3696 status = ath_hal_txprocdesc(ah, ds);
3697 #ifdef AR_DEBUG
3698 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
3699 ath_printtxbuf(bf, status == HAL_OK);
3700 #endif
3701 if (status == HAL_EINPROGRESS) {
3702 ATH_TXQ_UNLOCK(txq);
3703 break;
3704 }
3705 if (ds0 == txq->axq_lastdsWithCTS)
3706 txq->axq_lastdsWithCTS = NULL;
3707 if (ds == txq->axq_gatingds)
3708 txq->axq_gatingds = NULL;
3709 ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3710 ATH_TXQ_UNLOCK(txq);
3711
3712 ni = bf->bf_node;
3713 if (ni != NULL) {
3714 an = ATH_NODE(ni);
3715 if (ds->ds_txstat.ts_status == 0) {
3716 u_int8_t txant = ds->ds_txstat.ts_antenna;
3717 sc->sc_stats.ast_ant_tx[txant]++;
3718 sc->sc_ant_tx[txant]++;
3719 if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
3720 sc->sc_stats.ast_tx_altrate++;
3721 sc->sc_stats.ast_tx_rssi =
3722 ds->ds_txstat.ts_rssi;
3723 ATH_RSSI_LPF(an->an_halstats.ns_avgtxrssi,
3724 ds->ds_txstat.ts_rssi);
3725 pri = M_WME_GETAC(bf->bf_m);
3726 if (pri >= WME_AC_VO)
3727 ic->ic_wme.wme_hipri_traffic++;
3728 ni->ni_inact = ni->ni_inact_reload;
3729 } else {
3730 if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
3731 sc->sc_stats.ast_tx_xretries++;
3732 if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
3733 sc->sc_stats.ast_tx_fifoerr++;
3734 if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
3735 sc->sc_stats.ast_tx_filtered++;
3736 }
3737 sr = ds->ds_txstat.ts_shortretry;
3738 lr = ds->ds_txstat.ts_longretry;
3739 sc->sc_stats.ast_tx_shortretry += sr;
3740 sc->sc_stats.ast_tx_longretry += lr;
3741 /*
3742 * Hand the descriptor to the rate control algorithm.
3743 */
3744 ath_rate_tx_complete(sc, an, ds, ds0);
3745 /*
3746 * Reclaim reference to node.
3747 *
3748 * NB: the node may be reclaimed here if, for example
3749 * this is a DEAUTH message that was sent and the
3750 * node was timed out due to inactivity.
3751 */
3752 ieee80211_free_node(ni);
3753 }
3754 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
3755 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3756 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3757 m_freem(bf->bf_m);
3758 bf->bf_m = NULL;
3759 bf->bf_node = NULL;
3760
3761 ATH_TXBUF_LOCK(sc);
3762 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
3763 ATH_TXBUF_UNLOCK(sc);
3764 }
3765 }
3766
3767 /*
3768 * Deferred processing of transmit interrupt; special-cased
3769 * for a single hardware transmit queue (e.g. 5210 and 5211).
3770 */
3771 static void
3772 ath_tx_proc_q0(void *arg, int npending)
3773 {
3774 struct ath_softc *sc = arg;
3775 struct ifnet *ifp = &sc->sc_if;
3776
3777 ath_tx_processq(sc, &sc->sc_txq[0]);
3778 ath_tx_processq(sc, sc->sc_cabq);
3779 ifp->if_flags &= ~IFF_OACTIVE;
3780 sc->sc_tx_timer = 0;
3781
3782 if (sc->sc_softled)
3783 ath_led_event(sc, ATH_LED_TX);
3784
3785 ath_start(ifp);
3786 }
3787
3788 /*
3789 * Deferred processing of transmit interrupt; special-cased
3790 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
3791 */
3792 static void
3793 ath_tx_proc_q0123(void *arg, int npending)
3794 {
3795 struct ath_softc *sc = arg;
3796 struct ifnet *ifp = &sc->sc_if;
3797
3798 /*
3799 * Process each active queue.
3800 */
3801 ath_tx_processq(sc, &sc->sc_txq[0]);
3802 ath_tx_processq(sc, &sc->sc_txq[1]);
3803 ath_tx_processq(sc, &sc->sc_txq[2]);
3804 ath_tx_processq(sc, &sc->sc_txq[3]);
3805 ath_tx_processq(sc, sc->sc_cabq);
3806
3807 ifp->if_flags &= ~IFF_OACTIVE;
3808 sc->sc_tx_timer = 0;
3809
3810 if (sc->sc_softled)
3811 ath_led_event(sc, ATH_LED_TX);
3812
3813 ath_start(ifp);
3814 }
3815
3816 /*
3817 * Deferred processing of transmit interrupt.
3818 */
3819 static void
3820 ath_tx_proc(void *arg, int npending)
3821 {
3822 struct ath_softc *sc = arg;
3823 struct ifnet *ifp = &sc->sc_if;
3824 int i;
3825
3826 /*
3827 * Process each active queue.
3828 */
3829 /* XXX faster to read ISR_S0_S and ISR_S1_S to determine q's? */
3830 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3831 if (ATH_TXQ_SETUP(sc, i))
3832 ath_tx_processq(sc, &sc->sc_txq[i]);
3833
3834 ifp->if_flags &= ~IFF_OACTIVE;
3835 sc->sc_tx_timer = 0;
3836
3837 if (sc->sc_softled)
3838 ath_led_event(sc, ATH_LED_TX);
3839
3840 ath_start(ifp);
3841 }
3842
3843 static void
3844 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
3845 {
3846 struct ath_hal *ah = sc->sc_ah;
3847 struct ieee80211_node *ni;
3848 struct ath_buf *bf;
3849
3850 /*
3851 * NB: this assumes output has been stopped and
3852 * we do not need to block ath_tx_tasklet
3853 */
3854 for (;;) {
3855 ATH_TXQ_LOCK(txq);
3856 bf = STAILQ_FIRST(&txq->axq_q);
3857 if (bf == NULL) {
3858 txq->axq_link = NULL;
3859 ATH_TXQ_UNLOCK(txq);
3860 break;
3861 }
3862 ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3863 ATH_TXQ_UNLOCK(txq);
3864 #ifdef AR_DEBUG
3865 if (sc->sc_debug & ATH_DEBUG_RESET)
3866 ath_printtxbuf(bf,
3867 ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
3868 #endif /* AR_DEBUG */
3869 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3870 m_freem(bf->bf_m);
3871 bf->bf_m = NULL;
3872 ni = bf->bf_node;
3873 bf->bf_node = NULL;
3874 if (ni != NULL) {
3875 /*
3876 * Reclaim node reference.
3877 */
3878 ieee80211_free_node(ni);
3879 }
3880 ATH_TXBUF_LOCK(sc);
3881 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
3882 ATH_TXBUF_UNLOCK(sc);
3883 }
3884 }
3885
3886 static void
3887 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
3888 {
3889 struct ath_hal *ah = sc->sc_ah;
3890
3891 (void) ath_hal_stoptxdma(ah, txq->axq_qnum);
3892 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
3893 __func__, txq->axq_qnum,
3894 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
3895 txq->axq_link);
3896 }
3897
3898 /*
3899 * Drain the transmit queues and reclaim resources.
3900 */
3901 static void
3902 ath_draintxq(struct ath_softc *sc)
3903 {
3904 struct ath_hal *ah = sc->sc_ah;
3905 struct ifnet *ifp = &sc->sc_if;
3906 int i;
3907
3908 /* XXX return value */
3909 if (!sc->sc_invalid) {
3910 /* don't touch the hardware if marked invalid */
3911 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
3912 DPRINTF(sc, ATH_DEBUG_RESET,
3913 "%s: beacon queue %p\n", __func__,
3914 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
3915 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3916 if (ATH_TXQ_SETUP(sc, i))
3917 ath_tx_stopdma(sc, &sc->sc_txq[i]);
3918 }
3919 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3920 if (ATH_TXQ_SETUP(sc, i))
3921 ath_tx_draintxq(sc, &sc->sc_txq[i]);
3922 ifp->if_flags &= ~IFF_OACTIVE;
3923 sc->sc_tx_timer = 0;
3924 }
3925
3926 /*
3927 * Disable the receive h/w in preparation for a reset.
3928 */
3929 static void
3930 ath_stoprecv(struct ath_softc *sc)
3931 {
3932 #define PA2DESC(_sc, _pa) \
3933 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
3934 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
3935 struct ath_hal *ah = sc->sc_ah;
3936
3937 ath_hal_stoppcurecv(ah); /* disable PCU */
3938 ath_hal_setrxfilter(ah, 0); /* clear recv filter */
3939 ath_hal_stopdmarecv(ah); /* disable DMA engine */
3940 DELAY(3000); /* 3ms is long enough for 1 frame */
3941 #ifdef AR_DEBUG
3942 if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
3943 struct ath_buf *bf;
3944
3945 printf("%s: rx queue %p, link %p\n", __func__,
3946 (caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
3947 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
3948 struct ath_desc *ds = bf->bf_desc;
3949 HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
3950 bf->bf_daddr, PA2DESC(sc, ds->ds_link));
3951 if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
3952 ath_printrxbuf(bf, status == HAL_OK);
3953 }
3954 }
3955 #endif
3956 sc->sc_rxlink = NULL; /* just in case */
3957 #undef PA2DESC
3958 }
3959
3960 /*
3961 * Enable the receive h/w following a reset.
3962 */
3963 static int
3964 ath_startrecv(struct ath_softc *sc)
3965 {
3966 struct ath_hal *ah = sc->sc_ah;
3967 struct ath_buf *bf;
3968
3969 sc->sc_rxlink = NULL;
3970 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
3971 int error = ath_rxbuf_init(sc, bf);
3972 if (error != 0) {
3973 DPRINTF(sc, ATH_DEBUG_RECV,
3974 "%s: ath_rxbuf_init failed %d\n",
3975 __func__, error);
3976 return error;
3977 }
3978 }
3979
3980 bf = STAILQ_FIRST(&sc->sc_rxbuf);
3981 ath_hal_putrxbuf(ah, bf->bf_daddr);
3982 ath_hal_rxena(ah); /* enable recv descriptors */
3983 ath_mode_init(sc); /* set filters, etc. */
3984 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */
3985 return 0;
3986 }
3987
3988 /*
3989 * Update internal state after a channel change.
3990 */
3991 static void
3992 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
3993 {
3994 struct ieee80211com *ic = &sc->sc_ic;
3995 enum ieee80211_phymode mode;
3996 u_int16_t flags;
3997
3998 /*
3999 * Change channels and update the h/w rate map
4000 * if we're switching; e.g. 11a to 11b/g.
4001 */
4002 mode = ieee80211_chan2mode(ic, chan);
4003 if (mode != sc->sc_curmode)
4004 ath_setcurmode(sc, mode);
4005 /*
4006 * Update BPF state. NB: ethereal et. al. don't handle
4007 * merged flags well so pick a unique mode for their use.
4008 */
4009 if (IEEE80211_IS_CHAN_A(chan))
4010 flags = IEEE80211_CHAN_A;
4011 /* XXX 11g schizophrenia */
4012 else if (IEEE80211_IS_CHAN_G(chan) ||
4013 IEEE80211_IS_CHAN_PUREG(chan))
4014 flags = IEEE80211_CHAN_G;
4015 else
4016 flags = IEEE80211_CHAN_B;
4017 if (IEEE80211_IS_CHAN_T(chan))
4018 flags |= IEEE80211_CHAN_TURBO;
4019 sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
4020 htole16(chan->ic_freq);
4021 sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
4022 htole16(flags);
4023 }
4024
4025 /*
4026 * Set/change channels. If the channel is really being changed,
4027 * it's done by reseting the chip. To accomplish this we must
4028 * first cleanup any pending DMA, then restart stuff after a la
4029 * ath_init.
4030 */
4031 static int
4032 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4033 {
4034 struct ath_hal *ah = sc->sc_ah;
4035 struct ieee80211com *ic = &sc->sc_ic;
4036 HAL_CHANNEL hchan;
4037
4038 /*
4039 * Convert to a HAL channel description with
4040 * the flags constrained to reflect the current
4041 * operating mode.
4042 */
4043 hchan.channel = chan->ic_freq;
4044 hchan.channelFlags = ath_chan2flags(ic, chan);
4045
4046 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz) -> %u (%u MHz)\n",
4047 __func__,
4048 ath_hal_mhz2ieee(sc->sc_curchan.channel,
4049 sc->sc_curchan.channelFlags),
4050 sc->sc_curchan.channel,
4051 ath_hal_mhz2ieee(hchan.channel, hchan.channelFlags), hchan.channel);
4052 if (hchan.channel != sc->sc_curchan.channel ||
4053 hchan.channelFlags != sc->sc_curchan.channelFlags) {
4054 HAL_STATUS status;
4055
4056 /*
4057 * To switch channels clear any pending DMA operations;
4058 * wait long enough for the RX fifo to drain, reset the
4059 * hardware at the new frequency, and then re-enable
4060 * the relevant bits of the h/w.
4061 */
4062 ath_hal_intrset(ah, 0); /* disable interrupts */
4063 ath_draintxq(sc); /* clear pending tx frames */
4064 ath_stoprecv(sc); /* turn off frame recv */
4065 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
4066 if_printf(&sc->sc_if, "ath_chan_set: unable to reset "
4067 "channel %u (%u Mhz)\n",
4068 ieee80211_chan2ieee(ic, chan), chan->ic_freq);
4069 return EIO;
4070 }
4071 sc->sc_curchan = hchan;
4072 ath_update_txpow(sc); /* update tx power state */
4073
4074 /*
4075 * Re-enable rx framework.
4076 */
4077 if (ath_startrecv(sc) != 0) {
4078 if_printf(&sc->sc_if,
4079 "ath_chan_set: unable to restart recv logic\n");
4080 return EIO;
4081 }
4082
4083 /*
4084 * Change channels and update the h/w rate map
4085 * if we're switching; e.g. 11a to 11b/g.
4086 */
4087 ic->ic_ibss_chan = chan;
4088 ath_chan_change(sc, chan);
4089
4090 /*
4091 * Re-enable interrupts.
4092 */
4093 ath_hal_intrset(ah, sc->sc_imask);
4094 }
4095 return 0;
4096 }
4097
4098 static void
4099 ath_next_scan(void *arg)
4100 {
4101 struct ath_softc *sc = arg;
4102 struct ieee80211com *ic = &sc->sc_ic;
4103 int s;
4104
4105 /* don't call ath_start w/o network interrupts blocked */
4106 s = splnet();
4107
4108 if (ic->ic_state == IEEE80211_S_SCAN)
4109 ieee80211_next_scan(ic);
4110 splx(s);
4111 }
4112
4113 /*
4114 * Periodically recalibrate the PHY to account
4115 * for temperature/environment changes.
4116 */
4117 static void
4118 ath_calibrate(void *arg)
4119 {
4120 struct ath_softc *sc = arg;
4121 struct ath_hal *ah = sc->sc_ah;
4122
4123 sc->sc_stats.ast_per_cal++;
4124
4125 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: channel %u/%x\n",
4126 __func__, sc->sc_curchan.channel, sc->sc_curchan.channelFlags);
4127
4128 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4129 /*
4130 * Rfgain is out of bounds, reset the chip
4131 * to load new gain values.
4132 */
4133 sc->sc_stats.ast_per_rfgain++;
4134 ath_reset(&sc->sc_if);
4135 }
4136 if (!ath_hal_calibrate(ah, &sc->sc_curchan)) {
4137 DPRINTF(sc, ATH_DEBUG_ANY,
4138 "%s: calibration of channel %u failed\n",
4139 __func__, sc->sc_curchan.channel);
4140 sc->sc_stats.ast_per_calfail++;
4141 }
4142 callout_reset(&sc->sc_cal_ch, ath_calinterval * hz, ath_calibrate, sc);
4143 }
4144
4145 static int
4146 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
4147 {
4148 struct ifnet *ifp = ic->ic_ifp;
4149 struct ath_softc *sc = ifp->if_softc;
4150 struct ath_hal *ah = sc->sc_ah;
4151 struct ieee80211_node *ni;
4152 int i, error;
4153 const u_int8_t *bssid;
4154 u_int32_t rfilt;
4155 static const HAL_LED_STATE leds[] = {
4156 HAL_LED_INIT, /* IEEE80211_S_INIT */
4157 HAL_LED_SCAN, /* IEEE80211_S_SCAN */
4158 HAL_LED_AUTH, /* IEEE80211_S_AUTH */
4159 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */
4160 HAL_LED_RUN, /* IEEE80211_S_RUN */
4161 };
4162
4163 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4164 ieee80211_state_name[ic->ic_state],
4165 ieee80211_state_name[nstate]);
4166
4167 callout_stop(&sc->sc_scan_ch);
4168 callout_stop(&sc->sc_cal_ch);
4169 ath_hal_setledstate(ah, leds[nstate]); /* set LED */
4170
4171 if (nstate == IEEE80211_S_INIT) {
4172 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4173 /*
4174 * NB: disable interrupts so we don't rx frames.
4175 */
4176 ath_hal_intrset(ah, sc->sc_imask &~ ~HAL_INT_GLOBAL);
4177 /*
4178 * Notify the rate control algorithm.
4179 */
4180 ath_rate_newstate(sc, nstate);
4181 goto done;
4182 }
4183 ni = ic->ic_bss;
4184 error = ath_chan_set(sc, ni->ni_chan);
4185 if (error != 0)
4186 goto bad;
4187 rfilt = ath_calcrxfilter(sc, nstate);
4188 if (nstate == IEEE80211_S_SCAN)
4189 bssid = ifp->if_broadcastaddr;
4190 else
4191 bssid = ni->ni_bssid;
4192 ath_hal_setrxfilter(ah, rfilt);
4193 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
4194 __func__, rfilt, ether_sprintf(bssid));
4195
4196 if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
4197 ath_hal_setassocid(ah, bssid, ni->ni_associd);
4198 else
4199 ath_hal_setassocid(ah, bssid, 0);
4200 if (ic->ic_flags & IEEE80211_F_PRIVACY) {
4201 for (i = 0; i < IEEE80211_WEP_NKID; i++)
4202 if (ath_hal_keyisvalid(ah, i))
4203 ath_hal_keysetmac(ah, i, bssid);
4204 }
4205
4206 /*
4207 * Notify the rate control algorithm so rates
4208 * are setup should ath_beacon_alloc be called.
4209 */
4210 ath_rate_newstate(sc, nstate);
4211
4212 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4213 /* nothing to do */;
4214 } else if (nstate == IEEE80211_S_RUN) {
4215 DPRINTF(sc, ATH_DEBUG_STATE,
4216 "%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
4217 "capinfo=0x%04x chan=%d\n"
4218 , __func__
4219 , ic->ic_flags
4220 , ni->ni_intval
4221 , ether_sprintf(ni->ni_bssid)
4222 , ni->ni_capinfo
4223 , ieee80211_chan2ieee(ic, ni->ni_chan));
4224
4225 /*
4226 * Allocate and setup the beacon frame for AP or adhoc mode.
4227 */
4228 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
4229 ic->ic_opmode == IEEE80211_M_IBSS) {
4230 /*
4231 * Stop any previous beacon DMA. This may be
4232 * necessary, for example, when an ibss merge
4233 * causes reconfiguration; there will be a state
4234 * transition from RUN->RUN that means we may
4235 * be called with beacon transmission active.
4236 */
4237 ath_hal_stoptxdma(ah, sc->sc_bhalq);
4238 ath_beacon_free(sc);
4239 error = ath_beacon_alloc(sc, ni);
4240 if (error != 0)
4241 goto bad;
4242 }
4243
4244 /*
4245 * Configure the beacon and sleep timers.
4246 */
4247 ath_beacon_config(sc);
4248 } else {
4249 ath_hal_intrset(ah,
4250 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4251 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4252 }
4253 done:
4254 /*
4255 * Invoke the parent method to complete the work.
4256 */
4257 error = sc->sc_newstate(ic, nstate, arg);
4258 /*
4259 * Finally, start any timers.
4260 */
4261 if (nstate == IEEE80211_S_RUN) {
4262 /* start periodic recalibration timer */
4263 callout_reset(&sc->sc_cal_ch, ath_calinterval * hz,
4264 ath_calibrate, sc);
4265 } else if (nstate == IEEE80211_S_SCAN) {
4266 /* start ap/neighbor scan timer */
4267 callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
4268 ath_next_scan, sc);
4269 }
4270 bad:
4271 return error;
4272 }
4273
4274 /*
4275 * Setup driver-specific state for a newly associated node.
4276 * Note that we're called also on a re-associate, the isnew
4277 * param tells us if this is the first time or not.
4278 */
4279 static void
4280 ath_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
4281 {
4282 struct ath_softc *sc = ic->ic_ifp->if_softc;
4283
4284 ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
4285 }
4286
4287 static int
4288 ath_getchannels(struct ath_softc *sc, u_int cc,
4289 HAL_BOOL outdoor, HAL_BOOL xchanmode)
4290 {
4291 struct ieee80211com *ic = &sc->sc_ic;
4292 struct ifnet *ifp = &sc->sc_if;
4293 struct ath_hal *ah = sc->sc_ah;
4294 HAL_CHANNEL *chans;
4295 int i, ix, nchan;
4296
4297 chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
4298 M_TEMP, M_NOWAIT);
4299 if (chans == NULL) {
4300 if_printf(ifp, "unable to allocate channel table\n");
4301 return ENOMEM;
4302 }
4303 if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
4304 cc, HAL_MODE_ALL, outdoor, xchanmode)) {
4305 u_int32_t rd;
4306
4307 ath_hal_getregdomain(ah, &rd);
4308 if_printf(ifp, "unable to collect channel list from hal; "
4309 "regdomain likely %u country code %u\n", rd, cc);
4310 free(chans, M_TEMP);
4311 return EINVAL;
4312 }
4313
4314 /*
4315 * Convert HAL channels to ieee80211 ones and insert
4316 * them in the table according to their channel number.
4317 */
4318 for (i = 0; i < nchan; i++) {
4319 HAL_CHANNEL *c = &chans[i];
4320 ix = ath_hal_mhz2ieee(c->channel, c->channelFlags);
4321 if (ix > IEEE80211_CHAN_MAX) {
4322 if_printf(ifp, "bad hal channel %u (%u/%x) ignored\n",
4323 ix, c->channel, c->channelFlags);
4324 continue;
4325 }
4326 DPRINTF(sc, ATH_DEBUG_ANY,
4327 "%s: HAL channel %d/%d freq %d flags %#04x idx %d\n",
4328 sc->sc_dev.dv_xname, i, nchan, c->channel, c->channelFlags,
4329 ix);
4330 /* NB: flags are known to be compatible */
4331 if (ic->ic_channels[ix].ic_freq == 0) {
4332 ic->ic_channels[ix].ic_freq = c->channel;
4333 ic->ic_channels[ix].ic_flags = c->channelFlags;
4334 } else {
4335 /* channels overlap; e.g. 11g and 11b */
4336 ic->ic_channels[ix].ic_flags |= c->channelFlags;
4337 }
4338 }
4339 free(chans, M_TEMP);
4340 return 0;
4341 }
4342
4343 static void
4344 ath_led_done(void *arg)
4345 {
4346 struct ath_softc *sc = arg;
4347
4348 sc->sc_blinking = 0;
4349 }
4350
4351 /*
4352 * Turn the LED off: flip the pin and then set a timer so no
4353 * update will happen for the specified duration.
4354 */
4355 static void
4356 ath_led_off(void *arg)
4357 {
4358 struct ath_softc *sc = arg;
4359
4360 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
4361 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
4362 }
4363
4364 /*
4365 * Blink the LED according to the specified on/off times.
4366 */
4367 static void
4368 ath_led_blink(struct ath_softc *sc, int on, int off)
4369 {
4370 DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
4371 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
4372 sc->sc_blinking = 1;
4373 sc->sc_ledoff = off;
4374 callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
4375 }
4376
4377 static void
4378 ath_led_event(struct ath_softc *sc, int event)
4379 {
4380
4381 sc->sc_ledevent = ticks; /* time of last event */
4382 if (sc->sc_blinking) /* don't interrupt active blink */
4383 return;
4384 switch (event) {
4385 case ATH_LED_POLL:
4386 ath_led_blink(sc, sc->sc_hwmap[0].ledon,
4387 sc->sc_hwmap[0].ledoff);
4388 break;
4389 case ATH_LED_TX:
4390 ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
4391 sc->sc_hwmap[sc->sc_txrate].ledoff);
4392 break;
4393 case ATH_LED_RX:
4394 ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
4395 sc->sc_hwmap[sc->sc_rxrate].ledoff);
4396 break;
4397 }
4398 }
4399
4400 static void
4401 ath_update_txpow(struct ath_softc *sc)
4402 {
4403 struct ieee80211com *ic = &sc->sc_ic;
4404 struct ath_hal *ah = sc->sc_ah;
4405 u_int32_t txpow;
4406
4407 if (sc->sc_curtxpow != ic->ic_txpowlimit) {
4408 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
4409 /* read back in case value is clamped */
4410 ath_hal_gettxpowlimit(ah, &txpow);
4411 ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
4412 }
4413 /*
4414 * Fetch max tx power level for status requests.
4415 */
4416 ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
4417 ic->ic_bss->ni_txpower = txpow;
4418 }
4419
4420 static int
4421 ath_rate_setup(struct ath_softc *sc, u_int mode)
4422 {
4423 struct ath_hal *ah = sc->sc_ah;
4424 struct ieee80211com *ic = &sc->sc_ic;
4425 const HAL_RATE_TABLE *rt;
4426 struct ieee80211_rateset *rs;
4427 int i, maxrates;
4428
4429 switch (mode) {
4430 case IEEE80211_MODE_11A:
4431 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11A);
4432 break;
4433 case IEEE80211_MODE_11B:
4434 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11B);
4435 break;
4436 case IEEE80211_MODE_11G:
4437 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11G);
4438 break;
4439 case IEEE80211_MODE_TURBO_A:
4440 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_TURBO);
4441 break;
4442 case IEEE80211_MODE_TURBO_G:
4443 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_108G);
4444 break;
4445 default:
4446 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
4447 __func__, mode);
4448 return 0;
4449 }
4450 rt = sc->sc_rates[mode];
4451 if (rt == NULL)
4452 return 0;
4453 if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
4454 DPRINTF(sc, ATH_DEBUG_ANY,
4455 "%s: rate table too small (%u > %u)\n",
4456 __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
4457 maxrates = IEEE80211_RATE_MAXSIZE;
4458 } else
4459 maxrates = rt->rateCount;
4460 rs = &ic->ic_sup_rates[mode];
4461 for (i = 0; i < maxrates; i++)
4462 rs->rs_rates[i] = rt->info[i].dot11Rate;
4463 rs->rs_nrates = maxrates;
4464 return 1;
4465 }
4466
4467 static void
4468 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
4469 {
4470 #define N(a) (sizeof(a)/sizeof(a[0]))
4471 /* NB: on/off times from the Atheros NDIS driver, w/ permission */
4472 static const struct {
4473 u_int rate; /* tx/rx 802.11 rate */
4474 u_int16_t timeOn; /* LED on time (ms) */
4475 u_int16_t timeOff; /* LED off time (ms) */
4476 } blinkrates[] = {
4477 { 108, 40, 10 },
4478 { 96, 44, 11 },
4479 { 72, 50, 13 },
4480 { 48, 57, 14 },
4481 { 36, 67, 16 },
4482 { 24, 80, 20 },
4483 { 22, 100, 25 },
4484 { 18, 133, 34 },
4485 { 12, 160, 40 },
4486 { 10, 200, 50 },
4487 { 6, 240, 58 },
4488 { 4, 267, 66 },
4489 { 2, 400, 100 },
4490 { 0, 500, 130 },
4491 };
4492 const HAL_RATE_TABLE *rt;
4493 int i, j;
4494
4495 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
4496 rt = sc->sc_rates[mode];
4497 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
4498 for (i = 0; i < rt->rateCount; i++)
4499 sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
4500 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
4501 for (i = 0; i < 32; i++) {
4502 u_int8_t ix = rt->rateCodeToIndex[i];
4503 if (ix == 0xff) {
4504 sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
4505 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
4506 continue;
4507 }
4508 sc->sc_hwmap[i].ieeerate =
4509 rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
4510 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
4511 if (rt->info[ix].shortPreamble ||
4512 rt->info[ix].phy == IEEE80211_T_OFDM)
4513 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
4514 /* NB: receive frames include FCS */
4515 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
4516 IEEE80211_RADIOTAP_F_FCS;
4517 /* setup blink rate table to avoid per-packet lookup */
4518 for (j = 0; j < N(blinkrates)-1; j++)
4519 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
4520 break;
4521 /* NB: this uses the last entry if the rate isn't found */
4522 /* XXX beware of overlow */
4523 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
4524 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
4525 }
4526 sc->sc_currates = rt;
4527 sc->sc_curmode = mode;
4528 /*
4529 * All protection frames are transmited at 2Mb/s for
4530 * 11g, otherwise at 1Mb/s.
4531 * XXX select protection rate index from rate table.
4532 */
4533 sc->sc_protrix = (mode == IEEE80211_MODE_11G ? 1 : 0);
4534 /* NB: caller is responsible for reseting rate control state */
4535 #undef N
4536 }
4537
4538 #ifdef AR_DEBUG
4539 static void
4540 ath_printrxbuf(struct ath_buf *bf, int done)
4541 {
4542 struct ath_desc *ds;
4543 int i;
4544
4545 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
4546 printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n",
4547 i, ds, (struct ath_desc *)bf->bf_daddr + i,
4548 ds->ds_link, ds->ds_data,
4549 ds->ds_ctl0, ds->ds_ctl1,
4550 ds->ds_hw[0], ds->ds_hw[1],
4551 !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
4552 }
4553 }
4554
4555 static void
4556 ath_printtxbuf(struct ath_buf *bf, int done)
4557 {
4558 struct ath_desc *ds;
4559 int i;
4560
4561 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
4562 printf("T%d (%p %p) %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
4563 i, ds, (struct ath_desc *)bf->bf_daddr + i,
4564 ds->ds_link, ds->ds_data,
4565 ds->ds_ctl0, ds->ds_ctl1,
4566 ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
4567 !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
4568 }
4569 }
4570 #endif /* AR_DEBUG */
4571
4572 static void
4573 ath_watchdog(struct ifnet *ifp)
4574 {
4575 struct ath_softc *sc = ifp->if_softc;
4576 struct ieee80211com *ic = &sc->sc_ic;
4577
4578 ifp->if_timer = 0;
4579 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
4580 return;
4581 if (sc->sc_tx_timer) {
4582 if (--sc->sc_tx_timer == 0) {
4583 if_printf(ifp, "device timeout\n");
4584 ath_reset(ifp);
4585 ifp->if_oerrors++;
4586 sc->sc_stats.ast_watchdog++;
4587 } else
4588 ifp->if_timer = 1;
4589 }
4590 ieee80211_watchdog(ic);
4591 }
4592
4593 /*
4594 * Diagnostic interface to the HAL. This is used by various
4595 * tools to do things like retrieve register contents for
4596 * debugging. The mechanism is intentionally opaque so that
4597 * it can change frequently w/o concern for compatiblity.
4598 */
4599 static int
4600 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
4601 {
4602 struct ath_hal *ah = sc->sc_ah;
4603 u_int id = ad->ad_id & ATH_DIAG_ID;
4604 void *indata = NULL;
4605 void *outdata = NULL;
4606 u_int32_t insize = ad->ad_in_size;
4607 u_int32_t outsize = ad->ad_out_size;
4608 int error = 0;
4609
4610 if (ad->ad_id & ATH_DIAG_IN) {
4611 /*
4612 * Copy in data.
4613 */
4614 indata = malloc(insize, M_TEMP, M_NOWAIT);
4615 if (indata == NULL) {
4616 error = ENOMEM;
4617 goto bad;
4618 }
4619 error = copyin(ad->ad_in_data, indata, insize);
4620 if (error)
4621 goto bad;
4622 }
4623 if (ad->ad_id & ATH_DIAG_DYN) {
4624 /*
4625 * Allocate a buffer for the results (otherwise the HAL
4626 * returns a pointer to a buffer where we can read the
4627 * results). Note that we depend on the HAL leaving this
4628 * pointer for us to use below in reclaiming the buffer;
4629 * may want to be more defensive.
4630 */
4631 outdata = malloc(outsize, M_TEMP, M_NOWAIT);
4632 if (outdata == NULL) {
4633 error = ENOMEM;
4634 goto bad;
4635 }
4636 }
4637 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
4638 if (outsize < ad->ad_out_size)
4639 ad->ad_out_size = outsize;
4640 if (outdata != NULL)
4641 error = copyout(outdata, ad->ad_out_data,
4642 ad->ad_out_size);
4643 } else {
4644 error = EINVAL;
4645 }
4646 bad:
4647 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
4648 free(indata, M_TEMP);
4649 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
4650 free(outdata, M_TEMP);
4651 return error;
4652 }
4653
4654 static int
4655 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
4656 {
4657 #define IS_RUNNING(ifp) \
4658 ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP))
4659 struct ath_softc *sc = ifp->if_softc;
4660 struct ieee80211com *ic = &sc->sc_ic;
4661 struct ifreq *ifr = (struct ifreq *)data;
4662 int error = 0;
4663
4664 ATH_LOCK(sc);
4665 switch (cmd) {
4666 case SIOCSIFFLAGS:
4667 if (IS_RUNNING(ifp)) {
4668 /*
4669 * To avoid rescanning another access point,
4670 * do not call ath_init() here. Instead,
4671 * only reflect promisc mode settings.
4672 */
4673 ath_mode_init(sc);
4674 } else if (ifp->if_flags & IFF_UP) {
4675 /*
4676 * Beware of being called during attach/detach
4677 * to reset promiscuous mode. In that case we
4678 * will still be marked UP but not RUNNING.
4679 * However trying to re-init the interface
4680 * is the wrong thing to do as we've already
4681 * torn down much of our state. There's
4682 * probably a better way to deal with this.
4683 */
4684 if (!sc->sc_invalid && ic->ic_bss != NULL)
4685 ath_init(ifp); /* XXX lose error */
4686 } else
4687 ath_stop_locked(ifp, 1);
4688 break;
4689 case SIOCADDMULTI:
4690 case SIOCDELMULTI:
4691 error = (cmd == SIOCADDMULTI) ?
4692 ether_addmulti(ifr, &sc->sc_ec) :
4693 ether_delmulti(ifr, &sc->sc_ec);
4694 if (error == ENETRESET) {
4695 if (ifp->if_flags & IFF_RUNNING)
4696 ath_mode_init(sc);
4697 error = 0;
4698 }
4699 break;
4700 case SIOCGATHSTATS:
4701 /* NB: embed these numbers to get a consistent view */
4702 sc->sc_stats.ast_tx_packets = ifp->if_opackets;
4703 sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
4704 sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
4705 ATH_UNLOCK(sc);
4706 /*
4707 * NB: Drop the softc lock in case of a page fault;
4708 * we'll accept any potential inconsisentcy in the
4709 * statistics. The alternative is to copy the data
4710 * to a local structure.
4711 */
4712 return copyout(&sc->sc_stats,
4713 ifr->ifr_data, sizeof (sc->sc_stats));
4714 case SIOCGATHDIAG:
4715 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
4716 break;
4717 default:
4718 error = ieee80211_ioctl(ic, cmd, data);
4719 if (error == ENETRESET) {
4720 if (IS_RUNNING(ifp) &&
4721 ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
4722 ath_init(ifp); /* XXX lose error */
4723 error = 0;
4724 }
4725 if (error == ERESTART)
4726 error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0;
4727 break;
4728 }
4729 ATH_UNLOCK(sc);
4730 return error;
4731 #undef IS_RUNNING
4732 }
4733
4734 static void
4735 ath_bpfattach(struct ath_softc *sc)
4736 {
4737 struct ifnet *ifp = &sc->sc_if;
4738
4739 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
4740 sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
4741 &sc->sc_drvbpf);
4742 /*
4743 * Initialize constant fields.
4744 * XXX make header lengths a multiple of 32-bits so subsequent
4745 * headers are properly aligned; this is a kludge to keep
4746 * certain applications happy.
4747 *
4748 * NB: the channel is setup each time we transition to the
4749 * RUN state to avoid filling it in for each frame.
4750 */
4751 sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
4752 sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
4753 sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
4754
4755 sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
4756 sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
4757 sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
4758 }
4759
4760 /*
4761 * Announce various information on device/driver attach.
4762 */
4763 static void
4764 ath_announce(struct ath_softc *sc)
4765 {
4766 #define HAL_MODE_DUALBAND (HAL_MODE_11A|HAL_MODE_11B)
4767 struct ifnet *ifp = &sc->sc_if;
4768 struct ath_hal *ah = sc->sc_ah;
4769 u_int modes, cc;
4770
4771 if_printf(ifp, "mac %d.%d phy %d.%d",
4772 ah->ah_macVersion, ah->ah_macRev,
4773 ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
4774 /*
4775 * Print radio revision(s). We check the wireless modes
4776 * to avoid falsely printing revs for inoperable parts.
4777 * Dual-band radio revs are returned in the 5Ghz rev number.
4778 */
4779 ath_hal_getcountrycode(ah, &cc);
4780 modes = ath_hal_getwirelessmodes(ah, cc);
4781 if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
4782 if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
4783 printf(" 5ghz radio %d.%d 2ghz radio %d.%d",
4784 ah->ah_analog5GhzRev >> 4,
4785 ah->ah_analog5GhzRev & 0xf,
4786 ah->ah_analog2GhzRev >> 4,
4787 ah->ah_analog2GhzRev & 0xf);
4788 else
4789 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
4790 ah->ah_analog5GhzRev & 0xf);
4791 } else
4792 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
4793 ah->ah_analog5GhzRev & 0xf);
4794 printf("\n");
4795 if (bootverbose) {
4796 int i;
4797 for (i = 0; i <= WME_AC_VO; i++) {
4798 struct ath_txq *txq = sc->sc_ac2q[i];
4799 if_printf(ifp, "Use hw queue %u for %s traffic\n",
4800 txq->axq_qnum, ieee80211_wme_acnames[i]);
4801 }
4802 if_printf(ifp, "Use hw queue %u for CAB traffic\n",
4803 sc->sc_cabq->axq_qnum);
4804 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
4805 }
4806 #undef HAL_MODE_DUALBAND
4807 }
4808