Home | History | Annotate | Line # | Download | only in ic
ath.c revision 1.52
      1 /*	$NetBSD: ath.c,v 1.52 2005/07/03 19:44:50 dyoung Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer,
     12  *    without modification.
     13  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
     14  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
     15  *    redistribution must be conditioned upon including a substantially
     16  *    similar Disclaimer requirement for further binary redistribution.
     17  * 3. Neither the names of the above-listed copyright holders nor the names
     18  *    of any contributors may be used to endorse or promote products derived
     19  *    from this software without specific prior written permission.
     20  *
     21  * Alternatively, this software may be distributed under the terms of the
     22  * GNU General Public License ("GPL") version 2 as published by the Free
     23  * Software Foundation.
     24  *
     25  * NO WARRANTY
     26  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     28  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
     29  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
     30  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
     31  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
     34  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     36  * THE POSSIBILITY OF SUCH DAMAGES.
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 #ifdef __FreeBSD__
     41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.88 2005/04/12 17:56:43 sam Exp $");
     42 #endif
     43 #ifdef __NetBSD__
     44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.52 2005/07/03 19:44:50 dyoung Exp $");
     45 #endif
     46 
     47 /*
     48  * Driver for the Atheros Wireless LAN controller.
     49  *
     50  * This software is derived from work of Atsushi Onoe; his contribution
     51  * is greatly appreciated.
     52  */
     53 
     54 #include "opt_inet.h"
     55 
     56 #ifdef __NetBSD__
     57 #include "bpfilter.h"
     58 #endif /* __NetBSD__ */
     59 
     60 #include <sys/param.h>
     61 #include <sys/reboot.h>
     62 #include <sys/systm.h>
     63 #include <sys/types.h>
     64 #include <sys/sysctl.h>
     65 #include <sys/mbuf.h>
     66 #include <sys/malloc.h>
     67 #include <sys/lock.h>
     68 #include <sys/kernel.h>
     69 #include <sys/socket.h>
     70 #include <sys/sockio.h>
     71 #include <sys/errno.h>
     72 #include <sys/callout.h>
     73 #include <machine/bus.h>
     74 #include <sys/endian.h>
     75 
     76 #include <machine/bus.h>
     77 
     78 #include <net/if.h>
     79 #include <net/if_dl.h>
     80 #include <net/if_media.h>
     81 #include <net/if_arp.h>
     82 #include <net/if_ether.h>
     83 #include <net/if_llc.h>
     84 
     85 #include <net80211/ieee80211_netbsd.h>
     86 #include <net80211/ieee80211_var.h>
     87 
     88 #if NBPFILTER > 0
     89 #include <net/bpf.h>
     90 #endif
     91 
     92 #ifdef INET
     93 #include <netinet/in.h>
     94 #endif
     95 
     96 #include <sys/device.h>
     97 #include <dev/ic/ath_netbsd.h>
     98 
     99 #define	AR_DEBUG
    100 #include <dev/ic/athvar.h>
    101 #include <contrib/dev/ic/athhal_desc.h>
    102 #include <contrib/dev/ic/athhal_devid.h>	/* XXX for softled */
    103 
    104 /* unaligned little endian access */
    105 #define LE_READ_2(p)							\
    106 	((u_int16_t)							\
    107 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
    108 #define LE_READ_4(p)							\
    109 	((u_int32_t)							\
    110 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
    111 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
    112 
    113 enum {
    114 	ATH_LED_TX,
    115 	ATH_LED_RX,
    116 	ATH_LED_POLL,
    117 };
    118 
    119 static int	ath_init(struct ifnet *);
    120 static void	ath_stop_locked(struct ifnet *, int);
    121 static void	ath_stop(struct ifnet *, int);
    122 static void	ath_start(struct ifnet *);
    123 static int	ath_media_change(struct ifnet *);
    124 static void	ath_watchdog(struct ifnet *);
    125 static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
    126 static void	ath_fatal_proc(void *, int);
    127 static void	ath_rxorn_proc(void *, int);
    128 static void	ath_bmiss_proc(void *, int);
    129 static void	ath_initkeytable(struct ath_softc *);
    130 static int	ath_key_alloc(struct ieee80211com *,
    131 			const struct ieee80211_key *);
    132 static int	ath_key_delete(struct ieee80211com *,
    133 			const struct ieee80211_key *);
    134 static int	ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
    135 			const u_int8_t mac[IEEE80211_ADDR_LEN]);
    136 static void	ath_key_update_begin(struct ieee80211com *);
    137 static void	ath_key_update_end(struct ieee80211com *);
    138 static void	ath_mode_init(struct ath_softc *);
    139 static void	ath_setslottime(struct ath_softc *);
    140 static void	ath_updateslot(struct ifnet *);
    141 static int	ath_beaconq_setup(struct ath_hal *);
    142 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
    143 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
    144 static void	ath_beacon_proc(void *, int);
    145 static void	ath_bstuck_proc(void *, int);
    146 static void	ath_beacon_free(struct ath_softc *);
    147 static void	ath_beacon_config(struct ath_softc *);
    148 static void	ath_descdma_cleanup(struct ath_softc *sc,
    149 			struct ath_descdma *, ath_bufhead *);
    150 static int	ath_desc_alloc(struct ath_softc *);
    151 static void	ath_desc_free(struct ath_softc *);
    152 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
    153 static void	ath_node_free(struct ieee80211_node *);
    154 static u_int8_t	ath_node_getrssi(const struct ieee80211_node *);
    155 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
    156 static void	ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
    157 			struct ieee80211_node *ni,
    158 			int subtype, int rssi, u_int32_t rstamp);
    159 static void	ath_setdefantenna(struct ath_softc *, u_int);
    160 static void	ath_rx_proc(void *, int);
    161 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
    162 static int	ath_tx_setup(struct ath_softc *, int, int);
    163 static int	ath_wme_update(struct ieee80211com *);
    164 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
    165 static void	ath_tx_cleanup(struct ath_softc *);
    166 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
    167 			     struct ath_buf *, struct mbuf *);
    168 static void	ath_tx_proc_q0(void *, int);
    169 static void	ath_tx_proc_q0123(void *, int);
    170 static void	ath_tx_proc(void *, int);
    171 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
    172 static void	ath_draintxq(struct ath_softc *);
    173 static void	ath_stoprecv(struct ath_softc *);
    174 static int	ath_startrecv(struct ath_softc *);
    175 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
    176 static void	ath_next_scan(void *);
    177 static void	ath_calibrate(void *);
    178 static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
    179 static void	ath_newassoc(struct ieee80211com *,
    180 			struct ieee80211_node *, int);
    181 static int	ath_getchannels(struct ath_softc *, u_int cc,
    182 			HAL_BOOL outdoor, HAL_BOOL xchanmode);
    183 static void	ath_led_event(struct ath_softc *, int);
    184 static void	ath_update_txpow(struct ath_softc *);
    185 
    186 static int	ath_rate_setup(struct ath_softc *, u_int mode);
    187 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
    188 
    189 #ifdef __NetBSD__
    190 int	ath_enable(struct ath_softc *);
    191 void	ath_disable(struct ath_softc *);
    192 void	ath_power(int, void *);
    193 #endif
    194 
    195 static void	ath_bpfattach(struct ath_softc *);
    196 static void	ath_announce(struct ath_softc *);
    197 
    198 int ath_dwelltime = 200;		/* 5 channels/second */
    199 int ath_calinterval = 30;		/* calibrate every 30 secs */
    200 int ath_outdoor = AH_TRUE;		/* outdoor operation */
    201 int ath_xchanmode = AH_TRUE;		/* enable extended channels */
    202 int ath_countrycode = CTRY_DEFAULT;	/* country code */
    203 int ath_regdomain = 0;			/* regulatory domain */
    204 int ath_debug = 0;
    205 
    206 #ifdef AR_DEBUG
    207 enum {
    208 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
    209 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
    210 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
    211 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
    212 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
    213 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
    214 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
    215 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
    216 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
    217 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
    218 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
    219 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
    220 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
    221 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
    222 	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
    223 	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
    224 	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
    225 	ATH_DEBUG_LED		= 0x00100000,	/* led management */
    226 	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
    227 	ATH_DEBUG_ANY		= 0xffffffff
    228 };
    229 #define	IFF_DUMPPKTS(sc, m) \
    230 	((sc->sc_debug & (m)) || \
    231 	    (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
    232 #define	DPRINTF(sc, m, fmt, ...) do {				\
    233 	if (sc->sc_debug & (m))					\
    234 		printf(fmt, __VA_ARGS__);			\
    235 } while (0)
    236 #define	KEYPRINTF(sc, ix, hk, mac) do {				\
    237 	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
    238 		ath_keyprint(__func__, ix, hk, mac);		\
    239 } while (0)
    240 static	void ath_printrxbuf(struct ath_buf *bf, int);
    241 static	void ath_printtxbuf(struct ath_buf *bf, int);
    242 #else
    243 #define	IFF_DUMPPKTS(sc, m) \
    244 	((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
    245 #define	DPRINTF(m, fmt, ...)
    246 #define	KEYPRINTF(sc, k, ix, mac)
    247 #endif
    248 
    249 #ifdef __NetBSD__
    250 int
    251 ath_activate(struct device *self, enum devact act)
    252 {
    253 	struct ath_softc *sc = (struct ath_softc *)self;
    254 	int rv = 0, s;
    255 
    256 	s = splnet();
    257 	switch (act) {
    258 	case DVACT_ACTIVATE:
    259 		rv = EOPNOTSUPP;
    260 		break;
    261 	case DVACT_DEACTIVATE:
    262 		if_deactivate(&sc->sc_if);
    263 		break;
    264 	}
    265 	splx(s);
    266 	return rv;
    267 }
    268 
    269 int
    270 ath_enable(struct ath_softc *sc)
    271 {
    272 	if (ATH_IS_ENABLED(sc) == 0) {
    273 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
    274 			printf("%s: device enable failed\n",
    275 				sc->sc_dev.dv_xname);
    276 			return (EIO);
    277 		}
    278 		sc->sc_flags |= ATH_ENABLED;
    279 	}
    280 	return (0);
    281 }
    282 
    283 void
    284 ath_disable(struct ath_softc *sc)
    285 {
    286 	if (!ATH_IS_ENABLED(sc))
    287 		return;
    288 	if (sc->sc_disable != NULL)
    289 		(*sc->sc_disable)(sc);
    290 	sc->sc_flags &= ~ATH_ENABLED;
    291 }
    292 #endif /* __NetBSD__ */
    293 
    294 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
    295 
    296 int
    297 ath_attach(u_int16_t devid, struct ath_softc *sc)
    298 {
    299 	struct ifnet *ifp = &sc->sc_if;
    300 	struct ieee80211com *ic = &sc->sc_ic;
    301 	struct ath_hal *ah;
    302 	HAL_STATUS status;
    303 	int error = 0, i;
    304 
    305 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
    306 
    307 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
    308 
    309 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
    310 	if (ah == NULL) {
    311 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
    312 			status);
    313 		error = ENXIO;
    314 		goto bad;
    315 	}
    316 	if (ah->ah_abi != HAL_ABI_VERSION) {
    317 		if_printf(ifp, "HAL ABI mismatch detected "
    318 			"(HAL:0x%x != driver:0x%x)\n",
    319 			ah->ah_abi, HAL_ABI_VERSION);
    320 		error = ENXIO;
    321 		goto bad;
    322 	}
    323 	sc->sc_ah = ah;
    324 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
    325 
    326 	/*
    327 	 * Check if the MAC has multi-rate retry support.
    328 	 * We do this by trying to setup a fake extended
    329 	 * descriptor.  MAC's that don't have support will
    330 	 * return false w/o doing anything.  MAC's that do
    331 	 * support it will return true w/o doing anything.
    332 	 */
    333 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
    334 
    335 	/*
    336 	 * Check if the device has hardware counters for PHY
    337 	 * errors.  If so we need to enable the MIB interrupt
    338 	 * so we can act on stat triggers.
    339 	 */
    340 	if (ath_hal_hwphycounters(ah))
    341 		sc->sc_needmib = 1;
    342 
    343 	/*
    344 	 * Get the hardware key cache size.
    345 	 */
    346 	sc->sc_keymax = ath_hal_keycachesize(ah);
    347 	if (sc->sc_keymax > sizeof(sc->sc_keymap) * NBBY) {
    348 		if_printf(ifp,
    349 			"Warning, using only %zu of %u key cache slots\n",
    350 			sizeof(sc->sc_keymap) * NBBY, sc->sc_keymax);
    351 		sc->sc_keymax = sizeof(sc->sc_keymap) * NBBY;
    352 	}
    353 	/*
    354 	 * Reset the key cache since some parts do not
    355 	 * reset the contents on initial power up.
    356 	 */
    357 	for (i = 0; i < sc->sc_keymax; i++)
    358 		ath_hal_keyreset(ah, i);
    359 	/*
    360 	 * Mark key cache slots associated with global keys
    361 	 * as in use.  If we knew TKIP was not to be used we
    362 	 * could leave the +32, +64, and +32+64 slots free.
    363 	 * XXX only for splitmic.
    364 	 */
    365 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
    366 		setbit(sc->sc_keymap, i);
    367 		setbit(sc->sc_keymap, i+32);
    368 		setbit(sc->sc_keymap, i+64);
    369 		setbit(sc->sc_keymap, i+32+64);
    370 	}
    371 
    372 	/*
    373 	 * Collect the channel list using the default country
    374 	 * code and including outdoor channels.  The 802.11 layer
    375 	 * is resposible for filtering this list based on settings
    376 	 * like the phy mode.
    377 	 */
    378 	error = ath_getchannels(sc, ath_countrycode,
    379 			ath_outdoor, ath_xchanmode);
    380 	if (error != 0)
    381 		goto bad;
    382 	/*
    383 	 * Setup dynamic sysctl's now that country code and
    384 	 * regdomain are available from the hal.
    385 	 */
    386 	ath_sysctlattach(sc);
    387 
    388 	/*
    389 	 * Setup rate tables for all potential media types.
    390 	 */
    391 	ath_rate_setup(sc, IEEE80211_MODE_11A);
    392 	ath_rate_setup(sc, IEEE80211_MODE_11B);
    393 	ath_rate_setup(sc, IEEE80211_MODE_11G);
    394 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
    395 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
    396 	/* NB: setup here so ath_rate_update is happy */
    397 	ath_setcurmode(sc, IEEE80211_MODE_11A);
    398 
    399 	/*
    400 	 * Allocate tx+rx descriptors and populate the lists.
    401 	 */
    402 	error = ath_desc_alloc(sc);
    403 	if (error != 0) {
    404 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
    405 		goto bad;
    406 	}
    407 	ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
    408 	ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE);
    409 
    410 	ATH_TXBUF_LOCK_INIT(sc);
    411 
    412 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
    413 	TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
    414 	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
    415 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
    416 	TASK_INIT(&sc->sc_bstucktask, 0, ath_bstuck_proc, sc);
    417 
    418 	/*
    419 	 * Allocate hardware transmit queues: one queue for
    420 	 * beacon frames and one data queue for each QoS
    421 	 * priority.  Note that the hal handles reseting
    422 	 * these queues at the needed time.
    423 	 *
    424 	 * XXX PS-Poll
    425 	 */
    426 	sc->sc_bhalq = ath_beaconq_setup(ah);
    427 	if (sc->sc_bhalq == (u_int) -1) {
    428 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
    429 		error = EIO;
    430 		goto bad2;
    431 	}
    432 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
    433 	if (sc->sc_cabq == NULL) {
    434 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
    435 		error = EIO;
    436 		goto bad2;
    437 	}
    438 	/* NB: insure BK queue is the lowest priority h/w queue */
    439 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
    440 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
    441 			ieee80211_wme_acnames[WME_AC_BK]);
    442 		error = EIO;
    443 		goto bad2;
    444 	}
    445 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
    446 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
    447 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
    448 		/*
    449 		 * Not enough hardware tx queues to properly do WME;
    450 		 * just punt and assign them all to the same h/w queue.
    451 		 * We could do a better job of this if, for example,
    452 		 * we allocate queues when we switch from station to
    453 		 * AP mode.
    454 		 */
    455 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
    456 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
    457 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
    458 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
    459 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
    460 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
    461 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
    462 	}
    463 
    464 	/*
    465 	 * Special case certain configurations.  Note the
    466 	 * CAB queue is handled by these specially so don't
    467 	 * include them when checking the txq setup mask.
    468 	 */
    469 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
    470 	case 0x01:
    471 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
    472 		break;
    473 	case 0x0f:
    474 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
    475 		break;
    476 	default:
    477 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
    478 		break;
    479 	}
    480 
    481 	/*
    482 	 * Setup rate control.  Some rate control modules
    483 	 * call back to change the anntena state so expose
    484 	 * the necessary entry points.
    485 	 * XXX maybe belongs in struct ath_ratectrl?
    486 	 */
    487 	sc->sc_setdefantenna = ath_setdefantenna;
    488 	sc->sc_rc = ath_rate_attach(sc);
    489 	if (sc->sc_rc == NULL) {
    490 		error = EIO;
    491 		goto bad2;
    492 	}
    493 
    494 	sc->sc_blinking = 0;
    495 	sc->sc_ledstate = 1;
    496 	sc->sc_ledon = 0;			/* low true */
    497 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
    498 	ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE);
    499 	/*
    500 	 * Auto-enable soft led processing for IBM cards and for
    501 	 * 5211 minipci cards.  Users can also manually enable/disable
    502 	 * support with a sysctl.
    503 	 */
    504 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
    505 	if (sc->sc_softled) {
    506 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
    507 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
    508 	}
    509 
    510 	ifp->if_softc = sc;
    511 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
    512 	ifp->if_start = ath_start;
    513 	ifp->if_watchdog = ath_watchdog;
    514 	ifp->if_ioctl = ath_ioctl;
    515 	ifp->if_init = ath_init;
    516 	IFQ_SET_READY(&ifp->if_snd);
    517 
    518 	ic->ic_ifp = ifp;
    519 	ic->ic_reset = ath_reset;
    520 	ic->ic_newassoc = ath_newassoc;
    521 	ic->ic_updateslot = ath_updateslot;
    522 	ic->ic_wme.wme_update = ath_wme_update;
    523 	/* XXX not right but it's not used anywhere important */
    524 	ic->ic_phytype = IEEE80211_T_OFDM;
    525 	ic->ic_opmode = IEEE80211_M_STA;
    526 	ic->ic_caps =
    527 		  IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
    528 		| IEEE80211_C_HOSTAP		/* hostap mode */
    529 		| IEEE80211_C_MONITOR		/* monitor mode */
    530 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
    531 		| IEEE80211_C_SHSLOT		/* short slot time supported */
    532 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
    533 		;
    534 	/*
    535 	 * Query the hal to figure out h/w crypto support.
    536 	 */
    537 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
    538 		ic->ic_caps |= IEEE80211_C_WEP;
    539 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
    540 		ic->ic_caps |= IEEE80211_C_AES;
    541 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
    542 		ic->ic_caps |= IEEE80211_C_AES_CCM;
    543 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
    544 		ic->ic_caps |= IEEE80211_C_CKIP;
    545 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
    546 		ic->ic_caps |= IEEE80211_C_TKIP;
    547 		/*
    548 		 * Check if h/w does the MIC and/or whether the
    549 		 * separate key cache entries are required to
    550 		 * handle both tx+rx MIC keys.
    551 		 */
    552 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
    553 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
    554 		if (ath_hal_tkipsplit(ah))
    555 			sc->sc_splitmic = 1;
    556 	}
    557 	/*
    558 	 * TPC support can be done either with a global cap or
    559 	 * per-packet support.  The latter is not available on
    560 	 * all parts.  We're a bit pedantic here as all parts
    561 	 * support a global cap.
    562 	 */
    563 	sc->sc_hastpc = ath_hal_hastpc(ah);
    564 	if (sc->sc_hastpc || ath_hal_hastxpowlimit(ah))
    565 		ic->ic_caps |= IEEE80211_C_TXPMGT;
    566 
    567 	/*
    568 	 * Mark WME capability only if we have sufficient
    569 	 * hardware queues to do proper priority scheduling.
    570 	 */
    571 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
    572 		ic->ic_caps |= IEEE80211_C_WME;
    573 	/*
    574 	 * Check for frame bursting capability.
    575 	 */
    576 	if (ath_hal_hasbursting(ah))
    577 		ic->ic_caps |= IEEE80211_C_BURST;
    578 
    579 	/*
    580 	 * Indicate we need the 802.11 header padded to a
    581 	 * 32-bit boundary for 4-address and QoS frames.
    582 	 */
    583 	ic->ic_flags |= IEEE80211_F_DATAPAD;
    584 
    585 	/*
    586 	 * Query the hal about antenna support.
    587 	 */
    588 	if (ath_hal_hasdiversity(ah)) {
    589 		sc->sc_hasdiversity = 1;
    590 		sc->sc_diversity = ath_hal_getdiversity(ah);
    591 	}
    592 	sc->sc_defant = ath_hal_getdefantenna(ah);
    593 
    594 	/*
    595 	 * Not all chips have the VEOL support we want to
    596 	 * use with IBSS beacons; check here for it.
    597 	 */
    598 	sc->sc_hasveol = ath_hal_hasveol(ah);
    599 
    600 	/* get mac address from hardware */
    601 	ath_hal_getmac(ah, ic->ic_myaddr);
    602 
    603 	if_attach(ifp);
    604 	/* call MI attach routine. */
    605 	ieee80211_ifattach(ic);
    606 	/* override default methods */
    607 	ic->ic_node_alloc = ath_node_alloc;
    608 	sc->sc_node_free = ic->ic_node_free;
    609 	ic->ic_node_free = ath_node_free;
    610 	ic->ic_node_getrssi = ath_node_getrssi;
    611 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
    612 	ic->ic_recv_mgmt = ath_recv_mgmt;
    613 	sc->sc_newstate = ic->ic_newstate;
    614 	ic->ic_newstate = ath_newstate;
    615 	ic->ic_crypto.cs_key_alloc = ath_key_alloc;
    616 	ic->ic_crypto.cs_key_delete = ath_key_delete;
    617 	ic->ic_crypto.cs_key_set = ath_key_set;
    618 	ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
    619 	ic->ic_crypto.cs_key_update_end = ath_key_update_end;
    620 	/* complete initialization */
    621 	ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
    622 
    623 	ath_bpfattach(sc);
    624 
    625 #ifdef __NetBSD__
    626 	sc->sc_flags |= ATH_ATTACHED;
    627 	/*
    628 	 * Make sure the interface is shutdown during reboot.
    629 	 */
    630 	sc->sc_sdhook = shutdownhook_establish(ath_shutdown, sc);
    631 	if (sc->sc_sdhook == NULL)
    632 		printf("%s: WARNING: unable to establish shutdown hook\n",
    633 			sc->sc_dev.dv_xname);
    634 	sc->sc_powerhook = powerhook_establish(ath_power, sc);
    635 	if (sc->sc_powerhook == NULL)
    636 		printf("%s: WARNING: unable to establish power hook\n",
    637 			sc->sc_dev.dv_xname);
    638 #endif
    639 	if (boothowto & AB_VERBOSE)
    640 		ieee80211_announce(ic);
    641 	ath_announce(sc);
    642 	return 0;
    643 bad2:
    644 	ath_tx_cleanup(sc);
    645 	ath_desc_free(sc);
    646 bad:
    647 	if (ah)
    648 		ath_hal_detach(ah);
    649 	sc->sc_invalid = 1;
    650 	return error;
    651 }
    652 
    653 int
    654 ath_detach(struct ath_softc *sc)
    655 {
    656 	struct ifnet *ifp = &sc->sc_if;
    657 	int s;
    658 
    659 	if ((sc->sc_flags & ATH_ATTACHED) == 0)
    660 		return (0);
    661 
    662 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
    663 		__func__, ifp->if_flags);
    664 
    665 	s = splnet();
    666 	ath_stop(ifp, 1);
    667 #if NBPFILTER > 0
    668 	bpfdetach(ifp);
    669 #endif
    670 	/*
    671 	 * NB: the order of these is important:
    672 	 * o call the 802.11 layer before detaching the hal to
    673 	 *   insure callbacks into the driver to delete global
    674 	 *   key cache entries can be handled
    675 	 * o reclaim the tx queue data structures after calling
    676 	 *   the 802.11 layer as we'll get called back to reclaim
    677 	 *   node state and potentially want to use them
    678 	 * o to cleanup the tx queues the hal is called, so detach
    679 	 *   it last
    680 	 * Other than that, it's straightforward...
    681 	 */
    682 	ieee80211_ifdetach(&sc->sc_ic);
    683 	ath_rate_detach(sc->sc_rc);
    684 	ath_desc_free(sc);
    685 	ath_tx_cleanup(sc);
    686 	sysctl_teardown(&sc->sc_sysctllog);
    687 	ath_hal_detach(sc->sc_ah);
    688 	if_detach(ifp);
    689 	splx(s);
    690 	powerhook_disestablish(sc->sc_powerhook);
    691 	shutdownhook_disestablish(sc->sc_sdhook);
    692 
    693 	return 0;
    694 }
    695 
    696 #ifdef __NetBSD__
    697 void
    698 ath_power(int why, void *arg)
    699 {
    700 	struct ath_softc *sc = arg;
    701 	int s;
    702 
    703 	DPRINTF(sc, ATH_DEBUG_ANY, "ath_power(%d)\n", why);
    704 
    705 	s = splnet();
    706 	switch (why) {
    707 	case PWR_SUSPEND:
    708 	case PWR_STANDBY:
    709 		ath_suspend(sc, why);
    710 		break;
    711 	case PWR_RESUME:
    712 		ath_resume(sc, why);
    713 		break;
    714 	case PWR_SOFTSUSPEND:
    715 	case PWR_SOFTSTANDBY:
    716 	case PWR_SOFTRESUME:
    717 		break;
    718 	}
    719 	splx(s);
    720 }
    721 #endif
    722 
    723 void
    724 ath_suspend(struct ath_softc *sc, int why)
    725 {
    726 	struct ifnet *ifp = &sc->sc_if;
    727 
    728 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
    729 		__func__, ifp->if_flags);
    730 
    731 	ath_stop(ifp, 1);
    732 	if (sc->sc_power != NULL)
    733 		(*sc->sc_power)(sc, why);
    734 }
    735 
    736 void
    737 ath_resume(struct ath_softc *sc, int why)
    738 {
    739 	struct ifnet *ifp = &sc->sc_if;
    740 
    741 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
    742 		__func__, ifp->if_flags);
    743 
    744 	if (ifp->if_flags & IFF_UP) {
    745 		ath_init(ifp);
    746 #if 0
    747 		(void)ath_intr(sc);
    748 #endif
    749 		if (sc->sc_power != NULL)
    750 			(*sc->sc_power)(sc, why);
    751 		if (ifp->if_flags & IFF_RUNNING)
    752 			ath_start(ifp);
    753 	}
    754 }
    755 
    756 void
    757 ath_shutdown(void *arg)
    758 {
    759 	struct ath_softc *sc = arg;
    760 
    761 	ath_stop(&sc->sc_if, 1);
    762 }
    763 
    764 /*
    765  * Interrupt handler.  Most of the actual processing is deferred.
    766  */
    767 int
    768 ath_intr(void *arg)
    769 {
    770 	struct ath_softc *sc = arg;
    771 	struct ifnet *ifp = &sc->sc_if;
    772 	struct ath_hal *ah = sc->sc_ah;
    773 	HAL_INT status;
    774 
    775 	if (sc->sc_invalid) {
    776 		/*
    777 		 * The hardware is not ready/present, don't touch anything.
    778 		 * Note this can happen early on if the IRQ is shared.
    779 		 */
    780 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
    781 		return 0;
    782 	}
    783 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
    784 		return 0;
    785 	if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
    786 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
    787 			__func__, ifp->if_flags);
    788 		ath_hal_getisr(ah, &status);	/* clear ISR */
    789 		ath_hal_intrset(ah, 0);		/* disable further intr's */
    790 		return 1; /* XXX */
    791 	}
    792 	/*
    793 	 * Figure out the reason(s) for the interrupt.  Note
    794 	 * that the hal returns a pseudo-ISR that may include
    795 	 * bits we haven't explicitly enabled so we mask the
    796 	 * value to insure we only process bits we requested.
    797 	 */
    798 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
    799 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
    800 	status &= sc->sc_imask;			/* discard unasked for bits */
    801 	if (status & HAL_INT_FATAL) {
    802 		/*
    803 		 * Fatal errors are unrecoverable.  Typically
    804 		 * these are caused by DMA errors.  Unfortunately
    805 		 * the exact reason is not (presently) returned
    806 		 * by the hal.
    807 		 */
    808 		sc->sc_stats.ast_hardware++;
    809 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
    810 		TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
    811 	} else if (status & HAL_INT_RXORN) {
    812 		sc->sc_stats.ast_rxorn++;
    813 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
    814 		TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
    815 	} else {
    816 		if (status & HAL_INT_SWBA) {
    817 			/*
    818 			 * Software beacon alert--time to send a beacon.
    819 			 * Handle beacon transmission directly; deferring
    820 			 * this is too slow to meet timing constraints
    821 			 * under load.
    822 			 */
    823 			ath_beacon_proc(sc, 0);
    824 		}
    825 		if (status & HAL_INT_RXEOL) {
    826 			/*
    827 			 * NB: the hardware should re-read the link when
    828 			 *     RXE bit is written, but it doesn't work at
    829 			 *     least on older hardware revs.
    830 			 */
    831 			sc->sc_stats.ast_rxeol++;
    832 			sc->sc_rxlink = NULL;
    833 		}
    834 		if (status & HAL_INT_TXURN) {
    835 			sc->sc_stats.ast_txurn++;
    836 			/* bump tx trigger level */
    837 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
    838 		}
    839 		if (status & HAL_INT_RX)
    840 			TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
    841 		if (status & HAL_INT_TX)
    842 			TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
    843 		if (status & HAL_INT_BMISS) {
    844 			sc->sc_stats.ast_bmiss++;
    845 			TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
    846 		}
    847 		if (status & HAL_INT_MIB) {
    848 			sc->sc_stats.ast_mib++;
    849 			/*
    850 			 * Disable interrupts until we service the MIB
    851 			 * interrupt; otherwise it will continue to fire.
    852 			 */
    853 			ath_hal_intrset(ah, 0);
    854 			/*
    855 			 * Let the hal handle the event.  We assume it will
    856 			 * clear whatever condition caused the interrupt.
    857 			 */
    858 			ath_hal_mibevent(ah,
    859 				&ATH_NODE(sc->sc_ic.ic_bss)->an_halstats);
    860 			ath_hal_intrset(ah, sc->sc_imask);
    861 		}
    862 	}
    863 	return 1;
    864 }
    865 
    866 static void
    867 ath_fatal_proc(void *arg, int pending)
    868 {
    869 	struct ath_softc *sc = arg;
    870 	struct ifnet *ifp = &sc->sc_if;
    871 
    872 	if_printf(ifp, "hardware error; resetting\n");
    873 	ath_reset(ifp);
    874 }
    875 
    876 static void
    877 ath_rxorn_proc(void *arg, int pending)
    878 {
    879 	struct ath_softc *sc = arg;
    880 	struct ifnet *ifp = &sc->sc_if;
    881 
    882 	if_printf(ifp, "rx FIFO overrun; resetting\n");
    883 	ath_reset(ifp);
    884 }
    885 
    886 static void
    887 ath_bmiss_proc(void *arg, int pending)
    888 {
    889 	struct ath_softc *sc = arg;
    890 	struct ieee80211com *ic = &sc->sc_ic;
    891 
    892 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
    893 	KASSERT(ic->ic_opmode == IEEE80211_M_STA,
    894 		("unexpect operating mode %u", ic->ic_opmode));
    895 	if (ic->ic_state == IEEE80211_S_RUN) {
    896 		/*
    897 		 * Rather than go directly to scan state, try to
    898 		 * reassociate first.  If that fails then the state
    899 		 * machine will drop us into scanning after timing
    900 		 * out waiting for a probe response.
    901 		 */
    902 		NET_LOCK_GIANT();
    903 		ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1);
    904 		NET_UNLOCK_GIANT();
    905 	}
    906 }
    907 
    908 static u_int
    909 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
    910 {
    911 #define	N(a)	(sizeof(a) / sizeof(a[0]))
    912 	static const u_int modeflags[] = {
    913 		0,			/* IEEE80211_MODE_AUTO */
    914 		CHANNEL_A,		/* IEEE80211_MODE_11A */
    915 		CHANNEL_B,		/* IEEE80211_MODE_11B */
    916 		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
    917 		0,			/* IEEE80211_MODE_FH */
    918 		CHANNEL_T,		/* IEEE80211_MODE_TURBO_A */
    919 		CHANNEL_108G		/* IEEE80211_MODE_TURBO_G */
    920 	};
    921 	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
    922 
    923 	KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
    924 	KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
    925 	return modeflags[mode];
    926 #undef N
    927 }
    928 
    929 static int
    930 ath_init(struct ifnet *ifp)
    931 {
    932 	struct ath_softc *sc = (struct ath_softc *)ifp->if_softc;
    933 	struct ieee80211com *ic = &sc->sc_ic;
    934 	struct ieee80211_node *ni;
    935 	struct ath_hal *ah = sc->sc_ah;
    936 	HAL_STATUS status;
    937 	int error = 0;
    938 
    939 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
    940 		__func__, ifp->if_flags);
    941 
    942 	ATH_LOCK(sc);
    943 
    944 	if ((error = ath_enable(sc)) != 0)
    945 		return error;
    946 
    947 	/*
    948 	 * Stop anything previously setup.  This is safe
    949 	 * whether this is the first time through or not.
    950 	 */
    951 	ath_stop_locked(ifp, 0);
    952 
    953 	/*
    954 	 * The basic interface to setting the hardware in a good
    955 	 * state is ``reset''.  On return the hardware is known to
    956 	 * be powered up and with interrupts disabled.  This must
    957 	 * be followed by initialization of the appropriate bits
    958 	 * and then setup of the interrupt mask.
    959 	 */
    960 	sc->sc_curchan.channel = ic->ic_ibss_chan->ic_freq;
    961 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_ibss_chan);
    962 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
    963 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
    964 			status);
    965 		error = EIO;
    966 		goto done;
    967 	}
    968 
    969 	/*
    970 	 * This is needed only to setup initial state
    971 	 * but it's best done after a reset.
    972 	 */
    973 	ath_update_txpow(sc);
    974 
    975 	/*
    976 	 * Setup the hardware after reset: the key cache
    977 	 * is filled as needed and the receive engine is
    978 	 * set going.  Frame transmit is handled entirely
    979 	 * in the frame output path; there's nothing to do
    980 	 * here except setup the interrupt mask.
    981 	 */
    982 	ath_initkeytable(sc);		/* XXX still needed? */
    983 	if ((error = ath_startrecv(sc)) != 0) {
    984 		if_printf(ifp, "unable to start recv logic\n");
    985 		goto done;
    986 	}
    987 
    988 	/*
    989 	 * Enable interrupts.
    990 	 */
    991 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
    992 		  | HAL_INT_RXEOL | HAL_INT_RXORN
    993 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
    994 	/*
    995 	 * Enable MIB interrupts when there are hardware phy counters.
    996 	 * Note we only do this (at the moment) for station mode.
    997 	 */
    998 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
    999 		sc->sc_imask |= HAL_INT_MIB;
   1000 	ath_hal_intrset(ah, sc->sc_imask);
   1001 
   1002 	ifp->if_flags |= IFF_RUNNING;
   1003 	ic->ic_state = IEEE80211_S_INIT;
   1004 
   1005 	/*
   1006 	 * The hardware should be ready to go now so it's safe
   1007 	 * to kick the 802.11 state machine as it's likely to
   1008 	 * immediately call back to us to send mgmt frames.
   1009 	 */
   1010 	ni = ic->ic_bss;
   1011 	ni->ni_chan = ic->ic_ibss_chan;
   1012 	ath_chan_change(sc, ni->ni_chan);
   1013 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   1014 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
   1015 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   1016 	} else
   1017 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   1018 done:
   1019 	ATH_UNLOCK(sc);
   1020 	return error;
   1021 }
   1022 
   1023 static void
   1024 ath_stop_locked(struct ifnet *ifp, int disable)
   1025 {
   1026 	struct ath_softc *sc = ifp->if_softc;
   1027 	struct ieee80211com *ic = &sc->sc_ic;
   1028 	struct ath_hal *ah = sc->sc_ah;
   1029 
   1030 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
   1031 		__func__, sc->sc_invalid, ifp->if_flags);
   1032 
   1033 	ATH_LOCK_ASSERT(sc);
   1034 	if (ifp->if_flags & IFF_RUNNING) {
   1035 		/*
   1036 		 * Shutdown the hardware and driver:
   1037 		 *    reset 802.11 state machine
   1038 		 *    turn off timers
   1039 		 *    disable interrupts
   1040 		 *    turn off the radio
   1041 		 *    clear transmit machinery
   1042 		 *    clear receive machinery
   1043 		 *    drain and release tx queues
   1044 		 *    reclaim beacon resources
   1045 		 *    power down hardware
   1046 		 *
   1047 		 * Note that some of this work is not possible if the
   1048 		 * hardware is gone (invalid).
   1049 		 */
   1050 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   1051 		ifp->if_flags &= ~IFF_RUNNING;
   1052 		ifp->if_timer = 0;
   1053 		if (!sc->sc_invalid) {
   1054 			if (sc->sc_softled) {
   1055 				callout_stop(&sc->sc_ledtimer);
   1056 				ath_hal_gpioset(ah, sc->sc_ledpin,
   1057 					!sc->sc_ledon);
   1058 				sc->sc_blinking = 0;
   1059 			}
   1060 			ath_hal_intrset(ah, 0);
   1061 		}
   1062 		ath_draintxq(sc);
   1063 		if (!sc->sc_invalid) {
   1064 			ath_stoprecv(sc);
   1065 			ath_hal_phydisable(ah);
   1066 		} else
   1067 			sc->sc_rxlink = NULL;
   1068 		IF_PURGE(&ifp->if_snd);
   1069 		ath_beacon_free(sc);
   1070 		if (disable)
   1071 			ath_disable(sc);
   1072 	}
   1073 }
   1074 
   1075 static void
   1076 ath_stop(struct ifnet *ifp, int disable)
   1077 {
   1078 	struct ath_softc *sc = ifp->if_softc;
   1079 
   1080 	ATH_LOCK(sc);
   1081 	ath_stop_locked(ifp, disable);
   1082 	if (!sc->sc_invalid) {
   1083 		/*
   1084 		 * Set the chip in full sleep mode.  Note that we are
   1085 		 * careful to do this only when bringing the interface
   1086 		 * completely to a stop.  When the chip is in this state
   1087 		 * it must be carefully woken up or references to
   1088 		 * registers in the PCI clock domain may freeze the bus
   1089 		 * (and system).  This varies by chip and is mostly an
   1090 		 * issue with newer parts that go to sleep more quickly.
   1091 		 */
   1092 		ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP, 0);
   1093 	}
   1094 	ATH_UNLOCK(sc);
   1095 }
   1096 
   1097 /*
   1098  * Reset the hardware w/o losing operational state.  This is
   1099  * basically a more efficient way of doing ath_stop, ath_init,
   1100  * followed by state transitions to the current 802.11
   1101  * operational state.  Used to recover from various errors and
   1102  * to reset or reload hardware state.
   1103  */
   1104 int
   1105 ath_reset(struct ifnet *ifp)
   1106 {
   1107 	struct ath_softc *sc = ifp->if_softc;
   1108 	struct ieee80211com *ic = &sc->sc_ic;
   1109 	struct ath_hal *ah = sc->sc_ah;
   1110 	struct ieee80211_channel *c;
   1111 	HAL_STATUS status;
   1112 
   1113 	/*
   1114 	 * Convert to a HAL channel description with the flags
   1115 	 * constrained to reflect the current operating mode.
   1116 	 */
   1117 	c = ic->ic_ibss_chan;
   1118 	sc->sc_curchan.channel = c->ic_freq;
   1119 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
   1120 
   1121 	ath_hal_intrset(ah, 0);		/* disable interrupts */
   1122 	ath_draintxq(sc);		/* stop xmit side */
   1123 	ath_stoprecv(sc);		/* stop recv side */
   1124 	/* NB: indicate channel change so we do a full reset */
   1125 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
   1126 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
   1127 			__func__, status);
   1128 	ath_update_txpow(sc);		/* update tx power state */
   1129 	if (ath_startrecv(sc) != 0)	/* restart recv */
   1130 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
   1131 	/*
   1132 	 * We may be doing a reset in response to an ioctl
   1133 	 * that changes the channel so update any state that
   1134 	 * might change as a result.
   1135 	 */
   1136 	ath_chan_change(sc, c);
   1137 	if (ic->ic_state == IEEE80211_S_RUN)
   1138 		ath_beacon_config(sc);	/* restart beacons */
   1139 	ath_hal_intrset(ah, sc->sc_imask);
   1140 
   1141 	ath_start(ifp);			/* restart xmit */
   1142 	return 0;
   1143 }
   1144 
   1145 static void
   1146 ath_start(struct ifnet *ifp)
   1147 {
   1148 	struct ath_softc *sc = ifp->if_softc;
   1149 	struct ath_hal *ah = sc->sc_ah;
   1150 	struct ieee80211com *ic = &sc->sc_ic;
   1151 	struct ieee80211_node *ni;
   1152 	struct ath_buf *bf;
   1153 	struct mbuf *m;
   1154 	struct ieee80211_frame *wh;
   1155 	struct ether_header *eh;
   1156 
   1157 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
   1158 		return;
   1159 	for (;;) {
   1160 		/*
   1161 		 * Grab a TX buffer and associated resources.
   1162 		 */
   1163 		ATH_TXBUF_LOCK(sc);
   1164 		bf = STAILQ_FIRST(&sc->sc_txbuf);
   1165 		if (bf != NULL)
   1166 			STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
   1167 		ATH_TXBUF_UNLOCK(sc);
   1168 		if (bf == NULL) {
   1169 			DPRINTF(sc, ATH_DEBUG_ANY, "%s: out of xmit buffers\n",
   1170 				__func__);
   1171 			sc->sc_stats.ast_tx_qstop++;
   1172 			ifp->if_flags |= IFF_OACTIVE;
   1173 			break;
   1174 		}
   1175 		/*
   1176 		 * Poll the management queue for frames; they
   1177 		 * have priority over normal data frames.
   1178 		 */
   1179 		IF_DEQUEUE(&ic->ic_mgtq, m);
   1180 		if (m == NULL) {
   1181 			/*
   1182 			 * No data frames go out unless we're associated.
   1183 			 */
   1184 			if (ic->ic_state != IEEE80211_S_RUN) {
   1185 				DPRINTF(sc, ATH_DEBUG_ANY,
   1186 					"%s: ignore data packet, state %u\n",
   1187 					__func__, ic->ic_state);
   1188 				sc->sc_stats.ast_tx_discard++;
   1189 				ATH_TXBUF_LOCK(sc);
   1190 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1191 				ATH_TXBUF_UNLOCK(sc);
   1192 				break;
   1193 			}
   1194 			IFQ_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
   1195 			if (m == NULL) {
   1196 				ATH_TXBUF_LOCK(sc);
   1197 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1198 				ATH_TXBUF_UNLOCK(sc);
   1199 				break;
   1200 			}
   1201 			/*
   1202 			 * Find the node for the destination so we can do
   1203 			 * things like power save and fast frames aggregation.
   1204 			 */
   1205 			if (m->m_len < sizeof(struct ether_header) &&
   1206 			   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
   1207 				ic->ic_stats.is_tx_nobuf++;	/* XXX */
   1208 				ni = NULL;
   1209 				goto bad;
   1210 			}
   1211 			eh = mtod(m, struct ether_header *);
   1212 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   1213 			if (ni == NULL) {
   1214 				/* NB: ieee80211_find_txnode does stat+msg */
   1215 				m_freem(m);
   1216 				goto bad;
   1217 			}
   1218 			if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
   1219 			    (m->m_flags & M_PWR_SAV) == 0) {
   1220 				/*
   1221 				 * Station in power save mode; pass the frame
   1222 				 * to the 802.11 layer and continue.  We'll get
   1223 				 * the frame back when the time is right.
   1224 				 */
   1225 				ieee80211_pwrsave(ic, ni, m);
   1226 				goto reclaim;
   1227 			}
   1228 			/* calculate priority so we can find the tx queue */
   1229 			if (ieee80211_classify(ic, m, ni)) {
   1230 				DPRINTF(sc, ATH_DEBUG_XMIT,
   1231 					"%s: discard, classification failure\n",
   1232 					__func__);
   1233 				m_freem(m);
   1234 				goto bad;
   1235 			}
   1236 			ifp->if_opackets++;
   1237 
   1238 #if NBPFILTER > 0
   1239 			if (ifp->if_bpf)
   1240 				bpf_mtap(ifp->if_bpf, m);
   1241 #endif
   1242 			/*
   1243 			 * Encapsulate the packet in prep for transmission.
   1244 			 */
   1245 			m = ieee80211_encap(ic, m, ni);
   1246 			if (m == NULL) {
   1247 				DPRINTF(sc, ATH_DEBUG_ANY,
   1248 					"%s: encapsulation failure\n",
   1249 					__func__);
   1250 				sc->sc_stats.ast_tx_encap++;
   1251 				goto bad;
   1252 			}
   1253 		} else {
   1254 			/*
   1255 			 * Hack!  The referenced node pointer is in the
   1256 			 * rcvif field of the packet header.  This is
   1257 			 * placed there by ieee80211_mgmt_output because
   1258 			 * we need to hold the reference with the frame
   1259 			 * and there's no other way (other than packet
   1260 			 * tags which we consider too expensive to use)
   1261 			 * to pass it along.
   1262 			 */
   1263 			ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
   1264 			m->m_pkthdr.rcvif = NULL;
   1265 
   1266 			wh = mtod(m, struct ieee80211_frame *);
   1267 			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
   1268 			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
   1269 				/* fill time stamp */
   1270 				u_int64_t tsf;
   1271 				u_int32_t *tstamp;
   1272 
   1273 				tsf = ath_hal_gettsf64(ah);
   1274 				/* XXX: adjust 100us delay to xmit */
   1275 				tsf += 100;
   1276 				tstamp = (u_int32_t *)&wh[1];
   1277 				tstamp[0] = htole32(tsf & 0xffffffff);
   1278 				tstamp[1] = htole32(tsf >> 32);
   1279 			}
   1280 			sc->sc_stats.ast_tx_mgmt++;
   1281 		}
   1282 
   1283 		if (ath_tx_start(sc, ni, bf, m)) {
   1284 	bad:
   1285 			ifp->if_oerrors++;
   1286 	reclaim:
   1287 			ATH_TXBUF_LOCK(sc);
   1288 			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1289 			ATH_TXBUF_UNLOCK(sc);
   1290 			if (ni != NULL)
   1291 				ieee80211_free_node(ni);
   1292 			continue;
   1293 		}
   1294 
   1295 		sc->sc_tx_timer = 5;
   1296 		ifp->if_timer = 1;
   1297 	}
   1298 }
   1299 
   1300 static int
   1301 ath_media_change(struct ifnet *ifp)
   1302 {
   1303 #define	IS_UP(ifp) \
   1304 	((ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP))
   1305 	int error;
   1306 
   1307 	error = ieee80211_media_change(ifp);
   1308 	if (error == ENETRESET) {
   1309 		if (IS_UP(ifp))
   1310 			ath_init(ifp);		/* XXX lose error */
   1311 		error = 0;
   1312 	}
   1313 	return error;
   1314 #undef IS_UP
   1315 }
   1316 
   1317 #ifdef AR_DEBUG
   1318 static void
   1319 ath_keyprint(const char *tag, u_int ix,
   1320 	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
   1321 {
   1322 	static const char *ciphers[] = {
   1323 		"WEP",
   1324 		"AES-OCB",
   1325 		"AES-CCM",
   1326 		"CKIP",
   1327 		"TKIP",
   1328 		"CLR",
   1329 	};
   1330 	int i, n;
   1331 
   1332 	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
   1333 	for (i = 0, n = hk->kv_len; i < n; i++)
   1334 		printf("%02x", hk->kv_val[i]);
   1335 	printf(" mac %s", ether_sprintf(mac));
   1336 	if (hk->kv_type == HAL_CIPHER_TKIP) {
   1337 		printf(" mic ");
   1338 		for (i = 0; i < sizeof(hk->kv_mic); i++)
   1339 			printf("%02x", hk->kv_mic[i]);
   1340 	}
   1341 	printf("\n");
   1342 }
   1343 #endif
   1344 
   1345 /*
   1346  * Set a TKIP key into the hardware.  This handles the
   1347  * potential distribution of key state to multiple key
   1348  * cache slots for TKIP.
   1349  */
   1350 static int
   1351 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
   1352 	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
   1353 {
   1354 #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
   1355 	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
   1356 	struct ath_hal *ah = sc->sc_ah;
   1357 
   1358 	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
   1359 		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
   1360 	KASSERT(sc->sc_splitmic, ("key cache !split"));
   1361 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
   1362 		/*
   1363 		 * TX key goes at first index, RX key at +32.
   1364 		 * The hal handles the MIC keys at index+64.
   1365 		 */
   1366 		memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
   1367 		KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
   1368 		if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
   1369 			return 0;
   1370 
   1371 		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
   1372 		KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
   1373 		/* XXX delete tx key on failure? */
   1374 		return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
   1375 	} else if (k->wk_flags & IEEE80211_KEY_XR) {
   1376 		/*
   1377 		 * TX/RX key goes at first index.
   1378 		 * The hal handles the MIC keys are index+64.
   1379 		 */
   1380 		KASSERT(k->wk_keyix < IEEE80211_WEP_NKID,
   1381 			("group key at index %u", k->wk_keyix));
   1382 		memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
   1383 			k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
   1384 		KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
   1385 		return ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid);
   1386 	}
   1387 	/* XXX key w/o xmit/recv; need this for compression? */
   1388 	return 0;
   1389 #undef IEEE80211_KEY_XR
   1390 }
   1391 
   1392 /*
   1393  * Set a net80211 key into the hardware.  This handles the
   1394  * potential distribution of key state to multiple key
   1395  * cache slots for TKIP with hardware MIC support.
   1396  */
   1397 static int
   1398 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
   1399 	const u_int8_t mac[IEEE80211_ADDR_LEN])
   1400 {
   1401 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1402 	static const u_int8_t ciphermap[] = {
   1403 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
   1404 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
   1405 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
   1406 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
   1407 		(u_int8_t) -1,		/* 4 is not allocated */
   1408 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
   1409 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
   1410 	};
   1411 	struct ath_hal *ah = sc->sc_ah;
   1412 	const struct ieee80211_cipher *cip = k->wk_cipher;
   1413 	HAL_KEYVAL hk;
   1414 
   1415 	memset(&hk, 0, sizeof(hk));
   1416 	/*
   1417 	 * Software crypto uses a "clear key" so non-crypto
   1418 	 * state kept in the key cache are maintained and
   1419 	 * so that rx frames have an entry to match.
   1420 	 */
   1421 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
   1422 		KASSERT(cip->ic_cipher < N(ciphermap),
   1423 			("invalid cipher type %u", cip->ic_cipher));
   1424 		hk.kv_type = ciphermap[cip->ic_cipher];
   1425 		hk.kv_len = k->wk_keylen;
   1426 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
   1427 	} else
   1428 		hk.kv_type = HAL_CIPHER_CLR;
   1429 
   1430 	if (hk.kv_type == HAL_CIPHER_TKIP &&
   1431 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
   1432 	    sc->sc_splitmic) {
   1433 		return ath_keyset_tkip(sc, k, &hk, mac);
   1434 	} else {
   1435 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
   1436 		return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
   1437 	}
   1438 #undef N
   1439 }
   1440 
   1441 /*
   1442  * Fill the hardware key cache with key entries.
   1443  */
   1444 static void
   1445 ath_initkeytable(struct ath_softc *sc)
   1446 {
   1447 	struct ieee80211com *ic = &sc->sc_ic;
   1448 	struct ifnet *ifp = &sc->sc_if;
   1449 	struct ath_hal *ah = sc->sc_ah;
   1450 	const u_int8_t *bssid;
   1451 	int i;
   1452 
   1453 	/* XXX maybe should reset all keys when !PRIVACY */
   1454 	if (ic->ic_state == IEEE80211_S_SCAN)
   1455 		bssid = ifp->if_broadcastaddr;
   1456 	else
   1457 		bssid = ic->ic_bss->ni_bssid;
   1458 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
   1459 		struct ieee80211_key *k = &ic->ic_nw_keys[i];
   1460 
   1461 		if (k->wk_keylen == 0) {
   1462 			ath_hal_keyreset(ah, i);
   1463 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: reset key %u\n",
   1464 				__func__, i);
   1465 		} else {
   1466 			ath_keyset(sc, k, bssid);
   1467 		}
   1468 	}
   1469 }
   1470 
   1471 /*
   1472  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
   1473  * each key, one for decrypt/encrypt and the other for the MIC.
   1474  */
   1475 static u_int16_t
   1476 key_alloc_2pair(struct ath_softc *sc)
   1477 {
   1478 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1479 	u_int i, keyix;
   1480 
   1481 	KASSERT(sc->sc_splitmic, ("key cache !split"));
   1482 	/* XXX could optimize */
   1483 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
   1484 		u_int8_t b = sc->sc_keymap[i];
   1485 		if (b != 0xff) {
   1486 			/*
   1487 			 * One or more slots in this byte are free.
   1488 			 */
   1489 			keyix = i*NBBY;
   1490 			while (b & 1) {
   1491 		again:
   1492 				keyix++;
   1493 				b >>= 1;
   1494 			}
   1495 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
   1496 			if (isset(sc->sc_keymap, keyix+32) ||
   1497 			    isset(sc->sc_keymap, keyix+64) ||
   1498 			    isset(sc->sc_keymap, keyix+32+64)) {
   1499 				/* full pair unavailable */
   1500 				/* XXX statistic */
   1501 				if (keyix == (i+1)*NBBY) {
   1502 					/* no slots were appropriate, advance */
   1503 					continue;
   1504 				}
   1505 				goto again;
   1506 			}
   1507 			setbit(sc->sc_keymap, keyix);
   1508 			setbit(sc->sc_keymap, keyix+64);
   1509 			setbit(sc->sc_keymap, keyix+32);
   1510 			setbit(sc->sc_keymap, keyix+32+64);
   1511 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
   1512 				"%s: key pair %u,%u %u,%u\n",
   1513 				__func__, keyix, keyix+64,
   1514 				keyix+32, keyix+32+64);
   1515 			return keyix;
   1516 		}
   1517 	}
   1518 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
   1519 	return IEEE80211_KEYIX_NONE;
   1520 #undef N
   1521 }
   1522 
   1523 /*
   1524  * Allocate a single key cache slot.
   1525  */
   1526 static u_int16_t
   1527 key_alloc_single(struct ath_softc *sc)
   1528 {
   1529 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1530 	u_int i, keyix;
   1531 
   1532 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
   1533 	for (i = 0; i < N(sc->sc_keymap); i++) {
   1534 		u_int8_t b = sc->sc_keymap[i];
   1535 		if (b != 0xff) {
   1536 			/*
   1537 			 * One or more slots are free.
   1538 			 */
   1539 			keyix = i*NBBY;
   1540 			while (b & 1)
   1541 				keyix++, b >>= 1;
   1542 			setbit(sc->sc_keymap, keyix);
   1543 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
   1544 				__func__, keyix);
   1545 			return keyix;
   1546 		}
   1547 	}
   1548 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
   1549 	return IEEE80211_KEYIX_NONE;
   1550 #undef N
   1551 }
   1552 
   1553 /*
   1554  * Allocate one or more key cache slots for a uniacst key.  The
   1555  * key itself is needed only to identify the cipher.  For hardware
   1556  * TKIP with split cipher+MIC keys we allocate two key cache slot
   1557  * pairs so that we can setup separate TX and RX MIC keys.  Note
   1558  * that the MIC key for a TKIP key at slot i is assumed by the
   1559  * hardware to be at slot i+64.  This limits TKIP keys to the first
   1560  * 64 entries.
   1561  */
   1562 static int
   1563 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k)
   1564 {
   1565 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1566 
   1567 	/*
   1568 	 * Group key allocation must be handled specially for
   1569 	 * parts that do not support multicast key cache search
   1570 	 * functionality.  For those parts the key id must match
   1571 	 * the h/w key index so lookups find the right key.  On
   1572 	 * parts w/ the key search facility we install the sender's
   1573 	 * mac address (with the high bit set) and let the hardware
   1574 	 * find the key w/o using the key id.  This is preferred as
   1575 	 * it permits us to support multiple users for adhoc and/or
   1576 	 * multi-station operation.
   1577 	 */
   1578 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
   1579 		u_int keyix;
   1580 
   1581 		if (!(&ic->ic_nw_keys[0] <= k &&
   1582 		      k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
   1583 			/* should not happen */
   1584 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
   1585 				"%s: bogus group key\n", __func__);
   1586 			return IEEE80211_KEYIX_NONE;
   1587 		}
   1588 		keyix = k - ic->ic_nw_keys;
   1589 		/*
   1590 		 * XXX we pre-allocate the global keys so
   1591 		 * have no way to check if they've already been allocated.
   1592 		 */
   1593 		return keyix;
   1594 	}
   1595 
   1596 	/*
   1597 	 * We allocate two pair for TKIP when using the h/w to do
   1598 	 * the MIC.  For everything else, including software crypto,
   1599 	 * we allocate a single entry.  Note that s/w crypto requires
   1600 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
   1601 	 * not support pass-through cache entries and we map all
   1602 	 * those requests to slot 0.
   1603 	 */
   1604 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
   1605 		return key_alloc_single(sc);
   1606 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1607 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
   1608 		return key_alloc_2pair(sc);
   1609 	} else {
   1610 		return key_alloc_single(sc);
   1611 	}
   1612 }
   1613 
   1614 /*
   1615  * Delete an entry in the key cache allocated by ath_key_alloc.
   1616  */
   1617 static int
   1618 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
   1619 {
   1620 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1621 	struct ath_hal *ah = sc->sc_ah;
   1622 	const struct ieee80211_cipher *cip = k->wk_cipher;
   1623 	u_int keyix = k->wk_keyix;
   1624 
   1625 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
   1626 
   1627 	ath_hal_keyreset(ah, keyix);
   1628 	/*
   1629 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
   1630 	 */
   1631 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1632 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
   1633 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
   1634 	if (keyix >= IEEE80211_WEP_NKID) {
   1635 		/*
   1636 		 * Don't touch keymap entries for global keys so
   1637 		 * they are never considered for dynamic allocation.
   1638 		 */
   1639 		clrbit(sc->sc_keymap, keyix);
   1640 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1641 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
   1642 		    sc->sc_splitmic) {
   1643 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
   1644 			clrbit(sc->sc_keymap, keyix+32);	/* RX key */
   1645 			clrbit(sc->sc_keymap, keyix+32+64);	/* RX key MIC */
   1646 		}
   1647 	}
   1648 	return 1;
   1649 }
   1650 
   1651 /*
   1652  * Set the key cache contents for the specified key.  Key cache
   1653  * slot(s) must already have been allocated by ath_key_alloc.
   1654  */
   1655 static int
   1656 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
   1657 	const u_int8_t mac[IEEE80211_ADDR_LEN])
   1658 {
   1659 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1660 
   1661 	return ath_keyset(sc, k, mac);
   1662 }
   1663 
   1664 /*
   1665  * Block/unblock tx+rx processing while a key change is done.
   1666  * We assume the caller serializes key management operations
   1667  * so we only need to worry about synchronization with other
   1668  * uses that originate in the driver.
   1669  */
   1670 static void
   1671 ath_key_update_begin(struct ieee80211com *ic)
   1672 {
   1673 	struct ifnet *ifp = ic->ic_ifp;
   1674 	struct ath_softc *sc = ifp->if_softc;
   1675 
   1676 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
   1677 #if 0
   1678 	tasklet_disable(&sc->sc_rxtq);
   1679 #endif
   1680 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
   1681 }
   1682 
   1683 static void
   1684 ath_key_update_end(struct ieee80211com *ic)
   1685 {
   1686 	struct ifnet *ifp = ic->ic_ifp;
   1687 	struct ath_softc *sc = ifp->if_softc;
   1688 
   1689 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
   1690 	IF_UNLOCK(&ifp->if_snd);
   1691 #if 0
   1692 	tasklet_enable(&sc->sc_rxtq);
   1693 #endif
   1694 }
   1695 
   1696 /*
   1697  * Calculate the receive filter according to the
   1698  * operating mode and state:
   1699  *
   1700  * o always accept unicast, broadcast, and multicast traffic
   1701  * o maintain current state of phy error reception (the hal
   1702  *   may enable phy error frames for noise immunity work)
   1703  * o probe request frames are accepted only when operating in
   1704  *   hostap, adhoc, or monitor modes
   1705  * o enable promiscuous mode according to the interface state
   1706  * o accept beacons:
   1707  *   - when operating in adhoc mode so the 802.11 layer creates
   1708  *     node table entries for peers,
   1709  *   - when operating in station mode for collecting rssi data when
   1710  *     the station is otherwise quiet, or
   1711  *   - when scanning
   1712  */
   1713 static u_int32_t
   1714 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
   1715 {
   1716 	struct ieee80211com *ic = &sc->sc_ic;
   1717 	struct ath_hal *ah = sc->sc_ah;
   1718 	struct ifnet *ifp = &sc->sc_if;
   1719 	u_int32_t rfilt;
   1720 
   1721 	rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
   1722 	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
   1723 	if (ic->ic_opmode != IEEE80211_M_STA)
   1724 		rfilt |= HAL_RX_FILTER_PROBEREQ;
   1725 	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
   1726 	    (ifp->if_flags & IFF_PROMISC))
   1727 		rfilt |= HAL_RX_FILTER_PROM;
   1728 	if (ic->ic_opmode == IEEE80211_M_STA ||
   1729 	    ic->ic_opmode == IEEE80211_M_IBSS ||
   1730 	    state == IEEE80211_S_SCAN)
   1731 		rfilt |= HAL_RX_FILTER_BEACON;
   1732 	return rfilt;
   1733 }
   1734 
   1735 static void
   1736 ath_mcastfilter_accum(caddr_t dl, u_int32_t *mfilt)
   1737 {
   1738 	u_int32_t val;
   1739 	u_int8_t pos;
   1740 
   1741 	/* calculate XOR of eight 6bit values */
   1742 	val = LE_READ_4(dl + 0);
   1743 	pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1744 	val = LE_READ_4(dl + 3);
   1745 	pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1746 	pos &= 0x3f;
   1747 	mfilt[pos / 32] |= (1 << (pos % 32));
   1748 }
   1749 
   1750 static void
   1751 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t *mfilt)
   1752 {
   1753 	struct ifnet *ifp = &sc->sc_if;
   1754 	struct ether_multi *enm;
   1755 	struct ether_multistep estep;
   1756 
   1757 	mfilt[0] = mfilt[1] = 0;
   1758 	ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
   1759 	while (enm != NULL) {
   1760 		/* XXX Punt on ranges. */
   1761 		if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
   1762 			mfilt[0] = mfilt[1] = ~((u_int32_t)0);
   1763 			ifp->if_flags |= IFF_ALLMULTI;
   1764 			return;
   1765 		}
   1766 		ath_mcastfilter_accum(enm->enm_addrlo, mfilt);
   1767 		ETHER_NEXT_MULTI(estep, enm);
   1768 	}
   1769 	ifp->if_flags &= ~IFF_ALLMULTI;
   1770 }
   1771 
   1772 static void
   1773 ath_mode_init(struct ath_softc *sc)
   1774 {
   1775 	struct ieee80211com *ic = &sc->sc_ic;
   1776 	struct ath_hal *ah = sc->sc_ah;
   1777 	u_int32_t rfilt, mfilt[2];
   1778 
   1779 	/* configure rx filter */
   1780 	rfilt = ath_calcrxfilter(sc, ic->ic_state);
   1781 	ath_hal_setrxfilter(ah, rfilt);
   1782 
   1783 	/* configure operational mode */
   1784 	ath_hal_setopmode(ah);
   1785 
   1786 	/*
   1787 	 * Handle any link-level address change.  Note that we only
   1788 	 * need to force ic_myaddr; any other addresses are handled
   1789 	 * as a byproduct of the ifnet code marking the interface
   1790 	 * down then up.
   1791 	 *
   1792 	 * XXX should get from lladdr instead of arpcom but that's more work
   1793 	 */
   1794 	IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(sc->sc_if.if_sadl));
   1795 	ath_hal_setmac(ah, ic->ic_myaddr);
   1796 
   1797 	/* calculate and install multicast filter */
   1798 #ifdef __FreeBSD__
   1799 	if ((sc->sc_if.if_flags & IFF_ALLMULTI) == 0)
   1800 		ath_mcastfilter_compute(sc, mfilt);
   1801 	else
   1802 		mfilt[0] = mfilt[1] = ~0;
   1803 #endif
   1804 #ifdef __NetBSD__
   1805 	ath_mcastfilter_compute(sc, mfilt);
   1806 #endif
   1807 	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
   1808 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
   1809 		__func__, rfilt, mfilt[0], mfilt[1]);
   1810 }
   1811 
   1812 /*
   1813  * Set the slot time based on the current setting.
   1814  */
   1815 static void
   1816 ath_setslottime(struct ath_softc *sc)
   1817 {
   1818 	struct ieee80211com *ic = &sc->sc_ic;
   1819 	struct ath_hal *ah = sc->sc_ah;
   1820 
   1821 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   1822 		ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
   1823 	else
   1824 		ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
   1825 	sc->sc_updateslot = OK;
   1826 }
   1827 
   1828 /*
   1829  * Callback from the 802.11 layer to update the
   1830  * slot time based on the current setting.
   1831  */
   1832 static void
   1833 ath_updateslot(struct ifnet *ifp)
   1834 {
   1835 	struct ath_softc *sc = ifp->if_softc;
   1836 	struct ieee80211com *ic = &sc->sc_ic;
   1837 
   1838 	/*
   1839 	 * When not coordinating the BSS, change the hardware
   1840 	 * immediately.  For other operation we defer the change
   1841 	 * until beacon updates have propagated to the stations.
   1842 	 */
   1843 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
   1844 		sc->sc_updateslot = UPDATE;
   1845 	else
   1846 		ath_setslottime(sc);
   1847 }
   1848 
   1849 /*
   1850  * Setup a h/w transmit queue for beacons.
   1851  */
   1852 static int
   1853 ath_beaconq_setup(struct ath_hal *ah)
   1854 {
   1855 	HAL_TXQ_INFO qi;
   1856 
   1857 	memset(&qi, 0, sizeof(qi));
   1858 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
   1859 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
   1860 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
   1861 	/* NB: don't enable any interrupts */
   1862 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
   1863 }
   1864 
   1865 /*
   1866  * Allocate and setup an initial beacon frame.
   1867  */
   1868 static int
   1869 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
   1870 {
   1871 	struct ieee80211com *ic = ni->ni_ic;
   1872 	struct ath_buf *bf;
   1873 	struct mbuf *m;
   1874 	int error;
   1875 
   1876 	bf = STAILQ_FIRST(&sc->sc_bbuf);
   1877 	if (bf == NULL) {
   1878 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
   1879 		sc->sc_stats.ast_be_nombuf++;	/* XXX */
   1880 		return ENOMEM;			/* XXX */
   1881 	}
   1882 	/*
   1883 	 * NB: the beacon data buffer must be 32-bit aligned;
   1884 	 * we assume the mbuf routines will return us something
   1885 	 * with this alignment (perhaps should assert).
   1886 	 */
   1887 	m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
   1888 	if (m == NULL) {
   1889 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
   1890 			__func__);
   1891 		sc->sc_stats.ast_be_nombuf++;
   1892 		return ENOMEM;
   1893 	}
   1894 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
   1895 				     BUS_DMA_NOWAIT);
   1896 	if (error == 0) {
   1897 		bf->bf_m = m;
   1898 		bf->bf_node = ieee80211_ref_node(ni);
   1899 	} else {
   1900 		m_freem(m);
   1901 	}
   1902 	return error;
   1903 }
   1904 
   1905 /*
   1906  * Setup the beacon frame for transmit.
   1907  */
   1908 static void
   1909 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
   1910 {
   1911 #define	USE_SHPREAMBLE(_ic) \
   1912 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
   1913 		== IEEE80211_F_SHPREAMBLE)
   1914 	struct ieee80211_node *ni = bf->bf_node;
   1915 	struct ieee80211com *ic = ni->ni_ic;
   1916 	struct mbuf *m = bf->bf_m;
   1917 	struct ath_hal *ah = sc->sc_ah;
   1918 	struct ath_node *an = ATH_NODE(ni);
   1919 	struct ath_desc *ds;
   1920 	int flags, antenna;
   1921 	u_int8_t rate;
   1922 
   1923 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
   1924 		__func__, m, m->m_len);
   1925 
   1926 	/* setup descriptors */
   1927 	ds = bf->bf_desc;
   1928 
   1929 	flags = HAL_TXDESC_NOACK;
   1930 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
   1931 		ds->ds_link = bf->bf_daddr;	/* self-linked */
   1932 		flags |= HAL_TXDESC_VEOL;
   1933 		/*
   1934 		 * Let hardware handle antenna switching.
   1935 		 */
   1936 		antenna = 0;
   1937 	} else {
   1938 		ds->ds_link = 0;
   1939 		/*
   1940 		 * Switch antenna every 4 beacons.
   1941 		 * XXX assumes two antenna
   1942 		 */
   1943 		antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
   1944 	}
   1945 
   1946 	KASSERT(bf->bf_nseg == 1,
   1947 		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
   1948 	ds->ds_data = bf->bf_segs[0].ds_addr;
   1949 	/*
   1950 	 * Calculate rate code.
   1951 	 * XXX everything at min xmit rate
   1952 	 */
   1953 	if (USE_SHPREAMBLE(ic))
   1954 		rate = an->an_tx_mgtratesp;
   1955 	else
   1956 		rate = an->an_tx_mgtrate;
   1957 	ath_hal_setuptxdesc(ah, ds
   1958 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
   1959 		, sizeof(struct ieee80211_frame)/* header length */
   1960 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
   1961 		, ni->ni_txpower		/* txpower XXX */
   1962 		, rate, 1			/* series 0 rate/tries */
   1963 		, HAL_TXKEYIX_INVALID		/* no encryption */
   1964 		, antenna			/* antenna mode */
   1965 		, flags				/* no ack, veol for beacons */
   1966 		, 0				/* rts/cts rate */
   1967 		, 0				/* rts/cts duration */
   1968 	);
   1969 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
   1970 	ath_hal_filltxdesc(ah, ds
   1971 		, roundup(m->m_len, 4)		/* buffer length */
   1972 		, AH_TRUE			/* first segment */
   1973 		, AH_TRUE			/* last segment */
   1974 		, ds				/* first descriptor */
   1975 	);
   1976 	/* XXX bus_dmamap_sync? -dcy */
   1977 #undef USE_SHPREAMBLE
   1978 }
   1979 
   1980 /*
   1981  * Transmit a beacon frame at SWBA.  Dynamic updates to the
   1982  * frame contents are done as needed and the slot time is
   1983  * also adjusted based on current state.
   1984  */
   1985 static void
   1986 ath_beacon_proc(void *arg, int pending)
   1987 {
   1988 	struct ath_softc *sc = arg;
   1989 	struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
   1990 	struct ieee80211_node *ni = bf->bf_node;
   1991 	struct ieee80211com *ic = ni->ni_ic;
   1992 	struct ath_hal *ah = sc->sc_ah;
   1993 	struct mbuf *m;
   1994 	int ncabq, error, otherant;
   1995 
   1996 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
   1997 		__func__, pending);
   1998 
   1999 	if (ic->ic_opmode == IEEE80211_M_STA ||
   2000 	    ic->ic_opmode == IEEE80211_M_MONITOR ||
   2001 	    bf == NULL || bf->bf_m == NULL) {
   2002 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
   2003 			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
   2004 		return;
   2005 	}
   2006 	/*
   2007 	 * Check if the previous beacon has gone out.  If
   2008 	 * not don't don't try to post another, skip this
   2009 	 * period and wait for the next.  Missed beacons
   2010 	 * indicate a problem and should not occur.  If we
   2011 	 * miss too many consecutive beacons reset the device.
   2012 	 */
   2013 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
   2014 		sc->sc_bmisscount++;
   2015 		DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
   2016 			"%s: missed %u consecutive beacons\n",
   2017 			__func__, sc->sc_bmisscount);
   2018 		if (sc->sc_bmisscount > 3)		/* NB: 3 is a guess */
   2019 			TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask);
   2020 		return;
   2021 	}
   2022 	if (sc->sc_bmisscount != 0) {
   2023 		DPRINTF(sc, ATH_DEBUG_BEACON,
   2024 			"%s: resume beacon xmit after %u misses\n",
   2025 			__func__, sc->sc_bmisscount);
   2026 		sc->sc_bmisscount = 0;
   2027 	}
   2028 
   2029 	/*
   2030 	 * Update dynamic beacon contents.  If this returns
   2031 	 * non-zero then we need to remap the memory because
   2032 	 * the beacon frame changed size (probably because
   2033 	 * of the TIM bitmap).
   2034 	 */
   2035 	m = bf->bf_m;
   2036 	ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
   2037 	if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
   2038 		/* XXX too conservative? */
   2039 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   2040 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
   2041 					     BUS_DMA_NOWAIT);
   2042 		if (error != 0) {
   2043 			if_printf(&sc->sc_if,
   2044 			    "%s: bus_dmamap_load_mbuf failed, error %u\n",
   2045 			    __func__, error);
   2046 			return;
   2047 		}
   2048 	}
   2049 
   2050 	/*
   2051 	 * Handle slot time change when a non-ERP station joins/leaves
   2052 	 * an 11g network.  The 802.11 layer notifies us via callback,
   2053 	 * we mark updateslot, then wait one beacon before effecting
   2054 	 * the change.  This gives associated stations at least one
   2055 	 * beacon interval to note the state change.
   2056 	 */
   2057 	/* XXX locking */
   2058 	if (sc->sc_updateslot == UPDATE)
   2059 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
   2060 	else if (sc->sc_updateslot == COMMIT)
   2061 		ath_setslottime(sc);		/* commit change to h/w */
   2062 
   2063 	/*
   2064 	 * Check recent per-antenna transmit statistics and flip
   2065 	 * the default antenna if noticeably more frames went out
   2066 	 * on the non-default antenna.
   2067 	 * XXX assumes 2 anntenae
   2068 	 */
   2069 	otherant = sc->sc_defant & 1 ? 2 : 1;
   2070 	if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
   2071 		ath_setdefantenna(sc, otherant);
   2072 	sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
   2073 
   2074 	/*
   2075 	 * Construct tx descriptor.
   2076 	 */
   2077 	ath_beacon_setup(sc, bf);
   2078 
   2079 	/*
   2080 	 * Stop any current dma and put the new frame on the queue.
   2081 	 * This should never fail since we check above that no frames
   2082 	 * are still pending on the queue.
   2083 	 */
   2084 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
   2085 		DPRINTF(sc, ATH_DEBUG_ANY,
   2086 			"%s: beacon queue %u did not stop?\n",
   2087 			__func__, sc->sc_bhalq);
   2088 	}
   2089 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   2090 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2091 
   2092 	/*
   2093 	 * Enable the CAB queue before the beacon queue to
   2094 	 * insure cab frames are triggered by this beacon.
   2095 	 */
   2096 	if (sc->sc_boff.bo_tim[4] & 1)		/* NB: only at DTIM */
   2097 		ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
   2098 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
   2099 	ath_hal_txstart(ah, sc->sc_bhalq);
   2100 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
   2101 		"%s: TXDP[%u] = %p (%p)\n", __func__,
   2102 		sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc);
   2103 
   2104 	sc->sc_stats.ast_be_xmit++;
   2105 }
   2106 
   2107 /*
   2108  * Reset the hardware after detecting beacons have stopped.
   2109  */
   2110 static void
   2111 ath_bstuck_proc(void *arg, int pending)
   2112 {
   2113 	struct ath_softc *sc = arg;
   2114 	struct ifnet *ifp = &sc->sc_if;
   2115 
   2116 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
   2117 		sc->sc_bmisscount);
   2118 	ath_reset(ifp);
   2119 }
   2120 
   2121 /*
   2122  * Reclaim beacon resources.
   2123  */
   2124 static void
   2125 ath_beacon_free(struct ath_softc *sc)
   2126 {
   2127 	struct ath_buf *bf;
   2128 
   2129 	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
   2130 		if (bf->bf_m != NULL) {
   2131 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   2132 			m_freem(bf->bf_m);
   2133 			bf->bf_m = NULL;
   2134 		}
   2135 		if (bf->bf_node != NULL) {
   2136 			ieee80211_free_node(bf->bf_node);
   2137 			bf->bf_node = NULL;
   2138 		}
   2139 	}
   2140 }
   2141 
   2142 /*
   2143  * Configure the beacon and sleep timers.
   2144  *
   2145  * When operating as an AP this resets the TSF and sets
   2146  * up the hardware to notify us when we need to issue beacons.
   2147  *
   2148  * When operating in station mode this sets up the beacon
   2149  * timers according to the timestamp of the last received
   2150  * beacon and the current TSF, configures PCF and DTIM
   2151  * handling, programs the sleep registers so the hardware
   2152  * will wakeup in time to receive beacons, and configures
   2153  * the beacon miss handling so we'll receive a BMISS
   2154  * interrupt when we stop seeing beacons from the AP
   2155  * we've associated with.
   2156  */
   2157 static void
   2158 ath_beacon_config(struct ath_softc *sc)
   2159 {
   2160 	struct ath_hal *ah = sc->sc_ah;
   2161 	struct ieee80211com *ic = &sc->sc_ic;
   2162 	struct ieee80211_node *ni = ic->ic_bss;
   2163 	u_int32_t nexttbtt, intval;
   2164 
   2165 	nexttbtt = (LE_READ_4(ni->ni_tstamp.data + 4) << 22) |
   2166 	    (LE_READ_4(ni->ni_tstamp.data) >> 10);
   2167 	intval = ni->ni_intval & HAL_BEACON_PERIOD;
   2168 	if (nexttbtt == 0)		/* e.g. for ap mode */
   2169 		nexttbtt = intval;
   2170 	else if (intval)		/* NB: can be 0 for monitor mode */
   2171 		nexttbtt = roundup(nexttbtt, intval);
   2172 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
   2173 		__func__, nexttbtt, intval, ni->ni_intval);
   2174 	if (ic->ic_opmode == IEEE80211_M_STA) {
   2175 		HAL_BEACON_STATE bs;
   2176 
   2177 		/* NB: no PCF support right now */
   2178 		memset(&bs, 0, sizeof(bs));
   2179 		bs.bs_intval = intval;
   2180 		bs.bs_nexttbtt = nexttbtt;
   2181 		bs.bs_dtimperiod = bs.bs_intval;
   2182 		bs.bs_nextdtim = nexttbtt;
   2183 		/*
   2184 		 * The 802.11 layer records the offset to the DTIM
   2185 		 * bitmap while receiving beacons; use it here to
   2186 		 * enable h/w detection of our AID being marked in
   2187 		 * the bitmap vector (to indicate frames for us are
   2188 		 * pending at the AP).
   2189 		 */
   2190 		bs.bs_timoffset = ni->ni_timoff;
   2191 		/*
   2192 		 * Calculate the number of consecutive beacons to miss
   2193 		 * before taking a BMISS interrupt.  The configuration
   2194 		 * is specified in ms, so we need to convert that to
   2195 		 * TU's and then calculate based on the beacon interval.
   2196 		 * Note that we clamp the result to at most 10 beacons.
   2197 		 */
   2198 		bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
   2199 		if (bs.bs_bmissthreshold > 10)
   2200 			bs.bs_bmissthreshold = 10;
   2201 		else if (bs.bs_bmissthreshold <= 0)
   2202 			bs.bs_bmissthreshold = 1;
   2203 
   2204 		/*
   2205 		 * Calculate sleep duration.  The configuration is
   2206 		 * given in ms.  We insure a multiple of the beacon
   2207 		 * period is used.  Also, if the sleep duration is
   2208 		 * greater than the DTIM period then it makes senses
   2209 		 * to make it a multiple of that.
   2210 		 *
   2211 		 * XXX fixed at 100ms
   2212 		 */
   2213 		bs.bs_sleepduration =
   2214 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
   2215 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
   2216 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
   2217 
   2218 		DPRINTF(sc, ATH_DEBUG_BEACON,
   2219 			"%s: intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
   2220 			, __func__
   2221 			, bs.bs_intval
   2222 			, bs.bs_nexttbtt
   2223 			, bs.bs_dtimperiod
   2224 			, bs.bs_nextdtim
   2225 			, bs.bs_bmissthreshold
   2226 			, bs.bs_sleepduration
   2227 			, bs.bs_cfpperiod
   2228 			, bs.bs_cfpmaxduration
   2229 			, bs.bs_cfpnext
   2230 			, bs.bs_timoffset
   2231 		);
   2232 		ath_hal_intrset(ah, 0);
   2233 		ath_hal_beacontimers(ah, &bs);
   2234 		sc->sc_imask |= HAL_INT_BMISS;
   2235 		ath_hal_intrset(ah, sc->sc_imask);
   2236 	} else {
   2237 		ath_hal_intrset(ah, 0);
   2238 		if (nexttbtt == intval)
   2239 			intval |= HAL_BEACON_RESET_TSF;
   2240 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
   2241 			/*
   2242 			 * In IBSS mode enable the beacon timers but only
   2243 			 * enable SWBA interrupts if we need to manually
   2244 			 * prepare beacon frames.  Otherwise we use a
   2245 			 * self-linked tx descriptor and let the hardware
   2246 			 * deal with things.
   2247 			 */
   2248 			intval |= HAL_BEACON_ENA;
   2249 			if (!sc->sc_hasveol)
   2250 				sc->sc_imask |= HAL_INT_SWBA;
   2251 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   2252 			/*
   2253 			 * In AP mode we enable the beacon timers and
   2254 			 * SWBA interrupts to prepare beacon frames.
   2255 			 */
   2256 			intval |= HAL_BEACON_ENA;
   2257 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
   2258 		}
   2259 		ath_hal_beaconinit(ah, nexttbtt, intval);
   2260 		sc->sc_bmisscount = 0;
   2261 		ath_hal_intrset(ah, sc->sc_imask);
   2262 		/*
   2263 		 * When using a self-linked beacon descriptor in
   2264 		 * ibss mode load it once here.
   2265 		 */
   2266 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
   2267 			ath_beacon_proc(sc, 0);
   2268 	}
   2269 }
   2270 
   2271 static int
   2272 ath_descdma_setup(struct ath_softc *sc,
   2273 	struct ath_descdma *dd, ath_bufhead *head,
   2274 	const char *name, int nbuf, int ndesc)
   2275 {
   2276 #define	DS2PHYS(_dd, _ds) \
   2277 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
   2278 	struct ifnet *ifp = &sc->sc_if;
   2279 	struct ath_desc *ds;
   2280 	struct ath_buf *bf;
   2281 	int i, bsize, error;
   2282 
   2283 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
   2284 	    __func__, name, nbuf, ndesc);
   2285 
   2286 	dd->dd_name = name;
   2287 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
   2288 
   2289 	/*
   2290 	 * Setup DMA descriptor area.
   2291 	 */
   2292 	dd->dd_dmat = sc->sc_dmat;
   2293 
   2294 	error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE,
   2295 	    0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0);
   2296 
   2297 	if (error != 0) {
   2298 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
   2299 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
   2300 		goto fail0;
   2301 	}
   2302 
   2303 	error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg,
   2304 	    dd->dd_desc_len, (caddr_t *)&dd->dd_desc, BUS_DMA_COHERENT);
   2305 	if (error != 0) {
   2306 		if_printf(ifp, "unable to map %u %s descriptors, error = %u\n",
   2307 		    nbuf * ndesc, dd->dd_name, error);
   2308 		goto fail1;
   2309 	}
   2310 
   2311 	/* allocate descriptors */
   2312 	error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1,
   2313 	    dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap);
   2314 	if (error != 0) {
   2315 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
   2316 			"error %u\n", dd->dd_name, error);
   2317 		goto fail2;
   2318 	}
   2319 
   2320 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc,
   2321 	    dd->dd_desc_len, NULL, BUS_DMA_NOWAIT);
   2322 	if (error != 0) {
   2323 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
   2324 			dd->dd_name, error);
   2325 		goto fail3;
   2326 	}
   2327 
   2328 	ds = dd->dd_desc;
   2329 	dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr;
   2330 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
   2331 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
   2332 	    (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
   2333 
   2334 	/* allocate rx buffers */
   2335 	bsize = sizeof(struct ath_buf) * nbuf;
   2336 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
   2337 	if (bf == NULL) {
   2338 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
   2339 			dd->dd_name, bsize);
   2340 		goto fail4;
   2341 	}
   2342 	dd->dd_bufptr = bf;
   2343 
   2344 	STAILQ_INIT(head);
   2345 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
   2346 		bf->bf_desc = ds;
   2347 		bf->bf_daddr = DS2PHYS(dd, ds);
   2348 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc,
   2349 				MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap);
   2350 		if (error != 0) {
   2351 			if_printf(ifp, "unable to create dmamap for %s "
   2352 				"buffer %u, error %u\n", dd->dd_name, i, error);
   2353 			ath_descdma_cleanup(sc, dd, head);
   2354 			return error;
   2355 		}
   2356 		STAILQ_INSERT_TAIL(head, bf, bf_list);
   2357 	}
   2358 	return 0;
   2359 fail4:
   2360 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
   2361 fail3:
   2362 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
   2363 fail2:
   2364 	bus_dmamem_unmap(dd->dd_dmat, (caddr_t)dd->dd_desc, dd->dd_desc_len);
   2365 fail1:
   2366 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
   2367 fail0:
   2368 	memset(dd, 0, sizeof(*dd));
   2369 	return error;
   2370 #undef DS2PHYS
   2371 }
   2372 
   2373 static void
   2374 ath_descdma_cleanup(struct ath_softc *sc,
   2375 	struct ath_descdma *dd, ath_bufhead *head)
   2376 {
   2377 	struct ath_buf *bf;
   2378 	struct ieee80211_node *ni;
   2379 
   2380 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
   2381 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
   2382 	bus_dmamem_unmap(dd->dd_dmat, (caddr_t)dd->dd_desc, dd->dd_desc_len);
   2383 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
   2384 
   2385 	STAILQ_FOREACH(bf, head, bf_list) {
   2386 		if (bf->bf_m) {
   2387 			m_freem(bf->bf_m);
   2388 			bf->bf_m = NULL;
   2389 		}
   2390 		if (bf->bf_dmamap != NULL) {
   2391 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
   2392 			bf->bf_dmamap = NULL;
   2393 		}
   2394 		ni = bf->bf_node;
   2395 		bf->bf_node = NULL;
   2396 		if (ni != NULL) {
   2397 			/*
   2398 			 * Reclaim node reference.
   2399 			 */
   2400 			ieee80211_free_node(ni);
   2401 		}
   2402 	}
   2403 
   2404 	STAILQ_INIT(head);
   2405 	free(dd->dd_bufptr, M_ATHDEV);
   2406 	memset(dd, 0, sizeof(*dd));
   2407 }
   2408 
   2409 static int
   2410 ath_desc_alloc(struct ath_softc *sc)
   2411 {
   2412 	int error;
   2413 
   2414 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
   2415 			"rx", ATH_RXBUF, 1);
   2416 	if (error != 0)
   2417 		return error;
   2418 
   2419 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
   2420 			"tx", ATH_TXBUF, ATH_TXDESC);
   2421 	if (error != 0) {
   2422 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2423 		return error;
   2424 	}
   2425 
   2426 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
   2427 			"beacon", 1, 1);
   2428 	if (error != 0) {
   2429 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
   2430 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2431 		return error;
   2432 	}
   2433 	return 0;
   2434 }
   2435 
   2436 static void
   2437 ath_desc_free(struct ath_softc *sc)
   2438 {
   2439 
   2440 	if (sc->sc_bdma.dd_desc_len != 0)
   2441 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
   2442 	if (sc->sc_txdma.dd_desc_len != 0)
   2443 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
   2444 	if (sc->sc_rxdma.dd_desc_len != 0)
   2445 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2446 }
   2447 
   2448 static struct ieee80211_node *
   2449 ath_node_alloc(struct ieee80211_node_table *nt)
   2450 {
   2451 	struct ieee80211com *ic = nt->nt_ic;
   2452 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   2453 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
   2454 	struct ath_node *an;
   2455 
   2456 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
   2457 	if (an == NULL) {
   2458 		/* XXX stat+msg */
   2459 		return NULL;
   2460 	}
   2461 	an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
   2462 	an->an_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
   2463 	an->an_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
   2464 	an->an_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
   2465 	ath_rate_node_init(sc, an);
   2466 
   2467 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
   2468 	return &an->an_node;
   2469 }
   2470 
   2471 static void
   2472 ath_node_free(struct ieee80211_node *ni)
   2473 {
   2474 	struct ieee80211com *ic = ni->ni_ic;
   2475         struct ath_softc *sc = ic->ic_ifp->if_softc;
   2476 
   2477 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
   2478 
   2479 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
   2480 	sc->sc_node_free(ni);
   2481 }
   2482 
   2483 static u_int8_t
   2484 ath_node_getrssi(const struct ieee80211_node *ni)
   2485 {
   2486 #define	HAL_EP_RND(x, mul) \
   2487 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
   2488 	u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
   2489 	int32_t rssi;
   2490 
   2491 	/*
   2492 	 * When only one frame is received there will be no state in
   2493 	 * avgrssi so fallback on the value recorded by the 802.11 layer.
   2494 	 */
   2495 	if (avgrssi != ATH_RSSI_DUMMY_MARKER)
   2496 		rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
   2497 	else
   2498 		rssi = ni->ni_rssi;
   2499 	/* NB: theoretically we shouldn't need this, but be paranoid */
   2500 	return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
   2501 #undef HAL_EP_RND
   2502 }
   2503 
   2504 static int
   2505 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
   2506 {
   2507 	struct ath_hal *ah = sc->sc_ah;
   2508 	int error;
   2509 	struct mbuf *m;
   2510 	struct ath_desc *ds;
   2511 
   2512 	m = bf->bf_m;
   2513 	if (m == NULL) {
   2514 		/*
   2515 		 * NB: by assigning a page to the rx dma buffer we
   2516 		 * implicitly satisfy the Atheros requirement that
   2517 		 * this buffer be cache-line-aligned and sized to be
   2518 		 * multiple of the cache line size.  Not doing this
   2519 		 * causes weird stuff to happen (for the 5210 at least).
   2520 		 */
   2521 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
   2522 		if (m == NULL) {
   2523 			DPRINTF(sc, ATH_DEBUG_ANY,
   2524 				"%s: no mbuf/cluster\n", __func__);
   2525 			sc->sc_stats.ast_rx_nombuf++;
   2526 			return ENOMEM;
   2527 		}
   2528 		bf->bf_m = m;
   2529 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
   2530 
   2531 		error = bus_dmamap_load_mbuf(sc->sc_dmat,
   2532 					     bf->bf_dmamap, m,
   2533 					     BUS_DMA_NOWAIT);
   2534 		if (error != 0) {
   2535 			DPRINTF(sc, ATH_DEBUG_ANY,
   2536 			    "%s: bus_dmamap_load_mbuf failed; error %d\n",
   2537 			    __func__, error);
   2538 			sc->sc_stats.ast_rx_busdma++;
   2539 			return error;
   2540 		}
   2541 		KASSERT(bf->bf_nseg == 1,
   2542 			("multi-segment packet; nseg %u", bf->bf_nseg));
   2543 	}
   2544 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   2545 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2546 
   2547 	/*
   2548 	 * Setup descriptors.  For receive we always terminate
   2549 	 * the descriptor list with a self-linked entry so we'll
   2550 	 * not get overrun under high load (as can happen with a
   2551 	 * 5212 when ANI processing enables PHY error frames).
   2552 	 *
   2553 	 * To insure the last descriptor is self-linked we create
   2554 	 * each descriptor as self-linked and add it to the end.  As
   2555 	 * each additional descriptor is added the previous self-linked
   2556 	 * entry is ``fixed'' naturally.  This should be safe even
   2557 	 * if DMA is happening.  When processing RX interrupts we
   2558 	 * never remove/process the last, self-linked, entry on the
   2559 	 * descriptor list.  This insures the hardware always has
   2560 	 * someplace to write a new frame.
   2561 	 */
   2562 	ds = bf->bf_desc;
   2563 	ds->ds_link = bf->bf_daddr;	/* link to self */
   2564 	ds->ds_data = bf->bf_segs[0].ds_addr;
   2565 	ath_hal_setuprxdesc(ah, ds
   2566 		, m->m_len		/* buffer size */
   2567 		, 0
   2568 	);
   2569 
   2570 	if (sc->sc_rxlink != NULL)
   2571 		*sc->sc_rxlink = bf->bf_daddr;
   2572 	sc->sc_rxlink = &ds->ds_link;
   2573 	return 0;
   2574 }
   2575 
   2576 static uint64_t
   2577 ath_tsf_extend(struct ath_hal *ah, uint32_t rstamp)
   2578 {
   2579 	uint64_t tsf;
   2580 
   2581 	KASSERT((rstamp & 0xffff0000) == 0,
   2582 	    ("rx timestamp > 16 bits wide, %" PRIu32, rstamp));
   2583 
   2584 	tsf = ath_hal_gettsf64(ah);
   2585 
   2586 	/* Compensate for rollover. */
   2587 	if ((tsf & 0xffff) <= rstamp)
   2588 		tsf -= 0x10000;
   2589 
   2590 	return (tsf & ~(uint64_t)0xffff) | rstamp;
   2591 }
   2592 
   2593 /*
   2594  * Extend 15-bit time stamp from rx descriptor to
   2595  * a full 64-bit TSF using the current h/w TSF.
   2596  */
   2597 static __inline u_int64_t
   2598 ath_extend_tsf(struct ath_hal *ah, u_int32_t rstamp)
   2599 {
   2600 	u_int64_t tsf;
   2601 
   2602 	tsf = ath_hal_gettsf64(ah);
   2603 	if ((tsf & 0x7fff) < rstamp)
   2604 		tsf -= 0x8000;
   2605 	return ((tsf &~ 0x7fff) | rstamp);
   2606 }
   2607 
   2608 /*
   2609  * Intercept management frames to collect beacon rssi data
   2610  * and to do ibss merges.
   2611  */
   2612 static void
   2613 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
   2614 	struct ieee80211_node *ni,
   2615 	int subtype, int rssi, u_int32_t rstamp)
   2616 {
   2617 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   2618 
   2619 	/*
   2620 	 * Call up first so subsequent work can use information
   2621 	 * potentially stored in the node (e.g. for ibss merge).
   2622 	 */
   2623 	sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
   2624 	switch (subtype) {
   2625 	case IEEE80211_FC0_SUBTYPE_BEACON:
   2626 		/* update rssi statistics for use by the hal */
   2627 		ATH_RSSI_LPF(ATH_NODE(ni)->an_halstats.ns_avgbrssi, rssi);
   2628 		/* fall thru... */
   2629 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
   2630 		if (ic->ic_opmode == IEEE80211_M_IBSS &&
   2631 		    ic->ic_state == IEEE80211_S_RUN) {
   2632 			u_int64_t tsf = ath_tsf_extend(sc->sc_ah, rstamp);
   2633 
   2634 			/*
   2635 			 * Handle ibss merge as needed; check the tsf on the
   2636 			 * frame before attempting the merge.  The 802.11 spec
   2637 			 * says the station should change it's bssid to match
   2638 			 * the oldest station with the same ssid, where oldest
   2639 			 * is determined by the tsf.  Note that hardware
   2640 			 * reconfiguration happens through callback to
   2641 			 * ath_newstate as the state machine will go from
   2642 			 * RUN -> RUN when this happens.
   2643 			 */
   2644 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
   2645 				DPRINTF(sc, ATH_DEBUG_STATE,
   2646 				    "ibss merge, rstamp %u tsf %ju "
   2647 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
   2648 				    (uintmax_t)ni->ni_tstamp.tsf);
   2649 				(void) ieee80211_ibss_merge(ic, ni);
   2650 			}
   2651 		}
   2652 		break;
   2653 	}
   2654 }
   2655 
   2656 /*
   2657  * Set the default antenna.
   2658  */
   2659 static void
   2660 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
   2661 {
   2662 	struct ath_hal *ah = sc->sc_ah;
   2663 
   2664 	/* XXX block beacon interrupts */
   2665 	ath_hal_setdefantenna(ah, antenna);
   2666 	if (sc->sc_defant != antenna)
   2667 		sc->sc_stats.ast_ant_defswitch++;
   2668 	sc->sc_defant = antenna;
   2669 	sc->sc_rxotherant = 0;
   2670 }
   2671 
   2672 static void
   2673 ath_rx_proc(void *arg, int npending)
   2674 {
   2675 #define	PA2DESC(_sc, _pa) \
   2676 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
   2677 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
   2678 	struct ath_softc *sc = arg;
   2679 	struct ath_buf *bf;
   2680 	struct ieee80211com *ic = &sc->sc_ic;
   2681 	struct ifnet *ifp = &sc->sc_if;
   2682 	struct ath_hal *ah = sc->sc_ah;
   2683 	struct ath_desc *ds;
   2684 	struct mbuf *m;
   2685 	struct ieee80211_node *ni;
   2686 	struct ath_node *an;
   2687 	int len, type;
   2688 	u_int phyerr;
   2689 	HAL_STATUS status;
   2690 
   2691 	NET_LOCK_GIANT();		/* XXX */
   2692 
   2693 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
   2694 	do {
   2695 		bf = STAILQ_FIRST(&sc->sc_rxbuf);
   2696 		if (bf == NULL) {		/* NB: shouldn't happen */
   2697 			if_printf(ifp, "%s: no buffer!\n", __func__);
   2698 			break;
   2699 		}
   2700 		ds = bf->bf_desc;
   2701 		if (ds->ds_link == bf->bf_daddr) {
   2702 			/* NB: never process the self-linked entry at the end */
   2703 			break;
   2704 		}
   2705 		m = bf->bf_m;
   2706 		if (m == NULL) {		/* NB: shouldn't happen */
   2707 			if_printf(ifp, "%s: no mbuf!\n", __func__);
   2708 			continue;
   2709 		}
   2710 		/* XXX sync descriptor memory */
   2711 		/*
   2712 		 * Must provide the virtual address of the current
   2713 		 * descriptor, the physical address, and the virtual
   2714 		 * address of the next descriptor in the h/w chain.
   2715 		 * This allows the HAL to look ahead to see if the
   2716 		 * hardware is done with a descriptor by checking the
   2717 		 * done bit in the following descriptor and the address
   2718 		 * of the current descriptor the DMA engine is working
   2719 		 * on.  All this is necessary because of our use of
   2720 		 * a self-linked list to avoid rx overruns.
   2721 		 */
   2722 		status = ath_hal_rxprocdesc(ah, ds,
   2723 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
   2724 #ifdef AR_DEBUG
   2725 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
   2726 			ath_printrxbuf(bf, status == HAL_OK);
   2727 #endif
   2728 		if (status == HAL_EINPROGRESS)
   2729 			break;
   2730 		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
   2731 		if (ds->ds_rxstat.rs_more) {
   2732 			/*
   2733 			 * Frame spans multiple descriptors; this
   2734 			 * cannot happen yet as we don't support
   2735 			 * jumbograms.  If not in monitor mode,
   2736 			 * discard the frame.
   2737 			 */
   2738 			if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   2739 				sc->sc_stats.ast_rx_toobig++;
   2740 				goto rx_next;
   2741 			}
   2742 			/* fall thru for monitor mode handling... */
   2743 		} else if (ds->ds_rxstat.rs_status != 0) {
   2744 			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
   2745 				sc->sc_stats.ast_rx_crcerr++;
   2746 			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
   2747 				sc->sc_stats.ast_rx_fifoerr++;
   2748 			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
   2749 				sc->sc_stats.ast_rx_phyerr++;
   2750 				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
   2751 				sc->sc_stats.ast_rx_phy[phyerr]++;
   2752 				goto rx_next;
   2753 			}
   2754 			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
   2755 				/*
   2756 				 * Decrypt error.  If the error occurred
   2757 				 * because there was no hardware key, then
   2758 				 * let the frame through so the upper layers
   2759 				 * can process it.  This is necessary for 5210
   2760 				 * parts which have no way to setup a ``clear''
   2761 				 * key cache entry.
   2762 				 *
   2763 				 * XXX do key cache faulting
   2764 				 */
   2765 				if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
   2766 					goto rx_accept;
   2767 				sc->sc_stats.ast_rx_badcrypt++;
   2768 			}
   2769 			if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
   2770 				sc->sc_stats.ast_rx_badmic++;
   2771 				/*
   2772 				 * Do minimal work required to hand off
   2773 				 * the 802.11 header for notifcation.
   2774 				 */
   2775 				/* XXX frag's and qos frames */
   2776 				len = ds->ds_rxstat.rs_datalen;
   2777 				if (len >= sizeof (struct ieee80211_frame)) {
   2778 					bus_dmamap_sync(sc->sc_dmat,
   2779 					    bf->bf_dmamap,
   2780 					    0, bf->bf_dmamap->dm_mapsize,
   2781 					    BUS_DMASYNC_POSTREAD);
   2782 					ieee80211_notify_michael_failure(ic,
   2783 					    mtod(m, struct ieee80211_frame *),
   2784 					    sc->sc_splitmic ?
   2785 					        ds->ds_rxstat.rs_keyix-32 :
   2786 					        ds->ds_rxstat.rs_keyix
   2787 					);
   2788 				}
   2789 			}
   2790 			ifp->if_ierrors++;
   2791 			/*
   2792 			 * Reject error frames, we normally don't want
   2793 			 * to see them in monitor mode (in monitor mode
   2794 			 * allow through packets that have crypto problems).
   2795 			 */
   2796 			if ((ds->ds_rxstat.rs_status &~
   2797 				(HAL_RXERR_DECRYPT|HAL_RXERR_MIC)) ||
   2798 			    sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
   2799 				goto rx_next;
   2800 		}
   2801 rx_accept:
   2802 		/*
   2803 		 * Sync and unmap the frame.  At this point we're
   2804 		 * committed to passing the mbuf somewhere so clear
   2805 		 * bf_m; this means a new sk_buff must be allocated
   2806 		 * when the rx descriptor is setup again to receive
   2807 		 * another frame.
   2808 		 */
   2809 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
   2810 		    0, bf->bf_dmamap->dm_mapsize,
   2811 		    BUS_DMASYNC_POSTREAD);
   2812 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   2813 		bf->bf_m = NULL;
   2814 
   2815 		m->m_pkthdr.rcvif = ifp;
   2816 		len = ds->ds_rxstat.rs_datalen;
   2817 		m->m_pkthdr.len = m->m_len = len;
   2818 
   2819 		sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
   2820 
   2821 #if NBPFILTER > 0
   2822 		if (sc->sc_drvbpf) {
   2823 			u_int8_t rix;
   2824 
   2825 			/*
   2826 			 * Discard anything shorter than an ack or cts.
   2827 			 */
   2828 			if (len < IEEE80211_ACK_LEN) {
   2829 				DPRINTF(sc, ATH_DEBUG_RECV,
   2830 					"%s: runt packet %d\n",
   2831 					__func__, len);
   2832 				sc->sc_stats.ast_rx_tooshort++;
   2833 				m_freem(m);
   2834 				goto rx_next;
   2835 			}
   2836 			rix = ds->ds_rxstat.rs_rate;
   2837 			sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
   2838 			sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
   2839 			sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi;
   2840 			sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
   2841 			/* XXX TSF */
   2842 
   2843 			bpf_mtap2(sc->sc_drvbpf,
   2844 				&sc->sc_rx_th, sc->sc_rx_th_len, m);
   2845 		}
   2846 #endif
   2847 
   2848 		/*
   2849 		 * From this point on we assume the frame is at least
   2850 		 * as large as ieee80211_frame_min; verify that.
   2851 		 */
   2852 		if (len < IEEE80211_MIN_LEN) {
   2853 			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
   2854 				__func__, len);
   2855 			sc->sc_stats.ast_rx_tooshort++;
   2856 			m_freem(m);
   2857 			goto rx_next;
   2858 		}
   2859 
   2860 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
   2861 			ieee80211_dump_pkt(mtod(m, caddr_t), len,
   2862 				   sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
   2863 				   ds->ds_rxstat.rs_rssi);
   2864 		}
   2865 
   2866 		m_adj(m, -IEEE80211_CRC_LEN);
   2867 
   2868 		/*
   2869 		 * Locate the node for sender, track state, and then
   2870 		 * pass the (referenced) node up to the 802.11 layer
   2871 		 * for its use.
   2872 		 */
   2873 		ni = ieee80211_find_rxnode(ic,
   2874 			mtod(m, const struct ieee80211_frame_min *));
   2875 
   2876 		/*
   2877 		 * Track rx rssi and do any rx antenna management.
   2878 		 */
   2879 		an = ATH_NODE(ni);
   2880 		ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
   2881 		if (sc->sc_diversity) {
   2882 			/*
   2883 			 * When using fast diversity, change the default rx
   2884 			 * antenna if diversity chooses the other antenna 3
   2885 			 * times in a row.
   2886 			 */
   2887 			if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
   2888 				if (++sc->sc_rxotherant >= 3)
   2889 					ath_setdefantenna(sc,
   2890 						ds->ds_rxstat.rs_antenna);
   2891 			} else
   2892 				sc->sc_rxotherant = 0;
   2893 		}
   2894 
   2895 		/*
   2896 		 * Send frame up for processing.
   2897 		 */
   2898 		type = ieee80211_input(ic, m, ni,
   2899 			ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
   2900 
   2901 		if (sc->sc_softled) {
   2902 			/*
   2903 			 * Blink for any data frame.  Otherwise do a
   2904 			 * heartbeat-style blink when idle.  The latter
   2905 			 * is mainly for station mode where we depend on
   2906 			 * periodic beacon frames to trigger the poll event.
   2907 			 */
   2908 			if (type == IEEE80211_FC0_TYPE_DATA) {
   2909 				sc->sc_rxrate = ds->ds_rxstat.rs_rate;
   2910 				ath_led_event(sc, ATH_LED_RX);
   2911 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
   2912 				ath_led_event(sc, ATH_LED_POLL);
   2913 		}
   2914 
   2915 		/*
   2916 		 * Reclaim node reference.
   2917 		 */
   2918 		ieee80211_free_node(ni);
   2919 rx_next:
   2920 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
   2921 	} while (ath_rxbuf_init(sc, bf) == 0);
   2922 
   2923 	/* rx signal state monitoring */
   2924 	ath_hal_rxmonitor(ah, &ATH_NODE(ic->ic_bss)->an_halstats);
   2925 
   2926 #ifdef __NetBSD__
   2927 	/* XXX Why isn't this necessary in FreeBSD? */
   2928 	if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
   2929 		ath_start(ifp);
   2930 #endif /* __NetBSD__ */
   2931 
   2932 	NET_UNLOCK_GIANT();		/* XXX */
   2933 #undef PA2DESC
   2934 }
   2935 
   2936 /*
   2937  * Setup a h/w transmit queue.
   2938  */
   2939 static struct ath_txq *
   2940 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
   2941 {
   2942 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   2943 	struct ath_hal *ah = sc->sc_ah;
   2944 	HAL_TXQ_INFO qi;
   2945 	int qnum;
   2946 
   2947 	memset(&qi, 0, sizeof(qi));
   2948 	qi.tqi_subtype = subtype;
   2949 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
   2950 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
   2951 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
   2952 	/*
   2953 	 * Enable interrupts only for EOL and DESC conditions.
   2954 	 * We mark tx descriptors to receive a DESC interrupt
   2955 	 * when a tx queue gets deep; otherwise waiting for the
   2956 	 * EOL to reap descriptors.  Note that this is done to
   2957 	 * reduce interrupt load and this only defers reaping
   2958 	 * descriptors, never transmitting frames.  Aside from
   2959 	 * reducing interrupts this also permits more concurrency.
   2960 	 * The only potential downside is if the tx queue backs
   2961 	 * up in which case the top half of the kernel may backup
   2962 	 * due to a lack of tx descriptors.
   2963 	 */
   2964 	qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE | TXQ_FLAG_TXDESCINT_ENABLE;
   2965 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
   2966 	if (qnum == -1) {
   2967 		/*
   2968 		 * NB: don't print a message, this happens
   2969 		 * normally on parts with too few tx queues
   2970 		 */
   2971 		return NULL;
   2972 	}
   2973 	if (qnum >= N(sc->sc_txq)) {
   2974 		device_printf(sc->sc_dev,
   2975 			"hal qnum %u out of range, max %zu!\n",
   2976 			qnum, N(sc->sc_txq));
   2977 		ath_hal_releasetxqueue(ah, qnum);
   2978 		return NULL;
   2979 	}
   2980 	if (!ATH_TXQ_SETUP(sc, qnum)) {
   2981 		struct ath_txq *txq = &sc->sc_txq[qnum];
   2982 
   2983 		txq->axq_qnum = qnum;
   2984 		txq->axq_depth = 0;
   2985 		txq->axq_intrcnt = 0;
   2986 		txq->axq_link = NULL;
   2987 		STAILQ_INIT(&txq->axq_q);
   2988 		ATH_TXQ_LOCK_INIT(sc, txq);
   2989 		sc->sc_txqsetup |= 1<<qnum;
   2990 	}
   2991 	return &sc->sc_txq[qnum];
   2992 #undef N
   2993 }
   2994 
   2995 /*
   2996  * Setup a hardware data transmit queue for the specified
   2997  * access control.  The hal may not support all requested
   2998  * queues in which case it will return a reference to a
   2999  * previously setup queue.  We record the mapping from ac's
   3000  * to h/w queues for use by ath_tx_start and also track
   3001  * the set of h/w queues being used to optimize work in the
   3002  * transmit interrupt handler and related routines.
   3003  */
   3004 static int
   3005 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
   3006 {
   3007 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   3008 	struct ath_txq *txq;
   3009 
   3010 	if (ac >= N(sc->sc_ac2q)) {
   3011 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
   3012 			ac, N(sc->sc_ac2q));
   3013 		return 0;
   3014 	}
   3015 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
   3016 	if (txq != NULL) {
   3017 		sc->sc_ac2q[ac] = txq;
   3018 		return 1;
   3019 	} else
   3020 		return 0;
   3021 #undef N
   3022 }
   3023 
   3024 /*
   3025  * Update WME parameters for a transmit queue.
   3026  */
   3027 static int
   3028 ath_txq_update(struct ath_softc *sc, int ac)
   3029 {
   3030 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
   3031 #define	ATH_TXOP_TO_US(v)		(v<<5)
   3032 	struct ieee80211com *ic = &sc->sc_ic;
   3033 	struct ath_txq *txq = sc->sc_ac2q[ac];
   3034 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
   3035 	struct ath_hal *ah = sc->sc_ah;
   3036 	HAL_TXQ_INFO qi;
   3037 
   3038 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
   3039 	qi.tqi_aifs = wmep->wmep_aifsn;
   3040 	qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
   3041 	qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
   3042 	qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
   3043 
   3044 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
   3045 		device_printf(sc->sc_dev, "unable to update hardware queue "
   3046 			"parameters for %s traffic!\n",
   3047 			ieee80211_wme_acnames[ac]);
   3048 		return 0;
   3049 	} else {
   3050 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
   3051 		return 1;
   3052 	}
   3053 #undef ATH_TXOP_TO_US
   3054 #undef ATH_EXPONENT_TO_VALUE
   3055 }
   3056 
   3057 /*
   3058  * Callback from the 802.11 layer to update WME parameters.
   3059  */
   3060 static int
   3061 ath_wme_update(struct ieee80211com *ic)
   3062 {
   3063 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   3064 
   3065 	return !ath_txq_update(sc, WME_AC_BE) ||
   3066 	    !ath_txq_update(sc, WME_AC_BK) ||
   3067 	    !ath_txq_update(sc, WME_AC_VI) ||
   3068 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
   3069 }
   3070 
   3071 /*
   3072  * Reclaim resources for a setup queue.
   3073  */
   3074 static void
   3075 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
   3076 {
   3077 
   3078 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
   3079 	ATH_TXQ_LOCK_DESTROY(txq);
   3080 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
   3081 }
   3082 
   3083 /*
   3084  * Reclaim all tx queue resources.
   3085  */
   3086 static void
   3087 ath_tx_cleanup(struct ath_softc *sc)
   3088 {
   3089 	int i;
   3090 
   3091 	ATH_TXBUF_LOCK_DESTROY(sc);
   3092 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   3093 		if (ATH_TXQ_SETUP(sc, i))
   3094 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
   3095 }
   3096 
   3097 /*
   3098  * Defragment an mbuf chain, returning at most maxfrags separate
   3099  * mbufs+clusters.  If this is not possible NULL is returned and
   3100  * the original mbuf chain is left in it's present (potentially
   3101  * modified) state.  We use two techniques: collapsing consecutive
   3102  * mbufs and replacing consecutive mbufs by a cluster.
   3103  */
   3104 static struct mbuf *
   3105 ath_defrag(struct mbuf *m0, int how, int maxfrags)
   3106 {
   3107 	struct mbuf *m, *n, *n2, **prev;
   3108 	u_int curfrags;
   3109 
   3110 	/*
   3111 	 * Calculate the current number of frags.
   3112 	 */
   3113 	curfrags = 0;
   3114 	for (m = m0; m != NULL; m = m->m_next)
   3115 		curfrags++;
   3116 	/*
   3117 	 * First, try to collapse mbufs.  Note that we always collapse
   3118 	 * towards the front so we don't need to deal with moving the
   3119 	 * pkthdr.  This may be suboptimal if the first mbuf has much
   3120 	 * less data than the following.
   3121 	 */
   3122 	m = m0;
   3123 again:
   3124 	for (;;) {
   3125 		n = m->m_next;
   3126 		if (n == NULL)
   3127 			break;
   3128 		if ((m->m_flags & M_RDONLY) == 0 &&
   3129 		    n->m_len < M_TRAILINGSPACE(m)) {
   3130 			bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
   3131 				n->m_len);
   3132 			m->m_len += n->m_len;
   3133 			m->m_next = n->m_next;
   3134 			m_free(n);
   3135 			if (--curfrags <= maxfrags)
   3136 				return m0;
   3137 		} else
   3138 			m = n;
   3139 	}
   3140 	KASSERT(maxfrags > 1,
   3141 		("maxfrags %u, but normal collapse failed", maxfrags));
   3142 	/*
   3143 	 * Collapse consecutive mbufs to a cluster.
   3144 	 */
   3145 	prev = &m0->m_next;		/* NB: not the first mbuf */
   3146 	while ((n = *prev) != NULL) {
   3147 		if ((n2 = n->m_next) != NULL &&
   3148 		    n->m_len + n2->m_len < MCLBYTES) {
   3149 			m = m_getcl(how, MT_DATA, 0);
   3150 			if (m == NULL)
   3151 				goto bad;
   3152 			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
   3153 			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
   3154 				n2->m_len);
   3155 			m->m_len = n->m_len + n2->m_len;
   3156 			m->m_next = n2->m_next;
   3157 			*prev = m;
   3158 			m_free(n);
   3159 			m_free(n2);
   3160 			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
   3161 				return m0;
   3162 			/*
   3163 			 * Still not there, try the normal collapse
   3164 			 * again before we allocate another cluster.
   3165 			 */
   3166 			goto again;
   3167 		}
   3168 		prev = &n->m_next;
   3169 	}
   3170 	/*
   3171 	 * No place where we can collapse to a cluster; punt.
   3172 	 * This can occur if, for example, you request 2 frags
   3173 	 * but the packet requires that both be clusters (we
   3174 	 * never reallocate the first mbuf to avoid moving the
   3175 	 * packet header).
   3176 	 */
   3177 bad:
   3178 	return NULL;
   3179 }
   3180 
   3181 static int
   3182 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
   3183     struct mbuf *m0)
   3184 {
   3185 #define	CTS_DURATION \
   3186 	ath_hal_computetxtime(ah, rt, IEEE80211_ACK_LEN, cix, AH_TRUE)
   3187 #define	updateCTSForBursting(_ah, _ds, _txq) \
   3188 	ath_hal_updateCTSForBursting(_ah, _ds, \
   3189 	    _txq->axq_linkbuf != NULL ? _txq->axq_linkbuf->bf_desc : NULL, \
   3190 	    _txq->axq_lastdsWithCTS, _txq->axq_gatingds, \
   3191 	    txopLimit, CTS_DURATION)
   3192 	struct ieee80211com *ic = &sc->sc_ic;
   3193 	struct ath_hal *ah = sc->sc_ah;
   3194 	struct ifnet *ifp = &sc->sc_if;
   3195 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
   3196 	int i, error, iswep, ismcast, keyix, hdrlen, pktlen, try0;
   3197 	u_int8_t rix, txrate, ctsrate;
   3198 	u_int8_t cix = 0xff;		/* NB: silence compiler */
   3199 	struct ath_desc *ds, *ds0;
   3200 	struct ath_txq *txq;
   3201 	struct ieee80211_frame *wh;
   3202 	u_int subtype, flags, ctsduration;
   3203 	HAL_PKT_TYPE atype;
   3204 	const HAL_RATE_TABLE *rt;
   3205 	HAL_BOOL shortPreamble;
   3206 	struct ath_node *an;
   3207 	struct mbuf *m;
   3208 	u_int pri;
   3209 
   3210 	wh = mtod(m0, struct ieee80211_frame *);
   3211 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
   3212 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
   3213 	hdrlen = ieee80211_anyhdrsize(wh);
   3214 	/*
   3215 	 * Packet length must not include any
   3216 	 * pad bytes; deduct them here.
   3217 	 */
   3218 	pktlen = m0->m_pkthdr.len - (hdrlen & 3);
   3219 
   3220 	if (iswep) {
   3221 		const struct ieee80211_cipher *cip;
   3222 		struct ieee80211_key *k;
   3223 
   3224 		/*
   3225 		 * Construct the 802.11 header+trailer for an encrypted
   3226 		 * frame. The only reason this can fail is because of an
   3227 		 * unknown or unsupported cipher/key type.
   3228 		 */
   3229 		k = ieee80211_crypto_encap(ic, ni, m0);
   3230 		if (k == NULL) {
   3231 			/*
   3232 			 * This can happen when the key is yanked after the
   3233 			 * frame was queued.  Just discard the frame; the
   3234 			 * 802.11 layer counts failures and provides
   3235 			 * debugging/diagnostics.
   3236 			 */
   3237 			m_freem(m0);
   3238 			return EIO;
   3239 		}
   3240 		/*
   3241 		 * Adjust the packet + header lengths for the crypto
   3242 		 * additions and calculate the h/w key index.  When
   3243 		 * a s/w mic is done the frame will have had any mic
   3244 		 * added to it prior to entry so skb->len above will
   3245 		 * account for it. Otherwise we need to add it to the
   3246 		 * packet length.
   3247 		 */
   3248 		cip = k->wk_cipher;
   3249 		hdrlen += cip->ic_header;
   3250 		pktlen += cip->ic_header + cip->ic_trailer;
   3251 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0)
   3252 			pktlen += cip->ic_miclen;
   3253 		keyix = k->wk_keyix;
   3254 
   3255 		/* packet header may have moved, reset our local pointer */
   3256 		wh = mtod(m0, struct ieee80211_frame *);
   3257 	} else
   3258 		keyix = HAL_TXKEYIX_INVALID;
   3259 
   3260 	pktlen += IEEE80211_CRC_LEN;
   3261 
   3262 	/*
   3263 	 * Load the DMA map so any coalescing is done.  This
   3264 	 * also calculates the number of descriptors we need.
   3265 	 */
   3266 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
   3267 				     BUS_DMA_NOWAIT);
   3268 	if (error == EFBIG) {
   3269 		/* XXX packet requires too many descriptors */
   3270 		bf->bf_nseg = ATH_TXDESC+1;
   3271 	} else if (error != 0) {
   3272 		sc->sc_stats.ast_tx_busdma++;
   3273 		m_freem(m0);
   3274 		return error;
   3275 	}
   3276 	/*
   3277 	 * Discard null packets and check for packets that
   3278 	 * require too many TX descriptors.  We try to convert
   3279 	 * the latter to a cluster.
   3280 	 */
   3281 	if (error == EFBIG) {		/* too many desc's, linearize */
   3282 		sc->sc_stats.ast_tx_linear++;
   3283 		m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
   3284 		if (m == NULL) {
   3285 			m_freem(m0);
   3286 			sc->sc_stats.ast_tx_nombuf++;
   3287 			return ENOMEM;
   3288 		}
   3289 		m0 = m;
   3290 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
   3291 					     BUS_DMA_NOWAIT);
   3292 		if (error != 0) {
   3293 			sc->sc_stats.ast_tx_busdma++;
   3294 			m_freem(m0);
   3295 			return error;
   3296 		}
   3297 		KASSERT(bf->bf_nseg <= ATH_TXDESC,
   3298 		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
   3299 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
   3300 		sc->sc_stats.ast_tx_nodata++;
   3301 		m_freem(m0);
   3302 		return EIO;
   3303 	}
   3304 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
   3305 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   3306             bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
   3307 	bf->bf_m = m0;
   3308 	bf->bf_node = ni;			/* NB: held reference */
   3309 
   3310 	/* setup descriptors */
   3311 	ds = bf->bf_desc;
   3312 	rt = sc->sc_currates;
   3313 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
   3314 
   3315 	/*
   3316 	 * NB: the 802.11 layer marks whether or not we should
   3317 	 * use short preamble based on the current mode and
   3318 	 * negotiated parameters.
   3319 	 */
   3320 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
   3321 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) {
   3322 		shortPreamble = AH_TRUE;
   3323 		sc->sc_stats.ast_tx_shortpre++;
   3324 	} else {
   3325 		shortPreamble = AH_FALSE;
   3326 	}
   3327 
   3328 	an = ATH_NODE(ni);
   3329 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
   3330 	/*
   3331 	 * Calculate Atheros packet type from IEEE80211 packet header,
   3332 	 * setup for rate calculations, and select h/w transmit queue.
   3333 	 */
   3334 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
   3335 	case IEEE80211_FC0_TYPE_MGT:
   3336 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   3337 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
   3338 			atype = HAL_PKT_TYPE_BEACON;
   3339 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
   3340 			atype = HAL_PKT_TYPE_PROBE_RESP;
   3341 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
   3342 			atype = HAL_PKT_TYPE_ATIM;
   3343 		else
   3344 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
   3345 		rix = 0;			/* XXX lowest rate */
   3346 		try0 = ATH_TXMAXTRY;
   3347 		if (shortPreamble)
   3348 			txrate = an->an_tx_mgtratesp;
   3349 		else
   3350 			txrate = an->an_tx_mgtrate;
   3351 		/* NB: force all management frames to highest queue */
   3352 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
   3353 			/* NB: force all management frames to highest queue */
   3354 			pri = WME_AC_VO;
   3355 		} else
   3356 			pri = WME_AC_BE;
   3357 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
   3358 		break;
   3359 	case IEEE80211_FC0_TYPE_CTL:
   3360 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
   3361 		rix = 0;			/* XXX lowest rate */
   3362 		try0 = ATH_TXMAXTRY;
   3363 		if (shortPreamble)
   3364 			txrate = an->an_tx_mgtratesp;
   3365 		else
   3366 			txrate = an->an_tx_mgtrate;
   3367 		/* NB: force all ctl frames to highest queue */
   3368 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
   3369 			/* NB: force all ctl frames to highest queue */
   3370 			pri = WME_AC_VO;
   3371 		} else
   3372 			pri = WME_AC_BE;
   3373 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
   3374 		break;
   3375 	case IEEE80211_FC0_TYPE_DATA:
   3376 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
   3377 		/*
   3378 		 * Data frames; consult the rate control module for
   3379 		 * unicast frames.  Send multicast frames at the
   3380 		 * lowest rate.
   3381 		 */
   3382 		if (!ismcast) {
   3383 			ath_rate_findrate(sc, an, shortPreamble, pktlen,
   3384 				&rix, &try0, &txrate);
   3385 		} else {
   3386 			rix = 0;
   3387 			try0 = ATH_TXMAXTRY;
   3388 			txrate = an->an_tx_mgtrate;
   3389 		}
   3390 		sc->sc_txrate = txrate;			/* for LED blinking */
   3391 		/*
   3392 		 * Default all non-QoS traffic to the background queue.
   3393 		 */
   3394 		if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
   3395 			pri = M_WME_GETAC(m0);
   3396 			if (cap->cap_wmeParams[pri].wmep_noackPolicy) {
   3397 				flags |= HAL_TXDESC_NOACK;
   3398 				sc->sc_stats.ast_tx_noack++;
   3399 			}
   3400 		} else
   3401 			pri = WME_AC_BE;
   3402 		break;
   3403 	default:
   3404 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
   3405 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
   3406 		/* XXX statistic */
   3407 		m_freem(m0);
   3408 		return EIO;
   3409 	}
   3410 	txq = sc->sc_ac2q[pri];
   3411 
   3412 	/*
   3413 	 * When servicing one or more stations in power-save mode
   3414 	 * multicast frames must be buffered until after the beacon.
   3415 	 * We use the CAB queue for that.
   3416 	 */
   3417 	if (ismcast && ic->ic_ps_sta) {
   3418 		txq = sc->sc_cabq;
   3419 		/* XXX? more bit in 802.11 frame header */
   3420 	}
   3421 
   3422 	/*
   3423 	 * Calculate miscellaneous flags.
   3424 	 */
   3425 	if (ismcast) {
   3426 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
   3427 		sc->sc_stats.ast_tx_noack++;
   3428 	} else if (pktlen > ic->ic_rtsthreshold) {
   3429 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
   3430 		cix = rt->info[rix].controlRate;
   3431 		sc->sc_stats.ast_tx_rts++;
   3432 	}
   3433 
   3434 	/*
   3435 	 * If 802.11g protection is enabled, determine whether
   3436 	 * to use RTS/CTS or just CTS.  Note that this is only
   3437 	 * done for OFDM unicast frames.
   3438 	 */
   3439 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
   3440 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
   3441 	    (flags & HAL_TXDESC_NOACK) == 0) {
   3442 		/* XXX fragments must use CCK rates w/ protection */
   3443 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
   3444 			flags |= HAL_TXDESC_RTSENA;
   3445 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
   3446 			flags |= HAL_TXDESC_CTSENA;
   3447 		cix = rt->info[sc->sc_protrix].controlRate;
   3448 		sc->sc_stats.ast_tx_protect++;
   3449 	}
   3450 
   3451 	/*
   3452 	 * Calculate duration.  This logically belongs in the 802.11
   3453 	 * layer but it lacks sufficient information to calculate it.
   3454 	 */
   3455 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
   3456 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
   3457 		u_int16_t dur;
   3458 		/*
   3459 		 * XXX not right with fragmentation.
   3460 		 */
   3461 		if (shortPreamble)
   3462 			dur = rt->info[rix].spAckDuration;
   3463 		else
   3464 			dur = rt->info[rix].lpAckDuration;
   3465 		*(u_int16_t *)wh->i_dur = htole16(dur);
   3466 	}
   3467 
   3468 	/*
   3469 	 * Calculate RTS/CTS rate and duration if needed.
   3470 	 */
   3471 	ctsduration = 0;
   3472 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
   3473 		/*
   3474 		 * CTS transmit rate is derived from the transmit rate
   3475 		 * by looking in the h/w rate table.  We must also factor
   3476 		 * in whether or not a short preamble is to be used.
   3477 		 */
   3478 		/* NB: cix is set above where RTS/CTS is enabled */
   3479 		KASSERT(cix != 0xff, ("cix not setup"));
   3480 		ctsrate = rt->info[cix].rateCode;
   3481 		/*
   3482 		 * Compute the transmit duration based on the frame
   3483 		 * size and the size of an ACK frame.  We call into the
   3484 		 * HAL to do the computation since it depends on the
   3485 		 * characteristics of the actual PHY being used.
   3486 		 *
   3487 		 * NB: CTS is assumed the same size as an ACK so we can
   3488 		 *     use the precalculated ACK durations.
   3489 		 */
   3490 		if (shortPreamble) {
   3491 			ctsrate |= rt->info[cix].shortPreamble;
   3492 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
   3493 				ctsduration += rt->info[cix].spAckDuration;
   3494 			ctsduration += ath_hal_computetxtime(ah,
   3495 				rt, pktlen, rix, AH_TRUE);
   3496 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
   3497 				ctsduration += rt->info[cix].spAckDuration;
   3498 		} else {
   3499 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
   3500 				ctsduration += rt->info[cix].lpAckDuration;
   3501 			ctsduration += ath_hal_computetxtime(ah,
   3502 				rt, pktlen, rix, AH_FALSE);
   3503 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
   3504 				ctsduration += rt->info[cix].lpAckDuration;
   3505 		}
   3506 		/*
   3507 		 * Must disable multi-rate retry when using RTS/CTS.
   3508 		 */
   3509 		try0 = ATH_TXMAXTRY;
   3510 	} else
   3511 		ctsrate = 0;
   3512 
   3513 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
   3514 		ieee80211_dump_pkt(mtod(m0, caddr_t), m0->m_len,
   3515 			sc->sc_hwmap[txrate].ieeerate, -1);
   3516 
   3517 	if (ic->ic_rawbpf)
   3518 		bpf_mtap(ic->ic_rawbpf, m0);
   3519 	if (sc->sc_drvbpf) {
   3520 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
   3521 		if (iswep)
   3522 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
   3523 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
   3524 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
   3525 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
   3526 
   3527 		bpf_mtap2(sc->sc_drvbpf,
   3528 			&sc->sc_tx_th, sc->sc_tx_th_len, m0);
   3529 	}
   3530 
   3531 	/*
   3532 	 * Determine if a tx interrupt should be generated for
   3533 	 * this descriptor.  We take a tx interrupt to reap
   3534 	 * descriptors when the h/w hits an EOL condition or
   3535 	 * when the descriptor is specifically marked to generate
   3536 	 * an interrupt.  We periodically mark descriptors in this
   3537 	 * way to insure timely replenishing of the supply needed
   3538 	 * for sending frames.  Defering interrupts reduces system
   3539 	 * load and potentially allows more concurrent work to be
   3540 	 * done but if done to aggressively can cause senders to
   3541 	 * backup.
   3542 	 *
   3543 	 * NB: use >= to deal with sc_txintrperiod changing
   3544 	 *     dynamically through sysctl.
   3545 	 */
   3546 	if (flags & HAL_TXDESC_INTREQ) {
   3547 		txq->axq_intrcnt = 0;
   3548 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
   3549 		flags |= HAL_TXDESC_INTREQ;
   3550 		txq->axq_intrcnt = 0;
   3551 	}
   3552 
   3553 	/*
   3554 	 * Formulate first tx descriptor with tx controls.
   3555 	 */
   3556 	/* XXX check return value? */
   3557 	ath_hal_setuptxdesc(ah, ds
   3558 		, pktlen		/* packet length */
   3559 		, hdrlen		/* header length */
   3560 		, atype			/* Atheros packet type */
   3561 		, ni->ni_txpower	/* txpower */
   3562 		, txrate, try0		/* series 0 rate/tries */
   3563 		, keyix			/* key cache index */
   3564 		, sc->sc_txantenna	/* antenna mode */
   3565 		, flags			/* flags */
   3566 		, ctsrate		/* rts/cts rate */
   3567 		, ctsduration		/* rts/cts duration */
   3568 	);
   3569 	/*
   3570 	 * Setup the multi-rate retry state only when we're
   3571 	 * going to use it.  This assumes ath_hal_setuptxdesc
   3572 	 * initializes the descriptors (so we don't have to)
   3573 	 * when the hardware supports multi-rate retry and
   3574 	 * we don't use it.
   3575 	 */
   3576 	if (try0 != ATH_TXMAXTRY)
   3577 		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
   3578 
   3579 	/*
   3580 	 * Fillin the remainder of the descriptor info.
   3581 	 */
   3582 	ds0 = ds;
   3583 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
   3584 		ds->ds_data = bf->bf_segs[i].ds_addr;
   3585 		if (i == bf->bf_nseg - 1)
   3586 			ds->ds_link = 0;
   3587 		else
   3588 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
   3589 		ath_hal_filltxdesc(ah, ds
   3590 			, bf->bf_segs[i].ds_len	/* segment length */
   3591 			, i == 0		/* first segment */
   3592 			, i == bf->bf_nseg - 1	/* last segment */
   3593 			, ds0			/* first descriptor */
   3594 		);
   3595 		DPRINTF(sc, ATH_DEBUG_XMIT,
   3596 			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
   3597 			__func__, i, ds->ds_link, ds->ds_data,
   3598 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
   3599 	}
   3600 	/*
   3601 	 * Insert the frame on the outbound list and
   3602 	 * pass it on to the hardware.
   3603 	 */
   3604 	ATH_TXQ_LOCK(txq);
   3605 	if (flags & (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) {
   3606 		u_int32_t txopLimit = IEEE80211_TXOP_TO_US(
   3607 			cap->cap_wmeParams[pri].wmep_txopLimit);
   3608 		/*
   3609 		 * When bursting, potentially extend the CTS duration
   3610 		 * of a previously queued frame to cover this frame
   3611 		 * and not exceed the txopLimit.  If that can be done
   3612 		 * then disable RTS/CTS on this frame since it's now
   3613 		 * covered (burst extension).  Otherwise we must terminate
   3614 		 * the burst before this frame goes out so as not to
   3615 		 * violate the WME parameters.  All this is complicated
   3616 		 * as we need to update the state of packets on the
   3617 		 * (live) hardware queue.  The logic is buried in the hal
   3618 		 * because it's highly chip-specific.
   3619 		 */
   3620 		if (txopLimit != 0) {
   3621 			sc->sc_stats.ast_tx_ctsburst++;
   3622 			if (updateCTSForBursting(ah, ds0, txq) == 0) {
   3623 				/*
   3624 				 * This frame was not covered by RTS/CTS from
   3625 				 * the previous frame in the burst; update the
   3626 				 * descriptor pointers so this frame is now
   3627 				 * treated as the last frame for extending a
   3628 				 * burst.
   3629 				 */
   3630 				txq->axq_lastdsWithCTS = ds0;
   3631 				/* set gating Desc to final desc */
   3632 				txq->axq_gatingds =
   3633 					(struct ath_desc *)txq->axq_link;
   3634 			} else
   3635 				sc->sc_stats.ast_tx_ctsext++;
   3636 		}
   3637 	}
   3638 	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
   3639 	if (txq->axq_link == NULL) {
   3640 		ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
   3641 		DPRINTF(sc, ATH_DEBUG_XMIT,
   3642 			"%s: TXDP[%u] = %p (%p) depth %d\n", __func__,
   3643 			txq->axq_qnum, (caddr_t)bf->bf_daddr, bf->bf_desc,
   3644 			txq->axq_depth);
   3645 	} else {
   3646 		*txq->axq_link = bf->bf_daddr;
   3647 		DPRINTF(sc, ATH_DEBUG_XMIT,
   3648 			"%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
   3649 			txq->axq_qnum, txq->axq_link,
   3650 			(caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
   3651 	}
   3652 	txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
   3653 	/*
   3654 	 * The CAB queue is started from the SWBA handler since
   3655 	 * frames only go out on DTIM and to avoid possible races.
   3656 	 */
   3657 	if (txq != sc->sc_cabq)
   3658 		ath_hal_txstart(ah, txq->axq_qnum);
   3659 	ATH_TXQ_UNLOCK(txq);
   3660 
   3661 	return 0;
   3662 #undef updateCTSForBursting
   3663 #undef CTS_DURATION
   3664 }
   3665 
   3666 /*
   3667  * Process completed xmit descriptors from the specified queue.
   3668  */
   3669 static void
   3670 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
   3671 {
   3672 	struct ath_hal *ah = sc->sc_ah;
   3673 	struct ieee80211com *ic = &sc->sc_ic;
   3674 	struct ath_buf *bf;
   3675 	struct ath_desc *ds, *ds0;
   3676 	struct ieee80211_node *ni;
   3677 	struct ath_node *an;
   3678 	int sr, lr, pri;
   3679 	HAL_STATUS status;
   3680 
   3681 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
   3682 		__func__, txq->axq_qnum,
   3683 		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
   3684 		txq->axq_link);
   3685 	for (;;) {
   3686 		ATH_TXQ_LOCK(txq);
   3687 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
   3688 		bf = STAILQ_FIRST(&txq->axq_q);
   3689 		if (bf == NULL) {
   3690 			txq->axq_link = NULL;
   3691 			ATH_TXQ_UNLOCK(txq);
   3692 			break;
   3693 		}
   3694 		ds0 = &bf->bf_desc[0];
   3695 		ds = &bf->bf_desc[bf->bf_nseg - 1];
   3696 		status = ath_hal_txprocdesc(ah, ds);
   3697 #ifdef AR_DEBUG
   3698 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
   3699 			ath_printtxbuf(bf, status == HAL_OK);
   3700 #endif
   3701 		if (status == HAL_EINPROGRESS) {
   3702 			ATH_TXQ_UNLOCK(txq);
   3703 			break;
   3704 		}
   3705 		if (ds0 == txq->axq_lastdsWithCTS)
   3706 			txq->axq_lastdsWithCTS = NULL;
   3707 		if (ds == txq->axq_gatingds)
   3708 			txq->axq_gatingds = NULL;
   3709 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
   3710 		ATH_TXQ_UNLOCK(txq);
   3711 
   3712 		ni = bf->bf_node;
   3713 		if (ni != NULL) {
   3714 			an = ATH_NODE(ni);
   3715 			if (ds->ds_txstat.ts_status == 0) {
   3716 				u_int8_t txant = ds->ds_txstat.ts_antenna;
   3717 				sc->sc_stats.ast_ant_tx[txant]++;
   3718 				sc->sc_ant_tx[txant]++;
   3719 				if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
   3720 					sc->sc_stats.ast_tx_altrate++;
   3721 				sc->sc_stats.ast_tx_rssi =
   3722 					ds->ds_txstat.ts_rssi;
   3723 				ATH_RSSI_LPF(an->an_halstats.ns_avgtxrssi,
   3724 					ds->ds_txstat.ts_rssi);
   3725 				pri = M_WME_GETAC(bf->bf_m);
   3726 				if (pri >= WME_AC_VO)
   3727 					ic->ic_wme.wme_hipri_traffic++;
   3728 				ni->ni_inact = ni->ni_inact_reload;
   3729 			} else {
   3730 				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
   3731 					sc->sc_stats.ast_tx_xretries++;
   3732 				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
   3733 					sc->sc_stats.ast_tx_fifoerr++;
   3734 				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
   3735 					sc->sc_stats.ast_tx_filtered++;
   3736 			}
   3737 			sr = ds->ds_txstat.ts_shortretry;
   3738 			lr = ds->ds_txstat.ts_longretry;
   3739 			sc->sc_stats.ast_tx_shortretry += sr;
   3740 			sc->sc_stats.ast_tx_longretry += lr;
   3741 			/*
   3742 			 * Hand the descriptor to the rate control algorithm.
   3743 			 */
   3744 			ath_rate_tx_complete(sc, an, ds, ds0);
   3745 			/*
   3746 			 * Reclaim reference to node.
   3747 			 *
   3748 			 * NB: the node may be reclaimed here if, for example
   3749 			 *     this is a DEAUTH message that was sent and the
   3750 			 *     node was timed out due to inactivity.
   3751 			 */
   3752 			ieee80211_free_node(ni);
   3753 		}
   3754 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   3755 		    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   3756 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   3757 		m_freem(bf->bf_m);
   3758 		bf->bf_m = NULL;
   3759 		bf->bf_node = NULL;
   3760 
   3761 		ATH_TXBUF_LOCK(sc);
   3762 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   3763 		ATH_TXBUF_UNLOCK(sc);
   3764 	}
   3765 }
   3766 
   3767 /*
   3768  * Deferred processing of transmit interrupt; special-cased
   3769  * for a single hardware transmit queue (e.g. 5210 and 5211).
   3770  */
   3771 static void
   3772 ath_tx_proc_q0(void *arg, int npending)
   3773 {
   3774 	struct ath_softc *sc = arg;
   3775 	struct ifnet *ifp = &sc->sc_if;
   3776 
   3777 	ath_tx_processq(sc, &sc->sc_txq[0]);
   3778 	ath_tx_processq(sc, sc->sc_cabq);
   3779 	ifp->if_flags &= ~IFF_OACTIVE;
   3780 	sc->sc_tx_timer = 0;
   3781 
   3782 	if (sc->sc_softled)
   3783 		ath_led_event(sc, ATH_LED_TX);
   3784 
   3785 	ath_start(ifp);
   3786 }
   3787 
   3788 /*
   3789  * Deferred processing of transmit interrupt; special-cased
   3790  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
   3791  */
   3792 static void
   3793 ath_tx_proc_q0123(void *arg, int npending)
   3794 {
   3795 	struct ath_softc *sc = arg;
   3796 	struct ifnet *ifp = &sc->sc_if;
   3797 
   3798 	/*
   3799 	 * Process each active queue.
   3800 	 */
   3801 	ath_tx_processq(sc, &sc->sc_txq[0]);
   3802 	ath_tx_processq(sc, &sc->sc_txq[1]);
   3803 	ath_tx_processq(sc, &sc->sc_txq[2]);
   3804 	ath_tx_processq(sc, &sc->sc_txq[3]);
   3805 	ath_tx_processq(sc, sc->sc_cabq);
   3806 
   3807 	ifp->if_flags &= ~IFF_OACTIVE;
   3808 	sc->sc_tx_timer = 0;
   3809 
   3810 	if (sc->sc_softled)
   3811 		ath_led_event(sc, ATH_LED_TX);
   3812 
   3813 	ath_start(ifp);
   3814 }
   3815 
   3816 /*
   3817  * Deferred processing of transmit interrupt.
   3818  */
   3819 static void
   3820 ath_tx_proc(void *arg, int npending)
   3821 {
   3822 	struct ath_softc *sc = arg;
   3823 	struct ifnet *ifp = &sc->sc_if;
   3824 	int i;
   3825 
   3826 	/*
   3827 	 * Process each active queue.
   3828 	 */
   3829 	/* XXX faster to read ISR_S0_S and ISR_S1_S to determine q's? */
   3830 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   3831 		if (ATH_TXQ_SETUP(sc, i))
   3832 			ath_tx_processq(sc, &sc->sc_txq[i]);
   3833 
   3834 	ifp->if_flags &= ~IFF_OACTIVE;
   3835 	sc->sc_tx_timer = 0;
   3836 
   3837 	if (sc->sc_softled)
   3838 		ath_led_event(sc, ATH_LED_TX);
   3839 
   3840 	ath_start(ifp);
   3841 }
   3842 
   3843 static void
   3844 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
   3845 {
   3846 	struct ath_hal *ah = sc->sc_ah;
   3847 	struct ieee80211_node *ni;
   3848 	struct ath_buf *bf;
   3849 
   3850 	/*
   3851 	 * NB: this assumes output has been stopped and
   3852 	 *     we do not need to block ath_tx_tasklet
   3853 	 */
   3854 	for (;;) {
   3855 		ATH_TXQ_LOCK(txq);
   3856 		bf = STAILQ_FIRST(&txq->axq_q);
   3857 		if (bf == NULL) {
   3858 			txq->axq_link = NULL;
   3859 			ATH_TXQ_UNLOCK(txq);
   3860 			break;
   3861 		}
   3862 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
   3863 		ATH_TXQ_UNLOCK(txq);
   3864 #ifdef AR_DEBUG
   3865 		if (sc->sc_debug & ATH_DEBUG_RESET)
   3866 			ath_printtxbuf(bf,
   3867 				ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
   3868 #endif /* AR_DEBUG */
   3869 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   3870 		m_freem(bf->bf_m);
   3871 		bf->bf_m = NULL;
   3872 		ni = bf->bf_node;
   3873 		bf->bf_node = NULL;
   3874 		if (ni != NULL) {
   3875 			/*
   3876 			 * Reclaim node reference.
   3877 			 */
   3878 			ieee80211_free_node(ni);
   3879 		}
   3880 		ATH_TXBUF_LOCK(sc);
   3881 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   3882 		ATH_TXBUF_UNLOCK(sc);
   3883 	}
   3884 }
   3885 
   3886 static void
   3887 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
   3888 {
   3889 	struct ath_hal *ah = sc->sc_ah;
   3890 
   3891 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
   3892 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
   3893 	    __func__, txq->axq_qnum,
   3894 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
   3895 	    txq->axq_link);
   3896 }
   3897 
   3898 /*
   3899  * Drain the transmit queues and reclaim resources.
   3900  */
   3901 static void
   3902 ath_draintxq(struct ath_softc *sc)
   3903 {
   3904 	struct ath_hal *ah = sc->sc_ah;
   3905 	struct ifnet *ifp = &sc->sc_if;
   3906 	int i;
   3907 
   3908 	/* XXX return value */
   3909 	if (!sc->sc_invalid) {
   3910 		/* don't touch the hardware if marked invalid */
   3911 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
   3912 		DPRINTF(sc, ATH_DEBUG_RESET,
   3913 		    "%s: beacon queue %p\n", __func__,
   3914 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
   3915 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   3916 			if (ATH_TXQ_SETUP(sc, i))
   3917 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
   3918 	}
   3919 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   3920 		if (ATH_TXQ_SETUP(sc, i))
   3921 			ath_tx_draintxq(sc, &sc->sc_txq[i]);
   3922 	ifp->if_flags &= ~IFF_OACTIVE;
   3923 	sc->sc_tx_timer = 0;
   3924 }
   3925 
   3926 /*
   3927  * Disable the receive h/w in preparation for a reset.
   3928  */
   3929 static void
   3930 ath_stoprecv(struct ath_softc *sc)
   3931 {
   3932 #define	PA2DESC(_sc, _pa) \
   3933 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
   3934 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
   3935 	struct ath_hal *ah = sc->sc_ah;
   3936 
   3937 	ath_hal_stoppcurecv(ah);	/* disable PCU */
   3938 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
   3939 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
   3940 	DELAY(3000);			/* 3ms is long enough for 1 frame */
   3941 #ifdef AR_DEBUG
   3942 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
   3943 		struct ath_buf *bf;
   3944 
   3945 		printf("%s: rx queue %p, link %p\n", __func__,
   3946 			(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
   3947 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
   3948 			struct ath_desc *ds = bf->bf_desc;
   3949 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
   3950 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
   3951 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
   3952 				ath_printrxbuf(bf, status == HAL_OK);
   3953 		}
   3954 	}
   3955 #endif
   3956 	sc->sc_rxlink = NULL;		/* just in case */
   3957 #undef PA2DESC
   3958 }
   3959 
   3960 /*
   3961  * Enable the receive h/w following a reset.
   3962  */
   3963 static int
   3964 ath_startrecv(struct ath_softc *sc)
   3965 {
   3966 	struct ath_hal *ah = sc->sc_ah;
   3967 	struct ath_buf *bf;
   3968 
   3969 	sc->sc_rxlink = NULL;
   3970 	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
   3971 		int error = ath_rxbuf_init(sc, bf);
   3972 		if (error != 0) {
   3973 			DPRINTF(sc, ATH_DEBUG_RECV,
   3974 				"%s: ath_rxbuf_init failed %d\n",
   3975 				__func__, error);
   3976 			return error;
   3977 		}
   3978 	}
   3979 
   3980 	bf = STAILQ_FIRST(&sc->sc_rxbuf);
   3981 	ath_hal_putrxbuf(ah, bf->bf_daddr);
   3982 	ath_hal_rxena(ah);		/* enable recv descriptors */
   3983 	ath_mode_init(sc);		/* set filters, etc. */
   3984 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
   3985 	return 0;
   3986 }
   3987 
   3988 /*
   3989  * Update internal state after a channel change.
   3990  */
   3991 static void
   3992 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
   3993 {
   3994 	struct ieee80211com *ic = &sc->sc_ic;
   3995 	enum ieee80211_phymode mode;
   3996 	u_int16_t flags;
   3997 
   3998 	/*
   3999 	 * Change channels and update the h/w rate map
   4000 	 * if we're switching; e.g. 11a to 11b/g.
   4001 	 */
   4002 	mode = ieee80211_chan2mode(ic, chan);
   4003 	if (mode != sc->sc_curmode)
   4004 		ath_setcurmode(sc, mode);
   4005 	/*
   4006 	 * Update BPF state.  NB: ethereal et. al. don't handle
   4007 	 * merged flags well so pick a unique mode for their use.
   4008 	 */
   4009 	if (IEEE80211_IS_CHAN_A(chan))
   4010 		flags = IEEE80211_CHAN_A;
   4011 	/* XXX 11g schizophrenia */
   4012 	else if (IEEE80211_IS_CHAN_G(chan) ||
   4013 	    IEEE80211_IS_CHAN_PUREG(chan))
   4014 		flags = IEEE80211_CHAN_G;
   4015 	else
   4016 		flags = IEEE80211_CHAN_B;
   4017 	if (IEEE80211_IS_CHAN_T(chan))
   4018 		flags |= IEEE80211_CHAN_TURBO;
   4019 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
   4020 		htole16(chan->ic_freq);
   4021 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
   4022 		htole16(flags);
   4023 }
   4024 
   4025 /*
   4026  * Set/change channels.  If the channel is really being changed,
   4027  * it's done by reseting the chip.  To accomplish this we must
   4028  * first cleanup any pending DMA, then restart stuff after a la
   4029  * ath_init.
   4030  */
   4031 static int
   4032 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
   4033 {
   4034 	struct ath_hal *ah = sc->sc_ah;
   4035 	struct ieee80211com *ic = &sc->sc_ic;
   4036 	HAL_CHANNEL hchan;
   4037 
   4038 	/*
   4039 	 * Convert to a HAL channel description with
   4040 	 * the flags constrained to reflect the current
   4041 	 * operating mode.
   4042 	 */
   4043 	hchan.channel = chan->ic_freq;
   4044 	hchan.channelFlags = ath_chan2flags(ic, chan);
   4045 
   4046 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz) -> %u (%u MHz)\n",
   4047 	    __func__,
   4048 	    ath_hal_mhz2ieee(sc->sc_curchan.channel,
   4049 		sc->sc_curchan.channelFlags),
   4050 	    	sc->sc_curchan.channel,
   4051 	    ath_hal_mhz2ieee(hchan.channel, hchan.channelFlags), hchan.channel);
   4052 	if (hchan.channel != sc->sc_curchan.channel ||
   4053 	    hchan.channelFlags != sc->sc_curchan.channelFlags) {
   4054 		HAL_STATUS status;
   4055 
   4056 		/*
   4057 		 * To switch channels clear any pending DMA operations;
   4058 		 * wait long enough for the RX fifo to drain, reset the
   4059 		 * hardware at the new frequency, and then re-enable
   4060 		 * the relevant bits of the h/w.
   4061 		 */
   4062 		ath_hal_intrset(ah, 0);		/* disable interrupts */
   4063 		ath_draintxq(sc);		/* clear pending tx frames */
   4064 		ath_stoprecv(sc);		/* turn off frame recv */
   4065 		if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
   4066 			if_printf(&sc->sc_if, "ath_chan_set: unable to reset "
   4067 				"channel %u (%u Mhz)\n",
   4068 				ieee80211_chan2ieee(ic, chan), chan->ic_freq);
   4069 			return EIO;
   4070 		}
   4071 		sc->sc_curchan = hchan;
   4072 		ath_update_txpow(sc);		/* update tx power state */
   4073 
   4074 		/*
   4075 		 * Re-enable rx framework.
   4076 		 */
   4077 		if (ath_startrecv(sc) != 0) {
   4078 			if_printf(&sc->sc_if,
   4079 				"ath_chan_set: unable to restart recv logic\n");
   4080 			return EIO;
   4081 		}
   4082 
   4083 		/*
   4084 		 * Change channels and update the h/w rate map
   4085 		 * if we're switching; e.g. 11a to 11b/g.
   4086 		 */
   4087 		ic->ic_ibss_chan = chan;
   4088 		ath_chan_change(sc, chan);
   4089 
   4090 		/*
   4091 		 * Re-enable interrupts.
   4092 		 */
   4093 		ath_hal_intrset(ah, sc->sc_imask);
   4094 	}
   4095 	return 0;
   4096 }
   4097 
   4098 static void
   4099 ath_next_scan(void *arg)
   4100 {
   4101 	struct ath_softc *sc = arg;
   4102 	struct ieee80211com *ic = &sc->sc_ic;
   4103 	int s;
   4104 
   4105 	/* don't call ath_start w/o network interrupts blocked */
   4106 	s = splnet();
   4107 
   4108 	if (ic->ic_state == IEEE80211_S_SCAN)
   4109 		ieee80211_next_scan(ic);
   4110 	splx(s);
   4111 }
   4112 
   4113 /*
   4114  * Periodically recalibrate the PHY to account
   4115  * for temperature/environment changes.
   4116  */
   4117 static void
   4118 ath_calibrate(void *arg)
   4119 {
   4120 	struct ath_softc *sc = arg;
   4121 	struct ath_hal *ah = sc->sc_ah;
   4122 
   4123 	sc->sc_stats.ast_per_cal++;
   4124 
   4125 	DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: channel %u/%x\n",
   4126 		__func__, sc->sc_curchan.channel, sc->sc_curchan.channelFlags);
   4127 
   4128 	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
   4129 		/*
   4130 		 * Rfgain is out of bounds, reset the chip
   4131 		 * to load new gain values.
   4132 		 */
   4133 		sc->sc_stats.ast_per_rfgain++;
   4134 		ath_reset(&sc->sc_if);
   4135 	}
   4136 	if (!ath_hal_calibrate(ah, &sc->sc_curchan)) {
   4137 		DPRINTF(sc, ATH_DEBUG_ANY,
   4138 			"%s: calibration of channel %u failed\n",
   4139 			__func__, sc->sc_curchan.channel);
   4140 		sc->sc_stats.ast_per_calfail++;
   4141 	}
   4142 	callout_reset(&sc->sc_cal_ch, ath_calinterval * hz, ath_calibrate, sc);
   4143 }
   4144 
   4145 static int
   4146 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
   4147 {
   4148 	struct ifnet *ifp = ic->ic_ifp;
   4149 	struct ath_softc *sc = ifp->if_softc;
   4150 	struct ath_hal *ah = sc->sc_ah;
   4151 	struct ieee80211_node *ni;
   4152 	int i, error;
   4153 	const u_int8_t *bssid;
   4154 	u_int32_t rfilt;
   4155 	static const HAL_LED_STATE leds[] = {
   4156 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
   4157 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
   4158 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
   4159 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
   4160 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
   4161 	};
   4162 
   4163 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
   4164 		ieee80211_state_name[ic->ic_state],
   4165 		ieee80211_state_name[nstate]);
   4166 
   4167 	callout_stop(&sc->sc_scan_ch);
   4168 	callout_stop(&sc->sc_cal_ch);
   4169 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
   4170 
   4171 	if (nstate == IEEE80211_S_INIT) {
   4172 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
   4173 		/*
   4174 		 * NB: disable interrupts so we don't rx frames.
   4175 		 */
   4176 		ath_hal_intrset(ah, sc->sc_imask &~ ~HAL_INT_GLOBAL);
   4177 		/*
   4178 		 * Notify the rate control algorithm.
   4179 		 */
   4180 		ath_rate_newstate(sc, nstate);
   4181 		goto done;
   4182 	}
   4183 	ni = ic->ic_bss;
   4184 	error = ath_chan_set(sc, ni->ni_chan);
   4185 	if (error != 0)
   4186 		goto bad;
   4187 	rfilt = ath_calcrxfilter(sc, nstate);
   4188 	if (nstate == IEEE80211_S_SCAN)
   4189 		bssid = ifp->if_broadcastaddr;
   4190 	else
   4191 		bssid = ni->ni_bssid;
   4192 	ath_hal_setrxfilter(ah, rfilt);
   4193 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
   4194 		 __func__, rfilt, ether_sprintf(bssid));
   4195 
   4196 	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
   4197 		ath_hal_setassocid(ah, bssid, ni->ni_associd);
   4198 	else
   4199 		ath_hal_setassocid(ah, bssid, 0);
   4200 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
   4201 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
   4202 			if (ath_hal_keyisvalid(ah, i))
   4203 				ath_hal_keysetmac(ah, i, bssid);
   4204 	}
   4205 
   4206 	/*
   4207 	 * Notify the rate control algorithm so rates
   4208 	 * are setup should ath_beacon_alloc be called.
   4209 	 */
   4210 	ath_rate_newstate(sc, nstate);
   4211 
   4212 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
   4213 		/* nothing to do */;
   4214 	} else if (nstate == IEEE80211_S_RUN) {
   4215 		DPRINTF(sc, ATH_DEBUG_STATE,
   4216 			"%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
   4217 			"capinfo=0x%04x chan=%d\n"
   4218 			 , __func__
   4219 			 , ic->ic_flags
   4220 			 , ni->ni_intval
   4221 			 , ether_sprintf(ni->ni_bssid)
   4222 			 , ni->ni_capinfo
   4223 			 , ieee80211_chan2ieee(ic, ni->ni_chan));
   4224 
   4225 		/*
   4226 		 * Allocate and setup the beacon frame for AP or adhoc mode.
   4227 		 */
   4228 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
   4229 		    ic->ic_opmode == IEEE80211_M_IBSS) {
   4230 			/*
   4231 			 * Stop any previous beacon DMA.  This may be
   4232 			 * necessary, for example, when an ibss merge
   4233 			 * causes reconfiguration; there will be a state
   4234 			 * transition from RUN->RUN that means we may
   4235 			 * be called with beacon transmission active.
   4236 			 */
   4237 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
   4238 			ath_beacon_free(sc);
   4239 			error = ath_beacon_alloc(sc, ni);
   4240 			if (error != 0)
   4241 				goto bad;
   4242 		}
   4243 
   4244 		/*
   4245 		 * Configure the beacon and sleep timers.
   4246 		 */
   4247 		ath_beacon_config(sc);
   4248 	} else {
   4249 		ath_hal_intrset(ah,
   4250 			sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
   4251 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
   4252 	}
   4253 done:
   4254 	/*
   4255 	 * Invoke the parent method to complete the work.
   4256 	 */
   4257 	error = sc->sc_newstate(ic, nstate, arg);
   4258 	/*
   4259 	 * Finally, start any timers.
   4260 	 */
   4261 	if (nstate == IEEE80211_S_RUN) {
   4262 		/* start periodic recalibration timer */
   4263 		callout_reset(&sc->sc_cal_ch, ath_calinterval * hz,
   4264 			ath_calibrate, sc);
   4265 	} else if (nstate == IEEE80211_S_SCAN) {
   4266 		/* start ap/neighbor scan timer */
   4267 		callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
   4268 			ath_next_scan, sc);
   4269 	}
   4270 bad:
   4271 	return error;
   4272 }
   4273 
   4274 /*
   4275  * Setup driver-specific state for a newly associated node.
   4276  * Note that we're called also on a re-associate, the isnew
   4277  * param tells us if this is the first time or not.
   4278  */
   4279 static void
   4280 ath_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
   4281 {
   4282 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   4283 
   4284 	ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
   4285 }
   4286 
   4287 static int
   4288 ath_getchannels(struct ath_softc *sc, u_int cc,
   4289 	HAL_BOOL outdoor, HAL_BOOL xchanmode)
   4290 {
   4291 	struct ieee80211com *ic = &sc->sc_ic;
   4292 	struct ifnet *ifp = &sc->sc_if;
   4293 	struct ath_hal *ah = sc->sc_ah;
   4294 	HAL_CHANNEL *chans;
   4295 	int i, ix, nchan;
   4296 
   4297 	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
   4298 			M_TEMP, M_NOWAIT);
   4299 	if (chans == NULL) {
   4300 		if_printf(ifp, "unable to allocate channel table\n");
   4301 		return ENOMEM;
   4302 	}
   4303 	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
   4304 	    cc, HAL_MODE_ALL, outdoor, xchanmode)) {
   4305 		u_int32_t rd;
   4306 
   4307 		ath_hal_getregdomain(ah, &rd);
   4308 		if_printf(ifp, "unable to collect channel list from hal; "
   4309 			"regdomain likely %u country code %u\n", rd, cc);
   4310 		free(chans, M_TEMP);
   4311 		return EINVAL;
   4312 	}
   4313 
   4314 	/*
   4315 	 * Convert HAL channels to ieee80211 ones and insert
   4316 	 * them in the table according to their channel number.
   4317 	 */
   4318 	for (i = 0; i < nchan; i++) {
   4319 		HAL_CHANNEL *c = &chans[i];
   4320 		ix = ath_hal_mhz2ieee(c->channel, c->channelFlags);
   4321 		if (ix > IEEE80211_CHAN_MAX) {
   4322 			if_printf(ifp, "bad hal channel %u (%u/%x) ignored\n",
   4323 				ix, c->channel, c->channelFlags);
   4324 			continue;
   4325 		}
   4326 		DPRINTF(sc, ATH_DEBUG_ANY,
   4327 		    "%s: HAL channel %d/%d freq %d flags %#04x idx %d\n",
   4328 		    sc->sc_dev.dv_xname, i, nchan, c->channel, c->channelFlags,
   4329 		    ix);
   4330 		/* NB: flags are known to be compatible */
   4331 		if (ic->ic_channels[ix].ic_freq == 0) {
   4332 			ic->ic_channels[ix].ic_freq = c->channel;
   4333 			ic->ic_channels[ix].ic_flags = c->channelFlags;
   4334 		} else {
   4335 			/* channels overlap; e.g. 11g and 11b */
   4336 			ic->ic_channels[ix].ic_flags |= c->channelFlags;
   4337 		}
   4338 	}
   4339 	free(chans, M_TEMP);
   4340 	return 0;
   4341 }
   4342 
   4343 static void
   4344 ath_led_done(void *arg)
   4345 {
   4346 	struct ath_softc *sc = arg;
   4347 
   4348 	sc->sc_blinking = 0;
   4349 }
   4350 
   4351 /*
   4352  * Turn the LED off: flip the pin and then set a timer so no
   4353  * update will happen for the specified duration.
   4354  */
   4355 static void
   4356 ath_led_off(void *arg)
   4357 {
   4358 	struct ath_softc *sc = arg;
   4359 
   4360 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
   4361 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
   4362 }
   4363 
   4364 /*
   4365  * Blink the LED according to the specified on/off times.
   4366  */
   4367 static void
   4368 ath_led_blink(struct ath_softc *sc, int on, int off)
   4369 {
   4370 	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
   4371 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
   4372 	sc->sc_blinking = 1;
   4373 	sc->sc_ledoff = off;
   4374 	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
   4375 }
   4376 
   4377 static void
   4378 ath_led_event(struct ath_softc *sc, int event)
   4379 {
   4380 
   4381 	sc->sc_ledevent = ticks;	/* time of last event */
   4382 	if (sc->sc_blinking)		/* don't interrupt active blink */
   4383 		return;
   4384 	switch (event) {
   4385 	case ATH_LED_POLL:
   4386 		ath_led_blink(sc, sc->sc_hwmap[0].ledon,
   4387 			sc->sc_hwmap[0].ledoff);
   4388 		break;
   4389 	case ATH_LED_TX:
   4390 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
   4391 			sc->sc_hwmap[sc->sc_txrate].ledoff);
   4392 		break;
   4393 	case ATH_LED_RX:
   4394 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
   4395 			sc->sc_hwmap[sc->sc_rxrate].ledoff);
   4396 		break;
   4397 	}
   4398 }
   4399 
   4400 static void
   4401 ath_update_txpow(struct ath_softc *sc)
   4402 {
   4403 	struct ieee80211com *ic = &sc->sc_ic;
   4404 	struct ath_hal *ah = sc->sc_ah;
   4405 	u_int32_t txpow;
   4406 
   4407 	if (sc->sc_curtxpow != ic->ic_txpowlimit) {
   4408 		ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
   4409 		/* read back in case value is clamped */
   4410 		ath_hal_gettxpowlimit(ah, &txpow);
   4411 		ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
   4412 	}
   4413 	/*
   4414 	 * Fetch max tx power level for status requests.
   4415 	 */
   4416 	ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
   4417 	ic->ic_bss->ni_txpower = txpow;
   4418 }
   4419 
   4420 static int
   4421 ath_rate_setup(struct ath_softc *sc, u_int mode)
   4422 {
   4423 	struct ath_hal *ah = sc->sc_ah;
   4424 	struct ieee80211com *ic = &sc->sc_ic;
   4425 	const HAL_RATE_TABLE *rt;
   4426 	struct ieee80211_rateset *rs;
   4427 	int i, maxrates;
   4428 
   4429 	switch (mode) {
   4430 	case IEEE80211_MODE_11A:
   4431 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11A);
   4432 		break;
   4433 	case IEEE80211_MODE_11B:
   4434 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11B);
   4435 		break;
   4436 	case IEEE80211_MODE_11G:
   4437 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11G);
   4438 		break;
   4439 	case IEEE80211_MODE_TURBO_A:
   4440 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_TURBO);
   4441 		break;
   4442 	case IEEE80211_MODE_TURBO_G:
   4443 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_108G);
   4444 		break;
   4445 	default:
   4446 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
   4447 			__func__, mode);
   4448 		return 0;
   4449 	}
   4450 	rt = sc->sc_rates[mode];
   4451 	if (rt == NULL)
   4452 		return 0;
   4453 	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
   4454 		DPRINTF(sc, ATH_DEBUG_ANY,
   4455 			"%s: rate table too small (%u > %u)\n",
   4456 			__func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
   4457 		maxrates = IEEE80211_RATE_MAXSIZE;
   4458 	} else
   4459 		maxrates = rt->rateCount;
   4460 	rs = &ic->ic_sup_rates[mode];
   4461 	for (i = 0; i < maxrates; i++)
   4462 		rs->rs_rates[i] = rt->info[i].dot11Rate;
   4463 	rs->rs_nrates = maxrates;
   4464 	return 1;
   4465 }
   4466 
   4467 static void
   4468 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
   4469 {
   4470 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   4471 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
   4472 	static const struct {
   4473 		u_int		rate;		/* tx/rx 802.11 rate */
   4474 		u_int16_t	timeOn;		/* LED on time (ms) */
   4475 		u_int16_t	timeOff;	/* LED off time (ms) */
   4476 	} blinkrates[] = {
   4477 		{ 108,  40,  10 },
   4478 		{  96,  44,  11 },
   4479 		{  72,  50,  13 },
   4480 		{  48,  57,  14 },
   4481 		{  36,  67,  16 },
   4482 		{  24,  80,  20 },
   4483 		{  22, 100,  25 },
   4484 		{  18, 133,  34 },
   4485 		{  12, 160,  40 },
   4486 		{  10, 200,  50 },
   4487 		{   6, 240,  58 },
   4488 		{   4, 267,  66 },
   4489 		{   2, 400, 100 },
   4490 		{   0, 500, 130 },
   4491 	};
   4492 	const HAL_RATE_TABLE *rt;
   4493 	int i, j;
   4494 
   4495 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
   4496 	rt = sc->sc_rates[mode];
   4497 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
   4498 	for (i = 0; i < rt->rateCount; i++)
   4499 		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
   4500 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
   4501 	for (i = 0; i < 32; i++) {
   4502 		u_int8_t ix = rt->rateCodeToIndex[i];
   4503 		if (ix == 0xff) {
   4504 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
   4505 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
   4506 			continue;
   4507 		}
   4508 		sc->sc_hwmap[i].ieeerate =
   4509 			rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
   4510 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
   4511 		if (rt->info[ix].shortPreamble ||
   4512 		    rt->info[ix].phy == IEEE80211_T_OFDM)
   4513 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
   4514 		/* NB: receive frames include FCS */
   4515 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
   4516 			IEEE80211_RADIOTAP_F_FCS;
   4517 		/* setup blink rate table to avoid per-packet lookup */
   4518 		for (j = 0; j < N(blinkrates)-1; j++)
   4519 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
   4520 				break;
   4521 		/* NB: this uses the last entry if the rate isn't found */
   4522 		/* XXX beware of overlow */
   4523 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
   4524 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
   4525 	}
   4526 	sc->sc_currates = rt;
   4527 	sc->sc_curmode = mode;
   4528 	/*
   4529 	 * All protection frames are transmited at 2Mb/s for
   4530 	 * 11g, otherwise at 1Mb/s.
   4531 	 * XXX select protection rate index from rate table.
   4532 	 */
   4533 	sc->sc_protrix = (mode == IEEE80211_MODE_11G ? 1 : 0);
   4534 	/* NB: caller is responsible for reseting rate control state */
   4535 #undef N
   4536 }
   4537 
   4538 #ifdef AR_DEBUG
   4539 static void
   4540 ath_printrxbuf(struct ath_buf *bf, int done)
   4541 {
   4542 	struct ath_desc *ds;
   4543 	int i;
   4544 
   4545 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
   4546 		printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n",
   4547 		    i, ds, (struct ath_desc *)bf->bf_daddr + i,
   4548 		    ds->ds_link, ds->ds_data,
   4549 		    ds->ds_ctl0, ds->ds_ctl1,
   4550 		    ds->ds_hw[0], ds->ds_hw[1],
   4551 		    !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
   4552 	}
   4553 }
   4554 
   4555 static void
   4556 ath_printtxbuf(struct ath_buf *bf, int done)
   4557 {
   4558 	struct ath_desc *ds;
   4559 	int i;
   4560 
   4561 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
   4562 		printf("T%d (%p %p) %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
   4563 		    i, ds, (struct ath_desc *)bf->bf_daddr + i,
   4564 		    ds->ds_link, ds->ds_data,
   4565 		    ds->ds_ctl0, ds->ds_ctl1,
   4566 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
   4567 		    !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
   4568 	}
   4569 }
   4570 #endif /* AR_DEBUG */
   4571 
   4572 static void
   4573 ath_watchdog(struct ifnet *ifp)
   4574 {
   4575 	struct ath_softc *sc = ifp->if_softc;
   4576 	struct ieee80211com *ic = &sc->sc_ic;
   4577 
   4578 	ifp->if_timer = 0;
   4579 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
   4580 		return;
   4581 	if (sc->sc_tx_timer) {
   4582 		if (--sc->sc_tx_timer == 0) {
   4583 			if_printf(ifp, "device timeout\n");
   4584 			ath_reset(ifp);
   4585 			ifp->if_oerrors++;
   4586 			sc->sc_stats.ast_watchdog++;
   4587 		} else
   4588 			ifp->if_timer = 1;
   4589 	}
   4590 	ieee80211_watchdog(ic);
   4591 }
   4592 
   4593 /*
   4594  * Diagnostic interface to the HAL.  This is used by various
   4595  * tools to do things like retrieve register contents for
   4596  * debugging.  The mechanism is intentionally opaque so that
   4597  * it can change frequently w/o concern for compatiblity.
   4598  */
   4599 static int
   4600 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
   4601 {
   4602 	struct ath_hal *ah = sc->sc_ah;
   4603 	u_int id = ad->ad_id & ATH_DIAG_ID;
   4604 	void *indata = NULL;
   4605 	void *outdata = NULL;
   4606 	u_int32_t insize = ad->ad_in_size;
   4607 	u_int32_t outsize = ad->ad_out_size;
   4608 	int error = 0;
   4609 
   4610 	if (ad->ad_id & ATH_DIAG_IN) {
   4611 		/*
   4612 		 * Copy in data.
   4613 		 */
   4614 		indata = malloc(insize, M_TEMP, M_NOWAIT);
   4615 		if (indata == NULL) {
   4616 			error = ENOMEM;
   4617 			goto bad;
   4618 		}
   4619 		error = copyin(ad->ad_in_data, indata, insize);
   4620 		if (error)
   4621 			goto bad;
   4622 	}
   4623 	if (ad->ad_id & ATH_DIAG_DYN) {
   4624 		/*
   4625 		 * Allocate a buffer for the results (otherwise the HAL
   4626 		 * returns a pointer to a buffer where we can read the
   4627 		 * results).  Note that we depend on the HAL leaving this
   4628 		 * pointer for us to use below in reclaiming the buffer;
   4629 		 * may want to be more defensive.
   4630 		 */
   4631 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
   4632 		if (outdata == NULL) {
   4633 			error = ENOMEM;
   4634 			goto bad;
   4635 		}
   4636 	}
   4637 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
   4638 		if (outsize < ad->ad_out_size)
   4639 			ad->ad_out_size = outsize;
   4640 		if (outdata != NULL)
   4641 			error = copyout(outdata, ad->ad_out_data,
   4642 					ad->ad_out_size);
   4643 	} else {
   4644 		error = EINVAL;
   4645 	}
   4646 bad:
   4647 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
   4648 		free(indata, M_TEMP);
   4649 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
   4650 		free(outdata, M_TEMP);
   4651 	return error;
   4652 }
   4653 
   4654 static int
   4655 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
   4656 {
   4657 #define	IS_RUNNING(ifp) \
   4658 	((ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP))
   4659 	struct ath_softc *sc = ifp->if_softc;
   4660 	struct ieee80211com *ic = &sc->sc_ic;
   4661 	struct ifreq *ifr = (struct ifreq *)data;
   4662 	int error = 0;
   4663 
   4664 	ATH_LOCK(sc);
   4665 	switch (cmd) {
   4666 	case SIOCSIFFLAGS:
   4667 		if (IS_RUNNING(ifp)) {
   4668 			/*
   4669 			 * To avoid rescanning another access point,
   4670 			 * do not call ath_init() here.  Instead,
   4671 			 * only reflect promisc mode settings.
   4672 			 */
   4673 			ath_mode_init(sc);
   4674 		} else if (ifp->if_flags & IFF_UP) {
   4675 			/*
   4676 			 * Beware of being called during attach/detach
   4677 			 * to reset promiscuous mode.  In that case we
   4678 			 * will still be marked UP but not RUNNING.
   4679 			 * However trying to re-init the interface
   4680 			 * is the wrong thing to do as we've already
   4681 			 * torn down much of our state.  There's
   4682 			 * probably a better way to deal with this.
   4683 			 */
   4684 			if (!sc->sc_invalid && ic->ic_bss != NULL)
   4685 				ath_init(ifp);	/* XXX lose error */
   4686 		} else
   4687 			ath_stop_locked(ifp, 1);
   4688 		break;
   4689 	case SIOCADDMULTI:
   4690 	case SIOCDELMULTI:
   4691 		error = (cmd == SIOCADDMULTI) ?
   4692 		    ether_addmulti(ifr, &sc->sc_ec) :
   4693 		    ether_delmulti(ifr, &sc->sc_ec);
   4694 		if (error == ENETRESET) {
   4695 			if (ifp->if_flags & IFF_RUNNING)
   4696 				ath_mode_init(sc);
   4697 			error = 0;
   4698 		}
   4699 		break;
   4700 	case SIOCGATHSTATS:
   4701 		/* NB: embed these numbers to get a consistent view */
   4702 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
   4703 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
   4704 		sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
   4705 		ATH_UNLOCK(sc);
   4706 		/*
   4707 		 * NB: Drop the softc lock in case of a page fault;
   4708 		 * we'll accept any potential inconsisentcy in the
   4709 		 * statistics.  The alternative is to copy the data
   4710 		 * to a local structure.
   4711 		 */
   4712 		return copyout(&sc->sc_stats,
   4713 				ifr->ifr_data, sizeof (sc->sc_stats));
   4714 	case SIOCGATHDIAG:
   4715 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
   4716 		break;
   4717 	default:
   4718 		error = ieee80211_ioctl(ic, cmd, data);
   4719 		if (error == ENETRESET) {
   4720 			if (IS_RUNNING(ifp) &&
   4721 			    ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
   4722 				ath_init(ifp);	/* XXX lose error */
   4723 			error = 0;
   4724 		}
   4725 		if (error == ERESTART)
   4726 			error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0;
   4727 		break;
   4728 	}
   4729 	ATH_UNLOCK(sc);
   4730 	return error;
   4731 #undef IS_RUNNING
   4732 }
   4733 
   4734 static void
   4735 ath_bpfattach(struct ath_softc *sc)
   4736 {
   4737 	struct ifnet *ifp = &sc->sc_if;
   4738 
   4739 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
   4740 		sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
   4741 		&sc->sc_drvbpf);
   4742 	/*
   4743 	 * Initialize constant fields.
   4744 	 * XXX make header lengths a multiple of 32-bits so subsequent
   4745 	 *     headers are properly aligned; this is a kludge to keep
   4746 	 *     certain applications happy.
   4747 	 *
   4748 	 * NB: the channel is setup each time we transition to the
   4749 	 *     RUN state to avoid filling it in for each frame.
   4750 	 */
   4751 	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
   4752 	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
   4753 	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
   4754 
   4755 	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
   4756 	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
   4757 	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
   4758 }
   4759 
   4760 /*
   4761  * Announce various information on device/driver attach.
   4762  */
   4763 static void
   4764 ath_announce(struct ath_softc *sc)
   4765 {
   4766 #define	HAL_MODE_DUALBAND	(HAL_MODE_11A|HAL_MODE_11B)
   4767 	struct ifnet *ifp = &sc->sc_if;
   4768 	struct ath_hal *ah = sc->sc_ah;
   4769 	u_int modes, cc;
   4770 
   4771 	if_printf(ifp, "mac %d.%d phy %d.%d",
   4772 		ah->ah_macVersion, ah->ah_macRev,
   4773 		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
   4774 	/*
   4775 	 * Print radio revision(s).  We check the wireless modes
   4776 	 * to avoid falsely printing revs for inoperable parts.
   4777 	 * Dual-band radio revs are returned in the 5Ghz rev number.
   4778 	 */
   4779 	ath_hal_getcountrycode(ah, &cc);
   4780 	modes = ath_hal_getwirelessmodes(ah, cc);
   4781 	if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
   4782 		if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
   4783 			printf(" 5ghz radio %d.%d 2ghz radio %d.%d",
   4784 				ah->ah_analog5GhzRev >> 4,
   4785 				ah->ah_analog5GhzRev & 0xf,
   4786 				ah->ah_analog2GhzRev >> 4,
   4787 				ah->ah_analog2GhzRev & 0xf);
   4788 		else
   4789 			printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
   4790 				ah->ah_analog5GhzRev & 0xf);
   4791 	} else
   4792 		printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
   4793 			ah->ah_analog5GhzRev & 0xf);
   4794 	printf("\n");
   4795 	if (bootverbose) {
   4796 		int i;
   4797 		for (i = 0; i <= WME_AC_VO; i++) {
   4798 			struct ath_txq *txq = sc->sc_ac2q[i];
   4799 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
   4800 				txq->axq_qnum, ieee80211_wme_acnames[i]);
   4801 		}
   4802 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
   4803 			sc->sc_cabq->axq_qnum);
   4804 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
   4805 	}
   4806 #undef HAL_MODE_DUALBAND
   4807 }
   4808