ath.c revision 1.53.2.1 1 /* $NetBSD: ath.c,v 1.53.2.1 2006/06/21 15:02:53 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15 * redistribution must be conditioned upon including a substantially
16 * similar Disclaimer requirement for further binary redistribution.
17 * 3. Neither the names of the above-listed copyright holders nor the names
18 * of any contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * Alternatively, this software may be distributed under the terms of the
22 * GNU General Public License ("GPL") version 2 as published by the Free
23 * Software Foundation.
24 *
25 * NO WARRANTY
26 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
28 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
29 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
30 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
31 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
34 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
36 * THE POSSIBILITY OF SUCH DAMAGES.
37 */
38
39 #include <sys/cdefs.h>
40 #ifdef __FreeBSD__
41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $");
42 #endif
43 #ifdef __NetBSD__
44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.53.2.1 2006/06/21 15:02:53 yamt Exp $");
45 #endif
46
47 /*
48 * Driver for the Atheros Wireless LAN controller.
49 *
50 * This software is derived from work of Atsushi Onoe; his contribution
51 * is greatly appreciated.
52 */
53
54 #include "opt_inet.h"
55
56 #ifdef __NetBSD__
57 #include "bpfilter.h"
58 #endif /* __NetBSD__ */
59
60 #include <sys/param.h>
61 #include <sys/reboot.h>
62 #include <sys/systm.h>
63 #include <sys/types.h>
64 #include <sys/sysctl.h>
65 #include <sys/mbuf.h>
66 #include <sys/malloc.h>
67 #include <sys/lock.h>
68 #include <sys/kernel.h>
69 #include <sys/socket.h>
70 #include <sys/sockio.h>
71 #include <sys/errno.h>
72 #include <sys/callout.h>
73 #include <machine/bus.h>
74 #include <sys/endian.h>
75
76 #include <machine/bus.h>
77
78 #include <net/if.h>
79 #include <net/if_dl.h>
80 #include <net/if_media.h>
81 #include <net/if_types.h>
82 #include <net/if_arp.h>
83 #include <net/if_ether.h>
84 #include <net/if_llc.h>
85
86 #include <net80211/ieee80211_netbsd.h>
87 #include <net80211/ieee80211_var.h>
88
89 #if NBPFILTER > 0
90 #include <net/bpf.h>
91 #endif
92
93 #ifdef INET
94 #include <netinet/in.h>
95 #endif
96
97 #include <sys/device.h>
98 #include <dev/ic/ath_netbsd.h>
99
100 #define AR_DEBUG
101 #include <dev/ic/athvar.h>
102 #include <contrib/dev/ath/ah_desc.h>
103 #include <contrib/dev/ath/ah_devid.h> /* XXX for softled */
104 #include "athhal_options.h"
105
106 #ifdef ATH_TX99_DIAG
107 #include <dev/ath/ath_tx99/ath_tx99.h>
108 #endif
109
110 /* unaligned little endian access */
111 #define LE_READ_2(p) \
112 ((u_int16_t) \
113 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8)))
114 #define LE_READ_4(p) \
115 ((u_int32_t) \
116 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \
117 (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
118
119 enum {
120 ATH_LED_TX,
121 ATH_LED_RX,
122 ATH_LED_POLL,
123 };
124
125 #ifdef AH_NEED_DESC_SWAP
126 #define HTOAH32(x) htole32(x)
127 #else
128 #define HTOAH32(x) (x)
129 #endif
130
131 static int ath_ifinit(struct ifnet *);
132 static int ath_init(struct ath_softc *);
133 static void ath_stop_locked(struct ifnet *, int);
134 static void ath_stop(struct ifnet *, int);
135 static void ath_start(struct ifnet *);
136 static int ath_media_change(struct ifnet *);
137 static void ath_watchdog(struct ifnet *);
138 static int ath_ioctl(struct ifnet *, u_long, caddr_t);
139 static void ath_fatal_proc(void *, int);
140 static void ath_rxorn_proc(void *, int);
141 static void ath_bmiss_proc(void *, int);
142 static void ath_radar_proc(void *, int);
143 static int ath_key_alloc(struct ieee80211com *,
144 const struct ieee80211_key *,
145 ieee80211_keyix *, ieee80211_keyix *);
146 static int ath_key_delete(struct ieee80211com *,
147 const struct ieee80211_key *);
148 static int ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
149 const u_int8_t mac[IEEE80211_ADDR_LEN]);
150 static void ath_key_update_begin(struct ieee80211com *);
151 static void ath_key_update_end(struct ieee80211com *);
152 static void ath_mode_init(struct ath_softc *);
153 static void ath_setslottime(struct ath_softc *);
154 static void ath_updateslot(struct ifnet *);
155 static int ath_beaconq_setup(struct ath_hal *);
156 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
157 static void ath_beacon_setup(struct ath_softc *, struct ath_buf *);
158 static void ath_beacon_proc(void *, int);
159 static void ath_bstuck_proc(void *, int);
160 static void ath_beacon_free(struct ath_softc *);
161 static void ath_beacon_config(struct ath_softc *);
162 static void ath_descdma_cleanup(struct ath_softc *sc,
163 struct ath_descdma *, ath_bufhead *);
164 static int ath_desc_alloc(struct ath_softc *);
165 static void ath_desc_free(struct ath_softc *);
166 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
167 static void ath_node_free(struct ieee80211_node *);
168 static u_int8_t ath_node_getrssi(const struct ieee80211_node *);
169 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
170 static void ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
171 struct ieee80211_node *ni,
172 int subtype, int rssi, u_int32_t rstamp);
173 static void ath_setdefantenna(struct ath_softc *, u_int);
174 static void ath_rx_proc(void *, int);
175 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
176 static int ath_tx_setup(struct ath_softc *, int, int);
177 static int ath_wme_update(struct ieee80211com *);
178 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
179 static void ath_tx_cleanup(struct ath_softc *);
180 static int ath_tx_start(struct ath_softc *, struct ieee80211_node *,
181 struct ath_buf *, struct mbuf *);
182 static void ath_tx_proc_q0(void *, int);
183 static void ath_tx_proc_q0123(void *, int);
184 static void ath_tx_proc(void *, int);
185 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
186 static void ath_draintxq(struct ath_softc *);
187 static void ath_stoprecv(struct ath_softc *);
188 static int ath_startrecv(struct ath_softc *);
189 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
190 static void ath_next_scan(void *);
191 static void ath_calibrate(void *);
192 static int ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
193 static void ath_setup_stationkey(struct ieee80211_node *);
194 static void ath_newassoc(struct ieee80211_node *, int);
195 static int ath_getchannels(struct ath_softc *, u_int cc,
196 HAL_BOOL outdoor, HAL_BOOL xchanmode);
197 static void ath_led_event(struct ath_softc *, int);
198 static void ath_update_txpow(struct ath_softc *);
199
200 static int ath_rate_setup(struct ath_softc *, u_int mode);
201 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
202
203 #ifdef __NetBSD__
204 int ath_enable(struct ath_softc *);
205 void ath_disable(struct ath_softc *);
206 void ath_power(int, void *);
207 #endif
208
209 #if NBPFILTER > 0
210 static void ath_bpfattach(struct ath_softc *);
211 #endif
212 static void ath_announce(struct ath_softc *);
213
214 int ath_dwelltime = 200; /* 5 channels/second */
215 int ath_calinterval = 30; /* calibrate every 30 secs */
216 int ath_outdoor = AH_TRUE; /* outdoor operation */
217 int ath_xchanmode = AH_TRUE; /* enable extended channels */
218 int ath_countrycode = CTRY_DEFAULT; /* country code */
219 int ath_regdomain = 0; /* regulatory domain */
220 int ath_debug = 0;
221 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */
222 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */
223
224 #ifdef AR_DEBUG
225 enum {
226 ATH_DEBUG_XMIT = 0x00000001, /* basic xmit operation */
227 ATH_DEBUG_XMIT_DESC = 0x00000002, /* xmit descriptors */
228 ATH_DEBUG_RECV = 0x00000004, /* basic recv operation */
229 ATH_DEBUG_RECV_DESC = 0x00000008, /* recv descriptors */
230 ATH_DEBUG_RATE = 0x00000010, /* rate control */
231 ATH_DEBUG_RESET = 0x00000020, /* reset processing */
232 ATH_DEBUG_MODE = 0x00000040, /* mode init/setup */
233 ATH_DEBUG_BEACON = 0x00000080, /* beacon handling */
234 ATH_DEBUG_WATCHDOG = 0x00000100, /* watchdog timeout */
235 ATH_DEBUG_INTR = 0x00001000, /* ISR */
236 ATH_DEBUG_TX_PROC = 0x00002000, /* tx ISR proc */
237 ATH_DEBUG_RX_PROC = 0x00004000, /* rx ISR proc */
238 ATH_DEBUG_BEACON_PROC = 0x00008000, /* beacon ISR proc */
239 ATH_DEBUG_CALIBRATE = 0x00010000, /* periodic calibration */
240 ATH_DEBUG_KEYCACHE = 0x00020000, /* key cache management */
241 ATH_DEBUG_STATE = 0x00040000, /* 802.11 state transitions */
242 ATH_DEBUG_NODE = 0x00080000, /* node management */
243 ATH_DEBUG_LED = 0x00100000, /* led management */
244 ATH_DEBUG_FF = 0x00200000, /* fast frames */
245 ATH_DEBUG_DFS = 0x00400000, /* DFS processing */
246 ATH_DEBUG_FATAL = 0x80000000, /* fatal errors */
247 ATH_DEBUG_ANY = 0xffffffff
248 };
249 #define IFF_DUMPPKTS(sc, m) \
250 ((sc->sc_debug & (m)) || \
251 (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
252 #define DPRINTF(sc, m, fmt, ...) do { \
253 if (sc->sc_debug & (m)) \
254 printf(fmt, __VA_ARGS__); \
255 } while (0)
256 #define KEYPRINTF(sc, ix, hk, mac) do { \
257 if (sc->sc_debug & ATH_DEBUG_KEYCACHE) \
258 ath_keyprint(__func__, ix, hk, mac); \
259 } while (0)
260 static void ath_printrxbuf(struct ath_buf *bf, int);
261 static void ath_printtxbuf(struct ath_buf *bf, int);
262 #else
263 #define IFF_DUMPPKTS(sc, m) \
264 ((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
265 #define DPRINTF(m, fmt, ...)
266 #define KEYPRINTF(sc, k, ix, mac)
267 #endif
268
269 #ifdef __NetBSD__
270 int
271 ath_activate(struct device *self, enum devact act)
272 {
273 struct ath_softc *sc = (struct ath_softc *)self;
274 int rv = 0, s;
275
276 s = splnet();
277 switch (act) {
278 case DVACT_ACTIVATE:
279 rv = EOPNOTSUPP;
280 break;
281 case DVACT_DEACTIVATE:
282 if_deactivate(&sc->sc_if);
283 break;
284 }
285 splx(s);
286 return rv;
287 }
288
289 int
290 ath_enable(struct ath_softc *sc)
291 {
292 if (ATH_IS_ENABLED(sc) == 0) {
293 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
294 printf("%s: device enable failed\n",
295 sc->sc_dev.dv_xname);
296 return (EIO);
297 }
298 sc->sc_flags |= ATH_ENABLED;
299 }
300 return (0);
301 }
302
303 void
304 ath_disable(struct ath_softc *sc)
305 {
306 if (!ATH_IS_ENABLED(sc))
307 return;
308 if (sc->sc_disable != NULL)
309 (*sc->sc_disable)(sc);
310 sc->sc_flags &= ~ATH_ENABLED;
311 }
312 #endif /* __NetBSD__ */
313
314 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
315
316 int
317 ath_attach(u_int16_t devid, struct ath_softc *sc)
318 {
319 struct ifnet *ifp = &sc->sc_if;
320 struct ieee80211com *ic = &sc->sc_ic;
321 struct ath_hal *ah = NULL;
322 HAL_STATUS status;
323 int error = 0, i;
324
325 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
326
327 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
328
329 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
330 if (ah == NULL) {
331 if_printf(ifp, "unable to attach hardware; HAL status %u\n",
332 status);
333 error = ENXIO;
334 goto bad;
335 }
336 if (ah->ah_abi != HAL_ABI_VERSION) {
337 if_printf(ifp, "HAL ABI mismatch detected "
338 "(HAL:0x%x != driver:0x%x)\n",
339 ah->ah_abi, HAL_ABI_VERSION);
340 error = ENXIO;
341 goto bad;
342 }
343 sc->sc_ah = ah;
344 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */
345
346 /*
347 * Check if the MAC has multi-rate retry support.
348 * We do this by trying to setup a fake extended
349 * descriptor. MAC's that don't have support will
350 * return false w/o doing anything. MAC's that do
351 * support it will return true w/o doing anything.
352 */
353 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
354
355 /*
356 * Check if the device has hardware counters for PHY
357 * errors. If so we need to enable the MIB interrupt
358 * so we can act on stat triggers.
359 */
360 if (ath_hal_hwphycounters(ah))
361 sc->sc_needmib = 1;
362
363 /*
364 * Get the hardware key cache size.
365 */
366 sc->sc_keymax = ath_hal_keycachesize(ah);
367 if (sc->sc_keymax > ATH_KEYMAX) {
368 if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
369 ATH_KEYMAX, sc->sc_keymax);
370 sc->sc_keymax = ATH_KEYMAX;
371 }
372 /*
373 * Reset the key cache since some parts do not
374 * reset the contents on initial power up.
375 */
376 for (i = 0; i < sc->sc_keymax; i++)
377 ath_hal_keyreset(ah, i);
378 /*
379 * Mark key cache slots associated with global keys
380 * as in use. If we knew TKIP was not to be used we
381 * could leave the +32, +64, and +32+64 slots free.
382 * XXX only for splitmic.
383 */
384 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
385 setbit(sc->sc_keymap, i);
386 setbit(sc->sc_keymap, i+32);
387 setbit(sc->sc_keymap, i+64);
388 setbit(sc->sc_keymap, i+32+64);
389 }
390
391 /*
392 * Collect the channel list using the default country
393 * code and including outdoor channels. The 802.11 layer
394 * is resposible for filtering this list based on settings
395 * like the phy mode.
396 */
397 error = ath_getchannels(sc, ath_countrycode,
398 ath_outdoor, ath_xchanmode);
399 if (error != 0)
400 goto bad;
401
402 /*
403 * Setup rate tables for all potential media types.
404 */
405 ath_rate_setup(sc, IEEE80211_MODE_11A);
406 ath_rate_setup(sc, IEEE80211_MODE_11B);
407 ath_rate_setup(sc, IEEE80211_MODE_11G);
408 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
409 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
410 /* NB: setup here so ath_rate_update is happy */
411 ath_setcurmode(sc, IEEE80211_MODE_11A);
412
413 /*
414 * Allocate tx+rx descriptors and populate the lists.
415 */
416 error = ath_desc_alloc(sc);
417 if (error != 0) {
418 if_printf(ifp, "failed to allocate descriptors: %d\n", error);
419 goto bad;
420 }
421 ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
422 ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE);
423 ATH_CALLOUT_INIT(&sc->sc_dfs_ch, CALLOUT_MPSAFE);
424
425 ATH_TXBUF_LOCK_INIT(sc);
426
427 TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
428 TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
429 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
430 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
431 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
432 TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc);
433
434 /*
435 * Allocate hardware transmit queues: one queue for
436 * beacon frames and one data queue for each QoS
437 * priority. Note that the hal handles reseting
438 * these queues at the needed time.
439 *
440 * XXX PS-Poll
441 */
442 sc->sc_bhalq = ath_beaconq_setup(ah);
443 if (sc->sc_bhalq == (u_int) -1) {
444 if_printf(ifp, "unable to setup a beacon xmit queue!\n");
445 error = EIO;
446 goto bad2;
447 }
448 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
449 if (sc->sc_cabq == NULL) {
450 if_printf(ifp, "unable to setup CAB xmit queue!\n");
451 error = EIO;
452 goto bad2;
453 }
454 /* NB: insure BK queue is the lowest priority h/w queue */
455 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
456 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
457 ieee80211_wme_acnames[WME_AC_BK]);
458 error = EIO;
459 goto bad2;
460 }
461 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
462 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
463 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
464 /*
465 * Not enough hardware tx queues to properly do WME;
466 * just punt and assign them all to the same h/w queue.
467 * We could do a better job of this if, for example,
468 * we allocate queues when we switch from station to
469 * AP mode.
470 */
471 if (sc->sc_ac2q[WME_AC_VI] != NULL)
472 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
473 if (sc->sc_ac2q[WME_AC_BE] != NULL)
474 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
475 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
476 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
477 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
478 }
479
480 /*
481 * Special case certain configurations. Note the
482 * CAB queue is handled by these specially so don't
483 * include them when checking the txq setup mask.
484 */
485 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
486 case 0x01:
487 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
488 break;
489 case 0x0f:
490 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
491 break;
492 default:
493 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
494 break;
495 }
496
497 /*
498 * Setup rate control. Some rate control modules
499 * call back to change the anntena state so expose
500 * the necessary entry points.
501 * XXX maybe belongs in struct ath_ratectrl?
502 */
503 sc->sc_setdefantenna = ath_setdefantenna;
504 sc->sc_rc = ath_rate_attach(sc);
505 if (sc->sc_rc == NULL) {
506 error = EIO;
507 goto bad2;
508 }
509
510 sc->sc_blinking = 0;
511 sc->sc_ledstate = 1;
512 sc->sc_ledon = 0; /* low true */
513 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */
514 ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE);
515 /*
516 * Auto-enable soft led processing for IBM cards and for
517 * 5211 minipci cards. Users can also manually enable/disable
518 * support with a sysctl.
519 */
520 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
521 if (sc->sc_softled) {
522 ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
523 ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
524 }
525
526 ifp->if_softc = sc;
527 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
528 ifp->if_start = ath_start;
529 ifp->if_watchdog = ath_watchdog;
530 ifp->if_ioctl = ath_ioctl;
531 ifp->if_init = ath_ifinit;
532 IFQ_SET_READY(&ifp->if_snd);
533
534 ic->ic_ifp = ifp;
535 ic->ic_reset = ath_reset;
536 ic->ic_newassoc = ath_newassoc;
537 ic->ic_updateslot = ath_updateslot;
538 ic->ic_wme.wme_update = ath_wme_update;
539 /* XXX not right but it's not used anywhere important */
540 ic->ic_phytype = IEEE80211_T_OFDM;
541 ic->ic_opmode = IEEE80211_M_STA;
542 ic->ic_caps =
543 IEEE80211_C_IBSS /* ibss, nee adhoc, mode */
544 | IEEE80211_C_HOSTAP /* hostap mode */
545 | IEEE80211_C_MONITOR /* monitor mode */
546 | IEEE80211_C_SHPREAMBLE /* short preamble supported */
547 | IEEE80211_C_SHSLOT /* short slot time supported */
548 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */
549 ;
550 /*
551 * Query the hal to figure out h/w crypto support.
552 */
553 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
554 ic->ic_caps |= IEEE80211_C_WEP;
555 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
556 ic->ic_caps |= IEEE80211_C_AES;
557 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
558 ic->ic_caps |= IEEE80211_C_AES_CCM;
559 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
560 ic->ic_caps |= IEEE80211_C_CKIP;
561 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
562 ic->ic_caps |= IEEE80211_C_TKIP;
563 /*
564 * Check if h/w does the MIC and/or whether the
565 * separate key cache entries are required to
566 * handle both tx+rx MIC keys.
567 */
568 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
569 ic->ic_caps |= IEEE80211_C_TKIPMIC;
570 if (ath_hal_tkipsplit(ah))
571 sc->sc_splitmic = 1;
572 }
573 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
574 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
575 /*
576 * TPC support can be done either with a global cap or
577 * per-packet support. The latter is not available on
578 * all parts. We're a bit pedantic here as all parts
579 * support a global cap.
580 */
581 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
582 ic->ic_caps |= IEEE80211_C_TXPMGT;
583
584 /*
585 * Mark WME capability only if we have sufficient
586 * hardware queues to do proper priority scheduling.
587 */
588 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
589 ic->ic_caps |= IEEE80211_C_WME;
590 /*
591 * Check for misc other capabilities.
592 */
593 if (ath_hal_hasbursting(ah))
594 ic->ic_caps |= IEEE80211_C_BURST;
595
596 /*
597 * Indicate we need the 802.11 header padded to a
598 * 32-bit boundary for 4-address and QoS frames.
599 */
600 ic->ic_flags |= IEEE80211_F_DATAPAD;
601
602 /*
603 * Query the hal about antenna support.
604 */
605 sc->sc_defant = ath_hal_getdefantenna(ah);
606
607 /*
608 * Not all chips have the VEOL support we want to
609 * use with IBSS beacons; check here for it.
610 */
611 sc->sc_hasveol = ath_hal_hasveol(ah);
612
613 /* get mac address from hardware */
614 ath_hal_getmac(ah, ic->ic_myaddr);
615
616 if_attach(ifp);
617 /* call MI attach routine. */
618 ieee80211_ifattach(ic);
619 /* override default methods */
620 ic->ic_node_alloc = ath_node_alloc;
621 sc->sc_node_free = ic->ic_node_free;
622 ic->ic_node_free = ath_node_free;
623 ic->ic_node_getrssi = ath_node_getrssi;
624 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
625 ic->ic_recv_mgmt = ath_recv_mgmt;
626 sc->sc_newstate = ic->ic_newstate;
627 ic->ic_newstate = ath_newstate;
628 ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
629 ic->ic_crypto.cs_key_alloc = ath_key_alloc;
630 ic->ic_crypto.cs_key_delete = ath_key_delete;
631 ic->ic_crypto.cs_key_set = ath_key_set;
632 ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
633 ic->ic_crypto.cs_key_update_end = ath_key_update_end;
634 /* complete initialization */
635 ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
636
637 #if NBPFILTER > 0
638 ath_bpfattach(sc);
639 #endif
640
641 #ifdef __NetBSD__
642 sc->sc_flags |= ATH_ATTACHED;
643 /*
644 * Make sure the interface is shutdown during reboot.
645 */
646 sc->sc_sdhook = shutdownhook_establish(ath_shutdown, sc);
647 if (sc->sc_sdhook == NULL)
648 printf("%s: WARNING: unable to establish shutdown hook\n",
649 sc->sc_dev.dv_xname);
650 sc->sc_powerhook = powerhook_establish(ath_power, sc);
651 if (sc->sc_powerhook == NULL)
652 printf("%s: WARNING: unable to establish power hook\n",
653 sc->sc_dev.dv_xname);
654 #endif
655
656 /*
657 * Setup dynamic sysctl's now that country code and
658 * regdomain are available from the hal.
659 */
660 ath_sysctlattach(sc);
661
662 ieee80211_announce(ic);
663 ath_announce(sc);
664 return 0;
665 bad2:
666 ath_tx_cleanup(sc);
667 ath_desc_free(sc);
668 bad:
669 if (ah)
670 ath_hal_detach(ah);
671 sc->sc_invalid = 1;
672 return error;
673 }
674
675 int
676 ath_detach(struct ath_softc *sc)
677 {
678 struct ifnet *ifp = &sc->sc_if;
679 int s;
680
681 if ((sc->sc_flags & ATH_ATTACHED) == 0)
682 return (0);
683
684 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
685 __func__, ifp->if_flags);
686
687 s = splnet();
688 ath_stop(ifp, 1);
689 #if NBPFILTER > 0
690 bpfdetach(ifp);
691 #endif
692 /*
693 * NB: the order of these is important:
694 * o call the 802.11 layer before detaching the hal to
695 * insure callbacks into the driver to delete global
696 * key cache entries can be handled
697 * o reclaim the tx queue data structures after calling
698 * the 802.11 layer as we'll get called back to reclaim
699 * node state and potentially want to use them
700 * o to cleanup the tx queues the hal is called, so detach
701 * it last
702 * Other than that, it's straightforward...
703 */
704 ieee80211_ifdetach(&sc->sc_ic);
705 #ifdef ATH_TX99_DIAG
706 if (sc->sc_tx99 != NULL)
707 sc->sc_tx99->detach(sc->sc_tx99);
708 #endif
709 ath_rate_detach(sc->sc_rc);
710 ath_desc_free(sc);
711 ath_tx_cleanup(sc);
712 sysctl_teardown(&sc->sc_sysctllog);
713 ath_hal_detach(sc->sc_ah);
714 if_detach(ifp);
715 splx(s);
716 powerhook_disestablish(sc->sc_powerhook);
717 shutdownhook_disestablish(sc->sc_sdhook);
718
719 return 0;
720 }
721
722 #ifdef __NetBSD__
723 void
724 ath_power(int why, void *arg)
725 {
726 struct ath_softc *sc = arg;
727 int s;
728
729 DPRINTF(sc, ATH_DEBUG_ANY, "ath_power(%d)\n", why);
730
731 s = splnet();
732 switch (why) {
733 case PWR_SUSPEND:
734 case PWR_STANDBY:
735 ath_suspend(sc, why);
736 break;
737 case PWR_RESUME:
738 ath_resume(sc, why);
739 break;
740 case PWR_SOFTSUSPEND:
741 case PWR_SOFTSTANDBY:
742 case PWR_SOFTRESUME:
743 break;
744 }
745 splx(s);
746 }
747 #endif
748
749 void
750 ath_suspend(struct ath_softc *sc, int why)
751 {
752 struct ifnet *ifp = &sc->sc_if;
753
754 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
755 __func__, ifp->if_flags);
756
757 ath_stop(ifp, 1);
758 if (sc->sc_power != NULL)
759 (*sc->sc_power)(sc, why);
760 }
761
762 void
763 ath_resume(struct ath_softc *sc, int why)
764 {
765 struct ifnet *ifp = &sc->sc_if;
766
767 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
768 __func__, ifp->if_flags);
769
770 if (ifp->if_flags & IFF_UP) {
771 ath_init(sc);
772 #if 0
773 (void)ath_intr(sc);
774 #endif
775 if (sc->sc_power != NULL)
776 (*sc->sc_power)(sc, why);
777 if (ifp->if_flags & IFF_RUNNING)
778 ath_start(ifp);
779 }
780 if (sc->sc_softled) {
781 ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
782 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
783 }
784 }
785
786 void
787 ath_shutdown(void *arg)
788 {
789 struct ath_softc *sc = arg;
790
791 ath_stop(&sc->sc_if, 1);
792 }
793
794 /*
795 * Interrupt handler. Most of the actual processing is deferred.
796 */
797 int
798 ath_intr(void *arg)
799 {
800 struct ath_softc *sc = arg;
801 struct ifnet *ifp = &sc->sc_if;
802 struct ath_hal *ah = sc->sc_ah;
803 HAL_INT status;
804
805 if (sc->sc_invalid) {
806 /*
807 * The hardware is not ready/present, don't touch anything.
808 * Note this can happen early on if the IRQ is shared.
809 */
810 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
811 return 0;
812 }
813
814 if (!ath_hal_intrpend(ah)) /* shared irq, not for us */
815 return 0;
816
817 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
818 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
819 __func__, ifp->if_flags);
820 ath_hal_getisr(ah, &status); /* clear ISR */
821 ath_hal_intrset(ah, 0); /* disable further intr's */
822 return 1; /* XXX */
823 }
824 /*
825 * Figure out the reason(s) for the interrupt. Note
826 * that the hal returns a pseudo-ISR that may include
827 * bits we haven't explicitly enabled so we mask the
828 * value to insure we only process bits we requested.
829 */
830 ath_hal_getisr(ah, &status); /* NB: clears ISR too */
831 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
832 status &= sc->sc_imask; /* discard unasked for bits */
833 if (status & HAL_INT_FATAL) {
834 /*
835 * Fatal errors are unrecoverable. Typically
836 * these are caused by DMA errors. Unfortunately
837 * the exact reason is not (presently) returned
838 * by the hal.
839 */
840 sc->sc_stats.ast_hardware++;
841 ath_hal_intrset(ah, 0); /* disable intr's until reset */
842 TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
843 } else if (status & HAL_INT_RXORN) {
844 sc->sc_stats.ast_rxorn++;
845 ath_hal_intrset(ah, 0); /* disable intr's until reset */
846 TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
847 } else {
848 if (status & HAL_INT_SWBA) {
849 /*
850 * Software beacon alert--time to send a beacon.
851 * Handle beacon transmission directly; deferring
852 * this is too slow to meet timing constraints
853 * under load.
854 */
855 ath_beacon_proc(sc, 0);
856 }
857 if (status & HAL_INT_RXEOL) {
858 /*
859 * NB: the hardware should re-read the link when
860 * RXE bit is written, but it doesn't work at
861 * least on older hardware revs.
862 */
863 sc->sc_stats.ast_rxeol++;
864 sc->sc_rxlink = NULL;
865 }
866 if (status & HAL_INT_TXURN) {
867 sc->sc_stats.ast_txurn++;
868 /* bump tx trigger level */
869 ath_hal_updatetxtriglevel(ah, AH_TRUE);
870 }
871 if (status & HAL_INT_RX)
872 TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
873 if (status & HAL_INT_TX)
874 TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
875 if (status & HAL_INT_BMISS) {
876 sc->sc_stats.ast_bmiss++;
877 TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
878 }
879 if (status & HAL_INT_MIB) {
880 sc->sc_stats.ast_mib++;
881 /*
882 * Disable interrupts until we service the MIB
883 * interrupt; otherwise it will continue to fire.
884 */
885 ath_hal_intrset(ah, 0);
886 /*
887 * Let the hal handle the event. We assume it will
888 * clear whatever condition caused the interrupt.
889 */
890 ath_hal_mibevent(ah, &sc->sc_halstats);
891 ath_hal_intrset(ah, sc->sc_imask);
892 }
893 }
894 return 1;
895 }
896
897 /* Swap transmit descriptor.
898 * if AH_NEED_DESC_SWAP flag is not defined this becomes a "null"
899 * function.
900 */
901 static inline void
902 ath_desc_swap(struct ath_desc *ds)
903 {
904 #ifdef AH_NEED_DESC_SWAP
905 ds->ds_link = htole32(ds->ds_link);
906 ds->ds_data = htole32(ds->ds_data);
907 ds->ds_ctl0 = htole32(ds->ds_ctl0);
908 ds->ds_ctl1 = htole32(ds->ds_ctl1);
909 ds->ds_hw[0] = htole32(ds->ds_hw[0]);
910 ds->ds_hw[1] = htole32(ds->ds_hw[1]);
911 #endif
912 }
913
914 static void
915 ath_fatal_proc(void *arg, int pending)
916 {
917 struct ath_softc *sc = arg;
918 struct ifnet *ifp = &sc->sc_if;
919
920 if_printf(ifp, "hardware error; resetting\n");
921 ath_reset(ifp);
922 }
923
924 static void
925 ath_rxorn_proc(void *arg, int pending)
926 {
927 struct ath_softc *sc = arg;
928 struct ifnet *ifp = &sc->sc_if;
929
930 if_printf(ifp, "rx FIFO overrun; resetting\n");
931 ath_reset(ifp);
932 }
933
934 static void
935 ath_bmiss_proc(void *arg, int pending)
936 {
937 struct ath_softc *sc = arg;
938 struct ieee80211com *ic = &sc->sc_ic;
939
940 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
941 KASSERT(ic->ic_opmode == IEEE80211_M_STA,
942 ("unexpect operating mode %u", ic->ic_opmode));
943 if (ic->ic_state == IEEE80211_S_RUN) {
944 u_int64_t lastrx = sc->sc_lastrx;
945 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
946
947 DPRINTF(sc, ATH_DEBUG_BEACON,
948 "%s: tsf %" PRIu64 " lastrx %" PRId64
949 " (%" PRIu64 ") bmiss %u\n",
950 __func__, tsf, tsf - lastrx, lastrx,
951 ic->ic_bmisstimeout*1024);
952 /*
953 * Workaround phantom bmiss interrupts by sanity-checking
954 * the time of our last rx'd frame. If it is within the
955 * beacon miss interval then ignore the interrupt. If it's
956 * truly a bmiss we'll get another interrupt soon and that'll
957 * be dispatched up for processing.
958 */
959 if (tsf - lastrx > ic->ic_bmisstimeout*1024) {
960 NET_LOCK_GIANT();
961 ieee80211_beacon_miss(ic);
962 NET_UNLOCK_GIANT();
963 } else
964 sc->sc_stats.ast_bmiss_phantom++;
965 }
966 }
967
968 static void
969 ath_radar_proc(void *arg, int pending)
970 {
971 struct ath_softc *sc = arg;
972 struct ifnet *ifp = &sc->sc_if;
973 struct ath_hal *ah = sc->sc_ah;
974 HAL_CHANNEL hchan;
975
976 if (ath_hal_procdfs(ah, &hchan)) {
977 if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n",
978 hchan.channel, hchan.channelFlags, hchan.privFlags);
979 /*
980 * Initiate channel change.
981 */
982 /* XXX not yet */
983 }
984 }
985
986 static u_int
987 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
988 {
989 #define N(a) (sizeof(a) / sizeof(a[0]))
990 static const u_int modeflags[] = {
991 0, /* IEEE80211_MODE_AUTO */
992 CHANNEL_A, /* IEEE80211_MODE_11A */
993 CHANNEL_B, /* IEEE80211_MODE_11B */
994 CHANNEL_PUREG, /* IEEE80211_MODE_11G */
995 0, /* IEEE80211_MODE_FH */
996 CHANNEL_ST, /* IEEE80211_MODE_TURBO_A */
997 CHANNEL_108G /* IEEE80211_MODE_TURBO_G */
998 };
999 enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
1000
1001 KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
1002 KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
1003 return modeflags[mode];
1004 #undef N
1005 }
1006
1007 static int
1008 ath_ifinit(struct ifnet *ifp)
1009 {
1010 struct ath_softc *sc = (struct ath_softc *)ifp->if_softc;
1011
1012 return ath_init(sc);
1013 }
1014
1015 static int
1016 ath_init(struct ath_softc *sc)
1017 {
1018 struct ifnet *ifp = &sc->sc_if;
1019 struct ieee80211com *ic = &sc->sc_ic;
1020 struct ath_hal *ah = sc->sc_ah;
1021 HAL_STATUS status;
1022 int error = 0;
1023
1024 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1025 __func__, ifp->if_flags);
1026
1027 ATH_LOCK(sc);
1028
1029 if ((error = ath_enable(sc)) != 0)
1030 return error;
1031
1032 /*
1033 * Stop anything previously setup. This is safe
1034 * whether this is the first time through or not.
1035 */
1036 ath_stop_locked(ifp, 0);
1037
1038 /*
1039 * The basic interface to setting the hardware in a good
1040 * state is ``reset''. On return the hardware is known to
1041 * be powered up and with interrupts disabled. This must
1042 * be followed by initialization of the appropriate bits
1043 * and then setup of the interrupt mask.
1044 */
1045 sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
1046 sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
1047 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
1048 if_printf(ifp, "unable to reset hardware; hal status %u\n",
1049 status);
1050 error = EIO;
1051 goto done;
1052 }
1053
1054 /*
1055 * This is needed only to setup initial state
1056 * but it's best done after a reset.
1057 */
1058 ath_update_txpow(sc);
1059 /*
1060 * Likewise this is set during reset so update
1061 * state cached in the driver.
1062 */
1063 sc->sc_diversity = ath_hal_getdiversity(ah);
1064 sc->sc_calinterval = 1;
1065 sc->sc_caltries = 0;
1066
1067 /*
1068 * Setup the hardware after reset: the key cache
1069 * is filled as needed and the receive engine is
1070 * set going. Frame transmit is handled entirely
1071 * in the frame output path; there's nothing to do
1072 * here except setup the interrupt mask.
1073 */
1074 if ((error = ath_startrecv(sc)) != 0) {
1075 if_printf(ifp, "unable to start recv logic\n");
1076 goto done;
1077 }
1078
1079 /*
1080 * Enable interrupts.
1081 */
1082 sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1083 | HAL_INT_RXEOL | HAL_INT_RXORN
1084 | HAL_INT_FATAL | HAL_INT_GLOBAL;
1085 /*
1086 * Enable MIB interrupts when there are hardware phy counters.
1087 * Note we only do this (at the moment) for station mode.
1088 */
1089 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1090 sc->sc_imask |= HAL_INT_MIB;
1091 ath_hal_intrset(ah, sc->sc_imask);
1092
1093 ifp->if_flags |= IFF_RUNNING;
1094 ic->ic_state = IEEE80211_S_INIT;
1095
1096 /*
1097 * The hardware should be ready to go now so it's safe
1098 * to kick the 802.11 state machine as it's likely to
1099 * immediately call back to us to send mgmt frames.
1100 */
1101 ath_chan_change(sc, ic->ic_curchan);
1102 #ifdef ATH_TX99_DIAG
1103 if (sc->sc_tx99 != NULL)
1104 sc->sc_tx99->start(sc->sc_tx99);
1105 else
1106 #endif
1107 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1108 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
1109 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1110 } else
1111 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1112 done:
1113 ATH_UNLOCK(sc);
1114 return error;
1115 }
1116
1117 static void
1118 ath_stop_locked(struct ifnet *ifp, int disable)
1119 {
1120 struct ath_softc *sc = ifp->if_softc;
1121 struct ieee80211com *ic = &sc->sc_ic;
1122 struct ath_hal *ah = sc->sc_ah;
1123
1124 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1125 __func__, sc->sc_invalid, ifp->if_flags);
1126
1127 ATH_LOCK_ASSERT(sc);
1128 if (ifp->if_flags & IFF_RUNNING) {
1129 /*
1130 * Shutdown the hardware and driver:
1131 * reset 802.11 state machine
1132 * turn off timers
1133 * disable interrupts
1134 * turn off the radio
1135 * clear transmit machinery
1136 * clear receive machinery
1137 * drain and release tx queues
1138 * reclaim beacon resources
1139 * power down hardware
1140 *
1141 * Note that some of this work is not possible if the
1142 * hardware is gone (invalid).
1143 */
1144 #ifdef ATH_TX99_DIAG
1145 if (sc->sc_tx99 != NULL)
1146 sc->sc_tx99->stop(sc->sc_tx99);
1147 #endif
1148 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1149 ifp->if_flags &= ~IFF_RUNNING;
1150 ifp->if_timer = 0;
1151 if (!sc->sc_invalid) {
1152 if (sc->sc_softled) {
1153 callout_stop(&sc->sc_ledtimer);
1154 ath_hal_gpioset(ah, sc->sc_ledpin,
1155 !sc->sc_ledon);
1156 sc->sc_blinking = 0;
1157 }
1158 ath_hal_intrset(ah, 0);
1159 }
1160 ath_draintxq(sc);
1161 if (!sc->sc_invalid) {
1162 ath_stoprecv(sc);
1163 ath_hal_phydisable(ah);
1164 } else
1165 sc->sc_rxlink = NULL;
1166 IF_PURGE(&ifp->if_snd);
1167 ath_beacon_free(sc);
1168 if (disable)
1169 ath_disable(sc);
1170 }
1171 }
1172
1173 static void
1174 ath_stop(struct ifnet *ifp, int disable)
1175 {
1176 struct ath_softc *sc = ifp->if_softc;
1177
1178 ATH_LOCK(sc);
1179 ath_stop_locked(ifp, disable);
1180 if (!sc->sc_invalid) {
1181 /*
1182 * Set the chip in full sleep mode. Note that we are
1183 * careful to do this only when bringing the interface
1184 * completely to a stop. When the chip is in this state
1185 * it must be carefully woken up or references to
1186 * registers in the PCI clock domain may freeze the bus
1187 * (and system). This varies by chip and is mostly an
1188 * issue with newer parts that go to sleep more quickly.
1189 */
1190 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
1191 }
1192 ATH_UNLOCK(sc);
1193 }
1194
1195 /*
1196 * Reset the hardware w/o losing operational state. This is
1197 * basically a more efficient way of doing ath_stop, ath_init,
1198 * followed by state transitions to the current 802.11
1199 * operational state. Used to recover from various errors and
1200 * to reset or reload hardware state.
1201 */
1202 int
1203 ath_reset(struct ifnet *ifp)
1204 {
1205 struct ath_softc *sc = ifp->if_softc;
1206 struct ieee80211com *ic = &sc->sc_ic;
1207 struct ath_hal *ah = sc->sc_ah;
1208 struct ieee80211_channel *c;
1209 HAL_STATUS status;
1210
1211 /*
1212 * Convert to a HAL channel description with the flags
1213 * constrained to reflect the current operating mode.
1214 */
1215 c = ic->ic_curchan;
1216 sc->sc_curchan.channel = c->ic_freq;
1217 sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
1218
1219 ath_hal_intrset(ah, 0); /* disable interrupts */
1220 ath_draintxq(sc); /* stop xmit side */
1221 ath_stoprecv(sc); /* stop recv side */
1222 /* NB: indicate channel change so we do a full reset */
1223 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
1224 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1225 __func__, status);
1226 ath_update_txpow(sc); /* update tx power state */
1227 sc->sc_diversity = ath_hal_getdiversity(ah);
1228 sc->sc_calinterval = 1;
1229 sc->sc_caltries = 0;
1230 if (ath_startrecv(sc) != 0) /* restart recv */
1231 if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1232 /*
1233 * We may be doing a reset in response to an ioctl
1234 * that changes the channel so update any state that
1235 * might change as a result.
1236 */
1237 ath_chan_change(sc, c);
1238 if (ic->ic_state == IEEE80211_S_RUN)
1239 ath_beacon_config(sc); /* restart beacons */
1240 ath_hal_intrset(ah, sc->sc_imask);
1241
1242 ath_start(ifp); /* restart xmit */
1243 return 0;
1244 }
1245
1246 static void
1247 ath_start(struct ifnet *ifp)
1248 {
1249 struct ath_softc *sc = ifp->if_softc;
1250 struct ath_hal *ah = sc->sc_ah;
1251 struct ieee80211com *ic = &sc->sc_ic;
1252 struct ieee80211_node *ni;
1253 struct ath_buf *bf;
1254 struct mbuf *m;
1255 struct ieee80211_frame *wh;
1256 struct ether_header *eh;
1257
1258 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
1259 return;
1260 for (;;) {
1261 /*
1262 * Grab a TX buffer and associated resources.
1263 */
1264 ATH_TXBUF_LOCK(sc);
1265 bf = STAILQ_FIRST(&sc->sc_txbuf);
1266 if (bf != NULL)
1267 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1268 ATH_TXBUF_UNLOCK(sc);
1269 if (bf == NULL) {
1270 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1271 __func__);
1272 sc->sc_stats.ast_tx_qstop++;
1273 ifp->if_flags |= IFF_OACTIVE;
1274 break;
1275 }
1276 /*
1277 * Poll the management queue for frames; they
1278 * have priority over normal data frames.
1279 */
1280 IF_DEQUEUE(&ic->ic_mgtq, m);
1281 if (m == NULL) {
1282 /*
1283 * No data frames go out unless we're associated.
1284 */
1285 if (ic->ic_state != IEEE80211_S_RUN) {
1286 DPRINTF(sc, ATH_DEBUG_XMIT,
1287 "%s: discard data packet, state %s\n",
1288 __func__,
1289 ieee80211_state_name[ic->ic_state]);
1290 sc->sc_stats.ast_tx_discard++;
1291 ATH_TXBUF_LOCK(sc);
1292 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1293 ATH_TXBUF_UNLOCK(sc);
1294 break;
1295 }
1296 IFQ_DEQUEUE(&ifp->if_snd, m); /* XXX: LOCK */
1297 if (m == NULL) {
1298 ATH_TXBUF_LOCK(sc);
1299 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1300 ATH_TXBUF_UNLOCK(sc);
1301 break;
1302 }
1303 /*
1304 * Find the node for the destination so we can do
1305 * things like power save and fast frames aggregation.
1306 */
1307 if (m->m_len < sizeof(struct ether_header) &&
1308 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
1309 ic->ic_stats.is_tx_nobuf++; /* XXX */
1310 ni = NULL;
1311 goto bad;
1312 }
1313 eh = mtod(m, struct ether_header *);
1314 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1315 if (ni == NULL) {
1316 /* NB: ieee80211_find_txnode does stat+msg */
1317 m_freem(m);
1318 goto bad;
1319 }
1320 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1321 (m->m_flags & M_PWR_SAV) == 0) {
1322 /*
1323 * Station in power save mode; pass the frame
1324 * to the 802.11 layer and continue. We'll get
1325 * the frame back when the time is right.
1326 */
1327 ieee80211_pwrsave(ic, ni, m);
1328 goto reclaim;
1329 }
1330 /* calculate priority so we can find the tx queue */
1331 if (ieee80211_classify(ic, m, ni)) {
1332 DPRINTF(sc, ATH_DEBUG_XMIT,
1333 "%s: discard, classification failure\n",
1334 __func__);
1335 m_freem(m);
1336 goto bad;
1337 }
1338 ifp->if_opackets++;
1339
1340 #if NBPFILTER > 0
1341 if (ifp->if_bpf)
1342 bpf_mtap(ifp->if_bpf, m);
1343 #endif
1344 /*
1345 * Encapsulate the packet in prep for transmission.
1346 */
1347 m = ieee80211_encap(ic, m, ni);
1348 if (m == NULL) {
1349 DPRINTF(sc, ATH_DEBUG_XMIT,
1350 "%s: encapsulation failure\n",
1351 __func__);
1352 sc->sc_stats.ast_tx_encap++;
1353 goto bad;
1354 }
1355 } else {
1356 /*
1357 * Hack! The referenced node pointer is in the
1358 * rcvif field of the packet header. This is
1359 * placed there by ieee80211_mgmt_output because
1360 * we need to hold the reference with the frame
1361 * and there's no other way (other than packet
1362 * tags which we consider too expensive to use)
1363 * to pass it along.
1364 */
1365 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1366 m->m_pkthdr.rcvif = NULL;
1367
1368 wh = mtod(m, struct ieee80211_frame *);
1369 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1370 IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1371 /* fill time stamp */
1372 u_int64_t tsf;
1373 u_int32_t *tstamp;
1374
1375 tsf = ath_hal_gettsf64(ah);
1376 /* XXX: adjust 100us delay to xmit */
1377 tsf += 100;
1378 tstamp = (u_int32_t *)&wh[1];
1379 tstamp[0] = htole32(tsf & 0xffffffff);
1380 tstamp[1] = htole32(tsf >> 32);
1381 }
1382 sc->sc_stats.ast_tx_mgmt++;
1383 }
1384
1385 if (ath_tx_start(sc, ni, bf, m)) {
1386 bad:
1387 ifp->if_oerrors++;
1388 reclaim:
1389 ATH_TXBUF_LOCK(sc);
1390 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1391 ATH_TXBUF_UNLOCK(sc);
1392 if (ni != NULL)
1393 ieee80211_free_node(ni);
1394 continue;
1395 }
1396
1397 sc->sc_tx_timer = 5;
1398 ifp->if_timer = 1;
1399 }
1400 }
1401
1402 static int
1403 ath_media_change(struct ifnet *ifp)
1404 {
1405 #define IS_UP(ifp) \
1406 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
1407 int error;
1408
1409 error = ieee80211_media_change(ifp);
1410 if (error == ENETRESET) {
1411 if (IS_UP(ifp))
1412 ath_init(ifp->if_softc); /* XXX lose error */
1413 error = 0;
1414 }
1415 return error;
1416 #undef IS_UP
1417 }
1418
1419 #ifdef AR_DEBUG
1420 static void
1421 ath_keyprint(const char *tag, u_int ix,
1422 const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1423 {
1424 static const char *ciphers[] = {
1425 "WEP",
1426 "AES-OCB",
1427 "AES-CCM",
1428 "CKIP",
1429 "TKIP",
1430 "CLR",
1431 };
1432 int i, n;
1433
1434 printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1435 for (i = 0, n = hk->kv_len; i < n; i++)
1436 printf("%02x", hk->kv_val[i]);
1437 printf(" mac %s", ether_sprintf(mac));
1438 if (hk->kv_type == HAL_CIPHER_TKIP) {
1439 printf(" mic ");
1440 for (i = 0; i < sizeof(hk->kv_mic); i++)
1441 printf("%02x", hk->kv_mic[i]);
1442 }
1443 printf("\n");
1444 }
1445 #endif
1446
1447 /*
1448 * Set a TKIP key into the hardware. This handles the
1449 * potential distribution of key state to multiple key
1450 * cache slots for TKIP.
1451 */
1452 static int
1453 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1454 HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1455 {
1456 #define IEEE80211_KEY_XR (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1457 static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1458 struct ath_hal *ah = sc->sc_ah;
1459
1460 KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1461 ("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1462 KASSERT(sc->sc_splitmic, ("key cache !split"));
1463 if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1464 /*
1465 * TX key goes at first index, RX key at the rx index.
1466 * The hal handles the MIC keys at index+64.
1467 */
1468 memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1469 KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1470 if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
1471 return 0;
1472
1473 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1474 KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1475 /* XXX delete tx key on failure? */
1476 return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
1477 } else if (k->wk_flags & IEEE80211_KEY_XR) {
1478 /*
1479 * TX/RX key goes at first index.
1480 * The hal handles the MIC keys are index+64.
1481 */
1482 memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
1483 k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
1484 KEYPRINTF(sc, k->wk_keyix, hk, mac);
1485 return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1486 }
1487 return 0;
1488 #undef IEEE80211_KEY_XR
1489 }
1490
1491 /*
1492 * Set a net80211 key into the hardware. This handles the
1493 * potential distribution of key state to multiple key
1494 * cache slots for TKIP with hardware MIC support.
1495 */
1496 static int
1497 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1498 const u_int8_t mac0[IEEE80211_ADDR_LEN],
1499 struct ieee80211_node *bss)
1500 {
1501 #define N(a) (sizeof(a)/sizeof(a[0]))
1502 static const u_int8_t ciphermap[] = {
1503 HAL_CIPHER_WEP, /* IEEE80211_CIPHER_WEP */
1504 HAL_CIPHER_TKIP, /* IEEE80211_CIPHER_TKIP */
1505 HAL_CIPHER_AES_OCB, /* IEEE80211_CIPHER_AES_OCB */
1506 HAL_CIPHER_AES_CCM, /* IEEE80211_CIPHER_AES_CCM */
1507 (u_int8_t) -1, /* 4 is not allocated */
1508 HAL_CIPHER_CKIP, /* IEEE80211_CIPHER_CKIP */
1509 HAL_CIPHER_CLR, /* IEEE80211_CIPHER_NONE */
1510 };
1511 struct ath_hal *ah = sc->sc_ah;
1512 const struct ieee80211_cipher *cip = k->wk_cipher;
1513 u_int8_t gmac[IEEE80211_ADDR_LEN];
1514 const u_int8_t *mac;
1515 HAL_KEYVAL hk;
1516
1517 memset(&hk, 0, sizeof(hk));
1518 /*
1519 * Software crypto uses a "clear key" so non-crypto
1520 * state kept in the key cache are maintained and
1521 * so that rx frames have an entry to match.
1522 */
1523 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1524 KASSERT(cip->ic_cipher < N(ciphermap),
1525 ("invalid cipher type %u", cip->ic_cipher));
1526 hk.kv_type = ciphermap[cip->ic_cipher];
1527 hk.kv_len = k->wk_keylen;
1528 memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1529 } else
1530 hk.kv_type = HAL_CIPHER_CLR;
1531
1532 if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
1533 /*
1534 * Group keys on hardware that supports multicast frame
1535 * key search use a mac that is the sender's address with
1536 * the high bit set instead of the app-specified address.
1537 */
1538 IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
1539 gmac[0] |= 0x80;
1540 mac = gmac;
1541 } else
1542 mac = mac0;
1543
1544 if (hk.kv_type == HAL_CIPHER_TKIP &&
1545 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1546 sc->sc_splitmic) {
1547 return ath_keyset_tkip(sc, k, &hk, mac);
1548 } else {
1549 KEYPRINTF(sc, k->wk_keyix, &hk, mac);
1550 return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
1551 }
1552 #undef N
1553 }
1554
1555 /*
1556 * Allocate tx/rx key slots for TKIP. We allocate two slots for
1557 * each key, one for decrypt/encrypt and the other for the MIC.
1558 */
1559 static u_int16_t
1560 key_alloc_2pair(struct ath_softc *sc,
1561 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1562 {
1563 #define N(a) (sizeof(a)/sizeof(a[0]))
1564 u_int i, keyix;
1565
1566 KASSERT(sc->sc_splitmic, ("key cache !split"));
1567 /* XXX could optimize */
1568 for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1569 u_int8_t b = sc->sc_keymap[i];
1570 if (b != 0xff) {
1571 /*
1572 * One or more slots in this byte are free.
1573 */
1574 keyix = i*NBBY;
1575 while (b & 1) {
1576 again:
1577 keyix++;
1578 b >>= 1;
1579 }
1580 /* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1581 if (isset(sc->sc_keymap, keyix+32) ||
1582 isset(sc->sc_keymap, keyix+64) ||
1583 isset(sc->sc_keymap, keyix+32+64)) {
1584 /* full pair unavailable */
1585 /* XXX statistic */
1586 if (keyix == (i+1)*NBBY) {
1587 /* no slots were appropriate, advance */
1588 continue;
1589 }
1590 goto again;
1591 }
1592 setbit(sc->sc_keymap, keyix);
1593 setbit(sc->sc_keymap, keyix+64);
1594 setbit(sc->sc_keymap, keyix+32);
1595 setbit(sc->sc_keymap, keyix+32+64);
1596 DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1597 "%s: key pair %u,%u %u,%u\n",
1598 __func__, keyix, keyix+64,
1599 keyix+32, keyix+32+64);
1600 *txkeyix = keyix;
1601 *rxkeyix = keyix+32;
1602 return 1;
1603 }
1604 }
1605 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1606 return 0;
1607 #undef N
1608 }
1609
1610 /*
1611 * Allocate a single key cache slot.
1612 */
1613 static int
1614 key_alloc_single(struct ath_softc *sc,
1615 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1616 {
1617 #define N(a) (sizeof(a)/sizeof(a[0]))
1618 u_int i, keyix;
1619
1620 /* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
1621 for (i = 0; i < N(sc->sc_keymap); i++) {
1622 u_int8_t b = sc->sc_keymap[i];
1623 if (b != 0xff) {
1624 /*
1625 * One or more slots are free.
1626 */
1627 keyix = i*NBBY;
1628 while (b & 1)
1629 keyix++, b >>= 1;
1630 setbit(sc->sc_keymap, keyix);
1631 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
1632 __func__, keyix);
1633 *txkeyix = *rxkeyix = keyix;
1634 return 1;
1635 }
1636 }
1637 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
1638 return 0;
1639 #undef N
1640 }
1641
1642 /*
1643 * Allocate one or more key cache slots for a uniacst key. The
1644 * key itself is needed only to identify the cipher. For hardware
1645 * TKIP with split cipher+MIC keys we allocate two key cache slot
1646 * pairs so that we can setup separate TX and RX MIC keys. Note
1647 * that the MIC key for a TKIP key at slot i is assumed by the
1648 * hardware to be at slot i+64. This limits TKIP keys to the first
1649 * 64 entries.
1650 */
1651 static int
1652 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
1653 ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
1654 {
1655 struct ath_softc *sc = ic->ic_ifp->if_softc;
1656
1657 /*
1658 * Group key allocation must be handled specially for
1659 * parts that do not support multicast key cache search
1660 * functionality. For those parts the key id must match
1661 * the h/w key index so lookups find the right key. On
1662 * parts w/ the key search facility we install the sender's
1663 * mac address (with the high bit set) and let the hardware
1664 * find the key w/o using the key id. This is preferred as
1665 * it permits us to support multiple users for adhoc and/or
1666 * multi-station operation.
1667 */
1668 if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
1669 if (!(&ic->ic_nw_keys[0] <= k &&
1670 k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
1671 /* should not happen */
1672 DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1673 "%s: bogus group key\n", __func__);
1674 return 0;
1675 }
1676 /*
1677 * XXX we pre-allocate the global keys so
1678 * have no way to check if they've already been allocated.
1679 */
1680 *keyix = *rxkeyix = k - ic->ic_nw_keys;
1681 return 1;
1682 }
1683
1684 /*
1685 * We allocate two pair for TKIP when using the h/w to do
1686 * the MIC. For everything else, including software crypto,
1687 * we allocate a single entry. Note that s/w crypto requires
1688 * a pass-through slot on the 5211 and 5212. The 5210 does
1689 * not support pass-through cache entries and we map all
1690 * those requests to slot 0.
1691 */
1692 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1693 return key_alloc_single(sc, keyix, rxkeyix);
1694 } else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
1695 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
1696 return key_alloc_2pair(sc, keyix, rxkeyix);
1697 } else {
1698 return key_alloc_single(sc, keyix, rxkeyix);
1699 }
1700 }
1701
1702 /*
1703 * Delete an entry in the key cache allocated by ath_key_alloc.
1704 */
1705 static int
1706 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
1707 {
1708 struct ath_softc *sc = ic->ic_ifp->if_softc;
1709 struct ath_hal *ah = sc->sc_ah;
1710 const struct ieee80211_cipher *cip = k->wk_cipher;
1711 u_int keyix = k->wk_keyix;
1712
1713 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
1714
1715 ath_hal_keyreset(ah, keyix);
1716 /*
1717 * Handle split tx/rx keying required for TKIP with h/w MIC.
1718 */
1719 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1720 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
1721 ath_hal_keyreset(ah, keyix+32); /* RX key */
1722 if (keyix >= IEEE80211_WEP_NKID) {
1723 /*
1724 * Don't touch keymap entries for global keys so
1725 * they are never considered for dynamic allocation.
1726 */
1727 clrbit(sc->sc_keymap, keyix);
1728 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1729 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1730 sc->sc_splitmic) {
1731 clrbit(sc->sc_keymap, keyix+64); /* TX key MIC */
1732 clrbit(sc->sc_keymap, keyix+32); /* RX key */
1733 clrbit(sc->sc_keymap, keyix+32+64); /* RX key MIC */
1734 }
1735 }
1736 return 1;
1737 }
1738
1739 /*
1740 * Set the key cache contents for the specified key. Key cache
1741 * slot(s) must already have been allocated by ath_key_alloc.
1742 */
1743 static int
1744 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
1745 const u_int8_t mac[IEEE80211_ADDR_LEN])
1746 {
1747 struct ath_softc *sc = ic->ic_ifp->if_softc;
1748
1749 return ath_keyset(sc, k, mac, ic->ic_bss);
1750 }
1751
1752 /*
1753 * Block/unblock tx+rx processing while a key change is done.
1754 * We assume the caller serializes key management operations
1755 * so we only need to worry about synchronization with other
1756 * uses that originate in the driver.
1757 */
1758 static void
1759 ath_key_update_begin(struct ieee80211com *ic)
1760 {
1761 struct ifnet *ifp = ic->ic_ifp;
1762 struct ath_softc *sc = ifp->if_softc;
1763
1764 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1765 #if 0
1766 tasklet_disable(&sc->sc_rxtq);
1767 #endif
1768 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */
1769 }
1770
1771 static void
1772 ath_key_update_end(struct ieee80211com *ic)
1773 {
1774 struct ifnet *ifp = ic->ic_ifp;
1775 struct ath_softc *sc = ifp->if_softc;
1776
1777 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1778 IF_UNLOCK(&ifp->if_snd);
1779 #if 0
1780 tasklet_enable(&sc->sc_rxtq);
1781 #endif
1782 }
1783
1784 /*
1785 * Calculate the receive filter according to the
1786 * operating mode and state:
1787 *
1788 * o always accept unicast, broadcast, and multicast traffic
1789 * o maintain current state of phy error reception (the hal
1790 * may enable phy error frames for noise immunity work)
1791 * o probe request frames are accepted only when operating in
1792 * hostap, adhoc, or monitor modes
1793 * o enable promiscuous mode according to the interface state
1794 * o accept beacons:
1795 * - when operating in adhoc mode so the 802.11 layer creates
1796 * node table entries for peers,
1797 * - when operating in station mode for collecting rssi data when
1798 * the station is otherwise quiet, or
1799 * - when scanning
1800 */
1801 static u_int32_t
1802 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
1803 {
1804 struct ieee80211com *ic = &sc->sc_ic;
1805 struct ath_hal *ah = sc->sc_ah;
1806 struct ifnet *ifp = &sc->sc_if;
1807 u_int32_t rfilt;
1808
1809 rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1810 | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1811 if (ic->ic_opmode != IEEE80211_M_STA)
1812 rfilt |= HAL_RX_FILTER_PROBEREQ;
1813 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1814 (ifp->if_flags & IFF_PROMISC))
1815 rfilt |= HAL_RX_FILTER_PROM;
1816 if (ic->ic_opmode == IEEE80211_M_STA ||
1817 ic->ic_opmode == IEEE80211_M_IBSS ||
1818 state == IEEE80211_S_SCAN)
1819 rfilt |= HAL_RX_FILTER_BEACON;
1820 return rfilt;
1821 }
1822
1823 static void
1824 ath_mcastfilter_accum(caddr_t dl, u_int32_t *mfilt)
1825 {
1826 u_int32_t val;
1827 u_int8_t pos;
1828
1829 /* calculate XOR of eight 6bit values */
1830 val = LE_READ_4(dl + 0);
1831 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1832 val = LE_READ_4(dl + 3);
1833 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1834 pos &= 0x3f;
1835 mfilt[pos / 32] |= (1 << (pos % 32));
1836 }
1837
1838 static void
1839 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t *mfilt)
1840 {
1841 struct ifnet *ifp = &sc->sc_if;
1842 struct ether_multi *enm;
1843 struct ether_multistep estep;
1844
1845 mfilt[0] = mfilt[1] = 0;
1846 ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
1847 while (enm != NULL) {
1848 /* XXX Punt on ranges. */
1849 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
1850 mfilt[0] = mfilt[1] = ~((u_int32_t)0);
1851 ifp->if_flags |= IFF_ALLMULTI;
1852 return;
1853 }
1854 ath_mcastfilter_accum(enm->enm_addrlo, mfilt);
1855 ETHER_NEXT_MULTI(estep, enm);
1856 }
1857 ifp->if_flags &= ~IFF_ALLMULTI;
1858 }
1859
1860 static void
1861 ath_mode_init(struct ath_softc *sc)
1862 {
1863 struct ieee80211com *ic = &sc->sc_ic;
1864 struct ath_hal *ah = sc->sc_ah;
1865 u_int32_t rfilt, mfilt[2];
1866 int i;
1867
1868 /* configure rx filter */
1869 rfilt = ath_calcrxfilter(sc, ic->ic_state);
1870 ath_hal_setrxfilter(ah, rfilt);
1871
1872 /* configure operational mode */
1873 ath_hal_setopmode(ah);
1874
1875 /* Write keys to hardware; it may have been powered down. */
1876 ath_key_update_begin(ic);
1877 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1878 ath_key_set(ic,
1879 &ic->ic_crypto.cs_nw_keys[i],
1880 ic->ic_myaddr);
1881 }
1882 ath_key_update_end(ic);
1883
1884 /*
1885 * Handle any link-level address change. Note that we only
1886 * need to force ic_myaddr; any other addresses are handled
1887 * as a byproduct of the ifnet code marking the interface
1888 * down then up.
1889 *
1890 * XXX should get from lladdr instead of arpcom but that's more work
1891 */
1892 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(sc->sc_if.if_sadl));
1893 ath_hal_setmac(ah, ic->ic_myaddr);
1894
1895 /* calculate and install multicast filter */
1896 #ifdef __FreeBSD__
1897 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1898 mfilt[0] = mfilt[1] = 0;
1899 IF_ADDR_LOCK(ifp);
1900 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1901 caddr_t dl;
1902
1903 /* calculate XOR of eight 6bit values */
1904 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
1905 val = LE_READ_4(dl + 0);
1906 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1907 val = LE_READ_4(dl + 3);
1908 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1909 pos &= 0x3f;
1910 mfilt[pos / 32] |= (1 << (pos % 32));
1911 }
1912 IF_ADDR_UNLOCK(ifp);
1913 } else {
1914 mfilt[0] = mfilt[1] = ~0;
1915 }
1916 #endif
1917 #ifdef __NetBSD__
1918 ath_mcastfilter_compute(sc, mfilt);
1919 #endif
1920 ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1921 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
1922 __func__, rfilt, mfilt[0], mfilt[1]);
1923 }
1924
1925 /*
1926 * Set the slot time based on the current setting.
1927 */
1928 static void
1929 ath_setslottime(struct ath_softc *sc)
1930 {
1931 struct ieee80211com *ic = &sc->sc_ic;
1932 struct ath_hal *ah = sc->sc_ah;
1933
1934 if (ic->ic_flags & IEEE80211_F_SHSLOT)
1935 ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
1936 else
1937 ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
1938 sc->sc_updateslot = OK;
1939 }
1940
1941 /*
1942 * Callback from the 802.11 layer to update the
1943 * slot time based on the current setting.
1944 */
1945 static void
1946 ath_updateslot(struct ifnet *ifp)
1947 {
1948 struct ath_softc *sc = ifp->if_softc;
1949 struct ieee80211com *ic = &sc->sc_ic;
1950
1951 /*
1952 * When not coordinating the BSS, change the hardware
1953 * immediately. For other operation we defer the change
1954 * until beacon updates have propagated to the stations.
1955 */
1956 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1957 sc->sc_updateslot = UPDATE;
1958 else
1959 ath_setslottime(sc);
1960 }
1961
1962 /*
1963 * Setup a h/w transmit queue for beacons.
1964 */
1965 static int
1966 ath_beaconq_setup(struct ath_hal *ah)
1967 {
1968 HAL_TXQ_INFO qi;
1969
1970 memset(&qi, 0, sizeof(qi));
1971 qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
1972 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
1973 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
1974 /* NB: for dynamic turbo, don't enable any other interrupts */
1975 qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
1976 return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
1977 }
1978
1979 /*
1980 * Setup the transmit queue parameters for the beacon queue.
1981 */
1982 static int
1983 ath_beaconq_config(struct ath_softc *sc)
1984 {
1985 #define ATH_EXPONENT_TO_VALUE(v) ((1<<(v))-1)
1986 struct ieee80211com *ic = &sc->sc_ic;
1987 struct ath_hal *ah = sc->sc_ah;
1988 HAL_TXQ_INFO qi;
1989
1990 ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
1991 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
1992 /*
1993 * Always burst out beacon and CAB traffic.
1994 */
1995 qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
1996 qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
1997 qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
1998 } else {
1999 struct wmeParams *wmep =
2000 &ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
2001 /*
2002 * Adhoc mode; important thing is to use 2x cwmin.
2003 */
2004 qi.tqi_aifs = wmep->wmep_aifsn;
2005 qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2006 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2007 }
2008
2009 if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
2010 device_printf(sc->sc_dev, "unable to update parameters for "
2011 "beacon hardware queue!\n");
2012 return 0;
2013 } else {
2014 ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
2015 return 1;
2016 }
2017 #undef ATH_EXPONENT_TO_VALUE
2018 }
2019
2020 /*
2021 * Allocate and setup an initial beacon frame.
2022 */
2023 static int
2024 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
2025 {
2026 struct ieee80211com *ic = ni->ni_ic;
2027 struct ath_buf *bf;
2028 struct mbuf *m;
2029 int error;
2030
2031 bf = STAILQ_FIRST(&sc->sc_bbuf);
2032 if (bf == NULL) {
2033 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
2034 sc->sc_stats.ast_be_nombuf++; /* XXX */
2035 return ENOMEM; /* XXX */
2036 }
2037 /*
2038 * NB: the beacon data buffer must be 32-bit aligned;
2039 * we assume the mbuf routines will return us something
2040 * with this alignment (perhaps should assert).
2041 */
2042 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
2043 if (m == NULL) {
2044 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
2045 __func__);
2046 sc->sc_stats.ast_be_nombuf++;
2047 return ENOMEM;
2048 }
2049 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2050 BUS_DMA_NOWAIT);
2051 if (error == 0) {
2052 bf->bf_m = m;
2053 bf->bf_node = ieee80211_ref_node(ni);
2054 } else {
2055 m_freem(m);
2056 }
2057 return error;
2058 }
2059
2060 /*
2061 * Setup the beacon frame for transmit.
2062 */
2063 static void
2064 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
2065 {
2066 #define USE_SHPREAMBLE(_ic) \
2067 (((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
2068 == IEEE80211_F_SHPREAMBLE)
2069 struct ieee80211_node *ni = bf->bf_node;
2070 struct ieee80211com *ic = ni->ni_ic;
2071 struct mbuf *m = bf->bf_m;
2072 struct ath_hal *ah = sc->sc_ah;
2073 struct ath_desc *ds;
2074 int flags, antenna;
2075 const HAL_RATE_TABLE *rt;
2076 u_int8_t rix, rate;
2077
2078 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
2079 __func__, m, m->m_len);
2080
2081 /* setup descriptors */
2082 ds = bf->bf_desc;
2083
2084 flags = HAL_TXDESC_NOACK;
2085 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
2086 ds->ds_link = HTOAH32(bf->bf_daddr); /* self-linked */
2087 flags |= HAL_TXDESC_VEOL;
2088 /*
2089 * Let hardware handle antenna switching unless
2090 * the user has selected a transmit antenna
2091 * (sc_txantenna is not 0).
2092 */
2093 antenna = sc->sc_txantenna;
2094 } else {
2095 ds->ds_link = 0;
2096 /*
2097 * Switch antenna every 4 beacons, unless the user
2098 * has selected a transmit antenna (sc_txantenna
2099 * is not 0).
2100 *
2101 * XXX assumes two antenna
2102 */
2103 if (sc->sc_txantenna == 0)
2104 antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2105 else
2106 antenna = sc->sc_txantenna;
2107 }
2108
2109 KASSERT(bf->bf_nseg == 1,
2110 ("multi-segment beacon frame; nseg %u", bf->bf_nseg));
2111 ds->ds_data = bf->bf_segs[0].ds_addr;
2112 /*
2113 * Calculate rate code.
2114 * XXX everything at min xmit rate
2115 */
2116 rix = sc->sc_minrateix;
2117 rt = sc->sc_currates;
2118 rate = rt->info[rix].rateCode;
2119 if (USE_SHPREAMBLE(ic))
2120 rate |= rt->info[rix].shortPreamble;
2121 ath_hal_setuptxdesc(ah, ds
2122 , m->m_len + IEEE80211_CRC_LEN /* frame length */
2123 , sizeof(struct ieee80211_frame)/* header length */
2124 , HAL_PKT_TYPE_BEACON /* Atheros packet type */
2125 , ni->ni_txpower /* txpower XXX */
2126 , rate, 1 /* series 0 rate/tries */
2127 , HAL_TXKEYIX_INVALID /* no encryption */
2128 , antenna /* antenna mode */
2129 , flags /* no ack, veol for beacons */
2130 , 0 /* rts/cts rate */
2131 , 0 /* rts/cts duration */
2132 );
2133 /* NB: beacon's BufLen must be a multiple of 4 bytes */
2134 ath_hal_filltxdesc(ah, ds
2135 , roundup(m->m_len, 4) /* buffer length */
2136 , AH_TRUE /* first segment */
2137 , AH_TRUE /* last segment */
2138 , ds /* first descriptor */
2139 );
2140
2141 /* NB: The desc swap function becomes void,
2142 * if descriptor swapping is not enabled
2143 */
2144 ath_desc_swap(ds);
2145
2146 #undef USE_SHPREAMBLE
2147 }
2148
2149 /*
2150 * Transmit a beacon frame at SWBA. Dynamic updates to the
2151 * frame contents are done as needed and the slot time is
2152 * also adjusted based on current state.
2153 */
2154 static void
2155 ath_beacon_proc(void *arg, int pending)
2156 {
2157 struct ath_softc *sc = arg;
2158 struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
2159 struct ieee80211_node *ni = bf->bf_node;
2160 struct ieee80211com *ic = ni->ni_ic;
2161 struct ath_hal *ah = sc->sc_ah;
2162 struct mbuf *m;
2163 int ncabq, error, otherant;
2164
2165 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2166 __func__, pending);
2167
2168 if (ic->ic_opmode == IEEE80211_M_STA ||
2169 ic->ic_opmode == IEEE80211_M_MONITOR ||
2170 bf == NULL || bf->bf_m == NULL) {
2171 DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
2172 __func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
2173 return;
2174 }
2175 /*
2176 * Check if the previous beacon has gone out. If
2177 * not don't try to post another, skip this period
2178 * and wait for the next. Missed beacons indicate
2179 * a problem and should not occur. If we miss too
2180 * many consecutive beacons reset the device.
2181 */
2182 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2183 sc->sc_bmisscount++;
2184 DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2185 "%s: missed %u consecutive beacons\n",
2186 __func__, sc->sc_bmisscount);
2187 if (sc->sc_bmisscount > 3) /* NB: 3 is a guess */
2188 TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask);
2189 return;
2190 }
2191 if (sc->sc_bmisscount != 0) {
2192 DPRINTF(sc, ATH_DEBUG_BEACON,
2193 "%s: resume beacon xmit after %u misses\n",
2194 __func__, sc->sc_bmisscount);
2195 sc->sc_bmisscount = 0;
2196 }
2197
2198 /*
2199 * Update dynamic beacon contents. If this returns
2200 * non-zero then we need to remap the memory because
2201 * the beacon frame changed size (probably because
2202 * of the TIM bitmap).
2203 */
2204 m = bf->bf_m;
2205 ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
2206 if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
2207 /* XXX too conservative? */
2208 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2209 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2210 BUS_DMA_NOWAIT);
2211 if (error != 0) {
2212 if_printf(&sc->sc_if,
2213 "%s: bus_dmamap_load_mbuf failed, error %u\n",
2214 __func__, error);
2215 return;
2216 }
2217 }
2218
2219 /*
2220 * Handle slot time change when a non-ERP station joins/leaves
2221 * an 11g network. The 802.11 layer notifies us via callback,
2222 * we mark updateslot, then wait one beacon before effecting
2223 * the change. This gives associated stations at least one
2224 * beacon interval to note the state change.
2225 */
2226 /* XXX locking */
2227 if (sc->sc_updateslot == UPDATE)
2228 sc->sc_updateslot = COMMIT; /* commit next beacon */
2229 else if (sc->sc_updateslot == COMMIT)
2230 ath_setslottime(sc); /* commit change to h/w */
2231
2232 /*
2233 * Check recent per-antenna transmit statistics and flip
2234 * the default antenna if noticeably more frames went out
2235 * on the non-default antenna.
2236 * XXX assumes 2 anntenae
2237 */
2238 otherant = sc->sc_defant & 1 ? 2 : 1;
2239 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2240 ath_setdefantenna(sc, otherant);
2241 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2242
2243 /*
2244 * Construct tx descriptor.
2245 */
2246 ath_beacon_setup(sc, bf);
2247
2248 /*
2249 * Stop any current dma and put the new frame on the queue.
2250 * This should never fail since we check above that no frames
2251 * are still pending on the queue.
2252 */
2253 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2254 DPRINTF(sc, ATH_DEBUG_ANY,
2255 "%s: beacon queue %u did not stop?\n",
2256 __func__, sc->sc_bhalq);
2257 }
2258 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2259 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2260
2261 /*
2262 * Enable the CAB queue before the beacon queue to
2263 * insure cab frames are triggered by this beacon.
2264 */
2265 if (ncabq != 0 && (sc->sc_boff.bo_tim[4] & 1)) /* NB: only at DTIM */
2266 ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
2267 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
2268 ath_hal_txstart(ah, sc->sc_bhalq);
2269 DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2270 "%s: TXDP[%u] = %" PRIx64 " (%p)\n", __func__,
2271 sc->sc_bhalq, (uint64_t)bf->bf_daddr, bf->bf_desc);
2272
2273 sc->sc_stats.ast_be_xmit++;
2274 }
2275
2276 /*
2277 * Reset the hardware after detecting beacons have stopped.
2278 */
2279 static void
2280 ath_bstuck_proc(void *arg, int pending)
2281 {
2282 struct ath_softc *sc = arg;
2283 struct ifnet *ifp = &sc->sc_if;
2284
2285 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2286 sc->sc_bmisscount);
2287 ath_reset(ifp);
2288 }
2289
2290 /*
2291 * Reclaim beacon resources.
2292 */
2293 static void
2294 ath_beacon_free(struct ath_softc *sc)
2295 {
2296 struct ath_buf *bf;
2297
2298 STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
2299 if (bf->bf_m != NULL) {
2300 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2301 m_freem(bf->bf_m);
2302 bf->bf_m = NULL;
2303 }
2304 if (bf->bf_node != NULL) {
2305 ieee80211_free_node(bf->bf_node);
2306 bf->bf_node = NULL;
2307 }
2308 }
2309 }
2310
2311 /*
2312 * Configure the beacon and sleep timers.
2313 *
2314 * When operating as an AP this resets the TSF and sets
2315 * up the hardware to notify us when we need to issue beacons.
2316 *
2317 * When operating in station mode this sets up the beacon
2318 * timers according to the timestamp of the last received
2319 * beacon and the current TSF, configures PCF and DTIM
2320 * handling, programs the sleep registers so the hardware
2321 * will wakeup in time to receive beacons, and configures
2322 * the beacon miss handling so we'll receive a BMISS
2323 * interrupt when we stop seeing beacons from the AP
2324 * we've associated with.
2325 */
2326 static void
2327 ath_beacon_config(struct ath_softc *sc)
2328 {
2329 #define TSF_TO_TU(_h,_l) \
2330 ((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
2331 #define FUDGE 2
2332 struct ath_hal *ah = sc->sc_ah;
2333 struct ieee80211com *ic = &sc->sc_ic;
2334 struct ieee80211_node *ni = ic->ic_bss;
2335 u_int32_t nexttbtt, intval, tsftu;
2336 u_int64_t tsf;
2337
2338 /* extract tstamp from last beacon and convert to TU */
2339 nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
2340 LE_READ_4(ni->ni_tstamp.data));
2341 /* NB: the beacon interval is kept internally in TU's */
2342 intval = ni->ni_intval & HAL_BEACON_PERIOD;
2343 if (nexttbtt == 0) /* e.g. for ap mode */
2344 nexttbtt = intval;
2345 else if (intval) /* NB: can be 0 for monitor mode */
2346 nexttbtt = roundup(nexttbtt, intval);
2347 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2348 __func__, nexttbtt, intval, ni->ni_intval);
2349 if (ic->ic_opmode == IEEE80211_M_STA) {
2350 HAL_BEACON_STATE bs;
2351 int dtimperiod, dtimcount;
2352 int cfpperiod, cfpcount;
2353
2354 /*
2355 * Setup dtim and cfp parameters according to
2356 * last beacon we received (which may be none).
2357 */
2358 dtimperiod = ni->ni_dtim_period;
2359 if (dtimperiod <= 0) /* NB: 0 if not known */
2360 dtimperiod = 1;
2361 dtimcount = ni->ni_dtim_count;
2362 if (dtimcount >= dtimperiod) /* NB: sanity check */
2363 dtimcount = 0; /* XXX? */
2364 cfpperiod = 1; /* NB: no PCF support yet */
2365 cfpcount = 0;
2366 /*
2367 * Pull nexttbtt forward to reflect the current
2368 * TSF and calculate dtim+cfp state for the result.
2369 */
2370 tsf = ath_hal_gettsf64(ah);
2371 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2372 do {
2373 nexttbtt += intval;
2374 if (--dtimcount < 0) {
2375 dtimcount = dtimperiod - 1;
2376 if (--cfpcount < 0)
2377 cfpcount = cfpperiod - 1;
2378 }
2379 } while (nexttbtt < tsftu);
2380 memset(&bs, 0, sizeof(bs));
2381 bs.bs_intval = intval;
2382 bs.bs_nexttbtt = nexttbtt;
2383 bs.bs_dtimperiod = dtimperiod*intval;
2384 bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
2385 bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
2386 bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
2387 bs.bs_cfpmaxduration = 0;
2388 #if 0
2389 /*
2390 * The 802.11 layer records the offset to the DTIM
2391 * bitmap while receiving beacons; use it here to
2392 * enable h/w detection of our AID being marked in
2393 * the bitmap vector (to indicate frames for us are
2394 * pending at the AP).
2395 * XXX do DTIM handling in s/w to WAR old h/w bugs
2396 * XXX enable based on h/w rev for newer chips
2397 */
2398 bs.bs_timoffset = ni->ni_timoff;
2399 #endif
2400 /*
2401 * Calculate the number of consecutive beacons to miss
2402 * before taking a BMISS interrupt. The configuration
2403 * is specified in ms, so we need to convert that to
2404 * TU's and then calculate based on the beacon interval.
2405 * Note that we clamp the result to at most 10 beacons.
2406 */
2407 bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
2408 if (bs.bs_bmissthreshold > 10)
2409 bs.bs_bmissthreshold = 10;
2410 else if (bs.bs_bmissthreshold <= 0)
2411 bs.bs_bmissthreshold = 1;
2412
2413 /*
2414 * Calculate sleep duration. The configuration is
2415 * given in ms. We insure a multiple of the beacon
2416 * period is used. Also, if the sleep duration is
2417 * greater than the DTIM period then it makes senses
2418 * to make it a multiple of that.
2419 *
2420 * XXX fixed at 100ms
2421 */
2422 bs.bs_sleepduration =
2423 roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2424 if (bs.bs_sleepduration > bs.bs_dtimperiod)
2425 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2426
2427 DPRINTF(sc, ATH_DEBUG_BEACON,
2428 "%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2429 , __func__
2430 , tsf, tsftu
2431 , bs.bs_intval
2432 , bs.bs_nexttbtt
2433 , bs.bs_dtimperiod
2434 , bs.bs_nextdtim
2435 , bs.bs_bmissthreshold
2436 , bs.bs_sleepduration
2437 , bs.bs_cfpperiod
2438 , bs.bs_cfpmaxduration
2439 , bs.bs_cfpnext
2440 , bs.bs_timoffset
2441 );
2442 ath_hal_intrset(ah, 0);
2443 ath_hal_beacontimers(ah, &bs);
2444 sc->sc_imask |= HAL_INT_BMISS;
2445 ath_hal_intrset(ah, sc->sc_imask);
2446 } else {
2447 ath_hal_intrset(ah, 0);
2448 if (nexttbtt == intval)
2449 intval |= HAL_BEACON_RESET_TSF;
2450 if (ic->ic_opmode == IEEE80211_M_IBSS) {
2451 /*
2452 * In IBSS mode enable the beacon timers but only
2453 * enable SWBA interrupts if we need to manually
2454 * prepare beacon frames. Otherwise we use a
2455 * self-linked tx descriptor and let the hardware
2456 * deal with things.
2457 */
2458 intval |= HAL_BEACON_ENA;
2459 if (!sc->sc_hasveol)
2460 sc->sc_imask |= HAL_INT_SWBA;
2461 if ((intval & HAL_BEACON_RESET_TSF) == 0) {
2462 /*
2463 * Pull nexttbtt forward to reflect
2464 * the current TSF.
2465 */
2466 tsf = ath_hal_gettsf64(ah);
2467 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2468 do {
2469 nexttbtt += intval;
2470 } while (nexttbtt < tsftu);
2471 }
2472 ath_beaconq_config(sc);
2473 } else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2474 /*
2475 * In AP mode we enable the beacon timers and
2476 * SWBA interrupts to prepare beacon frames.
2477 */
2478 intval |= HAL_BEACON_ENA;
2479 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */
2480 ath_beaconq_config(sc);
2481 }
2482 ath_hal_beaconinit(ah, nexttbtt, intval);
2483 sc->sc_bmisscount = 0;
2484 ath_hal_intrset(ah, sc->sc_imask);
2485 /*
2486 * When using a self-linked beacon descriptor in
2487 * ibss mode load it once here.
2488 */
2489 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2490 ath_beacon_proc(sc, 0);
2491 }
2492 sc->sc_syncbeacon = 0;
2493 #undef UNDEF
2494 #undef TSF_TO_TU
2495 }
2496
2497 static int
2498 ath_descdma_setup(struct ath_softc *sc,
2499 struct ath_descdma *dd, ath_bufhead *head,
2500 const char *name, int nbuf, int ndesc)
2501 {
2502 #define DS2PHYS(_dd, _ds) \
2503 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2504 struct ifnet *ifp = &sc->sc_if;
2505 struct ath_desc *ds;
2506 struct ath_buf *bf;
2507 int i, bsize, error;
2508
2509 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2510 __func__, name, nbuf, ndesc);
2511
2512 dd->dd_name = name;
2513 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2514
2515 /*
2516 * Setup DMA descriptor area.
2517 */
2518 dd->dd_dmat = sc->sc_dmat;
2519
2520 error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE,
2521 0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0);
2522
2523 if (error != 0) {
2524 if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2525 "error %u\n", nbuf * ndesc, dd->dd_name, error);
2526 goto fail0;
2527 }
2528
2529 error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg,
2530 dd->dd_desc_len, (caddr_t *)&dd->dd_desc, BUS_DMA_COHERENT);
2531 if (error != 0) {
2532 if_printf(ifp, "unable to map %u %s descriptors, error = %u\n",
2533 nbuf * ndesc, dd->dd_name, error);
2534 goto fail1;
2535 }
2536
2537 /* allocate descriptors */
2538 error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1,
2539 dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2540 if (error != 0) {
2541 if_printf(ifp, "unable to create dmamap for %s descriptors, "
2542 "error %u\n", dd->dd_name, error);
2543 goto fail2;
2544 }
2545
2546 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc,
2547 dd->dd_desc_len, NULL, BUS_DMA_NOWAIT);
2548 if (error != 0) {
2549 if_printf(ifp, "unable to map %s descriptors, error %u\n",
2550 dd->dd_name, error);
2551 goto fail3;
2552 }
2553
2554 ds = dd->dd_desc;
2555 dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr;
2556 DPRINTF(sc, ATH_DEBUG_RESET,
2557 "%s: %s DMA map: %p (%lu) -> %" PRIx64 " (%lu)\n",
2558 __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2559 (uint64_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2560
2561 /* allocate rx buffers */
2562 bsize = sizeof(struct ath_buf) * nbuf;
2563 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2564 if (bf == NULL) {
2565 if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2566 dd->dd_name, bsize);
2567 goto fail4;
2568 }
2569 dd->dd_bufptr = bf;
2570
2571 STAILQ_INIT(head);
2572 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2573 bf->bf_desc = ds;
2574 bf->bf_daddr = DS2PHYS(dd, ds);
2575 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc,
2576 MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap);
2577 if (error != 0) {
2578 if_printf(ifp, "unable to create dmamap for %s "
2579 "buffer %u, error %u\n", dd->dd_name, i, error);
2580 ath_descdma_cleanup(sc, dd, head);
2581 return error;
2582 }
2583 STAILQ_INSERT_TAIL(head, bf, bf_list);
2584 }
2585 return 0;
2586 fail4:
2587 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2588 fail3:
2589 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2590 fail2:
2591 bus_dmamem_unmap(dd->dd_dmat, (caddr_t)dd->dd_desc, dd->dd_desc_len);
2592 fail1:
2593 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2594 fail0:
2595 memset(dd, 0, sizeof(*dd));
2596 return error;
2597 #undef DS2PHYS
2598 }
2599
2600 static void
2601 ath_descdma_cleanup(struct ath_softc *sc,
2602 struct ath_descdma *dd, ath_bufhead *head)
2603 {
2604 struct ath_buf *bf;
2605 struct ieee80211_node *ni;
2606
2607 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2608 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2609 bus_dmamem_unmap(dd->dd_dmat, (caddr_t)dd->dd_desc, dd->dd_desc_len);
2610 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2611
2612 STAILQ_FOREACH(bf, head, bf_list) {
2613 if (bf->bf_m) {
2614 m_freem(bf->bf_m);
2615 bf->bf_m = NULL;
2616 }
2617 if (bf->bf_dmamap != NULL) {
2618 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2619 bf->bf_dmamap = NULL;
2620 }
2621 ni = bf->bf_node;
2622 bf->bf_node = NULL;
2623 if (ni != NULL) {
2624 /*
2625 * Reclaim node reference.
2626 */
2627 ieee80211_free_node(ni);
2628 }
2629 }
2630
2631 STAILQ_INIT(head);
2632 free(dd->dd_bufptr, M_ATHDEV);
2633 memset(dd, 0, sizeof(*dd));
2634 }
2635
2636 static int
2637 ath_desc_alloc(struct ath_softc *sc)
2638 {
2639 int error;
2640
2641 error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2642 "rx", ath_rxbuf, 1);
2643 if (error != 0)
2644 return error;
2645
2646 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2647 "tx", ath_txbuf, ATH_TXDESC);
2648 if (error != 0) {
2649 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2650 return error;
2651 }
2652
2653 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2654 "beacon", 1, 1);
2655 if (error != 0) {
2656 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2657 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2658 return error;
2659 }
2660 return 0;
2661 }
2662
2663 static void
2664 ath_desc_free(struct ath_softc *sc)
2665 {
2666
2667 if (sc->sc_bdma.dd_desc_len != 0)
2668 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2669 if (sc->sc_txdma.dd_desc_len != 0)
2670 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2671 if (sc->sc_rxdma.dd_desc_len != 0)
2672 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2673 }
2674
2675 static struct ieee80211_node *
2676 ath_node_alloc(struct ieee80211_node_table *nt)
2677 {
2678 struct ieee80211com *ic = nt->nt_ic;
2679 struct ath_softc *sc = ic->ic_ifp->if_softc;
2680 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2681 struct ath_node *an;
2682
2683 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2684 if (an == NULL) {
2685 /* XXX stat+msg */
2686 return NULL;
2687 }
2688 an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
2689 ath_rate_node_init(sc, an);
2690
2691 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2692 return &an->an_node;
2693 }
2694
2695 static void
2696 ath_node_free(struct ieee80211_node *ni)
2697 {
2698 struct ieee80211com *ic = ni->ni_ic;
2699 struct ath_softc *sc = ic->ic_ifp->if_softc;
2700
2701 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2702
2703 ath_rate_node_cleanup(sc, ATH_NODE(ni));
2704 sc->sc_node_free(ni);
2705 }
2706
2707 static u_int8_t
2708 ath_node_getrssi(const struct ieee80211_node *ni)
2709 {
2710 #define HAL_EP_RND(x, mul) \
2711 ((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
2712 u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
2713 int32_t rssi;
2714
2715 /*
2716 * When only one frame is received there will be no state in
2717 * avgrssi so fallback on the value recorded by the 802.11 layer.
2718 */
2719 if (avgrssi != ATH_RSSI_DUMMY_MARKER)
2720 rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
2721 else
2722 rssi = ni->ni_rssi;
2723 return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
2724 #undef HAL_EP_RND
2725 }
2726
2727 static int
2728 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2729 {
2730 struct ath_hal *ah = sc->sc_ah;
2731 int error;
2732 struct mbuf *m;
2733 struct ath_desc *ds;
2734
2735 m = bf->bf_m;
2736 if (m == NULL) {
2737 /*
2738 * NB: by assigning a page to the rx dma buffer we
2739 * implicitly satisfy the Atheros requirement that
2740 * this buffer be cache-line-aligned and sized to be
2741 * multiple of the cache line size. Not doing this
2742 * causes weird stuff to happen (for the 5210 at least).
2743 */
2744 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2745 if (m == NULL) {
2746 DPRINTF(sc, ATH_DEBUG_ANY,
2747 "%s: no mbuf/cluster\n", __func__);
2748 sc->sc_stats.ast_rx_nombuf++;
2749 return ENOMEM;
2750 }
2751 bf->bf_m = m;
2752 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2753
2754 error = bus_dmamap_load_mbuf(sc->sc_dmat,
2755 bf->bf_dmamap, m,
2756 BUS_DMA_NOWAIT);
2757 if (error != 0) {
2758 DPRINTF(sc, ATH_DEBUG_ANY,
2759 "%s: bus_dmamap_load_mbuf failed; error %d\n",
2760 __func__, error);
2761 sc->sc_stats.ast_rx_busdma++;
2762 return error;
2763 }
2764 KASSERT(bf->bf_nseg == 1,
2765 ("multi-segment packet; nseg %u", bf->bf_nseg));
2766 }
2767 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2768 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2769
2770 /*
2771 * Setup descriptors. For receive we always terminate
2772 * the descriptor list with a self-linked entry so we'll
2773 * not get overrun under high load (as can happen with a
2774 * 5212 when ANI processing enables PHY error frames).
2775 *
2776 * To insure the last descriptor is self-linked we create
2777 * each descriptor as self-linked and add it to the end. As
2778 * each additional descriptor is added the previous self-linked
2779 * entry is ``fixed'' naturally. This should be safe even
2780 * if DMA is happening. When processing RX interrupts we
2781 * never remove/process the last, self-linked, entry on the
2782 * descriptor list. This insures the hardware always has
2783 * someplace to write a new frame.
2784 */
2785 ds = bf->bf_desc;
2786 ds->ds_link = HTOAH32(bf->bf_daddr); /* link to self */
2787 ds->ds_data = bf->bf_segs[0].ds_addr;
2788 ds->ds_vdata = mtod(m, void *); /* for radar */
2789 ath_hal_setuprxdesc(ah, ds
2790 , m->m_len /* buffer size */
2791 , 0
2792 );
2793
2794 if (sc->sc_rxlink != NULL)
2795 *sc->sc_rxlink = bf->bf_daddr;
2796 sc->sc_rxlink = &ds->ds_link;
2797 return 0;
2798 }
2799
2800 /*
2801 * Extend 15-bit time stamp from rx descriptor to
2802 * a full 64-bit TSF using the specified TSF.
2803 */
2804 static inline u_int64_t
2805 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
2806 {
2807 if ((tsf & 0x7fff) < rstamp)
2808 tsf -= 0x8000;
2809 return ((tsf &~ 0x7fff) | rstamp);
2810 }
2811
2812 /*
2813 * Intercept management frames to collect beacon rssi data
2814 * and to do ibss merges.
2815 */
2816 static void
2817 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2818 struct ieee80211_node *ni,
2819 int subtype, int rssi, u_int32_t rstamp)
2820 {
2821 struct ath_softc *sc = ic->ic_ifp->if_softc;
2822
2823 /*
2824 * Call up first so subsequent work can use information
2825 * potentially stored in the node (e.g. for ibss merge).
2826 */
2827 sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
2828 switch (subtype) {
2829 case IEEE80211_FC0_SUBTYPE_BEACON:
2830 /* update rssi statistics for use by the hal */
2831 ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
2832 if (sc->sc_syncbeacon &&
2833 ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) {
2834 /*
2835 * Resync beacon timers using the tsf of the beacon
2836 * frame we just received.
2837 */
2838 ath_beacon_config(sc);
2839 }
2840 /* fall thru... */
2841 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2842 if (ic->ic_opmode == IEEE80211_M_IBSS &&
2843 ic->ic_state == IEEE80211_S_RUN) {
2844 u_int64_t tsf = ath_extend_tsf(rstamp,
2845 ath_hal_gettsf64(sc->sc_ah));
2846
2847 /*
2848 * Handle ibss merge as needed; check the tsf on the
2849 * frame before attempting the merge. The 802.11 spec
2850 * says the station should change it's bssid to match
2851 * the oldest station with the same ssid, where oldest
2852 * is determined by the tsf. Note that hardware
2853 * reconfiguration happens through callback to
2854 * ath_newstate as the state machine will go from
2855 * RUN -> RUN when this happens.
2856 */
2857 if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
2858 DPRINTF(sc, ATH_DEBUG_STATE,
2859 "ibss merge, rstamp %u tsf %ju "
2860 "tstamp %ju\n", rstamp, (uintmax_t)tsf,
2861 (uintmax_t)ni->ni_tstamp.tsf);
2862 (void) ieee80211_ibss_merge(ni);
2863 }
2864 }
2865 break;
2866 }
2867 }
2868
2869 /*
2870 * Set the default antenna.
2871 */
2872 static void
2873 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
2874 {
2875 struct ath_hal *ah = sc->sc_ah;
2876
2877 /* XXX block beacon interrupts */
2878 ath_hal_setdefantenna(ah, antenna);
2879 if (sc->sc_defant != antenna)
2880 sc->sc_stats.ast_ant_defswitch++;
2881 sc->sc_defant = antenna;
2882 sc->sc_rxotherant = 0;
2883 }
2884
2885 static void
2886 ath_rx_proc(void *arg, int npending)
2887 {
2888 #define PA2DESC(_sc, _pa) \
2889 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
2890 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
2891 struct ath_softc *sc = arg;
2892 struct ath_buf *bf;
2893 struct ieee80211com *ic = &sc->sc_ic;
2894 struct ifnet *ifp = &sc->sc_if;
2895 struct ath_hal *ah = sc->sc_ah;
2896 struct ath_desc *ds;
2897 struct mbuf *m;
2898 struct ieee80211_node *ni;
2899 struct ath_node *an;
2900 int len, type, ngood;
2901 u_int phyerr;
2902 HAL_STATUS status;
2903 int16_t nf;
2904 u_int64_t tsf;
2905
2906 NET_LOCK_GIANT(); /* XXX */
2907
2908 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
2909 ngood = 0;
2910 nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
2911 tsf = ath_hal_gettsf64(ah);
2912 do {
2913 bf = STAILQ_FIRST(&sc->sc_rxbuf);
2914 if (bf == NULL) { /* NB: shouldn't happen */
2915 if_printf(ifp, "%s: no buffer!\n", __func__);
2916 break;
2917 }
2918 ds = bf->bf_desc;
2919 if (ds->ds_link == bf->bf_daddr) {
2920 /* NB: never process the self-linked entry at the end */
2921 break;
2922 }
2923 m = bf->bf_m;
2924 if (m == NULL) { /* NB: shouldn't happen */
2925 if_printf(ifp, "%s: no mbuf!\n", __func__);
2926 break;
2927 }
2928 /* XXX sync descriptor memory */
2929 /*
2930 * Must provide the virtual address of the current
2931 * descriptor, the physical address, and the virtual
2932 * address of the next descriptor in the h/w chain.
2933 * This allows the HAL to look ahead to see if the
2934 * hardware is done with a descriptor by checking the
2935 * done bit in the following descriptor and the address
2936 * of the current descriptor the DMA engine is working
2937 * on. All this is necessary because of our use of
2938 * a self-linked list to avoid rx overruns.
2939 */
2940 status = ath_hal_rxprocdesc(ah, ds,
2941 bf->bf_daddr, PA2DESC(sc, ds->ds_link));
2942 #ifdef AR_DEBUG
2943 if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
2944 ath_printrxbuf(bf, status == HAL_OK);
2945 #endif
2946 if (status == HAL_EINPROGRESS)
2947 break;
2948 STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
2949 if (ds->ds_rxstat.rs_more) {
2950 /*
2951 * Frame spans multiple descriptors; this
2952 * cannot happen yet as we don't support
2953 * jumbograms. If not in monitor mode,
2954 * discard the frame.
2955 */
2956 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2957 sc->sc_stats.ast_rx_toobig++;
2958 goto rx_next;
2959 }
2960 /* fall thru for monitor mode handling... */
2961 } else if (ds->ds_rxstat.rs_status != 0) {
2962 if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
2963 sc->sc_stats.ast_rx_crcerr++;
2964 if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
2965 sc->sc_stats.ast_rx_fifoerr++;
2966 if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
2967 sc->sc_stats.ast_rx_phyerr++;
2968 phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
2969 sc->sc_stats.ast_rx_phy[phyerr]++;
2970 goto rx_next;
2971 }
2972 if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
2973 /*
2974 * Decrypt error. If the error occurred
2975 * because there was no hardware key, then
2976 * let the frame through so the upper layers
2977 * can process it. This is necessary for 5210
2978 * parts which have no way to setup a ``clear''
2979 * key cache entry.
2980 *
2981 * XXX do key cache faulting
2982 */
2983 if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
2984 goto rx_accept;
2985 sc->sc_stats.ast_rx_badcrypt++;
2986 }
2987 if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
2988 sc->sc_stats.ast_rx_badmic++;
2989 /*
2990 * Do minimal work required to hand off
2991 * the 802.11 header for notifcation.
2992 */
2993 /* XXX frag's and qos frames */
2994 len = ds->ds_rxstat.rs_datalen;
2995 if (len >= sizeof (struct ieee80211_frame)) {
2996 bus_dmamap_sync(sc->sc_dmat,
2997 bf->bf_dmamap,
2998 0, bf->bf_dmamap->dm_mapsize,
2999 BUS_DMASYNC_POSTREAD);
3000 ieee80211_notify_michael_failure(ic,
3001 mtod(m, struct ieee80211_frame *),
3002 sc->sc_splitmic ?
3003 ds->ds_rxstat.rs_keyix-32 :
3004 ds->ds_rxstat.rs_keyix
3005 );
3006 }
3007 }
3008 ifp->if_ierrors++;
3009 /*
3010 * Reject error frames, we normally don't want
3011 * to see them in monitor mode (in monitor mode
3012 * allow through packets that have crypto problems).
3013 */
3014 if ((ds->ds_rxstat.rs_status &~
3015 (HAL_RXERR_DECRYPT|HAL_RXERR_MIC)) ||
3016 sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
3017 goto rx_next;
3018 }
3019 rx_accept:
3020 /*
3021 * Sync and unmap the frame. At this point we're
3022 * committed to passing the mbuf somewhere so clear
3023 * bf_m; this means a new sk_buff must be allocated
3024 * when the rx descriptor is setup again to receive
3025 * another frame.
3026 */
3027 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3028 0, bf->bf_dmamap->dm_mapsize,
3029 BUS_DMASYNC_POSTREAD);
3030 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3031 bf->bf_m = NULL;
3032
3033 m->m_pkthdr.rcvif = ifp;
3034 len = ds->ds_rxstat.rs_datalen;
3035 m->m_pkthdr.len = m->m_len = len;
3036
3037 sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
3038
3039 #if NBPFILTER > 0
3040 if (sc->sc_drvbpf) {
3041 u_int8_t rix;
3042
3043 /*
3044 * Discard anything shorter than an ack or cts.
3045 */
3046 if (len < IEEE80211_ACK_LEN) {
3047 DPRINTF(sc, ATH_DEBUG_RECV,
3048 "%s: runt packet %d\n",
3049 __func__, len);
3050 sc->sc_stats.ast_rx_tooshort++;
3051 m_freem(m);
3052 goto rx_next;
3053 }
3054 rix = ds->ds_rxstat.rs_rate;
3055 sc->sc_rx_th.wr_tsf = htole64(
3056 ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf));
3057 sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
3058 sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
3059 sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf;
3060 sc->sc_rx_th.wr_antnoise = nf;
3061 sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
3062
3063 bpf_mtap2(sc->sc_drvbpf,
3064 &sc->sc_rx_th, sc->sc_rx_th_len, m);
3065 }
3066 #endif
3067
3068 /*
3069 * From this point on we assume the frame is at least
3070 * as large as ieee80211_frame_min; verify that.
3071 */
3072 if (len < IEEE80211_MIN_LEN) {
3073 DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
3074 __func__, len);
3075 sc->sc_stats.ast_rx_tooshort++;
3076 m_freem(m);
3077 goto rx_next;
3078 }
3079
3080 if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
3081 ieee80211_dump_pkt(mtod(m, caddr_t), len,
3082 sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
3083 ds->ds_rxstat.rs_rssi);
3084 }
3085
3086 m_adj(m, -IEEE80211_CRC_LEN);
3087
3088 /*
3089 * Locate the node for sender, track state, and then
3090 * pass the (referenced) node up to the 802.11 layer
3091 * for its use.
3092 */
3093 ni = ieee80211_find_rxnode_withkey(ic,
3094 mtod(m, const struct ieee80211_frame_min *),
3095 ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
3096 IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
3097 /*
3098 * Track rx rssi and do any rx antenna management.
3099 */
3100 an = ATH_NODE(ni);
3101 ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
3102 ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi);
3103 /*
3104 * Send frame up for processing.
3105 */
3106 type = ieee80211_input(ic, m, ni,
3107 ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
3108 ieee80211_free_node(ni);
3109 if (sc->sc_diversity) {
3110 /*
3111 * When using fast diversity, change the default rx
3112 * antenna if diversity chooses the other antenna 3
3113 * times in a row.
3114 */
3115 if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
3116 if (++sc->sc_rxotherant >= 3)
3117 ath_setdefantenna(sc,
3118 ds->ds_rxstat.rs_antenna);
3119 } else
3120 sc->sc_rxotherant = 0;
3121 }
3122 if (sc->sc_softled) {
3123 /*
3124 * Blink for any data frame. Otherwise do a
3125 * heartbeat-style blink when idle. The latter
3126 * is mainly for station mode where we depend on
3127 * periodic beacon frames to trigger the poll event.
3128 */
3129 if (type == IEEE80211_FC0_TYPE_DATA) {
3130 sc->sc_rxrate = ds->ds_rxstat.rs_rate;
3131 ath_led_event(sc, ATH_LED_RX);
3132 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
3133 ath_led_event(sc, ATH_LED_POLL);
3134 }
3135 /*
3136 * Arrange to update the last rx timestamp only for
3137 * frames from our ap when operating in station mode.
3138 * This assumes the rx key is always setup when associated.
3139 */
3140 if (ic->ic_opmode == IEEE80211_M_STA &&
3141 ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID)
3142 ngood++;
3143 rx_next:
3144 STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
3145 } while (ath_rxbuf_init(sc, bf) == 0);
3146
3147 /* rx signal state monitoring */
3148 ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
3149 if (ath_hal_radar_event(ah))
3150 TASK_RUN_OR_ENQUEUE(&sc->sc_radartask);
3151 if (ngood)
3152 sc->sc_lastrx = tsf;
3153
3154 #ifdef __NetBSD__
3155 /* XXX Why isn't this necessary in FreeBSD? */
3156 if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
3157 ath_start(ifp);
3158 #endif /* __NetBSD__ */
3159
3160 NET_UNLOCK_GIANT(); /* XXX */
3161 #undef PA2DESC
3162 }
3163
3164 /*
3165 * Setup a h/w transmit queue.
3166 */
3167 static struct ath_txq *
3168 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3169 {
3170 #define N(a) (sizeof(a)/sizeof(a[0]))
3171 struct ath_hal *ah = sc->sc_ah;
3172 HAL_TXQ_INFO qi;
3173 int qnum;
3174
3175 memset(&qi, 0, sizeof(qi));
3176 qi.tqi_subtype = subtype;
3177 qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3178 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3179 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3180 /*
3181 * Enable interrupts only for EOL and DESC conditions.
3182 * We mark tx descriptors to receive a DESC interrupt
3183 * when a tx queue gets deep; otherwise waiting for the
3184 * EOL to reap descriptors. Note that this is done to
3185 * reduce interrupt load and this only defers reaping
3186 * descriptors, never transmitting frames. Aside from
3187 * reducing interrupts this also permits more concurrency.
3188 * The only potential downside is if the tx queue backs
3189 * up in which case the top half of the kernel may backup
3190 * due to a lack of tx descriptors.
3191 */
3192 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
3193 qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3194 if (qnum == -1) {
3195 /*
3196 * NB: don't print a message, this happens
3197 * normally on parts with too few tx queues
3198 */
3199 return NULL;
3200 }
3201 if (qnum >= N(sc->sc_txq)) {
3202 device_printf(sc->sc_dev,
3203 "hal qnum %u out of range, max %zu!\n",
3204 qnum, N(sc->sc_txq));
3205 ath_hal_releasetxqueue(ah, qnum);
3206 return NULL;
3207 }
3208 if (!ATH_TXQ_SETUP(sc, qnum)) {
3209 struct ath_txq *txq = &sc->sc_txq[qnum];
3210
3211 txq->axq_qnum = qnum;
3212 txq->axq_depth = 0;
3213 txq->axq_intrcnt = 0;
3214 txq->axq_link = NULL;
3215 STAILQ_INIT(&txq->axq_q);
3216 ATH_TXQ_LOCK_INIT(sc, txq);
3217 sc->sc_txqsetup |= 1<<qnum;
3218 }
3219 return &sc->sc_txq[qnum];
3220 #undef N
3221 }
3222
3223 /*
3224 * Setup a hardware data transmit queue for the specified
3225 * access control. The hal may not support all requested
3226 * queues in which case it will return a reference to a
3227 * previously setup queue. We record the mapping from ac's
3228 * to h/w queues for use by ath_tx_start and also track
3229 * the set of h/w queues being used to optimize work in the
3230 * transmit interrupt handler and related routines.
3231 */
3232 static int
3233 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3234 {
3235 #define N(a) (sizeof(a)/sizeof(a[0]))
3236 struct ath_txq *txq;
3237
3238 if (ac >= N(sc->sc_ac2q)) {
3239 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3240 ac, N(sc->sc_ac2q));
3241 return 0;
3242 }
3243 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3244 if (txq != NULL) {
3245 sc->sc_ac2q[ac] = txq;
3246 return 1;
3247 } else
3248 return 0;
3249 #undef N
3250 }
3251
3252 /*
3253 * Update WME parameters for a transmit queue.
3254 */
3255 static int
3256 ath_txq_update(struct ath_softc *sc, int ac)
3257 {
3258 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1)
3259 #define ATH_TXOP_TO_US(v) (v<<5)
3260 struct ieee80211com *ic = &sc->sc_ic;
3261 struct ath_txq *txq = sc->sc_ac2q[ac];
3262 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3263 struct ath_hal *ah = sc->sc_ah;
3264 HAL_TXQ_INFO qi;
3265
3266 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3267 qi.tqi_aifs = wmep->wmep_aifsn;
3268 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3269 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3270 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3271
3272 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3273 device_printf(sc->sc_dev, "unable to update hardware queue "
3274 "parameters for %s traffic!\n",
3275 ieee80211_wme_acnames[ac]);
3276 return 0;
3277 } else {
3278 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3279 return 1;
3280 }
3281 #undef ATH_TXOP_TO_US
3282 #undef ATH_EXPONENT_TO_VALUE
3283 }
3284
3285 /*
3286 * Callback from the 802.11 layer to update WME parameters.
3287 */
3288 static int
3289 ath_wme_update(struct ieee80211com *ic)
3290 {
3291 struct ath_softc *sc = ic->ic_ifp->if_softc;
3292
3293 return !ath_txq_update(sc, WME_AC_BE) ||
3294 !ath_txq_update(sc, WME_AC_BK) ||
3295 !ath_txq_update(sc, WME_AC_VI) ||
3296 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3297 }
3298
3299 /*
3300 * Reclaim resources for a setup queue.
3301 */
3302 static void
3303 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3304 {
3305
3306 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3307 ATH_TXQ_LOCK_DESTROY(txq);
3308 sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3309 }
3310
3311 /*
3312 * Reclaim all tx queue resources.
3313 */
3314 static void
3315 ath_tx_cleanup(struct ath_softc *sc)
3316 {
3317 int i;
3318
3319 ATH_TXBUF_LOCK_DESTROY(sc);
3320 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3321 if (ATH_TXQ_SETUP(sc, i))
3322 ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3323 }
3324
3325 /*
3326 * Defragment an mbuf chain, returning at most maxfrags separate
3327 * mbufs+clusters. If this is not possible NULL is returned and
3328 * the original mbuf chain is left in it's present (potentially
3329 * modified) state. We use two techniques: collapsing consecutive
3330 * mbufs and replacing consecutive mbufs by a cluster.
3331 */
3332 static struct mbuf *
3333 ath_defrag(struct mbuf *m0, int how, int maxfrags)
3334 {
3335 struct mbuf *m, *n, *n2, **prev;
3336 u_int curfrags;
3337
3338 /*
3339 * Calculate the current number of frags.
3340 */
3341 curfrags = 0;
3342 for (m = m0; m != NULL; m = m->m_next)
3343 curfrags++;
3344 /*
3345 * First, try to collapse mbufs. Note that we always collapse
3346 * towards the front so we don't need to deal with moving the
3347 * pkthdr. This may be suboptimal if the first mbuf has much
3348 * less data than the following.
3349 */
3350 m = m0;
3351 again:
3352 for (;;) {
3353 n = m->m_next;
3354 if (n == NULL)
3355 break;
3356 if ((m->m_flags & M_RDONLY) == 0 &&
3357 n->m_len < M_TRAILINGSPACE(m)) {
3358 bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
3359 n->m_len);
3360 m->m_len += n->m_len;
3361 m->m_next = n->m_next;
3362 m_free(n);
3363 if (--curfrags <= maxfrags)
3364 return m0;
3365 } else
3366 m = n;
3367 }
3368 KASSERT(maxfrags > 1,
3369 ("maxfrags %u, but normal collapse failed", maxfrags));
3370 /*
3371 * Collapse consecutive mbufs to a cluster.
3372 */
3373 prev = &m0->m_next; /* NB: not the first mbuf */
3374 while ((n = *prev) != NULL) {
3375 if ((n2 = n->m_next) != NULL &&
3376 n->m_len + n2->m_len < MCLBYTES) {
3377 m = m_getcl(how, MT_DATA, 0);
3378 if (m == NULL)
3379 goto bad;
3380 bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
3381 bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
3382 n2->m_len);
3383 m->m_len = n->m_len + n2->m_len;
3384 m->m_next = n2->m_next;
3385 *prev = m;
3386 m_free(n);
3387 m_free(n2);
3388 if (--curfrags <= maxfrags) /* +1 cl -2 mbufs */
3389 return m0;
3390 /*
3391 * Still not there, try the normal collapse
3392 * again before we allocate another cluster.
3393 */
3394 goto again;
3395 }
3396 prev = &n->m_next;
3397 }
3398 /*
3399 * No place where we can collapse to a cluster; punt.
3400 * This can occur if, for example, you request 2 frags
3401 * but the packet requires that both be clusters (we
3402 * never reallocate the first mbuf to avoid moving the
3403 * packet header).
3404 */
3405 bad:
3406 return NULL;
3407 }
3408
3409 /*
3410 * Return h/w rate index for an IEEE rate (w/o basic rate bit).
3411 */
3412 static int
3413 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
3414 {
3415 int i;
3416
3417 for (i = 0; i < rt->rateCount; i++)
3418 if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
3419 return i;
3420 return 0; /* NB: lowest rate */
3421 }
3422
3423 static int
3424 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
3425 struct mbuf *m0)
3426 {
3427 struct ieee80211com *ic = &sc->sc_ic;
3428 struct ath_hal *ah = sc->sc_ah;
3429 struct ifnet *ifp = &sc->sc_if;
3430 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
3431 int i, error, iswep, ismcast, ismrr;
3432 int keyix, hdrlen, pktlen, try0;
3433 u_int8_t rix, txrate, ctsrate;
3434 u_int8_t cix = 0xff; /* NB: silence compiler */
3435 struct ath_desc *ds, *ds0;
3436 struct ath_txq *txq;
3437 struct ieee80211_frame *wh;
3438 u_int subtype, flags, ctsduration;
3439 HAL_PKT_TYPE atype;
3440 const HAL_RATE_TABLE *rt;
3441 HAL_BOOL shortPreamble;
3442 struct ath_node *an;
3443 struct mbuf *m;
3444 u_int pri;
3445
3446 wh = mtod(m0, struct ieee80211_frame *);
3447 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
3448 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3449 hdrlen = ieee80211_anyhdrsize(wh);
3450 /*
3451 * Packet length must not include any
3452 * pad bytes; deduct them here.
3453 */
3454 pktlen = m0->m_pkthdr.len - (hdrlen & 3);
3455
3456 if (iswep) {
3457 const struct ieee80211_cipher *cip;
3458 struct ieee80211_key *k;
3459
3460 /*
3461 * Construct the 802.11 header+trailer for an encrypted
3462 * frame. The only reason this can fail is because of an
3463 * unknown or unsupported cipher/key type.
3464 */
3465 k = ieee80211_crypto_encap(ic, ni, m0);
3466 if (k == NULL) {
3467 /*
3468 * This can happen when the key is yanked after the
3469 * frame was queued. Just discard the frame; the
3470 * 802.11 layer counts failures and provides
3471 * debugging/diagnostics.
3472 */
3473 m_freem(m0);
3474 return EIO;
3475 }
3476 /*
3477 * Adjust the packet + header lengths for the crypto
3478 * additions and calculate the h/w key index. When
3479 * a s/w mic is done the frame will have had any mic
3480 * added to it prior to entry so skb->len above will
3481 * account for it. Otherwise we need to add it to the
3482 * packet length.
3483 */
3484 cip = k->wk_cipher;
3485 hdrlen += cip->ic_header;
3486 pktlen += cip->ic_header + cip->ic_trailer;
3487 if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0)
3488 pktlen += cip->ic_miclen;
3489 keyix = k->wk_keyix;
3490
3491 /* packet header may have moved, reset our local pointer */
3492 wh = mtod(m0, struct ieee80211_frame *);
3493 } else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
3494 /*
3495 * Use station key cache slot, if assigned.
3496 */
3497 keyix = ni->ni_ucastkey.wk_keyix;
3498 if (keyix == IEEE80211_KEYIX_NONE)
3499 keyix = HAL_TXKEYIX_INVALID;
3500 } else
3501 keyix = HAL_TXKEYIX_INVALID;
3502
3503 pktlen += IEEE80211_CRC_LEN;
3504
3505 /*
3506 * Load the DMA map so any coalescing is done. This
3507 * also calculates the number of descriptors we need.
3508 */
3509 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3510 BUS_DMA_NOWAIT);
3511 if (error == EFBIG) {
3512 /* XXX packet requires too many descriptors */
3513 bf->bf_nseg = ATH_TXDESC+1;
3514 } else if (error != 0) {
3515 sc->sc_stats.ast_tx_busdma++;
3516 m_freem(m0);
3517 return error;
3518 }
3519 /*
3520 * Discard null packets and check for packets that
3521 * require too many TX descriptors. We try to convert
3522 * the latter to a cluster.
3523 */
3524 if (error == EFBIG) { /* too many desc's, linearize */
3525 sc->sc_stats.ast_tx_linear++;
3526 m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
3527 if (m == NULL) {
3528 m_freem(m0);
3529 sc->sc_stats.ast_tx_nombuf++;
3530 return ENOMEM;
3531 }
3532 m0 = m;
3533 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3534 BUS_DMA_NOWAIT);
3535 if (error != 0) {
3536 sc->sc_stats.ast_tx_busdma++;
3537 m_freem(m0);
3538 return error;
3539 }
3540 KASSERT(bf->bf_nseg <= ATH_TXDESC,
3541 ("too many segments after defrag; nseg %u", bf->bf_nseg));
3542 } else if (bf->bf_nseg == 0) { /* null packet, discard */
3543 sc->sc_stats.ast_tx_nodata++;
3544 m_freem(m0);
3545 return EIO;
3546 }
3547 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
3548 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
3549 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
3550 bf->bf_m = m0;
3551 bf->bf_node = ni; /* NB: held reference */
3552
3553 /* setup descriptors */
3554 ds = bf->bf_desc;
3555 rt = sc->sc_currates;
3556 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3557
3558 /*
3559 * NB: the 802.11 layer marks whether or not we should
3560 * use short preamble based on the current mode and
3561 * negotiated parameters.
3562 */
3563 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3564 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) {
3565 shortPreamble = AH_TRUE;
3566 sc->sc_stats.ast_tx_shortpre++;
3567 } else {
3568 shortPreamble = AH_FALSE;
3569 }
3570
3571 an = ATH_NODE(ni);
3572 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */
3573 ismrr = 0; /* default no multi-rate retry*/
3574 /*
3575 * Calculate Atheros packet type from IEEE80211 packet header,
3576 * setup for rate calculations, and select h/w transmit queue.
3577 */
3578 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3579 case IEEE80211_FC0_TYPE_MGT:
3580 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3581 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
3582 atype = HAL_PKT_TYPE_BEACON;
3583 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3584 atype = HAL_PKT_TYPE_PROBE_RESP;
3585 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
3586 atype = HAL_PKT_TYPE_ATIM;
3587 else
3588 atype = HAL_PKT_TYPE_NORMAL; /* XXX */
3589 rix = sc->sc_minrateix;
3590 txrate = rt->info[rix].rateCode;
3591 if (shortPreamble)
3592 txrate |= rt->info[rix].shortPreamble;
3593 try0 = ATH_TXMGTTRY;
3594 /* NB: force all management frames to highest queue */
3595 if (ni->ni_flags & IEEE80211_NODE_QOS) {
3596 /* NB: force all management frames to highest queue */
3597 pri = WME_AC_VO;
3598 } else
3599 pri = WME_AC_BE;
3600 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
3601 break;
3602 case IEEE80211_FC0_TYPE_CTL:
3603 atype = HAL_PKT_TYPE_PSPOLL; /* stop setting of duration */
3604 rix = sc->sc_minrateix;
3605 txrate = rt->info[rix].rateCode;
3606 if (shortPreamble)
3607 txrate |= rt->info[rix].shortPreamble;
3608 try0 = ATH_TXMGTTRY;
3609 /* NB: force all ctl frames to highest queue */
3610 if (ni->ni_flags & IEEE80211_NODE_QOS) {
3611 /* NB: force all ctl frames to highest queue */
3612 pri = WME_AC_VO;
3613 } else
3614 pri = WME_AC_BE;
3615 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
3616 break;
3617 case IEEE80211_FC0_TYPE_DATA:
3618 atype = HAL_PKT_TYPE_NORMAL; /* default */
3619 /*
3620 * Data frames: multicast frames go out at a fixed rate,
3621 * otherwise consult the rate control module for the
3622 * rate to use.
3623 */
3624 if (ismcast) {
3625 /*
3626 * Check mcast rate setting in case it's changed.
3627 * XXX move out of fastpath
3628 */
3629 if (ic->ic_mcast_rate != sc->sc_mcastrate) {
3630 sc->sc_mcastrix =
3631 ath_tx_findrix(rt, ic->ic_mcast_rate);
3632 sc->sc_mcastrate = ic->ic_mcast_rate;
3633 }
3634 rix = sc->sc_mcastrix;
3635 txrate = rt->info[rix].rateCode;
3636 try0 = 1;
3637 } else {
3638 ath_rate_findrate(sc, an, shortPreamble, pktlen,
3639 &rix, &try0, &txrate);
3640 sc->sc_txrate = txrate; /* for LED blinking */
3641 if (try0 != ATH_TXMAXTRY)
3642 ismrr = 1;
3643 }
3644 pri = M_WME_GETAC(m0);
3645 if (cap->cap_wmeParams[pri].wmep_noackPolicy)
3646 flags |= HAL_TXDESC_NOACK;
3647 break;
3648 default:
3649 if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3650 wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3651 /* XXX statistic */
3652 m_freem(m0);
3653 return EIO;
3654 }
3655 txq = sc->sc_ac2q[pri];
3656
3657 /*
3658 * When servicing one or more stations in power-save mode
3659 * multicast frames must be buffered until after the beacon.
3660 * We use the CAB queue for that.
3661 */
3662 if (ismcast && ic->ic_ps_sta) {
3663 txq = sc->sc_cabq;
3664 /* XXX? more bit in 802.11 frame header */
3665 }
3666
3667 /*
3668 * Calculate miscellaneous flags.
3669 */
3670 if (ismcast) {
3671 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */
3672 } else if (pktlen > ic->ic_rtsthreshold) {
3673 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */
3674 cix = rt->info[rix].controlRate;
3675 sc->sc_stats.ast_tx_rts++;
3676 }
3677 if (flags & HAL_TXDESC_NOACK) /* NB: avoid double counting */
3678 sc->sc_stats.ast_tx_noack++;
3679
3680 /*
3681 * If 802.11g protection is enabled, determine whether
3682 * to use RTS/CTS or just CTS. Note that this is only
3683 * done for OFDM unicast frames.
3684 */
3685 if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3686 rt->info[rix].phy == IEEE80211_T_OFDM &&
3687 (flags & HAL_TXDESC_NOACK) == 0) {
3688 /* XXX fragments must use CCK rates w/ protection */
3689 if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3690 flags |= HAL_TXDESC_RTSENA;
3691 else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3692 flags |= HAL_TXDESC_CTSENA;
3693 cix = rt->info[sc->sc_protrix].controlRate;
3694 sc->sc_stats.ast_tx_protect++;
3695 }
3696
3697 /*
3698 * Calculate duration. This logically belongs in the 802.11
3699 * layer but it lacks sufficient information to calculate it.
3700 */
3701 if ((flags & HAL_TXDESC_NOACK) == 0 &&
3702 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
3703 u_int16_t dur;
3704 /*
3705 * XXX not right with fragmentation.
3706 */
3707 if (shortPreamble)
3708 dur = rt->info[rix].spAckDuration;
3709 else
3710 dur = rt->info[rix].lpAckDuration;
3711 *(u_int16_t *)wh->i_dur = htole16(dur);
3712 }
3713
3714 /*
3715 * Calculate RTS/CTS rate and duration if needed.
3716 */
3717 ctsduration = 0;
3718 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
3719 /*
3720 * CTS transmit rate is derived from the transmit rate
3721 * by looking in the h/w rate table. We must also factor
3722 * in whether or not a short preamble is to be used.
3723 */
3724 /* NB: cix is set above where RTS/CTS is enabled */
3725 KASSERT(cix != 0xff, ("cix not setup"));
3726 ctsrate = rt->info[cix].rateCode;
3727 /*
3728 * Compute the transmit duration based on the frame
3729 * size and the size of an ACK frame. We call into the
3730 * HAL to do the computation since it depends on the
3731 * characteristics of the actual PHY being used.
3732 *
3733 * NB: CTS is assumed the same size as an ACK so we can
3734 * use the precalculated ACK durations.
3735 */
3736 if (shortPreamble) {
3737 ctsrate |= rt->info[cix].shortPreamble;
3738 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
3739 ctsduration += rt->info[cix].spAckDuration;
3740 ctsduration += ath_hal_computetxtime(ah,
3741 rt, pktlen, rix, AH_TRUE);
3742 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
3743 ctsduration += rt->info[rix].spAckDuration;
3744 } else {
3745 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
3746 ctsduration += rt->info[cix].lpAckDuration;
3747 ctsduration += ath_hal_computetxtime(ah,
3748 rt, pktlen, rix, AH_FALSE);
3749 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
3750 ctsduration += rt->info[rix].lpAckDuration;
3751 }
3752 /*
3753 * Must disable multi-rate retry when using RTS/CTS.
3754 */
3755 ismrr = 0;
3756 try0 = ATH_TXMGTTRY; /* XXX */
3757 } else
3758 ctsrate = 0;
3759
3760 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3761 ieee80211_dump_pkt(mtod(m0, caddr_t), m0->m_len,
3762 sc->sc_hwmap[txrate].ieeerate, -1);
3763 #if NBPFILTER > 0
3764 if (ic->ic_rawbpf)
3765 bpf_mtap(ic->ic_rawbpf, m0);
3766 if (sc->sc_drvbpf) {
3767 u_int64_t tsf = ath_hal_gettsf64(ah);
3768
3769 sc->sc_tx_th.wt_tsf = htole64(tsf);
3770 sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
3771 if (iswep)
3772 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3773 sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
3774 sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3775 sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3776
3777 bpf_mtap2(sc->sc_drvbpf,
3778 &sc->sc_tx_th, sc->sc_tx_th_len, m0);
3779 }
3780 #endif
3781
3782 /*
3783 * Determine if a tx interrupt should be generated for
3784 * this descriptor. We take a tx interrupt to reap
3785 * descriptors when the h/w hits an EOL condition or
3786 * when the descriptor is specifically marked to generate
3787 * an interrupt. We periodically mark descriptors in this
3788 * way to insure timely replenishing of the supply needed
3789 * for sending frames. Defering interrupts reduces system
3790 * load and potentially allows more concurrent work to be
3791 * done but if done to aggressively can cause senders to
3792 * backup.
3793 *
3794 * NB: use >= to deal with sc_txintrperiod changing
3795 * dynamically through sysctl.
3796 */
3797 if (flags & HAL_TXDESC_INTREQ) {
3798 txq->axq_intrcnt = 0;
3799 } else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
3800 flags |= HAL_TXDESC_INTREQ;
3801 txq->axq_intrcnt = 0;
3802 }
3803
3804 /*
3805 * Formulate first tx descriptor with tx controls.
3806 */
3807 /* XXX check return value? */
3808 ath_hal_setuptxdesc(ah, ds
3809 , pktlen /* packet length */
3810 , hdrlen /* header length */
3811 , atype /* Atheros packet type */
3812 , ni->ni_txpower /* txpower */
3813 , txrate, try0 /* series 0 rate/tries */
3814 , keyix /* key cache index */
3815 , sc->sc_txantenna /* antenna mode */
3816 , flags /* flags */
3817 , ctsrate /* rts/cts rate */
3818 , ctsduration /* rts/cts duration */
3819 );
3820 bf->bf_flags = flags;
3821 /*
3822 * Setup the multi-rate retry state only when we're
3823 * going to use it. This assumes ath_hal_setuptxdesc
3824 * initializes the descriptors (so we don't have to)
3825 * when the hardware supports multi-rate retry and
3826 * we don't use it.
3827 */
3828 if (ismrr)
3829 ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
3830
3831 /*
3832 * Fillin the remainder of the descriptor info.
3833 */
3834 ds0 = ds;
3835 for (i = 0; i < bf->bf_nseg; i++, ds++) {
3836 ds->ds_data = bf->bf_segs[i].ds_addr;
3837 if (i == bf->bf_nseg - 1)
3838 ds->ds_link = 0;
3839 else
3840 ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
3841 ath_hal_filltxdesc(ah, ds
3842 , bf->bf_segs[i].ds_len /* segment length */
3843 , i == 0 /* first segment */
3844 , i == bf->bf_nseg - 1 /* last segment */
3845 , ds0 /* first descriptor */
3846 );
3847
3848 /* NB: The desc swap function becomes void,
3849 * if descriptor swapping is not enabled
3850 */
3851 ath_desc_swap(ds);
3852
3853 DPRINTF(sc, ATH_DEBUG_XMIT,
3854 "%s: %d: %08x %08x %08x %08x %08x %08x\n",
3855 __func__, i, ds->ds_link, ds->ds_data,
3856 ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
3857 }
3858 /*
3859 * Insert the frame on the outbound list and
3860 * pass it on to the hardware.
3861 */
3862 ATH_TXQ_LOCK(txq);
3863 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
3864 if (txq->axq_link == NULL) {
3865 ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
3866 DPRINTF(sc, ATH_DEBUG_XMIT,
3867 "%s: TXDP[%u] = %" PRIx64 " (%p) depth %d\n", __func__,
3868 txq->axq_qnum, (uint64_t)bf->bf_daddr, bf->bf_desc,
3869 txq->axq_depth);
3870 } else {
3871 *txq->axq_link = HTOAH32(bf->bf_daddr);
3872 DPRINTF(sc, ATH_DEBUG_XMIT,
3873 "%s: link[%u](%p)=%" PRIx64 " (%p) depth %d\n",
3874 __func__, txq->axq_qnum, txq->axq_link,
3875 (uint64_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
3876 }
3877 txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
3878 /*
3879 * The CAB queue is started from the SWBA handler since
3880 * frames only go out on DTIM and to avoid possible races.
3881 */
3882 if (txq != sc->sc_cabq)
3883 ath_hal_txstart(ah, txq->axq_qnum);
3884 ATH_TXQ_UNLOCK(txq);
3885
3886 return 0;
3887 }
3888
3889 /*
3890 * Process completed xmit descriptors from the specified queue.
3891 */
3892 static int
3893 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
3894 {
3895 struct ath_hal *ah = sc->sc_ah;
3896 struct ieee80211com *ic = &sc->sc_ic;
3897 struct ath_buf *bf;
3898 struct ath_desc *ds, *ds0;
3899 struct ieee80211_node *ni;
3900 struct ath_node *an;
3901 int sr, lr, pri, nacked;
3902 HAL_STATUS status;
3903
3904 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
3905 __func__, txq->axq_qnum,
3906 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3907 txq->axq_link);
3908 nacked = 0;
3909 for (;;) {
3910 ATH_TXQ_LOCK(txq);
3911 txq->axq_intrcnt = 0; /* reset periodic desc intr count */
3912 bf = STAILQ_FIRST(&txq->axq_q);
3913 if (bf == NULL) {
3914 txq->axq_link = NULL;
3915 ATH_TXQ_UNLOCK(txq);
3916 break;
3917 }
3918 ds0 = &bf->bf_desc[0];
3919 ds = &bf->bf_desc[bf->bf_nseg - 1];
3920 status = ath_hal_txprocdesc(ah, ds);
3921 #ifdef AR_DEBUG
3922 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
3923 ath_printtxbuf(bf, status == HAL_OK);
3924 #endif
3925 if (status == HAL_EINPROGRESS) {
3926 ATH_TXQ_UNLOCK(txq);
3927 break;
3928 }
3929 ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3930 ATH_TXQ_UNLOCK(txq);
3931
3932 ni = bf->bf_node;
3933 if (ni != NULL) {
3934 an = ATH_NODE(ni);
3935 if (ds->ds_txstat.ts_status == 0) {
3936 u_int8_t txant = ds->ds_txstat.ts_antenna;
3937 sc->sc_stats.ast_ant_tx[txant]++;
3938 sc->sc_ant_tx[txant]++;
3939 if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
3940 sc->sc_stats.ast_tx_altrate++;
3941 sc->sc_stats.ast_tx_rssi =
3942 ds->ds_txstat.ts_rssi;
3943 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
3944 ds->ds_txstat.ts_rssi);
3945 pri = M_WME_GETAC(bf->bf_m);
3946 if (pri >= WME_AC_VO)
3947 ic->ic_wme.wme_hipri_traffic++;
3948 ni->ni_inact = ni->ni_inact_reload;
3949 } else {
3950 if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
3951 sc->sc_stats.ast_tx_xretries++;
3952 if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
3953 sc->sc_stats.ast_tx_fifoerr++;
3954 if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
3955 sc->sc_stats.ast_tx_filtered++;
3956 }
3957 sr = ds->ds_txstat.ts_shortretry;
3958 lr = ds->ds_txstat.ts_longretry;
3959 sc->sc_stats.ast_tx_shortretry += sr;
3960 sc->sc_stats.ast_tx_longretry += lr;
3961 /*
3962 * Hand the descriptor to the rate control algorithm.
3963 */
3964 if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
3965 (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
3966 /*
3967 * If frame was ack'd update the last rx time
3968 * used to workaround phantom bmiss interrupts.
3969 */
3970 if (ds->ds_txstat.ts_status == 0)
3971 nacked++;
3972 ath_rate_tx_complete(sc, an, ds, ds0);
3973 }
3974 /*
3975 * Reclaim reference to node.
3976 *
3977 * NB: the node may be reclaimed here if, for example
3978 * this is a DEAUTH message that was sent and the
3979 * node was timed out due to inactivity.
3980 */
3981 ieee80211_free_node(ni);
3982 }
3983 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
3984 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3985 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3986 m_freem(bf->bf_m);
3987 bf->bf_m = NULL;
3988 bf->bf_node = NULL;
3989
3990 ATH_TXBUF_LOCK(sc);
3991 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
3992 ATH_TXBUF_UNLOCK(sc);
3993 }
3994 return nacked;
3995 }
3996
3997 static inline int
3998 txqactive(struct ath_hal *ah, int qnum)
3999 {
4000 u_int32_t txqs = 1<<qnum;
4001 ath_hal_gettxintrtxqs(ah, &txqs);
4002 return (txqs & (1<<qnum));
4003 }
4004
4005 /*
4006 * Deferred processing of transmit interrupt; special-cased
4007 * for a single hardware transmit queue (e.g. 5210 and 5211).
4008 */
4009 static void
4010 ath_tx_proc_q0(void *arg, int npending)
4011 {
4012 struct ath_softc *sc = arg;
4013 struct ifnet *ifp = &sc->sc_if;
4014
4015 if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]))
4016 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4017 if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4018 ath_tx_processq(sc, sc->sc_cabq);
4019 ifp->if_flags &= ~IFF_OACTIVE;
4020 sc->sc_tx_timer = 0;
4021
4022 if (sc->sc_softled)
4023 ath_led_event(sc, ATH_LED_TX);
4024
4025 ath_start(ifp);
4026 }
4027
4028 /*
4029 * Deferred processing of transmit interrupt; special-cased
4030 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4031 */
4032 static void
4033 ath_tx_proc_q0123(void *arg, int npending)
4034 {
4035 struct ath_softc *sc = arg;
4036 struct ifnet *ifp = &sc->sc_if;
4037 int nacked;
4038
4039 /*
4040 * Process each active queue.
4041 */
4042 nacked = 0;
4043 if (txqactive(sc->sc_ah, 0))
4044 nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
4045 if (txqactive(sc->sc_ah, 1))
4046 nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
4047 if (txqactive(sc->sc_ah, 2))
4048 nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
4049 if (txqactive(sc->sc_ah, 3))
4050 nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
4051 if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4052 ath_tx_processq(sc, sc->sc_cabq);
4053 if (nacked)
4054 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4055 ath_tx_processq(sc, sc->sc_cabq);
4056
4057 ifp->if_flags &= ~IFF_OACTIVE;
4058 sc->sc_tx_timer = 0;
4059
4060 if (sc->sc_softled)
4061 ath_led_event(sc, ATH_LED_TX);
4062
4063 ath_start(ifp);
4064 }
4065
4066 /*
4067 * Deferred processing of transmit interrupt.
4068 */
4069 static void
4070 ath_tx_proc(void *arg, int npending)
4071 {
4072 struct ath_softc *sc = arg;
4073 struct ifnet *ifp = &sc->sc_if;
4074 int i, nacked;
4075
4076 /*
4077 * Process each active queue.
4078 */
4079 nacked = 0;
4080 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4081 if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
4082 nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
4083 if (nacked)
4084 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4085
4086 ifp->if_flags &= ~IFF_OACTIVE;
4087 sc->sc_tx_timer = 0;
4088
4089 if (sc->sc_softled)
4090 ath_led_event(sc, ATH_LED_TX);
4091
4092 ath_start(ifp);
4093 }
4094
4095 static void
4096 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
4097 {
4098 struct ath_hal *ah = sc->sc_ah;
4099 struct ieee80211_node *ni;
4100 struct ath_buf *bf;
4101
4102 /*
4103 * NB: this assumes output has been stopped and
4104 * we do not need to block ath_tx_tasklet
4105 */
4106 for (;;) {
4107 ATH_TXQ_LOCK(txq);
4108 bf = STAILQ_FIRST(&txq->axq_q);
4109 if (bf == NULL) {
4110 txq->axq_link = NULL;
4111 ATH_TXQ_UNLOCK(txq);
4112 break;
4113 }
4114 ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4115 ATH_TXQ_UNLOCK(txq);
4116 #ifdef AR_DEBUG
4117 if (sc->sc_debug & ATH_DEBUG_RESET)
4118 ath_printtxbuf(bf,
4119 ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
4120 #endif /* AR_DEBUG */
4121 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4122 m_freem(bf->bf_m);
4123 bf->bf_m = NULL;
4124 ni = bf->bf_node;
4125 bf->bf_node = NULL;
4126 if (ni != NULL) {
4127 /*
4128 * Reclaim node reference.
4129 */
4130 ieee80211_free_node(ni);
4131 }
4132 ATH_TXBUF_LOCK(sc);
4133 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4134 ATH_TXBUF_UNLOCK(sc);
4135 }
4136 }
4137
4138 static void
4139 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4140 {
4141 struct ath_hal *ah = sc->sc_ah;
4142
4143 (void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4144 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4145 __func__, txq->axq_qnum,
4146 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4147 txq->axq_link);
4148 }
4149
4150 /*
4151 * Drain the transmit queues and reclaim resources.
4152 */
4153 static void
4154 ath_draintxq(struct ath_softc *sc)
4155 {
4156 struct ath_hal *ah = sc->sc_ah;
4157 struct ifnet *ifp = &sc->sc_if;
4158 int i;
4159
4160 /* XXX return value */
4161 if (!sc->sc_invalid) {
4162 /* don't touch the hardware if marked invalid */
4163 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4164 DPRINTF(sc, ATH_DEBUG_RESET,
4165 "%s: beacon queue %p\n", __func__,
4166 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
4167 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4168 if (ATH_TXQ_SETUP(sc, i))
4169 ath_tx_stopdma(sc, &sc->sc_txq[i]);
4170 }
4171 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4172 if (ATH_TXQ_SETUP(sc, i))
4173 ath_tx_draintxq(sc, &sc->sc_txq[i]);
4174 ifp->if_flags &= ~IFF_OACTIVE;
4175 sc->sc_tx_timer = 0;
4176 }
4177
4178 /*
4179 * Disable the receive h/w in preparation for a reset.
4180 */
4181 static void
4182 ath_stoprecv(struct ath_softc *sc)
4183 {
4184 #define PA2DESC(_sc, _pa) \
4185 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
4186 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
4187 struct ath_hal *ah = sc->sc_ah;
4188
4189 ath_hal_stoppcurecv(ah); /* disable PCU */
4190 ath_hal_setrxfilter(ah, 0); /* clear recv filter */
4191 ath_hal_stopdmarecv(ah); /* disable DMA engine */
4192 DELAY(3000); /* 3ms is long enough for 1 frame */
4193 #ifdef AR_DEBUG
4194 if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
4195 struct ath_buf *bf;
4196
4197 printf("%s: rx queue %p, link %p\n", __func__,
4198 (caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
4199 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4200 struct ath_desc *ds = bf->bf_desc;
4201 HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
4202 bf->bf_daddr, PA2DESC(sc, ds->ds_link));
4203 if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
4204 ath_printrxbuf(bf, status == HAL_OK);
4205 }
4206 }
4207 #endif
4208 sc->sc_rxlink = NULL; /* just in case */
4209 #undef PA2DESC
4210 }
4211
4212 /*
4213 * Enable the receive h/w following a reset.
4214 */
4215 static int
4216 ath_startrecv(struct ath_softc *sc)
4217 {
4218 struct ath_hal *ah = sc->sc_ah;
4219 struct ath_buf *bf;
4220
4221 sc->sc_rxlink = NULL;
4222 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4223 int error = ath_rxbuf_init(sc, bf);
4224 if (error != 0) {
4225 DPRINTF(sc, ATH_DEBUG_RECV,
4226 "%s: ath_rxbuf_init failed %d\n",
4227 __func__, error);
4228 return error;
4229 }
4230 }
4231
4232 bf = STAILQ_FIRST(&sc->sc_rxbuf);
4233 ath_hal_putrxbuf(ah, bf->bf_daddr);
4234 ath_hal_rxena(ah); /* enable recv descriptors */
4235 ath_mode_init(sc); /* set filters, etc. */
4236 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */
4237 return 0;
4238 }
4239
4240 /*
4241 * Update internal state after a channel change.
4242 */
4243 static void
4244 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4245 {
4246 struct ieee80211com *ic = &sc->sc_ic;
4247 enum ieee80211_phymode mode;
4248 u_int16_t flags;
4249
4250 /*
4251 * Change channels and update the h/w rate map
4252 * if we're switching; e.g. 11a to 11b/g.
4253 */
4254 mode = ieee80211_chan2mode(ic, chan);
4255 if (mode != sc->sc_curmode)
4256 ath_setcurmode(sc, mode);
4257 /*
4258 * Update BPF state. NB: ethereal et. al. don't handle
4259 * merged flags well so pick a unique mode for their use.
4260 */
4261 if (IEEE80211_IS_CHAN_A(chan))
4262 flags = IEEE80211_CHAN_A;
4263 /* XXX 11g schizophrenia */
4264 else if (IEEE80211_IS_CHAN_G(chan) ||
4265 IEEE80211_IS_CHAN_PUREG(chan))
4266 flags = IEEE80211_CHAN_G;
4267 else
4268 flags = IEEE80211_CHAN_B;
4269 if (IEEE80211_IS_CHAN_T(chan))
4270 flags |= IEEE80211_CHAN_TURBO;
4271 sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
4272 htole16(chan->ic_freq);
4273 sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
4274 htole16(flags);
4275 }
4276
4277 /*
4278 * Poll for a channel clear indication; this is required
4279 * for channels requiring DFS and not previously visited
4280 * and/or with a recent radar detection.
4281 */
4282 static void
4283 ath_dfswait(void *arg)
4284 {
4285 struct ath_softc *sc = arg;
4286 struct ath_hal *ah = sc->sc_ah;
4287 HAL_CHANNEL hchan;
4288
4289 ath_hal_radar_wait(ah, &hchan);
4290 if (hchan.privFlags & CHANNEL_INTERFERENCE) {
4291 if_printf(&sc->sc_if,
4292 "channel %u/0x%x/0x%x has interference\n",
4293 hchan.channel, hchan.channelFlags, hchan.privFlags);
4294 return;
4295 }
4296 if ((hchan.privFlags & CHANNEL_DFS) == 0) {
4297 /* XXX should not happen */
4298 return;
4299 }
4300 if (hchan.privFlags & CHANNEL_DFS_CLEAR) {
4301 sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR;
4302 sc->sc_if.if_flags &= ~IFF_OACTIVE;
4303 if_printf(&sc->sc_if,
4304 "channel %u/0x%x/0x%x marked clear\n",
4305 hchan.channel, hchan.channelFlags, hchan.privFlags);
4306 } else
4307 callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc);
4308 }
4309
4310 /*
4311 * Set/change channels. If the channel is really being changed,
4312 * it's done by reseting the chip. To accomplish this we must
4313 * first cleanup any pending DMA, then restart stuff after a la
4314 * ath_init.
4315 */
4316 static int
4317 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4318 {
4319 struct ath_hal *ah = sc->sc_ah;
4320 struct ieee80211com *ic = &sc->sc_ic;
4321 HAL_CHANNEL hchan;
4322
4323 /*
4324 * Convert to a HAL channel description with
4325 * the flags constrained to reflect the current
4326 * operating mode.
4327 */
4328 hchan.channel = chan->ic_freq;
4329 hchan.channelFlags = ath_chan2flags(ic, chan);
4330
4331 DPRINTF(sc, ATH_DEBUG_RESET,
4332 "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
4333 __func__,
4334 ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
4335 sc->sc_curchan.channelFlags),
4336 sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
4337 ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
4338 hchan.channel, hchan.channelFlags);
4339 if (hchan.channel != sc->sc_curchan.channel ||
4340 hchan.channelFlags != sc->sc_curchan.channelFlags) {
4341 HAL_STATUS status;
4342
4343 /*
4344 * To switch channels clear any pending DMA operations;
4345 * wait long enough for the RX fifo to drain, reset the
4346 * hardware at the new frequency, and then re-enable
4347 * the relevant bits of the h/w.
4348 */
4349 ath_hal_intrset(ah, 0); /* disable interrupts */
4350 ath_draintxq(sc); /* clear pending tx frames */
4351 ath_stoprecv(sc); /* turn off frame recv */
4352 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
4353 if_printf(ic->ic_ifp, "%s: unable to reset "
4354 "channel %u (%u MHz, flags 0x%x hal flags 0x%x)\n",
4355 __func__, ieee80211_chan2ieee(ic, chan),
4356 chan->ic_freq, chan->ic_flags, hchan.channelFlags);
4357 return EIO;
4358 }
4359 sc->sc_curchan = hchan;
4360 ath_update_txpow(sc); /* update tx power state */
4361 sc->sc_diversity = ath_hal_getdiversity(ah);
4362 sc->sc_calinterval = 1;
4363 sc->sc_caltries = 0;
4364
4365 /*
4366 * Re-enable rx framework.
4367 */
4368 if (ath_startrecv(sc) != 0) {
4369 if_printf(&sc->sc_if,
4370 "%s: unable to restart recv logic\n", __func__);
4371 return EIO;
4372 }
4373
4374 /*
4375 * Change channels and update the h/w rate map
4376 * if we're switching; e.g. 11a to 11b/g.
4377 */
4378 ic->ic_ibss_chan = chan;
4379 ath_chan_change(sc, chan);
4380
4381 /*
4382 * Handle DFS required waiting period to determine
4383 * if channel is clear of radar traffic.
4384 */
4385 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
4386 #define DFS_AND_NOT_CLEAR(_c) \
4387 (((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS)
4388 if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) {
4389 if_printf(&sc->sc_if,
4390 "wait for DFS clear channel signal\n");
4391 /* XXX stop sndq */
4392 sc->sc_if.if_flags |= IFF_OACTIVE;
4393 callout_reset(&sc->sc_dfs_ch,
4394 2 * hz, ath_dfswait, sc);
4395 } else
4396 callout_stop(&sc->sc_dfs_ch);
4397 #undef DFS_NOT_CLEAR
4398 }
4399
4400 /*
4401 * Re-enable interrupts.
4402 */
4403 ath_hal_intrset(ah, sc->sc_imask);
4404 }
4405 return 0;
4406 }
4407
4408 static void
4409 ath_next_scan(void *arg)
4410 {
4411 struct ath_softc *sc = arg;
4412 struct ieee80211com *ic = &sc->sc_ic;
4413 int s;
4414
4415 /* don't call ath_start w/o network interrupts blocked */
4416 s = splnet();
4417
4418 if (ic->ic_state == IEEE80211_S_SCAN)
4419 ieee80211_next_scan(ic);
4420 splx(s);
4421 }
4422
4423 /*
4424 * Periodically recalibrate the PHY to account
4425 * for temperature/environment changes.
4426 */
4427 static void
4428 ath_calibrate(void *arg)
4429 {
4430 struct ath_softc *sc = arg;
4431 struct ath_hal *ah = sc->sc_ah;
4432 HAL_BOOL iqCalDone;
4433
4434 sc->sc_stats.ast_per_cal++;
4435
4436 ATH_LOCK(sc);
4437
4438 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4439 /*
4440 * Rfgain is out of bounds, reset the chip
4441 * to load new gain values.
4442 */
4443 DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4444 "%s: rfgain change\n", __func__);
4445 sc->sc_stats.ast_per_rfgain++;
4446 ath_reset(&sc->sc_if);
4447 }
4448 if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
4449 DPRINTF(sc, ATH_DEBUG_ANY,
4450 "%s: calibration of channel %u failed\n",
4451 __func__, sc->sc_curchan.channel);
4452 sc->sc_stats.ast_per_calfail++;
4453 }
4454 /*
4455 * Calibrate noise floor data again in case of change.
4456 */
4457 ath_hal_process_noisefloor(ah);
4458 /*
4459 * Poll more frequently when the IQ calibration is in
4460 * progress to speedup loading the final settings.
4461 * We temper this aggressive polling with an exponential
4462 * back off after 4 tries up to ath_calinterval.
4463 */
4464 if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
4465 sc->sc_caltries = 0;
4466 sc->sc_calinterval = ath_calinterval;
4467 } else if (sc->sc_caltries > 4) {
4468 sc->sc_caltries = 0;
4469 sc->sc_calinterval <<= 1;
4470 if (sc->sc_calinterval > ath_calinterval)
4471 sc->sc_calinterval = ath_calinterval;
4472 }
4473 KASSERT(0 < sc->sc_calinterval && sc->sc_calinterval <= ath_calinterval,
4474 ("bad calibration interval %u", sc->sc_calinterval));
4475
4476 DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4477 "%s: next +%u (%siqCalDone tries %u)\n", __func__,
4478 sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
4479 sc->sc_caltries++;
4480 callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4481 ath_calibrate, sc);
4482 ATH_UNLOCK(sc);
4483 }
4484
4485 static int
4486 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
4487 {
4488 struct ifnet *ifp = ic->ic_ifp;
4489 struct ath_softc *sc = ifp->if_softc;
4490 struct ath_hal *ah = sc->sc_ah;
4491 struct ieee80211_node *ni;
4492 int i, error;
4493 const u_int8_t *bssid;
4494 u_int32_t rfilt;
4495 static const HAL_LED_STATE leds[] = {
4496 HAL_LED_INIT, /* IEEE80211_S_INIT */
4497 HAL_LED_SCAN, /* IEEE80211_S_SCAN */
4498 HAL_LED_AUTH, /* IEEE80211_S_AUTH */
4499 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */
4500 HAL_LED_RUN, /* IEEE80211_S_RUN */
4501 };
4502
4503 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4504 ieee80211_state_name[ic->ic_state],
4505 ieee80211_state_name[nstate]);
4506
4507 callout_stop(&sc->sc_scan_ch);
4508 callout_stop(&sc->sc_cal_ch);
4509 callout_stop(&sc->sc_dfs_ch);
4510 ath_hal_setledstate(ah, leds[nstate]); /* set LED */
4511
4512 if (nstate == IEEE80211_S_INIT) {
4513 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4514 /*
4515 * NB: disable interrupts so we don't rx frames.
4516 */
4517 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4518 /*
4519 * Notify the rate control algorithm.
4520 */
4521 ath_rate_newstate(sc, nstate);
4522 goto done;
4523 }
4524 ni = ic->ic_bss;
4525 error = ath_chan_set(sc, ic->ic_curchan);
4526 if (error != 0)
4527 goto bad;
4528 rfilt = ath_calcrxfilter(sc, nstate);
4529 if (nstate == IEEE80211_S_SCAN)
4530 bssid = ifp->if_broadcastaddr;
4531 else
4532 bssid = ni->ni_bssid;
4533 ath_hal_setrxfilter(ah, rfilt);
4534 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
4535 __func__, rfilt, ether_sprintf(bssid));
4536
4537 if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
4538 ath_hal_setassocid(ah, bssid, ni->ni_associd);
4539 else
4540 ath_hal_setassocid(ah, bssid, 0);
4541 if (ic->ic_flags & IEEE80211_F_PRIVACY) {
4542 for (i = 0; i < IEEE80211_WEP_NKID; i++)
4543 if (ath_hal_keyisvalid(ah, i))
4544 ath_hal_keysetmac(ah, i, bssid);
4545 }
4546
4547 /*
4548 * Notify the rate control algorithm so rates
4549 * are setup should ath_beacon_alloc be called.
4550 */
4551 ath_rate_newstate(sc, nstate);
4552
4553 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4554 /* nothing to do */;
4555 } else if (nstate == IEEE80211_S_RUN) {
4556 DPRINTF(sc, ATH_DEBUG_STATE,
4557 "%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
4558 "capinfo=0x%04x chan=%d\n"
4559 , __func__
4560 , ic->ic_flags
4561 , ni->ni_intval
4562 , ether_sprintf(ni->ni_bssid)
4563 , ni->ni_capinfo
4564 , ieee80211_chan2ieee(ic, ic->ic_curchan));
4565
4566 switch (ic->ic_opmode) {
4567 case IEEE80211_M_HOSTAP:
4568 case IEEE80211_M_IBSS:
4569 /*
4570 * Allocate and setup the beacon frame.
4571 *
4572 * Stop any previous beacon DMA. This may be
4573 * necessary, for example, when an ibss merge
4574 * causes reconfiguration; there will be a state
4575 * transition from RUN->RUN that means we may
4576 * be called with beacon transmission active.
4577 */
4578 ath_hal_stoptxdma(ah, sc->sc_bhalq);
4579 ath_beacon_free(sc);
4580 error = ath_beacon_alloc(sc, ni);
4581 if (error != 0)
4582 goto bad;
4583 /*
4584 * If joining an adhoc network defer beacon timer
4585 * configuration to the next beacon frame so we
4586 * have a current TSF to use. Otherwise we're
4587 * starting an ibss/bss so there's no need to delay.
4588 */
4589 if (ic->ic_opmode == IEEE80211_M_IBSS &&
4590 ic->ic_bss->ni_tstamp.tsf != 0)
4591 sc->sc_syncbeacon = 1;
4592 else
4593 ath_beacon_config(sc);
4594 break;
4595 case IEEE80211_M_STA:
4596 /*
4597 * Allocate a key cache slot to the station.
4598 */
4599 if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
4600 sc->sc_hasclrkey &&
4601 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4602 ath_setup_stationkey(ni);
4603 /*
4604 * Defer beacon timer configuration to the next
4605 * beacon frame so we have a current TSF to use
4606 * (any TSF collected when scanning is likely old).
4607 */
4608 sc->sc_syncbeacon = 1;
4609 break;
4610 default:
4611 break;
4612 }
4613 /*
4614 * Let the hal process statistics collected during a
4615 * scan so it can provide calibrated noise floor data.
4616 */
4617 ath_hal_process_noisefloor(ah);
4618 /*
4619 * Reset rssi stats; maybe not the best place...
4620 */
4621 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
4622 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
4623 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
4624 } else {
4625 ath_hal_intrset(ah,
4626 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4627 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4628 }
4629 done:
4630 /*
4631 * Invoke the parent method to complete the work.
4632 */
4633 error = sc->sc_newstate(ic, nstate, arg);
4634 /*
4635 * Finally, start any timers.
4636 */
4637 if (nstate == IEEE80211_S_RUN) {
4638 /* start periodic recalibration timer */
4639 callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4640 ath_calibrate, sc);
4641 } else if (nstate == IEEE80211_S_SCAN) {
4642 /* start ap/neighbor scan timer */
4643 callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
4644 ath_next_scan, sc);
4645 }
4646 bad:
4647 return error;
4648 }
4649
4650 /*
4651 * Allocate a key cache slot to the station so we can
4652 * setup a mapping from key index to node. The key cache
4653 * slot is needed for managing antenna state and for
4654 * compression when stations do not use crypto. We do
4655 * it uniliaterally here; if crypto is employed this slot
4656 * will be reassigned.
4657 */
4658 static void
4659 ath_setup_stationkey(struct ieee80211_node *ni)
4660 {
4661 struct ieee80211com *ic = ni->ni_ic;
4662 struct ath_softc *sc = ic->ic_ifp->if_softc;
4663 ieee80211_keyix keyix, rxkeyix;
4664
4665 if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
4666 /*
4667 * Key cache is full; we'll fall back to doing
4668 * the more expensive lookup in software. Note
4669 * this also means no h/w compression.
4670 */
4671 /* XXX msg+statistic */
4672 } else {
4673 /* XXX locking? */
4674 ni->ni_ucastkey.wk_keyix = keyix;
4675 ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
4676 /* NB: this will create a pass-thru key entry */
4677 ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
4678 }
4679 }
4680
4681 /*
4682 * Setup driver-specific state for a newly associated node.
4683 * Note that we're called also on a re-associate, the isnew
4684 * param tells us if this is the first time or not.
4685 */
4686 static void
4687 ath_newassoc(struct ieee80211_node *ni, int isnew)
4688 {
4689 struct ieee80211com *ic = ni->ni_ic;
4690 struct ath_softc *sc = ic->ic_ifp->if_softc;
4691
4692 ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
4693 if (isnew &&
4694 (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
4695 KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
4696 ("new assoc with a unicast key already setup (keyix %u)",
4697 ni->ni_ucastkey.wk_keyix));
4698 ath_setup_stationkey(ni);
4699 }
4700 }
4701
4702 static int
4703 ath_getchannels(struct ath_softc *sc, u_int cc,
4704 HAL_BOOL outdoor, HAL_BOOL xchanmode)
4705 {
4706 #define COMPAT (CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
4707 struct ieee80211com *ic = &sc->sc_ic;
4708 struct ifnet *ifp = &sc->sc_if;
4709 struct ath_hal *ah = sc->sc_ah;
4710 HAL_CHANNEL *chans;
4711 int i, ix, nchan;
4712
4713 chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
4714 M_TEMP, M_NOWAIT);
4715 if (chans == NULL) {
4716 if_printf(ifp, "unable to allocate channel table\n");
4717 return ENOMEM;
4718 }
4719 if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
4720 NULL, 0, NULL,
4721 cc, HAL_MODE_ALL, outdoor, xchanmode)) {
4722 u_int32_t rd;
4723
4724 (void)ath_hal_getregdomain(ah, &rd);
4725 if_printf(ifp, "unable to collect channel list from hal; "
4726 "regdomain likely %u country code %u\n", rd, cc);
4727 free(chans, M_TEMP);
4728 return EINVAL;
4729 }
4730
4731 /*
4732 * Convert HAL channels to ieee80211 ones and insert
4733 * them in the table according to their channel number.
4734 */
4735 for (i = 0; i < nchan; i++) {
4736 HAL_CHANNEL *c = &chans[i];
4737 u_int16_t flags;
4738
4739 ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags);
4740 if (ix > IEEE80211_CHAN_MAX) {
4741 if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n",
4742 ix, c->channel, c->channelFlags);
4743 continue;
4744 }
4745 if (ix < 0) {
4746 /* XXX can't handle stuff <2400 right now */
4747 if (bootverbose)
4748 if_printf(ifp, "hal channel %d (%u/%x) "
4749 "cannot be handled; ignored\n",
4750 ix, c->channel, c->channelFlags);
4751 continue;
4752 }
4753 /*
4754 * Calculate net80211 flags; most are compatible
4755 * but some need massaging. Note the static turbo
4756 * conversion can be removed once net80211 is updated
4757 * to understand static vs. dynamic turbo.
4758 */
4759 flags = c->channelFlags & COMPAT;
4760 if (c->channelFlags & CHANNEL_STURBO)
4761 flags |= IEEE80211_CHAN_TURBO;
4762 if (ic->ic_channels[ix].ic_freq == 0) {
4763 ic->ic_channels[ix].ic_freq = c->channel;
4764 ic->ic_channels[ix].ic_flags = flags;
4765 } else {
4766 /* channels overlap; e.g. 11g and 11b */
4767 ic->ic_channels[ix].ic_flags |= flags;
4768 }
4769 }
4770 free(chans, M_TEMP);
4771 return 0;
4772 #undef COMPAT
4773 }
4774
4775 static void
4776 ath_led_done(void *arg)
4777 {
4778 struct ath_softc *sc = arg;
4779
4780 sc->sc_blinking = 0;
4781 }
4782
4783 /*
4784 * Turn the LED off: flip the pin and then set a timer so no
4785 * update will happen for the specified duration.
4786 */
4787 static void
4788 ath_led_off(void *arg)
4789 {
4790 struct ath_softc *sc = arg;
4791
4792 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
4793 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
4794 }
4795
4796 /*
4797 * Blink the LED according to the specified on/off times.
4798 */
4799 static void
4800 ath_led_blink(struct ath_softc *sc, int on, int off)
4801 {
4802 DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
4803 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
4804 sc->sc_blinking = 1;
4805 sc->sc_ledoff = off;
4806 callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
4807 }
4808
4809 static void
4810 ath_led_event(struct ath_softc *sc, int event)
4811 {
4812
4813 sc->sc_ledevent = ticks; /* time of last event */
4814 if (sc->sc_blinking) /* don't interrupt active blink */
4815 return;
4816 switch (event) {
4817 case ATH_LED_POLL:
4818 ath_led_blink(sc, sc->sc_hwmap[0].ledon,
4819 sc->sc_hwmap[0].ledoff);
4820 break;
4821 case ATH_LED_TX:
4822 ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
4823 sc->sc_hwmap[sc->sc_txrate].ledoff);
4824 break;
4825 case ATH_LED_RX:
4826 ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
4827 sc->sc_hwmap[sc->sc_rxrate].ledoff);
4828 break;
4829 }
4830 }
4831
4832 static void
4833 ath_update_txpow(struct ath_softc *sc)
4834 {
4835 #define COMPAT (CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
4836 struct ieee80211com *ic = &sc->sc_ic;
4837 struct ath_hal *ah = sc->sc_ah;
4838 u_int32_t txpow;
4839
4840 if (sc->sc_curtxpow != ic->ic_txpowlimit) {
4841 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
4842 /* read back in case value is clamped */
4843 (void)ath_hal_gettxpowlimit(ah, &txpow);
4844 ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
4845 }
4846 /*
4847 * Fetch max tx power level for status requests.
4848 */
4849 (void)ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
4850 ic->ic_bss->ni_txpower = txpow;
4851 }
4852
4853 static void
4854 rate_setup(struct ath_softc *sc,
4855 const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs)
4856 {
4857 int i, maxrates;
4858
4859 if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
4860 DPRINTF(sc, ATH_DEBUG_ANY,
4861 "%s: rate table too small (%u > %u)\n",
4862 __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
4863 maxrates = IEEE80211_RATE_MAXSIZE;
4864 } else
4865 maxrates = rt->rateCount;
4866 for (i = 0; i < maxrates; i++)
4867 rs->rs_rates[i] = rt->info[i].dot11Rate;
4868 rs->rs_nrates = maxrates;
4869 }
4870
4871 static int
4872 ath_rate_setup(struct ath_softc *sc, u_int mode)
4873 {
4874 struct ath_hal *ah = sc->sc_ah;
4875 struct ieee80211com *ic = &sc->sc_ic;
4876 const HAL_RATE_TABLE *rt;
4877
4878 switch (mode) {
4879 case IEEE80211_MODE_11A:
4880 rt = ath_hal_getratetable(ah, HAL_MODE_11A);
4881 break;
4882 case IEEE80211_MODE_11B:
4883 rt = ath_hal_getratetable(ah, HAL_MODE_11B);
4884 break;
4885 case IEEE80211_MODE_11G:
4886 rt = ath_hal_getratetable(ah, HAL_MODE_11G);
4887 break;
4888 case IEEE80211_MODE_TURBO_A:
4889 /* XXX until static/dynamic turbo is fixed */
4890 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
4891 break;
4892 case IEEE80211_MODE_TURBO_G:
4893 rt = ath_hal_getratetable(ah, HAL_MODE_108G);
4894 break;
4895 default:
4896 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
4897 __func__, mode);
4898 return 0;
4899 }
4900 sc->sc_rates[mode] = rt;
4901 if (rt != NULL) {
4902 rate_setup(sc, rt, &ic->ic_sup_rates[mode]);
4903 return 1;
4904 } else
4905 return 0;
4906 }
4907
4908 static void
4909 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
4910 {
4911 #define N(a) (sizeof(a)/sizeof(a[0]))
4912 /* NB: on/off times from the Atheros NDIS driver, w/ permission */
4913 static const struct {
4914 u_int rate; /* tx/rx 802.11 rate */
4915 u_int16_t timeOn; /* LED on time (ms) */
4916 u_int16_t timeOff; /* LED off time (ms) */
4917 } blinkrates[] = {
4918 { 108, 40, 10 },
4919 { 96, 44, 11 },
4920 { 72, 50, 13 },
4921 { 48, 57, 14 },
4922 { 36, 67, 16 },
4923 { 24, 80, 20 },
4924 { 22, 100, 25 },
4925 { 18, 133, 34 },
4926 { 12, 160, 40 },
4927 { 10, 200, 50 },
4928 { 6, 240, 58 },
4929 { 4, 267, 66 },
4930 { 2, 400, 100 },
4931 { 0, 500, 130 },
4932 };
4933 const HAL_RATE_TABLE *rt;
4934 int i, j;
4935
4936 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
4937 rt = sc->sc_rates[mode];
4938 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
4939 for (i = 0; i < rt->rateCount; i++)
4940 sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
4941 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
4942 for (i = 0; i < 32; i++) {
4943 u_int8_t ix = rt->rateCodeToIndex[i];
4944 if (ix == 0xff) {
4945 sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
4946 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
4947 continue;
4948 }
4949 sc->sc_hwmap[i].ieeerate =
4950 rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
4951 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
4952 if (rt->info[ix].shortPreamble ||
4953 rt->info[ix].phy == IEEE80211_T_OFDM)
4954 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
4955 /* NB: receive frames include FCS */
4956 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
4957 IEEE80211_RADIOTAP_F_FCS;
4958 /* setup blink rate table to avoid per-packet lookup */
4959 for (j = 0; j < N(blinkrates)-1; j++)
4960 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
4961 break;
4962 /* NB: this uses the last entry if the rate isn't found */
4963 /* XXX beware of overlow */
4964 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
4965 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
4966 }
4967 sc->sc_currates = rt;
4968 sc->sc_curmode = mode;
4969 /*
4970 * All protection frames are transmited at 2Mb/s for
4971 * 11g, otherwise at 1Mb/s.
4972 */
4973 if (mode == IEEE80211_MODE_11G)
4974 sc->sc_protrix = ath_tx_findrix(rt, 2*2);
4975 else
4976 sc->sc_protrix = ath_tx_findrix(rt, 2*1);
4977 /* rate index used to send management frames */
4978 sc->sc_minrateix = 0;
4979 /*
4980 * Setup multicast rate state.
4981 */
4982 /* XXX layering violation */
4983 sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate);
4984 sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate;
4985 /* NB: caller is responsible for reseting rate control state */
4986 #undef N
4987 }
4988
4989 #ifdef AR_DEBUG
4990 static void
4991 ath_printrxbuf(struct ath_buf *bf, int done)
4992 {
4993 struct ath_desc *ds;
4994 int i;
4995
4996 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
4997 printf("R%d (%p %" PRIx64
4998 ") %08x %08x %08x %08x %08x %08x %c\n", i, ds,
4999 (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
5000 ds->ds_link, ds->ds_data,
5001 ds->ds_ctl0, ds->ds_ctl1,
5002 ds->ds_hw[0], ds->ds_hw[1],
5003 !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
5004 }
5005 }
5006
5007 static void
5008 ath_printtxbuf(struct ath_buf *bf, int done)
5009 {
5010 struct ath_desc *ds;
5011 int i;
5012
5013 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5014 printf("T%d (%p %" PRIx64
5015 ") %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
5016 i, ds,
5017 (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
5018 ds->ds_link, ds->ds_data,
5019 ds->ds_ctl0, ds->ds_ctl1,
5020 ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
5021 !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
5022 }
5023 }
5024 #endif /* AR_DEBUG */
5025
5026 static void
5027 ath_watchdog(struct ifnet *ifp)
5028 {
5029 struct ath_softc *sc = ifp->if_softc;
5030 struct ieee80211com *ic = &sc->sc_ic;
5031
5032 ifp->if_timer = 0;
5033 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
5034 return;
5035 if (sc->sc_tx_timer) {
5036 if (--sc->sc_tx_timer == 0) {
5037 if_printf(ifp, "device timeout\n");
5038 ath_reset(ifp);
5039 ifp->if_oerrors++;
5040 sc->sc_stats.ast_watchdog++;
5041 } else
5042 ifp->if_timer = 1;
5043 }
5044 ieee80211_watchdog(ic);
5045 }
5046
5047 /*
5048 * Diagnostic interface to the HAL. This is used by various
5049 * tools to do things like retrieve register contents for
5050 * debugging. The mechanism is intentionally opaque so that
5051 * it can change frequently w/o concern for compatiblity.
5052 */
5053 static int
5054 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
5055 {
5056 struct ath_hal *ah = sc->sc_ah;
5057 u_int id = ad->ad_id & ATH_DIAG_ID;
5058 void *indata = NULL;
5059 void *outdata = NULL;
5060 u_int32_t insize = ad->ad_in_size;
5061 u_int32_t outsize = ad->ad_out_size;
5062 int error = 0;
5063
5064 if (ad->ad_id & ATH_DIAG_IN) {
5065 /*
5066 * Copy in data.
5067 */
5068 indata = malloc(insize, M_TEMP, M_NOWAIT);
5069 if (indata == NULL) {
5070 error = ENOMEM;
5071 goto bad;
5072 }
5073 error = copyin(ad->ad_in_data, indata, insize);
5074 if (error)
5075 goto bad;
5076 }
5077 if (ad->ad_id & ATH_DIAG_DYN) {
5078 /*
5079 * Allocate a buffer for the results (otherwise the HAL
5080 * returns a pointer to a buffer where we can read the
5081 * results). Note that we depend on the HAL leaving this
5082 * pointer for us to use below in reclaiming the buffer;
5083 * may want to be more defensive.
5084 */
5085 outdata = malloc(outsize, M_TEMP, M_NOWAIT);
5086 if (outdata == NULL) {
5087 error = ENOMEM;
5088 goto bad;
5089 }
5090 }
5091 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
5092 if (outsize < ad->ad_out_size)
5093 ad->ad_out_size = outsize;
5094 if (outdata != NULL)
5095 error = copyout(outdata, ad->ad_out_data,
5096 ad->ad_out_size);
5097 } else {
5098 error = EINVAL;
5099 }
5100 bad:
5101 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
5102 free(indata, M_TEMP);
5103 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
5104 free(outdata, M_TEMP);
5105 return error;
5106 }
5107
5108 static int
5109 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
5110 {
5111 #define IS_RUNNING(ifp) \
5112 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
5113 struct ath_softc *sc = ifp->if_softc;
5114 struct ieee80211com *ic = &sc->sc_ic;
5115 struct ifreq *ifr = (struct ifreq *)data;
5116 int error = 0;
5117
5118 ATH_LOCK(sc);
5119 switch (cmd) {
5120 case SIOCSIFFLAGS:
5121 if (IS_RUNNING(ifp)) {
5122 /*
5123 * To avoid rescanning another access point,
5124 * do not call ath_init() here. Instead,
5125 * only reflect promisc mode settings.
5126 */
5127 ath_mode_init(sc);
5128 } else if (ifp->if_flags & IFF_UP) {
5129 /*
5130 * Beware of being called during attach/detach
5131 * to reset promiscuous mode. In that case we
5132 * will still be marked UP but not RUNNING.
5133 * However trying to re-init the interface
5134 * is the wrong thing to do as we've already
5135 * torn down much of our state. There's
5136 * probably a better way to deal with this.
5137 */
5138 if (!sc->sc_invalid && ic->ic_bss != NULL)
5139 ath_init(sc); /* XXX lose error */
5140 } else
5141 ath_stop_locked(ifp, 1);
5142 break;
5143 case SIOCADDMULTI:
5144 case SIOCDELMULTI:
5145 error = (cmd == SIOCADDMULTI) ?
5146 ether_addmulti(ifr, &sc->sc_ec) :
5147 ether_delmulti(ifr, &sc->sc_ec);
5148 if (error == ENETRESET) {
5149 if (ifp->if_flags & IFF_RUNNING)
5150 ath_mode_init(sc);
5151 error = 0;
5152 }
5153 break;
5154 case SIOCGATHSTATS:
5155 /* NB: embed these numbers to get a consistent view */
5156 sc->sc_stats.ast_tx_packets = ifp->if_opackets;
5157 sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
5158 sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
5159 ATH_UNLOCK(sc);
5160 /*
5161 * NB: Drop the softc lock in case of a page fault;
5162 * we'll accept any potential inconsisentcy in the
5163 * statistics. The alternative is to copy the data
5164 * to a local structure.
5165 */
5166 return copyout(&sc->sc_stats,
5167 ifr->ifr_data, sizeof (sc->sc_stats));
5168 case SIOCGATHDIAG:
5169 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
5170 break;
5171 default:
5172 error = ieee80211_ioctl(ic, cmd, data);
5173 if (error == ENETRESET) {
5174 if (IS_RUNNING(ifp) &&
5175 ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
5176 ath_init(sc); /* XXX lose error */
5177 error = 0;
5178 }
5179 if (error == ERESTART)
5180 error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0;
5181 break;
5182 }
5183 ATH_UNLOCK(sc);
5184 return error;
5185 #undef IS_RUNNING
5186 }
5187
5188 #if NBPFILTER > 0
5189 static void
5190 ath_bpfattach(struct ath_softc *sc)
5191 {
5192 struct ifnet *ifp = &sc->sc_if;
5193
5194 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
5195 sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
5196 &sc->sc_drvbpf);
5197 /*
5198 * Initialize constant fields.
5199 * XXX make header lengths a multiple of 32-bits so subsequent
5200 * headers are properly aligned; this is a kludge to keep
5201 * certain applications happy.
5202 *
5203 * NB: the channel is setup each time we transition to the
5204 * RUN state to avoid filling it in for each frame.
5205 */
5206 sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
5207 sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
5208 sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
5209
5210 sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
5211 sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
5212 sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
5213 }
5214 #endif
5215
5216 /*
5217 * Announce various information on device/driver attach.
5218 */
5219 static void
5220 ath_announce(struct ath_softc *sc)
5221 {
5222 #define HAL_MODE_DUALBAND (HAL_MODE_11A|HAL_MODE_11B)
5223 struct ifnet *ifp = &sc->sc_if;
5224 struct ath_hal *ah = sc->sc_ah;
5225 u_int modes, cc;
5226
5227 if_printf(ifp, "mac %d.%d phy %d.%d",
5228 ah->ah_macVersion, ah->ah_macRev,
5229 ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
5230 /*
5231 * Print radio revision(s). We check the wireless modes
5232 * to avoid falsely printing revs for inoperable parts.
5233 * Dual-band radio revs are returned in the 5 GHz rev number.
5234 */
5235 ath_hal_getcountrycode(ah, &cc);
5236 modes = ath_hal_getwirelessmodes(ah, cc);
5237 if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
5238 if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
5239 printf(" 5 GHz radio %d.%d 2 GHz radio %d.%d",
5240 ah->ah_analog5GhzRev >> 4,
5241 ah->ah_analog5GhzRev & 0xf,
5242 ah->ah_analog2GhzRev >> 4,
5243 ah->ah_analog2GhzRev & 0xf);
5244 else
5245 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5246 ah->ah_analog5GhzRev & 0xf);
5247 } else
5248 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5249 ah->ah_analog5GhzRev & 0xf);
5250 printf("\n");
5251 if (bootverbose) {
5252 int i;
5253 for (i = 0; i <= WME_AC_VO; i++) {
5254 struct ath_txq *txq = sc->sc_ac2q[i];
5255 if_printf(ifp, "Use hw queue %u for %s traffic\n",
5256 txq->axq_qnum, ieee80211_wme_acnames[i]);
5257 }
5258 if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5259 sc->sc_cabq->axq_qnum);
5260 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5261 }
5262 if (ath_rxbuf != ATH_RXBUF)
5263 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
5264 if (ath_txbuf != ATH_TXBUF)
5265 if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
5266 #undef HAL_MODE_DUALBAND
5267 }
5268