ath.c revision 1.53.2.8 1 /* $NetBSD: ath.c,v 1.53.2.8 2008/03/17 09:14:41 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15 * redistribution must be conditioned upon including a substantially
16 * similar Disclaimer requirement for further binary redistribution.
17 * 3. Neither the names of the above-listed copyright holders nor the names
18 * of any contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * Alternatively, this software may be distributed under the terms of the
22 * GNU General Public License ("GPL") version 2 as published by the Free
23 * Software Foundation.
24 *
25 * NO WARRANTY
26 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
28 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
29 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
30 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
31 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
34 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
36 * THE POSSIBILITY OF SUCH DAMAGES.
37 */
38
39 #include <sys/cdefs.h>
40 #ifdef __FreeBSD__
41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $");
42 #endif
43 #ifdef __NetBSD__
44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.53.2.8 2008/03/17 09:14:41 yamt Exp $");
45 #endif
46
47 /*
48 * Driver for the Atheros Wireless LAN controller.
49 *
50 * This software is derived from work of Atsushi Onoe; his contribution
51 * is greatly appreciated.
52 */
53
54 #include "opt_inet.h"
55
56 #ifdef __NetBSD__
57 #include "bpfilter.h"
58 #endif /* __NetBSD__ */
59
60 #include <sys/param.h>
61 #include <sys/reboot.h>
62 #include <sys/systm.h>
63 #include <sys/types.h>
64 #include <sys/sysctl.h>
65 #include <sys/mbuf.h>
66 #include <sys/malloc.h>
67 #include <sys/kernel.h>
68 #include <sys/socket.h>
69 #include <sys/sockio.h>
70 #include <sys/errno.h>
71 #include <sys/callout.h>
72 #include <sys/bus.h>
73 #include <sys/endian.h>
74
75 #include <net/if.h>
76 #include <net/if_dl.h>
77 #include <net/if_media.h>
78 #include <net/if_types.h>
79 #include <net/if_arp.h>
80 #include <net/if_ether.h>
81 #include <net/if_llc.h>
82
83 #include <net80211/ieee80211_netbsd.h>
84 #include <net80211/ieee80211_var.h>
85
86 #if NBPFILTER > 0
87 #include <net/bpf.h>
88 #endif
89
90 #ifdef INET
91 #include <netinet/in.h>
92 #endif
93
94 #include <sys/device.h>
95 #include <dev/ic/ath_netbsd.h>
96
97 #define AR_DEBUG
98 #include <dev/ic/athvar.h>
99 #include <contrib/dev/ath/ah_desc.h>
100 #include <contrib/dev/ath/ah_devid.h> /* XXX for softled */
101 #include "athhal_options.h"
102
103 #ifdef ATH_TX99_DIAG
104 #include <dev/ath/ath_tx99/ath_tx99.h>
105 #endif
106
107 /* unaligned little endian access */
108 #define LE_READ_2(p) \
109 ((u_int16_t) \
110 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8)))
111 #define LE_READ_4(p) \
112 ((u_int32_t) \
113 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \
114 (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
115
116 enum {
117 ATH_LED_TX,
118 ATH_LED_RX,
119 ATH_LED_POLL,
120 };
121
122 #ifdef AH_NEED_DESC_SWAP
123 #define HTOAH32(x) htole32(x)
124 #else
125 #define HTOAH32(x) (x)
126 #endif
127
128 static int ath_ifinit(struct ifnet *);
129 static int ath_init(struct ath_softc *);
130 static void ath_stop_locked(struct ifnet *, int);
131 static void ath_stop(struct ifnet *, int);
132 static void ath_start(struct ifnet *);
133 static int ath_media_change(struct ifnet *);
134 static void ath_watchdog(struct ifnet *);
135 static int ath_ioctl(struct ifnet *, u_long, void *);
136 static void ath_fatal_proc(void *, int);
137 static void ath_rxorn_proc(void *, int);
138 static void ath_bmiss_proc(void *, int);
139 static void ath_radar_proc(void *, int);
140 static int ath_key_alloc(struct ieee80211com *,
141 const struct ieee80211_key *,
142 ieee80211_keyix *, ieee80211_keyix *);
143 static int ath_key_delete(struct ieee80211com *,
144 const struct ieee80211_key *);
145 static int ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
146 const u_int8_t mac[IEEE80211_ADDR_LEN]);
147 static void ath_key_update_begin(struct ieee80211com *);
148 static void ath_key_update_end(struct ieee80211com *);
149 static void ath_mode_init(struct ath_softc *);
150 static void ath_setslottime(struct ath_softc *);
151 static void ath_updateslot(struct ifnet *);
152 static int ath_beaconq_setup(struct ath_hal *);
153 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
154 static void ath_beacon_setup(struct ath_softc *, struct ath_buf *);
155 static void ath_beacon_proc(void *, int);
156 static void ath_bstuck_proc(void *, int);
157 static void ath_beacon_free(struct ath_softc *);
158 static void ath_beacon_config(struct ath_softc *);
159 static void ath_descdma_cleanup(struct ath_softc *sc,
160 struct ath_descdma *, ath_bufhead *);
161 static int ath_desc_alloc(struct ath_softc *);
162 static void ath_desc_free(struct ath_softc *);
163 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
164 static void ath_node_free(struct ieee80211_node *);
165 static u_int8_t ath_node_getrssi(const struct ieee80211_node *);
166 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
167 static void ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
168 struct ieee80211_node *ni,
169 int subtype, int rssi, u_int32_t rstamp);
170 static void ath_setdefantenna(struct ath_softc *, u_int);
171 static void ath_rx_proc(void *, int);
172 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
173 static int ath_tx_setup(struct ath_softc *, int, int);
174 static int ath_wme_update(struct ieee80211com *);
175 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
176 static void ath_tx_cleanup(struct ath_softc *);
177 static int ath_tx_start(struct ath_softc *, struct ieee80211_node *,
178 struct ath_buf *, struct mbuf *);
179 static void ath_tx_proc_q0(void *, int);
180 static void ath_tx_proc_q0123(void *, int);
181 static void ath_tx_proc(void *, int);
182 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
183 static void ath_draintxq(struct ath_softc *);
184 static void ath_stoprecv(struct ath_softc *);
185 static int ath_startrecv(struct ath_softc *);
186 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
187 static void ath_next_scan(void *);
188 static void ath_calibrate(void *);
189 static int ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
190 static void ath_setup_stationkey(struct ieee80211_node *);
191 static void ath_newassoc(struct ieee80211_node *, int);
192 static int ath_getchannels(struct ath_softc *, u_int cc,
193 HAL_BOOL outdoor, HAL_BOOL xchanmode);
194 static void ath_led_event(struct ath_softc *, int);
195 static void ath_update_txpow(struct ath_softc *);
196 static void ath_freetx(struct mbuf *);
197 static void ath_restore_diversity(struct ath_softc *);
198
199 static int ath_rate_setup(struct ath_softc *, u_int mode);
200 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
201
202 #if NBPFILTER > 0
203 static void ath_bpfattach(struct ath_softc *);
204 #endif
205 static void ath_announce(struct ath_softc *);
206
207 int ath_dwelltime = 200; /* 5 channels/second */
208 int ath_calinterval = 30; /* calibrate every 30 secs */
209 int ath_outdoor = AH_TRUE; /* outdoor operation */
210 int ath_xchanmode = AH_TRUE; /* enable extended channels */
211 int ath_countrycode = CTRY_DEFAULT; /* country code */
212 int ath_regdomain = 0; /* regulatory domain */
213 int ath_debug = 0;
214 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */
215 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */
216
217 #ifdef AR_DEBUG
218 enum {
219 ATH_DEBUG_XMIT = 0x00000001, /* basic xmit operation */
220 ATH_DEBUG_XMIT_DESC = 0x00000002, /* xmit descriptors */
221 ATH_DEBUG_RECV = 0x00000004, /* basic recv operation */
222 ATH_DEBUG_RECV_DESC = 0x00000008, /* recv descriptors */
223 ATH_DEBUG_RATE = 0x00000010, /* rate control */
224 ATH_DEBUG_RESET = 0x00000020, /* reset processing */
225 ATH_DEBUG_MODE = 0x00000040, /* mode init/setup */
226 ATH_DEBUG_BEACON = 0x00000080, /* beacon handling */
227 ATH_DEBUG_WATCHDOG = 0x00000100, /* watchdog timeout */
228 ATH_DEBUG_INTR = 0x00001000, /* ISR */
229 ATH_DEBUG_TX_PROC = 0x00002000, /* tx ISR proc */
230 ATH_DEBUG_RX_PROC = 0x00004000, /* rx ISR proc */
231 ATH_DEBUG_BEACON_PROC = 0x00008000, /* beacon ISR proc */
232 ATH_DEBUG_CALIBRATE = 0x00010000, /* periodic calibration */
233 ATH_DEBUG_KEYCACHE = 0x00020000, /* key cache management */
234 ATH_DEBUG_STATE = 0x00040000, /* 802.11 state transitions */
235 ATH_DEBUG_NODE = 0x00080000, /* node management */
236 ATH_DEBUG_LED = 0x00100000, /* led management */
237 ATH_DEBUG_FF = 0x00200000, /* fast frames */
238 ATH_DEBUG_DFS = 0x00400000, /* DFS processing */
239 ATH_DEBUG_FATAL = 0x80000000, /* fatal errors */
240 ATH_DEBUG_ANY = 0xffffffff
241 };
242 #define IFF_DUMPPKTS(sc, m) \
243 ((sc->sc_debug & (m)) || \
244 (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
245 #define DPRINTF(sc, m, fmt, ...) do { \
246 if (sc->sc_debug & (m)) \
247 printf(fmt, __VA_ARGS__); \
248 } while (0)
249 #define KEYPRINTF(sc, ix, hk, mac) do { \
250 if (sc->sc_debug & ATH_DEBUG_KEYCACHE) \
251 ath_keyprint(__func__, ix, hk, mac); \
252 } while (0)
253 static void ath_printrxbuf(struct ath_buf *bf, int);
254 static void ath_printtxbuf(struct ath_buf *bf, int);
255 #else
256 #define IFF_DUMPPKTS(sc, m) \
257 ((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
258 #define DPRINTF(m, fmt, ...)
259 #define KEYPRINTF(sc, k, ix, mac)
260 #endif
261
262 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
263
264 int
265 ath_attach(u_int16_t devid, struct ath_softc *sc)
266 {
267 struct ifnet *ifp = &sc->sc_if;
268 struct ieee80211com *ic = &sc->sc_ic;
269 struct ath_hal *ah = NULL;
270 HAL_STATUS status;
271 int error = 0, i;
272
273 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
274
275 memcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
276
277 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
278 if (ah == NULL) {
279 if_printf(ifp, "unable to attach hardware; HAL status %u\n",
280 status);
281 error = ENXIO;
282 goto bad;
283 }
284 if (ah->ah_abi != HAL_ABI_VERSION) {
285 if_printf(ifp, "HAL ABI mismatch detected "
286 "(HAL:0x%x != driver:0x%x)\n",
287 ah->ah_abi, HAL_ABI_VERSION);
288 error = ENXIO;
289 goto bad;
290 }
291 sc->sc_ah = ah;
292
293 if (!prop_dictionary_set_bool(device_properties(&sc->sc_dev),
294 "pmf-powerdown", false))
295 goto bad;
296
297 /*
298 * Check if the MAC has multi-rate retry support.
299 * We do this by trying to setup a fake extended
300 * descriptor. MAC's that don't have support will
301 * return false w/o doing anything. MAC's that do
302 * support it will return true w/o doing anything.
303 */
304 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
305
306 /*
307 * Check if the device has hardware counters for PHY
308 * errors. If so we need to enable the MIB interrupt
309 * so we can act on stat triggers.
310 */
311 if (ath_hal_hwphycounters(ah))
312 sc->sc_needmib = 1;
313
314 /*
315 * Get the hardware key cache size.
316 */
317 sc->sc_keymax = ath_hal_keycachesize(ah);
318 if (sc->sc_keymax > ATH_KEYMAX) {
319 if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
320 ATH_KEYMAX, sc->sc_keymax);
321 sc->sc_keymax = ATH_KEYMAX;
322 }
323 /*
324 * Reset the key cache since some parts do not
325 * reset the contents on initial power up.
326 */
327 for (i = 0; i < sc->sc_keymax; i++)
328 ath_hal_keyreset(ah, i);
329 /*
330 * Mark key cache slots associated with global keys
331 * as in use. If we knew TKIP was not to be used we
332 * could leave the +32, +64, and +32+64 slots free.
333 * XXX only for splitmic.
334 */
335 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
336 setbit(sc->sc_keymap, i);
337 setbit(sc->sc_keymap, i+32);
338 setbit(sc->sc_keymap, i+64);
339 setbit(sc->sc_keymap, i+32+64);
340 }
341
342 /*
343 * Collect the channel list using the default country
344 * code and including outdoor channels. The 802.11 layer
345 * is resposible for filtering this list based on settings
346 * like the phy mode.
347 */
348 error = ath_getchannels(sc, ath_countrycode,
349 ath_outdoor, ath_xchanmode);
350 if (error != 0)
351 goto bad;
352
353 /*
354 * Setup rate tables for all potential media types.
355 */
356 ath_rate_setup(sc, IEEE80211_MODE_11A);
357 ath_rate_setup(sc, IEEE80211_MODE_11B);
358 ath_rate_setup(sc, IEEE80211_MODE_11G);
359 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
360 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
361 /* NB: setup here so ath_rate_update is happy */
362 ath_setcurmode(sc, IEEE80211_MODE_11A);
363
364 /*
365 * Allocate tx+rx descriptors and populate the lists.
366 */
367 error = ath_desc_alloc(sc);
368 if (error != 0) {
369 if_printf(ifp, "failed to allocate descriptors: %d\n", error);
370 goto bad;
371 }
372 ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
373 ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE);
374 ATH_CALLOUT_INIT(&sc->sc_dfs_ch, CALLOUT_MPSAFE);
375
376 ATH_TXBUF_LOCK_INIT(sc);
377
378 TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
379 TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
380 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
381 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
382 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
383 TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc);
384
385 /*
386 * Allocate hardware transmit queues: one queue for
387 * beacon frames and one data queue for each QoS
388 * priority. Note that the hal handles reseting
389 * these queues at the needed time.
390 *
391 * XXX PS-Poll
392 */
393 sc->sc_bhalq = ath_beaconq_setup(ah);
394 if (sc->sc_bhalq == (u_int) -1) {
395 if_printf(ifp, "unable to setup a beacon xmit queue!\n");
396 error = EIO;
397 goto bad2;
398 }
399 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
400 if (sc->sc_cabq == NULL) {
401 if_printf(ifp, "unable to setup CAB xmit queue!\n");
402 error = EIO;
403 goto bad2;
404 }
405 /* NB: insure BK queue is the lowest priority h/w queue */
406 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
407 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
408 ieee80211_wme_acnames[WME_AC_BK]);
409 error = EIO;
410 goto bad2;
411 }
412 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
413 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
414 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
415 /*
416 * Not enough hardware tx queues to properly do WME;
417 * just punt and assign them all to the same h/w queue.
418 * We could do a better job of this if, for example,
419 * we allocate queues when we switch from station to
420 * AP mode.
421 */
422 if (sc->sc_ac2q[WME_AC_VI] != NULL)
423 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
424 if (sc->sc_ac2q[WME_AC_BE] != NULL)
425 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
426 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
427 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
428 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
429 }
430
431 /*
432 * Special case certain configurations. Note the
433 * CAB queue is handled by these specially so don't
434 * include them when checking the txq setup mask.
435 */
436 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
437 case 0x01:
438 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
439 break;
440 case 0x0f:
441 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
442 break;
443 default:
444 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
445 break;
446 }
447
448 /*
449 * Setup rate control. Some rate control modules
450 * call back to change the anntena state so expose
451 * the necessary entry points.
452 * XXX maybe belongs in struct ath_ratectrl?
453 */
454 sc->sc_setdefantenna = ath_setdefantenna;
455 sc->sc_rc = ath_rate_attach(sc);
456 if (sc->sc_rc == NULL) {
457 error = EIO;
458 goto bad2;
459 }
460
461 sc->sc_blinking = 0;
462 sc->sc_ledstate = 1;
463 sc->sc_ledon = 0; /* low true */
464 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */
465 ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE);
466 /*
467 * Auto-enable soft led processing for IBM cards and for
468 * 5211 minipci cards. Users can also manually enable/disable
469 * support with a sysctl.
470 */
471 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
472 if (sc->sc_softled) {
473 ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
474 ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
475 }
476
477 ifp->if_softc = sc;
478 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
479 ifp->if_start = ath_start;
480 ifp->if_stop = ath_stop;
481 ifp->if_watchdog = ath_watchdog;
482 ifp->if_ioctl = ath_ioctl;
483 ifp->if_init = ath_ifinit;
484 IFQ_SET_READY(&ifp->if_snd);
485
486 ic->ic_ifp = ifp;
487 ic->ic_reset = ath_reset;
488 ic->ic_newassoc = ath_newassoc;
489 ic->ic_updateslot = ath_updateslot;
490 ic->ic_wme.wme_update = ath_wme_update;
491 /* XXX not right but it's not used anywhere important */
492 ic->ic_phytype = IEEE80211_T_OFDM;
493 ic->ic_opmode = IEEE80211_M_STA;
494 ic->ic_caps =
495 IEEE80211_C_IBSS /* ibss, nee adhoc, mode */
496 | IEEE80211_C_HOSTAP /* hostap mode */
497 | IEEE80211_C_MONITOR /* monitor mode */
498 | IEEE80211_C_SHPREAMBLE /* short preamble supported */
499 | IEEE80211_C_SHSLOT /* short slot time supported */
500 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */
501 | IEEE80211_C_TXFRAG /* handle tx frags */
502 ;
503 /*
504 * Query the hal to figure out h/w crypto support.
505 */
506 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
507 ic->ic_caps |= IEEE80211_C_WEP;
508 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
509 ic->ic_caps |= IEEE80211_C_AES;
510 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
511 ic->ic_caps |= IEEE80211_C_AES_CCM;
512 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
513 ic->ic_caps |= IEEE80211_C_CKIP;
514 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
515 ic->ic_caps |= IEEE80211_C_TKIP;
516 /*
517 * Check if h/w does the MIC and/or whether the
518 * separate key cache entries are required to
519 * handle both tx+rx MIC keys.
520 */
521 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
522 ic->ic_caps |= IEEE80211_C_TKIPMIC;
523 if (ath_hal_tkipsplit(ah))
524 sc->sc_splitmic = 1;
525 }
526 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
527 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
528 /*
529 * TPC support can be done either with a global cap or
530 * per-packet support. The latter is not available on
531 * all parts. We're a bit pedantic here as all parts
532 * support a global cap.
533 */
534 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
535 ic->ic_caps |= IEEE80211_C_TXPMGT;
536
537 /*
538 * Mark WME capability only if we have sufficient
539 * hardware queues to do proper priority scheduling.
540 */
541 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
542 ic->ic_caps |= IEEE80211_C_WME;
543 /*
544 * Check for misc other capabilities.
545 */
546 if (ath_hal_hasbursting(ah))
547 ic->ic_caps |= IEEE80211_C_BURST;
548
549 /*
550 * Indicate we need the 802.11 header padded to a
551 * 32-bit boundary for 4-address and QoS frames.
552 */
553 ic->ic_flags |= IEEE80211_F_DATAPAD;
554
555 /*
556 * Query the hal about antenna support.
557 */
558 sc->sc_defant = ath_hal_getdefantenna(ah);
559
560 /*
561 * Not all chips have the VEOL support we want to
562 * use with IBSS beacons; check here for it.
563 */
564 sc->sc_hasveol = ath_hal_hasveol(ah);
565
566 /* get mac address from hardware */
567 ath_hal_getmac(ah, ic->ic_myaddr);
568
569 if_attach(ifp);
570 /* call MI attach routine. */
571 ieee80211_ifattach(ic);
572 /* override default methods */
573 ic->ic_node_alloc = ath_node_alloc;
574 sc->sc_node_free = ic->ic_node_free;
575 ic->ic_node_free = ath_node_free;
576 ic->ic_node_getrssi = ath_node_getrssi;
577 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
578 ic->ic_recv_mgmt = ath_recv_mgmt;
579 sc->sc_newstate = ic->ic_newstate;
580 ic->ic_newstate = ath_newstate;
581 ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
582 ic->ic_crypto.cs_key_alloc = ath_key_alloc;
583 ic->ic_crypto.cs_key_delete = ath_key_delete;
584 ic->ic_crypto.cs_key_set = ath_key_set;
585 ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
586 ic->ic_crypto.cs_key_update_end = ath_key_update_end;
587 /* complete initialization */
588 ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
589
590 #if NBPFILTER > 0
591 ath_bpfattach(sc);
592 #endif
593
594 sc->sc_flags |= ATH_ATTACHED;
595
596 /*
597 * Setup dynamic sysctl's now that country code and
598 * regdomain are available from the hal.
599 */
600 ath_sysctlattach(sc);
601
602 ieee80211_announce(ic);
603 ath_announce(sc);
604 return 0;
605 bad2:
606 ath_tx_cleanup(sc);
607 ath_desc_free(sc);
608 bad:
609 if (ah)
610 ath_hal_detach(ah);
611 /* XXX don't get under the abstraction like this */
612 sc->sc_dev.dv_flags &= ~DVF_ACTIVE;
613 return error;
614 }
615
616 int
617 ath_detach(struct ath_softc *sc)
618 {
619 struct ifnet *ifp = &sc->sc_if;
620 int s;
621
622 if ((sc->sc_flags & ATH_ATTACHED) == 0)
623 return (0);
624
625 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
626 __func__, ifp->if_flags);
627
628 s = splnet();
629 ath_stop(ifp, 1);
630 #if NBPFILTER > 0
631 bpfdetach(ifp);
632 #endif
633 /*
634 * NB: the order of these is important:
635 * o call the 802.11 layer before detaching the hal to
636 * insure callbacks into the driver to delete global
637 * key cache entries can be handled
638 * o reclaim the tx queue data structures after calling
639 * the 802.11 layer as we'll get called back to reclaim
640 * node state and potentially want to use them
641 * o to cleanup the tx queues the hal is called, so detach
642 * it last
643 * Other than that, it's straightforward...
644 */
645 ieee80211_ifdetach(&sc->sc_ic);
646 #ifdef ATH_TX99_DIAG
647 if (sc->sc_tx99 != NULL)
648 sc->sc_tx99->detach(sc->sc_tx99);
649 #endif
650 ath_rate_detach(sc->sc_rc);
651 ath_desc_free(sc);
652 ath_tx_cleanup(sc);
653 sysctl_teardown(&sc->sc_sysctllog);
654 ath_hal_detach(sc->sc_ah);
655 if_detach(ifp);
656 splx(s);
657
658 return 0;
659 }
660
661 void
662 ath_suspend(struct ath_softc *sc)
663 {
664 /*
665 * Set the chip in full sleep mode. Note that we are
666 * careful to do this only when bringing the interface
667 * completely to a stop. When the chip is in this state
668 * it must be carefully woken up or references to
669 * registers in the PCI clock domain may freeze the bus
670 * (and system). This varies by chip and is mostly an
671 * issue with newer parts that go to sleep more quickly.
672 */
673 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
674 }
675
676 bool
677 ath_resume(struct ath_softc *sc)
678 {
679 int i;
680 struct ath_hal *ah = sc->sc_ah;
681
682 ath_hal_setpower(ah, HAL_PM_AWAKE);
683
684 /*
685 * Reset the key cache since some parts do not
686 * reset the contents on initial power up.
687 */
688 for (i = 0; i < sc->sc_keymax; i++)
689 ath_hal_keyreset(ah, i);
690
691 ath_hal_resettxqueue(ah, sc->sc_bhalq);
692 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
693 if (ATH_TXQ_SETUP(sc, i))
694 ath_hal_resettxqueue(ah, i);
695
696 if (sc->sc_softled) {
697 ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
698 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
699 }
700 return true;
701 }
702
703 /*
704 * Interrupt handler. Most of the actual processing is deferred.
705 */
706 int
707 ath_intr(void *arg)
708 {
709 struct ath_softc *sc = arg;
710 struct ifnet *ifp = &sc->sc_if;
711 struct ath_hal *ah = sc->sc_ah;
712 HAL_INT status;
713
714 if (!device_is_active(&sc->sc_dev)) {
715 /*
716 * The hardware is not ready/present, don't touch anything.
717 * Note this can happen early on if the IRQ is shared.
718 */
719 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
720 return 0;
721 }
722
723 if (!ath_hal_intrpend(ah)) /* shared irq, not for us */
724 return 0;
725
726 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
727 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
728 __func__, ifp->if_flags);
729 ath_hal_getisr(ah, &status); /* clear ISR */
730 ath_hal_intrset(ah, 0); /* disable further intr's */
731 return 1; /* XXX */
732 }
733 /*
734 * Figure out the reason(s) for the interrupt. Note
735 * that the hal returns a pseudo-ISR that may include
736 * bits we haven't explicitly enabled so we mask the
737 * value to insure we only process bits we requested.
738 */
739 ath_hal_getisr(ah, &status); /* NB: clears ISR too */
740 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
741 status &= sc->sc_imask; /* discard unasked for bits */
742 if (status & HAL_INT_FATAL) {
743 /*
744 * Fatal errors are unrecoverable. Typically
745 * these are caused by DMA errors. Unfortunately
746 * the exact reason is not (presently) returned
747 * by the hal.
748 */
749 sc->sc_stats.ast_hardware++;
750 ath_hal_intrset(ah, 0); /* disable intr's until reset */
751 TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
752 } else if (status & HAL_INT_RXORN) {
753 sc->sc_stats.ast_rxorn++;
754 ath_hal_intrset(ah, 0); /* disable intr's until reset */
755 TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
756 } else {
757 if (status & HAL_INT_SWBA) {
758 /*
759 * Software beacon alert--time to send a beacon.
760 * Handle beacon transmission directly; deferring
761 * this is too slow to meet timing constraints
762 * under load.
763 */
764 ath_beacon_proc(sc, 0);
765 }
766 if (status & HAL_INT_RXEOL) {
767 /*
768 * NB: the hardware should re-read the link when
769 * RXE bit is written, but it doesn't work at
770 * least on older hardware revs.
771 */
772 sc->sc_stats.ast_rxeol++;
773 sc->sc_rxlink = NULL;
774 }
775 if (status & HAL_INT_TXURN) {
776 sc->sc_stats.ast_txurn++;
777 /* bump tx trigger level */
778 ath_hal_updatetxtriglevel(ah, AH_TRUE);
779 }
780 if (status & HAL_INT_RX)
781 TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
782 if (status & HAL_INT_TX)
783 TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
784 if (status & HAL_INT_BMISS) {
785 sc->sc_stats.ast_bmiss++;
786 TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
787 }
788 if (status & HAL_INT_MIB) {
789 sc->sc_stats.ast_mib++;
790 /*
791 * Disable interrupts until we service the MIB
792 * interrupt; otherwise it will continue to fire.
793 */
794 ath_hal_intrset(ah, 0);
795 /*
796 * Let the hal handle the event. We assume it will
797 * clear whatever condition caused the interrupt.
798 */
799 ath_hal_mibevent(ah, &sc->sc_halstats);
800 ath_hal_intrset(ah, sc->sc_imask);
801 }
802 }
803 return 1;
804 }
805
806 /* Swap transmit descriptor.
807 * if AH_NEED_DESC_SWAP flag is not defined this becomes a "null"
808 * function.
809 */
810 static inline void
811 ath_desc_swap(struct ath_desc *ds)
812 {
813 #ifdef AH_NEED_DESC_SWAP
814 ds->ds_link = htole32(ds->ds_link);
815 ds->ds_data = htole32(ds->ds_data);
816 ds->ds_ctl0 = htole32(ds->ds_ctl0);
817 ds->ds_ctl1 = htole32(ds->ds_ctl1);
818 ds->ds_hw[0] = htole32(ds->ds_hw[0]);
819 ds->ds_hw[1] = htole32(ds->ds_hw[1]);
820 #endif
821 }
822
823 static void
824 ath_fatal_proc(void *arg, int pending)
825 {
826 struct ath_softc *sc = arg;
827 struct ifnet *ifp = &sc->sc_if;
828
829 if_printf(ifp, "hardware error; resetting\n");
830 ath_reset(ifp);
831 }
832
833 static void
834 ath_rxorn_proc(void *arg, int pending)
835 {
836 struct ath_softc *sc = arg;
837 struct ifnet *ifp = &sc->sc_if;
838
839 if_printf(ifp, "rx FIFO overrun; resetting\n");
840 ath_reset(ifp);
841 }
842
843 static void
844 ath_bmiss_proc(void *arg, int pending)
845 {
846 struct ath_softc *sc = arg;
847 struct ieee80211com *ic = &sc->sc_ic;
848
849 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
850 KASSERT(ic->ic_opmode == IEEE80211_M_STA,
851 ("unexpect operating mode %u", ic->ic_opmode));
852 if (ic->ic_state == IEEE80211_S_RUN) {
853 u_int64_t lastrx = sc->sc_lastrx;
854 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
855
856 DPRINTF(sc, ATH_DEBUG_BEACON,
857 "%s: tsf %" PRIu64 " lastrx %" PRId64
858 " (%" PRIu64 ") bmiss %u\n",
859 __func__, tsf, tsf - lastrx, lastrx,
860 ic->ic_bmisstimeout*1024);
861 /*
862 * Workaround phantom bmiss interrupts by sanity-checking
863 * the time of our last rx'd frame. If it is within the
864 * beacon miss interval then ignore the interrupt. If it's
865 * truly a bmiss we'll get another interrupt soon and that'll
866 * be dispatched up for processing.
867 */
868 if (tsf - lastrx > ic->ic_bmisstimeout*1024) {
869 NET_LOCK_GIANT();
870 ieee80211_beacon_miss(ic);
871 NET_UNLOCK_GIANT();
872 } else
873 sc->sc_stats.ast_bmiss_phantom++;
874 }
875 }
876
877 static void
878 ath_radar_proc(void *arg, int pending)
879 {
880 struct ath_softc *sc = arg;
881 struct ifnet *ifp = &sc->sc_if;
882 struct ath_hal *ah = sc->sc_ah;
883 HAL_CHANNEL hchan;
884
885 if (ath_hal_procdfs(ah, &hchan)) {
886 if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n",
887 hchan.channel, hchan.channelFlags, hchan.privFlags);
888 /*
889 * Initiate channel change.
890 */
891 /* XXX not yet */
892 }
893 }
894
895 static u_int
896 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
897 {
898 #define N(a) (sizeof(a) / sizeof(a[0]))
899 static const u_int modeflags[] = {
900 0, /* IEEE80211_MODE_AUTO */
901 CHANNEL_A, /* IEEE80211_MODE_11A */
902 CHANNEL_B, /* IEEE80211_MODE_11B */
903 CHANNEL_PUREG, /* IEEE80211_MODE_11G */
904 0, /* IEEE80211_MODE_FH */
905 CHANNEL_ST, /* IEEE80211_MODE_TURBO_A */
906 CHANNEL_108G /* IEEE80211_MODE_TURBO_G */
907 };
908 enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
909
910 KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
911 KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
912 return modeflags[mode];
913 #undef N
914 }
915
916 static int
917 ath_ifinit(struct ifnet *ifp)
918 {
919 struct ath_softc *sc = (struct ath_softc *)ifp->if_softc;
920
921 return ath_init(sc);
922 }
923
924 static int
925 ath_init(struct ath_softc *sc)
926 {
927 struct ifnet *ifp = &sc->sc_if;
928 struct ieee80211com *ic = &sc->sc_ic;
929 struct ath_hal *ah = sc->sc_ah;
930 HAL_STATUS status;
931 int error = 0;
932
933 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
934 __func__, ifp->if_flags);
935
936 if (device_is_active(&sc->sc_dev)) {
937 ATH_LOCK(sc);
938 } else if (!pmf_device_resume_self(&sc->sc_dev))
939 return ENXIO;
940 else
941 ATH_LOCK(sc);
942
943 /*
944 * Stop anything previously setup. This is safe
945 * whether this is the first time through or not.
946 */
947 ath_stop_locked(ifp, 0);
948
949 /*
950 * The basic interface to setting the hardware in a good
951 * state is ``reset''. On return the hardware is known to
952 * be powered up and with interrupts disabled. This must
953 * be followed by initialization of the appropriate bits
954 * and then setup of the interrupt mask.
955 */
956 sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
957 sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
958 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
959 if_printf(ifp, "unable to reset hardware; hal status %u\n",
960 status);
961 error = EIO;
962 goto done;
963 }
964
965 /*
966 * This is needed only to setup initial state
967 * but it's best done after a reset.
968 */
969 ath_update_txpow(sc);
970 /*
971 * Likewise this is set during reset so update
972 * state cached in the driver.
973 */
974 ath_restore_diversity(sc);
975 sc->sc_calinterval = 1;
976 sc->sc_caltries = 0;
977
978 /*
979 * Setup the hardware after reset: the key cache
980 * is filled as needed and the receive engine is
981 * set going. Frame transmit is handled entirely
982 * in the frame output path; there's nothing to do
983 * here except setup the interrupt mask.
984 */
985 if ((error = ath_startrecv(sc)) != 0) {
986 if_printf(ifp, "unable to start recv logic\n");
987 goto done;
988 }
989
990 /*
991 * Enable interrupts.
992 */
993 sc->sc_imask = HAL_INT_RX | HAL_INT_TX
994 | HAL_INT_RXEOL | HAL_INT_RXORN
995 | HAL_INT_FATAL | HAL_INT_GLOBAL;
996 /*
997 * Enable MIB interrupts when there are hardware phy counters.
998 * Note we only do this (at the moment) for station mode.
999 */
1000 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1001 sc->sc_imask |= HAL_INT_MIB;
1002 ath_hal_intrset(ah, sc->sc_imask);
1003
1004 ifp->if_flags |= IFF_RUNNING;
1005 ic->ic_state = IEEE80211_S_INIT;
1006
1007 /*
1008 * The hardware should be ready to go now so it's safe
1009 * to kick the 802.11 state machine as it's likely to
1010 * immediately call back to us to send mgmt frames.
1011 */
1012 ath_chan_change(sc, ic->ic_curchan);
1013 #ifdef ATH_TX99_DIAG
1014 if (sc->sc_tx99 != NULL)
1015 sc->sc_tx99->start(sc->sc_tx99);
1016 else
1017 #endif
1018 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1019 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
1020 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1021 } else
1022 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1023 done:
1024 ATH_UNLOCK(sc);
1025 return error;
1026 }
1027
1028 static void
1029 ath_stop_locked(struct ifnet *ifp, int disable)
1030 {
1031 struct ath_softc *sc = ifp->if_softc;
1032 struct ieee80211com *ic = &sc->sc_ic;
1033 struct ath_hal *ah = sc->sc_ah;
1034
1035 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %d if_flags 0x%x\n",
1036 __func__, !device_is_enabled(&sc->sc_dev), ifp->if_flags);
1037
1038 ATH_LOCK_ASSERT(sc);
1039 if (ifp->if_flags & IFF_RUNNING) {
1040 /*
1041 * Shutdown the hardware and driver:
1042 * reset 802.11 state machine
1043 * turn off timers
1044 * disable interrupts
1045 * turn off the radio
1046 * clear transmit machinery
1047 * clear receive machinery
1048 * drain and release tx queues
1049 * reclaim beacon resources
1050 * power down hardware
1051 *
1052 * Note that some of this work is not possible if the
1053 * hardware is gone (invalid).
1054 */
1055 #ifdef ATH_TX99_DIAG
1056 if (sc->sc_tx99 != NULL)
1057 sc->sc_tx99->stop(sc->sc_tx99);
1058 #endif
1059 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1060 ifp->if_flags &= ~IFF_RUNNING;
1061 ifp->if_timer = 0;
1062 if (device_is_enabled(&sc->sc_dev)) {
1063 if (sc->sc_softled) {
1064 callout_stop(&sc->sc_ledtimer);
1065 ath_hal_gpioset(ah, sc->sc_ledpin,
1066 !sc->sc_ledon);
1067 sc->sc_blinking = 0;
1068 }
1069 ath_hal_intrset(ah, 0);
1070 }
1071 ath_draintxq(sc);
1072 if (device_is_enabled(&sc->sc_dev)) {
1073 ath_stoprecv(sc);
1074 ath_hal_phydisable(ah);
1075 } else
1076 sc->sc_rxlink = NULL;
1077 IF_PURGE(&ifp->if_snd);
1078 ath_beacon_free(sc);
1079 if (disable)
1080 pmf_device_suspend_self(&sc->sc_dev);
1081 }
1082 }
1083
1084 static void
1085 ath_stop(struct ifnet *ifp, int disable)
1086 {
1087 struct ath_softc *sc = ifp->if_softc;
1088
1089 ATH_LOCK(sc);
1090 ath_stop_locked(ifp, disable);
1091 ATH_UNLOCK(sc);
1092 }
1093
1094 static void
1095 ath_restore_diversity(struct ath_softc *sc)
1096 {
1097 struct ifnet *ifp = &sc->sc_if;
1098 struct ath_hal *ah = sc->sc_ah;
1099
1100 if (!ath_hal_setdiversity(sc->sc_ah, sc->sc_diversity) ||
1101 sc->sc_diversity != ath_hal_getdiversity(ah)) {
1102 if_printf(ifp, "could not restore diversity setting %d\n",
1103 sc->sc_diversity);
1104 sc->sc_diversity = ath_hal_getdiversity(ah);
1105 }
1106 }
1107
1108 /*
1109 * Reset the hardware w/o losing operational state. This is
1110 * basically a more efficient way of doing ath_stop, ath_init,
1111 * followed by state transitions to the current 802.11
1112 * operational state. Used to recover from various errors and
1113 * to reset or reload hardware state.
1114 */
1115 int
1116 ath_reset(struct ifnet *ifp)
1117 {
1118 struct ath_softc *sc = ifp->if_softc;
1119 struct ieee80211com *ic = &sc->sc_ic;
1120 struct ath_hal *ah = sc->sc_ah;
1121 struct ieee80211_channel *c;
1122 HAL_STATUS status;
1123
1124 /*
1125 * Convert to a HAL channel description with the flags
1126 * constrained to reflect the current operating mode.
1127 */
1128 c = ic->ic_curchan;
1129 sc->sc_curchan.channel = c->ic_freq;
1130 sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
1131
1132 ath_hal_intrset(ah, 0); /* disable interrupts */
1133 ath_draintxq(sc); /* stop xmit side */
1134 ath_stoprecv(sc); /* stop recv side */
1135 /* NB: indicate channel change so we do a full reset */
1136 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
1137 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1138 __func__, status);
1139 ath_update_txpow(sc); /* update tx power state */
1140 ath_restore_diversity(sc);
1141 sc->sc_calinterval = 1;
1142 sc->sc_caltries = 0;
1143 if (ath_startrecv(sc) != 0) /* restart recv */
1144 if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1145 /*
1146 * We may be doing a reset in response to an ioctl
1147 * that changes the channel so update any state that
1148 * might change as a result.
1149 */
1150 ath_chan_change(sc, c);
1151 if (ic->ic_state == IEEE80211_S_RUN)
1152 ath_beacon_config(sc); /* restart beacons */
1153 ath_hal_intrset(ah, sc->sc_imask);
1154
1155 ath_start(ifp); /* restart xmit */
1156 return 0;
1157 }
1158
1159 /*
1160 * Cleanup driver resources when we run out of buffers
1161 * while processing fragments; return the tx buffers
1162 * allocated and drop node references.
1163 */
1164 static void
1165 ath_txfrag_cleanup(struct ath_softc *sc,
1166 ath_bufhead *frags, struct ieee80211_node *ni)
1167 {
1168 struct ath_buf *bf;
1169
1170 ATH_TXBUF_LOCK_ASSERT(sc);
1171
1172 while ((bf = STAILQ_FIRST(frags)) != NULL) {
1173 STAILQ_REMOVE_HEAD(frags, bf_list);
1174 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1175 sc->sc_if.if_flags &= ~IFF_OACTIVE;
1176 ieee80211_node_decref(ni);
1177 }
1178 }
1179
1180 /*
1181 * Setup xmit of a fragmented frame. Allocate a buffer
1182 * for each frag and bump the node reference count to
1183 * reflect the held reference to be setup by ath_tx_start.
1184 */
1185 static int
1186 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
1187 struct mbuf *m0, struct ieee80211_node *ni)
1188 {
1189 struct mbuf *m;
1190 struct ath_buf *bf;
1191
1192 ATH_TXBUF_LOCK(sc);
1193 for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
1194 bf = STAILQ_FIRST(&sc->sc_txbuf);
1195 if (bf == NULL) { /* out of buffers, cleanup */
1196 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1197 __func__);
1198 sc->sc_if.if_flags |= IFF_OACTIVE;
1199 ath_txfrag_cleanup(sc, frags, ni);
1200 break;
1201 }
1202 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1203 ieee80211_node_incref(ni);
1204 STAILQ_INSERT_TAIL(frags, bf, bf_list);
1205 }
1206 ATH_TXBUF_UNLOCK(sc);
1207
1208 return !STAILQ_EMPTY(frags);
1209 }
1210
1211 static void
1212 ath_start(struct ifnet *ifp)
1213 {
1214 struct ath_softc *sc = ifp->if_softc;
1215 struct ath_hal *ah = sc->sc_ah;
1216 struct ieee80211com *ic = &sc->sc_ic;
1217 struct ieee80211_node *ni;
1218 struct ath_buf *bf;
1219 struct mbuf *m, *next;
1220 struct ieee80211_frame *wh;
1221 struct ether_header *eh;
1222 ath_bufhead frags;
1223
1224 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
1225 !device_is_active(&sc->sc_dev))
1226 return;
1227 for (;;) {
1228 /*
1229 * Grab a TX buffer and associated resources.
1230 */
1231 ATH_TXBUF_LOCK(sc);
1232 bf = STAILQ_FIRST(&sc->sc_txbuf);
1233 if (bf != NULL)
1234 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1235 ATH_TXBUF_UNLOCK(sc);
1236 if (bf == NULL) {
1237 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1238 __func__);
1239 sc->sc_stats.ast_tx_qstop++;
1240 ifp->if_flags |= IFF_OACTIVE;
1241 break;
1242 }
1243 /*
1244 * Poll the management queue for frames; they
1245 * have priority over normal data frames.
1246 */
1247 IF_DEQUEUE(&ic->ic_mgtq, m);
1248 if (m == NULL) {
1249 /*
1250 * No data frames go out unless we're associated.
1251 */
1252 if (ic->ic_state != IEEE80211_S_RUN) {
1253 DPRINTF(sc, ATH_DEBUG_XMIT,
1254 "%s: discard data packet, state %s\n",
1255 __func__,
1256 ieee80211_state_name[ic->ic_state]);
1257 sc->sc_stats.ast_tx_discard++;
1258 ATH_TXBUF_LOCK(sc);
1259 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1260 ATH_TXBUF_UNLOCK(sc);
1261 break;
1262 }
1263 IFQ_DEQUEUE(&ifp->if_snd, m); /* XXX: LOCK */
1264 if (m == NULL) {
1265 ATH_TXBUF_LOCK(sc);
1266 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1267 ATH_TXBUF_UNLOCK(sc);
1268 break;
1269 }
1270 STAILQ_INIT(&frags);
1271 /*
1272 * Find the node for the destination so we can do
1273 * things like power save and fast frames aggregation.
1274 */
1275 if (m->m_len < sizeof(struct ether_header) &&
1276 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
1277 ic->ic_stats.is_tx_nobuf++; /* XXX */
1278 ni = NULL;
1279 goto bad;
1280 }
1281 eh = mtod(m, struct ether_header *);
1282 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1283 if (ni == NULL) {
1284 /* NB: ieee80211_find_txnode does stat+msg */
1285 m_freem(m);
1286 goto bad;
1287 }
1288 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1289 (m->m_flags & M_PWR_SAV) == 0) {
1290 /*
1291 * Station in power save mode; pass the frame
1292 * to the 802.11 layer and continue. We'll get
1293 * the frame back when the time is right.
1294 */
1295 ieee80211_pwrsave(ic, ni, m);
1296 goto reclaim;
1297 }
1298 /* calculate priority so we can find the tx queue */
1299 if (ieee80211_classify(ic, m, ni)) {
1300 DPRINTF(sc, ATH_DEBUG_XMIT,
1301 "%s: discard, classification failure\n",
1302 __func__);
1303 m_freem(m);
1304 goto bad;
1305 }
1306 ifp->if_opackets++;
1307
1308 #if NBPFILTER > 0
1309 if (ifp->if_bpf)
1310 bpf_mtap(ifp->if_bpf, m);
1311 #endif
1312 /*
1313 * Encapsulate the packet in prep for transmission.
1314 */
1315 m = ieee80211_encap(ic, m, ni);
1316 if (m == NULL) {
1317 DPRINTF(sc, ATH_DEBUG_XMIT,
1318 "%s: encapsulation failure\n",
1319 __func__);
1320 sc->sc_stats.ast_tx_encap++;
1321 goto bad;
1322 }
1323 /*
1324 * Check for fragmentation. If this has frame
1325 * has been broken up verify we have enough
1326 * buffers to send all the fragments so all
1327 * go out or none...
1328 */
1329 if ((m->m_flags & M_FRAG) &&
1330 !ath_txfrag_setup(sc, &frags, m, ni)) {
1331 DPRINTF(sc, ATH_DEBUG_ANY,
1332 "%s: out of txfrag buffers\n", __func__);
1333 ic->ic_stats.is_tx_nobuf++; /* XXX */
1334 ath_freetx(m);
1335 goto bad;
1336 }
1337 } else {
1338 /*
1339 * Hack! The referenced node pointer is in the
1340 * rcvif field of the packet header. This is
1341 * placed there by ieee80211_mgmt_output because
1342 * we need to hold the reference with the frame
1343 * and there's no other way (other than packet
1344 * tags which we consider too expensive to use)
1345 * to pass it along.
1346 */
1347 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1348 m->m_pkthdr.rcvif = NULL;
1349
1350 wh = mtod(m, struct ieee80211_frame *);
1351 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1352 IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1353 /* fill time stamp */
1354 u_int64_t tsf;
1355 u_int32_t *tstamp;
1356
1357 tsf = ath_hal_gettsf64(ah);
1358 /* XXX: adjust 100us delay to xmit */
1359 tsf += 100;
1360 tstamp = (u_int32_t *)&wh[1];
1361 tstamp[0] = htole32(tsf & 0xffffffff);
1362 tstamp[1] = htole32(tsf >> 32);
1363 }
1364 sc->sc_stats.ast_tx_mgmt++;
1365 }
1366
1367 nextfrag:
1368 next = m->m_nextpkt;
1369 if (ath_tx_start(sc, ni, bf, m)) {
1370 bad:
1371 ifp->if_oerrors++;
1372 reclaim:
1373 ATH_TXBUF_LOCK(sc);
1374 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1375 ath_txfrag_cleanup(sc, &frags, ni);
1376 ATH_TXBUF_UNLOCK(sc);
1377 if (ni != NULL)
1378 ieee80211_free_node(ni);
1379 continue;
1380 }
1381 if (next != NULL) {
1382 m = next;
1383 bf = STAILQ_FIRST(&frags);
1384 KASSERT(bf != NULL, ("no buf for txfrag"));
1385 STAILQ_REMOVE_HEAD(&frags, bf_list);
1386 goto nextfrag;
1387 }
1388
1389 ifp->if_timer = 1;
1390 }
1391 }
1392
1393 static int
1394 ath_media_change(struct ifnet *ifp)
1395 {
1396 #define IS_UP(ifp) \
1397 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
1398 int error;
1399
1400 error = ieee80211_media_change(ifp);
1401 if (error == ENETRESET) {
1402 if (IS_UP(ifp))
1403 ath_init(ifp->if_softc); /* XXX lose error */
1404 error = 0;
1405 }
1406 return error;
1407 #undef IS_UP
1408 }
1409
1410 #ifdef AR_DEBUG
1411 static void
1412 ath_keyprint(const char *tag, u_int ix,
1413 const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1414 {
1415 static const char *ciphers[] = {
1416 "WEP",
1417 "AES-OCB",
1418 "AES-CCM",
1419 "CKIP",
1420 "TKIP",
1421 "CLR",
1422 };
1423 int i, n;
1424
1425 printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1426 for (i = 0, n = hk->kv_len; i < n; i++)
1427 printf("%02x", hk->kv_val[i]);
1428 printf(" mac %s", ether_sprintf(mac));
1429 if (hk->kv_type == HAL_CIPHER_TKIP) {
1430 printf(" mic ");
1431 for (i = 0; i < sizeof(hk->kv_mic); i++)
1432 printf("%02x", hk->kv_mic[i]);
1433 }
1434 printf("\n");
1435 }
1436 #endif
1437
1438 /*
1439 * Set a TKIP key into the hardware. This handles the
1440 * potential distribution of key state to multiple key
1441 * cache slots for TKIP.
1442 */
1443 static int
1444 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1445 HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1446 {
1447 #define IEEE80211_KEY_XR (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1448 static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1449 struct ath_hal *ah = sc->sc_ah;
1450
1451 KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1452 ("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1453 KASSERT(sc->sc_splitmic, ("key cache !split"));
1454 if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1455 /*
1456 * TX key goes at first index, RX key at the rx index.
1457 * The hal handles the MIC keys at index+64.
1458 */
1459 memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1460 KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1461 if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
1462 return 0;
1463
1464 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1465 KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1466 /* XXX delete tx key on failure? */
1467 return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
1468 } else if (k->wk_flags & IEEE80211_KEY_XR) {
1469 /*
1470 * TX/RX key goes at first index.
1471 * The hal handles the MIC keys are index+64.
1472 */
1473 memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
1474 k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
1475 KEYPRINTF(sc, k->wk_keyix, hk, mac);
1476 return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1477 }
1478 return 0;
1479 #undef IEEE80211_KEY_XR
1480 }
1481
1482 /*
1483 * Set a net80211 key into the hardware. This handles the
1484 * potential distribution of key state to multiple key
1485 * cache slots for TKIP with hardware MIC support.
1486 */
1487 static int
1488 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1489 const u_int8_t mac0[IEEE80211_ADDR_LEN],
1490 struct ieee80211_node *bss)
1491 {
1492 #define N(a) (sizeof(a)/sizeof(a[0]))
1493 static const u_int8_t ciphermap[] = {
1494 HAL_CIPHER_WEP, /* IEEE80211_CIPHER_WEP */
1495 HAL_CIPHER_TKIP, /* IEEE80211_CIPHER_TKIP */
1496 HAL_CIPHER_AES_OCB, /* IEEE80211_CIPHER_AES_OCB */
1497 HAL_CIPHER_AES_CCM, /* IEEE80211_CIPHER_AES_CCM */
1498 (u_int8_t) -1, /* 4 is not allocated */
1499 HAL_CIPHER_CKIP, /* IEEE80211_CIPHER_CKIP */
1500 HAL_CIPHER_CLR, /* IEEE80211_CIPHER_NONE */
1501 };
1502 struct ath_hal *ah = sc->sc_ah;
1503 const struct ieee80211_cipher *cip = k->wk_cipher;
1504 u_int8_t gmac[IEEE80211_ADDR_LEN];
1505 const u_int8_t *mac;
1506 HAL_KEYVAL hk;
1507
1508 memset(&hk, 0, sizeof(hk));
1509 /*
1510 * Software crypto uses a "clear key" so non-crypto
1511 * state kept in the key cache are maintained and
1512 * so that rx frames have an entry to match.
1513 */
1514 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1515 KASSERT(cip->ic_cipher < N(ciphermap),
1516 ("invalid cipher type %u", cip->ic_cipher));
1517 hk.kv_type = ciphermap[cip->ic_cipher];
1518 hk.kv_len = k->wk_keylen;
1519 memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1520 } else
1521 hk.kv_type = HAL_CIPHER_CLR;
1522
1523 if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
1524 /*
1525 * Group keys on hardware that supports multicast frame
1526 * key search use a mac that is the sender's address with
1527 * the high bit set instead of the app-specified address.
1528 */
1529 IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
1530 gmac[0] |= 0x80;
1531 mac = gmac;
1532 } else
1533 mac = mac0;
1534
1535 if (hk.kv_type == HAL_CIPHER_TKIP &&
1536 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1537 sc->sc_splitmic) {
1538 return ath_keyset_tkip(sc, k, &hk, mac);
1539 } else {
1540 KEYPRINTF(sc, k->wk_keyix, &hk, mac);
1541 return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
1542 }
1543 #undef N
1544 }
1545
1546 /*
1547 * Allocate tx/rx key slots for TKIP. We allocate two slots for
1548 * each key, one for decrypt/encrypt and the other for the MIC.
1549 */
1550 static u_int16_t
1551 key_alloc_2pair(struct ath_softc *sc,
1552 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1553 {
1554 #define N(a) (sizeof(a)/sizeof(a[0]))
1555 u_int i, keyix;
1556
1557 KASSERT(sc->sc_splitmic, ("key cache !split"));
1558 /* XXX could optimize */
1559 for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1560 u_int8_t b = sc->sc_keymap[i];
1561 if (b != 0xff) {
1562 /*
1563 * One or more slots in this byte are free.
1564 */
1565 keyix = i*NBBY;
1566 while (b & 1) {
1567 again:
1568 keyix++;
1569 b >>= 1;
1570 }
1571 /* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1572 if (isset(sc->sc_keymap, keyix+32) ||
1573 isset(sc->sc_keymap, keyix+64) ||
1574 isset(sc->sc_keymap, keyix+32+64)) {
1575 /* full pair unavailable */
1576 /* XXX statistic */
1577 if (keyix == (i+1)*NBBY) {
1578 /* no slots were appropriate, advance */
1579 continue;
1580 }
1581 goto again;
1582 }
1583 setbit(sc->sc_keymap, keyix);
1584 setbit(sc->sc_keymap, keyix+64);
1585 setbit(sc->sc_keymap, keyix+32);
1586 setbit(sc->sc_keymap, keyix+32+64);
1587 DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1588 "%s: key pair %u,%u %u,%u\n",
1589 __func__, keyix, keyix+64,
1590 keyix+32, keyix+32+64);
1591 *txkeyix = keyix;
1592 *rxkeyix = keyix+32;
1593 return 1;
1594 }
1595 }
1596 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1597 return 0;
1598 #undef N
1599 }
1600
1601 /*
1602 * Allocate a single key cache slot.
1603 */
1604 static int
1605 key_alloc_single(struct ath_softc *sc,
1606 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1607 {
1608 #define N(a) (sizeof(a)/sizeof(a[0]))
1609 u_int i, keyix;
1610
1611 /* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
1612 for (i = 0; i < N(sc->sc_keymap); i++) {
1613 u_int8_t b = sc->sc_keymap[i];
1614 if (b != 0xff) {
1615 /*
1616 * One or more slots are free.
1617 */
1618 keyix = i*NBBY;
1619 while (b & 1)
1620 keyix++, b >>= 1;
1621 setbit(sc->sc_keymap, keyix);
1622 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
1623 __func__, keyix);
1624 *txkeyix = *rxkeyix = keyix;
1625 return 1;
1626 }
1627 }
1628 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
1629 return 0;
1630 #undef N
1631 }
1632
1633 /*
1634 * Allocate one or more key cache slots for a uniacst key. The
1635 * key itself is needed only to identify the cipher. For hardware
1636 * TKIP with split cipher+MIC keys we allocate two key cache slot
1637 * pairs so that we can setup separate TX and RX MIC keys. Note
1638 * that the MIC key for a TKIP key at slot i is assumed by the
1639 * hardware to be at slot i+64. This limits TKIP keys to the first
1640 * 64 entries.
1641 */
1642 static int
1643 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
1644 ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
1645 {
1646 struct ath_softc *sc = ic->ic_ifp->if_softc;
1647
1648 /*
1649 * Group key allocation must be handled specially for
1650 * parts that do not support multicast key cache search
1651 * functionality. For those parts the key id must match
1652 * the h/w key index so lookups find the right key. On
1653 * parts w/ the key search facility we install the sender's
1654 * mac address (with the high bit set) and let the hardware
1655 * find the key w/o using the key id. This is preferred as
1656 * it permits us to support multiple users for adhoc and/or
1657 * multi-station operation.
1658 */
1659 if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
1660 if (!(&ic->ic_nw_keys[0] <= k &&
1661 k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
1662 /* should not happen */
1663 DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1664 "%s: bogus group key\n", __func__);
1665 return 0;
1666 }
1667 /*
1668 * XXX we pre-allocate the global keys so
1669 * have no way to check if they've already been allocated.
1670 */
1671 *keyix = *rxkeyix = k - ic->ic_nw_keys;
1672 return 1;
1673 }
1674
1675 /*
1676 * We allocate two pair for TKIP when using the h/w to do
1677 * the MIC. For everything else, including software crypto,
1678 * we allocate a single entry. Note that s/w crypto requires
1679 * a pass-through slot on the 5211 and 5212. The 5210 does
1680 * not support pass-through cache entries and we map all
1681 * those requests to slot 0.
1682 */
1683 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1684 return key_alloc_single(sc, keyix, rxkeyix);
1685 } else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
1686 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
1687 return key_alloc_2pair(sc, keyix, rxkeyix);
1688 } else {
1689 return key_alloc_single(sc, keyix, rxkeyix);
1690 }
1691 }
1692
1693 /*
1694 * Delete an entry in the key cache allocated by ath_key_alloc.
1695 */
1696 static int
1697 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
1698 {
1699 struct ath_softc *sc = ic->ic_ifp->if_softc;
1700 struct ath_hal *ah = sc->sc_ah;
1701 const struct ieee80211_cipher *cip = k->wk_cipher;
1702 u_int keyix = k->wk_keyix;
1703
1704 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
1705
1706 if (!device_has_power(&sc->sc_dev)) {
1707 aprint_error_dev(&sc->sc_dev, "deleting keyix %d w/o power\n",
1708 k->wk_keyix);
1709 }
1710
1711 ath_hal_keyreset(ah, keyix);
1712 /*
1713 * Handle split tx/rx keying required for TKIP with h/w MIC.
1714 */
1715 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1716 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
1717 ath_hal_keyreset(ah, keyix+32); /* RX key */
1718 if (keyix >= IEEE80211_WEP_NKID) {
1719 /*
1720 * Don't touch keymap entries for global keys so
1721 * they are never considered for dynamic allocation.
1722 */
1723 clrbit(sc->sc_keymap, keyix);
1724 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1725 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1726 sc->sc_splitmic) {
1727 clrbit(sc->sc_keymap, keyix+64); /* TX key MIC */
1728 clrbit(sc->sc_keymap, keyix+32); /* RX key */
1729 clrbit(sc->sc_keymap, keyix+32+64); /* RX key MIC */
1730 }
1731 }
1732 return 1;
1733 }
1734
1735 /*
1736 * Set the key cache contents for the specified key. Key cache
1737 * slot(s) must already have been allocated by ath_key_alloc.
1738 */
1739 static int
1740 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
1741 const u_int8_t mac[IEEE80211_ADDR_LEN])
1742 {
1743 struct ath_softc *sc = ic->ic_ifp->if_softc;
1744
1745 if (!device_has_power(&sc->sc_dev)) {
1746 aprint_error_dev(&sc->sc_dev, "setting keyix %d w/o power\n",
1747 k->wk_keyix);
1748 }
1749 return ath_keyset(sc, k, mac, ic->ic_bss);
1750 }
1751
1752 /*
1753 * Block/unblock tx+rx processing while a key change is done.
1754 * We assume the caller serializes key management operations
1755 * so we only need to worry about synchronization with other
1756 * uses that originate in the driver.
1757 */
1758 static void
1759 ath_key_update_begin(struct ieee80211com *ic)
1760 {
1761 struct ifnet *ifp = ic->ic_ifp;
1762 struct ath_softc *sc = ifp->if_softc;
1763
1764 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1765 #if 0
1766 tasklet_disable(&sc->sc_rxtq);
1767 #endif
1768 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */
1769 }
1770
1771 static void
1772 ath_key_update_end(struct ieee80211com *ic)
1773 {
1774 struct ifnet *ifp = ic->ic_ifp;
1775 struct ath_softc *sc = ifp->if_softc;
1776
1777 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1778 IF_UNLOCK(&ifp->if_snd);
1779 #if 0
1780 tasklet_enable(&sc->sc_rxtq);
1781 #endif
1782 }
1783
1784 /*
1785 * Calculate the receive filter according to the
1786 * operating mode and state:
1787 *
1788 * o always accept unicast, broadcast, and multicast traffic
1789 * o maintain current state of phy error reception (the hal
1790 * may enable phy error frames for noise immunity work)
1791 * o probe request frames are accepted only when operating in
1792 * hostap, adhoc, or monitor modes
1793 * o enable promiscuous mode according to the interface state
1794 * o accept beacons:
1795 * - when operating in adhoc mode so the 802.11 layer creates
1796 * node table entries for peers,
1797 * - when operating in station mode for collecting rssi data when
1798 * the station is otherwise quiet, or
1799 * - when scanning
1800 */
1801 static u_int32_t
1802 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
1803 {
1804 struct ieee80211com *ic = &sc->sc_ic;
1805 struct ath_hal *ah = sc->sc_ah;
1806 struct ifnet *ifp = &sc->sc_if;
1807 u_int32_t rfilt;
1808
1809 rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1810 | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1811 if (ic->ic_opmode != IEEE80211_M_STA)
1812 rfilt |= HAL_RX_FILTER_PROBEREQ;
1813 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1814 (ifp->if_flags & IFF_PROMISC))
1815 rfilt |= HAL_RX_FILTER_PROM;
1816 if (ic->ic_opmode == IEEE80211_M_STA ||
1817 ic->ic_opmode == IEEE80211_M_IBSS ||
1818 state == IEEE80211_S_SCAN)
1819 rfilt |= HAL_RX_FILTER_BEACON;
1820 return rfilt;
1821 }
1822
1823 static void
1824 ath_mode_init(struct ath_softc *sc)
1825 {
1826 struct ifnet *ifp = &sc->sc_if;
1827 struct ieee80211com *ic = &sc->sc_ic;
1828 struct ath_hal *ah = sc->sc_ah;
1829 struct ether_multi *enm;
1830 struct ether_multistep estep;
1831 u_int32_t rfilt, mfilt[2], val;
1832 int i;
1833 uint8_t pos;
1834
1835 /* configure rx filter */
1836 rfilt = ath_calcrxfilter(sc, ic->ic_state);
1837 ath_hal_setrxfilter(ah, rfilt);
1838
1839 /* configure operational mode */
1840 ath_hal_setopmode(ah);
1841
1842 /* Write keys to hardware; it may have been powered down. */
1843 ath_key_update_begin(ic);
1844 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1845 ath_key_set(ic,
1846 &ic->ic_crypto.cs_nw_keys[i],
1847 ic->ic_myaddr);
1848 }
1849 ath_key_update_end(ic);
1850
1851 /*
1852 * Handle any link-level address change. Note that we only
1853 * need to force ic_myaddr; any other addresses are handled
1854 * as a byproduct of the ifnet code marking the interface
1855 * down then up.
1856 *
1857 * XXX should get from lladdr instead of arpcom but that's more work
1858 */
1859 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(sc->sc_if.if_sadl));
1860 ath_hal_setmac(ah, ic->ic_myaddr);
1861
1862 /* calculate and install multicast filter */
1863 ifp->if_flags &= ~IFF_ALLMULTI;
1864 mfilt[0] = mfilt[1] = 0;
1865 ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
1866 while (enm != NULL) {
1867 void *dl;
1868 /* XXX Punt on ranges. */
1869 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
1870 mfilt[0] = mfilt[1] = 0xffffffff;
1871 ifp->if_flags |= IFF_ALLMULTI;
1872 break;
1873 }
1874 dl = enm->enm_addrlo;
1875 val = LE_READ_4((char *)dl + 0);
1876 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1877 val = LE_READ_4((char *)dl + 3);
1878 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1879 pos &= 0x3f;
1880 mfilt[pos / 32] |= (1 << (pos % 32));
1881
1882 ETHER_NEXT_MULTI(estep, enm);
1883 }
1884
1885 ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1886 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
1887 __func__, rfilt, mfilt[0], mfilt[1]);
1888 }
1889
1890 /*
1891 * Set the slot time based on the current setting.
1892 */
1893 static void
1894 ath_setslottime(struct ath_softc *sc)
1895 {
1896 struct ieee80211com *ic = &sc->sc_ic;
1897 struct ath_hal *ah = sc->sc_ah;
1898
1899 if (ic->ic_flags & IEEE80211_F_SHSLOT)
1900 ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
1901 else
1902 ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
1903 sc->sc_updateslot = OK;
1904 }
1905
1906 /*
1907 * Callback from the 802.11 layer to update the
1908 * slot time based on the current setting.
1909 */
1910 static void
1911 ath_updateslot(struct ifnet *ifp)
1912 {
1913 struct ath_softc *sc = ifp->if_softc;
1914 struct ieee80211com *ic = &sc->sc_ic;
1915
1916 /*
1917 * When not coordinating the BSS, change the hardware
1918 * immediately. For other operation we defer the change
1919 * until beacon updates have propagated to the stations.
1920 */
1921 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1922 sc->sc_updateslot = UPDATE;
1923 else
1924 ath_setslottime(sc);
1925 }
1926
1927 /*
1928 * Setup a h/w transmit queue for beacons.
1929 */
1930 static int
1931 ath_beaconq_setup(struct ath_hal *ah)
1932 {
1933 HAL_TXQ_INFO qi;
1934
1935 memset(&qi, 0, sizeof(qi));
1936 qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
1937 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
1938 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
1939 /* NB: for dynamic turbo, don't enable any other interrupts */
1940 qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
1941 return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
1942 }
1943
1944 /*
1945 * Setup the transmit queue parameters for the beacon queue.
1946 */
1947 static int
1948 ath_beaconq_config(struct ath_softc *sc)
1949 {
1950 #define ATH_EXPONENT_TO_VALUE(v) ((1<<(v))-1)
1951 struct ieee80211com *ic = &sc->sc_ic;
1952 struct ath_hal *ah = sc->sc_ah;
1953 HAL_TXQ_INFO qi;
1954
1955 ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
1956 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
1957 /*
1958 * Always burst out beacon and CAB traffic.
1959 */
1960 qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
1961 qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
1962 qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
1963 } else {
1964 struct wmeParams *wmep =
1965 &ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
1966 /*
1967 * Adhoc mode; important thing is to use 2x cwmin.
1968 */
1969 qi.tqi_aifs = wmep->wmep_aifsn;
1970 qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
1971 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
1972 }
1973
1974 if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
1975 device_printf(&sc->sc_dev, "unable to update parameters for "
1976 "beacon hardware queue!\n");
1977 return 0;
1978 } else {
1979 ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
1980 return 1;
1981 }
1982 #undef ATH_EXPONENT_TO_VALUE
1983 }
1984
1985 /*
1986 * Allocate and setup an initial beacon frame.
1987 */
1988 static int
1989 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
1990 {
1991 struct ieee80211com *ic = ni->ni_ic;
1992 struct ath_buf *bf;
1993 struct mbuf *m;
1994 int error;
1995
1996 bf = STAILQ_FIRST(&sc->sc_bbuf);
1997 if (bf == NULL) {
1998 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
1999 sc->sc_stats.ast_be_nombuf++; /* XXX */
2000 return ENOMEM; /* XXX */
2001 }
2002 /*
2003 * NB: the beacon data buffer must be 32-bit aligned;
2004 * we assume the mbuf routines will return us something
2005 * with this alignment (perhaps should assert).
2006 */
2007 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
2008 if (m == NULL) {
2009 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
2010 __func__);
2011 sc->sc_stats.ast_be_nombuf++;
2012 return ENOMEM;
2013 }
2014 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2015 BUS_DMA_NOWAIT);
2016 if (error == 0) {
2017 bf->bf_m = m;
2018 bf->bf_node = ieee80211_ref_node(ni);
2019 } else {
2020 m_freem(m);
2021 }
2022 return error;
2023 }
2024
2025 /*
2026 * Setup the beacon frame for transmit.
2027 */
2028 static void
2029 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
2030 {
2031 #define USE_SHPREAMBLE(_ic) \
2032 (((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
2033 == IEEE80211_F_SHPREAMBLE)
2034 struct ieee80211_node *ni = bf->bf_node;
2035 struct ieee80211com *ic = ni->ni_ic;
2036 struct mbuf *m = bf->bf_m;
2037 struct ath_hal *ah = sc->sc_ah;
2038 struct ath_desc *ds;
2039 int flags, antenna;
2040 const HAL_RATE_TABLE *rt;
2041 u_int8_t rix, rate;
2042
2043 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
2044 __func__, m, m->m_len);
2045
2046 /* setup descriptors */
2047 ds = bf->bf_desc;
2048
2049 flags = HAL_TXDESC_NOACK;
2050 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
2051 ds->ds_link = HTOAH32(bf->bf_daddr); /* self-linked */
2052 flags |= HAL_TXDESC_VEOL;
2053 /*
2054 * Let hardware handle antenna switching unless
2055 * the user has selected a transmit antenna
2056 * (sc_txantenna is not 0).
2057 */
2058 antenna = sc->sc_txantenna;
2059 } else {
2060 ds->ds_link = 0;
2061 /*
2062 * Switch antenna every 4 beacons, unless the user
2063 * has selected a transmit antenna (sc_txantenna
2064 * is not 0).
2065 *
2066 * XXX assumes two antenna
2067 */
2068 if (sc->sc_txantenna == 0)
2069 antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2070 else
2071 antenna = sc->sc_txantenna;
2072 }
2073
2074 KASSERT(bf->bf_nseg == 1,
2075 ("multi-segment beacon frame; nseg %u", bf->bf_nseg));
2076 ds->ds_data = bf->bf_segs[0].ds_addr;
2077 /*
2078 * Calculate rate code.
2079 * XXX everything at min xmit rate
2080 */
2081 rix = sc->sc_minrateix;
2082 rt = sc->sc_currates;
2083 rate = rt->info[rix].rateCode;
2084 if (USE_SHPREAMBLE(ic))
2085 rate |= rt->info[rix].shortPreamble;
2086 ath_hal_setuptxdesc(ah, ds
2087 , m->m_len + IEEE80211_CRC_LEN /* frame length */
2088 , sizeof(struct ieee80211_frame)/* header length */
2089 , HAL_PKT_TYPE_BEACON /* Atheros packet type */
2090 , ni->ni_txpower /* txpower XXX */
2091 , rate, 1 /* series 0 rate/tries */
2092 , HAL_TXKEYIX_INVALID /* no encryption */
2093 , antenna /* antenna mode */
2094 , flags /* no ack, veol for beacons */
2095 , 0 /* rts/cts rate */
2096 , 0 /* rts/cts duration */
2097 );
2098 /* NB: beacon's BufLen must be a multiple of 4 bytes */
2099 ath_hal_filltxdesc(ah, ds
2100 , roundup(m->m_len, 4) /* buffer length */
2101 , AH_TRUE /* first segment */
2102 , AH_TRUE /* last segment */
2103 , ds /* first descriptor */
2104 );
2105
2106 /* NB: The desc swap function becomes void,
2107 * if descriptor swapping is not enabled
2108 */
2109 ath_desc_swap(ds);
2110
2111 #undef USE_SHPREAMBLE
2112 }
2113
2114 /*
2115 * Transmit a beacon frame at SWBA. Dynamic updates to the
2116 * frame contents are done as needed and the slot time is
2117 * also adjusted based on current state.
2118 */
2119 static void
2120 ath_beacon_proc(void *arg, int pending)
2121 {
2122 struct ath_softc *sc = arg;
2123 struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
2124 struct ieee80211_node *ni = bf->bf_node;
2125 struct ieee80211com *ic = ni->ni_ic;
2126 struct ath_hal *ah = sc->sc_ah;
2127 struct mbuf *m;
2128 int ncabq, error, otherant;
2129
2130 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2131 __func__, pending);
2132
2133 if (ic->ic_opmode == IEEE80211_M_STA ||
2134 ic->ic_opmode == IEEE80211_M_MONITOR ||
2135 bf == NULL || bf->bf_m == NULL) {
2136 DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
2137 __func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
2138 return;
2139 }
2140 /*
2141 * Check if the previous beacon has gone out. If
2142 * not don't try to post another, skip this period
2143 * and wait for the next. Missed beacons indicate
2144 * a problem and should not occur. If we miss too
2145 * many consecutive beacons reset the device.
2146 */
2147 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2148 sc->sc_bmisscount++;
2149 DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2150 "%s: missed %u consecutive beacons\n",
2151 __func__, sc->sc_bmisscount);
2152 if (sc->sc_bmisscount > 3) /* NB: 3 is a guess */
2153 TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask);
2154 return;
2155 }
2156 if (sc->sc_bmisscount != 0) {
2157 DPRINTF(sc, ATH_DEBUG_BEACON,
2158 "%s: resume beacon xmit after %u misses\n",
2159 __func__, sc->sc_bmisscount);
2160 sc->sc_bmisscount = 0;
2161 }
2162
2163 /*
2164 * Update dynamic beacon contents. If this returns
2165 * non-zero then we need to remap the memory because
2166 * the beacon frame changed size (probably because
2167 * of the TIM bitmap).
2168 */
2169 m = bf->bf_m;
2170 ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
2171 if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
2172 /* XXX too conservative? */
2173 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2174 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2175 BUS_DMA_NOWAIT);
2176 if (error != 0) {
2177 if_printf(&sc->sc_if,
2178 "%s: bus_dmamap_load_mbuf failed, error %u\n",
2179 __func__, error);
2180 return;
2181 }
2182 }
2183
2184 /*
2185 * Handle slot time change when a non-ERP station joins/leaves
2186 * an 11g network. The 802.11 layer notifies us via callback,
2187 * we mark updateslot, then wait one beacon before effecting
2188 * the change. This gives associated stations at least one
2189 * beacon interval to note the state change.
2190 */
2191 /* XXX locking */
2192 if (sc->sc_updateslot == UPDATE)
2193 sc->sc_updateslot = COMMIT; /* commit next beacon */
2194 else if (sc->sc_updateslot == COMMIT)
2195 ath_setslottime(sc); /* commit change to h/w */
2196
2197 /*
2198 * Check recent per-antenna transmit statistics and flip
2199 * the default antenna if noticeably more frames went out
2200 * on the non-default antenna.
2201 * XXX assumes 2 anntenae
2202 */
2203 otherant = sc->sc_defant & 1 ? 2 : 1;
2204 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2205 ath_setdefantenna(sc, otherant);
2206 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2207
2208 /*
2209 * Construct tx descriptor.
2210 */
2211 ath_beacon_setup(sc, bf);
2212
2213 /*
2214 * Stop any current dma and put the new frame on the queue.
2215 * This should never fail since we check above that no frames
2216 * are still pending on the queue.
2217 */
2218 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2219 DPRINTF(sc, ATH_DEBUG_ANY,
2220 "%s: beacon queue %u did not stop?\n",
2221 __func__, sc->sc_bhalq);
2222 }
2223 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2224 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2225
2226 /*
2227 * Enable the CAB queue before the beacon queue to
2228 * insure cab frames are triggered by this beacon.
2229 */
2230 if (ncabq != 0 && (sc->sc_boff.bo_tim[4] & 1)) /* NB: only at DTIM */
2231 ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
2232 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
2233 ath_hal_txstart(ah, sc->sc_bhalq);
2234 DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2235 "%s: TXDP[%u] = %" PRIx64 " (%p)\n", __func__,
2236 sc->sc_bhalq, (uint64_t)bf->bf_daddr, bf->bf_desc);
2237
2238 sc->sc_stats.ast_be_xmit++;
2239 }
2240
2241 /*
2242 * Reset the hardware after detecting beacons have stopped.
2243 */
2244 static void
2245 ath_bstuck_proc(void *arg, int pending)
2246 {
2247 struct ath_softc *sc = arg;
2248 struct ifnet *ifp = &sc->sc_if;
2249
2250 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2251 sc->sc_bmisscount);
2252 ath_reset(ifp);
2253 }
2254
2255 /*
2256 * Reclaim beacon resources.
2257 */
2258 static void
2259 ath_beacon_free(struct ath_softc *sc)
2260 {
2261 struct ath_buf *bf;
2262
2263 STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
2264 if (bf->bf_m != NULL) {
2265 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2266 m_freem(bf->bf_m);
2267 bf->bf_m = NULL;
2268 }
2269 if (bf->bf_node != NULL) {
2270 ieee80211_free_node(bf->bf_node);
2271 bf->bf_node = NULL;
2272 }
2273 }
2274 }
2275
2276 /*
2277 * Configure the beacon and sleep timers.
2278 *
2279 * When operating as an AP this resets the TSF and sets
2280 * up the hardware to notify us when we need to issue beacons.
2281 *
2282 * When operating in station mode this sets up the beacon
2283 * timers according to the timestamp of the last received
2284 * beacon and the current TSF, configures PCF and DTIM
2285 * handling, programs the sleep registers so the hardware
2286 * will wakeup in time to receive beacons, and configures
2287 * the beacon miss handling so we'll receive a BMISS
2288 * interrupt when we stop seeing beacons from the AP
2289 * we've associated with.
2290 */
2291 static void
2292 ath_beacon_config(struct ath_softc *sc)
2293 {
2294 #define TSF_TO_TU(_h,_l) \
2295 ((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
2296 #define FUDGE 2
2297 struct ath_hal *ah = sc->sc_ah;
2298 struct ieee80211com *ic = &sc->sc_ic;
2299 struct ieee80211_node *ni = ic->ic_bss;
2300 u_int32_t nexttbtt, intval, tsftu;
2301 u_int64_t tsf;
2302
2303 /* extract tstamp from last beacon and convert to TU */
2304 nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
2305 LE_READ_4(ni->ni_tstamp.data));
2306 /* NB: the beacon interval is kept internally in TU's */
2307 intval = ni->ni_intval & HAL_BEACON_PERIOD;
2308 if (nexttbtt == 0) /* e.g. for ap mode */
2309 nexttbtt = intval;
2310 else if (intval) /* NB: can be 0 for monitor mode */
2311 nexttbtt = roundup(nexttbtt, intval);
2312 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2313 __func__, nexttbtt, intval, ni->ni_intval);
2314 if (ic->ic_opmode == IEEE80211_M_STA) {
2315 HAL_BEACON_STATE bs;
2316 int dtimperiod, dtimcount;
2317 int cfpperiod, cfpcount;
2318
2319 /*
2320 * Setup dtim and cfp parameters according to
2321 * last beacon we received (which may be none).
2322 */
2323 dtimperiod = ni->ni_dtim_period;
2324 if (dtimperiod <= 0) /* NB: 0 if not known */
2325 dtimperiod = 1;
2326 dtimcount = ni->ni_dtim_count;
2327 if (dtimcount >= dtimperiod) /* NB: sanity check */
2328 dtimcount = 0; /* XXX? */
2329 cfpperiod = 1; /* NB: no PCF support yet */
2330 cfpcount = 0;
2331 /*
2332 * Pull nexttbtt forward to reflect the current
2333 * TSF and calculate dtim+cfp state for the result.
2334 */
2335 tsf = ath_hal_gettsf64(ah);
2336 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2337 do {
2338 nexttbtt += intval;
2339 if (--dtimcount < 0) {
2340 dtimcount = dtimperiod - 1;
2341 if (--cfpcount < 0)
2342 cfpcount = cfpperiod - 1;
2343 }
2344 } while (nexttbtt < tsftu);
2345 memset(&bs, 0, sizeof(bs));
2346 bs.bs_intval = intval;
2347 bs.bs_nexttbtt = nexttbtt;
2348 bs.bs_dtimperiod = dtimperiod*intval;
2349 bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
2350 bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
2351 bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
2352 bs.bs_cfpmaxduration = 0;
2353 #if 0
2354 /*
2355 * The 802.11 layer records the offset to the DTIM
2356 * bitmap while receiving beacons; use it here to
2357 * enable h/w detection of our AID being marked in
2358 * the bitmap vector (to indicate frames for us are
2359 * pending at the AP).
2360 * XXX do DTIM handling in s/w to WAR old h/w bugs
2361 * XXX enable based on h/w rev for newer chips
2362 */
2363 bs.bs_timoffset = ni->ni_timoff;
2364 #endif
2365 /*
2366 * Calculate the number of consecutive beacons to miss
2367 * before taking a BMISS interrupt. The configuration
2368 * is specified in ms, so we need to convert that to
2369 * TU's and then calculate based on the beacon interval.
2370 * Note that we clamp the result to at most 10 beacons.
2371 */
2372 bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
2373 if (bs.bs_bmissthreshold > 10)
2374 bs.bs_bmissthreshold = 10;
2375 else if (bs.bs_bmissthreshold <= 0)
2376 bs.bs_bmissthreshold = 1;
2377
2378 /*
2379 * Calculate sleep duration. The configuration is
2380 * given in ms. We insure a multiple of the beacon
2381 * period is used. Also, if the sleep duration is
2382 * greater than the DTIM period then it makes senses
2383 * to make it a multiple of that.
2384 *
2385 * XXX fixed at 100ms
2386 */
2387 bs.bs_sleepduration =
2388 roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2389 if (bs.bs_sleepduration > bs.bs_dtimperiod)
2390 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2391
2392 DPRINTF(sc, ATH_DEBUG_BEACON,
2393 "%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2394 , __func__
2395 , tsf, tsftu
2396 , bs.bs_intval
2397 , bs.bs_nexttbtt
2398 , bs.bs_dtimperiod
2399 , bs.bs_nextdtim
2400 , bs.bs_bmissthreshold
2401 , bs.bs_sleepduration
2402 , bs.bs_cfpperiod
2403 , bs.bs_cfpmaxduration
2404 , bs.bs_cfpnext
2405 , bs.bs_timoffset
2406 );
2407 ath_hal_intrset(ah, 0);
2408 ath_hal_beacontimers(ah, &bs);
2409 sc->sc_imask |= HAL_INT_BMISS;
2410 ath_hal_intrset(ah, sc->sc_imask);
2411 } else {
2412 ath_hal_intrset(ah, 0);
2413 if (nexttbtt == intval)
2414 intval |= HAL_BEACON_RESET_TSF;
2415 if (ic->ic_opmode == IEEE80211_M_IBSS) {
2416 /*
2417 * In IBSS mode enable the beacon timers but only
2418 * enable SWBA interrupts if we need to manually
2419 * prepare beacon frames. Otherwise we use a
2420 * self-linked tx descriptor and let the hardware
2421 * deal with things.
2422 */
2423 intval |= HAL_BEACON_ENA;
2424 if (!sc->sc_hasveol)
2425 sc->sc_imask |= HAL_INT_SWBA;
2426 if ((intval & HAL_BEACON_RESET_TSF) == 0) {
2427 /*
2428 * Pull nexttbtt forward to reflect
2429 * the current TSF.
2430 */
2431 tsf = ath_hal_gettsf64(ah);
2432 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2433 do {
2434 nexttbtt += intval;
2435 } while (nexttbtt < tsftu);
2436 }
2437 ath_beaconq_config(sc);
2438 } else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2439 /*
2440 * In AP mode we enable the beacon timers and
2441 * SWBA interrupts to prepare beacon frames.
2442 */
2443 intval |= HAL_BEACON_ENA;
2444 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */
2445 ath_beaconq_config(sc);
2446 }
2447 ath_hal_beaconinit(ah, nexttbtt, intval);
2448 sc->sc_bmisscount = 0;
2449 ath_hal_intrset(ah, sc->sc_imask);
2450 /*
2451 * When using a self-linked beacon descriptor in
2452 * ibss mode load it once here.
2453 */
2454 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2455 ath_beacon_proc(sc, 0);
2456 }
2457 sc->sc_syncbeacon = 0;
2458 #undef UNDEF
2459 #undef TSF_TO_TU
2460 }
2461
2462 static int
2463 ath_descdma_setup(struct ath_softc *sc,
2464 struct ath_descdma *dd, ath_bufhead *head,
2465 const char *name, int nbuf, int ndesc)
2466 {
2467 #define DS2PHYS(_dd, _ds) \
2468 ((_dd)->dd_desc_paddr + ((char *)(_ds) - (char *)(_dd)->dd_desc))
2469 struct ifnet *ifp = &sc->sc_if;
2470 struct ath_desc *ds;
2471 struct ath_buf *bf;
2472 int i, bsize, error;
2473
2474 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2475 __func__, name, nbuf, ndesc);
2476
2477 dd->dd_name = name;
2478 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2479
2480 /*
2481 * Setup DMA descriptor area.
2482 */
2483 dd->dd_dmat = sc->sc_dmat;
2484
2485 error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE,
2486 0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0);
2487
2488 if (error != 0) {
2489 if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2490 "error %u\n", nbuf * ndesc, dd->dd_name, error);
2491 goto fail0;
2492 }
2493
2494 error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg,
2495 dd->dd_desc_len, (void **)&dd->dd_desc, BUS_DMA_COHERENT);
2496 if (error != 0) {
2497 if_printf(ifp, "unable to map %u %s descriptors, error = %u\n",
2498 nbuf * ndesc, dd->dd_name, error);
2499 goto fail1;
2500 }
2501
2502 /* allocate descriptors */
2503 error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1,
2504 dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2505 if (error != 0) {
2506 if_printf(ifp, "unable to create dmamap for %s descriptors, "
2507 "error %u\n", dd->dd_name, error);
2508 goto fail2;
2509 }
2510
2511 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc,
2512 dd->dd_desc_len, NULL, BUS_DMA_NOWAIT);
2513 if (error != 0) {
2514 if_printf(ifp, "unable to map %s descriptors, error %u\n",
2515 dd->dd_name, error);
2516 goto fail3;
2517 }
2518
2519 ds = dd->dd_desc;
2520 dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr;
2521 DPRINTF(sc, ATH_DEBUG_RESET,
2522 "%s: %s DMA map: %p (%lu) -> %" PRIx64 " (%lu)\n",
2523 __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2524 (uint64_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2525
2526 /* allocate rx buffers */
2527 bsize = sizeof(struct ath_buf) * nbuf;
2528 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2529 if (bf == NULL) {
2530 if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2531 dd->dd_name, bsize);
2532 goto fail4;
2533 }
2534 dd->dd_bufptr = bf;
2535
2536 STAILQ_INIT(head);
2537 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2538 bf->bf_desc = ds;
2539 bf->bf_daddr = DS2PHYS(dd, ds);
2540 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc,
2541 MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap);
2542 if (error != 0) {
2543 if_printf(ifp, "unable to create dmamap for %s "
2544 "buffer %u, error %u\n", dd->dd_name, i, error);
2545 ath_descdma_cleanup(sc, dd, head);
2546 return error;
2547 }
2548 STAILQ_INSERT_TAIL(head, bf, bf_list);
2549 }
2550 return 0;
2551 fail4:
2552 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2553 fail3:
2554 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2555 fail2:
2556 bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
2557 fail1:
2558 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2559 fail0:
2560 memset(dd, 0, sizeof(*dd));
2561 return error;
2562 #undef DS2PHYS
2563 }
2564
2565 static void
2566 ath_descdma_cleanup(struct ath_softc *sc,
2567 struct ath_descdma *dd, ath_bufhead *head)
2568 {
2569 struct ath_buf *bf;
2570 struct ieee80211_node *ni;
2571
2572 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2573 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2574 bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
2575 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2576
2577 STAILQ_FOREACH(bf, head, bf_list) {
2578 if (bf->bf_m) {
2579 m_freem(bf->bf_m);
2580 bf->bf_m = NULL;
2581 }
2582 if (bf->bf_dmamap != NULL) {
2583 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2584 bf->bf_dmamap = NULL;
2585 }
2586 ni = bf->bf_node;
2587 bf->bf_node = NULL;
2588 if (ni != NULL) {
2589 /*
2590 * Reclaim node reference.
2591 */
2592 ieee80211_free_node(ni);
2593 }
2594 }
2595
2596 STAILQ_INIT(head);
2597 free(dd->dd_bufptr, M_ATHDEV);
2598 memset(dd, 0, sizeof(*dd));
2599 }
2600
2601 static int
2602 ath_desc_alloc(struct ath_softc *sc)
2603 {
2604 int error;
2605
2606 error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2607 "rx", ath_rxbuf, 1);
2608 if (error != 0)
2609 return error;
2610
2611 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2612 "tx", ath_txbuf, ATH_TXDESC);
2613 if (error != 0) {
2614 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2615 return error;
2616 }
2617
2618 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2619 "beacon", 1, 1);
2620 if (error != 0) {
2621 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2622 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2623 return error;
2624 }
2625 return 0;
2626 }
2627
2628 static void
2629 ath_desc_free(struct ath_softc *sc)
2630 {
2631
2632 if (sc->sc_bdma.dd_desc_len != 0)
2633 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2634 if (sc->sc_txdma.dd_desc_len != 0)
2635 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2636 if (sc->sc_rxdma.dd_desc_len != 0)
2637 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2638 }
2639
2640 static struct ieee80211_node *
2641 ath_node_alloc(struct ieee80211_node_table *nt)
2642 {
2643 struct ieee80211com *ic = nt->nt_ic;
2644 struct ath_softc *sc = ic->ic_ifp->if_softc;
2645 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2646 struct ath_node *an;
2647
2648 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2649 if (an == NULL) {
2650 /* XXX stat+msg */
2651 return NULL;
2652 }
2653 an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
2654 ath_rate_node_init(sc, an);
2655
2656 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2657 return &an->an_node;
2658 }
2659
2660 static void
2661 ath_node_free(struct ieee80211_node *ni)
2662 {
2663 struct ieee80211com *ic = ni->ni_ic;
2664 struct ath_softc *sc = ic->ic_ifp->if_softc;
2665
2666 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2667
2668 ath_rate_node_cleanup(sc, ATH_NODE(ni));
2669 sc->sc_node_free(ni);
2670 }
2671
2672 static u_int8_t
2673 ath_node_getrssi(const struct ieee80211_node *ni)
2674 {
2675 #define HAL_EP_RND(x, mul) \
2676 ((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
2677 u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
2678 int32_t rssi;
2679
2680 /*
2681 * When only one frame is received there will be no state in
2682 * avgrssi so fallback on the value recorded by the 802.11 layer.
2683 */
2684 if (avgrssi != ATH_RSSI_DUMMY_MARKER)
2685 rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
2686 else
2687 rssi = ni->ni_rssi;
2688 return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
2689 #undef HAL_EP_RND
2690 }
2691
2692 static int
2693 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2694 {
2695 struct ath_hal *ah = sc->sc_ah;
2696 int error;
2697 struct mbuf *m;
2698 struct ath_desc *ds;
2699
2700 m = bf->bf_m;
2701 if (m == NULL) {
2702 /*
2703 * NB: by assigning a page to the rx dma buffer we
2704 * implicitly satisfy the Atheros requirement that
2705 * this buffer be cache-line-aligned and sized to be
2706 * multiple of the cache line size. Not doing this
2707 * causes weird stuff to happen (for the 5210 at least).
2708 */
2709 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2710 if (m == NULL) {
2711 DPRINTF(sc, ATH_DEBUG_ANY,
2712 "%s: no mbuf/cluster\n", __func__);
2713 sc->sc_stats.ast_rx_nombuf++;
2714 return ENOMEM;
2715 }
2716 bf->bf_m = m;
2717 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2718
2719 error = bus_dmamap_load_mbuf(sc->sc_dmat,
2720 bf->bf_dmamap, m,
2721 BUS_DMA_NOWAIT);
2722 if (error != 0) {
2723 DPRINTF(sc, ATH_DEBUG_ANY,
2724 "%s: bus_dmamap_load_mbuf failed; error %d\n",
2725 __func__, error);
2726 sc->sc_stats.ast_rx_busdma++;
2727 return error;
2728 }
2729 KASSERT(bf->bf_nseg == 1,
2730 ("multi-segment packet; nseg %u", bf->bf_nseg));
2731 }
2732 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2733 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2734
2735 /*
2736 * Setup descriptors. For receive we always terminate
2737 * the descriptor list with a self-linked entry so we'll
2738 * not get overrun under high load (as can happen with a
2739 * 5212 when ANI processing enables PHY error frames).
2740 *
2741 * To insure the last descriptor is self-linked we create
2742 * each descriptor as self-linked and add it to the end. As
2743 * each additional descriptor is added the previous self-linked
2744 * entry is ``fixed'' naturally. This should be safe even
2745 * if DMA is happening. When processing RX interrupts we
2746 * never remove/process the last, self-linked, entry on the
2747 * descriptor list. This insures the hardware always has
2748 * someplace to write a new frame.
2749 */
2750 ds = bf->bf_desc;
2751 ds->ds_link = HTOAH32(bf->bf_daddr); /* link to self */
2752 ds->ds_data = bf->bf_segs[0].ds_addr;
2753 ds->ds_vdata = mtod(m, void *); /* for radar */
2754 ath_hal_setuprxdesc(ah, ds
2755 , m->m_len /* buffer size */
2756 , 0
2757 );
2758
2759 if (sc->sc_rxlink != NULL)
2760 *sc->sc_rxlink = bf->bf_daddr;
2761 sc->sc_rxlink = &ds->ds_link;
2762 return 0;
2763 }
2764
2765 /*
2766 * Extend 15-bit time stamp from rx descriptor to
2767 * a full 64-bit TSF using the specified TSF.
2768 */
2769 static inline u_int64_t
2770 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
2771 {
2772 if ((tsf & 0x7fff) < rstamp)
2773 tsf -= 0x8000;
2774 return ((tsf &~ 0x7fff) | rstamp);
2775 }
2776
2777 /*
2778 * Intercept management frames to collect beacon rssi data
2779 * and to do ibss merges.
2780 */
2781 static void
2782 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2783 struct ieee80211_node *ni,
2784 int subtype, int rssi, u_int32_t rstamp)
2785 {
2786 struct ath_softc *sc = ic->ic_ifp->if_softc;
2787
2788 /*
2789 * Call up first so subsequent work can use information
2790 * potentially stored in the node (e.g. for ibss merge).
2791 */
2792 sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
2793 switch (subtype) {
2794 case IEEE80211_FC0_SUBTYPE_BEACON:
2795 /* update rssi statistics for use by the hal */
2796 ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
2797 if (sc->sc_syncbeacon &&
2798 ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) {
2799 /*
2800 * Resync beacon timers using the tsf of the beacon
2801 * frame we just received.
2802 */
2803 ath_beacon_config(sc);
2804 }
2805 /* fall thru... */
2806 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2807 if (ic->ic_opmode == IEEE80211_M_IBSS &&
2808 ic->ic_state == IEEE80211_S_RUN) {
2809 u_int64_t tsf = ath_extend_tsf(rstamp,
2810 ath_hal_gettsf64(sc->sc_ah));
2811
2812 /*
2813 * Handle ibss merge as needed; check the tsf on the
2814 * frame before attempting the merge. The 802.11 spec
2815 * says the station should change it's bssid to match
2816 * the oldest station with the same ssid, where oldest
2817 * is determined by the tsf. Note that hardware
2818 * reconfiguration happens through callback to
2819 * ath_newstate as the state machine will go from
2820 * RUN -> RUN when this happens.
2821 */
2822 if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
2823 DPRINTF(sc, ATH_DEBUG_STATE,
2824 "ibss merge, rstamp %u tsf %ju "
2825 "tstamp %ju\n", rstamp, (uintmax_t)tsf,
2826 (uintmax_t)ni->ni_tstamp.tsf);
2827 (void) ieee80211_ibss_merge(ni);
2828 }
2829 }
2830 break;
2831 }
2832 }
2833
2834 /*
2835 * Set the default antenna.
2836 */
2837 static void
2838 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
2839 {
2840 struct ath_hal *ah = sc->sc_ah;
2841
2842 /* XXX block beacon interrupts */
2843 ath_hal_setdefantenna(ah, antenna);
2844 if (sc->sc_defant != antenna)
2845 sc->sc_stats.ast_ant_defswitch++;
2846 sc->sc_defant = antenna;
2847 sc->sc_rxotherant = 0;
2848 }
2849
2850 static void
2851 ath_rx_proc(void *arg, int npending)
2852 {
2853 #define PA2DESC(_sc, _pa) \
2854 ((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
2855 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
2856 struct ath_softc *sc = arg;
2857 struct ath_buf *bf;
2858 struct ieee80211com *ic = &sc->sc_ic;
2859 struct ifnet *ifp = &sc->sc_if;
2860 struct ath_hal *ah = sc->sc_ah;
2861 struct ath_desc *ds;
2862 struct mbuf *m;
2863 struct ieee80211_node *ni;
2864 struct ath_node *an;
2865 int len, type, ngood;
2866 u_int phyerr;
2867 HAL_STATUS status;
2868 int16_t nf;
2869 u_int64_t tsf;
2870
2871 NET_LOCK_GIANT(); /* XXX */
2872
2873 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
2874 ngood = 0;
2875 nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
2876 tsf = ath_hal_gettsf64(ah);
2877 do {
2878 bf = STAILQ_FIRST(&sc->sc_rxbuf);
2879 if (bf == NULL) { /* NB: shouldn't happen */
2880 if_printf(ifp, "%s: no buffer!\n", __func__);
2881 break;
2882 }
2883 ds = bf->bf_desc;
2884 if (ds->ds_link == bf->bf_daddr) {
2885 /* NB: never process the self-linked entry at the end */
2886 break;
2887 }
2888 m = bf->bf_m;
2889 if (m == NULL) { /* NB: shouldn't happen */
2890 if_printf(ifp, "%s: no mbuf!\n", __func__);
2891 break;
2892 }
2893 /* XXX sync descriptor memory */
2894 /*
2895 * Must provide the virtual address of the current
2896 * descriptor, the physical address, and the virtual
2897 * address of the next descriptor in the h/w chain.
2898 * This allows the HAL to look ahead to see if the
2899 * hardware is done with a descriptor by checking the
2900 * done bit in the following descriptor and the address
2901 * of the current descriptor the DMA engine is working
2902 * on. All this is necessary because of our use of
2903 * a self-linked list to avoid rx overruns.
2904 */
2905 status = ath_hal_rxprocdesc(ah, ds,
2906 bf->bf_daddr, PA2DESC(sc, ds->ds_link));
2907 #ifdef AR_DEBUG
2908 if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
2909 ath_printrxbuf(bf, status == HAL_OK);
2910 #endif
2911 if (status == HAL_EINPROGRESS)
2912 break;
2913 STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
2914 if (ds->ds_rxstat.rs_more) {
2915 /*
2916 * Frame spans multiple descriptors; this
2917 * cannot happen yet as we don't support
2918 * jumbograms. If not in monitor mode,
2919 * discard the frame.
2920 */
2921 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2922 sc->sc_stats.ast_rx_toobig++;
2923 goto rx_next;
2924 }
2925 /* fall thru for monitor mode handling... */
2926 } else if (ds->ds_rxstat.rs_status != 0) {
2927 if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
2928 sc->sc_stats.ast_rx_crcerr++;
2929 if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
2930 sc->sc_stats.ast_rx_fifoerr++;
2931 if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
2932 sc->sc_stats.ast_rx_phyerr++;
2933 phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
2934 sc->sc_stats.ast_rx_phy[phyerr]++;
2935 goto rx_next;
2936 }
2937 if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
2938 /*
2939 * Decrypt error. If the error occurred
2940 * because there was no hardware key, then
2941 * let the frame through so the upper layers
2942 * can process it. This is necessary for 5210
2943 * parts which have no way to setup a ``clear''
2944 * key cache entry.
2945 *
2946 * XXX do key cache faulting
2947 */
2948 if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
2949 goto rx_accept;
2950 sc->sc_stats.ast_rx_badcrypt++;
2951 }
2952 if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
2953 sc->sc_stats.ast_rx_badmic++;
2954 /*
2955 * Do minimal work required to hand off
2956 * the 802.11 header for notifcation.
2957 */
2958 /* XXX frag's and qos frames */
2959 len = ds->ds_rxstat.rs_datalen;
2960 if (len >= sizeof (struct ieee80211_frame)) {
2961 bus_dmamap_sync(sc->sc_dmat,
2962 bf->bf_dmamap,
2963 0, bf->bf_dmamap->dm_mapsize,
2964 BUS_DMASYNC_POSTREAD);
2965 ieee80211_notify_michael_failure(ic,
2966 mtod(m, struct ieee80211_frame *),
2967 sc->sc_splitmic ?
2968 ds->ds_rxstat.rs_keyix-32 :
2969 ds->ds_rxstat.rs_keyix
2970 );
2971 }
2972 }
2973 ifp->if_ierrors++;
2974 /*
2975 * Reject error frames, we normally don't want
2976 * to see them in monitor mode (in monitor mode
2977 * allow through packets that have crypto problems).
2978 */
2979 if ((ds->ds_rxstat.rs_status &~
2980 (HAL_RXERR_DECRYPT|HAL_RXERR_MIC)) ||
2981 sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
2982 goto rx_next;
2983 }
2984 rx_accept:
2985 /*
2986 * Sync and unmap the frame. At this point we're
2987 * committed to passing the mbuf somewhere so clear
2988 * bf_m; this means a new sk_buff must be allocated
2989 * when the rx descriptor is setup again to receive
2990 * another frame.
2991 */
2992 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
2993 0, bf->bf_dmamap->dm_mapsize,
2994 BUS_DMASYNC_POSTREAD);
2995 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2996 bf->bf_m = NULL;
2997
2998 m->m_pkthdr.rcvif = ifp;
2999 len = ds->ds_rxstat.rs_datalen;
3000 m->m_pkthdr.len = m->m_len = len;
3001
3002 sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
3003
3004 #if NBPFILTER > 0
3005 if (sc->sc_drvbpf) {
3006 u_int8_t rix;
3007
3008 /*
3009 * Discard anything shorter than an ack or cts.
3010 */
3011 if (len < IEEE80211_ACK_LEN) {
3012 DPRINTF(sc, ATH_DEBUG_RECV,
3013 "%s: runt packet %d\n",
3014 __func__, len);
3015 sc->sc_stats.ast_rx_tooshort++;
3016 m_freem(m);
3017 goto rx_next;
3018 }
3019 rix = ds->ds_rxstat.rs_rate;
3020 sc->sc_rx_th.wr_tsf = htole64(
3021 ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf));
3022 sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
3023 sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
3024 sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf;
3025 sc->sc_rx_th.wr_antnoise = nf;
3026 sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
3027
3028 bpf_mtap2(sc->sc_drvbpf,
3029 &sc->sc_rx_th, sc->sc_rx_th_len, m);
3030 }
3031 #endif
3032
3033 /*
3034 * From this point on we assume the frame is at least
3035 * as large as ieee80211_frame_min; verify that.
3036 */
3037 if (len < IEEE80211_MIN_LEN) {
3038 DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
3039 __func__, len);
3040 sc->sc_stats.ast_rx_tooshort++;
3041 m_freem(m);
3042 goto rx_next;
3043 }
3044
3045 if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
3046 ieee80211_dump_pkt(mtod(m, void *), len,
3047 sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
3048 ds->ds_rxstat.rs_rssi);
3049 }
3050
3051 m_adj(m, -IEEE80211_CRC_LEN);
3052
3053 /*
3054 * Locate the node for sender, track state, and then
3055 * pass the (referenced) node up to the 802.11 layer
3056 * for its use.
3057 */
3058 ni = ieee80211_find_rxnode_withkey(ic,
3059 mtod(m, const struct ieee80211_frame_min *),
3060 ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
3061 IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
3062 /*
3063 * Track rx rssi and do any rx antenna management.
3064 */
3065 an = ATH_NODE(ni);
3066 ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
3067 ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi);
3068 /*
3069 * Send frame up for processing.
3070 */
3071 type = ieee80211_input(ic, m, ni,
3072 ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
3073 ieee80211_free_node(ni);
3074 if (sc->sc_diversity) {
3075 /*
3076 * When using fast diversity, change the default rx
3077 * antenna if diversity chooses the other antenna 3
3078 * times in a row.
3079 */
3080 if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
3081 if (++sc->sc_rxotherant >= 3)
3082 ath_setdefantenna(sc,
3083 ds->ds_rxstat.rs_antenna);
3084 } else
3085 sc->sc_rxotherant = 0;
3086 }
3087 if (sc->sc_softled) {
3088 /*
3089 * Blink for any data frame. Otherwise do a
3090 * heartbeat-style blink when idle. The latter
3091 * is mainly for station mode where we depend on
3092 * periodic beacon frames to trigger the poll event.
3093 */
3094 if (type == IEEE80211_FC0_TYPE_DATA) {
3095 sc->sc_rxrate = ds->ds_rxstat.rs_rate;
3096 ath_led_event(sc, ATH_LED_RX);
3097 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
3098 ath_led_event(sc, ATH_LED_POLL);
3099 }
3100 /*
3101 * Arrange to update the last rx timestamp only for
3102 * frames from our ap when operating in station mode.
3103 * This assumes the rx key is always setup when associated.
3104 */
3105 if (ic->ic_opmode == IEEE80211_M_STA &&
3106 ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID)
3107 ngood++;
3108 rx_next:
3109 STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
3110 } while (ath_rxbuf_init(sc, bf) == 0);
3111
3112 /* rx signal state monitoring */
3113 ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
3114 if (ath_hal_radar_event(ah))
3115 TASK_RUN_OR_ENQUEUE(&sc->sc_radartask);
3116 if (ngood)
3117 sc->sc_lastrx = tsf;
3118
3119 #ifdef __NetBSD__
3120 /* XXX Why isn't this necessary in FreeBSD? */
3121 if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
3122 ath_start(ifp);
3123 #endif /* __NetBSD__ */
3124
3125 NET_UNLOCK_GIANT(); /* XXX */
3126 #undef PA2DESC
3127 }
3128
3129 /*
3130 * Setup a h/w transmit queue.
3131 */
3132 static struct ath_txq *
3133 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3134 {
3135 #define N(a) (sizeof(a)/sizeof(a[0]))
3136 struct ath_hal *ah = sc->sc_ah;
3137 HAL_TXQ_INFO qi;
3138 int qnum;
3139
3140 memset(&qi, 0, sizeof(qi));
3141 qi.tqi_subtype = subtype;
3142 qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3143 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3144 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3145 /*
3146 * Enable interrupts only for EOL and DESC conditions.
3147 * We mark tx descriptors to receive a DESC interrupt
3148 * when a tx queue gets deep; otherwise waiting for the
3149 * EOL to reap descriptors. Note that this is done to
3150 * reduce interrupt load and this only defers reaping
3151 * descriptors, never transmitting frames. Aside from
3152 * reducing interrupts this also permits more concurrency.
3153 * The only potential downside is if the tx queue backs
3154 * up in which case the top half of the kernel may backup
3155 * due to a lack of tx descriptors.
3156 */
3157 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
3158 qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3159 if (qnum == -1) {
3160 /*
3161 * NB: don't print a message, this happens
3162 * normally on parts with too few tx queues
3163 */
3164 return NULL;
3165 }
3166 if (qnum >= N(sc->sc_txq)) {
3167 device_printf(&sc->sc_dev,
3168 "hal qnum %u out of range, max %zu!\n",
3169 qnum, N(sc->sc_txq));
3170 ath_hal_releasetxqueue(ah, qnum);
3171 return NULL;
3172 }
3173 if (!ATH_TXQ_SETUP(sc, qnum)) {
3174 struct ath_txq *txq = &sc->sc_txq[qnum];
3175
3176 txq->axq_qnum = qnum;
3177 txq->axq_depth = 0;
3178 txq->axq_intrcnt = 0;
3179 txq->axq_link = NULL;
3180 STAILQ_INIT(&txq->axq_q);
3181 ATH_TXQ_LOCK_INIT(sc, txq);
3182 sc->sc_txqsetup |= 1<<qnum;
3183 }
3184 return &sc->sc_txq[qnum];
3185 #undef N
3186 }
3187
3188 /*
3189 * Setup a hardware data transmit queue for the specified
3190 * access control. The hal may not support all requested
3191 * queues in which case it will return a reference to a
3192 * previously setup queue. We record the mapping from ac's
3193 * to h/w queues for use by ath_tx_start and also track
3194 * the set of h/w queues being used to optimize work in the
3195 * transmit interrupt handler and related routines.
3196 */
3197 static int
3198 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3199 {
3200 #define N(a) (sizeof(a)/sizeof(a[0]))
3201 struct ath_txq *txq;
3202
3203 if (ac >= N(sc->sc_ac2q)) {
3204 device_printf(&sc->sc_dev, "AC %u out of range, max %zu!\n",
3205 ac, N(sc->sc_ac2q));
3206 return 0;
3207 }
3208 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3209 if (txq != NULL) {
3210 sc->sc_ac2q[ac] = txq;
3211 return 1;
3212 } else
3213 return 0;
3214 #undef N
3215 }
3216
3217 /*
3218 * Update WME parameters for a transmit queue.
3219 */
3220 static int
3221 ath_txq_update(struct ath_softc *sc, int ac)
3222 {
3223 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1)
3224 #define ATH_TXOP_TO_US(v) (v<<5)
3225 struct ieee80211com *ic = &sc->sc_ic;
3226 struct ath_txq *txq = sc->sc_ac2q[ac];
3227 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3228 struct ath_hal *ah = sc->sc_ah;
3229 HAL_TXQ_INFO qi;
3230
3231 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3232 qi.tqi_aifs = wmep->wmep_aifsn;
3233 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3234 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3235 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3236
3237 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3238 device_printf(&sc->sc_dev, "unable to update hardware queue "
3239 "parameters for %s traffic!\n",
3240 ieee80211_wme_acnames[ac]);
3241 return 0;
3242 } else {
3243 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3244 return 1;
3245 }
3246 #undef ATH_TXOP_TO_US
3247 #undef ATH_EXPONENT_TO_VALUE
3248 }
3249
3250 /*
3251 * Callback from the 802.11 layer to update WME parameters.
3252 */
3253 static int
3254 ath_wme_update(struct ieee80211com *ic)
3255 {
3256 struct ath_softc *sc = ic->ic_ifp->if_softc;
3257
3258 return !ath_txq_update(sc, WME_AC_BE) ||
3259 !ath_txq_update(sc, WME_AC_BK) ||
3260 !ath_txq_update(sc, WME_AC_VI) ||
3261 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3262 }
3263
3264 /*
3265 * Reclaim resources for a setup queue.
3266 */
3267 static void
3268 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3269 {
3270
3271 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3272 ATH_TXQ_LOCK_DESTROY(txq);
3273 sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3274 }
3275
3276 /*
3277 * Reclaim all tx queue resources.
3278 */
3279 static void
3280 ath_tx_cleanup(struct ath_softc *sc)
3281 {
3282 int i;
3283
3284 ATH_TXBUF_LOCK_DESTROY(sc);
3285 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3286 if (ATH_TXQ_SETUP(sc, i))
3287 ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3288 }
3289
3290 /*
3291 * Defragment an mbuf chain, returning at most maxfrags separate
3292 * mbufs+clusters. If this is not possible NULL is returned and
3293 * the original mbuf chain is left in it's present (potentially
3294 * modified) state. We use two techniques: collapsing consecutive
3295 * mbufs and replacing consecutive mbufs by a cluster.
3296 */
3297 static struct mbuf *
3298 ath_defrag(struct mbuf *m0, int how, int maxfrags)
3299 {
3300 struct mbuf *m, *n, *n2, **prev;
3301 u_int curfrags;
3302
3303 /*
3304 * Calculate the current number of frags.
3305 */
3306 curfrags = 0;
3307 for (m = m0; m != NULL; m = m->m_next)
3308 curfrags++;
3309 /*
3310 * First, try to collapse mbufs. Note that we always collapse
3311 * towards the front so we don't need to deal with moving the
3312 * pkthdr. This may be suboptimal if the first mbuf has much
3313 * less data than the following.
3314 */
3315 m = m0;
3316 again:
3317 for (;;) {
3318 n = m->m_next;
3319 if (n == NULL)
3320 break;
3321 if (n->m_len < M_TRAILINGSPACE(m)) {
3322 memcpy(mtod(m, char *) + m->m_len, mtod(n, void *),
3323 n->m_len);
3324 m->m_len += n->m_len;
3325 m->m_next = n->m_next;
3326 m_free(n);
3327 if (--curfrags <= maxfrags)
3328 return m0;
3329 } else
3330 m = n;
3331 }
3332 KASSERT(maxfrags > 1,
3333 ("maxfrags %u, but normal collapse failed", maxfrags));
3334 /*
3335 * Collapse consecutive mbufs to a cluster.
3336 */
3337 prev = &m0->m_next; /* NB: not the first mbuf */
3338 while ((n = *prev) != NULL) {
3339 if ((n2 = n->m_next) != NULL &&
3340 n->m_len + n2->m_len < MCLBYTES) {
3341 m = m_getcl(how, MT_DATA, 0);
3342 if (m == NULL)
3343 goto bad;
3344 bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
3345 bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
3346 n2->m_len);
3347 m->m_len = n->m_len + n2->m_len;
3348 m->m_next = n2->m_next;
3349 *prev = m;
3350 m_free(n);
3351 m_free(n2);
3352 if (--curfrags <= maxfrags) /* +1 cl -2 mbufs */
3353 return m0;
3354 /*
3355 * Still not there, try the normal collapse
3356 * again before we allocate another cluster.
3357 */
3358 goto again;
3359 }
3360 prev = &n->m_next;
3361 }
3362 /*
3363 * No place where we can collapse to a cluster; punt.
3364 * This can occur if, for example, you request 2 frags
3365 * but the packet requires that both be clusters (we
3366 * never reallocate the first mbuf to avoid moving the
3367 * packet header).
3368 */
3369 bad:
3370 return NULL;
3371 }
3372
3373 /*
3374 * Return h/w rate index for an IEEE rate (w/o basic rate bit).
3375 */
3376 static int
3377 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
3378 {
3379 int i;
3380
3381 for (i = 0; i < rt->rateCount; i++)
3382 if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
3383 return i;
3384 return 0; /* NB: lowest rate */
3385 }
3386
3387 static void
3388 ath_freetx(struct mbuf *m)
3389 {
3390 struct mbuf *next;
3391
3392 do {
3393 next = m->m_nextpkt;
3394 m->m_nextpkt = NULL;
3395 m_freem(m);
3396 } while ((m = next) != NULL);
3397 }
3398
3399 static int
3400 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
3401 struct mbuf *m0)
3402 {
3403 struct ieee80211com *ic = &sc->sc_ic;
3404 struct ath_hal *ah = sc->sc_ah;
3405 struct ifnet *ifp = &sc->sc_if;
3406 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
3407 int i, error, iswep, ismcast, isfrag, ismrr;
3408 int keyix, hdrlen, pktlen, try0;
3409 u_int8_t rix, txrate, ctsrate;
3410 u_int8_t cix = 0xff; /* NB: silence compiler */
3411 struct ath_desc *ds, *ds0;
3412 struct ath_txq *txq;
3413 struct ieee80211_frame *wh;
3414 u_int subtype, flags, ctsduration;
3415 HAL_PKT_TYPE atype;
3416 const HAL_RATE_TABLE *rt;
3417 HAL_BOOL shortPreamble;
3418 struct ath_node *an;
3419 struct mbuf *m;
3420 u_int pri;
3421
3422 wh = mtod(m0, struct ieee80211_frame *);
3423 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
3424 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3425 isfrag = m0->m_flags & M_FRAG;
3426 hdrlen = ieee80211_anyhdrsize(wh);
3427 /*
3428 * Packet length must not include any
3429 * pad bytes; deduct them here.
3430 */
3431 pktlen = m0->m_pkthdr.len - (hdrlen & 3);
3432
3433 if (iswep) {
3434 const struct ieee80211_cipher *cip;
3435 struct ieee80211_key *k;
3436
3437 /*
3438 * Construct the 802.11 header+trailer for an encrypted
3439 * frame. The only reason this can fail is because of an
3440 * unknown or unsupported cipher/key type.
3441 */
3442 k = ieee80211_crypto_encap(ic, ni, m0);
3443 if (k == NULL) {
3444 /*
3445 * This can happen when the key is yanked after the
3446 * frame was queued. Just discard the frame; the
3447 * 802.11 layer counts failures and provides
3448 * debugging/diagnostics.
3449 */
3450 ath_freetx(m0);
3451 return EIO;
3452 }
3453 /*
3454 * Adjust the packet + header lengths for the crypto
3455 * additions and calculate the h/w key index. When
3456 * a s/w mic is done the frame will have had any mic
3457 * added to it prior to entry so m0->m_pkthdr.len above will
3458 * account for it. Otherwise we need to add it to the
3459 * packet length.
3460 */
3461 cip = k->wk_cipher;
3462 hdrlen += cip->ic_header;
3463 pktlen += cip->ic_header + cip->ic_trailer;
3464 /* NB: frags always have any TKIP MIC done in s/w */
3465 if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
3466 pktlen += cip->ic_miclen;
3467 keyix = k->wk_keyix;
3468
3469 /* packet header may have moved, reset our local pointer */
3470 wh = mtod(m0, struct ieee80211_frame *);
3471 } else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
3472 /*
3473 * Use station key cache slot, if assigned.
3474 */
3475 keyix = ni->ni_ucastkey.wk_keyix;
3476 if (keyix == IEEE80211_KEYIX_NONE)
3477 keyix = HAL_TXKEYIX_INVALID;
3478 } else
3479 keyix = HAL_TXKEYIX_INVALID;
3480
3481 pktlen += IEEE80211_CRC_LEN;
3482
3483 /*
3484 * Load the DMA map so any coalescing is done. This
3485 * also calculates the number of descriptors we need.
3486 */
3487 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3488 BUS_DMA_NOWAIT);
3489 if (error == EFBIG) {
3490 /* XXX packet requires too many descriptors */
3491 bf->bf_nseg = ATH_TXDESC+1;
3492 } else if (error != 0) {
3493 sc->sc_stats.ast_tx_busdma++;
3494 ath_freetx(m0);
3495 return error;
3496 }
3497 /*
3498 * Discard null packets and check for packets that
3499 * require too many TX descriptors. We try to convert
3500 * the latter to a cluster.
3501 */
3502 if (error == EFBIG) { /* too many desc's, linearize */
3503 sc->sc_stats.ast_tx_linear++;
3504 m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
3505 if (m == NULL) {
3506 ath_freetx(m0);
3507 sc->sc_stats.ast_tx_nombuf++;
3508 return ENOMEM;
3509 }
3510 m0 = m;
3511 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3512 BUS_DMA_NOWAIT);
3513 if (error != 0) {
3514 sc->sc_stats.ast_tx_busdma++;
3515 ath_freetx(m0);
3516 return error;
3517 }
3518 KASSERT(bf->bf_nseg <= ATH_TXDESC,
3519 ("too many segments after defrag; nseg %u", bf->bf_nseg));
3520 } else if (bf->bf_nseg == 0) { /* null packet, discard */
3521 sc->sc_stats.ast_tx_nodata++;
3522 ath_freetx(m0);
3523 return EIO;
3524 }
3525 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
3526 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
3527 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
3528 bf->bf_m = m0;
3529 bf->bf_node = ni; /* NB: held reference */
3530
3531 /* setup descriptors */
3532 ds = bf->bf_desc;
3533 rt = sc->sc_currates;
3534 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3535
3536 /*
3537 * NB: the 802.11 layer marks whether or not we should
3538 * use short preamble based on the current mode and
3539 * negotiated parameters.
3540 */
3541 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3542 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) {
3543 shortPreamble = AH_TRUE;
3544 sc->sc_stats.ast_tx_shortpre++;
3545 } else {
3546 shortPreamble = AH_FALSE;
3547 }
3548
3549 an = ATH_NODE(ni);
3550 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */
3551 ismrr = 0; /* default no multi-rate retry*/
3552 /*
3553 * Calculate Atheros packet type from IEEE80211 packet header,
3554 * setup for rate calculations, and select h/w transmit queue.
3555 */
3556 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3557 case IEEE80211_FC0_TYPE_MGT:
3558 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3559 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
3560 atype = HAL_PKT_TYPE_BEACON;
3561 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3562 atype = HAL_PKT_TYPE_PROBE_RESP;
3563 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
3564 atype = HAL_PKT_TYPE_ATIM;
3565 else
3566 atype = HAL_PKT_TYPE_NORMAL; /* XXX */
3567 rix = sc->sc_minrateix;
3568 txrate = rt->info[rix].rateCode;
3569 if (shortPreamble)
3570 txrate |= rt->info[rix].shortPreamble;
3571 try0 = ATH_TXMGTTRY;
3572 /* NB: force all management frames to highest queue */
3573 if (ni->ni_flags & IEEE80211_NODE_QOS) {
3574 /* NB: force all management frames to highest queue */
3575 pri = WME_AC_VO;
3576 } else
3577 pri = WME_AC_BE;
3578 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
3579 break;
3580 case IEEE80211_FC0_TYPE_CTL:
3581 atype = HAL_PKT_TYPE_PSPOLL; /* stop setting of duration */
3582 rix = sc->sc_minrateix;
3583 txrate = rt->info[rix].rateCode;
3584 if (shortPreamble)
3585 txrate |= rt->info[rix].shortPreamble;
3586 try0 = ATH_TXMGTTRY;
3587 /* NB: force all ctl frames to highest queue */
3588 if (ni->ni_flags & IEEE80211_NODE_QOS) {
3589 /* NB: force all ctl frames to highest queue */
3590 pri = WME_AC_VO;
3591 } else
3592 pri = WME_AC_BE;
3593 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
3594 break;
3595 case IEEE80211_FC0_TYPE_DATA:
3596 atype = HAL_PKT_TYPE_NORMAL; /* default */
3597 /*
3598 * Data frames: multicast frames go out at a fixed rate,
3599 * otherwise consult the rate control module for the
3600 * rate to use.
3601 */
3602 if (ismcast) {
3603 /*
3604 * Check mcast rate setting in case it's changed.
3605 * XXX move out of fastpath
3606 */
3607 if (ic->ic_mcast_rate != sc->sc_mcastrate) {
3608 sc->sc_mcastrix =
3609 ath_tx_findrix(rt, ic->ic_mcast_rate);
3610 sc->sc_mcastrate = ic->ic_mcast_rate;
3611 }
3612 rix = sc->sc_mcastrix;
3613 txrate = rt->info[rix].rateCode;
3614 try0 = 1;
3615 } else {
3616 ath_rate_findrate(sc, an, shortPreamble, pktlen,
3617 &rix, &try0, &txrate);
3618 sc->sc_txrate = txrate; /* for LED blinking */
3619 if (try0 != ATH_TXMAXTRY)
3620 ismrr = 1;
3621 }
3622 pri = M_WME_GETAC(m0);
3623 if (cap->cap_wmeParams[pri].wmep_noackPolicy)
3624 flags |= HAL_TXDESC_NOACK;
3625 break;
3626 default:
3627 if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3628 wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3629 /* XXX statistic */
3630 ath_freetx(m0);
3631 return EIO;
3632 }
3633 txq = sc->sc_ac2q[pri];
3634
3635 /*
3636 * When servicing one or more stations in power-save mode
3637 * multicast frames must be buffered until after the beacon.
3638 * We use the CAB queue for that.
3639 */
3640 if (ismcast && ic->ic_ps_sta) {
3641 txq = sc->sc_cabq;
3642 /* XXX? more bit in 802.11 frame header */
3643 }
3644
3645 /*
3646 * Calculate miscellaneous flags.
3647 */
3648 if (ismcast) {
3649 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */
3650 } else if (pktlen > ic->ic_rtsthreshold) {
3651 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */
3652 cix = rt->info[rix].controlRate;
3653 sc->sc_stats.ast_tx_rts++;
3654 }
3655 if (flags & HAL_TXDESC_NOACK) /* NB: avoid double counting */
3656 sc->sc_stats.ast_tx_noack++;
3657
3658 /*
3659 * If 802.11g protection is enabled, determine whether
3660 * to use RTS/CTS or just CTS. Note that this is only
3661 * done for OFDM unicast frames.
3662 */
3663 if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3664 rt->info[rix].phy == IEEE80211_T_OFDM &&
3665 (flags & HAL_TXDESC_NOACK) == 0) {
3666 /* XXX fragments must use CCK rates w/ protection */
3667 if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3668 flags |= HAL_TXDESC_RTSENA;
3669 else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3670 flags |= HAL_TXDESC_CTSENA;
3671 if (isfrag) {
3672 /*
3673 * For frags it would be desirable to use the
3674 * highest CCK rate for RTS/CTS. But stations
3675 * farther away may detect it at a lower CCK rate
3676 * so use the configured protection rate instead
3677 * (for now).
3678 */
3679 cix = rt->info[sc->sc_protrix].controlRate;
3680 } else
3681 cix = rt->info[sc->sc_protrix].controlRate;
3682 sc->sc_stats.ast_tx_protect++;
3683 }
3684
3685 /*
3686 * Calculate duration. This logically belongs in the 802.11
3687 * layer but it lacks sufficient information to calculate it.
3688 */
3689 if ((flags & HAL_TXDESC_NOACK) == 0 &&
3690 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
3691 u_int16_t dur;
3692 /*
3693 * XXX not right with fragmentation.
3694 */
3695 if (shortPreamble)
3696 dur = rt->info[rix].spAckDuration;
3697 else
3698 dur = rt->info[rix].lpAckDuration;
3699 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
3700 dur += dur; /* additional SIFS+ACK */
3701 KASSERT(m0->m_nextpkt != NULL, ("no fragment"));
3702 /*
3703 * Include the size of next fragment so NAV is
3704 * updated properly. The last fragment uses only
3705 * the ACK duration
3706 */
3707 dur += ath_hal_computetxtime(ah, rt,
3708 m0->m_nextpkt->m_pkthdr.len,
3709 rix, shortPreamble);
3710 }
3711 if (isfrag) {
3712 /*
3713 * Force hardware to use computed duration for next
3714 * fragment by disabling multi-rate retry which updates
3715 * duration based on the multi-rate duration table.
3716 */
3717 try0 = ATH_TXMAXTRY;
3718 }
3719 *(u_int16_t *)wh->i_dur = htole16(dur);
3720 }
3721
3722 /*
3723 * Calculate RTS/CTS rate and duration if needed.
3724 */
3725 ctsduration = 0;
3726 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
3727 /*
3728 * CTS transmit rate is derived from the transmit rate
3729 * by looking in the h/w rate table. We must also factor
3730 * in whether or not a short preamble is to be used.
3731 */
3732 /* NB: cix is set above where RTS/CTS is enabled */
3733 KASSERT(cix != 0xff, ("cix not setup"));
3734 ctsrate = rt->info[cix].rateCode;
3735 /*
3736 * Compute the transmit duration based on the frame
3737 * size and the size of an ACK frame. We call into the
3738 * HAL to do the computation since it depends on the
3739 * characteristics of the actual PHY being used.
3740 *
3741 * NB: CTS is assumed the same size as an ACK so we can
3742 * use the precalculated ACK durations.
3743 */
3744 if (shortPreamble) {
3745 ctsrate |= rt->info[cix].shortPreamble;
3746 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
3747 ctsduration += rt->info[cix].spAckDuration;
3748 ctsduration += ath_hal_computetxtime(ah,
3749 rt, pktlen, rix, AH_TRUE);
3750 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
3751 ctsduration += rt->info[rix].spAckDuration;
3752 } else {
3753 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
3754 ctsduration += rt->info[cix].lpAckDuration;
3755 ctsduration += ath_hal_computetxtime(ah,
3756 rt, pktlen, rix, AH_FALSE);
3757 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
3758 ctsduration += rt->info[rix].lpAckDuration;
3759 }
3760 /*
3761 * Must disable multi-rate retry when using RTS/CTS.
3762 */
3763 ismrr = 0;
3764 try0 = ATH_TXMGTTRY; /* XXX */
3765 } else
3766 ctsrate = 0;
3767
3768 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3769 ieee80211_dump_pkt(mtod(m0, void *), m0->m_len,
3770 sc->sc_hwmap[txrate].ieeerate, -1);
3771 #if NBPFILTER > 0
3772 if (ic->ic_rawbpf)
3773 bpf_mtap(ic->ic_rawbpf, m0);
3774 if (sc->sc_drvbpf) {
3775 u_int64_t tsf = ath_hal_gettsf64(ah);
3776
3777 sc->sc_tx_th.wt_tsf = htole64(tsf);
3778 sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
3779 if (iswep)
3780 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3781 if (isfrag)
3782 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
3783 sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
3784 sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3785 sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3786
3787 bpf_mtap2(sc->sc_drvbpf,
3788 &sc->sc_tx_th, sc->sc_tx_th_len, m0);
3789 }
3790 #endif
3791
3792 /*
3793 * Determine if a tx interrupt should be generated for
3794 * this descriptor. We take a tx interrupt to reap
3795 * descriptors when the h/w hits an EOL condition or
3796 * when the descriptor is specifically marked to generate
3797 * an interrupt. We periodically mark descriptors in this
3798 * way to insure timely replenishing of the supply needed
3799 * for sending frames. Defering interrupts reduces system
3800 * load and potentially allows more concurrent work to be
3801 * done but if done to aggressively can cause senders to
3802 * backup.
3803 *
3804 * NB: use >= to deal with sc_txintrperiod changing
3805 * dynamically through sysctl.
3806 */
3807 if (flags & HAL_TXDESC_INTREQ) {
3808 txq->axq_intrcnt = 0;
3809 } else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
3810 flags |= HAL_TXDESC_INTREQ;
3811 txq->axq_intrcnt = 0;
3812 }
3813
3814 /*
3815 * Formulate first tx descriptor with tx controls.
3816 */
3817 /* XXX check return value? */
3818 ath_hal_setuptxdesc(ah, ds
3819 , pktlen /* packet length */
3820 , hdrlen /* header length */
3821 , atype /* Atheros packet type */
3822 , ni->ni_txpower /* txpower */
3823 , txrate, try0 /* series 0 rate/tries */
3824 , keyix /* key cache index */
3825 , sc->sc_txantenna /* antenna mode */
3826 , flags /* flags */
3827 , ctsrate /* rts/cts rate */
3828 , ctsduration /* rts/cts duration */
3829 );
3830 bf->bf_flags = flags;
3831 /*
3832 * Setup the multi-rate retry state only when we're
3833 * going to use it. This assumes ath_hal_setuptxdesc
3834 * initializes the descriptors (so we don't have to)
3835 * when the hardware supports multi-rate retry and
3836 * we don't use it.
3837 */
3838 if (ismrr)
3839 ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
3840
3841 /*
3842 * Fillin the remainder of the descriptor info.
3843 */
3844 ds0 = ds;
3845 for (i = 0; i < bf->bf_nseg; i++, ds++) {
3846 ds->ds_data = bf->bf_segs[i].ds_addr;
3847 if (i == bf->bf_nseg - 1)
3848 ds->ds_link = 0;
3849 else
3850 ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
3851 ath_hal_filltxdesc(ah, ds
3852 , bf->bf_segs[i].ds_len /* segment length */
3853 , i == 0 /* first segment */
3854 , i == bf->bf_nseg - 1 /* last segment */
3855 , ds0 /* first descriptor */
3856 );
3857
3858 /* NB: The desc swap function becomes void,
3859 * if descriptor swapping is not enabled
3860 */
3861 ath_desc_swap(ds);
3862
3863 DPRINTF(sc, ATH_DEBUG_XMIT,
3864 "%s: %d: %08x %08x %08x %08x %08x %08x\n",
3865 __func__, i, ds->ds_link, ds->ds_data,
3866 ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
3867 }
3868 /*
3869 * Insert the frame on the outbound list and
3870 * pass it on to the hardware.
3871 */
3872 ATH_TXQ_LOCK(txq);
3873 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
3874 if (txq->axq_link == NULL) {
3875 ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
3876 DPRINTF(sc, ATH_DEBUG_XMIT,
3877 "%s: TXDP[%u] = %" PRIx64 " (%p) depth %d\n", __func__,
3878 txq->axq_qnum, (uint64_t)bf->bf_daddr, bf->bf_desc,
3879 txq->axq_depth);
3880 } else {
3881 *txq->axq_link = HTOAH32(bf->bf_daddr);
3882 DPRINTF(sc, ATH_DEBUG_XMIT,
3883 "%s: link[%u](%p)=%" PRIx64 " (%p) depth %d\n",
3884 __func__, txq->axq_qnum, txq->axq_link,
3885 (uint64_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
3886 }
3887 txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
3888 /*
3889 * The CAB queue is started from the SWBA handler since
3890 * frames only go out on DTIM and to avoid possible races.
3891 */
3892 if (txq != sc->sc_cabq)
3893 ath_hal_txstart(ah, txq->axq_qnum);
3894 ATH_TXQ_UNLOCK(txq);
3895
3896 return 0;
3897 }
3898
3899 /*
3900 * Process completed xmit descriptors from the specified queue.
3901 */
3902 static int
3903 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
3904 {
3905 struct ath_hal *ah = sc->sc_ah;
3906 struct ieee80211com *ic = &sc->sc_ic;
3907 struct ath_buf *bf;
3908 struct ath_desc *ds, *ds0;
3909 struct ieee80211_node *ni;
3910 struct ath_node *an;
3911 int sr, lr, pri, nacked;
3912 HAL_STATUS status;
3913
3914 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
3915 __func__, txq->axq_qnum,
3916 (void *)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3917 txq->axq_link);
3918 nacked = 0;
3919 for (;;) {
3920 ATH_TXQ_LOCK(txq);
3921 txq->axq_intrcnt = 0; /* reset periodic desc intr count */
3922 bf = STAILQ_FIRST(&txq->axq_q);
3923 if (bf == NULL) {
3924 txq->axq_link = NULL;
3925 ATH_TXQ_UNLOCK(txq);
3926 break;
3927 }
3928 ds0 = &bf->bf_desc[0];
3929 ds = &bf->bf_desc[bf->bf_nseg - 1];
3930 status = ath_hal_txprocdesc(ah, ds);
3931 #ifdef AR_DEBUG
3932 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
3933 ath_printtxbuf(bf, status == HAL_OK);
3934 #endif
3935 if (status == HAL_EINPROGRESS) {
3936 ATH_TXQ_UNLOCK(txq);
3937 break;
3938 }
3939 ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3940 ATH_TXQ_UNLOCK(txq);
3941
3942 ni = bf->bf_node;
3943 if (ni != NULL) {
3944 an = ATH_NODE(ni);
3945 if (ds->ds_txstat.ts_status == 0) {
3946 u_int8_t txant = ds->ds_txstat.ts_antenna;
3947 sc->sc_stats.ast_ant_tx[txant]++;
3948 sc->sc_ant_tx[txant]++;
3949 if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
3950 sc->sc_stats.ast_tx_altrate++;
3951 sc->sc_stats.ast_tx_rssi =
3952 ds->ds_txstat.ts_rssi;
3953 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
3954 ds->ds_txstat.ts_rssi);
3955 pri = M_WME_GETAC(bf->bf_m);
3956 if (pri >= WME_AC_VO)
3957 ic->ic_wme.wme_hipri_traffic++;
3958 ni->ni_inact = ni->ni_inact_reload;
3959 } else {
3960 if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
3961 sc->sc_stats.ast_tx_xretries++;
3962 if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
3963 sc->sc_stats.ast_tx_fifoerr++;
3964 if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
3965 sc->sc_stats.ast_tx_filtered++;
3966 }
3967 sr = ds->ds_txstat.ts_shortretry;
3968 lr = ds->ds_txstat.ts_longretry;
3969 sc->sc_stats.ast_tx_shortretry += sr;
3970 sc->sc_stats.ast_tx_longretry += lr;
3971 /*
3972 * Hand the descriptor to the rate control algorithm.
3973 */
3974 if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
3975 (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
3976 /*
3977 * If frame was ack'd update the last rx time
3978 * used to workaround phantom bmiss interrupts.
3979 */
3980 if (ds->ds_txstat.ts_status == 0)
3981 nacked++;
3982 ath_rate_tx_complete(sc, an, ds, ds0);
3983 }
3984 /*
3985 * Reclaim reference to node.
3986 *
3987 * NB: the node may be reclaimed here if, for example
3988 * this is a DEAUTH message that was sent and the
3989 * node was timed out due to inactivity.
3990 */
3991 ieee80211_free_node(ni);
3992 }
3993 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
3994 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3995 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3996 m_freem(bf->bf_m);
3997 bf->bf_m = NULL;
3998 bf->bf_node = NULL;
3999
4000 ATH_TXBUF_LOCK(sc);
4001 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4002 sc->sc_if.if_flags &= ~IFF_OACTIVE;
4003 ATH_TXBUF_UNLOCK(sc);
4004 }
4005 return nacked;
4006 }
4007
4008 static inline int
4009 txqactive(struct ath_hal *ah, int qnum)
4010 {
4011 u_int32_t txqs = 1<<qnum;
4012 ath_hal_gettxintrtxqs(ah, &txqs);
4013 return (txqs & (1<<qnum));
4014 }
4015
4016 /*
4017 * Deferred processing of transmit interrupt; special-cased
4018 * for a single hardware transmit queue (e.g. 5210 and 5211).
4019 */
4020 static void
4021 ath_tx_proc_q0(void *arg, int npending)
4022 {
4023 struct ath_softc *sc = arg;
4024 struct ifnet *ifp = &sc->sc_if;
4025
4026 if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]) > 0){
4027 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4028 }
4029 if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4030 ath_tx_processq(sc, sc->sc_cabq);
4031
4032 if (sc->sc_softled)
4033 ath_led_event(sc, ATH_LED_TX);
4034
4035 ath_start(ifp);
4036 }
4037
4038 /*
4039 * Deferred processing of transmit interrupt; special-cased
4040 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4041 */
4042 static void
4043 ath_tx_proc_q0123(void *arg, int npending)
4044 {
4045 struct ath_softc *sc = arg;
4046 struct ifnet *ifp = &sc->sc_if;
4047 int nacked;
4048
4049 /*
4050 * Process each active queue.
4051 */
4052 nacked = 0;
4053 if (txqactive(sc->sc_ah, 0))
4054 nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
4055 if (txqactive(sc->sc_ah, 1))
4056 nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
4057 if (txqactive(sc->sc_ah, 2))
4058 nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
4059 if (txqactive(sc->sc_ah, 3))
4060 nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
4061 if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4062 ath_tx_processq(sc, sc->sc_cabq);
4063 if (nacked) {
4064 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4065 }
4066
4067 if (sc->sc_softled)
4068 ath_led_event(sc, ATH_LED_TX);
4069
4070 ath_start(ifp);
4071 }
4072
4073 /*
4074 * Deferred processing of transmit interrupt.
4075 */
4076 static void
4077 ath_tx_proc(void *arg, int npending)
4078 {
4079 struct ath_softc *sc = arg;
4080 struct ifnet *ifp = &sc->sc_if;
4081 int i, nacked;
4082
4083 /*
4084 * Process each active queue.
4085 */
4086 nacked = 0;
4087 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4088 if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
4089 nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
4090 if (nacked) {
4091 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4092 }
4093
4094 if (sc->sc_softled)
4095 ath_led_event(sc, ATH_LED_TX);
4096
4097 ath_start(ifp);
4098 }
4099
4100 static void
4101 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
4102 {
4103 struct ath_hal *ah = sc->sc_ah;
4104 struct ieee80211_node *ni;
4105 struct ath_buf *bf;
4106
4107 /*
4108 * NB: this assumes output has been stopped and
4109 * we do not need to block ath_tx_tasklet
4110 */
4111 for (;;) {
4112 ATH_TXQ_LOCK(txq);
4113 bf = STAILQ_FIRST(&txq->axq_q);
4114 if (bf == NULL) {
4115 txq->axq_link = NULL;
4116 ATH_TXQ_UNLOCK(txq);
4117 break;
4118 }
4119 ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4120 ATH_TXQ_UNLOCK(txq);
4121 #ifdef AR_DEBUG
4122 if (sc->sc_debug & ATH_DEBUG_RESET)
4123 ath_printtxbuf(bf,
4124 ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
4125 #endif /* AR_DEBUG */
4126 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4127 m_freem(bf->bf_m);
4128 bf->bf_m = NULL;
4129 ni = bf->bf_node;
4130 bf->bf_node = NULL;
4131 if (ni != NULL) {
4132 /*
4133 * Reclaim node reference.
4134 */
4135 ieee80211_free_node(ni);
4136 }
4137 ATH_TXBUF_LOCK(sc);
4138 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4139 sc->sc_if.if_flags &= ~IFF_OACTIVE;
4140 ATH_TXBUF_UNLOCK(sc);
4141 }
4142 }
4143
4144 static void
4145 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4146 {
4147 struct ath_hal *ah = sc->sc_ah;
4148
4149 (void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4150 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4151 __func__, txq->axq_qnum,
4152 (void *)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4153 txq->axq_link);
4154 }
4155
4156 /*
4157 * Drain the transmit queues and reclaim resources.
4158 */
4159 static void
4160 ath_draintxq(struct ath_softc *sc)
4161 {
4162 struct ath_hal *ah = sc->sc_ah;
4163 int i;
4164
4165 /* XXX return value */
4166 if (device_is_active(&sc->sc_dev)) {
4167 /* don't touch the hardware if marked invalid */
4168 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4169 DPRINTF(sc, ATH_DEBUG_RESET,
4170 "%s: beacon queue %p\n", __func__,
4171 (void *)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
4172 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4173 if (ATH_TXQ_SETUP(sc, i))
4174 ath_tx_stopdma(sc, &sc->sc_txq[i]);
4175 }
4176 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4177 if (ATH_TXQ_SETUP(sc, i))
4178 ath_tx_draintxq(sc, &sc->sc_txq[i]);
4179 }
4180
4181 /*
4182 * Disable the receive h/w in preparation for a reset.
4183 */
4184 static void
4185 ath_stoprecv(struct ath_softc *sc)
4186 {
4187 #define PA2DESC(_sc, _pa) \
4188 ((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
4189 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
4190 struct ath_hal *ah = sc->sc_ah;
4191
4192 ath_hal_stoppcurecv(ah); /* disable PCU */
4193 ath_hal_setrxfilter(ah, 0); /* clear recv filter */
4194 ath_hal_stopdmarecv(ah); /* disable DMA engine */
4195 DELAY(3000); /* 3ms is long enough for 1 frame */
4196 #ifdef AR_DEBUG
4197 if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
4198 struct ath_buf *bf;
4199
4200 printf("%s: rx queue %p, link %p\n", __func__,
4201 (void *)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
4202 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4203 struct ath_desc *ds = bf->bf_desc;
4204 HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
4205 bf->bf_daddr, PA2DESC(sc, ds->ds_link));
4206 if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
4207 ath_printrxbuf(bf, status == HAL_OK);
4208 }
4209 }
4210 #endif
4211 sc->sc_rxlink = NULL; /* just in case */
4212 #undef PA2DESC
4213 }
4214
4215 /*
4216 * Enable the receive h/w following a reset.
4217 */
4218 static int
4219 ath_startrecv(struct ath_softc *sc)
4220 {
4221 struct ath_hal *ah = sc->sc_ah;
4222 struct ath_buf *bf;
4223
4224 sc->sc_rxlink = NULL;
4225 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4226 int error = ath_rxbuf_init(sc, bf);
4227 if (error != 0) {
4228 DPRINTF(sc, ATH_DEBUG_RECV,
4229 "%s: ath_rxbuf_init failed %d\n",
4230 __func__, error);
4231 return error;
4232 }
4233 }
4234
4235 bf = STAILQ_FIRST(&sc->sc_rxbuf);
4236 ath_hal_putrxbuf(ah, bf->bf_daddr);
4237 ath_hal_rxena(ah); /* enable recv descriptors */
4238 ath_mode_init(sc); /* set filters, etc. */
4239 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */
4240 return 0;
4241 }
4242
4243 /*
4244 * Update internal state after a channel change.
4245 */
4246 static void
4247 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4248 {
4249 struct ieee80211com *ic = &sc->sc_ic;
4250 enum ieee80211_phymode mode;
4251 u_int16_t flags;
4252
4253 /*
4254 * Change channels and update the h/w rate map
4255 * if we're switching; e.g. 11a to 11b/g.
4256 */
4257 mode = ieee80211_chan2mode(ic, chan);
4258 if (mode != sc->sc_curmode)
4259 ath_setcurmode(sc, mode);
4260 /*
4261 * Update BPF state. NB: ethereal et. al. don't handle
4262 * merged flags well so pick a unique mode for their use.
4263 */
4264 if (IEEE80211_IS_CHAN_A(chan))
4265 flags = IEEE80211_CHAN_A;
4266 /* XXX 11g schizophrenia */
4267 else if (IEEE80211_IS_CHAN_G(chan) ||
4268 IEEE80211_IS_CHAN_PUREG(chan))
4269 flags = IEEE80211_CHAN_G;
4270 else
4271 flags = IEEE80211_CHAN_B;
4272 if (IEEE80211_IS_CHAN_T(chan))
4273 flags |= IEEE80211_CHAN_TURBO;
4274 sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
4275 htole16(chan->ic_freq);
4276 sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
4277 htole16(flags);
4278 }
4279
4280 /*
4281 * Poll for a channel clear indication; this is required
4282 * for channels requiring DFS and not previously visited
4283 * and/or with a recent radar detection.
4284 */
4285 static void
4286 ath_dfswait(void *arg)
4287 {
4288 struct ath_softc *sc = arg;
4289 struct ath_hal *ah = sc->sc_ah;
4290 HAL_CHANNEL hchan;
4291
4292 ath_hal_radar_wait(ah, &hchan);
4293 if (hchan.privFlags & CHANNEL_INTERFERENCE) {
4294 if_printf(&sc->sc_if,
4295 "channel %u/0x%x/0x%x has interference\n",
4296 hchan.channel, hchan.channelFlags, hchan.privFlags);
4297 return;
4298 }
4299 if ((hchan.privFlags & CHANNEL_DFS) == 0) {
4300 /* XXX should not happen */
4301 return;
4302 }
4303 if (hchan.privFlags & CHANNEL_DFS_CLEAR) {
4304 sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR;
4305 sc->sc_if.if_flags &= ~IFF_OACTIVE;
4306 if_printf(&sc->sc_if,
4307 "channel %u/0x%x/0x%x marked clear\n",
4308 hchan.channel, hchan.channelFlags, hchan.privFlags);
4309 } else
4310 callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc);
4311 }
4312
4313 /*
4314 * Set/change channels. If the channel is really being changed,
4315 * it's done by reseting the chip. To accomplish this we must
4316 * first cleanup any pending DMA, then restart stuff after a la
4317 * ath_init.
4318 */
4319 static int
4320 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4321 {
4322 struct ath_hal *ah = sc->sc_ah;
4323 struct ieee80211com *ic = &sc->sc_ic;
4324 HAL_CHANNEL hchan;
4325
4326 /*
4327 * Convert to a HAL channel description with
4328 * the flags constrained to reflect the current
4329 * operating mode.
4330 */
4331 hchan.channel = chan->ic_freq;
4332 hchan.channelFlags = ath_chan2flags(ic, chan);
4333
4334 DPRINTF(sc, ATH_DEBUG_RESET,
4335 "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
4336 __func__,
4337 ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
4338 sc->sc_curchan.channelFlags),
4339 sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
4340 ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
4341 hchan.channel, hchan.channelFlags);
4342 if (hchan.channel != sc->sc_curchan.channel ||
4343 hchan.channelFlags != sc->sc_curchan.channelFlags) {
4344 HAL_STATUS status;
4345
4346 /*
4347 * To switch channels clear any pending DMA operations;
4348 * wait long enough for the RX fifo to drain, reset the
4349 * hardware at the new frequency, and then re-enable
4350 * the relevant bits of the h/w.
4351 */
4352 ath_hal_intrset(ah, 0); /* disable interrupts */
4353 ath_draintxq(sc); /* clear pending tx frames */
4354 ath_stoprecv(sc); /* turn off frame recv */
4355 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
4356 if_printf(ic->ic_ifp, "%s: unable to reset "
4357 "channel %u (%u MHz, flags 0x%x hal flags 0x%x)\n",
4358 __func__, ieee80211_chan2ieee(ic, chan),
4359 chan->ic_freq, chan->ic_flags, hchan.channelFlags);
4360 return EIO;
4361 }
4362 sc->sc_curchan = hchan;
4363 ath_update_txpow(sc); /* update tx power state */
4364 ath_restore_diversity(sc);
4365 sc->sc_calinterval = 1;
4366 sc->sc_caltries = 0;
4367
4368 /*
4369 * Re-enable rx framework.
4370 */
4371 if (ath_startrecv(sc) != 0) {
4372 if_printf(&sc->sc_if,
4373 "%s: unable to restart recv logic\n", __func__);
4374 return EIO;
4375 }
4376
4377 /*
4378 * Change channels and update the h/w rate map
4379 * if we're switching; e.g. 11a to 11b/g.
4380 */
4381 ic->ic_ibss_chan = chan;
4382 ath_chan_change(sc, chan);
4383
4384 /*
4385 * Handle DFS required waiting period to determine
4386 * if channel is clear of radar traffic.
4387 */
4388 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
4389 #define DFS_AND_NOT_CLEAR(_c) \
4390 (((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS)
4391 if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) {
4392 if_printf(&sc->sc_if,
4393 "wait for DFS clear channel signal\n");
4394 /* XXX stop sndq */
4395 sc->sc_if.if_flags |= IFF_OACTIVE;
4396 callout_reset(&sc->sc_dfs_ch,
4397 2 * hz, ath_dfswait, sc);
4398 } else
4399 callout_stop(&sc->sc_dfs_ch);
4400 #undef DFS_NOT_CLEAR
4401 }
4402
4403 /*
4404 * Re-enable interrupts.
4405 */
4406 ath_hal_intrset(ah, sc->sc_imask);
4407 }
4408 return 0;
4409 }
4410
4411 static void
4412 ath_next_scan(void *arg)
4413 {
4414 struct ath_softc *sc = arg;
4415 struct ieee80211com *ic = &sc->sc_ic;
4416 int s;
4417
4418 /* don't call ath_start w/o network interrupts blocked */
4419 s = splnet();
4420
4421 if (ic->ic_state == IEEE80211_S_SCAN)
4422 ieee80211_next_scan(ic);
4423 splx(s);
4424 }
4425
4426 /*
4427 * Periodically recalibrate the PHY to account
4428 * for temperature/environment changes.
4429 */
4430 static void
4431 ath_calibrate(void *arg)
4432 {
4433 struct ath_softc *sc = arg;
4434 struct ath_hal *ah = sc->sc_ah;
4435 HAL_BOOL iqCalDone;
4436
4437 sc->sc_stats.ast_per_cal++;
4438
4439 ATH_LOCK(sc);
4440
4441 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4442 /*
4443 * Rfgain is out of bounds, reset the chip
4444 * to load new gain values.
4445 */
4446 DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4447 "%s: rfgain change\n", __func__);
4448 sc->sc_stats.ast_per_rfgain++;
4449 ath_reset(&sc->sc_if);
4450 }
4451 if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
4452 DPRINTF(sc, ATH_DEBUG_ANY,
4453 "%s: calibration of channel %u failed\n",
4454 __func__, sc->sc_curchan.channel);
4455 sc->sc_stats.ast_per_calfail++;
4456 }
4457 /*
4458 * Calibrate noise floor data again in case of change.
4459 */
4460 ath_hal_process_noisefloor(ah);
4461 /*
4462 * Poll more frequently when the IQ calibration is in
4463 * progress to speedup loading the final settings.
4464 * We temper this aggressive polling with an exponential
4465 * back off after 4 tries up to ath_calinterval.
4466 */
4467 if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
4468 sc->sc_caltries = 0;
4469 sc->sc_calinterval = ath_calinterval;
4470 } else if (sc->sc_caltries > 4) {
4471 sc->sc_caltries = 0;
4472 sc->sc_calinterval <<= 1;
4473 if (sc->sc_calinterval > ath_calinterval)
4474 sc->sc_calinterval = ath_calinterval;
4475 }
4476 KASSERT(0 < sc->sc_calinterval && sc->sc_calinterval <= ath_calinterval,
4477 ("bad calibration interval %u", sc->sc_calinterval));
4478
4479 DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4480 "%s: next +%u (%siqCalDone tries %u)\n", __func__,
4481 sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
4482 sc->sc_caltries++;
4483 callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4484 ath_calibrate, sc);
4485 ATH_UNLOCK(sc);
4486 }
4487
4488 static int
4489 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
4490 {
4491 struct ifnet *ifp = ic->ic_ifp;
4492 struct ath_softc *sc = ifp->if_softc;
4493 struct ath_hal *ah = sc->sc_ah;
4494 struct ieee80211_node *ni;
4495 int i, error;
4496 const u_int8_t *bssid;
4497 u_int32_t rfilt;
4498 static const HAL_LED_STATE leds[] = {
4499 HAL_LED_INIT, /* IEEE80211_S_INIT */
4500 HAL_LED_SCAN, /* IEEE80211_S_SCAN */
4501 HAL_LED_AUTH, /* IEEE80211_S_AUTH */
4502 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */
4503 HAL_LED_RUN, /* IEEE80211_S_RUN */
4504 };
4505
4506 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4507 ieee80211_state_name[ic->ic_state],
4508 ieee80211_state_name[nstate]);
4509
4510 callout_stop(&sc->sc_scan_ch);
4511 callout_stop(&sc->sc_cal_ch);
4512 callout_stop(&sc->sc_dfs_ch);
4513 ath_hal_setledstate(ah, leds[nstate]); /* set LED */
4514
4515 if (nstate == IEEE80211_S_INIT) {
4516 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4517 /*
4518 * NB: disable interrupts so we don't rx frames.
4519 */
4520 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4521 /*
4522 * Notify the rate control algorithm.
4523 */
4524 ath_rate_newstate(sc, nstate);
4525 goto done;
4526 }
4527 ni = ic->ic_bss;
4528 error = ath_chan_set(sc, ic->ic_curchan);
4529 if (error != 0)
4530 goto bad;
4531 rfilt = ath_calcrxfilter(sc, nstate);
4532 if (nstate == IEEE80211_S_SCAN)
4533 bssid = ifp->if_broadcastaddr;
4534 else
4535 bssid = ni->ni_bssid;
4536 ath_hal_setrxfilter(ah, rfilt);
4537 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
4538 __func__, rfilt, ether_sprintf(bssid));
4539
4540 if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
4541 ath_hal_setassocid(ah, bssid, ni->ni_associd);
4542 else
4543 ath_hal_setassocid(ah, bssid, 0);
4544 if (ic->ic_flags & IEEE80211_F_PRIVACY) {
4545 for (i = 0; i < IEEE80211_WEP_NKID; i++)
4546 if (ath_hal_keyisvalid(ah, i))
4547 ath_hal_keysetmac(ah, i, bssid);
4548 }
4549
4550 /*
4551 * Notify the rate control algorithm so rates
4552 * are setup should ath_beacon_alloc be called.
4553 */
4554 ath_rate_newstate(sc, nstate);
4555
4556 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4557 /* nothing to do */;
4558 } else if (nstate == IEEE80211_S_RUN) {
4559 DPRINTF(sc, ATH_DEBUG_STATE,
4560 "%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
4561 "capinfo=0x%04x chan=%d\n"
4562 , __func__
4563 , ic->ic_flags
4564 , ni->ni_intval
4565 , ether_sprintf(ni->ni_bssid)
4566 , ni->ni_capinfo
4567 , ieee80211_chan2ieee(ic, ic->ic_curchan));
4568
4569 switch (ic->ic_opmode) {
4570 case IEEE80211_M_HOSTAP:
4571 case IEEE80211_M_IBSS:
4572 /*
4573 * Allocate and setup the beacon frame.
4574 *
4575 * Stop any previous beacon DMA. This may be
4576 * necessary, for example, when an ibss merge
4577 * causes reconfiguration; there will be a state
4578 * transition from RUN->RUN that means we may
4579 * be called with beacon transmission active.
4580 */
4581 ath_hal_stoptxdma(ah, sc->sc_bhalq);
4582 ath_beacon_free(sc);
4583 error = ath_beacon_alloc(sc, ni);
4584 if (error != 0)
4585 goto bad;
4586 /*
4587 * If joining an adhoc network defer beacon timer
4588 * configuration to the next beacon frame so we
4589 * have a current TSF to use. Otherwise we're
4590 * starting an ibss/bss so there's no need to delay.
4591 */
4592 if (ic->ic_opmode == IEEE80211_M_IBSS &&
4593 ic->ic_bss->ni_tstamp.tsf != 0)
4594 sc->sc_syncbeacon = 1;
4595 else
4596 ath_beacon_config(sc);
4597 break;
4598 case IEEE80211_M_STA:
4599 /*
4600 * Allocate a key cache slot to the station.
4601 */
4602 if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
4603 sc->sc_hasclrkey &&
4604 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4605 ath_setup_stationkey(ni);
4606 /*
4607 * Defer beacon timer configuration to the next
4608 * beacon frame so we have a current TSF to use
4609 * (any TSF collected when scanning is likely old).
4610 */
4611 sc->sc_syncbeacon = 1;
4612 break;
4613 default:
4614 break;
4615 }
4616 /*
4617 * Let the hal process statistics collected during a
4618 * scan so it can provide calibrated noise floor data.
4619 */
4620 ath_hal_process_noisefloor(ah);
4621 /*
4622 * Reset rssi stats; maybe not the best place...
4623 */
4624 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
4625 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
4626 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
4627 } else {
4628 ath_hal_intrset(ah,
4629 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4630 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4631 }
4632 done:
4633 /*
4634 * Invoke the parent method to complete the work.
4635 */
4636 error = sc->sc_newstate(ic, nstate, arg);
4637 /*
4638 * Finally, start any timers.
4639 */
4640 if (nstate == IEEE80211_S_RUN) {
4641 /* start periodic recalibration timer */
4642 callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4643 ath_calibrate, sc);
4644 } else if (nstate == IEEE80211_S_SCAN) {
4645 /* start ap/neighbor scan timer */
4646 callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
4647 ath_next_scan, sc);
4648 }
4649 bad:
4650 return error;
4651 }
4652
4653 /*
4654 * Allocate a key cache slot to the station so we can
4655 * setup a mapping from key index to node. The key cache
4656 * slot is needed for managing antenna state and for
4657 * compression when stations do not use crypto. We do
4658 * it uniliaterally here; if crypto is employed this slot
4659 * will be reassigned.
4660 */
4661 static void
4662 ath_setup_stationkey(struct ieee80211_node *ni)
4663 {
4664 struct ieee80211com *ic = ni->ni_ic;
4665 struct ath_softc *sc = ic->ic_ifp->if_softc;
4666 ieee80211_keyix keyix, rxkeyix;
4667
4668 if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
4669 /*
4670 * Key cache is full; we'll fall back to doing
4671 * the more expensive lookup in software. Note
4672 * this also means no h/w compression.
4673 */
4674 /* XXX msg+statistic */
4675 } else {
4676 /* XXX locking? */
4677 ni->ni_ucastkey.wk_keyix = keyix;
4678 ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
4679 /* NB: this will create a pass-thru key entry */
4680 ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
4681 }
4682 }
4683
4684 /*
4685 * Setup driver-specific state for a newly associated node.
4686 * Note that we're called also on a re-associate, the isnew
4687 * param tells us if this is the first time or not.
4688 */
4689 static void
4690 ath_newassoc(struct ieee80211_node *ni, int isnew)
4691 {
4692 struct ieee80211com *ic = ni->ni_ic;
4693 struct ath_softc *sc = ic->ic_ifp->if_softc;
4694
4695 ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
4696 if (isnew &&
4697 (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
4698 KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
4699 ("new assoc with a unicast key already setup (keyix %u)",
4700 ni->ni_ucastkey.wk_keyix));
4701 ath_setup_stationkey(ni);
4702 }
4703 }
4704
4705 static int
4706 ath_getchannels(struct ath_softc *sc, u_int cc,
4707 HAL_BOOL outdoor, HAL_BOOL xchanmode)
4708 {
4709 #define COMPAT (CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
4710 struct ieee80211com *ic = &sc->sc_ic;
4711 struct ifnet *ifp = &sc->sc_if;
4712 struct ath_hal *ah = sc->sc_ah;
4713 HAL_CHANNEL *chans;
4714 int i, ix, nchan;
4715
4716 chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
4717 M_TEMP, M_NOWAIT);
4718 if (chans == NULL) {
4719 if_printf(ifp, "unable to allocate channel table\n");
4720 return ENOMEM;
4721 }
4722 if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
4723 NULL, 0, NULL,
4724 cc, HAL_MODE_ALL, outdoor, xchanmode)) {
4725 u_int32_t rd;
4726
4727 (void)ath_hal_getregdomain(ah, &rd);
4728 if_printf(ifp, "unable to collect channel list from hal; "
4729 "regdomain likely %u country code %u\n", rd, cc);
4730 free(chans, M_TEMP);
4731 return EINVAL;
4732 }
4733
4734 /*
4735 * Convert HAL channels to ieee80211 ones and insert
4736 * them in the table according to their channel number.
4737 */
4738 for (i = 0; i < nchan; i++) {
4739 HAL_CHANNEL *c = &chans[i];
4740 u_int16_t flags;
4741
4742 ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags);
4743 if (ix > IEEE80211_CHAN_MAX) {
4744 if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n",
4745 ix, c->channel, c->channelFlags);
4746 continue;
4747 }
4748 if (ix < 0) {
4749 /* XXX can't handle stuff <2400 right now */
4750 if (bootverbose)
4751 if_printf(ifp, "hal channel %d (%u/%x) "
4752 "cannot be handled; ignored\n",
4753 ix, c->channel, c->channelFlags);
4754 continue;
4755 }
4756 /*
4757 * Calculate net80211 flags; most are compatible
4758 * but some need massaging. Note the static turbo
4759 * conversion can be removed once net80211 is updated
4760 * to understand static vs. dynamic turbo.
4761 */
4762 flags = c->channelFlags & COMPAT;
4763 if (c->channelFlags & CHANNEL_STURBO)
4764 flags |= IEEE80211_CHAN_TURBO;
4765 if (ic->ic_channels[ix].ic_freq == 0) {
4766 ic->ic_channels[ix].ic_freq = c->channel;
4767 ic->ic_channels[ix].ic_flags = flags;
4768 } else {
4769 /* channels overlap; e.g. 11g and 11b */
4770 ic->ic_channels[ix].ic_flags |= flags;
4771 }
4772 }
4773 free(chans, M_TEMP);
4774 return 0;
4775 #undef COMPAT
4776 }
4777
4778 static void
4779 ath_led_done(void *arg)
4780 {
4781 struct ath_softc *sc = arg;
4782
4783 sc->sc_blinking = 0;
4784 }
4785
4786 /*
4787 * Turn the LED off: flip the pin and then set a timer so no
4788 * update will happen for the specified duration.
4789 */
4790 static void
4791 ath_led_off(void *arg)
4792 {
4793 struct ath_softc *sc = arg;
4794
4795 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
4796 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
4797 }
4798
4799 /*
4800 * Blink the LED according to the specified on/off times.
4801 */
4802 static void
4803 ath_led_blink(struct ath_softc *sc, int on, int off)
4804 {
4805 DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
4806 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
4807 sc->sc_blinking = 1;
4808 sc->sc_ledoff = off;
4809 callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
4810 }
4811
4812 static void
4813 ath_led_event(struct ath_softc *sc, int event)
4814 {
4815
4816 sc->sc_ledevent = ticks; /* time of last event */
4817 if (sc->sc_blinking) /* don't interrupt active blink */
4818 return;
4819 switch (event) {
4820 case ATH_LED_POLL:
4821 ath_led_blink(sc, sc->sc_hwmap[0].ledon,
4822 sc->sc_hwmap[0].ledoff);
4823 break;
4824 case ATH_LED_TX:
4825 ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
4826 sc->sc_hwmap[sc->sc_txrate].ledoff);
4827 break;
4828 case ATH_LED_RX:
4829 ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
4830 sc->sc_hwmap[sc->sc_rxrate].ledoff);
4831 break;
4832 }
4833 }
4834
4835 static void
4836 ath_update_txpow(struct ath_softc *sc)
4837 {
4838 #define COMPAT (CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
4839 struct ieee80211com *ic = &sc->sc_ic;
4840 struct ath_hal *ah = sc->sc_ah;
4841 u_int32_t txpow;
4842
4843 if (sc->sc_curtxpow != ic->ic_txpowlimit) {
4844 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
4845 /* read back in case value is clamped */
4846 (void)ath_hal_gettxpowlimit(ah, &txpow);
4847 ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
4848 }
4849 /*
4850 * Fetch max tx power level for status requests.
4851 */
4852 (void)ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
4853 ic->ic_bss->ni_txpower = txpow;
4854 }
4855
4856 static void
4857 rate_setup(struct ath_softc *sc,
4858 const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs)
4859 {
4860 int i, maxrates;
4861
4862 if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
4863 DPRINTF(sc, ATH_DEBUG_ANY,
4864 "%s: rate table too small (%u > %u)\n",
4865 __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
4866 maxrates = IEEE80211_RATE_MAXSIZE;
4867 } else
4868 maxrates = rt->rateCount;
4869 for (i = 0; i < maxrates; i++)
4870 rs->rs_rates[i] = rt->info[i].dot11Rate;
4871 rs->rs_nrates = maxrates;
4872 }
4873
4874 static int
4875 ath_rate_setup(struct ath_softc *sc, u_int mode)
4876 {
4877 struct ath_hal *ah = sc->sc_ah;
4878 struct ieee80211com *ic = &sc->sc_ic;
4879 const HAL_RATE_TABLE *rt;
4880
4881 switch (mode) {
4882 case IEEE80211_MODE_11A:
4883 rt = ath_hal_getratetable(ah, HAL_MODE_11A);
4884 break;
4885 case IEEE80211_MODE_11B:
4886 rt = ath_hal_getratetable(ah, HAL_MODE_11B);
4887 break;
4888 case IEEE80211_MODE_11G:
4889 rt = ath_hal_getratetable(ah, HAL_MODE_11G);
4890 break;
4891 case IEEE80211_MODE_TURBO_A:
4892 /* XXX until static/dynamic turbo is fixed */
4893 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
4894 break;
4895 case IEEE80211_MODE_TURBO_G:
4896 rt = ath_hal_getratetable(ah, HAL_MODE_108G);
4897 break;
4898 default:
4899 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
4900 __func__, mode);
4901 return 0;
4902 }
4903 sc->sc_rates[mode] = rt;
4904 if (rt != NULL) {
4905 rate_setup(sc, rt, &ic->ic_sup_rates[mode]);
4906 return 1;
4907 } else
4908 return 0;
4909 }
4910
4911 static void
4912 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
4913 {
4914 #define N(a) (sizeof(a)/sizeof(a[0]))
4915 /* NB: on/off times from the Atheros NDIS driver, w/ permission */
4916 static const struct {
4917 u_int rate; /* tx/rx 802.11 rate */
4918 u_int16_t timeOn; /* LED on time (ms) */
4919 u_int16_t timeOff; /* LED off time (ms) */
4920 } blinkrates[] = {
4921 { 108, 40, 10 },
4922 { 96, 44, 11 },
4923 { 72, 50, 13 },
4924 { 48, 57, 14 },
4925 { 36, 67, 16 },
4926 { 24, 80, 20 },
4927 { 22, 100, 25 },
4928 { 18, 133, 34 },
4929 { 12, 160, 40 },
4930 { 10, 200, 50 },
4931 { 6, 240, 58 },
4932 { 4, 267, 66 },
4933 { 2, 400, 100 },
4934 { 0, 500, 130 },
4935 };
4936 const HAL_RATE_TABLE *rt;
4937 int i, j;
4938
4939 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
4940 rt = sc->sc_rates[mode];
4941 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
4942 for (i = 0; i < rt->rateCount; i++)
4943 sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
4944 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
4945 for (i = 0; i < 32; i++) {
4946 u_int8_t ix = rt->rateCodeToIndex[i];
4947 if (ix == 0xff) {
4948 sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
4949 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
4950 continue;
4951 }
4952 sc->sc_hwmap[i].ieeerate =
4953 rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
4954 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
4955 if (rt->info[ix].shortPreamble ||
4956 rt->info[ix].phy == IEEE80211_T_OFDM)
4957 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
4958 /* NB: receive frames include FCS */
4959 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
4960 IEEE80211_RADIOTAP_F_FCS;
4961 /* setup blink rate table to avoid per-packet lookup */
4962 for (j = 0; j < N(blinkrates)-1; j++)
4963 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
4964 break;
4965 /* NB: this uses the last entry if the rate isn't found */
4966 /* XXX beware of overlow */
4967 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
4968 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
4969 }
4970 sc->sc_currates = rt;
4971 sc->sc_curmode = mode;
4972 /*
4973 * All protection frames are transmited at 2Mb/s for
4974 * 11g, otherwise at 1Mb/s.
4975 */
4976 if (mode == IEEE80211_MODE_11G)
4977 sc->sc_protrix = ath_tx_findrix(rt, 2*2);
4978 else
4979 sc->sc_protrix = ath_tx_findrix(rt, 2*1);
4980 /* rate index used to send management frames */
4981 sc->sc_minrateix = 0;
4982 /*
4983 * Setup multicast rate state.
4984 */
4985 /* XXX layering violation */
4986 sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate);
4987 sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate;
4988 /* NB: caller is responsible for reseting rate control state */
4989 #undef N
4990 }
4991
4992 #ifdef AR_DEBUG
4993 static void
4994 ath_printrxbuf(struct ath_buf *bf, int done)
4995 {
4996 struct ath_desc *ds;
4997 int i;
4998
4999 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5000 printf("R%d (%p %" PRIx64
5001 ") %08x %08x %08x %08x %08x %08x %02x %02x %c\n", i, ds,
5002 (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
5003 ds->ds_link, ds->ds_data,
5004 ds->ds_ctl0, ds->ds_ctl1,
5005 ds->ds_hw[0], ds->ds_hw[1],
5006 ds->ds_rxstat.rs_status, ds->ds_rxstat.rs_keyix,
5007 !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
5008 }
5009 }
5010
5011 static void
5012 ath_printtxbuf(struct ath_buf *bf, int done)
5013 {
5014 struct ath_desc *ds;
5015 int i;
5016
5017 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5018 printf("T%d (%p %" PRIx64
5019 ") %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
5020 i, ds,
5021 (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
5022 ds->ds_link, ds->ds_data,
5023 ds->ds_ctl0, ds->ds_ctl1,
5024 ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
5025 !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
5026 }
5027 }
5028 #endif /* AR_DEBUG */
5029
5030 static void
5031 ath_watchdog(struct ifnet *ifp)
5032 {
5033 struct ath_softc *sc = ifp->if_softc;
5034 struct ieee80211com *ic = &sc->sc_ic;
5035 struct ath_txq *axq;
5036 int i;
5037
5038 ifp->if_timer = 0;
5039 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
5040 !device_is_active(&sc->sc_dev))
5041 return;
5042 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5043 if (!ATH_TXQ_SETUP(sc, i))
5044 continue;
5045 axq = &sc->sc_txq[i];
5046 ATH_TXQ_LOCK(axq);
5047 if (axq->axq_timer == 0)
5048 ;
5049 else if (--axq->axq_timer == 0) {
5050 ATH_TXQ_UNLOCK(axq);
5051 if_printf(ifp, "device timeout (txq %d)\n", i);
5052 ath_reset(ifp);
5053 ifp->if_oerrors++;
5054 sc->sc_stats.ast_watchdog++;
5055 break;
5056 } else
5057 ifp->if_timer = 1;
5058 ATH_TXQ_UNLOCK(axq);
5059 }
5060 ieee80211_watchdog(ic);
5061 }
5062
5063 /*
5064 * Diagnostic interface to the HAL. This is used by various
5065 * tools to do things like retrieve register contents for
5066 * debugging. The mechanism is intentionally opaque so that
5067 * it can change frequently w/o concern for compatiblity.
5068 */
5069 static int
5070 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
5071 {
5072 struct ath_hal *ah = sc->sc_ah;
5073 u_int id = ad->ad_id & ATH_DIAG_ID;
5074 void *indata = NULL;
5075 void *outdata = NULL;
5076 u_int32_t insize = ad->ad_in_size;
5077 u_int32_t outsize = ad->ad_out_size;
5078 int error = 0;
5079
5080 if (ad->ad_id & ATH_DIAG_IN) {
5081 /*
5082 * Copy in data.
5083 */
5084 indata = malloc(insize, M_TEMP, M_NOWAIT);
5085 if (indata == NULL) {
5086 error = ENOMEM;
5087 goto bad;
5088 }
5089 error = copyin(ad->ad_in_data, indata, insize);
5090 if (error)
5091 goto bad;
5092 }
5093 if (ad->ad_id & ATH_DIAG_DYN) {
5094 /*
5095 * Allocate a buffer for the results (otherwise the HAL
5096 * returns a pointer to a buffer where we can read the
5097 * results). Note that we depend on the HAL leaving this
5098 * pointer for us to use below in reclaiming the buffer;
5099 * may want to be more defensive.
5100 */
5101 outdata = malloc(outsize, M_TEMP, M_NOWAIT);
5102 if (outdata == NULL) {
5103 error = ENOMEM;
5104 goto bad;
5105 }
5106 }
5107 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
5108 if (outsize < ad->ad_out_size)
5109 ad->ad_out_size = outsize;
5110 if (outdata != NULL)
5111 error = copyout(outdata, ad->ad_out_data,
5112 ad->ad_out_size);
5113 } else {
5114 error = EINVAL;
5115 }
5116 bad:
5117 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
5118 free(indata, M_TEMP);
5119 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
5120 free(outdata, M_TEMP);
5121 return error;
5122 }
5123
5124 static int
5125 ath_ioctl(struct ifnet *ifp, u_long cmd, void *data)
5126 {
5127 #define IS_RUNNING(ifp) \
5128 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
5129 struct ath_softc *sc = ifp->if_softc;
5130 struct ieee80211com *ic = &sc->sc_ic;
5131 struct ifreq *ifr = (struct ifreq *)data;
5132 int error = 0;
5133
5134 ATH_LOCK(sc);
5135 switch (cmd) {
5136 case SIOCSIFFLAGS:
5137 if (IS_RUNNING(ifp)) {
5138 /*
5139 * To avoid rescanning another access point,
5140 * do not call ath_init() here. Instead,
5141 * only reflect promisc mode settings.
5142 */
5143 ath_mode_init(sc);
5144 } else if (ifp->if_flags & IFF_UP) {
5145 /*
5146 * Beware of being called during attach/detach
5147 * to reset promiscuous mode. In that case we
5148 * will still be marked UP but not RUNNING.
5149 * However trying to re-init the interface
5150 * is the wrong thing to do as we've already
5151 * torn down much of our state. There's
5152 * probably a better way to deal with this.
5153 */
5154 error = ath_init(sc);
5155 } else if (device_is_active(&sc->sc_dev))
5156 ath_stop_locked(ifp, 1);
5157 break;
5158 case SIOCADDMULTI:
5159 case SIOCDELMULTI:
5160 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
5161 if (ifp->if_flags & IFF_RUNNING)
5162 ath_mode_init(sc);
5163 error = 0;
5164 }
5165 break;
5166 case SIOCGATHSTATS:
5167 /* NB: embed these numbers to get a consistent view */
5168 sc->sc_stats.ast_tx_packets = ifp->if_opackets;
5169 sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
5170 sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
5171 ATH_UNLOCK(sc);
5172 /*
5173 * NB: Drop the softc lock in case of a page fault;
5174 * we'll accept any potential inconsisentcy in the
5175 * statistics. The alternative is to copy the data
5176 * to a local structure.
5177 */
5178 return copyout(&sc->sc_stats,
5179 ifr->ifr_data, sizeof (sc->sc_stats));
5180 case SIOCGATHDIAG:
5181 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
5182 break;
5183 default:
5184 error = ieee80211_ioctl(ic, cmd, data);
5185 if (error != ENETRESET)
5186 ;
5187 else if (IS_RUNNING(ifp) &&
5188 ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
5189 error = ath_init(sc);
5190 else
5191 error = 0;
5192 break;
5193 }
5194 ATH_UNLOCK(sc);
5195 return error;
5196 #undef IS_RUNNING
5197 }
5198
5199 #if NBPFILTER > 0
5200 static void
5201 ath_bpfattach(struct ath_softc *sc)
5202 {
5203 struct ifnet *ifp = &sc->sc_if;
5204
5205 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
5206 sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
5207 &sc->sc_drvbpf);
5208 /*
5209 * Initialize constant fields.
5210 * XXX make header lengths a multiple of 32-bits so subsequent
5211 * headers are properly aligned; this is a kludge to keep
5212 * certain applications happy.
5213 *
5214 * NB: the channel is setup each time we transition to the
5215 * RUN state to avoid filling it in for each frame.
5216 */
5217 sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
5218 sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
5219 sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
5220
5221 sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
5222 sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
5223 sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
5224 }
5225 #endif
5226
5227 /*
5228 * Announce various information on device/driver attach.
5229 */
5230 static void
5231 ath_announce(struct ath_softc *sc)
5232 {
5233 #define HAL_MODE_DUALBAND (HAL_MODE_11A|HAL_MODE_11B)
5234 struct ifnet *ifp = &sc->sc_if;
5235 struct ath_hal *ah = sc->sc_ah;
5236 u_int modes, cc;
5237
5238 if_printf(ifp, "mac %d.%d phy %d.%d",
5239 ah->ah_macVersion, ah->ah_macRev,
5240 ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
5241 /*
5242 * Print radio revision(s). We check the wireless modes
5243 * to avoid falsely printing revs for inoperable parts.
5244 * Dual-band radio revs are returned in the 5 GHz rev number.
5245 */
5246 ath_hal_getcountrycode(ah, &cc);
5247 modes = ath_hal_getwirelessmodes(ah, cc);
5248 if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
5249 if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
5250 printf(" 5 GHz radio %d.%d 2 GHz radio %d.%d",
5251 ah->ah_analog5GhzRev >> 4,
5252 ah->ah_analog5GhzRev & 0xf,
5253 ah->ah_analog2GhzRev >> 4,
5254 ah->ah_analog2GhzRev & 0xf);
5255 else
5256 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5257 ah->ah_analog5GhzRev & 0xf);
5258 } else
5259 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5260 ah->ah_analog5GhzRev & 0xf);
5261 printf("\n");
5262 if (bootverbose) {
5263 int i;
5264 for (i = 0; i <= WME_AC_VO; i++) {
5265 struct ath_txq *txq = sc->sc_ac2q[i];
5266 if_printf(ifp, "Use hw queue %u for %s traffic\n",
5267 txq->axq_qnum, ieee80211_wme_acnames[i]);
5268 }
5269 if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5270 sc->sc_cabq->axq_qnum);
5271 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5272 }
5273 if (ath_rxbuf != ATH_RXBUF)
5274 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
5275 if (ath_txbuf != ATH_TXBUF)
5276 if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
5277 #undef HAL_MODE_DUALBAND
5278 }
5279