ath.c revision 1.55 1 /* $NetBSD: ath.c,v 1.55 2005/07/26 22:52:48 dyoung Exp $ */
2
3 /*-
4 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15 * redistribution must be conditioned upon including a substantially
16 * similar Disclaimer requirement for further binary redistribution.
17 * 3. Neither the names of the above-listed copyright holders nor the names
18 * of any contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * Alternatively, this software may be distributed under the terms of the
22 * GNU General Public License ("GPL") version 2 as published by the Free
23 * Software Foundation.
24 *
25 * NO WARRANTY
26 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
28 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
29 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
30 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
31 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
34 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
36 * THE POSSIBILITY OF SUCH DAMAGES.
37 */
38
39 #include <sys/cdefs.h>
40 #ifdef __FreeBSD__
41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.94 2005/07/07 00:04:50 sam Exp $");
42 #endif
43 #ifdef __NetBSD__
44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.55 2005/07/26 22:52:48 dyoung Exp $");
45 #endif
46
47 /*
48 * Driver for the Atheros Wireless LAN controller.
49 *
50 * This software is derived from work of Atsushi Onoe; his contribution
51 * is greatly appreciated.
52 */
53
54 #include "opt_inet.h"
55
56 #ifdef __NetBSD__
57 #include "bpfilter.h"
58 #endif /* __NetBSD__ */
59
60 #include <sys/param.h>
61 #include <sys/reboot.h>
62 #include <sys/systm.h>
63 #include <sys/types.h>
64 #include <sys/sysctl.h>
65 #include <sys/mbuf.h>
66 #include <sys/malloc.h>
67 #include <sys/lock.h>
68 #include <sys/kernel.h>
69 #include <sys/socket.h>
70 #include <sys/sockio.h>
71 #include <sys/errno.h>
72 #include <sys/callout.h>
73 #include <machine/bus.h>
74 #include <sys/endian.h>
75
76 #include <machine/bus.h>
77
78 #include <net/if.h>
79 #include <net/if_dl.h>
80 #include <net/if_media.h>
81 #include <net/if_types.h>
82 #include <net/if_arp.h>
83 #include <net/if_ether.h>
84 #include <net/if_llc.h>
85
86 #include <net80211/ieee80211_netbsd.h>
87 #include <net80211/ieee80211_var.h>
88
89 #if NBPFILTER > 0
90 #include <net/bpf.h>
91 #endif
92
93 #ifdef INET
94 #include <netinet/in.h>
95 #endif
96
97 #include <sys/device.h>
98 #include <dev/ic/ath_netbsd.h>
99
100 #define AR_DEBUG
101 #include <dev/ic/athvar.h>
102 #include <contrib/dev/ic/athhal_desc.h>
103 #include <contrib/dev/ic/athhal_devid.h> /* XXX for softled */
104
105 /* unaligned little endian access */
106 #define LE_READ_2(p) \
107 ((u_int16_t) \
108 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8)))
109 #define LE_READ_4(p) \
110 ((u_int32_t) \
111 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \
112 (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
113
114 enum {
115 ATH_LED_TX,
116 ATH_LED_RX,
117 ATH_LED_POLL,
118 };
119
120 static int ath_ifinit(struct ifnet *);
121 static int ath_init(struct ath_softc *);
122 static void ath_stop_locked(struct ifnet *, int);
123 static void ath_stop(struct ifnet *, int);
124 static void ath_start(struct ifnet *);
125 static int ath_media_change(struct ifnet *);
126 static void ath_watchdog(struct ifnet *);
127 static int ath_ioctl(struct ifnet *, u_long, caddr_t);
128 static void ath_fatal_proc(void *, int);
129 static void ath_rxorn_proc(void *, int);
130 static void ath_bmiss_proc(void *, int);
131 static int ath_key_alloc(struct ieee80211com *,
132 const struct ieee80211_key *);
133 static int ath_key_delete(struct ieee80211com *,
134 const struct ieee80211_key *);
135 static int ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
136 const u_int8_t mac[IEEE80211_ADDR_LEN]);
137 static void ath_key_update_begin(struct ieee80211com *);
138 static void ath_key_update_end(struct ieee80211com *);
139 static void ath_mode_init(struct ath_softc *);
140 static void ath_setslottime(struct ath_softc *);
141 static void ath_updateslot(struct ifnet *);
142 static int ath_beaconq_setup(struct ath_hal *);
143 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
144 static void ath_beacon_setup(struct ath_softc *, struct ath_buf *);
145 static void ath_beacon_proc(void *, int);
146 static void ath_bstuck_proc(void *, int);
147 static void ath_beacon_free(struct ath_softc *);
148 static void ath_beacon_config(struct ath_softc *);
149 static void ath_descdma_cleanup(struct ath_softc *sc,
150 struct ath_descdma *, ath_bufhead *);
151 static int ath_desc_alloc(struct ath_softc *);
152 static void ath_desc_free(struct ath_softc *);
153 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
154 static void ath_node_free(struct ieee80211_node *);
155 static u_int8_t ath_node_getrssi(const struct ieee80211_node *);
156 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
157 static void ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
158 struct ieee80211_node *ni,
159 int subtype, int rssi, u_int32_t rstamp);
160 static void ath_setdefantenna(struct ath_softc *, u_int);
161 static void ath_rx_proc(void *, int);
162 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
163 static int ath_tx_setup(struct ath_softc *, int, int);
164 static int ath_wme_update(struct ieee80211com *);
165 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
166 static void ath_tx_cleanup(struct ath_softc *);
167 static int ath_tx_start(struct ath_softc *, struct ieee80211_node *,
168 struct ath_buf *, struct mbuf *);
169 static void ath_tx_proc_q0(void *, int);
170 static void ath_tx_proc_q0123(void *, int);
171 static void ath_tx_proc(void *, int);
172 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
173 static void ath_draintxq(struct ath_softc *);
174 static void ath_stoprecv(struct ath_softc *);
175 static int ath_startrecv(struct ath_softc *);
176 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
177 static void ath_next_scan(void *);
178 static void ath_calibrate(void *);
179 static int ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
180 static void ath_setup_stationkey(struct ieee80211_node *);
181 static void ath_newassoc(struct ieee80211com *,
182 struct ieee80211_node *, int);
183 static int ath_getchannels(struct ath_softc *, u_int cc,
184 HAL_BOOL outdoor, HAL_BOOL xchanmode);
185 static void ath_led_event(struct ath_softc *, int);
186 static void ath_update_txpow(struct ath_softc *);
187
188 static int ath_rate_setup(struct ath_softc *, u_int mode);
189 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
190
191 #ifdef __NetBSD__
192 int ath_enable(struct ath_softc *);
193 void ath_disable(struct ath_softc *);
194 void ath_power(int, void *);
195 #endif
196
197 static void ath_bpfattach(struct ath_softc *);
198 static void ath_announce(struct ath_softc *);
199
200 int ath_dwelltime = 200; /* 5 channels/second */
201 int ath_calinterval = 30; /* calibrate every 30 secs */
202 int ath_outdoor = AH_TRUE; /* outdoor operation */
203 int ath_xchanmode = AH_TRUE; /* enable extended channels */
204 int ath_countrycode = CTRY_DEFAULT; /* country code */
205 int ath_regdomain = 0; /* regulatory domain */
206 int ath_debug = 0;
207
208 #ifdef AR_DEBUG
209 enum {
210 ATH_DEBUG_XMIT = 0x00000001, /* basic xmit operation */
211 ATH_DEBUG_XMIT_DESC = 0x00000002, /* xmit descriptors */
212 ATH_DEBUG_RECV = 0x00000004, /* basic recv operation */
213 ATH_DEBUG_RECV_DESC = 0x00000008, /* recv descriptors */
214 ATH_DEBUG_RATE = 0x00000010, /* rate control */
215 ATH_DEBUG_RESET = 0x00000020, /* reset processing */
216 ATH_DEBUG_MODE = 0x00000040, /* mode init/setup */
217 ATH_DEBUG_BEACON = 0x00000080, /* beacon handling */
218 ATH_DEBUG_WATCHDOG = 0x00000100, /* watchdog timeout */
219 ATH_DEBUG_INTR = 0x00001000, /* ISR */
220 ATH_DEBUG_TX_PROC = 0x00002000, /* tx ISR proc */
221 ATH_DEBUG_RX_PROC = 0x00004000, /* rx ISR proc */
222 ATH_DEBUG_BEACON_PROC = 0x00008000, /* beacon ISR proc */
223 ATH_DEBUG_CALIBRATE = 0x00010000, /* periodic calibration */
224 ATH_DEBUG_KEYCACHE = 0x00020000, /* key cache management */
225 ATH_DEBUG_STATE = 0x00040000, /* 802.11 state transitions */
226 ATH_DEBUG_NODE = 0x00080000, /* node management */
227 ATH_DEBUG_LED = 0x00100000, /* led management */
228 ATH_DEBUG_FATAL = 0x80000000, /* fatal errors */
229 ATH_DEBUG_ANY = 0xffffffff
230 };
231 #define IFF_DUMPPKTS(sc, m) \
232 ((sc->sc_debug & (m)) || \
233 (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
234 #define DPRINTF(sc, m, fmt, ...) do { \
235 if (sc->sc_debug & (m)) \
236 printf(fmt, __VA_ARGS__); \
237 } while (0)
238 #define KEYPRINTF(sc, ix, hk, mac) do { \
239 if (sc->sc_debug & ATH_DEBUG_KEYCACHE) \
240 ath_keyprint(__func__, ix, hk, mac); \
241 } while (0)
242 static void ath_printrxbuf(struct ath_buf *bf, int);
243 static void ath_printtxbuf(struct ath_buf *bf, int);
244 #else
245 #define IFF_DUMPPKTS(sc, m) \
246 ((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
247 #define DPRINTF(m, fmt, ...)
248 #define KEYPRINTF(sc, k, ix, mac)
249 #endif
250
251 #ifdef __NetBSD__
252 int
253 ath_activate(struct device *self, enum devact act)
254 {
255 struct ath_softc *sc = (struct ath_softc *)self;
256 int rv = 0, s;
257
258 s = splnet();
259 switch (act) {
260 case DVACT_ACTIVATE:
261 rv = EOPNOTSUPP;
262 break;
263 case DVACT_DEACTIVATE:
264 if_deactivate(&sc->sc_if);
265 break;
266 }
267 splx(s);
268 return rv;
269 }
270
271 int
272 ath_enable(struct ath_softc *sc)
273 {
274 if (ATH_IS_ENABLED(sc) == 0) {
275 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
276 printf("%s: device enable failed\n",
277 sc->sc_dev.dv_xname);
278 return (EIO);
279 }
280 sc->sc_flags |= ATH_ENABLED;
281 }
282 return (0);
283 }
284
285 void
286 ath_disable(struct ath_softc *sc)
287 {
288 if (!ATH_IS_ENABLED(sc))
289 return;
290 if (sc->sc_disable != NULL)
291 (*sc->sc_disable)(sc);
292 sc->sc_flags &= ~ATH_ENABLED;
293 }
294 #endif /* __NetBSD__ */
295
296 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
297
298 int
299 ath_attach(u_int16_t devid, struct ath_softc *sc)
300 {
301 struct ifnet *ifp = &sc->sc_if;
302 struct ieee80211com *ic = &sc->sc_ic;
303 struct ath_hal *ah = NULL;
304 HAL_STATUS status;
305 int error = 0, i;
306
307 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
308
309 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
310
311 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
312 if (ah == NULL) {
313 if_printf(ifp, "unable to attach hardware; HAL status %u\n",
314 status);
315 error = ENXIO;
316 goto bad;
317 }
318 if (ah->ah_abi != HAL_ABI_VERSION) {
319 if_printf(ifp, "HAL ABI mismatch detected "
320 "(HAL:0x%x != driver:0x%x)\n",
321 ah->ah_abi, HAL_ABI_VERSION);
322 error = ENXIO;
323 goto bad;
324 }
325 sc->sc_ah = ah;
326 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */
327
328 /*
329 * Check if the MAC has multi-rate retry support.
330 * We do this by trying to setup a fake extended
331 * descriptor. MAC's that don't have support will
332 * return false w/o doing anything. MAC's that do
333 * support it will return true w/o doing anything.
334 */
335 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
336
337 /*
338 * Check if the device has hardware counters for PHY
339 * errors. If so we need to enable the MIB interrupt
340 * so we can act on stat triggers.
341 */
342 if (ath_hal_hwphycounters(ah))
343 sc->sc_needmib = 1;
344
345 /*
346 * Get the hardware key cache size.
347 */
348 sc->sc_keymax = ath_hal_keycachesize(ah);
349 if (sc->sc_keymax > ATH_KEYMAX) {
350 if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
351 ATH_KEYMAX, sc->sc_keymax);
352 sc->sc_keymax = ATH_KEYMAX;
353 }
354 /*
355 * Reset the key cache since some parts do not
356 * reset the contents on initial power up.
357 */
358 for (i = 0; i < sc->sc_keymax; i++)
359 ath_hal_keyreset(ah, i);
360 /*
361 * Mark key cache slots associated with global keys
362 * as in use. If we knew TKIP was not to be used we
363 * could leave the +32, +64, and +32+64 slots free.
364 * XXX only for splitmic.
365 */
366 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
367 setbit(sc->sc_keymap, i);
368 setbit(sc->sc_keymap, i+32);
369 setbit(sc->sc_keymap, i+64);
370 setbit(sc->sc_keymap, i+32+64);
371 }
372
373 /*
374 * Collect the channel list using the default country
375 * code and including outdoor channels. The 802.11 layer
376 * is resposible for filtering this list based on settings
377 * like the phy mode.
378 */
379 error = ath_getchannels(sc, ath_countrycode,
380 ath_outdoor, ath_xchanmode);
381 if (error != 0)
382 goto bad;
383 /*
384 * Setup dynamic sysctl's now that country code and
385 * regdomain are available from the hal.
386 */
387 ath_sysctlattach(sc);
388
389 /*
390 * Setup rate tables for all potential media types.
391 */
392 ath_rate_setup(sc, IEEE80211_MODE_11A);
393 ath_rate_setup(sc, IEEE80211_MODE_11B);
394 ath_rate_setup(sc, IEEE80211_MODE_11G);
395 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
396 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
397 /* NB: setup here so ath_rate_update is happy */
398 ath_setcurmode(sc, IEEE80211_MODE_11A);
399
400 /*
401 * Allocate tx+rx descriptors and populate the lists.
402 */
403 error = ath_desc_alloc(sc);
404 if (error != 0) {
405 if_printf(ifp, "failed to allocate descriptors: %d\n", error);
406 goto bad;
407 }
408 ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
409 ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE);
410
411 ATH_TXBUF_LOCK_INIT(sc);
412
413 TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
414 TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
415 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
416 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
417 TASK_INIT(&sc->sc_bstucktask, 0, ath_bstuck_proc, sc);
418
419 /*
420 * Allocate hardware transmit queues: one queue for
421 * beacon frames and one data queue for each QoS
422 * priority. Note that the hal handles reseting
423 * these queues at the needed time.
424 *
425 * XXX PS-Poll
426 */
427 sc->sc_bhalq = ath_beaconq_setup(ah);
428 if (sc->sc_bhalq == (u_int) -1) {
429 if_printf(ifp, "unable to setup a beacon xmit queue!\n");
430 error = EIO;
431 goto bad2;
432 }
433 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
434 if (sc->sc_cabq == NULL) {
435 if_printf(ifp, "unable to setup CAB xmit queue!\n");
436 error = EIO;
437 goto bad2;
438 }
439 /* NB: insure BK queue is the lowest priority h/w queue */
440 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
441 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
442 ieee80211_wme_acnames[WME_AC_BK]);
443 error = EIO;
444 goto bad2;
445 }
446 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
447 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
448 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
449 /*
450 * Not enough hardware tx queues to properly do WME;
451 * just punt and assign them all to the same h/w queue.
452 * We could do a better job of this if, for example,
453 * we allocate queues when we switch from station to
454 * AP mode.
455 */
456 if (sc->sc_ac2q[WME_AC_VI] != NULL)
457 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
458 if (sc->sc_ac2q[WME_AC_BE] != NULL)
459 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
460 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
461 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
462 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
463 }
464
465 /*
466 * Special case certain configurations. Note the
467 * CAB queue is handled by these specially so don't
468 * include them when checking the txq setup mask.
469 */
470 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
471 case 0x01:
472 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
473 break;
474 case 0x0f:
475 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
476 break;
477 default:
478 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
479 break;
480 }
481
482 /*
483 * Setup rate control. Some rate control modules
484 * call back to change the anntena state so expose
485 * the necessary entry points.
486 * XXX maybe belongs in struct ath_ratectrl?
487 */
488 sc->sc_setdefantenna = ath_setdefantenna;
489 sc->sc_rc = ath_rate_attach(sc);
490 if (sc->sc_rc == NULL) {
491 error = EIO;
492 goto bad2;
493 }
494
495 sc->sc_blinking = 0;
496 sc->sc_ledstate = 1;
497 sc->sc_ledon = 0; /* low true */
498 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */
499 ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE);
500 /*
501 * Auto-enable soft led processing for IBM cards and for
502 * 5211 minipci cards. Users can also manually enable/disable
503 * support with a sysctl.
504 */
505 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
506 if (sc->sc_softled) {
507 ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
508 ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
509 }
510
511 ifp->if_softc = sc;
512 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
513 ifp->if_start = ath_start;
514 ifp->if_watchdog = ath_watchdog;
515 ifp->if_ioctl = ath_ioctl;
516 ifp->if_init = ath_ifinit;
517 IFQ_SET_READY(&ifp->if_snd);
518
519 ic->ic_ifp = ifp;
520 ic->ic_reset = ath_reset;
521 ic->ic_newassoc = ath_newassoc;
522 ic->ic_updateslot = ath_updateslot;
523 ic->ic_wme.wme_update = ath_wme_update;
524 /* XXX not right but it's not used anywhere important */
525 ic->ic_phytype = IEEE80211_T_OFDM;
526 ic->ic_opmode = IEEE80211_M_STA;
527 ic->ic_caps =
528 IEEE80211_C_IBSS /* ibss, nee adhoc, mode */
529 | IEEE80211_C_HOSTAP /* hostap mode */
530 | IEEE80211_C_MONITOR /* monitor mode */
531 | IEEE80211_C_SHPREAMBLE /* short preamble supported */
532 | IEEE80211_C_SHSLOT /* short slot time supported */
533 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */
534 ;
535 /*
536 * Query the hal to figure out h/w crypto support.
537 */
538 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
539 ic->ic_caps |= IEEE80211_C_WEP;
540 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
541 ic->ic_caps |= IEEE80211_C_AES;
542 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
543 ic->ic_caps |= IEEE80211_C_AES_CCM;
544 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
545 ic->ic_caps |= IEEE80211_C_CKIP;
546 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
547 ic->ic_caps |= IEEE80211_C_TKIP;
548 /*
549 * Check if h/w does the MIC and/or whether the
550 * separate key cache entries are required to
551 * handle both tx+rx MIC keys.
552 */
553 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
554 ic->ic_caps |= IEEE80211_C_TKIPMIC;
555 if (ath_hal_tkipsplit(ah))
556 sc->sc_splitmic = 1;
557 }
558 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
559 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
560 /*
561 * TPC support can be done either with a global cap or
562 * per-packet support. The latter is not available on
563 * all parts. We're a bit pedantic here as all parts
564 * support a global cap.
565 */
566 sc->sc_hastpc = ath_hal_hastpc(ah);
567 if (sc->sc_hastpc || ath_hal_hastxpowlimit(ah))
568 ic->ic_caps |= IEEE80211_C_TXPMGT;
569
570 /*
571 * Mark WME capability only if we have sufficient
572 * hardware queues to do proper priority scheduling.
573 */
574 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
575 ic->ic_caps |= IEEE80211_C_WME;
576 /*
577 * Check for misc other capabilities.
578 */
579 if (ath_hal_hasbursting(ah))
580 ic->ic_caps |= IEEE80211_C_BURST;
581
582 /*
583 * Indicate we need the 802.11 header padded to a
584 * 32-bit boundary for 4-address and QoS frames.
585 */
586 ic->ic_flags |= IEEE80211_F_DATAPAD;
587
588 /*
589 * Query the hal about antenna support.
590 */
591 if (ath_hal_hasdiversity(ah)) {
592 sc->sc_hasdiversity = 1;
593 sc->sc_diversity = ath_hal_getdiversity(ah);
594 }
595 sc->sc_defant = ath_hal_getdefantenna(ah);
596
597 /*
598 * Not all chips have the VEOL support we want to
599 * use with IBSS beacons; check here for it.
600 */
601 sc->sc_hasveol = ath_hal_hasveol(ah);
602
603 /* get mac address from hardware */
604 ath_hal_getmac(ah, ic->ic_myaddr);
605
606 if_attach(ifp);
607 /* call MI attach routine. */
608 ieee80211_ifattach(ic);
609 /* override default methods */
610 ic->ic_node_alloc = ath_node_alloc;
611 sc->sc_node_free = ic->ic_node_free;
612 ic->ic_node_free = ath_node_free;
613 ic->ic_node_getrssi = ath_node_getrssi;
614 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
615 ic->ic_recv_mgmt = ath_recv_mgmt;
616 sc->sc_newstate = ic->ic_newstate;
617 ic->ic_newstate = ath_newstate;
618 ic->ic_crypto.cs_key_alloc = ath_key_alloc;
619 ic->ic_crypto.cs_key_delete = ath_key_delete;
620 ic->ic_crypto.cs_key_set = ath_key_set;
621 ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
622 ic->ic_crypto.cs_key_update_end = ath_key_update_end;
623 /* complete initialization */
624 ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
625
626 ath_bpfattach(sc);
627
628 #ifdef __NetBSD__
629 sc->sc_flags |= ATH_ATTACHED;
630 /*
631 * Make sure the interface is shutdown during reboot.
632 */
633 sc->sc_sdhook = shutdownhook_establish(ath_shutdown, sc);
634 if (sc->sc_sdhook == NULL)
635 printf("%s: WARNING: unable to establish shutdown hook\n",
636 sc->sc_dev.dv_xname);
637 sc->sc_powerhook = powerhook_establish(ath_power, sc);
638 if (sc->sc_powerhook == NULL)
639 printf("%s: WARNING: unable to establish power hook\n",
640 sc->sc_dev.dv_xname);
641 #endif
642 ieee80211_announce(ic);
643 ath_announce(sc);
644 return 0;
645 bad2:
646 ath_tx_cleanup(sc);
647 ath_desc_free(sc);
648 bad:
649 if (ah)
650 ath_hal_detach(ah);
651 sc->sc_invalid = 1;
652 return error;
653 }
654
655 int
656 ath_detach(struct ath_softc *sc)
657 {
658 struct ifnet *ifp = &sc->sc_if;
659 int s;
660
661 if ((sc->sc_flags & ATH_ATTACHED) == 0)
662 return (0);
663
664 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
665 __func__, ifp->if_flags);
666
667 s = splnet();
668 ath_stop(ifp, 1);
669 #if NBPFILTER > 0
670 bpfdetach(ifp);
671 #endif
672 /*
673 * NB: the order of these is important:
674 * o call the 802.11 layer before detaching the hal to
675 * insure callbacks into the driver to delete global
676 * key cache entries can be handled
677 * o reclaim the tx queue data structures after calling
678 * the 802.11 layer as we'll get called back to reclaim
679 * node state and potentially want to use them
680 * o to cleanup the tx queues the hal is called, so detach
681 * it last
682 * Other than that, it's straightforward...
683 */
684 ieee80211_ifdetach(&sc->sc_ic);
685 ath_rate_detach(sc->sc_rc);
686 ath_desc_free(sc);
687 ath_tx_cleanup(sc);
688 sysctl_teardown(&sc->sc_sysctllog);
689 ath_hal_detach(sc->sc_ah);
690 if_detach(ifp);
691 splx(s);
692 powerhook_disestablish(sc->sc_powerhook);
693 shutdownhook_disestablish(sc->sc_sdhook);
694
695 return 0;
696 }
697
698 #ifdef __NetBSD__
699 void
700 ath_power(int why, void *arg)
701 {
702 struct ath_softc *sc = arg;
703 int s;
704
705 DPRINTF(sc, ATH_DEBUG_ANY, "ath_power(%d)\n", why);
706
707 s = splnet();
708 switch (why) {
709 case PWR_SUSPEND:
710 case PWR_STANDBY:
711 ath_suspend(sc, why);
712 break;
713 case PWR_RESUME:
714 ath_resume(sc, why);
715 break;
716 case PWR_SOFTSUSPEND:
717 case PWR_SOFTSTANDBY:
718 case PWR_SOFTRESUME:
719 break;
720 }
721 splx(s);
722 }
723 #endif
724
725 void
726 ath_suspend(struct ath_softc *sc, int why)
727 {
728 struct ifnet *ifp = &sc->sc_if;
729
730 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
731 __func__, ifp->if_flags);
732
733 ath_stop(ifp, 1);
734 if (sc->sc_power != NULL)
735 (*sc->sc_power)(sc, why);
736 }
737
738 void
739 ath_resume(struct ath_softc *sc, int why)
740 {
741 struct ifnet *ifp = &sc->sc_if;
742
743 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
744 __func__, ifp->if_flags);
745
746 if (ifp->if_flags & IFF_UP) {
747 ath_init(sc);
748 #if 0
749 (void)ath_intr(sc);
750 #endif
751 if (sc->sc_power != NULL)
752 (*sc->sc_power)(sc, why);
753 if (ifp->if_flags & IFF_RUNNING)
754 ath_start(ifp);
755 }
756 if (sc->sc_softled) {
757 ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
758 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
759 }
760 }
761
762 void
763 ath_shutdown(void *arg)
764 {
765 struct ath_softc *sc = arg;
766
767 ath_stop(&sc->sc_if, 1);
768 }
769
770 /*
771 * Interrupt handler. Most of the actual processing is deferred.
772 */
773 int
774 ath_intr(void *arg)
775 {
776 struct ath_softc *sc = arg;
777 struct ifnet *ifp = &sc->sc_if;
778 struct ath_hal *ah = sc->sc_ah;
779 HAL_INT status;
780
781 if (sc->sc_invalid) {
782 /*
783 * The hardware is not ready/present, don't touch anything.
784 * Note this can happen early on if the IRQ is shared.
785 */
786 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
787 return 0;
788 }
789 if (!ath_hal_intrpend(ah)) /* shared irq, not for us */
790 return 0;
791 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
792 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
793 __func__, ifp->if_flags);
794 ath_hal_getisr(ah, &status); /* clear ISR */
795 ath_hal_intrset(ah, 0); /* disable further intr's */
796 return 1; /* XXX */
797 }
798 /*
799 * Figure out the reason(s) for the interrupt. Note
800 * that the hal returns a pseudo-ISR that may include
801 * bits we haven't explicitly enabled so we mask the
802 * value to insure we only process bits we requested.
803 */
804 ath_hal_getisr(ah, &status); /* NB: clears ISR too */
805 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
806 status &= sc->sc_imask; /* discard unasked for bits */
807 if (status & HAL_INT_FATAL) {
808 /*
809 * Fatal errors are unrecoverable. Typically
810 * these are caused by DMA errors. Unfortunately
811 * the exact reason is not (presently) returned
812 * by the hal.
813 */
814 sc->sc_stats.ast_hardware++;
815 ath_hal_intrset(ah, 0); /* disable intr's until reset */
816 TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
817 } else if (status & HAL_INT_RXORN) {
818 sc->sc_stats.ast_rxorn++;
819 ath_hal_intrset(ah, 0); /* disable intr's until reset */
820 TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
821 } else {
822 if (status & HAL_INT_SWBA) {
823 /*
824 * Software beacon alert--time to send a beacon.
825 * Handle beacon transmission directly; deferring
826 * this is too slow to meet timing constraints
827 * under load.
828 */
829 ath_beacon_proc(sc, 0);
830 }
831 if (status & HAL_INT_RXEOL) {
832 /*
833 * NB: the hardware should re-read the link when
834 * RXE bit is written, but it doesn't work at
835 * least on older hardware revs.
836 */
837 sc->sc_stats.ast_rxeol++;
838 sc->sc_rxlink = NULL;
839 }
840 if (status & HAL_INT_TXURN) {
841 sc->sc_stats.ast_txurn++;
842 /* bump tx trigger level */
843 ath_hal_updatetxtriglevel(ah, AH_TRUE);
844 }
845 if (status & HAL_INT_RX)
846 TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
847 if (status & HAL_INT_TX)
848 TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
849 if (status & HAL_INT_BMISS) {
850 sc->sc_stats.ast_bmiss++;
851 TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
852 }
853 if (status & HAL_INT_MIB) {
854 sc->sc_stats.ast_mib++;
855 /*
856 * Disable interrupts until we service the MIB
857 * interrupt; otherwise it will continue to fire.
858 */
859 ath_hal_intrset(ah, 0);
860 /*
861 * Let the hal handle the event. We assume it will
862 * clear whatever condition caused the interrupt.
863 */
864 ath_hal_mibevent(ah,
865 &ATH_NODE(sc->sc_ic.ic_bss)->an_halstats);
866 ath_hal_intrset(ah, sc->sc_imask);
867 }
868 }
869 return 1;
870 }
871
872 static void
873 ath_fatal_proc(void *arg, int pending)
874 {
875 struct ath_softc *sc = arg;
876 struct ifnet *ifp = &sc->sc_if;
877
878 if_printf(ifp, "hardware error; resetting\n");
879 ath_reset(ifp);
880 }
881
882 static void
883 ath_rxorn_proc(void *arg, int pending)
884 {
885 struct ath_softc *sc = arg;
886 struct ifnet *ifp = &sc->sc_if;
887
888 if_printf(ifp, "rx FIFO overrun; resetting\n");
889 ath_reset(ifp);
890 }
891
892 static void
893 ath_bmiss_proc(void *arg, int pending)
894 {
895 struct ath_softc *sc = arg;
896 struct ieee80211com *ic = &sc->sc_ic;
897
898 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
899 KASSERT(ic->ic_opmode == IEEE80211_M_STA,
900 ("unexpect operating mode %u", ic->ic_opmode));
901 if (ic->ic_state == IEEE80211_S_RUN) {
902 /*
903 * Rather than go directly to scan state, try to
904 * reassociate first. If that fails then the state
905 * machine will drop us into scanning after timing
906 * out waiting for a probe response.
907 */
908 NET_LOCK_GIANT();
909 ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1);
910 NET_UNLOCK_GIANT();
911 }
912 }
913
914 static u_int
915 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
916 {
917 #define N(a) (sizeof(a) / sizeof(a[0]))
918 static const u_int modeflags[] = {
919 0, /* IEEE80211_MODE_AUTO */
920 CHANNEL_A, /* IEEE80211_MODE_11A */
921 CHANNEL_B, /* IEEE80211_MODE_11B */
922 CHANNEL_PUREG, /* IEEE80211_MODE_11G */
923 0, /* IEEE80211_MODE_FH */
924 CHANNEL_T, /* IEEE80211_MODE_TURBO_A */
925 CHANNEL_108G /* IEEE80211_MODE_TURBO_G */
926 };
927 enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
928
929 KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
930 KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
931 return modeflags[mode];
932 #undef N
933 }
934
935 static int
936 ath_ifinit(struct ifnet *ifp)
937 {
938 struct ath_softc *sc = (struct ath_softc *)ifp->if_softc;
939
940 return ath_init(sc);
941 }
942
943 static int
944 ath_init(struct ath_softc *sc)
945 {
946 struct ifnet *ifp = &sc->sc_if;
947 struct ieee80211com *ic = &sc->sc_ic;
948 struct ieee80211_node *ni;
949 struct ath_hal *ah = sc->sc_ah;
950 HAL_STATUS status;
951 int error = 0;
952
953 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
954 __func__, ifp->if_flags);
955
956 ATH_LOCK(sc);
957
958 if ((error = ath_enable(sc)) != 0)
959 return error;
960
961 /*
962 * Stop anything previously setup. This is safe
963 * whether this is the first time through or not.
964 */
965 ath_stop_locked(ifp, 0);
966
967 /*
968 * The basic interface to setting the hardware in a good
969 * state is ``reset''. On return the hardware is known to
970 * be powered up and with interrupts disabled. This must
971 * be followed by initialization of the appropriate bits
972 * and then setup of the interrupt mask.
973 */
974 sc->sc_curchan.channel = ic->ic_ibss_chan->ic_freq;
975 sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_ibss_chan);
976 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
977 if_printf(ifp, "unable to reset hardware; hal status %u\n",
978 status);
979 error = EIO;
980 goto done;
981 }
982
983 /*
984 * This is needed only to setup initial state
985 * but it's best done after a reset.
986 */
987 ath_update_txpow(sc);
988
989 /*
990 * Setup the hardware after reset: the key cache
991 * is filled as needed and the receive engine is
992 * set going. Frame transmit is handled entirely
993 * in the frame output path; there's nothing to do
994 * here except setup the interrupt mask.
995 */
996 if ((error = ath_startrecv(sc)) != 0) {
997 if_printf(ifp, "unable to start recv logic\n");
998 goto done;
999 }
1000
1001 /*
1002 * Enable interrupts.
1003 */
1004 sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1005 | HAL_INT_RXEOL | HAL_INT_RXORN
1006 | HAL_INT_FATAL | HAL_INT_GLOBAL;
1007 /*
1008 * Enable MIB interrupts when there are hardware phy counters.
1009 * Note we only do this (at the moment) for station mode.
1010 */
1011 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1012 sc->sc_imask |= HAL_INT_MIB;
1013 ath_hal_intrset(ah, sc->sc_imask);
1014
1015 ifp->if_flags |= IFF_RUNNING;
1016 ic->ic_state = IEEE80211_S_INIT;
1017
1018 /*
1019 * The hardware should be ready to go now so it's safe
1020 * to kick the 802.11 state machine as it's likely to
1021 * immediately call back to us to send mgmt frames.
1022 */
1023 ni = ic->ic_bss;
1024 ni->ni_chan = ic->ic_ibss_chan;
1025 ath_chan_change(sc, ni->ni_chan);
1026 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1027 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
1028 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1029 } else
1030 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1031 done:
1032 ATH_UNLOCK(sc);
1033 return error;
1034 }
1035
1036 static void
1037 ath_stop_locked(struct ifnet *ifp, int disable)
1038 {
1039 struct ath_softc *sc = ifp->if_softc;
1040 struct ieee80211com *ic = &sc->sc_ic;
1041 struct ath_hal *ah = sc->sc_ah;
1042
1043 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1044 __func__, sc->sc_invalid, ifp->if_flags);
1045
1046 ATH_LOCK_ASSERT(sc);
1047 if (ifp->if_flags & IFF_RUNNING) {
1048 /*
1049 * Shutdown the hardware and driver:
1050 * reset 802.11 state machine
1051 * turn off timers
1052 * disable interrupts
1053 * turn off the radio
1054 * clear transmit machinery
1055 * clear receive machinery
1056 * drain and release tx queues
1057 * reclaim beacon resources
1058 * power down hardware
1059 *
1060 * Note that some of this work is not possible if the
1061 * hardware is gone (invalid).
1062 */
1063 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1064 ifp->if_flags &= ~IFF_RUNNING;
1065 ifp->if_timer = 0;
1066 if (!sc->sc_invalid) {
1067 if (sc->sc_softled) {
1068 callout_stop(&sc->sc_ledtimer);
1069 ath_hal_gpioset(ah, sc->sc_ledpin,
1070 !sc->sc_ledon);
1071 sc->sc_blinking = 0;
1072 }
1073 ath_hal_intrset(ah, 0);
1074 }
1075 ath_draintxq(sc);
1076 if (!sc->sc_invalid) {
1077 ath_stoprecv(sc);
1078 ath_hal_phydisable(ah);
1079 } else
1080 sc->sc_rxlink = NULL;
1081 IF_PURGE(&ifp->if_snd);
1082 ath_beacon_free(sc);
1083 if (disable)
1084 ath_disable(sc);
1085 }
1086 }
1087
1088 static void
1089 ath_stop(struct ifnet *ifp, int disable)
1090 {
1091 struct ath_softc *sc = ifp->if_softc;
1092
1093 ATH_LOCK(sc);
1094 ath_stop_locked(ifp, disable);
1095 if (!sc->sc_invalid) {
1096 /*
1097 * Set the chip in full sleep mode. Note that we are
1098 * careful to do this only when bringing the interface
1099 * completely to a stop. When the chip is in this state
1100 * it must be carefully woken up or references to
1101 * registers in the PCI clock domain may freeze the bus
1102 * (and system). This varies by chip and is mostly an
1103 * issue with newer parts that go to sleep more quickly.
1104 */
1105 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP, 0);
1106 }
1107 ATH_UNLOCK(sc);
1108 }
1109
1110 /*
1111 * Reset the hardware w/o losing operational state. This is
1112 * basically a more efficient way of doing ath_stop, ath_init,
1113 * followed by state transitions to the current 802.11
1114 * operational state. Used to recover from various errors and
1115 * to reset or reload hardware state.
1116 */
1117 int
1118 ath_reset(struct ifnet *ifp)
1119 {
1120 struct ath_softc *sc = ifp->if_softc;
1121 struct ieee80211com *ic = &sc->sc_ic;
1122 struct ath_hal *ah = sc->sc_ah;
1123 struct ieee80211_channel *c;
1124 HAL_STATUS status;
1125
1126 /*
1127 * Convert to a HAL channel description with the flags
1128 * constrained to reflect the current operating mode.
1129 */
1130 c = ic->ic_ibss_chan;
1131 sc->sc_curchan.channel = c->ic_freq;
1132 sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
1133
1134 ath_hal_intrset(ah, 0); /* disable interrupts */
1135 ath_draintxq(sc); /* stop xmit side */
1136 ath_stoprecv(sc); /* stop recv side */
1137 /* NB: indicate channel change so we do a full reset */
1138 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
1139 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1140 __func__, status);
1141 ath_update_txpow(sc); /* update tx power state */
1142 if (ath_startrecv(sc) != 0) /* restart recv */
1143 if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1144 /*
1145 * We may be doing a reset in response to an ioctl
1146 * that changes the channel so update any state that
1147 * might change as a result.
1148 */
1149 ath_chan_change(sc, c);
1150 if (ic->ic_state == IEEE80211_S_RUN)
1151 ath_beacon_config(sc); /* restart beacons */
1152 ath_hal_intrset(ah, sc->sc_imask);
1153
1154 ath_start(ifp); /* restart xmit */
1155 return 0;
1156 }
1157
1158 static void
1159 ath_start(struct ifnet *ifp)
1160 {
1161 struct ath_softc *sc = ifp->if_softc;
1162 struct ath_hal *ah = sc->sc_ah;
1163 struct ieee80211com *ic = &sc->sc_ic;
1164 struct ieee80211_node *ni;
1165 struct ath_buf *bf;
1166 struct mbuf *m;
1167 struct ieee80211_frame *wh;
1168 struct ether_header *eh;
1169
1170 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
1171 return;
1172 for (;;) {
1173 /*
1174 * Grab a TX buffer and associated resources.
1175 */
1176 ATH_TXBUF_LOCK(sc);
1177 bf = STAILQ_FIRST(&sc->sc_txbuf);
1178 if (bf != NULL)
1179 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1180 ATH_TXBUF_UNLOCK(sc);
1181 if (bf == NULL) {
1182 DPRINTF(sc, ATH_DEBUG_ANY, "%s: out of xmit buffers\n",
1183 __func__);
1184 sc->sc_stats.ast_tx_qstop++;
1185 ifp->if_flags |= IFF_OACTIVE;
1186 break;
1187 }
1188 /*
1189 * Poll the management queue for frames; they
1190 * have priority over normal data frames.
1191 */
1192 IF_DEQUEUE(&ic->ic_mgtq, m);
1193 if (m == NULL) {
1194 /*
1195 * No data frames go out unless we're associated.
1196 */
1197 if (ic->ic_state != IEEE80211_S_RUN) {
1198 DPRINTF(sc, ATH_DEBUG_ANY,
1199 "%s: ignore data packet, state %u\n",
1200 __func__, ic->ic_state);
1201 sc->sc_stats.ast_tx_discard++;
1202 ATH_TXBUF_LOCK(sc);
1203 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1204 ATH_TXBUF_UNLOCK(sc);
1205 break;
1206 }
1207 IFQ_DEQUEUE(&ifp->if_snd, m); /* XXX: LOCK */
1208 if (m == NULL) {
1209 ATH_TXBUF_LOCK(sc);
1210 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1211 ATH_TXBUF_UNLOCK(sc);
1212 break;
1213 }
1214 /*
1215 * Find the node for the destination so we can do
1216 * things like power save and fast frames aggregation.
1217 */
1218 if (m->m_len < sizeof(struct ether_header) &&
1219 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
1220 ic->ic_stats.is_tx_nobuf++; /* XXX */
1221 ni = NULL;
1222 goto bad;
1223 }
1224 eh = mtod(m, struct ether_header *);
1225 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1226 if (ni == NULL) {
1227 /* NB: ieee80211_find_txnode does stat+msg */
1228 m_freem(m);
1229 goto bad;
1230 }
1231 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1232 (m->m_flags & M_PWR_SAV) == 0) {
1233 /*
1234 * Station in power save mode; pass the frame
1235 * to the 802.11 layer and continue. We'll get
1236 * the frame back when the time is right.
1237 */
1238 ieee80211_pwrsave(ic, ni, m);
1239 goto reclaim;
1240 }
1241 /* calculate priority so we can find the tx queue */
1242 if (ieee80211_classify(ic, m, ni)) {
1243 DPRINTF(sc, ATH_DEBUG_XMIT,
1244 "%s: discard, classification failure\n",
1245 __func__);
1246 m_freem(m);
1247 goto bad;
1248 }
1249 ifp->if_opackets++;
1250
1251 #if NBPFILTER > 0
1252 if (ifp->if_bpf)
1253 bpf_mtap(ifp->if_bpf, m);
1254 #endif
1255 /*
1256 * Encapsulate the packet in prep for transmission.
1257 */
1258 m = ieee80211_encap(ic, m, ni);
1259 if (m == NULL) {
1260 DPRINTF(sc, ATH_DEBUG_ANY,
1261 "%s: encapsulation failure\n",
1262 __func__);
1263 sc->sc_stats.ast_tx_encap++;
1264 goto bad;
1265 }
1266 } else {
1267 /*
1268 * Hack! The referenced node pointer is in the
1269 * rcvif field of the packet header. This is
1270 * placed there by ieee80211_mgmt_output because
1271 * we need to hold the reference with the frame
1272 * and there's no other way (other than packet
1273 * tags which we consider too expensive to use)
1274 * to pass it along.
1275 */
1276 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1277 m->m_pkthdr.rcvif = NULL;
1278
1279 wh = mtod(m, struct ieee80211_frame *);
1280 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1281 IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1282 /* fill time stamp */
1283 u_int64_t tsf;
1284 u_int32_t *tstamp;
1285
1286 tsf = ath_hal_gettsf64(ah);
1287 /* XXX: adjust 100us delay to xmit */
1288 tsf += 100;
1289 tstamp = (u_int32_t *)&wh[1];
1290 tstamp[0] = htole32(tsf & 0xffffffff);
1291 tstamp[1] = htole32(tsf >> 32);
1292 }
1293 sc->sc_stats.ast_tx_mgmt++;
1294 }
1295
1296 if (ath_tx_start(sc, ni, bf, m)) {
1297 bad:
1298 ifp->if_oerrors++;
1299 reclaim:
1300 ATH_TXBUF_LOCK(sc);
1301 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1302 ATH_TXBUF_UNLOCK(sc);
1303 if (ni != NULL)
1304 ieee80211_free_node(ni);
1305 continue;
1306 }
1307
1308 sc->sc_tx_timer = 5;
1309 ifp->if_timer = 1;
1310 }
1311 }
1312
1313 static int
1314 ath_media_change(struct ifnet *ifp)
1315 {
1316 #define IS_UP(ifp) \
1317 ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP))
1318 int error;
1319
1320 error = ieee80211_media_change(ifp);
1321 if (error == ENETRESET) {
1322 if (IS_UP(ifp))
1323 ath_init(ifp->if_softc); /* XXX lose error */
1324 error = 0;
1325 }
1326 return error;
1327 #undef IS_UP
1328 }
1329
1330 #ifdef AR_DEBUG
1331 static void
1332 ath_keyprint(const char *tag, u_int ix,
1333 const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1334 {
1335 static const char *ciphers[] = {
1336 "WEP",
1337 "AES-OCB",
1338 "AES-CCM",
1339 "CKIP",
1340 "TKIP",
1341 "CLR",
1342 };
1343 int i, n;
1344
1345 printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1346 for (i = 0, n = hk->kv_len; i < n; i++)
1347 printf("%02x", hk->kv_val[i]);
1348 printf(" mac %s", ether_sprintf(mac));
1349 if (hk->kv_type == HAL_CIPHER_TKIP) {
1350 printf(" mic ");
1351 for (i = 0; i < sizeof(hk->kv_mic); i++)
1352 printf("%02x", hk->kv_mic[i]);
1353 }
1354 printf("\n");
1355 }
1356 #endif
1357
1358 /*
1359 * Set a TKIP key into the hardware. This handles the
1360 * potential distribution of key state to multiple key
1361 * cache slots for TKIP.
1362 */
1363 static int
1364 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1365 HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1366 {
1367 #define IEEE80211_KEY_XR (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1368 static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1369 struct ath_hal *ah = sc->sc_ah;
1370
1371 KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1372 ("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1373 KASSERT(sc->sc_splitmic, ("key cache !split"));
1374 if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1375 /*
1376 * TX key goes at first index, RX key at +32.
1377 * The hal handles the MIC keys at index+64.
1378 */
1379 memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1380 KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1381 if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
1382 return 0;
1383
1384 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1385 KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1386 /* XXX delete tx key on failure? */
1387 return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
1388 } else if (k->wk_flags & IEEE80211_KEY_XR) {
1389 /*
1390 * TX/RX key goes at first index.
1391 * The hal handles the MIC keys are index+64.
1392 */
1393 memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
1394 k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
1395 KEYPRINTF(sc, k->wk_keyix, hk, mac);
1396 return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1397 }
1398 return 0;
1399 #undef IEEE80211_KEY_XR
1400 }
1401
1402 /*
1403 * Set a net80211 key into the hardware. This handles the
1404 * potential distribution of key state to multiple key
1405 * cache slots for TKIP with hardware MIC support.
1406 */
1407 static int
1408 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1409 const u_int8_t mac0[IEEE80211_ADDR_LEN],
1410 struct ieee80211_node *bss)
1411 {
1412 #define N(a) (sizeof(a)/sizeof(a[0]))
1413 static const u_int8_t ciphermap[] = {
1414 HAL_CIPHER_WEP, /* IEEE80211_CIPHER_WEP */
1415 HAL_CIPHER_TKIP, /* IEEE80211_CIPHER_TKIP */
1416 HAL_CIPHER_AES_OCB, /* IEEE80211_CIPHER_AES_OCB */
1417 HAL_CIPHER_AES_CCM, /* IEEE80211_CIPHER_AES_CCM */
1418 (u_int8_t) -1, /* 4 is not allocated */
1419 HAL_CIPHER_CKIP, /* IEEE80211_CIPHER_CKIP */
1420 HAL_CIPHER_CLR, /* IEEE80211_CIPHER_NONE */
1421 };
1422 struct ath_hal *ah = sc->sc_ah;
1423 const struct ieee80211_cipher *cip = k->wk_cipher;
1424 u_int8_t gmac[IEEE80211_ADDR_LEN];
1425 const u_int8_t *mac;
1426 HAL_KEYVAL hk;
1427
1428 memset(&hk, 0, sizeof(hk));
1429 /*
1430 * Software crypto uses a "clear key" so non-crypto
1431 * state kept in the key cache are maintained and
1432 * so that rx frames have an entry to match.
1433 */
1434 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1435 KASSERT(cip->ic_cipher < N(ciphermap),
1436 ("invalid cipher type %u", cip->ic_cipher));
1437 hk.kv_type = ciphermap[cip->ic_cipher];
1438 hk.kv_len = k->wk_keylen;
1439 memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1440 } else
1441 hk.kv_type = HAL_CIPHER_CLR;
1442
1443 if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
1444 /*
1445 * Group keys on hardware that supports multicast frame
1446 * key search use a mac that is the sender's address with
1447 * the high bit set instead of the app-specified address.
1448 */
1449 IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
1450 gmac[0] |= 0x80;
1451 mac = gmac;
1452 } else
1453 mac = mac0;
1454
1455 if (hk.kv_type == HAL_CIPHER_TKIP &&
1456 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1457 sc->sc_splitmic) {
1458 return ath_keyset_tkip(sc, k, &hk, mac);
1459 } else {
1460 KEYPRINTF(sc, k->wk_keyix, &hk, mac);
1461 return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
1462 }
1463 #undef N
1464 }
1465
1466 /*
1467 * Allocate tx/rx key slots for TKIP. We allocate two slots for
1468 * each key, one for decrypt/encrypt and the other for the MIC.
1469 */
1470 static u_int16_t
1471 key_alloc_2pair(struct ath_softc *sc)
1472 {
1473 #define N(a) (sizeof(a)/sizeof(a[0]))
1474 u_int i, keyix;
1475
1476 KASSERT(sc->sc_splitmic, ("key cache !split"));
1477 /* XXX could optimize */
1478 for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1479 u_int8_t b = sc->sc_keymap[i];
1480 if (b != 0xff) {
1481 /*
1482 * One or more slots in this byte are free.
1483 */
1484 keyix = i*NBBY;
1485 while (b & 1) {
1486 again:
1487 keyix++;
1488 b >>= 1;
1489 }
1490 /* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1491 if (isset(sc->sc_keymap, keyix+32) ||
1492 isset(sc->sc_keymap, keyix+64) ||
1493 isset(sc->sc_keymap, keyix+32+64)) {
1494 /* full pair unavailable */
1495 /* XXX statistic */
1496 if (keyix == (i+1)*NBBY) {
1497 /* no slots were appropriate, advance */
1498 continue;
1499 }
1500 goto again;
1501 }
1502 setbit(sc->sc_keymap, keyix);
1503 setbit(sc->sc_keymap, keyix+64);
1504 setbit(sc->sc_keymap, keyix+32);
1505 setbit(sc->sc_keymap, keyix+32+64);
1506 DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1507 "%s: key pair %u,%u %u,%u\n",
1508 __func__, keyix, keyix+64,
1509 keyix+32, keyix+32+64);
1510 return keyix;
1511 }
1512 }
1513 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1514 return IEEE80211_KEYIX_NONE;
1515 #undef N
1516 }
1517
1518 /*
1519 * Allocate a single key cache slot.
1520 */
1521 static u_int16_t
1522 key_alloc_single(struct ath_softc *sc)
1523 {
1524 #define N(a) (sizeof(a)/sizeof(a[0]))
1525 u_int i, keyix;
1526
1527 /* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
1528 for (i = 0; i < N(sc->sc_keymap); i++) {
1529 u_int8_t b = sc->sc_keymap[i];
1530 if (b != 0xff) {
1531 /*
1532 * One or more slots are free.
1533 */
1534 keyix = i*NBBY;
1535 while (b & 1)
1536 keyix++, b >>= 1;
1537 setbit(sc->sc_keymap, keyix);
1538 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
1539 __func__, keyix);
1540 return keyix;
1541 }
1542 }
1543 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
1544 return IEEE80211_KEYIX_NONE;
1545 #undef N
1546 }
1547
1548 /*
1549 * Allocate one or more key cache slots for a uniacst key. The
1550 * key itself is needed only to identify the cipher. For hardware
1551 * TKIP with split cipher+MIC keys we allocate two key cache slot
1552 * pairs so that we can setup separate TX and RX MIC keys. Note
1553 * that the MIC key for a TKIP key at slot i is assumed by the
1554 * hardware to be at slot i+64. This limits TKIP keys to the first
1555 * 64 entries.
1556 */
1557 static int
1558 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k)
1559 {
1560 struct ath_softc *sc = ic->ic_ifp->if_softc;
1561
1562 /*
1563 * Group key allocation must be handled specially for
1564 * parts that do not support multicast key cache search
1565 * functionality. For those parts the key id must match
1566 * the h/w key index so lookups find the right key. On
1567 * parts w/ the key search facility we install the sender's
1568 * mac address (with the high bit set) and let the hardware
1569 * find the key w/o using the key id. This is preferred as
1570 * it permits us to support multiple users for adhoc and/or
1571 * multi-station operation.
1572 */
1573 if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
1574 u_int keyix;
1575
1576 if (!(&ic->ic_nw_keys[0] <= k &&
1577 k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
1578 /* should not happen */
1579 DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1580 "%s: bogus group key\n", __func__);
1581 return IEEE80211_KEYIX_NONE;
1582 }
1583 keyix = k - ic->ic_nw_keys;
1584 /*
1585 * XXX we pre-allocate the global keys so
1586 * have no way to check if they've already been allocated.
1587 */
1588 return keyix;
1589 }
1590
1591 /*
1592 * We allocate two pair for TKIP when using the h/w to do
1593 * the MIC. For everything else, including software crypto,
1594 * we allocate a single entry. Note that s/w crypto requires
1595 * a pass-through slot on the 5211 and 5212. The 5210 does
1596 * not support pass-through cache entries and we map all
1597 * those requests to slot 0.
1598 */
1599 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1600 return key_alloc_single(sc);
1601 } else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
1602 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
1603 return key_alloc_2pair(sc);
1604 } else {
1605 return key_alloc_single(sc);
1606 }
1607 }
1608
1609 /*
1610 * Delete an entry in the key cache allocated by ath_key_alloc.
1611 */
1612 static int
1613 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
1614 {
1615 struct ath_softc *sc = ic->ic_ifp->if_softc;
1616 struct ath_hal *ah = sc->sc_ah;
1617 const struct ieee80211_cipher *cip = k->wk_cipher;
1618 struct ieee80211_node *ni;
1619 u_int keyix = k->wk_keyix;
1620
1621 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
1622
1623 ath_hal_keyreset(ah, keyix);
1624 /*
1625 * Check the key->node map and flush any ref.
1626 */
1627 ni = sc->sc_keyixmap[keyix];
1628 if (ni != NULL) {
1629 ieee80211_free_node(ni);
1630 sc->sc_keyixmap[keyix] = NULL;
1631 }
1632 /*
1633 * Handle split tx/rx keying required for TKIP with h/w MIC.
1634 */
1635 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1636 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
1637 ath_hal_keyreset(ah, keyix+32); /* RX key */
1638 ni = sc->sc_keyixmap[keyix+32];
1639 if (ni != NULL) { /* as above... */
1640 ieee80211_free_node(ni);
1641 sc->sc_keyixmap[keyix+32] = NULL;
1642 }
1643 }
1644 if (keyix >= IEEE80211_WEP_NKID) {
1645 /*
1646 * Don't touch keymap entries for global keys so
1647 * they are never considered for dynamic allocation.
1648 */
1649 clrbit(sc->sc_keymap, keyix);
1650 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1651 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1652 sc->sc_splitmic) {
1653 clrbit(sc->sc_keymap, keyix+64); /* TX key MIC */
1654 clrbit(sc->sc_keymap, keyix+32); /* RX key */
1655 clrbit(sc->sc_keymap, keyix+32+64); /* RX key MIC */
1656 }
1657 }
1658 return 1;
1659 }
1660
1661 /*
1662 * Set the key cache contents for the specified key. Key cache
1663 * slot(s) must already have been allocated by ath_key_alloc.
1664 */
1665 static int
1666 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
1667 const u_int8_t mac[IEEE80211_ADDR_LEN])
1668 {
1669 struct ath_softc *sc = ic->ic_ifp->if_softc;
1670
1671 return ath_keyset(sc, k, mac, ic->ic_bss);
1672 }
1673
1674 /*
1675 * Block/unblock tx+rx processing while a key change is done.
1676 * We assume the caller serializes key management operations
1677 * so we only need to worry about synchronization with other
1678 * uses that originate in the driver.
1679 */
1680 static void
1681 ath_key_update_begin(struct ieee80211com *ic)
1682 {
1683 struct ifnet *ifp = ic->ic_ifp;
1684 struct ath_softc *sc = ifp->if_softc;
1685
1686 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1687 #if 0
1688 tasklet_disable(&sc->sc_rxtq);
1689 #endif
1690 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */
1691 }
1692
1693 static void
1694 ath_key_update_end(struct ieee80211com *ic)
1695 {
1696 struct ifnet *ifp = ic->ic_ifp;
1697 struct ath_softc *sc = ifp->if_softc;
1698
1699 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1700 IF_UNLOCK(&ifp->if_snd);
1701 #if 0
1702 tasklet_enable(&sc->sc_rxtq);
1703 #endif
1704 }
1705
1706 /*
1707 * Calculate the receive filter according to the
1708 * operating mode and state:
1709 *
1710 * o always accept unicast, broadcast, and multicast traffic
1711 * o maintain current state of phy error reception (the hal
1712 * may enable phy error frames for noise immunity work)
1713 * o probe request frames are accepted only when operating in
1714 * hostap, adhoc, or monitor modes
1715 * o enable promiscuous mode according to the interface state
1716 * o accept beacons:
1717 * - when operating in adhoc mode so the 802.11 layer creates
1718 * node table entries for peers,
1719 * - when operating in station mode for collecting rssi data when
1720 * the station is otherwise quiet, or
1721 * - when scanning
1722 */
1723 static u_int32_t
1724 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
1725 {
1726 struct ieee80211com *ic = &sc->sc_ic;
1727 struct ath_hal *ah = sc->sc_ah;
1728 struct ifnet *ifp = &sc->sc_if;
1729 u_int32_t rfilt;
1730
1731 rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1732 | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1733 if (ic->ic_opmode != IEEE80211_M_STA)
1734 rfilt |= HAL_RX_FILTER_PROBEREQ;
1735 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1736 (ifp->if_flags & IFF_PROMISC))
1737 rfilt |= HAL_RX_FILTER_PROM;
1738 if (ic->ic_opmode == IEEE80211_M_STA ||
1739 ic->ic_opmode == IEEE80211_M_IBSS ||
1740 state == IEEE80211_S_SCAN)
1741 rfilt |= HAL_RX_FILTER_BEACON;
1742 return rfilt;
1743 }
1744
1745 static void
1746 ath_mcastfilter_accum(caddr_t dl, u_int32_t *mfilt)
1747 {
1748 u_int32_t val;
1749 u_int8_t pos;
1750
1751 /* calculate XOR of eight 6bit values */
1752 val = LE_READ_4(dl + 0);
1753 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1754 val = LE_READ_4(dl + 3);
1755 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1756 pos &= 0x3f;
1757 mfilt[pos / 32] |= (1 << (pos % 32));
1758 }
1759
1760 static void
1761 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t *mfilt)
1762 {
1763 struct ifnet *ifp = &sc->sc_if;
1764 struct ether_multi *enm;
1765 struct ether_multistep estep;
1766
1767 mfilt[0] = mfilt[1] = 0;
1768 ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
1769 while (enm != NULL) {
1770 /* XXX Punt on ranges. */
1771 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
1772 mfilt[0] = mfilt[1] = ~((u_int32_t)0);
1773 ifp->if_flags |= IFF_ALLMULTI;
1774 return;
1775 }
1776 ath_mcastfilter_accum(enm->enm_addrlo, mfilt);
1777 ETHER_NEXT_MULTI(estep, enm);
1778 }
1779 ifp->if_flags &= ~IFF_ALLMULTI;
1780 }
1781
1782 static void
1783 ath_mode_init(struct ath_softc *sc)
1784 {
1785 struct ieee80211com *ic = &sc->sc_ic;
1786 struct ath_hal *ah = sc->sc_ah;
1787 u_int32_t rfilt, mfilt[2];
1788
1789 /* configure rx filter */
1790 rfilt = ath_calcrxfilter(sc, ic->ic_state);
1791 ath_hal_setrxfilter(ah, rfilt);
1792
1793 /* configure operational mode */
1794 ath_hal_setopmode(ah);
1795
1796 /*
1797 * Handle any link-level address change. Note that we only
1798 * need to force ic_myaddr; any other addresses are handled
1799 * as a byproduct of the ifnet code marking the interface
1800 * down then up.
1801 *
1802 * XXX should get from lladdr instead of arpcom but that's more work
1803 */
1804 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(sc->sc_if.if_sadl));
1805 ath_hal_setmac(ah, ic->ic_myaddr);
1806
1807 /* calculate and install multicast filter */
1808 #ifdef __FreeBSD__
1809 if ((sc->sc_if.if_flags & IFF_ALLMULTI) == 0)
1810 ath_mcastfilter_compute(sc, mfilt);
1811 else
1812 mfilt[0] = mfilt[1] = ~0;
1813 #endif
1814 #ifdef __NetBSD__
1815 ath_mcastfilter_compute(sc, mfilt);
1816 #endif
1817 ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1818 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
1819 __func__, rfilt, mfilt[0], mfilt[1]);
1820 }
1821
1822 /*
1823 * Set the slot time based on the current setting.
1824 */
1825 static void
1826 ath_setslottime(struct ath_softc *sc)
1827 {
1828 struct ieee80211com *ic = &sc->sc_ic;
1829 struct ath_hal *ah = sc->sc_ah;
1830
1831 if (ic->ic_flags & IEEE80211_F_SHSLOT)
1832 ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
1833 else
1834 ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
1835 sc->sc_updateslot = OK;
1836 }
1837
1838 /*
1839 * Callback from the 802.11 layer to update the
1840 * slot time based on the current setting.
1841 */
1842 static void
1843 ath_updateslot(struct ifnet *ifp)
1844 {
1845 struct ath_softc *sc = ifp->if_softc;
1846 struct ieee80211com *ic = &sc->sc_ic;
1847
1848 /*
1849 * When not coordinating the BSS, change the hardware
1850 * immediately. For other operation we defer the change
1851 * until beacon updates have propagated to the stations.
1852 */
1853 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1854 sc->sc_updateslot = UPDATE;
1855 else
1856 ath_setslottime(sc);
1857 }
1858
1859 /*
1860 * Setup a h/w transmit queue for beacons.
1861 */
1862 static int
1863 ath_beaconq_setup(struct ath_hal *ah)
1864 {
1865 HAL_TXQ_INFO qi;
1866
1867 memset(&qi, 0, sizeof(qi));
1868 qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
1869 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
1870 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
1871 /* NB: for dynamic turbo, don't enable any other interrupts */
1872 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
1873 return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
1874 }
1875
1876 /*
1877 * Setup the transmit queue parameters for the beacon queue.
1878 */
1879 static int
1880 ath_beaconq_config(struct ath_softc *sc)
1881 {
1882 #define ATH_EXPONENT_TO_VALUE(v) ((1<<(v))-1)
1883 struct ieee80211com *ic = &sc->sc_ic;
1884 struct ath_hal *ah = sc->sc_ah;
1885 HAL_TXQ_INFO qi;
1886
1887 ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
1888 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
1889 /*
1890 * Always burst out beacon and CAB traffic.
1891 */
1892 qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
1893 qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
1894 qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
1895 } else {
1896 struct wmeParams *wmep =
1897 &ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
1898 /*
1899 * Adhoc mode; important thing is to use 2x cwmin.
1900 */
1901 qi.tqi_aifs = wmep->wmep_aifsn;
1902 qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
1903 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
1904 }
1905
1906 if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
1907 device_printf(sc->sc_dev, "unable to update parameters for "
1908 "beacon hardware queue!\n");
1909 return 0;
1910 } else {
1911 ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
1912 return 1;
1913 }
1914 #undef ATH_EXPONENT_TO_VALUE
1915 }
1916
1917 /*
1918 * Allocate and setup an initial beacon frame.
1919 */
1920 static int
1921 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
1922 {
1923 struct ieee80211com *ic = ni->ni_ic;
1924 struct ath_buf *bf;
1925 struct mbuf *m;
1926 int error;
1927
1928 bf = STAILQ_FIRST(&sc->sc_bbuf);
1929 if (bf == NULL) {
1930 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
1931 sc->sc_stats.ast_be_nombuf++; /* XXX */
1932 return ENOMEM; /* XXX */
1933 }
1934 /*
1935 * NB: the beacon data buffer must be 32-bit aligned;
1936 * we assume the mbuf routines will return us something
1937 * with this alignment (perhaps should assert).
1938 */
1939 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
1940 if (m == NULL) {
1941 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
1942 __func__);
1943 sc->sc_stats.ast_be_nombuf++;
1944 return ENOMEM;
1945 }
1946 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
1947 BUS_DMA_NOWAIT);
1948 if (error == 0) {
1949 bf->bf_m = m;
1950 bf->bf_node = ieee80211_ref_node(ni);
1951 } else {
1952 m_freem(m);
1953 }
1954 return error;
1955 }
1956
1957 /*
1958 * Setup the beacon frame for transmit.
1959 */
1960 static void
1961 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
1962 {
1963 #define USE_SHPREAMBLE(_ic) \
1964 (((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
1965 == IEEE80211_F_SHPREAMBLE)
1966 struct ieee80211_node *ni = bf->bf_node;
1967 struct ieee80211com *ic = ni->ni_ic;
1968 struct mbuf *m = bf->bf_m;
1969 struct ath_hal *ah = sc->sc_ah;
1970 struct ath_node *an = ATH_NODE(ni);
1971 struct ath_desc *ds;
1972 int flags, antenna;
1973 u_int8_t rate;
1974
1975 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
1976 __func__, m, m->m_len);
1977
1978 /* setup descriptors */
1979 ds = bf->bf_desc;
1980
1981 flags = HAL_TXDESC_NOACK;
1982 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
1983 ds->ds_link = bf->bf_daddr; /* self-linked */
1984 flags |= HAL_TXDESC_VEOL;
1985 /*
1986 * Let hardware handle antenna switching.
1987 */
1988 antenna = 0;
1989 } else {
1990 ds->ds_link = 0;
1991 /*
1992 * Switch antenna every 4 beacons.
1993 * XXX assumes two antenna
1994 */
1995 antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
1996 }
1997
1998 KASSERT(bf->bf_nseg == 1,
1999 ("multi-segment beacon frame; nseg %u", bf->bf_nseg));
2000 ds->ds_data = bf->bf_segs[0].ds_addr;
2001 /*
2002 * Calculate rate code.
2003 * XXX everything at min xmit rate
2004 */
2005 if (USE_SHPREAMBLE(ic))
2006 rate = an->an_tx_mgtratesp;
2007 else
2008 rate = an->an_tx_mgtrate;
2009 ath_hal_setuptxdesc(ah, ds
2010 , m->m_len + IEEE80211_CRC_LEN /* frame length */
2011 , sizeof(struct ieee80211_frame)/* header length */
2012 , HAL_PKT_TYPE_BEACON /* Atheros packet type */
2013 , ni->ni_txpower /* txpower XXX */
2014 , rate, 1 /* series 0 rate/tries */
2015 , HAL_TXKEYIX_INVALID /* no encryption */
2016 , antenna /* antenna mode */
2017 , flags /* no ack, veol for beacons */
2018 , 0 /* rts/cts rate */
2019 , 0 /* rts/cts duration */
2020 );
2021 /* NB: beacon's BufLen must be a multiple of 4 bytes */
2022 ath_hal_filltxdesc(ah, ds
2023 , roundup(m->m_len, 4) /* buffer length */
2024 , AH_TRUE /* first segment */
2025 , AH_TRUE /* last segment */
2026 , ds /* first descriptor */
2027 );
2028 /* XXX bus_dmamap_sync? -dcy */
2029 #undef USE_SHPREAMBLE
2030 }
2031
2032 /*
2033 * Transmit a beacon frame at SWBA. Dynamic updates to the
2034 * frame contents are done as needed and the slot time is
2035 * also adjusted based on current state.
2036 */
2037 static void
2038 ath_beacon_proc(void *arg, int pending)
2039 {
2040 struct ath_softc *sc = arg;
2041 struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
2042 struct ieee80211_node *ni = bf->bf_node;
2043 struct ieee80211com *ic = ni->ni_ic;
2044 struct ath_hal *ah = sc->sc_ah;
2045 struct mbuf *m;
2046 int ncabq, error, otherant;
2047
2048 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2049 __func__, pending);
2050
2051 if (ic->ic_opmode == IEEE80211_M_STA ||
2052 ic->ic_opmode == IEEE80211_M_MONITOR ||
2053 bf == NULL || bf->bf_m == NULL) {
2054 DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
2055 __func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
2056 return;
2057 }
2058 /*
2059 * Check if the previous beacon has gone out. If
2060 * not don't don't try to post another, skip this
2061 * period and wait for the next. Missed beacons
2062 * indicate a problem and should not occur. If we
2063 * miss too many consecutive beacons reset the device.
2064 */
2065 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2066 sc->sc_bmisscount++;
2067 DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2068 "%s: missed %u consecutive beacons\n",
2069 __func__, sc->sc_bmisscount);
2070 if (sc->sc_bmisscount > 3) /* NB: 3 is a guess */
2071 TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask);
2072 return;
2073 }
2074 if (sc->sc_bmisscount != 0) {
2075 DPRINTF(sc, ATH_DEBUG_BEACON,
2076 "%s: resume beacon xmit after %u misses\n",
2077 __func__, sc->sc_bmisscount);
2078 sc->sc_bmisscount = 0;
2079 }
2080
2081 /*
2082 * Update dynamic beacon contents. If this returns
2083 * non-zero then we need to remap the memory because
2084 * the beacon frame changed size (probably because
2085 * of the TIM bitmap).
2086 */
2087 m = bf->bf_m;
2088 ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
2089 if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
2090 /* XXX too conservative? */
2091 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2092 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2093 BUS_DMA_NOWAIT);
2094 if (error != 0) {
2095 if_printf(&sc->sc_if,
2096 "%s: bus_dmamap_load_mbuf failed, error %u\n",
2097 __func__, error);
2098 return;
2099 }
2100 }
2101
2102 /*
2103 * Handle slot time change when a non-ERP station joins/leaves
2104 * an 11g network. The 802.11 layer notifies us via callback,
2105 * we mark updateslot, then wait one beacon before effecting
2106 * the change. This gives associated stations at least one
2107 * beacon interval to note the state change.
2108 */
2109 /* XXX locking */
2110 if (sc->sc_updateslot == UPDATE)
2111 sc->sc_updateslot = COMMIT; /* commit next beacon */
2112 else if (sc->sc_updateslot == COMMIT)
2113 ath_setslottime(sc); /* commit change to h/w */
2114
2115 /*
2116 * Check recent per-antenna transmit statistics and flip
2117 * the default antenna if noticeably more frames went out
2118 * on the non-default antenna.
2119 * XXX assumes 2 anntenae
2120 */
2121 otherant = sc->sc_defant & 1 ? 2 : 1;
2122 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2123 ath_setdefantenna(sc, otherant);
2124 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2125
2126 /*
2127 * Construct tx descriptor.
2128 */
2129 ath_beacon_setup(sc, bf);
2130
2131 /*
2132 * Stop any current dma and put the new frame on the queue.
2133 * This should never fail since we check above that no frames
2134 * are still pending on the queue.
2135 */
2136 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2137 DPRINTF(sc, ATH_DEBUG_ANY,
2138 "%s: beacon queue %u did not stop?\n",
2139 __func__, sc->sc_bhalq);
2140 }
2141 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2142 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2143
2144 /*
2145 * Enable the CAB queue before the beacon queue to
2146 * insure cab frames are triggered by this beacon.
2147 */
2148 if (sc->sc_boff.bo_tim[4] & 1) /* NB: only at DTIM */
2149 ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
2150 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
2151 ath_hal_txstart(ah, sc->sc_bhalq);
2152 DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2153 "%s: TXDP[%u] = %p (%p)\n", __func__,
2154 sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc);
2155
2156 sc->sc_stats.ast_be_xmit++;
2157 }
2158
2159 /*
2160 * Reset the hardware after detecting beacons have stopped.
2161 */
2162 static void
2163 ath_bstuck_proc(void *arg, int pending)
2164 {
2165 struct ath_softc *sc = arg;
2166 struct ifnet *ifp = &sc->sc_if;
2167
2168 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2169 sc->sc_bmisscount);
2170 ath_reset(ifp);
2171 }
2172
2173 /*
2174 * Reclaim beacon resources.
2175 */
2176 static void
2177 ath_beacon_free(struct ath_softc *sc)
2178 {
2179 struct ath_buf *bf;
2180
2181 STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
2182 if (bf->bf_m != NULL) {
2183 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2184 m_freem(bf->bf_m);
2185 bf->bf_m = NULL;
2186 }
2187 if (bf->bf_node != NULL) {
2188 ieee80211_free_node(bf->bf_node);
2189 bf->bf_node = NULL;
2190 }
2191 }
2192 }
2193
2194 /*
2195 * Configure the beacon and sleep timers.
2196 *
2197 * When operating as an AP this resets the TSF and sets
2198 * up the hardware to notify us when we need to issue beacons.
2199 *
2200 * When operating in station mode this sets up the beacon
2201 * timers according to the timestamp of the last received
2202 * beacon and the current TSF, configures PCF and DTIM
2203 * handling, programs the sleep registers so the hardware
2204 * will wakeup in time to receive beacons, and configures
2205 * the beacon miss handling so we'll receive a BMISS
2206 * interrupt when we stop seeing beacons from the AP
2207 * we've associated with.
2208 */
2209 static void
2210 ath_beacon_config(struct ath_softc *sc)
2211 {
2212 #define TSF_TO_TU(_h,_l) (((_h) << 22) | ((_l) >> 10))
2213 struct ath_hal *ah = sc->sc_ah;
2214 struct ieee80211com *ic = &sc->sc_ic;
2215 struct ieee80211_node *ni = ic->ic_bss;
2216 u_int32_t nexttbtt, intval;
2217
2218 /* extract tstamp from last beacon and convert to TU */
2219 nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
2220 LE_READ_4(ni->ni_tstamp.data));
2221 /* NB: the beacon interval is kept internally in TU's */
2222 intval = ni->ni_intval & HAL_BEACON_PERIOD;
2223 if (nexttbtt == 0) /* e.g. for ap mode */
2224 nexttbtt = intval;
2225 else if (intval) /* NB: can be 0 for monitor mode */
2226 nexttbtt = roundup(nexttbtt, intval);
2227 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2228 __func__, nexttbtt, intval, ni->ni_intval);
2229 if (ic->ic_opmode == IEEE80211_M_STA) {
2230 HAL_BEACON_STATE bs;
2231 u_int64_t tsf;
2232 u_int32_t tsftu;
2233 int dtimperiod, dtimcount;
2234 int cfpperiod, cfpcount;
2235
2236 /*
2237 * Setup dtim and cfp parameters according to
2238 * last beacon we received (which may be none).
2239 */
2240 dtimperiod = ni->ni_dtim_period;
2241 if (dtimperiod <= 0) /* NB: 0 if not known */
2242 dtimperiod = 1;
2243 dtimcount = ni->ni_dtim_count;
2244 if (dtimcount >= dtimperiod) /* NB: sanity check */
2245 dtimcount = 0; /* XXX? */
2246 cfpperiod = 1; /* NB: no PCF support yet */
2247 cfpcount = 0;
2248 #define FUDGE 2
2249 /*
2250 * Pull nexttbtt forward to reflect the current
2251 * TSF and calculate dtim+cfp state for the result.
2252 */
2253 tsf = ath_hal_gettsf64(ah);
2254 tsftu = TSF_TO_TU((u_int32_t)(tsf>>32), (u_int32_t)tsf) + FUDGE;
2255 do {
2256 nexttbtt += intval;
2257 if (--dtimcount < 0) {
2258 dtimcount = dtimperiod - 1;
2259 if (--cfpcount < 0)
2260 cfpcount = cfpperiod - 1;
2261 }
2262 } while (nexttbtt < tsftu);
2263 #undef FUDGE
2264 memset(&bs, 0, sizeof(bs));
2265 bs.bs_intval = intval;
2266 bs.bs_nexttbtt = nexttbtt;
2267 bs.bs_dtimperiod = dtimperiod*intval;
2268 bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
2269 bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
2270 bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
2271 bs.bs_cfpmaxduration = 0;
2272 #if 0
2273 /*
2274 * The 802.11 layer records the offset to the DTIM
2275 * bitmap while receiving beacons; use it here to
2276 * enable h/w detection of our AID being marked in
2277 * the bitmap vector (to indicate frames for us are
2278 * pending at the AP).
2279 * XXX do DTIM handling in s/w to WAR old h/w bugs
2280 * XXX enable based on h/w rev for newer chips
2281 */
2282 bs.bs_timoffset = ni->ni_timoff;
2283 #endif
2284 /*
2285 * Calculate the number of consecutive beacons to miss
2286 * before taking a BMISS interrupt. The configuration
2287 * is specified in ms, so we need to convert that to
2288 * TU's and then calculate based on the beacon interval.
2289 * Note that we clamp the result to at most 10 beacons.
2290 */
2291 bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
2292 if (bs.bs_bmissthreshold > 10)
2293 bs.bs_bmissthreshold = 10;
2294 else if (bs.bs_bmissthreshold <= 0)
2295 bs.bs_bmissthreshold = 1;
2296
2297 /*
2298 * Calculate sleep duration. The configuration is
2299 * given in ms. We insure a multiple of the beacon
2300 * period is used. Also, if the sleep duration is
2301 * greater than the DTIM period then it makes senses
2302 * to make it a multiple of that.
2303 *
2304 * XXX fixed at 100ms
2305 */
2306 bs.bs_sleepduration =
2307 roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2308 if (bs.bs_sleepduration > bs.bs_dtimperiod)
2309 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2310
2311 DPRINTF(sc, ATH_DEBUG_BEACON,
2312 "%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2313 , __func__
2314 , tsf, tsftu
2315 , bs.bs_intval
2316 , bs.bs_nexttbtt
2317 , bs.bs_dtimperiod
2318 , bs.bs_nextdtim
2319 , bs.bs_bmissthreshold
2320 , bs.bs_sleepduration
2321 , bs.bs_cfpperiod
2322 , bs.bs_cfpmaxduration
2323 , bs.bs_cfpnext
2324 , bs.bs_timoffset
2325 );
2326 ath_hal_intrset(ah, 0);
2327 ath_hal_beacontimers(ah, &bs);
2328 sc->sc_imask |= HAL_INT_BMISS;
2329 ath_hal_intrset(ah, sc->sc_imask);
2330 } else {
2331 ath_hal_intrset(ah, 0);
2332 if (nexttbtt == intval)
2333 intval |= HAL_BEACON_RESET_TSF;
2334 if (ic->ic_opmode == IEEE80211_M_IBSS) {
2335 /*
2336 * In IBSS mode enable the beacon timers but only
2337 * enable SWBA interrupts if we need to manually
2338 * prepare beacon frames. Otherwise we use a
2339 * self-linked tx descriptor and let the hardware
2340 * deal with things.
2341 */
2342 intval |= HAL_BEACON_ENA;
2343 if (!sc->sc_hasveol)
2344 sc->sc_imask |= HAL_INT_SWBA;
2345 ath_beaconq_config(sc);
2346 } else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2347 /*
2348 * In AP mode we enable the beacon timers and
2349 * SWBA interrupts to prepare beacon frames.
2350 */
2351 intval |= HAL_BEACON_ENA;
2352 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */
2353 ath_beaconq_config(sc);
2354 }
2355 ath_hal_beaconinit(ah, nexttbtt, intval);
2356 sc->sc_bmisscount = 0;
2357 ath_hal_intrset(ah, sc->sc_imask);
2358 /*
2359 * When using a self-linked beacon descriptor in
2360 * ibss mode load it once here.
2361 */
2362 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2363 ath_beacon_proc(sc, 0);
2364 }
2365 #undef TSF_TO_TU
2366 }
2367
2368 static int
2369 ath_descdma_setup(struct ath_softc *sc,
2370 struct ath_descdma *dd, ath_bufhead *head,
2371 const char *name, int nbuf, int ndesc)
2372 {
2373 #define DS2PHYS(_dd, _ds) \
2374 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2375 struct ifnet *ifp = &sc->sc_if;
2376 struct ath_desc *ds;
2377 struct ath_buf *bf;
2378 int i, bsize, error;
2379
2380 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2381 __func__, name, nbuf, ndesc);
2382
2383 dd->dd_name = name;
2384 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2385
2386 /*
2387 * Setup DMA descriptor area.
2388 */
2389 dd->dd_dmat = sc->sc_dmat;
2390
2391 error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE,
2392 0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0);
2393
2394 if (error != 0) {
2395 if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2396 "error %u\n", nbuf * ndesc, dd->dd_name, error);
2397 goto fail0;
2398 }
2399
2400 error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg,
2401 dd->dd_desc_len, (caddr_t *)&dd->dd_desc, BUS_DMA_COHERENT);
2402 if (error != 0) {
2403 if_printf(ifp, "unable to map %u %s descriptors, error = %u\n",
2404 nbuf * ndesc, dd->dd_name, error);
2405 goto fail1;
2406 }
2407
2408 /* allocate descriptors */
2409 error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1,
2410 dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2411 if (error != 0) {
2412 if_printf(ifp, "unable to create dmamap for %s descriptors, "
2413 "error %u\n", dd->dd_name, error);
2414 goto fail2;
2415 }
2416
2417 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc,
2418 dd->dd_desc_len, NULL, BUS_DMA_NOWAIT);
2419 if (error != 0) {
2420 if_printf(ifp, "unable to map %s descriptors, error %u\n",
2421 dd->dd_name, error);
2422 goto fail3;
2423 }
2424
2425 ds = dd->dd_desc;
2426 dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr;
2427 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
2428 __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2429 (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2430
2431 /* allocate rx buffers */
2432 bsize = sizeof(struct ath_buf) * nbuf;
2433 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2434 if (bf == NULL) {
2435 if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2436 dd->dd_name, bsize);
2437 goto fail4;
2438 }
2439 dd->dd_bufptr = bf;
2440
2441 STAILQ_INIT(head);
2442 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2443 bf->bf_desc = ds;
2444 bf->bf_daddr = DS2PHYS(dd, ds);
2445 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc,
2446 MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap);
2447 if (error != 0) {
2448 if_printf(ifp, "unable to create dmamap for %s "
2449 "buffer %u, error %u\n", dd->dd_name, i, error);
2450 ath_descdma_cleanup(sc, dd, head);
2451 return error;
2452 }
2453 STAILQ_INSERT_TAIL(head, bf, bf_list);
2454 }
2455 return 0;
2456 fail4:
2457 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2458 fail3:
2459 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2460 fail2:
2461 bus_dmamem_unmap(dd->dd_dmat, (caddr_t)dd->dd_desc, dd->dd_desc_len);
2462 fail1:
2463 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2464 fail0:
2465 memset(dd, 0, sizeof(*dd));
2466 return error;
2467 #undef DS2PHYS
2468 }
2469
2470 static void
2471 ath_descdma_cleanup(struct ath_softc *sc,
2472 struct ath_descdma *dd, ath_bufhead *head)
2473 {
2474 struct ath_buf *bf;
2475 struct ieee80211_node *ni;
2476
2477 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2478 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2479 bus_dmamem_unmap(dd->dd_dmat, (caddr_t)dd->dd_desc, dd->dd_desc_len);
2480 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2481
2482 STAILQ_FOREACH(bf, head, bf_list) {
2483 if (bf->bf_m) {
2484 m_freem(bf->bf_m);
2485 bf->bf_m = NULL;
2486 }
2487 if (bf->bf_dmamap != NULL) {
2488 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2489 bf->bf_dmamap = NULL;
2490 }
2491 ni = bf->bf_node;
2492 bf->bf_node = NULL;
2493 if (ni != NULL) {
2494 /*
2495 * Reclaim node reference.
2496 */
2497 ieee80211_free_node(ni);
2498 }
2499 }
2500
2501 STAILQ_INIT(head);
2502 free(dd->dd_bufptr, M_ATHDEV);
2503 memset(dd, 0, sizeof(*dd));
2504 }
2505
2506 static int
2507 ath_desc_alloc(struct ath_softc *sc)
2508 {
2509 int error;
2510
2511 error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2512 "rx", ATH_RXBUF, 1);
2513 if (error != 0)
2514 return error;
2515
2516 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2517 "tx", ATH_TXBUF, ATH_TXDESC);
2518 if (error != 0) {
2519 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2520 return error;
2521 }
2522
2523 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2524 "beacon", 1, 1);
2525 if (error != 0) {
2526 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2527 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2528 return error;
2529 }
2530 return 0;
2531 }
2532
2533 static void
2534 ath_desc_free(struct ath_softc *sc)
2535 {
2536
2537 if (sc->sc_bdma.dd_desc_len != 0)
2538 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2539 if (sc->sc_txdma.dd_desc_len != 0)
2540 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2541 if (sc->sc_rxdma.dd_desc_len != 0)
2542 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2543 }
2544
2545 static struct ieee80211_node *
2546 ath_node_alloc(struct ieee80211_node_table *nt)
2547 {
2548 struct ieee80211com *ic = nt->nt_ic;
2549 struct ath_softc *sc = ic->ic_ifp->if_softc;
2550 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2551 struct ath_node *an;
2552
2553 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2554 if (an == NULL) {
2555 /* XXX stat+msg */
2556 return NULL;
2557 }
2558 an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
2559 an->an_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
2560 an->an_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
2561 an->an_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
2562 ath_rate_node_init(sc, an);
2563
2564 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2565 return &an->an_node;
2566 }
2567
2568 static void
2569 ath_node_free(struct ieee80211_node *ni)
2570 {
2571 struct ieee80211com *ic = ni->ni_ic;
2572 struct ath_softc *sc = ic->ic_ifp->if_softc;
2573
2574 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2575
2576 ath_rate_node_cleanup(sc, ATH_NODE(ni));
2577 sc->sc_node_free(ni);
2578 }
2579
2580 static u_int8_t
2581 ath_node_getrssi(const struct ieee80211_node *ni)
2582 {
2583 #define HAL_EP_RND(x, mul) \
2584 ((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
2585 u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
2586 int32_t rssi;
2587
2588 /*
2589 * When only one frame is received there will be no state in
2590 * avgrssi so fallback on the value recorded by the 802.11 layer.
2591 */
2592 if (avgrssi != ATH_RSSI_DUMMY_MARKER)
2593 rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
2594 else
2595 rssi = ni->ni_rssi;
2596 /* NB: theoretically we shouldn't need this, but be paranoid */
2597 return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
2598 #undef HAL_EP_RND
2599 }
2600
2601 static int
2602 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2603 {
2604 struct ath_hal *ah = sc->sc_ah;
2605 int error;
2606 struct mbuf *m;
2607 struct ath_desc *ds;
2608
2609 m = bf->bf_m;
2610 if (m == NULL) {
2611 /*
2612 * NB: by assigning a page to the rx dma buffer we
2613 * implicitly satisfy the Atheros requirement that
2614 * this buffer be cache-line-aligned and sized to be
2615 * multiple of the cache line size. Not doing this
2616 * causes weird stuff to happen (for the 5210 at least).
2617 */
2618 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2619 if (m == NULL) {
2620 DPRINTF(sc, ATH_DEBUG_ANY,
2621 "%s: no mbuf/cluster\n", __func__);
2622 sc->sc_stats.ast_rx_nombuf++;
2623 return ENOMEM;
2624 }
2625 bf->bf_m = m;
2626 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2627
2628 error = bus_dmamap_load_mbuf(sc->sc_dmat,
2629 bf->bf_dmamap, m,
2630 BUS_DMA_NOWAIT);
2631 if (error != 0) {
2632 DPRINTF(sc, ATH_DEBUG_ANY,
2633 "%s: bus_dmamap_load_mbuf failed; error %d\n",
2634 __func__, error);
2635 sc->sc_stats.ast_rx_busdma++;
2636 return error;
2637 }
2638 KASSERT(bf->bf_nseg == 1,
2639 ("multi-segment packet; nseg %u", bf->bf_nseg));
2640 }
2641 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2642 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2643
2644 /*
2645 * Setup descriptors. For receive we always terminate
2646 * the descriptor list with a self-linked entry so we'll
2647 * not get overrun under high load (as can happen with a
2648 * 5212 when ANI processing enables PHY error frames).
2649 *
2650 * To insure the last descriptor is self-linked we create
2651 * each descriptor as self-linked and add it to the end. As
2652 * each additional descriptor is added the previous self-linked
2653 * entry is ``fixed'' naturally. This should be safe even
2654 * if DMA is happening. When processing RX interrupts we
2655 * never remove/process the last, self-linked, entry on the
2656 * descriptor list. This insures the hardware always has
2657 * someplace to write a new frame.
2658 */
2659 ds = bf->bf_desc;
2660 ds->ds_link = bf->bf_daddr; /* link to self */
2661 ds->ds_data = bf->bf_segs[0].ds_addr;
2662 ath_hal_setuprxdesc(ah, ds
2663 , m->m_len /* buffer size */
2664 , 0
2665 );
2666
2667 if (sc->sc_rxlink != NULL)
2668 *sc->sc_rxlink = bf->bf_daddr;
2669 sc->sc_rxlink = &ds->ds_link;
2670 return 0;
2671 }
2672
2673 static uint64_t
2674 ath_tsf_extend(struct ath_hal *ah, uint32_t rstamp)
2675 {
2676 uint64_t tsf;
2677
2678 KASSERT((rstamp & 0xffff0000) == 0,
2679 ("rx timestamp > 16 bits wide, %" PRIu32, rstamp));
2680
2681 tsf = ath_hal_gettsf64(ah);
2682
2683 /* Compensate for rollover. */
2684 if ((tsf & 0xffff) <= rstamp)
2685 tsf -= 0x10000;
2686
2687 return (tsf & ~(uint64_t)0xffff) | rstamp;
2688 }
2689
2690 /*
2691 * Extend 15-bit time stamp from rx descriptor to
2692 * a full 64-bit TSF using the current h/w TSF.
2693 */
2694 static __inline u_int64_t
2695 ath_extend_tsf(struct ath_hal *ah, u_int32_t rstamp)
2696 {
2697 u_int64_t tsf;
2698
2699 tsf = ath_hal_gettsf64(ah);
2700 if ((tsf & 0x7fff) < rstamp)
2701 tsf -= 0x8000;
2702 return ((tsf &~ 0x7fff) | rstamp);
2703 }
2704
2705 /*
2706 * Intercept management frames to collect beacon rssi data
2707 * and to do ibss merges.
2708 */
2709 static void
2710 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2711 struct ieee80211_node *ni,
2712 int subtype, int rssi, u_int32_t rstamp)
2713 {
2714 struct ath_softc *sc = ic->ic_ifp->if_softc;
2715
2716 /*
2717 * Call up first so subsequent work can use information
2718 * potentially stored in the node (e.g. for ibss merge).
2719 */
2720 sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
2721 switch (subtype) {
2722 case IEEE80211_FC0_SUBTYPE_BEACON:
2723 /* update rssi statistics for use by the hal */
2724 ATH_RSSI_LPF(ATH_NODE(ni)->an_halstats.ns_avgbrssi, rssi);
2725 /* fall thru... */
2726 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2727 if (ic->ic_opmode == IEEE80211_M_IBSS &&
2728 ic->ic_state == IEEE80211_S_RUN) {
2729 u_int64_t tsf = ath_tsf_extend(sc->sc_ah, rstamp);
2730
2731 /*
2732 * Handle ibss merge as needed; check the tsf on the
2733 * frame before attempting the merge. The 802.11 spec
2734 * says the station should change it's bssid to match
2735 * the oldest station with the same ssid, where oldest
2736 * is determined by the tsf. Note that hardware
2737 * reconfiguration happens through callback to
2738 * ath_newstate as the state machine will go from
2739 * RUN -> RUN when this happens.
2740 */
2741 if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
2742 DPRINTF(sc, ATH_DEBUG_STATE,
2743 "ibss merge, rstamp %u tsf %ju "
2744 "tstamp %ju\n", rstamp, (uintmax_t)tsf,
2745 (uintmax_t)ni->ni_tstamp.tsf);
2746 (void) ieee80211_ibss_merge(ic, ni);
2747 }
2748 }
2749 break;
2750 }
2751 }
2752
2753 /*
2754 * Set the default antenna.
2755 */
2756 static void
2757 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
2758 {
2759 struct ath_hal *ah = sc->sc_ah;
2760
2761 /* XXX block beacon interrupts */
2762 ath_hal_setdefantenna(ah, antenna);
2763 if (sc->sc_defant != antenna)
2764 sc->sc_stats.ast_ant_defswitch++;
2765 sc->sc_defant = antenna;
2766 sc->sc_rxotherant = 0;
2767 }
2768
2769 static void
2770 ath_rx_proc(void *arg, int npending)
2771 {
2772 #define PA2DESC(_sc, _pa) \
2773 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
2774 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
2775 struct ath_softc *sc = arg;
2776 struct ath_buf *bf;
2777 struct ieee80211com *ic = &sc->sc_ic;
2778 struct ifnet *ifp = &sc->sc_if;
2779 struct ath_hal *ah = sc->sc_ah;
2780 struct ath_desc *ds;
2781 struct mbuf *m;
2782 struct ieee80211_node *ni;
2783 struct ath_node *an;
2784 int len, type;
2785 u_int phyerr;
2786 HAL_STATUS status;
2787
2788 NET_LOCK_GIANT(); /* XXX */
2789
2790 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
2791 do {
2792 bf = STAILQ_FIRST(&sc->sc_rxbuf);
2793 if (bf == NULL) { /* NB: shouldn't happen */
2794 if_printf(ifp, "%s: no buffer!\n", __func__);
2795 break;
2796 }
2797 ds = bf->bf_desc;
2798 if (ds->ds_link == bf->bf_daddr) {
2799 /* NB: never process the self-linked entry at the end */
2800 break;
2801 }
2802 m = bf->bf_m;
2803 if (m == NULL) { /* NB: shouldn't happen */
2804 if_printf(ifp, "%s: no mbuf!\n", __func__);
2805 continue;
2806 }
2807 /* XXX sync descriptor memory */
2808 /*
2809 * Must provide the virtual address of the current
2810 * descriptor, the physical address, and the virtual
2811 * address of the next descriptor in the h/w chain.
2812 * This allows the HAL to look ahead to see if the
2813 * hardware is done with a descriptor by checking the
2814 * done bit in the following descriptor and the address
2815 * of the current descriptor the DMA engine is working
2816 * on. All this is necessary because of our use of
2817 * a self-linked list to avoid rx overruns.
2818 */
2819 status = ath_hal_rxprocdesc(ah, ds,
2820 bf->bf_daddr, PA2DESC(sc, ds->ds_link));
2821 #ifdef AR_DEBUG
2822 if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
2823 ath_printrxbuf(bf, status == HAL_OK);
2824 #endif
2825 if (status == HAL_EINPROGRESS)
2826 break;
2827 STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
2828 if (ds->ds_rxstat.rs_more) {
2829 /*
2830 * Frame spans multiple descriptors; this
2831 * cannot happen yet as we don't support
2832 * jumbograms. If not in monitor mode,
2833 * discard the frame.
2834 */
2835 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2836 sc->sc_stats.ast_rx_toobig++;
2837 goto rx_next;
2838 }
2839 /* fall thru for monitor mode handling... */
2840 } else if (ds->ds_rxstat.rs_status != 0) {
2841 if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
2842 sc->sc_stats.ast_rx_crcerr++;
2843 if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
2844 sc->sc_stats.ast_rx_fifoerr++;
2845 if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
2846 sc->sc_stats.ast_rx_phyerr++;
2847 phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
2848 sc->sc_stats.ast_rx_phy[phyerr]++;
2849 goto rx_next;
2850 }
2851 if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
2852 /*
2853 * Decrypt error. If the error occurred
2854 * because there was no hardware key, then
2855 * let the frame through so the upper layers
2856 * can process it. This is necessary for 5210
2857 * parts which have no way to setup a ``clear''
2858 * key cache entry.
2859 *
2860 * XXX do key cache faulting
2861 */
2862 if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
2863 goto rx_accept;
2864 sc->sc_stats.ast_rx_badcrypt++;
2865 }
2866 if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
2867 sc->sc_stats.ast_rx_badmic++;
2868 /*
2869 * Do minimal work required to hand off
2870 * the 802.11 header for notifcation.
2871 */
2872 /* XXX frag's and qos frames */
2873 len = ds->ds_rxstat.rs_datalen;
2874 if (len >= sizeof (struct ieee80211_frame)) {
2875 bus_dmamap_sync(sc->sc_dmat,
2876 bf->bf_dmamap,
2877 0, bf->bf_dmamap->dm_mapsize,
2878 BUS_DMASYNC_POSTREAD);
2879 ieee80211_notify_michael_failure(ic,
2880 mtod(m, struct ieee80211_frame *),
2881 sc->sc_splitmic ?
2882 ds->ds_rxstat.rs_keyix-32 :
2883 ds->ds_rxstat.rs_keyix
2884 );
2885 }
2886 }
2887 ifp->if_ierrors++;
2888 /*
2889 * Reject error frames, we normally don't want
2890 * to see them in monitor mode (in monitor mode
2891 * allow through packets that have crypto problems).
2892 */
2893 if ((ds->ds_rxstat.rs_status &~
2894 (HAL_RXERR_DECRYPT|HAL_RXERR_MIC)) ||
2895 sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
2896 goto rx_next;
2897 }
2898 rx_accept:
2899 /*
2900 * Sync and unmap the frame. At this point we're
2901 * committed to passing the mbuf somewhere so clear
2902 * bf_m; this means a new sk_buff must be allocated
2903 * when the rx descriptor is setup again to receive
2904 * another frame.
2905 */
2906 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
2907 0, bf->bf_dmamap->dm_mapsize,
2908 BUS_DMASYNC_POSTREAD);
2909 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2910 bf->bf_m = NULL;
2911
2912 m->m_pkthdr.rcvif = ifp;
2913 len = ds->ds_rxstat.rs_datalen;
2914 m->m_pkthdr.len = m->m_len = len;
2915
2916 sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
2917
2918 #if NBPFILTER > 0
2919 if (sc->sc_drvbpf) {
2920 u_int8_t rix;
2921
2922 /*
2923 * Discard anything shorter than an ack or cts.
2924 */
2925 if (len < IEEE80211_ACK_LEN) {
2926 DPRINTF(sc, ATH_DEBUG_RECV,
2927 "%s: runt packet %d\n",
2928 __func__, len);
2929 sc->sc_stats.ast_rx_tooshort++;
2930 m_freem(m);
2931 goto rx_next;
2932 }
2933 rix = ds->ds_rxstat.rs_rate;
2934 sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
2935 sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
2936 sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi;
2937 sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
2938 /* XXX TSF */
2939
2940 bpf_mtap2(sc->sc_drvbpf,
2941 &sc->sc_rx_th, sc->sc_rx_th_len, m);
2942 }
2943 #endif
2944
2945 /*
2946 * From this point on we assume the frame is at least
2947 * as large as ieee80211_frame_min; verify that.
2948 */
2949 if (len < IEEE80211_MIN_LEN) {
2950 DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
2951 __func__, len);
2952 sc->sc_stats.ast_rx_tooshort++;
2953 m_freem(m);
2954 goto rx_next;
2955 }
2956
2957 if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
2958 ieee80211_dump_pkt(mtod(m, caddr_t), len,
2959 sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
2960 ds->ds_rxstat.rs_rssi);
2961 }
2962
2963 m_adj(m, -IEEE80211_CRC_LEN);
2964
2965 /*
2966 * Locate the node for sender, track state, and then
2967 * pass the (referenced) node up to the 802.11 layer
2968 * for its use. If the sender is unknown spam the
2969 * frame; it'll be dropped where it's not wanted.
2970 */
2971 if (ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID &&
2972 (ni = sc->sc_keyixmap[ds->ds_rxstat.rs_keyix]) != NULL) {
2973 /*
2974 * Fast path: node is present in the key map;
2975 * grab a reference for processing the frame.
2976 */
2977 an = ATH_NODE(ieee80211_ref_node(ni));
2978 ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
2979 type = ieee80211_input(ic, m, ni,
2980 ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
2981 } else {
2982 /*
2983 * Locate the node for sender, track state, and then
2984 * pass the (referenced) node up to the 802.11 layer
2985 * for its use.
2986 */
2987 ni = ieee80211_find_rxnode(ic,
2988 mtod(m, const struct ieee80211_frame_min *));
2989 /*
2990 * Track rx rssi and do any rx antenna management.
2991 */
2992 an = ATH_NODE(ni);
2993 ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
2994 /*
2995 * Send frame up for processing.
2996 */
2997 type = ieee80211_input(ic, m, ni,
2998 ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
2999 if (ni != ic->ic_bss) {
3000 u_int16_t keyix;
3001 /*
3002 * If the station has a key cache slot assigned
3003 * update the key->node mapping table.
3004 */
3005 keyix = ni->ni_ucastkey.wk_keyix;
3006 if (keyix != IEEE80211_KEYIX_NONE &&
3007 sc->sc_keyixmap[keyix] == NULL)
3008 sc->sc_keyixmap[keyix] =
3009 ieee80211_ref_node(ni);
3010 }
3011 }
3012 ieee80211_free_node(ni);
3013 if (sc->sc_diversity) {
3014 /*
3015 * When using fast diversity, change the default rx
3016 * antenna if diversity chooses the other antenna 3
3017 * times in a row.
3018 */
3019 if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
3020 if (++sc->sc_rxotherant >= 3)
3021 ath_setdefantenna(sc,
3022 ds->ds_rxstat.rs_antenna);
3023 } else
3024 sc->sc_rxotherant = 0;
3025 }
3026 if (sc->sc_softled) {
3027 /*
3028 * Blink for any data frame. Otherwise do a
3029 * heartbeat-style blink when idle. The latter
3030 * is mainly for station mode where we depend on
3031 * periodic beacon frames to trigger the poll event.
3032 */
3033 if (type == IEEE80211_FC0_TYPE_DATA) {
3034 sc->sc_rxrate = ds->ds_rxstat.rs_rate;
3035 ath_led_event(sc, ATH_LED_RX);
3036 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
3037 ath_led_event(sc, ATH_LED_POLL);
3038 }
3039 rx_next:
3040 STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
3041 } while (ath_rxbuf_init(sc, bf) == 0);
3042
3043 /* rx signal state monitoring */
3044 ath_hal_rxmonitor(ah, &ATH_NODE(ic->ic_bss)->an_halstats);
3045
3046 #ifdef __NetBSD__
3047 /* XXX Why isn't this necessary in FreeBSD? */
3048 if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
3049 ath_start(ifp);
3050 #endif /* __NetBSD__ */
3051
3052 NET_UNLOCK_GIANT(); /* XXX */
3053 #undef PA2DESC
3054 }
3055
3056 /*
3057 * Setup a h/w transmit queue.
3058 */
3059 static struct ath_txq *
3060 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3061 {
3062 #define N(a) (sizeof(a)/sizeof(a[0]))
3063 struct ath_hal *ah = sc->sc_ah;
3064 HAL_TXQ_INFO qi;
3065 int qnum;
3066
3067 memset(&qi, 0, sizeof(qi));
3068 qi.tqi_subtype = subtype;
3069 qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3070 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3071 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3072 /*
3073 * Enable interrupts only for EOL and DESC conditions.
3074 * We mark tx descriptors to receive a DESC interrupt
3075 * when a tx queue gets deep; otherwise waiting for the
3076 * EOL to reap descriptors. Note that this is done to
3077 * reduce interrupt load and this only defers reaping
3078 * descriptors, never transmitting frames. Aside from
3079 * reducing interrupts this also permits more concurrency.
3080 * The only potential downside is if the tx queue backs
3081 * up in which case the top half of the kernel may backup
3082 * due to a lack of tx descriptors.
3083 */
3084 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE | TXQ_FLAG_TXDESCINT_ENABLE;
3085 qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3086 if (qnum == -1) {
3087 /*
3088 * NB: don't print a message, this happens
3089 * normally on parts with too few tx queues
3090 */
3091 return NULL;
3092 }
3093 if (qnum >= N(sc->sc_txq)) {
3094 device_printf(sc->sc_dev,
3095 "hal qnum %u out of range, max %zu!\n",
3096 qnum, N(sc->sc_txq));
3097 ath_hal_releasetxqueue(ah, qnum);
3098 return NULL;
3099 }
3100 if (!ATH_TXQ_SETUP(sc, qnum)) {
3101 struct ath_txq *txq = &sc->sc_txq[qnum];
3102
3103 txq->axq_qnum = qnum;
3104 txq->axq_depth = 0;
3105 txq->axq_intrcnt = 0;
3106 txq->axq_link = NULL;
3107 STAILQ_INIT(&txq->axq_q);
3108 ATH_TXQ_LOCK_INIT(sc, txq);
3109 sc->sc_txqsetup |= 1<<qnum;
3110 }
3111 return &sc->sc_txq[qnum];
3112 #undef N
3113 }
3114
3115 /*
3116 * Setup a hardware data transmit queue for the specified
3117 * access control. The hal may not support all requested
3118 * queues in which case it will return a reference to a
3119 * previously setup queue. We record the mapping from ac's
3120 * to h/w queues for use by ath_tx_start and also track
3121 * the set of h/w queues being used to optimize work in the
3122 * transmit interrupt handler and related routines.
3123 */
3124 static int
3125 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3126 {
3127 #define N(a) (sizeof(a)/sizeof(a[0]))
3128 struct ath_txq *txq;
3129
3130 if (ac >= N(sc->sc_ac2q)) {
3131 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3132 ac, N(sc->sc_ac2q));
3133 return 0;
3134 }
3135 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3136 if (txq != NULL) {
3137 sc->sc_ac2q[ac] = txq;
3138 return 1;
3139 } else
3140 return 0;
3141 #undef N
3142 }
3143
3144 /*
3145 * Update WME parameters for a transmit queue.
3146 */
3147 static int
3148 ath_txq_update(struct ath_softc *sc, int ac)
3149 {
3150 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1)
3151 #define ATH_TXOP_TO_US(v) (v<<5)
3152 struct ieee80211com *ic = &sc->sc_ic;
3153 struct ath_txq *txq = sc->sc_ac2q[ac];
3154 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3155 struct ath_hal *ah = sc->sc_ah;
3156 HAL_TXQ_INFO qi;
3157
3158 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3159 qi.tqi_aifs = wmep->wmep_aifsn;
3160 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3161 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3162 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3163
3164 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3165 device_printf(sc->sc_dev, "unable to update hardware queue "
3166 "parameters for %s traffic!\n",
3167 ieee80211_wme_acnames[ac]);
3168 return 0;
3169 } else {
3170 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3171 return 1;
3172 }
3173 #undef ATH_TXOP_TO_US
3174 #undef ATH_EXPONENT_TO_VALUE
3175 }
3176
3177 /*
3178 * Callback from the 802.11 layer to update WME parameters.
3179 */
3180 static int
3181 ath_wme_update(struct ieee80211com *ic)
3182 {
3183 struct ath_softc *sc = ic->ic_ifp->if_softc;
3184
3185 return !ath_txq_update(sc, WME_AC_BE) ||
3186 !ath_txq_update(sc, WME_AC_BK) ||
3187 !ath_txq_update(sc, WME_AC_VI) ||
3188 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3189 }
3190
3191 /*
3192 * Reclaim resources for a setup queue.
3193 */
3194 static void
3195 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3196 {
3197
3198 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3199 ATH_TXQ_LOCK_DESTROY(txq);
3200 sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3201 }
3202
3203 /*
3204 * Reclaim all tx queue resources.
3205 */
3206 static void
3207 ath_tx_cleanup(struct ath_softc *sc)
3208 {
3209 int i;
3210
3211 ATH_TXBUF_LOCK_DESTROY(sc);
3212 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3213 if (ATH_TXQ_SETUP(sc, i))
3214 ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3215 }
3216
3217 /*
3218 * Defragment an mbuf chain, returning at most maxfrags separate
3219 * mbufs+clusters. If this is not possible NULL is returned and
3220 * the original mbuf chain is left in it's present (potentially
3221 * modified) state. We use two techniques: collapsing consecutive
3222 * mbufs and replacing consecutive mbufs by a cluster.
3223 */
3224 static struct mbuf *
3225 ath_defrag(struct mbuf *m0, int how, int maxfrags)
3226 {
3227 struct mbuf *m, *n, *n2, **prev;
3228 u_int curfrags;
3229
3230 /*
3231 * Calculate the current number of frags.
3232 */
3233 curfrags = 0;
3234 for (m = m0; m != NULL; m = m->m_next)
3235 curfrags++;
3236 /*
3237 * First, try to collapse mbufs. Note that we always collapse
3238 * towards the front so we don't need to deal with moving the
3239 * pkthdr. This may be suboptimal if the first mbuf has much
3240 * less data than the following.
3241 */
3242 m = m0;
3243 again:
3244 for (;;) {
3245 n = m->m_next;
3246 if (n == NULL)
3247 break;
3248 if ((m->m_flags & M_RDONLY) == 0 &&
3249 n->m_len < M_TRAILINGSPACE(m)) {
3250 bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
3251 n->m_len);
3252 m->m_len += n->m_len;
3253 m->m_next = n->m_next;
3254 m_free(n);
3255 if (--curfrags <= maxfrags)
3256 return m0;
3257 } else
3258 m = n;
3259 }
3260 KASSERT(maxfrags > 1,
3261 ("maxfrags %u, but normal collapse failed", maxfrags));
3262 /*
3263 * Collapse consecutive mbufs to a cluster.
3264 */
3265 prev = &m0->m_next; /* NB: not the first mbuf */
3266 while ((n = *prev) != NULL) {
3267 if ((n2 = n->m_next) != NULL &&
3268 n->m_len + n2->m_len < MCLBYTES) {
3269 m = m_getcl(how, MT_DATA, 0);
3270 if (m == NULL)
3271 goto bad;
3272 bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
3273 bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
3274 n2->m_len);
3275 m->m_len = n->m_len + n2->m_len;
3276 m->m_next = n2->m_next;
3277 *prev = m;
3278 m_free(n);
3279 m_free(n2);
3280 if (--curfrags <= maxfrags) /* +1 cl -2 mbufs */
3281 return m0;
3282 /*
3283 * Still not there, try the normal collapse
3284 * again before we allocate another cluster.
3285 */
3286 goto again;
3287 }
3288 prev = &n->m_next;
3289 }
3290 /*
3291 * No place where we can collapse to a cluster; punt.
3292 * This can occur if, for example, you request 2 frags
3293 * but the packet requires that both be clusters (we
3294 * never reallocate the first mbuf to avoid moving the
3295 * packet header).
3296 */
3297 bad:
3298 return NULL;
3299 }
3300
3301 static int
3302 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
3303 struct mbuf *m0)
3304 {
3305 #define CTS_DURATION \
3306 ath_hal_computetxtime(ah, rt, IEEE80211_ACK_LEN, cix, AH_TRUE)
3307 #define updateCTSForBursting(_ah, _ds, _txq) \
3308 ath_hal_updateCTSForBursting(_ah, _ds, \
3309 _txq->axq_linkbuf != NULL ? _txq->axq_linkbuf->bf_desc : NULL, \
3310 _txq->axq_lastdsWithCTS, _txq->axq_gatingds, \
3311 txopLimit, CTS_DURATION)
3312 struct ieee80211com *ic = &sc->sc_ic;
3313 struct ath_hal *ah = sc->sc_ah;
3314 struct ifnet *ifp = &sc->sc_if;
3315 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
3316 int i, error, iswep, ismcast, keyix, hdrlen, pktlen, try0;
3317 u_int8_t rix, txrate, ctsrate;
3318 u_int8_t cix = 0xff; /* NB: silence compiler */
3319 struct ath_desc *ds, *ds0;
3320 struct ath_txq *txq;
3321 struct ieee80211_frame *wh;
3322 u_int subtype, flags, ctsduration;
3323 HAL_PKT_TYPE atype;
3324 const HAL_RATE_TABLE *rt;
3325 HAL_BOOL shortPreamble;
3326 struct ath_node *an;
3327 struct mbuf *m;
3328 u_int pri;
3329
3330 wh = mtod(m0, struct ieee80211_frame *);
3331 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
3332 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3333 hdrlen = ieee80211_anyhdrsize(wh);
3334 /*
3335 * Packet length must not include any
3336 * pad bytes; deduct them here.
3337 */
3338 pktlen = m0->m_pkthdr.len - (hdrlen & 3);
3339
3340 if (iswep) {
3341 const struct ieee80211_cipher *cip;
3342 struct ieee80211_key *k;
3343
3344 /*
3345 * Construct the 802.11 header+trailer for an encrypted
3346 * frame. The only reason this can fail is because of an
3347 * unknown or unsupported cipher/key type.
3348 */
3349 k = ieee80211_crypto_encap(ic, ni, m0);
3350 if (k == NULL) {
3351 /*
3352 * This can happen when the key is yanked after the
3353 * frame was queued. Just discard the frame; the
3354 * 802.11 layer counts failures and provides
3355 * debugging/diagnostics.
3356 */
3357 m_freem(m0);
3358 return EIO;
3359 }
3360 /*
3361 * Adjust the packet + header lengths for the crypto
3362 * additions and calculate the h/w key index. When
3363 * a s/w mic is done the frame will have had any mic
3364 * added to it prior to entry so skb->len above will
3365 * account for it. Otherwise we need to add it to the
3366 * packet length.
3367 */
3368 cip = k->wk_cipher;
3369 hdrlen += cip->ic_header;
3370 pktlen += cip->ic_header + cip->ic_trailer;
3371 if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0)
3372 pktlen += cip->ic_miclen;
3373 keyix = k->wk_keyix;
3374
3375 /* packet header may have moved, reset our local pointer */
3376 wh = mtod(m0, struct ieee80211_frame *);
3377 } else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
3378 /*
3379 * Use station key cache slot, if assigned.
3380 */
3381 keyix = ni->ni_ucastkey.wk_keyix;
3382 if (keyix == IEEE80211_KEYIX_NONE)
3383 keyix = HAL_TXKEYIX_INVALID;
3384 } else
3385 keyix = HAL_TXKEYIX_INVALID;
3386
3387 pktlen += IEEE80211_CRC_LEN;
3388
3389 /*
3390 * Load the DMA map so any coalescing is done. This
3391 * also calculates the number of descriptors we need.
3392 */
3393 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3394 BUS_DMA_NOWAIT);
3395 if (error == EFBIG) {
3396 /* XXX packet requires too many descriptors */
3397 bf->bf_nseg = ATH_TXDESC+1;
3398 } else if (error != 0) {
3399 sc->sc_stats.ast_tx_busdma++;
3400 m_freem(m0);
3401 return error;
3402 }
3403 /*
3404 * Discard null packets and check for packets that
3405 * require too many TX descriptors. We try to convert
3406 * the latter to a cluster.
3407 */
3408 if (error == EFBIG) { /* too many desc's, linearize */
3409 sc->sc_stats.ast_tx_linear++;
3410 m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
3411 if (m == NULL) {
3412 m_freem(m0);
3413 sc->sc_stats.ast_tx_nombuf++;
3414 return ENOMEM;
3415 }
3416 m0 = m;
3417 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3418 BUS_DMA_NOWAIT);
3419 if (error != 0) {
3420 sc->sc_stats.ast_tx_busdma++;
3421 m_freem(m0);
3422 return error;
3423 }
3424 KASSERT(bf->bf_nseg <= ATH_TXDESC,
3425 ("too many segments after defrag; nseg %u", bf->bf_nseg));
3426 } else if (bf->bf_nseg == 0) { /* null packet, discard */
3427 sc->sc_stats.ast_tx_nodata++;
3428 m_freem(m0);
3429 return EIO;
3430 }
3431 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
3432 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
3433 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
3434 bf->bf_m = m0;
3435 bf->bf_node = ni; /* NB: held reference */
3436
3437 /* setup descriptors */
3438 ds = bf->bf_desc;
3439 rt = sc->sc_currates;
3440 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3441
3442 /*
3443 * NB: the 802.11 layer marks whether or not we should
3444 * use short preamble based on the current mode and
3445 * negotiated parameters.
3446 */
3447 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3448 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) {
3449 shortPreamble = AH_TRUE;
3450 sc->sc_stats.ast_tx_shortpre++;
3451 } else {
3452 shortPreamble = AH_FALSE;
3453 }
3454
3455 an = ATH_NODE(ni);
3456 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */
3457 /*
3458 * Calculate Atheros packet type from IEEE80211 packet header,
3459 * setup for rate calculations, and select h/w transmit queue.
3460 */
3461 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3462 case IEEE80211_FC0_TYPE_MGT:
3463 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3464 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
3465 atype = HAL_PKT_TYPE_BEACON;
3466 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3467 atype = HAL_PKT_TYPE_PROBE_RESP;
3468 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
3469 atype = HAL_PKT_TYPE_ATIM;
3470 else
3471 atype = HAL_PKT_TYPE_NORMAL; /* XXX */
3472 rix = 0; /* XXX lowest rate */
3473 try0 = ATH_TXMAXTRY;
3474 if (shortPreamble)
3475 txrate = an->an_tx_mgtratesp;
3476 else
3477 txrate = an->an_tx_mgtrate;
3478 /* NB: force all management frames to highest queue */
3479 if (ni->ni_flags & IEEE80211_NODE_QOS) {
3480 /* NB: force all management frames to highest queue */
3481 pri = WME_AC_VO;
3482 } else
3483 pri = WME_AC_BE;
3484 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
3485 break;
3486 case IEEE80211_FC0_TYPE_CTL:
3487 atype = HAL_PKT_TYPE_PSPOLL; /* stop setting of duration */
3488 rix = 0; /* XXX lowest rate */
3489 try0 = ATH_TXMAXTRY;
3490 if (shortPreamble)
3491 txrate = an->an_tx_mgtratesp;
3492 else
3493 txrate = an->an_tx_mgtrate;
3494 /* NB: force all ctl frames to highest queue */
3495 if (ni->ni_flags & IEEE80211_NODE_QOS) {
3496 /* NB: force all ctl frames to highest queue */
3497 pri = WME_AC_VO;
3498 } else
3499 pri = WME_AC_BE;
3500 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
3501 break;
3502 case IEEE80211_FC0_TYPE_DATA:
3503 atype = HAL_PKT_TYPE_NORMAL; /* default */
3504 /*
3505 * Data frames; consult the rate control module for
3506 * unicast frames. Send multicast frames at the
3507 * lowest rate.
3508 */
3509 if (!ismcast) {
3510 ath_rate_findrate(sc, an, shortPreamble, pktlen,
3511 &rix, &try0, &txrate);
3512 } else {
3513 rix = 0;
3514 try0 = ATH_TXMAXTRY;
3515 txrate = an->an_tx_mgtrate;
3516 }
3517 sc->sc_txrate = txrate; /* for LED blinking */
3518 /*
3519 * Default all non-QoS traffic to the background queue.
3520 */
3521 if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
3522 pri = M_WME_GETAC(m0);
3523 if (cap->cap_wmeParams[pri].wmep_noackPolicy) {
3524 flags |= HAL_TXDESC_NOACK;
3525 sc->sc_stats.ast_tx_noack++;
3526 }
3527 } else
3528 pri = WME_AC_BE;
3529 break;
3530 default:
3531 if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3532 wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3533 /* XXX statistic */
3534 m_freem(m0);
3535 return EIO;
3536 }
3537 txq = sc->sc_ac2q[pri];
3538
3539 /*
3540 * When servicing one or more stations in power-save mode
3541 * multicast frames must be buffered until after the beacon.
3542 * We use the CAB queue for that.
3543 */
3544 if (ismcast && ic->ic_ps_sta) {
3545 txq = sc->sc_cabq;
3546 /* XXX? more bit in 802.11 frame header */
3547 }
3548
3549 /*
3550 * Calculate miscellaneous flags.
3551 */
3552 if (ismcast) {
3553 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */
3554 sc->sc_stats.ast_tx_noack++;
3555 } else if (pktlen > ic->ic_rtsthreshold) {
3556 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */
3557 cix = rt->info[rix].controlRate;
3558 sc->sc_stats.ast_tx_rts++;
3559 }
3560
3561 /*
3562 * If 802.11g protection is enabled, determine whether
3563 * to use RTS/CTS or just CTS. Note that this is only
3564 * done for OFDM unicast frames.
3565 */
3566 if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3567 rt->info[rix].phy == IEEE80211_T_OFDM &&
3568 (flags & HAL_TXDESC_NOACK) == 0) {
3569 /* XXX fragments must use CCK rates w/ protection */
3570 if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3571 flags |= HAL_TXDESC_RTSENA;
3572 else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3573 flags |= HAL_TXDESC_CTSENA;
3574 cix = rt->info[sc->sc_protrix].controlRate;
3575 sc->sc_stats.ast_tx_protect++;
3576 }
3577
3578 /*
3579 * Calculate duration. This logically belongs in the 802.11
3580 * layer but it lacks sufficient information to calculate it.
3581 */
3582 if ((flags & HAL_TXDESC_NOACK) == 0 &&
3583 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
3584 u_int16_t dur;
3585 /*
3586 * XXX not right with fragmentation.
3587 */
3588 if (shortPreamble)
3589 dur = rt->info[rix].spAckDuration;
3590 else
3591 dur = rt->info[rix].lpAckDuration;
3592 *(u_int16_t *)wh->i_dur = htole16(dur);
3593 }
3594
3595 /*
3596 * Calculate RTS/CTS rate and duration if needed.
3597 */
3598 ctsduration = 0;
3599 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
3600 /*
3601 * CTS transmit rate is derived from the transmit rate
3602 * by looking in the h/w rate table. We must also factor
3603 * in whether or not a short preamble is to be used.
3604 */
3605 /* NB: cix is set above where RTS/CTS is enabled */
3606 KASSERT(cix != 0xff, ("cix not setup"));
3607 ctsrate = rt->info[cix].rateCode;
3608 /*
3609 * Compute the transmit duration based on the frame
3610 * size and the size of an ACK frame. We call into the
3611 * HAL to do the computation since it depends on the
3612 * characteristics of the actual PHY being used.
3613 *
3614 * NB: CTS is assumed the same size as an ACK so we can
3615 * use the precalculated ACK durations.
3616 */
3617 if (shortPreamble) {
3618 ctsrate |= rt->info[cix].shortPreamble;
3619 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
3620 ctsduration += rt->info[cix].spAckDuration;
3621 ctsduration += ath_hal_computetxtime(ah,
3622 rt, pktlen, rix, AH_TRUE);
3623 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
3624 ctsduration += rt->info[cix].spAckDuration;
3625 } else {
3626 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
3627 ctsduration += rt->info[cix].lpAckDuration;
3628 ctsduration += ath_hal_computetxtime(ah,
3629 rt, pktlen, rix, AH_FALSE);
3630 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
3631 ctsduration += rt->info[cix].lpAckDuration;
3632 }
3633 /*
3634 * Must disable multi-rate retry when using RTS/CTS.
3635 */
3636 try0 = ATH_TXMAXTRY;
3637 } else
3638 ctsrate = 0;
3639
3640 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3641 ieee80211_dump_pkt(mtod(m0, caddr_t), m0->m_len,
3642 sc->sc_hwmap[txrate].ieeerate, -1);
3643
3644 if (ic->ic_rawbpf)
3645 bpf_mtap(ic->ic_rawbpf, m0);
3646 if (sc->sc_drvbpf) {
3647 sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
3648 if (iswep)
3649 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3650 sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
3651 sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3652 sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3653
3654 bpf_mtap2(sc->sc_drvbpf,
3655 &sc->sc_tx_th, sc->sc_tx_th_len, m0);
3656 }
3657
3658 /*
3659 * Determine if a tx interrupt should be generated for
3660 * this descriptor. We take a tx interrupt to reap
3661 * descriptors when the h/w hits an EOL condition or
3662 * when the descriptor is specifically marked to generate
3663 * an interrupt. We periodically mark descriptors in this
3664 * way to insure timely replenishing of the supply needed
3665 * for sending frames. Defering interrupts reduces system
3666 * load and potentially allows more concurrent work to be
3667 * done but if done to aggressively can cause senders to
3668 * backup.
3669 *
3670 * NB: use >= to deal with sc_txintrperiod changing
3671 * dynamically through sysctl.
3672 */
3673 if (flags & HAL_TXDESC_INTREQ) {
3674 txq->axq_intrcnt = 0;
3675 } else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
3676 flags |= HAL_TXDESC_INTREQ;
3677 txq->axq_intrcnt = 0;
3678 }
3679
3680 /*
3681 * Formulate first tx descriptor with tx controls.
3682 */
3683 /* XXX check return value? */
3684 ath_hal_setuptxdesc(ah, ds
3685 , pktlen /* packet length */
3686 , hdrlen /* header length */
3687 , atype /* Atheros packet type */
3688 , ni->ni_txpower /* txpower */
3689 , txrate, try0 /* series 0 rate/tries */
3690 , keyix /* key cache index */
3691 , sc->sc_txantenna /* antenna mode */
3692 , flags /* flags */
3693 , ctsrate /* rts/cts rate */
3694 , ctsduration /* rts/cts duration */
3695 );
3696 bf->bf_flags = flags;
3697 /*
3698 * Setup the multi-rate retry state only when we're
3699 * going to use it. This assumes ath_hal_setuptxdesc
3700 * initializes the descriptors (so we don't have to)
3701 * when the hardware supports multi-rate retry and
3702 * we don't use it.
3703 */
3704 if (try0 != ATH_TXMAXTRY)
3705 ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
3706
3707 /*
3708 * Fillin the remainder of the descriptor info.
3709 */
3710 ds0 = ds;
3711 for (i = 0; i < bf->bf_nseg; i++, ds++) {
3712 ds->ds_data = bf->bf_segs[i].ds_addr;
3713 if (i == bf->bf_nseg - 1)
3714 ds->ds_link = 0;
3715 else
3716 ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
3717 ath_hal_filltxdesc(ah, ds
3718 , bf->bf_segs[i].ds_len /* segment length */
3719 , i == 0 /* first segment */
3720 , i == bf->bf_nseg - 1 /* last segment */
3721 , ds0 /* first descriptor */
3722 );
3723 DPRINTF(sc, ATH_DEBUG_XMIT,
3724 "%s: %d: %08x %08x %08x %08x %08x %08x\n",
3725 __func__, i, ds->ds_link, ds->ds_data,
3726 ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
3727 }
3728 /*
3729 * Insert the frame on the outbound list and
3730 * pass it on to the hardware.
3731 */
3732 ATH_TXQ_LOCK(txq);
3733 if (flags & (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) {
3734 u_int32_t txopLimit = IEEE80211_TXOP_TO_US(
3735 cap->cap_wmeParams[pri].wmep_txopLimit);
3736 /*
3737 * When bursting, potentially extend the CTS duration
3738 * of a previously queued frame to cover this frame
3739 * and not exceed the txopLimit. If that can be done
3740 * then disable RTS/CTS on this frame since it's now
3741 * covered (burst extension). Otherwise we must terminate
3742 * the burst before this frame goes out so as not to
3743 * violate the WME parameters. All this is complicated
3744 * as we need to update the state of packets on the
3745 * (live) hardware queue. The logic is buried in the hal
3746 * because it's highly chip-specific.
3747 */
3748 if (txopLimit != 0) {
3749 sc->sc_stats.ast_tx_ctsburst++;
3750 if (updateCTSForBursting(ah, ds0, txq) == 0) {
3751 /*
3752 * This frame was not covered by RTS/CTS from
3753 * the previous frame in the burst; update the
3754 * descriptor pointers so this frame is now
3755 * treated as the last frame for extending a
3756 * burst.
3757 */
3758 txq->axq_lastdsWithCTS = ds0;
3759 /* set gating Desc to final desc */
3760 txq->axq_gatingds =
3761 (struct ath_desc *)txq->axq_link;
3762 } else
3763 sc->sc_stats.ast_tx_ctsext++;
3764 }
3765 }
3766 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
3767 if (txq->axq_link == NULL) {
3768 ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
3769 DPRINTF(sc, ATH_DEBUG_XMIT,
3770 "%s: TXDP[%u] = %p (%p) depth %d\n", __func__,
3771 txq->axq_qnum, (caddr_t)bf->bf_daddr, bf->bf_desc,
3772 txq->axq_depth);
3773 } else {
3774 *txq->axq_link = bf->bf_daddr;
3775 DPRINTF(sc, ATH_DEBUG_XMIT,
3776 "%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
3777 txq->axq_qnum, txq->axq_link,
3778 (caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
3779 }
3780 txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
3781 /*
3782 * The CAB queue is started from the SWBA handler since
3783 * frames only go out on DTIM and to avoid possible races.
3784 */
3785 if (txq != sc->sc_cabq)
3786 ath_hal_txstart(ah, txq->axq_qnum);
3787 ATH_TXQ_UNLOCK(txq);
3788
3789 return 0;
3790 #undef updateCTSForBursting
3791 #undef CTS_DURATION
3792 }
3793
3794 /*
3795 * Process completed xmit descriptors from the specified queue.
3796 */
3797 static void
3798 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
3799 {
3800 struct ath_hal *ah = sc->sc_ah;
3801 struct ieee80211com *ic = &sc->sc_ic;
3802 struct ath_buf *bf;
3803 struct ath_desc *ds, *ds0;
3804 struct ieee80211_node *ni;
3805 struct ath_node *an;
3806 int sr, lr, pri;
3807 HAL_STATUS status;
3808
3809 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
3810 __func__, txq->axq_qnum,
3811 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3812 txq->axq_link);
3813 for (;;) {
3814 ATH_TXQ_LOCK(txq);
3815 txq->axq_intrcnt = 0; /* reset periodic desc intr count */
3816 bf = STAILQ_FIRST(&txq->axq_q);
3817 if (bf == NULL) {
3818 txq->axq_link = NULL;
3819 ATH_TXQ_UNLOCK(txq);
3820 break;
3821 }
3822 ds0 = &bf->bf_desc[0];
3823 ds = &bf->bf_desc[bf->bf_nseg - 1];
3824 status = ath_hal_txprocdesc(ah, ds);
3825 #ifdef AR_DEBUG
3826 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
3827 ath_printtxbuf(bf, status == HAL_OK);
3828 #endif
3829 if (status == HAL_EINPROGRESS) {
3830 ATH_TXQ_UNLOCK(txq);
3831 break;
3832 }
3833 if (ds0 == txq->axq_lastdsWithCTS)
3834 txq->axq_lastdsWithCTS = NULL;
3835 if (ds == txq->axq_gatingds)
3836 txq->axq_gatingds = NULL;
3837 ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3838 ATH_TXQ_UNLOCK(txq);
3839
3840 ni = bf->bf_node;
3841 if (ni != NULL) {
3842 an = ATH_NODE(ni);
3843 if (ds->ds_txstat.ts_status == 0) {
3844 u_int8_t txant = ds->ds_txstat.ts_antenna;
3845 sc->sc_stats.ast_ant_tx[txant]++;
3846 sc->sc_ant_tx[txant]++;
3847 if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
3848 sc->sc_stats.ast_tx_altrate++;
3849 sc->sc_stats.ast_tx_rssi =
3850 ds->ds_txstat.ts_rssi;
3851 ATH_RSSI_LPF(an->an_halstats.ns_avgtxrssi,
3852 ds->ds_txstat.ts_rssi);
3853 pri = M_WME_GETAC(bf->bf_m);
3854 if (pri >= WME_AC_VO)
3855 ic->ic_wme.wme_hipri_traffic++;
3856 ni->ni_inact = ni->ni_inact_reload;
3857 } else {
3858 if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
3859 sc->sc_stats.ast_tx_xretries++;
3860 if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
3861 sc->sc_stats.ast_tx_fifoerr++;
3862 if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
3863 sc->sc_stats.ast_tx_filtered++;
3864 }
3865 sr = ds->ds_txstat.ts_shortretry;
3866 lr = ds->ds_txstat.ts_longretry;
3867 sc->sc_stats.ast_tx_shortretry += sr;
3868 sc->sc_stats.ast_tx_longretry += lr;
3869 /*
3870 * Hand the descriptor to the rate control algorithm.
3871 */
3872 if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
3873 (bf->bf_flags & HAL_TXDESC_NOACK) == 0)
3874 ath_rate_tx_complete(sc, an, ds, ds0);
3875 /*
3876 * Reclaim reference to node.
3877 *
3878 * NB: the node may be reclaimed here if, for example
3879 * this is a DEAUTH message that was sent and the
3880 * node was timed out due to inactivity.
3881 */
3882 ieee80211_free_node(ni);
3883 }
3884 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
3885 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3886 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3887 m_freem(bf->bf_m);
3888 bf->bf_m = NULL;
3889 bf->bf_node = NULL;
3890
3891 ATH_TXBUF_LOCK(sc);
3892 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
3893 ATH_TXBUF_UNLOCK(sc);
3894 }
3895 }
3896
3897 /*
3898 * Deferred processing of transmit interrupt; special-cased
3899 * for a single hardware transmit queue (e.g. 5210 and 5211).
3900 */
3901 static void
3902 ath_tx_proc_q0(void *arg, int npending)
3903 {
3904 struct ath_softc *sc = arg;
3905 struct ifnet *ifp = &sc->sc_if;
3906
3907 ath_tx_processq(sc, &sc->sc_txq[0]);
3908 ath_tx_processq(sc, sc->sc_cabq);
3909 ifp->if_flags &= ~IFF_OACTIVE;
3910 sc->sc_tx_timer = 0;
3911
3912 if (sc->sc_softled)
3913 ath_led_event(sc, ATH_LED_TX);
3914
3915 ath_start(ifp);
3916 }
3917
3918 /*
3919 * Deferred processing of transmit interrupt; special-cased
3920 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
3921 */
3922 static void
3923 ath_tx_proc_q0123(void *arg, int npending)
3924 {
3925 struct ath_softc *sc = arg;
3926 struct ifnet *ifp = &sc->sc_if;
3927
3928 /*
3929 * Process each active queue.
3930 */
3931 ath_tx_processq(sc, &sc->sc_txq[0]);
3932 ath_tx_processq(sc, &sc->sc_txq[1]);
3933 ath_tx_processq(sc, &sc->sc_txq[2]);
3934 ath_tx_processq(sc, &sc->sc_txq[3]);
3935 ath_tx_processq(sc, sc->sc_cabq);
3936
3937 ifp->if_flags &= ~IFF_OACTIVE;
3938 sc->sc_tx_timer = 0;
3939
3940 if (sc->sc_softled)
3941 ath_led_event(sc, ATH_LED_TX);
3942
3943 ath_start(ifp);
3944 }
3945
3946 /*
3947 * Deferred processing of transmit interrupt.
3948 */
3949 static void
3950 ath_tx_proc(void *arg, int npending)
3951 {
3952 struct ath_softc *sc = arg;
3953 struct ifnet *ifp = &sc->sc_if;
3954 int i;
3955
3956 /*
3957 * Process each active queue.
3958 */
3959 /* XXX faster to read ISR_S0_S and ISR_S1_S to determine q's? */
3960 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3961 if (ATH_TXQ_SETUP(sc, i))
3962 ath_tx_processq(sc, &sc->sc_txq[i]);
3963
3964 ifp->if_flags &= ~IFF_OACTIVE;
3965 sc->sc_tx_timer = 0;
3966
3967 if (sc->sc_softled)
3968 ath_led_event(sc, ATH_LED_TX);
3969
3970 ath_start(ifp);
3971 }
3972
3973 static void
3974 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
3975 {
3976 struct ath_hal *ah = sc->sc_ah;
3977 struct ieee80211_node *ni;
3978 struct ath_buf *bf;
3979
3980 /*
3981 * NB: this assumes output has been stopped and
3982 * we do not need to block ath_tx_tasklet
3983 */
3984 for (;;) {
3985 ATH_TXQ_LOCK(txq);
3986 bf = STAILQ_FIRST(&txq->axq_q);
3987 if (bf == NULL) {
3988 txq->axq_link = NULL;
3989 ATH_TXQ_UNLOCK(txq);
3990 break;
3991 }
3992 ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3993 ATH_TXQ_UNLOCK(txq);
3994 #ifdef AR_DEBUG
3995 if (sc->sc_debug & ATH_DEBUG_RESET)
3996 ath_printtxbuf(bf,
3997 ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
3998 #endif /* AR_DEBUG */
3999 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4000 m_freem(bf->bf_m);
4001 bf->bf_m = NULL;
4002 ni = bf->bf_node;
4003 bf->bf_node = NULL;
4004 if (ni != NULL) {
4005 /*
4006 * Reclaim node reference.
4007 */
4008 ieee80211_free_node(ni);
4009 }
4010 ATH_TXBUF_LOCK(sc);
4011 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4012 ATH_TXBUF_UNLOCK(sc);
4013 }
4014 }
4015
4016 static void
4017 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4018 {
4019 struct ath_hal *ah = sc->sc_ah;
4020
4021 (void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4022 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4023 __func__, txq->axq_qnum,
4024 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4025 txq->axq_link);
4026 }
4027
4028 /*
4029 * Drain the transmit queues and reclaim resources.
4030 */
4031 static void
4032 ath_draintxq(struct ath_softc *sc)
4033 {
4034 struct ath_hal *ah = sc->sc_ah;
4035 struct ifnet *ifp = &sc->sc_if;
4036 int i;
4037
4038 /* XXX return value */
4039 if (!sc->sc_invalid) {
4040 /* don't touch the hardware if marked invalid */
4041 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4042 DPRINTF(sc, ATH_DEBUG_RESET,
4043 "%s: beacon queue %p\n", __func__,
4044 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
4045 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4046 if (ATH_TXQ_SETUP(sc, i))
4047 ath_tx_stopdma(sc, &sc->sc_txq[i]);
4048 }
4049 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4050 if (ATH_TXQ_SETUP(sc, i))
4051 ath_tx_draintxq(sc, &sc->sc_txq[i]);
4052 ifp->if_flags &= ~IFF_OACTIVE;
4053 sc->sc_tx_timer = 0;
4054 }
4055
4056 /*
4057 * Disable the receive h/w in preparation for a reset.
4058 */
4059 static void
4060 ath_stoprecv(struct ath_softc *sc)
4061 {
4062 #define PA2DESC(_sc, _pa) \
4063 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
4064 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
4065 struct ath_hal *ah = sc->sc_ah;
4066
4067 ath_hal_stoppcurecv(ah); /* disable PCU */
4068 ath_hal_setrxfilter(ah, 0); /* clear recv filter */
4069 ath_hal_stopdmarecv(ah); /* disable DMA engine */
4070 DELAY(3000); /* 3ms is long enough for 1 frame */
4071 #ifdef AR_DEBUG
4072 if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
4073 struct ath_buf *bf;
4074
4075 printf("%s: rx queue %p, link %p\n", __func__,
4076 (caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
4077 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4078 struct ath_desc *ds = bf->bf_desc;
4079 HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
4080 bf->bf_daddr, PA2DESC(sc, ds->ds_link));
4081 if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
4082 ath_printrxbuf(bf, status == HAL_OK);
4083 }
4084 }
4085 #endif
4086 sc->sc_rxlink = NULL; /* just in case */
4087 #undef PA2DESC
4088 }
4089
4090 /*
4091 * Enable the receive h/w following a reset.
4092 */
4093 static int
4094 ath_startrecv(struct ath_softc *sc)
4095 {
4096 struct ath_hal *ah = sc->sc_ah;
4097 struct ath_buf *bf;
4098
4099 sc->sc_rxlink = NULL;
4100 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4101 int error = ath_rxbuf_init(sc, bf);
4102 if (error != 0) {
4103 DPRINTF(sc, ATH_DEBUG_RECV,
4104 "%s: ath_rxbuf_init failed %d\n",
4105 __func__, error);
4106 return error;
4107 }
4108 }
4109
4110 bf = STAILQ_FIRST(&sc->sc_rxbuf);
4111 ath_hal_putrxbuf(ah, bf->bf_daddr);
4112 ath_hal_rxena(ah); /* enable recv descriptors */
4113 ath_mode_init(sc); /* set filters, etc. */
4114 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */
4115 return 0;
4116 }
4117
4118 /*
4119 * Update internal state after a channel change.
4120 */
4121 static void
4122 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4123 {
4124 struct ieee80211com *ic = &sc->sc_ic;
4125 enum ieee80211_phymode mode;
4126 u_int16_t flags;
4127
4128 /*
4129 * Change channels and update the h/w rate map
4130 * if we're switching; e.g. 11a to 11b/g.
4131 */
4132 mode = ieee80211_chan2mode(ic, chan);
4133 if (mode != sc->sc_curmode)
4134 ath_setcurmode(sc, mode);
4135 /*
4136 * Update BPF state. NB: ethereal et. al. don't handle
4137 * merged flags well so pick a unique mode for their use.
4138 */
4139 if (IEEE80211_IS_CHAN_A(chan))
4140 flags = IEEE80211_CHAN_A;
4141 /* XXX 11g schizophrenia */
4142 else if (IEEE80211_IS_CHAN_G(chan) ||
4143 IEEE80211_IS_CHAN_PUREG(chan))
4144 flags = IEEE80211_CHAN_G;
4145 else
4146 flags = IEEE80211_CHAN_B;
4147 if (IEEE80211_IS_CHAN_T(chan))
4148 flags |= IEEE80211_CHAN_TURBO;
4149 sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
4150 htole16(chan->ic_freq);
4151 sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
4152 htole16(flags);
4153 }
4154
4155 /*
4156 * Set/change channels. If the channel is really being changed,
4157 * it's done by reseting the chip. To accomplish this we must
4158 * first cleanup any pending DMA, then restart stuff after a la
4159 * ath_init.
4160 */
4161 static int
4162 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4163 {
4164 struct ath_hal *ah = sc->sc_ah;
4165 struct ieee80211com *ic = &sc->sc_ic;
4166 HAL_CHANNEL hchan;
4167
4168 /*
4169 * Convert to a HAL channel description with
4170 * the flags constrained to reflect the current
4171 * operating mode.
4172 */
4173 hchan.channel = chan->ic_freq;
4174 hchan.channelFlags = ath_chan2flags(ic, chan);
4175
4176 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz) -> %u (%u MHz)\n",
4177 __func__,
4178 ath_hal_mhz2ieee(sc->sc_curchan.channel,
4179 sc->sc_curchan.channelFlags),
4180 sc->sc_curchan.channel,
4181 ath_hal_mhz2ieee(hchan.channel, hchan.channelFlags), hchan.channel);
4182 if (hchan.channel != sc->sc_curchan.channel ||
4183 hchan.channelFlags != sc->sc_curchan.channelFlags) {
4184 HAL_STATUS status;
4185
4186 /*
4187 * To switch channels clear any pending DMA operations;
4188 * wait long enough for the RX fifo to drain, reset the
4189 * hardware at the new frequency, and then re-enable
4190 * the relevant bits of the h/w.
4191 */
4192 ath_hal_intrset(ah, 0); /* disable interrupts */
4193 ath_draintxq(sc); /* clear pending tx frames */
4194 ath_stoprecv(sc); /* turn off frame recv */
4195 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
4196 if_printf(&sc->sc_if, "ath_chan_set: unable to reset "
4197 "channel %u (%u Mhz)\n",
4198 ieee80211_chan2ieee(ic, chan), chan->ic_freq);
4199 return EIO;
4200 }
4201 sc->sc_curchan = hchan;
4202 ath_update_txpow(sc); /* update tx power state */
4203
4204 /*
4205 * Re-enable rx framework.
4206 */
4207 if (ath_startrecv(sc) != 0) {
4208 if_printf(&sc->sc_if,
4209 "ath_chan_set: unable to restart recv logic\n");
4210 return EIO;
4211 }
4212
4213 /*
4214 * Change channels and update the h/w rate map
4215 * if we're switching; e.g. 11a to 11b/g.
4216 */
4217 ic->ic_ibss_chan = chan;
4218 ath_chan_change(sc, chan);
4219
4220 /*
4221 * Re-enable interrupts.
4222 */
4223 ath_hal_intrset(ah, sc->sc_imask);
4224 }
4225 return 0;
4226 }
4227
4228 static void
4229 ath_next_scan(void *arg)
4230 {
4231 struct ath_softc *sc = arg;
4232 struct ieee80211com *ic = &sc->sc_ic;
4233 int s;
4234
4235 /* don't call ath_start w/o network interrupts blocked */
4236 s = splnet();
4237
4238 if (ic->ic_state == IEEE80211_S_SCAN)
4239 ieee80211_next_scan(ic);
4240 splx(s);
4241 }
4242
4243 /*
4244 * Periodically recalibrate the PHY to account
4245 * for temperature/environment changes.
4246 */
4247 static void
4248 ath_calibrate(void *arg)
4249 {
4250 struct ath_softc *sc = arg;
4251 struct ath_hal *ah = sc->sc_ah;
4252
4253 sc->sc_stats.ast_per_cal++;
4254
4255 ATH_LOCK(sc);
4256 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: channel %u/%x\n",
4257 __func__, sc->sc_curchan.channel, sc->sc_curchan.channelFlags);
4258
4259 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4260 /*
4261 * Rfgain is out of bounds, reset the chip
4262 * to load new gain values.
4263 */
4264 sc->sc_stats.ast_per_rfgain++;
4265 ath_reset(&sc->sc_if);
4266 }
4267 if (!ath_hal_calibrate(ah, &sc->sc_curchan)) {
4268 DPRINTF(sc, ATH_DEBUG_ANY,
4269 "%s: calibration of channel %u failed\n",
4270 __func__, sc->sc_curchan.channel);
4271 sc->sc_stats.ast_per_calfail++;
4272 }
4273 callout_reset(&sc->sc_cal_ch, ath_calinterval * hz, ath_calibrate, sc);
4274 ATH_UNLOCK(sc);
4275 }
4276
4277 static int
4278 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
4279 {
4280 struct ifnet *ifp = ic->ic_ifp;
4281 struct ath_softc *sc = ifp->if_softc;
4282 struct ath_hal *ah = sc->sc_ah;
4283 struct ieee80211_node *ni;
4284 int i, error;
4285 const u_int8_t *bssid;
4286 u_int32_t rfilt;
4287 static const HAL_LED_STATE leds[] = {
4288 HAL_LED_INIT, /* IEEE80211_S_INIT */
4289 HAL_LED_SCAN, /* IEEE80211_S_SCAN */
4290 HAL_LED_AUTH, /* IEEE80211_S_AUTH */
4291 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */
4292 HAL_LED_RUN, /* IEEE80211_S_RUN */
4293 };
4294
4295 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4296 ieee80211_state_name[ic->ic_state],
4297 ieee80211_state_name[nstate]);
4298
4299 callout_stop(&sc->sc_scan_ch);
4300 callout_stop(&sc->sc_cal_ch);
4301 ath_hal_setledstate(ah, leds[nstate]); /* set LED */
4302
4303 if (nstate == IEEE80211_S_INIT) {
4304 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4305 /*
4306 * NB: disable interrupts so we don't rx frames.
4307 */
4308 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4309 /*
4310 * Notify the rate control algorithm.
4311 */
4312 ath_rate_newstate(sc, nstate);
4313 goto done;
4314 }
4315 ni = ic->ic_bss;
4316 error = ath_chan_set(sc, ni->ni_chan);
4317 if (error != 0)
4318 goto bad;
4319 rfilt = ath_calcrxfilter(sc, nstate);
4320 if (nstate == IEEE80211_S_SCAN)
4321 bssid = ifp->if_broadcastaddr;
4322 else
4323 bssid = ni->ni_bssid;
4324 ath_hal_setrxfilter(ah, rfilt);
4325 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
4326 __func__, rfilt, ether_sprintf(bssid));
4327
4328 if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
4329 ath_hal_setassocid(ah, bssid, ni->ni_associd);
4330 else
4331 ath_hal_setassocid(ah, bssid, 0);
4332 if (ic->ic_flags & IEEE80211_F_PRIVACY) {
4333 for (i = 0; i < IEEE80211_WEP_NKID; i++)
4334 if (ath_hal_keyisvalid(ah, i))
4335 ath_hal_keysetmac(ah, i, bssid);
4336 }
4337
4338 /*
4339 * Notify the rate control algorithm so rates
4340 * are setup should ath_beacon_alloc be called.
4341 */
4342 ath_rate_newstate(sc, nstate);
4343
4344 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4345 /* nothing to do */;
4346 } else if (nstate == IEEE80211_S_RUN) {
4347 DPRINTF(sc, ATH_DEBUG_STATE,
4348 "%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
4349 "capinfo=0x%04x chan=%d\n"
4350 , __func__
4351 , ic->ic_flags
4352 , ni->ni_intval
4353 , ether_sprintf(ni->ni_bssid)
4354 , ni->ni_capinfo
4355 , ieee80211_chan2ieee(ic, ni->ni_chan));
4356
4357 switch (ic->ic_opmode) {
4358 case IEEE80211_M_HOSTAP:
4359 case IEEE80211_M_IBSS:
4360 /*
4361 * Allocate and setup the beacon frame.
4362 *
4363 * Stop any previous beacon DMA. This may be
4364 * necessary, for example, when an ibss merge
4365 * causes reconfiguration; there will be a state
4366 * transition from RUN->RUN that means we may
4367 * be called with beacon transmission active.
4368 */
4369 ath_hal_stoptxdma(ah, sc->sc_bhalq);
4370 ath_beacon_free(sc);
4371 error = ath_beacon_alloc(sc, ni);
4372 if (error != 0)
4373 goto bad;
4374 break;
4375 case IEEE80211_M_STA:
4376 /*
4377 * Allocate a key cache slot to the station.
4378 */
4379 if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
4380 sc->sc_hasclrkey &&
4381 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4382 ath_setup_stationkey(ni);
4383 break;
4384 default:
4385 break;
4386 }
4387
4388 /*
4389 * Configure the beacon and sleep timers.
4390 */
4391 ath_beacon_config(sc);
4392 } else {
4393 ath_hal_intrset(ah,
4394 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4395 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4396 }
4397 done:
4398 /*
4399 * Invoke the parent method to complete the work.
4400 */
4401 error = sc->sc_newstate(ic, nstate, arg);
4402 /*
4403 * Finally, start any timers.
4404 */
4405 if (nstate == IEEE80211_S_RUN) {
4406 /* start periodic recalibration timer */
4407 callout_reset(&sc->sc_cal_ch, ath_calinterval * hz,
4408 ath_calibrate, sc);
4409 } else if (nstate == IEEE80211_S_SCAN) {
4410 /* start ap/neighbor scan timer */
4411 callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
4412 ath_next_scan, sc);
4413 }
4414 bad:
4415 return error;
4416 }
4417
4418 /*
4419 * Allocate a key cache slot to the station so we can
4420 * setup a mapping from key index to node. The key cache
4421 * slot is needed for managing antenna state and for
4422 * compression when stations do not use crypto. We do
4423 * it uniliaterally here; if crypto is employed this slot
4424 * will be reassigned.
4425 */
4426 static void
4427 ath_setup_stationkey(struct ieee80211_node *ni)
4428 {
4429 struct ieee80211com *ic = ni->ni_ic;
4430 struct ath_softc *sc = ic->ic_ifp->if_softc;
4431 u_int16_t keyix;
4432
4433 keyix = ath_key_alloc(ic, &ni->ni_ucastkey);
4434 if (keyix == IEEE80211_KEYIX_NONE) {
4435 /*
4436 * Key cache is full; we'll fall back to doing
4437 * the more expensive lookup in software. Note
4438 * this also means no h/w compression.
4439 */
4440 /* XXX msg+statistic */
4441 } else {
4442 ni->ni_ucastkey.wk_keyix = keyix;
4443 /* NB: this will create a pass-thru key entry */
4444 ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
4445 }
4446 }
4447
4448 /*
4449 * Setup driver-specific state for a newly associated node.
4450 * Note that we're called also on a re-associate, the isnew
4451 * param tells us if this is the first time or not.
4452 */
4453 static void
4454 ath_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
4455 {
4456 struct ath_softc *sc = ic->ic_ifp->if_softc;
4457
4458 ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
4459 if (isnew &&
4460 (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
4461 KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
4462 ("new assoc with a unicast key already setup (keyix %u)",
4463 ni->ni_ucastkey.wk_keyix));
4464 ath_setup_stationkey(ni);
4465 }
4466 }
4467
4468 static int
4469 ath_getchannels(struct ath_softc *sc, u_int cc,
4470 HAL_BOOL outdoor, HAL_BOOL xchanmode)
4471 {
4472 struct ieee80211com *ic = &sc->sc_ic;
4473 struct ifnet *ifp = &sc->sc_if;
4474 struct ath_hal *ah = sc->sc_ah;
4475 HAL_CHANNEL *chans;
4476 int i, ix, nchan;
4477
4478 chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
4479 M_TEMP, M_NOWAIT);
4480 if (chans == NULL) {
4481 if_printf(ifp, "unable to allocate channel table\n");
4482 return ENOMEM;
4483 }
4484 if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
4485 cc, HAL_MODE_ALL, outdoor, xchanmode)) {
4486 u_int32_t rd;
4487
4488 ath_hal_getregdomain(ah, &rd);
4489 if_printf(ifp, "unable to collect channel list from hal; "
4490 "regdomain likely %u country code %u\n", rd, cc);
4491 free(chans, M_TEMP);
4492 return EINVAL;
4493 }
4494
4495 /*
4496 * Convert HAL channels to ieee80211 ones and insert
4497 * them in the table according to their channel number.
4498 */
4499 for (i = 0; i < nchan; i++) {
4500 HAL_CHANNEL *c = &chans[i];
4501 ix = ath_hal_mhz2ieee(c->channel, c->channelFlags);
4502 if (ix > IEEE80211_CHAN_MAX) {
4503 if_printf(ifp, "bad hal channel %u (%u/%x) ignored\n",
4504 ix, c->channel, c->channelFlags);
4505 continue;
4506 }
4507 DPRINTF(sc, ATH_DEBUG_ANY,
4508 "%s: HAL channel %d/%d freq %d flags %#04x idx %d\n",
4509 sc->sc_dev.dv_xname, i, nchan, c->channel, c->channelFlags,
4510 ix);
4511 /* NB: flags are known to be compatible */
4512 if (ic->ic_channels[ix].ic_freq == 0) {
4513 ic->ic_channels[ix].ic_freq = c->channel;
4514 ic->ic_channels[ix].ic_flags = c->channelFlags;
4515 } else {
4516 /* channels overlap; e.g. 11g and 11b */
4517 ic->ic_channels[ix].ic_flags |= c->channelFlags;
4518 }
4519 }
4520 free(chans, M_TEMP);
4521 return 0;
4522 }
4523
4524 static void
4525 ath_led_done(void *arg)
4526 {
4527 struct ath_softc *sc = arg;
4528
4529 sc->sc_blinking = 0;
4530 }
4531
4532 /*
4533 * Turn the LED off: flip the pin and then set a timer so no
4534 * update will happen for the specified duration.
4535 */
4536 static void
4537 ath_led_off(void *arg)
4538 {
4539 struct ath_softc *sc = arg;
4540
4541 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
4542 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
4543 }
4544
4545 /*
4546 * Blink the LED according to the specified on/off times.
4547 */
4548 static void
4549 ath_led_blink(struct ath_softc *sc, int on, int off)
4550 {
4551 DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
4552 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
4553 sc->sc_blinking = 1;
4554 sc->sc_ledoff = off;
4555 callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
4556 }
4557
4558 static void
4559 ath_led_event(struct ath_softc *sc, int event)
4560 {
4561
4562 sc->sc_ledevent = ticks; /* time of last event */
4563 if (sc->sc_blinking) /* don't interrupt active blink */
4564 return;
4565 switch (event) {
4566 case ATH_LED_POLL:
4567 ath_led_blink(sc, sc->sc_hwmap[0].ledon,
4568 sc->sc_hwmap[0].ledoff);
4569 break;
4570 case ATH_LED_TX:
4571 ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
4572 sc->sc_hwmap[sc->sc_txrate].ledoff);
4573 break;
4574 case ATH_LED_RX:
4575 ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
4576 sc->sc_hwmap[sc->sc_rxrate].ledoff);
4577 break;
4578 }
4579 }
4580
4581 static void
4582 ath_update_txpow(struct ath_softc *sc)
4583 {
4584 struct ieee80211com *ic = &sc->sc_ic;
4585 struct ath_hal *ah = sc->sc_ah;
4586 u_int32_t txpow;
4587
4588 if (sc->sc_curtxpow != ic->ic_txpowlimit) {
4589 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
4590 /* read back in case value is clamped */
4591 ath_hal_gettxpowlimit(ah, &txpow);
4592 ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
4593 }
4594 /*
4595 * Fetch max tx power level for status requests.
4596 */
4597 ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
4598 ic->ic_bss->ni_txpower = txpow;
4599 }
4600
4601 static int
4602 ath_rate_setup(struct ath_softc *sc, u_int mode)
4603 {
4604 struct ath_hal *ah = sc->sc_ah;
4605 struct ieee80211com *ic = &sc->sc_ic;
4606 const HAL_RATE_TABLE *rt;
4607 struct ieee80211_rateset *rs;
4608 int i, maxrates;
4609
4610 switch (mode) {
4611 case IEEE80211_MODE_11A:
4612 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11A);
4613 break;
4614 case IEEE80211_MODE_11B:
4615 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11B);
4616 break;
4617 case IEEE80211_MODE_11G:
4618 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11G);
4619 break;
4620 case IEEE80211_MODE_TURBO_A:
4621 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_TURBO);
4622 break;
4623 case IEEE80211_MODE_TURBO_G:
4624 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_108G);
4625 break;
4626 default:
4627 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
4628 __func__, mode);
4629 return 0;
4630 }
4631 rt = sc->sc_rates[mode];
4632 if (rt == NULL)
4633 return 0;
4634 if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
4635 DPRINTF(sc, ATH_DEBUG_ANY,
4636 "%s: rate table too small (%u > %u)\n",
4637 __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
4638 maxrates = IEEE80211_RATE_MAXSIZE;
4639 } else
4640 maxrates = rt->rateCount;
4641 rs = &ic->ic_sup_rates[mode];
4642 for (i = 0; i < maxrates; i++)
4643 rs->rs_rates[i] = rt->info[i].dot11Rate;
4644 rs->rs_nrates = maxrates;
4645 return 1;
4646 }
4647
4648 static void
4649 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
4650 {
4651 #define N(a) (sizeof(a)/sizeof(a[0]))
4652 /* NB: on/off times from the Atheros NDIS driver, w/ permission */
4653 static const struct {
4654 u_int rate; /* tx/rx 802.11 rate */
4655 u_int16_t timeOn; /* LED on time (ms) */
4656 u_int16_t timeOff; /* LED off time (ms) */
4657 } blinkrates[] = {
4658 { 108, 40, 10 },
4659 { 96, 44, 11 },
4660 { 72, 50, 13 },
4661 { 48, 57, 14 },
4662 { 36, 67, 16 },
4663 { 24, 80, 20 },
4664 { 22, 100, 25 },
4665 { 18, 133, 34 },
4666 { 12, 160, 40 },
4667 { 10, 200, 50 },
4668 { 6, 240, 58 },
4669 { 4, 267, 66 },
4670 { 2, 400, 100 },
4671 { 0, 500, 130 },
4672 };
4673 const HAL_RATE_TABLE *rt;
4674 int i, j;
4675
4676 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
4677 rt = sc->sc_rates[mode];
4678 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
4679 for (i = 0; i < rt->rateCount; i++)
4680 sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
4681 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
4682 for (i = 0; i < 32; i++) {
4683 u_int8_t ix = rt->rateCodeToIndex[i];
4684 if (ix == 0xff) {
4685 sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
4686 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
4687 continue;
4688 }
4689 sc->sc_hwmap[i].ieeerate =
4690 rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
4691 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
4692 if (rt->info[ix].shortPreamble ||
4693 rt->info[ix].phy == IEEE80211_T_OFDM)
4694 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
4695 /* NB: receive frames include FCS */
4696 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
4697 IEEE80211_RADIOTAP_F_FCS;
4698 /* setup blink rate table to avoid per-packet lookup */
4699 for (j = 0; j < N(blinkrates)-1; j++)
4700 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
4701 break;
4702 /* NB: this uses the last entry if the rate isn't found */
4703 /* XXX beware of overlow */
4704 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
4705 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
4706 }
4707 sc->sc_currates = rt;
4708 sc->sc_curmode = mode;
4709 /*
4710 * All protection frames are transmited at 2Mb/s for
4711 * 11g, otherwise at 1Mb/s.
4712 * XXX select protection rate index from rate table.
4713 */
4714 sc->sc_protrix = (mode == IEEE80211_MODE_11G ? 1 : 0);
4715 /* NB: caller is responsible for reseting rate control state */
4716 #undef N
4717 }
4718
4719 #ifdef AR_DEBUG
4720 static void
4721 ath_printrxbuf(struct ath_buf *bf, int done)
4722 {
4723 struct ath_desc *ds;
4724 int i;
4725
4726 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
4727 printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n",
4728 i, ds, (struct ath_desc *)bf->bf_daddr + i,
4729 ds->ds_link, ds->ds_data,
4730 ds->ds_ctl0, ds->ds_ctl1,
4731 ds->ds_hw[0], ds->ds_hw[1],
4732 !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
4733 }
4734 }
4735
4736 static void
4737 ath_printtxbuf(struct ath_buf *bf, int done)
4738 {
4739 struct ath_desc *ds;
4740 int i;
4741
4742 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
4743 printf("T%d (%p %p) %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
4744 i, ds, (struct ath_desc *)bf->bf_daddr + i,
4745 ds->ds_link, ds->ds_data,
4746 ds->ds_ctl0, ds->ds_ctl1,
4747 ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
4748 !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
4749 }
4750 }
4751 #endif /* AR_DEBUG */
4752
4753 static void
4754 ath_watchdog(struct ifnet *ifp)
4755 {
4756 struct ath_softc *sc = ifp->if_softc;
4757 struct ieee80211com *ic = &sc->sc_ic;
4758
4759 ifp->if_timer = 0;
4760 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
4761 return;
4762 if (sc->sc_tx_timer) {
4763 if (--sc->sc_tx_timer == 0) {
4764 if_printf(ifp, "device timeout\n");
4765 ath_reset(ifp);
4766 ifp->if_oerrors++;
4767 sc->sc_stats.ast_watchdog++;
4768 } else
4769 ifp->if_timer = 1;
4770 }
4771 ieee80211_watchdog(ic);
4772 }
4773
4774 /*
4775 * Diagnostic interface to the HAL. This is used by various
4776 * tools to do things like retrieve register contents for
4777 * debugging. The mechanism is intentionally opaque so that
4778 * it can change frequently w/o concern for compatiblity.
4779 */
4780 static int
4781 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
4782 {
4783 struct ath_hal *ah = sc->sc_ah;
4784 u_int id = ad->ad_id & ATH_DIAG_ID;
4785 void *indata = NULL;
4786 void *outdata = NULL;
4787 u_int32_t insize = ad->ad_in_size;
4788 u_int32_t outsize = ad->ad_out_size;
4789 int error = 0;
4790
4791 if (ad->ad_id & ATH_DIAG_IN) {
4792 /*
4793 * Copy in data.
4794 */
4795 indata = malloc(insize, M_TEMP, M_NOWAIT);
4796 if (indata == NULL) {
4797 error = ENOMEM;
4798 goto bad;
4799 }
4800 error = copyin(ad->ad_in_data, indata, insize);
4801 if (error)
4802 goto bad;
4803 }
4804 if (ad->ad_id & ATH_DIAG_DYN) {
4805 /*
4806 * Allocate a buffer for the results (otherwise the HAL
4807 * returns a pointer to a buffer where we can read the
4808 * results). Note that we depend on the HAL leaving this
4809 * pointer for us to use below in reclaiming the buffer;
4810 * may want to be more defensive.
4811 */
4812 outdata = malloc(outsize, M_TEMP, M_NOWAIT);
4813 if (outdata == NULL) {
4814 error = ENOMEM;
4815 goto bad;
4816 }
4817 }
4818 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
4819 if (outsize < ad->ad_out_size)
4820 ad->ad_out_size = outsize;
4821 if (outdata != NULL)
4822 error = copyout(outdata, ad->ad_out_data,
4823 ad->ad_out_size);
4824 } else {
4825 error = EINVAL;
4826 }
4827 bad:
4828 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
4829 free(indata, M_TEMP);
4830 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
4831 free(outdata, M_TEMP);
4832 return error;
4833 }
4834
4835 static int
4836 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
4837 {
4838 #define IS_RUNNING(ifp) \
4839 ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP))
4840 struct ath_softc *sc = ifp->if_softc;
4841 struct ieee80211com *ic = &sc->sc_ic;
4842 struct ifreq *ifr = (struct ifreq *)data;
4843 int error = 0;
4844
4845 ATH_LOCK(sc);
4846 switch (cmd) {
4847 case SIOCSIFFLAGS:
4848 if (IS_RUNNING(ifp)) {
4849 /*
4850 * To avoid rescanning another access point,
4851 * do not call ath_init() here. Instead,
4852 * only reflect promisc mode settings.
4853 */
4854 ath_mode_init(sc);
4855 } else if (ifp->if_flags & IFF_UP) {
4856 /*
4857 * Beware of being called during attach/detach
4858 * to reset promiscuous mode. In that case we
4859 * will still be marked UP but not RUNNING.
4860 * However trying to re-init the interface
4861 * is the wrong thing to do as we've already
4862 * torn down much of our state. There's
4863 * probably a better way to deal with this.
4864 */
4865 if (!sc->sc_invalid && ic->ic_bss != NULL)
4866 ath_init(sc); /* XXX lose error */
4867 } else
4868 ath_stop_locked(ifp, 1);
4869 break;
4870 case SIOCADDMULTI:
4871 case SIOCDELMULTI:
4872 error = (cmd == SIOCADDMULTI) ?
4873 ether_addmulti(ifr, &sc->sc_ec) :
4874 ether_delmulti(ifr, &sc->sc_ec);
4875 if (error == ENETRESET) {
4876 if (ifp->if_flags & IFF_RUNNING)
4877 ath_mode_init(sc);
4878 error = 0;
4879 }
4880 break;
4881 case SIOCGATHSTATS:
4882 /* NB: embed these numbers to get a consistent view */
4883 sc->sc_stats.ast_tx_packets = ifp->if_opackets;
4884 sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
4885 sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
4886 ATH_UNLOCK(sc);
4887 /*
4888 * NB: Drop the softc lock in case of a page fault;
4889 * we'll accept any potential inconsisentcy in the
4890 * statistics. The alternative is to copy the data
4891 * to a local structure.
4892 */
4893 return copyout(&sc->sc_stats,
4894 ifr->ifr_data, sizeof (sc->sc_stats));
4895 case SIOCGATHDIAG:
4896 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
4897 break;
4898 default:
4899 error = ieee80211_ioctl(ic, cmd, data);
4900 if (error == ENETRESET) {
4901 if (IS_RUNNING(ifp) &&
4902 ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
4903 ath_init(sc); /* XXX lose error */
4904 error = 0;
4905 }
4906 if (error == ERESTART)
4907 error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0;
4908 break;
4909 }
4910 ATH_UNLOCK(sc);
4911 return error;
4912 #undef IS_RUNNING
4913 }
4914
4915 static void
4916 ath_bpfattach(struct ath_softc *sc)
4917 {
4918 struct ifnet *ifp = &sc->sc_if;
4919
4920 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
4921 sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
4922 &sc->sc_drvbpf);
4923 /*
4924 * Initialize constant fields.
4925 * XXX make header lengths a multiple of 32-bits so subsequent
4926 * headers are properly aligned; this is a kludge to keep
4927 * certain applications happy.
4928 *
4929 * NB: the channel is setup each time we transition to the
4930 * RUN state to avoid filling it in for each frame.
4931 */
4932 sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
4933 sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
4934 sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
4935
4936 sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
4937 sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
4938 sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
4939 }
4940
4941 /*
4942 * Announce various information on device/driver attach.
4943 */
4944 static void
4945 ath_announce(struct ath_softc *sc)
4946 {
4947 #define HAL_MODE_DUALBAND (HAL_MODE_11A|HAL_MODE_11B)
4948 struct ifnet *ifp = &sc->sc_if;
4949 struct ath_hal *ah = sc->sc_ah;
4950 u_int modes, cc;
4951
4952 if_printf(ifp, "mac %d.%d phy %d.%d",
4953 ah->ah_macVersion, ah->ah_macRev,
4954 ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
4955 /*
4956 * Print radio revision(s). We check the wireless modes
4957 * to avoid falsely printing revs for inoperable parts.
4958 * Dual-band radio revs are returned in the 5Ghz rev number.
4959 */
4960 ath_hal_getcountrycode(ah, &cc);
4961 modes = ath_hal_getwirelessmodes(ah, cc);
4962 if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
4963 if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
4964 printf(" 5ghz radio %d.%d 2ghz radio %d.%d",
4965 ah->ah_analog5GhzRev >> 4,
4966 ah->ah_analog5GhzRev & 0xf,
4967 ah->ah_analog2GhzRev >> 4,
4968 ah->ah_analog2GhzRev & 0xf);
4969 else
4970 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
4971 ah->ah_analog5GhzRev & 0xf);
4972 } else
4973 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
4974 ah->ah_analog5GhzRev & 0xf);
4975 printf("\n");
4976 if (bootverbose) {
4977 int i;
4978 for (i = 0; i <= WME_AC_VO; i++) {
4979 struct ath_txq *txq = sc->sc_ac2q[i];
4980 if_printf(ifp, "Use hw queue %u for %s traffic\n",
4981 txq->axq_qnum, ieee80211_wme_acnames[i]);
4982 }
4983 if_printf(ifp, "Use hw queue %u for CAB traffic\n",
4984 sc->sc_cabq->axq_qnum);
4985 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
4986 }
4987 #undef HAL_MODE_DUALBAND
4988 }
4989