ath.c revision 1.57 1 /* $NetBSD: ath.c,v 1.57 2005/07/27 21:22:57 dyoung Exp $ */
2
3 /*-
4 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15 * redistribution must be conditioned upon including a substantially
16 * similar Disclaimer requirement for further binary redistribution.
17 * 3. Neither the names of the above-listed copyright holders nor the names
18 * of any contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * Alternatively, this software may be distributed under the terms of the
22 * GNU General Public License ("GPL") version 2 as published by the Free
23 * Software Foundation.
24 *
25 * NO WARRANTY
26 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
28 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
29 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
30 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
31 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
34 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
36 * THE POSSIBILITY OF SUCH DAMAGES.
37 */
38
39 #include <sys/cdefs.h>
40 #ifdef __FreeBSD__
41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.94 2005/07/07 00:04:50 sam Exp $");
42 #endif
43 #ifdef __NetBSD__
44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.57 2005/07/27 21:22:57 dyoung Exp $");
45 #endif
46
47 /*
48 * Driver for the Atheros Wireless LAN controller.
49 *
50 * This software is derived from work of Atsushi Onoe; his contribution
51 * is greatly appreciated.
52 */
53
54 #include "opt_inet.h"
55
56 #ifdef __NetBSD__
57 #include "bpfilter.h"
58 #endif /* __NetBSD__ */
59
60 #include <sys/param.h>
61 #include <sys/reboot.h>
62 #include <sys/systm.h>
63 #include <sys/types.h>
64 #include <sys/sysctl.h>
65 #include <sys/mbuf.h>
66 #include <sys/malloc.h>
67 #include <sys/lock.h>
68 #include <sys/kernel.h>
69 #include <sys/socket.h>
70 #include <sys/sockio.h>
71 #include <sys/errno.h>
72 #include <sys/callout.h>
73 #include <machine/bus.h>
74 #include <sys/endian.h>
75
76 #include <machine/bus.h>
77
78 #include <net/if.h>
79 #include <net/if_dl.h>
80 #include <net/if_media.h>
81 #include <net/if_types.h>
82 #include <net/if_arp.h>
83 #include <net/if_ether.h>
84 #include <net/if_llc.h>
85
86 #include <net80211/ieee80211_netbsd.h>
87 #include <net80211/ieee80211_var.h>
88
89 #if NBPFILTER > 0
90 #include <net/bpf.h>
91 #endif
92
93 #ifdef INET
94 #include <netinet/in.h>
95 #endif
96
97 #include <sys/device.h>
98 #include <dev/ic/ath_netbsd.h>
99
100 #define AR_DEBUG
101 #include <dev/ic/athvar.h>
102 #include <contrib/dev/ic/athhal_desc.h>
103 #include <contrib/dev/ic/athhal_devid.h> /* XXX for softled */
104
105 /* unaligned little endian access */
106 #define LE_READ_2(p) \
107 ((u_int16_t) \
108 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8)))
109 #define LE_READ_4(p) \
110 ((u_int32_t) \
111 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \
112 (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
113
114 enum {
115 ATH_LED_TX,
116 ATH_LED_RX,
117 ATH_LED_POLL,
118 };
119
120 static int ath_ifinit(struct ifnet *);
121 static int ath_init(struct ath_softc *);
122 static void ath_stop_locked(struct ifnet *, int);
123 static void ath_stop(struct ifnet *, int);
124 static void ath_start(struct ifnet *);
125 static int ath_media_change(struct ifnet *);
126 static void ath_watchdog(struct ifnet *);
127 static int ath_ioctl(struct ifnet *, u_long, caddr_t);
128 static void ath_fatal_proc(void *, int);
129 static void ath_rxorn_proc(void *, int);
130 static void ath_bmiss_proc(void *, int);
131 static int ath_key_alloc(struct ieee80211com *,
132 const struct ieee80211_key *);
133 static int ath_key_delete(struct ieee80211com *,
134 const struct ieee80211_key *);
135 static int ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
136 const u_int8_t mac[IEEE80211_ADDR_LEN]);
137 static void ath_key_update_begin(struct ieee80211com *);
138 static void ath_key_update_end(struct ieee80211com *);
139 static void ath_mode_init(struct ath_softc *);
140 static void ath_setslottime(struct ath_softc *);
141 static void ath_updateslot(struct ifnet *);
142 static int ath_beaconq_setup(struct ath_hal *);
143 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
144 static void ath_beacon_setup(struct ath_softc *, struct ath_buf *);
145 static void ath_beacon_proc(void *, int);
146 static void ath_bstuck_proc(void *, int);
147 static void ath_beacon_free(struct ath_softc *);
148 static void ath_beacon_config(struct ath_softc *);
149 static void ath_descdma_cleanup(struct ath_softc *sc,
150 struct ath_descdma *, ath_bufhead *);
151 static int ath_desc_alloc(struct ath_softc *);
152 static void ath_desc_free(struct ath_softc *);
153 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
154 static void ath_node_free(struct ieee80211_node *);
155 static u_int8_t ath_node_getrssi(const struct ieee80211_node *);
156 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
157 static void ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
158 struct ieee80211_node *ni,
159 int subtype, int rssi, u_int32_t rstamp);
160 static void ath_setdefantenna(struct ath_softc *, u_int);
161 static void ath_rx_proc(void *, int);
162 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
163 static int ath_tx_setup(struct ath_softc *, int, int);
164 static int ath_wme_update(struct ieee80211com *);
165 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
166 static void ath_tx_cleanup(struct ath_softc *);
167 static int ath_tx_start(struct ath_softc *, struct ieee80211_node *,
168 struct ath_buf *, struct mbuf *);
169 static void ath_tx_proc_q0(void *, int);
170 static void ath_tx_proc_q0123(void *, int);
171 static void ath_tx_proc(void *, int);
172 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
173 static void ath_draintxq(struct ath_softc *);
174 static void ath_stoprecv(struct ath_softc *);
175 static int ath_startrecv(struct ath_softc *);
176 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
177 static void ath_next_scan(void *);
178 static void ath_calibrate(void *);
179 static int ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
180 static void ath_setup_stationkey(struct ieee80211_node *);
181 static void ath_newassoc(struct ieee80211com *,
182 struct ieee80211_node *, int);
183 static int ath_getchannels(struct ath_softc *, u_int cc,
184 HAL_BOOL outdoor, HAL_BOOL xchanmode);
185 static void ath_led_event(struct ath_softc *, int);
186 static void ath_update_txpow(struct ath_softc *);
187
188 static int ath_rate_setup(struct ath_softc *, u_int mode);
189 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
190
191 #ifdef __NetBSD__
192 int ath_enable(struct ath_softc *);
193 void ath_disable(struct ath_softc *);
194 void ath_power(int, void *);
195 #endif
196
197 static void ath_bpfattach(struct ath_softc *);
198 static void ath_announce(struct ath_softc *);
199
200 int ath_dwelltime = 200; /* 5 channels/second */
201 int ath_calinterval = 30; /* calibrate every 30 secs */
202 int ath_outdoor = AH_TRUE; /* outdoor operation */
203 int ath_xchanmode = AH_TRUE; /* enable extended channels */
204 int ath_countrycode = CTRY_DEFAULT; /* country code */
205 int ath_regdomain = 0; /* regulatory domain */
206 int ath_debug = 0;
207
208 #ifdef AR_DEBUG
209 enum {
210 ATH_DEBUG_XMIT = 0x00000001, /* basic xmit operation */
211 ATH_DEBUG_XMIT_DESC = 0x00000002, /* xmit descriptors */
212 ATH_DEBUG_RECV = 0x00000004, /* basic recv operation */
213 ATH_DEBUG_RECV_DESC = 0x00000008, /* recv descriptors */
214 ATH_DEBUG_RATE = 0x00000010, /* rate control */
215 ATH_DEBUG_RESET = 0x00000020, /* reset processing */
216 ATH_DEBUG_MODE = 0x00000040, /* mode init/setup */
217 ATH_DEBUG_BEACON = 0x00000080, /* beacon handling */
218 ATH_DEBUG_WATCHDOG = 0x00000100, /* watchdog timeout */
219 ATH_DEBUG_INTR = 0x00001000, /* ISR */
220 ATH_DEBUG_TX_PROC = 0x00002000, /* tx ISR proc */
221 ATH_DEBUG_RX_PROC = 0x00004000, /* rx ISR proc */
222 ATH_DEBUG_BEACON_PROC = 0x00008000, /* beacon ISR proc */
223 ATH_DEBUG_CALIBRATE = 0x00010000, /* periodic calibration */
224 ATH_DEBUG_KEYCACHE = 0x00020000, /* key cache management */
225 ATH_DEBUG_STATE = 0x00040000, /* 802.11 state transitions */
226 ATH_DEBUG_NODE = 0x00080000, /* node management */
227 ATH_DEBUG_LED = 0x00100000, /* led management */
228 ATH_DEBUG_FATAL = 0x80000000, /* fatal errors */
229 ATH_DEBUG_ANY = 0xffffffff
230 };
231 #define IFF_DUMPPKTS(sc, m) \
232 ((sc->sc_debug & (m)) || \
233 (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
234 #define DPRINTF(sc, m, fmt, ...) do { \
235 if (sc->sc_debug & (m)) \
236 printf(fmt, __VA_ARGS__); \
237 } while (0)
238 #define KEYPRINTF(sc, ix, hk, mac) do { \
239 if (sc->sc_debug & ATH_DEBUG_KEYCACHE) \
240 ath_keyprint(__func__, ix, hk, mac); \
241 } while (0)
242 static void ath_printrxbuf(struct ath_buf *bf, int);
243 static void ath_printtxbuf(struct ath_buf *bf, int);
244 #else
245 #define IFF_DUMPPKTS(sc, m) \
246 ((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
247 #define DPRINTF(m, fmt, ...)
248 #define KEYPRINTF(sc, k, ix, mac)
249 #endif
250
251 #ifdef __NetBSD__
252 int
253 ath_activate(struct device *self, enum devact act)
254 {
255 struct ath_softc *sc = (struct ath_softc *)self;
256 int rv = 0, s;
257
258 s = splnet();
259 switch (act) {
260 case DVACT_ACTIVATE:
261 rv = EOPNOTSUPP;
262 break;
263 case DVACT_DEACTIVATE:
264 if_deactivate(&sc->sc_if);
265 break;
266 }
267 splx(s);
268 return rv;
269 }
270
271 int
272 ath_enable(struct ath_softc *sc)
273 {
274 if (ATH_IS_ENABLED(sc) == 0) {
275 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
276 printf("%s: device enable failed\n",
277 sc->sc_dev.dv_xname);
278 return (EIO);
279 }
280 sc->sc_flags |= ATH_ENABLED;
281 }
282 return (0);
283 }
284
285 void
286 ath_disable(struct ath_softc *sc)
287 {
288 if (!ATH_IS_ENABLED(sc))
289 return;
290 if (sc->sc_disable != NULL)
291 (*sc->sc_disable)(sc);
292 sc->sc_flags &= ~ATH_ENABLED;
293 }
294 #endif /* __NetBSD__ */
295
296 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
297
298 int
299 ath_attach(u_int16_t devid, struct ath_softc *sc)
300 {
301 struct ifnet *ifp = &sc->sc_if;
302 struct ieee80211com *ic = &sc->sc_ic;
303 struct ath_hal *ah = NULL;
304 HAL_STATUS status;
305 int error = 0, i;
306
307 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
308
309 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
310
311 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
312 if (ah == NULL) {
313 if_printf(ifp, "unable to attach hardware; HAL status %u\n",
314 status);
315 error = ENXIO;
316 goto bad;
317 }
318 if (ah->ah_abi != HAL_ABI_VERSION) {
319 if_printf(ifp, "HAL ABI mismatch detected "
320 "(HAL:0x%x != driver:0x%x)\n",
321 ah->ah_abi, HAL_ABI_VERSION);
322 error = ENXIO;
323 goto bad;
324 }
325 sc->sc_ah = ah;
326 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */
327
328 /*
329 * Check if the MAC has multi-rate retry support.
330 * We do this by trying to setup a fake extended
331 * descriptor. MAC's that don't have support will
332 * return false w/o doing anything. MAC's that do
333 * support it will return true w/o doing anything.
334 */
335 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
336
337 /*
338 * Check if the device has hardware counters for PHY
339 * errors. If so we need to enable the MIB interrupt
340 * so we can act on stat triggers.
341 */
342 if (ath_hal_hwphycounters(ah))
343 sc->sc_needmib = 1;
344
345 /*
346 * Get the hardware key cache size.
347 */
348 sc->sc_keymax = ath_hal_keycachesize(ah);
349 if (sc->sc_keymax > ATH_KEYMAX) {
350 if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
351 ATH_KEYMAX, sc->sc_keymax);
352 sc->sc_keymax = ATH_KEYMAX;
353 }
354 /*
355 * Reset the key cache since some parts do not
356 * reset the contents on initial power up.
357 */
358 for (i = 0; i < sc->sc_keymax; i++)
359 ath_hal_keyreset(ah, i);
360 /*
361 * Mark key cache slots associated with global keys
362 * as in use. If we knew TKIP was not to be used we
363 * could leave the +32, +64, and +32+64 slots free.
364 * XXX only for splitmic.
365 */
366 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
367 setbit(sc->sc_keymap, i);
368 setbit(sc->sc_keymap, i+32);
369 setbit(sc->sc_keymap, i+64);
370 setbit(sc->sc_keymap, i+32+64);
371 }
372
373 /*
374 * Collect the channel list using the default country
375 * code and including outdoor channels. The 802.11 layer
376 * is resposible for filtering this list based on settings
377 * like the phy mode.
378 */
379 error = ath_getchannels(sc, ath_countrycode,
380 ath_outdoor, ath_xchanmode);
381 if (error != 0)
382 goto bad;
383 /*
384 * TPC support can be done either with a global cap or
385 * per-packet support. The latter is not available on
386 * all parts. We're a bit pedantic here as all parts
387 * support a global cap.
388 */
389 sc->sc_hastpc = ath_hal_hastpc(ah);
390 if (sc->sc_hastpc || ath_hal_hastxpowlimit(ah))
391 ic->ic_caps |= IEEE80211_C_TXPMGT;
392 /*
393 * Query the hal about antenna support.
394 */
395 if (ath_hal_hasdiversity(ah)) {
396 sc->sc_hasdiversity = 1;
397 sc->sc_diversity = ath_hal_getdiversity(ah);
398 }
399 sc->sc_defant = ath_hal_getdefantenna(ah);
400
401 /*
402 * Setup dynamic sysctl's now that country code and regdomain
403 * are available from the hal, and both TPC and diversity
404 * capabilities are known.
405 */
406 ath_sysctlattach(sc);
407
408 /*
409 * Setup rate tables for all potential media types.
410 */
411 ath_rate_setup(sc, IEEE80211_MODE_11A);
412 ath_rate_setup(sc, IEEE80211_MODE_11B);
413 ath_rate_setup(sc, IEEE80211_MODE_11G);
414 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
415 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
416 /* NB: setup here so ath_rate_update is happy */
417 ath_setcurmode(sc, IEEE80211_MODE_11A);
418
419 /*
420 * Allocate tx+rx descriptors and populate the lists.
421 */
422 error = ath_desc_alloc(sc);
423 if (error != 0) {
424 if_printf(ifp, "failed to allocate descriptors: %d\n", error);
425 goto bad;
426 }
427 ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
428 ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE);
429
430 ATH_TXBUF_LOCK_INIT(sc);
431
432 TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
433 TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
434 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
435 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
436 TASK_INIT(&sc->sc_bstucktask, 0, ath_bstuck_proc, sc);
437
438 /*
439 * Allocate hardware transmit queues: one queue for
440 * beacon frames and one data queue for each QoS
441 * priority. Note that the hal handles reseting
442 * these queues at the needed time.
443 *
444 * XXX PS-Poll
445 */
446 sc->sc_bhalq = ath_beaconq_setup(ah);
447 if (sc->sc_bhalq == (u_int) -1) {
448 if_printf(ifp, "unable to setup a beacon xmit queue!\n");
449 error = EIO;
450 goto bad2;
451 }
452 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
453 if (sc->sc_cabq == NULL) {
454 if_printf(ifp, "unable to setup CAB xmit queue!\n");
455 error = EIO;
456 goto bad2;
457 }
458 /* NB: insure BK queue is the lowest priority h/w queue */
459 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
460 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
461 ieee80211_wme_acnames[WME_AC_BK]);
462 error = EIO;
463 goto bad2;
464 }
465 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
466 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
467 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
468 /*
469 * Not enough hardware tx queues to properly do WME;
470 * just punt and assign them all to the same h/w queue.
471 * We could do a better job of this if, for example,
472 * we allocate queues when we switch from station to
473 * AP mode.
474 */
475 if (sc->sc_ac2q[WME_AC_VI] != NULL)
476 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
477 if (sc->sc_ac2q[WME_AC_BE] != NULL)
478 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
479 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
480 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
481 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
482 }
483
484 /*
485 * Special case certain configurations. Note the
486 * CAB queue is handled by these specially so don't
487 * include them when checking the txq setup mask.
488 */
489 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
490 case 0x01:
491 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
492 break;
493 case 0x0f:
494 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
495 break;
496 default:
497 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
498 break;
499 }
500
501 /*
502 * Setup rate control. Some rate control modules
503 * call back to change the anntena state so expose
504 * the necessary entry points.
505 * XXX maybe belongs in struct ath_ratectrl?
506 */
507 sc->sc_setdefantenna = ath_setdefantenna;
508 sc->sc_rc = ath_rate_attach(sc);
509 if (sc->sc_rc == NULL) {
510 error = EIO;
511 goto bad2;
512 }
513
514 sc->sc_blinking = 0;
515 sc->sc_ledstate = 1;
516 sc->sc_ledon = 0; /* low true */
517 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */
518 ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE);
519 /*
520 * Auto-enable soft led processing for IBM cards and for
521 * 5211 minipci cards. Users can also manually enable/disable
522 * support with a sysctl.
523 */
524 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
525 if (sc->sc_softled) {
526 ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
527 ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
528 }
529
530 ifp->if_softc = sc;
531 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
532 ifp->if_start = ath_start;
533 ifp->if_watchdog = ath_watchdog;
534 ifp->if_ioctl = ath_ioctl;
535 ifp->if_init = ath_ifinit;
536 IFQ_SET_READY(&ifp->if_snd);
537
538 ic->ic_ifp = ifp;
539 ic->ic_reset = ath_reset;
540 ic->ic_newassoc = ath_newassoc;
541 ic->ic_updateslot = ath_updateslot;
542 ic->ic_wme.wme_update = ath_wme_update;
543 /* XXX not right but it's not used anywhere important */
544 ic->ic_phytype = IEEE80211_T_OFDM;
545 ic->ic_opmode = IEEE80211_M_STA;
546 ic->ic_caps =
547 IEEE80211_C_IBSS /* ibss, nee adhoc, mode */
548 | IEEE80211_C_HOSTAP /* hostap mode */
549 | IEEE80211_C_MONITOR /* monitor mode */
550 | IEEE80211_C_SHPREAMBLE /* short preamble supported */
551 | IEEE80211_C_SHSLOT /* short slot time supported */
552 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */
553 ;
554 /*
555 * Query the hal to figure out h/w crypto support.
556 */
557 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
558 ic->ic_caps |= IEEE80211_C_WEP;
559 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
560 ic->ic_caps |= IEEE80211_C_AES;
561 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
562 ic->ic_caps |= IEEE80211_C_AES_CCM;
563 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
564 ic->ic_caps |= IEEE80211_C_CKIP;
565 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
566 ic->ic_caps |= IEEE80211_C_TKIP;
567 /*
568 * Check if h/w does the MIC and/or whether the
569 * separate key cache entries are required to
570 * handle both tx+rx MIC keys.
571 */
572 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
573 ic->ic_caps |= IEEE80211_C_TKIPMIC;
574 if (ath_hal_tkipsplit(ah))
575 sc->sc_splitmic = 1;
576 }
577 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
578 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
579
580 /*
581 * Mark WME capability only if we have sufficient
582 * hardware queues to do proper priority scheduling.
583 */
584 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
585 ic->ic_caps |= IEEE80211_C_WME;
586 /*
587 * Check for misc other capabilities.
588 */
589 if (ath_hal_hasbursting(ah))
590 ic->ic_caps |= IEEE80211_C_BURST;
591
592 /*
593 * Indicate we need the 802.11 header padded to a
594 * 32-bit boundary for 4-address and QoS frames.
595 */
596 ic->ic_flags |= IEEE80211_F_DATAPAD;
597
598 /*
599 * Not all chips have the VEOL support we want to
600 * use with IBSS beacons; check here for it.
601 */
602 sc->sc_hasveol = ath_hal_hasveol(ah);
603
604 /* get mac address from hardware */
605 ath_hal_getmac(ah, ic->ic_myaddr);
606
607 if_attach(ifp);
608 /* call MI attach routine. */
609 ieee80211_ifattach(ic);
610 /* override default methods */
611 ic->ic_node_alloc = ath_node_alloc;
612 sc->sc_node_free = ic->ic_node_free;
613 ic->ic_node_free = ath_node_free;
614 ic->ic_node_getrssi = ath_node_getrssi;
615 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
616 ic->ic_recv_mgmt = ath_recv_mgmt;
617 sc->sc_newstate = ic->ic_newstate;
618 ic->ic_newstate = ath_newstate;
619 ic->ic_crypto.cs_key_alloc = ath_key_alloc;
620 ic->ic_crypto.cs_key_delete = ath_key_delete;
621 ic->ic_crypto.cs_key_set = ath_key_set;
622 ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
623 ic->ic_crypto.cs_key_update_end = ath_key_update_end;
624 /* complete initialization */
625 ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
626
627 ath_bpfattach(sc);
628
629 #ifdef __NetBSD__
630 sc->sc_flags |= ATH_ATTACHED;
631 /*
632 * Make sure the interface is shutdown during reboot.
633 */
634 sc->sc_sdhook = shutdownhook_establish(ath_shutdown, sc);
635 if (sc->sc_sdhook == NULL)
636 printf("%s: WARNING: unable to establish shutdown hook\n",
637 sc->sc_dev.dv_xname);
638 sc->sc_powerhook = powerhook_establish(ath_power, sc);
639 if (sc->sc_powerhook == NULL)
640 printf("%s: WARNING: unable to establish power hook\n",
641 sc->sc_dev.dv_xname);
642 #endif
643 ieee80211_announce(ic);
644 ath_announce(sc);
645 return 0;
646 bad2:
647 ath_tx_cleanup(sc);
648 ath_desc_free(sc);
649 bad:
650 if (ah)
651 ath_hal_detach(ah);
652 sc->sc_invalid = 1;
653 return error;
654 }
655
656 int
657 ath_detach(struct ath_softc *sc)
658 {
659 struct ifnet *ifp = &sc->sc_if;
660 int s;
661
662 if ((sc->sc_flags & ATH_ATTACHED) == 0)
663 return (0);
664
665 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
666 __func__, ifp->if_flags);
667
668 s = splnet();
669 ath_stop(ifp, 1);
670 #if NBPFILTER > 0
671 bpfdetach(ifp);
672 #endif
673 /*
674 * NB: the order of these is important:
675 * o call the 802.11 layer before detaching the hal to
676 * insure callbacks into the driver to delete global
677 * key cache entries can be handled
678 * o reclaim the tx queue data structures after calling
679 * the 802.11 layer as we'll get called back to reclaim
680 * node state and potentially want to use them
681 * o to cleanup the tx queues the hal is called, so detach
682 * it last
683 * Other than that, it's straightforward...
684 */
685 ieee80211_ifdetach(&sc->sc_ic);
686 ath_rate_detach(sc->sc_rc);
687 ath_desc_free(sc);
688 ath_tx_cleanup(sc);
689 sysctl_teardown(&sc->sc_sysctllog);
690 ath_hal_detach(sc->sc_ah);
691 if_detach(ifp);
692 splx(s);
693 powerhook_disestablish(sc->sc_powerhook);
694 shutdownhook_disestablish(sc->sc_sdhook);
695
696 return 0;
697 }
698
699 #ifdef __NetBSD__
700 void
701 ath_power(int why, void *arg)
702 {
703 struct ath_softc *sc = arg;
704 int s;
705
706 DPRINTF(sc, ATH_DEBUG_ANY, "ath_power(%d)\n", why);
707
708 s = splnet();
709 switch (why) {
710 case PWR_SUSPEND:
711 case PWR_STANDBY:
712 ath_suspend(sc, why);
713 break;
714 case PWR_RESUME:
715 ath_resume(sc, why);
716 break;
717 case PWR_SOFTSUSPEND:
718 case PWR_SOFTSTANDBY:
719 case PWR_SOFTRESUME:
720 break;
721 }
722 splx(s);
723 }
724 #endif
725
726 void
727 ath_suspend(struct ath_softc *sc, int why)
728 {
729 struct ifnet *ifp = &sc->sc_if;
730
731 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
732 __func__, ifp->if_flags);
733
734 ath_stop(ifp, 1);
735 if (sc->sc_power != NULL)
736 (*sc->sc_power)(sc, why);
737 }
738
739 void
740 ath_resume(struct ath_softc *sc, int why)
741 {
742 struct ifnet *ifp = &sc->sc_if;
743
744 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
745 __func__, ifp->if_flags);
746
747 if (ifp->if_flags & IFF_UP) {
748 ath_init(sc);
749 #if 0
750 (void)ath_intr(sc);
751 #endif
752 if (sc->sc_power != NULL)
753 (*sc->sc_power)(sc, why);
754 if (ifp->if_flags & IFF_RUNNING)
755 ath_start(ifp);
756 }
757 if (sc->sc_softled) {
758 ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
759 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
760 }
761 }
762
763 void
764 ath_shutdown(void *arg)
765 {
766 struct ath_softc *sc = arg;
767
768 ath_stop(&sc->sc_if, 1);
769 }
770
771 /*
772 * Interrupt handler. Most of the actual processing is deferred.
773 */
774 int
775 ath_intr(void *arg)
776 {
777 struct ath_softc *sc = arg;
778 struct ifnet *ifp = &sc->sc_if;
779 struct ath_hal *ah = sc->sc_ah;
780 HAL_INT status;
781
782 if (sc->sc_invalid) {
783 /*
784 * The hardware is not ready/present, don't touch anything.
785 * Note this can happen early on if the IRQ is shared.
786 */
787 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
788 return 0;
789 }
790 if (!ath_hal_intrpend(ah)) /* shared irq, not for us */
791 return 0;
792 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
793 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
794 __func__, ifp->if_flags);
795 ath_hal_getisr(ah, &status); /* clear ISR */
796 ath_hal_intrset(ah, 0); /* disable further intr's */
797 return 1; /* XXX */
798 }
799 /*
800 * Figure out the reason(s) for the interrupt. Note
801 * that the hal returns a pseudo-ISR that may include
802 * bits we haven't explicitly enabled so we mask the
803 * value to insure we only process bits we requested.
804 */
805 ath_hal_getisr(ah, &status); /* NB: clears ISR too */
806 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
807 status &= sc->sc_imask; /* discard unasked for bits */
808 if (status & HAL_INT_FATAL) {
809 /*
810 * Fatal errors are unrecoverable. Typically
811 * these are caused by DMA errors. Unfortunately
812 * the exact reason is not (presently) returned
813 * by the hal.
814 */
815 sc->sc_stats.ast_hardware++;
816 ath_hal_intrset(ah, 0); /* disable intr's until reset */
817 TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
818 } else if (status & HAL_INT_RXORN) {
819 sc->sc_stats.ast_rxorn++;
820 ath_hal_intrset(ah, 0); /* disable intr's until reset */
821 TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
822 } else {
823 if (status & HAL_INT_SWBA) {
824 /*
825 * Software beacon alert--time to send a beacon.
826 * Handle beacon transmission directly; deferring
827 * this is too slow to meet timing constraints
828 * under load.
829 */
830 ath_beacon_proc(sc, 0);
831 }
832 if (status & HAL_INT_RXEOL) {
833 /*
834 * NB: the hardware should re-read the link when
835 * RXE bit is written, but it doesn't work at
836 * least on older hardware revs.
837 */
838 sc->sc_stats.ast_rxeol++;
839 sc->sc_rxlink = NULL;
840 }
841 if (status & HAL_INT_TXURN) {
842 sc->sc_stats.ast_txurn++;
843 /* bump tx trigger level */
844 ath_hal_updatetxtriglevel(ah, AH_TRUE);
845 }
846 if (status & HAL_INT_RX)
847 TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
848 if (status & HAL_INT_TX)
849 TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
850 if (status & HAL_INT_BMISS) {
851 sc->sc_stats.ast_bmiss++;
852 TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
853 }
854 if (status & HAL_INT_MIB) {
855 sc->sc_stats.ast_mib++;
856 /*
857 * Disable interrupts until we service the MIB
858 * interrupt; otherwise it will continue to fire.
859 */
860 ath_hal_intrset(ah, 0);
861 /*
862 * Let the hal handle the event. We assume it will
863 * clear whatever condition caused the interrupt.
864 */
865 ath_hal_mibevent(ah,
866 &ATH_NODE(sc->sc_ic.ic_bss)->an_halstats);
867 ath_hal_intrset(ah, sc->sc_imask);
868 }
869 }
870 return 1;
871 }
872
873 static void
874 ath_fatal_proc(void *arg, int pending)
875 {
876 struct ath_softc *sc = arg;
877 struct ifnet *ifp = &sc->sc_if;
878
879 if_printf(ifp, "hardware error; resetting\n");
880 ath_reset(ifp);
881 }
882
883 static void
884 ath_rxorn_proc(void *arg, int pending)
885 {
886 struct ath_softc *sc = arg;
887 struct ifnet *ifp = &sc->sc_if;
888
889 if_printf(ifp, "rx FIFO overrun; resetting\n");
890 ath_reset(ifp);
891 }
892
893 static void
894 ath_bmiss_proc(void *arg, int pending)
895 {
896 struct ath_softc *sc = arg;
897 struct ieee80211com *ic = &sc->sc_ic;
898
899 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
900 KASSERT(ic->ic_opmode == IEEE80211_M_STA,
901 ("unexpect operating mode %u", ic->ic_opmode));
902 if (ic->ic_state == IEEE80211_S_RUN) {
903 /*
904 * Rather than go directly to scan state, try to
905 * reassociate first. If that fails then the state
906 * machine will drop us into scanning after timing
907 * out waiting for a probe response.
908 */
909 NET_LOCK_GIANT();
910 ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1);
911 NET_UNLOCK_GIANT();
912 }
913 }
914
915 static u_int
916 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
917 {
918 #define N(a) (sizeof(a) / sizeof(a[0]))
919 static const u_int modeflags[] = {
920 0, /* IEEE80211_MODE_AUTO */
921 CHANNEL_A, /* IEEE80211_MODE_11A */
922 CHANNEL_B, /* IEEE80211_MODE_11B */
923 CHANNEL_PUREG, /* IEEE80211_MODE_11G */
924 0, /* IEEE80211_MODE_FH */
925 CHANNEL_T, /* IEEE80211_MODE_TURBO_A */
926 CHANNEL_108G /* IEEE80211_MODE_TURBO_G */
927 };
928 enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
929
930 KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
931 KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
932 return modeflags[mode];
933 #undef N
934 }
935
936 static int
937 ath_ifinit(struct ifnet *ifp)
938 {
939 struct ath_softc *sc = (struct ath_softc *)ifp->if_softc;
940
941 return ath_init(sc);
942 }
943
944 static int
945 ath_init(struct ath_softc *sc)
946 {
947 struct ifnet *ifp = &sc->sc_if;
948 struct ieee80211com *ic = &sc->sc_ic;
949 struct ieee80211_node *ni;
950 struct ath_hal *ah = sc->sc_ah;
951 HAL_STATUS status;
952 int error = 0;
953
954 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
955 __func__, ifp->if_flags);
956
957 ATH_LOCK(sc);
958
959 if ((error = ath_enable(sc)) != 0)
960 return error;
961
962 /*
963 * Stop anything previously setup. This is safe
964 * whether this is the first time through or not.
965 */
966 ath_stop_locked(ifp, 0);
967
968 /*
969 * The basic interface to setting the hardware in a good
970 * state is ``reset''. On return the hardware is known to
971 * be powered up and with interrupts disabled. This must
972 * be followed by initialization of the appropriate bits
973 * and then setup of the interrupt mask.
974 */
975 sc->sc_curchan.channel = ic->ic_ibss_chan->ic_freq;
976 sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_ibss_chan);
977 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
978 if_printf(ifp, "unable to reset hardware; hal status %u\n",
979 status);
980 error = EIO;
981 goto done;
982 }
983
984 /*
985 * This is needed only to setup initial state
986 * but it's best done after a reset.
987 */
988 ath_update_txpow(sc);
989
990 /*
991 * Setup the hardware after reset: the key cache
992 * is filled as needed and the receive engine is
993 * set going. Frame transmit is handled entirely
994 * in the frame output path; there's nothing to do
995 * here except setup the interrupt mask.
996 */
997 if ((error = ath_startrecv(sc)) != 0) {
998 if_printf(ifp, "unable to start recv logic\n");
999 goto done;
1000 }
1001
1002 /*
1003 * Enable interrupts.
1004 */
1005 sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1006 | HAL_INT_RXEOL | HAL_INT_RXORN
1007 | HAL_INT_FATAL | HAL_INT_GLOBAL;
1008 /*
1009 * Enable MIB interrupts when there are hardware phy counters.
1010 * Note we only do this (at the moment) for station mode.
1011 */
1012 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1013 sc->sc_imask |= HAL_INT_MIB;
1014 ath_hal_intrset(ah, sc->sc_imask);
1015
1016 ifp->if_flags |= IFF_RUNNING;
1017 ic->ic_state = IEEE80211_S_INIT;
1018
1019 /*
1020 * The hardware should be ready to go now so it's safe
1021 * to kick the 802.11 state machine as it's likely to
1022 * immediately call back to us to send mgmt frames.
1023 */
1024 ni = ic->ic_bss;
1025 ni->ni_chan = ic->ic_ibss_chan;
1026 ath_chan_change(sc, ni->ni_chan);
1027 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1028 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
1029 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1030 } else
1031 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1032 done:
1033 ATH_UNLOCK(sc);
1034 return error;
1035 }
1036
1037 static void
1038 ath_stop_locked(struct ifnet *ifp, int disable)
1039 {
1040 struct ath_softc *sc = ifp->if_softc;
1041 struct ieee80211com *ic = &sc->sc_ic;
1042 struct ath_hal *ah = sc->sc_ah;
1043
1044 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1045 __func__, sc->sc_invalid, ifp->if_flags);
1046
1047 ATH_LOCK_ASSERT(sc);
1048 if (ifp->if_flags & IFF_RUNNING) {
1049 /*
1050 * Shutdown the hardware and driver:
1051 * reset 802.11 state machine
1052 * turn off timers
1053 * disable interrupts
1054 * turn off the radio
1055 * clear transmit machinery
1056 * clear receive machinery
1057 * drain and release tx queues
1058 * reclaim beacon resources
1059 * power down hardware
1060 *
1061 * Note that some of this work is not possible if the
1062 * hardware is gone (invalid).
1063 */
1064 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1065 ifp->if_flags &= ~IFF_RUNNING;
1066 ifp->if_timer = 0;
1067 if (!sc->sc_invalid) {
1068 if (sc->sc_softled) {
1069 callout_stop(&sc->sc_ledtimer);
1070 ath_hal_gpioset(ah, sc->sc_ledpin,
1071 !sc->sc_ledon);
1072 sc->sc_blinking = 0;
1073 }
1074 ath_hal_intrset(ah, 0);
1075 }
1076 ath_draintxq(sc);
1077 if (!sc->sc_invalid) {
1078 ath_stoprecv(sc);
1079 ath_hal_phydisable(ah);
1080 } else
1081 sc->sc_rxlink = NULL;
1082 IF_PURGE(&ifp->if_snd);
1083 ath_beacon_free(sc);
1084 if (disable)
1085 ath_disable(sc);
1086 }
1087 }
1088
1089 static void
1090 ath_stop(struct ifnet *ifp, int disable)
1091 {
1092 struct ath_softc *sc = ifp->if_softc;
1093
1094 ATH_LOCK(sc);
1095 ath_stop_locked(ifp, disable);
1096 if (!sc->sc_invalid) {
1097 /*
1098 * Set the chip in full sleep mode. Note that we are
1099 * careful to do this only when bringing the interface
1100 * completely to a stop. When the chip is in this state
1101 * it must be carefully woken up or references to
1102 * registers in the PCI clock domain may freeze the bus
1103 * (and system). This varies by chip and is mostly an
1104 * issue with newer parts that go to sleep more quickly.
1105 */
1106 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP, 0);
1107 }
1108 ATH_UNLOCK(sc);
1109 }
1110
1111 /*
1112 * Reset the hardware w/o losing operational state. This is
1113 * basically a more efficient way of doing ath_stop, ath_init,
1114 * followed by state transitions to the current 802.11
1115 * operational state. Used to recover from various errors and
1116 * to reset or reload hardware state.
1117 */
1118 int
1119 ath_reset(struct ifnet *ifp)
1120 {
1121 struct ath_softc *sc = ifp->if_softc;
1122 struct ieee80211com *ic = &sc->sc_ic;
1123 struct ath_hal *ah = sc->sc_ah;
1124 struct ieee80211_channel *c;
1125 HAL_STATUS status;
1126
1127 /*
1128 * Convert to a HAL channel description with the flags
1129 * constrained to reflect the current operating mode.
1130 */
1131 c = ic->ic_ibss_chan;
1132 sc->sc_curchan.channel = c->ic_freq;
1133 sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
1134
1135 ath_hal_intrset(ah, 0); /* disable interrupts */
1136 ath_draintxq(sc); /* stop xmit side */
1137 ath_stoprecv(sc); /* stop recv side */
1138 /* NB: indicate channel change so we do a full reset */
1139 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
1140 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1141 __func__, status);
1142 ath_update_txpow(sc); /* update tx power state */
1143 if (ath_startrecv(sc) != 0) /* restart recv */
1144 if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1145 /*
1146 * We may be doing a reset in response to an ioctl
1147 * that changes the channel so update any state that
1148 * might change as a result.
1149 */
1150 ath_chan_change(sc, c);
1151 if (ic->ic_state == IEEE80211_S_RUN)
1152 ath_beacon_config(sc); /* restart beacons */
1153 ath_hal_intrset(ah, sc->sc_imask);
1154
1155 ath_start(ifp); /* restart xmit */
1156 return 0;
1157 }
1158
1159 static void
1160 ath_start(struct ifnet *ifp)
1161 {
1162 struct ath_softc *sc = ifp->if_softc;
1163 struct ath_hal *ah = sc->sc_ah;
1164 struct ieee80211com *ic = &sc->sc_ic;
1165 struct ieee80211_node *ni;
1166 struct ath_buf *bf;
1167 struct mbuf *m;
1168 struct ieee80211_frame *wh;
1169 struct ether_header *eh;
1170
1171 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
1172 return;
1173 for (;;) {
1174 /*
1175 * Grab a TX buffer and associated resources.
1176 */
1177 ATH_TXBUF_LOCK(sc);
1178 bf = STAILQ_FIRST(&sc->sc_txbuf);
1179 if (bf != NULL)
1180 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1181 ATH_TXBUF_UNLOCK(sc);
1182 if (bf == NULL) {
1183 DPRINTF(sc, ATH_DEBUG_ANY, "%s: out of xmit buffers\n",
1184 __func__);
1185 sc->sc_stats.ast_tx_qstop++;
1186 ifp->if_flags |= IFF_OACTIVE;
1187 break;
1188 }
1189 /*
1190 * Poll the management queue for frames; they
1191 * have priority over normal data frames.
1192 */
1193 IF_DEQUEUE(&ic->ic_mgtq, m);
1194 if (m == NULL) {
1195 /*
1196 * No data frames go out unless we're associated.
1197 */
1198 if (ic->ic_state != IEEE80211_S_RUN) {
1199 DPRINTF(sc, ATH_DEBUG_ANY,
1200 "%s: ignore data packet, state %u\n",
1201 __func__, ic->ic_state);
1202 sc->sc_stats.ast_tx_discard++;
1203 ATH_TXBUF_LOCK(sc);
1204 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1205 ATH_TXBUF_UNLOCK(sc);
1206 break;
1207 }
1208 IFQ_DEQUEUE(&ifp->if_snd, m); /* XXX: LOCK */
1209 if (m == NULL) {
1210 ATH_TXBUF_LOCK(sc);
1211 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1212 ATH_TXBUF_UNLOCK(sc);
1213 break;
1214 }
1215 /*
1216 * Find the node for the destination so we can do
1217 * things like power save and fast frames aggregation.
1218 */
1219 if (m->m_len < sizeof(struct ether_header) &&
1220 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
1221 ic->ic_stats.is_tx_nobuf++; /* XXX */
1222 ni = NULL;
1223 goto bad;
1224 }
1225 eh = mtod(m, struct ether_header *);
1226 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1227 if (ni == NULL) {
1228 /* NB: ieee80211_find_txnode does stat+msg */
1229 m_freem(m);
1230 goto bad;
1231 }
1232 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1233 (m->m_flags & M_PWR_SAV) == 0) {
1234 /*
1235 * Station in power save mode; pass the frame
1236 * to the 802.11 layer and continue. We'll get
1237 * the frame back when the time is right.
1238 */
1239 ieee80211_pwrsave(ic, ni, m);
1240 goto reclaim;
1241 }
1242 /* calculate priority so we can find the tx queue */
1243 if (ieee80211_classify(ic, m, ni)) {
1244 DPRINTF(sc, ATH_DEBUG_XMIT,
1245 "%s: discard, classification failure\n",
1246 __func__);
1247 m_freem(m);
1248 goto bad;
1249 }
1250 ifp->if_opackets++;
1251
1252 #if NBPFILTER > 0
1253 if (ifp->if_bpf)
1254 bpf_mtap(ifp->if_bpf, m);
1255 #endif
1256 /*
1257 * Encapsulate the packet in prep for transmission.
1258 */
1259 m = ieee80211_encap(ic, m, ni);
1260 if (m == NULL) {
1261 DPRINTF(sc, ATH_DEBUG_ANY,
1262 "%s: encapsulation failure\n",
1263 __func__);
1264 sc->sc_stats.ast_tx_encap++;
1265 goto bad;
1266 }
1267 } else {
1268 /*
1269 * Hack! The referenced node pointer is in the
1270 * rcvif field of the packet header. This is
1271 * placed there by ieee80211_mgmt_output because
1272 * we need to hold the reference with the frame
1273 * and there's no other way (other than packet
1274 * tags which we consider too expensive to use)
1275 * to pass it along.
1276 */
1277 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1278 m->m_pkthdr.rcvif = NULL;
1279
1280 wh = mtod(m, struct ieee80211_frame *);
1281 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1282 IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1283 /* fill time stamp */
1284 u_int64_t tsf;
1285 u_int32_t *tstamp;
1286
1287 tsf = ath_hal_gettsf64(ah);
1288 /* XXX: adjust 100us delay to xmit */
1289 tsf += 100;
1290 tstamp = (u_int32_t *)&wh[1];
1291 tstamp[0] = htole32(tsf & 0xffffffff);
1292 tstamp[1] = htole32(tsf >> 32);
1293 }
1294 sc->sc_stats.ast_tx_mgmt++;
1295 }
1296
1297 if (ath_tx_start(sc, ni, bf, m)) {
1298 bad:
1299 ifp->if_oerrors++;
1300 reclaim:
1301 ATH_TXBUF_LOCK(sc);
1302 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1303 ATH_TXBUF_UNLOCK(sc);
1304 if (ni != NULL)
1305 ieee80211_free_node(ni);
1306 continue;
1307 }
1308
1309 sc->sc_tx_timer = 5;
1310 ifp->if_timer = 1;
1311 }
1312 }
1313
1314 static int
1315 ath_media_change(struct ifnet *ifp)
1316 {
1317 #define IS_UP(ifp) \
1318 ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP))
1319 int error;
1320
1321 error = ieee80211_media_change(ifp);
1322 if (error == ENETRESET) {
1323 if (IS_UP(ifp))
1324 ath_init(ifp->if_softc); /* XXX lose error */
1325 error = 0;
1326 }
1327 return error;
1328 #undef IS_UP
1329 }
1330
1331 #ifdef AR_DEBUG
1332 static void
1333 ath_keyprint(const char *tag, u_int ix,
1334 const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1335 {
1336 static const char *ciphers[] = {
1337 "WEP",
1338 "AES-OCB",
1339 "AES-CCM",
1340 "CKIP",
1341 "TKIP",
1342 "CLR",
1343 };
1344 int i, n;
1345
1346 printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1347 for (i = 0, n = hk->kv_len; i < n; i++)
1348 printf("%02x", hk->kv_val[i]);
1349 printf(" mac %s", ether_sprintf(mac));
1350 if (hk->kv_type == HAL_CIPHER_TKIP) {
1351 printf(" mic ");
1352 for (i = 0; i < sizeof(hk->kv_mic); i++)
1353 printf("%02x", hk->kv_mic[i]);
1354 }
1355 printf("\n");
1356 }
1357 #endif
1358
1359 /*
1360 * Set a TKIP key into the hardware. This handles the
1361 * potential distribution of key state to multiple key
1362 * cache slots for TKIP.
1363 */
1364 static int
1365 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1366 HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1367 {
1368 #define IEEE80211_KEY_XR (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1369 static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1370 struct ath_hal *ah = sc->sc_ah;
1371
1372 KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1373 ("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1374 KASSERT(sc->sc_splitmic, ("key cache !split"));
1375 if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1376 /*
1377 * TX key goes at first index, RX key at +32.
1378 * The hal handles the MIC keys at index+64.
1379 */
1380 memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1381 KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1382 if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
1383 return 0;
1384
1385 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1386 KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1387 /* XXX delete tx key on failure? */
1388 return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
1389 } else if (k->wk_flags & IEEE80211_KEY_XR) {
1390 /*
1391 * TX/RX key goes at first index.
1392 * The hal handles the MIC keys are index+64.
1393 */
1394 memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
1395 k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
1396 KEYPRINTF(sc, k->wk_keyix, hk, mac);
1397 return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1398 }
1399 return 0;
1400 #undef IEEE80211_KEY_XR
1401 }
1402
1403 /*
1404 * Set a net80211 key into the hardware. This handles the
1405 * potential distribution of key state to multiple key
1406 * cache slots for TKIP with hardware MIC support.
1407 */
1408 static int
1409 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1410 const u_int8_t mac0[IEEE80211_ADDR_LEN],
1411 struct ieee80211_node *bss)
1412 {
1413 #define N(a) (sizeof(a)/sizeof(a[0]))
1414 static const u_int8_t ciphermap[] = {
1415 HAL_CIPHER_WEP, /* IEEE80211_CIPHER_WEP */
1416 HAL_CIPHER_TKIP, /* IEEE80211_CIPHER_TKIP */
1417 HAL_CIPHER_AES_OCB, /* IEEE80211_CIPHER_AES_OCB */
1418 HAL_CIPHER_AES_CCM, /* IEEE80211_CIPHER_AES_CCM */
1419 (u_int8_t) -1, /* 4 is not allocated */
1420 HAL_CIPHER_CKIP, /* IEEE80211_CIPHER_CKIP */
1421 HAL_CIPHER_CLR, /* IEEE80211_CIPHER_NONE */
1422 };
1423 struct ath_hal *ah = sc->sc_ah;
1424 const struct ieee80211_cipher *cip = k->wk_cipher;
1425 u_int8_t gmac[IEEE80211_ADDR_LEN];
1426 const u_int8_t *mac;
1427 HAL_KEYVAL hk;
1428
1429 memset(&hk, 0, sizeof(hk));
1430 /*
1431 * Software crypto uses a "clear key" so non-crypto
1432 * state kept in the key cache are maintained and
1433 * so that rx frames have an entry to match.
1434 */
1435 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1436 KASSERT(cip->ic_cipher < N(ciphermap),
1437 ("invalid cipher type %u", cip->ic_cipher));
1438 hk.kv_type = ciphermap[cip->ic_cipher];
1439 hk.kv_len = k->wk_keylen;
1440 memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1441 } else
1442 hk.kv_type = HAL_CIPHER_CLR;
1443
1444 if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
1445 /*
1446 * Group keys on hardware that supports multicast frame
1447 * key search use a mac that is the sender's address with
1448 * the high bit set instead of the app-specified address.
1449 */
1450 IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
1451 gmac[0] |= 0x80;
1452 mac = gmac;
1453 } else
1454 mac = mac0;
1455
1456 if (hk.kv_type == HAL_CIPHER_TKIP &&
1457 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1458 sc->sc_splitmic) {
1459 return ath_keyset_tkip(sc, k, &hk, mac);
1460 } else {
1461 KEYPRINTF(sc, k->wk_keyix, &hk, mac);
1462 return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
1463 }
1464 #undef N
1465 }
1466
1467 /*
1468 * Allocate tx/rx key slots for TKIP. We allocate two slots for
1469 * each key, one for decrypt/encrypt and the other for the MIC.
1470 */
1471 static u_int16_t
1472 key_alloc_2pair(struct ath_softc *sc)
1473 {
1474 #define N(a) (sizeof(a)/sizeof(a[0]))
1475 u_int i, keyix;
1476
1477 KASSERT(sc->sc_splitmic, ("key cache !split"));
1478 /* XXX could optimize */
1479 for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1480 u_int8_t b = sc->sc_keymap[i];
1481 if (b != 0xff) {
1482 /*
1483 * One or more slots in this byte are free.
1484 */
1485 keyix = i*NBBY;
1486 while (b & 1) {
1487 again:
1488 keyix++;
1489 b >>= 1;
1490 }
1491 /* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1492 if (isset(sc->sc_keymap, keyix+32) ||
1493 isset(sc->sc_keymap, keyix+64) ||
1494 isset(sc->sc_keymap, keyix+32+64)) {
1495 /* full pair unavailable */
1496 /* XXX statistic */
1497 if (keyix == (i+1)*NBBY) {
1498 /* no slots were appropriate, advance */
1499 continue;
1500 }
1501 goto again;
1502 }
1503 setbit(sc->sc_keymap, keyix);
1504 setbit(sc->sc_keymap, keyix+64);
1505 setbit(sc->sc_keymap, keyix+32);
1506 setbit(sc->sc_keymap, keyix+32+64);
1507 DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1508 "%s: key pair %u,%u %u,%u\n",
1509 __func__, keyix, keyix+64,
1510 keyix+32, keyix+32+64);
1511 return keyix;
1512 }
1513 }
1514 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1515 return IEEE80211_KEYIX_NONE;
1516 #undef N
1517 }
1518
1519 /*
1520 * Allocate a single key cache slot.
1521 */
1522 static u_int16_t
1523 key_alloc_single(struct ath_softc *sc)
1524 {
1525 #define N(a) (sizeof(a)/sizeof(a[0]))
1526 u_int i, keyix;
1527
1528 /* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
1529 for (i = 0; i < N(sc->sc_keymap); i++) {
1530 u_int8_t b = sc->sc_keymap[i];
1531 if (b != 0xff) {
1532 /*
1533 * One or more slots are free.
1534 */
1535 keyix = i*NBBY;
1536 while (b & 1)
1537 keyix++, b >>= 1;
1538 setbit(sc->sc_keymap, keyix);
1539 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
1540 __func__, keyix);
1541 return keyix;
1542 }
1543 }
1544 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
1545 return IEEE80211_KEYIX_NONE;
1546 #undef N
1547 }
1548
1549 /*
1550 * Allocate one or more key cache slots for a uniacst key. The
1551 * key itself is needed only to identify the cipher. For hardware
1552 * TKIP with split cipher+MIC keys we allocate two key cache slot
1553 * pairs so that we can setup separate TX and RX MIC keys. Note
1554 * that the MIC key for a TKIP key at slot i is assumed by the
1555 * hardware to be at slot i+64. This limits TKIP keys to the first
1556 * 64 entries.
1557 */
1558 static int
1559 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k)
1560 {
1561 struct ath_softc *sc = ic->ic_ifp->if_softc;
1562
1563 /*
1564 * Group key allocation must be handled specially for
1565 * parts that do not support multicast key cache search
1566 * functionality. For those parts the key id must match
1567 * the h/w key index so lookups find the right key. On
1568 * parts w/ the key search facility we install the sender's
1569 * mac address (with the high bit set) and let the hardware
1570 * find the key w/o using the key id. This is preferred as
1571 * it permits us to support multiple users for adhoc and/or
1572 * multi-station operation.
1573 */
1574 if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
1575 u_int keyix;
1576
1577 if (!(&ic->ic_nw_keys[0] <= k &&
1578 k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
1579 /* should not happen */
1580 DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1581 "%s: bogus group key\n", __func__);
1582 return IEEE80211_KEYIX_NONE;
1583 }
1584 keyix = k - ic->ic_nw_keys;
1585 /*
1586 * XXX we pre-allocate the global keys so
1587 * have no way to check if they've already been allocated.
1588 */
1589 return keyix;
1590 }
1591
1592 /*
1593 * We allocate two pair for TKIP when using the h/w to do
1594 * the MIC. For everything else, including software crypto,
1595 * we allocate a single entry. Note that s/w crypto requires
1596 * a pass-through slot on the 5211 and 5212. The 5210 does
1597 * not support pass-through cache entries and we map all
1598 * those requests to slot 0.
1599 */
1600 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1601 return key_alloc_single(sc);
1602 } else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
1603 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
1604 return key_alloc_2pair(sc);
1605 } else {
1606 return key_alloc_single(sc);
1607 }
1608 }
1609
1610 /*
1611 * Delete an entry in the key cache allocated by ath_key_alloc.
1612 */
1613 static int
1614 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
1615 {
1616 struct ath_softc *sc = ic->ic_ifp->if_softc;
1617 struct ath_hal *ah = sc->sc_ah;
1618 const struct ieee80211_cipher *cip = k->wk_cipher;
1619 struct ieee80211_node *ni;
1620 u_int keyix = k->wk_keyix;
1621
1622 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
1623
1624 ath_hal_keyreset(ah, keyix);
1625 /*
1626 * Check the key->node map and flush any ref.
1627 */
1628 ni = sc->sc_keyixmap[keyix];
1629 if (ni != NULL) {
1630 ieee80211_free_node(ni);
1631 sc->sc_keyixmap[keyix] = NULL;
1632 }
1633 /*
1634 * Handle split tx/rx keying required for TKIP with h/w MIC.
1635 */
1636 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1637 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
1638 ath_hal_keyreset(ah, keyix+32); /* RX key */
1639 ni = sc->sc_keyixmap[keyix+32];
1640 if (ni != NULL) { /* as above... */
1641 ieee80211_free_node(ni);
1642 sc->sc_keyixmap[keyix+32] = NULL;
1643 }
1644 }
1645 if (keyix >= IEEE80211_WEP_NKID) {
1646 /*
1647 * Don't touch keymap entries for global keys so
1648 * they are never considered for dynamic allocation.
1649 */
1650 clrbit(sc->sc_keymap, keyix);
1651 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1652 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1653 sc->sc_splitmic) {
1654 clrbit(sc->sc_keymap, keyix+64); /* TX key MIC */
1655 clrbit(sc->sc_keymap, keyix+32); /* RX key */
1656 clrbit(sc->sc_keymap, keyix+32+64); /* RX key MIC */
1657 }
1658 }
1659 return 1;
1660 }
1661
1662 /*
1663 * Set the key cache contents for the specified key. Key cache
1664 * slot(s) must already have been allocated by ath_key_alloc.
1665 */
1666 static int
1667 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
1668 const u_int8_t mac[IEEE80211_ADDR_LEN])
1669 {
1670 struct ath_softc *sc = ic->ic_ifp->if_softc;
1671
1672 return ath_keyset(sc, k, mac, ic->ic_bss);
1673 }
1674
1675 /*
1676 * Block/unblock tx+rx processing while a key change is done.
1677 * We assume the caller serializes key management operations
1678 * so we only need to worry about synchronization with other
1679 * uses that originate in the driver.
1680 */
1681 static void
1682 ath_key_update_begin(struct ieee80211com *ic)
1683 {
1684 struct ifnet *ifp = ic->ic_ifp;
1685 struct ath_softc *sc = ifp->if_softc;
1686
1687 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1688 #if 0
1689 tasklet_disable(&sc->sc_rxtq);
1690 #endif
1691 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */
1692 }
1693
1694 static void
1695 ath_key_update_end(struct ieee80211com *ic)
1696 {
1697 struct ifnet *ifp = ic->ic_ifp;
1698 struct ath_softc *sc = ifp->if_softc;
1699
1700 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1701 IF_UNLOCK(&ifp->if_snd);
1702 #if 0
1703 tasklet_enable(&sc->sc_rxtq);
1704 #endif
1705 }
1706
1707 /*
1708 * Calculate the receive filter according to the
1709 * operating mode and state:
1710 *
1711 * o always accept unicast, broadcast, and multicast traffic
1712 * o maintain current state of phy error reception (the hal
1713 * may enable phy error frames for noise immunity work)
1714 * o probe request frames are accepted only when operating in
1715 * hostap, adhoc, or monitor modes
1716 * o enable promiscuous mode according to the interface state
1717 * o accept beacons:
1718 * - when operating in adhoc mode so the 802.11 layer creates
1719 * node table entries for peers,
1720 * - when operating in station mode for collecting rssi data when
1721 * the station is otherwise quiet, or
1722 * - when scanning
1723 */
1724 static u_int32_t
1725 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
1726 {
1727 struct ieee80211com *ic = &sc->sc_ic;
1728 struct ath_hal *ah = sc->sc_ah;
1729 struct ifnet *ifp = &sc->sc_if;
1730 u_int32_t rfilt;
1731
1732 rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1733 | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1734 if (ic->ic_opmode != IEEE80211_M_STA)
1735 rfilt |= HAL_RX_FILTER_PROBEREQ;
1736 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1737 (ifp->if_flags & IFF_PROMISC))
1738 rfilt |= HAL_RX_FILTER_PROM;
1739 if (ic->ic_opmode == IEEE80211_M_STA ||
1740 ic->ic_opmode == IEEE80211_M_IBSS ||
1741 state == IEEE80211_S_SCAN)
1742 rfilt |= HAL_RX_FILTER_BEACON;
1743 return rfilt;
1744 }
1745
1746 static void
1747 ath_mcastfilter_accum(caddr_t dl, u_int32_t *mfilt)
1748 {
1749 u_int32_t val;
1750 u_int8_t pos;
1751
1752 /* calculate XOR of eight 6bit values */
1753 val = LE_READ_4(dl + 0);
1754 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1755 val = LE_READ_4(dl + 3);
1756 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1757 pos &= 0x3f;
1758 mfilt[pos / 32] |= (1 << (pos % 32));
1759 }
1760
1761 static void
1762 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t *mfilt)
1763 {
1764 struct ifnet *ifp = &sc->sc_if;
1765 struct ether_multi *enm;
1766 struct ether_multistep estep;
1767
1768 mfilt[0] = mfilt[1] = 0;
1769 ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
1770 while (enm != NULL) {
1771 /* XXX Punt on ranges. */
1772 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
1773 mfilt[0] = mfilt[1] = ~((u_int32_t)0);
1774 ifp->if_flags |= IFF_ALLMULTI;
1775 return;
1776 }
1777 ath_mcastfilter_accum(enm->enm_addrlo, mfilt);
1778 ETHER_NEXT_MULTI(estep, enm);
1779 }
1780 ifp->if_flags &= ~IFF_ALLMULTI;
1781 }
1782
1783 static void
1784 ath_mode_init(struct ath_softc *sc)
1785 {
1786 struct ieee80211com *ic = &sc->sc_ic;
1787 struct ath_hal *ah = sc->sc_ah;
1788 u_int32_t rfilt, mfilt[2];
1789
1790 /* configure rx filter */
1791 rfilt = ath_calcrxfilter(sc, ic->ic_state);
1792 ath_hal_setrxfilter(ah, rfilt);
1793
1794 /* configure operational mode */
1795 ath_hal_setopmode(ah);
1796
1797 /*
1798 * Handle any link-level address change. Note that we only
1799 * need to force ic_myaddr; any other addresses are handled
1800 * as a byproduct of the ifnet code marking the interface
1801 * down then up.
1802 *
1803 * XXX should get from lladdr instead of arpcom but that's more work
1804 */
1805 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(sc->sc_if.if_sadl));
1806 ath_hal_setmac(ah, ic->ic_myaddr);
1807
1808 /* calculate and install multicast filter */
1809 #ifdef __FreeBSD__
1810 if ((sc->sc_if.if_flags & IFF_ALLMULTI) == 0)
1811 ath_mcastfilter_compute(sc, mfilt);
1812 else
1813 mfilt[0] = mfilt[1] = ~0;
1814 #endif
1815 #ifdef __NetBSD__
1816 ath_mcastfilter_compute(sc, mfilt);
1817 #endif
1818 ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1819 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
1820 __func__, rfilt, mfilt[0], mfilt[1]);
1821 }
1822
1823 /*
1824 * Set the slot time based on the current setting.
1825 */
1826 static void
1827 ath_setslottime(struct ath_softc *sc)
1828 {
1829 struct ieee80211com *ic = &sc->sc_ic;
1830 struct ath_hal *ah = sc->sc_ah;
1831
1832 if (ic->ic_flags & IEEE80211_F_SHSLOT)
1833 ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
1834 else
1835 ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
1836 sc->sc_updateslot = OK;
1837 }
1838
1839 /*
1840 * Callback from the 802.11 layer to update the
1841 * slot time based on the current setting.
1842 */
1843 static void
1844 ath_updateslot(struct ifnet *ifp)
1845 {
1846 struct ath_softc *sc = ifp->if_softc;
1847 struct ieee80211com *ic = &sc->sc_ic;
1848
1849 /*
1850 * When not coordinating the BSS, change the hardware
1851 * immediately. For other operation we defer the change
1852 * until beacon updates have propagated to the stations.
1853 */
1854 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1855 sc->sc_updateslot = UPDATE;
1856 else
1857 ath_setslottime(sc);
1858 }
1859
1860 /*
1861 * Setup a h/w transmit queue for beacons.
1862 */
1863 static int
1864 ath_beaconq_setup(struct ath_hal *ah)
1865 {
1866 HAL_TXQ_INFO qi;
1867
1868 memset(&qi, 0, sizeof(qi));
1869 qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
1870 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
1871 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
1872 /* NB: for dynamic turbo, don't enable any other interrupts */
1873 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
1874 return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
1875 }
1876
1877 /*
1878 * Setup the transmit queue parameters for the beacon queue.
1879 */
1880 static int
1881 ath_beaconq_config(struct ath_softc *sc)
1882 {
1883 #define ATH_EXPONENT_TO_VALUE(v) ((1<<(v))-1)
1884 struct ieee80211com *ic = &sc->sc_ic;
1885 struct ath_hal *ah = sc->sc_ah;
1886 HAL_TXQ_INFO qi;
1887
1888 ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
1889 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
1890 /*
1891 * Always burst out beacon and CAB traffic.
1892 */
1893 qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
1894 qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
1895 qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
1896 } else {
1897 struct wmeParams *wmep =
1898 &ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
1899 /*
1900 * Adhoc mode; important thing is to use 2x cwmin.
1901 */
1902 qi.tqi_aifs = wmep->wmep_aifsn;
1903 qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
1904 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
1905 }
1906
1907 if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
1908 device_printf(sc->sc_dev, "unable to update parameters for "
1909 "beacon hardware queue!\n");
1910 return 0;
1911 } else {
1912 ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
1913 return 1;
1914 }
1915 #undef ATH_EXPONENT_TO_VALUE
1916 }
1917
1918 /*
1919 * Allocate and setup an initial beacon frame.
1920 */
1921 static int
1922 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
1923 {
1924 struct ieee80211com *ic = ni->ni_ic;
1925 struct ath_buf *bf;
1926 struct mbuf *m;
1927 int error;
1928
1929 bf = STAILQ_FIRST(&sc->sc_bbuf);
1930 if (bf == NULL) {
1931 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
1932 sc->sc_stats.ast_be_nombuf++; /* XXX */
1933 return ENOMEM; /* XXX */
1934 }
1935 /*
1936 * NB: the beacon data buffer must be 32-bit aligned;
1937 * we assume the mbuf routines will return us something
1938 * with this alignment (perhaps should assert).
1939 */
1940 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
1941 if (m == NULL) {
1942 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
1943 __func__);
1944 sc->sc_stats.ast_be_nombuf++;
1945 return ENOMEM;
1946 }
1947 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
1948 BUS_DMA_NOWAIT);
1949 if (error == 0) {
1950 bf->bf_m = m;
1951 bf->bf_node = ieee80211_ref_node(ni);
1952 } else {
1953 m_freem(m);
1954 }
1955 return error;
1956 }
1957
1958 /*
1959 * Setup the beacon frame for transmit.
1960 */
1961 static void
1962 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
1963 {
1964 #define USE_SHPREAMBLE(_ic) \
1965 (((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
1966 == IEEE80211_F_SHPREAMBLE)
1967 struct ieee80211_node *ni = bf->bf_node;
1968 struct ieee80211com *ic = ni->ni_ic;
1969 struct mbuf *m = bf->bf_m;
1970 struct ath_hal *ah = sc->sc_ah;
1971 struct ath_node *an = ATH_NODE(ni);
1972 struct ath_desc *ds;
1973 int flags, antenna;
1974 u_int8_t rate;
1975
1976 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
1977 __func__, m, m->m_len);
1978
1979 /* setup descriptors */
1980 ds = bf->bf_desc;
1981
1982 flags = HAL_TXDESC_NOACK;
1983 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
1984 ds->ds_link = bf->bf_daddr; /* self-linked */
1985 flags |= HAL_TXDESC_VEOL;
1986 /*
1987 * Let hardware handle antenna switching unless
1988 * the user has selected a transmit antenna
1989 * (sc_txantenna is not 0).
1990 */
1991 antenna = sc->sc_txantenna;
1992 } else {
1993 ds->ds_link = 0;
1994 /*
1995 * Switch antenna every 4 beacons, unless the user
1996 * has selected a transmit antenna (sc_txantenna
1997 * is not 0).
1998 *
1999 * XXX assumes two antenna
2000 */
2001 if (sc->sc_txantenna == 0)
2002 antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2003 else
2004 antenna = sc->sc_txantenna;
2005 }
2006
2007 KASSERT(bf->bf_nseg == 1,
2008 ("multi-segment beacon frame; nseg %u", bf->bf_nseg));
2009 ds->ds_data = bf->bf_segs[0].ds_addr;
2010 /*
2011 * Calculate rate code.
2012 * XXX everything at min xmit rate
2013 */
2014 if (USE_SHPREAMBLE(ic))
2015 rate = an->an_tx_mgtratesp;
2016 else
2017 rate = an->an_tx_mgtrate;
2018 ath_hal_setuptxdesc(ah, ds
2019 , m->m_len + IEEE80211_CRC_LEN /* frame length */
2020 , sizeof(struct ieee80211_frame)/* header length */
2021 , HAL_PKT_TYPE_BEACON /* Atheros packet type */
2022 , ni->ni_txpower /* txpower XXX */
2023 , rate, 1 /* series 0 rate/tries */
2024 , HAL_TXKEYIX_INVALID /* no encryption */
2025 , antenna /* antenna mode */
2026 , flags /* no ack, veol for beacons */
2027 , 0 /* rts/cts rate */
2028 , 0 /* rts/cts duration */
2029 );
2030 /* NB: beacon's BufLen must be a multiple of 4 bytes */
2031 ath_hal_filltxdesc(ah, ds
2032 , roundup(m->m_len, 4) /* buffer length */
2033 , AH_TRUE /* first segment */
2034 , AH_TRUE /* last segment */
2035 , ds /* first descriptor */
2036 );
2037 #undef USE_SHPREAMBLE
2038 }
2039
2040 /*
2041 * Transmit a beacon frame at SWBA. Dynamic updates to the
2042 * frame contents are done as needed and the slot time is
2043 * also adjusted based on current state.
2044 */
2045 static void
2046 ath_beacon_proc(void *arg, int pending)
2047 {
2048 struct ath_softc *sc = arg;
2049 struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
2050 struct ieee80211_node *ni = bf->bf_node;
2051 struct ieee80211com *ic = ni->ni_ic;
2052 struct ath_hal *ah = sc->sc_ah;
2053 struct mbuf *m;
2054 int ncabq, error, otherant;
2055
2056 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2057 __func__, pending);
2058
2059 if (ic->ic_opmode == IEEE80211_M_STA ||
2060 ic->ic_opmode == IEEE80211_M_MONITOR ||
2061 bf == NULL || bf->bf_m == NULL) {
2062 DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
2063 __func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
2064 return;
2065 }
2066 /*
2067 * Check if the previous beacon has gone out. If
2068 * not don't don't try to post another, skip this
2069 * period and wait for the next. Missed beacons
2070 * indicate a problem and should not occur. If we
2071 * miss too many consecutive beacons reset the device.
2072 */
2073 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2074 sc->sc_bmisscount++;
2075 DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2076 "%s: missed %u consecutive beacons\n",
2077 __func__, sc->sc_bmisscount);
2078 if (sc->sc_bmisscount > 3) /* NB: 3 is a guess */
2079 TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask);
2080 return;
2081 }
2082 if (sc->sc_bmisscount != 0) {
2083 DPRINTF(sc, ATH_DEBUG_BEACON,
2084 "%s: resume beacon xmit after %u misses\n",
2085 __func__, sc->sc_bmisscount);
2086 sc->sc_bmisscount = 0;
2087 }
2088
2089 /*
2090 * Update dynamic beacon contents. If this returns
2091 * non-zero then we need to remap the memory because
2092 * the beacon frame changed size (probably because
2093 * of the TIM bitmap).
2094 */
2095 m = bf->bf_m;
2096 ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
2097 if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
2098 /* XXX too conservative? */
2099 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2100 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2101 BUS_DMA_NOWAIT);
2102 if (error != 0) {
2103 if_printf(&sc->sc_if,
2104 "%s: bus_dmamap_load_mbuf failed, error %u\n",
2105 __func__, error);
2106 return;
2107 }
2108 }
2109
2110 /*
2111 * Handle slot time change when a non-ERP station joins/leaves
2112 * an 11g network. The 802.11 layer notifies us via callback,
2113 * we mark updateslot, then wait one beacon before effecting
2114 * the change. This gives associated stations at least one
2115 * beacon interval to note the state change.
2116 */
2117 /* XXX locking */
2118 if (sc->sc_updateslot == UPDATE)
2119 sc->sc_updateslot = COMMIT; /* commit next beacon */
2120 else if (sc->sc_updateslot == COMMIT)
2121 ath_setslottime(sc); /* commit change to h/w */
2122
2123 /*
2124 * Check recent per-antenna transmit statistics and flip
2125 * the default antenna if noticeably more frames went out
2126 * on the non-default antenna.
2127 * XXX assumes 2 anntenae
2128 */
2129 otherant = sc->sc_defant & 1 ? 2 : 1;
2130 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2131 ath_setdefantenna(sc, otherant);
2132 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2133
2134 /*
2135 * Construct tx descriptor.
2136 */
2137 ath_beacon_setup(sc, bf);
2138
2139 /*
2140 * Stop any current dma and put the new frame on the queue.
2141 * This should never fail since we check above that no frames
2142 * are still pending on the queue.
2143 */
2144 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2145 DPRINTF(sc, ATH_DEBUG_ANY,
2146 "%s: beacon queue %u did not stop?\n",
2147 __func__, sc->sc_bhalq);
2148 }
2149 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2150 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2151
2152 /*
2153 * Enable the CAB queue before the beacon queue to
2154 * insure cab frames are triggered by this beacon.
2155 */
2156 if (sc->sc_boff.bo_tim[4] & 1) /* NB: only at DTIM */
2157 ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
2158 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
2159 ath_hal_txstart(ah, sc->sc_bhalq);
2160 DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2161 "%s: TXDP[%u] = %p (%p)\n", __func__,
2162 sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc);
2163
2164 sc->sc_stats.ast_be_xmit++;
2165 }
2166
2167 /*
2168 * Reset the hardware after detecting beacons have stopped.
2169 */
2170 static void
2171 ath_bstuck_proc(void *arg, int pending)
2172 {
2173 struct ath_softc *sc = arg;
2174 struct ifnet *ifp = &sc->sc_if;
2175
2176 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2177 sc->sc_bmisscount);
2178 ath_reset(ifp);
2179 }
2180
2181 /*
2182 * Reclaim beacon resources.
2183 */
2184 static void
2185 ath_beacon_free(struct ath_softc *sc)
2186 {
2187 struct ath_buf *bf;
2188
2189 STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
2190 if (bf->bf_m != NULL) {
2191 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2192 m_freem(bf->bf_m);
2193 bf->bf_m = NULL;
2194 }
2195 if (bf->bf_node != NULL) {
2196 ieee80211_free_node(bf->bf_node);
2197 bf->bf_node = NULL;
2198 }
2199 }
2200 }
2201
2202 /*
2203 * Configure the beacon and sleep timers.
2204 *
2205 * When operating as an AP this resets the TSF and sets
2206 * up the hardware to notify us when we need to issue beacons.
2207 *
2208 * When operating in station mode this sets up the beacon
2209 * timers according to the timestamp of the last received
2210 * beacon and the current TSF, configures PCF and DTIM
2211 * handling, programs the sleep registers so the hardware
2212 * will wakeup in time to receive beacons, and configures
2213 * the beacon miss handling so we'll receive a BMISS
2214 * interrupt when we stop seeing beacons from the AP
2215 * we've associated with.
2216 */
2217 static void
2218 ath_beacon_config(struct ath_softc *sc)
2219 {
2220 #define TSF_TO_TU(_h,_l) (((_h) << 22) | ((_l) >> 10))
2221 struct ath_hal *ah = sc->sc_ah;
2222 struct ieee80211com *ic = &sc->sc_ic;
2223 struct ieee80211_node *ni = ic->ic_bss;
2224 u_int32_t nexttbtt, intval;
2225
2226 /* extract tstamp from last beacon and convert to TU */
2227 nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
2228 LE_READ_4(ni->ni_tstamp.data));
2229 /* NB: the beacon interval is kept internally in TU's */
2230 intval = ni->ni_intval & HAL_BEACON_PERIOD;
2231 if (nexttbtt == 0) /* e.g. for ap mode */
2232 nexttbtt = intval;
2233 else if (intval) /* NB: can be 0 for monitor mode */
2234 nexttbtt = roundup(nexttbtt, intval);
2235 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2236 __func__, nexttbtt, intval, ni->ni_intval);
2237 if (ic->ic_opmode == IEEE80211_M_STA) {
2238 HAL_BEACON_STATE bs;
2239 u_int64_t tsf;
2240 u_int32_t tsftu;
2241 int dtimperiod, dtimcount;
2242 int cfpperiod, cfpcount;
2243
2244 /*
2245 * Setup dtim and cfp parameters according to
2246 * last beacon we received (which may be none).
2247 */
2248 dtimperiod = ni->ni_dtim_period;
2249 if (dtimperiod <= 0) /* NB: 0 if not known */
2250 dtimperiod = 1;
2251 dtimcount = ni->ni_dtim_count;
2252 if (dtimcount >= dtimperiod) /* NB: sanity check */
2253 dtimcount = 0; /* XXX? */
2254 cfpperiod = 1; /* NB: no PCF support yet */
2255 cfpcount = 0;
2256 #define FUDGE 2
2257 /*
2258 * Pull nexttbtt forward to reflect the current
2259 * TSF and calculate dtim+cfp state for the result.
2260 */
2261 tsf = ath_hal_gettsf64(ah);
2262 tsftu = TSF_TO_TU((u_int32_t)(tsf>>32), (u_int32_t)tsf) + FUDGE;
2263 do {
2264 nexttbtt += intval;
2265 if (--dtimcount < 0) {
2266 dtimcount = dtimperiod - 1;
2267 if (--cfpcount < 0)
2268 cfpcount = cfpperiod - 1;
2269 }
2270 } while (nexttbtt < tsftu);
2271 #undef FUDGE
2272 memset(&bs, 0, sizeof(bs));
2273 bs.bs_intval = intval;
2274 bs.bs_nexttbtt = nexttbtt;
2275 bs.bs_dtimperiod = dtimperiod*intval;
2276 bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
2277 bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
2278 bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
2279 bs.bs_cfpmaxduration = 0;
2280 #if 0
2281 /*
2282 * The 802.11 layer records the offset to the DTIM
2283 * bitmap while receiving beacons; use it here to
2284 * enable h/w detection of our AID being marked in
2285 * the bitmap vector (to indicate frames for us are
2286 * pending at the AP).
2287 * XXX do DTIM handling in s/w to WAR old h/w bugs
2288 * XXX enable based on h/w rev for newer chips
2289 */
2290 bs.bs_timoffset = ni->ni_timoff;
2291 #endif
2292 /*
2293 * Calculate the number of consecutive beacons to miss
2294 * before taking a BMISS interrupt. The configuration
2295 * is specified in ms, so we need to convert that to
2296 * TU's and then calculate based on the beacon interval.
2297 * Note that we clamp the result to at most 10 beacons.
2298 */
2299 bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
2300 if (bs.bs_bmissthreshold > 10)
2301 bs.bs_bmissthreshold = 10;
2302 else if (bs.bs_bmissthreshold <= 0)
2303 bs.bs_bmissthreshold = 1;
2304
2305 /*
2306 * Calculate sleep duration. The configuration is
2307 * given in ms. We insure a multiple of the beacon
2308 * period is used. Also, if the sleep duration is
2309 * greater than the DTIM period then it makes senses
2310 * to make it a multiple of that.
2311 *
2312 * XXX fixed at 100ms
2313 */
2314 bs.bs_sleepduration =
2315 roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2316 if (bs.bs_sleepduration > bs.bs_dtimperiod)
2317 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2318
2319 DPRINTF(sc, ATH_DEBUG_BEACON,
2320 "%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2321 , __func__
2322 , tsf, tsftu
2323 , bs.bs_intval
2324 , bs.bs_nexttbtt
2325 , bs.bs_dtimperiod
2326 , bs.bs_nextdtim
2327 , bs.bs_bmissthreshold
2328 , bs.bs_sleepduration
2329 , bs.bs_cfpperiod
2330 , bs.bs_cfpmaxduration
2331 , bs.bs_cfpnext
2332 , bs.bs_timoffset
2333 );
2334 ath_hal_intrset(ah, 0);
2335 ath_hal_beacontimers(ah, &bs);
2336 sc->sc_imask |= HAL_INT_BMISS;
2337 ath_hal_intrset(ah, sc->sc_imask);
2338 } else {
2339 ath_hal_intrset(ah, 0);
2340 if (nexttbtt == intval)
2341 intval |= HAL_BEACON_RESET_TSF;
2342 if (ic->ic_opmode == IEEE80211_M_IBSS) {
2343 /*
2344 * In IBSS mode enable the beacon timers but only
2345 * enable SWBA interrupts if we need to manually
2346 * prepare beacon frames. Otherwise we use a
2347 * self-linked tx descriptor and let the hardware
2348 * deal with things.
2349 */
2350 intval |= HAL_BEACON_ENA;
2351 if (!sc->sc_hasveol)
2352 sc->sc_imask |= HAL_INT_SWBA;
2353 ath_beaconq_config(sc);
2354 } else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2355 /*
2356 * In AP mode we enable the beacon timers and
2357 * SWBA interrupts to prepare beacon frames.
2358 */
2359 intval |= HAL_BEACON_ENA;
2360 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */
2361 ath_beaconq_config(sc);
2362 }
2363 ath_hal_beaconinit(ah, nexttbtt, intval);
2364 sc->sc_bmisscount = 0;
2365 ath_hal_intrset(ah, sc->sc_imask);
2366 /*
2367 * When using a self-linked beacon descriptor in
2368 * ibss mode load it once here.
2369 */
2370 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2371 ath_beacon_proc(sc, 0);
2372 }
2373 #undef TSF_TO_TU
2374 }
2375
2376 static int
2377 ath_descdma_setup(struct ath_softc *sc,
2378 struct ath_descdma *dd, ath_bufhead *head,
2379 const char *name, int nbuf, int ndesc)
2380 {
2381 #define DS2PHYS(_dd, _ds) \
2382 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2383 struct ifnet *ifp = &sc->sc_if;
2384 struct ath_desc *ds;
2385 struct ath_buf *bf;
2386 int i, bsize, error;
2387
2388 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2389 __func__, name, nbuf, ndesc);
2390
2391 dd->dd_name = name;
2392 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2393
2394 /*
2395 * Setup DMA descriptor area.
2396 */
2397 dd->dd_dmat = sc->sc_dmat;
2398
2399 error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE,
2400 0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0);
2401
2402 if (error != 0) {
2403 if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2404 "error %u\n", nbuf * ndesc, dd->dd_name, error);
2405 goto fail0;
2406 }
2407
2408 error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg,
2409 dd->dd_desc_len, (caddr_t *)&dd->dd_desc, BUS_DMA_COHERENT);
2410 if (error != 0) {
2411 if_printf(ifp, "unable to map %u %s descriptors, error = %u\n",
2412 nbuf * ndesc, dd->dd_name, error);
2413 goto fail1;
2414 }
2415
2416 /* allocate descriptors */
2417 error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1,
2418 dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2419 if (error != 0) {
2420 if_printf(ifp, "unable to create dmamap for %s descriptors, "
2421 "error %u\n", dd->dd_name, error);
2422 goto fail2;
2423 }
2424
2425 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc,
2426 dd->dd_desc_len, NULL, BUS_DMA_NOWAIT);
2427 if (error != 0) {
2428 if_printf(ifp, "unable to map %s descriptors, error %u\n",
2429 dd->dd_name, error);
2430 goto fail3;
2431 }
2432
2433 ds = dd->dd_desc;
2434 dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr;
2435 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
2436 __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2437 (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2438
2439 /* allocate rx buffers */
2440 bsize = sizeof(struct ath_buf) * nbuf;
2441 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2442 if (bf == NULL) {
2443 if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2444 dd->dd_name, bsize);
2445 goto fail4;
2446 }
2447 dd->dd_bufptr = bf;
2448
2449 STAILQ_INIT(head);
2450 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2451 bf->bf_desc = ds;
2452 bf->bf_daddr = DS2PHYS(dd, ds);
2453 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc,
2454 MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap);
2455 if (error != 0) {
2456 if_printf(ifp, "unable to create dmamap for %s "
2457 "buffer %u, error %u\n", dd->dd_name, i, error);
2458 ath_descdma_cleanup(sc, dd, head);
2459 return error;
2460 }
2461 STAILQ_INSERT_TAIL(head, bf, bf_list);
2462 }
2463 return 0;
2464 fail4:
2465 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2466 fail3:
2467 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2468 fail2:
2469 bus_dmamem_unmap(dd->dd_dmat, (caddr_t)dd->dd_desc, dd->dd_desc_len);
2470 fail1:
2471 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2472 fail0:
2473 memset(dd, 0, sizeof(*dd));
2474 return error;
2475 #undef DS2PHYS
2476 }
2477
2478 static void
2479 ath_descdma_cleanup(struct ath_softc *sc,
2480 struct ath_descdma *dd, ath_bufhead *head)
2481 {
2482 struct ath_buf *bf;
2483 struct ieee80211_node *ni;
2484
2485 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2486 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2487 bus_dmamem_unmap(dd->dd_dmat, (caddr_t)dd->dd_desc, dd->dd_desc_len);
2488 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2489
2490 STAILQ_FOREACH(bf, head, bf_list) {
2491 if (bf->bf_m) {
2492 m_freem(bf->bf_m);
2493 bf->bf_m = NULL;
2494 }
2495 if (bf->bf_dmamap != NULL) {
2496 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2497 bf->bf_dmamap = NULL;
2498 }
2499 ni = bf->bf_node;
2500 bf->bf_node = NULL;
2501 if (ni != NULL) {
2502 /*
2503 * Reclaim node reference.
2504 */
2505 ieee80211_free_node(ni);
2506 }
2507 }
2508
2509 STAILQ_INIT(head);
2510 free(dd->dd_bufptr, M_ATHDEV);
2511 memset(dd, 0, sizeof(*dd));
2512 }
2513
2514 static int
2515 ath_desc_alloc(struct ath_softc *sc)
2516 {
2517 int error;
2518
2519 error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2520 "rx", ATH_RXBUF, 1);
2521 if (error != 0)
2522 return error;
2523
2524 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2525 "tx", ATH_TXBUF, ATH_TXDESC);
2526 if (error != 0) {
2527 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2528 return error;
2529 }
2530
2531 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2532 "beacon", 1, 1);
2533 if (error != 0) {
2534 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2535 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2536 return error;
2537 }
2538 return 0;
2539 }
2540
2541 static void
2542 ath_desc_free(struct ath_softc *sc)
2543 {
2544
2545 if (sc->sc_bdma.dd_desc_len != 0)
2546 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2547 if (sc->sc_txdma.dd_desc_len != 0)
2548 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2549 if (sc->sc_rxdma.dd_desc_len != 0)
2550 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2551 }
2552
2553 static struct ieee80211_node *
2554 ath_node_alloc(struct ieee80211_node_table *nt)
2555 {
2556 struct ieee80211com *ic = nt->nt_ic;
2557 struct ath_softc *sc = ic->ic_ifp->if_softc;
2558 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2559 struct ath_node *an;
2560
2561 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2562 if (an == NULL) {
2563 /* XXX stat+msg */
2564 return NULL;
2565 }
2566 an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
2567 an->an_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
2568 an->an_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
2569 an->an_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
2570 ath_rate_node_init(sc, an);
2571
2572 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2573 return &an->an_node;
2574 }
2575
2576 static void
2577 ath_node_free(struct ieee80211_node *ni)
2578 {
2579 struct ieee80211com *ic = ni->ni_ic;
2580 struct ath_softc *sc = ic->ic_ifp->if_softc;
2581
2582 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2583
2584 ath_rate_node_cleanup(sc, ATH_NODE(ni));
2585 sc->sc_node_free(ni);
2586 }
2587
2588 static u_int8_t
2589 ath_node_getrssi(const struct ieee80211_node *ni)
2590 {
2591 #define HAL_EP_RND(x, mul) \
2592 ((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
2593 u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
2594 int32_t rssi;
2595
2596 /*
2597 * When only one frame is received there will be no state in
2598 * avgrssi so fallback on the value recorded by the 802.11 layer.
2599 */
2600 if (avgrssi != ATH_RSSI_DUMMY_MARKER)
2601 rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
2602 else
2603 rssi = ni->ni_rssi;
2604 /* NB: theoretically we shouldn't need this, but be paranoid */
2605 return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
2606 #undef HAL_EP_RND
2607 }
2608
2609 static int
2610 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2611 {
2612 struct ath_hal *ah = sc->sc_ah;
2613 int error;
2614 struct mbuf *m;
2615 struct ath_desc *ds;
2616
2617 m = bf->bf_m;
2618 if (m == NULL) {
2619 /*
2620 * NB: by assigning a page to the rx dma buffer we
2621 * implicitly satisfy the Atheros requirement that
2622 * this buffer be cache-line-aligned and sized to be
2623 * multiple of the cache line size. Not doing this
2624 * causes weird stuff to happen (for the 5210 at least).
2625 */
2626 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2627 if (m == NULL) {
2628 DPRINTF(sc, ATH_DEBUG_ANY,
2629 "%s: no mbuf/cluster\n", __func__);
2630 sc->sc_stats.ast_rx_nombuf++;
2631 return ENOMEM;
2632 }
2633 bf->bf_m = m;
2634 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2635
2636 error = bus_dmamap_load_mbuf(sc->sc_dmat,
2637 bf->bf_dmamap, m,
2638 BUS_DMA_NOWAIT);
2639 if (error != 0) {
2640 DPRINTF(sc, ATH_DEBUG_ANY,
2641 "%s: bus_dmamap_load_mbuf failed; error %d\n",
2642 __func__, error);
2643 sc->sc_stats.ast_rx_busdma++;
2644 return error;
2645 }
2646 KASSERT(bf->bf_nseg == 1,
2647 ("multi-segment packet; nseg %u", bf->bf_nseg));
2648 }
2649 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2650 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2651
2652 /*
2653 * Setup descriptors. For receive we always terminate
2654 * the descriptor list with a self-linked entry so we'll
2655 * not get overrun under high load (as can happen with a
2656 * 5212 when ANI processing enables PHY error frames).
2657 *
2658 * To insure the last descriptor is self-linked we create
2659 * each descriptor as self-linked and add it to the end. As
2660 * each additional descriptor is added the previous self-linked
2661 * entry is ``fixed'' naturally. This should be safe even
2662 * if DMA is happening. When processing RX interrupts we
2663 * never remove/process the last, self-linked, entry on the
2664 * descriptor list. This insures the hardware always has
2665 * someplace to write a new frame.
2666 */
2667 ds = bf->bf_desc;
2668 ds->ds_link = bf->bf_daddr; /* link to self */
2669 ds->ds_data = bf->bf_segs[0].ds_addr;
2670 ath_hal_setuprxdesc(ah, ds
2671 , m->m_len /* buffer size */
2672 , 0
2673 );
2674
2675 if (sc->sc_rxlink != NULL)
2676 *sc->sc_rxlink = bf->bf_daddr;
2677 sc->sc_rxlink = &ds->ds_link;
2678 return 0;
2679 }
2680
2681 static uint64_t
2682 ath_tsf_extend(struct ath_hal *ah, uint32_t rstamp)
2683 {
2684 uint64_t tsf;
2685
2686 KASSERT((rstamp & 0xffff0000) == 0,
2687 ("rx timestamp > 16 bits wide, %" PRIu32, rstamp));
2688
2689 tsf = ath_hal_gettsf64(ah);
2690
2691 /* Compensate for rollover. */
2692 if ((tsf & 0xffff) <= rstamp)
2693 tsf -= 0x10000;
2694
2695 return (tsf & ~(uint64_t)0xffff) | rstamp;
2696 }
2697
2698 /*
2699 * Extend 15-bit time stamp from rx descriptor to
2700 * a full 64-bit TSF using the current h/w TSF.
2701 */
2702 static __inline u_int64_t
2703 ath_extend_tsf(struct ath_hal *ah, u_int32_t rstamp)
2704 {
2705 u_int64_t tsf;
2706
2707 tsf = ath_hal_gettsf64(ah);
2708 if ((tsf & 0x7fff) < rstamp)
2709 tsf -= 0x8000;
2710 return ((tsf &~ 0x7fff) | rstamp);
2711 }
2712
2713 /*
2714 * Intercept management frames to collect beacon rssi data
2715 * and to do ibss merges.
2716 */
2717 static void
2718 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2719 struct ieee80211_node *ni,
2720 int subtype, int rssi, u_int32_t rstamp)
2721 {
2722 struct ath_softc *sc = ic->ic_ifp->if_softc;
2723
2724 /*
2725 * Call up first so subsequent work can use information
2726 * potentially stored in the node (e.g. for ibss merge).
2727 */
2728 sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
2729 switch (subtype) {
2730 case IEEE80211_FC0_SUBTYPE_BEACON:
2731 /* update rssi statistics for use by the hal */
2732 ATH_RSSI_LPF(ATH_NODE(ni)->an_halstats.ns_avgbrssi, rssi);
2733 /* fall thru... */
2734 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2735 if (ic->ic_opmode == IEEE80211_M_IBSS &&
2736 ic->ic_state == IEEE80211_S_RUN) {
2737 u_int64_t tsf = ath_tsf_extend(sc->sc_ah, rstamp);
2738
2739 /*
2740 * Handle ibss merge as needed; check the tsf on the
2741 * frame before attempting the merge. The 802.11 spec
2742 * says the station should change it's bssid to match
2743 * the oldest station with the same ssid, where oldest
2744 * is determined by the tsf. Note that hardware
2745 * reconfiguration happens through callback to
2746 * ath_newstate as the state machine will go from
2747 * RUN -> RUN when this happens.
2748 */
2749 if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
2750 DPRINTF(sc, ATH_DEBUG_STATE,
2751 "ibss merge, rstamp %u tsf %ju "
2752 "tstamp %ju\n", rstamp, (uintmax_t)tsf,
2753 (uintmax_t)ni->ni_tstamp.tsf);
2754 (void) ieee80211_ibss_merge(ic, ni);
2755 }
2756 }
2757 break;
2758 }
2759 }
2760
2761 /*
2762 * Set the default antenna.
2763 */
2764 static void
2765 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
2766 {
2767 struct ath_hal *ah = sc->sc_ah;
2768
2769 /* XXX block beacon interrupts */
2770 ath_hal_setdefantenna(ah, antenna);
2771 if (sc->sc_defant != antenna)
2772 sc->sc_stats.ast_ant_defswitch++;
2773 sc->sc_defant = antenna;
2774 sc->sc_rxotherant = 0;
2775 }
2776
2777 static void
2778 ath_rx_proc(void *arg, int npending)
2779 {
2780 #define PA2DESC(_sc, _pa) \
2781 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
2782 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
2783 struct ath_softc *sc = arg;
2784 struct ath_buf *bf;
2785 struct ieee80211com *ic = &sc->sc_ic;
2786 struct ifnet *ifp = &sc->sc_if;
2787 struct ath_hal *ah = sc->sc_ah;
2788 struct ath_desc *ds;
2789 struct mbuf *m;
2790 struct ieee80211_node *ni;
2791 struct ath_node *an;
2792 int len, type;
2793 u_int phyerr;
2794 HAL_STATUS status;
2795
2796 NET_LOCK_GIANT(); /* XXX */
2797
2798 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
2799 do {
2800 bf = STAILQ_FIRST(&sc->sc_rxbuf);
2801 if (bf == NULL) { /* NB: shouldn't happen */
2802 if_printf(ifp, "%s: no buffer!\n", __func__);
2803 break;
2804 }
2805 ds = bf->bf_desc;
2806 if (ds->ds_link == bf->bf_daddr) {
2807 /* NB: never process the self-linked entry at the end */
2808 break;
2809 }
2810 m = bf->bf_m;
2811 if (m == NULL) { /* NB: shouldn't happen */
2812 if_printf(ifp, "%s: no mbuf!\n", __func__);
2813 continue;
2814 }
2815 /* XXX sync descriptor memory */
2816 /*
2817 * Must provide the virtual address of the current
2818 * descriptor, the physical address, and the virtual
2819 * address of the next descriptor in the h/w chain.
2820 * This allows the HAL to look ahead to see if the
2821 * hardware is done with a descriptor by checking the
2822 * done bit in the following descriptor and the address
2823 * of the current descriptor the DMA engine is working
2824 * on. All this is necessary because of our use of
2825 * a self-linked list to avoid rx overruns.
2826 */
2827 status = ath_hal_rxprocdesc(ah, ds,
2828 bf->bf_daddr, PA2DESC(sc, ds->ds_link));
2829 #ifdef AR_DEBUG
2830 if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
2831 ath_printrxbuf(bf, status == HAL_OK);
2832 #endif
2833 if (status == HAL_EINPROGRESS)
2834 break;
2835 STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
2836 if (ds->ds_rxstat.rs_more) {
2837 /*
2838 * Frame spans multiple descriptors; this
2839 * cannot happen yet as we don't support
2840 * jumbograms. If not in monitor mode,
2841 * discard the frame.
2842 */
2843 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2844 sc->sc_stats.ast_rx_toobig++;
2845 goto rx_next;
2846 }
2847 /* fall thru for monitor mode handling... */
2848 } else if (ds->ds_rxstat.rs_status != 0) {
2849 if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
2850 sc->sc_stats.ast_rx_crcerr++;
2851 if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
2852 sc->sc_stats.ast_rx_fifoerr++;
2853 if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
2854 sc->sc_stats.ast_rx_phyerr++;
2855 phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
2856 sc->sc_stats.ast_rx_phy[phyerr]++;
2857 goto rx_next;
2858 }
2859 if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
2860 /*
2861 * Decrypt error. If the error occurred
2862 * because there was no hardware key, then
2863 * let the frame through so the upper layers
2864 * can process it. This is necessary for 5210
2865 * parts which have no way to setup a ``clear''
2866 * key cache entry.
2867 *
2868 * XXX do key cache faulting
2869 */
2870 if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
2871 goto rx_accept;
2872 sc->sc_stats.ast_rx_badcrypt++;
2873 }
2874 if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
2875 sc->sc_stats.ast_rx_badmic++;
2876 /*
2877 * Do minimal work required to hand off
2878 * the 802.11 header for notifcation.
2879 */
2880 /* XXX frag's and qos frames */
2881 len = ds->ds_rxstat.rs_datalen;
2882 if (len >= sizeof (struct ieee80211_frame)) {
2883 bus_dmamap_sync(sc->sc_dmat,
2884 bf->bf_dmamap,
2885 0, bf->bf_dmamap->dm_mapsize,
2886 BUS_DMASYNC_POSTREAD);
2887 ieee80211_notify_michael_failure(ic,
2888 mtod(m, struct ieee80211_frame *),
2889 sc->sc_splitmic ?
2890 ds->ds_rxstat.rs_keyix-32 :
2891 ds->ds_rxstat.rs_keyix
2892 );
2893 }
2894 }
2895 ifp->if_ierrors++;
2896 /*
2897 * Reject error frames, we normally don't want
2898 * to see them in monitor mode (in monitor mode
2899 * allow through packets that have crypto problems).
2900 */
2901 if ((ds->ds_rxstat.rs_status &~
2902 (HAL_RXERR_DECRYPT|HAL_RXERR_MIC)) ||
2903 sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
2904 goto rx_next;
2905 }
2906 rx_accept:
2907 /*
2908 * Sync and unmap the frame. At this point we're
2909 * committed to passing the mbuf somewhere so clear
2910 * bf_m; this means a new sk_buff must be allocated
2911 * when the rx descriptor is setup again to receive
2912 * another frame.
2913 */
2914 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
2915 0, bf->bf_dmamap->dm_mapsize,
2916 BUS_DMASYNC_POSTREAD);
2917 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2918 bf->bf_m = NULL;
2919
2920 m->m_pkthdr.rcvif = ifp;
2921 len = ds->ds_rxstat.rs_datalen;
2922 m->m_pkthdr.len = m->m_len = len;
2923
2924 sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
2925
2926 #if NBPFILTER > 0
2927 if (sc->sc_drvbpf) {
2928 u_int8_t rix;
2929
2930 /*
2931 * Discard anything shorter than an ack or cts.
2932 */
2933 if (len < IEEE80211_ACK_LEN) {
2934 DPRINTF(sc, ATH_DEBUG_RECV,
2935 "%s: runt packet %d\n",
2936 __func__, len);
2937 sc->sc_stats.ast_rx_tooshort++;
2938 m_freem(m);
2939 goto rx_next;
2940 }
2941 rix = ds->ds_rxstat.rs_rate;
2942 sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
2943 sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
2944 sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi;
2945 sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
2946 /* XXX TSF */
2947
2948 bpf_mtap2(sc->sc_drvbpf,
2949 &sc->sc_rx_th, sc->sc_rx_th_len, m);
2950 }
2951 #endif
2952
2953 /*
2954 * From this point on we assume the frame is at least
2955 * as large as ieee80211_frame_min; verify that.
2956 */
2957 if (len < IEEE80211_MIN_LEN) {
2958 DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
2959 __func__, len);
2960 sc->sc_stats.ast_rx_tooshort++;
2961 m_freem(m);
2962 goto rx_next;
2963 }
2964
2965 if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
2966 ieee80211_dump_pkt(mtod(m, caddr_t), len,
2967 sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
2968 ds->ds_rxstat.rs_rssi);
2969 }
2970
2971 m_adj(m, -IEEE80211_CRC_LEN);
2972
2973 /*
2974 * Locate the node for sender, track state, and then
2975 * pass the (referenced) node up to the 802.11 layer
2976 * for its use. If the sender is unknown spam the
2977 * frame; it'll be dropped where it's not wanted.
2978 */
2979 if (ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID &&
2980 (ni = sc->sc_keyixmap[ds->ds_rxstat.rs_keyix]) != NULL) {
2981 /*
2982 * Fast path: node is present in the key map;
2983 * grab a reference for processing the frame.
2984 */
2985 an = ATH_NODE(ieee80211_ref_node(ni));
2986 ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
2987 type = ieee80211_input(ic, m, ni,
2988 ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
2989 } else {
2990 /*
2991 * Locate the node for sender, track state, and then
2992 * pass the (referenced) node up to the 802.11 layer
2993 * for its use.
2994 */
2995 ni = ieee80211_find_rxnode(ic,
2996 mtod(m, const struct ieee80211_frame_min *));
2997 /*
2998 * Track rx rssi and do any rx antenna management.
2999 */
3000 an = ATH_NODE(ni);
3001 ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
3002 /*
3003 * Send frame up for processing.
3004 */
3005 type = ieee80211_input(ic, m, ni,
3006 ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
3007 if (ni != ic->ic_bss) {
3008 u_int16_t keyix;
3009 /*
3010 * If the station has a key cache slot assigned
3011 * update the key->node mapping table.
3012 */
3013 keyix = ni->ni_ucastkey.wk_keyix;
3014 if (keyix != IEEE80211_KEYIX_NONE &&
3015 sc->sc_keyixmap[keyix] == NULL)
3016 sc->sc_keyixmap[keyix] =
3017 ieee80211_ref_node(ni);
3018 }
3019 }
3020 ieee80211_free_node(ni);
3021 if (sc->sc_diversity) {
3022 /*
3023 * When using fast diversity, change the default rx
3024 * antenna if diversity chooses the other antenna 3
3025 * times in a row.
3026 */
3027 if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
3028 if (++sc->sc_rxotherant >= 3)
3029 ath_setdefantenna(sc,
3030 ds->ds_rxstat.rs_antenna);
3031 } else
3032 sc->sc_rxotherant = 0;
3033 }
3034 if (sc->sc_softled) {
3035 /*
3036 * Blink for any data frame. Otherwise do a
3037 * heartbeat-style blink when idle. The latter
3038 * is mainly for station mode where we depend on
3039 * periodic beacon frames to trigger the poll event.
3040 */
3041 if (type == IEEE80211_FC0_TYPE_DATA) {
3042 sc->sc_rxrate = ds->ds_rxstat.rs_rate;
3043 ath_led_event(sc, ATH_LED_RX);
3044 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
3045 ath_led_event(sc, ATH_LED_POLL);
3046 }
3047 rx_next:
3048 STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
3049 } while (ath_rxbuf_init(sc, bf) == 0);
3050
3051 /* rx signal state monitoring */
3052 ath_hal_rxmonitor(ah, &ATH_NODE(ic->ic_bss)->an_halstats);
3053
3054 #ifdef __NetBSD__
3055 /* XXX Why isn't this necessary in FreeBSD? */
3056 if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
3057 ath_start(ifp);
3058 #endif /* __NetBSD__ */
3059
3060 NET_UNLOCK_GIANT(); /* XXX */
3061 #undef PA2DESC
3062 }
3063
3064 /*
3065 * Setup a h/w transmit queue.
3066 */
3067 static struct ath_txq *
3068 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3069 {
3070 #define N(a) (sizeof(a)/sizeof(a[0]))
3071 struct ath_hal *ah = sc->sc_ah;
3072 HAL_TXQ_INFO qi;
3073 int qnum;
3074
3075 memset(&qi, 0, sizeof(qi));
3076 qi.tqi_subtype = subtype;
3077 qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3078 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3079 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3080 /*
3081 * Enable interrupts only for EOL and DESC conditions.
3082 * We mark tx descriptors to receive a DESC interrupt
3083 * when a tx queue gets deep; otherwise waiting for the
3084 * EOL to reap descriptors. Note that this is done to
3085 * reduce interrupt load and this only defers reaping
3086 * descriptors, never transmitting frames. Aside from
3087 * reducing interrupts this also permits more concurrency.
3088 * The only potential downside is if the tx queue backs
3089 * up in which case the top half of the kernel may backup
3090 * due to a lack of tx descriptors.
3091 */
3092 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE | TXQ_FLAG_TXDESCINT_ENABLE;
3093 qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3094 if (qnum == -1) {
3095 /*
3096 * NB: don't print a message, this happens
3097 * normally on parts with too few tx queues
3098 */
3099 return NULL;
3100 }
3101 if (qnum >= N(sc->sc_txq)) {
3102 device_printf(sc->sc_dev,
3103 "hal qnum %u out of range, max %zu!\n",
3104 qnum, N(sc->sc_txq));
3105 ath_hal_releasetxqueue(ah, qnum);
3106 return NULL;
3107 }
3108 if (!ATH_TXQ_SETUP(sc, qnum)) {
3109 struct ath_txq *txq = &sc->sc_txq[qnum];
3110
3111 txq->axq_qnum = qnum;
3112 txq->axq_depth = 0;
3113 txq->axq_intrcnt = 0;
3114 txq->axq_link = NULL;
3115 STAILQ_INIT(&txq->axq_q);
3116 ATH_TXQ_LOCK_INIT(sc, txq);
3117 sc->sc_txqsetup |= 1<<qnum;
3118 }
3119 return &sc->sc_txq[qnum];
3120 #undef N
3121 }
3122
3123 /*
3124 * Setup a hardware data transmit queue for the specified
3125 * access control. The hal may not support all requested
3126 * queues in which case it will return a reference to a
3127 * previously setup queue. We record the mapping from ac's
3128 * to h/w queues for use by ath_tx_start and also track
3129 * the set of h/w queues being used to optimize work in the
3130 * transmit interrupt handler and related routines.
3131 */
3132 static int
3133 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3134 {
3135 #define N(a) (sizeof(a)/sizeof(a[0]))
3136 struct ath_txq *txq;
3137
3138 if (ac >= N(sc->sc_ac2q)) {
3139 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3140 ac, N(sc->sc_ac2q));
3141 return 0;
3142 }
3143 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3144 if (txq != NULL) {
3145 sc->sc_ac2q[ac] = txq;
3146 return 1;
3147 } else
3148 return 0;
3149 #undef N
3150 }
3151
3152 /*
3153 * Update WME parameters for a transmit queue.
3154 */
3155 static int
3156 ath_txq_update(struct ath_softc *sc, int ac)
3157 {
3158 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1)
3159 #define ATH_TXOP_TO_US(v) (v<<5)
3160 struct ieee80211com *ic = &sc->sc_ic;
3161 struct ath_txq *txq = sc->sc_ac2q[ac];
3162 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3163 struct ath_hal *ah = sc->sc_ah;
3164 HAL_TXQ_INFO qi;
3165
3166 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3167 qi.tqi_aifs = wmep->wmep_aifsn;
3168 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3169 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3170 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3171
3172 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3173 device_printf(sc->sc_dev, "unable to update hardware queue "
3174 "parameters for %s traffic!\n",
3175 ieee80211_wme_acnames[ac]);
3176 return 0;
3177 } else {
3178 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3179 return 1;
3180 }
3181 #undef ATH_TXOP_TO_US
3182 #undef ATH_EXPONENT_TO_VALUE
3183 }
3184
3185 /*
3186 * Callback from the 802.11 layer to update WME parameters.
3187 */
3188 static int
3189 ath_wme_update(struct ieee80211com *ic)
3190 {
3191 struct ath_softc *sc = ic->ic_ifp->if_softc;
3192
3193 return !ath_txq_update(sc, WME_AC_BE) ||
3194 !ath_txq_update(sc, WME_AC_BK) ||
3195 !ath_txq_update(sc, WME_AC_VI) ||
3196 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3197 }
3198
3199 /*
3200 * Reclaim resources for a setup queue.
3201 */
3202 static void
3203 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3204 {
3205
3206 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3207 ATH_TXQ_LOCK_DESTROY(txq);
3208 sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3209 }
3210
3211 /*
3212 * Reclaim all tx queue resources.
3213 */
3214 static void
3215 ath_tx_cleanup(struct ath_softc *sc)
3216 {
3217 int i;
3218
3219 ATH_TXBUF_LOCK_DESTROY(sc);
3220 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3221 if (ATH_TXQ_SETUP(sc, i))
3222 ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3223 }
3224
3225 /*
3226 * Defragment an mbuf chain, returning at most maxfrags separate
3227 * mbufs+clusters. If this is not possible NULL is returned and
3228 * the original mbuf chain is left in it's present (potentially
3229 * modified) state. We use two techniques: collapsing consecutive
3230 * mbufs and replacing consecutive mbufs by a cluster.
3231 */
3232 static struct mbuf *
3233 ath_defrag(struct mbuf *m0, int how, int maxfrags)
3234 {
3235 struct mbuf *m, *n, *n2, **prev;
3236 u_int curfrags;
3237
3238 /*
3239 * Calculate the current number of frags.
3240 */
3241 curfrags = 0;
3242 for (m = m0; m != NULL; m = m->m_next)
3243 curfrags++;
3244 /*
3245 * First, try to collapse mbufs. Note that we always collapse
3246 * towards the front so we don't need to deal with moving the
3247 * pkthdr. This may be suboptimal if the first mbuf has much
3248 * less data than the following.
3249 */
3250 m = m0;
3251 again:
3252 for (;;) {
3253 n = m->m_next;
3254 if (n == NULL)
3255 break;
3256 if ((m->m_flags & M_RDONLY) == 0 &&
3257 n->m_len < M_TRAILINGSPACE(m)) {
3258 bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
3259 n->m_len);
3260 m->m_len += n->m_len;
3261 m->m_next = n->m_next;
3262 m_free(n);
3263 if (--curfrags <= maxfrags)
3264 return m0;
3265 } else
3266 m = n;
3267 }
3268 KASSERT(maxfrags > 1,
3269 ("maxfrags %u, but normal collapse failed", maxfrags));
3270 /*
3271 * Collapse consecutive mbufs to a cluster.
3272 */
3273 prev = &m0->m_next; /* NB: not the first mbuf */
3274 while ((n = *prev) != NULL) {
3275 if ((n2 = n->m_next) != NULL &&
3276 n->m_len + n2->m_len < MCLBYTES) {
3277 m = m_getcl(how, MT_DATA, 0);
3278 if (m == NULL)
3279 goto bad;
3280 bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
3281 bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
3282 n2->m_len);
3283 m->m_len = n->m_len + n2->m_len;
3284 m->m_next = n2->m_next;
3285 *prev = m;
3286 m_free(n);
3287 m_free(n2);
3288 if (--curfrags <= maxfrags) /* +1 cl -2 mbufs */
3289 return m0;
3290 /*
3291 * Still not there, try the normal collapse
3292 * again before we allocate another cluster.
3293 */
3294 goto again;
3295 }
3296 prev = &n->m_next;
3297 }
3298 /*
3299 * No place where we can collapse to a cluster; punt.
3300 * This can occur if, for example, you request 2 frags
3301 * but the packet requires that both be clusters (we
3302 * never reallocate the first mbuf to avoid moving the
3303 * packet header).
3304 */
3305 bad:
3306 return NULL;
3307 }
3308
3309 static int
3310 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
3311 struct mbuf *m0)
3312 {
3313 #define CTS_DURATION \
3314 ath_hal_computetxtime(ah, rt, IEEE80211_ACK_LEN, cix, AH_TRUE)
3315 #define updateCTSForBursting(_ah, _ds, _txq) \
3316 ath_hal_updateCTSForBursting(_ah, _ds, \
3317 _txq->axq_linkbuf != NULL ? _txq->axq_linkbuf->bf_desc : NULL, \
3318 _txq->axq_lastdsWithCTS, _txq->axq_gatingds, \
3319 txopLimit, CTS_DURATION)
3320 struct ieee80211com *ic = &sc->sc_ic;
3321 struct ath_hal *ah = sc->sc_ah;
3322 struct ifnet *ifp = &sc->sc_if;
3323 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
3324 int i, error, iswep, ismcast, keyix, hdrlen, pktlen, try0;
3325 u_int8_t rix, txrate, ctsrate;
3326 u_int8_t cix = 0xff; /* NB: silence compiler */
3327 struct ath_desc *ds, *ds0;
3328 struct ath_txq *txq;
3329 struct ieee80211_frame *wh;
3330 u_int subtype, flags, ctsduration;
3331 HAL_PKT_TYPE atype;
3332 const HAL_RATE_TABLE *rt;
3333 HAL_BOOL shortPreamble;
3334 struct ath_node *an;
3335 struct mbuf *m;
3336 u_int pri;
3337
3338 wh = mtod(m0, struct ieee80211_frame *);
3339 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
3340 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3341 hdrlen = ieee80211_anyhdrsize(wh);
3342 /*
3343 * Packet length must not include any
3344 * pad bytes; deduct them here.
3345 */
3346 pktlen = m0->m_pkthdr.len - (hdrlen & 3);
3347
3348 if (iswep) {
3349 const struct ieee80211_cipher *cip;
3350 struct ieee80211_key *k;
3351
3352 /*
3353 * Construct the 802.11 header+trailer for an encrypted
3354 * frame. The only reason this can fail is because of an
3355 * unknown or unsupported cipher/key type.
3356 */
3357 k = ieee80211_crypto_encap(ic, ni, m0);
3358 if (k == NULL) {
3359 /*
3360 * This can happen when the key is yanked after the
3361 * frame was queued. Just discard the frame; the
3362 * 802.11 layer counts failures and provides
3363 * debugging/diagnostics.
3364 */
3365 m_freem(m0);
3366 return EIO;
3367 }
3368 /*
3369 * Adjust the packet + header lengths for the crypto
3370 * additions and calculate the h/w key index. When
3371 * a s/w mic is done the frame will have had any mic
3372 * added to it prior to entry so skb->len above will
3373 * account for it. Otherwise we need to add it to the
3374 * packet length.
3375 */
3376 cip = k->wk_cipher;
3377 hdrlen += cip->ic_header;
3378 pktlen += cip->ic_header + cip->ic_trailer;
3379 if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0)
3380 pktlen += cip->ic_miclen;
3381 keyix = k->wk_keyix;
3382
3383 /* packet header may have moved, reset our local pointer */
3384 wh = mtod(m0, struct ieee80211_frame *);
3385 } else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
3386 /*
3387 * Use station key cache slot, if assigned.
3388 */
3389 keyix = ni->ni_ucastkey.wk_keyix;
3390 if (keyix == IEEE80211_KEYIX_NONE)
3391 keyix = HAL_TXKEYIX_INVALID;
3392 } else
3393 keyix = HAL_TXKEYIX_INVALID;
3394
3395 pktlen += IEEE80211_CRC_LEN;
3396
3397 /*
3398 * Load the DMA map so any coalescing is done. This
3399 * also calculates the number of descriptors we need.
3400 */
3401 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3402 BUS_DMA_NOWAIT);
3403 if (error == EFBIG) {
3404 /* XXX packet requires too many descriptors */
3405 bf->bf_nseg = ATH_TXDESC+1;
3406 } else if (error != 0) {
3407 sc->sc_stats.ast_tx_busdma++;
3408 m_freem(m0);
3409 return error;
3410 }
3411 /*
3412 * Discard null packets and check for packets that
3413 * require too many TX descriptors. We try to convert
3414 * the latter to a cluster.
3415 */
3416 if (error == EFBIG) { /* too many desc's, linearize */
3417 sc->sc_stats.ast_tx_linear++;
3418 m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
3419 if (m == NULL) {
3420 m_freem(m0);
3421 sc->sc_stats.ast_tx_nombuf++;
3422 return ENOMEM;
3423 }
3424 m0 = m;
3425 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3426 BUS_DMA_NOWAIT);
3427 if (error != 0) {
3428 sc->sc_stats.ast_tx_busdma++;
3429 m_freem(m0);
3430 return error;
3431 }
3432 KASSERT(bf->bf_nseg <= ATH_TXDESC,
3433 ("too many segments after defrag; nseg %u", bf->bf_nseg));
3434 } else if (bf->bf_nseg == 0) { /* null packet, discard */
3435 sc->sc_stats.ast_tx_nodata++;
3436 m_freem(m0);
3437 return EIO;
3438 }
3439 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
3440 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
3441 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
3442 bf->bf_m = m0;
3443 bf->bf_node = ni; /* NB: held reference */
3444
3445 /* setup descriptors */
3446 ds = bf->bf_desc;
3447 rt = sc->sc_currates;
3448 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3449
3450 /*
3451 * NB: the 802.11 layer marks whether or not we should
3452 * use short preamble based on the current mode and
3453 * negotiated parameters.
3454 */
3455 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3456 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) {
3457 shortPreamble = AH_TRUE;
3458 sc->sc_stats.ast_tx_shortpre++;
3459 } else {
3460 shortPreamble = AH_FALSE;
3461 }
3462
3463 an = ATH_NODE(ni);
3464 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */
3465 /*
3466 * Calculate Atheros packet type from IEEE80211 packet header,
3467 * setup for rate calculations, and select h/w transmit queue.
3468 */
3469 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3470 case IEEE80211_FC0_TYPE_MGT:
3471 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3472 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
3473 atype = HAL_PKT_TYPE_BEACON;
3474 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3475 atype = HAL_PKT_TYPE_PROBE_RESP;
3476 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
3477 atype = HAL_PKT_TYPE_ATIM;
3478 else
3479 atype = HAL_PKT_TYPE_NORMAL; /* XXX */
3480 rix = 0; /* XXX lowest rate */
3481 try0 = ATH_TXMAXTRY;
3482 if (shortPreamble)
3483 txrate = an->an_tx_mgtratesp;
3484 else
3485 txrate = an->an_tx_mgtrate;
3486 /* NB: force all management frames to highest queue */
3487 if (ni->ni_flags & IEEE80211_NODE_QOS) {
3488 /* NB: force all management frames to highest queue */
3489 pri = WME_AC_VO;
3490 } else
3491 pri = WME_AC_BE;
3492 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
3493 break;
3494 case IEEE80211_FC0_TYPE_CTL:
3495 atype = HAL_PKT_TYPE_PSPOLL; /* stop setting of duration */
3496 rix = 0; /* XXX lowest rate */
3497 try0 = ATH_TXMAXTRY;
3498 if (shortPreamble)
3499 txrate = an->an_tx_mgtratesp;
3500 else
3501 txrate = an->an_tx_mgtrate;
3502 /* NB: force all ctl frames to highest queue */
3503 if (ni->ni_flags & IEEE80211_NODE_QOS) {
3504 /* NB: force all ctl frames to highest queue */
3505 pri = WME_AC_VO;
3506 } else
3507 pri = WME_AC_BE;
3508 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
3509 break;
3510 case IEEE80211_FC0_TYPE_DATA:
3511 atype = HAL_PKT_TYPE_NORMAL; /* default */
3512 /*
3513 * Data frames; consult the rate control module for
3514 * unicast frames. Send multicast frames at the
3515 * lowest rate.
3516 */
3517 if (!ismcast) {
3518 ath_rate_findrate(sc, an, shortPreamble, pktlen,
3519 &rix, &try0, &txrate);
3520 } else {
3521 rix = 0;
3522 try0 = ATH_TXMAXTRY;
3523 txrate = an->an_tx_mgtrate;
3524 }
3525 sc->sc_txrate = txrate; /* for LED blinking */
3526 /*
3527 * Default all non-QoS traffic to the background queue.
3528 */
3529 if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
3530 pri = M_WME_GETAC(m0);
3531 if (cap->cap_wmeParams[pri].wmep_noackPolicy) {
3532 flags |= HAL_TXDESC_NOACK;
3533 sc->sc_stats.ast_tx_noack++;
3534 }
3535 } else
3536 pri = WME_AC_BE;
3537 break;
3538 default:
3539 if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3540 wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3541 /* XXX statistic */
3542 m_freem(m0);
3543 return EIO;
3544 }
3545 txq = sc->sc_ac2q[pri];
3546
3547 /*
3548 * When servicing one or more stations in power-save mode
3549 * multicast frames must be buffered until after the beacon.
3550 * We use the CAB queue for that.
3551 */
3552 if (ismcast && ic->ic_ps_sta) {
3553 txq = sc->sc_cabq;
3554 /* XXX? more bit in 802.11 frame header */
3555 }
3556
3557 /*
3558 * Calculate miscellaneous flags.
3559 */
3560 if (ismcast) {
3561 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */
3562 sc->sc_stats.ast_tx_noack++;
3563 } else if (pktlen > ic->ic_rtsthreshold) {
3564 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */
3565 cix = rt->info[rix].controlRate;
3566 sc->sc_stats.ast_tx_rts++;
3567 }
3568
3569 /*
3570 * If 802.11g protection is enabled, determine whether
3571 * to use RTS/CTS or just CTS. Note that this is only
3572 * done for OFDM unicast frames.
3573 */
3574 if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3575 rt->info[rix].phy == IEEE80211_T_OFDM &&
3576 (flags & HAL_TXDESC_NOACK) == 0) {
3577 /* XXX fragments must use CCK rates w/ protection */
3578 if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3579 flags |= HAL_TXDESC_RTSENA;
3580 else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3581 flags |= HAL_TXDESC_CTSENA;
3582 cix = rt->info[sc->sc_protrix].controlRate;
3583 sc->sc_stats.ast_tx_protect++;
3584 }
3585
3586 /*
3587 * Calculate duration. This logically belongs in the 802.11
3588 * layer but it lacks sufficient information to calculate it.
3589 */
3590 if ((flags & HAL_TXDESC_NOACK) == 0 &&
3591 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
3592 u_int16_t dur;
3593 /*
3594 * XXX not right with fragmentation.
3595 */
3596 if (shortPreamble)
3597 dur = rt->info[rix].spAckDuration;
3598 else
3599 dur = rt->info[rix].lpAckDuration;
3600 *(u_int16_t *)wh->i_dur = htole16(dur);
3601 }
3602
3603 /*
3604 * Calculate RTS/CTS rate and duration if needed.
3605 */
3606 ctsduration = 0;
3607 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
3608 /*
3609 * CTS transmit rate is derived from the transmit rate
3610 * by looking in the h/w rate table. We must also factor
3611 * in whether or not a short preamble is to be used.
3612 */
3613 /* NB: cix is set above where RTS/CTS is enabled */
3614 KASSERT(cix != 0xff, ("cix not setup"));
3615 ctsrate = rt->info[cix].rateCode;
3616 /*
3617 * Compute the transmit duration based on the frame
3618 * size and the size of an ACK frame. We call into the
3619 * HAL to do the computation since it depends on the
3620 * characteristics of the actual PHY being used.
3621 *
3622 * NB: CTS is assumed the same size as an ACK so we can
3623 * use the precalculated ACK durations.
3624 */
3625 if (shortPreamble) {
3626 ctsrate |= rt->info[cix].shortPreamble;
3627 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
3628 ctsduration += rt->info[cix].spAckDuration;
3629 ctsduration += ath_hal_computetxtime(ah,
3630 rt, pktlen, rix, AH_TRUE);
3631 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
3632 ctsduration += rt->info[cix].spAckDuration;
3633 } else {
3634 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
3635 ctsduration += rt->info[cix].lpAckDuration;
3636 ctsduration += ath_hal_computetxtime(ah,
3637 rt, pktlen, rix, AH_FALSE);
3638 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
3639 ctsduration += rt->info[cix].lpAckDuration;
3640 }
3641 /*
3642 * Must disable multi-rate retry when using RTS/CTS.
3643 */
3644 try0 = ATH_TXMAXTRY;
3645 } else
3646 ctsrate = 0;
3647
3648 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3649 ieee80211_dump_pkt(mtod(m0, caddr_t), m0->m_len,
3650 sc->sc_hwmap[txrate].ieeerate, -1);
3651
3652 if (ic->ic_rawbpf)
3653 bpf_mtap(ic->ic_rawbpf, m0);
3654 if (sc->sc_drvbpf) {
3655 sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
3656 if (iswep)
3657 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3658 sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
3659 sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3660 sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3661
3662 bpf_mtap2(sc->sc_drvbpf,
3663 &sc->sc_tx_th, sc->sc_tx_th_len, m0);
3664 }
3665
3666 /*
3667 * Determine if a tx interrupt should be generated for
3668 * this descriptor. We take a tx interrupt to reap
3669 * descriptors when the h/w hits an EOL condition or
3670 * when the descriptor is specifically marked to generate
3671 * an interrupt. We periodically mark descriptors in this
3672 * way to insure timely replenishing of the supply needed
3673 * for sending frames. Defering interrupts reduces system
3674 * load and potentially allows more concurrent work to be
3675 * done but if done to aggressively can cause senders to
3676 * backup.
3677 *
3678 * NB: use >= to deal with sc_txintrperiod changing
3679 * dynamically through sysctl.
3680 */
3681 if (flags & HAL_TXDESC_INTREQ) {
3682 txq->axq_intrcnt = 0;
3683 } else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
3684 flags |= HAL_TXDESC_INTREQ;
3685 txq->axq_intrcnt = 0;
3686 }
3687
3688 /*
3689 * Formulate first tx descriptor with tx controls.
3690 */
3691 /* XXX check return value? */
3692 ath_hal_setuptxdesc(ah, ds
3693 , pktlen /* packet length */
3694 , hdrlen /* header length */
3695 , atype /* Atheros packet type */
3696 , ni->ni_txpower /* txpower */
3697 , txrate, try0 /* series 0 rate/tries */
3698 , keyix /* key cache index */
3699 , sc->sc_txantenna /* antenna mode */
3700 , flags /* flags */
3701 , ctsrate /* rts/cts rate */
3702 , ctsduration /* rts/cts duration */
3703 );
3704 bf->bf_flags = flags;
3705 /*
3706 * Setup the multi-rate retry state only when we're
3707 * going to use it. This assumes ath_hal_setuptxdesc
3708 * initializes the descriptors (so we don't have to)
3709 * when the hardware supports multi-rate retry and
3710 * we don't use it.
3711 */
3712 if (try0 != ATH_TXMAXTRY)
3713 ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
3714
3715 /*
3716 * Fillin the remainder of the descriptor info.
3717 */
3718 ds0 = ds;
3719 for (i = 0; i < bf->bf_nseg; i++, ds++) {
3720 ds->ds_data = bf->bf_segs[i].ds_addr;
3721 if (i == bf->bf_nseg - 1)
3722 ds->ds_link = 0;
3723 else
3724 ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
3725 ath_hal_filltxdesc(ah, ds
3726 , bf->bf_segs[i].ds_len /* segment length */
3727 , i == 0 /* first segment */
3728 , i == bf->bf_nseg - 1 /* last segment */
3729 , ds0 /* first descriptor */
3730 );
3731 DPRINTF(sc, ATH_DEBUG_XMIT,
3732 "%s: %d: %08x %08x %08x %08x %08x %08x\n",
3733 __func__, i, ds->ds_link, ds->ds_data,
3734 ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
3735 }
3736 /*
3737 * Insert the frame on the outbound list and
3738 * pass it on to the hardware.
3739 */
3740 ATH_TXQ_LOCK(txq);
3741 if (flags & (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) {
3742 u_int32_t txopLimit = IEEE80211_TXOP_TO_US(
3743 cap->cap_wmeParams[pri].wmep_txopLimit);
3744 /*
3745 * When bursting, potentially extend the CTS duration
3746 * of a previously queued frame to cover this frame
3747 * and not exceed the txopLimit. If that can be done
3748 * then disable RTS/CTS on this frame since it's now
3749 * covered (burst extension). Otherwise we must terminate
3750 * the burst before this frame goes out so as not to
3751 * violate the WME parameters. All this is complicated
3752 * as we need to update the state of packets on the
3753 * (live) hardware queue. The logic is buried in the hal
3754 * because it's highly chip-specific.
3755 */
3756 if (txopLimit != 0) {
3757 sc->sc_stats.ast_tx_ctsburst++;
3758 if (updateCTSForBursting(ah, ds0, txq) == 0) {
3759 /*
3760 * This frame was not covered by RTS/CTS from
3761 * the previous frame in the burst; update the
3762 * descriptor pointers so this frame is now
3763 * treated as the last frame for extending a
3764 * burst.
3765 */
3766 txq->axq_lastdsWithCTS = ds0;
3767 /* set gating Desc to final desc */
3768 txq->axq_gatingds =
3769 (struct ath_desc *)txq->axq_link;
3770 } else
3771 sc->sc_stats.ast_tx_ctsext++;
3772 }
3773 }
3774 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
3775 if (txq->axq_link == NULL) {
3776 ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
3777 DPRINTF(sc, ATH_DEBUG_XMIT,
3778 "%s: TXDP[%u] = %p (%p) depth %d\n", __func__,
3779 txq->axq_qnum, (caddr_t)bf->bf_daddr, bf->bf_desc,
3780 txq->axq_depth);
3781 } else {
3782 *txq->axq_link = bf->bf_daddr;
3783 DPRINTF(sc, ATH_DEBUG_XMIT,
3784 "%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
3785 txq->axq_qnum, txq->axq_link,
3786 (caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
3787 }
3788 txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
3789 /*
3790 * The CAB queue is started from the SWBA handler since
3791 * frames only go out on DTIM and to avoid possible races.
3792 */
3793 if (txq != sc->sc_cabq)
3794 ath_hal_txstart(ah, txq->axq_qnum);
3795 ATH_TXQ_UNLOCK(txq);
3796
3797 return 0;
3798 #undef updateCTSForBursting
3799 #undef CTS_DURATION
3800 }
3801
3802 /*
3803 * Process completed xmit descriptors from the specified queue.
3804 */
3805 static void
3806 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
3807 {
3808 struct ath_hal *ah = sc->sc_ah;
3809 struct ieee80211com *ic = &sc->sc_ic;
3810 struct ath_buf *bf;
3811 struct ath_desc *ds, *ds0;
3812 struct ieee80211_node *ni;
3813 struct ath_node *an;
3814 int sr, lr, pri;
3815 HAL_STATUS status;
3816
3817 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
3818 __func__, txq->axq_qnum,
3819 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3820 txq->axq_link);
3821 for (;;) {
3822 ATH_TXQ_LOCK(txq);
3823 txq->axq_intrcnt = 0; /* reset periodic desc intr count */
3824 bf = STAILQ_FIRST(&txq->axq_q);
3825 if (bf == NULL) {
3826 txq->axq_link = NULL;
3827 ATH_TXQ_UNLOCK(txq);
3828 break;
3829 }
3830 ds0 = &bf->bf_desc[0];
3831 ds = &bf->bf_desc[bf->bf_nseg - 1];
3832 status = ath_hal_txprocdesc(ah, ds);
3833 #ifdef AR_DEBUG
3834 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
3835 ath_printtxbuf(bf, status == HAL_OK);
3836 #endif
3837 if (status == HAL_EINPROGRESS) {
3838 ATH_TXQ_UNLOCK(txq);
3839 break;
3840 }
3841 if (ds0 == txq->axq_lastdsWithCTS)
3842 txq->axq_lastdsWithCTS = NULL;
3843 if (ds == txq->axq_gatingds)
3844 txq->axq_gatingds = NULL;
3845 ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3846 ATH_TXQ_UNLOCK(txq);
3847
3848 ni = bf->bf_node;
3849 if (ni != NULL) {
3850 an = ATH_NODE(ni);
3851 if (ds->ds_txstat.ts_status == 0) {
3852 u_int8_t txant = ds->ds_txstat.ts_antenna;
3853 sc->sc_stats.ast_ant_tx[txant]++;
3854 sc->sc_ant_tx[txant]++;
3855 if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
3856 sc->sc_stats.ast_tx_altrate++;
3857 sc->sc_stats.ast_tx_rssi =
3858 ds->ds_txstat.ts_rssi;
3859 ATH_RSSI_LPF(an->an_halstats.ns_avgtxrssi,
3860 ds->ds_txstat.ts_rssi);
3861 pri = M_WME_GETAC(bf->bf_m);
3862 if (pri >= WME_AC_VO)
3863 ic->ic_wme.wme_hipri_traffic++;
3864 ni->ni_inact = ni->ni_inact_reload;
3865 } else {
3866 if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
3867 sc->sc_stats.ast_tx_xretries++;
3868 if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
3869 sc->sc_stats.ast_tx_fifoerr++;
3870 if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
3871 sc->sc_stats.ast_tx_filtered++;
3872 }
3873 sr = ds->ds_txstat.ts_shortretry;
3874 lr = ds->ds_txstat.ts_longretry;
3875 sc->sc_stats.ast_tx_shortretry += sr;
3876 sc->sc_stats.ast_tx_longretry += lr;
3877 /*
3878 * Hand the descriptor to the rate control algorithm.
3879 */
3880 if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
3881 (bf->bf_flags & HAL_TXDESC_NOACK) == 0)
3882 ath_rate_tx_complete(sc, an, ds, ds0);
3883 /*
3884 * Reclaim reference to node.
3885 *
3886 * NB: the node may be reclaimed here if, for example
3887 * this is a DEAUTH message that was sent and the
3888 * node was timed out due to inactivity.
3889 */
3890 ieee80211_free_node(ni);
3891 }
3892 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
3893 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3894 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3895 m_freem(bf->bf_m);
3896 bf->bf_m = NULL;
3897 bf->bf_node = NULL;
3898
3899 ATH_TXBUF_LOCK(sc);
3900 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
3901 ATH_TXBUF_UNLOCK(sc);
3902 }
3903 }
3904
3905 /*
3906 * Deferred processing of transmit interrupt; special-cased
3907 * for a single hardware transmit queue (e.g. 5210 and 5211).
3908 */
3909 static void
3910 ath_tx_proc_q0(void *arg, int npending)
3911 {
3912 struct ath_softc *sc = arg;
3913 struct ifnet *ifp = &sc->sc_if;
3914
3915 ath_tx_processq(sc, &sc->sc_txq[0]);
3916 ath_tx_processq(sc, sc->sc_cabq);
3917 ifp->if_flags &= ~IFF_OACTIVE;
3918 sc->sc_tx_timer = 0;
3919
3920 if (sc->sc_softled)
3921 ath_led_event(sc, ATH_LED_TX);
3922
3923 ath_start(ifp);
3924 }
3925
3926 /*
3927 * Deferred processing of transmit interrupt; special-cased
3928 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
3929 */
3930 static void
3931 ath_tx_proc_q0123(void *arg, int npending)
3932 {
3933 struct ath_softc *sc = arg;
3934 struct ifnet *ifp = &sc->sc_if;
3935
3936 /*
3937 * Process each active queue.
3938 */
3939 ath_tx_processq(sc, &sc->sc_txq[0]);
3940 ath_tx_processq(sc, &sc->sc_txq[1]);
3941 ath_tx_processq(sc, &sc->sc_txq[2]);
3942 ath_tx_processq(sc, &sc->sc_txq[3]);
3943 ath_tx_processq(sc, sc->sc_cabq);
3944
3945 ifp->if_flags &= ~IFF_OACTIVE;
3946 sc->sc_tx_timer = 0;
3947
3948 if (sc->sc_softled)
3949 ath_led_event(sc, ATH_LED_TX);
3950
3951 ath_start(ifp);
3952 }
3953
3954 /*
3955 * Deferred processing of transmit interrupt.
3956 */
3957 static void
3958 ath_tx_proc(void *arg, int npending)
3959 {
3960 struct ath_softc *sc = arg;
3961 struct ifnet *ifp = &sc->sc_if;
3962 int i;
3963
3964 /*
3965 * Process each active queue.
3966 */
3967 /* XXX faster to read ISR_S0_S and ISR_S1_S to determine q's? */
3968 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3969 if (ATH_TXQ_SETUP(sc, i))
3970 ath_tx_processq(sc, &sc->sc_txq[i]);
3971
3972 ifp->if_flags &= ~IFF_OACTIVE;
3973 sc->sc_tx_timer = 0;
3974
3975 if (sc->sc_softled)
3976 ath_led_event(sc, ATH_LED_TX);
3977
3978 ath_start(ifp);
3979 }
3980
3981 static void
3982 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
3983 {
3984 struct ath_hal *ah = sc->sc_ah;
3985 struct ieee80211_node *ni;
3986 struct ath_buf *bf;
3987
3988 /*
3989 * NB: this assumes output has been stopped and
3990 * we do not need to block ath_tx_tasklet
3991 */
3992 for (;;) {
3993 ATH_TXQ_LOCK(txq);
3994 bf = STAILQ_FIRST(&txq->axq_q);
3995 if (bf == NULL) {
3996 txq->axq_link = NULL;
3997 ATH_TXQ_UNLOCK(txq);
3998 break;
3999 }
4000 ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4001 ATH_TXQ_UNLOCK(txq);
4002 #ifdef AR_DEBUG
4003 if (sc->sc_debug & ATH_DEBUG_RESET)
4004 ath_printtxbuf(bf,
4005 ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
4006 #endif /* AR_DEBUG */
4007 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4008 m_freem(bf->bf_m);
4009 bf->bf_m = NULL;
4010 ni = bf->bf_node;
4011 bf->bf_node = NULL;
4012 if (ni != NULL) {
4013 /*
4014 * Reclaim node reference.
4015 */
4016 ieee80211_free_node(ni);
4017 }
4018 ATH_TXBUF_LOCK(sc);
4019 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4020 ATH_TXBUF_UNLOCK(sc);
4021 }
4022 }
4023
4024 static void
4025 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4026 {
4027 struct ath_hal *ah = sc->sc_ah;
4028
4029 (void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4030 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4031 __func__, txq->axq_qnum,
4032 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4033 txq->axq_link);
4034 }
4035
4036 /*
4037 * Drain the transmit queues and reclaim resources.
4038 */
4039 static void
4040 ath_draintxq(struct ath_softc *sc)
4041 {
4042 struct ath_hal *ah = sc->sc_ah;
4043 struct ifnet *ifp = &sc->sc_if;
4044 int i;
4045
4046 /* XXX return value */
4047 if (!sc->sc_invalid) {
4048 /* don't touch the hardware if marked invalid */
4049 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4050 DPRINTF(sc, ATH_DEBUG_RESET,
4051 "%s: beacon queue %p\n", __func__,
4052 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
4053 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4054 if (ATH_TXQ_SETUP(sc, i))
4055 ath_tx_stopdma(sc, &sc->sc_txq[i]);
4056 }
4057 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4058 if (ATH_TXQ_SETUP(sc, i))
4059 ath_tx_draintxq(sc, &sc->sc_txq[i]);
4060 ifp->if_flags &= ~IFF_OACTIVE;
4061 sc->sc_tx_timer = 0;
4062 }
4063
4064 /*
4065 * Disable the receive h/w in preparation for a reset.
4066 */
4067 static void
4068 ath_stoprecv(struct ath_softc *sc)
4069 {
4070 #define PA2DESC(_sc, _pa) \
4071 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
4072 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
4073 struct ath_hal *ah = sc->sc_ah;
4074
4075 ath_hal_stoppcurecv(ah); /* disable PCU */
4076 ath_hal_setrxfilter(ah, 0); /* clear recv filter */
4077 ath_hal_stopdmarecv(ah); /* disable DMA engine */
4078 DELAY(3000); /* 3ms is long enough for 1 frame */
4079 #ifdef AR_DEBUG
4080 if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
4081 struct ath_buf *bf;
4082
4083 printf("%s: rx queue %p, link %p\n", __func__,
4084 (caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
4085 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4086 struct ath_desc *ds = bf->bf_desc;
4087 HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
4088 bf->bf_daddr, PA2DESC(sc, ds->ds_link));
4089 if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
4090 ath_printrxbuf(bf, status == HAL_OK);
4091 }
4092 }
4093 #endif
4094 sc->sc_rxlink = NULL; /* just in case */
4095 #undef PA2DESC
4096 }
4097
4098 /*
4099 * Enable the receive h/w following a reset.
4100 */
4101 static int
4102 ath_startrecv(struct ath_softc *sc)
4103 {
4104 struct ath_hal *ah = sc->sc_ah;
4105 struct ath_buf *bf;
4106
4107 sc->sc_rxlink = NULL;
4108 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4109 int error = ath_rxbuf_init(sc, bf);
4110 if (error != 0) {
4111 DPRINTF(sc, ATH_DEBUG_RECV,
4112 "%s: ath_rxbuf_init failed %d\n",
4113 __func__, error);
4114 return error;
4115 }
4116 }
4117
4118 bf = STAILQ_FIRST(&sc->sc_rxbuf);
4119 ath_hal_putrxbuf(ah, bf->bf_daddr);
4120 ath_hal_rxena(ah); /* enable recv descriptors */
4121 ath_mode_init(sc); /* set filters, etc. */
4122 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */
4123 return 0;
4124 }
4125
4126 /*
4127 * Update internal state after a channel change.
4128 */
4129 static void
4130 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4131 {
4132 struct ieee80211com *ic = &sc->sc_ic;
4133 enum ieee80211_phymode mode;
4134 u_int16_t flags;
4135
4136 /*
4137 * Change channels and update the h/w rate map
4138 * if we're switching; e.g. 11a to 11b/g.
4139 */
4140 mode = ieee80211_chan2mode(ic, chan);
4141 if (mode != sc->sc_curmode)
4142 ath_setcurmode(sc, mode);
4143 /*
4144 * Update BPF state. NB: ethereal et. al. don't handle
4145 * merged flags well so pick a unique mode for their use.
4146 */
4147 if (IEEE80211_IS_CHAN_A(chan))
4148 flags = IEEE80211_CHAN_A;
4149 /* XXX 11g schizophrenia */
4150 else if (IEEE80211_IS_CHAN_G(chan) ||
4151 IEEE80211_IS_CHAN_PUREG(chan))
4152 flags = IEEE80211_CHAN_G;
4153 else
4154 flags = IEEE80211_CHAN_B;
4155 if (IEEE80211_IS_CHAN_T(chan))
4156 flags |= IEEE80211_CHAN_TURBO;
4157 sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
4158 htole16(chan->ic_freq);
4159 sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
4160 htole16(flags);
4161 }
4162
4163 /*
4164 * Set/change channels. If the channel is really being changed,
4165 * it's done by reseting the chip. To accomplish this we must
4166 * first cleanup any pending DMA, then restart stuff after a la
4167 * ath_init.
4168 */
4169 static int
4170 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4171 {
4172 struct ath_hal *ah = sc->sc_ah;
4173 struct ieee80211com *ic = &sc->sc_ic;
4174 HAL_CHANNEL hchan;
4175
4176 /*
4177 * Convert to a HAL channel description with
4178 * the flags constrained to reflect the current
4179 * operating mode.
4180 */
4181 hchan.channel = chan->ic_freq;
4182 hchan.channelFlags = ath_chan2flags(ic, chan);
4183
4184 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz) -> %u (%u MHz)\n",
4185 __func__,
4186 ath_hal_mhz2ieee(sc->sc_curchan.channel,
4187 sc->sc_curchan.channelFlags),
4188 sc->sc_curchan.channel,
4189 ath_hal_mhz2ieee(hchan.channel, hchan.channelFlags), hchan.channel);
4190 if (hchan.channel != sc->sc_curchan.channel ||
4191 hchan.channelFlags != sc->sc_curchan.channelFlags) {
4192 HAL_STATUS status;
4193
4194 /*
4195 * To switch channels clear any pending DMA operations;
4196 * wait long enough for the RX fifo to drain, reset the
4197 * hardware at the new frequency, and then re-enable
4198 * the relevant bits of the h/w.
4199 */
4200 ath_hal_intrset(ah, 0); /* disable interrupts */
4201 ath_draintxq(sc); /* clear pending tx frames */
4202 ath_stoprecv(sc); /* turn off frame recv */
4203 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
4204 if_printf(&sc->sc_if, "ath_chan_set: unable to reset "
4205 "channel %u (%u Mhz)\n",
4206 ieee80211_chan2ieee(ic, chan), chan->ic_freq);
4207 return EIO;
4208 }
4209 sc->sc_curchan = hchan;
4210 ath_update_txpow(sc); /* update tx power state */
4211
4212 /*
4213 * Re-enable rx framework.
4214 */
4215 if (ath_startrecv(sc) != 0) {
4216 if_printf(&sc->sc_if,
4217 "ath_chan_set: unable to restart recv logic\n");
4218 return EIO;
4219 }
4220
4221 /*
4222 * Change channels and update the h/w rate map
4223 * if we're switching; e.g. 11a to 11b/g.
4224 */
4225 ic->ic_ibss_chan = chan;
4226 ath_chan_change(sc, chan);
4227
4228 /*
4229 * Re-enable interrupts.
4230 */
4231 ath_hal_intrset(ah, sc->sc_imask);
4232 }
4233 return 0;
4234 }
4235
4236 static void
4237 ath_next_scan(void *arg)
4238 {
4239 struct ath_softc *sc = arg;
4240 struct ieee80211com *ic = &sc->sc_ic;
4241 int s;
4242
4243 /* don't call ath_start w/o network interrupts blocked */
4244 s = splnet();
4245
4246 if (ic->ic_state == IEEE80211_S_SCAN)
4247 ieee80211_next_scan(ic);
4248 splx(s);
4249 }
4250
4251 /*
4252 * Periodically recalibrate the PHY to account
4253 * for temperature/environment changes.
4254 */
4255 static void
4256 ath_calibrate(void *arg)
4257 {
4258 struct ath_softc *sc = arg;
4259 struct ath_hal *ah = sc->sc_ah;
4260
4261 sc->sc_stats.ast_per_cal++;
4262
4263 ATH_LOCK(sc);
4264 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: channel %u/%x\n",
4265 __func__, sc->sc_curchan.channel, sc->sc_curchan.channelFlags);
4266
4267 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4268 /*
4269 * Rfgain is out of bounds, reset the chip
4270 * to load new gain values.
4271 */
4272 sc->sc_stats.ast_per_rfgain++;
4273 ath_reset(&sc->sc_if);
4274 }
4275 if (!ath_hal_calibrate(ah, &sc->sc_curchan)) {
4276 DPRINTF(sc, ATH_DEBUG_ANY,
4277 "%s: calibration of channel %u failed\n",
4278 __func__, sc->sc_curchan.channel);
4279 sc->sc_stats.ast_per_calfail++;
4280 }
4281 callout_reset(&sc->sc_cal_ch, ath_calinterval * hz, ath_calibrate, sc);
4282 ATH_UNLOCK(sc);
4283 }
4284
4285 static int
4286 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
4287 {
4288 struct ifnet *ifp = ic->ic_ifp;
4289 struct ath_softc *sc = ifp->if_softc;
4290 struct ath_hal *ah = sc->sc_ah;
4291 struct ieee80211_node *ni;
4292 int i, error;
4293 const u_int8_t *bssid;
4294 u_int32_t rfilt;
4295 static const HAL_LED_STATE leds[] = {
4296 HAL_LED_INIT, /* IEEE80211_S_INIT */
4297 HAL_LED_SCAN, /* IEEE80211_S_SCAN */
4298 HAL_LED_AUTH, /* IEEE80211_S_AUTH */
4299 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */
4300 HAL_LED_RUN, /* IEEE80211_S_RUN */
4301 };
4302
4303 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4304 ieee80211_state_name[ic->ic_state],
4305 ieee80211_state_name[nstate]);
4306
4307 callout_stop(&sc->sc_scan_ch);
4308 callout_stop(&sc->sc_cal_ch);
4309 ath_hal_setledstate(ah, leds[nstate]); /* set LED */
4310
4311 if (nstate == IEEE80211_S_INIT) {
4312 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4313 /*
4314 * NB: disable interrupts so we don't rx frames.
4315 */
4316 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4317 /*
4318 * Notify the rate control algorithm.
4319 */
4320 ath_rate_newstate(sc, nstate);
4321 goto done;
4322 }
4323 ni = ic->ic_bss;
4324 error = ath_chan_set(sc, ni->ni_chan);
4325 if (error != 0)
4326 goto bad;
4327 rfilt = ath_calcrxfilter(sc, nstate);
4328 if (nstate == IEEE80211_S_SCAN)
4329 bssid = ifp->if_broadcastaddr;
4330 else
4331 bssid = ni->ni_bssid;
4332 ath_hal_setrxfilter(ah, rfilt);
4333 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
4334 __func__, rfilt, ether_sprintf(bssid));
4335
4336 if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
4337 ath_hal_setassocid(ah, bssid, ni->ni_associd);
4338 else
4339 ath_hal_setassocid(ah, bssid, 0);
4340 if (ic->ic_flags & IEEE80211_F_PRIVACY) {
4341 for (i = 0; i < IEEE80211_WEP_NKID; i++)
4342 if (ath_hal_keyisvalid(ah, i))
4343 ath_hal_keysetmac(ah, i, bssid);
4344 }
4345
4346 /*
4347 * Notify the rate control algorithm so rates
4348 * are setup should ath_beacon_alloc be called.
4349 */
4350 ath_rate_newstate(sc, nstate);
4351
4352 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4353 /* nothing to do */;
4354 } else if (nstate == IEEE80211_S_RUN) {
4355 DPRINTF(sc, ATH_DEBUG_STATE,
4356 "%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
4357 "capinfo=0x%04x chan=%d\n"
4358 , __func__
4359 , ic->ic_flags
4360 , ni->ni_intval
4361 , ether_sprintf(ni->ni_bssid)
4362 , ni->ni_capinfo
4363 , ieee80211_chan2ieee(ic, ni->ni_chan));
4364
4365 switch (ic->ic_opmode) {
4366 case IEEE80211_M_HOSTAP:
4367 case IEEE80211_M_IBSS:
4368 /*
4369 * Allocate and setup the beacon frame.
4370 *
4371 * Stop any previous beacon DMA. This may be
4372 * necessary, for example, when an ibss merge
4373 * causes reconfiguration; there will be a state
4374 * transition from RUN->RUN that means we may
4375 * be called with beacon transmission active.
4376 */
4377 ath_hal_stoptxdma(ah, sc->sc_bhalq);
4378 ath_beacon_free(sc);
4379 error = ath_beacon_alloc(sc, ni);
4380 if (error != 0)
4381 goto bad;
4382 break;
4383 case IEEE80211_M_STA:
4384 /*
4385 * Allocate a key cache slot to the station.
4386 */
4387 if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
4388 sc->sc_hasclrkey &&
4389 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4390 ath_setup_stationkey(ni);
4391 break;
4392 default:
4393 break;
4394 }
4395
4396 /*
4397 * Configure the beacon and sleep timers.
4398 */
4399 ath_beacon_config(sc);
4400 } else {
4401 ath_hal_intrset(ah,
4402 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4403 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4404 }
4405 done:
4406 /*
4407 * Invoke the parent method to complete the work.
4408 */
4409 error = sc->sc_newstate(ic, nstate, arg);
4410 /*
4411 * Finally, start any timers.
4412 */
4413 if (nstate == IEEE80211_S_RUN) {
4414 /* start periodic recalibration timer */
4415 callout_reset(&sc->sc_cal_ch, ath_calinterval * hz,
4416 ath_calibrate, sc);
4417 } else if (nstate == IEEE80211_S_SCAN) {
4418 /* start ap/neighbor scan timer */
4419 callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
4420 ath_next_scan, sc);
4421 }
4422 bad:
4423 return error;
4424 }
4425
4426 /*
4427 * Allocate a key cache slot to the station so we can
4428 * setup a mapping from key index to node. The key cache
4429 * slot is needed for managing antenna state and for
4430 * compression when stations do not use crypto. We do
4431 * it uniliaterally here; if crypto is employed this slot
4432 * will be reassigned.
4433 */
4434 static void
4435 ath_setup_stationkey(struct ieee80211_node *ni)
4436 {
4437 struct ieee80211com *ic = ni->ni_ic;
4438 struct ath_softc *sc = ic->ic_ifp->if_softc;
4439 u_int16_t keyix;
4440
4441 keyix = ath_key_alloc(ic, &ni->ni_ucastkey);
4442 if (keyix == IEEE80211_KEYIX_NONE) {
4443 /*
4444 * Key cache is full; we'll fall back to doing
4445 * the more expensive lookup in software. Note
4446 * this also means no h/w compression.
4447 */
4448 /* XXX msg+statistic */
4449 } else {
4450 ni->ni_ucastkey.wk_keyix = keyix;
4451 /* NB: this will create a pass-thru key entry */
4452 ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
4453 }
4454 }
4455
4456 /*
4457 * Setup driver-specific state for a newly associated node.
4458 * Note that we're called also on a re-associate, the isnew
4459 * param tells us if this is the first time or not.
4460 */
4461 static void
4462 ath_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
4463 {
4464 struct ath_softc *sc = ic->ic_ifp->if_softc;
4465
4466 ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
4467 if (isnew &&
4468 (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
4469 KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
4470 ("new assoc with a unicast key already setup (keyix %u)",
4471 ni->ni_ucastkey.wk_keyix));
4472 ath_setup_stationkey(ni);
4473 }
4474 }
4475
4476 static int
4477 ath_getchannels(struct ath_softc *sc, u_int cc,
4478 HAL_BOOL outdoor, HAL_BOOL xchanmode)
4479 {
4480 struct ieee80211com *ic = &sc->sc_ic;
4481 struct ifnet *ifp = &sc->sc_if;
4482 struct ath_hal *ah = sc->sc_ah;
4483 HAL_CHANNEL *chans;
4484 int i, ix, nchan;
4485
4486 chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
4487 M_TEMP, M_NOWAIT);
4488 if (chans == NULL) {
4489 if_printf(ifp, "unable to allocate channel table\n");
4490 return ENOMEM;
4491 }
4492 if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
4493 cc, HAL_MODE_ALL, outdoor, xchanmode)) {
4494 u_int32_t rd;
4495
4496 ath_hal_getregdomain(ah, &rd);
4497 if_printf(ifp, "unable to collect channel list from hal; "
4498 "regdomain likely %u country code %u\n", rd, cc);
4499 free(chans, M_TEMP);
4500 return EINVAL;
4501 }
4502
4503 /*
4504 * Convert HAL channels to ieee80211 ones and insert
4505 * them in the table according to their channel number.
4506 */
4507 for (i = 0; i < nchan; i++) {
4508 HAL_CHANNEL *c = &chans[i];
4509 ix = ath_hal_mhz2ieee(c->channel, c->channelFlags);
4510 if (ix > IEEE80211_CHAN_MAX) {
4511 if_printf(ifp, "bad hal channel %u (%u/%x) ignored\n",
4512 ix, c->channel, c->channelFlags);
4513 continue;
4514 }
4515 DPRINTF(sc, ATH_DEBUG_ANY,
4516 "%s: HAL channel %d/%d freq %d flags %#04x idx %d\n",
4517 sc->sc_dev.dv_xname, i, nchan, c->channel, c->channelFlags,
4518 ix);
4519 /* NB: flags are known to be compatible */
4520 if (ic->ic_channels[ix].ic_freq == 0) {
4521 ic->ic_channels[ix].ic_freq = c->channel;
4522 ic->ic_channels[ix].ic_flags = c->channelFlags;
4523 } else {
4524 /* channels overlap; e.g. 11g and 11b */
4525 ic->ic_channels[ix].ic_flags |= c->channelFlags;
4526 }
4527 }
4528 free(chans, M_TEMP);
4529 return 0;
4530 }
4531
4532 static void
4533 ath_led_done(void *arg)
4534 {
4535 struct ath_softc *sc = arg;
4536
4537 sc->sc_blinking = 0;
4538 }
4539
4540 /*
4541 * Turn the LED off: flip the pin and then set a timer so no
4542 * update will happen for the specified duration.
4543 */
4544 static void
4545 ath_led_off(void *arg)
4546 {
4547 struct ath_softc *sc = arg;
4548
4549 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
4550 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
4551 }
4552
4553 /*
4554 * Blink the LED according to the specified on/off times.
4555 */
4556 static void
4557 ath_led_blink(struct ath_softc *sc, int on, int off)
4558 {
4559 DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
4560 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
4561 sc->sc_blinking = 1;
4562 sc->sc_ledoff = off;
4563 callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
4564 }
4565
4566 static void
4567 ath_led_event(struct ath_softc *sc, int event)
4568 {
4569
4570 sc->sc_ledevent = ticks; /* time of last event */
4571 if (sc->sc_blinking) /* don't interrupt active blink */
4572 return;
4573 switch (event) {
4574 case ATH_LED_POLL:
4575 ath_led_blink(sc, sc->sc_hwmap[0].ledon,
4576 sc->sc_hwmap[0].ledoff);
4577 break;
4578 case ATH_LED_TX:
4579 ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
4580 sc->sc_hwmap[sc->sc_txrate].ledoff);
4581 break;
4582 case ATH_LED_RX:
4583 ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
4584 sc->sc_hwmap[sc->sc_rxrate].ledoff);
4585 break;
4586 }
4587 }
4588
4589 static void
4590 ath_update_txpow(struct ath_softc *sc)
4591 {
4592 struct ieee80211com *ic = &sc->sc_ic;
4593 struct ath_hal *ah = sc->sc_ah;
4594 u_int32_t txpow;
4595
4596 if (sc->sc_curtxpow != ic->ic_txpowlimit) {
4597 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
4598 /* read back in case value is clamped */
4599 ath_hal_gettxpowlimit(ah, &txpow);
4600 ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
4601 }
4602 /*
4603 * Fetch max tx power level for status requests.
4604 */
4605 ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
4606 ic->ic_bss->ni_txpower = txpow;
4607 }
4608
4609 static int
4610 ath_rate_setup(struct ath_softc *sc, u_int mode)
4611 {
4612 struct ath_hal *ah = sc->sc_ah;
4613 struct ieee80211com *ic = &sc->sc_ic;
4614 const HAL_RATE_TABLE *rt;
4615 struct ieee80211_rateset *rs;
4616 int i, maxrates;
4617
4618 switch (mode) {
4619 case IEEE80211_MODE_11A:
4620 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11A);
4621 break;
4622 case IEEE80211_MODE_11B:
4623 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11B);
4624 break;
4625 case IEEE80211_MODE_11G:
4626 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11G);
4627 break;
4628 case IEEE80211_MODE_TURBO_A:
4629 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_TURBO);
4630 break;
4631 case IEEE80211_MODE_TURBO_G:
4632 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_108G);
4633 break;
4634 default:
4635 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
4636 __func__, mode);
4637 return 0;
4638 }
4639 rt = sc->sc_rates[mode];
4640 if (rt == NULL)
4641 return 0;
4642 if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
4643 DPRINTF(sc, ATH_DEBUG_ANY,
4644 "%s: rate table too small (%u > %u)\n",
4645 __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
4646 maxrates = IEEE80211_RATE_MAXSIZE;
4647 } else
4648 maxrates = rt->rateCount;
4649 rs = &ic->ic_sup_rates[mode];
4650 for (i = 0; i < maxrates; i++)
4651 rs->rs_rates[i] = rt->info[i].dot11Rate;
4652 rs->rs_nrates = maxrates;
4653 return 1;
4654 }
4655
4656 static void
4657 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
4658 {
4659 #define N(a) (sizeof(a)/sizeof(a[0]))
4660 /* NB: on/off times from the Atheros NDIS driver, w/ permission */
4661 static const struct {
4662 u_int rate; /* tx/rx 802.11 rate */
4663 u_int16_t timeOn; /* LED on time (ms) */
4664 u_int16_t timeOff; /* LED off time (ms) */
4665 } blinkrates[] = {
4666 { 108, 40, 10 },
4667 { 96, 44, 11 },
4668 { 72, 50, 13 },
4669 { 48, 57, 14 },
4670 { 36, 67, 16 },
4671 { 24, 80, 20 },
4672 { 22, 100, 25 },
4673 { 18, 133, 34 },
4674 { 12, 160, 40 },
4675 { 10, 200, 50 },
4676 { 6, 240, 58 },
4677 { 4, 267, 66 },
4678 { 2, 400, 100 },
4679 { 0, 500, 130 },
4680 };
4681 const HAL_RATE_TABLE *rt;
4682 int i, j;
4683
4684 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
4685 rt = sc->sc_rates[mode];
4686 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
4687 for (i = 0; i < rt->rateCount; i++)
4688 sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
4689 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
4690 for (i = 0; i < 32; i++) {
4691 u_int8_t ix = rt->rateCodeToIndex[i];
4692 if (ix == 0xff) {
4693 sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
4694 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
4695 continue;
4696 }
4697 sc->sc_hwmap[i].ieeerate =
4698 rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
4699 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
4700 if (rt->info[ix].shortPreamble ||
4701 rt->info[ix].phy == IEEE80211_T_OFDM)
4702 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
4703 /* NB: receive frames include FCS */
4704 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
4705 IEEE80211_RADIOTAP_F_FCS;
4706 /* setup blink rate table to avoid per-packet lookup */
4707 for (j = 0; j < N(blinkrates)-1; j++)
4708 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
4709 break;
4710 /* NB: this uses the last entry if the rate isn't found */
4711 /* XXX beware of overlow */
4712 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
4713 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
4714 }
4715 sc->sc_currates = rt;
4716 sc->sc_curmode = mode;
4717 /*
4718 * All protection frames are transmited at 2Mb/s for
4719 * 11g, otherwise at 1Mb/s.
4720 * XXX select protection rate index from rate table.
4721 */
4722 sc->sc_protrix = (mode == IEEE80211_MODE_11G ? 1 : 0);
4723 /* NB: caller is responsible for reseting rate control state */
4724 #undef N
4725 }
4726
4727 #ifdef AR_DEBUG
4728 static void
4729 ath_printrxbuf(struct ath_buf *bf, int done)
4730 {
4731 struct ath_desc *ds;
4732 int i;
4733
4734 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
4735 printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n",
4736 i, ds, (struct ath_desc *)bf->bf_daddr + i,
4737 ds->ds_link, ds->ds_data,
4738 ds->ds_ctl0, ds->ds_ctl1,
4739 ds->ds_hw[0], ds->ds_hw[1],
4740 !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
4741 }
4742 }
4743
4744 static void
4745 ath_printtxbuf(struct ath_buf *bf, int done)
4746 {
4747 struct ath_desc *ds;
4748 int i;
4749
4750 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
4751 printf("T%d (%p %p) %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
4752 i, ds, (struct ath_desc *)bf->bf_daddr + i,
4753 ds->ds_link, ds->ds_data,
4754 ds->ds_ctl0, ds->ds_ctl1,
4755 ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
4756 !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
4757 }
4758 }
4759 #endif /* AR_DEBUG */
4760
4761 static void
4762 ath_watchdog(struct ifnet *ifp)
4763 {
4764 struct ath_softc *sc = ifp->if_softc;
4765 struct ieee80211com *ic = &sc->sc_ic;
4766
4767 ifp->if_timer = 0;
4768 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
4769 return;
4770 if (sc->sc_tx_timer) {
4771 if (--sc->sc_tx_timer == 0) {
4772 if_printf(ifp, "device timeout\n");
4773 ath_reset(ifp);
4774 ifp->if_oerrors++;
4775 sc->sc_stats.ast_watchdog++;
4776 } else
4777 ifp->if_timer = 1;
4778 }
4779 ieee80211_watchdog(ic);
4780 }
4781
4782 /*
4783 * Diagnostic interface to the HAL. This is used by various
4784 * tools to do things like retrieve register contents for
4785 * debugging. The mechanism is intentionally opaque so that
4786 * it can change frequently w/o concern for compatiblity.
4787 */
4788 static int
4789 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
4790 {
4791 struct ath_hal *ah = sc->sc_ah;
4792 u_int id = ad->ad_id & ATH_DIAG_ID;
4793 void *indata = NULL;
4794 void *outdata = NULL;
4795 u_int32_t insize = ad->ad_in_size;
4796 u_int32_t outsize = ad->ad_out_size;
4797 int error = 0;
4798
4799 if (ad->ad_id & ATH_DIAG_IN) {
4800 /*
4801 * Copy in data.
4802 */
4803 indata = malloc(insize, M_TEMP, M_NOWAIT);
4804 if (indata == NULL) {
4805 error = ENOMEM;
4806 goto bad;
4807 }
4808 error = copyin(ad->ad_in_data, indata, insize);
4809 if (error)
4810 goto bad;
4811 }
4812 if (ad->ad_id & ATH_DIAG_DYN) {
4813 /*
4814 * Allocate a buffer for the results (otherwise the HAL
4815 * returns a pointer to a buffer where we can read the
4816 * results). Note that we depend on the HAL leaving this
4817 * pointer for us to use below in reclaiming the buffer;
4818 * may want to be more defensive.
4819 */
4820 outdata = malloc(outsize, M_TEMP, M_NOWAIT);
4821 if (outdata == NULL) {
4822 error = ENOMEM;
4823 goto bad;
4824 }
4825 }
4826 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
4827 if (outsize < ad->ad_out_size)
4828 ad->ad_out_size = outsize;
4829 if (outdata != NULL)
4830 error = copyout(outdata, ad->ad_out_data,
4831 ad->ad_out_size);
4832 } else {
4833 error = EINVAL;
4834 }
4835 bad:
4836 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
4837 free(indata, M_TEMP);
4838 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
4839 free(outdata, M_TEMP);
4840 return error;
4841 }
4842
4843 static int
4844 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
4845 {
4846 #define IS_RUNNING(ifp) \
4847 ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP))
4848 struct ath_softc *sc = ifp->if_softc;
4849 struct ieee80211com *ic = &sc->sc_ic;
4850 struct ifreq *ifr = (struct ifreq *)data;
4851 int error = 0;
4852
4853 ATH_LOCK(sc);
4854 switch (cmd) {
4855 case SIOCSIFFLAGS:
4856 if (IS_RUNNING(ifp)) {
4857 /*
4858 * To avoid rescanning another access point,
4859 * do not call ath_init() here. Instead,
4860 * only reflect promisc mode settings.
4861 */
4862 ath_mode_init(sc);
4863 } else if (ifp->if_flags & IFF_UP) {
4864 /*
4865 * Beware of being called during attach/detach
4866 * to reset promiscuous mode. In that case we
4867 * will still be marked UP but not RUNNING.
4868 * However trying to re-init the interface
4869 * is the wrong thing to do as we've already
4870 * torn down much of our state. There's
4871 * probably a better way to deal with this.
4872 */
4873 if (!sc->sc_invalid && ic->ic_bss != NULL)
4874 ath_init(sc); /* XXX lose error */
4875 } else
4876 ath_stop_locked(ifp, 1);
4877 break;
4878 case SIOCADDMULTI:
4879 case SIOCDELMULTI:
4880 error = (cmd == SIOCADDMULTI) ?
4881 ether_addmulti(ifr, &sc->sc_ec) :
4882 ether_delmulti(ifr, &sc->sc_ec);
4883 if (error == ENETRESET) {
4884 if (ifp->if_flags & IFF_RUNNING)
4885 ath_mode_init(sc);
4886 error = 0;
4887 }
4888 break;
4889 case SIOCGATHSTATS:
4890 /* NB: embed these numbers to get a consistent view */
4891 sc->sc_stats.ast_tx_packets = ifp->if_opackets;
4892 sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
4893 sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
4894 ATH_UNLOCK(sc);
4895 /*
4896 * NB: Drop the softc lock in case of a page fault;
4897 * we'll accept any potential inconsisentcy in the
4898 * statistics. The alternative is to copy the data
4899 * to a local structure.
4900 */
4901 return copyout(&sc->sc_stats,
4902 ifr->ifr_data, sizeof (sc->sc_stats));
4903 case SIOCGATHDIAG:
4904 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
4905 break;
4906 default:
4907 error = ieee80211_ioctl(ic, cmd, data);
4908 if (error == ENETRESET) {
4909 if (IS_RUNNING(ifp) &&
4910 ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
4911 ath_init(sc); /* XXX lose error */
4912 error = 0;
4913 }
4914 if (error == ERESTART)
4915 error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0;
4916 break;
4917 }
4918 ATH_UNLOCK(sc);
4919 return error;
4920 #undef IS_RUNNING
4921 }
4922
4923 static void
4924 ath_bpfattach(struct ath_softc *sc)
4925 {
4926 struct ifnet *ifp = &sc->sc_if;
4927
4928 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
4929 sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
4930 &sc->sc_drvbpf);
4931 /*
4932 * Initialize constant fields.
4933 * XXX make header lengths a multiple of 32-bits so subsequent
4934 * headers are properly aligned; this is a kludge to keep
4935 * certain applications happy.
4936 *
4937 * NB: the channel is setup each time we transition to the
4938 * RUN state to avoid filling it in for each frame.
4939 */
4940 sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
4941 sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
4942 sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
4943
4944 sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
4945 sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
4946 sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
4947 }
4948
4949 /*
4950 * Announce various information on device/driver attach.
4951 */
4952 static void
4953 ath_announce(struct ath_softc *sc)
4954 {
4955 #define HAL_MODE_DUALBAND (HAL_MODE_11A|HAL_MODE_11B)
4956 struct ifnet *ifp = &sc->sc_if;
4957 struct ath_hal *ah = sc->sc_ah;
4958 u_int modes, cc;
4959
4960 if_printf(ifp, "mac %d.%d phy %d.%d",
4961 ah->ah_macVersion, ah->ah_macRev,
4962 ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
4963 /*
4964 * Print radio revision(s). We check the wireless modes
4965 * to avoid falsely printing revs for inoperable parts.
4966 * Dual-band radio revs are returned in the 5Ghz rev number.
4967 */
4968 ath_hal_getcountrycode(ah, &cc);
4969 modes = ath_hal_getwirelessmodes(ah, cc);
4970 if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
4971 if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
4972 printf(" 5ghz radio %d.%d 2ghz radio %d.%d",
4973 ah->ah_analog5GhzRev >> 4,
4974 ah->ah_analog5GhzRev & 0xf,
4975 ah->ah_analog2GhzRev >> 4,
4976 ah->ah_analog2GhzRev & 0xf);
4977 else
4978 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
4979 ah->ah_analog5GhzRev & 0xf);
4980 } else
4981 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
4982 ah->ah_analog5GhzRev & 0xf);
4983 printf("\n");
4984 if (bootverbose) {
4985 int i;
4986 for (i = 0; i <= WME_AC_VO; i++) {
4987 struct ath_txq *txq = sc->sc_ac2q[i];
4988 if_printf(ifp, "Use hw queue %u for %s traffic\n",
4989 txq->axq_qnum, ieee80211_wme_acnames[i]);
4990 }
4991 if_printf(ifp, "Use hw queue %u for CAB traffic\n",
4992 sc->sc_cabq->axq_qnum);
4993 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
4994 }
4995 #undef HAL_MODE_DUALBAND
4996 }
4997