ath.c revision 1.58 1 /* $NetBSD: ath.c,v 1.58 2005/08/21 00:25:51 dyoung Exp $ */
2
3 /*-
4 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15 * redistribution must be conditioned upon including a substantially
16 * similar Disclaimer requirement for further binary redistribution.
17 * 3. Neither the names of the above-listed copyright holders nor the names
18 * of any contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * Alternatively, this software may be distributed under the terms of the
22 * GNU General Public License ("GPL") version 2 as published by the Free
23 * Software Foundation.
24 *
25 * NO WARRANTY
26 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
28 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
29 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
30 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
31 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
34 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
36 * THE POSSIBILITY OF SUCH DAMAGES.
37 */
38
39 #include <sys/cdefs.h>
40 #ifdef __FreeBSD__
41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.94 2005/07/07 00:04:50 sam Exp $");
42 #endif
43 #ifdef __NetBSD__
44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.58 2005/08/21 00:25:51 dyoung Exp $");
45 #endif
46
47 /*
48 * Driver for the Atheros Wireless LAN controller.
49 *
50 * This software is derived from work of Atsushi Onoe; his contribution
51 * is greatly appreciated.
52 */
53
54 #include "opt_inet.h"
55
56 #ifdef __NetBSD__
57 #include "bpfilter.h"
58 #endif /* __NetBSD__ */
59
60 #include <sys/param.h>
61 #include <sys/reboot.h>
62 #include <sys/systm.h>
63 #include <sys/types.h>
64 #include <sys/sysctl.h>
65 #include <sys/mbuf.h>
66 #include <sys/malloc.h>
67 #include <sys/lock.h>
68 #include <sys/kernel.h>
69 #include <sys/socket.h>
70 #include <sys/sockio.h>
71 #include <sys/errno.h>
72 #include <sys/callout.h>
73 #include <machine/bus.h>
74 #include <sys/endian.h>
75
76 #include <machine/bus.h>
77
78 #include <net/if.h>
79 #include <net/if_dl.h>
80 #include <net/if_media.h>
81 #include <net/if_types.h>
82 #include <net/if_arp.h>
83 #include <net/if_ether.h>
84 #include <net/if_llc.h>
85
86 #include <net80211/ieee80211_netbsd.h>
87 #include <net80211/ieee80211_var.h>
88
89 #if NBPFILTER > 0
90 #include <net/bpf.h>
91 #endif
92
93 #ifdef INET
94 #include <netinet/in.h>
95 #endif
96
97 #include <sys/device.h>
98 #include <dev/ic/ath_netbsd.h>
99
100 #define AR_DEBUG
101 #include <dev/ic/athvar.h>
102 #include <contrib/dev/ic/athhal_desc.h>
103 #include <contrib/dev/ic/athhal_devid.h> /* XXX for softled */
104
105 /* unaligned little endian access */
106 #define LE_READ_2(p) \
107 ((u_int16_t) \
108 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8)))
109 #define LE_READ_4(p) \
110 ((u_int32_t) \
111 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \
112 (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
113
114 enum {
115 ATH_LED_TX,
116 ATH_LED_RX,
117 ATH_LED_POLL,
118 };
119
120 static int ath_ifinit(struct ifnet *);
121 static int ath_init(struct ath_softc *);
122 static void ath_stop_locked(struct ifnet *, int);
123 static void ath_stop(struct ifnet *, int);
124 static void ath_start(struct ifnet *);
125 static int ath_media_change(struct ifnet *);
126 static void ath_watchdog(struct ifnet *);
127 static int ath_ioctl(struct ifnet *, u_long, caddr_t);
128 static void ath_fatal_proc(void *, int);
129 static void ath_rxorn_proc(void *, int);
130 static void ath_bmiss_proc(void *, int);
131 static int ath_key_alloc(struct ieee80211com *,
132 const struct ieee80211_key *);
133 static int ath_key_delete(struct ieee80211com *,
134 const struct ieee80211_key *);
135 static int ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
136 const u_int8_t mac[IEEE80211_ADDR_LEN]);
137 static void ath_key_update_begin(struct ieee80211com *);
138 static void ath_key_update_end(struct ieee80211com *);
139 static void ath_mode_init(struct ath_softc *);
140 static void ath_setslottime(struct ath_softc *);
141 static void ath_updateslot(struct ifnet *);
142 static int ath_beaconq_setup(struct ath_hal *);
143 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
144 static void ath_beacon_setup(struct ath_softc *, struct ath_buf *);
145 static void ath_beacon_proc(void *, int);
146 static void ath_bstuck_proc(void *, int);
147 static void ath_beacon_free(struct ath_softc *);
148 static void ath_beacon_config(struct ath_softc *);
149 static void ath_descdma_cleanup(struct ath_softc *sc,
150 struct ath_descdma *, ath_bufhead *);
151 static int ath_desc_alloc(struct ath_softc *);
152 static void ath_desc_free(struct ath_softc *);
153 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
154 static void ath_node_free(struct ieee80211_node *);
155 static u_int8_t ath_node_getrssi(const struct ieee80211_node *);
156 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
157 static void ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
158 struct ieee80211_node *ni,
159 int subtype, int rssi, u_int32_t rstamp);
160 static void ath_setdefantenna(struct ath_softc *, u_int);
161 static void ath_rx_proc(void *, int);
162 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
163 static int ath_tx_setup(struct ath_softc *, int, int);
164 static int ath_wme_update(struct ieee80211com *);
165 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
166 static void ath_tx_cleanup(struct ath_softc *);
167 static int ath_tx_start(struct ath_softc *, struct ieee80211_node *,
168 struct ath_buf *, struct mbuf *);
169 static void ath_tx_proc_q0(void *, int);
170 static void ath_tx_proc_q0123(void *, int);
171 static void ath_tx_proc(void *, int);
172 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
173 static void ath_draintxq(struct ath_softc *);
174 static void ath_stoprecv(struct ath_softc *);
175 static int ath_startrecv(struct ath_softc *);
176 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
177 static void ath_next_scan(void *);
178 static void ath_calibrate(void *);
179 static int ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
180 static void ath_setup_stationkey(struct ieee80211_node *);
181 static void ath_newassoc(struct ieee80211com *,
182 struct ieee80211_node *, int);
183 static int ath_getchannels(struct ath_softc *, u_int cc,
184 HAL_BOOL outdoor, HAL_BOOL xchanmode);
185 static void ath_led_event(struct ath_softc *, int);
186 static void ath_update_txpow(struct ath_softc *);
187
188 static int ath_rate_setup(struct ath_softc *, u_int mode);
189 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
190
191 #ifdef __NetBSD__
192 int ath_enable(struct ath_softc *);
193 void ath_disable(struct ath_softc *);
194 void ath_power(int, void *);
195 #endif
196
197 static void ath_bpfattach(struct ath_softc *);
198 static void ath_announce(struct ath_softc *);
199
200 int ath_dwelltime = 200; /* 5 channels/second */
201 int ath_calinterval = 30; /* calibrate every 30 secs */
202 int ath_outdoor = AH_TRUE; /* outdoor operation */
203 int ath_xchanmode = AH_TRUE; /* enable extended channels */
204 int ath_countrycode = CTRY_DEFAULT; /* country code */
205 int ath_regdomain = 0; /* regulatory domain */
206 int ath_debug = 0;
207
208 #ifdef AR_DEBUG
209 enum {
210 ATH_DEBUG_XMIT = 0x00000001, /* basic xmit operation */
211 ATH_DEBUG_XMIT_DESC = 0x00000002, /* xmit descriptors */
212 ATH_DEBUG_RECV = 0x00000004, /* basic recv operation */
213 ATH_DEBUG_RECV_DESC = 0x00000008, /* recv descriptors */
214 ATH_DEBUG_RATE = 0x00000010, /* rate control */
215 ATH_DEBUG_RESET = 0x00000020, /* reset processing */
216 ATH_DEBUG_MODE = 0x00000040, /* mode init/setup */
217 ATH_DEBUG_BEACON = 0x00000080, /* beacon handling */
218 ATH_DEBUG_WATCHDOG = 0x00000100, /* watchdog timeout */
219 ATH_DEBUG_INTR = 0x00001000, /* ISR */
220 ATH_DEBUG_TX_PROC = 0x00002000, /* tx ISR proc */
221 ATH_DEBUG_RX_PROC = 0x00004000, /* rx ISR proc */
222 ATH_DEBUG_BEACON_PROC = 0x00008000, /* beacon ISR proc */
223 ATH_DEBUG_CALIBRATE = 0x00010000, /* periodic calibration */
224 ATH_DEBUG_KEYCACHE = 0x00020000, /* key cache management */
225 ATH_DEBUG_STATE = 0x00040000, /* 802.11 state transitions */
226 ATH_DEBUG_NODE = 0x00080000, /* node management */
227 ATH_DEBUG_LED = 0x00100000, /* led management */
228 ATH_DEBUG_FATAL = 0x80000000, /* fatal errors */
229 ATH_DEBUG_ANY = 0xffffffff
230 };
231 #define IFF_DUMPPKTS(sc, m) \
232 ((sc->sc_debug & (m)) || \
233 (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
234 #define DPRINTF(sc, m, fmt, ...) do { \
235 if (sc->sc_debug & (m)) \
236 printf(fmt, __VA_ARGS__); \
237 } while (0)
238 #define KEYPRINTF(sc, ix, hk, mac) do { \
239 if (sc->sc_debug & ATH_DEBUG_KEYCACHE) \
240 ath_keyprint(__func__, ix, hk, mac); \
241 } while (0)
242 static void ath_printrxbuf(struct ath_buf *bf, int);
243 static void ath_printtxbuf(struct ath_buf *bf, int);
244 #else
245 #define IFF_DUMPPKTS(sc, m) \
246 ((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
247 #define DPRINTF(m, fmt, ...)
248 #define KEYPRINTF(sc, k, ix, mac)
249 #endif
250
251 #ifdef __NetBSD__
252 int
253 ath_activate(struct device *self, enum devact act)
254 {
255 struct ath_softc *sc = (struct ath_softc *)self;
256 int rv = 0, s;
257
258 s = splnet();
259 switch (act) {
260 case DVACT_ACTIVATE:
261 rv = EOPNOTSUPP;
262 break;
263 case DVACT_DEACTIVATE:
264 if_deactivate(&sc->sc_if);
265 break;
266 }
267 splx(s);
268 return rv;
269 }
270
271 int
272 ath_enable(struct ath_softc *sc)
273 {
274 if (ATH_IS_ENABLED(sc) == 0) {
275 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
276 printf("%s: device enable failed\n",
277 sc->sc_dev.dv_xname);
278 return (EIO);
279 }
280 sc->sc_flags |= ATH_ENABLED;
281 }
282 return (0);
283 }
284
285 void
286 ath_disable(struct ath_softc *sc)
287 {
288 if (!ATH_IS_ENABLED(sc))
289 return;
290 if (sc->sc_disable != NULL)
291 (*sc->sc_disable)(sc);
292 sc->sc_flags &= ~ATH_ENABLED;
293 }
294 #endif /* __NetBSD__ */
295
296 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
297
298 int
299 ath_attach(u_int16_t devid, struct ath_softc *sc)
300 {
301 struct ifnet *ifp = &sc->sc_if;
302 struct ieee80211com *ic = &sc->sc_ic;
303 struct ath_hal *ah = NULL;
304 HAL_STATUS status;
305 int error = 0, i;
306
307 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
308
309 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
310
311 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
312 if (ah == NULL) {
313 if_printf(ifp, "unable to attach hardware; HAL status %u\n",
314 status);
315 error = ENXIO;
316 goto bad;
317 }
318 if (ah->ah_abi != HAL_ABI_VERSION) {
319 if_printf(ifp, "HAL ABI mismatch detected "
320 "(HAL:0x%x != driver:0x%x)\n",
321 ah->ah_abi, HAL_ABI_VERSION);
322 error = ENXIO;
323 goto bad;
324 }
325 sc->sc_ah = ah;
326 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */
327
328 /*
329 * Check if the MAC has multi-rate retry support.
330 * We do this by trying to setup a fake extended
331 * descriptor. MAC's that don't have support will
332 * return false w/o doing anything. MAC's that do
333 * support it will return true w/o doing anything.
334 */
335 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
336
337 /*
338 * Check if the device has hardware counters for PHY
339 * errors. If so we need to enable the MIB interrupt
340 * so we can act on stat triggers.
341 */
342 if (ath_hal_hwphycounters(ah))
343 sc->sc_needmib = 1;
344
345 /*
346 * Get the hardware key cache size.
347 */
348 sc->sc_keymax = ath_hal_keycachesize(ah);
349 if (sc->sc_keymax > ATH_KEYMAX) {
350 if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
351 ATH_KEYMAX, sc->sc_keymax);
352 sc->sc_keymax = ATH_KEYMAX;
353 }
354 /*
355 * Reset the key cache since some parts do not
356 * reset the contents on initial power up.
357 */
358 for (i = 0; i < sc->sc_keymax; i++)
359 ath_hal_keyreset(ah, i);
360 /*
361 * Mark key cache slots associated with global keys
362 * as in use. If we knew TKIP was not to be used we
363 * could leave the +32, +64, and +32+64 slots free.
364 * XXX only for splitmic.
365 */
366 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
367 setbit(sc->sc_keymap, i);
368 setbit(sc->sc_keymap, i+32);
369 setbit(sc->sc_keymap, i+64);
370 setbit(sc->sc_keymap, i+32+64);
371 }
372
373 /*
374 * Collect the channel list using the default country
375 * code and including outdoor channels. The 802.11 layer
376 * is resposible for filtering this list based on settings
377 * like the phy mode.
378 */
379 error = ath_getchannels(sc, ath_countrycode,
380 ath_outdoor, ath_xchanmode);
381 if (error != 0)
382 goto bad;
383 /*
384 * TPC support can be done either with a global cap or
385 * per-packet support. The latter is not available on
386 * all parts. We're a bit pedantic here as all parts
387 * support a global cap.
388 */
389 sc->sc_hastpc = ath_hal_hastpc(ah);
390 if (sc->sc_hastpc || ath_hal_hastxpowlimit(ah))
391 ic->ic_caps |= IEEE80211_C_TXPMGT;
392 /*
393 * Query the hal about antenna support.
394 */
395 if (ath_hal_hasdiversity(ah)) {
396 sc->sc_hasdiversity = 1;
397 sc->sc_diversity = ath_hal_getdiversity(ah);
398 }
399 sc->sc_defant = ath_hal_getdefantenna(ah);
400
401 /*
402 * Setup dynamic sysctl's now that country code and regdomain
403 * are available from the hal, and both TPC and diversity
404 * capabilities are known.
405 */
406 ath_sysctlattach(sc);
407
408 /*
409 * Setup rate tables for all potential media types.
410 */
411 ath_rate_setup(sc, IEEE80211_MODE_11A);
412 ath_rate_setup(sc, IEEE80211_MODE_11B);
413 ath_rate_setup(sc, IEEE80211_MODE_11G);
414 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
415 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
416 /* NB: setup here so ath_rate_update is happy */
417 ath_setcurmode(sc, IEEE80211_MODE_11A);
418
419 /*
420 * Allocate tx+rx descriptors and populate the lists.
421 */
422 error = ath_desc_alloc(sc);
423 if (error != 0) {
424 if_printf(ifp, "failed to allocate descriptors: %d\n", error);
425 goto bad;
426 }
427 ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
428 ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE);
429
430 ATH_TXBUF_LOCK_INIT(sc);
431
432 TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
433 TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
434 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
435 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
436 TASK_INIT(&sc->sc_bstucktask, 0, ath_bstuck_proc, sc);
437
438 /*
439 * Allocate hardware transmit queues: one queue for
440 * beacon frames and one data queue for each QoS
441 * priority. Note that the hal handles reseting
442 * these queues at the needed time.
443 *
444 * XXX PS-Poll
445 */
446 sc->sc_bhalq = ath_beaconq_setup(ah);
447 if (sc->sc_bhalq == (u_int) -1) {
448 if_printf(ifp, "unable to setup a beacon xmit queue!\n");
449 error = EIO;
450 goto bad2;
451 }
452 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
453 if (sc->sc_cabq == NULL) {
454 if_printf(ifp, "unable to setup CAB xmit queue!\n");
455 error = EIO;
456 goto bad2;
457 }
458 /* NB: insure BK queue is the lowest priority h/w queue */
459 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
460 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
461 ieee80211_wme_acnames[WME_AC_BK]);
462 error = EIO;
463 goto bad2;
464 }
465 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
466 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
467 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
468 /*
469 * Not enough hardware tx queues to properly do WME;
470 * just punt and assign them all to the same h/w queue.
471 * We could do a better job of this if, for example,
472 * we allocate queues when we switch from station to
473 * AP mode.
474 */
475 if (sc->sc_ac2q[WME_AC_VI] != NULL)
476 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
477 if (sc->sc_ac2q[WME_AC_BE] != NULL)
478 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
479 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
480 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
481 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
482 }
483
484 /*
485 * Special case certain configurations. Note the
486 * CAB queue is handled by these specially so don't
487 * include them when checking the txq setup mask.
488 */
489 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
490 case 0x01:
491 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
492 break;
493 case 0x0f:
494 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
495 break;
496 default:
497 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
498 break;
499 }
500
501 /*
502 * Setup rate control. Some rate control modules
503 * call back to change the anntena state so expose
504 * the necessary entry points.
505 * XXX maybe belongs in struct ath_ratectrl?
506 */
507 sc->sc_setdefantenna = ath_setdefantenna;
508 sc->sc_rc = ath_rate_attach(sc);
509 if (sc->sc_rc == NULL) {
510 error = EIO;
511 goto bad2;
512 }
513
514 sc->sc_blinking = 0;
515 sc->sc_ledstate = 1;
516 sc->sc_ledon = 0; /* low true */
517 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */
518 ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE);
519 /*
520 * Auto-enable soft led processing for IBM cards and for
521 * 5211 minipci cards. Users can also manually enable/disable
522 * support with a sysctl.
523 */
524 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
525 if (sc->sc_softled) {
526 ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
527 ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
528 }
529
530 ifp->if_softc = sc;
531 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
532 ifp->if_start = ath_start;
533 ifp->if_watchdog = ath_watchdog;
534 ifp->if_ioctl = ath_ioctl;
535 ifp->if_init = ath_ifinit;
536 IFQ_SET_READY(&ifp->if_snd);
537
538 ic->ic_ifp = ifp;
539 ic->ic_reset = ath_reset;
540 ic->ic_newassoc = ath_newassoc;
541 ic->ic_updateslot = ath_updateslot;
542 ic->ic_wme.wme_update = ath_wme_update;
543 /* XXX not right but it's not used anywhere important */
544 ic->ic_phytype = IEEE80211_T_OFDM;
545 ic->ic_opmode = IEEE80211_M_STA;
546 ic->ic_caps =
547 IEEE80211_C_IBSS /* ibss, nee adhoc, mode */
548 | IEEE80211_C_HOSTAP /* hostap mode */
549 | IEEE80211_C_MONITOR /* monitor mode */
550 | IEEE80211_C_SHPREAMBLE /* short preamble supported */
551 | IEEE80211_C_SHSLOT /* short slot time supported */
552 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */
553 ;
554 /*
555 * Query the hal to figure out h/w crypto support.
556 */
557 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
558 ic->ic_caps |= IEEE80211_C_WEP;
559 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
560 ic->ic_caps |= IEEE80211_C_AES;
561 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
562 ic->ic_caps |= IEEE80211_C_AES_CCM;
563 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
564 ic->ic_caps |= IEEE80211_C_CKIP;
565 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
566 ic->ic_caps |= IEEE80211_C_TKIP;
567 /*
568 * Check if h/w does the MIC and/or whether the
569 * separate key cache entries are required to
570 * handle both tx+rx MIC keys.
571 */
572 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
573 ic->ic_caps |= IEEE80211_C_TKIPMIC;
574 if (ath_hal_tkipsplit(ah))
575 sc->sc_splitmic = 1;
576 }
577 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
578 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
579
580 /*
581 * Mark WME capability only if we have sufficient
582 * hardware queues to do proper priority scheduling.
583 */
584 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
585 ic->ic_caps |= IEEE80211_C_WME;
586 /*
587 * Check for misc other capabilities.
588 */
589 if (ath_hal_hasbursting(ah))
590 ic->ic_caps |= IEEE80211_C_BURST;
591
592 /*
593 * Indicate we need the 802.11 header padded to a
594 * 32-bit boundary for 4-address and QoS frames.
595 */
596 ic->ic_flags |= IEEE80211_F_DATAPAD;
597
598 /*
599 * Not all chips have the VEOL support we want to
600 * use with IBSS beacons; check here for it.
601 */
602 sc->sc_hasveol = ath_hal_hasveol(ah);
603
604 /* get mac address from hardware */
605 ath_hal_getmac(ah, ic->ic_myaddr);
606
607 if_attach(ifp);
608 /* call MI attach routine. */
609 ieee80211_ifattach(ic);
610 /* override default methods */
611 ic->ic_node_alloc = ath_node_alloc;
612 sc->sc_node_free = ic->ic_node_free;
613 ic->ic_node_free = ath_node_free;
614 ic->ic_node_getrssi = ath_node_getrssi;
615 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
616 ic->ic_recv_mgmt = ath_recv_mgmt;
617 sc->sc_newstate = ic->ic_newstate;
618 ic->ic_newstate = ath_newstate;
619 ic->ic_crypto.cs_key_alloc = ath_key_alloc;
620 ic->ic_crypto.cs_key_delete = ath_key_delete;
621 ic->ic_crypto.cs_key_set = ath_key_set;
622 ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
623 ic->ic_crypto.cs_key_update_end = ath_key_update_end;
624 /* complete initialization */
625 ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
626
627 ath_bpfattach(sc);
628
629 #ifdef __NetBSD__
630 sc->sc_flags |= ATH_ATTACHED;
631 /*
632 * Make sure the interface is shutdown during reboot.
633 */
634 sc->sc_sdhook = shutdownhook_establish(ath_shutdown, sc);
635 if (sc->sc_sdhook == NULL)
636 printf("%s: WARNING: unable to establish shutdown hook\n",
637 sc->sc_dev.dv_xname);
638 sc->sc_powerhook = powerhook_establish(ath_power, sc);
639 if (sc->sc_powerhook == NULL)
640 printf("%s: WARNING: unable to establish power hook\n",
641 sc->sc_dev.dv_xname);
642 #endif
643 ieee80211_announce(ic);
644 ath_announce(sc);
645 return 0;
646 bad2:
647 ath_tx_cleanup(sc);
648 ath_desc_free(sc);
649 bad:
650 if (ah)
651 ath_hal_detach(ah);
652 sc->sc_invalid = 1;
653 return error;
654 }
655
656 int
657 ath_detach(struct ath_softc *sc)
658 {
659 struct ifnet *ifp = &sc->sc_if;
660 int s;
661
662 if ((sc->sc_flags & ATH_ATTACHED) == 0)
663 return (0);
664
665 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
666 __func__, ifp->if_flags);
667
668 s = splnet();
669 ath_stop(ifp, 1);
670 #if NBPFILTER > 0
671 bpfdetach(ifp);
672 #endif
673 /*
674 * NB: the order of these is important:
675 * o call the 802.11 layer before detaching the hal to
676 * insure callbacks into the driver to delete global
677 * key cache entries can be handled
678 * o reclaim the tx queue data structures after calling
679 * the 802.11 layer as we'll get called back to reclaim
680 * node state and potentially want to use them
681 * o to cleanup the tx queues the hal is called, so detach
682 * it last
683 * Other than that, it's straightforward...
684 */
685 ieee80211_ifdetach(&sc->sc_ic);
686 ath_rate_detach(sc->sc_rc);
687 ath_desc_free(sc);
688 ath_tx_cleanup(sc);
689 sysctl_teardown(&sc->sc_sysctllog);
690 ath_hal_detach(sc->sc_ah);
691 if_detach(ifp);
692 splx(s);
693 powerhook_disestablish(sc->sc_powerhook);
694 shutdownhook_disestablish(sc->sc_sdhook);
695
696 return 0;
697 }
698
699 #ifdef __NetBSD__
700 void
701 ath_power(int why, void *arg)
702 {
703 struct ath_softc *sc = arg;
704 int s;
705
706 DPRINTF(sc, ATH_DEBUG_ANY, "ath_power(%d)\n", why);
707
708 s = splnet();
709 switch (why) {
710 case PWR_SUSPEND:
711 case PWR_STANDBY:
712 ath_suspend(sc, why);
713 break;
714 case PWR_RESUME:
715 ath_resume(sc, why);
716 break;
717 case PWR_SOFTSUSPEND:
718 case PWR_SOFTSTANDBY:
719 case PWR_SOFTRESUME:
720 break;
721 }
722 splx(s);
723 }
724 #endif
725
726 void
727 ath_suspend(struct ath_softc *sc, int why)
728 {
729 struct ifnet *ifp = &sc->sc_if;
730
731 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
732 __func__, ifp->if_flags);
733
734 ath_stop(ifp, 1);
735 if (sc->sc_power != NULL)
736 (*sc->sc_power)(sc, why);
737 }
738
739 void
740 ath_resume(struct ath_softc *sc, int why)
741 {
742 struct ifnet *ifp = &sc->sc_if;
743
744 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
745 __func__, ifp->if_flags);
746
747 if (ifp->if_flags & IFF_UP) {
748 ath_init(sc);
749 #if 0
750 (void)ath_intr(sc);
751 #endif
752 if (sc->sc_power != NULL)
753 (*sc->sc_power)(sc, why);
754 if (ifp->if_flags & IFF_RUNNING)
755 ath_start(ifp);
756 }
757 if (sc->sc_softled) {
758 ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
759 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
760 }
761 }
762
763 void
764 ath_shutdown(void *arg)
765 {
766 struct ath_softc *sc = arg;
767
768 ath_stop(&sc->sc_if, 1);
769 }
770
771 /*
772 * Interrupt handler. Most of the actual processing is deferred.
773 */
774 int
775 ath_intr(void *arg)
776 {
777 struct ath_softc *sc = arg;
778 struct ifnet *ifp = &sc->sc_if;
779 struct ath_hal *ah = sc->sc_ah;
780 HAL_INT status;
781
782 if (sc->sc_invalid) {
783 /*
784 * The hardware is not ready/present, don't touch anything.
785 * Note this can happen early on if the IRQ is shared.
786 */
787 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
788 return 0;
789 }
790 if (!ath_hal_intrpend(ah)) /* shared irq, not for us */
791 return 0;
792 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
793 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
794 __func__, ifp->if_flags);
795 ath_hal_getisr(ah, &status); /* clear ISR */
796 ath_hal_intrset(ah, 0); /* disable further intr's */
797 return 1; /* XXX */
798 }
799 /*
800 * Figure out the reason(s) for the interrupt. Note
801 * that the hal returns a pseudo-ISR that may include
802 * bits we haven't explicitly enabled so we mask the
803 * value to insure we only process bits we requested.
804 */
805 ath_hal_getisr(ah, &status); /* NB: clears ISR too */
806 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
807 status &= sc->sc_imask; /* discard unasked for bits */
808 if (status & HAL_INT_FATAL) {
809 /*
810 * Fatal errors are unrecoverable. Typically
811 * these are caused by DMA errors. Unfortunately
812 * the exact reason is not (presently) returned
813 * by the hal.
814 */
815 sc->sc_stats.ast_hardware++;
816 ath_hal_intrset(ah, 0); /* disable intr's until reset */
817 TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
818 } else if (status & HAL_INT_RXORN) {
819 sc->sc_stats.ast_rxorn++;
820 ath_hal_intrset(ah, 0); /* disable intr's until reset */
821 TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
822 } else {
823 if (status & HAL_INT_SWBA) {
824 /*
825 * Software beacon alert--time to send a beacon.
826 * Handle beacon transmission directly; deferring
827 * this is too slow to meet timing constraints
828 * under load.
829 */
830 ath_beacon_proc(sc, 0);
831 }
832 if (status & HAL_INT_RXEOL) {
833 /*
834 * NB: the hardware should re-read the link when
835 * RXE bit is written, but it doesn't work at
836 * least on older hardware revs.
837 */
838 sc->sc_stats.ast_rxeol++;
839 sc->sc_rxlink = NULL;
840 }
841 if (status & HAL_INT_TXURN) {
842 sc->sc_stats.ast_txurn++;
843 /* bump tx trigger level */
844 ath_hal_updatetxtriglevel(ah, AH_TRUE);
845 }
846 if (status & HAL_INT_RX)
847 TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
848 if (status & HAL_INT_TX)
849 TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
850 if (status & HAL_INT_BMISS) {
851 sc->sc_stats.ast_bmiss++;
852 TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
853 }
854 if (status & HAL_INT_MIB) {
855 sc->sc_stats.ast_mib++;
856 /*
857 * Disable interrupts until we service the MIB
858 * interrupt; otherwise it will continue to fire.
859 */
860 ath_hal_intrset(ah, 0);
861 /*
862 * Let the hal handle the event. We assume it will
863 * clear whatever condition caused the interrupt.
864 */
865 ath_hal_mibevent(ah,
866 &ATH_NODE(sc->sc_ic.ic_bss)->an_halstats);
867 ath_hal_intrset(ah, sc->sc_imask);
868 }
869 }
870 return 1;
871 }
872
873 static void
874 ath_fatal_proc(void *arg, int pending)
875 {
876 struct ath_softc *sc = arg;
877 struct ifnet *ifp = &sc->sc_if;
878
879 if_printf(ifp, "hardware error; resetting\n");
880 ath_reset(ifp);
881 }
882
883 static void
884 ath_rxorn_proc(void *arg, int pending)
885 {
886 struct ath_softc *sc = arg;
887 struct ifnet *ifp = &sc->sc_if;
888
889 if_printf(ifp, "rx FIFO overrun; resetting\n");
890 ath_reset(ifp);
891 }
892
893 static void
894 ath_bmiss_proc(void *arg, int pending)
895 {
896 struct ath_softc *sc = arg;
897 struct ieee80211com *ic = &sc->sc_ic;
898
899 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
900 KASSERT(ic->ic_opmode == IEEE80211_M_STA,
901 ("unexpect operating mode %u", ic->ic_opmode));
902 if (ic->ic_state == IEEE80211_S_RUN) {
903 /*
904 * Rather than go directly to scan state, try to
905 * reassociate first. If that fails then the state
906 * machine will drop us into scanning after timing
907 * out waiting for a probe response.
908 */
909 NET_LOCK_GIANT();
910 ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1);
911 NET_UNLOCK_GIANT();
912 }
913 }
914
915 static u_int
916 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
917 {
918 #define N(a) (sizeof(a) / sizeof(a[0]))
919 static const u_int modeflags[] = {
920 0, /* IEEE80211_MODE_AUTO */
921 CHANNEL_A, /* IEEE80211_MODE_11A */
922 CHANNEL_B, /* IEEE80211_MODE_11B */
923 CHANNEL_PUREG, /* IEEE80211_MODE_11G */
924 0, /* IEEE80211_MODE_FH */
925 CHANNEL_T, /* IEEE80211_MODE_TURBO_A */
926 CHANNEL_108G /* IEEE80211_MODE_TURBO_G */
927 };
928 enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
929
930 KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
931 KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
932 return modeflags[mode];
933 #undef N
934 }
935
936 static int
937 ath_ifinit(struct ifnet *ifp)
938 {
939 struct ath_softc *sc = (struct ath_softc *)ifp->if_softc;
940
941 return ath_init(sc);
942 }
943
944 static int
945 ath_init(struct ath_softc *sc)
946 {
947 struct ifnet *ifp = &sc->sc_if;
948 struct ieee80211com *ic = &sc->sc_ic;
949 struct ieee80211_node *ni;
950 struct ath_hal *ah = sc->sc_ah;
951 HAL_STATUS status;
952 int error = 0;
953
954 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
955 __func__, ifp->if_flags);
956
957 ATH_LOCK(sc);
958
959 if ((error = ath_enable(sc)) != 0)
960 return error;
961
962 /*
963 * Stop anything previously setup. This is safe
964 * whether this is the first time through or not.
965 */
966 ath_stop_locked(ifp, 0);
967
968 /*
969 * The basic interface to setting the hardware in a good
970 * state is ``reset''. On return the hardware is known to
971 * be powered up and with interrupts disabled. This must
972 * be followed by initialization of the appropriate bits
973 * and then setup of the interrupt mask.
974 */
975 sc->sc_curchan.channel = ic->ic_ibss_chan->ic_freq;
976 sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_ibss_chan);
977 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
978 if_printf(ifp, "unable to reset hardware; hal status %u\n",
979 status);
980 error = EIO;
981 goto done;
982 }
983
984 /*
985 * This is needed only to setup initial state
986 * but it's best done after a reset.
987 */
988 ath_update_txpow(sc);
989
990 /*
991 * Setup the hardware after reset: the key cache
992 * is filled as needed and the receive engine is
993 * set going. Frame transmit is handled entirely
994 * in the frame output path; there's nothing to do
995 * here except setup the interrupt mask.
996 */
997 if ((error = ath_startrecv(sc)) != 0) {
998 if_printf(ifp, "unable to start recv logic\n");
999 goto done;
1000 }
1001
1002 /*
1003 * Enable interrupts.
1004 */
1005 sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1006 | HAL_INT_RXEOL | HAL_INT_RXORN
1007 | HAL_INT_FATAL | HAL_INT_GLOBAL;
1008 /*
1009 * Enable MIB interrupts when there are hardware phy counters.
1010 * Note we only do this (at the moment) for station mode.
1011 */
1012 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1013 sc->sc_imask |= HAL_INT_MIB;
1014 ath_hal_intrset(ah, sc->sc_imask);
1015
1016 ifp->if_flags |= IFF_RUNNING;
1017 ic->ic_state = IEEE80211_S_INIT;
1018
1019 /*
1020 * The hardware should be ready to go now so it's safe
1021 * to kick the 802.11 state machine as it's likely to
1022 * immediately call back to us to send mgmt frames.
1023 */
1024 ni = ic->ic_bss;
1025 ni->ni_chan = ic->ic_ibss_chan;
1026 ath_chan_change(sc, ni->ni_chan);
1027 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1028 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
1029 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1030 } else
1031 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1032 done:
1033 ATH_UNLOCK(sc);
1034 return error;
1035 }
1036
1037 static void
1038 ath_stop_locked(struct ifnet *ifp, int disable)
1039 {
1040 struct ath_softc *sc = ifp->if_softc;
1041 struct ieee80211com *ic = &sc->sc_ic;
1042 struct ath_hal *ah = sc->sc_ah;
1043
1044 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1045 __func__, sc->sc_invalid, ifp->if_flags);
1046
1047 ATH_LOCK_ASSERT(sc);
1048 if (ifp->if_flags & IFF_RUNNING) {
1049 /*
1050 * Shutdown the hardware and driver:
1051 * reset 802.11 state machine
1052 * turn off timers
1053 * disable interrupts
1054 * turn off the radio
1055 * clear transmit machinery
1056 * clear receive machinery
1057 * drain and release tx queues
1058 * reclaim beacon resources
1059 * power down hardware
1060 *
1061 * Note that some of this work is not possible if the
1062 * hardware is gone (invalid).
1063 */
1064 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1065 ifp->if_flags &= ~IFF_RUNNING;
1066 ifp->if_timer = 0;
1067 if (!sc->sc_invalid) {
1068 if (sc->sc_softled) {
1069 callout_stop(&sc->sc_ledtimer);
1070 ath_hal_gpioset(ah, sc->sc_ledpin,
1071 !sc->sc_ledon);
1072 sc->sc_blinking = 0;
1073 }
1074 ath_hal_intrset(ah, 0);
1075 }
1076 ath_draintxq(sc);
1077 if (!sc->sc_invalid) {
1078 ath_stoprecv(sc);
1079 ath_hal_phydisable(ah);
1080 } else
1081 sc->sc_rxlink = NULL;
1082 IF_PURGE(&ifp->if_snd);
1083 ath_beacon_free(sc);
1084 if (disable)
1085 ath_disable(sc);
1086 }
1087 }
1088
1089 static void
1090 ath_stop(struct ifnet *ifp, int disable)
1091 {
1092 struct ath_softc *sc = ifp->if_softc;
1093
1094 ATH_LOCK(sc);
1095 ath_stop_locked(ifp, disable);
1096 if (!sc->sc_invalid) {
1097 /*
1098 * Set the chip in full sleep mode. Note that we are
1099 * careful to do this only when bringing the interface
1100 * completely to a stop. When the chip is in this state
1101 * it must be carefully woken up or references to
1102 * registers in the PCI clock domain may freeze the bus
1103 * (and system). This varies by chip and is mostly an
1104 * issue with newer parts that go to sleep more quickly.
1105 */
1106 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP, 0);
1107 }
1108 ATH_UNLOCK(sc);
1109 }
1110
1111 /*
1112 * Reset the hardware w/o losing operational state. This is
1113 * basically a more efficient way of doing ath_stop, ath_init,
1114 * followed by state transitions to the current 802.11
1115 * operational state. Used to recover from various errors and
1116 * to reset or reload hardware state.
1117 */
1118 int
1119 ath_reset(struct ifnet *ifp)
1120 {
1121 struct ath_softc *sc = ifp->if_softc;
1122 struct ieee80211com *ic = &sc->sc_ic;
1123 struct ath_hal *ah = sc->sc_ah;
1124 struct ieee80211_channel *c;
1125 HAL_STATUS status;
1126
1127 /*
1128 * Convert to a HAL channel description with the flags
1129 * constrained to reflect the current operating mode.
1130 */
1131 c = ic->ic_ibss_chan;
1132 sc->sc_curchan.channel = c->ic_freq;
1133 sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
1134
1135 ath_hal_intrset(ah, 0); /* disable interrupts */
1136 ath_draintxq(sc); /* stop xmit side */
1137 ath_stoprecv(sc); /* stop recv side */
1138 /* NB: indicate channel change so we do a full reset */
1139 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
1140 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1141 __func__, status);
1142 ath_update_txpow(sc); /* update tx power state */
1143 if (ath_startrecv(sc) != 0) /* restart recv */
1144 if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1145 /*
1146 * We may be doing a reset in response to an ioctl
1147 * that changes the channel so update any state that
1148 * might change as a result.
1149 */
1150 ath_chan_change(sc, c);
1151 if (ic->ic_state == IEEE80211_S_RUN)
1152 ath_beacon_config(sc); /* restart beacons */
1153 ath_hal_intrset(ah, sc->sc_imask);
1154
1155 ath_start(ifp); /* restart xmit */
1156 return 0;
1157 }
1158
1159 static void
1160 ath_start(struct ifnet *ifp)
1161 {
1162 struct ath_softc *sc = ifp->if_softc;
1163 struct ath_hal *ah = sc->sc_ah;
1164 struct ieee80211com *ic = &sc->sc_ic;
1165 struct ieee80211_node *ni;
1166 struct ath_buf *bf;
1167 struct mbuf *m;
1168 struct ieee80211_frame *wh;
1169 struct ether_header *eh;
1170
1171 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
1172 return;
1173 for (;;) {
1174 /*
1175 * Grab a TX buffer and associated resources.
1176 */
1177 ATH_TXBUF_LOCK(sc);
1178 bf = STAILQ_FIRST(&sc->sc_txbuf);
1179 if (bf != NULL)
1180 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1181 ATH_TXBUF_UNLOCK(sc);
1182 if (bf == NULL) {
1183 DPRINTF(sc, ATH_DEBUG_ANY, "%s: out of xmit buffers\n",
1184 __func__);
1185 sc->sc_stats.ast_tx_qstop++;
1186 ifp->if_flags |= IFF_OACTIVE;
1187 break;
1188 }
1189 /*
1190 * Poll the management queue for frames; they
1191 * have priority over normal data frames.
1192 */
1193 IF_DEQUEUE(&ic->ic_mgtq, m);
1194 if (m == NULL) {
1195 /*
1196 * No data frames go out unless we're associated.
1197 */
1198 if (ic->ic_state != IEEE80211_S_RUN) {
1199 DPRINTF(sc, ATH_DEBUG_ANY,
1200 "%s: ignore data packet, state %u\n",
1201 __func__, ic->ic_state);
1202 sc->sc_stats.ast_tx_discard++;
1203 ATH_TXBUF_LOCK(sc);
1204 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1205 ATH_TXBUF_UNLOCK(sc);
1206 break;
1207 }
1208 IFQ_DEQUEUE(&ifp->if_snd, m); /* XXX: LOCK */
1209 if (m == NULL) {
1210 ATH_TXBUF_LOCK(sc);
1211 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1212 ATH_TXBUF_UNLOCK(sc);
1213 break;
1214 }
1215 /*
1216 * Find the node for the destination so we can do
1217 * things like power save and fast frames aggregation.
1218 */
1219 if (m->m_len < sizeof(struct ether_header) &&
1220 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
1221 ic->ic_stats.is_tx_nobuf++; /* XXX */
1222 ni = NULL;
1223 goto bad;
1224 }
1225 eh = mtod(m, struct ether_header *);
1226 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1227 if (ni == NULL) {
1228 /* NB: ieee80211_find_txnode does stat+msg */
1229 m_freem(m);
1230 goto bad;
1231 }
1232 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1233 (m->m_flags & M_PWR_SAV) == 0) {
1234 /*
1235 * Station in power save mode; pass the frame
1236 * to the 802.11 layer and continue. We'll get
1237 * the frame back when the time is right.
1238 */
1239 ieee80211_pwrsave(ic, ni, m);
1240 goto reclaim;
1241 }
1242 /* calculate priority so we can find the tx queue */
1243 if (ieee80211_classify(ic, m, ni)) {
1244 DPRINTF(sc, ATH_DEBUG_XMIT,
1245 "%s: discard, classification failure\n",
1246 __func__);
1247 m_freem(m);
1248 goto bad;
1249 }
1250 ifp->if_opackets++;
1251
1252 #if NBPFILTER > 0
1253 if (ifp->if_bpf)
1254 bpf_mtap(ifp->if_bpf, m);
1255 #endif
1256 /*
1257 * Encapsulate the packet in prep for transmission.
1258 */
1259 m = ieee80211_encap(ic, m, ni);
1260 if (m == NULL) {
1261 DPRINTF(sc, ATH_DEBUG_ANY,
1262 "%s: encapsulation failure\n",
1263 __func__);
1264 sc->sc_stats.ast_tx_encap++;
1265 goto bad;
1266 }
1267 } else {
1268 /*
1269 * Hack! The referenced node pointer is in the
1270 * rcvif field of the packet header. This is
1271 * placed there by ieee80211_mgmt_output because
1272 * we need to hold the reference with the frame
1273 * and there's no other way (other than packet
1274 * tags which we consider too expensive to use)
1275 * to pass it along.
1276 */
1277 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1278 m->m_pkthdr.rcvif = NULL;
1279
1280 wh = mtod(m, struct ieee80211_frame *);
1281 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1282 IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1283 /* fill time stamp */
1284 u_int64_t tsf;
1285 u_int32_t *tstamp;
1286
1287 tsf = ath_hal_gettsf64(ah);
1288 /* XXX: adjust 100us delay to xmit */
1289 tsf += 100;
1290 tstamp = (u_int32_t *)&wh[1];
1291 tstamp[0] = htole32(tsf & 0xffffffff);
1292 tstamp[1] = htole32(tsf >> 32);
1293 }
1294 sc->sc_stats.ast_tx_mgmt++;
1295 }
1296
1297 if (ath_tx_start(sc, ni, bf, m)) {
1298 bad:
1299 ifp->if_oerrors++;
1300 reclaim:
1301 ATH_TXBUF_LOCK(sc);
1302 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1303 ATH_TXBUF_UNLOCK(sc);
1304 if (ni != NULL)
1305 ieee80211_free_node(ni);
1306 continue;
1307 }
1308
1309 sc->sc_tx_timer = 5;
1310 ifp->if_timer = 1;
1311 }
1312 }
1313
1314 static int
1315 ath_media_change(struct ifnet *ifp)
1316 {
1317 #define IS_UP(ifp) \
1318 ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP))
1319 int error;
1320
1321 error = ieee80211_media_change(ifp);
1322 if (error == ENETRESET) {
1323 if (IS_UP(ifp))
1324 ath_init(ifp->if_softc); /* XXX lose error */
1325 error = 0;
1326 }
1327 return error;
1328 #undef IS_UP
1329 }
1330
1331 #ifdef AR_DEBUG
1332 static void
1333 ath_keyprint(const char *tag, u_int ix,
1334 const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1335 {
1336 static const char *ciphers[] = {
1337 "WEP",
1338 "AES-OCB",
1339 "AES-CCM",
1340 "CKIP",
1341 "TKIP",
1342 "CLR",
1343 };
1344 int i, n;
1345
1346 printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1347 for (i = 0, n = hk->kv_len; i < n; i++)
1348 printf("%02x", hk->kv_val[i]);
1349 printf(" mac %s", ether_sprintf(mac));
1350 if (hk->kv_type == HAL_CIPHER_TKIP) {
1351 printf(" mic ");
1352 for (i = 0; i < sizeof(hk->kv_mic); i++)
1353 printf("%02x", hk->kv_mic[i]);
1354 }
1355 printf("\n");
1356 }
1357 #endif
1358
1359 /*
1360 * Set a TKIP key into the hardware. This handles the
1361 * potential distribution of key state to multiple key
1362 * cache slots for TKIP.
1363 */
1364 static int
1365 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1366 HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1367 {
1368 #define IEEE80211_KEY_XR (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1369 static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1370 struct ath_hal *ah = sc->sc_ah;
1371
1372 KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1373 ("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1374 KASSERT(sc->sc_splitmic, ("key cache !split"));
1375 if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1376 /*
1377 * TX key goes at first index, RX key at +32.
1378 * The hal handles the MIC keys at index+64.
1379 */
1380 memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1381 KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1382 if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
1383 return 0;
1384
1385 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1386 KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1387 /* XXX delete tx key on failure? */
1388 return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
1389 } else if (k->wk_flags & IEEE80211_KEY_XR) {
1390 /*
1391 * TX/RX key goes at first index.
1392 * The hal handles the MIC keys are index+64.
1393 */
1394 memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
1395 k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
1396 KEYPRINTF(sc, k->wk_keyix, hk, mac);
1397 return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1398 }
1399 return 0;
1400 #undef IEEE80211_KEY_XR
1401 }
1402
1403 /*
1404 * Set a net80211 key into the hardware. This handles the
1405 * potential distribution of key state to multiple key
1406 * cache slots for TKIP with hardware MIC support.
1407 */
1408 static int
1409 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1410 const u_int8_t mac0[IEEE80211_ADDR_LEN],
1411 struct ieee80211_node *bss)
1412 {
1413 #define N(a) (sizeof(a)/sizeof(a[0]))
1414 static const u_int8_t ciphermap[] = {
1415 HAL_CIPHER_WEP, /* IEEE80211_CIPHER_WEP */
1416 HAL_CIPHER_TKIP, /* IEEE80211_CIPHER_TKIP */
1417 HAL_CIPHER_AES_OCB, /* IEEE80211_CIPHER_AES_OCB */
1418 HAL_CIPHER_AES_CCM, /* IEEE80211_CIPHER_AES_CCM */
1419 (u_int8_t) -1, /* 4 is not allocated */
1420 HAL_CIPHER_CKIP, /* IEEE80211_CIPHER_CKIP */
1421 HAL_CIPHER_CLR, /* IEEE80211_CIPHER_NONE */
1422 };
1423 struct ath_hal *ah = sc->sc_ah;
1424 const struct ieee80211_cipher *cip = k->wk_cipher;
1425 u_int8_t gmac[IEEE80211_ADDR_LEN];
1426 const u_int8_t *mac;
1427 HAL_KEYVAL hk;
1428
1429 memset(&hk, 0, sizeof(hk));
1430 /*
1431 * Software crypto uses a "clear key" so non-crypto
1432 * state kept in the key cache are maintained and
1433 * so that rx frames have an entry to match.
1434 */
1435 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1436 KASSERT(cip->ic_cipher < N(ciphermap),
1437 ("invalid cipher type %u", cip->ic_cipher));
1438 hk.kv_type = ciphermap[cip->ic_cipher];
1439 hk.kv_len = k->wk_keylen;
1440 memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1441 } else
1442 hk.kv_type = HAL_CIPHER_CLR;
1443
1444 if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
1445 /*
1446 * Group keys on hardware that supports multicast frame
1447 * key search use a mac that is the sender's address with
1448 * the high bit set instead of the app-specified address.
1449 */
1450 IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
1451 gmac[0] |= 0x80;
1452 mac = gmac;
1453 } else
1454 mac = mac0;
1455
1456 if (hk.kv_type == HAL_CIPHER_TKIP &&
1457 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1458 sc->sc_splitmic) {
1459 return ath_keyset_tkip(sc, k, &hk, mac);
1460 } else {
1461 KEYPRINTF(sc, k->wk_keyix, &hk, mac);
1462 return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
1463 }
1464 #undef N
1465 }
1466
1467 /*
1468 * Allocate tx/rx key slots for TKIP. We allocate two slots for
1469 * each key, one for decrypt/encrypt and the other for the MIC.
1470 */
1471 static u_int16_t
1472 key_alloc_2pair(struct ath_softc *sc)
1473 {
1474 #define N(a) (sizeof(a)/sizeof(a[0]))
1475 u_int i, keyix;
1476
1477 KASSERT(sc->sc_splitmic, ("key cache !split"));
1478 /* XXX could optimize */
1479 for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1480 u_int8_t b = sc->sc_keymap[i];
1481 if (b != 0xff) {
1482 /*
1483 * One or more slots in this byte are free.
1484 */
1485 keyix = i*NBBY;
1486 while (b & 1) {
1487 again:
1488 keyix++;
1489 b >>= 1;
1490 }
1491 /* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1492 if (isset(sc->sc_keymap, keyix+32) ||
1493 isset(sc->sc_keymap, keyix+64) ||
1494 isset(sc->sc_keymap, keyix+32+64)) {
1495 /* full pair unavailable */
1496 /* XXX statistic */
1497 if (keyix == (i+1)*NBBY) {
1498 /* no slots were appropriate, advance */
1499 continue;
1500 }
1501 goto again;
1502 }
1503 setbit(sc->sc_keymap, keyix);
1504 setbit(sc->sc_keymap, keyix+64);
1505 setbit(sc->sc_keymap, keyix+32);
1506 setbit(sc->sc_keymap, keyix+32+64);
1507 DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1508 "%s: key pair %u,%u %u,%u\n",
1509 __func__, keyix, keyix+64,
1510 keyix+32, keyix+32+64);
1511 return keyix;
1512 }
1513 }
1514 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1515 return IEEE80211_KEYIX_NONE;
1516 #undef N
1517 }
1518
1519 /*
1520 * Allocate a single key cache slot.
1521 */
1522 static u_int16_t
1523 key_alloc_single(struct ath_softc *sc)
1524 {
1525 #define N(a) (sizeof(a)/sizeof(a[0]))
1526 u_int i, keyix;
1527
1528 /* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
1529 for (i = 0; i < N(sc->sc_keymap); i++) {
1530 u_int8_t b = sc->sc_keymap[i];
1531 if (b != 0xff) {
1532 /*
1533 * One or more slots are free.
1534 */
1535 keyix = i*NBBY;
1536 while (b & 1)
1537 keyix++, b >>= 1;
1538 setbit(sc->sc_keymap, keyix);
1539 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
1540 __func__, keyix);
1541 return keyix;
1542 }
1543 }
1544 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
1545 return IEEE80211_KEYIX_NONE;
1546 #undef N
1547 }
1548
1549 /*
1550 * Allocate one or more key cache slots for a uniacst key. The
1551 * key itself is needed only to identify the cipher. For hardware
1552 * TKIP with split cipher+MIC keys we allocate two key cache slot
1553 * pairs so that we can setup separate TX and RX MIC keys. Note
1554 * that the MIC key for a TKIP key at slot i is assumed by the
1555 * hardware to be at slot i+64. This limits TKIP keys to the first
1556 * 64 entries.
1557 */
1558 static int
1559 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k)
1560 {
1561 struct ath_softc *sc = ic->ic_ifp->if_softc;
1562
1563 /*
1564 * Group key allocation must be handled specially for
1565 * parts that do not support multicast key cache search
1566 * functionality. For those parts the key id must match
1567 * the h/w key index so lookups find the right key. On
1568 * parts w/ the key search facility we install the sender's
1569 * mac address (with the high bit set) and let the hardware
1570 * find the key w/o using the key id. This is preferred as
1571 * it permits us to support multiple users for adhoc and/or
1572 * multi-station operation.
1573 */
1574 if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
1575 u_int keyix;
1576
1577 if (!(&ic->ic_nw_keys[0] <= k &&
1578 k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
1579 /* should not happen */
1580 DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1581 "%s: bogus group key\n", __func__);
1582 return IEEE80211_KEYIX_NONE;
1583 }
1584 keyix = k - ic->ic_nw_keys;
1585 /*
1586 * XXX we pre-allocate the global keys so
1587 * have no way to check if they've already been allocated.
1588 */
1589 return keyix;
1590 }
1591
1592 /*
1593 * We allocate two pair for TKIP when using the h/w to do
1594 * the MIC. For everything else, including software crypto,
1595 * we allocate a single entry. Note that s/w crypto requires
1596 * a pass-through slot on the 5211 and 5212. The 5210 does
1597 * not support pass-through cache entries and we map all
1598 * those requests to slot 0.
1599 */
1600 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1601 return key_alloc_single(sc);
1602 } else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
1603 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
1604 return key_alloc_2pair(sc);
1605 } else {
1606 return key_alloc_single(sc);
1607 }
1608 }
1609
1610 /*
1611 * Delete an entry in the key cache allocated by ath_key_alloc.
1612 */
1613 static int
1614 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
1615 {
1616 struct ath_softc *sc = ic->ic_ifp->if_softc;
1617 struct ath_hal *ah = sc->sc_ah;
1618 const struct ieee80211_cipher *cip = k->wk_cipher;
1619 struct ieee80211_node *ni;
1620 u_int keyix = k->wk_keyix;
1621
1622 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
1623
1624 ath_hal_keyreset(ah, keyix);
1625 /*
1626 * Check the key->node map and flush any ref.
1627 */
1628 ni = sc->sc_keyixmap[keyix];
1629 if (ni != NULL) {
1630 ieee80211_free_node(ni);
1631 sc->sc_keyixmap[keyix] = NULL;
1632 }
1633 /*
1634 * Handle split tx/rx keying required for TKIP with h/w MIC.
1635 */
1636 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1637 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
1638 ath_hal_keyreset(ah, keyix+32); /* RX key */
1639 ni = sc->sc_keyixmap[keyix+32];
1640 if (ni != NULL) { /* as above... */
1641 ieee80211_free_node(ni);
1642 sc->sc_keyixmap[keyix+32] = NULL;
1643 }
1644 }
1645 if (keyix >= IEEE80211_WEP_NKID) {
1646 /*
1647 * Don't touch keymap entries for global keys so
1648 * they are never considered for dynamic allocation.
1649 */
1650 clrbit(sc->sc_keymap, keyix);
1651 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1652 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1653 sc->sc_splitmic) {
1654 clrbit(sc->sc_keymap, keyix+64); /* TX key MIC */
1655 clrbit(sc->sc_keymap, keyix+32); /* RX key */
1656 clrbit(sc->sc_keymap, keyix+32+64); /* RX key MIC */
1657 }
1658 }
1659 return 1;
1660 }
1661
1662 /*
1663 * Set the key cache contents for the specified key. Key cache
1664 * slot(s) must already have been allocated by ath_key_alloc.
1665 */
1666 static int
1667 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
1668 const u_int8_t mac[IEEE80211_ADDR_LEN])
1669 {
1670 struct ath_softc *sc = ic->ic_ifp->if_softc;
1671
1672 return ath_keyset(sc, k, mac, ic->ic_bss);
1673 }
1674
1675 /*
1676 * Block/unblock tx+rx processing while a key change is done.
1677 * We assume the caller serializes key management operations
1678 * so we only need to worry about synchronization with other
1679 * uses that originate in the driver.
1680 */
1681 static void
1682 ath_key_update_begin(struct ieee80211com *ic)
1683 {
1684 struct ifnet *ifp = ic->ic_ifp;
1685 struct ath_softc *sc = ifp->if_softc;
1686
1687 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1688 #if 0
1689 tasklet_disable(&sc->sc_rxtq);
1690 #endif
1691 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */
1692 }
1693
1694 static void
1695 ath_key_update_end(struct ieee80211com *ic)
1696 {
1697 struct ifnet *ifp = ic->ic_ifp;
1698 struct ath_softc *sc = ifp->if_softc;
1699
1700 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1701 IF_UNLOCK(&ifp->if_snd);
1702 #if 0
1703 tasklet_enable(&sc->sc_rxtq);
1704 #endif
1705 }
1706
1707 /*
1708 * Calculate the receive filter according to the
1709 * operating mode and state:
1710 *
1711 * o always accept unicast, broadcast, and multicast traffic
1712 * o maintain current state of phy error reception (the hal
1713 * may enable phy error frames for noise immunity work)
1714 * o probe request frames are accepted only when operating in
1715 * hostap, adhoc, or monitor modes
1716 * o enable promiscuous mode according to the interface state
1717 * o accept beacons:
1718 * - when operating in adhoc mode so the 802.11 layer creates
1719 * node table entries for peers,
1720 * - when operating in station mode for collecting rssi data when
1721 * the station is otherwise quiet, or
1722 * - when scanning
1723 */
1724 static u_int32_t
1725 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
1726 {
1727 struct ieee80211com *ic = &sc->sc_ic;
1728 struct ath_hal *ah = sc->sc_ah;
1729 struct ifnet *ifp = &sc->sc_if;
1730 u_int32_t rfilt;
1731
1732 rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1733 | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1734 if (ic->ic_opmode != IEEE80211_M_STA)
1735 rfilt |= HAL_RX_FILTER_PROBEREQ;
1736 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1737 (ifp->if_flags & IFF_PROMISC))
1738 rfilt |= HAL_RX_FILTER_PROM;
1739 if (ic->ic_opmode == IEEE80211_M_STA ||
1740 ic->ic_opmode == IEEE80211_M_IBSS ||
1741 state == IEEE80211_S_SCAN)
1742 rfilt |= HAL_RX_FILTER_BEACON;
1743 return rfilt;
1744 }
1745
1746 static void
1747 ath_mcastfilter_accum(caddr_t dl, u_int32_t *mfilt)
1748 {
1749 u_int32_t val;
1750 u_int8_t pos;
1751
1752 /* calculate XOR of eight 6bit values */
1753 val = LE_READ_4(dl + 0);
1754 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1755 val = LE_READ_4(dl + 3);
1756 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1757 pos &= 0x3f;
1758 mfilt[pos / 32] |= (1 << (pos % 32));
1759 }
1760
1761 static void
1762 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t *mfilt)
1763 {
1764 struct ifnet *ifp = &sc->sc_if;
1765 struct ether_multi *enm;
1766 struct ether_multistep estep;
1767
1768 mfilt[0] = mfilt[1] = 0;
1769 ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
1770 while (enm != NULL) {
1771 /* XXX Punt on ranges. */
1772 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
1773 mfilt[0] = mfilt[1] = ~((u_int32_t)0);
1774 ifp->if_flags |= IFF_ALLMULTI;
1775 return;
1776 }
1777 ath_mcastfilter_accum(enm->enm_addrlo, mfilt);
1778 ETHER_NEXT_MULTI(estep, enm);
1779 }
1780 ifp->if_flags &= ~IFF_ALLMULTI;
1781 }
1782
1783 static void
1784 ath_mode_init(struct ath_softc *sc)
1785 {
1786 struct ieee80211com *ic = &sc->sc_ic;
1787 struct ath_hal *ah = sc->sc_ah;
1788 u_int32_t rfilt, mfilt[2];
1789
1790 /* configure rx filter */
1791 rfilt = ath_calcrxfilter(sc, ic->ic_state);
1792 ath_hal_setrxfilter(ah, rfilt);
1793
1794 /* configure operational mode */
1795 ath_hal_setopmode(ah);
1796
1797 /*
1798 * Handle any link-level address change. Note that we only
1799 * need to force ic_myaddr; any other addresses are handled
1800 * as a byproduct of the ifnet code marking the interface
1801 * down then up.
1802 *
1803 * XXX should get from lladdr instead of arpcom but that's more work
1804 */
1805 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(sc->sc_if.if_sadl));
1806 ath_hal_setmac(ah, ic->ic_myaddr);
1807
1808 /* calculate and install multicast filter */
1809 #ifdef __FreeBSD__
1810 if ((sc->sc_if.if_flags & IFF_ALLMULTI) == 0)
1811 ath_mcastfilter_compute(sc, mfilt);
1812 else
1813 mfilt[0] = mfilt[1] = ~0;
1814 #endif
1815 #ifdef __NetBSD__
1816 ath_mcastfilter_compute(sc, mfilt);
1817 #endif
1818 ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1819 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
1820 __func__, rfilt, mfilt[0], mfilt[1]);
1821 }
1822
1823 /*
1824 * Set the slot time based on the current setting.
1825 */
1826 static void
1827 ath_setslottime(struct ath_softc *sc)
1828 {
1829 struct ieee80211com *ic = &sc->sc_ic;
1830 struct ath_hal *ah = sc->sc_ah;
1831
1832 if (ic->ic_flags & IEEE80211_F_SHSLOT)
1833 ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
1834 else
1835 ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
1836 sc->sc_updateslot = OK;
1837 }
1838
1839 /*
1840 * Callback from the 802.11 layer to update the
1841 * slot time based on the current setting.
1842 */
1843 static void
1844 ath_updateslot(struct ifnet *ifp)
1845 {
1846 struct ath_softc *sc = ifp->if_softc;
1847 struct ieee80211com *ic = &sc->sc_ic;
1848
1849 /*
1850 * When not coordinating the BSS, change the hardware
1851 * immediately. For other operation we defer the change
1852 * until beacon updates have propagated to the stations.
1853 */
1854 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1855 sc->sc_updateslot = UPDATE;
1856 else
1857 ath_setslottime(sc);
1858 }
1859
1860 /*
1861 * Setup a h/w transmit queue for beacons.
1862 */
1863 static int
1864 ath_beaconq_setup(struct ath_hal *ah)
1865 {
1866 HAL_TXQ_INFO qi;
1867
1868 memset(&qi, 0, sizeof(qi));
1869 qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
1870 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
1871 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
1872 /* NB: for dynamic turbo, don't enable any other interrupts */
1873 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
1874 return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
1875 }
1876
1877 /*
1878 * Setup the transmit queue parameters for the beacon queue.
1879 */
1880 static int
1881 ath_beaconq_config(struct ath_softc *sc)
1882 {
1883 #define ATH_EXPONENT_TO_VALUE(v) ((1<<(v))-1)
1884 struct ieee80211com *ic = &sc->sc_ic;
1885 struct ath_hal *ah = sc->sc_ah;
1886 HAL_TXQ_INFO qi;
1887
1888 ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
1889 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
1890 /*
1891 * Always burst out beacon and CAB traffic.
1892 */
1893 qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
1894 qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
1895 qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
1896 } else {
1897 struct wmeParams *wmep =
1898 &ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
1899 /*
1900 * Adhoc mode; important thing is to use 2x cwmin.
1901 */
1902 qi.tqi_aifs = wmep->wmep_aifsn;
1903 qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
1904 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
1905 }
1906
1907 if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
1908 device_printf(sc->sc_dev, "unable to update parameters for "
1909 "beacon hardware queue!\n");
1910 return 0;
1911 } else {
1912 ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
1913 return 1;
1914 }
1915 #undef ATH_EXPONENT_TO_VALUE
1916 }
1917
1918 /*
1919 * Allocate and setup an initial beacon frame.
1920 */
1921 static int
1922 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
1923 {
1924 struct ieee80211com *ic = ni->ni_ic;
1925 struct ath_buf *bf;
1926 struct mbuf *m;
1927 int error;
1928
1929 bf = STAILQ_FIRST(&sc->sc_bbuf);
1930 if (bf == NULL) {
1931 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
1932 sc->sc_stats.ast_be_nombuf++; /* XXX */
1933 return ENOMEM; /* XXX */
1934 }
1935 /*
1936 * NB: the beacon data buffer must be 32-bit aligned;
1937 * we assume the mbuf routines will return us something
1938 * with this alignment (perhaps should assert).
1939 */
1940 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
1941 if (m == NULL) {
1942 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
1943 __func__);
1944 sc->sc_stats.ast_be_nombuf++;
1945 return ENOMEM;
1946 }
1947 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
1948 BUS_DMA_NOWAIT);
1949 if (error == 0) {
1950 bf->bf_m = m;
1951 bf->bf_node = ieee80211_ref_node(ni);
1952 } else {
1953 m_freem(m);
1954 }
1955 return error;
1956 }
1957
1958 /*
1959 * Setup the beacon frame for transmit.
1960 */
1961 static void
1962 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
1963 {
1964 #define USE_SHPREAMBLE(_ic) \
1965 (((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
1966 == IEEE80211_F_SHPREAMBLE)
1967 struct ieee80211_node *ni = bf->bf_node;
1968 struct ieee80211com *ic = ni->ni_ic;
1969 struct mbuf *m = bf->bf_m;
1970 struct ath_hal *ah = sc->sc_ah;
1971 struct ath_node *an = ATH_NODE(ni);
1972 struct ath_desc *ds;
1973 int flags, antenna;
1974 u_int8_t rate;
1975
1976 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
1977 __func__, m, m->m_len);
1978
1979 /* setup descriptors */
1980 ds = bf->bf_desc;
1981
1982 flags = HAL_TXDESC_NOACK;
1983 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
1984 ds->ds_link = bf->bf_daddr; /* self-linked */
1985 flags |= HAL_TXDESC_VEOL;
1986 /*
1987 * Let hardware handle antenna switching unless
1988 * the user has selected a transmit antenna
1989 * (sc_txantenna is not 0).
1990 */
1991 antenna = sc->sc_txantenna;
1992 } else {
1993 ds->ds_link = 0;
1994 /*
1995 * Switch antenna every 4 beacons, unless the user
1996 * has selected a transmit antenna (sc_txantenna
1997 * is not 0).
1998 *
1999 * XXX assumes two antenna
2000 */
2001 if (sc->sc_txantenna == 0)
2002 antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2003 else
2004 antenna = sc->sc_txantenna;
2005 }
2006
2007 KASSERT(bf->bf_nseg == 1,
2008 ("multi-segment beacon frame; nseg %u", bf->bf_nseg));
2009 ds->ds_data = bf->bf_segs[0].ds_addr;
2010 /*
2011 * Calculate rate code.
2012 * XXX everything at min xmit rate
2013 */
2014 if (USE_SHPREAMBLE(ic))
2015 rate = an->an_tx_mgtratesp;
2016 else
2017 rate = an->an_tx_mgtrate;
2018 ath_hal_setuptxdesc(ah, ds
2019 , m->m_len + IEEE80211_CRC_LEN /* frame length */
2020 , sizeof(struct ieee80211_frame)/* header length */
2021 , HAL_PKT_TYPE_BEACON /* Atheros packet type */
2022 , ni->ni_txpower /* txpower XXX */
2023 , rate, 1 /* series 0 rate/tries */
2024 , HAL_TXKEYIX_INVALID /* no encryption */
2025 , antenna /* antenna mode */
2026 , flags /* no ack, veol for beacons */
2027 , 0 /* rts/cts rate */
2028 , 0 /* rts/cts duration */
2029 );
2030 /* NB: beacon's BufLen must be a multiple of 4 bytes */
2031 ath_hal_filltxdesc(ah, ds
2032 , roundup(m->m_len, 4) /* buffer length */
2033 , AH_TRUE /* first segment */
2034 , AH_TRUE /* last segment */
2035 , ds /* first descriptor */
2036 );
2037 #undef USE_SHPREAMBLE
2038 }
2039
2040 /*
2041 * Transmit a beacon frame at SWBA. Dynamic updates to the
2042 * frame contents are done as needed and the slot time is
2043 * also adjusted based on current state.
2044 */
2045 static void
2046 ath_beacon_proc(void *arg, int pending)
2047 {
2048 struct ath_softc *sc = arg;
2049 struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
2050 struct ieee80211_node *ni = bf->bf_node;
2051 struct ieee80211com *ic = ni->ni_ic;
2052 struct ath_hal *ah = sc->sc_ah;
2053 struct mbuf *m;
2054 int ncabq, error, otherant;
2055
2056 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2057 __func__, pending);
2058
2059 if (ic->ic_opmode == IEEE80211_M_STA ||
2060 ic->ic_opmode == IEEE80211_M_MONITOR ||
2061 bf == NULL || bf->bf_m == NULL) {
2062 DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
2063 __func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
2064 return;
2065 }
2066 /*
2067 * Check if the previous beacon has gone out. If
2068 * not don't don't try to post another, skip this
2069 * period and wait for the next. Missed beacons
2070 * indicate a problem and should not occur. If we
2071 * miss too many consecutive beacons reset the device.
2072 */
2073 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2074 sc->sc_bmisscount++;
2075 DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2076 "%s: missed %u consecutive beacons\n",
2077 __func__, sc->sc_bmisscount);
2078 if (sc->sc_bmisscount > 3) /* NB: 3 is a guess */
2079 TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask);
2080 return;
2081 }
2082 if (sc->sc_bmisscount != 0) {
2083 DPRINTF(sc, ATH_DEBUG_BEACON,
2084 "%s: resume beacon xmit after %u misses\n",
2085 __func__, sc->sc_bmisscount);
2086 sc->sc_bmisscount = 0;
2087 }
2088
2089 /*
2090 * Update dynamic beacon contents. If this returns
2091 * non-zero then we need to remap the memory because
2092 * the beacon frame changed size (probably because
2093 * of the TIM bitmap).
2094 */
2095 m = bf->bf_m;
2096 ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
2097 if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
2098 /* XXX too conservative? */
2099 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2100 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2101 BUS_DMA_NOWAIT);
2102 if (error != 0) {
2103 if_printf(&sc->sc_if,
2104 "%s: bus_dmamap_load_mbuf failed, error %u\n",
2105 __func__, error);
2106 return;
2107 }
2108 }
2109
2110 /*
2111 * Handle slot time change when a non-ERP station joins/leaves
2112 * an 11g network. The 802.11 layer notifies us via callback,
2113 * we mark updateslot, then wait one beacon before effecting
2114 * the change. This gives associated stations at least one
2115 * beacon interval to note the state change.
2116 */
2117 /* XXX locking */
2118 if (sc->sc_updateslot == UPDATE)
2119 sc->sc_updateslot = COMMIT; /* commit next beacon */
2120 else if (sc->sc_updateslot == COMMIT)
2121 ath_setslottime(sc); /* commit change to h/w */
2122
2123 /*
2124 * Check recent per-antenna transmit statistics and flip
2125 * the default antenna if noticeably more frames went out
2126 * on the non-default antenna.
2127 * XXX assumes 2 anntenae
2128 */
2129 otherant = sc->sc_defant & 1 ? 2 : 1;
2130 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2131 ath_setdefantenna(sc, otherant);
2132 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2133
2134 /*
2135 * Construct tx descriptor.
2136 */
2137 ath_beacon_setup(sc, bf);
2138
2139 /*
2140 * Stop any current dma and put the new frame on the queue.
2141 * This should never fail since we check above that no frames
2142 * are still pending on the queue.
2143 */
2144 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2145 DPRINTF(sc, ATH_DEBUG_ANY,
2146 "%s: beacon queue %u did not stop?\n",
2147 __func__, sc->sc_bhalq);
2148 }
2149 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2150 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2151
2152 /*
2153 * Enable the CAB queue before the beacon queue to
2154 * insure cab frames are triggered by this beacon.
2155 */
2156 if (sc->sc_boff.bo_tim[4] & 1) /* NB: only at DTIM */
2157 ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
2158 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
2159 ath_hal_txstart(ah, sc->sc_bhalq);
2160 DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2161 "%s: TXDP[%u] = %p (%p)\n", __func__,
2162 sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc);
2163
2164 sc->sc_stats.ast_be_xmit++;
2165 }
2166
2167 /*
2168 * Reset the hardware after detecting beacons have stopped.
2169 */
2170 static void
2171 ath_bstuck_proc(void *arg, int pending)
2172 {
2173 struct ath_softc *sc = arg;
2174 struct ifnet *ifp = &sc->sc_if;
2175
2176 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2177 sc->sc_bmisscount);
2178 ath_reset(ifp);
2179 }
2180
2181 /*
2182 * Reclaim beacon resources.
2183 */
2184 static void
2185 ath_beacon_free(struct ath_softc *sc)
2186 {
2187 struct ath_buf *bf;
2188
2189 STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
2190 if (bf->bf_m != NULL) {
2191 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2192 m_freem(bf->bf_m);
2193 bf->bf_m = NULL;
2194 }
2195 if (bf->bf_node != NULL) {
2196 ieee80211_free_node(bf->bf_node);
2197 bf->bf_node = NULL;
2198 }
2199 }
2200 }
2201
2202 /*
2203 * Configure the beacon and sleep timers.
2204 *
2205 * When operating as an AP this resets the TSF and sets
2206 * up the hardware to notify us when we need to issue beacons.
2207 *
2208 * When operating in station mode this sets up the beacon
2209 * timers according to the timestamp of the last received
2210 * beacon and the current TSF, configures PCF and DTIM
2211 * handling, programs the sleep registers so the hardware
2212 * will wakeup in time to receive beacons, and configures
2213 * the beacon miss handling so we'll receive a BMISS
2214 * interrupt when we stop seeing beacons from the AP
2215 * we've associated with.
2216 */
2217 static void
2218 ath_beacon_config(struct ath_softc *sc)
2219 {
2220 #define TSF_TO_TU(_h,_l) (((_h) << 22) | ((_l) >> 10))
2221 struct ath_hal *ah = sc->sc_ah;
2222 struct ieee80211com *ic = &sc->sc_ic;
2223 struct ieee80211_node *ni = ic->ic_bss;
2224 u_int32_t nexttbtt, intval;
2225
2226 /* extract tstamp from last beacon and convert to TU */
2227 nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
2228 LE_READ_4(ni->ni_tstamp.data));
2229 /* NB: the beacon interval is kept internally in TU's */
2230 intval = ni->ni_intval & HAL_BEACON_PERIOD;
2231 if (nexttbtt == 0) /* e.g. for ap mode */
2232 nexttbtt = intval;
2233 else if (intval) /* NB: can be 0 for monitor mode */
2234 nexttbtt = roundup(nexttbtt, intval);
2235 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2236 __func__, nexttbtt, intval, ni->ni_intval);
2237 if (ic->ic_opmode == IEEE80211_M_STA) {
2238 HAL_BEACON_STATE bs;
2239 u_int64_t tsf;
2240 u_int32_t tsftu;
2241 int dtimperiod, dtimcount;
2242 int cfpperiod, cfpcount;
2243
2244 /*
2245 * Setup dtim and cfp parameters according to
2246 * last beacon we received (which may be none).
2247 */
2248 dtimperiod = ni->ni_dtim_period;
2249 if (dtimperiod <= 0) /* NB: 0 if not known */
2250 dtimperiod = 1;
2251 dtimcount = ni->ni_dtim_count;
2252 if (dtimcount >= dtimperiod) /* NB: sanity check */
2253 dtimcount = 0; /* XXX? */
2254 cfpperiod = 1; /* NB: no PCF support yet */
2255 cfpcount = 0;
2256 #define FUDGE 2
2257 /*
2258 * Pull nexttbtt forward to reflect the current
2259 * TSF and calculate dtim+cfp state for the result.
2260 */
2261 tsf = ath_hal_gettsf64(ah);
2262 tsftu = TSF_TO_TU((u_int32_t)(tsf>>32), (u_int32_t)tsf) + FUDGE;
2263 do {
2264 nexttbtt += intval;
2265 if (--dtimcount < 0) {
2266 dtimcount = dtimperiod - 1;
2267 if (--cfpcount < 0)
2268 cfpcount = cfpperiod - 1;
2269 }
2270 } while (nexttbtt < tsftu);
2271 #undef FUDGE
2272 memset(&bs, 0, sizeof(bs));
2273 bs.bs_intval = intval;
2274 bs.bs_nexttbtt = nexttbtt;
2275 bs.bs_dtimperiod = dtimperiod*intval;
2276 bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
2277 bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
2278 bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
2279 bs.bs_cfpmaxduration = 0;
2280 #if 0
2281 /*
2282 * The 802.11 layer records the offset to the DTIM
2283 * bitmap while receiving beacons; use it here to
2284 * enable h/w detection of our AID being marked in
2285 * the bitmap vector (to indicate frames for us are
2286 * pending at the AP).
2287 * XXX do DTIM handling in s/w to WAR old h/w bugs
2288 * XXX enable based on h/w rev for newer chips
2289 */
2290 bs.bs_timoffset = ni->ni_timoff;
2291 #endif
2292 /*
2293 * Calculate the number of consecutive beacons to miss
2294 * before taking a BMISS interrupt. The configuration
2295 * is specified in ms, so we need to convert that to
2296 * TU's and then calculate based on the beacon interval.
2297 * Note that we clamp the result to at most 10 beacons.
2298 */
2299 bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
2300 if (bs.bs_bmissthreshold > 10)
2301 bs.bs_bmissthreshold = 10;
2302 else if (bs.bs_bmissthreshold <= 0)
2303 bs.bs_bmissthreshold = 1;
2304
2305 /*
2306 * Calculate sleep duration. The configuration is
2307 * given in ms. We insure a multiple of the beacon
2308 * period is used. Also, if the sleep duration is
2309 * greater than the DTIM period then it makes senses
2310 * to make it a multiple of that.
2311 *
2312 * XXX fixed at 100ms
2313 */
2314 bs.bs_sleepduration =
2315 roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2316 if (bs.bs_sleepduration > bs.bs_dtimperiod)
2317 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2318
2319 DPRINTF(sc, ATH_DEBUG_BEACON,
2320 "%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2321 , __func__
2322 , tsf, tsftu
2323 , bs.bs_intval
2324 , bs.bs_nexttbtt
2325 , bs.bs_dtimperiod
2326 , bs.bs_nextdtim
2327 , bs.bs_bmissthreshold
2328 , bs.bs_sleepduration
2329 , bs.bs_cfpperiod
2330 , bs.bs_cfpmaxduration
2331 , bs.bs_cfpnext
2332 , bs.bs_timoffset
2333 );
2334 ath_hal_intrset(ah, 0);
2335 ath_hal_beacontimers(ah, &bs);
2336 sc->sc_imask |= HAL_INT_BMISS;
2337 ath_hal_intrset(ah, sc->sc_imask);
2338 } else {
2339 ath_hal_intrset(ah, 0);
2340 if (nexttbtt == intval)
2341 intval |= HAL_BEACON_RESET_TSF;
2342 if (ic->ic_opmode == IEEE80211_M_IBSS) {
2343 /*
2344 * In IBSS mode enable the beacon timers but only
2345 * enable SWBA interrupts if we need to manually
2346 * prepare beacon frames. Otherwise we use a
2347 * self-linked tx descriptor and let the hardware
2348 * deal with things.
2349 */
2350 intval |= HAL_BEACON_ENA;
2351 if (!sc->sc_hasveol)
2352 sc->sc_imask |= HAL_INT_SWBA;
2353 ath_beaconq_config(sc);
2354 } else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2355 /*
2356 * In AP mode we enable the beacon timers and
2357 * SWBA interrupts to prepare beacon frames.
2358 */
2359 intval |= HAL_BEACON_ENA;
2360 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */
2361 ath_beaconq_config(sc);
2362 }
2363 ath_hal_beaconinit(ah, nexttbtt, intval);
2364 sc->sc_bmisscount = 0;
2365 ath_hal_intrset(ah, sc->sc_imask);
2366 /*
2367 * When using a self-linked beacon descriptor in
2368 * ibss mode load it once here.
2369 */
2370 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2371 ath_beacon_proc(sc, 0);
2372 }
2373 #undef TSF_TO_TU
2374 }
2375
2376 static int
2377 ath_descdma_setup(struct ath_softc *sc,
2378 struct ath_descdma *dd, ath_bufhead *head,
2379 const char *name, int nbuf, int ndesc)
2380 {
2381 #define DS2PHYS(_dd, _ds) \
2382 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2383 struct ifnet *ifp = &sc->sc_if;
2384 struct ath_desc *ds;
2385 struct ath_buf *bf;
2386 int i, bsize, error;
2387
2388 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2389 __func__, name, nbuf, ndesc);
2390
2391 dd->dd_name = name;
2392 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2393
2394 /*
2395 * Setup DMA descriptor area.
2396 */
2397 dd->dd_dmat = sc->sc_dmat;
2398
2399 error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE,
2400 0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0);
2401
2402 if (error != 0) {
2403 if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2404 "error %u\n", nbuf * ndesc, dd->dd_name, error);
2405 goto fail0;
2406 }
2407
2408 error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg,
2409 dd->dd_desc_len, (caddr_t *)&dd->dd_desc, BUS_DMA_COHERENT);
2410 if (error != 0) {
2411 if_printf(ifp, "unable to map %u %s descriptors, error = %u\n",
2412 nbuf * ndesc, dd->dd_name, error);
2413 goto fail1;
2414 }
2415
2416 /* allocate descriptors */
2417 error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1,
2418 dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2419 if (error != 0) {
2420 if_printf(ifp, "unable to create dmamap for %s descriptors, "
2421 "error %u\n", dd->dd_name, error);
2422 goto fail2;
2423 }
2424
2425 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc,
2426 dd->dd_desc_len, NULL, BUS_DMA_NOWAIT);
2427 if (error != 0) {
2428 if_printf(ifp, "unable to map %s descriptors, error %u\n",
2429 dd->dd_name, error);
2430 goto fail3;
2431 }
2432
2433 ds = dd->dd_desc;
2434 dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr;
2435 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
2436 __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2437 (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2438
2439 /* allocate rx buffers */
2440 bsize = sizeof(struct ath_buf) * nbuf;
2441 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2442 if (bf == NULL) {
2443 if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2444 dd->dd_name, bsize);
2445 goto fail4;
2446 }
2447 dd->dd_bufptr = bf;
2448
2449 STAILQ_INIT(head);
2450 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2451 bf->bf_desc = ds;
2452 bf->bf_daddr = DS2PHYS(dd, ds);
2453 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc,
2454 MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap);
2455 if (error != 0) {
2456 if_printf(ifp, "unable to create dmamap for %s "
2457 "buffer %u, error %u\n", dd->dd_name, i, error);
2458 ath_descdma_cleanup(sc, dd, head);
2459 return error;
2460 }
2461 STAILQ_INSERT_TAIL(head, bf, bf_list);
2462 }
2463 return 0;
2464 fail4:
2465 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2466 fail3:
2467 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2468 fail2:
2469 bus_dmamem_unmap(dd->dd_dmat, (caddr_t)dd->dd_desc, dd->dd_desc_len);
2470 fail1:
2471 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2472 fail0:
2473 memset(dd, 0, sizeof(*dd));
2474 return error;
2475 #undef DS2PHYS
2476 }
2477
2478 static void
2479 ath_descdma_cleanup(struct ath_softc *sc,
2480 struct ath_descdma *dd, ath_bufhead *head)
2481 {
2482 struct ath_buf *bf;
2483 struct ieee80211_node *ni;
2484
2485 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2486 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2487 bus_dmamem_unmap(dd->dd_dmat, (caddr_t)dd->dd_desc, dd->dd_desc_len);
2488 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2489
2490 STAILQ_FOREACH(bf, head, bf_list) {
2491 if (bf->bf_m) {
2492 m_freem(bf->bf_m);
2493 bf->bf_m = NULL;
2494 }
2495 if (bf->bf_dmamap != NULL) {
2496 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2497 bf->bf_dmamap = NULL;
2498 }
2499 ni = bf->bf_node;
2500 bf->bf_node = NULL;
2501 if (ni != NULL) {
2502 /*
2503 * Reclaim node reference.
2504 */
2505 ieee80211_free_node(ni);
2506 }
2507 }
2508
2509 STAILQ_INIT(head);
2510 free(dd->dd_bufptr, M_ATHDEV);
2511 memset(dd, 0, sizeof(*dd));
2512 }
2513
2514 static int
2515 ath_desc_alloc(struct ath_softc *sc)
2516 {
2517 int error;
2518
2519 error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2520 "rx", ATH_RXBUF, 1);
2521 if (error != 0)
2522 return error;
2523
2524 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2525 "tx", ATH_TXBUF, ATH_TXDESC);
2526 if (error != 0) {
2527 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2528 return error;
2529 }
2530
2531 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2532 "beacon", 1, 1);
2533 if (error != 0) {
2534 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2535 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2536 return error;
2537 }
2538 return 0;
2539 }
2540
2541 static void
2542 ath_desc_free(struct ath_softc *sc)
2543 {
2544
2545 if (sc->sc_bdma.dd_desc_len != 0)
2546 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2547 if (sc->sc_txdma.dd_desc_len != 0)
2548 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2549 if (sc->sc_rxdma.dd_desc_len != 0)
2550 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2551 }
2552
2553 static struct ieee80211_node *
2554 ath_node_alloc(struct ieee80211_node_table *nt)
2555 {
2556 struct ieee80211com *ic = nt->nt_ic;
2557 struct ath_softc *sc = ic->ic_ifp->if_softc;
2558 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2559 struct ath_node *an;
2560
2561 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2562 if (an == NULL) {
2563 /* XXX stat+msg */
2564 return NULL;
2565 }
2566 an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
2567 an->an_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
2568 an->an_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
2569 an->an_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
2570 ath_rate_node_init(sc, an);
2571
2572 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2573 return &an->an_node;
2574 }
2575
2576 static void
2577 ath_node_free(struct ieee80211_node *ni)
2578 {
2579 struct ieee80211com *ic = ni->ni_ic;
2580 struct ath_softc *sc = ic->ic_ifp->if_softc;
2581
2582 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2583
2584 ath_rate_node_cleanup(sc, ATH_NODE(ni));
2585 sc->sc_node_free(ni);
2586 }
2587
2588 static u_int8_t
2589 ath_node_getrssi(const struct ieee80211_node *ni)
2590 {
2591 #define HAL_EP_RND(x, mul) \
2592 ((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
2593 u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
2594 int32_t rssi;
2595
2596 /*
2597 * When only one frame is received there will be no state in
2598 * avgrssi so fallback on the value recorded by the 802.11 layer.
2599 */
2600 if (avgrssi != ATH_RSSI_DUMMY_MARKER)
2601 rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
2602 else
2603 rssi = ni->ni_rssi;
2604 /* NB: theoretically we shouldn't need this, but be paranoid */
2605 return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
2606 #undef HAL_EP_RND
2607 }
2608
2609 static int
2610 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2611 {
2612 struct ath_hal *ah = sc->sc_ah;
2613 int error;
2614 struct mbuf *m;
2615 struct ath_desc *ds;
2616
2617 m = bf->bf_m;
2618 if (m == NULL) {
2619 /*
2620 * NB: by assigning a page to the rx dma buffer we
2621 * implicitly satisfy the Atheros requirement that
2622 * this buffer be cache-line-aligned and sized to be
2623 * multiple of the cache line size. Not doing this
2624 * causes weird stuff to happen (for the 5210 at least).
2625 */
2626 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2627 if (m == NULL) {
2628 DPRINTF(sc, ATH_DEBUG_ANY,
2629 "%s: no mbuf/cluster\n", __func__);
2630 sc->sc_stats.ast_rx_nombuf++;
2631 return ENOMEM;
2632 }
2633 bf->bf_m = m;
2634 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2635
2636 error = bus_dmamap_load_mbuf(sc->sc_dmat,
2637 bf->bf_dmamap, m,
2638 BUS_DMA_NOWAIT);
2639 if (error != 0) {
2640 DPRINTF(sc, ATH_DEBUG_ANY,
2641 "%s: bus_dmamap_load_mbuf failed; error %d\n",
2642 __func__, error);
2643 sc->sc_stats.ast_rx_busdma++;
2644 return error;
2645 }
2646 KASSERT(bf->bf_nseg == 1,
2647 ("multi-segment packet; nseg %u", bf->bf_nseg));
2648 }
2649 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2650 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2651
2652 /*
2653 * Setup descriptors. For receive we always terminate
2654 * the descriptor list with a self-linked entry so we'll
2655 * not get overrun under high load (as can happen with a
2656 * 5212 when ANI processing enables PHY error frames).
2657 *
2658 * To insure the last descriptor is self-linked we create
2659 * each descriptor as self-linked and add it to the end. As
2660 * each additional descriptor is added the previous self-linked
2661 * entry is ``fixed'' naturally. This should be safe even
2662 * if DMA is happening. When processing RX interrupts we
2663 * never remove/process the last, self-linked, entry on the
2664 * descriptor list. This insures the hardware always has
2665 * someplace to write a new frame.
2666 */
2667 ds = bf->bf_desc;
2668 ds->ds_link = bf->bf_daddr; /* link to self */
2669 ds->ds_data = bf->bf_segs[0].ds_addr;
2670 ath_hal_setuprxdesc(ah, ds
2671 , m->m_len /* buffer size */
2672 , 0
2673 );
2674
2675 if (sc->sc_rxlink != NULL)
2676 *sc->sc_rxlink = bf->bf_daddr;
2677 sc->sc_rxlink = &ds->ds_link;
2678 return 0;
2679 }
2680
2681 /*
2682 * Extend 15-bit time stamp from rx descriptor to
2683 * a full 64-bit TSF using the current h/w TSF.
2684 */
2685 static __inline u_int64_t
2686 ath_extend_tsf(struct ath_hal *ah, u_int32_t rstamp)
2687 {
2688 u_int64_t tsf;
2689
2690 tsf = ath_hal_gettsf64(ah);
2691 if ((tsf & 0x7fff) < rstamp)
2692 tsf -= 0x8000;
2693 return ((tsf &~ 0x7fff) | rstamp);
2694 }
2695
2696 /*
2697 * Intercept management frames to collect beacon rssi data
2698 * and to do ibss merges.
2699 */
2700 static void
2701 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2702 struct ieee80211_node *ni,
2703 int subtype, int rssi, u_int32_t rstamp)
2704 {
2705 struct ath_softc *sc = ic->ic_ifp->if_softc;
2706
2707 /*
2708 * Call up first so subsequent work can use information
2709 * potentially stored in the node (e.g. for ibss merge).
2710 */
2711 sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
2712 switch (subtype) {
2713 case IEEE80211_FC0_SUBTYPE_BEACON:
2714 /* update rssi statistics for use by the hal */
2715 ATH_RSSI_LPF(ATH_NODE(ni)->an_halstats.ns_avgbrssi, rssi);
2716 /* fall thru... */
2717 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2718 if (ic->ic_opmode == IEEE80211_M_IBSS &&
2719 ic->ic_state == IEEE80211_S_RUN) {
2720 u_int64_t tsf = ath_extend_tsf(sc->sc_ah, rstamp);
2721
2722 /*
2723 * Handle ibss merge as needed; check the tsf on the
2724 * frame before attempting the merge. The 802.11 spec
2725 * says the station should change it's bssid to match
2726 * the oldest station with the same ssid, where oldest
2727 * is determined by the tsf. Note that hardware
2728 * reconfiguration happens through callback to
2729 * ath_newstate as the state machine will go from
2730 * RUN -> RUN when this happens.
2731 */
2732 if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
2733 DPRINTF(sc, ATH_DEBUG_STATE,
2734 "ibss merge, rstamp %u tsf %ju "
2735 "tstamp %ju\n", rstamp, (uintmax_t)tsf,
2736 (uintmax_t)ni->ni_tstamp.tsf);
2737 (void) ieee80211_ibss_merge(ic, ni);
2738 }
2739 }
2740 break;
2741 }
2742 }
2743
2744 /*
2745 * Set the default antenna.
2746 */
2747 static void
2748 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
2749 {
2750 struct ath_hal *ah = sc->sc_ah;
2751
2752 /* XXX block beacon interrupts */
2753 ath_hal_setdefantenna(ah, antenna);
2754 if (sc->sc_defant != antenna)
2755 sc->sc_stats.ast_ant_defswitch++;
2756 sc->sc_defant = antenna;
2757 sc->sc_rxotherant = 0;
2758 }
2759
2760 static void
2761 ath_rx_proc(void *arg, int npending)
2762 {
2763 #define PA2DESC(_sc, _pa) \
2764 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
2765 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
2766 struct ath_softc *sc = arg;
2767 struct ath_buf *bf;
2768 struct ieee80211com *ic = &sc->sc_ic;
2769 struct ifnet *ifp = &sc->sc_if;
2770 struct ath_hal *ah = sc->sc_ah;
2771 struct ath_desc *ds;
2772 struct mbuf *m;
2773 struct ieee80211_node *ni;
2774 struct ath_node *an;
2775 int len, type;
2776 u_int phyerr;
2777 HAL_STATUS status;
2778
2779 NET_LOCK_GIANT(); /* XXX */
2780
2781 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
2782 do {
2783 bf = STAILQ_FIRST(&sc->sc_rxbuf);
2784 if (bf == NULL) { /* NB: shouldn't happen */
2785 if_printf(ifp, "%s: no buffer!\n", __func__);
2786 break;
2787 }
2788 ds = bf->bf_desc;
2789 if (ds->ds_link == bf->bf_daddr) {
2790 /* NB: never process the self-linked entry at the end */
2791 break;
2792 }
2793 m = bf->bf_m;
2794 if (m == NULL) { /* NB: shouldn't happen */
2795 if_printf(ifp, "%s: no mbuf!\n", __func__);
2796 continue;
2797 }
2798 /* XXX sync descriptor memory */
2799 /*
2800 * Must provide the virtual address of the current
2801 * descriptor, the physical address, and the virtual
2802 * address of the next descriptor in the h/w chain.
2803 * This allows the HAL to look ahead to see if the
2804 * hardware is done with a descriptor by checking the
2805 * done bit in the following descriptor and the address
2806 * of the current descriptor the DMA engine is working
2807 * on. All this is necessary because of our use of
2808 * a self-linked list to avoid rx overruns.
2809 */
2810 status = ath_hal_rxprocdesc(ah, ds,
2811 bf->bf_daddr, PA2DESC(sc, ds->ds_link));
2812 #ifdef AR_DEBUG
2813 if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
2814 ath_printrxbuf(bf, status == HAL_OK);
2815 #endif
2816 if (status == HAL_EINPROGRESS)
2817 break;
2818 STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
2819 if (ds->ds_rxstat.rs_more) {
2820 /*
2821 * Frame spans multiple descriptors; this
2822 * cannot happen yet as we don't support
2823 * jumbograms. If not in monitor mode,
2824 * discard the frame.
2825 */
2826 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2827 sc->sc_stats.ast_rx_toobig++;
2828 goto rx_next;
2829 }
2830 /* fall thru for monitor mode handling... */
2831 } else if (ds->ds_rxstat.rs_status != 0) {
2832 if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
2833 sc->sc_stats.ast_rx_crcerr++;
2834 if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
2835 sc->sc_stats.ast_rx_fifoerr++;
2836 if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
2837 sc->sc_stats.ast_rx_phyerr++;
2838 phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
2839 sc->sc_stats.ast_rx_phy[phyerr]++;
2840 goto rx_next;
2841 }
2842 if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
2843 /*
2844 * Decrypt error. If the error occurred
2845 * because there was no hardware key, then
2846 * let the frame through so the upper layers
2847 * can process it. This is necessary for 5210
2848 * parts which have no way to setup a ``clear''
2849 * key cache entry.
2850 *
2851 * XXX do key cache faulting
2852 */
2853 if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
2854 goto rx_accept;
2855 sc->sc_stats.ast_rx_badcrypt++;
2856 }
2857 if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
2858 sc->sc_stats.ast_rx_badmic++;
2859 /*
2860 * Do minimal work required to hand off
2861 * the 802.11 header for notifcation.
2862 */
2863 /* XXX frag's and qos frames */
2864 len = ds->ds_rxstat.rs_datalen;
2865 if (len >= sizeof (struct ieee80211_frame)) {
2866 bus_dmamap_sync(sc->sc_dmat,
2867 bf->bf_dmamap,
2868 0, bf->bf_dmamap->dm_mapsize,
2869 BUS_DMASYNC_POSTREAD);
2870 ieee80211_notify_michael_failure(ic,
2871 mtod(m, struct ieee80211_frame *),
2872 sc->sc_splitmic ?
2873 ds->ds_rxstat.rs_keyix-32 :
2874 ds->ds_rxstat.rs_keyix
2875 );
2876 }
2877 }
2878 ifp->if_ierrors++;
2879 /*
2880 * Reject error frames, we normally don't want
2881 * to see them in monitor mode (in monitor mode
2882 * allow through packets that have crypto problems).
2883 */
2884 if ((ds->ds_rxstat.rs_status &~
2885 (HAL_RXERR_DECRYPT|HAL_RXERR_MIC)) ||
2886 sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
2887 goto rx_next;
2888 }
2889 rx_accept:
2890 /*
2891 * Sync and unmap the frame. At this point we're
2892 * committed to passing the mbuf somewhere so clear
2893 * bf_m; this means a new sk_buff must be allocated
2894 * when the rx descriptor is setup again to receive
2895 * another frame.
2896 */
2897 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
2898 0, bf->bf_dmamap->dm_mapsize,
2899 BUS_DMASYNC_POSTREAD);
2900 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2901 bf->bf_m = NULL;
2902
2903 m->m_pkthdr.rcvif = ifp;
2904 len = ds->ds_rxstat.rs_datalen;
2905 m->m_pkthdr.len = m->m_len = len;
2906
2907 sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
2908
2909 #if NBPFILTER > 0
2910 if (sc->sc_drvbpf) {
2911 u_int8_t rix;
2912
2913 /*
2914 * Discard anything shorter than an ack or cts.
2915 */
2916 if (len < IEEE80211_ACK_LEN) {
2917 DPRINTF(sc, ATH_DEBUG_RECV,
2918 "%s: runt packet %d\n",
2919 __func__, len);
2920 sc->sc_stats.ast_rx_tooshort++;
2921 m_freem(m);
2922 goto rx_next;
2923 }
2924 rix = ds->ds_rxstat.rs_rate;
2925 sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
2926 sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
2927 sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi;
2928 sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
2929 /* XXX TSF */
2930
2931 bpf_mtap2(sc->sc_drvbpf,
2932 &sc->sc_rx_th, sc->sc_rx_th_len, m);
2933 }
2934 #endif
2935
2936 /*
2937 * From this point on we assume the frame is at least
2938 * as large as ieee80211_frame_min; verify that.
2939 */
2940 if (len < IEEE80211_MIN_LEN) {
2941 DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
2942 __func__, len);
2943 sc->sc_stats.ast_rx_tooshort++;
2944 m_freem(m);
2945 goto rx_next;
2946 }
2947
2948 if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
2949 ieee80211_dump_pkt(mtod(m, caddr_t), len,
2950 sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
2951 ds->ds_rxstat.rs_rssi);
2952 }
2953
2954 m_adj(m, -IEEE80211_CRC_LEN);
2955
2956 /*
2957 * Locate the node for sender, track state, and then
2958 * pass the (referenced) node up to the 802.11 layer
2959 * for its use. If the sender is unknown spam the
2960 * frame; it'll be dropped where it's not wanted.
2961 */
2962 if (ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID &&
2963 (ni = sc->sc_keyixmap[ds->ds_rxstat.rs_keyix]) != NULL) {
2964 /*
2965 * Fast path: node is present in the key map;
2966 * grab a reference for processing the frame.
2967 */
2968 an = ATH_NODE(ieee80211_ref_node(ni));
2969 ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
2970 type = ieee80211_input(ic, m, ni,
2971 ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
2972 } else {
2973 /*
2974 * Locate the node for sender, track state, and then
2975 * pass the (referenced) node up to the 802.11 layer
2976 * for its use.
2977 */
2978 ni = ieee80211_find_rxnode(ic,
2979 mtod(m, const struct ieee80211_frame_min *));
2980 /*
2981 * Track rx rssi and do any rx antenna management.
2982 */
2983 an = ATH_NODE(ni);
2984 ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
2985 /*
2986 * Send frame up for processing.
2987 */
2988 type = ieee80211_input(ic, m, ni,
2989 ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
2990 if (ni != ic->ic_bss) {
2991 u_int16_t keyix;
2992 /*
2993 * If the station has a key cache slot assigned
2994 * update the key->node mapping table.
2995 */
2996 keyix = ni->ni_ucastkey.wk_keyix;
2997 if (keyix != IEEE80211_KEYIX_NONE &&
2998 sc->sc_keyixmap[keyix] == NULL)
2999 sc->sc_keyixmap[keyix] =
3000 ieee80211_ref_node(ni);
3001 }
3002 }
3003 ieee80211_free_node(ni);
3004 if (sc->sc_diversity) {
3005 /*
3006 * When using fast diversity, change the default rx
3007 * antenna if diversity chooses the other antenna 3
3008 * times in a row.
3009 */
3010 if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
3011 if (++sc->sc_rxotherant >= 3)
3012 ath_setdefantenna(sc,
3013 ds->ds_rxstat.rs_antenna);
3014 } else
3015 sc->sc_rxotherant = 0;
3016 }
3017 if (sc->sc_softled) {
3018 /*
3019 * Blink for any data frame. Otherwise do a
3020 * heartbeat-style blink when idle. The latter
3021 * is mainly for station mode where we depend on
3022 * periodic beacon frames to trigger the poll event.
3023 */
3024 if (type == IEEE80211_FC0_TYPE_DATA) {
3025 sc->sc_rxrate = ds->ds_rxstat.rs_rate;
3026 ath_led_event(sc, ATH_LED_RX);
3027 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
3028 ath_led_event(sc, ATH_LED_POLL);
3029 }
3030 rx_next:
3031 STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
3032 } while (ath_rxbuf_init(sc, bf) == 0);
3033
3034 /* rx signal state monitoring */
3035 ath_hal_rxmonitor(ah, &ATH_NODE(ic->ic_bss)->an_halstats);
3036
3037 #ifdef __NetBSD__
3038 /* XXX Why isn't this necessary in FreeBSD? */
3039 if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
3040 ath_start(ifp);
3041 #endif /* __NetBSD__ */
3042
3043 NET_UNLOCK_GIANT(); /* XXX */
3044 #undef PA2DESC
3045 }
3046
3047 /*
3048 * Setup a h/w transmit queue.
3049 */
3050 static struct ath_txq *
3051 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3052 {
3053 #define N(a) (sizeof(a)/sizeof(a[0]))
3054 struct ath_hal *ah = sc->sc_ah;
3055 HAL_TXQ_INFO qi;
3056 int qnum;
3057
3058 memset(&qi, 0, sizeof(qi));
3059 qi.tqi_subtype = subtype;
3060 qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3061 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3062 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3063 /*
3064 * Enable interrupts only for EOL and DESC conditions.
3065 * We mark tx descriptors to receive a DESC interrupt
3066 * when a tx queue gets deep; otherwise waiting for the
3067 * EOL to reap descriptors. Note that this is done to
3068 * reduce interrupt load and this only defers reaping
3069 * descriptors, never transmitting frames. Aside from
3070 * reducing interrupts this also permits more concurrency.
3071 * The only potential downside is if the tx queue backs
3072 * up in which case the top half of the kernel may backup
3073 * due to a lack of tx descriptors.
3074 */
3075 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE | TXQ_FLAG_TXDESCINT_ENABLE;
3076 qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3077 if (qnum == -1) {
3078 /*
3079 * NB: don't print a message, this happens
3080 * normally on parts with too few tx queues
3081 */
3082 return NULL;
3083 }
3084 if (qnum >= N(sc->sc_txq)) {
3085 device_printf(sc->sc_dev,
3086 "hal qnum %u out of range, max %zu!\n",
3087 qnum, N(sc->sc_txq));
3088 ath_hal_releasetxqueue(ah, qnum);
3089 return NULL;
3090 }
3091 if (!ATH_TXQ_SETUP(sc, qnum)) {
3092 struct ath_txq *txq = &sc->sc_txq[qnum];
3093
3094 txq->axq_qnum = qnum;
3095 txq->axq_depth = 0;
3096 txq->axq_intrcnt = 0;
3097 txq->axq_link = NULL;
3098 STAILQ_INIT(&txq->axq_q);
3099 ATH_TXQ_LOCK_INIT(sc, txq);
3100 sc->sc_txqsetup |= 1<<qnum;
3101 }
3102 return &sc->sc_txq[qnum];
3103 #undef N
3104 }
3105
3106 /*
3107 * Setup a hardware data transmit queue for the specified
3108 * access control. The hal may not support all requested
3109 * queues in which case it will return a reference to a
3110 * previously setup queue. We record the mapping from ac's
3111 * to h/w queues for use by ath_tx_start and also track
3112 * the set of h/w queues being used to optimize work in the
3113 * transmit interrupt handler and related routines.
3114 */
3115 static int
3116 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3117 {
3118 #define N(a) (sizeof(a)/sizeof(a[0]))
3119 struct ath_txq *txq;
3120
3121 if (ac >= N(sc->sc_ac2q)) {
3122 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3123 ac, N(sc->sc_ac2q));
3124 return 0;
3125 }
3126 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3127 if (txq != NULL) {
3128 sc->sc_ac2q[ac] = txq;
3129 return 1;
3130 } else
3131 return 0;
3132 #undef N
3133 }
3134
3135 /*
3136 * Update WME parameters for a transmit queue.
3137 */
3138 static int
3139 ath_txq_update(struct ath_softc *sc, int ac)
3140 {
3141 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1)
3142 #define ATH_TXOP_TO_US(v) (v<<5)
3143 struct ieee80211com *ic = &sc->sc_ic;
3144 struct ath_txq *txq = sc->sc_ac2q[ac];
3145 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3146 struct ath_hal *ah = sc->sc_ah;
3147 HAL_TXQ_INFO qi;
3148
3149 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3150 qi.tqi_aifs = wmep->wmep_aifsn;
3151 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3152 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3153 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3154
3155 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3156 device_printf(sc->sc_dev, "unable to update hardware queue "
3157 "parameters for %s traffic!\n",
3158 ieee80211_wme_acnames[ac]);
3159 return 0;
3160 } else {
3161 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3162 return 1;
3163 }
3164 #undef ATH_TXOP_TO_US
3165 #undef ATH_EXPONENT_TO_VALUE
3166 }
3167
3168 /*
3169 * Callback from the 802.11 layer to update WME parameters.
3170 */
3171 static int
3172 ath_wme_update(struct ieee80211com *ic)
3173 {
3174 struct ath_softc *sc = ic->ic_ifp->if_softc;
3175
3176 return !ath_txq_update(sc, WME_AC_BE) ||
3177 !ath_txq_update(sc, WME_AC_BK) ||
3178 !ath_txq_update(sc, WME_AC_VI) ||
3179 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3180 }
3181
3182 /*
3183 * Reclaim resources for a setup queue.
3184 */
3185 static void
3186 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3187 {
3188
3189 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3190 ATH_TXQ_LOCK_DESTROY(txq);
3191 sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3192 }
3193
3194 /*
3195 * Reclaim all tx queue resources.
3196 */
3197 static void
3198 ath_tx_cleanup(struct ath_softc *sc)
3199 {
3200 int i;
3201
3202 ATH_TXBUF_LOCK_DESTROY(sc);
3203 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3204 if (ATH_TXQ_SETUP(sc, i))
3205 ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3206 }
3207
3208 /*
3209 * Defragment an mbuf chain, returning at most maxfrags separate
3210 * mbufs+clusters. If this is not possible NULL is returned and
3211 * the original mbuf chain is left in it's present (potentially
3212 * modified) state. We use two techniques: collapsing consecutive
3213 * mbufs and replacing consecutive mbufs by a cluster.
3214 */
3215 static struct mbuf *
3216 ath_defrag(struct mbuf *m0, int how, int maxfrags)
3217 {
3218 struct mbuf *m, *n, *n2, **prev;
3219 u_int curfrags;
3220
3221 /*
3222 * Calculate the current number of frags.
3223 */
3224 curfrags = 0;
3225 for (m = m0; m != NULL; m = m->m_next)
3226 curfrags++;
3227 /*
3228 * First, try to collapse mbufs. Note that we always collapse
3229 * towards the front so we don't need to deal with moving the
3230 * pkthdr. This may be suboptimal if the first mbuf has much
3231 * less data than the following.
3232 */
3233 m = m0;
3234 again:
3235 for (;;) {
3236 n = m->m_next;
3237 if (n == NULL)
3238 break;
3239 if ((m->m_flags & M_RDONLY) == 0 &&
3240 n->m_len < M_TRAILINGSPACE(m)) {
3241 bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
3242 n->m_len);
3243 m->m_len += n->m_len;
3244 m->m_next = n->m_next;
3245 m_free(n);
3246 if (--curfrags <= maxfrags)
3247 return m0;
3248 } else
3249 m = n;
3250 }
3251 KASSERT(maxfrags > 1,
3252 ("maxfrags %u, but normal collapse failed", maxfrags));
3253 /*
3254 * Collapse consecutive mbufs to a cluster.
3255 */
3256 prev = &m0->m_next; /* NB: not the first mbuf */
3257 while ((n = *prev) != NULL) {
3258 if ((n2 = n->m_next) != NULL &&
3259 n->m_len + n2->m_len < MCLBYTES) {
3260 m = m_getcl(how, MT_DATA, 0);
3261 if (m == NULL)
3262 goto bad;
3263 bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
3264 bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
3265 n2->m_len);
3266 m->m_len = n->m_len + n2->m_len;
3267 m->m_next = n2->m_next;
3268 *prev = m;
3269 m_free(n);
3270 m_free(n2);
3271 if (--curfrags <= maxfrags) /* +1 cl -2 mbufs */
3272 return m0;
3273 /*
3274 * Still not there, try the normal collapse
3275 * again before we allocate another cluster.
3276 */
3277 goto again;
3278 }
3279 prev = &n->m_next;
3280 }
3281 /*
3282 * No place where we can collapse to a cluster; punt.
3283 * This can occur if, for example, you request 2 frags
3284 * but the packet requires that both be clusters (we
3285 * never reallocate the first mbuf to avoid moving the
3286 * packet header).
3287 */
3288 bad:
3289 return NULL;
3290 }
3291
3292 static int
3293 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
3294 struct mbuf *m0)
3295 {
3296 #define CTS_DURATION \
3297 ath_hal_computetxtime(ah, rt, IEEE80211_ACK_LEN, cix, AH_TRUE)
3298 #define updateCTSForBursting(_ah, _ds, _txq) \
3299 ath_hal_updateCTSForBursting(_ah, _ds, \
3300 _txq->axq_linkbuf != NULL ? _txq->axq_linkbuf->bf_desc : NULL, \
3301 _txq->axq_lastdsWithCTS, _txq->axq_gatingds, \
3302 txopLimit, CTS_DURATION)
3303 struct ieee80211com *ic = &sc->sc_ic;
3304 struct ath_hal *ah = sc->sc_ah;
3305 struct ifnet *ifp = &sc->sc_if;
3306 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
3307 int i, error, iswep, ismcast, keyix, hdrlen, pktlen, try0;
3308 u_int8_t rix, txrate, ctsrate;
3309 u_int8_t cix = 0xff; /* NB: silence compiler */
3310 struct ath_desc *ds, *ds0;
3311 struct ath_txq *txq;
3312 struct ieee80211_frame *wh;
3313 u_int subtype, flags, ctsduration;
3314 HAL_PKT_TYPE atype;
3315 const HAL_RATE_TABLE *rt;
3316 HAL_BOOL shortPreamble;
3317 struct ath_node *an;
3318 struct mbuf *m;
3319 u_int pri;
3320
3321 wh = mtod(m0, struct ieee80211_frame *);
3322 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
3323 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3324 hdrlen = ieee80211_anyhdrsize(wh);
3325 /*
3326 * Packet length must not include any
3327 * pad bytes; deduct them here.
3328 */
3329 pktlen = m0->m_pkthdr.len - (hdrlen & 3);
3330
3331 if (iswep) {
3332 const struct ieee80211_cipher *cip;
3333 struct ieee80211_key *k;
3334
3335 /*
3336 * Construct the 802.11 header+trailer for an encrypted
3337 * frame. The only reason this can fail is because of an
3338 * unknown or unsupported cipher/key type.
3339 */
3340 k = ieee80211_crypto_encap(ic, ni, m0);
3341 if (k == NULL) {
3342 /*
3343 * This can happen when the key is yanked after the
3344 * frame was queued. Just discard the frame; the
3345 * 802.11 layer counts failures and provides
3346 * debugging/diagnostics.
3347 */
3348 m_freem(m0);
3349 return EIO;
3350 }
3351 /*
3352 * Adjust the packet + header lengths for the crypto
3353 * additions and calculate the h/w key index. When
3354 * a s/w mic is done the frame will have had any mic
3355 * added to it prior to entry so skb->len above will
3356 * account for it. Otherwise we need to add it to the
3357 * packet length.
3358 */
3359 cip = k->wk_cipher;
3360 hdrlen += cip->ic_header;
3361 pktlen += cip->ic_header + cip->ic_trailer;
3362 if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0)
3363 pktlen += cip->ic_miclen;
3364 keyix = k->wk_keyix;
3365
3366 /* packet header may have moved, reset our local pointer */
3367 wh = mtod(m0, struct ieee80211_frame *);
3368 } else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
3369 /*
3370 * Use station key cache slot, if assigned.
3371 */
3372 keyix = ni->ni_ucastkey.wk_keyix;
3373 if (keyix == IEEE80211_KEYIX_NONE)
3374 keyix = HAL_TXKEYIX_INVALID;
3375 } else
3376 keyix = HAL_TXKEYIX_INVALID;
3377
3378 pktlen += IEEE80211_CRC_LEN;
3379
3380 /*
3381 * Load the DMA map so any coalescing is done. This
3382 * also calculates the number of descriptors we need.
3383 */
3384 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3385 BUS_DMA_NOWAIT);
3386 if (error == EFBIG) {
3387 /* XXX packet requires too many descriptors */
3388 bf->bf_nseg = ATH_TXDESC+1;
3389 } else if (error != 0) {
3390 sc->sc_stats.ast_tx_busdma++;
3391 m_freem(m0);
3392 return error;
3393 }
3394 /*
3395 * Discard null packets and check for packets that
3396 * require too many TX descriptors. We try to convert
3397 * the latter to a cluster.
3398 */
3399 if (error == EFBIG) { /* too many desc's, linearize */
3400 sc->sc_stats.ast_tx_linear++;
3401 m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
3402 if (m == NULL) {
3403 m_freem(m0);
3404 sc->sc_stats.ast_tx_nombuf++;
3405 return ENOMEM;
3406 }
3407 m0 = m;
3408 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3409 BUS_DMA_NOWAIT);
3410 if (error != 0) {
3411 sc->sc_stats.ast_tx_busdma++;
3412 m_freem(m0);
3413 return error;
3414 }
3415 KASSERT(bf->bf_nseg <= ATH_TXDESC,
3416 ("too many segments after defrag; nseg %u", bf->bf_nseg));
3417 } else if (bf->bf_nseg == 0) { /* null packet, discard */
3418 sc->sc_stats.ast_tx_nodata++;
3419 m_freem(m0);
3420 return EIO;
3421 }
3422 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
3423 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
3424 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
3425 bf->bf_m = m0;
3426 bf->bf_node = ni; /* NB: held reference */
3427
3428 /* setup descriptors */
3429 ds = bf->bf_desc;
3430 rt = sc->sc_currates;
3431 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3432
3433 /*
3434 * NB: the 802.11 layer marks whether or not we should
3435 * use short preamble based on the current mode and
3436 * negotiated parameters.
3437 */
3438 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3439 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) {
3440 shortPreamble = AH_TRUE;
3441 sc->sc_stats.ast_tx_shortpre++;
3442 } else {
3443 shortPreamble = AH_FALSE;
3444 }
3445
3446 an = ATH_NODE(ni);
3447 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */
3448 /*
3449 * Calculate Atheros packet type from IEEE80211 packet header,
3450 * setup for rate calculations, and select h/w transmit queue.
3451 */
3452 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3453 case IEEE80211_FC0_TYPE_MGT:
3454 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3455 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
3456 atype = HAL_PKT_TYPE_BEACON;
3457 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3458 atype = HAL_PKT_TYPE_PROBE_RESP;
3459 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
3460 atype = HAL_PKT_TYPE_ATIM;
3461 else
3462 atype = HAL_PKT_TYPE_NORMAL; /* XXX */
3463 rix = 0; /* XXX lowest rate */
3464 try0 = ATH_TXMAXTRY;
3465 if (shortPreamble)
3466 txrate = an->an_tx_mgtratesp;
3467 else
3468 txrate = an->an_tx_mgtrate;
3469 /* NB: force all management frames to highest queue */
3470 if (ni->ni_flags & IEEE80211_NODE_QOS) {
3471 /* NB: force all management frames to highest queue */
3472 pri = WME_AC_VO;
3473 } else
3474 pri = WME_AC_BE;
3475 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
3476 break;
3477 case IEEE80211_FC0_TYPE_CTL:
3478 atype = HAL_PKT_TYPE_PSPOLL; /* stop setting of duration */
3479 rix = 0; /* XXX lowest rate */
3480 try0 = ATH_TXMAXTRY;
3481 if (shortPreamble)
3482 txrate = an->an_tx_mgtratesp;
3483 else
3484 txrate = an->an_tx_mgtrate;
3485 /* NB: force all ctl frames to highest queue */
3486 if (ni->ni_flags & IEEE80211_NODE_QOS) {
3487 /* NB: force all ctl frames to highest queue */
3488 pri = WME_AC_VO;
3489 } else
3490 pri = WME_AC_BE;
3491 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
3492 break;
3493 case IEEE80211_FC0_TYPE_DATA:
3494 atype = HAL_PKT_TYPE_NORMAL; /* default */
3495 /*
3496 * Data frames; consult the rate control module for
3497 * unicast frames. Send multicast frames at the
3498 * lowest rate.
3499 */
3500 if (!ismcast) {
3501 ath_rate_findrate(sc, an, shortPreamble, pktlen,
3502 &rix, &try0, &txrate);
3503 } else {
3504 rix = 0;
3505 try0 = ATH_TXMAXTRY;
3506 txrate = an->an_tx_mgtrate;
3507 }
3508 sc->sc_txrate = txrate; /* for LED blinking */
3509 /*
3510 * Default all non-QoS traffic to the background queue.
3511 */
3512 if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
3513 pri = M_WME_GETAC(m0);
3514 if (cap->cap_wmeParams[pri].wmep_noackPolicy) {
3515 flags |= HAL_TXDESC_NOACK;
3516 sc->sc_stats.ast_tx_noack++;
3517 }
3518 } else
3519 pri = WME_AC_BE;
3520 break;
3521 default:
3522 if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3523 wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3524 /* XXX statistic */
3525 m_freem(m0);
3526 return EIO;
3527 }
3528 txq = sc->sc_ac2q[pri];
3529
3530 /*
3531 * When servicing one or more stations in power-save mode
3532 * multicast frames must be buffered until after the beacon.
3533 * We use the CAB queue for that.
3534 */
3535 if (ismcast && ic->ic_ps_sta) {
3536 txq = sc->sc_cabq;
3537 /* XXX? more bit in 802.11 frame header */
3538 }
3539
3540 /*
3541 * Calculate miscellaneous flags.
3542 */
3543 if (ismcast) {
3544 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */
3545 sc->sc_stats.ast_tx_noack++;
3546 } else if (pktlen > ic->ic_rtsthreshold) {
3547 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */
3548 cix = rt->info[rix].controlRate;
3549 sc->sc_stats.ast_tx_rts++;
3550 }
3551
3552 /*
3553 * If 802.11g protection is enabled, determine whether
3554 * to use RTS/CTS or just CTS. Note that this is only
3555 * done for OFDM unicast frames.
3556 */
3557 if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3558 rt->info[rix].phy == IEEE80211_T_OFDM &&
3559 (flags & HAL_TXDESC_NOACK) == 0) {
3560 /* XXX fragments must use CCK rates w/ protection */
3561 if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3562 flags |= HAL_TXDESC_RTSENA;
3563 else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3564 flags |= HAL_TXDESC_CTSENA;
3565 cix = rt->info[sc->sc_protrix].controlRate;
3566 sc->sc_stats.ast_tx_protect++;
3567 }
3568
3569 /*
3570 * Calculate duration. This logically belongs in the 802.11
3571 * layer but it lacks sufficient information to calculate it.
3572 */
3573 if ((flags & HAL_TXDESC_NOACK) == 0 &&
3574 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
3575 u_int16_t dur;
3576 /*
3577 * XXX not right with fragmentation.
3578 */
3579 if (shortPreamble)
3580 dur = rt->info[rix].spAckDuration;
3581 else
3582 dur = rt->info[rix].lpAckDuration;
3583 *(u_int16_t *)wh->i_dur = htole16(dur);
3584 }
3585
3586 /*
3587 * Calculate RTS/CTS rate and duration if needed.
3588 */
3589 ctsduration = 0;
3590 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
3591 /*
3592 * CTS transmit rate is derived from the transmit rate
3593 * by looking in the h/w rate table. We must also factor
3594 * in whether or not a short preamble is to be used.
3595 */
3596 /* NB: cix is set above where RTS/CTS is enabled */
3597 KASSERT(cix != 0xff, ("cix not setup"));
3598 ctsrate = rt->info[cix].rateCode;
3599 /*
3600 * Compute the transmit duration based on the frame
3601 * size and the size of an ACK frame. We call into the
3602 * HAL to do the computation since it depends on the
3603 * characteristics of the actual PHY being used.
3604 *
3605 * NB: CTS is assumed the same size as an ACK so we can
3606 * use the precalculated ACK durations.
3607 */
3608 if (shortPreamble) {
3609 ctsrate |= rt->info[cix].shortPreamble;
3610 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
3611 ctsduration += rt->info[cix].spAckDuration;
3612 ctsduration += ath_hal_computetxtime(ah,
3613 rt, pktlen, rix, AH_TRUE);
3614 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
3615 ctsduration += rt->info[cix].spAckDuration;
3616 } else {
3617 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
3618 ctsduration += rt->info[cix].lpAckDuration;
3619 ctsduration += ath_hal_computetxtime(ah,
3620 rt, pktlen, rix, AH_FALSE);
3621 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
3622 ctsduration += rt->info[cix].lpAckDuration;
3623 }
3624 /*
3625 * Must disable multi-rate retry when using RTS/CTS.
3626 */
3627 try0 = ATH_TXMAXTRY;
3628 } else
3629 ctsrate = 0;
3630
3631 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3632 ieee80211_dump_pkt(mtod(m0, caddr_t), m0->m_len,
3633 sc->sc_hwmap[txrate].ieeerate, -1);
3634
3635 if (ic->ic_rawbpf)
3636 bpf_mtap(ic->ic_rawbpf, m0);
3637 if (sc->sc_drvbpf) {
3638 sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
3639 if (iswep)
3640 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3641 sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
3642 sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3643 sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3644
3645 bpf_mtap2(sc->sc_drvbpf,
3646 &sc->sc_tx_th, sc->sc_tx_th_len, m0);
3647 }
3648
3649 /*
3650 * Determine if a tx interrupt should be generated for
3651 * this descriptor. We take a tx interrupt to reap
3652 * descriptors when the h/w hits an EOL condition or
3653 * when the descriptor is specifically marked to generate
3654 * an interrupt. We periodically mark descriptors in this
3655 * way to insure timely replenishing of the supply needed
3656 * for sending frames. Defering interrupts reduces system
3657 * load and potentially allows more concurrent work to be
3658 * done but if done to aggressively can cause senders to
3659 * backup.
3660 *
3661 * NB: use >= to deal with sc_txintrperiod changing
3662 * dynamically through sysctl.
3663 */
3664 if (flags & HAL_TXDESC_INTREQ) {
3665 txq->axq_intrcnt = 0;
3666 } else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
3667 flags |= HAL_TXDESC_INTREQ;
3668 txq->axq_intrcnt = 0;
3669 }
3670
3671 /*
3672 * Formulate first tx descriptor with tx controls.
3673 */
3674 /* XXX check return value? */
3675 ath_hal_setuptxdesc(ah, ds
3676 , pktlen /* packet length */
3677 , hdrlen /* header length */
3678 , atype /* Atheros packet type */
3679 , ni->ni_txpower /* txpower */
3680 , txrate, try0 /* series 0 rate/tries */
3681 , keyix /* key cache index */
3682 , sc->sc_txantenna /* antenna mode */
3683 , flags /* flags */
3684 , ctsrate /* rts/cts rate */
3685 , ctsduration /* rts/cts duration */
3686 );
3687 bf->bf_flags = flags;
3688 /*
3689 * Setup the multi-rate retry state only when we're
3690 * going to use it. This assumes ath_hal_setuptxdesc
3691 * initializes the descriptors (so we don't have to)
3692 * when the hardware supports multi-rate retry and
3693 * we don't use it.
3694 */
3695 if (try0 != ATH_TXMAXTRY)
3696 ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
3697
3698 /*
3699 * Fillin the remainder of the descriptor info.
3700 */
3701 ds0 = ds;
3702 for (i = 0; i < bf->bf_nseg; i++, ds++) {
3703 ds->ds_data = bf->bf_segs[i].ds_addr;
3704 if (i == bf->bf_nseg - 1)
3705 ds->ds_link = 0;
3706 else
3707 ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
3708 ath_hal_filltxdesc(ah, ds
3709 , bf->bf_segs[i].ds_len /* segment length */
3710 , i == 0 /* first segment */
3711 , i == bf->bf_nseg - 1 /* last segment */
3712 , ds0 /* first descriptor */
3713 );
3714 DPRINTF(sc, ATH_DEBUG_XMIT,
3715 "%s: %d: %08x %08x %08x %08x %08x %08x\n",
3716 __func__, i, ds->ds_link, ds->ds_data,
3717 ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
3718 }
3719 /*
3720 * Insert the frame on the outbound list and
3721 * pass it on to the hardware.
3722 */
3723 ATH_TXQ_LOCK(txq);
3724 if (flags & (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) {
3725 u_int32_t txopLimit = IEEE80211_TXOP_TO_US(
3726 cap->cap_wmeParams[pri].wmep_txopLimit);
3727 /*
3728 * When bursting, potentially extend the CTS duration
3729 * of a previously queued frame to cover this frame
3730 * and not exceed the txopLimit. If that can be done
3731 * then disable RTS/CTS on this frame since it's now
3732 * covered (burst extension). Otherwise we must terminate
3733 * the burst before this frame goes out so as not to
3734 * violate the WME parameters. All this is complicated
3735 * as we need to update the state of packets on the
3736 * (live) hardware queue. The logic is buried in the hal
3737 * because it's highly chip-specific.
3738 */
3739 if (txopLimit != 0) {
3740 sc->sc_stats.ast_tx_ctsburst++;
3741 if (updateCTSForBursting(ah, ds0, txq) == 0) {
3742 /*
3743 * This frame was not covered by RTS/CTS from
3744 * the previous frame in the burst; update the
3745 * descriptor pointers so this frame is now
3746 * treated as the last frame for extending a
3747 * burst.
3748 */
3749 txq->axq_lastdsWithCTS = ds0;
3750 /* set gating Desc to final desc */
3751 txq->axq_gatingds =
3752 (struct ath_desc *)txq->axq_link;
3753 } else
3754 sc->sc_stats.ast_tx_ctsext++;
3755 }
3756 }
3757 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
3758 if (txq->axq_link == NULL) {
3759 ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
3760 DPRINTF(sc, ATH_DEBUG_XMIT,
3761 "%s: TXDP[%u] = %p (%p) depth %d\n", __func__,
3762 txq->axq_qnum, (caddr_t)bf->bf_daddr, bf->bf_desc,
3763 txq->axq_depth);
3764 } else {
3765 *txq->axq_link = bf->bf_daddr;
3766 DPRINTF(sc, ATH_DEBUG_XMIT,
3767 "%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
3768 txq->axq_qnum, txq->axq_link,
3769 (caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
3770 }
3771 txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
3772 /*
3773 * The CAB queue is started from the SWBA handler since
3774 * frames only go out on DTIM and to avoid possible races.
3775 */
3776 if (txq != sc->sc_cabq)
3777 ath_hal_txstart(ah, txq->axq_qnum);
3778 ATH_TXQ_UNLOCK(txq);
3779
3780 return 0;
3781 #undef updateCTSForBursting
3782 #undef CTS_DURATION
3783 }
3784
3785 /*
3786 * Process completed xmit descriptors from the specified queue.
3787 */
3788 static void
3789 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
3790 {
3791 struct ath_hal *ah = sc->sc_ah;
3792 struct ieee80211com *ic = &sc->sc_ic;
3793 struct ath_buf *bf;
3794 struct ath_desc *ds, *ds0;
3795 struct ieee80211_node *ni;
3796 struct ath_node *an;
3797 int sr, lr, pri;
3798 HAL_STATUS status;
3799
3800 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
3801 __func__, txq->axq_qnum,
3802 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3803 txq->axq_link);
3804 for (;;) {
3805 ATH_TXQ_LOCK(txq);
3806 txq->axq_intrcnt = 0; /* reset periodic desc intr count */
3807 bf = STAILQ_FIRST(&txq->axq_q);
3808 if (bf == NULL) {
3809 txq->axq_link = NULL;
3810 ATH_TXQ_UNLOCK(txq);
3811 break;
3812 }
3813 ds0 = &bf->bf_desc[0];
3814 ds = &bf->bf_desc[bf->bf_nseg - 1];
3815 status = ath_hal_txprocdesc(ah, ds);
3816 #ifdef AR_DEBUG
3817 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
3818 ath_printtxbuf(bf, status == HAL_OK);
3819 #endif
3820 if (status == HAL_EINPROGRESS) {
3821 ATH_TXQ_UNLOCK(txq);
3822 break;
3823 }
3824 if (ds0 == txq->axq_lastdsWithCTS)
3825 txq->axq_lastdsWithCTS = NULL;
3826 if (ds == txq->axq_gatingds)
3827 txq->axq_gatingds = NULL;
3828 ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3829 ATH_TXQ_UNLOCK(txq);
3830
3831 ni = bf->bf_node;
3832 if (ni != NULL) {
3833 an = ATH_NODE(ni);
3834 if (ds->ds_txstat.ts_status == 0) {
3835 u_int8_t txant = ds->ds_txstat.ts_antenna;
3836 sc->sc_stats.ast_ant_tx[txant]++;
3837 sc->sc_ant_tx[txant]++;
3838 if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
3839 sc->sc_stats.ast_tx_altrate++;
3840 sc->sc_stats.ast_tx_rssi =
3841 ds->ds_txstat.ts_rssi;
3842 ATH_RSSI_LPF(an->an_halstats.ns_avgtxrssi,
3843 ds->ds_txstat.ts_rssi);
3844 pri = M_WME_GETAC(bf->bf_m);
3845 if (pri >= WME_AC_VO)
3846 ic->ic_wme.wme_hipri_traffic++;
3847 ni->ni_inact = ni->ni_inact_reload;
3848 } else {
3849 if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
3850 sc->sc_stats.ast_tx_xretries++;
3851 if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
3852 sc->sc_stats.ast_tx_fifoerr++;
3853 if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
3854 sc->sc_stats.ast_tx_filtered++;
3855 }
3856 sr = ds->ds_txstat.ts_shortretry;
3857 lr = ds->ds_txstat.ts_longretry;
3858 sc->sc_stats.ast_tx_shortretry += sr;
3859 sc->sc_stats.ast_tx_longretry += lr;
3860 /*
3861 * Hand the descriptor to the rate control algorithm.
3862 */
3863 if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
3864 (bf->bf_flags & HAL_TXDESC_NOACK) == 0)
3865 ath_rate_tx_complete(sc, an, ds, ds0);
3866 /*
3867 * Reclaim reference to node.
3868 *
3869 * NB: the node may be reclaimed here if, for example
3870 * this is a DEAUTH message that was sent and the
3871 * node was timed out due to inactivity.
3872 */
3873 ieee80211_free_node(ni);
3874 }
3875 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
3876 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3877 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3878 m_freem(bf->bf_m);
3879 bf->bf_m = NULL;
3880 bf->bf_node = NULL;
3881
3882 ATH_TXBUF_LOCK(sc);
3883 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
3884 ATH_TXBUF_UNLOCK(sc);
3885 }
3886 }
3887
3888 /*
3889 * Deferred processing of transmit interrupt; special-cased
3890 * for a single hardware transmit queue (e.g. 5210 and 5211).
3891 */
3892 static void
3893 ath_tx_proc_q0(void *arg, int npending)
3894 {
3895 struct ath_softc *sc = arg;
3896 struct ifnet *ifp = &sc->sc_if;
3897
3898 ath_tx_processq(sc, &sc->sc_txq[0]);
3899 ath_tx_processq(sc, sc->sc_cabq);
3900 ifp->if_flags &= ~IFF_OACTIVE;
3901 sc->sc_tx_timer = 0;
3902
3903 if (sc->sc_softled)
3904 ath_led_event(sc, ATH_LED_TX);
3905
3906 ath_start(ifp);
3907 }
3908
3909 /*
3910 * Deferred processing of transmit interrupt; special-cased
3911 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
3912 */
3913 static void
3914 ath_tx_proc_q0123(void *arg, int npending)
3915 {
3916 struct ath_softc *sc = arg;
3917 struct ifnet *ifp = &sc->sc_if;
3918
3919 /*
3920 * Process each active queue.
3921 */
3922 ath_tx_processq(sc, &sc->sc_txq[0]);
3923 ath_tx_processq(sc, &sc->sc_txq[1]);
3924 ath_tx_processq(sc, &sc->sc_txq[2]);
3925 ath_tx_processq(sc, &sc->sc_txq[3]);
3926 ath_tx_processq(sc, sc->sc_cabq);
3927
3928 ifp->if_flags &= ~IFF_OACTIVE;
3929 sc->sc_tx_timer = 0;
3930
3931 if (sc->sc_softled)
3932 ath_led_event(sc, ATH_LED_TX);
3933
3934 ath_start(ifp);
3935 }
3936
3937 /*
3938 * Deferred processing of transmit interrupt.
3939 */
3940 static void
3941 ath_tx_proc(void *arg, int npending)
3942 {
3943 struct ath_softc *sc = arg;
3944 struct ifnet *ifp = &sc->sc_if;
3945 int i;
3946
3947 /*
3948 * Process each active queue.
3949 */
3950 /* XXX faster to read ISR_S0_S and ISR_S1_S to determine q's? */
3951 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3952 if (ATH_TXQ_SETUP(sc, i))
3953 ath_tx_processq(sc, &sc->sc_txq[i]);
3954
3955 ifp->if_flags &= ~IFF_OACTIVE;
3956 sc->sc_tx_timer = 0;
3957
3958 if (sc->sc_softled)
3959 ath_led_event(sc, ATH_LED_TX);
3960
3961 ath_start(ifp);
3962 }
3963
3964 static void
3965 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
3966 {
3967 struct ath_hal *ah = sc->sc_ah;
3968 struct ieee80211_node *ni;
3969 struct ath_buf *bf;
3970
3971 /*
3972 * NB: this assumes output has been stopped and
3973 * we do not need to block ath_tx_tasklet
3974 */
3975 for (;;) {
3976 ATH_TXQ_LOCK(txq);
3977 bf = STAILQ_FIRST(&txq->axq_q);
3978 if (bf == NULL) {
3979 txq->axq_link = NULL;
3980 ATH_TXQ_UNLOCK(txq);
3981 break;
3982 }
3983 ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3984 ATH_TXQ_UNLOCK(txq);
3985 #ifdef AR_DEBUG
3986 if (sc->sc_debug & ATH_DEBUG_RESET)
3987 ath_printtxbuf(bf,
3988 ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
3989 #endif /* AR_DEBUG */
3990 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3991 m_freem(bf->bf_m);
3992 bf->bf_m = NULL;
3993 ni = bf->bf_node;
3994 bf->bf_node = NULL;
3995 if (ni != NULL) {
3996 /*
3997 * Reclaim node reference.
3998 */
3999 ieee80211_free_node(ni);
4000 }
4001 ATH_TXBUF_LOCK(sc);
4002 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4003 ATH_TXBUF_UNLOCK(sc);
4004 }
4005 }
4006
4007 static void
4008 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4009 {
4010 struct ath_hal *ah = sc->sc_ah;
4011
4012 (void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4013 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4014 __func__, txq->axq_qnum,
4015 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4016 txq->axq_link);
4017 }
4018
4019 /*
4020 * Drain the transmit queues and reclaim resources.
4021 */
4022 static void
4023 ath_draintxq(struct ath_softc *sc)
4024 {
4025 struct ath_hal *ah = sc->sc_ah;
4026 struct ifnet *ifp = &sc->sc_if;
4027 int i;
4028
4029 /* XXX return value */
4030 if (!sc->sc_invalid) {
4031 /* don't touch the hardware if marked invalid */
4032 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4033 DPRINTF(sc, ATH_DEBUG_RESET,
4034 "%s: beacon queue %p\n", __func__,
4035 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
4036 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4037 if (ATH_TXQ_SETUP(sc, i))
4038 ath_tx_stopdma(sc, &sc->sc_txq[i]);
4039 }
4040 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4041 if (ATH_TXQ_SETUP(sc, i))
4042 ath_tx_draintxq(sc, &sc->sc_txq[i]);
4043 ifp->if_flags &= ~IFF_OACTIVE;
4044 sc->sc_tx_timer = 0;
4045 }
4046
4047 /*
4048 * Disable the receive h/w in preparation for a reset.
4049 */
4050 static void
4051 ath_stoprecv(struct ath_softc *sc)
4052 {
4053 #define PA2DESC(_sc, _pa) \
4054 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
4055 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
4056 struct ath_hal *ah = sc->sc_ah;
4057
4058 ath_hal_stoppcurecv(ah); /* disable PCU */
4059 ath_hal_setrxfilter(ah, 0); /* clear recv filter */
4060 ath_hal_stopdmarecv(ah); /* disable DMA engine */
4061 DELAY(3000); /* 3ms is long enough for 1 frame */
4062 #ifdef AR_DEBUG
4063 if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
4064 struct ath_buf *bf;
4065
4066 printf("%s: rx queue %p, link %p\n", __func__,
4067 (caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
4068 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4069 struct ath_desc *ds = bf->bf_desc;
4070 HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
4071 bf->bf_daddr, PA2DESC(sc, ds->ds_link));
4072 if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
4073 ath_printrxbuf(bf, status == HAL_OK);
4074 }
4075 }
4076 #endif
4077 sc->sc_rxlink = NULL; /* just in case */
4078 #undef PA2DESC
4079 }
4080
4081 /*
4082 * Enable the receive h/w following a reset.
4083 */
4084 static int
4085 ath_startrecv(struct ath_softc *sc)
4086 {
4087 struct ath_hal *ah = sc->sc_ah;
4088 struct ath_buf *bf;
4089
4090 sc->sc_rxlink = NULL;
4091 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4092 int error = ath_rxbuf_init(sc, bf);
4093 if (error != 0) {
4094 DPRINTF(sc, ATH_DEBUG_RECV,
4095 "%s: ath_rxbuf_init failed %d\n",
4096 __func__, error);
4097 return error;
4098 }
4099 }
4100
4101 bf = STAILQ_FIRST(&sc->sc_rxbuf);
4102 ath_hal_putrxbuf(ah, bf->bf_daddr);
4103 ath_hal_rxena(ah); /* enable recv descriptors */
4104 ath_mode_init(sc); /* set filters, etc. */
4105 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */
4106 return 0;
4107 }
4108
4109 /*
4110 * Update internal state after a channel change.
4111 */
4112 static void
4113 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4114 {
4115 struct ieee80211com *ic = &sc->sc_ic;
4116 enum ieee80211_phymode mode;
4117 u_int16_t flags;
4118
4119 /*
4120 * Change channels and update the h/w rate map
4121 * if we're switching; e.g. 11a to 11b/g.
4122 */
4123 mode = ieee80211_chan2mode(ic, chan);
4124 if (mode != sc->sc_curmode)
4125 ath_setcurmode(sc, mode);
4126 /*
4127 * Update BPF state. NB: ethereal et. al. don't handle
4128 * merged flags well so pick a unique mode for their use.
4129 */
4130 if (IEEE80211_IS_CHAN_A(chan))
4131 flags = IEEE80211_CHAN_A;
4132 /* XXX 11g schizophrenia */
4133 else if (IEEE80211_IS_CHAN_G(chan) ||
4134 IEEE80211_IS_CHAN_PUREG(chan))
4135 flags = IEEE80211_CHAN_G;
4136 else
4137 flags = IEEE80211_CHAN_B;
4138 if (IEEE80211_IS_CHAN_T(chan))
4139 flags |= IEEE80211_CHAN_TURBO;
4140 sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
4141 htole16(chan->ic_freq);
4142 sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
4143 htole16(flags);
4144 }
4145
4146 /*
4147 * Set/change channels. If the channel is really being changed,
4148 * it's done by reseting the chip. To accomplish this we must
4149 * first cleanup any pending DMA, then restart stuff after a la
4150 * ath_init.
4151 */
4152 static int
4153 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4154 {
4155 struct ath_hal *ah = sc->sc_ah;
4156 struct ieee80211com *ic = &sc->sc_ic;
4157 HAL_CHANNEL hchan;
4158
4159 /*
4160 * Convert to a HAL channel description with
4161 * the flags constrained to reflect the current
4162 * operating mode.
4163 */
4164 hchan.channel = chan->ic_freq;
4165 hchan.channelFlags = ath_chan2flags(ic, chan);
4166
4167 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz) -> %u (%u MHz)\n",
4168 __func__,
4169 ath_hal_mhz2ieee(sc->sc_curchan.channel,
4170 sc->sc_curchan.channelFlags),
4171 sc->sc_curchan.channel,
4172 ath_hal_mhz2ieee(hchan.channel, hchan.channelFlags), hchan.channel);
4173 if (hchan.channel != sc->sc_curchan.channel ||
4174 hchan.channelFlags != sc->sc_curchan.channelFlags) {
4175 HAL_STATUS status;
4176
4177 /*
4178 * To switch channels clear any pending DMA operations;
4179 * wait long enough for the RX fifo to drain, reset the
4180 * hardware at the new frequency, and then re-enable
4181 * the relevant bits of the h/w.
4182 */
4183 ath_hal_intrset(ah, 0); /* disable interrupts */
4184 ath_draintxq(sc); /* clear pending tx frames */
4185 ath_stoprecv(sc); /* turn off frame recv */
4186 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
4187 if_printf(&sc->sc_if, "ath_chan_set: unable to reset "
4188 "channel %u (%u Mhz)\n",
4189 ieee80211_chan2ieee(ic, chan), chan->ic_freq);
4190 return EIO;
4191 }
4192 sc->sc_curchan = hchan;
4193 ath_update_txpow(sc); /* update tx power state */
4194
4195 /*
4196 * Re-enable rx framework.
4197 */
4198 if (ath_startrecv(sc) != 0) {
4199 if_printf(&sc->sc_if,
4200 "ath_chan_set: unable to restart recv logic\n");
4201 return EIO;
4202 }
4203
4204 /*
4205 * Change channels and update the h/w rate map
4206 * if we're switching; e.g. 11a to 11b/g.
4207 */
4208 ic->ic_ibss_chan = chan;
4209 ath_chan_change(sc, chan);
4210
4211 /*
4212 * Re-enable interrupts.
4213 */
4214 ath_hal_intrset(ah, sc->sc_imask);
4215 }
4216 return 0;
4217 }
4218
4219 static void
4220 ath_next_scan(void *arg)
4221 {
4222 struct ath_softc *sc = arg;
4223 struct ieee80211com *ic = &sc->sc_ic;
4224 int s;
4225
4226 /* don't call ath_start w/o network interrupts blocked */
4227 s = splnet();
4228
4229 if (ic->ic_state == IEEE80211_S_SCAN)
4230 ieee80211_next_scan(ic);
4231 splx(s);
4232 }
4233
4234 /*
4235 * Periodically recalibrate the PHY to account
4236 * for temperature/environment changes.
4237 */
4238 static void
4239 ath_calibrate(void *arg)
4240 {
4241 struct ath_softc *sc = arg;
4242 struct ath_hal *ah = sc->sc_ah;
4243
4244 sc->sc_stats.ast_per_cal++;
4245
4246 ATH_LOCK(sc);
4247 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: channel %u/%x\n",
4248 __func__, sc->sc_curchan.channel, sc->sc_curchan.channelFlags);
4249
4250 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4251 /*
4252 * Rfgain is out of bounds, reset the chip
4253 * to load new gain values.
4254 */
4255 sc->sc_stats.ast_per_rfgain++;
4256 ath_reset(&sc->sc_if);
4257 }
4258 if (!ath_hal_calibrate(ah, &sc->sc_curchan)) {
4259 DPRINTF(sc, ATH_DEBUG_ANY,
4260 "%s: calibration of channel %u failed\n",
4261 __func__, sc->sc_curchan.channel);
4262 sc->sc_stats.ast_per_calfail++;
4263 }
4264 callout_reset(&sc->sc_cal_ch, ath_calinterval * hz, ath_calibrate, sc);
4265 ATH_UNLOCK(sc);
4266 }
4267
4268 static int
4269 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
4270 {
4271 struct ifnet *ifp = ic->ic_ifp;
4272 struct ath_softc *sc = ifp->if_softc;
4273 struct ath_hal *ah = sc->sc_ah;
4274 struct ieee80211_node *ni;
4275 int i, error;
4276 const u_int8_t *bssid;
4277 u_int32_t rfilt;
4278 static const HAL_LED_STATE leds[] = {
4279 HAL_LED_INIT, /* IEEE80211_S_INIT */
4280 HAL_LED_SCAN, /* IEEE80211_S_SCAN */
4281 HAL_LED_AUTH, /* IEEE80211_S_AUTH */
4282 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */
4283 HAL_LED_RUN, /* IEEE80211_S_RUN */
4284 };
4285
4286 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4287 ieee80211_state_name[ic->ic_state],
4288 ieee80211_state_name[nstate]);
4289
4290 callout_stop(&sc->sc_scan_ch);
4291 callout_stop(&sc->sc_cal_ch);
4292 ath_hal_setledstate(ah, leds[nstate]); /* set LED */
4293
4294 if (nstate == IEEE80211_S_INIT) {
4295 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4296 /*
4297 * NB: disable interrupts so we don't rx frames.
4298 */
4299 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4300 /*
4301 * Notify the rate control algorithm.
4302 */
4303 ath_rate_newstate(sc, nstate);
4304 goto done;
4305 }
4306 ni = ic->ic_bss;
4307 error = ath_chan_set(sc, ni->ni_chan);
4308 if (error != 0)
4309 goto bad;
4310 rfilt = ath_calcrxfilter(sc, nstate);
4311 if (nstate == IEEE80211_S_SCAN)
4312 bssid = ifp->if_broadcastaddr;
4313 else
4314 bssid = ni->ni_bssid;
4315 ath_hal_setrxfilter(ah, rfilt);
4316 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
4317 __func__, rfilt, ether_sprintf(bssid));
4318
4319 if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
4320 ath_hal_setassocid(ah, bssid, ni->ni_associd);
4321 else
4322 ath_hal_setassocid(ah, bssid, 0);
4323 if (ic->ic_flags & IEEE80211_F_PRIVACY) {
4324 for (i = 0; i < IEEE80211_WEP_NKID; i++)
4325 if (ath_hal_keyisvalid(ah, i))
4326 ath_hal_keysetmac(ah, i, bssid);
4327 }
4328
4329 /*
4330 * Notify the rate control algorithm so rates
4331 * are setup should ath_beacon_alloc be called.
4332 */
4333 ath_rate_newstate(sc, nstate);
4334
4335 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4336 /* nothing to do */;
4337 } else if (nstate == IEEE80211_S_RUN) {
4338 DPRINTF(sc, ATH_DEBUG_STATE,
4339 "%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
4340 "capinfo=0x%04x chan=%d\n"
4341 , __func__
4342 , ic->ic_flags
4343 , ni->ni_intval
4344 , ether_sprintf(ni->ni_bssid)
4345 , ni->ni_capinfo
4346 , ieee80211_chan2ieee(ic, ni->ni_chan));
4347
4348 switch (ic->ic_opmode) {
4349 case IEEE80211_M_HOSTAP:
4350 case IEEE80211_M_IBSS:
4351 /*
4352 * Allocate and setup the beacon frame.
4353 *
4354 * Stop any previous beacon DMA. This may be
4355 * necessary, for example, when an ibss merge
4356 * causes reconfiguration; there will be a state
4357 * transition from RUN->RUN that means we may
4358 * be called with beacon transmission active.
4359 */
4360 ath_hal_stoptxdma(ah, sc->sc_bhalq);
4361 ath_beacon_free(sc);
4362 error = ath_beacon_alloc(sc, ni);
4363 if (error != 0)
4364 goto bad;
4365 break;
4366 case IEEE80211_M_STA:
4367 /*
4368 * Allocate a key cache slot to the station.
4369 */
4370 if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
4371 sc->sc_hasclrkey &&
4372 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4373 ath_setup_stationkey(ni);
4374 break;
4375 default:
4376 break;
4377 }
4378
4379 /*
4380 * Configure the beacon and sleep timers.
4381 */
4382 ath_beacon_config(sc);
4383 } else {
4384 ath_hal_intrset(ah,
4385 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4386 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4387 }
4388 done:
4389 /*
4390 * Invoke the parent method to complete the work.
4391 */
4392 error = sc->sc_newstate(ic, nstate, arg);
4393 /*
4394 * Finally, start any timers.
4395 */
4396 if (nstate == IEEE80211_S_RUN) {
4397 /* start periodic recalibration timer */
4398 callout_reset(&sc->sc_cal_ch, ath_calinterval * hz,
4399 ath_calibrate, sc);
4400 } else if (nstate == IEEE80211_S_SCAN) {
4401 /* start ap/neighbor scan timer */
4402 callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
4403 ath_next_scan, sc);
4404 }
4405 bad:
4406 return error;
4407 }
4408
4409 /*
4410 * Allocate a key cache slot to the station so we can
4411 * setup a mapping from key index to node. The key cache
4412 * slot is needed for managing antenna state and for
4413 * compression when stations do not use crypto. We do
4414 * it uniliaterally here; if crypto is employed this slot
4415 * will be reassigned.
4416 */
4417 static void
4418 ath_setup_stationkey(struct ieee80211_node *ni)
4419 {
4420 struct ieee80211com *ic = ni->ni_ic;
4421 struct ath_softc *sc = ic->ic_ifp->if_softc;
4422 u_int16_t keyix;
4423
4424 keyix = ath_key_alloc(ic, &ni->ni_ucastkey);
4425 if (keyix == IEEE80211_KEYIX_NONE) {
4426 /*
4427 * Key cache is full; we'll fall back to doing
4428 * the more expensive lookup in software. Note
4429 * this also means no h/w compression.
4430 */
4431 /* XXX msg+statistic */
4432 } else {
4433 ni->ni_ucastkey.wk_keyix = keyix;
4434 /* NB: this will create a pass-thru key entry */
4435 ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
4436 }
4437 }
4438
4439 /*
4440 * Setup driver-specific state for a newly associated node.
4441 * Note that we're called also on a re-associate, the isnew
4442 * param tells us if this is the first time or not.
4443 */
4444 static void
4445 ath_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
4446 {
4447 struct ath_softc *sc = ic->ic_ifp->if_softc;
4448
4449 ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
4450 if (isnew &&
4451 (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
4452 KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
4453 ("new assoc with a unicast key already setup (keyix %u)",
4454 ni->ni_ucastkey.wk_keyix));
4455 ath_setup_stationkey(ni);
4456 }
4457 }
4458
4459 static int
4460 ath_getchannels(struct ath_softc *sc, u_int cc,
4461 HAL_BOOL outdoor, HAL_BOOL xchanmode)
4462 {
4463 struct ieee80211com *ic = &sc->sc_ic;
4464 struct ifnet *ifp = &sc->sc_if;
4465 struct ath_hal *ah = sc->sc_ah;
4466 HAL_CHANNEL *chans;
4467 int i, ix, nchan;
4468
4469 chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
4470 M_TEMP, M_NOWAIT);
4471 if (chans == NULL) {
4472 if_printf(ifp, "unable to allocate channel table\n");
4473 return ENOMEM;
4474 }
4475 if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
4476 cc, HAL_MODE_ALL, outdoor, xchanmode)) {
4477 u_int32_t rd;
4478
4479 ath_hal_getregdomain(ah, &rd);
4480 if_printf(ifp, "unable to collect channel list from hal; "
4481 "regdomain likely %u country code %u\n", rd, cc);
4482 free(chans, M_TEMP);
4483 return EINVAL;
4484 }
4485
4486 /*
4487 * Convert HAL channels to ieee80211 ones and insert
4488 * them in the table according to their channel number.
4489 */
4490 for (i = 0; i < nchan; i++) {
4491 HAL_CHANNEL *c = &chans[i];
4492 ix = ath_hal_mhz2ieee(c->channel, c->channelFlags);
4493 if (ix > IEEE80211_CHAN_MAX) {
4494 if_printf(ifp, "bad hal channel %u (%u/%x) ignored\n",
4495 ix, c->channel, c->channelFlags);
4496 continue;
4497 }
4498 DPRINTF(sc, ATH_DEBUG_ANY,
4499 "%s: HAL channel %d/%d freq %d flags %#04x idx %d\n",
4500 sc->sc_dev.dv_xname, i, nchan, c->channel, c->channelFlags,
4501 ix);
4502 /* NB: flags are known to be compatible */
4503 if (ic->ic_channels[ix].ic_freq == 0) {
4504 ic->ic_channels[ix].ic_freq = c->channel;
4505 ic->ic_channels[ix].ic_flags = c->channelFlags;
4506 } else {
4507 /* channels overlap; e.g. 11g and 11b */
4508 ic->ic_channels[ix].ic_flags |= c->channelFlags;
4509 }
4510 }
4511 free(chans, M_TEMP);
4512 return 0;
4513 }
4514
4515 static void
4516 ath_led_done(void *arg)
4517 {
4518 struct ath_softc *sc = arg;
4519
4520 sc->sc_blinking = 0;
4521 }
4522
4523 /*
4524 * Turn the LED off: flip the pin and then set a timer so no
4525 * update will happen for the specified duration.
4526 */
4527 static void
4528 ath_led_off(void *arg)
4529 {
4530 struct ath_softc *sc = arg;
4531
4532 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
4533 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
4534 }
4535
4536 /*
4537 * Blink the LED according to the specified on/off times.
4538 */
4539 static void
4540 ath_led_blink(struct ath_softc *sc, int on, int off)
4541 {
4542 DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
4543 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
4544 sc->sc_blinking = 1;
4545 sc->sc_ledoff = off;
4546 callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
4547 }
4548
4549 static void
4550 ath_led_event(struct ath_softc *sc, int event)
4551 {
4552
4553 sc->sc_ledevent = ticks; /* time of last event */
4554 if (sc->sc_blinking) /* don't interrupt active blink */
4555 return;
4556 switch (event) {
4557 case ATH_LED_POLL:
4558 ath_led_blink(sc, sc->sc_hwmap[0].ledon,
4559 sc->sc_hwmap[0].ledoff);
4560 break;
4561 case ATH_LED_TX:
4562 ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
4563 sc->sc_hwmap[sc->sc_txrate].ledoff);
4564 break;
4565 case ATH_LED_RX:
4566 ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
4567 sc->sc_hwmap[sc->sc_rxrate].ledoff);
4568 break;
4569 }
4570 }
4571
4572 static void
4573 ath_update_txpow(struct ath_softc *sc)
4574 {
4575 struct ieee80211com *ic = &sc->sc_ic;
4576 struct ath_hal *ah = sc->sc_ah;
4577 u_int32_t txpow;
4578
4579 if (sc->sc_curtxpow != ic->ic_txpowlimit) {
4580 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
4581 /* read back in case value is clamped */
4582 ath_hal_gettxpowlimit(ah, &txpow);
4583 ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
4584 }
4585 /*
4586 * Fetch max tx power level for status requests.
4587 */
4588 ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
4589 ic->ic_bss->ni_txpower = txpow;
4590 }
4591
4592 static int
4593 ath_rate_setup(struct ath_softc *sc, u_int mode)
4594 {
4595 struct ath_hal *ah = sc->sc_ah;
4596 struct ieee80211com *ic = &sc->sc_ic;
4597 const HAL_RATE_TABLE *rt;
4598 struct ieee80211_rateset *rs;
4599 int i, maxrates;
4600
4601 switch (mode) {
4602 case IEEE80211_MODE_11A:
4603 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11A);
4604 break;
4605 case IEEE80211_MODE_11B:
4606 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11B);
4607 break;
4608 case IEEE80211_MODE_11G:
4609 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11G);
4610 break;
4611 case IEEE80211_MODE_TURBO_A:
4612 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_TURBO);
4613 break;
4614 case IEEE80211_MODE_TURBO_G:
4615 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_108G);
4616 break;
4617 default:
4618 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
4619 __func__, mode);
4620 return 0;
4621 }
4622 rt = sc->sc_rates[mode];
4623 if (rt == NULL)
4624 return 0;
4625 if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
4626 DPRINTF(sc, ATH_DEBUG_ANY,
4627 "%s: rate table too small (%u > %u)\n",
4628 __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
4629 maxrates = IEEE80211_RATE_MAXSIZE;
4630 } else
4631 maxrates = rt->rateCount;
4632 rs = &ic->ic_sup_rates[mode];
4633 for (i = 0; i < maxrates; i++)
4634 rs->rs_rates[i] = rt->info[i].dot11Rate;
4635 rs->rs_nrates = maxrates;
4636 return 1;
4637 }
4638
4639 static void
4640 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
4641 {
4642 #define N(a) (sizeof(a)/sizeof(a[0]))
4643 /* NB: on/off times from the Atheros NDIS driver, w/ permission */
4644 static const struct {
4645 u_int rate; /* tx/rx 802.11 rate */
4646 u_int16_t timeOn; /* LED on time (ms) */
4647 u_int16_t timeOff; /* LED off time (ms) */
4648 } blinkrates[] = {
4649 { 108, 40, 10 },
4650 { 96, 44, 11 },
4651 { 72, 50, 13 },
4652 { 48, 57, 14 },
4653 { 36, 67, 16 },
4654 { 24, 80, 20 },
4655 { 22, 100, 25 },
4656 { 18, 133, 34 },
4657 { 12, 160, 40 },
4658 { 10, 200, 50 },
4659 { 6, 240, 58 },
4660 { 4, 267, 66 },
4661 { 2, 400, 100 },
4662 { 0, 500, 130 },
4663 };
4664 const HAL_RATE_TABLE *rt;
4665 int i, j;
4666
4667 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
4668 rt = sc->sc_rates[mode];
4669 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
4670 for (i = 0; i < rt->rateCount; i++)
4671 sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
4672 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
4673 for (i = 0; i < 32; i++) {
4674 u_int8_t ix = rt->rateCodeToIndex[i];
4675 if (ix == 0xff) {
4676 sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
4677 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
4678 continue;
4679 }
4680 sc->sc_hwmap[i].ieeerate =
4681 rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
4682 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
4683 if (rt->info[ix].shortPreamble ||
4684 rt->info[ix].phy == IEEE80211_T_OFDM)
4685 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
4686 /* NB: receive frames include FCS */
4687 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
4688 IEEE80211_RADIOTAP_F_FCS;
4689 /* setup blink rate table to avoid per-packet lookup */
4690 for (j = 0; j < N(blinkrates)-1; j++)
4691 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
4692 break;
4693 /* NB: this uses the last entry if the rate isn't found */
4694 /* XXX beware of overlow */
4695 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
4696 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
4697 }
4698 sc->sc_currates = rt;
4699 sc->sc_curmode = mode;
4700 /*
4701 * All protection frames are transmited at 2Mb/s for
4702 * 11g, otherwise at 1Mb/s.
4703 * XXX select protection rate index from rate table.
4704 */
4705 sc->sc_protrix = (mode == IEEE80211_MODE_11G ? 1 : 0);
4706 /* NB: caller is responsible for reseting rate control state */
4707 #undef N
4708 }
4709
4710 #ifdef AR_DEBUG
4711 static void
4712 ath_printrxbuf(struct ath_buf *bf, int done)
4713 {
4714 struct ath_desc *ds;
4715 int i;
4716
4717 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
4718 printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n",
4719 i, ds, (struct ath_desc *)bf->bf_daddr + i,
4720 ds->ds_link, ds->ds_data,
4721 ds->ds_ctl0, ds->ds_ctl1,
4722 ds->ds_hw[0], ds->ds_hw[1],
4723 !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
4724 }
4725 }
4726
4727 static void
4728 ath_printtxbuf(struct ath_buf *bf, int done)
4729 {
4730 struct ath_desc *ds;
4731 int i;
4732
4733 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
4734 printf("T%d (%p %p) %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
4735 i, ds, (struct ath_desc *)bf->bf_daddr + i,
4736 ds->ds_link, ds->ds_data,
4737 ds->ds_ctl0, ds->ds_ctl1,
4738 ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
4739 !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
4740 }
4741 }
4742 #endif /* AR_DEBUG */
4743
4744 static void
4745 ath_watchdog(struct ifnet *ifp)
4746 {
4747 struct ath_softc *sc = ifp->if_softc;
4748 struct ieee80211com *ic = &sc->sc_ic;
4749
4750 ifp->if_timer = 0;
4751 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
4752 return;
4753 if (sc->sc_tx_timer) {
4754 if (--sc->sc_tx_timer == 0) {
4755 if_printf(ifp, "device timeout\n");
4756 ath_reset(ifp);
4757 ifp->if_oerrors++;
4758 sc->sc_stats.ast_watchdog++;
4759 } else
4760 ifp->if_timer = 1;
4761 }
4762 ieee80211_watchdog(ic);
4763 }
4764
4765 /*
4766 * Diagnostic interface to the HAL. This is used by various
4767 * tools to do things like retrieve register contents for
4768 * debugging. The mechanism is intentionally opaque so that
4769 * it can change frequently w/o concern for compatiblity.
4770 */
4771 static int
4772 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
4773 {
4774 struct ath_hal *ah = sc->sc_ah;
4775 u_int id = ad->ad_id & ATH_DIAG_ID;
4776 void *indata = NULL;
4777 void *outdata = NULL;
4778 u_int32_t insize = ad->ad_in_size;
4779 u_int32_t outsize = ad->ad_out_size;
4780 int error = 0;
4781
4782 if (ad->ad_id & ATH_DIAG_IN) {
4783 /*
4784 * Copy in data.
4785 */
4786 indata = malloc(insize, M_TEMP, M_NOWAIT);
4787 if (indata == NULL) {
4788 error = ENOMEM;
4789 goto bad;
4790 }
4791 error = copyin(ad->ad_in_data, indata, insize);
4792 if (error)
4793 goto bad;
4794 }
4795 if (ad->ad_id & ATH_DIAG_DYN) {
4796 /*
4797 * Allocate a buffer for the results (otherwise the HAL
4798 * returns a pointer to a buffer where we can read the
4799 * results). Note that we depend on the HAL leaving this
4800 * pointer for us to use below in reclaiming the buffer;
4801 * may want to be more defensive.
4802 */
4803 outdata = malloc(outsize, M_TEMP, M_NOWAIT);
4804 if (outdata == NULL) {
4805 error = ENOMEM;
4806 goto bad;
4807 }
4808 }
4809 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
4810 if (outsize < ad->ad_out_size)
4811 ad->ad_out_size = outsize;
4812 if (outdata != NULL)
4813 error = copyout(outdata, ad->ad_out_data,
4814 ad->ad_out_size);
4815 } else {
4816 error = EINVAL;
4817 }
4818 bad:
4819 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
4820 free(indata, M_TEMP);
4821 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
4822 free(outdata, M_TEMP);
4823 return error;
4824 }
4825
4826 static int
4827 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
4828 {
4829 #define IS_RUNNING(ifp) \
4830 ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP))
4831 struct ath_softc *sc = ifp->if_softc;
4832 struct ieee80211com *ic = &sc->sc_ic;
4833 struct ifreq *ifr = (struct ifreq *)data;
4834 int error = 0;
4835
4836 ATH_LOCK(sc);
4837 switch (cmd) {
4838 case SIOCSIFFLAGS:
4839 if (IS_RUNNING(ifp)) {
4840 /*
4841 * To avoid rescanning another access point,
4842 * do not call ath_init() here. Instead,
4843 * only reflect promisc mode settings.
4844 */
4845 ath_mode_init(sc);
4846 } else if (ifp->if_flags & IFF_UP) {
4847 /*
4848 * Beware of being called during attach/detach
4849 * to reset promiscuous mode. In that case we
4850 * will still be marked UP but not RUNNING.
4851 * However trying to re-init the interface
4852 * is the wrong thing to do as we've already
4853 * torn down much of our state. There's
4854 * probably a better way to deal with this.
4855 */
4856 if (!sc->sc_invalid && ic->ic_bss != NULL)
4857 ath_init(sc); /* XXX lose error */
4858 } else
4859 ath_stop_locked(ifp, 1);
4860 break;
4861 case SIOCADDMULTI:
4862 case SIOCDELMULTI:
4863 error = (cmd == SIOCADDMULTI) ?
4864 ether_addmulti(ifr, &sc->sc_ec) :
4865 ether_delmulti(ifr, &sc->sc_ec);
4866 if (error == ENETRESET) {
4867 if (ifp->if_flags & IFF_RUNNING)
4868 ath_mode_init(sc);
4869 error = 0;
4870 }
4871 break;
4872 case SIOCGATHSTATS:
4873 /* NB: embed these numbers to get a consistent view */
4874 sc->sc_stats.ast_tx_packets = ifp->if_opackets;
4875 sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
4876 sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
4877 ATH_UNLOCK(sc);
4878 /*
4879 * NB: Drop the softc lock in case of a page fault;
4880 * we'll accept any potential inconsisentcy in the
4881 * statistics. The alternative is to copy the data
4882 * to a local structure.
4883 */
4884 return copyout(&sc->sc_stats,
4885 ifr->ifr_data, sizeof (sc->sc_stats));
4886 case SIOCGATHDIAG:
4887 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
4888 break;
4889 default:
4890 error = ieee80211_ioctl(ic, cmd, data);
4891 if (error == ENETRESET) {
4892 if (IS_RUNNING(ifp) &&
4893 ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
4894 ath_init(sc); /* XXX lose error */
4895 error = 0;
4896 }
4897 if (error == ERESTART)
4898 error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0;
4899 break;
4900 }
4901 ATH_UNLOCK(sc);
4902 return error;
4903 #undef IS_RUNNING
4904 }
4905
4906 static void
4907 ath_bpfattach(struct ath_softc *sc)
4908 {
4909 struct ifnet *ifp = &sc->sc_if;
4910
4911 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
4912 sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
4913 &sc->sc_drvbpf);
4914 /*
4915 * Initialize constant fields.
4916 * XXX make header lengths a multiple of 32-bits so subsequent
4917 * headers are properly aligned; this is a kludge to keep
4918 * certain applications happy.
4919 *
4920 * NB: the channel is setup each time we transition to the
4921 * RUN state to avoid filling it in for each frame.
4922 */
4923 sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
4924 sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
4925 sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
4926
4927 sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
4928 sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
4929 sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
4930 }
4931
4932 /*
4933 * Announce various information on device/driver attach.
4934 */
4935 static void
4936 ath_announce(struct ath_softc *sc)
4937 {
4938 #define HAL_MODE_DUALBAND (HAL_MODE_11A|HAL_MODE_11B)
4939 struct ifnet *ifp = &sc->sc_if;
4940 struct ath_hal *ah = sc->sc_ah;
4941 u_int modes, cc;
4942
4943 if_printf(ifp, "mac %d.%d phy %d.%d",
4944 ah->ah_macVersion, ah->ah_macRev,
4945 ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
4946 /*
4947 * Print radio revision(s). We check the wireless modes
4948 * to avoid falsely printing revs for inoperable parts.
4949 * Dual-band radio revs are returned in the 5Ghz rev number.
4950 */
4951 ath_hal_getcountrycode(ah, &cc);
4952 modes = ath_hal_getwirelessmodes(ah, cc);
4953 if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
4954 if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
4955 printf(" 5ghz radio %d.%d 2ghz radio %d.%d",
4956 ah->ah_analog5GhzRev >> 4,
4957 ah->ah_analog5GhzRev & 0xf,
4958 ah->ah_analog2GhzRev >> 4,
4959 ah->ah_analog2GhzRev & 0xf);
4960 else
4961 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
4962 ah->ah_analog5GhzRev & 0xf);
4963 } else
4964 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
4965 ah->ah_analog5GhzRev & 0xf);
4966 printf("\n");
4967 if (bootverbose) {
4968 int i;
4969 for (i = 0; i <= WME_AC_VO; i++) {
4970 struct ath_txq *txq = sc->sc_ac2q[i];
4971 if_printf(ifp, "Use hw queue %u for %s traffic\n",
4972 txq->axq_qnum, ieee80211_wme_acnames[i]);
4973 }
4974 if_printf(ifp, "Use hw queue %u for CAB traffic\n",
4975 sc->sc_cabq->axq_qnum);
4976 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
4977 }
4978 #undef HAL_MODE_DUALBAND
4979 }
4980