ath.c revision 1.60.6.1 1 /* $NetBSD: ath.c,v 1.60.6.1 2005/11/22 16:08:06 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15 * redistribution must be conditioned upon including a substantially
16 * similar Disclaimer requirement for further binary redistribution.
17 * 3. Neither the names of the above-listed copyright holders nor the names
18 * of any contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * Alternatively, this software may be distributed under the terms of the
22 * GNU General Public License ("GPL") version 2 as published by the Free
23 * Software Foundation.
24 *
25 * NO WARRANTY
26 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
28 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
29 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
30 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
31 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
34 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
36 * THE POSSIBILITY OF SUCH DAMAGES.
37 */
38
39 #include <sys/cdefs.h>
40 #ifdef __FreeBSD__
41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $");
42 #endif
43 #ifdef __NetBSD__
44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.60.6.1 2005/11/22 16:08:06 yamt Exp $");
45 #endif
46
47 /*
48 * Driver for the Atheros Wireless LAN controller.
49 *
50 * This software is derived from work of Atsushi Onoe; his contribution
51 * is greatly appreciated.
52 */
53
54 #include "opt_inet.h"
55
56 #ifdef __NetBSD__
57 #include "bpfilter.h"
58 #endif /* __NetBSD__ */
59
60 #include <sys/param.h>
61 #include <sys/reboot.h>
62 #include <sys/systm.h>
63 #include <sys/types.h>
64 #include <sys/sysctl.h>
65 #include <sys/mbuf.h>
66 #include <sys/malloc.h>
67 #include <sys/lock.h>
68 #include <sys/kernel.h>
69 #include <sys/socket.h>
70 #include <sys/sockio.h>
71 #include <sys/errno.h>
72 #include <sys/callout.h>
73 #include <machine/bus.h>
74 #include <sys/endian.h>
75
76 #include <machine/bus.h>
77
78 #include <net/if.h>
79 #include <net/if_dl.h>
80 #include <net/if_media.h>
81 #include <net/if_types.h>
82 #include <net/if_arp.h>
83 #include <net/if_ether.h>
84 #include <net/if_llc.h>
85
86 #include <net80211/ieee80211_netbsd.h>
87 #include <net80211/ieee80211_var.h>
88
89 #if NBPFILTER > 0
90 #include <net/bpf.h>
91 #endif
92
93 #ifdef INET
94 #include <netinet/in.h>
95 #endif
96
97 #include <sys/device.h>
98 #include <dev/ic/ath_netbsd.h>
99
100 #define AR_DEBUG
101 #include <dev/ic/athvar.h>
102 #include <contrib/dev/ic/athhal_desc.h>
103 #include <contrib/dev/ic/athhal_devid.h> /* XXX for softled */
104
105 /* unaligned little endian access */
106 #define LE_READ_2(p) \
107 ((u_int16_t) \
108 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8)))
109 #define LE_READ_4(p) \
110 ((u_int32_t) \
111 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \
112 (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
113
114 enum {
115 ATH_LED_TX,
116 ATH_LED_RX,
117 ATH_LED_POLL,
118 };
119
120 static int ath_ifinit(struct ifnet *);
121 static int ath_init(struct ath_softc *);
122 static void ath_stop_locked(struct ifnet *, int);
123 static void ath_stop(struct ifnet *, int);
124 static void ath_start(struct ifnet *);
125 static int ath_media_change(struct ifnet *);
126 static void ath_watchdog(struct ifnet *);
127 static int ath_ioctl(struct ifnet *, u_long, caddr_t);
128 static void ath_fatal_proc(void *, int);
129 static void ath_rxorn_proc(void *, int);
130 static void ath_bmiss_proc(void *, int);
131 static int ath_key_alloc(struct ieee80211com *,
132 const struct ieee80211_key *,
133 ieee80211_keyix *, ieee80211_keyix *);
134 static int ath_key_delete(struct ieee80211com *,
135 const struct ieee80211_key *);
136 static int ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
137 const u_int8_t mac[IEEE80211_ADDR_LEN]);
138 static void ath_key_update_begin(struct ieee80211com *);
139 static void ath_key_update_end(struct ieee80211com *);
140 static void ath_mode_init(struct ath_softc *);
141 static void ath_setslottime(struct ath_softc *);
142 static void ath_updateslot(struct ifnet *);
143 static int ath_beaconq_setup(struct ath_hal *);
144 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
145 static void ath_beacon_setup(struct ath_softc *, struct ath_buf *);
146 static void ath_beacon_proc(void *, int);
147 static void ath_bstuck_proc(void *, int);
148 static void ath_beacon_free(struct ath_softc *);
149 static void ath_beacon_config(struct ath_softc *);
150 static void ath_descdma_cleanup(struct ath_softc *sc,
151 struct ath_descdma *, ath_bufhead *);
152 static int ath_desc_alloc(struct ath_softc *);
153 static void ath_desc_free(struct ath_softc *);
154 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
155 static void ath_node_free(struct ieee80211_node *);
156 static u_int8_t ath_node_getrssi(const struct ieee80211_node *);
157 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
158 static void ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
159 struct ieee80211_node *ni,
160 int subtype, int rssi, u_int32_t rstamp);
161 static void ath_setdefantenna(struct ath_softc *, u_int);
162 static void ath_rx_proc(void *, int);
163 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
164 static int ath_tx_setup(struct ath_softc *, int, int);
165 static int ath_wme_update(struct ieee80211com *);
166 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
167 static void ath_tx_cleanup(struct ath_softc *);
168 static int ath_tx_start(struct ath_softc *, struct ieee80211_node *,
169 struct ath_buf *, struct mbuf *);
170 static void ath_tx_proc_q0(void *, int);
171 static void ath_tx_proc_q0123(void *, int);
172 static void ath_tx_proc(void *, int);
173 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
174 static void ath_draintxq(struct ath_softc *);
175 static void ath_stoprecv(struct ath_softc *);
176 static int ath_startrecv(struct ath_softc *);
177 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
178 static void ath_next_scan(void *);
179 static void ath_calibrate(void *);
180 static int ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
181 static void ath_setup_stationkey(struct ieee80211_node *);
182 static void ath_newassoc(struct ieee80211_node *, int);
183 static int ath_getchannels(struct ath_softc *, u_int cc,
184 HAL_BOOL outdoor, HAL_BOOL xchanmode);
185 static void ath_led_event(struct ath_softc *, int);
186 static void ath_update_txpow(struct ath_softc *);
187
188 static int ath_rate_setup(struct ath_softc *, u_int mode);
189 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
190
191 #ifdef __NetBSD__
192 int ath_enable(struct ath_softc *);
193 void ath_disable(struct ath_softc *);
194 void ath_power(int, void *);
195 #endif
196
197 static void ath_bpfattach(struct ath_softc *);
198 static void ath_announce(struct ath_softc *);
199
200 int ath_dwelltime = 200; /* 5 channels/second */
201 int ath_calinterval = 30; /* calibrate every 30 secs */
202 int ath_outdoor = AH_TRUE; /* outdoor operation */
203 int ath_xchanmode = AH_TRUE; /* enable extended channels */
204 int ath_countrycode = CTRY_DEFAULT; /* country code */
205 int ath_regdomain = 0; /* regulatory domain */
206 int ath_debug = 0;
207
208 #ifdef AR_DEBUG
209 enum {
210 ATH_DEBUG_XMIT = 0x00000001, /* basic xmit operation */
211 ATH_DEBUG_XMIT_DESC = 0x00000002, /* xmit descriptors */
212 ATH_DEBUG_RECV = 0x00000004, /* basic recv operation */
213 ATH_DEBUG_RECV_DESC = 0x00000008, /* recv descriptors */
214 ATH_DEBUG_RATE = 0x00000010, /* rate control */
215 ATH_DEBUG_RESET = 0x00000020, /* reset processing */
216 ATH_DEBUG_MODE = 0x00000040, /* mode init/setup */
217 ATH_DEBUG_BEACON = 0x00000080, /* beacon handling */
218 ATH_DEBUG_WATCHDOG = 0x00000100, /* watchdog timeout */
219 ATH_DEBUG_INTR = 0x00001000, /* ISR */
220 ATH_DEBUG_TX_PROC = 0x00002000, /* tx ISR proc */
221 ATH_DEBUG_RX_PROC = 0x00004000, /* rx ISR proc */
222 ATH_DEBUG_BEACON_PROC = 0x00008000, /* beacon ISR proc */
223 ATH_DEBUG_CALIBRATE = 0x00010000, /* periodic calibration */
224 ATH_DEBUG_KEYCACHE = 0x00020000, /* key cache management */
225 ATH_DEBUG_STATE = 0x00040000, /* 802.11 state transitions */
226 ATH_DEBUG_NODE = 0x00080000, /* node management */
227 ATH_DEBUG_LED = 0x00100000, /* led management */
228 ATH_DEBUG_FATAL = 0x80000000, /* fatal errors */
229 ATH_DEBUG_ANY = 0xffffffff
230 };
231 #define IFF_DUMPPKTS(sc, m) \
232 ((sc->sc_debug & (m)) || \
233 (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
234 #define DPRINTF(sc, m, fmt, ...) do { \
235 if (sc->sc_debug & (m)) \
236 printf(fmt, __VA_ARGS__); \
237 } while (0)
238 #define KEYPRINTF(sc, ix, hk, mac) do { \
239 if (sc->sc_debug & ATH_DEBUG_KEYCACHE) \
240 ath_keyprint(__func__, ix, hk, mac); \
241 } while (0)
242 static void ath_printrxbuf(struct ath_buf *bf, int);
243 static void ath_printtxbuf(struct ath_buf *bf, int);
244 #else
245 #define IFF_DUMPPKTS(sc, m) \
246 ((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
247 #define DPRINTF(m, fmt, ...)
248 #define KEYPRINTF(sc, k, ix, mac)
249 #endif
250
251 #ifdef __NetBSD__
252 int
253 ath_activate(struct device *self, enum devact act)
254 {
255 struct ath_softc *sc = (struct ath_softc *)self;
256 int rv = 0, s;
257
258 s = splnet();
259 switch (act) {
260 case DVACT_ACTIVATE:
261 rv = EOPNOTSUPP;
262 break;
263 case DVACT_DEACTIVATE:
264 if_deactivate(&sc->sc_if);
265 break;
266 }
267 splx(s);
268 return rv;
269 }
270
271 int
272 ath_enable(struct ath_softc *sc)
273 {
274 if (ATH_IS_ENABLED(sc) == 0) {
275 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
276 printf("%s: device enable failed\n",
277 sc->sc_dev.dv_xname);
278 return (EIO);
279 }
280 sc->sc_flags |= ATH_ENABLED;
281 }
282 return (0);
283 }
284
285 void
286 ath_disable(struct ath_softc *sc)
287 {
288 if (!ATH_IS_ENABLED(sc))
289 return;
290 if (sc->sc_disable != NULL)
291 (*sc->sc_disable)(sc);
292 sc->sc_flags &= ~ATH_ENABLED;
293 }
294 #endif /* __NetBSD__ */
295
296 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
297
298 int
299 ath_attach(u_int16_t devid, struct ath_softc *sc)
300 {
301 struct ifnet *ifp = &sc->sc_if;
302 struct ieee80211com *ic = &sc->sc_ic;
303 struct ath_hal *ah = NULL;
304 HAL_STATUS status;
305 int error = 0, i;
306
307 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
308
309 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
310
311 ah = ath_hal_attach(devid, sc, sc->sc_st, ATH_BUSHANDLE2HAL(sc->sc_sh),
312 &status);
313 if (ah == NULL) {
314 if_printf(ifp, "unable to attach hardware; HAL status %u\n",
315 status);
316 error = ENXIO;
317 goto bad;
318 }
319 if (ah->ah_abi != HAL_ABI_VERSION) {
320 if_printf(ifp, "HAL ABI mismatch detected "
321 "(HAL:0x%x != driver:0x%x)\n",
322 ah->ah_abi, HAL_ABI_VERSION);
323 error = ENXIO;
324 goto bad;
325 }
326 sc->sc_ah = ah;
327 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */
328
329 /*
330 * Check if the MAC has multi-rate retry support.
331 * We do this by trying to setup a fake extended
332 * descriptor. MAC's that don't have support will
333 * return false w/o doing anything. MAC's that do
334 * support it will return true w/o doing anything.
335 */
336 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
337
338 /*
339 * Check if the device has hardware counters for PHY
340 * errors. If so we need to enable the MIB interrupt
341 * so we can act on stat triggers.
342 */
343 if (ath_hal_hwphycounters(ah))
344 sc->sc_needmib = 1;
345
346 /*
347 * Get the hardware key cache size.
348 */
349 sc->sc_keymax = ath_hal_keycachesize(ah);
350 if (sc->sc_keymax > ATH_KEYMAX) {
351 if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
352 ATH_KEYMAX, sc->sc_keymax);
353 sc->sc_keymax = ATH_KEYMAX;
354 }
355 /*
356 * Reset the key cache since some parts do not
357 * reset the contents on initial power up.
358 */
359 for (i = 0; i < sc->sc_keymax; i++)
360 ath_hal_keyreset(ah, i);
361 /*
362 * Mark key cache slots associated with global keys
363 * as in use. If we knew TKIP was not to be used we
364 * could leave the +32, +64, and +32+64 slots free.
365 * XXX only for splitmic.
366 */
367 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
368 setbit(sc->sc_keymap, i);
369 setbit(sc->sc_keymap, i+32);
370 setbit(sc->sc_keymap, i+64);
371 setbit(sc->sc_keymap, i+32+64);
372 }
373
374 /*
375 * Collect the channel list using the default country
376 * code and including outdoor channels. The 802.11 layer
377 * is resposible for filtering this list based on settings
378 * like the phy mode.
379 */
380 error = ath_getchannels(sc, ath_countrycode,
381 ath_outdoor, ath_xchanmode);
382 if (error != 0)
383 goto bad;
384
385 /*
386 * Setup rate tables for all potential media types.
387 */
388 ath_rate_setup(sc, IEEE80211_MODE_11A);
389 ath_rate_setup(sc, IEEE80211_MODE_11B);
390 ath_rate_setup(sc, IEEE80211_MODE_11G);
391 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
392 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
393 /* NB: setup here so ath_rate_update is happy */
394 ath_setcurmode(sc, IEEE80211_MODE_11A);
395
396 /*
397 * Allocate tx+rx descriptors and populate the lists.
398 */
399 error = ath_desc_alloc(sc);
400 if (error != 0) {
401 if_printf(ifp, "failed to allocate descriptors: %d\n", error);
402 goto bad;
403 }
404 ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
405 ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE);
406
407 ATH_TXBUF_LOCK_INIT(sc);
408
409 TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
410 TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
411 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
412 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
413 TASK_INIT(&sc->sc_bstucktask, 0, ath_bstuck_proc, sc);
414
415 /*
416 * Allocate hardware transmit queues: one queue for
417 * beacon frames and one data queue for each QoS
418 * priority. Note that the hal handles reseting
419 * these queues at the needed time.
420 *
421 * XXX PS-Poll
422 */
423 sc->sc_bhalq = ath_beaconq_setup(ah);
424 if (sc->sc_bhalq == (u_int) -1) {
425 if_printf(ifp, "unable to setup a beacon xmit queue!\n");
426 error = EIO;
427 goto bad2;
428 }
429 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
430 if (sc->sc_cabq == NULL) {
431 if_printf(ifp, "unable to setup CAB xmit queue!\n");
432 error = EIO;
433 goto bad2;
434 }
435 /* NB: insure BK queue is the lowest priority h/w queue */
436 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
437 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
438 ieee80211_wme_acnames[WME_AC_BK]);
439 error = EIO;
440 goto bad2;
441 }
442 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
443 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
444 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
445 /*
446 * Not enough hardware tx queues to properly do WME;
447 * just punt and assign them all to the same h/w queue.
448 * We could do a better job of this if, for example,
449 * we allocate queues when we switch from station to
450 * AP mode.
451 */
452 if (sc->sc_ac2q[WME_AC_VI] != NULL)
453 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
454 if (sc->sc_ac2q[WME_AC_BE] != NULL)
455 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
456 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
457 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
458 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
459 }
460
461 /*
462 * Special case certain configurations. Note the
463 * CAB queue is handled by these specially so don't
464 * include them when checking the txq setup mask.
465 */
466 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
467 case 0x01:
468 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
469 break;
470 case 0x0f:
471 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
472 break;
473 default:
474 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
475 break;
476 }
477
478 /*
479 * Setup rate control. Some rate control modules
480 * call back to change the anntena state so expose
481 * the necessary entry points.
482 * XXX maybe belongs in struct ath_ratectrl?
483 */
484 sc->sc_setdefantenna = ath_setdefantenna;
485 sc->sc_rc = ath_rate_attach(sc);
486 if (sc->sc_rc == NULL) {
487 error = EIO;
488 goto bad2;
489 }
490
491 sc->sc_blinking = 0;
492 sc->sc_ledstate = 1;
493 sc->sc_ledon = 0; /* low true */
494 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */
495 ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE);
496 /*
497 * Auto-enable soft led processing for IBM cards and for
498 * 5211 minipci cards. Users can also manually enable/disable
499 * support with a sysctl.
500 */
501 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
502 if (sc->sc_softled) {
503 ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
504 ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
505 }
506
507 ifp->if_softc = sc;
508 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
509 ifp->if_start = ath_start;
510 ifp->if_watchdog = ath_watchdog;
511 ifp->if_ioctl = ath_ioctl;
512 ifp->if_init = ath_ifinit;
513 IFQ_SET_READY(&ifp->if_snd);
514
515 ic->ic_ifp = ifp;
516 ic->ic_reset = ath_reset;
517 ic->ic_newassoc = ath_newassoc;
518 ic->ic_updateslot = ath_updateslot;
519 ic->ic_wme.wme_update = ath_wme_update;
520 /* XXX not right but it's not used anywhere important */
521 ic->ic_phytype = IEEE80211_T_OFDM;
522 ic->ic_opmode = IEEE80211_M_STA;
523 ic->ic_caps =
524 IEEE80211_C_IBSS /* ibss, nee adhoc, mode */
525 | IEEE80211_C_HOSTAP /* hostap mode */
526 | IEEE80211_C_MONITOR /* monitor mode */
527 | IEEE80211_C_SHPREAMBLE /* short preamble supported */
528 | IEEE80211_C_SHSLOT /* short slot time supported */
529 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */
530 ;
531 /*
532 * Query the hal to figure out h/w crypto support.
533 */
534 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
535 ic->ic_caps |= IEEE80211_C_WEP;
536 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
537 ic->ic_caps |= IEEE80211_C_AES;
538 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
539 ic->ic_caps |= IEEE80211_C_AES_CCM;
540 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
541 ic->ic_caps |= IEEE80211_C_CKIP;
542 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
543 ic->ic_caps |= IEEE80211_C_TKIP;
544 /*
545 * Check if h/w does the MIC and/or whether the
546 * separate key cache entries are required to
547 * handle both tx+rx MIC keys.
548 */
549 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
550 ic->ic_caps |= IEEE80211_C_TKIPMIC;
551 if (ath_hal_tkipsplit(ah))
552 sc->sc_splitmic = 1;
553 }
554 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
555 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
556 /*
557 * TPC support can be done either with a global cap or
558 * per-packet support. The latter is not available on
559 * all parts. We're a bit pedantic here as all parts
560 * support a global cap.
561 */
562 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
563 ic->ic_caps |= IEEE80211_C_TXPMGT;
564
565 /*
566 * Mark WME capability only if we have sufficient
567 * hardware queues to do proper priority scheduling.
568 */
569 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
570 ic->ic_caps |= IEEE80211_C_WME;
571 /*
572 * Check for misc other capabilities.
573 */
574 if (ath_hal_hasbursting(ah))
575 ic->ic_caps |= IEEE80211_C_BURST;
576
577 /*
578 * Indicate we need the 802.11 header padded to a
579 * 32-bit boundary for 4-address and QoS frames.
580 */
581 ic->ic_flags |= IEEE80211_F_DATAPAD;
582
583 /*
584 * Query the hal about antenna support.
585 */
586 sc->sc_defant = ath_hal_getdefantenna(ah);
587
588 /*
589 * Not all chips have the VEOL support we want to
590 * use with IBSS beacons; check here for it.
591 */
592 sc->sc_hasveol = ath_hal_hasveol(ah);
593
594 /* get mac address from hardware */
595 ath_hal_getmac(ah, ic->ic_myaddr);
596
597 if_attach(ifp);
598 /* call MI attach routine. */
599 ieee80211_ifattach(ic);
600 /* override default methods */
601 ic->ic_node_alloc = ath_node_alloc;
602 sc->sc_node_free = ic->ic_node_free;
603 ic->ic_node_free = ath_node_free;
604 ic->ic_node_getrssi = ath_node_getrssi;
605 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
606 ic->ic_recv_mgmt = ath_recv_mgmt;
607 sc->sc_newstate = ic->ic_newstate;
608 ic->ic_newstate = ath_newstate;
609 ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
610 ic->ic_crypto.cs_key_alloc = ath_key_alloc;
611 ic->ic_crypto.cs_key_delete = ath_key_delete;
612 ic->ic_crypto.cs_key_set = ath_key_set;
613 ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
614 ic->ic_crypto.cs_key_update_end = ath_key_update_end;
615 /* complete initialization */
616 ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
617
618 ath_bpfattach(sc);
619
620 #ifdef __NetBSD__
621 sc->sc_flags |= ATH_ATTACHED;
622 /*
623 * Make sure the interface is shutdown during reboot.
624 */
625 sc->sc_sdhook = shutdownhook_establish(ath_shutdown, sc);
626 if (sc->sc_sdhook == NULL)
627 printf("%s: WARNING: unable to establish shutdown hook\n",
628 sc->sc_dev.dv_xname);
629 sc->sc_powerhook = powerhook_establish(ath_power, sc);
630 if (sc->sc_powerhook == NULL)
631 printf("%s: WARNING: unable to establish power hook\n",
632 sc->sc_dev.dv_xname);
633 #endif
634
635 /*
636 * Setup dynamic sysctl's now that country code and
637 * regdomain are available from the hal.
638 */
639 ath_sysctlattach(sc);
640
641 ieee80211_announce(ic);
642 ath_announce(sc);
643 return 0;
644 bad2:
645 ath_tx_cleanup(sc);
646 ath_desc_free(sc);
647 bad:
648 if (ah)
649 ath_hal_detach(ah);
650 sc->sc_invalid = 1;
651 return error;
652 }
653
654 int
655 ath_detach(struct ath_softc *sc)
656 {
657 struct ifnet *ifp = &sc->sc_if;
658 int s;
659
660 if ((sc->sc_flags & ATH_ATTACHED) == 0)
661 return (0);
662
663 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
664 __func__, ifp->if_flags);
665
666 s = splnet();
667 ath_stop(ifp, 1);
668 #if NBPFILTER > 0
669 bpfdetach(ifp);
670 #endif
671 /*
672 * NB: the order of these is important:
673 * o call the 802.11 layer before detaching the hal to
674 * insure callbacks into the driver to delete global
675 * key cache entries can be handled
676 * o reclaim the tx queue data structures after calling
677 * the 802.11 layer as we'll get called back to reclaim
678 * node state and potentially want to use them
679 * o to cleanup the tx queues the hal is called, so detach
680 * it last
681 * Other than that, it's straightforward...
682 */
683 ieee80211_ifdetach(&sc->sc_ic);
684 ath_rate_detach(sc->sc_rc);
685 ath_desc_free(sc);
686 ath_tx_cleanup(sc);
687 sysctl_teardown(&sc->sc_sysctllog);
688 ath_hal_detach(sc->sc_ah);
689 if_detach(ifp);
690 splx(s);
691 powerhook_disestablish(sc->sc_powerhook);
692 shutdownhook_disestablish(sc->sc_sdhook);
693
694 return 0;
695 }
696
697 #ifdef __NetBSD__
698 void
699 ath_power(int why, void *arg)
700 {
701 struct ath_softc *sc = arg;
702 int s;
703
704 DPRINTF(sc, ATH_DEBUG_ANY, "ath_power(%d)\n", why);
705
706 s = splnet();
707 switch (why) {
708 case PWR_SUSPEND:
709 case PWR_STANDBY:
710 ath_suspend(sc, why);
711 break;
712 case PWR_RESUME:
713 ath_resume(sc, why);
714 break;
715 case PWR_SOFTSUSPEND:
716 case PWR_SOFTSTANDBY:
717 case PWR_SOFTRESUME:
718 break;
719 }
720 splx(s);
721 }
722 #endif
723
724 void
725 ath_suspend(struct ath_softc *sc, int why)
726 {
727 struct ifnet *ifp = &sc->sc_if;
728
729 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
730 __func__, ifp->if_flags);
731
732 ath_stop(ifp, 1);
733 if (sc->sc_power != NULL)
734 (*sc->sc_power)(sc, why);
735 }
736
737 void
738 ath_resume(struct ath_softc *sc, int why)
739 {
740 struct ifnet *ifp = &sc->sc_if;
741
742 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
743 __func__, ifp->if_flags);
744
745 if (ifp->if_flags & IFF_UP) {
746 ath_init(sc);
747 #if 0
748 (void)ath_intr(sc);
749 #endif
750 if (sc->sc_power != NULL)
751 (*sc->sc_power)(sc, why);
752 if (ifp->if_flags & IFF_RUNNING)
753 ath_start(ifp);
754 }
755 if (sc->sc_softled) {
756 ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
757 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
758 }
759 }
760
761 void
762 ath_shutdown(void *arg)
763 {
764 struct ath_softc *sc = arg;
765
766 ath_stop(&sc->sc_if, 1);
767 }
768
769 /*
770 * Interrupt handler. Most of the actual processing is deferred.
771 */
772 int
773 ath_intr(void *arg)
774 {
775 struct ath_softc *sc = arg;
776 struct ifnet *ifp = &sc->sc_if;
777 struct ath_hal *ah = sc->sc_ah;
778 HAL_INT status;
779
780 if (sc->sc_invalid) {
781 /*
782 * The hardware is not ready/present, don't touch anything.
783 * Note this can happen early on if the IRQ is shared.
784 */
785 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
786 return 0;
787 }
788 if (!ath_hal_intrpend(ah)) /* shared irq, not for us */
789 return 0;
790 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
791 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
792 __func__, ifp->if_flags);
793 ath_hal_getisr(ah, &status); /* clear ISR */
794 ath_hal_intrset(ah, 0); /* disable further intr's */
795 return 1; /* XXX */
796 }
797 /*
798 * Figure out the reason(s) for the interrupt. Note
799 * that the hal returns a pseudo-ISR that may include
800 * bits we haven't explicitly enabled so we mask the
801 * value to insure we only process bits we requested.
802 */
803 ath_hal_getisr(ah, &status); /* NB: clears ISR too */
804 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
805 status &= sc->sc_imask; /* discard unasked for bits */
806 if (status & HAL_INT_FATAL) {
807 /*
808 * Fatal errors are unrecoverable. Typically
809 * these are caused by DMA errors. Unfortunately
810 * the exact reason is not (presently) returned
811 * by the hal.
812 */
813 sc->sc_stats.ast_hardware++;
814 ath_hal_intrset(ah, 0); /* disable intr's until reset */
815 TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
816 } else if (status & HAL_INT_RXORN) {
817 sc->sc_stats.ast_rxorn++;
818 ath_hal_intrset(ah, 0); /* disable intr's until reset */
819 TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
820 } else {
821 if (status & HAL_INT_SWBA) {
822 /*
823 * Software beacon alert--time to send a beacon.
824 * Handle beacon transmission directly; deferring
825 * this is too slow to meet timing constraints
826 * under load.
827 */
828 ath_beacon_proc(sc, 0);
829 }
830 if (status & HAL_INT_RXEOL) {
831 /*
832 * NB: the hardware should re-read the link when
833 * RXE bit is written, but it doesn't work at
834 * least on older hardware revs.
835 */
836 sc->sc_stats.ast_rxeol++;
837 sc->sc_rxlink = NULL;
838 }
839 if (status & HAL_INT_TXURN) {
840 sc->sc_stats.ast_txurn++;
841 /* bump tx trigger level */
842 ath_hal_updatetxtriglevel(ah, AH_TRUE);
843 }
844 if (status & HAL_INT_RX)
845 TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
846 if (status & HAL_INT_TX)
847 TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
848 if (status & HAL_INT_BMISS) {
849 sc->sc_stats.ast_bmiss++;
850 TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
851 }
852 if (status & HAL_INT_MIB) {
853 sc->sc_stats.ast_mib++;
854 /*
855 * Disable interrupts until we service the MIB
856 * interrupt; otherwise it will continue to fire.
857 */
858 ath_hal_intrset(ah, 0);
859 /*
860 * Let the hal handle the event. We assume it will
861 * clear whatever condition caused the interrupt.
862 */
863 ath_hal_mibevent(ah,
864 &ATH_NODE(sc->sc_ic.ic_bss)->an_halstats);
865 ath_hal_intrset(ah, sc->sc_imask);
866 }
867 }
868 return 1;
869 }
870
871 static void
872 ath_fatal_proc(void *arg, int pending)
873 {
874 struct ath_softc *sc = arg;
875 struct ifnet *ifp = &sc->sc_if;
876
877 if_printf(ifp, "hardware error; resetting\n");
878 ath_reset(ifp);
879 }
880
881 static void
882 ath_rxorn_proc(void *arg, int pending)
883 {
884 struct ath_softc *sc = arg;
885 struct ifnet *ifp = &sc->sc_if;
886
887 if_printf(ifp, "rx FIFO overrun; resetting\n");
888 ath_reset(ifp);
889 }
890
891 static void
892 ath_bmiss_proc(void *arg, int pending)
893 {
894 struct ath_softc *sc = arg;
895 struct ieee80211com *ic = &sc->sc_ic;
896
897 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
898 KASSERT(ic->ic_opmode == IEEE80211_M_STA,
899 ("unexpect operating mode %u", ic->ic_opmode));
900 if (ic->ic_state == IEEE80211_S_RUN) {
901 /*
902 * Rather than go directly to scan state, try to
903 * reassociate first. If that fails then the state
904 * machine will drop us into scanning after timing
905 * out waiting for a probe response.
906 */
907 NET_LOCK_GIANT();
908 ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1);
909 NET_UNLOCK_GIANT();
910 }
911 }
912
913 static u_int
914 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
915 {
916 #define N(a) (sizeof(a) / sizeof(a[0]))
917 static const u_int modeflags[] = {
918 0, /* IEEE80211_MODE_AUTO */
919 CHANNEL_A, /* IEEE80211_MODE_11A */
920 CHANNEL_B, /* IEEE80211_MODE_11B */
921 CHANNEL_PUREG, /* IEEE80211_MODE_11G */
922 0, /* IEEE80211_MODE_FH */
923 CHANNEL_T, /* IEEE80211_MODE_TURBO_A */
924 CHANNEL_108G /* IEEE80211_MODE_TURBO_G */
925 };
926 enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
927
928 KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
929 KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
930 return modeflags[mode];
931 #undef N
932 }
933
934 static int
935 ath_ifinit(struct ifnet *ifp)
936 {
937 struct ath_softc *sc = (struct ath_softc *)ifp->if_softc;
938
939 return ath_init(sc);
940 }
941
942 static int
943 ath_init(struct ath_softc *sc)
944 {
945 struct ifnet *ifp = &sc->sc_if;
946 struct ieee80211com *ic = &sc->sc_ic;
947 struct ath_hal *ah = sc->sc_ah;
948 HAL_STATUS status;
949 int error = 0;
950
951 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
952 __func__, ifp->if_flags);
953
954 ATH_LOCK(sc);
955
956 if ((error = ath_enable(sc)) != 0)
957 return error;
958
959 /*
960 * Stop anything previously setup. This is safe
961 * whether this is the first time through or not.
962 */
963 ath_stop_locked(ifp, 0);
964
965 /*
966 * The basic interface to setting the hardware in a good
967 * state is ``reset''. On return the hardware is known to
968 * be powered up and with interrupts disabled. This must
969 * be followed by initialization of the appropriate bits
970 * and then setup of the interrupt mask.
971 */
972 sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
973 sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
974 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
975 if_printf(ifp, "unable to reset hardware; hal status %u\n",
976 status);
977 error = EIO;
978 goto done;
979 }
980
981 /*
982 * This is needed only to setup initial state
983 * but it's best done after a reset.
984 */
985 ath_update_txpow(sc);
986 /*
987 * Likewise this is set during reset so update
988 * state cached in the driver.
989 */
990 sc->sc_diversity = ath_hal_getdiversity(ah);
991
992 /*
993 * Setup the hardware after reset: the key cache
994 * is filled as needed and the receive engine is
995 * set going. Frame transmit is handled entirely
996 * in the frame output path; there's nothing to do
997 * here except setup the interrupt mask.
998 */
999 if ((error = ath_startrecv(sc)) != 0) {
1000 if_printf(ifp, "unable to start recv logic\n");
1001 goto done;
1002 }
1003
1004 /*
1005 * Enable interrupts.
1006 */
1007 sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1008 | HAL_INT_RXEOL | HAL_INT_RXORN
1009 | HAL_INT_FATAL | HAL_INT_GLOBAL;
1010 /*
1011 * Enable MIB interrupts when there are hardware phy counters.
1012 * Note we only do this (at the moment) for station mode.
1013 */
1014 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1015 sc->sc_imask |= HAL_INT_MIB;
1016 ath_hal_intrset(ah, sc->sc_imask);
1017
1018 ifp->if_flags |= IFF_RUNNING;
1019 ic->ic_state = IEEE80211_S_INIT;
1020
1021 /*
1022 * The hardware should be ready to go now so it's safe
1023 * to kick the 802.11 state machine as it's likely to
1024 * immediately call back to us to send mgmt frames.
1025 */
1026 ath_chan_change(sc, ic->ic_curchan);
1027 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1028 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
1029 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1030 } else
1031 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1032 done:
1033 ATH_UNLOCK(sc);
1034 return error;
1035 }
1036
1037 static void
1038 ath_stop_locked(struct ifnet *ifp, int disable)
1039 {
1040 struct ath_softc *sc = ifp->if_softc;
1041 struct ieee80211com *ic = &sc->sc_ic;
1042 struct ath_hal *ah = sc->sc_ah;
1043
1044 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1045 __func__, sc->sc_invalid, ifp->if_flags);
1046
1047 ATH_LOCK_ASSERT(sc);
1048 if (ifp->if_flags & IFF_RUNNING) {
1049 /*
1050 * Shutdown the hardware and driver:
1051 * reset 802.11 state machine
1052 * turn off timers
1053 * disable interrupts
1054 * turn off the radio
1055 * clear transmit machinery
1056 * clear receive machinery
1057 * drain and release tx queues
1058 * reclaim beacon resources
1059 * power down hardware
1060 *
1061 * Note that some of this work is not possible if the
1062 * hardware is gone (invalid).
1063 */
1064 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1065 ifp->if_flags &= ~IFF_RUNNING;
1066 ifp->if_timer = 0;
1067 if (!sc->sc_invalid) {
1068 if (sc->sc_softled) {
1069 callout_stop(&sc->sc_ledtimer);
1070 ath_hal_gpioset(ah, sc->sc_ledpin,
1071 !sc->sc_ledon);
1072 sc->sc_blinking = 0;
1073 }
1074 ath_hal_intrset(ah, 0);
1075 }
1076 ath_draintxq(sc);
1077 if (!sc->sc_invalid) {
1078 ath_stoprecv(sc);
1079 ath_hal_phydisable(ah);
1080 } else
1081 sc->sc_rxlink = NULL;
1082 IF_PURGE(&ifp->if_snd);
1083 ath_beacon_free(sc);
1084 if (disable)
1085 ath_disable(sc);
1086 }
1087 }
1088
1089 static void
1090 ath_stop(struct ifnet *ifp, int disable)
1091 {
1092 struct ath_softc *sc = ifp->if_softc;
1093
1094 ATH_LOCK(sc);
1095 ath_stop_locked(ifp, disable);
1096 if (!sc->sc_invalid) {
1097 /*
1098 * Set the chip in full sleep mode. Note that we are
1099 * careful to do this only when bringing the interface
1100 * completely to a stop. When the chip is in this state
1101 * it must be carefully woken up or references to
1102 * registers in the PCI clock domain may freeze the bus
1103 * (and system). This varies by chip and is mostly an
1104 * issue with newer parts that go to sleep more quickly.
1105 */
1106 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP, 0);
1107 }
1108 ATH_UNLOCK(sc);
1109 }
1110
1111 /*
1112 * Reset the hardware w/o losing operational state. This is
1113 * basically a more efficient way of doing ath_stop, ath_init,
1114 * followed by state transitions to the current 802.11
1115 * operational state. Used to recover from various errors and
1116 * to reset or reload hardware state.
1117 */
1118 int
1119 ath_reset(struct ifnet *ifp)
1120 {
1121 struct ath_softc *sc = ifp->if_softc;
1122 struct ieee80211com *ic = &sc->sc_ic;
1123 struct ath_hal *ah = sc->sc_ah;
1124 struct ieee80211_channel *c;
1125 HAL_STATUS status;
1126
1127 /*
1128 * Convert to a HAL channel description with the flags
1129 * constrained to reflect the current operating mode.
1130 */
1131 c = ic->ic_curchan;
1132 sc->sc_curchan.channel = c->ic_freq;
1133 sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
1134
1135 ath_hal_intrset(ah, 0); /* disable interrupts */
1136 ath_draintxq(sc); /* stop xmit side */
1137 ath_stoprecv(sc); /* stop recv side */
1138 /* NB: indicate channel change so we do a full reset */
1139 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
1140 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1141 __func__, status);
1142 ath_update_txpow(sc); /* update tx power state */
1143 sc->sc_diversity = ath_hal_getdiversity(ah);
1144 if (ath_startrecv(sc) != 0) /* restart recv */
1145 if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1146 /*
1147 * We may be doing a reset in response to an ioctl
1148 * that changes the channel so update any state that
1149 * might change as a result.
1150 */
1151 ath_chan_change(sc, c);
1152 if (ic->ic_state == IEEE80211_S_RUN)
1153 ath_beacon_config(sc); /* restart beacons */
1154 ath_hal_intrset(ah, sc->sc_imask);
1155
1156 ath_start(ifp); /* restart xmit */
1157 return 0;
1158 }
1159
1160 static void
1161 ath_start(struct ifnet *ifp)
1162 {
1163 struct ath_softc *sc = ifp->if_softc;
1164 struct ath_hal *ah = sc->sc_ah;
1165 struct ieee80211com *ic = &sc->sc_ic;
1166 struct ieee80211_node *ni;
1167 struct ath_buf *bf;
1168 struct mbuf *m;
1169 struct ieee80211_frame *wh;
1170 struct ether_header *eh;
1171
1172 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
1173 return;
1174 for (;;) {
1175 /*
1176 * Grab a TX buffer and associated resources.
1177 */
1178 ATH_TXBUF_LOCK(sc);
1179 bf = STAILQ_FIRST(&sc->sc_txbuf);
1180 if (bf != NULL)
1181 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1182 ATH_TXBUF_UNLOCK(sc);
1183 if (bf == NULL) {
1184 DPRINTF(sc, ATH_DEBUG_ANY, "%s: out of xmit buffers\n",
1185 __func__);
1186 sc->sc_stats.ast_tx_qstop++;
1187 ifp->if_flags |= IFF_OACTIVE;
1188 break;
1189 }
1190 /*
1191 * Poll the management queue for frames; they
1192 * have priority over normal data frames.
1193 */
1194 IF_DEQUEUE(&ic->ic_mgtq, m);
1195 if (m == NULL) {
1196 /*
1197 * No data frames go out unless we're associated.
1198 */
1199 if (ic->ic_state != IEEE80211_S_RUN) {
1200 DPRINTF(sc, ATH_DEBUG_ANY,
1201 "%s: ignore data packet, state %u\n",
1202 __func__, ic->ic_state);
1203 sc->sc_stats.ast_tx_discard++;
1204 ATH_TXBUF_LOCK(sc);
1205 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1206 ATH_TXBUF_UNLOCK(sc);
1207 break;
1208 }
1209 IFQ_DEQUEUE(&ifp->if_snd, m); /* XXX: LOCK */
1210 if (m == NULL) {
1211 ATH_TXBUF_LOCK(sc);
1212 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1213 ATH_TXBUF_UNLOCK(sc);
1214 break;
1215 }
1216 /*
1217 * Find the node for the destination so we can do
1218 * things like power save and fast frames aggregation.
1219 */
1220 if (m->m_len < sizeof(struct ether_header) &&
1221 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
1222 ic->ic_stats.is_tx_nobuf++; /* XXX */
1223 ni = NULL;
1224 goto bad;
1225 }
1226 eh = mtod(m, struct ether_header *);
1227 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1228 if (ni == NULL) {
1229 /* NB: ieee80211_find_txnode does stat+msg */
1230 m_freem(m);
1231 goto bad;
1232 }
1233 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1234 (m->m_flags & M_PWR_SAV) == 0) {
1235 /*
1236 * Station in power save mode; pass the frame
1237 * to the 802.11 layer and continue. We'll get
1238 * the frame back when the time is right.
1239 */
1240 ieee80211_pwrsave(ic, ni, m);
1241 goto reclaim;
1242 }
1243 /* calculate priority so we can find the tx queue */
1244 if (ieee80211_classify(ic, m, ni)) {
1245 DPRINTF(sc, ATH_DEBUG_XMIT,
1246 "%s: discard, classification failure\n",
1247 __func__);
1248 m_freem(m);
1249 goto bad;
1250 }
1251 ifp->if_opackets++;
1252
1253 #if NBPFILTER > 0
1254 if (ifp->if_bpf)
1255 bpf_mtap(ifp->if_bpf, m);
1256 #endif
1257 /*
1258 * Encapsulate the packet in prep for transmission.
1259 */
1260 m = ieee80211_encap(ic, m, ni);
1261 if (m == NULL) {
1262 DPRINTF(sc, ATH_DEBUG_ANY,
1263 "%s: encapsulation failure\n",
1264 __func__);
1265 sc->sc_stats.ast_tx_encap++;
1266 goto bad;
1267 }
1268 } else {
1269 /*
1270 * Hack! The referenced node pointer is in the
1271 * rcvif field of the packet header. This is
1272 * placed there by ieee80211_mgmt_output because
1273 * we need to hold the reference with the frame
1274 * and there's no other way (other than packet
1275 * tags which we consider too expensive to use)
1276 * to pass it along.
1277 */
1278 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1279 m->m_pkthdr.rcvif = NULL;
1280
1281 wh = mtod(m, struct ieee80211_frame *);
1282 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1283 IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1284 /* fill time stamp */
1285 u_int64_t tsf;
1286 u_int32_t *tstamp;
1287
1288 tsf = ath_hal_gettsf64(ah);
1289 /* XXX: adjust 100us delay to xmit */
1290 tsf += 100;
1291 tstamp = (u_int32_t *)&wh[1];
1292 tstamp[0] = htole32(tsf & 0xffffffff);
1293 tstamp[1] = htole32(tsf >> 32);
1294 }
1295 sc->sc_stats.ast_tx_mgmt++;
1296 }
1297
1298 if (ath_tx_start(sc, ni, bf, m)) {
1299 bad:
1300 ifp->if_oerrors++;
1301 reclaim:
1302 ATH_TXBUF_LOCK(sc);
1303 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1304 ATH_TXBUF_UNLOCK(sc);
1305 if (ni != NULL)
1306 ieee80211_free_node(ni);
1307 continue;
1308 }
1309
1310 sc->sc_tx_timer = 5;
1311 ifp->if_timer = 1;
1312 }
1313 }
1314
1315 static int
1316 ath_media_change(struct ifnet *ifp)
1317 {
1318 #define IS_UP(ifp) \
1319 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
1320 int error;
1321
1322 error = ieee80211_media_change(ifp);
1323 if (error == ENETRESET) {
1324 if (IS_UP(ifp))
1325 ath_init(ifp->if_softc); /* XXX lose error */
1326 error = 0;
1327 }
1328 return error;
1329 #undef IS_UP
1330 }
1331
1332 #ifdef AR_DEBUG
1333 static void
1334 ath_keyprint(const char *tag, u_int ix,
1335 const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1336 {
1337 static const char *ciphers[] = {
1338 "WEP",
1339 "AES-OCB",
1340 "AES-CCM",
1341 "CKIP",
1342 "TKIP",
1343 "CLR",
1344 };
1345 int i, n;
1346
1347 printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1348 for (i = 0, n = hk->kv_len; i < n; i++)
1349 printf("%02x", hk->kv_val[i]);
1350 printf(" mac %s", ether_sprintf(mac));
1351 if (hk->kv_type == HAL_CIPHER_TKIP) {
1352 printf(" mic ");
1353 for (i = 0; i < sizeof(hk->kv_mic); i++)
1354 printf("%02x", hk->kv_mic[i]);
1355 }
1356 printf("\n");
1357 }
1358 #endif
1359
1360 /*
1361 * Set a TKIP key into the hardware. This handles the
1362 * potential distribution of key state to multiple key
1363 * cache slots for TKIP.
1364 */
1365 static int
1366 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1367 HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1368 {
1369 #define IEEE80211_KEY_XR (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1370 static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1371 struct ath_hal *ah = sc->sc_ah;
1372
1373 KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1374 ("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1375 KASSERT(sc->sc_splitmic, ("key cache !split"));
1376 if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1377 /*
1378 * TX key goes at first index, RX key at the rx index.
1379 * The hal handles the MIC keys at index+64.
1380 */
1381 memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1382 KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1383 if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
1384 return 0;
1385
1386 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1387 KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1388 /* XXX delete tx key on failure? */
1389 return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
1390 } else if (k->wk_flags & IEEE80211_KEY_XR) {
1391 /*
1392 * TX/RX key goes at first index.
1393 * The hal handles the MIC keys are index+64.
1394 */
1395 memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
1396 k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
1397 KEYPRINTF(sc, k->wk_keyix, hk, mac);
1398 return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1399 }
1400 return 0;
1401 #undef IEEE80211_KEY_XR
1402 }
1403
1404 /*
1405 * Set a net80211 key into the hardware. This handles the
1406 * potential distribution of key state to multiple key
1407 * cache slots for TKIP with hardware MIC support.
1408 */
1409 static int
1410 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1411 const u_int8_t mac0[IEEE80211_ADDR_LEN],
1412 struct ieee80211_node *bss)
1413 {
1414 #define N(a) (sizeof(a)/sizeof(a[0]))
1415 static const u_int8_t ciphermap[] = {
1416 HAL_CIPHER_WEP, /* IEEE80211_CIPHER_WEP */
1417 HAL_CIPHER_TKIP, /* IEEE80211_CIPHER_TKIP */
1418 HAL_CIPHER_AES_OCB, /* IEEE80211_CIPHER_AES_OCB */
1419 HAL_CIPHER_AES_CCM, /* IEEE80211_CIPHER_AES_CCM */
1420 (u_int8_t) -1, /* 4 is not allocated */
1421 HAL_CIPHER_CKIP, /* IEEE80211_CIPHER_CKIP */
1422 HAL_CIPHER_CLR, /* IEEE80211_CIPHER_NONE */
1423 };
1424 struct ath_hal *ah = sc->sc_ah;
1425 const struct ieee80211_cipher *cip = k->wk_cipher;
1426 u_int8_t gmac[IEEE80211_ADDR_LEN];
1427 const u_int8_t *mac;
1428 HAL_KEYVAL hk;
1429
1430 memset(&hk, 0, sizeof(hk));
1431 /*
1432 * Software crypto uses a "clear key" so non-crypto
1433 * state kept in the key cache are maintained and
1434 * so that rx frames have an entry to match.
1435 */
1436 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1437 KASSERT(cip->ic_cipher < N(ciphermap),
1438 ("invalid cipher type %u", cip->ic_cipher));
1439 hk.kv_type = ciphermap[cip->ic_cipher];
1440 hk.kv_len = k->wk_keylen;
1441 memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1442 } else
1443 hk.kv_type = HAL_CIPHER_CLR;
1444
1445 if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
1446 /*
1447 * Group keys on hardware that supports multicast frame
1448 * key search use a mac that is the sender's address with
1449 * the high bit set instead of the app-specified address.
1450 */
1451 IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
1452 gmac[0] |= 0x80;
1453 mac = gmac;
1454 } else
1455 mac = mac0;
1456
1457 if (hk.kv_type == HAL_CIPHER_TKIP &&
1458 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1459 sc->sc_splitmic) {
1460 return ath_keyset_tkip(sc, k, &hk, mac);
1461 } else {
1462 KEYPRINTF(sc, k->wk_keyix, &hk, mac);
1463 return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
1464 }
1465 #undef N
1466 }
1467
1468 /*
1469 * Allocate tx/rx key slots for TKIP. We allocate two slots for
1470 * each key, one for decrypt/encrypt and the other for the MIC.
1471 */
1472 static u_int16_t
1473 key_alloc_2pair(struct ath_softc *sc,
1474 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1475 {
1476 #define N(a) (sizeof(a)/sizeof(a[0]))
1477 u_int i, keyix;
1478
1479 KASSERT(sc->sc_splitmic, ("key cache !split"));
1480 /* XXX could optimize */
1481 for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1482 u_int8_t b = sc->sc_keymap[i];
1483 if (b != 0xff) {
1484 /*
1485 * One or more slots in this byte are free.
1486 */
1487 keyix = i*NBBY;
1488 while (b & 1) {
1489 again:
1490 keyix++;
1491 b >>= 1;
1492 }
1493 /* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1494 if (isset(sc->sc_keymap, keyix+32) ||
1495 isset(sc->sc_keymap, keyix+64) ||
1496 isset(sc->sc_keymap, keyix+32+64)) {
1497 /* full pair unavailable */
1498 /* XXX statistic */
1499 if (keyix == (i+1)*NBBY) {
1500 /* no slots were appropriate, advance */
1501 continue;
1502 }
1503 goto again;
1504 }
1505 setbit(sc->sc_keymap, keyix);
1506 setbit(sc->sc_keymap, keyix+64);
1507 setbit(sc->sc_keymap, keyix+32);
1508 setbit(sc->sc_keymap, keyix+32+64);
1509 DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1510 "%s: key pair %u,%u %u,%u\n",
1511 __func__, keyix, keyix+64,
1512 keyix+32, keyix+32+64);
1513 *txkeyix = keyix;
1514 *rxkeyix = keyix+32;
1515 return 1;
1516 }
1517 }
1518 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1519 return 0;
1520 #undef N
1521 }
1522
1523 /*
1524 * Allocate a single key cache slot.
1525 */
1526 static int
1527 key_alloc_single(struct ath_softc *sc,
1528 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1529 {
1530 #define N(a) (sizeof(a)/sizeof(a[0]))
1531 u_int i, keyix;
1532
1533 /* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
1534 for (i = 0; i < N(sc->sc_keymap); i++) {
1535 u_int8_t b = sc->sc_keymap[i];
1536 if (b != 0xff) {
1537 /*
1538 * One or more slots are free.
1539 */
1540 keyix = i*NBBY;
1541 while (b & 1)
1542 keyix++, b >>= 1;
1543 setbit(sc->sc_keymap, keyix);
1544 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
1545 __func__, keyix);
1546 *txkeyix = *rxkeyix = keyix;
1547 return 1;
1548 }
1549 }
1550 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
1551 return 0;
1552 #undef N
1553 }
1554
1555 /*
1556 * Allocate one or more key cache slots for a uniacst key. The
1557 * key itself is needed only to identify the cipher. For hardware
1558 * TKIP with split cipher+MIC keys we allocate two key cache slot
1559 * pairs so that we can setup separate TX and RX MIC keys. Note
1560 * that the MIC key for a TKIP key at slot i is assumed by the
1561 * hardware to be at slot i+64. This limits TKIP keys to the first
1562 * 64 entries.
1563 */
1564 static int
1565 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
1566 ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
1567 {
1568 struct ath_softc *sc = ic->ic_ifp->if_softc;
1569
1570 /*
1571 * Group key allocation must be handled specially for
1572 * parts that do not support multicast key cache search
1573 * functionality. For those parts the key id must match
1574 * the h/w key index so lookups find the right key. On
1575 * parts w/ the key search facility we install the sender's
1576 * mac address (with the high bit set) and let the hardware
1577 * find the key w/o using the key id. This is preferred as
1578 * it permits us to support multiple users for adhoc and/or
1579 * multi-station operation.
1580 */
1581 if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
1582 if (!(&ic->ic_nw_keys[0] <= k &&
1583 k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
1584 /* should not happen */
1585 DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1586 "%s: bogus group key\n", __func__);
1587 return 0;
1588 }
1589 /*
1590 * XXX we pre-allocate the global keys so
1591 * have no way to check if they've already been allocated.
1592 */
1593 *keyix = *rxkeyix = k - ic->ic_nw_keys;
1594 return 1;
1595 }
1596
1597 /*
1598 * We allocate two pair for TKIP when using the h/w to do
1599 * the MIC. For everything else, including software crypto,
1600 * we allocate a single entry. Note that s/w crypto requires
1601 * a pass-through slot on the 5211 and 5212. The 5210 does
1602 * not support pass-through cache entries and we map all
1603 * those requests to slot 0.
1604 */
1605 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1606 return key_alloc_single(sc, keyix, rxkeyix);
1607 } else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
1608 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
1609 return key_alloc_2pair(sc, keyix, rxkeyix);
1610 } else {
1611 return key_alloc_single(sc, keyix, rxkeyix);
1612 }
1613 }
1614
1615 /*
1616 * Delete an entry in the key cache allocated by ath_key_alloc.
1617 */
1618 static int
1619 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
1620 {
1621 struct ath_softc *sc = ic->ic_ifp->if_softc;
1622 struct ath_hal *ah = sc->sc_ah;
1623 const struct ieee80211_cipher *cip = k->wk_cipher;
1624 u_int keyix = k->wk_keyix;
1625
1626 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
1627
1628 ath_hal_keyreset(ah, keyix);
1629 /*
1630 * Handle split tx/rx keying required for TKIP with h/w MIC.
1631 */
1632 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1633 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
1634 ath_hal_keyreset(ah, keyix+32); /* RX key */
1635 if (keyix >= IEEE80211_WEP_NKID) {
1636 /*
1637 * Don't touch keymap entries for global keys so
1638 * they are never considered for dynamic allocation.
1639 */
1640 clrbit(sc->sc_keymap, keyix);
1641 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1642 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1643 sc->sc_splitmic) {
1644 clrbit(sc->sc_keymap, keyix+64); /* TX key MIC */
1645 clrbit(sc->sc_keymap, keyix+32); /* RX key */
1646 clrbit(sc->sc_keymap, keyix+32+64); /* RX key MIC */
1647 }
1648 }
1649 return 1;
1650 }
1651
1652 /*
1653 * Set the key cache contents for the specified key. Key cache
1654 * slot(s) must already have been allocated by ath_key_alloc.
1655 */
1656 static int
1657 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
1658 const u_int8_t mac[IEEE80211_ADDR_LEN])
1659 {
1660 struct ath_softc *sc = ic->ic_ifp->if_softc;
1661
1662 return ath_keyset(sc, k, mac, ic->ic_bss);
1663 }
1664
1665 /*
1666 * Block/unblock tx+rx processing while a key change is done.
1667 * We assume the caller serializes key management operations
1668 * so we only need to worry about synchronization with other
1669 * uses that originate in the driver.
1670 */
1671 static void
1672 ath_key_update_begin(struct ieee80211com *ic)
1673 {
1674 struct ifnet *ifp = ic->ic_ifp;
1675 struct ath_softc *sc = ifp->if_softc;
1676
1677 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1678 #if 0
1679 tasklet_disable(&sc->sc_rxtq);
1680 #endif
1681 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */
1682 }
1683
1684 static void
1685 ath_key_update_end(struct ieee80211com *ic)
1686 {
1687 struct ifnet *ifp = ic->ic_ifp;
1688 struct ath_softc *sc = ifp->if_softc;
1689
1690 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1691 IF_UNLOCK(&ifp->if_snd);
1692 #if 0
1693 tasklet_enable(&sc->sc_rxtq);
1694 #endif
1695 }
1696
1697 /*
1698 * Calculate the receive filter according to the
1699 * operating mode and state:
1700 *
1701 * o always accept unicast, broadcast, and multicast traffic
1702 * o maintain current state of phy error reception (the hal
1703 * may enable phy error frames for noise immunity work)
1704 * o probe request frames are accepted only when operating in
1705 * hostap, adhoc, or monitor modes
1706 * o enable promiscuous mode according to the interface state
1707 * o accept beacons:
1708 * - when operating in adhoc mode so the 802.11 layer creates
1709 * node table entries for peers,
1710 * - when operating in station mode for collecting rssi data when
1711 * the station is otherwise quiet, or
1712 * - when scanning
1713 */
1714 static u_int32_t
1715 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
1716 {
1717 struct ieee80211com *ic = &sc->sc_ic;
1718 struct ath_hal *ah = sc->sc_ah;
1719 struct ifnet *ifp = &sc->sc_if;
1720 u_int32_t rfilt;
1721
1722 rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1723 | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1724 if (ic->ic_opmode != IEEE80211_M_STA)
1725 rfilt |= HAL_RX_FILTER_PROBEREQ;
1726 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1727 (ifp->if_flags & IFF_PROMISC))
1728 rfilt |= HAL_RX_FILTER_PROM;
1729 if (ic->ic_opmode == IEEE80211_M_STA ||
1730 ic->ic_opmode == IEEE80211_M_IBSS ||
1731 state == IEEE80211_S_SCAN)
1732 rfilt |= HAL_RX_FILTER_BEACON;
1733 return rfilt;
1734 }
1735
1736 static void
1737 ath_mcastfilter_accum(caddr_t dl, u_int32_t *mfilt)
1738 {
1739 u_int32_t val;
1740 u_int8_t pos;
1741
1742 /* calculate XOR of eight 6bit values */
1743 val = LE_READ_4(dl + 0);
1744 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1745 val = LE_READ_4(dl + 3);
1746 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1747 pos &= 0x3f;
1748 mfilt[pos / 32] |= (1 << (pos % 32));
1749 }
1750
1751 static void
1752 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t *mfilt)
1753 {
1754 struct ifnet *ifp = &sc->sc_if;
1755 struct ether_multi *enm;
1756 struct ether_multistep estep;
1757
1758 mfilt[0] = mfilt[1] = 0;
1759 ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
1760 while (enm != NULL) {
1761 /* XXX Punt on ranges. */
1762 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
1763 mfilt[0] = mfilt[1] = ~((u_int32_t)0);
1764 ifp->if_flags |= IFF_ALLMULTI;
1765 return;
1766 }
1767 ath_mcastfilter_accum(enm->enm_addrlo, mfilt);
1768 ETHER_NEXT_MULTI(estep, enm);
1769 }
1770 ifp->if_flags &= ~IFF_ALLMULTI;
1771 }
1772
1773 static void
1774 ath_mode_init(struct ath_softc *sc)
1775 {
1776 struct ieee80211com *ic = &sc->sc_ic;
1777 struct ath_hal *ah = sc->sc_ah;
1778 u_int32_t rfilt, mfilt[2];
1779 int i;
1780
1781 /* configure rx filter */
1782 rfilt = ath_calcrxfilter(sc, ic->ic_state);
1783 ath_hal_setrxfilter(ah, rfilt);
1784
1785 /* configure operational mode */
1786 ath_hal_setopmode(ah);
1787
1788 /* Write keys to hardware; it may have been powered down. */
1789 ath_key_update_begin(ic);
1790 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1791 ath_key_set(ic,
1792 &ic->ic_crypto.cs_nw_keys[i],
1793 ic->ic_myaddr);
1794 }
1795 ath_key_update_end(ic);
1796
1797 /*
1798 * Handle any link-level address change. Note that we only
1799 * need to force ic_myaddr; any other addresses are handled
1800 * as a byproduct of the ifnet code marking the interface
1801 * down then up.
1802 *
1803 * XXX should get from lladdr instead of arpcom but that's more work
1804 */
1805 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(sc->sc_if.if_sadl));
1806 ath_hal_setmac(ah, ic->ic_myaddr);
1807
1808 /* calculate and install multicast filter */
1809 #ifdef __FreeBSD__
1810 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1811 mfilt[0] = mfilt[1] = 0;
1812 IF_ADDR_LOCK(ifp);
1813 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1814 caddr_t dl;
1815
1816 /* calculate XOR of eight 6bit values */
1817 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
1818 val = LE_READ_4(dl + 0);
1819 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1820 val = LE_READ_4(dl + 3);
1821 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1822 pos &= 0x3f;
1823 mfilt[pos / 32] |= (1 << (pos % 32));
1824 }
1825 IF_ADDR_UNLOCK(ifp);
1826 } else {
1827 mfilt[0] = mfilt[1] = ~0;
1828 #endif
1829 #ifdef __NetBSD__
1830 ath_mcastfilter_compute(sc, mfilt);
1831 #endif
1832 ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1833 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
1834 __func__, rfilt, mfilt[0], mfilt[1]);
1835 }
1836
1837 /*
1838 * Set the slot time based on the current setting.
1839 */
1840 static void
1841 ath_setslottime(struct ath_softc *sc)
1842 {
1843 struct ieee80211com *ic = &sc->sc_ic;
1844 struct ath_hal *ah = sc->sc_ah;
1845
1846 if (ic->ic_flags & IEEE80211_F_SHSLOT)
1847 ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
1848 else
1849 ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
1850 sc->sc_updateslot = OK;
1851 }
1852
1853 /*
1854 * Callback from the 802.11 layer to update the
1855 * slot time based on the current setting.
1856 */
1857 static void
1858 ath_updateslot(struct ifnet *ifp)
1859 {
1860 struct ath_softc *sc = ifp->if_softc;
1861 struct ieee80211com *ic = &sc->sc_ic;
1862
1863 /*
1864 * When not coordinating the BSS, change the hardware
1865 * immediately. For other operation we defer the change
1866 * until beacon updates have propagated to the stations.
1867 */
1868 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1869 sc->sc_updateslot = UPDATE;
1870 else
1871 ath_setslottime(sc);
1872 }
1873
1874 /*
1875 * Setup a h/w transmit queue for beacons.
1876 */
1877 static int
1878 ath_beaconq_setup(struct ath_hal *ah)
1879 {
1880 HAL_TXQ_INFO qi;
1881
1882 memset(&qi, 0, sizeof(qi));
1883 qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
1884 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
1885 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
1886 /* NB: for dynamic turbo, don't enable any other interrupts */
1887 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
1888 return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
1889 }
1890
1891 /*
1892 * Setup the transmit queue parameters for the beacon queue.
1893 */
1894 static int
1895 ath_beaconq_config(struct ath_softc *sc)
1896 {
1897 #define ATH_EXPONENT_TO_VALUE(v) ((1<<(v))-1)
1898 struct ieee80211com *ic = &sc->sc_ic;
1899 struct ath_hal *ah = sc->sc_ah;
1900 HAL_TXQ_INFO qi;
1901
1902 ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
1903 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
1904 /*
1905 * Always burst out beacon and CAB traffic.
1906 */
1907 qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
1908 qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
1909 qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
1910 } else {
1911 struct wmeParams *wmep =
1912 &ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
1913 /*
1914 * Adhoc mode; important thing is to use 2x cwmin.
1915 */
1916 qi.tqi_aifs = wmep->wmep_aifsn;
1917 qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
1918 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
1919 }
1920
1921 if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
1922 device_printf(sc->sc_dev, "unable to update parameters for "
1923 "beacon hardware queue!\n");
1924 return 0;
1925 } else {
1926 ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
1927 return 1;
1928 }
1929 #undef ATH_EXPONENT_TO_VALUE
1930 }
1931
1932 /*
1933 * Allocate and setup an initial beacon frame.
1934 */
1935 static int
1936 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
1937 {
1938 struct ieee80211com *ic = ni->ni_ic;
1939 struct ath_buf *bf;
1940 struct mbuf *m;
1941 int error;
1942
1943 bf = STAILQ_FIRST(&sc->sc_bbuf);
1944 if (bf == NULL) {
1945 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
1946 sc->sc_stats.ast_be_nombuf++; /* XXX */
1947 return ENOMEM; /* XXX */
1948 }
1949 /*
1950 * NB: the beacon data buffer must be 32-bit aligned;
1951 * we assume the mbuf routines will return us something
1952 * with this alignment (perhaps should assert).
1953 */
1954 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
1955 if (m == NULL) {
1956 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
1957 __func__);
1958 sc->sc_stats.ast_be_nombuf++;
1959 return ENOMEM;
1960 }
1961 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
1962 BUS_DMA_NOWAIT);
1963 if (error == 0) {
1964 bf->bf_m = m;
1965 bf->bf_node = ieee80211_ref_node(ni);
1966 } else {
1967 m_freem(m);
1968 }
1969 return error;
1970 }
1971
1972 /*
1973 * Setup the beacon frame for transmit.
1974 */
1975 static void
1976 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
1977 {
1978 #define USE_SHPREAMBLE(_ic) \
1979 (((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
1980 == IEEE80211_F_SHPREAMBLE)
1981 struct ieee80211_node *ni = bf->bf_node;
1982 struct ieee80211com *ic = ni->ni_ic;
1983 struct mbuf *m = bf->bf_m;
1984 struct ath_hal *ah = sc->sc_ah;
1985 struct ath_node *an = ATH_NODE(ni);
1986 struct ath_desc *ds;
1987 int flags, antenna;
1988 u_int8_t rate;
1989
1990 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
1991 __func__, m, m->m_len);
1992
1993 /* setup descriptors */
1994 ds = bf->bf_desc;
1995
1996 flags = HAL_TXDESC_NOACK;
1997 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
1998 ds->ds_link = bf->bf_daddr; /* self-linked */
1999 flags |= HAL_TXDESC_VEOL;
2000 /*
2001 * Let hardware handle antenna switching unless
2002 * the user has selected a transmit antenna
2003 * (sc_txantenna is not 0).
2004 */
2005 antenna = sc->sc_txantenna;
2006 } else {
2007 ds->ds_link = 0;
2008 /*
2009 * Switch antenna every 4 beacons, unless the user
2010 * has selected a transmit antenna (sc_txantenna
2011 * is not 0).
2012 *
2013 * XXX assumes two antenna
2014 */
2015 if (sc->sc_txantenna == 0)
2016 antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2017 else
2018 antenna = sc->sc_txantenna;
2019 }
2020
2021 KASSERT(bf->bf_nseg == 1,
2022 ("multi-segment beacon frame; nseg %u", bf->bf_nseg));
2023 ds->ds_data = bf->bf_segs[0].ds_addr;
2024 /*
2025 * Calculate rate code.
2026 * XXX everything at min xmit rate
2027 */
2028 if (USE_SHPREAMBLE(ic))
2029 rate = an->an_tx_mgtratesp;
2030 else
2031 rate = an->an_tx_mgtrate;
2032 ath_hal_setuptxdesc(ah, ds
2033 , m->m_len + IEEE80211_CRC_LEN /* frame length */
2034 , sizeof(struct ieee80211_frame)/* header length */
2035 , HAL_PKT_TYPE_BEACON /* Atheros packet type */
2036 , ni->ni_txpower /* txpower XXX */
2037 , rate, 1 /* series 0 rate/tries */
2038 , HAL_TXKEYIX_INVALID /* no encryption */
2039 , antenna /* antenna mode */
2040 , flags /* no ack, veol for beacons */
2041 , 0 /* rts/cts rate */
2042 , 0 /* rts/cts duration */
2043 );
2044 /* NB: beacon's BufLen must be a multiple of 4 bytes */
2045 ath_hal_filltxdesc(ah, ds
2046 , roundup(m->m_len, 4) /* buffer length */
2047 , AH_TRUE /* first segment */
2048 , AH_TRUE /* last segment */
2049 , ds /* first descriptor */
2050 );
2051 #undef USE_SHPREAMBLE
2052 }
2053
2054 /*
2055 * Transmit a beacon frame at SWBA. Dynamic updates to the
2056 * frame contents are done as needed and the slot time is
2057 * also adjusted based on current state.
2058 */
2059 static void
2060 ath_beacon_proc(void *arg, int pending)
2061 {
2062 struct ath_softc *sc = arg;
2063 struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
2064 struct ieee80211_node *ni = bf->bf_node;
2065 struct ieee80211com *ic = ni->ni_ic;
2066 struct ath_hal *ah = sc->sc_ah;
2067 struct mbuf *m;
2068 int ncabq, error, otherant;
2069
2070 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2071 __func__, pending);
2072
2073 if (ic->ic_opmode == IEEE80211_M_STA ||
2074 ic->ic_opmode == IEEE80211_M_MONITOR ||
2075 bf == NULL || bf->bf_m == NULL) {
2076 DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
2077 __func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
2078 return;
2079 }
2080 /*
2081 * Check if the previous beacon has gone out. If
2082 * not don't don't try to post another, skip this
2083 * period and wait for the next. Missed beacons
2084 * indicate a problem and should not occur. If we
2085 * miss too many consecutive beacons reset the device.
2086 */
2087 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2088 sc->sc_bmisscount++;
2089 DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2090 "%s: missed %u consecutive beacons\n",
2091 __func__, sc->sc_bmisscount);
2092 if (sc->sc_bmisscount > 3) /* NB: 3 is a guess */
2093 TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask);
2094 return;
2095 }
2096 if (sc->sc_bmisscount != 0) {
2097 DPRINTF(sc, ATH_DEBUG_BEACON,
2098 "%s: resume beacon xmit after %u misses\n",
2099 __func__, sc->sc_bmisscount);
2100 sc->sc_bmisscount = 0;
2101 }
2102
2103 /*
2104 * Update dynamic beacon contents. If this returns
2105 * non-zero then we need to remap the memory because
2106 * the beacon frame changed size (probably because
2107 * of the TIM bitmap).
2108 */
2109 m = bf->bf_m;
2110 ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
2111 if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
2112 /* XXX too conservative? */
2113 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2114 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2115 BUS_DMA_NOWAIT);
2116 if (error != 0) {
2117 if_printf(&sc->sc_if,
2118 "%s: bus_dmamap_load_mbuf failed, error %u\n",
2119 __func__, error);
2120 return;
2121 }
2122 }
2123
2124 /*
2125 * Handle slot time change when a non-ERP station joins/leaves
2126 * an 11g network. The 802.11 layer notifies us via callback,
2127 * we mark updateslot, then wait one beacon before effecting
2128 * the change. This gives associated stations at least one
2129 * beacon interval to note the state change.
2130 */
2131 /* XXX locking */
2132 if (sc->sc_updateslot == UPDATE)
2133 sc->sc_updateslot = COMMIT; /* commit next beacon */
2134 else if (sc->sc_updateslot == COMMIT)
2135 ath_setslottime(sc); /* commit change to h/w */
2136
2137 /*
2138 * Check recent per-antenna transmit statistics and flip
2139 * the default antenna if noticeably more frames went out
2140 * on the non-default antenna.
2141 * XXX assumes 2 anntenae
2142 */
2143 otherant = sc->sc_defant & 1 ? 2 : 1;
2144 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2145 ath_setdefantenna(sc, otherant);
2146 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2147
2148 /*
2149 * Construct tx descriptor.
2150 */
2151 ath_beacon_setup(sc, bf);
2152
2153 /*
2154 * Stop any current dma and put the new frame on the queue.
2155 * This should never fail since we check above that no frames
2156 * are still pending on the queue.
2157 */
2158 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2159 DPRINTF(sc, ATH_DEBUG_ANY,
2160 "%s: beacon queue %u did not stop?\n",
2161 __func__, sc->sc_bhalq);
2162 }
2163 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2164 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2165
2166 /*
2167 * Enable the CAB queue before the beacon queue to
2168 * insure cab frames are triggered by this beacon.
2169 */
2170 if (sc->sc_boff.bo_tim[4] & 1) /* NB: only at DTIM */
2171 ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
2172 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
2173 ath_hal_txstart(ah, sc->sc_bhalq);
2174 DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2175 "%s: TXDP[%u] = %p (%p)\n", __func__,
2176 sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc);
2177
2178 sc->sc_stats.ast_be_xmit++;
2179 }
2180
2181 /*
2182 * Reset the hardware after detecting beacons have stopped.
2183 */
2184 static void
2185 ath_bstuck_proc(void *arg, int pending)
2186 {
2187 struct ath_softc *sc = arg;
2188 struct ifnet *ifp = &sc->sc_if;
2189
2190 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2191 sc->sc_bmisscount);
2192 ath_reset(ifp);
2193 }
2194
2195 /*
2196 * Reclaim beacon resources.
2197 */
2198 static void
2199 ath_beacon_free(struct ath_softc *sc)
2200 {
2201 struct ath_buf *bf;
2202
2203 STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
2204 if (bf->bf_m != NULL) {
2205 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2206 m_freem(bf->bf_m);
2207 bf->bf_m = NULL;
2208 }
2209 if (bf->bf_node != NULL) {
2210 ieee80211_free_node(bf->bf_node);
2211 bf->bf_node = NULL;
2212 }
2213 }
2214 }
2215
2216 /*
2217 * Configure the beacon and sleep timers.
2218 *
2219 * When operating as an AP this resets the TSF and sets
2220 * up the hardware to notify us when we need to issue beacons.
2221 *
2222 * When operating in station mode this sets up the beacon
2223 * timers according to the timestamp of the last received
2224 * beacon and the current TSF, configures PCF and DTIM
2225 * handling, programs the sleep registers so the hardware
2226 * will wakeup in time to receive beacons, and configures
2227 * the beacon miss handling so we'll receive a BMISS
2228 * interrupt when we stop seeing beacons from the AP
2229 * we've associated with.
2230 */
2231 static void
2232 ath_beacon_config(struct ath_softc *sc)
2233 {
2234 #define TSF_TO_TU(_h,_l) (((_h) << 22) | ((_l) >> 10))
2235 struct ath_hal *ah = sc->sc_ah;
2236 struct ieee80211com *ic = &sc->sc_ic;
2237 struct ieee80211_node *ni = ic->ic_bss;
2238 u_int32_t nexttbtt, intval;
2239
2240 /* extract tstamp from last beacon and convert to TU */
2241 nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
2242 LE_READ_4(ni->ni_tstamp.data));
2243 /* NB: the beacon interval is kept internally in TU's */
2244 intval = ni->ni_intval & HAL_BEACON_PERIOD;
2245 if (nexttbtt == 0) /* e.g. for ap mode */
2246 nexttbtt = intval;
2247 else if (intval) /* NB: can be 0 for monitor mode */
2248 nexttbtt = roundup(nexttbtt, intval);
2249 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2250 __func__, nexttbtt, intval, ni->ni_intval);
2251 if (ic->ic_opmode == IEEE80211_M_STA) {
2252 HAL_BEACON_STATE bs;
2253 u_int64_t tsf;
2254 u_int32_t tsftu;
2255 int dtimperiod, dtimcount;
2256 int cfpperiod, cfpcount;
2257
2258 /*
2259 * Setup dtim and cfp parameters according to
2260 * last beacon we received (which may be none).
2261 */
2262 dtimperiod = ni->ni_dtim_period;
2263 if (dtimperiod <= 0) /* NB: 0 if not known */
2264 dtimperiod = 1;
2265 dtimcount = ni->ni_dtim_count;
2266 if (dtimcount >= dtimperiod) /* NB: sanity check */
2267 dtimcount = 0; /* XXX? */
2268 cfpperiod = 1; /* NB: no PCF support yet */
2269 cfpcount = 0;
2270 #define FUDGE 2
2271 /*
2272 * Pull nexttbtt forward to reflect the current
2273 * TSF and calculate dtim+cfp state for the result.
2274 */
2275 tsf = ath_hal_gettsf64(ah);
2276 tsftu = TSF_TO_TU((u_int32_t)(tsf>>32), (u_int32_t)tsf) + FUDGE;
2277 do {
2278 nexttbtt += intval;
2279 if (--dtimcount < 0) {
2280 dtimcount = dtimperiod - 1;
2281 if (--cfpcount < 0)
2282 cfpcount = cfpperiod - 1;
2283 }
2284 } while (nexttbtt < tsftu);
2285 #undef FUDGE
2286 memset(&bs, 0, sizeof(bs));
2287 bs.bs_intval = intval;
2288 bs.bs_nexttbtt = nexttbtt;
2289 bs.bs_dtimperiod = dtimperiod*intval;
2290 bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
2291 bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
2292 bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
2293 bs.bs_cfpmaxduration = 0;
2294 #if 0
2295 /*
2296 * The 802.11 layer records the offset to the DTIM
2297 * bitmap while receiving beacons; use it here to
2298 * enable h/w detection of our AID being marked in
2299 * the bitmap vector (to indicate frames for us are
2300 * pending at the AP).
2301 * XXX do DTIM handling in s/w to WAR old h/w bugs
2302 * XXX enable based on h/w rev for newer chips
2303 */
2304 bs.bs_timoffset = ni->ni_timoff;
2305 #endif
2306 /*
2307 * Calculate the number of consecutive beacons to miss
2308 * before taking a BMISS interrupt. The configuration
2309 * is specified in ms, so we need to convert that to
2310 * TU's and then calculate based on the beacon interval.
2311 * Note that we clamp the result to at most 10 beacons.
2312 */
2313 bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
2314 if (bs.bs_bmissthreshold > 10)
2315 bs.bs_bmissthreshold = 10;
2316 else if (bs.bs_bmissthreshold <= 0)
2317 bs.bs_bmissthreshold = 1;
2318
2319 /*
2320 * Calculate sleep duration. The configuration is
2321 * given in ms. We insure a multiple of the beacon
2322 * period is used. Also, if the sleep duration is
2323 * greater than the DTIM period then it makes senses
2324 * to make it a multiple of that.
2325 *
2326 * XXX fixed at 100ms
2327 */
2328 bs.bs_sleepduration =
2329 roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2330 if (bs.bs_sleepduration > bs.bs_dtimperiod)
2331 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2332
2333 DPRINTF(sc, ATH_DEBUG_BEACON,
2334 "%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2335 , __func__
2336 , tsf, tsftu
2337 , bs.bs_intval
2338 , bs.bs_nexttbtt
2339 , bs.bs_dtimperiod
2340 , bs.bs_nextdtim
2341 , bs.bs_bmissthreshold
2342 , bs.bs_sleepduration
2343 , bs.bs_cfpperiod
2344 , bs.bs_cfpmaxduration
2345 , bs.bs_cfpnext
2346 , bs.bs_timoffset
2347 );
2348 ath_hal_intrset(ah, 0);
2349 ath_hal_beacontimers(ah, &bs);
2350 sc->sc_imask |= HAL_INT_BMISS;
2351 ath_hal_intrset(ah, sc->sc_imask);
2352 } else {
2353 ath_hal_intrset(ah, 0);
2354 if (nexttbtt == intval)
2355 intval |= HAL_BEACON_RESET_TSF;
2356 if (ic->ic_opmode == IEEE80211_M_IBSS) {
2357 /*
2358 * In IBSS mode enable the beacon timers but only
2359 * enable SWBA interrupts if we need to manually
2360 * prepare beacon frames. Otherwise we use a
2361 * self-linked tx descriptor and let the hardware
2362 * deal with things.
2363 */
2364 intval |= HAL_BEACON_ENA;
2365 if (!sc->sc_hasveol)
2366 sc->sc_imask |= HAL_INT_SWBA;
2367 ath_beaconq_config(sc);
2368 } else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2369 /*
2370 * In AP mode we enable the beacon timers and
2371 * SWBA interrupts to prepare beacon frames.
2372 */
2373 intval |= HAL_BEACON_ENA;
2374 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */
2375 ath_beaconq_config(sc);
2376 }
2377 ath_hal_beaconinit(ah, nexttbtt, intval);
2378 sc->sc_bmisscount = 0;
2379 ath_hal_intrset(ah, sc->sc_imask);
2380 /*
2381 * When using a self-linked beacon descriptor in
2382 * ibss mode load it once here.
2383 */
2384 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2385 ath_beacon_proc(sc, 0);
2386 }
2387 #undef TSF_TO_TU
2388 }
2389
2390 static int
2391 ath_descdma_setup(struct ath_softc *sc,
2392 struct ath_descdma *dd, ath_bufhead *head,
2393 const char *name, int nbuf, int ndesc)
2394 {
2395 #define DS2PHYS(_dd, _ds) \
2396 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2397 struct ifnet *ifp = &sc->sc_if;
2398 struct ath_desc *ds;
2399 struct ath_buf *bf;
2400 int i, bsize, error;
2401
2402 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2403 __func__, name, nbuf, ndesc);
2404
2405 dd->dd_name = name;
2406 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2407
2408 /*
2409 * Setup DMA descriptor area.
2410 */
2411 dd->dd_dmat = sc->sc_dmat;
2412
2413 error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE,
2414 0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0);
2415
2416 if (error != 0) {
2417 if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2418 "error %u\n", nbuf * ndesc, dd->dd_name, error);
2419 goto fail0;
2420 }
2421
2422 error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg,
2423 dd->dd_desc_len, (caddr_t *)&dd->dd_desc, BUS_DMA_COHERENT);
2424 if (error != 0) {
2425 if_printf(ifp, "unable to map %u %s descriptors, error = %u\n",
2426 nbuf * ndesc, dd->dd_name, error);
2427 goto fail1;
2428 }
2429
2430 /* allocate descriptors */
2431 error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1,
2432 dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2433 if (error != 0) {
2434 if_printf(ifp, "unable to create dmamap for %s descriptors, "
2435 "error %u\n", dd->dd_name, error);
2436 goto fail2;
2437 }
2438
2439 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc,
2440 dd->dd_desc_len, NULL, BUS_DMA_NOWAIT);
2441 if (error != 0) {
2442 if_printf(ifp, "unable to map %s descriptors, error %u\n",
2443 dd->dd_name, error);
2444 goto fail3;
2445 }
2446
2447 ds = dd->dd_desc;
2448 dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr;
2449 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
2450 __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2451 (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2452
2453 /* allocate rx buffers */
2454 bsize = sizeof(struct ath_buf) * nbuf;
2455 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2456 if (bf == NULL) {
2457 if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2458 dd->dd_name, bsize);
2459 goto fail4;
2460 }
2461 dd->dd_bufptr = bf;
2462
2463 STAILQ_INIT(head);
2464 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2465 bf->bf_desc = ds;
2466 bf->bf_daddr = DS2PHYS(dd, ds);
2467 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc,
2468 MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap);
2469 if (error != 0) {
2470 if_printf(ifp, "unable to create dmamap for %s "
2471 "buffer %u, error %u\n", dd->dd_name, i, error);
2472 ath_descdma_cleanup(sc, dd, head);
2473 return error;
2474 }
2475 STAILQ_INSERT_TAIL(head, bf, bf_list);
2476 }
2477 return 0;
2478 fail4:
2479 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2480 fail3:
2481 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2482 fail2:
2483 bus_dmamem_unmap(dd->dd_dmat, (caddr_t)dd->dd_desc, dd->dd_desc_len);
2484 fail1:
2485 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2486 fail0:
2487 memset(dd, 0, sizeof(*dd));
2488 return error;
2489 #undef DS2PHYS
2490 }
2491
2492 static void
2493 ath_descdma_cleanup(struct ath_softc *sc,
2494 struct ath_descdma *dd, ath_bufhead *head)
2495 {
2496 struct ath_buf *bf;
2497 struct ieee80211_node *ni;
2498
2499 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2500 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2501 bus_dmamem_unmap(dd->dd_dmat, (caddr_t)dd->dd_desc, dd->dd_desc_len);
2502 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2503
2504 STAILQ_FOREACH(bf, head, bf_list) {
2505 if (bf->bf_m) {
2506 m_freem(bf->bf_m);
2507 bf->bf_m = NULL;
2508 }
2509 if (bf->bf_dmamap != NULL) {
2510 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2511 bf->bf_dmamap = NULL;
2512 }
2513 ni = bf->bf_node;
2514 bf->bf_node = NULL;
2515 if (ni != NULL) {
2516 /*
2517 * Reclaim node reference.
2518 */
2519 ieee80211_free_node(ni);
2520 }
2521 }
2522
2523 STAILQ_INIT(head);
2524 free(dd->dd_bufptr, M_ATHDEV);
2525 memset(dd, 0, sizeof(*dd));
2526 }
2527
2528 static int
2529 ath_desc_alloc(struct ath_softc *sc)
2530 {
2531 int error;
2532
2533 error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2534 "rx", ATH_RXBUF, 1);
2535 if (error != 0)
2536 return error;
2537
2538 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2539 "tx", ATH_TXBUF, ATH_TXDESC);
2540 if (error != 0) {
2541 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2542 return error;
2543 }
2544
2545 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2546 "beacon", 1, 1);
2547 if (error != 0) {
2548 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2549 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2550 return error;
2551 }
2552 return 0;
2553 }
2554
2555 static void
2556 ath_desc_free(struct ath_softc *sc)
2557 {
2558
2559 if (sc->sc_bdma.dd_desc_len != 0)
2560 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2561 if (sc->sc_txdma.dd_desc_len != 0)
2562 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2563 if (sc->sc_rxdma.dd_desc_len != 0)
2564 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2565 }
2566
2567 static struct ieee80211_node *
2568 ath_node_alloc(struct ieee80211_node_table *nt)
2569 {
2570 struct ieee80211com *ic = nt->nt_ic;
2571 struct ath_softc *sc = ic->ic_ifp->if_softc;
2572 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2573 struct ath_node *an;
2574
2575 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2576 if (an == NULL) {
2577 /* XXX stat+msg */
2578 return NULL;
2579 }
2580 an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
2581 an->an_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
2582 an->an_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
2583 an->an_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
2584 ath_rate_node_init(sc, an);
2585
2586 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2587 return &an->an_node;
2588 }
2589
2590 static void
2591 ath_node_free(struct ieee80211_node *ni)
2592 {
2593 struct ieee80211com *ic = ni->ni_ic;
2594 struct ath_softc *sc = ic->ic_ifp->if_softc;
2595
2596 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2597
2598 ath_rate_node_cleanup(sc, ATH_NODE(ni));
2599 sc->sc_node_free(ni);
2600 }
2601
2602 static u_int8_t
2603 ath_node_getrssi(const struct ieee80211_node *ni)
2604 {
2605 #define HAL_EP_RND(x, mul) \
2606 ((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
2607 u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
2608 int32_t rssi;
2609
2610 /*
2611 * When only one frame is received there will be no state in
2612 * avgrssi so fallback on the value recorded by the 802.11 layer.
2613 */
2614 if (avgrssi != ATH_RSSI_DUMMY_MARKER)
2615 rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
2616 else
2617 rssi = ni->ni_rssi;
2618 /* NB: theoretically we shouldn't need this, but be paranoid */
2619 return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
2620 #undef HAL_EP_RND
2621 }
2622
2623 static int
2624 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2625 {
2626 struct ath_hal *ah = sc->sc_ah;
2627 int error;
2628 struct mbuf *m;
2629 struct ath_desc *ds;
2630
2631 m = bf->bf_m;
2632 if (m == NULL) {
2633 /*
2634 * NB: by assigning a page to the rx dma buffer we
2635 * implicitly satisfy the Atheros requirement that
2636 * this buffer be cache-line-aligned and sized to be
2637 * multiple of the cache line size. Not doing this
2638 * causes weird stuff to happen (for the 5210 at least).
2639 */
2640 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2641 if (m == NULL) {
2642 DPRINTF(sc, ATH_DEBUG_ANY,
2643 "%s: no mbuf/cluster\n", __func__);
2644 sc->sc_stats.ast_rx_nombuf++;
2645 return ENOMEM;
2646 }
2647 bf->bf_m = m;
2648 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2649
2650 error = bus_dmamap_load_mbuf(sc->sc_dmat,
2651 bf->bf_dmamap, m,
2652 BUS_DMA_NOWAIT);
2653 if (error != 0) {
2654 DPRINTF(sc, ATH_DEBUG_ANY,
2655 "%s: bus_dmamap_load_mbuf failed; error %d\n",
2656 __func__, error);
2657 sc->sc_stats.ast_rx_busdma++;
2658 return error;
2659 }
2660 KASSERT(bf->bf_nseg == 1,
2661 ("multi-segment packet; nseg %u", bf->bf_nseg));
2662 }
2663 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2664 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2665
2666 /*
2667 * Setup descriptors. For receive we always terminate
2668 * the descriptor list with a self-linked entry so we'll
2669 * not get overrun under high load (as can happen with a
2670 * 5212 when ANI processing enables PHY error frames).
2671 *
2672 * To insure the last descriptor is self-linked we create
2673 * each descriptor as self-linked and add it to the end. As
2674 * each additional descriptor is added the previous self-linked
2675 * entry is ``fixed'' naturally. This should be safe even
2676 * if DMA is happening. When processing RX interrupts we
2677 * never remove/process the last, self-linked, entry on the
2678 * descriptor list. This insures the hardware always has
2679 * someplace to write a new frame.
2680 */
2681 ds = bf->bf_desc;
2682 ds->ds_link = bf->bf_daddr; /* link to self */
2683 ds->ds_data = bf->bf_segs[0].ds_addr;
2684 ath_hal_setuprxdesc(ah, ds
2685 , m->m_len /* buffer size */
2686 , 0
2687 );
2688
2689 if (sc->sc_rxlink != NULL)
2690 *sc->sc_rxlink = bf->bf_daddr;
2691 sc->sc_rxlink = &ds->ds_link;
2692 return 0;
2693 }
2694
2695 /*
2696 * Extend 15-bit time stamp from rx descriptor to
2697 * a full 64-bit TSF using the current h/w TSF.
2698 */
2699 static __inline u_int64_t
2700 ath_extend_tsf(struct ath_hal *ah, u_int32_t rstamp)
2701 {
2702 u_int64_t tsf;
2703
2704 tsf = ath_hal_gettsf64(ah);
2705 if ((tsf & 0x7fff) < rstamp)
2706 tsf -= 0x8000;
2707 return ((tsf &~ 0x7fff) | rstamp);
2708 }
2709
2710 /*
2711 * Intercept management frames to collect beacon rssi data
2712 * and to do ibss merges.
2713 */
2714 static void
2715 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2716 struct ieee80211_node *ni,
2717 int subtype, int rssi, u_int32_t rstamp)
2718 {
2719 struct ath_softc *sc = ic->ic_ifp->if_softc;
2720
2721 /*
2722 * Call up first so subsequent work can use information
2723 * potentially stored in the node (e.g. for ibss merge).
2724 */
2725 sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
2726 switch (subtype) {
2727 case IEEE80211_FC0_SUBTYPE_BEACON:
2728 /* update rssi statistics for use by the hal */
2729 ATH_RSSI_LPF(ATH_NODE(ni)->an_halstats.ns_avgbrssi, rssi);
2730 /* fall thru... */
2731 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2732 if (ic->ic_opmode == IEEE80211_M_IBSS &&
2733 ic->ic_state == IEEE80211_S_RUN) {
2734 u_int64_t tsf = ath_extend_tsf(sc->sc_ah, rstamp);
2735
2736 /*
2737 * Handle ibss merge as needed; check the tsf on the
2738 * frame before attempting the merge. The 802.11 spec
2739 * says the station should change it's bssid to match
2740 * the oldest station with the same ssid, where oldest
2741 * is determined by the tsf. Note that hardware
2742 * reconfiguration happens through callback to
2743 * ath_newstate as the state machine will go from
2744 * RUN -> RUN when this happens.
2745 */
2746 if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
2747 DPRINTF(sc, ATH_DEBUG_STATE,
2748 "ibss merge, rstamp %u tsf %ju "
2749 "tstamp %ju\n", rstamp, (uintmax_t)tsf,
2750 (uintmax_t)ni->ni_tstamp.tsf);
2751 (void) ieee80211_ibss_merge(ni);
2752 }
2753 }
2754 break;
2755 }
2756 }
2757
2758 /*
2759 * Set the default antenna.
2760 */
2761 static void
2762 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
2763 {
2764 struct ath_hal *ah = sc->sc_ah;
2765
2766 /* XXX block beacon interrupts */
2767 ath_hal_setdefantenna(ah, antenna);
2768 if (sc->sc_defant != antenna)
2769 sc->sc_stats.ast_ant_defswitch++;
2770 sc->sc_defant = antenna;
2771 sc->sc_rxotherant = 0;
2772 }
2773
2774 static void
2775 ath_rx_proc(void *arg, int npending)
2776 {
2777 #define PA2DESC(_sc, _pa) \
2778 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
2779 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
2780 struct ath_softc *sc = arg;
2781 struct ath_buf *bf;
2782 struct ieee80211com *ic = &sc->sc_ic;
2783 struct ifnet *ifp = &sc->sc_if;
2784 struct ath_hal *ah = sc->sc_ah;
2785 struct ath_desc *ds;
2786 struct mbuf *m;
2787 struct ieee80211_node *ni;
2788 struct ath_node *an;
2789 int len, type;
2790 u_int phyerr;
2791 HAL_STATUS status;
2792
2793 NET_LOCK_GIANT(); /* XXX */
2794
2795 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
2796 do {
2797 bf = STAILQ_FIRST(&sc->sc_rxbuf);
2798 if (bf == NULL) { /* NB: shouldn't happen */
2799 if_printf(ifp, "%s: no buffer!\n", __func__);
2800 break;
2801 }
2802 ds = bf->bf_desc;
2803 if (ds->ds_link == bf->bf_daddr) {
2804 /* NB: never process the self-linked entry at the end */
2805 break;
2806 }
2807 m = bf->bf_m;
2808 if (m == NULL) { /* NB: shouldn't happen */
2809 if_printf(ifp, "%s: no mbuf!\n", __func__);
2810 continue;
2811 }
2812 /* XXX sync descriptor memory */
2813 /*
2814 * Must provide the virtual address of the current
2815 * descriptor, the physical address, and the virtual
2816 * address of the next descriptor in the h/w chain.
2817 * This allows the HAL to look ahead to see if the
2818 * hardware is done with a descriptor by checking the
2819 * done bit in the following descriptor and the address
2820 * of the current descriptor the DMA engine is working
2821 * on. All this is necessary because of our use of
2822 * a self-linked list to avoid rx overruns.
2823 */
2824 status = ath_hal_rxprocdesc(ah, ds,
2825 bf->bf_daddr, PA2DESC(sc, ds->ds_link));
2826 #ifdef AR_DEBUG
2827 if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
2828 ath_printrxbuf(bf, status == HAL_OK);
2829 #endif
2830 if (status == HAL_EINPROGRESS)
2831 break;
2832 STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
2833 if (ds->ds_rxstat.rs_more) {
2834 /*
2835 * Frame spans multiple descriptors; this
2836 * cannot happen yet as we don't support
2837 * jumbograms. If not in monitor mode,
2838 * discard the frame.
2839 */
2840 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2841 sc->sc_stats.ast_rx_toobig++;
2842 goto rx_next;
2843 }
2844 /* fall thru for monitor mode handling... */
2845 } else if (ds->ds_rxstat.rs_status != 0) {
2846 if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
2847 sc->sc_stats.ast_rx_crcerr++;
2848 if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
2849 sc->sc_stats.ast_rx_fifoerr++;
2850 if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
2851 sc->sc_stats.ast_rx_phyerr++;
2852 phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
2853 sc->sc_stats.ast_rx_phy[phyerr]++;
2854 goto rx_next;
2855 }
2856 if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
2857 /*
2858 * Decrypt error. If the error occurred
2859 * because there was no hardware key, then
2860 * let the frame through so the upper layers
2861 * can process it. This is necessary for 5210
2862 * parts which have no way to setup a ``clear''
2863 * key cache entry.
2864 *
2865 * XXX do key cache faulting
2866 */
2867 if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
2868 goto rx_accept;
2869 sc->sc_stats.ast_rx_badcrypt++;
2870 }
2871 if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
2872 sc->sc_stats.ast_rx_badmic++;
2873 /*
2874 * Do minimal work required to hand off
2875 * the 802.11 header for notifcation.
2876 */
2877 /* XXX frag's and qos frames */
2878 len = ds->ds_rxstat.rs_datalen;
2879 if (len >= sizeof (struct ieee80211_frame)) {
2880 bus_dmamap_sync(sc->sc_dmat,
2881 bf->bf_dmamap,
2882 0, bf->bf_dmamap->dm_mapsize,
2883 BUS_DMASYNC_POSTREAD);
2884 ieee80211_notify_michael_failure(ic,
2885 mtod(m, struct ieee80211_frame *),
2886 sc->sc_splitmic ?
2887 ds->ds_rxstat.rs_keyix-32 :
2888 ds->ds_rxstat.rs_keyix
2889 );
2890 }
2891 }
2892 ifp->if_ierrors++;
2893 /*
2894 * Reject error frames, we normally don't want
2895 * to see them in monitor mode (in monitor mode
2896 * allow through packets that have crypto problems).
2897 */
2898 if ((ds->ds_rxstat.rs_status &~
2899 (HAL_RXERR_DECRYPT|HAL_RXERR_MIC)) ||
2900 sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
2901 goto rx_next;
2902 }
2903 rx_accept:
2904 /*
2905 * Sync and unmap the frame. At this point we're
2906 * committed to passing the mbuf somewhere so clear
2907 * bf_m; this means a new sk_buff must be allocated
2908 * when the rx descriptor is setup again to receive
2909 * another frame.
2910 */
2911 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
2912 0, bf->bf_dmamap->dm_mapsize,
2913 BUS_DMASYNC_POSTREAD);
2914 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2915 bf->bf_m = NULL;
2916
2917 m->m_pkthdr.rcvif = ifp;
2918 len = ds->ds_rxstat.rs_datalen;
2919 m->m_pkthdr.len = m->m_len = len;
2920
2921 sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
2922
2923 #if NBPFILTER > 0
2924 if (sc->sc_drvbpf) {
2925 u_int8_t rix;
2926
2927 /*
2928 * Discard anything shorter than an ack or cts.
2929 */
2930 if (len < IEEE80211_ACK_LEN) {
2931 DPRINTF(sc, ATH_DEBUG_RECV,
2932 "%s: runt packet %d\n",
2933 __func__, len);
2934 sc->sc_stats.ast_rx_tooshort++;
2935 m_freem(m);
2936 goto rx_next;
2937 }
2938 rix = ds->ds_rxstat.rs_rate;
2939 sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
2940 sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
2941 sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi;
2942 sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
2943 /* XXX TSF */
2944
2945 bpf_mtap2(sc->sc_drvbpf,
2946 &sc->sc_rx_th, sc->sc_rx_th_len, m);
2947 }
2948 #endif
2949
2950 /*
2951 * From this point on we assume the frame is at least
2952 * as large as ieee80211_frame_min; verify that.
2953 */
2954 if (len < IEEE80211_MIN_LEN) {
2955 DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
2956 __func__, len);
2957 sc->sc_stats.ast_rx_tooshort++;
2958 m_freem(m);
2959 goto rx_next;
2960 }
2961
2962 if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
2963 ieee80211_dump_pkt(mtod(m, caddr_t), len,
2964 sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
2965 ds->ds_rxstat.rs_rssi);
2966 }
2967
2968 m_adj(m, -IEEE80211_CRC_LEN);
2969
2970 /*
2971 * Locate the node for sender, track state, and then
2972 * pass the (referenced) node up to the 802.11 layer
2973 * for its use.
2974 */
2975 ni = ieee80211_find_rxnode_withkey(ic,
2976 mtod(m, const struct ieee80211_frame_min *),
2977 ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
2978 IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
2979 /*
2980 * Track rx rssi and do any rx antenna management.
2981 */
2982 an = ATH_NODE(ni);
2983 ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
2984 /*
2985 * Send frame up for processing.
2986 */
2987 type = ieee80211_input(ic, m, ni,
2988 ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
2989 ieee80211_free_node(ni);
2990 if (sc->sc_diversity) {
2991 /*
2992 * When using fast diversity, change the default rx
2993 * antenna if diversity chooses the other antenna 3
2994 * times in a row.
2995 */
2996 if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
2997 if (++sc->sc_rxotherant >= 3)
2998 ath_setdefantenna(sc,
2999 ds->ds_rxstat.rs_antenna);
3000 } else
3001 sc->sc_rxotherant = 0;
3002 }
3003 if (sc->sc_softled) {
3004 /*
3005 * Blink for any data frame. Otherwise do a
3006 * heartbeat-style blink when idle. The latter
3007 * is mainly for station mode where we depend on
3008 * periodic beacon frames to trigger the poll event.
3009 */
3010 if (type == IEEE80211_FC0_TYPE_DATA) {
3011 sc->sc_rxrate = ds->ds_rxstat.rs_rate;
3012 ath_led_event(sc, ATH_LED_RX);
3013 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
3014 ath_led_event(sc, ATH_LED_POLL);
3015 }
3016 rx_next:
3017 STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
3018 } while (ath_rxbuf_init(sc, bf) == 0);
3019
3020 /* rx signal state monitoring */
3021 ath_hal_rxmonitor(ah, &ATH_NODE(ic->ic_bss)->an_halstats);
3022
3023 #ifdef __NetBSD__
3024 /* XXX Why isn't this necessary in FreeBSD? */
3025 if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
3026 ath_start(ifp);
3027 #endif /* __NetBSD__ */
3028
3029 NET_UNLOCK_GIANT(); /* XXX */
3030 #undef PA2DESC
3031 }
3032
3033 /*
3034 * Setup a h/w transmit queue.
3035 */
3036 static struct ath_txq *
3037 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3038 {
3039 #define N(a) (sizeof(a)/sizeof(a[0]))
3040 struct ath_hal *ah = sc->sc_ah;
3041 HAL_TXQ_INFO qi;
3042 int qnum;
3043
3044 memset(&qi, 0, sizeof(qi));
3045 qi.tqi_subtype = subtype;
3046 qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3047 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3048 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3049 /*
3050 * Enable interrupts only for EOL and DESC conditions.
3051 * We mark tx descriptors to receive a DESC interrupt
3052 * when a tx queue gets deep; otherwise waiting for the
3053 * EOL to reap descriptors. Note that this is done to
3054 * reduce interrupt load and this only defers reaping
3055 * descriptors, never transmitting frames. Aside from
3056 * reducing interrupts this also permits more concurrency.
3057 * The only potential downside is if the tx queue backs
3058 * up in which case the top half of the kernel may backup
3059 * due to a lack of tx descriptors.
3060 */
3061 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE | TXQ_FLAG_TXDESCINT_ENABLE;
3062 qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3063 if (qnum == -1) {
3064 /*
3065 * NB: don't print a message, this happens
3066 * normally on parts with too few tx queues
3067 */
3068 return NULL;
3069 }
3070 if (qnum >= N(sc->sc_txq)) {
3071 device_printf(sc->sc_dev,
3072 "hal qnum %u out of range, max %zu!\n",
3073 qnum, N(sc->sc_txq));
3074 ath_hal_releasetxqueue(ah, qnum);
3075 return NULL;
3076 }
3077 if (!ATH_TXQ_SETUP(sc, qnum)) {
3078 struct ath_txq *txq = &sc->sc_txq[qnum];
3079
3080 txq->axq_qnum = qnum;
3081 txq->axq_depth = 0;
3082 txq->axq_intrcnt = 0;
3083 txq->axq_link = NULL;
3084 STAILQ_INIT(&txq->axq_q);
3085 ATH_TXQ_LOCK_INIT(sc, txq);
3086 sc->sc_txqsetup |= 1<<qnum;
3087 }
3088 return &sc->sc_txq[qnum];
3089 #undef N
3090 }
3091
3092 /*
3093 * Setup a hardware data transmit queue for the specified
3094 * access control. The hal may not support all requested
3095 * queues in which case it will return a reference to a
3096 * previously setup queue. We record the mapping from ac's
3097 * to h/w queues for use by ath_tx_start and also track
3098 * the set of h/w queues being used to optimize work in the
3099 * transmit interrupt handler and related routines.
3100 */
3101 static int
3102 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3103 {
3104 #define N(a) (sizeof(a)/sizeof(a[0]))
3105 struct ath_txq *txq;
3106
3107 if (ac >= N(sc->sc_ac2q)) {
3108 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3109 ac, N(sc->sc_ac2q));
3110 return 0;
3111 }
3112 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3113 if (txq != NULL) {
3114 sc->sc_ac2q[ac] = txq;
3115 return 1;
3116 } else
3117 return 0;
3118 #undef N
3119 }
3120
3121 /*
3122 * Update WME parameters for a transmit queue.
3123 */
3124 static int
3125 ath_txq_update(struct ath_softc *sc, int ac)
3126 {
3127 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1)
3128 #define ATH_TXOP_TO_US(v) (v<<5)
3129 struct ieee80211com *ic = &sc->sc_ic;
3130 struct ath_txq *txq = sc->sc_ac2q[ac];
3131 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3132 struct ath_hal *ah = sc->sc_ah;
3133 HAL_TXQ_INFO qi;
3134
3135 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3136 qi.tqi_aifs = wmep->wmep_aifsn;
3137 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3138 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3139 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3140
3141 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3142 device_printf(sc->sc_dev, "unable to update hardware queue "
3143 "parameters for %s traffic!\n",
3144 ieee80211_wme_acnames[ac]);
3145 return 0;
3146 } else {
3147 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3148 return 1;
3149 }
3150 #undef ATH_TXOP_TO_US
3151 #undef ATH_EXPONENT_TO_VALUE
3152 }
3153
3154 /*
3155 * Callback from the 802.11 layer to update WME parameters.
3156 */
3157 static int
3158 ath_wme_update(struct ieee80211com *ic)
3159 {
3160 struct ath_softc *sc = ic->ic_ifp->if_softc;
3161
3162 return !ath_txq_update(sc, WME_AC_BE) ||
3163 !ath_txq_update(sc, WME_AC_BK) ||
3164 !ath_txq_update(sc, WME_AC_VI) ||
3165 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3166 }
3167
3168 /*
3169 * Reclaim resources for a setup queue.
3170 */
3171 static void
3172 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3173 {
3174
3175 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3176 ATH_TXQ_LOCK_DESTROY(txq);
3177 sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3178 }
3179
3180 /*
3181 * Reclaim all tx queue resources.
3182 */
3183 static void
3184 ath_tx_cleanup(struct ath_softc *sc)
3185 {
3186 int i;
3187
3188 ATH_TXBUF_LOCK_DESTROY(sc);
3189 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3190 if (ATH_TXQ_SETUP(sc, i))
3191 ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3192 }
3193
3194 /*
3195 * Defragment an mbuf chain, returning at most maxfrags separate
3196 * mbufs+clusters. If this is not possible NULL is returned and
3197 * the original mbuf chain is left in it's present (potentially
3198 * modified) state. We use two techniques: collapsing consecutive
3199 * mbufs and replacing consecutive mbufs by a cluster.
3200 */
3201 static struct mbuf *
3202 ath_defrag(struct mbuf *m0, int how, int maxfrags)
3203 {
3204 struct mbuf *m, *n, *n2, **prev;
3205 u_int curfrags;
3206
3207 /*
3208 * Calculate the current number of frags.
3209 */
3210 curfrags = 0;
3211 for (m = m0; m != NULL; m = m->m_next)
3212 curfrags++;
3213 /*
3214 * First, try to collapse mbufs. Note that we always collapse
3215 * towards the front so we don't need to deal with moving the
3216 * pkthdr. This may be suboptimal if the first mbuf has much
3217 * less data than the following.
3218 */
3219 m = m0;
3220 again:
3221 for (;;) {
3222 n = m->m_next;
3223 if (n == NULL)
3224 break;
3225 if ((m->m_flags & M_RDONLY) == 0 &&
3226 n->m_len < M_TRAILINGSPACE(m)) {
3227 bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
3228 n->m_len);
3229 m->m_len += n->m_len;
3230 m->m_next = n->m_next;
3231 m_free(n);
3232 if (--curfrags <= maxfrags)
3233 return m0;
3234 } else
3235 m = n;
3236 }
3237 KASSERT(maxfrags > 1,
3238 ("maxfrags %u, but normal collapse failed", maxfrags));
3239 /*
3240 * Collapse consecutive mbufs to a cluster.
3241 */
3242 prev = &m0->m_next; /* NB: not the first mbuf */
3243 while ((n = *prev) != NULL) {
3244 if ((n2 = n->m_next) != NULL &&
3245 n->m_len + n2->m_len < MCLBYTES) {
3246 m = m_getcl(how, MT_DATA, 0);
3247 if (m == NULL)
3248 goto bad;
3249 bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
3250 bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
3251 n2->m_len);
3252 m->m_len = n->m_len + n2->m_len;
3253 m->m_next = n2->m_next;
3254 *prev = m;
3255 m_free(n);
3256 m_free(n2);
3257 if (--curfrags <= maxfrags) /* +1 cl -2 mbufs */
3258 return m0;
3259 /*
3260 * Still not there, try the normal collapse
3261 * again before we allocate another cluster.
3262 */
3263 goto again;
3264 }
3265 prev = &n->m_next;
3266 }
3267 /*
3268 * No place where we can collapse to a cluster; punt.
3269 * This can occur if, for example, you request 2 frags
3270 * but the packet requires that both be clusters (we
3271 * never reallocate the first mbuf to avoid moving the
3272 * packet header).
3273 */
3274 bad:
3275 return NULL;
3276 }
3277
3278 static int
3279 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
3280 struct mbuf *m0)
3281 {
3282 #define CTS_DURATION \
3283 ath_hal_computetxtime(ah, rt, IEEE80211_ACK_LEN, cix, AH_TRUE)
3284 #define updateCTSForBursting(_ah, _ds, _txq) \
3285 ath_hal_updateCTSForBursting(_ah, _ds, \
3286 _txq->axq_linkbuf != NULL ? _txq->axq_linkbuf->bf_desc : NULL, \
3287 _txq->axq_lastdsWithCTS, _txq->axq_gatingds, \
3288 txopLimit, CTS_DURATION)
3289 struct ieee80211com *ic = &sc->sc_ic;
3290 struct ath_hal *ah = sc->sc_ah;
3291 struct ifnet *ifp = &sc->sc_if;
3292 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
3293 int i, error, iswep, ismcast, keyix, hdrlen, pktlen, try0;
3294 u_int8_t rix, txrate, ctsrate;
3295 u_int8_t cix = 0xff; /* NB: silence compiler */
3296 struct ath_desc *ds, *ds0;
3297 struct ath_txq *txq;
3298 struct ieee80211_frame *wh;
3299 u_int subtype, flags, ctsduration;
3300 HAL_PKT_TYPE atype;
3301 const HAL_RATE_TABLE *rt;
3302 HAL_BOOL shortPreamble;
3303 struct ath_node *an;
3304 struct mbuf *m;
3305 u_int pri;
3306
3307 wh = mtod(m0, struct ieee80211_frame *);
3308 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
3309 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3310 hdrlen = ieee80211_anyhdrsize(wh);
3311 /*
3312 * Packet length must not include any
3313 * pad bytes; deduct them here.
3314 */
3315 pktlen = m0->m_pkthdr.len - (hdrlen & 3);
3316
3317 if (iswep) {
3318 const struct ieee80211_cipher *cip;
3319 struct ieee80211_key *k;
3320
3321 /*
3322 * Construct the 802.11 header+trailer for an encrypted
3323 * frame. The only reason this can fail is because of an
3324 * unknown or unsupported cipher/key type.
3325 */
3326 k = ieee80211_crypto_encap(ic, ni, m0);
3327 if (k == NULL) {
3328 /*
3329 * This can happen when the key is yanked after the
3330 * frame was queued. Just discard the frame; the
3331 * 802.11 layer counts failures and provides
3332 * debugging/diagnostics.
3333 */
3334 m_freem(m0);
3335 return EIO;
3336 }
3337 /*
3338 * Adjust the packet + header lengths for the crypto
3339 * additions and calculate the h/w key index. When
3340 * a s/w mic is done the frame will have had any mic
3341 * added to it prior to entry so skb->len above will
3342 * account for it. Otherwise we need to add it to the
3343 * packet length.
3344 */
3345 cip = k->wk_cipher;
3346 hdrlen += cip->ic_header;
3347 pktlen += cip->ic_header + cip->ic_trailer;
3348 if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0)
3349 pktlen += cip->ic_miclen;
3350 keyix = k->wk_keyix;
3351
3352 /* packet header may have moved, reset our local pointer */
3353 wh = mtod(m0, struct ieee80211_frame *);
3354 } else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
3355 /*
3356 * Use station key cache slot, if assigned.
3357 */
3358 keyix = ni->ni_ucastkey.wk_keyix;
3359 if (keyix == IEEE80211_KEYIX_NONE)
3360 keyix = HAL_TXKEYIX_INVALID;
3361 } else
3362 keyix = HAL_TXKEYIX_INVALID;
3363
3364 pktlen += IEEE80211_CRC_LEN;
3365
3366 /*
3367 * Load the DMA map so any coalescing is done. This
3368 * also calculates the number of descriptors we need.
3369 */
3370 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3371 BUS_DMA_NOWAIT);
3372 if (error == EFBIG) {
3373 /* XXX packet requires too many descriptors */
3374 bf->bf_nseg = ATH_TXDESC+1;
3375 } else if (error != 0) {
3376 sc->sc_stats.ast_tx_busdma++;
3377 m_freem(m0);
3378 return error;
3379 }
3380 /*
3381 * Discard null packets and check for packets that
3382 * require too many TX descriptors. We try to convert
3383 * the latter to a cluster.
3384 */
3385 if (error == EFBIG) { /* too many desc's, linearize */
3386 sc->sc_stats.ast_tx_linear++;
3387 m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
3388 if (m == NULL) {
3389 m_freem(m0);
3390 sc->sc_stats.ast_tx_nombuf++;
3391 return ENOMEM;
3392 }
3393 m0 = m;
3394 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3395 BUS_DMA_NOWAIT);
3396 if (error != 0) {
3397 sc->sc_stats.ast_tx_busdma++;
3398 m_freem(m0);
3399 return error;
3400 }
3401 KASSERT(bf->bf_nseg <= ATH_TXDESC,
3402 ("too many segments after defrag; nseg %u", bf->bf_nseg));
3403 } else if (bf->bf_nseg == 0) { /* null packet, discard */
3404 sc->sc_stats.ast_tx_nodata++;
3405 m_freem(m0);
3406 return EIO;
3407 }
3408 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
3409 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
3410 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
3411 bf->bf_m = m0;
3412 bf->bf_node = ni; /* NB: held reference */
3413
3414 /* setup descriptors */
3415 ds = bf->bf_desc;
3416 rt = sc->sc_currates;
3417 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3418
3419 /*
3420 * NB: the 802.11 layer marks whether or not we should
3421 * use short preamble based on the current mode and
3422 * negotiated parameters.
3423 */
3424 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3425 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) {
3426 shortPreamble = AH_TRUE;
3427 sc->sc_stats.ast_tx_shortpre++;
3428 } else {
3429 shortPreamble = AH_FALSE;
3430 }
3431
3432 an = ATH_NODE(ni);
3433 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */
3434 /*
3435 * Calculate Atheros packet type from IEEE80211 packet header,
3436 * setup for rate calculations, and select h/w transmit queue.
3437 */
3438 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3439 case IEEE80211_FC0_TYPE_MGT:
3440 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3441 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
3442 atype = HAL_PKT_TYPE_BEACON;
3443 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3444 atype = HAL_PKT_TYPE_PROBE_RESP;
3445 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
3446 atype = HAL_PKT_TYPE_ATIM;
3447 else
3448 atype = HAL_PKT_TYPE_NORMAL; /* XXX */
3449 rix = 0; /* XXX lowest rate */
3450 try0 = ATH_TXMAXTRY;
3451 if (shortPreamble)
3452 txrate = an->an_tx_mgtratesp;
3453 else
3454 txrate = an->an_tx_mgtrate;
3455 /* NB: force all management frames to highest queue */
3456 if (ni->ni_flags & IEEE80211_NODE_QOS) {
3457 /* NB: force all management frames to highest queue */
3458 pri = WME_AC_VO;
3459 } else
3460 pri = WME_AC_BE;
3461 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
3462 break;
3463 case IEEE80211_FC0_TYPE_CTL:
3464 atype = HAL_PKT_TYPE_PSPOLL; /* stop setting of duration */
3465 rix = 0; /* XXX lowest rate */
3466 try0 = ATH_TXMAXTRY;
3467 if (shortPreamble)
3468 txrate = an->an_tx_mgtratesp;
3469 else
3470 txrate = an->an_tx_mgtrate;
3471 /* NB: force all ctl frames to highest queue */
3472 if (ni->ni_flags & IEEE80211_NODE_QOS) {
3473 /* NB: force all ctl frames to highest queue */
3474 pri = WME_AC_VO;
3475 } else
3476 pri = WME_AC_BE;
3477 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
3478 break;
3479 case IEEE80211_FC0_TYPE_DATA:
3480 atype = HAL_PKT_TYPE_NORMAL; /* default */
3481 /*
3482 * Data frames; consult the rate control module for
3483 * unicast frames. Send multicast frames at the
3484 * lowest rate.
3485 */
3486 if (!ismcast) {
3487 ath_rate_findrate(sc, an, shortPreamble, pktlen,
3488 &rix, &try0, &txrate);
3489 } else {
3490 rix = 0;
3491 try0 = ATH_TXMAXTRY;
3492 txrate = an->an_tx_mgtrate;
3493 }
3494 sc->sc_txrate = txrate; /* for LED blinking */
3495 /*
3496 * Default all non-QoS traffic to the background queue.
3497 */
3498 if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
3499 pri = M_WME_GETAC(m0);
3500 if (cap->cap_wmeParams[pri].wmep_noackPolicy) {
3501 flags |= HAL_TXDESC_NOACK;
3502 sc->sc_stats.ast_tx_noack++;
3503 }
3504 } else
3505 pri = WME_AC_BE;
3506 break;
3507 default:
3508 if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3509 wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3510 /* XXX statistic */
3511 m_freem(m0);
3512 return EIO;
3513 }
3514 txq = sc->sc_ac2q[pri];
3515
3516 /*
3517 * When servicing one or more stations in power-save mode
3518 * multicast frames must be buffered until after the beacon.
3519 * We use the CAB queue for that.
3520 */
3521 if (ismcast && ic->ic_ps_sta) {
3522 txq = sc->sc_cabq;
3523 /* XXX? more bit in 802.11 frame header */
3524 }
3525
3526 /*
3527 * Calculate miscellaneous flags.
3528 */
3529 if (ismcast) {
3530 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */
3531 sc->sc_stats.ast_tx_noack++;
3532 } else if (pktlen > ic->ic_rtsthreshold) {
3533 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */
3534 cix = rt->info[rix].controlRate;
3535 sc->sc_stats.ast_tx_rts++;
3536 }
3537
3538 /*
3539 * If 802.11g protection is enabled, determine whether
3540 * to use RTS/CTS or just CTS. Note that this is only
3541 * done for OFDM unicast frames.
3542 */
3543 if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3544 rt->info[rix].phy == IEEE80211_T_OFDM &&
3545 (flags & HAL_TXDESC_NOACK) == 0) {
3546 /* XXX fragments must use CCK rates w/ protection */
3547 if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3548 flags |= HAL_TXDESC_RTSENA;
3549 else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3550 flags |= HAL_TXDESC_CTSENA;
3551 cix = rt->info[sc->sc_protrix].controlRate;
3552 sc->sc_stats.ast_tx_protect++;
3553 }
3554
3555 /*
3556 * Calculate duration. This logically belongs in the 802.11
3557 * layer but it lacks sufficient information to calculate it.
3558 */
3559 if ((flags & HAL_TXDESC_NOACK) == 0 &&
3560 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
3561 u_int16_t dur;
3562 /*
3563 * XXX not right with fragmentation.
3564 */
3565 if (shortPreamble)
3566 dur = rt->info[rix].spAckDuration;
3567 else
3568 dur = rt->info[rix].lpAckDuration;
3569 *(u_int16_t *)wh->i_dur = htole16(dur);
3570 }
3571
3572 /*
3573 * Calculate RTS/CTS rate and duration if needed.
3574 */
3575 ctsduration = 0;
3576 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
3577 /*
3578 * CTS transmit rate is derived from the transmit rate
3579 * by looking in the h/w rate table. We must also factor
3580 * in whether or not a short preamble is to be used.
3581 */
3582 /* NB: cix is set above where RTS/CTS is enabled */
3583 KASSERT(cix != 0xff, ("cix not setup"));
3584 ctsrate = rt->info[cix].rateCode;
3585 /*
3586 * Compute the transmit duration based on the frame
3587 * size and the size of an ACK frame. We call into the
3588 * HAL to do the computation since it depends on the
3589 * characteristics of the actual PHY being used.
3590 *
3591 * NB: CTS is assumed the same size as an ACK so we can
3592 * use the precalculated ACK durations.
3593 */
3594 if (shortPreamble) {
3595 ctsrate |= rt->info[cix].shortPreamble;
3596 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
3597 ctsduration += rt->info[cix].spAckDuration;
3598 ctsduration += ath_hal_computetxtime(ah,
3599 rt, pktlen, rix, AH_TRUE);
3600 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
3601 ctsduration += rt->info[rix].spAckDuration;
3602 } else {
3603 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
3604 ctsduration += rt->info[cix].lpAckDuration;
3605 ctsduration += ath_hal_computetxtime(ah,
3606 rt, pktlen, rix, AH_FALSE);
3607 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
3608 ctsduration += rt->info[rix].lpAckDuration;
3609 }
3610 /*
3611 * Must disable multi-rate retry when using RTS/CTS.
3612 */
3613 try0 = ATH_TXMAXTRY;
3614 } else
3615 ctsrate = 0;
3616
3617 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3618 ieee80211_dump_pkt(mtod(m0, caddr_t), m0->m_len,
3619 sc->sc_hwmap[txrate].ieeerate, -1);
3620
3621 if (ic->ic_rawbpf)
3622 bpf_mtap(ic->ic_rawbpf, m0);
3623 if (sc->sc_drvbpf) {
3624 sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
3625 if (iswep)
3626 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3627 sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
3628 sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3629 sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3630
3631 bpf_mtap2(sc->sc_drvbpf,
3632 &sc->sc_tx_th, sc->sc_tx_th_len, m0);
3633 }
3634
3635 /*
3636 * Determine if a tx interrupt should be generated for
3637 * this descriptor. We take a tx interrupt to reap
3638 * descriptors when the h/w hits an EOL condition or
3639 * when the descriptor is specifically marked to generate
3640 * an interrupt. We periodically mark descriptors in this
3641 * way to insure timely replenishing of the supply needed
3642 * for sending frames. Defering interrupts reduces system
3643 * load and potentially allows more concurrent work to be
3644 * done but if done to aggressively can cause senders to
3645 * backup.
3646 *
3647 * NB: use >= to deal with sc_txintrperiod changing
3648 * dynamically through sysctl.
3649 */
3650 if (flags & HAL_TXDESC_INTREQ) {
3651 txq->axq_intrcnt = 0;
3652 } else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
3653 flags |= HAL_TXDESC_INTREQ;
3654 txq->axq_intrcnt = 0;
3655 }
3656
3657 /*
3658 * Formulate first tx descriptor with tx controls.
3659 */
3660 /* XXX check return value? */
3661 ath_hal_setuptxdesc(ah, ds
3662 , pktlen /* packet length */
3663 , hdrlen /* header length */
3664 , atype /* Atheros packet type */
3665 , ni->ni_txpower /* txpower */
3666 , txrate, try0 /* series 0 rate/tries */
3667 , keyix /* key cache index */
3668 , sc->sc_txantenna /* antenna mode */
3669 , flags /* flags */
3670 , ctsrate /* rts/cts rate */
3671 , ctsduration /* rts/cts duration */
3672 );
3673 bf->bf_flags = flags;
3674 /*
3675 * Setup the multi-rate retry state only when we're
3676 * going to use it. This assumes ath_hal_setuptxdesc
3677 * initializes the descriptors (so we don't have to)
3678 * when the hardware supports multi-rate retry and
3679 * we don't use it.
3680 */
3681 if (try0 != ATH_TXMAXTRY)
3682 ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
3683
3684 /*
3685 * Fillin the remainder of the descriptor info.
3686 */
3687 ds0 = ds;
3688 for (i = 0; i < bf->bf_nseg; i++, ds++) {
3689 ds->ds_data = bf->bf_segs[i].ds_addr;
3690 if (i == bf->bf_nseg - 1)
3691 ds->ds_link = 0;
3692 else
3693 ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
3694 ath_hal_filltxdesc(ah, ds
3695 , bf->bf_segs[i].ds_len /* segment length */
3696 , i == 0 /* first segment */
3697 , i == bf->bf_nseg - 1 /* last segment */
3698 , ds0 /* first descriptor */
3699 );
3700 DPRINTF(sc, ATH_DEBUG_XMIT,
3701 "%s: %d: %08x %08x %08x %08x %08x %08x\n",
3702 __func__, i, ds->ds_link, ds->ds_data,
3703 ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
3704 }
3705 /*
3706 * Insert the frame on the outbound list and
3707 * pass it on to the hardware.
3708 */
3709 ATH_TXQ_LOCK(txq);
3710 if (flags & (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) {
3711 u_int32_t txopLimit = IEEE80211_TXOP_TO_US(
3712 cap->cap_wmeParams[pri].wmep_txopLimit);
3713 /*
3714 * When bursting, potentially extend the CTS duration
3715 * of a previously queued frame to cover this frame
3716 * and not exceed the txopLimit. If that can be done
3717 * then disable RTS/CTS on this frame since it's now
3718 * covered (burst extension). Otherwise we must terminate
3719 * the burst before this frame goes out so as not to
3720 * violate the WME parameters. All this is complicated
3721 * as we need to update the state of packets on the
3722 * (live) hardware queue. The logic is buried in the hal
3723 * because it's highly chip-specific.
3724 */
3725 if (txopLimit != 0) {
3726 sc->sc_stats.ast_tx_ctsburst++;
3727 if (updateCTSForBursting(ah, ds0, txq) == 0) {
3728 /*
3729 * This frame was not covered by RTS/CTS from
3730 * the previous frame in the burst; update the
3731 * descriptor pointers so this frame is now
3732 * treated as the last frame for extending a
3733 * burst.
3734 */
3735 txq->axq_lastdsWithCTS = ds0;
3736 /* set gating Desc to final desc */
3737 txq->axq_gatingds =
3738 (struct ath_desc *)txq->axq_link;
3739 } else
3740 sc->sc_stats.ast_tx_ctsext++;
3741 }
3742 }
3743 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
3744 if (txq->axq_link == NULL) {
3745 ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
3746 DPRINTF(sc, ATH_DEBUG_XMIT,
3747 "%s: TXDP[%u] = %p (%p) depth %d\n", __func__,
3748 txq->axq_qnum, (caddr_t)bf->bf_daddr, bf->bf_desc,
3749 txq->axq_depth);
3750 } else {
3751 *txq->axq_link = bf->bf_daddr;
3752 DPRINTF(sc, ATH_DEBUG_XMIT,
3753 "%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
3754 txq->axq_qnum, txq->axq_link,
3755 (caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
3756 }
3757 txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
3758 /*
3759 * The CAB queue is started from the SWBA handler since
3760 * frames only go out on DTIM and to avoid possible races.
3761 */
3762 if (txq != sc->sc_cabq)
3763 ath_hal_txstart(ah, txq->axq_qnum);
3764 ATH_TXQ_UNLOCK(txq);
3765
3766 return 0;
3767 #undef updateCTSForBursting
3768 #undef CTS_DURATION
3769 }
3770
3771 /*
3772 * Process completed xmit descriptors from the specified queue.
3773 */
3774 static void
3775 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
3776 {
3777 struct ath_hal *ah = sc->sc_ah;
3778 struct ieee80211com *ic = &sc->sc_ic;
3779 struct ath_buf *bf;
3780 struct ath_desc *ds, *ds0;
3781 struct ieee80211_node *ni;
3782 struct ath_node *an;
3783 int sr, lr, pri;
3784 HAL_STATUS status;
3785
3786 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
3787 __func__, txq->axq_qnum,
3788 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3789 txq->axq_link);
3790 for (;;) {
3791 ATH_TXQ_LOCK(txq);
3792 txq->axq_intrcnt = 0; /* reset periodic desc intr count */
3793 bf = STAILQ_FIRST(&txq->axq_q);
3794 if (bf == NULL) {
3795 txq->axq_link = NULL;
3796 ATH_TXQ_UNLOCK(txq);
3797 break;
3798 }
3799 ds0 = &bf->bf_desc[0];
3800 ds = &bf->bf_desc[bf->bf_nseg - 1];
3801 status = ath_hal_txprocdesc(ah, ds);
3802 #ifdef AR_DEBUG
3803 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
3804 ath_printtxbuf(bf, status == HAL_OK);
3805 #endif
3806 if (status == HAL_EINPROGRESS) {
3807 ATH_TXQ_UNLOCK(txq);
3808 break;
3809 }
3810 if (ds0 == txq->axq_lastdsWithCTS)
3811 txq->axq_lastdsWithCTS = NULL;
3812 if (ds == txq->axq_gatingds)
3813 txq->axq_gatingds = NULL;
3814 ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3815 ATH_TXQ_UNLOCK(txq);
3816
3817 ni = bf->bf_node;
3818 if (ni != NULL) {
3819 an = ATH_NODE(ni);
3820 if (ds->ds_txstat.ts_status == 0) {
3821 u_int8_t txant = ds->ds_txstat.ts_antenna;
3822 sc->sc_stats.ast_ant_tx[txant]++;
3823 sc->sc_ant_tx[txant]++;
3824 if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
3825 sc->sc_stats.ast_tx_altrate++;
3826 sc->sc_stats.ast_tx_rssi =
3827 ds->ds_txstat.ts_rssi;
3828 ATH_RSSI_LPF(an->an_halstats.ns_avgtxrssi,
3829 ds->ds_txstat.ts_rssi);
3830 pri = M_WME_GETAC(bf->bf_m);
3831 if (pri >= WME_AC_VO)
3832 ic->ic_wme.wme_hipri_traffic++;
3833 ni->ni_inact = ni->ni_inact_reload;
3834 } else {
3835 if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
3836 sc->sc_stats.ast_tx_xretries++;
3837 if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
3838 sc->sc_stats.ast_tx_fifoerr++;
3839 if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
3840 sc->sc_stats.ast_tx_filtered++;
3841 }
3842 sr = ds->ds_txstat.ts_shortretry;
3843 lr = ds->ds_txstat.ts_longretry;
3844 sc->sc_stats.ast_tx_shortretry += sr;
3845 sc->sc_stats.ast_tx_longretry += lr;
3846 /*
3847 * Hand the descriptor to the rate control algorithm.
3848 */
3849 if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
3850 (bf->bf_flags & HAL_TXDESC_NOACK) == 0)
3851 ath_rate_tx_complete(sc, an, ds, ds0);
3852 /*
3853 * Reclaim reference to node.
3854 *
3855 * NB: the node may be reclaimed here if, for example
3856 * this is a DEAUTH message that was sent and the
3857 * node was timed out due to inactivity.
3858 */
3859 ieee80211_free_node(ni);
3860 }
3861 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
3862 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3863 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3864 m_freem(bf->bf_m);
3865 bf->bf_m = NULL;
3866 bf->bf_node = NULL;
3867
3868 ATH_TXBUF_LOCK(sc);
3869 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
3870 ATH_TXBUF_UNLOCK(sc);
3871 }
3872 }
3873
3874 /*
3875 * Deferred processing of transmit interrupt; special-cased
3876 * for a single hardware transmit queue (e.g. 5210 and 5211).
3877 */
3878 static void
3879 ath_tx_proc_q0(void *arg, int npending)
3880 {
3881 struct ath_softc *sc = arg;
3882 struct ifnet *ifp = &sc->sc_if;
3883
3884 ath_tx_processq(sc, &sc->sc_txq[0]);
3885 ath_tx_processq(sc, sc->sc_cabq);
3886 ifp->if_flags &= ~IFF_OACTIVE;
3887 sc->sc_tx_timer = 0;
3888
3889 if (sc->sc_softled)
3890 ath_led_event(sc, ATH_LED_TX);
3891
3892 ath_start(ifp);
3893 }
3894
3895 /*
3896 * Deferred processing of transmit interrupt; special-cased
3897 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
3898 */
3899 static void
3900 ath_tx_proc_q0123(void *arg, int npending)
3901 {
3902 struct ath_softc *sc = arg;
3903 struct ifnet *ifp = &sc->sc_if;
3904
3905 /*
3906 * Process each active queue.
3907 */
3908 ath_tx_processq(sc, &sc->sc_txq[0]);
3909 ath_tx_processq(sc, &sc->sc_txq[1]);
3910 ath_tx_processq(sc, &sc->sc_txq[2]);
3911 ath_tx_processq(sc, &sc->sc_txq[3]);
3912 ath_tx_processq(sc, sc->sc_cabq);
3913
3914 ifp->if_flags &= ~IFF_OACTIVE;
3915 sc->sc_tx_timer = 0;
3916
3917 if (sc->sc_softled)
3918 ath_led_event(sc, ATH_LED_TX);
3919
3920 ath_start(ifp);
3921 }
3922
3923 /*
3924 * Deferred processing of transmit interrupt.
3925 */
3926 static void
3927 ath_tx_proc(void *arg, int npending)
3928 {
3929 struct ath_softc *sc = arg;
3930 struct ifnet *ifp = &sc->sc_if;
3931 int i;
3932
3933 /*
3934 * Process each active queue.
3935 */
3936 /* XXX faster to read ISR_S0_S and ISR_S1_S to determine q's? */
3937 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3938 if (ATH_TXQ_SETUP(sc, i))
3939 ath_tx_processq(sc, &sc->sc_txq[i]);
3940
3941 ifp->if_flags &= ~IFF_OACTIVE;
3942 sc->sc_tx_timer = 0;
3943
3944 if (sc->sc_softled)
3945 ath_led_event(sc, ATH_LED_TX);
3946
3947 ath_start(ifp);
3948 }
3949
3950 static void
3951 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
3952 {
3953 struct ath_hal *ah = sc->sc_ah;
3954 struct ieee80211_node *ni;
3955 struct ath_buf *bf;
3956
3957 /*
3958 * NB: this assumes output has been stopped and
3959 * we do not need to block ath_tx_tasklet
3960 */
3961 for (;;) {
3962 ATH_TXQ_LOCK(txq);
3963 bf = STAILQ_FIRST(&txq->axq_q);
3964 if (bf == NULL) {
3965 txq->axq_link = NULL;
3966 ATH_TXQ_UNLOCK(txq);
3967 break;
3968 }
3969 ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3970 ATH_TXQ_UNLOCK(txq);
3971 #ifdef AR_DEBUG
3972 if (sc->sc_debug & ATH_DEBUG_RESET)
3973 ath_printtxbuf(bf,
3974 ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
3975 #endif /* AR_DEBUG */
3976 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3977 m_freem(bf->bf_m);
3978 bf->bf_m = NULL;
3979 ni = bf->bf_node;
3980 bf->bf_node = NULL;
3981 if (ni != NULL) {
3982 /*
3983 * Reclaim node reference.
3984 */
3985 ieee80211_free_node(ni);
3986 }
3987 ATH_TXBUF_LOCK(sc);
3988 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
3989 ATH_TXBUF_UNLOCK(sc);
3990 }
3991 }
3992
3993 static void
3994 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
3995 {
3996 struct ath_hal *ah = sc->sc_ah;
3997
3998 (void) ath_hal_stoptxdma(ah, txq->axq_qnum);
3999 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4000 __func__, txq->axq_qnum,
4001 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4002 txq->axq_link);
4003 }
4004
4005 /*
4006 * Drain the transmit queues and reclaim resources.
4007 */
4008 static void
4009 ath_draintxq(struct ath_softc *sc)
4010 {
4011 struct ath_hal *ah = sc->sc_ah;
4012 struct ifnet *ifp = &sc->sc_if;
4013 int i;
4014
4015 /* XXX return value */
4016 if (!sc->sc_invalid) {
4017 /* don't touch the hardware if marked invalid */
4018 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4019 DPRINTF(sc, ATH_DEBUG_RESET,
4020 "%s: beacon queue %p\n", __func__,
4021 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
4022 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4023 if (ATH_TXQ_SETUP(sc, i))
4024 ath_tx_stopdma(sc, &sc->sc_txq[i]);
4025 }
4026 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4027 if (ATH_TXQ_SETUP(sc, i))
4028 ath_tx_draintxq(sc, &sc->sc_txq[i]);
4029 ifp->if_flags &= ~IFF_OACTIVE;
4030 sc->sc_tx_timer = 0;
4031 }
4032
4033 /*
4034 * Disable the receive h/w in preparation for a reset.
4035 */
4036 static void
4037 ath_stoprecv(struct ath_softc *sc)
4038 {
4039 #define PA2DESC(_sc, _pa) \
4040 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
4041 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
4042 struct ath_hal *ah = sc->sc_ah;
4043
4044 ath_hal_stoppcurecv(ah); /* disable PCU */
4045 ath_hal_setrxfilter(ah, 0); /* clear recv filter */
4046 ath_hal_stopdmarecv(ah); /* disable DMA engine */
4047 DELAY(3000); /* 3ms is long enough for 1 frame */
4048 #ifdef AR_DEBUG
4049 if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
4050 struct ath_buf *bf;
4051
4052 printf("%s: rx queue %p, link %p\n", __func__,
4053 (caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
4054 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4055 struct ath_desc *ds = bf->bf_desc;
4056 HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
4057 bf->bf_daddr, PA2DESC(sc, ds->ds_link));
4058 if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
4059 ath_printrxbuf(bf, status == HAL_OK);
4060 }
4061 }
4062 #endif
4063 sc->sc_rxlink = NULL; /* just in case */
4064 #undef PA2DESC
4065 }
4066
4067 /*
4068 * Enable the receive h/w following a reset.
4069 */
4070 static int
4071 ath_startrecv(struct ath_softc *sc)
4072 {
4073 struct ath_hal *ah = sc->sc_ah;
4074 struct ath_buf *bf;
4075
4076 sc->sc_rxlink = NULL;
4077 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4078 int error = ath_rxbuf_init(sc, bf);
4079 if (error != 0) {
4080 DPRINTF(sc, ATH_DEBUG_RECV,
4081 "%s: ath_rxbuf_init failed %d\n",
4082 __func__, error);
4083 return error;
4084 }
4085 }
4086
4087 bf = STAILQ_FIRST(&sc->sc_rxbuf);
4088 ath_hal_putrxbuf(ah, bf->bf_daddr);
4089 ath_hal_rxena(ah); /* enable recv descriptors */
4090 ath_mode_init(sc); /* set filters, etc. */
4091 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */
4092 return 0;
4093 }
4094
4095 /*
4096 * Update internal state after a channel change.
4097 */
4098 static void
4099 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4100 {
4101 struct ieee80211com *ic = &sc->sc_ic;
4102 enum ieee80211_phymode mode;
4103 u_int16_t flags;
4104
4105 /*
4106 * Change channels and update the h/w rate map
4107 * if we're switching; e.g. 11a to 11b/g.
4108 */
4109 mode = ieee80211_chan2mode(ic, chan);
4110 if (mode != sc->sc_curmode)
4111 ath_setcurmode(sc, mode);
4112 /*
4113 * Update BPF state. NB: ethereal et. al. don't handle
4114 * merged flags well so pick a unique mode for their use.
4115 */
4116 if (IEEE80211_IS_CHAN_A(chan))
4117 flags = IEEE80211_CHAN_A;
4118 /* XXX 11g schizophrenia */
4119 else if (IEEE80211_IS_CHAN_G(chan) ||
4120 IEEE80211_IS_CHAN_PUREG(chan))
4121 flags = IEEE80211_CHAN_G;
4122 else
4123 flags = IEEE80211_CHAN_B;
4124 if (IEEE80211_IS_CHAN_T(chan))
4125 flags |= IEEE80211_CHAN_TURBO;
4126 sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
4127 htole16(chan->ic_freq);
4128 sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
4129 htole16(flags);
4130 }
4131
4132 /*
4133 * Set/change channels. If the channel is really being changed,
4134 * it's done by reseting the chip. To accomplish this we must
4135 * first cleanup any pending DMA, then restart stuff after a la
4136 * ath_init.
4137 */
4138 static int
4139 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4140 {
4141 struct ath_hal *ah = sc->sc_ah;
4142 struct ieee80211com *ic = &sc->sc_ic;
4143 HAL_CHANNEL hchan;
4144
4145 /*
4146 * Convert to a HAL channel description with
4147 * the flags constrained to reflect the current
4148 * operating mode.
4149 */
4150 hchan.channel = chan->ic_freq;
4151 hchan.channelFlags = ath_chan2flags(ic, chan);
4152
4153 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz) -> %u (%u MHz)\n",
4154 __func__,
4155 ath_hal_mhz2ieee(sc->sc_curchan.channel,
4156 sc->sc_curchan.channelFlags),
4157 sc->sc_curchan.channel,
4158 ath_hal_mhz2ieee(hchan.channel, hchan.channelFlags), hchan.channel);
4159 if (hchan.channel != sc->sc_curchan.channel ||
4160 hchan.channelFlags != sc->sc_curchan.channelFlags) {
4161 HAL_STATUS status;
4162
4163 /*
4164 * To switch channels clear any pending DMA operations;
4165 * wait long enough for the RX fifo to drain, reset the
4166 * hardware at the new frequency, and then re-enable
4167 * the relevant bits of the h/w.
4168 */
4169 ath_hal_intrset(ah, 0); /* disable interrupts */
4170 ath_draintxq(sc); /* clear pending tx frames */
4171 ath_stoprecv(sc); /* turn off frame recv */
4172 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
4173 if_printf(&sc->sc_if, "ath_chan_set: unable to reset "
4174 "channel %u (%u Mhz)\n",
4175 ieee80211_chan2ieee(ic, chan), chan->ic_freq);
4176 return EIO;
4177 }
4178 sc->sc_curchan = hchan;
4179 ath_update_txpow(sc); /* update tx power state */
4180 sc->sc_diversity = ath_hal_getdiversity(ah);
4181
4182 /*
4183 * Re-enable rx framework.
4184 */
4185 if (ath_startrecv(sc) != 0) {
4186 if_printf(&sc->sc_if,
4187 "ath_chan_set: unable to restart recv logic\n");
4188 return EIO;
4189 }
4190
4191 /*
4192 * Change channels and update the h/w rate map
4193 * if we're switching; e.g. 11a to 11b/g.
4194 */
4195 ic->ic_ibss_chan = chan;
4196 ath_chan_change(sc, chan);
4197
4198 /*
4199 * Re-enable interrupts.
4200 */
4201 ath_hal_intrset(ah, sc->sc_imask);
4202 }
4203 return 0;
4204 }
4205
4206 static void
4207 ath_next_scan(void *arg)
4208 {
4209 struct ath_softc *sc = arg;
4210 struct ieee80211com *ic = &sc->sc_ic;
4211 int s;
4212
4213 /* don't call ath_start w/o network interrupts blocked */
4214 s = splnet();
4215
4216 if (ic->ic_state == IEEE80211_S_SCAN)
4217 ieee80211_next_scan(ic);
4218 splx(s);
4219 }
4220
4221 /*
4222 * Periodically recalibrate the PHY to account
4223 * for temperature/environment changes.
4224 */
4225 static void
4226 ath_calibrate(void *arg)
4227 {
4228 struct ath_softc *sc = arg;
4229 struct ath_hal *ah = sc->sc_ah;
4230
4231 sc->sc_stats.ast_per_cal++;
4232
4233 ATH_LOCK(sc);
4234 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: channel %u/%x\n",
4235 __func__, sc->sc_curchan.channel, sc->sc_curchan.channelFlags);
4236
4237 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4238 /*
4239 * Rfgain is out of bounds, reset the chip
4240 * to load new gain values.
4241 */
4242 sc->sc_stats.ast_per_rfgain++;
4243 ath_reset(&sc->sc_if);
4244 }
4245 if (!ath_hal_calibrate(ah, &sc->sc_curchan)) {
4246 DPRINTF(sc, ATH_DEBUG_ANY,
4247 "%s: calibration of channel %u failed\n",
4248 __func__, sc->sc_curchan.channel);
4249 sc->sc_stats.ast_per_calfail++;
4250 }
4251 callout_reset(&sc->sc_cal_ch, ath_calinterval * hz, ath_calibrate, sc);
4252 ATH_UNLOCK(sc);
4253 }
4254
4255 static int
4256 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
4257 {
4258 struct ifnet *ifp = ic->ic_ifp;
4259 struct ath_softc *sc = ifp->if_softc;
4260 struct ath_hal *ah = sc->sc_ah;
4261 struct ieee80211_node *ni;
4262 int i, error;
4263 const u_int8_t *bssid;
4264 u_int32_t rfilt;
4265 static const HAL_LED_STATE leds[] = {
4266 HAL_LED_INIT, /* IEEE80211_S_INIT */
4267 HAL_LED_SCAN, /* IEEE80211_S_SCAN */
4268 HAL_LED_AUTH, /* IEEE80211_S_AUTH */
4269 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */
4270 HAL_LED_RUN, /* IEEE80211_S_RUN */
4271 };
4272
4273 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4274 ieee80211_state_name[ic->ic_state],
4275 ieee80211_state_name[nstate]);
4276
4277 callout_stop(&sc->sc_scan_ch);
4278 callout_stop(&sc->sc_cal_ch);
4279 ath_hal_setledstate(ah, leds[nstate]); /* set LED */
4280
4281 if (nstate == IEEE80211_S_INIT) {
4282 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4283 /*
4284 * NB: disable interrupts so we don't rx frames.
4285 */
4286 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4287 /*
4288 * Notify the rate control algorithm.
4289 */
4290 ath_rate_newstate(sc, nstate);
4291 goto done;
4292 }
4293 ni = ic->ic_bss;
4294 error = ath_chan_set(sc, ic->ic_curchan);
4295 if (error != 0)
4296 goto bad;
4297 rfilt = ath_calcrxfilter(sc, nstate);
4298 if (nstate == IEEE80211_S_SCAN)
4299 bssid = ifp->if_broadcastaddr;
4300 else
4301 bssid = ni->ni_bssid;
4302 ath_hal_setrxfilter(ah, rfilt);
4303 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
4304 __func__, rfilt, ether_sprintf(bssid));
4305
4306 if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
4307 ath_hal_setassocid(ah, bssid, ni->ni_associd);
4308 else
4309 ath_hal_setassocid(ah, bssid, 0);
4310 if (ic->ic_flags & IEEE80211_F_PRIVACY) {
4311 for (i = 0; i < IEEE80211_WEP_NKID; i++)
4312 if (ath_hal_keyisvalid(ah, i))
4313 ath_hal_keysetmac(ah, i, bssid);
4314 }
4315
4316 /*
4317 * Notify the rate control algorithm so rates
4318 * are setup should ath_beacon_alloc be called.
4319 */
4320 ath_rate_newstate(sc, nstate);
4321
4322 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4323 /* nothing to do */;
4324 } else if (nstate == IEEE80211_S_RUN) {
4325 DPRINTF(sc, ATH_DEBUG_STATE,
4326 "%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
4327 "capinfo=0x%04x chan=%d\n"
4328 , __func__
4329 , ic->ic_flags
4330 , ni->ni_intval
4331 , ether_sprintf(ni->ni_bssid)
4332 , ni->ni_capinfo
4333 , ieee80211_chan2ieee(ic, ic->ic_curchan));
4334
4335 switch (ic->ic_opmode) {
4336 case IEEE80211_M_HOSTAP:
4337 case IEEE80211_M_IBSS:
4338 /*
4339 * Allocate and setup the beacon frame.
4340 *
4341 * Stop any previous beacon DMA. This may be
4342 * necessary, for example, when an ibss merge
4343 * causes reconfiguration; there will be a state
4344 * transition from RUN->RUN that means we may
4345 * be called with beacon transmission active.
4346 */
4347 ath_hal_stoptxdma(ah, sc->sc_bhalq);
4348 ath_beacon_free(sc);
4349 error = ath_beacon_alloc(sc, ni);
4350 if (error != 0)
4351 goto bad;
4352 break;
4353 case IEEE80211_M_STA:
4354 /*
4355 * Allocate a key cache slot to the station.
4356 */
4357 if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
4358 sc->sc_hasclrkey &&
4359 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4360 ath_setup_stationkey(ni);
4361 break;
4362 default:
4363 break;
4364 }
4365
4366 /*
4367 * Configure the beacon and sleep timers.
4368 */
4369 ath_beacon_config(sc);
4370 } else {
4371 ath_hal_intrset(ah,
4372 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4373 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4374 }
4375 done:
4376 /*
4377 * Invoke the parent method to complete the work.
4378 */
4379 error = sc->sc_newstate(ic, nstate, arg);
4380 /*
4381 * Finally, start any timers.
4382 */
4383 if (nstate == IEEE80211_S_RUN) {
4384 /* start periodic recalibration timer */
4385 callout_reset(&sc->sc_cal_ch, ath_calinterval * hz,
4386 ath_calibrate, sc);
4387 } else if (nstate == IEEE80211_S_SCAN) {
4388 /* start ap/neighbor scan timer */
4389 callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
4390 ath_next_scan, sc);
4391 }
4392 bad:
4393 return error;
4394 }
4395
4396 /*
4397 * Allocate a key cache slot to the station so we can
4398 * setup a mapping from key index to node. The key cache
4399 * slot is needed for managing antenna state and for
4400 * compression when stations do not use crypto. We do
4401 * it uniliaterally here; if crypto is employed this slot
4402 * will be reassigned.
4403 */
4404 static void
4405 ath_setup_stationkey(struct ieee80211_node *ni)
4406 {
4407 struct ieee80211com *ic = ni->ni_ic;
4408 struct ath_softc *sc = ic->ic_ifp->if_softc;
4409 ieee80211_keyix keyix, rxkeyix;
4410
4411 if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
4412 /*
4413 * Key cache is full; we'll fall back to doing
4414 * the more expensive lookup in software. Note
4415 * this also means no h/w compression.
4416 */
4417 /* XXX msg+statistic */
4418 } else {
4419 /* XXX locking? */
4420 ni->ni_ucastkey.wk_keyix = keyix;
4421 ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
4422 /* NB: this will create a pass-thru key entry */
4423 ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
4424 }
4425 }
4426
4427 /*
4428 * Setup driver-specific state for a newly associated node.
4429 * Note that we're called also on a re-associate, the isnew
4430 * param tells us if this is the first time or not.
4431 */
4432 static void
4433 ath_newassoc(struct ieee80211_node *ni, int isnew)
4434 {
4435 struct ieee80211com *ic = ni->ni_ic;
4436 struct ath_softc *sc = ic->ic_ifp->if_softc;
4437
4438 ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
4439 if (isnew &&
4440 (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
4441 KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
4442 ("new assoc with a unicast key already setup (keyix %u)",
4443 ni->ni_ucastkey.wk_keyix));
4444 ath_setup_stationkey(ni);
4445 }
4446 }
4447
4448 static int
4449 ath_getchannels(struct ath_softc *sc, u_int cc,
4450 HAL_BOOL outdoor, HAL_BOOL xchanmode)
4451 {
4452 struct ieee80211com *ic = &sc->sc_ic;
4453 struct ifnet *ifp = &sc->sc_if;
4454 struct ath_hal *ah = sc->sc_ah;
4455 HAL_CHANNEL *chans;
4456 int i, ix, nchan;
4457
4458 chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
4459 M_TEMP, M_NOWAIT);
4460 if (chans == NULL) {
4461 if_printf(ifp, "unable to allocate channel table\n");
4462 return ENOMEM;
4463 }
4464 if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
4465 cc, HAL_MODE_ALL, outdoor, xchanmode)) {
4466 u_int32_t rd;
4467
4468 ath_hal_getregdomain(ah, &rd);
4469 if_printf(ifp, "unable to collect channel list from hal; "
4470 "regdomain likely %u country code %u\n", rd, cc);
4471 free(chans, M_TEMP);
4472 return EINVAL;
4473 }
4474
4475 /*
4476 * Convert HAL channels to ieee80211 ones and insert
4477 * them in the table according to their channel number.
4478 */
4479 for (i = 0; i < nchan; i++) {
4480 HAL_CHANNEL *c = &chans[i];
4481 ix = ath_hal_mhz2ieee(c->channel, c->channelFlags);
4482 if (ix > IEEE80211_CHAN_MAX) {
4483 if_printf(ifp, "bad hal channel %u (%u/%x) ignored\n",
4484 ix, c->channel, c->channelFlags);
4485 continue;
4486 }
4487 DPRINTF(sc, ATH_DEBUG_ANY,
4488 "%s: HAL channel %d/%d freq %d flags %#04x idx %d\n",
4489 sc->sc_dev.dv_xname, i, nchan, c->channel, c->channelFlags,
4490 ix);
4491 /* NB: flags are known to be compatible */
4492 if (ic->ic_channels[ix].ic_freq == 0) {
4493 ic->ic_channels[ix].ic_freq = c->channel;
4494 ic->ic_channels[ix].ic_flags = c->channelFlags;
4495 } else {
4496 /* channels overlap; e.g. 11g and 11b */
4497 ic->ic_channels[ix].ic_flags |= c->channelFlags;
4498 }
4499 }
4500 free(chans, M_TEMP);
4501 return 0;
4502 }
4503
4504 static void
4505 ath_led_done(void *arg)
4506 {
4507 struct ath_softc *sc = arg;
4508
4509 sc->sc_blinking = 0;
4510 }
4511
4512 /*
4513 * Turn the LED off: flip the pin and then set a timer so no
4514 * update will happen for the specified duration.
4515 */
4516 static void
4517 ath_led_off(void *arg)
4518 {
4519 struct ath_softc *sc = arg;
4520
4521 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
4522 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
4523 }
4524
4525 /*
4526 * Blink the LED according to the specified on/off times.
4527 */
4528 static void
4529 ath_led_blink(struct ath_softc *sc, int on, int off)
4530 {
4531 DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
4532 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
4533 sc->sc_blinking = 1;
4534 sc->sc_ledoff = off;
4535 callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
4536 }
4537
4538 static void
4539 ath_led_event(struct ath_softc *sc, int event)
4540 {
4541
4542 sc->sc_ledevent = ticks; /* time of last event */
4543 if (sc->sc_blinking) /* don't interrupt active blink */
4544 return;
4545 switch (event) {
4546 case ATH_LED_POLL:
4547 ath_led_blink(sc, sc->sc_hwmap[0].ledon,
4548 sc->sc_hwmap[0].ledoff);
4549 break;
4550 case ATH_LED_TX:
4551 ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
4552 sc->sc_hwmap[sc->sc_txrate].ledoff);
4553 break;
4554 case ATH_LED_RX:
4555 ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
4556 sc->sc_hwmap[sc->sc_rxrate].ledoff);
4557 break;
4558 }
4559 }
4560
4561 static void
4562 ath_update_txpow(struct ath_softc *sc)
4563 {
4564 struct ieee80211com *ic = &sc->sc_ic;
4565 struct ath_hal *ah = sc->sc_ah;
4566 u_int32_t txpow;
4567
4568 if (sc->sc_curtxpow != ic->ic_txpowlimit) {
4569 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
4570 /* read back in case value is clamped */
4571 ath_hal_gettxpowlimit(ah, &txpow);
4572 ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
4573 }
4574 /*
4575 * Fetch max tx power level for status requests.
4576 */
4577 ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
4578 ic->ic_bss->ni_txpower = txpow;
4579 }
4580
4581 static int
4582 ath_rate_setup(struct ath_softc *sc, u_int mode)
4583 {
4584 struct ath_hal *ah = sc->sc_ah;
4585 struct ieee80211com *ic = &sc->sc_ic;
4586 const HAL_RATE_TABLE *rt;
4587 struct ieee80211_rateset *rs;
4588 int i, maxrates;
4589
4590 switch (mode) {
4591 case IEEE80211_MODE_11A:
4592 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11A);
4593 break;
4594 case IEEE80211_MODE_11B:
4595 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11B);
4596 break;
4597 case IEEE80211_MODE_11G:
4598 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11G);
4599 break;
4600 case IEEE80211_MODE_TURBO_A:
4601 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_TURBO);
4602 break;
4603 case IEEE80211_MODE_TURBO_G:
4604 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_108G);
4605 break;
4606 default:
4607 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
4608 __func__, mode);
4609 return 0;
4610 }
4611 rt = sc->sc_rates[mode];
4612 if (rt == NULL)
4613 return 0;
4614 if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
4615 DPRINTF(sc, ATH_DEBUG_ANY,
4616 "%s: rate table too small (%u > %u)\n",
4617 __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
4618 maxrates = IEEE80211_RATE_MAXSIZE;
4619 } else
4620 maxrates = rt->rateCount;
4621 rs = &ic->ic_sup_rates[mode];
4622 for (i = 0; i < maxrates; i++)
4623 rs->rs_rates[i] = rt->info[i].dot11Rate;
4624 rs->rs_nrates = maxrates;
4625 return 1;
4626 }
4627
4628 static void
4629 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
4630 {
4631 #define N(a) (sizeof(a)/sizeof(a[0]))
4632 /* NB: on/off times from the Atheros NDIS driver, w/ permission */
4633 static const struct {
4634 u_int rate; /* tx/rx 802.11 rate */
4635 u_int16_t timeOn; /* LED on time (ms) */
4636 u_int16_t timeOff; /* LED off time (ms) */
4637 } blinkrates[] = {
4638 { 108, 40, 10 },
4639 { 96, 44, 11 },
4640 { 72, 50, 13 },
4641 { 48, 57, 14 },
4642 { 36, 67, 16 },
4643 { 24, 80, 20 },
4644 { 22, 100, 25 },
4645 { 18, 133, 34 },
4646 { 12, 160, 40 },
4647 { 10, 200, 50 },
4648 { 6, 240, 58 },
4649 { 4, 267, 66 },
4650 { 2, 400, 100 },
4651 { 0, 500, 130 },
4652 };
4653 const HAL_RATE_TABLE *rt;
4654 int i, j;
4655
4656 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
4657 rt = sc->sc_rates[mode];
4658 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
4659 for (i = 0; i < rt->rateCount; i++)
4660 sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
4661 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
4662 for (i = 0; i < 32; i++) {
4663 u_int8_t ix = rt->rateCodeToIndex[i];
4664 if (ix == 0xff) {
4665 sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
4666 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
4667 continue;
4668 }
4669 sc->sc_hwmap[i].ieeerate =
4670 rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
4671 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
4672 if (rt->info[ix].shortPreamble ||
4673 rt->info[ix].phy == IEEE80211_T_OFDM)
4674 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
4675 /* NB: receive frames include FCS */
4676 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
4677 IEEE80211_RADIOTAP_F_FCS;
4678 /* setup blink rate table to avoid per-packet lookup */
4679 for (j = 0; j < N(blinkrates)-1; j++)
4680 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
4681 break;
4682 /* NB: this uses the last entry if the rate isn't found */
4683 /* XXX beware of overlow */
4684 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
4685 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
4686 }
4687 sc->sc_currates = rt;
4688 sc->sc_curmode = mode;
4689 /*
4690 * All protection frames are transmited at 2Mb/s for
4691 * 11g, otherwise at 1Mb/s.
4692 * XXX select protection rate index from rate table.
4693 */
4694 sc->sc_protrix = (mode == IEEE80211_MODE_11G ? 1 : 0);
4695 /* NB: caller is responsible for reseting rate control state */
4696 #undef N
4697 }
4698
4699 #ifdef AR_DEBUG
4700 static void
4701 ath_printrxbuf(struct ath_buf *bf, int done)
4702 {
4703 struct ath_desc *ds;
4704 int i;
4705
4706 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
4707 printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n",
4708 i, ds, (struct ath_desc *)bf->bf_daddr + i,
4709 ds->ds_link, ds->ds_data,
4710 ds->ds_ctl0, ds->ds_ctl1,
4711 ds->ds_hw[0], ds->ds_hw[1],
4712 !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
4713 }
4714 }
4715
4716 static void
4717 ath_printtxbuf(struct ath_buf *bf, int done)
4718 {
4719 struct ath_desc *ds;
4720 int i;
4721
4722 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
4723 printf("T%d (%p %p) %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
4724 i, ds, (struct ath_desc *)bf->bf_daddr + i,
4725 ds->ds_link, ds->ds_data,
4726 ds->ds_ctl0, ds->ds_ctl1,
4727 ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
4728 !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
4729 }
4730 }
4731 #endif /* AR_DEBUG */
4732
4733 static void
4734 ath_watchdog(struct ifnet *ifp)
4735 {
4736 struct ath_softc *sc = ifp->if_softc;
4737 struct ieee80211com *ic = &sc->sc_ic;
4738
4739 ifp->if_timer = 0;
4740 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
4741 return;
4742 if (sc->sc_tx_timer) {
4743 if (--sc->sc_tx_timer == 0) {
4744 if_printf(ifp, "device timeout\n");
4745 ath_reset(ifp);
4746 ifp->if_oerrors++;
4747 sc->sc_stats.ast_watchdog++;
4748 } else
4749 ifp->if_timer = 1;
4750 }
4751 ieee80211_watchdog(ic);
4752 }
4753
4754 /*
4755 * Diagnostic interface to the HAL. This is used by various
4756 * tools to do things like retrieve register contents for
4757 * debugging. The mechanism is intentionally opaque so that
4758 * it can change frequently w/o concern for compatiblity.
4759 */
4760 static int
4761 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
4762 {
4763 struct ath_hal *ah = sc->sc_ah;
4764 u_int id = ad->ad_id & ATH_DIAG_ID;
4765 void *indata = NULL;
4766 void *outdata = NULL;
4767 u_int32_t insize = ad->ad_in_size;
4768 u_int32_t outsize = ad->ad_out_size;
4769 int error = 0;
4770
4771 if (ad->ad_id & ATH_DIAG_IN) {
4772 /*
4773 * Copy in data.
4774 */
4775 indata = malloc(insize, M_TEMP, M_NOWAIT);
4776 if (indata == NULL) {
4777 error = ENOMEM;
4778 goto bad;
4779 }
4780 error = copyin(ad->ad_in_data, indata, insize);
4781 if (error)
4782 goto bad;
4783 }
4784 if (ad->ad_id & ATH_DIAG_DYN) {
4785 /*
4786 * Allocate a buffer for the results (otherwise the HAL
4787 * returns a pointer to a buffer where we can read the
4788 * results). Note that we depend on the HAL leaving this
4789 * pointer for us to use below in reclaiming the buffer;
4790 * may want to be more defensive.
4791 */
4792 outdata = malloc(outsize, M_TEMP, M_NOWAIT);
4793 if (outdata == NULL) {
4794 error = ENOMEM;
4795 goto bad;
4796 }
4797 }
4798 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
4799 if (outsize < ad->ad_out_size)
4800 ad->ad_out_size = outsize;
4801 if (outdata != NULL)
4802 error = copyout(outdata, ad->ad_out_data,
4803 ad->ad_out_size);
4804 } else {
4805 error = EINVAL;
4806 }
4807 bad:
4808 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
4809 free(indata, M_TEMP);
4810 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
4811 free(outdata, M_TEMP);
4812 return error;
4813 }
4814
4815 static int
4816 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
4817 {
4818 #define IS_RUNNING(ifp) \
4819 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
4820 struct ath_softc *sc = ifp->if_softc;
4821 struct ieee80211com *ic = &sc->sc_ic;
4822 struct ifreq *ifr = (struct ifreq *)data;
4823 int error = 0;
4824
4825 ATH_LOCK(sc);
4826 switch (cmd) {
4827 case SIOCSIFFLAGS:
4828 if (IS_RUNNING(ifp)) {
4829 /*
4830 * To avoid rescanning another access point,
4831 * do not call ath_init() here. Instead,
4832 * only reflect promisc mode settings.
4833 */
4834 ath_mode_init(sc);
4835 } else if (ifp->if_flags & IFF_UP) {
4836 /*
4837 * Beware of being called during attach/detach
4838 * to reset promiscuous mode. In that case we
4839 * will still be marked UP but not RUNNING.
4840 * However trying to re-init the interface
4841 * is the wrong thing to do as we've already
4842 * torn down much of our state. There's
4843 * probably a better way to deal with this.
4844 */
4845 if (!sc->sc_invalid && ic->ic_bss != NULL)
4846 ath_init(sc); /* XXX lose error */
4847 } else
4848 ath_stop_locked(ifp, 1);
4849 break;
4850 case SIOCADDMULTI:
4851 case SIOCDELMULTI:
4852 error = (cmd == SIOCADDMULTI) ?
4853 ether_addmulti(ifr, &sc->sc_ec) :
4854 ether_delmulti(ifr, &sc->sc_ec);
4855 if (error == ENETRESET) {
4856 if (ifp->if_flags & IFF_RUNNING)
4857 ath_mode_init(sc);
4858 error = 0;
4859 }
4860 break;
4861 case SIOCGATHSTATS:
4862 /* NB: embed these numbers to get a consistent view */
4863 sc->sc_stats.ast_tx_packets = ifp->if_opackets;
4864 sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
4865 sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
4866 ATH_UNLOCK(sc);
4867 /*
4868 * NB: Drop the softc lock in case of a page fault;
4869 * we'll accept any potential inconsisentcy in the
4870 * statistics. The alternative is to copy the data
4871 * to a local structure.
4872 */
4873 return copyout(&sc->sc_stats,
4874 ifr->ifr_data, sizeof (sc->sc_stats));
4875 case SIOCGATHDIAG:
4876 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
4877 break;
4878 default:
4879 error = ieee80211_ioctl(ic, cmd, data);
4880 if (error == ENETRESET) {
4881 if (IS_RUNNING(ifp) &&
4882 ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
4883 ath_init(sc); /* XXX lose error */
4884 error = 0;
4885 }
4886 if (error == ERESTART)
4887 error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0;
4888 break;
4889 }
4890 ATH_UNLOCK(sc);
4891 return error;
4892 #undef IS_RUNNING
4893 }
4894
4895 static void
4896 ath_bpfattach(struct ath_softc *sc)
4897 {
4898 struct ifnet *ifp = &sc->sc_if;
4899
4900 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
4901 sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
4902 &sc->sc_drvbpf);
4903 /*
4904 * Initialize constant fields.
4905 * XXX make header lengths a multiple of 32-bits so subsequent
4906 * headers are properly aligned; this is a kludge to keep
4907 * certain applications happy.
4908 *
4909 * NB: the channel is setup each time we transition to the
4910 * RUN state to avoid filling it in for each frame.
4911 */
4912 sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
4913 sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
4914 sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
4915
4916 sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
4917 sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
4918 sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
4919 }
4920
4921 /*
4922 * Announce various information on device/driver attach.
4923 */
4924 static void
4925 ath_announce(struct ath_softc *sc)
4926 {
4927 #define HAL_MODE_DUALBAND (HAL_MODE_11A|HAL_MODE_11B)
4928 struct ifnet *ifp = &sc->sc_if;
4929 struct ath_hal *ah = sc->sc_ah;
4930 u_int modes, cc;
4931
4932 if_printf(ifp, "mac %d.%d phy %d.%d",
4933 ah->ah_macVersion, ah->ah_macRev,
4934 ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
4935 /*
4936 * Print radio revision(s). We check the wireless modes
4937 * to avoid falsely printing revs for inoperable parts.
4938 * Dual-band radio revs are returned in the 5Ghz rev number.
4939 */
4940 ath_hal_getcountrycode(ah, &cc);
4941 modes = ath_hal_getwirelessmodes(ah, cc);
4942 if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
4943 if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
4944 printf(" 5ghz radio %d.%d 2ghz radio %d.%d",
4945 ah->ah_analog5GhzRev >> 4,
4946 ah->ah_analog5GhzRev & 0xf,
4947 ah->ah_analog2GhzRev >> 4,
4948 ah->ah_analog2GhzRev & 0xf);
4949 else
4950 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
4951 ah->ah_analog5GhzRev & 0xf);
4952 } else
4953 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
4954 ah->ah_analog5GhzRev & 0xf);
4955 printf("\n");
4956 if (bootverbose) {
4957 int i;
4958 for (i = 0; i <= WME_AC_VO; i++) {
4959 struct ath_txq *txq = sc->sc_ac2q[i];
4960 if_printf(ifp, "Use hw queue %u for %s traffic\n",
4961 txq->axq_qnum, ieee80211_wme_acnames[i]);
4962 }
4963 if_printf(ifp, "Use hw queue %u for CAB traffic\n",
4964 sc->sc_cabq->axq_qnum);
4965 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
4966 }
4967 #undef HAL_MODE_DUALBAND
4968 }
4969