ath.c revision 1.60.6.2 1 /* $NetBSD: ath.c,v 1.60.6.2 2005/11/29 21:23:08 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15 * redistribution must be conditioned upon including a substantially
16 * similar Disclaimer requirement for further binary redistribution.
17 * 3. Neither the names of the above-listed copyright holders nor the names
18 * of any contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * Alternatively, this software may be distributed under the terms of the
22 * GNU General Public License ("GPL") version 2 as published by the Free
23 * Software Foundation.
24 *
25 * NO WARRANTY
26 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
28 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
29 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
30 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
31 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
34 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
36 * THE POSSIBILITY OF SUCH DAMAGES.
37 */
38
39 #include <sys/cdefs.h>
40 #ifdef __FreeBSD__
41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $");
42 #endif
43 #ifdef __NetBSD__
44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.60.6.2 2005/11/29 21:23:08 yamt Exp $");
45 #endif
46
47 /*
48 * Driver for the Atheros Wireless LAN controller.
49 *
50 * This software is derived from work of Atsushi Onoe; his contribution
51 * is greatly appreciated.
52 */
53
54 #include "opt_inet.h"
55
56 #ifdef __NetBSD__
57 #include "bpfilter.h"
58 #endif /* __NetBSD__ */
59
60 #include <sys/param.h>
61 #include <sys/reboot.h>
62 #include <sys/systm.h>
63 #include <sys/types.h>
64 #include <sys/sysctl.h>
65 #include <sys/mbuf.h>
66 #include <sys/malloc.h>
67 #include <sys/lock.h>
68 #include <sys/kernel.h>
69 #include <sys/socket.h>
70 #include <sys/sockio.h>
71 #include <sys/errno.h>
72 #include <sys/callout.h>
73 #include <machine/bus.h>
74 #include <sys/endian.h>
75
76 #include <machine/bus.h>
77
78 #include <net/if.h>
79 #include <net/if_dl.h>
80 #include <net/if_media.h>
81 #include <net/if_types.h>
82 #include <net/if_arp.h>
83 #include <net/if_ether.h>
84 #include <net/if_llc.h>
85
86 #include <net80211/ieee80211_netbsd.h>
87 #include <net80211/ieee80211_var.h>
88
89 #if NBPFILTER > 0
90 #include <net/bpf.h>
91 #endif
92
93 #ifdef INET
94 #include <netinet/in.h>
95 #endif
96
97 #include <sys/device.h>
98 #include <dev/ic/ath_netbsd.h>
99
100 #define AR_DEBUG
101 #include <dev/ic/athvar.h>
102 #include <contrib/dev/ic/athhal_desc.h>
103 #include <contrib/dev/ic/athhal_devid.h> /* XXX for softled */
104
105 /* unaligned little endian access */
106 #define LE_READ_2(p) \
107 ((u_int16_t) \
108 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8)))
109 #define LE_READ_4(p) \
110 ((u_int32_t) \
111 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \
112 (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
113
114 enum {
115 ATH_LED_TX,
116 ATH_LED_RX,
117 ATH_LED_POLL,
118 };
119
120 static int ath_ifinit(struct ifnet *);
121 static int ath_init(struct ath_softc *);
122 static void ath_stop_locked(struct ifnet *, int);
123 static void ath_stop(struct ifnet *, int);
124 static void ath_start(struct ifnet *);
125 static int ath_media_change(struct ifnet *);
126 static void ath_watchdog(struct ifnet *);
127 static int ath_ioctl(struct ifnet *, u_long, caddr_t);
128 static void ath_fatal_proc(void *, int);
129 static void ath_rxorn_proc(void *, int);
130 static void ath_bmiss_proc(void *, int);
131 static int ath_key_alloc(struct ieee80211com *,
132 const struct ieee80211_key *,
133 ieee80211_keyix *, ieee80211_keyix *);
134 static int ath_key_delete(struct ieee80211com *,
135 const struct ieee80211_key *);
136 static int ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
137 const u_int8_t mac[IEEE80211_ADDR_LEN]);
138 static void ath_key_update_begin(struct ieee80211com *);
139 static void ath_key_update_end(struct ieee80211com *);
140 static void ath_mode_init(struct ath_softc *);
141 static void ath_setslottime(struct ath_softc *);
142 static void ath_updateslot(struct ifnet *);
143 static int ath_beaconq_setup(struct ath_hal *);
144 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
145 static void ath_beacon_setup(struct ath_softc *, struct ath_buf *);
146 static void ath_beacon_proc(void *, int);
147 static void ath_bstuck_proc(void *, int);
148 static void ath_beacon_free(struct ath_softc *);
149 static void ath_beacon_config(struct ath_softc *);
150 static void ath_descdma_cleanup(struct ath_softc *sc,
151 struct ath_descdma *, ath_bufhead *);
152 static int ath_desc_alloc(struct ath_softc *);
153 static void ath_desc_free(struct ath_softc *);
154 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
155 static void ath_node_free(struct ieee80211_node *);
156 static u_int8_t ath_node_getrssi(const struct ieee80211_node *);
157 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
158 static void ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
159 struct ieee80211_node *ni,
160 int subtype, int rssi, u_int32_t rstamp);
161 static void ath_setdefantenna(struct ath_softc *, u_int);
162 static void ath_rx_proc(void *, int);
163 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
164 static int ath_tx_setup(struct ath_softc *, int, int);
165 static int ath_wme_update(struct ieee80211com *);
166 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
167 static void ath_tx_cleanup(struct ath_softc *);
168 static int ath_tx_start(struct ath_softc *, struct ieee80211_node *,
169 struct ath_buf *, struct mbuf *);
170 static void ath_tx_proc_q0(void *, int);
171 static void ath_tx_proc_q0123(void *, int);
172 static void ath_tx_proc(void *, int);
173 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
174 static void ath_draintxq(struct ath_softc *);
175 static void ath_stoprecv(struct ath_softc *);
176 static int ath_startrecv(struct ath_softc *);
177 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
178 static void ath_next_scan(void *);
179 static void ath_calibrate(void *);
180 static int ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
181 static void ath_setup_stationkey(struct ieee80211_node *);
182 static void ath_newassoc(struct ieee80211_node *, int);
183 static int ath_getchannels(struct ath_softc *, u_int cc,
184 HAL_BOOL outdoor, HAL_BOOL xchanmode);
185 static void ath_led_event(struct ath_softc *, int);
186 static void ath_update_txpow(struct ath_softc *);
187
188 static int ath_rate_setup(struct ath_softc *, u_int mode);
189 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
190
191 #ifdef __NetBSD__
192 int ath_enable(struct ath_softc *);
193 void ath_disable(struct ath_softc *);
194 void ath_power(int, void *);
195 #endif
196
197 static void ath_bpfattach(struct ath_softc *);
198 static void ath_announce(struct ath_softc *);
199
200 int ath_dwelltime = 200; /* 5 channels/second */
201 int ath_calinterval = 30; /* calibrate every 30 secs */
202 int ath_outdoor = AH_TRUE; /* outdoor operation */
203 int ath_xchanmode = AH_TRUE; /* enable extended channels */
204 int ath_countrycode = CTRY_DEFAULT; /* country code */
205 int ath_regdomain = 0; /* regulatory domain */
206 int ath_debug = 0;
207
208 #ifdef AR_DEBUG
209 enum {
210 ATH_DEBUG_XMIT = 0x00000001, /* basic xmit operation */
211 ATH_DEBUG_XMIT_DESC = 0x00000002, /* xmit descriptors */
212 ATH_DEBUG_RECV = 0x00000004, /* basic recv operation */
213 ATH_DEBUG_RECV_DESC = 0x00000008, /* recv descriptors */
214 ATH_DEBUG_RATE = 0x00000010, /* rate control */
215 ATH_DEBUG_RESET = 0x00000020, /* reset processing */
216 ATH_DEBUG_MODE = 0x00000040, /* mode init/setup */
217 ATH_DEBUG_BEACON = 0x00000080, /* beacon handling */
218 ATH_DEBUG_WATCHDOG = 0x00000100, /* watchdog timeout */
219 ATH_DEBUG_INTR = 0x00001000, /* ISR */
220 ATH_DEBUG_TX_PROC = 0x00002000, /* tx ISR proc */
221 ATH_DEBUG_RX_PROC = 0x00004000, /* rx ISR proc */
222 ATH_DEBUG_BEACON_PROC = 0x00008000, /* beacon ISR proc */
223 ATH_DEBUG_CALIBRATE = 0x00010000, /* periodic calibration */
224 ATH_DEBUG_KEYCACHE = 0x00020000, /* key cache management */
225 ATH_DEBUG_STATE = 0x00040000, /* 802.11 state transitions */
226 ATH_DEBUG_NODE = 0x00080000, /* node management */
227 ATH_DEBUG_LED = 0x00100000, /* led management */
228 ATH_DEBUG_FATAL = 0x80000000, /* fatal errors */
229 ATH_DEBUG_ANY = 0xffffffff
230 };
231 #define IFF_DUMPPKTS(sc, m) \
232 ((sc->sc_debug & (m)) || \
233 (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
234 #define DPRINTF(sc, m, fmt, ...) do { \
235 if (sc->sc_debug & (m)) \
236 printf(fmt, __VA_ARGS__); \
237 } while (0)
238 #define KEYPRINTF(sc, ix, hk, mac) do { \
239 if (sc->sc_debug & ATH_DEBUG_KEYCACHE) \
240 ath_keyprint(__func__, ix, hk, mac); \
241 } while (0)
242 static void ath_printrxbuf(struct ath_buf *bf, int);
243 static void ath_printtxbuf(struct ath_buf *bf, int);
244 #else
245 #define IFF_DUMPPKTS(sc, m) \
246 ((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
247 #define DPRINTF(m, fmt, ...)
248 #define KEYPRINTF(sc, k, ix, mac)
249 #endif
250
251 #ifdef __NetBSD__
252 int
253 ath_activate(struct device *self, enum devact act)
254 {
255 struct ath_softc *sc = (struct ath_softc *)self;
256 int rv = 0, s;
257
258 s = splnet();
259 switch (act) {
260 case DVACT_ACTIVATE:
261 rv = EOPNOTSUPP;
262 break;
263 case DVACT_DEACTIVATE:
264 if_deactivate(&sc->sc_if);
265 break;
266 }
267 splx(s);
268 return rv;
269 }
270
271 int
272 ath_enable(struct ath_softc *sc)
273 {
274 if (ATH_IS_ENABLED(sc) == 0) {
275 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
276 printf("%s: device enable failed\n",
277 sc->sc_dev.dv_xname);
278 return (EIO);
279 }
280 sc->sc_flags |= ATH_ENABLED;
281 }
282 return (0);
283 }
284
285 void
286 ath_disable(struct ath_softc *sc)
287 {
288 if (!ATH_IS_ENABLED(sc))
289 return;
290 if (sc->sc_disable != NULL)
291 (*sc->sc_disable)(sc);
292 sc->sc_flags &= ~ATH_ENABLED;
293 }
294 #endif /* __NetBSD__ */
295
296 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
297
298 int
299 ath_attach(u_int16_t devid, struct ath_softc *sc)
300 {
301 struct ifnet *ifp = &sc->sc_if;
302 struct ieee80211com *ic = &sc->sc_ic;
303 struct ath_hal *ah = NULL;
304 HAL_STATUS status;
305 int error = 0, i;
306
307 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
308
309 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
310
311 ah = ath_hal_attach(devid, sc, sc->sc_st, ATH_BUSHANDLE2HAL(sc->sc_sh),
312 &status);
313 if (ah == NULL) {
314 if_printf(ifp, "unable to attach hardware; HAL status %u\n",
315 status);
316 error = ENXIO;
317 goto bad;
318 }
319 if (ah->ah_abi != HAL_ABI_VERSION) {
320 if_printf(ifp, "HAL ABI mismatch detected "
321 "(HAL:0x%x != driver:0x%x)\n",
322 ah->ah_abi, HAL_ABI_VERSION);
323 error = ENXIO;
324 goto bad;
325 }
326 sc->sc_ah = ah;
327 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */
328
329 /*
330 * Check if the MAC has multi-rate retry support.
331 * We do this by trying to setup a fake extended
332 * descriptor. MAC's that don't have support will
333 * return false w/o doing anything. MAC's that do
334 * support it will return true w/o doing anything.
335 */
336 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
337
338 /*
339 * Check if the device has hardware counters for PHY
340 * errors. If so we need to enable the MIB interrupt
341 * so we can act on stat triggers.
342 */
343 if (ath_hal_hwphycounters(ah))
344 sc->sc_needmib = 1;
345
346 /*
347 * Get the hardware key cache size.
348 */
349 sc->sc_keymax = ath_hal_keycachesize(ah);
350 if (sc->sc_keymax > ATH_KEYMAX) {
351 if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
352 ATH_KEYMAX, sc->sc_keymax);
353 sc->sc_keymax = ATH_KEYMAX;
354 }
355 /*
356 * Reset the key cache since some parts do not
357 * reset the contents on initial power up.
358 */
359 for (i = 0; i < sc->sc_keymax; i++)
360 ath_hal_keyreset(ah, i);
361 /*
362 * Mark key cache slots associated with global keys
363 * as in use. If we knew TKIP was not to be used we
364 * could leave the +32, +64, and +32+64 slots free.
365 * XXX only for splitmic.
366 */
367 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
368 setbit(sc->sc_keymap, i);
369 setbit(sc->sc_keymap, i+32);
370 setbit(sc->sc_keymap, i+64);
371 setbit(sc->sc_keymap, i+32+64);
372 }
373
374 /*
375 * Collect the channel list using the default country
376 * code and including outdoor channels. The 802.11 layer
377 * is resposible for filtering this list based on settings
378 * like the phy mode.
379 */
380 error = ath_getchannels(sc, ath_countrycode,
381 ath_outdoor, ath_xchanmode);
382 if (error != 0)
383 goto bad;
384
385 /*
386 * Setup rate tables for all potential media types.
387 */
388 ath_rate_setup(sc, IEEE80211_MODE_11A);
389 ath_rate_setup(sc, IEEE80211_MODE_11B);
390 ath_rate_setup(sc, IEEE80211_MODE_11G);
391 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
392 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
393 /* NB: setup here so ath_rate_update is happy */
394 ath_setcurmode(sc, IEEE80211_MODE_11A);
395
396 /*
397 * Allocate tx+rx descriptors and populate the lists.
398 */
399 error = ath_desc_alloc(sc);
400 if (error != 0) {
401 if_printf(ifp, "failed to allocate descriptors: %d\n", error);
402 goto bad;
403 }
404 ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
405 ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE);
406
407 ATH_TXBUF_LOCK_INIT(sc);
408
409 TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
410 TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
411 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
412 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
413 TASK_INIT(&sc->sc_bstucktask, 0, ath_bstuck_proc, sc);
414
415 /*
416 * Allocate hardware transmit queues: one queue for
417 * beacon frames and one data queue for each QoS
418 * priority. Note that the hal handles reseting
419 * these queues at the needed time.
420 *
421 * XXX PS-Poll
422 */
423 sc->sc_bhalq = ath_beaconq_setup(ah);
424 if (sc->sc_bhalq == (u_int) -1) {
425 if_printf(ifp, "unable to setup a beacon xmit queue!\n");
426 error = EIO;
427 goto bad2;
428 }
429 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
430 if (sc->sc_cabq == NULL) {
431 if_printf(ifp, "unable to setup CAB xmit queue!\n");
432 error = EIO;
433 goto bad2;
434 }
435 /* NB: insure BK queue is the lowest priority h/w queue */
436 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
437 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
438 ieee80211_wme_acnames[WME_AC_BK]);
439 error = EIO;
440 goto bad2;
441 }
442 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
443 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
444 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
445 /*
446 * Not enough hardware tx queues to properly do WME;
447 * just punt and assign them all to the same h/w queue.
448 * We could do a better job of this if, for example,
449 * we allocate queues when we switch from station to
450 * AP mode.
451 */
452 if (sc->sc_ac2q[WME_AC_VI] != NULL)
453 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
454 if (sc->sc_ac2q[WME_AC_BE] != NULL)
455 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
456 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
457 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
458 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
459 }
460
461 /*
462 * Special case certain configurations. Note the
463 * CAB queue is handled by these specially so don't
464 * include them when checking the txq setup mask.
465 */
466 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
467 case 0x01:
468 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
469 break;
470 case 0x0f:
471 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
472 break;
473 default:
474 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
475 break;
476 }
477
478 /*
479 * Setup rate control. Some rate control modules
480 * call back to change the anntena state so expose
481 * the necessary entry points.
482 * XXX maybe belongs in struct ath_ratectrl?
483 */
484 sc->sc_setdefantenna = ath_setdefantenna;
485 sc->sc_rc = ath_rate_attach(sc);
486 if (sc->sc_rc == NULL) {
487 error = EIO;
488 goto bad2;
489 }
490
491 sc->sc_blinking = 0;
492 sc->sc_ledstate = 1;
493 sc->sc_ledon = 0; /* low true */
494 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */
495 ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE);
496 /*
497 * Auto-enable soft led processing for IBM cards and for
498 * 5211 minipci cards. Users can also manually enable/disable
499 * support with a sysctl.
500 */
501 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
502 if (sc->sc_softled) {
503 ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
504 ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
505 }
506
507 ifp->if_softc = sc;
508 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
509 ifp->if_start = ath_start;
510 ifp->if_watchdog = ath_watchdog;
511 ifp->if_ioctl = ath_ioctl;
512 ifp->if_init = ath_ifinit;
513 IFQ_SET_READY(&ifp->if_snd);
514
515 ic->ic_ifp = ifp;
516 ic->ic_reset = ath_reset;
517 ic->ic_newassoc = ath_newassoc;
518 ic->ic_updateslot = ath_updateslot;
519 ic->ic_wme.wme_update = ath_wme_update;
520 /* XXX not right but it's not used anywhere important */
521 ic->ic_phytype = IEEE80211_T_OFDM;
522 ic->ic_opmode = IEEE80211_M_STA;
523 ic->ic_caps =
524 IEEE80211_C_IBSS /* ibss, nee adhoc, mode */
525 | IEEE80211_C_HOSTAP /* hostap mode */
526 | IEEE80211_C_MONITOR /* monitor mode */
527 | IEEE80211_C_SHPREAMBLE /* short preamble supported */
528 | IEEE80211_C_SHSLOT /* short slot time supported */
529 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */
530 ;
531 /*
532 * Query the hal to figure out h/w crypto support.
533 */
534 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
535 ic->ic_caps |= IEEE80211_C_WEP;
536 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
537 ic->ic_caps |= IEEE80211_C_AES;
538 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
539 ic->ic_caps |= IEEE80211_C_AES_CCM;
540 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
541 ic->ic_caps |= IEEE80211_C_CKIP;
542 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
543 ic->ic_caps |= IEEE80211_C_TKIP;
544 /*
545 * Check if h/w does the MIC and/or whether the
546 * separate key cache entries are required to
547 * handle both tx+rx MIC keys.
548 */
549 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
550 ic->ic_caps |= IEEE80211_C_TKIPMIC;
551 if (ath_hal_tkipsplit(ah))
552 sc->sc_splitmic = 1;
553 }
554 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
555 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
556 /*
557 * TPC support can be done either with a global cap or
558 * per-packet support. The latter is not available on
559 * all parts. We're a bit pedantic here as all parts
560 * support a global cap.
561 */
562 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
563 ic->ic_caps |= IEEE80211_C_TXPMGT;
564
565 /*
566 * Mark WME capability only if we have sufficient
567 * hardware queues to do proper priority scheduling.
568 */
569 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
570 ic->ic_caps |= IEEE80211_C_WME;
571 /*
572 * Check for misc other capabilities.
573 */
574 if (ath_hal_hasbursting(ah))
575 ic->ic_caps |= IEEE80211_C_BURST;
576
577 /*
578 * Indicate we need the 802.11 header padded to a
579 * 32-bit boundary for 4-address and QoS frames.
580 */
581 ic->ic_flags |= IEEE80211_F_DATAPAD;
582
583 /*
584 * Query the hal about antenna support.
585 */
586 sc->sc_defant = ath_hal_getdefantenna(ah);
587
588 /*
589 * Not all chips have the VEOL support we want to
590 * use with IBSS beacons; check here for it.
591 */
592 sc->sc_hasveol = ath_hal_hasveol(ah);
593
594 /* get mac address from hardware */
595 ath_hal_getmac(ah, ic->ic_myaddr);
596
597 if_attach(ifp);
598 /* call MI attach routine. */
599 ieee80211_ifattach(ic);
600 /* override default methods */
601 ic->ic_node_alloc = ath_node_alloc;
602 sc->sc_node_free = ic->ic_node_free;
603 ic->ic_node_free = ath_node_free;
604 ic->ic_node_getrssi = ath_node_getrssi;
605 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
606 ic->ic_recv_mgmt = ath_recv_mgmt;
607 sc->sc_newstate = ic->ic_newstate;
608 ic->ic_newstate = ath_newstate;
609 ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
610 ic->ic_crypto.cs_key_alloc = ath_key_alloc;
611 ic->ic_crypto.cs_key_delete = ath_key_delete;
612 ic->ic_crypto.cs_key_set = ath_key_set;
613 ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
614 ic->ic_crypto.cs_key_update_end = ath_key_update_end;
615 /* complete initialization */
616 ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
617
618 ath_bpfattach(sc);
619
620 #ifdef __NetBSD__
621 sc->sc_flags |= ATH_ATTACHED;
622 /*
623 * Make sure the interface is shutdown during reboot.
624 */
625 sc->sc_sdhook = shutdownhook_establish(ath_shutdown, sc);
626 if (sc->sc_sdhook == NULL)
627 printf("%s: WARNING: unable to establish shutdown hook\n",
628 sc->sc_dev.dv_xname);
629 sc->sc_powerhook = powerhook_establish(ath_power, sc);
630 if (sc->sc_powerhook == NULL)
631 printf("%s: WARNING: unable to establish power hook\n",
632 sc->sc_dev.dv_xname);
633 #endif
634
635 /*
636 * Setup dynamic sysctl's now that country code and
637 * regdomain are available from the hal.
638 */
639 ath_sysctlattach(sc);
640
641 ieee80211_announce(ic);
642 ath_announce(sc);
643 return 0;
644 bad2:
645 ath_tx_cleanup(sc);
646 ath_desc_free(sc);
647 bad:
648 if (ah)
649 ath_hal_detach(ah);
650 sc->sc_invalid = 1;
651 return error;
652 }
653
654 int
655 ath_detach(struct ath_softc *sc)
656 {
657 struct ifnet *ifp = &sc->sc_if;
658 int s;
659
660 if ((sc->sc_flags & ATH_ATTACHED) == 0)
661 return (0);
662
663 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
664 __func__, ifp->if_flags);
665
666 s = splnet();
667 ath_stop(ifp, 1);
668 #if NBPFILTER > 0
669 bpfdetach(ifp);
670 #endif
671 /*
672 * NB: the order of these is important:
673 * o call the 802.11 layer before detaching the hal to
674 * insure callbacks into the driver to delete global
675 * key cache entries can be handled
676 * o reclaim the tx queue data structures after calling
677 * the 802.11 layer as we'll get called back to reclaim
678 * node state and potentially want to use them
679 * o to cleanup the tx queues the hal is called, so detach
680 * it last
681 * Other than that, it's straightforward...
682 */
683 ieee80211_ifdetach(&sc->sc_ic);
684 ath_rate_detach(sc->sc_rc);
685 ath_desc_free(sc);
686 ath_tx_cleanup(sc);
687 sysctl_teardown(&sc->sc_sysctllog);
688 ath_hal_detach(sc->sc_ah);
689 if_detach(ifp);
690 splx(s);
691 powerhook_disestablish(sc->sc_powerhook);
692 shutdownhook_disestablish(sc->sc_sdhook);
693
694 return 0;
695 }
696
697 #ifdef __NetBSD__
698 void
699 ath_power(int why, void *arg)
700 {
701 struct ath_softc *sc = arg;
702 int s;
703
704 DPRINTF(sc, ATH_DEBUG_ANY, "ath_power(%d)\n", why);
705
706 s = splnet();
707 switch (why) {
708 case PWR_SUSPEND:
709 case PWR_STANDBY:
710 ath_suspend(sc, why);
711 break;
712 case PWR_RESUME:
713 ath_resume(sc, why);
714 break;
715 case PWR_SOFTSUSPEND:
716 case PWR_SOFTSTANDBY:
717 case PWR_SOFTRESUME:
718 break;
719 }
720 splx(s);
721 }
722 #endif
723
724 void
725 ath_suspend(struct ath_softc *sc, int why)
726 {
727 struct ifnet *ifp = &sc->sc_if;
728
729 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
730 __func__, ifp->if_flags);
731
732 ath_stop(ifp, 1);
733 if (sc->sc_power != NULL)
734 (*sc->sc_power)(sc, why);
735 }
736
737 void
738 ath_resume(struct ath_softc *sc, int why)
739 {
740 struct ifnet *ifp = &sc->sc_if;
741
742 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
743 __func__, ifp->if_flags);
744
745 if (ifp->if_flags & IFF_UP) {
746 ath_init(sc);
747 #if 0
748 (void)ath_intr(sc);
749 #endif
750 if (sc->sc_power != NULL)
751 (*sc->sc_power)(sc, why);
752 if (ifp->if_flags & IFF_RUNNING)
753 ath_start(ifp);
754 }
755 if (sc->sc_softled) {
756 ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
757 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
758 }
759 }
760
761 void
762 ath_shutdown(void *arg)
763 {
764 struct ath_softc *sc = arg;
765
766 ath_stop(&sc->sc_if, 1);
767 }
768
769 /*
770 * Interrupt handler. Most of the actual processing is deferred.
771 */
772 int
773 ath_intr(void *arg)
774 {
775 struct ath_softc *sc = arg;
776 struct ifnet *ifp = &sc->sc_if;
777 struct ath_hal *ah = sc->sc_ah;
778 HAL_INT status;
779
780 if (sc->sc_invalid) {
781 /*
782 * The hardware is not ready/present, don't touch anything.
783 * Note this can happen early on if the IRQ is shared.
784 */
785 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
786 return 0;
787 }
788 if (!ath_hal_intrpend(ah)) /* shared irq, not for us */
789 return 0;
790 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
791 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
792 __func__, ifp->if_flags);
793 ath_hal_getisr(ah, &status); /* clear ISR */
794 ath_hal_intrset(ah, 0); /* disable further intr's */
795 return 1; /* XXX */
796 }
797 /*
798 * Figure out the reason(s) for the interrupt. Note
799 * that the hal returns a pseudo-ISR that may include
800 * bits we haven't explicitly enabled so we mask the
801 * value to insure we only process bits we requested.
802 */
803 ath_hal_getisr(ah, &status); /* NB: clears ISR too */
804 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
805 status &= sc->sc_imask; /* discard unasked for bits */
806 if (status & HAL_INT_FATAL) {
807 /*
808 * Fatal errors are unrecoverable. Typically
809 * these are caused by DMA errors. Unfortunately
810 * the exact reason is not (presently) returned
811 * by the hal.
812 */
813 sc->sc_stats.ast_hardware++;
814 ath_hal_intrset(ah, 0); /* disable intr's until reset */
815 TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
816 } else if (status & HAL_INT_RXORN) {
817 sc->sc_stats.ast_rxorn++;
818 ath_hal_intrset(ah, 0); /* disable intr's until reset */
819 TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
820 } else {
821 if (status & HAL_INT_SWBA) {
822 /*
823 * Software beacon alert--time to send a beacon.
824 * Handle beacon transmission directly; deferring
825 * this is too slow to meet timing constraints
826 * under load.
827 */
828 ath_beacon_proc(sc, 0);
829 }
830 if (status & HAL_INT_RXEOL) {
831 /*
832 * NB: the hardware should re-read the link when
833 * RXE bit is written, but it doesn't work at
834 * least on older hardware revs.
835 */
836 sc->sc_stats.ast_rxeol++;
837 sc->sc_rxlink = NULL;
838 }
839 if (status & HAL_INT_TXURN) {
840 sc->sc_stats.ast_txurn++;
841 /* bump tx trigger level */
842 ath_hal_updatetxtriglevel(ah, AH_TRUE);
843 }
844 if (status & HAL_INT_RX)
845 TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
846 if (status & HAL_INT_TX)
847 TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
848 if (status & HAL_INT_BMISS) {
849 sc->sc_stats.ast_bmiss++;
850 TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
851 }
852 if (status & HAL_INT_MIB) {
853 sc->sc_stats.ast_mib++;
854 /*
855 * Disable interrupts until we service the MIB
856 * interrupt; otherwise it will continue to fire.
857 */
858 ath_hal_intrset(ah, 0);
859 /*
860 * Let the hal handle the event. We assume it will
861 * clear whatever condition caused the interrupt.
862 */
863 ath_hal_mibevent(ah,
864 &ATH_NODE(sc->sc_ic.ic_bss)->an_halstats);
865 ath_hal_intrset(ah, sc->sc_imask);
866 }
867 }
868 return 1;
869 }
870
871 static void
872 ath_fatal_proc(void *arg, int pending)
873 {
874 struct ath_softc *sc = arg;
875 struct ifnet *ifp = &sc->sc_if;
876
877 if_printf(ifp, "hardware error; resetting\n");
878 ath_reset(ifp);
879 }
880
881 static void
882 ath_rxorn_proc(void *arg, int pending)
883 {
884 struct ath_softc *sc = arg;
885 struct ifnet *ifp = &sc->sc_if;
886
887 if_printf(ifp, "rx FIFO overrun; resetting\n");
888 ath_reset(ifp);
889 }
890
891 static void
892 ath_bmiss_proc(void *arg, int pending)
893 {
894 struct ath_softc *sc = arg;
895 struct ieee80211com *ic = &sc->sc_ic;
896
897 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
898 KASSERT(ic->ic_opmode == IEEE80211_M_STA,
899 ("unexpect operating mode %u", ic->ic_opmode));
900 if (ic->ic_state == IEEE80211_S_RUN) {
901 /*
902 * Rather than go directly to scan state, try to
903 * reassociate first. If that fails then the state
904 * machine will drop us into scanning after timing
905 * out waiting for a probe response.
906 */
907 NET_LOCK_GIANT();
908 ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1);
909 NET_UNLOCK_GIANT();
910 }
911 }
912
913 static u_int
914 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
915 {
916 #define N(a) (sizeof(a) / sizeof(a[0]))
917 static const u_int modeflags[] = {
918 0, /* IEEE80211_MODE_AUTO */
919 CHANNEL_A, /* IEEE80211_MODE_11A */
920 CHANNEL_B, /* IEEE80211_MODE_11B */
921 CHANNEL_PUREG, /* IEEE80211_MODE_11G */
922 0, /* IEEE80211_MODE_FH */
923 CHANNEL_T, /* IEEE80211_MODE_TURBO_A */
924 CHANNEL_108G /* IEEE80211_MODE_TURBO_G */
925 };
926 enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
927
928 KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
929 KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
930 return modeflags[mode];
931 #undef N
932 }
933
934 static int
935 ath_ifinit(struct ifnet *ifp)
936 {
937 struct ath_softc *sc = (struct ath_softc *)ifp->if_softc;
938
939 return ath_init(sc);
940 }
941
942 static int
943 ath_init(struct ath_softc *sc)
944 {
945 struct ifnet *ifp = &sc->sc_if;
946 struct ieee80211com *ic = &sc->sc_ic;
947 struct ath_hal *ah = sc->sc_ah;
948 HAL_STATUS status;
949 int error = 0;
950
951 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
952 __func__, ifp->if_flags);
953
954 ATH_LOCK(sc);
955
956 if ((error = ath_enable(sc)) != 0)
957 return error;
958
959 /*
960 * Stop anything previously setup. This is safe
961 * whether this is the first time through or not.
962 */
963 ath_stop_locked(ifp, 0);
964
965 /*
966 * The basic interface to setting the hardware in a good
967 * state is ``reset''. On return the hardware is known to
968 * be powered up and with interrupts disabled. This must
969 * be followed by initialization of the appropriate bits
970 * and then setup of the interrupt mask.
971 */
972 sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
973 sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
974 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
975 if_printf(ifp, "unable to reset hardware; hal status %u\n",
976 status);
977 error = EIO;
978 goto done;
979 }
980
981 /*
982 * This is needed only to setup initial state
983 * but it's best done after a reset.
984 */
985 ath_update_txpow(sc);
986 /*
987 * Likewise this is set during reset so update
988 * state cached in the driver.
989 */
990 sc->sc_diversity = ath_hal_getdiversity(ah);
991
992 /*
993 * Setup the hardware after reset: the key cache
994 * is filled as needed and the receive engine is
995 * set going. Frame transmit is handled entirely
996 * in the frame output path; there's nothing to do
997 * here except setup the interrupt mask.
998 */
999 if ((error = ath_startrecv(sc)) != 0) {
1000 if_printf(ifp, "unable to start recv logic\n");
1001 goto done;
1002 }
1003
1004 /*
1005 * Enable interrupts.
1006 */
1007 sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1008 | HAL_INT_RXEOL | HAL_INT_RXORN
1009 | HAL_INT_FATAL | HAL_INT_GLOBAL;
1010 /*
1011 * Enable MIB interrupts when there are hardware phy counters.
1012 * Note we only do this (at the moment) for station mode.
1013 */
1014 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1015 sc->sc_imask |= HAL_INT_MIB;
1016 ath_hal_intrset(ah, sc->sc_imask);
1017
1018 ifp->if_flags |= IFF_RUNNING;
1019 ic->ic_state = IEEE80211_S_INIT;
1020
1021 /*
1022 * The hardware should be ready to go now so it's safe
1023 * to kick the 802.11 state machine as it's likely to
1024 * immediately call back to us to send mgmt frames.
1025 */
1026 ath_chan_change(sc, ic->ic_curchan);
1027 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1028 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
1029 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1030 } else
1031 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1032 done:
1033 ATH_UNLOCK(sc);
1034 return error;
1035 }
1036
1037 static void
1038 ath_stop_locked(struct ifnet *ifp, int disable)
1039 {
1040 struct ath_softc *sc = ifp->if_softc;
1041 struct ieee80211com *ic = &sc->sc_ic;
1042 struct ath_hal *ah = sc->sc_ah;
1043
1044 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1045 __func__, sc->sc_invalid, ifp->if_flags);
1046
1047 ATH_LOCK_ASSERT(sc);
1048 if (ifp->if_flags & IFF_RUNNING) {
1049 /*
1050 * Shutdown the hardware and driver:
1051 * reset 802.11 state machine
1052 * turn off timers
1053 * disable interrupts
1054 * turn off the radio
1055 * clear transmit machinery
1056 * clear receive machinery
1057 * drain and release tx queues
1058 * reclaim beacon resources
1059 * power down hardware
1060 *
1061 * Note that some of this work is not possible if the
1062 * hardware is gone (invalid).
1063 */
1064 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1065 ifp->if_flags &= ~IFF_RUNNING;
1066 ifp->if_timer = 0;
1067 if (!sc->sc_invalid) {
1068 if (sc->sc_softled) {
1069 callout_stop(&sc->sc_ledtimer);
1070 ath_hal_gpioset(ah, sc->sc_ledpin,
1071 !sc->sc_ledon);
1072 sc->sc_blinking = 0;
1073 }
1074 ath_hal_intrset(ah, 0);
1075 }
1076 ath_draintxq(sc);
1077 if (!sc->sc_invalid) {
1078 ath_stoprecv(sc);
1079 ath_hal_phydisable(ah);
1080 } else
1081 sc->sc_rxlink = NULL;
1082 IF_PURGE(&ifp->if_snd);
1083 ath_beacon_free(sc);
1084 if (disable)
1085 ath_disable(sc);
1086 }
1087 }
1088
1089 static void
1090 ath_stop(struct ifnet *ifp, int disable)
1091 {
1092 struct ath_softc *sc = ifp->if_softc;
1093
1094 ATH_LOCK(sc);
1095 ath_stop_locked(ifp, disable);
1096 if (!sc->sc_invalid) {
1097 /*
1098 * Set the chip in full sleep mode. Note that we are
1099 * careful to do this only when bringing the interface
1100 * completely to a stop. When the chip is in this state
1101 * it must be carefully woken up or references to
1102 * registers in the PCI clock domain may freeze the bus
1103 * (and system). This varies by chip and is mostly an
1104 * issue with newer parts that go to sleep more quickly.
1105 */
1106 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP, 0);
1107 }
1108 ATH_UNLOCK(sc);
1109 }
1110
1111 /*
1112 * Reset the hardware w/o losing operational state. This is
1113 * basically a more efficient way of doing ath_stop, ath_init,
1114 * followed by state transitions to the current 802.11
1115 * operational state. Used to recover from various errors and
1116 * to reset or reload hardware state.
1117 */
1118 int
1119 ath_reset(struct ifnet *ifp)
1120 {
1121 struct ath_softc *sc = ifp->if_softc;
1122 struct ieee80211com *ic = &sc->sc_ic;
1123 struct ath_hal *ah = sc->sc_ah;
1124 struct ieee80211_channel *c;
1125 HAL_STATUS status;
1126
1127 /*
1128 * Convert to a HAL channel description with the flags
1129 * constrained to reflect the current operating mode.
1130 */
1131 c = ic->ic_curchan;
1132 sc->sc_curchan.channel = c->ic_freq;
1133 sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
1134
1135 ath_hal_intrset(ah, 0); /* disable interrupts */
1136 ath_draintxq(sc); /* stop xmit side */
1137 ath_stoprecv(sc); /* stop recv side */
1138 /* NB: indicate channel change so we do a full reset */
1139 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
1140 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1141 __func__, status);
1142 ath_update_txpow(sc); /* update tx power state */
1143 sc->sc_diversity = ath_hal_getdiversity(ah);
1144 if (ath_startrecv(sc) != 0) /* restart recv */
1145 if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1146 /*
1147 * We may be doing a reset in response to an ioctl
1148 * that changes the channel so update any state that
1149 * might change as a result.
1150 */
1151 ath_chan_change(sc, c);
1152 if (ic->ic_state == IEEE80211_S_RUN)
1153 ath_beacon_config(sc); /* restart beacons */
1154 ath_hal_intrset(ah, sc->sc_imask);
1155
1156 ath_start(ifp); /* restart xmit */
1157 return 0;
1158 }
1159
1160 static void
1161 ath_start(struct ifnet *ifp)
1162 {
1163 struct ath_softc *sc = ifp->if_softc;
1164 struct ath_hal *ah = sc->sc_ah;
1165 struct ieee80211com *ic = &sc->sc_ic;
1166 struct ieee80211_node *ni;
1167 struct ath_buf *bf;
1168 struct mbuf *m;
1169 struct ieee80211_frame *wh;
1170 struct ether_header *eh;
1171
1172 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
1173 return;
1174 for (;;) {
1175 /*
1176 * Grab a TX buffer and associated resources.
1177 */
1178 ATH_TXBUF_LOCK(sc);
1179 bf = STAILQ_FIRST(&sc->sc_txbuf);
1180 if (bf != NULL)
1181 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1182 ATH_TXBUF_UNLOCK(sc);
1183 if (bf == NULL) {
1184 DPRINTF(sc, ATH_DEBUG_ANY, "%s: out of xmit buffers\n",
1185 __func__);
1186 sc->sc_stats.ast_tx_qstop++;
1187 ifp->if_flags |= IFF_OACTIVE;
1188 break;
1189 }
1190 /*
1191 * Poll the management queue for frames; they
1192 * have priority over normal data frames.
1193 */
1194 IF_DEQUEUE(&ic->ic_mgtq, m);
1195 if (m == NULL) {
1196 /*
1197 * No data frames go out unless we're associated.
1198 */
1199 if (ic->ic_state != IEEE80211_S_RUN) {
1200 DPRINTF(sc, ATH_DEBUG_ANY,
1201 "%s: ignore data packet, state %u\n",
1202 __func__, ic->ic_state);
1203 sc->sc_stats.ast_tx_discard++;
1204 ATH_TXBUF_LOCK(sc);
1205 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1206 ATH_TXBUF_UNLOCK(sc);
1207 break;
1208 }
1209 IFQ_DEQUEUE(&ifp->if_snd, m); /* XXX: LOCK */
1210 if (m == NULL) {
1211 ATH_TXBUF_LOCK(sc);
1212 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1213 ATH_TXBUF_UNLOCK(sc);
1214 break;
1215 }
1216 /*
1217 * Find the node for the destination so we can do
1218 * things like power save and fast frames aggregation.
1219 */
1220 if (m->m_len < sizeof(struct ether_header) &&
1221 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
1222 ic->ic_stats.is_tx_nobuf++; /* XXX */
1223 ni = NULL;
1224 goto bad;
1225 }
1226 eh = mtod(m, struct ether_header *);
1227 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1228 if (ni == NULL) {
1229 /* NB: ieee80211_find_txnode does stat+msg */
1230 m_freem(m);
1231 goto bad;
1232 }
1233 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1234 (m->m_flags & M_PWR_SAV) == 0) {
1235 /*
1236 * Station in power save mode; pass the frame
1237 * to the 802.11 layer and continue. We'll get
1238 * the frame back when the time is right.
1239 */
1240 ieee80211_pwrsave(ic, ni, m);
1241 goto reclaim;
1242 }
1243 /* calculate priority so we can find the tx queue */
1244 if (ieee80211_classify(ic, m, ni)) {
1245 DPRINTF(sc, ATH_DEBUG_XMIT,
1246 "%s: discard, classification failure\n",
1247 __func__);
1248 m_freem(m);
1249 goto bad;
1250 }
1251 ifp->if_opackets++;
1252
1253 #if NBPFILTER > 0
1254 if (ifp->if_bpf)
1255 bpf_mtap(ifp->if_bpf, m);
1256 #endif
1257 /*
1258 * Encapsulate the packet in prep for transmission.
1259 */
1260 m = ieee80211_encap(ic, m, ni);
1261 if (m == NULL) {
1262 DPRINTF(sc, ATH_DEBUG_ANY,
1263 "%s: encapsulation failure\n",
1264 __func__);
1265 sc->sc_stats.ast_tx_encap++;
1266 goto bad;
1267 }
1268 } else {
1269 /*
1270 * Hack! The referenced node pointer is in the
1271 * rcvif field of the packet header. This is
1272 * placed there by ieee80211_mgmt_output because
1273 * we need to hold the reference with the frame
1274 * and there's no other way (other than packet
1275 * tags which we consider too expensive to use)
1276 * to pass it along.
1277 */
1278 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1279 m->m_pkthdr.rcvif = NULL;
1280
1281 wh = mtod(m, struct ieee80211_frame *);
1282 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1283 IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1284 /* fill time stamp */
1285 u_int64_t tsf;
1286 u_int32_t *tstamp;
1287
1288 tsf = ath_hal_gettsf64(ah);
1289 /* XXX: adjust 100us delay to xmit */
1290 tsf += 100;
1291 tstamp = (u_int32_t *)&wh[1];
1292 tstamp[0] = htole32(tsf & 0xffffffff);
1293 tstamp[1] = htole32(tsf >> 32);
1294 }
1295 sc->sc_stats.ast_tx_mgmt++;
1296 }
1297
1298 if (ath_tx_start(sc, ni, bf, m)) {
1299 bad:
1300 ifp->if_oerrors++;
1301 reclaim:
1302 ATH_TXBUF_LOCK(sc);
1303 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1304 ATH_TXBUF_UNLOCK(sc);
1305 if (ni != NULL)
1306 ieee80211_free_node(ni);
1307 continue;
1308 }
1309
1310 sc->sc_tx_timer = 5;
1311 ifp->if_timer = 1;
1312 }
1313 }
1314
1315 static int
1316 ath_media_change(struct ifnet *ifp)
1317 {
1318 #define IS_UP(ifp) \
1319 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
1320 int error;
1321
1322 error = ieee80211_media_change(ifp);
1323 if (error == ENETRESET) {
1324 if (IS_UP(ifp))
1325 ath_init(ifp->if_softc); /* XXX lose error */
1326 error = 0;
1327 }
1328 return error;
1329 #undef IS_UP
1330 }
1331
1332 #ifdef AR_DEBUG
1333 static void
1334 ath_keyprint(const char *tag, u_int ix,
1335 const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1336 {
1337 static const char *ciphers[] = {
1338 "WEP",
1339 "AES-OCB",
1340 "AES-CCM",
1341 "CKIP",
1342 "TKIP",
1343 "CLR",
1344 };
1345 int i, n;
1346
1347 printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1348 for (i = 0, n = hk->kv_len; i < n; i++)
1349 printf("%02x", hk->kv_val[i]);
1350 printf(" mac %s", ether_sprintf(mac));
1351 if (hk->kv_type == HAL_CIPHER_TKIP) {
1352 printf(" mic ");
1353 for (i = 0; i < sizeof(hk->kv_mic); i++)
1354 printf("%02x", hk->kv_mic[i]);
1355 }
1356 printf("\n");
1357 }
1358 #endif
1359
1360 /*
1361 * Set a TKIP key into the hardware. This handles the
1362 * potential distribution of key state to multiple key
1363 * cache slots for TKIP.
1364 */
1365 static int
1366 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1367 HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1368 {
1369 #define IEEE80211_KEY_XR (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1370 static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1371 struct ath_hal *ah = sc->sc_ah;
1372
1373 KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1374 ("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1375 KASSERT(sc->sc_splitmic, ("key cache !split"));
1376 if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1377 /*
1378 * TX key goes at first index, RX key at the rx index.
1379 * The hal handles the MIC keys at index+64.
1380 */
1381 memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1382 KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1383 if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
1384 return 0;
1385
1386 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1387 KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1388 /* XXX delete tx key on failure? */
1389 return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
1390 } else if (k->wk_flags & IEEE80211_KEY_XR) {
1391 /*
1392 * TX/RX key goes at first index.
1393 * The hal handles the MIC keys are index+64.
1394 */
1395 memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
1396 k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
1397 KEYPRINTF(sc, k->wk_keyix, hk, mac);
1398 return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1399 }
1400 return 0;
1401 #undef IEEE80211_KEY_XR
1402 }
1403
1404 /*
1405 * Set a net80211 key into the hardware. This handles the
1406 * potential distribution of key state to multiple key
1407 * cache slots for TKIP with hardware MIC support.
1408 */
1409 static int
1410 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1411 const u_int8_t mac0[IEEE80211_ADDR_LEN],
1412 struct ieee80211_node *bss)
1413 {
1414 #define N(a) (sizeof(a)/sizeof(a[0]))
1415 static const u_int8_t ciphermap[] = {
1416 HAL_CIPHER_WEP, /* IEEE80211_CIPHER_WEP */
1417 HAL_CIPHER_TKIP, /* IEEE80211_CIPHER_TKIP */
1418 HAL_CIPHER_AES_OCB, /* IEEE80211_CIPHER_AES_OCB */
1419 HAL_CIPHER_AES_CCM, /* IEEE80211_CIPHER_AES_CCM */
1420 (u_int8_t) -1, /* 4 is not allocated */
1421 HAL_CIPHER_CKIP, /* IEEE80211_CIPHER_CKIP */
1422 HAL_CIPHER_CLR, /* IEEE80211_CIPHER_NONE */
1423 };
1424 struct ath_hal *ah = sc->sc_ah;
1425 const struct ieee80211_cipher *cip = k->wk_cipher;
1426 u_int8_t gmac[IEEE80211_ADDR_LEN];
1427 const u_int8_t *mac;
1428 HAL_KEYVAL hk;
1429
1430 memset(&hk, 0, sizeof(hk));
1431 /*
1432 * Software crypto uses a "clear key" so non-crypto
1433 * state kept in the key cache are maintained and
1434 * so that rx frames have an entry to match.
1435 */
1436 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1437 KASSERT(cip->ic_cipher < N(ciphermap),
1438 ("invalid cipher type %u", cip->ic_cipher));
1439 hk.kv_type = ciphermap[cip->ic_cipher];
1440 hk.kv_len = k->wk_keylen;
1441 memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1442 } else
1443 hk.kv_type = HAL_CIPHER_CLR;
1444
1445 if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
1446 /*
1447 * Group keys on hardware that supports multicast frame
1448 * key search use a mac that is the sender's address with
1449 * the high bit set instead of the app-specified address.
1450 */
1451 IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
1452 gmac[0] |= 0x80;
1453 mac = gmac;
1454 } else
1455 mac = mac0;
1456
1457 if (hk.kv_type == HAL_CIPHER_TKIP &&
1458 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1459 sc->sc_splitmic) {
1460 return ath_keyset_tkip(sc, k, &hk, mac);
1461 } else {
1462 KEYPRINTF(sc, k->wk_keyix, &hk, mac);
1463 return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
1464 }
1465 #undef N
1466 }
1467
1468 /*
1469 * Allocate tx/rx key slots for TKIP. We allocate two slots for
1470 * each key, one for decrypt/encrypt and the other for the MIC.
1471 */
1472 static u_int16_t
1473 key_alloc_2pair(struct ath_softc *sc,
1474 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1475 {
1476 #define N(a) (sizeof(a)/sizeof(a[0]))
1477 u_int i, keyix;
1478
1479 KASSERT(sc->sc_splitmic, ("key cache !split"));
1480 /* XXX could optimize */
1481 for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1482 u_int8_t b = sc->sc_keymap[i];
1483 if (b != 0xff) {
1484 /*
1485 * One or more slots in this byte are free.
1486 */
1487 keyix = i*NBBY;
1488 while (b & 1) {
1489 again:
1490 keyix++;
1491 b >>= 1;
1492 }
1493 /* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1494 if (isset(sc->sc_keymap, keyix+32) ||
1495 isset(sc->sc_keymap, keyix+64) ||
1496 isset(sc->sc_keymap, keyix+32+64)) {
1497 /* full pair unavailable */
1498 /* XXX statistic */
1499 if (keyix == (i+1)*NBBY) {
1500 /* no slots were appropriate, advance */
1501 continue;
1502 }
1503 goto again;
1504 }
1505 setbit(sc->sc_keymap, keyix);
1506 setbit(sc->sc_keymap, keyix+64);
1507 setbit(sc->sc_keymap, keyix+32);
1508 setbit(sc->sc_keymap, keyix+32+64);
1509 DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1510 "%s: key pair %u,%u %u,%u\n",
1511 __func__, keyix, keyix+64,
1512 keyix+32, keyix+32+64);
1513 *txkeyix = keyix;
1514 *rxkeyix = keyix+32;
1515 return 1;
1516 }
1517 }
1518 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1519 return 0;
1520 #undef N
1521 }
1522
1523 /*
1524 * Allocate a single key cache slot.
1525 */
1526 static int
1527 key_alloc_single(struct ath_softc *sc,
1528 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1529 {
1530 #define N(a) (sizeof(a)/sizeof(a[0]))
1531 u_int i, keyix;
1532
1533 /* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
1534 for (i = 0; i < N(sc->sc_keymap); i++) {
1535 u_int8_t b = sc->sc_keymap[i];
1536 if (b != 0xff) {
1537 /*
1538 * One or more slots are free.
1539 */
1540 keyix = i*NBBY;
1541 while (b & 1)
1542 keyix++, b >>= 1;
1543 setbit(sc->sc_keymap, keyix);
1544 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
1545 __func__, keyix);
1546 *txkeyix = *rxkeyix = keyix;
1547 return 1;
1548 }
1549 }
1550 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
1551 return 0;
1552 #undef N
1553 }
1554
1555 /*
1556 * Allocate one or more key cache slots for a uniacst key. The
1557 * key itself is needed only to identify the cipher. For hardware
1558 * TKIP with split cipher+MIC keys we allocate two key cache slot
1559 * pairs so that we can setup separate TX and RX MIC keys. Note
1560 * that the MIC key for a TKIP key at slot i is assumed by the
1561 * hardware to be at slot i+64. This limits TKIP keys to the first
1562 * 64 entries.
1563 */
1564 static int
1565 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
1566 ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
1567 {
1568 struct ath_softc *sc = ic->ic_ifp->if_softc;
1569
1570 /*
1571 * Group key allocation must be handled specially for
1572 * parts that do not support multicast key cache search
1573 * functionality. For those parts the key id must match
1574 * the h/w key index so lookups find the right key. On
1575 * parts w/ the key search facility we install the sender's
1576 * mac address (with the high bit set) and let the hardware
1577 * find the key w/o using the key id. This is preferred as
1578 * it permits us to support multiple users for adhoc and/or
1579 * multi-station operation.
1580 */
1581 if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
1582 if (!(&ic->ic_nw_keys[0] <= k &&
1583 k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
1584 /* should not happen */
1585 DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1586 "%s: bogus group key\n", __func__);
1587 return 0;
1588 }
1589 /*
1590 * XXX we pre-allocate the global keys so
1591 * have no way to check if they've already been allocated.
1592 */
1593 *keyix = *rxkeyix = k - ic->ic_nw_keys;
1594 return 1;
1595 }
1596
1597 /*
1598 * We allocate two pair for TKIP when using the h/w to do
1599 * the MIC. For everything else, including software crypto,
1600 * we allocate a single entry. Note that s/w crypto requires
1601 * a pass-through slot on the 5211 and 5212. The 5210 does
1602 * not support pass-through cache entries and we map all
1603 * those requests to slot 0.
1604 */
1605 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1606 return key_alloc_single(sc, keyix, rxkeyix);
1607 } else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
1608 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
1609 return key_alloc_2pair(sc, keyix, rxkeyix);
1610 } else {
1611 return key_alloc_single(sc, keyix, rxkeyix);
1612 }
1613 }
1614
1615 /*
1616 * Delete an entry in the key cache allocated by ath_key_alloc.
1617 */
1618 static int
1619 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
1620 {
1621 struct ath_softc *sc = ic->ic_ifp->if_softc;
1622 struct ath_hal *ah = sc->sc_ah;
1623 const struct ieee80211_cipher *cip = k->wk_cipher;
1624 u_int keyix = k->wk_keyix;
1625
1626 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
1627
1628 ath_hal_keyreset(ah, keyix);
1629 /*
1630 * Handle split tx/rx keying required for TKIP with h/w MIC.
1631 */
1632 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1633 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
1634 ath_hal_keyreset(ah, keyix+32); /* RX key */
1635 if (keyix >= IEEE80211_WEP_NKID) {
1636 /*
1637 * Don't touch keymap entries for global keys so
1638 * they are never considered for dynamic allocation.
1639 */
1640 clrbit(sc->sc_keymap, keyix);
1641 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1642 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1643 sc->sc_splitmic) {
1644 clrbit(sc->sc_keymap, keyix+64); /* TX key MIC */
1645 clrbit(sc->sc_keymap, keyix+32); /* RX key */
1646 clrbit(sc->sc_keymap, keyix+32+64); /* RX key MIC */
1647 }
1648 }
1649 return 1;
1650 }
1651
1652 /*
1653 * Set the key cache contents for the specified key. Key cache
1654 * slot(s) must already have been allocated by ath_key_alloc.
1655 */
1656 static int
1657 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
1658 const u_int8_t mac[IEEE80211_ADDR_LEN])
1659 {
1660 struct ath_softc *sc = ic->ic_ifp->if_softc;
1661
1662 return ath_keyset(sc, k, mac, ic->ic_bss);
1663 }
1664
1665 /*
1666 * Block/unblock tx+rx processing while a key change is done.
1667 * We assume the caller serializes key management operations
1668 * so we only need to worry about synchronization with other
1669 * uses that originate in the driver.
1670 */
1671 static void
1672 ath_key_update_begin(struct ieee80211com *ic)
1673 {
1674 struct ifnet *ifp = ic->ic_ifp;
1675 struct ath_softc *sc = ifp->if_softc;
1676
1677 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1678 #if 0
1679 tasklet_disable(&sc->sc_rxtq);
1680 #endif
1681 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */
1682 }
1683
1684 static void
1685 ath_key_update_end(struct ieee80211com *ic)
1686 {
1687 struct ifnet *ifp = ic->ic_ifp;
1688 struct ath_softc *sc = ifp->if_softc;
1689
1690 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1691 IF_UNLOCK(&ifp->if_snd);
1692 #if 0
1693 tasklet_enable(&sc->sc_rxtq);
1694 #endif
1695 }
1696
1697 /*
1698 * Calculate the receive filter according to the
1699 * operating mode and state:
1700 *
1701 * o always accept unicast, broadcast, and multicast traffic
1702 * o maintain current state of phy error reception (the hal
1703 * may enable phy error frames for noise immunity work)
1704 * o probe request frames are accepted only when operating in
1705 * hostap, adhoc, or monitor modes
1706 * o enable promiscuous mode according to the interface state
1707 * o accept beacons:
1708 * - when operating in adhoc mode so the 802.11 layer creates
1709 * node table entries for peers,
1710 * - when operating in station mode for collecting rssi data when
1711 * the station is otherwise quiet, or
1712 * - when scanning
1713 */
1714 static u_int32_t
1715 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
1716 {
1717 struct ieee80211com *ic = &sc->sc_ic;
1718 struct ath_hal *ah = sc->sc_ah;
1719 struct ifnet *ifp = &sc->sc_if;
1720 u_int32_t rfilt;
1721
1722 rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1723 | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1724 if (ic->ic_opmode != IEEE80211_M_STA)
1725 rfilt |= HAL_RX_FILTER_PROBEREQ;
1726 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1727 (ifp->if_flags & IFF_PROMISC))
1728 rfilt |= HAL_RX_FILTER_PROM;
1729 if (ic->ic_opmode == IEEE80211_M_STA ||
1730 ic->ic_opmode == IEEE80211_M_IBSS ||
1731 state == IEEE80211_S_SCAN)
1732 rfilt |= HAL_RX_FILTER_BEACON;
1733 return rfilt;
1734 }
1735
1736 static void
1737 ath_mcastfilter_accum(caddr_t dl, u_int32_t *mfilt)
1738 {
1739 u_int32_t val;
1740 u_int8_t pos;
1741
1742 /* calculate XOR of eight 6bit values */
1743 val = LE_READ_4(dl + 0);
1744 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1745 val = LE_READ_4(dl + 3);
1746 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1747 pos &= 0x3f;
1748 mfilt[pos / 32] |= (1 << (pos % 32));
1749 }
1750
1751 static void
1752 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t *mfilt)
1753 {
1754 struct ifnet *ifp = &sc->sc_if;
1755 struct ether_multi *enm;
1756 struct ether_multistep estep;
1757
1758 mfilt[0] = mfilt[1] = 0;
1759 ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
1760 while (enm != NULL) {
1761 /* XXX Punt on ranges. */
1762 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
1763 mfilt[0] = mfilt[1] = ~((u_int32_t)0);
1764 ifp->if_flags |= IFF_ALLMULTI;
1765 return;
1766 }
1767 ath_mcastfilter_accum(enm->enm_addrlo, mfilt);
1768 ETHER_NEXT_MULTI(estep, enm);
1769 }
1770 ifp->if_flags &= ~IFF_ALLMULTI;
1771 }
1772
1773 static void
1774 ath_mode_init(struct ath_softc *sc)
1775 {
1776 struct ieee80211com *ic = &sc->sc_ic;
1777 struct ath_hal *ah = sc->sc_ah;
1778 u_int32_t rfilt, mfilt[2];
1779 int i;
1780
1781 /* configure rx filter */
1782 rfilt = ath_calcrxfilter(sc, ic->ic_state);
1783 ath_hal_setrxfilter(ah, rfilt);
1784
1785 /* configure operational mode */
1786 ath_hal_setopmode(ah);
1787
1788 /* Write keys to hardware; it may have been powered down. */
1789 ath_key_update_begin(ic);
1790 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1791 ath_key_set(ic,
1792 &ic->ic_crypto.cs_nw_keys[i],
1793 ic->ic_myaddr);
1794 }
1795 ath_key_update_end(ic);
1796
1797 /*
1798 * Handle any link-level address change. Note that we only
1799 * need to force ic_myaddr; any other addresses are handled
1800 * as a byproduct of the ifnet code marking the interface
1801 * down then up.
1802 *
1803 * XXX should get from lladdr instead of arpcom but that's more work
1804 */
1805 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(sc->sc_if.if_sadl));
1806 ath_hal_setmac(ah, ic->ic_myaddr);
1807
1808 /* calculate and install multicast filter */
1809 #ifdef __FreeBSD__
1810 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1811 mfilt[0] = mfilt[1] = 0;
1812 IF_ADDR_LOCK(ifp);
1813 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1814 caddr_t dl;
1815
1816 /* calculate XOR of eight 6bit values */
1817 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
1818 val = LE_READ_4(dl + 0);
1819 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1820 val = LE_READ_4(dl + 3);
1821 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1822 pos &= 0x3f;
1823 mfilt[pos / 32] |= (1 << (pos % 32));
1824 }
1825 IF_ADDR_UNLOCK(ifp);
1826 } else {
1827 mfilt[0] = mfilt[1] = ~0;
1828 }
1829 #endif
1830 #ifdef __NetBSD__
1831 ath_mcastfilter_compute(sc, mfilt);
1832 #endif
1833 ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1834 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
1835 __func__, rfilt, mfilt[0], mfilt[1]);
1836 }
1837
1838 /*
1839 * Set the slot time based on the current setting.
1840 */
1841 static void
1842 ath_setslottime(struct ath_softc *sc)
1843 {
1844 struct ieee80211com *ic = &sc->sc_ic;
1845 struct ath_hal *ah = sc->sc_ah;
1846
1847 if (ic->ic_flags & IEEE80211_F_SHSLOT)
1848 ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
1849 else
1850 ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
1851 sc->sc_updateslot = OK;
1852 }
1853
1854 /*
1855 * Callback from the 802.11 layer to update the
1856 * slot time based on the current setting.
1857 */
1858 static void
1859 ath_updateslot(struct ifnet *ifp)
1860 {
1861 struct ath_softc *sc = ifp->if_softc;
1862 struct ieee80211com *ic = &sc->sc_ic;
1863
1864 /*
1865 * When not coordinating the BSS, change the hardware
1866 * immediately. For other operation we defer the change
1867 * until beacon updates have propagated to the stations.
1868 */
1869 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1870 sc->sc_updateslot = UPDATE;
1871 else
1872 ath_setslottime(sc);
1873 }
1874
1875 /*
1876 * Setup a h/w transmit queue for beacons.
1877 */
1878 static int
1879 ath_beaconq_setup(struct ath_hal *ah)
1880 {
1881 HAL_TXQ_INFO qi;
1882
1883 memset(&qi, 0, sizeof(qi));
1884 qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
1885 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
1886 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
1887 /* NB: for dynamic turbo, don't enable any other interrupts */
1888 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
1889 return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
1890 }
1891
1892 /*
1893 * Setup the transmit queue parameters for the beacon queue.
1894 */
1895 static int
1896 ath_beaconq_config(struct ath_softc *sc)
1897 {
1898 #define ATH_EXPONENT_TO_VALUE(v) ((1<<(v))-1)
1899 struct ieee80211com *ic = &sc->sc_ic;
1900 struct ath_hal *ah = sc->sc_ah;
1901 HAL_TXQ_INFO qi;
1902
1903 ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
1904 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
1905 /*
1906 * Always burst out beacon and CAB traffic.
1907 */
1908 qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
1909 qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
1910 qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
1911 } else {
1912 struct wmeParams *wmep =
1913 &ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
1914 /*
1915 * Adhoc mode; important thing is to use 2x cwmin.
1916 */
1917 qi.tqi_aifs = wmep->wmep_aifsn;
1918 qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
1919 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
1920 }
1921
1922 if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
1923 device_printf(sc->sc_dev, "unable to update parameters for "
1924 "beacon hardware queue!\n");
1925 return 0;
1926 } else {
1927 ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
1928 return 1;
1929 }
1930 #undef ATH_EXPONENT_TO_VALUE
1931 }
1932
1933 /*
1934 * Allocate and setup an initial beacon frame.
1935 */
1936 static int
1937 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
1938 {
1939 struct ieee80211com *ic = ni->ni_ic;
1940 struct ath_buf *bf;
1941 struct mbuf *m;
1942 int error;
1943
1944 bf = STAILQ_FIRST(&sc->sc_bbuf);
1945 if (bf == NULL) {
1946 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
1947 sc->sc_stats.ast_be_nombuf++; /* XXX */
1948 return ENOMEM; /* XXX */
1949 }
1950 /*
1951 * NB: the beacon data buffer must be 32-bit aligned;
1952 * we assume the mbuf routines will return us something
1953 * with this alignment (perhaps should assert).
1954 */
1955 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
1956 if (m == NULL) {
1957 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
1958 __func__);
1959 sc->sc_stats.ast_be_nombuf++;
1960 return ENOMEM;
1961 }
1962 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
1963 BUS_DMA_NOWAIT);
1964 if (error == 0) {
1965 bf->bf_m = m;
1966 bf->bf_node = ieee80211_ref_node(ni);
1967 } else {
1968 m_freem(m);
1969 }
1970 return error;
1971 }
1972
1973 /*
1974 * Setup the beacon frame for transmit.
1975 */
1976 static void
1977 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
1978 {
1979 #define USE_SHPREAMBLE(_ic) \
1980 (((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
1981 == IEEE80211_F_SHPREAMBLE)
1982 struct ieee80211_node *ni = bf->bf_node;
1983 struct ieee80211com *ic = ni->ni_ic;
1984 struct mbuf *m = bf->bf_m;
1985 struct ath_hal *ah = sc->sc_ah;
1986 struct ath_node *an = ATH_NODE(ni);
1987 struct ath_desc *ds;
1988 int flags, antenna;
1989 u_int8_t rate;
1990
1991 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
1992 __func__, m, m->m_len);
1993
1994 /* setup descriptors */
1995 ds = bf->bf_desc;
1996
1997 flags = HAL_TXDESC_NOACK;
1998 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
1999 ds->ds_link = bf->bf_daddr; /* self-linked */
2000 flags |= HAL_TXDESC_VEOL;
2001 /*
2002 * Let hardware handle antenna switching unless
2003 * the user has selected a transmit antenna
2004 * (sc_txantenna is not 0).
2005 */
2006 antenna = sc->sc_txantenna;
2007 } else {
2008 ds->ds_link = 0;
2009 /*
2010 * Switch antenna every 4 beacons, unless the user
2011 * has selected a transmit antenna (sc_txantenna
2012 * is not 0).
2013 *
2014 * XXX assumes two antenna
2015 */
2016 if (sc->sc_txantenna == 0)
2017 antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2018 else
2019 antenna = sc->sc_txantenna;
2020 }
2021
2022 KASSERT(bf->bf_nseg == 1,
2023 ("multi-segment beacon frame; nseg %u", bf->bf_nseg));
2024 ds->ds_data = bf->bf_segs[0].ds_addr;
2025 /*
2026 * Calculate rate code.
2027 * XXX everything at min xmit rate
2028 */
2029 if (USE_SHPREAMBLE(ic))
2030 rate = an->an_tx_mgtratesp;
2031 else
2032 rate = an->an_tx_mgtrate;
2033 ath_hal_setuptxdesc(ah, ds
2034 , m->m_len + IEEE80211_CRC_LEN /* frame length */
2035 , sizeof(struct ieee80211_frame)/* header length */
2036 , HAL_PKT_TYPE_BEACON /* Atheros packet type */
2037 , ni->ni_txpower /* txpower XXX */
2038 , rate, 1 /* series 0 rate/tries */
2039 , HAL_TXKEYIX_INVALID /* no encryption */
2040 , antenna /* antenna mode */
2041 , flags /* no ack, veol for beacons */
2042 , 0 /* rts/cts rate */
2043 , 0 /* rts/cts duration */
2044 );
2045 /* NB: beacon's BufLen must be a multiple of 4 bytes */
2046 ath_hal_filltxdesc(ah, ds
2047 , roundup(m->m_len, 4) /* buffer length */
2048 , AH_TRUE /* first segment */
2049 , AH_TRUE /* last segment */
2050 , ds /* first descriptor */
2051 );
2052 #undef USE_SHPREAMBLE
2053 }
2054
2055 /*
2056 * Transmit a beacon frame at SWBA. Dynamic updates to the
2057 * frame contents are done as needed and the slot time is
2058 * also adjusted based on current state.
2059 */
2060 static void
2061 ath_beacon_proc(void *arg, int pending)
2062 {
2063 struct ath_softc *sc = arg;
2064 struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
2065 struct ieee80211_node *ni = bf->bf_node;
2066 struct ieee80211com *ic = ni->ni_ic;
2067 struct ath_hal *ah = sc->sc_ah;
2068 struct mbuf *m;
2069 int ncabq, error, otherant;
2070
2071 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2072 __func__, pending);
2073
2074 if (ic->ic_opmode == IEEE80211_M_STA ||
2075 ic->ic_opmode == IEEE80211_M_MONITOR ||
2076 bf == NULL || bf->bf_m == NULL) {
2077 DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
2078 __func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
2079 return;
2080 }
2081 /*
2082 * Check if the previous beacon has gone out. If
2083 * not don't don't try to post another, skip this
2084 * period and wait for the next. Missed beacons
2085 * indicate a problem and should not occur. If we
2086 * miss too many consecutive beacons reset the device.
2087 */
2088 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2089 sc->sc_bmisscount++;
2090 DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2091 "%s: missed %u consecutive beacons\n",
2092 __func__, sc->sc_bmisscount);
2093 if (sc->sc_bmisscount > 3) /* NB: 3 is a guess */
2094 TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask);
2095 return;
2096 }
2097 if (sc->sc_bmisscount != 0) {
2098 DPRINTF(sc, ATH_DEBUG_BEACON,
2099 "%s: resume beacon xmit after %u misses\n",
2100 __func__, sc->sc_bmisscount);
2101 sc->sc_bmisscount = 0;
2102 }
2103
2104 /*
2105 * Update dynamic beacon contents. If this returns
2106 * non-zero then we need to remap the memory because
2107 * the beacon frame changed size (probably because
2108 * of the TIM bitmap).
2109 */
2110 m = bf->bf_m;
2111 ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
2112 if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
2113 /* XXX too conservative? */
2114 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2115 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2116 BUS_DMA_NOWAIT);
2117 if (error != 0) {
2118 if_printf(&sc->sc_if,
2119 "%s: bus_dmamap_load_mbuf failed, error %u\n",
2120 __func__, error);
2121 return;
2122 }
2123 }
2124
2125 /*
2126 * Handle slot time change when a non-ERP station joins/leaves
2127 * an 11g network. The 802.11 layer notifies us via callback,
2128 * we mark updateslot, then wait one beacon before effecting
2129 * the change. This gives associated stations at least one
2130 * beacon interval to note the state change.
2131 */
2132 /* XXX locking */
2133 if (sc->sc_updateslot == UPDATE)
2134 sc->sc_updateslot = COMMIT; /* commit next beacon */
2135 else if (sc->sc_updateslot == COMMIT)
2136 ath_setslottime(sc); /* commit change to h/w */
2137
2138 /*
2139 * Check recent per-antenna transmit statistics and flip
2140 * the default antenna if noticeably more frames went out
2141 * on the non-default antenna.
2142 * XXX assumes 2 anntenae
2143 */
2144 otherant = sc->sc_defant & 1 ? 2 : 1;
2145 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2146 ath_setdefantenna(sc, otherant);
2147 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2148
2149 /*
2150 * Construct tx descriptor.
2151 */
2152 ath_beacon_setup(sc, bf);
2153
2154 /*
2155 * Stop any current dma and put the new frame on the queue.
2156 * This should never fail since we check above that no frames
2157 * are still pending on the queue.
2158 */
2159 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2160 DPRINTF(sc, ATH_DEBUG_ANY,
2161 "%s: beacon queue %u did not stop?\n",
2162 __func__, sc->sc_bhalq);
2163 }
2164 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2165 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2166
2167 /*
2168 * Enable the CAB queue before the beacon queue to
2169 * insure cab frames are triggered by this beacon.
2170 */
2171 if (sc->sc_boff.bo_tim[4] & 1) /* NB: only at DTIM */
2172 ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
2173 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
2174 ath_hal_txstart(ah, sc->sc_bhalq);
2175 DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2176 "%s: TXDP[%u] = %p (%p)\n", __func__,
2177 sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc);
2178
2179 sc->sc_stats.ast_be_xmit++;
2180 }
2181
2182 /*
2183 * Reset the hardware after detecting beacons have stopped.
2184 */
2185 static void
2186 ath_bstuck_proc(void *arg, int pending)
2187 {
2188 struct ath_softc *sc = arg;
2189 struct ifnet *ifp = &sc->sc_if;
2190
2191 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2192 sc->sc_bmisscount);
2193 ath_reset(ifp);
2194 }
2195
2196 /*
2197 * Reclaim beacon resources.
2198 */
2199 static void
2200 ath_beacon_free(struct ath_softc *sc)
2201 {
2202 struct ath_buf *bf;
2203
2204 STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
2205 if (bf->bf_m != NULL) {
2206 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2207 m_freem(bf->bf_m);
2208 bf->bf_m = NULL;
2209 }
2210 if (bf->bf_node != NULL) {
2211 ieee80211_free_node(bf->bf_node);
2212 bf->bf_node = NULL;
2213 }
2214 }
2215 }
2216
2217 /*
2218 * Configure the beacon and sleep timers.
2219 *
2220 * When operating as an AP this resets the TSF and sets
2221 * up the hardware to notify us when we need to issue beacons.
2222 *
2223 * When operating in station mode this sets up the beacon
2224 * timers according to the timestamp of the last received
2225 * beacon and the current TSF, configures PCF and DTIM
2226 * handling, programs the sleep registers so the hardware
2227 * will wakeup in time to receive beacons, and configures
2228 * the beacon miss handling so we'll receive a BMISS
2229 * interrupt when we stop seeing beacons from the AP
2230 * we've associated with.
2231 */
2232 static void
2233 ath_beacon_config(struct ath_softc *sc)
2234 {
2235 #define TSF_TO_TU(_h,_l) (((_h) << 22) | ((_l) >> 10))
2236 struct ath_hal *ah = sc->sc_ah;
2237 struct ieee80211com *ic = &sc->sc_ic;
2238 struct ieee80211_node *ni = ic->ic_bss;
2239 u_int32_t nexttbtt, intval;
2240
2241 /* extract tstamp from last beacon and convert to TU */
2242 nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
2243 LE_READ_4(ni->ni_tstamp.data));
2244 /* NB: the beacon interval is kept internally in TU's */
2245 intval = ni->ni_intval & HAL_BEACON_PERIOD;
2246 if (nexttbtt == 0) /* e.g. for ap mode */
2247 nexttbtt = intval;
2248 else if (intval) /* NB: can be 0 for monitor mode */
2249 nexttbtt = roundup(nexttbtt, intval);
2250 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2251 __func__, nexttbtt, intval, ni->ni_intval);
2252 if (ic->ic_opmode == IEEE80211_M_STA) {
2253 HAL_BEACON_STATE bs;
2254 u_int64_t tsf;
2255 u_int32_t tsftu;
2256 int dtimperiod, dtimcount;
2257 int cfpperiod, cfpcount;
2258
2259 /*
2260 * Setup dtim and cfp parameters according to
2261 * last beacon we received (which may be none).
2262 */
2263 dtimperiod = ni->ni_dtim_period;
2264 if (dtimperiod <= 0) /* NB: 0 if not known */
2265 dtimperiod = 1;
2266 dtimcount = ni->ni_dtim_count;
2267 if (dtimcount >= dtimperiod) /* NB: sanity check */
2268 dtimcount = 0; /* XXX? */
2269 cfpperiod = 1; /* NB: no PCF support yet */
2270 cfpcount = 0;
2271 #define FUDGE 2
2272 /*
2273 * Pull nexttbtt forward to reflect the current
2274 * TSF and calculate dtim+cfp state for the result.
2275 */
2276 tsf = ath_hal_gettsf64(ah);
2277 tsftu = TSF_TO_TU((u_int32_t)(tsf>>32), (u_int32_t)tsf) + FUDGE;
2278 do {
2279 nexttbtt += intval;
2280 if (--dtimcount < 0) {
2281 dtimcount = dtimperiod - 1;
2282 if (--cfpcount < 0)
2283 cfpcount = cfpperiod - 1;
2284 }
2285 } while (nexttbtt < tsftu);
2286 #undef FUDGE
2287 memset(&bs, 0, sizeof(bs));
2288 bs.bs_intval = intval;
2289 bs.bs_nexttbtt = nexttbtt;
2290 bs.bs_dtimperiod = dtimperiod*intval;
2291 bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
2292 bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
2293 bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
2294 bs.bs_cfpmaxduration = 0;
2295 #if 0
2296 /*
2297 * The 802.11 layer records the offset to the DTIM
2298 * bitmap while receiving beacons; use it here to
2299 * enable h/w detection of our AID being marked in
2300 * the bitmap vector (to indicate frames for us are
2301 * pending at the AP).
2302 * XXX do DTIM handling in s/w to WAR old h/w bugs
2303 * XXX enable based on h/w rev for newer chips
2304 */
2305 bs.bs_timoffset = ni->ni_timoff;
2306 #endif
2307 /*
2308 * Calculate the number of consecutive beacons to miss
2309 * before taking a BMISS interrupt. The configuration
2310 * is specified in ms, so we need to convert that to
2311 * TU's and then calculate based on the beacon interval.
2312 * Note that we clamp the result to at most 10 beacons.
2313 */
2314 bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
2315 if (bs.bs_bmissthreshold > 10)
2316 bs.bs_bmissthreshold = 10;
2317 else if (bs.bs_bmissthreshold <= 0)
2318 bs.bs_bmissthreshold = 1;
2319
2320 /*
2321 * Calculate sleep duration. The configuration is
2322 * given in ms. We insure a multiple of the beacon
2323 * period is used. Also, if the sleep duration is
2324 * greater than the DTIM period then it makes senses
2325 * to make it a multiple of that.
2326 *
2327 * XXX fixed at 100ms
2328 */
2329 bs.bs_sleepduration =
2330 roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2331 if (bs.bs_sleepduration > bs.bs_dtimperiod)
2332 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2333
2334 DPRINTF(sc, ATH_DEBUG_BEACON,
2335 "%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2336 , __func__
2337 , tsf, tsftu
2338 , bs.bs_intval
2339 , bs.bs_nexttbtt
2340 , bs.bs_dtimperiod
2341 , bs.bs_nextdtim
2342 , bs.bs_bmissthreshold
2343 , bs.bs_sleepduration
2344 , bs.bs_cfpperiod
2345 , bs.bs_cfpmaxduration
2346 , bs.bs_cfpnext
2347 , bs.bs_timoffset
2348 );
2349 ath_hal_intrset(ah, 0);
2350 ath_hal_beacontimers(ah, &bs);
2351 sc->sc_imask |= HAL_INT_BMISS;
2352 ath_hal_intrset(ah, sc->sc_imask);
2353 } else {
2354 ath_hal_intrset(ah, 0);
2355 if (nexttbtt == intval)
2356 intval |= HAL_BEACON_RESET_TSF;
2357 if (ic->ic_opmode == IEEE80211_M_IBSS) {
2358 /*
2359 * In IBSS mode enable the beacon timers but only
2360 * enable SWBA interrupts if we need to manually
2361 * prepare beacon frames. Otherwise we use a
2362 * self-linked tx descriptor and let the hardware
2363 * deal with things.
2364 */
2365 intval |= HAL_BEACON_ENA;
2366 if (!sc->sc_hasveol)
2367 sc->sc_imask |= HAL_INT_SWBA;
2368 ath_beaconq_config(sc);
2369 } else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2370 /*
2371 * In AP mode we enable the beacon timers and
2372 * SWBA interrupts to prepare beacon frames.
2373 */
2374 intval |= HAL_BEACON_ENA;
2375 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */
2376 ath_beaconq_config(sc);
2377 }
2378 ath_hal_beaconinit(ah, nexttbtt, intval);
2379 sc->sc_bmisscount = 0;
2380 ath_hal_intrset(ah, sc->sc_imask);
2381 /*
2382 * When using a self-linked beacon descriptor in
2383 * ibss mode load it once here.
2384 */
2385 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2386 ath_beacon_proc(sc, 0);
2387 }
2388 #undef TSF_TO_TU
2389 }
2390
2391 static int
2392 ath_descdma_setup(struct ath_softc *sc,
2393 struct ath_descdma *dd, ath_bufhead *head,
2394 const char *name, int nbuf, int ndesc)
2395 {
2396 #define DS2PHYS(_dd, _ds) \
2397 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2398 struct ifnet *ifp = &sc->sc_if;
2399 struct ath_desc *ds;
2400 struct ath_buf *bf;
2401 int i, bsize, error;
2402
2403 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2404 __func__, name, nbuf, ndesc);
2405
2406 dd->dd_name = name;
2407 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2408
2409 /*
2410 * Setup DMA descriptor area.
2411 */
2412 dd->dd_dmat = sc->sc_dmat;
2413
2414 error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE,
2415 0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0);
2416
2417 if (error != 0) {
2418 if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2419 "error %u\n", nbuf * ndesc, dd->dd_name, error);
2420 goto fail0;
2421 }
2422
2423 error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg,
2424 dd->dd_desc_len, (caddr_t *)&dd->dd_desc, BUS_DMA_COHERENT);
2425 if (error != 0) {
2426 if_printf(ifp, "unable to map %u %s descriptors, error = %u\n",
2427 nbuf * ndesc, dd->dd_name, error);
2428 goto fail1;
2429 }
2430
2431 /* allocate descriptors */
2432 error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1,
2433 dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2434 if (error != 0) {
2435 if_printf(ifp, "unable to create dmamap for %s descriptors, "
2436 "error %u\n", dd->dd_name, error);
2437 goto fail2;
2438 }
2439
2440 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc,
2441 dd->dd_desc_len, NULL, BUS_DMA_NOWAIT);
2442 if (error != 0) {
2443 if_printf(ifp, "unable to map %s descriptors, error %u\n",
2444 dd->dd_name, error);
2445 goto fail3;
2446 }
2447
2448 ds = dd->dd_desc;
2449 dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr;
2450 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
2451 __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2452 (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2453
2454 /* allocate rx buffers */
2455 bsize = sizeof(struct ath_buf) * nbuf;
2456 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2457 if (bf == NULL) {
2458 if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2459 dd->dd_name, bsize);
2460 goto fail4;
2461 }
2462 dd->dd_bufptr = bf;
2463
2464 STAILQ_INIT(head);
2465 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2466 bf->bf_desc = ds;
2467 bf->bf_daddr = DS2PHYS(dd, ds);
2468 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc,
2469 MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap);
2470 if (error != 0) {
2471 if_printf(ifp, "unable to create dmamap for %s "
2472 "buffer %u, error %u\n", dd->dd_name, i, error);
2473 ath_descdma_cleanup(sc, dd, head);
2474 return error;
2475 }
2476 STAILQ_INSERT_TAIL(head, bf, bf_list);
2477 }
2478 return 0;
2479 fail4:
2480 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2481 fail3:
2482 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2483 fail2:
2484 bus_dmamem_unmap(dd->dd_dmat, (caddr_t)dd->dd_desc, dd->dd_desc_len);
2485 fail1:
2486 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2487 fail0:
2488 memset(dd, 0, sizeof(*dd));
2489 return error;
2490 #undef DS2PHYS
2491 }
2492
2493 static void
2494 ath_descdma_cleanup(struct ath_softc *sc,
2495 struct ath_descdma *dd, ath_bufhead *head)
2496 {
2497 struct ath_buf *bf;
2498 struct ieee80211_node *ni;
2499
2500 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2501 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2502 bus_dmamem_unmap(dd->dd_dmat, (caddr_t)dd->dd_desc, dd->dd_desc_len);
2503 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2504
2505 STAILQ_FOREACH(bf, head, bf_list) {
2506 if (bf->bf_m) {
2507 m_freem(bf->bf_m);
2508 bf->bf_m = NULL;
2509 }
2510 if (bf->bf_dmamap != NULL) {
2511 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2512 bf->bf_dmamap = NULL;
2513 }
2514 ni = bf->bf_node;
2515 bf->bf_node = NULL;
2516 if (ni != NULL) {
2517 /*
2518 * Reclaim node reference.
2519 */
2520 ieee80211_free_node(ni);
2521 }
2522 }
2523
2524 STAILQ_INIT(head);
2525 free(dd->dd_bufptr, M_ATHDEV);
2526 memset(dd, 0, sizeof(*dd));
2527 }
2528
2529 static int
2530 ath_desc_alloc(struct ath_softc *sc)
2531 {
2532 int error;
2533
2534 error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2535 "rx", ATH_RXBUF, 1);
2536 if (error != 0)
2537 return error;
2538
2539 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2540 "tx", ATH_TXBUF, ATH_TXDESC);
2541 if (error != 0) {
2542 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2543 return error;
2544 }
2545
2546 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2547 "beacon", 1, 1);
2548 if (error != 0) {
2549 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2550 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2551 return error;
2552 }
2553 return 0;
2554 }
2555
2556 static void
2557 ath_desc_free(struct ath_softc *sc)
2558 {
2559
2560 if (sc->sc_bdma.dd_desc_len != 0)
2561 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2562 if (sc->sc_txdma.dd_desc_len != 0)
2563 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2564 if (sc->sc_rxdma.dd_desc_len != 0)
2565 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2566 }
2567
2568 static struct ieee80211_node *
2569 ath_node_alloc(struct ieee80211_node_table *nt)
2570 {
2571 struct ieee80211com *ic = nt->nt_ic;
2572 struct ath_softc *sc = ic->ic_ifp->if_softc;
2573 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2574 struct ath_node *an;
2575
2576 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2577 if (an == NULL) {
2578 /* XXX stat+msg */
2579 return NULL;
2580 }
2581 an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
2582 an->an_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
2583 an->an_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
2584 an->an_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
2585 ath_rate_node_init(sc, an);
2586
2587 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2588 return &an->an_node;
2589 }
2590
2591 static void
2592 ath_node_free(struct ieee80211_node *ni)
2593 {
2594 struct ieee80211com *ic = ni->ni_ic;
2595 struct ath_softc *sc = ic->ic_ifp->if_softc;
2596
2597 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2598
2599 ath_rate_node_cleanup(sc, ATH_NODE(ni));
2600 sc->sc_node_free(ni);
2601 }
2602
2603 static u_int8_t
2604 ath_node_getrssi(const struct ieee80211_node *ni)
2605 {
2606 #define HAL_EP_RND(x, mul) \
2607 ((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
2608 u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
2609 int32_t rssi;
2610
2611 /*
2612 * When only one frame is received there will be no state in
2613 * avgrssi so fallback on the value recorded by the 802.11 layer.
2614 */
2615 if (avgrssi != ATH_RSSI_DUMMY_MARKER)
2616 rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
2617 else
2618 rssi = ni->ni_rssi;
2619 /* NB: theoretically we shouldn't need this, but be paranoid */
2620 return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
2621 #undef HAL_EP_RND
2622 }
2623
2624 static int
2625 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2626 {
2627 struct ath_hal *ah = sc->sc_ah;
2628 int error;
2629 struct mbuf *m;
2630 struct ath_desc *ds;
2631
2632 m = bf->bf_m;
2633 if (m == NULL) {
2634 /*
2635 * NB: by assigning a page to the rx dma buffer we
2636 * implicitly satisfy the Atheros requirement that
2637 * this buffer be cache-line-aligned and sized to be
2638 * multiple of the cache line size. Not doing this
2639 * causes weird stuff to happen (for the 5210 at least).
2640 */
2641 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2642 if (m == NULL) {
2643 DPRINTF(sc, ATH_DEBUG_ANY,
2644 "%s: no mbuf/cluster\n", __func__);
2645 sc->sc_stats.ast_rx_nombuf++;
2646 return ENOMEM;
2647 }
2648 bf->bf_m = m;
2649 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2650
2651 error = bus_dmamap_load_mbuf(sc->sc_dmat,
2652 bf->bf_dmamap, m,
2653 BUS_DMA_NOWAIT);
2654 if (error != 0) {
2655 DPRINTF(sc, ATH_DEBUG_ANY,
2656 "%s: bus_dmamap_load_mbuf failed; error %d\n",
2657 __func__, error);
2658 sc->sc_stats.ast_rx_busdma++;
2659 return error;
2660 }
2661 KASSERT(bf->bf_nseg == 1,
2662 ("multi-segment packet; nseg %u", bf->bf_nseg));
2663 }
2664 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2665 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2666
2667 /*
2668 * Setup descriptors. For receive we always terminate
2669 * the descriptor list with a self-linked entry so we'll
2670 * not get overrun under high load (as can happen with a
2671 * 5212 when ANI processing enables PHY error frames).
2672 *
2673 * To insure the last descriptor is self-linked we create
2674 * each descriptor as self-linked and add it to the end. As
2675 * each additional descriptor is added the previous self-linked
2676 * entry is ``fixed'' naturally. This should be safe even
2677 * if DMA is happening. When processing RX interrupts we
2678 * never remove/process the last, self-linked, entry on the
2679 * descriptor list. This insures the hardware always has
2680 * someplace to write a new frame.
2681 */
2682 ds = bf->bf_desc;
2683 ds->ds_link = bf->bf_daddr; /* link to self */
2684 ds->ds_data = bf->bf_segs[0].ds_addr;
2685 ath_hal_setuprxdesc(ah, ds
2686 , m->m_len /* buffer size */
2687 , 0
2688 );
2689
2690 if (sc->sc_rxlink != NULL)
2691 *sc->sc_rxlink = bf->bf_daddr;
2692 sc->sc_rxlink = &ds->ds_link;
2693 return 0;
2694 }
2695
2696 /*
2697 * Extend 15-bit time stamp from rx descriptor to
2698 * a full 64-bit TSF using the current h/w TSF.
2699 */
2700 static __inline u_int64_t
2701 ath_extend_tsf(struct ath_hal *ah, u_int32_t rstamp)
2702 {
2703 u_int64_t tsf;
2704
2705 tsf = ath_hal_gettsf64(ah);
2706 if ((tsf & 0x7fff) < rstamp)
2707 tsf -= 0x8000;
2708 return ((tsf &~ 0x7fff) | rstamp);
2709 }
2710
2711 /*
2712 * Intercept management frames to collect beacon rssi data
2713 * and to do ibss merges.
2714 */
2715 static void
2716 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2717 struct ieee80211_node *ni,
2718 int subtype, int rssi, u_int32_t rstamp)
2719 {
2720 struct ath_softc *sc = ic->ic_ifp->if_softc;
2721
2722 /*
2723 * Call up first so subsequent work can use information
2724 * potentially stored in the node (e.g. for ibss merge).
2725 */
2726 sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
2727 switch (subtype) {
2728 case IEEE80211_FC0_SUBTYPE_BEACON:
2729 /* update rssi statistics for use by the hal */
2730 ATH_RSSI_LPF(ATH_NODE(ni)->an_halstats.ns_avgbrssi, rssi);
2731 /* fall thru... */
2732 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2733 if (ic->ic_opmode == IEEE80211_M_IBSS &&
2734 ic->ic_state == IEEE80211_S_RUN) {
2735 u_int64_t tsf = ath_extend_tsf(sc->sc_ah, rstamp);
2736
2737 /*
2738 * Handle ibss merge as needed; check the tsf on the
2739 * frame before attempting the merge. The 802.11 spec
2740 * says the station should change it's bssid to match
2741 * the oldest station with the same ssid, where oldest
2742 * is determined by the tsf. Note that hardware
2743 * reconfiguration happens through callback to
2744 * ath_newstate as the state machine will go from
2745 * RUN -> RUN when this happens.
2746 */
2747 if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
2748 DPRINTF(sc, ATH_DEBUG_STATE,
2749 "ibss merge, rstamp %u tsf %ju "
2750 "tstamp %ju\n", rstamp, (uintmax_t)tsf,
2751 (uintmax_t)ni->ni_tstamp.tsf);
2752 (void) ieee80211_ibss_merge(ni);
2753 }
2754 }
2755 break;
2756 }
2757 }
2758
2759 /*
2760 * Set the default antenna.
2761 */
2762 static void
2763 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
2764 {
2765 struct ath_hal *ah = sc->sc_ah;
2766
2767 /* XXX block beacon interrupts */
2768 ath_hal_setdefantenna(ah, antenna);
2769 if (sc->sc_defant != antenna)
2770 sc->sc_stats.ast_ant_defswitch++;
2771 sc->sc_defant = antenna;
2772 sc->sc_rxotherant = 0;
2773 }
2774
2775 static void
2776 ath_rx_proc(void *arg, int npending)
2777 {
2778 #define PA2DESC(_sc, _pa) \
2779 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
2780 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
2781 struct ath_softc *sc = arg;
2782 struct ath_buf *bf;
2783 struct ieee80211com *ic = &sc->sc_ic;
2784 struct ifnet *ifp = &sc->sc_if;
2785 struct ath_hal *ah = sc->sc_ah;
2786 struct ath_desc *ds;
2787 struct mbuf *m;
2788 struct ieee80211_node *ni;
2789 struct ath_node *an;
2790 int len, type;
2791 u_int phyerr;
2792 HAL_STATUS status;
2793
2794 NET_LOCK_GIANT(); /* XXX */
2795
2796 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
2797 do {
2798 bf = STAILQ_FIRST(&sc->sc_rxbuf);
2799 if (bf == NULL) { /* NB: shouldn't happen */
2800 if_printf(ifp, "%s: no buffer!\n", __func__);
2801 break;
2802 }
2803 ds = bf->bf_desc;
2804 if (ds->ds_link == bf->bf_daddr) {
2805 /* NB: never process the self-linked entry at the end */
2806 break;
2807 }
2808 m = bf->bf_m;
2809 if (m == NULL) { /* NB: shouldn't happen */
2810 if_printf(ifp, "%s: no mbuf!\n", __func__);
2811 continue;
2812 }
2813 /* XXX sync descriptor memory */
2814 /*
2815 * Must provide the virtual address of the current
2816 * descriptor, the physical address, and the virtual
2817 * address of the next descriptor in the h/w chain.
2818 * This allows the HAL to look ahead to see if the
2819 * hardware is done with a descriptor by checking the
2820 * done bit in the following descriptor and the address
2821 * of the current descriptor the DMA engine is working
2822 * on. All this is necessary because of our use of
2823 * a self-linked list to avoid rx overruns.
2824 */
2825 status = ath_hal_rxprocdesc(ah, ds,
2826 bf->bf_daddr, PA2DESC(sc, ds->ds_link));
2827 #ifdef AR_DEBUG
2828 if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
2829 ath_printrxbuf(bf, status == HAL_OK);
2830 #endif
2831 if (status == HAL_EINPROGRESS)
2832 break;
2833 STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
2834 if (ds->ds_rxstat.rs_more) {
2835 /*
2836 * Frame spans multiple descriptors; this
2837 * cannot happen yet as we don't support
2838 * jumbograms. If not in monitor mode,
2839 * discard the frame.
2840 */
2841 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2842 sc->sc_stats.ast_rx_toobig++;
2843 goto rx_next;
2844 }
2845 /* fall thru for monitor mode handling... */
2846 } else if (ds->ds_rxstat.rs_status != 0) {
2847 if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
2848 sc->sc_stats.ast_rx_crcerr++;
2849 if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
2850 sc->sc_stats.ast_rx_fifoerr++;
2851 if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
2852 sc->sc_stats.ast_rx_phyerr++;
2853 phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
2854 sc->sc_stats.ast_rx_phy[phyerr]++;
2855 goto rx_next;
2856 }
2857 if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
2858 /*
2859 * Decrypt error. If the error occurred
2860 * because there was no hardware key, then
2861 * let the frame through so the upper layers
2862 * can process it. This is necessary for 5210
2863 * parts which have no way to setup a ``clear''
2864 * key cache entry.
2865 *
2866 * XXX do key cache faulting
2867 */
2868 if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
2869 goto rx_accept;
2870 sc->sc_stats.ast_rx_badcrypt++;
2871 }
2872 if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
2873 sc->sc_stats.ast_rx_badmic++;
2874 /*
2875 * Do minimal work required to hand off
2876 * the 802.11 header for notifcation.
2877 */
2878 /* XXX frag's and qos frames */
2879 len = ds->ds_rxstat.rs_datalen;
2880 if (len >= sizeof (struct ieee80211_frame)) {
2881 bus_dmamap_sync(sc->sc_dmat,
2882 bf->bf_dmamap,
2883 0, bf->bf_dmamap->dm_mapsize,
2884 BUS_DMASYNC_POSTREAD);
2885 ieee80211_notify_michael_failure(ic,
2886 mtod(m, struct ieee80211_frame *),
2887 sc->sc_splitmic ?
2888 ds->ds_rxstat.rs_keyix-32 :
2889 ds->ds_rxstat.rs_keyix
2890 );
2891 }
2892 }
2893 ifp->if_ierrors++;
2894 /*
2895 * Reject error frames, we normally don't want
2896 * to see them in monitor mode (in monitor mode
2897 * allow through packets that have crypto problems).
2898 */
2899 if ((ds->ds_rxstat.rs_status &~
2900 (HAL_RXERR_DECRYPT|HAL_RXERR_MIC)) ||
2901 sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
2902 goto rx_next;
2903 }
2904 rx_accept:
2905 /*
2906 * Sync and unmap the frame. At this point we're
2907 * committed to passing the mbuf somewhere so clear
2908 * bf_m; this means a new sk_buff must be allocated
2909 * when the rx descriptor is setup again to receive
2910 * another frame.
2911 */
2912 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
2913 0, bf->bf_dmamap->dm_mapsize,
2914 BUS_DMASYNC_POSTREAD);
2915 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2916 bf->bf_m = NULL;
2917
2918 m->m_pkthdr.rcvif = ifp;
2919 len = ds->ds_rxstat.rs_datalen;
2920 m->m_pkthdr.len = m->m_len = len;
2921
2922 sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
2923
2924 #if NBPFILTER > 0
2925 if (sc->sc_drvbpf) {
2926 u_int8_t rix;
2927
2928 /*
2929 * Discard anything shorter than an ack or cts.
2930 */
2931 if (len < IEEE80211_ACK_LEN) {
2932 DPRINTF(sc, ATH_DEBUG_RECV,
2933 "%s: runt packet %d\n",
2934 __func__, len);
2935 sc->sc_stats.ast_rx_tooshort++;
2936 m_freem(m);
2937 goto rx_next;
2938 }
2939 rix = ds->ds_rxstat.rs_rate;
2940 sc->sc_rx_th.wr_tsf = ath_extend_tsf(sc->sc_ah,
2941 ds->ds_rxstat.rs_tstamp);
2942 sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
2943 sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
2944 sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi;
2945 sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
2946
2947 bpf_mtap2(sc->sc_drvbpf,
2948 &sc->sc_rx_th, sc->sc_rx_th_len, m);
2949 }
2950 #endif
2951
2952 /*
2953 * From this point on we assume the frame is at least
2954 * as large as ieee80211_frame_min; verify that.
2955 */
2956 if (len < IEEE80211_MIN_LEN) {
2957 DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
2958 __func__, len);
2959 sc->sc_stats.ast_rx_tooshort++;
2960 m_freem(m);
2961 goto rx_next;
2962 }
2963
2964 if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
2965 ieee80211_dump_pkt(mtod(m, caddr_t), len,
2966 sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
2967 ds->ds_rxstat.rs_rssi);
2968 }
2969
2970 m_adj(m, -IEEE80211_CRC_LEN);
2971
2972 /*
2973 * Locate the node for sender, track state, and then
2974 * pass the (referenced) node up to the 802.11 layer
2975 * for its use.
2976 */
2977 ni = ieee80211_find_rxnode_withkey(ic,
2978 mtod(m, const struct ieee80211_frame_min *),
2979 ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
2980 IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
2981 /*
2982 * Track rx rssi and do any rx antenna management.
2983 */
2984 an = ATH_NODE(ni);
2985 ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
2986 /*
2987 * Send frame up for processing.
2988 */
2989 type = ieee80211_input(ic, m, ni,
2990 ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
2991 ieee80211_free_node(ni);
2992 if (sc->sc_diversity) {
2993 /*
2994 * When using fast diversity, change the default rx
2995 * antenna if diversity chooses the other antenna 3
2996 * times in a row.
2997 */
2998 if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
2999 if (++sc->sc_rxotherant >= 3)
3000 ath_setdefantenna(sc,
3001 ds->ds_rxstat.rs_antenna);
3002 } else
3003 sc->sc_rxotherant = 0;
3004 }
3005 if (sc->sc_softled) {
3006 /*
3007 * Blink for any data frame. Otherwise do a
3008 * heartbeat-style blink when idle. The latter
3009 * is mainly for station mode where we depend on
3010 * periodic beacon frames to trigger the poll event.
3011 */
3012 if (type == IEEE80211_FC0_TYPE_DATA) {
3013 sc->sc_rxrate = ds->ds_rxstat.rs_rate;
3014 ath_led_event(sc, ATH_LED_RX);
3015 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
3016 ath_led_event(sc, ATH_LED_POLL);
3017 }
3018 rx_next:
3019 STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
3020 } while (ath_rxbuf_init(sc, bf) == 0);
3021
3022 /* rx signal state monitoring */
3023 ath_hal_rxmonitor(ah, &ATH_NODE(ic->ic_bss)->an_halstats);
3024
3025 #ifdef __NetBSD__
3026 /* XXX Why isn't this necessary in FreeBSD? */
3027 if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
3028 ath_start(ifp);
3029 #endif /* __NetBSD__ */
3030
3031 NET_UNLOCK_GIANT(); /* XXX */
3032 #undef PA2DESC
3033 }
3034
3035 /*
3036 * Setup a h/w transmit queue.
3037 */
3038 static struct ath_txq *
3039 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3040 {
3041 #define N(a) (sizeof(a)/sizeof(a[0]))
3042 struct ath_hal *ah = sc->sc_ah;
3043 HAL_TXQ_INFO qi;
3044 int qnum;
3045
3046 memset(&qi, 0, sizeof(qi));
3047 qi.tqi_subtype = subtype;
3048 qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3049 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3050 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3051 /*
3052 * Enable interrupts only for EOL and DESC conditions.
3053 * We mark tx descriptors to receive a DESC interrupt
3054 * when a tx queue gets deep; otherwise waiting for the
3055 * EOL to reap descriptors. Note that this is done to
3056 * reduce interrupt load and this only defers reaping
3057 * descriptors, never transmitting frames. Aside from
3058 * reducing interrupts this also permits more concurrency.
3059 * The only potential downside is if the tx queue backs
3060 * up in which case the top half of the kernel may backup
3061 * due to a lack of tx descriptors.
3062 */
3063 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE | TXQ_FLAG_TXDESCINT_ENABLE;
3064 qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3065 if (qnum == -1) {
3066 /*
3067 * NB: don't print a message, this happens
3068 * normally on parts with too few tx queues
3069 */
3070 return NULL;
3071 }
3072 if (qnum >= N(sc->sc_txq)) {
3073 device_printf(sc->sc_dev,
3074 "hal qnum %u out of range, max %zu!\n",
3075 qnum, N(sc->sc_txq));
3076 ath_hal_releasetxqueue(ah, qnum);
3077 return NULL;
3078 }
3079 if (!ATH_TXQ_SETUP(sc, qnum)) {
3080 struct ath_txq *txq = &sc->sc_txq[qnum];
3081
3082 txq->axq_qnum = qnum;
3083 txq->axq_depth = 0;
3084 txq->axq_intrcnt = 0;
3085 txq->axq_link = NULL;
3086 STAILQ_INIT(&txq->axq_q);
3087 ATH_TXQ_LOCK_INIT(sc, txq);
3088 sc->sc_txqsetup |= 1<<qnum;
3089 }
3090 return &sc->sc_txq[qnum];
3091 #undef N
3092 }
3093
3094 /*
3095 * Setup a hardware data transmit queue for the specified
3096 * access control. The hal may not support all requested
3097 * queues in which case it will return a reference to a
3098 * previously setup queue. We record the mapping from ac's
3099 * to h/w queues for use by ath_tx_start and also track
3100 * the set of h/w queues being used to optimize work in the
3101 * transmit interrupt handler and related routines.
3102 */
3103 static int
3104 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3105 {
3106 #define N(a) (sizeof(a)/sizeof(a[0]))
3107 struct ath_txq *txq;
3108
3109 if (ac >= N(sc->sc_ac2q)) {
3110 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3111 ac, N(sc->sc_ac2q));
3112 return 0;
3113 }
3114 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3115 if (txq != NULL) {
3116 sc->sc_ac2q[ac] = txq;
3117 return 1;
3118 } else
3119 return 0;
3120 #undef N
3121 }
3122
3123 /*
3124 * Update WME parameters for a transmit queue.
3125 */
3126 static int
3127 ath_txq_update(struct ath_softc *sc, int ac)
3128 {
3129 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1)
3130 #define ATH_TXOP_TO_US(v) (v<<5)
3131 struct ieee80211com *ic = &sc->sc_ic;
3132 struct ath_txq *txq = sc->sc_ac2q[ac];
3133 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3134 struct ath_hal *ah = sc->sc_ah;
3135 HAL_TXQ_INFO qi;
3136
3137 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3138 qi.tqi_aifs = wmep->wmep_aifsn;
3139 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3140 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3141 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3142
3143 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3144 device_printf(sc->sc_dev, "unable to update hardware queue "
3145 "parameters for %s traffic!\n",
3146 ieee80211_wme_acnames[ac]);
3147 return 0;
3148 } else {
3149 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3150 return 1;
3151 }
3152 #undef ATH_TXOP_TO_US
3153 #undef ATH_EXPONENT_TO_VALUE
3154 }
3155
3156 /*
3157 * Callback from the 802.11 layer to update WME parameters.
3158 */
3159 static int
3160 ath_wme_update(struct ieee80211com *ic)
3161 {
3162 struct ath_softc *sc = ic->ic_ifp->if_softc;
3163
3164 return !ath_txq_update(sc, WME_AC_BE) ||
3165 !ath_txq_update(sc, WME_AC_BK) ||
3166 !ath_txq_update(sc, WME_AC_VI) ||
3167 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3168 }
3169
3170 /*
3171 * Reclaim resources for a setup queue.
3172 */
3173 static void
3174 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3175 {
3176
3177 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3178 ATH_TXQ_LOCK_DESTROY(txq);
3179 sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3180 }
3181
3182 /*
3183 * Reclaim all tx queue resources.
3184 */
3185 static void
3186 ath_tx_cleanup(struct ath_softc *sc)
3187 {
3188 int i;
3189
3190 ATH_TXBUF_LOCK_DESTROY(sc);
3191 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3192 if (ATH_TXQ_SETUP(sc, i))
3193 ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3194 }
3195
3196 /*
3197 * Defragment an mbuf chain, returning at most maxfrags separate
3198 * mbufs+clusters. If this is not possible NULL is returned and
3199 * the original mbuf chain is left in it's present (potentially
3200 * modified) state. We use two techniques: collapsing consecutive
3201 * mbufs and replacing consecutive mbufs by a cluster.
3202 */
3203 static struct mbuf *
3204 ath_defrag(struct mbuf *m0, int how, int maxfrags)
3205 {
3206 struct mbuf *m, *n, *n2, **prev;
3207 u_int curfrags;
3208
3209 /*
3210 * Calculate the current number of frags.
3211 */
3212 curfrags = 0;
3213 for (m = m0; m != NULL; m = m->m_next)
3214 curfrags++;
3215 /*
3216 * First, try to collapse mbufs. Note that we always collapse
3217 * towards the front so we don't need to deal with moving the
3218 * pkthdr. This may be suboptimal if the first mbuf has much
3219 * less data than the following.
3220 */
3221 m = m0;
3222 again:
3223 for (;;) {
3224 n = m->m_next;
3225 if (n == NULL)
3226 break;
3227 if ((m->m_flags & M_RDONLY) == 0 &&
3228 n->m_len < M_TRAILINGSPACE(m)) {
3229 bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
3230 n->m_len);
3231 m->m_len += n->m_len;
3232 m->m_next = n->m_next;
3233 m_free(n);
3234 if (--curfrags <= maxfrags)
3235 return m0;
3236 } else
3237 m = n;
3238 }
3239 KASSERT(maxfrags > 1,
3240 ("maxfrags %u, but normal collapse failed", maxfrags));
3241 /*
3242 * Collapse consecutive mbufs to a cluster.
3243 */
3244 prev = &m0->m_next; /* NB: not the first mbuf */
3245 while ((n = *prev) != NULL) {
3246 if ((n2 = n->m_next) != NULL &&
3247 n->m_len + n2->m_len < MCLBYTES) {
3248 m = m_getcl(how, MT_DATA, 0);
3249 if (m == NULL)
3250 goto bad;
3251 bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
3252 bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
3253 n2->m_len);
3254 m->m_len = n->m_len + n2->m_len;
3255 m->m_next = n2->m_next;
3256 *prev = m;
3257 m_free(n);
3258 m_free(n2);
3259 if (--curfrags <= maxfrags) /* +1 cl -2 mbufs */
3260 return m0;
3261 /*
3262 * Still not there, try the normal collapse
3263 * again before we allocate another cluster.
3264 */
3265 goto again;
3266 }
3267 prev = &n->m_next;
3268 }
3269 /*
3270 * No place where we can collapse to a cluster; punt.
3271 * This can occur if, for example, you request 2 frags
3272 * but the packet requires that both be clusters (we
3273 * never reallocate the first mbuf to avoid moving the
3274 * packet header).
3275 */
3276 bad:
3277 return NULL;
3278 }
3279
3280 static int
3281 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
3282 struct mbuf *m0)
3283 {
3284 #define CTS_DURATION \
3285 ath_hal_computetxtime(ah, rt, IEEE80211_ACK_LEN, cix, AH_TRUE)
3286 #define updateCTSForBursting(_ah, _ds, _txq) \
3287 ath_hal_updateCTSForBursting(_ah, _ds, \
3288 _txq->axq_linkbuf != NULL ? _txq->axq_linkbuf->bf_desc : NULL, \
3289 _txq->axq_lastdsWithCTS, _txq->axq_gatingds, \
3290 txopLimit, CTS_DURATION)
3291 struct ieee80211com *ic = &sc->sc_ic;
3292 struct ath_hal *ah = sc->sc_ah;
3293 struct ifnet *ifp = &sc->sc_if;
3294 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
3295 int i, error, iswep, ismcast, keyix, hdrlen, pktlen, try0;
3296 u_int8_t rix, txrate, ctsrate;
3297 u_int8_t cix = 0xff; /* NB: silence compiler */
3298 struct ath_desc *ds, *ds0;
3299 struct ath_txq *txq;
3300 struct ieee80211_frame *wh;
3301 u_int subtype, flags, ctsduration;
3302 HAL_PKT_TYPE atype;
3303 const HAL_RATE_TABLE *rt;
3304 HAL_BOOL shortPreamble;
3305 struct ath_node *an;
3306 struct mbuf *m;
3307 u_int pri;
3308
3309 wh = mtod(m0, struct ieee80211_frame *);
3310 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
3311 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3312 hdrlen = ieee80211_anyhdrsize(wh);
3313 /*
3314 * Packet length must not include any
3315 * pad bytes; deduct them here.
3316 */
3317 pktlen = m0->m_pkthdr.len - (hdrlen & 3);
3318
3319 if (iswep) {
3320 const struct ieee80211_cipher *cip;
3321 struct ieee80211_key *k;
3322
3323 /*
3324 * Construct the 802.11 header+trailer for an encrypted
3325 * frame. The only reason this can fail is because of an
3326 * unknown or unsupported cipher/key type.
3327 */
3328 k = ieee80211_crypto_encap(ic, ni, m0);
3329 if (k == NULL) {
3330 /*
3331 * This can happen when the key is yanked after the
3332 * frame was queued. Just discard the frame; the
3333 * 802.11 layer counts failures and provides
3334 * debugging/diagnostics.
3335 */
3336 m_freem(m0);
3337 return EIO;
3338 }
3339 /*
3340 * Adjust the packet + header lengths for the crypto
3341 * additions and calculate the h/w key index. When
3342 * a s/w mic is done the frame will have had any mic
3343 * added to it prior to entry so skb->len above will
3344 * account for it. Otherwise we need to add it to the
3345 * packet length.
3346 */
3347 cip = k->wk_cipher;
3348 hdrlen += cip->ic_header;
3349 pktlen += cip->ic_header + cip->ic_trailer;
3350 if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0)
3351 pktlen += cip->ic_miclen;
3352 keyix = k->wk_keyix;
3353
3354 /* packet header may have moved, reset our local pointer */
3355 wh = mtod(m0, struct ieee80211_frame *);
3356 } else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
3357 /*
3358 * Use station key cache slot, if assigned.
3359 */
3360 keyix = ni->ni_ucastkey.wk_keyix;
3361 if (keyix == IEEE80211_KEYIX_NONE)
3362 keyix = HAL_TXKEYIX_INVALID;
3363 } else
3364 keyix = HAL_TXKEYIX_INVALID;
3365
3366 pktlen += IEEE80211_CRC_LEN;
3367
3368 /*
3369 * Load the DMA map so any coalescing is done. This
3370 * also calculates the number of descriptors we need.
3371 */
3372 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3373 BUS_DMA_NOWAIT);
3374 if (error == EFBIG) {
3375 /* XXX packet requires too many descriptors */
3376 bf->bf_nseg = ATH_TXDESC+1;
3377 } else if (error != 0) {
3378 sc->sc_stats.ast_tx_busdma++;
3379 m_freem(m0);
3380 return error;
3381 }
3382 /*
3383 * Discard null packets and check for packets that
3384 * require too many TX descriptors. We try to convert
3385 * the latter to a cluster.
3386 */
3387 if (error == EFBIG) { /* too many desc's, linearize */
3388 sc->sc_stats.ast_tx_linear++;
3389 m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
3390 if (m == NULL) {
3391 m_freem(m0);
3392 sc->sc_stats.ast_tx_nombuf++;
3393 return ENOMEM;
3394 }
3395 m0 = m;
3396 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3397 BUS_DMA_NOWAIT);
3398 if (error != 0) {
3399 sc->sc_stats.ast_tx_busdma++;
3400 m_freem(m0);
3401 return error;
3402 }
3403 KASSERT(bf->bf_nseg <= ATH_TXDESC,
3404 ("too many segments after defrag; nseg %u", bf->bf_nseg));
3405 } else if (bf->bf_nseg == 0) { /* null packet, discard */
3406 sc->sc_stats.ast_tx_nodata++;
3407 m_freem(m0);
3408 return EIO;
3409 }
3410 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
3411 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
3412 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
3413 bf->bf_m = m0;
3414 bf->bf_node = ni; /* NB: held reference */
3415
3416 /* setup descriptors */
3417 ds = bf->bf_desc;
3418 rt = sc->sc_currates;
3419 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3420
3421 /*
3422 * NB: the 802.11 layer marks whether or not we should
3423 * use short preamble based on the current mode and
3424 * negotiated parameters.
3425 */
3426 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3427 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) {
3428 shortPreamble = AH_TRUE;
3429 sc->sc_stats.ast_tx_shortpre++;
3430 } else {
3431 shortPreamble = AH_FALSE;
3432 }
3433
3434 an = ATH_NODE(ni);
3435 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */
3436 /*
3437 * Calculate Atheros packet type from IEEE80211 packet header,
3438 * setup for rate calculations, and select h/w transmit queue.
3439 */
3440 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3441 case IEEE80211_FC0_TYPE_MGT:
3442 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3443 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
3444 atype = HAL_PKT_TYPE_BEACON;
3445 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3446 atype = HAL_PKT_TYPE_PROBE_RESP;
3447 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
3448 atype = HAL_PKT_TYPE_ATIM;
3449 else
3450 atype = HAL_PKT_TYPE_NORMAL; /* XXX */
3451 rix = 0; /* XXX lowest rate */
3452 try0 = ATH_TXMAXTRY;
3453 if (shortPreamble)
3454 txrate = an->an_tx_mgtratesp;
3455 else
3456 txrate = an->an_tx_mgtrate;
3457 /* NB: force all management frames to highest queue */
3458 if (ni->ni_flags & IEEE80211_NODE_QOS) {
3459 /* NB: force all management frames to highest queue */
3460 pri = WME_AC_VO;
3461 } else
3462 pri = WME_AC_BE;
3463 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
3464 break;
3465 case IEEE80211_FC0_TYPE_CTL:
3466 atype = HAL_PKT_TYPE_PSPOLL; /* stop setting of duration */
3467 rix = 0; /* XXX lowest rate */
3468 try0 = ATH_TXMAXTRY;
3469 if (shortPreamble)
3470 txrate = an->an_tx_mgtratesp;
3471 else
3472 txrate = an->an_tx_mgtrate;
3473 /* NB: force all ctl frames to highest queue */
3474 if (ni->ni_flags & IEEE80211_NODE_QOS) {
3475 /* NB: force all ctl frames to highest queue */
3476 pri = WME_AC_VO;
3477 } else
3478 pri = WME_AC_BE;
3479 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
3480 break;
3481 case IEEE80211_FC0_TYPE_DATA:
3482 atype = HAL_PKT_TYPE_NORMAL; /* default */
3483 /*
3484 * Data frames; consult the rate control module for
3485 * unicast frames. Send multicast frames at the
3486 * lowest rate.
3487 */
3488 if (!ismcast) {
3489 ath_rate_findrate(sc, an, shortPreamble, pktlen,
3490 &rix, &try0, &txrate);
3491 } else {
3492 rix = 0;
3493 try0 = ATH_TXMAXTRY;
3494 txrate = an->an_tx_mgtrate;
3495 }
3496 sc->sc_txrate = txrate; /* for LED blinking */
3497 /*
3498 * Default all non-QoS traffic to the background queue.
3499 */
3500 if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
3501 pri = M_WME_GETAC(m0);
3502 if (cap->cap_wmeParams[pri].wmep_noackPolicy) {
3503 flags |= HAL_TXDESC_NOACK;
3504 sc->sc_stats.ast_tx_noack++;
3505 }
3506 } else
3507 pri = WME_AC_BE;
3508 break;
3509 default:
3510 if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3511 wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3512 /* XXX statistic */
3513 m_freem(m0);
3514 return EIO;
3515 }
3516 txq = sc->sc_ac2q[pri];
3517
3518 /*
3519 * When servicing one or more stations in power-save mode
3520 * multicast frames must be buffered until after the beacon.
3521 * We use the CAB queue for that.
3522 */
3523 if (ismcast && ic->ic_ps_sta) {
3524 txq = sc->sc_cabq;
3525 /* XXX? more bit in 802.11 frame header */
3526 }
3527
3528 /*
3529 * Calculate miscellaneous flags.
3530 */
3531 if (ismcast) {
3532 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */
3533 sc->sc_stats.ast_tx_noack++;
3534 } else if (pktlen > ic->ic_rtsthreshold) {
3535 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */
3536 cix = rt->info[rix].controlRate;
3537 sc->sc_stats.ast_tx_rts++;
3538 }
3539
3540 /*
3541 * If 802.11g protection is enabled, determine whether
3542 * to use RTS/CTS or just CTS. Note that this is only
3543 * done for OFDM unicast frames.
3544 */
3545 if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3546 rt->info[rix].phy == IEEE80211_T_OFDM &&
3547 (flags & HAL_TXDESC_NOACK) == 0) {
3548 /* XXX fragments must use CCK rates w/ protection */
3549 if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3550 flags |= HAL_TXDESC_RTSENA;
3551 else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3552 flags |= HAL_TXDESC_CTSENA;
3553 cix = rt->info[sc->sc_protrix].controlRate;
3554 sc->sc_stats.ast_tx_protect++;
3555 }
3556
3557 /*
3558 * Calculate duration. This logically belongs in the 802.11
3559 * layer but it lacks sufficient information to calculate it.
3560 */
3561 if ((flags & HAL_TXDESC_NOACK) == 0 &&
3562 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
3563 u_int16_t dur;
3564 /*
3565 * XXX not right with fragmentation.
3566 */
3567 if (shortPreamble)
3568 dur = rt->info[rix].spAckDuration;
3569 else
3570 dur = rt->info[rix].lpAckDuration;
3571 *(u_int16_t *)wh->i_dur = htole16(dur);
3572 }
3573
3574 /*
3575 * Calculate RTS/CTS rate and duration if needed.
3576 */
3577 ctsduration = 0;
3578 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
3579 /*
3580 * CTS transmit rate is derived from the transmit rate
3581 * by looking in the h/w rate table. We must also factor
3582 * in whether or not a short preamble is to be used.
3583 */
3584 /* NB: cix is set above where RTS/CTS is enabled */
3585 KASSERT(cix != 0xff, ("cix not setup"));
3586 ctsrate = rt->info[cix].rateCode;
3587 /*
3588 * Compute the transmit duration based on the frame
3589 * size and the size of an ACK frame. We call into the
3590 * HAL to do the computation since it depends on the
3591 * characteristics of the actual PHY being used.
3592 *
3593 * NB: CTS is assumed the same size as an ACK so we can
3594 * use the precalculated ACK durations.
3595 */
3596 if (shortPreamble) {
3597 ctsrate |= rt->info[cix].shortPreamble;
3598 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
3599 ctsduration += rt->info[cix].spAckDuration;
3600 ctsduration += ath_hal_computetxtime(ah,
3601 rt, pktlen, rix, AH_TRUE);
3602 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
3603 ctsduration += rt->info[rix].spAckDuration;
3604 } else {
3605 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
3606 ctsduration += rt->info[cix].lpAckDuration;
3607 ctsduration += ath_hal_computetxtime(ah,
3608 rt, pktlen, rix, AH_FALSE);
3609 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
3610 ctsduration += rt->info[rix].lpAckDuration;
3611 }
3612 /*
3613 * Must disable multi-rate retry when using RTS/CTS.
3614 */
3615 try0 = ATH_TXMAXTRY;
3616 } else
3617 ctsrate = 0;
3618
3619 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3620 ieee80211_dump_pkt(mtod(m0, caddr_t), m0->m_len,
3621 sc->sc_hwmap[txrate].ieeerate, -1);
3622
3623 if (ic->ic_rawbpf)
3624 bpf_mtap(ic->ic_rawbpf, m0);
3625 if (sc->sc_drvbpf) {
3626 sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
3627 if (iswep)
3628 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3629 sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
3630 sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3631 sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3632
3633 bpf_mtap2(sc->sc_drvbpf,
3634 &sc->sc_tx_th, sc->sc_tx_th_len, m0);
3635 }
3636
3637 /*
3638 * Determine if a tx interrupt should be generated for
3639 * this descriptor. We take a tx interrupt to reap
3640 * descriptors when the h/w hits an EOL condition or
3641 * when the descriptor is specifically marked to generate
3642 * an interrupt. We periodically mark descriptors in this
3643 * way to insure timely replenishing of the supply needed
3644 * for sending frames. Defering interrupts reduces system
3645 * load and potentially allows more concurrent work to be
3646 * done but if done to aggressively can cause senders to
3647 * backup.
3648 *
3649 * NB: use >= to deal with sc_txintrperiod changing
3650 * dynamically through sysctl.
3651 */
3652 if (flags & HAL_TXDESC_INTREQ) {
3653 txq->axq_intrcnt = 0;
3654 } else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
3655 flags |= HAL_TXDESC_INTREQ;
3656 txq->axq_intrcnt = 0;
3657 }
3658
3659 /*
3660 * Formulate first tx descriptor with tx controls.
3661 */
3662 /* XXX check return value? */
3663 ath_hal_setuptxdesc(ah, ds
3664 , pktlen /* packet length */
3665 , hdrlen /* header length */
3666 , atype /* Atheros packet type */
3667 , ni->ni_txpower /* txpower */
3668 , txrate, try0 /* series 0 rate/tries */
3669 , keyix /* key cache index */
3670 , sc->sc_txantenna /* antenna mode */
3671 , flags /* flags */
3672 , ctsrate /* rts/cts rate */
3673 , ctsduration /* rts/cts duration */
3674 );
3675 bf->bf_flags = flags;
3676 /*
3677 * Setup the multi-rate retry state only when we're
3678 * going to use it. This assumes ath_hal_setuptxdesc
3679 * initializes the descriptors (so we don't have to)
3680 * when the hardware supports multi-rate retry and
3681 * we don't use it.
3682 */
3683 if (try0 != ATH_TXMAXTRY)
3684 ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
3685
3686 /*
3687 * Fillin the remainder of the descriptor info.
3688 */
3689 ds0 = ds;
3690 for (i = 0; i < bf->bf_nseg; i++, ds++) {
3691 ds->ds_data = bf->bf_segs[i].ds_addr;
3692 if (i == bf->bf_nseg - 1)
3693 ds->ds_link = 0;
3694 else
3695 ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
3696 ath_hal_filltxdesc(ah, ds
3697 , bf->bf_segs[i].ds_len /* segment length */
3698 , i == 0 /* first segment */
3699 , i == bf->bf_nseg - 1 /* last segment */
3700 , ds0 /* first descriptor */
3701 );
3702 DPRINTF(sc, ATH_DEBUG_XMIT,
3703 "%s: %d: %08x %08x %08x %08x %08x %08x\n",
3704 __func__, i, ds->ds_link, ds->ds_data,
3705 ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
3706 }
3707 /*
3708 * Insert the frame on the outbound list and
3709 * pass it on to the hardware.
3710 */
3711 ATH_TXQ_LOCK(txq);
3712 if (flags & (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) {
3713 u_int32_t txopLimit = IEEE80211_TXOP_TO_US(
3714 cap->cap_wmeParams[pri].wmep_txopLimit);
3715 /*
3716 * When bursting, potentially extend the CTS duration
3717 * of a previously queued frame to cover this frame
3718 * and not exceed the txopLimit. If that can be done
3719 * then disable RTS/CTS on this frame since it's now
3720 * covered (burst extension). Otherwise we must terminate
3721 * the burst before this frame goes out so as not to
3722 * violate the WME parameters. All this is complicated
3723 * as we need to update the state of packets on the
3724 * (live) hardware queue. The logic is buried in the hal
3725 * because it's highly chip-specific.
3726 */
3727 if (txopLimit != 0) {
3728 sc->sc_stats.ast_tx_ctsburst++;
3729 if (updateCTSForBursting(ah, ds0, txq) == 0) {
3730 /*
3731 * This frame was not covered by RTS/CTS from
3732 * the previous frame in the burst; update the
3733 * descriptor pointers so this frame is now
3734 * treated as the last frame for extending a
3735 * burst.
3736 */
3737 txq->axq_lastdsWithCTS = ds0;
3738 /* set gating Desc to final desc */
3739 txq->axq_gatingds =
3740 (struct ath_desc *)txq->axq_link;
3741 } else
3742 sc->sc_stats.ast_tx_ctsext++;
3743 }
3744 }
3745 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
3746 if (txq->axq_link == NULL) {
3747 ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
3748 DPRINTF(sc, ATH_DEBUG_XMIT,
3749 "%s: TXDP[%u] = %p (%p) depth %d\n", __func__,
3750 txq->axq_qnum, (caddr_t)bf->bf_daddr, bf->bf_desc,
3751 txq->axq_depth);
3752 } else {
3753 *txq->axq_link = bf->bf_daddr;
3754 DPRINTF(sc, ATH_DEBUG_XMIT,
3755 "%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
3756 txq->axq_qnum, txq->axq_link,
3757 (caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
3758 }
3759 txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
3760 /*
3761 * The CAB queue is started from the SWBA handler since
3762 * frames only go out on DTIM and to avoid possible races.
3763 */
3764 if (txq != sc->sc_cabq)
3765 ath_hal_txstart(ah, txq->axq_qnum);
3766 ATH_TXQ_UNLOCK(txq);
3767
3768 return 0;
3769 #undef updateCTSForBursting
3770 #undef CTS_DURATION
3771 }
3772
3773 /*
3774 * Process completed xmit descriptors from the specified queue.
3775 */
3776 static void
3777 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
3778 {
3779 struct ath_hal *ah = sc->sc_ah;
3780 struct ieee80211com *ic = &sc->sc_ic;
3781 struct ath_buf *bf;
3782 struct ath_desc *ds, *ds0;
3783 struct ieee80211_node *ni;
3784 struct ath_node *an;
3785 int sr, lr, pri;
3786 HAL_STATUS status;
3787
3788 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
3789 __func__, txq->axq_qnum,
3790 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3791 txq->axq_link);
3792 for (;;) {
3793 ATH_TXQ_LOCK(txq);
3794 txq->axq_intrcnt = 0; /* reset periodic desc intr count */
3795 bf = STAILQ_FIRST(&txq->axq_q);
3796 if (bf == NULL) {
3797 txq->axq_link = NULL;
3798 ATH_TXQ_UNLOCK(txq);
3799 break;
3800 }
3801 ds0 = &bf->bf_desc[0];
3802 ds = &bf->bf_desc[bf->bf_nseg - 1];
3803 status = ath_hal_txprocdesc(ah, ds);
3804 #ifdef AR_DEBUG
3805 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
3806 ath_printtxbuf(bf, status == HAL_OK);
3807 #endif
3808 if (status == HAL_EINPROGRESS) {
3809 ATH_TXQ_UNLOCK(txq);
3810 break;
3811 }
3812 if (ds0 == txq->axq_lastdsWithCTS)
3813 txq->axq_lastdsWithCTS = NULL;
3814 if (ds == txq->axq_gatingds)
3815 txq->axq_gatingds = NULL;
3816 ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3817 ATH_TXQ_UNLOCK(txq);
3818
3819 ni = bf->bf_node;
3820 if (ni != NULL) {
3821 an = ATH_NODE(ni);
3822 if (ds->ds_txstat.ts_status == 0) {
3823 u_int8_t txant = ds->ds_txstat.ts_antenna;
3824 sc->sc_stats.ast_ant_tx[txant]++;
3825 sc->sc_ant_tx[txant]++;
3826 if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
3827 sc->sc_stats.ast_tx_altrate++;
3828 sc->sc_stats.ast_tx_rssi =
3829 ds->ds_txstat.ts_rssi;
3830 ATH_RSSI_LPF(an->an_halstats.ns_avgtxrssi,
3831 ds->ds_txstat.ts_rssi);
3832 pri = M_WME_GETAC(bf->bf_m);
3833 if (pri >= WME_AC_VO)
3834 ic->ic_wme.wme_hipri_traffic++;
3835 ni->ni_inact = ni->ni_inact_reload;
3836 } else {
3837 if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
3838 sc->sc_stats.ast_tx_xretries++;
3839 if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
3840 sc->sc_stats.ast_tx_fifoerr++;
3841 if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
3842 sc->sc_stats.ast_tx_filtered++;
3843 }
3844 sr = ds->ds_txstat.ts_shortretry;
3845 lr = ds->ds_txstat.ts_longretry;
3846 sc->sc_stats.ast_tx_shortretry += sr;
3847 sc->sc_stats.ast_tx_longretry += lr;
3848 /*
3849 * Hand the descriptor to the rate control algorithm.
3850 */
3851 if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
3852 (bf->bf_flags & HAL_TXDESC_NOACK) == 0)
3853 ath_rate_tx_complete(sc, an, ds, ds0);
3854 /*
3855 * Reclaim reference to node.
3856 *
3857 * NB: the node may be reclaimed here if, for example
3858 * this is a DEAUTH message that was sent and the
3859 * node was timed out due to inactivity.
3860 */
3861 ieee80211_free_node(ni);
3862 }
3863 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
3864 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3865 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3866 m_freem(bf->bf_m);
3867 bf->bf_m = NULL;
3868 bf->bf_node = NULL;
3869
3870 ATH_TXBUF_LOCK(sc);
3871 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
3872 ATH_TXBUF_UNLOCK(sc);
3873 }
3874 }
3875
3876 /*
3877 * Deferred processing of transmit interrupt; special-cased
3878 * for a single hardware transmit queue (e.g. 5210 and 5211).
3879 */
3880 static void
3881 ath_tx_proc_q0(void *arg, int npending)
3882 {
3883 struct ath_softc *sc = arg;
3884 struct ifnet *ifp = &sc->sc_if;
3885
3886 ath_tx_processq(sc, &sc->sc_txq[0]);
3887 ath_tx_processq(sc, sc->sc_cabq);
3888 ifp->if_flags &= ~IFF_OACTIVE;
3889 sc->sc_tx_timer = 0;
3890
3891 if (sc->sc_softled)
3892 ath_led_event(sc, ATH_LED_TX);
3893
3894 ath_start(ifp);
3895 }
3896
3897 /*
3898 * Deferred processing of transmit interrupt; special-cased
3899 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
3900 */
3901 static void
3902 ath_tx_proc_q0123(void *arg, int npending)
3903 {
3904 struct ath_softc *sc = arg;
3905 struct ifnet *ifp = &sc->sc_if;
3906
3907 /*
3908 * Process each active queue.
3909 */
3910 ath_tx_processq(sc, &sc->sc_txq[0]);
3911 ath_tx_processq(sc, &sc->sc_txq[1]);
3912 ath_tx_processq(sc, &sc->sc_txq[2]);
3913 ath_tx_processq(sc, &sc->sc_txq[3]);
3914 ath_tx_processq(sc, sc->sc_cabq);
3915
3916 ifp->if_flags &= ~IFF_OACTIVE;
3917 sc->sc_tx_timer = 0;
3918
3919 if (sc->sc_softled)
3920 ath_led_event(sc, ATH_LED_TX);
3921
3922 ath_start(ifp);
3923 }
3924
3925 /*
3926 * Deferred processing of transmit interrupt.
3927 */
3928 static void
3929 ath_tx_proc(void *arg, int npending)
3930 {
3931 struct ath_softc *sc = arg;
3932 struct ifnet *ifp = &sc->sc_if;
3933 int i;
3934
3935 /*
3936 * Process each active queue.
3937 */
3938 /* XXX faster to read ISR_S0_S and ISR_S1_S to determine q's? */
3939 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3940 if (ATH_TXQ_SETUP(sc, i))
3941 ath_tx_processq(sc, &sc->sc_txq[i]);
3942
3943 ifp->if_flags &= ~IFF_OACTIVE;
3944 sc->sc_tx_timer = 0;
3945
3946 if (sc->sc_softled)
3947 ath_led_event(sc, ATH_LED_TX);
3948
3949 ath_start(ifp);
3950 }
3951
3952 static void
3953 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
3954 {
3955 struct ath_hal *ah = sc->sc_ah;
3956 struct ieee80211_node *ni;
3957 struct ath_buf *bf;
3958
3959 /*
3960 * NB: this assumes output has been stopped and
3961 * we do not need to block ath_tx_tasklet
3962 */
3963 for (;;) {
3964 ATH_TXQ_LOCK(txq);
3965 bf = STAILQ_FIRST(&txq->axq_q);
3966 if (bf == NULL) {
3967 txq->axq_link = NULL;
3968 ATH_TXQ_UNLOCK(txq);
3969 break;
3970 }
3971 ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3972 ATH_TXQ_UNLOCK(txq);
3973 #ifdef AR_DEBUG
3974 if (sc->sc_debug & ATH_DEBUG_RESET)
3975 ath_printtxbuf(bf,
3976 ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
3977 #endif /* AR_DEBUG */
3978 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3979 m_freem(bf->bf_m);
3980 bf->bf_m = NULL;
3981 ni = bf->bf_node;
3982 bf->bf_node = NULL;
3983 if (ni != NULL) {
3984 /*
3985 * Reclaim node reference.
3986 */
3987 ieee80211_free_node(ni);
3988 }
3989 ATH_TXBUF_LOCK(sc);
3990 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
3991 ATH_TXBUF_UNLOCK(sc);
3992 }
3993 }
3994
3995 static void
3996 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
3997 {
3998 struct ath_hal *ah = sc->sc_ah;
3999
4000 (void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4001 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4002 __func__, txq->axq_qnum,
4003 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4004 txq->axq_link);
4005 }
4006
4007 /*
4008 * Drain the transmit queues and reclaim resources.
4009 */
4010 static void
4011 ath_draintxq(struct ath_softc *sc)
4012 {
4013 struct ath_hal *ah = sc->sc_ah;
4014 struct ifnet *ifp = &sc->sc_if;
4015 int i;
4016
4017 /* XXX return value */
4018 if (!sc->sc_invalid) {
4019 /* don't touch the hardware if marked invalid */
4020 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4021 DPRINTF(sc, ATH_DEBUG_RESET,
4022 "%s: beacon queue %p\n", __func__,
4023 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
4024 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4025 if (ATH_TXQ_SETUP(sc, i))
4026 ath_tx_stopdma(sc, &sc->sc_txq[i]);
4027 }
4028 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4029 if (ATH_TXQ_SETUP(sc, i))
4030 ath_tx_draintxq(sc, &sc->sc_txq[i]);
4031 ifp->if_flags &= ~IFF_OACTIVE;
4032 sc->sc_tx_timer = 0;
4033 }
4034
4035 /*
4036 * Disable the receive h/w in preparation for a reset.
4037 */
4038 static void
4039 ath_stoprecv(struct ath_softc *sc)
4040 {
4041 #define PA2DESC(_sc, _pa) \
4042 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
4043 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
4044 struct ath_hal *ah = sc->sc_ah;
4045
4046 ath_hal_stoppcurecv(ah); /* disable PCU */
4047 ath_hal_setrxfilter(ah, 0); /* clear recv filter */
4048 ath_hal_stopdmarecv(ah); /* disable DMA engine */
4049 DELAY(3000); /* 3ms is long enough for 1 frame */
4050 #ifdef AR_DEBUG
4051 if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
4052 struct ath_buf *bf;
4053
4054 printf("%s: rx queue %p, link %p\n", __func__,
4055 (caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
4056 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4057 struct ath_desc *ds = bf->bf_desc;
4058 HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
4059 bf->bf_daddr, PA2DESC(sc, ds->ds_link));
4060 if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
4061 ath_printrxbuf(bf, status == HAL_OK);
4062 }
4063 }
4064 #endif
4065 sc->sc_rxlink = NULL; /* just in case */
4066 #undef PA2DESC
4067 }
4068
4069 /*
4070 * Enable the receive h/w following a reset.
4071 */
4072 static int
4073 ath_startrecv(struct ath_softc *sc)
4074 {
4075 struct ath_hal *ah = sc->sc_ah;
4076 struct ath_buf *bf;
4077
4078 sc->sc_rxlink = NULL;
4079 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4080 int error = ath_rxbuf_init(sc, bf);
4081 if (error != 0) {
4082 DPRINTF(sc, ATH_DEBUG_RECV,
4083 "%s: ath_rxbuf_init failed %d\n",
4084 __func__, error);
4085 return error;
4086 }
4087 }
4088
4089 bf = STAILQ_FIRST(&sc->sc_rxbuf);
4090 ath_hal_putrxbuf(ah, bf->bf_daddr);
4091 ath_hal_rxena(ah); /* enable recv descriptors */
4092 ath_mode_init(sc); /* set filters, etc. */
4093 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */
4094 return 0;
4095 }
4096
4097 /*
4098 * Update internal state after a channel change.
4099 */
4100 static void
4101 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4102 {
4103 struct ieee80211com *ic = &sc->sc_ic;
4104 enum ieee80211_phymode mode;
4105 u_int16_t flags;
4106
4107 /*
4108 * Change channels and update the h/w rate map
4109 * if we're switching; e.g. 11a to 11b/g.
4110 */
4111 mode = ieee80211_chan2mode(ic, chan);
4112 if (mode != sc->sc_curmode)
4113 ath_setcurmode(sc, mode);
4114 /*
4115 * Update BPF state. NB: ethereal et. al. don't handle
4116 * merged flags well so pick a unique mode for their use.
4117 */
4118 if (IEEE80211_IS_CHAN_A(chan))
4119 flags = IEEE80211_CHAN_A;
4120 /* XXX 11g schizophrenia */
4121 else if (IEEE80211_IS_CHAN_G(chan) ||
4122 IEEE80211_IS_CHAN_PUREG(chan))
4123 flags = IEEE80211_CHAN_G;
4124 else
4125 flags = IEEE80211_CHAN_B;
4126 if (IEEE80211_IS_CHAN_T(chan))
4127 flags |= IEEE80211_CHAN_TURBO;
4128 sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
4129 htole16(chan->ic_freq);
4130 sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
4131 htole16(flags);
4132 }
4133
4134 /*
4135 * Set/change channels. If the channel is really being changed,
4136 * it's done by reseting the chip. To accomplish this we must
4137 * first cleanup any pending DMA, then restart stuff after a la
4138 * ath_init.
4139 */
4140 static int
4141 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4142 {
4143 struct ath_hal *ah = sc->sc_ah;
4144 struct ieee80211com *ic = &sc->sc_ic;
4145 HAL_CHANNEL hchan;
4146
4147 /*
4148 * Convert to a HAL channel description with
4149 * the flags constrained to reflect the current
4150 * operating mode.
4151 */
4152 hchan.channel = chan->ic_freq;
4153 hchan.channelFlags = ath_chan2flags(ic, chan);
4154
4155 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz) -> %u (%u MHz)\n",
4156 __func__,
4157 ath_hal_mhz2ieee(sc->sc_curchan.channel,
4158 sc->sc_curchan.channelFlags),
4159 sc->sc_curchan.channel,
4160 ath_hal_mhz2ieee(hchan.channel, hchan.channelFlags), hchan.channel);
4161 if (hchan.channel != sc->sc_curchan.channel ||
4162 hchan.channelFlags != sc->sc_curchan.channelFlags) {
4163 HAL_STATUS status;
4164
4165 /*
4166 * To switch channels clear any pending DMA operations;
4167 * wait long enough for the RX fifo to drain, reset the
4168 * hardware at the new frequency, and then re-enable
4169 * the relevant bits of the h/w.
4170 */
4171 ath_hal_intrset(ah, 0); /* disable interrupts */
4172 ath_draintxq(sc); /* clear pending tx frames */
4173 ath_stoprecv(sc); /* turn off frame recv */
4174 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
4175 if_printf(&sc->sc_if, "ath_chan_set: unable to reset "
4176 "channel %u (%u Mhz)\n",
4177 ieee80211_chan2ieee(ic, chan), chan->ic_freq);
4178 return EIO;
4179 }
4180 sc->sc_curchan = hchan;
4181 ath_update_txpow(sc); /* update tx power state */
4182 sc->sc_diversity = ath_hal_getdiversity(ah);
4183
4184 /*
4185 * Re-enable rx framework.
4186 */
4187 if (ath_startrecv(sc) != 0) {
4188 if_printf(&sc->sc_if,
4189 "ath_chan_set: unable to restart recv logic\n");
4190 return EIO;
4191 }
4192
4193 /*
4194 * Change channels and update the h/w rate map
4195 * if we're switching; e.g. 11a to 11b/g.
4196 */
4197 ic->ic_ibss_chan = chan;
4198 ath_chan_change(sc, chan);
4199
4200 /*
4201 * Re-enable interrupts.
4202 */
4203 ath_hal_intrset(ah, sc->sc_imask);
4204 }
4205 return 0;
4206 }
4207
4208 static void
4209 ath_next_scan(void *arg)
4210 {
4211 struct ath_softc *sc = arg;
4212 struct ieee80211com *ic = &sc->sc_ic;
4213 int s;
4214
4215 /* don't call ath_start w/o network interrupts blocked */
4216 s = splnet();
4217
4218 if (ic->ic_state == IEEE80211_S_SCAN)
4219 ieee80211_next_scan(ic);
4220 splx(s);
4221 }
4222
4223 /*
4224 * Periodically recalibrate the PHY to account
4225 * for temperature/environment changes.
4226 */
4227 static void
4228 ath_calibrate(void *arg)
4229 {
4230 struct ath_softc *sc = arg;
4231 struct ath_hal *ah = sc->sc_ah;
4232
4233 sc->sc_stats.ast_per_cal++;
4234
4235 ATH_LOCK(sc);
4236 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: channel %u/%x\n",
4237 __func__, sc->sc_curchan.channel, sc->sc_curchan.channelFlags);
4238
4239 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4240 /*
4241 * Rfgain is out of bounds, reset the chip
4242 * to load new gain values.
4243 */
4244 sc->sc_stats.ast_per_rfgain++;
4245 ath_reset(&sc->sc_if);
4246 }
4247 if (!ath_hal_calibrate(ah, &sc->sc_curchan)) {
4248 DPRINTF(sc, ATH_DEBUG_ANY,
4249 "%s: calibration of channel %u failed\n",
4250 __func__, sc->sc_curchan.channel);
4251 sc->sc_stats.ast_per_calfail++;
4252 }
4253 callout_reset(&sc->sc_cal_ch, ath_calinterval * hz, ath_calibrate, sc);
4254 ATH_UNLOCK(sc);
4255 }
4256
4257 static int
4258 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
4259 {
4260 struct ifnet *ifp = ic->ic_ifp;
4261 struct ath_softc *sc = ifp->if_softc;
4262 struct ath_hal *ah = sc->sc_ah;
4263 struct ieee80211_node *ni;
4264 int i, error;
4265 const u_int8_t *bssid;
4266 u_int32_t rfilt;
4267 static const HAL_LED_STATE leds[] = {
4268 HAL_LED_INIT, /* IEEE80211_S_INIT */
4269 HAL_LED_SCAN, /* IEEE80211_S_SCAN */
4270 HAL_LED_AUTH, /* IEEE80211_S_AUTH */
4271 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */
4272 HAL_LED_RUN, /* IEEE80211_S_RUN */
4273 };
4274
4275 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4276 ieee80211_state_name[ic->ic_state],
4277 ieee80211_state_name[nstate]);
4278
4279 callout_stop(&sc->sc_scan_ch);
4280 callout_stop(&sc->sc_cal_ch);
4281 ath_hal_setledstate(ah, leds[nstate]); /* set LED */
4282
4283 if (nstate == IEEE80211_S_INIT) {
4284 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4285 /*
4286 * NB: disable interrupts so we don't rx frames.
4287 */
4288 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4289 /*
4290 * Notify the rate control algorithm.
4291 */
4292 ath_rate_newstate(sc, nstate);
4293 goto done;
4294 }
4295 ni = ic->ic_bss;
4296 error = ath_chan_set(sc, ic->ic_curchan);
4297 if (error != 0)
4298 goto bad;
4299 rfilt = ath_calcrxfilter(sc, nstate);
4300 if (nstate == IEEE80211_S_SCAN)
4301 bssid = ifp->if_broadcastaddr;
4302 else
4303 bssid = ni->ni_bssid;
4304 ath_hal_setrxfilter(ah, rfilt);
4305 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
4306 __func__, rfilt, ether_sprintf(bssid));
4307
4308 if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
4309 ath_hal_setassocid(ah, bssid, ni->ni_associd);
4310 else
4311 ath_hal_setassocid(ah, bssid, 0);
4312 if (ic->ic_flags & IEEE80211_F_PRIVACY) {
4313 for (i = 0; i < IEEE80211_WEP_NKID; i++)
4314 if (ath_hal_keyisvalid(ah, i))
4315 ath_hal_keysetmac(ah, i, bssid);
4316 }
4317
4318 /*
4319 * Notify the rate control algorithm so rates
4320 * are setup should ath_beacon_alloc be called.
4321 */
4322 ath_rate_newstate(sc, nstate);
4323
4324 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4325 /* nothing to do */;
4326 } else if (nstate == IEEE80211_S_RUN) {
4327 DPRINTF(sc, ATH_DEBUG_STATE,
4328 "%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
4329 "capinfo=0x%04x chan=%d\n"
4330 , __func__
4331 , ic->ic_flags
4332 , ni->ni_intval
4333 , ether_sprintf(ni->ni_bssid)
4334 , ni->ni_capinfo
4335 , ieee80211_chan2ieee(ic, ic->ic_curchan));
4336
4337 switch (ic->ic_opmode) {
4338 case IEEE80211_M_HOSTAP:
4339 case IEEE80211_M_IBSS:
4340 /*
4341 * Allocate and setup the beacon frame.
4342 *
4343 * Stop any previous beacon DMA. This may be
4344 * necessary, for example, when an ibss merge
4345 * causes reconfiguration; there will be a state
4346 * transition from RUN->RUN that means we may
4347 * be called with beacon transmission active.
4348 */
4349 ath_hal_stoptxdma(ah, sc->sc_bhalq);
4350 ath_beacon_free(sc);
4351 error = ath_beacon_alloc(sc, ni);
4352 if (error != 0)
4353 goto bad;
4354 break;
4355 case IEEE80211_M_STA:
4356 /*
4357 * Allocate a key cache slot to the station.
4358 */
4359 if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
4360 sc->sc_hasclrkey &&
4361 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4362 ath_setup_stationkey(ni);
4363 break;
4364 default:
4365 break;
4366 }
4367
4368 /*
4369 * Configure the beacon and sleep timers.
4370 */
4371 ath_beacon_config(sc);
4372 } else {
4373 ath_hal_intrset(ah,
4374 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4375 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4376 }
4377 done:
4378 /*
4379 * Invoke the parent method to complete the work.
4380 */
4381 error = sc->sc_newstate(ic, nstate, arg);
4382 /*
4383 * Finally, start any timers.
4384 */
4385 if (nstate == IEEE80211_S_RUN) {
4386 /* start periodic recalibration timer */
4387 callout_reset(&sc->sc_cal_ch, ath_calinterval * hz,
4388 ath_calibrate, sc);
4389 } else if (nstate == IEEE80211_S_SCAN) {
4390 /* start ap/neighbor scan timer */
4391 callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
4392 ath_next_scan, sc);
4393 }
4394 bad:
4395 return error;
4396 }
4397
4398 /*
4399 * Allocate a key cache slot to the station so we can
4400 * setup a mapping from key index to node. The key cache
4401 * slot is needed for managing antenna state and for
4402 * compression when stations do not use crypto. We do
4403 * it uniliaterally here; if crypto is employed this slot
4404 * will be reassigned.
4405 */
4406 static void
4407 ath_setup_stationkey(struct ieee80211_node *ni)
4408 {
4409 struct ieee80211com *ic = ni->ni_ic;
4410 struct ath_softc *sc = ic->ic_ifp->if_softc;
4411 ieee80211_keyix keyix, rxkeyix;
4412
4413 if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
4414 /*
4415 * Key cache is full; we'll fall back to doing
4416 * the more expensive lookup in software. Note
4417 * this also means no h/w compression.
4418 */
4419 /* XXX msg+statistic */
4420 } else {
4421 /* XXX locking? */
4422 ni->ni_ucastkey.wk_keyix = keyix;
4423 ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
4424 /* NB: this will create a pass-thru key entry */
4425 ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
4426 }
4427 }
4428
4429 /*
4430 * Setup driver-specific state for a newly associated node.
4431 * Note that we're called also on a re-associate, the isnew
4432 * param tells us if this is the first time or not.
4433 */
4434 static void
4435 ath_newassoc(struct ieee80211_node *ni, int isnew)
4436 {
4437 struct ieee80211com *ic = ni->ni_ic;
4438 struct ath_softc *sc = ic->ic_ifp->if_softc;
4439
4440 ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
4441 if (isnew &&
4442 (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
4443 KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
4444 ("new assoc with a unicast key already setup (keyix %u)",
4445 ni->ni_ucastkey.wk_keyix));
4446 ath_setup_stationkey(ni);
4447 }
4448 }
4449
4450 static int
4451 ath_getchannels(struct ath_softc *sc, u_int cc,
4452 HAL_BOOL outdoor, HAL_BOOL xchanmode)
4453 {
4454 struct ieee80211com *ic = &sc->sc_ic;
4455 struct ifnet *ifp = &sc->sc_if;
4456 struct ath_hal *ah = sc->sc_ah;
4457 HAL_CHANNEL *chans;
4458 int i, ix, nchan;
4459
4460 chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
4461 M_TEMP, M_NOWAIT);
4462 if (chans == NULL) {
4463 if_printf(ifp, "unable to allocate channel table\n");
4464 return ENOMEM;
4465 }
4466 if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
4467 cc, HAL_MODE_ALL, outdoor, xchanmode)) {
4468 u_int32_t rd;
4469
4470 ath_hal_getregdomain(ah, &rd);
4471 if_printf(ifp, "unable to collect channel list from hal; "
4472 "regdomain likely %u country code %u\n", rd, cc);
4473 free(chans, M_TEMP);
4474 return EINVAL;
4475 }
4476
4477 /*
4478 * Convert HAL channels to ieee80211 ones and insert
4479 * them in the table according to their channel number.
4480 */
4481 for (i = 0; i < nchan; i++) {
4482 HAL_CHANNEL *c = &chans[i];
4483 ix = ath_hal_mhz2ieee(c->channel, c->channelFlags);
4484 if (ix > IEEE80211_CHAN_MAX) {
4485 if_printf(ifp, "bad hal channel %u (%u/%x) ignored\n",
4486 ix, c->channel, c->channelFlags);
4487 continue;
4488 }
4489 DPRINTF(sc, ATH_DEBUG_ANY,
4490 "%s: HAL channel %d/%d freq %d flags %#04x idx %d\n",
4491 sc->sc_dev.dv_xname, i, nchan, c->channel, c->channelFlags,
4492 ix);
4493 /* NB: flags are known to be compatible */
4494 if (ic->ic_channels[ix].ic_freq == 0) {
4495 ic->ic_channels[ix].ic_freq = c->channel;
4496 ic->ic_channels[ix].ic_flags = c->channelFlags;
4497 } else {
4498 /* channels overlap; e.g. 11g and 11b */
4499 ic->ic_channels[ix].ic_flags |= c->channelFlags;
4500 }
4501 }
4502 free(chans, M_TEMP);
4503 return 0;
4504 }
4505
4506 static void
4507 ath_led_done(void *arg)
4508 {
4509 struct ath_softc *sc = arg;
4510
4511 sc->sc_blinking = 0;
4512 }
4513
4514 /*
4515 * Turn the LED off: flip the pin and then set a timer so no
4516 * update will happen for the specified duration.
4517 */
4518 static void
4519 ath_led_off(void *arg)
4520 {
4521 struct ath_softc *sc = arg;
4522
4523 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
4524 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
4525 }
4526
4527 /*
4528 * Blink the LED according to the specified on/off times.
4529 */
4530 static void
4531 ath_led_blink(struct ath_softc *sc, int on, int off)
4532 {
4533 DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
4534 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
4535 sc->sc_blinking = 1;
4536 sc->sc_ledoff = off;
4537 callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
4538 }
4539
4540 static void
4541 ath_led_event(struct ath_softc *sc, int event)
4542 {
4543
4544 sc->sc_ledevent = ticks; /* time of last event */
4545 if (sc->sc_blinking) /* don't interrupt active blink */
4546 return;
4547 switch (event) {
4548 case ATH_LED_POLL:
4549 ath_led_blink(sc, sc->sc_hwmap[0].ledon,
4550 sc->sc_hwmap[0].ledoff);
4551 break;
4552 case ATH_LED_TX:
4553 ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
4554 sc->sc_hwmap[sc->sc_txrate].ledoff);
4555 break;
4556 case ATH_LED_RX:
4557 ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
4558 sc->sc_hwmap[sc->sc_rxrate].ledoff);
4559 break;
4560 }
4561 }
4562
4563 static void
4564 ath_update_txpow(struct ath_softc *sc)
4565 {
4566 struct ieee80211com *ic = &sc->sc_ic;
4567 struct ath_hal *ah = sc->sc_ah;
4568 u_int32_t txpow;
4569
4570 if (sc->sc_curtxpow != ic->ic_txpowlimit) {
4571 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
4572 /* read back in case value is clamped */
4573 ath_hal_gettxpowlimit(ah, &txpow);
4574 ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
4575 }
4576 /*
4577 * Fetch max tx power level for status requests.
4578 */
4579 ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
4580 ic->ic_bss->ni_txpower = txpow;
4581 }
4582
4583 static int
4584 ath_rate_setup(struct ath_softc *sc, u_int mode)
4585 {
4586 struct ath_hal *ah = sc->sc_ah;
4587 struct ieee80211com *ic = &sc->sc_ic;
4588 const HAL_RATE_TABLE *rt;
4589 struct ieee80211_rateset *rs;
4590 int i, maxrates;
4591
4592 switch (mode) {
4593 case IEEE80211_MODE_11A:
4594 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11A);
4595 break;
4596 case IEEE80211_MODE_11B:
4597 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11B);
4598 break;
4599 case IEEE80211_MODE_11G:
4600 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11G);
4601 break;
4602 case IEEE80211_MODE_TURBO_A:
4603 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_TURBO);
4604 break;
4605 case IEEE80211_MODE_TURBO_G:
4606 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_108G);
4607 break;
4608 default:
4609 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
4610 __func__, mode);
4611 return 0;
4612 }
4613 rt = sc->sc_rates[mode];
4614 if (rt == NULL)
4615 return 0;
4616 if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
4617 DPRINTF(sc, ATH_DEBUG_ANY,
4618 "%s: rate table too small (%u > %u)\n",
4619 __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
4620 maxrates = IEEE80211_RATE_MAXSIZE;
4621 } else
4622 maxrates = rt->rateCount;
4623 rs = &ic->ic_sup_rates[mode];
4624 for (i = 0; i < maxrates; i++)
4625 rs->rs_rates[i] = rt->info[i].dot11Rate;
4626 rs->rs_nrates = maxrates;
4627 return 1;
4628 }
4629
4630 static void
4631 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
4632 {
4633 #define N(a) (sizeof(a)/sizeof(a[0]))
4634 /* NB: on/off times from the Atheros NDIS driver, w/ permission */
4635 static const struct {
4636 u_int rate; /* tx/rx 802.11 rate */
4637 u_int16_t timeOn; /* LED on time (ms) */
4638 u_int16_t timeOff; /* LED off time (ms) */
4639 } blinkrates[] = {
4640 { 108, 40, 10 },
4641 { 96, 44, 11 },
4642 { 72, 50, 13 },
4643 { 48, 57, 14 },
4644 { 36, 67, 16 },
4645 { 24, 80, 20 },
4646 { 22, 100, 25 },
4647 { 18, 133, 34 },
4648 { 12, 160, 40 },
4649 { 10, 200, 50 },
4650 { 6, 240, 58 },
4651 { 4, 267, 66 },
4652 { 2, 400, 100 },
4653 { 0, 500, 130 },
4654 };
4655 const HAL_RATE_TABLE *rt;
4656 int i, j;
4657
4658 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
4659 rt = sc->sc_rates[mode];
4660 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
4661 for (i = 0; i < rt->rateCount; i++)
4662 sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
4663 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
4664 for (i = 0; i < 32; i++) {
4665 u_int8_t ix = rt->rateCodeToIndex[i];
4666 if (ix == 0xff) {
4667 sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
4668 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
4669 continue;
4670 }
4671 sc->sc_hwmap[i].ieeerate =
4672 rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
4673 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
4674 if (rt->info[ix].shortPreamble ||
4675 rt->info[ix].phy == IEEE80211_T_OFDM)
4676 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
4677 /* NB: receive frames include FCS */
4678 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
4679 IEEE80211_RADIOTAP_F_FCS;
4680 /* setup blink rate table to avoid per-packet lookup */
4681 for (j = 0; j < N(blinkrates)-1; j++)
4682 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
4683 break;
4684 /* NB: this uses the last entry if the rate isn't found */
4685 /* XXX beware of overlow */
4686 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
4687 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
4688 }
4689 sc->sc_currates = rt;
4690 sc->sc_curmode = mode;
4691 /*
4692 * All protection frames are transmited at 2Mb/s for
4693 * 11g, otherwise at 1Mb/s.
4694 * XXX select protection rate index from rate table.
4695 */
4696 sc->sc_protrix = (mode == IEEE80211_MODE_11G ? 1 : 0);
4697 /* NB: caller is responsible for reseting rate control state */
4698 #undef N
4699 }
4700
4701 #ifdef AR_DEBUG
4702 static void
4703 ath_printrxbuf(struct ath_buf *bf, int done)
4704 {
4705 struct ath_desc *ds;
4706 int i;
4707
4708 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
4709 printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n",
4710 i, ds, (struct ath_desc *)bf->bf_daddr + i,
4711 ds->ds_link, ds->ds_data,
4712 ds->ds_ctl0, ds->ds_ctl1,
4713 ds->ds_hw[0], ds->ds_hw[1],
4714 !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
4715 }
4716 }
4717
4718 static void
4719 ath_printtxbuf(struct ath_buf *bf, int done)
4720 {
4721 struct ath_desc *ds;
4722 int i;
4723
4724 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
4725 printf("T%d (%p %p) %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
4726 i, ds, (struct ath_desc *)bf->bf_daddr + i,
4727 ds->ds_link, ds->ds_data,
4728 ds->ds_ctl0, ds->ds_ctl1,
4729 ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
4730 !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
4731 }
4732 }
4733 #endif /* AR_DEBUG */
4734
4735 static void
4736 ath_watchdog(struct ifnet *ifp)
4737 {
4738 struct ath_softc *sc = ifp->if_softc;
4739 struct ieee80211com *ic = &sc->sc_ic;
4740
4741 ifp->if_timer = 0;
4742 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
4743 return;
4744 if (sc->sc_tx_timer) {
4745 if (--sc->sc_tx_timer == 0) {
4746 if_printf(ifp, "device timeout\n");
4747 ath_reset(ifp);
4748 ifp->if_oerrors++;
4749 sc->sc_stats.ast_watchdog++;
4750 } else
4751 ifp->if_timer = 1;
4752 }
4753 ieee80211_watchdog(ic);
4754 }
4755
4756 /*
4757 * Diagnostic interface to the HAL. This is used by various
4758 * tools to do things like retrieve register contents for
4759 * debugging. The mechanism is intentionally opaque so that
4760 * it can change frequently w/o concern for compatiblity.
4761 */
4762 static int
4763 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
4764 {
4765 struct ath_hal *ah = sc->sc_ah;
4766 u_int id = ad->ad_id & ATH_DIAG_ID;
4767 void *indata = NULL;
4768 void *outdata = NULL;
4769 u_int32_t insize = ad->ad_in_size;
4770 u_int32_t outsize = ad->ad_out_size;
4771 int error = 0;
4772
4773 if (ad->ad_id & ATH_DIAG_IN) {
4774 /*
4775 * Copy in data.
4776 */
4777 indata = malloc(insize, M_TEMP, M_NOWAIT);
4778 if (indata == NULL) {
4779 error = ENOMEM;
4780 goto bad;
4781 }
4782 error = copyin(ad->ad_in_data, indata, insize);
4783 if (error)
4784 goto bad;
4785 }
4786 if (ad->ad_id & ATH_DIAG_DYN) {
4787 /*
4788 * Allocate a buffer for the results (otherwise the HAL
4789 * returns a pointer to a buffer where we can read the
4790 * results). Note that we depend on the HAL leaving this
4791 * pointer for us to use below in reclaiming the buffer;
4792 * may want to be more defensive.
4793 */
4794 outdata = malloc(outsize, M_TEMP, M_NOWAIT);
4795 if (outdata == NULL) {
4796 error = ENOMEM;
4797 goto bad;
4798 }
4799 }
4800 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
4801 if (outsize < ad->ad_out_size)
4802 ad->ad_out_size = outsize;
4803 if (outdata != NULL)
4804 error = copyout(outdata, ad->ad_out_data,
4805 ad->ad_out_size);
4806 } else {
4807 error = EINVAL;
4808 }
4809 bad:
4810 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
4811 free(indata, M_TEMP);
4812 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
4813 free(outdata, M_TEMP);
4814 return error;
4815 }
4816
4817 static int
4818 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
4819 {
4820 #define IS_RUNNING(ifp) \
4821 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
4822 struct ath_softc *sc = ifp->if_softc;
4823 struct ieee80211com *ic = &sc->sc_ic;
4824 struct ifreq *ifr = (struct ifreq *)data;
4825 int error = 0;
4826
4827 ATH_LOCK(sc);
4828 switch (cmd) {
4829 case SIOCSIFFLAGS:
4830 if (IS_RUNNING(ifp)) {
4831 /*
4832 * To avoid rescanning another access point,
4833 * do not call ath_init() here. Instead,
4834 * only reflect promisc mode settings.
4835 */
4836 ath_mode_init(sc);
4837 } else if (ifp->if_flags & IFF_UP) {
4838 /*
4839 * Beware of being called during attach/detach
4840 * to reset promiscuous mode. In that case we
4841 * will still be marked UP but not RUNNING.
4842 * However trying to re-init the interface
4843 * is the wrong thing to do as we've already
4844 * torn down much of our state. There's
4845 * probably a better way to deal with this.
4846 */
4847 if (!sc->sc_invalid && ic->ic_bss != NULL)
4848 ath_init(sc); /* XXX lose error */
4849 } else
4850 ath_stop_locked(ifp, 1);
4851 break;
4852 case SIOCADDMULTI:
4853 case SIOCDELMULTI:
4854 error = (cmd == SIOCADDMULTI) ?
4855 ether_addmulti(ifr, &sc->sc_ec) :
4856 ether_delmulti(ifr, &sc->sc_ec);
4857 if (error == ENETRESET) {
4858 if (ifp->if_flags & IFF_RUNNING)
4859 ath_mode_init(sc);
4860 error = 0;
4861 }
4862 break;
4863 case SIOCGATHSTATS:
4864 /* NB: embed these numbers to get a consistent view */
4865 sc->sc_stats.ast_tx_packets = ifp->if_opackets;
4866 sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
4867 sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
4868 ATH_UNLOCK(sc);
4869 /*
4870 * NB: Drop the softc lock in case of a page fault;
4871 * we'll accept any potential inconsisentcy in the
4872 * statistics. The alternative is to copy the data
4873 * to a local structure.
4874 */
4875 return copyout(&sc->sc_stats,
4876 ifr->ifr_data, sizeof (sc->sc_stats));
4877 case SIOCGATHDIAG:
4878 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
4879 break;
4880 default:
4881 error = ieee80211_ioctl(ic, cmd, data);
4882 if (error == ENETRESET) {
4883 if (IS_RUNNING(ifp) &&
4884 ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
4885 ath_init(sc); /* XXX lose error */
4886 error = 0;
4887 }
4888 if (error == ERESTART)
4889 error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0;
4890 break;
4891 }
4892 ATH_UNLOCK(sc);
4893 return error;
4894 #undef IS_RUNNING
4895 }
4896
4897 static void
4898 ath_bpfattach(struct ath_softc *sc)
4899 {
4900 struct ifnet *ifp = &sc->sc_if;
4901
4902 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
4903 sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
4904 &sc->sc_drvbpf);
4905 /*
4906 * Initialize constant fields.
4907 * XXX make header lengths a multiple of 32-bits so subsequent
4908 * headers are properly aligned; this is a kludge to keep
4909 * certain applications happy.
4910 *
4911 * NB: the channel is setup each time we transition to the
4912 * RUN state to avoid filling it in for each frame.
4913 */
4914 sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
4915 sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
4916 sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
4917
4918 sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
4919 sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
4920 sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
4921 }
4922
4923 /*
4924 * Announce various information on device/driver attach.
4925 */
4926 static void
4927 ath_announce(struct ath_softc *sc)
4928 {
4929 #define HAL_MODE_DUALBAND (HAL_MODE_11A|HAL_MODE_11B)
4930 struct ifnet *ifp = &sc->sc_if;
4931 struct ath_hal *ah = sc->sc_ah;
4932 u_int modes, cc;
4933
4934 if_printf(ifp, "mac %d.%d phy %d.%d",
4935 ah->ah_macVersion, ah->ah_macRev,
4936 ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
4937 /*
4938 * Print radio revision(s). We check the wireless modes
4939 * to avoid falsely printing revs for inoperable parts.
4940 * Dual-band radio revs are returned in the 5Ghz rev number.
4941 */
4942 ath_hal_getcountrycode(ah, &cc);
4943 modes = ath_hal_getwirelessmodes(ah, cc);
4944 if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
4945 if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
4946 printf(" 5ghz radio %d.%d 2ghz radio %d.%d",
4947 ah->ah_analog5GhzRev >> 4,
4948 ah->ah_analog5GhzRev & 0xf,
4949 ah->ah_analog2GhzRev >> 4,
4950 ah->ah_analog2GhzRev & 0xf);
4951 else
4952 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
4953 ah->ah_analog5GhzRev & 0xf);
4954 } else
4955 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
4956 ah->ah_analog5GhzRev & 0xf);
4957 printf("\n");
4958 if (bootverbose) {
4959 int i;
4960 for (i = 0; i <= WME_AC_VO; i++) {
4961 struct ath_txq *txq = sc->sc_ac2q[i];
4962 if_printf(ifp, "Use hw queue %u for %s traffic\n",
4963 txq->axq_qnum, ieee80211_wme_acnames[i]);
4964 }
4965 if_printf(ifp, "Use hw queue %u for CAB traffic\n",
4966 sc->sc_cabq->axq_qnum);
4967 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
4968 }
4969 #undef HAL_MODE_DUALBAND
4970 }
4971