Home | History | Annotate | Line # | Download | only in ic
ath.c revision 1.61
      1 /*	$NetBSD: ath.c,v 1.61 2005/11/18 16:48:31 skrll Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer,
     12  *    without modification.
     13  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
     14  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
     15  *    redistribution must be conditioned upon including a substantially
     16  *    similar Disclaimer requirement for further binary redistribution.
     17  * 3. Neither the names of the above-listed copyright holders nor the names
     18  *    of any contributors may be used to endorse or promote products derived
     19  *    from this software without specific prior written permission.
     20  *
     21  * Alternatively, this software may be distributed under the terms of the
     22  * GNU General Public License ("GPL") version 2 as published by the Free
     23  * Software Foundation.
     24  *
     25  * NO WARRANTY
     26  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     28  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
     29  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
     30  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
     31  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
     34  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     36  * THE POSSIBILITY OF SUCH DAMAGES.
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 #ifdef __FreeBSD__
     41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $");
     42 #endif
     43 #ifdef __NetBSD__
     44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.61 2005/11/18 16:48:31 skrll Exp $");
     45 #endif
     46 
     47 /*
     48  * Driver for the Atheros Wireless LAN controller.
     49  *
     50  * This software is derived from work of Atsushi Onoe; his contribution
     51  * is greatly appreciated.
     52  */
     53 
     54 #include "opt_inet.h"
     55 
     56 #ifdef __NetBSD__
     57 #include "bpfilter.h"
     58 #endif /* __NetBSD__ */
     59 
     60 #include <sys/param.h>
     61 #include <sys/reboot.h>
     62 #include <sys/systm.h>
     63 #include <sys/types.h>
     64 #include <sys/sysctl.h>
     65 #include <sys/mbuf.h>
     66 #include <sys/malloc.h>
     67 #include <sys/lock.h>
     68 #include <sys/kernel.h>
     69 #include <sys/socket.h>
     70 #include <sys/sockio.h>
     71 #include <sys/errno.h>
     72 #include <sys/callout.h>
     73 #include <machine/bus.h>
     74 #include <sys/endian.h>
     75 
     76 #include <machine/bus.h>
     77 
     78 #include <net/if.h>
     79 #include <net/if_dl.h>
     80 #include <net/if_media.h>
     81 #include <net/if_types.h>
     82 #include <net/if_arp.h>
     83 #include <net/if_ether.h>
     84 #include <net/if_llc.h>
     85 
     86 #include <net80211/ieee80211_netbsd.h>
     87 #include <net80211/ieee80211_var.h>
     88 
     89 #if NBPFILTER > 0
     90 #include <net/bpf.h>
     91 #endif
     92 
     93 #ifdef INET
     94 #include <netinet/in.h>
     95 #endif
     96 
     97 #include <sys/device.h>
     98 #include <dev/ic/ath_netbsd.h>
     99 
    100 #define	AR_DEBUG
    101 #include <dev/ic/athvar.h>
    102 #include <contrib/dev/ic/athhal_desc.h>
    103 #include <contrib/dev/ic/athhal_devid.h>	/* XXX for softled */
    104 
    105 /* unaligned little endian access */
    106 #define LE_READ_2(p)							\
    107 	((u_int16_t)							\
    108 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
    109 #define LE_READ_4(p)							\
    110 	((u_int32_t)							\
    111 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
    112 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
    113 
    114 enum {
    115 	ATH_LED_TX,
    116 	ATH_LED_RX,
    117 	ATH_LED_POLL,
    118 };
    119 
    120 static int	ath_ifinit(struct ifnet *);
    121 static int	ath_init(struct ath_softc *);
    122 static void	ath_stop_locked(struct ifnet *, int);
    123 static void	ath_stop(struct ifnet *, int);
    124 static void	ath_start(struct ifnet *);
    125 static int	ath_media_change(struct ifnet *);
    126 static void	ath_watchdog(struct ifnet *);
    127 static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
    128 static void	ath_fatal_proc(void *, int);
    129 static void	ath_rxorn_proc(void *, int);
    130 static void	ath_bmiss_proc(void *, int);
    131 static int	ath_key_alloc(struct ieee80211com *,
    132 			const struct ieee80211_key *,
    133 			ieee80211_keyix *, ieee80211_keyix *);
    134 static int	ath_key_delete(struct ieee80211com *,
    135 			const struct ieee80211_key *);
    136 static int	ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
    137 			const u_int8_t mac[IEEE80211_ADDR_LEN]);
    138 static void	ath_key_update_begin(struct ieee80211com *);
    139 static void	ath_key_update_end(struct ieee80211com *);
    140 static void	ath_mode_init(struct ath_softc *);
    141 static void	ath_setslottime(struct ath_softc *);
    142 static void	ath_updateslot(struct ifnet *);
    143 static int	ath_beaconq_setup(struct ath_hal *);
    144 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
    145 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
    146 static void	ath_beacon_proc(void *, int);
    147 static void	ath_bstuck_proc(void *, int);
    148 static void	ath_beacon_free(struct ath_softc *);
    149 static void	ath_beacon_config(struct ath_softc *);
    150 static void	ath_descdma_cleanup(struct ath_softc *sc,
    151 			struct ath_descdma *, ath_bufhead *);
    152 static int	ath_desc_alloc(struct ath_softc *);
    153 static void	ath_desc_free(struct ath_softc *);
    154 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
    155 static void	ath_node_free(struct ieee80211_node *);
    156 static u_int8_t	ath_node_getrssi(const struct ieee80211_node *);
    157 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
    158 static void	ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
    159 			struct ieee80211_node *ni,
    160 			int subtype, int rssi, u_int32_t rstamp);
    161 static void	ath_setdefantenna(struct ath_softc *, u_int);
    162 static void	ath_rx_proc(void *, int);
    163 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
    164 static int	ath_tx_setup(struct ath_softc *, int, int);
    165 static int	ath_wme_update(struct ieee80211com *);
    166 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
    167 static void	ath_tx_cleanup(struct ath_softc *);
    168 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
    169 			     struct ath_buf *, struct mbuf *);
    170 static void	ath_tx_proc_q0(void *, int);
    171 static void	ath_tx_proc_q0123(void *, int);
    172 static void	ath_tx_proc(void *, int);
    173 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
    174 static void	ath_draintxq(struct ath_softc *);
    175 static void	ath_stoprecv(struct ath_softc *);
    176 static int	ath_startrecv(struct ath_softc *);
    177 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
    178 static void	ath_next_scan(void *);
    179 static void	ath_calibrate(void *);
    180 static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
    181 static void	ath_setup_stationkey(struct ieee80211_node *);
    182 static void	ath_newassoc(struct ieee80211_node *, int);
    183 static int	ath_getchannels(struct ath_softc *, u_int cc,
    184 			HAL_BOOL outdoor, HAL_BOOL xchanmode);
    185 static void	ath_led_event(struct ath_softc *, int);
    186 static void	ath_update_txpow(struct ath_softc *);
    187 
    188 static int	ath_rate_setup(struct ath_softc *, u_int mode);
    189 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
    190 
    191 #ifdef __NetBSD__
    192 int	ath_enable(struct ath_softc *);
    193 void	ath_disable(struct ath_softc *);
    194 void	ath_power(int, void *);
    195 #endif
    196 
    197 static void	ath_bpfattach(struct ath_softc *);
    198 static void	ath_announce(struct ath_softc *);
    199 
    200 int ath_dwelltime = 200;		/* 5 channels/second */
    201 int ath_calinterval = 30;		/* calibrate every 30 secs */
    202 int ath_outdoor = AH_TRUE;		/* outdoor operation */
    203 int ath_xchanmode = AH_TRUE;		/* enable extended channels */
    204 int ath_countrycode = CTRY_DEFAULT;	/* country code */
    205 int ath_regdomain = 0;			/* regulatory domain */
    206 int ath_debug = 0;
    207 
    208 #ifdef AR_DEBUG
    209 enum {
    210 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
    211 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
    212 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
    213 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
    214 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
    215 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
    216 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
    217 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
    218 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
    219 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
    220 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
    221 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
    222 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
    223 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
    224 	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
    225 	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
    226 	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
    227 	ATH_DEBUG_LED		= 0x00100000,	/* led management */
    228 	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
    229 	ATH_DEBUG_ANY		= 0xffffffff
    230 };
    231 #define	IFF_DUMPPKTS(sc, m) \
    232 	((sc->sc_debug & (m)) || \
    233 	    (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
    234 #define	DPRINTF(sc, m, fmt, ...) do {				\
    235 	if (sc->sc_debug & (m))					\
    236 		printf(fmt, __VA_ARGS__);			\
    237 } while (0)
    238 #define	KEYPRINTF(sc, ix, hk, mac) do {				\
    239 	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
    240 		ath_keyprint(__func__, ix, hk, mac);		\
    241 } while (0)
    242 static	void ath_printrxbuf(struct ath_buf *bf, int);
    243 static	void ath_printtxbuf(struct ath_buf *bf, int);
    244 #else
    245 #define	IFF_DUMPPKTS(sc, m) \
    246 	((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
    247 #define	DPRINTF(m, fmt, ...)
    248 #define	KEYPRINTF(sc, k, ix, mac)
    249 #endif
    250 
    251 #ifdef __NetBSD__
    252 int
    253 ath_activate(struct device *self, enum devact act)
    254 {
    255 	struct ath_softc *sc = (struct ath_softc *)self;
    256 	int rv = 0, s;
    257 
    258 	s = splnet();
    259 	switch (act) {
    260 	case DVACT_ACTIVATE:
    261 		rv = EOPNOTSUPP;
    262 		break;
    263 	case DVACT_DEACTIVATE:
    264 		if_deactivate(&sc->sc_if);
    265 		break;
    266 	}
    267 	splx(s);
    268 	return rv;
    269 }
    270 
    271 int
    272 ath_enable(struct ath_softc *sc)
    273 {
    274 	if (ATH_IS_ENABLED(sc) == 0) {
    275 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
    276 			printf("%s: device enable failed\n",
    277 				sc->sc_dev.dv_xname);
    278 			return (EIO);
    279 		}
    280 		sc->sc_flags |= ATH_ENABLED;
    281 	}
    282 	return (0);
    283 }
    284 
    285 void
    286 ath_disable(struct ath_softc *sc)
    287 {
    288 	if (!ATH_IS_ENABLED(sc))
    289 		return;
    290 	if (sc->sc_disable != NULL)
    291 		(*sc->sc_disable)(sc);
    292 	sc->sc_flags &= ~ATH_ENABLED;
    293 }
    294 #endif /* __NetBSD__ */
    295 
    296 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
    297 
    298 int
    299 ath_attach(u_int16_t devid, struct ath_softc *sc)
    300 {
    301 	struct ifnet *ifp = &sc->sc_if;
    302 	struct ieee80211com *ic = &sc->sc_ic;
    303 	struct ath_hal *ah = NULL;
    304 	HAL_STATUS status;
    305 	int error = 0, i;
    306 
    307 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
    308 
    309 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
    310 
    311 	ah = ath_hal_attach(devid, sc, sc->sc_st, ATH_BUSHANDLE2HAL(sc->sc_sh),
    312 	    &status);
    313 	if (ah == NULL) {
    314 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
    315 			status);
    316 		error = ENXIO;
    317 		goto bad;
    318 	}
    319 	if (ah->ah_abi != HAL_ABI_VERSION) {
    320 		if_printf(ifp, "HAL ABI mismatch detected "
    321 			"(HAL:0x%x != driver:0x%x)\n",
    322 			ah->ah_abi, HAL_ABI_VERSION);
    323 		error = ENXIO;
    324 		goto bad;
    325 	}
    326 	sc->sc_ah = ah;
    327 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
    328 
    329 	/*
    330 	 * Check if the MAC has multi-rate retry support.
    331 	 * We do this by trying to setup a fake extended
    332 	 * descriptor.  MAC's that don't have support will
    333 	 * return false w/o doing anything.  MAC's that do
    334 	 * support it will return true w/o doing anything.
    335 	 */
    336 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
    337 
    338 	/*
    339 	 * Check if the device has hardware counters for PHY
    340 	 * errors.  If so we need to enable the MIB interrupt
    341 	 * so we can act on stat triggers.
    342 	 */
    343 	if (ath_hal_hwphycounters(ah))
    344 		sc->sc_needmib = 1;
    345 
    346 	/*
    347 	 * Get the hardware key cache size.
    348 	 */
    349 	sc->sc_keymax = ath_hal_keycachesize(ah);
    350 	if (sc->sc_keymax > ATH_KEYMAX) {
    351 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
    352 			ATH_KEYMAX, sc->sc_keymax);
    353 		sc->sc_keymax = ATH_KEYMAX;
    354 	}
    355 	/*
    356 	 * Reset the key cache since some parts do not
    357 	 * reset the contents on initial power up.
    358 	 */
    359 	for (i = 0; i < sc->sc_keymax; i++)
    360 		ath_hal_keyreset(ah, i);
    361 	/*
    362 	 * Mark key cache slots associated with global keys
    363 	 * as in use.  If we knew TKIP was not to be used we
    364 	 * could leave the +32, +64, and +32+64 slots free.
    365 	 * XXX only for splitmic.
    366 	 */
    367 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
    368 		setbit(sc->sc_keymap, i);
    369 		setbit(sc->sc_keymap, i+32);
    370 		setbit(sc->sc_keymap, i+64);
    371 		setbit(sc->sc_keymap, i+32+64);
    372 	}
    373 
    374 	/*
    375 	 * Collect the channel list using the default country
    376 	 * code and including outdoor channels.  The 802.11 layer
    377 	 * is resposible for filtering this list based on settings
    378 	 * like the phy mode.
    379 	 */
    380 	error = ath_getchannels(sc, ath_countrycode,
    381 			ath_outdoor, ath_xchanmode);
    382 	if (error != 0)
    383 		goto bad;
    384 
    385 	/*
    386 	 * Setup rate tables for all potential media types.
    387 	 */
    388 	ath_rate_setup(sc, IEEE80211_MODE_11A);
    389 	ath_rate_setup(sc, IEEE80211_MODE_11B);
    390 	ath_rate_setup(sc, IEEE80211_MODE_11G);
    391 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
    392 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
    393 	/* NB: setup here so ath_rate_update is happy */
    394 	ath_setcurmode(sc, IEEE80211_MODE_11A);
    395 
    396 	/*
    397 	 * Allocate tx+rx descriptors and populate the lists.
    398 	 */
    399 	error = ath_desc_alloc(sc);
    400 	if (error != 0) {
    401 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
    402 		goto bad;
    403 	}
    404 	ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
    405 	ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE);
    406 
    407 	ATH_TXBUF_LOCK_INIT(sc);
    408 
    409 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
    410 	TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
    411 	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
    412 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
    413 	TASK_INIT(&sc->sc_bstucktask, 0, ath_bstuck_proc, sc);
    414 
    415 	/*
    416 	 * Allocate hardware transmit queues: one queue for
    417 	 * beacon frames and one data queue for each QoS
    418 	 * priority.  Note that the hal handles reseting
    419 	 * these queues at the needed time.
    420 	 *
    421 	 * XXX PS-Poll
    422 	 */
    423 	sc->sc_bhalq = ath_beaconq_setup(ah);
    424 	if (sc->sc_bhalq == (u_int) -1) {
    425 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
    426 		error = EIO;
    427 		goto bad2;
    428 	}
    429 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
    430 	if (sc->sc_cabq == NULL) {
    431 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
    432 		error = EIO;
    433 		goto bad2;
    434 	}
    435 	/* NB: insure BK queue is the lowest priority h/w queue */
    436 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
    437 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
    438 			ieee80211_wme_acnames[WME_AC_BK]);
    439 		error = EIO;
    440 		goto bad2;
    441 	}
    442 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
    443 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
    444 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
    445 		/*
    446 		 * Not enough hardware tx queues to properly do WME;
    447 		 * just punt and assign them all to the same h/w queue.
    448 		 * We could do a better job of this if, for example,
    449 		 * we allocate queues when we switch from station to
    450 		 * AP mode.
    451 		 */
    452 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
    453 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
    454 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
    455 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
    456 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
    457 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
    458 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
    459 	}
    460 
    461 	/*
    462 	 * Special case certain configurations.  Note the
    463 	 * CAB queue is handled by these specially so don't
    464 	 * include them when checking the txq setup mask.
    465 	 */
    466 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
    467 	case 0x01:
    468 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
    469 		break;
    470 	case 0x0f:
    471 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
    472 		break;
    473 	default:
    474 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
    475 		break;
    476 	}
    477 
    478 	/*
    479 	 * Setup rate control.  Some rate control modules
    480 	 * call back to change the anntena state so expose
    481 	 * the necessary entry points.
    482 	 * XXX maybe belongs in struct ath_ratectrl?
    483 	 */
    484 	sc->sc_setdefantenna = ath_setdefantenna;
    485 	sc->sc_rc = ath_rate_attach(sc);
    486 	if (sc->sc_rc == NULL) {
    487 		error = EIO;
    488 		goto bad2;
    489 	}
    490 
    491 	sc->sc_blinking = 0;
    492 	sc->sc_ledstate = 1;
    493 	sc->sc_ledon = 0;			/* low true */
    494 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
    495 	ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE);
    496 	/*
    497 	 * Auto-enable soft led processing for IBM cards and for
    498 	 * 5211 minipci cards.  Users can also manually enable/disable
    499 	 * support with a sysctl.
    500 	 */
    501 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
    502 	if (sc->sc_softled) {
    503 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
    504 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
    505 	}
    506 
    507 	ifp->if_softc = sc;
    508 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
    509 	ifp->if_start = ath_start;
    510 	ifp->if_watchdog = ath_watchdog;
    511 	ifp->if_ioctl = ath_ioctl;
    512 	ifp->if_init = ath_ifinit;
    513 	IFQ_SET_READY(&ifp->if_snd);
    514 
    515 	ic->ic_ifp = ifp;
    516 	ic->ic_reset = ath_reset;
    517 	ic->ic_newassoc = ath_newassoc;
    518 	ic->ic_updateslot = ath_updateslot;
    519 	ic->ic_wme.wme_update = ath_wme_update;
    520 	/* XXX not right but it's not used anywhere important */
    521 	ic->ic_phytype = IEEE80211_T_OFDM;
    522 	ic->ic_opmode = IEEE80211_M_STA;
    523 	ic->ic_caps =
    524 		  IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
    525 		| IEEE80211_C_HOSTAP		/* hostap mode */
    526 		| IEEE80211_C_MONITOR		/* monitor mode */
    527 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
    528 		| IEEE80211_C_SHSLOT		/* short slot time supported */
    529 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
    530 		;
    531 	/*
    532 	 * Query the hal to figure out h/w crypto support.
    533 	 */
    534 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
    535 		ic->ic_caps |= IEEE80211_C_WEP;
    536 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
    537 		ic->ic_caps |= IEEE80211_C_AES;
    538 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
    539 		ic->ic_caps |= IEEE80211_C_AES_CCM;
    540 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
    541 		ic->ic_caps |= IEEE80211_C_CKIP;
    542 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
    543 		ic->ic_caps |= IEEE80211_C_TKIP;
    544 		/*
    545 		 * Check if h/w does the MIC and/or whether the
    546 		 * separate key cache entries are required to
    547 		 * handle both tx+rx MIC keys.
    548 		 */
    549 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
    550 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
    551 		if (ath_hal_tkipsplit(ah))
    552 			sc->sc_splitmic = 1;
    553 	}
    554 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
    555 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
    556 	/*
    557 	 * TPC support can be done either with a global cap or
    558 	 * per-packet support.  The latter is not available on
    559 	 * all parts.  We're a bit pedantic here as all parts
    560 	 * support a global cap.
    561 	 */
    562 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
    563 		ic->ic_caps |= IEEE80211_C_TXPMGT;
    564 
    565 	/*
    566 	 * Mark WME capability only if we have sufficient
    567 	 * hardware queues to do proper priority scheduling.
    568 	 */
    569 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
    570 		ic->ic_caps |= IEEE80211_C_WME;
    571 	/*
    572 	 * Check for misc other capabilities.
    573 	 */
    574 	if (ath_hal_hasbursting(ah))
    575 		ic->ic_caps |= IEEE80211_C_BURST;
    576 
    577 	/*
    578 	 * Indicate we need the 802.11 header padded to a
    579 	 * 32-bit boundary for 4-address and QoS frames.
    580 	 */
    581 	ic->ic_flags |= IEEE80211_F_DATAPAD;
    582 
    583 	/*
    584 	 * Query the hal about antenna support.
    585 	 */
    586 	sc->sc_defant = ath_hal_getdefantenna(ah);
    587 
    588 	/*
    589 	 * Not all chips have the VEOL support we want to
    590 	 * use with IBSS beacons; check here for it.
    591 	 */
    592 	sc->sc_hasveol = ath_hal_hasveol(ah);
    593 
    594 	/* get mac address from hardware */
    595 	ath_hal_getmac(ah, ic->ic_myaddr);
    596 
    597 	if_attach(ifp);
    598 	/* call MI attach routine. */
    599 	ieee80211_ifattach(ic);
    600 	/* override default methods */
    601 	ic->ic_node_alloc = ath_node_alloc;
    602 	sc->sc_node_free = ic->ic_node_free;
    603 	ic->ic_node_free = ath_node_free;
    604 	ic->ic_node_getrssi = ath_node_getrssi;
    605 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
    606 	ic->ic_recv_mgmt = ath_recv_mgmt;
    607 	sc->sc_newstate = ic->ic_newstate;
    608 	ic->ic_newstate = ath_newstate;
    609 	ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
    610 	ic->ic_crypto.cs_key_alloc = ath_key_alloc;
    611 	ic->ic_crypto.cs_key_delete = ath_key_delete;
    612 	ic->ic_crypto.cs_key_set = ath_key_set;
    613 	ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
    614 	ic->ic_crypto.cs_key_update_end = ath_key_update_end;
    615 	/* complete initialization */
    616 	ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
    617 
    618 	ath_bpfattach(sc);
    619 
    620 #ifdef __NetBSD__
    621 	sc->sc_flags |= ATH_ATTACHED;
    622 	/*
    623 	 * Make sure the interface is shutdown during reboot.
    624 	 */
    625 	sc->sc_sdhook = shutdownhook_establish(ath_shutdown, sc);
    626 	if (sc->sc_sdhook == NULL)
    627 		printf("%s: WARNING: unable to establish shutdown hook\n",
    628 			sc->sc_dev.dv_xname);
    629 	sc->sc_powerhook = powerhook_establish(ath_power, sc);
    630 	if (sc->sc_powerhook == NULL)
    631 		printf("%s: WARNING: unable to establish power hook\n",
    632 			sc->sc_dev.dv_xname);
    633 #endif
    634 
    635 	/*
    636 	 * Setup dynamic sysctl's now that country code and
    637 	 * regdomain are available from the hal.
    638 	 */
    639 	ath_sysctlattach(sc);
    640 
    641 	ieee80211_announce(ic);
    642 	ath_announce(sc);
    643 	return 0;
    644 bad2:
    645 	ath_tx_cleanup(sc);
    646 	ath_desc_free(sc);
    647 bad:
    648 	if (ah)
    649 		ath_hal_detach(ah);
    650 	sc->sc_invalid = 1;
    651 	return error;
    652 }
    653 
    654 int
    655 ath_detach(struct ath_softc *sc)
    656 {
    657 	struct ifnet *ifp = &sc->sc_if;
    658 	int s;
    659 
    660 	if ((sc->sc_flags & ATH_ATTACHED) == 0)
    661 		return (0);
    662 
    663 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
    664 		__func__, ifp->if_flags);
    665 
    666 	s = splnet();
    667 	ath_stop(ifp, 1);
    668 #if NBPFILTER > 0
    669 	bpfdetach(ifp);
    670 #endif
    671 	/*
    672 	 * NB: the order of these is important:
    673 	 * o call the 802.11 layer before detaching the hal to
    674 	 *   insure callbacks into the driver to delete global
    675 	 *   key cache entries can be handled
    676 	 * o reclaim the tx queue data structures after calling
    677 	 *   the 802.11 layer as we'll get called back to reclaim
    678 	 *   node state and potentially want to use them
    679 	 * o to cleanup the tx queues the hal is called, so detach
    680 	 *   it last
    681 	 * Other than that, it's straightforward...
    682 	 */
    683 	ieee80211_ifdetach(&sc->sc_ic);
    684 	ath_rate_detach(sc->sc_rc);
    685 	ath_desc_free(sc);
    686 	ath_tx_cleanup(sc);
    687 	sysctl_teardown(&sc->sc_sysctllog);
    688 	ath_hal_detach(sc->sc_ah);
    689 	if_detach(ifp);
    690 	splx(s);
    691 	powerhook_disestablish(sc->sc_powerhook);
    692 	shutdownhook_disestablish(sc->sc_sdhook);
    693 
    694 	return 0;
    695 }
    696 
    697 #ifdef __NetBSD__
    698 void
    699 ath_power(int why, void *arg)
    700 {
    701 	struct ath_softc *sc = arg;
    702 	int s;
    703 
    704 	DPRINTF(sc, ATH_DEBUG_ANY, "ath_power(%d)\n", why);
    705 
    706 	s = splnet();
    707 	switch (why) {
    708 	case PWR_SUSPEND:
    709 	case PWR_STANDBY:
    710 		ath_suspend(sc, why);
    711 		break;
    712 	case PWR_RESUME:
    713 		ath_resume(sc, why);
    714 		break;
    715 	case PWR_SOFTSUSPEND:
    716 	case PWR_SOFTSTANDBY:
    717 	case PWR_SOFTRESUME:
    718 		break;
    719 	}
    720 	splx(s);
    721 }
    722 #endif
    723 
    724 void
    725 ath_suspend(struct ath_softc *sc, int why)
    726 {
    727 	struct ifnet *ifp = &sc->sc_if;
    728 
    729 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
    730 		__func__, ifp->if_flags);
    731 
    732 	ath_stop(ifp, 1);
    733 	if (sc->sc_power != NULL)
    734 		(*sc->sc_power)(sc, why);
    735 }
    736 
    737 void
    738 ath_resume(struct ath_softc *sc, int why)
    739 {
    740 	struct ifnet *ifp = &sc->sc_if;
    741 
    742 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
    743 		__func__, ifp->if_flags);
    744 
    745 	if (ifp->if_flags & IFF_UP) {
    746 		ath_init(sc);
    747 #if 0
    748 		(void)ath_intr(sc);
    749 #endif
    750 		if (sc->sc_power != NULL)
    751 			(*sc->sc_power)(sc, why);
    752 		if (ifp->if_flags & IFF_RUNNING)
    753 			ath_start(ifp);
    754 	}
    755 	if (sc->sc_softled) {
    756 		ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
    757 		ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
    758 	}
    759 }
    760 
    761 void
    762 ath_shutdown(void *arg)
    763 {
    764 	struct ath_softc *sc = arg;
    765 
    766 	ath_stop(&sc->sc_if, 1);
    767 }
    768 
    769 /*
    770  * Interrupt handler.  Most of the actual processing is deferred.
    771  */
    772 int
    773 ath_intr(void *arg)
    774 {
    775 	struct ath_softc *sc = arg;
    776 	struct ifnet *ifp = &sc->sc_if;
    777 	struct ath_hal *ah = sc->sc_ah;
    778 	HAL_INT status;
    779 
    780 	if (sc->sc_invalid) {
    781 		/*
    782 		 * The hardware is not ready/present, don't touch anything.
    783 		 * Note this can happen early on if the IRQ is shared.
    784 		 */
    785 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
    786 		return 0;
    787 	}
    788 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
    789 		return 0;
    790 	if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
    791 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
    792 			__func__, ifp->if_flags);
    793 		ath_hal_getisr(ah, &status);	/* clear ISR */
    794 		ath_hal_intrset(ah, 0);		/* disable further intr's */
    795 		return 1; /* XXX */
    796 	}
    797 	/*
    798 	 * Figure out the reason(s) for the interrupt.  Note
    799 	 * that the hal returns a pseudo-ISR that may include
    800 	 * bits we haven't explicitly enabled so we mask the
    801 	 * value to insure we only process bits we requested.
    802 	 */
    803 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
    804 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
    805 	status &= sc->sc_imask;			/* discard unasked for bits */
    806 	if (status & HAL_INT_FATAL) {
    807 		/*
    808 		 * Fatal errors are unrecoverable.  Typically
    809 		 * these are caused by DMA errors.  Unfortunately
    810 		 * the exact reason is not (presently) returned
    811 		 * by the hal.
    812 		 */
    813 		sc->sc_stats.ast_hardware++;
    814 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
    815 		TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
    816 	} else if (status & HAL_INT_RXORN) {
    817 		sc->sc_stats.ast_rxorn++;
    818 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
    819 		TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
    820 	} else {
    821 		if (status & HAL_INT_SWBA) {
    822 			/*
    823 			 * Software beacon alert--time to send a beacon.
    824 			 * Handle beacon transmission directly; deferring
    825 			 * this is too slow to meet timing constraints
    826 			 * under load.
    827 			 */
    828 			ath_beacon_proc(sc, 0);
    829 		}
    830 		if (status & HAL_INT_RXEOL) {
    831 			/*
    832 			 * NB: the hardware should re-read the link when
    833 			 *     RXE bit is written, but it doesn't work at
    834 			 *     least on older hardware revs.
    835 			 */
    836 			sc->sc_stats.ast_rxeol++;
    837 			sc->sc_rxlink = NULL;
    838 		}
    839 		if (status & HAL_INT_TXURN) {
    840 			sc->sc_stats.ast_txurn++;
    841 			/* bump tx trigger level */
    842 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
    843 		}
    844 		if (status & HAL_INT_RX)
    845 			TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
    846 		if (status & HAL_INT_TX)
    847 			TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
    848 		if (status & HAL_INT_BMISS) {
    849 			sc->sc_stats.ast_bmiss++;
    850 			TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
    851 		}
    852 		if (status & HAL_INT_MIB) {
    853 			sc->sc_stats.ast_mib++;
    854 			/*
    855 			 * Disable interrupts until we service the MIB
    856 			 * interrupt; otherwise it will continue to fire.
    857 			 */
    858 			ath_hal_intrset(ah, 0);
    859 			/*
    860 			 * Let the hal handle the event.  We assume it will
    861 			 * clear whatever condition caused the interrupt.
    862 			 */
    863 			ath_hal_mibevent(ah,
    864 				&ATH_NODE(sc->sc_ic.ic_bss)->an_halstats);
    865 			ath_hal_intrset(ah, sc->sc_imask);
    866 		}
    867 	}
    868 	return 1;
    869 }
    870 
    871 static void
    872 ath_fatal_proc(void *arg, int pending)
    873 {
    874 	struct ath_softc *sc = arg;
    875 	struct ifnet *ifp = &sc->sc_if;
    876 
    877 	if_printf(ifp, "hardware error; resetting\n");
    878 	ath_reset(ifp);
    879 }
    880 
    881 static void
    882 ath_rxorn_proc(void *arg, int pending)
    883 {
    884 	struct ath_softc *sc = arg;
    885 	struct ifnet *ifp = &sc->sc_if;
    886 
    887 	if_printf(ifp, "rx FIFO overrun; resetting\n");
    888 	ath_reset(ifp);
    889 }
    890 
    891 static void
    892 ath_bmiss_proc(void *arg, int pending)
    893 {
    894 	struct ath_softc *sc = arg;
    895 	struct ieee80211com *ic = &sc->sc_ic;
    896 
    897 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
    898 	KASSERT(ic->ic_opmode == IEEE80211_M_STA,
    899 		("unexpect operating mode %u", ic->ic_opmode));
    900 	if (ic->ic_state == IEEE80211_S_RUN) {
    901 		/*
    902 		 * Rather than go directly to scan state, try to
    903 		 * reassociate first.  If that fails then the state
    904 		 * machine will drop us into scanning after timing
    905 		 * out waiting for a probe response.
    906 		 */
    907 		NET_LOCK_GIANT();
    908 		ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1);
    909 		NET_UNLOCK_GIANT();
    910 	}
    911 }
    912 
    913 static u_int
    914 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
    915 {
    916 #define	N(a)	(sizeof(a) / sizeof(a[0]))
    917 	static const u_int modeflags[] = {
    918 		0,			/* IEEE80211_MODE_AUTO */
    919 		CHANNEL_A,		/* IEEE80211_MODE_11A */
    920 		CHANNEL_B,		/* IEEE80211_MODE_11B */
    921 		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
    922 		0,			/* IEEE80211_MODE_FH */
    923 		CHANNEL_T,		/* IEEE80211_MODE_TURBO_A */
    924 		CHANNEL_108G		/* IEEE80211_MODE_TURBO_G */
    925 	};
    926 	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
    927 
    928 	KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
    929 	KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
    930 	return modeflags[mode];
    931 #undef N
    932 }
    933 
    934 static int
    935 ath_ifinit(struct ifnet *ifp)
    936 {
    937 	struct ath_softc *sc = (struct ath_softc *)ifp->if_softc;
    938 
    939 	return ath_init(sc);
    940 }
    941 
    942 static int
    943 ath_init(struct ath_softc *sc)
    944 {
    945 	struct ifnet *ifp = &sc->sc_if;
    946 	struct ieee80211com *ic = &sc->sc_ic;
    947 	struct ath_hal *ah = sc->sc_ah;
    948 	HAL_STATUS status;
    949 	int error = 0;
    950 
    951 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
    952 		__func__, ifp->if_flags);
    953 
    954 	ATH_LOCK(sc);
    955 
    956 	if ((error = ath_enable(sc)) != 0)
    957 		return error;
    958 
    959 	/*
    960 	 * Stop anything previously setup.  This is safe
    961 	 * whether this is the first time through or not.
    962 	 */
    963 	ath_stop_locked(ifp, 0);
    964 
    965 	/*
    966 	 * The basic interface to setting the hardware in a good
    967 	 * state is ``reset''.  On return the hardware is known to
    968 	 * be powered up and with interrupts disabled.  This must
    969 	 * be followed by initialization of the appropriate bits
    970 	 * and then setup of the interrupt mask.
    971 	 */
    972 	sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
    973 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
    974 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
    975 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
    976 			status);
    977 		error = EIO;
    978 		goto done;
    979 	}
    980 
    981 	/*
    982 	 * This is needed only to setup initial state
    983 	 * but it's best done after a reset.
    984 	 */
    985 	ath_update_txpow(sc);
    986 	/*
    987 	 * Likewise this is set during reset so update
    988 	 * state cached in the driver.
    989 	 */
    990 	sc->sc_diversity = ath_hal_getdiversity(ah);
    991 
    992 	/*
    993 	 * Setup the hardware after reset: the key cache
    994 	 * is filled as needed and the receive engine is
    995 	 * set going.  Frame transmit is handled entirely
    996 	 * in the frame output path; there's nothing to do
    997 	 * here except setup the interrupt mask.
    998 	 */
    999 	if ((error = ath_startrecv(sc)) != 0) {
   1000 		if_printf(ifp, "unable to start recv logic\n");
   1001 		goto done;
   1002 	}
   1003 
   1004 	/*
   1005 	 * Enable interrupts.
   1006 	 */
   1007 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
   1008 		  | HAL_INT_RXEOL | HAL_INT_RXORN
   1009 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
   1010 	/*
   1011 	 * Enable MIB interrupts when there are hardware phy counters.
   1012 	 * Note we only do this (at the moment) for station mode.
   1013 	 */
   1014 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
   1015 		sc->sc_imask |= HAL_INT_MIB;
   1016 	ath_hal_intrset(ah, sc->sc_imask);
   1017 
   1018 	ifp->if_flags |= IFF_RUNNING;
   1019 	ic->ic_state = IEEE80211_S_INIT;
   1020 
   1021 	/*
   1022 	 * The hardware should be ready to go now so it's safe
   1023 	 * to kick the 802.11 state machine as it's likely to
   1024 	 * immediately call back to us to send mgmt frames.
   1025 	 */
   1026 	ath_chan_change(sc, ic->ic_curchan);
   1027 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   1028 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
   1029 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   1030 	} else
   1031 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   1032 done:
   1033 	ATH_UNLOCK(sc);
   1034 	return error;
   1035 }
   1036 
   1037 static void
   1038 ath_stop_locked(struct ifnet *ifp, int disable)
   1039 {
   1040 	struct ath_softc *sc = ifp->if_softc;
   1041 	struct ieee80211com *ic = &sc->sc_ic;
   1042 	struct ath_hal *ah = sc->sc_ah;
   1043 
   1044 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
   1045 		__func__, sc->sc_invalid, ifp->if_flags);
   1046 
   1047 	ATH_LOCK_ASSERT(sc);
   1048 	if (ifp->if_flags & IFF_RUNNING) {
   1049 		/*
   1050 		 * Shutdown the hardware and driver:
   1051 		 *    reset 802.11 state machine
   1052 		 *    turn off timers
   1053 		 *    disable interrupts
   1054 		 *    turn off the radio
   1055 		 *    clear transmit machinery
   1056 		 *    clear receive machinery
   1057 		 *    drain and release tx queues
   1058 		 *    reclaim beacon resources
   1059 		 *    power down hardware
   1060 		 *
   1061 		 * Note that some of this work is not possible if the
   1062 		 * hardware is gone (invalid).
   1063 		 */
   1064 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   1065 		ifp->if_flags &= ~IFF_RUNNING;
   1066 		ifp->if_timer = 0;
   1067 		if (!sc->sc_invalid) {
   1068 			if (sc->sc_softled) {
   1069 				callout_stop(&sc->sc_ledtimer);
   1070 				ath_hal_gpioset(ah, sc->sc_ledpin,
   1071 					!sc->sc_ledon);
   1072 				sc->sc_blinking = 0;
   1073 			}
   1074 			ath_hal_intrset(ah, 0);
   1075 		}
   1076 		ath_draintxq(sc);
   1077 		if (!sc->sc_invalid) {
   1078 			ath_stoprecv(sc);
   1079 			ath_hal_phydisable(ah);
   1080 		} else
   1081 			sc->sc_rxlink = NULL;
   1082 		IF_PURGE(&ifp->if_snd);
   1083 		ath_beacon_free(sc);
   1084 		if (disable)
   1085 			ath_disable(sc);
   1086 	}
   1087 }
   1088 
   1089 static void
   1090 ath_stop(struct ifnet *ifp, int disable)
   1091 {
   1092 	struct ath_softc *sc = ifp->if_softc;
   1093 
   1094 	ATH_LOCK(sc);
   1095 	ath_stop_locked(ifp, disable);
   1096 	if (!sc->sc_invalid) {
   1097 		/*
   1098 		 * Set the chip in full sleep mode.  Note that we are
   1099 		 * careful to do this only when bringing the interface
   1100 		 * completely to a stop.  When the chip is in this state
   1101 		 * it must be carefully woken up or references to
   1102 		 * registers in the PCI clock domain may freeze the bus
   1103 		 * (and system).  This varies by chip and is mostly an
   1104 		 * issue with newer parts that go to sleep more quickly.
   1105 		 */
   1106 		ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP, 0);
   1107 	}
   1108 	ATH_UNLOCK(sc);
   1109 }
   1110 
   1111 /*
   1112  * Reset the hardware w/o losing operational state.  This is
   1113  * basically a more efficient way of doing ath_stop, ath_init,
   1114  * followed by state transitions to the current 802.11
   1115  * operational state.  Used to recover from various errors and
   1116  * to reset or reload hardware state.
   1117  */
   1118 int
   1119 ath_reset(struct ifnet *ifp)
   1120 {
   1121 	struct ath_softc *sc = ifp->if_softc;
   1122 	struct ieee80211com *ic = &sc->sc_ic;
   1123 	struct ath_hal *ah = sc->sc_ah;
   1124 	struct ieee80211_channel *c;
   1125 	HAL_STATUS status;
   1126 
   1127 	/*
   1128 	 * Convert to a HAL channel description with the flags
   1129 	 * constrained to reflect the current operating mode.
   1130 	 */
   1131 	c = ic->ic_curchan;
   1132 	sc->sc_curchan.channel = c->ic_freq;
   1133 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
   1134 
   1135 	ath_hal_intrset(ah, 0);		/* disable interrupts */
   1136 	ath_draintxq(sc);		/* stop xmit side */
   1137 	ath_stoprecv(sc);		/* stop recv side */
   1138 	/* NB: indicate channel change so we do a full reset */
   1139 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
   1140 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
   1141 			__func__, status);
   1142 	ath_update_txpow(sc);		/* update tx power state */
   1143 	sc->sc_diversity = ath_hal_getdiversity(ah);
   1144 	if (ath_startrecv(sc) != 0)	/* restart recv */
   1145 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
   1146 	/*
   1147 	 * We may be doing a reset in response to an ioctl
   1148 	 * that changes the channel so update any state that
   1149 	 * might change as a result.
   1150 	 */
   1151 	ath_chan_change(sc, c);
   1152 	if (ic->ic_state == IEEE80211_S_RUN)
   1153 		ath_beacon_config(sc);	/* restart beacons */
   1154 	ath_hal_intrset(ah, sc->sc_imask);
   1155 
   1156 	ath_start(ifp);			/* restart xmit */
   1157 	return 0;
   1158 }
   1159 
   1160 static void
   1161 ath_start(struct ifnet *ifp)
   1162 {
   1163 	struct ath_softc *sc = ifp->if_softc;
   1164 	struct ath_hal *ah = sc->sc_ah;
   1165 	struct ieee80211com *ic = &sc->sc_ic;
   1166 	struct ieee80211_node *ni;
   1167 	struct ath_buf *bf;
   1168 	struct mbuf *m;
   1169 	struct ieee80211_frame *wh;
   1170 	struct ether_header *eh;
   1171 
   1172 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
   1173 		return;
   1174 	for (;;) {
   1175 		/*
   1176 		 * Grab a TX buffer and associated resources.
   1177 		 */
   1178 		ATH_TXBUF_LOCK(sc);
   1179 		bf = STAILQ_FIRST(&sc->sc_txbuf);
   1180 		if (bf != NULL)
   1181 			STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
   1182 		ATH_TXBUF_UNLOCK(sc);
   1183 		if (bf == NULL) {
   1184 			DPRINTF(sc, ATH_DEBUG_ANY, "%s: out of xmit buffers\n",
   1185 				__func__);
   1186 			sc->sc_stats.ast_tx_qstop++;
   1187 			ifp->if_flags |= IFF_OACTIVE;
   1188 			break;
   1189 		}
   1190 		/*
   1191 		 * Poll the management queue for frames; they
   1192 		 * have priority over normal data frames.
   1193 		 */
   1194 		IF_DEQUEUE(&ic->ic_mgtq, m);
   1195 		if (m == NULL) {
   1196 			/*
   1197 			 * No data frames go out unless we're associated.
   1198 			 */
   1199 			if (ic->ic_state != IEEE80211_S_RUN) {
   1200 				DPRINTF(sc, ATH_DEBUG_ANY,
   1201 					"%s: ignore data packet, state %u\n",
   1202 					__func__, ic->ic_state);
   1203 				sc->sc_stats.ast_tx_discard++;
   1204 				ATH_TXBUF_LOCK(sc);
   1205 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1206 				ATH_TXBUF_UNLOCK(sc);
   1207 				break;
   1208 			}
   1209 			IFQ_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
   1210 			if (m == NULL) {
   1211 				ATH_TXBUF_LOCK(sc);
   1212 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1213 				ATH_TXBUF_UNLOCK(sc);
   1214 				break;
   1215 			}
   1216 			/*
   1217 			 * Find the node for the destination so we can do
   1218 			 * things like power save and fast frames aggregation.
   1219 			 */
   1220 			if (m->m_len < sizeof(struct ether_header) &&
   1221 			   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
   1222 				ic->ic_stats.is_tx_nobuf++;	/* XXX */
   1223 				ni = NULL;
   1224 				goto bad;
   1225 			}
   1226 			eh = mtod(m, struct ether_header *);
   1227 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   1228 			if (ni == NULL) {
   1229 				/* NB: ieee80211_find_txnode does stat+msg */
   1230 				m_freem(m);
   1231 				goto bad;
   1232 			}
   1233 			if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
   1234 			    (m->m_flags & M_PWR_SAV) == 0) {
   1235 				/*
   1236 				 * Station in power save mode; pass the frame
   1237 				 * to the 802.11 layer and continue.  We'll get
   1238 				 * the frame back when the time is right.
   1239 				 */
   1240 				ieee80211_pwrsave(ic, ni, m);
   1241 				goto reclaim;
   1242 			}
   1243 			/* calculate priority so we can find the tx queue */
   1244 			if (ieee80211_classify(ic, m, ni)) {
   1245 				DPRINTF(sc, ATH_DEBUG_XMIT,
   1246 					"%s: discard, classification failure\n",
   1247 					__func__);
   1248 				m_freem(m);
   1249 				goto bad;
   1250 			}
   1251 			ifp->if_opackets++;
   1252 
   1253 #if NBPFILTER > 0
   1254 			if (ifp->if_bpf)
   1255 				bpf_mtap(ifp->if_bpf, m);
   1256 #endif
   1257 			/*
   1258 			 * Encapsulate the packet in prep for transmission.
   1259 			 */
   1260 			m = ieee80211_encap(ic, m, ni);
   1261 			if (m == NULL) {
   1262 				DPRINTF(sc, ATH_DEBUG_ANY,
   1263 					"%s: encapsulation failure\n",
   1264 					__func__);
   1265 				sc->sc_stats.ast_tx_encap++;
   1266 				goto bad;
   1267 			}
   1268 		} else {
   1269 			/*
   1270 			 * Hack!  The referenced node pointer is in the
   1271 			 * rcvif field of the packet header.  This is
   1272 			 * placed there by ieee80211_mgmt_output because
   1273 			 * we need to hold the reference with the frame
   1274 			 * and there's no other way (other than packet
   1275 			 * tags which we consider too expensive to use)
   1276 			 * to pass it along.
   1277 			 */
   1278 			ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
   1279 			m->m_pkthdr.rcvif = NULL;
   1280 
   1281 			wh = mtod(m, struct ieee80211_frame *);
   1282 			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
   1283 			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
   1284 				/* fill time stamp */
   1285 				u_int64_t tsf;
   1286 				u_int32_t *tstamp;
   1287 
   1288 				tsf = ath_hal_gettsf64(ah);
   1289 				/* XXX: adjust 100us delay to xmit */
   1290 				tsf += 100;
   1291 				tstamp = (u_int32_t *)&wh[1];
   1292 				tstamp[0] = htole32(tsf & 0xffffffff);
   1293 				tstamp[1] = htole32(tsf >> 32);
   1294 			}
   1295 			sc->sc_stats.ast_tx_mgmt++;
   1296 		}
   1297 
   1298 		if (ath_tx_start(sc, ni, bf, m)) {
   1299 	bad:
   1300 			ifp->if_oerrors++;
   1301 	reclaim:
   1302 			ATH_TXBUF_LOCK(sc);
   1303 			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1304 			ATH_TXBUF_UNLOCK(sc);
   1305 			if (ni != NULL)
   1306 				ieee80211_free_node(ni);
   1307 			continue;
   1308 		}
   1309 
   1310 		sc->sc_tx_timer = 5;
   1311 		ifp->if_timer = 1;
   1312 	}
   1313 }
   1314 
   1315 static int
   1316 ath_media_change(struct ifnet *ifp)
   1317 {
   1318 #define	IS_UP(ifp) \
   1319 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
   1320 	int error;
   1321 
   1322 	error = ieee80211_media_change(ifp);
   1323 	if (error == ENETRESET) {
   1324 		if (IS_UP(ifp))
   1325 			ath_init(ifp->if_softc);	/* XXX lose error */
   1326 		error = 0;
   1327 	}
   1328 	return error;
   1329 #undef IS_UP
   1330 }
   1331 
   1332 #ifdef AR_DEBUG
   1333 static void
   1334 ath_keyprint(const char *tag, u_int ix,
   1335 	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
   1336 {
   1337 	static const char *ciphers[] = {
   1338 		"WEP",
   1339 		"AES-OCB",
   1340 		"AES-CCM",
   1341 		"CKIP",
   1342 		"TKIP",
   1343 		"CLR",
   1344 	};
   1345 	int i, n;
   1346 
   1347 	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
   1348 	for (i = 0, n = hk->kv_len; i < n; i++)
   1349 		printf("%02x", hk->kv_val[i]);
   1350 	printf(" mac %s", ether_sprintf(mac));
   1351 	if (hk->kv_type == HAL_CIPHER_TKIP) {
   1352 		printf(" mic ");
   1353 		for (i = 0; i < sizeof(hk->kv_mic); i++)
   1354 			printf("%02x", hk->kv_mic[i]);
   1355 	}
   1356 	printf("\n");
   1357 }
   1358 #endif
   1359 
   1360 /*
   1361  * Set a TKIP key into the hardware.  This handles the
   1362  * potential distribution of key state to multiple key
   1363  * cache slots for TKIP.
   1364  */
   1365 static int
   1366 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
   1367 	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
   1368 {
   1369 #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
   1370 	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
   1371 	struct ath_hal *ah = sc->sc_ah;
   1372 
   1373 	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
   1374 		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
   1375 	KASSERT(sc->sc_splitmic, ("key cache !split"));
   1376 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
   1377 		/*
   1378 		 * TX key goes at first index, RX key at the rx index.
   1379 		 * The hal handles the MIC keys at index+64.
   1380 		 */
   1381 		memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
   1382 		KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
   1383 		if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
   1384 			return 0;
   1385 
   1386 		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
   1387 		KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
   1388 		/* XXX delete tx key on failure? */
   1389 		return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
   1390 	} else if (k->wk_flags & IEEE80211_KEY_XR) {
   1391 		/*
   1392 		 * TX/RX key goes at first index.
   1393 		 * The hal handles the MIC keys are index+64.
   1394 		 */
   1395 		memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
   1396 			k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
   1397 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
   1398 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
   1399 	}
   1400 	return 0;
   1401 #undef IEEE80211_KEY_XR
   1402 }
   1403 
   1404 /*
   1405  * Set a net80211 key into the hardware.  This handles the
   1406  * potential distribution of key state to multiple key
   1407  * cache slots for TKIP with hardware MIC support.
   1408  */
   1409 static int
   1410 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
   1411 	const u_int8_t mac0[IEEE80211_ADDR_LEN],
   1412 	struct ieee80211_node *bss)
   1413 {
   1414 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1415 	static const u_int8_t ciphermap[] = {
   1416 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
   1417 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
   1418 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
   1419 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
   1420 		(u_int8_t) -1,		/* 4 is not allocated */
   1421 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
   1422 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
   1423 	};
   1424 	struct ath_hal *ah = sc->sc_ah;
   1425 	const struct ieee80211_cipher *cip = k->wk_cipher;
   1426 	u_int8_t gmac[IEEE80211_ADDR_LEN];
   1427 	const u_int8_t *mac;
   1428 	HAL_KEYVAL hk;
   1429 
   1430 	memset(&hk, 0, sizeof(hk));
   1431 	/*
   1432 	 * Software crypto uses a "clear key" so non-crypto
   1433 	 * state kept in the key cache are maintained and
   1434 	 * so that rx frames have an entry to match.
   1435 	 */
   1436 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
   1437 		KASSERT(cip->ic_cipher < N(ciphermap),
   1438 			("invalid cipher type %u", cip->ic_cipher));
   1439 		hk.kv_type = ciphermap[cip->ic_cipher];
   1440 		hk.kv_len = k->wk_keylen;
   1441 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
   1442 	} else
   1443 		hk.kv_type = HAL_CIPHER_CLR;
   1444 
   1445 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
   1446 		/*
   1447 		 * Group keys on hardware that supports multicast frame
   1448 		 * key search use a mac that is the sender's address with
   1449 		 * the high bit set instead of the app-specified address.
   1450 		 */
   1451 		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
   1452 		gmac[0] |= 0x80;
   1453 		mac = gmac;
   1454 	} else
   1455 		mac = mac0;
   1456 
   1457 	if (hk.kv_type == HAL_CIPHER_TKIP &&
   1458 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
   1459 	    sc->sc_splitmic) {
   1460 		return ath_keyset_tkip(sc, k, &hk, mac);
   1461 	} else {
   1462 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
   1463 		return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
   1464 	}
   1465 #undef N
   1466 }
   1467 
   1468 /*
   1469  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
   1470  * each key, one for decrypt/encrypt and the other for the MIC.
   1471  */
   1472 static u_int16_t
   1473 key_alloc_2pair(struct ath_softc *sc,
   1474 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
   1475 {
   1476 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1477 	u_int i, keyix;
   1478 
   1479 	KASSERT(sc->sc_splitmic, ("key cache !split"));
   1480 	/* XXX could optimize */
   1481 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
   1482 		u_int8_t b = sc->sc_keymap[i];
   1483 		if (b != 0xff) {
   1484 			/*
   1485 			 * One or more slots in this byte are free.
   1486 			 */
   1487 			keyix = i*NBBY;
   1488 			while (b & 1) {
   1489 		again:
   1490 				keyix++;
   1491 				b >>= 1;
   1492 			}
   1493 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
   1494 			if (isset(sc->sc_keymap, keyix+32) ||
   1495 			    isset(sc->sc_keymap, keyix+64) ||
   1496 			    isset(sc->sc_keymap, keyix+32+64)) {
   1497 				/* full pair unavailable */
   1498 				/* XXX statistic */
   1499 				if (keyix == (i+1)*NBBY) {
   1500 					/* no slots were appropriate, advance */
   1501 					continue;
   1502 				}
   1503 				goto again;
   1504 			}
   1505 			setbit(sc->sc_keymap, keyix);
   1506 			setbit(sc->sc_keymap, keyix+64);
   1507 			setbit(sc->sc_keymap, keyix+32);
   1508 			setbit(sc->sc_keymap, keyix+32+64);
   1509 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
   1510 				"%s: key pair %u,%u %u,%u\n",
   1511 				__func__, keyix, keyix+64,
   1512 				keyix+32, keyix+32+64);
   1513 			*txkeyix = keyix;
   1514 			*rxkeyix = keyix+32;
   1515 			return 1;
   1516 		}
   1517 	}
   1518 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
   1519 	return 0;
   1520 #undef N
   1521 }
   1522 
   1523 /*
   1524  * Allocate a single key cache slot.
   1525  */
   1526 static int
   1527 key_alloc_single(struct ath_softc *sc,
   1528 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
   1529 {
   1530 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1531 	u_int i, keyix;
   1532 
   1533 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
   1534 	for (i = 0; i < N(sc->sc_keymap); i++) {
   1535 		u_int8_t b = sc->sc_keymap[i];
   1536 		if (b != 0xff) {
   1537 			/*
   1538 			 * One or more slots are free.
   1539 			 */
   1540 			keyix = i*NBBY;
   1541 			while (b & 1)
   1542 				keyix++, b >>= 1;
   1543 			setbit(sc->sc_keymap, keyix);
   1544 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
   1545 				__func__, keyix);
   1546 			*txkeyix = *rxkeyix = keyix;
   1547 			return 1;
   1548 		}
   1549 	}
   1550 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
   1551 	return 0;
   1552 #undef N
   1553 }
   1554 
   1555 /*
   1556  * Allocate one or more key cache slots for a uniacst key.  The
   1557  * key itself is needed only to identify the cipher.  For hardware
   1558  * TKIP with split cipher+MIC keys we allocate two key cache slot
   1559  * pairs so that we can setup separate TX and RX MIC keys.  Note
   1560  * that the MIC key for a TKIP key at slot i is assumed by the
   1561  * hardware to be at slot i+64.  This limits TKIP keys to the first
   1562  * 64 entries.
   1563  */
   1564 static int
   1565 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
   1566 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
   1567 {
   1568 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1569 
   1570 	/*
   1571 	 * Group key allocation must be handled specially for
   1572 	 * parts that do not support multicast key cache search
   1573 	 * functionality.  For those parts the key id must match
   1574 	 * the h/w key index so lookups find the right key.  On
   1575 	 * parts w/ the key search facility we install the sender's
   1576 	 * mac address (with the high bit set) and let the hardware
   1577 	 * find the key w/o using the key id.  This is preferred as
   1578 	 * it permits us to support multiple users for adhoc and/or
   1579 	 * multi-station operation.
   1580 	 */
   1581 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
   1582 		if (!(&ic->ic_nw_keys[0] <= k &&
   1583 		      k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
   1584 			/* should not happen */
   1585 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
   1586 				"%s: bogus group key\n", __func__);
   1587 			return 0;
   1588 		}
   1589 		/*
   1590 		 * XXX we pre-allocate the global keys so
   1591 		 * have no way to check if they've already been allocated.
   1592 		 */
   1593 		*keyix = *rxkeyix = k - ic->ic_nw_keys;
   1594 		return 1;
   1595 	}
   1596 
   1597 	/*
   1598 	 * We allocate two pair for TKIP when using the h/w to do
   1599 	 * the MIC.  For everything else, including software crypto,
   1600 	 * we allocate a single entry.  Note that s/w crypto requires
   1601 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
   1602 	 * not support pass-through cache entries and we map all
   1603 	 * those requests to slot 0.
   1604 	 */
   1605 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
   1606 		return key_alloc_single(sc, keyix, rxkeyix);
   1607 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1608 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
   1609 		return key_alloc_2pair(sc, keyix, rxkeyix);
   1610 	} else {
   1611 		return key_alloc_single(sc, keyix, rxkeyix);
   1612 	}
   1613 }
   1614 
   1615 /*
   1616  * Delete an entry in the key cache allocated by ath_key_alloc.
   1617  */
   1618 static int
   1619 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
   1620 {
   1621 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1622 	struct ath_hal *ah = sc->sc_ah;
   1623 	const struct ieee80211_cipher *cip = k->wk_cipher;
   1624 	u_int keyix = k->wk_keyix;
   1625 
   1626 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
   1627 
   1628 	ath_hal_keyreset(ah, keyix);
   1629 	/*
   1630 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
   1631 	 */
   1632 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1633 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
   1634 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
   1635 	if (keyix >= IEEE80211_WEP_NKID) {
   1636 		/*
   1637 		 * Don't touch keymap entries for global keys so
   1638 		 * they are never considered for dynamic allocation.
   1639 		 */
   1640 		clrbit(sc->sc_keymap, keyix);
   1641 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1642 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
   1643 		    sc->sc_splitmic) {
   1644 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
   1645 			clrbit(sc->sc_keymap, keyix+32);	/* RX key */
   1646 			clrbit(sc->sc_keymap, keyix+32+64);	/* RX key MIC */
   1647 		}
   1648 	}
   1649 	return 1;
   1650 }
   1651 
   1652 /*
   1653  * Set the key cache contents for the specified key.  Key cache
   1654  * slot(s) must already have been allocated by ath_key_alloc.
   1655  */
   1656 static int
   1657 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
   1658 	const u_int8_t mac[IEEE80211_ADDR_LEN])
   1659 {
   1660 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1661 
   1662 	return ath_keyset(sc, k, mac, ic->ic_bss);
   1663 }
   1664 
   1665 /*
   1666  * Block/unblock tx+rx processing while a key change is done.
   1667  * We assume the caller serializes key management operations
   1668  * so we only need to worry about synchronization with other
   1669  * uses that originate in the driver.
   1670  */
   1671 static void
   1672 ath_key_update_begin(struct ieee80211com *ic)
   1673 {
   1674 	struct ifnet *ifp = ic->ic_ifp;
   1675 	struct ath_softc *sc = ifp->if_softc;
   1676 
   1677 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
   1678 #if 0
   1679 	tasklet_disable(&sc->sc_rxtq);
   1680 #endif
   1681 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
   1682 }
   1683 
   1684 static void
   1685 ath_key_update_end(struct ieee80211com *ic)
   1686 {
   1687 	struct ifnet *ifp = ic->ic_ifp;
   1688 	struct ath_softc *sc = ifp->if_softc;
   1689 
   1690 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
   1691 	IF_UNLOCK(&ifp->if_snd);
   1692 #if 0
   1693 	tasklet_enable(&sc->sc_rxtq);
   1694 #endif
   1695 }
   1696 
   1697 /*
   1698  * Calculate the receive filter according to the
   1699  * operating mode and state:
   1700  *
   1701  * o always accept unicast, broadcast, and multicast traffic
   1702  * o maintain current state of phy error reception (the hal
   1703  *   may enable phy error frames for noise immunity work)
   1704  * o probe request frames are accepted only when operating in
   1705  *   hostap, adhoc, or monitor modes
   1706  * o enable promiscuous mode according to the interface state
   1707  * o accept beacons:
   1708  *   - when operating in adhoc mode so the 802.11 layer creates
   1709  *     node table entries for peers,
   1710  *   - when operating in station mode for collecting rssi data when
   1711  *     the station is otherwise quiet, or
   1712  *   - when scanning
   1713  */
   1714 static u_int32_t
   1715 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
   1716 {
   1717 	struct ieee80211com *ic = &sc->sc_ic;
   1718 	struct ath_hal *ah = sc->sc_ah;
   1719 	struct ifnet *ifp = &sc->sc_if;
   1720 	u_int32_t rfilt;
   1721 
   1722 	rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
   1723 	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
   1724 	if (ic->ic_opmode != IEEE80211_M_STA)
   1725 		rfilt |= HAL_RX_FILTER_PROBEREQ;
   1726 	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
   1727 	    (ifp->if_flags & IFF_PROMISC))
   1728 		rfilt |= HAL_RX_FILTER_PROM;
   1729 	if (ic->ic_opmode == IEEE80211_M_STA ||
   1730 	    ic->ic_opmode == IEEE80211_M_IBSS ||
   1731 	    state == IEEE80211_S_SCAN)
   1732 		rfilt |= HAL_RX_FILTER_BEACON;
   1733 	return rfilt;
   1734 }
   1735 
   1736 static void
   1737 ath_mcastfilter_accum(caddr_t dl, u_int32_t *mfilt)
   1738 {
   1739 	u_int32_t val;
   1740 	u_int8_t pos;
   1741 
   1742 	/* calculate XOR of eight 6bit values */
   1743 	val = LE_READ_4(dl + 0);
   1744 	pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1745 	val = LE_READ_4(dl + 3);
   1746 	pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1747 	pos &= 0x3f;
   1748 	mfilt[pos / 32] |= (1 << (pos % 32));
   1749 }
   1750 
   1751 static void
   1752 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t *mfilt)
   1753 {
   1754 	struct ifnet *ifp = &sc->sc_if;
   1755 	struct ether_multi *enm;
   1756 	struct ether_multistep estep;
   1757 
   1758 	mfilt[0] = mfilt[1] = 0;
   1759 	ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
   1760 	while (enm != NULL) {
   1761 		/* XXX Punt on ranges. */
   1762 		if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
   1763 			mfilt[0] = mfilt[1] = ~((u_int32_t)0);
   1764 			ifp->if_flags |= IFF_ALLMULTI;
   1765 			return;
   1766 		}
   1767 		ath_mcastfilter_accum(enm->enm_addrlo, mfilt);
   1768 		ETHER_NEXT_MULTI(estep, enm);
   1769 	}
   1770 	ifp->if_flags &= ~IFF_ALLMULTI;
   1771 }
   1772 
   1773 static void
   1774 ath_mode_init(struct ath_softc *sc)
   1775 {
   1776 	struct ieee80211com *ic = &sc->sc_ic;
   1777 	struct ath_hal *ah = sc->sc_ah;
   1778 	u_int32_t rfilt, mfilt[2];
   1779 	int i;
   1780 
   1781 	/* configure rx filter */
   1782 	rfilt = ath_calcrxfilter(sc, ic->ic_state);
   1783 	ath_hal_setrxfilter(ah, rfilt);
   1784 
   1785 	/* configure operational mode */
   1786 	ath_hal_setopmode(ah);
   1787 
   1788 	/* Write keys to hardware; it may have been powered down. */
   1789 	ath_key_update_begin(ic);
   1790 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
   1791 		ath_key_set(ic,
   1792 			    &ic->ic_crypto.cs_nw_keys[i],
   1793 			    ic->ic_myaddr);
   1794 	}
   1795 	ath_key_update_end(ic);
   1796 
   1797 	/*
   1798 	 * Handle any link-level address change.  Note that we only
   1799 	 * need to force ic_myaddr; any other addresses are handled
   1800 	 * as a byproduct of the ifnet code marking the interface
   1801 	 * down then up.
   1802 	 *
   1803 	 * XXX should get from lladdr instead of arpcom but that's more work
   1804 	 */
   1805 	IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(sc->sc_if.if_sadl));
   1806 	ath_hal_setmac(ah, ic->ic_myaddr);
   1807 
   1808 	/* calculate and install multicast filter */
   1809 #ifdef __FreeBSD__
   1810 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   1811 		mfilt[0] = mfilt[1] = 0;
   1812 		IF_ADDR_LOCK(ifp);
   1813 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
   1814 			caddr_t dl;
   1815 
   1816 			/* calculate XOR of eight 6bit values */
   1817 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
   1818 			val = LE_READ_4(dl + 0);
   1819 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1820 			val = LE_READ_4(dl + 3);
   1821 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1822 			pos &= 0x3f;
   1823 			mfilt[pos / 32] |= (1 << (pos % 32));
   1824 		}
   1825 		IF_ADDR_UNLOCK(ifp);
   1826 	} else {
   1827 		mfilt[0] = mfilt[1] = ~0;
   1828 #endif
   1829 #ifdef __NetBSD__
   1830 	ath_mcastfilter_compute(sc, mfilt);
   1831 #endif
   1832 	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
   1833 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
   1834 		__func__, rfilt, mfilt[0], mfilt[1]);
   1835 }
   1836 
   1837 /*
   1838  * Set the slot time based on the current setting.
   1839  */
   1840 static void
   1841 ath_setslottime(struct ath_softc *sc)
   1842 {
   1843 	struct ieee80211com *ic = &sc->sc_ic;
   1844 	struct ath_hal *ah = sc->sc_ah;
   1845 
   1846 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   1847 		ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
   1848 	else
   1849 		ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
   1850 	sc->sc_updateslot = OK;
   1851 }
   1852 
   1853 /*
   1854  * Callback from the 802.11 layer to update the
   1855  * slot time based on the current setting.
   1856  */
   1857 static void
   1858 ath_updateslot(struct ifnet *ifp)
   1859 {
   1860 	struct ath_softc *sc = ifp->if_softc;
   1861 	struct ieee80211com *ic = &sc->sc_ic;
   1862 
   1863 	/*
   1864 	 * When not coordinating the BSS, change the hardware
   1865 	 * immediately.  For other operation we defer the change
   1866 	 * until beacon updates have propagated to the stations.
   1867 	 */
   1868 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
   1869 		sc->sc_updateslot = UPDATE;
   1870 	else
   1871 		ath_setslottime(sc);
   1872 }
   1873 
   1874 /*
   1875  * Setup a h/w transmit queue for beacons.
   1876  */
   1877 static int
   1878 ath_beaconq_setup(struct ath_hal *ah)
   1879 {
   1880 	HAL_TXQ_INFO qi;
   1881 
   1882 	memset(&qi, 0, sizeof(qi));
   1883 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
   1884 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
   1885 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
   1886 	/* NB: for dynamic turbo, don't enable any other interrupts */
   1887 	qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
   1888 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
   1889 }
   1890 
   1891 /*
   1892  * Setup the transmit queue parameters for the beacon queue.
   1893  */
   1894 static int
   1895 ath_beaconq_config(struct ath_softc *sc)
   1896 {
   1897 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
   1898 	struct ieee80211com *ic = &sc->sc_ic;
   1899 	struct ath_hal *ah = sc->sc_ah;
   1900 	HAL_TXQ_INFO qi;
   1901 
   1902 	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
   1903 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   1904 		/*
   1905 		 * Always burst out beacon and CAB traffic.
   1906 		 */
   1907 		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
   1908 		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
   1909 		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
   1910 	} else {
   1911 		struct wmeParams *wmep =
   1912 			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
   1913 		/*
   1914 		 * Adhoc mode; important thing is to use 2x cwmin.
   1915 		 */
   1916 		qi.tqi_aifs = wmep->wmep_aifsn;
   1917 		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
   1918 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
   1919 	}
   1920 
   1921 	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
   1922 		device_printf(sc->sc_dev, "unable to update parameters for "
   1923 			"beacon hardware queue!\n");
   1924 		return 0;
   1925 	} else {
   1926 		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
   1927 		return 1;
   1928 	}
   1929 #undef ATH_EXPONENT_TO_VALUE
   1930 }
   1931 
   1932 /*
   1933  * Allocate and setup an initial beacon frame.
   1934  */
   1935 static int
   1936 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
   1937 {
   1938 	struct ieee80211com *ic = ni->ni_ic;
   1939 	struct ath_buf *bf;
   1940 	struct mbuf *m;
   1941 	int error;
   1942 
   1943 	bf = STAILQ_FIRST(&sc->sc_bbuf);
   1944 	if (bf == NULL) {
   1945 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
   1946 		sc->sc_stats.ast_be_nombuf++;	/* XXX */
   1947 		return ENOMEM;			/* XXX */
   1948 	}
   1949 	/*
   1950 	 * NB: the beacon data buffer must be 32-bit aligned;
   1951 	 * we assume the mbuf routines will return us something
   1952 	 * with this alignment (perhaps should assert).
   1953 	 */
   1954 	m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
   1955 	if (m == NULL) {
   1956 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
   1957 			__func__);
   1958 		sc->sc_stats.ast_be_nombuf++;
   1959 		return ENOMEM;
   1960 	}
   1961 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
   1962 				     BUS_DMA_NOWAIT);
   1963 	if (error == 0) {
   1964 		bf->bf_m = m;
   1965 		bf->bf_node = ieee80211_ref_node(ni);
   1966 	} else {
   1967 		m_freem(m);
   1968 	}
   1969 	return error;
   1970 }
   1971 
   1972 /*
   1973  * Setup the beacon frame for transmit.
   1974  */
   1975 static void
   1976 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
   1977 {
   1978 #define	USE_SHPREAMBLE(_ic) \
   1979 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
   1980 		== IEEE80211_F_SHPREAMBLE)
   1981 	struct ieee80211_node *ni = bf->bf_node;
   1982 	struct ieee80211com *ic = ni->ni_ic;
   1983 	struct mbuf *m = bf->bf_m;
   1984 	struct ath_hal *ah = sc->sc_ah;
   1985 	struct ath_node *an = ATH_NODE(ni);
   1986 	struct ath_desc *ds;
   1987 	int flags, antenna;
   1988 	u_int8_t rate;
   1989 
   1990 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
   1991 		__func__, m, m->m_len);
   1992 
   1993 	/* setup descriptors */
   1994 	ds = bf->bf_desc;
   1995 
   1996 	flags = HAL_TXDESC_NOACK;
   1997 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
   1998 		ds->ds_link = bf->bf_daddr;	/* self-linked */
   1999 		flags |= HAL_TXDESC_VEOL;
   2000 		/*
   2001 		 * Let hardware handle antenna switching unless
   2002 		 * the user has selected a transmit antenna
   2003 		 * (sc_txantenna is not 0).
   2004 		 */
   2005 		antenna = sc->sc_txantenna;
   2006 	} else {
   2007 		ds->ds_link = 0;
   2008 		/*
   2009 		 * Switch antenna every 4 beacons, unless the user
   2010 		 * has selected a transmit antenna (sc_txantenna
   2011 		 * is not 0).
   2012 		 *
   2013 		 * XXX assumes two antenna
   2014 		 */
   2015 		if (sc->sc_txantenna == 0)
   2016 			antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
   2017 		else
   2018 			antenna = sc->sc_txantenna;
   2019 	}
   2020 
   2021 	KASSERT(bf->bf_nseg == 1,
   2022 		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
   2023 	ds->ds_data = bf->bf_segs[0].ds_addr;
   2024 	/*
   2025 	 * Calculate rate code.
   2026 	 * XXX everything at min xmit rate
   2027 	 */
   2028 	if (USE_SHPREAMBLE(ic))
   2029 		rate = an->an_tx_mgtratesp;
   2030 	else
   2031 		rate = an->an_tx_mgtrate;
   2032 	ath_hal_setuptxdesc(ah, ds
   2033 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
   2034 		, sizeof(struct ieee80211_frame)/* header length */
   2035 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
   2036 		, ni->ni_txpower		/* txpower XXX */
   2037 		, rate, 1			/* series 0 rate/tries */
   2038 		, HAL_TXKEYIX_INVALID		/* no encryption */
   2039 		, antenna			/* antenna mode */
   2040 		, flags				/* no ack, veol for beacons */
   2041 		, 0				/* rts/cts rate */
   2042 		, 0				/* rts/cts duration */
   2043 	);
   2044 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
   2045 	ath_hal_filltxdesc(ah, ds
   2046 		, roundup(m->m_len, 4)		/* buffer length */
   2047 		, AH_TRUE			/* first segment */
   2048 		, AH_TRUE			/* last segment */
   2049 		, ds				/* first descriptor */
   2050 	);
   2051 #undef USE_SHPREAMBLE
   2052 }
   2053 
   2054 /*
   2055  * Transmit a beacon frame at SWBA.  Dynamic updates to the
   2056  * frame contents are done as needed and the slot time is
   2057  * also adjusted based on current state.
   2058  */
   2059 static void
   2060 ath_beacon_proc(void *arg, int pending)
   2061 {
   2062 	struct ath_softc *sc = arg;
   2063 	struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
   2064 	struct ieee80211_node *ni = bf->bf_node;
   2065 	struct ieee80211com *ic = ni->ni_ic;
   2066 	struct ath_hal *ah = sc->sc_ah;
   2067 	struct mbuf *m;
   2068 	int ncabq, error, otherant;
   2069 
   2070 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
   2071 		__func__, pending);
   2072 
   2073 	if (ic->ic_opmode == IEEE80211_M_STA ||
   2074 	    ic->ic_opmode == IEEE80211_M_MONITOR ||
   2075 	    bf == NULL || bf->bf_m == NULL) {
   2076 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
   2077 			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
   2078 		return;
   2079 	}
   2080 	/*
   2081 	 * Check if the previous beacon has gone out.  If
   2082 	 * not don't don't try to post another, skip this
   2083 	 * period and wait for the next.  Missed beacons
   2084 	 * indicate a problem and should not occur.  If we
   2085 	 * miss too many consecutive beacons reset the device.
   2086 	 */
   2087 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
   2088 		sc->sc_bmisscount++;
   2089 		DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
   2090 			"%s: missed %u consecutive beacons\n",
   2091 			__func__, sc->sc_bmisscount);
   2092 		if (sc->sc_bmisscount > 3)		/* NB: 3 is a guess */
   2093 			TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask);
   2094 		return;
   2095 	}
   2096 	if (sc->sc_bmisscount != 0) {
   2097 		DPRINTF(sc, ATH_DEBUG_BEACON,
   2098 			"%s: resume beacon xmit after %u misses\n",
   2099 			__func__, sc->sc_bmisscount);
   2100 		sc->sc_bmisscount = 0;
   2101 	}
   2102 
   2103 	/*
   2104 	 * Update dynamic beacon contents.  If this returns
   2105 	 * non-zero then we need to remap the memory because
   2106 	 * the beacon frame changed size (probably because
   2107 	 * of the TIM bitmap).
   2108 	 */
   2109 	m = bf->bf_m;
   2110 	ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
   2111 	if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
   2112 		/* XXX too conservative? */
   2113 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   2114 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
   2115 					     BUS_DMA_NOWAIT);
   2116 		if (error != 0) {
   2117 			if_printf(&sc->sc_if,
   2118 			    "%s: bus_dmamap_load_mbuf failed, error %u\n",
   2119 			    __func__, error);
   2120 			return;
   2121 		}
   2122 	}
   2123 
   2124 	/*
   2125 	 * Handle slot time change when a non-ERP station joins/leaves
   2126 	 * an 11g network.  The 802.11 layer notifies us via callback,
   2127 	 * we mark updateslot, then wait one beacon before effecting
   2128 	 * the change.  This gives associated stations at least one
   2129 	 * beacon interval to note the state change.
   2130 	 */
   2131 	/* XXX locking */
   2132 	if (sc->sc_updateslot == UPDATE)
   2133 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
   2134 	else if (sc->sc_updateslot == COMMIT)
   2135 		ath_setslottime(sc);		/* commit change to h/w */
   2136 
   2137 	/*
   2138 	 * Check recent per-antenna transmit statistics and flip
   2139 	 * the default antenna if noticeably more frames went out
   2140 	 * on the non-default antenna.
   2141 	 * XXX assumes 2 anntenae
   2142 	 */
   2143 	otherant = sc->sc_defant & 1 ? 2 : 1;
   2144 	if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
   2145 		ath_setdefantenna(sc, otherant);
   2146 	sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
   2147 
   2148 	/*
   2149 	 * Construct tx descriptor.
   2150 	 */
   2151 	ath_beacon_setup(sc, bf);
   2152 
   2153 	/*
   2154 	 * Stop any current dma and put the new frame on the queue.
   2155 	 * This should never fail since we check above that no frames
   2156 	 * are still pending on the queue.
   2157 	 */
   2158 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
   2159 		DPRINTF(sc, ATH_DEBUG_ANY,
   2160 			"%s: beacon queue %u did not stop?\n",
   2161 			__func__, sc->sc_bhalq);
   2162 	}
   2163 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   2164 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2165 
   2166 	/*
   2167 	 * Enable the CAB queue before the beacon queue to
   2168 	 * insure cab frames are triggered by this beacon.
   2169 	 */
   2170 	if (sc->sc_boff.bo_tim[4] & 1)		/* NB: only at DTIM */
   2171 		ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
   2172 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
   2173 	ath_hal_txstart(ah, sc->sc_bhalq);
   2174 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
   2175 		"%s: TXDP[%u] = %p (%p)\n", __func__,
   2176 		sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc);
   2177 
   2178 	sc->sc_stats.ast_be_xmit++;
   2179 }
   2180 
   2181 /*
   2182  * Reset the hardware after detecting beacons have stopped.
   2183  */
   2184 static void
   2185 ath_bstuck_proc(void *arg, int pending)
   2186 {
   2187 	struct ath_softc *sc = arg;
   2188 	struct ifnet *ifp = &sc->sc_if;
   2189 
   2190 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
   2191 		sc->sc_bmisscount);
   2192 	ath_reset(ifp);
   2193 }
   2194 
   2195 /*
   2196  * Reclaim beacon resources.
   2197  */
   2198 static void
   2199 ath_beacon_free(struct ath_softc *sc)
   2200 {
   2201 	struct ath_buf *bf;
   2202 
   2203 	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
   2204 		if (bf->bf_m != NULL) {
   2205 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   2206 			m_freem(bf->bf_m);
   2207 			bf->bf_m = NULL;
   2208 		}
   2209 		if (bf->bf_node != NULL) {
   2210 			ieee80211_free_node(bf->bf_node);
   2211 			bf->bf_node = NULL;
   2212 		}
   2213 	}
   2214 }
   2215 
   2216 /*
   2217  * Configure the beacon and sleep timers.
   2218  *
   2219  * When operating as an AP this resets the TSF and sets
   2220  * up the hardware to notify us when we need to issue beacons.
   2221  *
   2222  * When operating in station mode this sets up the beacon
   2223  * timers according to the timestamp of the last received
   2224  * beacon and the current TSF, configures PCF and DTIM
   2225  * handling, programs the sleep registers so the hardware
   2226  * will wakeup in time to receive beacons, and configures
   2227  * the beacon miss handling so we'll receive a BMISS
   2228  * interrupt when we stop seeing beacons from the AP
   2229  * we've associated with.
   2230  */
   2231 static void
   2232 ath_beacon_config(struct ath_softc *sc)
   2233 {
   2234 #define	TSF_TO_TU(_h,_l)	(((_h) << 22) | ((_l) >> 10))
   2235 	struct ath_hal *ah = sc->sc_ah;
   2236 	struct ieee80211com *ic = &sc->sc_ic;
   2237 	struct ieee80211_node *ni = ic->ic_bss;
   2238 	u_int32_t nexttbtt, intval;
   2239 
   2240 	/* extract tstamp from last beacon and convert to TU */
   2241 	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
   2242 			     LE_READ_4(ni->ni_tstamp.data));
   2243 	/* NB: the beacon interval is kept internally in TU's */
   2244 	intval = ni->ni_intval & HAL_BEACON_PERIOD;
   2245 	if (nexttbtt == 0)		/* e.g. for ap mode */
   2246 		nexttbtt = intval;
   2247 	else if (intval)		/* NB: can be 0 for monitor mode */
   2248 		nexttbtt = roundup(nexttbtt, intval);
   2249 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
   2250 		__func__, nexttbtt, intval, ni->ni_intval);
   2251 	if (ic->ic_opmode == IEEE80211_M_STA) {
   2252 		HAL_BEACON_STATE bs;
   2253 		u_int64_t tsf;
   2254 		u_int32_t tsftu;
   2255 		int dtimperiod, dtimcount;
   2256 		int cfpperiod, cfpcount;
   2257 
   2258 		/*
   2259 		 * Setup dtim and cfp parameters according to
   2260 		 * last beacon we received (which may be none).
   2261 		 */
   2262 		dtimperiod = ni->ni_dtim_period;
   2263 		if (dtimperiod <= 0)		/* NB: 0 if not known */
   2264 			dtimperiod = 1;
   2265 		dtimcount = ni->ni_dtim_count;
   2266 		if (dtimcount >= dtimperiod)	/* NB: sanity check */
   2267 			dtimcount = 0;		/* XXX? */
   2268 		cfpperiod = 1;			/* NB: no PCF support yet */
   2269 		cfpcount = 0;
   2270 #define	FUDGE	2
   2271 		/*
   2272 		 * Pull nexttbtt forward to reflect the current
   2273 		 * TSF and calculate dtim+cfp state for the result.
   2274 		 */
   2275 		tsf = ath_hal_gettsf64(ah);
   2276 		tsftu = TSF_TO_TU((u_int32_t)(tsf>>32), (u_int32_t)tsf) + FUDGE;
   2277 		do {
   2278 			nexttbtt += intval;
   2279 			if (--dtimcount < 0) {
   2280 				dtimcount = dtimperiod - 1;
   2281 				if (--cfpcount < 0)
   2282 					cfpcount = cfpperiod - 1;
   2283 			}
   2284 		} while (nexttbtt < tsftu);
   2285 #undef FUDGE
   2286 		memset(&bs, 0, sizeof(bs));
   2287 		bs.bs_intval = intval;
   2288 		bs.bs_nexttbtt = nexttbtt;
   2289 		bs.bs_dtimperiod = dtimperiod*intval;
   2290 		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
   2291 		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
   2292 		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
   2293 		bs.bs_cfpmaxduration = 0;
   2294 #if 0
   2295 		/*
   2296 		 * The 802.11 layer records the offset to the DTIM
   2297 		 * bitmap while receiving beacons; use it here to
   2298 		 * enable h/w detection of our AID being marked in
   2299 		 * the bitmap vector (to indicate frames for us are
   2300 		 * pending at the AP).
   2301 		 * XXX do DTIM handling in s/w to WAR old h/w bugs
   2302 		 * XXX enable based on h/w rev for newer chips
   2303 		 */
   2304 		bs.bs_timoffset = ni->ni_timoff;
   2305 #endif
   2306 		/*
   2307 		 * Calculate the number of consecutive beacons to miss
   2308 		 * before taking a BMISS interrupt.  The configuration
   2309 		 * is specified in ms, so we need to convert that to
   2310 		 * TU's and then calculate based on the beacon interval.
   2311 		 * Note that we clamp the result to at most 10 beacons.
   2312 		 */
   2313 		bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
   2314 		if (bs.bs_bmissthreshold > 10)
   2315 			bs.bs_bmissthreshold = 10;
   2316 		else if (bs.bs_bmissthreshold <= 0)
   2317 			bs.bs_bmissthreshold = 1;
   2318 
   2319 		/*
   2320 		 * Calculate sleep duration.  The configuration is
   2321 		 * given in ms.  We insure a multiple of the beacon
   2322 		 * period is used.  Also, if the sleep duration is
   2323 		 * greater than the DTIM period then it makes senses
   2324 		 * to make it a multiple of that.
   2325 		 *
   2326 		 * XXX fixed at 100ms
   2327 		 */
   2328 		bs.bs_sleepduration =
   2329 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
   2330 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
   2331 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
   2332 
   2333 		DPRINTF(sc, ATH_DEBUG_BEACON,
   2334 			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
   2335 			, __func__
   2336 			, tsf, tsftu
   2337 			, bs.bs_intval
   2338 			, bs.bs_nexttbtt
   2339 			, bs.bs_dtimperiod
   2340 			, bs.bs_nextdtim
   2341 			, bs.bs_bmissthreshold
   2342 			, bs.bs_sleepduration
   2343 			, bs.bs_cfpperiod
   2344 			, bs.bs_cfpmaxduration
   2345 			, bs.bs_cfpnext
   2346 			, bs.bs_timoffset
   2347 		);
   2348 		ath_hal_intrset(ah, 0);
   2349 		ath_hal_beacontimers(ah, &bs);
   2350 		sc->sc_imask |= HAL_INT_BMISS;
   2351 		ath_hal_intrset(ah, sc->sc_imask);
   2352 	} else {
   2353 		ath_hal_intrset(ah, 0);
   2354 		if (nexttbtt == intval)
   2355 			intval |= HAL_BEACON_RESET_TSF;
   2356 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
   2357 			/*
   2358 			 * In IBSS mode enable the beacon timers but only
   2359 			 * enable SWBA interrupts if we need to manually
   2360 			 * prepare beacon frames.  Otherwise we use a
   2361 			 * self-linked tx descriptor and let the hardware
   2362 			 * deal with things.
   2363 			 */
   2364 			intval |= HAL_BEACON_ENA;
   2365 			if (!sc->sc_hasveol)
   2366 				sc->sc_imask |= HAL_INT_SWBA;
   2367 			ath_beaconq_config(sc);
   2368 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   2369 			/*
   2370 			 * In AP mode we enable the beacon timers and
   2371 			 * SWBA interrupts to prepare beacon frames.
   2372 			 */
   2373 			intval |= HAL_BEACON_ENA;
   2374 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
   2375 			ath_beaconq_config(sc);
   2376 		}
   2377 		ath_hal_beaconinit(ah, nexttbtt, intval);
   2378 		sc->sc_bmisscount = 0;
   2379 		ath_hal_intrset(ah, sc->sc_imask);
   2380 		/*
   2381 		 * When using a self-linked beacon descriptor in
   2382 		 * ibss mode load it once here.
   2383 		 */
   2384 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
   2385 			ath_beacon_proc(sc, 0);
   2386 	}
   2387 #undef TSF_TO_TU
   2388 }
   2389 
   2390 static int
   2391 ath_descdma_setup(struct ath_softc *sc,
   2392 	struct ath_descdma *dd, ath_bufhead *head,
   2393 	const char *name, int nbuf, int ndesc)
   2394 {
   2395 #define	DS2PHYS(_dd, _ds) \
   2396 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
   2397 	struct ifnet *ifp = &sc->sc_if;
   2398 	struct ath_desc *ds;
   2399 	struct ath_buf *bf;
   2400 	int i, bsize, error;
   2401 
   2402 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
   2403 	    __func__, name, nbuf, ndesc);
   2404 
   2405 	dd->dd_name = name;
   2406 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
   2407 
   2408 	/*
   2409 	 * Setup DMA descriptor area.
   2410 	 */
   2411 	dd->dd_dmat = sc->sc_dmat;
   2412 
   2413 	error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE,
   2414 	    0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0);
   2415 
   2416 	if (error != 0) {
   2417 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
   2418 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
   2419 		goto fail0;
   2420 	}
   2421 
   2422 	error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg,
   2423 	    dd->dd_desc_len, (caddr_t *)&dd->dd_desc, BUS_DMA_COHERENT);
   2424 	if (error != 0) {
   2425 		if_printf(ifp, "unable to map %u %s descriptors, error = %u\n",
   2426 		    nbuf * ndesc, dd->dd_name, error);
   2427 		goto fail1;
   2428 	}
   2429 
   2430 	/* allocate descriptors */
   2431 	error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1,
   2432 	    dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap);
   2433 	if (error != 0) {
   2434 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
   2435 			"error %u\n", dd->dd_name, error);
   2436 		goto fail2;
   2437 	}
   2438 
   2439 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc,
   2440 	    dd->dd_desc_len, NULL, BUS_DMA_NOWAIT);
   2441 	if (error != 0) {
   2442 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
   2443 			dd->dd_name, error);
   2444 		goto fail3;
   2445 	}
   2446 
   2447 	ds = dd->dd_desc;
   2448 	dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr;
   2449 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
   2450 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
   2451 	    (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
   2452 
   2453 	/* allocate rx buffers */
   2454 	bsize = sizeof(struct ath_buf) * nbuf;
   2455 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
   2456 	if (bf == NULL) {
   2457 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
   2458 			dd->dd_name, bsize);
   2459 		goto fail4;
   2460 	}
   2461 	dd->dd_bufptr = bf;
   2462 
   2463 	STAILQ_INIT(head);
   2464 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
   2465 		bf->bf_desc = ds;
   2466 		bf->bf_daddr = DS2PHYS(dd, ds);
   2467 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc,
   2468 				MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap);
   2469 		if (error != 0) {
   2470 			if_printf(ifp, "unable to create dmamap for %s "
   2471 				"buffer %u, error %u\n", dd->dd_name, i, error);
   2472 			ath_descdma_cleanup(sc, dd, head);
   2473 			return error;
   2474 		}
   2475 		STAILQ_INSERT_TAIL(head, bf, bf_list);
   2476 	}
   2477 	return 0;
   2478 fail4:
   2479 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
   2480 fail3:
   2481 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
   2482 fail2:
   2483 	bus_dmamem_unmap(dd->dd_dmat, (caddr_t)dd->dd_desc, dd->dd_desc_len);
   2484 fail1:
   2485 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
   2486 fail0:
   2487 	memset(dd, 0, sizeof(*dd));
   2488 	return error;
   2489 #undef DS2PHYS
   2490 }
   2491 
   2492 static void
   2493 ath_descdma_cleanup(struct ath_softc *sc,
   2494 	struct ath_descdma *dd, ath_bufhead *head)
   2495 {
   2496 	struct ath_buf *bf;
   2497 	struct ieee80211_node *ni;
   2498 
   2499 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
   2500 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
   2501 	bus_dmamem_unmap(dd->dd_dmat, (caddr_t)dd->dd_desc, dd->dd_desc_len);
   2502 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
   2503 
   2504 	STAILQ_FOREACH(bf, head, bf_list) {
   2505 		if (bf->bf_m) {
   2506 			m_freem(bf->bf_m);
   2507 			bf->bf_m = NULL;
   2508 		}
   2509 		if (bf->bf_dmamap != NULL) {
   2510 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
   2511 			bf->bf_dmamap = NULL;
   2512 		}
   2513 		ni = bf->bf_node;
   2514 		bf->bf_node = NULL;
   2515 		if (ni != NULL) {
   2516 			/*
   2517 			 * Reclaim node reference.
   2518 			 */
   2519 			ieee80211_free_node(ni);
   2520 		}
   2521 	}
   2522 
   2523 	STAILQ_INIT(head);
   2524 	free(dd->dd_bufptr, M_ATHDEV);
   2525 	memset(dd, 0, sizeof(*dd));
   2526 }
   2527 
   2528 static int
   2529 ath_desc_alloc(struct ath_softc *sc)
   2530 {
   2531 	int error;
   2532 
   2533 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
   2534 			"rx", ATH_RXBUF, 1);
   2535 	if (error != 0)
   2536 		return error;
   2537 
   2538 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
   2539 			"tx", ATH_TXBUF, ATH_TXDESC);
   2540 	if (error != 0) {
   2541 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2542 		return error;
   2543 	}
   2544 
   2545 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
   2546 			"beacon", 1, 1);
   2547 	if (error != 0) {
   2548 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
   2549 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2550 		return error;
   2551 	}
   2552 	return 0;
   2553 }
   2554 
   2555 static void
   2556 ath_desc_free(struct ath_softc *sc)
   2557 {
   2558 
   2559 	if (sc->sc_bdma.dd_desc_len != 0)
   2560 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
   2561 	if (sc->sc_txdma.dd_desc_len != 0)
   2562 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
   2563 	if (sc->sc_rxdma.dd_desc_len != 0)
   2564 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2565 }
   2566 
   2567 static struct ieee80211_node *
   2568 ath_node_alloc(struct ieee80211_node_table *nt)
   2569 {
   2570 	struct ieee80211com *ic = nt->nt_ic;
   2571 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   2572 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
   2573 	struct ath_node *an;
   2574 
   2575 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
   2576 	if (an == NULL) {
   2577 		/* XXX stat+msg */
   2578 		return NULL;
   2579 	}
   2580 	an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
   2581 	an->an_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
   2582 	an->an_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
   2583 	an->an_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
   2584 	ath_rate_node_init(sc, an);
   2585 
   2586 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
   2587 	return &an->an_node;
   2588 }
   2589 
   2590 static void
   2591 ath_node_free(struct ieee80211_node *ni)
   2592 {
   2593 	struct ieee80211com *ic = ni->ni_ic;
   2594         struct ath_softc *sc = ic->ic_ifp->if_softc;
   2595 
   2596 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
   2597 
   2598 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
   2599 	sc->sc_node_free(ni);
   2600 }
   2601 
   2602 static u_int8_t
   2603 ath_node_getrssi(const struct ieee80211_node *ni)
   2604 {
   2605 #define	HAL_EP_RND(x, mul) \
   2606 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
   2607 	u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
   2608 	int32_t rssi;
   2609 
   2610 	/*
   2611 	 * When only one frame is received there will be no state in
   2612 	 * avgrssi so fallback on the value recorded by the 802.11 layer.
   2613 	 */
   2614 	if (avgrssi != ATH_RSSI_DUMMY_MARKER)
   2615 		rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
   2616 	else
   2617 		rssi = ni->ni_rssi;
   2618 	/* NB: theoretically we shouldn't need this, but be paranoid */
   2619 	return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
   2620 #undef HAL_EP_RND
   2621 }
   2622 
   2623 static int
   2624 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
   2625 {
   2626 	struct ath_hal *ah = sc->sc_ah;
   2627 	int error;
   2628 	struct mbuf *m;
   2629 	struct ath_desc *ds;
   2630 
   2631 	m = bf->bf_m;
   2632 	if (m == NULL) {
   2633 		/*
   2634 		 * NB: by assigning a page to the rx dma buffer we
   2635 		 * implicitly satisfy the Atheros requirement that
   2636 		 * this buffer be cache-line-aligned and sized to be
   2637 		 * multiple of the cache line size.  Not doing this
   2638 		 * causes weird stuff to happen (for the 5210 at least).
   2639 		 */
   2640 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
   2641 		if (m == NULL) {
   2642 			DPRINTF(sc, ATH_DEBUG_ANY,
   2643 				"%s: no mbuf/cluster\n", __func__);
   2644 			sc->sc_stats.ast_rx_nombuf++;
   2645 			return ENOMEM;
   2646 		}
   2647 		bf->bf_m = m;
   2648 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
   2649 
   2650 		error = bus_dmamap_load_mbuf(sc->sc_dmat,
   2651 					     bf->bf_dmamap, m,
   2652 					     BUS_DMA_NOWAIT);
   2653 		if (error != 0) {
   2654 			DPRINTF(sc, ATH_DEBUG_ANY,
   2655 			    "%s: bus_dmamap_load_mbuf failed; error %d\n",
   2656 			    __func__, error);
   2657 			sc->sc_stats.ast_rx_busdma++;
   2658 			return error;
   2659 		}
   2660 		KASSERT(bf->bf_nseg == 1,
   2661 			("multi-segment packet; nseg %u", bf->bf_nseg));
   2662 	}
   2663 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   2664 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2665 
   2666 	/*
   2667 	 * Setup descriptors.  For receive we always terminate
   2668 	 * the descriptor list with a self-linked entry so we'll
   2669 	 * not get overrun under high load (as can happen with a
   2670 	 * 5212 when ANI processing enables PHY error frames).
   2671 	 *
   2672 	 * To insure the last descriptor is self-linked we create
   2673 	 * each descriptor as self-linked and add it to the end.  As
   2674 	 * each additional descriptor is added the previous self-linked
   2675 	 * entry is ``fixed'' naturally.  This should be safe even
   2676 	 * if DMA is happening.  When processing RX interrupts we
   2677 	 * never remove/process the last, self-linked, entry on the
   2678 	 * descriptor list.  This insures the hardware always has
   2679 	 * someplace to write a new frame.
   2680 	 */
   2681 	ds = bf->bf_desc;
   2682 	ds->ds_link = bf->bf_daddr;	/* link to self */
   2683 	ds->ds_data = bf->bf_segs[0].ds_addr;
   2684 	ath_hal_setuprxdesc(ah, ds
   2685 		, m->m_len		/* buffer size */
   2686 		, 0
   2687 	);
   2688 
   2689 	if (sc->sc_rxlink != NULL)
   2690 		*sc->sc_rxlink = bf->bf_daddr;
   2691 	sc->sc_rxlink = &ds->ds_link;
   2692 	return 0;
   2693 }
   2694 
   2695 /*
   2696  * Extend 15-bit time stamp from rx descriptor to
   2697  * a full 64-bit TSF using the current h/w TSF.
   2698  */
   2699 static __inline u_int64_t
   2700 ath_extend_tsf(struct ath_hal *ah, u_int32_t rstamp)
   2701 {
   2702 	u_int64_t tsf;
   2703 
   2704 	tsf = ath_hal_gettsf64(ah);
   2705 	if ((tsf & 0x7fff) < rstamp)
   2706 		tsf -= 0x8000;
   2707 	return ((tsf &~ 0x7fff) | rstamp);
   2708 }
   2709 
   2710 /*
   2711  * Intercept management frames to collect beacon rssi data
   2712  * and to do ibss merges.
   2713  */
   2714 static void
   2715 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
   2716 	struct ieee80211_node *ni,
   2717 	int subtype, int rssi, u_int32_t rstamp)
   2718 {
   2719 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   2720 
   2721 	/*
   2722 	 * Call up first so subsequent work can use information
   2723 	 * potentially stored in the node (e.g. for ibss merge).
   2724 	 */
   2725 	sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
   2726 	switch (subtype) {
   2727 	case IEEE80211_FC0_SUBTYPE_BEACON:
   2728 		/* update rssi statistics for use by the hal */
   2729 		ATH_RSSI_LPF(ATH_NODE(ni)->an_halstats.ns_avgbrssi, rssi);
   2730 		/* fall thru... */
   2731 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
   2732 		if (ic->ic_opmode == IEEE80211_M_IBSS &&
   2733 		    ic->ic_state == IEEE80211_S_RUN) {
   2734 			u_int64_t tsf = ath_extend_tsf(sc->sc_ah, rstamp);
   2735 
   2736 			/*
   2737 			 * Handle ibss merge as needed; check the tsf on the
   2738 			 * frame before attempting the merge.  The 802.11 spec
   2739 			 * says the station should change it's bssid to match
   2740 			 * the oldest station with the same ssid, where oldest
   2741 			 * is determined by the tsf.  Note that hardware
   2742 			 * reconfiguration happens through callback to
   2743 			 * ath_newstate as the state machine will go from
   2744 			 * RUN -> RUN when this happens.
   2745 			 */
   2746 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
   2747 				DPRINTF(sc, ATH_DEBUG_STATE,
   2748 				    "ibss merge, rstamp %u tsf %ju "
   2749 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
   2750 				    (uintmax_t)ni->ni_tstamp.tsf);
   2751 				(void) ieee80211_ibss_merge(ni);
   2752 			}
   2753 		}
   2754 		break;
   2755 	}
   2756 }
   2757 
   2758 /*
   2759  * Set the default antenna.
   2760  */
   2761 static void
   2762 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
   2763 {
   2764 	struct ath_hal *ah = sc->sc_ah;
   2765 
   2766 	/* XXX block beacon interrupts */
   2767 	ath_hal_setdefantenna(ah, antenna);
   2768 	if (sc->sc_defant != antenna)
   2769 		sc->sc_stats.ast_ant_defswitch++;
   2770 	sc->sc_defant = antenna;
   2771 	sc->sc_rxotherant = 0;
   2772 }
   2773 
   2774 static void
   2775 ath_rx_proc(void *arg, int npending)
   2776 {
   2777 #define	PA2DESC(_sc, _pa) \
   2778 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
   2779 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
   2780 	struct ath_softc *sc = arg;
   2781 	struct ath_buf *bf;
   2782 	struct ieee80211com *ic = &sc->sc_ic;
   2783 	struct ifnet *ifp = &sc->sc_if;
   2784 	struct ath_hal *ah = sc->sc_ah;
   2785 	struct ath_desc *ds;
   2786 	struct mbuf *m;
   2787 	struct ieee80211_node *ni;
   2788 	struct ath_node *an;
   2789 	int len, type;
   2790 	u_int phyerr;
   2791 	HAL_STATUS status;
   2792 
   2793 	NET_LOCK_GIANT();		/* XXX */
   2794 
   2795 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
   2796 	do {
   2797 		bf = STAILQ_FIRST(&sc->sc_rxbuf);
   2798 		if (bf == NULL) {		/* NB: shouldn't happen */
   2799 			if_printf(ifp, "%s: no buffer!\n", __func__);
   2800 			break;
   2801 		}
   2802 		ds = bf->bf_desc;
   2803 		if (ds->ds_link == bf->bf_daddr) {
   2804 			/* NB: never process the self-linked entry at the end */
   2805 			break;
   2806 		}
   2807 		m = bf->bf_m;
   2808 		if (m == NULL) {		/* NB: shouldn't happen */
   2809 			if_printf(ifp, "%s: no mbuf!\n", __func__);
   2810 			continue;
   2811 		}
   2812 		/* XXX sync descriptor memory */
   2813 		/*
   2814 		 * Must provide the virtual address of the current
   2815 		 * descriptor, the physical address, and the virtual
   2816 		 * address of the next descriptor in the h/w chain.
   2817 		 * This allows the HAL to look ahead to see if the
   2818 		 * hardware is done with a descriptor by checking the
   2819 		 * done bit in the following descriptor and the address
   2820 		 * of the current descriptor the DMA engine is working
   2821 		 * on.  All this is necessary because of our use of
   2822 		 * a self-linked list to avoid rx overruns.
   2823 		 */
   2824 		status = ath_hal_rxprocdesc(ah, ds,
   2825 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
   2826 #ifdef AR_DEBUG
   2827 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
   2828 			ath_printrxbuf(bf, status == HAL_OK);
   2829 #endif
   2830 		if (status == HAL_EINPROGRESS)
   2831 			break;
   2832 		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
   2833 		if (ds->ds_rxstat.rs_more) {
   2834 			/*
   2835 			 * Frame spans multiple descriptors; this
   2836 			 * cannot happen yet as we don't support
   2837 			 * jumbograms.  If not in monitor mode,
   2838 			 * discard the frame.
   2839 			 */
   2840 			if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   2841 				sc->sc_stats.ast_rx_toobig++;
   2842 				goto rx_next;
   2843 			}
   2844 			/* fall thru for monitor mode handling... */
   2845 		} else if (ds->ds_rxstat.rs_status != 0) {
   2846 			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
   2847 				sc->sc_stats.ast_rx_crcerr++;
   2848 			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
   2849 				sc->sc_stats.ast_rx_fifoerr++;
   2850 			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
   2851 				sc->sc_stats.ast_rx_phyerr++;
   2852 				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
   2853 				sc->sc_stats.ast_rx_phy[phyerr]++;
   2854 				goto rx_next;
   2855 			}
   2856 			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
   2857 				/*
   2858 				 * Decrypt error.  If the error occurred
   2859 				 * because there was no hardware key, then
   2860 				 * let the frame through so the upper layers
   2861 				 * can process it.  This is necessary for 5210
   2862 				 * parts which have no way to setup a ``clear''
   2863 				 * key cache entry.
   2864 				 *
   2865 				 * XXX do key cache faulting
   2866 				 */
   2867 				if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
   2868 					goto rx_accept;
   2869 				sc->sc_stats.ast_rx_badcrypt++;
   2870 			}
   2871 			if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
   2872 				sc->sc_stats.ast_rx_badmic++;
   2873 				/*
   2874 				 * Do minimal work required to hand off
   2875 				 * the 802.11 header for notifcation.
   2876 				 */
   2877 				/* XXX frag's and qos frames */
   2878 				len = ds->ds_rxstat.rs_datalen;
   2879 				if (len >= sizeof (struct ieee80211_frame)) {
   2880 					bus_dmamap_sync(sc->sc_dmat,
   2881 					    bf->bf_dmamap,
   2882 					    0, bf->bf_dmamap->dm_mapsize,
   2883 					    BUS_DMASYNC_POSTREAD);
   2884 					ieee80211_notify_michael_failure(ic,
   2885 					    mtod(m, struct ieee80211_frame *),
   2886 					    sc->sc_splitmic ?
   2887 					        ds->ds_rxstat.rs_keyix-32 :
   2888 					        ds->ds_rxstat.rs_keyix
   2889 					);
   2890 				}
   2891 			}
   2892 			ifp->if_ierrors++;
   2893 			/*
   2894 			 * Reject error frames, we normally don't want
   2895 			 * to see them in monitor mode (in monitor mode
   2896 			 * allow through packets that have crypto problems).
   2897 			 */
   2898 			if ((ds->ds_rxstat.rs_status &~
   2899 				(HAL_RXERR_DECRYPT|HAL_RXERR_MIC)) ||
   2900 			    sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
   2901 				goto rx_next;
   2902 		}
   2903 rx_accept:
   2904 		/*
   2905 		 * Sync and unmap the frame.  At this point we're
   2906 		 * committed to passing the mbuf somewhere so clear
   2907 		 * bf_m; this means a new sk_buff must be allocated
   2908 		 * when the rx descriptor is setup again to receive
   2909 		 * another frame.
   2910 		 */
   2911 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
   2912 		    0, bf->bf_dmamap->dm_mapsize,
   2913 		    BUS_DMASYNC_POSTREAD);
   2914 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   2915 		bf->bf_m = NULL;
   2916 
   2917 		m->m_pkthdr.rcvif = ifp;
   2918 		len = ds->ds_rxstat.rs_datalen;
   2919 		m->m_pkthdr.len = m->m_len = len;
   2920 
   2921 		sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
   2922 
   2923 #if NBPFILTER > 0
   2924 		if (sc->sc_drvbpf) {
   2925 			u_int8_t rix;
   2926 
   2927 			/*
   2928 			 * Discard anything shorter than an ack or cts.
   2929 			 */
   2930 			if (len < IEEE80211_ACK_LEN) {
   2931 				DPRINTF(sc, ATH_DEBUG_RECV,
   2932 					"%s: runt packet %d\n",
   2933 					__func__, len);
   2934 				sc->sc_stats.ast_rx_tooshort++;
   2935 				m_freem(m);
   2936 				goto rx_next;
   2937 			}
   2938 			rix = ds->ds_rxstat.rs_rate;
   2939 			sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
   2940 			sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
   2941 			sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi;
   2942 			sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
   2943 			/* XXX TSF */
   2944 
   2945 			bpf_mtap2(sc->sc_drvbpf,
   2946 				&sc->sc_rx_th, sc->sc_rx_th_len, m);
   2947 		}
   2948 #endif
   2949 
   2950 		/*
   2951 		 * From this point on we assume the frame is at least
   2952 		 * as large as ieee80211_frame_min; verify that.
   2953 		 */
   2954 		if (len < IEEE80211_MIN_LEN) {
   2955 			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
   2956 				__func__, len);
   2957 			sc->sc_stats.ast_rx_tooshort++;
   2958 			m_freem(m);
   2959 			goto rx_next;
   2960 		}
   2961 
   2962 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
   2963 			ieee80211_dump_pkt(mtod(m, caddr_t), len,
   2964 				   sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
   2965 				   ds->ds_rxstat.rs_rssi);
   2966 		}
   2967 
   2968 		m_adj(m, -IEEE80211_CRC_LEN);
   2969 
   2970 		/*
   2971 		 * Locate the node for sender, track state, and then
   2972 		 * pass the (referenced) node up to the 802.11 layer
   2973 		 * for its use.
   2974 		 */
   2975 		ni = ieee80211_find_rxnode_withkey(ic,
   2976 			mtod(m, const struct ieee80211_frame_min *),
   2977 			ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
   2978 				IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
   2979 		/*
   2980 		 * Track rx rssi and do any rx antenna management.
   2981 		 */
   2982 		an = ATH_NODE(ni);
   2983 		ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
   2984 		/*
   2985 		 * Send frame up for processing.
   2986 		 */
   2987 		type = ieee80211_input(ic, m, ni,
   2988 			ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
   2989 		ieee80211_free_node(ni);
   2990 		if (sc->sc_diversity) {
   2991 			/*
   2992 			 * When using fast diversity, change the default rx
   2993 			 * antenna if diversity chooses the other antenna 3
   2994 			 * times in a row.
   2995 			 */
   2996 			if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
   2997 				if (++sc->sc_rxotherant >= 3)
   2998 					ath_setdefantenna(sc,
   2999 						ds->ds_rxstat.rs_antenna);
   3000 			} else
   3001 				sc->sc_rxotherant = 0;
   3002 		}
   3003 		if (sc->sc_softled) {
   3004 			/*
   3005 			 * Blink for any data frame.  Otherwise do a
   3006 			 * heartbeat-style blink when idle.  The latter
   3007 			 * is mainly for station mode where we depend on
   3008 			 * periodic beacon frames to trigger the poll event.
   3009 			 */
   3010 			if (type == IEEE80211_FC0_TYPE_DATA) {
   3011 				sc->sc_rxrate = ds->ds_rxstat.rs_rate;
   3012 				ath_led_event(sc, ATH_LED_RX);
   3013 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
   3014 				ath_led_event(sc, ATH_LED_POLL);
   3015 		}
   3016 rx_next:
   3017 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
   3018 	} while (ath_rxbuf_init(sc, bf) == 0);
   3019 
   3020 	/* rx signal state monitoring */
   3021 	ath_hal_rxmonitor(ah, &ATH_NODE(ic->ic_bss)->an_halstats);
   3022 
   3023 #ifdef __NetBSD__
   3024 	/* XXX Why isn't this necessary in FreeBSD? */
   3025 	if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
   3026 		ath_start(ifp);
   3027 #endif /* __NetBSD__ */
   3028 
   3029 	NET_UNLOCK_GIANT();		/* XXX */
   3030 #undef PA2DESC
   3031 }
   3032 
   3033 /*
   3034  * Setup a h/w transmit queue.
   3035  */
   3036 static struct ath_txq *
   3037 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
   3038 {
   3039 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   3040 	struct ath_hal *ah = sc->sc_ah;
   3041 	HAL_TXQ_INFO qi;
   3042 	int qnum;
   3043 
   3044 	memset(&qi, 0, sizeof(qi));
   3045 	qi.tqi_subtype = subtype;
   3046 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
   3047 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
   3048 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
   3049 	/*
   3050 	 * Enable interrupts only for EOL and DESC conditions.
   3051 	 * We mark tx descriptors to receive a DESC interrupt
   3052 	 * when a tx queue gets deep; otherwise waiting for the
   3053 	 * EOL to reap descriptors.  Note that this is done to
   3054 	 * reduce interrupt load and this only defers reaping
   3055 	 * descriptors, never transmitting frames.  Aside from
   3056 	 * reducing interrupts this also permits more concurrency.
   3057 	 * The only potential downside is if the tx queue backs
   3058 	 * up in which case the top half of the kernel may backup
   3059 	 * due to a lack of tx descriptors.
   3060 	 */
   3061 	qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE | TXQ_FLAG_TXDESCINT_ENABLE;
   3062 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
   3063 	if (qnum == -1) {
   3064 		/*
   3065 		 * NB: don't print a message, this happens
   3066 		 * normally on parts with too few tx queues
   3067 		 */
   3068 		return NULL;
   3069 	}
   3070 	if (qnum >= N(sc->sc_txq)) {
   3071 		device_printf(sc->sc_dev,
   3072 			"hal qnum %u out of range, max %zu!\n",
   3073 			qnum, N(sc->sc_txq));
   3074 		ath_hal_releasetxqueue(ah, qnum);
   3075 		return NULL;
   3076 	}
   3077 	if (!ATH_TXQ_SETUP(sc, qnum)) {
   3078 		struct ath_txq *txq = &sc->sc_txq[qnum];
   3079 
   3080 		txq->axq_qnum = qnum;
   3081 		txq->axq_depth = 0;
   3082 		txq->axq_intrcnt = 0;
   3083 		txq->axq_link = NULL;
   3084 		STAILQ_INIT(&txq->axq_q);
   3085 		ATH_TXQ_LOCK_INIT(sc, txq);
   3086 		sc->sc_txqsetup |= 1<<qnum;
   3087 	}
   3088 	return &sc->sc_txq[qnum];
   3089 #undef N
   3090 }
   3091 
   3092 /*
   3093  * Setup a hardware data transmit queue for the specified
   3094  * access control.  The hal may not support all requested
   3095  * queues in which case it will return a reference to a
   3096  * previously setup queue.  We record the mapping from ac's
   3097  * to h/w queues for use by ath_tx_start and also track
   3098  * the set of h/w queues being used to optimize work in the
   3099  * transmit interrupt handler and related routines.
   3100  */
   3101 static int
   3102 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
   3103 {
   3104 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   3105 	struct ath_txq *txq;
   3106 
   3107 	if (ac >= N(sc->sc_ac2q)) {
   3108 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
   3109 			ac, N(sc->sc_ac2q));
   3110 		return 0;
   3111 	}
   3112 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
   3113 	if (txq != NULL) {
   3114 		sc->sc_ac2q[ac] = txq;
   3115 		return 1;
   3116 	} else
   3117 		return 0;
   3118 #undef N
   3119 }
   3120 
   3121 /*
   3122  * Update WME parameters for a transmit queue.
   3123  */
   3124 static int
   3125 ath_txq_update(struct ath_softc *sc, int ac)
   3126 {
   3127 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
   3128 #define	ATH_TXOP_TO_US(v)		(v<<5)
   3129 	struct ieee80211com *ic = &sc->sc_ic;
   3130 	struct ath_txq *txq = sc->sc_ac2q[ac];
   3131 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
   3132 	struct ath_hal *ah = sc->sc_ah;
   3133 	HAL_TXQ_INFO qi;
   3134 
   3135 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
   3136 	qi.tqi_aifs = wmep->wmep_aifsn;
   3137 	qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
   3138 	qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
   3139 	qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
   3140 
   3141 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
   3142 		device_printf(sc->sc_dev, "unable to update hardware queue "
   3143 			"parameters for %s traffic!\n",
   3144 			ieee80211_wme_acnames[ac]);
   3145 		return 0;
   3146 	} else {
   3147 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
   3148 		return 1;
   3149 	}
   3150 #undef ATH_TXOP_TO_US
   3151 #undef ATH_EXPONENT_TO_VALUE
   3152 }
   3153 
   3154 /*
   3155  * Callback from the 802.11 layer to update WME parameters.
   3156  */
   3157 static int
   3158 ath_wme_update(struct ieee80211com *ic)
   3159 {
   3160 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   3161 
   3162 	return !ath_txq_update(sc, WME_AC_BE) ||
   3163 	    !ath_txq_update(sc, WME_AC_BK) ||
   3164 	    !ath_txq_update(sc, WME_AC_VI) ||
   3165 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
   3166 }
   3167 
   3168 /*
   3169  * Reclaim resources for a setup queue.
   3170  */
   3171 static void
   3172 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
   3173 {
   3174 
   3175 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
   3176 	ATH_TXQ_LOCK_DESTROY(txq);
   3177 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
   3178 }
   3179 
   3180 /*
   3181  * Reclaim all tx queue resources.
   3182  */
   3183 static void
   3184 ath_tx_cleanup(struct ath_softc *sc)
   3185 {
   3186 	int i;
   3187 
   3188 	ATH_TXBUF_LOCK_DESTROY(sc);
   3189 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   3190 		if (ATH_TXQ_SETUP(sc, i))
   3191 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
   3192 }
   3193 
   3194 /*
   3195  * Defragment an mbuf chain, returning at most maxfrags separate
   3196  * mbufs+clusters.  If this is not possible NULL is returned and
   3197  * the original mbuf chain is left in it's present (potentially
   3198  * modified) state.  We use two techniques: collapsing consecutive
   3199  * mbufs and replacing consecutive mbufs by a cluster.
   3200  */
   3201 static struct mbuf *
   3202 ath_defrag(struct mbuf *m0, int how, int maxfrags)
   3203 {
   3204 	struct mbuf *m, *n, *n2, **prev;
   3205 	u_int curfrags;
   3206 
   3207 	/*
   3208 	 * Calculate the current number of frags.
   3209 	 */
   3210 	curfrags = 0;
   3211 	for (m = m0; m != NULL; m = m->m_next)
   3212 		curfrags++;
   3213 	/*
   3214 	 * First, try to collapse mbufs.  Note that we always collapse
   3215 	 * towards the front so we don't need to deal with moving the
   3216 	 * pkthdr.  This may be suboptimal if the first mbuf has much
   3217 	 * less data than the following.
   3218 	 */
   3219 	m = m0;
   3220 again:
   3221 	for (;;) {
   3222 		n = m->m_next;
   3223 		if (n == NULL)
   3224 			break;
   3225 		if ((m->m_flags & M_RDONLY) == 0 &&
   3226 		    n->m_len < M_TRAILINGSPACE(m)) {
   3227 			bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
   3228 				n->m_len);
   3229 			m->m_len += n->m_len;
   3230 			m->m_next = n->m_next;
   3231 			m_free(n);
   3232 			if (--curfrags <= maxfrags)
   3233 				return m0;
   3234 		} else
   3235 			m = n;
   3236 	}
   3237 	KASSERT(maxfrags > 1,
   3238 		("maxfrags %u, but normal collapse failed", maxfrags));
   3239 	/*
   3240 	 * Collapse consecutive mbufs to a cluster.
   3241 	 */
   3242 	prev = &m0->m_next;		/* NB: not the first mbuf */
   3243 	while ((n = *prev) != NULL) {
   3244 		if ((n2 = n->m_next) != NULL &&
   3245 		    n->m_len + n2->m_len < MCLBYTES) {
   3246 			m = m_getcl(how, MT_DATA, 0);
   3247 			if (m == NULL)
   3248 				goto bad;
   3249 			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
   3250 			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
   3251 				n2->m_len);
   3252 			m->m_len = n->m_len + n2->m_len;
   3253 			m->m_next = n2->m_next;
   3254 			*prev = m;
   3255 			m_free(n);
   3256 			m_free(n2);
   3257 			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
   3258 				return m0;
   3259 			/*
   3260 			 * Still not there, try the normal collapse
   3261 			 * again before we allocate another cluster.
   3262 			 */
   3263 			goto again;
   3264 		}
   3265 		prev = &n->m_next;
   3266 	}
   3267 	/*
   3268 	 * No place where we can collapse to a cluster; punt.
   3269 	 * This can occur if, for example, you request 2 frags
   3270 	 * but the packet requires that both be clusters (we
   3271 	 * never reallocate the first mbuf to avoid moving the
   3272 	 * packet header).
   3273 	 */
   3274 bad:
   3275 	return NULL;
   3276 }
   3277 
   3278 static int
   3279 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
   3280     struct mbuf *m0)
   3281 {
   3282 #define	CTS_DURATION \
   3283 	ath_hal_computetxtime(ah, rt, IEEE80211_ACK_LEN, cix, AH_TRUE)
   3284 #define	updateCTSForBursting(_ah, _ds, _txq) \
   3285 	ath_hal_updateCTSForBursting(_ah, _ds, \
   3286 	    _txq->axq_linkbuf != NULL ? _txq->axq_linkbuf->bf_desc : NULL, \
   3287 	    _txq->axq_lastdsWithCTS, _txq->axq_gatingds, \
   3288 	    txopLimit, CTS_DURATION)
   3289 	struct ieee80211com *ic = &sc->sc_ic;
   3290 	struct ath_hal *ah = sc->sc_ah;
   3291 	struct ifnet *ifp = &sc->sc_if;
   3292 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
   3293 	int i, error, iswep, ismcast, keyix, hdrlen, pktlen, try0;
   3294 	u_int8_t rix, txrate, ctsrate;
   3295 	u_int8_t cix = 0xff;		/* NB: silence compiler */
   3296 	struct ath_desc *ds, *ds0;
   3297 	struct ath_txq *txq;
   3298 	struct ieee80211_frame *wh;
   3299 	u_int subtype, flags, ctsduration;
   3300 	HAL_PKT_TYPE atype;
   3301 	const HAL_RATE_TABLE *rt;
   3302 	HAL_BOOL shortPreamble;
   3303 	struct ath_node *an;
   3304 	struct mbuf *m;
   3305 	u_int pri;
   3306 
   3307 	wh = mtod(m0, struct ieee80211_frame *);
   3308 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
   3309 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
   3310 	hdrlen = ieee80211_anyhdrsize(wh);
   3311 	/*
   3312 	 * Packet length must not include any
   3313 	 * pad bytes; deduct them here.
   3314 	 */
   3315 	pktlen = m0->m_pkthdr.len - (hdrlen & 3);
   3316 
   3317 	if (iswep) {
   3318 		const struct ieee80211_cipher *cip;
   3319 		struct ieee80211_key *k;
   3320 
   3321 		/*
   3322 		 * Construct the 802.11 header+trailer for an encrypted
   3323 		 * frame. The only reason this can fail is because of an
   3324 		 * unknown or unsupported cipher/key type.
   3325 		 */
   3326 		k = ieee80211_crypto_encap(ic, ni, m0);
   3327 		if (k == NULL) {
   3328 			/*
   3329 			 * This can happen when the key is yanked after the
   3330 			 * frame was queued.  Just discard the frame; the
   3331 			 * 802.11 layer counts failures and provides
   3332 			 * debugging/diagnostics.
   3333 			 */
   3334 			m_freem(m0);
   3335 			return EIO;
   3336 		}
   3337 		/*
   3338 		 * Adjust the packet + header lengths for the crypto
   3339 		 * additions and calculate the h/w key index.  When
   3340 		 * a s/w mic is done the frame will have had any mic
   3341 		 * added to it prior to entry so skb->len above will
   3342 		 * account for it. Otherwise we need to add it to the
   3343 		 * packet length.
   3344 		 */
   3345 		cip = k->wk_cipher;
   3346 		hdrlen += cip->ic_header;
   3347 		pktlen += cip->ic_header + cip->ic_trailer;
   3348 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0)
   3349 			pktlen += cip->ic_miclen;
   3350 		keyix = k->wk_keyix;
   3351 
   3352 		/* packet header may have moved, reset our local pointer */
   3353 		wh = mtod(m0, struct ieee80211_frame *);
   3354 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
   3355 		/*
   3356 		 * Use station key cache slot, if assigned.
   3357 		 */
   3358 		keyix = ni->ni_ucastkey.wk_keyix;
   3359 		if (keyix == IEEE80211_KEYIX_NONE)
   3360 			keyix = HAL_TXKEYIX_INVALID;
   3361 	} else
   3362 		keyix = HAL_TXKEYIX_INVALID;
   3363 
   3364 	pktlen += IEEE80211_CRC_LEN;
   3365 
   3366 	/*
   3367 	 * Load the DMA map so any coalescing is done.  This
   3368 	 * also calculates the number of descriptors we need.
   3369 	 */
   3370 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
   3371 				     BUS_DMA_NOWAIT);
   3372 	if (error == EFBIG) {
   3373 		/* XXX packet requires too many descriptors */
   3374 		bf->bf_nseg = ATH_TXDESC+1;
   3375 	} else if (error != 0) {
   3376 		sc->sc_stats.ast_tx_busdma++;
   3377 		m_freem(m0);
   3378 		return error;
   3379 	}
   3380 	/*
   3381 	 * Discard null packets and check for packets that
   3382 	 * require too many TX descriptors.  We try to convert
   3383 	 * the latter to a cluster.
   3384 	 */
   3385 	if (error == EFBIG) {		/* too many desc's, linearize */
   3386 		sc->sc_stats.ast_tx_linear++;
   3387 		m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
   3388 		if (m == NULL) {
   3389 			m_freem(m0);
   3390 			sc->sc_stats.ast_tx_nombuf++;
   3391 			return ENOMEM;
   3392 		}
   3393 		m0 = m;
   3394 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
   3395 					     BUS_DMA_NOWAIT);
   3396 		if (error != 0) {
   3397 			sc->sc_stats.ast_tx_busdma++;
   3398 			m_freem(m0);
   3399 			return error;
   3400 		}
   3401 		KASSERT(bf->bf_nseg <= ATH_TXDESC,
   3402 		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
   3403 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
   3404 		sc->sc_stats.ast_tx_nodata++;
   3405 		m_freem(m0);
   3406 		return EIO;
   3407 	}
   3408 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
   3409 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   3410             bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
   3411 	bf->bf_m = m0;
   3412 	bf->bf_node = ni;			/* NB: held reference */
   3413 
   3414 	/* setup descriptors */
   3415 	ds = bf->bf_desc;
   3416 	rt = sc->sc_currates;
   3417 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
   3418 
   3419 	/*
   3420 	 * NB: the 802.11 layer marks whether or not we should
   3421 	 * use short preamble based on the current mode and
   3422 	 * negotiated parameters.
   3423 	 */
   3424 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
   3425 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) {
   3426 		shortPreamble = AH_TRUE;
   3427 		sc->sc_stats.ast_tx_shortpre++;
   3428 	} else {
   3429 		shortPreamble = AH_FALSE;
   3430 	}
   3431 
   3432 	an = ATH_NODE(ni);
   3433 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
   3434 	/*
   3435 	 * Calculate Atheros packet type from IEEE80211 packet header,
   3436 	 * setup for rate calculations, and select h/w transmit queue.
   3437 	 */
   3438 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
   3439 	case IEEE80211_FC0_TYPE_MGT:
   3440 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   3441 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
   3442 			atype = HAL_PKT_TYPE_BEACON;
   3443 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
   3444 			atype = HAL_PKT_TYPE_PROBE_RESP;
   3445 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
   3446 			atype = HAL_PKT_TYPE_ATIM;
   3447 		else
   3448 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
   3449 		rix = 0;			/* XXX lowest rate */
   3450 		try0 = ATH_TXMAXTRY;
   3451 		if (shortPreamble)
   3452 			txrate = an->an_tx_mgtratesp;
   3453 		else
   3454 			txrate = an->an_tx_mgtrate;
   3455 		/* NB: force all management frames to highest queue */
   3456 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
   3457 			/* NB: force all management frames to highest queue */
   3458 			pri = WME_AC_VO;
   3459 		} else
   3460 			pri = WME_AC_BE;
   3461 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
   3462 		break;
   3463 	case IEEE80211_FC0_TYPE_CTL:
   3464 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
   3465 		rix = 0;			/* XXX lowest rate */
   3466 		try0 = ATH_TXMAXTRY;
   3467 		if (shortPreamble)
   3468 			txrate = an->an_tx_mgtratesp;
   3469 		else
   3470 			txrate = an->an_tx_mgtrate;
   3471 		/* NB: force all ctl frames to highest queue */
   3472 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
   3473 			/* NB: force all ctl frames to highest queue */
   3474 			pri = WME_AC_VO;
   3475 		} else
   3476 			pri = WME_AC_BE;
   3477 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
   3478 		break;
   3479 	case IEEE80211_FC0_TYPE_DATA:
   3480 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
   3481 		/*
   3482 		 * Data frames; consult the rate control module for
   3483 		 * unicast frames.  Send multicast frames at the
   3484 		 * lowest rate.
   3485 		 */
   3486 		if (!ismcast) {
   3487 			ath_rate_findrate(sc, an, shortPreamble, pktlen,
   3488 				&rix, &try0, &txrate);
   3489 		} else {
   3490 			rix = 0;
   3491 			try0 = ATH_TXMAXTRY;
   3492 			txrate = an->an_tx_mgtrate;
   3493 		}
   3494 		sc->sc_txrate = txrate;			/* for LED blinking */
   3495 		/*
   3496 		 * Default all non-QoS traffic to the background queue.
   3497 		 */
   3498 		if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
   3499 			pri = M_WME_GETAC(m0);
   3500 			if (cap->cap_wmeParams[pri].wmep_noackPolicy) {
   3501 				flags |= HAL_TXDESC_NOACK;
   3502 				sc->sc_stats.ast_tx_noack++;
   3503 			}
   3504 		} else
   3505 			pri = WME_AC_BE;
   3506 		break;
   3507 	default:
   3508 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
   3509 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
   3510 		/* XXX statistic */
   3511 		m_freem(m0);
   3512 		return EIO;
   3513 	}
   3514 	txq = sc->sc_ac2q[pri];
   3515 
   3516 	/*
   3517 	 * When servicing one or more stations in power-save mode
   3518 	 * multicast frames must be buffered until after the beacon.
   3519 	 * We use the CAB queue for that.
   3520 	 */
   3521 	if (ismcast && ic->ic_ps_sta) {
   3522 		txq = sc->sc_cabq;
   3523 		/* XXX? more bit in 802.11 frame header */
   3524 	}
   3525 
   3526 	/*
   3527 	 * Calculate miscellaneous flags.
   3528 	 */
   3529 	if (ismcast) {
   3530 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
   3531 		sc->sc_stats.ast_tx_noack++;
   3532 	} else if (pktlen > ic->ic_rtsthreshold) {
   3533 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
   3534 		cix = rt->info[rix].controlRate;
   3535 		sc->sc_stats.ast_tx_rts++;
   3536 	}
   3537 
   3538 	/*
   3539 	 * If 802.11g protection is enabled, determine whether
   3540 	 * to use RTS/CTS or just CTS.  Note that this is only
   3541 	 * done for OFDM unicast frames.
   3542 	 */
   3543 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
   3544 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
   3545 	    (flags & HAL_TXDESC_NOACK) == 0) {
   3546 		/* XXX fragments must use CCK rates w/ protection */
   3547 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
   3548 			flags |= HAL_TXDESC_RTSENA;
   3549 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
   3550 			flags |= HAL_TXDESC_CTSENA;
   3551 		cix = rt->info[sc->sc_protrix].controlRate;
   3552 		sc->sc_stats.ast_tx_protect++;
   3553 	}
   3554 
   3555 	/*
   3556 	 * Calculate duration.  This logically belongs in the 802.11
   3557 	 * layer but it lacks sufficient information to calculate it.
   3558 	 */
   3559 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
   3560 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
   3561 		u_int16_t dur;
   3562 		/*
   3563 		 * XXX not right with fragmentation.
   3564 		 */
   3565 		if (shortPreamble)
   3566 			dur = rt->info[rix].spAckDuration;
   3567 		else
   3568 			dur = rt->info[rix].lpAckDuration;
   3569 		*(u_int16_t *)wh->i_dur = htole16(dur);
   3570 	}
   3571 
   3572 	/*
   3573 	 * Calculate RTS/CTS rate and duration if needed.
   3574 	 */
   3575 	ctsduration = 0;
   3576 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
   3577 		/*
   3578 		 * CTS transmit rate is derived from the transmit rate
   3579 		 * by looking in the h/w rate table.  We must also factor
   3580 		 * in whether or not a short preamble is to be used.
   3581 		 */
   3582 		/* NB: cix is set above where RTS/CTS is enabled */
   3583 		KASSERT(cix != 0xff, ("cix not setup"));
   3584 		ctsrate = rt->info[cix].rateCode;
   3585 		/*
   3586 		 * Compute the transmit duration based on the frame
   3587 		 * size and the size of an ACK frame.  We call into the
   3588 		 * HAL to do the computation since it depends on the
   3589 		 * characteristics of the actual PHY being used.
   3590 		 *
   3591 		 * NB: CTS is assumed the same size as an ACK so we can
   3592 		 *     use the precalculated ACK durations.
   3593 		 */
   3594 		if (shortPreamble) {
   3595 			ctsrate |= rt->info[cix].shortPreamble;
   3596 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
   3597 				ctsduration += rt->info[cix].spAckDuration;
   3598 			ctsduration += ath_hal_computetxtime(ah,
   3599 				rt, pktlen, rix, AH_TRUE);
   3600 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
   3601 				ctsduration += rt->info[rix].spAckDuration;
   3602 		} else {
   3603 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
   3604 				ctsduration += rt->info[cix].lpAckDuration;
   3605 			ctsduration += ath_hal_computetxtime(ah,
   3606 				rt, pktlen, rix, AH_FALSE);
   3607 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
   3608 				ctsduration += rt->info[rix].lpAckDuration;
   3609 		}
   3610 		/*
   3611 		 * Must disable multi-rate retry when using RTS/CTS.
   3612 		 */
   3613 		try0 = ATH_TXMAXTRY;
   3614 	} else
   3615 		ctsrate = 0;
   3616 
   3617 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
   3618 		ieee80211_dump_pkt(mtod(m0, caddr_t), m0->m_len,
   3619 			sc->sc_hwmap[txrate].ieeerate, -1);
   3620 
   3621 	if (ic->ic_rawbpf)
   3622 		bpf_mtap(ic->ic_rawbpf, m0);
   3623 	if (sc->sc_drvbpf) {
   3624 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
   3625 		if (iswep)
   3626 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
   3627 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
   3628 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
   3629 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
   3630 
   3631 		bpf_mtap2(sc->sc_drvbpf,
   3632 			&sc->sc_tx_th, sc->sc_tx_th_len, m0);
   3633 	}
   3634 
   3635 	/*
   3636 	 * Determine if a tx interrupt should be generated for
   3637 	 * this descriptor.  We take a tx interrupt to reap
   3638 	 * descriptors when the h/w hits an EOL condition or
   3639 	 * when the descriptor is specifically marked to generate
   3640 	 * an interrupt.  We periodically mark descriptors in this
   3641 	 * way to insure timely replenishing of the supply needed
   3642 	 * for sending frames.  Defering interrupts reduces system
   3643 	 * load and potentially allows more concurrent work to be
   3644 	 * done but if done to aggressively can cause senders to
   3645 	 * backup.
   3646 	 *
   3647 	 * NB: use >= to deal with sc_txintrperiod changing
   3648 	 *     dynamically through sysctl.
   3649 	 */
   3650 	if (flags & HAL_TXDESC_INTREQ) {
   3651 		txq->axq_intrcnt = 0;
   3652 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
   3653 		flags |= HAL_TXDESC_INTREQ;
   3654 		txq->axq_intrcnt = 0;
   3655 	}
   3656 
   3657 	/*
   3658 	 * Formulate first tx descriptor with tx controls.
   3659 	 */
   3660 	/* XXX check return value? */
   3661 	ath_hal_setuptxdesc(ah, ds
   3662 		, pktlen		/* packet length */
   3663 		, hdrlen		/* header length */
   3664 		, atype			/* Atheros packet type */
   3665 		, ni->ni_txpower	/* txpower */
   3666 		, txrate, try0		/* series 0 rate/tries */
   3667 		, keyix			/* key cache index */
   3668 		, sc->sc_txantenna	/* antenna mode */
   3669 		, flags			/* flags */
   3670 		, ctsrate		/* rts/cts rate */
   3671 		, ctsduration		/* rts/cts duration */
   3672 	);
   3673 	bf->bf_flags = flags;
   3674 	/*
   3675 	 * Setup the multi-rate retry state only when we're
   3676 	 * going to use it.  This assumes ath_hal_setuptxdesc
   3677 	 * initializes the descriptors (so we don't have to)
   3678 	 * when the hardware supports multi-rate retry and
   3679 	 * we don't use it.
   3680 	 */
   3681 	if (try0 != ATH_TXMAXTRY)
   3682 		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
   3683 
   3684 	/*
   3685 	 * Fillin the remainder of the descriptor info.
   3686 	 */
   3687 	ds0 = ds;
   3688 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
   3689 		ds->ds_data = bf->bf_segs[i].ds_addr;
   3690 		if (i == bf->bf_nseg - 1)
   3691 			ds->ds_link = 0;
   3692 		else
   3693 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
   3694 		ath_hal_filltxdesc(ah, ds
   3695 			, bf->bf_segs[i].ds_len	/* segment length */
   3696 			, i == 0		/* first segment */
   3697 			, i == bf->bf_nseg - 1	/* last segment */
   3698 			, ds0			/* first descriptor */
   3699 		);
   3700 		DPRINTF(sc, ATH_DEBUG_XMIT,
   3701 			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
   3702 			__func__, i, ds->ds_link, ds->ds_data,
   3703 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
   3704 	}
   3705 	/*
   3706 	 * Insert the frame on the outbound list and
   3707 	 * pass it on to the hardware.
   3708 	 */
   3709 	ATH_TXQ_LOCK(txq);
   3710 	if (flags & (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) {
   3711 		u_int32_t txopLimit = IEEE80211_TXOP_TO_US(
   3712 			cap->cap_wmeParams[pri].wmep_txopLimit);
   3713 		/*
   3714 		 * When bursting, potentially extend the CTS duration
   3715 		 * of a previously queued frame to cover this frame
   3716 		 * and not exceed the txopLimit.  If that can be done
   3717 		 * then disable RTS/CTS on this frame since it's now
   3718 		 * covered (burst extension).  Otherwise we must terminate
   3719 		 * the burst before this frame goes out so as not to
   3720 		 * violate the WME parameters.  All this is complicated
   3721 		 * as we need to update the state of packets on the
   3722 		 * (live) hardware queue.  The logic is buried in the hal
   3723 		 * because it's highly chip-specific.
   3724 		 */
   3725 		if (txopLimit != 0) {
   3726 			sc->sc_stats.ast_tx_ctsburst++;
   3727 			if (updateCTSForBursting(ah, ds0, txq) == 0) {
   3728 				/*
   3729 				 * This frame was not covered by RTS/CTS from
   3730 				 * the previous frame in the burst; update the
   3731 				 * descriptor pointers so this frame is now
   3732 				 * treated as the last frame for extending a
   3733 				 * burst.
   3734 				 */
   3735 				txq->axq_lastdsWithCTS = ds0;
   3736 				/* set gating Desc to final desc */
   3737 				txq->axq_gatingds =
   3738 					(struct ath_desc *)txq->axq_link;
   3739 			} else
   3740 				sc->sc_stats.ast_tx_ctsext++;
   3741 		}
   3742 	}
   3743 	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
   3744 	if (txq->axq_link == NULL) {
   3745 		ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
   3746 		DPRINTF(sc, ATH_DEBUG_XMIT,
   3747 			"%s: TXDP[%u] = %p (%p) depth %d\n", __func__,
   3748 			txq->axq_qnum, (caddr_t)bf->bf_daddr, bf->bf_desc,
   3749 			txq->axq_depth);
   3750 	} else {
   3751 		*txq->axq_link = bf->bf_daddr;
   3752 		DPRINTF(sc, ATH_DEBUG_XMIT,
   3753 			"%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
   3754 			txq->axq_qnum, txq->axq_link,
   3755 			(caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
   3756 	}
   3757 	txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
   3758 	/*
   3759 	 * The CAB queue is started from the SWBA handler since
   3760 	 * frames only go out on DTIM and to avoid possible races.
   3761 	 */
   3762 	if (txq != sc->sc_cabq)
   3763 		ath_hal_txstart(ah, txq->axq_qnum);
   3764 	ATH_TXQ_UNLOCK(txq);
   3765 
   3766 	return 0;
   3767 #undef updateCTSForBursting
   3768 #undef CTS_DURATION
   3769 }
   3770 
   3771 /*
   3772  * Process completed xmit descriptors from the specified queue.
   3773  */
   3774 static void
   3775 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
   3776 {
   3777 	struct ath_hal *ah = sc->sc_ah;
   3778 	struct ieee80211com *ic = &sc->sc_ic;
   3779 	struct ath_buf *bf;
   3780 	struct ath_desc *ds, *ds0;
   3781 	struct ieee80211_node *ni;
   3782 	struct ath_node *an;
   3783 	int sr, lr, pri;
   3784 	HAL_STATUS status;
   3785 
   3786 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
   3787 		__func__, txq->axq_qnum,
   3788 		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
   3789 		txq->axq_link);
   3790 	for (;;) {
   3791 		ATH_TXQ_LOCK(txq);
   3792 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
   3793 		bf = STAILQ_FIRST(&txq->axq_q);
   3794 		if (bf == NULL) {
   3795 			txq->axq_link = NULL;
   3796 			ATH_TXQ_UNLOCK(txq);
   3797 			break;
   3798 		}
   3799 		ds0 = &bf->bf_desc[0];
   3800 		ds = &bf->bf_desc[bf->bf_nseg - 1];
   3801 		status = ath_hal_txprocdesc(ah, ds);
   3802 #ifdef AR_DEBUG
   3803 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
   3804 			ath_printtxbuf(bf, status == HAL_OK);
   3805 #endif
   3806 		if (status == HAL_EINPROGRESS) {
   3807 			ATH_TXQ_UNLOCK(txq);
   3808 			break;
   3809 		}
   3810 		if (ds0 == txq->axq_lastdsWithCTS)
   3811 			txq->axq_lastdsWithCTS = NULL;
   3812 		if (ds == txq->axq_gatingds)
   3813 			txq->axq_gatingds = NULL;
   3814 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
   3815 		ATH_TXQ_UNLOCK(txq);
   3816 
   3817 		ni = bf->bf_node;
   3818 		if (ni != NULL) {
   3819 			an = ATH_NODE(ni);
   3820 			if (ds->ds_txstat.ts_status == 0) {
   3821 				u_int8_t txant = ds->ds_txstat.ts_antenna;
   3822 				sc->sc_stats.ast_ant_tx[txant]++;
   3823 				sc->sc_ant_tx[txant]++;
   3824 				if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
   3825 					sc->sc_stats.ast_tx_altrate++;
   3826 				sc->sc_stats.ast_tx_rssi =
   3827 					ds->ds_txstat.ts_rssi;
   3828 				ATH_RSSI_LPF(an->an_halstats.ns_avgtxrssi,
   3829 					ds->ds_txstat.ts_rssi);
   3830 				pri = M_WME_GETAC(bf->bf_m);
   3831 				if (pri >= WME_AC_VO)
   3832 					ic->ic_wme.wme_hipri_traffic++;
   3833 				ni->ni_inact = ni->ni_inact_reload;
   3834 			} else {
   3835 				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
   3836 					sc->sc_stats.ast_tx_xretries++;
   3837 				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
   3838 					sc->sc_stats.ast_tx_fifoerr++;
   3839 				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
   3840 					sc->sc_stats.ast_tx_filtered++;
   3841 			}
   3842 			sr = ds->ds_txstat.ts_shortretry;
   3843 			lr = ds->ds_txstat.ts_longretry;
   3844 			sc->sc_stats.ast_tx_shortretry += sr;
   3845 			sc->sc_stats.ast_tx_longretry += lr;
   3846 			/*
   3847 			 * Hand the descriptor to the rate control algorithm.
   3848 			 */
   3849 			if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
   3850 			    (bf->bf_flags & HAL_TXDESC_NOACK) == 0)
   3851 				ath_rate_tx_complete(sc, an, ds, ds0);
   3852 			/*
   3853 			 * Reclaim reference to node.
   3854 			 *
   3855 			 * NB: the node may be reclaimed here if, for example
   3856 			 *     this is a DEAUTH message that was sent and the
   3857 			 *     node was timed out due to inactivity.
   3858 			 */
   3859 			ieee80211_free_node(ni);
   3860 		}
   3861 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   3862 		    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   3863 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   3864 		m_freem(bf->bf_m);
   3865 		bf->bf_m = NULL;
   3866 		bf->bf_node = NULL;
   3867 
   3868 		ATH_TXBUF_LOCK(sc);
   3869 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   3870 		ATH_TXBUF_UNLOCK(sc);
   3871 	}
   3872 }
   3873 
   3874 /*
   3875  * Deferred processing of transmit interrupt; special-cased
   3876  * for a single hardware transmit queue (e.g. 5210 and 5211).
   3877  */
   3878 static void
   3879 ath_tx_proc_q0(void *arg, int npending)
   3880 {
   3881 	struct ath_softc *sc = arg;
   3882 	struct ifnet *ifp = &sc->sc_if;
   3883 
   3884 	ath_tx_processq(sc, &sc->sc_txq[0]);
   3885 	ath_tx_processq(sc, sc->sc_cabq);
   3886 	ifp->if_flags &= ~IFF_OACTIVE;
   3887 	sc->sc_tx_timer = 0;
   3888 
   3889 	if (sc->sc_softled)
   3890 		ath_led_event(sc, ATH_LED_TX);
   3891 
   3892 	ath_start(ifp);
   3893 }
   3894 
   3895 /*
   3896  * Deferred processing of transmit interrupt; special-cased
   3897  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
   3898  */
   3899 static void
   3900 ath_tx_proc_q0123(void *arg, int npending)
   3901 {
   3902 	struct ath_softc *sc = arg;
   3903 	struct ifnet *ifp = &sc->sc_if;
   3904 
   3905 	/*
   3906 	 * Process each active queue.
   3907 	 */
   3908 	ath_tx_processq(sc, &sc->sc_txq[0]);
   3909 	ath_tx_processq(sc, &sc->sc_txq[1]);
   3910 	ath_tx_processq(sc, &sc->sc_txq[2]);
   3911 	ath_tx_processq(sc, &sc->sc_txq[3]);
   3912 	ath_tx_processq(sc, sc->sc_cabq);
   3913 
   3914 	ifp->if_flags &= ~IFF_OACTIVE;
   3915 	sc->sc_tx_timer = 0;
   3916 
   3917 	if (sc->sc_softled)
   3918 		ath_led_event(sc, ATH_LED_TX);
   3919 
   3920 	ath_start(ifp);
   3921 }
   3922 
   3923 /*
   3924  * Deferred processing of transmit interrupt.
   3925  */
   3926 static void
   3927 ath_tx_proc(void *arg, int npending)
   3928 {
   3929 	struct ath_softc *sc = arg;
   3930 	struct ifnet *ifp = &sc->sc_if;
   3931 	int i;
   3932 
   3933 	/*
   3934 	 * Process each active queue.
   3935 	 */
   3936 	/* XXX faster to read ISR_S0_S and ISR_S1_S to determine q's? */
   3937 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   3938 		if (ATH_TXQ_SETUP(sc, i))
   3939 			ath_tx_processq(sc, &sc->sc_txq[i]);
   3940 
   3941 	ifp->if_flags &= ~IFF_OACTIVE;
   3942 	sc->sc_tx_timer = 0;
   3943 
   3944 	if (sc->sc_softled)
   3945 		ath_led_event(sc, ATH_LED_TX);
   3946 
   3947 	ath_start(ifp);
   3948 }
   3949 
   3950 static void
   3951 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
   3952 {
   3953 	struct ath_hal *ah = sc->sc_ah;
   3954 	struct ieee80211_node *ni;
   3955 	struct ath_buf *bf;
   3956 
   3957 	/*
   3958 	 * NB: this assumes output has been stopped and
   3959 	 *     we do not need to block ath_tx_tasklet
   3960 	 */
   3961 	for (;;) {
   3962 		ATH_TXQ_LOCK(txq);
   3963 		bf = STAILQ_FIRST(&txq->axq_q);
   3964 		if (bf == NULL) {
   3965 			txq->axq_link = NULL;
   3966 			ATH_TXQ_UNLOCK(txq);
   3967 			break;
   3968 		}
   3969 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
   3970 		ATH_TXQ_UNLOCK(txq);
   3971 #ifdef AR_DEBUG
   3972 		if (sc->sc_debug & ATH_DEBUG_RESET)
   3973 			ath_printtxbuf(bf,
   3974 				ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
   3975 #endif /* AR_DEBUG */
   3976 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   3977 		m_freem(bf->bf_m);
   3978 		bf->bf_m = NULL;
   3979 		ni = bf->bf_node;
   3980 		bf->bf_node = NULL;
   3981 		if (ni != NULL) {
   3982 			/*
   3983 			 * Reclaim node reference.
   3984 			 */
   3985 			ieee80211_free_node(ni);
   3986 		}
   3987 		ATH_TXBUF_LOCK(sc);
   3988 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   3989 		ATH_TXBUF_UNLOCK(sc);
   3990 	}
   3991 }
   3992 
   3993 static void
   3994 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
   3995 {
   3996 	struct ath_hal *ah = sc->sc_ah;
   3997 
   3998 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
   3999 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
   4000 	    __func__, txq->axq_qnum,
   4001 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
   4002 	    txq->axq_link);
   4003 }
   4004 
   4005 /*
   4006  * Drain the transmit queues and reclaim resources.
   4007  */
   4008 static void
   4009 ath_draintxq(struct ath_softc *sc)
   4010 {
   4011 	struct ath_hal *ah = sc->sc_ah;
   4012 	struct ifnet *ifp = &sc->sc_if;
   4013 	int i;
   4014 
   4015 	/* XXX return value */
   4016 	if (!sc->sc_invalid) {
   4017 		/* don't touch the hardware if marked invalid */
   4018 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
   4019 		DPRINTF(sc, ATH_DEBUG_RESET,
   4020 		    "%s: beacon queue %p\n", __func__,
   4021 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
   4022 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   4023 			if (ATH_TXQ_SETUP(sc, i))
   4024 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
   4025 	}
   4026 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   4027 		if (ATH_TXQ_SETUP(sc, i))
   4028 			ath_tx_draintxq(sc, &sc->sc_txq[i]);
   4029 	ifp->if_flags &= ~IFF_OACTIVE;
   4030 	sc->sc_tx_timer = 0;
   4031 }
   4032 
   4033 /*
   4034  * Disable the receive h/w in preparation for a reset.
   4035  */
   4036 static void
   4037 ath_stoprecv(struct ath_softc *sc)
   4038 {
   4039 #define	PA2DESC(_sc, _pa) \
   4040 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
   4041 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
   4042 	struct ath_hal *ah = sc->sc_ah;
   4043 
   4044 	ath_hal_stoppcurecv(ah);	/* disable PCU */
   4045 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
   4046 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
   4047 	DELAY(3000);			/* 3ms is long enough for 1 frame */
   4048 #ifdef AR_DEBUG
   4049 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
   4050 		struct ath_buf *bf;
   4051 
   4052 		printf("%s: rx queue %p, link %p\n", __func__,
   4053 			(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
   4054 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
   4055 			struct ath_desc *ds = bf->bf_desc;
   4056 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
   4057 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
   4058 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
   4059 				ath_printrxbuf(bf, status == HAL_OK);
   4060 		}
   4061 	}
   4062 #endif
   4063 	sc->sc_rxlink = NULL;		/* just in case */
   4064 #undef PA2DESC
   4065 }
   4066 
   4067 /*
   4068  * Enable the receive h/w following a reset.
   4069  */
   4070 static int
   4071 ath_startrecv(struct ath_softc *sc)
   4072 {
   4073 	struct ath_hal *ah = sc->sc_ah;
   4074 	struct ath_buf *bf;
   4075 
   4076 	sc->sc_rxlink = NULL;
   4077 	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
   4078 		int error = ath_rxbuf_init(sc, bf);
   4079 		if (error != 0) {
   4080 			DPRINTF(sc, ATH_DEBUG_RECV,
   4081 				"%s: ath_rxbuf_init failed %d\n",
   4082 				__func__, error);
   4083 			return error;
   4084 		}
   4085 	}
   4086 
   4087 	bf = STAILQ_FIRST(&sc->sc_rxbuf);
   4088 	ath_hal_putrxbuf(ah, bf->bf_daddr);
   4089 	ath_hal_rxena(ah);		/* enable recv descriptors */
   4090 	ath_mode_init(sc);		/* set filters, etc. */
   4091 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
   4092 	return 0;
   4093 }
   4094 
   4095 /*
   4096  * Update internal state after a channel change.
   4097  */
   4098 static void
   4099 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
   4100 {
   4101 	struct ieee80211com *ic = &sc->sc_ic;
   4102 	enum ieee80211_phymode mode;
   4103 	u_int16_t flags;
   4104 
   4105 	/*
   4106 	 * Change channels and update the h/w rate map
   4107 	 * if we're switching; e.g. 11a to 11b/g.
   4108 	 */
   4109 	mode = ieee80211_chan2mode(ic, chan);
   4110 	if (mode != sc->sc_curmode)
   4111 		ath_setcurmode(sc, mode);
   4112 	/*
   4113 	 * Update BPF state.  NB: ethereal et. al. don't handle
   4114 	 * merged flags well so pick a unique mode for their use.
   4115 	 */
   4116 	if (IEEE80211_IS_CHAN_A(chan))
   4117 		flags = IEEE80211_CHAN_A;
   4118 	/* XXX 11g schizophrenia */
   4119 	else if (IEEE80211_IS_CHAN_G(chan) ||
   4120 	    IEEE80211_IS_CHAN_PUREG(chan))
   4121 		flags = IEEE80211_CHAN_G;
   4122 	else
   4123 		flags = IEEE80211_CHAN_B;
   4124 	if (IEEE80211_IS_CHAN_T(chan))
   4125 		flags |= IEEE80211_CHAN_TURBO;
   4126 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
   4127 		htole16(chan->ic_freq);
   4128 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
   4129 		htole16(flags);
   4130 }
   4131 
   4132 /*
   4133  * Set/change channels.  If the channel is really being changed,
   4134  * it's done by reseting the chip.  To accomplish this we must
   4135  * first cleanup any pending DMA, then restart stuff after a la
   4136  * ath_init.
   4137  */
   4138 static int
   4139 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
   4140 {
   4141 	struct ath_hal *ah = sc->sc_ah;
   4142 	struct ieee80211com *ic = &sc->sc_ic;
   4143 	HAL_CHANNEL hchan;
   4144 
   4145 	/*
   4146 	 * Convert to a HAL channel description with
   4147 	 * the flags constrained to reflect the current
   4148 	 * operating mode.
   4149 	 */
   4150 	hchan.channel = chan->ic_freq;
   4151 	hchan.channelFlags = ath_chan2flags(ic, chan);
   4152 
   4153 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz) -> %u (%u MHz)\n",
   4154 	    __func__,
   4155 	    ath_hal_mhz2ieee(sc->sc_curchan.channel,
   4156 		sc->sc_curchan.channelFlags),
   4157 	    	sc->sc_curchan.channel,
   4158 	    ath_hal_mhz2ieee(hchan.channel, hchan.channelFlags), hchan.channel);
   4159 	if (hchan.channel != sc->sc_curchan.channel ||
   4160 	    hchan.channelFlags != sc->sc_curchan.channelFlags) {
   4161 		HAL_STATUS status;
   4162 
   4163 		/*
   4164 		 * To switch channels clear any pending DMA operations;
   4165 		 * wait long enough for the RX fifo to drain, reset the
   4166 		 * hardware at the new frequency, and then re-enable
   4167 		 * the relevant bits of the h/w.
   4168 		 */
   4169 		ath_hal_intrset(ah, 0);		/* disable interrupts */
   4170 		ath_draintxq(sc);		/* clear pending tx frames */
   4171 		ath_stoprecv(sc);		/* turn off frame recv */
   4172 		if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
   4173 			if_printf(&sc->sc_if, "ath_chan_set: unable to reset "
   4174 				"channel %u (%u Mhz)\n",
   4175 				ieee80211_chan2ieee(ic, chan), chan->ic_freq);
   4176 			return EIO;
   4177 		}
   4178 		sc->sc_curchan = hchan;
   4179 		ath_update_txpow(sc);		/* update tx power state */
   4180 		sc->sc_diversity = ath_hal_getdiversity(ah);
   4181 
   4182 		/*
   4183 		 * Re-enable rx framework.
   4184 		 */
   4185 		if (ath_startrecv(sc) != 0) {
   4186 			if_printf(&sc->sc_if,
   4187 				"ath_chan_set: unable to restart recv logic\n");
   4188 			return EIO;
   4189 		}
   4190 
   4191 		/*
   4192 		 * Change channels and update the h/w rate map
   4193 		 * if we're switching; e.g. 11a to 11b/g.
   4194 		 */
   4195 		ic->ic_ibss_chan = chan;
   4196 		ath_chan_change(sc, chan);
   4197 
   4198 		/*
   4199 		 * Re-enable interrupts.
   4200 		 */
   4201 		ath_hal_intrset(ah, sc->sc_imask);
   4202 	}
   4203 	return 0;
   4204 }
   4205 
   4206 static void
   4207 ath_next_scan(void *arg)
   4208 {
   4209 	struct ath_softc *sc = arg;
   4210 	struct ieee80211com *ic = &sc->sc_ic;
   4211 	int s;
   4212 
   4213 	/* don't call ath_start w/o network interrupts blocked */
   4214 	s = splnet();
   4215 
   4216 	if (ic->ic_state == IEEE80211_S_SCAN)
   4217 		ieee80211_next_scan(ic);
   4218 	splx(s);
   4219 }
   4220 
   4221 /*
   4222  * Periodically recalibrate the PHY to account
   4223  * for temperature/environment changes.
   4224  */
   4225 static void
   4226 ath_calibrate(void *arg)
   4227 {
   4228 	struct ath_softc *sc = arg;
   4229 	struct ath_hal *ah = sc->sc_ah;
   4230 
   4231 	sc->sc_stats.ast_per_cal++;
   4232 
   4233 	ATH_LOCK(sc);
   4234 	DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: channel %u/%x\n",
   4235 		__func__, sc->sc_curchan.channel, sc->sc_curchan.channelFlags);
   4236 
   4237 	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
   4238 		/*
   4239 		 * Rfgain is out of bounds, reset the chip
   4240 		 * to load new gain values.
   4241 		 */
   4242 		sc->sc_stats.ast_per_rfgain++;
   4243 		ath_reset(&sc->sc_if);
   4244 	}
   4245 	if (!ath_hal_calibrate(ah, &sc->sc_curchan)) {
   4246 		DPRINTF(sc, ATH_DEBUG_ANY,
   4247 			"%s: calibration of channel %u failed\n",
   4248 			__func__, sc->sc_curchan.channel);
   4249 		sc->sc_stats.ast_per_calfail++;
   4250 	}
   4251 	callout_reset(&sc->sc_cal_ch, ath_calinterval * hz, ath_calibrate, sc);
   4252 	ATH_UNLOCK(sc);
   4253 }
   4254 
   4255 static int
   4256 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
   4257 {
   4258 	struct ifnet *ifp = ic->ic_ifp;
   4259 	struct ath_softc *sc = ifp->if_softc;
   4260 	struct ath_hal *ah = sc->sc_ah;
   4261 	struct ieee80211_node *ni;
   4262 	int i, error;
   4263 	const u_int8_t *bssid;
   4264 	u_int32_t rfilt;
   4265 	static const HAL_LED_STATE leds[] = {
   4266 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
   4267 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
   4268 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
   4269 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
   4270 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
   4271 	};
   4272 
   4273 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
   4274 		ieee80211_state_name[ic->ic_state],
   4275 		ieee80211_state_name[nstate]);
   4276 
   4277 	callout_stop(&sc->sc_scan_ch);
   4278 	callout_stop(&sc->sc_cal_ch);
   4279 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
   4280 
   4281 	if (nstate == IEEE80211_S_INIT) {
   4282 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
   4283 		/*
   4284 		 * NB: disable interrupts so we don't rx frames.
   4285 		 */
   4286 		ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
   4287 		/*
   4288 		 * Notify the rate control algorithm.
   4289 		 */
   4290 		ath_rate_newstate(sc, nstate);
   4291 		goto done;
   4292 	}
   4293 	ni = ic->ic_bss;
   4294 	error = ath_chan_set(sc, ic->ic_curchan);
   4295 	if (error != 0)
   4296 		goto bad;
   4297 	rfilt = ath_calcrxfilter(sc, nstate);
   4298 	if (nstate == IEEE80211_S_SCAN)
   4299 		bssid = ifp->if_broadcastaddr;
   4300 	else
   4301 		bssid = ni->ni_bssid;
   4302 	ath_hal_setrxfilter(ah, rfilt);
   4303 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
   4304 		 __func__, rfilt, ether_sprintf(bssid));
   4305 
   4306 	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
   4307 		ath_hal_setassocid(ah, bssid, ni->ni_associd);
   4308 	else
   4309 		ath_hal_setassocid(ah, bssid, 0);
   4310 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
   4311 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
   4312 			if (ath_hal_keyisvalid(ah, i))
   4313 				ath_hal_keysetmac(ah, i, bssid);
   4314 	}
   4315 
   4316 	/*
   4317 	 * Notify the rate control algorithm so rates
   4318 	 * are setup should ath_beacon_alloc be called.
   4319 	 */
   4320 	ath_rate_newstate(sc, nstate);
   4321 
   4322 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
   4323 		/* nothing to do */;
   4324 	} else if (nstate == IEEE80211_S_RUN) {
   4325 		DPRINTF(sc, ATH_DEBUG_STATE,
   4326 			"%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
   4327 			"capinfo=0x%04x chan=%d\n"
   4328 			 , __func__
   4329 			 , ic->ic_flags
   4330 			 , ni->ni_intval
   4331 			 , ether_sprintf(ni->ni_bssid)
   4332 			 , ni->ni_capinfo
   4333 			 , ieee80211_chan2ieee(ic, ic->ic_curchan));
   4334 
   4335 		switch (ic->ic_opmode) {
   4336 		case IEEE80211_M_HOSTAP:
   4337 		case IEEE80211_M_IBSS:
   4338 			/*
   4339 			 * Allocate and setup the beacon frame.
   4340 			 *
   4341 			 * Stop any previous beacon DMA.  This may be
   4342 			 * necessary, for example, when an ibss merge
   4343 			 * causes reconfiguration; there will be a state
   4344 			 * transition from RUN->RUN that means we may
   4345 			 * be called with beacon transmission active.
   4346 			 */
   4347 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
   4348 			ath_beacon_free(sc);
   4349 			error = ath_beacon_alloc(sc, ni);
   4350 			if (error != 0)
   4351 				goto bad;
   4352 			break;
   4353 		case IEEE80211_M_STA:
   4354 			/*
   4355 			 * Allocate a key cache slot to the station.
   4356 			 */
   4357 			if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
   4358 			    sc->sc_hasclrkey &&
   4359 			    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
   4360 				ath_setup_stationkey(ni);
   4361 			break;
   4362 		default:
   4363 			break;
   4364 		}
   4365 
   4366 		/*
   4367 		 * Configure the beacon and sleep timers.
   4368 		 */
   4369 		ath_beacon_config(sc);
   4370 	} else {
   4371 		ath_hal_intrset(ah,
   4372 			sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
   4373 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
   4374 	}
   4375 done:
   4376 	/*
   4377 	 * Invoke the parent method to complete the work.
   4378 	 */
   4379 	error = sc->sc_newstate(ic, nstate, arg);
   4380 	/*
   4381 	 * Finally, start any timers.
   4382 	 */
   4383 	if (nstate == IEEE80211_S_RUN) {
   4384 		/* start periodic recalibration timer */
   4385 		callout_reset(&sc->sc_cal_ch, ath_calinterval * hz,
   4386 			ath_calibrate, sc);
   4387 	} else if (nstate == IEEE80211_S_SCAN) {
   4388 		/* start ap/neighbor scan timer */
   4389 		callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
   4390 			ath_next_scan, sc);
   4391 	}
   4392 bad:
   4393 	return error;
   4394 }
   4395 
   4396 /*
   4397  * Allocate a key cache slot to the station so we can
   4398  * setup a mapping from key index to node. The key cache
   4399  * slot is needed for managing antenna state and for
   4400  * compression when stations do not use crypto.  We do
   4401  * it uniliaterally here; if crypto is employed this slot
   4402  * will be reassigned.
   4403  */
   4404 static void
   4405 ath_setup_stationkey(struct ieee80211_node *ni)
   4406 {
   4407 	struct ieee80211com *ic = ni->ni_ic;
   4408 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   4409 	ieee80211_keyix keyix, rxkeyix;
   4410 
   4411 	if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
   4412 		/*
   4413 		 * Key cache is full; we'll fall back to doing
   4414 		 * the more expensive lookup in software.  Note
   4415 		 * this also means no h/w compression.
   4416 		 */
   4417 		/* XXX msg+statistic */
   4418 	} else {
   4419 		/* XXX locking? */
   4420 		ni->ni_ucastkey.wk_keyix = keyix;
   4421 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
   4422 		/* NB: this will create a pass-thru key entry */
   4423 		ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
   4424 	}
   4425 }
   4426 
   4427 /*
   4428  * Setup driver-specific state for a newly associated node.
   4429  * Note that we're called also on a re-associate, the isnew
   4430  * param tells us if this is the first time or not.
   4431  */
   4432 static void
   4433 ath_newassoc(struct ieee80211_node *ni, int isnew)
   4434 {
   4435 	struct ieee80211com *ic = ni->ni_ic;
   4436 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   4437 
   4438 	ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
   4439 	if (isnew &&
   4440 	    (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
   4441 		KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
   4442 		    ("new assoc with a unicast key already setup (keyix %u)",
   4443 		    ni->ni_ucastkey.wk_keyix));
   4444 		ath_setup_stationkey(ni);
   4445 	}
   4446 }
   4447 
   4448 static int
   4449 ath_getchannels(struct ath_softc *sc, u_int cc,
   4450 	HAL_BOOL outdoor, HAL_BOOL xchanmode)
   4451 {
   4452 	struct ieee80211com *ic = &sc->sc_ic;
   4453 	struct ifnet *ifp = &sc->sc_if;
   4454 	struct ath_hal *ah = sc->sc_ah;
   4455 	HAL_CHANNEL *chans;
   4456 	int i, ix, nchan;
   4457 
   4458 	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
   4459 			M_TEMP, M_NOWAIT);
   4460 	if (chans == NULL) {
   4461 		if_printf(ifp, "unable to allocate channel table\n");
   4462 		return ENOMEM;
   4463 	}
   4464 	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
   4465 	    cc, HAL_MODE_ALL, outdoor, xchanmode)) {
   4466 		u_int32_t rd;
   4467 
   4468 		ath_hal_getregdomain(ah, &rd);
   4469 		if_printf(ifp, "unable to collect channel list from hal; "
   4470 			"regdomain likely %u country code %u\n", rd, cc);
   4471 		free(chans, M_TEMP);
   4472 		return EINVAL;
   4473 	}
   4474 
   4475 	/*
   4476 	 * Convert HAL channels to ieee80211 ones and insert
   4477 	 * them in the table according to their channel number.
   4478 	 */
   4479 	for (i = 0; i < nchan; i++) {
   4480 		HAL_CHANNEL *c = &chans[i];
   4481 		ix = ath_hal_mhz2ieee(c->channel, c->channelFlags);
   4482 		if (ix > IEEE80211_CHAN_MAX) {
   4483 			if_printf(ifp, "bad hal channel %u (%u/%x) ignored\n",
   4484 				ix, c->channel, c->channelFlags);
   4485 			continue;
   4486 		}
   4487 		DPRINTF(sc, ATH_DEBUG_ANY,
   4488 		    "%s: HAL channel %d/%d freq %d flags %#04x idx %d\n",
   4489 		    sc->sc_dev.dv_xname, i, nchan, c->channel, c->channelFlags,
   4490 		    ix);
   4491 		/* NB: flags are known to be compatible */
   4492 		if (ic->ic_channels[ix].ic_freq == 0) {
   4493 			ic->ic_channels[ix].ic_freq = c->channel;
   4494 			ic->ic_channels[ix].ic_flags = c->channelFlags;
   4495 		} else {
   4496 			/* channels overlap; e.g. 11g and 11b */
   4497 			ic->ic_channels[ix].ic_flags |= c->channelFlags;
   4498 		}
   4499 	}
   4500 	free(chans, M_TEMP);
   4501 	return 0;
   4502 }
   4503 
   4504 static void
   4505 ath_led_done(void *arg)
   4506 {
   4507 	struct ath_softc *sc = arg;
   4508 
   4509 	sc->sc_blinking = 0;
   4510 }
   4511 
   4512 /*
   4513  * Turn the LED off: flip the pin and then set a timer so no
   4514  * update will happen for the specified duration.
   4515  */
   4516 static void
   4517 ath_led_off(void *arg)
   4518 {
   4519 	struct ath_softc *sc = arg;
   4520 
   4521 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
   4522 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
   4523 }
   4524 
   4525 /*
   4526  * Blink the LED according to the specified on/off times.
   4527  */
   4528 static void
   4529 ath_led_blink(struct ath_softc *sc, int on, int off)
   4530 {
   4531 	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
   4532 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
   4533 	sc->sc_blinking = 1;
   4534 	sc->sc_ledoff = off;
   4535 	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
   4536 }
   4537 
   4538 static void
   4539 ath_led_event(struct ath_softc *sc, int event)
   4540 {
   4541 
   4542 	sc->sc_ledevent = ticks;	/* time of last event */
   4543 	if (sc->sc_blinking)		/* don't interrupt active blink */
   4544 		return;
   4545 	switch (event) {
   4546 	case ATH_LED_POLL:
   4547 		ath_led_blink(sc, sc->sc_hwmap[0].ledon,
   4548 			sc->sc_hwmap[0].ledoff);
   4549 		break;
   4550 	case ATH_LED_TX:
   4551 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
   4552 			sc->sc_hwmap[sc->sc_txrate].ledoff);
   4553 		break;
   4554 	case ATH_LED_RX:
   4555 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
   4556 			sc->sc_hwmap[sc->sc_rxrate].ledoff);
   4557 		break;
   4558 	}
   4559 }
   4560 
   4561 static void
   4562 ath_update_txpow(struct ath_softc *sc)
   4563 {
   4564 	struct ieee80211com *ic = &sc->sc_ic;
   4565 	struct ath_hal *ah = sc->sc_ah;
   4566 	u_int32_t txpow;
   4567 
   4568 	if (sc->sc_curtxpow != ic->ic_txpowlimit) {
   4569 		ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
   4570 		/* read back in case value is clamped */
   4571 		ath_hal_gettxpowlimit(ah, &txpow);
   4572 		ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
   4573 	}
   4574 	/*
   4575 	 * Fetch max tx power level for status requests.
   4576 	 */
   4577 	ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
   4578 	ic->ic_bss->ni_txpower = txpow;
   4579 }
   4580 
   4581 static int
   4582 ath_rate_setup(struct ath_softc *sc, u_int mode)
   4583 {
   4584 	struct ath_hal *ah = sc->sc_ah;
   4585 	struct ieee80211com *ic = &sc->sc_ic;
   4586 	const HAL_RATE_TABLE *rt;
   4587 	struct ieee80211_rateset *rs;
   4588 	int i, maxrates;
   4589 
   4590 	switch (mode) {
   4591 	case IEEE80211_MODE_11A:
   4592 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11A);
   4593 		break;
   4594 	case IEEE80211_MODE_11B:
   4595 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11B);
   4596 		break;
   4597 	case IEEE80211_MODE_11G:
   4598 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11G);
   4599 		break;
   4600 	case IEEE80211_MODE_TURBO_A:
   4601 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_TURBO);
   4602 		break;
   4603 	case IEEE80211_MODE_TURBO_G:
   4604 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_108G);
   4605 		break;
   4606 	default:
   4607 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
   4608 			__func__, mode);
   4609 		return 0;
   4610 	}
   4611 	rt = sc->sc_rates[mode];
   4612 	if (rt == NULL)
   4613 		return 0;
   4614 	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
   4615 		DPRINTF(sc, ATH_DEBUG_ANY,
   4616 			"%s: rate table too small (%u > %u)\n",
   4617 			__func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
   4618 		maxrates = IEEE80211_RATE_MAXSIZE;
   4619 	} else
   4620 		maxrates = rt->rateCount;
   4621 	rs = &ic->ic_sup_rates[mode];
   4622 	for (i = 0; i < maxrates; i++)
   4623 		rs->rs_rates[i] = rt->info[i].dot11Rate;
   4624 	rs->rs_nrates = maxrates;
   4625 	return 1;
   4626 }
   4627 
   4628 static void
   4629 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
   4630 {
   4631 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   4632 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
   4633 	static const struct {
   4634 		u_int		rate;		/* tx/rx 802.11 rate */
   4635 		u_int16_t	timeOn;		/* LED on time (ms) */
   4636 		u_int16_t	timeOff;	/* LED off time (ms) */
   4637 	} blinkrates[] = {
   4638 		{ 108,  40,  10 },
   4639 		{  96,  44,  11 },
   4640 		{  72,  50,  13 },
   4641 		{  48,  57,  14 },
   4642 		{  36,  67,  16 },
   4643 		{  24,  80,  20 },
   4644 		{  22, 100,  25 },
   4645 		{  18, 133,  34 },
   4646 		{  12, 160,  40 },
   4647 		{  10, 200,  50 },
   4648 		{   6, 240,  58 },
   4649 		{   4, 267,  66 },
   4650 		{   2, 400, 100 },
   4651 		{   0, 500, 130 },
   4652 	};
   4653 	const HAL_RATE_TABLE *rt;
   4654 	int i, j;
   4655 
   4656 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
   4657 	rt = sc->sc_rates[mode];
   4658 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
   4659 	for (i = 0; i < rt->rateCount; i++)
   4660 		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
   4661 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
   4662 	for (i = 0; i < 32; i++) {
   4663 		u_int8_t ix = rt->rateCodeToIndex[i];
   4664 		if (ix == 0xff) {
   4665 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
   4666 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
   4667 			continue;
   4668 		}
   4669 		sc->sc_hwmap[i].ieeerate =
   4670 			rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
   4671 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
   4672 		if (rt->info[ix].shortPreamble ||
   4673 		    rt->info[ix].phy == IEEE80211_T_OFDM)
   4674 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
   4675 		/* NB: receive frames include FCS */
   4676 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
   4677 			IEEE80211_RADIOTAP_F_FCS;
   4678 		/* setup blink rate table to avoid per-packet lookup */
   4679 		for (j = 0; j < N(blinkrates)-1; j++)
   4680 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
   4681 				break;
   4682 		/* NB: this uses the last entry if the rate isn't found */
   4683 		/* XXX beware of overlow */
   4684 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
   4685 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
   4686 	}
   4687 	sc->sc_currates = rt;
   4688 	sc->sc_curmode = mode;
   4689 	/*
   4690 	 * All protection frames are transmited at 2Mb/s for
   4691 	 * 11g, otherwise at 1Mb/s.
   4692 	 * XXX select protection rate index from rate table.
   4693 	 */
   4694 	sc->sc_protrix = (mode == IEEE80211_MODE_11G ? 1 : 0);
   4695 	/* NB: caller is responsible for reseting rate control state */
   4696 #undef N
   4697 }
   4698 
   4699 #ifdef AR_DEBUG
   4700 static void
   4701 ath_printrxbuf(struct ath_buf *bf, int done)
   4702 {
   4703 	struct ath_desc *ds;
   4704 	int i;
   4705 
   4706 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
   4707 		printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n",
   4708 		    i, ds, (struct ath_desc *)bf->bf_daddr + i,
   4709 		    ds->ds_link, ds->ds_data,
   4710 		    ds->ds_ctl0, ds->ds_ctl1,
   4711 		    ds->ds_hw[0], ds->ds_hw[1],
   4712 		    !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
   4713 	}
   4714 }
   4715 
   4716 static void
   4717 ath_printtxbuf(struct ath_buf *bf, int done)
   4718 {
   4719 	struct ath_desc *ds;
   4720 	int i;
   4721 
   4722 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
   4723 		printf("T%d (%p %p) %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
   4724 		    i, ds, (struct ath_desc *)bf->bf_daddr + i,
   4725 		    ds->ds_link, ds->ds_data,
   4726 		    ds->ds_ctl0, ds->ds_ctl1,
   4727 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
   4728 		    !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
   4729 	}
   4730 }
   4731 #endif /* AR_DEBUG */
   4732 
   4733 static void
   4734 ath_watchdog(struct ifnet *ifp)
   4735 {
   4736 	struct ath_softc *sc = ifp->if_softc;
   4737 	struct ieee80211com *ic = &sc->sc_ic;
   4738 
   4739 	ifp->if_timer = 0;
   4740 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
   4741 		return;
   4742 	if (sc->sc_tx_timer) {
   4743 		if (--sc->sc_tx_timer == 0) {
   4744 			if_printf(ifp, "device timeout\n");
   4745 			ath_reset(ifp);
   4746 			ifp->if_oerrors++;
   4747 			sc->sc_stats.ast_watchdog++;
   4748 		} else
   4749 			ifp->if_timer = 1;
   4750 	}
   4751 	ieee80211_watchdog(ic);
   4752 }
   4753 
   4754 /*
   4755  * Diagnostic interface to the HAL.  This is used by various
   4756  * tools to do things like retrieve register contents for
   4757  * debugging.  The mechanism is intentionally opaque so that
   4758  * it can change frequently w/o concern for compatiblity.
   4759  */
   4760 static int
   4761 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
   4762 {
   4763 	struct ath_hal *ah = sc->sc_ah;
   4764 	u_int id = ad->ad_id & ATH_DIAG_ID;
   4765 	void *indata = NULL;
   4766 	void *outdata = NULL;
   4767 	u_int32_t insize = ad->ad_in_size;
   4768 	u_int32_t outsize = ad->ad_out_size;
   4769 	int error = 0;
   4770 
   4771 	if (ad->ad_id & ATH_DIAG_IN) {
   4772 		/*
   4773 		 * Copy in data.
   4774 		 */
   4775 		indata = malloc(insize, M_TEMP, M_NOWAIT);
   4776 		if (indata == NULL) {
   4777 			error = ENOMEM;
   4778 			goto bad;
   4779 		}
   4780 		error = copyin(ad->ad_in_data, indata, insize);
   4781 		if (error)
   4782 			goto bad;
   4783 	}
   4784 	if (ad->ad_id & ATH_DIAG_DYN) {
   4785 		/*
   4786 		 * Allocate a buffer for the results (otherwise the HAL
   4787 		 * returns a pointer to a buffer where we can read the
   4788 		 * results).  Note that we depend on the HAL leaving this
   4789 		 * pointer for us to use below in reclaiming the buffer;
   4790 		 * may want to be more defensive.
   4791 		 */
   4792 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
   4793 		if (outdata == NULL) {
   4794 			error = ENOMEM;
   4795 			goto bad;
   4796 		}
   4797 	}
   4798 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
   4799 		if (outsize < ad->ad_out_size)
   4800 			ad->ad_out_size = outsize;
   4801 		if (outdata != NULL)
   4802 			error = copyout(outdata, ad->ad_out_data,
   4803 					ad->ad_out_size);
   4804 	} else {
   4805 		error = EINVAL;
   4806 	}
   4807 bad:
   4808 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
   4809 		free(indata, M_TEMP);
   4810 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
   4811 		free(outdata, M_TEMP);
   4812 	return error;
   4813 }
   4814 
   4815 static int
   4816 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
   4817 {
   4818 #define	IS_RUNNING(ifp) \
   4819 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
   4820 	struct ath_softc *sc = ifp->if_softc;
   4821 	struct ieee80211com *ic = &sc->sc_ic;
   4822 	struct ifreq *ifr = (struct ifreq *)data;
   4823 	int error = 0;
   4824 
   4825 	ATH_LOCK(sc);
   4826 	switch (cmd) {
   4827 	case SIOCSIFFLAGS:
   4828 		if (IS_RUNNING(ifp)) {
   4829 			/*
   4830 			 * To avoid rescanning another access point,
   4831 			 * do not call ath_init() here.  Instead,
   4832 			 * only reflect promisc mode settings.
   4833 			 */
   4834 			ath_mode_init(sc);
   4835 		} else if (ifp->if_flags & IFF_UP) {
   4836 			/*
   4837 			 * Beware of being called during attach/detach
   4838 			 * to reset promiscuous mode.  In that case we
   4839 			 * will still be marked UP but not RUNNING.
   4840 			 * However trying to re-init the interface
   4841 			 * is the wrong thing to do as we've already
   4842 			 * torn down much of our state.  There's
   4843 			 * probably a better way to deal with this.
   4844 			 */
   4845 			if (!sc->sc_invalid && ic->ic_bss != NULL)
   4846 				ath_init(sc);	/* XXX lose error */
   4847 		} else
   4848 			ath_stop_locked(ifp, 1);
   4849 		break;
   4850 	case SIOCADDMULTI:
   4851 	case SIOCDELMULTI:
   4852 		error = (cmd == SIOCADDMULTI) ?
   4853 		    ether_addmulti(ifr, &sc->sc_ec) :
   4854 		    ether_delmulti(ifr, &sc->sc_ec);
   4855 		if (error == ENETRESET) {
   4856 			if (ifp->if_flags & IFF_RUNNING)
   4857 				ath_mode_init(sc);
   4858 			error = 0;
   4859 		}
   4860 		break;
   4861 	case SIOCGATHSTATS:
   4862 		/* NB: embed these numbers to get a consistent view */
   4863 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
   4864 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
   4865 		sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
   4866 		ATH_UNLOCK(sc);
   4867 		/*
   4868 		 * NB: Drop the softc lock in case of a page fault;
   4869 		 * we'll accept any potential inconsisentcy in the
   4870 		 * statistics.  The alternative is to copy the data
   4871 		 * to a local structure.
   4872 		 */
   4873 		return copyout(&sc->sc_stats,
   4874 				ifr->ifr_data, sizeof (sc->sc_stats));
   4875 	case SIOCGATHDIAG:
   4876 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
   4877 		break;
   4878 	default:
   4879 		error = ieee80211_ioctl(ic, cmd, data);
   4880 		if (error == ENETRESET) {
   4881 			if (IS_RUNNING(ifp) &&
   4882 			    ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
   4883 				ath_init(sc);	/* XXX lose error */
   4884 			error = 0;
   4885 		}
   4886 		if (error == ERESTART)
   4887 			error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0;
   4888 		break;
   4889 	}
   4890 	ATH_UNLOCK(sc);
   4891 	return error;
   4892 #undef IS_RUNNING
   4893 }
   4894 
   4895 static void
   4896 ath_bpfattach(struct ath_softc *sc)
   4897 {
   4898 	struct ifnet *ifp = &sc->sc_if;
   4899 
   4900 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
   4901 		sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
   4902 		&sc->sc_drvbpf);
   4903 	/*
   4904 	 * Initialize constant fields.
   4905 	 * XXX make header lengths a multiple of 32-bits so subsequent
   4906 	 *     headers are properly aligned; this is a kludge to keep
   4907 	 *     certain applications happy.
   4908 	 *
   4909 	 * NB: the channel is setup each time we transition to the
   4910 	 *     RUN state to avoid filling it in for each frame.
   4911 	 */
   4912 	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
   4913 	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
   4914 	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
   4915 
   4916 	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
   4917 	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
   4918 	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
   4919 }
   4920 
   4921 /*
   4922  * Announce various information on device/driver attach.
   4923  */
   4924 static void
   4925 ath_announce(struct ath_softc *sc)
   4926 {
   4927 #define	HAL_MODE_DUALBAND	(HAL_MODE_11A|HAL_MODE_11B)
   4928 	struct ifnet *ifp = &sc->sc_if;
   4929 	struct ath_hal *ah = sc->sc_ah;
   4930 	u_int modes, cc;
   4931 
   4932 	if_printf(ifp, "mac %d.%d phy %d.%d",
   4933 		ah->ah_macVersion, ah->ah_macRev,
   4934 		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
   4935 	/*
   4936 	 * Print radio revision(s).  We check the wireless modes
   4937 	 * to avoid falsely printing revs for inoperable parts.
   4938 	 * Dual-band radio revs are returned in the 5Ghz rev number.
   4939 	 */
   4940 	ath_hal_getcountrycode(ah, &cc);
   4941 	modes = ath_hal_getwirelessmodes(ah, cc);
   4942 	if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
   4943 		if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
   4944 			printf(" 5ghz radio %d.%d 2ghz radio %d.%d",
   4945 				ah->ah_analog5GhzRev >> 4,
   4946 				ah->ah_analog5GhzRev & 0xf,
   4947 				ah->ah_analog2GhzRev >> 4,
   4948 				ah->ah_analog2GhzRev & 0xf);
   4949 		else
   4950 			printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
   4951 				ah->ah_analog5GhzRev & 0xf);
   4952 	} else
   4953 		printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
   4954 			ah->ah_analog5GhzRev & 0xf);
   4955 	printf("\n");
   4956 	if (bootverbose) {
   4957 		int i;
   4958 		for (i = 0; i <= WME_AC_VO; i++) {
   4959 			struct ath_txq *txq = sc->sc_ac2q[i];
   4960 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
   4961 				txq->axq_qnum, ieee80211_wme_acnames[i]);
   4962 		}
   4963 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
   4964 			sc->sc_cabq->axq_qnum);
   4965 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
   4966 	}
   4967 #undef HAL_MODE_DUALBAND
   4968 }
   4969