ath.c revision 1.66.4.1 1 /* $NetBSD: ath.c,v 1.66.4.1 2006/09/09 02:50:01 rpaulo Exp $ */
2
3 /*-
4 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15 * redistribution must be conditioned upon including a substantially
16 * similar Disclaimer requirement for further binary redistribution.
17 * 3. Neither the names of the above-listed copyright holders nor the names
18 * of any contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * Alternatively, this software may be distributed under the terms of the
22 * GNU General Public License ("GPL") version 2 as published by the Free
23 * Software Foundation.
24 *
25 * NO WARRANTY
26 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
28 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
29 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
30 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
31 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
34 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
36 * THE POSSIBILITY OF SUCH DAMAGES.
37 */
38
39 #include <sys/cdefs.h>
40 #ifdef __FreeBSD__
41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $");
42 #endif
43 #ifdef __NetBSD__
44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.66.4.1 2006/09/09 02:50:01 rpaulo Exp $");
45 #endif
46
47 /*
48 * Driver for the Atheros Wireless LAN controller.
49 *
50 * This software is derived from work of Atsushi Onoe; his contribution
51 * is greatly appreciated.
52 */
53
54 #include "opt_inet.h"
55
56 #ifdef __NetBSD__
57 #include "bpfilter.h"
58 #endif /* __NetBSD__ */
59
60 #include <sys/param.h>
61 #include <sys/reboot.h>
62 #include <sys/systm.h>
63 #include <sys/types.h>
64 #include <sys/sysctl.h>
65 #include <sys/mbuf.h>
66 #include <sys/malloc.h>
67 #include <sys/lock.h>
68 #include <sys/kernel.h>
69 #include <sys/socket.h>
70 #include <sys/sockio.h>
71 #include <sys/errno.h>
72 #include <sys/callout.h>
73 #include <machine/bus.h>
74 #include <sys/endian.h>
75
76 #include <machine/bus.h>
77
78 #include <net/if.h>
79 #include <net/if_dl.h>
80 #include <net/if_media.h>
81 #include <net/if_types.h>
82 #include <net/if_arp.h>
83 #include <net/if_ether.h>
84 #include <net/if_llc.h>
85
86 #include <net80211/ieee80211_netbsd.h>
87 #include <net80211/ieee80211_var.h>
88
89 #if NBPFILTER > 0
90 #include <net/bpf.h>
91 #endif
92
93 #ifdef INET
94 #include <netinet/in.h>
95 #endif
96
97 #include <sys/device.h>
98 #include <dev/ic/ath_netbsd.h>
99
100 #define AR_DEBUG
101 #include <dev/ic/athvar.h>
102 #include <contrib/dev/ath/ah_desc.h>
103 #include <contrib/dev/ath/ah_devid.h> /* XXX for softled */
104 #include "athhal_options.h"
105
106 #ifdef ATH_TX99_DIAG
107 #include <dev/ath/ath_tx99/ath_tx99.h>
108 #endif
109
110 /* unaligned little endian access */
111 #define LE_READ_2(p) \
112 ((u_int16_t) \
113 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8)))
114 #define LE_READ_4(p) \
115 ((u_int32_t) \
116 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \
117 (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
118
119 enum {
120 ATH_LED_TX,
121 ATH_LED_RX,
122 ATH_LED_POLL,
123 };
124
125 #ifdef AH_NEED_DESC_SWAP
126 #define HTOAH32(x) htole32(x)
127 #else
128 #define HTOAH32(x) (x)
129 #endif
130
131 static int ath_ifinit(struct ifnet *);
132 static int ath_init(struct ath_softc *);
133 static void ath_stop_locked(struct ifnet *, int);
134 static void ath_stop(struct ifnet *, int);
135 static void ath_start(struct ifnet *);
136 static int ath_media_change(struct ifnet *);
137 static void ath_watchdog(struct ifnet *);
138 static int ath_ioctl(struct ifnet *, u_long, caddr_t);
139 static void ath_fatal_proc(void *, int);
140 static void ath_rxorn_proc(void *, int);
141 static void ath_bmiss_proc(void *, int);
142 static void ath_radar_proc(void *, int);
143 static int ath_key_alloc(struct ieee80211com *,
144 const struct ieee80211_key *,
145 ieee80211_keyix *, ieee80211_keyix *);
146 static int ath_key_delete(struct ieee80211com *,
147 const struct ieee80211_key *);
148 static int ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
149 const u_int8_t mac[IEEE80211_ADDR_LEN]);
150 static void ath_key_update_begin(struct ieee80211com *);
151 static void ath_key_update_end(struct ieee80211com *);
152 static void ath_mode_init(struct ath_softc *);
153 static void ath_setslottime(struct ath_softc *);
154 static void ath_updateslot(struct ifnet *);
155 static int ath_beaconq_setup(struct ath_hal *);
156 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
157 static void ath_beacon_setup(struct ath_softc *, struct ath_buf *);
158 static void ath_beacon_proc(void *, int);
159 static void ath_bstuck_proc(void *, int);
160 static void ath_beacon_free(struct ath_softc *);
161 static void ath_beacon_config(struct ath_softc *);
162 static void ath_descdma_cleanup(struct ath_softc *sc,
163 struct ath_descdma *, ath_bufhead *);
164 static int ath_desc_alloc(struct ath_softc *);
165 static void ath_desc_free(struct ath_softc *);
166 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
167 static void ath_node_free(struct ieee80211_node *);
168 static u_int8_t ath_node_getrssi(const struct ieee80211_node *);
169 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
170 static void ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
171 struct ieee80211_node *ni,
172 int subtype, int rssi, u_int32_t rstamp);
173 static void ath_setdefantenna(struct ath_softc *, u_int);
174 static void ath_rx_proc(void *, int);
175 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
176 static int ath_tx_setup(struct ath_softc *, int, int);
177 static int ath_wme_update(struct ieee80211com *);
178 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
179 static void ath_tx_cleanup(struct ath_softc *);
180 static int ath_tx_start(struct ath_softc *, struct ieee80211_node *,
181 struct ath_buf *, struct mbuf *);
182 static void ath_tx_proc_q0(void *, int);
183 static void ath_tx_proc_q0123(void *, int);
184 static void ath_tx_proc(void *, int);
185 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
186 static void ath_draintxq(struct ath_softc *);
187 static void ath_stoprecv(struct ath_softc *);
188 static int ath_startrecv(struct ath_softc *);
189 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
190 static void ath_next_scan(void *);
191 static void ath_calibrate(void *);
192 static int ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
193 static void ath_setup_stationkey(struct ieee80211_node *);
194 static void ath_newassoc(struct ieee80211_node *, int);
195 static int ath_getchannels(struct ath_softc *, u_int cc,
196 HAL_BOOL outdoor, HAL_BOOL xchanmode);
197 static void ath_led_event(struct ath_softc *, int);
198 static void ath_update_txpow(struct ath_softc *);
199
200 static int ath_rate_setup(struct ath_softc *, u_int mode);
201 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
202
203 #ifdef __NetBSD__
204 int ath_enable(struct ath_softc *);
205 void ath_disable(struct ath_softc *);
206 void ath_power(int, void *);
207 #endif
208
209 #if NBPFILTER > 0
210 static void ath_bpfattach(struct ath_softc *);
211 #endif
212 static void ath_announce(struct ath_softc *);
213
214 int ath_dwelltime = 200; /* 5 channels/second */
215 int ath_calinterval = 30; /* calibrate every 30 secs */
216 int ath_outdoor = AH_TRUE; /* outdoor operation */
217 int ath_xchanmode = AH_TRUE; /* enable extended channels */
218 int ath_countrycode = CTRY_DEFAULT; /* country code */
219 int ath_regdomain = 0; /* regulatory domain */
220 int ath_debug = 0;
221 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */
222 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */
223
224 #ifdef AR_DEBUG
225 enum {
226 ATH_DEBUG_XMIT = 0x00000001, /* basic xmit operation */
227 ATH_DEBUG_XMIT_DESC = 0x00000002, /* xmit descriptors */
228 ATH_DEBUG_RECV = 0x00000004, /* basic recv operation */
229 ATH_DEBUG_RECV_DESC = 0x00000008, /* recv descriptors */
230 ATH_DEBUG_RATE = 0x00000010, /* rate control */
231 ATH_DEBUG_RESET = 0x00000020, /* reset processing */
232 ATH_DEBUG_MODE = 0x00000040, /* mode init/setup */
233 ATH_DEBUG_BEACON = 0x00000080, /* beacon handling */
234 ATH_DEBUG_WATCHDOG = 0x00000100, /* watchdog timeout */
235 ATH_DEBUG_INTR = 0x00001000, /* ISR */
236 ATH_DEBUG_TX_PROC = 0x00002000, /* tx ISR proc */
237 ATH_DEBUG_RX_PROC = 0x00004000, /* rx ISR proc */
238 ATH_DEBUG_BEACON_PROC = 0x00008000, /* beacon ISR proc */
239 ATH_DEBUG_CALIBRATE = 0x00010000, /* periodic calibration */
240 ATH_DEBUG_KEYCACHE = 0x00020000, /* key cache management */
241 ATH_DEBUG_STATE = 0x00040000, /* 802.11 state transitions */
242 ATH_DEBUG_NODE = 0x00080000, /* node management */
243 ATH_DEBUG_LED = 0x00100000, /* led management */
244 ATH_DEBUG_FF = 0x00200000, /* fast frames */
245 ATH_DEBUG_DFS = 0x00400000, /* DFS processing */
246 ATH_DEBUG_FATAL = 0x80000000, /* fatal errors */
247 ATH_DEBUG_ANY = 0xffffffff
248 };
249 #define IFF_DUMPPKTS(sc, m) \
250 ((sc->sc_debug & (m)) || \
251 (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
252 #define DPRINTF(sc, m, fmt, ...) do { \
253 if (sc->sc_debug & (m)) \
254 printf(fmt, __VA_ARGS__); \
255 } while (0)
256 #define KEYPRINTF(sc, ix, hk, mac) do { \
257 if (sc->sc_debug & ATH_DEBUG_KEYCACHE) \
258 ath_keyprint(__func__, ix, hk, mac); \
259 } while (0)
260 static void ath_printrxbuf(struct ath_buf *bf, int);
261 static void ath_printtxbuf(struct ath_buf *bf, int);
262 #else
263 #define IFF_DUMPPKTS(sc, m) \
264 ((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
265 #define DPRINTF(m, fmt, ...)
266 #define KEYPRINTF(sc, k, ix, mac)
267 #endif
268
269 #ifdef __NetBSD__
270 int
271 ath_activate(struct device *self, enum devact act)
272 {
273 struct ath_softc *sc = (struct ath_softc *)self;
274 int rv = 0, s;
275
276 s = splnet();
277 switch (act) {
278 case DVACT_ACTIVATE:
279 rv = EOPNOTSUPP;
280 break;
281 case DVACT_DEACTIVATE:
282 if_deactivate(&sc->sc_if);
283 break;
284 }
285 splx(s);
286 return rv;
287 }
288
289 int
290 ath_enable(struct ath_softc *sc)
291 {
292 if (ATH_IS_ENABLED(sc) == 0) {
293 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
294 printf("%s: device enable failed\n",
295 sc->sc_dev.dv_xname);
296 return (EIO);
297 }
298 sc->sc_flags |= ATH_ENABLED;
299 }
300 return (0);
301 }
302
303 void
304 ath_disable(struct ath_softc *sc)
305 {
306 if (!ATH_IS_ENABLED(sc))
307 return;
308 if (sc->sc_disable != NULL)
309 (*sc->sc_disable)(sc);
310 sc->sc_flags &= ~ATH_ENABLED;
311 }
312 #endif /* __NetBSD__ */
313
314 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
315
316 int
317 ath_attach(u_int16_t devid, struct ath_softc *sc)
318 {
319 struct ifnet *ifp = &sc->sc_if;
320 struct ieee80211com *ic = &sc->sc_ic;
321 struct ath_hal *ah = NULL;
322 HAL_STATUS status;
323 int error = 0, i;
324
325 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
326
327 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
328
329 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
330 if (ah == NULL) {
331 if_printf(ifp, "unable to attach hardware; HAL status %u\n",
332 status);
333 error = ENXIO;
334 goto bad;
335 }
336 if (ah->ah_abi != HAL_ABI_VERSION) {
337 if_printf(ifp, "HAL ABI mismatch detected "
338 "(HAL:0x%x != driver:0x%x)\n",
339 ah->ah_abi, HAL_ABI_VERSION);
340 error = ENXIO;
341 goto bad;
342 }
343 sc->sc_ah = ah;
344 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */
345
346 /*
347 * Check if the MAC has multi-rate retry support.
348 * We do this by trying to setup a fake extended
349 * descriptor. MAC's that don't have support will
350 * return false w/o doing anything. MAC's that do
351 * support it will return true w/o doing anything.
352 */
353 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
354
355 /*
356 * Check if the device has hardware counters for PHY
357 * errors. If so we need to enable the MIB interrupt
358 * so we can act on stat triggers.
359 */
360 if (ath_hal_hwphycounters(ah))
361 sc->sc_needmib = 1;
362
363 /*
364 * Get the hardware key cache size.
365 */
366 sc->sc_keymax = ath_hal_keycachesize(ah);
367 if (sc->sc_keymax > ATH_KEYMAX) {
368 if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
369 ATH_KEYMAX, sc->sc_keymax);
370 sc->sc_keymax = ATH_KEYMAX;
371 }
372 /*
373 * Reset the key cache since some parts do not
374 * reset the contents on initial power up.
375 */
376 for (i = 0; i < sc->sc_keymax; i++)
377 ath_hal_keyreset(ah, i);
378 /*
379 * Mark key cache slots associated with global keys
380 * as in use. If we knew TKIP was not to be used we
381 * could leave the +32, +64, and +32+64 slots free.
382 * XXX only for splitmic.
383 */
384 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
385 setbit(sc->sc_keymap, i);
386 setbit(sc->sc_keymap, i+32);
387 setbit(sc->sc_keymap, i+64);
388 setbit(sc->sc_keymap, i+32+64);
389 }
390
391 /*
392 * Collect the channel list using the default country
393 * code and including outdoor channels. The 802.11 layer
394 * is resposible for filtering this list based on settings
395 * like the phy mode.
396 */
397 error = ath_getchannels(sc, ath_countrycode,
398 ath_outdoor, ath_xchanmode);
399 if (error != 0)
400 goto bad;
401
402 /*
403 * Setup rate tables for all potential media types.
404 */
405 ath_rate_setup(sc, IEEE80211_MODE_11A);
406 ath_rate_setup(sc, IEEE80211_MODE_11B);
407 ath_rate_setup(sc, IEEE80211_MODE_11G);
408 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
409 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
410 /* NB: setup here so ath_rate_update is happy */
411 ath_setcurmode(sc, IEEE80211_MODE_11A);
412
413 /*
414 * Allocate tx+rx descriptors and populate the lists.
415 */
416 error = ath_desc_alloc(sc);
417 if (error != 0) {
418 if_printf(ifp, "failed to allocate descriptors: %d\n", error);
419 goto bad;
420 }
421 ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
422 ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE);
423 ATH_CALLOUT_INIT(&sc->sc_dfs_ch, CALLOUT_MPSAFE);
424
425 ATH_TXBUF_LOCK_INIT(sc);
426
427 TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
428 TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
429 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
430 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
431 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
432 TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc);
433
434 /*
435 * Allocate hardware transmit queues: one queue for
436 * beacon frames and one data queue for each QoS
437 * priority. Note that the hal handles reseting
438 * these queues at the needed time.
439 *
440 * XXX PS-Poll
441 */
442 sc->sc_bhalq = ath_beaconq_setup(ah);
443 if (sc->sc_bhalq == (u_int) -1) {
444 if_printf(ifp, "unable to setup a beacon xmit queue!\n");
445 error = EIO;
446 goto bad2;
447 }
448 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
449 if (sc->sc_cabq == NULL) {
450 if_printf(ifp, "unable to setup CAB xmit queue!\n");
451 error = EIO;
452 goto bad2;
453 }
454 /* NB: insure BK queue is the lowest priority h/w queue */
455 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
456 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
457 ieee80211_wme_acnames[WME_AC_BK]);
458 error = EIO;
459 goto bad2;
460 }
461 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
462 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
463 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
464 /*
465 * Not enough hardware tx queues to properly do WME;
466 * just punt and assign them all to the same h/w queue.
467 * We could do a better job of this if, for example,
468 * we allocate queues when we switch from station to
469 * AP mode.
470 */
471 if (sc->sc_ac2q[WME_AC_VI] != NULL)
472 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
473 if (sc->sc_ac2q[WME_AC_BE] != NULL)
474 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
475 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
476 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
477 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
478 }
479
480 /*
481 * Special case certain configurations. Note the
482 * CAB queue is handled by these specially so don't
483 * include them when checking the txq setup mask.
484 */
485 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
486 case 0x01:
487 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
488 break;
489 case 0x0f:
490 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
491 break;
492 default:
493 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
494 break;
495 }
496
497 /*
498 * Setup rate control. Some rate control modules
499 * call back to change the anntena state so expose
500 * the necessary entry points.
501 * XXX maybe belongs in struct ath_ratectrl?
502 */
503 sc->sc_setdefantenna = ath_setdefantenna;
504 sc->sc_rc = ath_rate_attach(sc);
505 if (sc->sc_rc == NULL) {
506 error = EIO;
507 goto bad2;
508 }
509
510 sc->sc_blinking = 0;
511 sc->sc_ledstate = 1;
512 sc->sc_ledon = 0; /* low true */
513 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */
514 ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE);
515 /*
516 * Auto-enable soft led processing for IBM cards and for
517 * 5211 minipci cards. Users can also manually enable/disable
518 * support with a sysctl.
519 */
520 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
521 if (sc->sc_softled) {
522 ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
523 ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
524 }
525
526 ifp->if_softc = sc;
527 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
528 ifp->if_start = ath_start;
529 ifp->if_watchdog = ath_watchdog;
530 ifp->if_ioctl = ath_ioctl;
531 ifp->if_init = ath_ifinit;
532 IFQ_SET_READY(&ifp->if_snd);
533
534 ic->ic_ifp = ifp;
535 ic->ic_reset = ath_reset;
536 ic->ic_newassoc = ath_newassoc;
537 ic->ic_updateslot = ath_updateslot;
538 ic->ic_wme.wme_update = ath_wme_update;
539 /* XXX not right but it's not used anywhere important */
540 ic->ic_phytype = IEEE80211_T_OFDM;
541 ic->ic_opmode = IEEE80211_M_STA;
542 ic->ic_caps =
543 IEEE80211_C_IBSS /* ibss, nee adhoc, mode */
544 | IEEE80211_C_HOSTAP /* hostap mode */
545 | IEEE80211_C_MONITOR /* monitor mode */
546 | IEEE80211_C_SHPREAMBLE /* short preamble supported */
547 | IEEE80211_C_SHSLOT /* short slot time supported */
548 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */
549 ;
550 /*
551 * Query the hal to figure out h/w crypto support.
552 */
553 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
554 ic->ic_caps |= IEEE80211_C_WEP;
555 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
556 ic->ic_caps |= IEEE80211_C_AES;
557 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
558 ic->ic_caps |= IEEE80211_C_AES_CCM;
559 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
560 ic->ic_caps |= IEEE80211_C_CKIP;
561 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
562 ic->ic_caps |= IEEE80211_C_TKIP;
563 /*
564 * Check if h/w does the MIC and/or whether the
565 * separate key cache entries are required to
566 * handle both tx+rx MIC keys.
567 */
568 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
569 ic->ic_caps |= IEEE80211_C_TKIPMIC;
570 if (ath_hal_tkipsplit(ah))
571 sc->sc_splitmic = 1;
572 }
573 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
574 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
575 /*
576 * TPC support can be done either with a global cap or
577 * per-packet support. The latter is not available on
578 * all parts. We're a bit pedantic here as all parts
579 * support a global cap.
580 */
581 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
582 ic->ic_caps |= IEEE80211_C_TXPMGT;
583
584 /*
585 * Mark WME capability only if we have sufficient
586 * hardware queues to do proper priority scheduling.
587 */
588 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
589 ic->ic_caps |= IEEE80211_C_WME;
590 /*
591 * Check for misc other capabilities.
592 */
593 if (ath_hal_hasbursting(ah))
594 ic->ic_caps |= IEEE80211_C_BURST;
595
596 /*
597 * Indicate we need the 802.11 header padded to a
598 * 32-bit boundary for 4-address and QoS frames.
599 */
600 ic->ic_flags |= IEEE80211_F_DATAPAD;
601
602 /*
603 * Query the hal about antenna support.
604 */
605 sc->sc_defant = ath_hal_getdefantenna(ah);
606
607 /*
608 * Not all chips have the VEOL support we want to
609 * use with IBSS beacons; check here for it.
610 */
611 sc->sc_hasveol = ath_hal_hasveol(ah);
612
613 /* get mac address from hardware */
614 ath_hal_getmac(ah, ic->ic_myaddr);
615
616 if_attach(ifp);
617 /* call MI attach routine. */
618 ieee80211_ifattach(ic);
619 /* override default methods */
620 ic->ic_node_alloc = ath_node_alloc;
621 sc->sc_node_free = ic->ic_node_free;
622 ic->ic_node_free = ath_node_free;
623 ic->ic_node_getrssi = ath_node_getrssi;
624 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
625 ic->ic_recv_mgmt = ath_recv_mgmt;
626 sc->sc_newstate = ic->ic_newstate;
627 ic->ic_newstate = ath_newstate;
628 ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
629 ic->ic_crypto.cs_key_alloc = ath_key_alloc;
630 ic->ic_crypto.cs_key_delete = ath_key_delete;
631 ic->ic_crypto.cs_key_set = ath_key_set;
632 ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
633 ic->ic_crypto.cs_key_update_end = ath_key_update_end;
634 /* complete initialization */
635 ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
636
637 #if NBPFILTER > 0
638 ath_bpfattach(sc);
639 #endif
640
641 #ifdef __NetBSD__
642 sc->sc_flags |= ATH_ATTACHED;
643 sc->sc_powerhook = powerhook_establish(ath_power, sc);
644 if (sc->sc_powerhook == NULL)
645 printf("%s: WARNING: unable to establish power hook\n",
646 sc->sc_dev.dv_xname);
647 #endif
648
649 /*
650 * Setup dynamic sysctl's now that country code and
651 * regdomain are available from the hal.
652 */
653 ath_sysctlattach(sc);
654
655 ieee80211_announce(ic);
656 ath_announce(sc);
657 return 0;
658 bad2:
659 ath_tx_cleanup(sc);
660 ath_desc_free(sc);
661 bad:
662 if (ah)
663 ath_hal_detach(ah);
664 sc->sc_invalid = 1;
665 return error;
666 }
667
668 int
669 ath_detach(struct ath_softc *sc)
670 {
671 struct ifnet *ifp = &sc->sc_if;
672 int s;
673
674 if ((sc->sc_flags & ATH_ATTACHED) == 0)
675 return (0);
676
677 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
678 __func__, ifp->if_flags);
679
680 s = splnet();
681 ath_stop(ifp, 1);
682 #if NBPFILTER > 0
683 bpfdetach(ifp);
684 #endif
685 /*
686 * NB: the order of these is important:
687 * o call the 802.11 layer before detaching the hal to
688 * insure callbacks into the driver to delete global
689 * key cache entries can be handled
690 * o reclaim the tx queue data structures after calling
691 * the 802.11 layer as we'll get called back to reclaim
692 * node state and potentially want to use them
693 * o to cleanup the tx queues the hal is called, so detach
694 * it last
695 * Other than that, it's straightforward...
696 */
697 ieee80211_ifdetach(&sc->sc_ic);
698 #ifdef ATH_TX99_DIAG
699 if (sc->sc_tx99 != NULL)
700 sc->sc_tx99->detach(sc->sc_tx99);
701 #endif
702 ath_rate_detach(sc->sc_rc);
703 ath_desc_free(sc);
704 ath_tx_cleanup(sc);
705 sysctl_teardown(&sc->sc_sysctllog);
706 ath_hal_detach(sc->sc_ah);
707 if_detach(ifp);
708 splx(s);
709 powerhook_disestablish(sc->sc_powerhook);
710
711 return 0;
712 }
713
714 #ifdef __NetBSD__
715 void
716 ath_power(int why, void *arg)
717 {
718 struct ath_softc *sc = arg;
719 int s;
720
721 DPRINTF(sc, ATH_DEBUG_ANY, "ath_power(%d)\n", why);
722
723 s = splnet();
724 switch (why) {
725 case PWR_SUSPEND:
726 case PWR_STANDBY:
727 ath_suspend(sc, why);
728 break;
729 case PWR_RESUME:
730 ath_resume(sc, why);
731 break;
732 case PWR_SOFTSUSPEND:
733 case PWR_SOFTSTANDBY:
734 case PWR_SOFTRESUME:
735 break;
736 }
737 splx(s);
738 }
739 #endif
740
741 void
742 ath_suspend(struct ath_softc *sc, int why)
743 {
744 struct ifnet *ifp = &sc->sc_if;
745
746 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
747 __func__, ifp->if_flags);
748
749 ath_stop(ifp, 1);
750 if (sc->sc_power != NULL)
751 (*sc->sc_power)(sc, why);
752 }
753
754 void
755 ath_resume(struct ath_softc *sc, int why)
756 {
757 struct ifnet *ifp = &sc->sc_if;
758
759 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
760 __func__, ifp->if_flags);
761
762 if (ifp->if_flags & IFF_UP) {
763 ath_init(sc);
764 #if 0
765 (void)ath_intr(sc);
766 #endif
767 if (sc->sc_power != NULL)
768 (*sc->sc_power)(sc, why);
769 if (ifp->if_flags & IFF_RUNNING)
770 ath_start(ifp);
771 }
772 if (sc->sc_softled) {
773 ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
774 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
775 }
776 }
777
778 void
779 ath_shutdown(void *arg)
780 {
781 struct ath_softc *sc = arg;
782
783 ath_stop(&sc->sc_if, 1);
784 }
785
786 /*
787 * Interrupt handler. Most of the actual processing is deferred.
788 */
789 int
790 ath_intr(void *arg)
791 {
792 struct ath_softc *sc = arg;
793 struct ifnet *ifp = &sc->sc_if;
794 struct ath_hal *ah = sc->sc_ah;
795 HAL_INT status;
796
797 if (sc->sc_invalid) {
798 /*
799 * The hardware is not ready/present, don't touch anything.
800 * Note this can happen early on if the IRQ is shared.
801 */
802 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
803 return 0;
804 }
805
806 if (!ath_hal_intrpend(ah)) /* shared irq, not for us */
807 return 0;
808
809 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
810 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
811 __func__, ifp->if_flags);
812 ath_hal_getisr(ah, &status); /* clear ISR */
813 ath_hal_intrset(ah, 0); /* disable further intr's */
814 return 1; /* XXX */
815 }
816 /*
817 * Figure out the reason(s) for the interrupt. Note
818 * that the hal returns a pseudo-ISR that may include
819 * bits we haven't explicitly enabled so we mask the
820 * value to insure we only process bits we requested.
821 */
822 ath_hal_getisr(ah, &status); /* NB: clears ISR too */
823 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
824 status &= sc->sc_imask; /* discard unasked for bits */
825 if (status & HAL_INT_FATAL) {
826 /*
827 * Fatal errors are unrecoverable. Typically
828 * these are caused by DMA errors. Unfortunately
829 * the exact reason is not (presently) returned
830 * by the hal.
831 */
832 sc->sc_stats.ast_hardware++;
833 ath_hal_intrset(ah, 0); /* disable intr's until reset */
834 TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
835 } else if (status & HAL_INT_RXORN) {
836 sc->sc_stats.ast_rxorn++;
837 ath_hal_intrset(ah, 0); /* disable intr's until reset */
838 TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
839 } else {
840 if (status & HAL_INT_SWBA) {
841 /*
842 * Software beacon alert--time to send a beacon.
843 * Handle beacon transmission directly; deferring
844 * this is too slow to meet timing constraints
845 * under load.
846 */
847 ath_beacon_proc(sc, 0);
848 }
849 if (status & HAL_INT_RXEOL) {
850 /*
851 * NB: the hardware should re-read the link when
852 * RXE bit is written, but it doesn't work at
853 * least on older hardware revs.
854 */
855 sc->sc_stats.ast_rxeol++;
856 sc->sc_rxlink = NULL;
857 }
858 if (status & HAL_INT_TXURN) {
859 sc->sc_stats.ast_txurn++;
860 /* bump tx trigger level */
861 ath_hal_updatetxtriglevel(ah, AH_TRUE);
862 }
863 if (status & HAL_INT_RX)
864 TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
865 if (status & HAL_INT_TX)
866 TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
867 if (status & HAL_INT_BMISS) {
868 sc->sc_stats.ast_bmiss++;
869 TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
870 }
871 if (status & HAL_INT_MIB) {
872 sc->sc_stats.ast_mib++;
873 /*
874 * Disable interrupts until we service the MIB
875 * interrupt; otherwise it will continue to fire.
876 */
877 ath_hal_intrset(ah, 0);
878 /*
879 * Let the hal handle the event. We assume it will
880 * clear whatever condition caused the interrupt.
881 */
882 ath_hal_mibevent(ah, &sc->sc_halstats);
883 ath_hal_intrset(ah, sc->sc_imask);
884 }
885 }
886 return 1;
887 }
888
889 /* Swap transmit descriptor.
890 * if AH_NEED_DESC_SWAP flag is not defined this becomes a "null"
891 * function.
892 */
893 static inline void
894 ath_desc_swap(struct ath_desc *ds)
895 {
896 #ifdef AH_NEED_DESC_SWAP
897 ds->ds_link = htole32(ds->ds_link);
898 ds->ds_data = htole32(ds->ds_data);
899 ds->ds_ctl0 = htole32(ds->ds_ctl0);
900 ds->ds_ctl1 = htole32(ds->ds_ctl1);
901 ds->ds_hw[0] = htole32(ds->ds_hw[0]);
902 ds->ds_hw[1] = htole32(ds->ds_hw[1]);
903 #endif
904 }
905
906 static void
907 ath_fatal_proc(void *arg, int pending)
908 {
909 struct ath_softc *sc = arg;
910 struct ifnet *ifp = &sc->sc_if;
911
912 if_printf(ifp, "hardware error; resetting\n");
913 ath_reset(ifp);
914 }
915
916 static void
917 ath_rxorn_proc(void *arg, int pending)
918 {
919 struct ath_softc *sc = arg;
920 struct ifnet *ifp = &sc->sc_if;
921
922 if_printf(ifp, "rx FIFO overrun; resetting\n");
923 ath_reset(ifp);
924 }
925
926 static void
927 ath_bmiss_proc(void *arg, int pending)
928 {
929 struct ath_softc *sc = arg;
930 struct ieee80211com *ic = &sc->sc_ic;
931
932 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
933 KASSERT(ic->ic_opmode == IEEE80211_M_STA,
934 ("unexpect operating mode %u", ic->ic_opmode));
935 if (ic->ic_state == IEEE80211_S_RUN) {
936 u_int64_t lastrx = sc->sc_lastrx;
937 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
938
939 DPRINTF(sc, ATH_DEBUG_BEACON,
940 "%s: tsf %" PRIu64 " lastrx %" PRId64
941 " (%" PRIu64 ") bmiss %u\n",
942 __func__, tsf, tsf - lastrx, lastrx,
943 ic->ic_bmisstimeout*1024);
944 /*
945 * Workaround phantom bmiss interrupts by sanity-checking
946 * the time of our last rx'd frame. If it is within the
947 * beacon miss interval then ignore the interrupt. If it's
948 * truly a bmiss we'll get another interrupt soon and that'll
949 * be dispatched up for processing.
950 */
951 if (tsf - lastrx > ic->ic_bmisstimeout*1024) {
952 NET_LOCK_GIANT();
953 ieee80211_beacon_miss(ic);
954 NET_UNLOCK_GIANT();
955 } else
956 sc->sc_stats.ast_bmiss_phantom++;
957 }
958 }
959
960 static void
961 ath_radar_proc(void *arg, int pending)
962 {
963 struct ath_softc *sc = arg;
964 struct ifnet *ifp = &sc->sc_if;
965 struct ath_hal *ah = sc->sc_ah;
966 HAL_CHANNEL hchan;
967
968 if (ath_hal_procdfs(ah, &hchan)) {
969 if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n",
970 hchan.channel, hchan.channelFlags, hchan.privFlags);
971 /*
972 * Initiate channel change.
973 */
974 /* XXX not yet */
975 }
976 }
977
978 static u_int
979 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
980 {
981 #define N(a) (sizeof(a) / sizeof(a[0]))
982 static const u_int modeflags[] = {
983 0, /* IEEE80211_MODE_AUTO */
984 CHANNEL_A, /* IEEE80211_MODE_11A */
985 CHANNEL_B, /* IEEE80211_MODE_11B */
986 CHANNEL_PUREG, /* IEEE80211_MODE_11G */
987 0, /* IEEE80211_MODE_FH */
988 CHANNEL_ST, /* IEEE80211_MODE_TURBO_A */
989 CHANNEL_108G /* IEEE80211_MODE_TURBO_G */
990 };
991 enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
992
993 KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
994 KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
995 return modeflags[mode];
996 #undef N
997 }
998
999 static int
1000 ath_ifinit(struct ifnet *ifp)
1001 {
1002 struct ath_softc *sc = (struct ath_softc *)ifp->if_softc;
1003
1004 return ath_init(sc);
1005 }
1006
1007 static int
1008 ath_init(struct ath_softc *sc)
1009 {
1010 struct ifnet *ifp = &sc->sc_if;
1011 struct ieee80211com *ic = &sc->sc_ic;
1012 struct ath_hal *ah = sc->sc_ah;
1013 HAL_STATUS status;
1014 int error = 0;
1015
1016 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1017 __func__, ifp->if_flags);
1018
1019 ATH_LOCK(sc);
1020
1021 if ((error = ath_enable(sc)) != 0)
1022 return error;
1023
1024 /*
1025 * Stop anything previously setup. This is safe
1026 * whether this is the first time through or not.
1027 */
1028 ath_stop_locked(ifp, 0);
1029
1030 /*
1031 * The basic interface to setting the hardware in a good
1032 * state is ``reset''. On return the hardware is known to
1033 * be powered up and with interrupts disabled. This must
1034 * be followed by initialization of the appropriate bits
1035 * and then setup of the interrupt mask.
1036 */
1037 sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
1038 sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
1039 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
1040 if_printf(ifp, "unable to reset hardware; hal status %u\n",
1041 status);
1042 error = EIO;
1043 goto done;
1044 }
1045
1046 /*
1047 * This is needed only to setup initial state
1048 * but it's best done after a reset.
1049 */
1050 ath_update_txpow(sc);
1051 /*
1052 * Likewise this is set during reset so update
1053 * state cached in the driver.
1054 */
1055 sc->sc_diversity = ath_hal_getdiversity(ah);
1056 sc->sc_calinterval = 1;
1057 sc->sc_caltries = 0;
1058
1059 /*
1060 * Setup the hardware after reset: the key cache
1061 * is filled as needed and the receive engine is
1062 * set going. Frame transmit is handled entirely
1063 * in the frame output path; there's nothing to do
1064 * here except setup the interrupt mask.
1065 */
1066 if ((error = ath_startrecv(sc)) != 0) {
1067 if_printf(ifp, "unable to start recv logic\n");
1068 goto done;
1069 }
1070
1071 /*
1072 * Enable interrupts.
1073 */
1074 sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1075 | HAL_INT_RXEOL | HAL_INT_RXORN
1076 | HAL_INT_FATAL | HAL_INT_GLOBAL;
1077 /*
1078 * Enable MIB interrupts when there are hardware phy counters.
1079 * Note we only do this (at the moment) for station mode.
1080 */
1081 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1082 sc->sc_imask |= HAL_INT_MIB;
1083 ath_hal_intrset(ah, sc->sc_imask);
1084
1085 ifp->if_flags |= IFF_RUNNING;
1086 ic->ic_state = IEEE80211_S_INIT;
1087
1088 /*
1089 * The hardware should be ready to go now so it's safe
1090 * to kick the 802.11 state machine as it's likely to
1091 * immediately call back to us to send mgmt frames.
1092 */
1093 ath_chan_change(sc, ic->ic_curchan);
1094 #ifdef ATH_TX99_DIAG
1095 if (sc->sc_tx99 != NULL)
1096 sc->sc_tx99->start(sc->sc_tx99);
1097 else
1098 #endif
1099 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1100 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
1101 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1102 } else
1103 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1104 done:
1105 ATH_UNLOCK(sc);
1106 return error;
1107 }
1108
1109 static void
1110 ath_stop_locked(struct ifnet *ifp, int disable)
1111 {
1112 struct ath_softc *sc = ifp->if_softc;
1113 struct ieee80211com *ic = &sc->sc_ic;
1114 struct ath_hal *ah = sc->sc_ah;
1115
1116 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1117 __func__, sc->sc_invalid, ifp->if_flags);
1118
1119 ATH_LOCK_ASSERT(sc);
1120 if (ifp->if_flags & IFF_RUNNING) {
1121 /*
1122 * Shutdown the hardware and driver:
1123 * reset 802.11 state machine
1124 * turn off timers
1125 * disable interrupts
1126 * turn off the radio
1127 * clear transmit machinery
1128 * clear receive machinery
1129 * drain and release tx queues
1130 * reclaim beacon resources
1131 * power down hardware
1132 *
1133 * Note that some of this work is not possible if the
1134 * hardware is gone (invalid).
1135 */
1136 #ifdef ATH_TX99_DIAG
1137 if (sc->sc_tx99 != NULL)
1138 sc->sc_tx99->stop(sc->sc_tx99);
1139 #endif
1140 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1141 ifp->if_flags &= ~IFF_RUNNING;
1142 ifp->if_timer = 0;
1143 if (!sc->sc_invalid) {
1144 if (sc->sc_softled) {
1145 callout_stop(&sc->sc_ledtimer);
1146 ath_hal_gpioset(ah, sc->sc_ledpin,
1147 !sc->sc_ledon);
1148 sc->sc_blinking = 0;
1149 }
1150 ath_hal_intrset(ah, 0);
1151 }
1152 ath_draintxq(sc);
1153 if (!sc->sc_invalid) {
1154 ath_stoprecv(sc);
1155 ath_hal_phydisable(ah);
1156 } else
1157 sc->sc_rxlink = NULL;
1158 IF_PURGE(&ifp->if_snd);
1159 ath_beacon_free(sc);
1160 if (disable)
1161 ath_disable(sc);
1162 }
1163 }
1164
1165 static void
1166 ath_stop(struct ifnet *ifp, int disable)
1167 {
1168 struct ath_softc *sc = ifp->if_softc;
1169
1170 ATH_LOCK(sc);
1171 ath_stop_locked(ifp, disable);
1172 if (!sc->sc_invalid) {
1173 /*
1174 * Set the chip in full sleep mode. Note that we are
1175 * careful to do this only when bringing the interface
1176 * completely to a stop. When the chip is in this state
1177 * it must be carefully woken up or references to
1178 * registers in the PCI clock domain may freeze the bus
1179 * (and system). This varies by chip and is mostly an
1180 * issue with newer parts that go to sleep more quickly.
1181 */
1182 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
1183 }
1184 ATH_UNLOCK(sc);
1185 }
1186
1187 /*
1188 * Reset the hardware w/o losing operational state. This is
1189 * basically a more efficient way of doing ath_stop, ath_init,
1190 * followed by state transitions to the current 802.11
1191 * operational state. Used to recover from various errors and
1192 * to reset or reload hardware state.
1193 */
1194 int
1195 ath_reset(struct ifnet *ifp)
1196 {
1197 struct ath_softc *sc = ifp->if_softc;
1198 struct ieee80211com *ic = &sc->sc_ic;
1199 struct ath_hal *ah = sc->sc_ah;
1200 struct ieee80211_channel *c;
1201 HAL_STATUS status;
1202
1203 /*
1204 * Convert to a HAL channel description with the flags
1205 * constrained to reflect the current operating mode.
1206 */
1207 c = ic->ic_curchan;
1208 sc->sc_curchan.channel = c->ic_freq;
1209 sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
1210
1211 ath_hal_intrset(ah, 0); /* disable interrupts */
1212 ath_draintxq(sc); /* stop xmit side */
1213 ath_stoprecv(sc); /* stop recv side */
1214 /* NB: indicate channel change so we do a full reset */
1215 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
1216 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1217 __func__, status);
1218 ath_update_txpow(sc); /* update tx power state */
1219 sc->sc_diversity = ath_hal_getdiversity(ah);
1220 sc->sc_calinterval = 1;
1221 sc->sc_caltries = 0;
1222 if (ath_startrecv(sc) != 0) /* restart recv */
1223 if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1224 /*
1225 * We may be doing a reset in response to an ioctl
1226 * that changes the channel so update any state that
1227 * might change as a result.
1228 */
1229 ath_chan_change(sc, c);
1230 if (ic->ic_state == IEEE80211_S_RUN)
1231 ath_beacon_config(sc); /* restart beacons */
1232 ath_hal_intrset(ah, sc->sc_imask);
1233
1234 ath_start(ifp); /* restart xmit */
1235 return 0;
1236 }
1237
1238 static void
1239 ath_start(struct ifnet *ifp)
1240 {
1241 struct ath_softc *sc = ifp->if_softc;
1242 struct ath_hal *ah = sc->sc_ah;
1243 struct ieee80211com *ic = &sc->sc_ic;
1244 struct ieee80211_node *ni;
1245 struct ath_buf *bf;
1246 struct mbuf *m;
1247 struct ieee80211_frame *wh;
1248 struct ether_header *eh;
1249
1250 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
1251 return;
1252 for (;;) {
1253 /*
1254 * Grab a TX buffer and associated resources.
1255 */
1256 ATH_TXBUF_LOCK(sc);
1257 bf = STAILQ_FIRST(&sc->sc_txbuf);
1258 if (bf != NULL)
1259 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1260 ATH_TXBUF_UNLOCK(sc);
1261 if (bf == NULL) {
1262 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1263 __func__);
1264 sc->sc_stats.ast_tx_qstop++;
1265 ifp->if_flags |= IFF_OACTIVE;
1266 break;
1267 }
1268 /*
1269 * Poll the management queue for frames; they
1270 * have priority over normal data frames.
1271 */
1272 IF_DEQUEUE(&ic->ic_mgtq, m);
1273 if (m == NULL) {
1274 /*
1275 * No data frames go out unless we're associated.
1276 */
1277 if (ic->ic_state != IEEE80211_S_RUN) {
1278 DPRINTF(sc, ATH_DEBUG_XMIT,
1279 "%s: discard data packet, state %s\n",
1280 __func__,
1281 ieee80211_state_name[ic->ic_state]);
1282 sc->sc_stats.ast_tx_discard++;
1283 ATH_TXBUF_LOCK(sc);
1284 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1285 ATH_TXBUF_UNLOCK(sc);
1286 break;
1287 }
1288 IFQ_DEQUEUE(&ifp->if_snd, m); /* XXX: LOCK */
1289 if (m == NULL) {
1290 ATH_TXBUF_LOCK(sc);
1291 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1292 ATH_TXBUF_UNLOCK(sc);
1293 break;
1294 }
1295 /*
1296 * Find the node for the destination so we can do
1297 * things like power save and fast frames aggregation.
1298 */
1299 if (m->m_len < sizeof(struct ether_header) &&
1300 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
1301 ic->ic_stats.is_tx_nobuf++; /* XXX */
1302 ni = NULL;
1303 goto bad;
1304 }
1305 eh = mtod(m, struct ether_header *);
1306 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1307 if (ni == NULL) {
1308 /* NB: ieee80211_find_txnode does stat+msg */
1309 m_freem(m);
1310 goto bad;
1311 }
1312 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1313 (m->m_flags & M_PWR_SAV) == 0) {
1314 /*
1315 * Station in power save mode; pass the frame
1316 * to the 802.11 layer and continue. We'll get
1317 * the frame back when the time is right.
1318 */
1319 ieee80211_pwrsave(ic, ni, m);
1320 goto reclaim;
1321 }
1322 /* calculate priority so we can find the tx queue */
1323 if (ieee80211_classify(ic, m, ni)) {
1324 DPRINTF(sc, ATH_DEBUG_XMIT,
1325 "%s: discard, classification failure\n",
1326 __func__);
1327 m_freem(m);
1328 goto bad;
1329 }
1330 ifp->if_opackets++;
1331
1332 #if NBPFILTER > 0
1333 if (ifp->if_bpf)
1334 bpf_mtap(ifp->if_bpf, m);
1335 #endif
1336 /*
1337 * Encapsulate the packet in prep for transmission.
1338 */
1339 m = ieee80211_encap(ic, m, ni);
1340 if (m == NULL) {
1341 DPRINTF(sc, ATH_DEBUG_XMIT,
1342 "%s: encapsulation failure\n",
1343 __func__);
1344 sc->sc_stats.ast_tx_encap++;
1345 goto bad;
1346 }
1347 } else {
1348 /*
1349 * Hack! The referenced node pointer is in the
1350 * rcvif field of the packet header. This is
1351 * placed there by ieee80211_mgmt_output because
1352 * we need to hold the reference with the frame
1353 * and there's no other way (other than packet
1354 * tags which we consider too expensive to use)
1355 * to pass it along.
1356 */
1357 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1358 m->m_pkthdr.rcvif = NULL;
1359
1360 wh = mtod(m, struct ieee80211_frame *);
1361 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1362 IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1363 /* fill time stamp */
1364 u_int64_t tsf;
1365 u_int32_t *tstamp;
1366
1367 tsf = ath_hal_gettsf64(ah);
1368 /* XXX: adjust 100us delay to xmit */
1369 tsf += 100;
1370 tstamp = (u_int32_t *)&wh[1];
1371 tstamp[0] = htole32(tsf & 0xffffffff);
1372 tstamp[1] = htole32(tsf >> 32);
1373 }
1374 sc->sc_stats.ast_tx_mgmt++;
1375 }
1376
1377 if (ath_tx_start(sc, ni, bf, m)) {
1378 bad:
1379 ifp->if_oerrors++;
1380 reclaim:
1381 ATH_TXBUF_LOCK(sc);
1382 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1383 ATH_TXBUF_UNLOCK(sc);
1384 if (ni != NULL)
1385 ieee80211_free_node(ni);
1386 continue;
1387 }
1388
1389 sc->sc_tx_timer = 5;
1390 ifp->if_timer = 1;
1391 }
1392 }
1393
1394 static int
1395 ath_media_change(struct ifnet *ifp)
1396 {
1397 #define IS_UP(ifp) \
1398 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
1399 int error;
1400
1401 error = ieee80211_media_change(ifp);
1402 if (error == ENETRESET) {
1403 if (IS_UP(ifp))
1404 ath_init(ifp->if_softc); /* XXX lose error */
1405 error = 0;
1406 }
1407 return error;
1408 #undef IS_UP
1409 }
1410
1411 #ifdef AR_DEBUG
1412 static void
1413 ath_keyprint(const char *tag, u_int ix,
1414 const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1415 {
1416 static const char *ciphers[] = {
1417 "WEP",
1418 "AES-OCB",
1419 "AES-CCM",
1420 "CKIP",
1421 "TKIP",
1422 "CLR",
1423 };
1424 int i, n;
1425
1426 printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1427 for (i = 0, n = hk->kv_len; i < n; i++)
1428 printf("%02x", hk->kv_val[i]);
1429 printf(" mac %s", ether_sprintf(mac));
1430 if (hk->kv_type == HAL_CIPHER_TKIP) {
1431 printf(" mic ");
1432 for (i = 0; i < sizeof(hk->kv_mic); i++)
1433 printf("%02x", hk->kv_mic[i]);
1434 }
1435 printf("\n");
1436 }
1437 #endif
1438
1439 /*
1440 * Set a TKIP key into the hardware. This handles the
1441 * potential distribution of key state to multiple key
1442 * cache slots for TKIP.
1443 */
1444 static int
1445 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1446 HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1447 {
1448 #define IEEE80211_KEY_XR (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1449 static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1450 struct ath_hal *ah = sc->sc_ah;
1451
1452 KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1453 ("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1454 KASSERT(sc->sc_splitmic, ("key cache !split"));
1455 if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1456 /*
1457 * TX key goes at first index, RX key at the rx index.
1458 * The hal handles the MIC keys at index+64.
1459 */
1460 memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1461 KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1462 if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
1463 return 0;
1464
1465 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1466 KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1467 /* XXX delete tx key on failure? */
1468 return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
1469 } else if (k->wk_flags & IEEE80211_KEY_XR) {
1470 /*
1471 * TX/RX key goes at first index.
1472 * The hal handles the MIC keys are index+64.
1473 */
1474 memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
1475 k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
1476 KEYPRINTF(sc, k->wk_keyix, hk, mac);
1477 return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1478 }
1479 return 0;
1480 #undef IEEE80211_KEY_XR
1481 }
1482
1483 /*
1484 * Set a net80211 key into the hardware. This handles the
1485 * potential distribution of key state to multiple key
1486 * cache slots for TKIP with hardware MIC support.
1487 */
1488 static int
1489 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1490 const u_int8_t mac0[IEEE80211_ADDR_LEN],
1491 struct ieee80211_node *bss)
1492 {
1493 #define N(a) (sizeof(a)/sizeof(a[0]))
1494 static const u_int8_t ciphermap[] = {
1495 HAL_CIPHER_WEP, /* IEEE80211_CIPHER_WEP */
1496 HAL_CIPHER_TKIP, /* IEEE80211_CIPHER_TKIP */
1497 HAL_CIPHER_AES_OCB, /* IEEE80211_CIPHER_AES_OCB */
1498 HAL_CIPHER_AES_CCM, /* IEEE80211_CIPHER_AES_CCM */
1499 (u_int8_t) -1, /* 4 is not allocated */
1500 HAL_CIPHER_CKIP, /* IEEE80211_CIPHER_CKIP */
1501 HAL_CIPHER_CLR, /* IEEE80211_CIPHER_NONE */
1502 };
1503 struct ath_hal *ah = sc->sc_ah;
1504 const struct ieee80211_cipher *cip = k->wk_cipher;
1505 u_int8_t gmac[IEEE80211_ADDR_LEN];
1506 const u_int8_t *mac;
1507 HAL_KEYVAL hk;
1508
1509 memset(&hk, 0, sizeof(hk));
1510 /*
1511 * Software crypto uses a "clear key" so non-crypto
1512 * state kept in the key cache are maintained and
1513 * so that rx frames have an entry to match.
1514 */
1515 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1516 KASSERT(cip->ic_cipher < N(ciphermap),
1517 ("invalid cipher type %u", cip->ic_cipher));
1518 hk.kv_type = ciphermap[cip->ic_cipher];
1519 hk.kv_len = k->wk_keylen;
1520 memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1521 } else
1522 hk.kv_type = HAL_CIPHER_CLR;
1523
1524 if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
1525 /*
1526 * Group keys on hardware that supports multicast frame
1527 * key search use a mac that is the sender's address with
1528 * the high bit set instead of the app-specified address.
1529 */
1530 IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
1531 gmac[0] |= 0x80;
1532 mac = gmac;
1533 } else
1534 mac = mac0;
1535
1536 if (hk.kv_type == HAL_CIPHER_TKIP &&
1537 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1538 sc->sc_splitmic) {
1539 return ath_keyset_tkip(sc, k, &hk, mac);
1540 } else {
1541 KEYPRINTF(sc, k->wk_keyix, &hk, mac);
1542 return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
1543 }
1544 #undef N
1545 }
1546
1547 /*
1548 * Allocate tx/rx key slots for TKIP. We allocate two slots for
1549 * each key, one for decrypt/encrypt and the other for the MIC.
1550 */
1551 static u_int16_t
1552 key_alloc_2pair(struct ath_softc *sc,
1553 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1554 {
1555 #define N(a) (sizeof(a)/sizeof(a[0]))
1556 u_int i, keyix;
1557
1558 KASSERT(sc->sc_splitmic, ("key cache !split"));
1559 /* XXX could optimize */
1560 for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1561 u_int8_t b = sc->sc_keymap[i];
1562 if (b != 0xff) {
1563 /*
1564 * One or more slots in this byte are free.
1565 */
1566 keyix = i*NBBY;
1567 while (b & 1) {
1568 again:
1569 keyix++;
1570 b >>= 1;
1571 }
1572 /* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1573 if (isset(sc->sc_keymap, keyix+32) ||
1574 isset(sc->sc_keymap, keyix+64) ||
1575 isset(sc->sc_keymap, keyix+32+64)) {
1576 /* full pair unavailable */
1577 /* XXX statistic */
1578 if (keyix == (i+1)*NBBY) {
1579 /* no slots were appropriate, advance */
1580 continue;
1581 }
1582 goto again;
1583 }
1584 setbit(sc->sc_keymap, keyix);
1585 setbit(sc->sc_keymap, keyix+64);
1586 setbit(sc->sc_keymap, keyix+32);
1587 setbit(sc->sc_keymap, keyix+32+64);
1588 DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1589 "%s: key pair %u,%u %u,%u\n",
1590 __func__, keyix, keyix+64,
1591 keyix+32, keyix+32+64);
1592 *txkeyix = keyix;
1593 *rxkeyix = keyix+32;
1594 return 1;
1595 }
1596 }
1597 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1598 return 0;
1599 #undef N
1600 }
1601
1602 /*
1603 * Allocate a single key cache slot.
1604 */
1605 static int
1606 key_alloc_single(struct ath_softc *sc,
1607 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1608 {
1609 #define N(a) (sizeof(a)/sizeof(a[0]))
1610 u_int i, keyix;
1611
1612 /* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
1613 for (i = 0; i < N(sc->sc_keymap); i++) {
1614 u_int8_t b = sc->sc_keymap[i];
1615 if (b != 0xff) {
1616 /*
1617 * One or more slots are free.
1618 */
1619 keyix = i*NBBY;
1620 while (b & 1)
1621 keyix++, b >>= 1;
1622 setbit(sc->sc_keymap, keyix);
1623 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
1624 __func__, keyix);
1625 *txkeyix = *rxkeyix = keyix;
1626 return 1;
1627 }
1628 }
1629 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
1630 return 0;
1631 #undef N
1632 }
1633
1634 /*
1635 * Allocate one or more key cache slots for a uniacst key. The
1636 * key itself is needed only to identify the cipher. For hardware
1637 * TKIP with split cipher+MIC keys we allocate two key cache slot
1638 * pairs so that we can setup separate TX and RX MIC keys. Note
1639 * that the MIC key for a TKIP key at slot i is assumed by the
1640 * hardware to be at slot i+64. This limits TKIP keys to the first
1641 * 64 entries.
1642 */
1643 static int
1644 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
1645 ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
1646 {
1647 struct ath_softc *sc = ic->ic_ifp->if_softc;
1648
1649 /*
1650 * Group key allocation must be handled specially for
1651 * parts that do not support multicast key cache search
1652 * functionality. For those parts the key id must match
1653 * the h/w key index so lookups find the right key. On
1654 * parts w/ the key search facility we install the sender's
1655 * mac address (with the high bit set) and let the hardware
1656 * find the key w/o using the key id. This is preferred as
1657 * it permits us to support multiple users for adhoc and/or
1658 * multi-station operation.
1659 */
1660 if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
1661 if (!(&ic->ic_nw_keys[0] <= k &&
1662 k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
1663 /* should not happen */
1664 DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1665 "%s: bogus group key\n", __func__);
1666 return 0;
1667 }
1668 /*
1669 * XXX we pre-allocate the global keys so
1670 * have no way to check if they've already been allocated.
1671 */
1672 *keyix = *rxkeyix = k - ic->ic_nw_keys;
1673 return 1;
1674 }
1675
1676 /*
1677 * We allocate two pair for TKIP when using the h/w to do
1678 * the MIC. For everything else, including software crypto,
1679 * we allocate a single entry. Note that s/w crypto requires
1680 * a pass-through slot on the 5211 and 5212. The 5210 does
1681 * not support pass-through cache entries and we map all
1682 * those requests to slot 0.
1683 */
1684 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1685 return key_alloc_single(sc, keyix, rxkeyix);
1686 } else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
1687 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
1688 return key_alloc_2pair(sc, keyix, rxkeyix);
1689 } else {
1690 return key_alloc_single(sc, keyix, rxkeyix);
1691 }
1692 }
1693
1694 /*
1695 * Delete an entry in the key cache allocated by ath_key_alloc.
1696 */
1697 static int
1698 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
1699 {
1700 struct ath_softc *sc = ic->ic_ifp->if_softc;
1701 struct ath_hal *ah = sc->sc_ah;
1702 const struct ieee80211_cipher *cip = k->wk_cipher;
1703 u_int keyix = k->wk_keyix;
1704
1705 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
1706
1707 ath_hal_keyreset(ah, keyix);
1708 /*
1709 * Handle split tx/rx keying required for TKIP with h/w MIC.
1710 */
1711 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1712 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
1713 ath_hal_keyreset(ah, keyix+32); /* RX key */
1714 if (keyix >= IEEE80211_WEP_NKID) {
1715 /*
1716 * Don't touch keymap entries for global keys so
1717 * they are never considered for dynamic allocation.
1718 */
1719 clrbit(sc->sc_keymap, keyix);
1720 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1721 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1722 sc->sc_splitmic) {
1723 clrbit(sc->sc_keymap, keyix+64); /* TX key MIC */
1724 clrbit(sc->sc_keymap, keyix+32); /* RX key */
1725 clrbit(sc->sc_keymap, keyix+32+64); /* RX key MIC */
1726 }
1727 }
1728 return 1;
1729 }
1730
1731 /*
1732 * Set the key cache contents for the specified key. Key cache
1733 * slot(s) must already have been allocated by ath_key_alloc.
1734 */
1735 static int
1736 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
1737 const u_int8_t mac[IEEE80211_ADDR_LEN])
1738 {
1739 struct ath_softc *sc = ic->ic_ifp->if_softc;
1740
1741 return ath_keyset(sc, k, mac, ic->ic_bss);
1742 }
1743
1744 /*
1745 * Block/unblock tx+rx processing while a key change is done.
1746 * We assume the caller serializes key management operations
1747 * so we only need to worry about synchronization with other
1748 * uses that originate in the driver.
1749 */
1750 static void
1751 ath_key_update_begin(struct ieee80211com *ic)
1752 {
1753 struct ifnet *ifp = ic->ic_ifp;
1754 struct ath_softc *sc = ifp->if_softc;
1755
1756 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1757 #if 0
1758 tasklet_disable(&sc->sc_rxtq);
1759 #endif
1760 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */
1761 }
1762
1763 static void
1764 ath_key_update_end(struct ieee80211com *ic)
1765 {
1766 struct ifnet *ifp = ic->ic_ifp;
1767 struct ath_softc *sc = ifp->if_softc;
1768
1769 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1770 IF_UNLOCK(&ifp->if_snd);
1771 #if 0
1772 tasklet_enable(&sc->sc_rxtq);
1773 #endif
1774 }
1775
1776 /*
1777 * Calculate the receive filter according to the
1778 * operating mode and state:
1779 *
1780 * o always accept unicast, broadcast, and multicast traffic
1781 * o maintain current state of phy error reception (the hal
1782 * may enable phy error frames for noise immunity work)
1783 * o probe request frames are accepted only when operating in
1784 * hostap, adhoc, or monitor modes
1785 * o enable promiscuous mode according to the interface state
1786 * o accept beacons:
1787 * - when operating in adhoc mode so the 802.11 layer creates
1788 * node table entries for peers,
1789 * - when operating in station mode for collecting rssi data when
1790 * the station is otherwise quiet, or
1791 * - when scanning
1792 */
1793 static u_int32_t
1794 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
1795 {
1796 struct ieee80211com *ic = &sc->sc_ic;
1797 struct ath_hal *ah = sc->sc_ah;
1798 struct ifnet *ifp = &sc->sc_if;
1799 u_int32_t rfilt;
1800
1801 rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1802 | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1803 if (ic->ic_opmode != IEEE80211_M_STA)
1804 rfilt |= HAL_RX_FILTER_PROBEREQ;
1805 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1806 (ifp->if_flags & IFF_PROMISC))
1807 rfilt |= HAL_RX_FILTER_PROM;
1808 if (ic->ic_opmode == IEEE80211_M_STA ||
1809 ic->ic_opmode == IEEE80211_M_IBSS ||
1810 state == IEEE80211_S_SCAN)
1811 rfilt |= HAL_RX_FILTER_BEACON;
1812 return rfilt;
1813 }
1814
1815 static void
1816 ath_mcastfilter_accum(caddr_t dl, u_int32_t *mfilt)
1817 {
1818 u_int32_t val;
1819 u_int8_t pos;
1820
1821 /* calculate XOR of eight 6bit values */
1822 val = LE_READ_4(dl + 0);
1823 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1824 val = LE_READ_4(dl + 3);
1825 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1826 pos &= 0x3f;
1827 mfilt[pos / 32] |= (1 << (pos % 32));
1828 }
1829
1830 static void
1831 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t *mfilt)
1832 {
1833 struct ifnet *ifp = &sc->sc_if;
1834 struct ether_multi *enm;
1835 struct ether_multistep estep;
1836
1837 mfilt[0] = mfilt[1] = 0;
1838 ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
1839 while (enm != NULL) {
1840 /* XXX Punt on ranges. */
1841 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
1842 mfilt[0] = mfilt[1] = ~((u_int32_t)0);
1843 ifp->if_flags |= IFF_ALLMULTI;
1844 return;
1845 }
1846 ath_mcastfilter_accum(enm->enm_addrlo, mfilt);
1847 ETHER_NEXT_MULTI(estep, enm);
1848 }
1849 ifp->if_flags &= ~IFF_ALLMULTI;
1850 }
1851
1852 static void
1853 ath_mode_init(struct ath_softc *sc)
1854 {
1855 struct ieee80211com *ic = &sc->sc_ic;
1856 struct ath_hal *ah = sc->sc_ah;
1857 u_int32_t rfilt, mfilt[2];
1858 int i;
1859
1860 /* configure rx filter */
1861 rfilt = ath_calcrxfilter(sc, ic->ic_state);
1862 ath_hal_setrxfilter(ah, rfilt);
1863
1864 /* configure operational mode */
1865 ath_hal_setopmode(ah);
1866
1867 /* Write keys to hardware; it may have been powered down. */
1868 ath_key_update_begin(ic);
1869 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1870 ath_key_set(ic,
1871 &ic->ic_crypto.cs_nw_keys[i],
1872 ic->ic_myaddr);
1873 }
1874 ath_key_update_end(ic);
1875
1876 /*
1877 * Handle any link-level address change. Note that we only
1878 * need to force ic_myaddr; any other addresses are handled
1879 * as a byproduct of the ifnet code marking the interface
1880 * down then up.
1881 *
1882 * XXX should get from lladdr instead of arpcom but that's more work
1883 */
1884 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(sc->sc_if.if_sadl));
1885 ath_hal_setmac(ah, ic->ic_myaddr);
1886
1887 /* calculate and install multicast filter */
1888 #ifdef __FreeBSD__
1889 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1890 mfilt[0] = mfilt[1] = 0;
1891 IF_ADDR_LOCK(ifp);
1892 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1893 caddr_t dl;
1894
1895 /* calculate XOR of eight 6bit values */
1896 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
1897 val = LE_READ_4(dl + 0);
1898 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1899 val = LE_READ_4(dl + 3);
1900 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1901 pos &= 0x3f;
1902 mfilt[pos / 32] |= (1 << (pos % 32));
1903 }
1904 IF_ADDR_UNLOCK(ifp);
1905 } else {
1906 mfilt[0] = mfilt[1] = ~0;
1907 }
1908 #endif
1909 #ifdef __NetBSD__
1910 ath_mcastfilter_compute(sc, mfilt);
1911 #endif
1912 ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1913 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
1914 __func__, rfilt, mfilt[0], mfilt[1]);
1915 }
1916
1917 /*
1918 * Set the slot time based on the current setting.
1919 */
1920 static void
1921 ath_setslottime(struct ath_softc *sc)
1922 {
1923 struct ieee80211com *ic = &sc->sc_ic;
1924 struct ath_hal *ah = sc->sc_ah;
1925
1926 if (ic->ic_flags & IEEE80211_F_SHSLOT)
1927 ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
1928 else
1929 ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
1930 sc->sc_updateslot = OK;
1931 }
1932
1933 /*
1934 * Callback from the 802.11 layer to update the
1935 * slot time based on the current setting.
1936 */
1937 static void
1938 ath_updateslot(struct ifnet *ifp)
1939 {
1940 struct ath_softc *sc = ifp->if_softc;
1941 struct ieee80211com *ic = &sc->sc_ic;
1942
1943 /*
1944 * When not coordinating the BSS, change the hardware
1945 * immediately. For other operation we defer the change
1946 * until beacon updates have propagated to the stations.
1947 */
1948 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1949 sc->sc_updateslot = UPDATE;
1950 else
1951 ath_setslottime(sc);
1952 }
1953
1954 /*
1955 * Setup a h/w transmit queue for beacons.
1956 */
1957 static int
1958 ath_beaconq_setup(struct ath_hal *ah)
1959 {
1960 HAL_TXQ_INFO qi;
1961
1962 memset(&qi, 0, sizeof(qi));
1963 qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
1964 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
1965 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
1966 /* NB: for dynamic turbo, don't enable any other interrupts */
1967 qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
1968 return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
1969 }
1970
1971 /*
1972 * Setup the transmit queue parameters for the beacon queue.
1973 */
1974 static int
1975 ath_beaconq_config(struct ath_softc *sc)
1976 {
1977 #define ATH_EXPONENT_TO_VALUE(v) ((1<<(v))-1)
1978 struct ieee80211com *ic = &sc->sc_ic;
1979 struct ath_hal *ah = sc->sc_ah;
1980 HAL_TXQ_INFO qi;
1981
1982 ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
1983 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
1984 /*
1985 * Always burst out beacon and CAB traffic.
1986 */
1987 qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
1988 qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
1989 qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
1990 } else {
1991 struct wmeParams *wmep =
1992 &ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
1993 /*
1994 * Adhoc mode; important thing is to use 2x cwmin.
1995 */
1996 qi.tqi_aifs = wmep->wmep_aifsn;
1997 qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
1998 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
1999 }
2000
2001 if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
2002 device_printf(sc->sc_dev, "unable to update parameters for "
2003 "beacon hardware queue!\n");
2004 return 0;
2005 } else {
2006 ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
2007 return 1;
2008 }
2009 #undef ATH_EXPONENT_TO_VALUE
2010 }
2011
2012 /*
2013 * Allocate and setup an initial beacon frame.
2014 */
2015 static int
2016 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
2017 {
2018 struct ieee80211com *ic = ni->ni_ic;
2019 struct ath_buf *bf;
2020 struct mbuf *m;
2021 int error;
2022
2023 bf = STAILQ_FIRST(&sc->sc_bbuf);
2024 if (bf == NULL) {
2025 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
2026 sc->sc_stats.ast_be_nombuf++; /* XXX */
2027 return ENOMEM; /* XXX */
2028 }
2029 /*
2030 * NB: the beacon data buffer must be 32-bit aligned;
2031 * we assume the mbuf routines will return us something
2032 * with this alignment (perhaps should assert).
2033 */
2034 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
2035 if (m == NULL) {
2036 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
2037 __func__);
2038 sc->sc_stats.ast_be_nombuf++;
2039 return ENOMEM;
2040 }
2041 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2042 BUS_DMA_NOWAIT);
2043 if (error == 0) {
2044 bf->bf_m = m;
2045 bf->bf_node = ieee80211_ref_node(ni);
2046 } else {
2047 m_freem(m);
2048 }
2049 return error;
2050 }
2051
2052 /*
2053 * Setup the beacon frame for transmit.
2054 */
2055 static void
2056 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
2057 {
2058 #define USE_SHPREAMBLE(_ic) \
2059 (((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
2060 == IEEE80211_F_SHPREAMBLE)
2061 struct ieee80211_node *ni = bf->bf_node;
2062 struct ieee80211com *ic = ni->ni_ic;
2063 struct mbuf *m = bf->bf_m;
2064 struct ath_hal *ah = sc->sc_ah;
2065 struct ath_desc *ds;
2066 int flags, antenna;
2067 const HAL_RATE_TABLE *rt;
2068 u_int8_t rix, rate;
2069
2070 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
2071 __func__, m, m->m_len);
2072
2073 /* setup descriptors */
2074 ds = bf->bf_desc;
2075
2076 flags = HAL_TXDESC_NOACK;
2077 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
2078 ds->ds_link = HTOAH32(bf->bf_daddr); /* self-linked */
2079 flags |= HAL_TXDESC_VEOL;
2080 /*
2081 * Let hardware handle antenna switching unless
2082 * the user has selected a transmit antenna
2083 * (sc_txantenna is not 0).
2084 */
2085 antenna = sc->sc_txantenna;
2086 } else {
2087 ds->ds_link = 0;
2088 /*
2089 * Switch antenna every 4 beacons, unless the user
2090 * has selected a transmit antenna (sc_txantenna
2091 * is not 0).
2092 *
2093 * XXX assumes two antenna
2094 */
2095 if (sc->sc_txantenna == 0)
2096 antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2097 else
2098 antenna = sc->sc_txantenna;
2099 }
2100
2101 KASSERT(bf->bf_nseg == 1,
2102 ("multi-segment beacon frame; nseg %u", bf->bf_nseg));
2103 ds->ds_data = bf->bf_segs[0].ds_addr;
2104 /*
2105 * Calculate rate code.
2106 * XXX everything at min xmit rate
2107 */
2108 rix = sc->sc_minrateix;
2109 rt = sc->sc_currates;
2110 rate = rt->info[rix].rateCode;
2111 if (USE_SHPREAMBLE(ic))
2112 rate |= rt->info[rix].shortPreamble;
2113 ath_hal_setuptxdesc(ah, ds
2114 , m->m_len + IEEE80211_CRC_LEN /* frame length */
2115 , sizeof(struct ieee80211_frame)/* header length */
2116 , HAL_PKT_TYPE_BEACON /* Atheros packet type */
2117 , ni->ni_txpower /* txpower XXX */
2118 , rate, 1 /* series 0 rate/tries */
2119 , HAL_TXKEYIX_INVALID /* no encryption */
2120 , antenna /* antenna mode */
2121 , flags /* no ack, veol for beacons */
2122 , 0 /* rts/cts rate */
2123 , 0 /* rts/cts duration */
2124 );
2125 /* NB: beacon's BufLen must be a multiple of 4 bytes */
2126 ath_hal_filltxdesc(ah, ds
2127 , roundup(m->m_len, 4) /* buffer length */
2128 , AH_TRUE /* first segment */
2129 , AH_TRUE /* last segment */
2130 , ds /* first descriptor */
2131 );
2132
2133 /* NB: The desc swap function becomes void,
2134 * if descriptor swapping is not enabled
2135 */
2136 ath_desc_swap(ds);
2137
2138 #undef USE_SHPREAMBLE
2139 }
2140
2141 /*
2142 * Transmit a beacon frame at SWBA. Dynamic updates to the
2143 * frame contents are done as needed and the slot time is
2144 * also adjusted based on current state.
2145 */
2146 static void
2147 ath_beacon_proc(void *arg, int pending)
2148 {
2149 struct ath_softc *sc = arg;
2150 struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
2151 struct ieee80211_node *ni = bf->bf_node;
2152 struct ieee80211com *ic = ni->ni_ic;
2153 struct ath_hal *ah = sc->sc_ah;
2154 struct mbuf *m;
2155 int ncabq, error, otherant;
2156
2157 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2158 __func__, pending);
2159
2160 if (ic->ic_opmode == IEEE80211_M_STA ||
2161 ic->ic_opmode == IEEE80211_M_MONITOR ||
2162 bf == NULL || bf->bf_m == NULL) {
2163 DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
2164 __func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
2165 return;
2166 }
2167 /*
2168 * Check if the previous beacon has gone out. If
2169 * not don't try to post another, skip this period
2170 * and wait for the next. Missed beacons indicate
2171 * a problem and should not occur. If we miss too
2172 * many consecutive beacons reset the device.
2173 */
2174 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2175 sc->sc_bmisscount++;
2176 DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2177 "%s: missed %u consecutive beacons\n",
2178 __func__, sc->sc_bmisscount);
2179 if (sc->sc_bmisscount > 3) /* NB: 3 is a guess */
2180 TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask);
2181 return;
2182 }
2183 if (sc->sc_bmisscount != 0) {
2184 DPRINTF(sc, ATH_DEBUG_BEACON,
2185 "%s: resume beacon xmit after %u misses\n",
2186 __func__, sc->sc_bmisscount);
2187 sc->sc_bmisscount = 0;
2188 }
2189
2190 /*
2191 * Update dynamic beacon contents. If this returns
2192 * non-zero then we need to remap the memory because
2193 * the beacon frame changed size (probably because
2194 * of the TIM bitmap).
2195 */
2196 m = bf->bf_m;
2197 ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
2198 if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
2199 /* XXX too conservative? */
2200 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2201 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2202 BUS_DMA_NOWAIT);
2203 if (error != 0) {
2204 if_printf(&sc->sc_if,
2205 "%s: bus_dmamap_load_mbuf failed, error %u\n",
2206 __func__, error);
2207 return;
2208 }
2209 }
2210
2211 /*
2212 * Handle slot time change when a non-ERP station joins/leaves
2213 * an 11g network. The 802.11 layer notifies us via callback,
2214 * we mark updateslot, then wait one beacon before effecting
2215 * the change. This gives associated stations at least one
2216 * beacon interval to note the state change.
2217 */
2218 /* XXX locking */
2219 if (sc->sc_updateslot == UPDATE)
2220 sc->sc_updateslot = COMMIT; /* commit next beacon */
2221 else if (sc->sc_updateslot == COMMIT)
2222 ath_setslottime(sc); /* commit change to h/w */
2223
2224 /*
2225 * Check recent per-antenna transmit statistics and flip
2226 * the default antenna if noticeably more frames went out
2227 * on the non-default antenna.
2228 * XXX assumes 2 anntenae
2229 */
2230 otherant = sc->sc_defant & 1 ? 2 : 1;
2231 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2232 ath_setdefantenna(sc, otherant);
2233 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2234
2235 /*
2236 * Construct tx descriptor.
2237 */
2238 ath_beacon_setup(sc, bf);
2239
2240 /*
2241 * Stop any current dma and put the new frame on the queue.
2242 * This should never fail since we check above that no frames
2243 * are still pending on the queue.
2244 */
2245 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2246 DPRINTF(sc, ATH_DEBUG_ANY,
2247 "%s: beacon queue %u did not stop?\n",
2248 __func__, sc->sc_bhalq);
2249 }
2250 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2251 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2252
2253 /*
2254 * Enable the CAB queue before the beacon queue to
2255 * insure cab frames are triggered by this beacon.
2256 */
2257 if (ncabq != 0 && (sc->sc_boff.bo_tim[4] & 1)) /* NB: only at DTIM */
2258 ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
2259 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
2260 ath_hal_txstart(ah, sc->sc_bhalq);
2261 DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2262 "%s: TXDP[%u] = %" PRIx64 " (%p)\n", __func__,
2263 sc->sc_bhalq, (uint64_t)bf->bf_daddr, bf->bf_desc);
2264
2265 sc->sc_stats.ast_be_xmit++;
2266 }
2267
2268 /*
2269 * Reset the hardware after detecting beacons have stopped.
2270 */
2271 static void
2272 ath_bstuck_proc(void *arg, int pending)
2273 {
2274 struct ath_softc *sc = arg;
2275 struct ifnet *ifp = &sc->sc_if;
2276
2277 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2278 sc->sc_bmisscount);
2279 ath_reset(ifp);
2280 }
2281
2282 /*
2283 * Reclaim beacon resources.
2284 */
2285 static void
2286 ath_beacon_free(struct ath_softc *sc)
2287 {
2288 struct ath_buf *bf;
2289
2290 STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
2291 if (bf->bf_m != NULL) {
2292 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2293 m_freem(bf->bf_m);
2294 bf->bf_m = NULL;
2295 }
2296 if (bf->bf_node != NULL) {
2297 ieee80211_free_node(bf->bf_node);
2298 bf->bf_node = NULL;
2299 }
2300 }
2301 }
2302
2303 /*
2304 * Configure the beacon and sleep timers.
2305 *
2306 * When operating as an AP this resets the TSF and sets
2307 * up the hardware to notify us when we need to issue beacons.
2308 *
2309 * When operating in station mode this sets up the beacon
2310 * timers according to the timestamp of the last received
2311 * beacon and the current TSF, configures PCF and DTIM
2312 * handling, programs the sleep registers so the hardware
2313 * will wakeup in time to receive beacons, and configures
2314 * the beacon miss handling so we'll receive a BMISS
2315 * interrupt when we stop seeing beacons from the AP
2316 * we've associated with.
2317 */
2318 static void
2319 ath_beacon_config(struct ath_softc *sc)
2320 {
2321 #define TSF_TO_TU(_h,_l) \
2322 ((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
2323 #define FUDGE 2
2324 struct ath_hal *ah = sc->sc_ah;
2325 struct ieee80211com *ic = &sc->sc_ic;
2326 struct ieee80211_node *ni = ic->ic_bss;
2327 u_int32_t nexttbtt, intval, tsftu;
2328 u_int64_t tsf;
2329
2330 /* extract tstamp from last beacon and convert to TU */
2331 nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
2332 LE_READ_4(ni->ni_tstamp.data));
2333 /* NB: the beacon interval is kept internally in TU's */
2334 intval = ni->ni_intval & HAL_BEACON_PERIOD;
2335 if (nexttbtt == 0) /* e.g. for ap mode */
2336 nexttbtt = intval;
2337 else if (intval) /* NB: can be 0 for monitor mode */
2338 nexttbtt = roundup(nexttbtt, intval);
2339 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2340 __func__, nexttbtt, intval, ni->ni_intval);
2341 if (ic->ic_opmode == IEEE80211_M_STA) {
2342 HAL_BEACON_STATE bs;
2343 int dtimperiod, dtimcount;
2344 int cfpperiod, cfpcount;
2345
2346 /*
2347 * Setup dtim and cfp parameters according to
2348 * last beacon we received (which may be none).
2349 */
2350 dtimperiod = ni->ni_dtim_period;
2351 if (dtimperiod <= 0) /* NB: 0 if not known */
2352 dtimperiod = 1;
2353 dtimcount = ni->ni_dtim_count;
2354 if (dtimcount >= dtimperiod) /* NB: sanity check */
2355 dtimcount = 0; /* XXX? */
2356 cfpperiod = 1; /* NB: no PCF support yet */
2357 cfpcount = 0;
2358 /*
2359 * Pull nexttbtt forward to reflect the current
2360 * TSF and calculate dtim+cfp state for the result.
2361 */
2362 tsf = ath_hal_gettsf64(ah);
2363 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2364 do {
2365 nexttbtt += intval;
2366 if (--dtimcount < 0) {
2367 dtimcount = dtimperiod - 1;
2368 if (--cfpcount < 0)
2369 cfpcount = cfpperiod - 1;
2370 }
2371 } while (nexttbtt < tsftu);
2372 memset(&bs, 0, sizeof(bs));
2373 bs.bs_intval = intval;
2374 bs.bs_nexttbtt = nexttbtt;
2375 bs.bs_dtimperiod = dtimperiod*intval;
2376 bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
2377 bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
2378 bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
2379 bs.bs_cfpmaxduration = 0;
2380 #if 0
2381 /*
2382 * The 802.11 layer records the offset to the DTIM
2383 * bitmap while receiving beacons; use it here to
2384 * enable h/w detection of our AID being marked in
2385 * the bitmap vector (to indicate frames for us are
2386 * pending at the AP).
2387 * XXX do DTIM handling in s/w to WAR old h/w bugs
2388 * XXX enable based on h/w rev for newer chips
2389 */
2390 bs.bs_timoffset = ni->ni_timoff;
2391 #endif
2392 /*
2393 * Calculate the number of consecutive beacons to miss
2394 * before taking a BMISS interrupt. The configuration
2395 * is specified in ms, so we need to convert that to
2396 * TU's and then calculate based on the beacon interval.
2397 * Note that we clamp the result to at most 10 beacons.
2398 */
2399 bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
2400 if (bs.bs_bmissthreshold > 10)
2401 bs.bs_bmissthreshold = 10;
2402 else if (bs.bs_bmissthreshold <= 0)
2403 bs.bs_bmissthreshold = 1;
2404
2405 /*
2406 * Calculate sleep duration. The configuration is
2407 * given in ms. We insure a multiple of the beacon
2408 * period is used. Also, if the sleep duration is
2409 * greater than the DTIM period then it makes senses
2410 * to make it a multiple of that.
2411 *
2412 * XXX fixed at 100ms
2413 */
2414 bs.bs_sleepduration =
2415 roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2416 if (bs.bs_sleepduration > bs.bs_dtimperiod)
2417 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2418
2419 DPRINTF(sc, ATH_DEBUG_BEACON,
2420 "%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2421 , __func__
2422 , tsf, tsftu
2423 , bs.bs_intval
2424 , bs.bs_nexttbtt
2425 , bs.bs_dtimperiod
2426 , bs.bs_nextdtim
2427 , bs.bs_bmissthreshold
2428 , bs.bs_sleepduration
2429 , bs.bs_cfpperiod
2430 , bs.bs_cfpmaxduration
2431 , bs.bs_cfpnext
2432 , bs.bs_timoffset
2433 );
2434 ath_hal_intrset(ah, 0);
2435 ath_hal_beacontimers(ah, &bs);
2436 sc->sc_imask |= HAL_INT_BMISS;
2437 ath_hal_intrset(ah, sc->sc_imask);
2438 } else {
2439 ath_hal_intrset(ah, 0);
2440 if (nexttbtt == intval)
2441 intval |= HAL_BEACON_RESET_TSF;
2442 if (ic->ic_opmode == IEEE80211_M_IBSS) {
2443 /*
2444 * In IBSS mode enable the beacon timers but only
2445 * enable SWBA interrupts if we need to manually
2446 * prepare beacon frames. Otherwise we use a
2447 * self-linked tx descriptor and let the hardware
2448 * deal with things.
2449 */
2450 intval |= HAL_BEACON_ENA;
2451 if (!sc->sc_hasveol)
2452 sc->sc_imask |= HAL_INT_SWBA;
2453 if ((intval & HAL_BEACON_RESET_TSF) == 0) {
2454 /*
2455 * Pull nexttbtt forward to reflect
2456 * the current TSF.
2457 */
2458 tsf = ath_hal_gettsf64(ah);
2459 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2460 do {
2461 nexttbtt += intval;
2462 } while (nexttbtt < tsftu);
2463 }
2464 ath_beaconq_config(sc);
2465 } else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2466 /*
2467 * In AP mode we enable the beacon timers and
2468 * SWBA interrupts to prepare beacon frames.
2469 */
2470 intval |= HAL_BEACON_ENA;
2471 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */
2472 ath_beaconq_config(sc);
2473 }
2474 ath_hal_beaconinit(ah, nexttbtt, intval);
2475 sc->sc_bmisscount = 0;
2476 ath_hal_intrset(ah, sc->sc_imask);
2477 /*
2478 * When using a self-linked beacon descriptor in
2479 * ibss mode load it once here.
2480 */
2481 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2482 ath_beacon_proc(sc, 0);
2483 }
2484 sc->sc_syncbeacon = 0;
2485 #undef UNDEF
2486 #undef TSF_TO_TU
2487 }
2488
2489 static int
2490 ath_descdma_setup(struct ath_softc *sc,
2491 struct ath_descdma *dd, ath_bufhead *head,
2492 const char *name, int nbuf, int ndesc)
2493 {
2494 #define DS2PHYS(_dd, _ds) \
2495 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2496 struct ifnet *ifp = &sc->sc_if;
2497 struct ath_desc *ds;
2498 struct ath_buf *bf;
2499 int i, bsize, error;
2500
2501 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2502 __func__, name, nbuf, ndesc);
2503
2504 dd->dd_name = name;
2505 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2506
2507 /*
2508 * Setup DMA descriptor area.
2509 */
2510 dd->dd_dmat = sc->sc_dmat;
2511
2512 error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE,
2513 0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0);
2514
2515 if (error != 0) {
2516 if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2517 "error %u\n", nbuf * ndesc, dd->dd_name, error);
2518 goto fail0;
2519 }
2520
2521 error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg,
2522 dd->dd_desc_len, (caddr_t *)&dd->dd_desc, BUS_DMA_COHERENT);
2523 if (error != 0) {
2524 if_printf(ifp, "unable to map %u %s descriptors, error = %u\n",
2525 nbuf * ndesc, dd->dd_name, error);
2526 goto fail1;
2527 }
2528
2529 /* allocate descriptors */
2530 error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1,
2531 dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2532 if (error != 0) {
2533 if_printf(ifp, "unable to create dmamap for %s descriptors, "
2534 "error %u\n", dd->dd_name, error);
2535 goto fail2;
2536 }
2537
2538 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc,
2539 dd->dd_desc_len, NULL, BUS_DMA_NOWAIT);
2540 if (error != 0) {
2541 if_printf(ifp, "unable to map %s descriptors, error %u\n",
2542 dd->dd_name, error);
2543 goto fail3;
2544 }
2545
2546 ds = dd->dd_desc;
2547 dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr;
2548 DPRINTF(sc, ATH_DEBUG_RESET,
2549 "%s: %s DMA map: %p (%lu) -> %" PRIx64 " (%lu)\n",
2550 __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2551 (uint64_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2552
2553 /* allocate rx buffers */
2554 bsize = sizeof(struct ath_buf) * nbuf;
2555 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2556 if (bf == NULL) {
2557 if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2558 dd->dd_name, bsize);
2559 goto fail4;
2560 }
2561 dd->dd_bufptr = bf;
2562
2563 STAILQ_INIT(head);
2564 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2565 bf->bf_desc = ds;
2566 bf->bf_daddr = DS2PHYS(dd, ds);
2567 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc,
2568 MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap);
2569 if (error != 0) {
2570 if_printf(ifp, "unable to create dmamap for %s "
2571 "buffer %u, error %u\n", dd->dd_name, i, error);
2572 ath_descdma_cleanup(sc, dd, head);
2573 return error;
2574 }
2575 STAILQ_INSERT_TAIL(head, bf, bf_list);
2576 }
2577 return 0;
2578 fail4:
2579 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2580 fail3:
2581 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2582 fail2:
2583 bus_dmamem_unmap(dd->dd_dmat, (caddr_t)dd->dd_desc, dd->dd_desc_len);
2584 fail1:
2585 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2586 fail0:
2587 memset(dd, 0, sizeof(*dd));
2588 return error;
2589 #undef DS2PHYS
2590 }
2591
2592 static void
2593 ath_descdma_cleanup(struct ath_softc *sc,
2594 struct ath_descdma *dd, ath_bufhead *head)
2595 {
2596 struct ath_buf *bf;
2597 struct ieee80211_node *ni;
2598
2599 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2600 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2601 bus_dmamem_unmap(dd->dd_dmat, (caddr_t)dd->dd_desc, dd->dd_desc_len);
2602 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2603
2604 STAILQ_FOREACH(bf, head, bf_list) {
2605 if (bf->bf_m) {
2606 m_freem(bf->bf_m);
2607 bf->bf_m = NULL;
2608 }
2609 if (bf->bf_dmamap != NULL) {
2610 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2611 bf->bf_dmamap = NULL;
2612 }
2613 ni = bf->bf_node;
2614 bf->bf_node = NULL;
2615 if (ni != NULL) {
2616 /*
2617 * Reclaim node reference.
2618 */
2619 ieee80211_free_node(ni);
2620 }
2621 }
2622
2623 STAILQ_INIT(head);
2624 free(dd->dd_bufptr, M_ATHDEV);
2625 memset(dd, 0, sizeof(*dd));
2626 }
2627
2628 static int
2629 ath_desc_alloc(struct ath_softc *sc)
2630 {
2631 int error;
2632
2633 error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2634 "rx", ath_rxbuf, 1);
2635 if (error != 0)
2636 return error;
2637
2638 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2639 "tx", ath_txbuf, ATH_TXDESC);
2640 if (error != 0) {
2641 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2642 return error;
2643 }
2644
2645 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2646 "beacon", 1, 1);
2647 if (error != 0) {
2648 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2649 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2650 return error;
2651 }
2652 return 0;
2653 }
2654
2655 static void
2656 ath_desc_free(struct ath_softc *sc)
2657 {
2658
2659 if (sc->sc_bdma.dd_desc_len != 0)
2660 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2661 if (sc->sc_txdma.dd_desc_len != 0)
2662 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2663 if (sc->sc_rxdma.dd_desc_len != 0)
2664 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2665 }
2666
2667 static struct ieee80211_node *
2668 ath_node_alloc(struct ieee80211_node_table *nt)
2669 {
2670 struct ieee80211com *ic = nt->nt_ic;
2671 struct ath_softc *sc = ic->ic_ifp->if_softc;
2672 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2673 struct ath_node *an;
2674
2675 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2676 if (an == NULL) {
2677 /* XXX stat+msg */
2678 return NULL;
2679 }
2680 an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
2681 ath_rate_node_init(sc, an);
2682
2683 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2684 return &an->an_node;
2685 }
2686
2687 static void
2688 ath_node_free(struct ieee80211_node *ni)
2689 {
2690 struct ieee80211com *ic = ni->ni_ic;
2691 struct ath_softc *sc = ic->ic_ifp->if_softc;
2692
2693 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2694
2695 ath_rate_node_cleanup(sc, ATH_NODE(ni));
2696 sc->sc_node_free(ni);
2697 }
2698
2699 static u_int8_t
2700 ath_node_getrssi(const struct ieee80211_node *ni)
2701 {
2702 #define HAL_EP_RND(x, mul) \
2703 ((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
2704 u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
2705 int32_t rssi;
2706
2707 /*
2708 * When only one frame is received there will be no state in
2709 * avgrssi so fallback on the value recorded by the 802.11 layer.
2710 */
2711 if (avgrssi != ATH_RSSI_DUMMY_MARKER)
2712 rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
2713 else
2714 rssi = ni->ni_rssi;
2715 return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
2716 #undef HAL_EP_RND
2717 }
2718
2719 static int
2720 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2721 {
2722 struct ath_hal *ah = sc->sc_ah;
2723 int error;
2724 struct mbuf *m;
2725 struct ath_desc *ds;
2726
2727 m = bf->bf_m;
2728 if (m == NULL) {
2729 /*
2730 * NB: by assigning a page to the rx dma buffer we
2731 * implicitly satisfy the Atheros requirement that
2732 * this buffer be cache-line-aligned and sized to be
2733 * multiple of the cache line size. Not doing this
2734 * causes weird stuff to happen (for the 5210 at least).
2735 */
2736 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2737 if (m == NULL) {
2738 DPRINTF(sc, ATH_DEBUG_ANY,
2739 "%s: no mbuf/cluster\n", __func__);
2740 sc->sc_stats.ast_rx_nombuf++;
2741 return ENOMEM;
2742 }
2743 bf->bf_m = m;
2744 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2745
2746 error = bus_dmamap_load_mbuf(sc->sc_dmat,
2747 bf->bf_dmamap, m,
2748 BUS_DMA_NOWAIT);
2749 if (error != 0) {
2750 DPRINTF(sc, ATH_DEBUG_ANY,
2751 "%s: bus_dmamap_load_mbuf failed; error %d\n",
2752 __func__, error);
2753 sc->sc_stats.ast_rx_busdma++;
2754 return error;
2755 }
2756 KASSERT(bf->bf_nseg == 1,
2757 ("multi-segment packet; nseg %u", bf->bf_nseg));
2758 }
2759 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2760 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2761
2762 /*
2763 * Setup descriptors. For receive we always terminate
2764 * the descriptor list with a self-linked entry so we'll
2765 * not get overrun under high load (as can happen with a
2766 * 5212 when ANI processing enables PHY error frames).
2767 *
2768 * To insure the last descriptor is self-linked we create
2769 * each descriptor as self-linked and add it to the end. As
2770 * each additional descriptor is added the previous self-linked
2771 * entry is ``fixed'' naturally. This should be safe even
2772 * if DMA is happening. When processing RX interrupts we
2773 * never remove/process the last, self-linked, entry on the
2774 * descriptor list. This insures the hardware always has
2775 * someplace to write a new frame.
2776 */
2777 ds = bf->bf_desc;
2778 ds->ds_link = HTOAH32(bf->bf_daddr); /* link to self */
2779 ds->ds_data = bf->bf_segs[0].ds_addr;
2780 ds->ds_vdata = mtod(m, void *); /* for radar */
2781 ath_hal_setuprxdesc(ah, ds
2782 , m->m_len /* buffer size */
2783 , 0
2784 );
2785
2786 if (sc->sc_rxlink != NULL)
2787 *sc->sc_rxlink = bf->bf_daddr;
2788 sc->sc_rxlink = &ds->ds_link;
2789 return 0;
2790 }
2791
2792 /*
2793 * Extend 15-bit time stamp from rx descriptor to
2794 * a full 64-bit TSF using the specified TSF.
2795 */
2796 static inline u_int64_t
2797 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
2798 {
2799 if ((tsf & 0x7fff) < rstamp)
2800 tsf -= 0x8000;
2801 return ((tsf &~ 0x7fff) | rstamp);
2802 }
2803
2804 /*
2805 * Intercept management frames to collect beacon rssi data
2806 * and to do ibss merges.
2807 */
2808 static void
2809 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2810 struct ieee80211_node *ni,
2811 int subtype, int rssi, u_int32_t rstamp)
2812 {
2813 struct ath_softc *sc = ic->ic_ifp->if_softc;
2814
2815 /*
2816 * Call up first so subsequent work can use information
2817 * potentially stored in the node (e.g. for ibss merge).
2818 */
2819 sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
2820 switch (subtype) {
2821 case IEEE80211_FC0_SUBTYPE_BEACON:
2822 /* update rssi statistics for use by the hal */
2823 ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
2824 if (sc->sc_syncbeacon &&
2825 ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) {
2826 /*
2827 * Resync beacon timers using the tsf of the beacon
2828 * frame we just received.
2829 */
2830 ath_beacon_config(sc);
2831 }
2832 /* fall thru... */
2833 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2834 if (ic->ic_opmode == IEEE80211_M_IBSS &&
2835 ic->ic_state == IEEE80211_S_RUN) {
2836 u_int64_t tsf = ath_extend_tsf(rstamp,
2837 ath_hal_gettsf64(sc->sc_ah));
2838
2839 /*
2840 * Handle ibss merge as needed; check the tsf on the
2841 * frame before attempting the merge. The 802.11 spec
2842 * says the station should change it's bssid to match
2843 * the oldest station with the same ssid, where oldest
2844 * is determined by the tsf. Note that hardware
2845 * reconfiguration happens through callback to
2846 * ath_newstate as the state machine will go from
2847 * RUN -> RUN when this happens.
2848 */
2849 if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
2850 DPRINTF(sc, ATH_DEBUG_STATE,
2851 "ibss merge, rstamp %u tsf %ju "
2852 "tstamp %ju\n", rstamp, (uintmax_t)tsf,
2853 (uintmax_t)ni->ni_tstamp.tsf);
2854 (void) ieee80211_ibss_merge(ni);
2855 }
2856 }
2857 break;
2858 }
2859 }
2860
2861 /*
2862 * Set the default antenna.
2863 */
2864 static void
2865 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
2866 {
2867 struct ath_hal *ah = sc->sc_ah;
2868
2869 /* XXX block beacon interrupts */
2870 ath_hal_setdefantenna(ah, antenna);
2871 if (sc->sc_defant != antenna)
2872 sc->sc_stats.ast_ant_defswitch++;
2873 sc->sc_defant = antenna;
2874 sc->sc_rxotherant = 0;
2875 }
2876
2877 static void
2878 ath_rx_proc(void *arg, int npending)
2879 {
2880 #define PA2DESC(_sc, _pa) \
2881 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
2882 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
2883 struct ath_softc *sc = arg;
2884 struct ath_buf *bf;
2885 struct ieee80211com *ic = &sc->sc_ic;
2886 struct ifnet *ifp = &sc->sc_if;
2887 struct ath_hal *ah = sc->sc_ah;
2888 struct ath_desc *ds;
2889 struct mbuf *m;
2890 struct ieee80211_node *ni;
2891 struct ath_node *an;
2892 int len, type, ngood;
2893 u_int phyerr;
2894 HAL_STATUS status;
2895 int16_t nf;
2896 u_int64_t tsf;
2897
2898 NET_LOCK_GIANT(); /* XXX */
2899
2900 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
2901 ngood = 0;
2902 nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
2903 tsf = ath_hal_gettsf64(ah);
2904 do {
2905 bf = STAILQ_FIRST(&sc->sc_rxbuf);
2906 if (bf == NULL) { /* NB: shouldn't happen */
2907 if_printf(ifp, "%s: no buffer!\n", __func__);
2908 break;
2909 }
2910 ds = bf->bf_desc;
2911 if (ds->ds_link == bf->bf_daddr) {
2912 /* NB: never process the self-linked entry at the end */
2913 break;
2914 }
2915 m = bf->bf_m;
2916 if (m == NULL) { /* NB: shouldn't happen */
2917 if_printf(ifp, "%s: no mbuf!\n", __func__);
2918 break;
2919 }
2920 /* XXX sync descriptor memory */
2921 /*
2922 * Must provide the virtual address of the current
2923 * descriptor, the physical address, and the virtual
2924 * address of the next descriptor in the h/w chain.
2925 * This allows the HAL to look ahead to see if the
2926 * hardware is done with a descriptor by checking the
2927 * done bit in the following descriptor and the address
2928 * of the current descriptor the DMA engine is working
2929 * on. All this is necessary because of our use of
2930 * a self-linked list to avoid rx overruns.
2931 */
2932 status = ath_hal_rxprocdesc(ah, ds,
2933 bf->bf_daddr, PA2DESC(sc, ds->ds_link));
2934 #ifdef AR_DEBUG
2935 if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
2936 ath_printrxbuf(bf, status == HAL_OK);
2937 #endif
2938 if (status == HAL_EINPROGRESS)
2939 break;
2940 STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
2941 if (ds->ds_rxstat.rs_more) {
2942 /*
2943 * Frame spans multiple descriptors; this
2944 * cannot happen yet as we don't support
2945 * jumbograms. If not in monitor mode,
2946 * discard the frame.
2947 */
2948 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2949 sc->sc_stats.ast_rx_toobig++;
2950 goto rx_next;
2951 }
2952 /* fall thru for monitor mode handling... */
2953 } else if (ds->ds_rxstat.rs_status != 0) {
2954 if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
2955 sc->sc_stats.ast_rx_crcerr++;
2956 if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
2957 sc->sc_stats.ast_rx_fifoerr++;
2958 if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
2959 sc->sc_stats.ast_rx_phyerr++;
2960 phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
2961 sc->sc_stats.ast_rx_phy[phyerr]++;
2962 goto rx_next;
2963 }
2964 if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
2965 /*
2966 * Decrypt error. If the error occurred
2967 * because there was no hardware key, then
2968 * let the frame through so the upper layers
2969 * can process it. This is necessary for 5210
2970 * parts which have no way to setup a ``clear''
2971 * key cache entry.
2972 *
2973 * XXX do key cache faulting
2974 */
2975 if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
2976 goto rx_accept;
2977 sc->sc_stats.ast_rx_badcrypt++;
2978 }
2979 if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
2980 sc->sc_stats.ast_rx_badmic++;
2981 /*
2982 * Do minimal work required to hand off
2983 * the 802.11 header for notifcation.
2984 */
2985 /* XXX frag's and qos frames */
2986 len = ds->ds_rxstat.rs_datalen;
2987 if (len >= sizeof (struct ieee80211_frame)) {
2988 bus_dmamap_sync(sc->sc_dmat,
2989 bf->bf_dmamap,
2990 0, bf->bf_dmamap->dm_mapsize,
2991 BUS_DMASYNC_POSTREAD);
2992 ieee80211_notify_michael_failure(ic,
2993 mtod(m, struct ieee80211_frame *),
2994 sc->sc_splitmic ?
2995 ds->ds_rxstat.rs_keyix-32 :
2996 ds->ds_rxstat.rs_keyix
2997 );
2998 }
2999 }
3000 ifp->if_ierrors++;
3001 /*
3002 * Reject error frames, we normally don't want
3003 * to see them in monitor mode (in monitor mode
3004 * allow through packets that have crypto problems).
3005 */
3006 if ((ds->ds_rxstat.rs_status &~
3007 (HAL_RXERR_DECRYPT|HAL_RXERR_MIC)) ||
3008 sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
3009 goto rx_next;
3010 }
3011 rx_accept:
3012 /*
3013 * Sync and unmap the frame. At this point we're
3014 * committed to passing the mbuf somewhere so clear
3015 * bf_m; this means a new sk_buff must be allocated
3016 * when the rx descriptor is setup again to receive
3017 * another frame.
3018 */
3019 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3020 0, bf->bf_dmamap->dm_mapsize,
3021 BUS_DMASYNC_POSTREAD);
3022 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3023 bf->bf_m = NULL;
3024
3025 m->m_pkthdr.rcvif = ifp;
3026 len = ds->ds_rxstat.rs_datalen;
3027 m->m_pkthdr.len = m->m_len = len;
3028
3029 sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
3030
3031 #if NBPFILTER > 0
3032 if (sc->sc_drvbpf) {
3033 u_int8_t rix;
3034
3035 /*
3036 * Discard anything shorter than an ack or cts.
3037 */
3038 if (len < IEEE80211_ACK_LEN) {
3039 DPRINTF(sc, ATH_DEBUG_RECV,
3040 "%s: runt packet %d\n",
3041 __func__, len);
3042 sc->sc_stats.ast_rx_tooshort++;
3043 m_freem(m);
3044 goto rx_next;
3045 }
3046 rix = ds->ds_rxstat.rs_rate;
3047 sc->sc_rx_th.wr_tsf = htole64(
3048 ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf));
3049 sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
3050 sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
3051 sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf;
3052 sc->sc_rx_th.wr_antnoise = nf;
3053 sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
3054
3055 bpf_mtap2(sc->sc_drvbpf,
3056 &sc->sc_rx_th, sc->sc_rx_th_len, m);
3057 }
3058 #endif
3059
3060 /*
3061 * From this point on we assume the frame is at least
3062 * as large as ieee80211_frame_min; verify that.
3063 */
3064 if (len < IEEE80211_MIN_LEN) {
3065 DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
3066 __func__, len);
3067 sc->sc_stats.ast_rx_tooshort++;
3068 m_freem(m);
3069 goto rx_next;
3070 }
3071
3072 if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
3073 ieee80211_dump_pkt(mtod(m, caddr_t), len,
3074 sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
3075 ds->ds_rxstat.rs_rssi);
3076 }
3077
3078 m_adj(m, -IEEE80211_CRC_LEN);
3079
3080 /*
3081 * Locate the node for sender, track state, and then
3082 * pass the (referenced) node up to the 802.11 layer
3083 * for its use.
3084 */
3085 ni = ieee80211_find_rxnode_withkey(ic,
3086 mtod(m, const struct ieee80211_frame_min *),
3087 ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
3088 IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
3089 /*
3090 * Track rx rssi and do any rx antenna management.
3091 */
3092 an = ATH_NODE(ni);
3093 ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
3094 ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi);
3095 /*
3096 * Send frame up for processing.
3097 */
3098 type = ieee80211_input(ic, m, ni,
3099 ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
3100 ieee80211_free_node(ni);
3101 if (sc->sc_diversity) {
3102 /*
3103 * When using fast diversity, change the default rx
3104 * antenna if diversity chooses the other antenna 3
3105 * times in a row.
3106 */
3107 if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
3108 if (++sc->sc_rxotherant >= 3)
3109 ath_setdefantenna(sc,
3110 ds->ds_rxstat.rs_antenna);
3111 } else
3112 sc->sc_rxotherant = 0;
3113 }
3114 if (sc->sc_softled) {
3115 /*
3116 * Blink for any data frame. Otherwise do a
3117 * heartbeat-style blink when idle. The latter
3118 * is mainly for station mode where we depend on
3119 * periodic beacon frames to trigger the poll event.
3120 */
3121 if (type == IEEE80211_FC0_TYPE_DATA) {
3122 sc->sc_rxrate = ds->ds_rxstat.rs_rate;
3123 ath_led_event(sc, ATH_LED_RX);
3124 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
3125 ath_led_event(sc, ATH_LED_POLL);
3126 }
3127 /*
3128 * Arrange to update the last rx timestamp only for
3129 * frames from our ap when operating in station mode.
3130 * This assumes the rx key is always setup when associated.
3131 */
3132 if (ic->ic_opmode == IEEE80211_M_STA &&
3133 ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID)
3134 ngood++;
3135 rx_next:
3136 STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
3137 } while (ath_rxbuf_init(sc, bf) == 0);
3138
3139 /* rx signal state monitoring */
3140 ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
3141 if (ath_hal_radar_event(ah))
3142 TASK_RUN_OR_ENQUEUE(&sc->sc_radartask);
3143 if (ngood)
3144 sc->sc_lastrx = tsf;
3145
3146 #ifdef __NetBSD__
3147 /* XXX Why isn't this necessary in FreeBSD? */
3148 if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
3149 ath_start(ifp);
3150 #endif /* __NetBSD__ */
3151
3152 NET_UNLOCK_GIANT(); /* XXX */
3153 #undef PA2DESC
3154 }
3155
3156 /*
3157 * Setup a h/w transmit queue.
3158 */
3159 static struct ath_txq *
3160 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3161 {
3162 #define N(a) (sizeof(a)/sizeof(a[0]))
3163 struct ath_hal *ah = sc->sc_ah;
3164 HAL_TXQ_INFO qi;
3165 int qnum;
3166
3167 memset(&qi, 0, sizeof(qi));
3168 qi.tqi_subtype = subtype;
3169 qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3170 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3171 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3172 /*
3173 * Enable interrupts only for EOL and DESC conditions.
3174 * We mark tx descriptors to receive a DESC interrupt
3175 * when a tx queue gets deep; otherwise waiting for the
3176 * EOL to reap descriptors. Note that this is done to
3177 * reduce interrupt load and this only defers reaping
3178 * descriptors, never transmitting frames. Aside from
3179 * reducing interrupts this also permits more concurrency.
3180 * The only potential downside is if the tx queue backs
3181 * up in which case the top half of the kernel may backup
3182 * due to a lack of tx descriptors.
3183 */
3184 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
3185 qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3186 if (qnum == -1) {
3187 /*
3188 * NB: don't print a message, this happens
3189 * normally on parts with too few tx queues
3190 */
3191 return NULL;
3192 }
3193 if (qnum >= N(sc->sc_txq)) {
3194 device_printf(sc->sc_dev,
3195 "hal qnum %u out of range, max %zu!\n",
3196 qnum, N(sc->sc_txq));
3197 ath_hal_releasetxqueue(ah, qnum);
3198 return NULL;
3199 }
3200 if (!ATH_TXQ_SETUP(sc, qnum)) {
3201 struct ath_txq *txq = &sc->sc_txq[qnum];
3202
3203 txq->axq_qnum = qnum;
3204 txq->axq_depth = 0;
3205 txq->axq_intrcnt = 0;
3206 txq->axq_link = NULL;
3207 STAILQ_INIT(&txq->axq_q);
3208 ATH_TXQ_LOCK_INIT(sc, txq);
3209 sc->sc_txqsetup |= 1<<qnum;
3210 }
3211 return &sc->sc_txq[qnum];
3212 #undef N
3213 }
3214
3215 /*
3216 * Setup a hardware data transmit queue for the specified
3217 * access control. The hal may not support all requested
3218 * queues in which case it will return a reference to a
3219 * previously setup queue. We record the mapping from ac's
3220 * to h/w queues for use by ath_tx_start and also track
3221 * the set of h/w queues being used to optimize work in the
3222 * transmit interrupt handler and related routines.
3223 */
3224 static int
3225 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3226 {
3227 #define N(a) (sizeof(a)/sizeof(a[0]))
3228 struct ath_txq *txq;
3229
3230 if (ac >= N(sc->sc_ac2q)) {
3231 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3232 ac, N(sc->sc_ac2q));
3233 return 0;
3234 }
3235 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3236 if (txq != NULL) {
3237 sc->sc_ac2q[ac] = txq;
3238 return 1;
3239 } else
3240 return 0;
3241 #undef N
3242 }
3243
3244 /*
3245 * Update WME parameters for a transmit queue.
3246 */
3247 static int
3248 ath_txq_update(struct ath_softc *sc, int ac)
3249 {
3250 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1)
3251 #define ATH_TXOP_TO_US(v) (v<<5)
3252 struct ieee80211com *ic = &sc->sc_ic;
3253 struct ath_txq *txq = sc->sc_ac2q[ac];
3254 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3255 struct ath_hal *ah = sc->sc_ah;
3256 HAL_TXQ_INFO qi;
3257
3258 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3259 qi.tqi_aifs = wmep->wmep_aifsn;
3260 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3261 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3262 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3263
3264 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3265 device_printf(sc->sc_dev, "unable to update hardware queue "
3266 "parameters for %s traffic!\n",
3267 ieee80211_wme_acnames[ac]);
3268 return 0;
3269 } else {
3270 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3271 return 1;
3272 }
3273 #undef ATH_TXOP_TO_US
3274 #undef ATH_EXPONENT_TO_VALUE
3275 }
3276
3277 /*
3278 * Callback from the 802.11 layer to update WME parameters.
3279 */
3280 static int
3281 ath_wme_update(struct ieee80211com *ic)
3282 {
3283 struct ath_softc *sc = ic->ic_ifp->if_softc;
3284
3285 return !ath_txq_update(sc, WME_AC_BE) ||
3286 !ath_txq_update(sc, WME_AC_BK) ||
3287 !ath_txq_update(sc, WME_AC_VI) ||
3288 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3289 }
3290
3291 /*
3292 * Reclaim resources for a setup queue.
3293 */
3294 static void
3295 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3296 {
3297
3298 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3299 ATH_TXQ_LOCK_DESTROY(txq);
3300 sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3301 }
3302
3303 /*
3304 * Reclaim all tx queue resources.
3305 */
3306 static void
3307 ath_tx_cleanup(struct ath_softc *sc)
3308 {
3309 int i;
3310
3311 ATH_TXBUF_LOCK_DESTROY(sc);
3312 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3313 if (ATH_TXQ_SETUP(sc, i))
3314 ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3315 }
3316
3317 /*
3318 * Defragment an mbuf chain, returning at most maxfrags separate
3319 * mbufs+clusters. If this is not possible NULL is returned and
3320 * the original mbuf chain is left in it's present (potentially
3321 * modified) state. We use two techniques: collapsing consecutive
3322 * mbufs and replacing consecutive mbufs by a cluster.
3323 */
3324 static struct mbuf *
3325 ath_defrag(struct mbuf *m0, int how, int maxfrags)
3326 {
3327 struct mbuf *m, *n, *n2, **prev;
3328 u_int curfrags;
3329
3330 /*
3331 * Calculate the current number of frags.
3332 */
3333 curfrags = 0;
3334 for (m = m0; m != NULL; m = m->m_next)
3335 curfrags++;
3336 /*
3337 * First, try to collapse mbufs. Note that we always collapse
3338 * towards the front so we don't need to deal with moving the
3339 * pkthdr. This may be suboptimal if the first mbuf has much
3340 * less data than the following.
3341 */
3342 m = m0;
3343 again:
3344 for (;;) {
3345 n = m->m_next;
3346 if (n == NULL)
3347 break;
3348 if ((m->m_flags & M_RDONLY) == 0 &&
3349 n->m_len < M_TRAILINGSPACE(m)) {
3350 bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
3351 n->m_len);
3352 m->m_len += n->m_len;
3353 m->m_next = n->m_next;
3354 m_free(n);
3355 if (--curfrags <= maxfrags)
3356 return m0;
3357 } else
3358 m = n;
3359 }
3360 KASSERT(maxfrags > 1,
3361 ("maxfrags %u, but normal collapse failed", maxfrags));
3362 /*
3363 * Collapse consecutive mbufs to a cluster.
3364 */
3365 prev = &m0->m_next; /* NB: not the first mbuf */
3366 while ((n = *prev) != NULL) {
3367 if ((n2 = n->m_next) != NULL &&
3368 n->m_len + n2->m_len < MCLBYTES) {
3369 m = m_getcl(how, MT_DATA, 0);
3370 if (m == NULL)
3371 goto bad;
3372 bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
3373 bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
3374 n2->m_len);
3375 m->m_len = n->m_len + n2->m_len;
3376 m->m_next = n2->m_next;
3377 *prev = m;
3378 m_free(n);
3379 m_free(n2);
3380 if (--curfrags <= maxfrags) /* +1 cl -2 mbufs */
3381 return m0;
3382 /*
3383 * Still not there, try the normal collapse
3384 * again before we allocate another cluster.
3385 */
3386 goto again;
3387 }
3388 prev = &n->m_next;
3389 }
3390 /*
3391 * No place where we can collapse to a cluster; punt.
3392 * This can occur if, for example, you request 2 frags
3393 * but the packet requires that both be clusters (we
3394 * never reallocate the first mbuf to avoid moving the
3395 * packet header).
3396 */
3397 bad:
3398 return NULL;
3399 }
3400
3401 /*
3402 * Return h/w rate index for an IEEE rate (w/o basic rate bit).
3403 */
3404 static int
3405 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
3406 {
3407 int i;
3408
3409 for (i = 0; i < rt->rateCount; i++)
3410 if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
3411 return i;
3412 return 0; /* NB: lowest rate */
3413 }
3414
3415 static int
3416 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
3417 struct mbuf *m0)
3418 {
3419 struct ieee80211com *ic = &sc->sc_ic;
3420 struct ath_hal *ah = sc->sc_ah;
3421 struct ifnet *ifp = &sc->sc_if;
3422 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
3423 int i, error, iswep, ismcast, ismrr;
3424 int keyix, hdrlen, pktlen, try0;
3425 u_int8_t rix, txrate, ctsrate;
3426 u_int8_t cix = 0xff; /* NB: silence compiler */
3427 struct ath_desc *ds, *ds0;
3428 struct ath_txq *txq;
3429 struct ieee80211_frame *wh;
3430 u_int subtype, flags, ctsduration;
3431 HAL_PKT_TYPE atype;
3432 const HAL_RATE_TABLE *rt;
3433 HAL_BOOL shortPreamble;
3434 struct ath_node *an;
3435 struct mbuf *m;
3436 u_int pri;
3437
3438 wh = mtod(m0, struct ieee80211_frame *);
3439 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
3440 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3441 hdrlen = ieee80211_anyhdrsize(wh);
3442 /*
3443 * Packet length must not include any
3444 * pad bytes; deduct them here.
3445 */
3446 pktlen = m0->m_pkthdr.len - (hdrlen & 3);
3447
3448 if (iswep) {
3449 const struct ieee80211_cipher *cip;
3450 struct ieee80211_key *k;
3451
3452 /*
3453 * Construct the 802.11 header+trailer for an encrypted
3454 * frame. The only reason this can fail is because of an
3455 * unknown or unsupported cipher/key type.
3456 */
3457 k = ieee80211_crypto_encap(ic, ni, m0);
3458 if (k == NULL) {
3459 /*
3460 * This can happen when the key is yanked after the
3461 * frame was queued. Just discard the frame; the
3462 * 802.11 layer counts failures and provides
3463 * debugging/diagnostics.
3464 */
3465 m_freem(m0);
3466 return EIO;
3467 }
3468 /*
3469 * Adjust the packet + header lengths for the crypto
3470 * additions and calculate the h/w key index. When
3471 * a s/w mic is done the frame will have had any mic
3472 * added to it prior to entry so skb->len above will
3473 * account for it. Otherwise we need to add it to the
3474 * packet length.
3475 */
3476 cip = k->wk_cipher;
3477 hdrlen += cip->ic_header;
3478 pktlen += cip->ic_header + cip->ic_trailer;
3479 if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0)
3480 pktlen += cip->ic_miclen;
3481 keyix = k->wk_keyix;
3482
3483 /* packet header may have moved, reset our local pointer */
3484 wh = mtod(m0, struct ieee80211_frame *);
3485 } else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
3486 /*
3487 * Use station key cache slot, if assigned.
3488 */
3489 keyix = ni->ni_ucastkey.wk_keyix;
3490 if (keyix == IEEE80211_KEYIX_NONE)
3491 keyix = HAL_TXKEYIX_INVALID;
3492 } else
3493 keyix = HAL_TXKEYIX_INVALID;
3494
3495 pktlen += IEEE80211_CRC_LEN;
3496
3497 /*
3498 * Load the DMA map so any coalescing is done. This
3499 * also calculates the number of descriptors we need.
3500 */
3501 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3502 BUS_DMA_NOWAIT);
3503 if (error == EFBIG) {
3504 /* XXX packet requires too many descriptors */
3505 bf->bf_nseg = ATH_TXDESC+1;
3506 } else if (error != 0) {
3507 sc->sc_stats.ast_tx_busdma++;
3508 m_freem(m0);
3509 return error;
3510 }
3511 /*
3512 * Discard null packets and check for packets that
3513 * require too many TX descriptors. We try to convert
3514 * the latter to a cluster.
3515 */
3516 if (error == EFBIG) { /* too many desc's, linearize */
3517 sc->sc_stats.ast_tx_linear++;
3518 m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
3519 if (m == NULL) {
3520 m_freem(m0);
3521 sc->sc_stats.ast_tx_nombuf++;
3522 return ENOMEM;
3523 }
3524 m0 = m;
3525 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3526 BUS_DMA_NOWAIT);
3527 if (error != 0) {
3528 sc->sc_stats.ast_tx_busdma++;
3529 m_freem(m0);
3530 return error;
3531 }
3532 KASSERT(bf->bf_nseg <= ATH_TXDESC,
3533 ("too many segments after defrag; nseg %u", bf->bf_nseg));
3534 } else if (bf->bf_nseg == 0) { /* null packet, discard */
3535 sc->sc_stats.ast_tx_nodata++;
3536 m_freem(m0);
3537 return EIO;
3538 }
3539 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
3540 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
3541 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
3542 bf->bf_m = m0;
3543 bf->bf_node = ni; /* NB: held reference */
3544
3545 /* setup descriptors */
3546 ds = bf->bf_desc;
3547 rt = sc->sc_currates;
3548 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3549
3550 /*
3551 * NB: the 802.11 layer marks whether or not we should
3552 * use short preamble based on the current mode and
3553 * negotiated parameters.
3554 */
3555 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3556 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) {
3557 shortPreamble = AH_TRUE;
3558 sc->sc_stats.ast_tx_shortpre++;
3559 } else {
3560 shortPreamble = AH_FALSE;
3561 }
3562
3563 an = ATH_NODE(ni);
3564 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */
3565 ismrr = 0; /* default no multi-rate retry*/
3566 /*
3567 * Calculate Atheros packet type from IEEE80211 packet header,
3568 * setup for rate calculations, and select h/w transmit queue.
3569 */
3570 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3571 case IEEE80211_FC0_TYPE_MGT:
3572 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3573 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
3574 atype = HAL_PKT_TYPE_BEACON;
3575 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3576 atype = HAL_PKT_TYPE_PROBE_RESP;
3577 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
3578 atype = HAL_PKT_TYPE_ATIM;
3579 else
3580 atype = HAL_PKT_TYPE_NORMAL; /* XXX */
3581 rix = sc->sc_minrateix;
3582 txrate = rt->info[rix].rateCode;
3583 if (shortPreamble)
3584 txrate |= rt->info[rix].shortPreamble;
3585 try0 = ATH_TXMGTTRY;
3586 /* NB: force all management frames to highest queue */
3587 if (ni->ni_flags & IEEE80211_NODE_QOS) {
3588 /* NB: force all management frames to highest queue */
3589 pri = WME_AC_VO;
3590 } else
3591 pri = WME_AC_BE;
3592 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
3593 break;
3594 case IEEE80211_FC0_TYPE_CTL:
3595 atype = HAL_PKT_TYPE_PSPOLL; /* stop setting of duration */
3596 rix = sc->sc_minrateix;
3597 txrate = rt->info[rix].rateCode;
3598 if (shortPreamble)
3599 txrate |= rt->info[rix].shortPreamble;
3600 try0 = ATH_TXMGTTRY;
3601 /* NB: force all ctl frames to highest queue */
3602 if (ni->ni_flags & IEEE80211_NODE_QOS) {
3603 /* NB: force all ctl frames to highest queue */
3604 pri = WME_AC_VO;
3605 } else
3606 pri = WME_AC_BE;
3607 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
3608 break;
3609 case IEEE80211_FC0_TYPE_DATA:
3610 atype = HAL_PKT_TYPE_NORMAL; /* default */
3611 /*
3612 * Data frames: multicast frames go out at a fixed rate,
3613 * otherwise consult the rate control module for the
3614 * rate to use.
3615 */
3616 if (ismcast) {
3617 /*
3618 * Check mcast rate setting in case it's changed.
3619 * XXX move out of fastpath
3620 */
3621 if (ic->ic_mcast_rate != sc->sc_mcastrate) {
3622 sc->sc_mcastrix =
3623 ath_tx_findrix(rt, ic->ic_mcast_rate);
3624 sc->sc_mcastrate = ic->ic_mcast_rate;
3625 }
3626 rix = sc->sc_mcastrix;
3627 txrate = rt->info[rix].rateCode;
3628 try0 = 1;
3629 } else {
3630 ath_rate_findrate(sc, an, shortPreamble, pktlen,
3631 &rix, &try0, &txrate);
3632 sc->sc_txrate = txrate; /* for LED blinking */
3633 if (try0 != ATH_TXMAXTRY)
3634 ismrr = 1;
3635 }
3636 pri = M_WME_GETAC(m0);
3637 if (cap->cap_wmeParams[pri].wmep_noackPolicy)
3638 flags |= HAL_TXDESC_NOACK;
3639 break;
3640 default:
3641 if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3642 wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3643 /* XXX statistic */
3644 m_freem(m0);
3645 return EIO;
3646 }
3647 txq = sc->sc_ac2q[pri];
3648
3649 /*
3650 * When servicing one or more stations in power-save mode
3651 * multicast frames must be buffered until after the beacon.
3652 * We use the CAB queue for that.
3653 */
3654 if (ismcast && ic->ic_ps_sta) {
3655 txq = sc->sc_cabq;
3656 /* XXX? more bit in 802.11 frame header */
3657 }
3658
3659 /*
3660 * Calculate miscellaneous flags.
3661 */
3662 if (ismcast) {
3663 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */
3664 } else if (pktlen > ic->ic_rtsthreshold) {
3665 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */
3666 cix = rt->info[rix].controlRate;
3667 sc->sc_stats.ast_tx_rts++;
3668 }
3669 if (flags & HAL_TXDESC_NOACK) /* NB: avoid double counting */
3670 sc->sc_stats.ast_tx_noack++;
3671
3672 /*
3673 * If 802.11g protection is enabled, determine whether
3674 * to use RTS/CTS or just CTS. Note that this is only
3675 * done for OFDM unicast frames.
3676 */
3677 if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3678 rt->info[rix].phy == IEEE80211_T_OFDM &&
3679 (flags & HAL_TXDESC_NOACK) == 0) {
3680 /* XXX fragments must use CCK rates w/ protection */
3681 if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3682 flags |= HAL_TXDESC_RTSENA;
3683 else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3684 flags |= HAL_TXDESC_CTSENA;
3685 cix = rt->info[sc->sc_protrix].controlRate;
3686 sc->sc_stats.ast_tx_protect++;
3687 }
3688
3689 /*
3690 * Calculate duration. This logically belongs in the 802.11
3691 * layer but it lacks sufficient information to calculate it.
3692 */
3693 if ((flags & HAL_TXDESC_NOACK) == 0 &&
3694 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
3695 u_int16_t dur;
3696 /*
3697 * XXX not right with fragmentation.
3698 */
3699 if (shortPreamble)
3700 dur = rt->info[rix].spAckDuration;
3701 else
3702 dur = rt->info[rix].lpAckDuration;
3703 *(u_int16_t *)wh->i_dur = htole16(dur);
3704 }
3705
3706 /*
3707 * Calculate RTS/CTS rate and duration if needed.
3708 */
3709 ctsduration = 0;
3710 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
3711 /*
3712 * CTS transmit rate is derived from the transmit rate
3713 * by looking in the h/w rate table. We must also factor
3714 * in whether or not a short preamble is to be used.
3715 */
3716 /* NB: cix is set above where RTS/CTS is enabled */
3717 KASSERT(cix != 0xff, ("cix not setup"));
3718 ctsrate = rt->info[cix].rateCode;
3719 /*
3720 * Compute the transmit duration based on the frame
3721 * size and the size of an ACK frame. We call into the
3722 * HAL to do the computation since it depends on the
3723 * characteristics of the actual PHY being used.
3724 *
3725 * NB: CTS is assumed the same size as an ACK so we can
3726 * use the precalculated ACK durations.
3727 */
3728 if (shortPreamble) {
3729 ctsrate |= rt->info[cix].shortPreamble;
3730 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
3731 ctsduration += rt->info[cix].spAckDuration;
3732 ctsduration += ath_hal_computetxtime(ah,
3733 rt, pktlen, rix, AH_TRUE);
3734 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
3735 ctsduration += rt->info[rix].spAckDuration;
3736 } else {
3737 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
3738 ctsduration += rt->info[cix].lpAckDuration;
3739 ctsduration += ath_hal_computetxtime(ah,
3740 rt, pktlen, rix, AH_FALSE);
3741 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
3742 ctsduration += rt->info[rix].lpAckDuration;
3743 }
3744 /*
3745 * Must disable multi-rate retry when using RTS/CTS.
3746 */
3747 ismrr = 0;
3748 try0 = ATH_TXMGTTRY; /* XXX */
3749 } else
3750 ctsrate = 0;
3751
3752 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3753 ieee80211_dump_pkt(mtod(m0, caddr_t), m0->m_len,
3754 sc->sc_hwmap[txrate].ieeerate, -1);
3755 #if NBPFILTER > 0
3756 if (ic->ic_rawbpf)
3757 bpf_mtap(ic->ic_rawbpf, m0);
3758 if (sc->sc_drvbpf) {
3759 u_int64_t tsf = ath_hal_gettsf64(ah);
3760
3761 sc->sc_tx_th.wt_tsf = htole64(tsf);
3762 sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
3763 if (iswep)
3764 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3765 sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
3766 sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3767 sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3768
3769 bpf_mtap2(sc->sc_drvbpf,
3770 &sc->sc_tx_th, sc->sc_tx_th_len, m0);
3771 }
3772 #endif
3773
3774 /*
3775 * Determine if a tx interrupt should be generated for
3776 * this descriptor. We take a tx interrupt to reap
3777 * descriptors when the h/w hits an EOL condition or
3778 * when the descriptor is specifically marked to generate
3779 * an interrupt. We periodically mark descriptors in this
3780 * way to insure timely replenishing of the supply needed
3781 * for sending frames. Defering interrupts reduces system
3782 * load and potentially allows more concurrent work to be
3783 * done but if done to aggressively can cause senders to
3784 * backup.
3785 *
3786 * NB: use >= to deal with sc_txintrperiod changing
3787 * dynamically through sysctl.
3788 */
3789 if (flags & HAL_TXDESC_INTREQ) {
3790 txq->axq_intrcnt = 0;
3791 } else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
3792 flags |= HAL_TXDESC_INTREQ;
3793 txq->axq_intrcnt = 0;
3794 }
3795
3796 /*
3797 * Formulate first tx descriptor with tx controls.
3798 */
3799 /* XXX check return value? */
3800 ath_hal_setuptxdesc(ah, ds
3801 , pktlen /* packet length */
3802 , hdrlen /* header length */
3803 , atype /* Atheros packet type */
3804 , ni->ni_txpower /* txpower */
3805 , txrate, try0 /* series 0 rate/tries */
3806 , keyix /* key cache index */
3807 , sc->sc_txantenna /* antenna mode */
3808 , flags /* flags */
3809 , ctsrate /* rts/cts rate */
3810 , ctsduration /* rts/cts duration */
3811 );
3812 bf->bf_flags = flags;
3813 /*
3814 * Setup the multi-rate retry state only when we're
3815 * going to use it. This assumes ath_hal_setuptxdesc
3816 * initializes the descriptors (so we don't have to)
3817 * when the hardware supports multi-rate retry and
3818 * we don't use it.
3819 */
3820 if (ismrr)
3821 ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
3822
3823 /*
3824 * Fillin the remainder of the descriptor info.
3825 */
3826 ds0 = ds;
3827 for (i = 0; i < bf->bf_nseg; i++, ds++) {
3828 ds->ds_data = bf->bf_segs[i].ds_addr;
3829 if (i == bf->bf_nseg - 1)
3830 ds->ds_link = 0;
3831 else
3832 ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
3833 ath_hal_filltxdesc(ah, ds
3834 , bf->bf_segs[i].ds_len /* segment length */
3835 , i == 0 /* first segment */
3836 , i == bf->bf_nseg - 1 /* last segment */
3837 , ds0 /* first descriptor */
3838 );
3839
3840 /* NB: The desc swap function becomes void,
3841 * if descriptor swapping is not enabled
3842 */
3843 ath_desc_swap(ds);
3844
3845 DPRINTF(sc, ATH_DEBUG_XMIT,
3846 "%s: %d: %08x %08x %08x %08x %08x %08x\n",
3847 __func__, i, ds->ds_link, ds->ds_data,
3848 ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
3849 }
3850 /*
3851 * Insert the frame on the outbound list and
3852 * pass it on to the hardware.
3853 */
3854 ATH_TXQ_LOCK(txq);
3855 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
3856 if (txq->axq_link == NULL) {
3857 ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
3858 DPRINTF(sc, ATH_DEBUG_XMIT,
3859 "%s: TXDP[%u] = %" PRIx64 " (%p) depth %d\n", __func__,
3860 txq->axq_qnum, (uint64_t)bf->bf_daddr, bf->bf_desc,
3861 txq->axq_depth);
3862 } else {
3863 *txq->axq_link = HTOAH32(bf->bf_daddr);
3864 DPRINTF(sc, ATH_DEBUG_XMIT,
3865 "%s: link[%u](%p)=%" PRIx64 " (%p) depth %d\n",
3866 __func__, txq->axq_qnum, txq->axq_link,
3867 (uint64_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
3868 }
3869 txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
3870 /*
3871 * The CAB queue is started from the SWBA handler since
3872 * frames only go out on DTIM and to avoid possible races.
3873 */
3874 if (txq != sc->sc_cabq)
3875 ath_hal_txstart(ah, txq->axq_qnum);
3876 ATH_TXQ_UNLOCK(txq);
3877
3878 return 0;
3879 }
3880
3881 /*
3882 * Process completed xmit descriptors from the specified queue.
3883 */
3884 static int
3885 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
3886 {
3887 struct ath_hal *ah = sc->sc_ah;
3888 struct ieee80211com *ic = &sc->sc_ic;
3889 struct ath_buf *bf;
3890 struct ath_desc *ds, *ds0;
3891 struct ieee80211_node *ni;
3892 struct ath_node *an;
3893 int sr, lr, pri, nacked;
3894 HAL_STATUS status;
3895
3896 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
3897 __func__, txq->axq_qnum,
3898 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3899 txq->axq_link);
3900 nacked = 0;
3901 for (;;) {
3902 ATH_TXQ_LOCK(txq);
3903 txq->axq_intrcnt = 0; /* reset periodic desc intr count */
3904 bf = STAILQ_FIRST(&txq->axq_q);
3905 if (bf == NULL) {
3906 txq->axq_link = NULL;
3907 ATH_TXQ_UNLOCK(txq);
3908 break;
3909 }
3910 ds0 = &bf->bf_desc[0];
3911 ds = &bf->bf_desc[bf->bf_nseg - 1];
3912 status = ath_hal_txprocdesc(ah, ds);
3913 #ifdef AR_DEBUG
3914 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
3915 ath_printtxbuf(bf, status == HAL_OK);
3916 #endif
3917 if (status == HAL_EINPROGRESS) {
3918 ATH_TXQ_UNLOCK(txq);
3919 break;
3920 }
3921 ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3922 ATH_TXQ_UNLOCK(txq);
3923
3924 ni = bf->bf_node;
3925 if (ni != NULL) {
3926 an = ATH_NODE(ni);
3927 if (ds->ds_txstat.ts_status == 0) {
3928 u_int8_t txant = ds->ds_txstat.ts_antenna;
3929 sc->sc_stats.ast_ant_tx[txant]++;
3930 sc->sc_ant_tx[txant]++;
3931 if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
3932 sc->sc_stats.ast_tx_altrate++;
3933 sc->sc_stats.ast_tx_rssi =
3934 ds->ds_txstat.ts_rssi;
3935 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
3936 ds->ds_txstat.ts_rssi);
3937 pri = M_WME_GETAC(bf->bf_m);
3938 if (pri >= WME_AC_VO)
3939 ic->ic_wme.wme_hipri_traffic++;
3940 ni->ni_inact = ni->ni_inact_reload;
3941 } else {
3942 if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
3943 sc->sc_stats.ast_tx_xretries++;
3944 if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
3945 sc->sc_stats.ast_tx_fifoerr++;
3946 if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
3947 sc->sc_stats.ast_tx_filtered++;
3948 }
3949 sr = ds->ds_txstat.ts_shortretry;
3950 lr = ds->ds_txstat.ts_longretry;
3951 sc->sc_stats.ast_tx_shortretry += sr;
3952 sc->sc_stats.ast_tx_longretry += lr;
3953 /*
3954 * Hand the descriptor to the rate control algorithm.
3955 */
3956 if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
3957 (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
3958 /*
3959 * If frame was ack'd update the last rx time
3960 * used to workaround phantom bmiss interrupts.
3961 */
3962 if (ds->ds_txstat.ts_status == 0)
3963 nacked++;
3964 ath_rate_tx_complete(sc, an, ds, ds0);
3965 }
3966 /*
3967 * Reclaim reference to node.
3968 *
3969 * NB: the node may be reclaimed here if, for example
3970 * this is a DEAUTH message that was sent and the
3971 * node was timed out due to inactivity.
3972 */
3973 ieee80211_free_node(ni);
3974 }
3975 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
3976 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3977 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3978 m_freem(bf->bf_m);
3979 bf->bf_m = NULL;
3980 bf->bf_node = NULL;
3981
3982 ATH_TXBUF_LOCK(sc);
3983 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
3984 ATH_TXBUF_UNLOCK(sc);
3985 }
3986 return nacked;
3987 }
3988
3989 static inline int
3990 txqactive(struct ath_hal *ah, int qnum)
3991 {
3992 u_int32_t txqs = 1<<qnum;
3993 ath_hal_gettxintrtxqs(ah, &txqs);
3994 return (txqs & (1<<qnum));
3995 }
3996
3997 /*
3998 * Deferred processing of transmit interrupt; special-cased
3999 * for a single hardware transmit queue (e.g. 5210 and 5211).
4000 */
4001 static void
4002 ath_tx_proc_q0(void *arg, int npending)
4003 {
4004 struct ath_softc *sc = arg;
4005 struct ifnet *ifp = &sc->sc_if;
4006
4007 if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]))
4008 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4009 if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4010 ath_tx_processq(sc, sc->sc_cabq);
4011 ifp->if_flags &= ~IFF_OACTIVE;
4012 sc->sc_tx_timer = 0;
4013
4014 if (sc->sc_softled)
4015 ath_led_event(sc, ATH_LED_TX);
4016
4017 ath_start(ifp);
4018 }
4019
4020 /*
4021 * Deferred processing of transmit interrupt; special-cased
4022 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4023 */
4024 static void
4025 ath_tx_proc_q0123(void *arg, int npending)
4026 {
4027 struct ath_softc *sc = arg;
4028 struct ifnet *ifp = &sc->sc_if;
4029 int nacked;
4030
4031 /*
4032 * Process each active queue.
4033 */
4034 nacked = 0;
4035 if (txqactive(sc->sc_ah, 0))
4036 nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
4037 if (txqactive(sc->sc_ah, 1))
4038 nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
4039 if (txqactive(sc->sc_ah, 2))
4040 nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
4041 if (txqactive(sc->sc_ah, 3))
4042 nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
4043 if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4044 ath_tx_processq(sc, sc->sc_cabq);
4045 if (nacked)
4046 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4047 ath_tx_processq(sc, sc->sc_cabq);
4048
4049 ifp->if_flags &= ~IFF_OACTIVE;
4050 sc->sc_tx_timer = 0;
4051
4052 if (sc->sc_softled)
4053 ath_led_event(sc, ATH_LED_TX);
4054
4055 ath_start(ifp);
4056 }
4057
4058 /*
4059 * Deferred processing of transmit interrupt.
4060 */
4061 static void
4062 ath_tx_proc(void *arg, int npending)
4063 {
4064 struct ath_softc *sc = arg;
4065 struct ifnet *ifp = &sc->sc_if;
4066 int i, nacked;
4067
4068 /*
4069 * Process each active queue.
4070 */
4071 nacked = 0;
4072 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4073 if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
4074 nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
4075 if (nacked)
4076 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4077
4078 ifp->if_flags &= ~IFF_OACTIVE;
4079 sc->sc_tx_timer = 0;
4080
4081 if (sc->sc_softled)
4082 ath_led_event(sc, ATH_LED_TX);
4083
4084 ath_start(ifp);
4085 }
4086
4087 static void
4088 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
4089 {
4090 struct ath_hal *ah = sc->sc_ah;
4091 struct ieee80211_node *ni;
4092 struct ath_buf *bf;
4093
4094 /*
4095 * NB: this assumes output has been stopped and
4096 * we do not need to block ath_tx_tasklet
4097 */
4098 for (;;) {
4099 ATH_TXQ_LOCK(txq);
4100 bf = STAILQ_FIRST(&txq->axq_q);
4101 if (bf == NULL) {
4102 txq->axq_link = NULL;
4103 ATH_TXQ_UNLOCK(txq);
4104 break;
4105 }
4106 ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4107 ATH_TXQ_UNLOCK(txq);
4108 #ifdef AR_DEBUG
4109 if (sc->sc_debug & ATH_DEBUG_RESET)
4110 ath_printtxbuf(bf,
4111 ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
4112 #endif /* AR_DEBUG */
4113 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4114 m_freem(bf->bf_m);
4115 bf->bf_m = NULL;
4116 ni = bf->bf_node;
4117 bf->bf_node = NULL;
4118 if (ni != NULL) {
4119 /*
4120 * Reclaim node reference.
4121 */
4122 ieee80211_free_node(ni);
4123 }
4124 ATH_TXBUF_LOCK(sc);
4125 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4126 ATH_TXBUF_UNLOCK(sc);
4127 }
4128 }
4129
4130 static void
4131 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4132 {
4133 struct ath_hal *ah = sc->sc_ah;
4134
4135 (void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4136 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4137 __func__, txq->axq_qnum,
4138 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4139 txq->axq_link);
4140 }
4141
4142 /*
4143 * Drain the transmit queues and reclaim resources.
4144 */
4145 static void
4146 ath_draintxq(struct ath_softc *sc)
4147 {
4148 struct ath_hal *ah = sc->sc_ah;
4149 struct ifnet *ifp = &sc->sc_if;
4150 int i;
4151
4152 /* XXX return value */
4153 if (!sc->sc_invalid) {
4154 /* don't touch the hardware if marked invalid */
4155 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4156 DPRINTF(sc, ATH_DEBUG_RESET,
4157 "%s: beacon queue %p\n", __func__,
4158 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
4159 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4160 if (ATH_TXQ_SETUP(sc, i))
4161 ath_tx_stopdma(sc, &sc->sc_txq[i]);
4162 }
4163 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4164 if (ATH_TXQ_SETUP(sc, i))
4165 ath_tx_draintxq(sc, &sc->sc_txq[i]);
4166 ifp->if_flags &= ~IFF_OACTIVE;
4167 sc->sc_tx_timer = 0;
4168 }
4169
4170 /*
4171 * Disable the receive h/w in preparation for a reset.
4172 */
4173 static void
4174 ath_stoprecv(struct ath_softc *sc)
4175 {
4176 #define PA2DESC(_sc, _pa) \
4177 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
4178 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
4179 struct ath_hal *ah = sc->sc_ah;
4180
4181 ath_hal_stoppcurecv(ah); /* disable PCU */
4182 ath_hal_setrxfilter(ah, 0); /* clear recv filter */
4183 ath_hal_stopdmarecv(ah); /* disable DMA engine */
4184 DELAY(3000); /* 3ms is long enough for 1 frame */
4185 #ifdef AR_DEBUG
4186 if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
4187 struct ath_buf *bf;
4188
4189 printf("%s: rx queue %p, link %p\n", __func__,
4190 (caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
4191 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4192 struct ath_desc *ds = bf->bf_desc;
4193 HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
4194 bf->bf_daddr, PA2DESC(sc, ds->ds_link));
4195 if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
4196 ath_printrxbuf(bf, status == HAL_OK);
4197 }
4198 }
4199 #endif
4200 sc->sc_rxlink = NULL; /* just in case */
4201 #undef PA2DESC
4202 }
4203
4204 /*
4205 * Enable the receive h/w following a reset.
4206 */
4207 static int
4208 ath_startrecv(struct ath_softc *sc)
4209 {
4210 struct ath_hal *ah = sc->sc_ah;
4211 struct ath_buf *bf;
4212
4213 sc->sc_rxlink = NULL;
4214 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4215 int error = ath_rxbuf_init(sc, bf);
4216 if (error != 0) {
4217 DPRINTF(sc, ATH_DEBUG_RECV,
4218 "%s: ath_rxbuf_init failed %d\n",
4219 __func__, error);
4220 return error;
4221 }
4222 }
4223
4224 bf = STAILQ_FIRST(&sc->sc_rxbuf);
4225 ath_hal_putrxbuf(ah, bf->bf_daddr);
4226 ath_hal_rxena(ah); /* enable recv descriptors */
4227 ath_mode_init(sc); /* set filters, etc. */
4228 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */
4229 return 0;
4230 }
4231
4232 /*
4233 * Update internal state after a channel change.
4234 */
4235 static void
4236 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4237 {
4238 struct ieee80211com *ic = &sc->sc_ic;
4239 enum ieee80211_phymode mode;
4240 u_int16_t flags;
4241
4242 /*
4243 * Change channels and update the h/w rate map
4244 * if we're switching; e.g. 11a to 11b/g.
4245 */
4246 mode = ieee80211_chan2mode(ic, chan);
4247 if (mode != sc->sc_curmode)
4248 ath_setcurmode(sc, mode);
4249 /*
4250 * Update BPF state. NB: ethereal et. al. don't handle
4251 * merged flags well so pick a unique mode for their use.
4252 */
4253 if (IEEE80211_IS_CHAN_A(chan))
4254 flags = IEEE80211_CHAN_A;
4255 /* XXX 11g schizophrenia */
4256 else if (IEEE80211_IS_CHAN_G(chan) ||
4257 IEEE80211_IS_CHAN_PUREG(chan))
4258 flags = IEEE80211_CHAN_G;
4259 else
4260 flags = IEEE80211_CHAN_B;
4261 if (IEEE80211_IS_CHAN_T(chan))
4262 flags |= IEEE80211_CHAN_TURBO;
4263 sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
4264 htole16(chan->ic_freq);
4265 sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
4266 htole16(flags);
4267 }
4268
4269 /*
4270 * Poll for a channel clear indication; this is required
4271 * for channels requiring DFS and not previously visited
4272 * and/or with a recent radar detection.
4273 */
4274 static void
4275 ath_dfswait(void *arg)
4276 {
4277 struct ath_softc *sc = arg;
4278 struct ath_hal *ah = sc->sc_ah;
4279 HAL_CHANNEL hchan;
4280
4281 ath_hal_radar_wait(ah, &hchan);
4282 if (hchan.privFlags & CHANNEL_INTERFERENCE) {
4283 if_printf(&sc->sc_if,
4284 "channel %u/0x%x/0x%x has interference\n",
4285 hchan.channel, hchan.channelFlags, hchan.privFlags);
4286 return;
4287 }
4288 if ((hchan.privFlags & CHANNEL_DFS) == 0) {
4289 /* XXX should not happen */
4290 return;
4291 }
4292 if (hchan.privFlags & CHANNEL_DFS_CLEAR) {
4293 sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR;
4294 sc->sc_if.if_flags &= ~IFF_OACTIVE;
4295 if_printf(&sc->sc_if,
4296 "channel %u/0x%x/0x%x marked clear\n",
4297 hchan.channel, hchan.channelFlags, hchan.privFlags);
4298 } else
4299 callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc);
4300 }
4301
4302 /*
4303 * Set/change channels. If the channel is really being changed,
4304 * it's done by reseting the chip. To accomplish this we must
4305 * first cleanup any pending DMA, then restart stuff after a la
4306 * ath_init.
4307 */
4308 static int
4309 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4310 {
4311 struct ath_hal *ah = sc->sc_ah;
4312 struct ieee80211com *ic = &sc->sc_ic;
4313 HAL_CHANNEL hchan;
4314
4315 /*
4316 * Convert to a HAL channel description with
4317 * the flags constrained to reflect the current
4318 * operating mode.
4319 */
4320 hchan.channel = chan->ic_freq;
4321 hchan.channelFlags = ath_chan2flags(ic, chan);
4322
4323 DPRINTF(sc, ATH_DEBUG_RESET,
4324 "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
4325 __func__,
4326 ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
4327 sc->sc_curchan.channelFlags),
4328 sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
4329 ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
4330 hchan.channel, hchan.channelFlags);
4331 if (hchan.channel != sc->sc_curchan.channel ||
4332 hchan.channelFlags != sc->sc_curchan.channelFlags) {
4333 HAL_STATUS status;
4334
4335 /*
4336 * To switch channels clear any pending DMA operations;
4337 * wait long enough for the RX fifo to drain, reset the
4338 * hardware at the new frequency, and then re-enable
4339 * the relevant bits of the h/w.
4340 */
4341 ath_hal_intrset(ah, 0); /* disable interrupts */
4342 ath_draintxq(sc); /* clear pending tx frames */
4343 ath_stoprecv(sc); /* turn off frame recv */
4344 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
4345 if_printf(ic->ic_ifp, "%s: unable to reset "
4346 "channel %u (%u MHz, flags 0x%x hal flags 0x%x)\n",
4347 __func__, ieee80211_chan2ieee(ic, chan),
4348 chan->ic_freq, chan->ic_flags, hchan.channelFlags);
4349 return EIO;
4350 }
4351 sc->sc_curchan = hchan;
4352 ath_update_txpow(sc); /* update tx power state */
4353 sc->sc_diversity = ath_hal_getdiversity(ah);
4354 sc->sc_calinterval = 1;
4355 sc->sc_caltries = 0;
4356
4357 /*
4358 * Re-enable rx framework.
4359 */
4360 if (ath_startrecv(sc) != 0) {
4361 if_printf(&sc->sc_if,
4362 "%s: unable to restart recv logic\n", __func__);
4363 return EIO;
4364 }
4365
4366 /*
4367 * Change channels and update the h/w rate map
4368 * if we're switching; e.g. 11a to 11b/g.
4369 */
4370 ic->ic_ibss_chan = chan;
4371 ath_chan_change(sc, chan);
4372
4373 /*
4374 * Handle DFS required waiting period to determine
4375 * if channel is clear of radar traffic.
4376 */
4377 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
4378 #define DFS_AND_NOT_CLEAR(_c) \
4379 (((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS)
4380 if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) {
4381 if_printf(&sc->sc_if,
4382 "wait for DFS clear channel signal\n");
4383 /* XXX stop sndq */
4384 sc->sc_if.if_flags |= IFF_OACTIVE;
4385 callout_reset(&sc->sc_dfs_ch,
4386 2 * hz, ath_dfswait, sc);
4387 } else
4388 callout_stop(&sc->sc_dfs_ch);
4389 #undef DFS_NOT_CLEAR
4390 }
4391
4392 /*
4393 * Re-enable interrupts.
4394 */
4395 ath_hal_intrset(ah, sc->sc_imask);
4396 }
4397 return 0;
4398 }
4399
4400 static void
4401 ath_next_scan(void *arg)
4402 {
4403 struct ath_softc *sc = arg;
4404 struct ieee80211com *ic = &sc->sc_ic;
4405 int s;
4406
4407 /* don't call ath_start w/o network interrupts blocked */
4408 s = splnet();
4409
4410 if (ic->ic_state == IEEE80211_S_SCAN)
4411 ieee80211_next_scan(ic);
4412 splx(s);
4413 }
4414
4415 /*
4416 * Periodically recalibrate the PHY to account
4417 * for temperature/environment changes.
4418 */
4419 static void
4420 ath_calibrate(void *arg)
4421 {
4422 struct ath_softc *sc = arg;
4423 struct ath_hal *ah = sc->sc_ah;
4424 HAL_BOOL iqCalDone;
4425
4426 sc->sc_stats.ast_per_cal++;
4427
4428 ATH_LOCK(sc);
4429
4430 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4431 /*
4432 * Rfgain is out of bounds, reset the chip
4433 * to load new gain values.
4434 */
4435 DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4436 "%s: rfgain change\n", __func__);
4437 sc->sc_stats.ast_per_rfgain++;
4438 ath_reset(&sc->sc_if);
4439 }
4440 if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
4441 DPRINTF(sc, ATH_DEBUG_ANY,
4442 "%s: calibration of channel %u failed\n",
4443 __func__, sc->sc_curchan.channel);
4444 sc->sc_stats.ast_per_calfail++;
4445 }
4446 /*
4447 * Calibrate noise floor data again in case of change.
4448 */
4449 ath_hal_process_noisefloor(ah);
4450 /*
4451 * Poll more frequently when the IQ calibration is in
4452 * progress to speedup loading the final settings.
4453 * We temper this aggressive polling with an exponential
4454 * back off after 4 tries up to ath_calinterval.
4455 */
4456 if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
4457 sc->sc_caltries = 0;
4458 sc->sc_calinterval = ath_calinterval;
4459 } else if (sc->sc_caltries > 4) {
4460 sc->sc_caltries = 0;
4461 sc->sc_calinterval <<= 1;
4462 if (sc->sc_calinterval > ath_calinterval)
4463 sc->sc_calinterval = ath_calinterval;
4464 }
4465 KASSERT(0 < sc->sc_calinterval && sc->sc_calinterval <= ath_calinterval,
4466 ("bad calibration interval %u", sc->sc_calinterval));
4467
4468 DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4469 "%s: next +%u (%siqCalDone tries %u)\n", __func__,
4470 sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
4471 sc->sc_caltries++;
4472 callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4473 ath_calibrate, sc);
4474 ATH_UNLOCK(sc);
4475 }
4476
4477 static int
4478 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
4479 {
4480 struct ifnet *ifp = ic->ic_ifp;
4481 struct ath_softc *sc = ifp->if_softc;
4482 struct ath_hal *ah = sc->sc_ah;
4483 struct ieee80211_node *ni;
4484 int i, error;
4485 const u_int8_t *bssid;
4486 u_int32_t rfilt;
4487 static const HAL_LED_STATE leds[] = {
4488 HAL_LED_INIT, /* IEEE80211_S_INIT */
4489 HAL_LED_SCAN, /* IEEE80211_S_SCAN */
4490 HAL_LED_AUTH, /* IEEE80211_S_AUTH */
4491 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */
4492 HAL_LED_RUN, /* IEEE80211_S_RUN */
4493 };
4494
4495 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4496 ieee80211_state_name[ic->ic_state],
4497 ieee80211_state_name[nstate]);
4498
4499 callout_stop(&sc->sc_scan_ch);
4500 callout_stop(&sc->sc_cal_ch);
4501 callout_stop(&sc->sc_dfs_ch);
4502 ath_hal_setledstate(ah, leds[nstate]); /* set LED */
4503
4504 if (nstate == IEEE80211_S_INIT) {
4505 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4506 /*
4507 * NB: disable interrupts so we don't rx frames.
4508 */
4509 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4510 /*
4511 * Notify the rate control algorithm.
4512 */
4513 ath_rate_newstate(sc, nstate);
4514 goto done;
4515 }
4516 ni = ic->ic_bss;
4517 error = ath_chan_set(sc, ic->ic_curchan);
4518 if (error != 0)
4519 goto bad;
4520 rfilt = ath_calcrxfilter(sc, nstate);
4521 if (nstate == IEEE80211_S_SCAN)
4522 bssid = ifp->if_broadcastaddr;
4523 else
4524 bssid = ni->ni_bssid;
4525 ath_hal_setrxfilter(ah, rfilt);
4526 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
4527 __func__, rfilt, ether_sprintf(bssid));
4528
4529 if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
4530 ath_hal_setassocid(ah, bssid, ni->ni_associd);
4531 else
4532 ath_hal_setassocid(ah, bssid, 0);
4533 if (ic->ic_flags & IEEE80211_F_PRIVACY) {
4534 for (i = 0; i < IEEE80211_WEP_NKID; i++)
4535 if (ath_hal_keyisvalid(ah, i))
4536 ath_hal_keysetmac(ah, i, bssid);
4537 }
4538
4539 /*
4540 * Notify the rate control algorithm so rates
4541 * are setup should ath_beacon_alloc be called.
4542 */
4543 ath_rate_newstate(sc, nstate);
4544
4545 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4546 /* nothing to do */;
4547 } else if (nstate == IEEE80211_S_RUN) {
4548 DPRINTF(sc, ATH_DEBUG_STATE,
4549 "%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
4550 "capinfo=0x%04x chan=%d\n"
4551 , __func__
4552 , ic->ic_flags
4553 , ni->ni_intval
4554 , ether_sprintf(ni->ni_bssid)
4555 , ni->ni_capinfo
4556 , ieee80211_chan2ieee(ic, ic->ic_curchan));
4557
4558 switch (ic->ic_opmode) {
4559 case IEEE80211_M_HOSTAP:
4560 case IEEE80211_M_IBSS:
4561 /*
4562 * Allocate and setup the beacon frame.
4563 *
4564 * Stop any previous beacon DMA. This may be
4565 * necessary, for example, when an ibss merge
4566 * causes reconfiguration; there will be a state
4567 * transition from RUN->RUN that means we may
4568 * be called with beacon transmission active.
4569 */
4570 ath_hal_stoptxdma(ah, sc->sc_bhalq);
4571 ath_beacon_free(sc);
4572 error = ath_beacon_alloc(sc, ni);
4573 if (error != 0)
4574 goto bad;
4575 /*
4576 * If joining an adhoc network defer beacon timer
4577 * configuration to the next beacon frame so we
4578 * have a current TSF to use. Otherwise we're
4579 * starting an ibss/bss so there's no need to delay.
4580 */
4581 if (ic->ic_opmode == IEEE80211_M_IBSS &&
4582 ic->ic_bss->ni_tstamp.tsf != 0)
4583 sc->sc_syncbeacon = 1;
4584 else
4585 ath_beacon_config(sc);
4586 break;
4587 case IEEE80211_M_STA:
4588 /*
4589 * Allocate a key cache slot to the station.
4590 */
4591 if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
4592 sc->sc_hasclrkey &&
4593 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4594 ath_setup_stationkey(ni);
4595 /*
4596 * Defer beacon timer configuration to the next
4597 * beacon frame so we have a current TSF to use
4598 * (any TSF collected when scanning is likely old).
4599 */
4600 sc->sc_syncbeacon = 1;
4601 break;
4602 default:
4603 break;
4604 }
4605 /*
4606 * Let the hal process statistics collected during a
4607 * scan so it can provide calibrated noise floor data.
4608 */
4609 ath_hal_process_noisefloor(ah);
4610 /*
4611 * Reset rssi stats; maybe not the best place...
4612 */
4613 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
4614 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
4615 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
4616 } else {
4617 ath_hal_intrset(ah,
4618 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4619 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4620 }
4621 done:
4622 /*
4623 * Invoke the parent method to complete the work.
4624 */
4625 error = sc->sc_newstate(ic, nstate, arg);
4626 /*
4627 * Finally, start any timers.
4628 */
4629 if (nstate == IEEE80211_S_RUN) {
4630 /* start periodic recalibration timer */
4631 callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4632 ath_calibrate, sc);
4633 } else if (nstate == IEEE80211_S_SCAN) {
4634 /* start ap/neighbor scan timer */
4635 callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
4636 ath_next_scan, sc);
4637 }
4638 bad:
4639 return error;
4640 }
4641
4642 /*
4643 * Allocate a key cache slot to the station so we can
4644 * setup a mapping from key index to node. The key cache
4645 * slot is needed for managing antenna state and for
4646 * compression when stations do not use crypto. We do
4647 * it uniliaterally here; if crypto is employed this slot
4648 * will be reassigned.
4649 */
4650 static void
4651 ath_setup_stationkey(struct ieee80211_node *ni)
4652 {
4653 struct ieee80211com *ic = ni->ni_ic;
4654 struct ath_softc *sc = ic->ic_ifp->if_softc;
4655 ieee80211_keyix keyix, rxkeyix;
4656
4657 if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
4658 /*
4659 * Key cache is full; we'll fall back to doing
4660 * the more expensive lookup in software. Note
4661 * this also means no h/w compression.
4662 */
4663 /* XXX msg+statistic */
4664 } else {
4665 /* XXX locking? */
4666 ni->ni_ucastkey.wk_keyix = keyix;
4667 ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
4668 /* NB: this will create a pass-thru key entry */
4669 ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
4670 }
4671 }
4672
4673 /*
4674 * Setup driver-specific state for a newly associated node.
4675 * Note that we're called also on a re-associate, the isnew
4676 * param tells us if this is the first time or not.
4677 */
4678 static void
4679 ath_newassoc(struct ieee80211_node *ni, int isnew)
4680 {
4681 struct ieee80211com *ic = ni->ni_ic;
4682 struct ath_softc *sc = ic->ic_ifp->if_softc;
4683
4684 ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
4685 if (isnew &&
4686 (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
4687 KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
4688 ("new assoc with a unicast key already setup (keyix %u)",
4689 ni->ni_ucastkey.wk_keyix));
4690 ath_setup_stationkey(ni);
4691 }
4692 }
4693
4694 static int
4695 ath_getchannels(struct ath_softc *sc, u_int cc,
4696 HAL_BOOL outdoor, HAL_BOOL xchanmode)
4697 {
4698 #define COMPAT (CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
4699 struct ieee80211com *ic = &sc->sc_ic;
4700 struct ifnet *ifp = &sc->sc_if;
4701 struct ath_hal *ah = sc->sc_ah;
4702 HAL_CHANNEL *chans;
4703 int i, ix, nchan;
4704
4705 chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
4706 M_TEMP, M_NOWAIT);
4707 if (chans == NULL) {
4708 if_printf(ifp, "unable to allocate channel table\n");
4709 return ENOMEM;
4710 }
4711 if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
4712 NULL, 0, NULL,
4713 cc, HAL_MODE_ALL, outdoor, xchanmode)) {
4714 u_int32_t rd;
4715
4716 (void)ath_hal_getregdomain(ah, &rd);
4717 if_printf(ifp, "unable to collect channel list from hal; "
4718 "regdomain likely %u country code %u\n", rd, cc);
4719 free(chans, M_TEMP);
4720 return EINVAL;
4721 }
4722
4723 /*
4724 * Convert HAL channels to ieee80211 ones and insert
4725 * them in the table according to their channel number.
4726 */
4727 for (i = 0; i < nchan; i++) {
4728 HAL_CHANNEL *c = &chans[i];
4729 u_int16_t flags;
4730
4731 ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags);
4732 if (ix > IEEE80211_CHAN_MAX) {
4733 if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n",
4734 ix, c->channel, c->channelFlags);
4735 continue;
4736 }
4737 if (ix < 0) {
4738 /* XXX can't handle stuff <2400 right now */
4739 if (bootverbose)
4740 if_printf(ifp, "hal channel %d (%u/%x) "
4741 "cannot be handled; ignored\n",
4742 ix, c->channel, c->channelFlags);
4743 continue;
4744 }
4745 /*
4746 * Calculate net80211 flags; most are compatible
4747 * but some need massaging. Note the static turbo
4748 * conversion can be removed once net80211 is updated
4749 * to understand static vs. dynamic turbo.
4750 */
4751 flags = c->channelFlags & COMPAT;
4752 if (c->channelFlags & CHANNEL_STURBO)
4753 flags |= IEEE80211_CHAN_TURBO;
4754 if (ic->ic_channels[ix].ic_freq == 0) {
4755 ic->ic_channels[ix].ic_freq = c->channel;
4756 ic->ic_channels[ix].ic_flags = flags;
4757 } else {
4758 /* channels overlap; e.g. 11g and 11b */
4759 ic->ic_channels[ix].ic_flags |= flags;
4760 }
4761 }
4762 free(chans, M_TEMP);
4763 return 0;
4764 #undef COMPAT
4765 }
4766
4767 static void
4768 ath_led_done(void *arg)
4769 {
4770 struct ath_softc *sc = arg;
4771
4772 sc->sc_blinking = 0;
4773 }
4774
4775 /*
4776 * Turn the LED off: flip the pin and then set a timer so no
4777 * update will happen for the specified duration.
4778 */
4779 static void
4780 ath_led_off(void *arg)
4781 {
4782 struct ath_softc *sc = arg;
4783
4784 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
4785 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
4786 }
4787
4788 /*
4789 * Blink the LED according to the specified on/off times.
4790 */
4791 static void
4792 ath_led_blink(struct ath_softc *sc, int on, int off)
4793 {
4794 DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
4795 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
4796 sc->sc_blinking = 1;
4797 sc->sc_ledoff = off;
4798 callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
4799 }
4800
4801 static void
4802 ath_led_event(struct ath_softc *sc, int event)
4803 {
4804
4805 sc->sc_ledevent = ticks; /* time of last event */
4806 if (sc->sc_blinking) /* don't interrupt active blink */
4807 return;
4808 switch (event) {
4809 case ATH_LED_POLL:
4810 ath_led_blink(sc, sc->sc_hwmap[0].ledon,
4811 sc->sc_hwmap[0].ledoff);
4812 break;
4813 case ATH_LED_TX:
4814 ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
4815 sc->sc_hwmap[sc->sc_txrate].ledoff);
4816 break;
4817 case ATH_LED_RX:
4818 ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
4819 sc->sc_hwmap[sc->sc_rxrate].ledoff);
4820 break;
4821 }
4822 }
4823
4824 static void
4825 ath_update_txpow(struct ath_softc *sc)
4826 {
4827 #define COMPAT (CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
4828 struct ieee80211com *ic = &sc->sc_ic;
4829 struct ath_hal *ah = sc->sc_ah;
4830 u_int32_t txpow;
4831
4832 if (sc->sc_curtxpow != ic->ic_txpowlimit) {
4833 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
4834 /* read back in case value is clamped */
4835 (void)ath_hal_gettxpowlimit(ah, &txpow);
4836 ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
4837 }
4838 /*
4839 * Fetch max tx power level for status requests.
4840 */
4841 (void)ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
4842 ic->ic_bss->ni_txpower = txpow;
4843 }
4844
4845 static void
4846 rate_setup(struct ath_softc *sc,
4847 const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs)
4848 {
4849 int i, maxrates;
4850
4851 if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
4852 DPRINTF(sc, ATH_DEBUG_ANY,
4853 "%s: rate table too small (%u > %u)\n",
4854 __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
4855 maxrates = IEEE80211_RATE_MAXSIZE;
4856 } else
4857 maxrates = rt->rateCount;
4858 for (i = 0; i < maxrates; i++)
4859 rs->rs_rates[i] = rt->info[i].dot11Rate;
4860 rs->rs_nrates = maxrates;
4861 }
4862
4863 static int
4864 ath_rate_setup(struct ath_softc *sc, u_int mode)
4865 {
4866 struct ath_hal *ah = sc->sc_ah;
4867 struct ieee80211com *ic = &sc->sc_ic;
4868 const HAL_RATE_TABLE *rt;
4869
4870 switch (mode) {
4871 case IEEE80211_MODE_11A:
4872 rt = ath_hal_getratetable(ah, HAL_MODE_11A);
4873 break;
4874 case IEEE80211_MODE_11B:
4875 rt = ath_hal_getratetable(ah, HAL_MODE_11B);
4876 break;
4877 case IEEE80211_MODE_11G:
4878 rt = ath_hal_getratetable(ah, HAL_MODE_11G);
4879 break;
4880 case IEEE80211_MODE_TURBO_A:
4881 /* XXX until static/dynamic turbo is fixed */
4882 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
4883 break;
4884 case IEEE80211_MODE_TURBO_G:
4885 rt = ath_hal_getratetable(ah, HAL_MODE_108G);
4886 break;
4887 default:
4888 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
4889 __func__, mode);
4890 return 0;
4891 }
4892 sc->sc_rates[mode] = rt;
4893 if (rt != NULL) {
4894 rate_setup(sc, rt, &ic->ic_sup_rates[mode]);
4895 return 1;
4896 } else
4897 return 0;
4898 }
4899
4900 static void
4901 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
4902 {
4903 #define N(a) (sizeof(a)/sizeof(a[0]))
4904 /* NB: on/off times from the Atheros NDIS driver, w/ permission */
4905 static const struct {
4906 u_int rate; /* tx/rx 802.11 rate */
4907 u_int16_t timeOn; /* LED on time (ms) */
4908 u_int16_t timeOff; /* LED off time (ms) */
4909 } blinkrates[] = {
4910 { 108, 40, 10 },
4911 { 96, 44, 11 },
4912 { 72, 50, 13 },
4913 { 48, 57, 14 },
4914 { 36, 67, 16 },
4915 { 24, 80, 20 },
4916 { 22, 100, 25 },
4917 { 18, 133, 34 },
4918 { 12, 160, 40 },
4919 { 10, 200, 50 },
4920 { 6, 240, 58 },
4921 { 4, 267, 66 },
4922 { 2, 400, 100 },
4923 { 0, 500, 130 },
4924 };
4925 const HAL_RATE_TABLE *rt;
4926 int i, j;
4927
4928 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
4929 rt = sc->sc_rates[mode];
4930 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
4931 for (i = 0; i < rt->rateCount; i++)
4932 sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
4933 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
4934 for (i = 0; i < 32; i++) {
4935 u_int8_t ix = rt->rateCodeToIndex[i];
4936 if (ix == 0xff) {
4937 sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
4938 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
4939 continue;
4940 }
4941 sc->sc_hwmap[i].ieeerate =
4942 rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
4943 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
4944 if (rt->info[ix].shortPreamble ||
4945 rt->info[ix].phy == IEEE80211_T_OFDM)
4946 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
4947 /* NB: receive frames include FCS */
4948 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
4949 IEEE80211_RADIOTAP_F_FCS;
4950 /* setup blink rate table to avoid per-packet lookup */
4951 for (j = 0; j < N(blinkrates)-1; j++)
4952 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
4953 break;
4954 /* NB: this uses the last entry if the rate isn't found */
4955 /* XXX beware of overlow */
4956 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
4957 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
4958 }
4959 sc->sc_currates = rt;
4960 sc->sc_curmode = mode;
4961 /*
4962 * All protection frames are transmited at 2Mb/s for
4963 * 11g, otherwise at 1Mb/s.
4964 */
4965 if (mode == IEEE80211_MODE_11G)
4966 sc->sc_protrix = ath_tx_findrix(rt, 2*2);
4967 else
4968 sc->sc_protrix = ath_tx_findrix(rt, 2*1);
4969 /* rate index used to send management frames */
4970 sc->sc_minrateix = 0;
4971 /*
4972 * Setup multicast rate state.
4973 */
4974 /* XXX layering violation */
4975 sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate);
4976 sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate;
4977 /* NB: caller is responsible for reseting rate control state */
4978 #undef N
4979 }
4980
4981 #ifdef AR_DEBUG
4982 static void
4983 ath_printrxbuf(struct ath_buf *bf, int done)
4984 {
4985 struct ath_desc *ds;
4986 int i;
4987
4988 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
4989 printf("R%d (%p %" PRIx64
4990 ") %08x %08x %08x %08x %08x %08x %c\n", i, ds,
4991 (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
4992 ds->ds_link, ds->ds_data,
4993 ds->ds_ctl0, ds->ds_ctl1,
4994 ds->ds_hw[0], ds->ds_hw[1],
4995 !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
4996 }
4997 }
4998
4999 static void
5000 ath_printtxbuf(struct ath_buf *bf, int done)
5001 {
5002 struct ath_desc *ds;
5003 int i;
5004
5005 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5006 printf("T%d (%p %" PRIx64
5007 ") %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
5008 i, ds,
5009 (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
5010 ds->ds_link, ds->ds_data,
5011 ds->ds_ctl0, ds->ds_ctl1,
5012 ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
5013 !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
5014 }
5015 }
5016 #endif /* AR_DEBUG */
5017
5018 static void
5019 ath_watchdog(struct ifnet *ifp)
5020 {
5021 struct ath_softc *sc = ifp->if_softc;
5022 struct ieee80211com *ic = &sc->sc_ic;
5023
5024 ifp->if_timer = 0;
5025 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
5026 return;
5027 if (sc->sc_tx_timer) {
5028 if (--sc->sc_tx_timer == 0) {
5029 if_printf(ifp, "device timeout\n");
5030 ath_reset(ifp);
5031 ifp->if_oerrors++;
5032 sc->sc_stats.ast_watchdog++;
5033 } else
5034 ifp->if_timer = 1;
5035 }
5036 ieee80211_watchdog(ic);
5037 }
5038
5039 /*
5040 * Diagnostic interface to the HAL. This is used by various
5041 * tools to do things like retrieve register contents for
5042 * debugging. The mechanism is intentionally opaque so that
5043 * it can change frequently w/o concern for compatiblity.
5044 */
5045 static int
5046 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
5047 {
5048 struct ath_hal *ah = sc->sc_ah;
5049 u_int id = ad->ad_id & ATH_DIAG_ID;
5050 void *indata = NULL;
5051 void *outdata = NULL;
5052 u_int32_t insize = ad->ad_in_size;
5053 u_int32_t outsize = ad->ad_out_size;
5054 int error = 0;
5055
5056 if (ad->ad_id & ATH_DIAG_IN) {
5057 /*
5058 * Copy in data.
5059 */
5060 indata = malloc(insize, M_TEMP, M_NOWAIT);
5061 if (indata == NULL) {
5062 error = ENOMEM;
5063 goto bad;
5064 }
5065 error = copyin(ad->ad_in_data, indata, insize);
5066 if (error)
5067 goto bad;
5068 }
5069 if (ad->ad_id & ATH_DIAG_DYN) {
5070 /*
5071 * Allocate a buffer for the results (otherwise the HAL
5072 * returns a pointer to a buffer where we can read the
5073 * results). Note that we depend on the HAL leaving this
5074 * pointer for us to use below in reclaiming the buffer;
5075 * may want to be more defensive.
5076 */
5077 outdata = malloc(outsize, M_TEMP, M_NOWAIT);
5078 if (outdata == NULL) {
5079 error = ENOMEM;
5080 goto bad;
5081 }
5082 }
5083 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
5084 if (outsize < ad->ad_out_size)
5085 ad->ad_out_size = outsize;
5086 if (outdata != NULL)
5087 error = copyout(outdata, ad->ad_out_data,
5088 ad->ad_out_size);
5089 } else {
5090 error = EINVAL;
5091 }
5092 bad:
5093 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
5094 free(indata, M_TEMP);
5095 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
5096 free(outdata, M_TEMP);
5097 return error;
5098 }
5099
5100 static int
5101 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
5102 {
5103 #define IS_RUNNING(ifp) \
5104 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
5105 struct ath_softc *sc = ifp->if_softc;
5106 struct ieee80211com *ic = &sc->sc_ic;
5107 struct ifreq *ifr = (struct ifreq *)data;
5108 int error = 0;
5109
5110 ATH_LOCK(sc);
5111 switch (cmd) {
5112 case SIOCSIFFLAGS:
5113 if (IS_RUNNING(ifp)) {
5114 /*
5115 * To avoid rescanning another access point,
5116 * do not call ath_init() here. Instead,
5117 * only reflect promisc mode settings.
5118 */
5119 ath_mode_init(sc);
5120 } else if (ifp->if_flags & IFF_UP) {
5121 /*
5122 * Beware of being called during attach/detach
5123 * to reset promiscuous mode. In that case we
5124 * will still be marked UP but not RUNNING.
5125 * However trying to re-init the interface
5126 * is the wrong thing to do as we've already
5127 * torn down much of our state. There's
5128 * probably a better way to deal with this.
5129 */
5130 if (!sc->sc_invalid && ic->ic_bss != NULL)
5131 ath_init(sc); /* XXX lose error */
5132 } else
5133 ath_stop_locked(ifp, 1);
5134 break;
5135 case SIOCADDMULTI:
5136 case SIOCDELMULTI:
5137 error = (cmd == SIOCADDMULTI) ?
5138 ether_addmulti(ifr, &sc->sc_ec) :
5139 ether_delmulti(ifr, &sc->sc_ec);
5140 if (error == ENETRESET) {
5141 if (ifp->if_flags & IFF_RUNNING)
5142 ath_mode_init(sc);
5143 error = 0;
5144 }
5145 break;
5146 case SIOCGATHSTATS:
5147 /* NB: embed these numbers to get a consistent view */
5148 sc->sc_stats.ast_tx_packets = ifp->if_opackets;
5149 sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
5150 sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
5151 ATH_UNLOCK(sc);
5152 /*
5153 * NB: Drop the softc lock in case of a page fault;
5154 * we'll accept any potential inconsisentcy in the
5155 * statistics. The alternative is to copy the data
5156 * to a local structure.
5157 */
5158 return copyout(&sc->sc_stats,
5159 ifr->ifr_data, sizeof (sc->sc_stats));
5160 case SIOCGATHDIAG:
5161 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
5162 break;
5163 default:
5164 error = ieee80211_ioctl(ic, cmd, data);
5165 if (error == ENETRESET) {
5166 if (IS_RUNNING(ifp) &&
5167 ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
5168 ath_init(sc); /* XXX lose error */
5169 error = 0;
5170 }
5171 if (error == ERESTART)
5172 error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0;
5173 break;
5174 }
5175 ATH_UNLOCK(sc);
5176 return error;
5177 #undef IS_RUNNING
5178 }
5179
5180 #if NBPFILTER > 0
5181 static void
5182 ath_bpfattach(struct ath_softc *sc)
5183 {
5184 struct ifnet *ifp = &sc->sc_if;
5185
5186 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
5187 sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
5188 &sc->sc_drvbpf);
5189 /*
5190 * Initialize constant fields.
5191 * XXX make header lengths a multiple of 32-bits so subsequent
5192 * headers are properly aligned; this is a kludge to keep
5193 * certain applications happy.
5194 *
5195 * NB: the channel is setup each time we transition to the
5196 * RUN state to avoid filling it in for each frame.
5197 */
5198 sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
5199 sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
5200 sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
5201
5202 sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
5203 sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
5204 sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
5205 }
5206 #endif
5207
5208 /*
5209 * Announce various information on device/driver attach.
5210 */
5211 static void
5212 ath_announce(struct ath_softc *sc)
5213 {
5214 #define HAL_MODE_DUALBAND (HAL_MODE_11A|HAL_MODE_11B)
5215 struct ifnet *ifp = &sc->sc_if;
5216 struct ath_hal *ah = sc->sc_ah;
5217 u_int modes, cc;
5218
5219 if_printf(ifp, "mac %d.%d phy %d.%d",
5220 ah->ah_macVersion, ah->ah_macRev,
5221 ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
5222 /*
5223 * Print radio revision(s). We check the wireless modes
5224 * to avoid falsely printing revs for inoperable parts.
5225 * Dual-band radio revs are returned in the 5 GHz rev number.
5226 */
5227 ath_hal_getcountrycode(ah, &cc);
5228 modes = ath_hal_getwirelessmodes(ah, cc);
5229 if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
5230 if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
5231 printf(" 5 GHz radio %d.%d 2 GHz radio %d.%d",
5232 ah->ah_analog5GhzRev >> 4,
5233 ah->ah_analog5GhzRev & 0xf,
5234 ah->ah_analog2GhzRev >> 4,
5235 ah->ah_analog2GhzRev & 0xf);
5236 else
5237 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5238 ah->ah_analog5GhzRev & 0xf);
5239 } else
5240 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5241 ah->ah_analog5GhzRev & 0xf);
5242 printf("\n");
5243 if (bootverbose) {
5244 int i;
5245 for (i = 0; i <= WME_AC_VO; i++) {
5246 struct ath_txq *txq = sc->sc_ac2q[i];
5247 if_printf(ifp, "Use hw queue %u for %s traffic\n",
5248 txq->axq_qnum, ieee80211_wme_acnames[i]);
5249 }
5250 if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5251 sc->sc_cabq->axq_qnum);
5252 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5253 }
5254 if (ath_rxbuf != ATH_RXBUF)
5255 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
5256 if (ath_txbuf != ATH_TXBUF)
5257 if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
5258 #undef HAL_MODE_DUALBAND
5259 }
5260