ath.c revision 1.66.6.3 1 /* $NetBSD: ath.c,v 1.66.6.3 2006/06/07 15:51:08 kardel Exp $ */
2
3 /*-
4 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15 * redistribution must be conditioned upon including a substantially
16 * similar Disclaimer requirement for further binary redistribution.
17 * 3. Neither the names of the above-listed copyright holders nor the names
18 * of any contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * Alternatively, this software may be distributed under the terms of the
22 * GNU General Public License ("GPL") version 2 as published by the Free
23 * Software Foundation.
24 *
25 * NO WARRANTY
26 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
28 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
29 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
30 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
31 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
34 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
36 * THE POSSIBILITY OF SUCH DAMAGES.
37 */
38
39 #include <sys/cdefs.h>
40 #ifdef __FreeBSD__
41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $");
42 #endif
43 #ifdef __NetBSD__
44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.66.6.3 2006/06/07 15:51:08 kardel Exp $");
45 #endif
46
47 /*
48 * Driver for the Atheros Wireless LAN controller.
49 *
50 * This software is derived from work of Atsushi Onoe; his contribution
51 * is greatly appreciated.
52 */
53
54 #include "opt_inet.h"
55
56 #ifdef __NetBSD__
57 #include "bpfilter.h"
58 #endif /* __NetBSD__ */
59
60 #include <sys/param.h>
61 #include <sys/reboot.h>
62 #include <sys/systm.h>
63 #include <sys/types.h>
64 #include <sys/sysctl.h>
65 #include <sys/mbuf.h>
66 #include <sys/malloc.h>
67 #include <sys/lock.h>
68 #include <sys/kernel.h>
69 #include <sys/socket.h>
70 #include <sys/sockio.h>
71 #include <sys/errno.h>
72 #include <sys/callout.h>
73 #include <machine/bus.h>
74 #include <sys/endian.h>
75
76 #include <machine/bus.h>
77
78 #include <net/if.h>
79 #include <net/if_dl.h>
80 #include <net/if_media.h>
81 #include <net/if_types.h>
82 #include <net/if_arp.h>
83 #include <net/if_ether.h>
84 #include <net/if_llc.h>
85
86 #include <net80211/ieee80211_netbsd.h>
87 #include <net80211/ieee80211_var.h>
88
89 #if NBPFILTER > 0
90 #include <net/bpf.h>
91 #endif
92
93 #ifdef INET
94 #include <netinet/in.h>
95 #endif
96
97 #include <sys/device.h>
98 #include <dev/ic/ath_netbsd.h>
99
100 #define AR_DEBUG
101 #include <dev/ic/athvar.h>
102 #include <contrib/dev/ath/ah_desc.h>
103 #include <contrib/dev/ath/ah_devid.h> /* XXX for softled */
104 #include "athhal_options.h"
105
106 #ifdef ATH_TX99_DIAG
107 #include <dev/ath/ath_tx99/ath_tx99.h>
108 #endif
109
110 /* unaligned little endian access */
111 #define LE_READ_2(p) \
112 ((u_int16_t) \
113 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8)))
114 #define LE_READ_4(p) \
115 ((u_int32_t) \
116 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \
117 (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
118
119 enum {
120 ATH_LED_TX,
121 ATH_LED_RX,
122 ATH_LED_POLL,
123 };
124
125 #ifdef AH_NEED_DESC_SWAP
126 #define HTOAH32(x) htole32(x)
127 #else
128 #define HTOAH32(x) (x)
129 #endif
130
131 static int ath_ifinit(struct ifnet *);
132 static int ath_init(struct ath_softc *);
133 static void ath_stop_locked(struct ifnet *, int);
134 static void ath_stop(struct ifnet *, int);
135 static void ath_start(struct ifnet *);
136 static int ath_media_change(struct ifnet *);
137 static void ath_watchdog(struct ifnet *);
138 static int ath_ioctl(struct ifnet *, u_long, caddr_t);
139 static void ath_fatal_proc(void *, int);
140 static void ath_rxorn_proc(void *, int);
141 static void ath_bmiss_proc(void *, int);
142 static void ath_radar_proc(void *, int);
143 static int ath_key_alloc(struct ieee80211com *,
144 const struct ieee80211_key *,
145 ieee80211_keyix *, ieee80211_keyix *);
146 static int ath_key_delete(struct ieee80211com *,
147 const struct ieee80211_key *);
148 static int ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
149 const u_int8_t mac[IEEE80211_ADDR_LEN]);
150 static void ath_key_update_begin(struct ieee80211com *);
151 static void ath_key_update_end(struct ieee80211com *);
152 static void ath_mode_init(struct ath_softc *);
153 static void ath_setslottime(struct ath_softc *);
154 static void ath_updateslot(struct ifnet *);
155 static int ath_beaconq_setup(struct ath_hal *);
156 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
157 static void ath_beacon_setup(struct ath_softc *, struct ath_buf *);
158 static void ath_beacon_proc(void *, int);
159 static void ath_bstuck_proc(void *, int);
160 static void ath_beacon_free(struct ath_softc *);
161 static void ath_beacon_config(struct ath_softc *);
162 static void ath_descdma_cleanup(struct ath_softc *sc,
163 struct ath_descdma *, ath_bufhead *);
164 static int ath_desc_alloc(struct ath_softc *);
165 static void ath_desc_free(struct ath_softc *);
166 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
167 static void ath_node_free(struct ieee80211_node *);
168 static u_int8_t ath_node_getrssi(const struct ieee80211_node *);
169 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
170 static void ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
171 struct ieee80211_node *ni,
172 int subtype, int rssi, u_int32_t rstamp);
173 static void ath_setdefantenna(struct ath_softc *, u_int);
174 static void ath_rx_proc(void *, int);
175 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
176 static int ath_tx_setup(struct ath_softc *, int, int);
177 static int ath_wme_update(struct ieee80211com *);
178 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
179 static void ath_tx_cleanup(struct ath_softc *);
180 static int ath_tx_start(struct ath_softc *, struct ieee80211_node *,
181 struct ath_buf *, struct mbuf *);
182 static void ath_tx_proc_q0(void *, int);
183 static void ath_tx_proc_q0123(void *, int);
184 static void ath_tx_proc(void *, int);
185 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
186 static void ath_draintxq(struct ath_softc *);
187 static void ath_stoprecv(struct ath_softc *);
188 static int ath_startrecv(struct ath_softc *);
189 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
190 static void ath_next_scan(void *);
191 static void ath_calibrate(void *);
192 static int ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
193 static void ath_setup_stationkey(struct ieee80211_node *);
194 static void ath_newassoc(struct ieee80211_node *, int);
195 static int ath_getchannels(struct ath_softc *, u_int cc,
196 HAL_BOOL outdoor, HAL_BOOL xchanmode);
197 static void ath_led_event(struct ath_softc *, int);
198 static void ath_update_txpow(struct ath_softc *);
199
200 static int ath_rate_setup(struct ath_softc *, u_int mode);
201 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
202
203 #ifdef __NetBSD__
204 int ath_enable(struct ath_softc *);
205 void ath_disable(struct ath_softc *);
206 void ath_power(int, void *);
207 #endif
208
209 #if NBPFILTER > 0
210 static void ath_bpfattach(struct ath_softc *);
211 #endif
212 static void ath_announce(struct ath_softc *);
213
214 int ath_dwelltime = 200; /* 5 channels/second */
215 int ath_calinterval = 30; /* calibrate every 30 secs */
216 int ath_outdoor = AH_TRUE; /* outdoor operation */
217 int ath_xchanmode = AH_TRUE; /* enable extended channels */
218 int ath_countrycode = CTRY_DEFAULT; /* country code */
219 int ath_regdomain = 0; /* regulatory domain */
220 int ath_debug = 0;
221 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */
222 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */
223
224 #ifdef AR_DEBUG
225 enum {
226 ATH_DEBUG_XMIT = 0x00000001, /* basic xmit operation */
227 ATH_DEBUG_XMIT_DESC = 0x00000002, /* xmit descriptors */
228 ATH_DEBUG_RECV = 0x00000004, /* basic recv operation */
229 ATH_DEBUG_RECV_DESC = 0x00000008, /* recv descriptors */
230 ATH_DEBUG_RATE = 0x00000010, /* rate control */
231 ATH_DEBUG_RESET = 0x00000020, /* reset processing */
232 ATH_DEBUG_MODE = 0x00000040, /* mode init/setup */
233 ATH_DEBUG_BEACON = 0x00000080, /* beacon handling */
234 ATH_DEBUG_WATCHDOG = 0x00000100, /* watchdog timeout */
235 ATH_DEBUG_INTR = 0x00001000, /* ISR */
236 ATH_DEBUG_TX_PROC = 0x00002000, /* tx ISR proc */
237 ATH_DEBUG_RX_PROC = 0x00004000, /* rx ISR proc */
238 ATH_DEBUG_BEACON_PROC = 0x00008000, /* beacon ISR proc */
239 ATH_DEBUG_CALIBRATE = 0x00010000, /* periodic calibration */
240 ATH_DEBUG_KEYCACHE = 0x00020000, /* key cache management */
241 ATH_DEBUG_STATE = 0x00040000, /* 802.11 state transitions */
242 ATH_DEBUG_NODE = 0x00080000, /* node management */
243 ATH_DEBUG_LED = 0x00100000, /* led management */
244 ATH_DEBUG_FF = 0x00200000, /* fast frames */
245 ATH_DEBUG_DFS = 0x00400000, /* DFS processing */
246 ATH_DEBUG_FATAL = 0x80000000, /* fatal errors */
247 ATH_DEBUG_ANY = 0xffffffff
248 };
249 #define IFF_DUMPPKTS(sc, m) \
250 ((sc->sc_debug & (m)) || \
251 (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
252 #define DPRINTF(sc, m, fmt, ...) do { \
253 if (sc->sc_debug & (m)) \
254 printf(fmt, __VA_ARGS__); \
255 } while (0)
256 #define KEYPRINTF(sc, ix, hk, mac) do { \
257 if (sc->sc_debug & ATH_DEBUG_KEYCACHE) \
258 ath_keyprint(__func__, ix, hk, mac); \
259 } while (0)
260 static void ath_printrxbuf(struct ath_buf *bf, int);
261 static void ath_printtxbuf(struct ath_buf *bf, int);
262 #else
263 #define IFF_DUMPPKTS(sc, m) \
264 ((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
265 #define DPRINTF(m, fmt, ...)
266 #define KEYPRINTF(sc, k, ix, mac)
267 #endif
268
269 #ifdef __NetBSD__
270 int
271 ath_activate(struct device *self, enum devact act)
272 {
273 struct ath_softc *sc = (struct ath_softc *)self;
274 int rv = 0, s;
275
276 s = splnet();
277 switch (act) {
278 case DVACT_ACTIVATE:
279 rv = EOPNOTSUPP;
280 break;
281 case DVACT_DEACTIVATE:
282 if_deactivate(&sc->sc_if);
283 break;
284 }
285 splx(s);
286 return rv;
287 }
288
289 int
290 ath_enable(struct ath_softc *sc)
291 {
292 if (ATH_IS_ENABLED(sc) == 0) {
293 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
294 printf("%s: device enable failed\n",
295 sc->sc_dev.dv_xname);
296 return (EIO);
297 }
298 sc->sc_flags |= ATH_ENABLED;
299 }
300 return (0);
301 }
302
303 void
304 ath_disable(struct ath_softc *sc)
305 {
306 if (!ATH_IS_ENABLED(sc))
307 return;
308 if (sc->sc_disable != NULL)
309 (*sc->sc_disable)(sc);
310 sc->sc_flags &= ~ATH_ENABLED;
311 }
312 #endif /* __NetBSD__ */
313
314 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
315
316 int
317 ath_attach(u_int16_t devid, struct ath_softc *sc)
318 {
319 struct ifnet *ifp = &sc->sc_if;
320 struct ieee80211com *ic = &sc->sc_ic;
321 struct ath_hal *ah = NULL;
322 HAL_STATUS status;
323 int error = 0, i;
324
325 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
326
327 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
328
329 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
330 if (ah == NULL) {
331 if_printf(ifp, "unable to attach hardware; HAL status %u\n",
332 status);
333 error = ENXIO;
334 goto bad;
335 }
336 if (ah->ah_abi != HAL_ABI_VERSION) {
337 if_printf(ifp, "HAL ABI mismatch detected "
338 "(HAL:0x%x != driver:0x%x)\n",
339 ah->ah_abi, HAL_ABI_VERSION);
340 error = ENXIO;
341 goto bad;
342 }
343 sc->sc_ah = ah;
344 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */
345
346 /*
347 * Check if the MAC has multi-rate retry support.
348 * We do this by trying to setup a fake extended
349 * descriptor. MAC's that don't have support will
350 * return false w/o doing anything. MAC's that do
351 * support it will return true w/o doing anything.
352 */
353 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
354
355 /*
356 * Check if the device has hardware counters for PHY
357 * errors. If so we need to enable the MIB interrupt
358 * so we can act on stat triggers.
359 */
360 if (ath_hal_hwphycounters(ah))
361 sc->sc_needmib = 1;
362
363 /*
364 * Get the hardware key cache size.
365 */
366 sc->sc_keymax = ath_hal_keycachesize(ah);
367 if (sc->sc_keymax > ATH_KEYMAX) {
368 if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
369 ATH_KEYMAX, sc->sc_keymax);
370 sc->sc_keymax = ATH_KEYMAX;
371 }
372 /*
373 * Reset the key cache since some parts do not
374 * reset the contents on initial power up.
375 */
376 for (i = 0; i < sc->sc_keymax; i++)
377 ath_hal_keyreset(ah, i);
378 /*
379 * Mark key cache slots associated with global keys
380 * as in use. If we knew TKIP was not to be used we
381 * could leave the +32, +64, and +32+64 slots free.
382 * XXX only for splitmic.
383 */
384 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
385 setbit(sc->sc_keymap, i);
386 setbit(sc->sc_keymap, i+32);
387 setbit(sc->sc_keymap, i+64);
388 setbit(sc->sc_keymap, i+32+64);
389 }
390
391 /*
392 * Collect the channel list using the default country
393 * code and including outdoor channels. The 802.11 layer
394 * is resposible for filtering this list based on settings
395 * like the phy mode.
396 */
397 error = ath_getchannels(sc, ath_countrycode,
398 ath_outdoor, ath_xchanmode);
399 if (error != 0)
400 goto bad;
401
402 /*
403 * Setup rate tables for all potential media types.
404 */
405 ath_rate_setup(sc, IEEE80211_MODE_11A);
406 ath_rate_setup(sc, IEEE80211_MODE_11B);
407 ath_rate_setup(sc, IEEE80211_MODE_11G);
408 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
409 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
410 /* NB: setup here so ath_rate_update is happy */
411 ath_setcurmode(sc, IEEE80211_MODE_11A);
412
413 /*
414 * Allocate tx+rx descriptors and populate the lists.
415 */
416 error = ath_desc_alloc(sc);
417 if (error != 0) {
418 if_printf(ifp, "failed to allocate descriptors: %d\n", error);
419 goto bad;
420 }
421 ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
422 ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE);
423 ATH_CALLOUT_INIT(&sc->sc_dfs_ch, CALLOUT_MPSAFE);
424
425 ATH_TXBUF_LOCK_INIT(sc);
426
427 TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
428 TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
429 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
430 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
431 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
432 TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc);
433
434 /*
435 * Allocate hardware transmit queues: one queue for
436 * beacon frames and one data queue for each QoS
437 * priority. Note that the hal handles reseting
438 * these queues at the needed time.
439 *
440 * XXX PS-Poll
441 */
442 sc->sc_bhalq = ath_beaconq_setup(ah);
443 if (sc->sc_bhalq == (u_int) -1) {
444 if_printf(ifp, "unable to setup a beacon xmit queue!\n");
445 error = EIO;
446 goto bad2;
447 }
448 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
449 if (sc->sc_cabq == NULL) {
450 if_printf(ifp, "unable to setup CAB xmit queue!\n");
451 error = EIO;
452 goto bad2;
453 }
454 /* NB: insure BK queue is the lowest priority h/w queue */
455 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
456 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
457 ieee80211_wme_acnames[WME_AC_BK]);
458 error = EIO;
459 goto bad2;
460 }
461 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
462 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
463 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
464 /*
465 * Not enough hardware tx queues to properly do WME;
466 * just punt and assign them all to the same h/w queue.
467 * We could do a better job of this if, for example,
468 * we allocate queues when we switch from station to
469 * AP mode.
470 */
471 if (sc->sc_ac2q[WME_AC_VI] != NULL)
472 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
473 if (sc->sc_ac2q[WME_AC_BE] != NULL)
474 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
475 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
476 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
477 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
478 }
479
480 /*
481 * Special case certain configurations. Note the
482 * CAB queue is handled by these specially so don't
483 * include them when checking the txq setup mask.
484 */
485 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
486 case 0x01:
487 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
488 break;
489 case 0x0f:
490 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
491 break;
492 default:
493 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
494 break;
495 }
496
497 /*
498 * Setup rate control. Some rate control modules
499 * call back to change the anntena state so expose
500 * the necessary entry points.
501 * XXX maybe belongs in struct ath_ratectrl?
502 */
503 sc->sc_setdefantenna = ath_setdefantenna;
504 sc->sc_rc = ath_rate_attach(sc);
505 if (sc->sc_rc == NULL) {
506 error = EIO;
507 goto bad2;
508 }
509
510 sc->sc_blinking = 0;
511 sc->sc_ledstate = 1;
512 sc->sc_ledon = 0; /* low true */
513 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */
514 ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE);
515 /*
516 * Auto-enable soft led processing for IBM cards and for
517 * 5211 minipci cards. Users can also manually enable/disable
518 * support with a sysctl.
519 */
520 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
521 if (sc->sc_softled) {
522 ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
523 ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
524 }
525
526 ifp->if_softc = sc;
527 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
528 ifp->if_start = ath_start;
529 ifp->if_watchdog = ath_watchdog;
530 ifp->if_ioctl = ath_ioctl;
531 ifp->if_init = ath_ifinit;
532 IFQ_SET_READY(&ifp->if_snd);
533
534 ic->ic_ifp = ifp;
535 ic->ic_reset = ath_reset;
536 ic->ic_newassoc = ath_newassoc;
537 ic->ic_updateslot = ath_updateslot;
538 ic->ic_wme.wme_update = ath_wme_update;
539 /* XXX not right but it's not used anywhere important */
540 ic->ic_phytype = IEEE80211_T_OFDM;
541 ic->ic_opmode = IEEE80211_M_STA;
542 ic->ic_caps =
543 IEEE80211_C_IBSS /* ibss, nee adhoc, mode */
544 | IEEE80211_C_HOSTAP /* hostap mode */
545 | IEEE80211_C_MONITOR /* monitor mode */
546 | IEEE80211_C_SHPREAMBLE /* short preamble supported */
547 | IEEE80211_C_SHSLOT /* short slot time supported */
548 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */
549 ;
550 /*
551 * Query the hal to figure out h/w crypto support.
552 */
553 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
554 ic->ic_caps |= IEEE80211_C_WEP;
555 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
556 ic->ic_caps |= IEEE80211_C_AES;
557 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
558 ic->ic_caps |= IEEE80211_C_AES_CCM;
559 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
560 ic->ic_caps |= IEEE80211_C_CKIP;
561 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
562 ic->ic_caps |= IEEE80211_C_TKIP;
563 /*
564 * Check if h/w does the MIC and/or whether the
565 * separate key cache entries are required to
566 * handle both tx+rx MIC keys.
567 */
568 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
569 ic->ic_caps |= IEEE80211_C_TKIPMIC;
570 if (ath_hal_tkipsplit(ah))
571 sc->sc_splitmic = 1;
572 }
573 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
574 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
575 /*
576 * TPC support can be done either with a global cap or
577 * per-packet support. The latter is not available on
578 * all parts. We're a bit pedantic here as all parts
579 * support a global cap.
580 */
581 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
582 ic->ic_caps |= IEEE80211_C_TXPMGT;
583
584 /*
585 * Mark WME capability only if we have sufficient
586 * hardware queues to do proper priority scheduling.
587 */
588 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
589 ic->ic_caps |= IEEE80211_C_WME;
590 /*
591 * Check for misc other capabilities.
592 */
593 if (ath_hal_hasbursting(ah))
594 ic->ic_caps |= IEEE80211_C_BURST;
595
596 /*
597 * Indicate we need the 802.11 header padded to a
598 * 32-bit boundary for 4-address and QoS frames.
599 */
600 ic->ic_flags |= IEEE80211_F_DATAPAD;
601
602 /*
603 * Query the hal about antenna support.
604 */
605 sc->sc_defant = ath_hal_getdefantenna(ah);
606
607 /*
608 * Not all chips have the VEOL support we want to
609 * use with IBSS beacons; check here for it.
610 */
611 sc->sc_hasveol = ath_hal_hasveol(ah);
612
613 /* get mac address from hardware */
614 ath_hal_getmac(ah, ic->ic_myaddr);
615
616 if_attach(ifp);
617 /* call MI attach routine. */
618 ieee80211_ifattach(ic);
619 /* override default methods */
620 ic->ic_node_alloc = ath_node_alloc;
621 sc->sc_node_free = ic->ic_node_free;
622 ic->ic_node_free = ath_node_free;
623 ic->ic_node_getrssi = ath_node_getrssi;
624 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
625 ic->ic_recv_mgmt = ath_recv_mgmt;
626 sc->sc_newstate = ic->ic_newstate;
627 ic->ic_newstate = ath_newstate;
628 ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
629 ic->ic_crypto.cs_key_alloc = ath_key_alloc;
630 ic->ic_crypto.cs_key_delete = ath_key_delete;
631 ic->ic_crypto.cs_key_set = ath_key_set;
632 ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
633 ic->ic_crypto.cs_key_update_end = ath_key_update_end;
634 /* complete initialization */
635 ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
636
637 #if NBPFILTER > 0
638 ath_bpfattach(sc);
639 #endif
640
641 #ifdef __NetBSD__
642 sc->sc_flags |= ATH_ATTACHED;
643 /*
644 * Make sure the interface is shutdown during reboot.
645 */
646 sc->sc_sdhook = shutdownhook_establish(ath_shutdown, sc);
647 if (sc->sc_sdhook == NULL)
648 printf("%s: WARNING: unable to establish shutdown hook\n",
649 sc->sc_dev.dv_xname);
650 sc->sc_powerhook = powerhook_establish(ath_power, sc);
651 if (sc->sc_powerhook == NULL)
652 printf("%s: WARNING: unable to establish power hook\n",
653 sc->sc_dev.dv_xname);
654 #endif
655
656 /*
657 * Setup dynamic sysctl's now that country code and
658 * regdomain are available from the hal.
659 */
660 ath_sysctlattach(sc);
661
662 ieee80211_announce(ic);
663 ath_announce(sc);
664 return 0;
665 bad2:
666 ath_tx_cleanup(sc);
667 ath_desc_free(sc);
668 bad:
669 if (ah)
670 ath_hal_detach(ah);
671 sc->sc_invalid = 1;
672 return error;
673 }
674
675 int
676 ath_detach(struct ath_softc *sc)
677 {
678 struct ifnet *ifp = &sc->sc_if;
679 int s;
680
681 if ((sc->sc_flags & ATH_ATTACHED) == 0)
682 return (0);
683
684 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
685 __func__, ifp->if_flags);
686
687 s = splnet();
688 ath_stop(ifp, 1);
689 #if NBPFILTER > 0
690 bpfdetach(ifp);
691 #endif
692 /*
693 * NB: the order of these is important:
694 * o call the 802.11 layer before detaching the hal to
695 * insure callbacks into the driver to delete global
696 * key cache entries can be handled
697 * o reclaim the tx queue data structures after calling
698 * the 802.11 layer as we'll get called back to reclaim
699 * node state and potentially want to use them
700 * o to cleanup the tx queues the hal is called, so detach
701 * it last
702 * Other than that, it's straightforward...
703 */
704 ieee80211_ifdetach(&sc->sc_ic);
705 #ifdef ATH_TX99_DIAG
706 if (sc->sc_tx99 != NULL)
707 sc->sc_tx99->detach(sc->sc_tx99);
708 #endif
709 ath_rate_detach(sc->sc_rc);
710 ath_desc_free(sc);
711 ath_tx_cleanup(sc);
712 sysctl_teardown(&sc->sc_sysctllog);
713 ath_hal_detach(sc->sc_ah);
714 if_detach(ifp);
715 splx(s);
716 powerhook_disestablish(sc->sc_powerhook);
717 shutdownhook_disestablish(sc->sc_sdhook);
718
719 return 0;
720 }
721
722 #ifdef __NetBSD__
723 void
724 ath_power(int why, void *arg)
725 {
726 struct ath_softc *sc = arg;
727 int s;
728
729 DPRINTF(sc, ATH_DEBUG_ANY, "ath_power(%d)\n", why);
730
731 s = splnet();
732 switch (why) {
733 case PWR_SUSPEND:
734 case PWR_STANDBY:
735 ath_suspend(sc, why);
736 break;
737 case PWR_RESUME:
738 ath_resume(sc, why);
739 break;
740 case PWR_SOFTSUSPEND:
741 case PWR_SOFTSTANDBY:
742 case PWR_SOFTRESUME:
743 break;
744 }
745 splx(s);
746 }
747 #endif
748
749 void
750 ath_suspend(struct ath_softc *sc, int why)
751 {
752 struct ifnet *ifp = &sc->sc_if;
753
754 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
755 __func__, ifp->if_flags);
756
757 ath_stop(ifp, 1);
758 if (sc->sc_power != NULL)
759 (*sc->sc_power)(sc, why);
760 }
761
762 void
763 ath_resume(struct ath_softc *sc, int why)
764 {
765 struct ifnet *ifp = &sc->sc_if;
766
767 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
768 __func__, ifp->if_flags);
769
770 if (ifp->if_flags & IFF_UP) {
771 ath_init(sc);
772 #if 0
773 (void)ath_intr(sc);
774 #endif
775 if (sc->sc_power != NULL)
776 (*sc->sc_power)(sc, why);
777 if (ifp->if_flags & IFF_RUNNING)
778 ath_start(ifp);
779 }
780 if (sc->sc_softled) {
781 ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
782 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
783 }
784 }
785
786 void
787 ath_shutdown(void *arg)
788 {
789 struct ath_softc *sc = arg;
790
791 ath_stop(&sc->sc_if, 1);
792 }
793
794 /*
795 * Interrupt handler. Most of the actual processing is deferred.
796 */
797 int
798 ath_intr(void *arg)
799 {
800 struct ath_softc *sc = arg;
801 struct ifnet *ifp = &sc->sc_if;
802 struct ath_hal *ah = sc->sc_ah;
803 HAL_INT status;
804
805 if (sc->sc_invalid) {
806 /*
807 * The hardware is not ready/present, don't touch anything.
808 * Note this can happen early on if the IRQ is shared.
809 */
810 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
811 return 0;
812 }
813
814 if (!ath_hal_intrpend(ah)) /* shared irq, not for us */
815 return 0;
816
817 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
818 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
819 __func__, ifp->if_flags);
820 ath_hal_getisr(ah, &status); /* clear ISR */
821 ath_hal_intrset(ah, 0); /* disable further intr's */
822 return 1; /* XXX */
823 }
824 /*
825 * Figure out the reason(s) for the interrupt. Note
826 * that the hal returns a pseudo-ISR that may include
827 * bits we haven't explicitly enabled so we mask the
828 * value to insure we only process bits we requested.
829 */
830 ath_hal_getisr(ah, &status); /* NB: clears ISR too */
831 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
832 status &= sc->sc_imask; /* discard unasked for bits */
833 if (status & HAL_INT_FATAL) {
834 /*
835 * Fatal errors are unrecoverable. Typically
836 * these are caused by DMA errors. Unfortunately
837 * the exact reason is not (presently) returned
838 * by the hal.
839 */
840 sc->sc_stats.ast_hardware++;
841 ath_hal_intrset(ah, 0); /* disable intr's until reset */
842 TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
843 } else if (status & HAL_INT_RXORN) {
844 sc->sc_stats.ast_rxorn++;
845 ath_hal_intrset(ah, 0); /* disable intr's until reset */
846 TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
847 } else {
848 if (status & HAL_INT_SWBA) {
849 /*
850 * Software beacon alert--time to send a beacon.
851 * Handle beacon transmission directly; deferring
852 * this is too slow to meet timing constraints
853 * under load.
854 */
855 ath_beacon_proc(sc, 0);
856 }
857 if (status & HAL_INT_RXEOL) {
858 /*
859 * NB: the hardware should re-read the link when
860 * RXE bit is written, but it doesn't work at
861 * least on older hardware revs.
862 */
863 sc->sc_stats.ast_rxeol++;
864 sc->sc_rxlink = NULL;
865 }
866 if (status & HAL_INT_TXURN) {
867 sc->sc_stats.ast_txurn++;
868 /* bump tx trigger level */
869 ath_hal_updatetxtriglevel(ah, AH_TRUE);
870 }
871 if (status & HAL_INT_RX)
872 TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
873 if (status & HAL_INT_TX)
874 TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
875 if (status & HAL_INT_BMISS) {
876 sc->sc_stats.ast_bmiss++;
877 TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
878 }
879 if (status & HAL_INT_MIB) {
880 sc->sc_stats.ast_mib++;
881 /*
882 * Disable interrupts until we service the MIB
883 * interrupt; otherwise it will continue to fire.
884 */
885 ath_hal_intrset(ah, 0);
886 /*
887 * Let the hal handle the event. We assume it will
888 * clear whatever condition caused the interrupt.
889 */
890 ath_hal_mibevent(ah, &sc->sc_halstats);
891 ath_hal_intrset(ah, sc->sc_imask);
892 }
893 }
894 return 1;
895 }
896
897 /* Swap transmit descriptor.
898 * if AH_NEED_DESC_SWAP flag is not defined this becomes a "null"
899 * function.
900 */
901 static inline void
902 ath_desc_swap(struct ath_desc *ds)
903 {
904 #ifdef AH_NEED_DESC_SWAP
905 ds->ds_link = htole32(ds->ds_link);
906 ds->ds_data = htole32(ds->ds_data);
907 ds->ds_ctl0 = htole32(ds->ds_ctl0);
908 ds->ds_ctl1 = htole32(ds->ds_ctl1);
909 ds->ds_hw[0] = htole32(ds->ds_hw[0]);
910 ds->ds_hw[1] = htole32(ds->ds_hw[1]);
911 #endif
912 }
913
914 static void
915 ath_fatal_proc(void *arg, int pending)
916 {
917 struct ath_softc *sc = arg;
918 struct ifnet *ifp = &sc->sc_if;
919
920 if_printf(ifp, "hardware error; resetting\n");
921 ath_reset(ifp);
922 }
923
924 static void
925 ath_rxorn_proc(void *arg, int pending)
926 {
927 struct ath_softc *sc = arg;
928 struct ifnet *ifp = &sc->sc_if;
929
930 if_printf(ifp, "rx FIFO overrun; resetting\n");
931 ath_reset(ifp);
932 }
933
934 static void
935 ath_bmiss_proc(void *arg, int pending)
936 {
937 struct ath_softc *sc = arg;
938 struct ieee80211com *ic = &sc->sc_ic;
939
940 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
941 KASSERT(ic->ic_opmode == IEEE80211_M_STA,
942 ("unexpect operating mode %u", ic->ic_opmode));
943 if (ic->ic_state == IEEE80211_S_RUN) {
944 u_int64_t lastrx = sc->sc_lastrx;
945 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
946
947 DPRINTF(sc, ATH_DEBUG_BEACON,
948 "%s: tsf %" PRIu64 " lastrx %" PRId64
949 " (%" PRIu64 ") bmiss %u\n",
950 __func__, tsf, tsf - lastrx, lastrx,
951 ic->ic_bmisstimeout*1024);
952 /*
953 * Workaround phantom bmiss interrupts by sanity-checking
954 * the time of our last rx'd frame. If it is within the
955 * beacon miss interval then ignore the interrupt. If it's
956 * truly a bmiss we'll get another interrupt soon and that'll
957 * be dispatched up for processing.
958 */
959 if (tsf - lastrx > ic->ic_bmisstimeout*1024) {
960 NET_LOCK_GIANT();
961 ieee80211_beacon_miss(ic);
962 NET_UNLOCK_GIANT();
963 } else
964 sc->sc_stats.ast_bmiss_phantom++;
965 }
966 }
967
968 static void
969 ath_radar_proc(void *arg, int pending)
970 {
971 struct ath_softc *sc = arg;
972 struct ifnet *ifp = &sc->sc_if;
973 struct ath_hal *ah = sc->sc_ah;
974 HAL_CHANNEL hchan;
975
976 if (ath_hal_procdfs(ah, &hchan)) {
977 if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n",
978 hchan.channel, hchan.channelFlags, hchan.privFlags);
979 /*
980 * Initiate channel change.
981 */
982 /* XXX not yet */
983 }
984 }
985
986 static u_int
987 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
988 {
989 #define N(a) (sizeof(a) / sizeof(a[0]))
990 static const u_int modeflags[] = {
991 0, /* IEEE80211_MODE_AUTO */
992 CHANNEL_A, /* IEEE80211_MODE_11A */
993 CHANNEL_B, /* IEEE80211_MODE_11B */
994 CHANNEL_PUREG, /* IEEE80211_MODE_11G */
995 0, /* IEEE80211_MODE_FH */
996 CHANNEL_ST, /* IEEE80211_MODE_TURBO_A */
997 CHANNEL_108G /* IEEE80211_MODE_TURBO_G */
998 };
999 enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
1000
1001 KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
1002 KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
1003 return modeflags[mode];
1004 #undef N
1005 }
1006
1007 static int
1008 ath_ifinit(struct ifnet *ifp)
1009 {
1010 struct ath_softc *sc = (struct ath_softc *)ifp->if_softc;
1011
1012 return ath_init(sc);
1013 }
1014
1015 static int
1016 ath_init(struct ath_softc *sc)
1017 {
1018 struct ifnet *ifp = &sc->sc_if;
1019 struct ieee80211com *ic = &sc->sc_ic;
1020 struct ath_hal *ah = sc->sc_ah;
1021 HAL_STATUS status;
1022 int error = 0;
1023
1024 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1025 __func__, ifp->if_flags);
1026
1027 ATH_LOCK(sc);
1028
1029 if ((error = ath_enable(sc)) != 0)
1030 return error;
1031
1032 /*
1033 * Stop anything previously setup. This is safe
1034 * whether this is the first time through or not.
1035 */
1036 ath_stop_locked(ifp, 0);
1037
1038 /*
1039 * The basic interface to setting the hardware in a good
1040 * state is ``reset''. On return the hardware is known to
1041 * be powered up and with interrupts disabled. This must
1042 * be followed by initialization of the appropriate bits
1043 * and then setup of the interrupt mask.
1044 */
1045 sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
1046 sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
1047 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
1048 if_printf(ifp, "unable to reset hardware; hal status %u\n",
1049 status);
1050 error = EIO;
1051 goto done;
1052 }
1053
1054 /*
1055 * This is needed only to setup initial state
1056 * but it's best done after a reset.
1057 */
1058 ath_update_txpow(sc);
1059 /*
1060 * Likewise this is set during reset so update
1061 * state cached in the driver.
1062 */
1063 sc->sc_diversity = ath_hal_getdiversity(ah);
1064 sc->sc_calinterval = 1;
1065 sc->sc_caltries = 0;
1066
1067 /*
1068 * Setup the hardware after reset: the key cache
1069 * is filled as needed and the receive engine is
1070 * set going. Frame transmit is handled entirely
1071 * in the frame output path; there's nothing to do
1072 * here except setup the interrupt mask.
1073 */
1074 if ((error = ath_startrecv(sc)) != 0) {
1075 if_printf(ifp, "unable to start recv logic\n");
1076 goto done;
1077 }
1078
1079 /*
1080 * Enable interrupts.
1081 */
1082 sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1083 | HAL_INT_RXEOL | HAL_INT_RXORN
1084 | HAL_INT_FATAL | HAL_INT_GLOBAL;
1085 /*
1086 * Enable MIB interrupts when there are hardware phy counters.
1087 * Note we only do this (at the moment) for station mode.
1088 */
1089 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1090 sc->sc_imask |= HAL_INT_MIB;
1091 ath_hal_intrset(ah, sc->sc_imask);
1092
1093 ifp->if_flags |= IFF_RUNNING;
1094 ic->ic_state = IEEE80211_S_INIT;
1095
1096 /*
1097 * The hardware should be ready to go now so it's safe
1098 * to kick the 802.11 state machine as it's likely to
1099 * immediately call back to us to send mgmt frames.
1100 */
1101 ath_chan_change(sc, ic->ic_curchan);
1102 #ifdef ATH_TX99_DIAG
1103 if (sc->sc_tx99 != NULL)
1104 sc->sc_tx99->start(sc->sc_tx99);
1105 else
1106 #endif
1107 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1108 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
1109 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1110 } else
1111 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1112 done:
1113 ATH_UNLOCK(sc);
1114 return error;
1115 }
1116
1117 static void
1118 ath_stop_locked(struct ifnet *ifp, int disable)
1119 {
1120 struct ath_softc *sc = ifp->if_softc;
1121 struct ieee80211com *ic = &sc->sc_ic;
1122 struct ath_hal *ah = sc->sc_ah;
1123
1124 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1125 __func__, sc->sc_invalid, ifp->if_flags);
1126
1127 ATH_LOCK_ASSERT(sc);
1128 if (ifp->if_flags & IFF_RUNNING) {
1129 /*
1130 * Shutdown the hardware and driver:
1131 * reset 802.11 state machine
1132 * turn off timers
1133 * disable interrupts
1134 * turn off the radio
1135 * clear transmit machinery
1136 * clear receive machinery
1137 * drain and release tx queues
1138 * reclaim beacon resources
1139 * power down hardware
1140 *
1141 * Note that some of this work is not possible if the
1142 * hardware is gone (invalid).
1143 */
1144 #ifdef ATH_TX99_DIAG
1145 if (sc->sc_tx99 != NULL)
1146 sc->sc_tx99->stop(sc->sc_tx99);
1147 #endif
1148 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1149 ifp->if_flags &= ~IFF_RUNNING;
1150 ifp->if_timer = 0;
1151 if (!sc->sc_invalid) {
1152 if (sc->sc_softled) {
1153 callout_stop(&sc->sc_ledtimer);
1154 ath_hal_gpioset(ah, sc->sc_ledpin,
1155 !sc->sc_ledon);
1156 sc->sc_blinking = 0;
1157 }
1158 ath_hal_intrset(ah, 0);
1159 }
1160 ath_draintxq(sc);
1161 if (!sc->sc_invalid) {
1162 ath_stoprecv(sc);
1163 ath_hal_phydisable(ah);
1164 } else
1165 sc->sc_rxlink = NULL;
1166 IF_PURGE(&ifp->if_snd);
1167 ath_beacon_free(sc);
1168 if (disable)
1169 ath_disable(sc);
1170 }
1171 }
1172
1173 static void
1174 ath_stop(struct ifnet *ifp, int disable)
1175 {
1176 struct ath_softc *sc = ifp->if_softc;
1177
1178 ATH_LOCK(sc);
1179 ath_stop_locked(ifp, disable);
1180 if (!sc->sc_invalid) {
1181 /*
1182 * Set the chip in full sleep mode. Note that we are
1183 * careful to do this only when bringing the interface
1184 * completely to a stop. When the chip is in this state
1185 * it must be carefully woken up or references to
1186 * registers in the PCI clock domain may freeze the bus
1187 * (and system). This varies by chip and is mostly an
1188 * issue with newer parts that go to sleep more quickly.
1189 */
1190 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
1191 }
1192 ATH_UNLOCK(sc);
1193 }
1194
1195 /*
1196 * Reset the hardware w/o losing operational state. This is
1197 * basically a more efficient way of doing ath_stop, ath_init,
1198 * followed by state transitions to the current 802.11
1199 * operational state. Used to recover from various errors and
1200 * to reset or reload hardware state.
1201 */
1202 int
1203 ath_reset(struct ifnet *ifp)
1204 {
1205 struct ath_softc *sc = ifp->if_softc;
1206 struct ieee80211com *ic = &sc->sc_ic;
1207 struct ath_hal *ah = sc->sc_ah;
1208 struct ieee80211_channel *c;
1209 HAL_STATUS status;
1210
1211 /*
1212 * Convert to a HAL channel description with the flags
1213 * constrained to reflect the current operating mode.
1214 */
1215 c = ic->ic_curchan;
1216 sc->sc_curchan.channel = c->ic_freq;
1217 sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
1218
1219 ath_hal_intrset(ah, 0); /* disable interrupts */
1220 ath_draintxq(sc); /* stop xmit side */
1221 ath_stoprecv(sc); /* stop recv side */
1222 /* NB: indicate channel change so we do a full reset */
1223 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
1224 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1225 __func__, status);
1226 ath_update_txpow(sc); /* update tx power state */
1227 sc->sc_diversity = ath_hal_getdiversity(ah);
1228 sc->sc_calinterval = 1;
1229 sc->sc_caltries = 0;
1230 if (ath_startrecv(sc) != 0) /* restart recv */
1231 if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1232 /*
1233 * We may be doing a reset in response to an ioctl
1234 * that changes the channel so update any state that
1235 * might change as a result.
1236 */
1237 ath_chan_change(sc, c);
1238 if (ic->ic_state == IEEE80211_S_RUN)
1239 ath_beacon_config(sc); /* restart beacons */
1240 ath_hal_intrset(ah, sc->sc_imask);
1241
1242 ath_start(ifp); /* restart xmit */
1243 return 0;
1244 }
1245
1246 static void
1247 ath_start(struct ifnet *ifp)
1248 {
1249 struct ath_softc *sc = ifp->if_softc;
1250 struct ath_hal *ah = sc->sc_ah;
1251 struct ieee80211com *ic = &sc->sc_ic;
1252 struct ieee80211_node *ni;
1253 struct ath_buf *bf;
1254 struct mbuf *m;
1255 struct ieee80211_frame *wh;
1256 struct ether_header *eh;
1257
1258 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
1259 return;
1260 for (;;) {
1261 /*
1262 * Grab a TX buffer and associated resources.
1263 */
1264 ATH_TXBUF_LOCK(sc);
1265 bf = STAILQ_FIRST(&sc->sc_txbuf);
1266 if (bf != NULL)
1267 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1268 ATH_TXBUF_UNLOCK(sc);
1269 if (bf == NULL) {
1270 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1271 __func__);
1272 sc->sc_stats.ast_tx_qstop++;
1273 ifp->if_flags |= IFF_OACTIVE;
1274 break;
1275 }
1276 /*
1277 * Poll the management queue for frames; they
1278 * have priority over normal data frames.
1279 */
1280 IF_DEQUEUE(&ic->ic_mgtq, m);
1281 if (m == NULL) {
1282 /*
1283 * No data frames go out unless we're associated.
1284 */
1285 if (ic->ic_state != IEEE80211_S_RUN) {
1286 DPRINTF(sc, ATH_DEBUG_XMIT,
1287 "%s: discard data packet, state %s\n",
1288 __func__,
1289 ieee80211_state_name[ic->ic_state]);
1290 sc->sc_stats.ast_tx_discard++;
1291 ATH_TXBUF_LOCK(sc);
1292 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1293 ATH_TXBUF_UNLOCK(sc);
1294 break;
1295 }
1296 IFQ_DEQUEUE(&ifp->if_snd, m); /* XXX: LOCK */
1297 if (m == NULL) {
1298 ATH_TXBUF_LOCK(sc);
1299 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1300 ATH_TXBUF_UNLOCK(sc);
1301 break;
1302 }
1303 /*
1304 * Find the node for the destination so we can do
1305 * things like power save and fast frames aggregation.
1306 */
1307 if (m->m_len < sizeof(struct ether_header) &&
1308 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
1309 ic->ic_stats.is_tx_nobuf++; /* XXX */
1310 ni = NULL;
1311 goto bad;
1312 }
1313 eh = mtod(m, struct ether_header *);
1314 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1315 if (ni == NULL) {
1316 /* NB: ieee80211_find_txnode does stat+msg */
1317 m_freem(m);
1318 goto bad;
1319 }
1320 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1321 (m->m_flags & M_PWR_SAV) == 0) {
1322 /*
1323 * Station in power save mode; pass the frame
1324 * to the 802.11 layer and continue. We'll get
1325 * the frame back when the time is right.
1326 */
1327 ieee80211_pwrsave(ic, ni, m);
1328 goto reclaim;
1329 }
1330 /* calculate priority so we can find the tx queue */
1331 if (ieee80211_classify(ic, m, ni)) {
1332 DPRINTF(sc, ATH_DEBUG_XMIT,
1333 "%s: discard, classification failure\n",
1334 __func__);
1335 m_freem(m);
1336 goto bad;
1337 }
1338 ifp->if_opackets++;
1339
1340 #if NBPFILTER > 0
1341 if (ifp->if_bpf)
1342 bpf_mtap(ifp->if_bpf, m);
1343 #endif
1344 /*
1345 * Encapsulate the packet in prep for transmission.
1346 */
1347 m = ieee80211_encap(ic, m, ni);
1348 if (m == NULL) {
1349 DPRINTF(sc, ATH_DEBUG_XMIT,
1350 "%s: encapsulation failure\n",
1351 __func__);
1352 sc->sc_stats.ast_tx_encap++;
1353 goto bad;
1354 }
1355 } else {
1356 /*
1357 * Hack! The referenced node pointer is in the
1358 * rcvif field of the packet header. This is
1359 * placed there by ieee80211_mgmt_output because
1360 * we need to hold the reference with the frame
1361 * and there's no other way (other than packet
1362 * tags which we consider too expensive to use)
1363 * to pass it along.
1364 */
1365 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1366 m->m_pkthdr.rcvif = NULL;
1367
1368 wh = mtod(m, struct ieee80211_frame *);
1369 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1370 IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1371 /* fill time stamp */
1372 u_int64_t tsf;
1373 u_int32_t *tstamp;
1374
1375 tsf = ath_hal_gettsf64(ah);
1376 /* XXX: adjust 100us delay to xmit */
1377 tsf += 100;
1378 tstamp = (u_int32_t *)&wh[1];
1379 tstamp[0] = htole32(tsf & 0xffffffff);
1380 tstamp[1] = htole32(tsf >> 32);
1381 }
1382 sc->sc_stats.ast_tx_mgmt++;
1383 }
1384
1385 if (ath_tx_start(sc, ni, bf, m)) {
1386 bad:
1387 ifp->if_oerrors++;
1388 reclaim:
1389 ATH_TXBUF_LOCK(sc);
1390 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1391 ATH_TXBUF_UNLOCK(sc);
1392 if (ni != NULL)
1393 ieee80211_free_node(ni);
1394 continue;
1395 }
1396
1397 sc->sc_tx_timer = 5;
1398 ifp->if_timer = 1;
1399 }
1400 }
1401
1402 static int
1403 ath_media_change(struct ifnet *ifp)
1404 {
1405 #define IS_UP(ifp) \
1406 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
1407 int error;
1408
1409 error = ieee80211_media_change(ifp);
1410 if (error == ENETRESET) {
1411 if (IS_UP(ifp))
1412 ath_init(ifp->if_softc); /* XXX lose error */
1413 error = 0;
1414 }
1415 return error;
1416 #undef IS_UP
1417 }
1418
1419 #ifdef AR_DEBUG
1420 static void
1421 ath_keyprint(const char *tag, u_int ix,
1422 const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1423 {
1424 static const char *ciphers[] = {
1425 "WEP",
1426 "AES-OCB",
1427 "AES-CCM",
1428 "CKIP",
1429 "TKIP",
1430 "CLR",
1431 };
1432 int i, n;
1433
1434 printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1435 for (i = 0, n = hk->kv_len; i < n; i++)
1436 printf("%02x", hk->kv_val[i]);
1437 printf(" mac %s", ether_sprintf(mac));
1438 if (hk->kv_type == HAL_CIPHER_TKIP) {
1439 printf(" mic ");
1440 for (i = 0; i < sizeof(hk->kv_mic); i++)
1441 printf("%02x", hk->kv_mic[i]);
1442 }
1443 printf("\n");
1444 }
1445 #endif
1446
1447 /*
1448 * Set a TKIP key into the hardware. This handles the
1449 * potential distribution of key state to multiple key
1450 * cache slots for TKIP.
1451 */
1452 static int
1453 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1454 HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1455 {
1456 #define IEEE80211_KEY_XR (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1457 static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1458 struct ath_hal *ah = sc->sc_ah;
1459
1460 KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1461 ("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1462 KASSERT(sc->sc_splitmic, ("key cache !split"));
1463 if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1464 /*
1465 * TX key goes at first index, RX key at the rx index.
1466 * The hal handles the MIC keys at index+64.
1467 */
1468 memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1469 KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1470 if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
1471 return 0;
1472
1473 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1474 KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1475 /* XXX delete tx key on failure? */
1476 return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
1477 } else if (k->wk_flags & IEEE80211_KEY_XR) {
1478 /*
1479 * TX/RX key goes at first index.
1480 * The hal handles the MIC keys are index+64.
1481 */
1482 memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
1483 k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
1484 KEYPRINTF(sc, k->wk_keyix, hk, mac);
1485 return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1486 }
1487 return 0;
1488 #undef IEEE80211_KEY_XR
1489 }
1490
1491 /*
1492 * Set a net80211 key into the hardware. This handles the
1493 * potential distribution of key state to multiple key
1494 * cache slots for TKIP with hardware MIC support.
1495 */
1496 static int
1497 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1498 const u_int8_t mac0[IEEE80211_ADDR_LEN],
1499 struct ieee80211_node *bss)
1500 {
1501 #define N(a) (sizeof(a)/sizeof(a[0]))
1502 static const u_int8_t ciphermap[] = {
1503 HAL_CIPHER_WEP, /* IEEE80211_CIPHER_WEP */
1504 HAL_CIPHER_TKIP, /* IEEE80211_CIPHER_TKIP */
1505 HAL_CIPHER_AES_OCB, /* IEEE80211_CIPHER_AES_OCB */
1506 HAL_CIPHER_AES_CCM, /* IEEE80211_CIPHER_AES_CCM */
1507 (u_int8_t) -1, /* 4 is not allocated */
1508 HAL_CIPHER_CKIP, /* IEEE80211_CIPHER_CKIP */
1509 HAL_CIPHER_CLR, /* IEEE80211_CIPHER_NONE */
1510 };
1511 struct ath_hal *ah = sc->sc_ah;
1512 const struct ieee80211_cipher *cip = k->wk_cipher;
1513 u_int8_t gmac[IEEE80211_ADDR_LEN];
1514 const u_int8_t *mac;
1515 HAL_KEYVAL hk;
1516
1517 memset(&hk, 0, sizeof(hk));
1518 /*
1519 * Software crypto uses a "clear key" so non-crypto
1520 * state kept in the key cache are maintained and
1521 * so that rx frames have an entry to match.
1522 */
1523 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1524 KASSERT(cip->ic_cipher < N(ciphermap),
1525 ("invalid cipher type %u", cip->ic_cipher));
1526 hk.kv_type = ciphermap[cip->ic_cipher];
1527 hk.kv_len = k->wk_keylen;
1528 memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1529 } else
1530 hk.kv_type = HAL_CIPHER_CLR;
1531
1532 if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
1533 /*
1534 * Group keys on hardware that supports multicast frame
1535 * key search use a mac that is the sender's address with
1536 * the high bit set instead of the app-specified address.
1537 */
1538 IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
1539 gmac[0] |= 0x80;
1540 mac = gmac;
1541 } else
1542 mac = mac0;
1543
1544 if (hk.kv_type == HAL_CIPHER_TKIP &&
1545 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1546 sc->sc_splitmic) {
1547 return ath_keyset_tkip(sc, k, &hk, mac);
1548 } else {
1549 KEYPRINTF(sc, k->wk_keyix, &hk, mac);
1550 return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
1551 }
1552 #undef N
1553 }
1554
1555 /*
1556 * Allocate tx/rx key slots for TKIP. We allocate two slots for
1557 * each key, one for decrypt/encrypt and the other for the MIC.
1558 */
1559 static u_int16_t
1560 key_alloc_2pair(struct ath_softc *sc,
1561 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1562 {
1563 #define N(a) (sizeof(a)/sizeof(a[0]))
1564 u_int i, keyix;
1565
1566 KASSERT(sc->sc_splitmic, ("key cache !split"));
1567 /* XXX could optimize */
1568 for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1569 u_int8_t b = sc->sc_keymap[i];
1570 if (b != 0xff) {
1571 /*
1572 * One or more slots in this byte are free.
1573 */
1574 keyix = i*NBBY;
1575 while (b & 1) {
1576 again:
1577 keyix++;
1578 b >>= 1;
1579 }
1580 /* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1581 if (isset(sc->sc_keymap, keyix+32) ||
1582 isset(sc->sc_keymap, keyix+64) ||
1583 isset(sc->sc_keymap, keyix+32+64)) {
1584 /* full pair unavailable */
1585 /* XXX statistic */
1586 if (keyix == (i+1)*NBBY) {
1587 /* no slots were appropriate, advance */
1588 continue;
1589 }
1590 goto again;
1591 }
1592 setbit(sc->sc_keymap, keyix);
1593 setbit(sc->sc_keymap, keyix+64);
1594 setbit(sc->sc_keymap, keyix+32);
1595 setbit(sc->sc_keymap, keyix+32+64);
1596 DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1597 "%s: key pair %u,%u %u,%u\n",
1598 __func__, keyix, keyix+64,
1599 keyix+32, keyix+32+64);
1600 *txkeyix = keyix;
1601 *rxkeyix = keyix+32;
1602 return 1;
1603 }
1604 }
1605 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1606 return 0;
1607 #undef N
1608 }
1609
1610 /*
1611 * Allocate a single key cache slot.
1612 */
1613 static int
1614 key_alloc_single(struct ath_softc *sc,
1615 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1616 {
1617 #define N(a) (sizeof(a)/sizeof(a[0]))
1618 u_int i, keyix;
1619
1620 /* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
1621 for (i = 0; i < N(sc->sc_keymap); i++) {
1622 u_int8_t b = sc->sc_keymap[i];
1623 if (b != 0xff) {
1624 /*
1625 * One or more slots are free.
1626 */
1627 keyix = i*NBBY;
1628 while (b & 1)
1629 keyix++, b >>= 1;
1630 setbit(sc->sc_keymap, keyix);
1631 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
1632 __func__, keyix);
1633 *txkeyix = *rxkeyix = keyix;
1634 return 1;
1635 }
1636 }
1637 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
1638 return 0;
1639 #undef N
1640 }
1641
1642 /*
1643 * Allocate one or more key cache slots for a uniacst key. The
1644 * key itself is needed only to identify the cipher. For hardware
1645 * TKIP with split cipher+MIC keys we allocate two key cache slot
1646 * pairs so that we can setup separate TX and RX MIC keys. Note
1647 * that the MIC key for a TKIP key at slot i is assumed by the
1648 * hardware to be at slot i+64. This limits TKIP keys to the first
1649 * 64 entries.
1650 */
1651 static int
1652 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
1653 ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
1654 {
1655 struct ath_softc *sc = ic->ic_ifp->if_softc;
1656
1657 /*
1658 * Group key allocation must be handled specially for
1659 * parts that do not support multicast key cache search
1660 * functionality. For those parts the key id must match
1661 * the h/w key index so lookups find the right key. On
1662 * parts w/ the key search facility we install the sender's
1663 * mac address (with the high bit set) and let the hardware
1664 * find the key w/o using the key id. This is preferred as
1665 * it permits us to support multiple users for adhoc and/or
1666 * multi-station operation.
1667 */
1668 if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
1669 if (!(&ic->ic_nw_keys[0] <= k &&
1670 k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
1671 /* should not happen */
1672 DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1673 "%s: bogus group key\n", __func__);
1674 return 0;
1675 }
1676 /*
1677 * XXX we pre-allocate the global keys so
1678 * have no way to check if they've already been allocated.
1679 */
1680 *keyix = *rxkeyix = k - ic->ic_nw_keys;
1681 return 1;
1682 }
1683
1684 /*
1685 * We allocate two pair for TKIP when using the h/w to do
1686 * the MIC. For everything else, including software crypto,
1687 * we allocate a single entry. Note that s/w crypto requires
1688 * a pass-through slot on the 5211 and 5212. The 5210 does
1689 * not support pass-through cache entries and we map all
1690 * those requests to slot 0.
1691 */
1692 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1693 return key_alloc_single(sc, keyix, rxkeyix);
1694 } else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
1695 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
1696 return key_alloc_2pair(sc, keyix, rxkeyix);
1697 } else {
1698 return key_alloc_single(sc, keyix, rxkeyix);
1699 }
1700 }
1701
1702 /*
1703 * Delete an entry in the key cache allocated by ath_key_alloc.
1704 */
1705 static int
1706 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
1707 {
1708 struct ath_softc *sc = ic->ic_ifp->if_softc;
1709 struct ath_hal *ah = sc->sc_ah;
1710 const struct ieee80211_cipher *cip = k->wk_cipher;
1711 u_int keyix = k->wk_keyix;
1712
1713 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
1714
1715 ath_hal_keyreset(ah, keyix);
1716 /*
1717 * Handle split tx/rx keying required for TKIP with h/w MIC.
1718 */
1719 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1720 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
1721 ath_hal_keyreset(ah, keyix+32); /* RX key */
1722 if (keyix >= IEEE80211_WEP_NKID) {
1723 /*
1724 * Don't touch keymap entries for global keys so
1725 * they are never considered for dynamic allocation.
1726 */
1727 clrbit(sc->sc_keymap, keyix);
1728 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1729 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1730 sc->sc_splitmic) {
1731 clrbit(sc->sc_keymap, keyix+64); /* TX key MIC */
1732 clrbit(sc->sc_keymap, keyix+32); /* RX key */
1733 clrbit(sc->sc_keymap, keyix+32+64); /* RX key MIC */
1734 }
1735 }
1736 return 1;
1737 }
1738
1739 /*
1740 * Set the key cache contents for the specified key. Key cache
1741 * slot(s) must already have been allocated by ath_key_alloc.
1742 */
1743 static int
1744 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
1745 const u_int8_t mac[IEEE80211_ADDR_LEN])
1746 {
1747 struct ath_softc *sc = ic->ic_ifp->if_softc;
1748
1749 return ath_keyset(sc, k, mac, ic->ic_bss);
1750 }
1751
1752 /*
1753 * Block/unblock tx+rx processing while a key change is done.
1754 * We assume the caller serializes key management operations
1755 * so we only need to worry about synchronization with other
1756 * uses that originate in the driver.
1757 */
1758 static void
1759 ath_key_update_begin(struct ieee80211com *ic)
1760 {
1761 struct ifnet *ifp = ic->ic_ifp;
1762 struct ath_softc *sc = ifp->if_softc;
1763
1764 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1765 #if 0
1766 tasklet_disable(&sc->sc_rxtq);
1767 #endif
1768 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */
1769 }
1770
1771 static void
1772 ath_key_update_end(struct ieee80211com *ic)
1773 {
1774 struct ifnet *ifp = ic->ic_ifp;
1775 struct ath_softc *sc = ifp->if_softc;
1776
1777 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1778 IF_UNLOCK(&ifp->if_snd);
1779 #if 0
1780 tasklet_enable(&sc->sc_rxtq);
1781 #endif
1782 }
1783
1784 /*
1785 * Calculate the receive filter according to the
1786 * operating mode and state:
1787 *
1788 * o always accept unicast, broadcast, and multicast traffic
1789 * o maintain current state of phy error reception (the hal
1790 * may enable phy error frames for noise immunity work)
1791 * o probe request frames are accepted only when operating in
1792 * hostap, adhoc, or monitor modes
1793 * o enable promiscuous mode according to the interface state
1794 * o accept beacons:
1795 * - when operating in adhoc mode so the 802.11 layer creates
1796 * node table entries for peers,
1797 * - when operating in station mode for collecting rssi data when
1798 * the station is otherwise quiet, or
1799 * - when scanning
1800 */
1801 static u_int32_t
1802 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
1803 {
1804 struct ieee80211com *ic = &sc->sc_ic;
1805 struct ath_hal *ah = sc->sc_ah;
1806 struct ifnet *ifp = &sc->sc_if;
1807 u_int32_t rfilt;
1808
1809 rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1810 | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1811 if (ic->ic_opmode != IEEE80211_M_STA)
1812 rfilt |= HAL_RX_FILTER_PROBEREQ;
1813 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1814 (ifp->if_flags & IFF_PROMISC))
1815 rfilt |= HAL_RX_FILTER_PROM;
1816 if (ic->ic_opmode == IEEE80211_M_STA ||
1817 ic->ic_opmode == IEEE80211_M_IBSS ||
1818 state == IEEE80211_S_SCAN)
1819 rfilt |= HAL_RX_FILTER_BEACON;
1820 return rfilt;
1821 }
1822
1823 static void
1824 ath_mcastfilter_accum(caddr_t dl, u_int32_t *mfilt)
1825 {
1826 u_int32_t val;
1827 u_int8_t pos;
1828
1829 /* calculate XOR of eight 6bit values */
1830 val = LE_READ_4(dl + 0);
1831 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1832 val = LE_READ_4(dl + 3);
1833 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1834 pos &= 0x3f;
1835 mfilt[pos / 32] |= (1 << (pos % 32));
1836 }
1837
1838 static void
1839 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t *mfilt)
1840 {
1841 struct ifnet *ifp = &sc->sc_if;
1842 struct ether_multi *enm;
1843 struct ether_multistep estep;
1844
1845 mfilt[0] = mfilt[1] = 0;
1846 ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
1847 while (enm != NULL) {
1848 /* XXX Punt on ranges. */
1849 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
1850 mfilt[0] = mfilt[1] = ~((u_int32_t)0);
1851 ifp->if_flags |= IFF_ALLMULTI;
1852 return;
1853 }
1854 ath_mcastfilter_accum(enm->enm_addrlo, mfilt);
1855 ETHER_NEXT_MULTI(estep, enm);
1856 }
1857 ifp->if_flags &= ~IFF_ALLMULTI;
1858 }
1859
1860 static void
1861 ath_mode_init(struct ath_softc *sc)
1862 {
1863 struct ieee80211com *ic = &sc->sc_ic;
1864 struct ath_hal *ah = sc->sc_ah;
1865 u_int32_t rfilt, mfilt[2];
1866 int i;
1867
1868 /* configure rx filter */
1869 rfilt = ath_calcrxfilter(sc, ic->ic_state);
1870 ath_hal_setrxfilter(ah, rfilt);
1871
1872 /* configure operational mode */
1873 ath_hal_setopmode(ah);
1874
1875 /* Write keys to hardware; it may have been powered down. */
1876 ath_key_update_begin(ic);
1877 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1878 ath_key_set(ic,
1879 &ic->ic_crypto.cs_nw_keys[i],
1880 ic->ic_myaddr);
1881 }
1882 ath_key_update_end(ic);
1883
1884 /*
1885 * Handle any link-level address change. Note that we only
1886 * need to force ic_myaddr; any other addresses are handled
1887 * as a byproduct of the ifnet code marking the interface
1888 * down then up.
1889 *
1890 * XXX should get from lladdr instead of arpcom but that's more work
1891 */
1892 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(sc->sc_if.if_sadl));
1893 ath_hal_setmac(ah, ic->ic_myaddr);
1894
1895 /* calculate and install multicast filter */
1896 #ifdef __FreeBSD__
1897 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1898 mfilt[0] = mfilt[1] = 0;
1899 IF_ADDR_LOCK(ifp);
1900 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1901 caddr_t dl;
1902
1903 /* calculate XOR of eight 6bit values */
1904 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
1905 val = LE_READ_4(dl + 0);
1906 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1907 val = LE_READ_4(dl + 3);
1908 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1909 pos &= 0x3f;
1910 mfilt[pos / 32] |= (1 << (pos % 32));
1911 }
1912 IF_ADDR_UNLOCK(ifp);
1913 } else {
1914 mfilt[0] = mfilt[1] = ~0;
1915 }
1916 #endif
1917 #ifdef __NetBSD__
1918 ath_mcastfilter_compute(sc, mfilt);
1919 #endif
1920 ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1921 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
1922 __func__, rfilt, mfilt[0], mfilt[1]);
1923 }
1924
1925 /*
1926 * Set the slot time based on the current setting.
1927 */
1928 static void
1929 ath_setslottime(struct ath_softc *sc)
1930 {
1931 struct ieee80211com *ic = &sc->sc_ic;
1932 struct ath_hal *ah = sc->sc_ah;
1933
1934 if (ic->ic_flags & IEEE80211_F_SHSLOT)
1935 ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
1936 else
1937 ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
1938 sc->sc_updateslot = OK;
1939 }
1940
1941 /*
1942 * Callback from the 802.11 layer to update the
1943 * slot time based on the current setting.
1944 */
1945 static void
1946 ath_updateslot(struct ifnet *ifp)
1947 {
1948 struct ath_softc *sc = ifp->if_softc;
1949 struct ieee80211com *ic = &sc->sc_ic;
1950
1951 /*
1952 * When not coordinating the BSS, change the hardware
1953 * immediately. For other operation we defer the change
1954 * until beacon updates have propagated to the stations.
1955 */
1956 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1957 sc->sc_updateslot = UPDATE;
1958 else
1959 ath_setslottime(sc);
1960 }
1961
1962 /*
1963 * Setup a h/w transmit queue for beacons.
1964 */
1965 static int
1966 ath_beaconq_setup(struct ath_hal *ah)
1967 {
1968 HAL_TXQ_INFO qi;
1969
1970 memset(&qi, 0, sizeof(qi));
1971 qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
1972 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
1973 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
1974 /* NB: for dynamic turbo, don't enable any other interrupts */
1975 qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
1976 return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
1977 }
1978
1979 /*
1980 * Setup the transmit queue parameters for the beacon queue.
1981 */
1982 static int
1983 ath_beaconq_config(struct ath_softc *sc)
1984 {
1985 #define ATH_EXPONENT_TO_VALUE(v) ((1<<(v))-1)
1986 struct ieee80211com *ic = &sc->sc_ic;
1987 struct ath_hal *ah = sc->sc_ah;
1988 HAL_TXQ_INFO qi;
1989
1990 ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
1991 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
1992 /*
1993 * Always burst out beacon and CAB traffic.
1994 */
1995 qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
1996 qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
1997 qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
1998 } else {
1999 struct wmeParams *wmep =
2000 &ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
2001 /*
2002 * Adhoc mode; important thing is to use 2x cwmin.
2003 */
2004 qi.tqi_aifs = wmep->wmep_aifsn;
2005 qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2006 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2007 }
2008
2009 if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
2010 device_printf(sc->sc_dev, "unable to update parameters for "
2011 "beacon hardware queue!\n");
2012 return 0;
2013 } else {
2014 ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
2015 return 1;
2016 }
2017 #undef ATH_EXPONENT_TO_VALUE
2018 }
2019
2020 /*
2021 * Allocate and setup an initial beacon frame.
2022 */
2023 static int
2024 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
2025 {
2026 struct ieee80211com *ic = ni->ni_ic;
2027 struct ath_buf *bf;
2028 struct mbuf *m;
2029 int error;
2030
2031 bf = STAILQ_FIRST(&sc->sc_bbuf);
2032 if (bf == NULL) {
2033 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
2034 sc->sc_stats.ast_be_nombuf++; /* XXX */
2035 return ENOMEM; /* XXX */
2036 }
2037 /*
2038 * NB: the beacon data buffer must be 32-bit aligned;
2039 * we assume the mbuf routines will return us something
2040 * with this alignment (perhaps should assert).
2041 */
2042 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
2043 if (m == NULL) {
2044 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
2045 __func__);
2046 sc->sc_stats.ast_be_nombuf++;
2047 return ENOMEM;
2048 }
2049 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2050 BUS_DMA_NOWAIT);
2051 if (error == 0) {
2052 bf->bf_m = m;
2053 bf->bf_node = ieee80211_ref_node(ni);
2054 } else {
2055 m_freem(m);
2056 }
2057 return error;
2058 }
2059
2060 /*
2061 * Setup the beacon frame for transmit.
2062 */
2063 static void
2064 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
2065 {
2066 #define USE_SHPREAMBLE(_ic) \
2067 (((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
2068 == IEEE80211_F_SHPREAMBLE)
2069 struct ieee80211_node *ni = bf->bf_node;
2070 struct ieee80211com *ic = ni->ni_ic;
2071 struct mbuf *m = bf->bf_m;
2072 struct ath_hal *ah = sc->sc_ah;
2073 struct ath_desc *ds;
2074 int flags, antenna;
2075 const HAL_RATE_TABLE *rt;
2076 u_int8_t rix, rate;
2077
2078 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
2079 __func__, m, m->m_len);
2080
2081 /* setup descriptors */
2082 ds = bf->bf_desc;
2083
2084 flags = HAL_TXDESC_NOACK;
2085 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
2086 ds->ds_link = HTOAH32(bf->bf_daddr); /* self-linked */
2087 flags |= HAL_TXDESC_VEOL;
2088 /*
2089 * Let hardware handle antenna switching unless
2090 * the user has selected a transmit antenna
2091 * (sc_txantenna is not 0).
2092 */
2093 antenna = sc->sc_txantenna;
2094 } else {
2095 ds->ds_link = 0;
2096 /*
2097 * Switch antenna every 4 beacons, unless the user
2098 * has selected a transmit antenna (sc_txantenna
2099 * is not 0).
2100 *
2101 * XXX assumes two antenna
2102 */
2103 if (sc->sc_txantenna == 0)
2104 antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2105 else
2106 antenna = sc->sc_txantenna;
2107 }
2108
2109 KASSERT(bf->bf_nseg == 1,
2110 ("multi-segment beacon frame; nseg %u", bf->bf_nseg));
2111 ds->ds_data = bf->bf_segs[0].ds_addr;
2112 /*
2113 * Calculate rate code.
2114 * XXX everything at min xmit rate
2115 */
2116 rix = sc->sc_minrateix;
2117 rt = sc->sc_currates;
2118 rate = rt->info[rix].rateCode;
2119 if (USE_SHPREAMBLE(ic))
2120 rate |= rt->info[rix].shortPreamble;
2121 ath_hal_setuptxdesc(ah, ds
2122 , m->m_len + IEEE80211_CRC_LEN /* frame length */
2123 , sizeof(struct ieee80211_frame)/* header length */
2124 , HAL_PKT_TYPE_BEACON /* Atheros packet type */
2125 , ni->ni_txpower /* txpower XXX */
2126 , rate, 1 /* series 0 rate/tries */
2127 , HAL_TXKEYIX_INVALID /* no encryption */
2128 , antenna /* antenna mode */
2129 , flags /* no ack, veol for beacons */
2130 , 0 /* rts/cts rate */
2131 , 0 /* rts/cts duration */
2132 );
2133 /* NB: beacon's BufLen must be a multiple of 4 bytes */
2134 ath_hal_filltxdesc(ah, ds
2135 , roundup(m->m_len, 4) /* buffer length */
2136 , AH_TRUE /* first segment */
2137 , AH_TRUE /* last segment */
2138 , ds /* first descriptor */
2139 );
2140
2141 /* NB: The desc swap function becomes void,
2142 * if descriptor swapping is not enabled
2143 */
2144 ath_desc_swap(ds);
2145
2146 #undef USE_SHPREAMBLE
2147 }
2148
2149 /*
2150 * Transmit a beacon frame at SWBA. Dynamic updates to the
2151 * frame contents are done as needed and the slot time is
2152 * also adjusted based on current state.
2153 */
2154 static void
2155 ath_beacon_proc(void *arg, int pending)
2156 {
2157 struct ath_softc *sc = arg;
2158 struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
2159 struct ieee80211_node *ni = bf->bf_node;
2160 struct ieee80211com *ic = ni->ni_ic;
2161 struct ath_hal *ah = sc->sc_ah;
2162 struct mbuf *m;
2163 int ncabq, error, otherant;
2164
2165 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2166 __func__, pending);
2167
2168 if (ic->ic_opmode == IEEE80211_M_STA ||
2169 ic->ic_opmode == IEEE80211_M_MONITOR ||
2170 bf == NULL || bf->bf_m == NULL) {
2171 DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
2172 __func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
2173 return;
2174 }
2175 /*
2176 * Check if the previous beacon has gone out. If
2177 * not don't try to post another, skip this period
2178 * and wait for the next. Missed beacons indicate
2179 * a problem and should not occur. If we miss too
2180 * many consecutive beacons reset the device.
2181 */
2182 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2183 sc->sc_bmisscount++;
2184 DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2185 "%s: missed %u consecutive beacons\n",
2186 __func__, sc->sc_bmisscount);
2187 if (sc->sc_bmisscount > 3) /* NB: 3 is a guess */
2188 TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask);
2189 return;
2190 }
2191 if (sc->sc_bmisscount != 0) {
2192 DPRINTF(sc, ATH_DEBUG_BEACON,
2193 "%s: resume beacon xmit after %u misses\n",
2194 __func__, sc->sc_bmisscount);
2195 sc->sc_bmisscount = 0;
2196 }
2197
2198 /*
2199 * Update dynamic beacon contents. If this returns
2200 * non-zero then we need to remap the memory because
2201 * the beacon frame changed size (probably because
2202 * of the TIM bitmap).
2203 */
2204 m = bf->bf_m;
2205 ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
2206 if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
2207 /* XXX too conservative? */
2208 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2209 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2210 BUS_DMA_NOWAIT);
2211 if (error != 0) {
2212 if_printf(&sc->sc_if,
2213 "%s: bus_dmamap_load_mbuf failed, error %u\n",
2214 __func__, error);
2215 return;
2216 }
2217 }
2218
2219 /*
2220 * Handle slot time change when a non-ERP station joins/leaves
2221 * an 11g network. The 802.11 layer notifies us via callback,
2222 * we mark updateslot, then wait one beacon before effecting
2223 * the change. This gives associated stations at least one
2224 * beacon interval to note the state change.
2225 */
2226 /* XXX locking */
2227 if (sc->sc_updateslot == UPDATE)
2228 sc->sc_updateslot = COMMIT; /* commit next beacon */
2229 else if (sc->sc_updateslot == COMMIT)
2230 ath_setslottime(sc); /* commit change to h/w */
2231
2232 /*
2233 * Check recent per-antenna transmit statistics and flip
2234 * the default antenna if noticeably more frames went out
2235 * on the non-default antenna.
2236 * XXX assumes 2 anntenae
2237 */
2238 otherant = sc->sc_defant & 1 ? 2 : 1;
2239 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2240 ath_setdefantenna(sc, otherant);
2241 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2242
2243 /*
2244 * Construct tx descriptor.
2245 */
2246 ath_beacon_setup(sc, bf);
2247
2248 /*
2249 * Stop any current dma and put the new frame on the queue.
2250 * This should never fail since we check above that no frames
2251 * are still pending on the queue.
2252 */
2253 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2254 DPRINTF(sc, ATH_DEBUG_ANY,
2255 "%s: beacon queue %u did not stop?\n",
2256 __func__, sc->sc_bhalq);
2257 }
2258 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2259 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2260
2261 /*
2262 * Enable the CAB queue before the beacon queue to
2263 * insure cab frames are triggered by this beacon.
2264 */
2265 if (ncabq != 0 && (sc->sc_boff.bo_tim[4] & 1)) /* NB: only at DTIM */
2266 ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
2267 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
2268 ath_hal_txstart(ah, sc->sc_bhalq);
2269 DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2270 "%s: TXDP[%u] = %p (%p)\n", __func__,
2271 sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc);
2272
2273 sc->sc_stats.ast_be_xmit++;
2274 }
2275
2276 /*
2277 * Reset the hardware after detecting beacons have stopped.
2278 */
2279 static void
2280 ath_bstuck_proc(void *arg, int pending)
2281 {
2282 struct ath_softc *sc = arg;
2283 struct ifnet *ifp = &sc->sc_if;
2284
2285 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2286 sc->sc_bmisscount);
2287 ath_reset(ifp);
2288 }
2289
2290 /*
2291 * Reclaim beacon resources.
2292 */
2293 static void
2294 ath_beacon_free(struct ath_softc *sc)
2295 {
2296 struct ath_buf *bf;
2297
2298 STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
2299 if (bf->bf_m != NULL) {
2300 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2301 m_freem(bf->bf_m);
2302 bf->bf_m = NULL;
2303 }
2304 if (bf->bf_node != NULL) {
2305 ieee80211_free_node(bf->bf_node);
2306 bf->bf_node = NULL;
2307 }
2308 }
2309 }
2310
2311 /*
2312 * Configure the beacon and sleep timers.
2313 *
2314 * When operating as an AP this resets the TSF and sets
2315 * up the hardware to notify us when we need to issue beacons.
2316 *
2317 * When operating in station mode this sets up the beacon
2318 * timers according to the timestamp of the last received
2319 * beacon and the current TSF, configures PCF and DTIM
2320 * handling, programs the sleep registers so the hardware
2321 * will wakeup in time to receive beacons, and configures
2322 * the beacon miss handling so we'll receive a BMISS
2323 * interrupt when we stop seeing beacons from the AP
2324 * we've associated with.
2325 */
2326 static void
2327 ath_beacon_config(struct ath_softc *sc)
2328 {
2329 #define TSF_TO_TU(_h,_l) \
2330 ((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
2331 #define FUDGE 2
2332 struct ath_hal *ah = sc->sc_ah;
2333 struct ieee80211com *ic = &sc->sc_ic;
2334 struct ieee80211_node *ni = ic->ic_bss;
2335 u_int32_t nexttbtt, intval, tsftu;
2336 u_int64_t tsf;
2337
2338 /* extract tstamp from last beacon and convert to TU */
2339 nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
2340 LE_READ_4(ni->ni_tstamp.data));
2341 /* NB: the beacon interval is kept internally in TU's */
2342 intval = ni->ni_intval & HAL_BEACON_PERIOD;
2343 if (nexttbtt == 0) /* e.g. for ap mode */
2344 nexttbtt = intval;
2345 else if (intval) /* NB: can be 0 for monitor mode */
2346 nexttbtt = roundup(nexttbtt, intval);
2347 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2348 __func__, nexttbtt, intval, ni->ni_intval);
2349 if (ic->ic_opmode == IEEE80211_M_STA) {
2350 HAL_BEACON_STATE bs;
2351 int dtimperiod, dtimcount;
2352 int cfpperiod, cfpcount;
2353
2354 /*
2355 * Setup dtim and cfp parameters according to
2356 * last beacon we received (which may be none).
2357 */
2358 dtimperiod = ni->ni_dtim_period;
2359 if (dtimperiod <= 0) /* NB: 0 if not known */
2360 dtimperiod = 1;
2361 dtimcount = ni->ni_dtim_count;
2362 if (dtimcount >= dtimperiod) /* NB: sanity check */
2363 dtimcount = 0; /* XXX? */
2364 cfpperiod = 1; /* NB: no PCF support yet */
2365 cfpcount = 0;
2366 /*
2367 * Pull nexttbtt forward to reflect the current
2368 * TSF and calculate dtim+cfp state for the result.
2369 */
2370 tsf = ath_hal_gettsf64(ah);
2371 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2372 do {
2373 nexttbtt += intval;
2374 if (--dtimcount < 0) {
2375 dtimcount = dtimperiod - 1;
2376 if (--cfpcount < 0)
2377 cfpcount = cfpperiod - 1;
2378 }
2379 } while (nexttbtt < tsftu);
2380 memset(&bs, 0, sizeof(bs));
2381 bs.bs_intval = intval;
2382 bs.bs_nexttbtt = nexttbtt;
2383 bs.bs_dtimperiod = dtimperiod*intval;
2384 bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
2385 bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
2386 bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
2387 bs.bs_cfpmaxduration = 0;
2388 #if 0
2389 /*
2390 * The 802.11 layer records the offset to the DTIM
2391 * bitmap while receiving beacons; use it here to
2392 * enable h/w detection of our AID being marked in
2393 * the bitmap vector (to indicate frames for us are
2394 * pending at the AP).
2395 * XXX do DTIM handling in s/w to WAR old h/w bugs
2396 * XXX enable based on h/w rev for newer chips
2397 */
2398 bs.bs_timoffset = ni->ni_timoff;
2399 #endif
2400 /*
2401 * Calculate the number of consecutive beacons to miss
2402 * before taking a BMISS interrupt. The configuration
2403 * is specified in ms, so we need to convert that to
2404 * TU's and then calculate based on the beacon interval.
2405 * Note that we clamp the result to at most 10 beacons.
2406 */
2407 bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
2408 if (bs.bs_bmissthreshold > 10)
2409 bs.bs_bmissthreshold = 10;
2410 else if (bs.bs_bmissthreshold <= 0)
2411 bs.bs_bmissthreshold = 1;
2412
2413 /*
2414 * Calculate sleep duration. The configuration is
2415 * given in ms. We insure a multiple of the beacon
2416 * period is used. Also, if the sleep duration is
2417 * greater than the DTIM period then it makes senses
2418 * to make it a multiple of that.
2419 *
2420 * XXX fixed at 100ms
2421 */
2422 bs.bs_sleepduration =
2423 roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2424 if (bs.bs_sleepduration > bs.bs_dtimperiod)
2425 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2426
2427 DPRINTF(sc, ATH_DEBUG_BEACON,
2428 "%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2429 , __func__
2430 , tsf, tsftu
2431 , bs.bs_intval
2432 , bs.bs_nexttbtt
2433 , bs.bs_dtimperiod
2434 , bs.bs_nextdtim
2435 , bs.bs_bmissthreshold
2436 , bs.bs_sleepduration
2437 , bs.bs_cfpperiod
2438 , bs.bs_cfpmaxduration
2439 , bs.bs_cfpnext
2440 , bs.bs_timoffset
2441 );
2442 ath_hal_intrset(ah, 0);
2443 ath_hal_beacontimers(ah, &bs);
2444 sc->sc_imask |= HAL_INT_BMISS;
2445 ath_hal_intrset(ah, sc->sc_imask);
2446 } else {
2447 ath_hal_intrset(ah, 0);
2448 if (nexttbtt == intval)
2449 intval |= HAL_BEACON_RESET_TSF;
2450 if (ic->ic_opmode == IEEE80211_M_IBSS) {
2451 /*
2452 * In IBSS mode enable the beacon timers but only
2453 * enable SWBA interrupts if we need to manually
2454 * prepare beacon frames. Otherwise we use a
2455 * self-linked tx descriptor and let the hardware
2456 * deal with things.
2457 */
2458 intval |= HAL_BEACON_ENA;
2459 if (!sc->sc_hasveol)
2460 sc->sc_imask |= HAL_INT_SWBA;
2461 if ((intval & HAL_BEACON_RESET_TSF) == 0) {
2462 /*
2463 * Pull nexttbtt forward to reflect
2464 * the current TSF.
2465 */
2466 tsf = ath_hal_gettsf64(ah);
2467 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2468 do {
2469 nexttbtt += intval;
2470 } while (nexttbtt < tsftu);
2471 }
2472 ath_beaconq_config(sc);
2473 } else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2474 /*
2475 * In AP mode we enable the beacon timers and
2476 * SWBA interrupts to prepare beacon frames.
2477 */
2478 intval |= HAL_BEACON_ENA;
2479 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */
2480 ath_beaconq_config(sc);
2481 }
2482 ath_hal_beaconinit(ah, nexttbtt, intval);
2483 sc->sc_bmisscount = 0;
2484 ath_hal_intrset(ah, sc->sc_imask);
2485 /*
2486 * When using a self-linked beacon descriptor in
2487 * ibss mode load it once here.
2488 */
2489 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2490 ath_beacon_proc(sc, 0);
2491 }
2492 sc->sc_syncbeacon = 0;
2493 #undef UNDEF
2494 #undef TSF_TO_TU
2495 }
2496
2497 static int
2498 ath_descdma_setup(struct ath_softc *sc,
2499 struct ath_descdma *dd, ath_bufhead *head,
2500 const char *name, int nbuf, int ndesc)
2501 {
2502 #define DS2PHYS(_dd, _ds) \
2503 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2504 struct ifnet *ifp = &sc->sc_if;
2505 struct ath_desc *ds;
2506 struct ath_buf *bf;
2507 int i, bsize, error;
2508
2509 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2510 __func__, name, nbuf, ndesc);
2511
2512 dd->dd_name = name;
2513 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2514
2515 /*
2516 * Setup DMA descriptor area.
2517 */
2518 dd->dd_dmat = sc->sc_dmat;
2519
2520 error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE,
2521 0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0);
2522
2523 if (error != 0) {
2524 if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2525 "error %u\n", nbuf * ndesc, dd->dd_name, error);
2526 goto fail0;
2527 }
2528
2529 error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg,
2530 dd->dd_desc_len, (caddr_t *)&dd->dd_desc, BUS_DMA_COHERENT);
2531 if (error != 0) {
2532 if_printf(ifp, "unable to map %u %s descriptors, error = %u\n",
2533 nbuf * ndesc, dd->dd_name, error);
2534 goto fail1;
2535 }
2536
2537 /* allocate descriptors */
2538 error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1,
2539 dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2540 if (error != 0) {
2541 if_printf(ifp, "unable to create dmamap for %s descriptors, "
2542 "error %u\n", dd->dd_name, error);
2543 goto fail2;
2544 }
2545
2546 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc,
2547 dd->dd_desc_len, NULL, BUS_DMA_NOWAIT);
2548 if (error != 0) {
2549 if_printf(ifp, "unable to map %s descriptors, error %u\n",
2550 dd->dd_name, error);
2551 goto fail3;
2552 }
2553
2554 ds = dd->dd_desc;
2555 dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr;
2556 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
2557 __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2558 (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2559
2560 /* allocate rx buffers */
2561 bsize = sizeof(struct ath_buf) * nbuf;
2562 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2563 if (bf == NULL) {
2564 if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2565 dd->dd_name, bsize);
2566 goto fail4;
2567 }
2568 dd->dd_bufptr = bf;
2569
2570 STAILQ_INIT(head);
2571 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2572 bf->bf_desc = ds;
2573 bf->bf_daddr = DS2PHYS(dd, ds);
2574 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc,
2575 MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap);
2576 if (error != 0) {
2577 if_printf(ifp, "unable to create dmamap for %s "
2578 "buffer %u, error %u\n", dd->dd_name, i, error);
2579 ath_descdma_cleanup(sc, dd, head);
2580 return error;
2581 }
2582 STAILQ_INSERT_TAIL(head, bf, bf_list);
2583 }
2584 return 0;
2585 fail4:
2586 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2587 fail3:
2588 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2589 fail2:
2590 bus_dmamem_unmap(dd->dd_dmat, (caddr_t)dd->dd_desc, dd->dd_desc_len);
2591 fail1:
2592 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2593 fail0:
2594 memset(dd, 0, sizeof(*dd));
2595 return error;
2596 #undef DS2PHYS
2597 }
2598
2599 static void
2600 ath_descdma_cleanup(struct ath_softc *sc,
2601 struct ath_descdma *dd, ath_bufhead *head)
2602 {
2603 struct ath_buf *bf;
2604 struct ieee80211_node *ni;
2605
2606 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2607 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2608 bus_dmamem_unmap(dd->dd_dmat, (caddr_t)dd->dd_desc, dd->dd_desc_len);
2609 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2610
2611 STAILQ_FOREACH(bf, head, bf_list) {
2612 if (bf->bf_m) {
2613 m_freem(bf->bf_m);
2614 bf->bf_m = NULL;
2615 }
2616 if (bf->bf_dmamap != NULL) {
2617 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2618 bf->bf_dmamap = NULL;
2619 }
2620 ni = bf->bf_node;
2621 bf->bf_node = NULL;
2622 if (ni != NULL) {
2623 /*
2624 * Reclaim node reference.
2625 */
2626 ieee80211_free_node(ni);
2627 }
2628 }
2629
2630 STAILQ_INIT(head);
2631 free(dd->dd_bufptr, M_ATHDEV);
2632 memset(dd, 0, sizeof(*dd));
2633 }
2634
2635 static int
2636 ath_desc_alloc(struct ath_softc *sc)
2637 {
2638 int error;
2639
2640 error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2641 "rx", ath_rxbuf, 1);
2642 if (error != 0)
2643 return error;
2644
2645 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2646 "tx", ath_txbuf, ATH_TXDESC);
2647 if (error != 0) {
2648 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2649 return error;
2650 }
2651
2652 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2653 "beacon", 1, 1);
2654 if (error != 0) {
2655 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2656 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2657 return error;
2658 }
2659 return 0;
2660 }
2661
2662 static void
2663 ath_desc_free(struct ath_softc *sc)
2664 {
2665
2666 if (sc->sc_bdma.dd_desc_len != 0)
2667 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2668 if (sc->sc_txdma.dd_desc_len != 0)
2669 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2670 if (sc->sc_rxdma.dd_desc_len != 0)
2671 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2672 }
2673
2674 static struct ieee80211_node *
2675 ath_node_alloc(struct ieee80211_node_table *nt)
2676 {
2677 struct ieee80211com *ic = nt->nt_ic;
2678 struct ath_softc *sc = ic->ic_ifp->if_softc;
2679 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2680 struct ath_node *an;
2681
2682 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2683 if (an == NULL) {
2684 /* XXX stat+msg */
2685 return NULL;
2686 }
2687 an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
2688 ath_rate_node_init(sc, an);
2689
2690 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2691 return &an->an_node;
2692 }
2693
2694 static void
2695 ath_node_free(struct ieee80211_node *ni)
2696 {
2697 struct ieee80211com *ic = ni->ni_ic;
2698 struct ath_softc *sc = ic->ic_ifp->if_softc;
2699
2700 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2701
2702 ath_rate_node_cleanup(sc, ATH_NODE(ni));
2703 sc->sc_node_free(ni);
2704 }
2705
2706 static u_int8_t
2707 ath_node_getrssi(const struct ieee80211_node *ni)
2708 {
2709 #define HAL_EP_RND(x, mul) \
2710 ((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
2711 u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
2712 int32_t rssi;
2713
2714 /*
2715 * When only one frame is received there will be no state in
2716 * avgrssi so fallback on the value recorded by the 802.11 layer.
2717 */
2718 if (avgrssi != ATH_RSSI_DUMMY_MARKER)
2719 rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
2720 else
2721 rssi = ni->ni_rssi;
2722 return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
2723 #undef HAL_EP_RND
2724 }
2725
2726 static int
2727 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2728 {
2729 struct ath_hal *ah = sc->sc_ah;
2730 int error;
2731 struct mbuf *m;
2732 struct ath_desc *ds;
2733
2734 m = bf->bf_m;
2735 if (m == NULL) {
2736 /*
2737 * NB: by assigning a page to the rx dma buffer we
2738 * implicitly satisfy the Atheros requirement that
2739 * this buffer be cache-line-aligned and sized to be
2740 * multiple of the cache line size. Not doing this
2741 * causes weird stuff to happen (for the 5210 at least).
2742 */
2743 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2744 if (m == NULL) {
2745 DPRINTF(sc, ATH_DEBUG_ANY,
2746 "%s: no mbuf/cluster\n", __func__);
2747 sc->sc_stats.ast_rx_nombuf++;
2748 return ENOMEM;
2749 }
2750 bf->bf_m = m;
2751 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2752
2753 error = bus_dmamap_load_mbuf(sc->sc_dmat,
2754 bf->bf_dmamap, m,
2755 BUS_DMA_NOWAIT);
2756 if (error != 0) {
2757 DPRINTF(sc, ATH_DEBUG_ANY,
2758 "%s: bus_dmamap_load_mbuf failed; error %d\n",
2759 __func__, error);
2760 sc->sc_stats.ast_rx_busdma++;
2761 return error;
2762 }
2763 KASSERT(bf->bf_nseg == 1,
2764 ("multi-segment packet; nseg %u", bf->bf_nseg));
2765 }
2766 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2767 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2768
2769 /*
2770 * Setup descriptors. For receive we always terminate
2771 * the descriptor list with a self-linked entry so we'll
2772 * not get overrun under high load (as can happen with a
2773 * 5212 when ANI processing enables PHY error frames).
2774 *
2775 * To insure the last descriptor is self-linked we create
2776 * each descriptor as self-linked and add it to the end. As
2777 * each additional descriptor is added the previous self-linked
2778 * entry is ``fixed'' naturally. This should be safe even
2779 * if DMA is happening. When processing RX interrupts we
2780 * never remove/process the last, self-linked, entry on the
2781 * descriptor list. This insures the hardware always has
2782 * someplace to write a new frame.
2783 */
2784 ds = bf->bf_desc;
2785 ds->ds_link = HTOAH32(bf->bf_daddr); /* link to self */
2786 ds->ds_data = bf->bf_segs[0].ds_addr;
2787 ds->ds_vdata = mtod(m, void *); /* for radar */
2788 ath_hal_setuprxdesc(ah, ds
2789 , m->m_len /* buffer size */
2790 , 0
2791 );
2792
2793 if (sc->sc_rxlink != NULL)
2794 *sc->sc_rxlink = bf->bf_daddr;
2795 sc->sc_rxlink = &ds->ds_link;
2796 return 0;
2797 }
2798
2799 /*
2800 * Extend 15-bit time stamp from rx descriptor to
2801 * a full 64-bit TSF using the specified TSF.
2802 */
2803 static inline u_int64_t
2804 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
2805 {
2806 if ((tsf & 0x7fff) < rstamp)
2807 tsf -= 0x8000;
2808 return ((tsf &~ 0x7fff) | rstamp);
2809 }
2810
2811 /*
2812 * Intercept management frames to collect beacon rssi data
2813 * and to do ibss merges.
2814 */
2815 static void
2816 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2817 struct ieee80211_node *ni,
2818 int subtype, int rssi, u_int32_t rstamp)
2819 {
2820 struct ath_softc *sc = ic->ic_ifp->if_softc;
2821
2822 /*
2823 * Call up first so subsequent work can use information
2824 * potentially stored in the node (e.g. for ibss merge).
2825 */
2826 sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
2827 switch (subtype) {
2828 case IEEE80211_FC0_SUBTYPE_BEACON:
2829 /* update rssi statistics for use by the hal */
2830 ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
2831 if (sc->sc_syncbeacon &&
2832 ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) {
2833 /*
2834 * Resync beacon timers using the tsf of the beacon
2835 * frame we just received.
2836 */
2837 ath_beacon_config(sc);
2838 }
2839 /* fall thru... */
2840 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2841 if (ic->ic_opmode == IEEE80211_M_IBSS &&
2842 ic->ic_state == IEEE80211_S_RUN) {
2843 u_int64_t tsf = ath_extend_tsf(rstamp,
2844 ath_hal_gettsf64(sc->sc_ah));
2845
2846 /*
2847 * Handle ibss merge as needed; check the tsf on the
2848 * frame before attempting the merge. The 802.11 spec
2849 * says the station should change it's bssid to match
2850 * the oldest station with the same ssid, where oldest
2851 * is determined by the tsf. Note that hardware
2852 * reconfiguration happens through callback to
2853 * ath_newstate as the state machine will go from
2854 * RUN -> RUN when this happens.
2855 */
2856 if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
2857 DPRINTF(sc, ATH_DEBUG_STATE,
2858 "ibss merge, rstamp %u tsf %ju "
2859 "tstamp %ju\n", rstamp, (uintmax_t)tsf,
2860 (uintmax_t)ni->ni_tstamp.tsf);
2861 (void) ieee80211_ibss_merge(ni);
2862 }
2863 }
2864 break;
2865 }
2866 }
2867
2868 /*
2869 * Set the default antenna.
2870 */
2871 static void
2872 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
2873 {
2874 struct ath_hal *ah = sc->sc_ah;
2875
2876 /* XXX block beacon interrupts */
2877 ath_hal_setdefantenna(ah, antenna);
2878 if (sc->sc_defant != antenna)
2879 sc->sc_stats.ast_ant_defswitch++;
2880 sc->sc_defant = antenna;
2881 sc->sc_rxotherant = 0;
2882 }
2883
2884 static void
2885 ath_rx_proc(void *arg, int npending)
2886 {
2887 #define PA2DESC(_sc, _pa) \
2888 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
2889 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
2890 struct ath_softc *sc = arg;
2891 struct ath_buf *bf;
2892 struct ieee80211com *ic = &sc->sc_ic;
2893 struct ifnet *ifp = &sc->sc_if;
2894 struct ath_hal *ah = sc->sc_ah;
2895 struct ath_desc *ds;
2896 struct mbuf *m;
2897 struct ieee80211_node *ni;
2898 struct ath_node *an;
2899 int len, type, ngood;
2900 u_int phyerr;
2901 HAL_STATUS status;
2902 int16_t nf;
2903 u_int64_t tsf;
2904
2905 NET_LOCK_GIANT(); /* XXX */
2906
2907 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
2908 ngood = 0;
2909 nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
2910 tsf = ath_hal_gettsf64(ah);
2911 do {
2912 bf = STAILQ_FIRST(&sc->sc_rxbuf);
2913 if (bf == NULL) { /* NB: shouldn't happen */
2914 if_printf(ifp, "%s: no buffer!\n", __func__);
2915 break;
2916 }
2917 ds = bf->bf_desc;
2918 if (ds->ds_link == bf->bf_daddr) {
2919 /* NB: never process the self-linked entry at the end */
2920 break;
2921 }
2922 m = bf->bf_m;
2923 if (m == NULL) { /* NB: shouldn't happen */
2924 if_printf(ifp, "%s: no mbuf!\n", __func__);
2925 break;
2926 }
2927 /* XXX sync descriptor memory */
2928 /*
2929 * Must provide the virtual address of the current
2930 * descriptor, the physical address, and the virtual
2931 * address of the next descriptor in the h/w chain.
2932 * This allows the HAL to look ahead to see if the
2933 * hardware is done with a descriptor by checking the
2934 * done bit in the following descriptor and the address
2935 * of the current descriptor the DMA engine is working
2936 * on. All this is necessary because of our use of
2937 * a self-linked list to avoid rx overruns.
2938 */
2939 status = ath_hal_rxprocdesc(ah, ds,
2940 bf->bf_daddr, PA2DESC(sc, ds->ds_link));
2941 #ifdef AR_DEBUG
2942 if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
2943 ath_printrxbuf(bf, status == HAL_OK);
2944 #endif
2945 if (status == HAL_EINPROGRESS)
2946 break;
2947 STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
2948 if (ds->ds_rxstat.rs_more) {
2949 /*
2950 * Frame spans multiple descriptors; this
2951 * cannot happen yet as we don't support
2952 * jumbograms. If not in monitor mode,
2953 * discard the frame.
2954 */
2955 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2956 sc->sc_stats.ast_rx_toobig++;
2957 goto rx_next;
2958 }
2959 /* fall thru for monitor mode handling... */
2960 } else if (ds->ds_rxstat.rs_status != 0) {
2961 if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
2962 sc->sc_stats.ast_rx_crcerr++;
2963 if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
2964 sc->sc_stats.ast_rx_fifoerr++;
2965 if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
2966 sc->sc_stats.ast_rx_phyerr++;
2967 phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
2968 sc->sc_stats.ast_rx_phy[phyerr]++;
2969 goto rx_next;
2970 }
2971 if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
2972 /*
2973 * Decrypt error. If the error occurred
2974 * because there was no hardware key, then
2975 * let the frame through so the upper layers
2976 * can process it. This is necessary for 5210
2977 * parts which have no way to setup a ``clear''
2978 * key cache entry.
2979 *
2980 * XXX do key cache faulting
2981 */
2982 if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
2983 goto rx_accept;
2984 sc->sc_stats.ast_rx_badcrypt++;
2985 }
2986 if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
2987 sc->sc_stats.ast_rx_badmic++;
2988 /*
2989 * Do minimal work required to hand off
2990 * the 802.11 header for notifcation.
2991 */
2992 /* XXX frag's and qos frames */
2993 len = ds->ds_rxstat.rs_datalen;
2994 if (len >= sizeof (struct ieee80211_frame)) {
2995 bus_dmamap_sync(sc->sc_dmat,
2996 bf->bf_dmamap,
2997 0, bf->bf_dmamap->dm_mapsize,
2998 BUS_DMASYNC_POSTREAD);
2999 ieee80211_notify_michael_failure(ic,
3000 mtod(m, struct ieee80211_frame *),
3001 sc->sc_splitmic ?
3002 ds->ds_rxstat.rs_keyix-32 :
3003 ds->ds_rxstat.rs_keyix
3004 );
3005 }
3006 }
3007 ifp->if_ierrors++;
3008 /*
3009 * Reject error frames, we normally don't want
3010 * to see them in monitor mode (in monitor mode
3011 * allow through packets that have crypto problems).
3012 */
3013 if ((ds->ds_rxstat.rs_status &~
3014 (HAL_RXERR_DECRYPT|HAL_RXERR_MIC)) ||
3015 sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
3016 goto rx_next;
3017 }
3018 rx_accept:
3019 /*
3020 * Sync and unmap the frame. At this point we're
3021 * committed to passing the mbuf somewhere so clear
3022 * bf_m; this means a new sk_buff must be allocated
3023 * when the rx descriptor is setup again to receive
3024 * another frame.
3025 */
3026 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3027 0, bf->bf_dmamap->dm_mapsize,
3028 BUS_DMASYNC_POSTREAD);
3029 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3030 bf->bf_m = NULL;
3031
3032 m->m_pkthdr.rcvif = ifp;
3033 len = ds->ds_rxstat.rs_datalen;
3034 m->m_pkthdr.len = m->m_len = len;
3035
3036 sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
3037
3038 #if NBPFILTER > 0
3039 if (sc->sc_drvbpf) {
3040 u_int8_t rix;
3041
3042 /*
3043 * Discard anything shorter than an ack or cts.
3044 */
3045 if (len < IEEE80211_ACK_LEN) {
3046 DPRINTF(sc, ATH_DEBUG_RECV,
3047 "%s: runt packet %d\n",
3048 __func__, len);
3049 sc->sc_stats.ast_rx_tooshort++;
3050 m_freem(m);
3051 goto rx_next;
3052 }
3053 rix = ds->ds_rxstat.rs_rate;
3054 sc->sc_rx_th.wr_tsf = htole64(
3055 ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf));
3056 sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
3057 sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
3058 sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf;
3059 sc->sc_rx_th.wr_antnoise = nf;
3060 sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
3061
3062 bpf_mtap2(sc->sc_drvbpf,
3063 &sc->sc_rx_th, sc->sc_rx_th_len, m);
3064 }
3065 #endif
3066
3067 /*
3068 * From this point on we assume the frame is at least
3069 * as large as ieee80211_frame_min; verify that.
3070 */
3071 if (len < IEEE80211_MIN_LEN) {
3072 DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
3073 __func__, len);
3074 sc->sc_stats.ast_rx_tooshort++;
3075 m_freem(m);
3076 goto rx_next;
3077 }
3078
3079 if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
3080 ieee80211_dump_pkt(mtod(m, caddr_t), len,
3081 sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
3082 ds->ds_rxstat.rs_rssi);
3083 }
3084
3085 m_adj(m, -IEEE80211_CRC_LEN);
3086
3087 /*
3088 * Locate the node for sender, track state, and then
3089 * pass the (referenced) node up to the 802.11 layer
3090 * for its use.
3091 */
3092 ni = ieee80211_find_rxnode_withkey(ic,
3093 mtod(m, const struct ieee80211_frame_min *),
3094 ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
3095 IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
3096 /*
3097 * Track rx rssi and do any rx antenna management.
3098 */
3099 an = ATH_NODE(ni);
3100 ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
3101 ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi);
3102 /*
3103 * Send frame up for processing.
3104 */
3105 type = ieee80211_input(ic, m, ni,
3106 ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
3107 ieee80211_free_node(ni);
3108 if (sc->sc_diversity) {
3109 /*
3110 * When using fast diversity, change the default rx
3111 * antenna if diversity chooses the other antenna 3
3112 * times in a row.
3113 */
3114 if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
3115 if (++sc->sc_rxotherant >= 3)
3116 ath_setdefantenna(sc,
3117 ds->ds_rxstat.rs_antenna);
3118 } else
3119 sc->sc_rxotherant = 0;
3120 }
3121 if (sc->sc_softled) {
3122 /*
3123 * Blink for any data frame. Otherwise do a
3124 * heartbeat-style blink when idle. The latter
3125 * is mainly for station mode where we depend on
3126 * periodic beacon frames to trigger the poll event.
3127 */
3128 if (type == IEEE80211_FC0_TYPE_DATA) {
3129 sc->sc_rxrate = ds->ds_rxstat.rs_rate;
3130 ath_led_event(sc, ATH_LED_RX);
3131 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
3132 ath_led_event(sc, ATH_LED_POLL);
3133 }
3134 /*
3135 * Arrange to update the last rx timestamp only for
3136 * frames from our ap when operating in station mode.
3137 * This assumes the rx key is always setup when associated.
3138 */
3139 if (ic->ic_opmode == IEEE80211_M_STA &&
3140 ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID)
3141 ngood++;
3142 rx_next:
3143 STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
3144 } while (ath_rxbuf_init(sc, bf) == 0);
3145
3146 /* rx signal state monitoring */
3147 ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
3148 if (ath_hal_radar_event(ah))
3149 TASK_RUN_OR_ENQUEUE(&sc->sc_radartask);
3150 if (ngood)
3151 sc->sc_lastrx = tsf;
3152
3153 #ifdef __NetBSD__
3154 /* XXX Why isn't this necessary in FreeBSD? */
3155 if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
3156 ath_start(ifp);
3157 #endif /* __NetBSD__ */
3158
3159 NET_UNLOCK_GIANT(); /* XXX */
3160 #undef PA2DESC
3161 }
3162
3163 /*
3164 * Setup a h/w transmit queue.
3165 */
3166 static struct ath_txq *
3167 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3168 {
3169 #define N(a) (sizeof(a)/sizeof(a[0]))
3170 struct ath_hal *ah = sc->sc_ah;
3171 HAL_TXQ_INFO qi;
3172 int qnum;
3173
3174 memset(&qi, 0, sizeof(qi));
3175 qi.tqi_subtype = subtype;
3176 qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3177 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3178 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3179 /*
3180 * Enable interrupts only for EOL and DESC conditions.
3181 * We mark tx descriptors to receive a DESC interrupt
3182 * when a tx queue gets deep; otherwise waiting for the
3183 * EOL to reap descriptors. Note that this is done to
3184 * reduce interrupt load and this only defers reaping
3185 * descriptors, never transmitting frames. Aside from
3186 * reducing interrupts this also permits more concurrency.
3187 * The only potential downside is if the tx queue backs
3188 * up in which case the top half of the kernel may backup
3189 * due to a lack of tx descriptors.
3190 */
3191 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
3192 qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3193 if (qnum == -1) {
3194 /*
3195 * NB: don't print a message, this happens
3196 * normally on parts with too few tx queues
3197 */
3198 return NULL;
3199 }
3200 if (qnum >= N(sc->sc_txq)) {
3201 device_printf(sc->sc_dev,
3202 "hal qnum %u out of range, max %zu!\n",
3203 qnum, N(sc->sc_txq));
3204 ath_hal_releasetxqueue(ah, qnum);
3205 return NULL;
3206 }
3207 if (!ATH_TXQ_SETUP(sc, qnum)) {
3208 struct ath_txq *txq = &sc->sc_txq[qnum];
3209
3210 txq->axq_qnum = qnum;
3211 txq->axq_depth = 0;
3212 txq->axq_intrcnt = 0;
3213 txq->axq_link = NULL;
3214 STAILQ_INIT(&txq->axq_q);
3215 ATH_TXQ_LOCK_INIT(sc, txq);
3216 sc->sc_txqsetup |= 1<<qnum;
3217 }
3218 return &sc->sc_txq[qnum];
3219 #undef N
3220 }
3221
3222 /*
3223 * Setup a hardware data transmit queue for the specified
3224 * access control. The hal may not support all requested
3225 * queues in which case it will return a reference to a
3226 * previously setup queue. We record the mapping from ac's
3227 * to h/w queues for use by ath_tx_start and also track
3228 * the set of h/w queues being used to optimize work in the
3229 * transmit interrupt handler and related routines.
3230 */
3231 static int
3232 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3233 {
3234 #define N(a) (sizeof(a)/sizeof(a[0]))
3235 struct ath_txq *txq;
3236
3237 if (ac >= N(sc->sc_ac2q)) {
3238 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3239 ac, N(sc->sc_ac2q));
3240 return 0;
3241 }
3242 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3243 if (txq != NULL) {
3244 sc->sc_ac2q[ac] = txq;
3245 return 1;
3246 } else
3247 return 0;
3248 #undef N
3249 }
3250
3251 /*
3252 * Update WME parameters for a transmit queue.
3253 */
3254 static int
3255 ath_txq_update(struct ath_softc *sc, int ac)
3256 {
3257 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1)
3258 #define ATH_TXOP_TO_US(v) (v<<5)
3259 struct ieee80211com *ic = &sc->sc_ic;
3260 struct ath_txq *txq = sc->sc_ac2q[ac];
3261 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3262 struct ath_hal *ah = sc->sc_ah;
3263 HAL_TXQ_INFO qi;
3264
3265 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3266 qi.tqi_aifs = wmep->wmep_aifsn;
3267 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3268 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3269 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3270
3271 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3272 device_printf(sc->sc_dev, "unable to update hardware queue "
3273 "parameters for %s traffic!\n",
3274 ieee80211_wme_acnames[ac]);
3275 return 0;
3276 } else {
3277 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3278 return 1;
3279 }
3280 #undef ATH_TXOP_TO_US
3281 #undef ATH_EXPONENT_TO_VALUE
3282 }
3283
3284 /*
3285 * Callback from the 802.11 layer to update WME parameters.
3286 */
3287 static int
3288 ath_wme_update(struct ieee80211com *ic)
3289 {
3290 struct ath_softc *sc = ic->ic_ifp->if_softc;
3291
3292 return !ath_txq_update(sc, WME_AC_BE) ||
3293 !ath_txq_update(sc, WME_AC_BK) ||
3294 !ath_txq_update(sc, WME_AC_VI) ||
3295 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3296 }
3297
3298 /*
3299 * Reclaim resources for a setup queue.
3300 */
3301 static void
3302 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3303 {
3304
3305 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3306 ATH_TXQ_LOCK_DESTROY(txq);
3307 sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3308 }
3309
3310 /*
3311 * Reclaim all tx queue resources.
3312 */
3313 static void
3314 ath_tx_cleanup(struct ath_softc *sc)
3315 {
3316 int i;
3317
3318 ATH_TXBUF_LOCK_DESTROY(sc);
3319 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3320 if (ATH_TXQ_SETUP(sc, i))
3321 ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3322 }
3323
3324 /*
3325 * Defragment an mbuf chain, returning at most maxfrags separate
3326 * mbufs+clusters. If this is not possible NULL is returned and
3327 * the original mbuf chain is left in it's present (potentially
3328 * modified) state. We use two techniques: collapsing consecutive
3329 * mbufs and replacing consecutive mbufs by a cluster.
3330 */
3331 static struct mbuf *
3332 ath_defrag(struct mbuf *m0, int how, int maxfrags)
3333 {
3334 struct mbuf *m, *n, *n2, **prev;
3335 u_int curfrags;
3336
3337 /*
3338 * Calculate the current number of frags.
3339 */
3340 curfrags = 0;
3341 for (m = m0; m != NULL; m = m->m_next)
3342 curfrags++;
3343 /*
3344 * First, try to collapse mbufs. Note that we always collapse
3345 * towards the front so we don't need to deal with moving the
3346 * pkthdr. This may be suboptimal if the first mbuf has much
3347 * less data than the following.
3348 */
3349 m = m0;
3350 again:
3351 for (;;) {
3352 n = m->m_next;
3353 if (n == NULL)
3354 break;
3355 if ((m->m_flags & M_RDONLY) == 0 &&
3356 n->m_len < M_TRAILINGSPACE(m)) {
3357 bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
3358 n->m_len);
3359 m->m_len += n->m_len;
3360 m->m_next = n->m_next;
3361 m_free(n);
3362 if (--curfrags <= maxfrags)
3363 return m0;
3364 } else
3365 m = n;
3366 }
3367 KASSERT(maxfrags > 1,
3368 ("maxfrags %u, but normal collapse failed", maxfrags));
3369 /*
3370 * Collapse consecutive mbufs to a cluster.
3371 */
3372 prev = &m0->m_next; /* NB: not the first mbuf */
3373 while ((n = *prev) != NULL) {
3374 if ((n2 = n->m_next) != NULL &&
3375 n->m_len + n2->m_len < MCLBYTES) {
3376 m = m_getcl(how, MT_DATA, 0);
3377 if (m == NULL)
3378 goto bad;
3379 bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
3380 bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
3381 n2->m_len);
3382 m->m_len = n->m_len + n2->m_len;
3383 m->m_next = n2->m_next;
3384 *prev = m;
3385 m_free(n);
3386 m_free(n2);
3387 if (--curfrags <= maxfrags) /* +1 cl -2 mbufs */
3388 return m0;
3389 /*
3390 * Still not there, try the normal collapse
3391 * again before we allocate another cluster.
3392 */
3393 goto again;
3394 }
3395 prev = &n->m_next;
3396 }
3397 /*
3398 * No place where we can collapse to a cluster; punt.
3399 * This can occur if, for example, you request 2 frags
3400 * but the packet requires that both be clusters (we
3401 * never reallocate the first mbuf to avoid moving the
3402 * packet header).
3403 */
3404 bad:
3405 return NULL;
3406 }
3407
3408 /*
3409 * Return h/w rate index for an IEEE rate (w/o basic rate bit).
3410 */
3411 static int
3412 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
3413 {
3414 int i;
3415
3416 for (i = 0; i < rt->rateCount; i++)
3417 if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
3418 return i;
3419 return 0; /* NB: lowest rate */
3420 }
3421
3422 static int
3423 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
3424 struct mbuf *m0)
3425 {
3426 struct ieee80211com *ic = &sc->sc_ic;
3427 struct ath_hal *ah = sc->sc_ah;
3428 struct ifnet *ifp = &sc->sc_if;
3429 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
3430 int i, error, iswep, ismcast, ismrr;
3431 int keyix, hdrlen, pktlen, try0;
3432 u_int8_t rix, txrate, ctsrate;
3433 u_int8_t cix = 0xff; /* NB: silence compiler */
3434 struct ath_desc *ds, *ds0;
3435 struct ath_txq *txq;
3436 struct ieee80211_frame *wh;
3437 u_int subtype, flags, ctsduration;
3438 HAL_PKT_TYPE atype;
3439 const HAL_RATE_TABLE *rt;
3440 HAL_BOOL shortPreamble;
3441 struct ath_node *an;
3442 struct mbuf *m;
3443 u_int pri;
3444
3445 wh = mtod(m0, struct ieee80211_frame *);
3446 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
3447 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3448 hdrlen = ieee80211_anyhdrsize(wh);
3449 /*
3450 * Packet length must not include any
3451 * pad bytes; deduct them here.
3452 */
3453 pktlen = m0->m_pkthdr.len - (hdrlen & 3);
3454
3455 if (iswep) {
3456 const struct ieee80211_cipher *cip;
3457 struct ieee80211_key *k;
3458
3459 /*
3460 * Construct the 802.11 header+trailer for an encrypted
3461 * frame. The only reason this can fail is because of an
3462 * unknown or unsupported cipher/key type.
3463 */
3464 k = ieee80211_crypto_encap(ic, ni, m0);
3465 if (k == NULL) {
3466 /*
3467 * This can happen when the key is yanked after the
3468 * frame was queued. Just discard the frame; the
3469 * 802.11 layer counts failures and provides
3470 * debugging/diagnostics.
3471 */
3472 m_freem(m0);
3473 return EIO;
3474 }
3475 /*
3476 * Adjust the packet + header lengths for the crypto
3477 * additions and calculate the h/w key index. When
3478 * a s/w mic is done the frame will have had any mic
3479 * added to it prior to entry so skb->len above will
3480 * account for it. Otherwise we need to add it to the
3481 * packet length.
3482 */
3483 cip = k->wk_cipher;
3484 hdrlen += cip->ic_header;
3485 pktlen += cip->ic_header + cip->ic_trailer;
3486 if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0)
3487 pktlen += cip->ic_miclen;
3488 keyix = k->wk_keyix;
3489
3490 /* packet header may have moved, reset our local pointer */
3491 wh = mtod(m0, struct ieee80211_frame *);
3492 } else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
3493 /*
3494 * Use station key cache slot, if assigned.
3495 */
3496 keyix = ni->ni_ucastkey.wk_keyix;
3497 if (keyix == IEEE80211_KEYIX_NONE)
3498 keyix = HAL_TXKEYIX_INVALID;
3499 } else
3500 keyix = HAL_TXKEYIX_INVALID;
3501
3502 pktlen += IEEE80211_CRC_LEN;
3503
3504 /*
3505 * Load the DMA map so any coalescing is done. This
3506 * also calculates the number of descriptors we need.
3507 */
3508 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3509 BUS_DMA_NOWAIT);
3510 if (error == EFBIG) {
3511 /* XXX packet requires too many descriptors */
3512 bf->bf_nseg = ATH_TXDESC+1;
3513 } else if (error != 0) {
3514 sc->sc_stats.ast_tx_busdma++;
3515 m_freem(m0);
3516 return error;
3517 }
3518 /*
3519 * Discard null packets and check for packets that
3520 * require too many TX descriptors. We try to convert
3521 * the latter to a cluster.
3522 */
3523 if (error == EFBIG) { /* too many desc's, linearize */
3524 sc->sc_stats.ast_tx_linear++;
3525 m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
3526 if (m == NULL) {
3527 m_freem(m0);
3528 sc->sc_stats.ast_tx_nombuf++;
3529 return ENOMEM;
3530 }
3531 m0 = m;
3532 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3533 BUS_DMA_NOWAIT);
3534 if (error != 0) {
3535 sc->sc_stats.ast_tx_busdma++;
3536 m_freem(m0);
3537 return error;
3538 }
3539 KASSERT(bf->bf_nseg <= ATH_TXDESC,
3540 ("too many segments after defrag; nseg %u", bf->bf_nseg));
3541 } else if (bf->bf_nseg == 0) { /* null packet, discard */
3542 sc->sc_stats.ast_tx_nodata++;
3543 m_freem(m0);
3544 return EIO;
3545 }
3546 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
3547 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
3548 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
3549 bf->bf_m = m0;
3550 bf->bf_node = ni; /* NB: held reference */
3551
3552 /* setup descriptors */
3553 ds = bf->bf_desc;
3554 rt = sc->sc_currates;
3555 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3556
3557 /*
3558 * NB: the 802.11 layer marks whether or not we should
3559 * use short preamble based on the current mode and
3560 * negotiated parameters.
3561 */
3562 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3563 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) {
3564 shortPreamble = AH_TRUE;
3565 sc->sc_stats.ast_tx_shortpre++;
3566 } else {
3567 shortPreamble = AH_FALSE;
3568 }
3569
3570 an = ATH_NODE(ni);
3571 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */
3572 ismrr = 0; /* default no multi-rate retry*/
3573 /*
3574 * Calculate Atheros packet type from IEEE80211 packet header,
3575 * setup for rate calculations, and select h/w transmit queue.
3576 */
3577 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3578 case IEEE80211_FC0_TYPE_MGT:
3579 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3580 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
3581 atype = HAL_PKT_TYPE_BEACON;
3582 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3583 atype = HAL_PKT_TYPE_PROBE_RESP;
3584 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
3585 atype = HAL_PKT_TYPE_ATIM;
3586 else
3587 atype = HAL_PKT_TYPE_NORMAL; /* XXX */
3588 rix = sc->sc_minrateix;
3589 txrate = rt->info[rix].rateCode;
3590 if (shortPreamble)
3591 txrate |= rt->info[rix].shortPreamble;
3592 try0 = ATH_TXMGTTRY;
3593 /* NB: force all management frames to highest queue */
3594 if (ni->ni_flags & IEEE80211_NODE_QOS) {
3595 /* NB: force all management frames to highest queue */
3596 pri = WME_AC_VO;
3597 } else
3598 pri = WME_AC_BE;
3599 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
3600 break;
3601 case IEEE80211_FC0_TYPE_CTL:
3602 atype = HAL_PKT_TYPE_PSPOLL; /* stop setting of duration */
3603 rix = sc->sc_minrateix;
3604 txrate = rt->info[rix].rateCode;
3605 if (shortPreamble)
3606 txrate |= rt->info[rix].shortPreamble;
3607 try0 = ATH_TXMGTTRY;
3608 /* NB: force all ctl frames to highest queue */
3609 if (ni->ni_flags & IEEE80211_NODE_QOS) {
3610 /* NB: force all ctl frames to highest queue */
3611 pri = WME_AC_VO;
3612 } else
3613 pri = WME_AC_BE;
3614 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
3615 break;
3616 case IEEE80211_FC0_TYPE_DATA:
3617 atype = HAL_PKT_TYPE_NORMAL; /* default */
3618 /*
3619 * Data frames: multicast frames go out at a fixed rate,
3620 * otherwise consult the rate control module for the
3621 * rate to use.
3622 */
3623 if (ismcast) {
3624 /*
3625 * Check mcast rate setting in case it's changed.
3626 * XXX move out of fastpath
3627 */
3628 if (ic->ic_mcast_rate != sc->sc_mcastrate) {
3629 sc->sc_mcastrix =
3630 ath_tx_findrix(rt, ic->ic_mcast_rate);
3631 sc->sc_mcastrate = ic->ic_mcast_rate;
3632 }
3633 rix = sc->sc_mcastrix;
3634 txrate = rt->info[rix].rateCode;
3635 try0 = 1;
3636 } else {
3637 ath_rate_findrate(sc, an, shortPreamble, pktlen,
3638 &rix, &try0, &txrate);
3639 sc->sc_txrate = txrate; /* for LED blinking */
3640 if (try0 != ATH_TXMAXTRY)
3641 ismrr = 1;
3642 }
3643 pri = M_WME_GETAC(m0);
3644 if (cap->cap_wmeParams[pri].wmep_noackPolicy)
3645 flags |= HAL_TXDESC_NOACK;
3646 break;
3647 default:
3648 if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3649 wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3650 /* XXX statistic */
3651 m_freem(m0);
3652 return EIO;
3653 }
3654 txq = sc->sc_ac2q[pri];
3655
3656 /*
3657 * When servicing one or more stations in power-save mode
3658 * multicast frames must be buffered until after the beacon.
3659 * We use the CAB queue for that.
3660 */
3661 if (ismcast && ic->ic_ps_sta) {
3662 txq = sc->sc_cabq;
3663 /* XXX? more bit in 802.11 frame header */
3664 }
3665
3666 /*
3667 * Calculate miscellaneous flags.
3668 */
3669 if (ismcast) {
3670 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */
3671 } else if (pktlen > ic->ic_rtsthreshold) {
3672 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */
3673 cix = rt->info[rix].controlRate;
3674 sc->sc_stats.ast_tx_rts++;
3675 }
3676 if (flags & HAL_TXDESC_NOACK) /* NB: avoid double counting */
3677 sc->sc_stats.ast_tx_noack++;
3678
3679 /*
3680 * If 802.11g protection is enabled, determine whether
3681 * to use RTS/CTS or just CTS. Note that this is only
3682 * done for OFDM unicast frames.
3683 */
3684 if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3685 rt->info[rix].phy == IEEE80211_T_OFDM &&
3686 (flags & HAL_TXDESC_NOACK) == 0) {
3687 /* XXX fragments must use CCK rates w/ protection */
3688 if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3689 flags |= HAL_TXDESC_RTSENA;
3690 else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3691 flags |= HAL_TXDESC_CTSENA;
3692 cix = rt->info[sc->sc_protrix].controlRate;
3693 sc->sc_stats.ast_tx_protect++;
3694 }
3695
3696 /*
3697 * Calculate duration. This logically belongs in the 802.11
3698 * layer but it lacks sufficient information to calculate it.
3699 */
3700 if ((flags & HAL_TXDESC_NOACK) == 0 &&
3701 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
3702 u_int16_t dur;
3703 /*
3704 * XXX not right with fragmentation.
3705 */
3706 if (shortPreamble)
3707 dur = rt->info[rix].spAckDuration;
3708 else
3709 dur = rt->info[rix].lpAckDuration;
3710 *(u_int16_t *)wh->i_dur = htole16(dur);
3711 }
3712
3713 /*
3714 * Calculate RTS/CTS rate and duration if needed.
3715 */
3716 ctsduration = 0;
3717 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
3718 /*
3719 * CTS transmit rate is derived from the transmit rate
3720 * by looking in the h/w rate table. We must also factor
3721 * in whether or not a short preamble is to be used.
3722 */
3723 /* NB: cix is set above where RTS/CTS is enabled */
3724 KASSERT(cix != 0xff, ("cix not setup"));
3725 ctsrate = rt->info[cix].rateCode;
3726 /*
3727 * Compute the transmit duration based on the frame
3728 * size and the size of an ACK frame. We call into the
3729 * HAL to do the computation since it depends on the
3730 * characteristics of the actual PHY being used.
3731 *
3732 * NB: CTS is assumed the same size as an ACK so we can
3733 * use the precalculated ACK durations.
3734 */
3735 if (shortPreamble) {
3736 ctsrate |= rt->info[cix].shortPreamble;
3737 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
3738 ctsduration += rt->info[cix].spAckDuration;
3739 ctsduration += ath_hal_computetxtime(ah,
3740 rt, pktlen, rix, AH_TRUE);
3741 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
3742 ctsduration += rt->info[rix].spAckDuration;
3743 } else {
3744 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
3745 ctsduration += rt->info[cix].lpAckDuration;
3746 ctsduration += ath_hal_computetxtime(ah,
3747 rt, pktlen, rix, AH_FALSE);
3748 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
3749 ctsduration += rt->info[rix].lpAckDuration;
3750 }
3751 /*
3752 * Must disable multi-rate retry when using RTS/CTS.
3753 */
3754 ismrr = 0;
3755 try0 = ATH_TXMGTTRY; /* XXX */
3756 } else
3757 ctsrate = 0;
3758
3759 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3760 ieee80211_dump_pkt(mtod(m0, caddr_t), m0->m_len,
3761 sc->sc_hwmap[txrate].ieeerate, -1);
3762 #if NBPFILTER > 0
3763 if (ic->ic_rawbpf)
3764 bpf_mtap(ic->ic_rawbpf, m0);
3765 if (sc->sc_drvbpf) {
3766 u_int64_t tsf = ath_hal_gettsf64(ah);
3767
3768 sc->sc_tx_th.wt_tsf = htole64(tsf);
3769 sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
3770 if (iswep)
3771 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3772 sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
3773 sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3774 sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3775
3776 bpf_mtap2(sc->sc_drvbpf,
3777 &sc->sc_tx_th, sc->sc_tx_th_len, m0);
3778 }
3779 #endif
3780
3781 /*
3782 * Determine if a tx interrupt should be generated for
3783 * this descriptor. We take a tx interrupt to reap
3784 * descriptors when the h/w hits an EOL condition or
3785 * when the descriptor is specifically marked to generate
3786 * an interrupt. We periodically mark descriptors in this
3787 * way to insure timely replenishing of the supply needed
3788 * for sending frames. Defering interrupts reduces system
3789 * load and potentially allows more concurrent work to be
3790 * done but if done to aggressively can cause senders to
3791 * backup.
3792 *
3793 * NB: use >= to deal with sc_txintrperiod changing
3794 * dynamically through sysctl.
3795 */
3796 if (flags & HAL_TXDESC_INTREQ) {
3797 txq->axq_intrcnt = 0;
3798 } else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
3799 flags |= HAL_TXDESC_INTREQ;
3800 txq->axq_intrcnt = 0;
3801 }
3802
3803 /*
3804 * Formulate first tx descriptor with tx controls.
3805 */
3806 /* XXX check return value? */
3807 ath_hal_setuptxdesc(ah, ds
3808 , pktlen /* packet length */
3809 , hdrlen /* header length */
3810 , atype /* Atheros packet type */
3811 , ni->ni_txpower /* txpower */
3812 , txrate, try0 /* series 0 rate/tries */
3813 , keyix /* key cache index */
3814 , sc->sc_txantenna /* antenna mode */
3815 , flags /* flags */
3816 , ctsrate /* rts/cts rate */
3817 , ctsduration /* rts/cts duration */
3818 );
3819 bf->bf_flags = flags;
3820 /*
3821 * Setup the multi-rate retry state only when we're
3822 * going to use it. This assumes ath_hal_setuptxdesc
3823 * initializes the descriptors (so we don't have to)
3824 * when the hardware supports multi-rate retry and
3825 * we don't use it.
3826 */
3827 if (ismrr)
3828 ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
3829
3830 /*
3831 * Fillin the remainder of the descriptor info.
3832 */
3833 ds0 = ds;
3834 for (i = 0; i < bf->bf_nseg; i++, ds++) {
3835 ds->ds_data = bf->bf_segs[i].ds_addr;
3836 if (i == bf->bf_nseg - 1)
3837 ds->ds_link = 0;
3838 else
3839 ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
3840 ath_hal_filltxdesc(ah, ds
3841 , bf->bf_segs[i].ds_len /* segment length */
3842 , i == 0 /* first segment */
3843 , i == bf->bf_nseg - 1 /* last segment */
3844 , ds0 /* first descriptor */
3845 );
3846
3847 /* NB: The desc swap function becomes void,
3848 * if descriptor swapping is not enabled
3849 */
3850 ath_desc_swap(ds);
3851
3852 DPRINTF(sc, ATH_DEBUG_XMIT,
3853 "%s: %d: %08x %08x %08x %08x %08x %08x\n",
3854 __func__, i, ds->ds_link, ds->ds_data,
3855 ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
3856 }
3857 /*
3858 * Insert the frame on the outbound list and
3859 * pass it on to the hardware.
3860 */
3861 ATH_TXQ_LOCK(txq);
3862 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
3863 if (txq->axq_link == NULL) {
3864 ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
3865 DPRINTF(sc, ATH_DEBUG_XMIT,
3866 "%s: TXDP[%u] = %p (%p) depth %d\n", __func__,
3867 txq->axq_qnum, (caddr_t)bf->bf_daddr, bf->bf_desc,
3868 txq->axq_depth);
3869 } else {
3870 *txq->axq_link = HTOAH32(bf->bf_daddr);
3871 DPRINTF(sc, ATH_DEBUG_XMIT,
3872 "%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
3873 txq->axq_qnum, txq->axq_link,
3874 (caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
3875 }
3876 txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
3877 /*
3878 * The CAB queue is started from the SWBA handler since
3879 * frames only go out on DTIM and to avoid possible races.
3880 */
3881 if (txq != sc->sc_cabq)
3882 ath_hal_txstart(ah, txq->axq_qnum);
3883 ATH_TXQ_UNLOCK(txq);
3884
3885 return 0;
3886 }
3887
3888 /*
3889 * Process completed xmit descriptors from the specified queue.
3890 */
3891 static int
3892 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
3893 {
3894 struct ath_hal *ah = sc->sc_ah;
3895 struct ieee80211com *ic = &sc->sc_ic;
3896 struct ath_buf *bf;
3897 struct ath_desc *ds, *ds0;
3898 struct ieee80211_node *ni;
3899 struct ath_node *an;
3900 int sr, lr, pri, nacked;
3901 HAL_STATUS status;
3902
3903 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
3904 __func__, txq->axq_qnum,
3905 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3906 txq->axq_link);
3907 nacked = 0;
3908 for (;;) {
3909 ATH_TXQ_LOCK(txq);
3910 txq->axq_intrcnt = 0; /* reset periodic desc intr count */
3911 bf = STAILQ_FIRST(&txq->axq_q);
3912 if (bf == NULL) {
3913 txq->axq_link = NULL;
3914 ATH_TXQ_UNLOCK(txq);
3915 break;
3916 }
3917 ds0 = &bf->bf_desc[0];
3918 ds = &bf->bf_desc[bf->bf_nseg - 1];
3919 status = ath_hal_txprocdesc(ah, ds);
3920 #ifdef AR_DEBUG
3921 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
3922 ath_printtxbuf(bf, status == HAL_OK);
3923 #endif
3924 if (status == HAL_EINPROGRESS) {
3925 ATH_TXQ_UNLOCK(txq);
3926 break;
3927 }
3928 ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3929 ATH_TXQ_UNLOCK(txq);
3930
3931 ni = bf->bf_node;
3932 if (ni != NULL) {
3933 an = ATH_NODE(ni);
3934 if (ds->ds_txstat.ts_status == 0) {
3935 u_int8_t txant = ds->ds_txstat.ts_antenna;
3936 sc->sc_stats.ast_ant_tx[txant]++;
3937 sc->sc_ant_tx[txant]++;
3938 if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
3939 sc->sc_stats.ast_tx_altrate++;
3940 sc->sc_stats.ast_tx_rssi =
3941 ds->ds_txstat.ts_rssi;
3942 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
3943 ds->ds_txstat.ts_rssi);
3944 pri = M_WME_GETAC(bf->bf_m);
3945 if (pri >= WME_AC_VO)
3946 ic->ic_wme.wme_hipri_traffic++;
3947 ni->ni_inact = ni->ni_inact_reload;
3948 } else {
3949 if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
3950 sc->sc_stats.ast_tx_xretries++;
3951 if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
3952 sc->sc_stats.ast_tx_fifoerr++;
3953 if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
3954 sc->sc_stats.ast_tx_filtered++;
3955 }
3956 sr = ds->ds_txstat.ts_shortretry;
3957 lr = ds->ds_txstat.ts_longretry;
3958 sc->sc_stats.ast_tx_shortretry += sr;
3959 sc->sc_stats.ast_tx_longretry += lr;
3960 /*
3961 * Hand the descriptor to the rate control algorithm.
3962 */
3963 if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
3964 (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
3965 /*
3966 * If frame was ack'd update the last rx time
3967 * used to workaround phantom bmiss interrupts.
3968 */
3969 if (ds->ds_txstat.ts_status == 0)
3970 nacked++;
3971 ath_rate_tx_complete(sc, an, ds, ds0);
3972 }
3973 /*
3974 * Reclaim reference to node.
3975 *
3976 * NB: the node may be reclaimed here if, for example
3977 * this is a DEAUTH message that was sent and the
3978 * node was timed out due to inactivity.
3979 */
3980 ieee80211_free_node(ni);
3981 }
3982 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
3983 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3984 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3985 m_freem(bf->bf_m);
3986 bf->bf_m = NULL;
3987 bf->bf_node = NULL;
3988
3989 ATH_TXBUF_LOCK(sc);
3990 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
3991 ATH_TXBUF_UNLOCK(sc);
3992 }
3993 return nacked;
3994 }
3995
3996 static inline int
3997 txqactive(struct ath_hal *ah, int qnum)
3998 {
3999 u_int32_t txqs = 1<<qnum;
4000 ath_hal_gettxintrtxqs(ah, &txqs);
4001 return (txqs & (1<<qnum));
4002 }
4003
4004 /*
4005 * Deferred processing of transmit interrupt; special-cased
4006 * for a single hardware transmit queue (e.g. 5210 and 5211).
4007 */
4008 static void
4009 ath_tx_proc_q0(void *arg, int npending)
4010 {
4011 struct ath_softc *sc = arg;
4012 struct ifnet *ifp = &sc->sc_if;
4013
4014 if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]))
4015 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4016 if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4017 ath_tx_processq(sc, sc->sc_cabq);
4018 ifp->if_flags &= ~IFF_OACTIVE;
4019 sc->sc_tx_timer = 0;
4020
4021 if (sc->sc_softled)
4022 ath_led_event(sc, ATH_LED_TX);
4023
4024 ath_start(ifp);
4025 }
4026
4027 /*
4028 * Deferred processing of transmit interrupt; special-cased
4029 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4030 */
4031 static void
4032 ath_tx_proc_q0123(void *arg, int npending)
4033 {
4034 struct ath_softc *sc = arg;
4035 struct ifnet *ifp = &sc->sc_if;
4036 int nacked;
4037
4038 /*
4039 * Process each active queue.
4040 */
4041 nacked = 0;
4042 if (txqactive(sc->sc_ah, 0))
4043 nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
4044 if (txqactive(sc->sc_ah, 1))
4045 nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
4046 if (txqactive(sc->sc_ah, 2))
4047 nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
4048 if (txqactive(sc->sc_ah, 3))
4049 nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
4050 if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4051 ath_tx_processq(sc, sc->sc_cabq);
4052 if (nacked)
4053 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4054 ath_tx_processq(sc, sc->sc_cabq);
4055
4056 ifp->if_flags &= ~IFF_OACTIVE;
4057 sc->sc_tx_timer = 0;
4058
4059 if (sc->sc_softled)
4060 ath_led_event(sc, ATH_LED_TX);
4061
4062 ath_start(ifp);
4063 }
4064
4065 /*
4066 * Deferred processing of transmit interrupt.
4067 */
4068 static void
4069 ath_tx_proc(void *arg, int npending)
4070 {
4071 struct ath_softc *sc = arg;
4072 struct ifnet *ifp = &sc->sc_if;
4073 int i, nacked;
4074
4075 /*
4076 * Process each active queue.
4077 */
4078 nacked = 0;
4079 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4080 if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
4081 nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
4082 if (nacked)
4083 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4084
4085 ifp->if_flags &= ~IFF_OACTIVE;
4086 sc->sc_tx_timer = 0;
4087
4088 if (sc->sc_softled)
4089 ath_led_event(sc, ATH_LED_TX);
4090
4091 ath_start(ifp);
4092 }
4093
4094 static void
4095 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
4096 {
4097 struct ath_hal *ah = sc->sc_ah;
4098 struct ieee80211_node *ni;
4099 struct ath_buf *bf;
4100
4101 /*
4102 * NB: this assumes output has been stopped and
4103 * we do not need to block ath_tx_tasklet
4104 */
4105 for (;;) {
4106 ATH_TXQ_LOCK(txq);
4107 bf = STAILQ_FIRST(&txq->axq_q);
4108 if (bf == NULL) {
4109 txq->axq_link = NULL;
4110 ATH_TXQ_UNLOCK(txq);
4111 break;
4112 }
4113 ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4114 ATH_TXQ_UNLOCK(txq);
4115 #ifdef AR_DEBUG
4116 if (sc->sc_debug & ATH_DEBUG_RESET)
4117 ath_printtxbuf(bf,
4118 ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
4119 #endif /* AR_DEBUG */
4120 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4121 m_freem(bf->bf_m);
4122 bf->bf_m = NULL;
4123 ni = bf->bf_node;
4124 bf->bf_node = NULL;
4125 if (ni != NULL) {
4126 /*
4127 * Reclaim node reference.
4128 */
4129 ieee80211_free_node(ni);
4130 }
4131 ATH_TXBUF_LOCK(sc);
4132 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4133 ATH_TXBUF_UNLOCK(sc);
4134 }
4135 }
4136
4137 static void
4138 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4139 {
4140 struct ath_hal *ah = sc->sc_ah;
4141
4142 (void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4143 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4144 __func__, txq->axq_qnum,
4145 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4146 txq->axq_link);
4147 }
4148
4149 /*
4150 * Drain the transmit queues and reclaim resources.
4151 */
4152 static void
4153 ath_draintxq(struct ath_softc *sc)
4154 {
4155 struct ath_hal *ah = sc->sc_ah;
4156 struct ifnet *ifp = &sc->sc_if;
4157 int i;
4158
4159 /* XXX return value */
4160 if (!sc->sc_invalid) {
4161 /* don't touch the hardware if marked invalid */
4162 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4163 DPRINTF(sc, ATH_DEBUG_RESET,
4164 "%s: beacon queue %p\n", __func__,
4165 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
4166 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4167 if (ATH_TXQ_SETUP(sc, i))
4168 ath_tx_stopdma(sc, &sc->sc_txq[i]);
4169 }
4170 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4171 if (ATH_TXQ_SETUP(sc, i))
4172 ath_tx_draintxq(sc, &sc->sc_txq[i]);
4173 ifp->if_flags &= ~IFF_OACTIVE;
4174 sc->sc_tx_timer = 0;
4175 }
4176
4177 /*
4178 * Disable the receive h/w in preparation for a reset.
4179 */
4180 static void
4181 ath_stoprecv(struct ath_softc *sc)
4182 {
4183 #define PA2DESC(_sc, _pa) \
4184 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
4185 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
4186 struct ath_hal *ah = sc->sc_ah;
4187
4188 ath_hal_stoppcurecv(ah); /* disable PCU */
4189 ath_hal_setrxfilter(ah, 0); /* clear recv filter */
4190 ath_hal_stopdmarecv(ah); /* disable DMA engine */
4191 DELAY(3000); /* 3ms is long enough for 1 frame */
4192 #ifdef AR_DEBUG
4193 if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
4194 struct ath_buf *bf;
4195
4196 printf("%s: rx queue %p, link %p\n", __func__,
4197 (caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
4198 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4199 struct ath_desc *ds = bf->bf_desc;
4200 HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
4201 bf->bf_daddr, PA2DESC(sc, ds->ds_link));
4202 if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
4203 ath_printrxbuf(bf, status == HAL_OK);
4204 }
4205 }
4206 #endif
4207 sc->sc_rxlink = NULL; /* just in case */
4208 #undef PA2DESC
4209 }
4210
4211 /*
4212 * Enable the receive h/w following a reset.
4213 */
4214 static int
4215 ath_startrecv(struct ath_softc *sc)
4216 {
4217 struct ath_hal *ah = sc->sc_ah;
4218 struct ath_buf *bf;
4219
4220 sc->sc_rxlink = NULL;
4221 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4222 int error = ath_rxbuf_init(sc, bf);
4223 if (error != 0) {
4224 DPRINTF(sc, ATH_DEBUG_RECV,
4225 "%s: ath_rxbuf_init failed %d\n",
4226 __func__, error);
4227 return error;
4228 }
4229 }
4230
4231 bf = STAILQ_FIRST(&sc->sc_rxbuf);
4232 ath_hal_putrxbuf(ah, bf->bf_daddr);
4233 ath_hal_rxena(ah); /* enable recv descriptors */
4234 ath_mode_init(sc); /* set filters, etc. */
4235 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */
4236 return 0;
4237 }
4238
4239 /*
4240 * Update internal state after a channel change.
4241 */
4242 static void
4243 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4244 {
4245 struct ieee80211com *ic = &sc->sc_ic;
4246 enum ieee80211_phymode mode;
4247 u_int16_t flags;
4248
4249 /*
4250 * Change channels and update the h/w rate map
4251 * if we're switching; e.g. 11a to 11b/g.
4252 */
4253 mode = ieee80211_chan2mode(ic, chan);
4254 if (mode != sc->sc_curmode)
4255 ath_setcurmode(sc, mode);
4256 /*
4257 * Update BPF state. NB: ethereal et. al. don't handle
4258 * merged flags well so pick a unique mode for their use.
4259 */
4260 if (IEEE80211_IS_CHAN_A(chan))
4261 flags = IEEE80211_CHAN_A;
4262 /* XXX 11g schizophrenia */
4263 else if (IEEE80211_IS_CHAN_G(chan) ||
4264 IEEE80211_IS_CHAN_PUREG(chan))
4265 flags = IEEE80211_CHAN_G;
4266 else
4267 flags = IEEE80211_CHAN_B;
4268 if (IEEE80211_IS_CHAN_T(chan))
4269 flags |= IEEE80211_CHAN_TURBO;
4270 sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
4271 htole16(chan->ic_freq);
4272 sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
4273 htole16(flags);
4274 }
4275
4276 /*
4277 * Poll for a channel clear indication; this is required
4278 * for channels requiring DFS and not previously visited
4279 * and/or with a recent radar detection.
4280 */
4281 static void
4282 ath_dfswait(void *arg)
4283 {
4284 struct ath_softc *sc = arg;
4285 struct ath_hal *ah = sc->sc_ah;
4286 HAL_CHANNEL hchan;
4287
4288 ath_hal_radar_wait(ah, &hchan);
4289 if (hchan.privFlags & CHANNEL_INTERFERENCE) {
4290 if_printf(&sc->sc_if,
4291 "channel %u/0x%x/0x%x has interference\n",
4292 hchan.channel, hchan.channelFlags, hchan.privFlags);
4293 return;
4294 }
4295 if ((hchan.privFlags & CHANNEL_DFS) == 0) {
4296 /* XXX should not happen */
4297 return;
4298 }
4299 if (hchan.privFlags & CHANNEL_DFS_CLEAR) {
4300 sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR;
4301 sc->sc_if.if_flags &= ~IFF_OACTIVE;
4302 if_printf(&sc->sc_if,
4303 "channel %u/0x%x/0x%x marked clear\n",
4304 hchan.channel, hchan.channelFlags, hchan.privFlags);
4305 } else
4306 callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc);
4307 }
4308
4309 /*
4310 * Set/change channels. If the channel is really being changed,
4311 * it's done by reseting the chip. To accomplish this we must
4312 * first cleanup any pending DMA, then restart stuff after a la
4313 * ath_init.
4314 */
4315 static int
4316 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4317 {
4318 struct ath_hal *ah = sc->sc_ah;
4319 struct ieee80211com *ic = &sc->sc_ic;
4320 HAL_CHANNEL hchan;
4321
4322 /*
4323 * Convert to a HAL channel description with
4324 * the flags constrained to reflect the current
4325 * operating mode.
4326 */
4327 hchan.channel = chan->ic_freq;
4328 hchan.channelFlags = ath_chan2flags(ic, chan);
4329
4330 DPRINTF(sc, ATH_DEBUG_RESET,
4331 "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
4332 __func__,
4333 ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
4334 sc->sc_curchan.channelFlags),
4335 sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
4336 ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
4337 hchan.channel, hchan.channelFlags);
4338 if (hchan.channel != sc->sc_curchan.channel ||
4339 hchan.channelFlags != sc->sc_curchan.channelFlags) {
4340 HAL_STATUS status;
4341
4342 /*
4343 * To switch channels clear any pending DMA operations;
4344 * wait long enough for the RX fifo to drain, reset the
4345 * hardware at the new frequency, and then re-enable
4346 * the relevant bits of the h/w.
4347 */
4348 ath_hal_intrset(ah, 0); /* disable interrupts */
4349 ath_draintxq(sc); /* clear pending tx frames */
4350 ath_stoprecv(sc); /* turn off frame recv */
4351 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
4352 if_printf(ic->ic_ifp, "%s: unable to reset "
4353 "channel %u (%u MHz, flags 0x%x hal flags 0x%x)\n",
4354 __func__, ieee80211_chan2ieee(ic, chan),
4355 chan->ic_freq, chan->ic_flags, hchan.channelFlags);
4356 return EIO;
4357 }
4358 sc->sc_curchan = hchan;
4359 ath_update_txpow(sc); /* update tx power state */
4360 sc->sc_diversity = ath_hal_getdiversity(ah);
4361 sc->sc_calinterval = 1;
4362 sc->sc_caltries = 0;
4363
4364 /*
4365 * Re-enable rx framework.
4366 */
4367 if (ath_startrecv(sc) != 0) {
4368 if_printf(&sc->sc_if,
4369 "%s: unable to restart recv logic\n", __func__);
4370 return EIO;
4371 }
4372
4373 /*
4374 * Change channels and update the h/w rate map
4375 * if we're switching; e.g. 11a to 11b/g.
4376 */
4377 ic->ic_ibss_chan = chan;
4378 ath_chan_change(sc, chan);
4379
4380 /*
4381 * Handle DFS required waiting period to determine
4382 * if channel is clear of radar traffic.
4383 */
4384 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
4385 #define DFS_AND_NOT_CLEAR(_c) \
4386 (((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS)
4387 if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) {
4388 if_printf(&sc->sc_if,
4389 "wait for DFS clear channel signal\n");
4390 /* XXX stop sndq */
4391 sc->sc_if.if_flags |= IFF_OACTIVE;
4392 callout_reset(&sc->sc_dfs_ch,
4393 2 * hz, ath_dfswait, sc);
4394 } else
4395 callout_stop(&sc->sc_dfs_ch);
4396 #undef DFS_NOT_CLEAR
4397 }
4398
4399 /*
4400 * Re-enable interrupts.
4401 */
4402 ath_hal_intrset(ah, sc->sc_imask);
4403 }
4404 return 0;
4405 }
4406
4407 static void
4408 ath_next_scan(void *arg)
4409 {
4410 struct ath_softc *sc = arg;
4411 struct ieee80211com *ic = &sc->sc_ic;
4412 int s;
4413
4414 /* don't call ath_start w/o network interrupts blocked */
4415 s = splnet();
4416
4417 if (ic->ic_state == IEEE80211_S_SCAN)
4418 ieee80211_next_scan(ic);
4419 splx(s);
4420 }
4421
4422 /*
4423 * Periodically recalibrate the PHY to account
4424 * for temperature/environment changes.
4425 */
4426 static void
4427 ath_calibrate(void *arg)
4428 {
4429 struct ath_softc *sc = arg;
4430 struct ath_hal *ah = sc->sc_ah;
4431 HAL_BOOL iqCalDone;
4432
4433 sc->sc_stats.ast_per_cal++;
4434
4435 ATH_LOCK(sc);
4436
4437 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4438 /*
4439 * Rfgain is out of bounds, reset the chip
4440 * to load new gain values.
4441 */
4442 DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4443 "%s: rfgain change\n", __func__);
4444 sc->sc_stats.ast_per_rfgain++;
4445 ath_reset(&sc->sc_if);
4446 }
4447 if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
4448 DPRINTF(sc, ATH_DEBUG_ANY,
4449 "%s: calibration of channel %u failed\n",
4450 __func__, sc->sc_curchan.channel);
4451 sc->sc_stats.ast_per_calfail++;
4452 }
4453 /*
4454 * Calibrate noise floor data again in case of change.
4455 */
4456 ath_hal_process_noisefloor(ah);
4457 /*
4458 * Poll more frequently when the IQ calibration is in
4459 * progress to speedup loading the final settings.
4460 * We temper this aggressive polling with an exponential
4461 * back off after 4 tries up to ath_calinterval.
4462 */
4463 if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
4464 sc->sc_caltries = 0;
4465 sc->sc_calinterval = ath_calinterval;
4466 } else if (sc->sc_caltries > 4) {
4467 sc->sc_caltries = 0;
4468 sc->sc_calinterval <<= 1;
4469 if (sc->sc_calinterval > ath_calinterval)
4470 sc->sc_calinterval = ath_calinterval;
4471 }
4472 KASSERT(0 < sc->sc_calinterval && sc->sc_calinterval <= ath_calinterval,
4473 ("bad calibration interval %u", sc->sc_calinterval));
4474
4475 DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4476 "%s: next +%u (%siqCalDone tries %u)\n", __func__,
4477 sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
4478 sc->sc_caltries++;
4479 callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4480 ath_calibrate, sc);
4481 ATH_UNLOCK(sc);
4482 }
4483
4484 static int
4485 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
4486 {
4487 struct ifnet *ifp = ic->ic_ifp;
4488 struct ath_softc *sc = ifp->if_softc;
4489 struct ath_hal *ah = sc->sc_ah;
4490 struct ieee80211_node *ni;
4491 int i, error;
4492 const u_int8_t *bssid;
4493 u_int32_t rfilt;
4494 static const HAL_LED_STATE leds[] = {
4495 HAL_LED_INIT, /* IEEE80211_S_INIT */
4496 HAL_LED_SCAN, /* IEEE80211_S_SCAN */
4497 HAL_LED_AUTH, /* IEEE80211_S_AUTH */
4498 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */
4499 HAL_LED_RUN, /* IEEE80211_S_RUN */
4500 };
4501
4502 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4503 ieee80211_state_name[ic->ic_state],
4504 ieee80211_state_name[nstate]);
4505
4506 callout_stop(&sc->sc_scan_ch);
4507 callout_stop(&sc->sc_cal_ch);
4508 callout_stop(&sc->sc_dfs_ch);
4509 ath_hal_setledstate(ah, leds[nstate]); /* set LED */
4510
4511 if (nstate == IEEE80211_S_INIT) {
4512 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4513 /*
4514 * NB: disable interrupts so we don't rx frames.
4515 */
4516 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4517 /*
4518 * Notify the rate control algorithm.
4519 */
4520 ath_rate_newstate(sc, nstate);
4521 goto done;
4522 }
4523 ni = ic->ic_bss;
4524 error = ath_chan_set(sc, ic->ic_curchan);
4525 if (error != 0)
4526 goto bad;
4527 rfilt = ath_calcrxfilter(sc, nstate);
4528 if (nstate == IEEE80211_S_SCAN)
4529 bssid = ifp->if_broadcastaddr;
4530 else
4531 bssid = ni->ni_bssid;
4532 ath_hal_setrxfilter(ah, rfilt);
4533 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
4534 __func__, rfilt, ether_sprintf(bssid));
4535
4536 if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
4537 ath_hal_setassocid(ah, bssid, ni->ni_associd);
4538 else
4539 ath_hal_setassocid(ah, bssid, 0);
4540 if (ic->ic_flags & IEEE80211_F_PRIVACY) {
4541 for (i = 0; i < IEEE80211_WEP_NKID; i++)
4542 if (ath_hal_keyisvalid(ah, i))
4543 ath_hal_keysetmac(ah, i, bssid);
4544 }
4545
4546 /*
4547 * Notify the rate control algorithm so rates
4548 * are setup should ath_beacon_alloc be called.
4549 */
4550 ath_rate_newstate(sc, nstate);
4551
4552 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4553 /* nothing to do */;
4554 } else if (nstate == IEEE80211_S_RUN) {
4555 DPRINTF(sc, ATH_DEBUG_STATE,
4556 "%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
4557 "capinfo=0x%04x chan=%d\n"
4558 , __func__
4559 , ic->ic_flags
4560 , ni->ni_intval
4561 , ether_sprintf(ni->ni_bssid)
4562 , ni->ni_capinfo
4563 , ieee80211_chan2ieee(ic, ic->ic_curchan));
4564
4565 switch (ic->ic_opmode) {
4566 case IEEE80211_M_HOSTAP:
4567 case IEEE80211_M_IBSS:
4568 /*
4569 * Allocate and setup the beacon frame.
4570 *
4571 * Stop any previous beacon DMA. This may be
4572 * necessary, for example, when an ibss merge
4573 * causes reconfiguration; there will be a state
4574 * transition from RUN->RUN that means we may
4575 * be called with beacon transmission active.
4576 */
4577 ath_hal_stoptxdma(ah, sc->sc_bhalq);
4578 ath_beacon_free(sc);
4579 error = ath_beacon_alloc(sc, ni);
4580 if (error != 0)
4581 goto bad;
4582 /*
4583 * If joining an adhoc network defer beacon timer
4584 * configuration to the next beacon frame so we
4585 * have a current TSF to use. Otherwise we're
4586 * starting an ibss/bss so there's no need to delay.
4587 */
4588 if (ic->ic_opmode == IEEE80211_M_IBSS &&
4589 ic->ic_bss->ni_tstamp.tsf != 0)
4590 sc->sc_syncbeacon = 1;
4591 else
4592 ath_beacon_config(sc);
4593 break;
4594 case IEEE80211_M_STA:
4595 /*
4596 * Allocate a key cache slot to the station.
4597 */
4598 if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
4599 sc->sc_hasclrkey &&
4600 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4601 ath_setup_stationkey(ni);
4602 /*
4603 * Defer beacon timer configuration to the next
4604 * beacon frame so we have a current TSF to use
4605 * (any TSF collected when scanning is likely old).
4606 */
4607 sc->sc_syncbeacon = 1;
4608 break;
4609 default:
4610 break;
4611 }
4612 /*
4613 * Let the hal process statistics collected during a
4614 * scan so it can provide calibrated noise floor data.
4615 */
4616 ath_hal_process_noisefloor(ah);
4617 /*
4618 * Reset rssi stats; maybe not the best place...
4619 */
4620 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
4621 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
4622 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
4623 } else {
4624 ath_hal_intrset(ah,
4625 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4626 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4627 }
4628 done:
4629 /*
4630 * Invoke the parent method to complete the work.
4631 */
4632 error = sc->sc_newstate(ic, nstate, arg);
4633 /*
4634 * Finally, start any timers.
4635 */
4636 if (nstate == IEEE80211_S_RUN) {
4637 /* start periodic recalibration timer */
4638 callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4639 ath_calibrate, sc);
4640 } else if (nstate == IEEE80211_S_SCAN) {
4641 /* start ap/neighbor scan timer */
4642 callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
4643 ath_next_scan, sc);
4644 }
4645 bad:
4646 return error;
4647 }
4648
4649 /*
4650 * Allocate a key cache slot to the station so we can
4651 * setup a mapping from key index to node. The key cache
4652 * slot is needed for managing antenna state and for
4653 * compression when stations do not use crypto. We do
4654 * it uniliaterally here; if crypto is employed this slot
4655 * will be reassigned.
4656 */
4657 static void
4658 ath_setup_stationkey(struct ieee80211_node *ni)
4659 {
4660 struct ieee80211com *ic = ni->ni_ic;
4661 struct ath_softc *sc = ic->ic_ifp->if_softc;
4662 ieee80211_keyix keyix, rxkeyix;
4663
4664 if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
4665 /*
4666 * Key cache is full; we'll fall back to doing
4667 * the more expensive lookup in software. Note
4668 * this also means no h/w compression.
4669 */
4670 /* XXX msg+statistic */
4671 } else {
4672 /* XXX locking? */
4673 ni->ni_ucastkey.wk_keyix = keyix;
4674 ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
4675 /* NB: this will create a pass-thru key entry */
4676 ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
4677 }
4678 }
4679
4680 /*
4681 * Setup driver-specific state for a newly associated node.
4682 * Note that we're called also on a re-associate, the isnew
4683 * param tells us if this is the first time or not.
4684 */
4685 static void
4686 ath_newassoc(struct ieee80211_node *ni, int isnew)
4687 {
4688 struct ieee80211com *ic = ni->ni_ic;
4689 struct ath_softc *sc = ic->ic_ifp->if_softc;
4690
4691 ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
4692 if (isnew &&
4693 (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
4694 KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
4695 ("new assoc with a unicast key already setup (keyix %u)",
4696 ni->ni_ucastkey.wk_keyix));
4697 ath_setup_stationkey(ni);
4698 }
4699 }
4700
4701 static int
4702 ath_getchannels(struct ath_softc *sc, u_int cc,
4703 HAL_BOOL outdoor, HAL_BOOL xchanmode)
4704 {
4705 #define COMPAT (CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
4706 struct ieee80211com *ic = &sc->sc_ic;
4707 struct ifnet *ifp = &sc->sc_if;
4708 struct ath_hal *ah = sc->sc_ah;
4709 HAL_CHANNEL *chans;
4710 int i, ix, nchan;
4711
4712 chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
4713 M_TEMP, M_NOWAIT);
4714 if (chans == NULL) {
4715 if_printf(ifp, "unable to allocate channel table\n");
4716 return ENOMEM;
4717 }
4718 if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
4719 NULL, 0, NULL,
4720 cc, HAL_MODE_ALL, outdoor, xchanmode)) {
4721 u_int32_t rd;
4722
4723 (void)ath_hal_getregdomain(ah, &rd);
4724 if_printf(ifp, "unable to collect channel list from hal; "
4725 "regdomain likely %u country code %u\n", rd, cc);
4726 free(chans, M_TEMP);
4727 return EINVAL;
4728 }
4729
4730 /*
4731 * Convert HAL channels to ieee80211 ones and insert
4732 * them in the table according to their channel number.
4733 */
4734 for (i = 0; i < nchan; i++) {
4735 HAL_CHANNEL *c = &chans[i];
4736 u_int16_t flags;
4737
4738 ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags);
4739 if (ix > IEEE80211_CHAN_MAX) {
4740 if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n",
4741 ix, c->channel, c->channelFlags);
4742 continue;
4743 }
4744 if (ix < 0) {
4745 /* XXX can't handle stuff <2400 right now */
4746 if (bootverbose)
4747 if_printf(ifp, "hal channel %d (%u/%x) "
4748 "cannot be handled; ignored\n",
4749 ix, c->channel, c->channelFlags);
4750 continue;
4751 }
4752 /*
4753 * Calculate net80211 flags; most are compatible
4754 * but some need massaging. Note the static turbo
4755 * conversion can be removed once net80211 is updated
4756 * to understand static vs. dynamic turbo.
4757 */
4758 flags = c->channelFlags & COMPAT;
4759 if (c->channelFlags & CHANNEL_STURBO)
4760 flags |= IEEE80211_CHAN_TURBO;
4761 if (ic->ic_channels[ix].ic_freq == 0) {
4762 ic->ic_channels[ix].ic_freq = c->channel;
4763 ic->ic_channels[ix].ic_flags = flags;
4764 } else {
4765 /* channels overlap; e.g. 11g and 11b */
4766 ic->ic_channels[ix].ic_flags |= flags;
4767 }
4768 }
4769 free(chans, M_TEMP);
4770 return 0;
4771 #undef COMPAT
4772 }
4773
4774 static void
4775 ath_led_done(void *arg)
4776 {
4777 struct ath_softc *sc = arg;
4778
4779 sc->sc_blinking = 0;
4780 }
4781
4782 /*
4783 * Turn the LED off: flip the pin and then set a timer so no
4784 * update will happen for the specified duration.
4785 */
4786 static void
4787 ath_led_off(void *arg)
4788 {
4789 struct ath_softc *sc = arg;
4790
4791 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
4792 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
4793 }
4794
4795 /*
4796 * Blink the LED according to the specified on/off times.
4797 */
4798 static void
4799 ath_led_blink(struct ath_softc *sc, int on, int off)
4800 {
4801 DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
4802 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
4803 sc->sc_blinking = 1;
4804 sc->sc_ledoff = off;
4805 callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
4806 }
4807
4808 static void
4809 ath_led_event(struct ath_softc *sc, int event)
4810 {
4811
4812 sc->sc_ledevent = ticks; /* time of last event */
4813 if (sc->sc_blinking) /* don't interrupt active blink */
4814 return;
4815 switch (event) {
4816 case ATH_LED_POLL:
4817 ath_led_blink(sc, sc->sc_hwmap[0].ledon,
4818 sc->sc_hwmap[0].ledoff);
4819 break;
4820 case ATH_LED_TX:
4821 ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
4822 sc->sc_hwmap[sc->sc_txrate].ledoff);
4823 break;
4824 case ATH_LED_RX:
4825 ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
4826 sc->sc_hwmap[sc->sc_rxrate].ledoff);
4827 break;
4828 }
4829 }
4830
4831 static void
4832 ath_update_txpow(struct ath_softc *sc)
4833 {
4834 #define COMPAT (CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
4835 struct ieee80211com *ic = &sc->sc_ic;
4836 struct ath_hal *ah = sc->sc_ah;
4837 u_int32_t txpow;
4838
4839 if (sc->sc_curtxpow != ic->ic_txpowlimit) {
4840 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
4841 /* read back in case value is clamped */
4842 (void)ath_hal_gettxpowlimit(ah, &txpow);
4843 ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
4844 }
4845 /*
4846 * Fetch max tx power level for status requests.
4847 */
4848 (void)ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
4849 ic->ic_bss->ni_txpower = txpow;
4850 }
4851
4852 static void
4853 rate_setup(struct ath_softc *sc,
4854 const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs)
4855 {
4856 int i, maxrates;
4857
4858 if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
4859 DPRINTF(sc, ATH_DEBUG_ANY,
4860 "%s: rate table too small (%u > %u)\n",
4861 __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
4862 maxrates = IEEE80211_RATE_MAXSIZE;
4863 } else
4864 maxrates = rt->rateCount;
4865 for (i = 0; i < maxrates; i++)
4866 rs->rs_rates[i] = rt->info[i].dot11Rate;
4867 rs->rs_nrates = maxrates;
4868 }
4869
4870 static int
4871 ath_rate_setup(struct ath_softc *sc, u_int mode)
4872 {
4873 struct ath_hal *ah = sc->sc_ah;
4874 struct ieee80211com *ic = &sc->sc_ic;
4875 const HAL_RATE_TABLE *rt;
4876
4877 switch (mode) {
4878 case IEEE80211_MODE_11A:
4879 rt = ath_hal_getratetable(ah, HAL_MODE_11A);
4880 break;
4881 case IEEE80211_MODE_11B:
4882 rt = ath_hal_getratetable(ah, HAL_MODE_11B);
4883 break;
4884 case IEEE80211_MODE_11G:
4885 rt = ath_hal_getratetable(ah, HAL_MODE_11G);
4886 break;
4887 case IEEE80211_MODE_TURBO_A:
4888 /* XXX until static/dynamic turbo is fixed */
4889 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
4890 break;
4891 case IEEE80211_MODE_TURBO_G:
4892 rt = ath_hal_getratetable(ah, HAL_MODE_108G);
4893 break;
4894 default:
4895 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
4896 __func__, mode);
4897 return 0;
4898 }
4899 sc->sc_rates[mode] = rt;
4900 if (rt != NULL) {
4901 rate_setup(sc, rt, &ic->ic_sup_rates[mode]);
4902 return 1;
4903 } else
4904 return 0;
4905 }
4906
4907 static void
4908 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
4909 {
4910 #define N(a) (sizeof(a)/sizeof(a[0]))
4911 /* NB: on/off times from the Atheros NDIS driver, w/ permission */
4912 static const struct {
4913 u_int rate; /* tx/rx 802.11 rate */
4914 u_int16_t timeOn; /* LED on time (ms) */
4915 u_int16_t timeOff; /* LED off time (ms) */
4916 } blinkrates[] = {
4917 { 108, 40, 10 },
4918 { 96, 44, 11 },
4919 { 72, 50, 13 },
4920 { 48, 57, 14 },
4921 { 36, 67, 16 },
4922 { 24, 80, 20 },
4923 { 22, 100, 25 },
4924 { 18, 133, 34 },
4925 { 12, 160, 40 },
4926 { 10, 200, 50 },
4927 { 6, 240, 58 },
4928 { 4, 267, 66 },
4929 { 2, 400, 100 },
4930 { 0, 500, 130 },
4931 };
4932 const HAL_RATE_TABLE *rt;
4933 int i, j;
4934
4935 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
4936 rt = sc->sc_rates[mode];
4937 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
4938 for (i = 0; i < rt->rateCount; i++)
4939 sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
4940 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
4941 for (i = 0; i < 32; i++) {
4942 u_int8_t ix = rt->rateCodeToIndex[i];
4943 if (ix == 0xff) {
4944 sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
4945 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
4946 continue;
4947 }
4948 sc->sc_hwmap[i].ieeerate =
4949 rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
4950 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
4951 if (rt->info[ix].shortPreamble ||
4952 rt->info[ix].phy == IEEE80211_T_OFDM)
4953 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
4954 /* NB: receive frames include FCS */
4955 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
4956 IEEE80211_RADIOTAP_F_FCS;
4957 /* setup blink rate table to avoid per-packet lookup */
4958 for (j = 0; j < N(blinkrates)-1; j++)
4959 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
4960 break;
4961 /* NB: this uses the last entry if the rate isn't found */
4962 /* XXX beware of overlow */
4963 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
4964 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
4965 }
4966 sc->sc_currates = rt;
4967 sc->sc_curmode = mode;
4968 /*
4969 * All protection frames are transmited at 2Mb/s for
4970 * 11g, otherwise at 1Mb/s.
4971 */
4972 if (mode == IEEE80211_MODE_11G)
4973 sc->sc_protrix = ath_tx_findrix(rt, 2*2);
4974 else
4975 sc->sc_protrix = ath_tx_findrix(rt, 2*1);
4976 /* rate index used to send management frames */
4977 sc->sc_minrateix = 0;
4978 /*
4979 * Setup multicast rate state.
4980 */
4981 /* XXX layering violation */
4982 sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate);
4983 sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate;
4984 /* NB: caller is responsible for reseting rate control state */
4985 #undef N
4986 }
4987
4988 #ifdef AR_DEBUG
4989 static void
4990 ath_printrxbuf(struct ath_buf *bf, int done)
4991 {
4992 struct ath_desc *ds;
4993 int i;
4994
4995 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
4996 printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n",
4997 i, ds, (struct ath_desc *)bf->bf_daddr + i,
4998 ds->ds_link, ds->ds_data,
4999 ds->ds_ctl0, ds->ds_ctl1,
5000 ds->ds_hw[0], ds->ds_hw[1],
5001 !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
5002 }
5003 }
5004
5005 static void
5006 ath_printtxbuf(struct ath_buf *bf, int done)
5007 {
5008 struct ath_desc *ds;
5009 int i;
5010
5011 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5012 printf("T%d (%p %p) %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
5013 i, ds, (struct ath_desc *)bf->bf_daddr + i,
5014 ds->ds_link, ds->ds_data,
5015 ds->ds_ctl0, ds->ds_ctl1,
5016 ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
5017 !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
5018 }
5019 }
5020 #endif /* AR_DEBUG */
5021
5022 static void
5023 ath_watchdog(struct ifnet *ifp)
5024 {
5025 struct ath_softc *sc = ifp->if_softc;
5026 struct ieee80211com *ic = &sc->sc_ic;
5027
5028 ifp->if_timer = 0;
5029 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
5030 return;
5031 if (sc->sc_tx_timer) {
5032 if (--sc->sc_tx_timer == 0) {
5033 if_printf(ifp, "device timeout\n");
5034 ath_reset(ifp);
5035 ifp->if_oerrors++;
5036 sc->sc_stats.ast_watchdog++;
5037 } else
5038 ifp->if_timer = 1;
5039 }
5040 ieee80211_watchdog(ic);
5041 }
5042
5043 /*
5044 * Diagnostic interface to the HAL. This is used by various
5045 * tools to do things like retrieve register contents for
5046 * debugging. The mechanism is intentionally opaque so that
5047 * it can change frequently w/o concern for compatiblity.
5048 */
5049 static int
5050 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
5051 {
5052 struct ath_hal *ah = sc->sc_ah;
5053 u_int id = ad->ad_id & ATH_DIAG_ID;
5054 void *indata = NULL;
5055 void *outdata = NULL;
5056 u_int32_t insize = ad->ad_in_size;
5057 u_int32_t outsize = ad->ad_out_size;
5058 int error = 0;
5059
5060 if (ad->ad_id & ATH_DIAG_IN) {
5061 /*
5062 * Copy in data.
5063 */
5064 indata = malloc(insize, M_TEMP, M_NOWAIT);
5065 if (indata == NULL) {
5066 error = ENOMEM;
5067 goto bad;
5068 }
5069 error = copyin(ad->ad_in_data, indata, insize);
5070 if (error)
5071 goto bad;
5072 }
5073 if (ad->ad_id & ATH_DIAG_DYN) {
5074 /*
5075 * Allocate a buffer for the results (otherwise the HAL
5076 * returns a pointer to a buffer where we can read the
5077 * results). Note that we depend on the HAL leaving this
5078 * pointer for us to use below in reclaiming the buffer;
5079 * may want to be more defensive.
5080 */
5081 outdata = malloc(outsize, M_TEMP, M_NOWAIT);
5082 if (outdata == NULL) {
5083 error = ENOMEM;
5084 goto bad;
5085 }
5086 }
5087 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
5088 if (outsize < ad->ad_out_size)
5089 ad->ad_out_size = outsize;
5090 if (outdata != NULL)
5091 error = copyout(outdata, ad->ad_out_data,
5092 ad->ad_out_size);
5093 } else {
5094 error = EINVAL;
5095 }
5096 bad:
5097 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
5098 free(indata, M_TEMP);
5099 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
5100 free(outdata, M_TEMP);
5101 return error;
5102 }
5103
5104 static int
5105 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
5106 {
5107 #define IS_RUNNING(ifp) \
5108 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
5109 struct ath_softc *sc = ifp->if_softc;
5110 struct ieee80211com *ic = &sc->sc_ic;
5111 struct ifreq *ifr = (struct ifreq *)data;
5112 int error = 0;
5113
5114 ATH_LOCK(sc);
5115 switch (cmd) {
5116 case SIOCSIFFLAGS:
5117 if (IS_RUNNING(ifp)) {
5118 /*
5119 * To avoid rescanning another access point,
5120 * do not call ath_init() here. Instead,
5121 * only reflect promisc mode settings.
5122 */
5123 ath_mode_init(sc);
5124 } else if (ifp->if_flags & IFF_UP) {
5125 /*
5126 * Beware of being called during attach/detach
5127 * to reset promiscuous mode. In that case we
5128 * will still be marked UP but not RUNNING.
5129 * However trying to re-init the interface
5130 * is the wrong thing to do as we've already
5131 * torn down much of our state. There's
5132 * probably a better way to deal with this.
5133 */
5134 if (!sc->sc_invalid && ic->ic_bss != NULL)
5135 ath_init(sc); /* XXX lose error */
5136 } else
5137 ath_stop_locked(ifp, 1);
5138 break;
5139 case SIOCADDMULTI:
5140 case SIOCDELMULTI:
5141 error = (cmd == SIOCADDMULTI) ?
5142 ether_addmulti(ifr, &sc->sc_ec) :
5143 ether_delmulti(ifr, &sc->sc_ec);
5144 if (error == ENETRESET) {
5145 if (ifp->if_flags & IFF_RUNNING)
5146 ath_mode_init(sc);
5147 error = 0;
5148 }
5149 break;
5150 case SIOCGATHSTATS:
5151 /* NB: embed these numbers to get a consistent view */
5152 sc->sc_stats.ast_tx_packets = ifp->if_opackets;
5153 sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
5154 sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
5155 ATH_UNLOCK(sc);
5156 /*
5157 * NB: Drop the softc lock in case of a page fault;
5158 * we'll accept any potential inconsisentcy in the
5159 * statistics. The alternative is to copy the data
5160 * to a local structure.
5161 */
5162 return copyout(&sc->sc_stats,
5163 ifr->ifr_data, sizeof (sc->sc_stats));
5164 case SIOCGATHDIAG:
5165 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
5166 break;
5167 default:
5168 error = ieee80211_ioctl(ic, cmd, data);
5169 if (error == ENETRESET) {
5170 if (IS_RUNNING(ifp) &&
5171 ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
5172 ath_init(sc); /* XXX lose error */
5173 error = 0;
5174 }
5175 if (error == ERESTART)
5176 error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0;
5177 break;
5178 }
5179 ATH_UNLOCK(sc);
5180 return error;
5181 #undef IS_RUNNING
5182 }
5183
5184 #if NBPFILTER > 0
5185 static void
5186 ath_bpfattach(struct ath_softc *sc)
5187 {
5188 struct ifnet *ifp = &sc->sc_if;
5189
5190 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
5191 sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
5192 &sc->sc_drvbpf);
5193 /*
5194 * Initialize constant fields.
5195 * XXX make header lengths a multiple of 32-bits so subsequent
5196 * headers are properly aligned; this is a kludge to keep
5197 * certain applications happy.
5198 *
5199 * NB: the channel is setup each time we transition to the
5200 * RUN state to avoid filling it in for each frame.
5201 */
5202 sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
5203 sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
5204 sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
5205
5206 sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
5207 sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
5208 sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
5209 }
5210 #endif
5211
5212 /*
5213 * Announce various information on device/driver attach.
5214 */
5215 static void
5216 ath_announce(struct ath_softc *sc)
5217 {
5218 #define HAL_MODE_DUALBAND (HAL_MODE_11A|HAL_MODE_11B)
5219 struct ifnet *ifp = &sc->sc_if;
5220 struct ath_hal *ah = sc->sc_ah;
5221 u_int modes, cc;
5222
5223 if_printf(ifp, "mac %d.%d phy %d.%d",
5224 ah->ah_macVersion, ah->ah_macRev,
5225 ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
5226 /*
5227 * Print radio revision(s). We check the wireless modes
5228 * to avoid falsely printing revs for inoperable parts.
5229 * Dual-band radio revs are returned in the 5 GHz rev number.
5230 */
5231 ath_hal_getcountrycode(ah, &cc);
5232 modes = ath_hal_getwirelessmodes(ah, cc);
5233 if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
5234 if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
5235 printf(" 5 GHz radio %d.%d 2 GHz radio %d.%d",
5236 ah->ah_analog5GhzRev >> 4,
5237 ah->ah_analog5GhzRev & 0xf,
5238 ah->ah_analog2GhzRev >> 4,
5239 ah->ah_analog2GhzRev & 0xf);
5240 else
5241 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5242 ah->ah_analog5GhzRev & 0xf);
5243 } else
5244 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5245 ah->ah_analog5GhzRev & 0xf);
5246 printf("\n");
5247 if (bootverbose) {
5248 int i;
5249 for (i = 0; i <= WME_AC_VO; i++) {
5250 struct ath_txq *txq = sc->sc_ac2q[i];
5251 if_printf(ifp, "Use hw queue %u for %s traffic\n",
5252 txq->axq_qnum, ieee80211_wme_acnames[i]);
5253 }
5254 if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5255 sc->sc_cabq->axq_qnum);
5256 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5257 }
5258 if (ath_rxbuf != ATH_RXBUF)
5259 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
5260 if (ath_txbuf != ATH_TXBUF)
5261 if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
5262 #undef HAL_MODE_DUALBAND
5263 }
5264