Home | History | Annotate | Line # | Download | only in ic
ath.c revision 1.67
      1 /*	$NetBSD: ath.c,v 1.67 2006/02/27 06:18:47 dyoung Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer,
     12  *    without modification.
     13  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
     14  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
     15  *    redistribution must be conditioned upon including a substantially
     16  *    similar Disclaimer requirement for further binary redistribution.
     17  * 3. Neither the names of the above-listed copyright holders nor the names
     18  *    of any contributors may be used to endorse or promote products derived
     19  *    from this software without specific prior written permission.
     20  *
     21  * Alternatively, this software may be distributed under the terms of the
     22  * GNU General Public License ("GPL") version 2 as published by the Free
     23  * Software Foundation.
     24  *
     25  * NO WARRANTY
     26  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     28  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
     29  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
     30  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
     31  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
     34  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     36  * THE POSSIBILITY OF SUCH DAMAGES.
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 #ifdef __FreeBSD__
     41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $");
     42 #endif
     43 #ifdef __NetBSD__
     44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.67 2006/02/27 06:18:47 dyoung Exp $");
     45 #endif
     46 
     47 /*
     48  * Driver for the Atheros Wireless LAN controller.
     49  *
     50  * This software is derived from work of Atsushi Onoe; his contribution
     51  * is greatly appreciated.
     52  */
     53 
     54 #include "opt_inet.h"
     55 
     56 #ifdef __NetBSD__
     57 #include "bpfilter.h"
     58 #endif /* __NetBSD__ */
     59 
     60 #include <sys/param.h>
     61 #include <sys/reboot.h>
     62 #include <sys/systm.h>
     63 #include <sys/types.h>
     64 #include <sys/sysctl.h>
     65 #include <sys/mbuf.h>
     66 #include <sys/malloc.h>
     67 #include <sys/lock.h>
     68 #include <sys/kernel.h>
     69 #include <sys/socket.h>
     70 #include <sys/sockio.h>
     71 #include <sys/errno.h>
     72 #include <sys/callout.h>
     73 #include <machine/bus.h>
     74 #include <sys/endian.h>
     75 
     76 #include <machine/bus.h>
     77 
     78 #include <net/if.h>
     79 #include <net/if_dl.h>
     80 #include <net/if_media.h>
     81 #include <net/if_types.h>
     82 #include <net/if_arp.h>
     83 #include <net/if_ether.h>
     84 #include <net/if_llc.h>
     85 
     86 #include <net80211/ieee80211_netbsd.h>
     87 #include <net80211/ieee80211_var.h>
     88 
     89 #if NBPFILTER > 0
     90 #include <net/bpf.h>
     91 #endif
     92 
     93 #ifdef INET
     94 #include <netinet/in.h>
     95 #endif
     96 
     97 #include <sys/device.h>
     98 #include <dev/ic/ath_netbsd.h>
     99 
    100 #define	AR_DEBUG
    101 #include <dev/ic/athvar.h>
    102 #include <contrib/dev/ic/athhal_desc.h>
    103 #include <contrib/dev/ic/athhal_devid.h>	/* XXX for softled */
    104 
    105 /* unaligned little endian access */
    106 #define LE_READ_2(p)							\
    107 	((u_int16_t)							\
    108 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
    109 #define LE_READ_4(p)							\
    110 	((u_int32_t)							\
    111 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
    112 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
    113 
    114 enum {
    115 	ATH_LED_TX,
    116 	ATH_LED_RX,
    117 	ATH_LED_POLL,
    118 };
    119 
    120 static int	ath_ifinit(struct ifnet *);
    121 static int	ath_init(struct ath_softc *);
    122 static void	ath_stop_locked(struct ifnet *, int);
    123 static void	ath_stop(struct ifnet *, int);
    124 static void	ath_start(struct ifnet *);
    125 static int	ath_media_change(struct ifnet *);
    126 static void	ath_watchdog(struct ifnet *);
    127 static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
    128 static void	ath_fatal_proc(void *, int);
    129 static void	ath_rxorn_proc(void *, int);
    130 static void	ath_bmiss_proc(void *, int);
    131 static int	ath_key_alloc(struct ieee80211com *,
    132 			const struct ieee80211_key *,
    133 			ieee80211_keyix *, ieee80211_keyix *);
    134 static int	ath_key_delete(struct ieee80211com *,
    135 			const struct ieee80211_key *);
    136 static int	ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
    137 			const u_int8_t mac[IEEE80211_ADDR_LEN]);
    138 static void	ath_key_update_begin(struct ieee80211com *);
    139 static void	ath_key_update_end(struct ieee80211com *);
    140 static void	ath_mode_init(struct ath_softc *);
    141 static void	ath_setslottime(struct ath_softc *);
    142 static void	ath_updateslot(struct ifnet *);
    143 static int	ath_beaconq_setup(struct ath_hal *);
    144 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
    145 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
    146 static void	ath_beacon_proc(void *, int);
    147 static void	ath_bstuck_proc(void *, int);
    148 static void	ath_beacon_free(struct ath_softc *);
    149 static void	ath_beacon_config(struct ath_softc *);
    150 static void	ath_descdma_cleanup(struct ath_softc *sc,
    151 			struct ath_descdma *, ath_bufhead *);
    152 static int	ath_desc_alloc(struct ath_softc *);
    153 static void	ath_desc_free(struct ath_softc *);
    154 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
    155 static void	ath_node_free(struct ieee80211_node *);
    156 static u_int8_t	ath_node_getrssi(const struct ieee80211_node *);
    157 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
    158 static void	ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
    159 			struct ieee80211_node *ni,
    160 			int subtype, int rssi, u_int32_t rstamp);
    161 static void	ath_setdefantenna(struct ath_softc *, u_int);
    162 static void	ath_rx_proc(void *, int);
    163 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
    164 static int	ath_tx_setup(struct ath_softc *, int, int);
    165 static int	ath_wme_update(struct ieee80211com *);
    166 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
    167 static void	ath_tx_cleanup(struct ath_softc *);
    168 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
    169 			     struct ath_buf *, struct mbuf *);
    170 static void	ath_tx_proc_q0(void *, int);
    171 static void	ath_tx_proc_q0123(void *, int);
    172 static void	ath_tx_proc(void *, int);
    173 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
    174 static void	ath_draintxq(struct ath_softc *);
    175 static void	ath_stoprecv(struct ath_softc *);
    176 static int	ath_startrecv(struct ath_softc *);
    177 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
    178 static void	ath_next_scan(void *);
    179 static void	ath_calibrate(void *);
    180 static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
    181 static void	ath_setup_stationkey(struct ieee80211_node *);
    182 static void	ath_newassoc(struct ieee80211_node *, int);
    183 static int	ath_getchannels(struct ath_softc *, u_int cc,
    184 			HAL_BOOL outdoor, HAL_BOOL xchanmode);
    185 static void	ath_led_event(struct ath_softc *, int);
    186 static void	ath_update_txpow(struct ath_softc *);
    187 
    188 static int	ath_rate_setup(struct ath_softc *, u_int mode);
    189 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
    190 
    191 #ifdef __NetBSD__
    192 int	ath_enable(struct ath_softc *);
    193 void	ath_disable(struct ath_softc *);
    194 void	ath_power(int, void *);
    195 #endif
    196 
    197 #if NBPFILTER > 0
    198 static void	ath_bpfattach(struct ath_softc *);
    199 #endif
    200 static void	ath_announce(struct ath_softc *);
    201 
    202 int ath_dwelltime = 200;		/* 5 channels/second */
    203 int ath_calinterval = 30;		/* calibrate every 30 secs */
    204 int ath_outdoor = AH_TRUE;		/* outdoor operation */
    205 int ath_xchanmode = AH_TRUE;		/* enable extended channels */
    206 int ath_countrycode = CTRY_DEFAULT;	/* country code */
    207 int ath_regdomain = 0;			/* regulatory domain */
    208 int ath_debug = 0;
    209 
    210 #ifdef AR_DEBUG
    211 enum {
    212 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
    213 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
    214 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
    215 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
    216 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
    217 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
    218 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
    219 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
    220 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
    221 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
    222 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
    223 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
    224 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
    225 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
    226 	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
    227 	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
    228 	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
    229 	ATH_DEBUG_LED		= 0x00100000,	/* led management */
    230 	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
    231 	ATH_DEBUG_ANY		= 0xffffffff
    232 };
    233 #define	IFF_DUMPPKTS(sc, m) \
    234 	((sc->sc_debug & (m)) || \
    235 	    (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
    236 #define	DPRINTF(sc, m, fmt, ...) do {				\
    237 	if (sc->sc_debug & (m))					\
    238 		printf(fmt, __VA_ARGS__);			\
    239 } while (0)
    240 #define	KEYPRINTF(sc, ix, hk, mac) do {				\
    241 	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
    242 		ath_keyprint(__func__, ix, hk, mac);		\
    243 } while (0)
    244 static	void ath_printrxbuf(struct ath_buf *bf, int);
    245 static	void ath_printtxbuf(struct ath_buf *bf, int);
    246 #else
    247 #define	IFF_DUMPPKTS(sc, m) \
    248 	((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
    249 #define	DPRINTF(m, fmt, ...)
    250 #define	KEYPRINTF(sc, k, ix, mac)
    251 #endif
    252 
    253 #ifdef __NetBSD__
    254 int
    255 ath_activate(struct device *self, enum devact act)
    256 {
    257 	struct ath_softc *sc = (struct ath_softc *)self;
    258 	int rv = 0, s;
    259 
    260 	s = splnet();
    261 	switch (act) {
    262 	case DVACT_ACTIVATE:
    263 		rv = EOPNOTSUPP;
    264 		break;
    265 	case DVACT_DEACTIVATE:
    266 		if_deactivate(&sc->sc_if);
    267 		break;
    268 	}
    269 	splx(s);
    270 	return rv;
    271 }
    272 
    273 int
    274 ath_enable(struct ath_softc *sc)
    275 {
    276 	if (ATH_IS_ENABLED(sc) == 0) {
    277 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
    278 			printf("%s: device enable failed\n",
    279 				sc->sc_dev.dv_xname);
    280 			return (EIO);
    281 		}
    282 		sc->sc_flags |= ATH_ENABLED;
    283 	}
    284 	return (0);
    285 }
    286 
    287 void
    288 ath_disable(struct ath_softc *sc)
    289 {
    290 	if (!ATH_IS_ENABLED(sc))
    291 		return;
    292 	if (sc->sc_disable != NULL)
    293 		(*sc->sc_disable)(sc);
    294 	sc->sc_flags &= ~ATH_ENABLED;
    295 }
    296 #endif /* __NetBSD__ */
    297 
    298 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
    299 
    300 int
    301 ath_attach(u_int16_t devid, struct ath_softc *sc)
    302 {
    303 	struct ifnet *ifp = &sc->sc_if;
    304 	struct ieee80211com *ic = &sc->sc_ic;
    305 	struct ath_hal *ah = NULL;
    306 	HAL_STATUS status;
    307 	int error = 0, i;
    308 
    309 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
    310 
    311 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
    312 
    313 	ah = ath_hal_attach(devid, sc, sc->sc_st, ATH_BUSHANDLE2HAL(sc->sc_sh),
    314 	    &status);
    315 	if (ah == NULL) {
    316 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
    317 			status);
    318 		error = ENXIO;
    319 		goto bad;
    320 	}
    321 	if (ah->ah_abi != HAL_ABI_VERSION) {
    322 		if_printf(ifp, "HAL ABI mismatch detected "
    323 			"(HAL:0x%x != driver:0x%x)\n",
    324 			ah->ah_abi, HAL_ABI_VERSION);
    325 		error = ENXIO;
    326 		goto bad;
    327 	}
    328 	sc->sc_ah = ah;
    329 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
    330 
    331 	/*
    332 	 * Check if the MAC has multi-rate retry support.
    333 	 * We do this by trying to setup a fake extended
    334 	 * descriptor.  MAC's that don't have support will
    335 	 * return false w/o doing anything.  MAC's that do
    336 	 * support it will return true w/o doing anything.
    337 	 */
    338 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
    339 
    340 	/*
    341 	 * Check if the device has hardware counters for PHY
    342 	 * errors.  If so we need to enable the MIB interrupt
    343 	 * so we can act on stat triggers.
    344 	 */
    345 	if (ath_hal_hwphycounters(ah))
    346 		sc->sc_needmib = 1;
    347 
    348 	/*
    349 	 * Get the hardware key cache size.
    350 	 */
    351 	sc->sc_keymax = ath_hal_keycachesize(ah);
    352 	if (sc->sc_keymax > ATH_KEYMAX) {
    353 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
    354 			ATH_KEYMAX, sc->sc_keymax);
    355 		sc->sc_keymax = ATH_KEYMAX;
    356 	}
    357 	/*
    358 	 * Reset the key cache since some parts do not
    359 	 * reset the contents on initial power up.
    360 	 */
    361 	for (i = 0; i < sc->sc_keymax; i++)
    362 		ath_hal_keyreset(ah, i);
    363 	/*
    364 	 * Mark key cache slots associated with global keys
    365 	 * as in use.  If we knew TKIP was not to be used we
    366 	 * could leave the +32, +64, and +32+64 slots free.
    367 	 * XXX only for splitmic.
    368 	 */
    369 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
    370 		setbit(sc->sc_keymap, i);
    371 		setbit(sc->sc_keymap, i+32);
    372 		setbit(sc->sc_keymap, i+64);
    373 		setbit(sc->sc_keymap, i+32+64);
    374 	}
    375 
    376 	/*
    377 	 * Collect the channel list using the default country
    378 	 * code and including outdoor channels.  The 802.11 layer
    379 	 * is resposible for filtering this list based on settings
    380 	 * like the phy mode.
    381 	 */
    382 	error = ath_getchannels(sc, ath_countrycode,
    383 			ath_outdoor, ath_xchanmode);
    384 	if (error != 0)
    385 		goto bad;
    386 
    387 	/*
    388 	 * Setup rate tables for all potential media types.
    389 	 */
    390 	ath_rate_setup(sc, IEEE80211_MODE_11A);
    391 	ath_rate_setup(sc, IEEE80211_MODE_11B);
    392 	ath_rate_setup(sc, IEEE80211_MODE_11G);
    393 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
    394 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
    395 	/* NB: setup here so ath_rate_update is happy */
    396 	ath_setcurmode(sc, IEEE80211_MODE_11A);
    397 
    398 	/*
    399 	 * Allocate tx+rx descriptors and populate the lists.
    400 	 */
    401 	error = ath_desc_alloc(sc);
    402 	if (error != 0) {
    403 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
    404 		goto bad;
    405 	}
    406 	ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
    407 	ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE);
    408 
    409 	ATH_TXBUF_LOCK_INIT(sc);
    410 
    411 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
    412 	TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
    413 	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
    414 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
    415 	TASK_INIT(&sc->sc_bstucktask, 0, ath_bstuck_proc, sc);
    416 
    417 	/*
    418 	 * Allocate hardware transmit queues: one queue for
    419 	 * beacon frames and one data queue for each QoS
    420 	 * priority.  Note that the hal handles reseting
    421 	 * these queues at the needed time.
    422 	 *
    423 	 * XXX PS-Poll
    424 	 */
    425 	sc->sc_bhalq = ath_beaconq_setup(ah);
    426 	if (sc->sc_bhalq == (u_int) -1) {
    427 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
    428 		error = EIO;
    429 		goto bad2;
    430 	}
    431 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
    432 	if (sc->sc_cabq == NULL) {
    433 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
    434 		error = EIO;
    435 		goto bad2;
    436 	}
    437 	/* NB: insure BK queue is the lowest priority h/w queue */
    438 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
    439 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
    440 			ieee80211_wme_acnames[WME_AC_BK]);
    441 		error = EIO;
    442 		goto bad2;
    443 	}
    444 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
    445 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
    446 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
    447 		/*
    448 		 * Not enough hardware tx queues to properly do WME;
    449 		 * just punt and assign them all to the same h/w queue.
    450 		 * We could do a better job of this if, for example,
    451 		 * we allocate queues when we switch from station to
    452 		 * AP mode.
    453 		 */
    454 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
    455 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
    456 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
    457 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
    458 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
    459 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
    460 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
    461 	}
    462 
    463 	/*
    464 	 * Special case certain configurations.  Note the
    465 	 * CAB queue is handled by these specially so don't
    466 	 * include them when checking the txq setup mask.
    467 	 */
    468 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
    469 	case 0x01:
    470 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
    471 		break;
    472 	case 0x0f:
    473 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
    474 		break;
    475 	default:
    476 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
    477 		break;
    478 	}
    479 
    480 	/*
    481 	 * Setup rate control.  Some rate control modules
    482 	 * call back to change the anntena state so expose
    483 	 * the necessary entry points.
    484 	 * XXX maybe belongs in struct ath_ratectrl?
    485 	 */
    486 	sc->sc_setdefantenna = ath_setdefantenna;
    487 	sc->sc_rc = ath_rate_attach(sc);
    488 	if (sc->sc_rc == NULL) {
    489 		error = EIO;
    490 		goto bad2;
    491 	}
    492 
    493 	sc->sc_blinking = 0;
    494 	sc->sc_ledstate = 1;
    495 	sc->sc_ledon = 0;			/* low true */
    496 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
    497 	ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE);
    498 	/*
    499 	 * Auto-enable soft led processing for IBM cards and for
    500 	 * 5211 minipci cards.  Users can also manually enable/disable
    501 	 * support with a sysctl.
    502 	 */
    503 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
    504 	if (sc->sc_softled) {
    505 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
    506 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
    507 	}
    508 
    509 	ifp->if_softc = sc;
    510 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
    511 	ifp->if_start = ath_start;
    512 	ifp->if_watchdog = ath_watchdog;
    513 	ifp->if_ioctl = ath_ioctl;
    514 	ifp->if_init = ath_ifinit;
    515 	IFQ_SET_READY(&ifp->if_snd);
    516 
    517 	ic->ic_ifp = ifp;
    518 	ic->ic_reset = ath_reset;
    519 	ic->ic_newassoc = ath_newassoc;
    520 	ic->ic_updateslot = ath_updateslot;
    521 	ic->ic_wme.wme_update = ath_wme_update;
    522 	/* XXX not right but it's not used anywhere important */
    523 	ic->ic_phytype = IEEE80211_T_OFDM;
    524 	ic->ic_opmode = IEEE80211_M_STA;
    525 	ic->ic_caps =
    526 		  IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
    527 		| IEEE80211_C_HOSTAP		/* hostap mode */
    528 		| IEEE80211_C_MONITOR		/* monitor mode */
    529 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
    530 		| IEEE80211_C_SHSLOT		/* short slot time supported */
    531 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
    532 		;
    533 	/*
    534 	 * Query the hal to figure out h/w crypto support.
    535 	 */
    536 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
    537 		ic->ic_caps |= IEEE80211_C_WEP;
    538 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
    539 		ic->ic_caps |= IEEE80211_C_AES;
    540 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
    541 		ic->ic_caps |= IEEE80211_C_AES_CCM;
    542 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
    543 		ic->ic_caps |= IEEE80211_C_CKIP;
    544 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
    545 		ic->ic_caps |= IEEE80211_C_TKIP;
    546 		/*
    547 		 * Check if h/w does the MIC and/or whether the
    548 		 * separate key cache entries are required to
    549 		 * handle both tx+rx MIC keys.
    550 		 */
    551 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
    552 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
    553 		if (ath_hal_tkipsplit(ah))
    554 			sc->sc_splitmic = 1;
    555 	}
    556 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
    557 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
    558 	/*
    559 	 * TPC support can be done either with a global cap or
    560 	 * per-packet support.  The latter is not available on
    561 	 * all parts.  We're a bit pedantic here as all parts
    562 	 * support a global cap.
    563 	 */
    564 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
    565 		ic->ic_caps |= IEEE80211_C_TXPMGT;
    566 
    567 	/*
    568 	 * Mark WME capability only if we have sufficient
    569 	 * hardware queues to do proper priority scheduling.
    570 	 */
    571 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
    572 		ic->ic_caps |= IEEE80211_C_WME;
    573 	/*
    574 	 * Check for misc other capabilities.
    575 	 */
    576 	if (ath_hal_hasbursting(ah))
    577 		ic->ic_caps |= IEEE80211_C_BURST;
    578 
    579 	/*
    580 	 * Indicate we need the 802.11 header padded to a
    581 	 * 32-bit boundary for 4-address and QoS frames.
    582 	 */
    583 	ic->ic_flags |= IEEE80211_F_DATAPAD;
    584 
    585 	/*
    586 	 * Query the hal about antenna support.
    587 	 */
    588 	sc->sc_defant = ath_hal_getdefantenna(ah);
    589 
    590 	/*
    591 	 * Not all chips have the VEOL support we want to
    592 	 * use with IBSS beacons; check here for it.
    593 	 */
    594 	sc->sc_hasveol = ath_hal_hasveol(ah);
    595 
    596 	/* get mac address from hardware */
    597 	ath_hal_getmac(ah, ic->ic_myaddr);
    598 
    599 	if_attach(ifp);
    600 	/* call MI attach routine. */
    601 	ieee80211_ifattach(ic);
    602 	/* override default methods */
    603 	ic->ic_node_alloc = ath_node_alloc;
    604 	sc->sc_node_free = ic->ic_node_free;
    605 	ic->ic_node_free = ath_node_free;
    606 	ic->ic_node_getrssi = ath_node_getrssi;
    607 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
    608 	ic->ic_recv_mgmt = ath_recv_mgmt;
    609 	sc->sc_newstate = ic->ic_newstate;
    610 	ic->ic_newstate = ath_newstate;
    611 	ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
    612 	ic->ic_crypto.cs_key_alloc = ath_key_alloc;
    613 	ic->ic_crypto.cs_key_delete = ath_key_delete;
    614 	ic->ic_crypto.cs_key_set = ath_key_set;
    615 	ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
    616 	ic->ic_crypto.cs_key_update_end = ath_key_update_end;
    617 	/* complete initialization */
    618 	ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
    619 
    620 #if NBPFILTER > 0
    621 	ath_bpfattach(sc);
    622 #endif
    623 
    624 #ifdef __NetBSD__
    625 	sc->sc_flags |= ATH_ATTACHED;
    626 	/*
    627 	 * Make sure the interface is shutdown during reboot.
    628 	 */
    629 	sc->sc_sdhook = shutdownhook_establish(ath_shutdown, sc);
    630 	if (sc->sc_sdhook == NULL)
    631 		printf("%s: WARNING: unable to establish shutdown hook\n",
    632 			sc->sc_dev.dv_xname);
    633 	sc->sc_powerhook = powerhook_establish(ath_power, sc);
    634 	if (sc->sc_powerhook == NULL)
    635 		printf("%s: WARNING: unable to establish power hook\n",
    636 			sc->sc_dev.dv_xname);
    637 #endif
    638 
    639 	/*
    640 	 * Setup dynamic sysctl's now that country code and
    641 	 * regdomain are available from the hal.
    642 	 */
    643 	ath_sysctlattach(sc);
    644 
    645 	ieee80211_announce(ic);
    646 	ath_announce(sc);
    647 	return 0;
    648 bad2:
    649 	ath_tx_cleanup(sc);
    650 	ath_desc_free(sc);
    651 bad:
    652 	if (ah)
    653 		ath_hal_detach(ah);
    654 	sc->sc_invalid = 1;
    655 	return error;
    656 }
    657 
    658 int
    659 ath_detach(struct ath_softc *sc)
    660 {
    661 	struct ifnet *ifp = &sc->sc_if;
    662 	int s;
    663 
    664 	if ((sc->sc_flags & ATH_ATTACHED) == 0)
    665 		return (0);
    666 
    667 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
    668 		__func__, ifp->if_flags);
    669 
    670 	s = splnet();
    671 	ath_stop(ifp, 1);
    672 #if NBPFILTER > 0
    673 	bpfdetach(ifp);
    674 #endif
    675 	/*
    676 	 * NB: the order of these is important:
    677 	 * o call the 802.11 layer before detaching the hal to
    678 	 *   insure callbacks into the driver to delete global
    679 	 *   key cache entries can be handled
    680 	 * o reclaim the tx queue data structures after calling
    681 	 *   the 802.11 layer as we'll get called back to reclaim
    682 	 *   node state and potentially want to use them
    683 	 * o to cleanup the tx queues the hal is called, so detach
    684 	 *   it last
    685 	 * Other than that, it's straightforward...
    686 	 */
    687 	ieee80211_ifdetach(&sc->sc_ic);
    688 	ath_rate_detach(sc->sc_rc);
    689 	ath_desc_free(sc);
    690 	ath_tx_cleanup(sc);
    691 	sysctl_teardown(&sc->sc_sysctllog);
    692 	ath_hal_detach(sc->sc_ah);
    693 	if_detach(ifp);
    694 	splx(s);
    695 	powerhook_disestablish(sc->sc_powerhook);
    696 	shutdownhook_disestablish(sc->sc_sdhook);
    697 
    698 	return 0;
    699 }
    700 
    701 #ifdef __NetBSD__
    702 void
    703 ath_power(int why, void *arg)
    704 {
    705 	struct ath_softc *sc = arg;
    706 	int s;
    707 
    708 	DPRINTF(sc, ATH_DEBUG_ANY, "ath_power(%d)\n", why);
    709 
    710 	s = splnet();
    711 	switch (why) {
    712 	case PWR_SUSPEND:
    713 	case PWR_STANDBY:
    714 		ath_suspend(sc, why);
    715 		break;
    716 	case PWR_RESUME:
    717 		ath_resume(sc, why);
    718 		break;
    719 	case PWR_SOFTSUSPEND:
    720 	case PWR_SOFTSTANDBY:
    721 	case PWR_SOFTRESUME:
    722 		break;
    723 	}
    724 	splx(s);
    725 }
    726 #endif
    727 
    728 void
    729 ath_suspend(struct ath_softc *sc, int why)
    730 {
    731 	struct ifnet *ifp = &sc->sc_if;
    732 
    733 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
    734 		__func__, ifp->if_flags);
    735 
    736 	ath_stop(ifp, 1);
    737 	if (sc->sc_power != NULL)
    738 		(*sc->sc_power)(sc, why);
    739 }
    740 
    741 void
    742 ath_resume(struct ath_softc *sc, int why)
    743 {
    744 	struct ifnet *ifp = &sc->sc_if;
    745 
    746 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
    747 		__func__, ifp->if_flags);
    748 
    749 	if (ifp->if_flags & IFF_UP) {
    750 		ath_init(sc);
    751 #if 0
    752 		(void)ath_intr(sc);
    753 #endif
    754 		if (sc->sc_power != NULL)
    755 			(*sc->sc_power)(sc, why);
    756 		if (ifp->if_flags & IFF_RUNNING)
    757 			ath_start(ifp);
    758 	}
    759 	if (sc->sc_softled) {
    760 		ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
    761 		ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
    762 	}
    763 }
    764 
    765 void
    766 ath_shutdown(void *arg)
    767 {
    768 	struct ath_softc *sc = arg;
    769 
    770 	ath_stop(&sc->sc_if, 1);
    771 }
    772 
    773 /*
    774  * Interrupt handler.  Most of the actual processing is deferred.
    775  */
    776 int
    777 ath_intr(void *arg)
    778 {
    779 	struct ath_softc *sc = arg;
    780 	struct ifnet *ifp = &sc->sc_if;
    781 	struct ath_hal *ah = sc->sc_ah;
    782 	HAL_INT status;
    783 
    784 	if (sc->sc_invalid) {
    785 		/*
    786 		 * The hardware is not ready/present, don't touch anything.
    787 		 * Note this can happen early on if the IRQ is shared.
    788 		 */
    789 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
    790 		return 0;
    791 	}
    792 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
    793 		return 0;
    794 	if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
    795 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
    796 			__func__, ifp->if_flags);
    797 		ath_hal_getisr(ah, &status);	/* clear ISR */
    798 		ath_hal_intrset(ah, 0);		/* disable further intr's */
    799 		return 1; /* XXX */
    800 	}
    801 	/*
    802 	 * Figure out the reason(s) for the interrupt.  Note
    803 	 * that the hal returns a pseudo-ISR that may include
    804 	 * bits we haven't explicitly enabled so we mask the
    805 	 * value to insure we only process bits we requested.
    806 	 */
    807 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
    808 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
    809 	status &= sc->sc_imask;			/* discard unasked for bits */
    810 	if (status & HAL_INT_FATAL) {
    811 		/*
    812 		 * Fatal errors are unrecoverable.  Typically
    813 		 * these are caused by DMA errors.  Unfortunately
    814 		 * the exact reason is not (presently) returned
    815 		 * by the hal.
    816 		 */
    817 		sc->sc_stats.ast_hardware++;
    818 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
    819 		TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
    820 	} else if (status & HAL_INT_RXORN) {
    821 		sc->sc_stats.ast_rxorn++;
    822 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
    823 		TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
    824 	} else {
    825 		if (status & HAL_INT_SWBA) {
    826 			/*
    827 			 * Software beacon alert--time to send a beacon.
    828 			 * Handle beacon transmission directly; deferring
    829 			 * this is too slow to meet timing constraints
    830 			 * under load.
    831 			 */
    832 			ath_beacon_proc(sc, 0);
    833 		}
    834 		if (status & HAL_INT_RXEOL) {
    835 			/*
    836 			 * NB: the hardware should re-read the link when
    837 			 *     RXE bit is written, but it doesn't work at
    838 			 *     least on older hardware revs.
    839 			 */
    840 			sc->sc_stats.ast_rxeol++;
    841 			sc->sc_rxlink = NULL;
    842 		}
    843 		if (status & HAL_INT_TXURN) {
    844 			sc->sc_stats.ast_txurn++;
    845 			/* bump tx trigger level */
    846 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
    847 		}
    848 		if (status & HAL_INT_RX)
    849 			TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
    850 		if (status & HAL_INT_TX)
    851 			TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
    852 		if (status & HAL_INT_BMISS) {
    853 			sc->sc_stats.ast_bmiss++;
    854 			TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
    855 		}
    856 		if (status & HAL_INT_MIB) {
    857 			sc->sc_stats.ast_mib++;
    858 			/*
    859 			 * Disable interrupts until we service the MIB
    860 			 * interrupt; otherwise it will continue to fire.
    861 			 */
    862 			ath_hal_intrset(ah, 0);
    863 			/*
    864 			 * Let the hal handle the event.  We assume it will
    865 			 * clear whatever condition caused the interrupt.
    866 			 */
    867 			ath_hal_mibevent(ah,
    868 				&ATH_NODE(sc->sc_ic.ic_bss)->an_halstats);
    869 			ath_hal_intrset(ah, sc->sc_imask);
    870 		}
    871 	}
    872 	return 1;
    873 }
    874 
    875 static void
    876 ath_fatal_proc(void *arg, int pending)
    877 {
    878 	struct ath_softc *sc = arg;
    879 	struct ifnet *ifp = &sc->sc_if;
    880 
    881 	if_printf(ifp, "hardware error; resetting\n");
    882 	ath_reset(ifp);
    883 }
    884 
    885 static void
    886 ath_rxorn_proc(void *arg, int pending)
    887 {
    888 	struct ath_softc *sc = arg;
    889 	struct ifnet *ifp = &sc->sc_if;
    890 
    891 	if_printf(ifp, "rx FIFO overrun; resetting\n");
    892 	ath_reset(ifp);
    893 }
    894 
    895 static void
    896 ath_bmiss_proc(void *arg, int pending)
    897 {
    898 	struct ath_softc *sc = arg;
    899 	struct ieee80211com *ic = &sc->sc_ic;
    900 
    901 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
    902 	KASSERT(ic->ic_opmode == IEEE80211_M_STA,
    903 		("unexpect operating mode %u", ic->ic_opmode));
    904 	if (ic->ic_state == IEEE80211_S_RUN) {
    905 		/*
    906 		 * Rather than go directly to scan state, try to
    907 		 * reassociate first.  If that fails then the state
    908 		 * machine will drop us into scanning after timing
    909 		 * out waiting for a probe response.
    910 		 */
    911 		NET_LOCK_GIANT();
    912 		ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1);
    913 		NET_UNLOCK_GIANT();
    914 	}
    915 }
    916 
    917 static u_int
    918 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
    919 {
    920 #define	N(a)	(sizeof(a) / sizeof(a[0]))
    921 	static const u_int modeflags[] = {
    922 		0,			/* IEEE80211_MODE_AUTO */
    923 		CHANNEL_A,		/* IEEE80211_MODE_11A */
    924 		CHANNEL_B,		/* IEEE80211_MODE_11B */
    925 		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
    926 		0,			/* IEEE80211_MODE_FH */
    927 		CHANNEL_T,		/* IEEE80211_MODE_TURBO_A */
    928 		CHANNEL_108G		/* IEEE80211_MODE_TURBO_G */
    929 	};
    930 	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
    931 
    932 	KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
    933 	KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
    934 	return modeflags[mode];
    935 #undef N
    936 }
    937 
    938 static int
    939 ath_ifinit(struct ifnet *ifp)
    940 {
    941 	struct ath_softc *sc = (struct ath_softc *)ifp->if_softc;
    942 
    943 	return ath_init(sc);
    944 }
    945 
    946 static int
    947 ath_init(struct ath_softc *sc)
    948 {
    949 	struct ifnet *ifp = &sc->sc_if;
    950 	struct ieee80211com *ic = &sc->sc_ic;
    951 	struct ath_hal *ah = sc->sc_ah;
    952 	HAL_STATUS status;
    953 	int error = 0;
    954 
    955 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
    956 		__func__, ifp->if_flags);
    957 
    958 	ATH_LOCK(sc);
    959 
    960 	if ((error = ath_enable(sc)) != 0)
    961 		return error;
    962 
    963 	/*
    964 	 * Stop anything previously setup.  This is safe
    965 	 * whether this is the first time through or not.
    966 	 */
    967 	ath_stop_locked(ifp, 0);
    968 
    969 	/*
    970 	 * The basic interface to setting the hardware in a good
    971 	 * state is ``reset''.  On return the hardware is known to
    972 	 * be powered up and with interrupts disabled.  This must
    973 	 * be followed by initialization of the appropriate bits
    974 	 * and then setup of the interrupt mask.
    975 	 */
    976 	sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
    977 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
    978 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
    979 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
    980 			status);
    981 		error = EIO;
    982 		goto done;
    983 	}
    984 
    985 	/*
    986 	 * This is needed only to setup initial state
    987 	 * but it's best done after a reset.
    988 	 */
    989 	ath_update_txpow(sc);
    990 	/*
    991 	 * Likewise this is set during reset so update
    992 	 * state cached in the driver.
    993 	 */
    994 	sc->sc_diversity = ath_hal_getdiversity(ah);
    995 
    996 	/*
    997 	 * Setup the hardware after reset: the key cache
    998 	 * is filled as needed and the receive engine is
    999 	 * set going.  Frame transmit is handled entirely
   1000 	 * in the frame output path; there's nothing to do
   1001 	 * here except setup the interrupt mask.
   1002 	 */
   1003 	if ((error = ath_startrecv(sc)) != 0) {
   1004 		if_printf(ifp, "unable to start recv logic\n");
   1005 		goto done;
   1006 	}
   1007 
   1008 	/*
   1009 	 * Enable interrupts.
   1010 	 */
   1011 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
   1012 		  | HAL_INT_RXEOL | HAL_INT_RXORN
   1013 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
   1014 	/*
   1015 	 * Enable MIB interrupts when there are hardware phy counters.
   1016 	 * Note we only do this (at the moment) for station mode.
   1017 	 */
   1018 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
   1019 		sc->sc_imask |= HAL_INT_MIB;
   1020 	ath_hal_intrset(ah, sc->sc_imask);
   1021 
   1022 	ifp->if_flags |= IFF_RUNNING;
   1023 	ic->ic_state = IEEE80211_S_INIT;
   1024 
   1025 	/*
   1026 	 * The hardware should be ready to go now so it's safe
   1027 	 * to kick the 802.11 state machine as it's likely to
   1028 	 * immediately call back to us to send mgmt frames.
   1029 	 */
   1030 	ath_chan_change(sc, ic->ic_curchan);
   1031 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   1032 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
   1033 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   1034 	} else
   1035 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   1036 done:
   1037 	ATH_UNLOCK(sc);
   1038 	return error;
   1039 }
   1040 
   1041 static void
   1042 ath_stop_locked(struct ifnet *ifp, int disable)
   1043 {
   1044 	struct ath_softc *sc = ifp->if_softc;
   1045 	struct ieee80211com *ic = &sc->sc_ic;
   1046 	struct ath_hal *ah = sc->sc_ah;
   1047 
   1048 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
   1049 		__func__, sc->sc_invalid, ifp->if_flags);
   1050 
   1051 	ATH_LOCK_ASSERT(sc);
   1052 	if (ifp->if_flags & IFF_RUNNING) {
   1053 		/*
   1054 		 * Shutdown the hardware and driver:
   1055 		 *    reset 802.11 state machine
   1056 		 *    turn off timers
   1057 		 *    disable interrupts
   1058 		 *    turn off the radio
   1059 		 *    clear transmit machinery
   1060 		 *    clear receive machinery
   1061 		 *    drain and release tx queues
   1062 		 *    reclaim beacon resources
   1063 		 *    power down hardware
   1064 		 *
   1065 		 * Note that some of this work is not possible if the
   1066 		 * hardware is gone (invalid).
   1067 		 */
   1068 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   1069 		ifp->if_flags &= ~IFF_RUNNING;
   1070 		ifp->if_timer = 0;
   1071 		if (!sc->sc_invalid) {
   1072 			if (sc->sc_softled) {
   1073 				callout_stop(&sc->sc_ledtimer);
   1074 				ath_hal_gpioset(ah, sc->sc_ledpin,
   1075 					!sc->sc_ledon);
   1076 				sc->sc_blinking = 0;
   1077 			}
   1078 			ath_hal_intrset(ah, 0);
   1079 		}
   1080 		ath_draintxq(sc);
   1081 		if (!sc->sc_invalid) {
   1082 			ath_stoprecv(sc);
   1083 			ath_hal_phydisable(ah);
   1084 		} else
   1085 			sc->sc_rxlink = NULL;
   1086 		IF_PURGE(&ifp->if_snd);
   1087 		ath_beacon_free(sc);
   1088 		if (disable)
   1089 			ath_disable(sc);
   1090 	}
   1091 }
   1092 
   1093 static void
   1094 ath_stop(struct ifnet *ifp, int disable)
   1095 {
   1096 	struct ath_softc *sc = ifp->if_softc;
   1097 
   1098 	ATH_LOCK(sc);
   1099 	ath_stop_locked(ifp, disable);
   1100 	if (!sc->sc_invalid) {
   1101 		/*
   1102 		 * Set the chip in full sleep mode.  Note that we are
   1103 		 * careful to do this only when bringing the interface
   1104 		 * completely to a stop.  When the chip is in this state
   1105 		 * it must be carefully woken up or references to
   1106 		 * registers in the PCI clock domain may freeze the bus
   1107 		 * (and system).  This varies by chip and is mostly an
   1108 		 * issue with newer parts that go to sleep more quickly.
   1109 		 */
   1110 		ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP, 0);
   1111 	}
   1112 	ATH_UNLOCK(sc);
   1113 }
   1114 
   1115 /*
   1116  * Reset the hardware w/o losing operational state.  This is
   1117  * basically a more efficient way of doing ath_stop, ath_init,
   1118  * followed by state transitions to the current 802.11
   1119  * operational state.  Used to recover from various errors and
   1120  * to reset or reload hardware state.
   1121  */
   1122 int
   1123 ath_reset(struct ifnet *ifp)
   1124 {
   1125 	struct ath_softc *sc = ifp->if_softc;
   1126 	struct ieee80211com *ic = &sc->sc_ic;
   1127 	struct ath_hal *ah = sc->sc_ah;
   1128 	struct ieee80211_channel *c;
   1129 	HAL_STATUS status;
   1130 
   1131 	/*
   1132 	 * Convert to a HAL channel description with the flags
   1133 	 * constrained to reflect the current operating mode.
   1134 	 */
   1135 	c = ic->ic_curchan;
   1136 	sc->sc_curchan.channel = c->ic_freq;
   1137 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
   1138 
   1139 	ath_hal_intrset(ah, 0);		/* disable interrupts */
   1140 	ath_draintxq(sc);		/* stop xmit side */
   1141 	ath_stoprecv(sc);		/* stop recv side */
   1142 	/* NB: indicate channel change so we do a full reset */
   1143 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
   1144 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
   1145 			__func__, status);
   1146 	ath_update_txpow(sc);		/* update tx power state */
   1147 	sc->sc_diversity = ath_hal_getdiversity(ah);
   1148 	if (ath_startrecv(sc) != 0)	/* restart recv */
   1149 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
   1150 	/*
   1151 	 * We may be doing a reset in response to an ioctl
   1152 	 * that changes the channel so update any state that
   1153 	 * might change as a result.
   1154 	 */
   1155 	ath_chan_change(sc, c);
   1156 	if (ic->ic_state == IEEE80211_S_RUN)
   1157 		ath_beacon_config(sc);	/* restart beacons */
   1158 	ath_hal_intrset(ah, sc->sc_imask);
   1159 
   1160 	ath_start(ifp);			/* restart xmit */
   1161 	return 0;
   1162 }
   1163 
   1164 static void
   1165 ath_start(struct ifnet *ifp)
   1166 {
   1167 	struct ath_softc *sc = ifp->if_softc;
   1168 	struct ath_hal *ah = sc->sc_ah;
   1169 	struct ieee80211com *ic = &sc->sc_ic;
   1170 	struct ieee80211_node *ni;
   1171 	struct ath_buf *bf;
   1172 	struct mbuf *m;
   1173 	struct ieee80211_frame *wh;
   1174 	struct ether_header *eh;
   1175 
   1176 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
   1177 		return;
   1178 	for (;;) {
   1179 		/*
   1180 		 * Grab a TX buffer and associated resources.
   1181 		 */
   1182 		ATH_TXBUF_LOCK(sc);
   1183 		bf = STAILQ_FIRST(&sc->sc_txbuf);
   1184 		if (bf != NULL)
   1185 			STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
   1186 		ATH_TXBUF_UNLOCK(sc);
   1187 		if (bf == NULL) {
   1188 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
   1189 				__func__);
   1190 			sc->sc_stats.ast_tx_qstop++;
   1191 			ifp->if_flags |= IFF_OACTIVE;
   1192 			break;
   1193 		}
   1194 		/*
   1195 		 * Poll the management queue for frames; they
   1196 		 * have priority over normal data frames.
   1197 		 */
   1198 		IF_DEQUEUE(&ic->ic_mgtq, m);
   1199 		if (m == NULL) {
   1200 			/*
   1201 			 * No data frames go out unless we're associated.
   1202 			 */
   1203 			if (ic->ic_state != IEEE80211_S_RUN) {
   1204 				DPRINTF(sc, ATH_DEBUG_XMIT,
   1205 				    "%s: discard data packet, state %s\n",
   1206 				    __func__,
   1207 				    ieee80211_state_name[ic->ic_state]);
   1208 				sc->sc_stats.ast_tx_discard++;
   1209 				ATH_TXBUF_LOCK(sc);
   1210 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1211 				ATH_TXBUF_UNLOCK(sc);
   1212 				break;
   1213 			}
   1214 			IFQ_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
   1215 			if (m == NULL) {
   1216 				ATH_TXBUF_LOCK(sc);
   1217 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1218 				ATH_TXBUF_UNLOCK(sc);
   1219 				break;
   1220 			}
   1221 			/*
   1222 			 * Find the node for the destination so we can do
   1223 			 * things like power save and fast frames aggregation.
   1224 			 */
   1225 			if (m->m_len < sizeof(struct ether_header) &&
   1226 			   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
   1227 				ic->ic_stats.is_tx_nobuf++;	/* XXX */
   1228 				ni = NULL;
   1229 				goto bad;
   1230 			}
   1231 			eh = mtod(m, struct ether_header *);
   1232 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   1233 			if (ni == NULL) {
   1234 				/* NB: ieee80211_find_txnode does stat+msg */
   1235 				m_freem(m);
   1236 				goto bad;
   1237 			}
   1238 			if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
   1239 			    (m->m_flags & M_PWR_SAV) == 0) {
   1240 				/*
   1241 				 * Station in power save mode; pass the frame
   1242 				 * to the 802.11 layer and continue.  We'll get
   1243 				 * the frame back when the time is right.
   1244 				 */
   1245 				ieee80211_pwrsave(ic, ni, m);
   1246 				goto reclaim;
   1247 			}
   1248 			/* calculate priority so we can find the tx queue */
   1249 			if (ieee80211_classify(ic, m, ni)) {
   1250 				DPRINTF(sc, ATH_DEBUG_XMIT,
   1251 					"%s: discard, classification failure\n",
   1252 					__func__);
   1253 				m_freem(m);
   1254 				goto bad;
   1255 			}
   1256 			ifp->if_opackets++;
   1257 
   1258 #if NBPFILTER > 0
   1259 			if (ifp->if_bpf)
   1260 				bpf_mtap(ifp->if_bpf, m);
   1261 #endif
   1262 			/*
   1263 			 * Encapsulate the packet in prep for transmission.
   1264 			 */
   1265 			m = ieee80211_encap(ic, m, ni);
   1266 			if (m == NULL) {
   1267 				DPRINTF(sc, ATH_DEBUG_XMIT,
   1268 					"%s: encapsulation failure\n",
   1269 					__func__);
   1270 				sc->sc_stats.ast_tx_encap++;
   1271 				goto bad;
   1272 			}
   1273 		} else {
   1274 			/*
   1275 			 * Hack!  The referenced node pointer is in the
   1276 			 * rcvif field of the packet header.  This is
   1277 			 * placed there by ieee80211_mgmt_output because
   1278 			 * we need to hold the reference with the frame
   1279 			 * and there's no other way (other than packet
   1280 			 * tags which we consider too expensive to use)
   1281 			 * to pass it along.
   1282 			 */
   1283 			ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
   1284 			m->m_pkthdr.rcvif = NULL;
   1285 
   1286 			wh = mtod(m, struct ieee80211_frame *);
   1287 			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
   1288 			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
   1289 				/* fill time stamp */
   1290 				u_int64_t tsf;
   1291 				u_int32_t *tstamp;
   1292 
   1293 				tsf = ath_hal_gettsf64(ah);
   1294 				/* XXX: adjust 100us delay to xmit */
   1295 				tsf += 100;
   1296 				tstamp = (u_int32_t *)&wh[1];
   1297 				tstamp[0] = htole32(tsf & 0xffffffff);
   1298 				tstamp[1] = htole32(tsf >> 32);
   1299 			}
   1300 			sc->sc_stats.ast_tx_mgmt++;
   1301 		}
   1302 
   1303 		if (ath_tx_start(sc, ni, bf, m)) {
   1304 	bad:
   1305 			ifp->if_oerrors++;
   1306 	reclaim:
   1307 			ATH_TXBUF_LOCK(sc);
   1308 			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1309 			ATH_TXBUF_UNLOCK(sc);
   1310 			if (ni != NULL)
   1311 				ieee80211_free_node(ni);
   1312 			continue;
   1313 		}
   1314 
   1315 		sc->sc_tx_timer = 5;
   1316 		ifp->if_timer = 1;
   1317 	}
   1318 }
   1319 
   1320 static int
   1321 ath_media_change(struct ifnet *ifp)
   1322 {
   1323 #define	IS_UP(ifp) \
   1324 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
   1325 	int error;
   1326 
   1327 	error = ieee80211_media_change(ifp);
   1328 	if (error == ENETRESET) {
   1329 		if (IS_UP(ifp))
   1330 			ath_init(ifp->if_softc);	/* XXX lose error */
   1331 		error = 0;
   1332 	}
   1333 	return error;
   1334 #undef IS_UP
   1335 }
   1336 
   1337 #ifdef AR_DEBUG
   1338 static void
   1339 ath_keyprint(const char *tag, u_int ix,
   1340 	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
   1341 {
   1342 	static const char *ciphers[] = {
   1343 		"WEP",
   1344 		"AES-OCB",
   1345 		"AES-CCM",
   1346 		"CKIP",
   1347 		"TKIP",
   1348 		"CLR",
   1349 	};
   1350 	int i, n;
   1351 
   1352 	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
   1353 	for (i = 0, n = hk->kv_len; i < n; i++)
   1354 		printf("%02x", hk->kv_val[i]);
   1355 	printf(" mac %s", ether_sprintf(mac));
   1356 	if (hk->kv_type == HAL_CIPHER_TKIP) {
   1357 		printf(" mic ");
   1358 		for (i = 0; i < sizeof(hk->kv_mic); i++)
   1359 			printf("%02x", hk->kv_mic[i]);
   1360 	}
   1361 	printf("\n");
   1362 }
   1363 #endif
   1364 
   1365 /*
   1366  * Set a TKIP key into the hardware.  This handles the
   1367  * potential distribution of key state to multiple key
   1368  * cache slots for TKIP.
   1369  */
   1370 static int
   1371 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
   1372 	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
   1373 {
   1374 #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
   1375 	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
   1376 	struct ath_hal *ah = sc->sc_ah;
   1377 
   1378 	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
   1379 		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
   1380 	KASSERT(sc->sc_splitmic, ("key cache !split"));
   1381 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
   1382 		/*
   1383 		 * TX key goes at first index, RX key at the rx index.
   1384 		 * The hal handles the MIC keys at index+64.
   1385 		 */
   1386 		memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
   1387 		KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
   1388 		if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
   1389 			return 0;
   1390 
   1391 		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
   1392 		KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
   1393 		/* XXX delete tx key on failure? */
   1394 		return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
   1395 	} else if (k->wk_flags & IEEE80211_KEY_XR) {
   1396 		/*
   1397 		 * TX/RX key goes at first index.
   1398 		 * The hal handles the MIC keys are index+64.
   1399 		 */
   1400 		memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
   1401 			k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
   1402 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
   1403 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
   1404 	}
   1405 	return 0;
   1406 #undef IEEE80211_KEY_XR
   1407 }
   1408 
   1409 /*
   1410  * Set a net80211 key into the hardware.  This handles the
   1411  * potential distribution of key state to multiple key
   1412  * cache slots for TKIP with hardware MIC support.
   1413  */
   1414 static int
   1415 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
   1416 	const u_int8_t mac0[IEEE80211_ADDR_LEN],
   1417 	struct ieee80211_node *bss)
   1418 {
   1419 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1420 	static const u_int8_t ciphermap[] = {
   1421 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
   1422 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
   1423 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
   1424 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
   1425 		(u_int8_t) -1,		/* 4 is not allocated */
   1426 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
   1427 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
   1428 	};
   1429 	struct ath_hal *ah = sc->sc_ah;
   1430 	const struct ieee80211_cipher *cip = k->wk_cipher;
   1431 	u_int8_t gmac[IEEE80211_ADDR_LEN];
   1432 	const u_int8_t *mac;
   1433 	HAL_KEYVAL hk;
   1434 
   1435 	memset(&hk, 0, sizeof(hk));
   1436 	/*
   1437 	 * Software crypto uses a "clear key" so non-crypto
   1438 	 * state kept in the key cache are maintained and
   1439 	 * so that rx frames have an entry to match.
   1440 	 */
   1441 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
   1442 		KASSERT(cip->ic_cipher < N(ciphermap),
   1443 			("invalid cipher type %u", cip->ic_cipher));
   1444 		hk.kv_type = ciphermap[cip->ic_cipher];
   1445 		hk.kv_len = k->wk_keylen;
   1446 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
   1447 	} else
   1448 		hk.kv_type = HAL_CIPHER_CLR;
   1449 
   1450 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
   1451 		/*
   1452 		 * Group keys on hardware that supports multicast frame
   1453 		 * key search use a mac that is the sender's address with
   1454 		 * the high bit set instead of the app-specified address.
   1455 		 */
   1456 		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
   1457 		gmac[0] |= 0x80;
   1458 		mac = gmac;
   1459 	} else
   1460 		mac = mac0;
   1461 
   1462 	if (hk.kv_type == HAL_CIPHER_TKIP &&
   1463 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
   1464 	    sc->sc_splitmic) {
   1465 		return ath_keyset_tkip(sc, k, &hk, mac);
   1466 	} else {
   1467 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
   1468 		return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
   1469 	}
   1470 #undef N
   1471 }
   1472 
   1473 /*
   1474  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
   1475  * each key, one for decrypt/encrypt and the other for the MIC.
   1476  */
   1477 static u_int16_t
   1478 key_alloc_2pair(struct ath_softc *sc,
   1479 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
   1480 {
   1481 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1482 	u_int i, keyix;
   1483 
   1484 	KASSERT(sc->sc_splitmic, ("key cache !split"));
   1485 	/* XXX could optimize */
   1486 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
   1487 		u_int8_t b = sc->sc_keymap[i];
   1488 		if (b != 0xff) {
   1489 			/*
   1490 			 * One or more slots in this byte are free.
   1491 			 */
   1492 			keyix = i*NBBY;
   1493 			while (b & 1) {
   1494 		again:
   1495 				keyix++;
   1496 				b >>= 1;
   1497 			}
   1498 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
   1499 			if (isset(sc->sc_keymap, keyix+32) ||
   1500 			    isset(sc->sc_keymap, keyix+64) ||
   1501 			    isset(sc->sc_keymap, keyix+32+64)) {
   1502 				/* full pair unavailable */
   1503 				/* XXX statistic */
   1504 				if (keyix == (i+1)*NBBY) {
   1505 					/* no slots were appropriate, advance */
   1506 					continue;
   1507 				}
   1508 				goto again;
   1509 			}
   1510 			setbit(sc->sc_keymap, keyix);
   1511 			setbit(sc->sc_keymap, keyix+64);
   1512 			setbit(sc->sc_keymap, keyix+32);
   1513 			setbit(sc->sc_keymap, keyix+32+64);
   1514 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
   1515 				"%s: key pair %u,%u %u,%u\n",
   1516 				__func__, keyix, keyix+64,
   1517 				keyix+32, keyix+32+64);
   1518 			*txkeyix = keyix;
   1519 			*rxkeyix = keyix+32;
   1520 			return 1;
   1521 		}
   1522 	}
   1523 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
   1524 	return 0;
   1525 #undef N
   1526 }
   1527 
   1528 /*
   1529  * Allocate a single key cache slot.
   1530  */
   1531 static int
   1532 key_alloc_single(struct ath_softc *sc,
   1533 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
   1534 {
   1535 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1536 	u_int i, keyix;
   1537 
   1538 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
   1539 	for (i = 0; i < N(sc->sc_keymap); i++) {
   1540 		u_int8_t b = sc->sc_keymap[i];
   1541 		if (b != 0xff) {
   1542 			/*
   1543 			 * One or more slots are free.
   1544 			 */
   1545 			keyix = i*NBBY;
   1546 			while (b & 1)
   1547 				keyix++, b >>= 1;
   1548 			setbit(sc->sc_keymap, keyix);
   1549 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
   1550 				__func__, keyix);
   1551 			*txkeyix = *rxkeyix = keyix;
   1552 			return 1;
   1553 		}
   1554 	}
   1555 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
   1556 	return 0;
   1557 #undef N
   1558 }
   1559 
   1560 /*
   1561  * Allocate one or more key cache slots for a uniacst key.  The
   1562  * key itself is needed only to identify the cipher.  For hardware
   1563  * TKIP with split cipher+MIC keys we allocate two key cache slot
   1564  * pairs so that we can setup separate TX and RX MIC keys.  Note
   1565  * that the MIC key for a TKIP key at slot i is assumed by the
   1566  * hardware to be at slot i+64.  This limits TKIP keys to the first
   1567  * 64 entries.
   1568  */
   1569 static int
   1570 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
   1571 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
   1572 {
   1573 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1574 
   1575 	/*
   1576 	 * Group key allocation must be handled specially for
   1577 	 * parts that do not support multicast key cache search
   1578 	 * functionality.  For those parts the key id must match
   1579 	 * the h/w key index so lookups find the right key.  On
   1580 	 * parts w/ the key search facility we install the sender's
   1581 	 * mac address (with the high bit set) and let the hardware
   1582 	 * find the key w/o using the key id.  This is preferred as
   1583 	 * it permits us to support multiple users for adhoc and/or
   1584 	 * multi-station operation.
   1585 	 */
   1586 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
   1587 		if (!(&ic->ic_nw_keys[0] <= k &&
   1588 		      k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
   1589 			/* should not happen */
   1590 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
   1591 				"%s: bogus group key\n", __func__);
   1592 			return 0;
   1593 		}
   1594 		/*
   1595 		 * XXX we pre-allocate the global keys so
   1596 		 * have no way to check if they've already been allocated.
   1597 		 */
   1598 		*keyix = *rxkeyix = k - ic->ic_nw_keys;
   1599 		return 1;
   1600 	}
   1601 
   1602 	/*
   1603 	 * We allocate two pair for TKIP when using the h/w to do
   1604 	 * the MIC.  For everything else, including software crypto,
   1605 	 * we allocate a single entry.  Note that s/w crypto requires
   1606 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
   1607 	 * not support pass-through cache entries and we map all
   1608 	 * those requests to slot 0.
   1609 	 */
   1610 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
   1611 		return key_alloc_single(sc, keyix, rxkeyix);
   1612 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1613 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
   1614 		return key_alloc_2pair(sc, keyix, rxkeyix);
   1615 	} else {
   1616 		return key_alloc_single(sc, keyix, rxkeyix);
   1617 	}
   1618 }
   1619 
   1620 /*
   1621  * Delete an entry in the key cache allocated by ath_key_alloc.
   1622  */
   1623 static int
   1624 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
   1625 {
   1626 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1627 	struct ath_hal *ah = sc->sc_ah;
   1628 	const struct ieee80211_cipher *cip = k->wk_cipher;
   1629 	u_int keyix = k->wk_keyix;
   1630 
   1631 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
   1632 
   1633 	ath_hal_keyreset(ah, keyix);
   1634 	/*
   1635 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
   1636 	 */
   1637 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1638 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
   1639 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
   1640 	if (keyix >= IEEE80211_WEP_NKID) {
   1641 		/*
   1642 		 * Don't touch keymap entries for global keys so
   1643 		 * they are never considered for dynamic allocation.
   1644 		 */
   1645 		clrbit(sc->sc_keymap, keyix);
   1646 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1647 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
   1648 		    sc->sc_splitmic) {
   1649 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
   1650 			clrbit(sc->sc_keymap, keyix+32);	/* RX key */
   1651 			clrbit(sc->sc_keymap, keyix+32+64);	/* RX key MIC */
   1652 		}
   1653 	}
   1654 	return 1;
   1655 }
   1656 
   1657 /*
   1658  * Set the key cache contents for the specified key.  Key cache
   1659  * slot(s) must already have been allocated by ath_key_alloc.
   1660  */
   1661 static int
   1662 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
   1663 	const u_int8_t mac[IEEE80211_ADDR_LEN])
   1664 {
   1665 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1666 
   1667 	return ath_keyset(sc, k, mac, ic->ic_bss);
   1668 }
   1669 
   1670 /*
   1671  * Block/unblock tx+rx processing while a key change is done.
   1672  * We assume the caller serializes key management operations
   1673  * so we only need to worry about synchronization with other
   1674  * uses that originate in the driver.
   1675  */
   1676 static void
   1677 ath_key_update_begin(struct ieee80211com *ic)
   1678 {
   1679 	struct ifnet *ifp = ic->ic_ifp;
   1680 	struct ath_softc *sc = ifp->if_softc;
   1681 
   1682 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
   1683 #if 0
   1684 	tasklet_disable(&sc->sc_rxtq);
   1685 #endif
   1686 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
   1687 }
   1688 
   1689 static void
   1690 ath_key_update_end(struct ieee80211com *ic)
   1691 {
   1692 	struct ifnet *ifp = ic->ic_ifp;
   1693 	struct ath_softc *sc = ifp->if_softc;
   1694 
   1695 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
   1696 	IF_UNLOCK(&ifp->if_snd);
   1697 #if 0
   1698 	tasklet_enable(&sc->sc_rxtq);
   1699 #endif
   1700 }
   1701 
   1702 /*
   1703  * Calculate the receive filter according to the
   1704  * operating mode and state:
   1705  *
   1706  * o always accept unicast, broadcast, and multicast traffic
   1707  * o maintain current state of phy error reception (the hal
   1708  *   may enable phy error frames for noise immunity work)
   1709  * o probe request frames are accepted only when operating in
   1710  *   hostap, adhoc, or monitor modes
   1711  * o enable promiscuous mode according to the interface state
   1712  * o accept beacons:
   1713  *   - when operating in adhoc mode so the 802.11 layer creates
   1714  *     node table entries for peers,
   1715  *   - when operating in station mode for collecting rssi data when
   1716  *     the station is otherwise quiet, or
   1717  *   - when scanning
   1718  */
   1719 static u_int32_t
   1720 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
   1721 {
   1722 	struct ieee80211com *ic = &sc->sc_ic;
   1723 	struct ath_hal *ah = sc->sc_ah;
   1724 	struct ifnet *ifp = &sc->sc_if;
   1725 	u_int32_t rfilt;
   1726 
   1727 	rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
   1728 	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
   1729 	if (ic->ic_opmode != IEEE80211_M_STA)
   1730 		rfilt |= HAL_RX_FILTER_PROBEREQ;
   1731 	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
   1732 	    (ifp->if_flags & IFF_PROMISC))
   1733 		rfilt |= HAL_RX_FILTER_PROM;
   1734 	if (ic->ic_opmode == IEEE80211_M_STA ||
   1735 	    ic->ic_opmode == IEEE80211_M_IBSS ||
   1736 	    state == IEEE80211_S_SCAN)
   1737 		rfilt |= HAL_RX_FILTER_BEACON;
   1738 	return rfilt;
   1739 }
   1740 
   1741 static void
   1742 ath_mcastfilter_accum(caddr_t dl, u_int32_t *mfilt)
   1743 {
   1744 	u_int32_t val;
   1745 	u_int8_t pos;
   1746 
   1747 	/* calculate XOR of eight 6bit values */
   1748 	val = LE_READ_4(dl + 0);
   1749 	pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1750 	val = LE_READ_4(dl + 3);
   1751 	pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1752 	pos &= 0x3f;
   1753 	mfilt[pos / 32] |= (1 << (pos % 32));
   1754 }
   1755 
   1756 static void
   1757 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t *mfilt)
   1758 {
   1759 	struct ifnet *ifp = &sc->sc_if;
   1760 	struct ether_multi *enm;
   1761 	struct ether_multistep estep;
   1762 
   1763 	mfilt[0] = mfilt[1] = 0;
   1764 	ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
   1765 	while (enm != NULL) {
   1766 		/* XXX Punt on ranges. */
   1767 		if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
   1768 			mfilt[0] = mfilt[1] = ~((u_int32_t)0);
   1769 			ifp->if_flags |= IFF_ALLMULTI;
   1770 			return;
   1771 		}
   1772 		ath_mcastfilter_accum(enm->enm_addrlo, mfilt);
   1773 		ETHER_NEXT_MULTI(estep, enm);
   1774 	}
   1775 	ifp->if_flags &= ~IFF_ALLMULTI;
   1776 }
   1777 
   1778 static void
   1779 ath_mode_init(struct ath_softc *sc)
   1780 {
   1781 	struct ieee80211com *ic = &sc->sc_ic;
   1782 	struct ath_hal *ah = sc->sc_ah;
   1783 	u_int32_t rfilt, mfilt[2];
   1784 	int i;
   1785 
   1786 	/* configure rx filter */
   1787 	rfilt = ath_calcrxfilter(sc, ic->ic_state);
   1788 	ath_hal_setrxfilter(ah, rfilt);
   1789 
   1790 	/* configure operational mode */
   1791 	ath_hal_setopmode(ah);
   1792 
   1793 	/* Write keys to hardware; it may have been powered down. */
   1794 	ath_key_update_begin(ic);
   1795 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
   1796 		ath_key_set(ic,
   1797 			    &ic->ic_crypto.cs_nw_keys[i],
   1798 			    ic->ic_myaddr);
   1799 	}
   1800 	ath_key_update_end(ic);
   1801 
   1802 	/*
   1803 	 * Handle any link-level address change.  Note that we only
   1804 	 * need to force ic_myaddr; any other addresses are handled
   1805 	 * as a byproduct of the ifnet code marking the interface
   1806 	 * down then up.
   1807 	 *
   1808 	 * XXX should get from lladdr instead of arpcom but that's more work
   1809 	 */
   1810 	IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(sc->sc_if.if_sadl));
   1811 	ath_hal_setmac(ah, ic->ic_myaddr);
   1812 
   1813 	/* calculate and install multicast filter */
   1814 #ifdef __FreeBSD__
   1815 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   1816 		mfilt[0] = mfilt[1] = 0;
   1817 		IF_ADDR_LOCK(ifp);
   1818 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
   1819 			caddr_t dl;
   1820 
   1821 			/* calculate XOR of eight 6bit values */
   1822 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
   1823 			val = LE_READ_4(dl + 0);
   1824 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1825 			val = LE_READ_4(dl + 3);
   1826 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1827 			pos &= 0x3f;
   1828 			mfilt[pos / 32] |= (1 << (pos % 32));
   1829 		}
   1830 		IF_ADDR_UNLOCK(ifp);
   1831 	} else {
   1832 		mfilt[0] = mfilt[1] = ~0;
   1833 	}
   1834 #endif
   1835 #ifdef __NetBSD__
   1836 	ath_mcastfilter_compute(sc, mfilt);
   1837 #endif
   1838 	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
   1839 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
   1840 		__func__, rfilt, mfilt[0], mfilt[1]);
   1841 }
   1842 
   1843 /*
   1844  * Set the slot time based on the current setting.
   1845  */
   1846 static void
   1847 ath_setslottime(struct ath_softc *sc)
   1848 {
   1849 	struct ieee80211com *ic = &sc->sc_ic;
   1850 	struct ath_hal *ah = sc->sc_ah;
   1851 
   1852 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   1853 		ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
   1854 	else
   1855 		ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
   1856 	sc->sc_updateslot = OK;
   1857 }
   1858 
   1859 /*
   1860  * Callback from the 802.11 layer to update the
   1861  * slot time based on the current setting.
   1862  */
   1863 static void
   1864 ath_updateslot(struct ifnet *ifp)
   1865 {
   1866 	struct ath_softc *sc = ifp->if_softc;
   1867 	struct ieee80211com *ic = &sc->sc_ic;
   1868 
   1869 	/*
   1870 	 * When not coordinating the BSS, change the hardware
   1871 	 * immediately.  For other operation we defer the change
   1872 	 * until beacon updates have propagated to the stations.
   1873 	 */
   1874 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
   1875 		sc->sc_updateslot = UPDATE;
   1876 	else
   1877 		ath_setslottime(sc);
   1878 }
   1879 
   1880 /*
   1881  * Setup a h/w transmit queue for beacons.
   1882  */
   1883 static int
   1884 ath_beaconq_setup(struct ath_hal *ah)
   1885 {
   1886 	HAL_TXQ_INFO qi;
   1887 
   1888 	memset(&qi, 0, sizeof(qi));
   1889 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
   1890 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
   1891 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
   1892 	/* NB: for dynamic turbo, don't enable any other interrupts */
   1893 	qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
   1894 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
   1895 }
   1896 
   1897 /*
   1898  * Setup the transmit queue parameters for the beacon queue.
   1899  */
   1900 static int
   1901 ath_beaconq_config(struct ath_softc *sc)
   1902 {
   1903 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
   1904 	struct ieee80211com *ic = &sc->sc_ic;
   1905 	struct ath_hal *ah = sc->sc_ah;
   1906 	HAL_TXQ_INFO qi;
   1907 
   1908 	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
   1909 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   1910 		/*
   1911 		 * Always burst out beacon and CAB traffic.
   1912 		 */
   1913 		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
   1914 		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
   1915 		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
   1916 	} else {
   1917 		struct wmeParams *wmep =
   1918 			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
   1919 		/*
   1920 		 * Adhoc mode; important thing is to use 2x cwmin.
   1921 		 */
   1922 		qi.tqi_aifs = wmep->wmep_aifsn;
   1923 		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
   1924 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
   1925 	}
   1926 
   1927 	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
   1928 		device_printf(sc->sc_dev, "unable to update parameters for "
   1929 			"beacon hardware queue!\n");
   1930 		return 0;
   1931 	} else {
   1932 		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
   1933 		return 1;
   1934 	}
   1935 #undef ATH_EXPONENT_TO_VALUE
   1936 }
   1937 
   1938 /*
   1939  * Allocate and setup an initial beacon frame.
   1940  */
   1941 static int
   1942 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
   1943 {
   1944 	struct ieee80211com *ic = ni->ni_ic;
   1945 	struct ath_buf *bf;
   1946 	struct mbuf *m;
   1947 	int error;
   1948 
   1949 	bf = STAILQ_FIRST(&sc->sc_bbuf);
   1950 	if (bf == NULL) {
   1951 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
   1952 		sc->sc_stats.ast_be_nombuf++;	/* XXX */
   1953 		return ENOMEM;			/* XXX */
   1954 	}
   1955 	/*
   1956 	 * NB: the beacon data buffer must be 32-bit aligned;
   1957 	 * we assume the mbuf routines will return us something
   1958 	 * with this alignment (perhaps should assert).
   1959 	 */
   1960 	m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
   1961 	if (m == NULL) {
   1962 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
   1963 			__func__);
   1964 		sc->sc_stats.ast_be_nombuf++;
   1965 		return ENOMEM;
   1966 	}
   1967 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
   1968 				     BUS_DMA_NOWAIT);
   1969 	if (error == 0) {
   1970 		bf->bf_m = m;
   1971 		bf->bf_node = ieee80211_ref_node(ni);
   1972 	} else {
   1973 		m_freem(m);
   1974 	}
   1975 	return error;
   1976 }
   1977 
   1978 /*
   1979  * Setup the beacon frame for transmit.
   1980  */
   1981 static void
   1982 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
   1983 {
   1984 #define	USE_SHPREAMBLE(_ic) \
   1985 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
   1986 		== IEEE80211_F_SHPREAMBLE)
   1987 	struct ieee80211_node *ni = bf->bf_node;
   1988 	struct ieee80211com *ic = ni->ni_ic;
   1989 	struct mbuf *m = bf->bf_m;
   1990 	struct ath_hal *ah = sc->sc_ah;
   1991 	struct ath_node *an = ATH_NODE(ni);
   1992 	struct ath_desc *ds;
   1993 	int flags, antenna;
   1994 	u_int8_t rate;
   1995 
   1996 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
   1997 		__func__, m, m->m_len);
   1998 
   1999 	/* setup descriptors */
   2000 	ds = bf->bf_desc;
   2001 
   2002 	flags = HAL_TXDESC_NOACK;
   2003 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
   2004 		ds->ds_link = bf->bf_daddr;	/* self-linked */
   2005 		flags |= HAL_TXDESC_VEOL;
   2006 		/*
   2007 		 * Let hardware handle antenna switching unless
   2008 		 * the user has selected a transmit antenna
   2009 		 * (sc_txantenna is not 0).
   2010 		 */
   2011 		antenna = sc->sc_txantenna;
   2012 	} else {
   2013 		ds->ds_link = 0;
   2014 		/*
   2015 		 * Switch antenna every 4 beacons, unless the user
   2016 		 * has selected a transmit antenna (sc_txantenna
   2017 		 * is not 0).
   2018 		 *
   2019 		 * XXX assumes two antenna
   2020 		 */
   2021 		if (sc->sc_txantenna == 0)
   2022 			antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
   2023 		else
   2024 			antenna = sc->sc_txantenna;
   2025 	}
   2026 
   2027 	KASSERT(bf->bf_nseg == 1,
   2028 		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
   2029 	ds->ds_data = bf->bf_segs[0].ds_addr;
   2030 	/*
   2031 	 * Calculate rate code.
   2032 	 * XXX everything at min xmit rate
   2033 	 */
   2034 	if (USE_SHPREAMBLE(ic))
   2035 		rate = an->an_tx_mgtratesp;
   2036 	else
   2037 		rate = an->an_tx_mgtrate;
   2038 	ath_hal_setuptxdesc(ah, ds
   2039 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
   2040 		, sizeof(struct ieee80211_frame)/* header length */
   2041 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
   2042 		, ni->ni_txpower		/* txpower XXX */
   2043 		, rate, 1			/* series 0 rate/tries */
   2044 		, HAL_TXKEYIX_INVALID		/* no encryption */
   2045 		, antenna			/* antenna mode */
   2046 		, flags				/* no ack, veol for beacons */
   2047 		, 0				/* rts/cts rate */
   2048 		, 0				/* rts/cts duration */
   2049 	);
   2050 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
   2051 	ath_hal_filltxdesc(ah, ds
   2052 		, roundup(m->m_len, 4)		/* buffer length */
   2053 		, AH_TRUE			/* first segment */
   2054 		, AH_TRUE			/* last segment */
   2055 		, ds				/* first descriptor */
   2056 	);
   2057 #undef USE_SHPREAMBLE
   2058 }
   2059 
   2060 /*
   2061  * Transmit a beacon frame at SWBA.  Dynamic updates to the
   2062  * frame contents are done as needed and the slot time is
   2063  * also adjusted based on current state.
   2064  */
   2065 static void
   2066 ath_beacon_proc(void *arg, int pending)
   2067 {
   2068 	struct ath_softc *sc = arg;
   2069 	struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
   2070 	struct ieee80211_node *ni = bf->bf_node;
   2071 	struct ieee80211com *ic = ni->ni_ic;
   2072 	struct ath_hal *ah = sc->sc_ah;
   2073 	struct mbuf *m;
   2074 	int ncabq, error, otherant;
   2075 
   2076 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
   2077 		__func__, pending);
   2078 
   2079 	if (ic->ic_opmode == IEEE80211_M_STA ||
   2080 	    ic->ic_opmode == IEEE80211_M_MONITOR ||
   2081 	    bf == NULL || bf->bf_m == NULL) {
   2082 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
   2083 			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
   2084 		return;
   2085 	}
   2086 	/*
   2087 	 * Check if the previous beacon has gone out.  If
   2088 	 * not don't don't try to post another, skip this
   2089 	 * period and wait for the next.  Missed beacons
   2090 	 * indicate a problem and should not occur.  If we
   2091 	 * miss too many consecutive beacons reset the device.
   2092 	 */
   2093 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
   2094 		sc->sc_bmisscount++;
   2095 		DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
   2096 			"%s: missed %u consecutive beacons\n",
   2097 			__func__, sc->sc_bmisscount);
   2098 		if (sc->sc_bmisscount > 3)		/* NB: 3 is a guess */
   2099 			TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask);
   2100 		return;
   2101 	}
   2102 	if (sc->sc_bmisscount != 0) {
   2103 		DPRINTF(sc, ATH_DEBUG_BEACON,
   2104 			"%s: resume beacon xmit after %u misses\n",
   2105 			__func__, sc->sc_bmisscount);
   2106 		sc->sc_bmisscount = 0;
   2107 	}
   2108 
   2109 	/*
   2110 	 * Update dynamic beacon contents.  If this returns
   2111 	 * non-zero then we need to remap the memory because
   2112 	 * the beacon frame changed size (probably because
   2113 	 * of the TIM bitmap).
   2114 	 */
   2115 	m = bf->bf_m;
   2116 	ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
   2117 	if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
   2118 		/* XXX too conservative? */
   2119 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   2120 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
   2121 					     BUS_DMA_NOWAIT);
   2122 		if (error != 0) {
   2123 			if_printf(&sc->sc_if,
   2124 			    "%s: bus_dmamap_load_mbuf failed, error %u\n",
   2125 			    __func__, error);
   2126 			return;
   2127 		}
   2128 	}
   2129 
   2130 	/*
   2131 	 * Handle slot time change when a non-ERP station joins/leaves
   2132 	 * an 11g network.  The 802.11 layer notifies us via callback,
   2133 	 * we mark updateslot, then wait one beacon before effecting
   2134 	 * the change.  This gives associated stations at least one
   2135 	 * beacon interval to note the state change.
   2136 	 */
   2137 	/* XXX locking */
   2138 	if (sc->sc_updateslot == UPDATE)
   2139 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
   2140 	else if (sc->sc_updateslot == COMMIT)
   2141 		ath_setslottime(sc);		/* commit change to h/w */
   2142 
   2143 	/*
   2144 	 * Check recent per-antenna transmit statistics and flip
   2145 	 * the default antenna if noticeably more frames went out
   2146 	 * on the non-default antenna.
   2147 	 * XXX assumes 2 anntenae
   2148 	 */
   2149 	otherant = sc->sc_defant & 1 ? 2 : 1;
   2150 	if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
   2151 		ath_setdefantenna(sc, otherant);
   2152 	sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
   2153 
   2154 	/*
   2155 	 * Construct tx descriptor.
   2156 	 */
   2157 	ath_beacon_setup(sc, bf);
   2158 
   2159 	/*
   2160 	 * Stop any current dma and put the new frame on the queue.
   2161 	 * This should never fail since we check above that no frames
   2162 	 * are still pending on the queue.
   2163 	 */
   2164 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
   2165 		DPRINTF(sc, ATH_DEBUG_ANY,
   2166 			"%s: beacon queue %u did not stop?\n",
   2167 			__func__, sc->sc_bhalq);
   2168 	}
   2169 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   2170 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2171 
   2172 	/*
   2173 	 * Enable the CAB queue before the beacon queue to
   2174 	 * insure cab frames are triggered by this beacon.
   2175 	 */
   2176 	if (sc->sc_boff.bo_tim[4] & 1)		/* NB: only at DTIM */
   2177 		ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
   2178 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
   2179 	ath_hal_txstart(ah, sc->sc_bhalq);
   2180 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
   2181 		"%s: TXDP[%u] = %p (%p)\n", __func__,
   2182 		sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc);
   2183 
   2184 	sc->sc_stats.ast_be_xmit++;
   2185 }
   2186 
   2187 /*
   2188  * Reset the hardware after detecting beacons have stopped.
   2189  */
   2190 static void
   2191 ath_bstuck_proc(void *arg, int pending)
   2192 {
   2193 	struct ath_softc *sc = arg;
   2194 	struct ifnet *ifp = &sc->sc_if;
   2195 
   2196 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
   2197 		sc->sc_bmisscount);
   2198 	ath_reset(ifp);
   2199 }
   2200 
   2201 /*
   2202  * Reclaim beacon resources.
   2203  */
   2204 static void
   2205 ath_beacon_free(struct ath_softc *sc)
   2206 {
   2207 	struct ath_buf *bf;
   2208 
   2209 	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
   2210 		if (bf->bf_m != NULL) {
   2211 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   2212 			m_freem(bf->bf_m);
   2213 			bf->bf_m = NULL;
   2214 		}
   2215 		if (bf->bf_node != NULL) {
   2216 			ieee80211_free_node(bf->bf_node);
   2217 			bf->bf_node = NULL;
   2218 		}
   2219 	}
   2220 }
   2221 
   2222 /*
   2223  * Configure the beacon and sleep timers.
   2224  *
   2225  * When operating as an AP this resets the TSF and sets
   2226  * up the hardware to notify us when we need to issue beacons.
   2227  *
   2228  * When operating in station mode this sets up the beacon
   2229  * timers according to the timestamp of the last received
   2230  * beacon and the current TSF, configures PCF and DTIM
   2231  * handling, programs the sleep registers so the hardware
   2232  * will wakeup in time to receive beacons, and configures
   2233  * the beacon miss handling so we'll receive a BMISS
   2234  * interrupt when we stop seeing beacons from the AP
   2235  * we've associated with.
   2236  */
   2237 static void
   2238 ath_beacon_config(struct ath_softc *sc)
   2239 {
   2240 #define	TSF_TO_TU(_h,_l)	(((_h) << 22) | ((_l) >> 10))
   2241 	struct ath_hal *ah = sc->sc_ah;
   2242 	struct ieee80211com *ic = &sc->sc_ic;
   2243 	struct ieee80211_node *ni = ic->ic_bss;
   2244 	u_int32_t nexttbtt, intval;
   2245 
   2246 	/* extract tstamp from last beacon and convert to TU */
   2247 	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
   2248 			     LE_READ_4(ni->ni_tstamp.data));
   2249 	/* NB: the beacon interval is kept internally in TU's */
   2250 	intval = ni->ni_intval & HAL_BEACON_PERIOD;
   2251 	if (nexttbtt == 0)		/* e.g. for ap mode */
   2252 		nexttbtt = intval;
   2253 	else if (intval)		/* NB: can be 0 for monitor mode */
   2254 		nexttbtt = roundup(nexttbtt, intval);
   2255 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
   2256 		__func__, nexttbtt, intval, ni->ni_intval);
   2257 	if (ic->ic_opmode == IEEE80211_M_STA) {
   2258 		HAL_BEACON_STATE bs;
   2259 		u_int64_t tsf;
   2260 		u_int32_t tsftu;
   2261 		int dtimperiod, dtimcount;
   2262 		int cfpperiod, cfpcount;
   2263 
   2264 		/*
   2265 		 * Setup dtim and cfp parameters according to
   2266 		 * last beacon we received (which may be none).
   2267 		 */
   2268 		dtimperiod = ni->ni_dtim_period;
   2269 		if (dtimperiod <= 0)		/* NB: 0 if not known */
   2270 			dtimperiod = 1;
   2271 		dtimcount = ni->ni_dtim_count;
   2272 		if (dtimcount >= dtimperiod)	/* NB: sanity check */
   2273 			dtimcount = 0;		/* XXX? */
   2274 		cfpperiod = 1;			/* NB: no PCF support yet */
   2275 		cfpcount = 0;
   2276 #define	FUDGE	2
   2277 		/*
   2278 		 * Pull nexttbtt forward to reflect the current
   2279 		 * TSF and calculate dtim+cfp state for the result.
   2280 		 */
   2281 		tsf = ath_hal_gettsf64(ah);
   2282 		tsftu = TSF_TO_TU((u_int32_t)(tsf>>32), (u_int32_t)tsf) + FUDGE;
   2283 		do {
   2284 			nexttbtt += intval;
   2285 			if (--dtimcount < 0) {
   2286 				dtimcount = dtimperiod - 1;
   2287 				if (--cfpcount < 0)
   2288 					cfpcount = cfpperiod - 1;
   2289 			}
   2290 		} while (nexttbtt < tsftu);
   2291 #undef FUDGE
   2292 		memset(&bs, 0, sizeof(bs));
   2293 		bs.bs_intval = intval;
   2294 		bs.bs_nexttbtt = nexttbtt;
   2295 		bs.bs_dtimperiod = dtimperiod*intval;
   2296 		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
   2297 		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
   2298 		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
   2299 		bs.bs_cfpmaxduration = 0;
   2300 #if 0
   2301 		/*
   2302 		 * The 802.11 layer records the offset to the DTIM
   2303 		 * bitmap while receiving beacons; use it here to
   2304 		 * enable h/w detection of our AID being marked in
   2305 		 * the bitmap vector (to indicate frames for us are
   2306 		 * pending at the AP).
   2307 		 * XXX do DTIM handling in s/w to WAR old h/w bugs
   2308 		 * XXX enable based on h/w rev for newer chips
   2309 		 */
   2310 		bs.bs_timoffset = ni->ni_timoff;
   2311 #endif
   2312 		/*
   2313 		 * Calculate the number of consecutive beacons to miss
   2314 		 * before taking a BMISS interrupt.  The configuration
   2315 		 * is specified in ms, so we need to convert that to
   2316 		 * TU's and then calculate based on the beacon interval.
   2317 		 * Note that we clamp the result to at most 10 beacons.
   2318 		 */
   2319 		bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
   2320 		if (bs.bs_bmissthreshold > 10)
   2321 			bs.bs_bmissthreshold = 10;
   2322 		else if (bs.bs_bmissthreshold <= 0)
   2323 			bs.bs_bmissthreshold = 1;
   2324 
   2325 		/*
   2326 		 * Calculate sleep duration.  The configuration is
   2327 		 * given in ms.  We insure a multiple of the beacon
   2328 		 * period is used.  Also, if the sleep duration is
   2329 		 * greater than the DTIM period then it makes senses
   2330 		 * to make it a multiple of that.
   2331 		 *
   2332 		 * XXX fixed at 100ms
   2333 		 */
   2334 		bs.bs_sleepduration =
   2335 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
   2336 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
   2337 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
   2338 
   2339 		DPRINTF(sc, ATH_DEBUG_BEACON,
   2340 			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
   2341 			, __func__
   2342 			, tsf, tsftu
   2343 			, bs.bs_intval
   2344 			, bs.bs_nexttbtt
   2345 			, bs.bs_dtimperiod
   2346 			, bs.bs_nextdtim
   2347 			, bs.bs_bmissthreshold
   2348 			, bs.bs_sleepduration
   2349 			, bs.bs_cfpperiod
   2350 			, bs.bs_cfpmaxduration
   2351 			, bs.bs_cfpnext
   2352 			, bs.bs_timoffset
   2353 		);
   2354 		ath_hal_intrset(ah, 0);
   2355 		ath_hal_beacontimers(ah, &bs);
   2356 		sc->sc_imask |= HAL_INT_BMISS;
   2357 		ath_hal_intrset(ah, sc->sc_imask);
   2358 	} else {
   2359 		ath_hal_intrset(ah, 0);
   2360 		if (nexttbtt == intval)
   2361 			intval |= HAL_BEACON_RESET_TSF;
   2362 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
   2363 			/*
   2364 			 * In IBSS mode enable the beacon timers but only
   2365 			 * enable SWBA interrupts if we need to manually
   2366 			 * prepare beacon frames.  Otherwise we use a
   2367 			 * self-linked tx descriptor and let the hardware
   2368 			 * deal with things.
   2369 			 */
   2370 			intval |= HAL_BEACON_ENA;
   2371 			if (!sc->sc_hasveol)
   2372 				sc->sc_imask |= HAL_INT_SWBA;
   2373 			ath_beaconq_config(sc);
   2374 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   2375 			/*
   2376 			 * In AP mode we enable the beacon timers and
   2377 			 * SWBA interrupts to prepare beacon frames.
   2378 			 */
   2379 			intval |= HAL_BEACON_ENA;
   2380 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
   2381 			ath_beaconq_config(sc);
   2382 		}
   2383 		ath_hal_beaconinit(ah, nexttbtt, intval);
   2384 		sc->sc_bmisscount = 0;
   2385 		ath_hal_intrset(ah, sc->sc_imask);
   2386 		/*
   2387 		 * When using a self-linked beacon descriptor in
   2388 		 * ibss mode load it once here.
   2389 		 */
   2390 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
   2391 			ath_beacon_proc(sc, 0);
   2392 	}
   2393 #undef TSF_TO_TU
   2394 }
   2395 
   2396 static int
   2397 ath_descdma_setup(struct ath_softc *sc,
   2398 	struct ath_descdma *dd, ath_bufhead *head,
   2399 	const char *name, int nbuf, int ndesc)
   2400 {
   2401 #define	DS2PHYS(_dd, _ds) \
   2402 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
   2403 	struct ifnet *ifp = &sc->sc_if;
   2404 	struct ath_desc *ds;
   2405 	struct ath_buf *bf;
   2406 	int i, bsize, error;
   2407 
   2408 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
   2409 	    __func__, name, nbuf, ndesc);
   2410 
   2411 	dd->dd_name = name;
   2412 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
   2413 
   2414 	/*
   2415 	 * Setup DMA descriptor area.
   2416 	 */
   2417 	dd->dd_dmat = sc->sc_dmat;
   2418 
   2419 	error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE,
   2420 	    0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0);
   2421 
   2422 	if (error != 0) {
   2423 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
   2424 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
   2425 		goto fail0;
   2426 	}
   2427 
   2428 	error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg,
   2429 	    dd->dd_desc_len, (caddr_t *)&dd->dd_desc, BUS_DMA_COHERENT);
   2430 	if (error != 0) {
   2431 		if_printf(ifp, "unable to map %u %s descriptors, error = %u\n",
   2432 		    nbuf * ndesc, dd->dd_name, error);
   2433 		goto fail1;
   2434 	}
   2435 
   2436 	/* allocate descriptors */
   2437 	error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1,
   2438 	    dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap);
   2439 	if (error != 0) {
   2440 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
   2441 			"error %u\n", dd->dd_name, error);
   2442 		goto fail2;
   2443 	}
   2444 
   2445 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc,
   2446 	    dd->dd_desc_len, NULL, BUS_DMA_NOWAIT);
   2447 	if (error != 0) {
   2448 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
   2449 			dd->dd_name, error);
   2450 		goto fail3;
   2451 	}
   2452 
   2453 	ds = dd->dd_desc;
   2454 	dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr;
   2455 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
   2456 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
   2457 	    (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
   2458 
   2459 	/* allocate rx buffers */
   2460 	bsize = sizeof(struct ath_buf) * nbuf;
   2461 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
   2462 	if (bf == NULL) {
   2463 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
   2464 			dd->dd_name, bsize);
   2465 		goto fail4;
   2466 	}
   2467 	dd->dd_bufptr = bf;
   2468 
   2469 	STAILQ_INIT(head);
   2470 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
   2471 		bf->bf_desc = ds;
   2472 		bf->bf_daddr = DS2PHYS(dd, ds);
   2473 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc,
   2474 				MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap);
   2475 		if (error != 0) {
   2476 			if_printf(ifp, "unable to create dmamap for %s "
   2477 				"buffer %u, error %u\n", dd->dd_name, i, error);
   2478 			ath_descdma_cleanup(sc, dd, head);
   2479 			return error;
   2480 		}
   2481 		STAILQ_INSERT_TAIL(head, bf, bf_list);
   2482 	}
   2483 	return 0;
   2484 fail4:
   2485 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
   2486 fail3:
   2487 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
   2488 fail2:
   2489 	bus_dmamem_unmap(dd->dd_dmat, (caddr_t)dd->dd_desc, dd->dd_desc_len);
   2490 fail1:
   2491 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
   2492 fail0:
   2493 	memset(dd, 0, sizeof(*dd));
   2494 	return error;
   2495 #undef DS2PHYS
   2496 }
   2497 
   2498 static void
   2499 ath_descdma_cleanup(struct ath_softc *sc,
   2500 	struct ath_descdma *dd, ath_bufhead *head)
   2501 {
   2502 	struct ath_buf *bf;
   2503 	struct ieee80211_node *ni;
   2504 
   2505 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
   2506 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
   2507 	bus_dmamem_unmap(dd->dd_dmat, (caddr_t)dd->dd_desc, dd->dd_desc_len);
   2508 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
   2509 
   2510 	STAILQ_FOREACH(bf, head, bf_list) {
   2511 		if (bf->bf_m) {
   2512 			m_freem(bf->bf_m);
   2513 			bf->bf_m = NULL;
   2514 		}
   2515 		if (bf->bf_dmamap != NULL) {
   2516 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
   2517 			bf->bf_dmamap = NULL;
   2518 		}
   2519 		ni = bf->bf_node;
   2520 		bf->bf_node = NULL;
   2521 		if (ni != NULL) {
   2522 			/*
   2523 			 * Reclaim node reference.
   2524 			 */
   2525 			ieee80211_free_node(ni);
   2526 		}
   2527 	}
   2528 
   2529 	STAILQ_INIT(head);
   2530 	free(dd->dd_bufptr, M_ATHDEV);
   2531 	memset(dd, 0, sizeof(*dd));
   2532 }
   2533 
   2534 static int
   2535 ath_desc_alloc(struct ath_softc *sc)
   2536 {
   2537 	int error;
   2538 
   2539 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
   2540 			"rx", ATH_RXBUF, 1);
   2541 	if (error != 0)
   2542 		return error;
   2543 
   2544 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
   2545 			"tx", ATH_TXBUF, ATH_TXDESC);
   2546 	if (error != 0) {
   2547 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2548 		return error;
   2549 	}
   2550 
   2551 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
   2552 			"beacon", 1, 1);
   2553 	if (error != 0) {
   2554 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
   2555 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2556 		return error;
   2557 	}
   2558 	return 0;
   2559 }
   2560 
   2561 static void
   2562 ath_desc_free(struct ath_softc *sc)
   2563 {
   2564 
   2565 	if (sc->sc_bdma.dd_desc_len != 0)
   2566 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
   2567 	if (sc->sc_txdma.dd_desc_len != 0)
   2568 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
   2569 	if (sc->sc_rxdma.dd_desc_len != 0)
   2570 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2571 }
   2572 
   2573 static struct ieee80211_node *
   2574 ath_node_alloc(struct ieee80211_node_table *nt)
   2575 {
   2576 	struct ieee80211com *ic = nt->nt_ic;
   2577 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   2578 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
   2579 	struct ath_node *an;
   2580 
   2581 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
   2582 	if (an == NULL) {
   2583 		/* XXX stat+msg */
   2584 		return NULL;
   2585 	}
   2586 	an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
   2587 	an->an_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
   2588 	an->an_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
   2589 	an->an_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
   2590 	ath_rate_node_init(sc, an);
   2591 
   2592 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
   2593 	return &an->an_node;
   2594 }
   2595 
   2596 static void
   2597 ath_node_free(struct ieee80211_node *ni)
   2598 {
   2599 	struct ieee80211com *ic = ni->ni_ic;
   2600         struct ath_softc *sc = ic->ic_ifp->if_softc;
   2601 
   2602 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
   2603 
   2604 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
   2605 	sc->sc_node_free(ni);
   2606 }
   2607 
   2608 static u_int8_t
   2609 ath_node_getrssi(const struct ieee80211_node *ni)
   2610 {
   2611 #define	HAL_EP_RND(x, mul) \
   2612 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
   2613 	u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
   2614 	int32_t rssi;
   2615 
   2616 	/*
   2617 	 * When only one frame is received there will be no state in
   2618 	 * avgrssi so fallback on the value recorded by the 802.11 layer.
   2619 	 */
   2620 	if (avgrssi != ATH_RSSI_DUMMY_MARKER)
   2621 		rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
   2622 	else
   2623 		rssi = ni->ni_rssi;
   2624 	/* NB: theoretically we shouldn't need this, but be paranoid */
   2625 	return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
   2626 #undef HAL_EP_RND
   2627 }
   2628 
   2629 static int
   2630 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
   2631 {
   2632 	struct ath_hal *ah = sc->sc_ah;
   2633 	int error;
   2634 	struct mbuf *m;
   2635 	struct ath_desc *ds;
   2636 
   2637 	m = bf->bf_m;
   2638 	if (m == NULL) {
   2639 		/*
   2640 		 * NB: by assigning a page to the rx dma buffer we
   2641 		 * implicitly satisfy the Atheros requirement that
   2642 		 * this buffer be cache-line-aligned and sized to be
   2643 		 * multiple of the cache line size.  Not doing this
   2644 		 * causes weird stuff to happen (for the 5210 at least).
   2645 		 */
   2646 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
   2647 		if (m == NULL) {
   2648 			DPRINTF(sc, ATH_DEBUG_ANY,
   2649 				"%s: no mbuf/cluster\n", __func__);
   2650 			sc->sc_stats.ast_rx_nombuf++;
   2651 			return ENOMEM;
   2652 		}
   2653 		bf->bf_m = m;
   2654 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
   2655 
   2656 		error = bus_dmamap_load_mbuf(sc->sc_dmat,
   2657 					     bf->bf_dmamap, m,
   2658 					     BUS_DMA_NOWAIT);
   2659 		if (error != 0) {
   2660 			DPRINTF(sc, ATH_DEBUG_ANY,
   2661 			    "%s: bus_dmamap_load_mbuf failed; error %d\n",
   2662 			    __func__, error);
   2663 			sc->sc_stats.ast_rx_busdma++;
   2664 			return error;
   2665 		}
   2666 		KASSERT(bf->bf_nseg == 1,
   2667 			("multi-segment packet; nseg %u", bf->bf_nseg));
   2668 	}
   2669 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   2670 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2671 
   2672 	/*
   2673 	 * Setup descriptors.  For receive we always terminate
   2674 	 * the descriptor list with a self-linked entry so we'll
   2675 	 * not get overrun under high load (as can happen with a
   2676 	 * 5212 when ANI processing enables PHY error frames).
   2677 	 *
   2678 	 * To insure the last descriptor is self-linked we create
   2679 	 * each descriptor as self-linked and add it to the end.  As
   2680 	 * each additional descriptor is added the previous self-linked
   2681 	 * entry is ``fixed'' naturally.  This should be safe even
   2682 	 * if DMA is happening.  When processing RX interrupts we
   2683 	 * never remove/process the last, self-linked, entry on the
   2684 	 * descriptor list.  This insures the hardware always has
   2685 	 * someplace to write a new frame.
   2686 	 */
   2687 	ds = bf->bf_desc;
   2688 	ds->ds_link = bf->bf_daddr;	/* link to self */
   2689 	ds->ds_data = bf->bf_segs[0].ds_addr;
   2690 	ath_hal_setuprxdesc(ah, ds
   2691 		, m->m_len		/* buffer size */
   2692 		, 0
   2693 	);
   2694 
   2695 	if (sc->sc_rxlink != NULL)
   2696 		*sc->sc_rxlink = bf->bf_daddr;
   2697 	sc->sc_rxlink = &ds->ds_link;
   2698 	return 0;
   2699 }
   2700 
   2701 /*
   2702  * Extend 15-bit time stamp from rx descriptor to
   2703  * a full 64-bit TSF using the current h/w TSF.
   2704  */
   2705 static inline u_int64_t
   2706 ath_extend_tsf(struct ath_hal *ah, u_int32_t rstamp)
   2707 {
   2708 	u_int64_t tsf;
   2709 
   2710 	tsf = ath_hal_gettsf64(ah);
   2711 	if ((tsf & 0x7fff) < rstamp)
   2712 		tsf -= 0x8000;
   2713 	return ((tsf &~ 0x7fff) | rstamp);
   2714 }
   2715 
   2716 /*
   2717  * Intercept management frames to collect beacon rssi data
   2718  * and to do ibss merges.
   2719  */
   2720 static void
   2721 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
   2722 	struct ieee80211_node *ni,
   2723 	int subtype, int rssi, u_int32_t rstamp)
   2724 {
   2725 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   2726 
   2727 	/*
   2728 	 * Call up first so subsequent work can use information
   2729 	 * potentially stored in the node (e.g. for ibss merge).
   2730 	 */
   2731 	sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
   2732 	switch (subtype) {
   2733 	case IEEE80211_FC0_SUBTYPE_BEACON:
   2734 		/* update rssi statistics for use by the hal */
   2735 		ATH_RSSI_LPF(ATH_NODE(ni)->an_halstats.ns_avgbrssi, rssi);
   2736 		/* fall thru... */
   2737 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
   2738 		if (ic->ic_opmode == IEEE80211_M_IBSS &&
   2739 		    ic->ic_state == IEEE80211_S_RUN) {
   2740 			u_int64_t tsf = ath_extend_tsf(sc->sc_ah, rstamp);
   2741 
   2742 			/*
   2743 			 * Handle ibss merge as needed; check the tsf on the
   2744 			 * frame before attempting the merge.  The 802.11 spec
   2745 			 * says the station should change it's bssid to match
   2746 			 * the oldest station with the same ssid, where oldest
   2747 			 * is determined by the tsf.  Note that hardware
   2748 			 * reconfiguration happens through callback to
   2749 			 * ath_newstate as the state machine will go from
   2750 			 * RUN -> RUN when this happens.
   2751 			 */
   2752 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
   2753 				DPRINTF(sc, ATH_DEBUG_STATE,
   2754 				    "ibss merge, rstamp %u tsf %ju "
   2755 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
   2756 				    (uintmax_t)ni->ni_tstamp.tsf);
   2757 				(void) ieee80211_ibss_merge(ni);
   2758 			}
   2759 		}
   2760 		break;
   2761 	}
   2762 }
   2763 
   2764 /*
   2765  * Set the default antenna.
   2766  */
   2767 static void
   2768 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
   2769 {
   2770 	struct ath_hal *ah = sc->sc_ah;
   2771 
   2772 	/* XXX block beacon interrupts */
   2773 	ath_hal_setdefantenna(ah, antenna);
   2774 	if (sc->sc_defant != antenna)
   2775 		sc->sc_stats.ast_ant_defswitch++;
   2776 	sc->sc_defant = antenna;
   2777 	sc->sc_rxotherant = 0;
   2778 }
   2779 
   2780 static void
   2781 ath_rx_proc(void *arg, int npending)
   2782 {
   2783 #define	PA2DESC(_sc, _pa) \
   2784 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
   2785 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
   2786 	struct ath_softc *sc = arg;
   2787 	struct ath_buf *bf;
   2788 	struct ieee80211com *ic = &sc->sc_ic;
   2789 	struct ifnet *ifp = &sc->sc_if;
   2790 	struct ath_hal *ah = sc->sc_ah;
   2791 	struct ath_desc *ds;
   2792 	struct mbuf *m;
   2793 	struct ieee80211_node *ni;
   2794 	struct ath_node *an;
   2795 	int len, type;
   2796 	u_int phyerr;
   2797 	HAL_STATUS status;
   2798 
   2799 	NET_LOCK_GIANT();		/* XXX */
   2800 
   2801 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
   2802 	do {
   2803 		bf = STAILQ_FIRST(&sc->sc_rxbuf);
   2804 		if (bf == NULL) {		/* NB: shouldn't happen */
   2805 			if_printf(ifp, "%s: no buffer!\n", __func__);
   2806 			break;
   2807 		}
   2808 		ds = bf->bf_desc;
   2809 		if (ds->ds_link == bf->bf_daddr) {
   2810 			/* NB: never process the self-linked entry at the end */
   2811 			break;
   2812 		}
   2813 		m = bf->bf_m;
   2814 		if (m == NULL) {		/* NB: shouldn't happen */
   2815 			if_printf(ifp, "%s: no mbuf!\n", __func__);
   2816 			continue;
   2817 		}
   2818 		/* XXX sync descriptor memory */
   2819 		/*
   2820 		 * Must provide the virtual address of the current
   2821 		 * descriptor, the physical address, and the virtual
   2822 		 * address of the next descriptor in the h/w chain.
   2823 		 * This allows the HAL to look ahead to see if the
   2824 		 * hardware is done with a descriptor by checking the
   2825 		 * done bit in the following descriptor and the address
   2826 		 * of the current descriptor the DMA engine is working
   2827 		 * on.  All this is necessary because of our use of
   2828 		 * a self-linked list to avoid rx overruns.
   2829 		 */
   2830 		status = ath_hal_rxprocdesc(ah, ds,
   2831 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
   2832 #ifdef AR_DEBUG
   2833 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
   2834 			ath_printrxbuf(bf, status == HAL_OK);
   2835 #endif
   2836 		if (status == HAL_EINPROGRESS)
   2837 			break;
   2838 		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
   2839 		if (ds->ds_rxstat.rs_more) {
   2840 			/*
   2841 			 * Frame spans multiple descriptors; this
   2842 			 * cannot happen yet as we don't support
   2843 			 * jumbograms.  If not in monitor mode,
   2844 			 * discard the frame.
   2845 			 */
   2846 			if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   2847 				sc->sc_stats.ast_rx_toobig++;
   2848 				goto rx_next;
   2849 			}
   2850 			/* fall thru for monitor mode handling... */
   2851 		} else if (ds->ds_rxstat.rs_status != 0) {
   2852 			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
   2853 				sc->sc_stats.ast_rx_crcerr++;
   2854 			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
   2855 				sc->sc_stats.ast_rx_fifoerr++;
   2856 			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
   2857 				sc->sc_stats.ast_rx_phyerr++;
   2858 				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
   2859 				sc->sc_stats.ast_rx_phy[phyerr]++;
   2860 				goto rx_next;
   2861 			}
   2862 			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
   2863 				/*
   2864 				 * Decrypt error.  If the error occurred
   2865 				 * because there was no hardware key, then
   2866 				 * let the frame through so the upper layers
   2867 				 * can process it.  This is necessary for 5210
   2868 				 * parts which have no way to setup a ``clear''
   2869 				 * key cache entry.
   2870 				 *
   2871 				 * XXX do key cache faulting
   2872 				 */
   2873 				if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
   2874 					goto rx_accept;
   2875 				sc->sc_stats.ast_rx_badcrypt++;
   2876 			}
   2877 			if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
   2878 				sc->sc_stats.ast_rx_badmic++;
   2879 				/*
   2880 				 * Do minimal work required to hand off
   2881 				 * the 802.11 header for notifcation.
   2882 				 */
   2883 				/* XXX frag's and qos frames */
   2884 				len = ds->ds_rxstat.rs_datalen;
   2885 				if (len >= sizeof (struct ieee80211_frame)) {
   2886 					bus_dmamap_sync(sc->sc_dmat,
   2887 					    bf->bf_dmamap,
   2888 					    0, bf->bf_dmamap->dm_mapsize,
   2889 					    BUS_DMASYNC_POSTREAD);
   2890 					ieee80211_notify_michael_failure(ic,
   2891 					    mtod(m, struct ieee80211_frame *),
   2892 					    sc->sc_splitmic ?
   2893 					        ds->ds_rxstat.rs_keyix-32 :
   2894 					        ds->ds_rxstat.rs_keyix
   2895 					);
   2896 				}
   2897 			}
   2898 			ifp->if_ierrors++;
   2899 			/*
   2900 			 * Reject error frames, we normally don't want
   2901 			 * to see them in monitor mode (in monitor mode
   2902 			 * allow through packets that have crypto problems).
   2903 			 */
   2904 			if ((ds->ds_rxstat.rs_status &~
   2905 				(HAL_RXERR_DECRYPT|HAL_RXERR_MIC)) ||
   2906 			    sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
   2907 				goto rx_next;
   2908 		}
   2909 rx_accept:
   2910 		/*
   2911 		 * Sync and unmap the frame.  At this point we're
   2912 		 * committed to passing the mbuf somewhere so clear
   2913 		 * bf_m; this means a new sk_buff must be allocated
   2914 		 * when the rx descriptor is setup again to receive
   2915 		 * another frame.
   2916 		 */
   2917 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
   2918 		    0, bf->bf_dmamap->dm_mapsize,
   2919 		    BUS_DMASYNC_POSTREAD);
   2920 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   2921 		bf->bf_m = NULL;
   2922 
   2923 		m->m_pkthdr.rcvif = ifp;
   2924 		len = ds->ds_rxstat.rs_datalen;
   2925 		m->m_pkthdr.len = m->m_len = len;
   2926 
   2927 		sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
   2928 
   2929 #if NBPFILTER > 0
   2930 		if (sc->sc_drvbpf) {
   2931 			u_int8_t rix;
   2932 
   2933 			/*
   2934 			 * Discard anything shorter than an ack or cts.
   2935 			 */
   2936 			if (len < IEEE80211_ACK_LEN) {
   2937 				DPRINTF(sc, ATH_DEBUG_RECV,
   2938 					"%s: runt packet %d\n",
   2939 					__func__, len);
   2940 				sc->sc_stats.ast_rx_tooshort++;
   2941 				m_freem(m);
   2942 				goto rx_next;
   2943 			}
   2944 			rix = ds->ds_rxstat.rs_rate;
   2945 			sc->sc_rx_th.wr_tsf = ath_extend_tsf(sc->sc_ah,
   2946 			    ds->ds_rxstat.rs_tstamp);
   2947 			sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
   2948 			sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
   2949 			sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi;
   2950 			sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
   2951 
   2952 			bpf_mtap2(sc->sc_drvbpf,
   2953 				&sc->sc_rx_th, sc->sc_rx_th_len, m);
   2954 		}
   2955 #endif
   2956 
   2957 		/*
   2958 		 * From this point on we assume the frame is at least
   2959 		 * as large as ieee80211_frame_min; verify that.
   2960 		 */
   2961 		if (len < IEEE80211_MIN_LEN) {
   2962 			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
   2963 				__func__, len);
   2964 			sc->sc_stats.ast_rx_tooshort++;
   2965 			m_freem(m);
   2966 			goto rx_next;
   2967 		}
   2968 
   2969 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
   2970 			ieee80211_dump_pkt(mtod(m, caddr_t), len,
   2971 				   sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
   2972 				   ds->ds_rxstat.rs_rssi);
   2973 		}
   2974 
   2975 		m_adj(m, -IEEE80211_CRC_LEN);
   2976 
   2977 		/*
   2978 		 * Locate the node for sender, track state, and then
   2979 		 * pass the (referenced) node up to the 802.11 layer
   2980 		 * for its use.
   2981 		 */
   2982 		ni = ieee80211_find_rxnode_withkey(ic,
   2983 			mtod(m, const struct ieee80211_frame_min *),
   2984 			ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
   2985 				IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
   2986 		/*
   2987 		 * Track rx rssi and do any rx antenna management.
   2988 		 */
   2989 		an = ATH_NODE(ni);
   2990 		ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
   2991 		/*
   2992 		 * Send frame up for processing.
   2993 		 */
   2994 		type = ieee80211_input(ic, m, ni,
   2995 			ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
   2996 		ieee80211_free_node(ni);
   2997 		if (sc->sc_diversity) {
   2998 			/*
   2999 			 * When using fast diversity, change the default rx
   3000 			 * antenna if diversity chooses the other antenna 3
   3001 			 * times in a row.
   3002 			 */
   3003 			if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
   3004 				if (++sc->sc_rxotherant >= 3)
   3005 					ath_setdefantenna(sc,
   3006 						ds->ds_rxstat.rs_antenna);
   3007 			} else
   3008 				sc->sc_rxotherant = 0;
   3009 		}
   3010 		if (sc->sc_softled) {
   3011 			/*
   3012 			 * Blink for any data frame.  Otherwise do a
   3013 			 * heartbeat-style blink when idle.  The latter
   3014 			 * is mainly for station mode where we depend on
   3015 			 * periodic beacon frames to trigger the poll event.
   3016 			 */
   3017 			if (type == IEEE80211_FC0_TYPE_DATA) {
   3018 				sc->sc_rxrate = ds->ds_rxstat.rs_rate;
   3019 				ath_led_event(sc, ATH_LED_RX);
   3020 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
   3021 				ath_led_event(sc, ATH_LED_POLL);
   3022 		}
   3023 rx_next:
   3024 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
   3025 	} while (ath_rxbuf_init(sc, bf) == 0);
   3026 
   3027 	/* rx signal state monitoring */
   3028 	ath_hal_rxmonitor(ah, &ATH_NODE(ic->ic_bss)->an_halstats);
   3029 
   3030 #ifdef __NetBSD__
   3031 	/* XXX Why isn't this necessary in FreeBSD? */
   3032 	if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
   3033 		ath_start(ifp);
   3034 #endif /* __NetBSD__ */
   3035 
   3036 	NET_UNLOCK_GIANT();		/* XXX */
   3037 #undef PA2DESC
   3038 }
   3039 
   3040 /*
   3041  * Setup a h/w transmit queue.
   3042  */
   3043 static struct ath_txq *
   3044 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
   3045 {
   3046 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   3047 	struct ath_hal *ah = sc->sc_ah;
   3048 	HAL_TXQ_INFO qi;
   3049 	int qnum;
   3050 
   3051 	memset(&qi, 0, sizeof(qi));
   3052 	qi.tqi_subtype = subtype;
   3053 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
   3054 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
   3055 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
   3056 	/*
   3057 	 * Enable interrupts only for EOL and DESC conditions.
   3058 	 * We mark tx descriptors to receive a DESC interrupt
   3059 	 * when a tx queue gets deep; otherwise waiting for the
   3060 	 * EOL to reap descriptors.  Note that this is done to
   3061 	 * reduce interrupt load and this only defers reaping
   3062 	 * descriptors, never transmitting frames.  Aside from
   3063 	 * reducing interrupts this also permits more concurrency.
   3064 	 * The only potential downside is if the tx queue backs
   3065 	 * up in which case the top half of the kernel may backup
   3066 	 * due to a lack of tx descriptors.
   3067 	 */
   3068 	qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE | TXQ_FLAG_TXDESCINT_ENABLE;
   3069 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
   3070 	if (qnum == -1) {
   3071 		/*
   3072 		 * NB: don't print a message, this happens
   3073 		 * normally on parts with too few tx queues
   3074 		 */
   3075 		return NULL;
   3076 	}
   3077 	if (qnum >= N(sc->sc_txq)) {
   3078 		device_printf(sc->sc_dev,
   3079 			"hal qnum %u out of range, max %zu!\n",
   3080 			qnum, N(sc->sc_txq));
   3081 		ath_hal_releasetxqueue(ah, qnum);
   3082 		return NULL;
   3083 	}
   3084 	if (!ATH_TXQ_SETUP(sc, qnum)) {
   3085 		struct ath_txq *txq = &sc->sc_txq[qnum];
   3086 
   3087 		txq->axq_qnum = qnum;
   3088 		txq->axq_depth = 0;
   3089 		txq->axq_intrcnt = 0;
   3090 		txq->axq_link = NULL;
   3091 		STAILQ_INIT(&txq->axq_q);
   3092 		ATH_TXQ_LOCK_INIT(sc, txq);
   3093 		sc->sc_txqsetup |= 1<<qnum;
   3094 	}
   3095 	return &sc->sc_txq[qnum];
   3096 #undef N
   3097 }
   3098 
   3099 /*
   3100  * Setup a hardware data transmit queue for the specified
   3101  * access control.  The hal may not support all requested
   3102  * queues in which case it will return a reference to a
   3103  * previously setup queue.  We record the mapping from ac's
   3104  * to h/w queues for use by ath_tx_start and also track
   3105  * the set of h/w queues being used to optimize work in the
   3106  * transmit interrupt handler and related routines.
   3107  */
   3108 static int
   3109 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
   3110 {
   3111 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   3112 	struct ath_txq *txq;
   3113 
   3114 	if (ac >= N(sc->sc_ac2q)) {
   3115 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
   3116 			ac, N(sc->sc_ac2q));
   3117 		return 0;
   3118 	}
   3119 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
   3120 	if (txq != NULL) {
   3121 		sc->sc_ac2q[ac] = txq;
   3122 		return 1;
   3123 	} else
   3124 		return 0;
   3125 #undef N
   3126 }
   3127 
   3128 /*
   3129  * Update WME parameters for a transmit queue.
   3130  */
   3131 static int
   3132 ath_txq_update(struct ath_softc *sc, int ac)
   3133 {
   3134 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
   3135 #define	ATH_TXOP_TO_US(v)		(v<<5)
   3136 	struct ieee80211com *ic = &sc->sc_ic;
   3137 	struct ath_txq *txq = sc->sc_ac2q[ac];
   3138 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
   3139 	struct ath_hal *ah = sc->sc_ah;
   3140 	HAL_TXQ_INFO qi;
   3141 
   3142 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
   3143 	qi.tqi_aifs = wmep->wmep_aifsn;
   3144 	qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
   3145 	qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
   3146 	qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
   3147 
   3148 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
   3149 		device_printf(sc->sc_dev, "unable to update hardware queue "
   3150 			"parameters for %s traffic!\n",
   3151 			ieee80211_wme_acnames[ac]);
   3152 		return 0;
   3153 	} else {
   3154 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
   3155 		return 1;
   3156 	}
   3157 #undef ATH_TXOP_TO_US
   3158 #undef ATH_EXPONENT_TO_VALUE
   3159 }
   3160 
   3161 /*
   3162  * Callback from the 802.11 layer to update WME parameters.
   3163  */
   3164 static int
   3165 ath_wme_update(struct ieee80211com *ic)
   3166 {
   3167 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   3168 
   3169 	return !ath_txq_update(sc, WME_AC_BE) ||
   3170 	    !ath_txq_update(sc, WME_AC_BK) ||
   3171 	    !ath_txq_update(sc, WME_AC_VI) ||
   3172 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
   3173 }
   3174 
   3175 /*
   3176  * Reclaim resources for a setup queue.
   3177  */
   3178 static void
   3179 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
   3180 {
   3181 
   3182 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
   3183 	ATH_TXQ_LOCK_DESTROY(txq);
   3184 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
   3185 }
   3186 
   3187 /*
   3188  * Reclaim all tx queue resources.
   3189  */
   3190 static void
   3191 ath_tx_cleanup(struct ath_softc *sc)
   3192 {
   3193 	int i;
   3194 
   3195 	ATH_TXBUF_LOCK_DESTROY(sc);
   3196 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   3197 		if (ATH_TXQ_SETUP(sc, i))
   3198 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
   3199 }
   3200 
   3201 /*
   3202  * Defragment an mbuf chain, returning at most maxfrags separate
   3203  * mbufs+clusters.  If this is not possible NULL is returned and
   3204  * the original mbuf chain is left in it's present (potentially
   3205  * modified) state.  We use two techniques: collapsing consecutive
   3206  * mbufs and replacing consecutive mbufs by a cluster.
   3207  */
   3208 static struct mbuf *
   3209 ath_defrag(struct mbuf *m0, int how, int maxfrags)
   3210 {
   3211 	struct mbuf *m, *n, *n2, **prev;
   3212 	u_int curfrags;
   3213 
   3214 	/*
   3215 	 * Calculate the current number of frags.
   3216 	 */
   3217 	curfrags = 0;
   3218 	for (m = m0; m != NULL; m = m->m_next)
   3219 		curfrags++;
   3220 	/*
   3221 	 * First, try to collapse mbufs.  Note that we always collapse
   3222 	 * towards the front so we don't need to deal with moving the
   3223 	 * pkthdr.  This may be suboptimal if the first mbuf has much
   3224 	 * less data than the following.
   3225 	 */
   3226 	m = m0;
   3227 again:
   3228 	for (;;) {
   3229 		n = m->m_next;
   3230 		if (n == NULL)
   3231 			break;
   3232 		if ((m->m_flags & M_RDONLY) == 0 &&
   3233 		    n->m_len < M_TRAILINGSPACE(m)) {
   3234 			bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
   3235 				n->m_len);
   3236 			m->m_len += n->m_len;
   3237 			m->m_next = n->m_next;
   3238 			m_free(n);
   3239 			if (--curfrags <= maxfrags)
   3240 				return m0;
   3241 		} else
   3242 			m = n;
   3243 	}
   3244 	KASSERT(maxfrags > 1,
   3245 		("maxfrags %u, but normal collapse failed", maxfrags));
   3246 	/*
   3247 	 * Collapse consecutive mbufs to a cluster.
   3248 	 */
   3249 	prev = &m0->m_next;		/* NB: not the first mbuf */
   3250 	while ((n = *prev) != NULL) {
   3251 		if ((n2 = n->m_next) != NULL &&
   3252 		    n->m_len + n2->m_len < MCLBYTES) {
   3253 			m = m_getcl(how, MT_DATA, 0);
   3254 			if (m == NULL)
   3255 				goto bad;
   3256 			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
   3257 			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
   3258 				n2->m_len);
   3259 			m->m_len = n->m_len + n2->m_len;
   3260 			m->m_next = n2->m_next;
   3261 			*prev = m;
   3262 			m_free(n);
   3263 			m_free(n2);
   3264 			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
   3265 				return m0;
   3266 			/*
   3267 			 * Still not there, try the normal collapse
   3268 			 * again before we allocate another cluster.
   3269 			 */
   3270 			goto again;
   3271 		}
   3272 		prev = &n->m_next;
   3273 	}
   3274 	/*
   3275 	 * No place where we can collapse to a cluster; punt.
   3276 	 * This can occur if, for example, you request 2 frags
   3277 	 * but the packet requires that both be clusters (we
   3278 	 * never reallocate the first mbuf to avoid moving the
   3279 	 * packet header).
   3280 	 */
   3281 bad:
   3282 	return NULL;
   3283 }
   3284 
   3285 static int
   3286 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
   3287     struct mbuf *m0)
   3288 {
   3289 #define	CTS_DURATION \
   3290 	ath_hal_computetxtime(ah, rt, IEEE80211_ACK_LEN, cix, AH_TRUE)
   3291 #define	updateCTSForBursting(_ah, _ds, _txq) \
   3292 	ath_hal_updateCTSForBursting(_ah, _ds, \
   3293 	    _txq->axq_linkbuf != NULL ? _txq->axq_linkbuf->bf_desc : NULL, \
   3294 	    _txq->axq_lastdsWithCTS, _txq->axq_gatingds, \
   3295 	    txopLimit, CTS_DURATION)
   3296 	struct ieee80211com *ic = &sc->sc_ic;
   3297 	struct ath_hal *ah = sc->sc_ah;
   3298 	struct ifnet *ifp = &sc->sc_if;
   3299 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
   3300 	int i, error, iswep, ismcast, keyix, hdrlen, pktlen, try0;
   3301 	u_int8_t rix, txrate, ctsrate;
   3302 	u_int8_t cix = 0xff;		/* NB: silence compiler */
   3303 	struct ath_desc *ds, *ds0;
   3304 	struct ath_txq *txq;
   3305 	struct ieee80211_frame *wh;
   3306 	u_int subtype, flags, ctsduration;
   3307 	HAL_PKT_TYPE atype;
   3308 	const HAL_RATE_TABLE *rt;
   3309 	HAL_BOOL shortPreamble;
   3310 	struct ath_node *an;
   3311 	struct mbuf *m;
   3312 	u_int pri;
   3313 
   3314 	wh = mtod(m0, struct ieee80211_frame *);
   3315 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
   3316 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
   3317 	hdrlen = ieee80211_anyhdrsize(wh);
   3318 	/*
   3319 	 * Packet length must not include any
   3320 	 * pad bytes; deduct them here.
   3321 	 */
   3322 	pktlen = m0->m_pkthdr.len - (hdrlen & 3);
   3323 
   3324 	if (iswep) {
   3325 		const struct ieee80211_cipher *cip;
   3326 		struct ieee80211_key *k;
   3327 
   3328 		/*
   3329 		 * Construct the 802.11 header+trailer for an encrypted
   3330 		 * frame. The only reason this can fail is because of an
   3331 		 * unknown or unsupported cipher/key type.
   3332 		 */
   3333 		k = ieee80211_crypto_encap(ic, ni, m0);
   3334 		if (k == NULL) {
   3335 			/*
   3336 			 * This can happen when the key is yanked after the
   3337 			 * frame was queued.  Just discard the frame; the
   3338 			 * 802.11 layer counts failures and provides
   3339 			 * debugging/diagnostics.
   3340 			 */
   3341 			m_freem(m0);
   3342 			return EIO;
   3343 		}
   3344 		/*
   3345 		 * Adjust the packet + header lengths for the crypto
   3346 		 * additions and calculate the h/w key index.  When
   3347 		 * a s/w mic is done the frame will have had any mic
   3348 		 * added to it prior to entry so skb->len above will
   3349 		 * account for it. Otherwise we need to add it to the
   3350 		 * packet length.
   3351 		 */
   3352 		cip = k->wk_cipher;
   3353 		hdrlen += cip->ic_header;
   3354 		pktlen += cip->ic_header + cip->ic_trailer;
   3355 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0)
   3356 			pktlen += cip->ic_miclen;
   3357 		keyix = k->wk_keyix;
   3358 
   3359 		/* packet header may have moved, reset our local pointer */
   3360 		wh = mtod(m0, struct ieee80211_frame *);
   3361 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
   3362 		/*
   3363 		 * Use station key cache slot, if assigned.
   3364 		 */
   3365 		keyix = ni->ni_ucastkey.wk_keyix;
   3366 		if (keyix == IEEE80211_KEYIX_NONE)
   3367 			keyix = HAL_TXKEYIX_INVALID;
   3368 	} else
   3369 		keyix = HAL_TXKEYIX_INVALID;
   3370 
   3371 	pktlen += IEEE80211_CRC_LEN;
   3372 
   3373 	/*
   3374 	 * Load the DMA map so any coalescing is done.  This
   3375 	 * also calculates the number of descriptors we need.
   3376 	 */
   3377 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
   3378 				     BUS_DMA_NOWAIT);
   3379 	if (error == EFBIG) {
   3380 		/* XXX packet requires too many descriptors */
   3381 		bf->bf_nseg = ATH_TXDESC+1;
   3382 	} else if (error != 0) {
   3383 		sc->sc_stats.ast_tx_busdma++;
   3384 		m_freem(m0);
   3385 		return error;
   3386 	}
   3387 	/*
   3388 	 * Discard null packets and check for packets that
   3389 	 * require too many TX descriptors.  We try to convert
   3390 	 * the latter to a cluster.
   3391 	 */
   3392 	if (error == EFBIG) {		/* too many desc's, linearize */
   3393 		sc->sc_stats.ast_tx_linear++;
   3394 		m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
   3395 		if (m == NULL) {
   3396 			m_freem(m0);
   3397 			sc->sc_stats.ast_tx_nombuf++;
   3398 			return ENOMEM;
   3399 		}
   3400 		m0 = m;
   3401 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
   3402 					     BUS_DMA_NOWAIT);
   3403 		if (error != 0) {
   3404 			sc->sc_stats.ast_tx_busdma++;
   3405 			m_freem(m0);
   3406 			return error;
   3407 		}
   3408 		KASSERT(bf->bf_nseg <= ATH_TXDESC,
   3409 		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
   3410 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
   3411 		sc->sc_stats.ast_tx_nodata++;
   3412 		m_freem(m0);
   3413 		return EIO;
   3414 	}
   3415 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
   3416 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   3417             bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
   3418 	bf->bf_m = m0;
   3419 	bf->bf_node = ni;			/* NB: held reference */
   3420 
   3421 	/* setup descriptors */
   3422 	ds = bf->bf_desc;
   3423 	rt = sc->sc_currates;
   3424 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
   3425 
   3426 	/*
   3427 	 * NB: the 802.11 layer marks whether or not we should
   3428 	 * use short preamble based on the current mode and
   3429 	 * negotiated parameters.
   3430 	 */
   3431 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
   3432 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) {
   3433 		shortPreamble = AH_TRUE;
   3434 		sc->sc_stats.ast_tx_shortpre++;
   3435 	} else {
   3436 		shortPreamble = AH_FALSE;
   3437 	}
   3438 
   3439 	an = ATH_NODE(ni);
   3440 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
   3441 	/*
   3442 	 * Calculate Atheros packet type from IEEE80211 packet header,
   3443 	 * setup for rate calculations, and select h/w transmit queue.
   3444 	 */
   3445 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
   3446 	case IEEE80211_FC0_TYPE_MGT:
   3447 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   3448 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
   3449 			atype = HAL_PKT_TYPE_BEACON;
   3450 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
   3451 			atype = HAL_PKT_TYPE_PROBE_RESP;
   3452 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
   3453 			atype = HAL_PKT_TYPE_ATIM;
   3454 		else
   3455 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
   3456 		rix = 0;			/* XXX lowest rate */
   3457 		try0 = ATH_TXMAXTRY;
   3458 		if (shortPreamble)
   3459 			txrate = an->an_tx_mgtratesp;
   3460 		else
   3461 			txrate = an->an_tx_mgtrate;
   3462 		/* NB: force all management frames to highest queue */
   3463 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
   3464 			/* NB: force all management frames to highest queue */
   3465 			pri = WME_AC_VO;
   3466 		} else
   3467 			pri = WME_AC_BE;
   3468 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
   3469 		break;
   3470 	case IEEE80211_FC0_TYPE_CTL:
   3471 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
   3472 		rix = 0;			/* XXX lowest rate */
   3473 		try0 = ATH_TXMAXTRY;
   3474 		if (shortPreamble)
   3475 			txrate = an->an_tx_mgtratesp;
   3476 		else
   3477 			txrate = an->an_tx_mgtrate;
   3478 		/* NB: force all ctl frames to highest queue */
   3479 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
   3480 			/* NB: force all ctl frames to highest queue */
   3481 			pri = WME_AC_VO;
   3482 		} else
   3483 			pri = WME_AC_BE;
   3484 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
   3485 		break;
   3486 	case IEEE80211_FC0_TYPE_DATA:
   3487 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
   3488 		/*
   3489 		 * Data frames; consult the rate control module for
   3490 		 * unicast frames.  Send multicast frames at the
   3491 		 * lowest rate.
   3492 		 */
   3493 		if (!ismcast) {
   3494 			ath_rate_findrate(sc, an, shortPreamble, pktlen,
   3495 				&rix, &try0, &txrate);
   3496 		} else {
   3497 			rix = 0;
   3498 			try0 = ATH_TXMAXTRY;
   3499 			txrate = an->an_tx_mgtrate;
   3500 		}
   3501 		sc->sc_txrate = txrate;			/* for LED blinking */
   3502 		/*
   3503 		 * Default all non-QoS traffic to the background queue.
   3504 		 */
   3505 		if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
   3506 			pri = M_WME_GETAC(m0);
   3507 			if (cap->cap_wmeParams[pri].wmep_noackPolicy) {
   3508 				flags |= HAL_TXDESC_NOACK;
   3509 				sc->sc_stats.ast_tx_noack++;
   3510 			}
   3511 		} else
   3512 			pri = WME_AC_BE;
   3513 		break;
   3514 	default:
   3515 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
   3516 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
   3517 		/* XXX statistic */
   3518 		m_freem(m0);
   3519 		return EIO;
   3520 	}
   3521 	txq = sc->sc_ac2q[pri];
   3522 
   3523 	/*
   3524 	 * When servicing one or more stations in power-save mode
   3525 	 * multicast frames must be buffered until after the beacon.
   3526 	 * We use the CAB queue for that.
   3527 	 */
   3528 	if (ismcast && ic->ic_ps_sta) {
   3529 		txq = sc->sc_cabq;
   3530 		/* XXX? more bit in 802.11 frame header */
   3531 	}
   3532 
   3533 	/*
   3534 	 * Calculate miscellaneous flags.
   3535 	 */
   3536 	if (ismcast) {
   3537 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
   3538 		sc->sc_stats.ast_tx_noack++;
   3539 	} else if (pktlen > ic->ic_rtsthreshold) {
   3540 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
   3541 		cix = rt->info[rix].controlRate;
   3542 		sc->sc_stats.ast_tx_rts++;
   3543 	}
   3544 
   3545 	/*
   3546 	 * If 802.11g protection is enabled, determine whether
   3547 	 * to use RTS/CTS or just CTS.  Note that this is only
   3548 	 * done for OFDM unicast frames.
   3549 	 */
   3550 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
   3551 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
   3552 	    (flags & HAL_TXDESC_NOACK) == 0) {
   3553 		/* XXX fragments must use CCK rates w/ protection */
   3554 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
   3555 			flags |= HAL_TXDESC_RTSENA;
   3556 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
   3557 			flags |= HAL_TXDESC_CTSENA;
   3558 		cix = rt->info[sc->sc_protrix].controlRate;
   3559 		sc->sc_stats.ast_tx_protect++;
   3560 	}
   3561 
   3562 	/*
   3563 	 * Calculate duration.  This logically belongs in the 802.11
   3564 	 * layer but it lacks sufficient information to calculate it.
   3565 	 */
   3566 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
   3567 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
   3568 		u_int16_t dur;
   3569 		/*
   3570 		 * XXX not right with fragmentation.
   3571 		 */
   3572 		if (shortPreamble)
   3573 			dur = rt->info[rix].spAckDuration;
   3574 		else
   3575 			dur = rt->info[rix].lpAckDuration;
   3576 		*(u_int16_t *)wh->i_dur = htole16(dur);
   3577 	}
   3578 
   3579 	/*
   3580 	 * Calculate RTS/CTS rate and duration if needed.
   3581 	 */
   3582 	ctsduration = 0;
   3583 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
   3584 		/*
   3585 		 * CTS transmit rate is derived from the transmit rate
   3586 		 * by looking in the h/w rate table.  We must also factor
   3587 		 * in whether or not a short preamble is to be used.
   3588 		 */
   3589 		/* NB: cix is set above where RTS/CTS is enabled */
   3590 		KASSERT(cix != 0xff, ("cix not setup"));
   3591 		ctsrate = rt->info[cix].rateCode;
   3592 		/*
   3593 		 * Compute the transmit duration based on the frame
   3594 		 * size and the size of an ACK frame.  We call into the
   3595 		 * HAL to do the computation since it depends on the
   3596 		 * characteristics of the actual PHY being used.
   3597 		 *
   3598 		 * NB: CTS is assumed the same size as an ACK so we can
   3599 		 *     use the precalculated ACK durations.
   3600 		 */
   3601 		if (shortPreamble) {
   3602 			ctsrate |= rt->info[cix].shortPreamble;
   3603 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
   3604 				ctsduration += rt->info[cix].spAckDuration;
   3605 			ctsduration += ath_hal_computetxtime(ah,
   3606 				rt, pktlen, rix, AH_TRUE);
   3607 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
   3608 				ctsduration += rt->info[rix].spAckDuration;
   3609 		} else {
   3610 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
   3611 				ctsduration += rt->info[cix].lpAckDuration;
   3612 			ctsduration += ath_hal_computetxtime(ah,
   3613 				rt, pktlen, rix, AH_FALSE);
   3614 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
   3615 				ctsduration += rt->info[rix].lpAckDuration;
   3616 		}
   3617 		/*
   3618 		 * Must disable multi-rate retry when using RTS/CTS.
   3619 		 */
   3620 		try0 = ATH_TXMAXTRY;
   3621 	} else
   3622 		ctsrate = 0;
   3623 
   3624 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
   3625 		ieee80211_dump_pkt(mtod(m0, caddr_t), m0->m_len,
   3626 			sc->sc_hwmap[txrate].ieeerate, -1);
   3627 #if NBPFILTER > 0
   3628 	if (ic->ic_rawbpf)
   3629 		bpf_mtap(ic->ic_rawbpf, m0);
   3630 	if (sc->sc_drvbpf) {
   3631 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
   3632 		if (iswep)
   3633 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
   3634 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
   3635 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
   3636 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
   3637 
   3638 		bpf_mtap2(sc->sc_drvbpf,
   3639 			&sc->sc_tx_th, sc->sc_tx_th_len, m0);
   3640 	}
   3641 #endif
   3642 
   3643 	/*
   3644 	 * Determine if a tx interrupt should be generated for
   3645 	 * this descriptor.  We take a tx interrupt to reap
   3646 	 * descriptors when the h/w hits an EOL condition or
   3647 	 * when the descriptor is specifically marked to generate
   3648 	 * an interrupt.  We periodically mark descriptors in this
   3649 	 * way to insure timely replenishing of the supply needed
   3650 	 * for sending frames.  Defering interrupts reduces system
   3651 	 * load and potentially allows more concurrent work to be
   3652 	 * done but if done to aggressively can cause senders to
   3653 	 * backup.
   3654 	 *
   3655 	 * NB: use >= to deal with sc_txintrperiod changing
   3656 	 *     dynamically through sysctl.
   3657 	 */
   3658 	if (flags & HAL_TXDESC_INTREQ) {
   3659 		txq->axq_intrcnt = 0;
   3660 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
   3661 		flags |= HAL_TXDESC_INTREQ;
   3662 		txq->axq_intrcnt = 0;
   3663 	}
   3664 
   3665 	/*
   3666 	 * Formulate first tx descriptor with tx controls.
   3667 	 */
   3668 	/* XXX check return value? */
   3669 	ath_hal_setuptxdesc(ah, ds
   3670 		, pktlen		/* packet length */
   3671 		, hdrlen		/* header length */
   3672 		, atype			/* Atheros packet type */
   3673 		, ni->ni_txpower	/* txpower */
   3674 		, txrate, try0		/* series 0 rate/tries */
   3675 		, keyix			/* key cache index */
   3676 		, sc->sc_txantenna	/* antenna mode */
   3677 		, flags			/* flags */
   3678 		, ctsrate		/* rts/cts rate */
   3679 		, ctsduration		/* rts/cts duration */
   3680 	);
   3681 	bf->bf_flags = flags;
   3682 	/*
   3683 	 * Setup the multi-rate retry state only when we're
   3684 	 * going to use it.  This assumes ath_hal_setuptxdesc
   3685 	 * initializes the descriptors (so we don't have to)
   3686 	 * when the hardware supports multi-rate retry and
   3687 	 * we don't use it.
   3688 	 */
   3689 	if (try0 != ATH_TXMAXTRY)
   3690 		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
   3691 
   3692 	/*
   3693 	 * Fillin the remainder of the descriptor info.
   3694 	 */
   3695 	ds0 = ds;
   3696 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
   3697 		ds->ds_data = bf->bf_segs[i].ds_addr;
   3698 		if (i == bf->bf_nseg - 1)
   3699 			ds->ds_link = 0;
   3700 		else
   3701 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
   3702 		ath_hal_filltxdesc(ah, ds
   3703 			, bf->bf_segs[i].ds_len	/* segment length */
   3704 			, i == 0		/* first segment */
   3705 			, i == bf->bf_nseg - 1	/* last segment */
   3706 			, ds0			/* first descriptor */
   3707 		);
   3708 		DPRINTF(sc, ATH_DEBUG_XMIT,
   3709 			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
   3710 			__func__, i, ds->ds_link, ds->ds_data,
   3711 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
   3712 	}
   3713 	/*
   3714 	 * Insert the frame on the outbound list and
   3715 	 * pass it on to the hardware.
   3716 	 */
   3717 	ATH_TXQ_LOCK(txq);
   3718 	if (flags & (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) {
   3719 		u_int32_t txopLimit = IEEE80211_TXOP_TO_US(
   3720 			cap->cap_wmeParams[pri].wmep_txopLimit);
   3721 		/*
   3722 		 * When bursting, potentially extend the CTS duration
   3723 		 * of a previously queued frame to cover this frame
   3724 		 * and not exceed the txopLimit.  If that can be done
   3725 		 * then disable RTS/CTS on this frame since it's now
   3726 		 * covered (burst extension).  Otherwise we must terminate
   3727 		 * the burst before this frame goes out so as not to
   3728 		 * violate the WME parameters.  All this is complicated
   3729 		 * as we need to update the state of packets on the
   3730 		 * (live) hardware queue.  The logic is buried in the hal
   3731 		 * because it's highly chip-specific.
   3732 		 */
   3733 		if (txopLimit != 0) {
   3734 			sc->sc_stats.ast_tx_ctsburst++;
   3735 			if (updateCTSForBursting(ah, ds0, txq) == 0) {
   3736 				/*
   3737 				 * This frame was not covered by RTS/CTS from
   3738 				 * the previous frame in the burst; update the
   3739 				 * descriptor pointers so this frame is now
   3740 				 * treated as the last frame for extending a
   3741 				 * burst.
   3742 				 */
   3743 				txq->axq_lastdsWithCTS = ds0;
   3744 				/* set gating Desc to final desc */
   3745 				txq->axq_gatingds =
   3746 					(struct ath_desc *)txq->axq_link;
   3747 			} else
   3748 				sc->sc_stats.ast_tx_ctsext++;
   3749 		}
   3750 	}
   3751 	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
   3752 	if (txq->axq_link == NULL) {
   3753 		ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
   3754 		DPRINTF(sc, ATH_DEBUG_XMIT,
   3755 			"%s: TXDP[%u] = %p (%p) depth %d\n", __func__,
   3756 			txq->axq_qnum, (caddr_t)bf->bf_daddr, bf->bf_desc,
   3757 			txq->axq_depth);
   3758 	} else {
   3759 		*txq->axq_link = bf->bf_daddr;
   3760 		DPRINTF(sc, ATH_DEBUG_XMIT,
   3761 			"%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
   3762 			txq->axq_qnum, txq->axq_link,
   3763 			(caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
   3764 	}
   3765 	txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
   3766 	/*
   3767 	 * The CAB queue is started from the SWBA handler since
   3768 	 * frames only go out on DTIM and to avoid possible races.
   3769 	 */
   3770 	if (txq != sc->sc_cabq)
   3771 		ath_hal_txstart(ah, txq->axq_qnum);
   3772 	ATH_TXQ_UNLOCK(txq);
   3773 
   3774 	return 0;
   3775 #undef updateCTSForBursting
   3776 #undef CTS_DURATION
   3777 }
   3778 
   3779 /*
   3780  * Process completed xmit descriptors from the specified queue.
   3781  */
   3782 static void
   3783 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
   3784 {
   3785 	struct ath_hal *ah = sc->sc_ah;
   3786 	struct ieee80211com *ic = &sc->sc_ic;
   3787 	struct ath_buf *bf;
   3788 	struct ath_desc *ds, *ds0;
   3789 	struct ieee80211_node *ni;
   3790 	struct ath_node *an;
   3791 	int sr, lr, pri;
   3792 	HAL_STATUS status;
   3793 
   3794 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
   3795 		__func__, txq->axq_qnum,
   3796 		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
   3797 		txq->axq_link);
   3798 	for (;;) {
   3799 		ATH_TXQ_LOCK(txq);
   3800 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
   3801 		bf = STAILQ_FIRST(&txq->axq_q);
   3802 		if (bf == NULL) {
   3803 			txq->axq_link = NULL;
   3804 			ATH_TXQ_UNLOCK(txq);
   3805 			break;
   3806 		}
   3807 		ds0 = &bf->bf_desc[0];
   3808 		ds = &bf->bf_desc[bf->bf_nseg - 1];
   3809 		status = ath_hal_txprocdesc(ah, ds);
   3810 #ifdef AR_DEBUG
   3811 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
   3812 			ath_printtxbuf(bf, status == HAL_OK);
   3813 #endif
   3814 		if (status == HAL_EINPROGRESS) {
   3815 			ATH_TXQ_UNLOCK(txq);
   3816 			break;
   3817 		}
   3818 		if (ds0 == txq->axq_lastdsWithCTS)
   3819 			txq->axq_lastdsWithCTS = NULL;
   3820 		if (ds == txq->axq_gatingds)
   3821 			txq->axq_gatingds = NULL;
   3822 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
   3823 		ATH_TXQ_UNLOCK(txq);
   3824 
   3825 		ni = bf->bf_node;
   3826 		if (ni != NULL) {
   3827 			an = ATH_NODE(ni);
   3828 			if (ds->ds_txstat.ts_status == 0) {
   3829 				u_int8_t txant = ds->ds_txstat.ts_antenna;
   3830 				sc->sc_stats.ast_ant_tx[txant]++;
   3831 				sc->sc_ant_tx[txant]++;
   3832 				if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
   3833 					sc->sc_stats.ast_tx_altrate++;
   3834 				sc->sc_stats.ast_tx_rssi =
   3835 					ds->ds_txstat.ts_rssi;
   3836 				ATH_RSSI_LPF(an->an_halstats.ns_avgtxrssi,
   3837 					ds->ds_txstat.ts_rssi);
   3838 				pri = M_WME_GETAC(bf->bf_m);
   3839 				if (pri >= WME_AC_VO)
   3840 					ic->ic_wme.wme_hipri_traffic++;
   3841 				ni->ni_inact = ni->ni_inact_reload;
   3842 			} else {
   3843 				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
   3844 					sc->sc_stats.ast_tx_xretries++;
   3845 				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
   3846 					sc->sc_stats.ast_tx_fifoerr++;
   3847 				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
   3848 					sc->sc_stats.ast_tx_filtered++;
   3849 			}
   3850 			sr = ds->ds_txstat.ts_shortretry;
   3851 			lr = ds->ds_txstat.ts_longretry;
   3852 			sc->sc_stats.ast_tx_shortretry += sr;
   3853 			sc->sc_stats.ast_tx_longretry += lr;
   3854 			/*
   3855 			 * Hand the descriptor to the rate control algorithm.
   3856 			 */
   3857 			if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
   3858 			    (bf->bf_flags & HAL_TXDESC_NOACK) == 0)
   3859 				ath_rate_tx_complete(sc, an, ds, ds0);
   3860 			/*
   3861 			 * Reclaim reference to node.
   3862 			 *
   3863 			 * NB: the node may be reclaimed here if, for example
   3864 			 *     this is a DEAUTH message that was sent and the
   3865 			 *     node was timed out due to inactivity.
   3866 			 */
   3867 			ieee80211_free_node(ni);
   3868 		}
   3869 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   3870 		    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   3871 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   3872 		m_freem(bf->bf_m);
   3873 		bf->bf_m = NULL;
   3874 		bf->bf_node = NULL;
   3875 
   3876 		ATH_TXBUF_LOCK(sc);
   3877 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   3878 		ATH_TXBUF_UNLOCK(sc);
   3879 	}
   3880 }
   3881 
   3882 /*
   3883  * Deferred processing of transmit interrupt; special-cased
   3884  * for a single hardware transmit queue (e.g. 5210 and 5211).
   3885  */
   3886 static void
   3887 ath_tx_proc_q0(void *arg, int npending)
   3888 {
   3889 	struct ath_softc *sc = arg;
   3890 	struct ifnet *ifp = &sc->sc_if;
   3891 
   3892 	ath_tx_processq(sc, &sc->sc_txq[0]);
   3893 	ath_tx_processq(sc, sc->sc_cabq);
   3894 	ifp->if_flags &= ~IFF_OACTIVE;
   3895 	sc->sc_tx_timer = 0;
   3896 
   3897 	if (sc->sc_softled)
   3898 		ath_led_event(sc, ATH_LED_TX);
   3899 
   3900 	ath_start(ifp);
   3901 }
   3902 
   3903 /*
   3904  * Deferred processing of transmit interrupt; special-cased
   3905  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
   3906  */
   3907 static void
   3908 ath_tx_proc_q0123(void *arg, int npending)
   3909 {
   3910 	struct ath_softc *sc = arg;
   3911 	struct ifnet *ifp = &sc->sc_if;
   3912 
   3913 	/*
   3914 	 * Process each active queue.
   3915 	 */
   3916 	ath_tx_processq(sc, &sc->sc_txq[0]);
   3917 	ath_tx_processq(sc, &sc->sc_txq[1]);
   3918 	ath_tx_processq(sc, &sc->sc_txq[2]);
   3919 	ath_tx_processq(sc, &sc->sc_txq[3]);
   3920 	ath_tx_processq(sc, sc->sc_cabq);
   3921 
   3922 	ifp->if_flags &= ~IFF_OACTIVE;
   3923 	sc->sc_tx_timer = 0;
   3924 
   3925 	if (sc->sc_softled)
   3926 		ath_led_event(sc, ATH_LED_TX);
   3927 
   3928 	ath_start(ifp);
   3929 }
   3930 
   3931 /*
   3932  * Deferred processing of transmit interrupt.
   3933  */
   3934 static void
   3935 ath_tx_proc(void *arg, int npending)
   3936 {
   3937 	struct ath_softc *sc = arg;
   3938 	struct ifnet *ifp = &sc->sc_if;
   3939 	int i;
   3940 
   3941 	/*
   3942 	 * Process each active queue.
   3943 	 */
   3944 	/* XXX faster to read ISR_S0_S and ISR_S1_S to determine q's? */
   3945 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   3946 		if (ATH_TXQ_SETUP(sc, i))
   3947 			ath_tx_processq(sc, &sc->sc_txq[i]);
   3948 
   3949 	ifp->if_flags &= ~IFF_OACTIVE;
   3950 	sc->sc_tx_timer = 0;
   3951 
   3952 	if (sc->sc_softled)
   3953 		ath_led_event(sc, ATH_LED_TX);
   3954 
   3955 	ath_start(ifp);
   3956 }
   3957 
   3958 static void
   3959 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
   3960 {
   3961 	struct ath_hal *ah = sc->sc_ah;
   3962 	struct ieee80211_node *ni;
   3963 	struct ath_buf *bf;
   3964 
   3965 	/*
   3966 	 * NB: this assumes output has been stopped and
   3967 	 *     we do not need to block ath_tx_tasklet
   3968 	 */
   3969 	for (;;) {
   3970 		ATH_TXQ_LOCK(txq);
   3971 		bf = STAILQ_FIRST(&txq->axq_q);
   3972 		if (bf == NULL) {
   3973 			txq->axq_link = NULL;
   3974 			ATH_TXQ_UNLOCK(txq);
   3975 			break;
   3976 		}
   3977 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
   3978 		ATH_TXQ_UNLOCK(txq);
   3979 #ifdef AR_DEBUG
   3980 		if (sc->sc_debug & ATH_DEBUG_RESET)
   3981 			ath_printtxbuf(bf,
   3982 				ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
   3983 #endif /* AR_DEBUG */
   3984 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   3985 		m_freem(bf->bf_m);
   3986 		bf->bf_m = NULL;
   3987 		ni = bf->bf_node;
   3988 		bf->bf_node = NULL;
   3989 		if (ni != NULL) {
   3990 			/*
   3991 			 * Reclaim node reference.
   3992 			 */
   3993 			ieee80211_free_node(ni);
   3994 		}
   3995 		ATH_TXBUF_LOCK(sc);
   3996 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   3997 		ATH_TXBUF_UNLOCK(sc);
   3998 	}
   3999 }
   4000 
   4001 static void
   4002 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
   4003 {
   4004 	struct ath_hal *ah = sc->sc_ah;
   4005 
   4006 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
   4007 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
   4008 	    __func__, txq->axq_qnum,
   4009 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
   4010 	    txq->axq_link);
   4011 }
   4012 
   4013 /*
   4014  * Drain the transmit queues and reclaim resources.
   4015  */
   4016 static void
   4017 ath_draintxq(struct ath_softc *sc)
   4018 {
   4019 	struct ath_hal *ah = sc->sc_ah;
   4020 	struct ifnet *ifp = &sc->sc_if;
   4021 	int i;
   4022 
   4023 	/* XXX return value */
   4024 	if (!sc->sc_invalid) {
   4025 		/* don't touch the hardware if marked invalid */
   4026 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
   4027 		DPRINTF(sc, ATH_DEBUG_RESET,
   4028 		    "%s: beacon queue %p\n", __func__,
   4029 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
   4030 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   4031 			if (ATH_TXQ_SETUP(sc, i))
   4032 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
   4033 	}
   4034 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   4035 		if (ATH_TXQ_SETUP(sc, i))
   4036 			ath_tx_draintxq(sc, &sc->sc_txq[i]);
   4037 	ifp->if_flags &= ~IFF_OACTIVE;
   4038 	sc->sc_tx_timer = 0;
   4039 }
   4040 
   4041 /*
   4042  * Disable the receive h/w in preparation for a reset.
   4043  */
   4044 static void
   4045 ath_stoprecv(struct ath_softc *sc)
   4046 {
   4047 #define	PA2DESC(_sc, _pa) \
   4048 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
   4049 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
   4050 	struct ath_hal *ah = sc->sc_ah;
   4051 
   4052 	ath_hal_stoppcurecv(ah);	/* disable PCU */
   4053 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
   4054 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
   4055 	DELAY(3000);			/* 3ms is long enough for 1 frame */
   4056 #ifdef AR_DEBUG
   4057 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
   4058 		struct ath_buf *bf;
   4059 
   4060 		printf("%s: rx queue %p, link %p\n", __func__,
   4061 			(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
   4062 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
   4063 			struct ath_desc *ds = bf->bf_desc;
   4064 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
   4065 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
   4066 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
   4067 				ath_printrxbuf(bf, status == HAL_OK);
   4068 		}
   4069 	}
   4070 #endif
   4071 	sc->sc_rxlink = NULL;		/* just in case */
   4072 #undef PA2DESC
   4073 }
   4074 
   4075 /*
   4076  * Enable the receive h/w following a reset.
   4077  */
   4078 static int
   4079 ath_startrecv(struct ath_softc *sc)
   4080 {
   4081 	struct ath_hal *ah = sc->sc_ah;
   4082 	struct ath_buf *bf;
   4083 
   4084 	sc->sc_rxlink = NULL;
   4085 	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
   4086 		int error = ath_rxbuf_init(sc, bf);
   4087 		if (error != 0) {
   4088 			DPRINTF(sc, ATH_DEBUG_RECV,
   4089 				"%s: ath_rxbuf_init failed %d\n",
   4090 				__func__, error);
   4091 			return error;
   4092 		}
   4093 	}
   4094 
   4095 	bf = STAILQ_FIRST(&sc->sc_rxbuf);
   4096 	ath_hal_putrxbuf(ah, bf->bf_daddr);
   4097 	ath_hal_rxena(ah);		/* enable recv descriptors */
   4098 	ath_mode_init(sc);		/* set filters, etc. */
   4099 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
   4100 	return 0;
   4101 }
   4102 
   4103 /*
   4104  * Update internal state after a channel change.
   4105  */
   4106 static void
   4107 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
   4108 {
   4109 	struct ieee80211com *ic = &sc->sc_ic;
   4110 	enum ieee80211_phymode mode;
   4111 	u_int16_t flags;
   4112 
   4113 	/*
   4114 	 * Change channels and update the h/w rate map
   4115 	 * if we're switching; e.g. 11a to 11b/g.
   4116 	 */
   4117 	mode = ieee80211_chan2mode(ic, chan);
   4118 	if (mode != sc->sc_curmode)
   4119 		ath_setcurmode(sc, mode);
   4120 	/*
   4121 	 * Update BPF state.  NB: ethereal et. al. don't handle
   4122 	 * merged flags well so pick a unique mode for their use.
   4123 	 */
   4124 	if (IEEE80211_IS_CHAN_A(chan))
   4125 		flags = IEEE80211_CHAN_A;
   4126 	/* XXX 11g schizophrenia */
   4127 	else if (IEEE80211_IS_CHAN_G(chan) ||
   4128 	    IEEE80211_IS_CHAN_PUREG(chan))
   4129 		flags = IEEE80211_CHAN_G;
   4130 	else
   4131 		flags = IEEE80211_CHAN_B;
   4132 	if (IEEE80211_IS_CHAN_T(chan))
   4133 		flags |= IEEE80211_CHAN_TURBO;
   4134 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
   4135 		htole16(chan->ic_freq);
   4136 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
   4137 		htole16(flags);
   4138 }
   4139 
   4140 /*
   4141  * Set/change channels.  If the channel is really being changed,
   4142  * it's done by reseting the chip.  To accomplish this we must
   4143  * first cleanup any pending DMA, then restart stuff after a la
   4144  * ath_init.
   4145  */
   4146 static int
   4147 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
   4148 {
   4149 	struct ath_hal *ah = sc->sc_ah;
   4150 	struct ieee80211com *ic = &sc->sc_ic;
   4151 	HAL_CHANNEL hchan;
   4152 
   4153 	/*
   4154 	 * Convert to a HAL channel description with
   4155 	 * the flags constrained to reflect the current
   4156 	 * operating mode.
   4157 	 */
   4158 	hchan.channel = chan->ic_freq;
   4159 	hchan.channelFlags = ath_chan2flags(ic, chan);
   4160 
   4161 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz) -> %u (%u MHz)\n",
   4162 	    __func__,
   4163 	    ath_hal_mhz2ieee(sc->sc_curchan.channel,
   4164 		sc->sc_curchan.channelFlags),
   4165 	    	sc->sc_curchan.channel,
   4166 	    ath_hal_mhz2ieee(hchan.channel, hchan.channelFlags), hchan.channel);
   4167 	if (hchan.channel != sc->sc_curchan.channel ||
   4168 	    hchan.channelFlags != sc->sc_curchan.channelFlags) {
   4169 		HAL_STATUS status;
   4170 
   4171 		/*
   4172 		 * To switch channels clear any pending DMA operations;
   4173 		 * wait long enough for the RX fifo to drain, reset the
   4174 		 * hardware at the new frequency, and then re-enable
   4175 		 * the relevant bits of the h/w.
   4176 		 */
   4177 		ath_hal_intrset(ah, 0);		/* disable interrupts */
   4178 		ath_draintxq(sc);		/* clear pending tx frames */
   4179 		ath_stoprecv(sc);		/* turn off frame recv */
   4180 		if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
   4181 			if_printf(&sc->sc_if, "ath_chan_set: unable to reset "
   4182 				"channel %u (%u Mhz)\n",
   4183 				ieee80211_chan2ieee(ic, chan), chan->ic_freq);
   4184 			return EIO;
   4185 		}
   4186 		sc->sc_curchan = hchan;
   4187 		ath_update_txpow(sc);		/* update tx power state */
   4188 		sc->sc_diversity = ath_hal_getdiversity(ah);
   4189 
   4190 		/*
   4191 		 * Re-enable rx framework.
   4192 		 */
   4193 		if (ath_startrecv(sc) != 0) {
   4194 			if_printf(&sc->sc_if,
   4195 				"ath_chan_set: unable to restart recv logic\n");
   4196 			return EIO;
   4197 		}
   4198 
   4199 		/*
   4200 		 * Change channels and update the h/w rate map
   4201 		 * if we're switching; e.g. 11a to 11b/g.
   4202 		 */
   4203 		ic->ic_ibss_chan = chan;
   4204 		ath_chan_change(sc, chan);
   4205 
   4206 		/*
   4207 		 * Re-enable interrupts.
   4208 		 */
   4209 		ath_hal_intrset(ah, sc->sc_imask);
   4210 	}
   4211 	return 0;
   4212 }
   4213 
   4214 static void
   4215 ath_next_scan(void *arg)
   4216 {
   4217 	struct ath_softc *sc = arg;
   4218 	struct ieee80211com *ic = &sc->sc_ic;
   4219 	int s;
   4220 
   4221 	/* don't call ath_start w/o network interrupts blocked */
   4222 	s = splnet();
   4223 
   4224 	if (ic->ic_state == IEEE80211_S_SCAN)
   4225 		ieee80211_next_scan(ic);
   4226 	splx(s);
   4227 }
   4228 
   4229 /*
   4230  * Periodically recalibrate the PHY to account
   4231  * for temperature/environment changes.
   4232  */
   4233 static void
   4234 ath_calibrate(void *arg)
   4235 {
   4236 	struct ath_softc *sc = arg;
   4237 	struct ath_hal *ah = sc->sc_ah;
   4238 
   4239 	sc->sc_stats.ast_per_cal++;
   4240 
   4241 	ATH_LOCK(sc);
   4242 	DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: channel %u/%x\n",
   4243 		__func__, sc->sc_curchan.channel, sc->sc_curchan.channelFlags);
   4244 
   4245 	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
   4246 		/*
   4247 		 * Rfgain is out of bounds, reset the chip
   4248 		 * to load new gain values.
   4249 		 */
   4250 		sc->sc_stats.ast_per_rfgain++;
   4251 		ath_reset(&sc->sc_if);
   4252 	}
   4253 	if (!ath_hal_calibrate(ah, &sc->sc_curchan)) {
   4254 		DPRINTF(sc, ATH_DEBUG_ANY,
   4255 			"%s: calibration of channel %u failed\n",
   4256 			__func__, sc->sc_curchan.channel);
   4257 		sc->sc_stats.ast_per_calfail++;
   4258 	}
   4259 	callout_reset(&sc->sc_cal_ch, ath_calinterval * hz, ath_calibrate, sc);
   4260 	ATH_UNLOCK(sc);
   4261 }
   4262 
   4263 static int
   4264 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
   4265 {
   4266 	struct ifnet *ifp = ic->ic_ifp;
   4267 	struct ath_softc *sc = ifp->if_softc;
   4268 	struct ath_hal *ah = sc->sc_ah;
   4269 	struct ieee80211_node *ni;
   4270 	int i, error;
   4271 	const u_int8_t *bssid;
   4272 	u_int32_t rfilt;
   4273 	static const HAL_LED_STATE leds[] = {
   4274 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
   4275 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
   4276 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
   4277 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
   4278 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
   4279 	};
   4280 
   4281 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
   4282 		ieee80211_state_name[ic->ic_state],
   4283 		ieee80211_state_name[nstate]);
   4284 
   4285 	callout_stop(&sc->sc_scan_ch);
   4286 	callout_stop(&sc->sc_cal_ch);
   4287 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
   4288 
   4289 	if (nstate == IEEE80211_S_INIT) {
   4290 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
   4291 		/*
   4292 		 * NB: disable interrupts so we don't rx frames.
   4293 		 */
   4294 		ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
   4295 		/*
   4296 		 * Notify the rate control algorithm.
   4297 		 */
   4298 		ath_rate_newstate(sc, nstate);
   4299 		goto done;
   4300 	}
   4301 	ni = ic->ic_bss;
   4302 	error = ath_chan_set(sc, ic->ic_curchan);
   4303 	if (error != 0)
   4304 		goto bad;
   4305 	rfilt = ath_calcrxfilter(sc, nstate);
   4306 	if (nstate == IEEE80211_S_SCAN)
   4307 		bssid = ifp->if_broadcastaddr;
   4308 	else
   4309 		bssid = ni->ni_bssid;
   4310 	ath_hal_setrxfilter(ah, rfilt);
   4311 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
   4312 		 __func__, rfilt, ether_sprintf(bssid));
   4313 
   4314 	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
   4315 		ath_hal_setassocid(ah, bssid, ni->ni_associd);
   4316 	else
   4317 		ath_hal_setassocid(ah, bssid, 0);
   4318 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
   4319 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
   4320 			if (ath_hal_keyisvalid(ah, i))
   4321 				ath_hal_keysetmac(ah, i, bssid);
   4322 	}
   4323 
   4324 	/*
   4325 	 * Notify the rate control algorithm so rates
   4326 	 * are setup should ath_beacon_alloc be called.
   4327 	 */
   4328 	ath_rate_newstate(sc, nstate);
   4329 
   4330 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
   4331 		/* nothing to do */;
   4332 	} else if (nstate == IEEE80211_S_RUN) {
   4333 		DPRINTF(sc, ATH_DEBUG_STATE,
   4334 			"%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
   4335 			"capinfo=0x%04x chan=%d\n"
   4336 			 , __func__
   4337 			 , ic->ic_flags
   4338 			 , ni->ni_intval
   4339 			 , ether_sprintf(ni->ni_bssid)
   4340 			 , ni->ni_capinfo
   4341 			 , ieee80211_chan2ieee(ic, ic->ic_curchan));
   4342 
   4343 		switch (ic->ic_opmode) {
   4344 		case IEEE80211_M_HOSTAP:
   4345 		case IEEE80211_M_IBSS:
   4346 			/*
   4347 			 * Allocate and setup the beacon frame.
   4348 			 *
   4349 			 * Stop any previous beacon DMA.  This may be
   4350 			 * necessary, for example, when an ibss merge
   4351 			 * causes reconfiguration; there will be a state
   4352 			 * transition from RUN->RUN that means we may
   4353 			 * be called with beacon transmission active.
   4354 			 */
   4355 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
   4356 			ath_beacon_free(sc);
   4357 			error = ath_beacon_alloc(sc, ni);
   4358 			if (error != 0)
   4359 				goto bad;
   4360 			break;
   4361 		case IEEE80211_M_STA:
   4362 			/*
   4363 			 * Allocate a key cache slot to the station.
   4364 			 */
   4365 			if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
   4366 			    sc->sc_hasclrkey &&
   4367 			    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
   4368 				ath_setup_stationkey(ni);
   4369 			break;
   4370 		default:
   4371 			break;
   4372 		}
   4373 
   4374 		/*
   4375 		 * Configure the beacon and sleep timers.
   4376 		 */
   4377 		ath_beacon_config(sc);
   4378 	} else {
   4379 		ath_hal_intrset(ah,
   4380 			sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
   4381 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
   4382 	}
   4383 done:
   4384 	/*
   4385 	 * Invoke the parent method to complete the work.
   4386 	 */
   4387 	error = sc->sc_newstate(ic, nstate, arg);
   4388 	/*
   4389 	 * Finally, start any timers.
   4390 	 */
   4391 	if (nstate == IEEE80211_S_RUN) {
   4392 		/* start periodic recalibration timer */
   4393 		callout_reset(&sc->sc_cal_ch, ath_calinterval * hz,
   4394 			ath_calibrate, sc);
   4395 	} else if (nstate == IEEE80211_S_SCAN) {
   4396 		/* start ap/neighbor scan timer */
   4397 		callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
   4398 			ath_next_scan, sc);
   4399 	}
   4400 bad:
   4401 	return error;
   4402 }
   4403 
   4404 /*
   4405  * Allocate a key cache slot to the station so we can
   4406  * setup a mapping from key index to node. The key cache
   4407  * slot is needed for managing antenna state and for
   4408  * compression when stations do not use crypto.  We do
   4409  * it uniliaterally here; if crypto is employed this slot
   4410  * will be reassigned.
   4411  */
   4412 static void
   4413 ath_setup_stationkey(struct ieee80211_node *ni)
   4414 {
   4415 	struct ieee80211com *ic = ni->ni_ic;
   4416 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   4417 	ieee80211_keyix keyix, rxkeyix;
   4418 
   4419 	if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
   4420 		/*
   4421 		 * Key cache is full; we'll fall back to doing
   4422 		 * the more expensive lookup in software.  Note
   4423 		 * this also means no h/w compression.
   4424 		 */
   4425 		/* XXX msg+statistic */
   4426 	} else {
   4427 		/* XXX locking? */
   4428 		ni->ni_ucastkey.wk_keyix = keyix;
   4429 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
   4430 		/* NB: this will create a pass-thru key entry */
   4431 		ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
   4432 	}
   4433 }
   4434 
   4435 /*
   4436  * Setup driver-specific state for a newly associated node.
   4437  * Note that we're called also on a re-associate, the isnew
   4438  * param tells us if this is the first time or not.
   4439  */
   4440 static void
   4441 ath_newassoc(struct ieee80211_node *ni, int isnew)
   4442 {
   4443 	struct ieee80211com *ic = ni->ni_ic;
   4444 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   4445 
   4446 	ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
   4447 	if (isnew &&
   4448 	    (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
   4449 		KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
   4450 		    ("new assoc with a unicast key already setup (keyix %u)",
   4451 		    ni->ni_ucastkey.wk_keyix));
   4452 		ath_setup_stationkey(ni);
   4453 	}
   4454 }
   4455 
   4456 static int
   4457 ath_getchannels(struct ath_softc *sc, u_int cc,
   4458 	HAL_BOOL outdoor, HAL_BOOL xchanmode)
   4459 {
   4460 	struct ieee80211com *ic = &sc->sc_ic;
   4461 	struct ifnet *ifp = &sc->sc_if;
   4462 	struct ath_hal *ah = sc->sc_ah;
   4463 	HAL_CHANNEL *chans;
   4464 	int i, ix, nchan;
   4465 
   4466 	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
   4467 			M_TEMP, M_NOWAIT);
   4468 	if (chans == NULL) {
   4469 		if_printf(ifp, "unable to allocate channel table\n");
   4470 		return ENOMEM;
   4471 	}
   4472 	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
   4473 	    cc, HAL_MODE_ALL, outdoor, xchanmode)) {
   4474 		u_int32_t rd;
   4475 
   4476 		ath_hal_getregdomain(ah, &rd);
   4477 		if_printf(ifp, "unable to collect channel list from hal; "
   4478 			"regdomain likely %u country code %u\n", rd, cc);
   4479 		free(chans, M_TEMP);
   4480 		return EINVAL;
   4481 	}
   4482 
   4483 	/*
   4484 	 * Convert HAL channels to ieee80211 ones and insert
   4485 	 * them in the table according to their channel number.
   4486 	 */
   4487 	for (i = 0; i < nchan; i++) {
   4488 		HAL_CHANNEL *c = &chans[i];
   4489 		ix = ath_hal_mhz2ieee(c->channel, c->channelFlags);
   4490 		if (ix > IEEE80211_CHAN_MAX) {
   4491 			if_printf(ifp, "bad hal channel %u (%u/%x) ignored\n",
   4492 				ix, c->channel, c->channelFlags);
   4493 			continue;
   4494 		}
   4495 		DPRINTF(sc, ATH_DEBUG_ANY,
   4496 		    "%s: HAL channel %d/%d freq %d flags %#04x idx %d\n",
   4497 		    sc->sc_dev.dv_xname, i, nchan, c->channel, c->channelFlags,
   4498 		    ix);
   4499 		/* NB: flags are known to be compatible */
   4500 		if (ic->ic_channels[ix].ic_freq == 0) {
   4501 			ic->ic_channels[ix].ic_freq = c->channel;
   4502 			ic->ic_channels[ix].ic_flags = c->channelFlags;
   4503 		} else {
   4504 			/* channels overlap; e.g. 11g and 11b */
   4505 			ic->ic_channels[ix].ic_flags |= c->channelFlags;
   4506 		}
   4507 	}
   4508 	free(chans, M_TEMP);
   4509 	return 0;
   4510 }
   4511 
   4512 static void
   4513 ath_led_done(void *arg)
   4514 {
   4515 	struct ath_softc *sc = arg;
   4516 
   4517 	sc->sc_blinking = 0;
   4518 }
   4519 
   4520 /*
   4521  * Turn the LED off: flip the pin and then set a timer so no
   4522  * update will happen for the specified duration.
   4523  */
   4524 static void
   4525 ath_led_off(void *arg)
   4526 {
   4527 	struct ath_softc *sc = arg;
   4528 
   4529 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
   4530 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
   4531 }
   4532 
   4533 /*
   4534  * Blink the LED according to the specified on/off times.
   4535  */
   4536 static void
   4537 ath_led_blink(struct ath_softc *sc, int on, int off)
   4538 {
   4539 	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
   4540 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
   4541 	sc->sc_blinking = 1;
   4542 	sc->sc_ledoff = off;
   4543 	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
   4544 }
   4545 
   4546 static void
   4547 ath_led_event(struct ath_softc *sc, int event)
   4548 {
   4549 
   4550 	sc->sc_ledevent = ticks;	/* time of last event */
   4551 	if (sc->sc_blinking)		/* don't interrupt active blink */
   4552 		return;
   4553 	switch (event) {
   4554 	case ATH_LED_POLL:
   4555 		ath_led_blink(sc, sc->sc_hwmap[0].ledon,
   4556 			sc->sc_hwmap[0].ledoff);
   4557 		break;
   4558 	case ATH_LED_TX:
   4559 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
   4560 			sc->sc_hwmap[sc->sc_txrate].ledoff);
   4561 		break;
   4562 	case ATH_LED_RX:
   4563 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
   4564 			sc->sc_hwmap[sc->sc_rxrate].ledoff);
   4565 		break;
   4566 	}
   4567 }
   4568 
   4569 static void
   4570 ath_update_txpow(struct ath_softc *sc)
   4571 {
   4572 	struct ieee80211com *ic = &sc->sc_ic;
   4573 	struct ath_hal *ah = sc->sc_ah;
   4574 	u_int32_t txpow;
   4575 
   4576 	if (sc->sc_curtxpow != ic->ic_txpowlimit) {
   4577 		ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
   4578 		/* read back in case value is clamped */
   4579 		ath_hal_gettxpowlimit(ah, &txpow);
   4580 		ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
   4581 	}
   4582 	/*
   4583 	 * Fetch max tx power level for status requests.
   4584 	 */
   4585 	ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
   4586 	ic->ic_bss->ni_txpower = txpow;
   4587 }
   4588 
   4589 static int
   4590 ath_rate_setup(struct ath_softc *sc, u_int mode)
   4591 {
   4592 	struct ath_hal *ah = sc->sc_ah;
   4593 	struct ieee80211com *ic = &sc->sc_ic;
   4594 	const HAL_RATE_TABLE *rt;
   4595 	struct ieee80211_rateset *rs;
   4596 	int i, maxrates;
   4597 
   4598 	switch (mode) {
   4599 	case IEEE80211_MODE_11A:
   4600 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11A);
   4601 		break;
   4602 	case IEEE80211_MODE_11B:
   4603 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11B);
   4604 		break;
   4605 	case IEEE80211_MODE_11G:
   4606 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11G);
   4607 		break;
   4608 	case IEEE80211_MODE_TURBO_A:
   4609 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_TURBO);
   4610 		break;
   4611 	case IEEE80211_MODE_TURBO_G:
   4612 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_108G);
   4613 		break;
   4614 	default:
   4615 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
   4616 			__func__, mode);
   4617 		return 0;
   4618 	}
   4619 	rt = sc->sc_rates[mode];
   4620 	if (rt == NULL)
   4621 		return 0;
   4622 	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
   4623 		DPRINTF(sc, ATH_DEBUG_ANY,
   4624 			"%s: rate table too small (%u > %u)\n",
   4625 			__func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
   4626 		maxrates = IEEE80211_RATE_MAXSIZE;
   4627 	} else
   4628 		maxrates = rt->rateCount;
   4629 	rs = &ic->ic_sup_rates[mode];
   4630 	for (i = 0; i < maxrates; i++)
   4631 		rs->rs_rates[i] = rt->info[i].dot11Rate;
   4632 	rs->rs_nrates = maxrates;
   4633 	return 1;
   4634 }
   4635 
   4636 static void
   4637 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
   4638 {
   4639 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   4640 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
   4641 	static const struct {
   4642 		u_int		rate;		/* tx/rx 802.11 rate */
   4643 		u_int16_t	timeOn;		/* LED on time (ms) */
   4644 		u_int16_t	timeOff;	/* LED off time (ms) */
   4645 	} blinkrates[] = {
   4646 		{ 108,  40,  10 },
   4647 		{  96,  44,  11 },
   4648 		{  72,  50,  13 },
   4649 		{  48,  57,  14 },
   4650 		{  36,  67,  16 },
   4651 		{  24,  80,  20 },
   4652 		{  22, 100,  25 },
   4653 		{  18, 133,  34 },
   4654 		{  12, 160,  40 },
   4655 		{  10, 200,  50 },
   4656 		{   6, 240,  58 },
   4657 		{   4, 267,  66 },
   4658 		{   2, 400, 100 },
   4659 		{   0, 500, 130 },
   4660 	};
   4661 	const HAL_RATE_TABLE *rt;
   4662 	int i, j;
   4663 
   4664 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
   4665 	rt = sc->sc_rates[mode];
   4666 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
   4667 	for (i = 0; i < rt->rateCount; i++)
   4668 		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
   4669 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
   4670 	for (i = 0; i < 32; i++) {
   4671 		u_int8_t ix = rt->rateCodeToIndex[i];
   4672 		if (ix == 0xff) {
   4673 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
   4674 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
   4675 			continue;
   4676 		}
   4677 		sc->sc_hwmap[i].ieeerate =
   4678 			rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
   4679 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
   4680 		if (rt->info[ix].shortPreamble ||
   4681 		    rt->info[ix].phy == IEEE80211_T_OFDM)
   4682 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
   4683 		/* NB: receive frames include FCS */
   4684 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
   4685 			IEEE80211_RADIOTAP_F_FCS;
   4686 		/* setup blink rate table to avoid per-packet lookup */
   4687 		for (j = 0; j < N(blinkrates)-1; j++)
   4688 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
   4689 				break;
   4690 		/* NB: this uses the last entry if the rate isn't found */
   4691 		/* XXX beware of overlow */
   4692 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
   4693 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
   4694 	}
   4695 	sc->sc_currates = rt;
   4696 	sc->sc_curmode = mode;
   4697 	/*
   4698 	 * All protection frames are transmited at 2Mb/s for
   4699 	 * 11g, otherwise at 1Mb/s.
   4700 	 * XXX select protection rate index from rate table.
   4701 	 */
   4702 	sc->sc_protrix = (mode == IEEE80211_MODE_11G ? 1 : 0);
   4703 	/* NB: caller is responsible for reseting rate control state */
   4704 #undef N
   4705 }
   4706 
   4707 #ifdef AR_DEBUG
   4708 static void
   4709 ath_printrxbuf(struct ath_buf *bf, int done)
   4710 {
   4711 	struct ath_desc *ds;
   4712 	int i;
   4713 
   4714 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
   4715 		printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n",
   4716 		    i, ds, (struct ath_desc *)bf->bf_daddr + i,
   4717 		    ds->ds_link, ds->ds_data,
   4718 		    ds->ds_ctl0, ds->ds_ctl1,
   4719 		    ds->ds_hw[0], ds->ds_hw[1],
   4720 		    !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
   4721 	}
   4722 }
   4723 
   4724 static void
   4725 ath_printtxbuf(struct ath_buf *bf, int done)
   4726 {
   4727 	struct ath_desc *ds;
   4728 	int i;
   4729 
   4730 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
   4731 		printf("T%d (%p %p) %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
   4732 		    i, ds, (struct ath_desc *)bf->bf_daddr + i,
   4733 		    ds->ds_link, ds->ds_data,
   4734 		    ds->ds_ctl0, ds->ds_ctl1,
   4735 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
   4736 		    !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
   4737 	}
   4738 }
   4739 #endif /* AR_DEBUG */
   4740 
   4741 static void
   4742 ath_watchdog(struct ifnet *ifp)
   4743 {
   4744 	struct ath_softc *sc = ifp->if_softc;
   4745 	struct ieee80211com *ic = &sc->sc_ic;
   4746 
   4747 	ifp->if_timer = 0;
   4748 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
   4749 		return;
   4750 	if (sc->sc_tx_timer) {
   4751 		if (--sc->sc_tx_timer == 0) {
   4752 			if_printf(ifp, "device timeout\n");
   4753 			ath_reset(ifp);
   4754 			ifp->if_oerrors++;
   4755 			sc->sc_stats.ast_watchdog++;
   4756 		} else
   4757 			ifp->if_timer = 1;
   4758 	}
   4759 	ieee80211_watchdog(ic);
   4760 }
   4761 
   4762 /*
   4763  * Diagnostic interface to the HAL.  This is used by various
   4764  * tools to do things like retrieve register contents for
   4765  * debugging.  The mechanism is intentionally opaque so that
   4766  * it can change frequently w/o concern for compatiblity.
   4767  */
   4768 static int
   4769 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
   4770 {
   4771 	struct ath_hal *ah = sc->sc_ah;
   4772 	u_int id = ad->ad_id & ATH_DIAG_ID;
   4773 	void *indata = NULL;
   4774 	void *outdata = NULL;
   4775 	u_int32_t insize = ad->ad_in_size;
   4776 	u_int32_t outsize = ad->ad_out_size;
   4777 	int error = 0;
   4778 
   4779 	if (ad->ad_id & ATH_DIAG_IN) {
   4780 		/*
   4781 		 * Copy in data.
   4782 		 */
   4783 		indata = malloc(insize, M_TEMP, M_NOWAIT);
   4784 		if (indata == NULL) {
   4785 			error = ENOMEM;
   4786 			goto bad;
   4787 		}
   4788 		error = copyin(ad->ad_in_data, indata, insize);
   4789 		if (error)
   4790 			goto bad;
   4791 	}
   4792 	if (ad->ad_id & ATH_DIAG_DYN) {
   4793 		/*
   4794 		 * Allocate a buffer for the results (otherwise the HAL
   4795 		 * returns a pointer to a buffer where we can read the
   4796 		 * results).  Note that we depend on the HAL leaving this
   4797 		 * pointer for us to use below in reclaiming the buffer;
   4798 		 * may want to be more defensive.
   4799 		 */
   4800 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
   4801 		if (outdata == NULL) {
   4802 			error = ENOMEM;
   4803 			goto bad;
   4804 		}
   4805 	}
   4806 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
   4807 		if (outsize < ad->ad_out_size)
   4808 			ad->ad_out_size = outsize;
   4809 		if (outdata != NULL)
   4810 			error = copyout(outdata, ad->ad_out_data,
   4811 					ad->ad_out_size);
   4812 	} else {
   4813 		error = EINVAL;
   4814 	}
   4815 bad:
   4816 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
   4817 		free(indata, M_TEMP);
   4818 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
   4819 		free(outdata, M_TEMP);
   4820 	return error;
   4821 }
   4822 
   4823 static int
   4824 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
   4825 {
   4826 #define	IS_RUNNING(ifp) \
   4827 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
   4828 	struct ath_softc *sc = ifp->if_softc;
   4829 	struct ieee80211com *ic = &sc->sc_ic;
   4830 	struct ifreq *ifr = (struct ifreq *)data;
   4831 	int error = 0;
   4832 
   4833 	ATH_LOCK(sc);
   4834 	switch (cmd) {
   4835 	case SIOCSIFFLAGS:
   4836 		if (IS_RUNNING(ifp)) {
   4837 			/*
   4838 			 * To avoid rescanning another access point,
   4839 			 * do not call ath_init() here.  Instead,
   4840 			 * only reflect promisc mode settings.
   4841 			 */
   4842 			ath_mode_init(sc);
   4843 		} else if (ifp->if_flags & IFF_UP) {
   4844 			/*
   4845 			 * Beware of being called during attach/detach
   4846 			 * to reset promiscuous mode.  In that case we
   4847 			 * will still be marked UP but not RUNNING.
   4848 			 * However trying to re-init the interface
   4849 			 * is the wrong thing to do as we've already
   4850 			 * torn down much of our state.  There's
   4851 			 * probably a better way to deal with this.
   4852 			 */
   4853 			if (!sc->sc_invalid && ic->ic_bss != NULL)
   4854 				ath_init(sc);	/* XXX lose error */
   4855 		} else
   4856 			ath_stop_locked(ifp, 1);
   4857 		break;
   4858 	case SIOCADDMULTI:
   4859 	case SIOCDELMULTI:
   4860 		error = (cmd == SIOCADDMULTI) ?
   4861 		    ether_addmulti(ifr, &sc->sc_ec) :
   4862 		    ether_delmulti(ifr, &sc->sc_ec);
   4863 		if (error == ENETRESET) {
   4864 			if (ifp->if_flags & IFF_RUNNING)
   4865 				ath_mode_init(sc);
   4866 			error = 0;
   4867 		}
   4868 		break;
   4869 	case SIOCGATHSTATS:
   4870 		/* NB: embed these numbers to get a consistent view */
   4871 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
   4872 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
   4873 		sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
   4874 		ATH_UNLOCK(sc);
   4875 		/*
   4876 		 * NB: Drop the softc lock in case of a page fault;
   4877 		 * we'll accept any potential inconsisentcy in the
   4878 		 * statistics.  The alternative is to copy the data
   4879 		 * to a local structure.
   4880 		 */
   4881 		return copyout(&sc->sc_stats,
   4882 				ifr->ifr_data, sizeof (sc->sc_stats));
   4883 	case SIOCGATHDIAG:
   4884 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
   4885 		break;
   4886 	default:
   4887 		error = ieee80211_ioctl(ic, cmd, data);
   4888 		if (error == ENETRESET) {
   4889 			if (IS_RUNNING(ifp) &&
   4890 			    ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
   4891 				ath_init(sc);	/* XXX lose error */
   4892 			error = 0;
   4893 		}
   4894 		if (error == ERESTART)
   4895 			error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0;
   4896 		break;
   4897 	}
   4898 	ATH_UNLOCK(sc);
   4899 	return error;
   4900 #undef IS_RUNNING
   4901 }
   4902 
   4903 #if NBPFILTER > 0
   4904 static void
   4905 ath_bpfattach(struct ath_softc *sc)
   4906 {
   4907 	struct ifnet *ifp = &sc->sc_if;
   4908 
   4909 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
   4910 		sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
   4911 		&sc->sc_drvbpf);
   4912 	/*
   4913 	 * Initialize constant fields.
   4914 	 * XXX make header lengths a multiple of 32-bits so subsequent
   4915 	 *     headers are properly aligned; this is a kludge to keep
   4916 	 *     certain applications happy.
   4917 	 *
   4918 	 * NB: the channel is setup each time we transition to the
   4919 	 *     RUN state to avoid filling it in for each frame.
   4920 	 */
   4921 	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
   4922 	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
   4923 	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
   4924 
   4925 	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
   4926 	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
   4927 	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
   4928 }
   4929 #endif
   4930 
   4931 /*
   4932  * Announce various information on device/driver attach.
   4933  */
   4934 static void
   4935 ath_announce(struct ath_softc *sc)
   4936 {
   4937 #define	HAL_MODE_DUALBAND	(HAL_MODE_11A|HAL_MODE_11B)
   4938 	struct ifnet *ifp = &sc->sc_if;
   4939 	struct ath_hal *ah = sc->sc_ah;
   4940 	u_int modes, cc;
   4941 
   4942 	if_printf(ifp, "mac %d.%d phy %d.%d",
   4943 		ah->ah_macVersion, ah->ah_macRev,
   4944 		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
   4945 	/*
   4946 	 * Print radio revision(s).  We check the wireless modes
   4947 	 * to avoid falsely printing revs for inoperable parts.
   4948 	 * Dual-band radio revs are returned in the 5Ghz rev number.
   4949 	 */
   4950 	ath_hal_getcountrycode(ah, &cc);
   4951 	modes = ath_hal_getwirelessmodes(ah, cc);
   4952 	if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
   4953 		if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
   4954 			printf(" 5ghz radio %d.%d 2ghz radio %d.%d",
   4955 				ah->ah_analog5GhzRev >> 4,
   4956 				ah->ah_analog5GhzRev & 0xf,
   4957 				ah->ah_analog2GhzRev >> 4,
   4958 				ah->ah_analog2GhzRev & 0xf);
   4959 		else
   4960 			printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
   4961 				ah->ah_analog5GhzRev & 0xf);
   4962 	} else
   4963 		printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
   4964 			ah->ah_analog5GhzRev & 0xf);
   4965 	printf("\n");
   4966 	if (bootverbose) {
   4967 		int i;
   4968 		for (i = 0; i <= WME_AC_VO; i++) {
   4969 			struct ath_txq *txq = sc->sc_ac2q[i];
   4970 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
   4971 				txq->axq_qnum, ieee80211_wme_acnames[i]);
   4972 		}
   4973 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
   4974 			sc->sc_cabq->axq_qnum);
   4975 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
   4976 	}
   4977 #undef HAL_MODE_DUALBAND
   4978 }
   4979