ath.c revision 1.68.2.1 1 /* $NetBSD: ath.c,v 1.68.2.1 2006/03/13 09:07:20 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15 * redistribution must be conditioned upon including a substantially
16 * similar Disclaimer requirement for further binary redistribution.
17 * 3. Neither the names of the above-listed copyright holders nor the names
18 * of any contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * Alternatively, this software may be distributed under the terms of the
22 * GNU General Public License ("GPL") version 2 as published by the Free
23 * Software Foundation.
24 *
25 * NO WARRANTY
26 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
28 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
29 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
30 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
31 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
34 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
36 * THE POSSIBILITY OF SUCH DAMAGES.
37 */
38
39 #include <sys/cdefs.h>
40 #ifdef __FreeBSD__
41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $");
42 #endif
43 #ifdef __NetBSD__
44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.68.2.1 2006/03/13 09:07:20 yamt Exp $");
45 #endif
46
47 /*
48 * Driver for the Atheros Wireless LAN controller.
49 *
50 * This software is derived from work of Atsushi Onoe; his contribution
51 * is greatly appreciated.
52 */
53
54 #include "opt_inet.h"
55
56 #ifdef __NetBSD__
57 #include "bpfilter.h"
58 #endif /* __NetBSD__ */
59
60 #include <sys/param.h>
61 #include <sys/reboot.h>
62 #include <sys/systm.h>
63 #include <sys/types.h>
64 #include <sys/sysctl.h>
65 #include <sys/mbuf.h>
66 #include <sys/malloc.h>
67 #include <sys/lock.h>
68 #include <sys/kernel.h>
69 #include <sys/socket.h>
70 #include <sys/sockio.h>
71 #include <sys/errno.h>
72 #include <sys/callout.h>
73 #include <machine/bus.h>
74 #include <sys/endian.h>
75
76 #include <machine/bus.h>
77
78 #include <net/if.h>
79 #include <net/if_dl.h>
80 #include <net/if_media.h>
81 #include <net/if_types.h>
82 #include <net/if_arp.h>
83 #include <net/if_ether.h>
84 #include <net/if_llc.h>
85
86 #include <net80211/ieee80211_netbsd.h>
87 #include <net80211/ieee80211_var.h>
88
89 #if NBPFILTER > 0
90 #include <net/bpf.h>
91 #endif
92
93 #ifdef INET
94 #include <netinet/in.h>
95 #endif
96
97 #include <sys/device.h>
98 #include <dev/ic/ath_netbsd.h>
99
100 #define AR_DEBUG
101 #include <dev/ic/athvar.h>
102 #include <contrib/dev/ic/athhal_desc.h>
103 #include <contrib/dev/ic/athhal_devid.h> /* XXX for softled */
104
105 #ifdef ATH_TX99_DIAG
106 #include <dev/ath/ath_tx99/ath_tx99.h>
107 #endif
108
109 /* unaligned little endian access */
110 #define LE_READ_2(p) \
111 ((u_int16_t) \
112 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8)))
113 #define LE_READ_4(p) \
114 ((u_int32_t) \
115 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \
116 (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
117
118 enum {
119 ATH_LED_TX,
120 ATH_LED_RX,
121 ATH_LED_POLL,
122 };
123
124 static int ath_ifinit(struct ifnet *);
125 static int ath_init(struct ath_softc *);
126 static void ath_stop_locked(struct ifnet *, int);
127 static void ath_stop(struct ifnet *, int);
128 static void ath_start(struct ifnet *);
129 static int ath_media_change(struct ifnet *);
130 static void ath_watchdog(struct ifnet *);
131 static int ath_ioctl(struct ifnet *, u_long, caddr_t);
132 static void ath_fatal_proc(void *, int);
133 static void ath_rxorn_proc(void *, int);
134 static void ath_bmiss_proc(void *, int);
135 static void ath_radar_proc(void *, int);
136 static int ath_key_alloc(struct ieee80211com *,
137 const struct ieee80211_key *,
138 ieee80211_keyix *, ieee80211_keyix *);
139 static int ath_key_delete(struct ieee80211com *,
140 const struct ieee80211_key *);
141 static int ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
142 const u_int8_t mac[IEEE80211_ADDR_LEN]);
143 static void ath_key_update_begin(struct ieee80211com *);
144 static void ath_key_update_end(struct ieee80211com *);
145 static void ath_mode_init(struct ath_softc *);
146 static void ath_setslottime(struct ath_softc *);
147 static void ath_updateslot(struct ifnet *);
148 static int ath_beaconq_setup(struct ath_hal *);
149 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
150 static void ath_beacon_setup(struct ath_softc *, struct ath_buf *);
151 static void ath_beacon_proc(void *, int);
152 static void ath_bstuck_proc(void *, int);
153 static void ath_beacon_free(struct ath_softc *);
154 static void ath_beacon_config(struct ath_softc *);
155 static void ath_descdma_cleanup(struct ath_softc *sc,
156 struct ath_descdma *, ath_bufhead *);
157 static int ath_desc_alloc(struct ath_softc *);
158 static void ath_desc_free(struct ath_softc *);
159 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
160 static void ath_node_free(struct ieee80211_node *);
161 static u_int8_t ath_node_getrssi(const struct ieee80211_node *);
162 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
163 static void ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
164 struct ieee80211_node *ni,
165 int subtype, int rssi, u_int32_t rstamp);
166 static void ath_setdefantenna(struct ath_softc *, u_int);
167 static void ath_rx_proc(void *, int);
168 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
169 static int ath_tx_setup(struct ath_softc *, int, int);
170 static int ath_wme_update(struct ieee80211com *);
171 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
172 static void ath_tx_cleanup(struct ath_softc *);
173 static int ath_tx_start(struct ath_softc *, struct ieee80211_node *,
174 struct ath_buf *, struct mbuf *);
175 static void ath_tx_proc_q0(void *, int);
176 static void ath_tx_proc_q0123(void *, int);
177 static void ath_tx_proc(void *, int);
178 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
179 static void ath_draintxq(struct ath_softc *);
180 static void ath_stoprecv(struct ath_softc *);
181 static int ath_startrecv(struct ath_softc *);
182 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
183 static void ath_next_scan(void *);
184 static void ath_calibrate(void *);
185 static int ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
186 static void ath_setup_stationkey(struct ieee80211_node *);
187 static void ath_newassoc(struct ieee80211_node *, int);
188 static int ath_getchannels(struct ath_softc *, u_int cc,
189 HAL_BOOL outdoor, HAL_BOOL xchanmode);
190 static void ath_led_event(struct ath_softc *, int);
191 static void ath_update_txpow(struct ath_softc *);
192
193 static int ath_rate_setup(struct ath_softc *, u_int mode);
194 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
195
196 #ifdef __NetBSD__
197 int ath_enable(struct ath_softc *);
198 void ath_disable(struct ath_softc *);
199 void ath_power(int, void *);
200 #endif
201
202 #if NBPFILTER > 0
203 static void ath_bpfattach(struct ath_softc *);
204 #endif
205 static void ath_announce(struct ath_softc *);
206
207 int ath_dwelltime = 200; /* 5 channels/second */
208 int ath_calinterval = 30; /* calibrate every 30 secs */
209 int ath_outdoor = AH_TRUE; /* outdoor operation */
210 int ath_xchanmode = AH_TRUE; /* enable extended channels */
211 int ath_countrycode = CTRY_DEFAULT; /* country code */
212 int ath_regdomain = 0; /* regulatory domain */
213 int ath_debug = 0;
214 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */
215 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */
216
217 #ifdef AR_DEBUG
218 enum {
219 ATH_DEBUG_XMIT = 0x00000001, /* basic xmit operation */
220 ATH_DEBUG_XMIT_DESC = 0x00000002, /* xmit descriptors */
221 ATH_DEBUG_RECV = 0x00000004, /* basic recv operation */
222 ATH_DEBUG_RECV_DESC = 0x00000008, /* recv descriptors */
223 ATH_DEBUG_RATE = 0x00000010, /* rate control */
224 ATH_DEBUG_RESET = 0x00000020, /* reset processing */
225 ATH_DEBUG_MODE = 0x00000040, /* mode init/setup */
226 ATH_DEBUG_BEACON = 0x00000080, /* beacon handling */
227 ATH_DEBUG_WATCHDOG = 0x00000100, /* watchdog timeout */
228 ATH_DEBUG_INTR = 0x00001000, /* ISR */
229 ATH_DEBUG_TX_PROC = 0x00002000, /* tx ISR proc */
230 ATH_DEBUG_RX_PROC = 0x00004000, /* rx ISR proc */
231 ATH_DEBUG_BEACON_PROC = 0x00008000, /* beacon ISR proc */
232 ATH_DEBUG_CALIBRATE = 0x00010000, /* periodic calibration */
233 ATH_DEBUG_KEYCACHE = 0x00020000, /* key cache management */
234 ATH_DEBUG_STATE = 0x00040000, /* 802.11 state transitions */
235 ATH_DEBUG_NODE = 0x00080000, /* node management */
236 ATH_DEBUG_LED = 0x00100000, /* led management */
237 ATH_DEBUG_FF = 0x00200000, /* fast frames */
238 ATH_DEBUG_DFS = 0x00400000, /* DFS processing */
239 ATH_DEBUG_FATAL = 0x80000000, /* fatal errors */
240 ATH_DEBUG_ANY = 0xffffffff
241 };
242 #define IFF_DUMPPKTS(sc, m) \
243 ((sc->sc_debug & (m)) || \
244 (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
245 #define DPRINTF(sc, m, fmt, ...) do { \
246 if (sc->sc_debug & (m)) \
247 printf(fmt, __VA_ARGS__); \
248 } while (0)
249 #define KEYPRINTF(sc, ix, hk, mac) do { \
250 if (sc->sc_debug & ATH_DEBUG_KEYCACHE) \
251 ath_keyprint(__func__, ix, hk, mac); \
252 } while (0)
253 static void ath_printrxbuf(struct ath_buf *bf, int);
254 static void ath_printtxbuf(struct ath_buf *bf, int);
255 #else
256 #define IFF_DUMPPKTS(sc, m) \
257 ((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
258 #define DPRINTF(m, fmt, ...)
259 #define KEYPRINTF(sc, k, ix, mac)
260 #endif
261
262 #ifdef __NetBSD__
263 int
264 ath_activate(struct device *self, enum devact act)
265 {
266 struct ath_softc *sc = (struct ath_softc *)self;
267 int rv = 0, s;
268
269 s = splnet();
270 switch (act) {
271 case DVACT_ACTIVATE:
272 rv = EOPNOTSUPP;
273 break;
274 case DVACT_DEACTIVATE:
275 if_deactivate(&sc->sc_if);
276 break;
277 }
278 splx(s);
279 return rv;
280 }
281
282 int
283 ath_enable(struct ath_softc *sc)
284 {
285 if (ATH_IS_ENABLED(sc) == 0) {
286 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
287 printf("%s: device enable failed\n",
288 sc->sc_dev.dv_xname);
289 return (EIO);
290 }
291 sc->sc_flags |= ATH_ENABLED;
292 }
293 return (0);
294 }
295
296 void
297 ath_disable(struct ath_softc *sc)
298 {
299 if (!ATH_IS_ENABLED(sc))
300 return;
301 if (sc->sc_disable != NULL)
302 (*sc->sc_disable)(sc);
303 sc->sc_flags &= ~ATH_ENABLED;
304 }
305 #endif /* __NetBSD__ */
306
307 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
308
309 int
310 ath_attach(u_int16_t devid, struct ath_softc *sc)
311 {
312 struct ifnet *ifp = &sc->sc_if;
313 struct ieee80211com *ic = &sc->sc_ic;
314 struct ath_hal *ah = NULL;
315 HAL_STATUS status;
316 int error = 0, i;
317
318 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
319
320 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
321
322 ah = ath_hal_attach(devid, sc, sc->sc_st, ATH_BUSHANDLE2HAL(sc->sc_sh),
323 &status);
324 if (ah == NULL) {
325 if_printf(ifp, "unable to attach hardware; HAL status %u\n",
326 status);
327 error = ENXIO;
328 goto bad;
329 }
330 if (ah->ah_abi != HAL_ABI_VERSION) {
331 if_printf(ifp, "HAL ABI mismatch detected "
332 "(HAL:0x%x != driver:0x%x)\n",
333 ah->ah_abi, HAL_ABI_VERSION);
334 error = ENXIO;
335 goto bad;
336 }
337 sc->sc_ah = ah;
338 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */
339
340 /*
341 * Check if the MAC has multi-rate retry support.
342 * We do this by trying to setup a fake extended
343 * descriptor. MAC's that don't have support will
344 * return false w/o doing anything. MAC's that do
345 * support it will return true w/o doing anything.
346 */
347 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
348
349 /*
350 * Check if the device has hardware counters for PHY
351 * errors. If so we need to enable the MIB interrupt
352 * so we can act on stat triggers.
353 */
354 if (ath_hal_hwphycounters(ah))
355 sc->sc_needmib = 1;
356
357 /*
358 * Get the hardware key cache size.
359 */
360 sc->sc_keymax = ath_hal_keycachesize(ah);
361 if (sc->sc_keymax > ATH_KEYMAX) {
362 if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
363 ATH_KEYMAX, sc->sc_keymax);
364 sc->sc_keymax = ATH_KEYMAX;
365 }
366 /*
367 * Reset the key cache since some parts do not
368 * reset the contents on initial power up.
369 */
370 for (i = 0; i < sc->sc_keymax; i++)
371 ath_hal_keyreset(ah, i);
372 /*
373 * Mark key cache slots associated with global keys
374 * as in use. If we knew TKIP was not to be used we
375 * could leave the +32, +64, and +32+64 slots free.
376 * XXX only for splitmic.
377 */
378 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
379 setbit(sc->sc_keymap, i);
380 setbit(sc->sc_keymap, i+32);
381 setbit(sc->sc_keymap, i+64);
382 setbit(sc->sc_keymap, i+32+64);
383 }
384
385 /*
386 * Collect the channel list using the default country
387 * code and including outdoor channels. The 802.11 layer
388 * is resposible for filtering this list based on settings
389 * like the phy mode.
390 */
391 error = ath_getchannels(sc, ath_countrycode,
392 ath_outdoor, ath_xchanmode);
393 if (error != 0)
394 goto bad;
395
396 /*
397 * Setup rate tables for all potential media types.
398 */
399 ath_rate_setup(sc, IEEE80211_MODE_11A);
400 ath_rate_setup(sc, IEEE80211_MODE_11B);
401 ath_rate_setup(sc, IEEE80211_MODE_11G);
402 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
403 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
404 /* NB: setup here so ath_rate_update is happy */
405 ath_setcurmode(sc, IEEE80211_MODE_11A);
406
407 /*
408 * Allocate tx+rx descriptors and populate the lists.
409 */
410 error = ath_desc_alloc(sc);
411 if (error != 0) {
412 if_printf(ifp, "failed to allocate descriptors: %d\n", error);
413 goto bad;
414 }
415 ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
416 ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE);
417 ATH_CALLOUT_INIT(&sc->sc_dfs_ch, CALLOUT_MPSAFE);
418
419 ATH_TXBUF_LOCK_INIT(sc);
420
421 TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
422 TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
423 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
424 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
425 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
426 TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc);
427
428 /*
429 * Allocate hardware transmit queues: one queue for
430 * beacon frames and one data queue for each QoS
431 * priority. Note that the hal handles reseting
432 * these queues at the needed time.
433 *
434 * XXX PS-Poll
435 */
436 sc->sc_bhalq = ath_beaconq_setup(ah);
437 if (sc->sc_bhalq == (u_int) -1) {
438 if_printf(ifp, "unable to setup a beacon xmit queue!\n");
439 error = EIO;
440 goto bad2;
441 }
442 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
443 if (sc->sc_cabq == NULL) {
444 if_printf(ifp, "unable to setup CAB xmit queue!\n");
445 error = EIO;
446 goto bad2;
447 }
448 /* NB: insure BK queue is the lowest priority h/w queue */
449 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
450 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
451 ieee80211_wme_acnames[WME_AC_BK]);
452 error = EIO;
453 goto bad2;
454 }
455 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
456 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
457 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
458 /*
459 * Not enough hardware tx queues to properly do WME;
460 * just punt and assign them all to the same h/w queue.
461 * We could do a better job of this if, for example,
462 * we allocate queues when we switch from station to
463 * AP mode.
464 */
465 if (sc->sc_ac2q[WME_AC_VI] != NULL)
466 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
467 if (sc->sc_ac2q[WME_AC_BE] != NULL)
468 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
469 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
470 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
471 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
472 }
473
474 /*
475 * Special case certain configurations. Note the
476 * CAB queue is handled by these specially so don't
477 * include them when checking the txq setup mask.
478 */
479 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
480 case 0x01:
481 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
482 break;
483 case 0x0f:
484 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
485 break;
486 default:
487 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
488 break;
489 }
490
491 /*
492 * Setup rate control. Some rate control modules
493 * call back to change the anntena state so expose
494 * the necessary entry points.
495 * XXX maybe belongs in struct ath_ratectrl?
496 */
497 sc->sc_setdefantenna = ath_setdefantenna;
498 sc->sc_rc = ath_rate_attach(sc);
499 if (sc->sc_rc == NULL) {
500 error = EIO;
501 goto bad2;
502 }
503
504 sc->sc_blinking = 0;
505 sc->sc_ledstate = 1;
506 sc->sc_ledon = 0; /* low true */
507 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */
508 ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE);
509 /*
510 * Auto-enable soft led processing for IBM cards and for
511 * 5211 minipci cards. Users can also manually enable/disable
512 * support with a sysctl.
513 */
514 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
515 if (sc->sc_softled) {
516 ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
517 ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
518 }
519
520 ifp->if_softc = sc;
521 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
522 ifp->if_start = ath_start;
523 ifp->if_watchdog = ath_watchdog;
524 ifp->if_ioctl = ath_ioctl;
525 ifp->if_init = ath_ifinit;
526 IFQ_SET_READY(&ifp->if_snd);
527
528 ic->ic_ifp = ifp;
529 ic->ic_reset = ath_reset;
530 ic->ic_newassoc = ath_newassoc;
531 ic->ic_updateslot = ath_updateslot;
532 ic->ic_wme.wme_update = ath_wme_update;
533 /* XXX not right but it's not used anywhere important */
534 ic->ic_phytype = IEEE80211_T_OFDM;
535 ic->ic_opmode = IEEE80211_M_STA;
536 ic->ic_caps =
537 IEEE80211_C_IBSS /* ibss, nee adhoc, mode */
538 | IEEE80211_C_HOSTAP /* hostap mode */
539 | IEEE80211_C_MONITOR /* monitor mode */
540 | IEEE80211_C_SHPREAMBLE /* short preamble supported */
541 | IEEE80211_C_SHSLOT /* short slot time supported */
542 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */
543 ;
544 /*
545 * Query the hal to figure out h/w crypto support.
546 */
547 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
548 ic->ic_caps |= IEEE80211_C_WEP;
549 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
550 ic->ic_caps |= IEEE80211_C_AES;
551 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
552 ic->ic_caps |= IEEE80211_C_AES_CCM;
553 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
554 ic->ic_caps |= IEEE80211_C_CKIP;
555 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
556 ic->ic_caps |= IEEE80211_C_TKIP;
557 /*
558 * Check if h/w does the MIC and/or whether the
559 * separate key cache entries are required to
560 * handle both tx+rx MIC keys.
561 */
562 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
563 ic->ic_caps |= IEEE80211_C_TKIPMIC;
564 if (ath_hal_tkipsplit(ah))
565 sc->sc_splitmic = 1;
566 }
567 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
568 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
569 /*
570 * TPC support can be done either with a global cap or
571 * per-packet support. The latter is not available on
572 * all parts. We're a bit pedantic here as all parts
573 * support a global cap.
574 */
575 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
576 ic->ic_caps |= IEEE80211_C_TXPMGT;
577
578 /*
579 * Mark WME capability only if we have sufficient
580 * hardware queues to do proper priority scheduling.
581 */
582 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
583 ic->ic_caps |= IEEE80211_C_WME;
584 /*
585 * Check for misc other capabilities.
586 */
587 if (ath_hal_hasbursting(ah))
588 ic->ic_caps |= IEEE80211_C_BURST;
589
590 /*
591 * Indicate we need the 802.11 header padded to a
592 * 32-bit boundary for 4-address and QoS frames.
593 */
594 ic->ic_flags |= IEEE80211_F_DATAPAD;
595
596 /*
597 * Query the hal about antenna support.
598 */
599 sc->sc_defant = ath_hal_getdefantenna(ah);
600
601 /*
602 * Not all chips have the VEOL support we want to
603 * use with IBSS beacons; check here for it.
604 */
605 sc->sc_hasveol = ath_hal_hasveol(ah);
606
607 /* get mac address from hardware */
608 ath_hal_getmac(ah, ic->ic_myaddr);
609
610 if_attach(ifp);
611 /* call MI attach routine. */
612 ieee80211_ifattach(ic);
613 /* override default methods */
614 ic->ic_node_alloc = ath_node_alloc;
615 sc->sc_node_free = ic->ic_node_free;
616 ic->ic_node_free = ath_node_free;
617 ic->ic_node_getrssi = ath_node_getrssi;
618 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
619 ic->ic_recv_mgmt = ath_recv_mgmt;
620 sc->sc_newstate = ic->ic_newstate;
621 ic->ic_newstate = ath_newstate;
622 ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
623 ic->ic_crypto.cs_key_alloc = ath_key_alloc;
624 ic->ic_crypto.cs_key_delete = ath_key_delete;
625 ic->ic_crypto.cs_key_set = ath_key_set;
626 ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
627 ic->ic_crypto.cs_key_update_end = ath_key_update_end;
628 /* complete initialization */
629 ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
630
631 #if NBPFILTER > 0
632 ath_bpfattach(sc);
633 #endif
634
635 #ifdef __NetBSD__
636 sc->sc_flags |= ATH_ATTACHED;
637 /*
638 * Make sure the interface is shutdown during reboot.
639 */
640 sc->sc_sdhook = shutdownhook_establish(ath_shutdown, sc);
641 if (sc->sc_sdhook == NULL)
642 printf("%s: WARNING: unable to establish shutdown hook\n",
643 sc->sc_dev.dv_xname);
644 sc->sc_powerhook = powerhook_establish(ath_power, sc);
645 if (sc->sc_powerhook == NULL)
646 printf("%s: WARNING: unable to establish power hook\n",
647 sc->sc_dev.dv_xname);
648 #endif
649
650 /*
651 * Setup dynamic sysctl's now that country code and
652 * regdomain are available from the hal.
653 */
654 ath_sysctlattach(sc);
655
656 ieee80211_announce(ic);
657 ath_announce(sc);
658 return 0;
659 bad2:
660 ath_tx_cleanup(sc);
661 ath_desc_free(sc);
662 bad:
663 if (ah)
664 ath_hal_detach(ah);
665 sc->sc_invalid = 1;
666 return error;
667 }
668
669 int
670 ath_detach(struct ath_softc *sc)
671 {
672 struct ifnet *ifp = &sc->sc_if;
673 int s;
674
675 if ((sc->sc_flags & ATH_ATTACHED) == 0)
676 return (0);
677
678 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
679 __func__, ifp->if_flags);
680
681 s = splnet();
682 ath_stop(ifp, 1);
683 #if NBPFILTER > 0
684 bpfdetach(ifp);
685 #endif
686 /*
687 * NB: the order of these is important:
688 * o call the 802.11 layer before detaching the hal to
689 * insure callbacks into the driver to delete global
690 * key cache entries can be handled
691 * o reclaim the tx queue data structures after calling
692 * the 802.11 layer as we'll get called back to reclaim
693 * node state and potentially want to use them
694 * o to cleanup the tx queues the hal is called, so detach
695 * it last
696 * Other than that, it's straightforward...
697 */
698 ieee80211_ifdetach(&sc->sc_ic);
699 #ifdef ATH_TX99_DIAG
700 if (sc->sc_tx99 != NULL)
701 sc->sc_tx99->detach(sc->sc_tx99);
702 #endif
703 ath_rate_detach(sc->sc_rc);
704 ath_desc_free(sc);
705 ath_tx_cleanup(sc);
706 sysctl_teardown(&sc->sc_sysctllog);
707 ath_hal_detach(sc->sc_ah);
708 if_detach(ifp);
709 splx(s);
710 powerhook_disestablish(sc->sc_powerhook);
711 shutdownhook_disestablish(sc->sc_sdhook);
712
713 return 0;
714 }
715
716 #ifdef __NetBSD__
717 void
718 ath_power(int why, void *arg)
719 {
720 struct ath_softc *sc = arg;
721 int s;
722
723 DPRINTF(sc, ATH_DEBUG_ANY, "ath_power(%d)\n", why);
724
725 s = splnet();
726 switch (why) {
727 case PWR_SUSPEND:
728 case PWR_STANDBY:
729 ath_suspend(sc, why);
730 break;
731 case PWR_RESUME:
732 ath_resume(sc, why);
733 break;
734 case PWR_SOFTSUSPEND:
735 case PWR_SOFTSTANDBY:
736 case PWR_SOFTRESUME:
737 break;
738 }
739 splx(s);
740 }
741 #endif
742
743 void
744 ath_suspend(struct ath_softc *sc, int why)
745 {
746 struct ifnet *ifp = &sc->sc_if;
747
748 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
749 __func__, ifp->if_flags);
750
751 ath_stop(ifp, 1);
752 if (sc->sc_power != NULL)
753 (*sc->sc_power)(sc, why);
754 }
755
756 void
757 ath_resume(struct ath_softc *sc, int why)
758 {
759 struct ifnet *ifp = &sc->sc_if;
760
761 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
762 __func__, ifp->if_flags);
763
764 if (ifp->if_flags & IFF_UP) {
765 ath_init(sc);
766 #if 0
767 (void)ath_intr(sc);
768 #endif
769 if (sc->sc_power != NULL)
770 (*sc->sc_power)(sc, why);
771 if (ifp->if_flags & IFF_RUNNING)
772 ath_start(ifp);
773 }
774 if (sc->sc_softled) {
775 ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
776 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
777 }
778 }
779
780 void
781 ath_shutdown(void *arg)
782 {
783 struct ath_softc *sc = arg;
784
785 ath_stop(&sc->sc_if, 1);
786 }
787
788 /*
789 * Interrupt handler. Most of the actual processing is deferred.
790 */
791 int
792 ath_intr(void *arg)
793 {
794 struct ath_softc *sc = arg;
795 struct ifnet *ifp = &sc->sc_if;
796 struct ath_hal *ah = sc->sc_ah;
797 HAL_INT status;
798
799 if (sc->sc_invalid) {
800 /*
801 * The hardware is not ready/present, don't touch anything.
802 * Note this can happen early on if the IRQ is shared.
803 */
804 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
805 return 0;
806 }
807 if (!ath_hal_intrpend(ah)) /* shared irq, not for us */
808 return 0;
809 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
810 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
811 __func__, ifp->if_flags);
812 ath_hal_getisr(ah, &status); /* clear ISR */
813 ath_hal_intrset(ah, 0); /* disable further intr's */
814 return 1; /* XXX */
815 }
816 /*
817 * Figure out the reason(s) for the interrupt. Note
818 * that the hal returns a pseudo-ISR that may include
819 * bits we haven't explicitly enabled so we mask the
820 * value to insure we only process bits we requested.
821 */
822 ath_hal_getisr(ah, &status); /* NB: clears ISR too */
823 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
824 status &= sc->sc_imask; /* discard unasked for bits */
825 if (status & HAL_INT_FATAL) {
826 /*
827 * Fatal errors are unrecoverable. Typically
828 * these are caused by DMA errors. Unfortunately
829 * the exact reason is not (presently) returned
830 * by the hal.
831 */
832 sc->sc_stats.ast_hardware++;
833 ath_hal_intrset(ah, 0); /* disable intr's until reset */
834 TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
835 } else if (status & HAL_INT_RXORN) {
836 sc->sc_stats.ast_rxorn++;
837 ath_hal_intrset(ah, 0); /* disable intr's until reset */
838 TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
839 } else {
840 if (status & HAL_INT_SWBA) {
841 /*
842 * Software beacon alert--time to send a beacon.
843 * Handle beacon transmission directly; deferring
844 * this is too slow to meet timing constraints
845 * under load.
846 */
847 ath_beacon_proc(sc, 0);
848 }
849 if (status & HAL_INT_RXEOL) {
850 /*
851 * NB: the hardware should re-read the link when
852 * RXE bit is written, but it doesn't work at
853 * least on older hardware revs.
854 */
855 sc->sc_stats.ast_rxeol++;
856 sc->sc_rxlink = NULL;
857 }
858 if (status & HAL_INT_TXURN) {
859 sc->sc_stats.ast_txurn++;
860 /* bump tx trigger level */
861 ath_hal_updatetxtriglevel(ah, AH_TRUE);
862 }
863 if (status & HAL_INT_RX)
864 TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
865 if (status & HAL_INT_TX)
866 TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
867 if (status & HAL_INT_BMISS) {
868 sc->sc_stats.ast_bmiss++;
869 TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
870 }
871 if (status & HAL_INT_MIB) {
872 sc->sc_stats.ast_mib++;
873 /*
874 * Disable interrupts until we service the MIB
875 * interrupt; otherwise it will continue to fire.
876 */
877 ath_hal_intrset(ah, 0);
878 /*
879 * Let the hal handle the event. We assume it will
880 * clear whatever condition caused the interrupt.
881 */
882 ath_hal_mibevent(ah, &sc->sc_halstats);
883 ath_hal_intrset(ah, sc->sc_imask);
884 }
885 }
886 return 1;
887 }
888
889 static void
890 ath_fatal_proc(void *arg, int pending)
891 {
892 struct ath_softc *sc = arg;
893 struct ifnet *ifp = &sc->sc_if;
894
895 if_printf(ifp, "hardware error; resetting\n");
896 ath_reset(ifp);
897 }
898
899 static void
900 ath_rxorn_proc(void *arg, int pending)
901 {
902 struct ath_softc *sc = arg;
903 struct ifnet *ifp = &sc->sc_if;
904
905 if_printf(ifp, "rx FIFO overrun; resetting\n");
906 ath_reset(ifp);
907 }
908
909 static void
910 ath_bmiss_proc(void *arg, int pending)
911 {
912 struct ath_softc *sc = arg;
913 struct ieee80211com *ic = &sc->sc_ic;
914
915 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
916 KASSERT(ic->ic_opmode == IEEE80211_M_STA,
917 ("unexpect operating mode %u", ic->ic_opmode));
918 if (ic->ic_state == IEEE80211_S_RUN) {
919 u_int64_t lastrx = sc->sc_lastrx;
920 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
921
922 DPRINTF(sc, ATH_DEBUG_BEACON,
923 "%s: tsf %" PRIu64 " lastrx %" PRId64
924 " (%" PRIu64 ") bmiss %u\n",
925 __func__, tsf, tsf - lastrx, lastrx,
926 ic->ic_bmisstimeout*1024);
927 /*
928 * Workaround phantom bmiss interrupts by sanity-checking
929 * the time of our last rx'd frame. If it is within the
930 * beacon miss interval then ignore the interrupt. If it's
931 * truly a bmiss we'll get another interrupt soon and that'll
932 * be dispatched up for processing.
933 */
934 if (tsf - lastrx > ic->ic_bmisstimeout*1024) {
935 NET_LOCK_GIANT();
936 ieee80211_beacon_miss(ic);
937 NET_UNLOCK_GIANT();
938 } else
939 sc->sc_stats.ast_bmiss_phantom++;
940 }
941 }
942
943 static void
944 ath_radar_proc(void *arg, int pending)
945 {
946 struct ath_softc *sc = arg;
947 struct ifnet *ifp = &sc->sc_if;
948 struct ath_hal *ah = sc->sc_ah;
949 HAL_CHANNEL hchan;
950
951 if (ath_hal_procdfs(ah, &hchan)) {
952 if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n",
953 hchan.channel, hchan.channelFlags, hchan.privFlags);
954 /*
955 * Initiate channel change.
956 */
957 /* XXX not yet */
958 }
959 }
960
961 static u_int
962 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
963 {
964 #define N(a) (sizeof(a) / sizeof(a[0]))
965 static const u_int modeflags[] = {
966 0, /* IEEE80211_MODE_AUTO */
967 CHANNEL_A, /* IEEE80211_MODE_11A */
968 CHANNEL_B, /* IEEE80211_MODE_11B */
969 CHANNEL_PUREG, /* IEEE80211_MODE_11G */
970 0, /* IEEE80211_MODE_FH */
971 CHANNEL_ST, /* IEEE80211_MODE_TURBO_A */
972 CHANNEL_108G /* IEEE80211_MODE_TURBO_G */
973 };
974 enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
975
976 KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
977 KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
978 return modeflags[mode];
979 #undef N
980 }
981
982 static int
983 ath_ifinit(struct ifnet *ifp)
984 {
985 struct ath_softc *sc = (struct ath_softc *)ifp->if_softc;
986
987 return ath_init(sc);
988 }
989
990 static int
991 ath_init(struct ath_softc *sc)
992 {
993 struct ifnet *ifp = &sc->sc_if;
994 struct ieee80211com *ic = &sc->sc_ic;
995 struct ath_hal *ah = sc->sc_ah;
996 HAL_STATUS status;
997 int error = 0;
998
999 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1000 __func__, ifp->if_flags);
1001
1002 ATH_LOCK(sc);
1003
1004 if ((error = ath_enable(sc)) != 0)
1005 return error;
1006
1007 /*
1008 * Stop anything previously setup. This is safe
1009 * whether this is the first time through or not.
1010 */
1011 ath_stop_locked(ifp, 0);
1012
1013 /*
1014 * The basic interface to setting the hardware in a good
1015 * state is ``reset''. On return the hardware is known to
1016 * be powered up and with interrupts disabled. This must
1017 * be followed by initialization of the appropriate bits
1018 * and then setup of the interrupt mask.
1019 */
1020 sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
1021 sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
1022 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
1023 if_printf(ifp, "unable to reset hardware; hal status %u\n",
1024 status);
1025 error = EIO;
1026 goto done;
1027 }
1028
1029 /*
1030 * This is needed only to setup initial state
1031 * but it's best done after a reset.
1032 */
1033 ath_update_txpow(sc);
1034 /*
1035 * Likewise this is set during reset so update
1036 * state cached in the driver.
1037 */
1038 sc->sc_diversity = ath_hal_getdiversity(ah);
1039 sc->sc_calinterval = 1;
1040 sc->sc_caltries = 0;
1041
1042 /*
1043 * Setup the hardware after reset: the key cache
1044 * is filled as needed and the receive engine is
1045 * set going. Frame transmit is handled entirely
1046 * in the frame output path; there's nothing to do
1047 * here except setup the interrupt mask.
1048 */
1049 if ((error = ath_startrecv(sc)) != 0) {
1050 if_printf(ifp, "unable to start recv logic\n");
1051 goto done;
1052 }
1053
1054 /*
1055 * Enable interrupts.
1056 */
1057 sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1058 | HAL_INT_RXEOL | HAL_INT_RXORN
1059 | HAL_INT_FATAL | HAL_INT_GLOBAL;
1060 /*
1061 * Enable MIB interrupts when there are hardware phy counters.
1062 * Note we only do this (at the moment) for station mode.
1063 */
1064 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1065 sc->sc_imask |= HAL_INT_MIB;
1066 ath_hal_intrset(ah, sc->sc_imask);
1067
1068 ifp->if_flags |= IFF_RUNNING;
1069 ic->ic_state = IEEE80211_S_INIT;
1070
1071 /*
1072 * The hardware should be ready to go now so it's safe
1073 * to kick the 802.11 state machine as it's likely to
1074 * immediately call back to us to send mgmt frames.
1075 */
1076 ath_chan_change(sc, ic->ic_curchan);
1077 #ifdef ATH_TX99_DIAG
1078 if (sc->sc_tx99 != NULL)
1079 sc->sc_tx99->start(sc->sc_tx99);
1080 else
1081 #endif
1082 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1083 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
1084 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1085 } else
1086 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1087 done:
1088 ATH_UNLOCK(sc);
1089 return error;
1090 }
1091
1092 static void
1093 ath_stop_locked(struct ifnet *ifp, int disable)
1094 {
1095 struct ath_softc *sc = ifp->if_softc;
1096 struct ieee80211com *ic = &sc->sc_ic;
1097 struct ath_hal *ah = sc->sc_ah;
1098
1099 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1100 __func__, sc->sc_invalid, ifp->if_flags);
1101
1102 ATH_LOCK_ASSERT(sc);
1103 if (ifp->if_flags & IFF_RUNNING) {
1104 /*
1105 * Shutdown the hardware and driver:
1106 * reset 802.11 state machine
1107 * turn off timers
1108 * disable interrupts
1109 * turn off the radio
1110 * clear transmit machinery
1111 * clear receive machinery
1112 * drain and release tx queues
1113 * reclaim beacon resources
1114 * power down hardware
1115 *
1116 * Note that some of this work is not possible if the
1117 * hardware is gone (invalid).
1118 */
1119 #ifdef ATH_TX99_DIAG
1120 if (sc->sc_tx99 != NULL)
1121 sc->sc_tx99->stop(sc->sc_tx99);
1122 #endif
1123 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1124 ifp->if_flags &= ~IFF_RUNNING;
1125 ifp->if_timer = 0;
1126 if (!sc->sc_invalid) {
1127 if (sc->sc_softled) {
1128 callout_stop(&sc->sc_ledtimer);
1129 ath_hal_gpioset(ah, sc->sc_ledpin,
1130 !sc->sc_ledon);
1131 sc->sc_blinking = 0;
1132 }
1133 ath_hal_intrset(ah, 0);
1134 }
1135 ath_draintxq(sc);
1136 if (!sc->sc_invalid) {
1137 ath_stoprecv(sc);
1138 ath_hal_phydisable(ah);
1139 } else
1140 sc->sc_rxlink = NULL;
1141 IF_PURGE(&ifp->if_snd);
1142 ath_beacon_free(sc);
1143 if (disable)
1144 ath_disable(sc);
1145 }
1146 }
1147
1148 static void
1149 ath_stop(struct ifnet *ifp, int disable)
1150 {
1151 struct ath_softc *sc = ifp->if_softc;
1152
1153 ATH_LOCK(sc);
1154 ath_stop_locked(ifp, disable);
1155 if (!sc->sc_invalid) {
1156 /*
1157 * Set the chip in full sleep mode. Note that we are
1158 * careful to do this only when bringing the interface
1159 * completely to a stop. When the chip is in this state
1160 * it must be carefully woken up or references to
1161 * registers in the PCI clock domain may freeze the bus
1162 * (and system). This varies by chip and is mostly an
1163 * issue with newer parts that go to sleep more quickly.
1164 */
1165 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
1166 }
1167 ATH_UNLOCK(sc);
1168 }
1169
1170 /*
1171 * Reset the hardware w/o losing operational state. This is
1172 * basically a more efficient way of doing ath_stop, ath_init,
1173 * followed by state transitions to the current 802.11
1174 * operational state. Used to recover from various errors and
1175 * to reset or reload hardware state.
1176 */
1177 int
1178 ath_reset(struct ifnet *ifp)
1179 {
1180 struct ath_softc *sc = ifp->if_softc;
1181 struct ieee80211com *ic = &sc->sc_ic;
1182 struct ath_hal *ah = sc->sc_ah;
1183 struct ieee80211_channel *c;
1184 HAL_STATUS status;
1185
1186 /*
1187 * Convert to a HAL channel description with the flags
1188 * constrained to reflect the current operating mode.
1189 */
1190 c = ic->ic_curchan;
1191 sc->sc_curchan.channel = c->ic_freq;
1192 sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
1193
1194 ath_hal_intrset(ah, 0); /* disable interrupts */
1195 ath_draintxq(sc); /* stop xmit side */
1196 ath_stoprecv(sc); /* stop recv side */
1197 /* NB: indicate channel change so we do a full reset */
1198 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
1199 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1200 __func__, status);
1201 ath_update_txpow(sc); /* update tx power state */
1202 sc->sc_diversity = ath_hal_getdiversity(ah);
1203 sc->sc_calinterval = 1;
1204 sc->sc_caltries = 0;
1205 if (ath_startrecv(sc) != 0) /* restart recv */
1206 if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1207 /*
1208 * We may be doing a reset in response to an ioctl
1209 * that changes the channel so update any state that
1210 * might change as a result.
1211 */
1212 ath_chan_change(sc, c);
1213 if (ic->ic_state == IEEE80211_S_RUN)
1214 ath_beacon_config(sc); /* restart beacons */
1215 ath_hal_intrset(ah, sc->sc_imask);
1216
1217 ath_start(ifp); /* restart xmit */
1218 return 0;
1219 }
1220
1221 static void
1222 ath_start(struct ifnet *ifp)
1223 {
1224 struct ath_softc *sc = ifp->if_softc;
1225 struct ath_hal *ah = sc->sc_ah;
1226 struct ieee80211com *ic = &sc->sc_ic;
1227 struct ieee80211_node *ni;
1228 struct ath_buf *bf;
1229 struct mbuf *m;
1230 struct ieee80211_frame *wh;
1231 struct ether_header *eh;
1232
1233 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
1234 return;
1235 for (;;) {
1236 /*
1237 * Grab a TX buffer and associated resources.
1238 */
1239 ATH_TXBUF_LOCK(sc);
1240 bf = STAILQ_FIRST(&sc->sc_txbuf);
1241 if (bf != NULL)
1242 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1243 ATH_TXBUF_UNLOCK(sc);
1244 if (bf == NULL) {
1245 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1246 __func__);
1247 sc->sc_stats.ast_tx_qstop++;
1248 ifp->if_flags |= IFF_OACTIVE;
1249 break;
1250 }
1251 /*
1252 * Poll the management queue for frames; they
1253 * have priority over normal data frames.
1254 */
1255 IF_DEQUEUE(&ic->ic_mgtq, m);
1256 if (m == NULL) {
1257 /*
1258 * No data frames go out unless we're associated.
1259 */
1260 if (ic->ic_state != IEEE80211_S_RUN) {
1261 DPRINTF(sc, ATH_DEBUG_XMIT,
1262 "%s: discard data packet, state %s\n",
1263 __func__,
1264 ieee80211_state_name[ic->ic_state]);
1265 sc->sc_stats.ast_tx_discard++;
1266 ATH_TXBUF_LOCK(sc);
1267 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1268 ATH_TXBUF_UNLOCK(sc);
1269 break;
1270 }
1271 IFQ_DEQUEUE(&ifp->if_snd, m); /* XXX: LOCK */
1272 if (m == NULL) {
1273 ATH_TXBUF_LOCK(sc);
1274 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1275 ATH_TXBUF_UNLOCK(sc);
1276 break;
1277 }
1278 /*
1279 * Find the node for the destination so we can do
1280 * things like power save and fast frames aggregation.
1281 */
1282 if (m->m_len < sizeof(struct ether_header) &&
1283 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
1284 ic->ic_stats.is_tx_nobuf++; /* XXX */
1285 ni = NULL;
1286 goto bad;
1287 }
1288 eh = mtod(m, struct ether_header *);
1289 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1290 if (ni == NULL) {
1291 /* NB: ieee80211_find_txnode does stat+msg */
1292 m_freem(m);
1293 goto bad;
1294 }
1295 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1296 (m->m_flags & M_PWR_SAV) == 0) {
1297 /*
1298 * Station in power save mode; pass the frame
1299 * to the 802.11 layer and continue. We'll get
1300 * the frame back when the time is right.
1301 */
1302 ieee80211_pwrsave(ic, ni, m);
1303 goto reclaim;
1304 }
1305 /* calculate priority so we can find the tx queue */
1306 if (ieee80211_classify(ic, m, ni)) {
1307 DPRINTF(sc, ATH_DEBUG_XMIT,
1308 "%s: discard, classification failure\n",
1309 __func__);
1310 m_freem(m);
1311 goto bad;
1312 }
1313 ifp->if_opackets++;
1314
1315 #if NBPFILTER > 0
1316 if (ifp->if_bpf)
1317 bpf_mtap(ifp->if_bpf, m);
1318 #endif
1319 /*
1320 * Encapsulate the packet in prep for transmission.
1321 */
1322 m = ieee80211_encap(ic, m, ni);
1323 if (m == NULL) {
1324 DPRINTF(sc, ATH_DEBUG_XMIT,
1325 "%s: encapsulation failure\n",
1326 __func__);
1327 sc->sc_stats.ast_tx_encap++;
1328 goto bad;
1329 }
1330 } else {
1331 /*
1332 * Hack! The referenced node pointer is in the
1333 * rcvif field of the packet header. This is
1334 * placed there by ieee80211_mgmt_output because
1335 * we need to hold the reference with the frame
1336 * and there's no other way (other than packet
1337 * tags which we consider too expensive to use)
1338 * to pass it along.
1339 */
1340 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1341 m->m_pkthdr.rcvif = NULL;
1342
1343 wh = mtod(m, struct ieee80211_frame *);
1344 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1345 IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1346 /* fill time stamp */
1347 u_int64_t tsf;
1348 u_int32_t *tstamp;
1349
1350 tsf = ath_hal_gettsf64(ah);
1351 /* XXX: adjust 100us delay to xmit */
1352 tsf += 100;
1353 tstamp = (u_int32_t *)&wh[1];
1354 tstamp[0] = htole32(tsf & 0xffffffff);
1355 tstamp[1] = htole32(tsf >> 32);
1356 }
1357 sc->sc_stats.ast_tx_mgmt++;
1358 }
1359
1360 if (ath_tx_start(sc, ni, bf, m)) {
1361 bad:
1362 ifp->if_oerrors++;
1363 reclaim:
1364 ATH_TXBUF_LOCK(sc);
1365 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1366 ATH_TXBUF_UNLOCK(sc);
1367 if (ni != NULL)
1368 ieee80211_free_node(ni);
1369 continue;
1370 }
1371
1372 sc->sc_tx_timer = 5;
1373 ifp->if_timer = 1;
1374 }
1375 }
1376
1377 static int
1378 ath_media_change(struct ifnet *ifp)
1379 {
1380 #define IS_UP(ifp) \
1381 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
1382 int error;
1383
1384 error = ieee80211_media_change(ifp);
1385 if (error == ENETRESET) {
1386 if (IS_UP(ifp))
1387 ath_init(ifp->if_softc); /* XXX lose error */
1388 error = 0;
1389 }
1390 return error;
1391 #undef IS_UP
1392 }
1393
1394 #ifdef AR_DEBUG
1395 static void
1396 ath_keyprint(const char *tag, u_int ix,
1397 const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1398 {
1399 static const char *ciphers[] = {
1400 "WEP",
1401 "AES-OCB",
1402 "AES-CCM",
1403 "CKIP",
1404 "TKIP",
1405 "CLR",
1406 };
1407 int i, n;
1408
1409 printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1410 for (i = 0, n = hk->kv_len; i < n; i++)
1411 printf("%02x", hk->kv_val[i]);
1412 printf(" mac %s", ether_sprintf(mac));
1413 if (hk->kv_type == HAL_CIPHER_TKIP) {
1414 printf(" mic ");
1415 for (i = 0; i < sizeof(hk->kv_mic); i++)
1416 printf("%02x", hk->kv_mic[i]);
1417 }
1418 printf("\n");
1419 }
1420 #endif
1421
1422 /*
1423 * Set a TKIP key into the hardware. This handles the
1424 * potential distribution of key state to multiple key
1425 * cache slots for TKIP.
1426 */
1427 static int
1428 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1429 HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1430 {
1431 #define IEEE80211_KEY_XR (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1432 static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1433 struct ath_hal *ah = sc->sc_ah;
1434
1435 KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1436 ("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1437 KASSERT(sc->sc_splitmic, ("key cache !split"));
1438 if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1439 /*
1440 * TX key goes at first index, RX key at the rx index.
1441 * The hal handles the MIC keys at index+64.
1442 */
1443 memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1444 KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1445 if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
1446 return 0;
1447
1448 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1449 KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1450 /* XXX delete tx key on failure? */
1451 return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
1452 } else if (k->wk_flags & IEEE80211_KEY_XR) {
1453 /*
1454 * TX/RX key goes at first index.
1455 * The hal handles the MIC keys are index+64.
1456 */
1457 memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
1458 k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
1459 KEYPRINTF(sc, k->wk_keyix, hk, mac);
1460 return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1461 }
1462 return 0;
1463 #undef IEEE80211_KEY_XR
1464 }
1465
1466 /*
1467 * Set a net80211 key into the hardware. This handles the
1468 * potential distribution of key state to multiple key
1469 * cache slots for TKIP with hardware MIC support.
1470 */
1471 static int
1472 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1473 const u_int8_t mac0[IEEE80211_ADDR_LEN],
1474 struct ieee80211_node *bss)
1475 {
1476 #define N(a) (sizeof(a)/sizeof(a[0]))
1477 static const u_int8_t ciphermap[] = {
1478 HAL_CIPHER_WEP, /* IEEE80211_CIPHER_WEP */
1479 HAL_CIPHER_TKIP, /* IEEE80211_CIPHER_TKIP */
1480 HAL_CIPHER_AES_OCB, /* IEEE80211_CIPHER_AES_OCB */
1481 HAL_CIPHER_AES_CCM, /* IEEE80211_CIPHER_AES_CCM */
1482 (u_int8_t) -1, /* 4 is not allocated */
1483 HAL_CIPHER_CKIP, /* IEEE80211_CIPHER_CKIP */
1484 HAL_CIPHER_CLR, /* IEEE80211_CIPHER_NONE */
1485 };
1486 struct ath_hal *ah = sc->sc_ah;
1487 const struct ieee80211_cipher *cip = k->wk_cipher;
1488 u_int8_t gmac[IEEE80211_ADDR_LEN];
1489 const u_int8_t *mac;
1490 HAL_KEYVAL hk;
1491
1492 memset(&hk, 0, sizeof(hk));
1493 /*
1494 * Software crypto uses a "clear key" so non-crypto
1495 * state kept in the key cache are maintained and
1496 * so that rx frames have an entry to match.
1497 */
1498 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1499 KASSERT(cip->ic_cipher < N(ciphermap),
1500 ("invalid cipher type %u", cip->ic_cipher));
1501 hk.kv_type = ciphermap[cip->ic_cipher];
1502 hk.kv_len = k->wk_keylen;
1503 memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1504 } else
1505 hk.kv_type = HAL_CIPHER_CLR;
1506
1507 if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
1508 /*
1509 * Group keys on hardware that supports multicast frame
1510 * key search use a mac that is the sender's address with
1511 * the high bit set instead of the app-specified address.
1512 */
1513 IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
1514 gmac[0] |= 0x80;
1515 mac = gmac;
1516 } else
1517 mac = mac0;
1518
1519 if (hk.kv_type == HAL_CIPHER_TKIP &&
1520 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1521 sc->sc_splitmic) {
1522 return ath_keyset_tkip(sc, k, &hk, mac);
1523 } else {
1524 KEYPRINTF(sc, k->wk_keyix, &hk, mac);
1525 return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
1526 }
1527 #undef N
1528 }
1529
1530 /*
1531 * Allocate tx/rx key slots for TKIP. We allocate two slots for
1532 * each key, one for decrypt/encrypt and the other for the MIC.
1533 */
1534 static u_int16_t
1535 key_alloc_2pair(struct ath_softc *sc,
1536 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1537 {
1538 #define N(a) (sizeof(a)/sizeof(a[0]))
1539 u_int i, keyix;
1540
1541 KASSERT(sc->sc_splitmic, ("key cache !split"));
1542 /* XXX could optimize */
1543 for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1544 u_int8_t b = sc->sc_keymap[i];
1545 if (b != 0xff) {
1546 /*
1547 * One or more slots in this byte are free.
1548 */
1549 keyix = i*NBBY;
1550 while (b & 1) {
1551 again:
1552 keyix++;
1553 b >>= 1;
1554 }
1555 /* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1556 if (isset(sc->sc_keymap, keyix+32) ||
1557 isset(sc->sc_keymap, keyix+64) ||
1558 isset(sc->sc_keymap, keyix+32+64)) {
1559 /* full pair unavailable */
1560 /* XXX statistic */
1561 if (keyix == (i+1)*NBBY) {
1562 /* no slots were appropriate, advance */
1563 continue;
1564 }
1565 goto again;
1566 }
1567 setbit(sc->sc_keymap, keyix);
1568 setbit(sc->sc_keymap, keyix+64);
1569 setbit(sc->sc_keymap, keyix+32);
1570 setbit(sc->sc_keymap, keyix+32+64);
1571 DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1572 "%s: key pair %u,%u %u,%u\n",
1573 __func__, keyix, keyix+64,
1574 keyix+32, keyix+32+64);
1575 *txkeyix = keyix;
1576 *rxkeyix = keyix+32;
1577 return 1;
1578 }
1579 }
1580 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1581 return 0;
1582 #undef N
1583 }
1584
1585 /*
1586 * Allocate a single key cache slot.
1587 */
1588 static int
1589 key_alloc_single(struct ath_softc *sc,
1590 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1591 {
1592 #define N(a) (sizeof(a)/sizeof(a[0]))
1593 u_int i, keyix;
1594
1595 /* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
1596 for (i = 0; i < N(sc->sc_keymap); i++) {
1597 u_int8_t b = sc->sc_keymap[i];
1598 if (b != 0xff) {
1599 /*
1600 * One or more slots are free.
1601 */
1602 keyix = i*NBBY;
1603 while (b & 1)
1604 keyix++, b >>= 1;
1605 setbit(sc->sc_keymap, keyix);
1606 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
1607 __func__, keyix);
1608 *txkeyix = *rxkeyix = keyix;
1609 return 1;
1610 }
1611 }
1612 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
1613 return 0;
1614 #undef N
1615 }
1616
1617 /*
1618 * Allocate one or more key cache slots for a uniacst key. The
1619 * key itself is needed only to identify the cipher. For hardware
1620 * TKIP with split cipher+MIC keys we allocate two key cache slot
1621 * pairs so that we can setup separate TX and RX MIC keys. Note
1622 * that the MIC key for a TKIP key at slot i is assumed by the
1623 * hardware to be at slot i+64. This limits TKIP keys to the first
1624 * 64 entries.
1625 */
1626 static int
1627 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
1628 ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
1629 {
1630 struct ath_softc *sc = ic->ic_ifp->if_softc;
1631
1632 /*
1633 * Group key allocation must be handled specially for
1634 * parts that do not support multicast key cache search
1635 * functionality. For those parts the key id must match
1636 * the h/w key index so lookups find the right key. On
1637 * parts w/ the key search facility we install the sender's
1638 * mac address (with the high bit set) and let the hardware
1639 * find the key w/o using the key id. This is preferred as
1640 * it permits us to support multiple users for adhoc and/or
1641 * multi-station operation.
1642 */
1643 if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
1644 if (!(&ic->ic_nw_keys[0] <= k &&
1645 k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
1646 /* should not happen */
1647 DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1648 "%s: bogus group key\n", __func__);
1649 return 0;
1650 }
1651 /*
1652 * XXX we pre-allocate the global keys so
1653 * have no way to check if they've already been allocated.
1654 */
1655 *keyix = *rxkeyix = k - ic->ic_nw_keys;
1656 return 1;
1657 }
1658
1659 /*
1660 * We allocate two pair for TKIP when using the h/w to do
1661 * the MIC. For everything else, including software crypto,
1662 * we allocate a single entry. Note that s/w crypto requires
1663 * a pass-through slot on the 5211 and 5212. The 5210 does
1664 * not support pass-through cache entries and we map all
1665 * those requests to slot 0.
1666 */
1667 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1668 return key_alloc_single(sc, keyix, rxkeyix);
1669 } else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
1670 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
1671 return key_alloc_2pair(sc, keyix, rxkeyix);
1672 } else {
1673 return key_alloc_single(sc, keyix, rxkeyix);
1674 }
1675 }
1676
1677 /*
1678 * Delete an entry in the key cache allocated by ath_key_alloc.
1679 */
1680 static int
1681 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
1682 {
1683 struct ath_softc *sc = ic->ic_ifp->if_softc;
1684 struct ath_hal *ah = sc->sc_ah;
1685 const struct ieee80211_cipher *cip = k->wk_cipher;
1686 u_int keyix = k->wk_keyix;
1687
1688 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
1689
1690 ath_hal_keyreset(ah, keyix);
1691 /*
1692 * Handle split tx/rx keying required for TKIP with h/w MIC.
1693 */
1694 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1695 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
1696 ath_hal_keyreset(ah, keyix+32); /* RX key */
1697 if (keyix >= IEEE80211_WEP_NKID) {
1698 /*
1699 * Don't touch keymap entries for global keys so
1700 * they are never considered for dynamic allocation.
1701 */
1702 clrbit(sc->sc_keymap, keyix);
1703 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1704 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1705 sc->sc_splitmic) {
1706 clrbit(sc->sc_keymap, keyix+64); /* TX key MIC */
1707 clrbit(sc->sc_keymap, keyix+32); /* RX key */
1708 clrbit(sc->sc_keymap, keyix+32+64); /* RX key MIC */
1709 }
1710 }
1711 return 1;
1712 }
1713
1714 /*
1715 * Set the key cache contents for the specified key. Key cache
1716 * slot(s) must already have been allocated by ath_key_alloc.
1717 */
1718 static int
1719 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
1720 const u_int8_t mac[IEEE80211_ADDR_LEN])
1721 {
1722 struct ath_softc *sc = ic->ic_ifp->if_softc;
1723
1724 return ath_keyset(sc, k, mac, ic->ic_bss);
1725 }
1726
1727 /*
1728 * Block/unblock tx+rx processing while a key change is done.
1729 * We assume the caller serializes key management operations
1730 * so we only need to worry about synchronization with other
1731 * uses that originate in the driver.
1732 */
1733 static void
1734 ath_key_update_begin(struct ieee80211com *ic)
1735 {
1736 struct ifnet *ifp = ic->ic_ifp;
1737 struct ath_softc *sc = ifp->if_softc;
1738
1739 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1740 #if 0
1741 tasklet_disable(&sc->sc_rxtq);
1742 #endif
1743 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */
1744 }
1745
1746 static void
1747 ath_key_update_end(struct ieee80211com *ic)
1748 {
1749 struct ifnet *ifp = ic->ic_ifp;
1750 struct ath_softc *sc = ifp->if_softc;
1751
1752 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1753 IF_UNLOCK(&ifp->if_snd);
1754 #if 0
1755 tasklet_enable(&sc->sc_rxtq);
1756 #endif
1757 }
1758
1759 /*
1760 * Calculate the receive filter according to the
1761 * operating mode and state:
1762 *
1763 * o always accept unicast, broadcast, and multicast traffic
1764 * o maintain current state of phy error reception (the hal
1765 * may enable phy error frames for noise immunity work)
1766 * o probe request frames are accepted only when operating in
1767 * hostap, adhoc, or monitor modes
1768 * o enable promiscuous mode according to the interface state
1769 * o accept beacons:
1770 * - when operating in adhoc mode so the 802.11 layer creates
1771 * node table entries for peers,
1772 * - when operating in station mode for collecting rssi data when
1773 * the station is otherwise quiet, or
1774 * - when scanning
1775 */
1776 static u_int32_t
1777 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
1778 {
1779 struct ieee80211com *ic = &sc->sc_ic;
1780 struct ath_hal *ah = sc->sc_ah;
1781 struct ifnet *ifp = &sc->sc_if;
1782 u_int32_t rfilt;
1783
1784 rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1785 | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1786 if (ic->ic_opmode != IEEE80211_M_STA)
1787 rfilt |= HAL_RX_FILTER_PROBEREQ;
1788 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1789 (ifp->if_flags & IFF_PROMISC))
1790 rfilt |= HAL_RX_FILTER_PROM;
1791 if (ic->ic_opmode == IEEE80211_M_STA ||
1792 ic->ic_opmode == IEEE80211_M_IBSS ||
1793 state == IEEE80211_S_SCAN)
1794 rfilt |= HAL_RX_FILTER_BEACON;
1795 return rfilt;
1796 }
1797
1798 static void
1799 ath_mcastfilter_accum(caddr_t dl, u_int32_t *mfilt)
1800 {
1801 u_int32_t val;
1802 u_int8_t pos;
1803
1804 /* calculate XOR of eight 6bit values */
1805 val = LE_READ_4(dl + 0);
1806 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1807 val = LE_READ_4(dl + 3);
1808 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1809 pos &= 0x3f;
1810 mfilt[pos / 32] |= (1 << (pos % 32));
1811 }
1812
1813 static void
1814 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t *mfilt)
1815 {
1816 struct ifnet *ifp = &sc->sc_if;
1817 struct ether_multi *enm;
1818 struct ether_multistep estep;
1819
1820 mfilt[0] = mfilt[1] = 0;
1821 ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
1822 while (enm != NULL) {
1823 /* XXX Punt on ranges. */
1824 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
1825 mfilt[0] = mfilt[1] = ~((u_int32_t)0);
1826 ifp->if_flags |= IFF_ALLMULTI;
1827 return;
1828 }
1829 ath_mcastfilter_accum(enm->enm_addrlo, mfilt);
1830 ETHER_NEXT_MULTI(estep, enm);
1831 }
1832 ifp->if_flags &= ~IFF_ALLMULTI;
1833 }
1834
1835 static void
1836 ath_mode_init(struct ath_softc *sc)
1837 {
1838 struct ieee80211com *ic = &sc->sc_ic;
1839 struct ath_hal *ah = sc->sc_ah;
1840 u_int32_t rfilt, mfilt[2];
1841 int i;
1842
1843 /* configure rx filter */
1844 rfilt = ath_calcrxfilter(sc, ic->ic_state);
1845 ath_hal_setrxfilter(ah, rfilt);
1846
1847 /* configure operational mode */
1848 ath_hal_setopmode(ah);
1849
1850 /* Write keys to hardware; it may have been powered down. */
1851 ath_key_update_begin(ic);
1852 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1853 ath_key_set(ic,
1854 &ic->ic_crypto.cs_nw_keys[i],
1855 ic->ic_myaddr);
1856 }
1857 ath_key_update_end(ic);
1858
1859 /*
1860 * Handle any link-level address change. Note that we only
1861 * need to force ic_myaddr; any other addresses are handled
1862 * as a byproduct of the ifnet code marking the interface
1863 * down then up.
1864 *
1865 * XXX should get from lladdr instead of arpcom but that's more work
1866 */
1867 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(sc->sc_if.if_sadl));
1868 ath_hal_setmac(ah, ic->ic_myaddr);
1869
1870 /* calculate and install multicast filter */
1871 #ifdef __FreeBSD__
1872 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1873 mfilt[0] = mfilt[1] = 0;
1874 IF_ADDR_LOCK(ifp);
1875 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1876 caddr_t dl;
1877
1878 /* calculate XOR of eight 6bit values */
1879 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
1880 val = LE_READ_4(dl + 0);
1881 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1882 val = LE_READ_4(dl + 3);
1883 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1884 pos &= 0x3f;
1885 mfilt[pos / 32] |= (1 << (pos % 32));
1886 }
1887 IF_ADDR_UNLOCK(ifp);
1888 } else {
1889 mfilt[0] = mfilt[1] = ~0;
1890 }
1891 #endif
1892 #ifdef __NetBSD__
1893 ath_mcastfilter_compute(sc, mfilt);
1894 #endif
1895 ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1896 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
1897 __func__, rfilt, mfilt[0], mfilt[1]);
1898 }
1899
1900 /*
1901 * Set the slot time based on the current setting.
1902 */
1903 static void
1904 ath_setslottime(struct ath_softc *sc)
1905 {
1906 struct ieee80211com *ic = &sc->sc_ic;
1907 struct ath_hal *ah = sc->sc_ah;
1908
1909 if (ic->ic_flags & IEEE80211_F_SHSLOT)
1910 ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
1911 else
1912 ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
1913 sc->sc_updateslot = OK;
1914 }
1915
1916 /*
1917 * Callback from the 802.11 layer to update the
1918 * slot time based on the current setting.
1919 */
1920 static void
1921 ath_updateslot(struct ifnet *ifp)
1922 {
1923 struct ath_softc *sc = ifp->if_softc;
1924 struct ieee80211com *ic = &sc->sc_ic;
1925
1926 /*
1927 * When not coordinating the BSS, change the hardware
1928 * immediately. For other operation we defer the change
1929 * until beacon updates have propagated to the stations.
1930 */
1931 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1932 sc->sc_updateslot = UPDATE;
1933 else
1934 ath_setslottime(sc);
1935 }
1936
1937 /*
1938 * Setup a h/w transmit queue for beacons.
1939 */
1940 static int
1941 ath_beaconq_setup(struct ath_hal *ah)
1942 {
1943 HAL_TXQ_INFO qi;
1944
1945 memset(&qi, 0, sizeof(qi));
1946 qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
1947 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
1948 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
1949 /* NB: for dynamic turbo, don't enable any other interrupts */
1950 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
1951 return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
1952 }
1953
1954 /*
1955 * Setup the transmit queue parameters for the beacon queue.
1956 */
1957 static int
1958 ath_beaconq_config(struct ath_softc *sc)
1959 {
1960 #define ATH_EXPONENT_TO_VALUE(v) ((1<<(v))-1)
1961 struct ieee80211com *ic = &sc->sc_ic;
1962 struct ath_hal *ah = sc->sc_ah;
1963 HAL_TXQ_INFO qi;
1964
1965 ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
1966 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
1967 /*
1968 * Always burst out beacon and CAB traffic.
1969 */
1970 qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
1971 qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
1972 qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
1973 } else {
1974 struct wmeParams *wmep =
1975 &ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
1976 /*
1977 * Adhoc mode; important thing is to use 2x cwmin.
1978 */
1979 qi.tqi_aifs = wmep->wmep_aifsn;
1980 qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
1981 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
1982 }
1983
1984 if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
1985 device_printf(sc->sc_dev, "unable to update parameters for "
1986 "beacon hardware queue!\n");
1987 return 0;
1988 } else {
1989 ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
1990 return 1;
1991 }
1992 #undef ATH_EXPONENT_TO_VALUE
1993 }
1994
1995 /*
1996 * Allocate and setup an initial beacon frame.
1997 */
1998 static int
1999 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
2000 {
2001 struct ieee80211com *ic = ni->ni_ic;
2002 struct ath_buf *bf;
2003 struct mbuf *m;
2004 int error;
2005
2006 bf = STAILQ_FIRST(&sc->sc_bbuf);
2007 if (bf == NULL) {
2008 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
2009 sc->sc_stats.ast_be_nombuf++; /* XXX */
2010 return ENOMEM; /* XXX */
2011 }
2012 /*
2013 * NB: the beacon data buffer must be 32-bit aligned;
2014 * we assume the mbuf routines will return us something
2015 * with this alignment (perhaps should assert).
2016 */
2017 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
2018 if (m == NULL) {
2019 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
2020 __func__);
2021 sc->sc_stats.ast_be_nombuf++;
2022 return ENOMEM;
2023 }
2024 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2025 BUS_DMA_NOWAIT);
2026 if (error == 0) {
2027 bf->bf_m = m;
2028 bf->bf_node = ieee80211_ref_node(ni);
2029 } else {
2030 m_freem(m);
2031 }
2032 return error;
2033 }
2034
2035 /*
2036 * Setup the beacon frame for transmit.
2037 */
2038 static void
2039 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
2040 {
2041 #define USE_SHPREAMBLE(_ic) \
2042 (((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
2043 == IEEE80211_F_SHPREAMBLE)
2044 struct ieee80211_node *ni = bf->bf_node;
2045 struct ieee80211com *ic = ni->ni_ic;
2046 struct mbuf *m = bf->bf_m;
2047 struct ath_hal *ah = sc->sc_ah;
2048 struct ath_desc *ds;
2049 int flags, antenna;
2050 const HAL_RATE_TABLE *rt;
2051 u_int8_t rix, rate;
2052
2053 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
2054 __func__, m, m->m_len);
2055
2056 /* setup descriptors */
2057 ds = bf->bf_desc;
2058
2059 flags = HAL_TXDESC_NOACK;
2060 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
2061 ds->ds_link = bf->bf_daddr; /* self-linked */
2062 flags |= HAL_TXDESC_VEOL;
2063 /*
2064 * Let hardware handle antenna switching unless
2065 * the user has selected a transmit antenna
2066 * (sc_txantenna is not 0).
2067 */
2068 antenna = sc->sc_txantenna;
2069 } else {
2070 ds->ds_link = 0;
2071 /*
2072 * Switch antenna every 4 beacons, unless the user
2073 * has selected a transmit antenna (sc_txantenna
2074 * is not 0).
2075 *
2076 * XXX assumes two antenna
2077 */
2078 if (sc->sc_txantenna == 0)
2079 antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2080 else
2081 antenna = sc->sc_txantenna;
2082 }
2083
2084 KASSERT(bf->bf_nseg == 1,
2085 ("multi-segment beacon frame; nseg %u", bf->bf_nseg));
2086 ds->ds_data = bf->bf_segs[0].ds_addr;
2087 /*
2088 * Calculate rate code.
2089 * XXX everything at min xmit rate
2090 */
2091 rix = sc->sc_minrateix;
2092 rt = sc->sc_currates;
2093 rate = rt->info[rix].rateCode;
2094 if (USE_SHPREAMBLE(ic))
2095 rate |= rt->info[rix].shortPreamble;
2096 ath_hal_setuptxdesc(ah, ds
2097 , m->m_len + IEEE80211_CRC_LEN /* frame length */
2098 , sizeof(struct ieee80211_frame)/* header length */
2099 , HAL_PKT_TYPE_BEACON /* Atheros packet type */
2100 , ni->ni_txpower /* txpower XXX */
2101 , rate, 1 /* series 0 rate/tries */
2102 , HAL_TXKEYIX_INVALID /* no encryption */
2103 , antenna /* antenna mode */
2104 , flags /* no ack, veol for beacons */
2105 , 0 /* rts/cts rate */
2106 , 0 /* rts/cts duration */
2107 );
2108 /* NB: beacon's BufLen must be a multiple of 4 bytes */
2109 ath_hal_filltxdesc(ah, ds
2110 , roundup(m->m_len, 4) /* buffer length */
2111 , AH_TRUE /* first segment */
2112 , AH_TRUE /* last segment */
2113 , ds /* first descriptor */
2114 );
2115 #undef USE_SHPREAMBLE
2116 }
2117
2118 /*
2119 * Transmit a beacon frame at SWBA. Dynamic updates to the
2120 * frame contents are done as needed and the slot time is
2121 * also adjusted based on current state.
2122 */
2123 static void
2124 ath_beacon_proc(void *arg, int pending)
2125 {
2126 struct ath_softc *sc = arg;
2127 struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
2128 struct ieee80211_node *ni = bf->bf_node;
2129 struct ieee80211com *ic = ni->ni_ic;
2130 struct ath_hal *ah = sc->sc_ah;
2131 struct mbuf *m;
2132 int ncabq, error, otherant;
2133
2134 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2135 __func__, pending);
2136
2137 if (ic->ic_opmode == IEEE80211_M_STA ||
2138 ic->ic_opmode == IEEE80211_M_MONITOR ||
2139 bf == NULL || bf->bf_m == NULL) {
2140 DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
2141 __func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
2142 return;
2143 }
2144 /*
2145 * Check if the previous beacon has gone out. If
2146 * not don't try to post another, skip this period
2147 * and wait for the next. Missed beacons indicate
2148 * a problem and should not occur. If we miss too
2149 * many consecutive beacons reset the device.
2150 */
2151 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2152 sc->sc_bmisscount++;
2153 DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2154 "%s: missed %u consecutive beacons\n",
2155 __func__, sc->sc_bmisscount);
2156 if (sc->sc_bmisscount > 3) /* NB: 3 is a guess */
2157 TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask);
2158 return;
2159 }
2160 if (sc->sc_bmisscount != 0) {
2161 DPRINTF(sc, ATH_DEBUG_BEACON,
2162 "%s: resume beacon xmit after %u misses\n",
2163 __func__, sc->sc_bmisscount);
2164 sc->sc_bmisscount = 0;
2165 }
2166
2167 /*
2168 * Update dynamic beacon contents. If this returns
2169 * non-zero then we need to remap the memory because
2170 * the beacon frame changed size (probably because
2171 * of the TIM bitmap).
2172 */
2173 m = bf->bf_m;
2174 ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
2175 if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
2176 /* XXX too conservative? */
2177 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2178 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2179 BUS_DMA_NOWAIT);
2180 if (error != 0) {
2181 if_printf(&sc->sc_if,
2182 "%s: bus_dmamap_load_mbuf failed, error %u\n",
2183 __func__, error);
2184 return;
2185 }
2186 }
2187
2188 /*
2189 * Handle slot time change when a non-ERP station joins/leaves
2190 * an 11g network. The 802.11 layer notifies us via callback,
2191 * we mark updateslot, then wait one beacon before effecting
2192 * the change. This gives associated stations at least one
2193 * beacon interval to note the state change.
2194 */
2195 /* XXX locking */
2196 if (sc->sc_updateslot == UPDATE)
2197 sc->sc_updateslot = COMMIT; /* commit next beacon */
2198 else if (sc->sc_updateslot == COMMIT)
2199 ath_setslottime(sc); /* commit change to h/w */
2200
2201 /*
2202 * Check recent per-antenna transmit statistics and flip
2203 * the default antenna if noticeably more frames went out
2204 * on the non-default antenna.
2205 * XXX assumes 2 anntenae
2206 */
2207 otherant = sc->sc_defant & 1 ? 2 : 1;
2208 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2209 ath_setdefantenna(sc, otherant);
2210 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2211
2212 /*
2213 * Construct tx descriptor.
2214 */
2215 ath_beacon_setup(sc, bf);
2216
2217 /*
2218 * Stop any current dma and put the new frame on the queue.
2219 * This should never fail since we check above that no frames
2220 * are still pending on the queue.
2221 */
2222 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2223 DPRINTF(sc, ATH_DEBUG_ANY,
2224 "%s: beacon queue %u did not stop?\n",
2225 __func__, sc->sc_bhalq);
2226 }
2227 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2228 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2229
2230 /*
2231 * Enable the CAB queue before the beacon queue to
2232 * insure cab frames are triggered by this beacon.
2233 */
2234 if (ncabq != 0 && (sc->sc_boff.bo_tim[4] & 1)) /* NB: only at DTIM */
2235 ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
2236 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
2237 ath_hal_txstart(ah, sc->sc_bhalq);
2238 DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2239 "%s: TXDP[%u] = %p (%p)\n", __func__,
2240 sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc);
2241
2242 sc->sc_stats.ast_be_xmit++;
2243 }
2244
2245 /*
2246 * Reset the hardware after detecting beacons have stopped.
2247 */
2248 static void
2249 ath_bstuck_proc(void *arg, int pending)
2250 {
2251 struct ath_softc *sc = arg;
2252 struct ifnet *ifp = &sc->sc_if;
2253
2254 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2255 sc->sc_bmisscount);
2256 ath_reset(ifp);
2257 }
2258
2259 /*
2260 * Reclaim beacon resources.
2261 */
2262 static void
2263 ath_beacon_free(struct ath_softc *sc)
2264 {
2265 struct ath_buf *bf;
2266
2267 STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
2268 if (bf->bf_m != NULL) {
2269 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2270 m_freem(bf->bf_m);
2271 bf->bf_m = NULL;
2272 }
2273 if (bf->bf_node != NULL) {
2274 ieee80211_free_node(bf->bf_node);
2275 bf->bf_node = NULL;
2276 }
2277 }
2278 }
2279
2280 /*
2281 * Configure the beacon and sleep timers.
2282 *
2283 * When operating as an AP this resets the TSF and sets
2284 * up the hardware to notify us when we need to issue beacons.
2285 *
2286 * When operating in station mode this sets up the beacon
2287 * timers according to the timestamp of the last received
2288 * beacon and the current TSF, configures PCF and DTIM
2289 * handling, programs the sleep registers so the hardware
2290 * will wakeup in time to receive beacons, and configures
2291 * the beacon miss handling so we'll receive a BMISS
2292 * interrupt when we stop seeing beacons from the AP
2293 * we've associated with.
2294 */
2295 static void
2296 ath_beacon_config(struct ath_softc *sc)
2297 {
2298 #define TSF_TO_TU(_h,_l) \
2299 ((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
2300 #define FUDGE 2
2301 struct ath_hal *ah = sc->sc_ah;
2302 struct ieee80211com *ic = &sc->sc_ic;
2303 struct ieee80211_node *ni = ic->ic_bss;
2304 u_int32_t nexttbtt, intval, tsftu;
2305 u_int64_t tsf;
2306
2307 /* extract tstamp from last beacon and convert to TU */
2308 nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
2309 LE_READ_4(ni->ni_tstamp.data));
2310 /* NB: the beacon interval is kept internally in TU's */
2311 intval = ni->ni_intval & HAL_BEACON_PERIOD;
2312 if (nexttbtt == 0) /* e.g. for ap mode */
2313 nexttbtt = intval;
2314 else if (intval) /* NB: can be 0 for monitor mode */
2315 nexttbtt = roundup(nexttbtt, intval);
2316 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2317 __func__, nexttbtt, intval, ni->ni_intval);
2318 if (ic->ic_opmode == IEEE80211_M_STA) {
2319 HAL_BEACON_STATE bs;
2320 int dtimperiod, dtimcount;
2321 int cfpperiod, cfpcount;
2322
2323 /*
2324 * Setup dtim and cfp parameters according to
2325 * last beacon we received (which may be none).
2326 */
2327 dtimperiod = ni->ni_dtim_period;
2328 if (dtimperiod <= 0) /* NB: 0 if not known */
2329 dtimperiod = 1;
2330 dtimcount = ni->ni_dtim_count;
2331 if (dtimcount >= dtimperiod) /* NB: sanity check */
2332 dtimcount = 0; /* XXX? */
2333 cfpperiod = 1; /* NB: no PCF support yet */
2334 cfpcount = 0;
2335 /*
2336 * Pull nexttbtt forward to reflect the current
2337 * TSF and calculate dtim+cfp state for the result.
2338 */
2339 tsf = ath_hal_gettsf64(ah);
2340 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2341 do {
2342 nexttbtt += intval;
2343 if (--dtimcount < 0) {
2344 dtimcount = dtimperiod - 1;
2345 if (--cfpcount < 0)
2346 cfpcount = cfpperiod - 1;
2347 }
2348 } while (nexttbtt < tsftu);
2349 memset(&bs, 0, sizeof(bs));
2350 bs.bs_intval = intval;
2351 bs.bs_nexttbtt = nexttbtt;
2352 bs.bs_dtimperiod = dtimperiod*intval;
2353 bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
2354 bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
2355 bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
2356 bs.bs_cfpmaxduration = 0;
2357 #if 0
2358 /*
2359 * The 802.11 layer records the offset to the DTIM
2360 * bitmap while receiving beacons; use it here to
2361 * enable h/w detection of our AID being marked in
2362 * the bitmap vector (to indicate frames for us are
2363 * pending at the AP).
2364 * XXX do DTIM handling in s/w to WAR old h/w bugs
2365 * XXX enable based on h/w rev for newer chips
2366 */
2367 bs.bs_timoffset = ni->ni_timoff;
2368 #endif
2369 /*
2370 * Calculate the number of consecutive beacons to miss
2371 * before taking a BMISS interrupt. The configuration
2372 * is specified in ms, so we need to convert that to
2373 * TU's and then calculate based on the beacon interval.
2374 * Note that we clamp the result to at most 10 beacons.
2375 */
2376 bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
2377 if (bs.bs_bmissthreshold > 10)
2378 bs.bs_bmissthreshold = 10;
2379 else if (bs.bs_bmissthreshold <= 0)
2380 bs.bs_bmissthreshold = 1;
2381
2382 /*
2383 * Calculate sleep duration. The configuration is
2384 * given in ms. We insure a multiple of the beacon
2385 * period is used. Also, if the sleep duration is
2386 * greater than the DTIM period then it makes senses
2387 * to make it a multiple of that.
2388 *
2389 * XXX fixed at 100ms
2390 */
2391 bs.bs_sleepduration =
2392 roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2393 if (bs.bs_sleepduration > bs.bs_dtimperiod)
2394 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2395
2396 DPRINTF(sc, ATH_DEBUG_BEACON,
2397 "%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2398 , __func__
2399 , tsf, tsftu
2400 , bs.bs_intval
2401 , bs.bs_nexttbtt
2402 , bs.bs_dtimperiod
2403 , bs.bs_nextdtim
2404 , bs.bs_bmissthreshold
2405 , bs.bs_sleepduration
2406 , bs.bs_cfpperiod
2407 , bs.bs_cfpmaxduration
2408 , bs.bs_cfpnext
2409 , bs.bs_timoffset
2410 );
2411 ath_hal_intrset(ah, 0);
2412 ath_hal_beacontimers(ah, &bs);
2413 sc->sc_imask |= HAL_INT_BMISS;
2414 ath_hal_intrset(ah, sc->sc_imask);
2415 } else {
2416 ath_hal_intrset(ah, 0);
2417 if (nexttbtt == intval)
2418 intval |= HAL_BEACON_RESET_TSF;
2419 if (ic->ic_opmode == IEEE80211_M_IBSS) {
2420 /*
2421 * In IBSS mode enable the beacon timers but only
2422 * enable SWBA interrupts if we need to manually
2423 * prepare beacon frames. Otherwise we use a
2424 * self-linked tx descriptor and let the hardware
2425 * deal with things.
2426 */
2427 intval |= HAL_BEACON_ENA;
2428 if (!sc->sc_hasveol)
2429 sc->sc_imask |= HAL_INT_SWBA;
2430 if ((intval & HAL_BEACON_RESET_TSF) == 0) {
2431 /*
2432 * Pull nexttbtt forward to reflect
2433 * the current TSF.
2434 */
2435 tsf = ath_hal_gettsf64(ah);
2436 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2437 do {
2438 nexttbtt += intval;
2439 } while (nexttbtt < tsftu);
2440 }
2441 ath_beaconq_config(sc);
2442 } else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2443 /*
2444 * In AP mode we enable the beacon timers and
2445 * SWBA interrupts to prepare beacon frames.
2446 */
2447 intval |= HAL_BEACON_ENA;
2448 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */
2449 ath_beaconq_config(sc);
2450 }
2451 ath_hal_beaconinit(ah, nexttbtt, intval);
2452 sc->sc_bmisscount = 0;
2453 ath_hal_intrset(ah, sc->sc_imask);
2454 /*
2455 * When using a self-linked beacon descriptor in
2456 * ibss mode load it once here.
2457 */
2458 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2459 ath_beacon_proc(sc, 0);
2460 }
2461 sc->sc_syncbeacon = 0;
2462 #undef UNDEF
2463 #undef TSF_TO_TU
2464 }
2465
2466 static int
2467 ath_descdma_setup(struct ath_softc *sc,
2468 struct ath_descdma *dd, ath_bufhead *head,
2469 const char *name, int nbuf, int ndesc)
2470 {
2471 #define DS2PHYS(_dd, _ds) \
2472 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2473 struct ifnet *ifp = &sc->sc_if;
2474 struct ath_desc *ds;
2475 struct ath_buf *bf;
2476 int i, bsize, error;
2477
2478 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2479 __func__, name, nbuf, ndesc);
2480
2481 dd->dd_name = name;
2482 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2483
2484 /*
2485 * Setup DMA descriptor area.
2486 */
2487 dd->dd_dmat = sc->sc_dmat;
2488
2489 error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE,
2490 0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0);
2491
2492 if (error != 0) {
2493 if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2494 "error %u\n", nbuf * ndesc, dd->dd_name, error);
2495 goto fail0;
2496 }
2497
2498 error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg,
2499 dd->dd_desc_len, (caddr_t *)&dd->dd_desc, BUS_DMA_COHERENT);
2500 if (error != 0) {
2501 if_printf(ifp, "unable to map %u %s descriptors, error = %u\n",
2502 nbuf * ndesc, dd->dd_name, error);
2503 goto fail1;
2504 }
2505
2506 /* allocate descriptors */
2507 error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1,
2508 dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2509 if (error != 0) {
2510 if_printf(ifp, "unable to create dmamap for %s descriptors, "
2511 "error %u\n", dd->dd_name, error);
2512 goto fail2;
2513 }
2514
2515 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc,
2516 dd->dd_desc_len, NULL, BUS_DMA_NOWAIT);
2517 if (error != 0) {
2518 if_printf(ifp, "unable to map %s descriptors, error %u\n",
2519 dd->dd_name, error);
2520 goto fail3;
2521 }
2522
2523 ds = dd->dd_desc;
2524 dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr;
2525 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
2526 __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2527 (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2528
2529 /* allocate rx buffers */
2530 bsize = sizeof(struct ath_buf) * nbuf;
2531 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2532 if (bf == NULL) {
2533 if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2534 dd->dd_name, bsize);
2535 goto fail4;
2536 }
2537 dd->dd_bufptr = bf;
2538
2539 STAILQ_INIT(head);
2540 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2541 bf->bf_desc = ds;
2542 bf->bf_daddr = DS2PHYS(dd, ds);
2543 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc,
2544 MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap);
2545 if (error != 0) {
2546 if_printf(ifp, "unable to create dmamap for %s "
2547 "buffer %u, error %u\n", dd->dd_name, i, error);
2548 ath_descdma_cleanup(sc, dd, head);
2549 return error;
2550 }
2551 STAILQ_INSERT_TAIL(head, bf, bf_list);
2552 }
2553 return 0;
2554 fail4:
2555 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2556 fail3:
2557 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2558 fail2:
2559 bus_dmamem_unmap(dd->dd_dmat, (caddr_t)dd->dd_desc, dd->dd_desc_len);
2560 fail1:
2561 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2562 fail0:
2563 memset(dd, 0, sizeof(*dd));
2564 return error;
2565 #undef DS2PHYS
2566 }
2567
2568 static void
2569 ath_descdma_cleanup(struct ath_softc *sc,
2570 struct ath_descdma *dd, ath_bufhead *head)
2571 {
2572 struct ath_buf *bf;
2573 struct ieee80211_node *ni;
2574
2575 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2576 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2577 bus_dmamem_unmap(dd->dd_dmat, (caddr_t)dd->dd_desc, dd->dd_desc_len);
2578 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2579
2580 STAILQ_FOREACH(bf, head, bf_list) {
2581 if (bf->bf_m) {
2582 m_freem(bf->bf_m);
2583 bf->bf_m = NULL;
2584 }
2585 if (bf->bf_dmamap != NULL) {
2586 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2587 bf->bf_dmamap = NULL;
2588 }
2589 ni = bf->bf_node;
2590 bf->bf_node = NULL;
2591 if (ni != NULL) {
2592 /*
2593 * Reclaim node reference.
2594 */
2595 ieee80211_free_node(ni);
2596 }
2597 }
2598
2599 STAILQ_INIT(head);
2600 free(dd->dd_bufptr, M_ATHDEV);
2601 memset(dd, 0, sizeof(*dd));
2602 }
2603
2604 static int
2605 ath_desc_alloc(struct ath_softc *sc)
2606 {
2607 int error;
2608
2609 error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2610 "rx", ath_rxbuf, 1);
2611 if (error != 0)
2612 return error;
2613
2614 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2615 "tx", ath_txbuf, ATH_TXDESC);
2616 if (error != 0) {
2617 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2618 return error;
2619 }
2620
2621 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2622 "beacon", 1, 1);
2623 if (error != 0) {
2624 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2625 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2626 return error;
2627 }
2628 return 0;
2629 }
2630
2631 static void
2632 ath_desc_free(struct ath_softc *sc)
2633 {
2634
2635 if (sc->sc_bdma.dd_desc_len != 0)
2636 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2637 if (sc->sc_txdma.dd_desc_len != 0)
2638 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2639 if (sc->sc_rxdma.dd_desc_len != 0)
2640 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2641 }
2642
2643 static struct ieee80211_node *
2644 ath_node_alloc(struct ieee80211_node_table *nt)
2645 {
2646 struct ieee80211com *ic = nt->nt_ic;
2647 struct ath_softc *sc = ic->ic_ifp->if_softc;
2648 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2649 struct ath_node *an;
2650
2651 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2652 if (an == NULL) {
2653 /* XXX stat+msg */
2654 return NULL;
2655 }
2656 an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
2657 ath_rate_node_init(sc, an);
2658
2659 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2660 return &an->an_node;
2661 }
2662
2663 static void
2664 ath_node_free(struct ieee80211_node *ni)
2665 {
2666 struct ieee80211com *ic = ni->ni_ic;
2667 struct ath_softc *sc = ic->ic_ifp->if_softc;
2668
2669 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2670
2671 ath_rate_node_cleanup(sc, ATH_NODE(ni));
2672 sc->sc_node_free(ni);
2673 }
2674
2675 static u_int8_t
2676 ath_node_getrssi(const struct ieee80211_node *ni)
2677 {
2678 #define HAL_EP_RND(x, mul) \
2679 ((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
2680 u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
2681 int32_t rssi;
2682
2683 /*
2684 * When only one frame is received there will be no state in
2685 * avgrssi so fallback on the value recorded by the 802.11 layer.
2686 */
2687 if (avgrssi != ATH_RSSI_DUMMY_MARKER)
2688 rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
2689 else
2690 rssi = ni->ni_rssi;
2691 return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
2692 #undef HAL_EP_RND
2693 }
2694
2695 static int
2696 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2697 {
2698 struct ath_hal *ah = sc->sc_ah;
2699 int error;
2700 struct mbuf *m;
2701 struct ath_desc *ds;
2702
2703 m = bf->bf_m;
2704 if (m == NULL) {
2705 /*
2706 * NB: by assigning a page to the rx dma buffer we
2707 * implicitly satisfy the Atheros requirement that
2708 * this buffer be cache-line-aligned and sized to be
2709 * multiple of the cache line size. Not doing this
2710 * causes weird stuff to happen (for the 5210 at least).
2711 */
2712 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2713 if (m == NULL) {
2714 DPRINTF(sc, ATH_DEBUG_ANY,
2715 "%s: no mbuf/cluster\n", __func__);
2716 sc->sc_stats.ast_rx_nombuf++;
2717 return ENOMEM;
2718 }
2719 bf->bf_m = m;
2720 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2721
2722 error = bus_dmamap_load_mbuf(sc->sc_dmat,
2723 bf->bf_dmamap, m,
2724 BUS_DMA_NOWAIT);
2725 if (error != 0) {
2726 DPRINTF(sc, ATH_DEBUG_ANY,
2727 "%s: bus_dmamap_load_mbuf failed; error %d\n",
2728 __func__, error);
2729 sc->sc_stats.ast_rx_busdma++;
2730 return error;
2731 }
2732 KASSERT(bf->bf_nseg == 1,
2733 ("multi-segment packet; nseg %u", bf->bf_nseg));
2734 }
2735 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2736 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2737
2738 /*
2739 * Setup descriptors. For receive we always terminate
2740 * the descriptor list with a self-linked entry so we'll
2741 * not get overrun under high load (as can happen with a
2742 * 5212 when ANI processing enables PHY error frames).
2743 *
2744 * To insure the last descriptor is self-linked we create
2745 * each descriptor as self-linked and add it to the end. As
2746 * each additional descriptor is added the previous self-linked
2747 * entry is ``fixed'' naturally. This should be safe even
2748 * if DMA is happening. When processing RX interrupts we
2749 * never remove/process the last, self-linked, entry on the
2750 * descriptor list. This insures the hardware always has
2751 * someplace to write a new frame.
2752 */
2753 ds = bf->bf_desc;
2754 ds->ds_link = bf->bf_daddr; /* link to self */
2755 ds->ds_data = bf->bf_segs[0].ds_addr;
2756 ds->ds_vdata = mtod(m, void *); /* for radar */
2757 ath_hal_setuprxdesc(ah, ds
2758 , m->m_len /* buffer size */
2759 , 0
2760 );
2761
2762 if (sc->sc_rxlink != NULL)
2763 *sc->sc_rxlink = bf->bf_daddr;
2764 sc->sc_rxlink = &ds->ds_link;
2765 return 0;
2766 }
2767
2768 /*
2769 * Extend 15-bit time stamp from rx descriptor to
2770 * a full 64-bit TSF using the specified TSF.
2771 */
2772 static inline u_int64_t
2773 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
2774 {
2775 if ((tsf & 0x7fff) < rstamp)
2776 tsf -= 0x8000;
2777 return ((tsf &~ 0x7fff) | rstamp);
2778 }
2779
2780 /*
2781 * Intercept management frames to collect beacon rssi data
2782 * and to do ibss merges.
2783 */
2784 static void
2785 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2786 struct ieee80211_node *ni,
2787 int subtype, int rssi, u_int32_t rstamp)
2788 {
2789 struct ath_softc *sc = ic->ic_ifp->if_softc;
2790
2791 /*
2792 * Call up first so subsequent work can use information
2793 * potentially stored in the node (e.g. for ibss merge).
2794 */
2795 sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
2796 switch (subtype) {
2797 case IEEE80211_FC0_SUBTYPE_BEACON:
2798 /* update rssi statistics for use by the hal */
2799 ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
2800 if (sc->sc_syncbeacon &&
2801 ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) {
2802 /*
2803 * Resync beacon timers using the tsf of the beacon
2804 * frame we just received.
2805 */
2806 ath_beacon_config(sc);
2807 }
2808 /* fall thru... */
2809 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2810 if (ic->ic_opmode == IEEE80211_M_IBSS &&
2811 ic->ic_state == IEEE80211_S_RUN) {
2812 u_int64_t tsf = ath_extend_tsf(rstamp,
2813 ath_hal_gettsf64(sc->sc_ah));
2814
2815 /*
2816 * Handle ibss merge as needed; check the tsf on the
2817 * frame before attempting the merge. The 802.11 spec
2818 * says the station should change it's bssid to match
2819 * the oldest station with the same ssid, where oldest
2820 * is determined by the tsf. Note that hardware
2821 * reconfiguration happens through callback to
2822 * ath_newstate as the state machine will go from
2823 * RUN -> RUN when this happens.
2824 */
2825 if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
2826 DPRINTF(sc, ATH_DEBUG_STATE,
2827 "ibss merge, rstamp %u tsf %ju "
2828 "tstamp %ju\n", rstamp, (uintmax_t)tsf,
2829 (uintmax_t)ni->ni_tstamp.tsf);
2830 (void) ieee80211_ibss_merge(ni);
2831 }
2832 }
2833 break;
2834 }
2835 }
2836
2837 /*
2838 * Set the default antenna.
2839 */
2840 static void
2841 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
2842 {
2843 struct ath_hal *ah = sc->sc_ah;
2844
2845 /* XXX block beacon interrupts */
2846 ath_hal_setdefantenna(ah, antenna);
2847 if (sc->sc_defant != antenna)
2848 sc->sc_stats.ast_ant_defswitch++;
2849 sc->sc_defant = antenna;
2850 sc->sc_rxotherant = 0;
2851 }
2852
2853 static void
2854 ath_rx_proc(void *arg, int npending)
2855 {
2856 #define PA2DESC(_sc, _pa) \
2857 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
2858 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
2859 struct ath_softc *sc = arg;
2860 struct ath_buf *bf;
2861 struct ieee80211com *ic = &sc->sc_ic;
2862 struct ifnet *ifp = &sc->sc_if;
2863 struct ath_hal *ah = sc->sc_ah;
2864 struct ath_desc *ds;
2865 struct mbuf *m;
2866 struct ieee80211_node *ni;
2867 struct ath_node *an;
2868 int len, type, ngood;
2869 u_int phyerr;
2870 HAL_STATUS status;
2871 int16_t nf;
2872 u_int64_t tsf;
2873
2874 NET_LOCK_GIANT(); /* XXX */
2875
2876 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
2877 ngood = 0;
2878 nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
2879 tsf = ath_hal_gettsf64(ah);
2880 do {
2881 bf = STAILQ_FIRST(&sc->sc_rxbuf);
2882 if (bf == NULL) { /* NB: shouldn't happen */
2883 if_printf(ifp, "%s: no buffer!\n", __func__);
2884 break;
2885 }
2886 ds = bf->bf_desc;
2887 if (ds->ds_link == bf->bf_daddr) {
2888 /* NB: never process the self-linked entry at the end */
2889 break;
2890 }
2891 m = bf->bf_m;
2892 if (m == NULL) { /* NB: shouldn't happen */
2893 if_printf(ifp, "%s: no mbuf!\n", __func__);
2894 break;
2895 }
2896 /* XXX sync descriptor memory */
2897 /*
2898 * Must provide the virtual address of the current
2899 * descriptor, the physical address, and the virtual
2900 * address of the next descriptor in the h/w chain.
2901 * This allows the HAL to look ahead to see if the
2902 * hardware is done with a descriptor by checking the
2903 * done bit in the following descriptor and the address
2904 * of the current descriptor the DMA engine is working
2905 * on. All this is necessary because of our use of
2906 * a self-linked list to avoid rx overruns.
2907 */
2908 status = ath_hal_rxprocdesc(ah, ds,
2909 bf->bf_daddr, PA2DESC(sc, ds->ds_link));
2910 #ifdef AR_DEBUG
2911 if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
2912 ath_printrxbuf(bf, status == HAL_OK);
2913 #endif
2914 if (status == HAL_EINPROGRESS)
2915 break;
2916 STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
2917 if (ds->ds_rxstat.rs_more) {
2918 /*
2919 * Frame spans multiple descriptors; this
2920 * cannot happen yet as we don't support
2921 * jumbograms. If not in monitor mode,
2922 * discard the frame.
2923 */
2924 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2925 sc->sc_stats.ast_rx_toobig++;
2926 goto rx_next;
2927 }
2928 /* fall thru for monitor mode handling... */
2929 } else if (ds->ds_rxstat.rs_status != 0) {
2930 if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
2931 sc->sc_stats.ast_rx_crcerr++;
2932 if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
2933 sc->sc_stats.ast_rx_fifoerr++;
2934 if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
2935 sc->sc_stats.ast_rx_phyerr++;
2936 phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
2937 sc->sc_stats.ast_rx_phy[phyerr]++;
2938 goto rx_next;
2939 }
2940 if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
2941 /*
2942 * Decrypt error. If the error occurred
2943 * because there was no hardware key, then
2944 * let the frame through so the upper layers
2945 * can process it. This is necessary for 5210
2946 * parts which have no way to setup a ``clear''
2947 * key cache entry.
2948 *
2949 * XXX do key cache faulting
2950 */
2951 if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
2952 goto rx_accept;
2953 sc->sc_stats.ast_rx_badcrypt++;
2954 }
2955 if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
2956 sc->sc_stats.ast_rx_badmic++;
2957 /*
2958 * Do minimal work required to hand off
2959 * the 802.11 header for notifcation.
2960 */
2961 /* XXX frag's and qos frames */
2962 len = ds->ds_rxstat.rs_datalen;
2963 if (len >= sizeof (struct ieee80211_frame)) {
2964 bus_dmamap_sync(sc->sc_dmat,
2965 bf->bf_dmamap,
2966 0, bf->bf_dmamap->dm_mapsize,
2967 BUS_DMASYNC_POSTREAD);
2968 ieee80211_notify_michael_failure(ic,
2969 mtod(m, struct ieee80211_frame *),
2970 sc->sc_splitmic ?
2971 ds->ds_rxstat.rs_keyix-32 :
2972 ds->ds_rxstat.rs_keyix
2973 );
2974 }
2975 }
2976 ifp->if_ierrors++;
2977 /*
2978 * Reject error frames, we normally don't want
2979 * to see them in monitor mode (in monitor mode
2980 * allow through packets that have crypto problems).
2981 */
2982 if ((ds->ds_rxstat.rs_status &~
2983 (HAL_RXERR_DECRYPT|HAL_RXERR_MIC)) ||
2984 sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
2985 goto rx_next;
2986 }
2987 rx_accept:
2988 /*
2989 * Sync and unmap the frame. At this point we're
2990 * committed to passing the mbuf somewhere so clear
2991 * bf_m; this means a new sk_buff must be allocated
2992 * when the rx descriptor is setup again to receive
2993 * another frame.
2994 */
2995 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
2996 0, bf->bf_dmamap->dm_mapsize,
2997 BUS_DMASYNC_POSTREAD);
2998 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2999 bf->bf_m = NULL;
3000
3001 m->m_pkthdr.rcvif = ifp;
3002 len = ds->ds_rxstat.rs_datalen;
3003 m->m_pkthdr.len = m->m_len = len;
3004
3005 sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
3006
3007 #if NBPFILTER > 0
3008 if (sc->sc_drvbpf) {
3009 u_int8_t rix;
3010
3011 /*
3012 * Discard anything shorter than an ack or cts.
3013 */
3014 if (len < IEEE80211_ACK_LEN) {
3015 DPRINTF(sc, ATH_DEBUG_RECV,
3016 "%s: runt packet %d\n",
3017 __func__, len);
3018 sc->sc_stats.ast_rx_tooshort++;
3019 m_freem(m);
3020 goto rx_next;
3021 }
3022 rix = ds->ds_rxstat.rs_rate;
3023 sc->sc_rx_th.wr_tsf = htole64(
3024 ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf));
3025 sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
3026 sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
3027 sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf;
3028 sc->sc_rx_th.wr_antnoise = nf;
3029 sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
3030
3031 bpf_mtap2(sc->sc_drvbpf,
3032 &sc->sc_rx_th, sc->sc_rx_th_len, m);
3033 }
3034 #endif
3035
3036 /*
3037 * From this point on we assume the frame is at least
3038 * as large as ieee80211_frame_min; verify that.
3039 */
3040 if (len < IEEE80211_MIN_LEN) {
3041 DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
3042 __func__, len);
3043 sc->sc_stats.ast_rx_tooshort++;
3044 m_freem(m);
3045 goto rx_next;
3046 }
3047
3048 if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
3049 ieee80211_dump_pkt(mtod(m, caddr_t), len,
3050 sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
3051 ds->ds_rxstat.rs_rssi);
3052 }
3053
3054 m_adj(m, -IEEE80211_CRC_LEN);
3055
3056 /*
3057 * Locate the node for sender, track state, and then
3058 * pass the (referenced) node up to the 802.11 layer
3059 * for its use.
3060 */
3061 ni = ieee80211_find_rxnode_withkey(ic,
3062 mtod(m, const struct ieee80211_frame_min *),
3063 ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
3064 IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
3065 /*
3066 * Track rx rssi and do any rx antenna management.
3067 */
3068 an = ATH_NODE(ni);
3069 ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
3070 ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi);
3071 /*
3072 * Send frame up for processing.
3073 */
3074 type = ieee80211_input(ic, m, ni,
3075 ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
3076 ieee80211_free_node(ni);
3077 if (sc->sc_diversity) {
3078 /*
3079 * When using fast diversity, change the default rx
3080 * antenna if diversity chooses the other antenna 3
3081 * times in a row.
3082 */
3083 if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
3084 if (++sc->sc_rxotherant >= 3)
3085 ath_setdefantenna(sc,
3086 ds->ds_rxstat.rs_antenna);
3087 } else
3088 sc->sc_rxotherant = 0;
3089 }
3090 if (sc->sc_softled) {
3091 /*
3092 * Blink for any data frame. Otherwise do a
3093 * heartbeat-style blink when idle. The latter
3094 * is mainly for station mode where we depend on
3095 * periodic beacon frames to trigger the poll event.
3096 */
3097 if (type == IEEE80211_FC0_TYPE_DATA) {
3098 sc->sc_rxrate = ds->ds_rxstat.rs_rate;
3099 ath_led_event(sc, ATH_LED_RX);
3100 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
3101 ath_led_event(sc, ATH_LED_POLL);
3102 }
3103 /*
3104 * Arrange to update the last rx timestamp only for
3105 * frames from our ap when operating in station mode.
3106 * This assumes the rx key is always setup when associated.
3107 */
3108 if (ic->ic_opmode == IEEE80211_M_STA &&
3109 ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID)
3110 ngood++;
3111 rx_next:
3112 STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
3113 } while (ath_rxbuf_init(sc, bf) == 0);
3114
3115 /* rx signal state monitoring */
3116 ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
3117 if (ath_hal_radar_event(ah))
3118 TASK_RUN_OR_ENQUEUE(&sc->sc_radartask);
3119 if (ngood)
3120 sc->sc_lastrx = tsf;
3121
3122 #ifdef __NetBSD__
3123 /* XXX Why isn't this necessary in FreeBSD? */
3124 if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
3125 ath_start(ifp);
3126 #endif /* __NetBSD__ */
3127
3128 NET_UNLOCK_GIANT(); /* XXX */
3129 #undef PA2DESC
3130 }
3131
3132 /*
3133 * Setup a h/w transmit queue.
3134 */
3135 static struct ath_txq *
3136 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3137 {
3138 #define N(a) (sizeof(a)/sizeof(a[0]))
3139 struct ath_hal *ah = sc->sc_ah;
3140 HAL_TXQ_INFO qi;
3141 int qnum;
3142
3143 memset(&qi, 0, sizeof(qi));
3144 qi.tqi_subtype = subtype;
3145 qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3146 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3147 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3148 /*
3149 * Enable interrupts only for EOL and DESC conditions.
3150 * We mark tx descriptors to receive a DESC interrupt
3151 * when a tx queue gets deep; otherwise waiting for the
3152 * EOL to reap descriptors. Note that this is done to
3153 * reduce interrupt load and this only defers reaping
3154 * descriptors, never transmitting frames. Aside from
3155 * reducing interrupts this also permits more concurrency.
3156 * The only potential downside is if the tx queue backs
3157 * up in which case the top half of the kernel may backup
3158 * due to a lack of tx descriptors.
3159 */
3160 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE | TXQ_FLAG_TXDESCINT_ENABLE;
3161 qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3162 if (qnum == -1) {
3163 /*
3164 * NB: don't print a message, this happens
3165 * normally on parts with too few tx queues
3166 */
3167 return NULL;
3168 }
3169 if (qnum >= N(sc->sc_txq)) {
3170 device_printf(sc->sc_dev,
3171 "hal qnum %u out of range, max %zu!\n",
3172 qnum, N(sc->sc_txq));
3173 ath_hal_releasetxqueue(ah, qnum);
3174 return NULL;
3175 }
3176 if (!ATH_TXQ_SETUP(sc, qnum)) {
3177 struct ath_txq *txq = &sc->sc_txq[qnum];
3178
3179 txq->axq_qnum = qnum;
3180 txq->axq_depth = 0;
3181 txq->axq_intrcnt = 0;
3182 txq->axq_link = NULL;
3183 STAILQ_INIT(&txq->axq_q);
3184 ATH_TXQ_LOCK_INIT(sc, txq);
3185 sc->sc_txqsetup |= 1<<qnum;
3186 }
3187 return &sc->sc_txq[qnum];
3188 #undef N
3189 }
3190
3191 /*
3192 * Setup a hardware data transmit queue for the specified
3193 * access control. The hal may not support all requested
3194 * queues in which case it will return a reference to a
3195 * previously setup queue. We record the mapping from ac's
3196 * to h/w queues for use by ath_tx_start and also track
3197 * the set of h/w queues being used to optimize work in the
3198 * transmit interrupt handler and related routines.
3199 */
3200 static int
3201 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3202 {
3203 #define N(a) (sizeof(a)/sizeof(a[0]))
3204 struct ath_txq *txq;
3205
3206 if (ac >= N(sc->sc_ac2q)) {
3207 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3208 ac, N(sc->sc_ac2q));
3209 return 0;
3210 }
3211 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3212 if (txq != NULL) {
3213 sc->sc_ac2q[ac] = txq;
3214 return 1;
3215 } else
3216 return 0;
3217 #undef N
3218 }
3219
3220 /*
3221 * Update WME parameters for a transmit queue.
3222 */
3223 static int
3224 ath_txq_update(struct ath_softc *sc, int ac)
3225 {
3226 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1)
3227 #define ATH_TXOP_TO_US(v) (v<<5)
3228 struct ieee80211com *ic = &sc->sc_ic;
3229 struct ath_txq *txq = sc->sc_ac2q[ac];
3230 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3231 struct ath_hal *ah = sc->sc_ah;
3232 HAL_TXQ_INFO qi;
3233
3234 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3235 qi.tqi_aifs = wmep->wmep_aifsn;
3236 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3237 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3238 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3239
3240 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3241 device_printf(sc->sc_dev, "unable to update hardware queue "
3242 "parameters for %s traffic!\n",
3243 ieee80211_wme_acnames[ac]);
3244 return 0;
3245 } else {
3246 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3247 return 1;
3248 }
3249 #undef ATH_TXOP_TO_US
3250 #undef ATH_EXPONENT_TO_VALUE
3251 }
3252
3253 /*
3254 * Callback from the 802.11 layer to update WME parameters.
3255 */
3256 static int
3257 ath_wme_update(struct ieee80211com *ic)
3258 {
3259 struct ath_softc *sc = ic->ic_ifp->if_softc;
3260
3261 return !ath_txq_update(sc, WME_AC_BE) ||
3262 !ath_txq_update(sc, WME_AC_BK) ||
3263 !ath_txq_update(sc, WME_AC_VI) ||
3264 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3265 }
3266
3267 /*
3268 * Reclaim resources for a setup queue.
3269 */
3270 static void
3271 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3272 {
3273
3274 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3275 ATH_TXQ_LOCK_DESTROY(txq);
3276 sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3277 }
3278
3279 /*
3280 * Reclaim all tx queue resources.
3281 */
3282 static void
3283 ath_tx_cleanup(struct ath_softc *sc)
3284 {
3285 int i;
3286
3287 ATH_TXBUF_LOCK_DESTROY(sc);
3288 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3289 if (ATH_TXQ_SETUP(sc, i))
3290 ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3291 }
3292
3293 /*
3294 * Defragment an mbuf chain, returning at most maxfrags separate
3295 * mbufs+clusters. If this is not possible NULL is returned and
3296 * the original mbuf chain is left in it's present (potentially
3297 * modified) state. We use two techniques: collapsing consecutive
3298 * mbufs and replacing consecutive mbufs by a cluster.
3299 */
3300 static struct mbuf *
3301 ath_defrag(struct mbuf *m0, int how, int maxfrags)
3302 {
3303 struct mbuf *m, *n, *n2, **prev;
3304 u_int curfrags;
3305
3306 /*
3307 * Calculate the current number of frags.
3308 */
3309 curfrags = 0;
3310 for (m = m0; m != NULL; m = m->m_next)
3311 curfrags++;
3312 /*
3313 * First, try to collapse mbufs. Note that we always collapse
3314 * towards the front so we don't need to deal with moving the
3315 * pkthdr. This may be suboptimal if the first mbuf has much
3316 * less data than the following.
3317 */
3318 m = m0;
3319 again:
3320 for (;;) {
3321 n = m->m_next;
3322 if (n == NULL)
3323 break;
3324 if ((m->m_flags & M_RDONLY) == 0 &&
3325 n->m_len < M_TRAILINGSPACE(m)) {
3326 bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
3327 n->m_len);
3328 m->m_len += n->m_len;
3329 m->m_next = n->m_next;
3330 m_free(n);
3331 if (--curfrags <= maxfrags)
3332 return m0;
3333 } else
3334 m = n;
3335 }
3336 KASSERT(maxfrags > 1,
3337 ("maxfrags %u, but normal collapse failed", maxfrags));
3338 /*
3339 * Collapse consecutive mbufs to a cluster.
3340 */
3341 prev = &m0->m_next; /* NB: not the first mbuf */
3342 while ((n = *prev) != NULL) {
3343 if ((n2 = n->m_next) != NULL &&
3344 n->m_len + n2->m_len < MCLBYTES) {
3345 m = m_getcl(how, MT_DATA, 0);
3346 if (m == NULL)
3347 goto bad;
3348 bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
3349 bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
3350 n2->m_len);
3351 m->m_len = n->m_len + n2->m_len;
3352 m->m_next = n2->m_next;
3353 *prev = m;
3354 m_free(n);
3355 m_free(n2);
3356 if (--curfrags <= maxfrags) /* +1 cl -2 mbufs */
3357 return m0;
3358 /*
3359 * Still not there, try the normal collapse
3360 * again before we allocate another cluster.
3361 */
3362 goto again;
3363 }
3364 prev = &n->m_next;
3365 }
3366 /*
3367 * No place where we can collapse to a cluster; punt.
3368 * This can occur if, for example, you request 2 frags
3369 * but the packet requires that both be clusters (we
3370 * never reallocate the first mbuf to avoid moving the
3371 * packet header).
3372 */
3373 bad:
3374 return NULL;
3375 }
3376
3377 /*
3378 * Return h/w rate index for an IEEE rate (w/o basic rate bit).
3379 */
3380 static int
3381 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
3382 {
3383 int i;
3384
3385 for (i = 0; i < rt->rateCount; i++)
3386 if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
3387 return i;
3388 return 0; /* NB: lowest rate */
3389 }
3390
3391 static int
3392 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
3393 struct mbuf *m0)
3394 {
3395 struct ieee80211com *ic = &sc->sc_ic;
3396 struct ath_hal *ah = sc->sc_ah;
3397 struct ifnet *ifp = &sc->sc_if;
3398 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
3399 int i, error, iswep, ismcast, ismrr;
3400 int keyix, hdrlen, pktlen, try0;
3401 u_int8_t rix, txrate, ctsrate;
3402 u_int8_t cix = 0xff; /* NB: silence compiler */
3403 struct ath_desc *ds, *ds0;
3404 struct ath_txq *txq;
3405 struct ieee80211_frame *wh;
3406 u_int subtype, flags, ctsduration;
3407 HAL_PKT_TYPE atype;
3408 const HAL_RATE_TABLE *rt;
3409 HAL_BOOL shortPreamble;
3410 struct ath_node *an;
3411 struct mbuf *m;
3412 u_int pri;
3413
3414 wh = mtod(m0, struct ieee80211_frame *);
3415 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
3416 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3417 hdrlen = ieee80211_anyhdrsize(wh);
3418 /*
3419 * Packet length must not include any
3420 * pad bytes; deduct them here.
3421 */
3422 pktlen = m0->m_pkthdr.len - (hdrlen & 3);
3423
3424 if (iswep) {
3425 const struct ieee80211_cipher *cip;
3426 struct ieee80211_key *k;
3427
3428 /*
3429 * Construct the 802.11 header+trailer for an encrypted
3430 * frame. The only reason this can fail is because of an
3431 * unknown or unsupported cipher/key type.
3432 */
3433 k = ieee80211_crypto_encap(ic, ni, m0);
3434 if (k == NULL) {
3435 /*
3436 * This can happen when the key is yanked after the
3437 * frame was queued. Just discard the frame; the
3438 * 802.11 layer counts failures and provides
3439 * debugging/diagnostics.
3440 */
3441 m_freem(m0);
3442 return EIO;
3443 }
3444 /*
3445 * Adjust the packet + header lengths for the crypto
3446 * additions and calculate the h/w key index. When
3447 * a s/w mic is done the frame will have had any mic
3448 * added to it prior to entry so skb->len above will
3449 * account for it. Otherwise we need to add it to the
3450 * packet length.
3451 */
3452 cip = k->wk_cipher;
3453 hdrlen += cip->ic_header;
3454 pktlen += cip->ic_header + cip->ic_trailer;
3455 if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0)
3456 pktlen += cip->ic_miclen;
3457 keyix = k->wk_keyix;
3458
3459 /* packet header may have moved, reset our local pointer */
3460 wh = mtod(m0, struct ieee80211_frame *);
3461 } else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
3462 /*
3463 * Use station key cache slot, if assigned.
3464 */
3465 keyix = ni->ni_ucastkey.wk_keyix;
3466 if (keyix == IEEE80211_KEYIX_NONE)
3467 keyix = HAL_TXKEYIX_INVALID;
3468 } else
3469 keyix = HAL_TXKEYIX_INVALID;
3470
3471 pktlen += IEEE80211_CRC_LEN;
3472
3473 /*
3474 * Load the DMA map so any coalescing is done. This
3475 * also calculates the number of descriptors we need.
3476 */
3477 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3478 BUS_DMA_NOWAIT);
3479 if (error == EFBIG) {
3480 /* XXX packet requires too many descriptors */
3481 bf->bf_nseg = ATH_TXDESC+1;
3482 } else if (error != 0) {
3483 sc->sc_stats.ast_tx_busdma++;
3484 m_freem(m0);
3485 return error;
3486 }
3487 /*
3488 * Discard null packets and check for packets that
3489 * require too many TX descriptors. We try to convert
3490 * the latter to a cluster.
3491 */
3492 if (error == EFBIG) { /* too many desc's, linearize */
3493 sc->sc_stats.ast_tx_linear++;
3494 m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
3495 if (m == NULL) {
3496 m_freem(m0);
3497 sc->sc_stats.ast_tx_nombuf++;
3498 return ENOMEM;
3499 }
3500 m0 = m;
3501 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3502 BUS_DMA_NOWAIT);
3503 if (error != 0) {
3504 sc->sc_stats.ast_tx_busdma++;
3505 m_freem(m0);
3506 return error;
3507 }
3508 KASSERT(bf->bf_nseg <= ATH_TXDESC,
3509 ("too many segments after defrag; nseg %u", bf->bf_nseg));
3510 } else if (bf->bf_nseg == 0) { /* null packet, discard */
3511 sc->sc_stats.ast_tx_nodata++;
3512 m_freem(m0);
3513 return EIO;
3514 }
3515 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
3516 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
3517 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
3518 bf->bf_m = m0;
3519 bf->bf_node = ni; /* NB: held reference */
3520
3521 /* setup descriptors */
3522 ds = bf->bf_desc;
3523 rt = sc->sc_currates;
3524 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3525
3526 /*
3527 * NB: the 802.11 layer marks whether or not we should
3528 * use short preamble based on the current mode and
3529 * negotiated parameters.
3530 */
3531 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3532 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) {
3533 shortPreamble = AH_TRUE;
3534 sc->sc_stats.ast_tx_shortpre++;
3535 } else {
3536 shortPreamble = AH_FALSE;
3537 }
3538
3539 an = ATH_NODE(ni);
3540 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */
3541 ismrr = 0; /* default no multi-rate retry*/
3542 /*
3543 * Calculate Atheros packet type from IEEE80211 packet header,
3544 * setup for rate calculations, and select h/w transmit queue.
3545 */
3546 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3547 case IEEE80211_FC0_TYPE_MGT:
3548 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3549 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
3550 atype = HAL_PKT_TYPE_BEACON;
3551 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3552 atype = HAL_PKT_TYPE_PROBE_RESP;
3553 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
3554 atype = HAL_PKT_TYPE_ATIM;
3555 else
3556 atype = HAL_PKT_TYPE_NORMAL; /* XXX */
3557 rix = sc->sc_minrateix;
3558 txrate = rt->info[rix].rateCode;
3559 if (shortPreamble)
3560 txrate |= rt->info[rix].shortPreamble;
3561 try0 = ATH_TXMGTTRY;
3562 /* NB: force all management frames to highest queue */
3563 if (ni->ni_flags & IEEE80211_NODE_QOS) {
3564 /* NB: force all management frames to highest queue */
3565 pri = WME_AC_VO;
3566 } else
3567 pri = WME_AC_BE;
3568 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
3569 break;
3570 case IEEE80211_FC0_TYPE_CTL:
3571 atype = HAL_PKT_TYPE_PSPOLL; /* stop setting of duration */
3572 rix = sc->sc_minrateix;
3573 txrate = rt->info[rix].rateCode;
3574 if (shortPreamble)
3575 txrate |= rt->info[rix].shortPreamble;
3576 try0 = ATH_TXMGTTRY;
3577 /* NB: force all ctl frames to highest queue */
3578 if (ni->ni_flags & IEEE80211_NODE_QOS) {
3579 /* NB: force all ctl frames to highest queue */
3580 pri = WME_AC_VO;
3581 } else
3582 pri = WME_AC_BE;
3583 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
3584 break;
3585 case IEEE80211_FC0_TYPE_DATA:
3586 atype = HAL_PKT_TYPE_NORMAL; /* default */
3587 /*
3588 * Data frames: multicast frames go out at a fixed rate,
3589 * otherwise consult the rate control module for the
3590 * rate to use.
3591 */
3592 if (ismcast) {
3593 /*
3594 * Check mcast rate setting in case it's changed.
3595 * XXX move out of fastpath
3596 */
3597 if (ic->ic_mcast_rate != sc->sc_mcastrate) {
3598 sc->sc_mcastrix =
3599 ath_tx_findrix(rt, ic->ic_mcast_rate);
3600 sc->sc_mcastrate = ic->ic_mcast_rate;
3601 }
3602 rix = sc->sc_mcastrix;
3603 txrate = rt->info[rix].rateCode;
3604 if (shortPreamble)
3605 txrate |= rt->info[rix].shortPreamble;
3606 try0 = 1;
3607 } else {
3608 ath_rate_findrate(sc, an, shortPreamble, pktlen,
3609 &rix, &try0, &txrate);
3610 sc->sc_txrate = txrate; /* for LED blinking */
3611 if (try0 != ATH_TXMAXTRY)
3612 ismrr = 1;
3613 }
3614 pri = M_WME_GETAC(m0);
3615 if (cap->cap_wmeParams[pri].wmep_noackPolicy)
3616 flags |= HAL_TXDESC_NOACK;
3617 break;
3618 default:
3619 if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3620 wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3621 /* XXX statistic */
3622 m_freem(m0);
3623 return EIO;
3624 }
3625 txq = sc->sc_ac2q[pri];
3626
3627 /*
3628 * When servicing one or more stations in power-save mode
3629 * multicast frames must be buffered until after the beacon.
3630 * We use the CAB queue for that.
3631 */
3632 if (ismcast && ic->ic_ps_sta) {
3633 txq = sc->sc_cabq;
3634 /* XXX? more bit in 802.11 frame header */
3635 }
3636
3637 /*
3638 * Calculate miscellaneous flags.
3639 */
3640 if (ismcast) {
3641 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */
3642 } else if (pktlen > ic->ic_rtsthreshold) {
3643 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */
3644 cix = rt->info[rix].controlRate;
3645 sc->sc_stats.ast_tx_rts++;
3646 }
3647 if (flags & HAL_TXDESC_NOACK) /* NB: avoid double counting */
3648 sc->sc_stats.ast_tx_noack++;
3649
3650 /*
3651 * If 802.11g protection is enabled, determine whether
3652 * to use RTS/CTS or just CTS. Note that this is only
3653 * done for OFDM unicast frames.
3654 */
3655 if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3656 rt->info[rix].phy == IEEE80211_T_OFDM &&
3657 (flags & HAL_TXDESC_NOACK) == 0) {
3658 /* XXX fragments must use CCK rates w/ protection */
3659 if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3660 flags |= HAL_TXDESC_RTSENA;
3661 else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3662 flags |= HAL_TXDESC_CTSENA;
3663 cix = rt->info[sc->sc_protrix].controlRate;
3664 sc->sc_stats.ast_tx_protect++;
3665 }
3666
3667 /*
3668 * Calculate duration. This logically belongs in the 802.11
3669 * layer but it lacks sufficient information to calculate it.
3670 */
3671 if ((flags & HAL_TXDESC_NOACK) == 0 &&
3672 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
3673 u_int16_t dur;
3674 /*
3675 * XXX not right with fragmentation.
3676 */
3677 if (shortPreamble)
3678 dur = rt->info[rix].spAckDuration;
3679 else
3680 dur = rt->info[rix].lpAckDuration;
3681 *(u_int16_t *)wh->i_dur = htole16(dur);
3682 }
3683
3684 /*
3685 * Calculate RTS/CTS rate and duration if needed.
3686 */
3687 ctsduration = 0;
3688 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
3689 /*
3690 * CTS transmit rate is derived from the transmit rate
3691 * by looking in the h/w rate table. We must also factor
3692 * in whether or not a short preamble is to be used.
3693 */
3694 /* NB: cix is set above where RTS/CTS is enabled */
3695 KASSERT(cix != 0xff, ("cix not setup"));
3696 ctsrate = rt->info[cix].rateCode;
3697 /*
3698 * Compute the transmit duration based on the frame
3699 * size and the size of an ACK frame. We call into the
3700 * HAL to do the computation since it depends on the
3701 * characteristics of the actual PHY being used.
3702 *
3703 * NB: CTS is assumed the same size as an ACK so we can
3704 * use the precalculated ACK durations.
3705 */
3706 if (shortPreamble) {
3707 ctsrate |= rt->info[cix].shortPreamble;
3708 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
3709 ctsduration += rt->info[cix].spAckDuration;
3710 ctsduration += ath_hal_computetxtime(ah,
3711 rt, pktlen, rix, AH_TRUE);
3712 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
3713 ctsduration += rt->info[rix].spAckDuration;
3714 } else {
3715 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
3716 ctsduration += rt->info[cix].lpAckDuration;
3717 ctsduration += ath_hal_computetxtime(ah,
3718 rt, pktlen, rix, AH_FALSE);
3719 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
3720 ctsduration += rt->info[rix].lpAckDuration;
3721 }
3722 /*
3723 * Must disable multi-rate retry when using RTS/CTS.
3724 */
3725 ismrr = 0;
3726 try0 = ATH_TXMGTTRY; /* XXX */
3727 } else
3728 ctsrate = 0;
3729
3730 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3731 ieee80211_dump_pkt(mtod(m0, caddr_t), m0->m_len,
3732 sc->sc_hwmap[txrate].ieeerate, -1);
3733 #if NBPFILTER > 0
3734 if (ic->ic_rawbpf)
3735 bpf_mtap(ic->ic_rawbpf, m0);
3736 if (sc->sc_drvbpf) {
3737 u_int64_t tsf = ath_hal_gettsf64(ah);
3738
3739 sc->sc_tx_th.wt_tsf = htole64(tsf);
3740 sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
3741 if (iswep)
3742 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3743 sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
3744 sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3745 sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3746
3747 bpf_mtap2(sc->sc_drvbpf,
3748 &sc->sc_tx_th, sc->sc_tx_th_len, m0);
3749 }
3750 #endif
3751
3752 /*
3753 * Determine if a tx interrupt should be generated for
3754 * this descriptor. We take a tx interrupt to reap
3755 * descriptors when the h/w hits an EOL condition or
3756 * when the descriptor is specifically marked to generate
3757 * an interrupt. We periodically mark descriptors in this
3758 * way to insure timely replenishing of the supply needed
3759 * for sending frames. Defering interrupts reduces system
3760 * load and potentially allows more concurrent work to be
3761 * done but if done to aggressively can cause senders to
3762 * backup.
3763 *
3764 * NB: use >= to deal with sc_txintrperiod changing
3765 * dynamically through sysctl.
3766 */
3767 if (flags & HAL_TXDESC_INTREQ) {
3768 txq->axq_intrcnt = 0;
3769 } else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
3770 flags |= HAL_TXDESC_INTREQ;
3771 txq->axq_intrcnt = 0;
3772 }
3773
3774 /*
3775 * Formulate first tx descriptor with tx controls.
3776 */
3777 /* XXX check return value? */
3778 ath_hal_setuptxdesc(ah, ds
3779 , pktlen /* packet length */
3780 , hdrlen /* header length */
3781 , atype /* Atheros packet type */
3782 , ni->ni_txpower /* txpower */
3783 , txrate, try0 /* series 0 rate/tries */
3784 , keyix /* key cache index */
3785 , sc->sc_txantenna /* antenna mode */
3786 , flags /* flags */
3787 , ctsrate /* rts/cts rate */
3788 , ctsduration /* rts/cts duration */
3789 );
3790 bf->bf_flags = flags;
3791 /*
3792 * Setup the multi-rate retry state only when we're
3793 * going to use it. This assumes ath_hal_setuptxdesc
3794 * initializes the descriptors (so we don't have to)
3795 * when the hardware supports multi-rate retry and
3796 * we don't use it.
3797 */
3798 if (ismrr)
3799 ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
3800
3801 /*
3802 * Fillin the remainder of the descriptor info.
3803 */
3804 ds0 = ds;
3805 for (i = 0; i < bf->bf_nseg; i++, ds++) {
3806 ds->ds_data = bf->bf_segs[i].ds_addr;
3807 if (i == bf->bf_nseg - 1)
3808 ds->ds_link = 0;
3809 else
3810 ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
3811 ath_hal_filltxdesc(ah, ds
3812 , bf->bf_segs[i].ds_len /* segment length */
3813 , i == 0 /* first segment */
3814 , i == bf->bf_nseg - 1 /* last segment */
3815 , ds0 /* first descriptor */
3816 );
3817 DPRINTF(sc, ATH_DEBUG_XMIT,
3818 "%s: %d: %08x %08x %08x %08x %08x %08x\n",
3819 __func__, i, ds->ds_link, ds->ds_data,
3820 ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
3821 }
3822 /*
3823 * Insert the frame on the outbound list and
3824 * pass it on to the hardware.
3825 */
3826 ATH_TXQ_LOCK(txq);
3827 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
3828 if (txq->axq_link == NULL) {
3829 ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
3830 DPRINTF(sc, ATH_DEBUG_XMIT,
3831 "%s: TXDP[%u] = %p (%p) depth %d\n", __func__,
3832 txq->axq_qnum, (caddr_t)bf->bf_daddr, bf->bf_desc,
3833 txq->axq_depth);
3834 } else {
3835 *txq->axq_link = bf->bf_daddr;
3836 DPRINTF(sc, ATH_DEBUG_XMIT,
3837 "%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
3838 txq->axq_qnum, txq->axq_link,
3839 (caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
3840 }
3841 txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
3842 /*
3843 * The CAB queue is started from the SWBA handler since
3844 * frames only go out on DTIM and to avoid possible races.
3845 */
3846 if (txq != sc->sc_cabq)
3847 ath_hal_txstart(ah, txq->axq_qnum);
3848 ATH_TXQ_UNLOCK(txq);
3849
3850 return 0;
3851 }
3852
3853 /*
3854 * Process completed xmit descriptors from the specified queue.
3855 */
3856 static int
3857 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
3858 {
3859 struct ath_hal *ah = sc->sc_ah;
3860 struct ieee80211com *ic = &sc->sc_ic;
3861 struct ath_buf *bf;
3862 struct ath_desc *ds, *ds0;
3863 struct ieee80211_node *ni;
3864 struct ath_node *an;
3865 int sr, lr, pri, nacked;
3866 HAL_STATUS status;
3867
3868 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
3869 __func__, txq->axq_qnum,
3870 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3871 txq->axq_link);
3872 nacked = 0;
3873 for (;;) {
3874 ATH_TXQ_LOCK(txq);
3875 txq->axq_intrcnt = 0; /* reset periodic desc intr count */
3876 bf = STAILQ_FIRST(&txq->axq_q);
3877 if (bf == NULL) {
3878 txq->axq_link = NULL;
3879 ATH_TXQ_UNLOCK(txq);
3880 break;
3881 }
3882 ds0 = &bf->bf_desc[0];
3883 ds = &bf->bf_desc[bf->bf_nseg - 1];
3884 status = ath_hal_txprocdesc(ah, ds);
3885 #ifdef AR_DEBUG
3886 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
3887 ath_printtxbuf(bf, status == HAL_OK);
3888 #endif
3889 if (status == HAL_EINPROGRESS) {
3890 ATH_TXQ_UNLOCK(txq);
3891 break;
3892 }
3893 ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3894 ATH_TXQ_UNLOCK(txq);
3895
3896 ni = bf->bf_node;
3897 if (ni != NULL) {
3898 an = ATH_NODE(ni);
3899 if (ds->ds_txstat.ts_status == 0) {
3900 u_int8_t txant = ds->ds_txstat.ts_antenna;
3901 sc->sc_stats.ast_ant_tx[txant]++;
3902 sc->sc_ant_tx[txant]++;
3903 if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
3904 sc->sc_stats.ast_tx_altrate++;
3905 sc->sc_stats.ast_tx_rssi =
3906 ds->ds_txstat.ts_rssi;
3907 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
3908 ds->ds_txstat.ts_rssi);
3909 pri = M_WME_GETAC(bf->bf_m);
3910 if (pri >= WME_AC_VO)
3911 ic->ic_wme.wme_hipri_traffic++;
3912 ni->ni_inact = ni->ni_inact_reload;
3913 } else {
3914 if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
3915 sc->sc_stats.ast_tx_xretries++;
3916 if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
3917 sc->sc_stats.ast_tx_fifoerr++;
3918 if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
3919 sc->sc_stats.ast_tx_filtered++;
3920 }
3921 sr = ds->ds_txstat.ts_shortretry;
3922 lr = ds->ds_txstat.ts_longretry;
3923 sc->sc_stats.ast_tx_shortretry += sr;
3924 sc->sc_stats.ast_tx_longretry += lr;
3925 /*
3926 * Hand the descriptor to the rate control algorithm.
3927 */
3928 if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
3929 (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
3930 /*
3931 * If frame was ack'd update the last rx time
3932 * used to workaround phantom bmiss interrupts.
3933 */
3934 if (ds->ds_txstat.ts_status == 0)
3935 nacked++;
3936 ath_rate_tx_complete(sc, an, ds, ds0);
3937 }
3938 /*
3939 * Reclaim reference to node.
3940 *
3941 * NB: the node may be reclaimed here if, for example
3942 * this is a DEAUTH message that was sent and the
3943 * node was timed out due to inactivity.
3944 */
3945 ieee80211_free_node(ni);
3946 }
3947 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
3948 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3949 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3950 m_freem(bf->bf_m);
3951 bf->bf_m = NULL;
3952 bf->bf_node = NULL;
3953
3954 ATH_TXBUF_LOCK(sc);
3955 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
3956 ATH_TXBUF_UNLOCK(sc);
3957 }
3958 return nacked;
3959 }
3960
3961 static inline int
3962 txqactive(struct ath_hal *ah, int qnum)
3963 {
3964 u_int32_t txqs = 1<<qnum;
3965 ath_hal_gettxintrtxqs(ah, &txqs);
3966 return (txqs & (1<<qnum));
3967 }
3968
3969 /*
3970 * Deferred processing of transmit interrupt; special-cased
3971 * for a single hardware transmit queue (e.g. 5210 and 5211).
3972 */
3973 static void
3974 ath_tx_proc_q0(void *arg, int npending)
3975 {
3976 struct ath_softc *sc = arg;
3977 struct ifnet *ifp = &sc->sc_if;
3978
3979 if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]))
3980 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
3981 if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
3982 ath_tx_processq(sc, sc->sc_cabq);
3983 ifp->if_flags &= ~IFF_OACTIVE;
3984 sc->sc_tx_timer = 0;
3985
3986 if (sc->sc_softled)
3987 ath_led_event(sc, ATH_LED_TX);
3988
3989 ath_start(ifp);
3990 }
3991
3992 /*
3993 * Deferred processing of transmit interrupt; special-cased
3994 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
3995 */
3996 static void
3997 ath_tx_proc_q0123(void *arg, int npending)
3998 {
3999 struct ath_softc *sc = arg;
4000 struct ifnet *ifp = &sc->sc_if;
4001 int nacked;
4002
4003 /*
4004 * Process each active queue.
4005 */
4006 nacked = 0;
4007 if (txqactive(sc->sc_ah, 0))
4008 nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
4009 if (txqactive(sc->sc_ah, 1))
4010 nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
4011 if (txqactive(sc->sc_ah, 2))
4012 nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
4013 if (txqactive(sc->sc_ah, 3))
4014 nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
4015 if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4016 ath_tx_processq(sc, sc->sc_cabq);
4017 if (nacked)
4018 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4019 ath_tx_processq(sc, sc->sc_cabq);
4020
4021 ifp->if_flags &= ~IFF_OACTIVE;
4022 sc->sc_tx_timer = 0;
4023
4024 if (sc->sc_softled)
4025 ath_led_event(sc, ATH_LED_TX);
4026
4027 ath_start(ifp);
4028 }
4029
4030 /*
4031 * Deferred processing of transmit interrupt.
4032 */
4033 static void
4034 ath_tx_proc(void *arg, int npending)
4035 {
4036 struct ath_softc *sc = arg;
4037 struct ifnet *ifp = &sc->sc_if;
4038 int i, nacked;
4039
4040 /*
4041 * Process each active queue.
4042 */
4043 nacked = 0;
4044 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4045 if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
4046 nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
4047 if (nacked)
4048 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4049
4050 ifp->if_flags &= ~IFF_OACTIVE;
4051 sc->sc_tx_timer = 0;
4052
4053 if (sc->sc_softled)
4054 ath_led_event(sc, ATH_LED_TX);
4055
4056 ath_start(ifp);
4057 }
4058
4059 static void
4060 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
4061 {
4062 struct ath_hal *ah = sc->sc_ah;
4063 struct ieee80211_node *ni;
4064 struct ath_buf *bf;
4065
4066 /*
4067 * NB: this assumes output has been stopped and
4068 * we do not need to block ath_tx_tasklet
4069 */
4070 for (;;) {
4071 ATH_TXQ_LOCK(txq);
4072 bf = STAILQ_FIRST(&txq->axq_q);
4073 if (bf == NULL) {
4074 txq->axq_link = NULL;
4075 ATH_TXQ_UNLOCK(txq);
4076 break;
4077 }
4078 ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4079 ATH_TXQ_UNLOCK(txq);
4080 #ifdef AR_DEBUG
4081 if (sc->sc_debug & ATH_DEBUG_RESET)
4082 ath_printtxbuf(bf,
4083 ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
4084 #endif /* AR_DEBUG */
4085 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4086 m_freem(bf->bf_m);
4087 bf->bf_m = NULL;
4088 ni = bf->bf_node;
4089 bf->bf_node = NULL;
4090 if (ni != NULL) {
4091 /*
4092 * Reclaim node reference.
4093 */
4094 ieee80211_free_node(ni);
4095 }
4096 ATH_TXBUF_LOCK(sc);
4097 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4098 ATH_TXBUF_UNLOCK(sc);
4099 }
4100 }
4101
4102 static void
4103 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4104 {
4105 struct ath_hal *ah = sc->sc_ah;
4106
4107 (void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4108 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4109 __func__, txq->axq_qnum,
4110 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4111 txq->axq_link);
4112 }
4113
4114 /*
4115 * Drain the transmit queues and reclaim resources.
4116 */
4117 static void
4118 ath_draintxq(struct ath_softc *sc)
4119 {
4120 struct ath_hal *ah = sc->sc_ah;
4121 struct ifnet *ifp = &sc->sc_if;
4122 int i;
4123
4124 /* XXX return value */
4125 if (!sc->sc_invalid) {
4126 /* don't touch the hardware if marked invalid */
4127 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4128 DPRINTF(sc, ATH_DEBUG_RESET,
4129 "%s: beacon queue %p\n", __func__,
4130 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
4131 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4132 if (ATH_TXQ_SETUP(sc, i))
4133 ath_tx_stopdma(sc, &sc->sc_txq[i]);
4134 }
4135 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4136 if (ATH_TXQ_SETUP(sc, i))
4137 ath_tx_draintxq(sc, &sc->sc_txq[i]);
4138 ifp->if_flags &= ~IFF_OACTIVE;
4139 sc->sc_tx_timer = 0;
4140 }
4141
4142 /*
4143 * Disable the receive h/w in preparation for a reset.
4144 */
4145 static void
4146 ath_stoprecv(struct ath_softc *sc)
4147 {
4148 #define PA2DESC(_sc, _pa) \
4149 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
4150 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
4151 struct ath_hal *ah = sc->sc_ah;
4152
4153 ath_hal_stoppcurecv(ah); /* disable PCU */
4154 ath_hal_setrxfilter(ah, 0); /* clear recv filter */
4155 ath_hal_stopdmarecv(ah); /* disable DMA engine */
4156 DELAY(3000); /* 3ms is long enough for 1 frame */
4157 #ifdef AR_DEBUG
4158 if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
4159 struct ath_buf *bf;
4160
4161 printf("%s: rx queue %p, link %p\n", __func__,
4162 (caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
4163 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4164 struct ath_desc *ds = bf->bf_desc;
4165 HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
4166 bf->bf_daddr, PA2DESC(sc, ds->ds_link));
4167 if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
4168 ath_printrxbuf(bf, status == HAL_OK);
4169 }
4170 }
4171 #endif
4172 sc->sc_rxlink = NULL; /* just in case */
4173 #undef PA2DESC
4174 }
4175
4176 /*
4177 * Enable the receive h/w following a reset.
4178 */
4179 static int
4180 ath_startrecv(struct ath_softc *sc)
4181 {
4182 struct ath_hal *ah = sc->sc_ah;
4183 struct ath_buf *bf;
4184
4185 sc->sc_rxlink = NULL;
4186 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4187 int error = ath_rxbuf_init(sc, bf);
4188 if (error != 0) {
4189 DPRINTF(sc, ATH_DEBUG_RECV,
4190 "%s: ath_rxbuf_init failed %d\n",
4191 __func__, error);
4192 return error;
4193 }
4194 }
4195
4196 bf = STAILQ_FIRST(&sc->sc_rxbuf);
4197 ath_hal_putrxbuf(ah, bf->bf_daddr);
4198 ath_hal_rxena(ah); /* enable recv descriptors */
4199 ath_mode_init(sc); /* set filters, etc. */
4200 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */
4201 return 0;
4202 }
4203
4204 /*
4205 * Update internal state after a channel change.
4206 */
4207 static void
4208 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4209 {
4210 struct ieee80211com *ic = &sc->sc_ic;
4211 enum ieee80211_phymode mode;
4212 u_int16_t flags;
4213
4214 /*
4215 * Change channels and update the h/w rate map
4216 * if we're switching; e.g. 11a to 11b/g.
4217 */
4218 mode = ieee80211_chan2mode(ic, chan);
4219 if (mode != sc->sc_curmode)
4220 ath_setcurmode(sc, mode);
4221 /*
4222 * Update BPF state. NB: ethereal et. al. don't handle
4223 * merged flags well so pick a unique mode for their use.
4224 */
4225 if (IEEE80211_IS_CHAN_A(chan))
4226 flags = IEEE80211_CHAN_A;
4227 /* XXX 11g schizophrenia */
4228 else if (IEEE80211_IS_CHAN_G(chan) ||
4229 IEEE80211_IS_CHAN_PUREG(chan))
4230 flags = IEEE80211_CHAN_G;
4231 else
4232 flags = IEEE80211_CHAN_B;
4233 if (IEEE80211_IS_CHAN_T(chan))
4234 flags |= IEEE80211_CHAN_TURBO;
4235 sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
4236 htole16(chan->ic_freq);
4237 sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
4238 htole16(flags);
4239 }
4240
4241 /*
4242 * Poll for a channel clear indication; this is required
4243 * for channels requiring DFS and not previously visited
4244 * and/or with a recent radar detection.
4245 */
4246 static void
4247 ath_dfswait(void *arg)
4248 {
4249 struct ath_softc *sc = arg;
4250 struct ath_hal *ah = sc->sc_ah;
4251 HAL_CHANNEL hchan;
4252
4253 ath_hal_radar_wait(ah, &hchan);
4254 if (hchan.privFlags & CHANNEL_INTERFERENCE) {
4255 if_printf(&sc->sc_if,
4256 "channel %u/0x%x/0x%x has interference\n",
4257 hchan.channel, hchan.channelFlags, hchan.privFlags);
4258 return;
4259 }
4260 if ((hchan.privFlags & CHANNEL_DFS) == 0) {
4261 /* XXX should not happen */
4262 return;
4263 }
4264 if (hchan.privFlags & CHANNEL_DFS_CLEAR) {
4265 sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR;
4266 sc->sc_if.if_flags &= ~IFF_OACTIVE;
4267 if_printf(&sc->sc_if,
4268 "channel %u/0x%x/0x%x marked clear\n",
4269 hchan.channel, hchan.channelFlags, hchan.privFlags);
4270 } else
4271 callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc);
4272 }
4273
4274 /*
4275 * Set/change channels. If the channel is really being changed,
4276 * it's done by reseting the chip. To accomplish this we must
4277 * first cleanup any pending DMA, then restart stuff after a la
4278 * ath_init.
4279 */
4280 static int
4281 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4282 {
4283 struct ath_hal *ah = sc->sc_ah;
4284 struct ieee80211com *ic = &sc->sc_ic;
4285 HAL_CHANNEL hchan;
4286
4287 /*
4288 * Convert to a HAL channel description with
4289 * the flags constrained to reflect the current
4290 * operating mode.
4291 */
4292 hchan.channel = chan->ic_freq;
4293 hchan.channelFlags = ath_chan2flags(ic, chan);
4294
4295 DPRINTF(sc, ATH_DEBUG_RESET,
4296 "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
4297 __func__,
4298 ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
4299 sc->sc_curchan.channelFlags),
4300 sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
4301 ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
4302 hchan.channel, hchan.channelFlags);
4303 if (hchan.channel != sc->sc_curchan.channel ||
4304 hchan.channelFlags != sc->sc_curchan.channelFlags) {
4305 HAL_STATUS status;
4306
4307 /*
4308 * To switch channels clear any pending DMA operations;
4309 * wait long enough for the RX fifo to drain, reset the
4310 * hardware at the new frequency, and then re-enable
4311 * the relevant bits of the h/w.
4312 */
4313 ath_hal_intrset(ah, 0); /* disable interrupts */
4314 ath_draintxq(sc); /* clear pending tx frames */
4315 ath_stoprecv(sc); /* turn off frame recv */
4316 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
4317 if_printf(ic->ic_ifp, "%s: unable to reset "
4318 "channel %u (%u MHz, flags 0x%x hal flags 0x%x)\n",
4319 __func__, ieee80211_chan2ieee(ic, chan),
4320 chan->ic_freq, chan->ic_flags, hchan.channelFlags);
4321 return EIO;
4322 }
4323 sc->sc_curchan = hchan;
4324 ath_update_txpow(sc); /* update tx power state */
4325 sc->sc_diversity = ath_hal_getdiversity(ah);
4326 sc->sc_calinterval = 1;
4327 sc->sc_caltries = 0;
4328
4329 /*
4330 * Re-enable rx framework.
4331 */
4332 if (ath_startrecv(sc) != 0) {
4333 if_printf(&sc->sc_if,
4334 "%s: unable to restart recv logic\n", __func__);
4335 return EIO;
4336 }
4337
4338 /*
4339 * Change channels and update the h/w rate map
4340 * if we're switching; e.g. 11a to 11b/g.
4341 */
4342 ic->ic_ibss_chan = chan;
4343 ath_chan_change(sc, chan);
4344
4345 /*
4346 * Handle DFS required waiting period to determine
4347 * if channel is clear of radar traffic.
4348 */
4349 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
4350 #define DFS_AND_NOT_CLEAR(_c) \
4351 (((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS)
4352 if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) {
4353 if_printf(&sc->sc_if,
4354 "wait for DFS clear channel signal\n");
4355 /* XXX stop sndq */
4356 sc->sc_if.if_flags |= IFF_OACTIVE;
4357 callout_reset(&sc->sc_dfs_ch,
4358 2 * hz, ath_dfswait, sc);
4359 } else
4360 callout_stop(&sc->sc_dfs_ch);
4361 #undef DFS_NOT_CLEAR
4362 }
4363
4364 /*
4365 * Re-enable interrupts.
4366 */
4367 ath_hal_intrset(ah, sc->sc_imask);
4368 }
4369 return 0;
4370 }
4371
4372 static void
4373 ath_next_scan(void *arg)
4374 {
4375 struct ath_softc *sc = arg;
4376 struct ieee80211com *ic = &sc->sc_ic;
4377 int s;
4378
4379 /* don't call ath_start w/o network interrupts blocked */
4380 s = splnet();
4381
4382 if (ic->ic_state == IEEE80211_S_SCAN)
4383 ieee80211_next_scan(ic);
4384 splx(s);
4385 }
4386
4387 /*
4388 * Periodically recalibrate the PHY to account
4389 * for temperature/environment changes.
4390 */
4391 static void
4392 ath_calibrate(void *arg)
4393 {
4394 struct ath_softc *sc = arg;
4395 struct ath_hal *ah = sc->sc_ah;
4396 HAL_BOOL iqCalDone;
4397
4398 sc->sc_stats.ast_per_cal++;
4399
4400 ATH_LOCK(sc);
4401
4402 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4403 /*
4404 * Rfgain is out of bounds, reset the chip
4405 * to load new gain values.
4406 */
4407 DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4408 "%s: rfgain change\n", __func__);
4409 sc->sc_stats.ast_per_rfgain++;
4410 ath_reset(&sc->sc_if);
4411 }
4412 if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
4413 DPRINTF(sc, ATH_DEBUG_ANY,
4414 "%s: calibration of channel %u failed\n",
4415 __func__, sc->sc_curchan.channel);
4416 sc->sc_stats.ast_per_calfail++;
4417 }
4418 /*
4419 * Calibrate noise floor data again in case of change.
4420 */
4421 ath_hal_process_noisefloor(ah);
4422 /*
4423 * Poll more frequently when the IQ calibration is in
4424 * progress to speedup loading the final settings.
4425 * We temper this aggressive polling with an exponential
4426 * back off after 4 tries up to ath_calinterval.
4427 */
4428 if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
4429 sc->sc_caltries = 0;
4430 sc->sc_calinterval = ath_calinterval;
4431 } else if (sc->sc_caltries > 4) {
4432 sc->sc_caltries = 0;
4433 sc->sc_calinterval <<= 1;
4434 if (sc->sc_calinterval > ath_calinterval)
4435 sc->sc_calinterval = ath_calinterval;
4436 }
4437 KASSERT(0 < sc->sc_calinterval && sc->sc_calinterval <= ath_calinterval,
4438 ("bad calibration interval %u", sc->sc_calinterval));
4439
4440 DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4441 "%s: next +%u (%siqCalDone tries %u)\n", __func__,
4442 sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
4443 sc->sc_caltries++;
4444 callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4445 ath_calibrate, sc);
4446 ATH_UNLOCK(sc);
4447 }
4448
4449 static int
4450 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
4451 {
4452 struct ifnet *ifp = ic->ic_ifp;
4453 struct ath_softc *sc = ifp->if_softc;
4454 struct ath_hal *ah = sc->sc_ah;
4455 struct ieee80211_node *ni;
4456 int i, error;
4457 const u_int8_t *bssid;
4458 u_int32_t rfilt;
4459 static const HAL_LED_STATE leds[] = {
4460 HAL_LED_INIT, /* IEEE80211_S_INIT */
4461 HAL_LED_SCAN, /* IEEE80211_S_SCAN */
4462 HAL_LED_AUTH, /* IEEE80211_S_AUTH */
4463 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */
4464 HAL_LED_RUN, /* IEEE80211_S_RUN */
4465 };
4466
4467 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4468 ieee80211_state_name[ic->ic_state],
4469 ieee80211_state_name[nstate]);
4470
4471 callout_stop(&sc->sc_scan_ch);
4472 callout_stop(&sc->sc_cal_ch);
4473 callout_stop(&sc->sc_dfs_ch);
4474 ath_hal_setledstate(ah, leds[nstate]); /* set LED */
4475
4476 if (nstate == IEEE80211_S_INIT) {
4477 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4478 /*
4479 * NB: disable interrupts so we don't rx frames.
4480 */
4481 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4482 /*
4483 * Notify the rate control algorithm.
4484 */
4485 ath_rate_newstate(sc, nstate);
4486 goto done;
4487 }
4488 ni = ic->ic_bss;
4489 error = ath_chan_set(sc, ic->ic_curchan);
4490 if (error != 0)
4491 goto bad;
4492 rfilt = ath_calcrxfilter(sc, nstate);
4493 if (nstate == IEEE80211_S_SCAN)
4494 bssid = ifp->if_broadcastaddr;
4495 else
4496 bssid = ni->ni_bssid;
4497 ath_hal_setrxfilter(ah, rfilt);
4498 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
4499 __func__, rfilt, ether_sprintf(bssid));
4500
4501 if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
4502 ath_hal_setassocid(ah, bssid, ni->ni_associd);
4503 else
4504 ath_hal_setassocid(ah, bssid, 0);
4505 if (ic->ic_flags & IEEE80211_F_PRIVACY) {
4506 for (i = 0; i < IEEE80211_WEP_NKID; i++)
4507 if (ath_hal_keyisvalid(ah, i))
4508 ath_hal_keysetmac(ah, i, bssid);
4509 }
4510
4511 /*
4512 * Notify the rate control algorithm so rates
4513 * are setup should ath_beacon_alloc be called.
4514 */
4515 ath_rate_newstate(sc, nstate);
4516
4517 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4518 /* nothing to do */;
4519 } else if (nstate == IEEE80211_S_RUN) {
4520 DPRINTF(sc, ATH_DEBUG_STATE,
4521 "%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
4522 "capinfo=0x%04x chan=%d\n"
4523 , __func__
4524 , ic->ic_flags
4525 , ni->ni_intval
4526 , ether_sprintf(ni->ni_bssid)
4527 , ni->ni_capinfo
4528 , ieee80211_chan2ieee(ic, ic->ic_curchan));
4529
4530 switch (ic->ic_opmode) {
4531 case IEEE80211_M_HOSTAP:
4532 case IEEE80211_M_IBSS:
4533 /*
4534 * Allocate and setup the beacon frame.
4535 *
4536 * Stop any previous beacon DMA. This may be
4537 * necessary, for example, when an ibss merge
4538 * causes reconfiguration; there will be a state
4539 * transition from RUN->RUN that means we may
4540 * be called with beacon transmission active.
4541 */
4542 ath_hal_stoptxdma(ah, sc->sc_bhalq);
4543 ath_beacon_free(sc);
4544 error = ath_beacon_alloc(sc, ni);
4545 if (error != 0)
4546 goto bad;
4547 /*
4548 * If joining an adhoc network defer beacon timer
4549 * configuration to the next beacon frame so we
4550 * have a current TSF to use. Otherwise we're
4551 * starting an ibss/bss so there's no need to delay.
4552 */
4553 if (ic->ic_opmode == IEEE80211_M_IBSS &&
4554 ic->ic_bss->ni_tstamp.tsf != 0)
4555 sc->sc_syncbeacon = 1;
4556 else
4557 ath_beacon_config(sc);
4558 break;
4559 case IEEE80211_M_STA:
4560 /*
4561 * Allocate a key cache slot to the station.
4562 */
4563 if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
4564 sc->sc_hasclrkey &&
4565 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4566 ath_setup_stationkey(ni);
4567 /*
4568 * Defer beacon timer configuration to the next
4569 * beacon frame so we have a current TSF to use
4570 * (any TSF collected when scanning is likely old).
4571 */
4572 sc->sc_syncbeacon = 1;
4573 break;
4574 default:
4575 break;
4576 }
4577 /*
4578 * Let the hal process statistics collected during a
4579 * scan so it can provide calibrated noise floor data.
4580 */
4581 ath_hal_process_noisefloor(ah);
4582 /*
4583 * Reset rssi stats; maybe not the best place...
4584 */
4585 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
4586 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
4587 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
4588 } else {
4589 ath_hal_intrset(ah,
4590 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4591 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4592 }
4593 done:
4594 /*
4595 * Invoke the parent method to complete the work.
4596 */
4597 error = sc->sc_newstate(ic, nstate, arg);
4598 /*
4599 * Finally, start any timers.
4600 */
4601 if (nstate == IEEE80211_S_RUN) {
4602 /* start periodic recalibration timer */
4603 callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4604 ath_calibrate, sc);
4605 } else if (nstate == IEEE80211_S_SCAN) {
4606 /* start ap/neighbor scan timer */
4607 callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
4608 ath_next_scan, sc);
4609 }
4610 bad:
4611 return error;
4612 }
4613
4614 /*
4615 * Allocate a key cache slot to the station so we can
4616 * setup a mapping from key index to node. The key cache
4617 * slot is needed for managing antenna state and for
4618 * compression when stations do not use crypto. We do
4619 * it uniliaterally here; if crypto is employed this slot
4620 * will be reassigned.
4621 */
4622 static void
4623 ath_setup_stationkey(struct ieee80211_node *ni)
4624 {
4625 struct ieee80211com *ic = ni->ni_ic;
4626 struct ath_softc *sc = ic->ic_ifp->if_softc;
4627 ieee80211_keyix keyix, rxkeyix;
4628
4629 if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
4630 /*
4631 * Key cache is full; we'll fall back to doing
4632 * the more expensive lookup in software. Note
4633 * this also means no h/w compression.
4634 */
4635 /* XXX msg+statistic */
4636 } else {
4637 /* XXX locking? */
4638 ni->ni_ucastkey.wk_keyix = keyix;
4639 ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
4640 /* NB: this will create a pass-thru key entry */
4641 ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
4642 }
4643 }
4644
4645 /*
4646 * Setup driver-specific state for a newly associated node.
4647 * Note that we're called also on a re-associate, the isnew
4648 * param tells us if this is the first time or not.
4649 */
4650 static void
4651 ath_newassoc(struct ieee80211_node *ni, int isnew)
4652 {
4653 struct ieee80211com *ic = ni->ni_ic;
4654 struct ath_softc *sc = ic->ic_ifp->if_softc;
4655
4656 ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
4657 if (isnew &&
4658 (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
4659 KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
4660 ("new assoc with a unicast key already setup (keyix %u)",
4661 ni->ni_ucastkey.wk_keyix));
4662 ath_setup_stationkey(ni);
4663 }
4664 }
4665
4666 static int
4667 ath_getchannels(struct ath_softc *sc, u_int cc,
4668 HAL_BOOL outdoor, HAL_BOOL xchanmode)
4669 {
4670 #define COMPAT (CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
4671 struct ieee80211com *ic = &sc->sc_ic;
4672 struct ifnet *ifp = &sc->sc_if;
4673 struct ath_hal *ah = sc->sc_ah;
4674 HAL_CHANNEL *chans;
4675 int i, ix, nchan;
4676
4677 chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
4678 M_TEMP, M_NOWAIT);
4679 if (chans == NULL) {
4680 if_printf(ifp, "unable to allocate channel table\n");
4681 return ENOMEM;
4682 }
4683 if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
4684 NULL, 0, NULL,
4685 cc, HAL_MODE_ALL, outdoor, xchanmode)) {
4686 u_int32_t rd;
4687
4688 ath_hal_getregdomain(ah, &rd);
4689 if_printf(ifp, "unable to collect channel list from hal; "
4690 "regdomain likely %u country code %u\n", rd, cc);
4691 free(chans, M_TEMP);
4692 return EINVAL;
4693 }
4694
4695 /*
4696 * Convert HAL channels to ieee80211 ones and insert
4697 * them in the table according to their channel number.
4698 */
4699 for (i = 0; i < nchan; i++) {
4700 HAL_CHANNEL *c = &chans[i];
4701 u_int16_t flags;
4702
4703 ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags);
4704 if (ix > IEEE80211_CHAN_MAX) {
4705 if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n",
4706 ix, c->channel, c->channelFlags);
4707 continue;
4708 }
4709 if (ix < 0) {
4710 /* XXX can't handle stuff <2400 right now */
4711 if (bootverbose)
4712 if_printf(ifp, "hal channel %d (%u/%x) "
4713 "cannot be handled; ignored\n",
4714 ix, c->channel, c->channelFlags);
4715 continue;
4716 }
4717 /*
4718 * Calculate net80211 flags; most are compatible
4719 * but some need massaging. Note the static turbo
4720 * conversion can be removed once net80211 is updated
4721 * to understand static vs. dynamic turbo.
4722 */
4723 flags = c->channelFlags & COMPAT;
4724 if (c->channelFlags & CHANNEL_STURBO)
4725 flags |= IEEE80211_CHAN_TURBO;
4726 if (ic->ic_channels[ix].ic_freq == 0) {
4727 ic->ic_channels[ix].ic_freq = c->channel;
4728 ic->ic_channels[ix].ic_flags = flags;
4729 } else {
4730 /* channels overlap; e.g. 11g and 11b */
4731 ic->ic_channels[ix].ic_flags |= flags;
4732 }
4733 }
4734 free(chans, M_TEMP);
4735 return 0;
4736 #undef COMPAT
4737 }
4738
4739 static void
4740 ath_led_done(void *arg)
4741 {
4742 struct ath_softc *sc = arg;
4743
4744 sc->sc_blinking = 0;
4745 }
4746
4747 /*
4748 * Turn the LED off: flip the pin and then set a timer so no
4749 * update will happen for the specified duration.
4750 */
4751 static void
4752 ath_led_off(void *arg)
4753 {
4754 struct ath_softc *sc = arg;
4755
4756 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
4757 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
4758 }
4759
4760 /*
4761 * Blink the LED according to the specified on/off times.
4762 */
4763 static void
4764 ath_led_blink(struct ath_softc *sc, int on, int off)
4765 {
4766 DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
4767 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
4768 sc->sc_blinking = 1;
4769 sc->sc_ledoff = off;
4770 callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
4771 }
4772
4773 static void
4774 ath_led_event(struct ath_softc *sc, int event)
4775 {
4776
4777 sc->sc_ledevent = ticks; /* time of last event */
4778 if (sc->sc_blinking) /* don't interrupt active blink */
4779 return;
4780 switch (event) {
4781 case ATH_LED_POLL:
4782 ath_led_blink(sc, sc->sc_hwmap[0].ledon,
4783 sc->sc_hwmap[0].ledoff);
4784 break;
4785 case ATH_LED_TX:
4786 ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
4787 sc->sc_hwmap[sc->sc_txrate].ledoff);
4788 break;
4789 case ATH_LED_RX:
4790 ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
4791 sc->sc_hwmap[sc->sc_rxrate].ledoff);
4792 break;
4793 }
4794 }
4795
4796 static void
4797 ath_update_txpow(struct ath_softc *sc)
4798 {
4799 #define COMPAT (CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
4800 struct ieee80211com *ic = &sc->sc_ic;
4801 struct ath_hal *ah = sc->sc_ah;
4802 u_int32_t txpow;
4803
4804 if (sc->sc_curtxpow != ic->ic_txpowlimit) {
4805 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
4806 /* read back in case value is clamped */
4807 ath_hal_gettxpowlimit(ah, &txpow);
4808 ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
4809 }
4810 /*
4811 * Fetch max tx power level for status requests.
4812 */
4813 ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
4814 ic->ic_bss->ni_txpower = txpow;
4815 }
4816
4817 static void
4818 rate_setup(struct ath_softc *sc,
4819 const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs)
4820 {
4821 int i, maxrates;
4822
4823 if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
4824 DPRINTF(sc, ATH_DEBUG_ANY,
4825 "%s: rate table too small (%u > %u)\n",
4826 __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
4827 maxrates = IEEE80211_RATE_MAXSIZE;
4828 } else
4829 maxrates = rt->rateCount;
4830 for (i = 0; i < maxrates; i++)
4831 rs->rs_rates[i] = rt->info[i].dot11Rate;
4832 rs->rs_nrates = maxrates;
4833 }
4834
4835 static int
4836 ath_rate_setup(struct ath_softc *sc, u_int mode)
4837 {
4838 struct ath_hal *ah = sc->sc_ah;
4839 struct ieee80211com *ic = &sc->sc_ic;
4840 const HAL_RATE_TABLE *rt;
4841
4842 switch (mode) {
4843 case IEEE80211_MODE_11A:
4844 rt = ath_hal_getratetable(ah, HAL_MODE_11A);
4845 break;
4846 case IEEE80211_MODE_11B:
4847 rt = ath_hal_getratetable(ah, HAL_MODE_11B);
4848 break;
4849 case IEEE80211_MODE_11G:
4850 rt = ath_hal_getratetable(ah, HAL_MODE_11G);
4851 break;
4852 case IEEE80211_MODE_TURBO_A:
4853 /* XXX until static/dynamic turbo is fixed */
4854 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
4855 break;
4856 case IEEE80211_MODE_TURBO_G:
4857 rt = ath_hal_getratetable(ah, HAL_MODE_108G);
4858 break;
4859 default:
4860 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
4861 __func__, mode);
4862 return 0;
4863 }
4864 sc->sc_rates[mode] = rt;
4865 if (rt != NULL) {
4866 rate_setup(sc, rt, &ic->ic_sup_rates[mode]);
4867 return 1;
4868 } else
4869 return 0;
4870 }
4871
4872 static void
4873 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
4874 {
4875 #define N(a) (sizeof(a)/sizeof(a[0]))
4876 /* NB: on/off times from the Atheros NDIS driver, w/ permission */
4877 static const struct {
4878 u_int rate; /* tx/rx 802.11 rate */
4879 u_int16_t timeOn; /* LED on time (ms) */
4880 u_int16_t timeOff; /* LED off time (ms) */
4881 } blinkrates[] = {
4882 { 108, 40, 10 },
4883 { 96, 44, 11 },
4884 { 72, 50, 13 },
4885 { 48, 57, 14 },
4886 { 36, 67, 16 },
4887 { 24, 80, 20 },
4888 { 22, 100, 25 },
4889 { 18, 133, 34 },
4890 { 12, 160, 40 },
4891 { 10, 200, 50 },
4892 { 6, 240, 58 },
4893 { 4, 267, 66 },
4894 { 2, 400, 100 },
4895 { 0, 500, 130 },
4896 };
4897 const HAL_RATE_TABLE *rt;
4898 int i, j;
4899
4900 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
4901 rt = sc->sc_rates[mode];
4902 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
4903 for (i = 0; i < rt->rateCount; i++)
4904 sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
4905 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
4906 for (i = 0; i < 32; i++) {
4907 u_int8_t ix = rt->rateCodeToIndex[i];
4908 if (ix == 0xff) {
4909 sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
4910 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
4911 continue;
4912 }
4913 sc->sc_hwmap[i].ieeerate =
4914 rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
4915 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
4916 if (rt->info[ix].shortPreamble ||
4917 rt->info[ix].phy == IEEE80211_T_OFDM)
4918 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
4919 /* NB: receive frames include FCS */
4920 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
4921 IEEE80211_RADIOTAP_F_FCS;
4922 /* setup blink rate table to avoid per-packet lookup */
4923 for (j = 0; j < N(blinkrates)-1; j++)
4924 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
4925 break;
4926 /* NB: this uses the last entry if the rate isn't found */
4927 /* XXX beware of overlow */
4928 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
4929 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
4930 }
4931 sc->sc_currates = rt;
4932 sc->sc_curmode = mode;
4933 /*
4934 * All protection frames are transmited at 2Mb/s for
4935 * 11g, otherwise at 1Mb/s.
4936 */
4937 if (mode == IEEE80211_MODE_11G)
4938 sc->sc_protrix = ath_tx_findrix(rt, 2*2);
4939 else
4940 sc->sc_protrix = ath_tx_findrix(rt, 2*1);
4941 /* rate index used to send management frames */
4942 sc->sc_minrateix = 0;
4943 /*
4944 * Setup multicast rate state.
4945 */
4946 /* XXX layering violation */
4947 sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate);
4948 sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate;
4949 /* NB: caller is responsible for reseting rate control state */
4950 #undef N
4951 }
4952
4953 #ifdef AR_DEBUG
4954 static void
4955 ath_printrxbuf(struct ath_buf *bf, int done)
4956 {
4957 struct ath_desc *ds;
4958 int i;
4959
4960 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
4961 printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n",
4962 i, ds, (struct ath_desc *)bf->bf_daddr + i,
4963 ds->ds_link, ds->ds_data,
4964 ds->ds_ctl0, ds->ds_ctl1,
4965 ds->ds_hw[0], ds->ds_hw[1],
4966 !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
4967 }
4968 }
4969
4970 static void
4971 ath_printtxbuf(struct ath_buf *bf, int done)
4972 {
4973 struct ath_desc *ds;
4974 int i;
4975
4976 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
4977 printf("T%d (%p %p) %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
4978 i, ds, (struct ath_desc *)bf->bf_daddr + i,
4979 ds->ds_link, ds->ds_data,
4980 ds->ds_ctl0, ds->ds_ctl1,
4981 ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
4982 !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
4983 }
4984 }
4985 #endif /* AR_DEBUG */
4986
4987 static void
4988 ath_watchdog(struct ifnet *ifp)
4989 {
4990 struct ath_softc *sc = ifp->if_softc;
4991 struct ieee80211com *ic = &sc->sc_ic;
4992
4993 ifp->if_timer = 0;
4994 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
4995 return;
4996 if (sc->sc_tx_timer) {
4997 if (--sc->sc_tx_timer == 0) {
4998 if_printf(ifp, "device timeout\n");
4999 ath_reset(ifp);
5000 ifp->if_oerrors++;
5001 sc->sc_stats.ast_watchdog++;
5002 } else
5003 ifp->if_timer = 1;
5004 }
5005 ieee80211_watchdog(ic);
5006 }
5007
5008 /*
5009 * Diagnostic interface to the HAL. This is used by various
5010 * tools to do things like retrieve register contents for
5011 * debugging. The mechanism is intentionally opaque so that
5012 * it can change frequently w/o concern for compatiblity.
5013 */
5014 static int
5015 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
5016 {
5017 struct ath_hal *ah = sc->sc_ah;
5018 u_int id = ad->ad_id & ATH_DIAG_ID;
5019 void *indata = NULL;
5020 void *outdata = NULL;
5021 u_int32_t insize = ad->ad_in_size;
5022 u_int32_t outsize = ad->ad_out_size;
5023 int error = 0;
5024
5025 if (ad->ad_id & ATH_DIAG_IN) {
5026 /*
5027 * Copy in data.
5028 */
5029 indata = malloc(insize, M_TEMP, M_NOWAIT);
5030 if (indata == NULL) {
5031 error = ENOMEM;
5032 goto bad;
5033 }
5034 error = copyin(ad->ad_in_data, indata, insize);
5035 if (error)
5036 goto bad;
5037 }
5038 if (ad->ad_id & ATH_DIAG_DYN) {
5039 /*
5040 * Allocate a buffer for the results (otherwise the HAL
5041 * returns a pointer to a buffer where we can read the
5042 * results). Note that we depend on the HAL leaving this
5043 * pointer for us to use below in reclaiming the buffer;
5044 * may want to be more defensive.
5045 */
5046 outdata = malloc(outsize, M_TEMP, M_NOWAIT);
5047 if (outdata == NULL) {
5048 error = ENOMEM;
5049 goto bad;
5050 }
5051 }
5052 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
5053 if (outsize < ad->ad_out_size)
5054 ad->ad_out_size = outsize;
5055 if (outdata != NULL)
5056 error = copyout(outdata, ad->ad_out_data,
5057 ad->ad_out_size);
5058 } else {
5059 error = EINVAL;
5060 }
5061 bad:
5062 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
5063 free(indata, M_TEMP);
5064 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
5065 free(outdata, M_TEMP);
5066 return error;
5067 }
5068
5069 static int
5070 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
5071 {
5072 #define IS_RUNNING(ifp) \
5073 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
5074 struct ath_softc *sc = ifp->if_softc;
5075 struct ieee80211com *ic = &sc->sc_ic;
5076 struct ifreq *ifr = (struct ifreq *)data;
5077 int error = 0;
5078
5079 ATH_LOCK(sc);
5080 switch (cmd) {
5081 case SIOCSIFFLAGS:
5082 if (IS_RUNNING(ifp)) {
5083 /*
5084 * To avoid rescanning another access point,
5085 * do not call ath_init() here. Instead,
5086 * only reflect promisc mode settings.
5087 */
5088 ath_mode_init(sc);
5089 } else if (ifp->if_flags & IFF_UP) {
5090 /*
5091 * Beware of being called during attach/detach
5092 * to reset promiscuous mode. In that case we
5093 * will still be marked UP but not RUNNING.
5094 * However trying to re-init the interface
5095 * is the wrong thing to do as we've already
5096 * torn down much of our state. There's
5097 * probably a better way to deal with this.
5098 */
5099 if (!sc->sc_invalid && ic->ic_bss != NULL)
5100 ath_init(sc); /* XXX lose error */
5101 } else
5102 ath_stop_locked(ifp, 1);
5103 break;
5104 case SIOCADDMULTI:
5105 case SIOCDELMULTI:
5106 error = (cmd == SIOCADDMULTI) ?
5107 ether_addmulti(ifr, &sc->sc_ec) :
5108 ether_delmulti(ifr, &sc->sc_ec);
5109 if (error == ENETRESET) {
5110 if (ifp->if_flags & IFF_RUNNING)
5111 ath_mode_init(sc);
5112 error = 0;
5113 }
5114 break;
5115 case SIOCGATHSTATS:
5116 /* NB: embed these numbers to get a consistent view */
5117 sc->sc_stats.ast_tx_packets = ifp->if_opackets;
5118 sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
5119 sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
5120 ATH_UNLOCK(sc);
5121 /*
5122 * NB: Drop the softc lock in case of a page fault;
5123 * we'll accept any potential inconsisentcy in the
5124 * statistics. The alternative is to copy the data
5125 * to a local structure.
5126 */
5127 return copyout(&sc->sc_stats,
5128 ifr->ifr_data, sizeof (sc->sc_stats));
5129 case SIOCGATHDIAG:
5130 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
5131 break;
5132 default:
5133 error = ieee80211_ioctl(ic, cmd, data);
5134 if (error == ENETRESET) {
5135 if (IS_RUNNING(ifp) &&
5136 ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
5137 ath_init(sc); /* XXX lose error */
5138 error = 0;
5139 }
5140 if (error == ERESTART)
5141 error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0;
5142 break;
5143 }
5144 ATH_UNLOCK(sc);
5145 return error;
5146 #undef IS_RUNNING
5147 }
5148
5149 #if NBPFILTER > 0
5150 static void
5151 ath_bpfattach(struct ath_softc *sc)
5152 {
5153 struct ifnet *ifp = &sc->sc_if;
5154
5155 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
5156 sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
5157 &sc->sc_drvbpf);
5158 /*
5159 * Initialize constant fields.
5160 * XXX make header lengths a multiple of 32-bits so subsequent
5161 * headers are properly aligned; this is a kludge to keep
5162 * certain applications happy.
5163 *
5164 * NB: the channel is setup each time we transition to the
5165 * RUN state to avoid filling it in for each frame.
5166 */
5167 sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
5168 sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
5169 sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
5170
5171 sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
5172 sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
5173 sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
5174 }
5175 #endif
5176
5177 /*
5178 * Announce various information on device/driver attach.
5179 */
5180 static void
5181 ath_announce(struct ath_softc *sc)
5182 {
5183 #define HAL_MODE_DUALBAND (HAL_MODE_11A|HAL_MODE_11B)
5184 struct ifnet *ifp = &sc->sc_if;
5185 struct ath_hal *ah = sc->sc_ah;
5186 u_int modes, cc;
5187
5188 if_printf(ifp, "mac %d.%d phy %d.%d",
5189 ah->ah_macVersion, ah->ah_macRev,
5190 ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
5191 /*
5192 * Print radio revision(s). We check the wireless modes
5193 * to avoid falsely printing revs for inoperable parts.
5194 * Dual-band radio revs are returned in the 5 GHz rev number.
5195 */
5196 ath_hal_getcountrycode(ah, &cc);
5197 modes = ath_hal_getwirelessmodes(ah, cc);
5198 if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
5199 if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
5200 printf(" 5 GHz radio %d.%d 2 GHz radio %d.%d",
5201 ah->ah_analog5GhzRev >> 4,
5202 ah->ah_analog5GhzRev & 0xf,
5203 ah->ah_analog2GhzRev >> 4,
5204 ah->ah_analog2GhzRev & 0xf);
5205 else
5206 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5207 ah->ah_analog5GhzRev & 0xf);
5208 } else
5209 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5210 ah->ah_analog5GhzRev & 0xf);
5211 printf("\n");
5212 if (bootverbose) {
5213 int i;
5214 for (i = 0; i <= WME_AC_VO; i++) {
5215 struct ath_txq *txq = sc->sc_ac2q[i];
5216 if_printf(ifp, "Use hw queue %u for %s traffic\n",
5217 txq->axq_qnum, ieee80211_wme_acnames[i]);
5218 }
5219 if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5220 sc->sc_cabq->axq_qnum);
5221 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5222 }
5223 if (ath_rxbuf != ATH_RXBUF)
5224 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
5225 if (ath_txbuf != ATH_TXBUF)
5226 if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
5227 #undef HAL_MODE_DUALBAND
5228 }
5229