Home | History | Annotate | Line # | Download | only in ic
ath.c revision 1.68.2.1
      1 /*	$NetBSD: ath.c,v 1.68.2.1 2006/03/13 09:07:20 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer,
     12  *    without modification.
     13  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
     14  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
     15  *    redistribution must be conditioned upon including a substantially
     16  *    similar Disclaimer requirement for further binary redistribution.
     17  * 3. Neither the names of the above-listed copyright holders nor the names
     18  *    of any contributors may be used to endorse or promote products derived
     19  *    from this software without specific prior written permission.
     20  *
     21  * Alternatively, this software may be distributed under the terms of the
     22  * GNU General Public License ("GPL") version 2 as published by the Free
     23  * Software Foundation.
     24  *
     25  * NO WARRANTY
     26  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     28  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
     29  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
     30  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
     31  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
     34  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     36  * THE POSSIBILITY OF SUCH DAMAGES.
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 #ifdef __FreeBSD__
     41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $");
     42 #endif
     43 #ifdef __NetBSD__
     44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.68.2.1 2006/03/13 09:07:20 yamt Exp $");
     45 #endif
     46 
     47 /*
     48  * Driver for the Atheros Wireless LAN controller.
     49  *
     50  * This software is derived from work of Atsushi Onoe; his contribution
     51  * is greatly appreciated.
     52  */
     53 
     54 #include "opt_inet.h"
     55 
     56 #ifdef __NetBSD__
     57 #include "bpfilter.h"
     58 #endif /* __NetBSD__ */
     59 
     60 #include <sys/param.h>
     61 #include <sys/reboot.h>
     62 #include <sys/systm.h>
     63 #include <sys/types.h>
     64 #include <sys/sysctl.h>
     65 #include <sys/mbuf.h>
     66 #include <sys/malloc.h>
     67 #include <sys/lock.h>
     68 #include <sys/kernel.h>
     69 #include <sys/socket.h>
     70 #include <sys/sockio.h>
     71 #include <sys/errno.h>
     72 #include <sys/callout.h>
     73 #include <machine/bus.h>
     74 #include <sys/endian.h>
     75 
     76 #include <machine/bus.h>
     77 
     78 #include <net/if.h>
     79 #include <net/if_dl.h>
     80 #include <net/if_media.h>
     81 #include <net/if_types.h>
     82 #include <net/if_arp.h>
     83 #include <net/if_ether.h>
     84 #include <net/if_llc.h>
     85 
     86 #include <net80211/ieee80211_netbsd.h>
     87 #include <net80211/ieee80211_var.h>
     88 
     89 #if NBPFILTER > 0
     90 #include <net/bpf.h>
     91 #endif
     92 
     93 #ifdef INET
     94 #include <netinet/in.h>
     95 #endif
     96 
     97 #include <sys/device.h>
     98 #include <dev/ic/ath_netbsd.h>
     99 
    100 #define	AR_DEBUG
    101 #include <dev/ic/athvar.h>
    102 #include <contrib/dev/ic/athhal_desc.h>
    103 #include <contrib/dev/ic/athhal_devid.h>	/* XXX for softled */
    104 
    105 #ifdef ATH_TX99_DIAG
    106 #include <dev/ath/ath_tx99/ath_tx99.h>
    107 #endif
    108 
    109 /* unaligned little endian access */
    110 #define LE_READ_2(p)							\
    111 	((u_int16_t)							\
    112 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
    113 #define LE_READ_4(p)							\
    114 	((u_int32_t)							\
    115 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
    116 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
    117 
    118 enum {
    119 	ATH_LED_TX,
    120 	ATH_LED_RX,
    121 	ATH_LED_POLL,
    122 };
    123 
    124 static int	ath_ifinit(struct ifnet *);
    125 static int	ath_init(struct ath_softc *);
    126 static void	ath_stop_locked(struct ifnet *, int);
    127 static void	ath_stop(struct ifnet *, int);
    128 static void	ath_start(struct ifnet *);
    129 static int	ath_media_change(struct ifnet *);
    130 static void	ath_watchdog(struct ifnet *);
    131 static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
    132 static void	ath_fatal_proc(void *, int);
    133 static void	ath_rxorn_proc(void *, int);
    134 static void	ath_bmiss_proc(void *, int);
    135 static void	ath_radar_proc(void *, int);
    136 static int	ath_key_alloc(struct ieee80211com *,
    137 			const struct ieee80211_key *,
    138 			ieee80211_keyix *, ieee80211_keyix *);
    139 static int	ath_key_delete(struct ieee80211com *,
    140 			const struct ieee80211_key *);
    141 static int	ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
    142 			const u_int8_t mac[IEEE80211_ADDR_LEN]);
    143 static void	ath_key_update_begin(struct ieee80211com *);
    144 static void	ath_key_update_end(struct ieee80211com *);
    145 static void	ath_mode_init(struct ath_softc *);
    146 static void	ath_setslottime(struct ath_softc *);
    147 static void	ath_updateslot(struct ifnet *);
    148 static int	ath_beaconq_setup(struct ath_hal *);
    149 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
    150 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
    151 static void	ath_beacon_proc(void *, int);
    152 static void	ath_bstuck_proc(void *, int);
    153 static void	ath_beacon_free(struct ath_softc *);
    154 static void	ath_beacon_config(struct ath_softc *);
    155 static void	ath_descdma_cleanup(struct ath_softc *sc,
    156 			struct ath_descdma *, ath_bufhead *);
    157 static int	ath_desc_alloc(struct ath_softc *);
    158 static void	ath_desc_free(struct ath_softc *);
    159 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
    160 static void	ath_node_free(struct ieee80211_node *);
    161 static u_int8_t	ath_node_getrssi(const struct ieee80211_node *);
    162 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
    163 static void	ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
    164 			struct ieee80211_node *ni,
    165 			int subtype, int rssi, u_int32_t rstamp);
    166 static void	ath_setdefantenna(struct ath_softc *, u_int);
    167 static void	ath_rx_proc(void *, int);
    168 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
    169 static int	ath_tx_setup(struct ath_softc *, int, int);
    170 static int	ath_wme_update(struct ieee80211com *);
    171 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
    172 static void	ath_tx_cleanup(struct ath_softc *);
    173 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
    174 			     struct ath_buf *, struct mbuf *);
    175 static void	ath_tx_proc_q0(void *, int);
    176 static void	ath_tx_proc_q0123(void *, int);
    177 static void	ath_tx_proc(void *, int);
    178 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
    179 static void	ath_draintxq(struct ath_softc *);
    180 static void	ath_stoprecv(struct ath_softc *);
    181 static int	ath_startrecv(struct ath_softc *);
    182 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
    183 static void	ath_next_scan(void *);
    184 static void	ath_calibrate(void *);
    185 static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
    186 static void	ath_setup_stationkey(struct ieee80211_node *);
    187 static void	ath_newassoc(struct ieee80211_node *, int);
    188 static int	ath_getchannels(struct ath_softc *, u_int cc,
    189 			HAL_BOOL outdoor, HAL_BOOL xchanmode);
    190 static void	ath_led_event(struct ath_softc *, int);
    191 static void	ath_update_txpow(struct ath_softc *);
    192 
    193 static int	ath_rate_setup(struct ath_softc *, u_int mode);
    194 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
    195 
    196 #ifdef __NetBSD__
    197 int	ath_enable(struct ath_softc *);
    198 void	ath_disable(struct ath_softc *);
    199 void	ath_power(int, void *);
    200 #endif
    201 
    202 #if NBPFILTER > 0
    203 static void	ath_bpfattach(struct ath_softc *);
    204 #endif
    205 static void	ath_announce(struct ath_softc *);
    206 
    207 int ath_dwelltime = 200;		/* 5 channels/second */
    208 int ath_calinterval = 30;		/* calibrate every 30 secs */
    209 int ath_outdoor = AH_TRUE;		/* outdoor operation */
    210 int ath_xchanmode = AH_TRUE;		/* enable extended channels */
    211 int ath_countrycode = CTRY_DEFAULT;	/* country code */
    212 int ath_regdomain = 0;			/* regulatory domain */
    213 int ath_debug = 0;
    214 int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
    215 int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
    216 
    217 #ifdef AR_DEBUG
    218 enum {
    219 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
    220 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
    221 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
    222 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
    223 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
    224 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
    225 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
    226 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
    227 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
    228 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
    229 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
    230 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
    231 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
    232 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
    233 	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
    234 	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
    235 	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
    236 	ATH_DEBUG_LED		= 0x00100000,	/* led management */
    237 	ATH_DEBUG_FF		= 0x00200000,	/* fast frames */
    238 	ATH_DEBUG_DFS		= 0x00400000,	/* DFS processing */
    239 	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
    240 	ATH_DEBUG_ANY		= 0xffffffff
    241 };
    242 #define	IFF_DUMPPKTS(sc, m) \
    243 	((sc->sc_debug & (m)) || \
    244 	    (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
    245 #define	DPRINTF(sc, m, fmt, ...) do {				\
    246 	if (sc->sc_debug & (m))					\
    247 		printf(fmt, __VA_ARGS__);			\
    248 } while (0)
    249 #define	KEYPRINTF(sc, ix, hk, mac) do {				\
    250 	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
    251 		ath_keyprint(__func__, ix, hk, mac);		\
    252 } while (0)
    253 static	void ath_printrxbuf(struct ath_buf *bf, int);
    254 static	void ath_printtxbuf(struct ath_buf *bf, int);
    255 #else
    256 #define	IFF_DUMPPKTS(sc, m) \
    257 	((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
    258 #define	DPRINTF(m, fmt, ...)
    259 #define	KEYPRINTF(sc, k, ix, mac)
    260 #endif
    261 
    262 #ifdef __NetBSD__
    263 int
    264 ath_activate(struct device *self, enum devact act)
    265 {
    266 	struct ath_softc *sc = (struct ath_softc *)self;
    267 	int rv = 0, s;
    268 
    269 	s = splnet();
    270 	switch (act) {
    271 	case DVACT_ACTIVATE:
    272 		rv = EOPNOTSUPP;
    273 		break;
    274 	case DVACT_DEACTIVATE:
    275 		if_deactivate(&sc->sc_if);
    276 		break;
    277 	}
    278 	splx(s);
    279 	return rv;
    280 }
    281 
    282 int
    283 ath_enable(struct ath_softc *sc)
    284 {
    285 	if (ATH_IS_ENABLED(sc) == 0) {
    286 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
    287 			printf("%s: device enable failed\n",
    288 				sc->sc_dev.dv_xname);
    289 			return (EIO);
    290 		}
    291 		sc->sc_flags |= ATH_ENABLED;
    292 	}
    293 	return (0);
    294 }
    295 
    296 void
    297 ath_disable(struct ath_softc *sc)
    298 {
    299 	if (!ATH_IS_ENABLED(sc))
    300 		return;
    301 	if (sc->sc_disable != NULL)
    302 		(*sc->sc_disable)(sc);
    303 	sc->sc_flags &= ~ATH_ENABLED;
    304 }
    305 #endif /* __NetBSD__ */
    306 
    307 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
    308 
    309 int
    310 ath_attach(u_int16_t devid, struct ath_softc *sc)
    311 {
    312 	struct ifnet *ifp = &sc->sc_if;
    313 	struct ieee80211com *ic = &sc->sc_ic;
    314 	struct ath_hal *ah = NULL;
    315 	HAL_STATUS status;
    316 	int error = 0, i;
    317 
    318 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
    319 
    320 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
    321 
    322 	ah = ath_hal_attach(devid, sc, sc->sc_st, ATH_BUSHANDLE2HAL(sc->sc_sh),
    323 	    &status);
    324 	if (ah == NULL) {
    325 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
    326 			status);
    327 		error = ENXIO;
    328 		goto bad;
    329 	}
    330 	if (ah->ah_abi != HAL_ABI_VERSION) {
    331 		if_printf(ifp, "HAL ABI mismatch detected "
    332 			"(HAL:0x%x != driver:0x%x)\n",
    333 			ah->ah_abi, HAL_ABI_VERSION);
    334 		error = ENXIO;
    335 		goto bad;
    336 	}
    337 	sc->sc_ah = ah;
    338 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
    339 
    340 	/*
    341 	 * Check if the MAC has multi-rate retry support.
    342 	 * We do this by trying to setup a fake extended
    343 	 * descriptor.  MAC's that don't have support will
    344 	 * return false w/o doing anything.  MAC's that do
    345 	 * support it will return true w/o doing anything.
    346 	 */
    347 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
    348 
    349 	/*
    350 	 * Check if the device has hardware counters for PHY
    351 	 * errors.  If so we need to enable the MIB interrupt
    352 	 * so we can act on stat triggers.
    353 	 */
    354 	if (ath_hal_hwphycounters(ah))
    355 		sc->sc_needmib = 1;
    356 
    357 	/*
    358 	 * Get the hardware key cache size.
    359 	 */
    360 	sc->sc_keymax = ath_hal_keycachesize(ah);
    361 	if (sc->sc_keymax > ATH_KEYMAX) {
    362 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
    363 			ATH_KEYMAX, sc->sc_keymax);
    364 		sc->sc_keymax = ATH_KEYMAX;
    365 	}
    366 	/*
    367 	 * Reset the key cache since some parts do not
    368 	 * reset the contents on initial power up.
    369 	 */
    370 	for (i = 0; i < sc->sc_keymax; i++)
    371 		ath_hal_keyreset(ah, i);
    372 	/*
    373 	 * Mark key cache slots associated with global keys
    374 	 * as in use.  If we knew TKIP was not to be used we
    375 	 * could leave the +32, +64, and +32+64 slots free.
    376 	 * XXX only for splitmic.
    377 	 */
    378 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
    379 		setbit(sc->sc_keymap, i);
    380 		setbit(sc->sc_keymap, i+32);
    381 		setbit(sc->sc_keymap, i+64);
    382 		setbit(sc->sc_keymap, i+32+64);
    383 	}
    384 
    385 	/*
    386 	 * Collect the channel list using the default country
    387 	 * code and including outdoor channels.  The 802.11 layer
    388 	 * is resposible for filtering this list based on settings
    389 	 * like the phy mode.
    390 	 */
    391 	error = ath_getchannels(sc, ath_countrycode,
    392 			ath_outdoor, ath_xchanmode);
    393 	if (error != 0)
    394 		goto bad;
    395 
    396 	/*
    397 	 * Setup rate tables for all potential media types.
    398 	 */
    399 	ath_rate_setup(sc, IEEE80211_MODE_11A);
    400 	ath_rate_setup(sc, IEEE80211_MODE_11B);
    401 	ath_rate_setup(sc, IEEE80211_MODE_11G);
    402 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
    403 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
    404 	/* NB: setup here so ath_rate_update is happy */
    405 	ath_setcurmode(sc, IEEE80211_MODE_11A);
    406 
    407 	/*
    408 	 * Allocate tx+rx descriptors and populate the lists.
    409 	 */
    410 	error = ath_desc_alloc(sc);
    411 	if (error != 0) {
    412 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
    413 		goto bad;
    414 	}
    415 	ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
    416 	ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE);
    417 	ATH_CALLOUT_INIT(&sc->sc_dfs_ch, CALLOUT_MPSAFE);
    418 
    419 	ATH_TXBUF_LOCK_INIT(sc);
    420 
    421 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
    422 	TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
    423 	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
    424 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
    425 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
    426 	TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc);
    427 
    428 	/*
    429 	 * Allocate hardware transmit queues: one queue for
    430 	 * beacon frames and one data queue for each QoS
    431 	 * priority.  Note that the hal handles reseting
    432 	 * these queues at the needed time.
    433 	 *
    434 	 * XXX PS-Poll
    435 	 */
    436 	sc->sc_bhalq = ath_beaconq_setup(ah);
    437 	if (sc->sc_bhalq == (u_int) -1) {
    438 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
    439 		error = EIO;
    440 		goto bad2;
    441 	}
    442 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
    443 	if (sc->sc_cabq == NULL) {
    444 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
    445 		error = EIO;
    446 		goto bad2;
    447 	}
    448 	/* NB: insure BK queue is the lowest priority h/w queue */
    449 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
    450 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
    451 			ieee80211_wme_acnames[WME_AC_BK]);
    452 		error = EIO;
    453 		goto bad2;
    454 	}
    455 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
    456 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
    457 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
    458 		/*
    459 		 * Not enough hardware tx queues to properly do WME;
    460 		 * just punt and assign them all to the same h/w queue.
    461 		 * We could do a better job of this if, for example,
    462 		 * we allocate queues when we switch from station to
    463 		 * AP mode.
    464 		 */
    465 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
    466 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
    467 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
    468 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
    469 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
    470 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
    471 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
    472 	}
    473 
    474 	/*
    475 	 * Special case certain configurations.  Note the
    476 	 * CAB queue is handled by these specially so don't
    477 	 * include them when checking the txq setup mask.
    478 	 */
    479 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
    480 	case 0x01:
    481 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
    482 		break;
    483 	case 0x0f:
    484 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
    485 		break;
    486 	default:
    487 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
    488 		break;
    489 	}
    490 
    491 	/*
    492 	 * Setup rate control.  Some rate control modules
    493 	 * call back to change the anntena state so expose
    494 	 * the necessary entry points.
    495 	 * XXX maybe belongs in struct ath_ratectrl?
    496 	 */
    497 	sc->sc_setdefantenna = ath_setdefantenna;
    498 	sc->sc_rc = ath_rate_attach(sc);
    499 	if (sc->sc_rc == NULL) {
    500 		error = EIO;
    501 		goto bad2;
    502 	}
    503 
    504 	sc->sc_blinking = 0;
    505 	sc->sc_ledstate = 1;
    506 	sc->sc_ledon = 0;			/* low true */
    507 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
    508 	ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE);
    509 	/*
    510 	 * Auto-enable soft led processing for IBM cards and for
    511 	 * 5211 minipci cards.  Users can also manually enable/disable
    512 	 * support with a sysctl.
    513 	 */
    514 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
    515 	if (sc->sc_softled) {
    516 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
    517 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
    518 	}
    519 
    520 	ifp->if_softc = sc;
    521 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
    522 	ifp->if_start = ath_start;
    523 	ifp->if_watchdog = ath_watchdog;
    524 	ifp->if_ioctl = ath_ioctl;
    525 	ifp->if_init = ath_ifinit;
    526 	IFQ_SET_READY(&ifp->if_snd);
    527 
    528 	ic->ic_ifp = ifp;
    529 	ic->ic_reset = ath_reset;
    530 	ic->ic_newassoc = ath_newassoc;
    531 	ic->ic_updateslot = ath_updateslot;
    532 	ic->ic_wme.wme_update = ath_wme_update;
    533 	/* XXX not right but it's not used anywhere important */
    534 	ic->ic_phytype = IEEE80211_T_OFDM;
    535 	ic->ic_opmode = IEEE80211_M_STA;
    536 	ic->ic_caps =
    537 		  IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
    538 		| IEEE80211_C_HOSTAP		/* hostap mode */
    539 		| IEEE80211_C_MONITOR		/* monitor mode */
    540 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
    541 		| IEEE80211_C_SHSLOT		/* short slot time supported */
    542 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
    543 		;
    544 	/*
    545 	 * Query the hal to figure out h/w crypto support.
    546 	 */
    547 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
    548 		ic->ic_caps |= IEEE80211_C_WEP;
    549 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
    550 		ic->ic_caps |= IEEE80211_C_AES;
    551 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
    552 		ic->ic_caps |= IEEE80211_C_AES_CCM;
    553 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
    554 		ic->ic_caps |= IEEE80211_C_CKIP;
    555 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
    556 		ic->ic_caps |= IEEE80211_C_TKIP;
    557 		/*
    558 		 * Check if h/w does the MIC and/or whether the
    559 		 * separate key cache entries are required to
    560 		 * handle both tx+rx MIC keys.
    561 		 */
    562 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
    563 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
    564 		if (ath_hal_tkipsplit(ah))
    565 			sc->sc_splitmic = 1;
    566 	}
    567 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
    568 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
    569 	/*
    570 	 * TPC support can be done either with a global cap or
    571 	 * per-packet support.  The latter is not available on
    572 	 * all parts.  We're a bit pedantic here as all parts
    573 	 * support a global cap.
    574 	 */
    575 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
    576 		ic->ic_caps |= IEEE80211_C_TXPMGT;
    577 
    578 	/*
    579 	 * Mark WME capability only if we have sufficient
    580 	 * hardware queues to do proper priority scheduling.
    581 	 */
    582 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
    583 		ic->ic_caps |= IEEE80211_C_WME;
    584 	/*
    585 	 * Check for misc other capabilities.
    586 	 */
    587 	if (ath_hal_hasbursting(ah))
    588 		ic->ic_caps |= IEEE80211_C_BURST;
    589 
    590 	/*
    591 	 * Indicate we need the 802.11 header padded to a
    592 	 * 32-bit boundary for 4-address and QoS frames.
    593 	 */
    594 	ic->ic_flags |= IEEE80211_F_DATAPAD;
    595 
    596 	/*
    597 	 * Query the hal about antenna support.
    598 	 */
    599 	sc->sc_defant = ath_hal_getdefantenna(ah);
    600 
    601 	/*
    602 	 * Not all chips have the VEOL support we want to
    603 	 * use with IBSS beacons; check here for it.
    604 	 */
    605 	sc->sc_hasveol = ath_hal_hasveol(ah);
    606 
    607 	/* get mac address from hardware */
    608 	ath_hal_getmac(ah, ic->ic_myaddr);
    609 
    610 	if_attach(ifp);
    611 	/* call MI attach routine. */
    612 	ieee80211_ifattach(ic);
    613 	/* override default methods */
    614 	ic->ic_node_alloc = ath_node_alloc;
    615 	sc->sc_node_free = ic->ic_node_free;
    616 	ic->ic_node_free = ath_node_free;
    617 	ic->ic_node_getrssi = ath_node_getrssi;
    618 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
    619 	ic->ic_recv_mgmt = ath_recv_mgmt;
    620 	sc->sc_newstate = ic->ic_newstate;
    621 	ic->ic_newstate = ath_newstate;
    622 	ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
    623 	ic->ic_crypto.cs_key_alloc = ath_key_alloc;
    624 	ic->ic_crypto.cs_key_delete = ath_key_delete;
    625 	ic->ic_crypto.cs_key_set = ath_key_set;
    626 	ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
    627 	ic->ic_crypto.cs_key_update_end = ath_key_update_end;
    628 	/* complete initialization */
    629 	ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
    630 
    631 #if NBPFILTER > 0
    632 	ath_bpfattach(sc);
    633 #endif
    634 
    635 #ifdef __NetBSD__
    636 	sc->sc_flags |= ATH_ATTACHED;
    637 	/*
    638 	 * Make sure the interface is shutdown during reboot.
    639 	 */
    640 	sc->sc_sdhook = shutdownhook_establish(ath_shutdown, sc);
    641 	if (sc->sc_sdhook == NULL)
    642 		printf("%s: WARNING: unable to establish shutdown hook\n",
    643 			sc->sc_dev.dv_xname);
    644 	sc->sc_powerhook = powerhook_establish(ath_power, sc);
    645 	if (sc->sc_powerhook == NULL)
    646 		printf("%s: WARNING: unable to establish power hook\n",
    647 			sc->sc_dev.dv_xname);
    648 #endif
    649 
    650 	/*
    651 	 * Setup dynamic sysctl's now that country code and
    652 	 * regdomain are available from the hal.
    653 	 */
    654 	ath_sysctlattach(sc);
    655 
    656 	ieee80211_announce(ic);
    657 	ath_announce(sc);
    658 	return 0;
    659 bad2:
    660 	ath_tx_cleanup(sc);
    661 	ath_desc_free(sc);
    662 bad:
    663 	if (ah)
    664 		ath_hal_detach(ah);
    665 	sc->sc_invalid = 1;
    666 	return error;
    667 }
    668 
    669 int
    670 ath_detach(struct ath_softc *sc)
    671 {
    672 	struct ifnet *ifp = &sc->sc_if;
    673 	int s;
    674 
    675 	if ((sc->sc_flags & ATH_ATTACHED) == 0)
    676 		return (0);
    677 
    678 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
    679 		__func__, ifp->if_flags);
    680 
    681 	s = splnet();
    682 	ath_stop(ifp, 1);
    683 #if NBPFILTER > 0
    684 	bpfdetach(ifp);
    685 #endif
    686 	/*
    687 	 * NB: the order of these is important:
    688 	 * o call the 802.11 layer before detaching the hal to
    689 	 *   insure callbacks into the driver to delete global
    690 	 *   key cache entries can be handled
    691 	 * o reclaim the tx queue data structures after calling
    692 	 *   the 802.11 layer as we'll get called back to reclaim
    693 	 *   node state and potentially want to use them
    694 	 * o to cleanup the tx queues the hal is called, so detach
    695 	 *   it last
    696 	 * Other than that, it's straightforward...
    697 	 */
    698 	ieee80211_ifdetach(&sc->sc_ic);
    699 #ifdef ATH_TX99_DIAG
    700 	if (sc->sc_tx99 != NULL)
    701 		sc->sc_tx99->detach(sc->sc_tx99);
    702 #endif
    703 	ath_rate_detach(sc->sc_rc);
    704 	ath_desc_free(sc);
    705 	ath_tx_cleanup(sc);
    706 	sysctl_teardown(&sc->sc_sysctllog);
    707 	ath_hal_detach(sc->sc_ah);
    708 	if_detach(ifp);
    709 	splx(s);
    710 	powerhook_disestablish(sc->sc_powerhook);
    711 	shutdownhook_disestablish(sc->sc_sdhook);
    712 
    713 	return 0;
    714 }
    715 
    716 #ifdef __NetBSD__
    717 void
    718 ath_power(int why, void *arg)
    719 {
    720 	struct ath_softc *sc = arg;
    721 	int s;
    722 
    723 	DPRINTF(sc, ATH_DEBUG_ANY, "ath_power(%d)\n", why);
    724 
    725 	s = splnet();
    726 	switch (why) {
    727 	case PWR_SUSPEND:
    728 	case PWR_STANDBY:
    729 		ath_suspend(sc, why);
    730 		break;
    731 	case PWR_RESUME:
    732 		ath_resume(sc, why);
    733 		break;
    734 	case PWR_SOFTSUSPEND:
    735 	case PWR_SOFTSTANDBY:
    736 	case PWR_SOFTRESUME:
    737 		break;
    738 	}
    739 	splx(s);
    740 }
    741 #endif
    742 
    743 void
    744 ath_suspend(struct ath_softc *sc, int why)
    745 {
    746 	struct ifnet *ifp = &sc->sc_if;
    747 
    748 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
    749 		__func__, ifp->if_flags);
    750 
    751 	ath_stop(ifp, 1);
    752 	if (sc->sc_power != NULL)
    753 		(*sc->sc_power)(sc, why);
    754 }
    755 
    756 void
    757 ath_resume(struct ath_softc *sc, int why)
    758 {
    759 	struct ifnet *ifp = &sc->sc_if;
    760 
    761 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
    762 		__func__, ifp->if_flags);
    763 
    764 	if (ifp->if_flags & IFF_UP) {
    765 		ath_init(sc);
    766 #if 0
    767 		(void)ath_intr(sc);
    768 #endif
    769 		if (sc->sc_power != NULL)
    770 			(*sc->sc_power)(sc, why);
    771 		if (ifp->if_flags & IFF_RUNNING)
    772 			ath_start(ifp);
    773 	}
    774 	if (sc->sc_softled) {
    775 		ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
    776 		ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
    777 	}
    778 }
    779 
    780 void
    781 ath_shutdown(void *arg)
    782 {
    783 	struct ath_softc *sc = arg;
    784 
    785 	ath_stop(&sc->sc_if, 1);
    786 }
    787 
    788 /*
    789  * Interrupt handler.  Most of the actual processing is deferred.
    790  */
    791 int
    792 ath_intr(void *arg)
    793 {
    794 	struct ath_softc *sc = arg;
    795 	struct ifnet *ifp = &sc->sc_if;
    796 	struct ath_hal *ah = sc->sc_ah;
    797 	HAL_INT status;
    798 
    799 	if (sc->sc_invalid) {
    800 		/*
    801 		 * The hardware is not ready/present, don't touch anything.
    802 		 * Note this can happen early on if the IRQ is shared.
    803 		 */
    804 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
    805 		return 0;
    806 	}
    807 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
    808 		return 0;
    809 	if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
    810 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
    811 			__func__, ifp->if_flags);
    812 		ath_hal_getisr(ah, &status);	/* clear ISR */
    813 		ath_hal_intrset(ah, 0);		/* disable further intr's */
    814 		return 1; /* XXX */
    815 	}
    816 	/*
    817 	 * Figure out the reason(s) for the interrupt.  Note
    818 	 * that the hal returns a pseudo-ISR that may include
    819 	 * bits we haven't explicitly enabled so we mask the
    820 	 * value to insure we only process bits we requested.
    821 	 */
    822 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
    823 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
    824 	status &= sc->sc_imask;			/* discard unasked for bits */
    825 	if (status & HAL_INT_FATAL) {
    826 		/*
    827 		 * Fatal errors are unrecoverable.  Typically
    828 		 * these are caused by DMA errors.  Unfortunately
    829 		 * the exact reason is not (presently) returned
    830 		 * by the hal.
    831 		 */
    832 		sc->sc_stats.ast_hardware++;
    833 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
    834 		TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
    835 	} else if (status & HAL_INT_RXORN) {
    836 		sc->sc_stats.ast_rxorn++;
    837 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
    838 		TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
    839 	} else {
    840 		if (status & HAL_INT_SWBA) {
    841 			/*
    842 			 * Software beacon alert--time to send a beacon.
    843 			 * Handle beacon transmission directly; deferring
    844 			 * this is too slow to meet timing constraints
    845 			 * under load.
    846 			 */
    847 			ath_beacon_proc(sc, 0);
    848 		}
    849 		if (status & HAL_INT_RXEOL) {
    850 			/*
    851 			 * NB: the hardware should re-read the link when
    852 			 *     RXE bit is written, but it doesn't work at
    853 			 *     least on older hardware revs.
    854 			 */
    855 			sc->sc_stats.ast_rxeol++;
    856 			sc->sc_rxlink = NULL;
    857 		}
    858 		if (status & HAL_INT_TXURN) {
    859 			sc->sc_stats.ast_txurn++;
    860 			/* bump tx trigger level */
    861 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
    862 		}
    863 		if (status & HAL_INT_RX)
    864 			TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
    865 		if (status & HAL_INT_TX)
    866 			TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
    867 		if (status & HAL_INT_BMISS) {
    868 			sc->sc_stats.ast_bmiss++;
    869 			TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
    870 		}
    871 		if (status & HAL_INT_MIB) {
    872 			sc->sc_stats.ast_mib++;
    873 			/*
    874 			 * Disable interrupts until we service the MIB
    875 			 * interrupt; otherwise it will continue to fire.
    876 			 */
    877 			ath_hal_intrset(ah, 0);
    878 			/*
    879 			 * Let the hal handle the event.  We assume it will
    880 			 * clear whatever condition caused the interrupt.
    881 			 */
    882 			ath_hal_mibevent(ah, &sc->sc_halstats);
    883 			ath_hal_intrset(ah, sc->sc_imask);
    884 		}
    885 	}
    886 	return 1;
    887 }
    888 
    889 static void
    890 ath_fatal_proc(void *arg, int pending)
    891 {
    892 	struct ath_softc *sc = arg;
    893 	struct ifnet *ifp = &sc->sc_if;
    894 
    895 	if_printf(ifp, "hardware error; resetting\n");
    896 	ath_reset(ifp);
    897 }
    898 
    899 static void
    900 ath_rxorn_proc(void *arg, int pending)
    901 {
    902 	struct ath_softc *sc = arg;
    903 	struct ifnet *ifp = &sc->sc_if;
    904 
    905 	if_printf(ifp, "rx FIFO overrun; resetting\n");
    906 	ath_reset(ifp);
    907 }
    908 
    909 static void
    910 ath_bmiss_proc(void *arg, int pending)
    911 {
    912 	struct ath_softc *sc = arg;
    913 	struct ieee80211com *ic = &sc->sc_ic;
    914 
    915 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
    916 	KASSERT(ic->ic_opmode == IEEE80211_M_STA,
    917 		("unexpect operating mode %u", ic->ic_opmode));
    918 	if (ic->ic_state == IEEE80211_S_RUN) {
    919 		u_int64_t lastrx = sc->sc_lastrx;
    920 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
    921 
    922 		DPRINTF(sc, ATH_DEBUG_BEACON,
    923 		    "%s: tsf %" PRIu64 " lastrx %" PRId64
    924 		    " (%" PRIu64 ") bmiss %u\n",
    925 		    __func__, tsf, tsf - lastrx, lastrx,
    926 		    ic->ic_bmisstimeout*1024);
    927 		/*
    928 		 * Workaround phantom bmiss interrupts by sanity-checking
    929 		 * the time of our last rx'd frame.  If it is within the
    930 		 * beacon miss interval then ignore the interrupt.  If it's
    931 		 * truly a bmiss we'll get another interrupt soon and that'll
    932 		 * be dispatched up for processing.
    933 		 */
    934 		if (tsf - lastrx > ic->ic_bmisstimeout*1024) {
    935 			NET_LOCK_GIANT();
    936 			ieee80211_beacon_miss(ic);
    937 			NET_UNLOCK_GIANT();
    938 		} else
    939 			sc->sc_stats.ast_bmiss_phantom++;
    940 	}
    941 }
    942 
    943 static void
    944 ath_radar_proc(void *arg, int pending)
    945 {
    946 	struct ath_softc *sc = arg;
    947 	struct ifnet *ifp = &sc->sc_if;
    948 	struct ath_hal *ah = sc->sc_ah;
    949 	HAL_CHANNEL hchan;
    950 
    951 	if (ath_hal_procdfs(ah, &hchan)) {
    952 		if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n",
    953 			hchan.channel, hchan.channelFlags, hchan.privFlags);
    954 		/*
    955 		 * Initiate channel change.
    956 		 */
    957 		/* XXX not yet */
    958 	}
    959 }
    960 
    961 static u_int
    962 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
    963 {
    964 #define	N(a)	(sizeof(a) / sizeof(a[0]))
    965 	static const u_int modeflags[] = {
    966 		0,			/* IEEE80211_MODE_AUTO */
    967 		CHANNEL_A,		/* IEEE80211_MODE_11A */
    968 		CHANNEL_B,		/* IEEE80211_MODE_11B */
    969 		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
    970 		0,			/* IEEE80211_MODE_FH */
    971 		CHANNEL_ST,		/* IEEE80211_MODE_TURBO_A */
    972 		CHANNEL_108G		/* IEEE80211_MODE_TURBO_G */
    973 	};
    974 	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
    975 
    976 	KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
    977 	KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
    978 	return modeflags[mode];
    979 #undef N
    980 }
    981 
    982 static int
    983 ath_ifinit(struct ifnet *ifp)
    984 {
    985 	struct ath_softc *sc = (struct ath_softc *)ifp->if_softc;
    986 
    987 	return ath_init(sc);
    988 }
    989 
    990 static int
    991 ath_init(struct ath_softc *sc)
    992 {
    993 	struct ifnet *ifp = &sc->sc_if;
    994 	struct ieee80211com *ic = &sc->sc_ic;
    995 	struct ath_hal *ah = sc->sc_ah;
    996 	HAL_STATUS status;
    997 	int error = 0;
    998 
    999 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
   1000 		__func__, ifp->if_flags);
   1001 
   1002 	ATH_LOCK(sc);
   1003 
   1004 	if ((error = ath_enable(sc)) != 0)
   1005 		return error;
   1006 
   1007 	/*
   1008 	 * Stop anything previously setup.  This is safe
   1009 	 * whether this is the first time through or not.
   1010 	 */
   1011 	ath_stop_locked(ifp, 0);
   1012 
   1013 	/*
   1014 	 * The basic interface to setting the hardware in a good
   1015 	 * state is ``reset''.  On return the hardware is known to
   1016 	 * be powered up and with interrupts disabled.  This must
   1017 	 * be followed by initialization of the appropriate bits
   1018 	 * and then setup of the interrupt mask.
   1019 	 */
   1020 	sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
   1021 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
   1022 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
   1023 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
   1024 			status);
   1025 		error = EIO;
   1026 		goto done;
   1027 	}
   1028 
   1029 	/*
   1030 	 * This is needed only to setup initial state
   1031 	 * but it's best done after a reset.
   1032 	 */
   1033 	ath_update_txpow(sc);
   1034 	/*
   1035 	 * Likewise this is set during reset so update
   1036 	 * state cached in the driver.
   1037 	 */
   1038 	sc->sc_diversity = ath_hal_getdiversity(ah);
   1039 	sc->sc_calinterval = 1;
   1040 	sc->sc_caltries = 0;
   1041 
   1042 	/*
   1043 	 * Setup the hardware after reset: the key cache
   1044 	 * is filled as needed and the receive engine is
   1045 	 * set going.  Frame transmit is handled entirely
   1046 	 * in the frame output path; there's nothing to do
   1047 	 * here except setup the interrupt mask.
   1048 	 */
   1049 	if ((error = ath_startrecv(sc)) != 0) {
   1050 		if_printf(ifp, "unable to start recv logic\n");
   1051 		goto done;
   1052 	}
   1053 
   1054 	/*
   1055 	 * Enable interrupts.
   1056 	 */
   1057 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
   1058 		  | HAL_INT_RXEOL | HAL_INT_RXORN
   1059 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
   1060 	/*
   1061 	 * Enable MIB interrupts when there are hardware phy counters.
   1062 	 * Note we only do this (at the moment) for station mode.
   1063 	 */
   1064 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
   1065 		sc->sc_imask |= HAL_INT_MIB;
   1066 	ath_hal_intrset(ah, sc->sc_imask);
   1067 
   1068 	ifp->if_flags |= IFF_RUNNING;
   1069 	ic->ic_state = IEEE80211_S_INIT;
   1070 
   1071 	/*
   1072 	 * The hardware should be ready to go now so it's safe
   1073 	 * to kick the 802.11 state machine as it's likely to
   1074 	 * immediately call back to us to send mgmt frames.
   1075 	 */
   1076 	ath_chan_change(sc, ic->ic_curchan);
   1077 #ifdef ATH_TX99_DIAG
   1078 	if (sc->sc_tx99 != NULL)
   1079 		sc->sc_tx99->start(sc->sc_tx99);
   1080 	else
   1081 #endif
   1082 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   1083 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
   1084 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   1085 	} else
   1086 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   1087 done:
   1088 	ATH_UNLOCK(sc);
   1089 	return error;
   1090 }
   1091 
   1092 static void
   1093 ath_stop_locked(struct ifnet *ifp, int disable)
   1094 {
   1095 	struct ath_softc *sc = ifp->if_softc;
   1096 	struct ieee80211com *ic = &sc->sc_ic;
   1097 	struct ath_hal *ah = sc->sc_ah;
   1098 
   1099 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
   1100 		__func__, sc->sc_invalid, ifp->if_flags);
   1101 
   1102 	ATH_LOCK_ASSERT(sc);
   1103 	if (ifp->if_flags & IFF_RUNNING) {
   1104 		/*
   1105 		 * Shutdown the hardware and driver:
   1106 		 *    reset 802.11 state machine
   1107 		 *    turn off timers
   1108 		 *    disable interrupts
   1109 		 *    turn off the radio
   1110 		 *    clear transmit machinery
   1111 		 *    clear receive machinery
   1112 		 *    drain and release tx queues
   1113 		 *    reclaim beacon resources
   1114 		 *    power down hardware
   1115 		 *
   1116 		 * Note that some of this work is not possible if the
   1117 		 * hardware is gone (invalid).
   1118 		 */
   1119 #ifdef ATH_TX99_DIAG
   1120 		if (sc->sc_tx99 != NULL)
   1121 			sc->sc_tx99->stop(sc->sc_tx99);
   1122 #endif
   1123 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   1124 		ifp->if_flags &= ~IFF_RUNNING;
   1125 		ifp->if_timer = 0;
   1126 		if (!sc->sc_invalid) {
   1127 			if (sc->sc_softled) {
   1128 				callout_stop(&sc->sc_ledtimer);
   1129 				ath_hal_gpioset(ah, sc->sc_ledpin,
   1130 					!sc->sc_ledon);
   1131 				sc->sc_blinking = 0;
   1132 			}
   1133 			ath_hal_intrset(ah, 0);
   1134 		}
   1135 		ath_draintxq(sc);
   1136 		if (!sc->sc_invalid) {
   1137 			ath_stoprecv(sc);
   1138 			ath_hal_phydisable(ah);
   1139 		} else
   1140 			sc->sc_rxlink = NULL;
   1141 		IF_PURGE(&ifp->if_snd);
   1142 		ath_beacon_free(sc);
   1143 		if (disable)
   1144 			ath_disable(sc);
   1145 	}
   1146 }
   1147 
   1148 static void
   1149 ath_stop(struct ifnet *ifp, int disable)
   1150 {
   1151 	struct ath_softc *sc = ifp->if_softc;
   1152 
   1153 	ATH_LOCK(sc);
   1154 	ath_stop_locked(ifp, disable);
   1155 	if (!sc->sc_invalid) {
   1156 		/*
   1157 		 * Set the chip in full sleep mode.  Note that we are
   1158 		 * careful to do this only when bringing the interface
   1159 		 * completely to a stop.  When the chip is in this state
   1160 		 * it must be carefully woken up or references to
   1161 		 * registers in the PCI clock domain may freeze the bus
   1162 		 * (and system).  This varies by chip and is mostly an
   1163 		 * issue with newer parts that go to sleep more quickly.
   1164 		 */
   1165 		ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
   1166 	}
   1167 	ATH_UNLOCK(sc);
   1168 }
   1169 
   1170 /*
   1171  * Reset the hardware w/o losing operational state.  This is
   1172  * basically a more efficient way of doing ath_stop, ath_init,
   1173  * followed by state transitions to the current 802.11
   1174  * operational state.  Used to recover from various errors and
   1175  * to reset or reload hardware state.
   1176  */
   1177 int
   1178 ath_reset(struct ifnet *ifp)
   1179 {
   1180 	struct ath_softc *sc = ifp->if_softc;
   1181 	struct ieee80211com *ic = &sc->sc_ic;
   1182 	struct ath_hal *ah = sc->sc_ah;
   1183 	struct ieee80211_channel *c;
   1184 	HAL_STATUS status;
   1185 
   1186 	/*
   1187 	 * Convert to a HAL channel description with the flags
   1188 	 * constrained to reflect the current operating mode.
   1189 	 */
   1190 	c = ic->ic_curchan;
   1191 	sc->sc_curchan.channel = c->ic_freq;
   1192 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
   1193 
   1194 	ath_hal_intrset(ah, 0);		/* disable interrupts */
   1195 	ath_draintxq(sc);		/* stop xmit side */
   1196 	ath_stoprecv(sc);		/* stop recv side */
   1197 	/* NB: indicate channel change so we do a full reset */
   1198 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
   1199 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
   1200 			__func__, status);
   1201 	ath_update_txpow(sc);		/* update tx power state */
   1202 	sc->sc_diversity = ath_hal_getdiversity(ah);
   1203 	sc->sc_calinterval = 1;
   1204 	sc->sc_caltries = 0;
   1205 	if (ath_startrecv(sc) != 0)	/* restart recv */
   1206 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
   1207 	/*
   1208 	 * We may be doing a reset in response to an ioctl
   1209 	 * that changes the channel so update any state that
   1210 	 * might change as a result.
   1211 	 */
   1212 	ath_chan_change(sc, c);
   1213 	if (ic->ic_state == IEEE80211_S_RUN)
   1214 		ath_beacon_config(sc);	/* restart beacons */
   1215 	ath_hal_intrset(ah, sc->sc_imask);
   1216 
   1217 	ath_start(ifp);			/* restart xmit */
   1218 	return 0;
   1219 }
   1220 
   1221 static void
   1222 ath_start(struct ifnet *ifp)
   1223 {
   1224 	struct ath_softc *sc = ifp->if_softc;
   1225 	struct ath_hal *ah = sc->sc_ah;
   1226 	struct ieee80211com *ic = &sc->sc_ic;
   1227 	struct ieee80211_node *ni;
   1228 	struct ath_buf *bf;
   1229 	struct mbuf *m;
   1230 	struct ieee80211_frame *wh;
   1231 	struct ether_header *eh;
   1232 
   1233 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
   1234 		return;
   1235 	for (;;) {
   1236 		/*
   1237 		 * Grab a TX buffer and associated resources.
   1238 		 */
   1239 		ATH_TXBUF_LOCK(sc);
   1240 		bf = STAILQ_FIRST(&sc->sc_txbuf);
   1241 		if (bf != NULL)
   1242 			STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
   1243 		ATH_TXBUF_UNLOCK(sc);
   1244 		if (bf == NULL) {
   1245 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
   1246 				__func__);
   1247 			sc->sc_stats.ast_tx_qstop++;
   1248 			ifp->if_flags |= IFF_OACTIVE;
   1249 			break;
   1250 		}
   1251 		/*
   1252 		 * Poll the management queue for frames; they
   1253 		 * have priority over normal data frames.
   1254 		 */
   1255 		IF_DEQUEUE(&ic->ic_mgtq, m);
   1256 		if (m == NULL) {
   1257 			/*
   1258 			 * No data frames go out unless we're associated.
   1259 			 */
   1260 			if (ic->ic_state != IEEE80211_S_RUN) {
   1261 				DPRINTF(sc, ATH_DEBUG_XMIT,
   1262 				    "%s: discard data packet, state %s\n",
   1263 				    __func__,
   1264 				    ieee80211_state_name[ic->ic_state]);
   1265 				sc->sc_stats.ast_tx_discard++;
   1266 				ATH_TXBUF_LOCK(sc);
   1267 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1268 				ATH_TXBUF_UNLOCK(sc);
   1269 				break;
   1270 			}
   1271 			IFQ_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
   1272 			if (m == NULL) {
   1273 				ATH_TXBUF_LOCK(sc);
   1274 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1275 				ATH_TXBUF_UNLOCK(sc);
   1276 				break;
   1277 			}
   1278 			/*
   1279 			 * Find the node for the destination so we can do
   1280 			 * things like power save and fast frames aggregation.
   1281 			 */
   1282 			if (m->m_len < sizeof(struct ether_header) &&
   1283 			   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
   1284 				ic->ic_stats.is_tx_nobuf++;	/* XXX */
   1285 				ni = NULL;
   1286 				goto bad;
   1287 			}
   1288 			eh = mtod(m, struct ether_header *);
   1289 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   1290 			if (ni == NULL) {
   1291 				/* NB: ieee80211_find_txnode does stat+msg */
   1292 				m_freem(m);
   1293 				goto bad;
   1294 			}
   1295 			if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
   1296 			    (m->m_flags & M_PWR_SAV) == 0) {
   1297 				/*
   1298 				 * Station in power save mode; pass the frame
   1299 				 * to the 802.11 layer and continue.  We'll get
   1300 				 * the frame back when the time is right.
   1301 				 */
   1302 				ieee80211_pwrsave(ic, ni, m);
   1303 				goto reclaim;
   1304 			}
   1305 			/* calculate priority so we can find the tx queue */
   1306 			if (ieee80211_classify(ic, m, ni)) {
   1307 				DPRINTF(sc, ATH_DEBUG_XMIT,
   1308 					"%s: discard, classification failure\n",
   1309 					__func__);
   1310 				m_freem(m);
   1311 				goto bad;
   1312 			}
   1313 			ifp->if_opackets++;
   1314 
   1315 #if NBPFILTER > 0
   1316 			if (ifp->if_bpf)
   1317 				bpf_mtap(ifp->if_bpf, m);
   1318 #endif
   1319 			/*
   1320 			 * Encapsulate the packet in prep for transmission.
   1321 			 */
   1322 			m = ieee80211_encap(ic, m, ni);
   1323 			if (m == NULL) {
   1324 				DPRINTF(sc, ATH_DEBUG_XMIT,
   1325 					"%s: encapsulation failure\n",
   1326 					__func__);
   1327 				sc->sc_stats.ast_tx_encap++;
   1328 				goto bad;
   1329 			}
   1330 		} else {
   1331 			/*
   1332 			 * Hack!  The referenced node pointer is in the
   1333 			 * rcvif field of the packet header.  This is
   1334 			 * placed there by ieee80211_mgmt_output because
   1335 			 * we need to hold the reference with the frame
   1336 			 * and there's no other way (other than packet
   1337 			 * tags which we consider too expensive to use)
   1338 			 * to pass it along.
   1339 			 */
   1340 			ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
   1341 			m->m_pkthdr.rcvif = NULL;
   1342 
   1343 			wh = mtod(m, struct ieee80211_frame *);
   1344 			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
   1345 			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
   1346 				/* fill time stamp */
   1347 				u_int64_t tsf;
   1348 				u_int32_t *tstamp;
   1349 
   1350 				tsf = ath_hal_gettsf64(ah);
   1351 				/* XXX: adjust 100us delay to xmit */
   1352 				tsf += 100;
   1353 				tstamp = (u_int32_t *)&wh[1];
   1354 				tstamp[0] = htole32(tsf & 0xffffffff);
   1355 				tstamp[1] = htole32(tsf >> 32);
   1356 			}
   1357 			sc->sc_stats.ast_tx_mgmt++;
   1358 		}
   1359 
   1360 		if (ath_tx_start(sc, ni, bf, m)) {
   1361 	bad:
   1362 			ifp->if_oerrors++;
   1363 	reclaim:
   1364 			ATH_TXBUF_LOCK(sc);
   1365 			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1366 			ATH_TXBUF_UNLOCK(sc);
   1367 			if (ni != NULL)
   1368 				ieee80211_free_node(ni);
   1369 			continue;
   1370 		}
   1371 
   1372 		sc->sc_tx_timer = 5;
   1373 		ifp->if_timer = 1;
   1374 	}
   1375 }
   1376 
   1377 static int
   1378 ath_media_change(struct ifnet *ifp)
   1379 {
   1380 #define	IS_UP(ifp) \
   1381 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
   1382 	int error;
   1383 
   1384 	error = ieee80211_media_change(ifp);
   1385 	if (error == ENETRESET) {
   1386 		if (IS_UP(ifp))
   1387 			ath_init(ifp->if_softc);	/* XXX lose error */
   1388 		error = 0;
   1389 	}
   1390 	return error;
   1391 #undef IS_UP
   1392 }
   1393 
   1394 #ifdef AR_DEBUG
   1395 static void
   1396 ath_keyprint(const char *tag, u_int ix,
   1397 	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
   1398 {
   1399 	static const char *ciphers[] = {
   1400 		"WEP",
   1401 		"AES-OCB",
   1402 		"AES-CCM",
   1403 		"CKIP",
   1404 		"TKIP",
   1405 		"CLR",
   1406 	};
   1407 	int i, n;
   1408 
   1409 	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
   1410 	for (i = 0, n = hk->kv_len; i < n; i++)
   1411 		printf("%02x", hk->kv_val[i]);
   1412 	printf(" mac %s", ether_sprintf(mac));
   1413 	if (hk->kv_type == HAL_CIPHER_TKIP) {
   1414 		printf(" mic ");
   1415 		for (i = 0; i < sizeof(hk->kv_mic); i++)
   1416 			printf("%02x", hk->kv_mic[i]);
   1417 	}
   1418 	printf("\n");
   1419 }
   1420 #endif
   1421 
   1422 /*
   1423  * Set a TKIP key into the hardware.  This handles the
   1424  * potential distribution of key state to multiple key
   1425  * cache slots for TKIP.
   1426  */
   1427 static int
   1428 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
   1429 	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
   1430 {
   1431 #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
   1432 	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
   1433 	struct ath_hal *ah = sc->sc_ah;
   1434 
   1435 	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
   1436 		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
   1437 	KASSERT(sc->sc_splitmic, ("key cache !split"));
   1438 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
   1439 		/*
   1440 		 * TX key goes at first index, RX key at the rx index.
   1441 		 * The hal handles the MIC keys at index+64.
   1442 		 */
   1443 		memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
   1444 		KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
   1445 		if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
   1446 			return 0;
   1447 
   1448 		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
   1449 		KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
   1450 		/* XXX delete tx key on failure? */
   1451 		return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
   1452 	} else if (k->wk_flags & IEEE80211_KEY_XR) {
   1453 		/*
   1454 		 * TX/RX key goes at first index.
   1455 		 * The hal handles the MIC keys are index+64.
   1456 		 */
   1457 		memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
   1458 			k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
   1459 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
   1460 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
   1461 	}
   1462 	return 0;
   1463 #undef IEEE80211_KEY_XR
   1464 }
   1465 
   1466 /*
   1467  * Set a net80211 key into the hardware.  This handles the
   1468  * potential distribution of key state to multiple key
   1469  * cache slots for TKIP with hardware MIC support.
   1470  */
   1471 static int
   1472 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
   1473 	const u_int8_t mac0[IEEE80211_ADDR_LEN],
   1474 	struct ieee80211_node *bss)
   1475 {
   1476 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1477 	static const u_int8_t ciphermap[] = {
   1478 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
   1479 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
   1480 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
   1481 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
   1482 		(u_int8_t) -1,		/* 4 is not allocated */
   1483 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
   1484 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
   1485 	};
   1486 	struct ath_hal *ah = sc->sc_ah;
   1487 	const struct ieee80211_cipher *cip = k->wk_cipher;
   1488 	u_int8_t gmac[IEEE80211_ADDR_LEN];
   1489 	const u_int8_t *mac;
   1490 	HAL_KEYVAL hk;
   1491 
   1492 	memset(&hk, 0, sizeof(hk));
   1493 	/*
   1494 	 * Software crypto uses a "clear key" so non-crypto
   1495 	 * state kept in the key cache are maintained and
   1496 	 * so that rx frames have an entry to match.
   1497 	 */
   1498 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
   1499 		KASSERT(cip->ic_cipher < N(ciphermap),
   1500 			("invalid cipher type %u", cip->ic_cipher));
   1501 		hk.kv_type = ciphermap[cip->ic_cipher];
   1502 		hk.kv_len = k->wk_keylen;
   1503 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
   1504 	} else
   1505 		hk.kv_type = HAL_CIPHER_CLR;
   1506 
   1507 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
   1508 		/*
   1509 		 * Group keys on hardware that supports multicast frame
   1510 		 * key search use a mac that is the sender's address with
   1511 		 * the high bit set instead of the app-specified address.
   1512 		 */
   1513 		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
   1514 		gmac[0] |= 0x80;
   1515 		mac = gmac;
   1516 	} else
   1517 		mac = mac0;
   1518 
   1519 	if (hk.kv_type == HAL_CIPHER_TKIP &&
   1520 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
   1521 	    sc->sc_splitmic) {
   1522 		return ath_keyset_tkip(sc, k, &hk, mac);
   1523 	} else {
   1524 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
   1525 		return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
   1526 	}
   1527 #undef N
   1528 }
   1529 
   1530 /*
   1531  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
   1532  * each key, one for decrypt/encrypt and the other for the MIC.
   1533  */
   1534 static u_int16_t
   1535 key_alloc_2pair(struct ath_softc *sc,
   1536 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
   1537 {
   1538 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1539 	u_int i, keyix;
   1540 
   1541 	KASSERT(sc->sc_splitmic, ("key cache !split"));
   1542 	/* XXX could optimize */
   1543 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
   1544 		u_int8_t b = sc->sc_keymap[i];
   1545 		if (b != 0xff) {
   1546 			/*
   1547 			 * One or more slots in this byte are free.
   1548 			 */
   1549 			keyix = i*NBBY;
   1550 			while (b & 1) {
   1551 		again:
   1552 				keyix++;
   1553 				b >>= 1;
   1554 			}
   1555 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
   1556 			if (isset(sc->sc_keymap, keyix+32) ||
   1557 			    isset(sc->sc_keymap, keyix+64) ||
   1558 			    isset(sc->sc_keymap, keyix+32+64)) {
   1559 				/* full pair unavailable */
   1560 				/* XXX statistic */
   1561 				if (keyix == (i+1)*NBBY) {
   1562 					/* no slots were appropriate, advance */
   1563 					continue;
   1564 				}
   1565 				goto again;
   1566 			}
   1567 			setbit(sc->sc_keymap, keyix);
   1568 			setbit(sc->sc_keymap, keyix+64);
   1569 			setbit(sc->sc_keymap, keyix+32);
   1570 			setbit(sc->sc_keymap, keyix+32+64);
   1571 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
   1572 				"%s: key pair %u,%u %u,%u\n",
   1573 				__func__, keyix, keyix+64,
   1574 				keyix+32, keyix+32+64);
   1575 			*txkeyix = keyix;
   1576 			*rxkeyix = keyix+32;
   1577 			return 1;
   1578 		}
   1579 	}
   1580 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
   1581 	return 0;
   1582 #undef N
   1583 }
   1584 
   1585 /*
   1586  * Allocate a single key cache slot.
   1587  */
   1588 static int
   1589 key_alloc_single(struct ath_softc *sc,
   1590 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
   1591 {
   1592 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1593 	u_int i, keyix;
   1594 
   1595 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
   1596 	for (i = 0; i < N(sc->sc_keymap); i++) {
   1597 		u_int8_t b = sc->sc_keymap[i];
   1598 		if (b != 0xff) {
   1599 			/*
   1600 			 * One or more slots are free.
   1601 			 */
   1602 			keyix = i*NBBY;
   1603 			while (b & 1)
   1604 				keyix++, b >>= 1;
   1605 			setbit(sc->sc_keymap, keyix);
   1606 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
   1607 				__func__, keyix);
   1608 			*txkeyix = *rxkeyix = keyix;
   1609 			return 1;
   1610 		}
   1611 	}
   1612 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
   1613 	return 0;
   1614 #undef N
   1615 }
   1616 
   1617 /*
   1618  * Allocate one or more key cache slots for a uniacst key.  The
   1619  * key itself is needed only to identify the cipher.  For hardware
   1620  * TKIP with split cipher+MIC keys we allocate two key cache slot
   1621  * pairs so that we can setup separate TX and RX MIC keys.  Note
   1622  * that the MIC key for a TKIP key at slot i is assumed by the
   1623  * hardware to be at slot i+64.  This limits TKIP keys to the first
   1624  * 64 entries.
   1625  */
   1626 static int
   1627 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
   1628 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
   1629 {
   1630 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1631 
   1632 	/*
   1633 	 * Group key allocation must be handled specially for
   1634 	 * parts that do not support multicast key cache search
   1635 	 * functionality.  For those parts the key id must match
   1636 	 * the h/w key index so lookups find the right key.  On
   1637 	 * parts w/ the key search facility we install the sender's
   1638 	 * mac address (with the high bit set) and let the hardware
   1639 	 * find the key w/o using the key id.  This is preferred as
   1640 	 * it permits us to support multiple users for adhoc and/or
   1641 	 * multi-station operation.
   1642 	 */
   1643 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
   1644 		if (!(&ic->ic_nw_keys[0] <= k &&
   1645 		      k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
   1646 			/* should not happen */
   1647 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
   1648 				"%s: bogus group key\n", __func__);
   1649 			return 0;
   1650 		}
   1651 		/*
   1652 		 * XXX we pre-allocate the global keys so
   1653 		 * have no way to check if they've already been allocated.
   1654 		 */
   1655 		*keyix = *rxkeyix = k - ic->ic_nw_keys;
   1656 		return 1;
   1657 	}
   1658 
   1659 	/*
   1660 	 * We allocate two pair for TKIP when using the h/w to do
   1661 	 * the MIC.  For everything else, including software crypto,
   1662 	 * we allocate a single entry.  Note that s/w crypto requires
   1663 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
   1664 	 * not support pass-through cache entries and we map all
   1665 	 * those requests to slot 0.
   1666 	 */
   1667 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
   1668 		return key_alloc_single(sc, keyix, rxkeyix);
   1669 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1670 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
   1671 		return key_alloc_2pair(sc, keyix, rxkeyix);
   1672 	} else {
   1673 		return key_alloc_single(sc, keyix, rxkeyix);
   1674 	}
   1675 }
   1676 
   1677 /*
   1678  * Delete an entry in the key cache allocated by ath_key_alloc.
   1679  */
   1680 static int
   1681 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
   1682 {
   1683 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1684 	struct ath_hal *ah = sc->sc_ah;
   1685 	const struct ieee80211_cipher *cip = k->wk_cipher;
   1686 	u_int keyix = k->wk_keyix;
   1687 
   1688 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
   1689 
   1690 	ath_hal_keyreset(ah, keyix);
   1691 	/*
   1692 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
   1693 	 */
   1694 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1695 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
   1696 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
   1697 	if (keyix >= IEEE80211_WEP_NKID) {
   1698 		/*
   1699 		 * Don't touch keymap entries for global keys so
   1700 		 * they are never considered for dynamic allocation.
   1701 		 */
   1702 		clrbit(sc->sc_keymap, keyix);
   1703 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1704 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
   1705 		    sc->sc_splitmic) {
   1706 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
   1707 			clrbit(sc->sc_keymap, keyix+32);	/* RX key */
   1708 			clrbit(sc->sc_keymap, keyix+32+64);	/* RX key MIC */
   1709 		}
   1710 	}
   1711 	return 1;
   1712 }
   1713 
   1714 /*
   1715  * Set the key cache contents for the specified key.  Key cache
   1716  * slot(s) must already have been allocated by ath_key_alloc.
   1717  */
   1718 static int
   1719 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
   1720 	const u_int8_t mac[IEEE80211_ADDR_LEN])
   1721 {
   1722 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1723 
   1724 	return ath_keyset(sc, k, mac, ic->ic_bss);
   1725 }
   1726 
   1727 /*
   1728  * Block/unblock tx+rx processing while a key change is done.
   1729  * We assume the caller serializes key management operations
   1730  * so we only need to worry about synchronization with other
   1731  * uses that originate in the driver.
   1732  */
   1733 static void
   1734 ath_key_update_begin(struct ieee80211com *ic)
   1735 {
   1736 	struct ifnet *ifp = ic->ic_ifp;
   1737 	struct ath_softc *sc = ifp->if_softc;
   1738 
   1739 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
   1740 #if 0
   1741 	tasklet_disable(&sc->sc_rxtq);
   1742 #endif
   1743 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
   1744 }
   1745 
   1746 static void
   1747 ath_key_update_end(struct ieee80211com *ic)
   1748 {
   1749 	struct ifnet *ifp = ic->ic_ifp;
   1750 	struct ath_softc *sc = ifp->if_softc;
   1751 
   1752 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
   1753 	IF_UNLOCK(&ifp->if_snd);
   1754 #if 0
   1755 	tasklet_enable(&sc->sc_rxtq);
   1756 #endif
   1757 }
   1758 
   1759 /*
   1760  * Calculate the receive filter according to the
   1761  * operating mode and state:
   1762  *
   1763  * o always accept unicast, broadcast, and multicast traffic
   1764  * o maintain current state of phy error reception (the hal
   1765  *   may enable phy error frames for noise immunity work)
   1766  * o probe request frames are accepted only when operating in
   1767  *   hostap, adhoc, or monitor modes
   1768  * o enable promiscuous mode according to the interface state
   1769  * o accept beacons:
   1770  *   - when operating in adhoc mode so the 802.11 layer creates
   1771  *     node table entries for peers,
   1772  *   - when operating in station mode for collecting rssi data when
   1773  *     the station is otherwise quiet, or
   1774  *   - when scanning
   1775  */
   1776 static u_int32_t
   1777 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
   1778 {
   1779 	struct ieee80211com *ic = &sc->sc_ic;
   1780 	struct ath_hal *ah = sc->sc_ah;
   1781 	struct ifnet *ifp = &sc->sc_if;
   1782 	u_int32_t rfilt;
   1783 
   1784 	rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
   1785 	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
   1786 	if (ic->ic_opmode != IEEE80211_M_STA)
   1787 		rfilt |= HAL_RX_FILTER_PROBEREQ;
   1788 	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
   1789 	    (ifp->if_flags & IFF_PROMISC))
   1790 		rfilt |= HAL_RX_FILTER_PROM;
   1791 	if (ic->ic_opmode == IEEE80211_M_STA ||
   1792 	    ic->ic_opmode == IEEE80211_M_IBSS ||
   1793 	    state == IEEE80211_S_SCAN)
   1794 		rfilt |= HAL_RX_FILTER_BEACON;
   1795 	return rfilt;
   1796 }
   1797 
   1798 static void
   1799 ath_mcastfilter_accum(caddr_t dl, u_int32_t *mfilt)
   1800 {
   1801 	u_int32_t val;
   1802 	u_int8_t pos;
   1803 
   1804 	/* calculate XOR of eight 6bit values */
   1805 	val = LE_READ_4(dl + 0);
   1806 	pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1807 	val = LE_READ_4(dl + 3);
   1808 	pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1809 	pos &= 0x3f;
   1810 	mfilt[pos / 32] |= (1 << (pos % 32));
   1811 }
   1812 
   1813 static void
   1814 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t *mfilt)
   1815 {
   1816 	struct ifnet *ifp = &sc->sc_if;
   1817 	struct ether_multi *enm;
   1818 	struct ether_multistep estep;
   1819 
   1820 	mfilt[0] = mfilt[1] = 0;
   1821 	ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
   1822 	while (enm != NULL) {
   1823 		/* XXX Punt on ranges. */
   1824 		if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
   1825 			mfilt[0] = mfilt[1] = ~((u_int32_t)0);
   1826 			ifp->if_flags |= IFF_ALLMULTI;
   1827 			return;
   1828 		}
   1829 		ath_mcastfilter_accum(enm->enm_addrlo, mfilt);
   1830 		ETHER_NEXT_MULTI(estep, enm);
   1831 	}
   1832 	ifp->if_flags &= ~IFF_ALLMULTI;
   1833 }
   1834 
   1835 static void
   1836 ath_mode_init(struct ath_softc *sc)
   1837 {
   1838 	struct ieee80211com *ic = &sc->sc_ic;
   1839 	struct ath_hal *ah = sc->sc_ah;
   1840 	u_int32_t rfilt, mfilt[2];
   1841 	int i;
   1842 
   1843 	/* configure rx filter */
   1844 	rfilt = ath_calcrxfilter(sc, ic->ic_state);
   1845 	ath_hal_setrxfilter(ah, rfilt);
   1846 
   1847 	/* configure operational mode */
   1848 	ath_hal_setopmode(ah);
   1849 
   1850 	/* Write keys to hardware; it may have been powered down. */
   1851 	ath_key_update_begin(ic);
   1852 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
   1853 		ath_key_set(ic,
   1854 			    &ic->ic_crypto.cs_nw_keys[i],
   1855 			    ic->ic_myaddr);
   1856 	}
   1857 	ath_key_update_end(ic);
   1858 
   1859 	/*
   1860 	 * Handle any link-level address change.  Note that we only
   1861 	 * need to force ic_myaddr; any other addresses are handled
   1862 	 * as a byproduct of the ifnet code marking the interface
   1863 	 * down then up.
   1864 	 *
   1865 	 * XXX should get from lladdr instead of arpcom but that's more work
   1866 	 */
   1867 	IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(sc->sc_if.if_sadl));
   1868 	ath_hal_setmac(ah, ic->ic_myaddr);
   1869 
   1870 	/* calculate and install multicast filter */
   1871 #ifdef __FreeBSD__
   1872 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   1873 		mfilt[0] = mfilt[1] = 0;
   1874 		IF_ADDR_LOCK(ifp);
   1875 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
   1876 			caddr_t dl;
   1877 
   1878 			/* calculate XOR of eight 6bit values */
   1879 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
   1880 			val = LE_READ_4(dl + 0);
   1881 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1882 			val = LE_READ_4(dl + 3);
   1883 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1884 			pos &= 0x3f;
   1885 			mfilt[pos / 32] |= (1 << (pos % 32));
   1886 		}
   1887 		IF_ADDR_UNLOCK(ifp);
   1888 	} else {
   1889 		mfilt[0] = mfilt[1] = ~0;
   1890 	}
   1891 #endif
   1892 #ifdef __NetBSD__
   1893 	ath_mcastfilter_compute(sc, mfilt);
   1894 #endif
   1895 	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
   1896 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
   1897 		__func__, rfilt, mfilt[0], mfilt[1]);
   1898 }
   1899 
   1900 /*
   1901  * Set the slot time based on the current setting.
   1902  */
   1903 static void
   1904 ath_setslottime(struct ath_softc *sc)
   1905 {
   1906 	struct ieee80211com *ic = &sc->sc_ic;
   1907 	struct ath_hal *ah = sc->sc_ah;
   1908 
   1909 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   1910 		ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
   1911 	else
   1912 		ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
   1913 	sc->sc_updateslot = OK;
   1914 }
   1915 
   1916 /*
   1917  * Callback from the 802.11 layer to update the
   1918  * slot time based on the current setting.
   1919  */
   1920 static void
   1921 ath_updateslot(struct ifnet *ifp)
   1922 {
   1923 	struct ath_softc *sc = ifp->if_softc;
   1924 	struct ieee80211com *ic = &sc->sc_ic;
   1925 
   1926 	/*
   1927 	 * When not coordinating the BSS, change the hardware
   1928 	 * immediately.  For other operation we defer the change
   1929 	 * until beacon updates have propagated to the stations.
   1930 	 */
   1931 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
   1932 		sc->sc_updateslot = UPDATE;
   1933 	else
   1934 		ath_setslottime(sc);
   1935 }
   1936 
   1937 /*
   1938  * Setup a h/w transmit queue for beacons.
   1939  */
   1940 static int
   1941 ath_beaconq_setup(struct ath_hal *ah)
   1942 {
   1943 	HAL_TXQ_INFO qi;
   1944 
   1945 	memset(&qi, 0, sizeof(qi));
   1946 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
   1947 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
   1948 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
   1949 	/* NB: for dynamic turbo, don't enable any other interrupts */
   1950 	qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
   1951 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
   1952 }
   1953 
   1954 /*
   1955  * Setup the transmit queue parameters for the beacon queue.
   1956  */
   1957 static int
   1958 ath_beaconq_config(struct ath_softc *sc)
   1959 {
   1960 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
   1961 	struct ieee80211com *ic = &sc->sc_ic;
   1962 	struct ath_hal *ah = sc->sc_ah;
   1963 	HAL_TXQ_INFO qi;
   1964 
   1965 	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
   1966 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   1967 		/*
   1968 		 * Always burst out beacon and CAB traffic.
   1969 		 */
   1970 		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
   1971 		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
   1972 		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
   1973 	} else {
   1974 		struct wmeParams *wmep =
   1975 			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
   1976 		/*
   1977 		 * Adhoc mode; important thing is to use 2x cwmin.
   1978 		 */
   1979 		qi.tqi_aifs = wmep->wmep_aifsn;
   1980 		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
   1981 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
   1982 	}
   1983 
   1984 	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
   1985 		device_printf(sc->sc_dev, "unable to update parameters for "
   1986 			"beacon hardware queue!\n");
   1987 		return 0;
   1988 	} else {
   1989 		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
   1990 		return 1;
   1991 	}
   1992 #undef ATH_EXPONENT_TO_VALUE
   1993 }
   1994 
   1995 /*
   1996  * Allocate and setup an initial beacon frame.
   1997  */
   1998 static int
   1999 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
   2000 {
   2001 	struct ieee80211com *ic = ni->ni_ic;
   2002 	struct ath_buf *bf;
   2003 	struct mbuf *m;
   2004 	int error;
   2005 
   2006 	bf = STAILQ_FIRST(&sc->sc_bbuf);
   2007 	if (bf == NULL) {
   2008 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
   2009 		sc->sc_stats.ast_be_nombuf++;	/* XXX */
   2010 		return ENOMEM;			/* XXX */
   2011 	}
   2012 	/*
   2013 	 * NB: the beacon data buffer must be 32-bit aligned;
   2014 	 * we assume the mbuf routines will return us something
   2015 	 * with this alignment (perhaps should assert).
   2016 	 */
   2017 	m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
   2018 	if (m == NULL) {
   2019 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
   2020 			__func__);
   2021 		sc->sc_stats.ast_be_nombuf++;
   2022 		return ENOMEM;
   2023 	}
   2024 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
   2025 				     BUS_DMA_NOWAIT);
   2026 	if (error == 0) {
   2027 		bf->bf_m = m;
   2028 		bf->bf_node = ieee80211_ref_node(ni);
   2029 	} else {
   2030 		m_freem(m);
   2031 	}
   2032 	return error;
   2033 }
   2034 
   2035 /*
   2036  * Setup the beacon frame for transmit.
   2037  */
   2038 static void
   2039 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
   2040 {
   2041 #define	USE_SHPREAMBLE(_ic) \
   2042 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
   2043 		== IEEE80211_F_SHPREAMBLE)
   2044 	struct ieee80211_node *ni = bf->bf_node;
   2045 	struct ieee80211com *ic = ni->ni_ic;
   2046 	struct mbuf *m = bf->bf_m;
   2047 	struct ath_hal *ah = sc->sc_ah;
   2048 	struct ath_desc *ds;
   2049 	int flags, antenna;
   2050 	const HAL_RATE_TABLE *rt;
   2051 	u_int8_t rix, rate;
   2052 
   2053 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
   2054 		__func__, m, m->m_len);
   2055 
   2056 	/* setup descriptors */
   2057 	ds = bf->bf_desc;
   2058 
   2059 	flags = HAL_TXDESC_NOACK;
   2060 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
   2061 		ds->ds_link = bf->bf_daddr;	/* self-linked */
   2062 		flags |= HAL_TXDESC_VEOL;
   2063 		/*
   2064 		 * Let hardware handle antenna switching unless
   2065 		 * the user has selected a transmit antenna
   2066 		 * (sc_txantenna is not 0).
   2067 		 */
   2068 		antenna = sc->sc_txantenna;
   2069 	} else {
   2070 		ds->ds_link = 0;
   2071 		/*
   2072 		 * Switch antenna every 4 beacons, unless the user
   2073 		 * has selected a transmit antenna (sc_txantenna
   2074 		 * is not 0).
   2075 		 *
   2076 		 * XXX assumes two antenna
   2077 		 */
   2078 		if (sc->sc_txantenna == 0)
   2079 			antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
   2080 		else
   2081 			antenna = sc->sc_txantenna;
   2082 	}
   2083 
   2084 	KASSERT(bf->bf_nseg == 1,
   2085 		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
   2086 	ds->ds_data = bf->bf_segs[0].ds_addr;
   2087 	/*
   2088 	 * Calculate rate code.
   2089 	 * XXX everything at min xmit rate
   2090 	 */
   2091 	rix = sc->sc_minrateix;
   2092 	rt = sc->sc_currates;
   2093 	rate = rt->info[rix].rateCode;
   2094 	if (USE_SHPREAMBLE(ic))
   2095 		rate |= rt->info[rix].shortPreamble;
   2096 	ath_hal_setuptxdesc(ah, ds
   2097 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
   2098 		, sizeof(struct ieee80211_frame)/* header length */
   2099 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
   2100 		, ni->ni_txpower		/* txpower XXX */
   2101 		, rate, 1			/* series 0 rate/tries */
   2102 		, HAL_TXKEYIX_INVALID		/* no encryption */
   2103 		, antenna			/* antenna mode */
   2104 		, flags				/* no ack, veol for beacons */
   2105 		, 0				/* rts/cts rate */
   2106 		, 0				/* rts/cts duration */
   2107 	);
   2108 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
   2109 	ath_hal_filltxdesc(ah, ds
   2110 		, roundup(m->m_len, 4)		/* buffer length */
   2111 		, AH_TRUE			/* first segment */
   2112 		, AH_TRUE			/* last segment */
   2113 		, ds				/* first descriptor */
   2114 	);
   2115 #undef USE_SHPREAMBLE
   2116 }
   2117 
   2118 /*
   2119  * Transmit a beacon frame at SWBA.  Dynamic updates to the
   2120  * frame contents are done as needed and the slot time is
   2121  * also adjusted based on current state.
   2122  */
   2123 static void
   2124 ath_beacon_proc(void *arg, int pending)
   2125 {
   2126 	struct ath_softc *sc = arg;
   2127 	struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
   2128 	struct ieee80211_node *ni = bf->bf_node;
   2129 	struct ieee80211com *ic = ni->ni_ic;
   2130 	struct ath_hal *ah = sc->sc_ah;
   2131 	struct mbuf *m;
   2132 	int ncabq, error, otherant;
   2133 
   2134 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
   2135 		__func__, pending);
   2136 
   2137 	if (ic->ic_opmode == IEEE80211_M_STA ||
   2138 	    ic->ic_opmode == IEEE80211_M_MONITOR ||
   2139 	    bf == NULL || bf->bf_m == NULL) {
   2140 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
   2141 			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
   2142 		return;
   2143 	}
   2144 	/*
   2145 	 * Check if the previous beacon has gone out.  If
   2146 	 * not don't try to post another, skip this period
   2147 	 * and wait for the next.  Missed beacons indicate
   2148 	 * a problem and should not occur.  If we miss too
   2149 	 * many consecutive beacons reset the device.
   2150 	 */
   2151 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
   2152 		sc->sc_bmisscount++;
   2153 		DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
   2154 			"%s: missed %u consecutive beacons\n",
   2155 			__func__, sc->sc_bmisscount);
   2156 		if (sc->sc_bmisscount > 3)		/* NB: 3 is a guess */
   2157 			TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask);
   2158 		return;
   2159 	}
   2160 	if (sc->sc_bmisscount != 0) {
   2161 		DPRINTF(sc, ATH_DEBUG_BEACON,
   2162 			"%s: resume beacon xmit after %u misses\n",
   2163 			__func__, sc->sc_bmisscount);
   2164 		sc->sc_bmisscount = 0;
   2165 	}
   2166 
   2167 	/*
   2168 	 * Update dynamic beacon contents.  If this returns
   2169 	 * non-zero then we need to remap the memory because
   2170 	 * the beacon frame changed size (probably because
   2171 	 * of the TIM bitmap).
   2172 	 */
   2173 	m = bf->bf_m;
   2174 	ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
   2175 	if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
   2176 		/* XXX too conservative? */
   2177 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   2178 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
   2179 					     BUS_DMA_NOWAIT);
   2180 		if (error != 0) {
   2181 			if_printf(&sc->sc_if,
   2182 			    "%s: bus_dmamap_load_mbuf failed, error %u\n",
   2183 			    __func__, error);
   2184 			return;
   2185 		}
   2186 	}
   2187 
   2188 	/*
   2189 	 * Handle slot time change when a non-ERP station joins/leaves
   2190 	 * an 11g network.  The 802.11 layer notifies us via callback,
   2191 	 * we mark updateslot, then wait one beacon before effecting
   2192 	 * the change.  This gives associated stations at least one
   2193 	 * beacon interval to note the state change.
   2194 	 */
   2195 	/* XXX locking */
   2196 	if (sc->sc_updateslot == UPDATE)
   2197 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
   2198 	else if (sc->sc_updateslot == COMMIT)
   2199 		ath_setslottime(sc);		/* commit change to h/w */
   2200 
   2201 	/*
   2202 	 * Check recent per-antenna transmit statistics and flip
   2203 	 * the default antenna if noticeably more frames went out
   2204 	 * on the non-default antenna.
   2205 	 * XXX assumes 2 anntenae
   2206 	 */
   2207 	otherant = sc->sc_defant & 1 ? 2 : 1;
   2208 	if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
   2209 		ath_setdefantenna(sc, otherant);
   2210 	sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
   2211 
   2212 	/*
   2213 	 * Construct tx descriptor.
   2214 	 */
   2215 	ath_beacon_setup(sc, bf);
   2216 
   2217 	/*
   2218 	 * Stop any current dma and put the new frame on the queue.
   2219 	 * This should never fail since we check above that no frames
   2220 	 * are still pending on the queue.
   2221 	 */
   2222 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
   2223 		DPRINTF(sc, ATH_DEBUG_ANY,
   2224 			"%s: beacon queue %u did not stop?\n",
   2225 			__func__, sc->sc_bhalq);
   2226 	}
   2227 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   2228 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2229 
   2230 	/*
   2231 	 * Enable the CAB queue before the beacon queue to
   2232 	 * insure cab frames are triggered by this beacon.
   2233 	 */
   2234 	if (ncabq != 0 && (sc->sc_boff.bo_tim[4] & 1))	/* NB: only at DTIM */
   2235 		ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
   2236 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
   2237 	ath_hal_txstart(ah, sc->sc_bhalq);
   2238 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
   2239 		"%s: TXDP[%u] = %p (%p)\n", __func__,
   2240 		sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc);
   2241 
   2242 	sc->sc_stats.ast_be_xmit++;
   2243 }
   2244 
   2245 /*
   2246  * Reset the hardware after detecting beacons have stopped.
   2247  */
   2248 static void
   2249 ath_bstuck_proc(void *arg, int pending)
   2250 {
   2251 	struct ath_softc *sc = arg;
   2252 	struct ifnet *ifp = &sc->sc_if;
   2253 
   2254 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
   2255 		sc->sc_bmisscount);
   2256 	ath_reset(ifp);
   2257 }
   2258 
   2259 /*
   2260  * Reclaim beacon resources.
   2261  */
   2262 static void
   2263 ath_beacon_free(struct ath_softc *sc)
   2264 {
   2265 	struct ath_buf *bf;
   2266 
   2267 	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
   2268 		if (bf->bf_m != NULL) {
   2269 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   2270 			m_freem(bf->bf_m);
   2271 			bf->bf_m = NULL;
   2272 		}
   2273 		if (bf->bf_node != NULL) {
   2274 			ieee80211_free_node(bf->bf_node);
   2275 			bf->bf_node = NULL;
   2276 		}
   2277 	}
   2278 }
   2279 
   2280 /*
   2281  * Configure the beacon and sleep timers.
   2282  *
   2283  * When operating as an AP this resets the TSF and sets
   2284  * up the hardware to notify us when we need to issue beacons.
   2285  *
   2286  * When operating in station mode this sets up the beacon
   2287  * timers according to the timestamp of the last received
   2288  * beacon and the current TSF, configures PCF and DTIM
   2289  * handling, programs the sleep registers so the hardware
   2290  * will wakeup in time to receive beacons, and configures
   2291  * the beacon miss handling so we'll receive a BMISS
   2292  * interrupt when we stop seeing beacons from the AP
   2293  * we've associated with.
   2294  */
   2295 static void
   2296 ath_beacon_config(struct ath_softc *sc)
   2297 {
   2298 #define	TSF_TO_TU(_h,_l) \
   2299 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
   2300 #define	FUDGE	2
   2301 	struct ath_hal *ah = sc->sc_ah;
   2302 	struct ieee80211com *ic = &sc->sc_ic;
   2303 	struct ieee80211_node *ni = ic->ic_bss;
   2304 	u_int32_t nexttbtt, intval, tsftu;
   2305 	u_int64_t tsf;
   2306 
   2307 	/* extract tstamp from last beacon and convert to TU */
   2308 	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
   2309 			     LE_READ_4(ni->ni_tstamp.data));
   2310 	/* NB: the beacon interval is kept internally in TU's */
   2311 	intval = ni->ni_intval & HAL_BEACON_PERIOD;
   2312 	if (nexttbtt == 0)		/* e.g. for ap mode */
   2313 		nexttbtt = intval;
   2314 	else if (intval)		/* NB: can be 0 for monitor mode */
   2315 		nexttbtt = roundup(nexttbtt, intval);
   2316 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
   2317 		__func__, nexttbtt, intval, ni->ni_intval);
   2318 	if (ic->ic_opmode == IEEE80211_M_STA) {
   2319 		HAL_BEACON_STATE bs;
   2320 		int dtimperiod, dtimcount;
   2321 		int cfpperiod, cfpcount;
   2322 
   2323 		/*
   2324 		 * Setup dtim and cfp parameters according to
   2325 		 * last beacon we received (which may be none).
   2326 		 */
   2327 		dtimperiod = ni->ni_dtim_period;
   2328 		if (dtimperiod <= 0)		/* NB: 0 if not known */
   2329 			dtimperiod = 1;
   2330 		dtimcount = ni->ni_dtim_count;
   2331 		if (dtimcount >= dtimperiod)	/* NB: sanity check */
   2332 			dtimcount = 0;		/* XXX? */
   2333 		cfpperiod = 1;			/* NB: no PCF support yet */
   2334 		cfpcount = 0;
   2335 		/*
   2336 		 * Pull nexttbtt forward to reflect the current
   2337 		 * TSF and calculate dtim+cfp state for the result.
   2338 		 */
   2339 		tsf = ath_hal_gettsf64(ah);
   2340 		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
   2341 		do {
   2342 			nexttbtt += intval;
   2343 			if (--dtimcount < 0) {
   2344 				dtimcount = dtimperiod - 1;
   2345 				if (--cfpcount < 0)
   2346 					cfpcount = cfpperiod - 1;
   2347 			}
   2348 		} while (nexttbtt < tsftu);
   2349 		memset(&bs, 0, sizeof(bs));
   2350 		bs.bs_intval = intval;
   2351 		bs.bs_nexttbtt = nexttbtt;
   2352 		bs.bs_dtimperiod = dtimperiod*intval;
   2353 		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
   2354 		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
   2355 		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
   2356 		bs.bs_cfpmaxduration = 0;
   2357 #if 0
   2358 		/*
   2359 		 * The 802.11 layer records the offset to the DTIM
   2360 		 * bitmap while receiving beacons; use it here to
   2361 		 * enable h/w detection of our AID being marked in
   2362 		 * the bitmap vector (to indicate frames for us are
   2363 		 * pending at the AP).
   2364 		 * XXX do DTIM handling in s/w to WAR old h/w bugs
   2365 		 * XXX enable based on h/w rev for newer chips
   2366 		 */
   2367 		bs.bs_timoffset = ni->ni_timoff;
   2368 #endif
   2369 		/*
   2370 		 * Calculate the number of consecutive beacons to miss
   2371 		 * before taking a BMISS interrupt.  The configuration
   2372 		 * is specified in ms, so we need to convert that to
   2373 		 * TU's and then calculate based on the beacon interval.
   2374 		 * Note that we clamp the result to at most 10 beacons.
   2375 		 */
   2376 		bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
   2377 		if (bs.bs_bmissthreshold > 10)
   2378 			bs.bs_bmissthreshold = 10;
   2379 		else if (bs.bs_bmissthreshold <= 0)
   2380 			bs.bs_bmissthreshold = 1;
   2381 
   2382 		/*
   2383 		 * Calculate sleep duration.  The configuration is
   2384 		 * given in ms.  We insure a multiple of the beacon
   2385 		 * period is used.  Also, if the sleep duration is
   2386 		 * greater than the DTIM period then it makes senses
   2387 		 * to make it a multiple of that.
   2388 		 *
   2389 		 * XXX fixed at 100ms
   2390 		 */
   2391 		bs.bs_sleepduration =
   2392 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
   2393 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
   2394 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
   2395 
   2396 		DPRINTF(sc, ATH_DEBUG_BEACON,
   2397 			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
   2398 			, __func__
   2399 			, tsf, tsftu
   2400 			, bs.bs_intval
   2401 			, bs.bs_nexttbtt
   2402 			, bs.bs_dtimperiod
   2403 			, bs.bs_nextdtim
   2404 			, bs.bs_bmissthreshold
   2405 			, bs.bs_sleepduration
   2406 			, bs.bs_cfpperiod
   2407 			, bs.bs_cfpmaxduration
   2408 			, bs.bs_cfpnext
   2409 			, bs.bs_timoffset
   2410 		);
   2411 		ath_hal_intrset(ah, 0);
   2412 		ath_hal_beacontimers(ah, &bs);
   2413 		sc->sc_imask |= HAL_INT_BMISS;
   2414 		ath_hal_intrset(ah, sc->sc_imask);
   2415 	} else {
   2416 		ath_hal_intrset(ah, 0);
   2417 		if (nexttbtt == intval)
   2418 			intval |= HAL_BEACON_RESET_TSF;
   2419 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
   2420 			/*
   2421 			 * In IBSS mode enable the beacon timers but only
   2422 			 * enable SWBA interrupts if we need to manually
   2423 			 * prepare beacon frames.  Otherwise we use a
   2424 			 * self-linked tx descriptor and let the hardware
   2425 			 * deal with things.
   2426 			 */
   2427 			intval |= HAL_BEACON_ENA;
   2428 			if (!sc->sc_hasveol)
   2429 				sc->sc_imask |= HAL_INT_SWBA;
   2430 			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
   2431 				/*
   2432 				 * Pull nexttbtt forward to reflect
   2433 				 * the current TSF.
   2434 				 */
   2435 				tsf = ath_hal_gettsf64(ah);
   2436 				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
   2437 				do {
   2438 					nexttbtt += intval;
   2439 				} while (nexttbtt < tsftu);
   2440 			}
   2441 			ath_beaconq_config(sc);
   2442 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   2443 			/*
   2444 			 * In AP mode we enable the beacon timers and
   2445 			 * SWBA interrupts to prepare beacon frames.
   2446 			 */
   2447 			intval |= HAL_BEACON_ENA;
   2448 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
   2449 			ath_beaconq_config(sc);
   2450 		}
   2451 		ath_hal_beaconinit(ah, nexttbtt, intval);
   2452 		sc->sc_bmisscount = 0;
   2453 		ath_hal_intrset(ah, sc->sc_imask);
   2454 		/*
   2455 		 * When using a self-linked beacon descriptor in
   2456 		 * ibss mode load it once here.
   2457 		 */
   2458 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
   2459 			ath_beacon_proc(sc, 0);
   2460 	}
   2461 	sc->sc_syncbeacon = 0;
   2462 #undef UNDEF
   2463 #undef TSF_TO_TU
   2464 }
   2465 
   2466 static int
   2467 ath_descdma_setup(struct ath_softc *sc,
   2468 	struct ath_descdma *dd, ath_bufhead *head,
   2469 	const char *name, int nbuf, int ndesc)
   2470 {
   2471 #define	DS2PHYS(_dd, _ds) \
   2472 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
   2473 	struct ifnet *ifp = &sc->sc_if;
   2474 	struct ath_desc *ds;
   2475 	struct ath_buf *bf;
   2476 	int i, bsize, error;
   2477 
   2478 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
   2479 	    __func__, name, nbuf, ndesc);
   2480 
   2481 	dd->dd_name = name;
   2482 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
   2483 
   2484 	/*
   2485 	 * Setup DMA descriptor area.
   2486 	 */
   2487 	dd->dd_dmat = sc->sc_dmat;
   2488 
   2489 	error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE,
   2490 	    0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0);
   2491 
   2492 	if (error != 0) {
   2493 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
   2494 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
   2495 		goto fail0;
   2496 	}
   2497 
   2498 	error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg,
   2499 	    dd->dd_desc_len, (caddr_t *)&dd->dd_desc, BUS_DMA_COHERENT);
   2500 	if (error != 0) {
   2501 		if_printf(ifp, "unable to map %u %s descriptors, error = %u\n",
   2502 		    nbuf * ndesc, dd->dd_name, error);
   2503 		goto fail1;
   2504 	}
   2505 
   2506 	/* allocate descriptors */
   2507 	error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1,
   2508 	    dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap);
   2509 	if (error != 0) {
   2510 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
   2511 			"error %u\n", dd->dd_name, error);
   2512 		goto fail2;
   2513 	}
   2514 
   2515 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc,
   2516 	    dd->dd_desc_len, NULL, BUS_DMA_NOWAIT);
   2517 	if (error != 0) {
   2518 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
   2519 			dd->dd_name, error);
   2520 		goto fail3;
   2521 	}
   2522 
   2523 	ds = dd->dd_desc;
   2524 	dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr;
   2525 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
   2526 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
   2527 	    (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
   2528 
   2529 	/* allocate rx buffers */
   2530 	bsize = sizeof(struct ath_buf) * nbuf;
   2531 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
   2532 	if (bf == NULL) {
   2533 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
   2534 			dd->dd_name, bsize);
   2535 		goto fail4;
   2536 	}
   2537 	dd->dd_bufptr = bf;
   2538 
   2539 	STAILQ_INIT(head);
   2540 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
   2541 		bf->bf_desc = ds;
   2542 		bf->bf_daddr = DS2PHYS(dd, ds);
   2543 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc,
   2544 				MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap);
   2545 		if (error != 0) {
   2546 			if_printf(ifp, "unable to create dmamap for %s "
   2547 				"buffer %u, error %u\n", dd->dd_name, i, error);
   2548 			ath_descdma_cleanup(sc, dd, head);
   2549 			return error;
   2550 		}
   2551 		STAILQ_INSERT_TAIL(head, bf, bf_list);
   2552 	}
   2553 	return 0;
   2554 fail4:
   2555 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
   2556 fail3:
   2557 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
   2558 fail2:
   2559 	bus_dmamem_unmap(dd->dd_dmat, (caddr_t)dd->dd_desc, dd->dd_desc_len);
   2560 fail1:
   2561 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
   2562 fail0:
   2563 	memset(dd, 0, sizeof(*dd));
   2564 	return error;
   2565 #undef DS2PHYS
   2566 }
   2567 
   2568 static void
   2569 ath_descdma_cleanup(struct ath_softc *sc,
   2570 	struct ath_descdma *dd, ath_bufhead *head)
   2571 {
   2572 	struct ath_buf *bf;
   2573 	struct ieee80211_node *ni;
   2574 
   2575 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
   2576 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
   2577 	bus_dmamem_unmap(dd->dd_dmat, (caddr_t)dd->dd_desc, dd->dd_desc_len);
   2578 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
   2579 
   2580 	STAILQ_FOREACH(bf, head, bf_list) {
   2581 		if (bf->bf_m) {
   2582 			m_freem(bf->bf_m);
   2583 			bf->bf_m = NULL;
   2584 		}
   2585 		if (bf->bf_dmamap != NULL) {
   2586 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
   2587 			bf->bf_dmamap = NULL;
   2588 		}
   2589 		ni = bf->bf_node;
   2590 		bf->bf_node = NULL;
   2591 		if (ni != NULL) {
   2592 			/*
   2593 			 * Reclaim node reference.
   2594 			 */
   2595 			ieee80211_free_node(ni);
   2596 		}
   2597 	}
   2598 
   2599 	STAILQ_INIT(head);
   2600 	free(dd->dd_bufptr, M_ATHDEV);
   2601 	memset(dd, 0, sizeof(*dd));
   2602 }
   2603 
   2604 static int
   2605 ath_desc_alloc(struct ath_softc *sc)
   2606 {
   2607 	int error;
   2608 
   2609 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
   2610 			"rx", ath_rxbuf, 1);
   2611 	if (error != 0)
   2612 		return error;
   2613 
   2614 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
   2615 			"tx", ath_txbuf, ATH_TXDESC);
   2616 	if (error != 0) {
   2617 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2618 		return error;
   2619 	}
   2620 
   2621 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
   2622 			"beacon", 1, 1);
   2623 	if (error != 0) {
   2624 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
   2625 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2626 		return error;
   2627 	}
   2628 	return 0;
   2629 }
   2630 
   2631 static void
   2632 ath_desc_free(struct ath_softc *sc)
   2633 {
   2634 
   2635 	if (sc->sc_bdma.dd_desc_len != 0)
   2636 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
   2637 	if (sc->sc_txdma.dd_desc_len != 0)
   2638 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
   2639 	if (sc->sc_rxdma.dd_desc_len != 0)
   2640 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2641 }
   2642 
   2643 static struct ieee80211_node *
   2644 ath_node_alloc(struct ieee80211_node_table *nt)
   2645 {
   2646 	struct ieee80211com *ic = nt->nt_ic;
   2647 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   2648 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
   2649 	struct ath_node *an;
   2650 
   2651 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
   2652 	if (an == NULL) {
   2653 		/* XXX stat+msg */
   2654 		return NULL;
   2655 	}
   2656 	an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
   2657 	ath_rate_node_init(sc, an);
   2658 
   2659 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
   2660 	return &an->an_node;
   2661 }
   2662 
   2663 static void
   2664 ath_node_free(struct ieee80211_node *ni)
   2665 {
   2666 	struct ieee80211com *ic = ni->ni_ic;
   2667         struct ath_softc *sc = ic->ic_ifp->if_softc;
   2668 
   2669 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
   2670 
   2671 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
   2672 	sc->sc_node_free(ni);
   2673 }
   2674 
   2675 static u_int8_t
   2676 ath_node_getrssi(const struct ieee80211_node *ni)
   2677 {
   2678 #define	HAL_EP_RND(x, mul) \
   2679 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
   2680 	u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
   2681 	int32_t rssi;
   2682 
   2683 	/*
   2684 	 * When only one frame is received there will be no state in
   2685 	 * avgrssi so fallback on the value recorded by the 802.11 layer.
   2686 	 */
   2687 	if (avgrssi != ATH_RSSI_DUMMY_MARKER)
   2688 		rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
   2689 	else
   2690 		rssi = ni->ni_rssi;
   2691 	return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
   2692 #undef HAL_EP_RND
   2693 }
   2694 
   2695 static int
   2696 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
   2697 {
   2698 	struct ath_hal *ah = sc->sc_ah;
   2699 	int error;
   2700 	struct mbuf *m;
   2701 	struct ath_desc *ds;
   2702 
   2703 	m = bf->bf_m;
   2704 	if (m == NULL) {
   2705 		/*
   2706 		 * NB: by assigning a page to the rx dma buffer we
   2707 		 * implicitly satisfy the Atheros requirement that
   2708 		 * this buffer be cache-line-aligned and sized to be
   2709 		 * multiple of the cache line size.  Not doing this
   2710 		 * causes weird stuff to happen (for the 5210 at least).
   2711 		 */
   2712 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
   2713 		if (m == NULL) {
   2714 			DPRINTF(sc, ATH_DEBUG_ANY,
   2715 				"%s: no mbuf/cluster\n", __func__);
   2716 			sc->sc_stats.ast_rx_nombuf++;
   2717 			return ENOMEM;
   2718 		}
   2719 		bf->bf_m = m;
   2720 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
   2721 
   2722 		error = bus_dmamap_load_mbuf(sc->sc_dmat,
   2723 					     bf->bf_dmamap, m,
   2724 					     BUS_DMA_NOWAIT);
   2725 		if (error != 0) {
   2726 			DPRINTF(sc, ATH_DEBUG_ANY,
   2727 			    "%s: bus_dmamap_load_mbuf failed; error %d\n",
   2728 			    __func__, error);
   2729 			sc->sc_stats.ast_rx_busdma++;
   2730 			return error;
   2731 		}
   2732 		KASSERT(bf->bf_nseg == 1,
   2733 			("multi-segment packet; nseg %u", bf->bf_nseg));
   2734 	}
   2735 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   2736 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2737 
   2738 	/*
   2739 	 * Setup descriptors.  For receive we always terminate
   2740 	 * the descriptor list with a self-linked entry so we'll
   2741 	 * not get overrun under high load (as can happen with a
   2742 	 * 5212 when ANI processing enables PHY error frames).
   2743 	 *
   2744 	 * To insure the last descriptor is self-linked we create
   2745 	 * each descriptor as self-linked and add it to the end.  As
   2746 	 * each additional descriptor is added the previous self-linked
   2747 	 * entry is ``fixed'' naturally.  This should be safe even
   2748 	 * if DMA is happening.  When processing RX interrupts we
   2749 	 * never remove/process the last, self-linked, entry on the
   2750 	 * descriptor list.  This insures the hardware always has
   2751 	 * someplace to write a new frame.
   2752 	 */
   2753 	ds = bf->bf_desc;
   2754 	ds->ds_link = bf->bf_daddr;	/* link to self */
   2755 	ds->ds_data = bf->bf_segs[0].ds_addr;
   2756 	ds->ds_vdata = mtod(m, void *);	/* for radar */
   2757 	ath_hal_setuprxdesc(ah, ds
   2758 		, m->m_len		/* buffer size */
   2759 		, 0
   2760 	);
   2761 
   2762 	if (sc->sc_rxlink != NULL)
   2763 		*sc->sc_rxlink = bf->bf_daddr;
   2764 	sc->sc_rxlink = &ds->ds_link;
   2765 	return 0;
   2766 }
   2767 
   2768 /*
   2769  * Extend 15-bit time stamp from rx descriptor to
   2770  * a full 64-bit TSF using the specified TSF.
   2771  */
   2772 static inline u_int64_t
   2773 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
   2774 {
   2775 	if ((tsf & 0x7fff) < rstamp)
   2776 		tsf -= 0x8000;
   2777 	return ((tsf &~ 0x7fff) | rstamp);
   2778 }
   2779 
   2780 /*
   2781  * Intercept management frames to collect beacon rssi data
   2782  * and to do ibss merges.
   2783  */
   2784 static void
   2785 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
   2786 	struct ieee80211_node *ni,
   2787 	int subtype, int rssi, u_int32_t rstamp)
   2788 {
   2789 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   2790 
   2791 	/*
   2792 	 * Call up first so subsequent work can use information
   2793 	 * potentially stored in the node (e.g. for ibss merge).
   2794 	 */
   2795 	sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
   2796 	switch (subtype) {
   2797 	case IEEE80211_FC0_SUBTYPE_BEACON:
   2798 		/* update rssi statistics for use by the hal */
   2799 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
   2800 		if (sc->sc_syncbeacon &&
   2801 		    ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) {
   2802 			/*
   2803 			 * Resync beacon timers using the tsf of the beacon
   2804 			 * frame we just received.
   2805 			 */
   2806 			ath_beacon_config(sc);
   2807 		}
   2808 		/* fall thru... */
   2809 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
   2810 		if (ic->ic_opmode == IEEE80211_M_IBSS &&
   2811 		    ic->ic_state == IEEE80211_S_RUN) {
   2812 			u_int64_t tsf = ath_extend_tsf(rstamp,
   2813 				ath_hal_gettsf64(sc->sc_ah));
   2814 
   2815 			/*
   2816 			 * Handle ibss merge as needed; check the tsf on the
   2817 			 * frame before attempting the merge.  The 802.11 spec
   2818 			 * says the station should change it's bssid to match
   2819 			 * the oldest station with the same ssid, where oldest
   2820 			 * is determined by the tsf.  Note that hardware
   2821 			 * reconfiguration happens through callback to
   2822 			 * ath_newstate as the state machine will go from
   2823 			 * RUN -> RUN when this happens.
   2824 			 */
   2825 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
   2826 				DPRINTF(sc, ATH_DEBUG_STATE,
   2827 				    "ibss merge, rstamp %u tsf %ju "
   2828 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
   2829 				    (uintmax_t)ni->ni_tstamp.tsf);
   2830 				(void) ieee80211_ibss_merge(ni);
   2831 			}
   2832 		}
   2833 		break;
   2834 	}
   2835 }
   2836 
   2837 /*
   2838  * Set the default antenna.
   2839  */
   2840 static void
   2841 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
   2842 {
   2843 	struct ath_hal *ah = sc->sc_ah;
   2844 
   2845 	/* XXX block beacon interrupts */
   2846 	ath_hal_setdefantenna(ah, antenna);
   2847 	if (sc->sc_defant != antenna)
   2848 		sc->sc_stats.ast_ant_defswitch++;
   2849 	sc->sc_defant = antenna;
   2850 	sc->sc_rxotherant = 0;
   2851 }
   2852 
   2853 static void
   2854 ath_rx_proc(void *arg, int npending)
   2855 {
   2856 #define	PA2DESC(_sc, _pa) \
   2857 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
   2858 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
   2859 	struct ath_softc *sc = arg;
   2860 	struct ath_buf *bf;
   2861 	struct ieee80211com *ic = &sc->sc_ic;
   2862 	struct ifnet *ifp = &sc->sc_if;
   2863 	struct ath_hal *ah = sc->sc_ah;
   2864 	struct ath_desc *ds;
   2865 	struct mbuf *m;
   2866 	struct ieee80211_node *ni;
   2867 	struct ath_node *an;
   2868 	int len, type, ngood;
   2869 	u_int phyerr;
   2870 	HAL_STATUS status;
   2871 	int16_t nf;
   2872 	u_int64_t tsf;
   2873 
   2874 	NET_LOCK_GIANT();		/* XXX */
   2875 
   2876 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
   2877 	ngood = 0;
   2878 	nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
   2879 	tsf = ath_hal_gettsf64(ah);
   2880 	do {
   2881 		bf = STAILQ_FIRST(&sc->sc_rxbuf);
   2882 		if (bf == NULL) {		/* NB: shouldn't happen */
   2883 			if_printf(ifp, "%s: no buffer!\n", __func__);
   2884 			break;
   2885 		}
   2886 		ds = bf->bf_desc;
   2887 		if (ds->ds_link == bf->bf_daddr) {
   2888 			/* NB: never process the self-linked entry at the end */
   2889 			break;
   2890 		}
   2891 		m = bf->bf_m;
   2892 		if (m == NULL) {		/* NB: shouldn't happen */
   2893 			if_printf(ifp, "%s: no mbuf!\n", __func__);
   2894 			break;
   2895 		}
   2896 		/* XXX sync descriptor memory */
   2897 		/*
   2898 		 * Must provide the virtual address of the current
   2899 		 * descriptor, the physical address, and the virtual
   2900 		 * address of the next descriptor in the h/w chain.
   2901 		 * This allows the HAL to look ahead to see if the
   2902 		 * hardware is done with a descriptor by checking the
   2903 		 * done bit in the following descriptor and the address
   2904 		 * of the current descriptor the DMA engine is working
   2905 		 * on.  All this is necessary because of our use of
   2906 		 * a self-linked list to avoid rx overruns.
   2907 		 */
   2908 		status = ath_hal_rxprocdesc(ah, ds,
   2909 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
   2910 #ifdef AR_DEBUG
   2911 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
   2912 			ath_printrxbuf(bf, status == HAL_OK);
   2913 #endif
   2914 		if (status == HAL_EINPROGRESS)
   2915 			break;
   2916 		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
   2917 		if (ds->ds_rxstat.rs_more) {
   2918 			/*
   2919 			 * Frame spans multiple descriptors; this
   2920 			 * cannot happen yet as we don't support
   2921 			 * jumbograms.  If not in monitor mode,
   2922 			 * discard the frame.
   2923 			 */
   2924 			if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   2925 				sc->sc_stats.ast_rx_toobig++;
   2926 				goto rx_next;
   2927 			}
   2928 			/* fall thru for monitor mode handling... */
   2929 		} else if (ds->ds_rxstat.rs_status != 0) {
   2930 			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
   2931 				sc->sc_stats.ast_rx_crcerr++;
   2932 			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
   2933 				sc->sc_stats.ast_rx_fifoerr++;
   2934 			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
   2935 				sc->sc_stats.ast_rx_phyerr++;
   2936 				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
   2937 				sc->sc_stats.ast_rx_phy[phyerr]++;
   2938 				goto rx_next;
   2939 			}
   2940 			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
   2941 				/*
   2942 				 * Decrypt error.  If the error occurred
   2943 				 * because there was no hardware key, then
   2944 				 * let the frame through so the upper layers
   2945 				 * can process it.  This is necessary for 5210
   2946 				 * parts which have no way to setup a ``clear''
   2947 				 * key cache entry.
   2948 				 *
   2949 				 * XXX do key cache faulting
   2950 				 */
   2951 				if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
   2952 					goto rx_accept;
   2953 				sc->sc_stats.ast_rx_badcrypt++;
   2954 			}
   2955 			if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
   2956 				sc->sc_stats.ast_rx_badmic++;
   2957 				/*
   2958 				 * Do minimal work required to hand off
   2959 				 * the 802.11 header for notifcation.
   2960 				 */
   2961 				/* XXX frag's and qos frames */
   2962 				len = ds->ds_rxstat.rs_datalen;
   2963 				if (len >= sizeof (struct ieee80211_frame)) {
   2964 					bus_dmamap_sync(sc->sc_dmat,
   2965 					    bf->bf_dmamap,
   2966 					    0, bf->bf_dmamap->dm_mapsize,
   2967 					    BUS_DMASYNC_POSTREAD);
   2968 					ieee80211_notify_michael_failure(ic,
   2969 					    mtod(m, struct ieee80211_frame *),
   2970 					    sc->sc_splitmic ?
   2971 					        ds->ds_rxstat.rs_keyix-32 :
   2972 					        ds->ds_rxstat.rs_keyix
   2973 					);
   2974 				}
   2975 			}
   2976 			ifp->if_ierrors++;
   2977 			/*
   2978 			 * Reject error frames, we normally don't want
   2979 			 * to see them in monitor mode (in monitor mode
   2980 			 * allow through packets that have crypto problems).
   2981 			 */
   2982 			if ((ds->ds_rxstat.rs_status &~
   2983 				(HAL_RXERR_DECRYPT|HAL_RXERR_MIC)) ||
   2984 			    sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
   2985 				goto rx_next;
   2986 		}
   2987 rx_accept:
   2988 		/*
   2989 		 * Sync and unmap the frame.  At this point we're
   2990 		 * committed to passing the mbuf somewhere so clear
   2991 		 * bf_m; this means a new sk_buff must be allocated
   2992 		 * when the rx descriptor is setup again to receive
   2993 		 * another frame.
   2994 		 */
   2995 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
   2996 		    0, bf->bf_dmamap->dm_mapsize,
   2997 		    BUS_DMASYNC_POSTREAD);
   2998 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   2999 		bf->bf_m = NULL;
   3000 
   3001 		m->m_pkthdr.rcvif = ifp;
   3002 		len = ds->ds_rxstat.rs_datalen;
   3003 		m->m_pkthdr.len = m->m_len = len;
   3004 
   3005 		sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
   3006 
   3007 #if NBPFILTER > 0
   3008 		if (sc->sc_drvbpf) {
   3009 			u_int8_t rix;
   3010 
   3011 			/*
   3012 			 * Discard anything shorter than an ack or cts.
   3013 			 */
   3014 			if (len < IEEE80211_ACK_LEN) {
   3015 				DPRINTF(sc, ATH_DEBUG_RECV,
   3016 					"%s: runt packet %d\n",
   3017 					__func__, len);
   3018 				sc->sc_stats.ast_rx_tooshort++;
   3019 				m_freem(m);
   3020 				goto rx_next;
   3021 			}
   3022 			rix = ds->ds_rxstat.rs_rate;
   3023 			sc->sc_rx_th.wr_tsf = htole64(
   3024 				ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf));
   3025 			sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
   3026 			sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
   3027 			sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf;
   3028 			sc->sc_rx_th.wr_antnoise = nf;
   3029 			sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
   3030 
   3031 			bpf_mtap2(sc->sc_drvbpf,
   3032 				&sc->sc_rx_th, sc->sc_rx_th_len, m);
   3033 		}
   3034 #endif
   3035 
   3036 		/*
   3037 		 * From this point on we assume the frame is at least
   3038 		 * as large as ieee80211_frame_min; verify that.
   3039 		 */
   3040 		if (len < IEEE80211_MIN_LEN) {
   3041 			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
   3042 				__func__, len);
   3043 			sc->sc_stats.ast_rx_tooshort++;
   3044 			m_freem(m);
   3045 			goto rx_next;
   3046 		}
   3047 
   3048 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
   3049 			ieee80211_dump_pkt(mtod(m, caddr_t), len,
   3050 				   sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
   3051 				   ds->ds_rxstat.rs_rssi);
   3052 		}
   3053 
   3054 		m_adj(m, -IEEE80211_CRC_LEN);
   3055 
   3056 		/*
   3057 		 * Locate the node for sender, track state, and then
   3058 		 * pass the (referenced) node up to the 802.11 layer
   3059 		 * for its use.
   3060 		 */
   3061 		ni = ieee80211_find_rxnode_withkey(ic,
   3062 			mtod(m, const struct ieee80211_frame_min *),
   3063 			ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
   3064 				IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
   3065 		/*
   3066 		 * Track rx rssi and do any rx antenna management.
   3067 		 */
   3068 		an = ATH_NODE(ni);
   3069 		ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
   3070 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi);
   3071 		/*
   3072 		 * Send frame up for processing.
   3073 		 */
   3074 		type = ieee80211_input(ic, m, ni,
   3075 			ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
   3076 		ieee80211_free_node(ni);
   3077 		if (sc->sc_diversity) {
   3078 			/*
   3079 			 * When using fast diversity, change the default rx
   3080 			 * antenna if diversity chooses the other antenna 3
   3081 			 * times in a row.
   3082 			 */
   3083 			if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
   3084 				if (++sc->sc_rxotherant >= 3)
   3085 					ath_setdefantenna(sc,
   3086 						ds->ds_rxstat.rs_antenna);
   3087 			} else
   3088 				sc->sc_rxotherant = 0;
   3089 		}
   3090 		if (sc->sc_softled) {
   3091 			/*
   3092 			 * Blink for any data frame.  Otherwise do a
   3093 			 * heartbeat-style blink when idle.  The latter
   3094 			 * is mainly for station mode where we depend on
   3095 			 * periodic beacon frames to trigger the poll event.
   3096 			 */
   3097 			if (type == IEEE80211_FC0_TYPE_DATA) {
   3098 				sc->sc_rxrate = ds->ds_rxstat.rs_rate;
   3099 				ath_led_event(sc, ATH_LED_RX);
   3100 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
   3101 				ath_led_event(sc, ATH_LED_POLL);
   3102 		}
   3103 		/*
   3104 		 * Arrange to update the last rx timestamp only for
   3105 		 * frames from our ap when operating in station mode.
   3106 		 * This assumes the rx key is always setup when associated.
   3107 		 */
   3108 		if (ic->ic_opmode == IEEE80211_M_STA &&
   3109 		    ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID)
   3110 			ngood++;
   3111 rx_next:
   3112 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
   3113 	} while (ath_rxbuf_init(sc, bf) == 0);
   3114 
   3115 	/* rx signal state monitoring */
   3116 	ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
   3117 	if (ath_hal_radar_event(ah))
   3118 		TASK_RUN_OR_ENQUEUE(&sc->sc_radartask);
   3119 	if (ngood)
   3120 		sc->sc_lastrx = tsf;
   3121 
   3122 #ifdef __NetBSD__
   3123 	/* XXX Why isn't this necessary in FreeBSD? */
   3124 	if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
   3125 		ath_start(ifp);
   3126 #endif /* __NetBSD__ */
   3127 
   3128 	NET_UNLOCK_GIANT();		/* XXX */
   3129 #undef PA2DESC
   3130 }
   3131 
   3132 /*
   3133  * Setup a h/w transmit queue.
   3134  */
   3135 static struct ath_txq *
   3136 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
   3137 {
   3138 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   3139 	struct ath_hal *ah = sc->sc_ah;
   3140 	HAL_TXQ_INFO qi;
   3141 	int qnum;
   3142 
   3143 	memset(&qi, 0, sizeof(qi));
   3144 	qi.tqi_subtype = subtype;
   3145 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
   3146 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
   3147 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
   3148 	/*
   3149 	 * Enable interrupts only for EOL and DESC conditions.
   3150 	 * We mark tx descriptors to receive a DESC interrupt
   3151 	 * when a tx queue gets deep; otherwise waiting for the
   3152 	 * EOL to reap descriptors.  Note that this is done to
   3153 	 * reduce interrupt load and this only defers reaping
   3154 	 * descriptors, never transmitting frames.  Aside from
   3155 	 * reducing interrupts this also permits more concurrency.
   3156 	 * The only potential downside is if the tx queue backs
   3157 	 * up in which case the top half of the kernel may backup
   3158 	 * due to a lack of tx descriptors.
   3159 	 */
   3160 	qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE | TXQ_FLAG_TXDESCINT_ENABLE;
   3161 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
   3162 	if (qnum == -1) {
   3163 		/*
   3164 		 * NB: don't print a message, this happens
   3165 		 * normally on parts with too few tx queues
   3166 		 */
   3167 		return NULL;
   3168 	}
   3169 	if (qnum >= N(sc->sc_txq)) {
   3170 		device_printf(sc->sc_dev,
   3171 			"hal qnum %u out of range, max %zu!\n",
   3172 			qnum, N(sc->sc_txq));
   3173 		ath_hal_releasetxqueue(ah, qnum);
   3174 		return NULL;
   3175 	}
   3176 	if (!ATH_TXQ_SETUP(sc, qnum)) {
   3177 		struct ath_txq *txq = &sc->sc_txq[qnum];
   3178 
   3179 		txq->axq_qnum = qnum;
   3180 		txq->axq_depth = 0;
   3181 		txq->axq_intrcnt = 0;
   3182 		txq->axq_link = NULL;
   3183 		STAILQ_INIT(&txq->axq_q);
   3184 		ATH_TXQ_LOCK_INIT(sc, txq);
   3185 		sc->sc_txqsetup |= 1<<qnum;
   3186 	}
   3187 	return &sc->sc_txq[qnum];
   3188 #undef N
   3189 }
   3190 
   3191 /*
   3192  * Setup a hardware data transmit queue for the specified
   3193  * access control.  The hal may not support all requested
   3194  * queues in which case it will return a reference to a
   3195  * previously setup queue.  We record the mapping from ac's
   3196  * to h/w queues for use by ath_tx_start and also track
   3197  * the set of h/w queues being used to optimize work in the
   3198  * transmit interrupt handler and related routines.
   3199  */
   3200 static int
   3201 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
   3202 {
   3203 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   3204 	struct ath_txq *txq;
   3205 
   3206 	if (ac >= N(sc->sc_ac2q)) {
   3207 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
   3208 			ac, N(sc->sc_ac2q));
   3209 		return 0;
   3210 	}
   3211 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
   3212 	if (txq != NULL) {
   3213 		sc->sc_ac2q[ac] = txq;
   3214 		return 1;
   3215 	} else
   3216 		return 0;
   3217 #undef N
   3218 }
   3219 
   3220 /*
   3221  * Update WME parameters for a transmit queue.
   3222  */
   3223 static int
   3224 ath_txq_update(struct ath_softc *sc, int ac)
   3225 {
   3226 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
   3227 #define	ATH_TXOP_TO_US(v)		(v<<5)
   3228 	struct ieee80211com *ic = &sc->sc_ic;
   3229 	struct ath_txq *txq = sc->sc_ac2q[ac];
   3230 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
   3231 	struct ath_hal *ah = sc->sc_ah;
   3232 	HAL_TXQ_INFO qi;
   3233 
   3234 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
   3235 	qi.tqi_aifs = wmep->wmep_aifsn;
   3236 	qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
   3237 	qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
   3238 	qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
   3239 
   3240 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
   3241 		device_printf(sc->sc_dev, "unable to update hardware queue "
   3242 			"parameters for %s traffic!\n",
   3243 			ieee80211_wme_acnames[ac]);
   3244 		return 0;
   3245 	} else {
   3246 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
   3247 		return 1;
   3248 	}
   3249 #undef ATH_TXOP_TO_US
   3250 #undef ATH_EXPONENT_TO_VALUE
   3251 }
   3252 
   3253 /*
   3254  * Callback from the 802.11 layer to update WME parameters.
   3255  */
   3256 static int
   3257 ath_wme_update(struct ieee80211com *ic)
   3258 {
   3259 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   3260 
   3261 	return !ath_txq_update(sc, WME_AC_BE) ||
   3262 	    !ath_txq_update(sc, WME_AC_BK) ||
   3263 	    !ath_txq_update(sc, WME_AC_VI) ||
   3264 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
   3265 }
   3266 
   3267 /*
   3268  * Reclaim resources for a setup queue.
   3269  */
   3270 static void
   3271 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
   3272 {
   3273 
   3274 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
   3275 	ATH_TXQ_LOCK_DESTROY(txq);
   3276 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
   3277 }
   3278 
   3279 /*
   3280  * Reclaim all tx queue resources.
   3281  */
   3282 static void
   3283 ath_tx_cleanup(struct ath_softc *sc)
   3284 {
   3285 	int i;
   3286 
   3287 	ATH_TXBUF_LOCK_DESTROY(sc);
   3288 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   3289 		if (ATH_TXQ_SETUP(sc, i))
   3290 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
   3291 }
   3292 
   3293 /*
   3294  * Defragment an mbuf chain, returning at most maxfrags separate
   3295  * mbufs+clusters.  If this is not possible NULL is returned and
   3296  * the original mbuf chain is left in it's present (potentially
   3297  * modified) state.  We use two techniques: collapsing consecutive
   3298  * mbufs and replacing consecutive mbufs by a cluster.
   3299  */
   3300 static struct mbuf *
   3301 ath_defrag(struct mbuf *m0, int how, int maxfrags)
   3302 {
   3303 	struct mbuf *m, *n, *n2, **prev;
   3304 	u_int curfrags;
   3305 
   3306 	/*
   3307 	 * Calculate the current number of frags.
   3308 	 */
   3309 	curfrags = 0;
   3310 	for (m = m0; m != NULL; m = m->m_next)
   3311 		curfrags++;
   3312 	/*
   3313 	 * First, try to collapse mbufs.  Note that we always collapse
   3314 	 * towards the front so we don't need to deal with moving the
   3315 	 * pkthdr.  This may be suboptimal if the first mbuf has much
   3316 	 * less data than the following.
   3317 	 */
   3318 	m = m0;
   3319 again:
   3320 	for (;;) {
   3321 		n = m->m_next;
   3322 		if (n == NULL)
   3323 			break;
   3324 		if ((m->m_flags & M_RDONLY) == 0 &&
   3325 		    n->m_len < M_TRAILINGSPACE(m)) {
   3326 			bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
   3327 				n->m_len);
   3328 			m->m_len += n->m_len;
   3329 			m->m_next = n->m_next;
   3330 			m_free(n);
   3331 			if (--curfrags <= maxfrags)
   3332 				return m0;
   3333 		} else
   3334 			m = n;
   3335 	}
   3336 	KASSERT(maxfrags > 1,
   3337 		("maxfrags %u, but normal collapse failed", maxfrags));
   3338 	/*
   3339 	 * Collapse consecutive mbufs to a cluster.
   3340 	 */
   3341 	prev = &m0->m_next;		/* NB: not the first mbuf */
   3342 	while ((n = *prev) != NULL) {
   3343 		if ((n2 = n->m_next) != NULL &&
   3344 		    n->m_len + n2->m_len < MCLBYTES) {
   3345 			m = m_getcl(how, MT_DATA, 0);
   3346 			if (m == NULL)
   3347 				goto bad;
   3348 			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
   3349 			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
   3350 				n2->m_len);
   3351 			m->m_len = n->m_len + n2->m_len;
   3352 			m->m_next = n2->m_next;
   3353 			*prev = m;
   3354 			m_free(n);
   3355 			m_free(n2);
   3356 			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
   3357 				return m0;
   3358 			/*
   3359 			 * Still not there, try the normal collapse
   3360 			 * again before we allocate another cluster.
   3361 			 */
   3362 			goto again;
   3363 		}
   3364 		prev = &n->m_next;
   3365 	}
   3366 	/*
   3367 	 * No place where we can collapse to a cluster; punt.
   3368 	 * This can occur if, for example, you request 2 frags
   3369 	 * but the packet requires that both be clusters (we
   3370 	 * never reallocate the first mbuf to avoid moving the
   3371 	 * packet header).
   3372 	 */
   3373 bad:
   3374 	return NULL;
   3375 }
   3376 
   3377 /*
   3378  * Return h/w rate index for an IEEE rate (w/o basic rate bit).
   3379  */
   3380 static int
   3381 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
   3382 {
   3383 	int i;
   3384 
   3385 	for (i = 0; i < rt->rateCount; i++)
   3386 		if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
   3387 			return i;
   3388 	return 0;		/* NB: lowest rate */
   3389 }
   3390 
   3391 static int
   3392 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
   3393     struct mbuf *m0)
   3394 {
   3395 	struct ieee80211com *ic = &sc->sc_ic;
   3396 	struct ath_hal *ah = sc->sc_ah;
   3397 	struct ifnet *ifp = &sc->sc_if;
   3398 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
   3399 	int i, error, iswep, ismcast, ismrr;
   3400 	int keyix, hdrlen, pktlen, try0;
   3401 	u_int8_t rix, txrate, ctsrate;
   3402 	u_int8_t cix = 0xff;		/* NB: silence compiler */
   3403 	struct ath_desc *ds, *ds0;
   3404 	struct ath_txq *txq;
   3405 	struct ieee80211_frame *wh;
   3406 	u_int subtype, flags, ctsduration;
   3407 	HAL_PKT_TYPE atype;
   3408 	const HAL_RATE_TABLE *rt;
   3409 	HAL_BOOL shortPreamble;
   3410 	struct ath_node *an;
   3411 	struct mbuf *m;
   3412 	u_int pri;
   3413 
   3414 	wh = mtod(m0, struct ieee80211_frame *);
   3415 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
   3416 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
   3417 	hdrlen = ieee80211_anyhdrsize(wh);
   3418 	/*
   3419 	 * Packet length must not include any
   3420 	 * pad bytes; deduct them here.
   3421 	 */
   3422 	pktlen = m0->m_pkthdr.len - (hdrlen & 3);
   3423 
   3424 	if (iswep) {
   3425 		const struct ieee80211_cipher *cip;
   3426 		struct ieee80211_key *k;
   3427 
   3428 		/*
   3429 		 * Construct the 802.11 header+trailer for an encrypted
   3430 		 * frame. The only reason this can fail is because of an
   3431 		 * unknown or unsupported cipher/key type.
   3432 		 */
   3433 		k = ieee80211_crypto_encap(ic, ni, m0);
   3434 		if (k == NULL) {
   3435 			/*
   3436 			 * This can happen when the key is yanked after the
   3437 			 * frame was queued.  Just discard the frame; the
   3438 			 * 802.11 layer counts failures and provides
   3439 			 * debugging/diagnostics.
   3440 			 */
   3441 			m_freem(m0);
   3442 			return EIO;
   3443 		}
   3444 		/*
   3445 		 * Adjust the packet + header lengths for the crypto
   3446 		 * additions and calculate the h/w key index.  When
   3447 		 * a s/w mic is done the frame will have had any mic
   3448 		 * added to it prior to entry so skb->len above will
   3449 		 * account for it. Otherwise we need to add it to the
   3450 		 * packet length.
   3451 		 */
   3452 		cip = k->wk_cipher;
   3453 		hdrlen += cip->ic_header;
   3454 		pktlen += cip->ic_header + cip->ic_trailer;
   3455 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0)
   3456 			pktlen += cip->ic_miclen;
   3457 		keyix = k->wk_keyix;
   3458 
   3459 		/* packet header may have moved, reset our local pointer */
   3460 		wh = mtod(m0, struct ieee80211_frame *);
   3461 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
   3462 		/*
   3463 		 * Use station key cache slot, if assigned.
   3464 		 */
   3465 		keyix = ni->ni_ucastkey.wk_keyix;
   3466 		if (keyix == IEEE80211_KEYIX_NONE)
   3467 			keyix = HAL_TXKEYIX_INVALID;
   3468 	} else
   3469 		keyix = HAL_TXKEYIX_INVALID;
   3470 
   3471 	pktlen += IEEE80211_CRC_LEN;
   3472 
   3473 	/*
   3474 	 * Load the DMA map so any coalescing is done.  This
   3475 	 * also calculates the number of descriptors we need.
   3476 	 */
   3477 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
   3478 				     BUS_DMA_NOWAIT);
   3479 	if (error == EFBIG) {
   3480 		/* XXX packet requires too many descriptors */
   3481 		bf->bf_nseg = ATH_TXDESC+1;
   3482 	} else if (error != 0) {
   3483 		sc->sc_stats.ast_tx_busdma++;
   3484 		m_freem(m0);
   3485 		return error;
   3486 	}
   3487 	/*
   3488 	 * Discard null packets and check for packets that
   3489 	 * require too many TX descriptors.  We try to convert
   3490 	 * the latter to a cluster.
   3491 	 */
   3492 	if (error == EFBIG) {		/* too many desc's, linearize */
   3493 		sc->sc_stats.ast_tx_linear++;
   3494 		m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
   3495 		if (m == NULL) {
   3496 			m_freem(m0);
   3497 			sc->sc_stats.ast_tx_nombuf++;
   3498 			return ENOMEM;
   3499 		}
   3500 		m0 = m;
   3501 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
   3502 					     BUS_DMA_NOWAIT);
   3503 		if (error != 0) {
   3504 			sc->sc_stats.ast_tx_busdma++;
   3505 			m_freem(m0);
   3506 			return error;
   3507 		}
   3508 		KASSERT(bf->bf_nseg <= ATH_TXDESC,
   3509 		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
   3510 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
   3511 		sc->sc_stats.ast_tx_nodata++;
   3512 		m_freem(m0);
   3513 		return EIO;
   3514 	}
   3515 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
   3516 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   3517             bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
   3518 	bf->bf_m = m0;
   3519 	bf->bf_node = ni;			/* NB: held reference */
   3520 
   3521 	/* setup descriptors */
   3522 	ds = bf->bf_desc;
   3523 	rt = sc->sc_currates;
   3524 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
   3525 
   3526 	/*
   3527 	 * NB: the 802.11 layer marks whether or not we should
   3528 	 * use short preamble based on the current mode and
   3529 	 * negotiated parameters.
   3530 	 */
   3531 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
   3532 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) {
   3533 		shortPreamble = AH_TRUE;
   3534 		sc->sc_stats.ast_tx_shortpre++;
   3535 	} else {
   3536 		shortPreamble = AH_FALSE;
   3537 	}
   3538 
   3539 	an = ATH_NODE(ni);
   3540 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
   3541 	ismrr = 0;				/* default no multi-rate retry*/
   3542 	/*
   3543 	 * Calculate Atheros packet type from IEEE80211 packet header,
   3544 	 * setup for rate calculations, and select h/w transmit queue.
   3545 	 */
   3546 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
   3547 	case IEEE80211_FC0_TYPE_MGT:
   3548 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   3549 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
   3550 			atype = HAL_PKT_TYPE_BEACON;
   3551 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
   3552 			atype = HAL_PKT_TYPE_PROBE_RESP;
   3553 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
   3554 			atype = HAL_PKT_TYPE_ATIM;
   3555 		else
   3556 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
   3557 		rix = sc->sc_minrateix;
   3558 		txrate = rt->info[rix].rateCode;
   3559 		if (shortPreamble)
   3560 			txrate |= rt->info[rix].shortPreamble;
   3561 		try0 = ATH_TXMGTTRY;
   3562 		/* NB: force all management frames to highest queue */
   3563 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
   3564 			/* NB: force all management frames to highest queue */
   3565 			pri = WME_AC_VO;
   3566 		} else
   3567 			pri = WME_AC_BE;
   3568 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
   3569 		break;
   3570 	case IEEE80211_FC0_TYPE_CTL:
   3571 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
   3572 		rix = sc->sc_minrateix;
   3573 		txrate = rt->info[rix].rateCode;
   3574 		if (shortPreamble)
   3575 			txrate |= rt->info[rix].shortPreamble;
   3576 		try0 = ATH_TXMGTTRY;
   3577 		/* NB: force all ctl frames to highest queue */
   3578 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
   3579 			/* NB: force all ctl frames to highest queue */
   3580 			pri = WME_AC_VO;
   3581 		} else
   3582 			pri = WME_AC_BE;
   3583 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
   3584 		break;
   3585 	case IEEE80211_FC0_TYPE_DATA:
   3586 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
   3587 		/*
   3588 		 * Data frames: multicast frames go out at a fixed rate,
   3589 		 * otherwise consult the rate control module for the
   3590 		 * rate to use.
   3591 		 */
   3592 		if (ismcast) {
   3593 			/*
   3594 			 * Check mcast rate setting in case it's changed.
   3595 			 * XXX move out of fastpath
   3596 			 */
   3597 			if (ic->ic_mcast_rate != sc->sc_mcastrate) {
   3598 				sc->sc_mcastrix =
   3599 					ath_tx_findrix(rt, ic->ic_mcast_rate);
   3600 				sc->sc_mcastrate = ic->ic_mcast_rate;
   3601 			}
   3602 			rix = sc->sc_mcastrix;
   3603 			txrate = rt->info[rix].rateCode;
   3604 			if (shortPreamble)
   3605 				txrate |= rt->info[rix].shortPreamble;
   3606 			try0 = 1;
   3607 		} else {
   3608 			ath_rate_findrate(sc, an, shortPreamble, pktlen,
   3609 				&rix, &try0, &txrate);
   3610 			sc->sc_txrate = txrate;		/* for LED blinking */
   3611 			if (try0 != ATH_TXMAXTRY)
   3612 				ismrr = 1;
   3613 		}
   3614 		pri = M_WME_GETAC(m0);
   3615 		if (cap->cap_wmeParams[pri].wmep_noackPolicy)
   3616 			flags |= HAL_TXDESC_NOACK;
   3617 		break;
   3618 	default:
   3619 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
   3620 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
   3621 		/* XXX statistic */
   3622 		m_freem(m0);
   3623 		return EIO;
   3624 	}
   3625 	txq = sc->sc_ac2q[pri];
   3626 
   3627 	/*
   3628 	 * When servicing one or more stations in power-save mode
   3629 	 * multicast frames must be buffered until after the beacon.
   3630 	 * We use the CAB queue for that.
   3631 	 */
   3632 	if (ismcast && ic->ic_ps_sta) {
   3633 		txq = sc->sc_cabq;
   3634 		/* XXX? more bit in 802.11 frame header */
   3635 	}
   3636 
   3637 	/*
   3638 	 * Calculate miscellaneous flags.
   3639 	 */
   3640 	if (ismcast) {
   3641 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
   3642 	} else if (pktlen > ic->ic_rtsthreshold) {
   3643 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
   3644 		cix = rt->info[rix].controlRate;
   3645 		sc->sc_stats.ast_tx_rts++;
   3646 	}
   3647 	if (flags & HAL_TXDESC_NOACK)		/* NB: avoid double counting */
   3648 		sc->sc_stats.ast_tx_noack++;
   3649 
   3650 	/*
   3651 	 * If 802.11g protection is enabled, determine whether
   3652 	 * to use RTS/CTS or just CTS.  Note that this is only
   3653 	 * done for OFDM unicast frames.
   3654 	 */
   3655 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
   3656 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
   3657 	    (flags & HAL_TXDESC_NOACK) == 0) {
   3658 		/* XXX fragments must use CCK rates w/ protection */
   3659 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
   3660 			flags |= HAL_TXDESC_RTSENA;
   3661 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
   3662 			flags |= HAL_TXDESC_CTSENA;
   3663 		cix = rt->info[sc->sc_protrix].controlRate;
   3664 		sc->sc_stats.ast_tx_protect++;
   3665 	}
   3666 
   3667 	/*
   3668 	 * Calculate duration.  This logically belongs in the 802.11
   3669 	 * layer but it lacks sufficient information to calculate it.
   3670 	 */
   3671 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
   3672 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
   3673 		u_int16_t dur;
   3674 		/*
   3675 		 * XXX not right with fragmentation.
   3676 		 */
   3677 		if (shortPreamble)
   3678 			dur = rt->info[rix].spAckDuration;
   3679 		else
   3680 			dur = rt->info[rix].lpAckDuration;
   3681 		*(u_int16_t *)wh->i_dur = htole16(dur);
   3682 	}
   3683 
   3684 	/*
   3685 	 * Calculate RTS/CTS rate and duration if needed.
   3686 	 */
   3687 	ctsduration = 0;
   3688 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
   3689 		/*
   3690 		 * CTS transmit rate is derived from the transmit rate
   3691 		 * by looking in the h/w rate table.  We must also factor
   3692 		 * in whether or not a short preamble is to be used.
   3693 		 */
   3694 		/* NB: cix is set above where RTS/CTS is enabled */
   3695 		KASSERT(cix != 0xff, ("cix not setup"));
   3696 		ctsrate = rt->info[cix].rateCode;
   3697 		/*
   3698 		 * Compute the transmit duration based on the frame
   3699 		 * size and the size of an ACK frame.  We call into the
   3700 		 * HAL to do the computation since it depends on the
   3701 		 * characteristics of the actual PHY being used.
   3702 		 *
   3703 		 * NB: CTS is assumed the same size as an ACK so we can
   3704 		 *     use the precalculated ACK durations.
   3705 		 */
   3706 		if (shortPreamble) {
   3707 			ctsrate |= rt->info[cix].shortPreamble;
   3708 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
   3709 				ctsduration += rt->info[cix].spAckDuration;
   3710 			ctsduration += ath_hal_computetxtime(ah,
   3711 				rt, pktlen, rix, AH_TRUE);
   3712 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
   3713 				ctsduration += rt->info[rix].spAckDuration;
   3714 		} else {
   3715 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
   3716 				ctsduration += rt->info[cix].lpAckDuration;
   3717 			ctsduration += ath_hal_computetxtime(ah,
   3718 				rt, pktlen, rix, AH_FALSE);
   3719 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
   3720 				ctsduration += rt->info[rix].lpAckDuration;
   3721 		}
   3722 		/*
   3723 		 * Must disable multi-rate retry when using RTS/CTS.
   3724 		 */
   3725 		ismrr = 0;
   3726 		try0 = ATH_TXMGTTRY;		/* XXX */
   3727 	} else
   3728 		ctsrate = 0;
   3729 
   3730 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
   3731 		ieee80211_dump_pkt(mtod(m0, caddr_t), m0->m_len,
   3732 			sc->sc_hwmap[txrate].ieeerate, -1);
   3733 #if NBPFILTER > 0
   3734 	if (ic->ic_rawbpf)
   3735 		bpf_mtap(ic->ic_rawbpf, m0);
   3736 	if (sc->sc_drvbpf) {
   3737 		u_int64_t tsf = ath_hal_gettsf64(ah);
   3738 
   3739 		sc->sc_tx_th.wt_tsf = htole64(tsf);
   3740 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
   3741 		if (iswep)
   3742 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
   3743 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
   3744 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
   3745 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
   3746 
   3747 		bpf_mtap2(sc->sc_drvbpf,
   3748 			&sc->sc_tx_th, sc->sc_tx_th_len, m0);
   3749 	}
   3750 #endif
   3751 
   3752 	/*
   3753 	 * Determine if a tx interrupt should be generated for
   3754 	 * this descriptor.  We take a tx interrupt to reap
   3755 	 * descriptors when the h/w hits an EOL condition or
   3756 	 * when the descriptor is specifically marked to generate
   3757 	 * an interrupt.  We periodically mark descriptors in this
   3758 	 * way to insure timely replenishing of the supply needed
   3759 	 * for sending frames.  Defering interrupts reduces system
   3760 	 * load and potentially allows more concurrent work to be
   3761 	 * done but if done to aggressively can cause senders to
   3762 	 * backup.
   3763 	 *
   3764 	 * NB: use >= to deal with sc_txintrperiod changing
   3765 	 *     dynamically through sysctl.
   3766 	 */
   3767 	if (flags & HAL_TXDESC_INTREQ) {
   3768 		txq->axq_intrcnt = 0;
   3769 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
   3770 		flags |= HAL_TXDESC_INTREQ;
   3771 		txq->axq_intrcnt = 0;
   3772 	}
   3773 
   3774 	/*
   3775 	 * Formulate first tx descriptor with tx controls.
   3776 	 */
   3777 	/* XXX check return value? */
   3778 	ath_hal_setuptxdesc(ah, ds
   3779 		, pktlen		/* packet length */
   3780 		, hdrlen		/* header length */
   3781 		, atype			/* Atheros packet type */
   3782 		, ni->ni_txpower	/* txpower */
   3783 		, txrate, try0		/* series 0 rate/tries */
   3784 		, keyix			/* key cache index */
   3785 		, sc->sc_txantenna	/* antenna mode */
   3786 		, flags			/* flags */
   3787 		, ctsrate		/* rts/cts rate */
   3788 		, ctsduration		/* rts/cts duration */
   3789 	);
   3790 	bf->bf_flags = flags;
   3791 	/*
   3792 	 * Setup the multi-rate retry state only when we're
   3793 	 * going to use it.  This assumes ath_hal_setuptxdesc
   3794 	 * initializes the descriptors (so we don't have to)
   3795 	 * when the hardware supports multi-rate retry and
   3796 	 * we don't use it.
   3797 	 */
   3798 	if (ismrr)
   3799 		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
   3800 
   3801 	/*
   3802 	 * Fillin the remainder of the descriptor info.
   3803 	 */
   3804 	ds0 = ds;
   3805 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
   3806 		ds->ds_data = bf->bf_segs[i].ds_addr;
   3807 		if (i == bf->bf_nseg - 1)
   3808 			ds->ds_link = 0;
   3809 		else
   3810 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
   3811 		ath_hal_filltxdesc(ah, ds
   3812 			, bf->bf_segs[i].ds_len	/* segment length */
   3813 			, i == 0		/* first segment */
   3814 			, i == bf->bf_nseg - 1	/* last segment */
   3815 			, ds0			/* first descriptor */
   3816 		);
   3817 		DPRINTF(sc, ATH_DEBUG_XMIT,
   3818 			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
   3819 			__func__, i, ds->ds_link, ds->ds_data,
   3820 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
   3821 	}
   3822 	/*
   3823 	 * Insert the frame on the outbound list and
   3824 	 * pass it on to the hardware.
   3825 	 */
   3826 	ATH_TXQ_LOCK(txq);
   3827 	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
   3828 	if (txq->axq_link == NULL) {
   3829 		ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
   3830 		DPRINTF(sc, ATH_DEBUG_XMIT,
   3831 			"%s: TXDP[%u] = %p (%p) depth %d\n", __func__,
   3832 			txq->axq_qnum, (caddr_t)bf->bf_daddr, bf->bf_desc,
   3833 			txq->axq_depth);
   3834 	} else {
   3835 		*txq->axq_link = bf->bf_daddr;
   3836 		DPRINTF(sc, ATH_DEBUG_XMIT,
   3837 			"%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
   3838 			txq->axq_qnum, txq->axq_link,
   3839 			(caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
   3840 	}
   3841 	txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
   3842 	/*
   3843 	 * The CAB queue is started from the SWBA handler since
   3844 	 * frames only go out on DTIM and to avoid possible races.
   3845 	 */
   3846 	if (txq != sc->sc_cabq)
   3847 		ath_hal_txstart(ah, txq->axq_qnum);
   3848 	ATH_TXQ_UNLOCK(txq);
   3849 
   3850 	return 0;
   3851 }
   3852 
   3853 /*
   3854  * Process completed xmit descriptors from the specified queue.
   3855  */
   3856 static int
   3857 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
   3858 {
   3859 	struct ath_hal *ah = sc->sc_ah;
   3860 	struct ieee80211com *ic = &sc->sc_ic;
   3861 	struct ath_buf *bf;
   3862 	struct ath_desc *ds, *ds0;
   3863 	struct ieee80211_node *ni;
   3864 	struct ath_node *an;
   3865 	int sr, lr, pri, nacked;
   3866 	HAL_STATUS status;
   3867 
   3868 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
   3869 		__func__, txq->axq_qnum,
   3870 		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
   3871 		txq->axq_link);
   3872 	nacked = 0;
   3873 	for (;;) {
   3874 		ATH_TXQ_LOCK(txq);
   3875 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
   3876 		bf = STAILQ_FIRST(&txq->axq_q);
   3877 		if (bf == NULL) {
   3878 			txq->axq_link = NULL;
   3879 			ATH_TXQ_UNLOCK(txq);
   3880 			break;
   3881 		}
   3882 		ds0 = &bf->bf_desc[0];
   3883 		ds = &bf->bf_desc[bf->bf_nseg - 1];
   3884 		status = ath_hal_txprocdesc(ah, ds);
   3885 #ifdef AR_DEBUG
   3886 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
   3887 			ath_printtxbuf(bf, status == HAL_OK);
   3888 #endif
   3889 		if (status == HAL_EINPROGRESS) {
   3890 			ATH_TXQ_UNLOCK(txq);
   3891 			break;
   3892 		}
   3893 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
   3894 		ATH_TXQ_UNLOCK(txq);
   3895 
   3896 		ni = bf->bf_node;
   3897 		if (ni != NULL) {
   3898 			an = ATH_NODE(ni);
   3899 			if (ds->ds_txstat.ts_status == 0) {
   3900 				u_int8_t txant = ds->ds_txstat.ts_antenna;
   3901 				sc->sc_stats.ast_ant_tx[txant]++;
   3902 				sc->sc_ant_tx[txant]++;
   3903 				if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
   3904 					sc->sc_stats.ast_tx_altrate++;
   3905 				sc->sc_stats.ast_tx_rssi =
   3906 					ds->ds_txstat.ts_rssi;
   3907 				ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
   3908 					ds->ds_txstat.ts_rssi);
   3909 				pri = M_WME_GETAC(bf->bf_m);
   3910 				if (pri >= WME_AC_VO)
   3911 					ic->ic_wme.wme_hipri_traffic++;
   3912 				ni->ni_inact = ni->ni_inact_reload;
   3913 			} else {
   3914 				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
   3915 					sc->sc_stats.ast_tx_xretries++;
   3916 				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
   3917 					sc->sc_stats.ast_tx_fifoerr++;
   3918 				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
   3919 					sc->sc_stats.ast_tx_filtered++;
   3920 			}
   3921 			sr = ds->ds_txstat.ts_shortretry;
   3922 			lr = ds->ds_txstat.ts_longretry;
   3923 			sc->sc_stats.ast_tx_shortretry += sr;
   3924 			sc->sc_stats.ast_tx_longretry += lr;
   3925 			/*
   3926 			 * Hand the descriptor to the rate control algorithm.
   3927 			 */
   3928 			if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
   3929 			    (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
   3930 				/*
   3931 				 * If frame was ack'd update the last rx time
   3932 				 * used to workaround phantom bmiss interrupts.
   3933 				 */
   3934 				if (ds->ds_txstat.ts_status == 0)
   3935 					nacked++;
   3936 				ath_rate_tx_complete(sc, an, ds, ds0);
   3937 			}
   3938 			/*
   3939 			 * Reclaim reference to node.
   3940 			 *
   3941 			 * NB: the node may be reclaimed here if, for example
   3942 			 *     this is a DEAUTH message that was sent and the
   3943 			 *     node was timed out due to inactivity.
   3944 			 */
   3945 			ieee80211_free_node(ni);
   3946 		}
   3947 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   3948 		    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   3949 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   3950 		m_freem(bf->bf_m);
   3951 		bf->bf_m = NULL;
   3952 		bf->bf_node = NULL;
   3953 
   3954 		ATH_TXBUF_LOCK(sc);
   3955 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   3956 		ATH_TXBUF_UNLOCK(sc);
   3957 	}
   3958 	return nacked;
   3959 }
   3960 
   3961 static inline int
   3962 txqactive(struct ath_hal *ah, int qnum)
   3963 {
   3964 	u_int32_t txqs = 1<<qnum;
   3965 	ath_hal_gettxintrtxqs(ah, &txqs);
   3966 	return (txqs & (1<<qnum));
   3967 }
   3968 
   3969 /*
   3970  * Deferred processing of transmit interrupt; special-cased
   3971  * for a single hardware transmit queue (e.g. 5210 and 5211).
   3972  */
   3973 static void
   3974 ath_tx_proc_q0(void *arg, int npending)
   3975 {
   3976 	struct ath_softc *sc = arg;
   3977 	struct ifnet *ifp = &sc->sc_if;
   3978 
   3979 	if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]))
   3980 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
   3981 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
   3982 		ath_tx_processq(sc, sc->sc_cabq);
   3983 	ifp->if_flags &= ~IFF_OACTIVE;
   3984 	sc->sc_tx_timer = 0;
   3985 
   3986 	if (sc->sc_softled)
   3987 		ath_led_event(sc, ATH_LED_TX);
   3988 
   3989 	ath_start(ifp);
   3990 }
   3991 
   3992 /*
   3993  * Deferred processing of transmit interrupt; special-cased
   3994  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
   3995  */
   3996 static void
   3997 ath_tx_proc_q0123(void *arg, int npending)
   3998 {
   3999 	struct ath_softc *sc = arg;
   4000 	struct ifnet *ifp = &sc->sc_if;
   4001 	int nacked;
   4002 
   4003 	/*
   4004 	 * Process each active queue.
   4005 	 */
   4006 	nacked = 0;
   4007 	if (txqactive(sc->sc_ah, 0))
   4008 		nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
   4009 	if (txqactive(sc->sc_ah, 1))
   4010 		nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
   4011 	if (txqactive(sc->sc_ah, 2))
   4012 		nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
   4013 	if (txqactive(sc->sc_ah, 3))
   4014 		nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
   4015 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
   4016 		ath_tx_processq(sc, sc->sc_cabq);
   4017 	if (nacked)
   4018 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
   4019 	ath_tx_processq(sc, sc->sc_cabq);
   4020 
   4021 	ifp->if_flags &= ~IFF_OACTIVE;
   4022 	sc->sc_tx_timer = 0;
   4023 
   4024 	if (sc->sc_softled)
   4025 		ath_led_event(sc, ATH_LED_TX);
   4026 
   4027 	ath_start(ifp);
   4028 }
   4029 
   4030 /*
   4031  * Deferred processing of transmit interrupt.
   4032  */
   4033 static void
   4034 ath_tx_proc(void *arg, int npending)
   4035 {
   4036 	struct ath_softc *sc = arg;
   4037 	struct ifnet *ifp = &sc->sc_if;
   4038 	int i, nacked;
   4039 
   4040 	/*
   4041 	 * Process each active queue.
   4042 	 */
   4043 	nacked = 0;
   4044 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   4045 		if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
   4046 			nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
   4047 	if (nacked)
   4048 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
   4049 
   4050 	ifp->if_flags &= ~IFF_OACTIVE;
   4051 	sc->sc_tx_timer = 0;
   4052 
   4053 	if (sc->sc_softled)
   4054 		ath_led_event(sc, ATH_LED_TX);
   4055 
   4056 	ath_start(ifp);
   4057 }
   4058 
   4059 static void
   4060 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
   4061 {
   4062 	struct ath_hal *ah = sc->sc_ah;
   4063 	struct ieee80211_node *ni;
   4064 	struct ath_buf *bf;
   4065 
   4066 	/*
   4067 	 * NB: this assumes output has been stopped and
   4068 	 *     we do not need to block ath_tx_tasklet
   4069 	 */
   4070 	for (;;) {
   4071 		ATH_TXQ_LOCK(txq);
   4072 		bf = STAILQ_FIRST(&txq->axq_q);
   4073 		if (bf == NULL) {
   4074 			txq->axq_link = NULL;
   4075 			ATH_TXQ_UNLOCK(txq);
   4076 			break;
   4077 		}
   4078 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
   4079 		ATH_TXQ_UNLOCK(txq);
   4080 #ifdef AR_DEBUG
   4081 		if (sc->sc_debug & ATH_DEBUG_RESET)
   4082 			ath_printtxbuf(bf,
   4083 				ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
   4084 #endif /* AR_DEBUG */
   4085 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   4086 		m_freem(bf->bf_m);
   4087 		bf->bf_m = NULL;
   4088 		ni = bf->bf_node;
   4089 		bf->bf_node = NULL;
   4090 		if (ni != NULL) {
   4091 			/*
   4092 			 * Reclaim node reference.
   4093 			 */
   4094 			ieee80211_free_node(ni);
   4095 		}
   4096 		ATH_TXBUF_LOCK(sc);
   4097 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   4098 		ATH_TXBUF_UNLOCK(sc);
   4099 	}
   4100 }
   4101 
   4102 static void
   4103 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
   4104 {
   4105 	struct ath_hal *ah = sc->sc_ah;
   4106 
   4107 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
   4108 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
   4109 	    __func__, txq->axq_qnum,
   4110 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
   4111 	    txq->axq_link);
   4112 }
   4113 
   4114 /*
   4115  * Drain the transmit queues and reclaim resources.
   4116  */
   4117 static void
   4118 ath_draintxq(struct ath_softc *sc)
   4119 {
   4120 	struct ath_hal *ah = sc->sc_ah;
   4121 	struct ifnet *ifp = &sc->sc_if;
   4122 	int i;
   4123 
   4124 	/* XXX return value */
   4125 	if (!sc->sc_invalid) {
   4126 		/* don't touch the hardware if marked invalid */
   4127 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
   4128 		DPRINTF(sc, ATH_DEBUG_RESET,
   4129 		    "%s: beacon queue %p\n", __func__,
   4130 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
   4131 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   4132 			if (ATH_TXQ_SETUP(sc, i))
   4133 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
   4134 	}
   4135 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   4136 		if (ATH_TXQ_SETUP(sc, i))
   4137 			ath_tx_draintxq(sc, &sc->sc_txq[i]);
   4138 	ifp->if_flags &= ~IFF_OACTIVE;
   4139 	sc->sc_tx_timer = 0;
   4140 }
   4141 
   4142 /*
   4143  * Disable the receive h/w in preparation for a reset.
   4144  */
   4145 static void
   4146 ath_stoprecv(struct ath_softc *sc)
   4147 {
   4148 #define	PA2DESC(_sc, _pa) \
   4149 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
   4150 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
   4151 	struct ath_hal *ah = sc->sc_ah;
   4152 
   4153 	ath_hal_stoppcurecv(ah);	/* disable PCU */
   4154 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
   4155 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
   4156 	DELAY(3000);			/* 3ms is long enough for 1 frame */
   4157 #ifdef AR_DEBUG
   4158 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
   4159 		struct ath_buf *bf;
   4160 
   4161 		printf("%s: rx queue %p, link %p\n", __func__,
   4162 			(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
   4163 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
   4164 			struct ath_desc *ds = bf->bf_desc;
   4165 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
   4166 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
   4167 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
   4168 				ath_printrxbuf(bf, status == HAL_OK);
   4169 		}
   4170 	}
   4171 #endif
   4172 	sc->sc_rxlink = NULL;		/* just in case */
   4173 #undef PA2DESC
   4174 }
   4175 
   4176 /*
   4177  * Enable the receive h/w following a reset.
   4178  */
   4179 static int
   4180 ath_startrecv(struct ath_softc *sc)
   4181 {
   4182 	struct ath_hal *ah = sc->sc_ah;
   4183 	struct ath_buf *bf;
   4184 
   4185 	sc->sc_rxlink = NULL;
   4186 	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
   4187 		int error = ath_rxbuf_init(sc, bf);
   4188 		if (error != 0) {
   4189 			DPRINTF(sc, ATH_DEBUG_RECV,
   4190 				"%s: ath_rxbuf_init failed %d\n",
   4191 				__func__, error);
   4192 			return error;
   4193 		}
   4194 	}
   4195 
   4196 	bf = STAILQ_FIRST(&sc->sc_rxbuf);
   4197 	ath_hal_putrxbuf(ah, bf->bf_daddr);
   4198 	ath_hal_rxena(ah);		/* enable recv descriptors */
   4199 	ath_mode_init(sc);		/* set filters, etc. */
   4200 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
   4201 	return 0;
   4202 }
   4203 
   4204 /*
   4205  * Update internal state after a channel change.
   4206  */
   4207 static void
   4208 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
   4209 {
   4210 	struct ieee80211com *ic = &sc->sc_ic;
   4211 	enum ieee80211_phymode mode;
   4212 	u_int16_t flags;
   4213 
   4214 	/*
   4215 	 * Change channels and update the h/w rate map
   4216 	 * if we're switching; e.g. 11a to 11b/g.
   4217 	 */
   4218 	mode = ieee80211_chan2mode(ic, chan);
   4219 	if (mode != sc->sc_curmode)
   4220 		ath_setcurmode(sc, mode);
   4221 	/*
   4222 	 * Update BPF state.  NB: ethereal et. al. don't handle
   4223 	 * merged flags well so pick a unique mode for their use.
   4224 	 */
   4225 	if (IEEE80211_IS_CHAN_A(chan))
   4226 		flags = IEEE80211_CHAN_A;
   4227 	/* XXX 11g schizophrenia */
   4228 	else if (IEEE80211_IS_CHAN_G(chan) ||
   4229 	    IEEE80211_IS_CHAN_PUREG(chan))
   4230 		flags = IEEE80211_CHAN_G;
   4231 	else
   4232 		flags = IEEE80211_CHAN_B;
   4233 	if (IEEE80211_IS_CHAN_T(chan))
   4234 		flags |= IEEE80211_CHAN_TURBO;
   4235 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
   4236 		htole16(chan->ic_freq);
   4237 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
   4238 		htole16(flags);
   4239 }
   4240 
   4241 /*
   4242  * Poll for a channel clear indication; this is required
   4243  * for channels requiring DFS and not previously visited
   4244  * and/or with a recent radar detection.
   4245  */
   4246 static void
   4247 ath_dfswait(void *arg)
   4248 {
   4249 	struct ath_softc *sc = arg;
   4250 	struct ath_hal *ah = sc->sc_ah;
   4251 	HAL_CHANNEL hchan;
   4252 
   4253 	ath_hal_radar_wait(ah, &hchan);
   4254 	if (hchan.privFlags & CHANNEL_INTERFERENCE) {
   4255 		if_printf(&sc->sc_if,
   4256 		    "channel %u/0x%x/0x%x has interference\n",
   4257 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
   4258 		return;
   4259 	}
   4260 	if ((hchan.privFlags & CHANNEL_DFS) == 0) {
   4261 		/* XXX should not happen */
   4262 		return;
   4263 	}
   4264 	if (hchan.privFlags & CHANNEL_DFS_CLEAR) {
   4265 		sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR;
   4266 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
   4267 		if_printf(&sc->sc_if,
   4268 		    "channel %u/0x%x/0x%x marked clear\n",
   4269 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
   4270 	} else
   4271 		callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc);
   4272 }
   4273 
   4274 /*
   4275  * Set/change channels.  If the channel is really being changed,
   4276  * it's done by reseting the chip.  To accomplish this we must
   4277  * first cleanup any pending DMA, then restart stuff after a la
   4278  * ath_init.
   4279  */
   4280 static int
   4281 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
   4282 {
   4283 	struct ath_hal *ah = sc->sc_ah;
   4284 	struct ieee80211com *ic = &sc->sc_ic;
   4285 	HAL_CHANNEL hchan;
   4286 
   4287 	/*
   4288 	 * Convert to a HAL channel description with
   4289 	 * the flags constrained to reflect the current
   4290 	 * operating mode.
   4291 	 */
   4292 	hchan.channel = chan->ic_freq;
   4293 	hchan.channelFlags = ath_chan2flags(ic, chan);
   4294 
   4295 	DPRINTF(sc, ATH_DEBUG_RESET,
   4296 	    "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
   4297 	    __func__,
   4298 	    ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
   4299 		sc->sc_curchan.channelFlags),
   4300 	    	sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
   4301 	    ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
   4302 	        hchan.channel, hchan.channelFlags);
   4303 	if (hchan.channel != sc->sc_curchan.channel ||
   4304 	    hchan.channelFlags != sc->sc_curchan.channelFlags) {
   4305 		HAL_STATUS status;
   4306 
   4307 		/*
   4308 		 * To switch channels clear any pending DMA operations;
   4309 		 * wait long enough for the RX fifo to drain, reset the
   4310 		 * hardware at the new frequency, and then re-enable
   4311 		 * the relevant bits of the h/w.
   4312 		 */
   4313 		ath_hal_intrset(ah, 0);		/* disable interrupts */
   4314 		ath_draintxq(sc);		/* clear pending tx frames */
   4315 		ath_stoprecv(sc);		/* turn off frame recv */
   4316 		if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
   4317 			if_printf(ic->ic_ifp, "%s: unable to reset "
   4318 			    "channel %u (%u MHz, flags 0x%x hal flags 0x%x)\n",
   4319 			    __func__, ieee80211_chan2ieee(ic, chan),
   4320 			    chan->ic_freq, chan->ic_flags, hchan.channelFlags);
   4321 			return EIO;
   4322 		}
   4323 		sc->sc_curchan = hchan;
   4324 		ath_update_txpow(sc);		/* update tx power state */
   4325 		sc->sc_diversity = ath_hal_getdiversity(ah);
   4326 		sc->sc_calinterval = 1;
   4327 		sc->sc_caltries = 0;
   4328 
   4329 		/*
   4330 		 * Re-enable rx framework.
   4331 		 */
   4332 		if (ath_startrecv(sc) != 0) {
   4333 			if_printf(&sc->sc_if,
   4334 				"%s: unable to restart recv logic\n", __func__);
   4335 			return EIO;
   4336 		}
   4337 
   4338 		/*
   4339 		 * Change channels and update the h/w rate map
   4340 		 * if we're switching; e.g. 11a to 11b/g.
   4341 		 */
   4342 		ic->ic_ibss_chan = chan;
   4343 		ath_chan_change(sc, chan);
   4344 
   4345 		/*
   4346 		 * Handle DFS required waiting period to determine
   4347 		 * if channel is clear of radar traffic.
   4348 		 */
   4349 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   4350 #define	DFS_AND_NOT_CLEAR(_c) \
   4351 	(((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS)
   4352 			if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) {
   4353 				if_printf(&sc->sc_if,
   4354 					"wait for DFS clear channel signal\n");
   4355 				/* XXX stop sndq */
   4356 				sc->sc_if.if_flags |= IFF_OACTIVE;
   4357 				callout_reset(&sc->sc_dfs_ch,
   4358 					2 * hz, ath_dfswait, sc);
   4359 			} else
   4360 				callout_stop(&sc->sc_dfs_ch);
   4361 #undef DFS_NOT_CLEAR
   4362 		}
   4363 
   4364 		/*
   4365 		 * Re-enable interrupts.
   4366 		 */
   4367 		ath_hal_intrset(ah, sc->sc_imask);
   4368 	}
   4369 	return 0;
   4370 }
   4371 
   4372 static void
   4373 ath_next_scan(void *arg)
   4374 {
   4375 	struct ath_softc *sc = arg;
   4376 	struct ieee80211com *ic = &sc->sc_ic;
   4377 	int s;
   4378 
   4379 	/* don't call ath_start w/o network interrupts blocked */
   4380 	s = splnet();
   4381 
   4382 	if (ic->ic_state == IEEE80211_S_SCAN)
   4383 		ieee80211_next_scan(ic);
   4384 	splx(s);
   4385 }
   4386 
   4387 /*
   4388  * Periodically recalibrate the PHY to account
   4389  * for temperature/environment changes.
   4390  */
   4391 static void
   4392 ath_calibrate(void *arg)
   4393 {
   4394 	struct ath_softc *sc = arg;
   4395 	struct ath_hal *ah = sc->sc_ah;
   4396 	HAL_BOOL iqCalDone;
   4397 
   4398 	sc->sc_stats.ast_per_cal++;
   4399 
   4400 	ATH_LOCK(sc);
   4401 
   4402 	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
   4403 		/*
   4404 		 * Rfgain is out of bounds, reset the chip
   4405 		 * to load new gain values.
   4406 		 */
   4407 		DPRINTF(sc, ATH_DEBUG_CALIBRATE,
   4408 			"%s: rfgain change\n", __func__);
   4409 		sc->sc_stats.ast_per_rfgain++;
   4410 		ath_reset(&sc->sc_if);
   4411 	}
   4412 	if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
   4413 		DPRINTF(sc, ATH_DEBUG_ANY,
   4414 			"%s: calibration of channel %u failed\n",
   4415 			__func__, sc->sc_curchan.channel);
   4416 		sc->sc_stats.ast_per_calfail++;
   4417 	}
   4418 	/*
   4419 	 * Calibrate noise floor data again in case of change.
   4420 	 */
   4421 	ath_hal_process_noisefloor(ah);
   4422 	/*
   4423 	 * Poll more frequently when the IQ calibration is in
   4424 	 * progress to speedup loading the final settings.
   4425 	 * We temper this aggressive polling with an exponential
   4426 	 * back off after 4 tries up to ath_calinterval.
   4427 	 */
   4428 	if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
   4429 		sc->sc_caltries = 0;
   4430 		sc->sc_calinterval = ath_calinterval;
   4431 	} else if (sc->sc_caltries > 4) {
   4432 		sc->sc_caltries = 0;
   4433 		sc->sc_calinterval <<= 1;
   4434 		if (sc->sc_calinterval > ath_calinterval)
   4435 			sc->sc_calinterval = ath_calinterval;
   4436 	}
   4437 	KASSERT(0 < sc->sc_calinterval && sc->sc_calinterval <= ath_calinterval,
   4438 		("bad calibration interval %u", sc->sc_calinterval));
   4439 
   4440 	DPRINTF(sc, ATH_DEBUG_CALIBRATE,
   4441 		"%s: next +%u (%siqCalDone tries %u)\n", __func__,
   4442 		sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
   4443 	sc->sc_caltries++;
   4444 	callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
   4445 		ath_calibrate, sc);
   4446 	ATH_UNLOCK(sc);
   4447 }
   4448 
   4449 static int
   4450 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
   4451 {
   4452 	struct ifnet *ifp = ic->ic_ifp;
   4453 	struct ath_softc *sc = ifp->if_softc;
   4454 	struct ath_hal *ah = sc->sc_ah;
   4455 	struct ieee80211_node *ni;
   4456 	int i, error;
   4457 	const u_int8_t *bssid;
   4458 	u_int32_t rfilt;
   4459 	static const HAL_LED_STATE leds[] = {
   4460 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
   4461 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
   4462 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
   4463 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
   4464 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
   4465 	};
   4466 
   4467 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
   4468 		ieee80211_state_name[ic->ic_state],
   4469 		ieee80211_state_name[nstate]);
   4470 
   4471 	callout_stop(&sc->sc_scan_ch);
   4472 	callout_stop(&sc->sc_cal_ch);
   4473 	callout_stop(&sc->sc_dfs_ch);
   4474 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
   4475 
   4476 	if (nstate == IEEE80211_S_INIT) {
   4477 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
   4478 		/*
   4479 		 * NB: disable interrupts so we don't rx frames.
   4480 		 */
   4481 		ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
   4482 		/*
   4483 		 * Notify the rate control algorithm.
   4484 		 */
   4485 		ath_rate_newstate(sc, nstate);
   4486 		goto done;
   4487 	}
   4488 	ni = ic->ic_bss;
   4489 	error = ath_chan_set(sc, ic->ic_curchan);
   4490 	if (error != 0)
   4491 		goto bad;
   4492 	rfilt = ath_calcrxfilter(sc, nstate);
   4493 	if (nstate == IEEE80211_S_SCAN)
   4494 		bssid = ifp->if_broadcastaddr;
   4495 	else
   4496 		bssid = ni->ni_bssid;
   4497 	ath_hal_setrxfilter(ah, rfilt);
   4498 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
   4499 		 __func__, rfilt, ether_sprintf(bssid));
   4500 
   4501 	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
   4502 		ath_hal_setassocid(ah, bssid, ni->ni_associd);
   4503 	else
   4504 		ath_hal_setassocid(ah, bssid, 0);
   4505 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
   4506 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
   4507 			if (ath_hal_keyisvalid(ah, i))
   4508 				ath_hal_keysetmac(ah, i, bssid);
   4509 	}
   4510 
   4511 	/*
   4512 	 * Notify the rate control algorithm so rates
   4513 	 * are setup should ath_beacon_alloc be called.
   4514 	 */
   4515 	ath_rate_newstate(sc, nstate);
   4516 
   4517 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
   4518 		/* nothing to do */;
   4519 	} else if (nstate == IEEE80211_S_RUN) {
   4520 		DPRINTF(sc, ATH_DEBUG_STATE,
   4521 			"%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
   4522 			"capinfo=0x%04x chan=%d\n"
   4523 			 , __func__
   4524 			 , ic->ic_flags
   4525 			 , ni->ni_intval
   4526 			 , ether_sprintf(ni->ni_bssid)
   4527 			 , ni->ni_capinfo
   4528 			 , ieee80211_chan2ieee(ic, ic->ic_curchan));
   4529 
   4530 		switch (ic->ic_opmode) {
   4531 		case IEEE80211_M_HOSTAP:
   4532 		case IEEE80211_M_IBSS:
   4533 			/*
   4534 			 * Allocate and setup the beacon frame.
   4535 			 *
   4536 			 * Stop any previous beacon DMA.  This may be
   4537 			 * necessary, for example, when an ibss merge
   4538 			 * causes reconfiguration; there will be a state
   4539 			 * transition from RUN->RUN that means we may
   4540 			 * be called with beacon transmission active.
   4541 			 */
   4542 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
   4543 			ath_beacon_free(sc);
   4544 			error = ath_beacon_alloc(sc, ni);
   4545 			if (error != 0)
   4546 				goto bad;
   4547 			/*
   4548 			 * If joining an adhoc network defer beacon timer
   4549 			 * configuration to the next beacon frame so we
   4550 			 * have a current TSF to use.  Otherwise we're
   4551 			 * starting an ibss/bss so there's no need to delay.
   4552 			 */
   4553 			if (ic->ic_opmode == IEEE80211_M_IBSS &&
   4554 			    ic->ic_bss->ni_tstamp.tsf != 0)
   4555 				sc->sc_syncbeacon = 1;
   4556 			else
   4557 				ath_beacon_config(sc);
   4558 			break;
   4559 		case IEEE80211_M_STA:
   4560 			/*
   4561 			 * Allocate a key cache slot to the station.
   4562 			 */
   4563 			if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
   4564 			    sc->sc_hasclrkey &&
   4565 			    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
   4566 				ath_setup_stationkey(ni);
   4567 			/*
   4568 			 * Defer beacon timer configuration to the next
   4569 			 * beacon frame so we have a current TSF to use
   4570 			 * (any TSF collected when scanning is likely old).
   4571 			 */
   4572 			sc->sc_syncbeacon = 1;
   4573 			break;
   4574 		default:
   4575 			break;
   4576 		}
   4577 		/*
   4578 		 * Let the hal process statistics collected during a
   4579 		 * scan so it can provide calibrated noise floor data.
   4580 		 */
   4581 		ath_hal_process_noisefloor(ah);
   4582 		/*
   4583 		 * Reset rssi stats; maybe not the best place...
   4584 		 */
   4585 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
   4586 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
   4587 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
   4588 	} else {
   4589 		ath_hal_intrset(ah,
   4590 			sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
   4591 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
   4592 	}
   4593 done:
   4594 	/*
   4595 	 * Invoke the parent method to complete the work.
   4596 	 */
   4597 	error = sc->sc_newstate(ic, nstate, arg);
   4598 	/*
   4599 	 * Finally, start any timers.
   4600 	 */
   4601 	if (nstate == IEEE80211_S_RUN) {
   4602 		/* start periodic recalibration timer */
   4603 		callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
   4604 			ath_calibrate, sc);
   4605 	} else if (nstate == IEEE80211_S_SCAN) {
   4606 		/* start ap/neighbor scan timer */
   4607 		callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
   4608 			ath_next_scan, sc);
   4609 	}
   4610 bad:
   4611 	return error;
   4612 }
   4613 
   4614 /*
   4615  * Allocate a key cache slot to the station so we can
   4616  * setup a mapping from key index to node. The key cache
   4617  * slot is needed for managing antenna state and for
   4618  * compression when stations do not use crypto.  We do
   4619  * it uniliaterally here; if crypto is employed this slot
   4620  * will be reassigned.
   4621  */
   4622 static void
   4623 ath_setup_stationkey(struct ieee80211_node *ni)
   4624 {
   4625 	struct ieee80211com *ic = ni->ni_ic;
   4626 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   4627 	ieee80211_keyix keyix, rxkeyix;
   4628 
   4629 	if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
   4630 		/*
   4631 		 * Key cache is full; we'll fall back to doing
   4632 		 * the more expensive lookup in software.  Note
   4633 		 * this also means no h/w compression.
   4634 		 */
   4635 		/* XXX msg+statistic */
   4636 	} else {
   4637 		/* XXX locking? */
   4638 		ni->ni_ucastkey.wk_keyix = keyix;
   4639 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
   4640 		/* NB: this will create a pass-thru key entry */
   4641 		ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
   4642 	}
   4643 }
   4644 
   4645 /*
   4646  * Setup driver-specific state for a newly associated node.
   4647  * Note that we're called also on a re-associate, the isnew
   4648  * param tells us if this is the first time or not.
   4649  */
   4650 static void
   4651 ath_newassoc(struct ieee80211_node *ni, int isnew)
   4652 {
   4653 	struct ieee80211com *ic = ni->ni_ic;
   4654 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   4655 
   4656 	ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
   4657 	if (isnew &&
   4658 	    (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
   4659 		KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
   4660 		    ("new assoc with a unicast key already setup (keyix %u)",
   4661 		    ni->ni_ucastkey.wk_keyix));
   4662 		ath_setup_stationkey(ni);
   4663 	}
   4664 }
   4665 
   4666 static int
   4667 ath_getchannels(struct ath_softc *sc, u_int cc,
   4668 	HAL_BOOL outdoor, HAL_BOOL xchanmode)
   4669 {
   4670 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
   4671 	struct ieee80211com *ic = &sc->sc_ic;
   4672 	struct ifnet *ifp = &sc->sc_if;
   4673 	struct ath_hal *ah = sc->sc_ah;
   4674 	HAL_CHANNEL *chans;
   4675 	int i, ix, nchan;
   4676 
   4677 	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
   4678 			M_TEMP, M_NOWAIT);
   4679 	if (chans == NULL) {
   4680 		if_printf(ifp, "unable to allocate channel table\n");
   4681 		return ENOMEM;
   4682 	}
   4683 	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
   4684 	    NULL, 0, NULL,
   4685 	    cc, HAL_MODE_ALL, outdoor, xchanmode)) {
   4686 		u_int32_t rd;
   4687 
   4688 		ath_hal_getregdomain(ah, &rd);
   4689 		if_printf(ifp, "unable to collect channel list from hal; "
   4690 			"regdomain likely %u country code %u\n", rd, cc);
   4691 		free(chans, M_TEMP);
   4692 		return EINVAL;
   4693 	}
   4694 
   4695 	/*
   4696 	 * Convert HAL channels to ieee80211 ones and insert
   4697 	 * them in the table according to their channel number.
   4698 	 */
   4699 	for (i = 0; i < nchan; i++) {
   4700 		HAL_CHANNEL *c = &chans[i];
   4701 		u_int16_t flags;
   4702 
   4703 		ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags);
   4704 		if (ix > IEEE80211_CHAN_MAX) {
   4705 			if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n",
   4706 				ix, c->channel, c->channelFlags);
   4707 			continue;
   4708 		}
   4709 		if (ix < 0) {
   4710 			/* XXX can't handle stuff <2400 right now */
   4711 			if (bootverbose)
   4712 				if_printf(ifp, "hal channel %d (%u/%x) "
   4713 				    "cannot be handled; ignored\n",
   4714 				    ix, c->channel, c->channelFlags);
   4715 			continue;
   4716 		}
   4717 		/*
   4718 		 * Calculate net80211 flags; most are compatible
   4719 		 * but some need massaging.  Note the static turbo
   4720 		 * conversion can be removed once net80211 is updated
   4721 		 * to understand static vs. dynamic turbo.
   4722 		 */
   4723 		flags = c->channelFlags & COMPAT;
   4724 		if (c->channelFlags & CHANNEL_STURBO)
   4725 			flags |= IEEE80211_CHAN_TURBO;
   4726 		if (ic->ic_channels[ix].ic_freq == 0) {
   4727 			ic->ic_channels[ix].ic_freq = c->channel;
   4728 			ic->ic_channels[ix].ic_flags = flags;
   4729 		} else {
   4730 			/* channels overlap; e.g. 11g and 11b */
   4731 			ic->ic_channels[ix].ic_flags |= flags;
   4732 		}
   4733 	}
   4734 	free(chans, M_TEMP);
   4735 	return 0;
   4736 #undef COMPAT
   4737 }
   4738 
   4739 static void
   4740 ath_led_done(void *arg)
   4741 {
   4742 	struct ath_softc *sc = arg;
   4743 
   4744 	sc->sc_blinking = 0;
   4745 }
   4746 
   4747 /*
   4748  * Turn the LED off: flip the pin and then set a timer so no
   4749  * update will happen for the specified duration.
   4750  */
   4751 static void
   4752 ath_led_off(void *arg)
   4753 {
   4754 	struct ath_softc *sc = arg;
   4755 
   4756 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
   4757 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
   4758 }
   4759 
   4760 /*
   4761  * Blink the LED according to the specified on/off times.
   4762  */
   4763 static void
   4764 ath_led_blink(struct ath_softc *sc, int on, int off)
   4765 {
   4766 	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
   4767 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
   4768 	sc->sc_blinking = 1;
   4769 	sc->sc_ledoff = off;
   4770 	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
   4771 }
   4772 
   4773 static void
   4774 ath_led_event(struct ath_softc *sc, int event)
   4775 {
   4776 
   4777 	sc->sc_ledevent = ticks;	/* time of last event */
   4778 	if (sc->sc_blinking)		/* don't interrupt active blink */
   4779 		return;
   4780 	switch (event) {
   4781 	case ATH_LED_POLL:
   4782 		ath_led_blink(sc, sc->sc_hwmap[0].ledon,
   4783 			sc->sc_hwmap[0].ledoff);
   4784 		break;
   4785 	case ATH_LED_TX:
   4786 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
   4787 			sc->sc_hwmap[sc->sc_txrate].ledoff);
   4788 		break;
   4789 	case ATH_LED_RX:
   4790 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
   4791 			sc->sc_hwmap[sc->sc_rxrate].ledoff);
   4792 		break;
   4793 	}
   4794 }
   4795 
   4796 static void
   4797 ath_update_txpow(struct ath_softc *sc)
   4798 {
   4799 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
   4800 	struct ieee80211com *ic = &sc->sc_ic;
   4801 	struct ath_hal *ah = sc->sc_ah;
   4802 	u_int32_t txpow;
   4803 
   4804 	if (sc->sc_curtxpow != ic->ic_txpowlimit) {
   4805 		ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
   4806 		/* read back in case value is clamped */
   4807 		ath_hal_gettxpowlimit(ah, &txpow);
   4808 		ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
   4809 	}
   4810 	/*
   4811 	 * Fetch max tx power level for status requests.
   4812 	 */
   4813 	ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
   4814 	ic->ic_bss->ni_txpower = txpow;
   4815 }
   4816 
   4817 static void
   4818 rate_setup(struct ath_softc *sc,
   4819 	const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs)
   4820 {
   4821 	int i, maxrates;
   4822 
   4823 	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
   4824 		DPRINTF(sc, ATH_DEBUG_ANY,
   4825 			"%s: rate table too small (%u > %u)\n",
   4826 		       __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
   4827 		maxrates = IEEE80211_RATE_MAXSIZE;
   4828 	} else
   4829 		maxrates = rt->rateCount;
   4830 	for (i = 0; i < maxrates; i++)
   4831 		rs->rs_rates[i] = rt->info[i].dot11Rate;
   4832 	rs->rs_nrates = maxrates;
   4833 }
   4834 
   4835 static int
   4836 ath_rate_setup(struct ath_softc *sc, u_int mode)
   4837 {
   4838 	struct ath_hal *ah = sc->sc_ah;
   4839 	struct ieee80211com *ic = &sc->sc_ic;
   4840 	const HAL_RATE_TABLE *rt;
   4841 
   4842 	switch (mode) {
   4843 	case IEEE80211_MODE_11A:
   4844 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
   4845 		break;
   4846 	case IEEE80211_MODE_11B:
   4847 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
   4848 		break;
   4849 	case IEEE80211_MODE_11G:
   4850 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
   4851 		break;
   4852 	case IEEE80211_MODE_TURBO_A:
   4853 		/* XXX until static/dynamic turbo is fixed */
   4854 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
   4855 		break;
   4856 	case IEEE80211_MODE_TURBO_G:
   4857 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
   4858 		break;
   4859 	default:
   4860 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
   4861 			__func__, mode);
   4862 		return 0;
   4863 	}
   4864 	sc->sc_rates[mode] = rt;
   4865 	if (rt != NULL) {
   4866 		rate_setup(sc, rt, &ic->ic_sup_rates[mode]);
   4867 		return 1;
   4868 	} else
   4869 		return 0;
   4870 }
   4871 
   4872 static void
   4873 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
   4874 {
   4875 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   4876 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
   4877 	static const struct {
   4878 		u_int		rate;		/* tx/rx 802.11 rate */
   4879 		u_int16_t	timeOn;		/* LED on time (ms) */
   4880 		u_int16_t	timeOff;	/* LED off time (ms) */
   4881 	} blinkrates[] = {
   4882 		{ 108,  40,  10 },
   4883 		{  96,  44,  11 },
   4884 		{  72,  50,  13 },
   4885 		{  48,  57,  14 },
   4886 		{  36,  67,  16 },
   4887 		{  24,  80,  20 },
   4888 		{  22, 100,  25 },
   4889 		{  18, 133,  34 },
   4890 		{  12, 160,  40 },
   4891 		{  10, 200,  50 },
   4892 		{   6, 240,  58 },
   4893 		{   4, 267,  66 },
   4894 		{   2, 400, 100 },
   4895 		{   0, 500, 130 },
   4896 	};
   4897 	const HAL_RATE_TABLE *rt;
   4898 	int i, j;
   4899 
   4900 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
   4901 	rt = sc->sc_rates[mode];
   4902 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
   4903 	for (i = 0; i < rt->rateCount; i++)
   4904 		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
   4905 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
   4906 	for (i = 0; i < 32; i++) {
   4907 		u_int8_t ix = rt->rateCodeToIndex[i];
   4908 		if (ix == 0xff) {
   4909 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
   4910 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
   4911 			continue;
   4912 		}
   4913 		sc->sc_hwmap[i].ieeerate =
   4914 			rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
   4915 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
   4916 		if (rt->info[ix].shortPreamble ||
   4917 		    rt->info[ix].phy == IEEE80211_T_OFDM)
   4918 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
   4919 		/* NB: receive frames include FCS */
   4920 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
   4921 			IEEE80211_RADIOTAP_F_FCS;
   4922 		/* setup blink rate table to avoid per-packet lookup */
   4923 		for (j = 0; j < N(blinkrates)-1; j++)
   4924 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
   4925 				break;
   4926 		/* NB: this uses the last entry if the rate isn't found */
   4927 		/* XXX beware of overlow */
   4928 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
   4929 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
   4930 	}
   4931 	sc->sc_currates = rt;
   4932 	sc->sc_curmode = mode;
   4933 	/*
   4934 	 * All protection frames are transmited at 2Mb/s for
   4935 	 * 11g, otherwise at 1Mb/s.
   4936 	 */
   4937 	if (mode == IEEE80211_MODE_11G)
   4938 		sc->sc_protrix = ath_tx_findrix(rt, 2*2);
   4939 	else
   4940 		sc->sc_protrix = ath_tx_findrix(rt, 2*1);
   4941 	/* rate index used to send management frames */
   4942 	sc->sc_minrateix = 0;
   4943 	/*
   4944 	 * Setup multicast rate state.
   4945 	 */
   4946 	/* XXX layering violation */
   4947 	sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate);
   4948 	sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate;
   4949 	/* NB: caller is responsible for reseting rate control state */
   4950 #undef N
   4951 }
   4952 
   4953 #ifdef AR_DEBUG
   4954 static void
   4955 ath_printrxbuf(struct ath_buf *bf, int done)
   4956 {
   4957 	struct ath_desc *ds;
   4958 	int i;
   4959 
   4960 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
   4961 		printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n",
   4962 		    i, ds, (struct ath_desc *)bf->bf_daddr + i,
   4963 		    ds->ds_link, ds->ds_data,
   4964 		    ds->ds_ctl0, ds->ds_ctl1,
   4965 		    ds->ds_hw[0], ds->ds_hw[1],
   4966 		    !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
   4967 	}
   4968 }
   4969 
   4970 static void
   4971 ath_printtxbuf(struct ath_buf *bf, int done)
   4972 {
   4973 	struct ath_desc *ds;
   4974 	int i;
   4975 
   4976 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
   4977 		printf("T%d (%p %p) %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
   4978 		    i, ds, (struct ath_desc *)bf->bf_daddr + i,
   4979 		    ds->ds_link, ds->ds_data,
   4980 		    ds->ds_ctl0, ds->ds_ctl1,
   4981 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
   4982 		    !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
   4983 	}
   4984 }
   4985 #endif /* AR_DEBUG */
   4986 
   4987 static void
   4988 ath_watchdog(struct ifnet *ifp)
   4989 {
   4990 	struct ath_softc *sc = ifp->if_softc;
   4991 	struct ieee80211com *ic = &sc->sc_ic;
   4992 
   4993 	ifp->if_timer = 0;
   4994 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
   4995 		return;
   4996 	if (sc->sc_tx_timer) {
   4997 		if (--sc->sc_tx_timer == 0) {
   4998 			if_printf(ifp, "device timeout\n");
   4999 			ath_reset(ifp);
   5000 			ifp->if_oerrors++;
   5001 			sc->sc_stats.ast_watchdog++;
   5002 		} else
   5003 			ifp->if_timer = 1;
   5004 	}
   5005 	ieee80211_watchdog(ic);
   5006 }
   5007 
   5008 /*
   5009  * Diagnostic interface to the HAL.  This is used by various
   5010  * tools to do things like retrieve register contents for
   5011  * debugging.  The mechanism is intentionally opaque so that
   5012  * it can change frequently w/o concern for compatiblity.
   5013  */
   5014 static int
   5015 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
   5016 {
   5017 	struct ath_hal *ah = sc->sc_ah;
   5018 	u_int id = ad->ad_id & ATH_DIAG_ID;
   5019 	void *indata = NULL;
   5020 	void *outdata = NULL;
   5021 	u_int32_t insize = ad->ad_in_size;
   5022 	u_int32_t outsize = ad->ad_out_size;
   5023 	int error = 0;
   5024 
   5025 	if (ad->ad_id & ATH_DIAG_IN) {
   5026 		/*
   5027 		 * Copy in data.
   5028 		 */
   5029 		indata = malloc(insize, M_TEMP, M_NOWAIT);
   5030 		if (indata == NULL) {
   5031 			error = ENOMEM;
   5032 			goto bad;
   5033 		}
   5034 		error = copyin(ad->ad_in_data, indata, insize);
   5035 		if (error)
   5036 			goto bad;
   5037 	}
   5038 	if (ad->ad_id & ATH_DIAG_DYN) {
   5039 		/*
   5040 		 * Allocate a buffer for the results (otherwise the HAL
   5041 		 * returns a pointer to a buffer where we can read the
   5042 		 * results).  Note that we depend on the HAL leaving this
   5043 		 * pointer for us to use below in reclaiming the buffer;
   5044 		 * may want to be more defensive.
   5045 		 */
   5046 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
   5047 		if (outdata == NULL) {
   5048 			error = ENOMEM;
   5049 			goto bad;
   5050 		}
   5051 	}
   5052 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
   5053 		if (outsize < ad->ad_out_size)
   5054 			ad->ad_out_size = outsize;
   5055 		if (outdata != NULL)
   5056 			error = copyout(outdata, ad->ad_out_data,
   5057 					ad->ad_out_size);
   5058 	} else {
   5059 		error = EINVAL;
   5060 	}
   5061 bad:
   5062 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
   5063 		free(indata, M_TEMP);
   5064 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
   5065 		free(outdata, M_TEMP);
   5066 	return error;
   5067 }
   5068 
   5069 static int
   5070 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
   5071 {
   5072 #define	IS_RUNNING(ifp) \
   5073 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
   5074 	struct ath_softc *sc = ifp->if_softc;
   5075 	struct ieee80211com *ic = &sc->sc_ic;
   5076 	struct ifreq *ifr = (struct ifreq *)data;
   5077 	int error = 0;
   5078 
   5079 	ATH_LOCK(sc);
   5080 	switch (cmd) {
   5081 	case SIOCSIFFLAGS:
   5082 		if (IS_RUNNING(ifp)) {
   5083 			/*
   5084 			 * To avoid rescanning another access point,
   5085 			 * do not call ath_init() here.  Instead,
   5086 			 * only reflect promisc mode settings.
   5087 			 */
   5088 			ath_mode_init(sc);
   5089 		} else if (ifp->if_flags & IFF_UP) {
   5090 			/*
   5091 			 * Beware of being called during attach/detach
   5092 			 * to reset promiscuous mode.  In that case we
   5093 			 * will still be marked UP but not RUNNING.
   5094 			 * However trying to re-init the interface
   5095 			 * is the wrong thing to do as we've already
   5096 			 * torn down much of our state.  There's
   5097 			 * probably a better way to deal with this.
   5098 			 */
   5099 			if (!sc->sc_invalid && ic->ic_bss != NULL)
   5100 				ath_init(sc);	/* XXX lose error */
   5101 		} else
   5102 			ath_stop_locked(ifp, 1);
   5103 		break;
   5104 	case SIOCADDMULTI:
   5105 	case SIOCDELMULTI:
   5106 		error = (cmd == SIOCADDMULTI) ?
   5107 		    ether_addmulti(ifr, &sc->sc_ec) :
   5108 		    ether_delmulti(ifr, &sc->sc_ec);
   5109 		if (error == ENETRESET) {
   5110 			if (ifp->if_flags & IFF_RUNNING)
   5111 				ath_mode_init(sc);
   5112 			error = 0;
   5113 		}
   5114 		break;
   5115 	case SIOCGATHSTATS:
   5116 		/* NB: embed these numbers to get a consistent view */
   5117 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
   5118 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
   5119 		sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
   5120 		ATH_UNLOCK(sc);
   5121 		/*
   5122 		 * NB: Drop the softc lock in case of a page fault;
   5123 		 * we'll accept any potential inconsisentcy in the
   5124 		 * statistics.  The alternative is to copy the data
   5125 		 * to a local structure.
   5126 		 */
   5127 		return copyout(&sc->sc_stats,
   5128 				ifr->ifr_data, sizeof (sc->sc_stats));
   5129 	case SIOCGATHDIAG:
   5130 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
   5131 		break;
   5132 	default:
   5133 		error = ieee80211_ioctl(ic, cmd, data);
   5134 		if (error == ENETRESET) {
   5135 			if (IS_RUNNING(ifp) &&
   5136 			    ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
   5137 				ath_init(sc);	/* XXX lose error */
   5138 			error = 0;
   5139 		}
   5140 		if (error == ERESTART)
   5141 			error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0;
   5142 		break;
   5143 	}
   5144 	ATH_UNLOCK(sc);
   5145 	return error;
   5146 #undef IS_RUNNING
   5147 }
   5148 
   5149 #if NBPFILTER > 0
   5150 static void
   5151 ath_bpfattach(struct ath_softc *sc)
   5152 {
   5153 	struct ifnet *ifp = &sc->sc_if;
   5154 
   5155 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
   5156 		sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
   5157 		&sc->sc_drvbpf);
   5158 	/*
   5159 	 * Initialize constant fields.
   5160 	 * XXX make header lengths a multiple of 32-bits so subsequent
   5161 	 *     headers are properly aligned; this is a kludge to keep
   5162 	 *     certain applications happy.
   5163 	 *
   5164 	 * NB: the channel is setup each time we transition to the
   5165 	 *     RUN state to avoid filling it in for each frame.
   5166 	 */
   5167 	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
   5168 	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
   5169 	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
   5170 
   5171 	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
   5172 	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
   5173 	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
   5174 }
   5175 #endif
   5176 
   5177 /*
   5178  * Announce various information on device/driver attach.
   5179  */
   5180 static void
   5181 ath_announce(struct ath_softc *sc)
   5182 {
   5183 #define	HAL_MODE_DUALBAND	(HAL_MODE_11A|HAL_MODE_11B)
   5184 	struct ifnet *ifp = &sc->sc_if;
   5185 	struct ath_hal *ah = sc->sc_ah;
   5186 	u_int modes, cc;
   5187 
   5188 	if_printf(ifp, "mac %d.%d phy %d.%d",
   5189 		ah->ah_macVersion, ah->ah_macRev,
   5190 		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
   5191 	/*
   5192 	 * Print radio revision(s).  We check the wireless modes
   5193 	 * to avoid falsely printing revs for inoperable parts.
   5194 	 * Dual-band radio revs are returned in the 5 GHz rev number.
   5195 	 */
   5196 	ath_hal_getcountrycode(ah, &cc);
   5197 	modes = ath_hal_getwirelessmodes(ah, cc);
   5198 	if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
   5199 		if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
   5200 			printf(" 5 GHz radio %d.%d 2 GHz radio %d.%d",
   5201 				ah->ah_analog5GhzRev >> 4,
   5202 				ah->ah_analog5GhzRev & 0xf,
   5203 				ah->ah_analog2GhzRev >> 4,
   5204 				ah->ah_analog2GhzRev & 0xf);
   5205 		else
   5206 			printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
   5207 				ah->ah_analog5GhzRev & 0xf);
   5208 	} else
   5209 		printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
   5210 			ah->ah_analog5GhzRev & 0xf);
   5211 	printf("\n");
   5212 	if (bootverbose) {
   5213 		int i;
   5214 		for (i = 0; i <= WME_AC_VO; i++) {
   5215 			struct ath_txq *txq = sc->sc_ac2q[i];
   5216 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
   5217 				txq->axq_qnum, ieee80211_wme_acnames[i]);
   5218 		}
   5219 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
   5220 			sc->sc_cabq->axq_qnum);
   5221 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
   5222 	}
   5223 	if (ath_rxbuf != ATH_RXBUF)
   5224 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
   5225 	if (ath_txbuf != ATH_TXBUF)
   5226 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
   5227 #undef HAL_MODE_DUALBAND
   5228 }
   5229