Home | History | Annotate | Line # | Download | only in ic
ath.c revision 1.76
      1 /*	$NetBSD: ath.c,v 1.76 2006/07/14 13:37:25 seanb Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer,
     12  *    without modification.
     13  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
     14  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
     15  *    redistribution must be conditioned upon including a substantially
     16  *    similar Disclaimer requirement for further binary redistribution.
     17  * 3. Neither the names of the above-listed copyright holders nor the names
     18  *    of any contributors may be used to endorse or promote products derived
     19  *    from this software without specific prior written permission.
     20  *
     21  * Alternatively, this software may be distributed under the terms of the
     22  * GNU General Public License ("GPL") version 2 as published by the Free
     23  * Software Foundation.
     24  *
     25  * NO WARRANTY
     26  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     28  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
     29  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
     30  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
     31  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
     34  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     36  * THE POSSIBILITY OF SUCH DAMAGES.
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 #ifdef __FreeBSD__
     41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $");
     42 #endif
     43 #ifdef __NetBSD__
     44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.76 2006/07/14 13:37:25 seanb Exp $");
     45 #endif
     46 
     47 /*
     48  * Driver for the Atheros Wireless LAN controller.
     49  *
     50  * This software is derived from work of Atsushi Onoe; his contribution
     51  * is greatly appreciated.
     52  */
     53 
     54 #include "opt_inet.h"
     55 
     56 #ifdef __NetBSD__
     57 #include "bpfilter.h"
     58 #endif /* __NetBSD__ */
     59 
     60 #include <sys/param.h>
     61 #include <sys/reboot.h>
     62 #include <sys/systm.h>
     63 #include <sys/types.h>
     64 #include <sys/sysctl.h>
     65 #include <sys/mbuf.h>
     66 #include <sys/malloc.h>
     67 #include <sys/lock.h>
     68 #include <sys/kernel.h>
     69 #include <sys/socket.h>
     70 #include <sys/sockio.h>
     71 #include <sys/errno.h>
     72 #include <sys/callout.h>
     73 #include <machine/bus.h>
     74 #include <sys/endian.h>
     75 
     76 #include <machine/bus.h>
     77 
     78 #include <net/if.h>
     79 #include <net/if_dl.h>
     80 #include <net/if_media.h>
     81 #include <net/if_types.h>
     82 #include <net/if_arp.h>
     83 #include <net/if_ether.h>
     84 #include <net/if_llc.h>
     85 
     86 #include <net80211/ieee80211_netbsd.h>
     87 #include <net80211/ieee80211_var.h>
     88 
     89 #if NBPFILTER > 0
     90 #include <net/bpf.h>
     91 #endif
     92 
     93 #ifdef INET
     94 #include <netinet/in.h>
     95 #endif
     96 
     97 #include <sys/device.h>
     98 #include <dev/ic/ath_netbsd.h>
     99 
    100 #define	AR_DEBUG
    101 #include <dev/ic/athvar.h>
    102 #include <contrib/dev/ath/ah_desc.h>
    103 #include <contrib/dev/ath/ah_devid.h>	/* XXX for softled */
    104 #include "athhal_options.h"
    105 
    106 #ifdef ATH_TX99_DIAG
    107 #include <dev/ath/ath_tx99/ath_tx99.h>
    108 #endif
    109 
    110 /* unaligned little endian access */
    111 #define LE_READ_2(p)							\
    112 	((u_int16_t)							\
    113 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
    114 #define LE_READ_4(p)							\
    115 	((u_int32_t)							\
    116 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
    117 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
    118 
    119 enum {
    120 	ATH_LED_TX,
    121 	ATH_LED_RX,
    122 	ATH_LED_POLL,
    123 };
    124 
    125 #ifdef	AH_NEED_DESC_SWAP
    126 #define	HTOAH32(x)	htole32(x)
    127 #else
    128 #define	HTOAH32(x)	(x)
    129 #endif
    130 
    131 static int	ath_ifinit(struct ifnet *);
    132 static int	ath_init(struct ath_softc *);
    133 static void	ath_stop_locked(struct ifnet *, int);
    134 static void	ath_stop(struct ifnet *, int);
    135 static void	ath_start(struct ifnet *);
    136 static int	ath_media_change(struct ifnet *);
    137 static void	ath_watchdog(struct ifnet *);
    138 static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
    139 static void	ath_fatal_proc(void *, int);
    140 static void	ath_rxorn_proc(void *, int);
    141 static void	ath_bmiss_proc(void *, int);
    142 static void	ath_radar_proc(void *, int);
    143 static int	ath_key_alloc(struct ieee80211com *,
    144 			const struct ieee80211_key *,
    145 			ieee80211_keyix *, ieee80211_keyix *);
    146 static int	ath_key_delete(struct ieee80211com *,
    147 			const struct ieee80211_key *);
    148 static int	ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
    149 			const u_int8_t mac[IEEE80211_ADDR_LEN]);
    150 static void	ath_key_update_begin(struct ieee80211com *);
    151 static void	ath_key_update_end(struct ieee80211com *);
    152 static void	ath_mode_init(struct ath_softc *);
    153 static void	ath_setslottime(struct ath_softc *);
    154 static void	ath_updateslot(struct ifnet *);
    155 static int	ath_beaconq_setup(struct ath_hal *);
    156 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
    157 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
    158 static void	ath_beacon_proc(void *, int);
    159 static void	ath_bstuck_proc(void *, int);
    160 static void	ath_beacon_free(struct ath_softc *);
    161 static void	ath_beacon_config(struct ath_softc *);
    162 static void	ath_descdma_cleanup(struct ath_softc *sc,
    163 			struct ath_descdma *, ath_bufhead *);
    164 static int	ath_desc_alloc(struct ath_softc *);
    165 static void	ath_desc_free(struct ath_softc *);
    166 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
    167 static void	ath_node_free(struct ieee80211_node *);
    168 static u_int8_t	ath_node_getrssi(const struct ieee80211_node *);
    169 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
    170 static void	ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
    171 			struct ieee80211_node *ni,
    172 			int subtype, int rssi, u_int32_t rstamp);
    173 static void	ath_setdefantenna(struct ath_softc *, u_int);
    174 static void	ath_rx_proc(void *, int);
    175 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
    176 static int	ath_tx_setup(struct ath_softc *, int, int);
    177 static int	ath_wme_update(struct ieee80211com *);
    178 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
    179 static void	ath_tx_cleanup(struct ath_softc *);
    180 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
    181 			     struct ath_buf *, struct mbuf *);
    182 static void	ath_tx_proc_q0(void *, int);
    183 static void	ath_tx_proc_q0123(void *, int);
    184 static void	ath_tx_proc(void *, int);
    185 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
    186 static void	ath_draintxq(struct ath_softc *);
    187 static void	ath_stoprecv(struct ath_softc *);
    188 static int	ath_startrecv(struct ath_softc *);
    189 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
    190 static void	ath_next_scan(void *);
    191 static void	ath_calibrate(void *);
    192 static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
    193 static void	ath_setup_stationkey(struct ieee80211_node *);
    194 static void	ath_newassoc(struct ieee80211_node *, int);
    195 static int	ath_getchannels(struct ath_softc *, u_int cc,
    196 			HAL_BOOL outdoor, HAL_BOOL xchanmode);
    197 static void	ath_led_event(struct ath_softc *, int);
    198 static void	ath_update_txpow(struct ath_softc *);
    199 
    200 static int	ath_rate_setup(struct ath_softc *, u_int mode);
    201 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
    202 
    203 #ifdef __NetBSD__
    204 int	ath_enable(struct ath_softc *);
    205 void	ath_disable(struct ath_softc *);
    206 void	ath_power(int, void *);
    207 #endif
    208 
    209 #if NBPFILTER > 0
    210 static void	ath_bpfattach(struct ath_softc *);
    211 #endif
    212 static void	ath_announce(struct ath_softc *);
    213 
    214 int ath_dwelltime = 200;		/* 5 channels/second */
    215 int ath_calinterval = 30;		/* calibrate every 30 secs */
    216 int ath_outdoor = AH_TRUE;		/* outdoor operation */
    217 int ath_xchanmode = AH_TRUE;		/* enable extended channels */
    218 int ath_countrycode = CTRY_DEFAULT;	/* country code */
    219 int ath_regdomain = 0;			/* regulatory domain */
    220 int ath_debug = 0;
    221 int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
    222 int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
    223 
    224 #ifdef AR_DEBUG
    225 enum {
    226 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
    227 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
    228 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
    229 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
    230 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
    231 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
    232 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
    233 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
    234 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
    235 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
    236 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
    237 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
    238 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
    239 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
    240 	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
    241 	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
    242 	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
    243 	ATH_DEBUG_LED		= 0x00100000,	/* led management */
    244 	ATH_DEBUG_FF		= 0x00200000,	/* fast frames */
    245 	ATH_DEBUG_DFS		= 0x00400000,	/* DFS processing */
    246 	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
    247 	ATH_DEBUG_ANY		= 0xffffffff
    248 };
    249 #define	IFF_DUMPPKTS(sc, m) \
    250 	((sc->sc_debug & (m)) || \
    251 	    (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
    252 #define	DPRINTF(sc, m, fmt, ...) do {				\
    253 	if (sc->sc_debug & (m))					\
    254 		printf(fmt, __VA_ARGS__);			\
    255 } while (0)
    256 #define	KEYPRINTF(sc, ix, hk, mac) do {				\
    257 	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
    258 		ath_keyprint(__func__, ix, hk, mac);		\
    259 } while (0)
    260 static	void ath_printrxbuf(struct ath_buf *bf, int);
    261 static	void ath_printtxbuf(struct ath_buf *bf, int);
    262 #else
    263 #define	IFF_DUMPPKTS(sc, m) \
    264 	((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
    265 #define	DPRINTF(m, fmt, ...)
    266 #define	KEYPRINTF(sc, k, ix, mac)
    267 #endif
    268 
    269 #ifdef __NetBSD__
    270 int
    271 ath_activate(struct device *self, enum devact act)
    272 {
    273 	struct ath_softc *sc = (struct ath_softc *)self;
    274 	int rv = 0, s;
    275 
    276 	s = splnet();
    277 	switch (act) {
    278 	case DVACT_ACTIVATE:
    279 		rv = EOPNOTSUPP;
    280 		break;
    281 	case DVACT_DEACTIVATE:
    282 		if_deactivate(&sc->sc_if);
    283 		break;
    284 	}
    285 	splx(s);
    286 	return rv;
    287 }
    288 
    289 int
    290 ath_enable(struct ath_softc *sc)
    291 {
    292 	if (ATH_IS_ENABLED(sc) == 0) {
    293 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
    294 			printf("%s: device enable failed\n",
    295 				sc->sc_dev.dv_xname);
    296 			return (EIO);
    297 		}
    298 		sc->sc_flags |= ATH_ENABLED;
    299 	}
    300 	return (0);
    301 }
    302 
    303 void
    304 ath_disable(struct ath_softc *sc)
    305 {
    306 	if (!ATH_IS_ENABLED(sc))
    307 		return;
    308 	if (sc->sc_disable != NULL)
    309 		(*sc->sc_disable)(sc);
    310 	sc->sc_flags &= ~ATH_ENABLED;
    311 }
    312 #endif /* __NetBSD__ */
    313 
    314 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
    315 
    316 int
    317 ath_attach(u_int16_t devid, struct ath_softc *sc)
    318 {
    319 	struct ifnet *ifp = &sc->sc_if;
    320 	struct ieee80211com *ic = &sc->sc_ic;
    321 	struct ath_hal *ah = NULL;
    322 	HAL_STATUS status;
    323 	int error = 0, i;
    324 
    325 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
    326 
    327 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
    328 
    329 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
    330 	if (ah == NULL) {
    331 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
    332 			status);
    333 		error = ENXIO;
    334 		goto bad;
    335 	}
    336 	if (ah->ah_abi != HAL_ABI_VERSION) {
    337 		if_printf(ifp, "HAL ABI mismatch detected "
    338 			"(HAL:0x%x != driver:0x%x)\n",
    339 			ah->ah_abi, HAL_ABI_VERSION);
    340 		error = ENXIO;
    341 		goto bad;
    342 	}
    343 	sc->sc_ah = ah;
    344 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
    345 
    346 	/*
    347 	 * Check if the MAC has multi-rate retry support.
    348 	 * We do this by trying to setup a fake extended
    349 	 * descriptor.  MAC's that don't have support will
    350 	 * return false w/o doing anything.  MAC's that do
    351 	 * support it will return true w/o doing anything.
    352 	 */
    353 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
    354 
    355 	/*
    356 	 * Check if the device has hardware counters for PHY
    357 	 * errors.  If so we need to enable the MIB interrupt
    358 	 * so we can act on stat triggers.
    359 	 */
    360 	if (ath_hal_hwphycounters(ah))
    361 		sc->sc_needmib = 1;
    362 
    363 	/*
    364 	 * Get the hardware key cache size.
    365 	 */
    366 	sc->sc_keymax = ath_hal_keycachesize(ah);
    367 	if (sc->sc_keymax > ATH_KEYMAX) {
    368 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
    369 			ATH_KEYMAX, sc->sc_keymax);
    370 		sc->sc_keymax = ATH_KEYMAX;
    371 	}
    372 	/*
    373 	 * Reset the key cache since some parts do not
    374 	 * reset the contents on initial power up.
    375 	 */
    376 	for (i = 0; i < sc->sc_keymax; i++)
    377 		ath_hal_keyreset(ah, i);
    378 	/*
    379 	 * Mark key cache slots associated with global keys
    380 	 * as in use.  If we knew TKIP was not to be used we
    381 	 * could leave the +32, +64, and +32+64 slots free.
    382 	 * XXX only for splitmic.
    383 	 */
    384 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
    385 		setbit(sc->sc_keymap, i);
    386 		setbit(sc->sc_keymap, i+32);
    387 		setbit(sc->sc_keymap, i+64);
    388 		setbit(sc->sc_keymap, i+32+64);
    389 	}
    390 
    391 	/*
    392 	 * Collect the channel list using the default country
    393 	 * code and including outdoor channels.  The 802.11 layer
    394 	 * is resposible for filtering this list based on settings
    395 	 * like the phy mode.
    396 	 */
    397 	error = ath_getchannels(sc, ath_countrycode,
    398 			ath_outdoor, ath_xchanmode);
    399 	if (error != 0)
    400 		goto bad;
    401 
    402 	/*
    403 	 * Setup rate tables for all potential media types.
    404 	 */
    405 	ath_rate_setup(sc, IEEE80211_MODE_11A);
    406 	ath_rate_setup(sc, IEEE80211_MODE_11B);
    407 	ath_rate_setup(sc, IEEE80211_MODE_11G);
    408 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
    409 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
    410 	/* NB: setup here so ath_rate_update is happy */
    411 	ath_setcurmode(sc, IEEE80211_MODE_11A);
    412 
    413 	/*
    414 	 * Allocate tx+rx descriptors and populate the lists.
    415 	 */
    416 	error = ath_desc_alloc(sc);
    417 	if (error != 0) {
    418 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
    419 		goto bad;
    420 	}
    421 	ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
    422 	ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE);
    423 	ATH_CALLOUT_INIT(&sc->sc_dfs_ch, CALLOUT_MPSAFE);
    424 
    425 	ATH_TXBUF_LOCK_INIT(sc);
    426 
    427 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
    428 	TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
    429 	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
    430 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
    431 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
    432 	TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc);
    433 
    434 	/*
    435 	 * Allocate hardware transmit queues: one queue for
    436 	 * beacon frames and one data queue for each QoS
    437 	 * priority.  Note that the hal handles reseting
    438 	 * these queues at the needed time.
    439 	 *
    440 	 * XXX PS-Poll
    441 	 */
    442 	sc->sc_bhalq = ath_beaconq_setup(ah);
    443 	if (sc->sc_bhalq == (u_int) -1) {
    444 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
    445 		error = EIO;
    446 		goto bad2;
    447 	}
    448 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
    449 	if (sc->sc_cabq == NULL) {
    450 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
    451 		error = EIO;
    452 		goto bad2;
    453 	}
    454 	/* NB: insure BK queue is the lowest priority h/w queue */
    455 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
    456 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
    457 			ieee80211_wme_acnames[WME_AC_BK]);
    458 		error = EIO;
    459 		goto bad2;
    460 	}
    461 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
    462 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
    463 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
    464 		/*
    465 		 * Not enough hardware tx queues to properly do WME;
    466 		 * just punt and assign them all to the same h/w queue.
    467 		 * We could do a better job of this if, for example,
    468 		 * we allocate queues when we switch from station to
    469 		 * AP mode.
    470 		 */
    471 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
    472 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
    473 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
    474 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
    475 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
    476 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
    477 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
    478 	}
    479 
    480 	/*
    481 	 * Special case certain configurations.  Note the
    482 	 * CAB queue is handled by these specially so don't
    483 	 * include them when checking the txq setup mask.
    484 	 */
    485 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
    486 	case 0x01:
    487 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
    488 		break;
    489 	case 0x0f:
    490 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
    491 		break;
    492 	default:
    493 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
    494 		break;
    495 	}
    496 
    497 	/*
    498 	 * Setup rate control.  Some rate control modules
    499 	 * call back to change the anntena state so expose
    500 	 * the necessary entry points.
    501 	 * XXX maybe belongs in struct ath_ratectrl?
    502 	 */
    503 	sc->sc_setdefantenna = ath_setdefantenna;
    504 	sc->sc_rc = ath_rate_attach(sc);
    505 	if (sc->sc_rc == NULL) {
    506 		error = EIO;
    507 		goto bad2;
    508 	}
    509 
    510 	sc->sc_blinking = 0;
    511 	sc->sc_ledstate = 1;
    512 	sc->sc_ledon = 0;			/* low true */
    513 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
    514 	ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE);
    515 	/*
    516 	 * Auto-enable soft led processing for IBM cards and for
    517 	 * 5211 minipci cards.  Users can also manually enable/disable
    518 	 * support with a sysctl.
    519 	 */
    520 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
    521 	if (sc->sc_softled) {
    522 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
    523 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
    524 	}
    525 
    526 	ifp->if_softc = sc;
    527 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
    528 	ifp->if_start = ath_start;
    529 	ifp->if_watchdog = ath_watchdog;
    530 	ifp->if_ioctl = ath_ioctl;
    531 	ifp->if_init = ath_ifinit;
    532 	IFQ_SET_READY(&ifp->if_snd);
    533 
    534 	ic->ic_ifp = ifp;
    535 	ic->ic_reset = ath_reset;
    536 	ic->ic_newassoc = ath_newassoc;
    537 	ic->ic_updateslot = ath_updateslot;
    538 	ic->ic_wme.wme_update = ath_wme_update;
    539 	/* XXX not right but it's not used anywhere important */
    540 	ic->ic_phytype = IEEE80211_T_OFDM;
    541 	ic->ic_opmode = IEEE80211_M_STA;
    542 	ic->ic_caps =
    543 		  IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
    544 		| IEEE80211_C_HOSTAP		/* hostap mode */
    545 		| IEEE80211_C_MONITOR		/* monitor mode */
    546 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
    547 		| IEEE80211_C_SHSLOT		/* short slot time supported */
    548 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
    549 		;
    550 	/*
    551 	 * Query the hal to figure out h/w crypto support.
    552 	 */
    553 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
    554 		ic->ic_caps |= IEEE80211_C_WEP;
    555 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
    556 		ic->ic_caps |= IEEE80211_C_AES;
    557 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
    558 		ic->ic_caps |= IEEE80211_C_AES_CCM;
    559 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
    560 		ic->ic_caps |= IEEE80211_C_CKIP;
    561 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
    562 		ic->ic_caps |= IEEE80211_C_TKIP;
    563 		/*
    564 		 * Check if h/w does the MIC and/or whether the
    565 		 * separate key cache entries are required to
    566 		 * handle both tx+rx MIC keys.
    567 		 */
    568 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
    569 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
    570 		if (ath_hal_tkipsplit(ah))
    571 			sc->sc_splitmic = 1;
    572 	}
    573 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
    574 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
    575 	/*
    576 	 * TPC support can be done either with a global cap or
    577 	 * per-packet support.  The latter is not available on
    578 	 * all parts.  We're a bit pedantic here as all parts
    579 	 * support a global cap.
    580 	 */
    581 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
    582 		ic->ic_caps |= IEEE80211_C_TXPMGT;
    583 
    584 	/*
    585 	 * Mark WME capability only if we have sufficient
    586 	 * hardware queues to do proper priority scheduling.
    587 	 */
    588 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
    589 		ic->ic_caps |= IEEE80211_C_WME;
    590 	/*
    591 	 * Check for misc other capabilities.
    592 	 */
    593 	if (ath_hal_hasbursting(ah))
    594 		ic->ic_caps |= IEEE80211_C_BURST;
    595 
    596 	/*
    597 	 * Indicate we need the 802.11 header padded to a
    598 	 * 32-bit boundary for 4-address and QoS frames.
    599 	 */
    600 	ic->ic_flags |= IEEE80211_F_DATAPAD;
    601 
    602 	/*
    603 	 * Query the hal about antenna support.
    604 	 */
    605 	sc->sc_defant = ath_hal_getdefantenna(ah);
    606 
    607 	/*
    608 	 * Not all chips have the VEOL support we want to
    609 	 * use with IBSS beacons; check here for it.
    610 	 */
    611 	sc->sc_hasveol = ath_hal_hasveol(ah);
    612 
    613 	/* get mac address from hardware */
    614 	ath_hal_getmac(ah, ic->ic_myaddr);
    615 
    616 	if_attach(ifp);
    617 	/* call MI attach routine. */
    618 	ieee80211_ifattach(ic);
    619 	/* override default methods */
    620 	ic->ic_node_alloc = ath_node_alloc;
    621 	sc->sc_node_free = ic->ic_node_free;
    622 	ic->ic_node_free = ath_node_free;
    623 	ic->ic_node_getrssi = ath_node_getrssi;
    624 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
    625 	ic->ic_recv_mgmt = ath_recv_mgmt;
    626 	sc->sc_newstate = ic->ic_newstate;
    627 	ic->ic_newstate = ath_newstate;
    628 	ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
    629 	ic->ic_crypto.cs_key_alloc = ath_key_alloc;
    630 	ic->ic_crypto.cs_key_delete = ath_key_delete;
    631 	ic->ic_crypto.cs_key_set = ath_key_set;
    632 	ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
    633 	ic->ic_crypto.cs_key_update_end = ath_key_update_end;
    634 	/* complete initialization */
    635 	ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
    636 
    637 #if NBPFILTER > 0
    638 	ath_bpfattach(sc);
    639 #endif
    640 
    641 #ifdef __NetBSD__
    642 	sc->sc_flags |= ATH_ATTACHED;
    643 	sc->sc_powerhook = powerhook_establish(ath_power, sc);
    644 	if (sc->sc_powerhook == NULL)
    645 		printf("%s: WARNING: unable to establish power hook\n",
    646 			sc->sc_dev.dv_xname);
    647 #endif
    648 
    649 	/*
    650 	 * Setup dynamic sysctl's now that country code and
    651 	 * regdomain are available from the hal.
    652 	 */
    653 	ath_sysctlattach(sc);
    654 
    655 	ieee80211_announce(ic);
    656 	ath_announce(sc);
    657 	return 0;
    658 bad2:
    659 	ath_tx_cleanup(sc);
    660 	ath_desc_free(sc);
    661 bad:
    662 	if (ah)
    663 		ath_hal_detach(ah);
    664 	sc->sc_invalid = 1;
    665 	return error;
    666 }
    667 
    668 int
    669 ath_detach(struct ath_softc *sc)
    670 {
    671 	struct ifnet *ifp = &sc->sc_if;
    672 	int s;
    673 
    674 	if ((sc->sc_flags & ATH_ATTACHED) == 0)
    675 		return (0);
    676 
    677 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
    678 		__func__, ifp->if_flags);
    679 
    680 	s = splnet();
    681 	ath_stop(ifp, 1);
    682 #if NBPFILTER > 0
    683 	bpfdetach(ifp);
    684 #endif
    685 	/*
    686 	 * NB: the order of these is important:
    687 	 * o call the 802.11 layer before detaching the hal to
    688 	 *   insure callbacks into the driver to delete global
    689 	 *   key cache entries can be handled
    690 	 * o reclaim the tx queue data structures after calling
    691 	 *   the 802.11 layer as we'll get called back to reclaim
    692 	 *   node state and potentially want to use them
    693 	 * o to cleanup the tx queues the hal is called, so detach
    694 	 *   it last
    695 	 * Other than that, it's straightforward...
    696 	 */
    697 	ieee80211_ifdetach(&sc->sc_ic);
    698 #ifdef ATH_TX99_DIAG
    699 	if (sc->sc_tx99 != NULL)
    700 		sc->sc_tx99->detach(sc->sc_tx99);
    701 #endif
    702 	ath_rate_detach(sc->sc_rc);
    703 	ath_desc_free(sc);
    704 	ath_tx_cleanup(sc);
    705 	sysctl_teardown(&sc->sc_sysctllog);
    706 	ath_hal_detach(sc->sc_ah);
    707 	if_detach(ifp);
    708 	splx(s);
    709 	powerhook_disestablish(sc->sc_powerhook);
    710 
    711 	return 0;
    712 }
    713 
    714 #ifdef __NetBSD__
    715 void
    716 ath_power(int why, void *arg)
    717 {
    718 	struct ath_softc *sc = arg;
    719 	int s;
    720 
    721 	DPRINTF(sc, ATH_DEBUG_ANY, "ath_power(%d)\n", why);
    722 
    723 	s = splnet();
    724 	switch (why) {
    725 	case PWR_SUSPEND:
    726 	case PWR_STANDBY:
    727 		ath_suspend(sc, why);
    728 		break;
    729 	case PWR_RESUME:
    730 		ath_resume(sc, why);
    731 		break;
    732 	case PWR_SOFTSUSPEND:
    733 	case PWR_SOFTSTANDBY:
    734 	case PWR_SOFTRESUME:
    735 		break;
    736 	}
    737 	splx(s);
    738 }
    739 #endif
    740 
    741 void
    742 ath_suspend(struct ath_softc *sc, int why)
    743 {
    744 	struct ifnet *ifp = &sc->sc_if;
    745 
    746 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
    747 		__func__, ifp->if_flags);
    748 
    749 	ath_stop(ifp, 1);
    750 	if (sc->sc_power != NULL)
    751 		(*sc->sc_power)(sc, why);
    752 }
    753 
    754 void
    755 ath_resume(struct ath_softc *sc, int why)
    756 {
    757 	struct ifnet *ifp = &sc->sc_if;
    758 
    759 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
    760 		__func__, ifp->if_flags);
    761 
    762 	if (ifp->if_flags & IFF_UP) {
    763 		ath_init(sc);
    764 #if 0
    765 		(void)ath_intr(sc);
    766 #endif
    767 		if (sc->sc_power != NULL)
    768 			(*sc->sc_power)(sc, why);
    769 		if (ifp->if_flags & IFF_RUNNING)
    770 			ath_start(ifp);
    771 	}
    772 	if (sc->sc_softled) {
    773 		ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
    774 		ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
    775 	}
    776 }
    777 
    778 void
    779 ath_shutdown(void *arg)
    780 {
    781 	struct ath_softc *sc = arg;
    782 
    783 	ath_stop(&sc->sc_if, 1);
    784 }
    785 
    786 /*
    787  * Interrupt handler.  Most of the actual processing is deferred.
    788  */
    789 int
    790 ath_intr(void *arg)
    791 {
    792 	struct ath_softc *sc = arg;
    793 	struct ifnet *ifp = &sc->sc_if;
    794 	struct ath_hal *ah = sc->sc_ah;
    795 	HAL_INT status;
    796 
    797 	if (sc->sc_invalid) {
    798 		/*
    799 		 * The hardware is not ready/present, don't touch anything.
    800 		 * Note this can happen early on if the IRQ is shared.
    801 		 */
    802 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
    803 		return 0;
    804 	}
    805 
    806 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
    807 		return 0;
    808 
    809 	if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
    810 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
    811 			__func__, ifp->if_flags);
    812 		ath_hal_getisr(ah, &status);	/* clear ISR */
    813 		ath_hal_intrset(ah, 0);		/* disable further intr's */
    814 		return 1; /* XXX */
    815 	}
    816 	/*
    817 	 * Figure out the reason(s) for the interrupt.  Note
    818 	 * that the hal returns a pseudo-ISR that may include
    819 	 * bits we haven't explicitly enabled so we mask the
    820 	 * value to insure we only process bits we requested.
    821 	 */
    822 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
    823 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
    824 	status &= sc->sc_imask;			/* discard unasked for bits */
    825 	if (status & HAL_INT_FATAL) {
    826 		/*
    827 		 * Fatal errors are unrecoverable.  Typically
    828 		 * these are caused by DMA errors.  Unfortunately
    829 		 * the exact reason is not (presently) returned
    830 		 * by the hal.
    831 		 */
    832 		sc->sc_stats.ast_hardware++;
    833 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
    834 		TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
    835 	} else if (status & HAL_INT_RXORN) {
    836 		sc->sc_stats.ast_rxorn++;
    837 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
    838 		TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
    839 	} else {
    840 		if (status & HAL_INT_SWBA) {
    841 			/*
    842 			 * Software beacon alert--time to send a beacon.
    843 			 * Handle beacon transmission directly; deferring
    844 			 * this is too slow to meet timing constraints
    845 			 * under load.
    846 			 */
    847 			ath_beacon_proc(sc, 0);
    848 		}
    849 		if (status & HAL_INT_RXEOL) {
    850 			/*
    851 			 * NB: the hardware should re-read the link when
    852 			 *     RXE bit is written, but it doesn't work at
    853 			 *     least on older hardware revs.
    854 			 */
    855 			sc->sc_stats.ast_rxeol++;
    856 			sc->sc_rxlink = NULL;
    857 		}
    858 		if (status & HAL_INT_TXURN) {
    859 			sc->sc_stats.ast_txurn++;
    860 			/* bump tx trigger level */
    861 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
    862 		}
    863 		if (status & HAL_INT_RX)
    864 			TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
    865 		if (status & HAL_INT_TX)
    866 			TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
    867 		if (status & HAL_INT_BMISS) {
    868 			sc->sc_stats.ast_bmiss++;
    869 			TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
    870 		}
    871 		if (status & HAL_INT_MIB) {
    872 			sc->sc_stats.ast_mib++;
    873 			/*
    874 			 * Disable interrupts until we service the MIB
    875 			 * interrupt; otherwise it will continue to fire.
    876 			 */
    877 			ath_hal_intrset(ah, 0);
    878 			/*
    879 			 * Let the hal handle the event.  We assume it will
    880 			 * clear whatever condition caused the interrupt.
    881 			 */
    882 			ath_hal_mibevent(ah, &sc->sc_halstats);
    883 			ath_hal_intrset(ah, sc->sc_imask);
    884 		}
    885 	}
    886 	return 1;
    887 }
    888 
    889 /* Swap transmit descriptor.
    890  * if AH_NEED_DESC_SWAP flag is not defined this becomes a "null"
    891  * function.
    892  */
    893 static inline void
    894 ath_desc_swap(struct ath_desc *ds)
    895 {
    896 #ifdef AH_NEED_DESC_SWAP
    897 	ds->ds_link = htole32(ds->ds_link);
    898 	ds->ds_data = htole32(ds->ds_data);
    899 	ds->ds_ctl0 = htole32(ds->ds_ctl0);
    900 	ds->ds_ctl1 = htole32(ds->ds_ctl1);
    901 	ds->ds_hw[0] = htole32(ds->ds_hw[0]);
    902 	ds->ds_hw[1] = htole32(ds->ds_hw[1]);
    903 #endif
    904 }
    905 
    906 static void
    907 ath_fatal_proc(void *arg, int pending)
    908 {
    909 	struct ath_softc *sc = arg;
    910 	struct ifnet *ifp = &sc->sc_if;
    911 
    912 	if_printf(ifp, "hardware error; resetting\n");
    913 	ath_reset(ifp);
    914 }
    915 
    916 static void
    917 ath_rxorn_proc(void *arg, int pending)
    918 {
    919 	struct ath_softc *sc = arg;
    920 	struct ifnet *ifp = &sc->sc_if;
    921 
    922 	if_printf(ifp, "rx FIFO overrun; resetting\n");
    923 	ath_reset(ifp);
    924 }
    925 
    926 static void
    927 ath_bmiss_proc(void *arg, int pending)
    928 {
    929 	struct ath_softc *sc = arg;
    930 	struct ieee80211com *ic = &sc->sc_ic;
    931 
    932 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
    933 	KASSERT(ic->ic_opmode == IEEE80211_M_STA,
    934 		("unexpect operating mode %u", ic->ic_opmode));
    935 	if (ic->ic_state == IEEE80211_S_RUN) {
    936 		u_int64_t lastrx = sc->sc_lastrx;
    937 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
    938 
    939 		DPRINTF(sc, ATH_DEBUG_BEACON,
    940 		    "%s: tsf %" PRIu64 " lastrx %" PRId64
    941 		    " (%" PRIu64 ") bmiss %u\n",
    942 		    __func__, tsf, tsf - lastrx, lastrx,
    943 		    ic->ic_bmisstimeout*1024);
    944 		/*
    945 		 * Workaround phantom bmiss interrupts by sanity-checking
    946 		 * the time of our last rx'd frame.  If it is within the
    947 		 * beacon miss interval then ignore the interrupt.  If it's
    948 		 * truly a bmiss we'll get another interrupt soon and that'll
    949 		 * be dispatched up for processing.
    950 		 */
    951 		if (tsf - lastrx > ic->ic_bmisstimeout*1024) {
    952 			NET_LOCK_GIANT();
    953 			ieee80211_beacon_miss(ic);
    954 			NET_UNLOCK_GIANT();
    955 		} else
    956 			sc->sc_stats.ast_bmiss_phantom++;
    957 	}
    958 }
    959 
    960 static void
    961 ath_radar_proc(void *arg, int pending)
    962 {
    963 	struct ath_softc *sc = arg;
    964 	struct ifnet *ifp = &sc->sc_if;
    965 	struct ath_hal *ah = sc->sc_ah;
    966 	HAL_CHANNEL hchan;
    967 
    968 	if (ath_hal_procdfs(ah, &hchan)) {
    969 		if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n",
    970 			hchan.channel, hchan.channelFlags, hchan.privFlags);
    971 		/*
    972 		 * Initiate channel change.
    973 		 */
    974 		/* XXX not yet */
    975 	}
    976 }
    977 
    978 static u_int
    979 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
    980 {
    981 #define	N(a)	(sizeof(a) / sizeof(a[0]))
    982 	static const u_int modeflags[] = {
    983 		0,			/* IEEE80211_MODE_AUTO */
    984 		CHANNEL_A,		/* IEEE80211_MODE_11A */
    985 		CHANNEL_B,		/* IEEE80211_MODE_11B */
    986 		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
    987 		0,			/* IEEE80211_MODE_FH */
    988 		CHANNEL_ST,		/* IEEE80211_MODE_TURBO_A */
    989 		CHANNEL_108G		/* IEEE80211_MODE_TURBO_G */
    990 	};
    991 	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
    992 
    993 	KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
    994 	KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
    995 	return modeflags[mode];
    996 #undef N
    997 }
    998 
    999 static int
   1000 ath_ifinit(struct ifnet *ifp)
   1001 {
   1002 	struct ath_softc *sc = (struct ath_softc *)ifp->if_softc;
   1003 
   1004 	return ath_init(sc);
   1005 }
   1006 
   1007 static int
   1008 ath_init(struct ath_softc *sc)
   1009 {
   1010 	struct ifnet *ifp = &sc->sc_if;
   1011 	struct ieee80211com *ic = &sc->sc_ic;
   1012 	struct ath_hal *ah = sc->sc_ah;
   1013 	HAL_STATUS status;
   1014 	int error = 0;
   1015 
   1016 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
   1017 		__func__, ifp->if_flags);
   1018 
   1019 	ATH_LOCK(sc);
   1020 
   1021 	if ((error = ath_enable(sc)) != 0)
   1022 		return error;
   1023 
   1024 	/*
   1025 	 * Stop anything previously setup.  This is safe
   1026 	 * whether this is the first time through or not.
   1027 	 */
   1028 	ath_stop_locked(ifp, 0);
   1029 
   1030 	/*
   1031 	 * The basic interface to setting the hardware in a good
   1032 	 * state is ``reset''.  On return the hardware is known to
   1033 	 * be powered up and with interrupts disabled.  This must
   1034 	 * be followed by initialization of the appropriate bits
   1035 	 * and then setup of the interrupt mask.
   1036 	 */
   1037 	sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
   1038 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
   1039 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
   1040 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
   1041 			status);
   1042 		error = EIO;
   1043 		goto done;
   1044 	}
   1045 
   1046 	/*
   1047 	 * This is needed only to setup initial state
   1048 	 * but it's best done after a reset.
   1049 	 */
   1050 	ath_update_txpow(sc);
   1051 	/*
   1052 	 * Likewise this is set during reset so update
   1053 	 * state cached in the driver.
   1054 	 */
   1055 	sc->sc_diversity = ath_hal_getdiversity(ah);
   1056 	sc->sc_calinterval = 1;
   1057 	sc->sc_caltries = 0;
   1058 
   1059 	/*
   1060 	 * Setup the hardware after reset: the key cache
   1061 	 * is filled as needed and the receive engine is
   1062 	 * set going.  Frame transmit is handled entirely
   1063 	 * in the frame output path; there's nothing to do
   1064 	 * here except setup the interrupt mask.
   1065 	 */
   1066 	if ((error = ath_startrecv(sc)) != 0) {
   1067 		if_printf(ifp, "unable to start recv logic\n");
   1068 		goto done;
   1069 	}
   1070 
   1071 	/*
   1072 	 * Enable interrupts.
   1073 	 */
   1074 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
   1075 		  | HAL_INT_RXEOL | HAL_INT_RXORN
   1076 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
   1077 	/*
   1078 	 * Enable MIB interrupts when there are hardware phy counters.
   1079 	 * Note we only do this (at the moment) for station mode.
   1080 	 */
   1081 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
   1082 		sc->sc_imask |= HAL_INT_MIB;
   1083 	ath_hal_intrset(ah, sc->sc_imask);
   1084 
   1085 	ifp->if_flags |= IFF_RUNNING;
   1086 	ic->ic_state = IEEE80211_S_INIT;
   1087 
   1088 	/*
   1089 	 * The hardware should be ready to go now so it's safe
   1090 	 * to kick the 802.11 state machine as it's likely to
   1091 	 * immediately call back to us to send mgmt frames.
   1092 	 */
   1093 	ath_chan_change(sc, ic->ic_curchan);
   1094 #ifdef ATH_TX99_DIAG
   1095 	if (sc->sc_tx99 != NULL)
   1096 		sc->sc_tx99->start(sc->sc_tx99);
   1097 	else
   1098 #endif
   1099 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   1100 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
   1101 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   1102 	} else
   1103 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   1104 done:
   1105 	ATH_UNLOCK(sc);
   1106 	return error;
   1107 }
   1108 
   1109 static void
   1110 ath_stop_locked(struct ifnet *ifp, int disable)
   1111 {
   1112 	struct ath_softc *sc = ifp->if_softc;
   1113 	struct ieee80211com *ic = &sc->sc_ic;
   1114 	struct ath_hal *ah = sc->sc_ah;
   1115 
   1116 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
   1117 		__func__, sc->sc_invalid, ifp->if_flags);
   1118 
   1119 	ATH_LOCK_ASSERT(sc);
   1120 	if (ifp->if_flags & IFF_RUNNING) {
   1121 		/*
   1122 		 * Shutdown the hardware and driver:
   1123 		 *    reset 802.11 state machine
   1124 		 *    turn off timers
   1125 		 *    disable interrupts
   1126 		 *    turn off the radio
   1127 		 *    clear transmit machinery
   1128 		 *    clear receive machinery
   1129 		 *    drain and release tx queues
   1130 		 *    reclaim beacon resources
   1131 		 *    power down hardware
   1132 		 *
   1133 		 * Note that some of this work is not possible if the
   1134 		 * hardware is gone (invalid).
   1135 		 */
   1136 #ifdef ATH_TX99_DIAG
   1137 		if (sc->sc_tx99 != NULL)
   1138 			sc->sc_tx99->stop(sc->sc_tx99);
   1139 #endif
   1140 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   1141 		ifp->if_flags &= ~IFF_RUNNING;
   1142 		ifp->if_timer = 0;
   1143 		if (!sc->sc_invalid) {
   1144 			if (sc->sc_softled) {
   1145 				callout_stop(&sc->sc_ledtimer);
   1146 				ath_hal_gpioset(ah, sc->sc_ledpin,
   1147 					!sc->sc_ledon);
   1148 				sc->sc_blinking = 0;
   1149 			}
   1150 			ath_hal_intrset(ah, 0);
   1151 		}
   1152 		ath_draintxq(sc);
   1153 		if (!sc->sc_invalid) {
   1154 			ath_stoprecv(sc);
   1155 			ath_hal_phydisable(ah);
   1156 		} else
   1157 			sc->sc_rxlink = NULL;
   1158 		IF_PURGE(&ifp->if_snd);
   1159 		ath_beacon_free(sc);
   1160 		if (disable)
   1161 			ath_disable(sc);
   1162 	}
   1163 }
   1164 
   1165 static void
   1166 ath_stop(struct ifnet *ifp, int disable)
   1167 {
   1168 	struct ath_softc *sc = ifp->if_softc;
   1169 
   1170 	ATH_LOCK(sc);
   1171 	ath_stop_locked(ifp, disable);
   1172 	if (!sc->sc_invalid) {
   1173 		/*
   1174 		 * Set the chip in full sleep mode.  Note that we are
   1175 		 * careful to do this only when bringing the interface
   1176 		 * completely to a stop.  When the chip is in this state
   1177 		 * it must be carefully woken up or references to
   1178 		 * registers in the PCI clock domain may freeze the bus
   1179 		 * (and system).  This varies by chip and is mostly an
   1180 		 * issue with newer parts that go to sleep more quickly.
   1181 		 */
   1182 		ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
   1183 	}
   1184 	ATH_UNLOCK(sc);
   1185 }
   1186 
   1187 /*
   1188  * Reset the hardware w/o losing operational state.  This is
   1189  * basically a more efficient way of doing ath_stop, ath_init,
   1190  * followed by state transitions to the current 802.11
   1191  * operational state.  Used to recover from various errors and
   1192  * to reset or reload hardware state.
   1193  */
   1194 int
   1195 ath_reset(struct ifnet *ifp)
   1196 {
   1197 	struct ath_softc *sc = ifp->if_softc;
   1198 	struct ieee80211com *ic = &sc->sc_ic;
   1199 	struct ath_hal *ah = sc->sc_ah;
   1200 	struct ieee80211_channel *c;
   1201 	HAL_STATUS status;
   1202 
   1203 	/*
   1204 	 * Convert to a HAL channel description with the flags
   1205 	 * constrained to reflect the current operating mode.
   1206 	 */
   1207 	c = ic->ic_curchan;
   1208 	sc->sc_curchan.channel = c->ic_freq;
   1209 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
   1210 
   1211 	ath_hal_intrset(ah, 0);		/* disable interrupts */
   1212 	ath_draintxq(sc);		/* stop xmit side */
   1213 	ath_stoprecv(sc);		/* stop recv side */
   1214 	/* NB: indicate channel change so we do a full reset */
   1215 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
   1216 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
   1217 			__func__, status);
   1218 	ath_update_txpow(sc);		/* update tx power state */
   1219 	sc->sc_diversity = ath_hal_getdiversity(ah);
   1220 	sc->sc_calinterval = 1;
   1221 	sc->sc_caltries = 0;
   1222 	if (ath_startrecv(sc) != 0)	/* restart recv */
   1223 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
   1224 	/*
   1225 	 * We may be doing a reset in response to an ioctl
   1226 	 * that changes the channel so update any state that
   1227 	 * might change as a result.
   1228 	 */
   1229 	ath_chan_change(sc, c);
   1230 	if (ic->ic_state == IEEE80211_S_RUN)
   1231 		ath_beacon_config(sc);	/* restart beacons */
   1232 	ath_hal_intrset(ah, sc->sc_imask);
   1233 
   1234 	ath_start(ifp);			/* restart xmit */
   1235 	return 0;
   1236 }
   1237 
   1238 static void
   1239 ath_start(struct ifnet *ifp)
   1240 {
   1241 	struct ath_softc *sc = ifp->if_softc;
   1242 	struct ath_hal *ah = sc->sc_ah;
   1243 	struct ieee80211com *ic = &sc->sc_ic;
   1244 	struct ieee80211_node *ni;
   1245 	struct ath_buf *bf;
   1246 	struct mbuf *m;
   1247 	struct ieee80211_frame *wh;
   1248 	struct ether_header *eh;
   1249 
   1250 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
   1251 		return;
   1252 	for (;;) {
   1253 		/*
   1254 		 * Grab a TX buffer and associated resources.
   1255 		 */
   1256 		ATH_TXBUF_LOCK(sc);
   1257 		bf = STAILQ_FIRST(&sc->sc_txbuf);
   1258 		if (bf != NULL)
   1259 			STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
   1260 		ATH_TXBUF_UNLOCK(sc);
   1261 		if (bf == NULL) {
   1262 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
   1263 				__func__);
   1264 			sc->sc_stats.ast_tx_qstop++;
   1265 			ifp->if_flags |= IFF_OACTIVE;
   1266 			break;
   1267 		}
   1268 		/*
   1269 		 * Poll the management queue for frames; they
   1270 		 * have priority over normal data frames.
   1271 		 */
   1272 		IF_DEQUEUE(&ic->ic_mgtq, m);
   1273 		if (m == NULL) {
   1274 			/*
   1275 			 * No data frames go out unless we're associated.
   1276 			 */
   1277 			if (ic->ic_state != IEEE80211_S_RUN) {
   1278 				DPRINTF(sc, ATH_DEBUG_XMIT,
   1279 				    "%s: discard data packet, state %s\n",
   1280 				    __func__,
   1281 				    ieee80211_state_name[ic->ic_state]);
   1282 				sc->sc_stats.ast_tx_discard++;
   1283 				ATH_TXBUF_LOCK(sc);
   1284 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1285 				ATH_TXBUF_UNLOCK(sc);
   1286 				break;
   1287 			}
   1288 			IFQ_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
   1289 			if (m == NULL) {
   1290 				ATH_TXBUF_LOCK(sc);
   1291 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1292 				ATH_TXBUF_UNLOCK(sc);
   1293 				break;
   1294 			}
   1295 			/*
   1296 			 * Find the node for the destination so we can do
   1297 			 * things like power save and fast frames aggregation.
   1298 			 */
   1299 			if (m->m_len < sizeof(struct ether_header) &&
   1300 			   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
   1301 				ic->ic_stats.is_tx_nobuf++;	/* XXX */
   1302 				ni = NULL;
   1303 				goto bad;
   1304 			}
   1305 			eh = mtod(m, struct ether_header *);
   1306 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   1307 			if (ni == NULL) {
   1308 				/* NB: ieee80211_find_txnode does stat+msg */
   1309 				m_freem(m);
   1310 				goto bad;
   1311 			}
   1312 			if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
   1313 			    (m->m_flags & M_PWR_SAV) == 0) {
   1314 				/*
   1315 				 * Station in power save mode; pass the frame
   1316 				 * to the 802.11 layer and continue.  We'll get
   1317 				 * the frame back when the time is right.
   1318 				 */
   1319 				ieee80211_pwrsave(ic, ni, m);
   1320 				goto reclaim;
   1321 			}
   1322 			/* calculate priority so we can find the tx queue */
   1323 			if (ieee80211_classify(ic, m, ni)) {
   1324 				DPRINTF(sc, ATH_DEBUG_XMIT,
   1325 					"%s: discard, classification failure\n",
   1326 					__func__);
   1327 				m_freem(m);
   1328 				goto bad;
   1329 			}
   1330 			ifp->if_opackets++;
   1331 
   1332 #if NBPFILTER > 0
   1333 			if (ifp->if_bpf)
   1334 				bpf_mtap(ifp->if_bpf, m);
   1335 #endif
   1336 			/*
   1337 			 * Encapsulate the packet in prep for transmission.
   1338 			 */
   1339 			m = ieee80211_encap(ic, m, ni);
   1340 			if (m == NULL) {
   1341 				DPRINTF(sc, ATH_DEBUG_XMIT,
   1342 					"%s: encapsulation failure\n",
   1343 					__func__);
   1344 				sc->sc_stats.ast_tx_encap++;
   1345 				goto bad;
   1346 			}
   1347 		} else {
   1348 			/*
   1349 			 * Hack!  The referenced node pointer is in the
   1350 			 * rcvif field of the packet header.  This is
   1351 			 * placed there by ieee80211_mgmt_output because
   1352 			 * we need to hold the reference with the frame
   1353 			 * and there's no other way (other than packet
   1354 			 * tags which we consider too expensive to use)
   1355 			 * to pass it along.
   1356 			 */
   1357 			ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
   1358 			m->m_pkthdr.rcvif = NULL;
   1359 
   1360 			wh = mtod(m, struct ieee80211_frame *);
   1361 			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
   1362 			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
   1363 				/* fill time stamp */
   1364 				u_int64_t tsf;
   1365 				u_int32_t *tstamp;
   1366 
   1367 				tsf = ath_hal_gettsf64(ah);
   1368 				/* XXX: adjust 100us delay to xmit */
   1369 				tsf += 100;
   1370 				tstamp = (u_int32_t *)&wh[1];
   1371 				tstamp[0] = htole32(tsf & 0xffffffff);
   1372 				tstamp[1] = htole32(tsf >> 32);
   1373 			}
   1374 			sc->sc_stats.ast_tx_mgmt++;
   1375 		}
   1376 
   1377 		if (ath_tx_start(sc, ni, bf, m)) {
   1378 	bad:
   1379 			ifp->if_oerrors++;
   1380 	reclaim:
   1381 			ATH_TXBUF_LOCK(sc);
   1382 			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1383 			ATH_TXBUF_UNLOCK(sc);
   1384 			if (ni != NULL)
   1385 				ieee80211_free_node(ni);
   1386 			continue;
   1387 		}
   1388 
   1389 		sc->sc_tx_timer = 5;
   1390 		ifp->if_timer = 1;
   1391 	}
   1392 }
   1393 
   1394 static int
   1395 ath_media_change(struct ifnet *ifp)
   1396 {
   1397 #define	IS_UP(ifp) \
   1398 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
   1399 	int error;
   1400 
   1401 	error = ieee80211_media_change(ifp);
   1402 	if (error == ENETRESET) {
   1403 		if (IS_UP(ifp))
   1404 			ath_init(ifp->if_softc);	/* XXX lose error */
   1405 		error = 0;
   1406 	}
   1407 	return error;
   1408 #undef IS_UP
   1409 }
   1410 
   1411 #ifdef AR_DEBUG
   1412 static void
   1413 ath_keyprint(const char *tag, u_int ix,
   1414 	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
   1415 {
   1416 	static const char *ciphers[] = {
   1417 		"WEP",
   1418 		"AES-OCB",
   1419 		"AES-CCM",
   1420 		"CKIP",
   1421 		"TKIP",
   1422 		"CLR",
   1423 	};
   1424 	int i, n;
   1425 
   1426 	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
   1427 	for (i = 0, n = hk->kv_len; i < n; i++)
   1428 		printf("%02x", hk->kv_val[i]);
   1429 	printf(" mac %s", ether_sprintf(mac));
   1430 	if (hk->kv_type == HAL_CIPHER_TKIP) {
   1431 		printf(" mic ");
   1432 		for (i = 0; i < sizeof(hk->kv_mic); i++)
   1433 			printf("%02x", hk->kv_mic[i]);
   1434 	}
   1435 	printf("\n");
   1436 }
   1437 #endif
   1438 
   1439 /*
   1440  * Set a TKIP key into the hardware.  This handles the
   1441  * potential distribution of key state to multiple key
   1442  * cache slots for TKIP.
   1443  */
   1444 static int
   1445 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
   1446 	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
   1447 {
   1448 #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
   1449 	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
   1450 	struct ath_hal *ah = sc->sc_ah;
   1451 
   1452 	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
   1453 		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
   1454 	KASSERT(sc->sc_splitmic, ("key cache !split"));
   1455 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
   1456 		/*
   1457 		 * TX key goes at first index, RX key at the rx index.
   1458 		 * The hal handles the MIC keys at index+64.
   1459 		 */
   1460 		memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
   1461 		KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
   1462 		if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
   1463 			return 0;
   1464 
   1465 		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
   1466 		KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
   1467 		/* XXX delete tx key on failure? */
   1468 		return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
   1469 	} else if (k->wk_flags & IEEE80211_KEY_XR) {
   1470 		/*
   1471 		 * TX/RX key goes at first index.
   1472 		 * The hal handles the MIC keys are index+64.
   1473 		 */
   1474 		memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
   1475 			k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
   1476 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
   1477 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
   1478 	}
   1479 	return 0;
   1480 #undef IEEE80211_KEY_XR
   1481 }
   1482 
   1483 /*
   1484  * Set a net80211 key into the hardware.  This handles the
   1485  * potential distribution of key state to multiple key
   1486  * cache slots for TKIP with hardware MIC support.
   1487  */
   1488 static int
   1489 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
   1490 	const u_int8_t mac0[IEEE80211_ADDR_LEN],
   1491 	struct ieee80211_node *bss)
   1492 {
   1493 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1494 	static const u_int8_t ciphermap[] = {
   1495 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
   1496 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
   1497 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
   1498 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
   1499 		(u_int8_t) -1,		/* 4 is not allocated */
   1500 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
   1501 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
   1502 	};
   1503 	struct ath_hal *ah = sc->sc_ah;
   1504 	const struct ieee80211_cipher *cip = k->wk_cipher;
   1505 	u_int8_t gmac[IEEE80211_ADDR_LEN];
   1506 	const u_int8_t *mac;
   1507 	HAL_KEYVAL hk;
   1508 
   1509 	memset(&hk, 0, sizeof(hk));
   1510 	/*
   1511 	 * Software crypto uses a "clear key" so non-crypto
   1512 	 * state kept in the key cache are maintained and
   1513 	 * so that rx frames have an entry to match.
   1514 	 */
   1515 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
   1516 		KASSERT(cip->ic_cipher < N(ciphermap),
   1517 			("invalid cipher type %u", cip->ic_cipher));
   1518 		hk.kv_type = ciphermap[cip->ic_cipher];
   1519 		hk.kv_len = k->wk_keylen;
   1520 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
   1521 	} else
   1522 		hk.kv_type = HAL_CIPHER_CLR;
   1523 
   1524 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
   1525 		/*
   1526 		 * Group keys on hardware that supports multicast frame
   1527 		 * key search use a mac that is the sender's address with
   1528 		 * the high bit set instead of the app-specified address.
   1529 		 */
   1530 		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
   1531 		gmac[0] |= 0x80;
   1532 		mac = gmac;
   1533 	} else
   1534 		mac = mac0;
   1535 
   1536 	if (hk.kv_type == HAL_CIPHER_TKIP &&
   1537 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
   1538 	    sc->sc_splitmic) {
   1539 		return ath_keyset_tkip(sc, k, &hk, mac);
   1540 	} else {
   1541 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
   1542 		return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
   1543 	}
   1544 #undef N
   1545 }
   1546 
   1547 /*
   1548  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
   1549  * each key, one for decrypt/encrypt and the other for the MIC.
   1550  */
   1551 static u_int16_t
   1552 key_alloc_2pair(struct ath_softc *sc,
   1553 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
   1554 {
   1555 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1556 	u_int i, keyix;
   1557 
   1558 	KASSERT(sc->sc_splitmic, ("key cache !split"));
   1559 	/* XXX could optimize */
   1560 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
   1561 		u_int8_t b = sc->sc_keymap[i];
   1562 		if (b != 0xff) {
   1563 			/*
   1564 			 * One or more slots in this byte are free.
   1565 			 */
   1566 			keyix = i*NBBY;
   1567 			while (b & 1) {
   1568 		again:
   1569 				keyix++;
   1570 				b >>= 1;
   1571 			}
   1572 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
   1573 			if (isset(sc->sc_keymap, keyix+32) ||
   1574 			    isset(sc->sc_keymap, keyix+64) ||
   1575 			    isset(sc->sc_keymap, keyix+32+64)) {
   1576 				/* full pair unavailable */
   1577 				/* XXX statistic */
   1578 				if (keyix == (i+1)*NBBY) {
   1579 					/* no slots were appropriate, advance */
   1580 					continue;
   1581 				}
   1582 				goto again;
   1583 			}
   1584 			setbit(sc->sc_keymap, keyix);
   1585 			setbit(sc->sc_keymap, keyix+64);
   1586 			setbit(sc->sc_keymap, keyix+32);
   1587 			setbit(sc->sc_keymap, keyix+32+64);
   1588 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
   1589 				"%s: key pair %u,%u %u,%u\n",
   1590 				__func__, keyix, keyix+64,
   1591 				keyix+32, keyix+32+64);
   1592 			*txkeyix = keyix;
   1593 			*rxkeyix = keyix+32;
   1594 			return 1;
   1595 		}
   1596 	}
   1597 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
   1598 	return 0;
   1599 #undef N
   1600 }
   1601 
   1602 /*
   1603  * Allocate a single key cache slot.
   1604  */
   1605 static int
   1606 key_alloc_single(struct ath_softc *sc,
   1607 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
   1608 {
   1609 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1610 	u_int i, keyix;
   1611 
   1612 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
   1613 	for (i = 0; i < N(sc->sc_keymap); i++) {
   1614 		u_int8_t b = sc->sc_keymap[i];
   1615 		if (b != 0xff) {
   1616 			/*
   1617 			 * One or more slots are free.
   1618 			 */
   1619 			keyix = i*NBBY;
   1620 			while (b & 1)
   1621 				keyix++, b >>= 1;
   1622 			setbit(sc->sc_keymap, keyix);
   1623 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
   1624 				__func__, keyix);
   1625 			*txkeyix = *rxkeyix = keyix;
   1626 			return 1;
   1627 		}
   1628 	}
   1629 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
   1630 	return 0;
   1631 #undef N
   1632 }
   1633 
   1634 /*
   1635  * Allocate one or more key cache slots for a uniacst key.  The
   1636  * key itself is needed only to identify the cipher.  For hardware
   1637  * TKIP with split cipher+MIC keys we allocate two key cache slot
   1638  * pairs so that we can setup separate TX and RX MIC keys.  Note
   1639  * that the MIC key for a TKIP key at slot i is assumed by the
   1640  * hardware to be at slot i+64.  This limits TKIP keys to the first
   1641  * 64 entries.
   1642  */
   1643 static int
   1644 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
   1645 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
   1646 {
   1647 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1648 
   1649 	/*
   1650 	 * Group key allocation must be handled specially for
   1651 	 * parts that do not support multicast key cache search
   1652 	 * functionality.  For those parts the key id must match
   1653 	 * the h/w key index so lookups find the right key.  On
   1654 	 * parts w/ the key search facility we install the sender's
   1655 	 * mac address (with the high bit set) and let the hardware
   1656 	 * find the key w/o using the key id.  This is preferred as
   1657 	 * it permits us to support multiple users for adhoc and/or
   1658 	 * multi-station operation.
   1659 	 */
   1660 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
   1661 		if (!(&ic->ic_nw_keys[0] <= k &&
   1662 		      k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
   1663 			/* should not happen */
   1664 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
   1665 				"%s: bogus group key\n", __func__);
   1666 			return 0;
   1667 		}
   1668 		/*
   1669 		 * XXX we pre-allocate the global keys so
   1670 		 * have no way to check if they've already been allocated.
   1671 		 */
   1672 		*keyix = *rxkeyix = k - ic->ic_nw_keys;
   1673 		return 1;
   1674 	}
   1675 
   1676 	/*
   1677 	 * We allocate two pair for TKIP when using the h/w to do
   1678 	 * the MIC.  For everything else, including software crypto,
   1679 	 * we allocate a single entry.  Note that s/w crypto requires
   1680 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
   1681 	 * not support pass-through cache entries and we map all
   1682 	 * those requests to slot 0.
   1683 	 */
   1684 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
   1685 		return key_alloc_single(sc, keyix, rxkeyix);
   1686 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1687 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
   1688 		return key_alloc_2pair(sc, keyix, rxkeyix);
   1689 	} else {
   1690 		return key_alloc_single(sc, keyix, rxkeyix);
   1691 	}
   1692 }
   1693 
   1694 /*
   1695  * Delete an entry in the key cache allocated by ath_key_alloc.
   1696  */
   1697 static int
   1698 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
   1699 {
   1700 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1701 	struct ath_hal *ah = sc->sc_ah;
   1702 	const struct ieee80211_cipher *cip = k->wk_cipher;
   1703 	u_int keyix = k->wk_keyix;
   1704 
   1705 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
   1706 
   1707 	ath_hal_keyreset(ah, keyix);
   1708 	/*
   1709 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
   1710 	 */
   1711 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1712 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
   1713 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
   1714 	if (keyix >= IEEE80211_WEP_NKID) {
   1715 		/*
   1716 		 * Don't touch keymap entries for global keys so
   1717 		 * they are never considered for dynamic allocation.
   1718 		 */
   1719 		clrbit(sc->sc_keymap, keyix);
   1720 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1721 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
   1722 		    sc->sc_splitmic) {
   1723 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
   1724 			clrbit(sc->sc_keymap, keyix+32);	/* RX key */
   1725 			clrbit(sc->sc_keymap, keyix+32+64);	/* RX key MIC */
   1726 		}
   1727 	}
   1728 	return 1;
   1729 }
   1730 
   1731 /*
   1732  * Set the key cache contents for the specified key.  Key cache
   1733  * slot(s) must already have been allocated by ath_key_alloc.
   1734  */
   1735 static int
   1736 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
   1737 	const u_int8_t mac[IEEE80211_ADDR_LEN])
   1738 {
   1739 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1740 
   1741 	return ath_keyset(sc, k, mac, ic->ic_bss);
   1742 }
   1743 
   1744 /*
   1745  * Block/unblock tx+rx processing while a key change is done.
   1746  * We assume the caller serializes key management operations
   1747  * so we only need to worry about synchronization with other
   1748  * uses that originate in the driver.
   1749  */
   1750 static void
   1751 ath_key_update_begin(struct ieee80211com *ic)
   1752 {
   1753 	struct ifnet *ifp = ic->ic_ifp;
   1754 	struct ath_softc *sc = ifp->if_softc;
   1755 
   1756 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
   1757 #if 0
   1758 	tasklet_disable(&sc->sc_rxtq);
   1759 #endif
   1760 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
   1761 }
   1762 
   1763 static void
   1764 ath_key_update_end(struct ieee80211com *ic)
   1765 {
   1766 	struct ifnet *ifp = ic->ic_ifp;
   1767 	struct ath_softc *sc = ifp->if_softc;
   1768 
   1769 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
   1770 	IF_UNLOCK(&ifp->if_snd);
   1771 #if 0
   1772 	tasklet_enable(&sc->sc_rxtq);
   1773 #endif
   1774 }
   1775 
   1776 /*
   1777  * Calculate the receive filter according to the
   1778  * operating mode and state:
   1779  *
   1780  * o always accept unicast, broadcast, and multicast traffic
   1781  * o maintain current state of phy error reception (the hal
   1782  *   may enable phy error frames for noise immunity work)
   1783  * o probe request frames are accepted only when operating in
   1784  *   hostap, adhoc, or monitor modes
   1785  * o enable promiscuous mode according to the interface state
   1786  * o accept beacons:
   1787  *   - when operating in adhoc mode so the 802.11 layer creates
   1788  *     node table entries for peers,
   1789  *   - when operating in station mode for collecting rssi data when
   1790  *     the station is otherwise quiet, or
   1791  *   - when scanning
   1792  */
   1793 static u_int32_t
   1794 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
   1795 {
   1796 	struct ieee80211com *ic = &sc->sc_ic;
   1797 	struct ath_hal *ah = sc->sc_ah;
   1798 	struct ifnet *ifp = &sc->sc_if;
   1799 	u_int32_t rfilt;
   1800 
   1801 	rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
   1802 	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
   1803 	if (ic->ic_opmode != IEEE80211_M_STA)
   1804 		rfilt |= HAL_RX_FILTER_PROBEREQ;
   1805 	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
   1806 	    (ifp->if_flags & IFF_PROMISC))
   1807 		rfilt |= HAL_RX_FILTER_PROM;
   1808 	if (ic->ic_opmode == IEEE80211_M_STA ||
   1809 	    ic->ic_opmode == IEEE80211_M_IBSS ||
   1810 	    state == IEEE80211_S_SCAN)
   1811 		rfilt |= HAL_RX_FILTER_BEACON;
   1812 	return rfilt;
   1813 }
   1814 
   1815 static void
   1816 ath_mcastfilter_accum(caddr_t dl, u_int32_t *mfilt)
   1817 {
   1818 	u_int32_t val;
   1819 	u_int8_t pos;
   1820 
   1821 	/* calculate XOR of eight 6bit values */
   1822 	val = LE_READ_4(dl + 0);
   1823 	pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1824 	val = LE_READ_4(dl + 3);
   1825 	pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1826 	pos &= 0x3f;
   1827 	mfilt[pos / 32] |= (1 << (pos % 32));
   1828 }
   1829 
   1830 static void
   1831 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t *mfilt)
   1832 {
   1833 	struct ifnet *ifp = &sc->sc_if;
   1834 	struct ether_multi *enm;
   1835 	struct ether_multistep estep;
   1836 
   1837 	mfilt[0] = mfilt[1] = 0;
   1838 	ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
   1839 	while (enm != NULL) {
   1840 		/* XXX Punt on ranges. */
   1841 		if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
   1842 			mfilt[0] = mfilt[1] = ~((u_int32_t)0);
   1843 			ifp->if_flags |= IFF_ALLMULTI;
   1844 			return;
   1845 		}
   1846 		ath_mcastfilter_accum(enm->enm_addrlo, mfilt);
   1847 		ETHER_NEXT_MULTI(estep, enm);
   1848 	}
   1849 	ifp->if_flags &= ~IFF_ALLMULTI;
   1850 }
   1851 
   1852 static void
   1853 ath_mode_init(struct ath_softc *sc)
   1854 {
   1855 	struct ieee80211com *ic = &sc->sc_ic;
   1856 	struct ath_hal *ah = sc->sc_ah;
   1857 	u_int32_t rfilt, mfilt[2];
   1858 	int i;
   1859 
   1860 	/* configure rx filter */
   1861 	rfilt = ath_calcrxfilter(sc, ic->ic_state);
   1862 	ath_hal_setrxfilter(ah, rfilt);
   1863 
   1864 	/* configure operational mode */
   1865 	ath_hal_setopmode(ah);
   1866 
   1867 	/* Write keys to hardware; it may have been powered down. */
   1868 	ath_key_update_begin(ic);
   1869 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
   1870 		ath_key_set(ic,
   1871 			    &ic->ic_crypto.cs_nw_keys[i],
   1872 			    ic->ic_myaddr);
   1873 	}
   1874 	ath_key_update_end(ic);
   1875 
   1876 	/*
   1877 	 * Handle any link-level address change.  Note that we only
   1878 	 * need to force ic_myaddr; any other addresses are handled
   1879 	 * as a byproduct of the ifnet code marking the interface
   1880 	 * down then up.
   1881 	 *
   1882 	 * XXX should get from lladdr instead of arpcom but that's more work
   1883 	 */
   1884 	IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(sc->sc_if.if_sadl));
   1885 	ath_hal_setmac(ah, ic->ic_myaddr);
   1886 
   1887 	/* calculate and install multicast filter */
   1888 #ifdef __FreeBSD__
   1889 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   1890 		mfilt[0] = mfilt[1] = 0;
   1891 		IF_ADDR_LOCK(ifp);
   1892 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
   1893 			caddr_t dl;
   1894 
   1895 			/* calculate XOR of eight 6bit values */
   1896 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
   1897 			val = LE_READ_4(dl + 0);
   1898 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1899 			val = LE_READ_4(dl + 3);
   1900 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1901 			pos &= 0x3f;
   1902 			mfilt[pos / 32] |= (1 << (pos % 32));
   1903 		}
   1904 		IF_ADDR_UNLOCK(ifp);
   1905 	} else {
   1906 		mfilt[0] = mfilt[1] = ~0;
   1907 	}
   1908 #endif
   1909 #ifdef __NetBSD__
   1910 	ath_mcastfilter_compute(sc, mfilt);
   1911 #endif
   1912 	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
   1913 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
   1914 		__func__, rfilt, mfilt[0], mfilt[1]);
   1915 }
   1916 
   1917 /*
   1918  * Set the slot time based on the current setting.
   1919  */
   1920 static void
   1921 ath_setslottime(struct ath_softc *sc)
   1922 {
   1923 	struct ieee80211com *ic = &sc->sc_ic;
   1924 	struct ath_hal *ah = sc->sc_ah;
   1925 
   1926 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   1927 		ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
   1928 	else
   1929 		ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
   1930 	sc->sc_updateslot = OK;
   1931 }
   1932 
   1933 /*
   1934  * Callback from the 802.11 layer to update the
   1935  * slot time based on the current setting.
   1936  */
   1937 static void
   1938 ath_updateslot(struct ifnet *ifp)
   1939 {
   1940 	struct ath_softc *sc = ifp->if_softc;
   1941 	struct ieee80211com *ic = &sc->sc_ic;
   1942 
   1943 	/*
   1944 	 * When not coordinating the BSS, change the hardware
   1945 	 * immediately.  For other operation we defer the change
   1946 	 * until beacon updates have propagated to the stations.
   1947 	 */
   1948 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
   1949 		sc->sc_updateslot = UPDATE;
   1950 	else
   1951 		ath_setslottime(sc);
   1952 }
   1953 
   1954 /*
   1955  * Setup a h/w transmit queue for beacons.
   1956  */
   1957 static int
   1958 ath_beaconq_setup(struct ath_hal *ah)
   1959 {
   1960 	HAL_TXQ_INFO qi;
   1961 
   1962 	memset(&qi, 0, sizeof(qi));
   1963 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
   1964 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
   1965 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
   1966 	/* NB: for dynamic turbo, don't enable any other interrupts */
   1967 	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
   1968 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
   1969 }
   1970 
   1971 /*
   1972  * Setup the transmit queue parameters for the beacon queue.
   1973  */
   1974 static int
   1975 ath_beaconq_config(struct ath_softc *sc)
   1976 {
   1977 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
   1978 	struct ieee80211com *ic = &sc->sc_ic;
   1979 	struct ath_hal *ah = sc->sc_ah;
   1980 	HAL_TXQ_INFO qi;
   1981 
   1982 	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
   1983 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   1984 		/*
   1985 		 * Always burst out beacon and CAB traffic.
   1986 		 */
   1987 		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
   1988 		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
   1989 		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
   1990 	} else {
   1991 		struct wmeParams *wmep =
   1992 			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
   1993 		/*
   1994 		 * Adhoc mode; important thing is to use 2x cwmin.
   1995 		 */
   1996 		qi.tqi_aifs = wmep->wmep_aifsn;
   1997 		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
   1998 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
   1999 	}
   2000 
   2001 	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
   2002 		device_printf(sc->sc_dev, "unable to update parameters for "
   2003 			"beacon hardware queue!\n");
   2004 		return 0;
   2005 	} else {
   2006 		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
   2007 		return 1;
   2008 	}
   2009 #undef ATH_EXPONENT_TO_VALUE
   2010 }
   2011 
   2012 /*
   2013  * Allocate and setup an initial beacon frame.
   2014  */
   2015 static int
   2016 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
   2017 {
   2018 	struct ieee80211com *ic = ni->ni_ic;
   2019 	struct ath_buf *bf;
   2020 	struct mbuf *m;
   2021 	int error;
   2022 
   2023 	bf = STAILQ_FIRST(&sc->sc_bbuf);
   2024 	if (bf == NULL) {
   2025 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
   2026 		sc->sc_stats.ast_be_nombuf++;	/* XXX */
   2027 		return ENOMEM;			/* XXX */
   2028 	}
   2029 	/*
   2030 	 * NB: the beacon data buffer must be 32-bit aligned;
   2031 	 * we assume the mbuf routines will return us something
   2032 	 * with this alignment (perhaps should assert).
   2033 	 */
   2034 	m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
   2035 	if (m == NULL) {
   2036 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
   2037 			__func__);
   2038 		sc->sc_stats.ast_be_nombuf++;
   2039 		return ENOMEM;
   2040 	}
   2041 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
   2042 				     BUS_DMA_NOWAIT);
   2043 	if (error == 0) {
   2044 		bf->bf_m = m;
   2045 		bf->bf_node = ieee80211_ref_node(ni);
   2046 	} else {
   2047 		m_freem(m);
   2048 	}
   2049 	return error;
   2050 }
   2051 
   2052 /*
   2053  * Setup the beacon frame for transmit.
   2054  */
   2055 static void
   2056 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
   2057 {
   2058 #define	USE_SHPREAMBLE(_ic) \
   2059 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
   2060 		== IEEE80211_F_SHPREAMBLE)
   2061 	struct ieee80211_node *ni = bf->bf_node;
   2062 	struct ieee80211com *ic = ni->ni_ic;
   2063 	struct mbuf *m = bf->bf_m;
   2064 	struct ath_hal *ah = sc->sc_ah;
   2065 	struct ath_desc *ds;
   2066 	int flags, antenna;
   2067 	const HAL_RATE_TABLE *rt;
   2068 	u_int8_t rix, rate;
   2069 
   2070 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
   2071 		__func__, m, m->m_len);
   2072 
   2073 	/* setup descriptors */
   2074 	ds = bf->bf_desc;
   2075 
   2076 	flags = HAL_TXDESC_NOACK;
   2077 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
   2078 		ds->ds_link = HTOAH32(bf->bf_daddr);	/* self-linked */
   2079 		flags |= HAL_TXDESC_VEOL;
   2080 		/*
   2081 		 * Let hardware handle antenna switching unless
   2082 		 * the user has selected a transmit antenna
   2083 		 * (sc_txantenna is not 0).
   2084 		 */
   2085 		antenna = sc->sc_txantenna;
   2086 	} else {
   2087 		ds->ds_link = 0;
   2088 		/*
   2089 		 * Switch antenna every 4 beacons, unless the user
   2090 		 * has selected a transmit antenna (sc_txantenna
   2091 		 * is not 0).
   2092 		 *
   2093 		 * XXX assumes two antenna
   2094 		 */
   2095 		if (sc->sc_txantenna == 0)
   2096 			antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
   2097 		else
   2098 			antenna = sc->sc_txantenna;
   2099 	}
   2100 
   2101 	KASSERT(bf->bf_nseg == 1,
   2102 		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
   2103 	ds->ds_data = bf->bf_segs[0].ds_addr;
   2104 	/*
   2105 	 * Calculate rate code.
   2106 	 * XXX everything at min xmit rate
   2107 	 */
   2108 	rix = sc->sc_minrateix;
   2109 	rt = sc->sc_currates;
   2110 	rate = rt->info[rix].rateCode;
   2111 	if (USE_SHPREAMBLE(ic))
   2112 		rate |= rt->info[rix].shortPreamble;
   2113 	ath_hal_setuptxdesc(ah, ds
   2114 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
   2115 		, sizeof(struct ieee80211_frame)/* header length */
   2116 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
   2117 		, ni->ni_txpower		/* txpower XXX */
   2118 		, rate, 1			/* series 0 rate/tries */
   2119 		, HAL_TXKEYIX_INVALID		/* no encryption */
   2120 		, antenna			/* antenna mode */
   2121 		, flags				/* no ack, veol for beacons */
   2122 		, 0				/* rts/cts rate */
   2123 		, 0				/* rts/cts duration */
   2124 	);
   2125 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
   2126 	ath_hal_filltxdesc(ah, ds
   2127 		, roundup(m->m_len, 4)		/* buffer length */
   2128 		, AH_TRUE			/* first segment */
   2129 		, AH_TRUE			/* last segment */
   2130 		, ds				/* first descriptor */
   2131 	);
   2132 
   2133 	/* NB: The desc swap function becomes void,
   2134 	 * if descriptor swapping is not enabled
   2135 	 */
   2136 	ath_desc_swap(ds);
   2137 
   2138 #undef USE_SHPREAMBLE
   2139 }
   2140 
   2141 /*
   2142  * Transmit a beacon frame at SWBA.  Dynamic updates to the
   2143  * frame contents are done as needed and the slot time is
   2144  * also adjusted based on current state.
   2145  */
   2146 static void
   2147 ath_beacon_proc(void *arg, int pending)
   2148 {
   2149 	struct ath_softc *sc = arg;
   2150 	struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
   2151 	struct ieee80211_node *ni = bf->bf_node;
   2152 	struct ieee80211com *ic = ni->ni_ic;
   2153 	struct ath_hal *ah = sc->sc_ah;
   2154 	struct mbuf *m;
   2155 	int ncabq, error, otherant;
   2156 
   2157 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
   2158 		__func__, pending);
   2159 
   2160 	if (ic->ic_opmode == IEEE80211_M_STA ||
   2161 	    ic->ic_opmode == IEEE80211_M_MONITOR ||
   2162 	    bf == NULL || bf->bf_m == NULL) {
   2163 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
   2164 			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
   2165 		return;
   2166 	}
   2167 	/*
   2168 	 * Check if the previous beacon has gone out.  If
   2169 	 * not don't try to post another, skip this period
   2170 	 * and wait for the next.  Missed beacons indicate
   2171 	 * a problem and should not occur.  If we miss too
   2172 	 * many consecutive beacons reset the device.
   2173 	 */
   2174 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
   2175 		sc->sc_bmisscount++;
   2176 		DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
   2177 			"%s: missed %u consecutive beacons\n",
   2178 			__func__, sc->sc_bmisscount);
   2179 		if (sc->sc_bmisscount > 3)		/* NB: 3 is a guess */
   2180 			TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask);
   2181 		return;
   2182 	}
   2183 	if (sc->sc_bmisscount != 0) {
   2184 		DPRINTF(sc, ATH_DEBUG_BEACON,
   2185 			"%s: resume beacon xmit after %u misses\n",
   2186 			__func__, sc->sc_bmisscount);
   2187 		sc->sc_bmisscount = 0;
   2188 	}
   2189 
   2190 	/*
   2191 	 * Update dynamic beacon contents.  If this returns
   2192 	 * non-zero then we need to remap the memory because
   2193 	 * the beacon frame changed size (probably because
   2194 	 * of the TIM bitmap).
   2195 	 */
   2196 	m = bf->bf_m;
   2197 	ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
   2198 	if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
   2199 		/* XXX too conservative? */
   2200 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   2201 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
   2202 					     BUS_DMA_NOWAIT);
   2203 		if (error != 0) {
   2204 			if_printf(&sc->sc_if,
   2205 			    "%s: bus_dmamap_load_mbuf failed, error %u\n",
   2206 			    __func__, error);
   2207 			return;
   2208 		}
   2209 	}
   2210 
   2211 	/*
   2212 	 * Handle slot time change when a non-ERP station joins/leaves
   2213 	 * an 11g network.  The 802.11 layer notifies us via callback,
   2214 	 * we mark updateslot, then wait one beacon before effecting
   2215 	 * the change.  This gives associated stations at least one
   2216 	 * beacon interval to note the state change.
   2217 	 */
   2218 	/* XXX locking */
   2219 	if (sc->sc_updateslot == UPDATE)
   2220 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
   2221 	else if (sc->sc_updateslot == COMMIT)
   2222 		ath_setslottime(sc);		/* commit change to h/w */
   2223 
   2224 	/*
   2225 	 * Check recent per-antenna transmit statistics and flip
   2226 	 * the default antenna if noticeably more frames went out
   2227 	 * on the non-default antenna.
   2228 	 * XXX assumes 2 anntenae
   2229 	 */
   2230 	otherant = sc->sc_defant & 1 ? 2 : 1;
   2231 	if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
   2232 		ath_setdefantenna(sc, otherant);
   2233 	sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
   2234 
   2235 	/*
   2236 	 * Construct tx descriptor.
   2237 	 */
   2238 	ath_beacon_setup(sc, bf);
   2239 
   2240 	/*
   2241 	 * Stop any current dma and put the new frame on the queue.
   2242 	 * This should never fail since we check above that no frames
   2243 	 * are still pending on the queue.
   2244 	 */
   2245 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
   2246 		DPRINTF(sc, ATH_DEBUG_ANY,
   2247 			"%s: beacon queue %u did not stop?\n",
   2248 			__func__, sc->sc_bhalq);
   2249 	}
   2250 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   2251 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2252 
   2253 	/*
   2254 	 * Enable the CAB queue before the beacon queue to
   2255 	 * insure cab frames are triggered by this beacon.
   2256 	 */
   2257 	if (ncabq != 0 && (sc->sc_boff.bo_tim[4] & 1))	/* NB: only at DTIM */
   2258 		ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
   2259 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
   2260 	ath_hal_txstart(ah, sc->sc_bhalq);
   2261 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
   2262 	    "%s: TXDP[%u] = %" PRIx64 " (%p)\n", __func__,
   2263 	    sc->sc_bhalq, (uint64_t)bf->bf_daddr, bf->bf_desc);
   2264 
   2265 	sc->sc_stats.ast_be_xmit++;
   2266 }
   2267 
   2268 /*
   2269  * Reset the hardware after detecting beacons have stopped.
   2270  */
   2271 static void
   2272 ath_bstuck_proc(void *arg, int pending)
   2273 {
   2274 	struct ath_softc *sc = arg;
   2275 	struct ifnet *ifp = &sc->sc_if;
   2276 
   2277 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
   2278 		sc->sc_bmisscount);
   2279 	ath_reset(ifp);
   2280 }
   2281 
   2282 /*
   2283  * Reclaim beacon resources.
   2284  */
   2285 static void
   2286 ath_beacon_free(struct ath_softc *sc)
   2287 {
   2288 	struct ath_buf *bf;
   2289 
   2290 	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
   2291 		if (bf->bf_m != NULL) {
   2292 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   2293 			m_freem(bf->bf_m);
   2294 			bf->bf_m = NULL;
   2295 		}
   2296 		if (bf->bf_node != NULL) {
   2297 			ieee80211_free_node(bf->bf_node);
   2298 			bf->bf_node = NULL;
   2299 		}
   2300 	}
   2301 }
   2302 
   2303 /*
   2304  * Configure the beacon and sleep timers.
   2305  *
   2306  * When operating as an AP this resets the TSF and sets
   2307  * up the hardware to notify us when we need to issue beacons.
   2308  *
   2309  * When operating in station mode this sets up the beacon
   2310  * timers according to the timestamp of the last received
   2311  * beacon and the current TSF, configures PCF and DTIM
   2312  * handling, programs the sleep registers so the hardware
   2313  * will wakeup in time to receive beacons, and configures
   2314  * the beacon miss handling so we'll receive a BMISS
   2315  * interrupt when we stop seeing beacons from the AP
   2316  * we've associated with.
   2317  */
   2318 static void
   2319 ath_beacon_config(struct ath_softc *sc)
   2320 {
   2321 #define	TSF_TO_TU(_h,_l) \
   2322 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
   2323 #define	FUDGE	2
   2324 	struct ath_hal *ah = sc->sc_ah;
   2325 	struct ieee80211com *ic = &sc->sc_ic;
   2326 	struct ieee80211_node *ni = ic->ic_bss;
   2327 	u_int32_t nexttbtt, intval, tsftu;
   2328 	u_int64_t tsf;
   2329 
   2330 	/* extract tstamp from last beacon and convert to TU */
   2331 	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
   2332 			     LE_READ_4(ni->ni_tstamp.data));
   2333 	/* NB: the beacon interval is kept internally in TU's */
   2334 	intval = ni->ni_intval & HAL_BEACON_PERIOD;
   2335 	if (nexttbtt == 0)		/* e.g. for ap mode */
   2336 		nexttbtt = intval;
   2337 	else if (intval)		/* NB: can be 0 for monitor mode */
   2338 		nexttbtt = roundup(nexttbtt, intval);
   2339 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
   2340 		__func__, nexttbtt, intval, ni->ni_intval);
   2341 	if (ic->ic_opmode == IEEE80211_M_STA) {
   2342 		HAL_BEACON_STATE bs;
   2343 		int dtimperiod, dtimcount;
   2344 		int cfpperiod, cfpcount;
   2345 
   2346 		/*
   2347 		 * Setup dtim and cfp parameters according to
   2348 		 * last beacon we received (which may be none).
   2349 		 */
   2350 		dtimperiod = ni->ni_dtim_period;
   2351 		if (dtimperiod <= 0)		/* NB: 0 if not known */
   2352 			dtimperiod = 1;
   2353 		dtimcount = ni->ni_dtim_count;
   2354 		if (dtimcount >= dtimperiod)	/* NB: sanity check */
   2355 			dtimcount = 0;		/* XXX? */
   2356 		cfpperiod = 1;			/* NB: no PCF support yet */
   2357 		cfpcount = 0;
   2358 		/*
   2359 		 * Pull nexttbtt forward to reflect the current
   2360 		 * TSF and calculate dtim+cfp state for the result.
   2361 		 */
   2362 		tsf = ath_hal_gettsf64(ah);
   2363 		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
   2364 		do {
   2365 			nexttbtt += intval;
   2366 			if (--dtimcount < 0) {
   2367 				dtimcount = dtimperiod - 1;
   2368 				if (--cfpcount < 0)
   2369 					cfpcount = cfpperiod - 1;
   2370 			}
   2371 		} while (nexttbtt < tsftu);
   2372 		memset(&bs, 0, sizeof(bs));
   2373 		bs.bs_intval = intval;
   2374 		bs.bs_nexttbtt = nexttbtt;
   2375 		bs.bs_dtimperiod = dtimperiod*intval;
   2376 		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
   2377 		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
   2378 		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
   2379 		bs.bs_cfpmaxduration = 0;
   2380 #if 0
   2381 		/*
   2382 		 * The 802.11 layer records the offset to the DTIM
   2383 		 * bitmap while receiving beacons; use it here to
   2384 		 * enable h/w detection of our AID being marked in
   2385 		 * the bitmap vector (to indicate frames for us are
   2386 		 * pending at the AP).
   2387 		 * XXX do DTIM handling in s/w to WAR old h/w bugs
   2388 		 * XXX enable based on h/w rev for newer chips
   2389 		 */
   2390 		bs.bs_timoffset = ni->ni_timoff;
   2391 #endif
   2392 		/*
   2393 		 * Calculate the number of consecutive beacons to miss
   2394 		 * before taking a BMISS interrupt.  The configuration
   2395 		 * is specified in ms, so we need to convert that to
   2396 		 * TU's and then calculate based on the beacon interval.
   2397 		 * Note that we clamp the result to at most 10 beacons.
   2398 		 */
   2399 		bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
   2400 		if (bs.bs_bmissthreshold > 10)
   2401 			bs.bs_bmissthreshold = 10;
   2402 		else if (bs.bs_bmissthreshold <= 0)
   2403 			bs.bs_bmissthreshold = 1;
   2404 
   2405 		/*
   2406 		 * Calculate sleep duration.  The configuration is
   2407 		 * given in ms.  We insure a multiple of the beacon
   2408 		 * period is used.  Also, if the sleep duration is
   2409 		 * greater than the DTIM period then it makes senses
   2410 		 * to make it a multiple of that.
   2411 		 *
   2412 		 * XXX fixed at 100ms
   2413 		 */
   2414 		bs.bs_sleepduration =
   2415 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
   2416 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
   2417 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
   2418 
   2419 		DPRINTF(sc, ATH_DEBUG_BEACON,
   2420 			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
   2421 			, __func__
   2422 			, tsf, tsftu
   2423 			, bs.bs_intval
   2424 			, bs.bs_nexttbtt
   2425 			, bs.bs_dtimperiod
   2426 			, bs.bs_nextdtim
   2427 			, bs.bs_bmissthreshold
   2428 			, bs.bs_sleepduration
   2429 			, bs.bs_cfpperiod
   2430 			, bs.bs_cfpmaxduration
   2431 			, bs.bs_cfpnext
   2432 			, bs.bs_timoffset
   2433 		);
   2434 		ath_hal_intrset(ah, 0);
   2435 		ath_hal_beacontimers(ah, &bs);
   2436 		sc->sc_imask |= HAL_INT_BMISS;
   2437 		ath_hal_intrset(ah, sc->sc_imask);
   2438 	} else {
   2439 		ath_hal_intrset(ah, 0);
   2440 		if (nexttbtt == intval)
   2441 			intval |= HAL_BEACON_RESET_TSF;
   2442 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
   2443 			/*
   2444 			 * In IBSS mode enable the beacon timers but only
   2445 			 * enable SWBA interrupts if we need to manually
   2446 			 * prepare beacon frames.  Otherwise we use a
   2447 			 * self-linked tx descriptor and let the hardware
   2448 			 * deal with things.
   2449 			 */
   2450 			intval |= HAL_BEACON_ENA;
   2451 			if (!sc->sc_hasveol)
   2452 				sc->sc_imask |= HAL_INT_SWBA;
   2453 			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
   2454 				/*
   2455 				 * Pull nexttbtt forward to reflect
   2456 				 * the current TSF.
   2457 				 */
   2458 				tsf = ath_hal_gettsf64(ah);
   2459 				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
   2460 				do {
   2461 					nexttbtt += intval;
   2462 				} while (nexttbtt < tsftu);
   2463 			}
   2464 			ath_beaconq_config(sc);
   2465 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   2466 			/*
   2467 			 * In AP mode we enable the beacon timers and
   2468 			 * SWBA interrupts to prepare beacon frames.
   2469 			 */
   2470 			intval |= HAL_BEACON_ENA;
   2471 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
   2472 			ath_beaconq_config(sc);
   2473 		}
   2474 		ath_hal_beaconinit(ah, nexttbtt, intval);
   2475 		sc->sc_bmisscount = 0;
   2476 		ath_hal_intrset(ah, sc->sc_imask);
   2477 		/*
   2478 		 * When using a self-linked beacon descriptor in
   2479 		 * ibss mode load it once here.
   2480 		 */
   2481 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
   2482 			ath_beacon_proc(sc, 0);
   2483 	}
   2484 	sc->sc_syncbeacon = 0;
   2485 #undef UNDEF
   2486 #undef TSF_TO_TU
   2487 }
   2488 
   2489 static int
   2490 ath_descdma_setup(struct ath_softc *sc,
   2491 	struct ath_descdma *dd, ath_bufhead *head,
   2492 	const char *name, int nbuf, int ndesc)
   2493 {
   2494 #define	DS2PHYS(_dd, _ds) \
   2495 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
   2496 	struct ifnet *ifp = &sc->sc_if;
   2497 	struct ath_desc *ds;
   2498 	struct ath_buf *bf;
   2499 	int i, bsize, error;
   2500 
   2501 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
   2502 	    __func__, name, nbuf, ndesc);
   2503 
   2504 	dd->dd_name = name;
   2505 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
   2506 
   2507 	/*
   2508 	 * Setup DMA descriptor area.
   2509 	 */
   2510 	dd->dd_dmat = sc->sc_dmat;
   2511 
   2512 	error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE,
   2513 	    0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0);
   2514 
   2515 	if (error != 0) {
   2516 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
   2517 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
   2518 		goto fail0;
   2519 	}
   2520 
   2521 	error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg,
   2522 	    dd->dd_desc_len, (caddr_t *)&dd->dd_desc, BUS_DMA_COHERENT);
   2523 	if (error != 0) {
   2524 		if_printf(ifp, "unable to map %u %s descriptors, error = %u\n",
   2525 		    nbuf * ndesc, dd->dd_name, error);
   2526 		goto fail1;
   2527 	}
   2528 
   2529 	/* allocate descriptors */
   2530 	error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1,
   2531 	    dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap);
   2532 	if (error != 0) {
   2533 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
   2534 			"error %u\n", dd->dd_name, error);
   2535 		goto fail2;
   2536 	}
   2537 
   2538 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc,
   2539 	    dd->dd_desc_len, NULL, BUS_DMA_NOWAIT);
   2540 	if (error != 0) {
   2541 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
   2542 			dd->dd_name, error);
   2543 		goto fail3;
   2544 	}
   2545 
   2546 	ds = dd->dd_desc;
   2547 	dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr;
   2548 	DPRINTF(sc, ATH_DEBUG_RESET,
   2549 	    "%s: %s DMA map: %p (%lu) -> %" PRIx64 " (%lu)\n",
   2550 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
   2551 	    (uint64_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
   2552 
   2553 	/* allocate rx buffers */
   2554 	bsize = sizeof(struct ath_buf) * nbuf;
   2555 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
   2556 	if (bf == NULL) {
   2557 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
   2558 			dd->dd_name, bsize);
   2559 		goto fail4;
   2560 	}
   2561 	dd->dd_bufptr = bf;
   2562 
   2563 	STAILQ_INIT(head);
   2564 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
   2565 		bf->bf_desc = ds;
   2566 		bf->bf_daddr = DS2PHYS(dd, ds);
   2567 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc,
   2568 				MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap);
   2569 		if (error != 0) {
   2570 			if_printf(ifp, "unable to create dmamap for %s "
   2571 				"buffer %u, error %u\n", dd->dd_name, i, error);
   2572 			ath_descdma_cleanup(sc, dd, head);
   2573 			return error;
   2574 		}
   2575 		STAILQ_INSERT_TAIL(head, bf, bf_list);
   2576 	}
   2577 	return 0;
   2578 fail4:
   2579 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
   2580 fail3:
   2581 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
   2582 fail2:
   2583 	bus_dmamem_unmap(dd->dd_dmat, (caddr_t)dd->dd_desc, dd->dd_desc_len);
   2584 fail1:
   2585 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
   2586 fail0:
   2587 	memset(dd, 0, sizeof(*dd));
   2588 	return error;
   2589 #undef DS2PHYS
   2590 }
   2591 
   2592 static void
   2593 ath_descdma_cleanup(struct ath_softc *sc,
   2594 	struct ath_descdma *dd, ath_bufhead *head)
   2595 {
   2596 	struct ath_buf *bf;
   2597 	struct ieee80211_node *ni;
   2598 
   2599 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
   2600 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
   2601 	bus_dmamem_unmap(dd->dd_dmat, (caddr_t)dd->dd_desc, dd->dd_desc_len);
   2602 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
   2603 
   2604 	STAILQ_FOREACH(bf, head, bf_list) {
   2605 		if (bf->bf_m) {
   2606 			m_freem(bf->bf_m);
   2607 			bf->bf_m = NULL;
   2608 		}
   2609 		if (bf->bf_dmamap != NULL) {
   2610 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
   2611 			bf->bf_dmamap = NULL;
   2612 		}
   2613 		ni = bf->bf_node;
   2614 		bf->bf_node = NULL;
   2615 		if (ni != NULL) {
   2616 			/*
   2617 			 * Reclaim node reference.
   2618 			 */
   2619 			ieee80211_free_node(ni);
   2620 		}
   2621 	}
   2622 
   2623 	STAILQ_INIT(head);
   2624 	free(dd->dd_bufptr, M_ATHDEV);
   2625 	memset(dd, 0, sizeof(*dd));
   2626 }
   2627 
   2628 static int
   2629 ath_desc_alloc(struct ath_softc *sc)
   2630 {
   2631 	int error;
   2632 
   2633 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
   2634 			"rx", ath_rxbuf, 1);
   2635 	if (error != 0)
   2636 		return error;
   2637 
   2638 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
   2639 			"tx", ath_txbuf, ATH_TXDESC);
   2640 	if (error != 0) {
   2641 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2642 		return error;
   2643 	}
   2644 
   2645 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
   2646 			"beacon", 1, 1);
   2647 	if (error != 0) {
   2648 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
   2649 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2650 		return error;
   2651 	}
   2652 	return 0;
   2653 }
   2654 
   2655 static void
   2656 ath_desc_free(struct ath_softc *sc)
   2657 {
   2658 
   2659 	if (sc->sc_bdma.dd_desc_len != 0)
   2660 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
   2661 	if (sc->sc_txdma.dd_desc_len != 0)
   2662 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
   2663 	if (sc->sc_rxdma.dd_desc_len != 0)
   2664 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2665 }
   2666 
   2667 static struct ieee80211_node *
   2668 ath_node_alloc(struct ieee80211_node_table *nt)
   2669 {
   2670 	struct ieee80211com *ic = nt->nt_ic;
   2671 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   2672 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
   2673 	struct ath_node *an;
   2674 
   2675 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
   2676 	if (an == NULL) {
   2677 		/* XXX stat+msg */
   2678 		return NULL;
   2679 	}
   2680 	an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
   2681 	ath_rate_node_init(sc, an);
   2682 
   2683 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
   2684 	return &an->an_node;
   2685 }
   2686 
   2687 static void
   2688 ath_node_free(struct ieee80211_node *ni)
   2689 {
   2690 	struct ieee80211com *ic = ni->ni_ic;
   2691         struct ath_softc *sc = ic->ic_ifp->if_softc;
   2692 
   2693 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
   2694 
   2695 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
   2696 	sc->sc_node_free(ni);
   2697 }
   2698 
   2699 static u_int8_t
   2700 ath_node_getrssi(const struct ieee80211_node *ni)
   2701 {
   2702 #define	HAL_EP_RND(x, mul) \
   2703 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
   2704 	u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
   2705 	int32_t rssi;
   2706 
   2707 	/*
   2708 	 * When only one frame is received there will be no state in
   2709 	 * avgrssi so fallback on the value recorded by the 802.11 layer.
   2710 	 */
   2711 	if (avgrssi != ATH_RSSI_DUMMY_MARKER)
   2712 		rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
   2713 	else
   2714 		rssi = ni->ni_rssi;
   2715 	return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
   2716 #undef HAL_EP_RND
   2717 }
   2718 
   2719 static int
   2720 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
   2721 {
   2722 	struct ath_hal *ah = sc->sc_ah;
   2723 	int error;
   2724 	struct mbuf *m;
   2725 	struct ath_desc *ds;
   2726 
   2727 	m = bf->bf_m;
   2728 	if (m == NULL) {
   2729 		/*
   2730 		 * NB: by assigning a page to the rx dma buffer we
   2731 		 * implicitly satisfy the Atheros requirement that
   2732 		 * this buffer be cache-line-aligned and sized to be
   2733 		 * multiple of the cache line size.  Not doing this
   2734 		 * causes weird stuff to happen (for the 5210 at least).
   2735 		 */
   2736 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
   2737 		if (m == NULL) {
   2738 			DPRINTF(sc, ATH_DEBUG_ANY,
   2739 				"%s: no mbuf/cluster\n", __func__);
   2740 			sc->sc_stats.ast_rx_nombuf++;
   2741 			return ENOMEM;
   2742 		}
   2743 		bf->bf_m = m;
   2744 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
   2745 
   2746 		error = bus_dmamap_load_mbuf(sc->sc_dmat,
   2747 					     bf->bf_dmamap, m,
   2748 					     BUS_DMA_NOWAIT);
   2749 		if (error != 0) {
   2750 			DPRINTF(sc, ATH_DEBUG_ANY,
   2751 			    "%s: bus_dmamap_load_mbuf failed; error %d\n",
   2752 			    __func__, error);
   2753 			sc->sc_stats.ast_rx_busdma++;
   2754 			return error;
   2755 		}
   2756 		KASSERT(bf->bf_nseg == 1,
   2757 			("multi-segment packet; nseg %u", bf->bf_nseg));
   2758 	}
   2759 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   2760 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2761 
   2762 	/*
   2763 	 * Setup descriptors.  For receive we always terminate
   2764 	 * the descriptor list with a self-linked entry so we'll
   2765 	 * not get overrun under high load (as can happen with a
   2766 	 * 5212 when ANI processing enables PHY error frames).
   2767 	 *
   2768 	 * To insure the last descriptor is self-linked we create
   2769 	 * each descriptor as self-linked and add it to the end.  As
   2770 	 * each additional descriptor is added the previous self-linked
   2771 	 * entry is ``fixed'' naturally.  This should be safe even
   2772 	 * if DMA is happening.  When processing RX interrupts we
   2773 	 * never remove/process the last, self-linked, entry on the
   2774 	 * descriptor list.  This insures the hardware always has
   2775 	 * someplace to write a new frame.
   2776 	 */
   2777 	ds = bf->bf_desc;
   2778 	ds->ds_link = HTOAH32(bf->bf_daddr);	/* link to self */
   2779 	ds->ds_data = bf->bf_segs[0].ds_addr;
   2780 	ds->ds_vdata = mtod(m, void *);	/* for radar */
   2781 	ath_hal_setuprxdesc(ah, ds
   2782 		, m->m_len		/* buffer size */
   2783 		, 0
   2784 	);
   2785 
   2786 	if (sc->sc_rxlink != NULL)
   2787 		*sc->sc_rxlink = bf->bf_daddr;
   2788 	sc->sc_rxlink = &ds->ds_link;
   2789 	return 0;
   2790 }
   2791 
   2792 /*
   2793  * Extend 15-bit time stamp from rx descriptor to
   2794  * a full 64-bit TSF using the specified TSF.
   2795  */
   2796 static inline u_int64_t
   2797 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
   2798 {
   2799 	if ((tsf & 0x7fff) < rstamp)
   2800 		tsf -= 0x8000;
   2801 	return ((tsf &~ 0x7fff) | rstamp);
   2802 }
   2803 
   2804 /*
   2805  * Intercept management frames to collect beacon rssi data
   2806  * and to do ibss merges.
   2807  */
   2808 static void
   2809 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
   2810 	struct ieee80211_node *ni,
   2811 	int subtype, int rssi, u_int32_t rstamp)
   2812 {
   2813 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   2814 
   2815 	/*
   2816 	 * Call up first so subsequent work can use information
   2817 	 * potentially stored in the node (e.g. for ibss merge).
   2818 	 */
   2819 	sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
   2820 	switch (subtype) {
   2821 	case IEEE80211_FC0_SUBTYPE_BEACON:
   2822 		/* update rssi statistics for use by the hal */
   2823 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
   2824 		if (sc->sc_syncbeacon &&
   2825 		    ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) {
   2826 			/*
   2827 			 * Resync beacon timers using the tsf of the beacon
   2828 			 * frame we just received.
   2829 			 */
   2830 			ath_beacon_config(sc);
   2831 		}
   2832 		/* fall thru... */
   2833 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
   2834 		if (ic->ic_opmode == IEEE80211_M_IBSS &&
   2835 		    ic->ic_state == IEEE80211_S_RUN) {
   2836 			u_int64_t tsf = ath_extend_tsf(rstamp,
   2837 				ath_hal_gettsf64(sc->sc_ah));
   2838 
   2839 			/*
   2840 			 * Handle ibss merge as needed; check the tsf on the
   2841 			 * frame before attempting the merge.  The 802.11 spec
   2842 			 * says the station should change it's bssid to match
   2843 			 * the oldest station with the same ssid, where oldest
   2844 			 * is determined by the tsf.  Note that hardware
   2845 			 * reconfiguration happens through callback to
   2846 			 * ath_newstate as the state machine will go from
   2847 			 * RUN -> RUN when this happens.
   2848 			 */
   2849 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
   2850 				DPRINTF(sc, ATH_DEBUG_STATE,
   2851 				    "ibss merge, rstamp %u tsf %ju "
   2852 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
   2853 				    (uintmax_t)ni->ni_tstamp.tsf);
   2854 				(void) ieee80211_ibss_merge(ni);
   2855 			}
   2856 		}
   2857 		break;
   2858 	}
   2859 }
   2860 
   2861 /*
   2862  * Set the default antenna.
   2863  */
   2864 static void
   2865 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
   2866 {
   2867 	struct ath_hal *ah = sc->sc_ah;
   2868 
   2869 	/* XXX block beacon interrupts */
   2870 	ath_hal_setdefantenna(ah, antenna);
   2871 	if (sc->sc_defant != antenna)
   2872 		sc->sc_stats.ast_ant_defswitch++;
   2873 	sc->sc_defant = antenna;
   2874 	sc->sc_rxotherant = 0;
   2875 }
   2876 
   2877 static void
   2878 ath_rx_proc(void *arg, int npending)
   2879 {
   2880 #define	PA2DESC(_sc, _pa) \
   2881 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
   2882 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
   2883 	struct ath_softc *sc = arg;
   2884 	struct ath_buf *bf;
   2885 	struct ieee80211com *ic = &sc->sc_ic;
   2886 	struct ifnet *ifp = &sc->sc_if;
   2887 	struct ath_hal *ah = sc->sc_ah;
   2888 	struct ath_desc *ds;
   2889 	struct mbuf *m;
   2890 	struct ieee80211_node *ni;
   2891 	struct ath_node *an;
   2892 	int len, type, ngood;
   2893 	u_int phyerr;
   2894 	HAL_STATUS status;
   2895 	int16_t nf;
   2896 	u_int64_t tsf;
   2897 
   2898 	NET_LOCK_GIANT();		/* XXX */
   2899 
   2900 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
   2901 	ngood = 0;
   2902 	nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
   2903 	tsf = ath_hal_gettsf64(ah);
   2904 	do {
   2905 		bf = STAILQ_FIRST(&sc->sc_rxbuf);
   2906 		if (bf == NULL) {		/* NB: shouldn't happen */
   2907 			if_printf(ifp, "%s: no buffer!\n", __func__);
   2908 			break;
   2909 		}
   2910 		ds = bf->bf_desc;
   2911 		if (ds->ds_link == bf->bf_daddr) {
   2912 			/* NB: never process the self-linked entry at the end */
   2913 			break;
   2914 		}
   2915 		m = bf->bf_m;
   2916 		if (m == NULL) {		/* NB: shouldn't happen */
   2917 			if_printf(ifp, "%s: no mbuf!\n", __func__);
   2918 			break;
   2919 		}
   2920 		/* XXX sync descriptor memory */
   2921 		/*
   2922 		 * Must provide the virtual address of the current
   2923 		 * descriptor, the physical address, and the virtual
   2924 		 * address of the next descriptor in the h/w chain.
   2925 		 * This allows the HAL to look ahead to see if the
   2926 		 * hardware is done with a descriptor by checking the
   2927 		 * done bit in the following descriptor and the address
   2928 		 * of the current descriptor the DMA engine is working
   2929 		 * on.  All this is necessary because of our use of
   2930 		 * a self-linked list to avoid rx overruns.
   2931 		 */
   2932 		status = ath_hal_rxprocdesc(ah, ds,
   2933 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
   2934 #ifdef AR_DEBUG
   2935 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
   2936 			ath_printrxbuf(bf, status == HAL_OK);
   2937 #endif
   2938 		if (status == HAL_EINPROGRESS)
   2939 			break;
   2940 		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
   2941 		if (ds->ds_rxstat.rs_more) {
   2942 			/*
   2943 			 * Frame spans multiple descriptors; this
   2944 			 * cannot happen yet as we don't support
   2945 			 * jumbograms.  If not in monitor mode,
   2946 			 * discard the frame.
   2947 			 */
   2948 			if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   2949 				sc->sc_stats.ast_rx_toobig++;
   2950 				goto rx_next;
   2951 			}
   2952 			/* fall thru for monitor mode handling... */
   2953 		} else if (ds->ds_rxstat.rs_status != 0) {
   2954 			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
   2955 				sc->sc_stats.ast_rx_crcerr++;
   2956 			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
   2957 				sc->sc_stats.ast_rx_fifoerr++;
   2958 			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
   2959 				sc->sc_stats.ast_rx_phyerr++;
   2960 				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
   2961 				sc->sc_stats.ast_rx_phy[phyerr]++;
   2962 				goto rx_next;
   2963 			}
   2964 			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
   2965 				/*
   2966 				 * Decrypt error.  If the error occurred
   2967 				 * because there was no hardware key, then
   2968 				 * let the frame through so the upper layers
   2969 				 * can process it.  This is necessary for 5210
   2970 				 * parts which have no way to setup a ``clear''
   2971 				 * key cache entry.
   2972 				 *
   2973 				 * XXX do key cache faulting
   2974 				 */
   2975 				if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
   2976 					goto rx_accept;
   2977 				sc->sc_stats.ast_rx_badcrypt++;
   2978 			}
   2979 			if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
   2980 				sc->sc_stats.ast_rx_badmic++;
   2981 				/*
   2982 				 * Do minimal work required to hand off
   2983 				 * the 802.11 header for notifcation.
   2984 				 */
   2985 				/* XXX frag's and qos frames */
   2986 				len = ds->ds_rxstat.rs_datalen;
   2987 				if (len >= sizeof (struct ieee80211_frame)) {
   2988 					bus_dmamap_sync(sc->sc_dmat,
   2989 					    bf->bf_dmamap,
   2990 					    0, bf->bf_dmamap->dm_mapsize,
   2991 					    BUS_DMASYNC_POSTREAD);
   2992 					ieee80211_notify_michael_failure(ic,
   2993 					    mtod(m, struct ieee80211_frame *),
   2994 					    sc->sc_splitmic ?
   2995 					        ds->ds_rxstat.rs_keyix-32 :
   2996 					        ds->ds_rxstat.rs_keyix
   2997 					);
   2998 				}
   2999 			}
   3000 			ifp->if_ierrors++;
   3001 			/*
   3002 			 * Reject error frames, we normally don't want
   3003 			 * to see them in monitor mode (in monitor mode
   3004 			 * allow through packets that have crypto problems).
   3005 			 */
   3006 			if ((ds->ds_rxstat.rs_status &~
   3007 				(HAL_RXERR_DECRYPT|HAL_RXERR_MIC)) ||
   3008 			    sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
   3009 				goto rx_next;
   3010 		}
   3011 rx_accept:
   3012 		/*
   3013 		 * Sync and unmap the frame.  At this point we're
   3014 		 * committed to passing the mbuf somewhere so clear
   3015 		 * bf_m; this means a new sk_buff must be allocated
   3016 		 * when the rx descriptor is setup again to receive
   3017 		 * another frame.
   3018 		 */
   3019 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
   3020 		    0, bf->bf_dmamap->dm_mapsize,
   3021 		    BUS_DMASYNC_POSTREAD);
   3022 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   3023 		bf->bf_m = NULL;
   3024 
   3025 		m->m_pkthdr.rcvif = ifp;
   3026 		len = ds->ds_rxstat.rs_datalen;
   3027 		m->m_pkthdr.len = m->m_len = len;
   3028 
   3029 		sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
   3030 
   3031 #if NBPFILTER > 0
   3032 		if (sc->sc_drvbpf) {
   3033 			u_int8_t rix;
   3034 
   3035 			/*
   3036 			 * Discard anything shorter than an ack or cts.
   3037 			 */
   3038 			if (len < IEEE80211_ACK_LEN) {
   3039 				DPRINTF(sc, ATH_DEBUG_RECV,
   3040 					"%s: runt packet %d\n",
   3041 					__func__, len);
   3042 				sc->sc_stats.ast_rx_tooshort++;
   3043 				m_freem(m);
   3044 				goto rx_next;
   3045 			}
   3046 			rix = ds->ds_rxstat.rs_rate;
   3047 			sc->sc_rx_th.wr_tsf = htole64(
   3048 				ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf));
   3049 			sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
   3050 			sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
   3051 			sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf;
   3052 			sc->sc_rx_th.wr_antnoise = nf;
   3053 			sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
   3054 
   3055 			bpf_mtap2(sc->sc_drvbpf,
   3056 				&sc->sc_rx_th, sc->sc_rx_th_len, m);
   3057 		}
   3058 #endif
   3059 
   3060 		/*
   3061 		 * From this point on we assume the frame is at least
   3062 		 * as large as ieee80211_frame_min; verify that.
   3063 		 */
   3064 		if (len < IEEE80211_MIN_LEN) {
   3065 			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
   3066 				__func__, len);
   3067 			sc->sc_stats.ast_rx_tooshort++;
   3068 			m_freem(m);
   3069 			goto rx_next;
   3070 		}
   3071 
   3072 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
   3073 			ieee80211_dump_pkt(mtod(m, caddr_t), len,
   3074 				   sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
   3075 				   ds->ds_rxstat.rs_rssi);
   3076 		}
   3077 
   3078 		m_adj(m, -IEEE80211_CRC_LEN);
   3079 
   3080 		/*
   3081 		 * Locate the node for sender, track state, and then
   3082 		 * pass the (referenced) node up to the 802.11 layer
   3083 		 * for its use.
   3084 		 */
   3085 		ni = ieee80211_find_rxnode_withkey(ic,
   3086 			mtod(m, const struct ieee80211_frame_min *),
   3087 			ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
   3088 				IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
   3089 		/*
   3090 		 * Track rx rssi and do any rx antenna management.
   3091 		 */
   3092 		an = ATH_NODE(ni);
   3093 		ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
   3094 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi);
   3095 		/*
   3096 		 * Send frame up for processing.
   3097 		 */
   3098 		type = ieee80211_input(ic, m, ni,
   3099 			ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
   3100 		ieee80211_free_node(ni);
   3101 		if (sc->sc_diversity) {
   3102 			/*
   3103 			 * When using fast diversity, change the default rx
   3104 			 * antenna if diversity chooses the other antenna 3
   3105 			 * times in a row.
   3106 			 */
   3107 			if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
   3108 				if (++sc->sc_rxotherant >= 3)
   3109 					ath_setdefantenna(sc,
   3110 						ds->ds_rxstat.rs_antenna);
   3111 			} else
   3112 				sc->sc_rxotherant = 0;
   3113 		}
   3114 		if (sc->sc_softled) {
   3115 			/*
   3116 			 * Blink for any data frame.  Otherwise do a
   3117 			 * heartbeat-style blink when idle.  The latter
   3118 			 * is mainly for station mode where we depend on
   3119 			 * periodic beacon frames to trigger the poll event.
   3120 			 */
   3121 			if (type == IEEE80211_FC0_TYPE_DATA) {
   3122 				sc->sc_rxrate = ds->ds_rxstat.rs_rate;
   3123 				ath_led_event(sc, ATH_LED_RX);
   3124 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
   3125 				ath_led_event(sc, ATH_LED_POLL);
   3126 		}
   3127 		/*
   3128 		 * Arrange to update the last rx timestamp only for
   3129 		 * frames from our ap when operating in station mode.
   3130 		 * This assumes the rx key is always setup when associated.
   3131 		 */
   3132 		if (ic->ic_opmode == IEEE80211_M_STA &&
   3133 		    ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID)
   3134 			ngood++;
   3135 rx_next:
   3136 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
   3137 	} while (ath_rxbuf_init(sc, bf) == 0);
   3138 
   3139 	/* rx signal state monitoring */
   3140 	ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
   3141 	if (ath_hal_radar_event(ah))
   3142 		TASK_RUN_OR_ENQUEUE(&sc->sc_radartask);
   3143 	if (ngood)
   3144 		sc->sc_lastrx = tsf;
   3145 
   3146 #ifdef __NetBSD__
   3147 	/* XXX Why isn't this necessary in FreeBSD? */
   3148 	if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
   3149 		ath_start(ifp);
   3150 #endif /* __NetBSD__ */
   3151 
   3152 	NET_UNLOCK_GIANT();		/* XXX */
   3153 #undef PA2DESC
   3154 }
   3155 
   3156 /*
   3157  * Setup a h/w transmit queue.
   3158  */
   3159 static struct ath_txq *
   3160 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
   3161 {
   3162 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   3163 	struct ath_hal *ah = sc->sc_ah;
   3164 	HAL_TXQ_INFO qi;
   3165 	int qnum;
   3166 
   3167 	memset(&qi, 0, sizeof(qi));
   3168 	qi.tqi_subtype = subtype;
   3169 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
   3170 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
   3171 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
   3172 	/*
   3173 	 * Enable interrupts only for EOL and DESC conditions.
   3174 	 * We mark tx descriptors to receive a DESC interrupt
   3175 	 * when a tx queue gets deep; otherwise waiting for the
   3176 	 * EOL to reap descriptors.  Note that this is done to
   3177 	 * reduce interrupt load and this only defers reaping
   3178 	 * descriptors, never transmitting frames.  Aside from
   3179 	 * reducing interrupts this also permits more concurrency.
   3180 	 * The only potential downside is if the tx queue backs
   3181 	 * up in which case the top half of the kernel may backup
   3182 	 * due to a lack of tx descriptors.
   3183 	 */
   3184 	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
   3185 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
   3186 	if (qnum == -1) {
   3187 		/*
   3188 		 * NB: don't print a message, this happens
   3189 		 * normally on parts with too few tx queues
   3190 		 */
   3191 		return NULL;
   3192 	}
   3193 	if (qnum >= N(sc->sc_txq)) {
   3194 		device_printf(sc->sc_dev,
   3195 			"hal qnum %u out of range, max %zu!\n",
   3196 			qnum, N(sc->sc_txq));
   3197 		ath_hal_releasetxqueue(ah, qnum);
   3198 		return NULL;
   3199 	}
   3200 	if (!ATH_TXQ_SETUP(sc, qnum)) {
   3201 		struct ath_txq *txq = &sc->sc_txq[qnum];
   3202 
   3203 		txq->axq_qnum = qnum;
   3204 		txq->axq_depth = 0;
   3205 		txq->axq_intrcnt = 0;
   3206 		txq->axq_link = NULL;
   3207 		STAILQ_INIT(&txq->axq_q);
   3208 		ATH_TXQ_LOCK_INIT(sc, txq);
   3209 		sc->sc_txqsetup |= 1<<qnum;
   3210 	}
   3211 	return &sc->sc_txq[qnum];
   3212 #undef N
   3213 }
   3214 
   3215 /*
   3216  * Setup a hardware data transmit queue for the specified
   3217  * access control.  The hal may not support all requested
   3218  * queues in which case it will return a reference to a
   3219  * previously setup queue.  We record the mapping from ac's
   3220  * to h/w queues for use by ath_tx_start and also track
   3221  * the set of h/w queues being used to optimize work in the
   3222  * transmit interrupt handler and related routines.
   3223  */
   3224 static int
   3225 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
   3226 {
   3227 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   3228 	struct ath_txq *txq;
   3229 
   3230 	if (ac >= N(sc->sc_ac2q)) {
   3231 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
   3232 			ac, N(sc->sc_ac2q));
   3233 		return 0;
   3234 	}
   3235 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
   3236 	if (txq != NULL) {
   3237 		sc->sc_ac2q[ac] = txq;
   3238 		return 1;
   3239 	} else
   3240 		return 0;
   3241 #undef N
   3242 }
   3243 
   3244 /*
   3245  * Update WME parameters for a transmit queue.
   3246  */
   3247 static int
   3248 ath_txq_update(struct ath_softc *sc, int ac)
   3249 {
   3250 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
   3251 #define	ATH_TXOP_TO_US(v)		(v<<5)
   3252 	struct ieee80211com *ic = &sc->sc_ic;
   3253 	struct ath_txq *txq = sc->sc_ac2q[ac];
   3254 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
   3255 	struct ath_hal *ah = sc->sc_ah;
   3256 	HAL_TXQ_INFO qi;
   3257 
   3258 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
   3259 	qi.tqi_aifs = wmep->wmep_aifsn;
   3260 	qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
   3261 	qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
   3262 	qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
   3263 
   3264 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
   3265 		device_printf(sc->sc_dev, "unable to update hardware queue "
   3266 			"parameters for %s traffic!\n",
   3267 			ieee80211_wme_acnames[ac]);
   3268 		return 0;
   3269 	} else {
   3270 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
   3271 		return 1;
   3272 	}
   3273 #undef ATH_TXOP_TO_US
   3274 #undef ATH_EXPONENT_TO_VALUE
   3275 }
   3276 
   3277 /*
   3278  * Callback from the 802.11 layer to update WME parameters.
   3279  */
   3280 static int
   3281 ath_wme_update(struct ieee80211com *ic)
   3282 {
   3283 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   3284 
   3285 	return !ath_txq_update(sc, WME_AC_BE) ||
   3286 	    !ath_txq_update(sc, WME_AC_BK) ||
   3287 	    !ath_txq_update(sc, WME_AC_VI) ||
   3288 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
   3289 }
   3290 
   3291 /*
   3292  * Reclaim resources for a setup queue.
   3293  */
   3294 static void
   3295 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
   3296 {
   3297 
   3298 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
   3299 	ATH_TXQ_LOCK_DESTROY(txq);
   3300 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
   3301 }
   3302 
   3303 /*
   3304  * Reclaim all tx queue resources.
   3305  */
   3306 static void
   3307 ath_tx_cleanup(struct ath_softc *sc)
   3308 {
   3309 	int i;
   3310 
   3311 	ATH_TXBUF_LOCK_DESTROY(sc);
   3312 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   3313 		if (ATH_TXQ_SETUP(sc, i))
   3314 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
   3315 }
   3316 
   3317 /*
   3318  * Defragment an mbuf chain, returning at most maxfrags separate
   3319  * mbufs+clusters.  If this is not possible NULL is returned and
   3320  * the original mbuf chain is left in it's present (potentially
   3321  * modified) state.  We use two techniques: collapsing consecutive
   3322  * mbufs and replacing consecutive mbufs by a cluster.
   3323  */
   3324 static struct mbuf *
   3325 ath_defrag(struct mbuf *m0, int how, int maxfrags)
   3326 {
   3327 	struct mbuf *m, *n, *n2, **prev;
   3328 	u_int curfrags;
   3329 
   3330 	/*
   3331 	 * Calculate the current number of frags.
   3332 	 */
   3333 	curfrags = 0;
   3334 	for (m = m0; m != NULL; m = m->m_next)
   3335 		curfrags++;
   3336 	/*
   3337 	 * First, try to collapse mbufs.  Note that we always collapse
   3338 	 * towards the front so we don't need to deal with moving the
   3339 	 * pkthdr.  This may be suboptimal if the first mbuf has much
   3340 	 * less data than the following.
   3341 	 */
   3342 	m = m0;
   3343 again:
   3344 	for (;;) {
   3345 		n = m->m_next;
   3346 		if (n == NULL)
   3347 			break;
   3348 		if ((m->m_flags & M_RDONLY) == 0 &&
   3349 		    n->m_len < M_TRAILINGSPACE(m)) {
   3350 			bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
   3351 				n->m_len);
   3352 			m->m_len += n->m_len;
   3353 			m->m_next = n->m_next;
   3354 			m_free(n);
   3355 			if (--curfrags <= maxfrags)
   3356 				return m0;
   3357 		} else
   3358 			m = n;
   3359 	}
   3360 	KASSERT(maxfrags > 1,
   3361 		("maxfrags %u, but normal collapse failed", maxfrags));
   3362 	/*
   3363 	 * Collapse consecutive mbufs to a cluster.
   3364 	 */
   3365 	prev = &m0->m_next;		/* NB: not the first mbuf */
   3366 	while ((n = *prev) != NULL) {
   3367 		if ((n2 = n->m_next) != NULL &&
   3368 		    n->m_len + n2->m_len < MCLBYTES) {
   3369 			m = m_getcl(how, MT_DATA, 0);
   3370 			if (m == NULL)
   3371 				goto bad;
   3372 			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
   3373 			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
   3374 				n2->m_len);
   3375 			m->m_len = n->m_len + n2->m_len;
   3376 			m->m_next = n2->m_next;
   3377 			*prev = m;
   3378 			m_free(n);
   3379 			m_free(n2);
   3380 			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
   3381 				return m0;
   3382 			/*
   3383 			 * Still not there, try the normal collapse
   3384 			 * again before we allocate another cluster.
   3385 			 */
   3386 			goto again;
   3387 		}
   3388 		prev = &n->m_next;
   3389 	}
   3390 	/*
   3391 	 * No place where we can collapse to a cluster; punt.
   3392 	 * This can occur if, for example, you request 2 frags
   3393 	 * but the packet requires that both be clusters (we
   3394 	 * never reallocate the first mbuf to avoid moving the
   3395 	 * packet header).
   3396 	 */
   3397 bad:
   3398 	return NULL;
   3399 }
   3400 
   3401 /*
   3402  * Return h/w rate index for an IEEE rate (w/o basic rate bit).
   3403  */
   3404 static int
   3405 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
   3406 {
   3407 	int i;
   3408 
   3409 	for (i = 0; i < rt->rateCount; i++)
   3410 		if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
   3411 			return i;
   3412 	return 0;		/* NB: lowest rate */
   3413 }
   3414 
   3415 static int
   3416 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
   3417     struct mbuf *m0)
   3418 {
   3419 	struct ieee80211com *ic = &sc->sc_ic;
   3420 	struct ath_hal *ah = sc->sc_ah;
   3421 	struct ifnet *ifp = &sc->sc_if;
   3422 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
   3423 	int i, error, iswep, ismcast, ismrr;
   3424 	int keyix, hdrlen, pktlen, try0;
   3425 	u_int8_t rix, txrate, ctsrate;
   3426 	u_int8_t cix = 0xff;		/* NB: silence compiler */
   3427 	struct ath_desc *ds, *ds0;
   3428 	struct ath_txq *txq;
   3429 	struct ieee80211_frame *wh;
   3430 	u_int subtype, flags, ctsduration;
   3431 	HAL_PKT_TYPE atype;
   3432 	const HAL_RATE_TABLE *rt;
   3433 	HAL_BOOL shortPreamble;
   3434 	struct ath_node *an;
   3435 	struct mbuf *m;
   3436 	u_int pri;
   3437 
   3438 	wh = mtod(m0, struct ieee80211_frame *);
   3439 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
   3440 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
   3441 	hdrlen = ieee80211_anyhdrsize(wh);
   3442 	/*
   3443 	 * Packet length must not include any
   3444 	 * pad bytes; deduct them here.
   3445 	 */
   3446 	pktlen = m0->m_pkthdr.len - (hdrlen & 3);
   3447 
   3448 	if (iswep) {
   3449 		const struct ieee80211_cipher *cip;
   3450 		struct ieee80211_key *k;
   3451 
   3452 		/*
   3453 		 * Construct the 802.11 header+trailer for an encrypted
   3454 		 * frame. The only reason this can fail is because of an
   3455 		 * unknown or unsupported cipher/key type.
   3456 		 */
   3457 		k = ieee80211_crypto_encap(ic, ni, m0);
   3458 		if (k == NULL) {
   3459 			/*
   3460 			 * This can happen when the key is yanked after the
   3461 			 * frame was queued.  Just discard the frame; the
   3462 			 * 802.11 layer counts failures and provides
   3463 			 * debugging/diagnostics.
   3464 			 */
   3465 			m_freem(m0);
   3466 			return EIO;
   3467 		}
   3468 		/*
   3469 		 * Adjust the packet + header lengths for the crypto
   3470 		 * additions and calculate the h/w key index.  When
   3471 		 * a s/w mic is done the frame will have had any mic
   3472 		 * added to it prior to entry so skb->len above will
   3473 		 * account for it. Otherwise we need to add it to the
   3474 		 * packet length.
   3475 		 */
   3476 		cip = k->wk_cipher;
   3477 		hdrlen += cip->ic_header;
   3478 		pktlen += cip->ic_header + cip->ic_trailer;
   3479 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0)
   3480 			pktlen += cip->ic_miclen;
   3481 		keyix = k->wk_keyix;
   3482 
   3483 		/* packet header may have moved, reset our local pointer */
   3484 		wh = mtod(m0, struct ieee80211_frame *);
   3485 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
   3486 		/*
   3487 		 * Use station key cache slot, if assigned.
   3488 		 */
   3489 		keyix = ni->ni_ucastkey.wk_keyix;
   3490 		if (keyix == IEEE80211_KEYIX_NONE)
   3491 			keyix = HAL_TXKEYIX_INVALID;
   3492 	} else
   3493 		keyix = HAL_TXKEYIX_INVALID;
   3494 
   3495 	pktlen += IEEE80211_CRC_LEN;
   3496 
   3497 	/*
   3498 	 * Load the DMA map so any coalescing is done.  This
   3499 	 * also calculates the number of descriptors we need.
   3500 	 */
   3501 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
   3502 				     BUS_DMA_NOWAIT);
   3503 	if (error == EFBIG) {
   3504 		/* XXX packet requires too many descriptors */
   3505 		bf->bf_nseg = ATH_TXDESC+1;
   3506 	} else if (error != 0) {
   3507 		sc->sc_stats.ast_tx_busdma++;
   3508 		m_freem(m0);
   3509 		return error;
   3510 	}
   3511 	/*
   3512 	 * Discard null packets and check for packets that
   3513 	 * require too many TX descriptors.  We try to convert
   3514 	 * the latter to a cluster.
   3515 	 */
   3516 	if (error == EFBIG) {		/* too many desc's, linearize */
   3517 		sc->sc_stats.ast_tx_linear++;
   3518 		m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
   3519 		if (m == NULL) {
   3520 			m_freem(m0);
   3521 			sc->sc_stats.ast_tx_nombuf++;
   3522 			return ENOMEM;
   3523 		}
   3524 		m0 = m;
   3525 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
   3526 					     BUS_DMA_NOWAIT);
   3527 		if (error != 0) {
   3528 			sc->sc_stats.ast_tx_busdma++;
   3529 			m_freem(m0);
   3530 			return error;
   3531 		}
   3532 		KASSERT(bf->bf_nseg <= ATH_TXDESC,
   3533 		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
   3534 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
   3535 		sc->sc_stats.ast_tx_nodata++;
   3536 		m_freem(m0);
   3537 		return EIO;
   3538 	}
   3539 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
   3540 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   3541             bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
   3542 	bf->bf_m = m0;
   3543 	bf->bf_node = ni;			/* NB: held reference */
   3544 
   3545 	/* setup descriptors */
   3546 	ds = bf->bf_desc;
   3547 	rt = sc->sc_currates;
   3548 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
   3549 
   3550 	/*
   3551 	 * NB: the 802.11 layer marks whether or not we should
   3552 	 * use short preamble based on the current mode and
   3553 	 * negotiated parameters.
   3554 	 */
   3555 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
   3556 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) {
   3557 		shortPreamble = AH_TRUE;
   3558 		sc->sc_stats.ast_tx_shortpre++;
   3559 	} else {
   3560 		shortPreamble = AH_FALSE;
   3561 	}
   3562 
   3563 	an = ATH_NODE(ni);
   3564 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
   3565 	ismrr = 0;				/* default no multi-rate retry*/
   3566 	/*
   3567 	 * Calculate Atheros packet type from IEEE80211 packet header,
   3568 	 * setup for rate calculations, and select h/w transmit queue.
   3569 	 */
   3570 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
   3571 	case IEEE80211_FC0_TYPE_MGT:
   3572 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   3573 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
   3574 			atype = HAL_PKT_TYPE_BEACON;
   3575 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
   3576 			atype = HAL_PKT_TYPE_PROBE_RESP;
   3577 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
   3578 			atype = HAL_PKT_TYPE_ATIM;
   3579 		else
   3580 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
   3581 		rix = sc->sc_minrateix;
   3582 		txrate = rt->info[rix].rateCode;
   3583 		if (shortPreamble)
   3584 			txrate |= rt->info[rix].shortPreamble;
   3585 		try0 = ATH_TXMGTTRY;
   3586 		/* NB: force all management frames to highest queue */
   3587 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
   3588 			/* NB: force all management frames to highest queue */
   3589 			pri = WME_AC_VO;
   3590 		} else
   3591 			pri = WME_AC_BE;
   3592 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
   3593 		break;
   3594 	case IEEE80211_FC0_TYPE_CTL:
   3595 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
   3596 		rix = sc->sc_minrateix;
   3597 		txrate = rt->info[rix].rateCode;
   3598 		if (shortPreamble)
   3599 			txrate |= rt->info[rix].shortPreamble;
   3600 		try0 = ATH_TXMGTTRY;
   3601 		/* NB: force all ctl frames to highest queue */
   3602 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
   3603 			/* NB: force all ctl frames to highest queue */
   3604 			pri = WME_AC_VO;
   3605 		} else
   3606 			pri = WME_AC_BE;
   3607 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
   3608 		break;
   3609 	case IEEE80211_FC0_TYPE_DATA:
   3610 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
   3611 		/*
   3612 		 * Data frames: multicast frames go out at a fixed rate,
   3613 		 * otherwise consult the rate control module for the
   3614 		 * rate to use.
   3615 		 */
   3616 		if (ismcast) {
   3617 			/*
   3618 			 * Check mcast rate setting in case it's changed.
   3619 			 * XXX move out of fastpath
   3620 			 */
   3621 			if (ic->ic_mcast_rate != sc->sc_mcastrate) {
   3622 				sc->sc_mcastrix =
   3623 					ath_tx_findrix(rt, ic->ic_mcast_rate);
   3624 				sc->sc_mcastrate = ic->ic_mcast_rate;
   3625 			}
   3626 			rix = sc->sc_mcastrix;
   3627 			txrate = rt->info[rix].rateCode;
   3628 			try0 = 1;
   3629 		} else {
   3630 			ath_rate_findrate(sc, an, shortPreamble, pktlen,
   3631 				&rix, &try0, &txrate);
   3632 			sc->sc_txrate = txrate;		/* for LED blinking */
   3633 			if (try0 != ATH_TXMAXTRY)
   3634 				ismrr = 1;
   3635 		}
   3636 		pri = M_WME_GETAC(m0);
   3637 		if (cap->cap_wmeParams[pri].wmep_noackPolicy)
   3638 			flags |= HAL_TXDESC_NOACK;
   3639 		break;
   3640 	default:
   3641 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
   3642 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
   3643 		/* XXX statistic */
   3644 		m_freem(m0);
   3645 		return EIO;
   3646 	}
   3647 	txq = sc->sc_ac2q[pri];
   3648 
   3649 	/*
   3650 	 * When servicing one or more stations in power-save mode
   3651 	 * multicast frames must be buffered until after the beacon.
   3652 	 * We use the CAB queue for that.
   3653 	 */
   3654 	if (ismcast && ic->ic_ps_sta) {
   3655 		txq = sc->sc_cabq;
   3656 		/* XXX? more bit in 802.11 frame header */
   3657 	}
   3658 
   3659 	/*
   3660 	 * Calculate miscellaneous flags.
   3661 	 */
   3662 	if (ismcast) {
   3663 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
   3664 	} else if (pktlen > ic->ic_rtsthreshold) {
   3665 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
   3666 		cix = rt->info[rix].controlRate;
   3667 		sc->sc_stats.ast_tx_rts++;
   3668 	}
   3669 	if (flags & HAL_TXDESC_NOACK)		/* NB: avoid double counting */
   3670 		sc->sc_stats.ast_tx_noack++;
   3671 
   3672 	/*
   3673 	 * If 802.11g protection is enabled, determine whether
   3674 	 * to use RTS/CTS or just CTS.  Note that this is only
   3675 	 * done for OFDM unicast frames.
   3676 	 */
   3677 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
   3678 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
   3679 	    (flags & HAL_TXDESC_NOACK) == 0) {
   3680 		/* XXX fragments must use CCK rates w/ protection */
   3681 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
   3682 			flags |= HAL_TXDESC_RTSENA;
   3683 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
   3684 			flags |= HAL_TXDESC_CTSENA;
   3685 		cix = rt->info[sc->sc_protrix].controlRate;
   3686 		sc->sc_stats.ast_tx_protect++;
   3687 	}
   3688 
   3689 	/*
   3690 	 * Calculate duration.  This logically belongs in the 802.11
   3691 	 * layer but it lacks sufficient information to calculate it.
   3692 	 */
   3693 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
   3694 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
   3695 		u_int16_t dur;
   3696 		/*
   3697 		 * XXX not right with fragmentation.
   3698 		 */
   3699 		if (shortPreamble)
   3700 			dur = rt->info[rix].spAckDuration;
   3701 		else
   3702 			dur = rt->info[rix].lpAckDuration;
   3703 		*(u_int16_t *)wh->i_dur = htole16(dur);
   3704 	}
   3705 
   3706 	/*
   3707 	 * Calculate RTS/CTS rate and duration if needed.
   3708 	 */
   3709 	ctsduration = 0;
   3710 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
   3711 		/*
   3712 		 * CTS transmit rate is derived from the transmit rate
   3713 		 * by looking in the h/w rate table.  We must also factor
   3714 		 * in whether or not a short preamble is to be used.
   3715 		 */
   3716 		/* NB: cix is set above where RTS/CTS is enabled */
   3717 		KASSERT(cix != 0xff, ("cix not setup"));
   3718 		ctsrate = rt->info[cix].rateCode;
   3719 		/*
   3720 		 * Compute the transmit duration based on the frame
   3721 		 * size and the size of an ACK frame.  We call into the
   3722 		 * HAL to do the computation since it depends on the
   3723 		 * characteristics of the actual PHY being used.
   3724 		 *
   3725 		 * NB: CTS is assumed the same size as an ACK so we can
   3726 		 *     use the precalculated ACK durations.
   3727 		 */
   3728 		if (shortPreamble) {
   3729 			ctsrate |= rt->info[cix].shortPreamble;
   3730 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
   3731 				ctsduration += rt->info[cix].spAckDuration;
   3732 			ctsduration += ath_hal_computetxtime(ah,
   3733 				rt, pktlen, rix, AH_TRUE);
   3734 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
   3735 				ctsduration += rt->info[rix].spAckDuration;
   3736 		} else {
   3737 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
   3738 				ctsduration += rt->info[cix].lpAckDuration;
   3739 			ctsduration += ath_hal_computetxtime(ah,
   3740 				rt, pktlen, rix, AH_FALSE);
   3741 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
   3742 				ctsduration += rt->info[rix].lpAckDuration;
   3743 		}
   3744 		/*
   3745 		 * Must disable multi-rate retry when using RTS/CTS.
   3746 		 */
   3747 		ismrr = 0;
   3748 		try0 = ATH_TXMGTTRY;		/* XXX */
   3749 	} else
   3750 		ctsrate = 0;
   3751 
   3752 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
   3753 		ieee80211_dump_pkt(mtod(m0, caddr_t), m0->m_len,
   3754 			sc->sc_hwmap[txrate].ieeerate, -1);
   3755 #if NBPFILTER > 0
   3756 	if (ic->ic_rawbpf)
   3757 		bpf_mtap(ic->ic_rawbpf, m0);
   3758 	if (sc->sc_drvbpf) {
   3759 		u_int64_t tsf = ath_hal_gettsf64(ah);
   3760 
   3761 		sc->sc_tx_th.wt_tsf = htole64(tsf);
   3762 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
   3763 		if (iswep)
   3764 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
   3765 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
   3766 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
   3767 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
   3768 
   3769 		bpf_mtap2(sc->sc_drvbpf,
   3770 			&sc->sc_tx_th, sc->sc_tx_th_len, m0);
   3771 	}
   3772 #endif
   3773 
   3774 	/*
   3775 	 * Determine if a tx interrupt should be generated for
   3776 	 * this descriptor.  We take a tx interrupt to reap
   3777 	 * descriptors when the h/w hits an EOL condition or
   3778 	 * when the descriptor is specifically marked to generate
   3779 	 * an interrupt.  We periodically mark descriptors in this
   3780 	 * way to insure timely replenishing of the supply needed
   3781 	 * for sending frames.  Defering interrupts reduces system
   3782 	 * load and potentially allows more concurrent work to be
   3783 	 * done but if done to aggressively can cause senders to
   3784 	 * backup.
   3785 	 *
   3786 	 * NB: use >= to deal with sc_txintrperiod changing
   3787 	 *     dynamically through sysctl.
   3788 	 */
   3789 	if (flags & HAL_TXDESC_INTREQ) {
   3790 		txq->axq_intrcnt = 0;
   3791 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
   3792 		flags |= HAL_TXDESC_INTREQ;
   3793 		txq->axq_intrcnt = 0;
   3794 	}
   3795 
   3796 	/*
   3797 	 * Formulate first tx descriptor with tx controls.
   3798 	 */
   3799 	/* XXX check return value? */
   3800 	ath_hal_setuptxdesc(ah, ds
   3801 		, pktlen		/* packet length */
   3802 		, hdrlen		/* header length */
   3803 		, atype			/* Atheros packet type */
   3804 		, ni->ni_txpower	/* txpower */
   3805 		, txrate, try0		/* series 0 rate/tries */
   3806 		, keyix			/* key cache index */
   3807 		, sc->sc_txantenna	/* antenna mode */
   3808 		, flags			/* flags */
   3809 		, ctsrate		/* rts/cts rate */
   3810 		, ctsduration		/* rts/cts duration */
   3811 	);
   3812 	bf->bf_flags = flags;
   3813 	/*
   3814 	 * Setup the multi-rate retry state only when we're
   3815 	 * going to use it.  This assumes ath_hal_setuptxdesc
   3816 	 * initializes the descriptors (so we don't have to)
   3817 	 * when the hardware supports multi-rate retry and
   3818 	 * we don't use it.
   3819 	 */
   3820 	if (ismrr)
   3821 		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
   3822 
   3823 	/*
   3824 	 * Fillin the remainder of the descriptor info.
   3825 	 */
   3826 	ds0 = ds;
   3827 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
   3828 		ds->ds_data = bf->bf_segs[i].ds_addr;
   3829 		if (i == bf->bf_nseg - 1)
   3830 			ds->ds_link = 0;
   3831 		else
   3832 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
   3833 		ath_hal_filltxdesc(ah, ds
   3834 			, bf->bf_segs[i].ds_len	/* segment length */
   3835 			, i == 0		/* first segment */
   3836 			, i == bf->bf_nseg - 1	/* last segment */
   3837 			, ds0			/* first descriptor */
   3838 		);
   3839 
   3840 		/* NB: The desc swap function becomes void,
   3841 		 * if descriptor swapping is not enabled
   3842 		 */
   3843 		ath_desc_swap(ds);
   3844 
   3845 		DPRINTF(sc, ATH_DEBUG_XMIT,
   3846 			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
   3847 			__func__, i, ds->ds_link, ds->ds_data,
   3848 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
   3849 	}
   3850 	/*
   3851 	 * Insert the frame on the outbound list and
   3852 	 * pass it on to the hardware.
   3853 	 */
   3854 	ATH_TXQ_LOCK(txq);
   3855 	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
   3856 	if (txq->axq_link == NULL) {
   3857 		ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
   3858 		DPRINTF(sc, ATH_DEBUG_XMIT,
   3859 		    "%s: TXDP[%u] = %" PRIx64 " (%p) depth %d\n", __func__,
   3860 		    txq->axq_qnum, (uint64_t)bf->bf_daddr, bf->bf_desc,
   3861 		    txq->axq_depth);
   3862 	} else {
   3863 		*txq->axq_link = HTOAH32(bf->bf_daddr);
   3864 		DPRINTF(sc, ATH_DEBUG_XMIT,
   3865 		    "%s: link[%u](%p)=%" PRIx64 " (%p) depth %d\n",
   3866 		    __func__, txq->axq_qnum, txq->axq_link,
   3867 		    (uint64_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
   3868 	}
   3869 	txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
   3870 	/*
   3871 	 * The CAB queue is started from the SWBA handler since
   3872 	 * frames only go out on DTIM and to avoid possible races.
   3873 	 */
   3874 	if (txq != sc->sc_cabq)
   3875 		ath_hal_txstart(ah, txq->axq_qnum);
   3876 	ATH_TXQ_UNLOCK(txq);
   3877 
   3878 	return 0;
   3879 }
   3880 
   3881 /*
   3882  * Process completed xmit descriptors from the specified queue.
   3883  */
   3884 static int
   3885 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
   3886 {
   3887 	struct ath_hal *ah = sc->sc_ah;
   3888 	struct ieee80211com *ic = &sc->sc_ic;
   3889 	struct ath_buf *bf;
   3890 	struct ath_desc *ds, *ds0;
   3891 	struct ieee80211_node *ni;
   3892 	struct ath_node *an;
   3893 	int sr, lr, pri, nacked;
   3894 	HAL_STATUS status;
   3895 
   3896 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
   3897 		__func__, txq->axq_qnum,
   3898 		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
   3899 		txq->axq_link);
   3900 	nacked = 0;
   3901 	for (;;) {
   3902 		ATH_TXQ_LOCK(txq);
   3903 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
   3904 		bf = STAILQ_FIRST(&txq->axq_q);
   3905 		if (bf == NULL) {
   3906 			txq->axq_link = NULL;
   3907 			ATH_TXQ_UNLOCK(txq);
   3908 			break;
   3909 		}
   3910 		ds0 = &bf->bf_desc[0];
   3911 		ds = &bf->bf_desc[bf->bf_nseg - 1];
   3912 		status = ath_hal_txprocdesc(ah, ds);
   3913 #ifdef AR_DEBUG
   3914 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
   3915 			ath_printtxbuf(bf, status == HAL_OK);
   3916 #endif
   3917 		if (status == HAL_EINPROGRESS) {
   3918 			ATH_TXQ_UNLOCK(txq);
   3919 			break;
   3920 		}
   3921 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
   3922 		ATH_TXQ_UNLOCK(txq);
   3923 
   3924 		ni = bf->bf_node;
   3925 		if (ni != NULL) {
   3926 			an = ATH_NODE(ni);
   3927 			if (ds->ds_txstat.ts_status == 0) {
   3928 				u_int8_t txant = ds->ds_txstat.ts_antenna;
   3929 				sc->sc_stats.ast_ant_tx[txant]++;
   3930 				sc->sc_ant_tx[txant]++;
   3931 				if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
   3932 					sc->sc_stats.ast_tx_altrate++;
   3933 				sc->sc_stats.ast_tx_rssi =
   3934 					ds->ds_txstat.ts_rssi;
   3935 				ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
   3936 					ds->ds_txstat.ts_rssi);
   3937 				pri = M_WME_GETAC(bf->bf_m);
   3938 				if (pri >= WME_AC_VO)
   3939 					ic->ic_wme.wme_hipri_traffic++;
   3940 				ni->ni_inact = ni->ni_inact_reload;
   3941 			} else {
   3942 				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
   3943 					sc->sc_stats.ast_tx_xretries++;
   3944 				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
   3945 					sc->sc_stats.ast_tx_fifoerr++;
   3946 				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
   3947 					sc->sc_stats.ast_tx_filtered++;
   3948 			}
   3949 			sr = ds->ds_txstat.ts_shortretry;
   3950 			lr = ds->ds_txstat.ts_longretry;
   3951 			sc->sc_stats.ast_tx_shortretry += sr;
   3952 			sc->sc_stats.ast_tx_longretry += lr;
   3953 			/*
   3954 			 * Hand the descriptor to the rate control algorithm.
   3955 			 */
   3956 			if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
   3957 			    (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
   3958 				/*
   3959 				 * If frame was ack'd update the last rx time
   3960 				 * used to workaround phantom bmiss interrupts.
   3961 				 */
   3962 				if (ds->ds_txstat.ts_status == 0)
   3963 					nacked++;
   3964 				ath_rate_tx_complete(sc, an, ds, ds0);
   3965 			}
   3966 			/*
   3967 			 * Reclaim reference to node.
   3968 			 *
   3969 			 * NB: the node may be reclaimed here if, for example
   3970 			 *     this is a DEAUTH message that was sent and the
   3971 			 *     node was timed out due to inactivity.
   3972 			 */
   3973 			ieee80211_free_node(ni);
   3974 		}
   3975 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   3976 		    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   3977 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   3978 		m_freem(bf->bf_m);
   3979 		bf->bf_m = NULL;
   3980 		bf->bf_node = NULL;
   3981 
   3982 		ATH_TXBUF_LOCK(sc);
   3983 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   3984 		ATH_TXBUF_UNLOCK(sc);
   3985 	}
   3986 	return nacked;
   3987 }
   3988 
   3989 static inline int
   3990 txqactive(struct ath_hal *ah, int qnum)
   3991 {
   3992 	u_int32_t txqs = 1<<qnum;
   3993 	ath_hal_gettxintrtxqs(ah, &txqs);
   3994 	return (txqs & (1<<qnum));
   3995 }
   3996 
   3997 /*
   3998  * Deferred processing of transmit interrupt; special-cased
   3999  * for a single hardware transmit queue (e.g. 5210 and 5211).
   4000  */
   4001 static void
   4002 ath_tx_proc_q0(void *arg, int npending)
   4003 {
   4004 	struct ath_softc *sc = arg;
   4005 	struct ifnet *ifp = &sc->sc_if;
   4006 
   4007 	if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]))
   4008 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
   4009 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
   4010 		ath_tx_processq(sc, sc->sc_cabq);
   4011 	ifp->if_flags &= ~IFF_OACTIVE;
   4012 	sc->sc_tx_timer = 0;
   4013 
   4014 	if (sc->sc_softled)
   4015 		ath_led_event(sc, ATH_LED_TX);
   4016 
   4017 	ath_start(ifp);
   4018 }
   4019 
   4020 /*
   4021  * Deferred processing of transmit interrupt; special-cased
   4022  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
   4023  */
   4024 static void
   4025 ath_tx_proc_q0123(void *arg, int npending)
   4026 {
   4027 	struct ath_softc *sc = arg;
   4028 	struct ifnet *ifp = &sc->sc_if;
   4029 	int nacked;
   4030 
   4031 	/*
   4032 	 * Process each active queue.
   4033 	 */
   4034 	nacked = 0;
   4035 	if (txqactive(sc->sc_ah, 0))
   4036 		nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
   4037 	if (txqactive(sc->sc_ah, 1))
   4038 		nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
   4039 	if (txqactive(sc->sc_ah, 2))
   4040 		nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
   4041 	if (txqactive(sc->sc_ah, 3))
   4042 		nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
   4043 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
   4044 		ath_tx_processq(sc, sc->sc_cabq);
   4045 	if (nacked)
   4046 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
   4047 	ath_tx_processq(sc, sc->sc_cabq);
   4048 
   4049 	ifp->if_flags &= ~IFF_OACTIVE;
   4050 	sc->sc_tx_timer = 0;
   4051 
   4052 	if (sc->sc_softled)
   4053 		ath_led_event(sc, ATH_LED_TX);
   4054 
   4055 	ath_start(ifp);
   4056 }
   4057 
   4058 /*
   4059  * Deferred processing of transmit interrupt.
   4060  */
   4061 static void
   4062 ath_tx_proc(void *arg, int npending)
   4063 {
   4064 	struct ath_softc *sc = arg;
   4065 	struct ifnet *ifp = &sc->sc_if;
   4066 	int i, nacked;
   4067 
   4068 	/*
   4069 	 * Process each active queue.
   4070 	 */
   4071 	nacked = 0;
   4072 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   4073 		if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
   4074 			nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
   4075 	if (nacked)
   4076 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
   4077 
   4078 	ifp->if_flags &= ~IFF_OACTIVE;
   4079 	sc->sc_tx_timer = 0;
   4080 
   4081 	if (sc->sc_softled)
   4082 		ath_led_event(sc, ATH_LED_TX);
   4083 
   4084 	ath_start(ifp);
   4085 }
   4086 
   4087 static void
   4088 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
   4089 {
   4090 	struct ath_hal *ah = sc->sc_ah;
   4091 	struct ieee80211_node *ni;
   4092 	struct ath_buf *bf;
   4093 
   4094 	/*
   4095 	 * NB: this assumes output has been stopped and
   4096 	 *     we do not need to block ath_tx_tasklet
   4097 	 */
   4098 	for (;;) {
   4099 		ATH_TXQ_LOCK(txq);
   4100 		bf = STAILQ_FIRST(&txq->axq_q);
   4101 		if (bf == NULL) {
   4102 			txq->axq_link = NULL;
   4103 			ATH_TXQ_UNLOCK(txq);
   4104 			break;
   4105 		}
   4106 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
   4107 		ATH_TXQ_UNLOCK(txq);
   4108 #ifdef AR_DEBUG
   4109 		if (sc->sc_debug & ATH_DEBUG_RESET)
   4110 			ath_printtxbuf(bf,
   4111 				ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
   4112 #endif /* AR_DEBUG */
   4113 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   4114 		m_freem(bf->bf_m);
   4115 		bf->bf_m = NULL;
   4116 		ni = bf->bf_node;
   4117 		bf->bf_node = NULL;
   4118 		if (ni != NULL) {
   4119 			/*
   4120 			 * Reclaim node reference.
   4121 			 */
   4122 			ieee80211_free_node(ni);
   4123 		}
   4124 		ATH_TXBUF_LOCK(sc);
   4125 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   4126 		ATH_TXBUF_UNLOCK(sc);
   4127 	}
   4128 }
   4129 
   4130 static void
   4131 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
   4132 {
   4133 	struct ath_hal *ah = sc->sc_ah;
   4134 
   4135 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
   4136 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
   4137 	    __func__, txq->axq_qnum,
   4138 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
   4139 	    txq->axq_link);
   4140 }
   4141 
   4142 /*
   4143  * Drain the transmit queues and reclaim resources.
   4144  */
   4145 static void
   4146 ath_draintxq(struct ath_softc *sc)
   4147 {
   4148 	struct ath_hal *ah = sc->sc_ah;
   4149 	struct ifnet *ifp = &sc->sc_if;
   4150 	int i;
   4151 
   4152 	/* XXX return value */
   4153 	if (!sc->sc_invalid) {
   4154 		/* don't touch the hardware if marked invalid */
   4155 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
   4156 		DPRINTF(sc, ATH_DEBUG_RESET,
   4157 		    "%s: beacon queue %p\n", __func__,
   4158 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
   4159 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   4160 			if (ATH_TXQ_SETUP(sc, i))
   4161 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
   4162 	}
   4163 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   4164 		if (ATH_TXQ_SETUP(sc, i))
   4165 			ath_tx_draintxq(sc, &sc->sc_txq[i]);
   4166 	ifp->if_flags &= ~IFF_OACTIVE;
   4167 	sc->sc_tx_timer = 0;
   4168 }
   4169 
   4170 /*
   4171  * Disable the receive h/w in preparation for a reset.
   4172  */
   4173 static void
   4174 ath_stoprecv(struct ath_softc *sc)
   4175 {
   4176 #define	PA2DESC(_sc, _pa) \
   4177 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
   4178 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
   4179 	struct ath_hal *ah = sc->sc_ah;
   4180 
   4181 	ath_hal_stoppcurecv(ah);	/* disable PCU */
   4182 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
   4183 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
   4184 	DELAY(3000);			/* 3ms is long enough for 1 frame */
   4185 #ifdef AR_DEBUG
   4186 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
   4187 		struct ath_buf *bf;
   4188 
   4189 		printf("%s: rx queue %p, link %p\n", __func__,
   4190 			(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
   4191 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
   4192 			struct ath_desc *ds = bf->bf_desc;
   4193 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
   4194 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
   4195 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
   4196 				ath_printrxbuf(bf, status == HAL_OK);
   4197 		}
   4198 	}
   4199 #endif
   4200 	sc->sc_rxlink = NULL;		/* just in case */
   4201 #undef PA2DESC
   4202 }
   4203 
   4204 /*
   4205  * Enable the receive h/w following a reset.
   4206  */
   4207 static int
   4208 ath_startrecv(struct ath_softc *sc)
   4209 {
   4210 	struct ath_hal *ah = sc->sc_ah;
   4211 	struct ath_buf *bf;
   4212 
   4213 	sc->sc_rxlink = NULL;
   4214 	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
   4215 		int error = ath_rxbuf_init(sc, bf);
   4216 		if (error != 0) {
   4217 			DPRINTF(sc, ATH_DEBUG_RECV,
   4218 				"%s: ath_rxbuf_init failed %d\n",
   4219 				__func__, error);
   4220 			return error;
   4221 		}
   4222 	}
   4223 
   4224 	bf = STAILQ_FIRST(&sc->sc_rxbuf);
   4225 	ath_hal_putrxbuf(ah, bf->bf_daddr);
   4226 	ath_hal_rxena(ah);		/* enable recv descriptors */
   4227 	ath_mode_init(sc);		/* set filters, etc. */
   4228 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
   4229 	return 0;
   4230 }
   4231 
   4232 /*
   4233  * Update internal state after a channel change.
   4234  */
   4235 static void
   4236 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
   4237 {
   4238 	struct ieee80211com *ic = &sc->sc_ic;
   4239 	enum ieee80211_phymode mode;
   4240 	u_int16_t flags;
   4241 
   4242 	/*
   4243 	 * Change channels and update the h/w rate map
   4244 	 * if we're switching; e.g. 11a to 11b/g.
   4245 	 */
   4246 	mode = ieee80211_chan2mode(ic, chan);
   4247 	if (mode != sc->sc_curmode)
   4248 		ath_setcurmode(sc, mode);
   4249 	/*
   4250 	 * Update BPF state.  NB: ethereal et. al. don't handle
   4251 	 * merged flags well so pick a unique mode for their use.
   4252 	 */
   4253 	if (IEEE80211_IS_CHAN_A(chan))
   4254 		flags = IEEE80211_CHAN_A;
   4255 	/* XXX 11g schizophrenia */
   4256 	else if (IEEE80211_IS_CHAN_G(chan) ||
   4257 	    IEEE80211_IS_CHAN_PUREG(chan))
   4258 		flags = IEEE80211_CHAN_G;
   4259 	else
   4260 		flags = IEEE80211_CHAN_B;
   4261 	if (IEEE80211_IS_CHAN_T(chan))
   4262 		flags |= IEEE80211_CHAN_TURBO;
   4263 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
   4264 		htole16(chan->ic_freq);
   4265 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
   4266 		htole16(flags);
   4267 }
   4268 
   4269 /*
   4270  * Poll for a channel clear indication; this is required
   4271  * for channels requiring DFS and not previously visited
   4272  * and/or with a recent radar detection.
   4273  */
   4274 static void
   4275 ath_dfswait(void *arg)
   4276 {
   4277 	struct ath_softc *sc = arg;
   4278 	struct ath_hal *ah = sc->sc_ah;
   4279 	HAL_CHANNEL hchan;
   4280 
   4281 	ath_hal_radar_wait(ah, &hchan);
   4282 	if (hchan.privFlags & CHANNEL_INTERFERENCE) {
   4283 		if_printf(&sc->sc_if,
   4284 		    "channel %u/0x%x/0x%x has interference\n",
   4285 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
   4286 		return;
   4287 	}
   4288 	if ((hchan.privFlags & CHANNEL_DFS) == 0) {
   4289 		/* XXX should not happen */
   4290 		return;
   4291 	}
   4292 	if (hchan.privFlags & CHANNEL_DFS_CLEAR) {
   4293 		sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR;
   4294 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
   4295 		if_printf(&sc->sc_if,
   4296 		    "channel %u/0x%x/0x%x marked clear\n",
   4297 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
   4298 	} else
   4299 		callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc);
   4300 }
   4301 
   4302 /*
   4303  * Set/change channels.  If the channel is really being changed,
   4304  * it's done by reseting the chip.  To accomplish this we must
   4305  * first cleanup any pending DMA, then restart stuff after a la
   4306  * ath_init.
   4307  */
   4308 static int
   4309 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
   4310 {
   4311 	struct ath_hal *ah = sc->sc_ah;
   4312 	struct ieee80211com *ic = &sc->sc_ic;
   4313 	HAL_CHANNEL hchan;
   4314 
   4315 	/*
   4316 	 * Convert to a HAL channel description with
   4317 	 * the flags constrained to reflect the current
   4318 	 * operating mode.
   4319 	 */
   4320 	hchan.channel = chan->ic_freq;
   4321 	hchan.channelFlags = ath_chan2flags(ic, chan);
   4322 
   4323 	DPRINTF(sc, ATH_DEBUG_RESET,
   4324 	    "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
   4325 	    __func__,
   4326 	    ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
   4327 		sc->sc_curchan.channelFlags),
   4328 	    	sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
   4329 	    ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
   4330 	        hchan.channel, hchan.channelFlags);
   4331 	if (hchan.channel != sc->sc_curchan.channel ||
   4332 	    hchan.channelFlags != sc->sc_curchan.channelFlags) {
   4333 		HAL_STATUS status;
   4334 
   4335 		/*
   4336 		 * To switch channels clear any pending DMA operations;
   4337 		 * wait long enough for the RX fifo to drain, reset the
   4338 		 * hardware at the new frequency, and then re-enable
   4339 		 * the relevant bits of the h/w.
   4340 		 */
   4341 		ath_hal_intrset(ah, 0);		/* disable interrupts */
   4342 		ath_draintxq(sc);		/* clear pending tx frames */
   4343 		ath_stoprecv(sc);		/* turn off frame recv */
   4344 		if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
   4345 			if_printf(ic->ic_ifp, "%s: unable to reset "
   4346 			    "channel %u (%u MHz, flags 0x%x hal flags 0x%x)\n",
   4347 			    __func__, ieee80211_chan2ieee(ic, chan),
   4348 			    chan->ic_freq, chan->ic_flags, hchan.channelFlags);
   4349 			return EIO;
   4350 		}
   4351 		sc->sc_curchan = hchan;
   4352 		ath_update_txpow(sc);		/* update tx power state */
   4353 		sc->sc_diversity = ath_hal_getdiversity(ah);
   4354 		sc->sc_calinterval = 1;
   4355 		sc->sc_caltries = 0;
   4356 
   4357 		/*
   4358 		 * Re-enable rx framework.
   4359 		 */
   4360 		if (ath_startrecv(sc) != 0) {
   4361 			if_printf(&sc->sc_if,
   4362 				"%s: unable to restart recv logic\n", __func__);
   4363 			return EIO;
   4364 		}
   4365 
   4366 		/*
   4367 		 * Change channels and update the h/w rate map
   4368 		 * if we're switching; e.g. 11a to 11b/g.
   4369 		 */
   4370 		ic->ic_ibss_chan = chan;
   4371 		ath_chan_change(sc, chan);
   4372 
   4373 		/*
   4374 		 * Handle DFS required waiting period to determine
   4375 		 * if channel is clear of radar traffic.
   4376 		 */
   4377 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   4378 #define	DFS_AND_NOT_CLEAR(_c) \
   4379 	(((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS)
   4380 			if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) {
   4381 				if_printf(&sc->sc_if,
   4382 					"wait for DFS clear channel signal\n");
   4383 				/* XXX stop sndq */
   4384 				sc->sc_if.if_flags |= IFF_OACTIVE;
   4385 				callout_reset(&sc->sc_dfs_ch,
   4386 					2 * hz, ath_dfswait, sc);
   4387 			} else
   4388 				callout_stop(&sc->sc_dfs_ch);
   4389 #undef DFS_NOT_CLEAR
   4390 		}
   4391 
   4392 		/*
   4393 		 * Re-enable interrupts.
   4394 		 */
   4395 		ath_hal_intrset(ah, sc->sc_imask);
   4396 	}
   4397 	return 0;
   4398 }
   4399 
   4400 static void
   4401 ath_next_scan(void *arg)
   4402 {
   4403 	struct ath_softc *sc = arg;
   4404 	struct ieee80211com *ic = &sc->sc_ic;
   4405 	int s;
   4406 
   4407 	/* don't call ath_start w/o network interrupts blocked */
   4408 	s = splnet();
   4409 
   4410 	if (ic->ic_state == IEEE80211_S_SCAN)
   4411 		ieee80211_next_scan(ic);
   4412 	splx(s);
   4413 }
   4414 
   4415 /*
   4416  * Periodically recalibrate the PHY to account
   4417  * for temperature/environment changes.
   4418  */
   4419 static void
   4420 ath_calibrate(void *arg)
   4421 {
   4422 	struct ath_softc *sc = arg;
   4423 	struct ath_hal *ah = sc->sc_ah;
   4424 	HAL_BOOL iqCalDone;
   4425 
   4426 	sc->sc_stats.ast_per_cal++;
   4427 
   4428 	ATH_LOCK(sc);
   4429 
   4430 	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
   4431 		/*
   4432 		 * Rfgain is out of bounds, reset the chip
   4433 		 * to load new gain values.
   4434 		 */
   4435 		DPRINTF(sc, ATH_DEBUG_CALIBRATE,
   4436 			"%s: rfgain change\n", __func__);
   4437 		sc->sc_stats.ast_per_rfgain++;
   4438 		ath_reset(&sc->sc_if);
   4439 	}
   4440 	if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
   4441 		DPRINTF(sc, ATH_DEBUG_ANY,
   4442 			"%s: calibration of channel %u failed\n",
   4443 			__func__, sc->sc_curchan.channel);
   4444 		sc->sc_stats.ast_per_calfail++;
   4445 	}
   4446 	/*
   4447 	 * Calibrate noise floor data again in case of change.
   4448 	 */
   4449 	ath_hal_process_noisefloor(ah);
   4450 	/*
   4451 	 * Poll more frequently when the IQ calibration is in
   4452 	 * progress to speedup loading the final settings.
   4453 	 * We temper this aggressive polling with an exponential
   4454 	 * back off after 4 tries up to ath_calinterval.
   4455 	 */
   4456 	if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
   4457 		sc->sc_caltries = 0;
   4458 		sc->sc_calinterval = ath_calinterval;
   4459 	} else if (sc->sc_caltries > 4) {
   4460 		sc->sc_caltries = 0;
   4461 		sc->sc_calinterval <<= 1;
   4462 		if (sc->sc_calinterval > ath_calinterval)
   4463 			sc->sc_calinterval = ath_calinterval;
   4464 	}
   4465 	KASSERT(0 < sc->sc_calinterval && sc->sc_calinterval <= ath_calinterval,
   4466 		("bad calibration interval %u", sc->sc_calinterval));
   4467 
   4468 	DPRINTF(sc, ATH_DEBUG_CALIBRATE,
   4469 		"%s: next +%u (%siqCalDone tries %u)\n", __func__,
   4470 		sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
   4471 	sc->sc_caltries++;
   4472 	callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
   4473 		ath_calibrate, sc);
   4474 	ATH_UNLOCK(sc);
   4475 }
   4476 
   4477 static int
   4478 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
   4479 {
   4480 	struct ifnet *ifp = ic->ic_ifp;
   4481 	struct ath_softc *sc = ifp->if_softc;
   4482 	struct ath_hal *ah = sc->sc_ah;
   4483 	struct ieee80211_node *ni;
   4484 	int i, error;
   4485 	const u_int8_t *bssid;
   4486 	u_int32_t rfilt;
   4487 	static const HAL_LED_STATE leds[] = {
   4488 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
   4489 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
   4490 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
   4491 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
   4492 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
   4493 	};
   4494 
   4495 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
   4496 		ieee80211_state_name[ic->ic_state],
   4497 		ieee80211_state_name[nstate]);
   4498 
   4499 	callout_stop(&sc->sc_scan_ch);
   4500 	callout_stop(&sc->sc_cal_ch);
   4501 	callout_stop(&sc->sc_dfs_ch);
   4502 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
   4503 
   4504 	if (nstate == IEEE80211_S_INIT) {
   4505 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
   4506 		/*
   4507 		 * NB: disable interrupts so we don't rx frames.
   4508 		 */
   4509 		ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
   4510 		/*
   4511 		 * Notify the rate control algorithm.
   4512 		 */
   4513 		ath_rate_newstate(sc, nstate);
   4514 		goto done;
   4515 	}
   4516 	ni = ic->ic_bss;
   4517 	error = ath_chan_set(sc, ic->ic_curchan);
   4518 	if (error != 0)
   4519 		goto bad;
   4520 	rfilt = ath_calcrxfilter(sc, nstate);
   4521 	if (nstate == IEEE80211_S_SCAN)
   4522 		bssid = ifp->if_broadcastaddr;
   4523 	else
   4524 		bssid = ni->ni_bssid;
   4525 	ath_hal_setrxfilter(ah, rfilt);
   4526 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
   4527 		 __func__, rfilt, ether_sprintf(bssid));
   4528 
   4529 	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
   4530 		ath_hal_setassocid(ah, bssid, ni->ni_associd);
   4531 	else
   4532 		ath_hal_setassocid(ah, bssid, 0);
   4533 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
   4534 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
   4535 			if (ath_hal_keyisvalid(ah, i))
   4536 				ath_hal_keysetmac(ah, i, bssid);
   4537 	}
   4538 
   4539 	/*
   4540 	 * Notify the rate control algorithm so rates
   4541 	 * are setup should ath_beacon_alloc be called.
   4542 	 */
   4543 	ath_rate_newstate(sc, nstate);
   4544 
   4545 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
   4546 		/* nothing to do */;
   4547 	} else if (nstate == IEEE80211_S_RUN) {
   4548 		DPRINTF(sc, ATH_DEBUG_STATE,
   4549 			"%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
   4550 			"capinfo=0x%04x chan=%d\n"
   4551 			 , __func__
   4552 			 , ic->ic_flags
   4553 			 , ni->ni_intval
   4554 			 , ether_sprintf(ni->ni_bssid)
   4555 			 , ni->ni_capinfo
   4556 			 , ieee80211_chan2ieee(ic, ic->ic_curchan));
   4557 
   4558 		switch (ic->ic_opmode) {
   4559 		case IEEE80211_M_HOSTAP:
   4560 		case IEEE80211_M_IBSS:
   4561 			/*
   4562 			 * Allocate and setup the beacon frame.
   4563 			 *
   4564 			 * Stop any previous beacon DMA.  This may be
   4565 			 * necessary, for example, when an ibss merge
   4566 			 * causes reconfiguration; there will be a state
   4567 			 * transition from RUN->RUN that means we may
   4568 			 * be called with beacon transmission active.
   4569 			 */
   4570 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
   4571 			ath_beacon_free(sc);
   4572 			error = ath_beacon_alloc(sc, ni);
   4573 			if (error != 0)
   4574 				goto bad;
   4575 			/*
   4576 			 * If joining an adhoc network defer beacon timer
   4577 			 * configuration to the next beacon frame so we
   4578 			 * have a current TSF to use.  Otherwise we're
   4579 			 * starting an ibss/bss so there's no need to delay.
   4580 			 */
   4581 			if (ic->ic_opmode == IEEE80211_M_IBSS &&
   4582 			    ic->ic_bss->ni_tstamp.tsf != 0)
   4583 				sc->sc_syncbeacon = 1;
   4584 			else
   4585 				ath_beacon_config(sc);
   4586 			break;
   4587 		case IEEE80211_M_STA:
   4588 			/*
   4589 			 * Allocate a key cache slot to the station.
   4590 			 */
   4591 			if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
   4592 			    sc->sc_hasclrkey &&
   4593 			    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
   4594 				ath_setup_stationkey(ni);
   4595 			/*
   4596 			 * Defer beacon timer configuration to the next
   4597 			 * beacon frame so we have a current TSF to use
   4598 			 * (any TSF collected when scanning is likely old).
   4599 			 */
   4600 			sc->sc_syncbeacon = 1;
   4601 			break;
   4602 		default:
   4603 			break;
   4604 		}
   4605 		/*
   4606 		 * Let the hal process statistics collected during a
   4607 		 * scan so it can provide calibrated noise floor data.
   4608 		 */
   4609 		ath_hal_process_noisefloor(ah);
   4610 		/*
   4611 		 * Reset rssi stats; maybe not the best place...
   4612 		 */
   4613 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
   4614 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
   4615 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
   4616 	} else {
   4617 		ath_hal_intrset(ah,
   4618 			sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
   4619 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
   4620 	}
   4621 done:
   4622 	/*
   4623 	 * Invoke the parent method to complete the work.
   4624 	 */
   4625 	error = sc->sc_newstate(ic, nstate, arg);
   4626 	/*
   4627 	 * Finally, start any timers.
   4628 	 */
   4629 	if (nstate == IEEE80211_S_RUN) {
   4630 		/* start periodic recalibration timer */
   4631 		callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
   4632 			ath_calibrate, sc);
   4633 	} else if (nstate == IEEE80211_S_SCAN) {
   4634 		/* start ap/neighbor scan timer */
   4635 		callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
   4636 			ath_next_scan, sc);
   4637 	}
   4638 bad:
   4639 	return error;
   4640 }
   4641 
   4642 /*
   4643  * Allocate a key cache slot to the station so we can
   4644  * setup a mapping from key index to node. The key cache
   4645  * slot is needed for managing antenna state and for
   4646  * compression when stations do not use crypto.  We do
   4647  * it uniliaterally here; if crypto is employed this slot
   4648  * will be reassigned.
   4649  */
   4650 static void
   4651 ath_setup_stationkey(struct ieee80211_node *ni)
   4652 {
   4653 	struct ieee80211com *ic = ni->ni_ic;
   4654 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   4655 	ieee80211_keyix keyix, rxkeyix;
   4656 
   4657 	if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
   4658 		/*
   4659 		 * Key cache is full; we'll fall back to doing
   4660 		 * the more expensive lookup in software.  Note
   4661 		 * this also means no h/w compression.
   4662 		 */
   4663 		/* XXX msg+statistic */
   4664 	} else {
   4665 		/* XXX locking? */
   4666 		ni->ni_ucastkey.wk_keyix = keyix;
   4667 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
   4668 		/* NB: this will create a pass-thru key entry */
   4669 		ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
   4670 	}
   4671 }
   4672 
   4673 /*
   4674  * Setup driver-specific state for a newly associated node.
   4675  * Note that we're called also on a re-associate, the isnew
   4676  * param tells us if this is the first time or not.
   4677  */
   4678 static void
   4679 ath_newassoc(struct ieee80211_node *ni, int isnew)
   4680 {
   4681 	struct ieee80211com *ic = ni->ni_ic;
   4682 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   4683 
   4684 	ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
   4685 	if (isnew &&
   4686 	    (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
   4687 		KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
   4688 		    ("new assoc with a unicast key already setup (keyix %u)",
   4689 		    ni->ni_ucastkey.wk_keyix));
   4690 		ath_setup_stationkey(ni);
   4691 	}
   4692 }
   4693 
   4694 static int
   4695 ath_getchannels(struct ath_softc *sc, u_int cc,
   4696 	HAL_BOOL outdoor, HAL_BOOL xchanmode)
   4697 {
   4698 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
   4699 	struct ieee80211com *ic = &sc->sc_ic;
   4700 	struct ifnet *ifp = &sc->sc_if;
   4701 	struct ath_hal *ah = sc->sc_ah;
   4702 	HAL_CHANNEL *chans;
   4703 	int i, ix, nchan;
   4704 
   4705 	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
   4706 			M_TEMP, M_NOWAIT);
   4707 	if (chans == NULL) {
   4708 		if_printf(ifp, "unable to allocate channel table\n");
   4709 		return ENOMEM;
   4710 	}
   4711 	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
   4712 	    NULL, 0, NULL,
   4713 	    cc, HAL_MODE_ALL, outdoor, xchanmode)) {
   4714 		u_int32_t rd;
   4715 
   4716 		(void)ath_hal_getregdomain(ah, &rd);
   4717 		if_printf(ifp, "unable to collect channel list from hal; "
   4718 			"regdomain likely %u country code %u\n", rd, cc);
   4719 		free(chans, M_TEMP);
   4720 		return EINVAL;
   4721 	}
   4722 
   4723 	/*
   4724 	 * Convert HAL channels to ieee80211 ones and insert
   4725 	 * them in the table according to their channel number.
   4726 	 */
   4727 	for (i = 0; i < nchan; i++) {
   4728 		HAL_CHANNEL *c = &chans[i];
   4729 		u_int16_t flags;
   4730 
   4731 		ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags);
   4732 		if (ix > IEEE80211_CHAN_MAX) {
   4733 			if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n",
   4734 				ix, c->channel, c->channelFlags);
   4735 			continue;
   4736 		}
   4737 		if (ix < 0) {
   4738 			/* XXX can't handle stuff <2400 right now */
   4739 			if (bootverbose)
   4740 				if_printf(ifp, "hal channel %d (%u/%x) "
   4741 				    "cannot be handled; ignored\n",
   4742 				    ix, c->channel, c->channelFlags);
   4743 			continue;
   4744 		}
   4745 		/*
   4746 		 * Calculate net80211 flags; most are compatible
   4747 		 * but some need massaging.  Note the static turbo
   4748 		 * conversion can be removed once net80211 is updated
   4749 		 * to understand static vs. dynamic turbo.
   4750 		 */
   4751 		flags = c->channelFlags & COMPAT;
   4752 		if (c->channelFlags & CHANNEL_STURBO)
   4753 			flags |= IEEE80211_CHAN_TURBO;
   4754 		if (ic->ic_channels[ix].ic_freq == 0) {
   4755 			ic->ic_channels[ix].ic_freq = c->channel;
   4756 			ic->ic_channels[ix].ic_flags = flags;
   4757 		} else {
   4758 			/* channels overlap; e.g. 11g and 11b */
   4759 			ic->ic_channels[ix].ic_flags |= flags;
   4760 		}
   4761 	}
   4762 	free(chans, M_TEMP);
   4763 	return 0;
   4764 #undef COMPAT
   4765 }
   4766 
   4767 static void
   4768 ath_led_done(void *arg)
   4769 {
   4770 	struct ath_softc *sc = arg;
   4771 
   4772 	sc->sc_blinking = 0;
   4773 }
   4774 
   4775 /*
   4776  * Turn the LED off: flip the pin and then set a timer so no
   4777  * update will happen for the specified duration.
   4778  */
   4779 static void
   4780 ath_led_off(void *arg)
   4781 {
   4782 	struct ath_softc *sc = arg;
   4783 
   4784 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
   4785 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
   4786 }
   4787 
   4788 /*
   4789  * Blink the LED according to the specified on/off times.
   4790  */
   4791 static void
   4792 ath_led_blink(struct ath_softc *sc, int on, int off)
   4793 {
   4794 	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
   4795 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
   4796 	sc->sc_blinking = 1;
   4797 	sc->sc_ledoff = off;
   4798 	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
   4799 }
   4800 
   4801 static void
   4802 ath_led_event(struct ath_softc *sc, int event)
   4803 {
   4804 
   4805 	sc->sc_ledevent = ticks;	/* time of last event */
   4806 	if (sc->sc_blinking)		/* don't interrupt active blink */
   4807 		return;
   4808 	switch (event) {
   4809 	case ATH_LED_POLL:
   4810 		ath_led_blink(sc, sc->sc_hwmap[0].ledon,
   4811 			sc->sc_hwmap[0].ledoff);
   4812 		break;
   4813 	case ATH_LED_TX:
   4814 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
   4815 			sc->sc_hwmap[sc->sc_txrate].ledoff);
   4816 		break;
   4817 	case ATH_LED_RX:
   4818 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
   4819 			sc->sc_hwmap[sc->sc_rxrate].ledoff);
   4820 		break;
   4821 	}
   4822 }
   4823 
   4824 static void
   4825 ath_update_txpow(struct ath_softc *sc)
   4826 {
   4827 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
   4828 	struct ieee80211com *ic = &sc->sc_ic;
   4829 	struct ath_hal *ah = sc->sc_ah;
   4830 	u_int32_t txpow;
   4831 
   4832 	if (sc->sc_curtxpow != ic->ic_txpowlimit) {
   4833 		ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
   4834 		/* read back in case value is clamped */
   4835 		(void)ath_hal_gettxpowlimit(ah, &txpow);
   4836 		ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
   4837 	}
   4838 	/*
   4839 	 * Fetch max tx power level for status requests.
   4840 	 */
   4841 	(void)ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
   4842 	ic->ic_bss->ni_txpower = txpow;
   4843 }
   4844 
   4845 static void
   4846 rate_setup(struct ath_softc *sc,
   4847 	const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs)
   4848 {
   4849 	int i, maxrates;
   4850 
   4851 	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
   4852 		DPRINTF(sc, ATH_DEBUG_ANY,
   4853 			"%s: rate table too small (%u > %u)\n",
   4854 		       __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
   4855 		maxrates = IEEE80211_RATE_MAXSIZE;
   4856 	} else
   4857 		maxrates = rt->rateCount;
   4858 	for (i = 0; i < maxrates; i++)
   4859 		rs->rs_rates[i] = rt->info[i].dot11Rate;
   4860 	rs->rs_nrates = maxrates;
   4861 }
   4862 
   4863 static int
   4864 ath_rate_setup(struct ath_softc *sc, u_int mode)
   4865 {
   4866 	struct ath_hal *ah = sc->sc_ah;
   4867 	struct ieee80211com *ic = &sc->sc_ic;
   4868 	const HAL_RATE_TABLE *rt;
   4869 
   4870 	switch (mode) {
   4871 	case IEEE80211_MODE_11A:
   4872 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
   4873 		break;
   4874 	case IEEE80211_MODE_11B:
   4875 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
   4876 		break;
   4877 	case IEEE80211_MODE_11G:
   4878 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
   4879 		break;
   4880 	case IEEE80211_MODE_TURBO_A:
   4881 		/* XXX until static/dynamic turbo is fixed */
   4882 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
   4883 		break;
   4884 	case IEEE80211_MODE_TURBO_G:
   4885 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
   4886 		break;
   4887 	default:
   4888 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
   4889 			__func__, mode);
   4890 		return 0;
   4891 	}
   4892 	sc->sc_rates[mode] = rt;
   4893 	if (rt != NULL) {
   4894 		rate_setup(sc, rt, &ic->ic_sup_rates[mode]);
   4895 		return 1;
   4896 	} else
   4897 		return 0;
   4898 }
   4899 
   4900 static void
   4901 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
   4902 {
   4903 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   4904 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
   4905 	static const struct {
   4906 		u_int		rate;		/* tx/rx 802.11 rate */
   4907 		u_int16_t	timeOn;		/* LED on time (ms) */
   4908 		u_int16_t	timeOff;	/* LED off time (ms) */
   4909 	} blinkrates[] = {
   4910 		{ 108,  40,  10 },
   4911 		{  96,  44,  11 },
   4912 		{  72,  50,  13 },
   4913 		{  48,  57,  14 },
   4914 		{  36,  67,  16 },
   4915 		{  24,  80,  20 },
   4916 		{  22, 100,  25 },
   4917 		{  18, 133,  34 },
   4918 		{  12, 160,  40 },
   4919 		{  10, 200,  50 },
   4920 		{   6, 240,  58 },
   4921 		{   4, 267,  66 },
   4922 		{   2, 400, 100 },
   4923 		{   0, 500, 130 },
   4924 	};
   4925 	const HAL_RATE_TABLE *rt;
   4926 	int i, j;
   4927 
   4928 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
   4929 	rt = sc->sc_rates[mode];
   4930 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
   4931 	for (i = 0; i < rt->rateCount; i++)
   4932 		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
   4933 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
   4934 	for (i = 0; i < 32; i++) {
   4935 		u_int8_t ix = rt->rateCodeToIndex[i];
   4936 		if (ix == 0xff) {
   4937 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
   4938 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
   4939 			continue;
   4940 		}
   4941 		sc->sc_hwmap[i].ieeerate =
   4942 			rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
   4943 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
   4944 		if (rt->info[ix].shortPreamble ||
   4945 		    rt->info[ix].phy == IEEE80211_T_OFDM)
   4946 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
   4947 		/* NB: receive frames include FCS */
   4948 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
   4949 			IEEE80211_RADIOTAP_F_FCS;
   4950 		/* setup blink rate table to avoid per-packet lookup */
   4951 		for (j = 0; j < N(blinkrates)-1; j++)
   4952 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
   4953 				break;
   4954 		/* NB: this uses the last entry if the rate isn't found */
   4955 		/* XXX beware of overlow */
   4956 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
   4957 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
   4958 	}
   4959 	sc->sc_currates = rt;
   4960 	sc->sc_curmode = mode;
   4961 	/*
   4962 	 * All protection frames are transmited at 2Mb/s for
   4963 	 * 11g, otherwise at 1Mb/s.
   4964 	 */
   4965 	if (mode == IEEE80211_MODE_11G)
   4966 		sc->sc_protrix = ath_tx_findrix(rt, 2*2);
   4967 	else
   4968 		sc->sc_protrix = ath_tx_findrix(rt, 2*1);
   4969 	/* rate index used to send management frames */
   4970 	sc->sc_minrateix = 0;
   4971 	/*
   4972 	 * Setup multicast rate state.
   4973 	 */
   4974 	/* XXX layering violation */
   4975 	sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate);
   4976 	sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate;
   4977 	/* NB: caller is responsible for reseting rate control state */
   4978 #undef N
   4979 }
   4980 
   4981 #ifdef AR_DEBUG
   4982 static void
   4983 ath_printrxbuf(struct ath_buf *bf, int done)
   4984 {
   4985 	struct ath_desc *ds;
   4986 	int i;
   4987 
   4988 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
   4989 		printf("R%d (%p %" PRIx64
   4990 		    ") %08x %08x %08x %08x %08x %08x %c\n", i, ds,
   4991 		    (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
   4992 		    ds->ds_link, ds->ds_data,
   4993 		    ds->ds_ctl0, ds->ds_ctl1,
   4994 		    ds->ds_hw[0], ds->ds_hw[1],
   4995 		    !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
   4996 	}
   4997 }
   4998 
   4999 static void
   5000 ath_printtxbuf(struct ath_buf *bf, int done)
   5001 {
   5002 	struct ath_desc *ds;
   5003 	int i;
   5004 
   5005 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
   5006 		printf("T%d (%p %" PRIx64
   5007 		    ") %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
   5008 		    i, ds,
   5009 		    (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
   5010 		    ds->ds_link, ds->ds_data,
   5011 		    ds->ds_ctl0, ds->ds_ctl1,
   5012 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
   5013 		    !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
   5014 	}
   5015 }
   5016 #endif /* AR_DEBUG */
   5017 
   5018 static void
   5019 ath_watchdog(struct ifnet *ifp)
   5020 {
   5021 	struct ath_softc *sc = ifp->if_softc;
   5022 	struct ieee80211com *ic = &sc->sc_ic;
   5023 
   5024 	ifp->if_timer = 0;
   5025 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
   5026 		return;
   5027 	if (sc->sc_tx_timer) {
   5028 		if (--sc->sc_tx_timer == 0) {
   5029 			if_printf(ifp, "device timeout\n");
   5030 			ath_reset(ifp);
   5031 			ifp->if_oerrors++;
   5032 			sc->sc_stats.ast_watchdog++;
   5033 		} else
   5034 			ifp->if_timer = 1;
   5035 	}
   5036 	ieee80211_watchdog(ic);
   5037 }
   5038 
   5039 /*
   5040  * Diagnostic interface to the HAL.  This is used by various
   5041  * tools to do things like retrieve register contents for
   5042  * debugging.  The mechanism is intentionally opaque so that
   5043  * it can change frequently w/o concern for compatiblity.
   5044  */
   5045 static int
   5046 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
   5047 {
   5048 	struct ath_hal *ah = sc->sc_ah;
   5049 	u_int id = ad->ad_id & ATH_DIAG_ID;
   5050 	void *indata = NULL;
   5051 	void *outdata = NULL;
   5052 	u_int32_t insize = ad->ad_in_size;
   5053 	u_int32_t outsize = ad->ad_out_size;
   5054 	int error = 0;
   5055 
   5056 	if (ad->ad_id & ATH_DIAG_IN) {
   5057 		/*
   5058 		 * Copy in data.
   5059 		 */
   5060 		indata = malloc(insize, M_TEMP, M_NOWAIT);
   5061 		if (indata == NULL) {
   5062 			error = ENOMEM;
   5063 			goto bad;
   5064 		}
   5065 		error = copyin(ad->ad_in_data, indata, insize);
   5066 		if (error)
   5067 			goto bad;
   5068 	}
   5069 	if (ad->ad_id & ATH_DIAG_DYN) {
   5070 		/*
   5071 		 * Allocate a buffer for the results (otherwise the HAL
   5072 		 * returns a pointer to a buffer where we can read the
   5073 		 * results).  Note that we depend on the HAL leaving this
   5074 		 * pointer for us to use below in reclaiming the buffer;
   5075 		 * may want to be more defensive.
   5076 		 */
   5077 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
   5078 		if (outdata == NULL) {
   5079 			error = ENOMEM;
   5080 			goto bad;
   5081 		}
   5082 	}
   5083 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
   5084 		if (outsize < ad->ad_out_size)
   5085 			ad->ad_out_size = outsize;
   5086 		if (outdata != NULL)
   5087 			error = copyout(outdata, ad->ad_out_data,
   5088 					ad->ad_out_size);
   5089 	} else {
   5090 		error = EINVAL;
   5091 	}
   5092 bad:
   5093 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
   5094 		free(indata, M_TEMP);
   5095 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
   5096 		free(outdata, M_TEMP);
   5097 	return error;
   5098 }
   5099 
   5100 static int
   5101 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
   5102 {
   5103 #define	IS_RUNNING(ifp) \
   5104 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
   5105 	struct ath_softc *sc = ifp->if_softc;
   5106 	struct ieee80211com *ic = &sc->sc_ic;
   5107 	struct ifreq *ifr = (struct ifreq *)data;
   5108 	int error = 0;
   5109 
   5110 	ATH_LOCK(sc);
   5111 	switch (cmd) {
   5112 	case SIOCSIFFLAGS:
   5113 		if (IS_RUNNING(ifp)) {
   5114 			/*
   5115 			 * To avoid rescanning another access point,
   5116 			 * do not call ath_init() here.  Instead,
   5117 			 * only reflect promisc mode settings.
   5118 			 */
   5119 			ath_mode_init(sc);
   5120 		} else if (ifp->if_flags & IFF_UP) {
   5121 			/*
   5122 			 * Beware of being called during attach/detach
   5123 			 * to reset promiscuous mode.  In that case we
   5124 			 * will still be marked UP but not RUNNING.
   5125 			 * However trying to re-init the interface
   5126 			 * is the wrong thing to do as we've already
   5127 			 * torn down much of our state.  There's
   5128 			 * probably a better way to deal with this.
   5129 			 */
   5130 			if (!sc->sc_invalid && ic->ic_bss != NULL)
   5131 				ath_init(sc);	/* XXX lose error */
   5132 		} else
   5133 			ath_stop_locked(ifp, 1);
   5134 		break;
   5135 	case SIOCADDMULTI:
   5136 	case SIOCDELMULTI:
   5137 		error = (cmd == SIOCADDMULTI) ?
   5138 		    ether_addmulti(ifr, &sc->sc_ec) :
   5139 		    ether_delmulti(ifr, &sc->sc_ec);
   5140 		if (error == ENETRESET) {
   5141 			if (ifp->if_flags & IFF_RUNNING)
   5142 				ath_mode_init(sc);
   5143 			error = 0;
   5144 		}
   5145 		break;
   5146 	case SIOCGATHSTATS:
   5147 		/* NB: embed these numbers to get a consistent view */
   5148 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
   5149 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
   5150 		sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
   5151 		ATH_UNLOCK(sc);
   5152 		/*
   5153 		 * NB: Drop the softc lock in case of a page fault;
   5154 		 * we'll accept any potential inconsisentcy in the
   5155 		 * statistics.  The alternative is to copy the data
   5156 		 * to a local structure.
   5157 		 */
   5158 		return copyout(&sc->sc_stats,
   5159 				ifr->ifr_data, sizeof (sc->sc_stats));
   5160 	case SIOCGATHDIAG:
   5161 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
   5162 		break;
   5163 	default:
   5164 		error = ieee80211_ioctl(ic, cmd, data);
   5165 		if (error == ENETRESET) {
   5166 			if (IS_RUNNING(ifp) &&
   5167 			    ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
   5168 				ath_init(sc);	/* XXX lose error */
   5169 			error = 0;
   5170 		}
   5171 		if (error == ERESTART)
   5172 			error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0;
   5173 		break;
   5174 	}
   5175 	ATH_UNLOCK(sc);
   5176 	return error;
   5177 #undef IS_RUNNING
   5178 }
   5179 
   5180 #if NBPFILTER > 0
   5181 static void
   5182 ath_bpfattach(struct ath_softc *sc)
   5183 {
   5184 	struct ifnet *ifp = &sc->sc_if;
   5185 
   5186 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
   5187 		sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
   5188 		&sc->sc_drvbpf);
   5189 	/*
   5190 	 * Initialize constant fields.
   5191 	 * XXX make header lengths a multiple of 32-bits so subsequent
   5192 	 *     headers are properly aligned; this is a kludge to keep
   5193 	 *     certain applications happy.
   5194 	 *
   5195 	 * NB: the channel is setup each time we transition to the
   5196 	 *     RUN state to avoid filling it in for each frame.
   5197 	 */
   5198 	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
   5199 	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
   5200 	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
   5201 
   5202 	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
   5203 	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
   5204 	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
   5205 }
   5206 #endif
   5207 
   5208 /*
   5209  * Announce various information on device/driver attach.
   5210  */
   5211 static void
   5212 ath_announce(struct ath_softc *sc)
   5213 {
   5214 #define	HAL_MODE_DUALBAND	(HAL_MODE_11A|HAL_MODE_11B)
   5215 	struct ifnet *ifp = &sc->sc_if;
   5216 	struct ath_hal *ah = sc->sc_ah;
   5217 	u_int modes, cc;
   5218 
   5219 	if_printf(ifp, "mac %d.%d phy %d.%d",
   5220 		ah->ah_macVersion, ah->ah_macRev,
   5221 		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
   5222 	/*
   5223 	 * Print radio revision(s).  We check the wireless modes
   5224 	 * to avoid falsely printing revs for inoperable parts.
   5225 	 * Dual-band radio revs are returned in the 5 GHz rev number.
   5226 	 */
   5227 	ath_hal_getcountrycode(ah, &cc);
   5228 	modes = ath_hal_getwirelessmodes(ah, cc);
   5229 	if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
   5230 		if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
   5231 			printf(" 5 GHz radio %d.%d 2 GHz radio %d.%d",
   5232 				ah->ah_analog5GhzRev >> 4,
   5233 				ah->ah_analog5GhzRev & 0xf,
   5234 				ah->ah_analog2GhzRev >> 4,
   5235 				ah->ah_analog2GhzRev & 0xf);
   5236 		else
   5237 			printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
   5238 				ah->ah_analog5GhzRev & 0xf);
   5239 	} else
   5240 		printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
   5241 			ah->ah_analog5GhzRev & 0xf);
   5242 	printf("\n");
   5243 	if (bootverbose) {
   5244 		int i;
   5245 		for (i = 0; i <= WME_AC_VO; i++) {
   5246 			struct ath_txq *txq = sc->sc_ac2q[i];
   5247 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
   5248 				txq->axq_qnum, ieee80211_wme_acnames[i]);
   5249 		}
   5250 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
   5251 			sc->sc_cabq->axq_qnum);
   5252 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
   5253 	}
   5254 	if (ath_rxbuf != ATH_RXBUF)
   5255 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
   5256 	if (ath_txbuf != ATH_TXBUF)
   5257 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
   5258 #undef HAL_MODE_DUALBAND
   5259 }
   5260