Home | History | Annotate | Line # | Download | only in ic
ath.c revision 1.76.6.2
      1 /*	$NetBSD: ath.c,v 1.76.6.2 2006/12/10 07:17:04 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer,
     12  *    without modification.
     13  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
     14  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
     15  *    redistribution must be conditioned upon including a substantially
     16  *    similar Disclaimer requirement for further binary redistribution.
     17  * 3. Neither the names of the above-listed copyright holders nor the names
     18  *    of any contributors may be used to endorse or promote products derived
     19  *    from this software without specific prior written permission.
     20  *
     21  * Alternatively, this software may be distributed under the terms of the
     22  * GNU General Public License ("GPL") version 2 as published by the Free
     23  * Software Foundation.
     24  *
     25  * NO WARRANTY
     26  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     28  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
     29  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
     30  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
     31  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
     34  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     36  * THE POSSIBILITY OF SUCH DAMAGES.
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 #ifdef __FreeBSD__
     41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $");
     42 #endif
     43 #ifdef __NetBSD__
     44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.76.6.2 2006/12/10 07:17:04 yamt Exp $");
     45 #endif
     46 
     47 /*
     48  * Driver for the Atheros Wireless LAN controller.
     49  *
     50  * This software is derived from work of Atsushi Onoe; his contribution
     51  * is greatly appreciated.
     52  */
     53 
     54 #include "opt_inet.h"
     55 
     56 #ifdef __NetBSD__
     57 #include "bpfilter.h"
     58 #endif /* __NetBSD__ */
     59 
     60 #include <sys/param.h>
     61 #include <sys/reboot.h>
     62 #include <sys/systm.h>
     63 #include <sys/types.h>
     64 #include <sys/sysctl.h>
     65 #include <sys/mbuf.h>
     66 #include <sys/malloc.h>
     67 #include <sys/lock.h>
     68 #include <sys/kernel.h>
     69 #include <sys/socket.h>
     70 #include <sys/sockio.h>
     71 #include <sys/errno.h>
     72 #include <sys/callout.h>
     73 #include <machine/bus.h>
     74 #include <sys/endian.h>
     75 
     76 #include <machine/bus.h>
     77 
     78 #include <net/if.h>
     79 #include <net/if_dl.h>
     80 #include <net/if_media.h>
     81 #include <net/if_types.h>
     82 #include <net/if_arp.h>
     83 #include <net/if_ether.h>
     84 #include <net/if_llc.h>
     85 
     86 #include <net80211/ieee80211_netbsd.h>
     87 #include <net80211/ieee80211_var.h>
     88 
     89 #if NBPFILTER > 0
     90 #include <net/bpf.h>
     91 #endif
     92 
     93 #ifdef INET
     94 #include <netinet/in.h>
     95 #endif
     96 
     97 #include <sys/device.h>
     98 #include <dev/ic/ath_netbsd.h>
     99 
    100 #define	AR_DEBUG
    101 #include <dev/ic/athvar.h>
    102 #include <contrib/dev/ath/ah_desc.h>
    103 #include <contrib/dev/ath/ah_devid.h>	/* XXX for softled */
    104 #include "athhal_options.h"
    105 
    106 #ifdef ATH_TX99_DIAG
    107 #include <dev/ath/ath_tx99/ath_tx99.h>
    108 #endif
    109 
    110 /* unaligned little endian access */
    111 #define LE_READ_2(p)							\
    112 	((u_int16_t)							\
    113 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
    114 #define LE_READ_4(p)							\
    115 	((u_int32_t)							\
    116 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
    117 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
    118 
    119 enum {
    120 	ATH_LED_TX,
    121 	ATH_LED_RX,
    122 	ATH_LED_POLL,
    123 };
    124 
    125 #ifdef	AH_NEED_DESC_SWAP
    126 #define	HTOAH32(x)	htole32(x)
    127 #else
    128 #define	HTOAH32(x)	(x)
    129 #endif
    130 
    131 static int	ath_ifinit(struct ifnet *);
    132 static int	ath_init(struct ath_softc *);
    133 static void	ath_stop_locked(struct ifnet *, int);
    134 static void	ath_stop(struct ifnet *, int);
    135 static void	ath_start(struct ifnet *);
    136 static int	ath_media_change(struct ifnet *);
    137 static void	ath_watchdog(struct ifnet *);
    138 static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
    139 static void	ath_fatal_proc(void *, int);
    140 static void	ath_rxorn_proc(void *, int);
    141 static void	ath_bmiss_proc(void *, int);
    142 static void	ath_radar_proc(void *, int);
    143 static int	ath_key_alloc(struct ieee80211com *,
    144 			const struct ieee80211_key *,
    145 			ieee80211_keyix *, ieee80211_keyix *);
    146 static int	ath_key_delete(struct ieee80211com *,
    147 			const struct ieee80211_key *);
    148 static int	ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
    149 			const u_int8_t mac[IEEE80211_ADDR_LEN]);
    150 static void	ath_key_update_begin(struct ieee80211com *);
    151 static void	ath_key_update_end(struct ieee80211com *);
    152 static void	ath_mode_init(struct ath_softc *);
    153 static void	ath_setslottime(struct ath_softc *);
    154 static void	ath_updateslot(struct ifnet *);
    155 static int	ath_beaconq_setup(struct ath_hal *);
    156 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
    157 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
    158 static void	ath_beacon_proc(void *, int);
    159 static void	ath_bstuck_proc(void *, int);
    160 static void	ath_beacon_free(struct ath_softc *);
    161 static void	ath_beacon_config(struct ath_softc *);
    162 static void	ath_descdma_cleanup(struct ath_softc *sc,
    163 			struct ath_descdma *, ath_bufhead *);
    164 static int	ath_desc_alloc(struct ath_softc *);
    165 static void	ath_desc_free(struct ath_softc *);
    166 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
    167 static void	ath_node_free(struct ieee80211_node *);
    168 static u_int8_t	ath_node_getrssi(const struct ieee80211_node *);
    169 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
    170 static void	ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
    171 			struct ieee80211_node *ni,
    172 			int subtype, int rssi, u_int32_t rstamp);
    173 static void	ath_setdefantenna(struct ath_softc *, u_int);
    174 static void	ath_rx_proc(void *, int);
    175 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
    176 static int	ath_tx_setup(struct ath_softc *, int, int);
    177 static int	ath_wme_update(struct ieee80211com *);
    178 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
    179 static void	ath_tx_cleanup(struct ath_softc *);
    180 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
    181 			     struct ath_buf *, struct mbuf *);
    182 static void	ath_tx_proc_q0(void *, int);
    183 static void	ath_tx_proc_q0123(void *, int);
    184 static void	ath_tx_proc(void *, int);
    185 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
    186 static void	ath_draintxq(struct ath_softc *);
    187 static void	ath_stoprecv(struct ath_softc *);
    188 static int	ath_startrecv(struct ath_softc *);
    189 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
    190 static void	ath_next_scan(void *);
    191 static void	ath_calibrate(void *);
    192 static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
    193 static void	ath_setup_stationkey(struct ieee80211_node *);
    194 static void	ath_newassoc(struct ieee80211_node *, int);
    195 static int	ath_getchannels(struct ath_softc *, u_int cc,
    196 			HAL_BOOL outdoor, HAL_BOOL xchanmode);
    197 static void	ath_led_event(struct ath_softc *, int);
    198 static void	ath_update_txpow(struct ath_softc *);
    199 
    200 static int	ath_rate_setup(struct ath_softc *, u_int mode);
    201 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
    202 
    203 #ifdef __NetBSD__
    204 int	ath_enable(struct ath_softc *);
    205 void	ath_disable(struct ath_softc *);
    206 void	ath_power(int, void *);
    207 #endif
    208 
    209 #if NBPFILTER > 0
    210 static void	ath_bpfattach(struct ath_softc *);
    211 #endif
    212 static void	ath_announce(struct ath_softc *);
    213 
    214 int ath_dwelltime = 200;		/* 5 channels/second */
    215 int ath_calinterval = 30;		/* calibrate every 30 secs */
    216 int ath_outdoor = AH_TRUE;		/* outdoor operation */
    217 int ath_xchanmode = AH_TRUE;		/* enable extended channels */
    218 int ath_countrycode = CTRY_DEFAULT;	/* country code */
    219 int ath_regdomain = 0;			/* regulatory domain */
    220 int ath_debug = 0;
    221 int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
    222 int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
    223 
    224 #ifdef AR_DEBUG
    225 enum {
    226 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
    227 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
    228 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
    229 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
    230 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
    231 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
    232 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
    233 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
    234 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
    235 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
    236 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
    237 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
    238 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
    239 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
    240 	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
    241 	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
    242 	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
    243 	ATH_DEBUG_LED		= 0x00100000,	/* led management */
    244 	ATH_DEBUG_FF		= 0x00200000,	/* fast frames */
    245 	ATH_DEBUG_DFS		= 0x00400000,	/* DFS processing */
    246 	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
    247 	ATH_DEBUG_ANY		= 0xffffffff
    248 };
    249 #define	IFF_DUMPPKTS(sc, m) \
    250 	((sc->sc_debug & (m)) || \
    251 	    (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
    252 #define	DPRINTF(sc, m, fmt, ...) do {				\
    253 	if (sc->sc_debug & (m))					\
    254 		printf(fmt, __VA_ARGS__);			\
    255 } while (0)
    256 #define	KEYPRINTF(sc, ix, hk, mac) do {				\
    257 	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
    258 		ath_keyprint(__func__, ix, hk, mac);		\
    259 } while (0)
    260 static	void ath_printrxbuf(struct ath_buf *bf, int);
    261 static	void ath_printtxbuf(struct ath_buf *bf, int);
    262 #else
    263 #define	IFF_DUMPPKTS(sc, m) \
    264 	((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
    265 #define	DPRINTF(m, fmt, ...)
    266 #define	KEYPRINTF(sc, k, ix, mac)
    267 #endif
    268 
    269 #ifdef __NetBSD__
    270 int
    271 ath_activate(struct device *self, enum devact act)
    272 {
    273 	struct ath_softc *sc = (struct ath_softc *)self;
    274 	int rv = 0, s;
    275 
    276 	s = splnet();
    277 	switch (act) {
    278 	case DVACT_ACTIVATE:
    279 		rv = EOPNOTSUPP;
    280 		break;
    281 	case DVACT_DEACTIVATE:
    282 		if_deactivate(&sc->sc_if);
    283 		break;
    284 	}
    285 	splx(s);
    286 	return rv;
    287 }
    288 
    289 int
    290 ath_enable(struct ath_softc *sc)
    291 {
    292 	if (ATH_IS_ENABLED(sc) == 0) {
    293 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
    294 			printf("%s: device enable failed\n",
    295 				sc->sc_dev.dv_xname);
    296 			return (EIO);
    297 		}
    298 		sc->sc_flags |= ATH_ENABLED;
    299 	}
    300 	return (0);
    301 }
    302 
    303 void
    304 ath_disable(struct ath_softc *sc)
    305 {
    306 	if (!ATH_IS_ENABLED(sc))
    307 		return;
    308 	if (sc->sc_disable != NULL)
    309 		(*sc->sc_disable)(sc);
    310 	sc->sc_flags &= ~ATH_ENABLED;
    311 }
    312 #endif /* __NetBSD__ */
    313 
    314 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
    315 
    316 int
    317 ath_attach(u_int16_t devid, struct ath_softc *sc)
    318 {
    319 	struct ifnet *ifp = &sc->sc_if;
    320 	struct ieee80211com *ic = &sc->sc_ic;
    321 	struct ath_hal *ah = NULL;
    322 	HAL_STATUS status;
    323 	int error = 0, i;
    324 
    325 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
    326 
    327 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
    328 
    329 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
    330 	if (ah == NULL) {
    331 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
    332 			status);
    333 		error = ENXIO;
    334 		goto bad;
    335 	}
    336 	if (ah->ah_abi != HAL_ABI_VERSION) {
    337 		if_printf(ifp, "HAL ABI mismatch detected "
    338 			"(HAL:0x%x != driver:0x%x)\n",
    339 			ah->ah_abi, HAL_ABI_VERSION);
    340 		error = ENXIO;
    341 		goto bad;
    342 	}
    343 	sc->sc_ah = ah;
    344 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
    345 
    346 	/*
    347 	 * Check if the MAC has multi-rate retry support.
    348 	 * We do this by trying to setup a fake extended
    349 	 * descriptor.  MAC's that don't have support will
    350 	 * return false w/o doing anything.  MAC's that do
    351 	 * support it will return true w/o doing anything.
    352 	 */
    353 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
    354 
    355 	/*
    356 	 * Check if the device has hardware counters for PHY
    357 	 * errors.  If so we need to enable the MIB interrupt
    358 	 * so we can act on stat triggers.
    359 	 */
    360 	if (ath_hal_hwphycounters(ah))
    361 		sc->sc_needmib = 1;
    362 
    363 	/*
    364 	 * Get the hardware key cache size.
    365 	 */
    366 	sc->sc_keymax = ath_hal_keycachesize(ah);
    367 	if (sc->sc_keymax > ATH_KEYMAX) {
    368 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
    369 			ATH_KEYMAX, sc->sc_keymax);
    370 		sc->sc_keymax = ATH_KEYMAX;
    371 	}
    372 	/*
    373 	 * Reset the key cache since some parts do not
    374 	 * reset the contents on initial power up.
    375 	 */
    376 	for (i = 0; i < sc->sc_keymax; i++)
    377 		ath_hal_keyreset(ah, i);
    378 	/*
    379 	 * Mark key cache slots associated with global keys
    380 	 * as in use.  If we knew TKIP was not to be used we
    381 	 * could leave the +32, +64, and +32+64 slots free.
    382 	 * XXX only for splitmic.
    383 	 */
    384 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
    385 		setbit(sc->sc_keymap, i);
    386 		setbit(sc->sc_keymap, i+32);
    387 		setbit(sc->sc_keymap, i+64);
    388 		setbit(sc->sc_keymap, i+32+64);
    389 	}
    390 
    391 	/*
    392 	 * Collect the channel list using the default country
    393 	 * code and including outdoor channels.  The 802.11 layer
    394 	 * is resposible for filtering this list based on settings
    395 	 * like the phy mode.
    396 	 */
    397 	error = ath_getchannels(sc, ath_countrycode,
    398 			ath_outdoor, ath_xchanmode);
    399 	if (error != 0)
    400 		goto bad;
    401 
    402 	/*
    403 	 * Setup rate tables for all potential media types.
    404 	 */
    405 	ath_rate_setup(sc, IEEE80211_MODE_11A);
    406 	ath_rate_setup(sc, IEEE80211_MODE_11B);
    407 	ath_rate_setup(sc, IEEE80211_MODE_11G);
    408 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
    409 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
    410 	/* NB: setup here so ath_rate_update is happy */
    411 	ath_setcurmode(sc, IEEE80211_MODE_11A);
    412 
    413 	/*
    414 	 * Allocate tx+rx descriptors and populate the lists.
    415 	 */
    416 	error = ath_desc_alloc(sc);
    417 	if (error != 0) {
    418 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
    419 		goto bad;
    420 	}
    421 	ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
    422 	ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE);
    423 	ATH_CALLOUT_INIT(&sc->sc_dfs_ch, CALLOUT_MPSAFE);
    424 
    425 	ATH_TXBUF_LOCK_INIT(sc);
    426 
    427 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
    428 	TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
    429 	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
    430 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
    431 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
    432 	TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc);
    433 
    434 	/*
    435 	 * Allocate hardware transmit queues: one queue for
    436 	 * beacon frames and one data queue for each QoS
    437 	 * priority.  Note that the hal handles reseting
    438 	 * these queues at the needed time.
    439 	 *
    440 	 * XXX PS-Poll
    441 	 */
    442 	sc->sc_bhalq = ath_beaconq_setup(ah);
    443 	if (sc->sc_bhalq == (u_int) -1) {
    444 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
    445 		error = EIO;
    446 		goto bad2;
    447 	}
    448 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
    449 	if (sc->sc_cabq == NULL) {
    450 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
    451 		error = EIO;
    452 		goto bad2;
    453 	}
    454 	/* NB: insure BK queue is the lowest priority h/w queue */
    455 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
    456 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
    457 			ieee80211_wme_acnames[WME_AC_BK]);
    458 		error = EIO;
    459 		goto bad2;
    460 	}
    461 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
    462 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
    463 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
    464 		/*
    465 		 * Not enough hardware tx queues to properly do WME;
    466 		 * just punt and assign them all to the same h/w queue.
    467 		 * We could do a better job of this if, for example,
    468 		 * we allocate queues when we switch from station to
    469 		 * AP mode.
    470 		 */
    471 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
    472 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
    473 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
    474 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
    475 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
    476 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
    477 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
    478 	}
    479 
    480 	/*
    481 	 * Special case certain configurations.  Note the
    482 	 * CAB queue is handled by these specially so don't
    483 	 * include them when checking the txq setup mask.
    484 	 */
    485 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
    486 	case 0x01:
    487 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
    488 		break;
    489 	case 0x0f:
    490 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
    491 		break;
    492 	default:
    493 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
    494 		break;
    495 	}
    496 
    497 	/*
    498 	 * Setup rate control.  Some rate control modules
    499 	 * call back to change the anntena state so expose
    500 	 * the necessary entry points.
    501 	 * XXX maybe belongs in struct ath_ratectrl?
    502 	 */
    503 	sc->sc_setdefantenna = ath_setdefantenna;
    504 	sc->sc_rc = ath_rate_attach(sc);
    505 	if (sc->sc_rc == NULL) {
    506 		error = EIO;
    507 		goto bad2;
    508 	}
    509 
    510 	sc->sc_blinking = 0;
    511 	sc->sc_ledstate = 1;
    512 	sc->sc_ledon = 0;			/* low true */
    513 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
    514 	ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE);
    515 	/*
    516 	 * Auto-enable soft led processing for IBM cards and for
    517 	 * 5211 minipci cards.  Users can also manually enable/disable
    518 	 * support with a sysctl.
    519 	 */
    520 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
    521 	if (sc->sc_softled) {
    522 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
    523 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
    524 	}
    525 
    526 	ifp->if_softc = sc;
    527 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
    528 	ifp->if_start = ath_start;
    529 	ifp->if_watchdog = ath_watchdog;
    530 	ifp->if_ioctl = ath_ioctl;
    531 	ifp->if_init = ath_ifinit;
    532 	IFQ_SET_READY(&ifp->if_snd);
    533 
    534 	ic->ic_ifp = ifp;
    535 	ic->ic_reset = ath_reset;
    536 	ic->ic_newassoc = ath_newassoc;
    537 	ic->ic_updateslot = ath_updateslot;
    538 	ic->ic_wme.wme_update = ath_wme_update;
    539 	/* XXX not right but it's not used anywhere important */
    540 	ic->ic_phytype = IEEE80211_T_OFDM;
    541 	ic->ic_opmode = IEEE80211_M_STA;
    542 	ic->ic_caps =
    543 		  IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
    544 		| IEEE80211_C_HOSTAP		/* hostap mode */
    545 		| IEEE80211_C_MONITOR		/* monitor mode */
    546 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
    547 		| IEEE80211_C_SHSLOT		/* short slot time supported */
    548 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
    549 		;
    550 	/*
    551 	 * Query the hal to figure out h/w crypto support.
    552 	 */
    553 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
    554 		ic->ic_caps |= IEEE80211_C_WEP;
    555 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
    556 		ic->ic_caps |= IEEE80211_C_AES;
    557 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
    558 		ic->ic_caps |= IEEE80211_C_AES_CCM;
    559 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
    560 		ic->ic_caps |= IEEE80211_C_CKIP;
    561 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
    562 		ic->ic_caps |= IEEE80211_C_TKIP;
    563 		/*
    564 		 * Check if h/w does the MIC and/or whether the
    565 		 * separate key cache entries are required to
    566 		 * handle both tx+rx MIC keys.
    567 		 */
    568 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
    569 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
    570 		if (ath_hal_tkipsplit(ah))
    571 			sc->sc_splitmic = 1;
    572 	}
    573 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
    574 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
    575 	/*
    576 	 * TPC support can be done either with a global cap or
    577 	 * per-packet support.  The latter is not available on
    578 	 * all parts.  We're a bit pedantic here as all parts
    579 	 * support a global cap.
    580 	 */
    581 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
    582 		ic->ic_caps |= IEEE80211_C_TXPMGT;
    583 
    584 	/*
    585 	 * Mark WME capability only if we have sufficient
    586 	 * hardware queues to do proper priority scheduling.
    587 	 */
    588 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
    589 		ic->ic_caps |= IEEE80211_C_WME;
    590 	/*
    591 	 * Check for misc other capabilities.
    592 	 */
    593 	if (ath_hal_hasbursting(ah))
    594 		ic->ic_caps |= IEEE80211_C_BURST;
    595 
    596 	/*
    597 	 * Indicate we need the 802.11 header padded to a
    598 	 * 32-bit boundary for 4-address and QoS frames.
    599 	 */
    600 	ic->ic_flags |= IEEE80211_F_DATAPAD;
    601 
    602 	/*
    603 	 * Query the hal about antenna support.
    604 	 */
    605 	sc->sc_defant = ath_hal_getdefantenna(ah);
    606 
    607 	/*
    608 	 * Not all chips have the VEOL support we want to
    609 	 * use with IBSS beacons; check here for it.
    610 	 */
    611 	sc->sc_hasveol = ath_hal_hasveol(ah);
    612 
    613 	/* get mac address from hardware */
    614 	ath_hal_getmac(ah, ic->ic_myaddr);
    615 
    616 	if_attach(ifp);
    617 	/* call MI attach routine. */
    618 	ieee80211_ifattach(ic);
    619 	/* override default methods */
    620 	ic->ic_node_alloc = ath_node_alloc;
    621 	sc->sc_node_free = ic->ic_node_free;
    622 	ic->ic_node_free = ath_node_free;
    623 	ic->ic_node_getrssi = ath_node_getrssi;
    624 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
    625 	ic->ic_recv_mgmt = ath_recv_mgmt;
    626 	sc->sc_newstate = ic->ic_newstate;
    627 	ic->ic_newstate = ath_newstate;
    628 	ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
    629 	ic->ic_crypto.cs_key_alloc = ath_key_alloc;
    630 	ic->ic_crypto.cs_key_delete = ath_key_delete;
    631 	ic->ic_crypto.cs_key_set = ath_key_set;
    632 	ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
    633 	ic->ic_crypto.cs_key_update_end = ath_key_update_end;
    634 	/* complete initialization */
    635 	ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
    636 
    637 #if NBPFILTER > 0
    638 	ath_bpfattach(sc);
    639 #endif
    640 
    641 #ifdef __NetBSD__
    642 	sc->sc_flags |= ATH_ATTACHED;
    643 	sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
    644 	    ath_power, sc);
    645 	if (sc->sc_powerhook == NULL)
    646 		printf("%s: WARNING: unable to establish power hook\n",
    647 			sc->sc_dev.dv_xname);
    648 #endif
    649 
    650 	/*
    651 	 * Setup dynamic sysctl's now that country code and
    652 	 * regdomain are available from the hal.
    653 	 */
    654 	ath_sysctlattach(sc);
    655 
    656 	ieee80211_announce(ic);
    657 	ath_announce(sc);
    658 	return 0;
    659 bad2:
    660 	ath_tx_cleanup(sc);
    661 	ath_desc_free(sc);
    662 bad:
    663 	if (ah)
    664 		ath_hal_detach(ah);
    665 	sc->sc_invalid = 1;
    666 	return error;
    667 }
    668 
    669 int
    670 ath_detach(struct ath_softc *sc)
    671 {
    672 	struct ifnet *ifp = &sc->sc_if;
    673 	int s;
    674 
    675 	if ((sc->sc_flags & ATH_ATTACHED) == 0)
    676 		return (0);
    677 
    678 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
    679 		__func__, ifp->if_flags);
    680 
    681 	s = splnet();
    682 	ath_stop(ifp, 1);
    683 #if NBPFILTER > 0
    684 	bpfdetach(ifp);
    685 #endif
    686 	/*
    687 	 * NB: the order of these is important:
    688 	 * o call the 802.11 layer before detaching the hal to
    689 	 *   insure callbacks into the driver to delete global
    690 	 *   key cache entries can be handled
    691 	 * o reclaim the tx queue data structures after calling
    692 	 *   the 802.11 layer as we'll get called back to reclaim
    693 	 *   node state and potentially want to use them
    694 	 * o to cleanup the tx queues the hal is called, so detach
    695 	 *   it last
    696 	 * Other than that, it's straightforward...
    697 	 */
    698 	ieee80211_ifdetach(&sc->sc_ic);
    699 #ifdef ATH_TX99_DIAG
    700 	if (sc->sc_tx99 != NULL)
    701 		sc->sc_tx99->detach(sc->sc_tx99);
    702 #endif
    703 	ath_rate_detach(sc->sc_rc);
    704 	ath_desc_free(sc);
    705 	ath_tx_cleanup(sc);
    706 	sysctl_teardown(&sc->sc_sysctllog);
    707 	ath_hal_detach(sc->sc_ah);
    708 	if_detach(ifp);
    709 	splx(s);
    710 	powerhook_disestablish(sc->sc_powerhook);
    711 
    712 	return 0;
    713 }
    714 
    715 #ifdef __NetBSD__
    716 void
    717 ath_power(int why, void *arg)
    718 {
    719 	struct ath_softc *sc = arg;
    720 	int s;
    721 
    722 	DPRINTF(sc, ATH_DEBUG_ANY, "ath_power(%d)\n", why);
    723 
    724 	s = splnet();
    725 	switch (why) {
    726 	case PWR_SUSPEND:
    727 	case PWR_STANDBY:
    728 		ath_suspend(sc, why);
    729 		break;
    730 	case PWR_RESUME:
    731 		ath_resume(sc, why);
    732 		break;
    733 	case PWR_SOFTSUSPEND:
    734 	case PWR_SOFTSTANDBY:
    735 	case PWR_SOFTRESUME:
    736 		break;
    737 	}
    738 	splx(s);
    739 }
    740 #endif
    741 
    742 void
    743 ath_suspend(struct ath_softc *sc, int why)
    744 {
    745 	struct ifnet *ifp = &sc->sc_if;
    746 
    747 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
    748 		__func__, ifp->if_flags);
    749 
    750 	ath_stop(ifp, 1);
    751 	if (sc->sc_power != NULL)
    752 		(*sc->sc_power)(sc, why);
    753 }
    754 
    755 void
    756 ath_resume(struct ath_softc *sc, int why)
    757 {
    758 	struct ifnet *ifp = &sc->sc_if;
    759 
    760 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
    761 		__func__, ifp->if_flags);
    762 
    763 	if (ifp->if_flags & IFF_UP) {
    764 		ath_init(sc);
    765 #if 0
    766 		(void)ath_intr(sc);
    767 #endif
    768 		if (sc->sc_power != NULL)
    769 			(*sc->sc_power)(sc, why);
    770 		if (ifp->if_flags & IFF_RUNNING)
    771 			ath_start(ifp);
    772 	}
    773 	if (sc->sc_softled) {
    774 		ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
    775 		ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
    776 	}
    777 }
    778 
    779 void
    780 ath_shutdown(void *arg)
    781 {
    782 	struct ath_softc *sc = arg;
    783 
    784 	ath_stop(&sc->sc_if, 1);
    785 }
    786 
    787 /*
    788  * Interrupt handler.  Most of the actual processing is deferred.
    789  */
    790 int
    791 ath_intr(void *arg)
    792 {
    793 	struct ath_softc *sc = arg;
    794 	struct ifnet *ifp = &sc->sc_if;
    795 	struct ath_hal *ah = sc->sc_ah;
    796 	HAL_INT status;
    797 
    798 	if (sc->sc_invalid) {
    799 		/*
    800 		 * The hardware is not ready/present, don't touch anything.
    801 		 * Note this can happen early on if the IRQ is shared.
    802 		 */
    803 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
    804 		return 0;
    805 	}
    806 
    807 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
    808 		return 0;
    809 
    810 	if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
    811 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
    812 			__func__, ifp->if_flags);
    813 		ath_hal_getisr(ah, &status);	/* clear ISR */
    814 		ath_hal_intrset(ah, 0);		/* disable further intr's */
    815 		return 1; /* XXX */
    816 	}
    817 	/*
    818 	 * Figure out the reason(s) for the interrupt.  Note
    819 	 * that the hal returns a pseudo-ISR that may include
    820 	 * bits we haven't explicitly enabled so we mask the
    821 	 * value to insure we only process bits we requested.
    822 	 */
    823 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
    824 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
    825 	status &= sc->sc_imask;			/* discard unasked for bits */
    826 	if (status & HAL_INT_FATAL) {
    827 		/*
    828 		 * Fatal errors are unrecoverable.  Typically
    829 		 * these are caused by DMA errors.  Unfortunately
    830 		 * the exact reason is not (presently) returned
    831 		 * by the hal.
    832 		 */
    833 		sc->sc_stats.ast_hardware++;
    834 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
    835 		TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
    836 	} else if (status & HAL_INT_RXORN) {
    837 		sc->sc_stats.ast_rxorn++;
    838 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
    839 		TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
    840 	} else {
    841 		if (status & HAL_INT_SWBA) {
    842 			/*
    843 			 * Software beacon alert--time to send a beacon.
    844 			 * Handle beacon transmission directly; deferring
    845 			 * this is too slow to meet timing constraints
    846 			 * under load.
    847 			 */
    848 			ath_beacon_proc(sc, 0);
    849 		}
    850 		if (status & HAL_INT_RXEOL) {
    851 			/*
    852 			 * NB: the hardware should re-read the link when
    853 			 *     RXE bit is written, but it doesn't work at
    854 			 *     least on older hardware revs.
    855 			 */
    856 			sc->sc_stats.ast_rxeol++;
    857 			sc->sc_rxlink = NULL;
    858 		}
    859 		if (status & HAL_INT_TXURN) {
    860 			sc->sc_stats.ast_txurn++;
    861 			/* bump tx trigger level */
    862 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
    863 		}
    864 		if (status & HAL_INT_RX)
    865 			TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
    866 		if (status & HAL_INT_TX)
    867 			TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
    868 		if (status & HAL_INT_BMISS) {
    869 			sc->sc_stats.ast_bmiss++;
    870 			TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
    871 		}
    872 		if (status & HAL_INT_MIB) {
    873 			sc->sc_stats.ast_mib++;
    874 			/*
    875 			 * Disable interrupts until we service the MIB
    876 			 * interrupt; otherwise it will continue to fire.
    877 			 */
    878 			ath_hal_intrset(ah, 0);
    879 			/*
    880 			 * Let the hal handle the event.  We assume it will
    881 			 * clear whatever condition caused the interrupt.
    882 			 */
    883 			ath_hal_mibevent(ah, &sc->sc_halstats);
    884 			ath_hal_intrset(ah, sc->sc_imask);
    885 		}
    886 	}
    887 	return 1;
    888 }
    889 
    890 /* Swap transmit descriptor.
    891  * if AH_NEED_DESC_SWAP flag is not defined this becomes a "null"
    892  * function.
    893  */
    894 static inline void
    895 ath_desc_swap(struct ath_desc *ds)
    896 {
    897 #ifdef AH_NEED_DESC_SWAP
    898 	ds->ds_link = htole32(ds->ds_link);
    899 	ds->ds_data = htole32(ds->ds_data);
    900 	ds->ds_ctl0 = htole32(ds->ds_ctl0);
    901 	ds->ds_ctl1 = htole32(ds->ds_ctl1);
    902 	ds->ds_hw[0] = htole32(ds->ds_hw[0]);
    903 	ds->ds_hw[1] = htole32(ds->ds_hw[1]);
    904 #endif
    905 }
    906 
    907 static void
    908 ath_fatal_proc(void *arg, int pending)
    909 {
    910 	struct ath_softc *sc = arg;
    911 	struct ifnet *ifp = &sc->sc_if;
    912 
    913 	if_printf(ifp, "hardware error; resetting\n");
    914 	ath_reset(ifp);
    915 }
    916 
    917 static void
    918 ath_rxorn_proc(void *arg, int pending)
    919 {
    920 	struct ath_softc *sc = arg;
    921 	struct ifnet *ifp = &sc->sc_if;
    922 
    923 	if_printf(ifp, "rx FIFO overrun; resetting\n");
    924 	ath_reset(ifp);
    925 }
    926 
    927 static void
    928 ath_bmiss_proc(void *arg, int pending)
    929 {
    930 	struct ath_softc *sc = arg;
    931 	struct ieee80211com *ic = &sc->sc_ic;
    932 
    933 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
    934 	KASSERT(ic->ic_opmode == IEEE80211_M_STA,
    935 		("unexpect operating mode %u", ic->ic_opmode));
    936 	if (ic->ic_state == IEEE80211_S_RUN) {
    937 		u_int64_t lastrx = sc->sc_lastrx;
    938 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
    939 
    940 		DPRINTF(sc, ATH_DEBUG_BEACON,
    941 		    "%s: tsf %" PRIu64 " lastrx %" PRId64
    942 		    " (%" PRIu64 ") bmiss %u\n",
    943 		    __func__, tsf, tsf - lastrx, lastrx,
    944 		    ic->ic_bmisstimeout*1024);
    945 		/*
    946 		 * Workaround phantom bmiss interrupts by sanity-checking
    947 		 * the time of our last rx'd frame.  If it is within the
    948 		 * beacon miss interval then ignore the interrupt.  If it's
    949 		 * truly a bmiss we'll get another interrupt soon and that'll
    950 		 * be dispatched up for processing.
    951 		 */
    952 		if (tsf - lastrx > ic->ic_bmisstimeout*1024) {
    953 			NET_LOCK_GIANT();
    954 			ieee80211_beacon_miss(ic);
    955 			NET_UNLOCK_GIANT();
    956 		} else
    957 			sc->sc_stats.ast_bmiss_phantom++;
    958 	}
    959 }
    960 
    961 static void
    962 ath_radar_proc(void *arg, int pending)
    963 {
    964 	struct ath_softc *sc = arg;
    965 	struct ifnet *ifp = &sc->sc_if;
    966 	struct ath_hal *ah = sc->sc_ah;
    967 	HAL_CHANNEL hchan;
    968 
    969 	if (ath_hal_procdfs(ah, &hchan)) {
    970 		if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n",
    971 			hchan.channel, hchan.channelFlags, hchan.privFlags);
    972 		/*
    973 		 * Initiate channel change.
    974 		 */
    975 		/* XXX not yet */
    976 	}
    977 }
    978 
    979 static u_int
    980 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
    981 {
    982 #define	N(a)	(sizeof(a) / sizeof(a[0]))
    983 	static const u_int modeflags[] = {
    984 		0,			/* IEEE80211_MODE_AUTO */
    985 		CHANNEL_A,		/* IEEE80211_MODE_11A */
    986 		CHANNEL_B,		/* IEEE80211_MODE_11B */
    987 		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
    988 		0,			/* IEEE80211_MODE_FH */
    989 		CHANNEL_ST,		/* IEEE80211_MODE_TURBO_A */
    990 		CHANNEL_108G		/* IEEE80211_MODE_TURBO_G */
    991 	};
    992 	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
    993 
    994 	KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
    995 	KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
    996 	return modeflags[mode];
    997 #undef N
    998 }
    999 
   1000 static int
   1001 ath_ifinit(struct ifnet *ifp)
   1002 {
   1003 	struct ath_softc *sc = (struct ath_softc *)ifp->if_softc;
   1004 
   1005 	return ath_init(sc);
   1006 }
   1007 
   1008 static int
   1009 ath_init(struct ath_softc *sc)
   1010 {
   1011 	struct ifnet *ifp = &sc->sc_if;
   1012 	struct ieee80211com *ic = &sc->sc_ic;
   1013 	struct ath_hal *ah = sc->sc_ah;
   1014 	HAL_STATUS status;
   1015 	int error = 0;
   1016 
   1017 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
   1018 		__func__, ifp->if_flags);
   1019 
   1020 	ATH_LOCK(sc);
   1021 
   1022 	if ((error = ath_enable(sc)) != 0)
   1023 		return error;
   1024 
   1025 	/*
   1026 	 * Stop anything previously setup.  This is safe
   1027 	 * whether this is the first time through or not.
   1028 	 */
   1029 	ath_stop_locked(ifp, 0);
   1030 
   1031 	/*
   1032 	 * The basic interface to setting the hardware in a good
   1033 	 * state is ``reset''.  On return the hardware is known to
   1034 	 * be powered up and with interrupts disabled.  This must
   1035 	 * be followed by initialization of the appropriate bits
   1036 	 * and then setup of the interrupt mask.
   1037 	 */
   1038 	sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
   1039 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
   1040 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
   1041 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
   1042 			status);
   1043 		error = EIO;
   1044 		goto done;
   1045 	}
   1046 
   1047 	/*
   1048 	 * This is needed only to setup initial state
   1049 	 * but it's best done after a reset.
   1050 	 */
   1051 	ath_update_txpow(sc);
   1052 	/*
   1053 	 * Likewise this is set during reset so update
   1054 	 * state cached in the driver.
   1055 	 */
   1056 	sc->sc_diversity = ath_hal_getdiversity(ah);
   1057 	sc->sc_calinterval = 1;
   1058 	sc->sc_caltries = 0;
   1059 
   1060 	/*
   1061 	 * Setup the hardware after reset: the key cache
   1062 	 * is filled as needed and the receive engine is
   1063 	 * set going.  Frame transmit is handled entirely
   1064 	 * in the frame output path; there's nothing to do
   1065 	 * here except setup the interrupt mask.
   1066 	 */
   1067 	if ((error = ath_startrecv(sc)) != 0) {
   1068 		if_printf(ifp, "unable to start recv logic\n");
   1069 		goto done;
   1070 	}
   1071 
   1072 	/*
   1073 	 * Enable interrupts.
   1074 	 */
   1075 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
   1076 		  | HAL_INT_RXEOL | HAL_INT_RXORN
   1077 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
   1078 	/*
   1079 	 * Enable MIB interrupts when there are hardware phy counters.
   1080 	 * Note we only do this (at the moment) for station mode.
   1081 	 */
   1082 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
   1083 		sc->sc_imask |= HAL_INT_MIB;
   1084 	ath_hal_intrset(ah, sc->sc_imask);
   1085 
   1086 	ifp->if_flags |= IFF_RUNNING;
   1087 	ic->ic_state = IEEE80211_S_INIT;
   1088 
   1089 	/*
   1090 	 * The hardware should be ready to go now so it's safe
   1091 	 * to kick the 802.11 state machine as it's likely to
   1092 	 * immediately call back to us to send mgmt frames.
   1093 	 */
   1094 	ath_chan_change(sc, ic->ic_curchan);
   1095 #ifdef ATH_TX99_DIAG
   1096 	if (sc->sc_tx99 != NULL)
   1097 		sc->sc_tx99->start(sc->sc_tx99);
   1098 	else
   1099 #endif
   1100 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   1101 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
   1102 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   1103 	} else
   1104 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   1105 done:
   1106 	ATH_UNLOCK(sc);
   1107 	return error;
   1108 }
   1109 
   1110 static void
   1111 ath_stop_locked(struct ifnet *ifp, int disable)
   1112 {
   1113 	struct ath_softc *sc = ifp->if_softc;
   1114 	struct ieee80211com *ic = &sc->sc_ic;
   1115 	struct ath_hal *ah = sc->sc_ah;
   1116 
   1117 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
   1118 		__func__, sc->sc_invalid, ifp->if_flags);
   1119 
   1120 	ATH_LOCK_ASSERT(sc);
   1121 	if (ifp->if_flags & IFF_RUNNING) {
   1122 		/*
   1123 		 * Shutdown the hardware and driver:
   1124 		 *    reset 802.11 state machine
   1125 		 *    turn off timers
   1126 		 *    disable interrupts
   1127 		 *    turn off the radio
   1128 		 *    clear transmit machinery
   1129 		 *    clear receive machinery
   1130 		 *    drain and release tx queues
   1131 		 *    reclaim beacon resources
   1132 		 *    power down hardware
   1133 		 *
   1134 		 * Note that some of this work is not possible if the
   1135 		 * hardware is gone (invalid).
   1136 		 */
   1137 #ifdef ATH_TX99_DIAG
   1138 		if (sc->sc_tx99 != NULL)
   1139 			sc->sc_tx99->stop(sc->sc_tx99);
   1140 #endif
   1141 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   1142 		ifp->if_flags &= ~IFF_RUNNING;
   1143 		ifp->if_timer = 0;
   1144 		if (!sc->sc_invalid) {
   1145 			if (sc->sc_softled) {
   1146 				callout_stop(&sc->sc_ledtimer);
   1147 				ath_hal_gpioset(ah, sc->sc_ledpin,
   1148 					!sc->sc_ledon);
   1149 				sc->sc_blinking = 0;
   1150 			}
   1151 			ath_hal_intrset(ah, 0);
   1152 		}
   1153 		ath_draintxq(sc);
   1154 		if (!sc->sc_invalid) {
   1155 			ath_stoprecv(sc);
   1156 			ath_hal_phydisable(ah);
   1157 		} else
   1158 			sc->sc_rxlink = NULL;
   1159 		IF_PURGE(&ifp->if_snd);
   1160 		ath_beacon_free(sc);
   1161 		if (disable)
   1162 			ath_disable(sc);
   1163 	}
   1164 }
   1165 
   1166 static void
   1167 ath_stop(struct ifnet *ifp, int disable)
   1168 {
   1169 	struct ath_softc *sc = ifp->if_softc;
   1170 
   1171 	ATH_LOCK(sc);
   1172 	ath_stop_locked(ifp, disable);
   1173 	if (!sc->sc_invalid) {
   1174 		/*
   1175 		 * Set the chip in full sleep mode.  Note that we are
   1176 		 * careful to do this only when bringing the interface
   1177 		 * completely to a stop.  When the chip is in this state
   1178 		 * it must be carefully woken up or references to
   1179 		 * registers in the PCI clock domain may freeze the bus
   1180 		 * (and system).  This varies by chip and is mostly an
   1181 		 * issue with newer parts that go to sleep more quickly.
   1182 		 */
   1183 		ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
   1184 	}
   1185 	ATH_UNLOCK(sc);
   1186 }
   1187 
   1188 /*
   1189  * Reset the hardware w/o losing operational state.  This is
   1190  * basically a more efficient way of doing ath_stop, ath_init,
   1191  * followed by state transitions to the current 802.11
   1192  * operational state.  Used to recover from various errors and
   1193  * to reset or reload hardware state.
   1194  */
   1195 int
   1196 ath_reset(struct ifnet *ifp)
   1197 {
   1198 	struct ath_softc *sc = ifp->if_softc;
   1199 	struct ieee80211com *ic = &sc->sc_ic;
   1200 	struct ath_hal *ah = sc->sc_ah;
   1201 	struct ieee80211_channel *c;
   1202 	HAL_STATUS status;
   1203 
   1204 	/*
   1205 	 * Convert to a HAL channel description with the flags
   1206 	 * constrained to reflect the current operating mode.
   1207 	 */
   1208 	c = ic->ic_curchan;
   1209 	sc->sc_curchan.channel = c->ic_freq;
   1210 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
   1211 
   1212 	ath_hal_intrset(ah, 0);		/* disable interrupts */
   1213 	ath_draintxq(sc);		/* stop xmit side */
   1214 	ath_stoprecv(sc);		/* stop recv side */
   1215 	/* NB: indicate channel change so we do a full reset */
   1216 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
   1217 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
   1218 			__func__, status);
   1219 	ath_update_txpow(sc);		/* update tx power state */
   1220 	sc->sc_diversity = ath_hal_getdiversity(ah);
   1221 	sc->sc_calinterval = 1;
   1222 	sc->sc_caltries = 0;
   1223 	if (ath_startrecv(sc) != 0)	/* restart recv */
   1224 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
   1225 	/*
   1226 	 * We may be doing a reset in response to an ioctl
   1227 	 * that changes the channel so update any state that
   1228 	 * might change as a result.
   1229 	 */
   1230 	ath_chan_change(sc, c);
   1231 	if (ic->ic_state == IEEE80211_S_RUN)
   1232 		ath_beacon_config(sc);	/* restart beacons */
   1233 	ath_hal_intrset(ah, sc->sc_imask);
   1234 
   1235 	ath_start(ifp);			/* restart xmit */
   1236 	return 0;
   1237 }
   1238 
   1239 static void
   1240 ath_start(struct ifnet *ifp)
   1241 {
   1242 	struct ath_softc *sc = ifp->if_softc;
   1243 	struct ath_hal *ah = sc->sc_ah;
   1244 	struct ieee80211com *ic = &sc->sc_ic;
   1245 	struct ieee80211_node *ni;
   1246 	struct ath_buf *bf;
   1247 	struct mbuf *m;
   1248 	struct ieee80211_frame *wh;
   1249 	struct ether_header *eh;
   1250 
   1251 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
   1252 		return;
   1253 	for (;;) {
   1254 		/*
   1255 		 * Grab a TX buffer and associated resources.
   1256 		 */
   1257 		ATH_TXBUF_LOCK(sc);
   1258 		bf = STAILQ_FIRST(&sc->sc_txbuf);
   1259 		if (bf != NULL)
   1260 			STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
   1261 		ATH_TXBUF_UNLOCK(sc);
   1262 		if (bf == NULL) {
   1263 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
   1264 				__func__);
   1265 			sc->sc_stats.ast_tx_qstop++;
   1266 			ifp->if_flags |= IFF_OACTIVE;
   1267 			break;
   1268 		}
   1269 		/*
   1270 		 * Poll the management queue for frames; they
   1271 		 * have priority over normal data frames.
   1272 		 */
   1273 		IF_DEQUEUE(&ic->ic_mgtq, m);
   1274 		if (m == NULL) {
   1275 			/*
   1276 			 * No data frames go out unless we're associated.
   1277 			 */
   1278 			if (ic->ic_state != IEEE80211_S_RUN) {
   1279 				DPRINTF(sc, ATH_DEBUG_XMIT,
   1280 				    "%s: discard data packet, state %s\n",
   1281 				    __func__,
   1282 				    ieee80211_state_name[ic->ic_state]);
   1283 				sc->sc_stats.ast_tx_discard++;
   1284 				ATH_TXBUF_LOCK(sc);
   1285 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1286 				ATH_TXBUF_UNLOCK(sc);
   1287 				break;
   1288 			}
   1289 			IFQ_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
   1290 			if (m == NULL) {
   1291 				ATH_TXBUF_LOCK(sc);
   1292 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1293 				ATH_TXBUF_UNLOCK(sc);
   1294 				break;
   1295 			}
   1296 			/*
   1297 			 * Find the node for the destination so we can do
   1298 			 * things like power save and fast frames aggregation.
   1299 			 */
   1300 			if (m->m_len < sizeof(struct ether_header) &&
   1301 			   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
   1302 				ic->ic_stats.is_tx_nobuf++;	/* XXX */
   1303 				ni = NULL;
   1304 				goto bad;
   1305 			}
   1306 			eh = mtod(m, struct ether_header *);
   1307 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   1308 			if (ni == NULL) {
   1309 				/* NB: ieee80211_find_txnode does stat+msg */
   1310 				m_freem(m);
   1311 				goto bad;
   1312 			}
   1313 			if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
   1314 			    (m->m_flags & M_PWR_SAV) == 0) {
   1315 				/*
   1316 				 * Station in power save mode; pass the frame
   1317 				 * to the 802.11 layer and continue.  We'll get
   1318 				 * the frame back when the time is right.
   1319 				 */
   1320 				ieee80211_pwrsave(ic, ni, m);
   1321 				goto reclaim;
   1322 			}
   1323 			/* calculate priority so we can find the tx queue */
   1324 			if (ieee80211_classify(ic, m, ni)) {
   1325 				DPRINTF(sc, ATH_DEBUG_XMIT,
   1326 					"%s: discard, classification failure\n",
   1327 					__func__);
   1328 				m_freem(m);
   1329 				goto bad;
   1330 			}
   1331 			ifp->if_opackets++;
   1332 
   1333 #if NBPFILTER > 0
   1334 			if (ifp->if_bpf)
   1335 				bpf_mtap(ifp->if_bpf, m);
   1336 #endif
   1337 			/*
   1338 			 * Encapsulate the packet in prep for transmission.
   1339 			 */
   1340 			m = ieee80211_encap(ic, m, ni);
   1341 			if (m == NULL) {
   1342 				DPRINTF(sc, ATH_DEBUG_XMIT,
   1343 					"%s: encapsulation failure\n",
   1344 					__func__);
   1345 				sc->sc_stats.ast_tx_encap++;
   1346 				goto bad;
   1347 			}
   1348 		} else {
   1349 			/*
   1350 			 * Hack!  The referenced node pointer is in the
   1351 			 * rcvif field of the packet header.  This is
   1352 			 * placed there by ieee80211_mgmt_output because
   1353 			 * we need to hold the reference with the frame
   1354 			 * and there's no other way (other than packet
   1355 			 * tags which we consider too expensive to use)
   1356 			 * to pass it along.
   1357 			 */
   1358 			ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
   1359 			m->m_pkthdr.rcvif = NULL;
   1360 
   1361 			wh = mtod(m, struct ieee80211_frame *);
   1362 			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
   1363 			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
   1364 				/* fill time stamp */
   1365 				u_int64_t tsf;
   1366 				u_int32_t *tstamp;
   1367 
   1368 				tsf = ath_hal_gettsf64(ah);
   1369 				/* XXX: adjust 100us delay to xmit */
   1370 				tsf += 100;
   1371 				tstamp = (u_int32_t *)&wh[1];
   1372 				tstamp[0] = htole32(tsf & 0xffffffff);
   1373 				tstamp[1] = htole32(tsf >> 32);
   1374 			}
   1375 			sc->sc_stats.ast_tx_mgmt++;
   1376 		}
   1377 
   1378 		if (ath_tx_start(sc, ni, bf, m)) {
   1379 	bad:
   1380 			ifp->if_oerrors++;
   1381 	reclaim:
   1382 			ATH_TXBUF_LOCK(sc);
   1383 			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1384 			ATH_TXBUF_UNLOCK(sc);
   1385 			if (ni != NULL)
   1386 				ieee80211_free_node(ni);
   1387 			continue;
   1388 		}
   1389 
   1390 		sc->sc_tx_timer = 5;
   1391 		ifp->if_timer = 1;
   1392 	}
   1393 }
   1394 
   1395 static int
   1396 ath_media_change(struct ifnet *ifp)
   1397 {
   1398 #define	IS_UP(ifp) \
   1399 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
   1400 	int error;
   1401 
   1402 	error = ieee80211_media_change(ifp);
   1403 	if (error == ENETRESET) {
   1404 		if (IS_UP(ifp))
   1405 			ath_init(ifp->if_softc);	/* XXX lose error */
   1406 		error = 0;
   1407 	}
   1408 	return error;
   1409 #undef IS_UP
   1410 }
   1411 
   1412 #ifdef AR_DEBUG
   1413 static void
   1414 ath_keyprint(const char *tag, u_int ix,
   1415 	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
   1416 {
   1417 	static const char *ciphers[] = {
   1418 		"WEP",
   1419 		"AES-OCB",
   1420 		"AES-CCM",
   1421 		"CKIP",
   1422 		"TKIP",
   1423 		"CLR",
   1424 	};
   1425 	int i, n;
   1426 
   1427 	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
   1428 	for (i = 0, n = hk->kv_len; i < n; i++)
   1429 		printf("%02x", hk->kv_val[i]);
   1430 	printf(" mac %s", ether_sprintf(mac));
   1431 	if (hk->kv_type == HAL_CIPHER_TKIP) {
   1432 		printf(" mic ");
   1433 		for (i = 0; i < sizeof(hk->kv_mic); i++)
   1434 			printf("%02x", hk->kv_mic[i]);
   1435 	}
   1436 	printf("\n");
   1437 }
   1438 #endif
   1439 
   1440 /*
   1441  * Set a TKIP key into the hardware.  This handles the
   1442  * potential distribution of key state to multiple key
   1443  * cache slots for TKIP.
   1444  */
   1445 static int
   1446 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
   1447 	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
   1448 {
   1449 #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
   1450 	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
   1451 	struct ath_hal *ah = sc->sc_ah;
   1452 
   1453 	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
   1454 		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
   1455 	KASSERT(sc->sc_splitmic, ("key cache !split"));
   1456 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
   1457 		/*
   1458 		 * TX key goes at first index, RX key at the rx index.
   1459 		 * The hal handles the MIC keys at index+64.
   1460 		 */
   1461 		memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
   1462 		KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
   1463 		if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
   1464 			return 0;
   1465 
   1466 		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
   1467 		KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
   1468 		/* XXX delete tx key on failure? */
   1469 		return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
   1470 	} else if (k->wk_flags & IEEE80211_KEY_XR) {
   1471 		/*
   1472 		 * TX/RX key goes at first index.
   1473 		 * The hal handles the MIC keys are index+64.
   1474 		 */
   1475 		memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
   1476 			k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
   1477 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
   1478 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
   1479 	}
   1480 	return 0;
   1481 #undef IEEE80211_KEY_XR
   1482 }
   1483 
   1484 /*
   1485  * Set a net80211 key into the hardware.  This handles the
   1486  * potential distribution of key state to multiple key
   1487  * cache slots for TKIP with hardware MIC support.
   1488  */
   1489 static int
   1490 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
   1491 	const u_int8_t mac0[IEEE80211_ADDR_LEN],
   1492 	struct ieee80211_node *bss)
   1493 {
   1494 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1495 	static const u_int8_t ciphermap[] = {
   1496 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
   1497 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
   1498 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
   1499 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
   1500 		(u_int8_t) -1,		/* 4 is not allocated */
   1501 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
   1502 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
   1503 	};
   1504 	struct ath_hal *ah = sc->sc_ah;
   1505 	const struct ieee80211_cipher *cip = k->wk_cipher;
   1506 	u_int8_t gmac[IEEE80211_ADDR_LEN];
   1507 	const u_int8_t *mac;
   1508 	HAL_KEYVAL hk;
   1509 
   1510 	memset(&hk, 0, sizeof(hk));
   1511 	/*
   1512 	 * Software crypto uses a "clear key" so non-crypto
   1513 	 * state kept in the key cache are maintained and
   1514 	 * so that rx frames have an entry to match.
   1515 	 */
   1516 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
   1517 		KASSERT(cip->ic_cipher < N(ciphermap),
   1518 			("invalid cipher type %u", cip->ic_cipher));
   1519 		hk.kv_type = ciphermap[cip->ic_cipher];
   1520 		hk.kv_len = k->wk_keylen;
   1521 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
   1522 	} else
   1523 		hk.kv_type = HAL_CIPHER_CLR;
   1524 
   1525 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
   1526 		/*
   1527 		 * Group keys on hardware that supports multicast frame
   1528 		 * key search use a mac that is the sender's address with
   1529 		 * the high bit set instead of the app-specified address.
   1530 		 */
   1531 		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
   1532 		gmac[0] |= 0x80;
   1533 		mac = gmac;
   1534 	} else
   1535 		mac = mac0;
   1536 
   1537 	if (hk.kv_type == HAL_CIPHER_TKIP &&
   1538 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
   1539 	    sc->sc_splitmic) {
   1540 		return ath_keyset_tkip(sc, k, &hk, mac);
   1541 	} else {
   1542 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
   1543 		return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
   1544 	}
   1545 #undef N
   1546 }
   1547 
   1548 /*
   1549  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
   1550  * each key, one for decrypt/encrypt and the other for the MIC.
   1551  */
   1552 static u_int16_t
   1553 key_alloc_2pair(struct ath_softc *sc,
   1554 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
   1555 {
   1556 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1557 	u_int i, keyix;
   1558 
   1559 	KASSERT(sc->sc_splitmic, ("key cache !split"));
   1560 	/* XXX could optimize */
   1561 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
   1562 		u_int8_t b = sc->sc_keymap[i];
   1563 		if (b != 0xff) {
   1564 			/*
   1565 			 * One or more slots in this byte are free.
   1566 			 */
   1567 			keyix = i*NBBY;
   1568 			while (b & 1) {
   1569 		again:
   1570 				keyix++;
   1571 				b >>= 1;
   1572 			}
   1573 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
   1574 			if (isset(sc->sc_keymap, keyix+32) ||
   1575 			    isset(sc->sc_keymap, keyix+64) ||
   1576 			    isset(sc->sc_keymap, keyix+32+64)) {
   1577 				/* full pair unavailable */
   1578 				/* XXX statistic */
   1579 				if (keyix == (i+1)*NBBY) {
   1580 					/* no slots were appropriate, advance */
   1581 					continue;
   1582 				}
   1583 				goto again;
   1584 			}
   1585 			setbit(sc->sc_keymap, keyix);
   1586 			setbit(sc->sc_keymap, keyix+64);
   1587 			setbit(sc->sc_keymap, keyix+32);
   1588 			setbit(sc->sc_keymap, keyix+32+64);
   1589 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
   1590 				"%s: key pair %u,%u %u,%u\n",
   1591 				__func__, keyix, keyix+64,
   1592 				keyix+32, keyix+32+64);
   1593 			*txkeyix = keyix;
   1594 			*rxkeyix = keyix+32;
   1595 			return 1;
   1596 		}
   1597 	}
   1598 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
   1599 	return 0;
   1600 #undef N
   1601 }
   1602 
   1603 /*
   1604  * Allocate a single key cache slot.
   1605  */
   1606 static int
   1607 key_alloc_single(struct ath_softc *sc,
   1608 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
   1609 {
   1610 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1611 	u_int i, keyix;
   1612 
   1613 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
   1614 	for (i = 0; i < N(sc->sc_keymap); i++) {
   1615 		u_int8_t b = sc->sc_keymap[i];
   1616 		if (b != 0xff) {
   1617 			/*
   1618 			 * One or more slots are free.
   1619 			 */
   1620 			keyix = i*NBBY;
   1621 			while (b & 1)
   1622 				keyix++, b >>= 1;
   1623 			setbit(sc->sc_keymap, keyix);
   1624 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
   1625 				__func__, keyix);
   1626 			*txkeyix = *rxkeyix = keyix;
   1627 			return 1;
   1628 		}
   1629 	}
   1630 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
   1631 	return 0;
   1632 #undef N
   1633 }
   1634 
   1635 /*
   1636  * Allocate one or more key cache slots for a uniacst key.  The
   1637  * key itself is needed only to identify the cipher.  For hardware
   1638  * TKIP with split cipher+MIC keys we allocate two key cache slot
   1639  * pairs so that we can setup separate TX and RX MIC keys.  Note
   1640  * that the MIC key for a TKIP key at slot i is assumed by the
   1641  * hardware to be at slot i+64.  This limits TKIP keys to the first
   1642  * 64 entries.
   1643  */
   1644 static int
   1645 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
   1646 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
   1647 {
   1648 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1649 
   1650 	/*
   1651 	 * Group key allocation must be handled specially for
   1652 	 * parts that do not support multicast key cache search
   1653 	 * functionality.  For those parts the key id must match
   1654 	 * the h/w key index so lookups find the right key.  On
   1655 	 * parts w/ the key search facility we install the sender's
   1656 	 * mac address (with the high bit set) and let the hardware
   1657 	 * find the key w/o using the key id.  This is preferred as
   1658 	 * it permits us to support multiple users for adhoc and/or
   1659 	 * multi-station operation.
   1660 	 */
   1661 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
   1662 		if (!(&ic->ic_nw_keys[0] <= k &&
   1663 		      k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
   1664 			/* should not happen */
   1665 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
   1666 				"%s: bogus group key\n", __func__);
   1667 			return 0;
   1668 		}
   1669 		/*
   1670 		 * XXX we pre-allocate the global keys so
   1671 		 * have no way to check if they've already been allocated.
   1672 		 */
   1673 		*keyix = *rxkeyix = k - ic->ic_nw_keys;
   1674 		return 1;
   1675 	}
   1676 
   1677 	/*
   1678 	 * We allocate two pair for TKIP when using the h/w to do
   1679 	 * the MIC.  For everything else, including software crypto,
   1680 	 * we allocate a single entry.  Note that s/w crypto requires
   1681 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
   1682 	 * not support pass-through cache entries and we map all
   1683 	 * those requests to slot 0.
   1684 	 */
   1685 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
   1686 		return key_alloc_single(sc, keyix, rxkeyix);
   1687 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1688 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
   1689 		return key_alloc_2pair(sc, keyix, rxkeyix);
   1690 	} else {
   1691 		return key_alloc_single(sc, keyix, rxkeyix);
   1692 	}
   1693 }
   1694 
   1695 /*
   1696  * Delete an entry in the key cache allocated by ath_key_alloc.
   1697  */
   1698 static int
   1699 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
   1700 {
   1701 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1702 	struct ath_hal *ah = sc->sc_ah;
   1703 	const struct ieee80211_cipher *cip = k->wk_cipher;
   1704 	u_int keyix = k->wk_keyix;
   1705 
   1706 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
   1707 
   1708 	ath_hal_keyreset(ah, keyix);
   1709 	/*
   1710 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
   1711 	 */
   1712 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1713 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
   1714 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
   1715 	if (keyix >= IEEE80211_WEP_NKID) {
   1716 		/*
   1717 		 * Don't touch keymap entries for global keys so
   1718 		 * they are never considered for dynamic allocation.
   1719 		 */
   1720 		clrbit(sc->sc_keymap, keyix);
   1721 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1722 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
   1723 		    sc->sc_splitmic) {
   1724 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
   1725 			clrbit(sc->sc_keymap, keyix+32);	/* RX key */
   1726 			clrbit(sc->sc_keymap, keyix+32+64);	/* RX key MIC */
   1727 		}
   1728 	}
   1729 	return 1;
   1730 }
   1731 
   1732 /*
   1733  * Set the key cache contents for the specified key.  Key cache
   1734  * slot(s) must already have been allocated by ath_key_alloc.
   1735  */
   1736 static int
   1737 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
   1738 	const u_int8_t mac[IEEE80211_ADDR_LEN])
   1739 {
   1740 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1741 
   1742 	return ath_keyset(sc, k, mac, ic->ic_bss);
   1743 }
   1744 
   1745 /*
   1746  * Block/unblock tx+rx processing while a key change is done.
   1747  * We assume the caller serializes key management operations
   1748  * so we only need to worry about synchronization with other
   1749  * uses that originate in the driver.
   1750  */
   1751 static void
   1752 ath_key_update_begin(struct ieee80211com *ic)
   1753 {
   1754 	struct ifnet *ifp = ic->ic_ifp;
   1755 	struct ath_softc *sc = ifp->if_softc;
   1756 
   1757 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
   1758 #if 0
   1759 	tasklet_disable(&sc->sc_rxtq);
   1760 #endif
   1761 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
   1762 }
   1763 
   1764 static void
   1765 ath_key_update_end(struct ieee80211com *ic)
   1766 {
   1767 	struct ifnet *ifp = ic->ic_ifp;
   1768 	struct ath_softc *sc = ifp->if_softc;
   1769 
   1770 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
   1771 	IF_UNLOCK(&ifp->if_snd);
   1772 #if 0
   1773 	tasklet_enable(&sc->sc_rxtq);
   1774 #endif
   1775 }
   1776 
   1777 /*
   1778  * Calculate the receive filter according to the
   1779  * operating mode and state:
   1780  *
   1781  * o always accept unicast, broadcast, and multicast traffic
   1782  * o maintain current state of phy error reception (the hal
   1783  *   may enable phy error frames for noise immunity work)
   1784  * o probe request frames are accepted only when operating in
   1785  *   hostap, adhoc, or monitor modes
   1786  * o enable promiscuous mode according to the interface state
   1787  * o accept beacons:
   1788  *   - when operating in adhoc mode so the 802.11 layer creates
   1789  *     node table entries for peers,
   1790  *   - when operating in station mode for collecting rssi data when
   1791  *     the station is otherwise quiet, or
   1792  *   - when scanning
   1793  */
   1794 static u_int32_t
   1795 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
   1796 {
   1797 	struct ieee80211com *ic = &sc->sc_ic;
   1798 	struct ath_hal *ah = sc->sc_ah;
   1799 	struct ifnet *ifp = &sc->sc_if;
   1800 	u_int32_t rfilt;
   1801 
   1802 	rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
   1803 	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
   1804 	if (ic->ic_opmode != IEEE80211_M_STA)
   1805 		rfilt |= HAL_RX_FILTER_PROBEREQ;
   1806 	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
   1807 	    (ifp->if_flags & IFF_PROMISC))
   1808 		rfilt |= HAL_RX_FILTER_PROM;
   1809 	if (ic->ic_opmode == IEEE80211_M_STA ||
   1810 	    ic->ic_opmode == IEEE80211_M_IBSS ||
   1811 	    state == IEEE80211_S_SCAN)
   1812 		rfilt |= HAL_RX_FILTER_BEACON;
   1813 	return rfilt;
   1814 }
   1815 
   1816 static void
   1817 ath_mcastfilter_accum(caddr_t dl, u_int32_t *mfilt)
   1818 {
   1819 	u_int32_t val;
   1820 	u_int8_t pos;
   1821 
   1822 	/* calculate XOR of eight 6bit values */
   1823 	val = LE_READ_4(dl + 0);
   1824 	pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1825 	val = LE_READ_4(dl + 3);
   1826 	pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1827 	pos &= 0x3f;
   1828 	mfilt[pos / 32] |= (1 << (pos % 32));
   1829 }
   1830 
   1831 static void
   1832 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t *mfilt)
   1833 {
   1834 	struct ifnet *ifp = &sc->sc_if;
   1835 	struct ether_multi *enm;
   1836 	struct ether_multistep estep;
   1837 
   1838 	mfilt[0] = mfilt[1] = 0;
   1839 	ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
   1840 	while (enm != NULL) {
   1841 		/* XXX Punt on ranges. */
   1842 		if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
   1843 			mfilt[0] = mfilt[1] = ~((u_int32_t)0);
   1844 			ifp->if_flags |= IFF_ALLMULTI;
   1845 			return;
   1846 		}
   1847 		ath_mcastfilter_accum(enm->enm_addrlo, mfilt);
   1848 		ETHER_NEXT_MULTI(estep, enm);
   1849 	}
   1850 	ifp->if_flags &= ~IFF_ALLMULTI;
   1851 }
   1852 
   1853 static void
   1854 ath_mode_init(struct ath_softc *sc)
   1855 {
   1856 	struct ieee80211com *ic = &sc->sc_ic;
   1857 	struct ath_hal *ah = sc->sc_ah;
   1858 	u_int32_t rfilt, mfilt[2];
   1859 	int i;
   1860 
   1861 	/* configure rx filter */
   1862 	rfilt = ath_calcrxfilter(sc, ic->ic_state);
   1863 	ath_hal_setrxfilter(ah, rfilt);
   1864 
   1865 	/* configure operational mode */
   1866 	ath_hal_setopmode(ah);
   1867 
   1868 	/* Write keys to hardware; it may have been powered down. */
   1869 	ath_key_update_begin(ic);
   1870 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
   1871 		ath_key_set(ic,
   1872 			    &ic->ic_crypto.cs_nw_keys[i],
   1873 			    ic->ic_myaddr);
   1874 	}
   1875 	ath_key_update_end(ic);
   1876 
   1877 	/*
   1878 	 * Handle any link-level address change.  Note that we only
   1879 	 * need to force ic_myaddr; any other addresses are handled
   1880 	 * as a byproduct of the ifnet code marking the interface
   1881 	 * down then up.
   1882 	 *
   1883 	 * XXX should get from lladdr instead of arpcom but that's more work
   1884 	 */
   1885 	IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(sc->sc_if.if_sadl));
   1886 	ath_hal_setmac(ah, ic->ic_myaddr);
   1887 
   1888 	/* calculate and install multicast filter */
   1889 #ifdef __FreeBSD__
   1890 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   1891 		mfilt[0] = mfilt[1] = 0;
   1892 		IF_ADDR_LOCK(ifp);
   1893 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
   1894 			caddr_t dl;
   1895 
   1896 			/* calculate XOR of eight 6bit values */
   1897 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
   1898 			val = LE_READ_4(dl + 0);
   1899 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1900 			val = LE_READ_4(dl + 3);
   1901 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1902 			pos &= 0x3f;
   1903 			mfilt[pos / 32] |= (1 << (pos % 32));
   1904 		}
   1905 		IF_ADDR_UNLOCK(ifp);
   1906 	} else {
   1907 		mfilt[0] = mfilt[1] = ~0;
   1908 	}
   1909 #endif
   1910 #ifdef __NetBSD__
   1911 	ath_mcastfilter_compute(sc, mfilt);
   1912 #endif
   1913 	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
   1914 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
   1915 		__func__, rfilt, mfilt[0], mfilt[1]);
   1916 }
   1917 
   1918 /*
   1919  * Set the slot time based on the current setting.
   1920  */
   1921 static void
   1922 ath_setslottime(struct ath_softc *sc)
   1923 {
   1924 	struct ieee80211com *ic = &sc->sc_ic;
   1925 	struct ath_hal *ah = sc->sc_ah;
   1926 
   1927 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   1928 		ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
   1929 	else
   1930 		ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
   1931 	sc->sc_updateslot = OK;
   1932 }
   1933 
   1934 /*
   1935  * Callback from the 802.11 layer to update the
   1936  * slot time based on the current setting.
   1937  */
   1938 static void
   1939 ath_updateslot(struct ifnet *ifp)
   1940 {
   1941 	struct ath_softc *sc = ifp->if_softc;
   1942 	struct ieee80211com *ic = &sc->sc_ic;
   1943 
   1944 	/*
   1945 	 * When not coordinating the BSS, change the hardware
   1946 	 * immediately.  For other operation we defer the change
   1947 	 * until beacon updates have propagated to the stations.
   1948 	 */
   1949 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
   1950 		sc->sc_updateslot = UPDATE;
   1951 	else
   1952 		ath_setslottime(sc);
   1953 }
   1954 
   1955 /*
   1956  * Setup a h/w transmit queue for beacons.
   1957  */
   1958 static int
   1959 ath_beaconq_setup(struct ath_hal *ah)
   1960 {
   1961 	HAL_TXQ_INFO qi;
   1962 
   1963 	memset(&qi, 0, sizeof(qi));
   1964 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
   1965 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
   1966 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
   1967 	/* NB: for dynamic turbo, don't enable any other interrupts */
   1968 	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
   1969 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
   1970 }
   1971 
   1972 /*
   1973  * Setup the transmit queue parameters for the beacon queue.
   1974  */
   1975 static int
   1976 ath_beaconq_config(struct ath_softc *sc)
   1977 {
   1978 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
   1979 	struct ieee80211com *ic = &sc->sc_ic;
   1980 	struct ath_hal *ah = sc->sc_ah;
   1981 	HAL_TXQ_INFO qi;
   1982 
   1983 	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
   1984 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   1985 		/*
   1986 		 * Always burst out beacon and CAB traffic.
   1987 		 */
   1988 		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
   1989 		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
   1990 		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
   1991 	} else {
   1992 		struct wmeParams *wmep =
   1993 			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
   1994 		/*
   1995 		 * Adhoc mode; important thing is to use 2x cwmin.
   1996 		 */
   1997 		qi.tqi_aifs = wmep->wmep_aifsn;
   1998 		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
   1999 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
   2000 	}
   2001 
   2002 	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
   2003 		device_printf(sc->sc_dev, "unable to update parameters for "
   2004 			"beacon hardware queue!\n");
   2005 		return 0;
   2006 	} else {
   2007 		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
   2008 		return 1;
   2009 	}
   2010 #undef ATH_EXPONENT_TO_VALUE
   2011 }
   2012 
   2013 /*
   2014  * Allocate and setup an initial beacon frame.
   2015  */
   2016 static int
   2017 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
   2018 {
   2019 	struct ieee80211com *ic = ni->ni_ic;
   2020 	struct ath_buf *bf;
   2021 	struct mbuf *m;
   2022 	int error;
   2023 
   2024 	bf = STAILQ_FIRST(&sc->sc_bbuf);
   2025 	if (bf == NULL) {
   2026 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
   2027 		sc->sc_stats.ast_be_nombuf++;	/* XXX */
   2028 		return ENOMEM;			/* XXX */
   2029 	}
   2030 	/*
   2031 	 * NB: the beacon data buffer must be 32-bit aligned;
   2032 	 * we assume the mbuf routines will return us something
   2033 	 * with this alignment (perhaps should assert).
   2034 	 */
   2035 	m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
   2036 	if (m == NULL) {
   2037 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
   2038 			__func__);
   2039 		sc->sc_stats.ast_be_nombuf++;
   2040 		return ENOMEM;
   2041 	}
   2042 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
   2043 				     BUS_DMA_NOWAIT);
   2044 	if (error == 0) {
   2045 		bf->bf_m = m;
   2046 		bf->bf_node = ieee80211_ref_node(ni);
   2047 	} else {
   2048 		m_freem(m);
   2049 	}
   2050 	return error;
   2051 }
   2052 
   2053 /*
   2054  * Setup the beacon frame for transmit.
   2055  */
   2056 static void
   2057 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
   2058 {
   2059 #define	USE_SHPREAMBLE(_ic) \
   2060 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
   2061 		== IEEE80211_F_SHPREAMBLE)
   2062 	struct ieee80211_node *ni = bf->bf_node;
   2063 	struct ieee80211com *ic = ni->ni_ic;
   2064 	struct mbuf *m = bf->bf_m;
   2065 	struct ath_hal *ah = sc->sc_ah;
   2066 	struct ath_desc *ds;
   2067 	int flags, antenna;
   2068 	const HAL_RATE_TABLE *rt;
   2069 	u_int8_t rix, rate;
   2070 
   2071 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
   2072 		__func__, m, m->m_len);
   2073 
   2074 	/* setup descriptors */
   2075 	ds = bf->bf_desc;
   2076 
   2077 	flags = HAL_TXDESC_NOACK;
   2078 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
   2079 		ds->ds_link = HTOAH32(bf->bf_daddr);	/* self-linked */
   2080 		flags |= HAL_TXDESC_VEOL;
   2081 		/*
   2082 		 * Let hardware handle antenna switching unless
   2083 		 * the user has selected a transmit antenna
   2084 		 * (sc_txantenna is not 0).
   2085 		 */
   2086 		antenna = sc->sc_txantenna;
   2087 	} else {
   2088 		ds->ds_link = 0;
   2089 		/*
   2090 		 * Switch antenna every 4 beacons, unless the user
   2091 		 * has selected a transmit antenna (sc_txantenna
   2092 		 * is not 0).
   2093 		 *
   2094 		 * XXX assumes two antenna
   2095 		 */
   2096 		if (sc->sc_txantenna == 0)
   2097 			antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
   2098 		else
   2099 			antenna = sc->sc_txantenna;
   2100 	}
   2101 
   2102 	KASSERT(bf->bf_nseg == 1,
   2103 		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
   2104 	ds->ds_data = bf->bf_segs[0].ds_addr;
   2105 	/*
   2106 	 * Calculate rate code.
   2107 	 * XXX everything at min xmit rate
   2108 	 */
   2109 	rix = sc->sc_minrateix;
   2110 	rt = sc->sc_currates;
   2111 	rate = rt->info[rix].rateCode;
   2112 	if (USE_SHPREAMBLE(ic))
   2113 		rate |= rt->info[rix].shortPreamble;
   2114 	ath_hal_setuptxdesc(ah, ds
   2115 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
   2116 		, sizeof(struct ieee80211_frame)/* header length */
   2117 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
   2118 		, ni->ni_txpower		/* txpower XXX */
   2119 		, rate, 1			/* series 0 rate/tries */
   2120 		, HAL_TXKEYIX_INVALID		/* no encryption */
   2121 		, antenna			/* antenna mode */
   2122 		, flags				/* no ack, veol for beacons */
   2123 		, 0				/* rts/cts rate */
   2124 		, 0				/* rts/cts duration */
   2125 	);
   2126 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
   2127 	ath_hal_filltxdesc(ah, ds
   2128 		, roundup(m->m_len, 4)		/* buffer length */
   2129 		, AH_TRUE			/* first segment */
   2130 		, AH_TRUE			/* last segment */
   2131 		, ds				/* first descriptor */
   2132 	);
   2133 
   2134 	/* NB: The desc swap function becomes void,
   2135 	 * if descriptor swapping is not enabled
   2136 	 */
   2137 	ath_desc_swap(ds);
   2138 
   2139 #undef USE_SHPREAMBLE
   2140 }
   2141 
   2142 /*
   2143  * Transmit a beacon frame at SWBA.  Dynamic updates to the
   2144  * frame contents are done as needed and the slot time is
   2145  * also adjusted based on current state.
   2146  */
   2147 static void
   2148 ath_beacon_proc(void *arg, int pending)
   2149 {
   2150 	struct ath_softc *sc = arg;
   2151 	struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
   2152 	struct ieee80211_node *ni = bf->bf_node;
   2153 	struct ieee80211com *ic = ni->ni_ic;
   2154 	struct ath_hal *ah = sc->sc_ah;
   2155 	struct mbuf *m;
   2156 	int ncabq, error, otherant;
   2157 
   2158 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
   2159 		__func__, pending);
   2160 
   2161 	if (ic->ic_opmode == IEEE80211_M_STA ||
   2162 	    ic->ic_opmode == IEEE80211_M_MONITOR ||
   2163 	    bf == NULL || bf->bf_m == NULL) {
   2164 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
   2165 			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
   2166 		return;
   2167 	}
   2168 	/*
   2169 	 * Check if the previous beacon has gone out.  If
   2170 	 * not don't try to post another, skip this period
   2171 	 * and wait for the next.  Missed beacons indicate
   2172 	 * a problem and should not occur.  If we miss too
   2173 	 * many consecutive beacons reset the device.
   2174 	 */
   2175 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
   2176 		sc->sc_bmisscount++;
   2177 		DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
   2178 			"%s: missed %u consecutive beacons\n",
   2179 			__func__, sc->sc_bmisscount);
   2180 		if (sc->sc_bmisscount > 3)		/* NB: 3 is a guess */
   2181 			TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask);
   2182 		return;
   2183 	}
   2184 	if (sc->sc_bmisscount != 0) {
   2185 		DPRINTF(sc, ATH_DEBUG_BEACON,
   2186 			"%s: resume beacon xmit after %u misses\n",
   2187 			__func__, sc->sc_bmisscount);
   2188 		sc->sc_bmisscount = 0;
   2189 	}
   2190 
   2191 	/*
   2192 	 * Update dynamic beacon contents.  If this returns
   2193 	 * non-zero then we need to remap the memory because
   2194 	 * the beacon frame changed size (probably because
   2195 	 * of the TIM bitmap).
   2196 	 */
   2197 	m = bf->bf_m;
   2198 	ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
   2199 	if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
   2200 		/* XXX too conservative? */
   2201 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   2202 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
   2203 					     BUS_DMA_NOWAIT);
   2204 		if (error != 0) {
   2205 			if_printf(&sc->sc_if,
   2206 			    "%s: bus_dmamap_load_mbuf failed, error %u\n",
   2207 			    __func__, error);
   2208 			return;
   2209 		}
   2210 	}
   2211 
   2212 	/*
   2213 	 * Handle slot time change when a non-ERP station joins/leaves
   2214 	 * an 11g network.  The 802.11 layer notifies us via callback,
   2215 	 * we mark updateslot, then wait one beacon before effecting
   2216 	 * the change.  This gives associated stations at least one
   2217 	 * beacon interval to note the state change.
   2218 	 */
   2219 	/* XXX locking */
   2220 	if (sc->sc_updateslot == UPDATE)
   2221 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
   2222 	else if (sc->sc_updateslot == COMMIT)
   2223 		ath_setslottime(sc);		/* commit change to h/w */
   2224 
   2225 	/*
   2226 	 * Check recent per-antenna transmit statistics and flip
   2227 	 * the default antenna if noticeably more frames went out
   2228 	 * on the non-default antenna.
   2229 	 * XXX assumes 2 anntenae
   2230 	 */
   2231 	otherant = sc->sc_defant & 1 ? 2 : 1;
   2232 	if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
   2233 		ath_setdefantenna(sc, otherant);
   2234 	sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
   2235 
   2236 	/*
   2237 	 * Construct tx descriptor.
   2238 	 */
   2239 	ath_beacon_setup(sc, bf);
   2240 
   2241 	/*
   2242 	 * Stop any current dma and put the new frame on the queue.
   2243 	 * This should never fail since we check above that no frames
   2244 	 * are still pending on the queue.
   2245 	 */
   2246 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
   2247 		DPRINTF(sc, ATH_DEBUG_ANY,
   2248 			"%s: beacon queue %u did not stop?\n",
   2249 			__func__, sc->sc_bhalq);
   2250 	}
   2251 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   2252 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2253 
   2254 	/*
   2255 	 * Enable the CAB queue before the beacon queue to
   2256 	 * insure cab frames are triggered by this beacon.
   2257 	 */
   2258 	if (ncabq != 0 && (sc->sc_boff.bo_tim[4] & 1))	/* NB: only at DTIM */
   2259 		ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
   2260 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
   2261 	ath_hal_txstart(ah, sc->sc_bhalq);
   2262 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
   2263 	    "%s: TXDP[%u] = %" PRIx64 " (%p)\n", __func__,
   2264 	    sc->sc_bhalq, (uint64_t)bf->bf_daddr, bf->bf_desc);
   2265 
   2266 	sc->sc_stats.ast_be_xmit++;
   2267 }
   2268 
   2269 /*
   2270  * Reset the hardware after detecting beacons have stopped.
   2271  */
   2272 static void
   2273 ath_bstuck_proc(void *arg, int pending)
   2274 {
   2275 	struct ath_softc *sc = arg;
   2276 	struct ifnet *ifp = &sc->sc_if;
   2277 
   2278 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
   2279 		sc->sc_bmisscount);
   2280 	ath_reset(ifp);
   2281 }
   2282 
   2283 /*
   2284  * Reclaim beacon resources.
   2285  */
   2286 static void
   2287 ath_beacon_free(struct ath_softc *sc)
   2288 {
   2289 	struct ath_buf *bf;
   2290 
   2291 	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
   2292 		if (bf->bf_m != NULL) {
   2293 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   2294 			m_freem(bf->bf_m);
   2295 			bf->bf_m = NULL;
   2296 		}
   2297 		if (bf->bf_node != NULL) {
   2298 			ieee80211_free_node(bf->bf_node);
   2299 			bf->bf_node = NULL;
   2300 		}
   2301 	}
   2302 }
   2303 
   2304 /*
   2305  * Configure the beacon and sleep timers.
   2306  *
   2307  * When operating as an AP this resets the TSF and sets
   2308  * up the hardware to notify us when we need to issue beacons.
   2309  *
   2310  * When operating in station mode this sets up the beacon
   2311  * timers according to the timestamp of the last received
   2312  * beacon and the current TSF, configures PCF and DTIM
   2313  * handling, programs the sleep registers so the hardware
   2314  * will wakeup in time to receive beacons, and configures
   2315  * the beacon miss handling so we'll receive a BMISS
   2316  * interrupt when we stop seeing beacons from the AP
   2317  * we've associated with.
   2318  */
   2319 static void
   2320 ath_beacon_config(struct ath_softc *sc)
   2321 {
   2322 #define	TSF_TO_TU(_h,_l) \
   2323 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
   2324 #define	FUDGE	2
   2325 	struct ath_hal *ah = sc->sc_ah;
   2326 	struct ieee80211com *ic = &sc->sc_ic;
   2327 	struct ieee80211_node *ni = ic->ic_bss;
   2328 	u_int32_t nexttbtt, intval, tsftu;
   2329 	u_int64_t tsf;
   2330 
   2331 	/* extract tstamp from last beacon and convert to TU */
   2332 	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
   2333 			     LE_READ_4(ni->ni_tstamp.data));
   2334 	/* NB: the beacon interval is kept internally in TU's */
   2335 	intval = ni->ni_intval & HAL_BEACON_PERIOD;
   2336 	if (nexttbtt == 0)		/* e.g. for ap mode */
   2337 		nexttbtt = intval;
   2338 	else if (intval)		/* NB: can be 0 for monitor mode */
   2339 		nexttbtt = roundup(nexttbtt, intval);
   2340 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
   2341 		__func__, nexttbtt, intval, ni->ni_intval);
   2342 	if (ic->ic_opmode == IEEE80211_M_STA) {
   2343 		HAL_BEACON_STATE bs;
   2344 		int dtimperiod, dtimcount;
   2345 		int cfpperiod, cfpcount;
   2346 
   2347 		/*
   2348 		 * Setup dtim and cfp parameters according to
   2349 		 * last beacon we received (which may be none).
   2350 		 */
   2351 		dtimperiod = ni->ni_dtim_period;
   2352 		if (dtimperiod <= 0)		/* NB: 0 if not known */
   2353 			dtimperiod = 1;
   2354 		dtimcount = ni->ni_dtim_count;
   2355 		if (dtimcount >= dtimperiod)	/* NB: sanity check */
   2356 			dtimcount = 0;		/* XXX? */
   2357 		cfpperiod = 1;			/* NB: no PCF support yet */
   2358 		cfpcount = 0;
   2359 		/*
   2360 		 * Pull nexttbtt forward to reflect the current
   2361 		 * TSF and calculate dtim+cfp state for the result.
   2362 		 */
   2363 		tsf = ath_hal_gettsf64(ah);
   2364 		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
   2365 		do {
   2366 			nexttbtt += intval;
   2367 			if (--dtimcount < 0) {
   2368 				dtimcount = dtimperiod - 1;
   2369 				if (--cfpcount < 0)
   2370 					cfpcount = cfpperiod - 1;
   2371 			}
   2372 		} while (nexttbtt < tsftu);
   2373 		memset(&bs, 0, sizeof(bs));
   2374 		bs.bs_intval = intval;
   2375 		bs.bs_nexttbtt = nexttbtt;
   2376 		bs.bs_dtimperiod = dtimperiod*intval;
   2377 		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
   2378 		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
   2379 		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
   2380 		bs.bs_cfpmaxduration = 0;
   2381 #if 0
   2382 		/*
   2383 		 * The 802.11 layer records the offset to the DTIM
   2384 		 * bitmap while receiving beacons; use it here to
   2385 		 * enable h/w detection of our AID being marked in
   2386 		 * the bitmap vector (to indicate frames for us are
   2387 		 * pending at the AP).
   2388 		 * XXX do DTIM handling in s/w to WAR old h/w bugs
   2389 		 * XXX enable based on h/w rev for newer chips
   2390 		 */
   2391 		bs.bs_timoffset = ni->ni_timoff;
   2392 #endif
   2393 		/*
   2394 		 * Calculate the number of consecutive beacons to miss
   2395 		 * before taking a BMISS interrupt.  The configuration
   2396 		 * is specified in ms, so we need to convert that to
   2397 		 * TU's and then calculate based on the beacon interval.
   2398 		 * Note that we clamp the result to at most 10 beacons.
   2399 		 */
   2400 		bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
   2401 		if (bs.bs_bmissthreshold > 10)
   2402 			bs.bs_bmissthreshold = 10;
   2403 		else if (bs.bs_bmissthreshold <= 0)
   2404 			bs.bs_bmissthreshold = 1;
   2405 
   2406 		/*
   2407 		 * Calculate sleep duration.  The configuration is
   2408 		 * given in ms.  We insure a multiple of the beacon
   2409 		 * period is used.  Also, if the sleep duration is
   2410 		 * greater than the DTIM period then it makes senses
   2411 		 * to make it a multiple of that.
   2412 		 *
   2413 		 * XXX fixed at 100ms
   2414 		 */
   2415 		bs.bs_sleepduration =
   2416 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
   2417 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
   2418 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
   2419 
   2420 		DPRINTF(sc, ATH_DEBUG_BEACON,
   2421 			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
   2422 			, __func__
   2423 			, tsf, tsftu
   2424 			, bs.bs_intval
   2425 			, bs.bs_nexttbtt
   2426 			, bs.bs_dtimperiod
   2427 			, bs.bs_nextdtim
   2428 			, bs.bs_bmissthreshold
   2429 			, bs.bs_sleepduration
   2430 			, bs.bs_cfpperiod
   2431 			, bs.bs_cfpmaxduration
   2432 			, bs.bs_cfpnext
   2433 			, bs.bs_timoffset
   2434 		);
   2435 		ath_hal_intrset(ah, 0);
   2436 		ath_hal_beacontimers(ah, &bs);
   2437 		sc->sc_imask |= HAL_INT_BMISS;
   2438 		ath_hal_intrset(ah, sc->sc_imask);
   2439 	} else {
   2440 		ath_hal_intrset(ah, 0);
   2441 		if (nexttbtt == intval)
   2442 			intval |= HAL_BEACON_RESET_TSF;
   2443 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
   2444 			/*
   2445 			 * In IBSS mode enable the beacon timers but only
   2446 			 * enable SWBA interrupts if we need to manually
   2447 			 * prepare beacon frames.  Otherwise we use a
   2448 			 * self-linked tx descriptor and let the hardware
   2449 			 * deal with things.
   2450 			 */
   2451 			intval |= HAL_BEACON_ENA;
   2452 			if (!sc->sc_hasveol)
   2453 				sc->sc_imask |= HAL_INT_SWBA;
   2454 			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
   2455 				/*
   2456 				 * Pull nexttbtt forward to reflect
   2457 				 * the current TSF.
   2458 				 */
   2459 				tsf = ath_hal_gettsf64(ah);
   2460 				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
   2461 				do {
   2462 					nexttbtt += intval;
   2463 				} while (nexttbtt < tsftu);
   2464 			}
   2465 			ath_beaconq_config(sc);
   2466 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   2467 			/*
   2468 			 * In AP mode we enable the beacon timers and
   2469 			 * SWBA interrupts to prepare beacon frames.
   2470 			 */
   2471 			intval |= HAL_BEACON_ENA;
   2472 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
   2473 			ath_beaconq_config(sc);
   2474 		}
   2475 		ath_hal_beaconinit(ah, nexttbtt, intval);
   2476 		sc->sc_bmisscount = 0;
   2477 		ath_hal_intrset(ah, sc->sc_imask);
   2478 		/*
   2479 		 * When using a self-linked beacon descriptor in
   2480 		 * ibss mode load it once here.
   2481 		 */
   2482 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
   2483 			ath_beacon_proc(sc, 0);
   2484 	}
   2485 	sc->sc_syncbeacon = 0;
   2486 #undef UNDEF
   2487 #undef TSF_TO_TU
   2488 }
   2489 
   2490 static int
   2491 ath_descdma_setup(struct ath_softc *sc,
   2492 	struct ath_descdma *dd, ath_bufhead *head,
   2493 	const char *name, int nbuf, int ndesc)
   2494 {
   2495 #define	DS2PHYS(_dd, _ds) \
   2496 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
   2497 	struct ifnet *ifp = &sc->sc_if;
   2498 	struct ath_desc *ds;
   2499 	struct ath_buf *bf;
   2500 	int i, bsize, error;
   2501 
   2502 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
   2503 	    __func__, name, nbuf, ndesc);
   2504 
   2505 	dd->dd_name = name;
   2506 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
   2507 
   2508 	/*
   2509 	 * Setup DMA descriptor area.
   2510 	 */
   2511 	dd->dd_dmat = sc->sc_dmat;
   2512 
   2513 	error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE,
   2514 	    0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0);
   2515 
   2516 	if (error != 0) {
   2517 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
   2518 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
   2519 		goto fail0;
   2520 	}
   2521 
   2522 	error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg,
   2523 	    dd->dd_desc_len, (caddr_t *)&dd->dd_desc, BUS_DMA_COHERENT);
   2524 	if (error != 0) {
   2525 		if_printf(ifp, "unable to map %u %s descriptors, error = %u\n",
   2526 		    nbuf * ndesc, dd->dd_name, error);
   2527 		goto fail1;
   2528 	}
   2529 
   2530 	/* allocate descriptors */
   2531 	error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1,
   2532 	    dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap);
   2533 	if (error != 0) {
   2534 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
   2535 			"error %u\n", dd->dd_name, error);
   2536 		goto fail2;
   2537 	}
   2538 
   2539 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc,
   2540 	    dd->dd_desc_len, NULL, BUS_DMA_NOWAIT);
   2541 	if (error != 0) {
   2542 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
   2543 			dd->dd_name, error);
   2544 		goto fail3;
   2545 	}
   2546 
   2547 	ds = dd->dd_desc;
   2548 	dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr;
   2549 	DPRINTF(sc, ATH_DEBUG_RESET,
   2550 	    "%s: %s DMA map: %p (%lu) -> %" PRIx64 " (%lu)\n",
   2551 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
   2552 	    (uint64_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
   2553 
   2554 	/* allocate rx buffers */
   2555 	bsize = sizeof(struct ath_buf) * nbuf;
   2556 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
   2557 	if (bf == NULL) {
   2558 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
   2559 			dd->dd_name, bsize);
   2560 		goto fail4;
   2561 	}
   2562 	dd->dd_bufptr = bf;
   2563 
   2564 	STAILQ_INIT(head);
   2565 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
   2566 		bf->bf_desc = ds;
   2567 		bf->bf_daddr = DS2PHYS(dd, ds);
   2568 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc,
   2569 				MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap);
   2570 		if (error != 0) {
   2571 			if_printf(ifp, "unable to create dmamap for %s "
   2572 				"buffer %u, error %u\n", dd->dd_name, i, error);
   2573 			ath_descdma_cleanup(sc, dd, head);
   2574 			return error;
   2575 		}
   2576 		STAILQ_INSERT_TAIL(head, bf, bf_list);
   2577 	}
   2578 	return 0;
   2579 fail4:
   2580 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
   2581 fail3:
   2582 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
   2583 fail2:
   2584 	bus_dmamem_unmap(dd->dd_dmat, (caddr_t)dd->dd_desc, dd->dd_desc_len);
   2585 fail1:
   2586 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
   2587 fail0:
   2588 	memset(dd, 0, sizeof(*dd));
   2589 	return error;
   2590 #undef DS2PHYS
   2591 }
   2592 
   2593 static void
   2594 ath_descdma_cleanup(struct ath_softc *sc,
   2595 	struct ath_descdma *dd, ath_bufhead *head)
   2596 {
   2597 	struct ath_buf *bf;
   2598 	struct ieee80211_node *ni;
   2599 
   2600 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
   2601 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
   2602 	bus_dmamem_unmap(dd->dd_dmat, (caddr_t)dd->dd_desc, dd->dd_desc_len);
   2603 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
   2604 
   2605 	STAILQ_FOREACH(bf, head, bf_list) {
   2606 		if (bf->bf_m) {
   2607 			m_freem(bf->bf_m);
   2608 			bf->bf_m = NULL;
   2609 		}
   2610 		if (bf->bf_dmamap != NULL) {
   2611 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
   2612 			bf->bf_dmamap = NULL;
   2613 		}
   2614 		ni = bf->bf_node;
   2615 		bf->bf_node = NULL;
   2616 		if (ni != NULL) {
   2617 			/*
   2618 			 * Reclaim node reference.
   2619 			 */
   2620 			ieee80211_free_node(ni);
   2621 		}
   2622 	}
   2623 
   2624 	STAILQ_INIT(head);
   2625 	free(dd->dd_bufptr, M_ATHDEV);
   2626 	memset(dd, 0, sizeof(*dd));
   2627 }
   2628 
   2629 static int
   2630 ath_desc_alloc(struct ath_softc *sc)
   2631 {
   2632 	int error;
   2633 
   2634 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
   2635 			"rx", ath_rxbuf, 1);
   2636 	if (error != 0)
   2637 		return error;
   2638 
   2639 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
   2640 			"tx", ath_txbuf, ATH_TXDESC);
   2641 	if (error != 0) {
   2642 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2643 		return error;
   2644 	}
   2645 
   2646 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
   2647 			"beacon", 1, 1);
   2648 	if (error != 0) {
   2649 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
   2650 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2651 		return error;
   2652 	}
   2653 	return 0;
   2654 }
   2655 
   2656 static void
   2657 ath_desc_free(struct ath_softc *sc)
   2658 {
   2659 
   2660 	if (sc->sc_bdma.dd_desc_len != 0)
   2661 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
   2662 	if (sc->sc_txdma.dd_desc_len != 0)
   2663 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
   2664 	if (sc->sc_rxdma.dd_desc_len != 0)
   2665 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2666 }
   2667 
   2668 static struct ieee80211_node *
   2669 ath_node_alloc(struct ieee80211_node_table *nt)
   2670 {
   2671 	struct ieee80211com *ic = nt->nt_ic;
   2672 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   2673 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
   2674 	struct ath_node *an;
   2675 
   2676 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
   2677 	if (an == NULL) {
   2678 		/* XXX stat+msg */
   2679 		return NULL;
   2680 	}
   2681 	an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
   2682 	ath_rate_node_init(sc, an);
   2683 
   2684 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
   2685 	return &an->an_node;
   2686 }
   2687 
   2688 static void
   2689 ath_node_free(struct ieee80211_node *ni)
   2690 {
   2691 	struct ieee80211com *ic = ni->ni_ic;
   2692         struct ath_softc *sc = ic->ic_ifp->if_softc;
   2693 
   2694 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
   2695 
   2696 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
   2697 	sc->sc_node_free(ni);
   2698 }
   2699 
   2700 static u_int8_t
   2701 ath_node_getrssi(const struct ieee80211_node *ni)
   2702 {
   2703 #define	HAL_EP_RND(x, mul) \
   2704 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
   2705 	u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
   2706 	int32_t rssi;
   2707 
   2708 	/*
   2709 	 * When only one frame is received there will be no state in
   2710 	 * avgrssi so fallback on the value recorded by the 802.11 layer.
   2711 	 */
   2712 	if (avgrssi != ATH_RSSI_DUMMY_MARKER)
   2713 		rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
   2714 	else
   2715 		rssi = ni->ni_rssi;
   2716 	return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
   2717 #undef HAL_EP_RND
   2718 }
   2719 
   2720 static int
   2721 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
   2722 {
   2723 	struct ath_hal *ah = sc->sc_ah;
   2724 	int error;
   2725 	struct mbuf *m;
   2726 	struct ath_desc *ds;
   2727 
   2728 	m = bf->bf_m;
   2729 	if (m == NULL) {
   2730 		/*
   2731 		 * NB: by assigning a page to the rx dma buffer we
   2732 		 * implicitly satisfy the Atheros requirement that
   2733 		 * this buffer be cache-line-aligned and sized to be
   2734 		 * multiple of the cache line size.  Not doing this
   2735 		 * causes weird stuff to happen (for the 5210 at least).
   2736 		 */
   2737 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
   2738 		if (m == NULL) {
   2739 			DPRINTF(sc, ATH_DEBUG_ANY,
   2740 				"%s: no mbuf/cluster\n", __func__);
   2741 			sc->sc_stats.ast_rx_nombuf++;
   2742 			return ENOMEM;
   2743 		}
   2744 		bf->bf_m = m;
   2745 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
   2746 
   2747 		error = bus_dmamap_load_mbuf(sc->sc_dmat,
   2748 					     bf->bf_dmamap, m,
   2749 					     BUS_DMA_NOWAIT);
   2750 		if (error != 0) {
   2751 			DPRINTF(sc, ATH_DEBUG_ANY,
   2752 			    "%s: bus_dmamap_load_mbuf failed; error %d\n",
   2753 			    __func__, error);
   2754 			sc->sc_stats.ast_rx_busdma++;
   2755 			return error;
   2756 		}
   2757 		KASSERT(bf->bf_nseg == 1,
   2758 			("multi-segment packet; nseg %u", bf->bf_nseg));
   2759 	}
   2760 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   2761 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2762 
   2763 	/*
   2764 	 * Setup descriptors.  For receive we always terminate
   2765 	 * the descriptor list with a self-linked entry so we'll
   2766 	 * not get overrun under high load (as can happen with a
   2767 	 * 5212 when ANI processing enables PHY error frames).
   2768 	 *
   2769 	 * To insure the last descriptor is self-linked we create
   2770 	 * each descriptor as self-linked and add it to the end.  As
   2771 	 * each additional descriptor is added the previous self-linked
   2772 	 * entry is ``fixed'' naturally.  This should be safe even
   2773 	 * if DMA is happening.  When processing RX interrupts we
   2774 	 * never remove/process the last, self-linked, entry on the
   2775 	 * descriptor list.  This insures the hardware always has
   2776 	 * someplace to write a new frame.
   2777 	 */
   2778 	ds = bf->bf_desc;
   2779 	ds->ds_link = HTOAH32(bf->bf_daddr);	/* link to self */
   2780 	ds->ds_data = bf->bf_segs[0].ds_addr;
   2781 	ds->ds_vdata = mtod(m, void *);	/* for radar */
   2782 	ath_hal_setuprxdesc(ah, ds
   2783 		, m->m_len		/* buffer size */
   2784 		, 0
   2785 	);
   2786 
   2787 	if (sc->sc_rxlink != NULL)
   2788 		*sc->sc_rxlink = bf->bf_daddr;
   2789 	sc->sc_rxlink = &ds->ds_link;
   2790 	return 0;
   2791 }
   2792 
   2793 /*
   2794  * Extend 15-bit time stamp from rx descriptor to
   2795  * a full 64-bit TSF using the specified TSF.
   2796  */
   2797 static inline u_int64_t
   2798 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
   2799 {
   2800 	if ((tsf & 0x7fff) < rstamp)
   2801 		tsf -= 0x8000;
   2802 	return ((tsf &~ 0x7fff) | rstamp);
   2803 }
   2804 
   2805 /*
   2806  * Intercept management frames to collect beacon rssi data
   2807  * and to do ibss merges.
   2808  */
   2809 static void
   2810 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
   2811 	struct ieee80211_node *ni,
   2812 	int subtype, int rssi, u_int32_t rstamp)
   2813 {
   2814 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   2815 
   2816 	/*
   2817 	 * Call up first so subsequent work can use information
   2818 	 * potentially stored in the node (e.g. for ibss merge).
   2819 	 */
   2820 	sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
   2821 	switch (subtype) {
   2822 	case IEEE80211_FC0_SUBTYPE_BEACON:
   2823 		/* update rssi statistics for use by the hal */
   2824 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
   2825 		if (sc->sc_syncbeacon &&
   2826 		    ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) {
   2827 			/*
   2828 			 * Resync beacon timers using the tsf of the beacon
   2829 			 * frame we just received.
   2830 			 */
   2831 			ath_beacon_config(sc);
   2832 		}
   2833 		/* fall thru... */
   2834 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
   2835 		if (ic->ic_opmode == IEEE80211_M_IBSS &&
   2836 		    ic->ic_state == IEEE80211_S_RUN) {
   2837 			u_int64_t tsf = ath_extend_tsf(rstamp,
   2838 				ath_hal_gettsf64(sc->sc_ah));
   2839 
   2840 			/*
   2841 			 * Handle ibss merge as needed; check the tsf on the
   2842 			 * frame before attempting the merge.  The 802.11 spec
   2843 			 * says the station should change it's bssid to match
   2844 			 * the oldest station with the same ssid, where oldest
   2845 			 * is determined by the tsf.  Note that hardware
   2846 			 * reconfiguration happens through callback to
   2847 			 * ath_newstate as the state machine will go from
   2848 			 * RUN -> RUN when this happens.
   2849 			 */
   2850 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
   2851 				DPRINTF(sc, ATH_DEBUG_STATE,
   2852 				    "ibss merge, rstamp %u tsf %ju "
   2853 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
   2854 				    (uintmax_t)ni->ni_tstamp.tsf);
   2855 				(void) ieee80211_ibss_merge(ni);
   2856 			}
   2857 		}
   2858 		break;
   2859 	}
   2860 }
   2861 
   2862 /*
   2863  * Set the default antenna.
   2864  */
   2865 static void
   2866 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
   2867 {
   2868 	struct ath_hal *ah = sc->sc_ah;
   2869 
   2870 	/* XXX block beacon interrupts */
   2871 	ath_hal_setdefantenna(ah, antenna);
   2872 	if (sc->sc_defant != antenna)
   2873 		sc->sc_stats.ast_ant_defswitch++;
   2874 	sc->sc_defant = antenna;
   2875 	sc->sc_rxotherant = 0;
   2876 }
   2877 
   2878 static void
   2879 ath_rx_proc(void *arg, int npending)
   2880 {
   2881 #define	PA2DESC(_sc, _pa) \
   2882 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
   2883 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
   2884 	struct ath_softc *sc = arg;
   2885 	struct ath_buf *bf;
   2886 	struct ieee80211com *ic = &sc->sc_ic;
   2887 	struct ifnet *ifp = &sc->sc_if;
   2888 	struct ath_hal *ah = sc->sc_ah;
   2889 	struct ath_desc *ds;
   2890 	struct mbuf *m;
   2891 	struct ieee80211_node *ni;
   2892 	struct ath_node *an;
   2893 	int len, type, ngood;
   2894 	u_int phyerr;
   2895 	HAL_STATUS status;
   2896 	int16_t nf;
   2897 	u_int64_t tsf;
   2898 
   2899 	NET_LOCK_GIANT();		/* XXX */
   2900 
   2901 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
   2902 	ngood = 0;
   2903 	nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
   2904 	tsf = ath_hal_gettsf64(ah);
   2905 	do {
   2906 		bf = STAILQ_FIRST(&sc->sc_rxbuf);
   2907 		if (bf == NULL) {		/* NB: shouldn't happen */
   2908 			if_printf(ifp, "%s: no buffer!\n", __func__);
   2909 			break;
   2910 		}
   2911 		ds = bf->bf_desc;
   2912 		if (ds->ds_link == bf->bf_daddr) {
   2913 			/* NB: never process the self-linked entry at the end */
   2914 			break;
   2915 		}
   2916 		m = bf->bf_m;
   2917 		if (m == NULL) {		/* NB: shouldn't happen */
   2918 			if_printf(ifp, "%s: no mbuf!\n", __func__);
   2919 			break;
   2920 		}
   2921 		/* XXX sync descriptor memory */
   2922 		/*
   2923 		 * Must provide the virtual address of the current
   2924 		 * descriptor, the physical address, and the virtual
   2925 		 * address of the next descriptor in the h/w chain.
   2926 		 * This allows the HAL to look ahead to see if the
   2927 		 * hardware is done with a descriptor by checking the
   2928 		 * done bit in the following descriptor and the address
   2929 		 * of the current descriptor the DMA engine is working
   2930 		 * on.  All this is necessary because of our use of
   2931 		 * a self-linked list to avoid rx overruns.
   2932 		 */
   2933 		status = ath_hal_rxprocdesc(ah, ds,
   2934 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
   2935 #ifdef AR_DEBUG
   2936 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
   2937 			ath_printrxbuf(bf, status == HAL_OK);
   2938 #endif
   2939 		if (status == HAL_EINPROGRESS)
   2940 			break;
   2941 		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
   2942 		if (ds->ds_rxstat.rs_more) {
   2943 			/*
   2944 			 * Frame spans multiple descriptors; this
   2945 			 * cannot happen yet as we don't support
   2946 			 * jumbograms.  If not in monitor mode,
   2947 			 * discard the frame.
   2948 			 */
   2949 			if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   2950 				sc->sc_stats.ast_rx_toobig++;
   2951 				goto rx_next;
   2952 			}
   2953 			/* fall thru for monitor mode handling... */
   2954 		} else if (ds->ds_rxstat.rs_status != 0) {
   2955 			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
   2956 				sc->sc_stats.ast_rx_crcerr++;
   2957 			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
   2958 				sc->sc_stats.ast_rx_fifoerr++;
   2959 			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
   2960 				sc->sc_stats.ast_rx_phyerr++;
   2961 				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
   2962 				sc->sc_stats.ast_rx_phy[phyerr]++;
   2963 				goto rx_next;
   2964 			}
   2965 			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
   2966 				/*
   2967 				 * Decrypt error.  If the error occurred
   2968 				 * because there was no hardware key, then
   2969 				 * let the frame through so the upper layers
   2970 				 * can process it.  This is necessary for 5210
   2971 				 * parts which have no way to setup a ``clear''
   2972 				 * key cache entry.
   2973 				 *
   2974 				 * XXX do key cache faulting
   2975 				 */
   2976 				if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
   2977 					goto rx_accept;
   2978 				sc->sc_stats.ast_rx_badcrypt++;
   2979 			}
   2980 			if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
   2981 				sc->sc_stats.ast_rx_badmic++;
   2982 				/*
   2983 				 * Do minimal work required to hand off
   2984 				 * the 802.11 header for notifcation.
   2985 				 */
   2986 				/* XXX frag's and qos frames */
   2987 				len = ds->ds_rxstat.rs_datalen;
   2988 				if (len >= sizeof (struct ieee80211_frame)) {
   2989 					bus_dmamap_sync(sc->sc_dmat,
   2990 					    bf->bf_dmamap,
   2991 					    0, bf->bf_dmamap->dm_mapsize,
   2992 					    BUS_DMASYNC_POSTREAD);
   2993 					ieee80211_notify_michael_failure(ic,
   2994 					    mtod(m, struct ieee80211_frame *),
   2995 					    sc->sc_splitmic ?
   2996 					        ds->ds_rxstat.rs_keyix-32 :
   2997 					        ds->ds_rxstat.rs_keyix
   2998 					);
   2999 				}
   3000 			}
   3001 			ifp->if_ierrors++;
   3002 			/*
   3003 			 * Reject error frames, we normally don't want
   3004 			 * to see them in monitor mode (in monitor mode
   3005 			 * allow through packets that have crypto problems).
   3006 			 */
   3007 			if ((ds->ds_rxstat.rs_status &~
   3008 				(HAL_RXERR_DECRYPT|HAL_RXERR_MIC)) ||
   3009 			    sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
   3010 				goto rx_next;
   3011 		}
   3012 rx_accept:
   3013 		/*
   3014 		 * Sync and unmap the frame.  At this point we're
   3015 		 * committed to passing the mbuf somewhere so clear
   3016 		 * bf_m; this means a new sk_buff must be allocated
   3017 		 * when the rx descriptor is setup again to receive
   3018 		 * another frame.
   3019 		 */
   3020 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
   3021 		    0, bf->bf_dmamap->dm_mapsize,
   3022 		    BUS_DMASYNC_POSTREAD);
   3023 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   3024 		bf->bf_m = NULL;
   3025 
   3026 		m->m_pkthdr.rcvif = ifp;
   3027 		len = ds->ds_rxstat.rs_datalen;
   3028 		m->m_pkthdr.len = m->m_len = len;
   3029 
   3030 		sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
   3031 
   3032 #if NBPFILTER > 0
   3033 		if (sc->sc_drvbpf) {
   3034 			u_int8_t rix;
   3035 
   3036 			/*
   3037 			 * Discard anything shorter than an ack or cts.
   3038 			 */
   3039 			if (len < IEEE80211_ACK_LEN) {
   3040 				DPRINTF(sc, ATH_DEBUG_RECV,
   3041 					"%s: runt packet %d\n",
   3042 					__func__, len);
   3043 				sc->sc_stats.ast_rx_tooshort++;
   3044 				m_freem(m);
   3045 				goto rx_next;
   3046 			}
   3047 			rix = ds->ds_rxstat.rs_rate;
   3048 			sc->sc_rx_th.wr_tsf = htole64(
   3049 				ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf));
   3050 			sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
   3051 			sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
   3052 			sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf;
   3053 			sc->sc_rx_th.wr_antnoise = nf;
   3054 			sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
   3055 
   3056 			bpf_mtap2(sc->sc_drvbpf,
   3057 				&sc->sc_rx_th, sc->sc_rx_th_len, m);
   3058 		}
   3059 #endif
   3060 
   3061 		/*
   3062 		 * From this point on we assume the frame is at least
   3063 		 * as large as ieee80211_frame_min; verify that.
   3064 		 */
   3065 		if (len < IEEE80211_MIN_LEN) {
   3066 			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
   3067 				__func__, len);
   3068 			sc->sc_stats.ast_rx_tooshort++;
   3069 			m_freem(m);
   3070 			goto rx_next;
   3071 		}
   3072 
   3073 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
   3074 			ieee80211_dump_pkt(mtod(m, caddr_t), len,
   3075 				   sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
   3076 				   ds->ds_rxstat.rs_rssi);
   3077 		}
   3078 
   3079 		m_adj(m, -IEEE80211_CRC_LEN);
   3080 
   3081 		/*
   3082 		 * Locate the node for sender, track state, and then
   3083 		 * pass the (referenced) node up to the 802.11 layer
   3084 		 * for its use.
   3085 		 */
   3086 		ni = ieee80211_find_rxnode_withkey(ic,
   3087 			mtod(m, const struct ieee80211_frame_min *),
   3088 			ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
   3089 				IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
   3090 		/*
   3091 		 * Track rx rssi and do any rx antenna management.
   3092 		 */
   3093 		an = ATH_NODE(ni);
   3094 		ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
   3095 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi);
   3096 		/*
   3097 		 * Send frame up for processing.
   3098 		 */
   3099 		type = ieee80211_input(ic, m, ni,
   3100 			ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
   3101 		ieee80211_free_node(ni);
   3102 		if (sc->sc_diversity) {
   3103 			/*
   3104 			 * When using fast diversity, change the default rx
   3105 			 * antenna if diversity chooses the other antenna 3
   3106 			 * times in a row.
   3107 			 */
   3108 			if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
   3109 				if (++sc->sc_rxotherant >= 3)
   3110 					ath_setdefantenna(sc,
   3111 						ds->ds_rxstat.rs_antenna);
   3112 			} else
   3113 				sc->sc_rxotherant = 0;
   3114 		}
   3115 		if (sc->sc_softled) {
   3116 			/*
   3117 			 * Blink for any data frame.  Otherwise do a
   3118 			 * heartbeat-style blink when idle.  The latter
   3119 			 * is mainly for station mode where we depend on
   3120 			 * periodic beacon frames to trigger the poll event.
   3121 			 */
   3122 			if (type == IEEE80211_FC0_TYPE_DATA) {
   3123 				sc->sc_rxrate = ds->ds_rxstat.rs_rate;
   3124 				ath_led_event(sc, ATH_LED_RX);
   3125 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
   3126 				ath_led_event(sc, ATH_LED_POLL);
   3127 		}
   3128 		/*
   3129 		 * Arrange to update the last rx timestamp only for
   3130 		 * frames from our ap when operating in station mode.
   3131 		 * This assumes the rx key is always setup when associated.
   3132 		 */
   3133 		if (ic->ic_opmode == IEEE80211_M_STA &&
   3134 		    ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID)
   3135 			ngood++;
   3136 rx_next:
   3137 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
   3138 	} while (ath_rxbuf_init(sc, bf) == 0);
   3139 
   3140 	/* rx signal state monitoring */
   3141 	ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
   3142 	if (ath_hal_radar_event(ah))
   3143 		TASK_RUN_OR_ENQUEUE(&sc->sc_radartask);
   3144 	if (ngood)
   3145 		sc->sc_lastrx = tsf;
   3146 
   3147 #ifdef __NetBSD__
   3148 	/* XXX Why isn't this necessary in FreeBSD? */
   3149 	if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
   3150 		ath_start(ifp);
   3151 #endif /* __NetBSD__ */
   3152 
   3153 	NET_UNLOCK_GIANT();		/* XXX */
   3154 #undef PA2DESC
   3155 }
   3156 
   3157 /*
   3158  * Setup a h/w transmit queue.
   3159  */
   3160 static struct ath_txq *
   3161 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
   3162 {
   3163 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   3164 	struct ath_hal *ah = sc->sc_ah;
   3165 	HAL_TXQ_INFO qi;
   3166 	int qnum;
   3167 
   3168 	memset(&qi, 0, sizeof(qi));
   3169 	qi.tqi_subtype = subtype;
   3170 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
   3171 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
   3172 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
   3173 	/*
   3174 	 * Enable interrupts only for EOL and DESC conditions.
   3175 	 * We mark tx descriptors to receive a DESC interrupt
   3176 	 * when a tx queue gets deep; otherwise waiting for the
   3177 	 * EOL to reap descriptors.  Note that this is done to
   3178 	 * reduce interrupt load and this only defers reaping
   3179 	 * descriptors, never transmitting frames.  Aside from
   3180 	 * reducing interrupts this also permits more concurrency.
   3181 	 * The only potential downside is if the tx queue backs
   3182 	 * up in which case the top half of the kernel may backup
   3183 	 * due to a lack of tx descriptors.
   3184 	 */
   3185 	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
   3186 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
   3187 	if (qnum == -1) {
   3188 		/*
   3189 		 * NB: don't print a message, this happens
   3190 		 * normally on parts with too few tx queues
   3191 		 */
   3192 		return NULL;
   3193 	}
   3194 	if (qnum >= N(sc->sc_txq)) {
   3195 		device_printf(sc->sc_dev,
   3196 			"hal qnum %u out of range, max %zu!\n",
   3197 			qnum, N(sc->sc_txq));
   3198 		ath_hal_releasetxqueue(ah, qnum);
   3199 		return NULL;
   3200 	}
   3201 	if (!ATH_TXQ_SETUP(sc, qnum)) {
   3202 		struct ath_txq *txq = &sc->sc_txq[qnum];
   3203 
   3204 		txq->axq_qnum = qnum;
   3205 		txq->axq_depth = 0;
   3206 		txq->axq_intrcnt = 0;
   3207 		txq->axq_link = NULL;
   3208 		STAILQ_INIT(&txq->axq_q);
   3209 		ATH_TXQ_LOCK_INIT(sc, txq);
   3210 		sc->sc_txqsetup |= 1<<qnum;
   3211 	}
   3212 	return &sc->sc_txq[qnum];
   3213 #undef N
   3214 }
   3215 
   3216 /*
   3217  * Setup a hardware data transmit queue for the specified
   3218  * access control.  The hal may not support all requested
   3219  * queues in which case it will return a reference to a
   3220  * previously setup queue.  We record the mapping from ac's
   3221  * to h/w queues for use by ath_tx_start and also track
   3222  * the set of h/w queues being used to optimize work in the
   3223  * transmit interrupt handler and related routines.
   3224  */
   3225 static int
   3226 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
   3227 {
   3228 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   3229 	struct ath_txq *txq;
   3230 
   3231 	if (ac >= N(sc->sc_ac2q)) {
   3232 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
   3233 			ac, N(sc->sc_ac2q));
   3234 		return 0;
   3235 	}
   3236 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
   3237 	if (txq != NULL) {
   3238 		sc->sc_ac2q[ac] = txq;
   3239 		return 1;
   3240 	} else
   3241 		return 0;
   3242 #undef N
   3243 }
   3244 
   3245 /*
   3246  * Update WME parameters for a transmit queue.
   3247  */
   3248 static int
   3249 ath_txq_update(struct ath_softc *sc, int ac)
   3250 {
   3251 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
   3252 #define	ATH_TXOP_TO_US(v)		(v<<5)
   3253 	struct ieee80211com *ic = &sc->sc_ic;
   3254 	struct ath_txq *txq = sc->sc_ac2q[ac];
   3255 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
   3256 	struct ath_hal *ah = sc->sc_ah;
   3257 	HAL_TXQ_INFO qi;
   3258 
   3259 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
   3260 	qi.tqi_aifs = wmep->wmep_aifsn;
   3261 	qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
   3262 	qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
   3263 	qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
   3264 
   3265 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
   3266 		device_printf(sc->sc_dev, "unable to update hardware queue "
   3267 			"parameters for %s traffic!\n",
   3268 			ieee80211_wme_acnames[ac]);
   3269 		return 0;
   3270 	} else {
   3271 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
   3272 		return 1;
   3273 	}
   3274 #undef ATH_TXOP_TO_US
   3275 #undef ATH_EXPONENT_TO_VALUE
   3276 }
   3277 
   3278 /*
   3279  * Callback from the 802.11 layer to update WME parameters.
   3280  */
   3281 static int
   3282 ath_wme_update(struct ieee80211com *ic)
   3283 {
   3284 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   3285 
   3286 	return !ath_txq_update(sc, WME_AC_BE) ||
   3287 	    !ath_txq_update(sc, WME_AC_BK) ||
   3288 	    !ath_txq_update(sc, WME_AC_VI) ||
   3289 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
   3290 }
   3291 
   3292 /*
   3293  * Reclaim resources for a setup queue.
   3294  */
   3295 static void
   3296 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
   3297 {
   3298 
   3299 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
   3300 	ATH_TXQ_LOCK_DESTROY(txq);
   3301 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
   3302 }
   3303 
   3304 /*
   3305  * Reclaim all tx queue resources.
   3306  */
   3307 static void
   3308 ath_tx_cleanup(struct ath_softc *sc)
   3309 {
   3310 	int i;
   3311 
   3312 	ATH_TXBUF_LOCK_DESTROY(sc);
   3313 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   3314 		if (ATH_TXQ_SETUP(sc, i))
   3315 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
   3316 }
   3317 
   3318 /*
   3319  * Defragment an mbuf chain, returning at most maxfrags separate
   3320  * mbufs+clusters.  If this is not possible NULL is returned and
   3321  * the original mbuf chain is left in it's present (potentially
   3322  * modified) state.  We use two techniques: collapsing consecutive
   3323  * mbufs and replacing consecutive mbufs by a cluster.
   3324  */
   3325 static struct mbuf *
   3326 ath_defrag(struct mbuf *m0, int how, int maxfrags)
   3327 {
   3328 	struct mbuf *m, *n, *n2, **prev;
   3329 	u_int curfrags;
   3330 
   3331 	/*
   3332 	 * Calculate the current number of frags.
   3333 	 */
   3334 	curfrags = 0;
   3335 	for (m = m0; m != NULL; m = m->m_next)
   3336 		curfrags++;
   3337 	/*
   3338 	 * First, try to collapse mbufs.  Note that we always collapse
   3339 	 * towards the front so we don't need to deal with moving the
   3340 	 * pkthdr.  This may be suboptimal if the first mbuf has much
   3341 	 * less data than the following.
   3342 	 */
   3343 	m = m0;
   3344 again:
   3345 	for (;;) {
   3346 		n = m->m_next;
   3347 		if (n == NULL)
   3348 			break;
   3349 		if ((m->m_flags & M_RDONLY) == 0 &&
   3350 		    n->m_len < M_TRAILINGSPACE(m)) {
   3351 			bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
   3352 				n->m_len);
   3353 			m->m_len += n->m_len;
   3354 			m->m_next = n->m_next;
   3355 			m_free(n);
   3356 			if (--curfrags <= maxfrags)
   3357 				return m0;
   3358 		} else
   3359 			m = n;
   3360 	}
   3361 	KASSERT(maxfrags > 1,
   3362 		("maxfrags %u, but normal collapse failed", maxfrags));
   3363 	/*
   3364 	 * Collapse consecutive mbufs to a cluster.
   3365 	 */
   3366 	prev = &m0->m_next;		/* NB: not the first mbuf */
   3367 	while ((n = *prev) != NULL) {
   3368 		if ((n2 = n->m_next) != NULL &&
   3369 		    n->m_len + n2->m_len < MCLBYTES) {
   3370 			m = m_getcl(how, MT_DATA, 0);
   3371 			if (m == NULL)
   3372 				goto bad;
   3373 			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
   3374 			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
   3375 				n2->m_len);
   3376 			m->m_len = n->m_len + n2->m_len;
   3377 			m->m_next = n2->m_next;
   3378 			*prev = m;
   3379 			m_free(n);
   3380 			m_free(n2);
   3381 			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
   3382 				return m0;
   3383 			/*
   3384 			 * Still not there, try the normal collapse
   3385 			 * again before we allocate another cluster.
   3386 			 */
   3387 			goto again;
   3388 		}
   3389 		prev = &n->m_next;
   3390 	}
   3391 	/*
   3392 	 * No place where we can collapse to a cluster; punt.
   3393 	 * This can occur if, for example, you request 2 frags
   3394 	 * but the packet requires that both be clusters (we
   3395 	 * never reallocate the first mbuf to avoid moving the
   3396 	 * packet header).
   3397 	 */
   3398 bad:
   3399 	return NULL;
   3400 }
   3401 
   3402 /*
   3403  * Return h/w rate index for an IEEE rate (w/o basic rate bit).
   3404  */
   3405 static int
   3406 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
   3407 {
   3408 	int i;
   3409 
   3410 	for (i = 0; i < rt->rateCount; i++)
   3411 		if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
   3412 			return i;
   3413 	return 0;		/* NB: lowest rate */
   3414 }
   3415 
   3416 static int
   3417 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
   3418     struct mbuf *m0)
   3419 {
   3420 	struct ieee80211com *ic = &sc->sc_ic;
   3421 	struct ath_hal *ah = sc->sc_ah;
   3422 	struct ifnet *ifp = &sc->sc_if;
   3423 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
   3424 	int i, error, iswep, ismcast, ismrr;
   3425 	int keyix, hdrlen, pktlen, try0;
   3426 	u_int8_t rix, txrate, ctsrate;
   3427 	u_int8_t cix = 0xff;		/* NB: silence compiler */
   3428 	struct ath_desc *ds, *ds0;
   3429 	struct ath_txq *txq;
   3430 	struct ieee80211_frame *wh;
   3431 	u_int subtype, flags, ctsduration;
   3432 	HAL_PKT_TYPE atype;
   3433 	const HAL_RATE_TABLE *rt;
   3434 	HAL_BOOL shortPreamble;
   3435 	struct ath_node *an;
   3436 	struct mbuf *m;
   3437 	u_int pri;
   3438 
   3439 	wh = mtod(m0, struct ieee80211_frame *);
   3440 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
   3441 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
   3442 	hdrlen = ieee80211_anyhdrsize(wh);
   3443 	/*
   3444 	 * Packet length must not include any
   3445 	 * pad bytes; deduct them here.
   3446 	 */
   3447 	pktlen = m0->m_pkthdr.len - (hdrlen & 3);
   3448 
   3449 	if (iswep) {
   3450 		const struct ieee80211_cipher *cip;
   3451 		struct ieee80211_key *k;
   3452 
   3453 		/*
   3454 		 * Construct the 802.11 header+trailer for an encrypted
   3455 		 * frame. The only reason this can fail is because of an
   3456 		 * unknown or unsupported cipher/key type.
   3457 		 */
   3458 		k = ieee80211_crypto_encap(ic, ni, m0);
   3459 		if (k == NULL) {
   3460 			/*
   3461 			 * This can happen when the key is yanked after the
   3462 			 * frame was queued.  Just discard the frame; the
   3463 			 * 802.11 layer counts failures and provides
   3464 			 * debugging/diagnostics.
   3465 			 */
   3466 			m_freem(m0);
   3467 			return EIO;
   3468 		}
   3469 		/*
   3470 		 * Adjust the packet + header lengths for the crypto
   3471 		 * additions and calculate the h/w key index.  When
   3472 		 * a s/w mic is done the frame will have had any mic
   3473 		 * added to it prior to entry so skb->len above will
   3474 		 * account for it. Otherwise we need to add it to the
   3475 		 * packet length.
   3476 		 */
   3477 		cip = k->wk_cipher;
   3478 		hdrlen += cip->ic_header;
   3479 		pktlen += cip->ic_header + cip->ic_trailer;
   3480 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0)
   3481 			pktlen += cip->ic_miclen;
   3482 		keyix = k->wk_keyix;
   3483 
   3484 		/* packet header may have moved, reset our local pointer */
   3485 		wh = mtod(m0, struct ieee80211_frame *);
   3486 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
   3487 		/*
   3488 		 * Use station key cache slot, if assigned.
   3489 		 */
   3490 		keyix = ni->ni_ucastkey.wk_keyix;
   3491 		if (keyix == IEEE80211_KEYIX_NONE)
   3492 			keyix = HAL_TXKEYIX_INVALID;
   3493 	} else
   3494 		keyix = HAL_TXKEYIX_INVALID;
   3495 
   3496 	pktlen += IEEE80211_CRC_LEN;
   3497 
   3498 	/*
   3499 	 * Load the DMA map so any coalescing is done.  This
   3500 	 * also calculates the number of descriptors we need.
   3501 	 */
   3502 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
   3503 				     BUS_DMA_NOWAIT);
   3504 	if (error == EFBIG) {
   3505 		/* XXX packet requires too many descriptors */
   3506 		bf->bf_nseg = ATH_TXDESC+1;
   3507 	} else if (error != 0) {
   3508 		sc->sc_stats.ast_tx_busdma++;
   3509 		m_freem(m0);
   3510 		return error;
   3511 	}
   3512 	/*
   3513 	 * Discard null packets and check for packets that
   3514 	 * require too many TX descriptors.  We try to convert
   3515 	 * the latter to a cluster.
   3516 	 */
   3517 	if (error == EFBIG) {		/* too many desc's, linearize */
   3518 		sc->sc_stats.ast_tx_linear++;
   3519 		m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
   3520 		if (m == NULL) {
   3521 			m_freem(m0);
   3522 			sc->sc_stats.ast_tx_nombuf++;
   3523 			return ENOMEM;
   3524 		}
   3525 		m0 = m;
   3526 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
   3527 					     BUS_DMA_NOWAIT);
   3528 		if (error != 0) {
   3529 			sc->sc_stats.ast_tx_busdma++;
   3530 			m_freem(m0);
   3531 			return error;
   3532 		}
   3533 		KASSERT(bf->bf_nseg <= ATH_TXDESC,
   3534 		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
   3535 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
   3536 		sc->sc_stats.ast_tx_nodata++;
   3537 		m_freem(m0);
   3538 		return EIO;
   3539 	}
   3540 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
   3541 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   3542             bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
   3543 	bf->bf_m = m0;
   3544 	bf->bf_node = ni;			/* NB: held reference */
   3545 
   3546 	/* setup descriptors */
   3547 	ds = bf->bf_desc;
   3548 	rt = sc->sc_currates;
   3549 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
   3550 
   3551 	/*
   3552 	 * NB: the 802.11 layer marks whether or not we should
   3553 	 * use short preamble based on the current mode and
   3554 	 * negotiated parameters.
   3555 	 */
   3556 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
   3557 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) {
   3558 		shortPreamble = AH_TRUE;
   3559 		sc->sc_stats.ast_tx_shortpre++;
   3560 	} else {
   3561 		shortPreamble = AH_FALSE;
   3562 	}
   3563 
   3564 	an = ATH_NODE(ni);
   3565 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
   3566 	ismrr = 0;				/* default no multi-rate retry*/
   3567 	/*
   3568 	 * Calculate Atheros packet type from IEEE80211 packet header,
   3569 	 * setup for rate calculations, and select h/w transmit queue.
   3570 	 */
   3571 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
   3572 	case IEEE80211_FC0_TYPE_MGT:
   3573 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   3574 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
   3575 			atype = HAL_PKT_TYPE_BEACON;
   3576 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
   3577 			atype = HAL_PKT_TYPE_PROBE_RESP;
   3578 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
   3579 			atype = HAL_PKT_TYPE_ATIM;
   3580 		else
   3581 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
   3582 		rix = sc->sc_minrateix;
   3583 		txrate = rt->info[rix].rateCode;
   3584 		if (shortPreamble)
   3585 			txrate |= rt->info[rix].shortPreamble;
   3586 		try0 = ATH_TXMGTTRY;
   3587 		/* NB: force all management frames to highest queue */
   3588 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
   3589 			/* NB: force all management frames to highest queue */
   3590 			pri = WME_AC_VO;
   3591 		} else
   3592 			pri = WME_AC_BE;
   3593 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
   3594 		break;
   3595 	case IEEE80211_FC0_TYPE_CTL:
   3596 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
   3597 		rix = sc->sc_minrateix;
   3598 		txrate = rt->info[rix].rateCode;
   3599 		if (shortPreamble)
   3600 			txrate |= rt->info[rix].shortPreamble;
   3601 		try0 = ATH_TXMGTTRY;
   3602 		/* NB: force all ctl frames to highest queue */
   3603 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
   3604 			/* NB: force all ctl frames to highest queue */
   3605 			pri = WME_AC_VO;
   3606 		} else
   3607 			pri = WME_AC_BE;
   3608 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
   3609 		break;
   3610 	case IEEE80211_FC0_TYPE_DATA:
   3611 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
   3612 		/*
   3613 		 * Data frames: multicast frames go out at a fixed rate,
   3614 		 * otherwise consult the rate control module for the
   3615 		 * rate to use.
   3616 		 */
   3617 		if (ismcast) {
   3618 			/*
   3619 			 * Check mcast rate setting in case it's changed.
   3620 			 * XXX move out of fastpath
   3621 			 */
   3622 			if (ic->ic_mcast_rate != sc->sc_mcastrate) {
   3623 				sc->sc_mcastrix =
   3624 					ath_tx_findrix(rt, ic->ic_mcast_rate);
   3625 				sc->sc_mcastrate = ic->ic_mcast_rate;
   3626 			}
   3627 			rix = sc->sc_mcastrix;
   3628 			txrate = rt->info[rix].rateCode;
   3629 			try0 = 1;
   3630 		} else {
   3631 			ath_rate_findrate(sc, an, shortPreamble, pktlen,
   3632 				&rix, &try0, &txrate);
   3633 			sc->sc_txrate = txrate;		/* for LED blinking */
   3634 			if (try0 != ATH_TXMAXTRY)
   3635 				ismrr = 1;
   3636 		}
   3637 		pri = M_WME_GETAC(m0);
   3638 		if (cap->cap_wmeParams[pri].wmep_noackPolicy)
   3639 			flags |= HAL_TXDESC_NOACK;
   3640 		break;
   3641 	default:
   3642 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
   3643 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
   3644 		/* XXX statistic */
   3645 		m_freem(m0);
   3646 		return EIO;
   3647 	}
   3648 	txq = sc->sc_ac2q[pri];
   3649 
   3650 	/*
   3651 	 * When servicing one or more stations in power-save mode
   3652 	 * multicast frames must be buffered until after the beacon.
   3653 	 * We use the CAB queue for that.
   3654 	 */
   3655 	if (ismcast && ic->ic_ps_sta) {
   3656 		txq = sc->sc_cabq;
   3657 		/* XXX? more bit in 802.11 frame header */
   3658 	}
   3659 
   3660 	/*
   3661 	 * Calculate miscellaneous flags.
   3662 	 */
   3663 	if (ismcast) {
   3664 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
   3665 	} else if (pktlen > ic->ic_rtsthreshold) {
   3666 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
   3667 		cix = rt->info[rix].controlRate;
   3668 		sc->sc_stats.ast_tx_rts++;
   3669 	}
   3670 	if (flags & HAL_TXDESC_NOACK)		/* NB: avoid double counting */
   3671 		sc->sc_stats.ast_tx_noack++;
   3672 
   3673 	/*
   3674 	 * If 802.11g protection is enabled, determine whether
   3675 	 * to use RTS/CTS or just CTS.  Note that this is only
   3676 	 * done for OFDM unicast frames.
   3677 	 */
   3678 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
   3679 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
   3680 	    (flags & HAL_TXDESC_NOACK) == 0) {
   3681 		/* XXX fragments must use CCK rates w/ protection */
   3682 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
   3683 			flags |= HAL_TXDESC_RTSENA;
   3684 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
   3685 			flags |= HAL_TXDESC_CTSENA;
   3686 		cix = rt->info[sc->sc_protrix].controlRate;
   3687 		sc->sc_stats.ast_tx_protect++;
   3688 	}
   3689 
   3690 	/*
   3691 	 * Calculate duration.  This logically belongs in the 802.11
   3692 	 * layer but it lacks sufficient information to calculate it.
   3693 	 */
   3694 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
   3695 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
   3696 		u_int16_t dur;
   3697 		/*
   3698 		 * XXX not right with fragmentation.
   3699 		 */
   3700 		if (shortPreamble)
   3701 			dur = rt->info[rix].spAckDuration;
   3702 		else
   3703 			dur = rt->info[rix].lpAckDuration;
   3704 		*(u_int16_t *)wh->i_dur = htole16(dur);
   3705 	}
   3706 
   3707 	/*
   3708 	 * Calculate RTS/CTS rate and duration if needed.
   3709 	 */
   3710 	ctsduration = 0;
   3711 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
   3712 		/*
   3713 		 * CTS transmit rate is derived from the transmit rate
   3714 		 * by looking in the h/w rate table.  We must also factor
   3715 		 * in whether or not a short preamble is to be used.
   3716 		 */
   3717 		/* NB: cix is set above where RTS/CTS is enabled */
   3718 		KASSERT(cix != 0xff, ("cix not setup"));
   3719 		ctsrate = rt->info[cix].rateCode;
   3720 		/*
   3721 		 * Compute the transmit duration based on the frame
   3722 		 * size and the size of an ACK frame.  We call into the
   3723 		 * HAL to do the computation since it depends on the
   3724 		 * characteristics of the actual PHY being used.
   3725 		 *
   3726 		 * NB: CTS is assumed the same size as an ACK so we can
   3727 		 *     use the precalculated ACK durations.
   3728 		 */
   3729 		if (shortPreamble) {
   3730 			ctsrate |= rt->info[cix].shortPreamble;
   3731 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
   3732 				ctsduration += rt->info[cix].spAckDuration;
   3733 			ctsduration += ath_hal_computetxtime(ah,
   3734 				rt, pktlen, rix, AH_TRUE);
   3735 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
   3736 				ctsduration += rt->info[rix].spAckDuration;
   3737 		} else {
   3738 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
   3739 				ctsduration += rt->info[cix].lpAckDuration;
   3740 			ctsduration += ath_hal_computetxtime(ah,
   3741 				rt, pktlen, rix, AH_FALSE);
   3742 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
   3743 				ctsduration += rt->info[rix].lpAckDuration;
   3744 		}
   3745 		/*
   3746 		 * Must disable multi-rate retry when using RTS/CTS.
   3747 		 */
   3748 		ismrr = 0;
   3749 		try0 = ATH_TXMGTTRY;		/* XXX */
   3750 	} else
   3751 		ctsrate = 0;
   3752 
   3753 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
   3754 		ieee80211_dump_pkt(mtod(m0, caddr_t), m0->m_len,
   3755 			sc->sc_hwmap[txrate].ieeerate, -1);
   3756 #if NBPFILTER > 0
   3757 	if (ic->ic_rawbpf)
   3758 		bpf_mtap(ic->ic_rawbpf, m0);
   3759 	if (sc->sc_drvbpf) {
   3760 		u_int64_t tsf = ath_hal_gettsf64(ah);
   3761 
   3762 		sc->sc_tx_th.wt_tsf = htole64(tsf);
   3763 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
   3764 		if (iswep)
   3765 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
   3766 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
   3767 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
   3768 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
   3769 
   3770 		bpf_mtap2(sc->sc_drvbpf,
   3771 			&sc->sc_tx_th, sc->sc_tx_th_len, m0);
   3772 	}
   3773 #endif
   3774 
   3775 	/*
   3776 	 * Determine if a tx interrupt should be generated for
   3777 	 * this descriptor.  We take a tx interrupt to reap
   3778 	 * descriptors when the h/w hits an EOL condition or
   3779 	 * when the descriptor is specifically marked to generate
   3780 	 * an interrupt.  We periodically mark descriptors in this
   3781 	 * way to insure timely replenishing of the supply needed
   3782 	 * for sending frames.  Defering interrupts reduces system
   3783 	 * load and potentially allows more concurrent work to be
   3784 	 * done but if done to aggressively can cause senders to
   3785 	 * backup.
   3786 	 *
   3787 	 * NB: use >= to deal with sc_txintrperiod changing
   3788 	 *     dynamically through sysctl.
   3789 	 */
   3790 	if (flags & HAL_TXDESC_INTREQ) {
   3791 		txq->axq_intrcnt = 0;
   3792 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
   3793 		flags |= HAL_TXDESC_INTREQ;
   3794 		txq->axq_intrcnt = 0;
   3795 	}
   3796 
   3797 	/*
   3798 	 * Formulate first tx descriptor with tx controls.
   3799 	 */
   3800 	/* XXX check return value? */
   3801 	ath_hal_setuptxdesc(ah, ds
   3802 		, pktlen		/* packet length */
   3803 		, hdrlen		/* header length */
   3804 		, atype			/* Atheros packet type */
   3805 		, ni->ni_txpower	/* txpower */
   3806 		, txrate, try0		/* series 0 rate/tries */
   3807 		, keyix			/* key cache index */
   3808 		, sc->sc_txantenna	/* antenna mode */
   3809 		, flags			/* flags */
   3810 		, ctsrate		/* rts/cts rate */
   3811 		, ctsduration		/* rts/cts duration */
   3812 	);
   3813 	bf->bf_flags = flags;
   3814 	/*
   3815 	 * Setup the multi-rate retry state only when we're
   3816 	 * going to use it.  This assumes ath_hal_setuptxdesc
   3817 	 * initializes the descriptors (so we don't have to)
   3818 	 * when the hardware supports multi-rate retry and
   3819 	 * we don't use it.
   3820 	 */
   3821 	if (ismrr)
   3822 		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
   3823 
   3824 	/*
   3825 	 * Fillin the remainder of the descriptor info.
   3826 	 */
   3827 	ds0 = ds;
   3828 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
   3829 		ds->ds_data = bf->bf_segs[i].ds_addr;
   3830 		if (i == bf->bf_nseg - 1)
   3831 			ds->ds_link = 0;
   3832 		else
   3833 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
   3834 		ath_hal_filltxdesc(ah, ds
   3835 			, bf->bf_segs[i].ds_len	/* segment length */
   3836 			, i == 0		/* first segment */
   3837 			, i == bf->bf_nseg - 1	/* last segment */
   3838 			, ds0			/* first descriptor */
   3839 		);
   3840 
   3841 		/* NB: The desc swap function becomes void,
   3842 		 * if descriptor swapping is not enabled
   3843 		 */
   3844 		ath_desc_swap(ds);
   3845 
   3846 		DPRINTF(sc, ATH_DEBUG_XMIT,
   3847 			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
   3848 			__func__, i, ds->ds_link, ds->ds_data,
   3849 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
   3850 	}
   3851 	/*
   3852 	 * Insert the frame on the outbound list and
   3853 	 * pass it on to the hardware.
   3854 	 */
   3855 	ATH_TXQ_LOCK(txq);
   3856 	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
   3857 	if (txq->axq_link == NULL) {
   3858 		ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
   3859 		DPRINTF(sc, ATH_DEBUG_XMIT,
   3860 		    "%s: TXDP[%u] = %" PRIx64 " (%p) depth %d\n", __func__,
   3861 		    txq->axq_qnum, (uint64_t)bf->bf_daddr, bf->bf_desc,
   3862 		    txq->axq_depth);
   3863 	} else {
   3864 		*txq->axq_link = HTOAH32(bf->bf_daddr);
   3865 		DPRINTF(sc, ATH_DEBUG_XMIT,
   3866 		    "%s: link[%u](%p)=%" PRIx64 " (%p) depth %d\n",
   3867 		    __func__, txq->axq_qnum, txq->axq_link,
   3868 		    (uint64_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
   3869 	}
   3870 	txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
   3871 	/*
   3872 	 * The CAB queue is started from the SWBA handler since
   3873 	 * frames only go out on DTIM and to avoid possible races.
   3874 	 */
   3875 	if (txq != sc->sc_cabq)
   3876 		ath_hal_txstart(ah, txq->axq_qnum);
   3877 	ATH_TXQ_UNLOCK(txq);
   3878 
   3879 	return 0;
   3880 }
   3881 
   3882 /*
   3883  * Process completed xmit descriptors from the specified queue.
   3884  */
   3885 static int
   3886 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
   3887 {
   3888 	struct ath_hal *ah = sc->sc_ah;
   3889 	struct ieee80211com *ic = &sc->sc_ic;
   3890 	struct ath_buf *bf;
   3891 	struct ath_desc *ds, *ds0;
   3892 	struct ieee80211_node *ni;
   3893 	struct ath_node *an;
   3894 	int sr, lr, pri, nacked;
   3895 	HAL_STATUS status;
   3896 
   3897 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
   3898 		__func__, txq->axq_qnum,
   3899 		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
   3900 		txq->axq_link);
   3901 	nacked = 0;
   3902 	for (;;) {
   3903 		ATH_TXQ_LOCK(txq);
   3904 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
   3905 		bf = STAILQ_FIRST(&txq->axq_q);
   3906 		if (bf == NULL) {
   3907 			txq->axq_link = NULL;
   3908 			ATH_TXQ_UNLOCK(txq);
   3909 			break;
   3910 		}
   3911 		ds0 = &bf->bf_desc[0];
   3912 		ds = &bf->bf_desc[bf->bf_nseg - 1];
   3913 		status = ath_hal_txprocdesc(ah, ds);
   3914 #ifdef AR_DEBUG
   3915 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
   3916 			ath_printtxbuf(bf, status == HAL_OK);
   3917 #endif
   3918 		if (status == HAL_EINPROGRESS) {
   3919 			ATH_TXQ_UNLOCK(txq);
   3920 			break;
   3921 		}
   3922 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
   3923 		ATH_TXQ_UNLOCK(txq);
   3924 
   3925 		ni = bf->bf_node;
   3926 		if (ni != NULL) {
   3927 			an = ATH_NODE(ni);
   3928 			if (ds->ds_txstat.ts_status == 0) {
   3929 				u_int8_t txant = ds->ds_txstat.ts_antenna;
   3930 				sc->sc_stats.ast_ant_tx[txant]++;
   3931 				sc->sc_ant_tx[txant]++;
   3932 				if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
   3933 					sc->sc_stats.ast_tx_altrate++;
   3934 				sc->sc_stats.ast_tx_rssi =
   3935 					ds->ds_txstat.ts_rssi;
   3936 				ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
   3937 					ds->ds_txstat.ts_rssi);
   3938 				pri = M_WME_GETAC(bf->bf_m);
   3939 				if (pri >= WME_AC_VO)
   3940 					ic->ic_wme.wme_hipri_traffic++;
   3941 				ni->ni_inact = ni->ni_inact_reload;
   3942 			} else {
   3943 				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
   3944 					sc->sc_stats.ast_tx_xretries++;
   3945 				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
   3946 					sc->sc_stats.ast_tx_fifoerr++;
   3947 				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
   3948 					sc->sc_stats.ast_tx_filtered++;
   3949 			}
   3950 			sr = ds->ds_txstat.ts_shortretry;
   3951 			lr = ds->ds_txstat.ts_longretry;
   3952 			sc->sc_stats.ast_tx_shortretry += sr;
   3953 			sc->sc_stats.ast_tx_longretry += lr;
   3954 			/*
   3955 			 * Hand the descriptor to the rate control algorithm.
   3956 			 */
   3957 			if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
   3958 			    (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
   3959 				/*
   3960 				 * If frame was ack'd update the last rx time
   3961 				 * used to workaround phantom bmiss interrupts.
   3962 				 */
   3963 				if (ds->ds_txstat.ts_status == 0)
   3964 					nacked++;
   3965 				ath_rate_tx_complete(sc, an, ds, ds0);
   3966 			}
   3967 			/*
   3968 			 * Reclaim reference to node.
   3969 			 *
   3970 			 * NB: the node may be reclaimed here if, for example
   3971 			 *     this is a DEAUTH message that was sent and the
   3972 			 *     node was timed out due to inactivity.
   3973 			 */
   3974 			ieee80211_free_node(ni);
   3975 		}
   3976 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   3977 		    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   3978 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   3979 		m_freem(bf->bf_m);
   3980 		bf->bf_m = NULL;
   3981 		bf->bf_node = NULL;
   3982 
   3983 		ATH_TXBUF_LOCK(sc);
   3984 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   3985 		ATH_TXBUF_UNLOCK(sc);
   3986 	}
   3987 	return nacked;
   3988 }
   3989 
   3990 static inline int
   3991 txqactive(struct ath_hal *ah, int qnum)
   3992 {
   3993 	u_int32_t txqs = 1<<qnum;
   3994 	ath_hal_gettxintrtxqs(ah, &txqs);
   3995 	return (txqs & (1<<qnum));
   3996 }
   3997 
   3998 /*
   3999  * Deferred processing of transmit interrupt; special-cased
   4000  * for a single hardware transmit queue (e.g. 5210 and 5211).
   4001  */
   4002 static void
   4003 ath_tx_proc_q0(void *arg, int npending)
   4004 {
   4005 	struct ath_softc *sc = arg;
   4006 	struct ifnet *ifp = &sc->sc_if;
   4007 
   4008 	if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]))
   4009 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
   4010 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
   4011 		ath_tx_processq(sc, sc->sc_cabq);
   4012 	ifp->if_flags &= ~IFF_OACTIVE;
   4013 	sc->sc_tx_timer = 0;
   4014 
   4015 	if (sc->sc_softled)
   4016 		ath_led_event(sc, ATH_LED_TX);
   4017 
   4018 	ath_start(ifp);
   4019 }
   4020 
   4021 /*
   4022  * Deferred processing of transmit interrupt; special-cased
   4023  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
   4024  */
   4025 static void
   4026 ath_tx_proc_q0123(void *arg, int npending)
   4027 {
   4028 	struct ath_softc *sc = arg;
   4029 	struct ifnet *ifp = &sc->sc_if;
   4030 	int nacked;
   4031 
   4032 	/*
   4033 	 * Process each active queue.
   4034 	 */
   4035 	nacked = 0;
   4036 	if (txqactive(sc->sc_ah, 0))
   4037 		nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
   4038 	if (txqactive(sc->sc_ah, 1))
   4039 		nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
   4040 	if (txqactive(sc->sc_ah, 2))
   4041 		nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
   4042 	if (txqactive(sc->sc_ah, 3))
   4043 		nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
   4044 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
   4045 		ath_tx_processq(sc, sc->sc_cabq);
   4046 	if (nacked)
   4047 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
   4048 	ath_tx_processq(sc, sc->sc_cabq);
   4049 
   4050 	ifp->if_flags &= ~IFF_OACTIVE;
   4051 	sc->sc_tx_timer = 0;
   4052 
   4053 	if (sc->sc_softled)
   4054 		ath_led_event(sc, ATH_LED_TX);
   4055 
   4056 	ath_start(ifp);
   4057 }
   4058 
   4059 /*
   4060  * Deferred processing of transmit interrupt.
   4061  */
   4062 static void
   4063 ath_tx_proc(void *arg, int npending)
   4064 {
   4065 	struct ath_softc *sc = arg;
   4066 	struct ifnet *ifp = &sc->sc_if;
   4067 	int i, nacked;
   4068 
   4069 	/*
   4070 	 * Process each active queue.
   4071 	 */
   4072 	nacked = 0;
   4073 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   4074 		if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
   4075 			nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
   4076 	if (nacked)
   4077 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
   4078 
   4079 	ifp->if_flags &= ~IFF_OACTIVE;
   4080 	sc->sc_tx_timer = 0;
   4081 
   4082 	if (sc->sc_softled)
   4083 		ath_led_event(sc, ATH_LED_TX);
   4084 
   4085 	ath_start(ifp);
   4086 }
   4087 
   4088 static void
   4089 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
   4090 {
   4091 	struct ath_hal *ah = sc->sc_ah;
   4092 	struct ieee80211_node *ni;
   4093 	struct ath_buf *bf;
   4094 
   4095 	/*
   4096 	 * NB: this assumes output has been stopped and
   4097 	 *     we do not need to block ath_tx_tasklet
   4098 	 */
   4099 	for (;;) {
   4100 		ATH_TXQ_LOCK(txq);
   4101 		bf = STAILQ_FIRST(&txq->axq_q);
   4102 		if (bf == NULL) {
   4103 			txq->axq_link = NULL;
   4104 			ATH_TXQ_UNLOCK(txq);
   4105 			break;
   4106 		}
   4107 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
   4108 		ATH_TXQ_UNLOCK(txq);
   4109 #ifdef AR_DEBUG
   4110 		if (sc->sc_debug & ATH_DEBUG_RESET)
   4111 			ath_printtxbuf(bf,
   4112 				ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
   4113 #endif /* AR_DEBUG */
   4114 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   4115 		m_freem(bf->bf_m);
   4116 		bf->bf_m = NULL;
   4117 		ni = bf->bf_node;
   4118 		bf->bf_node = NULL;
   4119 		if (ni != NULL) {
   4120 			/*
   4121 			 * Reclaim node reference.
   4122 			 */
   4123 			ieee80211_free_node(ni);
   4124 		}
   4125 		ATH_TXBUF_LOCK(sc);
   4126 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   4127 		ATH_TXBUF_UNLOCK(sc);
   4128 	}
   4129 }
   4130 
   4131 static void
   4132 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
   4133 {
   4134 	struct ath_hal *ah = sc->sc_ah;
   4135 
   4136 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
   4137 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
   4138 	    __func__, txq->axq_qnum,
   4139 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
   4140 	    txq->axq_link);
   4141 }
   4142 
   4143 /*
   4144  * Drain the transmit queues and reclaim resources.
   4145  */
   4146 static void
   4147 ath_draintxq(struct ath_softc *sc)
   4148 {
   4149 	struct ath_hal *ah = sc->sc_ah;
   4150 	struct ifnet *ifp = &sc->sc_if;
   4151 	int i;
   4152 
   4153 	/* XXX return value */
   4154 	if (!sc->sc_invalid) {
   4155 		/* don't touch the hardware if marked invalid */
   4156 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
   4157 		DPRINTF(sc, ATH_DEBUG_RESET,
   4158 		    "%s: beacon queue %p\n", __func__,
   4159 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
   4160 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   4161 			if (ATH_TXQ_SETUP(sc, i))
   4162 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
   4163 	}
   4164 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   4165 		if (ATH_TXQ_SETUP(sc, i))
   4166 			ath_tx_draintxq(sc, &sc->sc_txq[i]);
   4167 	ifp->if_flags &= ~IFF_OACTIVE;
   4168 	sc->sc_tx_timer = 0;
   4169 }
   4170 
   4171 /*
   4172  * Disable the receive h/w in preparation for a reset.
   4173  */
   4174 static void
   4175 ath_stoprecv(struct ath_softc *sc)
   4176 {
   4177 #define	PA2DESC(_sc, _pa) \
   4178 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
   4179 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
   4180 	struct ath_hal *ah = sc->sc_ah;
   4181 
   4182 	ath_hal_stoppcurecv(ah);	/* disable PCU */
   4183 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
   4184 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
   4185 	DELAY(3000);			/* 3ms is long enough for 1 frame */
   4186 #ifdef AR_DEBUG
   4187 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
   4188 		struct ath_buf *bf;
   4189 
   4190 		printf("%s: rx queue %p, link %p\n", __func__,
   4191 			(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
   4192 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
   4193 			struct ath_desc *ds = bf->bf_desc;
   4194 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
   4195 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
   4196 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
   4197 				ath_printrxbuf(bf, status == HAL_OK);
   4198 		}
   4199 	}
   4200 #endif
   4201 	sc->sc_rxlink = NULL;		/* just in case */
   4202 #undef PA2DESC
   4203 }
   4204 
   4205 /*
   4206  * Enable the receive h/w following a reset.
   4207  */
   4208 static int
   4209 ath_startrecv(struct ath_softc *sc)
   4210 {
   4211 	struct ath_hal *ah = sc->sc_ah;
   4212 	struct ath_buf *bf;
   4213 
   4214 	sc->sc_rxlink = NULL;
   4215 	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
   4216 		int error = ath_rxbuf_init(sc, bf);
   4217 		if (error != 0) {
   4218 			DPRINTF(sc, ATH_DEBUG_RECV,
   4219 				"%s: ath_rxbuf_init failed %d\n",
   4220 				__func__, error);
   4221 			return error;
   4222 		}
   4223 	}
   4224 
   4225 	bf = STAILQ_FIRST(&sc->sc_rxbuf);
   4226 	ath_hal_putrxbuf(ah, bf->bf_daddr);
   4227 	ath_hal_rxena(ah);		/* enable recv descriptors */
   4228 	ath_mode_init(sc);		/* set filters, etc. */
   4229 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
   4230 	return 0;
   4231 }
   4232 
   4233 /*
   4234  * Update internal state after a channel change.
   4235  */
   4236 static void
   4237 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
   4238 {
   4239 	struct ieee80211com *ic = &sc->sc_ic;
   4240 	enum ieee80211_phymode mode;
   4241 	u_int16_t flags;
   4242 
   4243 	/*
   4244 	 * Change channels and update the h/w rate map
   4245 	 * if we're switching; e.g. 11a to 11b/g.
   4246 	 */
   4247 	mode = ieee80211_chan2mode(ic, chan);
   4248 	if (mode != sc->sc_curmode)
   4249 		ath_setcurmode(sc, mode);
   4250 	/*
   4251 	 * Update BPF state.  NB: ethereal et. al. don't handle
   4252 	 * merged flags well so pick a unique mode for their use.
   4253 	 */
   4254 	if (IEEE80211_IS_CHAN_A(chan))
   4255 		flags = IEEE80211_CHAN_A;
   4256 	/* XXX 11g schizophrenia */
   4257 	else if (IEEE80211_IS_CHAN_G(chan) ||
   4258 	    IEEE80211_IS_CHAN_PUREG(chan))
   4259 		flags = IEEE80211_CHAN_G;
   4260 	else
   4261 		flags = IEEE80211_CHAN_B;
   4262 	if (IEEE80211_IS_CHAN_T(chan))
   4263 		flags |= IEEE80211_CHAN_TURBO;
   4264 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
   4265 		htole16(chan->ic_freq);
   4266 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
   4267 		htole16(flags);
   4268 }
   4269 
   4270 /*
   4271  * Poll for a channel clear indication; this is required
   4272  * for channels requiring DFS and not previously visited
   4273  * and/or with a recent radar detection.
   4274  */
   4275 static void
   4276 ath_dfswait(void *arg)
   4277 {
   4278 	struct ath_softc *sc = arg;
   4279 	struct ath_hal *ah = sc->sc_ah;
   4280 	HAL_CHANNEL hchan;
   4281 
   4282 	ath_hal_radar_wait(ah, &hchan);
   4283 	if (hchan.privFlags & CHANNEL_INTERFERENCE) {
   4284 		if_printf(&sc->sc_if,
   4285 		    "channel %u/0x%x/0x%x has interference\n",
   4286 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
   4287 		return;
   4288 	}
   4289 	if ((hchan.privFlags & CHANNEL_DFS) == 0) {
   4290 		/* XXX should not happen */
   4291 		return;
   4292 	}
   4293 	if (hchan.privFlags & CHANNEL_DFS_CLEAR) {
   4294 		sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR;
   4295 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
   4296 		if_printf(&sc->sc_if,
   4297 		    "channel %u/0x%x/0x%x marked clear\n",
   4298 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
   4299 	} else
   4300 		callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc);
   4301 }
   4302 
   4303 /*
   4304  * Set/change channels.  If the channel is really being changed,
   4305  * it's done by reseting the chip.  To accomplish this we must
   4306  * first cleanup any pending DMA, then restart stuff after a la
   4307  * ath_init.
   4308  */
   4309 static int
   4310 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
   4311 {
   4312 	struct ath_hal *ah = sc->sc_ah;
   4313 	struct ieee80211com *ic = &sc->sc_ic;
   4314 	HAL_CHANNEL hchan;
   4315 
   4316 	/*
   4317 	 * Convert to a HAL channel description with
   4318 	 * the flags constrained to reflect the current
   4319 	 * operating mode.
   4320 	 */
   4321 	hchan.channel = chan->ic_freq;
   4322 	hchan.channelFlags = ath_chan2flags(ic, chan);
   4323 
   4324 	DPRINTF(sc, ATH_DEBUG_RESET,
   4325 	    "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
   4326 	    __func__,
   4327 	    ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
   4328 		sc->sc_curchan.channelFlags),
   4329 	    	sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
   4330 	    ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
   4331 	        hchan.channel, hchan.channelFlags);
   4332 	if (hchan.channel != sc->sc_curchan.channel ||
   4333 	    hchan.channelFlags != sc->sc_curchan.channelFlags) {
   4334 		HAL_STATUS status;
   4335 
   4336 		/*
   4337 		 * To switch channels clear any pending DMA operations;
   4338 		 * wait long enough for the RX fifo to drain, reset the
   4339 		 * hardware at the new frequency, and then re-enable
   4340 		 * the relevant bits of the h/w.
   4341 		 */
   4342 		ath_hal_intrset(ah, 0);		/* disable interrupts */
   4343 		ath_draintxq(sc);		/* clear pending tx frames */
   4344 		ath_stoprecv(sc);		/* turn off frame recv */
   4345 		if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
   4346 			if_printf(ic->ic_ifp, "%s: unable to reset "
   4347 			    "channel %u (%u MHz, flags 0x%x hal flags 0x%x)\n",
   4348 			    __func__, ieee80211_chan2ieee(ic, chan),
   4349 			    chan->ic_freq, chan->ic_flags, hchan.channelFlags);
   4350 			return EIO;
   4351 		}
   4352 		sc->sc_curchan = hchan;
   4353 		ath_update_txpow(sc);		/* update tx power state */
   4354 		sc->sc_diversity = ath_hal_getdiversity(ah);
   4355 		sc->sc_calinterval = 1;
   4356 		sc->sc_caltries = 0;
   4357 
   4358 		/*
   4359 		 * Re-enable rx framework.
   4360 		 */
   4361 		if (ath_startrecv(sc) != 0) {
   4362 			if_printf(&sc->sc_if,
   4363 				"%s: unable to restart recv logic\n", __func__);
   4364 			return EIO;
   4365 		}
   4366 
   4367 		/*
   4368 		 * Change channels and update the h/w rate map
   4369 		 * if we're switching; e.g. 11a to 11b/g.
   4370 		 */
   4371 		ic->ic_ibss_chan = chan;
   4372 		ath_chan_change(sc, chan);
   4373 
   4374 		/*
   4375 		 * Handle DFS required waiting period to determine
   4376 		 * if channel is clear of radar traffic.
   4377 		 */
   4378 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   4379 #define	DFS_AND_NOT_CLEAR(_c) \
   4380 	(((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS)
   4381 			if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) {
   4382 				if_printf(&sc->sc_if,
   4383 					"wait for DFS clear channel signal\n");
   4384 				/* XXX stop sndq */
   4385 				sc->sc_if.if_flags |= IFF_OACTIVE;
   4386 				callout_reset(&sc->sc_dfs_ch,
   4387 					2 * hz, ath_dfswait, sc);
   4388 			} else
   4389 				callout_stop(&sc->sc_dfs_ch);
   4390 #undef DFS_NOT_CLEAR
   4391 		}
   4392 
   4393 		/*
   4394 		 * Re-enable interrupts.
   4395 		 */
   4396 		ath_hal_intrset(ah, sc->sc_imask);
   4397 	}
   4398 	return 0;
   4399 }
   4400 
   4401 static void
   4402 ath_next_scan(void *arg)
   4403 {
   4404 	struct ath_softc *sc = arg;
   4405 	struct ieee80211com *ic = &sc->sc_ic;
   4406 	int s;
   4407 
   4408 	/* don't call ath_start w/o network interrupts blocked */
   4409 	s = splnet();
   4410 
   4411 	if (ic->ic_state == IEEE80211_S_SCAN)
   4412 		ieee80211_next_scan(ic);
   4413 	splx(s);
   4414 }
   4415 
   4416 /*
   4417  * Periodically recalibrate the PHY to account
   4418  * for temperature/environment changes.
   4419  */
   4420 static void
   4421 ath_calibrate(void *arg)
   4422 {
   4423 	struct ath_softc *sc = arg;
   4424 	struct ath_hal *ah = sc->sc_ah;
   4425 	HAL_BOOL iqCalDone;
   4426 
   4427 	sc->sc_stats.ast_per_cal++;
   4428 
   4429 	ATH_LOCK(sc);
   4430 
   4431 	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
   4432 		/*
   4433 		 * Rfgain is out of bounds, reset the chip
   4434 		 * to load new gain values.
   4435 		 */
   4436 		DPRINTF(sc, ATH_DEBUG_CALIBRATE,
   4437 			"%s: rfgain change\n", __func__);
   4438 		sc->sc_stats.ast_per_rfgain++;
   4439 		ath_reset(&sc->sc_if);
   4440 	}
   4441 	if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
   4442 		DPRINTF(sc, ATH_DEBUG_ANY,
   4443 			"%s: calibration of channel %u failed\n",
   4444 			__func__, sc->sc_curchan.channel);
   4445 		sc->sc_stats.ast_per_calfail++;
   4446 	}
   4447 	/*
   4448 	 * Calibrate noise floor data again in case of change.
   4449 	 */
   4450 	ath_hal_process_noisefloor(ah);
   4451 	/*
   4452 	 * Poll more frequently when the IQ calibration is in
   4453 	 * progress to speedup loading the final settings.
   4454 	 * We temper this aggressive polling with an exponential
   4455 	 * back off after 4 tries up to ath_calinterval.
   4456 	 */
   4457 	if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
   4458 		sc->sc_caltries = 0;
   4459 		sc->sc_calinterval = ath_calinterval;
   4460 	} else if (sc->sc_caltries > 4) {
   4461 		sc->sc_caltries = 0;
   4462 		sc->sc_calinterval <<= 1;
   4463 		if (sc->sc_calinterval > ath_calinterval)
   4464 			sc->sc_calinterval = ath_calinterval;
   4465 	}
   4466 	KASSERT(0 < sc->sc_calinterval && sc->sc_calinterval <= ath_calinterval,
   4467 		("bad calibration interval %u", sc->sc_calinterval));
   4468 
   4469 	DPRINTF(sc, ATH_DEBUG_CALIBRATE,
   4470 		"%s: next +%u (%siqCalDone tries %u)\n", __func__,
   4471 		sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
   4472 	sc->sc_caltries++;
   4473 	callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
   4474 		ath_calibrate, sc);
   4475 	ATH_UNLOCK(sc);
   4476 }
   4477 
   4478 static int
   4479 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
   4480 {
   4481 	struct ifnet *ifp = ic->ic_ifp;
   4482 	struct ath_softc *sc = ifp->if_softc;
   4483 	struct ath_hal *ah = sc->sc_ah;
   4484 	struct ieee80211_node *ni;
   4485 	int i, error;
   4486 	const u_int8_t *bssid;
   4487 	u_int32_t rfilt;
   4488 	static const HAL_LED_STATE leds[] = {
   4489 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
   4490 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
   4491 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
   4492 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
   4493 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
   4494 	};
   4495 
   4496 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
   4497 		ieee80211_state_name[ic->ic_state],
   4498 		ieee80211_state_name[nstate]);
   4499 
   4500 	callout_stop(&sc->sc_scan_ch);
   4501 	callout_stop(&sc->sc_cal_ch);
   4502 	callout_stop(&sc->sc_dfs_ch);
   4503 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
   4504 
   4505 	if (nstate == IEEE80211_S_INIT) {
   4506 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
   4507 		/*
   4508 		 * NB: disable interrupts so we don't rx frames.
   4509 		 */
   4510 		ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
   4511 		/*
   4512 		 * Notify the rate control algorithm.
   4513 		 */
   4514 		ath_rate_newstate(sc, nstate);
   4515 		goto done;
   4516 	}
   4517 	ni = ic->ic_bss;
   4518 	error = ath_chan_set(sc, ic->ic_curchan);
   4519 	if (error != 0)
   4520 		goto bad;
   4521 	rfilt = ath_calcrxfilter(sc, nstate);
   4522 	if (nstate == IEEE80211_S_SCAN)
   4523 		bssid = ifp->if_broadcastaddr;
   4524 	else
   4525 		bssid = ni->ni_bssid;
   4526 	ath_hal_setrxfilter(ah, rfilt);
   4527 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
   4528 		 __func__, rfilt, ether_sprintf(bssid));
   4529 
   4530 	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
   4531 		ath_hal_setassocid(ah, bssid, ni->ni_associd);
   4532 	else
   4533 		ath_hal_setassocid(ah, bssid, 0);
   4534 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
   4535 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
   4536 			if (ath_hal_keyisvalid(ah, i))
   4537 				ath_hal_keysetmac(ah, i, bssid);
   4538 	}
   4539 
   4540 	/*
   4541 	 * Notify the rate control algorithm so rates
   4542 	 * are setup should ath_beacon_alloc be called.
   4543 	 */
   4544 	ath_rate_newstate(sc, nstate);
   4545 
   4546 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
   4547 		/* nothing to do */;
   4548 	} else if (nstate == IEEE80211_S_RUN) {
   4549 		DPRINTF(sc, ATH_DEBUG_STATE,
   4550 			"%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
   4551 			"capinfo=0x%04x chan=%d\n"
   4552 			 , __func__
   4553 			 , ic->ic_flags
   4554 			 , ni->ni_intval
   4555 			 , ether_sprintf(ni->ni_bssid)
   4556 			 , ni->ni_capinfo
   4557 			 , ieee80211_chan2ieee(ic, ic->ic_curchan));
   4558 
   4559 		switch (ic->ic_opmode) {
   4560 		case IEEE80211_M_HOSTAP:
   4561 		case IEEE80211_M_IBSS:
   4562 			/*
   4563 			 * Allocate and setup the beacon frame.
   4564 			 *
   4565 			 * Stop any previous beacon DMA.  This may be
   4566 			 * necessary, for example, when an ibss merge
   4567 			 * causes reconfiguration; there will be a state
   4568 			 * transition from RUN->RUN that means we may
   4569 			 * be called with beacon transmission active.
   4570 			 */
   4571 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
   4572 			ath_beacon_free(sc);
   4573 			error = ath_beacon_alloc(sc, ni);
   4574 			if (error != 0)
   4575 				goto bad;
   4576 			/*
   4577 			 * If joining an adhoc network defer beacon timer
   4578 			 * configuration to the next beacon frame so we
   4579 			 * have a current TSF to use.  Otherwise we're
   4580 			 * starting an ibss/bss so there's no need to delay.
   4581 			 */
   4582 			if (ic->ic_opmode == IEEE80211_M_IBSS &&
   4583 			    ic->ic_bss->ni_tstamp.tsf != 0)
   4584 				sc->sc_syncbeacon = 1;
   4585 			else
   4586 				ath_beacon_config(sc);
   4587 			break;
   4588 		case IEEE80211_M_STA:
   4589 			/*
   4590 			 * Allocate a key cache slot to the station.
   4591 			 */
   4592 			if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
   4593 			    sc->sc_hasclrkey &&
   4594 			    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
   4595 				ath_setup_stationkey(ni);
   4596 			/*
   4597 			 * Defer beacon timer configuration to the next
   4598 			 * beacon frame so we have a current TSF to use
   4599 			 * (any TSF collected when scanning is likely old).
   4600 			 */
   4601 			sc->sc_syncbeacon = 1;
   4602 			break;
   4603 		default:
   4604 			break;
   4605 		}
   4606 		/*
   4607 		 * Let the hal process statistics collected during a
   4608 		 * scan so it can provide calibrated noise floor data.
   4609 		 */
   4610 		ath_hal_process_noisefloor(ah);
   4611 		/*
   4612 		 * Reset rssi stats; maybe not the best place...
   4613 		 */
   4614 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
   4615 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
   4616 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
   4617 	} else {
   4618 		ath_hal_intrset(ah,
   4619 			sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
   4620 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
   4621 	}
   4622 done:
   4623 	/*
   4624 	 * Invoke the parent method to complete the work.
   4625 	 */
   4626 	error = sc->sc_newstate(ic, nstate, arg);
   4627 	/*
   4628 	 * Finally, start any timers.
   4629 	 */
   4630 	if (nstate == IEEE80211_S_RUN) {
   4631 		/* start periodic recalibration timer */
   4632 		callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
   4633 			ath_calibrate, sc);
   4634 	} else if (nstate == IEEE80211_S_SCAN) {
   4635 		/* start ap/neighbor scan timer */
   4636 		callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
   4637 			ath_next_scan, sc);
   4638 	}
   4639 bad:
   4640 	return error;
   4641 }
   4642 
   4643 /*
   4644  * Allocate a key cache slot to the station so we can
   4645  * setup a mapping from key index to node. The key cache
   4646  * slot is needed for managing antenna state and for
   4647  * compression when stations do not use crypto.  We do
   4648  * it uniliaterally here; if crypto is employed this slot
   4649  * will be reassigned.
   4650  */
   4651 static void
   4652 ath_setup_stationkey(struct ieee80211_node *ni)
   4653 {
   4654 	struct ieee80211com *ic = ni->ni_ic;
   4655 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   4656 	ieee80211_keyix keyix, rxkeyix;
   4657 
   4658 	if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
   4659 		/*
   4660 		 * Key cache is full; we'll fall back to doing
   4661 		 * the more expensive lookup in software.  Note
   4662 		 * this also means no h/w compression.
   4663 		 */
   4664 		/* XXX msg+statistic */
   4665 	} else {
   4666 		/* XXX locking? */
   4667 		ni->ni_ucastkey.wk_keyix = keyix;
   4668 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
   4669 		/* NB: this will create a pass-thru key entry */
   4670 		ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
   4671 	}
   4672 }
   4673 
   4674 /*
   4675  * Setup driver-specific state for a newly associated node.
   4676  * Note that we're called also on a re-associate, the isnew
   4677  * param tells us if this is the first time or not.
   4678  */
   4679 static void
   4680 ath_newassoc(struct ieee80211_node *ni, int isnew)
   4681 {
   4682 	struct ieee80211com *ic = ni->ni_ic;
   4683 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   4684 
   4685 	ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
   4686 	if (isnew &&
   4687 	    (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
   4688 		KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
   4689 		    ("new assoc with a unicast key already setup (keyix %u)",
   4690 		    ni->ni_ucastkey.wk_keyix));
   4691 		ath_setup_stationkey(ni);
   4692 	}
   4693 }
   4694 
   4695 static int
   4696 ath_getchannels(struct ath_softc *sc, u_int cc,
   4697 	HAL_BOOL outdoor, HAL_BOOL xchanmode)
   4698 {
   4699 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
   4700 	struct ieee80211com *ic = &sc->sc_ic;
   4701 	struct ifnet *ifp = &sc->sc_if;
   4702 	struct ath_hal *ah = sc->sc_ah;
   4703 	HAL_CHANNEL *chans;
   4704 	int i, ix, nchan;
   4705 
   4706 	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
   4707 			M_TEMP, M_NOWAIT);
   4708 	if (chans == NULL) {
   4709 		if_printf(ifp, "unable to allocate channel table\n");
   4710 		return ENOMEM;
   4711 	}
   4712 	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
   4713 	    NULL, 0, NULL,
   4714 	    cc, HAL_MODE_ALL, outdoor, xchanmode)) {
   4715 		u_int32_t rd;
   4716 
   4717 		(void)ath_hal_getregdomain(ah, &rd);
   4718 		if_printf(ifp, "unable to collect channel list from hal; "
   4719 			"regdomain likely %u country code %u\n", rd, cc);
   4720 		free(chans, M_TEMP);
   4721 		return EINVAL;
   4722 	}
   4723 
   4724 	/*
   4725 	 * Convert HAL channels to ieee80211 ones and insert
   4726 	 * them in the table according to their channel number.
   4727 	 */
   4728 	for (i = 0; i < nchan; i++) {
   4729 		HAL_CHANNEL *c = &chans[i];
   4730 		u_int16_t flags;
   4731 
   4732 		ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags);
   4733 		if (ix > IEEE80211_CHAN_MAX) {
   4734 			if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n",
   4735 				ix, c->channel, c->channelFlags);
   4736 			continue;
   4737 		}
   4738 		if (ix < 0) {
   4739 			/* XXX can't handle stuff <2400 right now */
   4740 			if (bootverbose)
   4741 				if_printf(ifp, "hal channel %d (%u/%x) "
   4742 				    "cannot be handled; ignored\n",
   4743 				    ix, c->channel, c->channelFlags);
   4744 			continue;
   4745 		}
   4746 		/*
   4747 		 * Calculate net80211 flags; most are compatible
   4748 		 * but some need massaging.  Note the static turbo
   4749 		 * conversion can be removed once net80211 is updated
   4750 		 * to understand static vs. dynamic turbo.
   4751 		 */
   4752 		flags = c->channelFlags & COMPAT;
   4753 		if (c->channelFlags & CHANNEL_STURBO)
   4754 			flags |= IEEE80211_CHAN_TURBO;
   4755 		if (ic->ic_channels[ix].ic_freq == 0) {
   4756 			ic->ic_channels[ix].ic_freq = c->channel;
   4757 			ic->ic_channels[ix].ic_flags = flags;
   4758 		} else {
   4759 			/* channels overlap; e.g. 11g and 11b */
   4760 			ic->ic_channels[ix].ic_flags |= flags;
   4761 		}
   4762 	}
   4763 	free(chans, M_TEMP);
   4764 	return 0;
   4765 #undef COMPAT
   4766 }
   4767 
   4768 static void
   4769 ath_led_done(void *arg)
   4770 {
   4771 	struct ath_softc *sc = arg;
   4772 
   4773 	sc->sc_blinking = 0;
   4774 }
   4775 
   4776 /*
   4777  * Turn the LED off: flip the pin and then set a timer so no
   4778  * update will happen for the specified duration.
   4779  */
   4780 static void
   4781 ath_led_off(void *arg)
   4782 {
   4783 	struct ath_softc *sc = arg;
   4784 
   4785 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
   4786 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
   4787 }
   4788 
   4789 /*
   4790  * Blink the LED according to the specified on/off times.
   4791  */
   4792 static void
   4793 ath_led_blink(struct ath_softc *sc, int on, int off)
   4794 {
   4795 	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
   4796 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
   4797 	sc->sc_blinking = 1;
   4798 	sc->sc_ledoff = off;
   4799 	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
   4800 }
   4801 
   4802 static void
   4803 ath_led_event(struct ath_softc *sc, int event)
   4804 {
   4805 
   4806 	sc->sc_ledevent = ticks;	/* time of last event */
   4807 	if (sc->sc_blinking)		/* don't interrupt active blink */
   4808 		return;
   4809 	switch (event) {
   4810 	case ATH_LED_POLL:
   4811 		ath_led_blink(sc, sc->sc_hwmap[0].ledon,
   4812 			sc->sc_hwmap[0].ledoff);
   4813 		break;
   4814 	case ATH_LED_TX:
   4815 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
   4816 			sc->sc_hwmap[sc->sc_txrate].ledoff);
   4817 		break;
   4818 	case ATH_LED_RX:
   4819 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
   4820 			sc->sc_hwmap[sc->sc_rxrate].ledoff);
   4821 		break;
   4822 	}
   4823 }
   4824 
   4825 static void
   4826 ath_update_txpow(struct ath_softc *sc)
   4827 {
   4828 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
   4829 	struct ieee80211com *ic = &sc->sc_ic;
   4830 	struct ath_hal *ah = sc->sc_ah;
   4831 	u_int32_t txpow;
   4832 
   4833 	if (sc->sc_curtxpow != ic->ic_txpowlimit) {
   4834 		ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
   4835 		/* read back in case value is clamped */
   4836 		(void)ath_hal_gettxpowlimit(ah, &txpow);
   4837 		ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
   4838 	}
   4839 	/*
   4840 	 * Fetch max tx power level for status requests.
   4841 	 */
   4842 	(void)ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
   4843 	ic->ic_bss->ni_txpower = txpow;
   4844 }
   4845 
   4846 static void
   4847 rate_setup(struct ath_softc *sc,
   4848 	const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs)
   4849 {
   4850 	int i, maxrates;
   4851 
   4852 	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
   4853 		DPRINTF(sc, ATH_DEBUG_ANY,
   4854 			"%s: rate table too small (%u > %u)\n",
   4855 		       __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
   4856 		maxrates = IEEE80211_RATE_MAXSIZE;
   4857 	} else
   4858 		maxrates = rt->rateCount;
   4859 	for (i = 0; i < maxrates; i++)
   4860 		rs->rs_rates[i] = rt->info[i].dot11Rate;
   4861 	rs->rs_nrates = maxrates;
   4862 }
   4863 
   4864 static int
   4865 ath_rate_setup(struct ath_softc *sc, u_int mode)
   4866 {
   4867 	struct ath_hal *ah = sc->sc_ah;
   4868 	struct ieee80211com *ic = &sc->sc_ic;
   4869 	const HAL_RATE_TABLE *rt;
   4870 
   4871 	switch (mode) {
   4872 	case IEEE80211_MODE_11A:
   4873 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
   4874 		break;
   4875 	case IEEE80211_MODE_11B:
   4876 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
   4877 		break;
   4878 	case IEEE80211_MODE_11G:
   4879 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
   4880 		break;
   4881 	case IEEE80211_MODE_TURBO_A:
   4882 		/* XXX until static/dynamic turbo is fixed */
   4883 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
   4884 		break;
   4885 	case IEEE80211_MODE_TURBO_G:
   4886 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
   4887 		break;
   4888 	default:
   4889 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
   4890 			__func__, mode);
   4891 		return 0;
   4892 	}
   4893 	sc->sc_rates[mode] = rt;
   4894 	if (rt != NULL) {
   4895 		rate_setup(sc, rt, &ic->ic_sup_rates[mode]);
   4896 		return 1;
   4897 	} else
   4898 		return 0;
   4899 }
   4900 
   4901 static void
   4902 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
   4903 {
   4904 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   4905 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
   4906 	static const struct {
   4907 		u_int		rate;		/* tx/rx 802.11 rate */
   4908 		u_int16_t	timeOn;		/* LED on time (ms) */
   4909 		u_int16_t	timeOff;	/* LED off time (ms) */
   4910 	} blinkrates[] = {
   4911 		{ 108,  40,  10 },
   4912 		{  96,  44,  11 },
   4913 		{  72,  50,  13 },
   4914 		{  48,  57,  14 },
   4915 		{  36,  67,  16 },
   4916 		{  24,  80,  20 },
   4917 		{  22, 100,  25 },
   4918 		{  18, 133,  34 },
   4919 		{  12, 160,  40 },
   4920 		{  10, 200,  50 },
   4921 		{   6, 240,  58 },
   4922 		{   4, 267,  66 },
   4923 		{   2, 400, 100 },
   4924 		{   0, 500, 130 },
   4925 	};
   4926 	const HAL_RATE_TABLE *rt;
   4927 	int i, j;
   4928 
   4929 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
   4930 	rt = sc->sc_rates[mode];
   4931 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
   4932 	for (i = 0; i < rt->rateCount; i++)
   4933 		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
   4934 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
   4935 	for (i = 0; i < 32; i++) {
   4936 		u_int8_t ix = rt->rateCodeToIndex[i];
   4937 		if (ix == 0xff) {
   4938 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
   4939 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
   4940 			continue;
   4941 		}
   4942 		sc->sc_hwmap[i].ieeerate =
   4943 			rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
   4944 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
   4945 		if (rt->info[ix].shortPreamble ||
   4946 		    rt->info[ix].phy == IEEE80211_T_OFDM)
   4947 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
   4948 		/* NB: receive frames include FCS */
   4949 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
   4950 			IEEE80211_RADIOTAP_F_FCS;
   4951 		/* setup blink rate table to avoid per-packet lookup */
   4952 		for (j = 0; j < N(blinkrates)-1; j++)
   4953 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
   4954 				break;
   4955 		/* NB: this uses the last entry if the rate isn't found */
   4956 		/* XXX beware of overlow */
   4957 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
   4958 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
   4959 	}
   4960 	sc->sc_currates = rt;
   4961 	sc->sc_curmode = mode;
   4962 	/*
   4963 	 * All protection frames are transmited at 2Mb/s for
   4964 	 * 11g, otherwise at 1Mb/s.
   4965 	 */
   4966 	if (mode == IEEE80211_MODE_11G)
   4967 		sc->sc_protrix = ath_tx_findrix(rt, 2*2);
   4968 	else
   4969 		sc->sc_protrix = ath_tx_findrix(rt, 2*1);
   4970 	/* rate index used to send management frames */
   4971 	sc->sc_minrateix = 0;
   4972 	/*
   4973 	 * Setup multicast rate state.
   4974 	 */
   4975 	/* XXX layering violation */
   4976 	sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate);
   4977 	sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate;
   4978 	/* NB: caller is responsible for reseting rate control state */
   4979 #undef N
   4980 }
   4981 
   4982 #ifdef AR_DEBUG
   4983 static void
   4984 ath_printrxbuf(struct ath_buf *bf, int done)
   4985 {
   4986 	struct ath_desc *ds;
   4987 	int i;
   4988 
   4989 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
   4990 		printf("R%d (%p %" PRIx64
   4991 		    ") %08x %08x %08x %08x %08x %08x %c\n", i, ds,
   4992 		    (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
   4993 		    ds->ds_link, ds->ds_data,
   4994 		    ds->ds_ctl0, ds->ds_ctl1,
   4995 		    ds->ds_hw[0], ds->ds_hw[1],
   4996 		    !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
   4997 	}
   4998 }
   4999 
   5000 static void
   5001 ath_printtxbuf(struct ath_buf *bf, int done)
   5002 {
   5003 	struct ath_desc *ds;
   5004 	int i;
   5005 
   5006 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
   5007 		printf("T%d (%p %" PRIx64
   5008 		    ") %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
   5009 		    i, ds,
   5010 		    (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
   5011 		    ds->ds_link, ds->ds_data,
   5012 		    ds->ds_ctl0, ds->ds_ctl1,
   5013 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
   5014 		    !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
   5015 	}
   5016 }
   5017 #endif /* AR_DEBUG */
   5018 
   5019 static void
   5020 ath_watchdog(struct ifnet *ifp)
   5021 {
   5022 	struct ath_softc *sc = ifp->if_softc;
   5023 	struct ieee80211com *ic = &sc->sc_ic;
   5024 
   5025 	ifp->if_timer = 0;
   5026 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
   5027 		return;
   5028 	if (sc->sc_tx_timer) {
   5029 		if (--sc->sc_tx_timer == 0) {
   5030 			if_printf(ifp, "device timeout\n");
   5031 			ath_reset(ifp);
   5032 			ifp->if_oerrors++;
   5033 			sc->sc_stats.ast_watchdog++;
   5034 		} else
   5035 			ifp->if_timer = 1;
   5036 	}
   5037 	ieee80211_watchdog(ic);
   5038 }
   5039 
   5040 /*
   5041  * Diagnostic interface to the HAL.  This is used by various
   5042  * tools to do things like retrieve register contents for
   5043  * debugging.  The mechanism is intentionally opaque so that
   5044  * it can change frequently w/o concern for compatiblity.
   5045  */
   5046 static int
   5047 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
   5048 {
   5049 	struct ath_hal *ah = sc->sc_ah;
   5050 	u_int id = ad->ad_id & ATH_DIAG_ID;
   5051 	void *indata = NULL;
   5052 	void *outdata = NULL;
   5053 	u_int32_t insize = ad->ad_in_size;
   5054 	u_int32_t outsize = ad->ad_out_size;
   5055 	int error = 0;
   5056 
   5057 	if (ad->ad_id & ATH_DIAG_IN) {
   5058 		/*
   5059 		 * Copy in data.
   5060 		 */
   5061 		indata = malloc(insize, M_TEMP, M_NOWAIT);
   5062 		if (indata == NULL) {
   5063 			error = ENOMEM;
   5064 			goto bad;
   5065 		}
   5066 		error = copyin(ad->ad_in_data, indata, insize);
   5067 		if (error)
   5068 			goto bad;
   5069 	}
   5070 	if (ad->ad_id & ATH_DIAG_DYN) {
   5071 		/*
   5072 		 * Allocate a buffer for the results (otherwise the HAL
   5073 		 * returns a pointer to a buffer where we can read the
   5074 		 * results).  Note that we depend on the HAL leaving this
   5075 		 * pointer for us to use below in reclaiming the buffer;
   5076 		 * may want to be more defensive.
   5077 		 */
   5078 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
   5079 		if (outdata == NULL) {
   5080 			error = ENOMEM;
   5081 			goto bad;
   5082 		}
   5083 	}
   5084 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
   5085 		if (outsize < ad->ad_out_size)
   5086 			ad->ad_out_size = outsize;
   5087 		if (outdata != NULL)
   5088 			error = copyout(outdata, ad->ad_out_data,
   5089 					ad->ad_out_size);
   5090 	} else {
   5091 		error = EINVAL;
   5092 	}
   5093 bad:
   5094 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
   5095 		free(indata, M_TEMP);
   5096 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
   5097 		free(outdata, M_TEMP);
   5098 	return error;
   5099 }
   5100 
   5101 static int
   5102 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
   5103 {
   5104 #define	IS_RUNNING(ifp) \
   5105 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
   5106 	struct ath_softc *sc = ifp->if_softc;
   5107 	struct ieee80211com *ic = &sc->sc_ic;
   5108 	struct ifreq *ifr = (struct ifreq *)data;
   5109 	int error = 0;
   5110 
   5111 	ATH_LOCK(sc);
   5112 	switch (cmd) {
   5113 	case SIOCSIFFLAGS:
   5114 		if (IS_RUNNING(ifp)) {
   5115 			/*
   5116 			 * To avoid rescanning another access point,
   5117 			 * do not call ath_init() here.  Instead,
   5118 			 * only reflect promisc mode settings.
   5119 			 */
   5120 			ath_mode_init(sc);
   5121 		} else if (ifp->if_flags & IFF_UP) {
   5122 			/*
   5123 			 * Beware of being called during attach/detach
   5124 			 * to reset promiscuous mode.  In that case we
   5125 			 * will still be marked UP but not RUNNING.
   5126 			 * However trying to re-init the interface
   5127 			 * is the wrong thing to do as we've already
   5128 			 * torn down much of our state.  There's
   5129 			 * probably a better way to deal with this.
   5130 			 */
   5131 			if (!sc->sc_invalid && ic->ic_bss != NULL)
   5132 				ath_init(sc);	/* XXX lose error */
   5133 		} else
   5134 			ath_stop_locked(ifp, 1);
   5135 		break;
   5136 	case SIOCADDMULTI:
   5137 	case SIOCDELMULTI:
   5138 		error = (cmd == SIOCADDMULTI) ?
   5139 		    ether_addmulti(ifr, &sc->sc_ec) :
   5140 		    ether_delmulti(ifr, &sc->sc_ec);
   5141 		if (error == ENETRESET) {
   5142 			if (ifp->if_flags & IFF_RUNNING)
   5143 				ath_mode_init(sc);
   5144 			error = 0;
   5145 		}
   5146 		break;
   5147 	case SIOCGATHSTATS:
   5148 		/* NB: embed these numbers to get a consistent view */
   5149 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
   5150 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
   5151 		sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
   5152 		ATH_UNLOCK(sc);
   5153 		/*
   5154 		 * NB: Drop the softc lock in case of a page fault;
   5155 		 * we'll accept any potential inconsisentcy in the
   5156 		 * statistics.  The alternative is to copy the data
   5157 		 * to a local structure.
   5158 		 */
   5159 		return copyout(&sc->sc_stats,
   5160 				ifr->ifr_data, sizeof (sc->sc_stats));
   5161 	case SIOCGATHDIAG:
   5162 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
   5163 		break;
   5164 	default:
   5165 		error = ieee80211_ioctl(ic, cmd, data);
   5166 		if (error == ENETRESET) {
   5167 			if (IS_RUNNING(ifp) &&
   5168 			    ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
   5169 				ath_init(sc);	/* XXX lose error */
   5170 			error = 0;
   5171 		}
   5172 		if (error == ERESTART)
   5173 			error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0;
   5174 		break;
   5175 	}
   5176 	ATH_UNLOCK(sc);
   5177 	return error;
   5178 #undef IS_RUNNING
   5179 }
   5180 
   5181 #if NBPFILTER > 0
   5182 static void
   5183 ath_bpfattach(struct ath_softc *sc)
   5184 {
   5185 	struct ifnet *ifp = &sc->sc_if;
   5186 
   5187 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
   5188 		sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
   5189 		&sc->sc_drvbpf);
   5190 	/*
   5191 	 * Initialize constant fields.
   5192 	 * XXX make header lengths a multiple of 32-bits so subsequent
   5193 	 *     headers are properly aligned; this is a kludge to keep
   5194 	 *     certain applications happy.
   5195 	 *
   5196 	 * NB: the channel is setup each time we transition to the
   5197 	 *     RUN state to avoid filling it in for each frame.
   5198 	 */
   5199 	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
   5200 	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
   5201 	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
   5202 
   5203 	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
   5204 	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
   5205 	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
   5206 }
   5207 #endif
   5208 
   5209 /*
   5210  * Announce various information on device/driver attach.
   5211  */
   5212 static void
   5213 ath_announce(struct ath_softc *sc)
   5214 {
   5215 #define	HAL_MODE_DUALBAND	(HAL_MODE_11A|HAL_MODE_11B)
   5216 	struct ifnet *ifp = &sc->sc_if;
   5217 	struct ath_hal *ah = sc->sc_ah;
   5218 	u_int modes, cc;
   5219 
   5220 	if_printf(ifp, "mac %d.%d phy %d.%d",
   5221 		ah->ah_macVersion, ah->ah_macRev,
   5222 		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
   5223 	/*
   5224 	 * Print radio revision(s).  We check the wireless modes
   5225 	 * to avoid falsely printing revs for inoperable parts.
   5226 	 * Dual-band radio revs are returned in the 5 GHz rev number.
   5227 	 */
   5228 	ath_hal_getcountrycode(ah, &cc);
   5229 	modes = ath_hal_getwirelessmodes(ah, cc);
   5230 	if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
   5231 		if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
   5232 			printf(" 5 GHz radio %d.%d 2 GHz radio %d.%d",
   5233 				ah->ah_analog5GhzRev >> 4,
   5234 				ah->ah_analog5GhzRev & 0xf,
   5235 				ah->ah_analog2GhzRev >> 4,
   5236 				ah->ah_analog2GhzRev & 0xf);
   5237 		else
   5238 			printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
   5239 				ah->ah_analog5GhzRev & 0xf);
   5240 	} else
   5241 		printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
   5242 			ah->ah_analog5GhzRev & 0xf);
   5243 	printf("\n");
   5244 	if (bootverbose) {
   5245 		int i;
   5246 		for (i = 0; i <= WME_AC_VO; i++) {
   5247 			struct ath_txq *txq = sc->sc_ac2q[i];
   5248 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
   5249 				txq->axq_qnum, ieee80211_wme_acnames[i]);
   5250 		}
   5251 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
   5252 			sc->sc_cabq->axq_qnum);
   5253 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
   5254 	}
   5255 	if (ath_rxbuf != ATH_RXBUF)
   5256 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
   5257 	if (ath_txbuf != ATH_TXBUF)
   5258 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
   5259 #undef HAL_MODE_DUALBAND
   5260 }
   5261