ath.c revision 1.79 1 /* $NetBSD: ath.c,v 1.79 2006/11/16 01:32:51 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15 * redistribution must be conditioned upon including a substantially
16 * similar Disclaimer requirement for further binary redistribution.
17 * 3. Neither the names of the above-listed copyright holders nor the names
18 * of any contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * Alternatively, this software may be distributed under the terms of the
22 * GNU General Public License ("GPL") version 2 as published by the Free
23 * Software Foundation.
24 *
25 * NO WARRANTY
26 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
28 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
29 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
30 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
31 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
34 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
36 * THE POSSIBILITY OF SUCH DAMAGES.
37 */
38
39 #include <sys/cdefs.h>
40 #ifdef __FreeBSD__
41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $");
42 #endif
43 #ifdef __NetBSD__
44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.79 2006/11/16 01:32:51 christos Exp $");
45 #endif
46
47 /*
48 * Driver for the Atheros Wireless LAN controller.
49 *
50 * This software is derived from work of Atsushi Onoe; his contribution
51 * is greatly appreciated.
52 */
53
54 #include "opt_inet.h"
55
56 #ifdef __NetBSD__
57 #include "bpfilter.h"
58 #endif /* __NetBSD__ */
59
60 #include <sys/param.h>
61 #include <sys/reboot.h>
62 #include <sys/systm.h>
63 #include <sys/types.h>
64 #include <sys/sysctl.h>
65 #include <sys/mbuf.h>
66 #include <sys/malloc.h>
67 #include <sys/lock.h>
68 #include <sys/kernel.h>
69 #include <sys/socket.h>
70 #include <sys/sockio.h>
71 #include <sys/errno.h>
72 #include <sys/callout.h>
73 #include <machine/bus.h>
74 #include <sys/endian.h>
75
76 #include <machine/bus.h>
77
78 #include <net/if.h>
79 #include <net/if_dl.h>
80 #include <net/if_media.h>
81 #include <net/if_types.h>
82 #include <net/if_arp.h>
83 #include <net/if_ether.h>
84 #include <net/if_llc.h>
85
86 #include <net80211/ieee80211_netbsd.h>
87 #include <net80211/ieee80211_var.h>
88
89 #if NBPFILTER > 0
90 #include <net/bpf.h>
91 #endif
92
93 #ifdef INET
94 #include <netinet/in.h>
95 #endif
96
97 #include <sys/device.h>
98 #include <dev/ic/ath_netbsd.h>
99
100 #define AR_DEBUG
101 #include <dev/ic/athvar.h>
102 #include <contrib/dev/ath/ah_desc.h>
103 #include <contrib/dev/ath/ah_devid.h> /* XXX for softled */
104 #include "athhal_options.h"
105
106 #ifdef ATH_TX99_DIAG
107 #include <dev/ath/ath_tx99/ath_tx99.h>
108 #endif
109
110 /* unaligned little endian access */
111 #define LE_READ_2(p) \
112 ((u_int16_t) \
113 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8)))
114 #define LE_READ_4(p) \
115 ((u_int32_t) \
116 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \
117 (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
118
119 enum {
120 ATH_LED_TX,
121 ATH_LED_RX,
122 ATH_LED_POLL,
123 };
124
125 #ifdef AH_NEED_DESC_SWAP
126 #define HTOAH32(x) htole32(x)
127 #else
128 #define HTOAH32(x) (x)
129 #endif
130
131 static int ath_ifinit(struct ifnet *);
132 static int ath_init(struct ath_softc *);
133 static void ath_stop_locked(struct ifnet *, int);
134 static void ath_stop(struct ifnet *, int);
135 static void ath_start(struct ifnet *);
136 static int ath_media_change(struct ifnet *);
137 static void ath_watchdog(struct ifnet *);
138 static int ath_ioctl(struct ifnet *, u_long, caddr_t);
139 static void ath_fatal_proc(void *, int);
140 static void ath_rxorn_proc(void *, int);
141 static void ath_bmiss_proc(void *, int);
142 static void ath_radar_proc(void *, int);
143 static int ath_key_alloc(struct ieee80211com *,
144 const struct ieee80211_key *,
145 ieee80211_keyix *, ieee80211_keyix *);
146 static int ath_key_delete(struct ieee80211com *,
147 const struct ieee80211_key *);
148 static int ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
149 const u_int8_t mac[IEEE80211_ADDR_LEN]);
150 static void ath_key_update_begin(struct ieee80211com *);
151 static void ath_key_update_end(struct ieee80211com *);
152 static void ath_mode_init(struct ath_softc *);
153 static void ath_setslottime(struct ath_softc *);
154 static void ath_updateslot(struct ifnet *);
155 static int ath_beaconq_setup(struct ath_hal *);
156 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
157 static void ath_beacon_setup(struct ath_softc *, struct ath_buf *);
158 static void ath_beacon_proc(void *, int);
159 static void ath_bstuck_proc(void *, int);
160 static void ath_beacon_free(struct ath_softc *);
161 static void ath_beacon_config(struct ath_softc *);
162 static void ath_descdma_cleanup(struct ath_softc *sc,
163 struct ath_descdma *, ath_bufhead *);
164 static int ath_desc_alloc(struct ath_softc *);
165 static void ath_desc_free(struct ath_softc *);
166 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
167 static void ath_node_free(struct ieee80211_node *);
168 static u_int8_t ath_node_getrssi(const struct ieee80211_node *);
169 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
170 static void ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
171 struct ieee80211_node *ni,
172 int subtype, int rssi, u_int32_t rstamp);
173 static void ath_setdefantenna(struct ath_softc *, u_int);
174 static void ath_rx_proc(void *, int);
175 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
176 static int ath_tx_setup(struct ath_softc *, int, int);
177 static int ath_wme_update(struct ieee80211com *);
178 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
179 static void ath_tx_cleanup(struct ath_softc *);
180 static int ath_tx_start(struct ath_softc *, struct ieee80211_node *,
181 struct ath_buf *, struct mbuf *);
182 static void ath_tx_proc_q0(void *, int);
183 static void ath_tx_proc_q0123(void *, int);
184 static void ath_tx_proc(void *, int);
185 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
186 static void ath_draintxq(struct ath_softc *);
187 static void ath_stoprecv(struct ath_softc *);
188 static int ath_startrecv(struct ath_softc *);
189 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
190 static void ath_next_scan(void *);
191 static void ath_calibrate(void *);
192 static int ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
193 static void ath_setup_stationkey(struct ieee80211_node *);
194 static void ath_newassoc(struct ieee80211_node *, int);
195 static int ath_getchannels(struct ath_softc *, u_int cc,
196 HAL_BOOL outdoor, HAL_BOOL xchanmode);
197 static void ath_led_event(struct ath_softc *, int);
198 static void ath_update_txpow(struct ath_softc *);
199
200 static int ath_rate_setup(struct ath_softc *, u_int mode);
201 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
202
203 #ifdef __NetBSD__
204 int ath_enable(struct ath_softc *);
205 void ath_disable(struct ath_softc *);
206 void ath_power(int, void *);
207 #endif
208
209 #if NBPFILTER > 0
210 static void ath_bpfattach(struct ath_softc *);
211 #endif
212 static void ath_announce(struct ath_softc *);
213
214 int ath_dwelltime = 200; /* 5 channels/second */
215 int ath_calinterval = 30; /* calibrate every 30 secs */
216 int ath_outdoor = AH_TRUE; /* outdoor operation */
217 int ath_xchanmode = AH_TRUE; /* enable extended channels */
218 int ath_countrycode = CTRY_DEFAULT; /* country code */
219 int ath_regdomain = 0; /* regulatory domain */
220 int ath_debug = 0;
221 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */
222 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */
223
224 #ifdef AR_DEBUG
225 enum {
226 ATH_DEBUG_XMIT = 0x00000001, /* basic xmit operation */
227 ATH_DEBUG_XMIT_DESC = 0x00000002, /* xmit descriptors */
228 ATH_DEBUG_RECV = 0x00000004, /* basic recv operation */
229 ATH_DEBUG_RECV_DESC = 0x00000008, /* recv descriptors */
230 ATH_DEBUG_RATE = 0x00000010, /* rate control */
231 ATH_DEBUG_RESET = 0x00000020, /* reset processing */
232 ATH_DEBUG_MODE = 0x00000040, /* mode init/setup */
233 ATH_DEBUG_BEACON = 0x00000080, /* beacon handling */
234 ATH_DEBUG_WATCHDOG = 0x00000100, /* watchdog timeout */
235 ATH_DEBUG_INTR = 0x00001000, /* ISR */
236 ATH_DEBUG_TX_PROC = 0x00002000, /* tx ISR proc */
237 ATH_DEBUG_RX_PROC = 0x00004000, /* rx ISR proc */
238 ATH_DEBUG_BEACON_PROC = 0x00008000, /* beacon ISR proc */
239 ATH_DEBUG_CALIBRATE = 0x00010000, /* periodic calibration */
240 ATH_DEBUG_KEYCACHE = 0x00020000, /* key cache management */
241 ATH_DEBUG_STATE = 0x00040000, /* 802.11 state transitions */
242 ATH_DEBUG_NODE = 0x00080000, /* node management */
243 ATH_DEBUG_LED = 0x00100000, /* led management */
244 ATH_DEBUG_FF = 0x00200000, /* fast frames */
245 ATH_DEBUG_DFS = 0x00400000, /* DFS processing */
246 ATH_DEBUG_FATAL = 0x80000000, /* fatal errors */
247 ATH_DEBUG_ANY = 0xffffffff
248 };
249 #define IFF_DUMPPKTS(sc, m) \
250 ((sc->sc_debug & (m)) || \
251 (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
252 #define DPRINTF(sc, m, fmt, ...) do { \
253 if (sc->sc_debug & (m)) \
254 printf(fmt, __VA_ARGS__); \
255 } while (0)
256 #define KEYPRINTF(sc, ix, hk, mac) do { \
257 if (sc->sc_debug & ATH_DEBUG_KEYCACHE) \
258 ath_keyprint(__func__, ix, hk, mac); \
259 } while (0)
260 static void ath_printrxbuf(struct ath_buf *bf, int);
261 static void ath_printtxbuf(struct ath_buf *bf, int);
262 #else
263 #define IFF_DUMPPKTS(sc, m) \
264 ((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
265 #define DPRINTF(m, fmt, ...)
266 #define KEYPRINTF(sc, k, ix, mac)
267 #endif
268
269 #ifdef __NetBSD__
270 int
271 ath_activate(struct device *self, enum devact act)
272 {
273 struct ath_softc *sc = (struct ath_softc *)self;
274 int rv = 0, s;
275
276 s = splnet();
277 switch (act) {
278 case DVACT_ACTIVATE:
279 rv = EOPNOTSUPP;
280 break;
281 case DVACT_DEACTIVATE:
282 if_deactivate(&sc->sc_if);
283 break;
284 }
285 splx(s);
286 return rv;
287 }
288
289 int
290 ath_enable(struct ath_softc *sc)
291 {
292 if (ATH_IS_ENABLED(sc) == 0) {
293 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
294 printf("%s: device enable failed\n",
295 sc->sc_dev.dv_xname);
296 return (EIO);
297 }
298 sc->sc_flags |= ATH_ENABLED;
299 }
300 return (0);
301 }
302
303 void
304 ath_disable(struct ath_softc *sc)
305 {
306 if (!ATH_IS_ENABLED(sc))
307 return;
308 if (sc->sc_disable != NULL)
309 (*sc->sc_disable)(sc);
310 sc->sc_flags &= ~ATH_ENABLED;
311 }
312 #endif /* __NetBSD__ */
313
314 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
315
316 int
317 ath_attach(u_int16_t devid, struct ath_softc *sc)
318 {
319 struct ifnet *ifp = &sc->sc_if;
320 struct ieee80211com *ic = &sc->sc_ic;
321 struct ath_hal *ah = NULL;
322 HAL_STATUS status;
323 int error = 0, i;
324
325 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
326
327 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
328
329 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
330 if (ah == NULL) {
331 if_printf(ifp, "unable to attach hardware; HAL status %u\n",
332 status);
333 error = ENXIO;
334 goto bad;
335 }
336 if (ah->ah_abi != HAL_ABI_VERSION) {
337 if_printf(ifp, "HAL ABI mismatch detected "
338 "(HAL:0x%x != driver:0x%x)\n",
339 ah->ah_abi, HAL_ABI_VERSION);
340 error = ENXIO;
341 goto bad;
342 }
343 sc->sc_ah = ah;
344 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */
345
346 /*
347 * Check if the MAC has multi-rate retry support.
348 * We do this by trying to setup a fake extended
349 * descriptor. MAC's that don't have support will
350 * return false w/o doing anything. MAC's that do
351 * support it will return true w/o doing anything.
352 */
353 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
354
355 /*
356 * Check if the device has hardware counters for PHY
357 * errors. If so we need to enable the MIB interrupt
358 * so we can act on stat triggers.
359 */
360 if (ath_hal_hwphycounters(ah))
361 sc->sc_needmib = 1;
362
363 /*
364 * Get the hardware key cache size.
365 */
366 sc->sc_keymax = ath_hal_keycachesize(ah);
367 if (sc->sc_keymax > ATH_KEYMAX) {
368 if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
369 ATH_KEYMAX, sc->sc_keymax);
370 sc->sc_keymax = ATH_KEYMAX;
371 }
372 /*
373 * Reset the key cache since some parts do not
374 * reset the contents on initial power up.
375 */
376 for (i = 0; i < sc->sc_keymax; i++)
377 ath_hal_keyreset(ah, i);
378 /*
379 * Mark key cache slots associated with global keys
380 * as in use. If we knew TKIP was not to be used we
381 * could leave the +32, +64, and +32+64 slots free.
382 * XXX only for splitmic.
383 */
384 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
385 setbit(sc->sc_keymap, i);
386 setbit(sc->sc_keymap, i+32);
387 setbit(sc->sc_keymap, i+64);
388 setbit(sc->sc_keymap, i+32+64);
389 }
390
391 /*
392 * Collect the channel list using the default country
393 * code and including outdoor channels. The 802.11 layer
394 * is resposible for filtering this list based on settings
395 * like the phy mode.
396 */
397 error = ath_getchannels(sc, ath_countrycode,
398 ath_outdoor, ath_xchanmode);
399 if (error != 0)
400 goto bad;
401
402 /*
403 * Setup rate tables for all potential media types.
404 */
405 ath_rate_setup(sc, IEEE80211_MODE_11A);
406 ath_rate_setup(sc, IEEE80211_MODE_11B);
407 ath_rate_setup(sc, IEEE80211_MODE_11G);
408 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
409 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
410 /* NB: setup here so ath_rate_update is happy */
411 ath_setcurmode(sc, IEEE80211_MODE_11A);
412
413 /*
414 * Allocate tx+rx descriptors and populate the lists.
415 */
416 error = ath_desc_alloc(sc);
417 if (error != 0) {
418 if_printf(ifp, "failed to allocate descriptors: %d\n", error);
419 goto bad;
420 }
421 ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
422 ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE);
423 ATH_CALLOUT_INIT(&sc->sc_dfs_ch, CALLOUT_MPSAFE);
424
425 ATH_TXBUF_LOCK_INIT(sc);
426
427 TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
428 TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
429 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
430 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
431 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
432 TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc);
433
434 /*
435 * Allocate hardware transmit queues: one queue for
436 * beacon frames and one data queue for each QoS
437 * priority. Note that the hal handles reseting
438 * these queues at the needed time.
439 *
440 * XXX PS-Poll
441 */
442 sc->sc_bhalq = ath_beaconq_setup(ah);
443 if (sc->sc_bhalq == (u_int) -1) {
444 if_printf(ifp, "unable to setup a beacon xmit queue!\n");
445 error = EIO;
446 goto bad2;
447 }
448 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
449 if (sc->sc_cabq == NULL) {
450 if_printf(ifp, "unable to setup CAB xmit queue!\n");
451 error = EIO;
452 goto bad2;
453 }
454 /* NB: insure BK queue is the lowest priority h/w queue */
455 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
456 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
457 ieee80211_wme_acnames[WME_AC_BK]);
458 error = EIO;
459 goto bad2;
460 }
461 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
462 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
463 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
464 /*
465 * Not enough hardware tx queues to properly do WME;
466 * just punt and assign them all to the same h/w queue.
467 * We could do a better job of this if, for example,
468 * we allocate queues when we switch from station to
469 * AP mode.
470 */
471 if (sc->sc_ac2q[WME_AC_VI] != NULL)
472 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
473 if (sc->sc_ac2q[WME_AC_BE] != NULL)
474 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
475 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
476 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
477 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
478 }
479
480 /*
481 * Special case certain configurations. Note the
482 * CAB queue is handled by these specially so don't
483 * include them when checking the txq setup mask.
484 */
485 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
486 case 0x01:
487 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
488 break;
489 case 0x0f:
490 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
491 break;
492 default:
493 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
494 break;
495 }
496
497 /*
498 * Setup rate control. Some rate control modules
499 * call back to change the anntena state so expose
500 * the necessary entry points.
501 * XXX maybe belongs in struct ath_ratectrl?
502 */
503 sc->sc_setdefantenna = ath_setdefantenna;
504 sc->sc_rc = ath_rate_attach(sc);
505 if (sc->sc_rc == NULL) {
506 error = EIO;
507 goto bad2;
508 }
509
510 sc->sc_blinking = 0;
511 sc->sc_ledstate = 1;
512 sc->sc_ledon = 0; /* low true */
513 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */
514 ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE);
515 /*
516 * Auto-enable soft led processing for IBM cards and for
517 * 5211 minipci cards. Users can also manually enable/disable
518 * support with a sysctl.
519 */
520 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
521 if (sc->sc_softled) {
522 ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
523 ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
524 }
525
526 ifp->if_softc = sc;
527 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
528 ifp->if_start = ath_start;
529 ifp->if_watchdog = ath_watchdog;
530 ifp->if_ioctl = ath_ioctl;
531 ifp->if_init = ath_ifinit;
532 IFQ_SET_READY(&ifp->if_snd);
533
534 ic->ic_ifp = ifp;
535 ic->ic_reset = ath_reset;
536 ic->ic_newassoc = ath_newassoc;
537 ic->ic_updateslot = ath_updateslot;
538 ic->ic_wme.wme_update = ath_wme_update;
539 /* XXX not right but it's not used anywhere important */
540 ic->ic_phytype = IEEE80211_T_OFDM;
541 ic->ic_opmode = IEEE80211_M_STA;
542 ic->ic_caps =
543 IEEE80211_C_IBSS /* ibss, nee adhoc, mode */
544 | IEEE80211_C_HOSTAP /* hostap mode */
545 | IEEE80211_C_MONITOR /* monitor mode */
546 | IEEE80211_C_SHPREAMBLE /* short preamble supported */
547 | IEEE80211_C_SHSLOT /* short slot time supported */
548 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */
549 ;
550 /*
551 * Query the hal to figure out h/w crypto support.
552 */
553 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
554 ic->ic_caps |= IEEE80211_C_WEP;
555 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
556 ic->ic_caps |= IEEE80211_C_AES;
557 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
558 ic->ic_caps |= IEEE80211_C_AES_CCM;
559 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
560 ic->ic_caps |= IEEE80211_C_CKIP;
561 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
562 ic->ic_caps |= IEEE80211_C_TKIP;
563 /*
564 * Check if h/w does the MIC and/or whether the
565 * separate key cache entries are required to
566 * handle both tx+rx MIC keys.
567 */
568 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
569 ic->ic_caps |= IEEE80211_C_TKIPMIC;
570 if (ath_hal_tkipsplit(ah))
571 sc->sc_splitmic = 1;
572 }
573 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
574 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
575 /*
576 * TPC support can be done either with a global cap or
577 * per-packet support. The latter is not available on
578 * all parts. We're a bit pedantic here as all parts
579 * support a global cap.
580 */
581 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
582 ic->ic_caps |= IEEE80211_C_TXPMGT;
583
584 /*
585 * Mark WME capability only if we have sufficient
586 * hardware queues to do proper priority scheduling.
587 */
588 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
589 ic->ic_caps |= IEEE80211_C_WME;
590 /*
591 * Check for misc other capabilities.
592 */
593 if (ath_hal_hasbursting(ah))
594 ic->ic_caps |= IEEE80211_C_BURST;
595
596 /*
597 * Indicate we need the 802.11 header padded to a
598 * 32-bit boundary for 4-address and QoS frames.
599 */
600 ic->ic_flags |= IEEE80211_F_DATAPAD;
601
602 /*
603 * Query the hal about antenna support.
604 */
605 sc->sc_defant = ath_hal_getdefantenna(ah);
606
607 /*
608 * Not all chips have the VEOL support we want to
609 * use with IBSS beacons; check here for it.
610 */
611 sc->sc_hasveol = ath_hal_hasveol(ah);
612
613 /* get mac address from hardware */
614 ath_hal_getmac(ah, ic->ic_myaddr);
615
616 if_attach(ifp);
617 /* call MI attach routine. */
618 ieee80211_ifattach(ic);
619 /* override default methods */
620 ic->ic_node_alloc = ath_node_alloc;
621 sc->sc_node_free = ic->ic_node_free;
622 ic->ic_node_free = ath_node_free;
623 ic->ic_node_getrssi = ath_node_getrssi;
624 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
625 ic->ic_recv_mgmt = ath_recv_mgmt;
626 sc->sc_newstate = ic->ic_newstate;
627 ic->ic_newstate = ath_newstate;
628 ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
629 ic->ic_crypto.cs_key_alloc = ath_key_alloc;
630 ic->ic_crypto.cs_key_delete = ath_key_delete;
631 ic->ic_crypto.cs_key_set = ath_key_set;
632 ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
633 ic->ic_crypto.cs_key_update_end = ath_key_update_end;
634 /* complete initialization */
635 ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
636
637 #if NBPFILTER > 0
638 ath_bpfattach(sc);
639 #endif
640
641 #ifdef __NetBSD__
642 sc->sc_flags |= ATH_ATTACHED;
643 sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
644 ath_power, sc);
645 if (sc->sc_powerhook == NULL)
646 printf("%s: WARNING: unable to establish power hook\n",
647 sc->sc_dev.dv_xname);
648 #endif
649
650 /*
651 * Setup dynamic sysctl's now that country code and
652 * regdomain are available from the hal.
653 */
654 ath_sysctlattach(sc);
655
656 ieee80211_announce(ic);
657 ath_announce(sc);
658 return 0;
659 bad2:
660 ath_tx_cleanup(sc);
661 ath_desc_free(sc);
662 bad:
663 if (ah)
664 ath_hal_detach(ah);
665 sc->sc_invalid = 1;
666 return error;
667 }
668
669 int
670 ath_detach(struct ath_softc *sc)
671 {
672 struct ifnet *ifp = &sc->sc_if;
673 int s;
674
675 if ((sc->sc_flags & ATH_ATTACHED) == 0)
676 return (0);
677
678 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
679 __func__, ifp->if_flags);
680
681 s = splnet();
682 ath_stop(ifp, 1);
683 #if NBPFILTER > 0
684 bpfdetach(ifp);
685 #endif
686 /*
687 * NB: the order of these is important:
688 * o call the 802.11 layer before detaching the hal to
689 * insure callbacks into the driver to delete global
690 * key cache entries can be handled
691 * o reclaim the tx queue data structures after calling
692 * the 802.11 layer as we'll get called back to reclaim
693 * node state and potentially want to use them
694 * o to cleanup the tx queues the hal is called, so detach
695 * it last
696 * Other than that, it's straightforward...
697 */
698 ieee80211_ifdetach(&sc->sc_ic);
699 #ifdef ATH_TX99_DIAG
700 if (sc->sc_tx99 != NULL)
701 sc->sc_tx99->detach(sc->sc_tx99);
702 #endif
703 ath_rate_detach(sc->sc_rc);
704 ath_desc_free(sc);
705 ath_tx_cleanup(sc);
706 sysctl_teardown(&sc->sc_sysctllog);
707 ath_hal_detach(sc->sc_ah);
708 if_detach(ifp);
709 splx(s);
710 powerhook_disestablish(sc->sc_powerhook);
711
712 return 0;
713 }
714
715 #ifdef __NetBSD__
716 void
717 ath_power(int why, void *arg)
718 {
719 struct ath_softc *sc = arg;
720 int s;
721
722 DPRINTF(sc, ATH_DEBUG_ANY, "ath_power(%d)\n", why);
723
724 s = splnet();
725 switch (why) {
726 case PWR_SUSPEND:
727 case PWR_STANDBY:
728 ath_suspend(sc, why);
729 break;
730 case PWR_RESUME:
731 ath_resume(sc, why);
732 break;
733 case PWR_SOFTSUSPEND:
734 case PWR_SOFTSTANDBY:
735 case PWR_SOFTRESUME:
736 break;
737 }
738 splx(s);
739 }
740 #endif
741
742 void
743 ath_suspend(struct ath_softc *sc, int why)
744 {
745 struct ifnet *ifp = &sc->sc_if;
746
747 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
748 __func__, ifp->if_flags);
749
750 ath_stop(ifp, 1);
751 if (sc->sc_power != NULL)
752 (*sc->sc_power)(sc, why);
753 }
754
755 void
756 ath_resume(struct ath_softc *sc, int why)
757 {
758 struct ifnet *ifp = &sc->sc_if;
759
760 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
761 __func__, ifp->if_flags);
762
763 if (ifp->if_flags & IFF_UP) {
764 ath_init(sc);
765 #if 0
766 (void)ath_intr(sc);
767 #endif
768 if (sc->sc_power != NULL)
769 (*sc->sc_power)(sc, why);
770 if (ifp->if_flags & IFF_RUNNING)
771 ath_start(ifp);
772 }
773 if (sc->sc_softled) {
774 ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
775 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
776 }
777 }
778
779 void
780 ath_shutdown(void *arg)
781 {
782 struct ath_softc *sc = arg;
783
784 ath_stop(&sc->sc_if, 1);
785 }
786
787 /*
788 * Interrupt handler. Most of the actual processing is deferred.
789 */
790 int
791 ath_intr(void *arg)
792 {
793 struct ath_softc *sc = arg;
794 struct ifnet *ifp = &sc->sc_if;
795 struct ath_hal *ah = sc->sc_ah;
796 HAL_INT status;
797
798 if (sc->sc_invalid) {
799 /*
800 * The hardware is not ready/present, don't touch anything.
801 * Note this can happen early on if the IRQ is shared.
802 */
803 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
804 return 0;
805 }
806
807 if (!ath_hal_intrpend(ah)) /* shared irq, not for us */
808 return 0;
809
810 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
811 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
812 __func__, ifp->if_flags);
813 ath_hal_getisr(ah, &status); /* clear ISR */
814 ath_hal_intrset(ah, 0); /* disable further intr's */
815 return 1; /* XXX */
816 }
817 /*
818 * Figure out the reason(s) for the interrupt. Note
819 * that the hal returns a pseudo-ISR that may include
820 * bits we haven't explicitly enabled so we mask the
821 * value to insure we only process bits we requested.
822 */
823 ath_hal_getisr(ah, &status); /* NB: clears ISR too */
824 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
825 status &= sc->sc_imask; /* discard unasked for bits */
826 if (status & HAL_INT_FATAL) {
827 /*
828 * Fatal errors are unrecoverable. Typically
829 * these are caused by DMA errors. Unfortunately
830 * the exact reason is not (presently) returned
831 * by the hal.
832 */
833 sc->sc_stats.ast_hardware++;
834 ath_hal_intrset(ah, 0); /* disable intr's until reset */
835 TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
836 } else if (status & HAL_INT_RXORN) {
837 sc->sc_stats.ast_rxorn++;
838 ath_hal_intrset(ah, 0); /* disable intr's until reset */
839 TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
840 } else {
841 if (status & HAL_INT_SWBA) {
842 /*
843 * Software beacon alert--time to send a beacon.
844 * Handle beacon transmission directly; deferring
845 * this is too slow to meet timing constraints
846 * under load.
847 */
848 ath_beacon_proc(sc, 0);
849 }
850 if (status & HAL_INT_RXEOL) {
851 /*
852 * NB: the hardware should re-read the link when
853 * RXE bit is written, but it doesn't work at
854 * least on older hardware revs.
855 */
856 sc->sc_stats.ast_rxeol++;
857 sc->sc_rxlink = NULL;
858 }
859 if (status & HAL_INT_TXURN) {
860 sc->sc_stats.ast_txurn++;
861 /* bump tx trigger level */
862 ath_hal_updatetxtriglevel(ah, AH_TRUE);
863 }
864 if (status & HAL_INT_RX)
865 TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
866 if (status & HAL_INT_TX)
867 TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
868 if (status & HAL_INT_BMISS) {
869 sc->sc_stats.ast_bmiss++;
870 TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
871 }
872 if (status & HAL_INT_MIB) {
873 sc->sc_stats.ast_mib++;
874 /*
875 * Disable interrupts until we service the MIB
876 * interrupt; otherwise it will continue to fire.
877 */
878 ath_hal_intrset(ah, 0);
879 /*
880 * Let the hal handle the event. We assume it will
881 * clear whatever condition caused the interrupt.
882 */
883 ath_hal_mibevent(ah, &sc->sc_halstats);
884 ath_hal_intrset(ah, sc->sc_imask);
885 }
886 }
887 return 1;
888 }
889
890 /* Swap transmit descriptor.
891 * if AH_NEED_DESC_SWAP flag is not defined this becomes a "null"
892 * function.
893 */
894 static inline void
895 ath_desc_swap(struct ath_desc *ds)
896 {
897 #ifdef AH_NEED_DESC_SWAP
898 ds->ds_link = htole32(ds->ds_link);
899 ds->ds_data = htole32(ds->ds_data);
900 ds->ds_ctl0 = htole32(ds->ds_ctl0);
901 ds->ds_ctl1 = htole32(ds->ds_ctl1);
902 ds->ds_hw[0] = htole32(ds->ds_hw[0]);
903 ds->ds_hw[1] = htole32(ds->ds_hw[1]);
904 #endif
905 }
906
907 static void
908 ath_fatal_proc(void *arg, int pending)
909 {
910 struct ath_softc *sc = arg;
911 struct ifnet *ifp = &sc->sc_if;
912
913 if_printf(ifp, "hardware error; resetting\n");
914 ath_reset(ifp);
915 }
916
917 static void
918 ath_rxorn_proc(void *arg, int pending)
919 {
920 struct ath_softc *sc = arg;
921 struct ifnet *ifp = &sc->sc_if;
922
923 if_printf(ifp, "rx FIFO overrun; resetting\n");
924 ath_reset(ifp);
925 }
926
927 static void
928 ath_bmiss_proc(void *arg, int pending)
929 {
930 struct ath_softc *sc = arg;
931 struct ieee80211com *ic = &sc->sc_ic;
932
933 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
934 KASSERT(ic->ic_opmode == IEEE80211_M_STA,
935 ("unexpect operating mode %u", ic->ic_opmode));
936 if (ic->ic_state == IEEE80211_S_RUN) {
937 u_int64_t lastrx = sc->sc_lastrx;
938 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
939
940 DPRINTF(sc, ATH_DEBUG_BEACON,
941 "%s: tsf %" PRIu64 " lastrx %" PRId64
942 " (%" PRIu64 ") bmiss %u\n",
943 __func__, tsf, tsf - lastrx, lastrx,
944 ic->ic_bmisstimeout*1024);
945 /*
946 * Workaround phantom bmiss interrupts by sanity-checking
947 * the time of our last rx'd frame. If it is within the
948 * beacon miss interval then ignore the interrupt. If it's
949 * truly a bmiss we'll get another interrupt soon and that'll
950 * be dispatched up for processing.
951 */
952 if (tsf - lastrx > ic->ic_bmisstimeout*1024) {
953 NET_LOCK_GIANT();
954 ieee80211_beacon_miss(ic);
955 NET_UNLOCK_GIANT();
956 } else
957 sc->sc_stats.ast_bmiss_phantom++;
958 }
959 }
960
961 static void
962 ath_radar_proc(void *arg, int pending)
963 {
964 struct ath_softc *sc = arg;
965 struct ifnet *ifp = &sc->sc_if;
966 struct ath_hal *ah = sc->sc_ah;
967 HAL_CHANNEL hchan;
968
969 if (ath_hal_procdfs(ah, &hchan)) {
970 if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n",
971 hchan.channel, hchan.channelFlags, hchan.privFlags);
972 /*
973 * Initiate channel change.
974 */
975 /* XXX not yet */
976 }
977 }
978
979 static u_int
980 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
981 {
982 #define N(a) (sizeof(a) / sizeof(a[0]))
983 static const u_int modeflags[] = {
984 0, /* IEEE80211_MODE_AUTO */
985 CHANNEL_A, /* IEEE80211_MODE_11A */
986 CHANNEL_B, /* IEEE80211_MODE_11B */
987 CHANNEL_PUREG, /* IEEE80211_MODE_11G */
988 0, /* IEEE80211_MODE_FH */
989 CHANNEL_ST, /* IEEE80211_MODE_TURBO_A */
990 CHANNEL_108G /* IEEE80211_MODE_TURBO_G */
991 };
992 enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
993
994 KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
995 KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
996 return modeflags[mode];
997 #undef N
998 }
999
1000 static int
1001 ath_ifinit(struct ifnet *ifp)
1002 {
1003 struct ath_softc *sc = (struct ath_softc *)ifp->if_softc;
1004
1005 return ath_init(sc);
1006 }
1007
1008 static int
1009 ath_init(struct ath_softc *sc)
1010 {
1011 struct ifnet *ifp = &sc->sc_if;
1012 struct ieee80211com *ic = &sc->sc_ic;
1013 struct ath_hal *ah = sc->sc_ah;
1014 HAL_STATUS status;
1015 int error = 0;
1016
1017 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1018 __func__, ifp->if_flags);
1019
1020 ATH_LOCK(sc);
1021
1022 if ((error = ath_enable(sc)) != 0)
1023 return error;
1024
1025 /*
1026 * Stop anything previously setup. This is safe
1027 * whether this is the first time through or not.
1028 */
1029 ath_stop_locked(ifp, 0);
1030
1031 /*
1032 * The basic interface to setting the hardware in a good
1033 * state is ``reset''. On return the hardware is known to
1034 * be powered up and with interrupts disabled. This must
1035 * be followed by initialization of the appropriate bits
1036 * and then setup of the interrupt mask.
1037 */
1038 sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
1039 sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
1040 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
1041 if_printf(ifp, "unable to reset hardware; hal status %u\n",
1042 status);
1043 error = EIO;
1044 goto done;
1045 }
1046
1047 /*
1048 * This is needed only to setup initial state
1049 * but it's best done after a reset.
1050 */
1051 ath_update_txpow(sc);
1052 /*
1053 * Likewise this is set during reset so update
1054 * state cached in the driver.
1055 */
1056 sc->sc_diversity = ath_hal_getdiversity(ah);
1057 sc->sc_calinterval = 1;
1058 sc->sc_caltries = 0;
1059
1060 /*
1061 * Setup the hardware after reset: the key cache
1062 * is filled as needed and the receive engine is
1063 * set going. Frame transmit is handled entirely
1064 * in the frame output path; there's nothing to do
1065 * here except setup the interrupt mask.
1066 */
1067 if ((error = ath_startrecv(sc)) != 0) {
1068 if_printf(ifp, "unable to start recv logic\n");
1069 goto done;
1070 }
1071
1072 /*
1073 * Enable interrupts.
1074 */
1075 sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1076 | HAL_INT_RXEOL | HAL_INT_RXORN
1077 | HAL_INT_FATAL | HAL_INT_GLOBAL;
1078 /*
1079 * Enable MIB interrupts when there are hardware phy counters.
1080 * Note we only do this (at the moment) for station mode.
1081 */
1082 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1083 sc->sc_imask |= HAL_INT_MIB;
1084 ath_hal_intrset(ah, sc->sc_imask);
1085
1086 ifp->if_flags |= IFF_RUNNING;
1087 ic->ic_state = IEEE80211_S_INIT;
1088
1089 /*
1090 * The hardware should be ready to go now so it's safe
1091 * to kick the 802.11 state machine as it's likely to
1092 * immediately call back to us to send mgmt frames.
1093 */
1094 ath_chan_change(sc, ic->ic_curchan);
1095 #ifdef ATH_TX99_DIAG
1096 if (sc->sc_tx99 != NULL)
1097 sc->sc_tx99->start(sc->sc_tx99);
1098 else
1099 #endif
1100 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1101 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
1102 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1103 } else
1104 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1105 done:
1106 ATH_UNLOCK(sc);
1107 return error;
1108 }
1109
1110 static void
1111 ath_stop_locked(struct ifnet *ifp, int disable)
1112 {
1113 struct ath_softc *sc = ifp->if_softc;
1114 struct ieee80211com *ic = &sc->sc_ic;
1115 struct ath_hal *ah = sc->sc_ah;
1116
1117 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1118 __func__, sc->sc_invalid, ifp->if_flags);
1119
1120 ATH_LOCK_ASSERT(sc);
1121 if (ifp->if_flags & IFF_RUNNING) {
1122 /*
1123 * Shutdown the hardware and driver:
1124 * reset 802.11 state machine
1125 * turn off timers
1126 * disable interrupts
1127 * turn off the radio
1128 * clear transmit machinery
1129 * clear receive machinery
1130 * drain and release tx queues
1131 * reclaim beacon resources
1132 * power down hardware
1133 *
1134 * Note that some of this work is not possible if the
1135 * hardware is gone (invalid).
1136 */
1137 #ifdef ATH_TX99_DIAG
1138 if (sc->sc_tx99 != NULL)
1139 sc->sc_tx99->stop(sc->sc_tx99);
1140 #endif
1141 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1142 ifp->if_flags &= ~IFF_RUNNING;
1143 ifp->if_timer = 0;
1144 if (!sc->sc_invalid) {
1145 if (sc->sc_softled) {
1146 callout_stop(&sc->sc_ledtimer);
1147 ath_hal_gpioset(ah, sc->sc_ledpin,
1148 !sc->sc_ledon);
1149 sc->sc_blinking = 0;
1150 }
1151 ath_hal_intrset(ah, 0);
1152 }
1153 ath_draintxq(sc);
1154 if (!sc->sc_invalid) {
1155 ath_stoprecv(sc);
1156 ath_hal_phydisable(ah);
1157 } else
1158 sc->sc_rxlink = NULL;
1159 IF_PURGE(&ifp->if_snd);
1160 ath_beacon_free(sc);
1161 if (disable)
1162 ath_disable(sc);
1163 }
1164 }
1165
1166 static void
1167 ath_stop(struct ifnet *ifp, int disable)
1168 {
1169 struct ath_softc *sc = ifp->if_softc;
1170
1171 ATH_LOCK(sc);
1172 ath_stop_locked(ifp, disable);
1173 if (!sc->sc_invalid) {
1174 /*
1175 * Set the chip in full sleep mode. Note that we are
1176 * careful to do this only when bringing the interface
1177 * completely to a stop. When the chip is in this state
1178 * it must be carefully woken up or references to
1179 * registers in the PCI clock domain may freeze the bus
1180 * (and system). This varies by chip and is mostly an
1181 * issue with newer parts that go to sleep more quickly.
1182 */
1183 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
1184 }
1185 ATH_UNLOCK(sc);
1186 }
1187
1188 /*
1189 * Reset the hardware w/o losing operational state. This is
1190 * basically a more efficient way of doing ath_stop, ath_init,
1191 * followed by state transitions to the current 802.11
1192 * operational state. Used to recover from various errors and
1193 * to reset or reload hardware state.
1194 */
1195 int
1196 ath_reset(struct ifnet *ifp)
1197 {
1198 struct ath_softc *sc = ifp->if_softc;
1199 struct ieee80211com *ic = &sc->sc_ic;
1200 struct ath_hal *ah = sc->sc_ah;
1201 struct ieee80211_channel *c;
1202 HAL_STATUS status;
1203
1204 /*
1205 * Convert to a HAL channel description with the flags
1206 * constrained to reflect the current operating mode.
1207 */
1208 c = ic->ic_curchan;
1209 sc->sc_curchan.channel = c->ic_freq;
1210 sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
1211
1212 ath_hal_intrset(ah, 0); /* disable interrupts */
1213 ath_draintxq(sc); /* stop xmit side */
1214 ath_stoprecv(sc); /* stop recv side */
1215 /* NB: indicate channel change so we do a full reset */
1216 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
1217 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1218 __func__, status);
1219 ath_update_txpow(sc); /* update tx power state */
1220 sc->sc_diversity = ath_hal_getdiversity(ah);
1221 sc->sc_calinterval = 1;
1222 sc->sc_caltries = 0;
1223 if (ath_startrecv(sc) != 0) /* restart recv */
1224 if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1225 /*
1226 * We may be doing a reset in response to an ioctl
1227 * that changes the channel so update any state that
1228 * might change as a result.
1229 */
1230 ath_chan_change(sc, c);
1231 if (ic->ic_state == IEEE80211_S_RUN)
1232 ath_beacon_config(sc); /* restart beacons */
1233 ath_hal_intrset(ah, sc->sc_imask);
1234
1235 ath_start(ifp); /* restart xmit */
1236 return 0;
1237 }
1238
1239 static void
1240 ath_start(struct ifnet *ifp)
1241 {
1242 struct ath_softc *sc = ifp->if_softc;
1243 struct ath_hal *ah = sc->sc_ah;
1244 struct ieee80211com *ic = &sc->sc_ic;
1245 struct ieee80211_node *ni;
1246 struct ath_buf *bf;
1247 struct mbuf *m;
1248 struct ieee80211_frame *wh;
1249 struct ether_header *eh;
1250
1251 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
1252 return;
1253 for (;;) {
1254 /*
1255 * Grab a TX buffer and associated resources.
1256 */
1257 ATH_TXBUF_LOCK(sc);
1258 bf = STAILQ_FIRST(&sc->sc_txbuf);
1259 if (bf != NULL)
1260 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1261 ATH_TXBUF_UNLOCK(sc);
1262 if (bf == NULL) {
1263 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1264 __func__);
1265 sc->sc_stats.ast_tx_qstop++;
1266 ifp->if_flags |= IFF_OACTIVE;
1267 break;
1268 }
1269 /*
1270 * Poll the management queue for frames; they
1271 * have priority over normal data frames.
1272 */
1273 IF_DEQUEUE(&ic->ic_mgtq, m);
1274 if (m == NULL) {
1275 /*
1276 * No data frames go out unless we're associated.
1277 */
1278 if (ic->ic_state != IEEE80211_S_RUN) {
1279 DPRINTF(sc, ATH_DEBUG_XMIT,
1280 "%s: discard data packet, state %s\n",
1281 __func__,
1282 ieee80211_state_name[ic->ic_state]);
1283 sc->sc_stats.ast_tx_discard++;
1284 ATH_TXBUF_LOCK(sc);
1285 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1286 ATH_TXBUF_UNLOCK(sc);
1287 break;
1288 }
1289 IFQ_DEQUEUE(&ifp->if_snd, m); /* XXX: LOCK */
1290 if (m == NULL) {
1291 ATH_TXBUF_LOCK(sc);
1292 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1293 ATH_TXBUF_UNLOCK(sc);
1294 break;
1295 }
1296 /*
1297 * Find the node for the destination so we can do
1298 * things like power save and fast frames aggregation.
1299 */
1300 if (m->m_len < sizeof(struct ether_header) &&
1301 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
1302 ic->ic_stats.is_tx_nobuf++; /* XXX */
1303 ni = NULL;
1304 goto bad;
1305 }
1306 eh = mtod(m, struct ether_header *);
1307 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1308 if (ni == NULL) {
1309 /* NB: ieee80211_find_txnode does stat+msg */
1310 m_freem(m);
1311 goto bad;
1312 }
1313 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1314 (m->m_flags & M_PWR_SAV) == 0) {
1315 /*
1316 * Station in power save mode; pass the frame
1317 * to the 802.11 layer and continue. We'll get
1318 * the frame back when the time is right.
1319 */
1320 ieee80211_pwrsave(ic, ni, m);
1321 goto reclaim;
1322 }
1323 /* calculate priority so we can find the tx queue */
1324 if (ieee80211_classify(ic, m, ni)) {
1325 DPRINTF(sc, ATH_DEBUG_XMIT,
1326 "%s: discard, classification failure\n",
1327 __func__);
1328 m_freem(m);
1329 goto bad;
1330 }
1331 ifp->if_opackets++;
1332
1333 #if NBPFILTER > 0
1334 if (ifp->if_bpf)
1335 bpf_mtap(ifp->if_bpf, m);
1336 #endif
1337 /*
1338 * Encapsulate the packet in prep for transmission.
1339 */
1340 m = ieee80211_encap(ic, m, ni);
1341 if (m == NULL) {
1342 DPRINTF(sc, ATH_DEBUG_XMIT,
1343 "%s: encapsulation failure\n",
1344 __func__);
1345 sc->sc_stats.ast_tx_encap++;
1346 goto bad;
1347 }
1348 } else {
1349 /*
1350 * Hack! The referenced node pointer is in the
1351 * rcvif field of the packet header. This is
1352 * placed there by ieee80211_mgmt_output because
1353 * we need to hold the reference with the frame
1354 * and there's no other way (other than packet
1355 * tags which we consider too expensive to use)
1356 * to pass it along.
1357 */
1358 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1359 m->m_pkthdr.rcvif = NULL;
1360
1361 wh = mtod(m, struct ieee80211_frame *);
1362 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1363 IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1364 /* fill time stamp */
1365 u_int64_t tsf;
1366 u_int32_t *tstamp;
1367
1368 tsf = ath_hal_gettsf64(ah);
1369 /* XXX: adjust 100us delay to xmit */
1370 tsf += 100;
1371 tstamp = (u_int32_t *)&wh[1];
1372 tstamp[0] = htole32(tsf & 0xffffffff);
1373 tstamp[1] = htole32(tsf >> 32);
1374 }
1375 sc->sc_stats.ast_tx_mgmt++;
1376 }
1377
1378 if (ath_tx_start(sc, ni, bf, m)) {
1379 bad:
1380 ifp->if_oerrors++;
1381 reclaim:
1382 ATH_TXBUF_LOCK(sc);
1383 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1384 ATH_TXBUF_UNLOCK(sc);
1385 if (ni != NULL)
1386 ieee80211_free_node(ni);
1387 continue;
1388 }
1389
1390 sc->sc_tx_timer = 5;
1391 ifp->if_timer = 1;
1392 }
1393 }
1394
1395 static int
1396 ath_media_change(struct ifnet *ifp)
1397 {
1398 #define IS_UP(ifp) \
1399 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
1400 int error;
1401
1402 error = ieee80211_media_change(ifp);
1403 if (error == ENETRESET) {
1404 if (IS_UP(ifp))
1405 ath_init(ifp->if_softc); /* XXX lose error */
1406 error = 0;
1407 }
1408 return error;
1409 #undef IS_UP
1410 }
1411
1412 #ifdef AR_DEBUG
1413 static void
1414 ath_keyprint(const char *tag, u_int ix,
1415 const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1416 {
1417 static const char *ciphers[] = {
1418 "WEP",
1419 "AES-OCB",
1420 "AES-CCM",
1421 "CKIP",
1422 "TKIP",
1423 "CLR",
1424 };
1425 int i, n;
1426
1427 printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1428 for (i = 0, n = hk->kv_len; i < n; i++)
1429 printf("%02x", hk->kv_val[i]);
1430 printf(" mac %s", ether_sprintf(mac));
1431 if (hk->kv_type == HAL_CIPHER_TKIP) {
1432 printf(" mic ");
1433 for (i = 0; i < sizeof(hk->kv_mic); i++)
1434 printf("%02x", hk->kv_mic[i]);
1435 }
1436 printf("\n");
1437 }
1438 #endif
1439
1440 /*
1441 * Set a TKIP key into the hardware. This handles the
1442 * potential distribution of key state to multiple key
1443 * cache slots for TKIP.
1444 */
1445 static int
1446 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1447 HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1448 {
1449 #define IEEE80211_KEY_XR (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1450 static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1451 struct ath_hal *ah = sc->sc_ah;
1452
1453 KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1454 ("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1455 KASSERT(sc->sc_splitmic, ("key cache !split"));
1456 if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1457 /*
1458 * TX key goes at first index, RX key at the rx index.
1459 * The hal handles the MIC keys at index+64.
1460 */
1461 memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1462 KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1463 if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
1464 return 0;
1465
1466 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1467 KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1468 /* XXX delete tx key on failure? */
1469 return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
1470 } else if (k->wk_flags & IEEE80211_KEY_XR) {
1471 /*
1472 * TX/RX key goes at first index.
1473 * The hal handles the MIC keys are index+64.
1474 */
1475 memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
1476 k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
1477 KEYPRINTF(sc, k->wk_keyix, hk, mac);
1478 return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1479 }
1480 return 0;
1481 #undef IEEE80211_KEY_XR
1482 }
1483
1484 /*
1485 * Set a net80211 key into the hardware. This handles the
1486 * potential distribution of key state to multiple key
1487 * cache slots for TKIP with hardware MIC support.
1488 */
1489 static int
1490 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1491 const u_int8_t mac0[IEEE80211_ADDR_LEN],
1492 struct ieee80211_node *bss)
1493 {
1494 #define N(a) (sizeof(a)/sizeof(a[0]))
1495 static const u_int8_t ciphermap[] = {
1496 HAL_CIPHER_WEP, /* IEEE80211_CIPHER_WEP */
1497 HAL_CIPHER_TKIP, /* IEEE80211_CIPHER_TKIP */
1498 HAL_CIPHER_AES_OCB, /* IEEE80211_CIPHER_AES_OCB */
1499 HAL_CIPHER_AES_CCM, /* IEEE80211_CIPHER_AES_CCM */
1500 (u_int8_t) -1, /* 4 is not allocated */
1501 HAL_CIPHER_CKIP, /* IEEE80211_CIPHER_CKIP */
1502 HAL_CIPHER_CLR, /* IEEE80211_CIPHER_NONE */
1503 };
1504 struct ath_hal *ah = sc->sc_ah;
1505 const struct ieee80211_cipher *cip = k->wk_cipher;
1506 u_int8_t gmac[IEEE80211_ADDR_LEN];
1507 const u_int8_t *mac;
1508 HAL_KEYVAL hk;
1509
1510 memset(&hk, 0, sizeof(hk));
1511 /*
1512 * Software crypto uses a "clear key" so non-crypto
1513 * state kept in the key cache are maintained and
1514 * so that rx frames have an entry to match.
1515 */
1516 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1517 KASSERT(cip->ic_cipher < N(ciphermap),
1518 ("invalid cipher type %u", cip->ic_cipher));
1519 hk.kv_type = ciphermap[cip->ic_cipher];
1520 hk.kv_len = k->wk_keylen;
1521 memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1522 } else
1523 hk.kv_type = HAL_CIPHER_CLR;
1524
1525 if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
1526 /*
1527 * Group keys on hardware that supports multicast frame
1528 * key search use a mac that is the sender's address with
1529 * the high bit set instead of the app-specified address.
1530 */
1531 IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
1532 gmac[0] |= 0x80;
1533 mac = gmac;
1534 } else
1535 mac = mac0;
1536
1537 if (hk.kv_type == HAL_CIPHER_TKIP &&
1538 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1539 sc->sc_splitmic) {
1540 return ath_keyset_tkip(sc, k, &hk, mac);
1541 } else {
1542 KEYPRINTF(sc, k->wk_keyix, &hk, mac);
1543 return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
1544 }
1545 #undef N
1546 }
1547
1548 /*
1549 * Allocate tx/rx key slots for TKIP. We allocate two slots for
1550 * each key, one for decrypt/encrypt and the other for the MIC.
1551 */
1552 static u_int16_t
1553 key_alloc_2pair(struct ath_softc *sc,
1554 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1555 {
1556 #define N(a) (sizeof(a)/sizeof(a[0]))
1557 u_int i, keyix;
1558
1559 KASSERT(sc->sc_splitmic, ("key cache !split"));
1560 /* XXX could optimize */
1561 for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1562 u_int8_t b = sc->sc_keymap[i];
1563 if (b != 0xff) {
1564 /*
1565 * One or more slots in this byte are free.
1566 */
1567 keyix = i*NBBY;
1568 while (b & 1) {
1569 again:
1570 keyix++;
1571 b >>= 1;
1572 }
1573 /* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1574 if (isset(sc->sc_keymap, keyix+32) ||
1575 isset(sc->sc_keymap, keyix+64) ||
1576 isset(sc->sc_keymap, keyix+32+64)) {
1577 /* full pair unavailable */
1578 /* XXX statistic */
1579 if (keyix == (i+1)*NBBY) {
1580 /* no slots were appropriate, advance */
1581 continue;
1582 }
1583 goto again;
1584 }
1585 setbit(sc->sc_keymap, keyix);
1586 setbit(sc->sc_keymap, keyix+64);
1587 setbit(sc->sc_keymap, keyix+32);
1588 setbit(sc->sc_keymap, keyix+32+64);
1589 DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1590 "%s: key pair %u,%u %u,%u\n",
1591 __func__, keyix, keyix+64,
1592 keyix+32, keyix+32+64);
1593 *txkeyix = keyix;
1594 *rxkeyix = keyix+32;
1595 return 1;
1596 }
1597 }
1598 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1599 return 0;
1600 #undef N
1601 }
1602
1603 /*
1604 * Allocate a single key cache slot.
1605 */
1606 static int
1607 key_alloc_single(struct ath_softc *sc,
1608 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1609 {
1610 #define N(a) (sizeof(a)/sizeof(a[0]))
1611 u_int i, keyix;
1612
1613 /* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
1614 for (i = 0; i < N(sc->sc_keymap); i++) {
1615 u_int8_t b = sc->sc_keymap[i];
1616 if (b != 0xff) {
1617 /*
1618 * One or more slots are free.
1619 */
1620 keyix = i*NBBY;
1621 while (b & 1)
1622 keyix++, b >>= 1;
1623 setbit(sc->sc_keymap, keyix);
1624 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
1625 __func__, keyix);
1626 *txkeyix = *rxkeyix = keyix;
1627 return 1;
1628 }
1629 }
1630 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
1631 return 0;
1632 #undef N
1633 }
1634
1635 /*
1636 * Allocate one or more key cache slots for a uniacst key. The
1637 * key itself is needed only to identify the cipher. For hardware
1638 * TKIP with split cipher+MIC keys we allocate two key cache slot
1639 * pairs so that we can setup separate TX and RX MIC keys. Note
1640 * that the MIC key for a TKIP key at slot i is assumed by the
1641 * hardware to be at slot i+64. This limits TKIP keys to the first
1642 * 64 entries.
1643 */
1644 static int
1645 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
1646 ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
1647 {
1648 struct ath_softc *sc = ic->ic_ifp->if_softc;
1649
1650 /*
1651 * Group key allocation must be handled specially for
1652 * parts that do not support multicast key cache search
1653 * functionality. For those parts the key id must match
1654 * the h/w key index so lookups find the right key. On
1655 * parts w/ the key search facility we install the sender's
1656 * mac address (with the high bit set) and let the hardware
1657 * find the key w/o using the key id. This is preferred as
1658 * it permits us to support multiple users for adhoc and/or
1659 * multi-station operation.
1660 */
1661 if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
1662 if (!(&ic->ic_nw_keys[0] <= k &&
1663 k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
1664 /* should not happen */
1665 DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1666 "%s: bogus group key\n", __func__);
1667 return 0;
1668 }
1669 /*
1670 * XXX we pre-allocate the global keys so
1671 * have no way to check if they've already been allocated.
1672 */
1673 *keyix = *rxkeyix = k - ic->ic_nw_keys;
1674 return 1;
1675 }
1676
1677 /*
1678 * We allocate two pair for TKIP when using the h/w to do
1679 * the MIC. For everything else, including software crypto,
1680 * we allocate a single entry. Note that s/w crypto requires
1681 * a pass-through slot on the 5211 and 5212. The 5210 does
1682 * not support pass-through cache entries and we map all
1683 * those requests to slot 0.
1684 */
1685 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1686 return key_alloc_single(sc, keyix, rxkeyix);
1687 } else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
1688 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
1689 return key_alloc_2pair(sc, keyix, rxkeyix);
1690 } else {
1691 return key_alloc_single(sc, keyix, rxkeyix);
1692 }
1693 }
1694
1695 /*
1696 * Delete an entry in the key cache allocated by ath_key_alloc.
1697 */
1698 static int
1699 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
1700 {
1701 struct ath_softc *sc = ic->ic_ifp->if_softc;
1702 struct ath_hal *ah = sc->sc_ah;
1703 const struct ieee80211_cipher *cip = k->wk_cipher;
1704 u_int keyix = k->wk_keyix;
1705
1706 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
1707
1708 ath_hal_keyreset(ah, keyix);
1709 /*
1710 * Handle split tx/rx keying required for TKIP with h/w MIC.
1711 */
1712 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1713 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
1714 ath_hal_keyreset(ah, keyix+32); /* RX key */
1715 if (keyix >= IEEE80211_WEP_NKID) {
1716 /*
1717 * Don't touch keymap entries for global keys so
1718 * they are never considered for dynamic allocation.
1719 */
1720 clrbit(sc->sc_keymap, keyix);
1721 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1722 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1723 sc->sc_splitmic) {
1724 clrbit(sc->sc_keymap, keyix+64); /* TX key MIC */
1725 clrbit(sc->sc_keymap, keyix+32); /* RX key */
1726 clrbit(sc->sc_keymap, keyix+32+64); /* RX key MIC */
1727 }
1728 }
1729 return 1;
1730 }
1731
1732 /*
1733 * Set the key cache contents for the specified key. Key cache
1734 * slot(s) must already have been allocated by ath_key_alloc.
1735 */
1736 static int
1737 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
1738 const u_int8_t mac[IEEE80211_ADDR_LEN])
1739 {
1740 struct ath_softc *sc = ic->ic_ifp->if_softc;
1741
1742 return ath_keyset(sc, k, mac, ic->ic_bss);
1743 }
1744
1745 /*
1746 * Block/unblock tx+rx processing while a key change is done.
1747 * We assume the caller serializes key management operations
1748 * so we only need to worry about synchronization with other
1749 * uses that originate in the driver.
1750 */
1751 static void
1752 ath_key_update_begin(struct ieee80211com *ic)
1753 {
1754 struct ifnet *ifp = ic->ic_ifp;
1755 struct ath_softc *sc = ifp->if_softc;
1756
1757 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1758 #if 0
1759 tasklet_disable(&sc->sc_rxtq);
1760 #endif
1761 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */
1762 }
1763
1764 static void
1765 ath_key_update_end(struct ieee80211com *ic)
1766 {
1767 struct ifnet *ifp = ic->ic_ifp;
1768 struct ath_softc *sc = ifp->if_softc;
1769
1770 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1771 IF_UNLOCK(&ifp->if_snd);
1772 #if 0
1773 tasklet_enable(&sc->sc_rxtq);
1774 #endif
1775 }
1776
1777 /*
1778 * Calculate the receive filter according to the
1779 * operating mode and state:
1780 *
1781 * o always accept unicast, broadcast, and multicast traffic
1782 * o maintain current state of phy error reception (the hal
1783 * may enable phy error frames for noise immunity work)
1784 * o probe request frames are accepted only when operating in
1785 * hostap, adhoc, or monitor modes
1786 * o enable promiscuous mode according to the interface state
1787 * o accept beacons:
1788 * - when operating in adhoc mode so the 802.11 layer creates
1789 * node table entries for peers,
1790 * - when operating in station mode for collecting rssi data when
1791 * the station is otherwise quiet, or
1792 * - when scanning
1793 */
1794 static u_int32_t
1795 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
1796 {
1797 struct ieee80211com *ic = &sc->sc_ic;
1798 struct ath_hal *ah = sc->sc_ah;
1799 struct ifnet *ifp = &sc->sc_if;
1800 u_int32_t rfilt;
1801
1802 rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1803 | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1804 if (ic->ic_opmode != IEEE80211_M_STA)
1805 rfilt |= HAL_RX_FILTER_PROBEREQ;
1806 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1807 (ifp->if_flags & IFF_PROMISC))
1808 rfilt |= HAL_RX_FILTER_PROM;
1809 if (ic->ic_opmode == IEEE80211_M_STA ||
1810 ic->ic_opmode == IEEE80211_M_IBSS ||
1811 state == IEEE80211_S_SCAN)
1812 rfilt |= HAL_RX_FILTER_BEACON;
1813 return rfilt;
1814 }
1815
1816 static void
1817 ath_mcastfilter_accum(caddr_t dl, u_int32_t *mfilt)
1818 {
1819 u_int32_t val;
1820 u_int8_t pos;
1821
1822 /* calculate XOR of eight 6bit values */
1823 val = LE_READ_4(dl + 0);
1824 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1825 val = LE_READ_4(dl + 3);
1826 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1827 pos &= 0x3f;
1828 mfilt[pos / 32] |= (1 << (pos % 32));
1829 }
1830
1831 static void
1832 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t *mfilt)
1833 {
1834 struct ifnet *ifp = &sc->sc_if;
1835 struct ether_multi *enm;
1836 struct ether_multistep estep;
1837
1838 mfilt[0] = mfilt[1] = 0;
1839 ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
1840 while (enm != NULL) {
1841 /* XXX Punt on ranges. */
1842 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
1843 mfilt[0] = mfilt[1] = ~((u_int32_t)0);
1844 ifp->if_flags |= IFF_ALLMULTI;
1845 return;
1846 }
1847 ath_mcastfilter_accum(enm->enm_addrlo, mfilt);
1848 ETHER_NEXT_MULTI(estep, enm);
1849 }
1850 ifp->if_flags &= ~IFF_ALLMULTI;
1851 }
1852
1853 static void
1854 ath_mode_init(struct ath_softc *sc)
1855 {
1856 struct ieee80211com *ic = &sc->sc_ic;
1857 struct ath_hal *ah = sc->sc_ah;
1858 u_int32_t rfilt, mfilt[2];
1859 int i;
1860
1861 /* configure rx filter */
1862 rfilt = ath_calcrxfilter(sc, ic->ic_state);
1863 ath_hal_setrxfilter(ah, rfilt);
1864
1865 /* configure operational mode */
1866 ath_hal_setopmode(ah);
1867
1868 /* Write keys to hardware; it may have been powered down. */
1869 ath_key_update_begin(ic);
1870 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1871 ath_key_set(ic,
1872 &ic->ic_crypto.cs_nw_keys[i],
1873 ic->ic_myaddr);
1874 }
1875 ath_key_update_end(ic);
1876
1877 /*
1878 * Handle any link-level address change. Note that we only
1879 * need to force ic_myaddr; any other addresses are handled
1880 * as a byproduct of the ifnet code marking the interface
1881 * down then up.
1882 *
1883 * XXX should get from lladdr instead of arpcom but that's more work
1884 */
1885 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(sc->sc_if.if_sadl));
1886 ath_hal_setmac(ah, ic->ic_myaddr);
1887
1888 /* calculate and install multicast filter */
1889 #ifdef __FreeBSD__
1890 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1891 mfilt[0] = mfilt[1] = 0;
1892 IF_ADDR_LOCK(ifp);
1893 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1894 caddr_t dl;
1895
1896 /* calculate XOR of eight 6bit values */
1897 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
1898 val = LE_READ_4(dl + 0);
1899 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1900 val = LE_READ_4(dl + 3);
1901 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1902 pos &= 0x3f;
1903 mfilt[pos / 32] |= (1 << (pos % 32));
1904 }
1905 IF_ADDR_UNLOCK(ifp);
1906 } else {
1907 mfilt[0] = mfilt[1] = ~0;
1908 }
1909 #endif
1910 #ifdef __NetBSD__
1911 ath_mcastfilter_compute(sc, mfilt);
1912 #endif
1913 ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1914 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
1915 __func__, rfilt, mfilt[0], mfilt[1]);
1916 }
1917
1918 /*
1919 * Set the slot time based on the current setting.
1920 */
1921 static void
1922 ath_setslottime(struct ath_softc *sc)
1923 {
1924 struct ieee80211com *ic = &sc->sc_ic;
1925 struct ath_hal *ah = sc->sc_ah;
1926
1927 if (ic->ic_flags & IEEE80211_F_SHSLOT)
1928 ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
1929 else
1930 ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
1931 sc->sc_updateslot = OK;
1932 }
1933
1934 /*
1935 * Callback from the 802.11 layer to update the
1936 * slot time based on the current setting.
1937 */
1938 static void
1939 ath_updateslot(struct ifnet *ifp)
1940 {
1941 struct ath_softc *sc = ifp->if_softc;
1942 struct ieee80211com *ic = &sc->sc_ic;
1943
1944 /*
1945 * When not coordinating the BSS, change the hardware
1946 * immediately. For other operation we defer the change
1947 * until beacon updates have propagated to the stations.
1948 */
1949 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1950 sc->sc_updateslot = UPDATE;
1951 else
1952 ath_setslottime(sc);
1953 }
1954
1955 /*
1956 * Setup a h/w transmit queue for beacons.
1957 */
1958 static int
1959 ath_beaconq_setup(struct ath_hal *ah)
1960 {
1961 HAL_TXQ_INFO qi;
1962
1963 memset(&qi, 0, sizeof(qi));
1964 qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
1965 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
1966 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
1967 /* NB: for dynamic turbo, don't enable any other interrupts */
1968 qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
1969 return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
1970 }
1971
1972 /*
1973 * Setup the transmit queue parameters for the beacon queue.
1974 */
1975 static int
1976 ath_beaconq_config(struct ath_softc *sc)
1977 {
1978 #define ATH_EXPONENT_TO_VALUE(v) ((1<<(v))-1)
1979 struct ieee80211com *ic = &sc->sc_ic;
1980 struct ath_hal *ah = sc->sc_ah;
1981 HAL_TXQ_INFO qi;
1982
1983 ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
1984 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
1985 /*
1986 * Always burst out beacon and CAB traffic.
1987 */
1988 qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
1989 qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
1990 qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
1991 } else {
1992 struct wmeParams *wmep =
1993 &ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
1994 /*
1995 * Adhoc mode; important thing is to use 2x cwmin.
1996 */
1997 qi.tqi_aifs = wmep->wmep_aifsn;
1998 qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
1999 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2000 }
2001
2002 if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
2003 device_printf(sc->sc_dev, "unable to update parameters for "
2004 "beacon hardware queue!\n");
2005 return 0;
2006 } else {
2007 ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
2008 return 1;
2009 }
2010 #undef ATH_EXPONENT_TO_VALUE
2011 }
2012
2013 /*
2014 * Allocate and setup an initial beacon frame.
2015 */
2016 static int
2017 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
2018 {
2019 struct ieee80211com *ic = ni->ni_ic;
2020 struct ath_buf *bf;
2021 struct mbuf *m;
2022 int error;
2023
2024 bf = STAILQ_FIRST(&sc->sc_bbuf);
2025 if (bf == NULL) {
2026 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
2027 sc->sc_stats.ast_be_nombuf++; /* XXX */
2028 return ENOMEM; /* XXX */
2029 }
2030 /*
2031 * NB: the beacon data buffer must be 32-bit aligned;
2032 * we assume the mbuf routines will return us something
2033 * with this alignment (perhaps should assert).
2034 */
2035 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
2036 if (m == NULL) {
2037 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
2038 __func__);
2039 sc->sc_stats.ast_be_nombuf++;
2040 return ENOMEM;
2041 }
2042 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2043 BUS_DMA_NOWAIT);
2044 if (error == 0) {
2045 bf->bf_m = m;
2046 bf->bf_node = ieee80211_ref_node(ni);
2047 } else {
2048 m_freem(m);
2049 }
2050 return error;
2051 }
2052
2053 /*
2054 * Setup the beacon frame for transmit.
2055 */
2056 static void
2057 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
2058 {
2059 #define USE_SHPREAMBLE(_ic) \
2060 (((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
2061 == IEEE80211_F_SHPREAMBLE)
2062 struct ieee80211_node *ni = bf->bf_node;
2063 struct ieee80211com *ic = ni->ni_ic;
2064 struct mbuf *m = bf->bf_m;
2065 struct ath_hal *ah = sc->sc_ah;
2066 struct ath_desc *ds;
2067 int flags, antenna;
2068 const HAL_RATE_TABLE *rt;
2069 u_int8_t rix, rate;
2070
2071 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
2072 __func__, m, m->m_len);
2073
2074 /* setup descriptors */
2075 ds = bf->bf_desc;
2076
2077 flags = HAL_TXDESC_NOACK;
2078 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
2079 ds->ds_link = HTOAH32(bf->bf_daddr); /* self-linked */
2080 flags |= HAL_TXDESC_VEOL;
2081 /*
2082 * Let hardware handle antenna switching unless
2083 * the user has selected a transmit antenna
2084 * (sc_txantenna is not 0).
2085 */
2086 antenna = sc->sc_txantenna;
2087 } else {
2088 ds->ds_link = 0;
2089 /*
2090 * Switch antenna every 4 beacons, unless the user
2091 * has selected a transmit antenna (sc_txantenna
2092 * is not 0).
2093 *
2094 * XXX assumes two antenna
2095 */
2096 if (sc->sc_txantenna == 0)
2097 antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2098 else
2099 antenna = sc->sc_txantenna;
2100 }
2101
2102 KASSERT(bf->bf_nseg == 1,
2103 ("multi-segment beacon frame; nseg %u", bf->bf_nseg));
2104 ds->ds_data = bf->bf_segs[0].ds_addr;
2105 /*
2106 * Calculate rate code.
2107 * XXX everything at min xmit rate
2108 */
2109 rix = sc->sc_minrateix;
2110 rt = sc->sc_currates;
2111 rate = rt->info[rix].rateCode;
2112 if (USE_SHPREAMBLE(ic))
2113 rate |= rt->info[rix].shortPreamble;
2114 ath_hal_setuptxdesc(ah, ds
2115 , m->m_len + IEEE80211_CRC_LEN /* frame length */
2116 , sizeof(struct ieee80211_frame)/* header length */
2117 , HAL_PKT_TYPE_BEACON /* Atheros packet type */
2118 , ni->ni_txpower /* txpower XXX */
2119 , rate, 1 /* series 0 rate/tries */
2120 , HAL_TXKEYIX_INVALID /* no encryption */
2121 , antenna /* antenna mode */
2122 , flags /* no ack, veol for beacons */
2123 , 0 /* rts/cts rate */
2124 , 0 /* rts/cts duration */
2125 );
2126 /* NB: beacon's BufLen must be a multiple of 4 bytes */
2127 ath_hal_filltxdesc(ah, ds
2128 , roundup(m->m_len, 4) /* buffer length */
2129 , AH_TRUE /* first segment */
2130 , AH_TRUE /* last segment */
2131 , ds /* first descriptor */
2132 );
2133
2134 /* NB: The desc swap function becomes void,
2135 * if descriptor swapping is not enabled
2136 */
2137 ath_desc_swap(ds);
2138
2139 #undef USE_SHPREAMBLE
2140 }
2141
2142 /*
2143 * Transmit a beacon frame at SWBA. Dynamic updates to the
2144 * frame contents are done as needed and the slot time is
2145 * also adjusted based on current state.
2146 */
2147 static void
2148 ath_beacon_proc(void *arg, int pending)
2149 {
2150 struct ath_softc *sc = arg;
2151 struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
2152 struct ieee80211_node *ni = bf->bf_node;
2153 struct ieee80211com *ic = ni->ni_ic;
2154 struct ath_hal *ah = sc->sc_ah;
2155 struct mbuf *m;
2156 int ncabq, error, otherant;
2157
2158 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2159 __func__, pending);
2160
2161 if (ic->ic_opmode == IEEE80211_M_STA ||
2162 ic->ic_opmode == IEEE80211_M_MONITOR ||
2163 bf == NULL || bf->bf_m == NULL) {
2164 DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
2165 __func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
2166 return;
2167 }
2168 /*
2169 * Check if the previous beacon has gone out. If
2170 * not don't try to post another, skip this period
2171 * and wait for the next. Missed beacons indicate
2172 * a problem and should not occur. If we miss too
2173 * many consecutive beacons reset the device.
2174 */
2175 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2176 sc->sc_bmisscount++;
2177 DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2178 "%s: missed %u consecutive beacons\n",
2179 __func__, sc->sc_bmisscount);
2180 if (sc->sc_bmisscount > 3) /* NB: 3 is a guess */
2181 TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask);
2182 return;
2183 }
2184 if (sc->sc_bmisscount != 0) {
2185 DPRINTF(sc, ATH_DEBUG_BEACON,
2186 "%s: resume beacon xmit after %u misses\n",
2187 __func__, sc->sc_bmisscount);
2188 sc->sc_bmisscount = 0;
2189 }
2190
2191 /*
2192 * Update dynamic beacon contents. If this returns
2193 * non-zero then we need to remap the memory because
2194 * the beacon frame changed size (probably because
2195 * of the TIM bitmap).
2196 */
2197 m = bf->bf_m;
2198 ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
2199 if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
2200 /* XXX too conservative? */
2201 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2202 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2203 BUS_DMA_NOWAIT);
2204 if (error != 0) {
2205 if_printf(&sc->sc_if,
2206 "%s: bus_dmamap_load_mbuf failed, error %u\n",
2207 __func__, error);
2208 return;
2209 }
2210 }
2211
2212 /*
2213 * Handle slot time change when a non-ERP station joins/leaves
2214 * an 11g network. The 802.11 layer notifies us via callback,
2215 * we mark updateslot, then wait one beacon before effecting
2216 * the change. This gives associated stations at least one
2217 * beacon interval to note the state change.
2218 */
2219 /* XXX locking */
2220 if (sc->sc_updateslot == UPDATE)
2221 sc->sc_updateslot = COMMIT; /* commit next beacon */
2222 else if (sc->sc_updateslot == COMMIT)
2223 ath_setslottime(sc); /* commit change to h/w */
2224
2225 /*
2226 * Check recent per-antenna transmit statistics and flip
2227 * the default antenna if noticeably more frames went out
2228 * on the non-default antenna.
2229 * XXX assumes 2 anntenae
2230 */
2231 otherant = sc->sc_defant & 1 ? 2 : 1;
2232 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2233 ath_setdefantenna(sc, otherant);
2234 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2235
2236 /*
2237 * Construct tx descriptor.
2238 */
2239 ath_beacon_setup(sc, bf);
2240
2241 /*
2242 * Stop any current dma and put the new frame on the queue.
2243 * This should never fail since we check above that no frames
2244 * are still pending on the queue.
2245 */
2246 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2247 DPRINTF(sc, ATH_DEBUG_ANY,
2248 "%s: beacon queue %u did not stop?\n",
2249 __func__, sc->sc_bhalq);
2250 }
2251 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2252 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2253
2254 /*
2255 * Enable the CAB queue before the beacon queue to
2256 * insure cab frames are triggered by this beacon.
2257 */
2258 if (ncabq != 0 && (sc->sc_boff.bo_tim[4] & 1)) /* NB: only at DTIM */
2259 ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
2260 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
2261 ath_hal_txstart(ah, sc->sc_bhalq);
2262 DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2263 "%s: TXDP[%u] = %" PRIx64 " (%p)\n", __func__,
2264 sc->sc_bhalq, (uint64_t)bf->bf_daddr, bf->bf_desc);
2265
2266 sc->sc_stats.ast_be_xmit++;
2267 }
2268
2269 /*
2270 * Reset the hardware after detecting beacons have stopped.
2271 */
2272 static void
2273 ath_bstuck_proc(void *arg, int pending)
2274 {
2275 struct ath_softc *sc = arg;
2276 struct ifnet *ifp = &sc->sc_if;
2277
2278 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2279 sc->sc_bmisscount);
2280 ath_reset(ifp);
2281 }
2282
2283 /*
2284 * Reclaim beacon resources.
2285 */
2286 static void
2287 ath_beacon_free(struct ath_softc *sc)
2288 {
2289 struct ath_buf *bf;
2290
2291 STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
2292 if (bf->bf_m != NULL) {
2293 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2294 m_freem(bf->bf_m);
2295 bf->bf_m = NULL;
2296 }
2297 if (bf->bf_node != NULL) {
2298 ieee80211_free_node(bf->bf_node);
2299 bf->bf_node = NULL;
2300 }
2301 }
2302 }
2303
2304 /*
2305 * Configure the beacon and sleep timers.
2306 *
2307 * When operating as an AP this resets the TSF and sets
2308 * up the hardware to notify us when we need to issue beacons.
2309 *
2310 * When operating in station mode this sets up the beacon
2311 * timers according to the timestamp of the last received
2312 * beacon and the current TSF, configures PCF and DTIM
2313 * handling, programs the sleep registers so the hardware
2314 * will wakeup in time to receive beacons, and configures
2315 * the beacon miss handling so we'll receive a BMISS
2316 * interrupt when we stop seeing beacons from the AP
2317 * we've associated with.
2318 */
2319 static void
2320 ath_beacon_config(struct ath_softc *sc)
2321 {
2322 #define TSF_TO_TU(_h,_l) \
2323 ((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
2324 #define FUDGE 2
2325 struct ath_hal *ah = sc->sc_ah;
2326 struct ieee80211com *ic = &sc->sc_ic;
2327 struct ieee80211_node *ni = ic->ic_bss;
2328 u_int32_t nexttbtt, intval, tsftu;
2329 u_int64_t tsf;
2330
2331 /* extract tstamp from last beacon and convert to TU */
2332 nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
2333 LE_READ_4(ni->ni_tstamp.data));
2334 /* NB: the beacon interval is kept internally in TU's */
2335 intval = ni->ni_intval & HAL_BEACON_PERIOD;
2336 if (nexttbtt == 0) /* e.g. for ap mode */
2337 nexttbtt = intval;
2338 else if (intval) /* NB: can be 0 for monitor mode */
2339 nexttbtt = roundup(nexttbtt, intval);
2340 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2341 __func__, nexttbtt, intval, ni->ni_intval);
2342 if (ic->ic_opmode == IEEE80211_M_STA) {
2343 HAL_BEACON_STATE bs;
2344 int dtimperiod, dtimcount;
2345 int cfpperiod, cfpcount;
2346
2347 /*
2348 * Setup dtim and cfp parameters according to
2349 * last beacon we received (which may be none).
2350 */
2351 dtimperiod = ni->ni_dtim_period;
2352 if (dtimperiod <= 0) /* NB: 0 if not known */
2353 dtimperiod = 1;
2354 dtimcount = ni->ni_dtim_count;
2355 if (dtimcount >= dtimperiod) /* NB: sanity check */
2356 dtimcount = 0; /* XXX? */
2357 cfpperiod = 1; /* NB: no PCF support yet */
2358 cfpcount = 0;
2359 /*
2360 * Pull nexttbtt forward to reflect the current
2361 * TSF and calculate dtim+cfp state for the result.
2362 */
2363 tsf = ath_hal_gettsf64(ah);
2364 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2365 do {
2366 nexttbtt += intval;
2367 if (--dtimcount < 0) {
2368 dtimcount = dtimperiod - 1;
2369 if (--cfpcount < 0)
2370 cfpcount = cfpperiod - 1;
2371 }
2372 } while (nexttbtt < tsftu);
2373 memset(&bs, 0, sizeof(bs));
2374 bs.bs_intval = intval;
2375 bs.bs_nexttbtt = nexttbtt;
2376 bs.bs_dtimperiod = dtimperiod*intval;
2377 bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
2378 bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
2379 bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
2380 bs.bs_cfpmaxduration = 0;
2381 #if 0
2382 /*
2383 * The 802.11 layer records the offset to the DTIM
2384 * bitmap while receiving beacons; use it here to
2385 * enable h/w detection of our AID being marked in
2386 * the bitmap vector (to indicate frames for us are
2387 * pending at the AP).
2388 * XXX do DTIM handling in s/w to WAR old h/w bugs
2389 * XXX enable based on h/w rev for newer chips
2390 */
2391 bs.bs_timoffset = ni->ni_timoff;
2392 #endif
2393 /*
2394 * Calculate the number of consecutive beacons to miss
2395 * before taking a BMISS interrupt. The configuration
2396 * is specified in ms, so we need to convert that to
2397 * TU's and then calculate based on the beacon interval.
2398 * Note that we clamp the result to at most 10 beacons.
2399 */
2400 bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
2401 if (bs.bs_bmissthreshold > 10)
2402 bs.bs_bmissthreshold = 10;
2403 else if (bs.bs_bmissthreshold <= 0)
2404 bs.bs_bmissthreshold = 1;
2405
2406 /*
2407 * Calculate sleep duration. The configuration is
2408 * given in ms. We insure a multiple of the beacon
2409 * period is used. Also, if the sleep duration is
2410 * greater than the DTIM period then it makes senses
2411 * to make it a multiple of that.
2412 *
2413 * XXX fixed at 100ms
2414 */
2415 bs.bs_sleepduration =
2416 roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2417 if (bs.bs_sleepduration > bs.bs_dtimperiod)
2418 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2419
2420 DPRINTF(sc, ATH_DEBUG_BEACON,
2421 "%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2422 , __func__
2423 , tsf, tsftu
2424 , bs.bs_intval
2425 , bs.bs_nexttbtt
2426 , bs.bs_dtimperiod
2427 , bs.bs_nextdtim
2428 , bs.bs_bmissthreshold
2429 , bs.bs_sleepduration
2430 , bs.bs_cfpperiod
2431 , bs.bs_cfpmaxduration
2432 , bs.bs_cfpnext
2433 , bs.bs_timoffset
2434 );
2435 ath_hal_intrset(ah, 0);
2436 ath_hal_beacontimers(ah, &bs);
2437 sc->sc_imask |= HAL_INT_BMISS;
2438 ath_hal_intrset(ah, sc->sc_imask);
2439 } else {
2440 ath_hal_intrset(ah, 0);
2441 if (nexttbtt == intval)
2442 intval |= HAL_BEACON_RESET_TSF;
2443 if (ic->ic_opmode == IEEE80211_M_IBSS) {
2444 /*
2445 * In IBSS mode enable the beacon timers but only
2446 * enable SWBA interrupts if we need to manually
2447 * prepare beacon frames. Otherwise we use a
2448 * self-linked tx descriptor and let the hardware
2449 * deal with things.
2450 */
2451 intval |= HAL_BEACON_ENA;
2452 if (!sc->sc_hasveol)
2453 sc->sc_imask |= HAL_INT_SWBA;
2454 if ((intval & HAL_BEACON_RESET_TSF) == 0) {
2455 /*
2456 * Pull nexttbtt forward to reflect
2457 * the current TSF.
2458 */
2459 tsf = ath_hal_gettsf64(ah);
2460 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2461 do {
2462 nexttbtt += intval;
2463 } while (nexttbtt < tsftu);
2464 }
2465 ath_beaconq_config(sc);
2466 } else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2467 /*
2468 * In AP mode we enable the beacon timers and
2469 * SWBA interrupts to prepare beacon frames.
2470 */
2471 intval |= HAL_BEACON_ENA;
2472 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */
2473 ath_beaconq_config(sc);
2474 }
2475 ath_hal_beaconinit(ah, nexttbtt, intval);
2476 sc->sc_bmisscount = 0;
2477 ath_hal_intrset(ah, sc->sc_imask);
2478 /*
2479 * When using a self-linked beacon descriptor in
2480 * ibss mode load it once here.
2481 */
2482 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2483 ath_beacon_proc(sc, 0);
2484 }
2485 sc->sc_syncbeacon = 0;
2486 #undef UNDEF
2487 #undef TSF_TO_TU
2488 }
2489
2490 static int
2491 ath_descdma_setup(struct ath_softc *sc,
2492 struct ath_descdma *dd, ath_bufhead *head,
2493 const char *name, int nbuf, int ndesc)
2494 {
2495 #define DS2PHYS(_dd, _ds) \
2496 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2497 struct ifnet *ifp = &sc->sc_if;
2498 struct ath_desc *ds;
2499 struct ath_buf *bf;
2500 int i, bsize, error;
2501
2502 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2503 __func__, name, nbuf, ndesc);
2504
2505 dd->dd_name = name;
2506 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2507
2508 /*
2509 * Setup DMA descriptor area.
2510 */
2511 dd->dd_dmat = sc->sc_dmat;
2512
2513 error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE,
2514 0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0);
2515
2516 if (error != 0) {
2517 if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2518 "error %u\n", nbuf * ndesc, dd->dd_name, error);
2519 goto fail0;
2520 }
2521
2522 error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg,
2523 dd->dd_desc_len, (caddr_t *)&dd->dd_desc, BUS_DMA_COHERENT);
2524 if (error != 0) {
2525 if_printf(ifp, "unable to map %u %s descriptors, error = %u\n",
2526 nbuf * ndesc, dd->dd_name, error);
2527 goto fail1;
2528 }
2529
2530 /* allocate descriptors */
2531 error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1,
2532 dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2533 if (error != 0) {
2534 if_printf(ifp, "unable to create dmamap for %s descriptors, "
2535 "error %u\n", dd->dd_name, error);
2536 goto fail2;
2537 }
2538
2539 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc,
2540 dd->dd_desc_len, NULL, BUS_DMA_NOWAIT);
2541 if (error != 0) {
2542 if_printf(ifp, "unable to map %s descriptors, error %u\n",
2543 dd->dd_name, error);
2544 goto fail3;
2545 }
2546
2547 ds = dd->dd_desc;
2548 dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr;
2549 DPRINTF(sc, ATH_DEBUG_RESET,
2550 "%s: %s DMA map: %p (%lu) -> %" PRIx64 " (%lu)\n",
2551 __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2552 (uint64_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2553
2554 /* allocate rx buffers */
2555 bsize = sizeof(struct ath_buf) * nbuf;
2556 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2557 if (bf == NULL) {
2558 if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2559 dd->dd_name, bsize);
2560 goto fail4;
2561 }
2562 dd->dd_bufptr = bf;
2563
2564 STAILQ_INIT(head);
2565 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2566 bf->bf_desc = ds;
2567 bf->bf_daddr = DS2PHYS(dd, ds);
2568 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc,
2569 MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap);
2570 if (error != 0) {
2571 if_printf(ifp, "unable to create dmamap for %s "
2572 "buffer %u, error %u\n", dd->dd_name, i, error);
2573 ath_descdma_cleanup(sc, dd, head);
2574 return error;
2575 }
2576 STAILQ_INSERT_TAIL(head, bf, bf_list);
2577 }
2578 return 0;
2579 fail4:
2580 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2581 fail3:
2582 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2583 fail2:
2584 bus_dmamem_unmap(dd->dd_dmat, (caddr_t)dd->dd_desc, dd->dd_desc_len);
2585 fail1:
2586 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2587 fail0:
2588 memset(dd, 0, sizeof(*dd));
2589 return error;
2590 #undef DS2PHYS
2591 }
2592
2593 static void
2594 ath_descdma_cleanup(struct ath_softc *sc,
2595 struct ath_descdma *dd, ath_bufhead *head)
2596 {
2597 struct ath_buf *bf;
2598 struct ieee80211_node *ni;
2599
2600 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2601 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2602 bus_dmamem_unmap(dd->dd_dmat, (caddr_t)dd->dd_desc, dd->dd_desc_len);
2603 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2604
2605 STAILQ_FOREACH(bf, head, bf_list) {
2606 if (bf->bf_m) {
2607 m_freem(bf->bf_m);
2608 bf->bf_m = NULL;
2609 }
2610 if (bf->bf_dmamap != NULL) {
2611 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2612 bf->bf_dmamap = NULL;
2613 }
2614 ni = bf->bf_node;
2615 bf->bf_node = NULL;
2616 if (ni != NULL) {
2617 /*
2618 * Reclaim node reference.
2619 */
2620 ieee80211_free_node(ni);
2621 }
2622 }
2623
2624 STAILQ_INIT(head);
2625 free(dd->dd_bufptr, M_ATHDEV);
2626 memset(dd, 0, sizeof(*dd));
2627 }
2628
2629 static int
2630 ath_desc_alloc(struct ath_softc *sc)
2631 {
2632 int error;
2633
2634 error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2635 "rx", ath_rxbuf, 1);
2636 if (error != 0)
2637 return error;
2638
2639 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2640 "tx", ath_txbuf, ATH_TXDESC);
2641 if (error != 0) {
2642 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2643 return error;
2644 }
2645
2646 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2647 "beacon", 1, 1);
2648 if (error != 0) {
2649 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2650 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2651 return error;
2652 }
2653 return 0;
2654 }
2655
2656 static void
2657 ath_desc_free(struct ath_softc *sc)
2658 {
2659
2660 if (sc->sc_bdma.dd_desc_len != 0)
2661 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2662 if (sc->sc_txdma.dd_desc_len != 0)
2663 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2664 if (sc->sc_rxdma.dd_desc_len != 0)
2665 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2666 }
2667
2668 static struct ieee80211_node *
2669 ath_node_alloc(struct ieee80211_node_table *nt)
2670 {
2671 struct ieee80211com *ic = nt->nt_ic;
2672 struct ath_softc *sc = ic->ic_ifp->if_softc;
2673 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2674 struct ath_node *an;
2675
2676 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2677 if (an == NULL) {
2678 /* XXX stat+msg */
2679 return NULL;
2680 }
2681 an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
2682 ath_rate_node_init(sc, an);
2683
2684 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2685 return &an->an_node;
2686 }
2687
2688 static void
2689 ath_node_free(struct ieee80211_node *ni)
2690 {
2691 struct ieee80211com *ic = ni->ni_ic;
2692 struct ath_softc *sc = ic->ic_ifp->if_softc;
2693
2694 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2695
2696 ath_rate_node_cleanup(sc, ATH_NODE(ni));
2697 sc->sc_node_free(ni);
2698 }
2699
2700 static u_int8_t
2701 ath_node_getrssi(const struct ieee80211_node *ni)
2702 {
2703 #define HAL_EP_RND(x, mul) \
2704 ((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
2705 u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
2706 int32_t rssi;
2707
2708 /*
2709 * When only one frame is received there will be no state in
2710 * avgrssi so fallback on the value recorded by the 802.11 layer.
2711 */
2712 if (avgrssi != ATH_RSSI_DUMMY_MARKER)
2713 rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
2714 else
2715 rssi = ni->ni_rssi;
2716 return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
2717 #undef HAL_EP_RND
2718 }
2719
2720 static int
2721 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2722 {
2723 struct ath_hal *ah = sc->sc_ah;
2724 int error;
2725 struct mbuf *m;
2726 struct ath_desc *ds;
2727
2728 m = bf->bf_m;
2729 if (m == NULL) {
2730 /*
2731 * NB: by assigning a page to the rx dma buffer we
2732 * implicitly satisfy the Atheros requirement that
2733 * this buffer be cache-line-aligned and sized to be
2734 * multiple of the cache line size. Not doing this
2735 * causes weird stuff to happen (for the 5210 at least).
2736 */
2737 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2738 if (m == NULL) {
2739 DPRINTF(sc, ATH_DEBUG_ANY,
2740 "%s: no mbuf/cluster\n", __func__);
2741 sc->sc_stats.ast_rx_nombuf++;
2742 return ENOMEM;
2743 }
2744 bf->bf_m = m;
2745 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2746
2747 error = bus_dmamap_load_mbuf(sc->sc_dmat,
2748 bf->bf_dmamap, m,
2749 BUS_DMA_NOWAIT);
2750 if (error != 0) {
2751 DPRINTF(sc, ATH_DEBUG_ANY,
2752 "%s: bus_dmamap_load_mbuf failed; error %d\n",
2753 __func__, error);
2754 sc->sc_stats.ast_rx_busdma++;
2755 return error;
2756 }
2757 KASSERT(bf->bf_nseg == 1,
2758 ("multi-segment packet; nseg %u", bf->bf_nseg));
2759 }
2760 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2761 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2762
2763 /*
2764 * Setup descriptors. For receive we always terminate
2765 * the descriptor list with a self-linked entry so we'll
2766 * not get overrun under high load (as can happen with a
2767 * 5212 when ANI processing enables PHY error frames).
2768 *
2769 * To insure the last descriptor is self-linked we create
2770 * each descriptor as self-linked and add it to the end. As
2771 * each additional descriptor is added the previous self-linked
2772 * entry is ``fixed'' naturally. This should be safe even
2773 * if DMA is happening. When processing RX interrupts we
2774 * never remove/process the last, self-linked, entry on the
2775 * descriptor list. This insures the hardware always has
2776 * someplace to write a new frame.
2777 */
2778 ds = bf->bf_desc;
2779 ds->ds_link = HTOAH32(bf->bf_daddr); /* link to self */
2780 ds->ds_data = bf->bf_segs[0].ds_addr;
2781 ds->ds_vdata = mtod(m, void *); /* for radar */
2782 ath_hal_setuprxdesc(ah, ds
2783 , m->m_len /* buffer size */
2784 , 0
2785 );
2786
2787 if (sc->sc_rxlink != NULL)
2788 *sc->sc_rxlink = bf->bf_daddr;
2789 sc->sc_rxlink = &ds->ds_link;
2790 return 0;
2791 }
2792
2793 /*
2794 * Extend 15-bit time stamp from rx descriptor to
2795 * a full 64-bit TSF using the specified TSF.
2796 */
2797 static inline u_int64_t
2798 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
2799 {
2800 if ((tsf & 0x7fff) < rstamp)
2801 tsf -= 0x8000;
2802 return ((tsf &~ 0x7fff) | rstamp);
2803 }
2804
2805 /*
2806 * Intercept management frames to collect beacon rssi data
2807 * and to do ibss merges.
2808 */
2809 static void
2810 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2811 struct ieee80211_node *ni,
2812 int subtype, int rssi, u_int32_t rstamp)
2813 {
2814 struct ath_softc *sc = ic->ic_ifp->if_softc;
2815
2816 /*
2817 * Call up first so subsequent work can use information
2818 * potentially stored in the node (e.g. for ibss merge).
2819 */
2820 sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
2821 switch (subtype) {
2822 case IEEE80211_FC0_SUBTYPE_BEACON:
2823 /* update rssi statistics for use by the hal */
2824 ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
2825 if (sc->sc_syncbeacon &&
2826 ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) {
2827 /*
2828 * Resync beacon timers using the tsf of the beacon
2829 * frame we just received.
2830 */
2831 ath_beacon_config(sc);
2832 }
2833 /* fall thru... */
2834 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2835 if (ic->ic_opmode == IEEE80211_M_IBSS &&
2836 ic->ic_state == IEEE80211_S_RUN) {
2837 u_int64_t tsf = ath_extend_tsf(rstamp,
2838 ath_hal_gettsf64(sc->sc_ah));
2839
2840 /*
2841 * Handle ibss merge as needed; check the tsf on the
2842 * frame before attempting the merge. The 802.11 spec
2843 * says the station should change it's bssid to match
2844 * the oldest station with the same ssid, where oldest
2845 * is determined by the tsf. Note that hardware
2846 * reconfiguration happens through callback to
2847 * ath_newstate as the state machine will go from
2848 * RUN -> RUN when this happens.
2849 */
2850 if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
2851 DPRINTF(sc, ATH_DEBUG_STATE,
2852 "ibss merge, rstamp %u tsf %ju "
2853 "tstamp %ju\n", rstamp, (uintmax_t)tsf,
2854 (uintmax_t)ni->ni_tstamp.tsf);
2855 (void) ieee80211_ibss_merge(ni);
2856 }
2857 }
2858 break;
2859 }
2860 }
2861
2862 /*
2863 * Set the default antenna.
2864 */
2865 static void
2866 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
2867 {
2868 struct ath_hal *ah = sc->sc_ah;
2869
2870 /* XXX block beacon interrupts */
2871 ath_hal_setdefantenna(ah, antenna);
2872 if (sc->sc_defant != antenna)
2873 sc->sc_stats.ast_ant_defswitch++;
2874 sc->sc_defant = antenna;
2875 sc->sc_rxotherant = 0;
2876 }
2877
2878 static void
2879 ath_rx_proc(void *arg, int npending)
2880 {
2881 #define PA2DESC(_sc, _pa) \
2882 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
2883 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
2884 struct ath_softc *sc = arg;
2885 struct ath_buf *bf;
2886 struct ieee80211com *ic = &sc->sc_ic;
2887 struct ifnet *ifp = &sc->sc_if;
2888 struct ath_hal *ah = sc->sc_ah;
2889 struct ath_desc *ds;
2890 struct mbuf *m;
2891 struct ieee80211_node *ni;
2892 struct ath_node *an;
2893 int len, type, ngood;
2894 u_int phyerr;
2895 HAL_STATUS status;
2896 int16_t nf;
2897 u_int64_t tsf;
2898
2899 NET_LOCK_GIANT(); /* XXX */
2900
2901 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
2902 ngood = 0;
2903 nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
2904 tsf = ath_hal_gettsf64(ah);
2905 do {
2906 bf = STAILQ_FIRST(&sc->sc_rxbuf);
2907 if (bf == NULL) { /* NB: shouldn't happen */
2908 if_printf(ifp, "%s: no buffer!\n", __func__);
2909 break;
2910 }
2911 ds = bf->bf_desc;
2912 if (ds->ds_link == bf->bf_daddr) {
2913 /* NB: never process the self-linked entry at the end */
2914 break;
2915 }
2916 m = bf->bf_m;
2917 if (m == NULL) { /* NB: shouldn't happen */
2918 if_printf(ifp, "%s: no mbuf!\n", __func__);
2919 break;
2920 }
2921 /* XXX sync descriptor memory */
2922 /*
2923 * Must provide the virtual address of the current
2924 * descriptor, the physical address, and the virtual
2925 * address of the next descriptor in the h/w chain.
2926 * This allows the HAL to look ahead to see if the
2927 * hardware is done with a descriptor by checking the
2928 * done bit in the following descriptor and the address
2929 * of the current descriptor the DMA engine is working
2930 * on. All this is necessary because of our use of
2931 * a self-linked list to avoid rx overruns.
2932 */
2933 status = ath_hal_rxprocdesc(ah, ds,
2934 bf->bf_daddr, PA2DESC(sc, ds->ds_link));
2935 #ifdef AR_DEBUG
2936 if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
2937 ath_printrxbuf(bf, status == HAL_OK);
2938 #endif
2939 if (status == HAL_EINPROGRESS)
2940 break;
2941 STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
2942 if (ds->ds_rxstat.rs_more) {
2943 /*
2944 * Frame spans multiple descriptors; this
2945 * cannot happen yet as we don't support
2946 * jumbograms. If not in monitor mode,
2947 * discard the frame.
2948 */
2949 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2950 sc->sc_stats.ast_rx_toobig++;
2951 goto rx_next;
2952 }
2953 /* fall thru for monitor mode handling... */
2954 } else if (ds->ds_rxstat.rs_status != 0) {
2955 if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
2956 sc->sc_stats.ast_rx_crcerr++;
2957 if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
2958 sc->sc_stats.ast_rx_fifoerr++;
2959 if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
2960 sc->sc_stats.ast_rx_phyerr++;
2961 phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
2962 sc->sc_stats.ast_rx_phy[phyerr]++;
2963 goto rx_next;
2964 }
2965 if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
2966 /*
2967 * Decrypt error. If the error occurred
2968 * because there was no hardware key, then
2969 * let the frame through so the upper layers
2970 * can process it. This is necessary for 5210
2971 * parts which have no way to setup a ``clear''
2972 * key cache entry.
2973 *
2974 * XXX do key cache faulting
2975 */
2976 if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
2977 goto rx_accept;
2978 sc->sc_stats.ast_rx_badcrypt++;
2979 }
2980 if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
2981 sc->sc_stats.ast_rx_badmic++;
2982 /*
2983 * Do minimal work required to hand off
2984 * the 802.11 header for notifcation.
2985 */
2986 /* XXX frag's and qos frames */
2987 len = ds->ds_rxstat.rs_datalen;
2988 if (len >= sizeof (struct ieee80211_frame)) {
2989 bus_dmamap_sync(sc->sc_dmat,
2990 bf->bf_dmamap,
2991 0, bf->bf_dmamap->dm_mapsize,
2992 BUS_DMASYNC_POSTREAD);
2993 ieee80211_notify_michael_failure(ic,
2994 mtod(m, struct ieee80211_frame *),
2995 sc->sc_splitmic ?
2996 ds->ds_rxstat.rs_keyix-32 :
2997 ds->ds_rxstat.rs_keyix
2998 );
2999 }
3000 }
3001 ifp->if_ierrors++;
3002 /*
3003 * Reject error frames, we normally don't want
3004 * to see them in monitor mode (in monitor mode
3005 * allow through packets that have crypto problems).
3006 */
3007 if ((ds->ds_rxstat.rs_status &~
3008 (HAL_RXERR_DECRYPT|HAL_RXERR_MIC)) ||
3009 sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
3010 goto rx_next;
3011 }
3012 rx_accept:
3013 /*
3014 * Sync and unmap the frame. At this point we're
3015 * committed to passing the mbuf somewhere so clear
3016 * bf_m; this means a new sk_buff must be allocated
3017 * when the rx descriptor is setup again to receive
3018 * another frame.
3019 */
3020 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3021 0, bf->bf_dmamap->dm_mapsize,
3022 BUS_DMASYNC_POSTREAD);
3023 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3024 bf->bf_m = NULL;
3025
3026 m->m_pkthdr.rcvif = ifp;
3027 len = ds->ds_rxstat.rs_datalen;
3028 m->m_pkthdr.len = m->m_len = len;
3029
3030 sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
3031
3032 #if NBPFILTER > 0
3033 if (sc->sc_drvbpf) {
3034 u_int8_t rix;
3035
3036 /*
3037 * Discard anything shorter than an ack or cts.
3038 */
3039 if (len < IEEE80211_ACK_LEN) {
3040 DPRINTF(sc, ATH_DEBUG_RECV,
3041 "%s: runt packet %d\n",
3042 __func__, len);
3043 sc->sc_stats.ast_rx_tooshort++;
3044 m_freem(m);
3045 goto rx_next;
3046 }
3047 rix = ds->ds_rxstat.rs_rate;
3048 sc->sc_rx_th.wr_tsf = htole64(
3049 ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf));
3050 sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
3051 sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
3052 sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf;
3053 sc->sc_rx_th.wr_antnoise = nf;
3054 sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
3055
3056 bpf_mtap2(sc->sc_drvbpf,
3057 &sc->sc_rx_th, sc->sc_rx_th_len, m);
3058 }
3059 #endif
3060
3061 /*
3062 * From this point on we assume the frame is at least
3063 * as large as ieee80211_frame_min; verify that.
3064 */
3065 if (len < IEEE80211_MIN_LEN) {
3066 DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
3067 __func__, len);
3068 sc->sc_stats.ast_rx_tooshort++;
3069 m_freem(m);
3070 goto rx_next;
3071 }
3072
3073 if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
3074 ieee80211_dump_pkt(mtod(m, caddr_t), len,
3075 sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
3076 ds->ds_rxstat.rs_rssi);
3077 }
3078
3079 m_adj(m, -IEEE80211_CRC_LEN);
3080
3081 /*
3082 * Locate the node for sender, track state, and then
3083 * pass the (referenced) node up to the 802.11 layer
3084 * for its use.
3085 */
3086 ni = ieee80211_find_rxnode_withkey(ic,
3087 mtod(m, const struct ieee80211_frame_min *),
3088 ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
3089 IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
3090 /*
3091 * Track rx rssi and do any rx antenna management.
3092 */
3093 an = ATH_NODE(ni);
3094 ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
3095 ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi);
3096 /*
3097 * Send frame up for processing.
3098 */
3099 type = ieee80211_input(ic, m, ni,
3100 ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
3101 ieee80211_free_node(ni);
3102 if (sc->sc_diversity) {
3103 /*
3104 * When using fast diversity, change the default rx
3105 * antenna if diversity chooses the other antenna 3
3106 * times in a row.
3107 */
3108 if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
3109 if (++sc->sc_rxotherant >= 3)
3110 ath_setdefantenna(sc,
3111 ds->ds_rxstat.rs_antenna);
3112 } else
3113 sc->sc_rxotherant = 0;
3114 }
3115 if (sc->sc_softled) {
3116 /*
3117 * Blink for any data frame. Otherwise do a
3118 * heartbeat-style blink when idle. The latter
3119 * is mainly for station mode where we depend on
3120 * periodic beacon frames to trigger the poll event.
3121 */
3122 if (type == IEEE80211_FC0_TYPE_DATA) {
3123 sc->sc_rxrate = ds->ds_rxstat.rs_rate;
3124 ath_led_event(sc, ATH_LED_RX);
3125 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
3126 ath_led_event(sc, ATH_LED_POLL);
3127 }
3128 /*
3129 * Arrange to update the last rx timestamp only for
3130 * frames from our ap when operating in station mode.
3131 * This assumes the rx key is always setup when associated.
3132 */
3133 if (ic->ic_opmode == IEEE80211_M_STA &&
3134 ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID)
3135 ngood++;
3136 rx_next:
3137 STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
3138 } while (ath_rxbuf_init(sc, bf) == 0);
3139
3140 /* rx signal state monitoring */
3141 ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
3142 if (ath_hal_radar_event(ah))
3143 TASK_RUN_OR_ENQUEUE(&sc->sc_radartask);
3144 if (ngood)
3145 sc->sc_lastrx = tsf;
3146
3147 #ifdef __NetBSD__
3148 /* XXX Why isn't this necessary in FreeBSD? */
3149 if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
3150 ath_start(ifp);
3151 #endif /* __NetBSD__ */
3152
3153 NET_UNLOCK_GIANT(); /* XXX */
3154 #undef PA2DESC
3155 }
3156
3157 /*
3158 * Setup a h/w transmit queue.
3159 */
3160 static struct ath_txq *
3161 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3162 {
3163 #define N(a) (sizeof(a)/sizeof(a[0]))
3164 struct ath_hal *ah = sc->sc_ah;
3165 HAL_TXQ_INFO qi;
3166 int qnum;
3167
3168 memset(&qi, 0, sizeof(qi));
3169 qi.tqi_subtype = subtype;
3170 qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3171 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3172 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3173 /*
3174 * Enable interrupts only for EOL and DESC conditions.
3175 * We mark tx descriptors to receive a DESC interrupt
3176 * when a tx queue gets deep; otherwise waiting for the
3177 * EOL to reap descriptors. Note that this is done to
3178 * reduce interrupt load and this only defers reaping
3179 * descriptors, never transmitting frames. Aside from
3180 * reducing interrupts this also permits more concurrency.
3181 * The only potential downside is if the tx queue backs
3182 * up in which case the top half of the kernel may backup
3183 * due to a lack of tx descriptors.
3184 */
3185 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
3186 qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3187 if (qnum == -1) {
3188 /*
3189 * NB: don't print a message, this happens
3190 * normally on parts with too few tx queues
3191 */
3192 return NULL;
3193 }
3194 if (qnum >= N(sc->sc_txq)) {
3195 device_printf(sc->sc_dev,
3196 "hal qnum %u out of range, max %zu!\n",
3197 qnum, N(sc->sc_txq));
3198 ath_hal_releasetxqueue(ah, qnum);
3199 return NULL;
3200 }
3201 if (!ATH_TXQ_SETUP(sc, qnum)) {
3202 struct ath_txq *txq = &sc->sc_txq[qnum];
3203
3204 txq->axq_qnum = qnum;
3205 txq->axq_depth = 0;
3206 txq->axq_intrcnt = 0;
3207 txq->axq_link = NULL;
3208 STAILQ_INIT(&txq->axq_q);
3209 ATH_TXQ_LOCK_INIT(sc, txq);
3210 sc->sc_txqsetup |= 1<<qnum;
3211 }
3212 return &sc->sc_txq[qnum];
3213 #undef N
3214 }
3215
3216 /*
3217 * Setup a hardware data transmit queue for the specified
3218 * access control. The hal may not support all requested
3219 * queues in which case it will return a reference to a
3220 * previously setup queue. We record the mapping from ac's
3221 * to h/w queues for use by ath_tx_start and also track
3222 * the set of h/w queues being used to optimize work in the
3223 * transmit interrupt handler and related routines.
3224 */
3225 static int
3226 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3227 {
3228 #define N(a) (sizeof(a)/sizeof(a[0]))
3229 struct ath_txq *txq;
3230
3231 if (ac >= N(sc->sc_ac2q)) {
3232 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3233 ac, N(sc->sc_ac2q));
3234 return 0;
3235 }
3236 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3237 if (txq != NULL) {
3238 sc->sc_ac2q[ac] = txq;
3239 return 1;
3240 } else
3241 return 0;
3242 #undef N
3243 }
3244
3245 /*
3246 * Update WME parameters for a transmit queue.
3247 */
3248 static int
3249 ath_txq_update(struct ath_softc *sc, int ac)
3250 {
3251 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1)
3252 #define ATH_TXOP_TO_US(v) (v<<5)
3253 struct ieee80211com *ic = &sc->sc_ic;
3254 struct ath_txq *txq = sc->sc_ac2q[ac];
3255 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3256 struct ath_hal *ah = sc->sc_ah;
3257 HAL_TXQ_INFO qi;
3258
3259 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3260 qi.tqi_aifs = wmep->wmep_aifsn;
3261 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3262 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3263 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3264
3265 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3266 device_printf(sc->sc_dev, "unable to update hardware queue "
3267 "parameters for %s traffic!\n",
3268 ieee80211_wme_acnames[ac]);
3269 return 0;
3270 } else {
3271 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3272 return 1;
3273 }
3274 #undef ATH_TXOP_TO_US
3275 #undef ATH_EXPONENT_TO_VALUE
3276 }
3277
3278 /*
3279 * Callback from the 802.11 layer to update WME parameters.
3280 */
3281 static int
3282 ath_wme_update(struct ieee80211com *ic)
3283 {
3284 struct ath_softc *sc = ic->ic_ifp->if_softc;
3285
3286 return !ath_txq_update(sc, WME_AC_BE) ||
3287 !ath_txq_update(sc, WME_AC_BK) ||
3288 !ath_txq_update(sc, WME_AC_VI) ||
3289 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3290 }
3291
3292 /*
3293 * Reclaim resources for a setup queue.
3294 */
3295 static void
3296 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3297 {
3298
3299 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3300 ATH_TXQ_LOCK_DESTROY(txq);
3301 sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3302 }
3303
3304 /*
3305 * Reclaim all tx queue resources.
3306 */
3307 static void
3308 ath_tx_cleanup(struct ath_softc *sc)
3309 {
3310 int i;
3311
3312 ATH_TXBUF_LOCK_DESTROY(sc);
3313 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3314 if (ATH_TXQ_SETUP(sc, i))
3315 ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3316 }
3317
3318 /*
3319 * Defragment an mbuf chain, returning at most maxfrags separate
3320 * mbufs+clusters. If this is not possible NULL is returned and
3321 * the original mbuf chain is left in it's present (potentially
3322 * modified) state. We use two techniques: collapsing consecutive
3323 * mbufs and replacing consecutive mbufs by a cluster.
3324 */
3325 static struct mbuf *
3326 ath_defrag(struct mbuf *m0, int how, int maxfrags)
3327 {
3328 struct mbuf *m, *n, *n2, **prev;
3329 u_int curfrags;
3330
3331 /*
3332 * Calculate the current number of frags.
3333 */
3334 curfrags = 0;
3335 for (m = m0; m != NULL; m = m->m_next)
3336 curfrags++;
3337 /*
3338 * First, try to collapse mbufs. Note that we always collapse
3339 * towards the front so we don't need to deal with moving the
3340 * pkthdr. This may be suboptimal if the first mbuf has much
3341 * less data than the following.
3342 */
3343 m = m0;
3344 again:
3345 for (;;) {
3346 n = m->m_next;
3347 if (n == NULL)
3348 break;
3349 if ((m->m_flags & M_RDONLY) == 0 &&
3350 n->m_len < M_TRAILINGSPACE(m)) {
3351 bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
3352 n->m_len);
3353 m->m_len += n->m_len;
3354 m->m_next = n->m_next;
3355 m_free(n);
3356 if (--curfrags <= maxfrags)
3357 return m0;
3358 } else
3359 m = n;
3360 }
3361 KASSERT(maxfrags > 1,
3362 ("maxfrags %u, but normal collapse failed", maxfrags));
3363 /*
3364 * Collapse consecutive mbufs to a cluster.
3365 */
3366 prev = &m0->m_next; /* NB: not the first mbuf */
3367 while ((n = *prev) != NULL) {
3368 if ((n2 = n->m_next) != NULL &&
3369 n->m_len + n2->m_len < MCLBYTES) {
3370 m = m_getcl(how, MT_DATA, 0);
3371 if (m == NULL)
3372 goto bad;
3373 bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
3374 bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
3375 n2->m_len);
3376 m->m_len = n->m_len + n2->m_len;
3377 m->m_next = n2->m_next;
3378 *prev = m;
3379 m_free(n);
3380 m_free(n2);
3381 if (--curfrags <= maxfrags) /* +1 cl -2 mbufs */
3382 return m0;
3383 /*
3384 * Still not there, try the normal collapse
3385 * again before we allocate another cluster.
3386 */
3387 goto again;
3388 }
3389 prev = &n->m_next;
3390 }
3391 /*
3392 * No place where we can collapse to a cluster; punt.
3393 * This can occur if, for example, you request 2 frags
3394 * but the packet requires that both be clusters (we
3395 * never reallocate the first mbuf to avoid moving the
3396 * packet header).
3397 */
3398 bad:
3399 return NULL;
3400 }
3401
3402 /*
3403 * Return h/w rate index for an IEEE rate (w/o basic rate bit).
3404 */
3405 static int
3406 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
3407 {
3408 int i;
3409
3410 for (i = 0; i < rt->rateCount; i++)
3411 if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
3412 return i;
3413 return 0; /* NB: lowest rate */
3414 }
3415
3416 static int
3417 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
3418 struct mbuf *m0)
3419 {
3420 struct ieee80211com *ic = &sc->sc_ic;
3421 struct ath_hal *ah = sc->sc_ah;
3422 struct ifnet *ifp = &sc->sc_if;
3423 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
3424 int i, error, iswep, ismcast, ismrr;
3425 int keyix, hdrlen, pktlen, try0;
3426 u_int8_t rix, txrate, ctsrate;
3427 u_int8_t cix = 0xff; /* NB: silence compiler */
3428 struct ath_desc *ds, *ds0;
3429 struct ath_txq *txq;
3430 struct ieee80211_frame *wh;
3431 u_int subtype, flags, ctsduration;
3432 HAL_PKT_TYPE atype;
3433 const HAL_RATE_TABLE *rt;
3434 HAL_BOOL shortPreamble;
3435 struct ath_node *an;
3436 struct mbuf *m;
3437 u_int pri;
3438
3439 wh = mtod(m0, struct ieee80211_frame *);
3440 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
3441 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3442 hdrlen = ieee80211_anyhdrsize(wh);
3443 /*
3444 * Packet length must not include any
3445 * pad bytes; deduct them here.
3446 */
3447 pktlen = m0->m_pkthdr.len - (hdrlen & 3);
3448
3449 if (iswep) {
3450 const struct ieee80211_cipher *cip;
3451 struct ieee80211_key *k;
3452
3453 /*
3454 * Construct the 802.11 header+trailer for an encrypted
3455 * frame. The only reason this can fail is because of an
3456 * unknown or unsupported cipher/key type.
3457 */
3458 k = ieee80211_crypto_encap(ic, ni, m0);
3459 if (k == NULL) {
3460 /*
3461 * This can happen when the key is yanked after the
3462 * frame was queued. Just discard the frame; the
3463 * 802.11 layer counts failures and provides
3464 * debugging/diagnostics.
3465 */
3466 m_freem(m0);
3467 return EIO;
3468 }
3469 /*
3470 * Adjust the packet + header lengths for the crypto
3471 * additions and calculate the h/w key index. When
3472 * a s/w mic is done the frame will have had any mic
3473 * added to it prior to entry so skb->len above will
3474 * account for it. Otherwise we need to add it to the
3475 * packet length.
3476 */
3477 cip = k->wk_cipher;
3478 hdrlen += cip->ic_header;
3479 pktlen += cip->ic_header + cip->ic_trailer;
3480 if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0)
3481 pktlen += cip->ic_miclen;
3482 keyix = k->wk_keyix;
3483
3484 /* packet header may have moved, reset our local pointer */
3485 wh = mtod(m0, struct ieee80211_frame *);
3486 } else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
3487 /*
3488 * Use station key cache slot, if assigned.
3489 */
3490 keyix = ni->ni_ucastkey.wk_keyix;
3491 if (keyix == IEEE80211_KEYIX_NONE)
3492 keyix = HAL_TXKEYIX_INVALID;
3493 } else
3494 keyix = HAL_TXKEYIX_INVALID;
3495
3496 pktlen += IEEE80211_CRC_LEN;
3497
3498 /*
3499 * Load the DMA map so any coalescing is done. This
3500 * also calculates the number of descriptors we need.
3501 */
3502 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3503 BUS_DMA_NOWAIT);
3504 if (error == EFBIG) {
3505 /* XXX packet requires too many descriptors */
3506 bf->bf_nseg = ATH_TXDESC+1;
3507 } else if (error != 0) {
3508 sc->sc_stats.ast_tx_busdma++;
3509 m_freem(m0);
3510 return error;
3511 }
3512 /*
3513 * Discard null packets and check for packets that
3514 * require too many TX descriptors. We try to convert
3515 * the latter to a cluster.
3516 */
3517 if (error == EFBIG) { /* too many desc's, linearize */
3518 sc->sc_stats.ast_tx_linear++;
3519 m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
3520 if (m == NULL) {
3521 m_freem(m0);
3522 sc->sc_stats.ast_tx_nombuf++;
3523 return ENOMEM;
3524 }
3525 m0 = m;
3526 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3527 BUS_DMA_NOWAIT);
3528 if (error != 0) {
3529 sc->sc_stats.ast_tx_busdma++;
3530 m_freem(m0);
3531 return error;
3532 }
3533 KASSERT(bf->bf_nseg <= ATH_TXDESC,
3534 ("too many segments after defrag; nseg %u", bf->bf_nseg));
3535 } else if (bf->bf_nseg == 0) { /* null packet, discard */
3536 sc->sc_stats.ast_tx_nodata++;
3537 m_freem(m0);
3538 return EIO;
3539 }
3540 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
3541 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
3542 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
3543 bf->bf_m = m0;
3544 bf->bf_node = ni; /* NB: held reference */
3545
3546 /* setup descriptors */
3547 ds = bf->bf_desc;
3548 rt = sc->sc_currates;
3549 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3550
3551 /*
3552 * NB: the 802.11 layer marks whether or not we should
3553 * use short preamble based on the current mode and
3554 * negotiated parameters.
3555 */
3556 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3557 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) {
3558 shortPreamble = AH_TRUE;
3559 sc->sc_stats.ast_tx_shortpre++;
3560 } else {
3561 shortPreamble = AH_FALSE;
3562 }
3563
3564 an = ATH_NODE(ni);
3565 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */
3566 ismrr = 0; /* default no multi-rate retry*/
3567 /*
3568 * Calculate Atheros packet type from IEEE80211 packet header,
3569 * setup for rate calculations, and select h/w transmit queue.
3570 */
3571 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3572 case IEEE80211_FC0_TYPE_MGT:
3573 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3574 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
3575 atype = HAL_PKT_TYPE_BEACON;
3576 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3577 atype = HAL_PKT_TYPE_PROBE_RESP;
3578 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
3579 atype = HAL_PKT_TYPE_ATIM;
3580 else
3581 atype = HAL_PKT_TYPE_NORMAL; /* XXX */
3582 rix = sc->sc_minrateix;
3583 txrate = rt->info[rix].rateCode;
3584 if (shortPreamble)
3585 txrate |= rt->info[rix].shortPreamble;
3586 try0 = ATH_TXMGTTRY;
3587 /* NB: force all management frames to highest queue */
3588 if (ni->ni_flags & IEEE80211_NODE_QOS) {
3589 /* NB: force all management frames to highest queue */
3590 pri = WME_AC_VO;
3591 } else
3592 pri = WME_AC_BE;
3593 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
3594 break;
3595 case IEEE80211_FC0_TYPE_CTL:
3596 atype = HAL_PKT_TYPE_PSPOLL; /* stop setting of duration */
3597 rix = sc->sc_minrateix;
3598 txrate = rt->info[rix].rateCode;
3599 if (shortPreamble)
3600 txrate |= rt->info[rix].shortPreamble;
3601 try0 = ATH_TXMGTTRY;
3602 /* NB: force all ctl frames to highest queue */
3603 if (ni->ni_flags & IEEE80211_NODE_QOS) {
3604 /* NB: force all ctl frames to highest queue */
3605 pri = WME_AC_VO;
3606 } else
3607 pri = WME_AC_BE;
3608 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
3609 break;
3610 case IEEE80211_FC0_TYPE_DATA:
3611 atype = HAL_PKT_TYPE_NORMAL; /* default */
3612 /*
3613 * Data frames: multicast frames go out at a fixed rate,
3614 * otherwise consult the rate control module for the
3615 * rate to use.
3616 */
3617 if (ismcast) {
3618 /*
3619 * Check mcast rate setting in case it's changed.
3620 * XXX move out of fastpath
3621 */
3622 if (ic->ic_mcast_rate != sc->sc_mcastrate) {
3623 sc->sc_mcastrix =
3624 ath_tx_findrix(rt, ic->ic_mcast_rate);
3625 sc->sc_mcastrate = ic->ic_mcast_rate;
3626 }
3627 rix = sc->sc_mcastrix;
3628 txrate = rt->info[rix].rateCode;
3629 try0 = 1;
3630 } else {
3631 ath_rate_findrate(sc, an, shortPreamble, pktlen,
3632 &rix, &try0, &txrate);
3633 sc->sc_txrate = txrate; /* for LED blinking */
3634 if (try0 != ATH_TXMAXTRY)
3635 ismrr = 1;
3636 }
3637 pri = M_WME_GETAC(m0);
3638 if (cap->cap_wmeParams[pri].wmep_noackPolicy)
3639 flags |= HAL_TXDESC_NOACK;
3640 break;
3641 default:
3642 if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3643 wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3644 /* XXX statistic */
3645 m_freem(m0);
3646 return EIO;
3647 }
3648 txq = sc->sc_ac2q[pri];
3649
3650 /*
3651 * When servicing one or more stations in power-save mode
3652 * multicast frames must be buffered until after the beacon.
3653 * We use the CAB queue for that.
3654 */
3655 if (ismcast && ic->ic_ps_sta) {
3656 txq = sc->sc_cabq;
3657 /* XXX? more bit in 802.11 frame header */
3658 }
3659
3660 /*
3661 * Calculate miscellaneous flags.
3662 */
3663 if (ismcast) {
3664 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */
3665 } else if (pktlen > ic->ic_rtsthreshold) {
3666 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */
3667 cix = rt->info[rix].controlRate;
3668 sc->sc_stats.ast_tx_rts++;
3669 }
3670 if (flags & HAL_TXDESC_NOACK) /* NB: avoid double counting */
3671 sc->sc_stats.ast_tx_noack++;
3672
3673 /*
3674 * If 802.11g protection is enabled, determine whether
3675 * to use RTS/CTS or just CTS. Note that this is only
3676 * done for OFDM unicast frames.
3677 */
3678 if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3679 rt->info[rix].phy == IEEE80211_T_OFDM &&
3680 (flags & HAL_TXDESC_NOACK) == 0) {
3681 /* XXX fragments must use CCK rates w/ protection */
3682 if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3683 flags |= HAL_TXDESC_RTSENA;
3684 else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3685 flags |= HAL_TXDESC_CTSENA;
3686 cix = rt->info[sc->sc_protrix].controlRate;
3687 sc->sc_stats.ast_tx_protect++;
3688 }
3689
3690 /*
3691 * Calculate duration. This logically belongs in the 802.11
3692 * layer but it lacks sufficient information to calculate it.
3693 */
3694 if ((flags & HAL_TXDESC_NOACK) == 0 &&
3695 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
3696 u_int16_t dur;
3697 /*
3698 * XXX not right with fragmentation.
3699 */
3700 if (shortPreamble)
3701 dur = rt->info[rix].spAckDuration;
3702 else
3703 dur = rt->info[rix].lpAckDuration;
3704 *(u_int16_t *)wh->i_dur = htole16(dur);
3705 }
3706
3707 /*
3708 * Calculate RTS/CTS rate and duration if needed.
3709 */
3710 ctsduration = 0;
3711 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
3712 /*
3713 * CTS transmit rate is derived from the transmit rate
3714 * by looking in the h/w rate table. We must also factor
3715 * in whether or not a short preamble is to be used.
3716 */
3717 /* NB: cix is set above where RTS/CTS is enabled */
3718 KASSERT(cix != 0xff, ("cix not setup"));
3719 ctsrate = rt->info[cix].rateCode;
3720 /*
3721 * Compute the transmit duration based on the frame
3722 * size and the size of an ACK frame. We call into the
3723 * HAL to do the computation since it depends on the
3724 * characteristics of the actual PHY being used.
3725 *
3726 * NB: CTS is assumed the same size as an ACK so we can
3727 * use the precalculated ACK durations.
3728 */
3729 if (shortPreamble) {
3730 ctsrate |= rt->info[cix].shortPreamble;
3731 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
3732 ctsduration += rt->info[cix].spAckDuration;
3733 ctsduration += ath_hal_computetxtime(ah,
3734 rt, pktlen, rix, AH_TRUE);
3735 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
3736 ctsduration += rt->info[rix].spAckDuration;
3737 } else {
3738 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
3739 ctsduration += rt->info[cix].lpAckDuration;
3740 ctsduration += ath_hal_computetxtime(ah,
3741 rt, pktlen, rix, AH_FALSE);
3742 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
3743 ctsduration += rt->info[rix].lpAckDuration;
3744 }
3745 /*
3746 * Must disable multi-rate retry when using RTS/CTS.
3747 */
3748 ismrr = 0;
3749 try0 = ATH_TXMGTTRY; /* XXX */
3750 } else
3751 ctsrate = 0;
3752
3753 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3754 ieee80211_dump_pkt(mtod(m0, caddr_t), m0->m_len,
3755 sc->sc_hwmap[txrate].ieeerate, -1);
3756 #if NBPFILTER > 0
3757 if (ic->ic_rawbpf)
3758 bpf_mtap(ic->ic_rawbpf, m0);
3759 if (sc->sc_drvbpf) {
3760 u_int64_t tsf = ath_hal_gettsf64(ah);
3761
3762 sc->sc_tx_th.wt_tsf = htole64(tsf);
3763 sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
3764 if (iswep)
3765 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3766 sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
3767 sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3768 sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3769
3770 bpf_mtap2(sc->sc_drvbpf,
3771 &sc->sc_tx_th, sc->sc_tx_th_len, m0);
3772 }
3773 #endif
3774
3775 /*
3776 * Determine if a tx interrupt should be generated for
3777 * this descriptor. We take a tx interrupt to reap
3778 * descriptors when the h/w hits an EOL condition or
3779 * when the descriptor is specifically marked to generate
3780 * an interrupt. We periodically mark descriptors in this
3781 * way to insure timely replenishing of the supply needed
3782 * for sending frames. Defering interrupts reduces system
3783 * load and potentially allows more concurrent work to be
3784 * done but if done to aggressively can cause senders to
3785 * backup.
3786 *
3787 * NB: use >= to deal with sc_txintrperiod changing
3788 * dynamically through sysctl.
3789 */
3790 if (flags & HAL_TXDESC_INTREQ) {
3791 txq->axq_intrcnt = 0;
3792 } else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
3793 flags |= HAL_TXDESC_INTREQ;
3794 txq->axq_intrcnt = 0;
3795 }
3796
3797 /*
3798 * Formulate first tx descriptor with tx controls.
3799 */
3800 /* XXX check return value? */
3801 ath_hal_setuptxdesc(ah, ds
3802 , pktlen /* packet length */
3803 , hdrlen /* header length */
3804 , atype /* Atheros packet type */
3805 , ni->ni_txpower /* txpower */
3806 , txrate, try0 /* series 0 rate/tries */
3807 , keyix /* key cache index */
3808 , sc->sc_txantenna /* antenna mode */
3809 , flags /* flags */
3810 , ctsrate /* rts/cts rate */
3811 , ctsduration /* rts/cts duration */
3812 );
3813 bf->bf_flags = flags;
3814 /*
3815 * Setup the multi-rate retry state only when we're
3816 * going to use it. This assumes ath_hal_setuptxdesc
3817 * initializes the descriptors (so we don't have to)
3818 * when the hardware supports multi-rate retry and
3819 * we don't use it.
3820 */
3821 if (ismrr)
3822 ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
3823
3824 /*
3825 * Fillin the remainder of the descriptor info.
3826 */
3827 ds0 = ds;
3828 for (i = 0; i < bf->bf_nseg; i++, ds++) {
3829 ds->ds_data = bf->bf_segs[i].ds_addr;
3830 if (i == bf->bf_nseg - 1)
3831 ds->ds_link = 0;
3832 else
3833 ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
3834 ath_hal_filltxdesc(ah, ds
3835 , bf->bf_segs[i].ds_len /* segment length */
3836 , i == 0 /* first segment */
3837 , i == bf->bf_nseg - 1 /* last segment */
3838 , ds0 /* first descriptor */
3839 );
3840
3841 /* NB: The desc swap function becomes void,
3842 * if descriptor swapping is not enabled
3843 */
3844 ath_desc_swap(ds);
3845
3846 DPRINTF(sc, ATH_DEBUG_XMIT,
3847 "%s: %d: %08x %08x %08x %08x %08x %08x\n",
3848 __func__, i, ds->ds_link, ds->ds_data,
3849 ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
3850 }
3851 /*
3852 * Insert the frame on the outbound list and
3853 * pass it on to the hardware.
3854 */
3855 ATH_TXQ_LOCK(txq);
3856 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
3857 if (txq->axq_link == NULL) {
3858 ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
3859 DPRINTF(sc, ATH_DEBUG_XMIT,
3860 "%s: TXDP[%u] = %" PRIx64 " (%p) depth %d\n", __func__,
3861 txq->axq_qnum, (uint64_t)bf->bf_daddr, bf->bf_desc,
3862 txq->axq_depth);
3863 } else {
3864 *txq->axq_link = HTOAH32(bf->bf_daddr);
3865 DPRINTF(sc, ATH_DEBUG_XMIT,
3866 "%s: link[%u](%p)=%" PRIx64 " (%p) depth %d\n",
3867 __func__, txq->axq_qnum, txq->axq_link,
3868 (uint64_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
3869 }
3870 txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
3871 /*
3872 * The CAB queue is started from the SWBA handler since
3873 * frames only go out on DTIM and to avoid possible races.
3874 */
3875 if (txq != sc->sc_cabq)
3876 ath_hal_txstart(ah, txq->axq_qnum);
3877 ATH_TXQ_UNLOCK(txq);
3878
3879 return 0;
3880 }
3881
3882 /*
3883 * Process completed xmit descriptors from the specified queue.
3884 */
3885 static int
3886 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
3887 {
3888 struct ath_hal *ah = sc->sc_ah;
3889 struct ieee80211com *ic = &sc->sc_ic;
3890 struct ath_buf *bf;
3891 struct ath_desc *ds, *ds0;
3892 struct ieee80211_node *ni;
3893 struct ath_node *an;
3894 int sr, lr, pri, nacked;
3895 HAL_STATUS status;
3896
3897 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
3898 __func__, txq->axq_qnum,
3899 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3900 txq->axq_link);
3901 nacked = 0;
3902 for (;;) {
3903 ATH_TXQ_LOCK(txq);
3904 txq->axq_intrcnt = 0; /* reset periodic desc intr count */
3905 bf = STAILQ_FIRST(&txq->axq_q);
3906 if (bf == NULL) {
3907 txq->axq_link = NULL;
3908 ATH_TXQ_UNLOCK(txq);
3909 break;
3910 }
3911 ds0 = &bf->bf_desc[0];
3912 ds = &bf->bf_desc[bf->bf_nseg - 1];
3913 status = ath_hal_txprocdesc(ah, ds);
3914 #ifdef AR_DEBUG
3915 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
3916 ath_printtxbuf(bf, status == HAL_OK);
3917 #endif
3918 if (status == HAL_EINPROGRESS) {
3919 ATH_TXQ_UNLOCK(txq);
3920 break;
3921 }
3922 ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3923 ATH_TXQ_UNLOCK(txq);
3924
3925 ni = bf->bf_node;
3926 if (ni != NULL) {
3927 an = ATH_NODE(ni);
3928 if (ds->ds_txstat.ts_status == 0) {
3929 u_int8_t txant = ds->ds_txstat.ts_antenna;
3930 sc->sc_stats.ast_ant_tx[txant]++;
3931 sc->sc_ant_tx[txant]++;
3932 if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
3933 sc->sc_stats.ast_tx_altrate++;
3934 sc->sc_stats.ast_tx_rssi =
3935 ds->ds_txstat.ts_rssi;
3936 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
3937 ds->ds_txstat.ts_rssi);
3938 pri = M_WME_GETAC(bf->bf_m);
3939 if (pri >= WME_AC_VO)
3940 ic->ic_wme.wme_hipri_traffic++;
3941 ni->ni_inact = ni->ni_inact_reload;
3942 } else {
3943 if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
3944 sc->sc_stats.ast_tx_xretries++;
3945 if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
3946 sc->sc_stats.ast_tx_fifoerr++;
3947 if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
3948 sc->sc_stats.ast_tx_filtered++;
3949 }
3950 sr = ds->ds_txstat.ts_shortretry;
3951 lr = ds->ds_txstat.ts_longretry;
3952 sc->sc_stats.ast_tx_shortretry += sr;
3953 sc->sc_stats.ast_tx_longretry += lr;
3954 /*
3955 * Hand the descriptor to the rate control algorithm.
3956 */
3957 if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
3958 (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
3959 /*
3960 * If frame was ack'd update the last rx time
3961 * used to workaround phantom bmiss interrupts.
3962 */
3963 if (ds->ds_txstat.ts_status == 0)
3964 nacked++;
3965 ath_rate_tx_complete(sc, an, ds, ds0);
3966 }
3967 /*
3968 * Reclaim reference to node.
3969 *
3970 * NB: the node may be reclaimed here if, for example
3971 * this is a DEAUTH message that was sent and the
3972 * node was timed out due to inactivity.
3973 */
3974 ieee80211_free_node(ni);
3975 }
3976 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
3977 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3978 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3979 m_freem(bf->bf_m);
3980 bf->bf_m = NULL;
3981 bf->bf_node = NULL;
3982
3983 ATH_TXBUF_LOCK(sc);
3984 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
3985 ATH_TXBUF_UNLOCK(sc);
3986 }
3987 return nacked;
3988 }
3989
3990 static inline int
3991 txqactive(struct ath_hal *ah, int qnum)
3992 {
3993 u_int32_t txqs = 1<<qnum;
3994 ath_hal_gettxintrtxqs(ah, &txqs);
3995 return (txqs & (1<<qnum));
3996 }
3997
3998 /*
3999 * Deferred processing of transmit interrupt; special-cased
4000 * for a single hardware transmit queue (e.g. 5210 and 5211).
4001 */
4002 static void
4003 ath_tx_proc_q0(void *arg, int npending)
4004 {
4005 struct ath_softc *sc = arg;
4006 struct ifnet *ifp = &sc->sc_if;
4007
4008 if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]))
4009 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4010 if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4011 ath_tx_processq(sc, sc->sc_cabq);
4012 ifp->if_flags &= ~IFF_OACTIVE;
4013 sc->sc_tx_timer = 0;
4014
4015 if (sc->sc_softled)
4016 ath_led_event(sc, ATH_LED_TX);
4017
4018 ath_start(ifp);
4019 }
4020
4021 /*
4022 * Deferred processing of transmit interrupt; special-cased
4023 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4024 */
4025 static void
4026 ath_tx_proc_q0123(void *arg, int npending)
4027 {
4028 struct ath_softc *sc = arg;
4029 struct ifnet *ifp = &sc->sc_if;
4030 int nacked;
4031
4032 /*
4033 * Process each active queue.
4034 */
4035 nacked = 0;
4036 if (txqactive(sc->sc_ah, 0))
4037 nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
4038 if (txqactive(sc->sc_ah, 1))
4039 nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
4040 if (txqactive(sc->sc_ah, 2))
4041 nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
4042 if (txqactive(sc->sc_ah, 3))
4043 nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
4044 if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4045 ath_tx_processq(sc, sc->sc_cabq);
4046 if (nacked)
4047 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4048 ath_tx_processq(sc, sc->sc_cabq);
4049
4050 ifp->if_flags &= ~IFF_OACTIVE;
4051 sc->sc_tx_timer = 0;
4052
4053 if (sc->sc_softled)
4054 ath_led_event(sc, ATH_LED_TX);
4055
4056 ath_start(ifp);
4057 }
4058
4059 /*
4060 * Deferred processing of transmit interrupt.
4061 */
4062 static void
4063 ath_tx_proc(void *arg, int npending)
4064 {
4065 struct ath_softc *sc = arg;
4066 struct ifnet *ifp = &sc->sc_if;
4067 int i, nacked;
4068
4069 /*
4070 * Process each active queue.
4071 */
4072 nacked = 0;
4073 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4074 if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
4075 nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
4076 if (nacked)
4077 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4078
4079 ifp->if_flags &= ~IFF_OACTIVE;
4080 sc->sc_tx_timer = 0;
4081
4082 if (sc->sc_softled)
4083 ath_led_event(sc, ATH_LED_TX);
4084
4085 ath_start(ifp);
4086 }
4087
4088 static void
4089 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
4090 {
4091 struct ath_hal *ah = sc->sc_ah;
4092 struct ieee80211_node *ni;
4093 struct ath_buf *bf;
4094
4095 /*
4096 * NB: this assumes output has been stopped and
4097 * we do not need to block ath_tx_tasklet
4098 */
4099 for (;;) {
4100 ATH_TXQ_LOCK(txq);
4101 bf = STAILQ_FIRST(&txq->axq_q);
4102 if (bf == NULL) {
4103 txq->axq_link = NULL;
4104 ATH_TXQ_UNLOCK(txq);
4105 break;
4106 }
4107 ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4108 ATH_TXQ_UNLOCK(txq);
4109 #ifdef AR_DEBUG
4110 if (sc->sc_debug & ATH_DEBUG_RESET)
4111 ath_printtxbuf(bf,
4112 ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
4113 #endif /* AR_DEBUG */
4114 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4115 m_freem(bf->bf_m);
4116 bf->bf_m = NULL;
4117 ni = bf->bf_node;
4118 bf->bf_node = NULL;
4119 if (ni != NULL) {
4120 /*
4121 * Reclaim node reference.
4122 */
4123 ieee80211_free_node(ni);
4124 }
4125 ATH_TXBUF_LOCK(sc);
4126 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4127 ATH_TXBUF_UNLOCK(sc);
4128 }
4129 }
4130
4131 static void
4132 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4133 {
4134 struct ath_hal *ah = sc->sc_ah;
4135
4136 (void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4137 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4138 __func__, txq->axq_qnum,
4139 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4140 txq->axq_link);
4141 }
4142
4143 /*
4144 * Drain the transmit queues and reclaim resources.
4145 */
4146 static void
4147 ath_draintxq(struct ath_softc *sc)
4148 {
4149 struct ath_hal *ah = sc->sc_ah;
4150 struct ifnet *ifp = &sc->sc_if;
4151 int i;
4152
4153 /* XXX return value */
4154 if (!sc->sc_invalid) {
4155 /* don't touch the hardware if marked invalid */
4156 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4157 DPRINTF(sc, ATH_DEBUG_RESET,
4158 "%s: beacon queue %p\n", __func__,
4159 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
4160 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4161 if (ATH_TXQ_SETUP(sc, i))
4162 ath_tx_stopdma(sc, &sc->sc_txq[i]);
4163 }
4164 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4165 if (ATH_TXQ_SETUP(sc, i))
4166 ath_tx_draintxq(sc, &sc->sc_txq[i]);
4167 ifp->if_flags &= ~IFF_OACTIVE;
4168 sc->sc_tx_timer = 0;
4169 }
4170
4171 /*
4172 * Disable the receive h/w in preparation for a reset.
4173 */
4174 static void
4175 ath_stoprecv(struct ath_softc *sc)
4176 {
4177 #define PA2DESC(_sc, _pa) \
4178 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
4179 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
4180 struct ath_hal *ah = sc->sc_ah;
4181
4182 ath_hal_stoppcurecv(ah); /* disable PCU */
4183 ath_hal_setrxfilter(ah, 0); /* clear recv filter */
4184 ath_hal_stopdmarecv(ah); /* disable DMA engine */
4185 DELAY(3000); /* 3ms is long enough for 1 frame */
4186 #ifdef AR_DEBUG
4187 if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
4188 struct ath_buf *bf;
4189
4190 printf("%s: rx queue %p, link %p\n", __func__,
4191 (caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
4192 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4193 struct ath_desc *ds = bf->bf_desc;
4194 HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
4195 bf->bf_daddr, PA2DESC(sc, ds->ds_link));
4196 if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
4197 ath_printrxbuf(bf, status == HAL_OK);
4198 }
4199 }
4200 #endif
4201 sc->sc_rxlink = NULL; /* just in case */
4202 #undef PA2DESC
4203 }
4204
4205 /*
4206 * Enable the receive h/w following a reset.
4207 */
4208 static int
4209 ath_startrecv(struct ath_softc *sc)
4210 {
4211 struct ath_hal *ah = sc->sc_ah;
4212 struct ath_buf *bf;
4213
4214 sc->sc_rxlink = NULL;
4215 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4216 int error = ath_rxbuf_init(sc, bf);
4217 if (error != 0) {
4218 DPRINTF(sc, ATH_DEBUG_RECV,
4219 "%s: ath_rxbuf_init failed %d\n",
4220 __func__, error);
4221 return error;
4222 }
4223 }
4224
4225 bf = STAILQ_FIRST(&sc->sc_rxbuf);
4226 ath_hal_putrxbuf(ah, bf->bf_daddr);
4227 ath_hal_rxena(ah); /* enable recv descriptors */
4228 ath_mode_init(sc); /* set filters, etc. */
4229 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */
4230 return 0;
4231 }
4232
4233 /*
4234 * Update internal state after a channel change.
4235 */
4236 static void
4237 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4238 {
4239 struct ieee80211com *ic = &sc->sc_ic;
4240 enum ieee80211_phymode mode;
4241 u_int16_t flags;
4242
4243 /*
4244 * Change channels and update the h/w rate map
4245 * if we're switching; e.g. 11a to 11b/g.
4246 */
4247 mode = ieee80211_chan2mode(ic, chan);
4248 if (mode != sc->sc_curmode)
4249 ath_setcurmode(sc, mode);
4250 /*
4251 * Update BPF state. NB: ethereal et. al. don't handle
4252 * merged flags well so pick a unique mode for their use.
4253 */
4254 if (IEEE80211_IS_CHAN_A(chan))
4255 flags = IEEE80211_CHAN_A;
4256 /* XXX 11g schizophrenia */
4257 else if (IEEE80211_IS_CHAN_G(chan) ||
4258 IEEE80211_IS_CHAN_PUREG(chan))
4259 flags = IEEE80211_CHAN_G;
4260 else
4261 flags = IEEE80211_CHAN_B;
4262 if (IEEE80211_IS_CHAN_T(chan))
4263 flags |= IEEE80211_CHAN_TURBO;
4264 sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
4265 htole16(chan->ic_freq);
4266 sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
4267 htole16(flags);
4268 }
4269
4270 /*
4271 * Poll for a channel clear indication; this is required
4272 * for channels requiring DFS and not previously visited
4273 * and/or with a recent radar detection.
4274 */
4275 static void
4276 ath_dfswait(void *arg)
4277 {
4278 struct ath_softc *sc = arg;
4279 struct ath_hal *ah = sc->sc_ah;
4280 HAL_CHANNEL hchan;
4281
4282 ath_hal_radar_wait(ah, &hchan);
4283 if (hchan.privFlags & CHANNEL_INTERFERENCE) {
4284 if_printf(&sc->sc_if,
4285 "channel %u/0x%x/0x%x has interference\n",
4286 hchan.channel, hchan.channelFlags, hchan.privFlags);
4287 return;
4288 }
4289 if ((hchan.privFlags & CHANNEL_DFS) == 0) {
4290 /* XXX should not happen */
4291 return;
4292 }
4293 if (hchan.privFlags & CHANNEL_DFS_CLEAR) {
4294 sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR;
4295 sc->sc_if.if_flags &= ~IFF_OACTIVE;
4296 if_printf(&sc->sc_if,
4297 "channel %u/0x%x/0x%x marked clear\n",
4298 hchan.channel, hchan.channelFlags, hchan.privFlags);
4299 } else
4300 callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc);
4301 }
4302
4303 /*
4304 * Set/change channels. If the channel is really being changed,
4305 * it's done by reseting the chip. To accomplish this we must
4306 * first cleanup any pending DMA, then restart stuff after a la
4307 * ath_init.
4308 */
4309 static int
4310 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4311 {
4312 struct ath_hal *ah = sc->sc_ah;
4313 struct ieee80211com *ic = &sc->sc_ic;
4314 HAL_CHANNEL hchan;
4315
4316 /*
4317 * Convert to a HAL channel description with
4318 * the flags constrained to reflect the current
4319 * operating mode.
4320 */
4321 hchan.channel = chan->ic_freq;
4322 hchan.channelFlags = ath_chan2flags(ic, chan);
4323
4324 DPRINTF(sc, ATH_DEBUG_RESET,
4325 "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
4326 __func__,
4327 ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
4328 sc->sc_curchan.channelFlags),
4329 sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
4330 ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
4331 hchan.channel, hchan.channelFlags);
4332 if (hchan.channel != sc->sc_curchan.channel ||
4333 hchan.channelFlags != sc->sc_curchan.channelFlags) {
4334 HAL_STATUS status;
4335
4336 /*
4337 * To switch channels clear any pending DMA operations;
4338 * wait long enough for the RX fifo to drain, reset the
4339 * hardware at the new frequency, and then re-enable
4340 * the relevant bits of the h/w.
4341 */
4342 ath_hal_intrset(ah, 0); /* disable interrupts */
4343 ath_draintxq(sc); /* clear pending tx frames */
4344 ath_stoprecv(sc); /* turn off frame recv */
4345 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
4346 if_printf(ic->ic_ifp, "%s: unable to reset "
4347 "channel %u (%u MHz, flags 0x%x hal flags 0x%x)\n",
4348 __func__, ieee80211_chan2ieee(ic, chan),
4349 chan->ic_freq, chan->ic_flags, hchan.channelFlags);
4350 return EIO;
4351 }
4352 sc->sc_curchan = hchan;
4353 ath_update_txpow(sc); /* update tx power state */
4354 sc->sc_diversity = ath_hal_getdiversity(ah);
4355 sc->sc_calinterval = 1;
4356 sc->sc_caltries = 0;
4357
4358 /*
4359 * Re-enable rx framework.
4360 */
4361 if (ath_startrecv(sc) != 0) {
4362 if_printf(&sc->sc_if,
4363 "%s: unable to restart recv logic\n", __func__);
4364 return EIO;
4365 }
4366
4367 /*
4368 * Change channels and update the h/w rate map
4369 * if we're switching; e.g. 11a to 11b/g.
4370 */
4371 ic->ic_ibss_chan = chan;
4372 ath_chan_change(sc, chan);
4373
4374 /*
4375 * Handle DFS required waiting period to determine
4376 * if channel is clear of radar traffic.
4377 */
4378 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
4379 #define DFS_AND_NOT_CLEAR(_c) \
4380 (((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS)
4381 if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) {
4382 if_printf(&sc->sc_if,
4383 "wait for DFS clear channel signal\n");
4384 /* XXX stop sndq */
4385 sc->sc_if.if_flags |= IFF_OACTIVE;
4386 callout_reset(&sc->sc_dfs_ch,
4387 2 * hz, ath_dfswait, sc);
4388 } else
4389 callout_stop(&sc->sc_dfs_ch);
4390 #undef DFS_NOT_CLEAR
4391 }
4392
4393 /*
4394 * Re-enable interrupts.
4395 */
4396 ath_hal_intrset(ah, sc->sc_imask);
4397 }
4398 return 0;
4399 }
4400
4401 static void
4402 ath_next_scan(void *arg)
4403 {
4404 struct ath_softc *sc = arg;
4405 struct ieee80211com *ic = &sc->sc_ic;
4406 int s;
4407
4408 /* don't call ath_start w/o network interrupts blocked */
4409 s = splnet();
4410
4411 if (ic->ic_state == IEEE80211_S_SCAN)
4412 ieee80211_next_scan(ic);
4413 splx(s);
4414 }
4415
4416 /*
4417 * Periodically recalibrate the PHY to account
4418 * for temperature/environment changes.
4419 */
4420 static void
4421 ath_calibrate(void *arg)
4422 {
4423 struct ath_softc *sc = arg;
4424 struct ath_hal *ah = sc->sc_ah;
4425 HAL_BOOL iqCalDone;
4426
4427 sc->sc_stats.ast_per_cal++;
4428
4429 ATH_LOCK(sc);
4430
4431 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4432 /*
4433 * Rfgain is out of bounds, reset the chip
4434 * to load new gain values.
4435 */
4436 DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4437 "%s: rfgain change\n", __func__);
4438 sc->sc_stats.ast_per_rfgain++;
4439 ath_reset(&sc->sc_if);
4440 }
4441 if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
4442 DPRINTF(sc, ATH_DEBUG_ANY,
4443 "%s: calibration of channel %u failed\n",
4444 __func__, sc->sc_curchan.channel);
4445 sc->sc_stats.ast_per_calfail++;
4446 }
4447 /*
4448 * Calibrate noise floor data again in case of change.
4449 */
4450 ath_hal_process_noisefloor(ah);
4451 /*
4452 * Poll more frequently when the IQ calibration is in
4453 * progress to speedup loading the final settings.
4454 * We temper this aggressive polling with an exponential
4455 * back off after 4 tries up to ath_calinterval.
4456 */
4457 if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
4458 sc->sc_caltries = 0;
4459 sc->sc_calinterval = ath_calinterval;
4460 } else if (sc->sc_caltries > 4) {
4461 sc->sc_caltries = 0;
4462 sc->sc_calinterval <<= 1;
4463 if (sc->sc_calinterval > ath_calinterval)
4464 sc->sc_calinterval = ath_calinterval;
4465 }
4466 KASSERT(0 < sc->sc_calinterval && sc->sc_calinterval <= ath_calinterval,
4467 ("bad calibration interval %u", sc->sc_calinterval));
4468
4469 DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4470 "%s: next +%u (%siqCalDone tries %u)\n", __func__,
4471 sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
4472 sc->sc_caltries++;
4473 callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4474 ath_calibrate, sc);
4475 ATH_UNLOCK(sc);
4476 }
4477
4478 static int
4479 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
4480 {
4481 struct ifnet *ifp = ic->ic_ifp;
4482 struct ath_softc *sc = ifp->if_softc;
4483 struct ath_hal *ah = sc->sc_ah;
4484 struct ieee80211_node *ni;
4485 int i, error;
4486 const u_int8_t *bssid;
4487 u_int32_t rfilt;
4488 static const HAL_LED_STATE leds[] = {
4489 HAL_LED_INIT, /* IEEE80211_S_INIT */
4490 HAL_LED_SCAN, /* IEEE80211_S_SCAN */
4491 HAL_LED_AUTH, /* IEEE80211_S_AUTH */
4492 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */
4493 HAL_LED_RUN, /* IEEE80211_S_RUN */
4494 };
4495
4496 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4497 ieee80211_state_name[ic->ic_state],
4498 ieee80211_state_name[nstate]);
4499
4500 callout_stop(&sc->sc_scan_ch);
4501 callout_stop(&sc->sc_cal_ch);
4502 callout_stop(&sc->sc_dfs_ch);
4503 ath_hal_setledstate(ah, leds[nstate]); /* set LED */
4504
4505 if (nstate == IEEE80211_S_INIT) {
4506 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4507 /*
4508 * NB: disable interrupts so we don't rx frames.
4509 */
4510 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4511 /*
4512 * Notify the rate control algorithm.
4513 */
4514 ath_rate_newstate(sc, nstate);
4515 goto done;
4516 }
4517 ni = ic->ic_bss;
4518 error = ath_chan_set(sc, ic->ic_curchan);
4519 if (error != 0)
4520 goto bad;
4521 rfilt = ath_calcrxfilter(sc, nstate);
4522 if (nstate == IEEE80211_S_SCAN)
4523 bssid = ifp->if_broadcastaddr;
4524 else
4525 bssid = ni->ni_bssid;
4526 ath_hal_setrxfilter(ah, rfilt);
4527 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
4528 __func__, rfilt, ether_sprintf(bssid));
4529
4530 if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
4531 ath_hal_setassocid(ah, bssid, ni->ni_associd);
4532 else
4533 ath_hal_setassocid(ah, bssid, 0);
4534 if (ic->ic_flags & IEEE80211_F_PRIVACY) {
4535 for (i = 0; i < IEEE80211_WEP_NKID; i++)
4536 if (ath_hal_keyisvalid(ah, i))
4537 ath_hal_keysetmac(ah, i, bssid);
4538 }
4539
4540 /*
4541 * Notify the rate control algorithm so rates
4542 * are setup should ath_beacon_alloc be called.
4543 */
4544 ath_rate_newstate(sc, nstate);
4545
4546 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4547 /* nothing to do */;
4548 } else if (nstate == IEEE80211_S_RUN) {
4549 DPRINTF(sc, ATH_DEBUG_STATE,
4550 "%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
4551 "capinfo=0x%04x chan=%d\n"
4552 , __func__
4553 , ic->ic_flags
4554 , ni->ni_intval
4555 , ether_sprintf(ni->ni_bssid)
4556 , ni->ni_capinfo
4557 , ieee80211_chan2ieee(ic, ic->ic_curchan));
4558
4559 switch (ic->ic_opmode) {
4560 case IEEE80211_M_HOSTAP:
4561 case IEEE80211_M_IBSS:
4562 /*
4563 * Allocate and setup the beacon frame.
4564 *
4565 * Stop any previous beacon DMA. This may be
4566 * necessary, for example, when an ibss merge
4567 * causes reconfiguration; there will be a state
4568 * transition from RUN->RUN that means we may
4569 * be called with beacon transmission active.
4570 */
4571 ath_hal_stoptxdma(ah, sc->sc_bhalq);
4572 ath_beacon_free(sc);
4573 error = ath_beacon_alloc(sc, ni);
4574 if (error != 0)
4575 goto bad;
4576 /*
4577 * If joining an adhoc network defer beacon timer
4578 * configuration to the next beacon frame so we
4579 * have a current TSF to use. Otherwise we're
4580 * starting an ibss/bss so there's no need to delay.
4581 */
4582 if (ic->ic_opmode == IEEE80211_M_IBSS &&
4583 ic->ic_bss->ni_tstamp.tsf != 0)
4584 sc->sc_syncbeacon = 1;
4585 else
4586 ath_beacon_config(sc);
4587 break;
4588 case IEEE80211_M_STA:
4589 /*
4590 * Allocate a key cache slot to the station.
4591 */
4592 if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
4593 sc->sc_hasclrkey &&
4594 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4595 ath_setup_stationkey(ni);
4596 /*
4597 * Defer beacon timer configuration to the next
4598 * beacon frame so we have a current TSF to use
4599 * (any TSF collected when scanning is likely old).
4600 */
4601 sc->sc_syncbeacon = 1;
4602 break;
4603 default:
4604 break;
4605 }
4606 /*
4607 * Let the hal process statistics collected during a
4608 * scan so it can provide calibrated noise floor data.
4609 */
4610 ath_hal_process_noisefloor(ah);
4611 /*
4612 * Reset rssi stats; maybe not the best place...
4613 */
4614 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
4615 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
4616 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
4617 } else {
4618 ath_hal_intrset(ah,
4619 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4620 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4621 }
4622 done:
4623 /*
4624 * Invoke the parent method to complete the work.
4625 */
4626 error = sc->sc_newstate(ic, nstate, arg);
4627 /*
4628 * Finally, start any timers.
4629 */
4630 if (nstate == IEEE80211_S_RUN) {
4631 /* start periodic recalibration timer */
4632 callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4633 ath_calibrate, sc);
4634 } else if (nstate == IEEE80211_S_SCAN) {
4635 /* start ap/neighbor scan timer */
4636 callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
4637 ath_next_scan, sc);
4638 }
4639 bad:
4640 return error;
4641 }
4642
4643 /*
4644 * Allocate a key cache slot to the station so we can
4645 * setup a mapping from key index to node. The key cache
4646 * slot is needed for managing antenna state and for
4647 * compression when stations do not use crypto. We do
4648 * it uniliaterally here; if crypto is employed this slot
4649 * will be reassigned.
4650 */
4651 static void
4652 ath_setup_stationkey(struct ieee80211_node *ni)
4653 {
4654 struct ieee80211com *ic = ni->ni_ic;
4655 struct ath_softc *sc = ic->ic_ifp->if_softc;
4656 ieee80211_keyix keyix, rxkeyix;
4657
4658 if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
4659 /*
4660 * Key cache is full; we'll fall back to doing
4661 * the more expensive lookup in software. Note
4662 * this also means no h/w compression.
4663 */
4664 /* XXX msg+statistic */
4665 } else {
4666 /* XXX locking? */
4667 ni->ni_ucastkey.wk_keyix = keyix;
4668 ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
4669 /* NB: this will create a pass-thru key entry */
4670 ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
4671 }
4672 }
4673
4674 /*
4675 * Setup driver-specific state for a newly associated node.
4676 * Note that we're called also on a re-associate, the isnew
4677 * param tells us if this is the first time or not.
4678 */
4679 static void
4680 ath_newassoc(struct ieee80211_node *ni, int isnew)
4681 {
4682 struct ieee80211com *ic = ni->ni_ic;
4683 struct ath_softc *sc = ic->ic_ifp->if_softc;
4684
4685 ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
4686 if (isnew &&
4687 (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
4688 KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
4689 ("new assoc with a unicast key already setup (keyix %u)",
4690 ni->ni_ucastkey.wk_keyix));
4691 ath_setup_stationkey(ni);
4692 }
4693 }
4694
4695 static int
4696 ath_getchannels(struct ath_softc *sc, u_int cc,
4697 HAL_BOOL outdoor, HAL_BOOL xchanmode)
4698 {
4699 #define COMPAT (CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
4700 struct ieee80211com *ic = &sc->sc_ic;
4701 struct ifnet *ifp = &sc->sc_if;
4702 struct ath_hal *ah = sc->sc_ah;
4703 HAL_CHANNEL *chans;
4704 int i, ix, nchan;
4705
4706 chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
4707 M_TEMP, M_NOWAIT);
4708 if (chans == NULL) {
4709 if_printf(ifp, "unable to allocate channel table\n");
4710 return ENOMEM;
4711 }
4712 if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
4713 NULL, 0, NULL,
4714 cc, HAL_MODE_ALL, outdoor, xchanmode)) {
4715 u_int32_t rd;
4716
4717 (void)ath_hal_getregdomain(ah, &rd);
4718 if_printf(ifp, "unable to collect channel list from hal; "
4719 "regdomain likely %u country code %u\n", rd, cc);
4720 free(chans, M_TEMP);
4721 return EINVAL;
4722 }
4723
4724 /*
4725 * Convert HAL channels to ieee80211 ones and insert
4726 * them in the table according to their channel number.
4727 */
4728 for (i = 0; i < nchan; i++) {
4729 HAL_CHANNEL *c = &chans[i];
4730 u_int16_t flags;
4731
4732 ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags);
4733 if (ix > IEEE80211_CHAN_MAX) {
4734 if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n",
4735 ix, c->channel, c->channelFlags);
4736 continue;
4737 }
4738 if (ix < 0) {
4739 /* XXX can't handle stuff <2400 right now */
4740 if (bootverbose)
4741 if_printf(ifp, "hal channel %d (%u/%x) "
4742 "cannot be handled; ignored\n",
4743 ix, c->channel, c->channelFlags);
4744 continue;
4745 }
4746 /*
4747 * Calculate net80211 flags; most are compatible
4748 * but some need massaging. Note the static turbo
4749 * conversion can be removed once net80211 is updated
4750 * to understand static vs. dynamic turbo.
4751 */
4752 flags = c->channelFlags & COMPAT;
4753 if (c->channelFlags & CHANNEL_STURBO)
4754 flags |= IEEE80211_CHAN_TURBO;
4755 if (ic->ic_channels[ix].ic_freq == 0) {
4756 ic->ic_channels[ix].ic_freq = c->channel;
4757 ic->ic_channels[ix].ic_flags = flags;
4758 } else {
4759 /* channels overlap; e.g. 11g and 11b */
4760 ic->ic_channels[ix].ic_flags |= flags;
4761 }
4762 }
4763 free(chans, M_TEMP);
4764 return 0;
4765 #undef COMPAT
4766 }
4767
4768 static void
4769 ath_led_done(void *arg)
4770 {
4771 struct ath_softc *sc = arg;
4772
4773 sc->sc_blinking = 0;
4774 }
4775
4776 /*
4777 * Turn the LED off: flip the pin and then set a timer so no
4778 * update will happen for the specified duration.
4779 */
4780 static void
4781 ath_led_off(void *arg)
4782 {
4783 struct ath_softc *sc = arg;
4784
4785 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
4786 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
4787 }
4788
4789 /*
4790 * Blink the LED according to the specified on/off times.
4791 */
4792 static void
4793 ath_led_blink(struct ath_softc *sc, int on, int off)
4794 {
4795 DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
4796 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
4797 sc->sc_blinking = 1;
4798 sc->sc_ledoff = off;
4799 callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
4800 }
4801
4802 static void
4803 ath_led_event(struct ath_softc *sc, int event)
4804 {
4805
4806 sc->sc_ledevent = ticks; /* time of last event */
4807 if (sc->sc_blinking) /* don't interrupt active blink */
4808 return;
4809 switch (event) {
4810 case ATH_LED_POLL:
4811 ath_led_blink(sc, sc->sc_hwmap[0].ledon,
4812 sc->sc_hwmap[0].ledoff);
4813 break;
4814 case ATH_LED_TX:
4815 ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
4816 sc->sc_hwmap[sc->sc_txrate].ledoff);
4817 break;
4818 case ATH_LED_RX:
4819 ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
4820 sc->sc_hwmap[sc->sc_rxrate].ledoff);
4821 break;
4822 }
4823 }
4824
4825 static void
4826 ath_update_txpow(struct ath_softc *sc)
4827 {
4828 #define COMPAT (CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
4829 struct ieee80211com *ic = &sc->sc_ic;
4830 struct ath_hal *ah = sc->sc_ah;
4831 u_int32_t txpow;
4832
4833 if (sc->sc_curtxpow != ic->ic_txpowlimit) {
4834 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
4835 /* read back in case value is clamped */
4836 (void)ath_hal_gettxpowlimit(ah, &txpow);
4837 ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
4838 }
4839 /*
4840 * Fetch max tx power level for status requests.
4841 */
4842 (void)ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
4843 ic->ic_bss->ni_txpower = txpow;
4844 }
4845
4846 static void
4847 rate_setup(struct ath_softc *sc,
4848 const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs)
4849 {
4850 int i, maxrates;
4851
4852 if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
4853 DPRINTF(sc, ATH_DEBUG_ANY,
4854 "%s: rate table too small (%u > %u)\n",
4855 __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
4856 maxrates = IEEE80211_RATE_MAXSIZE;
4857 } else
4858 maxrates = rt->rateCount;
4859 for (i = 0; i < maxrates; i++)
4860 rs->rs_rates[i] = rt->info[i].dot11Rate;
4861 rs->rs_nrates = maxrates;
4862 }
4863
4864 static int
4865 ath_rate_setup(struct ath_softc *sc, u_int mode)
4866 {
4867 struct ath_hal *ah = sc->sc_ah;
4868 struct ieee80211com *ic = &sc->sc_ic;
4869 const HAL_RATE_TABLE *rt;
4870
4871 switch (mode) {
4872 case IEEE80211_MODE_11A:
4873 rt = ath_hal_getratetable(ah, HAL_MODE_11A);
4874 break;
4875 case IEEE80211_MODE_11B:
4876 rt = ath_hal_getratetable(ah, HAL_MODE_11B);
4877 break;
4878 case IEEE80211_MODE_11G:
4879 rt = ath_hal_getratetable(ah, HAL_MODE_11G);
4880 break;
4881 case IEEE80211_MODE_TURBO_A:
4882 /* XXX until static/dynamic turbo is fixed */
4883 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
4884 break;
4885 case IEEE80211_MODE_TURBO_G:
4886 rt = ath_hal_getratetable(ah, HAL_MODE_108G);
4887 break;
4888 default:
4889 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
4890 __func__, mode);
4891 return 0;
4892 }
4893 sc->sc_rates[mode] = rt;
4894 if (rt != NULL) {
4895 rate_setup(sc, rt, &ic->ic_sup_rates[mode]);
4896 return 1;
4897 } else
4898 return 0;
4899 }
4900
4901 static void
4902 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
4903 {
4904 #define N(a) (sizeof(a)/sizeof(a[0]))
4905 /* NB: on/off times from the Atheros NDIS driver, w/ permission */
4906 static const struct {
4907 u_int rate; /* tx/rx 802.11 rate */
4908 u_int16_t timeOn; /* LED on time (ms) */
4909 u_int16_t timeOff; /* LED off time (ms) */
4910 } blinkrates[] = {
4911 { 108, 40, 10 },
4912 { 96, 44, 11 },
4913 { 72, 50, 13 },
4914 { 48, 57, 14 },
4915 { 36, 67, 16 },
4916 { 24, 80, 20 },
4917 { 22, 100, 25 },
4918 { 18, 133, 34 },
4919 { 12, 160, 40 },
4920 { 10, 200, 50 },
4921 { 6, 240, 58 },
4922 { 4, 267, 66 },
4923 { 2, 400, 100 },
4924 { 0, 500, 130 },
4925 };
4926 const HAL_RATE_TABLE *rt;
4927 int i, j;
4928
4929 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
4930 rt = sc->sc_rates[mode];
4931 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
4932 for (i = 0; i < rt->rateCount; i++)
4933 sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
4934 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
4935 for (i = 0; i < 32; i++) {
4936 u_int8_t ix = rt->rateCodeToIndex[i];
4937 if (ix == 0xff) {
4938 sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
4939 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
4940 continue;
4941 }
4942 sc->sc_hwmap[i].ieeerate =
4943 rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
4944 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
4945 if (rt->info[ix].shortPreamble ||
4946 rt->info[ix].phy == IEEE80211_T_OFDM)
4947 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
4948 /* NB: receive frames include FCS */
4949 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
4950 IEEE80211_RADIOTAP_F_FCS;
4951 /* setup blink rate table to avoid per-packet lookup */
4952 for (j = 0; j < N(blinkrates)-1; j++)
4953 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
4954 break;
4955 /* NB: this uses the last entry if the rate isn't found */
4956 /* XXX beware of overlow */
4957 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
4958 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
4959 }
4960 sc->sc_currates = rt;
4961 sc->sc_curmode = mode;
4962 /*
4963 * All protection frames are transmited at 2Mb/s for
4964 * 11g, otherwise at 1Mb/s.
4965 */
4966 if (mode == IEEE80211_MODE_11G)
4967 sc->sc_protrix = ath_tx_findrix(rt, 2*2);
4968 else
4969 sc->sc_protrix = ath_tx_findrix(rt, 2*1);
4970 /* rate index used to send management frames */
4971 sc->sc_minrateix = 0;
4972 /*
4973 * Setup multicast rate state.
4974 */
4975 /* XXX layering violation */
4976 sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate);
4977 sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate;
4978 /* NB: caller is responsible for reseting rate control state */
4979 #undef N
4980 }
4981
4982 #ifdef AR_DEBUG
4983 static void
4984 ath_printrxbuf(struct ath_buf *bf, int done)
4985 {
4986 struct ath_desc *ds;
4987 int i;
4988
4989 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
4990 printf("R%d (%p %" PRIx64
4991 ") %08x %08x %08x %08x %08x %08x %c\n", i, ds,
4992 (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
4993 ds->ds_link, ds->ds_data,
4994 ds->ds_ctl0, ds->ds_ctl1,
4995 ds->ds_hw[0], ds->ds_hw[1],
4996 !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
4997 }
4998 }
4999
5000 static void
5001 ath_printtxbuf(struct ath_buf *bf, int done)
5002 {
5003 struct ath_desc *ds;
5004 int i;
5005
5006 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5007 printf("T%d (%p %" PRIx64
5008 ") %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
5009 i, ds,
5010 (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
5011 ds->ds_link, ds->ds_data,
5012 ds->ds_ctl0, ds->ds_ctl1,
5013 ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
5014 !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
5015 }
5016 }
5017 #endif /* AR_DEBUG */
5018
5019 static void
5020 ath_watchdog(struct ifnet *ifp)
5021 {
5022 struct ath_softc *sc = ifp->if_softc;
5023 struct ieee80211com *ic = &sc->sc_ic;
5024
5025 ifp->if_timer = 0;
5026 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
5027 return;
5028 if (sc->sc_tx_timer) {
5029 if (--sc->sc_tx_timer == 0) {
5030 if_printf(ifp, "device timeout\n");
5031 ath_reset(ifp);
5032 ifp->if_oerrors++;
5033 sc->sc_stats.ast_watchdog++;
5034 } else
5035 ifp->if_timer = 1;
5036 }
5037 ieee80211_watchdog(ic);
5038 }
5039
5040 /*
5041 * Diagnostic interface to the HAL. This is used by various
5042 * tools to do things like retrieve register contents for
5043 * debugging. The mechanism is intentionally opaque so that
5044 * it can change frequently w/o concern for compatiblity.
5045 */
5046 static int
5047 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
5048 {
5049 struct ath_hal *ah = sc->sc_ah;
5050 u_int id = ad->ad_id & ATH_DIAG_ID;
5051 void *indata = NULL;
5052 void *outdata = NULL;
5053 u_int32_t insize = ad->ad_in_size;
5054 u_int32_t outsize = ad->ad_out_size;
5055 int error = 0;
5056
5057 if (ad->ad_id & ATH_DIAG_IN) {
5058 /*
5059 * Copy in data.
5060 */
5061 indata = malloc(insize, M_TEMP, M_NOWAIT);
5062 if (indata == NULL) {
5063 error = ENOMEM;
5064 goto bad;
5065 }
5066 error = copyin(ad->ad_in_data, indata, insize);
5067 if (error)
5068 goto bad;
5069 }
5070 if (ad->ad_id & ATH_DIAG_DYN) {
5071 /*
5072 * Allocate a buffer for the results (otherwise the HAL
5073 * returns a pointer to a buffer where we can read the
5074 * results). Note that we depend on the HAL leaving this
5075 * pointer for us to use below in reclaiming the buffer;
5076 * may want to be more defensive.
5077 */
5078 outdata = malloc(outsize, M_TEMP, M_NOWAIT);
5079 if (outdata == NULL) {
5080 error = ENOMEM;
5081 goto bad;
5082 }
5083 }
5084 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
5085 if (outsize < ad->ad_out_size)
5086 ad->ad_out_size = outsize;
5087 if (outdata != NULL)
5088 error = copyout(outdata, ad->ad_out_data,
5089 ad->ad_out_size);
5090 } else {
5091 error = EINVAL;
5092 }
5093 bad:
5094 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
5095 free(indata, M_TEMP);
5096 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
5097 free(outdata, M_TEMP);
5098 return error;
5099 }
5100
5101 static int
5102 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
5103 {
5104 #define IS_RUNNING(ifp) \
5105 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
5106 struct ath_softc *sc = ifp->if_softc;
5107 struct ieee80211com *ic = &sc->sc_ic;
5108 struct ifreq *ifr = (struct ifreq *)data;
5109 int error = 0;
5110
5111 ATH_LOCK(sc);
5112 switch (cmd) {
5113 case SIOCSIFFLAGS:
5114 if (IS_RUNNING(ifp)) {
5115 /*
5116 * To avoid rescanning another access point,
5117 * do not call ath_init() here. Instead,
5118 * only reflect promisc mode settings.
5119 */
5120 ath_mode_init(sc);
5121 } else if (ifp->if_flags & IFF_UP) {
5122 /*
5123 * Beware of being called during attach/detach
5124 * to reset promiscuous mode. In that case we
5125 * will still be marked UP but not RUNNING.
5126 * However trying to re-init the interface
5127 * is the wrong thing to do as we've already
5128 * torn down much of our state. There's
5129 * probably a better way to deal with this.
5130 */
5131 if (!sc->sc_invalid && ic->ic_bss != NULL)
5132 ath_init(sc); /* XXX lose error */
5133 } else
5134 ath_stop_locked(ifp, 1);
5135 break;
5136 case SIOCADDMULTI:
5137 case SIOCDELMULTI:
5138 error = (cmd == SIOCADDMULTI) ?
5139 ether_addmulti(ifr, &sc->sc_ec) :
5140 ether_delmulti(ifr, &sc->sc_ec);
5141 if (error == ENETRESET) {
5142 if (ifp->if_flags & IFF_RUNNING)
5143 ath_mode_init(sc);
5144 error = 0;
5145 }
5146 break;
5147 case SIOCGATHSTATS:
5148 /* NB: embed these numbers to get a consistent view */
5149 sc->sc_stats.ast_tx_packets = ifp->if_opackets;
5150 sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
5151 sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
5152 ATH_UNLOCK(sc);
5153 /*
5154 * NB: Drop the softc lock in case of a page fault;
5155 * we'll accept any potential inconsisentcy in the
5156 * statistics. The alternative is to copy the data
5157 * to a local structure.
5158 */
5159 return copyout(&sc->sc_stats,
5160 ifr->ifr_data, sizeof (sc->sc_stats));
5161 case SIOCGATHDIAG:
5162 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
5163 break;
5164 default:
5165 error = ieee80211_ioctl(ic, cmd, data);
5166 if (error == ENETRESET) {
5167 if (IS_RUNNING(ifp) &&
5168 ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
5169 ath_init(sc); /* XXX lose error */
5170 error = 0;
5171 }
5172 if (error == ERESTART)
5173 error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0;
5174 break;
5175 }
5176 ATH_UNLOCK(sc);
5177 return error;
5178 #undef IS_RUNNING
5179 }
5180
5181 #if NBPFILTER > 0
5182 static void
5183 ath_bpfattach(struct ath_softc *sc)
5184 {
5185 struct ifnet *ifp = &sc->sc_if;
5186
5187 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
5188 sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
5189 &sc->sc_drvbpf);
5190 /*
5191 * Initialize constant fields.
5192 * XXX make header lengths a multiple of 32-bits so subsequent
5193 * headers are properly aligned; this is a kludge to keep
5194 * certain applications happy.
5195 *
5196 * NB: the channel is setup each time we transition to the
5197 * RUN state to avoid filling it in for each frame.
5198 */
5199 sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
5200 sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
5201 sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
5202
5203 sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
5204 sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
5205 sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
5206 }
5207 #endif
5208
5209 /*
5210 * Announce various information on device/driver attach.
5211 */
5212 static void
5213 ath_announce(struct ath_softc *sc)
5214 {
5215 #define HAL_MODE_DUALBAND (HAL_MODE_11A|HAL_MODE_11B)
5216 struct ifnet *ifp = &sc->sc_if;
5217 struct ath_hal *ah = sc->sc_ah;
5218 u_int modes, cc;
5219
5220 if_printf(ifp, "mac %d.%d phy %d.%d",
5221 ah->ah_macVersion, ah->ah_macRev,
5222 ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
5223 /*
5224 * Print radio revision(s). We check the wireless modes
5225 * to avoid falsely printing revs for inoperable parts.
5226 * Dual-band radio revs are returned in the 5 GHz rev number.
5227 */
5228 ath_hal_getcountrycode(ah, &cc);
5229 modes = ath_hal_getwirelessmodes(ah, cc);
5230 if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
5231 if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
5232 printf(" 5 GHz radio %d.%d 2 GHz radio %d.%d",
5233 ah->ah_analog5GhzRev >> 4,
5234 ah->ah_analog5GhzRev & 0xf,
5235 ah->ah_analog2GhzRev >> 4,
5236 ah->ah_analog2GhzRev & 0xf);
5237 else
5238 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5239 ah->ah_analog5GhzRev & 0xf);
5240 } else
5241 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5242 ah->ah_analog5GhzRev & 0xf);
5243 printf("\n");
5244 if (bootverbose) {
5245 int i;
5246 for (i = 0; i <= WME_AC_VO; i++) {
5247 struct ath_txq *txq = sc->sc_ac2q[i];
5248 if_printf(ifp, "Use hw queue %u for %s traffic\n",
5249 txq->axq_qnum, ieee80211_wme_acnames[i]);
5250 }
5251 if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5252 sc->sc_cabq->axq_qnum);
5253 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5254 }
5255 if (ath_rxbuf != ATH_RXBUF)
5256 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
5257 if (ath_txbuf != ATH_TXBUF)
5258 if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
5259 #undef HAL_MODE_DUALBAND
5260 }
5261