ath.c revision 1.8 1 /*-
2 * Copyright (c) 2002, 2003 Sam Leffler, Errno Consulting
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer,
10 * without modification.
11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13 * redistribution must be conditioned upon including a substantially
14 * similar Disclaimer requirement for further binary redistribution.
15 * 3. Neither the names of the above-listed copyright holders nor the names
16 * of any contributors may be used to endorse or promote products derived
17 * from this software without specific prior written permission.
18 *
19 * Alternatively, this software may be distributed under the terms of the
20 * GNU General Public License ("GPL") version 2 as published by the Free
21 * Software Foundation.
22 *
23 * NO WARRANTY
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
27 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
28 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
29 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
32 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
34 * THE POSSIBILITY OF SUCH DAMAGES.
35 */
36
37 #include <sys/cdefs.h>
38 #ifdef __FreeBSD__
39 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.14 2003/09/05 22:22:49 sam Exp $");
40 #endif
41 #ifdef __NetBSD__
42 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.8 2003/10/15 22:41:22 enami Exp $");
43 #endif
44
45 /*
46 * Driver for the Atheros Wireless LAN controller.
47 *
48 * This software is derived from work of Atsushi Onoe; his contribution
49 * is greatly appreciated.
50 */
51
52 #include "opt_inet.h"
53
54 #ifdef __NetBSD__
55 #include "bpfilter.h"
56 #endif /* __NetBSD__ */
57
58 #include <sys/param.h>
59 #include <sys/systm.h>
60 #include <sys/types.h>
61 #include <sys/sysctl.h>
62 #include <sys/mbuf.h>
63 #include <sys/malloc.h>
64 #include <sys/lock.h>
65 #ifdef __FreeBSD__
66 #include <sys/mutex.h>
67 #endif
68 #include <sys/kernel.h>
69 #include <sys/socket.h>
70 #include <sys/sockio.h>
71 #include <sys/errno.h>
72 #include <sys/callout.h>
73 #ifdef __FreeBSD__
74 #include <sys/bus.h>
75 #else
76 #include <machine/bus.h>
77 #endif
78 #include <sys/endian.h>
79
80 #include <machine/bus.h>
81
82 #include <net/if.h>
83 #include <net/if_dl.h>
84 #include <net/if_media.h>
85 #include <net/if_arp.h>
86 #ifdef __FreeBSD__
87 #include <net/ethernet.h>
88 #else
89 #include <net/if_ether.h>
90 #endif
91 #include <net/if_llc.h>
92
93 #include <net80211/ieee80211_var.h>
94 #include <net80211/ieee80211_compat.h>
95
96 #if NBPFILTER > 0
97 #include <net/bpf.h>
98 #endif
99
100 #ifdef INET
101 #include <netinet/in.h>
102 #endif
103
104 #include <dev/ic/athcompat.h>
105
106 #define AR_DEBUG
107 #ifdef __FreeBSD__
108 #include <dev/ath/if_athvar.h>
109 #include <contrib/dev/ath/ah_desc.h>
110 #else
111 #include <dev/ic/athvar.h>
112 #include <../contrib/sys/dev/ic/athhal_desc.h>
113 #endif
114
115 /* unalligned little endian access */
116 #define LE_READ_2(p) \
117 ((u_int16_t) \
118 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8)))
119 #define LE_READ_4(p) \
120 ((u_int32_t) \
121 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \
122 (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
123
124 #ifdef __FreeBSD__
125 static void ath_init(void *);
126 #else
127 static int ath_init(struct ifnet *);
128 #endif
129 static int ath_init1(struct ath_softc *);
130 static int ath_intr1(struct ath_softc *);
131 static void ath_stop(struct ifnet *);
132 static void ath_start(struct ifnet *);
133 static void ath_reset(struct ath_softc *);
134 static int ath_media_change(struct ifnet *);
135 static void ath_watchdog(struct ifnet *);
136 static int ath_ioctl(struct ifnet *, u_long, caddr_t);
137 static void ath_fatal_proc(void *, int);
138 static void ath_rxorn_proc(void *, int);
139 static void ath_bmiss_proc(void *, int);
140 static void ath_initkeytable(struct ath_softc *);
141 static void ath_mode_init(struct ath_softc *);
142 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
143 static void ath_beacon_proc(void *, int);
144 static void ath_beacon_free(struct ath_softc *);
145 static void ath_beacon_config(struct ath_softc *);
146 static int ath_desc_alloc(struct ath_softc *);
147 static void ath_desc_free(struct ath_softc *);
148 static struct ieee80211_node *ath_node_alloc(struct ieee80211com *);
149 static void ath_node_free(struct ieee80211com *, struct ieee80211_node *);
150 static void ath_node_copy(struct ieee80211com *,
151 struct ieee80211_node *, const struct ieee80211_node *);
152 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
153 static void ath_rx_proc(void *, int);
154 static int ath_tx_start(struct ath_softc *, struct ieee80211_node *,
155 struct ath_buf *, struct mbuf *);
156 static void ath_tx_proc(void *, int);
157 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
158 static void ath_draintxq(struct ath_softc *);
159 static void ath_stoprecv(struct ath_softc *);
160 static int ath_startrecv(struct ath_softc *);
161 static void ath_next_scan(void *);
162 static void ath_calibrate(void *);
163 static int ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
164 static void ath_newassoc(struct ieee80211com *,
165 struct ieee80211_node *, int);
166 static int ath_getchannels(struct ath_softc *, u_int cc, HAL_BOOL outdoor);
167
168 static int ath_rate_setup(struct ath_softc *sc, u_int mode);
169 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
170 static void ath_rate_ctl_reset(struct ath_softc *, enum ieee80211_state);
171 static void ath_rate_ctl(void *, struct ieee80211_node *);
172
173 #ifdef __NetBSD__
174 int ath_enable(struct ath_softc *);
175 void ath_disable(struct ath_softc *);
176 void ath_power(int, void *);
177 #endif
178
179 #ifdef __FreeBSD__
180 SYSCTL_DECL(_hw_ath);
181 /* XXX validate sysctl values */
182 SYSCTL_INT(_hw_ath, OID_AUTO, dwell, CTLFLAG_RW, &ath_dwelltime,
183 0, "channel dwell time (ms) for AP/station scanning");
184 SYSCTL_INT(_hw_ath, OID_AUTO, calibrate, CTLFLAG_RW, &ath_calinterval,
185 0, "chip calibration interval (secs)");
186 SYSCTL_INT(_hw_ath, OID_AUTO, outdoor, CTLFLAG_RD, &ath_outdoor,
187 0, "enable/disable outdoor operation");
188 SYSCTL_INT(_hw_ath, OID_AUTO, countrycode, CTLFLAG_RD, &ath_countrycode,
189 0, "country code");
190 SYSCTL_INT(_hw_ath, OID_AUTO, regdomain, CTLFLAG_RD, &ath_regdomain,
191 0, "regulatory domain");
192 #endif /* __FreeBSD__ */
193
194 static int ath_dwelltime = 200; /* 5 channels/second */
195 static int ath_calinterval = 30; /* calibrate every 30 secs */
196 static int ath_outdoor = AH_TRUE; /* outdoor operation */
197 static int ath_countrycode = CTRY_DEFAULT; /* country code */
198 static int ath_regdomain = 0; /* regulatory domain */
199
200 #ifdef AR_DEBUG
201 int ath_debug = 0;
202 #ifdef __FreeBSD__
203 SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
204 0, "control debugging printfs");
205 #endif /* __FreeBSD__ */
206 #define IFF_DUMPPKTS(_ifp) \
207 (ath_debug || \
208 ((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
209 static void ath_printrxbuf(struct ath_buf *bf, int);
210 static void ath_printtxbuf(struct ath_buf *bf, int);
211 #define DPRINTF(X) if (ath_debug) printf X
212 #define DPRINTF2(X) if (ath_debug > 1) printf X
213 #else
214 #define IFF_DUMPPKTS(_ifp) \
215 (((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
216 #define DPRINTF(X)
217 #define DPRINTF2(X)
218 #endif
219
220 #ifdef __NetBSD__
221 int
222 ath_activate(struct device *self, enum devact act)
223 {
224 struct ath_softc *sc = (struct ath_softc *)self;
225 int rv = 0, s;
226
227 s = splnet();
228 switch (act) {
229 case DVACT_ACTIVATE:
230 rv = EOPNOTSUPP;
231 break;
232 case DVACT_DEACTIVATE:
233 if_deactivate(&sc->sc_ic.ic_if);
234 break;
235 }
236 splx(s);
237 return rv;
238 }
239
240 int
241 ath_enable(struct ath_softc *sc)
242 {
243 if (ATH_IS_ENABLED(sc) == 0) {
244 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
245 printf("%s: device enable failed\n",
246 sc->sc_dev.dv_xname);
247 return (EIO);
248 }
249 sc->sc_flags |= ATH_ENABLED;
250 }
251 return (0);
252 }
253
254 void
255 ath_disable(struct ath_softc *sc)
256 {
257 if (!ATH_IS_ENABLED(sc))
258 return;
259 if (sc->sc_disable != NULL)
260 (*sc->sc_disable)(sc);
261 sc->sc_flags &= ~ATH_ENABLED;
262 }
263 #endif /* #ifdef __NetBSD__ */
264
265 int
266 ath_attach(u_int16_t devid, struct ath_softc *sc)
267 {
268 struct ieee80211com *ic = &sc->sc_ic;
269 struct ifnet *ifp = &ic->ic_if;
270 struct ath_hal *ah;
271 HAL_STATUS status;
272 int error = 0;
273
274 DPRINTF(("ath_attach: devid 0x%x\n", devid));
275
276 #ifdef __FreeBSD__
277 /* set these up early for if_printf use */
278 ifp->if_unit = device_get_unit(sc->sc_dev);
279 ifp->if_name = "ath";
280 #else
281 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
282 #endif
283
284 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
285 if (ah == NULL) {
286 if_printf(ifp, "unable to attach hardware; HAL status %u\n",
287 status);
288 error = ENXIO;
289 goto bad;
290 }
291 sc->sc_ah = ah;
292 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */
293
294 /*
295 * Collect the channel list using the default country
296 * code and including outdoor channels. The 802.11 layer
297 * is resposible for filtering this list based on settings
298 * like the phy mode.
299 */
300 error = ath_getchannels(sc, ath_countrycode, ath_outdoor);
301 if (error != 0)
302 goto bad;
303 /*
304 * Copy these back; they are set as a side effect
305 * of constructing the channel list.
306 */
307 ath_regdomain = ath_hal_getregdomain(ah);
308 ath_countrycode = ath_hal_getcountrycode(ah);
309
310 /*
311 * Setup rate tables for all potential media types.
312 */
313 ath_rate_setup(sc, IEEE80211_MODE_11A);
314 ath_rate_setup(sc, IEEE80211_MODE_11B);
315 ath_rate_setup(sc, IEEE80211_MODE_11G);
316 ath_rate_setup(sc, IEEE80211_MODE_TURBO);
317
318 error = ath_desc_alloc(sc);
319 if (error != 0) {
320 if_printf(ifp, "failed to allocate descriptors: %d\n", error);
321 goto bad;
322 }
323 ATH_CALLOUT_INIT(&sc->sc_scan_ch);
324 ATH_CALLOUT_INIT(&sc->sc_cal_ch);
325
326 #ifdef __FreeBSD__
327 mtx_init(&sc->sc_txbuflock,
328 device_get_nameunit(sc->sc_dev), "xmit buf q", MTX_DEF);
329 mtx_init(&sc->sc_txqlock,
330 device_get_nameunit(sc->sc_dev), "xmit q", MTX_DEF);
331 #endif
332
333 ATH_TASK_INIT(&sc->sc_txtask, ath_tx_proc, sc);
334 ATH_TASK_INIT(&sc->sc_rxtask, ath_rx_proc, sc);
335 ATH_TASK_INIT(&sc->sc_swbatask, ath_beacon_proc, sc);
336 ATH_TASK_INIT(&sc->sc_rxorntask, ath_rxorn_proc, sc);
337 ATH_TASK_INIT(&sc->sc_fataltask, ath_fatal_proc, sc);
338 ATH_TASK_INIT(&sc->sc_bmisstask, ath_bmiss_proc, sc);
339
340 /*
341 * For now just pre-allocate one data queue and one
342 * beacon queue. Note that the HAL handles resetting
343 * them at the needed time. Eventually we'll want to
344 * allocate more tx queues for splitting management
345 * frames and for QOS support.
346 */
347 sc->sc_txhalq = ath_hal_setuptxqueue(ah,
348 HAL_TX_QUEUE_DATA,
349 AH_TRUE /* enable interrupts */
350 );
351 if (sc->sc_txhalq == (u_int) -1) {
352 if_printf(ifp, "unable to setup a data xmit queue!\n");
353 goto bad;
354 }
355 sc->sc_bhalq = ath_hal_setuptxqueue(ah,
356 HAL_TX_QUEUE_BEACON,
357 AH_TRUE /* enable interrupts */
358 );
359 if (sc->sc_bhalq == (u_int) -1) {
360 if_printf(ifp, "unable to setup a beacon xmit queue!\n");
361 goto bad;
362 }
363
364 ifp->if_softc = sc;
365 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
366 ifp->if_start = ath_start;
367 ifp->if_watchdog = ath_watchdog;
368 ifp->if_ioctl = ath_ioctl;
369 ifp->if_init = ath_init;
370 #ifdef __FreeBSD__
371 ifp->if_snd.ifq_maxlen = IFQ_MAXLEN;
372 #else
373 #if 0
374 ifp->if_stop = ath_stop; /* XXX */
375 #endif
376 IFQ_SET_READY(&ifp->if_snd);
377 #endif
378
379 ic->ic_softc = sc;
380 ic->ic_newassoc = ath_newassoc;
381 /* XXX not right but it's not used anywhere important */
382 ic->ic_phytype = IEEE80211_T_OFDM;
383 ic->ic_opmode = IEEE80211_M_STA;
384 ic->ic_caps = IEEE80211_C_WEP | IEEE80211_C_IBSS | IEEE80211_C_HOSTAP
385 | IEEE80211_C_MONITOR;
386 /* NB: 11g support is identified when we fetch the channel set */
387 if (sc->sc_have11g)
388 ic->ic_caps |= IEEE80211_C_SHPREAMBLE;
389
390 /* get mac address from hardware */
391 ath_hal_getmac(ah, ic->ic_myaddr);
392
393 #ifdef __NetBSD__
394 if_attach(ifp);
395 #endif
396 /* call MI attach routine. */
397 ieee80211_ifattach(ifp);
398 /* override default methods */
399 ic->ic_node_alloc = ath_node_alloc;
400 ic->ic_node_free = ath_node_free;
401 ic->ic_node_copy = ath_node_copy;
402 sc->sc_newstate = ic->ic_newstate;
403 ic->ic_newstate = ath_newstate;
404 /* complete initialization */
405 ieee80211_media_init(ifp, ath_media_change, ieee80211_media_status);
406
407 #if NBPFILTER > 0
408 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
409 sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
410 &sc->sc_drvbpf);
411 #endif
412 /*
413 * Initialize constant fields.
414 *
415 * NB: the channel is setup each time we transition to the
416 * RUN state to avoid filling it in for each frame.
417 */
418 sc->sc_tx_th.wt_ihdr.it_len = sizeof(sc->sc_tx_th);
419 sc->sc_tx_th.wt_ihdr.it_present = ATH_TX_RADIOTAP_PRESENT;
420
421 sc->sc_rx_th.wr_ihdr.it_len = sizeof(sc->sc_rx_th);
422 sc->sc_rx_th.wr_ihdr.it_present = ATH_RX_RADIOTAP_PRESENT;
423
424 if_printf(ifp, "802.11 address: %s\n", ether_sprintf(ic->ic_myaddr));
425
426 #ifdef __NetBSD__
427 sc->sc_flags |= ATH_ATTACHED;
428 /*
429 * Make sure the interface is shutdown during reboot.
430 */
431 #if 0
432 sc->sc_sdhook = shutdownhook_establish(ath_shutdown, sc);
433 if (sc->sc_sdhook == NULL)
434 printf("%s: WARNING: unable to establish shutdown hook\n",
435 sc->sc_dev.dv_xname);
436 #endif
437 sc->sc_powerhook = powerhook_establish(ath_power, sc);
438 if (sc->sc_powerhook == NULL)
439 printf("%s: WARNING: unable to establish power hook\n",
440 sc->sc_dev.dv_xname);
441 #endif
442 return 0;
443 bad:
444 if (ah)
445 ath_hal_detach(ah);
446 sc->sc_invalid = 1;
447 return error;
448 }
449
450 int
451 ath_detach(struct ath_softc *sc)
452 {
453 struct ifnet *ifp = &sc->sc_ic.ic_if;
454 ath_softc_critsect_decl(s);
455
456 DPRINTF(("ath_detach: if_flags %x\n", ifp->if_flags));
457 if ((sc->sc_flags & ATH_ATTACHED) == 0)
458 return (0);
459
460 ath_softc_critsect_begin(sc, s);
461 ath_stop(ifp);
462 #if NBPFILTER > 0
463 bpfdetach(ifp);
464 #endif
465 ath_desc_free(sc);
466 ath_hal_detach(sc->sc_ah);
467 ieee80211_ifdetach(ifp);
468 #ifdef __NetBSD__
469 if_detach(ifp);
470 #endif
471 ath_softc_critsect_end(sc, s);
472 return 0;
473 }
474
475 void
476 ath_power(int why, void *arg)
477 {
478 struct ath_softc *sc = arg;
479 int s;
480
481 DPRINTF(("ath_power(%d)\n", why));
482
483 s = splnet();
484 switch (why) {
485 case PWR_SUSPEND:
486 case PWR_STANDBY:
487 ath_suspend(sc, why);
488 break;
489 case PWR_RESUME:
490 ath_resume(sc, why);
491 break;
492 case PWR_SOFTSUSPEND:
493 case PWR_SOFTSTANDBY:
494 case PWR_SOFTRESUME:
495 break;
496 }
497 splx(s);
498 }
499
500 void
501 ath_suspend(struct ath_softc *sc, int why)
502 {
503 struct ifnet *ifp = &sc->sc_ic.ic_if;
504
505 DPRINTF(("ath_suspend: if_flags %x\n", ifp->if_flags));
506
507 ath_stop(ifp);
508 if (sc->sc_power != NULL)
509 (*sc->sc_power)(sc, why);
510 }
511
512 void
513 ath_resume(struct ath_softc *sc, int why)
514 {
515 struct ifnet *ifp = &sc->sc_ic.ic_if;
516
517 DPRINTF(("ath_resume: if_flags %x\n", ifp->if_flags));
518
519 if (ifp->if_flags & IFF_UP) {
520 ath_init(ifp);
521 #if 0
522 (void)ath_intr(sc);
523 #endif
524 if (sc->sc_power != NULL)
525 (*sc->sc_power)(sc, why);
526 if (ifp->if_flags & IFF_RUNNING)
527 ath_start(ifp);
528 }
529 }
530
531 void
532 ath_shutdown(struct ath_softc *sc)
533 {
534 #if 1
535 return;
536 #else
537 struct ifnet *ifp = &sc->sc_ic.ic_if;
538
539 DPRINTF(("ath_shutdown: if_flags %x\n", ifp->if_flags));
540
541 ath_stop(ifp);
542 #endif
543 }
544
545 #ifdef __NetBSD__
546 int
547 ath_intr(void *arg)
548 {
549 return ath_intr1((struct ath_softc *)arg);
550 }
551 #else
552 void
553 ath_intr(void *arg)
554 {
555 (void)ath_intr1((struct ath_softc *)arg);
556 }
557 #endif
558
559 static int
560 ath_intr1(struct ath_softc *sc)
561 {
562 struct ieee80211com *ic = &sc->sc_ic;
563 struct ifnet *ifp = &ic->ic_if;
564 struct ath_hal *ah = sc->sc_ah;
565 HAL_INT status;
566
567 if (sc->sc_invalid) {
568 /*
569 * The hardware is not ready/present, don't touch anything.
570 * Note this can happen early on if the IRQ is shared.
571 */
572 DPRINTF(("ath_intr: invalid; ignored\n"));
573 return 0;
574 }
575 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
576 DPRINTF(("ath_intr: if_flags 0x%x\n", ifp->if_flags));
577 ath_hal_getisr(ah, &status); /* clear ISR */
578 ath_hal_intrset(ah, 0); /* disable further intr's */
579 return 1; /* XXX */
580 }
581 ath_hal_getisr(ah, &status); /* NB: clears ISR too */
582 DPRINTF2(("ath_intr: status 0x%x\n", status));
583 #ifdef AR_DEBUG
584 if (ath_debug &&
585 (status & (HAL_INT_FATAL|HAL_INT_RXORN|HAL_INT_BMISS))) {
586 if_printf(ifp, "ath_intr: status 0x%x\n", status);
587 ath_hal_dumpstate(ah);
588 }
589 #endif /* AR_DEBUG */
590 if (status & HAL_INT_FATAL) {
591 sc->sc_stats.ast_hardware++;
592 ath_hal_intrset(ah, 0); /* disable intr's until reset */
593 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
594 } else if (status & HAL_INT_RXORN) {
595 sc->sc_stats.ast_rxorn++;
596 ath_hal_intrset(ah, 0); /* disable intr's until reset */
597 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
598 } else {
599 if (status & HAL_INT_RXEOL) {
600 /*
601 * NB: the hardware should re-read the link when
602 * RXE bit is written, but it doesn't work at
603 * least on older hardware revs.
604 */
605 sc->sc_stats.ast_rxeol++;
606 sc->sc_rxlink = NULL;
607 }
608 if (status & HAL_INT_TXURN) {
609 sc->sc_stats.ast_txurn++;
610 /* bump tx trigger level */
611 ath_hal_updatetxtriglevel(ah, AH_TRUE);
612 }
613 if (status & HAL_INT_RX)
614 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
615 if (status & HAL_INT_TX)
616 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
617 if (status & HAL_INT_SWBA)
618 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_swbatask);
619 if (status & HAL_INT_BMISS) {
620 sc->sc_stats.ast_bmiss++;
621 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
622 }
623 }
624 return 1;
625 }
626
627 static void
628 ath_fatal_proc(void *arg, int pending)
629 {
630 struct ath_softc *sc = arg;
631
632 device_printf(sc->sc_dev, "hardware error; resetting\n");
633 ath_reset(sc);
634 }
635
636 static void
637 ath_rxorn_proc(void *arg, int pending)
638 {
639 struct ath_softc *sc = arg;
640
641 device_printf(sc->sc_dev, "rx FIFO overrun; resetting\n");
642 ath_reset(sc);
643 }
644
645 static void
646 ath_bmiss_proc(void *arg, int pending)
647 {
648 struct ath_softc *sc = arg;
649 struct ieee80211com *ic = &sc->sc_ic;
650
651 DPRINTF(("ath_bmiss_proc: pending %u\n", pending));
652 KASSERT(ic->ic_opmode == IEEE80211_M_STA,
653 ("unexpect operating mode %u", ic->ic_opmode));
654 if (ic->ic_state == IEEE80211_S_RUN)
655 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
656 }
657
658 static u_int
659 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
660 {
661 enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
662
663 switch (mode) {
664 case IEEE80211_MODE_AUTO:
665 return 0;
666 case IEEE80211_MODE_11A:
667 return CHANNEL_A;
668 case IEEE80211_MODE_11B:
669 return CHANNEL_B;
670 case IEEE80211_MODE_11G:
671 return CHANNEL_PUREG;
672 case IEEE80211_MODE_TURBO:
673 return CHANNEL_T;
674 default:
675 panic("%s: unsupported mode %d\n", __func__, mode);
676 return 0;
677 }
678 }
679
680 #ifdef __NetBSD__
681 static int
682 ath_init(struct ifnet *ifp)
683 {
684 return ath_init1((struct ath_softc *)ifp->if_softc);
685 }
686 #else
687 static void
688 ath_init(void *arg)
689 {
690 (void)ath_init1((struct ath_softc *)arg);
691 }
692 #endif
693
694 static int
695 ath_init1(struct ath_softc *sc)
696 {
697 struct ieee80211com *ic = &sc->sc_ic;
698 struct ifnet *ifp = &ic->ic_if;
699 struct ieee80211_node *ni;
700 enum ieee80211_phymode mode;
701 struct ath_hal *ah = sc->sc_ah;
702 HAL_STATUS status;
703 HAL_CHANNEL hchan;
704 int error = 0;
705 ath_softc_critsect_decl(s);
706
707 DPRINTF(("ath_init: if_flags 0x%x\n", ifp->if_flags));
708
709 #ifdef __NetBSD__
710 if ((error = ath_enable(sc)) != 0)
711 return error;
712 #endif
713
714 ath_softc_critsect_begin(sc, s);
715 /*
716 * Stop anything previously setup. This is safe
717 * whether this is the first time through or not.
718 */
719 ath_stop(ifp);
720
721 /*
722 * The basic interface to setting the hardware in a good
723 * state is ``reset''. On return the hardware is known to
724 * be powered up and with interrupts disabled. This must
725 * be followed by initialization of the appropriate bits
726 * and then setup of the interrupt mask.
727 */
728 hchan.channel = ic->ic_ibss_chan->ic_freq;
729 hchan.channelFlags = ath_chan2flags(ic, ic->ic_ibss_chan);
730 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_FALSE, &status)) {
731 if_printf(ifp, "unable to reset hardware; hal status %u\n",
732 status);
733 error = -1;
734 goto done;
735 }
736
737 /*
738 * Setup the hardware after reset: the key cache
739 * is filled as needed and the receive engine is
740 * set going. Frame transmit is handled entirely
741 * in the frame output path; there's nothing to do
742 * here except setup the interrupt mask.
743 */
744 if (ic->ic_flags & IEEE80211_F_WEPON)
745 ath_initkeytable(sc);
746 if ((error = ath_startrecv(sc)) != 0) {
747 if_printf(ifp, "unable to start recv logic\n");
748 goto done;
749 }
750
751 /*
752 * Enable interrupts.
753 */
754 sc->sc_imask = HAL_INT_RX | HAL_INT_TX
755 | HAL_INT_RXEOL | HAL_INT_RXORN
756 | HAL_INT_FATAL | HAL_INT_GLOBAL;
757 ath_hal_intrset(ah, sc->sc_imask);
758
759 ifp->if_flags |= IFF_RUNNING;
760 ic->ic_state = IEEE80211_S_INIT;
761
762 /*
763 * The hardware should be ready to go now so it's safe
764 * to kick the 802.11 state machine as it's likely to
765 * immediately call back to us to send mgmt frames.
766 */
767 ni = ic->ic_bss;
768 ni->ni_chan = ic->ic_ibss_chan;
769 mode = ieee80211_chan2mode(ic, ni->ni_chan);
770 if (mode != sc->sc_curmode)
771 ath_setcurmode(sc, mode);
772 if (ic->ic_opmode != IEEE80211_M_MONITOR)
773 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
774 else
775 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
776 done:
777 ath_softc_critsect_end(sc, s);
778 return error;
779 }
780
781 static void
782 ath_stop(struct ifnet *ifp)
783 {
784 struct ieee80211com *ic = (struct ieee80211com *) ifp;
785 struct ath_softc *sc = ifp->if_softc;
786 struct ath_hal *ah = sc->sc_ah;
787 ath_softc_critsect_decl(s);
788
789 DPRINTF(("ath_stop: invalid %u if_flags 0x%x\n",
790 sc->sc_invalid, ifp->if_flags));
791
792 ath_softc_critsect_begin(sc, s);
793 if (ifp->if_flags & IFF_RUNNING) {
794 /*
795 * Shutdown the hardware and driver:
796 * disable interrupts
797 * turn off timers
798 * clear transmit machinery
799 * clear receive machinery
800 * drain and release tx queues
801 * reclaim beacon resources
802 * reset 802.11 state machine
803 * power down hardware
804 *
805 * Note that some of this work is not possible if the
806 * hardware is gone (invalid).
807 */
808 ifp->if_flags &= ~IFF_RUNNING;
809 ifp->if_timer = 0;
810 if (!sc->sc_invalid)
811 ath_hal_intrset(ah, 0);
812 ath_draintxq(sc);
813 if (!sc->sc_invalid)
814 ath_stoprecv(sc);
815 else
816 sc->sc_rxlink = NULL;
817 #ifdef __FreeBSD__
818 IF_DRAIN(&ifp->if_snd);
819 #else
820 IF_PURGE(&ifp->if_snd);
821 #endif
822 ath_beacon_free(sc);
823 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
824 if (!sc->sc_invalid) {
825 ath_hal_setpower(ah, HAL_PM_FULL_SLEEP, 0);
826 }
827 #ifdef __NetBSD__
828 ath_disable(sc);
829 #endif
830 }
831 ath_softc_critsect_end(sc, s);
832 }
833
834 /*
835 * Reset the hardware w/o losing operational state. This is
836 * basically a more efficient way of doing ath_stop, ath_init,
837 * followed by state transitions to the current 802.11
838 * operational state. Used to recover from errors rx overrun
839 * and to reset the hardware when rf gain settings must be reset.
840 */
841 static void
842 ath_reset(struct ath_softc *sc)
843 {
844 struct ieee80211com *ic = &sc->sc_ic;
845 struct ifnet *ifp = &ic->ic_if;
846 struct ath_hal *ah = sc->sc_ah;
847 struct ieee80211_channel *c;
848 HAL_STATUS status;
849 HAL_CHANNEL hchan;
850
851 /*
852 * Convert to a HAL channel description with the flags
853 * constrained to reflect the current operating mode.
854 */
855 c = ic->ic_ibss_chan;
856 hchan.channel = c->ic_freq;
857 hchan.channelFlags = ath_chan2flags(ic, c);
858
859 ath_hal_intrset(ah, 0); /* disable interrupts */
860 ath_draintxq(sc); /* stop xmit side */
861 ath_stoprecv(sc); /* stop recv side */
862 /* NB: indicate channel change so we do a full reset */
863 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status))
864 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
865 __func__, status);
866 ath_hal_intrset(ah, sc->sc_imask);
867 if (ath_startrecv(sc) != 0) /* restart recv */
868 if_printf(ifp, "%s: unable to start recv logic\n", __func__);
869 ath_start(ifp); /* restart xmit */
870 if (ic->ic_state == IEEE80211_S_RUN)
871 ath_beacon_config(sc); /* restart beacons */
872 }
873
874 static void
875 ath_start(struct ifnet *ifp)
876 {
877 struct ath_softc *sc = ifp->if_softc;
878 struct ath_hal *ah = sc->sc_ah;
879 struct ieee80211com *ic = &sc->sc_ic;
880 struct ieee80211_node *ni;
881 struct ath_buf *bf;
882 struct mbuf *m;
883 struct ieee80211_frame *wh;
884 ath_txbuf_critsect_decl(s);
885
886 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
887 return;
888 for (;;) {
889 /*
890 * Grab a TX buffer and associated resources.
891 */
892 ath_txbuf_critsect_begin(sc, s);
893 bf = TAILQ_FIRST(&sc->sc_txbuf);
894 if (bf != NULL)
895 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
896 ath_txbuf_critsect_end(sc, s);
897 if (bf == NULL) {
898 DPRINTF(("ath_start: out of xmit buffers\n"));
899 sc->sc_stats.ast_tx_qstop++;
900 ifp->if_flags |= IFF_OACTIVE;
901 break;
902 }
903 /*
904 * Poll the management queue for frames; they
905 * have priority over normal data frames.
906 */
907 IF_DEQUEUE(&ic->ic_mgtq, m);
908 if (m == NULL) {
909 /*
910 * No data frames go out unless we're associated.
911 */
912 if (ic->ic_state != IEEE80211_S_RUN) {
913 DPRINTF(("ath_start: ignore data packet, "
914 "state %u\n", ic->ic_state));
915 sc->sc_stats.ast_tx_discard++;
916 ath_txbuf_critsect_begin(sc, s);
917 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
918 ath_txbuf_critsect_end(sc, s);
919 break;
920 }
921 IF_DEQUEUE(&ifp->if_snd, m);
922 if (m == NULL) {
923 ath_txbuf_critsect_begin(sc, s);
924 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
925 ath_txbuf_critsect_end(sc, s);
926 break;
927 }
928 ifp->if_opackets++;
929
930 #ifdef __NetBSD__
931 #if NBPFILTER > 0
932 if (ifp->if_bpf)
933 bpf_mtap(ifp->if_bpf, m);
934 #endif
935 #endif
936 #ifdef __FreeBSD__
937 BPF_MTAP(ifp, m);
938 #endif
939 /*
940 * Encapsulate the packet in prep for transmission.
941 */
942 m = ieee80211_encap(ifp, m, &ni);
943 if (m == NULL) {
944 DPRINTF(("ath_start: encapsulation failure\n"));
945 sc->sc_stats.ast_tx_encap++;
946 goto bad;
947 }
948 wh = mtod(m, struct ieee80211_frame *);
949 if (ic->ic_flags & IEEE80211_F_WEPON)
950 wh->i_fc[1] |= IEEE80211_FC1_WEP;
951 } else {
952 /*
953 * Hack! The referenced node pointer is in the
954 * rcvif field of the packet header. This is
955 * placed there by ieee80211_mgmt_output because
956 * we need to hold the reference with the frame
957 * and there's no other way (other than packet
958 * tags which we consider too expensive to use)
959 * to pass it along.
960 */
961 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
962 m->m_pkthdr.rcvif = NULL;
963
964 wh = mtod(m, struct ieee80211_frame *);
965 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
966 IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
967 /* fill time stamp */
968 u_int64_t tsf;
969 u_int32_t *tstamp;
970
971 tsf = ath_hal_gettsf64(ah);
972 /* XXX: adjust 100us delay to xmit */
973 tsf += 100;
974 tstamp = (u_int32_t *)&wh[1];
975 tstamp[0] = htole32(tsf & 0xffffffff);
976 tstamp[1] = htole32(tsf >> 32);
977 }
978 sc->sc_stats.ast_tx_mgmt++;
979 }
980 #if NBPFILTER > 0
981 if (ic->ic_rawbpf)
982 bpf_mtap(ic->ic_rawbpf, m);
983 #endif
984
985 #if NBPFILTER > 0
986 if (sc->sc_drvbpf) {
987 #ifdef __FreeBSD__
988 struct mbuf *mb;
989
990 MGETHDR(mb, M_DONTWAIT, m->m_type);
991 if (mb != NULL) {
992 sc->sc_tx_th.wt_rate =
993 ni->ni_rates.rs_rates[ni->ni_txrate];
994
995 mb->m_next = m;
996 mb->m_data = (caddr_t)&sc->sc_tx_th;
997 mb->m_len = sizeof(sc->sc_tx_th);
998 mb->m_pkthdr.len += mb->m_len;
999 bpf_mtap(sc->sc_drvbpf, mb);
1000 m_free(mb);
1001 }
1002 #else
1003 struct mbuf mb;
1004
1005 M_COPY_PKTHDR(&mb, m);
1006 sc->sc_tx_th.wt_rate =
1007 ni->ni_rates.rs_rates[ni->ni_txrate];
1008
1009 mb.m_next = m;
1010 mb.m_data = (caddr_t)&sc->sc_tx_th;
1011 mb.m_len = sizeof(sc->sc_tx_th);
1012 mb.m_pkthdr.len += mb.m_len;
1013 bpf_mtap(sc->sc_drvbpf, &mb);
1014 #endif
1015 }
1016 #endif
1017
1018 /*
1019 * TODO:
1020 * The duration field of 802.11 header should be filled.
1021 * XXX This may be done in the ieee80211 layer, but the upper
1022 * doesn't know the detail of parameters such as IFS
1023 * for now..
1024 */
1025 if (ath_tx_start(sc, ni, bf, m)) {
1026 bad:
1027 ath_txbuf_critsect_begin(sc, s);
1028 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1029 ath_txbuf_critsect_end(sc, s);
1030 ifp->if_oerrors++;
1031 if (ni && ni != ic->ic_bss)
1032 ieee80211_free_node(ic, ni);
1033 continue;
1034 }
1035
1036 sc->sc_tx_timer = 5;
1037 ifp->if_timer = 1;
1038 }
1039 }
1040
1041 static int
1042 ath_media_change(struct ifnet *ifp)
1043 {
1044 int error;
1045
1046 error = ieee80211_media_change(ifp);
1047 if (error == ENETRESET) {
1048 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
1049 (IFF_RUNNING|IFF_UP))
1050 ath_init(ifp); /* XXX lose error */
1051 error = 0;
1052 }
1053 return error;
1054 }
1055
1056 static void
1057 ath_watchdog(struct ifnet *ifp)
1058 {
1059 struct ath_softc *sc = ifp->if_softc;
1060 struct ieee80211com *ic = &sc->sc_ic;
1061
1062 ifp->if_timer = 0;
1063 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
1064 return;
1065 if (sc->sc_tx_timer) {
1066 if (--sc->sc_tx_timer == 0) {
1067 if_printf(ifp, "device timeout\n");
1068 #ifdef AR_DEBUG
1069 if (ath_debug)
1070 ath_hal_dumpstate(sc->sc_ah);
1071 #endif /* AR_DEBUG */
1072 ath_init(ifp); /* XXX ath_reset??? */
1073 ifp->if_oerrors++;
1074 sc->sc_stats.ast_watchdog++;
1075 return;
1076 }
1077 ifp->if_timer = 1;
1078 }
1079 if (ic->ic_fixed_rate == -1) {
1080 /*
1081 * Run the rate control algorithm if we're not
1082 * locked at a fixed rate.
1083 */
1084 if (ic->ic_opmode == IEEE80211_M_STA)
1085 ath_rate_ctl(sc, ic->ic_bss);
1086 else
1087 ieee80211_iterate_nodes(ic, ath_rate_ctl, sc);
1088 }
1089 ieee80211_watchdog(ifp);
1090 }
1091
1092 static int
1093 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1094 {
1095 struct ath_softc *sc = ifp->if_softc;
1096 struct ifreq *ifr = (struct ifreq *)data;
1097 int error = 0;
1098 ath_softc_critsect_decl(s);
1099
1100 ath_softc_critsect_begin(sc, s);
1101 switch (cmd) {
1102 case SIOCSIFFLAGS:
1103 if (ifp->if_flags & IFF_UP) {
1104 if (ifp->if_flags & IFF_RUNNING) {
1105 /*
1106 * To avoid rescanning another access point,
1107 * do not call ath_init() here. Instead,
1108 * only reflect promisc mode settings.
1109 */
1110 ath_mode_init(sc);
1111 } else
1112 ath_init(ifp); /* XXX lose error */
1113 } else
1114 ath_stop(ifp);
1115 break;
1116 case SIOCADDMULTI:
1117 case SIOCDELMULTI:
1118 #ifdef __FreeBSD__
1119 /*
1120 * The upper layer has already installed/removed
1121 * the multicast address(es), just recalculate the
1122 * multicast filter for the card.
1123 */
1124 if (ifp->if_flags & IFF_RUNNING)
1125 ath_mode_init(sc);
1126 #endif
1127 #ifdef __NetBSD__
1128 error = (cmd == SIOCADDMULTI) ?
1129 ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
1130 ether_delmulti(ifr, &sc->sc_ic.ic_ec);
1131 if (error == ENETRESET) {
1132 if (ifp->if_flags & IFF_RUNNING)
1133 ath_mode_init(sc);
1134 error = 0;
1135 }
1136 #endif
1137 break;
1138 case SIOCGATHSTATS:
1139 copyout(&sc->sc_stats, ifr->ifr_data, sizeof (sc->sc_stats));
1140 break;
1141 default:
1142 error = ieee80211_ioctl(ifp, cmd, data);
1143 if (error == ENETRESET) {
1144 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
1145 (IFF_RUNNING|IFF_UP))
1146 ath_init(ifp); /* XXX lose error */
1147 error = 0;
1148 }
1149 break;
1150 }
1151 ath_softc_critsect_end(sc, s);
1152 return error;
1153 }
1154
1155 /*
1156 * Fill the hardware key cache with key entries.
1157 */
1158 static void
1159 ath_initkeytable(struct ath_softc *sc)
1160 {
1161 struct ieee80211com *ic = &sc->sc_ic;
1162 struct ath_hal *ah = sc->sc_ah;
1163 int i;
1164
1165 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1166 struct ieee80211_wepkey *k = &ic->ic_nw_keys[i];
1167 if (k->wk_len == 0)
1168 ath_hal_keyreset(ah, i);
1169 else
1170 /* XXX return value */
1171 /* NB: this uses HAL_KEYVAL == ieee80211_wepkey */
1172 ath_hal_keyset(ah, i, (const HAL_KEYVAL *) k);
1173 }
1174 }
1175
1176 static void
1177 ath_mcastfilter_accum(caddr_t dl, u_int32_t (*mfilt)[2])
1178 {
1179 u_int32_t val;
1180 u_int8_t pos;
1181
1182 val = LE_READ_4(dl + 0);
1183 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1184 val = LE_READ_4(dl + 3);
1185 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1186 pos &= 0x3f;
1187 (*mfilt)[pos / 32] |= (1 << (pos % 32));
1188 }
1189
1190 #ifdef __FreeBSD__
1191 static void
1192 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t (*mfilt)[2])
1193 {
1194 struct ieee80211com *ic = &sc->sc_ic;
1195 struct ifnet *ifp = &ic->ic_if;
1196 struct ifmultiaddr *ifma;
1197
1198 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1199 caddr_t dl;
1200
1201 /* calculate XOR of eight 6bit values */
1202 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
1203 ath_mcastfilter_accum(dl, &mfilt);
1204 }
1205 }
1206 #else
1207 static void
1208 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t (*mfilt)[2])
1209 {
1210 struct ifnet *ifp = &sc->sc_ic.ic_if;
1211 struct ether_multi *enm;
1212 struct ether_multistep estep;
1213
1214 ETHER_FIRST_MULTI(estep, &sc->sc_ic.ic_ec, enm);
1215 while (enm != NULL) {
1216 /* XXX Punt on ranges. */
1217 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
1218 (*mfilt)[0] = (*mfilt)[1] = ~((u_int32_t)0);
1219 ifp->if_flags |= IFF_ALLMULTI;
1220 return;
1221 }
1222 ath_mcastfilter_accum(enm->enm_addrlo, mfilt);
1223 ETHER_NEXT_MULTI(estep, enm);
1224 }
1225 ifp->if_flags &= ~IFF_ALLMULTI;
1226 }
1227 #endif
1228
1229 static void
1230 ath_mode_init(struct ath_softc *sc)
1231 {
1232 struct ieee80211com *ic = &sc->sc_ic;
1233 struct ath_hal *ah = sc->sc_ah;
1234 struct ifnet *ifp = &ic->ic_if;
1235 u_int32_t rfilt, mfilt[2];
1236
1237 /* configure operational mode */
1238 ath_hal_setopmode(ah, ic->ic_opmode);
1239
1240 /* receive filter */
1241 rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1242 | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1243 if (ic->ic_opmode != IEEE80211_M_STA)
1244 rfilt |= HAL_RX_FILTER_PROBEREQ;
1245 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1246 (ifp->if_flags & IFF_PROMISC))
1247 rfilt |= HAL_RX_FILTER_PROM;
1248 if (ic->ic_state == IEEE80211_S_SCAN)
1249 rfilt |= HAL_RX_FILTER_BEACON;
1250 ath_hal_setrxfilter(ah, rfilt);
1251
1252 /* calculate and install multicast filter */
1253 #ifdef __FreeBSD__
1254 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1255 mfilt[0] = mfilt[1] = 0;
1256 ath_mcastfilter_compute(sc, &mfilt);
1257 } else {
1258 mfilt[0] = mfilt[1] = ~0;
1259 }
1260 #endif
1261 #ifdef __NetBSD__
1262 mfilt[0] = mfilt[1] = 0;
1263 ath_mcastfilter_compute(sc, &mfilt);
1264 #endif
1265 ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1266 DPRINTF(("ath_mode_init: RX filter 0x%x, MC filter %08x:%08x\n",
1267 rfilt, mfilt[0], mfilt[1]));
1268 }
1269
1270 #ifdef __FreeBSD__
1271 static void
1272 ath_mbuf_load_cb(void *arg, bus_dma_segment_t *seg, int nseg, bus_size_t mapsize, int error)
1273 {
1274 struct ath_buf *bf = arg;
1275
1276 KASSERT(nseg <= ATH_MAX_SCATTER,
1277 ("ath_mbuf_load_cb: too many DMA segments %u", nseg));
1278 bf->bf_mapsize = mapsize;
1279 bf->bf_nseg = nseg;
1280 bcopy(seg, bf->bf_segs, nseg * sizeof (seg[0]));
1281 }
1282 #endif /* __FreeBSD__ */
1283
1284 static struct mbuf *
1285 ath_getmbuf(int flags, int type, u_int pktlen)
1286 {
1287 struct mbuf *m;
1288
1289 KASSERT(pktlen <= MCLBYTES, ("802.11 packet too large: %u", pktlen));
1290 #ifdef __FreeBSD__
1291 if (pktlen <= MHLEN)
1292 MGETHDR(m, flags, type);
1293 else
1294 m = m_getcl(flags, type, M_PKTHDR);
1295 #else
1296 MGETHDR(m, flags, type);
1297 if (m != NULL && pktlen > MHLEN)
1298 MCLGET(m, flags);
1299 #endif
1300 return m;
1301 }
1302
1303 static int
1304 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
1305 {
1306 struct ieee80211com *ic = &sc->sc_ic;
1307 struct ifnet *ifp = &ic->ic_if;
1308 struct ath_hal *ah = sc->sc_ah;
1309 struct ieee80211_frame *wh;
1310 struct ath_buf *bf;
1311 struct ath_desc *ds;
1312 struct mbuf *m;
1313 int error, pktlen;
1314 u_int8_t *frm, rate;
1315 u_int16_t capinfo;
1316 struct ieee80211_rateset *rs;
1317 const HAL_RATE_TABLE *rt;
1318
1319 bf = sc->sc_bcbuf;
1320 if (bf->bf_m != NULL) {
1321 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1322 m_freem(bf->bf_m);
1323 bf->bf_m = NULL;
1324 bf->bf_node = NULL;
1325 }
1326 /*
1327 * NB: the beacon data buffer must be 32-bit aligned;
1328 * we assume the mbuf routines will return us something
1329 * with this alignment (perhaps should assert).
1330 */
1331 rs = &ni->ni_rates;
1332 pktlen = sizeof (struct ieee80211_frame)
1333 + 8 + 2 + 2 + 2+ni->ni_esslen + 2+rs->rs_nrates + 6;
1334 if (rs->rs_nrates > IEEE80211_RATE_SIZE)
1335 pktlen += 2;
1336 m = ath_getmbuf(M_DONTWAIT, MT_DATA, pktlen);
1337 if (m == NULL) {
1338 DPRINTF(("ath_beacon_alloc: cannot get mbuf/cluster; size %u\n",
1339 pktlen));
1340 sc->sc_stats.ast_be_nombuf++;
1341 return ENOMEM;
1342 }
1343
1344 wh = mtod(m, struct ieee80211_frame *);
1345 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
1346 IEEE80211_FC0_SUBTYPE_BEACON;
1347 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1348 *(u_int16_t *)wh->i_dur = 0;
1349 memcpy(wh->i_addr1, ifp->if_broadcastaddr, IEEE80211_ADDR_LEN);
1350 memcpy(wh->i_addr2, ic->ic_myaddr, IEEE80211_ADDR_LEN);
1351 memcpy(wh->i_addr3, ni->ni_bssid, IEEE80211_ADDR_LEN);
1352 *(u_int16_t *)wh->i_seq = 0;
1353
1354 /*
1355 * beacon frame format
1356 * [8] time stamp
1357 * [2] beacon interval
1358 * [2] cabability information
1359 * [tlv] ssid
1360 * [tlv] supported rates
1361 * [tlv] parameter set (IBSS)
1362 * [tlv] extended supported rates
1363 */
1364 frm = (u_int8_t *)&wh[1];
1365 memset(frm, 0, 8); /* timestamp is set by hardware */
1366 frm += 8;
1367 *(u_int16_t *)frm = htole16(ni->ni_intval);
1368 frm += 2;
1369 if (ic->ic_opmode == IEEE80211_M_IBSS)
1370 capinfo = IEEE80211_CAPINFO_IBSS;
1371 else
1372 capinfo = IEEE80211_CAPINFO_ESS;
1373 if (ic->ic_flags & IEEE80211_F_WEPON)
1374 capinfo |= IEEE80211_CAPINFO_PRIVACY;
1375 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1376 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1377 if (ic->ic_flags & IEEE80211_F_SHSLOT)
1378 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1379 *(u_int16_t *)frm = htole16(capinfo);
1380 frm += 2;
1381 *frm++ = IEEE80211_ELEMID_SSID;
1382 *frm++ = ni->ni_esslen;
1383 memcpy(frm, ni->ni_essid, ni->ni_esslen);
1384 frm += ni->ni_esslen;
1385 frm = ieee80211_add_rates(frm, rs);
1386 if (ic->ic_opmode == IEEE80211_M_IBSS) {
1387 *frm++ = IEEE80211_ELEMID_IBSSPARMS;
1388 *frm++ = 2;
1389 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */
1390 } else {
1391 /* TODO: TIM */
1392 *frm++ = IEEE80211_ELEMID_TIM;
1393 *frm++ = 4; /* length */
1394 *frm++ = 0; /* DTIM count */
1395 *frm++ = 1; /* DTIM period */
1396 *frm++ = 0; /* bitmap control */
1397 *frm++ = 0; /* Partial Virtual Bitmap (variable length) */
1398 }
1399 frm = ieee80211_add_xrates(frm, rs);
1400 m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
1401 KASSERT(m->m_pkthdr.len <= pktlen,
1402 ("beacon bigger than expected, len %u calculated %u",
1403 m->m_pkthdr.len, pktlen));
1404
1405 DPRINTF2(("ath_beacon_alloc: m %p len %u\n", m, m->m_len));
1406 error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m, BUS_DMA_NOWAIT);
1407 if (error != 0) {
1408 m_freem(m);
1409 return error;
1410 }
1411 KASSERT(bf->bf_nseg == 1,
1412 ("ath_beacon_alloc: multi-segment packet; nseg %u",
1413 bf->bf_nseg));
1414 bf->bf_m = m;
1415
1416 /* setup descriptors */
1417 ds = bf->bf_desc;
1418
1419 ds->ds_link = 0;
1420 ds->ds_data = bf->bf_segs[0].ds_addr;
1421
1422 DPRINTF2(("%s: segaddr %p seglen %u\n", __func__,
1423 (caddr_t)bf->bf_segs[0].ds_addr, (u_int)bf->bf_segs[0].ds_len));
1424
1425 /*
1426 * Calculate rate code.
1427 * XXX everything at min xmit rate
1428 */
1429 rt = sc->sc_currates;
1430 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
1431 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1432 rate = rt->info[0].rateCode | rt->info[0].shortPreamble;
1433 else
1434 rate = rt->info[0].rateCode;
1435 if (!ath_hal_setuptxdesc(ah, ds
1436 , m->m_pkthdr.len + IEEE80211_CRC_LEN /* packet length */
1437 , sizeof(struct ieee80211_frame) /* header length */
1438 , HAL_PKT_TYPE_BEACON /* Atheros packet type */
1439 , 0x20 /* txpower XXX */
1440 , rate, 1 /* series 0 rate/tries */
1441 , HAL_TXKEYIX_INVALID /* no encryption */
1442 , 0 /* antenna mode */
1443 , HAL_TXDESC_NOACK /* no ack for beacons */
1444 , 0 /* rts/cts rate */
1445 , 0 /* rts/cts duration */
1446 )) {
1447 printf("%s: ath_hal_setuptxdesc failed\n", __func__);
1448 return -1;
1449 }
1450 /* NB: beacon's BufLen must be a multiple of 4 bytes */
1451 /* XXX verify mbuf data area covers this roundup */
1452 if (!ath_hal_filltxdesc(ah, ds
1453 , roundup(bf->bf_segs[0].ds_len, 4) /* buffer length */
1454 , AH_TRUE /* first segment */
1455 , AH_TRUE /* last segment */
1456 )) {
1457 printf("%s: ath_hal_filltxdesc failed\n", __func__);
1458 return -1;
1459 }
1460
1461 /* XXX it is not appropriate to bus_dmamap_sync? -dcy */
1462
1463 return 0;
1464 }
1465
1466 static void
1467 ath_beacon_proc(void *arg, int pending)
1468 {
1469 struct ath_softc *sc = arg;
1470 struct ieee80211com *ic = &sc->sc_ic;
1471 struct ath_buf *bf = sc->sc_bcbuf;
1472 struct ath_hal *ah = sc->sc_ah;
1473
1474 DPRINTF2(("%s: pending %u\n", __func__, pending));
1475 if (ic->ic_opmode == IEEE80211_M_STA ||
1476 bf == NULL || bf->bf_m == NULL) {
1477 DPRINTF(("%s: ic_flags=%x bf=%p bf_m=%p\n",
1478 __func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL));
1479 return;
1480 }
1481 /* TODO: update beacon to reflect PS poll state */
1482 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
1483 DPRINTF(("%s: beacon queue %u did not stop?",
1484 __func__, sc->sc_bhalq));
1485 return; /* busy, XXX is this right? */
1486 }
1487 ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_PREWRITE);
1488
1489 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
1490 ath_hal_txstart(ah, sc->sc_bhalq);
1491 DPRINTF2(("%s: BCDP%u = %p (%p)\n", __func__,
1492 sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc));
1493 }
1494
1495 static void
1496 ath_beacon_free(struct ath_softc *sc)
1497 {
1498 struct ath_buf *bf = sc->sc_bcbuf;
1499
1500 if (bf->bf_m != NULL) {
1501 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1502 m_freem(bf->bf_m);
1503 bf->bf_m = NULL;
1504 bf->bf_node = NULL;
1505 }
1506 }
1507
1508 /*
1509 * Configure the beacon and sleep timers.
1510 *
1511 * When operating as an AP this resets the TSF and sets
1512 * up the hardware to notify us when we need to issue beacons.
1513 *
1514 * When operating in station mode this sets up the beacon
1515 * timers according to the timestamp of the last received
1516 * beacon and the current TSF, configures PCF and DTIM
1517 * handling, programs the sleep registers so the hardware
1518 * will wakeup in time to receive beacons, and configures
1519 * the beacon miss handling so we'll receive a BMISS
1520 * interrupt when we stop seeing beacons from the AP
1521 * we've associated with.
1522 */
1523 static void
1524 ath_beacon_config(struct ath_softc *sc)
1525 {
1526 struct ath_hal *ah = sc->sc_ah;
1527 struct ieee80211com *ic = &sc->sc_ic;
1528 struct ieee80211_node *ni = ic->ic_bss;
1529 u_int32_t nexttbtt;
1530
1531 nexttbtt = (LE_READ_4(ni->ni_tstamp + 4) << 22) |
1532 (LE_READ_4(ni->ni_tstamp) >> 10);
1533 DPRINTF(("%s: nexttbtt=%u\n", __func__, nexttbtt));
1534 nexttbtt += ni->ni_intval;
1535 if (ic->ic_opmode == IEEE80211_M_STA) {
1536 HAL_BEACON_STATE bs;
1537 u_int32_t bmisstime;
1538
1539 /* NB: no PCF support right now */
1540 memset(&bs, 0, sizeof(bs));
1541 bs.bs_intval = ni->ni_intval;
1542 bs.bs_nexttbtt = nexttbtt;
1543 bs.bs_dtimperiod = bs.bs_intval;
1544 bs.bs_nextdtim = nexttbtt;
1545 /*
1546 * Calculate the number of consecutive beacons to miss
1547 * before taking a BMISS interrupt. The configuration
1548 * is specified in ms, so we need to convert that to
1549 * TU's and then calculate based on the beacon interval.
1550 * Note that we clamp the result to at most 10 beacons.
1551 */
1552 bmisstime = (ic->ic_bmisstimeout * 1000) / 1024;
1553 bs.bs_bmissthreshold = howmany(bmisstime,ni->ni_intval);
1554 if (bs.bs_bmissthreshold > 10)
1555 bs.bs_bmissthreshold = 10;
1556 else if (bs.bs_bmissthreshold <= 0)
1557 bs.bs_bmissthreshold = 1;
1558
1559 /*
1560 * Calculate sleep duration. The configuration is
1561 * given in ms. We insure a multiple of the beacon
1562 * period is used. Also, if the sleep duration is
1563 * greater than the DTIM period then it makes senses
1564 * to make it a multiple of that.
1565 *
1566 * XXX fixed at 100ms
1567 */
1568 bs.bs_sleepduration =
1569 roundup((100 * 1000) / 1024, bs.bs_intval);
1570 if (bs.bs_sleepduration > bs.bs_dtimperiod)
1571 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
1572
1573 DPRINTF(("%s: intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u\n"
1574 , __func__
1575 , bs.bs_intval
1576 , bs.bs_nexttbtt
1577 , bs.bs_dtimperiod
1578 , bs.bs_nextdtim
1579 , bs.bs_bmissthreshold
1580 , bs.bs_sleepduration
1581 ));
1582 ath_hal_intrset(ah, 0);
1583 /*
1584 * Reset our tsf so the hardware will update the
1585 * tsf register to reflect timestamps found in
1586 * received beacons.
1587 */
1588 ath_hal_resettsf(ah);
1589 ath_hal_beacontimers(ah, &bs, 0/*XXX*/, 0, 0);
1590 sc->sc_imask |= HAL_INT_BMISS;
1591 ath_hal_intrset(ah, sc->sc_imask);
1592 } else {
1593 DPRINTF(("%s: intval %u nexttbtt %u\n",
1594 __func__, ni->ni_intval, nexttbtt));
1595 ath_hal_intrset(ah, 0);
1596 ath_hal_beaconinit(ah, ic->ic_opmode,
1597 nexttbtt, ni->ni_intval);
1598 if (ic->ic_opmode != IEEE80211_M_MONITOR)
1599 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */
1600 ath_hal_intrset(ah, sc->sc_imask);
1601 }
1602 }
1603
1604 #ifdef __FreeBSD__
1605 static void
1606 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1607 {
1608 bus_addr_t *paddr = (bus_addr_t*) arg;
1609 *paddr = segs->ds_addr;
1610 }
1611 #endif
1612
1613 #ifdef __FreeBSD__
1614 static int
1615 ath_desc_alloc(struct ath_softc *sc)
1616 {
1617 int i, bsize, error;
1618 struct ath_desc *ds;
1619 struct ath_buf *bf;
1620
1621 /* allocate descriptors */
1622 sc->sc_desc_len = sizeof(struct ath_desc) *
1623 (ATH_TXBUF * ATH_TXDESC + ATH_RXBUF + 1);
1624 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &sc->sc_ddmamap);
1625 if (error != 0)
1626 return error;
1627
1628 error = bus_dmamem_alloc(sc->sc_dmat, (void**) &sc->sc_desc,
1629 BUS_DMA_NOWAIT, &sc->sc_ddmamap);
1630
1631 if (error != 0)
1632 goto fail0;
1633
1634 error = bus_dmamap_load(sc->sc_dmat, sc->sc_ddmamap,
1635 sc->sc_desc, sc->sc_desc_len,
1636 ath_load_cb, &sc->sc_desc_paddr,
1637 BUS_DMA_NOWAIT);
1638 if (error != 0)
1639 goto fail1;
1640
1641 ds = sc->sc_desc;
1642 DPRINTF(("ath_desc_alloc: DMA map: %p (%d) -> %p (%lu)\n",
1643 ds, sc->sc_desc_len,
1644 (caddr_t) sc->sc_desc_paddr, /*XXX*/ (u_long) sc->sc_desc_len));
1645
1646 /* allocate buffers */
1647 bsize = sizeof(struct ath_buf) * (ATH_TXBUF + ATH_RXBUF + 1);
1648 bf = malloc(bsize, M_DEVBUF, M_NOWAIT | M_ZERO);
1649 if (bf == NULL) {
1650 printf("%s: unable to allocate Tx/Rx buffers\n",
1651 sc->sc_dev.dv_xname);
1652 error = -1;
1653 goto fail2;
1654 }
1655 sc->sc_bufptr = bf;
1656
1657 TAILQ_INIT(&sc->sc_rxbuf);
1658 for (i = 0; i < ATH_RXBUF; i++, bf++, ds++) {
1659 bf->bf_desc = ds;
1660 bf->bf_daddr = sc->sc_desc_paddr +
1661 ((caddr_t)ds - (caddr_t)sc->sc_desc);
1662 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
1663 &bf->bf_dmamap);
1664 if (error != 0)
1665 break;
1666 TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
1667 }
1668
1669 TAILQ_INIT(&sc->sc_txbuf);
1670 for (i = 0; i < ATH_TXBUF; i++, bf++, ds += ATH_TXDESC) {
1671 bf->bf_desc = ds;
1672 bf->bf_daddr = sc->sc_desc_paddr +
1673 ((caddr_t)ds - (caddr_t)sc->sc_desc);
1674 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
1675 &bf->bf_dmamap);
1676 if (error != 0)
1677 break;
1678 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1679 }
1680 TAILQ_INIT(&sc->sc_txq);
1681
1682 /* beacon buffer */
1683 bf->bf_desc = ds;
1684 bf->bf_daddr = sc->sc_desc_paddr + ((caddr_t)ds - (caddr_t)sc->sc_desc);
1685 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &bf->bf_dmamap);
1686 if (error != 0)
1687 return error;
1688 sc->sc_bcbuf = bf;
1689 return 0;
1690
1691 fail2:
1692 bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
1693 fail1:
1694 bus_dmamem_free(sc->sc_dmat, sc->sc_desc, sc->sc_ddmamap);
1695 fail0:
1696 bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
1697 sc->sc_ddmamap = NULL;
1698 return error;
1699 }
1700 #else
1701 static int
1702 ath_desc_alloc(struct ath_softc *sc)
1703 {
1704 int i, bsize, error = -1;
1705 struct ath_desc *ds;
1706 struct ath_buf *bf;
1707
1708 /* allocate descriptors */
1709 sc->sc_desc_len = sizeof(struct ath_desc) *
1710 (ATH_TXBUF * ATH_TXDESC + ATH_RXBUF + 1);
1711 if ((error = bus_dmamem_alloc(sc->sc_dmat, sc->sc_desc_len, PAGE_SIZE,
1712 0, &sc->sc_dseg, 1, &sc->sc_dnseg, 0)) != 0) {
1713 printf("%s: unable to allocate control data, error = %d\n",
1714 sc->sc_dev.dv_xname, error);
1715 goto fail0;
1716 }
1717
1718 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg,
1719 sc->sc_desc_len, (caddr_t *)&sc->sc_desc, BUS_DMA_COHERENT)) != 0) {
1720 printf("%s: unable to map control data, error = %d\n",
1721 sc->sc_dev.dv_xname, error);
1722 goto fail1;
1723 }
1724
1725 if ((error = bus_dmamap_create(sc->sc_dmat, sc->sc_desc_len, 1,
1726 sc->sc_desc_len, 0, 0, &sc->sc_ddmamap)) != 0) {
1727 printf("%s: unable to create control data DMA map, "
1728 "error = %d\n", sc->sc_dev.dv_xname, error);
1729 goto fail2;
1730 }
1731
1732 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_ddmamap, sc->sc_desc,
1733 sc->sc_desc_len, NULL, 0)) != 0) {
1734 printf("%s: unable to load control data DMA map, error = %d\n",
1735 sc->sc_dev.dv_xname, error);
1736 goto fail3;
1737 }
1738
1739 ds = sc->sc_desc;
1740 sc->sc_desc_paddr = sc->sc_ddmamap->dm_segs[0].ds_addr;
1741
1742 DPRINTF(("ath_desc_alloc: DMA map: %p (%lu) -> %p (%lu)\n",
1743 ds, (u_long)sc->sc_desc_len,
1744 (caddr_t) sc->sc_desc_paddr, /*XXX*/ (u_long) sc->sc_desc_len));
1745
1746 /* allocate buffers */
1747 bsize = sizeof(struct ath_buf) * (ATH_TXBUF + ATH_RXBUF + 1);
1748 bf = malloc(bsize, M_DEVBUF, M_NOWAIT | M_ZERO);
1749 if (bf == NULL) {
1750 printf("%s: unable to allocate Tx/Rx buffers\n",
1751 sc->sc_dev.dv_xname);
1752 error = ENOMEM;
1753 goto fail3;
1754 }
1755 sc->sc_bufptr = bf;
1756
1757 TAILQ_INIT(&sc->sc_rxbuf);
1758 for (i = 0; i < ATH_RXBUF; i++, bf++, ds++) {
1759 bf->bf_desc = ds;
1760 bf->bf_daddr = sc->sc_desc_paddr +
1761 ((caddr_t)ds - (caddr_t)sc->sc_desc);
1762 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1763 MCLBYTES, 0, 0, &bf->bf_dmamap)) != 0) {
1764 printf("%s: unable to create Rx dmamap, error = %d\n",
1765 sc->sc_dev.dv_xname, error);
1766 goto fail4;
1767 }
1768 TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
1769 }
1770
1771 TAILQ_INIT(&sc->sc_txbuf);
1772 for (i = 0; i < ATH_TXBUF; i++, bf++, ds += ATH_TXDESC) {
1773 bf->bf_desc = ds;
1774 bf->bf_daddr = sc->sc_desc_paddr +
1775 ((caddr_t)ds - (caddr_t)sc->sc_desc);
1776 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1777 ATH_TXDESC, MCLBYTES, 0, 0, &bf->bf_dmamap)) != 0) {
1778 printf("%s: unable to create Tx dmamap, error = %d\n",
1779 sc->sc_dev.dv_xname, error);
1780 goto fail5;
1781 }
1782 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1783 }
1784 TAILQ_INIT(&sc->sc_txq);
1785
1786 /* beacon buffer */
1787 bf->bf_desc = ds;
1788 bf->bf_daddr = sc->sc_desc_paddr + ((caddr_t)ds - (caddr_t)sc->sc_desc);
1789 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
1790 &bf->bf_dmamap)) != 0) {
1791 printf("%s: unable to create beacon dmamap, error = %d\n",
1792 sc->sc_dev.dv_xname, error);
1793 goto fail5;
1794 }
1795 sc->sc_bcbuf = bf;
1796 return 0;
1797
1798 fail5:
1799 for (i = ATH_RXBUF; i < ATH_RXBUF + ATH_TXBUF; i++) {
1800 if (sc->sc_bufptr[i].bf_dmamap == NULL)
1801 continue;
1802 bus_dmamap_destroy(sc->sc_dmat, sc->sc_bufptr[i].bf_dmamap);
1803 }
1804 fail4:
1805 for (i = 0; i < ATH_RXBUF; i++) {
1806 if (sc->sc_bufptr[i].bf_dmamap == NULL)
1807 continue;
1808 bus_dmamap_destroy(sc->sc_dmat, sc->sc_bufptr[i].bf_dmamap);
1809 }
1810 fail3:
1811 bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
1812 fail2:
1813 bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
1814 sc->sc_ddmamap = NULL;
1815 fail1:
1816 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_desc, sc->sc_desc_len);
1817 fail0:
1818 bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg);
1819 return error;
1820 }
1821 #endif
1822
1823 static void
1824 ath_desc_free(struct ath_softc *sc)
1825 {
1826 struct ath_buf *bf;
1827
1828 #ifdef __FreeBSD__
1829 bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
1830 bus_dmamem_free(sc->sc_dmat, sc->sc_desc, sc->sc_ddmamap);
1831 bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
1832 #else
1833 bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
1834 bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
1835 bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg);
1836 #endif
1837
1838 TAILQ_FOREACH(bf, &sc->sc_txq, bf_list) {
1839 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1840 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
1841 m_freem(bf->bf_m);
1842 }
1843 TAILQ_FOREACH(bf, &sc->sc_txbuf, bf_list)
1844 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
1845 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
1846 if (bf->bf_m) {
1847 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1848 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
1849 m_freem(bf->bf_m);
1850 bf->bf_m = NULL;
1851 }
1852 }
1853 if (sc->sc_bcbuf != NULL) {
1854 bus_dmamap_unload(sc->sc_dmat, sc->sc_bcbuf->bf_dmamap);
1855 bus_dmamap_destroy(sc->sc_dmat, sc->sc_bcbuf->bf_dmamap);
1856 sc->sc_bcbuf = NULL;
1857 }
1858
1859 TAILQ_INIT(&sc->sc_rxbuf);
1860 TAILQ_INIT(&sc->sc_txbuf);
1861 TAILQ_INIT(&sc->sc_txq);
1862 free(sc->sc_bufptr, M_DEVBUF);
1863 sc->sc_bufptr = NULL;
1864 }
1865
1866 static struct ieee80211_node *
1867 ath_node_alloc(struct ieee80211com *ic)
1868 {
1869 struct ath_node *an =
1870 malloc(sizeof(struct ath_node), M_DEVBUF, M_NOWAIT | M_ZERO);
1871 return an ? &an->an_node : NULL;
1872 }
1873
1874 static void
1875 ath_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
1876 {
1877 struct ath_softc *sc = ic->ic_if.if_softc;
1878 struct ath_buf *bf;
1879
1880 TAILQ_FOREACH(bf, &sc->sc_txq, bf_list) {
1881 if (bf->bf_node == ni)
1882 bf->bf_node = NULL;
1883 }
1884 free(ni, M_DEVBUF);
1885 }
1886
1887 static void
1888 ath_node_copy(struct ieee80211com *ic,
1889 struct ieee80211_node *dst, const struct ieee80211_node *src)
1890 {
1891 *(struct ath_node *)dst = *(const struct ath_node *)src;
1892 }
1893
1894 static int
1895 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
1896 {
1897 struct ath_hal *ah = sc->sc_ah;
1898 int error;
1899 struct mbuf *m;
1900 struct ath_desc *ds;
1901
1902 m = bf->bf_m;
1903 if (m == NULL) {
1904 /*
1905 * NB: by assigning a page to the rx dma buffer we
1906 * implicitly satisfy the Atheros requirement that
1907 * this buffer be cache-line-aligned and sized to be
1908 * multiple of the cache line size. Not doing this
1909 * causes weird stuff to happen (for the 5210 at least).
1910 */
1911 m = ath_getmbuf(M_DONTWAIT, MT_DATA, MCLBYTES);
1912 if (m == NULL) {
1913 DPRINTF(("ath_rxbuf_init: no mbuf/cluster\n"));
1914 sc->sc_stats.ast_rx_nombuf++;
1915 return ENOMEM;
1916 }
1917 bf->bf_m = m;
1918 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
1919
1920 error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m,
1921 BUS_DMA_NOWAIT);
1922 if (error != 0) {
1923 DPRINTF(("ath_rxbuf_init: ath_buf_dmamap_load_mbuf failed;"
1924 " error %d\n", error));
1925 sc->sc_stats.ast_rx_busdma++;
1926 return error;
1927 }
1928 KASSERT(bf->bf_nseg == 1,
1929 ("ath_rxbuf_init: multi-segment packet; nseg %u",
1930 bf->bf_nseg));
1931 }
1932 ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_PREREAD);
1933
1934 /* setup descriptors */
1935 ds = bf->bf_desc;
1936 ds->ds_link = 0;
1937 ds->ds_data = bf->bf_segs[0].ds_addr;
1938 ath_hal_setuprxdesc(ah, ds
1939 , m->m_len /* buffer size */
1940 , 0
1941 );
1942
1943 if (sc->sc_rxlink != NULL)
1944 *sc->sc_rxlink = bf->bf_daddr;
1945 sc->sc_rxlink = &ds->ds_link;
1946 return 0;
1947 }
1948
1949 static void
1950 ath_rx_proc(void *arg, int npending)
1951 {
1952 struct ath_softc *sc = arg;
1953 struct ath_buf *bf;
1954 struct ieee80211com *ic = &sc->sc_ic;
1955 struct ifnet *ifp = &ic->ic_if;
1956 struct ath_hal *ah = sc->sc_ah;
1957 struct ath_desc *ds;
1958 struct mbuf *m;
1959 struct ieee80211_frame *wh, whbuf;
1960 struct ieee80211_node *ni;
1961 int len;
1962 u_int phyerr;
1963 HAL_STATUS status;
1964
1965 DPRINTF2(("ath_rx_proc: pending %u\n", npending));
1966 do {
1967 bf = TAILQ_FIRST(&sc->sc_rxbuf);
1968 if (bf == NULL) { /* NB: shouldn't happen */
1969 if_printf(ifp, "ath_rx_proc: no buffer!\n");
1970 break;
1971 }
1972 m = bf->bf_m;
1973 if (m == NULL) { /* NB: shouldn't happen */
1974 if_printf(ifp, "ath_rx_proc: no mbuf!\n");
1975 continue;
1976 }
1977 ds = bf->bf_desc;
1978 status = ath_hal_rxprocdesc(ah, ds);
1979 #ifdef AR_DEBUG
1980 if (ath_debug > 1)
1981 ath_printrxbuf(bf, status == HAL_OK);
1982 #endif
1983 if (status == HAL_EINPROGRESS)
1984 break;
1985 TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list);
1986 if (ds->ds_rxstat.rs_status != 0) {
1987 ifp->if_ierrors++;
1988 if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
1989 sc->sc_stats.ast_rx_crcerr++;
1990 if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
1991 sc->sc_stats.ast_rx_fifoerr++;
1992 if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT)
1993 sc->sc_stats.ast_rx_badcrypt++;
1994 if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
1995 sc->sc_stats.ast_rx_phyerr++;
1996 phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
1997 sc->sc_stats.ast_rx_phy[phyerr]++;
1998 }
1999 goto rx_next;
2000 }
2001
2002 len = ds->ds_rxstat.rs_datalen;
2003 if (len < sizeof(struct ieee80211_frame)) {
2004 DPRINTF(("ath_rx_proc: short packet %d\n", len));
2005 sc->sc_stats.ast_rx_tooshort++;
2006 goto rx_next;
2007 }
2008
2009 ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_POSTREAD);
2010
2011 wh = mtod(m, struct ieee80211_frame *);
2012 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
2013 IEEE80211_FC0_TYPE_CTL &&
2014 ic->ic_opmode != IEEE80211_M_MONITOR) {
2015 /*
2016 * Discard control frame when not in monitor mode.
2017 */
2018 DPRINTF(("ath_rx_proc: control frame\n"));
2019 sc->sc_stats.ast_rx_ctl++;
2020 goto rx_next;
2021 }
2022
2023 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2024 bf->bf_m = NULL;
2025 m->m_pkthdr.rcvif = ifp;
2026 m->m_pkthdr.len = m->m_len = len;
2027
2028 #if NBPFILTER > 0
2029 if (sc->sc_drvbpf) {
2030 #ifdef __FreeBSD__
2031 struct mbuf *mb;
2032
2033 /* XXX pre-allocate space when setting up recv's */
2034 MGETHDR(mb, M_DONTWAIT, m->m_type);
2035 if (mb != NULL) {
2036 sc->sc_rx_th.wr_rate =
2037 sc->sc_hwmap[ds->ds_rxstat.rs_rate];
2038 sc->sc_rx_th.wr_antsignal =
2039 ds->ds_rxstat.rs_rssi;
2040 sc->sc_rx_th.wr_antenna =
2041 ds->ds_rxstat.rs_antenna;
2042 /* XXX TSF */
2043
2044 (void) m_dup_pkthdr(mb, m, M_DONTWAIT);
2045 mb->m_next = m;
2046 mb->m_data = (caddr_t)&sc->sc_rx_th;
2047 mb->m_len = sizeof(sc->sc_rx_th);
2048 mb->m_pkthdr.len += mb->m_len;
2049 bpf_mtap(sc->sc_drvbpf, mb);
2050 m_free(mb);
2051 }
2052 #else
2053 /* XXX pre-allocate space when setting up recv's */
2054 struct mbuf mb;
2055
2056 sc->sc_rx_th.wr_rate =
2057 sc->sc_hwmap[ds->ds_rxstat.rs_rate];
2058 sc->sc_rx_th.wr_antsignal =
2059 ds->ds_rxstat.rs_rssi;
2060 sc->sc_rx_th.wr_antenna =
2061 ds->ds_rxstat.rs_antenna;
2062 /* XXX TSF */
2063
2064 M_COPY_PKTHDR(&mb, m);
2065 mb.m_next = m;
2066 mb.m_data = (caddr_t)&sc->sc_rx_th;
2067 mb.m_len = sizeof(sc->sc_rx_th);
2068 mb.m_pkthdr.len += mb.m_len;
2069 bpf_mtap(sc->sc_drvbpf, &mb);
2070 #endif
2071 }
2072 #endif
2073
2074 m_adj(m, -IEEE80211_CRC_LEN);
2075 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2076 /*
2077 * WEP is decrypted by hardware. Clear WEP bit
2078 * and trim WEP header for ieee80211_input().
2079 */
2080 wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
2081 memcpy(&whbuf, wh, sizeof(whbuf));
2082 m_adj(m, IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN);
2083 memcpy(mtod(m, caddr_t), &whbuf, sizeof(whbuf));
2084 /*
2085 * Also trim WEP ICV from the tail.
2086 */
2087 m_adj(m, -IEEE80211_WEP_CRCLEN);
2088 /*
2089 * The header has probably moved.
2090 */
2091 wh = mtod(m, struct ieee80211_frame *);
2092 }
2093
2094 /*
2095 * Locate the node for sender, track state, and
2096 * then pass this node (referenced) up to the 802.11
2097 * layer for its use. We are required to pass
2098 * something so we fall back to ic_bss when this frame
2099 * is from an unknown sender.
2100 */
2101 if (ic->ic_opmode != IEEE80211_M_STA) {
2102 ni = ieee80211_find_node(ic, wh->i_addr2);
2103 if (ni == NULL)
2104 ni = ieee80211_ref_node(ic->ic_bss);
2105 } else
2106 ni = ieee80211_ref_node(ic->ic_bss);
2107 ATH_NODE(ni)->an_rx_antenna = ds->ds_rxstat.rs_antenna;
2108 /*
2109 * Send frame up for processing.
2110 */
2111 ieee80211_input(ifp, m, ni,
2112 ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
2113 /*
2114 * The frame may have caused the node to be marked for
2115 * reclamation (e.g. in response to a DEAUTH message)
2116 * so use free_node here instead of unref_node.
2117 */
2118 if (ni == ic->ic_bss)
2119 ieee80211_unref_node(&ni);
2120 else
2121 ieee80211_free_node(ic, ni);
2122 rx_next:
2123 TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
2124 } while (ath_rxbuf_init(sc, bf) == 0);
2125
2126 ath_hal_rxmonitor(ah); /* rx signal state monitoring */
2127 ath_hal_rxena(ah); /* in case of RXEOL */
2128 }
2129
2130 /*
2131 * XXX Size of an ACK control frame in bytes.
2132 */
2133 #define IEEE80211_ACK_SIZE (2+2+IEEE80211_ADDR_LEN+4)
2134
2135 static int
2136 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
2137 struct mbuf *m0)
2138 {
2139 struct ieee80211com *ic = &sc->sc_ic;
2140 struct ath_hal *ah = sc->sc_ah;
2141 struct ifnet *ifp = &sc->sc_ic.ic_if;
2142 int i, error, iswep, hdrlen, pktlen;
2143 u_int8_t rix, cix, txrate, ctsrate;
2144 struct ath_desc *ds;
2145 struct mbuf *m;
2146 struct ieee80211_frame *wh;
2147 u_int32_t iv;
2148 u_int8_t *ivp;
2149 u_int8_t hdrbuf[sizeof(struct ieee80211_frame) +
2150 IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN];
2151 u_int subtype, flags, ctsduration, antenna;
2152 HAL_PKT_TYPE atype;
2153 const HAL_RATE_TABLE *rt;
2154 HAL_BOOL shortPreamble;
2155 struct ath_node *an;
2156 ath_txq_critsect_decl(s);
2157
2158 wh = mtod(m0, struct ieee80211_frame *);
2159 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
2160 hdrlen = sizeof(struct ieee80211_frame);
2161 pktlen = m0->m_pkthdr.len;
2162
2163 if (iswep) {
2164 memcpy(hdrbuf, mtod(m0, caddr_t), hdrlen);
2165 m_adj(m0, hdrlen);
2166 M_PREPEND(m0, sizeof(hdrbuf), M_DONTWAIT);
2167 if (m0 == NULL) {
2168 sc->sc_stats.ast_tx_nombuf++;
2169 return ENOMEM;
2170 }
2171 ivp = hdrbuf + hdrlen;
2172 /*
2173 * XXX
2174 * IV must not duplicate during the lifetime of the key.
2175 * But no mechanism to renew keys is defined in IEEE 802.11
2176 * WEP. And IV may be duplicated between other stations
2177 * because of the session key itself is shared.
2178 * So we use pseudo random IV for now, though it is not the
2179 * right way.
2180 */
2181 iv = arc4random();
2182 for (i = 0; i < IEEE80211_WEP_IVLEN; i++) {
2183 ivp[i] = iv;
2184 iv >>= 8;
2185 }
2186 ivp[i] = sc->sc_ic.ic_wep_txkey << 6; /* Key ID and pad */
2187 memcpy(mtod(m0, caddr_t), hdrbuf, sizeof(hdrbuf));
2188 /*
2189 * The ICV length must be included into hdrlen and pktlen.
2190 */
2191 hdrlen = sizeof(hdrbuf) + IEEE80211_WEP_CRCLEN;
2192 pktlen = m0->m_pkthdr.len + IEEE80211_WEP_CRCLEN;
2193 }
2194 pktlen += IEEE80211_CRC_LEN;
2195
2196 /*
2197 * Load the DMA map so any coalescing is done. This
2198 * also calculates the number of descriptors we need.
2199 */
2200 error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m0, BUS_DMA_NOWAIT);
2201 if (error != 0) {
2202 sc->sc_stats.ast_tx_busdma++;
2203 m_freem(m0);
2204 return error;
2205 }
2206 /*
2207 * Discard null packets and check for packets that
2208 * require too many TX descriptors. We try to convert
2209 * the latter to a cluster.
2210 */
2211 if (bf->bf_nseg > ATH_TXDESC) { /* too many desc's, linearize */
2212 sc->sc_stats.ast_tx_linear++;
2213 MGETHDR(m, M_DONTWAIT, MT_DATA);
2214 if (m == NULL) {
2215 sc->sc_stats.ast_tx_nombuf++;
2216 m_freem(m0);
2217 return ENOMEM;
2218 }
2219 #ifdef __FreeBSD__
2220 M_MOVE_PKTHDR(m, m0);
2221 #else
2222 M_COPY_PKTHDR(m, m0);
2223 #endif
2224 MCLGET(m, M_DONTWAIT);
2225 if ((m->m_flags & M_EXT) == 0) {
2226 sc->sc_stats.ast_tx_nomcl++;
2227 m_freem(m0);
2228 m_free(m);
2229 return ENOMEM;
2230 }
2231 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
2232 m_freem(m0);
2233 m->m_len = m->m_pkthdr.len;
2234 m0 = m;
2235 error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m0,
2236 BUS_DMA_NOWAIT);
2237 if (error != 0) {
2238 sc->sc_stats.ast_tx_busdma++;
2239 m_freem(m0);
2240 return error;
2241 }
2242 KASSERT(bf->bf_nseg == 1,
2243 ("ath_tx_start: packet not one segment; nseg %u",
2244 bf->bf_nseg));
2245 } else if (bf->bf_nseg == 0) { /* null packet, discard */
2246 sc->sc_stats.ast_tx_nodata++;
2247 m_freem(m0);
2248 return EIO;
2249 }
2250 DPRINTF2(("ath_tx_start: m %p len %u\n", m0, pktlen));
2251 ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_PREWRITE);
2252 bf->bf_m = m0;
2253 bf->bf_node = ni; /* NB: held reference */
2254
2255 /* setup descriptors */
2256 ds = bf->bf_desc;
2257 rt = sc->sc_currates;
2258 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
2259
2260 /*
2261 * Calculate Atheros packet type from IEEE80211 packet header
2262 * and setup for rate calculations.
2263 */
2264 atype = HAL_PKT_TYPE_NORMAL; /* default */
2265 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
2266 case IEEE80211_FC0_TYPE_MGT:
2267 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2268 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
2269 atype = HAL_PKT_TYPE_BEACON;
2270 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2271 atype = HAL_PKT_TYPE_PROBE_RESP;
2272 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
2273 atype = HAL_PKT_TYPE_ATIM;
2274 rix = 0; /* XXX lowest rate */
2275 break;
2276 case IEEE80211_FC0_TYPE_CTL:
2277 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2278 if (subtype == IEEE80211_FC0_SUBTYPE_PS_POLL)
2279 atype = HAL_PKT_TYPE_PSPOLL;
2280 rix = 0; /* XXX lowest rate */
2281 break;
2282 default:
2283 rix = sc->sc_rixmap[ni->ni_rates.rs_rates[ni->ni_txrate] &
2284 IEEE80211_RATE_VAL];
2285 if (rix == 0xff) {
2286 if_printf(ifp, "bogus xmit rate 0x%x\n",
2287 ni->ni_rates.rs_rates[ni->ni_txrate]);
2288 sc->sc_stats.ast_tx_badrate++;
2289 m_freem(m0);
2290 return EIO;
2291 }
2292 break;
2293 }
2294 /*
2295 * NB: the 802.11 layer marks whether or not we should
2296 * use short preamble based on the current mode and
2297 * negotiated parameters.
2298 */
2299 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) {
2300 txrate = rt->info[rix].rateCode | rt->info[rix].shortPreamble;
2301 shortPreamble = AH_TRUE;
2302 sc->sc_stats.ast_tx_shortpre++;
2303 } else {
2304 txrate = rt->info[rix].rateCode;
2305 shortPreamble = AH_FALSE;
2306 }
2307
2308 /*
2309 * Calculate miscellaneous flags.
2310 */
2311 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for wep errors */
2312 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2313 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */
2314 sc->sc_stats.ast_tx_noack++;
2315 } else if (pktlen > ic->ic_rtsthreshold) {
2316 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */
2317 sc->sc_stats.ast_tx_rts++;
2318 }
2319
2320 /*
2321 * Calculate RTS/CTS rate and duration if needed.
2322 */
2323 ctsduration = 0;
2324 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
2325 /*
2326 * CTS transmit rate is derived from the transmit rate
2327 * by looking in the h/w rate table. We must also factor
2328 * in whether or not a short preamble is to be used.
2329 */
2330 cix = rt->info[rix].controlRate;
2331 ctsrate = rt->info[cix].rateCode;
2332 if (shortPreamble)
2333 ctsrate |= rt->info[cix].shortPreamble;
2334 /*
2335 * Compute the transmit duration based on the size
2336 * of an ACK frame. We call into the HAL to do the
2337 * computation since it depends on the characteristics
2338 * of the actual PHY being used.
2339 */
2340 if (flags & HAL_TXDESC_RTSENA) { /* SIFS + CTS */
2341 ctsduration += ath_hal_computetxtime(ah,
2342 rt, IEEE80211_ACK_SIZE, cix, shortPreamble);
2343 }
2344 /* SIFS + data */
2345 ctsduration += ath_hal_computetxtime(ah,
2346 rt, pktlen, rix, shortPreamble);
2347 if ((flags & HAL_TXDESC_NOACK) == 0) { /* SIFS + ACK */
2348 ctsduration += ath_hal_computetxtime(ah,
2349 rt, IEEE80211_ACK_SIZE, cix, shortPreamble);
2350 }
2351 } else
2352 ctsrate = 0;
2353
2354 /*
2355 * For now use the antenna on which the last good
2356 * frame was received on. We assume this field is
2357 * initialized to 0 which gives us ``auto'' or the
2358 * ``default'' antenna.
2359 */
2360 an = (struct ath_node *) ni;
2361 if (an->an_tx_antenna)
2362 antenna = an->an_tx_antenna;
2363 else
2364 antenna = an->an_rx_antenna;
2365
2366 /*
2367 * Formulate first tx descriptor with tx controls.
2368 */
2369 /* XXX check return value? */
2370 ath_hal_setuptxdesc(ah, ds
2371 , pktlen /* packet length */
2372 , hdrlen /* header length */
2373 , atype /* Atheros packet type */
2374 , 60 /* txpower XXX */
2375 , txrate, 1+10 /* series 0 rate/tries */
2376 , iswep ? sc->sc_ic.ic_wep_txkey : HAL_TXKEYIX_INVALID
2377 , antenna /* antenna mode */
2378 , flags /* flags */
2379 , ctsrate /* rts/cts rate */
2380 , ctsduration /* rts/cts duration */
2381 );
2382 #ifdef notyet
2383 ath_hal_setupxtxdesc(ah, ds
2384 , AH_FALSE /* short preamble */
2385 , 0, 0 /* series 1 rate/tries */
2386 , 0, 0 /* series 2 rate/tries */
2387 , 0, 0 /* series 3 rate/tries */
2388 );
2389 #endif
2390 /*
2391 * Fillin the remainder of the descriptor info.
2392 */
2393 for (i = 0; i < bf->bf_nseg; i++, ds++) {
2394 ds->ds_data = bf->bf_segs[i].ds_addr;
2395 if (i == bf->bf_nseg - 1)
2396 ds->ds_link = 0;
2397 else
2398 ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
2399 ath_hal_filltxdesc(ah, ds
2400 , bf->bf_segs[i].ds_len /* segment length */
2401 , i == 0 /* first segment */
2402 , i == bf->bf_nseg - 1 /* last segment */
2403 );
2404 DPRINTF2(("ath_tx_start: %d: %08x %08x %08x %08x %08x %08x\n",
2405 i, ds->ds_link, ds->ds_data, ds->ds_ctl0, ds->ds_ctl1,
2406 ds->ds_hw[0], ds->ds_hw[1]));
2407 }
2408
2409 /*
2410 * Insert the frame on the outbound list and
2411 * pass it on to the hardware.
2412 */
2413 ath_txq_critsect_begin(sc, s);
2414 TAILQ_INSERT_TAIL(&sc->sc_txq, bf, bf_list);
2415 if (sc->sc_txlink == NULL) {
2416 ath_hal_puttxbuf(ah, sc->sc_txhalq, bf->bf_daddr);
2417 DPRINTF2(("ath_tx_start: TXDP0 = %p (%p)\n",
2418 (caddr_t)bf->bf_daddr, bf->bf_desc));
2419 } else {
2420 *sc->sc_txlink = bf->bf_daddr;
2421 DPRINTF2(("ath_tx_start: link(%p)=%p (%p)\n",
2422 sc->sc_txlink, (caddr_t)bf->bf_daddr, bf->bf_desc));
2423 }
2424 sc->sc_txlink = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
2425 ath_txq_critsect_end(sc, s);
2426
2427 ath_hal_txstart(ah, sc->sc_txhalq);
2428 return 0;
2429 }
2430
2431 static void
2432 ath_tx_proc(void *arg, int npending)
2433 {
2434 struct ath_softc *sc = arg;
2435 struct ath_hal *ah = sc->sc_ah;
2436 struct ath_buf *bf;
2437 struct ieee80211com *ic = &sc->sc_ic;
2438 struct ifnet *ifp = &ic->ic_if;
2439 struct ath_desc *ds;
2440 struct ieee80211_node *ni;
2441 struct ath_node *an;
2442 int sr, lr;
2443 HAL_STATUS status;
2444 ath_txq_critsect_decl(s);
2445 ath_txbuf_critsect_decl(s2);
2446
2447 DPRINTF2(("ath_tx_proc: pending %u tx queue %p, link %p\n",
2448 npending, (caddr_t) ath_hal_gettxbuf(sc->sc_ah, sc->sc_txhalq),
2449 sc->sc_txlink));
2450 for (;;) {
2451 ath_txq_critsect_begin(sc, s);
2452 bf = TAILQ_FIRST(&sc->sc_txq);
2453 if (bf == NULL) {
2454 sc->sc_txlink = NULL;
2455 ath_txq_critsect_end(sc, s);
2456 break;
2457 }
2458 /* only the last descriptor is needed */
2459 ds = &bf->bf_desc[bf->bf_nseg - 1];
2460 status = ath_hal_txprocdesc(ah, ds);
2461 #ifdef AR_DEBUG
2462 if (ath_debug > 1)
2463 ath_printtxbuf(bf, status == HAL_OK);
2464 #endif
2465 if (status == HAL_EINPROGRESS) {
2466 ath_txq_critsect_end(sc, s);
2467 break;
2468 }
2469 TAILQ_REMOVE(&sc->sc_txq, bf, bf_list);
2470 ath_txq_critsect_end(sc, s);
2471
2472 ni = bf->bf_node;
2473 if (ni != NULL) {
2474 an = (struct ath_node *) ni;
2475 if (ds->ds_txstat.ts_status == 0) {
2476 an->an_tx_ok++;
2477 an->an_tx_antenna = ds->ds_txstat.ts_antenna;
2478 } else {
2479 an->an_tx_err++;
2480 ifp->if_oerrors++;
2481 if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
2482 sc->sc_stats.ast_tx_xretries++;
2483 if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
2484 sc->sc_stats.ast_tx_fifoerr++;
2485 if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
2486 sc->sc_stats.ast_tx_filtered++;
2487 an->an_tx_antenna = 0; /* invalidate */
2488 }
2489 sr = ds->ds_txstat.ts_shortretry;
2490 lr = ds->ds_txstat.ts_longretry;
2491 sc->sc_stats.ast_tx_shortretry += sr;
2492 sc->sc_stats.ast_tx_longretry += lr;
2493 if (sr + lr)
2494 an->an_tx_retr++;
2495 /*
2496 * Reclaim reference to node.
2497 *
2498 * NB: the node may be reclaimed here if, for example
2499 * this is a DEAUTH message that was sent and the
2500 * node was timed out due to inactivity.
2501 */
2502 if (ni != ic->ic_bss)
2503 ieee80211_free_node(ic, ni);
2504 }
2505 ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_POSTWRITE);
2506 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2507 m_freem(bf->bf_m);
2508 bf->bf_m = NULL;
2509 bf->bf_node = NULL;
2510
2511 ath_txbuf_critsect_begin(sc, s2);
2512 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
2513 ath_txbuf_critsect_end(sc, s2);
2514 }
2515 ifp->if_flags &= ~IFF_OACTIVE;
2516 sc->sc_tx_timer = 0;
2517
2518 ath_start(ifp);
2519 }
2520
2521 /*
2522 * Drain the transmit queue and reclaim resources.
2523 */
2524 static void
2525 ath_draintxq(struct ath_softc *sc)
2526 {
2527 struct ath_hal *ah = sc->sc_ah;
2528 struct ifnet *ifp = &sc->sc_ic.ic_if;
2529 struct ath_buf *bf;
2530 ath_txq_critsect_decl(s);
2531 ath_txbuf_critsect_decl(s2);
2532
2533 /* XXX return value */
2534 if (!sc->sc_invalid) {
2535 /* don't touch the hardware if marked invalid */
2536 (void) ath_hal_stoptxdma(ah, sc->sc_txhalq);
2537 DPRINTF(("ath_draintxq: tx queue %p, link %p\n",
2538 (caddr_t) ath_hal_gettxbuf(ah, sc->sc_txhalq),
2539 sc->sc_txlink));
2540 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
2541 DPRINTF(("ath_draintxq: beacon queue %p\n",
2542 (caddr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq)));
2543 }
2544 for (;;) {
2545 ath_txq_critsect_begin(sc, s);
2546 bf = TAILQ_FIRST(&sc->sc_txq);
2547 if (bf == NULL) {
2548 sc->sc_txlink = NULL;
2549 ath_txq_critsect_end(sc, s);
2550 break;
2551 }
2552 TAILQ_REMOVE(&sc->sc_txq, bf, bf_list);
2553 ath_txq_critsect_end(sc, s);
2554 #ifdef AR_DEBUG
2555 if (ath_debug)
2556 ath_printtxbuf(bf,
2557 ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
2558 #endif /* AR_DEBUG */
2559 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2560 m_freem(bf->bf_m);
2561 bf->bf_m = NULL;
2562 bf->bf_node = NULL;
2563 ath_txbuf_critsect_begin(sc, s2);
2564 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
2565 ath_txbuf_critsect_end(sc, s2);
2566 }
2567 ifp->if_flags &= ~IFF_OACTIVE;
2568 sc->sc_tx_timer = 0;
2569 }
2570
2571 /*
2572 * Disable the receive h/w in preparation for a reset.
2573 */
2574 static void
2575 ath_stoprecv(struct ath_softc *sc)
2576 {
2577 struct ath_hal *ah = sc->sc_ah;
2578
2579 ath_hal_stoppcurecv(ah); /* disable PCU */
2580 ath_hal_setrxfilter(ah, 0); /* clear recv filter */
2581 ath_hal_stopdmarecv(ah); /* disable DMA engine */
2582 DELAY(3000); /* long enough for 1 frame */
2583 #ifdef AR_DEBUG
2584 if (ath_debug) {
2585 struct ath_buf *bf;
2586
2587 DPRINTF(("ath_stoprecv: rx queue %p, link %p\n",
2588 (caddr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink));
2589 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
2590 if (ath_hal_rxprocdesc(ah, bf->bf_desc) == HAL_OK)
2591 ath_printrxbuf(bf, 1);
2592 }
2593 }
2594 #endif
2595 sc->sc_rxlink = NULL; /* just in case */
2596 }
2597
2598 /*
2599 * Enable the receive h/w following a reset.
2600 */
2601 static int
2602 ath_startrecv(struct ath_softc *sc)
2603 {
2604 struct ath_hal *ah = sc->sc_ah;
2605 struct ath_buf *bf;
2606
2607 sc->sc_rxlink = NULL;
2608 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
2609 int error = ath_rxbuf_init(sc, bf);
2610 if (error != 0) {
2611 DPRINTF(("ath_startrecv: ath_rxbuf_init failed %d\n",
2612 error));
2613 return error;
2614 }
2615 }
2616
2617 bf = TAILQ_FIRST(&sc->sc_rxbuf);
2618 ath_hal_putrxbuf(ah, bf->bf_daddr);
2619 ath_hal_rxena(ah); /* enable recv descriptors */
2620 ath_mode_init(sc); /* set filters, etc. */
2621 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */
2622 return 0;
2623 }
2624
2625 /*
2626 * Set/change channels. If the channel is really being changed,
2627 * it's done by resetting the chip. To accomplish this we must
2628 * first cleanup any pending DMA, then restart stuff after a la
2629 * ath_init.
2630 */
2631 static int
2632 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
2633 {
2634 struct ath_hal *ah = sc->sc_ah;
2635 struct ieee80211com *ic = &sc->sc_ic;
2636
2637 DPRINTF(("ath_chan_set: %u (%u MHz) -> %u (%u MHz)\n",
2638 ieee80211_chan2ieee(ic, ic->ic_ibss_chan),
2639 ic->ic_ibss_chan->ic_freq,
2640 ieee80211_chan2ieee(ic, chan), chan->ic_freq));
2641 if (chan != ic->ic_ibss_chan) {
2642 HAL_STATUS status;
2643 HAL_CHANNEL hchan;
2644 enum ieee80211_phymode mode;
2645
2646 /*
2647 * To switch channels clear any pending DMA operations;
2648 * wait long enough for the RX fifo to drain, reset the
2649 * hardware at the new frequency, and then re-enable
2650 * the relevant bits of the h/w.
2651 */
2652 ath_hal_intrset(ah, 0); /* disable interrupts */
2653 ath_draintxq(sc); /* clear pending tx frames */
2654 ath_stoprecv(sc); /* turn off frame recv */
2655 /*
2656 * Convert to a HAL channel description with
2657 * the flags constrained to reflect the current
2658 * operating mode.
2659 */
2660 hchan.channel = chan->ic_freq;
2661 hchan.channelFlags = ath_chan2flags(ic, chan);
2662 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
2663 if_printf(&ic->ic_if, "ath_chan_set: unable to reset "
2664 "channel %u (%u Mhz)\n",
2665 ieee80211_chan2ieee(ic, chan), chan->ic_freq);
2666 return EIO;
2667 }
2668 /*
2669 * Re-enable rx framework.
2670 */
2671 if (ath_startrecv(sc) != 0) {
2672 if_printf(&ic->ic_if,
2673 "ath_chan_set: unable to restart recv logic\n");
2674 return EIO;
2675 }
2676
2677 /*
2678 * Update BPF state.
2679 */
2680 sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
2681 htole16(chan->ic_freq);
2682 sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
2683 htole16(chan->ic_flags);
2684
2685 /*
2686 * Change channels and update the h/w rate map
2687 * if we're switching; e.g. 11a to 11b/g.
2688 */
2689 ic->ic_ibss_chan = chan;
2690 mode = ieee80211_chan2mode(ic, chan);
2691 if (mode != sc->sc_curmode)
2692 ath_setcurmode(sc, mode);
2693
2694 /*
2695 * Re-enable interrupts.
2696 */
2697 ath_hal_intrset(ah, sc->sc_imask);
2698 }
2699 return 0;
2700 }
2701
2702 static void
2703 ath_next_scan(void *arg)
2704 {
2705 struct ath_softc *sc = arg;
2706 struct ieee80211com *ic = &sc->sc_ic;
2707 struct ifnet *ifp = &ic->ic_if;
2708 int s;
2709
2710 /* don't call ath_start w/o network interrupts blocked */
2711 s = splnet();
2712
2713 if (ic->ic_state == IEEE80211_S_SCAN)
2714 ieee80211_next_scan(ifp);
2715 splx(s);
2716 }
2717
2718 /*
2719 * Periodically recalibrate the PHY to account
2720 * for temperature/environment changes.
2721 */
2722 static void
2723 ath_calibrate(void *arg)
2724 {
2725 struct ath_softc *sc = arg;
2726 struct ath_hal *ah = sc->sc_ah;
2727 struct ieee80211com *ic = &sc->sc_ic;
2728 struct ieee80211_channel *c;
2729 HAL_CHANNEL hchan;
2730
2731 sc->sc_stats.ast_per_cal++;
2732
2733 /*
2734 * Convert to a HAL channel description with the flags
2735 * constrained to reflect the current operating mode.
2736 */
2737 c = ic->ic_ibss_chan;
2738 hchan.channel = c->ic_freq;
2739 hchan.channelFlags = ath_chan2flags(ic, c);
2740
2741 DPRINTF(("%s: channel %u/%x\n", __func__, c->ic_freq, c->ic_flags));
2742
2743 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
2744 /*
2745 * Rfgain is out of bounds, reset the chip
2746 * to load new gain values.
2747 */
2748 sc->sc_stats.ast_per_rfgain++;
2749 ath_reset(sc);
2750 }
2751 if (!ath_hal_calibrate(ah, &hchan)) {
2752 DPRINTF(("%s: calibration of channel %u failed\n",
2753 __func__, c->ic_freq));
2754 sc->sc_stats.ast_per_calfail++;
2755 }
2756 callout_reset(&sc->sc_cal_ch, hz * ath_calinterval, ath_calibrate, sc);
2757 }
2758
2759 static HAL_LED_STATE
2760 ath_state_to_led(enum ieee80211_state state)
2761 {
2762 switch (state) {
2763 case IEEE80211_S_INIT:
2764 return HAL_LED_INIT;
2765 case IEEE80211_S_SCAN:
2766 return HAL_LED_SCAN;
2767 case IEEE80211_S_AUTH:
2768 return HAL_LED_AUTH;
2769 case IEEE80211_S_ASSOC:
2770 return HAL_LED_ASSOC;
2771 case IEEE80211_S_RUN:
2772 return HAL_LED_RUN;
2773 default:
2774 panic("%s: unknown 802.11 state %d\n", __func__, state);
2775 return HAL_LED_INIT;
2776 }
2777 }
2778
2779 static int
2780 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2781 {
2782 struct ifnet *ifp = &ic->ic_if;
2783 struct ath_softc *sc = ifp->if_softc;
2784 struct ath_hal *ah = sc->sc_ah;
2785 struct ieee80211_node *ni;
2786 int i, error;
2787 u_int8_t *bssid;
2788 u_int32_t rfilt;
2789
2790 DPRINTF(("%s: %s -> %s\n", __func__,
2791 ieee80211_state_name[ic->ic_state],
2792 ieee80211_state_name[nstate]));
2793
2794 ath_hal_setledstate(ah, ath_state_to_led(nstate)); /* set LED */
2795
2796 if (nstate == IEEE80211_S_INIT) {
2797 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
2798 ath_hal_intrset(ah, sc->sc_imask);
2799 callout_stop(&sc->sc_scan_ch);
2800 callout_stop(&sc->sc_cal_ch);
2801 return (*sc->sc_newstate)(ic, nstate, arg);
2802 }
2803 ni = ic->ic_bss;
2804 error = ath_chan_set(sc, ni->ni_chan);
2805 if (error != 0)
2806 goto bad;
2807 rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
2808 | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
2809 if (ic->ic_opmode != IEEE80211_M_STA)
2810 rfilt |= HAL_RX_FILTER_PROBEREQ;
2811 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
2812 (ifp->if_flags & IFF_PROMISC))
2813 rfilt |= HAL_RX_FILTER_PROM;
2814 if (nstate == IEEE80211_S_SCAN) {
2815 callout_reset(&sc->sc_scan_ch, (hz * ath_dwelltime) / 1000,
2816 ath_next_scan, sc);
2817 bssid = ifp->if_broadcastaddr;
2818 rfilt |= HAL_RX_FILTER_BEACON;
2819 } else {
2820 callout_stop(&sc->sc_scan_ch);
2821 bssid = ni->ni_bssid;
2822 }
2823 ath_hal_setrxfilter(ah, rfilt);
2824 DPRINTF(("%s: RX filter 0x%x bssid %s\n",
2825 __func__, rfilt, ether_sprintf(bssid)));
2826
2827 if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
2828 ath_hal_setassocid(ah, bssid, ni->ni_associd);
2829 else
2830 ath_hal_setassocid(ah, bssid, 0);
2831 if (ic->ic_flags & IEEE80211_F_WEPON) {
2832 for (i = 0; i < IEEE80211_WEP_NKID; i++)
2833 if (ath_hal_keyisvalid(ah, i))
2834 ath_hal_keysetmac(ah, i, bssid);
2835 }
2836
2837 if (nstate == IEEE80211_S_RUN) {
2838 DPRINTF(("%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
2839 "capinfo=0x%04x chan=%d\n"
2840 , __func__
2841 , ic->ic_flags
2842 , ni->ni_intval
2843 , ether_sprintf(ni->ni_bssid)
2844 , ni->ni_capinfo
2845 , ieee80211_chan2ieee(ic, ni->ni_chan)));
2846
2847 /*
2848 * Allocate and setup the beacon frame for AP or adhoc mode.
2849 */
2850 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2851 ic->ic_opmode == IEEE80211_M_IBSS) {
2852 error = ath_beacon_alloc(sc, ni);
2853 if (error != 0)
2854 goto bad;
2855 }
2856
2857 /*
2858 * Configure the beacon and sleep timers.
2859 */
2860 ath_beacon_config(sc);
2861
2862 /* start periodic recalibration timer */
2863 callout_reset(&sc->sc_cal_ch, hz * ath_calinterval,
2864 ath_calibrate, sc);
2865 } else {
2866 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
2867 ath_hal_intrset(ah, sc->sc_imask);
2868 callout_stop(&sc->sc_cal_ch); /* no calibration */
2869 }
2870 /*
2871 * Reset the rate control state.
2872 */
2873 ath_rate_ctl_reset(sc, nstate);
2874 /*
2875 * Invoke the parent method to complete the work.
2876 */
2877 return (*sc->sc_newstate)(ic, nstate, arg);
2878 bad:
2879 callout_stop(&sc->sc_scan_ch);
2880 callout_stop(&sc->sc_cal_ch);
2881 /* NB: do not invoke the parent */
2882 return error;
2883 }
2884
2885 /*
2886 * Setup driver-specific state for a newly associated node.
2887 * Note that we're called also on a re-associate, the isnew
2888 * param tells us if this is the first time or not.
2889 */
2890 static void
2891 ath_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
2892 {
2893 if (isnew) {
2894 struct ath_node *an = (struct ath_node *) ni;
2895
2896 an->an_tx_ok = an->an_tx_err =
2897 an->an_tx_retr = an->an_tx_upper = 0;
2898 /* start with highest negotiated rate */
2899 /*
2900 * XXX should do otherwise but only when
2901 * the rate control algorithm is better.
2902 */
2903 KASSERT(ni->ni_rates.rs_nrates > 0,
2904 ("new association w/ no rates!"));
2905 ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
2906 }
2907 }
2908
2909 static int
2910 ath_getchannels(struct ath_softc *sc, u_int cc, HAL_BOOL outdoor)
2911 {
2912 struct ieee80211com *ic = &sc->sc_ic;
2913 struct ifnet *ifp = &ic->ic_if;
2914 struct ath_hal *ah = sc->sc_ah;
2915 HAL_CHANNEL *chans;
2916 int i, ix, nchan;
2917
2918 sc->sc_have11g = 0;
2919 chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
2920 M_TEMP, M_NOWAIT);
2921 if (chans == NULL) {
2922 if_printf(ifp, "unable to allocate channel table\n");
2923 return ENOMEM;
2924 }
2925 if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
2926 cc, HAL_MODE_ALL, outdoor)) {
2927 if_printf(ifp, "unable to collect channel list from hal\n");
2928 free(chans, M_TEMP);
2929 return EINVAL;
2930 }
2931
2932 /*
2933 * Convert HAL channels to ieee80211 ones and insert
2934 * them in the table according to their channel number.
2935 */
2936 for (i = 0; i < nchan; i++) {
2937 HAL_CHANNEL *c = &chans[i];
2938 ix = ath_hal_mhz2ieee(c->channel, c->channelFlags);
2939 if (ix > IEEE80211_CHAN_MAX) {
2940 if_printf(ifp, "bad hal channel %u (%u/%x) ignored\n",
2941 ix, c->channel, c->channelFlags);
2942 continue;
2943 }
2944 /* NB: flags are known to be compatible */
2945 if (ic->ic_channels[ix].ic_freq == 0) {
2946 ic->ic_channels[ix].ic_freq = c->channel;
2947 ic->ic_channels[ix].ic_flags = c->channelFlags;
2948 } else {
2949 /* channels overlap; e.g. 11g and 11b */
2950 ic->ic_channels[ix].ic_flags |= c->channelFlags;
2951 }
2952 if ((c->channelFlags & CHANNEL_G) == CHANNEL_G)
2953 sc->sc_have11g = 1;
2954 }
2955 free(chans, M_TEMP);
2956 return 0;
2957 }
2958
2959 static int
2960 ath_rate_setup(struct ath_softc *sc, u_int mode)
2961 {
2962 struct ath_hal *ah = sc->sc_ah;
2963 struct ieee80211com *ic = &sc->sc_ic;
2964 const HAL_RATE_TABLE *rt;
2965 struct ieee80211_rateset *rs;
2966 int i, maxrates;
2967
2968 switch (mode) {
2969 case IEEE80211_MODE_11A:
2970 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11A);
2971 break;
2972 case IEEE80211_MODE_11B:
2973 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11B);
2974 break;
2975 case IEEE80211_MODE_11G:
2976 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11G);
2977 break;
2978 case IEEE80211_MODE_TURBO:
2979 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_TURBO);
2980 break;
2981 default:
2982 DPRINTF(("%s: invalid mode %u\n", __func__, mode));
2983 return 0;
2984 }
2985 rt = sc->sc_rates[mode];
2986 if (rt == NULL)
2987 return 0;
2988 if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
2989 DPRINTF(("%s: rate table too small (%u > %u)\n",
2990 __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE));
2991 maxrates = IEEE80211_RATE_MAXSIZE;
2992 } else
2993 maxrates = rt->rateCount;
2994 rs = &ic->ic_sup_rates[mode];
2995 for (i = 0; i < maxrates; i++)
2996 rs->rs_rates[i] = rt->info[i].dot11Rate;
2997 rs->rs_nrates = maxrates;
2998 return 1;
2999 }
3000
3001 static void
3002 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
3003 {
3004 const HAL_RATE_TABLE *rt;
3005 int i;
3006
3007 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
3008 rt = sc->sc_rates[mode];
3009 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
3010 for (i = 0; i < rt->rateCount; i++)
3011 sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
3012 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
3013 for (i = 0; i < 32; i++)
3014 sc->sc_hwmap[i] = rt->info[rt->rateCodeToIndex[i]].dot11Rate;
3015 sc->sc_currates = rt;
3016 sc->sc_curmode = mode;
3017 }
3018
3019 /*
3020 * Reset the rate control state for each 802.11 state transition.
3021 */
3022 static void
3023 ath_rate_ctl_reset(struct ath_softc *sc, enum ieee80211_state state)
3024 {
3025 struct ieee80211com *ic = &sc->sc_ic;
3026 struct ieee80211_node *ni;
3027 struct ath_node *an;
3028
3029 an = (struct ath_node *) ic->ic_bss;
3030 an->an_tx_ok = an->an_tx_err = an->an_tx_retr = an->an_tx_upper = 0;
3031 if (ic->ic_opmode == IEEE80211_M_STA) {
3032 ni = ic->ic_bss;
3033 if (state == IEEE80211_S_RUN) {
3034 /* start with highest negotiated rate */
3035 KASSERT(ni->ni_rates.rs_nrates > 0,
3036 ("transition to RUN state w/ no rates!"));
3037 ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
3038 } else {
3039 /* use lowest rate */
3040 ni->ni_txrate = 0;
3041 }
3042 } else {
3043 TAILQ_FOREACH(ni, &ic->ic_node, ni_list) {
3044 ni->ni_txrate = 0; /* use lowest rate */
3045 an = (struct ath_node *) ni;
3046 an->an_tx_ok = an->an_tx_err = an->an_tx_retr =
3047 an->an_tx_upper = 0;
3048 }
3049 }
3050 }
3051
3052 /*
3053 * Examine and potentially adjust the transmit rate.
3054 */
3055 static void
3056 ath_rate_ctl(void *arg, struct ieee80211_node *ni)
3057 {
3058 struct ath_softc *sc = arg;
3059 struct ath_node *an = (struct ath_node *) ni;
3060 struct ieee80211_rateset *rs = &ni->ni_rates;
3061 int mod = 0, orate, enough;
3062
3063 /*
3064 * Rate control
3065 * XXX: very primitive version.
3066 */
3067 sc->sc_stats.ast_rate_calls++;
3068
3069 enough = (an->an_tx_ok + an->an_tx_err >= 10);
3070
3071 /* no packet reached -> down */
3072 if (an->an_tx_err > 0 && an->an_tx_ok == 0)
3073 mod = -1;
3074
3075 /* all packets needs retry in average -> down */
3076 if (enough && an->an_tx_ok < an->an_tx_retr)
3077 mod = -1;
3078
3079 /* no error and less than 10% of packets needs retry -> up */
3080 if (enough && an->an_tx_err == 0 && an->an_tx_ok > an->an_tx_retr * 10)
3081 mod = 1;
3082
3083 orate = ni->ni_txrate;
3084 switch (mod) {
3085 case 0:
3086 if (enough && an->an_tx_upper > 0)
3087 an->an_tx_upper--;
3088 break;
3089 case -1:
3090 if (ni->ni_txrate > 0) {
3091 ni->ni_txrate--;
3092 sc->sc_stats.ast_rate_drop++;
3093 }
3094 an->an_tx_upper = 0;
3095 break;
3096 case 1:
3097 if (++an->an_tx_upper < 2)
3098 break;
3099 an->an_tx_upper = 0;
3100 if (ni->ni_txrate + 1 < rs->rs_nrates) {
3101 ni->ni_txrate++;
3102 sc->sc_stats.ast_rate_raise++;
3103 }
3104 break;
3105 }
3106
3107 if (ni->ni_txrate != orate) {
3108 DPRINTF(("%s: %dM -> %dM (%d ok, %d err, %d retr)\n",
3109 __func__,
3110 (rs->rs_rates[orate] & IEEE80211_RATE_VAL) / 2,
3111 (rs->rs_rates[ni->ni_txrate] & IEEE80211_RATE_VAL) / 2,
3112 an->an_tx_ok, an->an_tx_err, an->an_tx_retr));
3113 }
3114 if (ni->ni_txrate != orate || enough)
3115 an->an_tx_ok = an->an_tx_err = an->an_tx_retr = 0;
3116 }
3117
3118 #ifdef AR_DEBUG
3119 #ifdef __FreeBSD__
3120 static int
3121 sysctl_hw_ath_dump(SYSCTL_HANDLER_ARGS)
3122 {
3123 char dmode[64];
3124 int error;
3125
3126 strncpy(dmode, "", sizeof(dmode) - 1);
3127 dmode[sizeof(dmode) - 1] = '\0';
3128 error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req);
3129
3130 if (error == 0 && req->newptr != NULL) {
3131 struct ifnet *ifp;
3132 struct ath_softc *sc;
3133
3134 ifp = ifunit("ath0"); /* XXX */
3135 if (!ifp)
3136 return EINVAL;
3137 sc = ifp->if_softc;
3138 if (strcmp(dmode, "hal") == 0)
3139 ath_hal_dumpstate(sc->sc_ah);
3140 else if (strcmp(dmode, "eeprom") == 0)
3141 ath_hal_dumpeeprom(sc->sc_ah);
3142 else if (strcmp(dmode, "rfgain") == 0)
3143 ath_hal_dumprfgain(sc->sc_ah);
3144 else if (strcmp(dmode, "ani") == 0)
3145 ath_hal_dumpani(sc->sc_ah);
3146 else
3147 return EINVAL;
3148 }
3149 return error;
3150 }
3151 SYSCTL_PROC(_hw_ath, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW,
3152 0, 0, sysctl_hw_ath_dump, "A", "Dump driver state");
3153 #endif /* __FreeBSD__ */
3154
3155 static void
3156 ath_printrxbuf(struct ath_buf *bf, int done)
3157 {
3158 struct ath_desc *ds;
3159 int i;
3160
3161 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
3162 printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n",
3163 i, ds, (struct ath_desc *)bf->bf_daddr + i,
3164 ds->ds_link, ds->ds_data,
3165 ds->ds_ctl0, ds->ds_ctl1,
3166 ds->ds_hw[0], ds->ds_hw[1],
3167 !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
3168 }
3169 }
3170
3171 static void
3172 ath_printtxbuf(struct ath_buf *bf, int done)
3173 {
3174 struct ath_desc *ds;
3175 int i;
3176
3177 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
3178 printf("T%d (%p %p) %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
3179 i, ds, (struct ath_desc *)bf->bf_daddr + i,
3180 ds->ds_link, ds->ds_data,
3181 ds->ds_ctl0, ds->ds_ctl1,
3182 ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
3183 !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
3184 }
3185 }
3186 #endif /* AR_DEBUG */
3187