ath.c revision 1.82 1 /* $NetBSD: ath.c,v 1.82 2007/03/04 06:01:49 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15 * redistribution must be conditioned upon including a substantially
16 * similar Disclaimer requirement for further binary redistribution.
17 * 3. Neither the names of the above-listed copyright holders nor the names
18 * of any contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * Alternatively, this software may be distributed under the terms of the
22 * GNU General Public License ("GPL") version 2 as published by the Free
23 * Software Foundation.
24 *
25 * NO WARRANTY
26 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
28 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
29 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
30 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
31 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
34 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
36 * THE POSSIBILITY OF SUCH DAMAGES.
37 */
38
39 #include <sys/cdefs.h>
40 #ifdef __FreeBSD__
41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $");
42 #endif
43 #ifdef __NetBSD__
44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.82 2007/03/04 06:01:49 christos Exp $");
45 #endif
46
47 /*
48 * Driver for the Atheros Wireless LAN controller.
49 *
50 * This software is derived from work of Atsushi Onoe; his contribution
51 * is greatly appreciated.
52 */
53
54 #include "opt_inet.h"
55
56 #ifdef __NetBSD__
57 #include "bpfilter.h"
58 #endif /* __NetBSD__ */
59
60 #include <sys/param.h>
61 #include <sys/reboot.h>
62 #include <sys/systm.h>
63 #include <sys/types.h>
64 #include <sys/sysctl.h>
65 #include <sys/mbuf.h>
66 #include <sys/malloc.h>
67 #include <sys/lock.h>
68 #include <sys/kernel.h>
69 #include <sys/socket.h>
70 #include <sys/sockio.h>
71 #include <sys/errno.h>
72 #include <sys/callout.h>
73 #include <machine/bus.h>
74 #include <sys/endian.h>
75
76 #include <net/if.h>
77 #include <net/if_dl.h>
78 #include <net/if_media.h>
79 #include <net/if_types.h>
80 #include <net/if_arp.h>
81 #include <net/if_ether.h>
82 #include <net/if_llc.h>
83
84 #include <net80211/ieee80211_netbsd.h>
85 #include <net80211/ieee80211_var.h>
86
87 #if NBPFILTER > 0
88 #include <net/bpf.h>
89 #endif
90
91 #ifdef INET
92 #include <netinet/in.h>
93 #endif
94
95 #include <sys/device.h>
96 #include <dev/ic/ath_netbsd.h>
97
98 #define AR_DEBUG
99 #include <dev/ic/athvar.h>
100 #include <contrib/dev/ath/ah_desc.h>
101 #include <contrib/dev/ath/ah_devid.h> /* XXX for softled */
102 #include "athhal_options.h"
103
104 #ifdef ATH_TX99_DIAG
105 #include <dev/ath/ath_tx99/ath_tx99.h>
106 #endif
107
108 /* unaligned little endian access */
109 #define LE_READ_2(p) \
110 ((u_int16_t) \
111 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8)))
112 #define LE_READ_4(p) \
113 ((u_int32_t) \
114 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \
115 (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
116
117 enum {
118 ATH_LED_TX,
119 ATH_LED_RX,
120 ATH_LED_POLL,
121 };
122
123 #ifdef AH_NEED_DESC_SWAP
124 #define HTOAH32(x) htole32(x)
125 #else
126 #define HTOAH32(x) (x)
127 #endif
128
129 static int ath_ifinit(struct ifnet *);
130 static int ath_init(struct ath_softc *);
131 static void ath_stop_locked(struct ifnet *, int);
132 static void ath_stop(struct ifnet *, int);
133 static void ath_start(struct ifnet *);
134 static int ath_media_change(struct ifnet *);
135 static void ath_watchdog(struct ifnet *);
136 static int ath_ioctl(struct ifnet *, u_long, void *);
137 static void ath_fatal_proc(void *, int);
138 static void ath_rxorn_proc(void *, int);
139 static void ath_bmiss_proc(void *, int);
140 static void ath_radar_proc(void *, int);
141 static int ath_key_alloc(struct ieee80211com *,
142 const struct ieee80211_key *,
143 ieee80211_keyix *, ieee80211_keyix *);
144 static int ath_key_delete(struct ieee80211com *,
145 const struct ieee80211_key *);
146 static int ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
147 const u_int8_t mac[IEEE80211_ADDR_LEN]);
148 static void ath_key_update_begin(struct ieee80211com *);
149 static void ath_key_update_end(struct ieee80211com *);
150 static void ath_mode_init(struct ath_softc *);
151 static void ath_setslottime(struct ath_softc *);
152 static void ath_updateslot(struct ifnet *);
153 static int ath_beaconq_setup(struct ath_hal *);
154 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
155 static void ath_beacon_setup(struct ath_softc *, struct ath_buf *);
156 static void ath_beacon_proc(void *, int);
157 static void ath_bstuck_proc(void *, int);
158 static void ath_beacon_free(struct ath_softc *);
159 static void ath_beacon_config(struct ath_softc *);
160 static void ath_descdma_cleanup(struct ath_softc *sc,
161 struct ath_descdma *, ath_bufhead *);
162 static int ath_desc_alloc(struct ath_softc *);
163 static void ath_desc_free(struct ath_softc *);
164 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
165 static void ath_node_free(struct ieee80211_node *);
166 static u_int8_t ath_node_getrssi(const struct ieee80211_node *);
167 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
168 static void ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
169 struct ieee80211_node *ni,
170 int subtype, int rssi, u_int32_t rstamp);
171 static void ath_setdefantenna(struct ath_softc *, u_int);
172 static void ath_rx_proc(void *, int);
173 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
174 static int ath_tx_setup(struct ath_softc *, int, int);
175 static int ath_wme_update(struct ieee80211com *);
176 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
177 static void ath_tx_cleanup(struct ath_softc *);
178 static int ath_tx_start(struct ath_softc *, struct ieee80211_node *,
179 struct ath_buf *, struct mbuf *);
180 static void ath_tx_proc_q0(void *, int);
181 static void ath_tx_proc_q0123(void *, int);
182 static void ath_tx_proc(void *, int);
183 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
184 static void ath_draintxq(struct ath_softc *);
185 static void ath_stoprecv(struct ath_softc *);
186 static int ath_startrecv(struct ath_softc *);
187 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
188 static void ath_next_scan(void *);
189 static void ath_calibrate(void *);
190 static int ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
191 static void ath_setup_stationkey(struct ieee80211_node *);
192 static void ath_newassoc(struct ieee80211_node *, int);
193 static int ath_getchannels(struct ath_softc *, u_int cc,
194 HAL_BOOL outdoor, HAL_BOOL xchanmode);
195 static void ath_led_event(struct ath_softc *, int);
196 static void ath_update_txpow(struct ath_softc *);
197
198 static int ath_rate_setup(struct ath_softc *, u_int mode);
199 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
200
201 #ifdef __NetBSD__
202 int ath_enable(struct ath_softc *);
203 void ath_disable(struct ath_softc *);
204 void ath_power(int, void *);
205 #endif
206
207 #if NBPFILTER > 0
208 static void ath_bpfattach(struct ath_softc *);
209 #endif
210 static void ath_announce(struct ath_softc *);
211
212 int ath_dwelltime = 200; /* 5 channels/second */
213 int ath_calinterval = 30; /* calibrate every 30 secs */
214 int ath_outdoor = AH_TRUE; /* outdoor operation */
215 int ath_xchanmode = AH_TRUE; /* enable extended channels */
216 int ath_countrycode = CTRY_DEFAULT; /* country code */
217 int ath_regdomain = 0; /* regulatory domain */
218 int ath_debug = 0;
219 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */
220 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */
221
222 #ifdef AR_DEBUG
223 enum {
224 ATH_DEBUG_XMIT = 0x00000001, /* basic xmit operation */
225 ATH_DEBUG_XMIT_DESC = 0x00000002, /* xmit descriptors */
226 ATH_DEBUG_RECV = 0x00000004, /* basic recv operation */
227 ATH_DEBUG_RECV_DESC = 0x00000008, /* recv descriptors */
228 ATH_DEBUG_RATE = 0x00000010, /* rate control */
229 ATH_DEBUG_RESET = 0x00000020, /* reset processing */
230 ATH_DEBUG_MODE = 0x00000040, /* mode init/setup */
231 ATH_DEBUG_BEACON = 0x00000080, /* beacon handling */
232 ATH_DEBUG_WATCHDOG = 0x00000100, /* watchdog timeout */
233 ATH_DEBUG_INTR = 0x00001000, /* ISR */
234 ATH_DEBUG_TX_PROC = 0x00002000, /* tx ISR proc */
235 ATH_DEBUG_RX_PROC = 0x00004000, /* rx ISR proc */
236 ATH_DEBUG_BEACON_PROC = 0x00008000, /* beacon ISR proc */
237 ATH_DEBUG_CALIBRATE = 0x00010000, /* periodic calibration */
238 ATH_DEBUG_KEYCACHE = 0x00020000, /* key cache management */
239 ATH_DEBUG_STATE = 0x00040000, /* 802.11 state transitions */
240 ATH_DEBUG_NODE = 0x00080000, /* node management */
241 ATH_DEBUG_LED = 0x00100000, /* led management */
242 ATH_DEBUG_FF = 0x00200000, /* fast frames */
243 ATH_DEBUG_DFS = 0x00400000, /* DFS processing */
244 ATH_DEBUG_FATAL = 0x80000000, /* fatal errors */
245 ATH_DEBUG_ANY = 0xffffffff
246 };
247 #define IFF_DUMPPKTS(sc, m) \
248 ((sc->sc_debug & (m)) || \
249 (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
250 #define DPRINTF(sc, m, fmt, ...) do { \
251 if (sc->sc_debug & (m)) \
252 printf(fmt, __VA_ARGS__); \
253 } while (0)
254 #define KEYPRINTF(sc, ix, hk, mac) do { \
255 if (sc->sc_debug & ATH_DEBUG_KEYCACHE) \
256 ath_keyprint(__func__, ix, hk, mac); \
257 } while (0)
258 static void ath_printrxbuf(struct ath_buf *bf, int);
259 static void ath_printtxbuf(struct ath_buf *bf, int);
260 #else
261 #define IFF_DUMPPKTS(sc, m) \
262 ((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
263 #define DPRINTF(m, fmt, ...)
264 #define KEYPRINTF(sc, k, ix, mac)
265 #endif
266
267 #ifdef __NetBSD__
268 int
269 ath_activate(struct device *self, enum devact act)
270 {
271 struct ath_softc *sc = (struct ath_softc *)self;
272 int rv = 0, s;
273
274 s = splnet();
275 switch (act) {
276 case DVACT_ACTIVATE:
277 rv = EOPNOTSUPP;
278 break;
279 case DVACT_DEACTIVATE:
280 if_deactivate(&sc->sc_if);
281 break;
282 }
283 splx(s);
284 return rv;
285 }
286
287 int
288 ath_enable(struct ath_softc *sc)
289 {
290 if (ATH_IS_ENABLED(sc) == 0) {
291 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
292 printf("%s: device enable failed\n",
293 sc->sc_dev.dv_xname);
294 return (EIO);
295 }
296 sc->sc_flags |= ATH_ENABLED;
297 }
298 return (0);
299 }
300
301 void
302 ath_disable(struct ath_softc *sc)
303 {
304 if (!ATH_IS_ENABLED(sc))
305 return;
306 if (sc->sc_disable != NULL)
307 (*sc->sc_disable)(sc);
308 sc->sc_flags &= ~ATH_ENABLED;
309 }
310 #endif /* __NetBSD__ */
311
312 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
313
314 int
315 ath_attach(u_int16_t devid, struct ath_softc *sc)
316 {
317 struct ifnet *ifp = &sc->sc_if;
318 struct ieee80211com *ic = &sc->sc_ic;
319 struct ath_hal *ah = NULL;
320 HAL_STATUS status;
321 int error = 0, i;
322
323 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
324
325 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
326
327 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
328 if (ah == NULL) {
329 if_printf(ifp, "unable to attach hardware; HAL status %u\n",
330 status);
331 error = ENXIO;
332 goto bad;
333 }
334 if (ah->ah_abi != HAL_ABI_VERSION) {
335 if_printf(ifp, "HAL ABI mismatch detected "
336 "(HAL:0x%x != driver:0x%x)\n",
337 ah->ah_abi, HAL_ABI_VERSION);
338 error = ENXIO;
339 goto bad;
340 }
341 sc->sc_ah = ah;
342 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */
343
344 /*
345 * Check if the MAC has multi-rate retry support.
346 * We do this by trying to setup a fake extended
347 * descriptor. MAC's that don't have support will
348 * return false w/o doing anything. MAC's that do
349 * support it will return true w/o doing anything.
350 */
351 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
352
353 /*
354 * Check if the device has hardware counters for PHY
355 * errors. If so we need to enable the MIB interrupt
356 * so we can act on stat triggers.
357 */
358 if (ath_hal_hwphycounters(ah))
359 sc->sc_needmib = 1;
360
361 /*
362 * Get the hardware key cache size.
363 */
364 sc->sc_keymax = ath_hal_keycachesize(ah);
365 if (sc->sc_keymax > ATH_KEYMAX) {
366 if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
367 ATH_KEYMAX, sc->sc_keymax);
368 sc->sc_keymax = ATH_KEYMAX;
369 }
370 /*
371 * Reset the key cache since some parts do not
372 * reset the contents on initial power up.
373 */
374 for (i = 0; i < sc->sc_keymax; i++)
375 ath_hal_keyreset(ah, i);
376 /*
377 * Mark key cache slots associated with global keys
378 * as in use. If we knew TKIP was not to be used we
379 * could leave the +32, +64, and +32+64 slots free.
380 * XXX only for splitmic.
381 */
382 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
383 setbit(sc->sc_keymap, i);
384 setbit(sc->sc_keymap, i+32);
385 setbit(sc->sc_keymap, i+64);
386 setbit(sc->sc_keymap, i+32+64);
387 }
388
389 /*
390 * Collect the channel list using the default country
391 * code and including outdoor channels. The 802.11 layer
392 * is resposible for filtering this list based on settings
393 * like the phy mode.
394 */
395 error = ath_getchannels(sc, ath_countrycode,
396 ath_outdoor, ath_xchanmode);
397 if (error != 0)
398 goto bad;
399
400 /*
401 * Setup rate tables for all potential media types.
402 */
403 ath_rate_setup(sc, IEEE80211_MODE_11A);
404 ath_rate_setup(sc, IEEE80211_MODE_11B);
405 ath_rate_setup(sc, IEEE80211_MODE_11G);
406 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
407 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
408 /* NB: setup here so ath_rate_update is happy */
409 ath_setcurmode(sc, IEEE80211_MODE_11A);
410
411 /*
412 * Allocate tx+rx descriptors and populate the lists.
413 */
414 error = ath_desc_alloc(sc);
415 if (error != 0) {
416 if_printf(ifp, "failed to allocate descriptors: %d\n", error);
417 goto bad;
418 }
419 ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
420 ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE);
421 ATH_CALLOUT_INIT(&sc->sc_dfs_ch, CALLOUT_MPSAFE);
422
423 ATH_TXBUF_LOCK_INIT(sc);
424
425 TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
426 TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
427 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
428 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
429 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
430 TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc);
431
432 /*
433 * Allocate hardware transmit queues: one queue for
434 * beacon frames and one data queue for each QoS
435 * priority. Note that the hal handles reseting
436 * these queues at the needed time.
437 *
438 * XXX PS-Poll
439 */
440 sc->sc_bhalq = ath_beaconq_setup(ah);
441 if (sc->sc_bhalq == (u_int) -1) {
442 if_printf(ifp, "unable to setup a beacon xmit queue!\n");
443 error = EIO;
444 goto bad2;
445 }
446 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
447 if (sc->sc_cabq == NULL) {
448 if_printf(ifp, "unable to setup CAB xmit queue!\n");
449 error = EIO;
450 goto bad2;
451 }
452 /* NB: insure BK queue is the lowest priority h/w queue */
453 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
454 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
455 ieee80211_wme_acnames[WME_AC_BK]);
456 error = EIO;
457 goto bad2;
458 }
459 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
460 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
461 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
462 /*
463 * Not enough hardware tx queues to properly do WME;
464 * just punt and assign them all to the same h/w queue.
465 * We could do a better job of this if, for example,
466 * we allocate queues when we switch from station to
467 * AP mode.
468 */
469 if (sc->sc_ac2q[WME_AC_VI] != NULL)
470 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
471 if (sc->sc_ac2q[WME_AC_BE] != NULL)
472 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
473 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
474 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
475 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
476 }
477
478 /*
479 * Special case certain configurations. Note the
480 * CAB queue is handled by these specially so don't
481 * include them when checking the txq setup mask.
482 */
483 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
484 case 0x01:
485 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
486 break;
487 case 0x0f:
488 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
489 break;
490 default:
491 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
492 break;
493 }
494
495 /*
496 * Setup rate control. Some rate control modules
497 * call back to change the anntena state so expose
498 * the necessary entry points.
499 * XXX maybe belongs in struct ath_ratectrl?
500 */
501 sc->sc_setdefantenna = ath_setdefantenna;
502 sc->sc_rc = ath_rate_attach(sc);
503 if (sc->sc_rc == NULL) {
504 error = EIO;
505 goto bad2;
506 }
507
508 sc->sc_blinking = 0;
509 sc->sc_ledstate = 1;
510 sc->sc_ledon = 0; /* low true */
511 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */
512 ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE);
513 /*
514 * Auto-enable soft led processing for IBM cards and for
515 * 5211 minipci cards. Users can also manually enable/disable
516 * support with a sysctl.
517 */
518 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
519 if (sc->sc_softled) {
520 ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
521 ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
522 }
523
524 ifp->if_softc = sc;
525 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
526 ifp->if_start = ath_start;
527 ifp->if_watchdog = ath_watchdog;
528 ifp->if_ioctl = ath_ioctl;
529 ifp->if_init = ath_ifinit;
530 IFQ_SET_READY(&ifp->if_snd);
531
532 ic->ic_ifp = ifp;
533 ic->ic_reset = ath_reset;
534 ic->ic_newassoc = ath_newassoc;
535 ic->ic_updateslot = ath_updateslot;
536 ic->ic_wme.wme_update = ath_wme_update;
537 /* XXX not right but it's not used anywhere important */
538 ic->ic_phytype = IEEE80211_T_OFDM;
539 ic->ic_opmode = IEEE80211_M_STA;
540 ic->ic_caps =
541 IEEE80211_C_IBSS /* ibss, nee adhoc, mode */
542 | IEEE80211_C_HOSTAP /* hostap mode */
543 | IEEE80211_C_MONITOR /* monitor mode */
544 | IEEE80211_C_SHPREAMBLE /* short preamble supported */
545 | IEEE80211_C_SHSLOT /* short slot time supported */
546 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */
547 | IEEE80211_C_TXFRAG /* handle tx frags */
548 ;
549 /*
550 * Query the hal to figure out h/w crypto support.
551 */
552 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
553 ic->ic_caps |= IEEE80211_C_WEP;
554 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
555 ic->ic_caps |= IEEE80211_C_AES;
556 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
557 ic->ic_caps |= IEEE80211_C_AES_CCM;
558 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
559 ic->ic_caps |= IEEE80211_C_CKIP;
560 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
561 ic->ic_caps |= IEEE80211_C_TKIP;
562 /*
563 * Check if h/w does the MIC and/or whether the
564 * separate key cache entries are required to
565 * handle both tx+rx MIC keys.
566 */
567 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
568 ic->ic_caps |= IEEE80211_C_TKIPMIC;
569 if (ath_hal_tkipsplit(ah))
570 sc->sc_splitmic = 1;
571 }
572 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
573 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
574 /*
575 * TPC support can be done either with a global cap or
576 * per-packet support. The latter is not available on
577 * all parts. We're a bit pedantic here as all parts
578 * support a global cap.
579 */
580 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
581 ic->ic_caps |= IEEE80211_C_TXPMGT;
582
583 /*
584 * Mark WME capability only if we have sufficient
585 * hardware queues to do proper priority scheduling.
586 */
587 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
588 ic->ic_caps |= IEEE80211_C_WME;
589 /*
590 * Check for misc other capabilities.
591 */
592 if (ath_hal_hasbursting(ah))
593 ic->ic_caps |= IEEE80211_C_BURST;
594
595 /*
596 * Indicate we need the 802.11 header padded to a
597 * 32-bit boundary for 4-address and QoS frames.
598 */
599 ic->ic_flags |= IEEE80211_F_DATAPAD;
600
601 /*
602 * Query the hal about antenna support.
603 */
604 sc->sc_defant = ath_hal_getdefantenna(ah);
605
606 /*
607 * Not all chips have the VEOL support we want to
608 * use with IBSS beacons; check here for it.
609 */
610 sc->sc_hasveol = ath_hal_hasveol(ah);
611
612 /* get mac address from hardware */
613 ath_hal_getmac(ah, ic->ic_myaddr);
614
615 if_attach(ifp);
616 /* call MI attach routine. */
617 ieee80211_ifattach(ic);
618 /* override default methods */
619 ic->ic_node_alloc = ath_node_alloc;
620 sc->sc_node_free = ic->ic_node_free;
621 ic->ic_node_free = ath_node_free;
622 ic->ic_node_getrssi = ath_node_getrssi;
623 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
624 ic->ic_recv_mgmt = ath_recv_mgmt;
625 sc->sc_newstate = ic->ic_newstate;
626 ic->ic_newstate = ath_newstate;
627 ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
628 ic->ic_crypto.cs_key_alloc = ath_key_alloc;
629 ic->ic_crypto.cs_key_delete = ath_key_delete;
630 ic->ic_crypto.cs_key_set = ath_key_set;
631 ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
632 ic->ic_crypto.cs_key_update_end = ath_key_update_end;
633 /* complete initialization */
634 ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
635
636 #if NBPFILTER > 0
637 ath_bpfattach(sc);
638 #endif
639
640 #ifdef __NetBSD__
641 sc->sc_flags |= ATH_ATTACHED;
642 sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
643 ath_power, sc);
644 if (sc->sc_powerhook == NULL)
645 printf("%s: WARNING: unable to establish power hook\n",
646 sc->sc_dev.dv_xname);
647 #endif
648
649 /*
650 * Setup dynamic sysctl's now that country code and
651 * regdomain are available from the hal.
652 */
653 ath_sysctlattach(sc);
654
655 ieee80211_announce(ic);
656 ath_announce(sc);
657 return 0;
658 bad2:
659 ath_tx_cleanup(sc);
660 ath_desc_free(sc);
661 bad:
662 if (ah)
663 ath_hal_detach(ah);
664 sc->sc_invalid = 1;
665 return error;
666 }
667
668 int
669 ath_detach(struct ath_softc *sc)
670 {
671 struct ifnet *ifp = &sc->sc_if;
672 int s;
673
674 if ((sc->sc_flags & ATH_ATTACHED) == 0)
675 return (0);
676
677 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
678 __func__, ifp->if_flags);
679
680 s = splnet();
681 ath_stop(ifp, 1);
682 #if NBPFILTER > 0
683 bpfdetach(ifp);
684 #endif
685 /*
686 * NB: the order of these is important:
687 * o call the 802.11 layer before detaching the hal to
688 * insure callbacks into the driver to delete global
689 * key cache entries can be handled
690 * o reclaim the tx queue data structures after calling
691 * the 802.11 layer as we'll get called back to reclaim
692 * node state and potentially want to use them
693 * o to cleanup the tx queues the hal is called, so detach
694 * it last
695 * Other than that, it's straightforward...
696 */
697 ieee80211_ifdetach(&sc->sc_ic);
698 #ifdef ATH_TX99_DIAG
699 if (sc->sc_tx99 != NULL)
700 sc->sc_tx99->detach(sc->sc_tx99);
701 #endif
702 ath_rate_detach(sc->sc_rc);
703 ath_desc_free(sc);
704 ath_tx_cleanup(sc);
705 sysctl_teardown(&sc->sc_sysctllog);
706 ath_hal_detach(sc->sc_ah);
707 if_detach(ifp);
708 splx(s);
709 powerhook_disestablish(sc->sc_powerhook);
710
711 return 0;
712 }
713
714 #ifdef __NetBSD__
715 void
716 ath_power(int why, void *arg)
717 {
718 struct ath_softc *sc = arg;
719 int s;
720
721 DPRINTF(sc, ATH_DEBUG_ANY, "ath_power(%d)\n", why);
722
723 s = splnet();
724 switch (why) {
725 case PWR_SUSPEND:
726 case PWR_STANDBY:
727 ath_suspend(sc, why);
728 break;
729 case PWR_RESUME:
730 ath_resume(sc, why);
731 break;
732 case PWR_SOFTSUSPEND:
733 case PWR_SOFTSTANDBY:
734 case PWR_SOFTRESUME:
735 break;
736 }
737 splx(s);
738 }
739 #endif
740
741 void
742 ath_suspend(struct ath_softc *sc, int why)
743 {
744 struct ifnet *ifp = &sc->sc_if;
745
746 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
747 __func__, ifp->if_flags);
748
749 ath_stop(ifp, 1);
750 if (sc->sc_power != NULL)
751 (*sc->sc_power)(sc, why);
752 }
753
754 void
755 ath_resume(struct ath_softc *sc, int why)
756 {
757 struct ifnet *ifp = &sc->sc_if;
758
759 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
760 __func__, ifp->if_flags);
761
762 if (ifp->if_flags & IFF_UP) {
763 ath_init(sc);
764 #if 0
765 (void)ath_intr(sc);
766 #endif
767 if (sc->sc_power != NULL)
768 (*sc->sc_power)(sc, why);
769 if (ifp->if_flags & IFF_RUNNING)
770 ath_start(ifp);
771 }
772 if (sc->sc_softled) {
773 ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
774 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
775 }
776 }
777
778 void
779 ath_shutdown(void *arg)
780 {
781 struct ath_softc *sc = arg;
782
783 ath_stop(&sc->sc_if, 1);
784 }
785
786 /*
787 * Interrupt handler. Most of the actual processing is deferred.
788 */
789 int
790 ath_intr(void *arg)
791 {
792 struct ath_softc *sc = arg;
793 struct ifnet *ifp = &sc->sc_if;
794 struct ath_hal *ah = sc->sc_ah;
795 HAL_INT status;
796
797 if (sc->sc_invalid) {
798 /*
799 * The hardware is not ready/present, don't touch anything.
800 * Note this can happen early on if the IRQ is shared.
801 */
802 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
803 return 0;
804 }
805
806 if (!ath_hal_intrpend(ah)) /* shared irq, not for us */
807 return 0;
808
809 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
810 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
811 __func__, ifp->if_flags);
812 ath_hal_getisr(ah, &status); /* clear ISR */
813 ath_hal_intrset(ah, 0); /* disable further intr's */
814 return 1; /* XXX */
815 }
816 /*
817 * Figure out the reason(s) for the interrupt. Note
818 * that the hal returns a pseudo-ISR that may include
819 * bits we haven't explicitly enabled so we mask the
820 * value to insure we only process bits we requested.
821 */
822 ath_hal_getisr(ah, &status); /* NB: clears ISR too */
823 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
824 status &= sc->sc_imask; /* discard unasked for bits */
825 if (status & HAL_INT_FATAL) {
826 /*
827 * Fatal errors are unrecoverable. Typically
828 * these are caused by DMA errors. Unfortunately
829 * the exact reason is not (presently) returned
830 * by the hal.
831 */
832 sc->sc_stats.ast_hardware++;
833 ath_hal_intrset(ah, 0); /* disable intr's until reset */
834 TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
835 } else if (status & HAL_INT_RXORN) {
836 sc->sc_stats.ast_rxorn++;
837 ath_hal_intrset(ah, 0); /* disable intr's until reset */
838 TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
839 } else {
840 if (status & HAL_INT_SWBA) {
841 /*
842 * Software beacon alert--time to send a beacon.
843 * Handle beacon transmission directly; deferring
844 * this is too slow to meet timing constraints
845 * under load.
846 */
847 ath_beacon_proc(sc, 0);
848 }
849 if (status & HAL_INT_RXEOL) {
850 /*
851 * NB: the hardware should re-read the link when
852 * RXE bit is written, but it doesn't work at
853 * least on older hardware revs.
854 */
855 sc->sc_stats.ast_rxeol++;
856 sc->sc_rxlink = NULL;
857 }
858 if (status & HAL_INT_TXURN) {
859 sc->sc_stats.ast_txurn++;
860 /* bump tx trigger level */
861 ath_hal_updatetxtriglevel(ah, AH_TRUE);
862 }
863 if (status & HAL_INT_RX)
864 TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
865 if (status & HAL_INT_TX)
866 TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
867 if (status & HAL_INT_BMISS) {
868 sc->sc_stats.ast_bmiss++;
869 TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
870 }
871 if (status & HAL_INT_MIB) {
872 sc->sc_stats.ast_mib++;
873 /*
874 * Disable interrupts until we service the MIB
875 * interrupt; otherwise it will continue to fire.
876 */
877 ath_hal_intrset(ah, 0);
878 /*
879 * Let the hal handle the event. We assume it will
880 * clear whatever condition caused the interrupt.
881 */
882 ath_hal_mibevent(ah, &sc->sc_halstats);
883 ath_hal_intrset(ah, sc->sc_imask);
884 }
885 }
886 return 1;
887 }
888
889 /* Swap transmit descriptor.
890 * if AH_NEED_DESC_SWAP flag is not defined this becomes a "null"
891 * function.
892 */
893 static inline void
894 ath_desc_swap(struct ath_desc *ds)
895 {
896 #ifdef AH_NEED_DESC_SWAP
897 ds->ds_link = htole32(ds->ds_link);
898 ds->ds_data = htole32(ds->ds_data);
899 ds->ds_ctl0 = htole32(ds->ds_ctl0);
900 ds->ds_ctl1 = htole32(ds->ds_ctl1);
901 ds->ds_hw[0] = htole32(ds->ds_hw[0]);
902 ds->ds_hw[1] = htole32(ds->ds_hw[1]);
903 #endif
904 }
905
906 static void
907 ath_fatal_proc(void *arg, int pending)
908 {
909 struct ath_softc *sc = arg;
910 struct ifnet *ifp = &sc->sc_if;
911
912 if_printf(ifp, "hardware error; resetting\n");
913 ath_reset(ifp);
914 }
915
916 static void
917 ath_rxorn_proc(void *arg, int pending)
918 {
919 struct ath_softc *sc = arg;
920 struct ifnet *ifp = &sc->sc_if;
921
922 if_printf(ifp, "rx FIFO overrun; resetting\n");
923 ath_reset(ifp);
924 }
925
926 static void
927 ath_bmiss_proc(void *arg, int pending)
928 {
929 struct ath_softc *sc = arg;
930 struct ieee80211com *ic = &sc->sc_ic;
931
932 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
933 KASSERT(ic->ic_opmode == IEEE80211_M_STA,
934 ("unexpect operating mode %u", ic->ic_opmode));
935 if (ic->ic_state == IEEE80211_S_RUN) {
936 u_int64_t lastrx = sc->sc_lastrx;
937 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
938
939 DPRINTF(sc, ATH_DEBUG_BEACON,
940 "%s: tsf %" PRIu64 " lastrx %" PRId64
941 " (%" PRIu64 ") bmiss %u\n",
942 __func__, tsf, tsf - lastrx, lastrx,
943 ic->ic_bmisstimeout*1024);
944 /*
945 * Workaround phantom bmiss interrupts by sanity-checking
946 * the time of our last rx'd frame. If it is within the
947 * beacon miss interval then ignore the interrupt. If it's
948 * truly a bmiss we'll get another interrupt soon and that'll
949 * be dispatched up for processing.
950 */
951 if (tsf - lastrx > ic->ic_bmisstimeout*1024) {
952 NET_LOCK_GIANT();
953 ieee80211_beacon_miss(ic);
954 NET_UNLOCK_GIANT();
955 } else
956 sc->sc_stats.ast_bmiss_phantom++;
957 }
958 }
959
960 static void
961 ath_radar_proc(void *arg, int pending)
962 {
963 struct ath_softc *sc = arg;
964 struct ifnet *ifp = &sc->sc_if;
965 struct ath_hal *ah = sc->sc_ah;
966 HAL_CHANNEL hchan;
967
968 if (ath_hal_procdfs(ah, &hchan)) {
969 if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n",
970 hchan.channel, hchan.channelFlags, hchan.privFlags);
971 /*
972 * Initiate channel change.
973 */
974 /* XXX not yet */
975 }
976 }
977
978 static u_int
979 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
980 {
981 #define N(a) (sizeof(a) / sizeof(a[0]))
982 static const u_int modeflags[] = {
983 0, /* IEEE80211_MODE_AUTO */
984 CHANNEL_A, /* IEEE80211_MODE_11A */
985 CHANNEL_B, /* IEEE80211_MODE_11B */
986 CHANNEL_PUREG, /* IEEE80211_MODE_11G */
987 0, /* IEEE80211_MODE_FH */
988 CHANNEL_ST, /* IEEE80211_MODE_TURBO_A */
989 CHANNEL_108G /* IEEE80211_MODE_TURBO_G */
990 };
991 enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
992
993 KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
994 KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
995 return modeflags[mode];
996 #undef N
997 }
998
999 static int
1000 ath_ifinit(struct ifnet *ifp)
1001 {
1002 struct ath_softc *sc = (struct ath_softc *)ifp->if_softc;
1003
1004 return ath_init(sc);
1005 }
1006
1007 static int
1008 ath_init(struct ath_softc *sc)
1009 {
1010 struct ifnet *ifp = &sc->sc_if;
1011 struct ieee80211com *ic = &sc->sc_ic;
1012 struct ath_hal *ah = sc->sc_ah;
1013 HAL_STATUS status;
1014 int error = 0;
1015
1016 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1017 __func__, ifp->if_flags);
1018
1019 ATH_LOCK(sc);
1020
1021 if ((error = ath_enable(sc)) != 0)
1022 return error;
1023
1024 /*
1025 * Stop anything previously setup. This is safe
1026 * whether this is the first time through or not.
1027 */
1028 ath_stop_locked(ifp, 0);
1029
1030 /*
1031 * The basic interface to setting the hardware in a good
1032 * state is ``reset''. On return the hardware is known to
1033 * be powered up and with interrupts disabled. This must
1034 * be followed by initialization of the appropriate bits
1035 * and then setup of the interrupt mask.
1036 */
1037 sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
1038 sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
1039 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
1040 if_printf(ifp, "unable to reset hardware; hal status %u\n",
1041 status);
1042 error = EIO;
1043 goto done;
1044 }
1045
1046 /*
1047 * This is needed only to setup initial state
1048 * but it's best done after a reset.
1049 */
1050 ath_update_txpow(sc);
1051 /*
1052 * Likewise this is set during reset so update
1053 * state cached in the driver.
1054 */
1055 sc->sc_diversity = ath_hal_getdiversity(ah);
1056 sc->sc_calinterval = 1;
1057 sc->sc_caltries = 0;
1058
1059 /*
1060 * Setup the hardware after reset: the key cache
1061 * is filled as needed and the receive engine is
1062 * set going. Frame transmit is handled entirely
1063 * in the frame output path; there's nothing to do
1064 * here except setup the interrupt mask.
1065 */
1066 if ((error = ath_startrecv(sc)) != 0) {
1067 if_printf(ifp, "unable to start recv logic\n");
1068 goto done;
1069 }
1070
1071 /*
1072 * Enable interrupts.
1073 */
1074 sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1075 | HAL_INT_RXEOL | HAL_INT_RXORN
1076 | HAL_INT_FATAL | HAL_INT_GLOBAL;
1077 /*
1078 * Enable MIB interrupts when there are hardware phy counters.
1079 * Note we only do this (at the moment) for station mode.
1080 */
1081 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1082 sc->sc_imask |= HAL_INT_MIB;
1083 ath_hal_intrset(ah, sc->sc_imask);
1084
1085 ifp->if_flags |= IFF_RUNNING;
1086 ic->ic_state = IEEE80211_S_INIT;
1087
1088 /*
1089 * The hardware should be ready to go now so it's safe
1090 * to kick the 802.11 state machine as it's likely to
1091 * immediately call back to us to send mgmt frames.
1092 */
1093 ath_chan_change(sc, ic->ic_curchan);
1094 #ifdef ATH_TX99_DIAG
1095 if (sc->sc_tx99 != NULL)
1096 sc->sc_tx99->start(sc->sc_tx99);
1097 else
1098 #endif
1099 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1100 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
1101 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1102 } else
1103 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1104 done:
1105 ATH_UNLOCK(sc);
1106 return error;
1107 }
1108
1109 static void
1110 ath_stop_locked(struct ifnet *ifp, int disable)
1111 {
1112 struct ath_softc *sc = ifp->if_softc;
1113 struct ieee80211com *ic = &sc->sc_ic;
1114 struct ath_hal *ah = sc->sc_ah;
1115
1116 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1117 __func__, sc->sc_invalid, ifp->if_flags);
1118
1119 ATH_LOCK_ASSERT(sc);
1120 if (ifp->if_flags & IFF_RUNNING) {
1121 /*
1122 * Shutdown the hardware and driver:
1123 * reset 802.11 state machine
1124 * turn off timers
1125 * disable interrupts
1126 * turn off the radio
1127 * clear transmit machinery
1128 * clear receive machinery
1129 * drain and release tx queues
1130 * reclaim beacon resources
1131 * power down hardware
1132 *
1133 * Note that some of this work is not possible if the
1134 * hardware is gone (invalid).
1135 */
1136 #ifdef ATH_TX99_DIAG
1137 if (sc->sc_tx99 != NULL)
1138 sc->sc_tx99->stop(sc->sc_tx99);
1139 #endif
1140 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1141 ifp->if_flags &= ~IFF_RUNNING;
1142 ifp->if_timer = 0;
1143 if (!sc->sc_invalid) {
1144 if (sc->sc_softled) {
1145 callout_stop(&sc->sc_ledtimer);
1146 ath_hal_gpioset(ah, sc->sc_ledpin,
1147 !sc->sc_ledon);
1148 sc->sc_blinking = 0;
1149 }
1150 ath_hal_intrset(ah, 0);
1151 }
1152 ath_draintxq(sc);
1153 if (!sc->sc_invalid) {
1154 ath_stoprecv(sc);
1155 ath_hal_phydisable(ah);
1156 } else
1157 sc->sc_rxlink = NULL;
1158 IF_PURGE(&ifp->if_snd);
1159 ath_beacon_free(sc);
1160 if (disable)
1161 ath_disable(sc);
1162 }
1163 }
1164
1165 static void
1166 ath_stop(struct ifnet *ifp, int disable)
1167 {
1168 struct ath_softc *sc = ifp->if_softc;
1169
1170 ATH_LOCK(sc);
1171 ath_stop_locked(ifp, disable);
1172 if (!sc->sc_invalid) {
1173 /*
1174 * Set the chip in full sleep mode. Note that we are
1175 * careful to do this only when bringing the interface
1176 * completely to a stop. When the chip is in this state
1177 * it must be carefully woken up or references to
1178 * registers in the PCI clock domain may freeze the bus
1179 * (and system). This varies by chip and is mostly an
1180 * issue with newer parts that go to sleep more quickly.
1181 */
1182 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
1183 }
1184 ATH_UNLOCK(sc);
1185 }
1186
1187 /*
1188 * Reset the hardware w/o losing operational state. This is
1189 * basically a more efficient way of doing ath_stop, ath_init,
1190 * followed by state transitions to the current 802.11
1191 * operational state. Used to recover from various errors and
1192 * to reset or reload hardware state.
1193 */
1194 int
1195 ath_reset(struct ifnet *ifp)
1196 {
1197 struct ath_softc *sc = ifp->if_softc;
1198 struct ieee80211com *ic = &sc->sc_ic;
1199 struct ath_hal *ah = sc->sc_ah;
1200 struct ieee80211_channel *c;
1201 HAL_STATUS status;
1202
1203 /*
1204 * Convert to a HAL channel description with the flags
1205 * constrained to reflect the current operating mode.
1206 */
1207 c = ic->ic_curchan;
1208 sc->sc_curchan.channel = c->ic_freq;
1209 sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
1210
1211 ath_hal_intrset(ah, 0); /* disable interrupts */
1212 ath_draintxq(sc); /* stop xmit side */
1213 ath_stoprecv(sc); /* stop recv side */
1214 /* NB: indicate channel change so we do a full reset */
1215 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
1216 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1217 __func__, status);
1218 ath_update_txpow(sc); /* update tx power state */
1219 sc->sc_diversity = ath_hal_getdiversity(ah);
1220 sc->sc_calinterval = 1;
1221 sc->sc_caltries = 0;
1222 if (ath_startrecv(sc) != 0) /* restart recv */
1223 if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1224 /*
1225 * We may be doing a reset in response to an ioctl
1226 * that changes the channel so update any state that
1227 * might change as a result.
1228 */
1229 ath_chan_change(sc, c);
1230 if (ic->ic_state == IEEE80211_S_RUN)
1231 ath_beacon_config(sc); /* restart beacons */
1232 ath_hal_intrset(ah, sc->sc_imask);
1233
1234 ath_start(ifp); /* restart xmit */
1235 return 0;
1236 }
1237
1238 /*
1239 * Cleanup driver resources when we run out of buffers
1240 * while processing fragments; return the tx buffers
1241 * allocated and drop node references.
1242 */
1243 static void
1244 ath_txfrag_cleanup(struct ath_softc *sc,
1245 ath_bufhead *frags, struct ieee80211_node *ni)
1246 {
1247 struct ath_buf *bf;
1248
1249 ATH_TXBUF_LOCK_ASSERT(sc);
1250
1251 while ((bf = STAILQ_FIRST(frags)) != NULL) {
1252 STAILQ_REMOVE_HEAD(frags, bf_list);
1253 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1254 ieee80211_node_decref(ni);
1255 }
1256 }
1257
1258 /*
1259 * Setup xmit of a fragmented frame. Allocate a buffer
1260 * for each frag and bump the node reference count to
1261 * reflect the held reference to be setup by ath_tx_start.
1262 */
1263 static int
1264 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
1265 struct mbuf *m0, struct ieee80211_node *ni)
1266 {
1267 struct mbuf *m;
1268 struct ath_buf *bf;
1269
1270 ATH_TXBUF_LOCK(sc);
1271 for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
1272 bf = STAILQ_FIRST(&sc->sc_txbuf);
1273 if (bf == NULL) { /* out of buffers, cleanup */
1274 ath_txfrag_cleanup(sc, frags, ni);
1275 break;
1276 }
1277 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1278 ieee80211_node_incref(ni);
1279 STAILQ_INSERT_TAIL(frags, bf, bf_list);
1280 }
1281 ATH_TXBUF_UNLOCK(sc);
1282
1283 return !STAILQ_EMPTY(frags);
1284 }
1285
1286 static void
1287 ath_start(struct ifnet *ifp)
1288 {
1289 struct ath_softc *sc = ifp->if_softc;
1290 struct ath_hal *ah = sc->sc_ah;
1291 struct ieee80211com *ic = &sc->sc_ic;
1292 struct ieee80211_node *ni;
1293 struct ath_buf *bf;
1294 struct mbuf *m, *next;
1295 struct ieee80211_frame *wh;
1296 struct ether_header *eh;
1297 ath_bufhead frags;
1298
1299 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
1300 return;
1301 for (;;) {
1302 /*
1303 * Grab a TX buffer and associated resources.
1304 */
1305 ATH_TXBUF_LOCK(sc);
1306 bf = STAILQ_FIRST(&sc->sc_txbuf);
1307 if (bf != NULL)
1308 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1309 ATH_TXBUF_UNLOCK(sc);
1310 if (bf == NULL) {
1311 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1312 __func__);
1313 sc->sc_stats.ast_tx_qstop++;
1314 ifp->if_flags |= IFF_OACTIVE;
1315 break;
1316 }
1317 /*
1318 * Poll the management queue for frames; they
1319 * have priority over normal data frames.
1320 */
1321 IF_DEQUEUE(&ic->ic_mgtq, m);
1322 if (m == NULL) {
1323 /*
1324 * No data frames go out unless we're associated.
1325 */
1326 if (ic->ic_state != IEEE80211_S_RUN) {
1327 DPRINTF(sc, ATH_DEBUG_XMIT,
1328 "%s: discard data packet, state %s\n",
1329 __func__,
1330 ieee80211_state_name[ic->ic_state]);
1331 sc->sc_stats.ast_tx_discard++;
1332 ATH_TXBUF_LOCK(sc);
1333 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1334 ATH_TXBUF_UNLOCK(sc);
1335 break;
1336 }
1337 IFQ_DEQUEUE(&ifp->if_snd, m); /* XXX: LOCK */
1338 if (m == NULL) {
1339 ATH_TXBUF_LOCK(sc);
1340 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1341 ATH_TXBUF_UNLOCK(sc);
1342 break;
1343 }
1344 STAILQ_INIT(&frags);
1345 /*
1346 * Find the node for the destination so we can do
1347 * things like power save and fast frames aggregation.
1348 */
1349 if (m->m_len < sizeof(struct ether_header) &&
1350 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
1351 ic->ic_stats.is_tx_nobuf++; /* XXX */
1352 ni = NULL;
1353 goto bad;
1354 }
1355 eh = mtod(m, struct ether_header *);
1356 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1357 if (ni == NULL) {
1358 /* NB: ieee80211_find_txnode does stat+msg */
1359 m_freem(m);
1360 goto bad;
1361 }
1362 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1363 (m->m_flags & M_PWR_SAV) == 0) {
1364 /*
1365 * Station in power save mode; pass the frame
1366 * to the 802.11 layer and continue. We'll get
1367 * the frame back when the time is right.
1368 */
1369 ieee80211_pwrsave(ic, ni, m);
1370 goto reclaim;
1371 }
1372 /* calculate priority so we can find the tx queue */
1373 if (ieee80211_classify(ic, m, ni)) {
1374 DPRINTF(sc, ATH_DEBUG_XMIT,
1375 "%s: discard, classification failure\n",
1376 __func__);
1377 m_freem(m);
1378 goto bad;
1379 }
1380 ifp->if_opackets++;
1381
1382 #if NBPFILTER > 0
1383 if (ifp->if_bpf)
1384 bpf_mtap(ifp->if_bpf, m);
1385 #endif
1386 /*
1387 * Encapsulate the packet in prep for transmission.
1388 */
1389 m = ieee80211_encap(ic, m, ni);
1390 if (m == NULL) {
1391 DPRINTF(sc, ATH_DEBUG_XMIT,
1392 "%s: encapsulation failure\n",
1393 __func__);
1394 sc->sc_stats.ast_tx_encap++;
1395 goto bad;
1396 }
1397 /*
1398 * Check for fragmentation. If this has frame
1399 * has been broken up verify we have enough
1400 * buffers to send all the fragments so all
1401 * go out or none...
1402 */
1403 if ((m->m_flags & M_FRAG) &&
1404 !ath_txfrag_setup(sc, &frags, m, ni)) {
1405 DPRINTF(sc, ATH_DEBUG_ANY,
1406 "%s: out of txfrag buffers\n", __func__);
1407 ic->ic_stats.is_tx_nobuf++; /* XXX */
1408 goto bad;
1409 }
1410 } else {
1411 /*
1412 * Hack! The referenced node pointer is in the
1413 * rcvif field of the packet header. This is
1414 * placed there by ieee80211_mgmt_output because
1415 * we need to hold the reference with the frame
1416 * and there's no other way (other than packet
1417 * tags which we consider too expensive to use)
1418 * to pass it along.
1419 */
1420 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1421 m->m_pkthdr.rcvif = NULL;
1422
1423 wh = mtod(m, struct ieee80211_frame *);
1424 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1425 IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1426 /* fill time stamp */
1427 u_int64_t tsf;
1428 u_int32_t *tstamp;
1429
1430 tsf = ath_hal_gettsf64(ah);
1431 /* XXX: adjust 100us delay to xmit */
1432 tsf += 100;
1433 tstamp = (u_int32_t *)&wh[1];
1434 tstamp[0] = htole32(tsf & 0xffffffff);
1435 tstamp[1] = htole32(tsf >> 32);
1436 }
1437 sc->sc_stats.ast_tx_mgmt++;
1438 }
1439
1440 nextfrag:
1441 next = m->m_nextpkt;
1442 if (ath_tx_start(sc, ni, bf, m)) {
1443 bad:
1444 ifp->if_oerrors++;
1445 reclaim:
1446 ATH_TXBUF_LOCK(sc);
1447 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1448 ath_txfrag_cleanup(sc, &frags, ni);
1449 ATH_TXBUF_UNLOCK(sc);
1450 if (ni != NULL)
1451 ieee80211_free_node(ni);
1452 continue;
1453 }
1454 if (next != NULL) {
1455 m = next;
1456 bf = STAILQ_FIRST(&frags);
1457 KASSERT(bf != NULL, ("no buf for txfrag"));
1458 STAILQ_REMOVE_HEAD(&frags, bf_list);
1459 goto nextfrag;
1460 }
1461
1462 sc->sc_tx_timer = 5;
1463 ifp->if_timer = 1;
1464 }
1465 }
1466
1467 static int
1468 ath_media_change(struct ifnet *ifp)
1469 {
1470 #define IS_UP(ifp) \
1471 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
1472 int error;
1473
1474 error = ieee80211_media_change(ifp);
1475 if (error == ENETRESET) {
1476 if (IS_UP(ifp))
1477 ath_init(ifp->if_softc); /* XXX lose error */
1478 error = 0;
1479 }
1480 return error;
1481 #undef IS_UP
1482 }
1483
1484 #ifdef AR_DEBUG
1485 static void
1486 ath_keyprint(const char *tag, u_int ix,
1487 const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1488 {
1489 static const char *ciphers[] = {
1490 "WEP",
1491 "AES-OCB",
1492 "AES-CCM",
1493 "CKIP",
1494 "TKIP",
1495 "CLR",
1496 };
1497 int i, n;
1498
1499 printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1500 for (i = 0, n = hk->kv_len; i < n; i++)
1501 printf("%02x", hk->kv_val[i]);
1502 printf(" mac %s", ether_sprintf(mac));
1503 if (hk->kv_type == HAL_CIPHER_TKIP) {
1504 printf(" mic ");
1505 for (i = 0; i < sizeof(hk->kv_mic); i++)
1506 printf("%02x", hk->kv_mic[i]);
1507 }
1508 printf("\n");
1509 }
1510 #endif
1511
1512 /*
1513 * Set a TKIP key into the hardware. This handles the
1514 * potential distribution of key state to multiple key
1515 * cache slots for TKIP.
1516 */
1517 static int
1518 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1519 HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1520 {
1521 #define IEEE80211_KEY_XR (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1522 static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1523 struct ath_hal *ah = sc->sc_ah;
1524
1525 KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1526 ("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1527 KASSERT(sc->sc_splitmic, ("key cache !split"));
1528 if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1529 /*
1530 * TX key goes at first index, RX key at the rx index.
1531 * The hal handles the MIC keys at index+64.
1532 */
1533 memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1534 KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1535 if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
1536 return 0;
1537
1538 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1539 KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1540 /* XXX delete tx key on failure? */
1541 return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
1542 } else if (k->wk_flags & IEEE80211_KEY_XR) {
1543 /*
1544 * TX/RX key goes at first index.
1545 * The hal handles the MIC keys are index+64.
1546 */
1547 memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
1548 k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
1549 KEYPRINTF(sc, k->wk_keyix, hk, mac);
1550 return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1551 }
1552 return 0;
1553 #undef IEEE80211_KEY_XR
1554 }
1555
1556 /*
1557 * Set a net80211 key into the hardware. This handles the
1558 * potential distribution of key state to multiple key
1559 * cache slots for TKIP with hardware MIC support.
1560 */
1561 static int
1562 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1563 const u_int8_t mac0[IEEE80211_ADDR_LEN],
1564 struct ieee80211_node *bss)
1565 {
1566 #define N(a) (sizeof(a)/sizeof(a[0]))
1567 static const u_int8_t ciphermap[] = {
1568 HAL_CIPHER_WEP, /* IEEE80211_CIPHER_WEP */
1569 HAL_CIPHER_TKIP, /* IEEE80211_CIPHER_TKIP */
1570 HAL_CIPHER_AES_OCB, /* IEEE80211_CIPHER_AES_OCB */
1571 HAL_CIPHER_AES_CCM, /* IEEE80211_CIPHER_AES_CCM */
1572 (u_int8_t) -1, /* 4 is not allocated */
1573 HAL_CIPHER_CKIP, /* IEEE80211_CIPHER_CKIP */
1574 HAL_CIPHER_CLR, /* IEEE80211_CIPHER_NONE */
1575 };
1576 struct ath_hal *ah = sc->sc_ah;
1577 const struct ieee80211_cipher *cip = k->wk_cipher;
1578 u_int8_t gmac[IEEE80211_ADDR_LEN];
1579 const u_int8_t *mac;
1580 HAL_KEYVAL hk;
1581
1582 memset(&hk, 0, sizeof(hk));
1583 /*
1584 * Software crypto uses a "clear key" so non-crypto
1585 * state kept in the key cache are maintained and
1586 * so that rx frames have an entry to match.
1587 */
1588 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1589 KASSERT(cip->ic_cipher < N(ciphermap),
1590 ("invalid cipher type %u", cip->ic_cipher));
1591 hk.kv_type = ciphermap[cip->ic_cipher];
1592 hk.kv_len = k->wk_keylen;
1593 memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1594 } else
1595 hk.kv_type = HAL_CIPHER_CLR;
1596
1597 if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
1598 /*
1599 * Group keys on hardware that supports multicast frame
1600 * key search use a mac that is the sender's address with
1601 * the high bit set instead of the app-specified address.
1602 */
1603 IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
1604 gmac[0] |= 0x80;
1605 mac = gmac;
1606 } else
1607 mac = mac0;
1608
1609 if (hk.kv_type == HAL_CIPHER_TKIP &&
1610 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1611 sc->sc_splitmic) {
1612 return ath_keyset_tkip(sc, k, &hk, mac);
1613 } else {
1614 KEYPRINTF(sc, k->wk_keyix, &hk, mac);
1615 return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
1616 }
1617 #undef N
1618 }
1619
1620 /*
1621 * Allocate tx/rx key slots for TKIP. We allocate two slots for
1622 * each key, one for decrypt/encrypt and the other for the MIC.
1623 */
1624 static u_int16_t
1625 key_alloc_2pair(struct ath_softc *sc,
1626 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1627 {
1628 #define N(a) (sizeof(a)/sizeof(a[0]))
1629 u_int i, keyix;
1630
1631 KASSERT(sc->sc_splitmic, ("key cache !split"));
1632 /* XXX could optimize */
1633 for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1634 u_int8_t b = sc->sc_keymap[i];
1635 if (b != 0xff) {
1636 /*
1637 * One or more slots in this byte are free.
1638 */
1639 keyix = i*NBBY;
1640 while (b & 1) {
1641 again:
1642 keyix++;
1643 b >>= 1;
1644 }
1645 /* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1646 if (isset(sc->sc_keymap, keyix+32) ||
1647 isset(sc->sc_keymap, keyix+64) ||
1648 isset(sc->sc_keymap, keyix+32+64)) {
1649 /* full pair unavailable */
1650 /* XXX statistic */
1651 if (keyix == (i+1)*NBBY) {
1652 /* no slots were appropriate, advance */
1653 continue;
1654 }
1655 goto again;
1656 }
1657 setbit(sc->sc_keymap, keyix);
1658 setbit(sc->sc_keymap, keyix+64);
1659 setbit(sc->sc_keymap, keyix+32);
1660 setbit(sc->sc_keymap, keyix+32+64);
1661 DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1662 "%s: key pair %u,%u %u,%u\n",
1663 __func__, keyix, keyix+64,
1664 keyix+32, keyix+32+64);
1665 *txkeyix = keyix;
1666 *rxkeyix = keyix+32;
1667 return 1;
1668 }
1669 }
1670 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1671 return 0;
1672 #undef N
1673 }
1674
1675 /*
1676 * Allocate a single key cache slot.
1677 */
1678 static int
1679 key_alloc_single(struct ath_softc *sc,
1680 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1681 {
1682 #define N(a) (sizeof(a)/sizeof(a[0]))
1683 u_int i, keyix;
1684
1685 /* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
1686 for (i = 0; i < N(sc->sc_keymap); i++) {
1687 u_int8_t b = sc->sc_keymap[i];
1688 if (b != 0xff) {
1689 /*
1690 * One or more slots are free.
1691 */
1692 keyix = i*NBBY;
1693 while (b & 1)
1694 keyix++, b >>= 1;
1695 setbit(sc->sc_keymap, keyix);
1696 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
1697 __func__, keyix);
1698 *txkeyix = *rxkeyix = keyix;
1699 return 1;
1700 }
1701 }
1702 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
1703 return 0;
1704 #undef N
1705 }
1706
1707 /*
1708 * Allocate one or more key cache slots for a uniacst key. The
1709 * key itself is needed only to identify the cipher. For hardware
1710 * TKIP with split cipher+MIC keys we allocate two key cache slot
1711 * pairs so that we can setup separate TX and RX MIC keys. Note
1712 * that the MIC key for a TKIP key at slot i is assumed by the
1713 * hardware to be at slot i+64. This limits TKIP keys to the first
1714 * 64 entries.
1715 */
1716 static int
1717 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
1718 ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
1719 {
1720 struct ath_softc *sc = ic->ic_ifp->if_softc;
1721
1722 /*
1723 * Group key allocation must be handled specially for
1724 * parts that do not support multicast key cache search
1725 * functionality. For those parts the key id must match
1726 * the h/w key index so lookups find the right key. On
1727 * parts w/ the key search facility we install the sender's
1728 * mac address (with the high bit set) and let the hardware
1729 * find the key w/o using the key id. This is preferred as
1730 * it permits us to support multiple users for adhoc and/or
1731 * multi-station operation.
1732 */
1733 if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
1734 if (!(&ic->ic_nw_keys[0] <= k &&
1735 k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
1736 /* should not happen */
1737 DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1738 "%s: bogus group key\n", __func__);
1739 return 0;
1740 }
1741 /*
1742 * XXX we pre-allocate the global keys so
1743 * have no way to check if they've already been allocated.
1744 */
1745 *keyix = *rxkeyix = k - ic->ic_nw_keys;
1746 return 1;
1747 }
1748
1749 /*
1750 * We allocate two pair for TKIP when using the h/w to do
1751 * the MIC. For everything else, including software crypto,
1752 * we allocate a single entry. Note that s/w crypto requires
1753 * a pass-through slot on the 5211 and 5212. The 5210 does
1754 * not support pass-through cache entries and we map all
1755 * those requests to slot 0.
1756 */
1757 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1758 return key_alloc_single(sc, keyix, rxkeyix);
1759 } else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
1760 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
1761 return key_alloc_2pair(sc, keyix, rxkeyix);
1762 } else {
1763 return key_alloc_single(sc, keyix, rxkeyix);
1764 }
1765 }
1766
1767 /*
1768 * Delete an entry in the key cache allocated by ath_key_alloc.
1769 */
1770 static int
1771 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
1772 {
1773 struct ath_softc *sc = ic->ic_ifp->if_softc;
1774 struct ath_hal *ah = sc->sc_ah;
1775 const struct ieee80211_cipher *cip = k->wk_cipher;
1776 u_int keyix = k->wk_keyix;
1777
1778 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
1779
1780 ath_hal_keyreset(ah, keyix);
1781 /*
1782 * Handle split tx/rx keying required for TKIP with h/w MIC.
1783 */
1784 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1785 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
1786 ath_hal_keyreset(ah, keyix+32); /* RX key */
1787 if (keyix >= IEEE80211_WEP_NKID) {
1788 /*
1789 * Don't touch keymap entries for global keys so
1790 * they are never considered for dynamic allocation.
1791 */
1792 clrbit(sc->sc_keymap, keyix);
1793 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1794 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1795 sc->sc_splitmic) {
1796 clrbit(sc->sc_keymap, keyix+64); /* TX key MIC */
1797 clrbit(sc->sc_keymap, keyix+32); /* RX key */
1798 clrbit(sc->sc_keymap, keyix+32+64); /* RX key MIC */
1799 }
1800 }
1801 return 1;
1802 }
1803
1804 /*
1805 * Set the key cache contents for the specified key. Key cache
1806 * slot(s) must already have been allocated by ath_key_alloc.
1807 */
1808 static int
1809 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
1810 const u_int8_t mac[IEEE80211_ADDR_LEN])
1811 {
1812 struct ath_softc *sc = ic->ic_ifp->if_softc;
1813
1814 return ath_keyset(sc, k, mac, ic->ic_bss);
1815 }
1816
1817 /*
1818 * Block/unblock tx+rx processing while a key change is done.
1819 * We assume the caller serializes key management operations
1820 * so we only need to worry about synchronization with other
1821 * uses that originate in the driver.
1822 */
1823 static void
1824 ath_key_update_begin(struct ieee80211com *ic)
1825 {
1826 struct ifnet *ifp = ic->ic_ifp;
1827 struct ath_softc *sc = ifp->if_softc;
1828
1829 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1830 #if 0
1831 tasklet_disable(&sc->sc_rxtq);
1832 #endif
1833 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */
1834 }
1835
1836 static void
1837 ath_key_update_end(struct ieee80211com *ic)
1838 {
1839 struct ifnet *ifp = ic->ic_ifp;
1840 struct ath_softc *sc = ifp->if_softc;
1841
1842 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1843 IF_UNLOCK(&ifp->if_snd);
1844 #if 0
1845 tasklet_enable(&sc->sc_rxtq);
1846 #endif
1847 }
1848
1849 /*
1850 * Calculate the receive filter according to the
1851 * operating mode and state:
1852 *
1853 * o always accept unicast, broadcast, and multicast traffic
1854 * o maintain current state of phy error reception (the hal
1855 * may enable phy error frames for noise immunity work)
1856 * o probe request frames are accepted only when operating in
1857 * hostap, adhoc, or monitor modes
1858 * o enable promiscuous mode according to the interface state
1859 * o accept beacons:
1860 * - when operating in adhoc mode so the 802.11 layer creates
1861 * node table entries for peers,
1862 * - when operating in station mode for collecting rssi data when
1863 * the station is otherwise quiet, or
1864 * - when scanning
1865 */
1866 static u_int32_t
1867 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
1868 {
1869 struct ieee80211com *ic = &sc->sc_ic;
1870 struct ath_hal *ah = sc->sc_ah;
1871 struct ifnet *ifp = &sc->sc_if;
1872 u_int32_t rfilt;
1873
1874 rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1875 | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1876 if (ic->ic_opmode != IEEE80211_M_STA)
1877 rfilt |= HAL_RX_FILTER_PROBEREQ;
1878 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1879 (ifp->if_flags & IFF_PROMISC))
1880 rfilt |= HAL_RX_FILTER_PROM;
1881 if (ic->ic_opmode == IEEE80211_M_STA ||
1882 ic->ic_opmode == IEEE80211_M_IBSS ||
1883 state == IEEE80211_S_SCAN)
1884 rfilt |= HAL_RX_FILTER_BEACON;
1885 return rfilt;
1886 }
1887
1888 static void
1889 ath_mcastfilter_accum(void *dl, u_int32_t *mfilt)
1890 {
1891 u_int32_t val;
1892 u_int8_t pos;
1893
1894 /* calculate XOR of eight 6bit values */
1895 val = LE_READ_4((char *)dl + 0);
1896 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1897 val = LE_READ_4((char *)dl + 3);
1898 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1899 pos &= 0x3f;
1900 mfilt[pos / 32] |= (1 << (pos % 32));
1901 }
1902
1903 static void
1904 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t *mfilt)
1905 {
1906 struct ifnet *ifp = &sc->sc_if;
1907 struct ether_multi *enm;
1908 struct ether_multistep estep;
1909
1910 mfilt[0] = mfilt[1] = 0;
1911 ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
1912 while (enm != NULL) {
1913 /* XXX Punt on ranges. */
1914 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
1915 mfilt[0] = mfilt[1] = ~((u_int32_t)0);
1916 ifp->if_flags |= IFF_ALLMULTI;
1917 return;
1918 }
1919 ath_mcastfilter_accum(enm->enm_addrlo, mfilt);
1920 ETHER_NEXT_MULTI(estep, enm);
1921 }
1922 ifp->if_flags &= ~IFF_ALLMULTI;
1923 }
1924
1925 static void
1926 ath_mode_init(struct ath_softc *sc)
1927 {
1928 struct ieee80211com *ic = &sc->sc_ic;
1929 struct ath_hal *ah = sc->sc_ah;
1930 u_int32_t rfilt, mfilt[2];
1931 int i;
1932
1933 /* configure rx filter */
1934 rfilt = ath_calcrxfilter(sc, ic->ic_state);
1935 ath_hal_setrxfilter(ah, rfilt);
1936
1937 /* configure operational mode */
1938 ath_hal_setopmode(ah);
1939
1940 /* Write keys to hardware; it may have been powered down. */
1941 ath_key_update_begin(ic);
1942 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1943 ath_key_set(ic,
1944 &ic->ic_crypto.cs_nw_keys[i],
1945 ic->ic_myaddr);
1946 }
1947 ath_key_update_end(ic);
1948
1949 /*
1950 * Handle any link-level address change. Note that we only
1951 * need to force ic_myaddr; any other addresses are handled
1952 * as a byproduct of the ifnet code marking the interface
1953 * down then up.
1954 *
1955 * XXX should get from lladdr instead of arpcom but that's more work
1956 */
1957 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(sc->sc_if.if_sadl));
1958 ath_hal_setmac(ah, ic->ic_myaddr);
1959
1960 /* calculate and install multicast filter */
1961 #ifdef __FreeBSD__
1962 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1963 mfilt[0] = mfilt[1] = 0;
1964 IF_ADDR_LOCK(ifp);
1965 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1966 void *dl;
1967
1968 /* calculate XOR of eight 6bit values */
1969 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
1970 val = LE_READ_4((char *)dl + 0);
1971 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1972 val = LE_READ_4((char *)dl + 3);
1973 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1974 pos &= 0x3f;
1975 mfilt[pos / 32] |= (1 << (pos % 32));
1976 }
1977 IF_ADDR_UNLOCK(ifp);
1978 } else {
1979 mfilt[0] = mfilt[1] = ~0;
1980 }
1981 #endif
1982 #ifdef __NetBSD__
1983 ath_mcastfilter_compute(sc, mfilt);
1984 #endif
1985 ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1986 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
1987 __func__, rfilt, mfilt[0], mfilt[1]);
1988 }
1989
1990 /*
1991 * Set the slot time based on the current setting.
1992 */
1993 static void
1994 ath_setslottime(struct ath_softc *sc)
1995 {
1996 struct ieee80211com *ic = &sc->sc_ic;
1997 struct ath_hal *ah = sc->sc_ah;
1998
1999 if (ic->ic_flags & IEEE80211_F_SHSLOT)
2000 ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
2001 else
2002 ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
2003 sc->sc_updateslot = OK;
2004 }
2005
2006 /*
2007 * Callback from the 802.11 layer to update the
2008 * slot time based on the current setting.
2009 */
2010 static void
2011 ath_updateslot(struct ifnet *ifp)
2012 {
2013 struct ath_softc *sc = ifp->if_softc;
2014 struct ieee80211com *ic = &sc->sc_ic;
2015
2016 /*
2017 * When not coordinating the BSS, change the hardware
2018 * immediately. For other operation we defer the change
2019 * until beacon updates have propagated to the stations.
2020 */
2021 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
2022 sc->sc_updateslot = UPDATE;
2023 else
2024 ath_setslottime(sc);
2025 }
2026
2027 /*
2028 * Setup a h/w transmit queue for beacons.
2029 */
2030 static int
2031 ath_beaconq_setup(struct ath_hal *ah)
2032 {
2033 HAL_TXQ_INFO qi;
2034
2035 memset(&qi, 0, sizeof(qi));
2036 qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
2037 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
2038 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
2039 /* NB: for dynamic turbo, don't enable any other interrupts */
2040 qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
2041 return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
2042 }
2043
2044 /*
2045 * Setup the transmit queue parameters for the beacon queue.
2046 */
2047 static int
2048 ath_beaconq_config(struct ath_softc *sc)
2049 {
2050 #define ATH_EXPONENT_TO_VALUE(v) ((1<<(v))-1)
2051 struct ieee80211com *ic = &sc->sc_ic;
2052 struct ath_hal *ah = sc->sc_ah;
2053 HAL_TXQ_INFO qi;
2054
2055 ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
2056 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2057 /*
2058 * Always burst out beacon and CAB traffic.
2059 */
2060 qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
2061 qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
2062 qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
2063 } else {
2064 struct wmeParams *wmep =
2065 &ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
2066 /*
2067 * Adhoc mode; important thing is to use 2x cwmin.
2068 */
2069 qi.tqi_aifs = wmep->wmep_aifsn;
2070 qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2071 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2072 }
2073
2074 if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
2075 device_printf(sc->sc_dev, "unable to update parameters for "
2076 "beacon hardware queue!\n");
2077 return 0;
2078 } else {
2079 ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
2080 return 1;
2081 }
2082 #undef ATH_EXPONENT_TO_VALUE
2083 }
2084
2085 /*
2086 * Allocate and setup an initial beacon frame.
2087 */
2088 static int
2089 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
2090 {
2091 struct ieee80211com *ic = ni->ni_ic;
2092 struct ath_buf *bf;
2093 struct mbuf *m;
2094 int error;
2095
2096 bf = STAILQ_FIRST(&sc->sc_bbuf);
2097 if (bf == NULL) {
2098 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
2099 sc->sc_stats.ast_be_nombuf++; /* XXX */
2100 return ENOMEM; /* XXX */
2101 }
2102 /*
2103 * NB: the beacon data buffer must be 32-bit aligned;
2104 * we assume the mbuf routines will return us something
2105 * with this alignment (perhaps should assert).
2106 */
2107 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
2108 if (m == NULL) {
2109 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
2110 __func__);
2111 sc->sc_stats.ast_be_nombuf++;
2112 return ENOMEM;
2113 }
2114 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2115 BUS_DMA_NOWAIT);
2116 if (error == 0) {
2117 bf->bf_m = m;
2118 bf->bf_node = ieee80211_ref_node(ni);
2119 } else {
2120 m_freem(m);
2121 }
2122 return error;
2123 }
2124
2125 /*
2126 * Setup the beacon frame for transmit.
2127 */
2128 static void
2129 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
2130 {
2131 #define USE_SHPREAMBLE(_ic) \
2132 (((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
2133 == IEEE80211_F_SHPREAMBLE)
2134 struct ieee80211_node *ni = bf->bf_node;
2135 struct ieee80211com *ic = ni->ni_ic;
2136 struct mbuf *m = bf->bf_m;
2137 struct ath_hal *ah = sc->sc_ah;
2138 struct ath_desc *ds;
2139 int flags, antenna;
2140 const HAL_RATE_TABLE *rt;
2141 u_int8_t rix, rate;
2142
2143 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
2144 __func__, m, m->m_len);
2145
2146 /* setup descriptors */
2147 ds = bf->bf_desc;
2148
2149 flags = HAL_TXDESC_NOACK;
2150 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
2151 ds->ds_link = HTOAH32(bf->bf_daddr); /* self-linked */
2152 flags |= HAL_TXDESC_VEOL;
2153 /*
2154 * Let hardware handle antenna switching unless
2155 * the user has selected a transmit antenna
2156 * (sc_txantenna is not 0).
2157 */
2158 antenna = sc->sc_txantenna;
2159 } else {
2160 ds->ds_link = 0;
2161 /*
2162 * Switch antenna every 4 beacons, unless the user
2163 * has selected a transmit antenna (sc_txantenna
2164 * is not 0).
2165 *
2166 * XXX assumes two antenna
2167 */
2168 if (sc->sc_txantenna == 0)
2169 antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2170 else
2171 antenna = sc->sc_txantenna;
2172 }
2173
2174 KASSERT(bf->bf_nseg == 1,
2175 ("multi-segment beacon frame; nseg %u", bf->bf_nseg));
2176 ds->ds_data = bf->bf_segs[0].ds_addr;
2177 /*
2178 * Calculate rate code.
2179 * XXX everything at min xmit rate
2180 */
2181 rix = sc->sc_minrateix;
2182 rt = sc->sc_currates;
2183 rate = rt->info[rix].rateCode;
2184 if (USE_SHPREAMBLE(ic))
2185 rate |= rt->info[rix].shortPreamble;
2186 ath_hal_setuptxdesc(ah, ds
2187 , m->m_len + IEEE80211_CRC_LEN /* frame length */
2188 , sizeof(struct ieee80211_frame)/* header length */
2189 , HAL_PKT_TYPE_BEACON /* Atheros packet type */
2190 , ni->ni_txpower /* txpower XXX */
2191 , rate, 1 /* series 0 rate/tries */
2192 , HAL_TXKEYIX_INVALID /* no encryption */
2193 , antenna /* antenna mode */
2194 , flags /* no ack, veol for beacons */
2195 , 0 /* rts/cts rate */
2196 , 0 /* rts/cts duration */
2197 );
2198 /* NB: beacon's BufLen must be a multiple of 4 bytes */
2199 ath_hal_filltxdesc(ah, ds
2200 , roundup(m->m_len, 4) /* buffer length */
2201 , AH_TRUE /* first segment */
2202 , AH_TRUE /* last segment */
2203 , ds /* first descriptor */
2204 );
2205
2206 /* NB: The desc swap function becomes void,
2207 * if descriptor swapping is not enabled
2208 */
2209 ath_desc_swap(ds);
2210
2211 #undef USE_SHPREAMBLE
2212 }
2213
2214 /*
2215 * Transmit a beacon frame at SWBA. Dynamic updates to the
2216 * frame contents are done as needed and the slot time is
2217 * also adjusted based on current state.
2218 */
2219 static void
2220 ath_beacon_proc(void *arg, int pending)
2221 {
2222 struct ath_softc *sc = arg;
2223 struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
2224 struct ieee80211_node *ni = bf->bf_node;
2225 struct ieee80211com *ic = ni->ni_ic;
2226 struct ath_hal *ah = sc->sc_ah;
2227 struct mbuf *m;
2228 int ncabq, error, otherant;
2229
2230 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2231 __func__, pending);
2232
2233 if (ic->ic_opmode == IEEE80211_M_STA ||
2234 ic->ic_opmode == IEEE80211_M_MONITOR ||
2235 bf == NULL || bf->bf_m == NULL) {
2236 DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
2237 __func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
2238 return;
2239 }
2240 /*
2241 * Check if the previous beacon has gone out. If
2242 * not don't try to post another, skip this period
2243 * and wait for the next. Missed beacons indicate
2244 * a problem and should not occur. If we miss too
2245 * many consecutive beacons reset the device.
2246 */
2247 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2248 sc->sc_bmisscount++;
2249 DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2250 "%s: missed %u consecutive beacons\n",
2251 __func__, sc->sc_bmisscount);
2252 if (sc->sc_bmisscount > 3) /* NB: 3 is a guess */
2253 TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask);
2254 return;
2255 }
2256 if (sc->sc_bmisscount != 0) {
2257 DPRINTF(sc, ATH_DEBUG_BEACON,
2258 "%s: resume beacon xmit after %u misses\n",
2259 __func__, sc->sc_bmisscount);
2260 sc->sc_bmisscount = 0;
2261 }
2262
2263 /*
2264 * Update dynamic beacon contents. If this returns
2265 * non-zero then we need to remap the memory because
2266 * the beacon frame changed size (probably because
2267 * of the TIM bitmap).
2268 */
2269 m = bf->bf_m;
2270 ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
2271 if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
2272 /* XXX too conservative? */
2273 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2274 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2275 BUS_DMA_NOWAIT);
2276 if (error != 0) {
2277 if_printf(&sc->sc_if,
2278 "%s: bus_dmamap_load_mbuf failed, error %u\n",
2279 __func__, error);
2280 return;
2281 }
2282 }
2283
2284 /*
2285 * Handle slot time change when a non-ERP station joins/leaves
2286 * an 11g network. The 802.11 layer notifies us via callback,
2287 * we mark updateslot, then wait one beacon before effecting
2288 * the change. This gives associated stations at least one
2289 * beacon interval to note the state change.
2290 */
2291 /* XXX locking */
2292 if (sc->sc_updateslot == UPDATE)
2293 sc->sc_updateslot = COMMIT; /* commit next beacon */
2294 else if (sc->sc_updateslot == COMMIT)
2295 ath_setslottime(sc); /* commit change to h/w */
2296
2297 /*
2298 * Check recent per-antenna transmit statistics and flip
2299 * the default antenna if noticeably more frames went out
2300 * on the non-default antenna.
2301 * XXX assumes 2 anntenae
2302 */
2303 otherant = sc->sc_defant & 1 ? 2 : 1;
2304 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2305 ath_setdefantenna(sc, otherant);
2306 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2307
2308 /*
2309 * Construct tx descriptor.
2310 */
2311 ath_beacon_setup(sc, bf);
2312
2313 /*
2314 * Stop any current dma and put the new frame on the queue.
2315 * This should never fail since we check above that no frames
2316 * are still pending on the queue.
2317 */
2318 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2319 DPRINTF(sc, ATH_DEBUG_ANY,
2320 "%s: beacon queue %u did not stop?\n",
2321 __func__, sc->sc_bhalq);
2322 }
2323 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2324 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2325
2326 /*
2327 * Enable the CAB queue before the beacon queue to
2328 * insure cab frames are triggered by this beacon.
2329 */
2330 if (ncabq != 0 && (sc->sc_boff.bo_tim[4] & 1)) /* NB: only at DTIM */
2331 ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
2332 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
2333 ath_hal_txstart(ah, sc->sc_bhalq);
2334 DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2335 "%s: TXDP[%u] = %" PRIx64 " (%p)\n", __func__,
2336 sc->sc_bhalq, (uint64_t)bf->bf_daddr, bf->bf_desc);
2337
2338 sc->sc_stats.ast_be_xmit++;
2339 }
2340
2341 /*
2342 * Reset the hardware after detecting beacons have stopped.
2343 */
2344 static void
2345 ath_bstuck_proc(void *arg, int pending)
2346 {
2347 struct ath_softc *sc = arg;
2348 struct ifnet *ifp = &sc->sc_if;
2349
2350 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2351 sc->sc_bmisscount);
2352 ath_reset(ifp);
2353 }
2354
2355 /*
2356 * Reclaim beacon resources.
2357 */
2358 static void
2359 ath_beacon_free(struct ath_softc *sc)
2360 {
2361 struct ath_buf *bf;
2362
2363 STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
2364 if (bf->bf_m != NULL) {
2365 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2366 m_freem(bf->bf_m);
2367 bf->bf_m = NULL;
2368 }
2369 if (bf->bf_node != NULL) {
2370 ieee80211_free_node(bf->bf_node);
2371 bf->bf_node = NULL;
2372 }
2373 }
2374 }
2375
2376 /*
2377 * Configure the beacon and sleep timers.
2378 *
2379 * When operating as an AP this resets the TSF and sets
2380 * up the hardware to notify us when we need to issue beacons.
2381 *
2382 * When operating in station mode this sets up the beacon
2383 * timers according to the timestamp of the last received
2384 * beacon and the current TSF, configures PCF and DTIM
2385 * handling, programs the sleep registers so the hardware
2386 * will wakeup in time to receive beacons, and configures
2387 * the beacon miss handling so we'll receive a BMISS
2388 * interrupt when we stop seeing beacons from the AP
2389 * we've associated with.
2390 */
2391 static void
2392 ath_beacon_config(struct ath_softc *sc)
2393 {
2394 #define TSF_TO_TU(_h,_l) \
2395 ((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
2396 #define FUDGE 2
2397 struct ath_hal *ah = sc->sc_ah;
2398 struct ieee80211com *ic = &sc->sc_ic;
2399 struct ieee80211_node *ni = ic->ic_bss;
2400 u_int32_t nexttbtt, intval, tsftu;
2401 u_int64_t tsf;
2402
2403 /* extract tstamp from last beacon and convert to TU */
2404 nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
2405 LE_READ_4(ni->ni_tstamp.data));
2406 /* NB: the beacon interval is kept internally in TU's */
2407 intval = ni->ni_intval & HAL_BEACON_PERIOD;
2408 if (nexttbtt == 0) /* e.g. for ap mode */
2409 nexttbtt = intval;
2410 else if (intval) /* NB: can be 0 for monitor mode */
2411 nexttbtt = roundup(nexttbtt, intval);
2412 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2413 __func__, nexttbtt, intval, ni->ni_intval);
2414 if (ic->ic_opmode == IEEE80211_M_STA) {
2415 HAL_BEACON_STATE bs;
2416 int dtimperiod, dtimcount;
2417 int cfpperiod, cfpcount;
2418
2419 /*
2420 * Setup dtim and cfp parameters according to
2421 * last beacon we received (which may be none).
2422 */
2423 dtimperiod = ni->ni_dtim_period;
2424 if (dtimperiod <= 0) /* NB: 0 if not known */
2425 dtimperiod = 1;
2426 dtimcount = ni->ni_dtim_count;
2427 if (dtimcount >= dtimperiod) /* NB: sanity check */
2428 dtimcount = 0; /* XXX? */
2429 cfpperiod = 1; /* NB: no PCF support yet */
2430 cfpcount = 0;
2431 /*
2432 * Pull nexttbtt forward to reflect the current
2433 * TSF and calculate dtim+cfp state for the result.
2434 */
2435 tsf = ath_hal_gettsf64(ah);
2436 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2437 do {
2438 nexttbtt += intval;
2439 if (--dtimcount < 0) {
2440 dtimcount = dtimperiod - 1;
2441 if (--cfpcount < 0)
2442 cfpcount = cfpperiod - 1;
2443 }
2444 } while (nexttbtt < tsftu);
2445 memset(&bs, 0, sizeof(bs));
2446 bs.bs_intval = intval;
2447 bs.bs_nexttbtt = nexttbtt;
2448 bs.bs_dtimperiod = dtimperiod*intval;
2449 bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
2450 bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
2451 bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
2452 bs.bs_cfpmaxduration = 0;
2453 #if 0
2454 /*
2455 * The 802.11 layer records the offset to the DTIM
2456 * bitmap while receiving beacons; use it here to
2457 * enable h/w detection of our AID being marked in
2458 * the bitmap vector (to indicate frames for us are
2459 * pending at the AP).
2460 * XXX do DTIM handling in s/w to WAR old h/w bugs
2461 * XXX enable based on h/w rev for newer chips
2462 */
2463 bs.bs_timoffset = ni->ni_timoff;
2464 #endif
2465 /*
2466 * Calculate the number of consecutive beacons to miss
2467 * before taking a BMISS interrupt. The configuration
2468 * is specified in ms, so we need to convert that to
2469 * TU's and then calculate based on the beacon interval.
2470 * Note that we clamp the result to at most 10 beacons.
2471 */
2472 bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
2473 if (bs.bs_bmissthreshold > 10)
2474 bs.bs_bmissthreshold = 10;
2475 else if (bs.bs_bmissthreshold <= 0)
2476 bs.bs_bmissthreshold = 1;
2477
2478 /*
2479 * Calculate sleep duration. The configuration is
2480 * given in ms. We insure a multiple of the beacon
2481 * period is used. Also, if the sleep duration is
2482 * greater than the DTIM period then it makes senses
2483 * to make it a multiple of that.
2484 *
2485 * XXX fixed at 100ms
2486 */
2487 bs.bs_sleepduration =
2488 roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2489 if (bs.bs_sleepduration > bs.bs_dtimperiod)
2490 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2491
2492 DPRINTF(sc, ATH_DEBUG_BEACON,
2493 "%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2494 , __func__
2495 , tsf, tsftu
2496 , bs.bs_intval
2497 , bs.bs_nexttbtt
2498 , bs.bs_dtimperiod
2499 , bs.bs_nextdtim
2500 , bs.bs_bmissthreshold
2501 , bs.bs_sleepduration
2502 , bs.bs_cfpperiod
2503 , bs.bs_cfpmaxduration
2504 , bs.bs_cfpnext
2505 , bs.bs_timoffset
2506 );
2507 ath_hal_intrset(ah, 0);
2508 ath_hal_beacontimers(ah, &bs);
2509 sc->sc_imask |= HAL_INT_BMISS;
2510 ath_hal_intrset(ah, sc->sc_imask);
2511 } else {
2512 ath_hal_intrset(ah, 0);
2513 if (nexttbtt == intval)
2514 intval |= HAL_BEACON_RESET_TSF;
2515 if (ic->ic_opmode == IEEE80211_M_IBSS) {
2516 /*
2517 * In IBSS mode enable the beacon timers but only
2518 * enable SWBA interrupts if we need to manually
2519 * prepare beacon frames. Otherwise we use a
2520 * self-linked tx descriptor and let the hardware
2521 * deal with things.
2522 */
2523 intval |= HAL_BEACON_ENA;
2524 if (!sc->sc_hasveol)
2525 sc->sc_imask |= HAL_INT_SWBA;
2526 if ((intval & HAL_BEACON_RESET_TSF) == 0) {
2527 /*
2528 * Pull nexttbtt forward to reflect
2529 * the current TSF.
2530 */
2531 tsf = ath_hal_gettsf64(ah);
2532 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2533 do {
2534 nexttbtt += intval;
2535 } while (nexttbtt < tsftu);
2536 }
2537 ath_beaconq_config(sc);
2538 } else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2539 /*
2540 * In AP mode we enable the beacon timers and
2541 * SWBA interrupts to prepare beacon frames.
2542 */
2543 intval |= HAL_BEACON_ENA;
2544 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */
2545 ath_beaconq_config(sc);
2546 }
2547 ath_hal_beaconinit(ah, nexttbtt, intval);
2548 sc->sc_bmisscount = 0;
2549 ath_hal_intrset(ah, sc->sc_imask);
2550 /*
2551 * When using a self-linked beacon descriptor in
2552 * ibss mode load it once here.
2553 */
2554 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2555 ath_beacon_proc(sc, 0);
2556 }
2557 sc->sc_syncbeacon = 0;
2558 #undef UNDEF
2559 #undef TSF_TO_TU
2560 }
2561
2562 static int
2563 ath_descdma_setup(struct ath_softc *sc,
2564 struct ath_descdma *dd, ath_bufhead *head,
2565 const char *name, int nbuf, int ndesc)
2566 {
2567 #define DS2PHYS(_dd, _ds) \
2568 ((_dd)->dd_desc_paddr + ((char *)(_ds) - (char *)(_dd)->dd_desc))
2569 struct ifnet *ifp = &sc->sc_if;
2570 struct ath_desc *ds;
2571 struct ath_buf *bf;
2572 int i, bsize, error;
2573
2574 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2575 __func__, name, nbuf, ndesc);
2576
2577 dd->dd_name = name;
2578 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2579
2580 /*
2581 * Setup DMA descriptor area.
2582 */
2583 dd->dd_dmat = sc->sc_dmat;
2584
2585 error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE,
2586 0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0);
2587
2588 if (error != 0) {
2589 if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2590 "error %u\n", nbuf * ndesc, dd->dd_name, error);
2591 goto fail0;
2592 }
2593
2594 error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg,
2595 dd->dd_desc_len, (void **)&dd->dd_desc, BUS_DMA_COHERENT);
2596 if (error != 0) {
2597 if_printf(ifp, "unable to map %u %s descriptors, error = %u\n",
2598 nbuf * ndesc, dd->dd_name, error);
2599 goto fail1;
2600 }
2601
2602 /* allocate descriptors */
2603 error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1,
2604 dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2605 if (error != 0) {
2606 if_printf(ifp, "unable to create dmamap for %s descriptors, "
2607 "error %u\n", dd->dd_name, error);
2608 goto fail2;
2609 }
2610
2611 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc,
2612 dd->dd_desc_len, NULL, BUS_DMA_NOWAIT);
2613 if (error != 0) {
2614 if_printf(ifp, "unable to map %s descriptors, error %u\n",
2615 dd->dd_name, error);
2616 goto fail3;
2617 }
2618
2619 ds = dd->dd_desc;
2620 dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr;
2621 DPRINTF(sc, ATH_DEBUG_RESET,
2622 "%s: %s DMA map: %p (%lu) -> %" PRIx64 " (%lu)\n",
2623 __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2624 (uint64_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2625
2626 /* allocate rx buffers */
2627 bsize = sizeof(struct ath_buf) * nbuf;
2628 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2629 if (bf == NULL) {
2630 if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2631 dd->dd_name, bsize);
2632 goto fail4;
2633 }
2634 dd->dd_bufptr = bf;
2635
2636 STAILQ_INIT(head);
2637 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2638 bf->bf_desc = ds;
2639 bf->bf_daddr = DS2PHYS(dd, ds);
2640 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc,
2641 MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap);
2642 if (error != 0) {
2643 if_printf(ifp, "unable to create dmamap for %s "
2644 "buffer %u, error %u\n", dd->dd_name, i, error);
2645 ath_descdma_cleanup(sc, dd, head);
2646 return error;
2647 }
2648 STAILQ_INSERT_TAIL(head, bf, bf_list);
2649 }
2650 return 0;
2651 fail4:
2652 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2653 fail3:
2654 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2655 fail2:
2656 bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
2657 fail1:
2658 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2659 fail0:
2660 memset(dd, 0, sizeof(*dd));
2661 return error;
2662 #undef DS2PHYS
2663 }
2664
2665 static void
2666 ath_descdma_cleanup(struct ath_softc *sc,
2667 struct ath_descdma *dd, ath_bufhead *head)
2668 {
2669 struct ath_buf *bf;
2670 struct ieee80211_node *ni;
2671
2672 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2673 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2674 bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
2675 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2676
2677 STAILQ_FOREACH(bf, head, bf_list) {
2678 if (bf->bf_m) {
2679 m_freem(bf->bf_m);
2680 bf->bf_m = NULL;
2681 }
2682 if (bf->bf_dmamap != NULL) {
2683 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2684 bf->bf_dmamap = NULL;
2685 }
2686 ni = bf->bf_node;
2687 bf->bf_node = NULL;
2688 if (ni != NULL) {
2689 /*
2690 * Reclaim node reference.
2691 */
2692 ieee80211_free_node(ni);
2693 }
2694 }
2695
2696 STAILQ_INIT(head);
2697 free(dd->dd_bufptr, M_ATHDEV);
2698 memset(dd, 0, sizeof(*dd));
2699 }
2700
2701 static int
2702 ath_desc_alloc(struct ath_softc *sc)
2703 {
2704 int error;
2705
2706 error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2707 "rx", ath_rxbuf, 1);
2708 if (error != 0)
2709 return error;
2710
2711 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2712 "tx", ath_txbuf, ATH_TXDESC);
2713 if (error != 0) {
2714 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2715 return error;
2716 }
2717
2718 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2719 "beacon", 1, 1);
2720 if (error != 0) {
2721 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2722 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2723 return error;
2724 }
2725 return 0;
2726 }
2727
2728 static void
2729 ath_desc_free(struct ath_softc *sc)
2730 {
2731
2732 if (sc->sc_bdma.dd_desc_len != 0)
2733 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2734 if (sc->sc_txdma.dd_desc_len != 0)
2735 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2736 if (sc->sc_rxdma.dd_desc_len != 0)
2737 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2738 }
2739
2740 static struct ieee80211_node *
2741 ath_node_alloc(struct ieee80211_node_table *nt)
2742 {
2743 struct ieee80211com *ic = nt->nt_ic;
2744 struct ath_softc *sc = ic->ic_ifp->if_softc;
2745 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2746 struct ath_node *an;
2747
2748 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2749 if (an == NULL) {
2750 /* XXX stat+msg */
2751 return NULL;
2752 }
2753 an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
2754 ath_rate_node_init(sc, an);
2755
2756 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2757 return &an->an_node;
2758 }
2759
2760 static void
2761 ath_node_free(struct ieee80211_node *ni)
2762 {
2763 struct ieee80211com *ic = ni->ni_ic;
2764 struct ath_softc *sc = ic->ic_ifp->if_softc;
2765
2766 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2767
2768 ath_rate_node_cleanup(sc, ATH_NODE(ni));
2769 sc->sc_node_free(ni);
2770 }
2771
2772 static u_int8_t
2773 ath_node_getrssi(const struct ieee80211_node *ni)
2774 {
2775 #define HAL_EP_RND(x, mul) \
2776 ((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
2777 u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
2778 int32_t rssi;
2779
2780 /*
2781 * When only one frame is received there will be no state in
2782 * avgrssi so fallback on the value recorded by the 802.11 layer.
2783 */
2784 if (avgrssi != ATH_RSSI_DUMMY_MARKER)
2785 rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
2786 else
2787 rssi = ni->ni_rssi;
2788 return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
2789 #undef HAL_EP_RND
2790 }
2791
2792 static int
2793 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2794 {
2795 struct ath_hal *ah = sc->sc_ah;
2796 int error;
2797 struct mbuf *m;
2798 struct ath_desc *ds;
2799
2800 m = bf->bf_m;
2801 if (m == NULL) {
2802 /*
2803 * NB: by assigning a page to the rx dma buffer we
2804 * implicitly satisfy the Atheros requirement that
2805 * this buffer be cache-line-aligned and sized to be
2806 * multiple of the cache line size. Not doing this
2807 * causes weird stuff to happen (for the 5210 at least).
2808 */
2809 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2810 if (m == NULL) {
2811 DPRINTF(sc, ATH_DEBUG_ANY,
2812 "%s: no mbuf/cluster\n", __func__);
2813 sc->sc_stats.ast_rx_nombuf++;
2814 return ENOMEM;
2815 }
2816 bf->bf_m = m;
2817 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2818
2819 error = bus_dmamap_load_mbuf(sc->sc_dmat,
2820 bf->bf_dmamap, m,
2821 BUS_DMA_NOWAIT);
2822 if (error != 0) {
2823 DPRINTF(sc, ATH_DEBUG_ANY,
2824 "%s: bus_dmamap_load_mbuf failed; error %d\n",
2825 __func__, error);
2826 sc->sc_stats.ast_rx_busdma++;
2827 return error;
2828 }
2829 KASSERT(bf->bf_nseg == 1,
2830 ("multi-segment packet; nseg %u", bf->bf_nseg));
2831 }
2832 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2833 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2834
2835 /*
2836 * Setup descriptors. For receive we always terminate
2837 * the descriptor list with a self-linked entry so we'll
2838 * not get overrun under high load (as can happen with a
2839 * 5212 when ANI processing enables PHY error frames).
2840 *
2841 * To insure the last descriptor is self-linked we create
2842 * each descriptor as self-linked and add it to the end. As
2843 * each additional descriptor is added the previous self-linked
2844 * entry is ``fixed'' naturally. This should be safe even
2845 * if DMA is happening. When processing RX interrupts we
2846 * never remove/process the last, self-linked, entry on the
2847 * descriptor list. This insures the hardware always has
2848 * someplace to write a new frame.
2849 */
2850 ds = bf->bf_desc;
2851 ds->ds_link = HTOAH32(bf->bf_daddr); /* link to self */
2852 ds->ds_data = bf->bf_segs[0].ds_addr;
2853 ds->ds_vdata = mtod(m, void *); /* for radar */
2854 ath_hal_setuprxdesc(ah, ds
2855 , m->m_len /* buffer size */
2856 , 0
2857 );
2858
2859 if (sc->sc_rxlink != NULL)
2860 *sc->sc_rxlink = bf->bf_daddr;
2861 sc->sc_rxlink = &ds->ds_link;
2862 return 0;
2863 }
2864
2865 /*
2866 * Extend 15-bit time stamp from rx descriptor to
2867 * a full 64-bit TSF using the specified TSF.
2868 */
2869 static inline u_int64_t
2870 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
2871 {
2872 if ((tsf & 0x7fff) < rstamp)
2873 tsf -= 0x8000;
2874 return ((tsf &~ 0x7fff) | rstamp);
2875 }
2876
2877 /*
2878 * Intercept management frames to collect beacon rssi data
2879 * and to do ibss merges.
2880 */
2881 static void
2882 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2883 struct ieee80211_node *ni,
2884 int subtype, int rssi, u_int32_t rstamp)
2885 {
2886 struct ath_softc *sc = ic->ic_ifp->if_softc;
2887
2888 /*
2889 * Call up first so subsequent work can use information
2890 * potentially stored in the node (e.g. for ibss merge).
2891 */
2892 sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
2893 switch (subtype) {
2894 case IEEE80211_FC0_SUBTYPE_BEACON:
2895 /* update rssi statistics for use by the hal */
2896 ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
2897 if (sc->sc_syncbeacon &&
2898 ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) {
2899 /*
2900 * Resync beacon timers using the tsf of the beacon
2901 * frame we just received.
2902 */
2903 ath_beacon_config(sc);
2904 }
2905 /* fall thru... */
2906 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2907 if (ic->ic_opmode == IEEE80211_M_IBSS &&
2908 ic->ic_state == IEEE80211_S_RUN) {
2909 u_int64_t tsf = ath_extend_tsf(rstamp,
2910 ath_hal_gettsf64(sc->sc_ah));
2911
2912 /*
2913 * Handle ibss merge as needed; check the tsf on the
2914 * frame before attempting the merge. The 802.11 spec
2915 * says the station should change it's bssid to match
2916 * the oldest station with the same ssid, where oldest
2917 * is determined by the tsf. Note that hardware
2918 * reconfiguration happens through callback to
2919 * ath_newstate as the state machine will go from
2920 * RUN -> RUN when this happens.
2921 */
2922 if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
2923 DPRINTF(sc, ATH_DEBUG_STATE,
2924 "ibss merge, rstamp %u tsf %ju "
2925 "tstamp %ju\n", rstamp, (uintmax_t)tsf,
2926 (uintmax_t)ni->ni_tstamp.tsf);
2927 (void) ieee80211_ibss_merge(ni);
2928 }
2929 }
2930 break;
2931 }
2932 }
2933
2934 /*
2935 * Set the default antenna.
2936 */
2937 static void
2938 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
2939 {
2940 struct ath_hal *ah = sc->sc_ah;
2941
2942 /* XXX block beacon interrupts */
2943 ath_hal_setdefantenna(ah, antenna);
2944 if (sc->sc_defant != antenna)
2945 sc->sc_stats.ast_ant_defswitch++;
2946 sc->sc_defant = antenna;
2947 sc->sc_rxotherant = 0;
2948 }
2949
2950 static void
2951 ath_rx_proc(void *arg, int npending)
2952 {
2953 #define PA2DESC(_sc, _pa) \
2954 ((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
2955 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
2956 struct ath_softc *sc = arg;
2957 struct ath_buf *bf;
2958 struct ieee80211com *ic = &sc->sc_ic;
2959 struct ifnet *ifp = &sc->sc_if;
2960 struct ath_hal *ah = sc->sc_ah;
2961 struct ath_desc *ds;
2962 struct mbuf *m;
2963 struct ieee80211_node *ni;
2964 struct ath_node *an;
2965 int len, type, ngood;
2966 u_int phyerr;
2967 HAL_STATUS status;
2968 int16_t nf;
2969 u_int64_t tsf;
2970
2971 NET_LOCK_GIANT(); /* XXX */
2972
2973 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
2974 ngood = 0;
2975 nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
2976 tsf = ath_hal_gettsf64(ah);
2977 do {
2978 bf = STAILQ_FIRST(&sc->sc_rxbuf);
2979 if (bf == NULL) { /* NB: shouldn't happen */
2980 if_printf(ifp, "%s: no buffer!\n", __func__);
2981 break;
2982 }
2983 ds = bf->bf_desc;
2984 if (ds->ds_link == bf->bf_daddr) {
2985 /* NB: never process the self-linked entry at the end */
2986 break;
2987 }
2988 m = bf->bf_m;
2989 if (m == NULL) { /* NB: shouldn't happen */
2990 if_printf(ifp, "%s: no mbuf!\n", __func__);
2991 break;
2992 }
2993 /* XXX sync descriptor memory */
2994 /*
2995 * Must provide the virtual address of the current
2996 * descriptor, the physical address, and the virtual
2997 * address of the next descriptor in the h/w chain.
2998 * This allows the HAL to look ahead to see if the
2999 * hardware is done with a descriptor by checking the
3000 * done bit in the following descriptor and the address
3001 * of the current descriptor the DMA engine is working
3002 * on. All this is necessary because of our use of
3003 * a self-linked list to avoid rx overruns.
3004 */
3005 status = ath_hal_rxprocdesc(ah, ds,
3006 bf->bf_daddr, PA2DESC(sc, ds->ds_link));
3007 #ifdef AR_DEBUG
3008 if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
3009 ath_printrxbuf(bf, status == HAL_OK);
3010 #endif
3011 if (status == HAL_EINPROGRESS)
3012 break;
3013 STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
3014 if (ds->ds_rxstat.rs_more) {
3015 /*
3016 * Frame spans multiple descriptors; this
3017 * cannot happen yet as we don't support
3018 * jumbograms. If not in monitor mode,
3019 * discard the frame.
3020 */
3021 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3022 sc->sc_stats.ast_rx_toobig++;
3023 goto rx_next;
3024 }
3025 /* fall thru for monitor mode handling... */
3026 } else if (ds->ds_rxstat.rs_status != 0) {
3027 if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
3028 sc->sc_stats.ast_rx_crcerr++;
3029 if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
3030 sc->sc_stats.ast_rx_fifoerr++;
3031 if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
3032 sc->sc_stats.ast_rx_phyerr++;
3033 phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
3034 sc->sc_stats.ast_rx_phy[phyerr]++;
3035 goto rx_next;
3036 }
3037 if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
3038 /*
3039 * Decrypt error. If the error occurred
3040 * because there was no hardware key, then
3041 * let the frame through so the upper layers
3042 * can process it. This is necessary for 5210
3043 * parts which have no way to setup a ``clear''
3044 * key cache entry.
3045 *
3046 * XXX do key cache faulting
3047 */
3048 if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
3049 goto rx_accept;
3050 sc->sc_stats.ast_rx_badcrypt++;
3051 }
3052 if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
3053 sc->sc_stats.ast_rx_badmic++;
3054 /*
3055 * Do minimal work required to hand off
3056 * the 802.11 header for notifcation.
3057 */
3058 /* XXX frag's and qos frames */
3059 len = ds->ds_rxstat.rs_datalen;
3060 if (len >= sizeof (struct ieee80211_frame)) {
3061 bus_dmamap_sync(sc->sc_dmat,
3062 bf->bf_dmamap,
3063 0, bf->bf_dmamap->dm_mapsize,
3064 BUS_DMASYNC_POSTREAD);
3065 ieee80211_notify_michael_failure(ic,
3066 mtod(m, struct ieee80211_frame *),
3067 sc->sc_splitmic ?
3068 ds->ds_rxstat.rs_keyix-32 :
3069 ds->ds_rxstat.rs_keyix
3070 );
3071 }
3072 }
3073 ifp->if_ierrors++;
3074 /*
3075 * Reject error frames, we normally don't want
3076 * to see them in monitor mode (in monitor mode
3077 * allow through packets that have crypto problems).
3078 */
3079 if ((ds->ds_rxstat.rs_status &~
3080 (HAL_RXERR_DECRYPT|HAL_RXERR_MIC)) ||
3081 sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
3082 goto rx_next;
3083 }
3084 rx_accept:
3085 /*
3086 * Sync and unmap the frame. At this point we're
3087 * committed to passing the mbuf somewhere so clear
3088 * bf_m; this means a new sk_buff must be allocated
3089 * when the rx descriptor is setup again to receive
3090 * another frame.
3091 */
3092 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3093 0, bf->bf_dmamap->dm_mapsize,
3094 BUS_DMASYNC_POSTREAD);
3095 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3096 bf->bf_m = NULL;
3097
3098 m->m_pkthdr.rcvif = ifp;
3099 len = ds->ds_rxstat.rs_datalen;
3100 m->m_pkthdr.len = m->m_len = len;
3101
3102 sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
3103
3104 #if NBPFILTER > 0
3105 if (sc->sc_drvbpf) {
3106 u_int8_t rix;
3107
3108 /*
3109 * Discard anything shorter than an ack or cts.
3110 */
3111 if (len < IEEE80211_ACK_LEN) {
3112 DPRINTF(sc, ATH_DEBUG_RECV,
3113 "%s: runt packet %d\n",
3114 __func__, len);
3115 sc->sc_stats.ast_rx_tooshort++;
3116 m_freem(m);
3117 goto rx_next;
3118 }
3119 rix = ds->ds_rxstat.rs_rate;
3120 sc->sc_rx_th.wr_tsf = htole64(
3121 ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf));
3122 sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
3123 sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
3124 sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf;
3125 sc->sc_rx_th.wr_antnoise = nf;
3126 sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
3127
3128 bpf_mtap2(sc->sc_drvbpf,
3129 &sc->sc_rx_th, sc->sc_rx_th_len, m);
3130 }
3131 #endif
3132
3133 /*
3134 * From this point on we assume the frame is at least
3135 * as large as ieee80211_frame_min; verify that.
3136 */
3137 if (len < IEEE80211_MIN_LEN) {
3138 DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
3139 __func__, len);
3140 sc->sc_stats.ast_rx_tooshort++;
3141 m_freem(m);
3142 goto rx_next;
3143 }
3144
3145 if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
3146 ieee80211_dump_pkt(mtod(m, void *), len,
3147 sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
3148 ds->ds_rxstat.rs_rssi);
3149 }
3150
3151 m_adj(m, -IEEE80211_CRC_LEN);
3152
3153 /*
3154 * Locate the node for sender, track state, and then
3155 * pass the (referenced) node up to the 802.11 layer
3156 * for its use.
3157 */
3158 ni = ieee80211_find_rxnode_withkey(ic,
3159 mtod(m, const struct ieee80211_frame_min *),
3160 ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
3161 IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
3162 /*
3163 * Track rx rssi and do any rx antenna management.
3164 */
3165 an = ATH_NODE(ni);
3166 ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
3167 ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi);
3168 /*
3169 * Send frame up for processing.
3170 */
3171 type = ieee80211_input(ic, m, ni,
3172 ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
3173 ieee80211_free_node(ni);
3174 if (sc->sc_diversity) {
3175 /*
3176 * When using fast diversity, change the default rx
3177 * antenna if diversity chooses the other antenna 3
3178 * times in a row.
3179 */
3180 if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
3181 if (++sc->sc_rxotherant >= 3)
3182 ath_setdefantenna(sc,
3183 ds->ds_rxstat.rs_antenna);
3184 } else
3185 sc->sc_rxotherant = 0;
3186 }
3187 if (sc->sc_softled) {
3188 /*
3189 * Blink for any data frame. Otherwise do a
3190 * heartbeat-style blink when idle. The latter
3191 * is mainly for station mode where we depend on
3192 * periodic beacon frames to trigger the poll event.
3193 */
3194 if (type == IEEE80211_FC0_TYPE_DATA) {
3195 sc->sc_rxrate = ds->ds_rxstat.rs_rate;
3196 ath_led_event(sc, ATH_LED_RX);
3197 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
3198 ath_led_event(sc, ATH_LED_POLL);
3199 }
3200 /*
3201 * Arrange to update the last rx timestamp only for
3202 * frames from our ap when operating in station mode.
3203 * This assumes the rx key is always setup when associated.
3204 */
3205 if (ic->ic_opmode == IEEE80211_M_STA &&
3206 ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID)
3207 ngood++;
3208 rx_next:
3209 STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
3210 } while (ath_rxbuf_init(sc, bf) == 0);
3211
3212 /* rx signal state monitoring */
3213 ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
3214 if (ath_hal_radar_event(ah))
3215 TASK_RUN_OR_ENQUEUE(&sc->sc_radartask);
3216 if (ngood)
3217 sc->sc_lastrx = tsf;
3218
3219 #ifdef __NetBSD__
3220 /* XXX Why isn't this necessary in FreeBSD? */
3221 if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
3222 ath_start(ifp);
3223 #endif /* __NetBSD__ */
3224
3225 NET_UNLOCK_GIANT(); /* XXX */
3226 #undef PA2DESC
3227 }
3228
3229 /*
3230 * Setup a h/w transmit queue.
3231 */
3232 static struct ath_txq *
3233 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3234 {
3235 #define N(a) (sizeof(a)/sizeof(a[0]))
3236 struct ath_hal *ah = sc->sc_ah;
3237 HAL_TXQ_INFO qi;
3238 int qnum;
3239
3240 memset(&qi, 0, sizeof(qi));
3241 qi.tqi_subtype = subtype;
3242 qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3243 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3244 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3245 /*
3246 * Enable interrupts only for EOL and DESC conditions.
3247 * We mark tx descriptors to receive a DESC interrupt
3248 * when a tx queue gets deep; otherwise waiting for the
3249 * EOL to reap descriptors. Note that this is done to
3250 * reduce interrupt load and this only defers reaping
3251 * descriptors, never transmitting frames. Aside from
3252 * reducing interrupts this also permits more concurrency.
3253 * The only potential downside is if the tx queue backs
3254 * up in which case the top half of the kernel may backup
3255 * due to a lack of tx descriptors.
3256 */
3257 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
3258 qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3259 if (qnum == -1) {
3260 /*
3261 * NB: don't print a message, this happens
3262 * normally on parts with too few tx queues
3263 */
3264 return NULL;
3265 }
3266 if (qnum >= N(sc->sc_txq)) {
3267 device_printf(sc->sc_dev,
3268 "hal qnum %u out of range, max %zu!\n",
3269 qnum, N(sc->sc_txq));
3270 ath_hal_releasetxqueue(ah, qnum);
3271 return NULL;
3272 }
3273 if (!ATH_TXQ_SETUP(sc, qnum)) {
3274 struct ath_txq *txq = &sc->sc_txq[qnum];
3275
3276 txq->axq_qnum = qnum;
3277 txq->axq_depth = 0;
3278 txq->axq_intrcnt = 0;
3279 txq->axq_link = NULL;
3280 STAILQ_INIT(&txq->axq_q);
3281 ATH_TXQ_LOCK_INIT(sc, txq);
3282 sc->sc_txqsetup |= 1<<qnum;
3283 }
3284 return &sc->sc_txq[qnum];
3285 #undef N
3286 }
3287
3288 /*
3289 * Setup a hardware data transmit queue for the specified
3290 * access control. The hal may not support all requested
3291 * queues in which case it will return a reference to a
3292 * previously setup queue. We record the mapping from ac's
3293 * to h/w queues for use by ath_tx_start and also track
3294 * the set of h/w queues being used to optimize work in the
3295 * transmit interrupt handler and related routines.
3296 */
3297 static int
3298 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3299 {
3300 #define N(a) (sizeof(a)/sizeof(a[0]))
3301 struct ath_txq *txq;
3302
3303 if (ac >= N(sc->sc_ac2q)) {
3304 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3305 ac, N(sc->sc_ac2q));
3306 return 0;
3307 }
3308 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3309 if (txq != NULL) {
3310 sc->sc_ac2q[ac] = txq;
3311 return 1;
3312 } else
3313 return 0;
3314 #undef N
3315 }
3316
3317 /*
3318 * Update WME parameters for a transmit queue.
3319 */
3320 static int
3321 ath_txq_update(struct ath_softc *sc, int ac)
3322 {
3323 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1)
3324 #define ATH_TXOP_TO_US(v) (v<<5)
3325 struct ieee80211com *ic = &sc->sc_ic;
3326 struct ath_txq *txq = sc->sc_ac2q[ac];
3327 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3328 struct ath_hal *ah = sc->sc_ah;
3329 HAL_TXQ_INFO qi;
3330
3331 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3332 qi.tqi_aifs = wmep->wmep_aifsn;
3333 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3334 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3335 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3336
3337 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3338 device_printf(sc->sc_dev, "unable to update hardware queue "
3339 "parameters for %s traffic!\n",
3340 ieee80211_wme_acnames[ac]);
3341 return 0;
3342 } else {
3343 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3344 return 1;
3345 }
3346 #undef ATH_TXOP_TO_US
3347 #undef ATH_EXPONENT_TO_VALUE
3348 }
3349
3350 /*
3351 * Callback from the 802.11 layer to update WME parameters.
3352 */
3353 static int
3354 ath_wme_update(struct ieee80211com *ic)
3355 {
3356 struct ath_softc *sc = ic->ic_ifp->if_softc;
3357
3358 return !ath_txq_update(sc, WME_AC_BE) ||
3359 !ath_txq_update(sc, WME_AC_BK) ||
3360 !ath_txq_update(sc, WME_AC_VI) ||
3361 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3362 }
3363
3364 /*
3365 * Reclaim resources for a setup queue.
3366 */
3367 static void
3368 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3369 {
3370
3371 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3372 ATH_TXQ_LOCK_DESTROY(txq);
3373 sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3374 }
3375
3376 /*
3377 * Reclaim all tx queue resources.
3378 */
3379 static void
3380 ath_tx_cleanup(struct ath_softc *sc)
3381 {
3382 int i;
3383
3384 ATH_TXBUF_LOCK_DESTROY(sc);
3385 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3386 if (ATH_TXQ_SETUP(sc, i))
3387 ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3388 }
3389
3390 /*
3391 * Defragment an mbuf chain, returning at most maxfrags separate
3392 * mbufs+clusters. If this is not possible NULL is returned and
3393 * the original mbuf chain is left in it's present (potentially
3394 * modified) state. We use two techniques: collapsing consecutive
3395 * mbufs and replacing consecutive mbufs by a cluster.
3396 */
3397 static struct mbuf *
3398 ath_defrag(struct mbuf *m0, int how, int maxfrags)
3399 {
3400 struct mbuf *m, *n, *n2, **prev;
3401 u_int curfrags;
3402
3403 /*
3404 * Calculate the current number of frags.
3405 */
3406 curfrags = 0;
3407 for (m = m0; m != NULL; m = m->m_next)
3408 curfrags++;
3409 /*
3410 * First, try to collapse mbufs. Note that we always collapse
3411 * towards the front so we don't need to deal with moving the
3412 * pkthdr. This may be suboptimal if the first mbuf has much
3413 * less data than the following.
3414 */
3415 m = m0;
3416 again:
3417 for (;;) {
3418 n = m->m_next;
3419 if (n == NULL)
3420 break;
3421 if ((m->m_flags & M_RDONLY) == 0 &&
3422 n->m_len < M_TRAILINGSPACE(m)) {
3423 bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
3424 n->m_len);
3425 m->m_len += n->m_len;
3426 m->m_next = n->m_next;
3427 m_free(n);
3428 if (--curfrags <= maxfrags)
3429 return m0;
3430 } else
3431 m = n;
3432 }
3433 KASSERT(maxfrags > 1,
3434 ("maxfrags %u, but normal collapse failed", maxfrags));
3435 /*
3436 * Collapse consecutive mbufs to a cluster.
3437 */
3438 prev = &m0->m_next; /* NB: not the first mbuf */
3439 while ((n = *prev) != NULL) {
3440 if ((n2 = n->m_next) != NULL &&
3441 n->m_len + n2->m_len < MCLBYTES) {
3442 m = m_getcl(how, MT_DATA, 0);
3443 if (m == NULL)
3444 goto bad;
3445 bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
3446 bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
3447 n2->m_len);
3448 m->m_len = n->m_len + n2->m_len;
3449 m->m_next = n2->m_next;
3450 *prev = m;
3451 m_free(n);
3452 m_free(n2);
3453 if (--curfrags <= maxfrags) /* +1 cl -2 mbufs */
3454 return m0;
3455 /*
3456 * Still not there, try the normal collapse
3457 * again before we allocate another cluster.
3458 */
3459 goto again;
3460 }
3461 prev = &n->m_next;
3462 }
3463 /*
3464 * No place where we can collapse to a cluster; punt.
3465 * This can occur if, for example, you request 2 frags
3466 * but the packet requires that both be clusters (we
3467 * never reallocate the first mbuf to avoid moving the
3468 * packet header).
3469 */
3470 bad:
3471 return NULL;
3472 }
3473
3474 /*
3475 * Return h/w rate index for an IEEE rate (w/o basic rate bit).
3476 */
3477 static int
3478 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
3479 {
3480 int i;
3481
3482 for (i = 0; i < rt->rateCount; i++)
3483 if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
3484 return i;
3485 return 0; /* NB: lowest rate */
3486 }
3487
3488 static void
3489 ath_freetx(struct mbuf *m)
3490 {
3491 struct mbuf *next;
3492
3493 do {
3494 next = m->m_nextpkt;
3495 m->m_nextpkt = NULL;
3496 m_freem(m);
3497 } while ((m = next) != NULL);
3498 }
3499
3500 static int
3501 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
3502 struct mbuf *m0)
3503 {
3504 struct ieee80211com *ic = &sc->sc_ic;
3505 struct ath_hal *ah = sc->sc_ah;
3506 struct ifnet *ifp = &sc->sc_if;
3507 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
3508 int i, error, iswep, ismcast, isfrag, ismrr;
3509 int keyix, hdrlen, pktlen, try0;
3510 u_int8_t rix, txrate, ctsrate;
3511 u_int8_t cix = 0xff; /* NB: silence compiler */
3512 struct ath_desc *ds, *ds0;
3513 struct ath_txq *txq;
3514 struct ieee80211_frame *wh;
3515 u_int subtype, flags, ctsduration;
3516 HAL_PKT_TYPE atype;
3517 const HAL_RATE_TABLE *rt;
3518 HAL_BOOL shortPreamble;
3519 struct ath_node *an;
3520 struct mbuf *m;
3521 u_int pri;
3522
3523 wh = mtod(m0, struct ieee80211_frame *);
3524 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
3525 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3526 isfrag = m0->m_flags & M_FRAG;
3527 hdrlen = ieee80211_anyhdrsize(wh);
3528 /*
3529 * Packet length must not include any
3530 * pad bytes; deduct them here.
3531 */
3532 pktlen = m0->m_pkthdr.len - (hdrlen & 3);
3533
3534 if (iswep) {
3535 const struct ieee80211_cipher *cip;
3536 struct ieee80211_key *k;
3537
3538 /*
3539 * Construct the 802.11 header+trailer for an encrypted
3540 * frame. The only reason this can fail is because of an
3541 * unknown or unsupported cipher/key type.
3542 */
3543 k = ieee80211_crypto_encap(ic, ni, m0);
3544 if (k == NULL) {
3545 /*
3546 * This can happen when the key is yanked after the
3547 * frame was queued. Just discard the frame; the
3548 * 802.11 layer counts failures and provides
3549 * debugging/diagnostics.
3550 */
3551 ath_freetx(m0);
3552 return EIO;
3553 }
3554 /*
3555 * Adjust the packet + header lengths for the crypto
3556 * additions and calculate the h/w key index. When
3557 * a s/w mic is done the frame will have had any mic
3558 * added to it prior to entry so m0->m_pkthdr.len above will
3559 * account for it. Otherwise we need to add it to the
3560 * packet length.
3561 */
3562 cip = k->wk_cipher;
3563 hdrlen += cip->ic_header;
3564 pktlen += cip->ic_header + cip->ic_trailer;
3565 /* NB: frags always have any TKIP MIC done in s/w */
3566 if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
3567 pktlen += cip->ic_miclen;
3568 keyix = k->wk_keyix;
3569
3570 /* packet header may have moved, reset our local pointer */
3571 wh = mtod(m0, struct ieee80211_frame *);
3572 } else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
3573 /*
3574 * Use station key cache slot, if assigned.
3575 */
3576 keyix = ni->ni_ucastkey.wk_keyix;
3577 if (keyix == IEEE80211_KEYIX_NONE)
3578 keyix = HAL_TXKEYIX_INVALID;
3579 } else
3580 keyix = HAL_TXKEYIX_INVALID;
3581
3582 pktlen += IEEE80211_CRC_LEN;
3583
3584 /*
3585 * Load the DMA map so any coalescing is done. This
3586 * also calculates the number of descriptors we need.
3587 */
3588 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3589 BUS_DMA_NOWAIT);
3590 if (error == EFBIG) {
3591 /* XXX packet requires too many descriptors */
3592 bf->bf_nseg = ATH_TXDESC+1;
3593 } else if (error != 0) {
3594 sc->sc_stats.ast_tx_busdma++;
3595 ath_freetx(m0);
3596 return error;
3597 }
3598 /*
3599 * Discard null packets and check for packets that
3600 * require too many TX descriptors. We try to convert
3601 * the latter to a cluster.
3602 */
3603 if (error == EFBIG) { /* too many desc's, linearize */
3604 sc->sc_stats.ast_tx_linear++;
3605 m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
3606 if (m == NULL) {
3607 ath_freetx(m0);
3608 sc->sc_stats.ast_tx_nombuf++;
3609 return ENOMEM;
3610 }
3611 m0 = m;
3612 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3613 BUS_DMA_NOWAIT);
3614 if (error != 0) {
3615 sc->sc_stats.ast_tx_busdma++;
3616 ath_freetx(m0);
3617 return error;
3618 }
3619 KASSERT(bf->bf_nseg <= ATH_TXDESC,
3620 ("too many segments after defrag; nseg %u", bf->bf_nseg));
3621 } else if (bf->bf_nseg == 0) { /* null packet, discard */
3622 sc->sc_stats.ast_tx_nodata++;
3623 ath_freetx(m0);
3624 return EIO;
3625 }
3626 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
3627 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
3628 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
3629 bf->bf_m = m0;
3630 bf->bf_node = ni; /* NB: held reference */
3631
3632 /* setup descriptors */
3633 ds = bf->bf_desc;
3634 rt = sc->sc_currates;
3635 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3636
3637 /*
3638 * NB: the 802.11 layer marks whether or not we should
3639 * use short preamble based on the current mode and
3640 * negotiated parameters.
3641 */
3642 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3643 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) {
3644 shortPreamble = AH_TRUE;
3645 sc->sc_stats.ast_tx_shortpre++;
3646 } else {
3647 shortPreamble = AH_FALSE;
3648 }
3649
3650 an = ATH_NODE(ni);
3651 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */
3652 ismrr = 0; /* default no multi-rate retry*/
3653 /*
3654 * Calculate Atheros packet type from IEEE80211 packet header,
3655 * setup for rate calculations, and select h/w transmit queue.
3656 */
3657 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3658 case IEEE80211_FC0_TYPE_MGT:
3659 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3660 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
3661 atype = HAL_PKT_TYPE_BEACON;
3662 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3663 atype = HAL_PKT_TYPE_PROBE_RESP;
3664 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
3665 atype = HAL_PKT_TYPE_ATIM;
3666 else
3667 atype = HAL_PKT_TYPE_NORMAL; /* XXX */
3668 rix = sc->sc_minrateix;
3669 txrate = rt->info[rix].rateCode;
3670 if (shortPreamble)
3671 txrate |= rt->info[rix].shortPreamble;
3672 try0 = ATH_TXMGTTRY;
3673 /* NB: force all management frames to highest queue */
3674 if (ni->ni_flags & IEEE80211_NODE_QOS) {
3675 /* NB: force all management frames to highest queue */
3676 pri = WME_AC_VO;
3677 } else
3678 pri = WME_AC_BE;
3679 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
3680 break;
3681 case IEEE80211_FC0_TYPE_CTL:
3682 atype = HAL_PKT_TYPE_PSPOLL; /* stop setting of duration */
3683 rix = sc->sc_minrateix;
3684 txrate = rt->info[rix].rateCode;
3685 if (shortPreamble)
3686 txrate |= rt->info[rix].shortPreamble;
3687 try0 = ATH_TXMGTTRY;
3688 /* NB: force all ctl frames to highest queue */
3689 if (ni->ni_flags & IEEE80211_NODE_QOS) {
3690 /* NB: force all ctl frames to highest queue */
3691 pri = WME_AC_VO;
3692 } else
3693 pri = WME_AC_BE;
3694 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
3695 break;
3696 case IEEE80211_FC0_TYPE_DATA:
3697 atype = HAL_PKT_TYPE_NORMAL; /* default */
3698 /*
3699 * Data frames: multicast frames go out at a fixed rate,
3700 * otherwise consult the rate control module for the
3701 * rate to use.
3702 */
3703 if (ismcast) {
3704 /*
3705 * Check mcast rate setting in case it's changed.
3706 * XXX move out of fastpath
3707 */
3708 if (ic->ic_mcast_rate != sc->sc_mcastrate) {
3709 sc->sc_mcastrix =
3710 ath_tx_findrix(rt, ic->ic_mcast_rate);
3711 sc->sc_mcastrate = ic->ic_mcast_rate;
3712 }
3713 rix = sc->sc_mcastrix;
3714 txrate = rt->info[rix].rateCode;
3715 try0 = 1;
3716 } else {
3717 ath_rate_findrate(sc, an, shortPreamble, pktlen,
3718 &rix, &try0, &txrate);
3719 sc->sc_txrate = txrate; /* for LED blinking */
3720 if (try0 != ATH_TXMAXTRY)
3721 ismrr = 1;
3722 }
3723 pri = M_WME_GETAC(m0);
3724 if (cap->cap_wmeParams[pri].wmep_noackPolicy)
3725 flags |= HAL_TXDESC_NOACK;
3726 break;
3727 default:
3728 if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3729 wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3730 /* XXX statistic */
3731 ath_freetx(m0);
3732 return EIO;
3733 }
3734 txq = sc->sc_ac2q[pri];
3735
3736 /*
3737 * When servicing one or more stations in power-save mode
3738 * multicast frames must be buffered until after the beacon.
3739 * We use the CAB queue for that.
3740 */
3741 if (ismcast && ic->ic_ps_sta) {
3742 txq = sc->sc_cabq;
3743 /* XXX? more bit in 802.11 frame header */
3744 }
3745
3746 /*
3747 * Calculate miscellaneous flags.
3748 */
3749 if (ismcast) {
3750 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */
3751 } else if (pktlen > ic->ic_rtsthreshold) {
3752 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */
3753 cix = rt->info[rix].controlRate;
3754 sc->sc_stats.ast_tx_rts++;
3755 }
3756 if (flags & HAL_TXDESC_NOACK) /* NB: avoid double counting */
3757 sc->sc_stats.ast_tx_noack++;
3758
3759 /*
3760 * If 802.11g protection is enabled, determine whether
3761 * to use RTS/CTS or just CTS. Note that this is only
3762 * done for OFDM unicast frames.
3763 */
3764 if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3765 rt->info[rix].phy == IEEE80211_T_OFDM &&
3766 (flags & HAL_TXDESC_NOACK) == 0) {
3767 /* XXX fragments must use CCK rates w/ protection */
3768 if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3769 flags |= HAL_TXDESC_RTSENA;
3770 else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3771 flags |= HAL_TXDESC_CTSENA;
3772 if (isfrag) {
3773 /*
3774 * For frags it would be desirable to use the
3775 * highest CCK rate for RTS/CTS. But stations
3776 * farther away may detect it at a lower CCK rate
3777 * so use the configured protection rate instead
3778 * (for now).
3779 */
3780 cix = rt->info[sc->sc_protrix].controlRate;
3781 } else
3782 cix = rt->info[sc->sc_protrix].controlRate;
3783 sc->sc_stats.ast_tx_protect++;
3784 }
3785
3786 /*
3787 * Calculate duration. This logically belongs in the 802.11
3788 * layer but it lacks sufficient information to calculate it.
3789 */
3790 if ((flags & HAL_TXDESC_NOACK) == 0 &&
3791 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
3792 u_int16_t dur;
3793 /*
3794 * XXX not right with fragmentation.
3795 */
3796 if (shortPreamble)
3797 dur = rt->info[rix].spAckDuration;
3798 else
3799 dur = rt->info[rix].lpAckDuration;
3800 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
3801 dur += dur; /* additional SIFS+ACK */
3802 KASSERT(m0->m_nextpkt != NULL, ("no fragment"));
3803 /*
3804 * Include the size of next fragment so NAV is
3805 * updated properly. The last fragment uses only
3806 * the ACK duration
3807 */
3808 dur += ath_hal_computetxtime(ah, rt,
3809 m0->m_nextpkt->m_pkthdr.len,
3810 rix, shortPreamble);
3811 }
3812 if (isfrag) {
3813 /*
3814 * Force hardware to use computed duration for next
3815 * fragment by disabling multi-rate retry which updates
3816 * duration based on the multi-rate duration table.
3817 */
3818 try0 = ATH_TXMAXTRY;
3819 }
3820 *(u_int16_t *)wh->i_dur = htole16(dur);
3821 }
3822
3823 /*
3824 * Calculate RTS/CTS rate and duration if needed.
3825 */
3826 ctsduration = 0;
3827 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
3828 /*
3829 * CTS transmit rate is derived from the transmit rate
3830 * by looking in the h/w rate table. We must also factor
3831 * in whether or not a short preamble is to be used.
3832 */
3833 /* NB: cix is set above where RTS/CTS is enabled */
3834 KASSERT(cix != 0xff, ("cix not setup"));
3835 ctsrate = rt->info[cix].rateCode;
3836 /*
3837 * Compute the transmit duration based on the frame
3838 * size and the size of an ACK frame. We call into the
3839 * HAL to do the computation since it depends on the
3840 * characteristics of the actual PHY being used.
3841 *
3842 * NB: CTS is assumed the same size as an ACK so we can
3843 * use the precalculated ACK durations.
3844 */
3845 if (shortPreamble) {
3846 ctsrate |= rt->info[cix].shortPreamble;
3847 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
3848 ctsduration += rt->info[cix].spAckDuration;
3849 ctsduration += ath_hal_computetxtime(ah,
3850 rt, pktlen, rix, AH_TRUE);
3851 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
3852 ctsduration += rt->info[rix].spAckDuration;
3853 } else {
3854 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
3855 ctsduration += rt->info[cix].lpAckDuration;
3856 ctsduration += ath_hal_computetxtime(ah,
3857 rt, pktlen, rix, AH_FALSE);
3858 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
3859 ctsduration += rt->info[rix].lpAckDuration;
3860 }
3861 /*
3862 * Must disable multi-rate retry when using RTS/CTS.
3863 */
3864 ismrr = 0;
3865 try0 = ATH_TXMGTTRY; /* XXX */
3866 } else
3867 ctsrate = 0;
3868
3869 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3870 ieee80211_dump_pkt(mtod(m0, void *), m0->m_len,
3871 sc->sc_hwmap[txrate].ieeerate, -1);
3872 #if NBPFILTER > 0
3873 if (ic->ic_rawbpf)
3874 bpf_mtap(ic->ic_rawbpf, m0);
3875 if (sc->sc_drvbpf) {
3876 u_int64_t tsf = ath_hal_gettsf64(ah);
3877
3878 sc->sc_tx_th.wt_tsf = htole64(tsf);
3879 sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
3880 if (iswep)
3881 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3882 if (isfrag)
3883 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
3884 sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
3885 sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3886 sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3887
3888 bpf_mtap2(sc->sc_drvbpf,
3889 &sc->sc_tx_th, sc->sc_tx_th_len, m0);
3890 }
3891 #endif
3892
3893 /*
3894 * Determine if a tx interrupt should be generated for
3895 * this descriptor. We take a tx interrupt to reap
3896 * descriptors when the h/w hits an EOL condition or
3897 * when the descriptor is specifically marked to generate
3898 * an interrupt. We periodically mark descriptors in this
3899 * way to insure timely replenishing of the supply needed
3900 * for sending frames. Defering interrupts reduces system
3901 * load and potentially allows more concurrent work to be
3902 * done but if done to aggressively can cause senders to
3903 * backup.
3904 *
3905 * NB: use >= to deal with sc_txintrperiod changing
3906 * dynamically through sysctl.
3907 */
3908 if (flags & HAL_TXDESC_INTREQ) {
3909 txq->axq_intrcnt = 0;
3910 } else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
3911 flags |= HAL_TXDESC_INTREQ;
3912 txq->axq_intrcnt = 0;
3913 }
3914
3915 /*
3916 * Formulate first tx descriptor with tx controls.
3917 */
3918 /* XXX check return value? */
3919 ath_hal_setuptxdesc(ah, ds
3920 , pktlen /* packet length */
3921 , hdrlen /* header length */
3922 , atype /* Atheros packet type */
3923 , ni->ni_txpower /* txpower */
3924 , txrate, try0 /* series 0 rate/tries */
3925 , keyix /* key cache index */
3926 , sc->sc_txantenna /* antenna mode */
3927 , flags /* flags */
3928 , ctsrate /* rts/cts rate */
3929 , ctsduration /* rts/cts duration */
3930 );
3931 bf->bf_flags = flags;
3932 /*
3933 * Setup the multi-rate retry state only when we're
3934 * going to use it. This assumes ath_hal_setuptxdesc
3935 * initializes the descriptors (so we don't have to)
3936 * when the hardware supports multi-rate retry and
3937 * we don't use it.
3938 */
3939 if (ismrr)
3940 ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
3941
3942 /*
3943 * Fillin the remainder of the descriptor info.
3944 */
3945 ds0 = ds;
3946 for (i = 0; i < bf->bf_nseg; i++, ds++) {
3947 ds->ds_data = bf->bf_segs[i].ds_addr;
3948 if (i == bf->bf_nseg - 1)
3949 ds->ds_link = 0;
3950 else
3951 ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
3952 ath_hal_filltxdesc(ah, ds
3953 , bf->bf_segs[i].ds_len /* segment length */
3954 , i == 0 /* first segment */
3955 , i == bf->bf_nseg - 1 /* last segment */
3956 , ds0 /* first descriptor */
3957 );
3958
3959 /* NB: The desc swap function becomes void,
3960 * if descriptor swapping is not enabled
3961 */
3962 ath_desc_swap(ds);
3963
3964 DPRINTF(sc, ATH_DEBUG_XMIT,
3965 "%s: %d: %08x %08x %08x %08x %08x %08x\n",
3966 __func__, i, ds->ds_link, ds->ds_data,
3967 ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
3968 }
3969 /*
3970 * Insert the frame on the outbound list and
3971 * pass it on to the hardware.
3972 */
3973 ATH_TXQ_LOCK(txq);
3974 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
3975 if (txq->axq_link == NULL) {
3976 ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
3977 DPRINTF(sc, ATH_DEBUG_XMIT,
3978 "%s: TXDP[%u] = %" PRIx64 " (%p) depth %d\n", __func__,
3979 txq->axq_qnum, (uint64_t)bf->bf_daddr, bf->bf_desc,
3980 txq->axq_depth);
3981 } else {
3982 *txq->axq_link = HTOAH32(bf->bf_daddr);
3983 DPRINTF(sc, ATH_DEBUG_XMIT,
3984 "%s: link[%u](%p)=%" PRIx64 " (%p) depth %d\n",
3985 __func__, txq->axq_qnum, txq->axq_link,
3986 (uint64_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
3987 }
3988 txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
3989 /*
3990 * The CAB queue is started from the SWBA handler since
3991 * frames only go out on DTIM and to avoid possible races.
3992 */
3993 if (txq != sc->sc_cabq)
3994 ath_hal_txstart(ah, txq->axq_qnum);
3995 ATH_TXQ_UNLOCK(txq);
3996
3997 return 0;
3998 }
3999
4000 /*
4001 * Process completed xmit descriptors from the specified queue.
4002 */
4003 static int
4004 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
4005 {
4006 struct ath_hal *ah = sc->sc_ah;
4007 struct ieee80211com *ic = &sc->sc_ic;
4008 struct ath_buf *bf;
4009 struct ath_desc *ds, *ds0;
4010 struct ieee80211_node *ni;
4011 struct ath_node *an;
4012 int sr, lr, pri, nacked;
4013 HAL_STATUS status;
4014
4015 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
4016 __func__, txq->axq_qnum,
4017 (void *)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4018 txq->axq_link);
4019 nacked = 0;
4020 for (;;) {
4021 ATH_TXQ_LOCK(txq);
4022 txq->axq_intrcnt = 0; /* reset periodic desc intr count */
4023 bf = STAILQ_FIRST(&txq->axq_q);
4024 if (bf == NULL) {
4025 txq->axq_link = NULL;
4026 ATH_TXQ_UNLOCK(txq);
4027 break;
4028 }
4029 ds0 = &bf->bf_desc[0];
4030 ds = &bf->bf_desc[bf->bf_nseg - 1];
4031 status = ath_hal_txprocdesc(ah, ds);
4032 #ifdef AR_DEBUG
4033 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
4034 ath_printtxbuf(bf, status == HAL_OK);
4035 #endif
4036 if (status == HAL_EINPROGRESS) {
4037 ATH_TXQ_UNLOCK(txq);
4038 break;
4039 }
4040 ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4041 ATH_TXQ_UNLOCK(txq);
4042
4043 ni = bf->bf_node;
4044 if (ni != NULL) {
4045 an = ATH_NODE(ni);
4046 if (ds->ds_txstat.ts_status == 0) {
4047 u_int8_t txant = ds->ds_txstat.ts_antenna;
4048 sc->sc_stats.ast_ant_tx[txant]++;
4049 sc->sc_ant_tx[txant]++;
4050 if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
4051 sc->sc_stats.ast_tx_altrate++;
4052 sc->sc_stats.ast_tx_rssi =
4053 ds->ds_txstat.ts_rssi;
4054 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
4055 ds->ds_txstat.ts_rssi);
4056 pri = M_WME_GETAC(bf->bf_m);
4057 if (pri >= WME_AC_VO)
4058 ic->ic_wme.wme_hipri_traffic++;
4059 ni->ni_inact = ni->ni_inact_reload;
4060 } else {
4061 if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
4062 sc->sc_stats.ast_tx_xretries++;
4063 if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
4064 sc->sc_stats.ast_tx_fifoerr++;
4065 if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
4066 sc->sc_stats.ast_tx_filtered++;
4067 }
4068 sr = ds->ds_txstat.ts_shortretry;
4069 lr = ds->ds_txstat.ts_longretry;
4070 sc->sc_stats.ast_tx_shortretry += sr;
4071 sc->sc_stats.ast_tx_longretry += lr;
4072 /*
4073 * Hand the descriptor to the rate control algorithm.
4074 */
4075 if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
4076 (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
4077 /*
4078 * If frame was ack'd update the last rx time
4079 * used to workaround phantom bmiss interrupts.
4080 */
4081 if (ds->ds_txstat.ts_status == 0)
4082 nacked++;
4083 ath_rate_tx_complete(sc, an, ds, ds0);
4084 }
4085 /*
4086 * Reclaim reference to node.
4087 *
4088 * NB: the node may be reclaimed here if, for example
4089 * this is a DEAUTH message that was sent and the
4090 * node was timed out due to inactivity.
4091 */
4092 ieee80211_free_node(ni);
4093 }
4094 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
4095 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4096 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4097 m_freem(bf->bf_m);
4098 bf->bf_m = NULL;
4099 bf->bf_node = NULL;
4100
4101 ATH_TXBUF_LOCK(sc);
4102 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4103 ATH_TXBUF_UNLOCK(sc);
4104 }
4105 return nacked;
4106 }
4107
4108 static inline int
4109 txqactive(struct ath_hal *ah, int qnum)
4110 {
4111 u_int32_t txqs = 1<<qnum;
4112 ath_hal_gettxintrtxqs(ah, &txqs);
4113 return (txqs & (1<<qnum));
4114 }
4115
4116 /*
4117 * Deferred processing of transmit interrupt; special-cased
4118 * for a single hardware transmit queue (e.g. 5210 and 5211).
4119 */
4120 static void
4121 ath_tx_proc_q0(void *arg, int npending)
4122 {
4123 struct ath_softc *sc = arg;
4124 struct ifnet *ifp = &sc->sc_if;
4125
4126 if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]))
4127 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4128 if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4129 ath_tx_processq(sc, sc->sc_cabq);
4130 ifp->if_flags &= ~IFF_OACTIVE;
4131 sc->sc_tx_timer = 0;
4132
4133 if (sc->sc_softled)
4134 ath_led_event(sc, ATH_LED_TX);
4135
4136 ath_start(ifp);
4137 }
4138
4139 /*
4140 * Deferred processing of transmit interrupt; special-cased
4141 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4142 */
4143 static void
4144 ath_tx_proc_q0123(void *arg, int npending)
4145 {
4146 struct ath_softc *sc = arg;
4147 struct ifnet *ifp = &sc->sc_if;
4148 int nacked;
4149
4150 /*
4151 * Process each active queue.
4152 */
4153 nacked = 0;
4154 if (txqactive(sc->sc_ah, 0))
4155 nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
4156 if (txqactive(sc->sc_ah, 1))
4157 nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
4158 if (txqactive(sc->sc_ah, 2))
4159 nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
4160 if (txqactive(sc->sc_ah, 3))
4161 nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
4162 if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4163 ath_tx_processq(sc, sc->sc_cabq);
4164 if (nacked)
4165 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4166 ath_tx_processq(sc, sc->sc_cabq);
4167
4168 ifp->if_flags &= ~IFF_OACTIVE;
4169 sc->sc_tx_timer = 0;
4170
4171 if (sc->sc_softled)
4172 ath_led_event(sc, ATH_LED_TX);
4173
4174 ath_start(ifp);
4175 }
4176
4177 /*
4178 * Deferred processing of transmit interrupt.
4179 */
4180 static void
4181 ath_tx_proc(void *arg, int npending)
4182 {
4183 struct ath_softc *sc = arg;
4184 struct ifnet *ifp = &sc->sc_if;
4185 int i, nacked;
4186
4187 /*
4188 * Process each active queue.
4189 */
4190 nacked = 0;
4191 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4192 if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
4193 nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
4194 if (nacked)
4195 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4196
4197 ifp->if_flags &= ~IFF_OACTIVE;
4198 sc->sc_tx_timer = 0;
4199
4200 if (sc->sc_softled)
4201 ath_led_event(sc, ATH_LED_TX);
4202
4203 ath_start(ifp);
4204 }
4205
4206 static void
4207 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
4208 {
4209 struct ath_hal *ah = sc->sc_ah;
4210 struct ieee80211_node *ni;
4211 struct ath_buf *bf;
4212
4213 /*
4214 * NB: this assumes output has been stopped and
4215 * we do not need to block ath_tx_tasklet
4216 */
4217 for (;;) {
4218 ATH_TXQ_LOCK(txq);
4219 bf = STAILQ_FIRST(&txq->axq_q);
4220 if (bf == NULL) {
4221 txq->axq_link = NULL;
4222 ATH_TXQ_UNLOCK(txq);
4223 break;
4224 }
4225 ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4226 ATH_TXQ_UNLOCK(txq);
4227 #ifdef AR_DEBUG
4228 if (sc->sc_debug & ATH_DEBUG_RESET)
4229 ath_printtxbuf(bf,
4230 ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
4231 #endif /* AR_DEBUG */
4232 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4233 m_freem(bf->bf_m);
4234 bf->bf_m = NULL;
4235 ni = bf->bf_node;
4236 bf->bf_node = NULL;
4237 if (ni != NULL) {
4238 /*
4239 * Reclaim node reference.
4240 */
4241 ieee80211_free_node(ni);
4242 }
4243 ATH_TXBUF_LOCK(sc);
4244 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4245 ATH_TXBUF_UNLOCK(sc);
4246 }
4247 }
4248
4249 static void
4250 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4251 {
4252 struct ath_hal *ah = sc->sc_ah;
4253
4254 (void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4255 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4256 __func__, txq->axq_qnum,
4257 (void *)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4258 txq->axq_link);
4259 }
4260
4261 /*
4262 * Drain the transmit queues and reclaim resources.
4263 */
4264 static void
4265 ath_draintxq(struct ath_softc *sc)
4266 {
4267 struct ath_hal *ah = sc->sc_ah;
4268 struct ifnet *ifp = &sc->sc_if;
4269 int i;
4270
4271 /* XXX return value */
4272 if (!sc->sc_invalid) {
4273 /* don't touch the hardware if marked invalid */
4274 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4275 DPRINTF(sc, ATH_DEBUG_RESET,
4276 "%s: beacon queue %p\n", __func__,
4277 (void *)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
4278 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4279 if (ATH_TXQ_SETUP(sc, i))
4280 ath_tx_stopdma(sc, &sc->sc_txq[i]);
4281 }
4282 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4283 if (ATH_TXQ_SETUP(sc, i))
4284 ath_tx_draintxq(sc, &sc->sc_txq[i]);
4285 ifp->if_flags &= ~IFF_OACTIVE;
4286 sc->sc_tx_timer = 0;
4287 }
4288
4289 /*
4290 * Disable the receive h/w in preparation for a reset.
4291 */
4292 static void
4293 ath_stoprecv(struct ath_softc *sc)
4294 {
4295 #define PA2DESC(_sc, _pa) \
4296 ((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
4297 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
4298 struct ath_hal *ah = sc->sc_ah;
4299
4300 ath_hal_stoppcurecv(ah); /* disable PCU */
4301 ath_hal_setrxfilter(ah, 0); /* clear recv filter */
4302 ath_hal_stopdmarecv(ah); /* disable DMA engine */
4303 DELAY(3000); /* 3ms is long enough for 1 frame */
4304 #ifdef AR_DEBUG
4305 if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
4306 struct ath_buf *bf;
4307
4308 printf("%s: rx queue %p, link %p\n", __func__,
4309 (void *)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
4310 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4311 struct ath_desc *ds = bf->bf_desc;
4312 HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
4313 bf->bf_daddr, PA2DESC(sc, ds->ds_link));
4314 if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
4315 ath_printrxbuf(bf, status == HAL_OK);
4316 }
4317 }
4318 #endif
4319 sc->sc_rxlink = NULL; /* just in case */
4320 #undef PA2DESC
4321 }
4322
4323 /*
4324 * Enable the receive h/w following a reset.
4325 */
4326 static int
4327 ath_startrecv(struct ath_softc *sc)
4328 {
4329 struct ath_hal *ah = sc->sc_ah;
4330 struct ath_buf *bf;
4331
4332 sc->sc_rxlink = NULL;
4333 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4334 int error = ath_rxbuf_init(sc, bf);
4335 if (error != 0) {
4336 DPRINTF(sc, ATH_DEBUG_RECV,
4337 "%s: ath_rxbuf_init failed %d\n",
4338 __func__, error);
4339 return error;
4340 }
4341 }
4342
4343 bf = STAILQ_FIRST(&sc->sc_rxbuf);
4344 ath_hal_putrxbuf(ah, bf->bf_daddr);
4345 ath_hal_rxena(ah); /* enable recv descriptors */
4346 ath_mode_init(sc); /* set filters, etc. */
4347 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */
4348 return 0;
4349 }
4350
4351 /*
4352 * Update internal state after a channel change.
4353 */
4354 static void
4355 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4356 {
4357 struct ieee80211com *ic = &sc->sc_ic;
4358 enum ieee80211_phymode mode;
4359 u_int16_t flags;
4360
4361 /*
4362 * Change channels and update the h/w rate map
4363 * if we're switching; e.g. 11a to 11b/g.
4364 */
4365 mode = ieee80211_chan2mode(ic, chan);
4366 if (mode != sc->sc_curmode)
4367 ath_setcurmode(sc, mode);
4368 /*
4369 * Update BPF state. NB: ethereal et. al. don't handle
4370 * merged flags well so pick a unique mode for their use.
4371 */
4372 if (IEEE80211_IS_CHAN_A(chan))
4373 flags = IEEE80211_CHAN_A;
4374 /* XXX 11g schizophrenia */
4375 else if (IEEE80211_IS_CHAN_G(chan) ||
4376 IEEE80211_IS_CHAN_PUREG(chan))
4377 flags = IEEE80211_CHAN_G;
4378 else
4379 flags = IEEE80211_CHAN_B;
4380 if (IEEE80211_IS_CHAN_T(chan))
4381 flags |= IEEE80211_CHAN_TURBO;
4382 sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
4383 htole16(chan->ic_freq);
4384 sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
4385 htole16(flags);
4386 }
4387
4388 /*
4389 * Poll for a channel clear indication; this is required
4390 * for channels requiring DFS and not previously visited
4391 * and/or with a recent radar detection.
4392 */
4393 static void
4394 ath_dfswait(void *arg)
4395 {
4396 struct ath_softc *sc = arg;
4397 struct ath_hal *ah = sc->sc_ah;
4398 HAL_CHANNEL hchan;
4399
4400 ath_hal_radar_wait(ah, &hchan);
4401 if (hchan.privFlags & CHANNEL_INTERFERENCE) {
4402 if_printf(&sc->sc_if,
4403 "channel %u/0x%x/0x%x has interference\n",
4404 hchan.channel, hchan.channelFlags, hchan.privFlags);
4405 return;
4406 }
4407 if ((hchan.privFlags & CHANNEL_DFS) == 0) {
4408 /* XXX should not happen */
4409 return;
4410 }
4411 if (hchan.privFlags & CHANNEL_DFS_CLEAR) {
4412 sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR;
4413 sc->sc_if.if_flags &= ~IFF_OACTIVE;
4414 if_printf(&sc->sc_if,
4415 "channel %u/0x%x/0x%x marked clear\n",
4416 hchan.channel, hchan.channelFlags, hchan.privFlags);
4417 } else
4418 callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc);
4419 }
4420
4421 /*
4422 * Set/change channels. If the channel is really being changed,
4423 * it's done by reseting the chip. To accomplish this we must
4424 * first cleanup any pending DMA, then restart stuff after a la
4425 * ath_init.
4426 */
4427 static int
4428 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4429 {
4430 struct ath_hal *ah = sc->sc_ah;
4431 struct ieee80211com *ic = &sc->sc_ic;
4432 HAL_CHANNEL hchan;
4433
4434 /*
4435 * Convert to a HAL channel description with
4436 * the flags constrained to reflect the current
4437 * operating mode.
4438 */
4439 hchan.channel = chan->ic_freq;
4440 hchan.channelFlags = ath_chan2flags(ic, chan);
4441
4442 DPRINTF(sc, ATH_DEBUG_RESET,
4443 "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
4444 __func__,
4445 ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
4446 sc->sc_curchan.channelFlags),
4447 sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
4448 ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
4449 hchan.channel, hchan.channelFlags);
4450 if (hchan.channel != sc->sc_curchan.channel ||
4451 hchan.channelFlags != sc->sc_curchan.channelFlags) {
4452 HAL_STATUS status;
4453
4454 /*
4455 * To switch channels clear any pending DMA operations;
4456 * wait long enough for the RX fifo to drain, reset the
4457 * hardware at the new frequency, and then re-enable
4458 * the relevant bits of the h/w.
4459 */
4460 ath_hal_intrset(ah, 0); /* disable interrupts */
4461 ath_draintxq(sc); /* clear pending tx frames */
4462 ath_stoprecv(sc); /* turn off frame recv */
4463 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
4464 if_printf(ic->ic_ifp, "%s: unable to reset "
4465 "channel %u (%u MHz, flags 0x%x hal flags 0x%x)\n",
4466 __func__, ieee80211_chan2ieee(ic, chan),
4467 chan->ic_freq, chan->ic_flags, hchan.channelFlags);
4468 return EIO;
4469 }
4470 sc->sc_curchan = hchan;
4471 ath_update_txpow(sc); /* update tx power state */
4472 sc->sc_diversity = ath_hal_getdiversity(ah);
4473 sc->sc_calinterval = 1;
4474 sc->sc_caltries = 0;
4475
4476 /*
4477 * Re-enable rx framework.
4478 */
4479 if (ath_startrecv(sc) != 0) {
4480 if_printf(&sc->sc_if,
4481 "%s: unable to restart recv logic\n", __func__);
4482 return EIO;
4483 }
4484
4485 /*
4486 * Change channels and update the h/w rate map
4487 * if we're switching; e.g. 11a to 11b/g.
4488 */
4489 ic->ic_ibss_chan = chan;
4490 ath_chan_change(sc, chan);
4491
4492 /*
4493 * Handle DFS required waiting period to determine
4494 * if channel is clear of radar traffic.
4495 */
4496 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
4497 #define DFS_AND_NOT_CLEAR(_c) \
4498 (((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS)
4499 if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) {
4500 if_printf(&sc->sc_if,
4501 "wait for DFS clear channel signal\n");
4502 /* XXX stop sndq */
4503 sc->sc_if.if_flags |= IFF_OACTIVE;
4504 callout_reset(&sc->sc_dfs_ch,
4505 2 * hz, ath_dfswait, sc);
4506 } else
4507 callout_stop(&sc->sc_dfs_ch);
4508 #undef DFS_NOT_CLEAR
4509 }
4510
4511 /*
4512 * Re-enable interrupts.
4513 */
4514 ath_hal_intrset(ah, sc->sc_imask);
4515 }
4516 return 0;
4517 }
4518
4519 static void
4520 ath_next_scan(void *arg)
4521 {
4522 struct ath_softc *sc = arg;
4523 struct ieee80211com *ic = &sc->sc_ic;
4524 int s;
4525
4526 /* don't call ath_start w/o network interrupts blocked */
4527 s = splnet();
4528
4529 if (ic->ic_state == IEEE80211_S_SCAN)
4530 ieee80211_next_scan(ic);
4531 splx(s);
4532 }
4533
4534 /*
4535 * Periodically recalibrate the PHY to account
4536 * for temperature/environment changes.
4537 */
4538 static void
4539 ath_calibrate(void *arg)
4540 {
4541 struct ath_softc *sc = arg;
4542 struct ath_hal *ah = sc->sc_ah;
4543 HAL_BOOL iqCalDone;
4544
4545 sc->sc_stats.ast_per_cal++;
4546
4547 ATH_LOCK(sc);
4548
4549 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4550 /*
4551 * Rfgain is out of bounds, reset the chip
4552 * to load new gain values.
4553 */
4554 DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4555 "%s: rfgain change\n", __func__);
4556 sc->sc_stats.ast_per_rfgain++;
4557 ath_reset(&sc->sc_if);
4558 }
4559 if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
4560 DPRINTF(sc, ATH_DEBUG_ANY,
4561 "%s: calibration of channel %u failed\n",
4562 __func__, sc->sc_curchan.channel);
4563 sc->sc_stats.ast_per_calfail++;
4564 }
4565 /*
4566 * Calibrate noise floor data again in case of change.
4567 */
4568 ath_hal_process_noisefloor(ah);
4569 /*
4570 * Poll more frequently when the IQ calibration is in
4571 * progress to speedup loading the final settings.
4572 * We temper this aggressive polling with an exponential
4573 * back off after 4 tries up to ath_calinterval.
4574 */
4575 if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
4576 sc->sc_caltries = 0;
4577 sc->sc_calinterval = ath_calinterval;
4578 } else if (sc->sc_caltries > 4) {
4579 sc->sc_caltries = 0;
4580 sc->sc_calinterval <<= 1;
4581 if (sc->sc_calinterval > ath_calinterval)
4582 sc->sc_calinterval = ath_calinterval;
4583 }
4584 KASSERT(0 < sc->sc_calinterval && sc->sc_calinterval <= ath_calinterval,
4585 ("bad calibration interval %u", sc->sc_calinterval));
4586
4587 DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4588 "%s: next +%u (%siqCalDone tries %u)\n", __func__,
4589 sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
4590 sc->sc_caltries++;
4591 callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4592 ath_calibrate, sc);
4593 ATH_UNLOCK(sc);
4594 }
4595
4596 static int
4597 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
4598 {
4599 struct ifnet *ifp = ic->ic_ifp;
4600 struct ath_softc *sc = ifp->if_softc;
4601 struct ath_hal *ah = sc->sc_ah;
4602 struct ieee80211_node *ni;
4603 int i, error;
4604 const u_int8_t *bssid;
4605 u_int32_t rfilt;
4606 static const HAL_LED_STATE leds[] = {
4607 HAL_LED_INIT, /* IEEE80211_S_INIT */
4608 HAL_LED_SCAN, /* IEEE80211_S_SCAN */
4609 HAL_LED_AUTH, /* IEEE80211_S_AUTH */
4610 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */
4611 HAL_LED_RUN, /* IEEE80211_S_RUN */
4612 };
4613
4614 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4615 ieee80211_state_name[ic->ic_state],
4616 ieee80211_state_name[nstate]);
4617
4618 callout_stop(&sc->sc_scan_ch);
4619 callout_stop(&sc->sc_cal_ch);
4620 callout_stop(&sc->sc_dfs_ch);
4621 ath_hal_setledstate(ah, leds[nstate]); /* set LED */
4622
4623 if (nstate == IEEE80211_S_INIT) {
4624 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4625 /*
4626 * NB: disable interrupts so we don't rx frames.
4627 */
4628 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4629 /*
4630 * Notify the rate control algorithm.
4631 */
4632 ath_rate_newstate(sc, nstate);
4633 goto done;
4634 }
4635 ni = ic->ic_bss;
4636 error = ath_chan_set(sc, ic->ic_curchan);
4637 if (error != 0)
4638 goto bad;
4639 rfilt = ath_calcrxfilter(sc, nstate);
4640 if (nstate == IEEE80211_S_SCAN)
4641 bssid = ifp->if_broadcastaddr;
4642 else
4643 bssid = ni->ni_bssid;
4644 ath_hal_setrxfilter(ah, rfilt);
4645 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
4646 __func__, rfilt, ether_sprintf(bssid));
4647
4648 if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
4649 ath_hal_setassocid(ah, bssid, ni->ni_associd);
4650 else
4651 ath_hal_setassocid(ah, bssid, 0);
4652 if (ic->ic_flags & IEEE80211_F_PRIVACY) {
4653 for (i = 0; i < IEEE80211_WEP_NKID; i++)
4654 if (ath_hal_keyisvalid(ah, i))
4655 ath_hal_keysetmac(ah, i, bssid);
4656 }
4657
4658 /*
4659 * Notify the rate control algorithm so rates
4660 * are setup should ath_beacon_alloc be called.
4661 */
4662 ath_rate_newstate(sc, nstate);
4663
4664 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4665 /* nothing to do */;
4666 } else if (nstate == IEEE80211_S_RUN) {
4667 DPRINTF(sc, ATH_DEBUG_STATE,
4668 "%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
4669 "capinfo=0x%04x chan=%d\n"
4670 , __func__
4671 , ic->ic_flags
4672 , ni->ni_intval
4673 , ether_sprintf(ni->ni_bssid)
4674 , ni->ni_capinfo
4675 , ieee80211_chan2ieee(ic, ic->ic_curchan));
4676
4677 switch (ic->ic_opmode) {
4678 case IEEE80211_M_HOSTAP:
4679 case IEEE80211_M_IBSS:
4680 /*
4681 * Allocate and setup the beacon frame.
4682 *
4683 * Stop any previous beacon DMA. This may be
4684 * necessary, for example, when an ibss merge
4685 * causes reconfiguration; there will be a state
4686 * transition from RUN->RUN that means we may
4687 * be called with beacon transmission active.
4688 */
4689 ath_hal_stoptxdma(ah, sc->sc_bhalq);
4690 ath_beacon_free(sc);
4691 error = ath_beacon_alloc(sc, ni);
4692 if (error != 0)
4693 goto bad;
4694 /*
4695 * If joining an adhoc network defer beacon timer
4696 * configuration to the next beacon frame so we
4697 * have a current TSF to use. Otherwise we're
4698 * starting an ibss/bss so there's no need to delay.
4699 */
4700 if (ic->ic_opmode == IEEE80211_M_IBSS &&
4701 ic->ic_bss->ni_tstamp.tsf != 0)
4702 sc->sc_syncbeacon = 1;
4703 else
4704 ath_beacon_config(sc);
4705 break;
4706 case IEEE80211_M_STA:
4707 /*
4708 * Allocate a key cache slot to the station.
4709 */
4710 if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
4711 sc->sc_hasclrkey &&
4712 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4713 ath_setup_stationkey(ni);
4714 /*
4715 * Defer beacon timer configuration to the next
4716 * beacon frame so we have a current TSF to use
4717 * (any TSF collected when scanning is likely old).
4718 */
4719 sc->sc_syncbeacon = 1;
4720 break;
4721 default:
4722 break;
4723 }
4724 /*
4725 * Let the hal process statistics collected during a
4726 * scan so it can provide calibrated noise floor data.
4727 */
4728 ath_hal_process_noisefloor(ah);
4729 /*
4730 * Reset rssi stats; maybe not the best place...
4731 */
4732 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
4733 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
4734 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
4735 } else {
4736 ath_hal_intrset(ah,
4737 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4738 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4739 }
4740 done:
4741 /*
4742 * Invoke the parent method to complete the work.
4743 */
4744 error = sc->sc_newstate(ic, nstate, arg);
4745 /*
4746 * Finally, start any timers.
4747 */
4748 if (nstate == IEEE80211_S_RUN) {
4749 /* start periodic recalibration timer */
4750 callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4751 ath_calibrate, sc);
4752 } else if (nstate == IEEE80211_S_SCAN) {
4753 /* start ap/neighbor scan timer */
4754 callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
4755 ath_next_scan, sc);
4756 }
4757 bad:
4758 return error;
4759 }
4760
4761 /*
4762 * Allocate a key cache slot to the station so we can
4763 * setup a mapping from key index to node. The key cache
4764 * slot is needed for managing antenna state and for
4765 * compression when stations do not use crypto. We do
4766 * it uniliaterally here; if crypto is employed this slot
4767 * will be reassigned.
4768 */
4769 static void
4770 ath_setup_stationkey(struct ieee80211_node *ni)
4771 {
4772 struct ieee80211com *ic = ni->ni_ic;
4773 struct ath_softc *sc = ic->ic_ifp->if_softc;
4774 ieee80211_keyix keyix, rxkeyix;
4775
4776 if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
4777 /*
4778 * Key cache is full; we'll fall back to doing
4779 * the more expensive lookup in software. Note
4780 * this also means no h/w compression.
4781 */
4782 /* XXX msg+statistic */
4783 } else {
4784 /* XXX locking? */
4785 ni->ni_ucastkey.wk_keyix = keyix;
4786 ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
4787 /* NB: this will create a pass-thru key entry */
4788 ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
4789 }
4790 }
4791
4792 /*
4793 * Setup driver-specific state for a newly associated node.
4794 * Note that we're called also on a re-associate, the isnew
4795 * param tells us if this is the first time or not.
4796 */
4797 static void
4798 ath_newassoc(struct ieee80211_node *ni, int isnew)
4799 {
4800 struct ieee80211com *ic = ni->ni_ic;
4801 struct ath_softc *sc = ic->ic_ifp->if_softc;
4802
4803 ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
4804 if (isnew &&
4805 (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
4806 KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
4807 ("new assoc with a unicast key already setup (keyix %u)",
4808 ni->ni_ucastkey.wk_keyix));
4809 ath_setup_stationkey(ni);
4810 }
4811 }
4812
4813 static int
4814 ath_getchannels(struct ath_softc *sc, u_int cc,
4815 HAL_BOOL outdoor, HAL_BOOL xchanmode)
4816 {
4817 #define COMPAT (CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
4818 struct ieee80211com *ic = &sc->sc_ic;
4819 struct ifnet *ifp = &sc->sc_if;
4820 struct ath_hal *ah = sc->sc_ah;
4821 HAL_CHANNEL *chans;
4822 int i, ix, nchan;
4823
4824 chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
4825 M_TEMP, M_NOWAIT);
4826 if (chans == NULL) {
4827 if_printf(ifp, "unable to allocate channel table\n");
4828 return ENOMEM;
4829 }
4830 if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
4831 NULL, 0, NULL,
4832 cc, HAL_MODE_ALL, outdoor, xchanmode)) {
4833 u_int32_t rd;
4834
4835 (void)ath_hal_getregdomain(ah, &rd);
4836 if_printf(ifp, "unable to collect channel list from hal; "
4837 "regdomain likely %u country code %u\n", rd, cc);
4838 free(chans, M_TEMP);
4839 return EINVAL;
4840 }
4841
4842 /*
4843 * Convert HAL channels to ieee80211 ones and insert
4844 * them in the table according to their channel number.
4845 */
4846 for (i = 0; i < nchan; i++) {
4847 HAL_CHANNEL *c = &chans[i];
4848 u_int16_t flags;
4849
4850 ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags);
4851 if (ix > IEEE80211_CHAN_MAX) {
4852 if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n",
4853 ix, c->channel, c->channelFlags);
4854 continue;
4855 }
4856 if (ix < 0) {
4857 /* XXX can't handle stuff <2400 right now */
4858 if (bootverbose)
4859 if_printf(ifp, "hal channel %d (%u/%x) "
4860 "cannot be handled; ignored\n",
4861 ix, c->channel, c->channelFlags);
4862 continue;
4863 }
4864 /*
4865 * Calculate net80211 flags; most are compatible
4866 * but some need massaging. Note the static turbo
4867 * conversion can be removed once net80211 is updated
4868 * to understand static vs. dynamic turbo.
4869 */
4870 flags = c->channelFlags & COMPAT;
4871 if (c->channelFlags & CHANNEL_STURBO)
4872 flags |= IEEE80211_CHAN_TURBO;
4873 if (ic->ic_channels[ix].ic_freq == 0) {
4874 ic->ic_channels[ix].ic_freq = c->channel;
4875 ic->ic_channels[ix].ic_flags = flags;
4876 } else {
4877 /* channels overlap; e.g. 11g and 11b */
4878 ic->ic_channels[ix].ic_flags |= flags;
4879 }
4880 }
4881 free(chans, M_TEMP);
4882 return 0;
4883 #undef COMPAT
4884 }
4885
4886 static void
4887 ath_led_done(void *arg)
4888 {
4889 struct ath_softc *sc = arg;
4890
4891 sc->sc_blinking = 0;
4892 }
4893
4894 /*
4895 * Turn the LED off: flip the pin and then set a timer so no
4896 * update will happen for the specified duration.
4897 */
4898 static void
4899 ath_led_off(void *arg)
4900 {
4901 struct ath_softc *sc = arg;
4902
4903 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
4904 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
4905 }
4906
4907 /*
4908 * Blink the LED according to the specified on/off times.
4909 */
4910 static void
4911 ath_led_blink(struct ath_softc *sc, int on, int off)
4912 {
4913 DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
4914 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
4915 sc->sc_blinking = 1;
4916 sc->sc_ledoff = off;
4917 callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
4918 }
4919
4920 static void
4921 ath_led_event(struct ath_softc *sc, int event)
4922 {
4923
4924 sc->sc_ledevent = ticks; /* time of last event */
4925 if (sc->sc_blinking) /* don't interrupt active blink */
4926 return;
4927 switch (event) {
4928 case ATH_LED_POLL:
4929 ath_led_blink(sc, sc->sc_hwmap[0].ledon,
4930 sc->sc_hwmap[0].ledoff);
4931 break;
4932 case ATH_LED_TX:
4933 ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
4934 sc->sc_hwmap[sc->sc_txrate].ledoff);
4935 break;
4936 case ATH_LED_RX:
4937 ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
4938 sc->sc_hwmap[sc->sc_rxrate].ledoff);
4939 break;
4940 }
4941 }
4942
4943 static void
4944 ath_update_txpow(struct ath_softc *sc)
4945 {
4946 #define COMPAT (CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
4947 struct ieee80211com *ic = &sc->sc_ic;
4948 struct ath_hal *ah = sc->sc_ah;
4949 u_int32_t txpow;
4950
4951 if (sc->sc_curtxpow != ic->ic_txpowlimit) {
4952 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
4953 /* read back in case value is clamped */
4954 (void)ath_hal_gettxpowlimit(ah, &txpow);
4955 ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
4956 }
4957 /*
4958 * Fetch max tx power level for status requests.
4959 */
4960 (void)ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
4961 ic->ic_bss->ni_txpower = txpow;
4962 }
4963
4964 static void
4965 rate_setup(struct ath_softc *sc,
4966 const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs)
4967 {
4968 int i, maxrates;
4969
4970 if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
4971 DPRINTF(sc, ATH_DEBUG_ANY,
4972 "%s: rate table too small (%u > %u)\n",
4973 __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
4974 maxrates = IEEE80211_RATE_MAXSIZE;
4975 } else
4976 maxrates = rt->rateCount;
4977 for (i = 0; i < maxrates; i++)
4978 rs->rs_rates[i] = rt->info[i].dot11Rate;
4979 rs->rs_nrates = maxrates;
4980 }
4981
4982 static int
4983 ath_rate_setup(struct ath_softc *sc, u_int mode)
4984 {
4985 struct ath_hal *ah = sc->sc_ah;
4986 struct ieee80211com *ic = &sc->sc_ic;
4987 const HAL_RATE_TABLE *rt;
4988
4989 switch (mode) {
4990 case IEEE80211_MODE_11A:
4991 rt = ath_hal_getratetable(ah, HAL_MODE_11A);
4992 break;
4993 case IEEE80211_MODE_11B:
4994 rt = ath_hal_getratetable(ah, HAL_MODE_11B);
4995 break;
4996 case IEEE80211_MODE_11G:
4997 rt = ath_hal_getratetable(ah, HAL_MODE_11G);
4998 break;
4999 case IEEE80211_MODE_TURBO_A:
5000 /* XXX until static/dynamic turbo is fixed */
5001 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
5002 break;
5003 case IEEE80211_MODE_TURBO_G:
5004 rt = ath_hal_getratetable(ah, HAL_MODE_108G);
5005 break;
5006 default:
5007 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
5008 __func__, mode);
5009 return 0;
5010 }
5011 sc->sc_rates[mode] = rt;
5012 if (rt != NULL) {
5013 rate_setup(sc, rt, &ic->ic_sup_rates[mode]);
5014 return 1;
5015 } else
5016 return 0;
5017 }
5018
5019 static void
5020 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
5021 {
5022 #define N(a) (sizeof(a)/sizeof(a[0]))
5023 /* NB: on/off times from the Atheros NDIS driver, w/ permission */
5024 static const struct {
5025 u_int rate; /* tx/rx 802.11 rate */
5026 u_int16_t timeOn; /* LED on time (ms) */
5027 u_int16_t timeOff; /* LED off time (ms) */
5028 } blinkrates[] = {
5029 { 108, 40, 10 },
5030 { 96, 44, 11 },
5031 { 72, 50, 13 },
5032 { 48, 57, 14 },
5033 { 36, 67, 16 },
5034 { 24, 80, 20 },
5035 { 22, 100, 25 },
5036 { 18, 133, 34 },
5037 { 12, 160, 40 },
5038 { 10, 200, 50 },
5039 { 6, 240, 58 },
5040 { 4, 267, 66 },
5041 { 2, 400, 100 },
5042 { 0, 500, 130 },
5043 };
5044 const HAL_RATE_TABLE *rt;
5045 int i, j;
5046
5047 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
5048 rt = sc->sc_rates[mode];
5049 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
5050 for (i = 0; i < rt->rateCount; i++)
5051 sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
5052 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
5053 for (i = 0; i < 32; i++) {
5054 u_int8_t ix = rt->rateCodeToIndex[i];
5055 if (ix == 0xff) {
5056 sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
5057 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
5058 continue;
5059 }
5060 sc->sc_hwmap[i].ieeerate =
5061 rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
5062 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
5063 if (rt->info[ix].shortPreamble ||
5064 rt->info[ix].phy == IEEE80211_T_OFDM)
5065 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
5066 /* NB: receive frames include FCS */
5067 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
5068 IEEE80211_RADIOTAP_F_FCS;
5069 /* setup blink rate table to avoid per-packet lookup */
5070 for (j = 0; j < N(blinkrates)-1; j++)
5071 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
5072 break;
5073 /* NB: this uses the last entry if the rate isn't found */
5074 /* XXX beware of overlow */
5075 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
5076 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
5077 }
5078 sc->sc_currates = rt;
5079 sc->sc_curmode = mode;
5080 /*
5081 * All protection frames are transmited at 2Mb/s for
5082 * 11g, otherwise at 1Mb/s.
5083 */
5084 if (mode == IEEE80211_MODE_11G)
5085 sc->sc_protrix = ath_tx_findrix(rt, 2*2);
5086 else
5087 sc->sc_protrix = ath_tx_findrix(rt, 2*1);
5088 /* rate index used to send management frames */
5089 sc->sc_minrateix = 0;
5090 /*
5091 * Setup multicast rate state.
5092 */
5093 /* XXX layering violation */
5094 sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate);
5095 sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate;
5096 /* NB: caller is responsible for reseting rate control state */
5097 #undef N
5098 }
5099
5100 #ifdef AR_DEBUG
5101 static void
5102 ath_printrxbuf(struct ath_buf *bf, int done)
5103 {
5104 struct ath_desc *ds;
5105 int i;
5106
5107 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5108 printf("R%d (%p %" PRIx64
5109 ") %08x %08x %08x %08x %08x %08x %c\n", i, ds,
5110 (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
5111 ds->ds_link, ds->ds_data,
5112 ds->ds_ctl0, ds->ds_ctl1,
5113 ds->ds_hw[0], ds->ds_hw[1],
5114 !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
5115 }
5116 }
5117
5118 static void
5119 ath_printtxbuf(struct ath_buf *bf, int done)
5120 {
5121 struct ath_desc *ds;
5122 int i;
5123
5124 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5125 printf("T%d (%p %" PRIx64
5126 ") %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
5127 i, ds,
5128 (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
5129 ds->ds_link, ds->ds_data,
5130 ds->ds_ctl0, ds->ds_ctl1,
5131 ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
5132 !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
5133 }
5134 }
5135 #endif /* AR_DEBUG */
5136
5137 static void
5138 ath_watchdog(struct ifnet *ifp)
5139 {
5140 struct ath_softc *sc = ifp->if_softc;
5141 struct ieee80211com *ic = &sc->sc_ic;
5142
5143 ifp->if_timer = 0;
5144 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
5145 return;
5146 if (sc->sc_tx_timer) {
5147 if (--sc->sc_tx_timer == 0) {
5148 if_printf(ifp, "device timeout\n");
5149 ath_reset(ifp);
5150 ifp->if_oerrors++;
5151 sc->sc_stats.ast_watchdog++;
5152 } else
5153 ifp->if_timer = 1;
5154 }
5155 ieee80211_watchdog(ic);
5156 }
5157
5158 /*
5159 * Diagnostic interface to the HAL. This is used by various
5160 * tools to do things like retrieve register contents for
5161 * debugging. The mechanism is intentionally opaque so that
5162 * it can change frequently w/o concern for compatiblity.
5163 */
5164 static int
5165 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
5166 {
5167 struct ath_hal *ah = sc->sc_ah;
5168 u_int id = ad->ad_id & ATH_DIAG_ID;
5169 void *indata = NULL;
5170 void *outdata = NULL;
5171 u_int32_t insize = ad->ad_in_size;
5172 u_int32_t outsize = ad->ad_out_size;
5173 int error = 0;
5174
5175 if (ad->ad_id & ATH_DIAG_IN) {
5176 /*
5177 * Copy in data.
5178 */
5179 indata = malloc(insize, M_TEMP, M_NOWAIT);
5180 if (indata == NULL) {
5181 error = ENOMEM;
5182 goto bad;
5183 }
5184 error = copyin(ad->ad_in_data, indata, insize);
5185 if (error)
5186 goto bad;
5187 }
5188 if (ad->ad_id & ATH_DIAG_DYN) {
5189 /*
5190 * Allocate a buffer for the results (otherwise the HAL
5191 * returns a pointer to a buffer where we can read the
5192 * results). Note that we depend on the HAL leaving this
5193 * pointer for us to use below in reclaiming the buffer;
5194 * may want to be more defensive.
5195 */
5196 outdata = malloc(outsize, M_TEMP, M_NOWAIT);
5197 if (outdata == NULL) {
5198 error = ENOMEM;
5199 goto bad;
5200 }
5201 }
5202 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
5203 if (outsize < ad->ad_out_size)
5204 ad->ad_out_size = outsize;
5205 if (outdata != NULL)
5206 error = copyout(outdata, ad->ad_out_data,
5207 ad->ad_out_size);
5208 } else {
5209 error = EINVAL;
5210 }
5211 bad:
5212 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
5213 free(indata, M_TEMP);
5214 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
5215 free(outdata, M_TEMP);
5216 return error;
5217 }
5218
5219 static int
5220 ath_ioctl(struct ifnet *ifp, u_long cmd, void *data)
5221 {
5222 #define IS_RUNNING(ifp) \
5223 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
5224 struct ath_softc *sc = ifp->if_softc;
5225 struct ieee80211com *ic = &sc->sc_ic;
5226 struct ifreq *ifr = (struct ifreq *)data;
5227 int error = 0;
5228
5229 ATH_LOCK(sc);
5230 switch (cmd) {
5231 case SIOCSIFFLAGS:
5232 if (IS_RUNNING(ifp)) {
5233 /*
5234 * To avoid rescanning another access point,
5235 * do not call ath_init() here. Instead,
5236 * only reflect promisc mode settings.
5237 */
5238 ath_mode_init(sc);
5239 } else if (ifp->if_flags & IFF_UP) {
5240 /*
5241 * Beware of being called during attach/detach
5242 * to reset promiscuous mode. In that case we
5243 * will still be marked UP but not RUNNING.
5244 * However trying to re-init the interface
5245 * is the wrong thing to do as we've already
5246 * torn down much of our state. There's
5247 * probably a better way to deal with this.
5248 */
5249 if (!sc->sc_invalid && ic->ic_bss != NULL)
5250 ath_init(sc); /* XXX lose error */
5251 } else
5252 ath_stop_locked(ifp, 1);
5253 break;
5254 case SIOCADDMULTI:
5255 case SIOCDELMULTI:
5256 error = (cmd == SIOCADDMULTI) ?
5257 ether_addmulti(ifr, &sc->sc_ec) :
5258 ether_delmulti(ifr, &sc->sc_ec);
5259 if (error == ENETRESET) {
5260 if (ifp->if_flags & IFF_RUNNING)
5261 ath_mode_init(sc);
5262 error = 0;
5263 }
5264 break;
5265 case SIOCGATHSTATS:
5266 /* NB: embed these numbers to get a consistent view */
5267 sc->sc_stats.ast_tx_packets = ifp->if_opackets;
5268 sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
5269 sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
5270 ATH_UNLOCK(sc);
5271 /*
5272 * NB: Drop the softc lock in case of a page fault;
5273 * we'll accept any potential inconsisentcy in the
5274 * statistics. The alternative is to copy the data
5275 * to a local structure.
5276 */
5277 return copyout(&sc->sc_stats,
5278 ifr->ifr_data, sizeof (sc->sc_stats));
5279 case SIOCGATHDIAG:
5280 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
5281 break;
5282 default:
5283 error = ieee80211_ioctl(ic, cmd, data);
5284 if (error == ENETRESET) {
5285 if (IS_RUNNING(ifp) &&
5286 ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
5287 ath_init(sc); /* XXX lose error */
5288 error = 0;
5289 }
5290 if (error == ERESTART)
5291 error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0;
5292 break;
5293 }
5294 ATH_UNLOCK(sc);
5295 return error;
5296 #undef IS_RUNNING
5297 }
5298
5299 #if NBPFILTER > 0
5300 static void
5301 ath_bpfattach(struct ath_softc *sc)
5302 {
5303 struct ifnet *ifp = &sc->sc_if;
5304
5305 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
5306 sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
5307 &sc->sc_drvbpf);
5308 /*
5309 * Initialize constant fields.
5310 * XXX make header lengths a multiple of 32-bits so subsequent
5311 * headers are properly aligned; this is a kludge to keep
5312 * certain applications happy.
5313 *
5314 * NB: the channel is setup each time we transition to the
5315 * RUN state to avoid filling it in for each frame.
5316 */
5317 sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
5318 sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
5319 sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
5320
5321 sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
5322 sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
5323 sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
5324 }
5325 #endif
5326
5327 /*
5328 * Announce various information on device/driver attach.
5329 */
5330 static void
5331 ath_announce(struct ath_softc *sc)
5332 {
5333 #define HAL_MODE_DUALBAND (HAL_MODE_11A|HAL_MODE_11B)
5334 struct ifnet *ifp = &sc->sc_if;
5335 struct ath_hal *ah = sc->sc_ah;
5336 u_int modes, cc;
5337
5338 if_printf(ifp, "mac %d.%d phy %d.%d",
5339 ah->ah_macVersion, ah->ah_macRev,
5340 ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
5341 /*
5342 * Print radio revision(s). We check the wireless modes
5343 * to avoid falsely printing revs for inoperable parts.
5344 * Dual-band radio revs are returned in the 5 GHz rev number.
5345 */
5346 ath_hal_getcountrycode(ah, &cc);
5347 modes = ath_hal_getwirelessmodes(ah, cc);
5348 if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
5349 if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
5350 printf(" 5 GHz radio %d.%d 2 GHz radio %d.%d",
5351 ah->ah_analog5GhzRev >> 4,
5352 ah->ah_analog5GhzRev & 0xf,
5353 ah->ah_analog2GhzRev >> 4,
5354 ah->ah_analog2GhzRev & 0xf);
5355 else
5356 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5357 ah->ah_analog5GhzRev & 0xf);
5358 } else
5359 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5360 ah->ah_analog5GhzRev & 0xf);
5361 printf("\n");
5362 if (bootverbose) {
5363 int i;
5364 for (i = 0; i <= WME_AC_VO; i++) {
5365 struct ath_txq *txq = sc->sc_ac2q[i];
5366 if_printf(ifp, "Use hw queue %u for %s traffic\n",
5367 txq->axq_qnum, ieee80211_wme_acnames[i]);
5368 }
5369 if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5370 sc->sc_cabq->axq_qnum);
5371 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5372 }
5373 if (ath_rxbuf != ATH_RXBUF)
5374 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
5375 if (ath_txbuf != ATH_TXBUF)
5376 if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
5377 #undef HAL_MODE_DUALBAND
5378 }
5379