Home | History | Annotate | Line # | Download | only in ic
ath.c revision 1.82
      1 /*	$NetBSD: ath.c,v 1.82 2007/03/04 06:01:49 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer,
     12  *    without modification.
     13  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
     14  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
     15  *    redistribution must be conditioned upon including a substantially
     16  *    similar Disclaimer requirement for further binary redistribution.
     17  * 3. Neither the names of the above-listed copyright holders nor the names
     18  *    of any contributors may be used to endorse or promote products derived
     19  *    from this software without specific prior written permission.
     20  *
     21  * Alternatively, this software may be distributed under the terms of the
     22  * GNU General Public License ("GPL") version 2 as published by the Free
     23  * Software Foundation.
     24  *
     25  * NO WARRANTY
     26  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     28  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
     29  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
     30  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
     31  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
     34  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     36  * THE POSSIBILITY OF SUCH DAMAGES.
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 #ifdef __FreeBSD__
     41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $");
     42 #endif
     43 #ifdef __NetBSD__
     44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.82 2007/03/04 06:01:49 christos Exp $");
     45 #endif
     46 
     47 /*
     48  * Driver for the Atheros Wireless LAN controller.
     49  *
     50  * This software is derived from work of Atsushi Onoe; his contribution
     51  * is greatly appreciated.
     52  */
     53 
     54 #include "opt_inet.h"
     55 
     56 #ifdef __NetBSD__
     57 #include "bpfilter.h"
     58 #endif /* __NetBSD__ */
     59 
     60 #include <sys/param.h>
     61 #include <sys/reboot.h>
     62 #include <sys/systm.h>
     63 #include <sys/types.h>
     64 #include <sys/sysctl.h>
     65 #include <sys/mbuf.h>
     66 #include <sys/malloc.h>
     67 #include <sys/lock.h>
     68 #include <sys/kernel.h>
     69 #include <sys/socket.h>
     70 #include <sys/sockio.h>
     71 #include <sys/errno.h>
     72 #include <sys/callout.h>
     73 #include <machine/bus.h>
     74 #include <sys/endian.h>
     75 
     76 #include <net/if.h>
     77 #include <net/if_dl.h>
     78 #include <net/if_media.h>
     79 #include <net/if_types.h>
     80 #include <net/if_arp.h>
     81 #include <net/if_ether.h>
     82 #include <net/if_llc.h>
     83 
     84 #include <net80211/ieee80211_netbsd.h>
     85 #include <net80211/ieee80211_var.h>
     86 
     87 #if NBPFILTER > 0
     88 #include <net/bpf.h>
     89 #endif
     90 
     91 #ifdef INET
     92 #include <netinet/in.h>
     93 #endif
     94 
     95 #include <sys/device.h>
     96 #include <dev/ic/ath_netbsd.h>
     97 
     98 #define	AR_DEBUG
     99 #include <dev/ic/athvar.h>
    100 #include <contrib/dev/ath/ah_desc.h>
    101 #include <contrib/dev/ath/ah_devid.h>	/* XXX for softled */
    102 #include "athhal_options.h"
    103 
    104 #ifdef ATH_TX99_DIAG
    105 #include <dev/ath/ath_tx99/ath_tx99.h>
    106 #endif
    107 
    108 /* unaligned little endian access */
    109 #define LE_READ_2(p)							\
    110 	((u_int16_t)							\
    111 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
    112 #define LE_READ_4(p)							\
    113 	((u_int32_t)							\
    114 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
    115 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
    116 
    117 enum {
    118 	ATH_LED_TX,
    119 	ATH_LED_RX,
    120 	ATH_LED_POLL,
    121 };
    122 
    123 #ifdef	AH_NEED_DESC_SWAP
    124 #define	HTOAH32(x)	htole32(x)
    125 #else
    126 #define	HTOAH32(x)	(x)
    127 #endif
    128 
    129 static int	ath_ifinit(struct ifnet *);
    130 static int	ath_init(struct ath_softc *);
    131 static void	ath_stop_locked(struct ifnet *, int);
    132 static void	ath_stop(struct ifnet *, int);
    133 static void	ath_start(struct ifnet *);
    134 static int	ath_media_change(struct ifnet *);
    135 static void	ath_watchdog(struct ifnet *);
    136 static int	ath_ioctl(struct ifnet *, u_long, void *);
    137 static void	ath_fatal_proc(void *, int);
    138 static void	ath_rxorn_proc(void *, int);
    139 static void	ath_bmiss_proc(void *, int);
    140 static void	ath_radar_proc(void *, int);
    141 static int	ath_key_alloc(struct ieee80211com *,
    142 			const struct ieee80211_key *,
    143 			ieee80211_keyix *, ieee80211_keyix *);
    144 static int	ath_key_delete(struct ieee80211com *,
    145 			const struct ieee80211_key *);
    146 static int	ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
    147 			const u_int8_t mac[IEEE80211_ADDR_LEN]);
    148 static void	ath_key_update_begin(struct ieee80211com *);
    149 static void	ath_key_update_end(struct ieee80211com *);
    150 static void	ath_mode_init(struct ath_softc *);
    151 static void	ath_setslottime(struct ath_softc *);
    152 static void	ath_updateslot(struct ifnet *);
    153 static int	ath_beaconq_setup(struct ath_hal *);
    154 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
    155 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
    156 static void	ath_beacon_proc(void *, int);
    157 static void	ath_bstuck_proc(void *, int);
    158 static void	ath_beacon_free(struct ath_softc *);
    159 static void	ath_beacon_config(struct ath_softc *);
    160 static void	ath_descdma_cleanup(struct ath_softc *sc,
    161 			struct ath_descdma *, ath_bufhead *);
    162 static int	ath_desc_alloc(struct ath_softc *);
    163 static void	ath_desc_free(struct ath_softc *);
    164 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
    165 static void	ath_node_free(struct ieee80211_node *);
    166 static u_int8_t	ath_node_getrssi(const struct ieee80211_node *);
    167 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
    168 static void	ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
    169 			struct ieee80211_node *ni,
    170 			int subtype, int rssi, u_int32_t rstamp);
    171 static void	ath_setdefantenna(struct ath_softc *, u_int);
    172 static void	ath_rx_proc(void *, int);
    173 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
    174 static int	ath_tx_setup(struct ath_softc *, int, int);
    175 static int	ath_wme_update(struct ieee80211com *);
    176 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
    177 static void	ath_tx_cleanup(struct ath_softc *);
    178 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
    179 			     struct ath_buf *, struct mbuf *);
    180 static void	ath_tx_proc_q0(void *, int);
    181 static void	ath_tx_proc_q0123(void *, int);
    182 static void	ath_tx_proc(void *, int);
    183 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
    184 static void	ath_draintxq(struct ath_softc *);
    185 static void	ath_stoprecv(struct ath_softc *);
    186 static int	ath_startrecv(struct ath_softc *);
    187 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
    188 static void	ath_next_scan(void *);
    189 static void	ath_calibrate(void *);
    190 static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
    191 static void	ath_setup_stationkey(struct ieee80211_node *);
    192 static void	ath_newassoc(struct ieee80211_node *, int);
    193 static int	ath_getchannels(struct ath_softc *, u_int cc,
    194 			HAL_BOOL outdoor, HAL_BOOL xchanmode);
    195 static void	ath_led_event(struct ath_softc *, int);
    196 static void	ath_update_txpow(struct ath_softc *);
    197 
    198 static int	ath_rate_setup(struct ath_softc *, u_int mode);
    199 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
    200 
    201 #ifdef __NetBSD__
    202 int	ath_enable(struct ath_softc *);
    203 void	ath_disable(struct ath_softc *);
    204 void	ath_power(int, void *);
    205 #endif
    206 
    207 #if NBPFILTER > 0
    208 static void	ath_bpfattach(struct ath_softc *);
    209 #endif
    210 static void	ath_announce(struct ath_softc *);
    211 
    212 int ath_dwelltime = 200;		/* 5 channels/second */
    213 int ath_calinterval = 30;		/* calibrate every 30 secs */
    214 int ath_outdoor = AH_TRUE;		/* outdoor operation */
    215 int ath_xchanmode = AH_TRUE;		/* enable extended channels */
    216 int ath_countrycode = CTRY_DEFAULT;	/* country code */
    217 int ath_regdomain = 0;			/* regulatory domain */
    218 int ath_debug = 0;
    219 int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
    220 int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
    221 
    222 #ifdef AR_DEBUG
    223 enum {
    224 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
    225 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
    226 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
    227 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
    228 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
    229 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
    230 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
    231 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
    232 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
    233 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
    234 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
    235 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
    236 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
    237 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
    238 	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
    239 	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
    240 	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
    241 	ATH_DEBUG_LED		= 0x00100000,	/* led management */
    242 	ATH_DEBUG_FF		= 0x00200000,	/* fast frames */
    243 	ATH_DEBUG_DFS		= 0x00400000,	/* DFS processing */
    244 	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
    245 	ATH_DEBUG_ANY		= 0xffffffff
    246 };
    247 #define	IFF_DUMPPKTS(sc, m) \
    248 	((sc->sc_debug & (m)) || \
    249 	    (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
    250 #define	DPRINTF(sc, m, fmt, ...) do {				\
    251 	if (sc->sc_debug & (m))					\
    252 		printf(fmt, __VA_ARGS__);			\
    253 } while (0)
    254 #define	KEYPRINTF(sc, ix, hk, mac) do {				\
    255 	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
    256 		ath_keyprint(__func__, ix, hk, mac);		\
    257 } while (0)
    258 static	void ath_printrxbuf(struct ath_buf *bf, int);
    259 static	void ath_printtxbuf(struct ath_buf *bf, int);
    260 #else
    261 #define	IFF_DUMPPKTS(sc, m) \
    262 	((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
    263 #define	DPRINTF(m, fmt, ...)
    264 #define	KEYPRINTF(sc, k, ix, mac)
    265 #endif
    266 
    267 #ifdef __NetBSD__
    268 int
    269 ath_activate(struct device *self, enum devact act)
    270 {
    271 	struct ath_softc *sc = (struct ath_softc *)self;
    272 	int rv = 0, s;
    273 
    274 	s = splnet();
    275 	switch (act) {
    276 	case DVACT_ACTIVATE:
    277 		rv = EOPNOTSUPP;
    278 		break;
    279 	case DVACT_DEACTIVATE:
    280 		if_deactivate(&sc->sc_if);
    281 		break;
    282 	}
    283 	splx(s);
    284 	return rv;
    285 }
    286 
    287 int
    288 ath_enable(struct ath_softc *sc)
    289 {
    290 	if (ATH_IS_ENABLED(sc) == 0) {
    291 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
    292 			printf("%s: device enable failed\n",
    293 				sc->sc_dev.dv_xname);
    294 			return (EIO);
    295 		}
    296 		sc->sc_flags |= ATH_ENABLED;
    297 	}
    298 	return (0);
    299 }
    300 
    301 void
    302 ath_disable(struct ath_softc *sc)
    303 {
    304 	if (!ATH_IS_ENABLED(sc))
    305 		return;
    306 	if (sc->sc_disable != NULL)
    307 		(*sc->sc_disable)(sc);
    308 	sc->sc_flags &= ~ATH_ENABLED;
    309 }
    310 #endif /* __NetBSD__ */
    311 
    312 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
    313 
    314 int
    315 ath_attach(u_int16_t devid, struct ath_softc *sc)
    316 {
    317 	struct ifnet *ifp = &sc->sc_if;
    318 	struct ieee80211com *ic = &sc->sc_ic;
    319 	struct ath_hal *ah = NULL;
    320 	HAL_STATUS status;
    321 	int error = 0, i;
    322 
    323 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
    324 
    325 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
    326 
    327 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
    328 	if (ah == NULL) {
    329 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
    330 			status);
    331 		error = ENXIO;
    332 		goto bad;
    333 	}
    334 	if (ah->ah_abi != HAL_ABI_VERSION) {
    335 		if_printf(ifp, "HAL ABI mismatch detected "
    336 			"(HAL:0x%x != driver:0x%x)\n",
    337 			ah->ah_abi, HAL_ABI_VERSION);
    338 		error = ENXIO;
    339 		goto bad;
    340 	}
    341 	sc->sc_ah = ah;
    342 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
    343 
    344 	/*
    345 	 * Check if the MAC has multi-rate retry support.
    346 	 * We do this by trying to setup a fake extended
    347 	 * descriptor.  MAC's that don't have support will
    348 	 * return false w/o doing anything.  MAC's that do
    349 	 * support it will return true w/o doing anything.
    350 	 */
    351 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
    352 
    353 	/*
    354 	 * Check if the device has hardware counters for PHY
    355 	 * errors.  If so we need to enable the MIB interrupt
    356 	 * so we can act on stat triggers.
    357 	 */
    358 	if (ath_hal_hwphycounters(ah))
    359 		sc->sc_needmib = 1;
    360 
    361 	/*
    362 	 * Get the hardware key cache size.
    363 	 */
    364 	sc->sc_keymax = ath_hal_keycachesize(ah);
    365 	if (sc->sc_keymax > ATH_KEYMAX) {
    366 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
    367 			ATH_KEYMAX, sc->sc_keymax);
    368 		sc->sc_keymax = ATH_KEYMAX;
    369 	}
    370 	/*
    371 	 * Reset the key cache since some parts do not
    372 	 * reset the contents on initial power up.
    373 	 */
    374 	for (i = 0; i < sc->sc_keymax; i++)
    375 		ath_hal_keyreset(ah, i);
    376 	/*
    377 	 * Mark key cache slots associated with global keys
    378 	 * as in use.  If we knew TKIP was not to be used we
    379 	 * could leave the +32, +64, and +32+64 slots free.
    380 	 * XXX only for splitmic.
    381 	 */
    382 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
    383 		setbit(sc->sc_keymap, i);
    384 		setbit(sc->sc_keymap, i+32);
    385 		setbit(sc->sc_keymap, i+64);
    386 		setbit(sc->sc_keymap, i+32+64);
    387 	}
    388 
    389 	/*
    390 	 * Collect the channel list using the default country
    391 	 * code and including outdoor channels.  The 802.11 layer
    392 	 * is resposible for filtering this list based on settings
    393 	 * like the phy mode.
    394 	 */
    395 	error = ath_getchannels(sc, ath_countrycode,
    396 			ath_outdoor, ath_xchanmode);
    397 	if (error != 0)
    398 		goto bad;
    399 
    400 	/*
    401 	 * Setup rate tables for all potential media types.
    402 	 */
    403 	ath_rate_setup(sc, IEEE80211_MODE_11A);
    404 	ath_rate_setup(sc, IEEE80211_MODE_11B);
    405 	ath_rate_setup(sc, IEEE80211_MODE_11G);
    406 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
    407 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
    408 	/* NB: setup here so ath_rate_update is happy */
    409 	ath_setcurmode(sc, IEEE80211_MODE_11A);
    410 
    411 	/*
    412 	 * Allocate tx+rx descriptors and populate the lists.
    413 	 */
    414 	error = ath_desc_alloc(sc);
    415 	if (error != 0) {
    416 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
    417 		goto bad;
    418 	}
    419 	ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
    420 	ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE);
    421 	ATH_CALLOUT_INIT(&sc->sc_dfs_ch, CALLOUT_MPSAFE);
    422 
    423 	ATH_TXBUF_LOCK_INIT(sc);
    424 
    425 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
    426 	TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
    427 	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
    428 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
    429 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
    430 	TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc);
    431 
    432 	/*
    433 	 * Allocate hardware transmit queues: one queue for
    434 	 * beacon frames and one data queue for each QoS
    435 	 * priority.  Note that the hal handles reseting
    436 	 * these queues at the needed time.
    437 	 *
    438 	 * XXX PS-Poll
    439 	 */
    440 	sc->sc_bhalq = ath_beaconq_setup(ah);
    441 	if (sc->sc_bhalq == (u_int) -1) {
    442 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
    443 		error = EIO;
    444 		goto bad2;
    445 	}
    446 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
    447 	if (sc->sc_cabq == NULL) {
    448 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
    449 		error = EIO;
    450 		goto bad2;
    451 	}
    452 	/* NB: insure BK queue is the lowest priority h/w queue */
    453 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
    454 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
    455 			ieee80211_wme_acnames[WME_AC_BK]);
    456 		error = EIO;
    457 		goto bad2;
    458 	}
    459 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
    460 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
    461 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
    462 		/*
    463 		 * Not enough hardware tx queues to properly do WME;
    464 		 * just punt and assign them all to the same h/w queue.
    465 		 * We could do a better job of this if, for example,
    466 		 * we allocate queues when we switch from station to
    467 		 * AP mode.
    468 		 */
    469 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
    470 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
    471 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
    472 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
    473 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
    474 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
    475 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
    476 	}
    477 
    478 	/*
    479 	 * Special case certain configurations.  Note the
    480 	 * CAB queue is handled by these specially so don't
    481 	 * include them when checking the txq setup mask.
    482 	 */
    483 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
    484 	case 0x01:
    485 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
    486 		break;
    487 	case 0x0f:
    488 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
    489 		break;
    490 	default:
    491 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
    492 		break;
    493 	}
    494 
    495 	/*
    496 	 * Setup rate control.  Some rate control modules
    497 	 * call back to change the anntena state so expose
    498 	 * the necessary entry points.
    499 	 * XXX maybe belongs in struct ath_ratectrl?
    500 	 */
    501 	sc->sc_setdefantenna = ath_setdefantenna;
    502 	sc->sc_rc = ath_rate_attach(sc);
    503 	if (sc->sc_rc == NULL) {
    504 		error = EIO;
    505 		goto bad2;
    506 	}
    507 
    508 	sc->sc_blinking = 0;
    509 	sc->sc_ledstate = 1;
    510 	sc->sc_ledon = 0;			/* low true */
    511 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
    512 	ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE);
    513 	/*
    514 	 * Auto-enable soft led processing for IBM cards and for
    515 	 * 5211 minipci cards.  Users can also manually enable/disable
    516 	 * support with a sysctl.
    517 	 */
    518 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
    519 	if (sc->sc_softled) {
    520 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
    521 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
    522 	}
    523 
    524 	ifp->if_softc = sc;
    525 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
    526 	ifp->if_start = ath_start;
    527 	ifp->if_watchdog = ath_watchdog;
    528 	ifp->if_ioctl = ath_ioctl;
    529 	ifp->if_init = ath_ifinit;
    530 	IFQ_SET_READY(&ifp->if_snd);
    531 
    532 	ic->ic_ifp = ifp;
    533 	ic->ic_reset = ath_reset;
    534 	ic->ic_newassoc = ath_newassoc;
    535 	ic->ic_updateslot = ath_updateslot;
    536 	ic->ic_wme.wme_update = ath_wme_update;
    537 	/* XXX not right but it's not used anywhere important */
    538 	ic->ic_phytype = IEEE80211_T_OFDM;
    539 	ic->ic_opmode = IEEE80211_M_STA;
    540 	ic->ic_caps =
    541 		  IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
    542 		| IEEE80211_C_HOSTAP		/* hostap mode */
    543 		| IEEE80211_C_MONITOR		/* monitor mode */
    544 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
    545 		| IEEE80211_C_SHSLOT		/* short slot time supported */
    546 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
    547 		| IEEE80211_C_TXFRAG		/* handle tx frags */
    548 		;
    549 	/*
    550 	 * Query the hal to figure out h/w crypto support.
    551 	 */
    552 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
    553 		ic->ic_caps |= IEEE80211_C_WEP;
    554 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
    555 		ic->ic_caps |= IEEE80211_C_AES;
    556 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
    557 		ic->ic_caps |= IEEE80211_C_AES_CCM;
    558 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
    559 		ic->ic_caps |= IEEE80211_C_CKIP;
    560 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
    561 		ic->ic_caps |= IEEE80211_C_TKIP;
    562 		/*
    563 		 * Check if h/w does the MIC and/or whether the
    564 		 * separate key cache entries are required to
    565 		 * handle both tx+rx MIC keys.
    566 		 */
    567 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
    568 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
    569 		if (ath_hal_tkipsplit(ah))
    570 			sc->sc_splitmic = 1;
    571 	}
    572 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
    573 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
    574 	/*
    575 	 * TPC support can be done either with a global cap or
    576 	 * per-packet support.  The latter is not available on
    577 	 * all parts.  We're a bit pedantic here as all parts
    578 	 * support a global cap.
    579 	 */
    580 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
    581 		ic->ic_caps |= IEEE80211_C_TXPMGT;
    582 
    583 	/*
    584 	 * Mark WME capability only if we have sufficient
    585 	 * hardware queues to do proper priority scheduling.
    586 	 */
    587 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
    588 		ic->ic_caps |= IEEE80211_C_WME;
    589 	/*
    590 	 * Check for misc other capabilities.
    591 	 */
    592 	if (ath_hal_hasbursting(ah))
    593 		ic->ic_caps |= IEEE80211_C_BURST;
    594 
    595 	/*
    596 	 * Indicate we need the 802.11 header padded to a
    597 	 * 32-bit boundary for 4-address and QoS frames.
    598 	 */
    599 	ic->ic_flags |= IEEE80211_F_DATAPAD;
    600 
    601 	/*
    602 	 * Query the hal about antenna support.
    603 	 */
    604 	sc->sc_defant = ath_hal_getdefantenna(ah);
    605 
    606 	/*
    607 	 * Not all chips have the VEOL support we want to
    608 	 * use with IBSS beacons; check here for it.
    609 	 */
    610 	sc->sc_hasveol = ath_hal_hasveol(ah);
    611 
    612 	/* get mac address from hardware */
    613 	ath_hal_getmac(ah, ic->ic_myaddr);
    614 
    615 	if_attach(ifp);
    616 	/* call MI attach routine. */
    617 	ieee80211_ifattach(ic);
    618 	/* override default methods */
    619 	ic->ic_node_alloc = ath_node_alloc;
    620 	sc->sc_node_free = ic->ic_node_free;
    621 	ic->ic_node_free = ath_node_free;
    622 	ic->ic_node_getrssi = ath_node_getrssi;
    623 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
    624 	ic->ic_recv_mgmt = ath_recv_mgmt;
    625 	sc->sc_newstate = ic->ic_newstate;
    626 	ic->ic_newstate = ath_newstate;
    627 	ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
    628 	ic->ic_crypto.cs_key_alloc = ath_key_alloc;
    629 	ic->ic_crypto.cs_key_delete = ath_key_delete;
    630 	ic->ic_crypto.cs_key_set = ath_key_set;
    631 	ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
    632 	ic->ic_crypto.cs_key_update_end = ath_key_update_end;
    633 	/* complete initialization */
    634 	ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
    635 
    636 #if NBPFILTER > 0
    637 	ath_bpfattach(sc);
    638 #endif
    639 
    640 #ifdef __NetBSD__
    641 	sc->sc_flags |= ATH_ATTACHED;
    642 	sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
    643 	    ath_power, sc);
    644 	if (sc->sc_powerhook == NULL)
    645 		printf("%s: WARNING: unable to establish power hook\n",
    646 			sc->sc_dev.dv_xname);
    647 #endif
    648 
    649 	/*
    650 	 * Setup dynamic sysctl's now that country code and
    651 	 * regdomain are available from the hal.
    652 	 */
    653 	ath_sysctlattach(sc);
    654 
    655 	ieee80211_announce(ic);
    656 	ath_announce(sc);
    657 	return 0;
    658 bad2:
    659 	ath_tx_cleanup(sc);
    660 	ath_desc_free(sc);
    661 bad:
    662 	if (ah)
    663 		ath_hal_detach(ah);
    664 	sc->sc_invalid = 1;
    665 	return error;
    666 }
    667 
    668 int
    669 ath_detach(struct ath_softc *sc)
    670 {
    671 	struct ifnet *ifp = &sc->sc_if;
    672 	int s;
    673 
    674 	if ((sc->sc_flags & ATH_ATTACHED) == 0)
    675 		return (0);
    676 
    677 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
    678 		__func__, ifp->if_flags);
    679 
    680 	s = splnet();
    681 	ath_stop(ifp, 1);
    682 #if NBPFILTER > 0
    683 	bpfdetach(ifp);
    684 #endif
    685 	/*
    686 	 * NB: the order of these is important:
    687 	 * o call the 802.11 layer before detaching the hal to
    688 	 *   insure callbacks into the driver to delete global
    689 	 *   key cache entries can be handled
    690 	 * o reclaim the tx queue data structures after calling
    691 	 *   the 802.11 layer as we'll get called back to reclaim
    692 	 *   node state and potentially want to use them
    693 	 * o to cleanup the tx queues the hal is called, so detach
    694 	 *   it last
    695 	 * Other than that, it's straightforward...
    696 	 */
    697 	ieee80211_ifdetach(&sc->sc_ic);
    698 #ifdef ATH_TX99_DIAG
    699 	if (sc->sc_tx99 != NULL)
    700 		sc->sc_tx99->detach(sc->sc_tx99);
    701 #endif
    702 	ath_rate_detach(sc->sc_rc);
    703 	ath_desc_free(sc);
    704 	ath_tx_cleanup(sc);
    705 	sysctl_teardown(&sc->sc_sysctllog);
    706 	ath_hal_detach(sc->sc_ah);
    707 	if_detach(ifp);
    708 	splx(s);
    709 	powerhook_disestablish(sc->sc_powerhook);
    710 
    711 	return 0;
    712 }
    713 
    714 #ifdef __NetBSD__
    715 void
    716 ath_power(int why, void *arg)
    717 {
    718 	struct ath_softc *sc = arg;
    719 	int s;
    720 
    721 	DPRINTF(sc, ATH_DEBUG_ANY, "ath_power(%d)\n", why);
    722 
    723 	s = splnet();
    724 	switch (why) {
    725 	case PWR_SUSPEND:
    726 	case PWR_STANDBY:
    727 		ath_suspend(sc, why);
    728 		break;
    729 	case PWR_RESUME:
    730 		ath_resume(sc, why);
    731 		break;
    732 	case PWR_SOFTSUSPEND:
    733 	case PWR_SOFTSTANDBY:
    734 	case PWR_SOFTRESUME:
    735 		break;
    736 	}
    737 	splx(s);
    738 }
    739 #endif
    740 
    741 void
    742 ath_suspend(struct ath_softc *sc, int why)
    743 {
    744 	struct ifnet *ifp = &sc->sc_if;
    745 
    746 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
    747 		__func__, ifp->if_flags);
    748 
    749 	ath_stop(ifp, 1);
    750 	if (sc->sc_power != NULL)
    751 		(*sc->sc_power)(sc, why);
    752 }
    753 
    754 void
    755 ath_resume(struct ath_softc *sc, int why)
    756 {
    757 	struct ifnet *ifp = &sc->sc_if;
    758 
    759 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
    760 		__func__, ifp->if_flags);
    761 
    762 	if (ifp->if_flags & IFF_UP) {
    763 		ath_init(sc);
    764 #if 0
    765 		(void)ath_intr(sc);
    766 #endif
    767 		if (sc->sc_power != NULL)
    768 			(*sc->sc_power)(sc, why);
    769 		if (ifp->if_flags & IFF_RUNNING)
    770 			ath_start(ifp);
    771 	}
    772 	if (sc->sc_softled) {
    773 		ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
    774 		ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
    775 	}
    776 }
    777 
    778 void
    779 ath_shutdown(void *arg)
    780 {
    781 	struct ath_softc *sc = arg;
    782 
    783 	ath_stop(&sc->sc_if, 1);
    784 }
    785 
    786 /*
    787  * Interrupt handler.  Most of the actual processing is deferred.
    788  */
    789 int
    790 ath_intr(void *arg)
    791 {
    792 	struct ath_softc *sc = arg;
    793 	struct ifnet *ifp = &sc->sc_if;
    794 	struct ath_hal *ah = sc->sc_ah;
    795 	HAL_INT status;
    796 
    797 	if (sc->sc_invalid) {
    798 		/*
    799 		 * The hardware is not ready/present, don't touch anything.
    800 		 * Note this can happen early on if the IRQ is shared.
    801 		 */
    802 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
    803 		return 0;
    804 	}
    805 
    806 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
    807 		return 0;
    808 
    809 	if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
    810 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
    811 			__func__, ifp->if_flags);
    812 		ath_hal_getisr(ah, &status);	/* clear ISR */
    813 		ath_hal_intrset(ah, 0);		/* disable further intr's */
    814 		return 1; /* XXX */
    815 	}
    816 	/*
    817 	 * Figure out the reason(s) for the interrupt.  Note
    818 	 * that the hal returns a pseudo-ISR that may include
    819 	 * bits we haven't explicitly enabled so we mask the
    820 	 * value to insure we only process bits we requested.
    821 	 */
    822 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
    823 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
    824 	status &= sc->sc_imask;			/* discard unasked for bits */
    825 	if (status & HAL_INT_FATAL) {
    826 		/*
    827 		 * Fatal errors are unrecoverable.  Typically
    828 		 * these are caused by DMA errors.  Unfortunately
    829 		 * the exact reason is not (presently) returned
    830 		 * by the hal.
    831 		 */
    832 		sc->sc_stats.ast_hardware++;
    833 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
    834 		TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
    835 	} else if (status & HAL_INT_RXORN) {
    836 		sc->sc_stats.ast_rxorn++;
    837 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
    838 		TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
    839 	} else {
    840 		if (status & HAL_INT_SWBA) {
    841 			/*
    842 			 * Software beacon alert--time to send a beacon.
    843 			 * Handle beacon transmission directly; deferring
    844 			 * this is too slow to meet timing constraints
    845 			 * under load.
    846 			 */
    847 			ath_beacon_proc(sc, 0);
    848 		}
    849 		if (status & HAL_INT_RXEOL) {
    850 			/*
    851 			 * NB: the hardware should re-read the link when
    852 			 *     RXE bit is written, but it doesn't work at
    853 			 *     least on older hardware revs.
    854 			 */
    855 			sc->sc_stats.ast_rxeol++;
    856 			sc->sc_rxlink = NULL;
    857 		}
    858 		if (status & HAL_INT_TXURN) {
    859 			sc->sc_stats.ast_txurn++;
    860 			/* bump tx trigger level */
    861 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
    862 		}
    863 		if (status & HAL_INT_RX)
    864 			TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
    865 		if (status & HAL_INT_TX)
    866 			TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
    867 		if (status & HAL_INT_BMISS) {
    868 			sc->sc_stats.ast_bmiss++;
    869 			TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
    870 		}
    871 		if (status & HAL_INT_MIB) {
    872 			sc->sc_stats.ast_mib++;
    873 			/*
    874 			 * Disable interrupts until we service the MIB
    875 			 * interrupt; otherwise it will continue to fire.
    876 			 */
    877 			ath_hal_intrset(ah, 0);
    878 			/*
    879 			 * Let the hal handle the event.  We assume it will
    880 			 * clear whatever condition caused the interrupt.
    881 			 */
    882 			ath_hal_mibevent(ah, &sc->sc_halstats);
    883 			ath_hal_intrset(ah, sc->sc_imask);
    884 		}
    885 	}
    886 	return 1;
    887 }
    888 
    889 /* Swap transmit descriptor.
    890  * if AH_NEED_DESC_SWAP flag is not defined this becomes a "null"
    891  * function.
    892  */
    893 static inline void
    894 ath_desc_swap(struct ath_desc *ds)
    895 {
    896 #ifdef AH_NEED_DESC_SWAP
    897 	ds->ds_link = htole32(ds->ds_link);
    898 	ds->ds_data = htole32(ds->ds_data);
    899 	ds->ds_ctl0 = htole32(ds->ds_ctl0);
    900 	ds->ds_ctl1 = htole32(ds->ds_ctl1);
    901 	ds->ds_hw[0] = htole32(ds->ds_hw[0]);
    902 	ds->ds_hw[1] = htole32(ds->ds_hw[1]);
    903 #endif
    904 }
    905 
    906 static void
    907 ath_fatal_proc(void *arg, int pending)
    908 {
    909 	struct ath_softc *sc = arg;
    910 	struct ifnet *ifp = &sc->sc_if;
    911 
    912 	if_printf(ifp, "hardware error; resetting\n");
    913 	ath_reset(ifp);
    914 }
    915 
    916 static void
    917 ath_rxorn_proc(void *arg, int pending)
    918 {
    919 	struct ath_softc *sc = arg;
    920 	struct ifnet *ifp = &sc->sc_if;
    921 
    922 	if_printf(ifp, "rx FIFO overrun; resetting\n");
    923 	ath_reset(ifp);
    924 }
    925 
    926 static void
    927 ath_bmiss_proc(void *arg, int pending)
    928 {
    929 	struct ath_softc *sc = arg;
    930 	struct ieee80211com *ic = &sc->sc_ic;
    931 
    932 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
    933 	KASSERT(ic->ic_opmode == IEEE80211_M_STA,
    934 		("unexpect operating mode %u", ic->ic_opmode));
    935 	if (ic->ic_state == IEEE80211_S_RUN) {
    936 		u_int64_t lastrx = sc->sc_lastrx;
    937 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
    938 
    939 		DPRINTF(sc, ATH_DEBUG_BEACON,
    940 		    "%s: tsf %" PRIu64 " lastrx %" PRId64
    941 		    " (%" PRIu64 ") bmiss %u\n",
    942 		    __func__, tsf, tsf - lastrx, lastrx,
    943 		    ic->ic_bmisstimeout*1024);
    944 		/*
    945 		 * Workaround phantom bmiss interrupts by sanity-checking
    946 		 * the time of our last rx'd frame.  If it is within the
    947 		 * beacon miss interval then ignore the interrupt.  If it's
    948 		 * truly a bmiss we'll get another interrupt soon and that'll
    949 		 * be dispatched up for processing.
    950 		 */
    951 		if (tsf - lastrx > ic->ic_bmisstimeout*1024) {
    952 			NET_LOCK_GIANT();
    953 			ieee80211_beacon_miss(ic);
    954 			NET_UNLOCK_GIANT();
    955 		} else
    956 			sc->sc_stats.ast_bmiss_phantom++;
    957 	}
    958 }
    959 
    960 static void
    961 ath_radar_proc(void *arg, int pending)
    962 {
    963 	struct ath_softc *sc = arg;
    964 	struct ifnet *ifp = &sc->sc_if;
    965 	struct ath_hal *ah = sc->sc_ah;
    966 	HAL_CHANNEL hchan;
    967 
    968 	if (ath_hal_procdfs(ah, &hchan)) {
    969 		if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n",
    970 			hchan.channel, hchan.channelFlags, hchan.privFlags);
    971 		/*
    972 		 * Initiate channel change.
    973 		 */
    974 		/* XXX not yet */
    975 	}
    976 }
    977 
    978 static u_int
    979 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
    980 {
    981 #define	N(a)	(sizeof(a) / sizeof(a[0]))
    982 	static const u_int modeflags[] = {
    983 		0,			/* IEEE80211_MODE_AUTO */
    984 		CHANNEL_A,		/* IEEE80211_MODE_11A */
    985 		CHANNEL_B,		/* IEEE80211_MODE_11B */
    986 		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
    987 		0,			/* IEEE80211_MODE_FH */
    988 		CHANNEL_ST,		/* IEEE80211_MODE_TURBO_A */
    989 		CHANNEL_108G		/* IEEE80211_MODE_TURBO_G */
    990 	};
    991 	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
    992 
    993 	KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
    994 	KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
    995 	return modeflags[mode];
    996 #undef N
    997 }
    998 
    999 static int
   1000 ath_ifinit(struct ifnet *ifp)
   1001 {
   1002 	struct ath_softc *sc = (struct ath_softc *)ifp->if_softc;
   1003 
   1004 	return ath_init(sc);
   1005 }
   1006 
   1007 static int
   1008 ath_init(struct ath_softc *sc)
   1009 {
   1010 	struct ifnet *ifp = &sc->sc_if;
   1011 	struct ieee80211com *ic = &sc->sc_ic;
   1012 	struct ath_hal *ah = sc->sc_ah;
   1013 	HAL_STATUS status;
   1014 	int error = 0;
   1015 
   1016 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
   1017 		__func__, ifp->if_flags);
   1018 
   1019 	ATH_LOCK(sc);
   1020 
   1021 	if ((error = ath_enable(sc)) != 0)
   1022 		return error;
   1023 
   1024 	/*
   1025 	 * Stop anything previously setup.  This is safe
   1026 	 * whether this is the first time through or not.
   1027 	 */
   1028 	ath_stop_locked(ifp, 0);
   1029 
   1030 	/*
   1031 	 * The basic interface to setting the hardware in a good
   1032 	 * state is ``reset''.  On return the hardware is known to
   1033 	 * be powered up and with interrupts disabled.  This must
   1034 	 * be followed by initialization of the appropriate bits
   1035 	 * and then setup of the interrupt mask.
   1036 	 */
   1037 	sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
   1038 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
   1039 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
   1040 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
   1041 			status);
   1042 		error = EIO;
   1043 		goto done;
   1044 	}
   1045 
   1046 	/*
   1047 	 * This is needed only to setup initial state
   1048 	 * but it's best done after a reset.
   1049 	 */
   1050 	ath_update_txpow(sc);
   1051 	/*
   1052 	 * Likewise this is set during reset so update
   1053 	 * state cached in the driver.
   1054 	 */
   1055 	sc->sc_diversity = ath_hal_getdiversity(ah);
   1056 	sc->sc_calinterval = 1;
   1057 	sc->sc_caltries = 0;
   1058 
   1059 	/*
   1060 	 * Setup the hardware after reset: the key cache
   1061 	 * is filled as needed and the receive engine is
   1062 	 * set going.  Frame transmit is handled entirely
   1063 	 * in the frame output path; there's nothing to do
   1064 	 * here except setup the interrupt mask.
   1065 	 */
   1066 	if ((error = ath_startrecv(sc)) != 0) {
   1067 		if_printf(ifp, "unable to start recv logic\n");
   1068 		goto done;
   1069 	}
   1070 
   1071 	/*
   1072 	 * Enable interrupts.
   1073 	 */
   1074 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
   1075 		  | HAL_INT_RXEOL | HAL_INT_RXORN
   1076 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
   1077 	/*
   1078 	 * Enable MIB interrupts when there are hardware phy counters.
   1079 	 * Note we only do this (at the moment) for station mode.
   1080 	 */
   1081 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
   1082 		sc->sc_imask |= HAL_INT_MIB;
   1083 	ath_hal_intrset(ah, sc->sc_imask);
   1084 
   1085 	ifp->if_flags |= IFF_RUNNING;
   1086 	ic->ic_state = IEEE80211_S_INIT;
   1087 
   1088 	/*
   1089 	 * The hardware should be ready to go now so it's safe
   1090 	 * to kick the 802.11 state machine as it's likely to
   1091 	 * immediately call back to us to send mgmt frames.
   1092 	 */
   1093 	ath_chan_change(sc, ic->ic_curchan);
   1094 #ifdef ATH_TX99_DIAG
   1095 	if (sc->sc_tx99 != NULL)
   1096 		sc->sc_tx99->start(sc->sc_tx99);
   1097 	else
   1098 #endif
   1099 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   1100 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
   1101 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   1102 	} else
   1103 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   1104 done:
   1105 	ATH_UNLOCK(sc);
   1106 	return error;
   1107 }
   1108 
   1109 static void
   1110 ath_stop_locked(struct ifnet *ifp, int disable)
   1111 {
   1112 	struct ath_softc *sc = ifp->if_softc;
   1113 	struct ieee80211com *ic = &sc->sc_ic;
   1114 	struct ath_hal *ah = sc->sc_ah;
   1115 
   1116 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
   1117 		__func__, sc->sc_invalid, ifp->if_flags);
   1118 
   1119 	ATH_LOCK_ASSERT(sc);
   1120 	if (ifp->if_flags & IFF_RUNNING) {
   1121 		/*
   1122 		 * Shutdown the hardware and driver:
   1123 		 *    reset 802.11 state machine
   1124 		 *    turn off timers
   1125 		 *    disable interrupts
   1126 		 *    turn off the radio
   1127 		 *    clear transmit machinery
   1128 		 *    clear receive machinery
   1129 		 *    drain and release tx queues
   1130 		 *    reclaim beacon resources
   1131 		 *    power down hardware
   1132 		 *
   1133 		 * Note that some of this work is not possible if the
   1134 		 * hardware is gone (invalid).
   1135 		 */
   1136 #ifdef ATH_TX99_DIAG
   1137 		if (sc->sc_tx99 != NULL)
   1138 			sc->sc_tx99->stop(sc->sc_tx99);
   1139 #endif
   1140 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   1141 		ifp->if_flags &= ~IFF_RUNNING;
   1142 		ifp->if_timer = 0;
   1143 		if (!sc->sc_invalid) {
   1144 			if (sc->sc_softled) {
   1145 				callout_stop(&sc->sc_ledtimer);
   1146 				ath_hal_gpioset(ah, sc->sc_ledpin,
   1147 					!sc->sc_ledon);
   1148 				sc->sc_blinking = 0;
   1149 			}
   1150 			ath_hal_intrset(ah, 0);
   1151 		}
   1152 		ath_draintxq(sc);
   1153 		if (!sc->sc_invalid) {
   1154 			ath_stoprecv(sc);
   1155 			ath_hal_phydisable(ah);
   1156 		} else
   1157 			sc->sc_rxlink = NULL;
   1158 		IF_PURGE(&ifp->if_snd);
   1159 		ath_beacon_free(sc);
   1160 		if (disable)
   1161 			ath_disable(sc);
   1162 	}
   1163 }
   1164 
   1165 static void
   1166 ath_stop(struct ifnet *ifp, int disable)
   1167 {
   1168 	struct ath_softc *sc = ifp->if_softc;
   1169 
   1170 	ATH_LOCK(sc);
   1171 	ath_stop_locked(ifp, disable);
   1172 	if (!sc->sc_invalid) {
   1173 		/*
   1174 		 * Set the chip in full sleep mode.  Note that we are
   1175 		 * careful to do this only when bringing the interface
   1176 		 * completely to a stop.  When the chip is in this state
   1177 		 * it must be carefully woken up or references to
   1178 		 * registers in the PCI clock domain may freeze the bus
   1179 		 * (and system).  This varies by chip and is mostly an
   1180 		 * issue with newer parts that go to sleep more quickly.
   1181 		 */
   1182 		ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
   1183 	}
   1184 	ATH_UNLOCK(sc);
   1185 }
   1186 
   1187 /*
   1188  * Reset the hardware w/o losing operational state.  This is
   1189  * basically a more efficient way of doing ath_stop, ath_init,
   1190  * followed by state transitions to the current 802.11
   1191  * operational state.  Used to recover from various errors and
   1192  * to reset or reload hardware state.
   1193  */
   1194 int
   1195 ath_reset(struct ifnet *ifp)
   1196 {
   1197 	struct ath_softc *sc = ifp->if_softc;
   1198 	struct ieee80211com *ic = &sc->sc_ic;
   1199 	struct ath_hal *ah = sc->sc_ah;
   1200 	struct ieee80211_channel *c;
   1201 	HAL_STATUS status;
   1202 
   1203 	/*
   1204 	 * Convert to a HAL channel description with the flags
   1205 	 * constrained to reflect the current operating mode.
   1206 	 */
   1207 	c = ic->ic_curchan;
   1208 	sc->sc_curchan.channel = c->ic_freq;
   1209 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
   1210 
   1211 	ath_hal_intrset(ah, 0);		/* disable interrupts */
   1212 	ath_draintxq(sc);		/* stop xmit side */
   1213 	ath_stoprecv(sc);		/* stop recv side */
   1214 	/* NB: indicate channel change so we do a full reset */
   1215 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
   1216 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
   1217 			__func__, status);
   1218 	ath_update_txpow(sc);		/* update tx power state */
   1219 	sc->sc_diversity = ath_hal_getdiversity(ah);
   1220 	sc->sc_calinterval = 1;
   1221 	sc->sc_caltries = 0;
   1222 	if (ath_startrecv(sc) != 0)	/* restart recv */
   1223 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
   1224 	/*
   1225 	 * We may be doing a reset in response to an ioctl
   1226 	 * that changes the channel so update any state that
   1227 	 * might change as a result.
   1228 	 */
   1229 	ath_chan_change(sc, c);
   1230 	if (ic->ic_state == IEEE80211_S_RUN)
   1231 		ath_beacon_config(sc);	/* restart beacons */
   1232 	ath_hal_intrset(ah, sc->sc_imask);
   1233 
   1234 	ath_start(ifp);			/* restart xmit */
   1235 	return 0;
   1236 }
   1237 
   1238 /*
   1239  * Cleanup driver resources when we run out of buffers
   1240  * while processing fragments; return the tx buffers
   1241  * allocated and drop node references.
   1242  */
   1243 static void
   1244 ath_txfrag_cleanup(struct ath_softc *sc,
   1245 	ath_bufhead *frags, struct ieee80211_node *ni)
   1246 {
   1247 	struct ath_buf *bf;
   1248 
   1249 	ATH_TXBUF_LOCK_ASSERT(sc);
   1250 
   1251 	while ((bf = STAILQ_FIRST(frags)) != NULL) {
   1252 		STAILQ_REMOVE_HEAD(frags, bf_list);
   1253 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1254 		ieee80211_node_decref(ni);
   1255 	}
   1256 }
   1257 
   1258 /*
   1259  * Setup xmit of a fragmented frame.  Allocate a buffer
   1260  * for each frag and bump the node reference count to
   1261  * reflect the held reference to be setup by ath_tx_start.
   1262  */
   1263 static int
   1264 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
   1265 	struct mbuf *m0, struct ieee80211_node *ni)
   1266 {
   1267 	struct mbuf *m;
   1268 	struct ath_buf *bf;
   1269 
   1270 	ATH_TXBUF_LOCK(sc);
   1271 	for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
   1272 		bf = STAILQ_FIRST(&sc->sc_txbuf);
   1273 		if (bf == NULL) {       /* out of buffers, cleanup */
   1274 			ath_txfrag_cleanup(sc, frags, ni);
   1275 			break;
   1276 		}
   1277 		STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
   1278 		ieee80211_node_incref(ni);
   1279 		STAILQ_INSERT_TAIL(frags, bf, bf_list);
   1280 	}
   1281 	ATH_TXBUF_UNLOCK(sc);
   1282 
   1283 	return !STAILQ_EMPTY(frags);
   1284 }
   1285 
   1286 static void
   1287 ath_start(struct ifnet *ifp)
   1288 {
   1289 	struct ath_softc *sc = ifp->if_softc;
   1290 	struct ath_hal *ah = sc->sc_ah;
   1291 	struct ieee80211com *ic = &sc->sc_ic;
   1292 	struct ieee80211_node *ni;
   1293 	struct ath_buf *bf;
   1294 	struct mbuf *m, *next;
   1295 	struct ieee80211_frame *wh;
   1296 	struct ether_header *eh;
   1297 	ath_bufhead frags;
   1298 
   1299 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
   1300 		return;
   1301 	for (;;) {
   1302 		/*
   1303 		 * Grab a TX buffer and associated resources.
   1304 		 */
   1305 		ATH_TXBUF_LOCK(sc);
   1306 		bf = STAILQ_FIRST(&sc->sc_txbuf);
   1307 		if (bf != NULL)
   1308 			STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
   1309 		ATH_TXBUF_UNLOCK(sc);
   1310 		if (bf == NULL) {
   1311 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
   1312 				__func__);
   1313 			sc->sc_stats.ast_tx_qstop++;
   1314 			ifp->if_flags |= IFF_OACTIVE;
   1315 			break;
   1316 		}
   1317 		/*
   1318 		 * Poll the management queue for frames; they
   1319 		 * have priority over normal data frames.
   1320 		 */
   1321 		IF_DEQUEUE(&ic->ic_mgtq, m);
   1322 		if (m == NULL) {
   1323 			/*
   1324 			 * No data frames go out unless we're associated.
   1325 			 */
   1326 			if (ic->ic_state != IEEE80211_S_RUN) {
   1327 				DPRINTF(sc, ATH_DEBUG_XMIT,
   1328 				    "%s: discard data packet, state %s\n",
   1329 				    __func__,
   1330 				    ieee80211_state_name[ic->ic_state]);
   1331 				sc->sc_stats.ast_tx_discard++;
   1332 				ATH_TXBUF_LOCK(sc);
   1333 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1334 				ATH_TXBUF_UNLOCK(sc);
   1335 				break;
   1336 			}
   1337 			IFQ_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
   1338 			if (m == NULL) {
   1339 				ATH_TXBUF_LOCK(sc);
   1340 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1341 				ATH_TXBUF_UNLOCK(sc);
   1342 				break;
   1343 			}
   1344 			STAILQ_INIT(&frags);
   1345 			/*
   1346 			 * Find the node for the destination so we can do
   1347 			 * things like power save and fast frames aggregation.
   1348 			 */
   1349 			if (m->m_len < sizeof(struct ether_header) &&
   1350 			   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
   1351 				ic->ic_stats.is_tx_nobuf++;	/* XXX */
   1352 				ni = NULL;
   1353 				goto bad;
   1354 			}
   1355 			eh = mtod(m, struct ether_header *);
   1356 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   1357 			if (ni == NULL) {
   1358 				/* NB: ieee80211_find_txnode does stat+msg */
   1359 				m_freem(m);
   1360 				goto bad;
   1361 			}
   1362 			if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
   1363 			    (m->m_flags & M_PWR_SAV) == 0) {
   1364 				/*
   1365 				 * Station in power save mode; pass the frame
   1366 				 * to the 802.11 layer and continue.  We'll get
   1367 				 * the frame back when the time is right.
   1368 				 */
   1369 				ieee80211_pwrsave(ic, ni, m);
   1370 				goto reclaim;
   1371 			}
   1372 			/* calculate priority so we can find the tx queue */
   1373 			if (ieee80211_classify(ic, m, ni)) {
   1374 				DPRINTF(sc, ATH_DEBUG_XMIT,
   1375 					"%s: discard, classification failure\n",
   1376 					__func__);
   1377 				m_freem(m);
   1378 				goto bad;
   1379 			}
   1380 			ifp->if_opackets++;
   1381 
   1382 #if NBPFILTER > 0
   1383 			if (ifp->if_bpf)
   1384 				bpf_mtap(ifp->if_bpf, m);
   1385 #endif
   1386 			/*
   1387 			 * Encapsulate the packet in prep for transmission.
   1388 			 */
   1389 			m = ieee80211_encap(ic, m, ni);
   1390 			if (m == NULL) {
   1391 				DPRINTF(sc, ATH_DEBUG_XMIT,
   1392 					"%s: encapsulation failure\n",
   1393 					__func__);
   1394 				sc->sc_stats.ast_tx_encap++;
   1395 				goto bad;
   1396 			}
   1397 			/*
   1398 			 * Check for fragmentation.  If this has frame
   1399 			 * has been broken up verify we have enough
   1400 			 * buffers to send all the fragments so all
   1401 			 * go out or none...
   1402 			 */
   1403 			if ((m->m_flags & M_FRAG) &&
   1404 			    !ath_txfrag_setup(sc, &frags, m, ni)) {
   1405 				DPRINTF(sc, ATH_DEBUG_ANY,
   1406 				    "%s: out of txfrag buffers\n", __func__);
   1407 				ic->ic_stats.is_tx_nobuf++;     /* XXX */
   1408 				goto bad;
   1409 			}
   1410 		} else {
   1411 			/*
   1412 			 * Hack!  The referenced node pointer is in the
   1413 			 * rcvif field of the packet header.  This is
   1414 			 * placed there by ieee80211_mgmt_output because
   1415 			 * we need to hold the reference with the frame
   1416 			 * and there's no other way (other than packet
   1417 			 * tags which we consider too expensive to use)
   1418 			 * to pass it along.
   1419 			 */
   1420 			ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
   1421 			m->m_pkthdr.rcvif = NULL;
   1422 
   1423 			wh = mtod(m, struct ieee80211_frame *);
   1424 			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
   1425 			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
   1426 				/* fill time stamp */
   1427 				u_int64_t tsf;
   1428 				u_int32_t *tstamp;
   1429 
   1430 				tsf = ath_hal_gettsf64(ah);
   1431 				/* XXX: adjust 100us delay to xmit */
   1432 				tsf += 100;
   1433 				tstamp = (u_int32_t *)&wh[1];
   1434 				tstamp[0] = htole32(tsf & 0xffffffff);
   1435 				tstamp[1] = htole32(tsf >> 32);
   1436 			}
   1437 			sc->sc_stats.ast_tx_mgmt++;
   1438 		}
   1439 
   1440 	nextfrag:
   1441 		next = m->m_nextpkt;
   1442 		if (ath_tx_start(sc, ni, bf, m)) {
   1443 	bad:
   1444 			ifp->if_oerrors++;
   1445 	reclaim:
   1446 			ATH_TXBUF_LOCK(sc);
   1447 			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1448 			ath_txfrag_cleanup(sc, &frags, ni);
   1449 			ATH_TXBUF_UNLOCK(sc);
   1450 			if (ni != NULL)
   1451 				ieee80211_free_node(ni);
   1452 			continue;
   1453 		}
   1454 		if (next != NULL) {
   1455 			m = next;
   1456 			bf = STAILQ_FIRST(&frags);
   1457 			KASSERT(bf != NULL, ("no buf for txfrag"));
   1458 			STAILQ_REMOVE_HEAD(&frags, bf_list);
   1459 			goto nextfrag;
   1460 		}
   1461 
   1462 		sc->sc_tx_timer = 5;
   1463 		ifp->if_timer = 1;
   1464 	}
   1465 }
   1466 
   1467 static int
   1468 ath_media_change(struct ifnet *ifp)
   1469 {
   1470 #define	IS_UP(ifp) \
   1471 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
   1472 	int error;
   1473 
   1474 	error = ieee80211_media_change(ifp);
   1475 	if (error == ENETRESET) {
   1476 		if (IS_UP(ifp))
   1477 			ath_init(ifp->if_softc);	/* XXX lose error */
   1478 		error = 0;
   1479 	}
   1480 	return error;
   1481 #undef IS_UP
   1482 }
   1483 
   1484 #ifdef AR_DEBUG
   1485 static void
   1486 ath_keyprint(const char *tag, u_int ix,
   1487 	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
   1488 {
   1489 	static const char *ciphers[] = {
   1490 		"WEP",
   1491 		"AES-OCB",
   1492 		"AES-CCM",
   1493 		"CKIP",
   1494 		"TKIP",
   1495 		"CLR",
   1496 	};
   1497 	int i, n;
   1498 
   1499 	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
   1500 	for (i = 0, n = hk->kv_len; i < n; i++)
   1501 		printf("%02x", hk->kv_val[i]);
   1502 	printf(" mac %s", ether_sprintf(mac));
   1503 	if (hk->kv_type == HAL_CIPHER_TKIP) {
   1504 		printf(" mic ");
   1505 		for (i = 0; i < sizeof(hk->kv_mic); i++)
   1506 			printf("%02x", hk->kv_mic[i]);
   1507 	}
   1508 	printf("\n");
   1509 }
   1510 #endif
   1511 
   1512 /*
   1513  * Set a TKIP key into the hardware.  This handles the
   1514  * potential distribution of key state to multiple key
   1515  * cache slots for TKIP.
   1516  */
   1517 static int
   1518 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
   1519 	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
   1520 {
   1521 #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
   1522 	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
   1523 	struct ath_hal *ah = sc->sc_ah;
   1524 
   1525 	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
   1526 		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
   1527 	KASSERT(sc->sc_splitmic, ("key cache !split"));
   1528 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
   1529 		/*
   1530 		 * TX key goes at first index, RX key at the rx index.
   1531 		 * The hal handles the MIC keys at index+64.
   1532 		 */
   1533 		memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
   1534 		KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
   1535 		if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
   1536 			return 0;
   1537 
   1538 		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
   1539 		KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
   1540 		/* XXX delete tx key on failure? */
   1541 		return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
   1542 	} else if (k->wk_flags & IEEE80211_KEY_XR) {
   1543 		/*
   1544 		 * TX/RX key goes at first index.
   1545 		 * The hal handles the MIC keys are index+64.
   1546 		 */
   1547 		memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
   1548 			k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
   1549 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
   1550 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
   1551 	}
   1552 	return 0;
   1553 #undef IEEE80211_KEY_XR
   1554 }
   1555 
   1556 /*
   1557  * Set a net80211 key into the hardware.  This handles the
   1558  * potential distribution of key state to multiple key
   1559  * cache slots for TKIP with hardware MIC support.
   1560  */
   1561 static int
   1562 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
   1563 	const u_int8_t mac0[IEEE80211_ADDR_LEN],
   1564 	struct ieee80211_node *bss)
   1565 {
   1566 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1567 	static const u_int8_t ciphermap[] = {
   1568 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
   1569 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
   1570 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
   1571 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
   1572 		(u_int8_t) -1,		/* 4 is not allocated */
   1573 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
   1574 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
   1575 	};
   1576 	struct ath_hal *ah = sc->sc_ah;
   1577 	const struct ieee80211_cipher *cip = k->wk_cipher;
   1578 	u_int8_t gmac[IEEE80211_ADDR_LEN];
   1579 	const u_int8_t *mac;
   1580 	HAL_KEYVAL hk;
   1581 
   1582 	memset(&hk, 0, sizeof(hk));
   1583 	/*
   1584 	 * Software crypto uses a "clear key" so non-crypto
   1585 	 * state kept in the key cache are maintained and
   1586 	 * so that rx frames have an entry to match.
   1587 	 */
   1588 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
   1589 		KASSERT(cip->ic_cipher < N(ciphermap),
   1590 			("invalid cipher type %u", cip->ic_cipher));
   1591 		hk.kv_type = ciphermap[cip->ic_cipher];
   1592 		hk.kv_len = k->wk_keylen;
   1593 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
   1594 	} else
   1595 		hk.kv_type = HAL_CIPHER_CLR;
   1596 
   1597 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
   1598 		/*
   1599 		 * Group keys on hardware that supports multicast frame
   1600 		 * key search use a mac that is the sender's address with
   1601 		 * the high bit set instead of the app-specified address.
   1602 		 */
   1603 		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
   1604 		gmac[0] |= 0x80;
   1605 		mac = gmac;
   1606 	} else
   1607 		mac = mac0;
   1608 
   1609 	if (hk.kv_type == HAL_CIPHER_TKIP &&
   1610 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
   1611 	    sc->sc_splitmic) {
   1612 		return ath_keyset_tkip(sc, k, &hk, mac);
   1613 	} else {
   1614 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
   1615 		return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
   1616 	}
   1617 #undef N
   1618 }
   1619 
   1620 /*
   1621  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
   1622  * each key, one for decrypt/encrypt and the other for the MIC.
   1623  */
   1624 static u_int16_t
   1625 key_alloc_2pair(struct ath_softc *sc,
   1626 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
   1627 {
   1628 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1629 	u_int i, keyix;
   1630 
   1631 	KASSERT(sc->sc_splitmic, ("key cache !split"));
   1632 	/* XXX could optimize */
   1633 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
   1634 		u_int8_t b = sc->sc_keymap[i];
   1635 		if (b != 0xff) {
   1636 			/*
   1637 			 * One or more slots in this byte are free.
   1638 			 */
   1639 			keyix = i*NBBY;
   1640 			while (b & 1) {
   1641 		again:
   1642 				keyix++;
   1643 				b >>= 1;
   1644 			}
   1645 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
   1646 			if (isset(sc->sc_keymap, keyix+32) ||
   1647 			    isset(sc->sc_keymap, keyix+64) ||
   1648 			    isset(sc->sc_keymap, keyix+32+64)) {
   1649 				/* full pair unavailable */
   1650 				/* XXX statistic */
   1651 				if (keyix == (i+1)*NBBY) {
   1652 					/* no slots were appropriate, advance */
   1653 					continue;
   1654 				}
   1655 				goto again;
   1656 			}
   1657 			setbit(sc->sc_keymap, keyix);
   1658 			setbit(sc->sc_keymap, keyix+64);
   1659 			setbit(sc->sc_keymap, keyix+32);
   1660 			setbit(sc->sc_keymap, keyix+32+64);
   1661 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
   1662 				"%s: key pair %u,%u %u,%u\n",
   1663 				__func__, keyix, keyix+64,
   1664 				keyix+32, keyix+32+64);
   1665 			*txkeyix = keyix;
   1666 			*rxkeyix = keyix+32;
   1667 			return 1;
   1668 		}
   1669 	}
   1670 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
   1671 	return 0;
   1672 #undef N
   1673 }
   1674 
   1675 /*
   1676  * Allocate a single key cache slot.
   1677  */
   1678 static int
   1679 key_alloc_single(struct ath_softc *sc,
   1680 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
   1681 {
   1682 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1683 	u_int i, keyix;
   1684 
   1685 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
   1686 	for (i = 0; i < N(sc->sc_keymap); i++) {
   1687 		u_int8_t b = sc->sc_keymap[i];
   1688 		if (b != 0xff) {
   1689 			/*
   1690 			 * One or more slots are free.
   1691 			 */
   1692 			keyix = i*NBBY;
   1693 			while (b & 1)
   1694 				keyix++, b >>= 1;
   1695 			setbit(sc->sc_keymap, keyix);
   1696 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
   1697 				__func__, keyix);
   1698 			*txkeyix = *rxkeyix = keyix;
   1699 			return 1;
   1700 		}
   1701 	}
   1702 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
   1703 	return 0;
   1704 #undef N
   1705 }
   1706 
   1707 /*
   1708  * Allocate one or more key cache slots for a uniacst key.  The
   1709  * key itself is needed only to identify the cipher.  For hardware
   1710  * TKIP with split cipher+MIC keys we allocate two key cache slot
   1711  * pairs so that we can setup separate TX and RX MIC keys.  Note
   1712  * that the MIC key for a TKIP key at slot i is assumed by the
   1713  * hardware to be at slot i+64.  This limits TKIP keys to the first
   1714  * 64 entries.
   1715  */
   1716 static int
   1717 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
   1718 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
   1719 {
   1720 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1721 
   1722 	/*
   1723 	 * Group key allocation must be handled specially for
   1724 	 * parts that do not support multicast key cache search
   1725 	 * functionality.  For those parts the key id must match
   1726 	 * the h/w key index so lookups find the right key.  On
   1727 	 * parts w/ the key search facility we install the sender's
   1728 	 * mac address (with the high bit set) and let the hardware
   1729 	 * find the key w/o using the key id.  This is preferred as
   1730 	 * it permits us to support multiple users for adhoc and/or
   1731 	 * multi-station operation.
   1732 	 */
   1733 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
   1734 		if (!(&ic->ic_nw_keys[0] <= k &&
   1735 		      k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
   1736 			/* should not happen */
   1737 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
   1738 				"%s: bogus group key\n", __func__);
   1739 			return 0;
   1740 		}
   1741 		/*
   1742 		 * XXX we pre-allocate the global keys so
   1743 		 * have no way to check if they've already been allocated.
   1744 		 */
   1745 		*keyix = *rxkeyix = k - ic->ic_nw_keys;
   1746 		return 1;
   1747 	}
   1748 
   1749 	/*
   1750 	 * We allocate two pair for TKIP when using the h/w to do
   1751 	 * the MIC.  For everything else, including software crypto,
   1752 	 * we allocate a single entry.  Note that s/w crypto requires
   1753 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
   1754 	 * not support pass-through cache entries and we map all
   1755 	 * those requests to slot 0.
   1756 	 */
   1757 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
   1758 		return key_alloc_single(sc, keyix, rxkeyix);
   1759 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1760 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
   1761 		return key_alloc_2pair(sc, keyix, rxkeyix);
   1762 	} else {
   1763 		return key_alloc_single(sc, keyix, rxkeyix);
   1764 	}
   1765 }
   1766 
   1767 /*
   1768  * Delete an entry in the key cache allocated by ath_key_alloc.
   1769  */
   1770 static int
   1771 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
   1772 {
   1773 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1774 	struct ath_hal *ah = sc->sc_ah;
   1775 	const struct ieee80211_cipher *cip = k->wk_cipher;
   1776 	u_int keyix = k->wk_keyix;
   1777 
   1778 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
   1779 
   1780 	ath_hal_keyreset(ah, keyix);
   1781 	/*
   1782 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
   1783 	 */
   1784 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1785 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
   1786 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
   1787 	if (keyix >= IEEE80211_WEP_NKID) {
   1788 		/*
   1789 		 * Don't touch keymap entries for global keys so
   1790 		 * they are never considered for dynamic allocation.
   1791 		 */
   1792 		clrbit(sc->sc_keymap, keyix);
   1793 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1794 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
   1795 		    sc->sc_splitmic) {
   1796 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
   1797 			clrbit(sc->sc_keymap, keyix+32);	/* RX key */
   1798 			clrbit(sc->sc_keymap, keyix+32+64);	/* RX key MIC */
   1799 		}
   1800 	}
   1801 	return 1;
   1802 }
   1803 
   1804 /*
   1805  * Set the key cache contents for the specified key.  Key cache
   1806  * slot(s) must already have been allocated by ath_key_alloc.
   1807  */
   1808 static int
   1809 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
   1810 	const u_int8_t mac[IEEE80211_ADDR_LEN])
   1811 {
   1812 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1813 
   1814 	return ath_keyset(sc, k, mac, ic->ic_bss);
   1815 }
   1816 
   1817 /*
   1818  * Block/unblock tx+rx processing while a key change is done.
   1819  * We assume the caller serializes key management operations
   1820  * so we only need to worry about synchronization with other
   1821  * uses that originate in the driver.
   1822  */
   1823 static void
   1824 ath_key_update_begin(struct ieee80211com *ic)
   1825 {
   1826 	struct ifnet *ifp = ic->ic_ifp;
   1827 	struct ath_softc *sc = ifp->if_softc;
   1828 
   1829 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
   1830 #if 0
   1831 	tasklet_disable(&sc->sc_rxtq);
   1832 #endif
   1833 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
   1834 }
   1835 
   1836 static void
   1837 ath_key_update_end(struct ieee80211com *ic)
   1838 {
   1839 	struct ifnet *ifp = ic->ic_ifp;
   1840 	struct ath_softc *sc = ifp->if_softc;
   1841 
   1842 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
   1843 	IF_UNLOCK(&ifp->if_snd);
   1844 #if 0
   1845 	tasklet_enable(&sc->sc_rxtq);
   1846 #endif
   1847 }
   1848 
   1849 /*
   1850  * Calculate the receive filter according to the
   1851  * operating mode and state:
   1852  *
   1853  * o always accept unicast, broadcast, and multicast traffic
   1854  * o maintain current state of phy error reception (the hal
   1855  *   may enable phy error frames for noise immunity work)
   1856  * o probe request frames are accepted only when operating in
   1857  *   hostap, adhoc, or monitor modes
   1858  * o enable promiscuous mode according to the interface state
   1859  * o accept beacons:
   1860  *   - when operating in adhoc mode so the 802.11 layer creates
   1861  *     node table entries for peers,
   1862  *   - when operating in station mode for collecting rssi data when
   1863  *     the station is otherwise quiet, or
   1864  *   - when scanning
   1865  */
   1866 static u_int32_t
   1867 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
   1868 {
   1869 	struct ieee80211com *ic = &sc->sc_ic;
   1870 	struct ath_hal *ah = sc->sc_ah;
   1871 	struct ifnet *ifp = &sc->sc_if;
   1872 	u_int32_t rfilt;
   1873 
   1874 	rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
   1875 	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
   1876 	if (ic->ic_opmode != IEEE80211_M_STA)
   1877 		rfilt |= HAL_RX_FILTER_PROBEREQ;
   1878 	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
   1879 	    (ifp->if_flags & IFF_PROMISC))
   1880 		rfilt |= HAL_RX_FILTER_PROM;
   1881 	if (ic->ic_opmode == IEEE80211_M_STA ||
   1882 	    ic->ic_opmode == IEEE80211_M_IBSS ||
   1883 	    state == IEEE80211_S_SCAN)
   1884 		rfilt |= HAL_RX_FILTER_BEACON;
   1885 	return rfilt;
   1886 }
   1887 
   1888 static void
   1889 ath_mcastfilter_accum(void *dl, u_int32_t *mfilt)
   1890 {
   1891 	u_int32_t val;
   1892 	u_int8_t pos;
   1893 
   1894 	/* calculate XOR of eight 6bit values */
   1895 	val = LE_READ_4((char *)dl + 0);
   1896 	pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1897 	val = LE_READ_4((char *)dl + 3);
   1898 	pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1899 	pos &= 0x3f;
   1900 	mfilt[pos / 32] |= (1 << (pos % 32));
   1901 }
   1902 
   1903 static void
   1904 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t *mfilt)
   1905 {
   1906 	struct ifnet *ifp = &sc->sc_if;
   1907 	struct ether_multi *enm;
   1908 	struct ether_multistep estep;
   1909 
   1910 	mfilt[0] = mfilt[1] = 0;
   1911 	ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
   1912 	while (enm != NULL) {
   1913 		/* XXX Punt on ranges. */
   1914 		if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
   1915 			mfilt[0] = mfilt[1] = ~((u_int32_t)0);
   1916 			ifp->if_flags |= IFF_ALLMULTI;
   1917 			return;
   1918 		}
   1919 		ath_mcastfilter_accum(enm->enm_addrlo, mfilt);
   1920 		ETHER_NEXT_MULTI(estep, enm);
   1921 	}
   1922 	ifp->if_flags &= ~IFF_ALLMULTI;
   1923 }
   1924 
   1925 static void
   1926 ath_mode_init(struct ath_softc *sc)
   1927 {
   1928 	struct ieee80211com *ic = &sc->sc_ic;
   1929 	struct ath_hal *ah = sc->sc_ah;
   1930 	u_int32_t rfilt, mfilt[2];
   1931 	int i;
   1932 
   1933 	/* configure rx filter */
   1934 	rfilt = ath_calcrxfilter(sc, ic->ic_state);
   1935 	ath_hal_setrxfilter(ah, rfilt);
   1936 
   1937 	/* configure operational mode */
   1938 	ath_hal_setopmode(ah);
   1939 
   1940 	/* Write keys to hardware; it may have been powered down. */
   1941 	ath_key_update_begin(ic);
   1942 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
   1943 		ath_key_set(ic,
   1944 			    &ic->ic_crypto.cs_nw_keys[i],
   1945 			    ic->ic_myaddr);
   1946 	}
   1947 	ath_key_update_end(ic);
   1948 
   1949 	/*
   1950 	 * Handle any link-level address change.  Note that we only
   1951 	 * need to force ic_myaddr; any other addresses are handled
   1952 	 * as a byproduct of the ifnet code marking the interface
   1953 	 * down then up.
   1954 	 *
   1955 	 * XXX should get from lladdr instead of arpcom but that's more work
   1956 	 */
   1957 	IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(sc->sc_if.if_sadl));
   1958 	ath_hal_setmac(ah, ic->ic_myaddr);
   1959 
   1960 	/* calculate and install multicast filter */
   1961 #ifdef __FreeBSD__
   1962 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   1963 		mfilt[0] = mfilt[1] = 0;
   1964 		IF_ADDR_LOCK(ifp);
   1965 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
   1966 			void *dl;
   1967 
   1968 			/* calculate XOR of eight 6bit values */
   1969 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
   1970 			val = LE_READ_4((char *)dl + 0);
   1971 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1972 			val = LE_READ_4((char *)dl + 3);
   1973 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1974 			pos &= 0x3f;
   1975 			mfilt[pos / 32] |= (1 << (pos % 32));
   1976 		}
   1977 		IF_ADDR_UNLOCK(ifp);
   1978 	} else {
   1979 		mfilt[0] = mfilt[1] = ~0;
   1980 	}
   1981 #endif
   1982 #ifdef __NetBSD__
   1983 	ath_mcastfilter_compute(sc, mfilt);
   1984 #endif
   1985 	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
   1986 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
   1987 		__func__, rfilt, mfilt[0], mfilt[1]);
   1988 }
   1989 
   1990 /*
   1991  * Set the slot time based on the current setting.
   1992  */
   1993 static void
   1994 ath_setslottime(struct ath_softc *sc)
   1995 {
   1996 	struct ieee80211com *ic = &sc->sc_ic;
   1997 	struct ath_hal *ah = sc->sc_ah;
   1998 
   1999 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   2000 		ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
   2001 	else
   2002 		ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
   2003 	sc->sc_updateslot = OK;
   2004 }
   2005 
   2006 /*
   2007  * Callback from the 802.11 layer to update the
   2008  * slot time based on the current setting.
   2009  */
   2010 static void
   2011 ath_updateslot(struct ifnet *ifp)
   2012 {
   2013 	struct ath_softc *sc = ifp->if_softc;
   2014 	struct ieee80211com *ic = &sc->sc_ic;
   2015 
   2016 	/*
   2017 	 * When not coordinating the BSS, change the hardware
   2018 	 * immediately.  For other operation we defer the change
   2019 	 * until beacon updates have propagated to the stations.
   2020 	 */
   2021 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
   2022 		sc->sc_updateslot = UPDATE;
   2023 	else
   2024 		ath_setslottime(sc);
   2025 }
   2026 
   2027 /*
   2028  * Setup a h/w transmit queue for beacons.
   2029  */
   2030 static int
   2031 ath_beaconq_setup(struct ath_hal *ah)
   2032 {
   2033 	HAL_TXQ_INFO qi;
   2034 
   2035 	memset(&qi, 0, sizeof(qi));
   2036 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
   2037 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
   2038 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
   2039 	/* NB: for dynamic turbo, don't enable any other interrupts */
   2040 	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
   2041 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
   2042 }
   2043 
   2044 /*
   2045  * Setup the transmit queue parameters for the beacon queue.
   2046  */
   2047 static int
   2048 ath_beaconq_config(struct ath_softc *sc)
   2049 {
   2050 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
   2051 	struct ieee80211com *ic = &sc->sc_ic;
   2052 	struct ath_hal *ah = sc->sc_ah;
   2053 	HAL_TXQ_INFO qi;
   2054 
   2055 	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
   2056 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   2057 		/*
   2058 		 * Always burst out beacon and CAB traffic.
   2059 		 */
   2060 		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
   2061 		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
   2062 		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
   2063 	} else {
   2064 		struct wmeParams *wmep =
   2065 			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
   2066 		/*
   2067 		 * Adhoc mode; important thing is to use 2x cwmin.
   2068 		 */
   2069 		qi.tqi_aifs = wmep->wmep_aifsn;
   2070 		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
   2071 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
   2072 	}
   2073 
   2074 	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
   2075 		device_printf(sc->sc_dev, "unable to update parameters for "
   2076 			"beacon hardware queue!\n");
   2077 		return 0;
   2078 	} else {
   2079 		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
   2080 		return 1;
   2081 	}
   2082 #undef ATH_EXPONENT_TO_VALUE
   2083 }
   2084 
   2085 /*
   2086  * Allocate and setup an initial beacon frame.
   2087  */
   2088 static int
   2089 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
   2090 {
   2091 	struct ieee80211com *ic = ni->ni_ic;
   2092 	struct ath_buf *bf;
   2093 	struct mbuf *m;
   2094 	int error;
   2095 
   2096 	bf = STAILQ_FIRST(&sc->sc_bbuf);
   2097 	if (bf == NULL) {
   2098 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
   2099 		sc->sc_stats.ast_be_nombuf++;	/* XXX */
   2100 		return ENOMEM;			/* XXX */
   2101 	}
   2102 	/*
   2103 	 * NB: the beacon data buffer must be 32-bit aligned;
   2104 	 * we assume the mbuf routines will return us something
   2105 	 * with this alignment (perhaps should assert).
   2106 	 */
   2107 	m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
   2108 	if (m == NULL) {
   2109 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
   2110 			__func__);
   2111 		sc->sc_stats.ast_be_nombuf++;
   2112 		return ENOMEM;
   2113 	}
   2114 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
   2115 				     BUS_DMA_NOWAIT);
   2116 	if (error == 0) {
   2117 		bf->bf_m = m;
   2118 		bf->bf_node = ieee80211_ref_node(ni);
   2119 	} else {
   2120 		m_freem(m);
   2121 	}
   2122 	return error;
   2123 }
   2124 
   2125 /*
   2126  * Setup the beacon frame for transmit.
   2127  */
   2128 static void
   2129 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
   2130 {
   2131 #define	USE_SHPREAMBLE(_ic) \
   2132 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
   2133 		== IEEE80211_F_SHPREAMBLE)
   2134 	struct ieee80211_node *ni = bf->bf_node;
   2135 	struct ieee80211com *ic = ni->ni_ic;
   2136 	struct mbuf *m = bf->bf_m;
   2137 	struct ath_hal *ah = sc->sc_ah;
   2138 	struct ath_desc *ds;
   2139 	int flags, antenna;
   2140 	const HAL_RATE_TABLE *rt;
   2141 	u_int8_t rix, rate;
   2142 
   2143 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
   2144 		__func__, m, m->m_len);
   2145 
   2146 	/* setup descriptors */
   2147 	ds = bf->bf_desc;
   2148 
   2149 	flags = HAL_TXDESC_NOACK;
   2150 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
   2151 		ds->ds_link = HTOAH32(bf->bf_daddr);	/* self-linked */
   2152 		flags |= HAL_TXDESC_VEOL;
   2153 		/*
   2154 		 * Let hardware handle antenna switching unless
   2155 		 * the user has selected a transmit antenna
   2156 		 * (sc_txantenna is not 0).
   2157 		 */
   2158 		antenna = sc->sc_txantenna;
   2159 	} else {
   2160 		ds->ds_link = 0;
   2161 		/*
   2162 		 * Switch antenna every 4 beacons, unless the user
   2163 		 * has selected a transmit antenna (sc_txantenna
   2164 		 * is not 0).
   2165 		 *
   2166 		 * XXX assumes two antenna
   2167 		 */
   2168 		if (sc->sc_txantenna == 0)
   2169 			antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
   2170 		else
   2171 			antenna = sc->sc_txantenna;
   2172 	}
   2173 
   2174 	KASSERT(bf->bf_nseg == 1,
   2175 		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
   2176 	ds->ds_data = bf->bf_segs[0].ds_addr;
   2177 	/*
   2178 	 * Calculate rate code.
   2179 	 * XXX everything at min xmit rate
   2180 	 */
   2181 	rix = sc->sc_minrateix;
   2182 	rt = sc->sc_currates;
   2183 	rate = rt->info[rix].rateCode;
   2184 	if (USE_SHPREAMBLE(ic))
   2185 		rate |= rt->info[rix].shortPreamble;
   2186 	ath_hal_setuptxdesc(ah, ds
   2187 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
   2188 		, sizeof(struct ieee80211_frame)/* header length */
   2189 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
   2190 		, ni->ni_txpower		/* txpower XXX */
   2191 		, rate, 1			/* series 0 rate/tries */
   2192 		, HAL_TXKEYIX_INVALID		/* no encryption */
   2193 		, antenna			/* antenna mode */
   2194 		, flags				/* no ack, veol for beacons */
   2195 		, 0				/* rts/cts rate */
   2196 		, 0				/* rts/cts duration */
   2197 	);
   2198 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
   2199 	ath_hal_filltxdesc(ah, ds
   2200 		, roundup(m->m_len, 4)		/* buffer length */
   2201 		, AH_TRUE			/* first segment */
   2202 		, AH_TRUE			/* last segment */
   2203 		, ds				/* first descriptor */
   2204 	);
   2205 
   2206 	/* NB: The desc swap function becomes void,
   2207 	 * if descriptor swapping is not enabled
   2208 	 */
   2209 	ath_desc_swap(ds);
   2210 
   2211 #undef USE_SHPREAMBLE
   2212 }
   2213 
   2214 /*
   2215  * Transmit a beacon frame at SWBA.  Dynamic updates to the
   2216  * frame contents are done as needed and the slot time is
   2217  * also adjusted based on current state.
   2218  */
   2219 static void
   2220 ath_beacon_proc(void *arg, int pending)
   2221 {
   2222 	struct ath_softc *sc = arg;
   2223 	struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
   2224 	struct ieee80211_node *ni = bf->bf_node;
   2225 	struct ieee80211com *ic = ni->ni_ic;
   2226 	struct ath_hal *ah = sc->sc_ah;
   2227 	struct mbuf *m;
   2228 	int ncabq, error, otherant;
   2229 
   2230 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
   2231 		__func__, pending);
   2232 
   2233 	if (ic->ic_opmode == IEEE80211_M_STA ||
   2234 	    ic->ic_opmode == IEEE80211_M_MONITOR ||
   2235 	    bf == NULL || bf->bf_m == NULL) {
   2236 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
   2237 			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
   2238 		return;
   2239 	}
   2240 	/*
   2241 	 * Check if the previous beacon has gone out.  If
   2242 	 * not don't try to post another, skip this period
   2243 	 * and wait for the next.  Missed beacons indicate
   2244 	 * a problem and should not occur.  If we miss too
   2245 	 * many consecutive beacons reset the device.
   2246 	 */
   2247 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
   2248 		sc->sc_bmisscount++;
   2249 		DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
   2250 			"%s: missed %u consecutive beacons\n",
   2251 			__func__, sc->sc_bmisscount);
   2252 		if (sc->sc_bmisscount > 3)		/* NB: 3 is a guess */
   2253 			TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask);
   2254 		return;
   2255 	}
   2256 	if (sc->sc_bmisscount != 0) {
   2257 		DPRINTF(sc, ATH_DEBUG_BEACON,
   2258 			"%s: resume beacon xmit after %u misses\n",
   2259 			__func__, sc->sc_bmisscount);
   2260 		sc->sc_bmisscount = 0;
   2261 	}
   2262 
   2263 	/*
   2264 	 * Update dynamic beacon contents.  If this returns
   2265 	 * non-zero then we need to remap the memory because
   2266 	 * the beacon frame changed size (probably because
   2267 	 * of the TIM bitmap).
   2268 	 */
   2269 	m = bf->bf_m;
   2270 	ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
   2271 	if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
   2272 		/* XXX too conservative? */
   2273 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   2274 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
   2275 					     BUS_DMA_NOWAIT);
   2276 		if (error != 0) {
   2277 			if_printf(&sc->sc_if,
   2278 			    "%s: bus_dmamap_load_mbuf failed, error %u\n",
   2279 			    __func__, error);
   2280 			return;
   2281 		}
   2282 	}
   2283 
   2284 	/*
   2285 	 * Handle slot time change when a non-ERP station joins/leaves
   2286 	 * an 11g network.  The 802.11 layer notifies us via callback,
   2287 	 * we mark updateslot, then wait one beacon before effecting
   2288 	 * the change.  This gives associated stations at least one
   2289 	 * beacon interval to note the state change.
   2290 	 */
   2291 	/* XXX locking */
   2292 	if (sc->sc_updateslot == UPDATE)
   2293 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
   2294 	else if (sc->sc_updateslot == COMMIT)
   2295 		ath_setslottime(sc);		/* commit change to h/w */
   2296 
   2297 	/*
   2298 	 * Check recent per-antenna transmit statistics and flip
   2299 	 * the default antenna if noticeably more frames went out
   2300 	 * on the non-default antenna.
   2301 	 * XXX assumes 2 anntenae
   2302 	 */
   2303 	otherant = sc->sc_defant & 1 ? 2 : 1;
   2304 	if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
   2305 		ath_setdefantenna(sc, otherant);
   2306 	sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
   2307 
   2308 	/*
   2309 	 * Construct tx descriptor.
   2310 	 */
   2311 	ath_beacon_setup(sc, bf);
   2312 
   2313 	/*
   2314 	 * Stop any current dma and put the new frame on the queue.
   2315 	 * This should never fail since we check above that no frames
   2316 	 * are still pending on the queue.
   2317 	 */
   2318 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
   2319 		DPRINTF(sc, ATH_DEBUG_ANY,
   2320 			"%s: beacon queue %u did not stop?\n",
   2321 			__func__, sc->sc_bhalq);
   2322 	}
   2323 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   2324 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2325 
   2326 	/*
   2327 	 * Enable the CAB queue before the beacon queue to
   2328 	 * insure cab frames are triggered by this beacon.
   2329 	 */
   2330 	if (ncabq != 0 && (sc->sc_boff.bo_tim[4] & 1))	/* NB: only at DTIM */
   2331 		ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
   2332 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
   2333 	ath_hal_txstart(ah, sc->sc_bhalq);
   2334 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
   2335 	    "%s: TXDP[%u] = %" PRIx64 " (%p)\n", __func__,
   2336 	    sc->sc_bhalq, (uint64_t)bf->bf_daddr, bf->bf_desc);
   2337 
   2338 	sc->sc_stats.ast_be_xmit++;
   2339 }
   2340 
   2341 /*
   2342  * Reset the hardware after detecting beacons have stopped.
   2343  */
   2344 static void
   2345 ath_bstuck_proc(void *arg, int pending)
   2346 {
   2347 	struct ath_softc *sc = arg;
   2348 	struct ifnet *ifp = &sc->sc_if;
   2349 
   2350 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
   2351 		sc->sc_bmisscount);
   2352 	ath_reset(ifp);
   2353 }
   2354 
   2355 /*
   2356  * Reclaim beacon resources.
   2357  */
   2358 static void
   2359 ath_beacon_free(struct ath_softc *sc)
   2360 {
   2361 	struct ath_buf *bf;
   2362 
   2363 	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
   2364 		if (bf->bf_m != NULL) {
   2365 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   2366 			m_freem(bf->bf_m);
   2367 			bf->bf_m = NULL;
   2368 		}
   2369 		if (bf->bf_node != NULL) {
   2370 			ieee80211_free_node(bf->bf_node);
   2371 			bf->bf_node = NULL;
   2372 		}
   2373 	}
   2374 }
   2375 
   2376 /*
   2377  * Configure the beacon and sleep timers.
   2378  *
   2379  * When operating as an AP this resets the TSF and sets
   2380  * up the hardware to notify us when we need to issue beacons.
   2381  *
   2382  * When operating in station mode this sets up the beacon
   2383  * timers according to the timestamp of the last received
   2384  * beacon and the current TSF, configures PCF and DTIM
   2385  * handling, programs the sleep registers so the hardware
   2386  * will wakeup in time to receive beacons, and configures
   2387  * the beacon miss handling so we'll receive a BMISS
   2388  * interrupt when we stop seeing beacons from the AP
   2389  * we've associated with.
   2390  */
   2391 static void
   2392 ath_beacon_config(struct ath_softc *sc)
   2393 {
   2394 #define	TSF_TO_TU(_h,_l) \
   2395 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
   2396 #define	FUDGE	2
   2397 	struct ath_hal *ah = sc->sc_ah;
   2398 	struct ieee80211com *ic = &sc->sc_ic;
   2399 	struct ieee80211_node *ni = ic->ic_bss;
   2400 	u_int32_t nexttbtt, intval, tsftu;
   2401 	u_int64_t tsf;
   2402 
   2403 	/* extract tstamp from last beacon and convert to TU */
   2404 	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
   2405 			     LE_READ_4(ni->ni_tstamp.data));
   2406 	/* NB: the beacon interval is kept internally in TU's */
   2407 	intval = ni->ni_intval & HAL_BEACON_PERIOD;
   2408 	if (nexttbtt == 0)		/* e.g. for ap mode */
   2409 		nexttbtt = intval;
   2410 	else if (intval)		/* NB: can be 0 for monitor mode */
   2411 		nexttbtt = roundup(nexttbtt, intval);
   2412 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
   2413 		__func__, nexttbtt, intval, ni->ni_intval);
   2414 	if (ic->ic_opmode == IEEE80211_M_STA) {
   2415 		HAL_BEACON_STATE bs;
   2416 		int dtimperiod, dtimcount;
   2417 		int cfpperiod, cfpcount;
   2418 
   2419 		/*
   2420 		 * Setup dtim and cfp parameters according to
   2421 		 * last beacon we received (which may be none).
   2422 		 */
   2423 		dtimperiod = ni->ni_dtim_period;
   2424 		if (dtimperiod <= 0)		/* NB: 0 if not known */
   2425 			dtimperiod = 1;
   2426 		dtimcount = ni->ni_dtim_count;
   2427 		if (dtimcount >= dtimperiod)	/* NB: sanity check */
   2428 			dtimcount = 0;		/* XXX? */
   2429 		cfpperiod = 1;			/* NB: no PCF support yet */
   2430 		cfpcount = 0;
   2431 		/*
   2432 		 * Pull nexttbtt forward to reflect the current
   2433 		 * TSF and calculate dtim+cfp state for the result.
   2434 		 */
   2435 		tsf = ath_hal_gettsf64(ah);
   2436 		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
   2437 		do {
   2438 			nexttbtt += intval;
   2439 			if (--dtimcount < 0) {
   2440 				dtimcount = dtimperiod - 1;
   2441 				if (--cfpcount < 0)
   2442 					cfpcount = cfpperiod - 1;
   2443 			}
   2444 		} while (nexttbtt < tsftu);
   2445 		memset(&bs, 0, sizeof(bs));
   2446 		bs.bs_intval = intval;
   2447 		bs.bs_nexttbtt = nexttbtt;
   2448 		bs.bs_dtimperiod = dtimperiod*intval;
   2449 		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
   2450 		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
   2451 		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
   2452 		bs.bs_cfpmaxduration = 0;
   2453 #if 0
   2454 		/*
   2455 		 * The 802.11 layer records the offset to the DTIM
   2456 		 * bitmap while receiving beacons; use it here to
   2457 		 * enable h/w detection of our AID being marked in
   2458 		 * the bitmap vector (to indicate frames for us are
   2459 		 * pending at the AP).
   2460 		 * XXX do DTIM handling in s/w to WAR old h/w bugs
   2461 		 * XXX enable based on h/w rev for newer chips
   2462 		 */
   2463 		bs.bs_timoffset = ni->ni_timoff;
   2464 #endif
   2465 		/*
   2466 		 * Calculate the number of consecutive beacons to miss
   2467 		 * before taking a BMISS interrupt.  The configuration
   2468 		 * is specified in ms, so we need to convert that to
   2469 		 * TU's and then calculate based on the beacon interval.
   2470 		 * Note that we clamp the result to at most 10 beacons.
   2471 		 */
   2472 		bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
   2473 		if (bs.bs_bmissthreshold > 10)
   2474 			bs.bs_bmissthreshold = 10;
   2475 		else if (bs.bs_bmissthreshold <= 0)
   2476 			bs.bs_bmissthreshold = 1;
   2477 
   2478 		/*
   2479 		 * Calculate sleep duration.  The configuration is
   2480 		 * given in ms.  We insure a multiple of the beacon
   2481 		 * period is used.  Also, if the sleep duration is
   2482 		 * greater than the DTIM period then it makes senses
   2483 		 * to make it a multiple of that.
   2484 		 *
   2485 		 * XXX fixed at 100ms
   2486 		 */
   2487 		bs.bs_sleepduration =
   2488 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
   2489 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
   2490 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
   2491 
   2492 		DPRINTF(sc, ATH_DEBUG_BEACON,
   2493 			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
   2494 			, __func__
   2495 			, tsf, tsftu
   2496 			, bs.bs_intval
   2497 			, bs.bs_nexttbtt
   2498 			, bs.bs_dtimperiod
   2499 			, bs.bs_nextdtim
   2500 			, bs.bs_bmissthreshold
   2501 			, bs.bs_sleepduration
   2502 			, bs.bs_cfpperiod
   2503 			, bs.bs_cfpmaxduration
   2504 			, bs.bs_cfpnext
   2505 			, bs.bs_timoffset
   2506 		);
   2507 		ath_hal_intrset(ah, 0);
   2508 		ath_hal_beacontimers(ah, &bs);
   2509 		sc->sc_imask |= HAL_INT_BMISS;
   2510 		ath_hal_intrset(ah, sc->sc_imask);
   2511 	} else {
   2512 		ath_hal_intrset(ah, 0);
   2513 		if (nexttbtt == intval)
   2514 			intval |= HAL_BEACON_RESET_TSF;
   2515 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
   2516 			/*
   2517 			 * In IBSS mode enable the beacon timers but only
   2518 			 * enable SWBA interrupts if we need to manually
   2519 			 * prepare beacon frames.  Otherwise we use a
   2520 			 * self-linked tx descriptor and let the hardware
   2521 			 * deal with things.
   2522 			 */
   2523 			intval |= HAL_BEACON_ENA;
   2524 			if (!sc->sc_hasveol)
   2525 				sc->sc_imask |= HAL_INT_SWBA;
   2526 			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
   2527 				/*
   2528 				 * Pull nexttbtt forward to reflect
   2529 				 * the current TSF.
   2530 				 */
   2531 				tsf = ath_hal_gettsf64(ah);
   2532 				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
   2533 				do {
   2534 					nexttbtt += intval;
   2535 				} while (nexttbtt < tsftu);
   2536 			}
   2537 			ath_beaconq_config(sc);
   2538 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   2539 			/*
   2540 			 * In AP mode we enable the beacon timers and
   2541 			 * SWBA interrupts to prepare beacon frames.
   2542 			 */
   2543 			intval |= HAL_BEACON_ENA;
   2544 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
   2545 			ath_beaconq_config(sc);
   2546 		}
   2547 		ath_hal_beaconinit(ah, nexttbtt, intval);
   2548 		sc->sc_bmisscount = 0;
   2549 		ath_hal_intrset(ah, sc->sc_imask);
   2550 		/*
   2551 		 * When using a self-linked beacon descriptor in
   2552 		 * ibss mode load it once here.
   2553 		 */
   2554 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
   2555 			ath_beacon_proc(sc, 0);
   2556 	}
   2557 	sc->sc_syncbeacon = 0;
   2558 #undef UNDEF
   2559 #undef TSF_TO_TU
   2560 }
   2561 
   2562 static int
   2563 ath_descdma_setup(struct ath_softc *sc,
   2564 	struct ath_descdma *dd, ath_bufhead *head,
   2565 	const char *name, int nbuf, int ndesc)
   2566 {
   2567 #define	DS2PHYS(_dd, _ds) \
   2568 	((_dd)->dd_desc_paddr + ((char *)(_ds) - (char *)(_dd)->dd_desc))
   2569 	struct ifnet *ifp = &sc->sc_if;
   2570 	struct ath_desc *ds;
   2571 	struct ath_buf *bf;
   2572 	int i, bsize, error;
   2573 
   2574 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
   2575 	    __func__, name, nbuf, ndesc);
   2576 
   2577 	dd->dd_name = name;
   2578 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
   2579 
   2580 	/*
   2581 	 * Setup DMA descriptor area.
   2582 	 */
   2583 	dd->dd_dmat = sc->sc_dmat;
   2584 
   2585 	error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE,
   2586 	    0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0);
   2587 
   2588 	if (error != 0) {
   2589 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
   2590 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
   2591 		goto fail0;
   2592 	}
   2593 
   2594 	error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg,
   2595 	    dd->dd_desc_len, (void **)&dd->dd_desc, BUS_DMA_COHERENT);
   2596 	if (error != 0) {
   2597 		if_printf(ifp, "unable to map %u %s descriptors, error = %u\n",
   2598 		    nbuf * ndesc, dd->dd_name, error);
   2599 		goto fail1;
   2600 	}
   2601 
   2602 	/* allocate descriptors */
   2603 	error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1,
   2604 	    dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap);
   2605 	if (error != 0) {
   2606 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
   2607 			"error %u\n", dd->dd_name, error);
   2608 		goto fail2;
   2609 	}
   2610 
   2611 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc,
   2612 	    dd->dd_desc_len, NULL, BUS_DMA_NOWAIT);
   2613 	if (error != 0) {
   2614 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
   2615 			dd->dd_name, error);
   2616 		goto fail3;
   2617 	}
   2618 
   2619 	ds = dd->dd_desc;
   2620 	dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr;
   2621 	DPRINTF(sc, ATH_DEBUG_RESET,
   2622 	    "%s: %s DMA map: %p (%lu) -> %" PRIx64 " (%lu)\n",
   2623 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
   2624 	    (uint64_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
   2625 
   2626 	/* allocate rx buffers */
   2627 	bsize = sizeof(struct ath_buf) * nbuf;
   2628 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
   2629 	if (bf == NULL) {
   2630 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
   2631 			dd->dd_name, bsize);
   2632 		goto fail4;
   2633 	}
   2634 	dd->dd_bufptr = bf;
   2635 
   2636 	STAILQ_INIT(head);
   2637 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
   2638 		bf->bf_desc = ds;
   2639 		bf->bf_daddr = DS2PHYS(dd, ds);
   2640 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc,
   2641 				MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap);
   2642 		if (error != 0) {
   2643 			if_printf(ifp, "unable to create dmamap for %s "
   2644 				"buffer %u, error %u\n", dd->dd_name, i, error);
   2645 			ath_descdma_cleanup(sc, dd, head);
   2646 			return error;
   2647 		}
   2648 		STAILQ_INSERT_TAIL(head, bf, bf_list);
   2649 	}
   2650 	return 0;
   2651 fail4:
   2652 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
   2653 fail3:
   2654 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
   2655 fail2:
   2656 	bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
   2657 fail1:
   2658 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
   2659 fail0:
   2660 	memset(dd, 0, sizeof(*dd));
   2661 	return error;
   2662 #undef DS2PHYS
   2663 }
   2664 
   2665 static void
   2666 ath_descdma_cleanup(struct ath_softc *sc,
   2667 	struct ath_descdma *dd, ath_bufhead *head)
   2668 {
   2669 	struct ath_buf *bf;
   2670 	struct ieee80211_node *ni;
   2671 
   2672 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
   2673 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
   2674 	bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
   2675 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
   2676 
   2677 	STAILQ_FOREACH(bf, head, bf_list) {
   2678 		if (bf->bf_m) {
   2679 			m_freem(bf->bf_m);
   2680 			bf->bf_m = NULL;
   2681 		}
   2682 		if (bf->bf_dmamap != NULL) {
   2683 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
   2684 			bf->bf_dmamap = NULL;
   2685 		}
   2686 		ni = bf->bf_node;
   2687 		bf->bf_node = NULL;
   2688 		if (ni != NULL) {
   2689 			/*
   2690 			 * Reclaim node reference.
   2691 			 */
   2692 			ieee80211_free_node(ni);
   2693 		}
   2694 	}
   2695 
   2696 	STAILQ_INIT(head);
   2697 	free(dd->dd_bufptr, M_ATHDEV);
   2698 	memset(dd, 0, sizeof(*dd));
   2699 }
   2700 
   2701 static int
   2702 ath_desc_alloc(struct ath_softc *sc)
   2703 {
   2704 	int error;
   2705 
   2706 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
   2707 			"rx", ath_rxbuf, 1);
   2708 	if (error != 0)
   2709 		return error;
   2710 
   2711 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
   2712 			"tx", ath_txbuf, ATH_TXDESC);
   2713 	if (error != 0) {
   2714 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2715 		return error;
   2716 	}
   2717 
   2718 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
   2719 			"beacon", 1, 1);
   2720 	if (error != 0) {
   2721 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
   2722 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2723 		return error;
   2724 	}
   2725 	return 0;
   2726 }
   2727 
   2728 static void
   2729 ath_desc_free(struct ath_softc *sc)
   2730 {
   2731 
   2732 	if (sc->sc_bdma.dd_desc_len != 0)
   2733 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
   2734 	if (sc->sc_txdma.dd_desc_len != 0)
   2735 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
   2736 	if (sc->sc_rxdma.dd_desc_len != 0)
   2737 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2738 }
   2739 
   2740 static struct ieee80211_node *
   2741 ath_node_alloc(struct ieee80211_node_table *nt)
   2742 {
   2743 	struct ieee80211com *ic = nt->nt_ic;
   2744 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   2745 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
   2746 	struct ath_node *an;
   2747 
   2748 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
   2749 	if (an == NULL) {
   2750 		/* XXX stat+msg */
   2751 		return NULL;
   2752 	}
   2753 	an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
   2754 	ath_rate_node_init(sc, an);
   2755 
   2756 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
   2757 	return &an->an_node;
   2758 }
   2759 
   2760 static void
   2761 ath_node_free(struct ieee80211_node *ni)
   2762 {
   2763 	struct ieee80211com *ic = ni->ni_ic;
   2764         struct ath_softc *sc = ic->ic_ifp->if_softc;
   2765 
   2766 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
   2767 
   2768 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
   2769 	sc->sc_node_free(ni);
   2770 }
   2771 
   2772 static u_int8_t
   2773 ath_node_getrssi(const struct ieee80211_node *ni)
   2774 {
   2775 #define	HAL_EP_RND(x, mul) \
   2776 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
   2777 	u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
   2778 	int32_t rssi;
   2779 
   2780 	/*
   2781 	 * When only one frame is received there will be no state in
   2782 	 * avgrssi so fallback on the value recorded by the 802.11 layer.
   2783 	 */
   2784 	if (avgrssi != ATH_RSSI_DUMMY_MARKER)
   2785 		rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
   2786 	else
   2787 		rssi = ni->ni_rssi;
   2788 	return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
   2789 #undef HAL_EP_RND
   2790 }
   2791 
   2792 static int
   2793 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
   2794 {
   2795 	struct ath_hal *ah = sc->sc_ah;
   2796 	int error;
   2797 	struct mbuf *m;
   2798 	struct ath_desc *ds;
   2799 
   2800 	m = bf->bf_m;
   2801 	if (m == NULL) {
   2802 		/*
   2803 		 * NB: by assigning a page to the rx dma buffer we
   2804 		 * implicitly satisfy the Atheros requirement that
   2805 		 * this buffer be cache-line-aligned and sized to be
   2806 		 * multiple of the cache line size.  Not doing this
   2807 		 * causes weird stuff to happen (for the 5210 at least).
   2808 		 */
   2809 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
   2810 		if (m == NULL) {
   2811 			DPRINTF(sc, ATH_DEBUG_ANY,
   2812 				"%s: no mbuf/cluster\n", __func__);
   2813 			sc->sc_stats.ast_rx_nombuf++;
   2814 			return ENOMEM;
   2815 		}
   2816 		bf->bf_m = m;
   2817 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
   2818 
   2819 		error = bus_dmamap_load_mbuf(sc->sc_dmat,
   2820 					     bf->bf_dmamap, m,
   2821 					     BUS_DMA_NOWAIT);
   2822 		if (error != 0) {
   2823 			DPRINTF(sc, ATH_DEBUG_ANY,
   2824 			    "%s: bus_dmamap_load_mbuf failed; error %d\n",
   2825 			    __func__, error);
   2826 			sc->sc_stats.ast_rx_busdma++;
   2827 			return error;
   2828 		}
   2829 		KASSERT(bf->bf_nseg == 1,
   2830 			("multi-segment packet; nseg %u", bf->bf_nseg));
   2831 	}
   2832 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   2833 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2834 
   2835 	/*
   2836 	 * Setup descriptors.  For receive we always terminate
   2837 	 * the descriptor list with a self-linked entry so we'll
   2838 	 * not get overrun under high load (as can happen with a
   2839 	 * 5212 when ANI processing enables PHY error frames).
   2840 	 *
   2841 	 * To insure the last descriptor is self-linked we create
   2842 	 * each descriptor as self-linked and add it to the end.  As
   2843 	 * each additional descriptor is added the previous self-linked
   2844 	 * entry is ``fixed'' naturally.  This should be safe even
   2845 	 * if DMA is happening.  When processing RX interrupts we
   2846 	 * never remove/process the last, self-linked, entry on the
   2847 	 * descriptor list.  This insures the hardware always has
   2848 	 * someplace to write a new frame.
   2849 	 */
   2850 	ds = bf->bf_desc;
   2851 	ds->ds_link = HTOAH32(bf->bf_daddr);	/* link to self */
   2852 	ds->ds_data = bf->bf_segs[0].ds_addr;
   2853 	ds->ds_vdata = mtod(m, void *);	/* for radar */
   2854 	ath_hal_setuprxdesc(ah, ds
   2855 		, m->m_len		/* buffer size */
   2856 		, 0
   2857 	);
   2858 
   2859 	if (sc->sc_rxlink != NULL)
   2860 		*sc->sc_rxlink = bf->bf_daddr;
   2861 	sc->sc_rxlink = &ds->ds_link;
   2862 	return 0;
   2863 }
   2864 
   2865 /*
   2866  * Extend 15-bit time stamp from rx descriptor to
   2867  * a full 64-bit TSF using the specified TSF.
   2868  */
   2869 static inline u_int64_t
   2870 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
   2871 {
   2872 	if ((tsf & 0x7fff) < rstamp)
   2873 		tsf -= 0x8000;
   2874 	return ((tsf &~ 0x7fff) | rstamp);
   2875 }
   2876 
   2877 /*
   2878  * Intercept management frames to collect beacon rssi data
   2879  * and to do ibss merges.
   2880  */
   2881 static void
   2882 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
   2883 	struct ieee80211_node *ni,
   2884 	int subtype, int rssi, u_int32_t rstamp)
   2885 {
   2886 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   2887 
   2888 	/*
   2889 	 * Call up first so subsequent work can use information
   2890 	 * potentially stored in the node (e.g. for ibss merge).
   2891 	 */
   2892 	sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
   2893 	switch (subtype) {
   2894 	case IEEE80211_FC0_SUBTYPE_BEACON:
   2895 		/* update rssi statistics for use by the hal */
   2896 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
   2897 		if (sc->sc_syncbeacon &&
   2898 		    ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) {
   2899 			/*
   2900 			 * Resync beacon timers using the tsf of the beacon
   2901 			 * frame we just received.
   2902 			 */
   2903 			ath_beacon_config(sc);
   2904 		}
   2905 		/* fall thru... */
   2906 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
   2907 		if (ic->ic_opmode == IEEE80211_M_IBSS &&
   2908 		    ic->ic_state == IEEE80211_S_RUN) {
   2909 			u_int64_t tsf = ath_extend_tsf(rstamp,
   2910 				ath_hal_gettsf64(sc->sc_ah));
   2911 
   2912 			/*
   2913 			 * Handle ibss merge as needed; check the tsf on the
   2914 			 * frame before attempting the merge.  The 802.11 spec
   2915 			 * says the station should change it's bssid to match
   2916 			 * the oldest station with the same ssid, where oldest
   2917 			 * is determined by the tsf.  Note that hardware
   2918 			 * reconfiguration happens through callback to
   2919 			 * ath_newstate as the state machine will go from
   2920 			 * RUN -> RUN when this happens.
   2921 			 */
   2922 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
   2923 				DPRINTF(sc, ATH_DEBUG_STATE,
   2924 				    "ibss merge, rstamp %u tsf %ju "
   2925 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
   2926 				    (uintmax_t)ni->ni_tstamp.tsf);
   2927 				(void) ieee80211_ibss_merge(ni);
   2928 			}
   2929 		}
   2930 		break;
   2931 	}
   2932 }
   2933 
   2934 /*
   2935  * Set the default antenna.
   2936  */
   2937 static void
   2938 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
   2939 {
   2940 	struct ath_hal *ah = sc->sc_ah;
   2941 
   2942 	/* XXX block beacon interrupts */
   2943 	ath_hal_setdefantenna(ah, antenna);
   2944 	if (sc->sc_defant != antenna)
   2945 		sc->sc_stats.ast_ant_defswitch++;
   2946 	sc->sc_defant = antenna;
   2947 	sc->sc_rxotherant = 0;
   2948 }
   2949 
   2950 static void
   2951 ath_rx_proc(void *arg, int npending)
   2952 {
   2953 #define	PA2DESC(_sc, _pa) \
   2954 	((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
   2955 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
   2956 	struct ath_softc *sc = arg;
   2957 	struct ath_buf *bf;
   2958 	struct ieee80211com *ic = &sc->sc_ic;
   2959 	struct ifnet *ifp = &sc->sc_if;
   2960 	struct ath_hal *ah = sc->sc_ah;
   2961 	struct ath_desc *ds;
   2962 	struct mbuf *m;
   2963 	struct ieee80211_node *ni;
   2964 	struct ath_node *an;
   2965 	int len, type, ngood;
   2966 	u_int phyerr;
   2967 	HAL_STATUS status;
   2968 	int16_t nf;
   2969 	u_int64_t tsf;
   2970 
   2971 	NET_LOCK_GIANT();		/* XXX */
   2972 
   2973 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
   2974 	ngood = 0;
   2975 	nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
   2976 	tsf = ath_hal_gettsf64(ah);
   2977 	do {
   2978 		bf = STAILQ_FIRST(&sc->sc_rxbuf);
   2979 		if (bf == NULL) {		/* NB: shouldn't happen */
   2980 			if_printf(ifp, "%s: no buffer!\n", __func__);
   2981 			break;
   2982 		}
   2983 		ds = bf->bf_desc;
   2984 		if (ds->ds_link == bf->bf_daddr) {
   2985 			/* NB: never process the self-linked entry at the end */
   2986 			break;
   2987 		}
   2988 		m = bf->bf_m;
   2989 		if (m == NULL) {		/* NB: shouldn't happen */
   2990 			if_printf(ifp, "%s: no mbuf!\n", __func__);
   2991 			break;
   2992 		}
   2993 		/* XXX sync descriptor memory */
   2994 		/*
   2995 		 * Must provide the virtual address of the current
   2996 		 * descriptor, the physical address, and the virtual
   2997 		 * address of the next descriptor in the h/w chain.
   2998 		 * This allows the HAL to look ahead to see if the
   2999 		 * hardware is done with a descriptor by checking the
   3000 		 * done bit in the following descriptor and the address
   3001 		 * of the current descriptor the DMA engine is working
   3002 		 * on.  All this is necessary because of our use of
   3003 		 * a self-linked list to avoid rx overruns.
   3004 		 */
   3005 		status = ath_hal_rxprocdesc(ah, ds,
   3006 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
   3007 #ifdef AR_DEBUG
   3008 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
   3009 			ath_printrxbuf(bf, status == HAL_OK);
   3010 #endif
   3011 		if (status == HAL_EINPROGRESS)
   3012 			break;
   3013 		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
   3014 		if (ds->ds_rxstat.rs_more) {
   3015 			/*
   3016 			 * Frame spans multiple descriptors; this
   3017 			 * cannot happen yet as we don't support
   3018 			 * jumbograms.  If not in monitor mode,
   3019 			 * discard the frame.
   3020 			 */
   3021 			if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   3022 				sc->sc_stats.ast_rx_toobig++;
   3023 				goto rx_next;
   3024 			}
   3025 			/* fall thru for monitor mode handling... */
   3026 		} else if (ds->ds_rxstat.rs_status != 0) {
   3027 			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
   3028 				sc->sc_stats.ast_rx_crcerr++;
   3029 			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
   3030 				sc->sc_stats.ast_rx_fifoerr++;
   3031 			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
   3032 				sc->sc_stats.ast_rx_phyerr++;
   3033 				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
   3034 				sc->sc_stats.ast_rx_phy[phyerr]++;
   3035 				goto rx_next;
   3036 			}
   3037 			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
   3038 				/*
   3039 				 * Decrypt error.  If the error occurred
   3040 				 * because there was no hardware key, then
   3041 				 * let the frame through so the upper layers
   3042 				 * can process it.  This is necessary for 5210
   3043 				 * parts which have no way to setup a ``clear''
   3044 				 * key cache entry.
   3045 				 *
   3046 				 * XXX do key cache faulting
   3047 				 */
   3048 				if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
   3049 					goto rx_accept;
   3050 				sc->sc_stats.ast_rx_badcrypt++;
   3051 			}
   3052 			if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
   3053 				sc->sc_stats.ast_rx_badmic++;
   3054 				/*
   3055 				 * Do minimal work required to hand off
   3056 				 * the 802.11 header for notifcation.
   3057 				 */
   3058 				/* XXX frag's and qos frames */
   3059 				len = ds->ds_rxstat.rs_datalen;
   3060 				if (len >= sizeof (struct ieee80211_frame)) {
   3061 					bus_dmamap_sync(sc->sc_dmat,
   3062 					    bf->bf_dmamap,
   3063 					    0, bf->bf_dmamap->dm_mapsize,
   3064 					    BUS_DMASYNC_POSTREAD);
   3065 					ieee80211_notify_michael_failure(ic,
   3066 					    mtod(m, struct ieee80211_frame *),
   3067 					    sc->sc_splitmic ?
   3068 					        ds->ds_rxstat.rs_keyix-32 :
   3069 					        ds->ds_rxstat.rs_keyix
   3070 					);
   3071 				}
   3072 			}
   3073 			ifp->if_ierrors++;
   3074 			/*
   3075 			 * Reject error frames, we normally don't want
   3076 			 * to see them in monitor mode (in monitor mode
   3077 			 * allow through packets that have crypto problems).
   3078 			 */
   3079 			if ((ds->ds_rxstat.rs_status &~
   3080 				(HAL_RXERR_DECRYPT|HAL_RXERR_MIC)) ||
   3081 			    sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
   3082 				goto rx_next;
   3083 		}
   3084 rx_accept:
   3085 		/*
   3086 		 * Sync and unmap the frame.  At this point we're
   3087 		 * committed to passing the mbuf somewhere so clear
   3088 		 * bf_m; this means a new sk_buff must be allocated
   3089 		 * when the rx descriptor is setup again to receive
   3090 		 * another frame.
   3091 		 */
   3092 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
   3093 		    0, bf->bf_dmamap->dm_mapsize,
   3094 		    BUS_DMASYNC_POSTREAD);
   3095 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   3096 		bf->bf_m = NULL;
   3097 
   3098 		m->m_pkthdr.rcvif = ifp;
   3099 		len = ds->ds_rxstat.rs_datalen;
   3100 		m->m_pkthdr.len = m->m_len = len;
   3101 
   3102 		sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
   3103 
   3104 #if NBPFILTER > 0
   3105 		if (sc->sc_drvbpf) {
   3106 			u_int8_t rix;
   3107 
   3108 			/*
   3109 			 * Discard anything shorter than an ack or cts.
   3110 			 */
   3111 			if (len < IEEE80211_ACK_LEN) {
   3112 				DPRINTF(sc, ATH_DEBUG_RECV,
   3113 					"%s: runt packet %d\n",
   3114 					__func__, len);
   3115 				sc->sc_stats.ast_rx_tooshort++;
   3116 				m_freem(m);
   3117 				goto rx_next;
   3118 			}
   3119 			rix = ds->ds_rxstat.rs_rate;
   3120 			sc->sc_rx_th.wr_tsf = htole64(
   3121 				ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf));
   3122 			sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
   3123 			sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
   3124 			sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf;
   3125 			sc->sc_rx_th.wr_antnoise = nf;
   3126 			sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
   3127 
   3128 			bpf_mtap2(sc->sc_drvbpf,
   3129 				&sc->sc_rx_th, sc->sc_rx_th_len, m);
   3130 		}
   3131 #endif
   3132 
   3133 		/*
   3134 		 * From this point on we assume the frame is at least
   3135 		 * as large as ieee80211_frame_min; verify that.
   3136 		 */
   3137 		if (len < IEEE80211_MIN_LEN) {
   3138 			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
   3139 				__func__, len);
   3140 			sc->sc_stats.ast_rx_tooshort++;
   3141 			m_freem(m);
   3142 			goto rx_next;
   3143 		}
   3144 
   3145 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
   3146 			ieee80211_dump_pkt(mtod(m, void *), len,
   3147 				   sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
   3148 				   ds->ds_rxstat.rs_rssi);
   3149 		}
   3150 
   3151 		m_adj(m, -IEEE80211_CRC_LEN);
   3152 
   3153 		/*
   3154 		 * Locate the node for sender, track state, and then
   3155 		 * pass the (referenced) node up to the 802.11 layer
   3156 		 * for its use.
   3157 		 */
   3158 		ni = ieee80211_find_rxnode_withkey(ic,
   3159 			mtod(m, const struct ieee80211_frame_min *),
   3160 			ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
   3161 				IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
   3162 		/*
   3163 		 * Track rx rssi and do any rx antenna management.
   3164 		 */
   3165 		an = ATH_NODE(ni);
   3166 		ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
   3167 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi);
   3168 		/*
   3169 		 * Send frame up for processing.
   3170 		 */
   3171 		type = ieee80211_input(ic, m, ni,
   3172 			ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
   3173 		ieee80211_free_node(ni);
   3174 		if (sc->sc_diversity) {
   3175 			/*
   3176 			 * When using fast diversity, change the default rx
   3177 			 * antenna if diversity chooses the other antenna 3
   3178 			 * times in a row.
   3179 			 */
   3180 			if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
   3181 				if (++sc->sc_rxotherant >= 3)
   3182 					ath_setdefantenna(sc,
   3183 						ds->ds_rxstat.rs_antenna);
   3184 			} else
   3185 				sc->sc_rxotherant = 0;
   3186 		}
   3187 		if (sc->sc_softled) {
   3188 			/*
   3189 			 * Blink for any data frame.  Otherwise do a
   3190 			 * heartbeat-style blink when idle.  The latter
   3191 			 * is mainly for station mode where we depend on
   3192 			 * periodic beacon frames to trigger the poll event.
   3193 			 */
   3194 			if (type == IEEE80211_FC0_TYPE_DATA) {
   3195 				sc->sc_rxrate = ds->ds_rxstat.rs_rate;
   3196 				ath_led_event(sc, ATH_LED_RX);
   3197 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
   3198 				ath_led_event(sc, ATH_LED_POLL);
   3199 		}
   3200 		/*
   3201 		 * Arrange to update the last rx timestamp only for
   3202 		 * frames from our ap when operating in station mode.
   3203 		 * This assumes the rx key is always setup when associated.
   3204 		 */
   3205 		if (ic->ic_opmode == IEEE80211_M_STA &&
   3206 		    ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID)
   3207 			ngood++;
   3208 rx_next:
   3209 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
   3210 	} while (ath_rxbuf_init(sc, bf) == 0);
   3211 
   3212 	/* rx signal state monitoring */
   3213 	ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
   3214 	if (ath_hal_radar_event(ah))
   3215 		TASK_RUN_OR_ENQUEUE(&sc->sc_radartask);
   3216 	if (ngood)
   3217 		sc->sc_lastrx = tsf;
   3218 
   3219 #ifdef __NetBSD__
   3220 	/* XXX Why isn't this necessary in FreeBSD? */
   3221 	if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
   3222 		ath_start(ifp);
   3223 #endif /* __NetBSD__ */
   3224 
   3225 	NET_UNLOCK_GIANT();		/* XXX */
   3226 #undef PA2DESC
   3227 }
   3228 
   3229 /*
   3230  * Setup a h/w transmit queue.
   3231  */
   3232 static struct ath_txq *
   3233 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
   3234 {
   3235 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   3236 	struct ath_hal *ah = sc->sc_ah;
   3237 	HAL_TXQ_INFO qi;
   3238 	int qnum;
   3239 
   3240 	memset(&qi, 0, sizeof(qi));
   3241 	qi.tqi_subtype = subtype;
   3242 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
   3243 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
   3244 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
   3245 	/*
   3246 	 * Enable interrupts only for EOL and DESC conditions.
   3247 	 * We mark tx descriptors to receive a DESC interrupt
   3248 	 * when a tx queue gets deep; otherwise waiting for the
   3249 	 * EOL to reap descriptors.  Note that this is done to
   3250 	 * reduce interrupt load and this only defers reaping
   3251 	 * descriptors, never transmitting frames.  Aside from
   3252 	 * reducing interrupts this also permits more concurrency.
   3253 	 * The only potential downside is if the tx queue backs
   3254 	 * up in which case the top half of the kernel may backup
   3255 	 * due to a lack of tx descriptors.
   3256 	 */
   3257 	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
   3258 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
   3259 	if (qnum == -1) {
   3260 		/*
   3261 		 * NB: don't print a message, this happens
   3262 		 * normally on parts with too few tx queues
   3263 		 */
   3264 		return NULL;
   3265 	}
   3266 	if (qnum >= N(sc->sc_txq)) {
   3267 		device_printf(sc->sc_dev,
   3268 			"hal qnum %u out of range, max %zu!\n",
   3269 			qnum, N(sc->sc_txq));
   3270 		ath_hal_releasetxqueue(ah, qnum);
   3271 		return NULL;
   3272 	}
   3273 	if (!ATH_TXQ_SETUP(sc, qnum)) {
   3274 		struct ath_txq *txq = &sc->sc_txq[qnum];
   3275 
   3276 		txq->axq_qnum = qnum;
   3277 		txq->axq_depth = 0;
   3278 		txq->axq_intrcnt = 0;
   3279 		txq->axq_link = NULL;
   3280 		STAILQ_INIT(&txq->axq_q);
   3281 		ATH_TXQ_LOCK_INIT(sc, txq);
   3282 		sc->sc_txqsetup |= 1<<qnum;
   3283 	}
   3284 	return &sc->sc_txq[qnum];
   3285 #undef N
   3286 }
   3287 
   3288 /*
   3289  * Setup a hardware data transmit queue for the specified
   3290  * access control.  The hal may not support all requested
   3291  * queues in which case it will return a reference to a
   3292  * previously setup queue.  We record the mapping from ac's
   3293  * to h/w queues for use by ath_tx_start and also track
   3294  * the set of h/w queues being used to optimize work in the
   3295  * transmit interrupt handler and related routines.
   3296  */
   3297 static int
   3298 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
   3299 {
   3300 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   3301 	struct ath_txq *txq;
   3302 
   3303 	if (ac >= N(sc->sc_ac2q)) {
   3304 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
   3305 			ac, N(sc->sc_ac2q));
   3306 		return 0;
   3307 	}
   3308 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
   3309 	if (txq != NULL) {
   3310 		sc->sc_ac2q[ac] = txq;
   3311 		return 1;
   3312 	} else
   3313 		return 0;
   3314 #undef N
   3315 }
   3316 
   3317 /*
   3318  * Update WME parameters for a transmit queue.
   3319  */
   3320 static int
   3321 ath_txq_update(struct ath_softc *sc, int ac)
   3322 {
   3323 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
   3324 #define	ATH_TXOP_TO_US(v)		(v<<5)
   3325 	struct ieee80211com *ic = &sc->sc_ic;
   3326 	struct ath_txq *txq = sc->sc_ac2q[ac];
   3327 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
   3328 	struct ath_hal *ah = sc->sc_ah;
   3329 	HAL_TXQ_INFO qi;
   3330 
   3331 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
   3332 	qi.tqi_aifs = wmep->wmep_aifsn;
   3333 	qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
   3334 	qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
   3335 	qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
   3336 
   3337 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
   3338 		device_printf(sc->sc_dev, "unable to update hardware queue "
   3339 			"parameters for %s traffic!\n",
   3340 			ieee80211_wme_acnames[ac]);
   3341 		return 0;
   3342 	} else {
   3343 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
   3344 		return 1;
   3345 	}
   3346 #undef ATH_TXOP_TO_US
   3347 #undef ATH_EXPONENT_TO_VALUE
   3348 }
   3349 
   3350 /*
   3351  * Callback from the 802.11 layer to update WME parameters.
   3352  */
   3353 static int
   3354 ath_wme_update(struct ieee80211com *ic)
   3355 {
   3356 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   3357 
   3358 	return !ath_txq_update(sc, WME_AC_BE) ||
   3359 	    !ath_txq_update(sc, WME_AC_BK) ||
   3360 	    !ath_txq_update(sc, WME_AC_VI) ||
   3361 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
   3362 }
   3363 
   3364 /*
   3365  * Reclaim resources for a setup queue.
   3366  */
   3367 static void
   3368 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
   3369 {
   3370 
   3371 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
   3372 	ATH_TXQ_LOCK_DESTROY(txq);
   3373 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
   3374 }
   3375 
   3376 /*
   3377  * Reclaim all tx queue resources.
   3378  */
   3379 static void
   3380 ath_tx_cleanup(struct ath_softc *sc)
   3381 {
   3382 	int i;
   3383 
   3384 	ATH_TXBUF_LOCK_DESTROY(sc);
   3385 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   3386 		if (ATH_TXQ_SETUP(sc, i))
   3387 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
   3388 }
   3389 
   3390 /*
   3391  * Defragment an mbuf chain, returning at most maxfrags separate
   3392  * mbufs+clusters.  If this is not possible NULL is returned and
   3393  * the original mbuf chain is left in it's present (potentially
   3394  * modified) state.  We use two techniques: collapsing consecutive
   3395  * mbufs and replacing consecutive mbufs by a cluster.
   3396  */
   3397 static struct mbuf *
   3398 ath_defrag(struct mbuf *m0, int how, int maxfrags)
   3399 {
   3400 	struct mbuf *m, *n, *n2, **prev;
   3401 	u_int curfrags;
   3402 
   3403 	/*
   3404 	 * Calculate the current number of frags.
   3405 	 */
   3406 	curfrags = 0;
   3407 	for (m = m0; m != NULL; m = m->m_next)
   3408 		curfrags++;
   3409 	/*
   3410 	 * First, try to collapse mbufs.  Note that we always collapse
   3411 	 * towards the front so we don't need to deal with moving the
   3412 	 * pkthdr.  This may be suboptimal if the first mbuf has much
   3413 	 * less data than the following.
   3414 	 */
   3415 	m = m0;
   3416 again:
   3417 	for (;;) {
   3418 		n = m->m_next;
   3419 		if (n == NULL)
   3420 			break;
   3421 		if ((m->m_flags & M_RDONLY) == 0 &&
   3422 		    n->m_len < M_TRAILINGSPACE(m)) {
   3423 			bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
   3424 				n->m_len);
   3425 			m->m_len += n->m_len;
   3426 			m->m_next = n->m_next;
   3427 			m_free(n);
   3428 			if (--curfrags <= maxfrags)
   3429 				return m0;
   3430 		} else
   3431 			m = n;
   3432 	}
   3433 	KASSERT(maxfrags > 1,
   3434 		("maxfrags %u, but normal collapse failed", maxfrags));
   3435 	/*
   3436 	 * Collapse consecutive mbufs to a cluster.
   3437 	 */
   3438 	prev = &m0->m_next;		/* NB: not the first mbuf */
   3439 	while ((n = *prev) != NULL) {
   3440 		if ((n2 = n->m_next) != NULL &&
   3441 		    n->m_len + n2->m_len < MCLBYTES) {
   3442 			m = m_getcl(how, MT_DATA, 0);
   3443 			if (m == NULL)
   3444 				goto bad;
   3445 			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
   3446 			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
   3447 				n2->m_len);
   3448 			m->m_len = n->m_len + n2->m_len;
   3449 			m->m_next = n2->m_next;
   3450 			*prev = m;
   3451 			m_free(n);
   3452 			m_free(n2);
   3453 			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
   3454 				return m0;
   3455 			/*
   3456 			 * Still not there, try the normal collapse
   3457 			 * again before we allocate another cluster.
   3458 			 */
   3459 			goto again;
   3460 		}
   3461 		prev = &n->m_next;
   3462 	}
   3463 	/*
   3464 	 * No place where we can collapse to a cluster; punt.
   3465 	 * This can occur if, for example, you request 2 frags
   3466 	 * but the packet requires that both be clusters (we
   3467 	 * never reallocate the first mbuf to avoid moving the
   3468 	 * packet header).
   3469 	 */
   3470 bad:
   3471 	return NULL;
   3472 }
   3473 
   3474 /*
   3475  * Return h/w rate index for an IEEE rate (w/o basic rate bit).
   3476  */
   3477 static int
   3478 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
   3479 {
   3480 	int i;
   3481 
   3482 	for (i = 0; i < rt->rateCount; i++)
   3483 		if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
   3484 			return i;
   3485 	return 0;		/* NB: lowest rate */
   3486 }
   3487 
   3488 static void
   3489 ath_freetx(struct mbuf *m)
   3490 {
   3491 	struct mbuf *next;
   3492 
   3493 	do {
   3494 		next = m->m_nextpkt;
   3495 		m->m_nextpkt = NULL;
   3496 		m_freem(m);
   3497 	} while ((m = next) != NULL);
   3498 }
   3499 
   3500 static int
   3501 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
   3502     struct mbuf *m0)
   3503 {
   3504 	struct ieee80211com *ic = &sc->sc_ic;
   3505 	struct ath_hal *ah = sc->sc_ah;
   3506 	struct ifnet *ifp = &sc->sc_if;
   3507 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
   3508 	int i, error, iswep, ismcast, isfrag, ismrr;
   3509 	int keyix, hdrlen, pktlen, try0;
   3510 	u_int8_t rix, txrate, ctsrate;
   3511 	u_int8_t cix = 0xff;		/* NB: silence compiler */
   3512 	struct ath_desc *ds, *ds0;
   3513 	struct ath_txq *txq;
   3514 	struct ieee80211_frame *wh;
   3515 	u_int subtype, flags, ctsduration;
   3516 	HAL_PKT_TYPE atype;
   3517 	const HAL_RATE_TABLE *rt;
   3518 	HAL_BOOL shortPreamble;
   3519 	struct ath_node *an;
   3520 	struct mbuf *m;
   3521 	u_int pri;
   3522 
   3523 	wh = mtod(m0, struct ieee80211_frame *);
   3524 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
   3525 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
   3526 	isfrag = m0->m_flags & M_FRAG;
   3527 	hdrlen = ieee80211_anyhdrsize(wh);
   3528 	/*
   3529 	 * Packet length must not include any
   3530 	 * pad bytes; deduct them here.
   3531 	 */
   3532 	pktlen = m0->m_pkthdr.len - (hdrlen & 3);
   3533 
   3534 	if (iswep) {
   3535 		const struct ieee80211_cipher *cip;
   3536 		struct ieee80211_key *k;
   3537 
   3538 		/*
   3539 		 * Construct the 802.11 header+trailer for an encrypted
   3540 		 * frame. The only reason this can fail is because of an
   3541 		 * unknown or unsupported cipher/key type.
   3542 		 */
   3543 		k = ieee80211_crypto_encap(ic, ni, m0);
   3544 		if (k == NULL) {
   3545 			/*
   3546 			 * This can happen when the key is yanked after the
   3547 			 * frame was queued.  Just discard the frame; the
   3548 			 * 802.11 layer counts failures and provides
   3549 			 * debugging/diagnostics.
   3550 			 */
   3551 			ath_freetx(m0);
   3552 			return EIO;
   3553 		}
   3554 		/*
   3555 		 * Adjust the packet + header lengths for the crypto
   3556 		 * additions and calculate the h/w key index.  When
   3557 		 * a s/w mic is done the frame will have had any mic
   3558 		 * added to it prior to entry so m0->m_pkthdr.len above will
   3559 		 * account for it. Otherwise we need to add it to the
   3560 		 * packet length.
   3561 		 */
   3562 		cip = k->wk_cipher;
   3563 		hdrlen += cip->ic_header;
   3564 		pktlen += cip->ic_header + cip->ic_trailer;
   3565 		/* NB: frags always have any TKIP MIC done in s/w */
   3566 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
   3567 			pktlen += cip->ic_miclen;
   3568 		keyix = k->wk_keyix;
   3569 
   3570 		/* packet header may have moved, reset our local pointer */
   3571 		wh = mtod(m0, struct ieee80211_frame *);
   3572 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
   3573 		/*
   3574 		 * Use station key cache slot, if assigned.
   3575 		 */
   3576 		keyix = ni->ni_ucastkey.wk_keyix;
   3577 		if (keyix == IEEE80211_KEYIX_NONE)
   3578 			keyix = HAL_TXKEYIX_INVALID;
   3579 	} else
   3580 		keyix = HAL_TXKEYIX_INVALID;
   3581 
   3582 	pktlen += IEEE80211_CRC_LEN;
   3583 
   3584 	/*
   3585 	 * Load the DMA map so any coalescing is done.  This
   3586 	 * also calculates the number of descriptors we need.
   3587 	 */
   3588 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
   3589 				     BUS_DMA_NOWAIT);
   3590 	if (error == EFBIG) {
   3591 		/* XXX packet requires too many descriptors */
   3592 		bf->bf_nseg = ATH_TXDESC+1;
   3593 	} else if (error != 0) {
   3594 		sc->sc_stats.ast_tx_busdma++;
   3595 		ath_freetx(m0);
   3596 		return error;
   3597 	}
   3598 	/*
   3599 	 * Discard null packets and check for packets that
   3600 	 * require too many TX descriptors.  We try to convert
   3601 	 * the latter to a cluster.
   3602 	 */
   3603 	if (error == EFBIG) {		/* too many desc's, linearize */
   3604 		sc->sc_stats.ast_tx_linear++;
   3605 		m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
   3606 		if (m == NULL) {
   3607 			ath_freetx(m0);
   3608 			sc->sc_stats.ast_tx_nombuf++;
   3609 			return ENOMEM;
   3610 		}
   3611 		m0 = m;
   3612 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
   3613 					     BUS_DMA_NOWAIT);
   3614 		if (error != 0) {
   3615 			sc->sc_stats.ast_tx_busdma++;
   3616 			ath_freetx(m0);
   3617 			return error;
   3618 		}
   3619 		KASSERT(bf->bf_nseg <= ATH_TXDESC,
   3620 		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
   3621 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
   3622 		sc->sc_stats.ast_tx_nodata++;
   3623 		ath_freetx(m0);
   3624 		return EIO;
   3625 	}
   3626 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
   3627 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   3628             bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
   3629 	bf->bf_m = m0;
   3630 	bf->bf_node = ni;			/* NB: held reference */
   3631 
   3632 	/* setup descriptors */
   3633 	ds = bf->bf_desc;
   3634 	rt = sc->sc_currates;
   3635 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
   3636 
   3637 	/*
   3638 	 * NB: the 802.11 layer marks whether or not we should
   3639 	 * use short preamble based on the current mode and
   3640 	 * negotiated parameters.
   3641 	 */
   3642 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
   3643 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) {
   3644 		shortPreamble = AH_TRUE;
   3645 		sc->sc_stats.ast_tx_shortpre++;
   3646 	} else {
   3647 		shortPreamble = AH_FALSE;
   3648 	}
   3649 
   3650 	an = ATH_NODE(ni);
   3651 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
   3652 	ismrr = 0;				/* default no multi-rate retry*/
   3653 	/*
   3654 	 * Calculate Atheros packet type from IEEE80211 packet header,
   3655 	 * setup for rate calculations, and select h/w transmit queue.
   3656 	 */
   3657 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
   3658 	case IEEE80211_FC0_TYPE_MGT:
   3659 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   3660 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
   3661 			atype = HAL_PKT_TYPE_BEACON;
   3662 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
   3663 			atype = HAL_PKT_TYPE_PROBE_RESP;
   3664 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
   3665 			atype = HAL_PKT_TYPE_ATIM;
   3666 		else
   3667 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
   3668 		rix = sc->sc_minrateix;
   3669 		txrate = rt->info[rix].rateCode;
   3670 		if (shortPreamble)
   3671 			txrate |= rt->info[rix].shortPreamble;
   3672 		try0 = ATH_TXMGTTRY;
   3673 		/* NB: force all management frames to highest queue */
   3674 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
   3675 			/* NB: force all management frames to highest queue */
   3676 			pri = WME_AC_VO;
   3677 		} else
   3678 			pri = WME_AC_BE;
   3679 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
   3680 		break;
   3681 	case IEEE80211_FC0_TYPE_CTL:
   3682 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
   3683 		rix = sc->sc_minrateix;
   3684 		txrate = rt->info[rix].rateCode;
   3685 		if (shortPreamble)
   3686 			txrate |= rt->info[rix].shortPreamble;
   3687 		try0 = ATH_TXMGTTRY;
   3688 		/* NB: force all ctl frames to highest queue */
   3689 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
   3690 			/* NB: force all ctl frames to highest queue */
   3691 			pri = WME_AC_VO;
   3692 		} else
   3693 			pri = WME_AC_BE;
   3694 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
   3695 		break;
   3696 	case IEEE80211_FC0_TYPE_DATA:
   3697 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
   3698 		/*
   3699 		 * Data frames: multicast frames go out at a fixed rate,
   3700 		 * otherwise consult the rate control module for the
   3701 		 * rate to use.
   3702 		 */
   3703 		if (ismcast) {
   3704 			/*
   3705 			 * Check mcast rate setting in case it's changed.
   3706 			 * XXX move out of fastpath
   3707 			 */
   3708 			if (ic->ic_mcast_rate != sc->sc_mcastrate) {
   3709 				sc->sc_mcastrix =
   3710 					ath_tx_findrix(rt, ic->ic_mcast_rate);
   3711 				sc->sc_mcastrate = ic->ic_mcast_rate;
   3712 			}
   3713 			rix = sc->sc_mcastrix;
   3714 			txrate = rt->info[rix].rateCode;
   3715 			try0 = 1;
   3716 		} else {
   3717 			ath_rate_findrate(sc, an, shortPreamble, pktlen,
   3718 				&rix, &try0, &txrate);
   3719 			sc->sc_txrate = txrate;		/* for LED blinking */
   3720 			if (try0 != ATH_TXMAXTRY)
   3721 				ismrr = 1;
   3722 		}
   3723 		pri = M_WME_GETAC(m0);
   3724 		if (cap->cap_wmeParams[pri].wmep_noackPolicy)
   3725 			flags |= HAL_TXDESC_NOACK;
   3726 		break;
   3727 	default:
   3728 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
   3729 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
   3730 		/* XXX statistic */
   3731 		ath_freetx(m0);
   3732 		return EIO;
   3733 	}
   3734 	txq = sc->sc_ac2q[pri];
   3735 
   3736 	/*
   3737 	 * When servicing one or more stations in power-save mode
   3738 	 * multicast frames must be buffered until after the beacon.
   3739 	 * We use the CAB queue for that.
   3740 	 */
   3741 	if (ismcast && ic->ic_ps_sta) {
   3742 		txq = sc->sc_cabq;
   3743 		/* XXX? more bit in 802.11 frame header */
   3744 	}
   3745 
   3746 	/*
   3747 	 * Calculate miscellaneous flags.
   3748 	 */
   3749 	if (ismcast) {
   3750 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
   3751 	} else if (pktlen > ic->ic_rtsthreshold) {
   3752 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
   3753 		cix = rt->info[rix].controlRate;
   3754 		sc->sc_stats.ast_tx_rts++;
   3755 	}
   3756 	if (flags & HAL_TXDESC_NOACK)		/* NB: avoid double counting */
   3757 		sc->sc_stats.ast_tx_noack++;
   3758 
   3759 	/*
   3760 	 * If 802.11g protection is enabled, determine whether
   3761 	 * to use RTS/CTS or just CTS.  Note that this is only
   3762 	 * done for OFDM unicast frames.
   3763 	 */
   3764 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
   3765 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
   3766 	    (flags & HAL_TXDESC_NOACK) == 0) {
   3767 		/* XXX fragments must use CCK rates w/ protection */
   3768 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
   3769 			flags |= HAL_TXDESC_RTSENA;
   3770 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
   3771 			flags |= HAL_TXDESC_CTSENA;
   3772 		if (isfrag) {
   3773 			/*
   3774 			 * For frags it would be desirable to use the
   3775 			 * highest CCK rate for RTS/CTS.  But stations
   3776 			 * farther away may detect it at a lower CCK rate
   3777 			 * so use the configured protection rate instead
   3778 			 * (for now).
   3779 			 */
   3780 			cix = rt->info[sc->sc_protrix].controlRate;
   3781 		} else
   3782 			cix = rt->info[sc->sc_protrix].controlRate;
   3783 		sc->sc_stats.ast_tx_protect++;
   3784 	}
   3785 
   3786 	/*
   3787 	 * Calculate duration.  This logically belongs in the 802.11
   3788 	 * layer but it lacks sufficient information to calculate it.
   3789 	 */
   3790 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
   3791 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
   3792 		u_int16_t dur;
   3793 		/*
   3794 		 * XXX not right with fragmentation.
   3795 		 */
   3796 		if (shortPreamble)
   3797 			dur = rt->info[rix].spAckDuration;
   3798 		else
   3799 			dur = rt->info[rix].lpAckDuration;
   3800 		if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
   3801 			dur += dur;             /* additional SIFS+ACK */
   3802 			KASSERT(m0->m_nextpkt != NULL, ("no fragment"));
   3803 			/*
   3804 			 * Include the size of next fragment so NAV is
   3805 			 * updated properly.  The last fragment uses only
   3806 			 * the ACK duration
   3807 			 */
   3808 			dur += ath_hal_computetxtime(ah, rt,
   3809 					m0->m_nextpkt->m_pkthdr.len,
   3810 					rix, shortPreamble);
   3811 		}
   3812 		if (isfrag) {
   3813 			/*
   3814 			 * Force hardware to use computed duration for next
   3815 			 * fragment by disabling multi-rate retry which updates
   3816 			 * duration based on the multi-rate duration table.
   3817 			 */
   3818 			try0 = ATH_TXMAXTRY;
   3819 		}
   3820 		*(u_int16_t *)wh->i_dur = htole16(dur);
   3821 	}
   3822 
   3823 	/*
   3824 	 * Calculate RTS/CTS rate and duration if needed.
   3825 	 */
   3826 	ctsduration = 0;
   3827 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
   3828 		/*
   3829 		 * CTS transmit rate is derived from the transmit rate
   3830 		 * by looking in the h/w rate table.  We must also factor
   3831 		 * in whether or not a short preamble is to be used.
   3832 		 */
   3833 		/* NB: cix is set above where RTS/CTS is enabled */
   3834 		KASSERT(cix != 0xff, ("cix not setup"));
   3835 		ctsrate = rt->info[cix].rateCode;
   3836 		/*
   3837 		 * Compute the transmit duration based on the frame
   3838 		 * size and the size of an ACK frame.  We call into the
   3839 		 * HAL to do the computation since it depends on the
   3840 		 * characteristics of the actual PHY being used.
   3841 		 *
   3842 		 * NB: CTS is assumed the same size as an ACK so we can
   3843 		 *     use the precalculated ACK durations.
   3844 		 */
   3845 		if (shortPreamble) {
   3846 			ctsrate |= rt->info[cix].shortPreamble;
   3847 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
   3848 				ctsduration += rt->info[cix].spAckDuration;
   3849 			ctsduration += ath_hal_computetxtime(ah,
   3850 				rt, pktlen, rix, AH_TRUE);
   3851 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
   3852 				ctsduration += rt->info[rix].spAckDuration;
   3853 		} else {
   3854 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
   3855 				ctsduration += rt->info[cix].lpAckDuration;
   3856 			ctsduration += ath_hal_computetxtime(ah,
   3857 				rt, pktlen, rix, AH_FALSE);
   3858 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
   3859 				ctsduration += rt->info[rix].lpAckDuration;
   3860 		}
   3861 		/*
   3862 		 * Must disable multi-rate retry when using RTS/CTS.
   3863 		 */
   3864 		ismrr = 0;
   3865 		try0 = ATH_TXMGTTRY;		/* XXX */
   3866 	} else
   3867 		ctsrate = 0;
   3868 
   3869 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
   3870 		ieee80211_dump_pkt(mtod(m0, void *), m0->m_len,
   3871 			sc->sc_hwmap[txrate].ieeerate, -1);
   3872 #if NBPFILTER > 0
   3873 	if (ic->ic_rawbpf)
   3874 		bpf_mtap(ic->ic_rawbpf, m0);
   3875 	if (sc->sc_drvbpf) {
   3876 		u_int64_t tsf = ath_hal_gettsf64(ah);
   3877 
   3878 		sc->sc_tx_th.wt_tsf = htole64(tsf);
   3879 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
   3880 		if (iswep)
   3881 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
   3882 		if (isfrag)
   3883 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
   3884 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
   3885 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
   3886 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
   3887 
   3888 		bpf_mtap2(sc->sc_drvbpf,
   3889 			&sc->sc_tx_th, sc->sc_tx_th_len, m0);
   3890 	}
   3891 #endif
   3892 
   3893 	/*
   3894 	 * Determine if a tx interrupt should be generated for
   3895 	 * this descriptor.  We take a tx interrupt to reap
   3896 	 * descriptors when the h/w hits an EOL condition or
   3897 	 * when the descriptor is specifically marked to generate
   3898 	 * an interrupt.  We periodically mark descriptors in this
   3899 	 * way to insure timely replenishing of the supply needed
   3900 	 * for sending frames.  Defering interrupts reduces system
   3901 	 * load and potentially allows more concurrent work to be
   3902 	 * done but if done to aggressively can cause senders to
   3903 	 * backup.
   3904 	 *
   3905 	 * NB: use >= to deal with sc_txintrperiod changing
   3906 	 *     dynamically through sysctl.
   3907 	 */
   3908 	if (flags & HAL_TXDESC_INTREQ) {
   3909 		txq->axq_intrcnt = 0;
   3910 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
   3911 		flags |= HAL_TXDESC_INTREQ;
   3912 		txq->axq_intrcnt = 0;
   3913 	}
   3914 
   3915 	/*
   3916 	 * Formulate first tx descriptor with tx controls.
   3917 	 */
   3918 	/* XXX check return value? */
   3919 	ath_hal_setuptxdesc(ah, ds
   3920 		, pktlen		/* packet length */
   3921 		, hdrlen		/* header length */
   3922 		, atype			/* Atheros packet type */
   3923 		, ni->ni_txpower	/* txpower */
   3924 		, txrate, try0		/* series 0 rate/tries */
   3925 		, keyix			/* key cache index */
   3926 		, sc->sc_txantenna	/* antenna mode */
   3927 		, flags			/* flags */
   3928 		, ctsrate		/* rts/cts rate */
   3929 		, ctsduration		/* rts/cts duration */
   3930 	);
   3931 	bf->bf_flags = flags;
   3932 	/*
   3933 	 * Setup the multi-rate retry state only when we're
   3934 	 * going to use it.  This assumes ath_hal_setuptxdesc
   3935 	 * initializes the descriptors (so we don't have to)
   3936 	 * when the hardware supports multi-rate retry and
   3937 	 * we don't use it.
   3938 	 */
   3939 	if (ismrr)
   3940 		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
   3941 
   3942 	/*
   3943 	 * Fillin the remainder of the descriptor info.
   3944 	 */
   3945 	ds0 = ds;
   3946 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
   3947 		ds->ds_data = bf->bf_segs[i].ds_addr;
   3948 		if (i == bf->bf_nseg - 1)
   3949 			ds->ds_link = 0;
   3950 		else
   3951 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
   3952 		ath_hal_filltxdesc(ah, ds
   3953 			, bf->bf_segs[i].ds_len	/* segment length */
   3954 			, i == 0		/* first segment */
   3955 			, i == bf->bf_nseg - 1	/* last segment */
   3956 			, ds0			/* first descriptor */
   3957 		);
   3958 
   3959 		/* NB: The desc swap function becomes void,
   3960 		 * if descriptor swapping is not enabled
   3961 		 */
   3962 		ath_desc_swap(ds);
   3963 
   3964 		DPRINTF(sc, ATH_DEBUG_XMIT,
   3965 			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
   3966 			__func__, i, ds->ds_link, ds->ds_data,
   3967 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
   3968 	}
   3969 	/*
   3970 	 * Insert the frame on the outbound list and
   3971 	 * pass it on to the hardware.
   3972 	 */
   3973 	ATH_TXQ_LOCK(txq);
   3974 	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
   3975 	if (txq->axq_link == NULL) {
   3976 		ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
   3977 		DPRINTF(sc, ATH_DEBUG_XMIT,
   3978 		    "%s: TXDP[%u] = %" PRIx64 " (%p) depth %d\n", __func__,
   3979 		    txq->axq_qnum, (uint64_t)bf->bf_daddr, bf->bf_desc,
   3980 		    txq->axq_depth);
   3981 	} else {
   3982 		*txq->axq_link = HTOAH32(bf->bf_daddr);
   3983 		DPRINTF(sc, ATH_DEBUG_XMIT,
   3984 		    "%s: link[%u](%p)=%" PRIx64 " (%p) depth %d\n",
   3985 		    __func__, txq->axq_qnum, txq->axq_link,
   3986 		    (uint64_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
   3987 	}
   3988 	txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
   3989 	/*
   3990 	 * The CAB queue is started from the SWBA handler since
   3991 	 * frames only go out on DTIM and to avoid possible races.
   3992 	 */
   3993 	if (txq != sc->sc_cabq)
   3994 		ath_hal_txstart(ah, txq->axq_qnum);
   3995 	ATH_TXQ_UNLOCK(txq);
   3996 
   3997 	return 0;
   3998 }
   3999 
   4000 /*
   4001  * Process completed xmit descriptors from the specified queue.
   4002  */
   4003 static int
   4004 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
   4005 {
   4006 	struct ath_hal *ah = sc->sc_ah;
   4007 	struct ieee80211com *ic = &sc->sc_ic;
   4008 	struct ath_buf *bf;
   4009 	struct ath_desc *ds, *ds0;
   4010 	struct ieee80211_node *ni;
   4011 	struct ath_node *an;
   4012 	int sr, lr, pri, nacked;
   4013 	HAL_STATUS status;
   4014 
   4015 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
   4016 		__func__, txq->axq_qnum,
   4017 		(void *)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
   4018 		txq->axq_link);
   4019 	nacked = 0;
   4020 	for (;;) {
   4021 		ATH_TXQ_LOCK(txq);
   4022 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
   4023 		bf = STAILQ_FIRST(&txq->axq_q);
   4024 		if (bf == NULL) {
   4025 			txq->axq_link = NULL;
   4026 			ATH_TXQ_UNLOCK(txq);
   4027 			break;
   4028 		}
   4029 		ds0 = &bf->bf_desc[0];
   4030 		ds = &bf->bf_desc[bf->bf_nseg - 1];
   4031 		status = ath_hal_txprocdesc(ah, ds);
   4032 #ifdef AR_DEBUG
   4033 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
   4034 			ath_printtxbuf(bf, status == HAL_OK);
   4035 #endif
   4036 		if (status == HAL_EINPROGRESS) {
   4037 			ATH_TXQ_UNLOCK(txq);
   4038 			break;
   4039 		}
   4040 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
   4041 		ATH_TXQ_UNLOCK(txq);
   4042 
   4043 		ni = bf->bf_node;
   4044 		if (ni != NULL) {
   4045 			an = ATH_NODE(ni);
   4046 			if (ds->ds_txstat.ts_status == 0) {
   4047 				u_int8_t txant = ds->ds_txstat.ts_antenna;
   4048 				sc->sc_stats.ast_ant_tx[txant]++;
   4049 				sc->sc_ant_tx[txant]++;
   4050 				if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
   4051 					sc->sc_stats.ast_tx_altrate++;
   4052 				sc->sc_stats.ast_tx_rssi =
   4053 					ds->ds_txstat.ts_rssi;
   4054 				ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
   4055 					ds->ds_txstat.ts_rssi);
   4056 				pri = M_WME_GETAC(bf->bf_m);
   4057 				if (pri >= WME_AC_VO)
   4058 					ic->ic_wme.wme_hipri_traffic++;
   4059 				ni->ni_inact = ni->ni_inact_reload;
   4060 			} else {
   4061 				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
   4062 					sc->sc_stats.ast_tx_xretries++;
   4063 				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
   4064 					sc->sc_stats.ast_tx_fifoerr++;
   4065 				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
   4066 					sc->sc_stats.ast_tx_filtered++;
   4067 			}
   4068 			sr = ds->ds_txstat.ts_shortretry;
   4069 			lr = ds->ds_txstat.ts_longretry;
   4070 			sc->sc_stats.ast_tx_shortretry += sr;
   4071 			sc->sc_stats.ast_tx_longretry += lr;
   4072 			/*
   4073 			 * Hand the descriptor to the rate control algorithm.
   4074 			 */
   4075 			if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
   4076 			    (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
   4077 				/*
   4078 				 * If frame was ack'd update the last rx time
   4079 				 * used to workaround phantom bmiss interrupts.
   4080 				 */
   4081 				if (ds->ds_txstat.ts_status == 0)
   4082 					nacked++;
   4083 				ath_rate_tx_complete(sc, an, ds, ds0);
   4084 			}
   4085 			/*
   4086 			 * Reclaim reference to node.
   4087 			 *
   4088 			 * NB: the node may be reclaimed here if, for example
   4089 			 *     this is a DEAUTH message that was sent and the
   4090 			 *     node was timed out due to inactivity.
   4091 			 */
   4092 			ieee80211_free_node(ni);
   4093 		}
   4094 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   4095 		    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4096 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   4097 		m_freem(bf->bf_m);
   4098 		bf->bf_m = NULL;
   4099 		bf->bf_node = NULL;
   4100 
   4101 		ATH_TXBUF_LOCK(sc);
   4102 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   4103 		ATH_TXBUF_UNLOCK(sc);
   4104 	}
   4105 	return nacked;
   4106 }
   4107 
   4108 static inline int
   4109 txqactive(struct ath_hal *ah, int qnum)
   4110 {
   4111 	u_int32_t txqs = 1<<qnum;
   4112 	ath_hal_gettxintrtxqs(ah, &txqs);
   4113 	return (txqs & (1<<qnum));
   4114 }
   4115 
   4116 /*
   4117  * Deferred processing of transmit interrupt; special-cased
   4118  * for a single hardware transmit queue (e.g. 5210 and 5211).
   4119  */
   4120 static void
   4121 ath_tx_proc_q0(void *arg, int npending)
   4122 {
   4123 	struct ath_softc *sc = arg;
   4124 	struct ifnet *ifp = &sc->sc_if;
   4125 
   4126 	if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]))
   4127 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
   4128 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
   4129 		ath_tx_processq(sc, sc->sc_cabq);
   4130 	ifp->if_flags &= ~IFF_OACTIVE;
   4131 	sc->sc_tx_timer = 0;
   4132 
   4133 	if (sc->sc_softled)
   4134 		ath_led_event(sc, ATH_LED_TX);
   4135 
   4136 	ath_start(ifp);
   4137 }
   4138 
   4139 /*
   4140  * Deferred processing of transmit interrupt; special-cased
   4141  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
   4142  */
   4143 static void
   4144 ath_tx_proc_q0123(void *arg, int npending)
   4145 {
   4146 	struct ath_softc *sc = arg;
   4147 	struct ifnet *ifp = &sc->sc_if;
   4148 	int nacked;
   4149 
   4150 	/*
   4151 	 * Process each active queue.
   4152 	 */
   4153 	nacked = 0;
   4154 	if (txqactive(sc->sc_ah, 0))
   4155 		nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
   4156 	if (txqactive(sc->sc_ah, 1))
   4157 		nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
   4158 	if (txqactive(sc->sc_ah, 2))
   4159 		nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
   4160 	if (txqactive(sc->sc_ah, 3))
   4161 		nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
   4162 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
   4163 		ath_tx_processq(sc, sc->sc_cabq);
   4164 	if (nacked)
   4165 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
   4166 	ath_tx_processq(sc, sc->sc_cabq);
   4167 
   4168 	ifp->if_flags &= ~IFF_OACTIVE;
   4169 	sc->sc_tx_timer = 0;
   4170 
   4171 	if (sc->sc_softled)
   4172 		ath_led_event(sc, ATH_LED_TX);
   4173 
   4174 	ath_start(ifp);
   4175 }
   4176 
   4177 /*
   4178  * Deferred processing of transmit interrupt.
   4179  */
   4180 static void
   4181 ath_tx_proc(void *arg, int npending)
   4182 {
   4183 	struct ath_softc *sc = arg;
   4184 	struct ifnet *ifp = &sc->sc_if;
   4185 	int i, nacked;
   4186 
   4187 	/*
   4188 	 * Process each active queue.
   4189 	 */
   4190 	nacked = 0;
   4191 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   4192 		if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
   4193 			nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
   4194 	if (nacked)
   4195 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
   4196 
   4197 	ifp->if_flags &= ~IFF_OACTIVE;
   4198 	sc->sc_tx_timer = 0;
   4199 
   4200 	if (sc->sc_softled)
   4201 		ath_led_event(sc, ATH_LED_TX);
   4202 
   4203 	ath_start(ifp);
   4204 }
   4205 
   4206 static void
   4207 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
   4208 {
   4209 	struct ath_hal *ah = sc->sc_ah;
   4210 	struct ieee80211_node *ni;
   4211 	struct ath_buf *bf;
   4212 
   4213 	/*
   4214 	 * NB: this assumes output has been stopped and
   4215 	 *     we do not need to block ath_tx_tasklet
   4216 	 */
   4217 	for (;;) {
   4218 		ATH_TXQ_LOCK(txq);
   4219 		bf = STAILQ_FIRST(&txq->axq_q);
   4220 		if (bf == NULL) {
   4221 			txq->axq_link = NULL;
   4222 			ATH_TXQ_UNLOCK(txq);
   4223 			break;
   4224 		}
   4225 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
   4226 		ATH_TXQ_UNLOCK(txq);
   4227 #ifdef AR_DEBUG
   4228 		if (sc->sc_debug & ATH_DEBUG_RESET)
   4229 			ath_printtxbuf(bf,
   4230 				ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
   4231 #endif /* AR_DEBUG */
   4232 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   4233 		m_freem(bf->bf_m);
   4234 		bf->bf_m = NULL;
   4235 		ni = bf->bf_node;
   4236 		bf->bf_node = NULL;
   4237 		if (ni != NULL) {
   4238 			/*
   4239 			 * Reclaim node reference.
   4240 			 */
   4241 			ieee80211_free_node(ni);
   4242 		}
   4243 		ATH_TXBUF_LOCK(sc);
   4244 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   4245 		ATH_TXBUF_UNLOCK(sc);
   4246 	}
   4247 }
   4248 
   4249 static void
   4250 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
   4251 {
   4252 	struct ath_hal *ah = sc->sc_ah;
   4253 
   4254 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
   4255 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
   4256 	    __func__, txq->axq_qnum,
   4257 	    (void *)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
   4258 	    txq->axq_link);
   4259 }
   4260 
   4261 /*
   4262  * Drain the transmit queues and reclaim resources.
   4263  */
   4264 static void
   4265 ath_draintxq(struct ath_softc *sc)
   4266 {
   4267 	struct ath_hal *ah = sc->sc_ah;
   4268 	struct ifnet *ifp = &sc->sc_if;
   4269 	int i;
   4270 
   4271 	/* XXX return value */
   4272 	if (!sc->sc_invalid) {
   4273 		/* don't touch the hardware if marked invalid */
   4274 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
   4275 		DPRINTF(sc, ATH_DEBUG_RESET,
   4276 		    "%s: beacon queue %p\n", __func__,
   4277 		    (void *)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
   4278 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   4279 			if (ATH_TXQ_SETUP(sc, i))
   4280 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
   4281 	}
   4282 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   4283 		if (ATH_TXQ_SETUP(sc, i))
   4284 			ath_tx_draintxq(sc, &sc->sc_txq[i]);
   4285 	ifp->if_flags &= ~IFF_OACTIVE;
   4286 	sc->sc_tx_timer = 0;
   4287 }
   4288 
   4289 /*
   4290  * Disable the receive h/w in preparation for a reset.
   4291  */
   4292 static void
   4293 ath_stoprecv(struct ath_softc *sc)
   4294 {
   4295 #define	PA2DESC(_sc, _pa) \
   4296 	((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
   4297 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
   4298 	struct ath_hal *ah = sc->sc_ah;
   4299 
   4300 	ath_hal_stoppcurecv(ah);	/* disable PCU */
   4301 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
   4302 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
   4303 	DELAY(3000);			/* 3ms is long enough for 1 frame */
   4304 #ifdef AR_DEBUG
   4305 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
   4306 		struct ath_buf *bf;
   4307 
   4308 		printf("%s: rx queue %p, link %p\n", __func__,
   4309 			(void *)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
   4310 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
   4311 			struct ath_desc *ds = bf->bf_desc;
   4312 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
   4313 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
   4314 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
   4315 				ath_printrxbuf(bf, status == HAL_OK);
   4316 		}
   4317 	}
   4318 #endif
   4319 	sc->sc_rxlink = NULL;		/* just in case */
   4320 #undef PA2DESC
   4321 }
   4322 
   4323 /*
   4324  * Enable the receive h/w following a reset.
   4325  */
   4326 static int
   4327 ath_startrecv(struct ath_softc *sc)
   4328 {
   4329 	struct ath_hal *ah = sc->sc_ah;
   4330 	struct ath_buf *bf;
   4331 
   4332 	sc->sc_rxlink = NULL;
   4333 	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
   4334 		int error = ath_rxbuf_init(sc, bf);
   4335 		if (error != 0) {
   4336 			DPRINTF(sc, ATH_DEBUG_RECV,
   4337 				"%s: ath_rxbuf_init failed %d\n",
   4338 				__func__, error);
   4339 			return error;
   4340 		}
   4341 	}
   4342 
   4343 	bf = STAILQ_FIRST(&sc->sc_rxbuf);
   4344 	ath_hal_putrxbuf(ah, bf->bf_daddr);
   4345 	ath_hal_rxena(ah);		/* enable recv descriptors */
   4346 	ath_mode_init(sc);		/* set filters, etc. */
   4347 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
   4348 	return 0;
   4349 }
   4350 
   4351 /*
   4352  * Update internal state after a channel change.
   4353  */
   4354 static void
   4355 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
   4356 {
   4357 	struct ieee80211com *ic = &sc->sc_ic;
   4358 	enum ieee80211_phymode mode;
   4359 	u_int16_t flags;
   4360 
   4361 	/*
   4362 	 * Change channels and update the h/w rate map
   4363 	 * if we're switching; e.g. 11a to 11b/g.
   4364 	 */
   4365 	mode = ieee80211_chan2mode(ic, chan);
   4366 	if (mode != sc->sc_curmode)
   4367 		ath_setcurmode(sc, mode);
   4368 	/*
   4369 	 * Update BPF state.  NB: ethereal et. al. don't handle
   4370 	 * merged flags well so pick a unique mode for their use.
   4371 	 */
   4372 	if (IEEE80211_IS_CHAN_A(chan))
   4373 		flags = IEEE80211_CHAN_A;
   4374 	/* XXX 11g schizophrenia */
   4375 	else if (IEEE80211_IS_CHAN_G(chan) ||
   4376 	    IEEE80211_IS_CHAN_PUREG(chan))
   4377 		flags = IEEE80211_CHAN_G;
   4378 	else
   4379 		flags = IEEE80211_CHAN_B;
   4380 	if (IEEE80211_IS_CHAN_T(chan))
   4381 		flags |= IEEE80211_CHAN_TURBO;
   4382 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
   4383 		htole16(chan->ic_freq);
   4384 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
   4385 		htole16(flags);
   4386 }
   4387 
   4388 /*
   4389  * Poll for a channel clear indication; this is required
   4390  * for channels requiring DFS and not previously visited
   4391  * and/or with a recent radar detection.
   4392  */
   4393 static void
   4394 ath_dfswait(void *arg)
   4395 {
   4396 	struct ath_softc *sc = arg;
   4397 	struct ath_hal *ah = sc->sc_ah;
   4398 	HAL_CHANNEL hchan;
   4399 
   4400 	ath_hal_radar_wait(ah, &hchan);
   4401 	if (hchan.privFlags & CHANNEL_INTERFERENCE) {
   4402 		if_printf(&sc->sc_if,
   4403 		    "channel %u/0x%x/0x%x has interference\n",
   4404 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
   4405 		return;
   4406 	}
   4407 	if ((hchan.privFlags & CHANNEL_DFS) == 0) {
   4408 		/* XXX should not happen */
   4409 		return;
   4410 	}
   4411 	if (hchan.privFlags & CHANNEL_DFS_CLEAR) {
   4412 		sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR;
   4413 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
   4414 		if_printf(&sc->sc_if,
   4415 		    "channel %u/0x%x/0x%x marked clear\n",
   4416 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
   4417 	} else
   4418 		callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc);
   4419 }
   4420 
   4421 /*
   4422  * Set/change channels.  If the channel is really being changed,
   4423  * it's done by reseting the chip.  To accomplish this we must
   4424  * first cleanup any pending DMA, then restart stuff after a la
   4425  * ath_init.
   4426  */
   4427 static int
   4428 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
   4429 {
   4430 	struct ath_hal *ah = sc->sc_ah;
   4431 	struct ieee80211com *ic = &sc->sc_ic;
   4432 	HAL_CHANNEL hchan;
   4433 
   4434 	/*
   4435 	 * Convert to a HAL channel description with
   4436 	 * the flags constrained to reflect the current
   4437 	 * operating mode.
   4438 	 */
   4439 	hchan.channel = chan->ic_freq;
   4440 	hchan.channelFlags = ath_chan2flags(ic, chan);
   4441 
   4442 	DPRINTF(sc, ATH_DEBUG_RESET,
   4443 	    "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
   4444 	    __func__,
   4445 	    ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
   4446 		sc->sc_curchan.channelFlags),
   4447 	    	sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
   4448 	    ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
   4449 	        hchan.channel, hchan.channelFlags);
   4450 	if (hchan.channel != sc->sc_curchan.channel ||
   4451 	    hchan.channelFlags != sc->sc_curchan.channelFlags) {
   4452 		HAL_STATUS status;
   4453 
   4454 		/*
   4455 		 * To switch channels clear any pending DMA operations;
   4456 		 * wait long enough for the RX fifo to drain, reset the
   4457 		 * hardware at the new frequency, and then re-enable
   4458 		 * the relevant bits of the h/w.
   4459 		 */
   4460 		ath_hal_intrset(ah, 0);		/* disable interrupts */
   4461 		ath_draintxq(sc);		/* clear pending tx frames */
   4462 		ath_stoprecv(sc);		/* turn off frame recv */
   4463 		if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
   4464 			if_printf(ic->ic_ifp, "%s: unable to reset "
   4465 			    "channel %u (%u MHz, flags 0x%x hal flags 0x%x)\n",
   4466 			    __func__, ieee80211_chan2ieee(ic, chan),
   4467 			    chan->ic_freq, chan->ic_flags, hchan.channelFlags);
   4468 			return EIO;
   4469 		}
   4470 		sc->sc_curchan = hchan;
   4471 		ath_update_txpow(sc);		/* update tx power state */
   4472 		sc->sc_diversity = ath_hal_getdiversity(ah);
   4473 		sc->sc_calinterval = 1;
   4474 		sc->sc_caltries = 0;
   4475 
   4476 		/*
   4477 		 * Re-enable rx framework.
   4478 		 */
   4479 		if (ath_startrecv(sc) != 0) {
   4480 			if_printf(&sc->sc_if,
   4481 				"%s: unable to restart recv logic\n", __func__);
   4482 			return EIO;
   4483 		}
   4484 
   4485 		/*
   4486 		 * Change channels and update the h/w rate map
   4487 		 * if we're switching; e.g. 11a to 11b/g.
   4488 		 */
   4489 		ic->ic_ibss_chan = chan;
   4490 		ath_chan_change(sc, chan);
   4491 
   4492 		/*
   4493 		 * Handle DFS required waiting period to determine
   4494 		 * if channel is clear of radar traffic.
   4495 		 */
   4496 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   4497 #define	DFS_AND_NOT_CLEAR(_c) \
   4498 	(((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS)
   4499 			if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) {
   4500 				if_printf(&sc->sc_if,
   4501 					"wait for DFS clear channel signal\n");
   4502 				/* XXX stop sndq */
   4503 				sc->sc_if.if_flags |= IFF_OACTIVE;
   4504 				callout_reset(&sc->sc_dfs_ch,
   4505 					2 * hz, ath_dfswait, sc);
   4506 			} else
   4507 				callout_stop(&sc->sc_dfs_ch);
   4508 #undef DFS_NOT_CLEAR
   4509 		}
   4510 
   4511 		/*
   4512 		 * Re-enable interrupts.
   4513 		 */
   4514 		ath_hal_intrset(ah, sc->sc_imask);
   4515 	}
   4516 	return 0;
   4517 }
   4518 
   4519 static void
   4520 ath_next_scan(void *arg)
   4521 {
   4522 	struct ath_softc *sc = arg;
   4523 	struct ieee80211com *ic = &sc->sc_ic;
   4524 	int s;
   4525 
   4526 	/* don't call ath_start w/o network interrupts blocked */
   4527 	s = splnet();
   4528 
   4529 	if (ic->ic_state == IEEE80211_S_SCAN)
   4530 		ieee80211_next_scan(ic);
   4531 	splx(s);
   4532 }
   4533 
   4534 /*
   4535  * Periodically recalibrate the PHY to account
   4536  * for temperature/environment changes.
   4537  */
   4538 static void
   4539 ath_calibrate(void *arg)
   4540 {
   4541 	struct ath_softc *sc = arg;
   4542 	struct ath_hal *ah = sc->sc_ah;
   4543 	HAL_BOOL iqCalDone;
   4544 
   4545 	sc->sc_stats.ast_per_cal++;
   4546 
   4547 	ATH_LOCK(sc);
   4548 
   4549 	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
   4550 		/*
   4551 		 * Rfgain is out of bounds, reset the chip
   4552 		 * to load new gain values.
   4553 		 */
   4554 		DPRINTF(sc, ATH_DEBUG_CALIBRATE,
   4555 			"%s: rfgain change\n", __func__);
   4556 		sc->sc_stats.ast_per_rfgain++;
   4557 		ath_reset(&sc->sc_if);
   4558 	}
   4559 	if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
   4560 		DPRINTF(sc, ATH_DEBUG_ANY,
   4561 			"%s: calibration of channel %u failed\n",
   4562 			__func__, sc->sc_curchan.channel);
   4563 		sc->sc_stats.ast_per_calfail++;
   4564 	}
   4565 	/*
   4566 	 * Calibrate noise floor data again in case of change.
   4567 	 */
   4568 	ath_hal_process_noisefloor(ah);
   4569 	/*
   4570 	 * Poll more frequently when the IQ calibration is in
   4571 	 * progress to speedup loading the final settings.
   4572 	 * We temper this aggressive polling with an exponential
   4573 	 * back off after 4 tries up to ath_calinterval.
   4574 	 */
   4575 	if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
   4576 		sc->sc_caltries = 0;
   4577 		sc->sc_calinterval = ath_calinterval;
   4578 	} else if (sc->sc_caltries > 4) {
   4579 		sc->sc_caltries = 0;
   4580 		sc->sc_calinterval <<= 1;
   4581 		if (sc->sc_calinterval > ath_calinterval)
   4582 			sc->sc_calinterval = ath_calinterval;
   4583 	}
   4584 	KASSERT(0 < sc->sc_calinterval && sc->sc_calinterval <= ath_calinterval,
   4585 		("bad calibration interval %u", sc->sc_calinterval));
   4586 
   4587 	DPRINTF(sc, ATH_DEBUG_CALIBRATE,
   4588 		"%s: next +%u (%siqCalDone tries %u)\n", __func__,
   4589 		sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
   4590 	sc->sc_caltries++;
   4591 	callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
   4592 		ath_calibrate, sc);
   4593 	ATH_UNLOCK(sc);
   4594 }
   4595 
   4596 static int
   4597 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
   4598 {
   4599 	struct ifnet *ifp = ic->ic_ifp;
   4600 	struct ath_softc *sc = ifp->if_softc;
   4601 	struct ath_hal *ah = sc->sc_ah;
   4602 	struct ieee80211_node *ni;
   4603 	int i, error;
   4604 	const u_int8_t *bssid;
   4605 	u_int32_t rfilt;
   4606 	static const HAL_LED_STATE leds[] = {
   4607 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
   4608 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
   4609 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
   4610 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
   4611 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
   4612 	};
   4613 
   4614 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
   4615 		ieee80211_state_name[ic->ic_state],
   4616 		ieee80211_state_name[nstate]);
   4617 
   4618 	callout_stop(&sc->sc_scan_ch);
   4619 	callout_stop(&sc->sc_cal_ch);
   4620 	callout_stop(&sc->sc_dfs_ch);
   4621 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
   4622 
   4623 	if (nstate == IEEE80211_S_INIT) {
   4624 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
   4625 		/*
   4626 		 * NB: disable interrupts so we don't rx frames.
   4627 		 */
   4628 		ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
   4629 		/*
   4630 		 * Notify the rate control algorithm.
   4631 		 */
   4632 		ath_rate_newstate(sc, nstate);
   4633 		goto done;
   4634 	}
   4635 	ni = ic->ic_bss;
   4636 	error = ath_chan_set(sc, ic->ic_curchan);
   4637 	if (error != 0)
   4638 		goto bad;
   4639 	rfilt = ath_calcrxfilter(sc, nstate);
   4640 	if (nstate == IEEE80211_S_SCAN)
   4641 		bssid = ifp->if_broadcastaddr;
   4642 	else
   4643 		bssid = ni->ni_bssid;
   4644 	ath_hal_setrxfilter(ah, rfilt);
   4645 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
   4646 		 __func__, rfilt, ether_sprintf(bssid));
   4647 
   4648 	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
   4649 		ath_hal_setassocid(ah, bssid, ni->ni_associd);
   4650 	else
   4651 		ath_hal_setassocid(ah, bssid, 0);
   4652 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
   4653 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
   4654 			if (ath_hal_keyisvalid(ah, i))
   4655 				ath_hal_keysetmac(ah, i, bssid);
   4656 	}
   4657 
   4658 	/*
   4659 	 * Notify the rate control algorithm so rates
   4660 	 * are setup should ath_beacon_alloc be called.
   4661 	 */
   4662 	ath_rate_newstate(sc, nstate);
   4663 
   4664 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
   4665 		/* nothing to do */;
   4666 	} else if (nstate == IEEE80211_S_RUN) {
   4667 		DPRINTF(sc, ATH_DEBUG_STATE,
   4668 			"%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
   4669 			"capinfo=0x%04x chan=%d\n"
   4670 			 , __func__
   4671 			 , ic->ic_flags
   4672 			 , ni->ni_intval
   4673 			 , ether_sprintf(ni->ni_bssid)
   4674 			 , ni->ni_capinfo
   4675 			 , ieee80211_chan2ieee(ic, ic->ic_curchan));
   4676 
   4677 		switch (ic->ic_opmode) {
   4678 		case IEEE80211_M_HOSTAP:
   4679 		case IEEE80211_M_IBSS:
   4680 			/*
   4681 			 * Allocate and setup the beacon frame.
   4682 			 *
   4683 			 * Stop any previous beacon DMA.  This may be
   4684 			 * necessary, for example, when an ibss merge
   4685 			 * causes reconfiguration; there will be a state
   4686 			 * transition from RUN->RUN that means we may
   4687 			 * be called with beacon transmission active.
   4688 			 */
   4689 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
   4690 			ath_beacon_free(sc);
   4691 			error = ath_beacon_alloc(sc, ni);
   4692 			if (error != 0)
   4693 				goto bad;
   4694 			/*
   4695 			 * If joining an adhoc network defer beacon timer
   4696 			 * configuration to the next beacon frame so we
   4697 			 * have a current TSF to use.  Otherwise we're
   4698 			 * starting an ibss/bss so there's no need to delay.
   4699 			 */
   4700 			if (ic->ic_opmode == IEEE80211_M_IBSS &&
   4701 			    ic->ic_bss->ni_tstamp.tsf != 0)
   4702 				sc->sc_syncbeacon = 1;
   4703 			else
   4704 				ath_beacon_config(sc);
   4705 			break;
   4706 		case IEEE80211_M_STA:
   4707 			/*
   4708 			 * Allocate a key cache slot to the station.
   4709 			 */
   4710 			if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
   4711 			    sc->sc_hasclrkey &&
   4712 			    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
   4713 				ath_setup_stationkey(ni);
   4714 			/*
   4715 			 * Defer beacon timer configuration to the next
   4716 			 * beacon frame so we have a current TSF to use
   4717 			 * (any TSF collected when scanning is likely old).
   4718 			 */
   4719 			sc->sc_syncbeacon = 1;
   4720 			break;
   4721 		default:
   4722 			break;
   4723 		}
   4724 		/*
   4725 		 * Let the hal process statistics collected during a
   4726 		 * scan so it can provide calibrated noise floor data.
   4727 		 */
   4728 		ath_hal_process_noisefloor(ah);
   4729 		/*
   4730 		 * Reset rssi stats; maybe not the best place...
   4731 		 */
   4732 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
   4733 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
   4734 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
   4735 	} else {
   4736 		ath_hal_intrset(ah,
   4737 			sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
   4738 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
   4739 	}
   4740 done:
   4741 	/*
   4742 	 * Invoke the parent method to complete the work.
   4743 	 */
   4744 	error = sc->sc_newstate(ic, nstate, arg);
   4745 	/*
   4746 	 * Finally, start any timers.
   4747 	 */
   4748 	if (nstate == IEEE80211_S_RUN) {
   4749 		/* start periodic recalibration timer */
   4750 		callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
   4751 			ath_calibrate, sc);
   4752 	} else if (nstate == IEEE80211_S_SCAN) {
   4753 		/* start ap/neighbor scan timer */
   4754 		callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
   4755 			ath_next_scan, sc);
   4756 	}
   4757 bad:
   4758 	return error;
   4759 }
   4760 
   4761 /*
   4762  * Allocate a key cache slot to the station so we can
   4763  * setup a mapping from key index to node. The key cache
   4764  * slot is needed for managing antenna state and for
   4765  * compression when stations do not use crypto.  We do
   4766  * it uniliaterally here; if crypto is employed this slot
   4767  * will be reassigned.
   4768  */
   4769 static void
   4770 ath_setup_stationkey(struct ieee80211_node *ni)
   4771 {
   4772 	struct ieee80211com *ic = ni->ni_ic;
   4773 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   4774 	ieee80211_keyix keyix, rxkeyix;
   4775 
   4776 	if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
   4777 		/*
   4778 		 * Key cache is full; we'll fall back to doing
   4779 		 * the more expensive lookup in software.  Note
   4780 		 * this also means no h/w compression.
   4781 		 */
   4782 		/* XXX msg+statistic */
   4783 	} else {
   4784 		/* XXX locking? */
   4785 		ni->ni_ucastkey.wk_keyix = keyix;
   4786 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
   4787 		/* NB: this will create a pass-thru key entry */
   4788 		ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
   4789 	}
   4790 }
   4791 
   4792 /*
   4793  * Setup driver-specific state for a newly associated node.
   4794  * Note that we're called also on a re-associate, the isnew
   4795  * param tells us if this is the first time or not.
   4796  */
   4797 static void
   4798 ath_newassoc(struct ieee80211_node *ni, int isnew)
   4799 {
   4800 	struct ieee80211com *ic = ni->ni_ic;
   4801 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   4802 
   4803 	ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
   4804 	if (isnew &&
   4805 	    (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
   4806 		KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
   4807 		    ("new assoc with a unicast key already setup (keyix %u)",
   4808 		    ni->ni_ucastkey.wk_keyix));
   4809 		ath_setup_stationkey(ni);
   4810 	}
   4811 }
   4812 
   4813 static int
   4814 ath_getchannels(struct ath_softc *sc, u_int cc,
   4815 	HAL_BOOL outdoor, HAL_BOOL xchanmode)
   4816 {
   4817 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
   4818 	struct ieee80211com *ic = &sc->sc_ic;
   4819 	struct ifnet *ifp = &sc->sc_if;
   4820 	struct ath_hal *ah = sc->sc_ah;
   4821 	HAL_CHANNEL *chans;
   4822 	int i, ix, nchan;
   4823 
   4824 	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
   4825 			M_TEMP, M_NOWAIT);
   4826 	if (chans == NULL) {
   4827 		if_printf(ifp, "unable to allocate channel table\n");
   4828 		return ENOMEM;
   4829 	}
   4830 	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
   4831 	    NULL, 0, NULL,
   4832 	    cc, HAL_MODE_ALL, outdoor, xchanmode)) {
   4833 		u_int32_t rd;
   4834 
   4835 		(void)ath_hal_getregdomain(ah, &rd);
   4836 		if_printf(ifp, "unable to collect channel list from hal; "
   4837 			"regdomain likely %u country code %u\n", rd, cc);
   4838 		free(chans, M_TEMP);
   4839 		return EINVAL;
   4840 	}
   4841 
   4842 	/*
   4843 	 * Convert HAL channels to ieee80211 ones and insert
   4844 	 * them in the table according to their channel number.
   4845 	 */
   4846 	for (i = 0; i < nchan; i++) {
   4847 		HAL_CHANNEL *c = &chans[i];
   4848 		u_int16_t flags;
   4849 
   4850 		ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags);
   4851 		if (ix > IEEE80211_CHAN_MAX) {
   4852 			if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n",
   4853 				ix, c->channel, c->channelFlags);
   4854 			continue;
   4855 		}
   4856 		if (ix < 0) {
   4857 			/* XXX can't handle stuff <2400 right now */
   4858 			if (bootverbose)
   4859 				if_printf(ifp, "hal channel %d (%u/%x) "
   4860 				    "cannot be handled; ignored\n",
   4861 				    ix, c->channel, c->channelFlags);
   4862 			continue;
   4863 		}
   4864 		/*
   4865 		 * Calculate net80211 flags; most are compatible
   4866 		 * but some need massaging.  Note the static turbo
   4867 		 * conversion can be removed once net80211 is updated
   4868 		 * to understand static vs. dynamic turbo.
   4869 		 */
   4870 		flags = c->channelFlags & COMPAT;
   4871 		if (c->channelFlags & CHANNEL_STURBO)
   4872 			flags |= IEEE80211_CHAN_TURBO;
   4873 		if (ic->ic_channels[ix].ic_freq == 0) {
   4874 			ic->ic_channels[ix].ic_freq = c->channel;
   4875 			ic->ic_channels[ix].ic_flags = flags;
   4876 		} else {
   4877 			/* channels overlap; e.g. 11g and 11b */
   4878 			ic->ic_channels[ix].ic_flags |= flags;
   4879 		}
   4880 	}
   4881 	free(chans, M_TEMP);
   4882 	return 0;
   4883 #undef COMPAT
   4884 }
   4885 
   4886 static void
   4887 ath_led_done(void *arg)
   4888 {
   4889 	struct ath_softc *sc = arg;
   4890 
   4891 	sc->sc_blinking = 0;
   4892 }
   4893 
   4894 /*
   4895  * Turn the LED off: flip the pin and then set a timer so no
   4896  * update will happen for the specified duration.
   4897  */
   4898 static void
   4899 ath_led_off(void *arg)
   4900 {
   4901 	struct ath_softc *sc = arg;
   4902 
   4903 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
   4904 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
   4905 }
   4906 
   4907 /*
   4908  * Blink the LED according to the specified on/off times.
   4909  */
   4910 static void
   4911 ath_led_blink(struct ath_softc *sc, int on, int off)
   4912 {
   4913 	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
   4914 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
   4915 	sc->sc_blinking = 1;
   4916 	sc->sc_ledoff = off;
   4917 	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
   4918 }
   4919 
   4920 static void
   4921 ath_led_event(struct ath_softc *sc, int event)
   4922 {
   4923 
   4924 	sc->sc_ledevent = ticks;	/* time of last event */
   4925 	if (sc->sc_blinking)		/* don't interrupt active blink */
   4926 		return;
   4927 	switch (event) {
   4928 	case ATH_LED_POLL:
   4929 		ath_led_blink(sc, sc->sc_hwmap[0].ledon,
   4930 			sc->sc_hwmap[0].ledoff);
   4931 		break;
   4932 	case ATH_LED_TX:
   4933 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
   4934 			sc->sc_hwmap[sc->sc_txrate].ledoff);
   4935 		break;
   4936 	case ATH_LED_RX:
   4937 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
   4938 			sc->sc_hwmap[sc->sc_rxrate].ledoff);
   4939 		break;
   4940 	}
   4941 }
   4942 
   4943 static void
   4944 ath_update_txpow(struct ath_softc *sc)
   4945 {
   4946 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
   4947 	struct ieee80211com *ic = &sc->sc_ic;
   4948 	struct ath_hal *ah = sc->sc_ah;
   4949 	u_int32_t txpow;
   4950 
   4951 	if (sc->sc_curtxpow != ic->ic_txpowlimit) {
   4952 		ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
   4953 		/* read back in case value is clamped */
   4954 		(void)ath_hal_gettxpowlimit(ah, &txpow);
   4955 		ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
   4956 	}
   4957 	/*
   4958 	 * Fetch max tx power level for status requests.
   4959 	 */
   4960 	(void)ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
   4961 	ic->ic_bss->ni_txpower = txpow;
   4962 }
   4963 
   4964 static void
   4965 rate_setup(struct ath_softc *sc,
   4966 	const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs)
   4967 {
   4968 	int i, maxrates;
   4969 
   4970 	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
   4971 		DPRINTF(sc, ATH_DEBUG_ANY,
   4972 			"%s: rate table too small (%u > %u)\n",
   4973 		       __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
   4974 		maxrates = IEEE80211_RATE_MAXSIZE;
   4975 	} else
   4976 		maxrates = rt->rateCount;
   4977 	for (i = 0; i < maxrates; i++)
   4978 		rs->rs_rates[i] = rt->info[i].dot11Rate;
   4979 	rs->rs_nrates = maxrates;
   4980 }
   4981 
   4982 static int
   4983 ath_rate_setup(struct ath_softc *sc, u_int mode)
   4984 {
   4985 	struct ath_hal *ah = sc->sc_ah;
   4986 	struct ieee80211com *ic = &sc->sc_ic;
   4987 	const HAL_RATE_TABLE *rt;
   4988 
   4989 	switch (mode) {
   4990 	case IEEE80211_MODE_11A:
   4991 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
   4992 		break;
   4993 	case IEEE80211_MODE_11B:
   4994 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
   4995 		break;
   4996 	case IEEE80211_MODE_11G:
   4997 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
   4998 		break;
   4999 	case IEEE80211_MODE_TURBO_A:
   5000 		/* XXX until static/dynamic turbo is fixed */
   5001 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
   5002 		break;
   5003 	case IEEE80211_MODE_TURBO_G:
   5004 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
   5005 		break;
   5006 	default:
   5007 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
   5008 			__func__, mode);
   5009 		return 0;
   5010 	}
   5011 	sc->sc_rates[mode] = rt;
   5012 	if (rt != NULL) {
   5013 		rate_setup(sc, rt, &ic->ic_sup_rates[mode]);
   5014 		return 1;
   5015 	} else
   5016 		return 0;
   5017 }
   5018 
   5019 static void
   5020 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
   5021 {
   5022 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   5023 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
   5024 	static const struct {
   5025 		u_int		rate;		/* tx/rx 802.11 rate */
   5026 		u_int16_t	timeOn;		/* LED on time (ms) */
   5027 		u_int16_t	timeOff;	/* LED off time (ms) */
   5028 	} blinkrates[] = {
   5029 		{ 108,  40,  10 },
   5030 		{  96,  44,  11 },
   5031 		{  72,  50,  13 },
   5032 		{  48,  57,  14 },
   5033 		{  36,  67,  16 },
   5034 		{  24,  80,  20 },
   5035 		{  22, 100,  25 },
   5036 		{  18, 133,  34 },
   5037 		{  12, 160,  40 },
   5038 		{  10, 200,  50 },
   5039 		{   6, 240,  58 },
   5040 		{   4, 267,  66 },
   5041 		{   2, 400, 100 },
   5042 		{   0, 500, 130 },
   5043 	};
   5044 	const HAL_RATE_TABLE *rt;
   5045 	int i, j;
   5046 
   5047 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
   5048 	rt = sc->sc_rates[mode];
   5049 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
   5050 	for (i = 0; i < rt->rateCount; i++)
   5051 		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
   5052 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
   5053 	for (i = 0; i < 32; i++) {
   5054 		u_int8_t ix = rt->rateCodeToIndex[i];
   5055 		if (ix == 0xff) {
   5056 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
   5057 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
   5058 			continue;
   5059 		}
   5060 		sc->sc_hwmap[i].ieeerate =
   5061 			rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
   5062 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
   5063 		if (rt->info[ix].shortPreamble ||
   5064 		    rt->info[ix].phy == IEEE80211_T_OFDM)
   5065 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
   5066 		/* NB: receive frames include FCS */
   5067 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
   5068 			IEEE80211_RADIOTAP_F_FCS;
   5069 		/* setup blink rate table to avoid per-packet lookup */
   5070 		for (j = 0; j < N(blinkrates)-1; j++)
   5071 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
   5072 				break;
   5073 		/* NB: this uses the last entry if the rate isn't found */
   5074 		/* XXX beware of overlow */
   5075 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
   5076 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
   5077 	}
   5078 	sc->sc_currates = rt;
   5079 	sc->sc_curmode = mode;
   5080 	/*
   5081 	 * All protection frames are transmited at 2Mb/s for
   5082 	 * 11g, otherwise at 1Mb/s.
   5083 	 */
   5084 	if (mode == IEEE80211_MODE_11G)
   5085 		sc->sc_protrix = ath_tx_findrix(rt, 2*2);
   5086 	else
   5087 		sc->sc_protrix = ath_tx_findrix(rt, 2*1);
   5088 	/* rate index used to send management frames */
   5089 	sc->sc_minrateix = 0;
   5090 	/*
   5091 	 * Setup multicast rate state.
   5092 	 */
   5093 	/* XXX layering violation */
   5094 	sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate);
   5095 	sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate;
   5096 	/* NB: caller is responsible for reseting rate control state */
   5097 #undef N
   5098 }
   5099 
   5100 #ifdef AR_DEBUG
   5101 static void
   5102 ath_printrxbuf(struct ath_buf *bf, int done)
   5103 {
   5104 	struct ath_desc *ds;
   5105 	int i;
   5106 
   5107 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
   5108 		printf("R%d (%p %" PRIx64
   5109 		    ") %08x %08x %08x %08x %08x %08x %c\n", i, ds,
   5110 		    (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
   5111 		    ds->ds_link, ds->ds_data,
   5112 		    ds->ds_ctl0, ds->ds_ctl1,
   5113 		    ds->ds_hw[0], ds->ds_hw[1],
   5114 		    !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
   5115 	}
   5116 }
   5117 
   5118 static void
   5119 ath_printtxbuf(struct ath_buf *bf, int done)
   5120 {
   5121 	struct ath_desc *ds;
   5122 	int i;
   5123 
   5124 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
   5125 		printf("T%d (%p %" PRIx64
   5126 		    ") %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
   5127 		    i, ds,
   5128 		    (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
   5129 		    ds->ds_link, ds->ds_data,
   5130 		    ds->ds_ctl0, ds->ds_ctl1,
   5131 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
   5132 		    !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
   5133 	}
   5134 }
   5135 #endif /* AR_DEBUG */
   5136 
   5137 static void
   5138 ath_watchdog(struct ifnet *ifp)
   5139 {
   5140 	struct ath_softc *sc = ifp->if_softc;
   5141 	struct ieee80211com *ic = &sc->sc_ic;
   5142 
   5143 	ifp->if_timer = 0;
   5144 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
   5145 		return;
   5146 	if (sc->sc_tx_timer) {
   5147 		if (--sc->sc_tx_timer == 0) {
   5148 			if_printf(ifp, "device timeout\n");
   5149 			ath_reset(ifp);
   5150 			ifp->if_oerrors++;
   5151 			sc->sc_stats.ast_watchdog++;
   5152 		} else
   5153 			ifp->if_timer = 1;
   5154 	}
   5155 	ieee80211_watchdog(ic);
   5156 }
   5157 
   5158 /*
   5159  * Diagnostic interface to the HAL.  This is used by various
   5160  * tools to do things like retrieve register contents for
   5161  * debugging.  The mechanism is intentionally opaque so that
   5162  * it can change frequently w/o concern for compatiblity.
   5163  */
   5164 static int
   5165 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
   5166 {
   5167 	struct ath_hal *ah = sc->sc_ah;
   5168 	u_int id = ad->ad_id & ATH_DIAG_ID;
   5169 	void *indata = NULL;
   5170 	void *outdata = NULL;
   5171 	u_int32_t insize = ad->ad_in_size;
   5172 	u_int32_t outsize = ad->ad_out_size;
   5173 	int error = 0;
   5174 
   5175 	if (ad->ad_id & ATH_DIAG_IN) {
   5176 		/*
   5177 		 * Copy in data.
   5178 		 */
   5179 		indata = malloc(insize, M_TEMP, M_NOWAIT);
   5180 		if (indata == NULL) {
   5181 			error = ENOMEM;
   5182 			goto bad;
   5183 		}
   5184 		error = copyin(ad->ad_in_data, indata, insize);
   5185 		if (error)
   5186 			goto bad;
   5187 	}
   5188 	if (ad->ad_id & ATH_DIAG_DYN) {
   5189 		/*
   5190 		 * Allocate a buffer for the results (otherwise the HAL
   5191 		 * returns a pointer to a buffer where we can read the
   5192 		 * results).  Note that we depend on the HAL leaving this
   5193 		 * pointer for us to use below in reclaiming the buffer;
   5194 		 * may want to be more defensive.
   5195 		 */
   5196 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
   5197 		if (outdata == NULL) {
   5198 			error = ENOMEM;
   5199 			goto bad;
   5200 		}
   5201 	}
   5202 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
   5203 		if (outsize < ad->ad_out_size)
   5204 			ad->ad_out_size = outsize;
   5205 		if (outdata != NULL)
   5206 			error = copyout(outdata, ad->ad_out_data,
   5207 					ad->ad_out_size);
   5208 	} else {
   5209 		error = EINVAL;
   5210 	}
   5211 bad:
   5212 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
   5213 		free(indata, M_TEMP);
   5214 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
   5215 		free(outdata, M_TEMP);
   5216 	return error;
   5217 }
   5218 
   5219 static int
   5220 ath_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   5221 {
   5222 #define	IS_RUNNING(ifp) \
   5223 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
   5224 	struct ath_softc *sc = ifp->if_softc;
   5225 	struct ieee80211com *ic = &sc->sc_ic;
   5226 	struct ifreq *ifr = (struct ifreq *)data;
   5227 	int error = 0;
   5228 
   5229 	ATH_LOCK(sc);
   5230 	switch (cmd) {
   5231 	case SIOCSIFFLAGS:
   5232 		if (IS_RUNNING(ifp)) {
   5233 			/*
   5234 			 * To avoid rescanning another access point,
   5235 			 * do not call ath_init() here.  Instead,
   5236 			 * only reflect promisc mode settings.
   5237 			 */
   5238 			ath_mode_init(sc);
   5239 		} else if (ifp->if_flags & IFF_UP) {
   5240 			/*
   5241 			 * Beware of being called during attach/detach
   5242 			 * to reset promiscuous mode.  In that case we
   5243 			 * will still be marked UP but not RUNNING.
   5244 			 * However trying to re-init the interface
   5245 			 * is the wrong thing to do as we've already
   5246 			 * torn down much of our state.  There's
   5247 			 * probably a better way to deal with this.
   5248 			 */
   5249 			if (!sc->sc_invalid && ic->ic_bss != NULL)
   5250 				ath_init(sc);	/* XXX lose error */
   5251 		} else
   5252 			ath_stop_locked(ifp, 1);
   5253 		break;
   5254 	case SIOCADDMULTI:
   5255 	case SIOCDELMULTI:
   5256 		error = (cmd == SIOCADDMULTI) ?
   5257 		    ether_addmulti(ifr, &sc->sc_ec) :
   5258 		    ether_delmulti(ifr, &sc->sc_ec);
   5259 		if (error == ENETRESET) {
   5260 			if (ifp->if_flags & IFF_RUNNING)
   5261 				ath_mode_init(sc);
   5262 			error = 0;
   5263 		}
   5264 		break;
   5265 	case SIOCGATHSTATS:
   5266 		/* NB: embed these numbers to get a consistent view */
   5267 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
   5268 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
   5269 		sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
   5270 		ATH_UNLOCK(sc);
   5271 		/*
   5272 		 * NB: Drop the softc lock in case of a page fault;
   5273 		 * we'll accept any potential inconsisentcy in the
   5274 		 * statistics.  The alternative is to copy the data
   5275 		 * to a local structure.
   5276 		 */
   5277 		return copyout(&sc->sc_stats,
   5278 				ifr->ifr_data, sizeof (sc->sc_stats));
   5279 	case SIOCGATHDIAG:
   5280 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
   5281 		break;
   5282 	default:
   5283 		error = ieee80211_ioctl(ic, cmd, data);
   5284 		if (error == ENETRESET) {
   5285 			if (IS_RUNNING(ifp) &&
   5286 			    ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
   5287 				ath_init(sc);	/* XXX lose error */
   5288 			error = 0;
   5289 		}
   5290 		if (error == ERESTART)
   5291 			error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0;
   5292 		break;
   5293 	}
   5294 	ATH_UNLOCK(sc);
   5295 	return error;
   5296 #undef IS_RUNNING
   5297 }
   5298 
   5299 #if NBPFILTER > 0
   5300 static void
   5301 ath_bpfattach(struct ath_softc *sc)
   5302 {
   5303 	struct ifnet *ifp = &sc->sc_if;
   5304 
   5305 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
   5306 		sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
   5307 		&sc->sc_drvbpf);
   5308 	/*
   5309 	 * Initialize constant fields.
   5310 	 * XXX make header lengths a multiple of 32-bits so subsequent
   5311 	 *     headers are properly aligned; this is a kludge to keep
   5312 	 *     certain applications happy.
   5313 	 *
   5314 	 * NB: the channel is setup each time we transition to the
   5315 	 *     RUN state to avoid filling it in for each frame.
   5316 	 */
   5317 	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
   5318 	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
   5319 	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
   5320 
   5321 	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
   5322 	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
   5323 	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
   5324 }
   5325 #endif
   5326 
   5327 /*
   5328  * Announce various information on device/driver attach.
   5329  */
   5330 static void
   5331 ath_announce(struct ath_softc *sc)
   5332 {
   5333 #define	HAL_MODE_DUALBAND	(HAL_MODE_11A|HAL_MODE_11B)
   5334 	struct ifnet *ifp = &sc->sc_if;
   5335 	struct ath_hal *ah = sc->sc_ah;
   5336 	u_int modes, cc;
   5337 
   5338 	if_printf(ifp, "mac %d.%d phy %d.%d",
   5339 		ah->ah_macVersion, ah->ah_macRev,
   5340 		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
   5341 	/*
   5342 	 * Print radio revision(s).  We check the wireless modes
   5343 	 * to avoid falsely printing revs for inoperable parts.
   5344 	 * Dual-band radio revs are returned in the 5 GHz rev number.
   5345 	 */
   5346 	ath_hal_getcountrycode(ah, &cc);
   5347 	modes = ath_hal_getwirelessmodes(ah, cc);
   5348 	if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
   5349 		if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
   5350 			printf(" 5 GHz radio %d.%d 2 GHz radio %d.%d",
   5351 				ah->ah_analog5GhzRev >> 4,
   5352 				ah->ah_analog5GhzRev & 0xf,
   5353 				ah->ah_analog2GhzRev >> 4,
   5354 				ah->ah_analog2GhzRev & 0xf);
   5355 		else
   5356 			printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
   5357 				ah->ah_analog5GhzRev & 0xf);
   5358 	} else
   5359 		printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
   5360 			ah->ah_analog5GhzRev & 0xf);
   5361 	printf("\n");
   5362 	if (bootverbose) {
   5363 		int i;
   5364 		for (i = 0; i <= WME_AC_VO; i++) {
   5365 			struct ath_txq *txq = sc->sc_ac2q[i];
   5366 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
   5367 				txq->axq_qnum, ieee80211_wme_acnames[i]);
   5368 		}
   5369 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
   5370 			sc->sc_cabq->axq_qnum);
   5371 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
   5372 	}
   5373 	if (ath_rxbuf != ATH_RXBUF)
   5374 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
   5375 	if (ath_txbuf != ATH_TXBUF)
   5376 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
   5377 #undef HAL_MODE_DUALBAND
   5378 }
   5379