ath.c revision 1.82.2.1 1 /* $NetBSD: ath.c,v 1.82.2.1 2007/05/27 14:30:00 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15 * redistribution must be conditioned upon including a substantially
16 * similar Disclaimer requirement for further binary redistribution.
17 * 3. Neither the names of the above-listed copyright holders nor the names
18 * of any contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * Alternatively, this software may be distributed under the terms of the
22 * GNU General Public License ("GPL") version 2 as published by the Free
23 * Software Foundation.
24 *
25 * NO WARRANTY
26 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
28 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
29 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
30 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
31 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
34 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
36 * THE POSSIBILITY OF SUCH DAMAGES.
37 */
38
39 #include <sys/cdefs.h>
40 #ifdef __FreeBSD__
41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $");
42 #endif
43 #ifdef __NetBSD__
44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.82.2.1 2007/05/27 14:30:00 ad Exp $");
45 #endif
46
47 /*
48 * Driver for the Atheros Wireless LAN controller.
49 *
50 * This software is derived from work of Atsushi Onoe; his contribution
51 * is greatly appreciated.
52 */
53
54 #include "opt_inet.h"
55
56 #ifdef __NetBSD__
57 #include "bpfilter.h"
58 #endif /* __NetBSD__ */
59
60 #include <sys/param.h>
61 #include <sys/reboot.h>
62 #include <sys/systm.h>
63 #include <sys/types.h>
64 #include <sys/sysctl.h>
65 #include <sys/mbuf.h>
66 #include <sys/malloc.h>
67 #include <sys/lock.h>
68 #include <sys/kernel.h>
69 #include <sys/socket.h>
70 #include <sys/sockio.h>
71 #include <sys/errno.h>
72 #include <sys/callout.h>
73 #include <machine/bus.h>
74 #include <sys/endian.h>
75
76 #include <net/if.h>
77 #include <net/if_dl.h>
78 #include <net/if_media.h>
79 #include <net/if_types.h>
80 #include <net/if_arp.h>
81 #include <net/if_ether.h>
82 #include <net/if_llc.h>
83
84 #include <net80211/ieee80211_netbsd.h>
85 #include <net80211/ieee80211_var.h>
86
87 #if NBPFILTER > 0
88 #include <net/bpf.h>
89 #endif
90
91 #ifdef INET
92 #include <netinet/in.h>
93 #endif
94
95 #include <sys/device.h>
96 #include <dev/ic/ath_netbsd.h>
97
98 #define AR_DEBUG
99 #include <dev/ic/athvar.h>
100 #include <contrib/dev/ath/ah_desc.h>
101 #include <contrib/dev/ath/ah_devid.h> /* XXX for softled */
102 #include "athhal_options.h"
103
104 #ifdef ATH_TX99_DIAG
105 #include <dev/ath/ath_tx99/ath_tx99.h>
106 #endif
107
108 /* unaligned little endian access */
109 #define LE_READ_2(p) \
110 ((u_int16_t) \
111 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8)))
112 #define LE_READ_4(p) \
113 ((u_int32_t) \
114 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \
115 (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
116
117 enum {
118 ATH_LED_TX,
119 ATH_LED_RX,
120 ATH_LED_POLL,
121 };
122
123 #ifdef AH_NEED_DESC_SWAP
124 #define HTOAH32(x) htole32(x)
125 #else
126 #define HTOAH32(x) (x)
127 #endif
128
129 static int ath_ifinit(struct ifnet *);
130 static int ath_init(struct ath_softc *);
131 static void ath_stop_locked(struct ifnet *, int);
132 static void ath_stop(struct ifnet *, int);
133 static void ath_start(struct ifnet *);
134 static int ath_media_change(struct ifnet *);
135 static void ath_watchdog(struct ifnet *);
136 static int ath_ioctl(struct ifnet *, u_long, void *);
137 static void ath_fatal_proc(void *, int);
138 static void ath_rxorn_proc(void *, int);
139 static void ath_bmiss_proc(void *, int);
140 static void ath_radar_proc(void *, int);
141 static int ath_key_alloc(struct ieee80211com *,
142 const struct ieee80211_key *,
143 ieee80211_keyix *, ieee80211_keyix *);
144 static int ath_key_delete(struct ieee80211com *,
145 const struct ieee80211_key *);
146 static int ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
147 const u_int8_t mac[IEEE80211_ADDR_LEN]);
148 static void ath_key_update_begin(struct ieee80211com *);
149 static void ath_key_update_end(struct ieee80211com *);
150 static void ath_mode_init(struct ath_softc *);
151 static void ath_setslottime(struct ath_softc *);
152 static void ath_updateslot(struct ifnet *);
153 static int ath_beaconq_setup(struct ath_hal *);
154 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
155 static void ath_beacon_setup(struct ath_softc *, struct ath_buf *);
156 static void ath_beacon_proc(void *, int);
157 static void ath_bstuck_proc(void *, int);
158 static void ath_beacon_free(struct ath_softc *);
159 static void ath_beacon_config(struct ath_softc *);
160 static void ath_descdma_cleanup(struct ath_softc *sc,
161 struct ath_descdma *, ath_bufhead *);
162 static int ath_desc_alloc(struct ath_softc *);
163 static void ath_desc_free(struct ath_softc *);
164 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
165 static void ath_node_free(struct ieee80211_node *);
166 static u_int8_t ath_node_getrssi(const struct ieee80211_node *);
167 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
168 static void ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
169 struct ieee80211_node *ni,
170 int subtype, int rssi, u_int32_t rstamp);
171 static void ath_setdefantenna(struct ath_softc *, u_int);
172 static void ath_rx_proc(void *, int);
173 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
174 static int ath_tx_setup(struct ath_softc *, int, int);
175 static int ath_wme_update(struct ieee80211com *);
176 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
177 static void ath_tx_cleanup(struct ath_softc *);
178 static int ath_tx_start(struct ath_softc *, struct ieee80211_node *,
179 struct ath_buf *, struct mbuf *);
180 static void ath_tx_proc_q0(void *, int);
181 static void ath_tx_proc_q0123(void *, int);
182 static void ath_tx_proc(void *, int);
183 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
184 static void ath_draintxq(struct ath_softc *);
185 static void ath_stoprecv(struct ath_softc *);
186 static int ath_startrecv(struct ath_softc *);
187 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
188 static void ath_next_scan(void *);
189 static void ath_calibrate(void *);
190 static int ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
191 static void ath_setup_stationkey(struct ieee80211_node *);
192 static void ath_newassoc(struct ieee80211_node *, int);
193 static int ath_getchannels(struct ath_softc *, u_int cc,
194 HAL_BOOL outdoor, HAL_BOOL xchanmode);
195 static void ath_led_event(struct ath_softc *, int);
196 static void ath_update_txpow(struct ath_softc *);
197 static void ath_freetx(struct mbuf *);
198
199 static int ath_rate_setup(struct ath_softc *, u_int mode);
200 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
201
202 #ifdef __NetBSD__
203 int ath_enable(struct ath_softc *);
204 void ath_disable(struct ath_softc *);
205 void ath_power(int, void *);
206 #endif
207
208 #if NBPFILTER > 0
209 static void ath_bpfattach(struct ath_softc *);
210 #endif
211 static void ath_announce(struct ath_softc *);
212
213 int ath_dwelltime = 200; /* 5 channels/second */
214 int ath_calinterval = 30; /* calibrate every 30 secs */
215 int ath_outdoor = AH_TRUE; /* outdoor operation */
216 int ath_xchanmode = AH_TRUE; /* enable extended channels */
217 int ath_countrycode = CTRY_DEFAULT; /* country code */
218 int ath_regdomain = 0; /* regulatory domain */
219 int ath_debug = 0;
220 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */
221 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */
222
223 #ifdef AR_DEBUG
224 enum {
225 ATH_DEBUG_XMIT = 0x00000001, /* basic xmit operation */
226 ATH_DEBUG_XMIT_DESC = 0x00000002, /* xmit descriptors */
227 ATH_DEBUG_RECV = 0x00000004, /* basic recv operation */
228 ATH_DEBUG_RECV_DESC = 0x00000008, /* recv descriptors */
229 ATH_DEBUG_RATE = 0x00000010, /* rate control */
230 ATH_DEBUG_RESET = 0x00000020, /* reset processing */
231 ATH_DEBUG_MODE = 0x00000040, /* mode init/setup */
232 ATH_DEBUG_BEACON = 0x00000080, /* beacon handling */
233 ATH_DEBUG_WATCHDOG = 0x00000100, /* watchdog timeout */
234 ATH_DEBUG_INTR = 0x00001000, /* ISR */
235 ATH_DEBUG_TX_PROC = 0x00002000, /* tx ISR proc */
236 ATH_DEBUG_RX_PROC = 0x00004000, /* rx ISR proc */
237 ATH_DEBUG_BEACON_PROC = 0x00008000, /* beacon ISR proc */
238 ATH_DEBUG_CALIBRATE = 0x00010000, /* periodic calibration */
239 ATH_DEBUG_KEYCACHE = 0x00020000, /* key cache management */
240 ATH_DEBUG_STATE = 0x00040000, /* 802.11 state transitions */
241 ATH_DEBUG_NODE = 0x00080000, /* node management */
242 ATH_DEBUG_LED = 0x00100000, /* led management */
243 ATH_DEBUG_FF = 0x00200000, /* fast frames */
244 ATH_DEBUG_DFS = 0x00400000, /* DFS processing */
245 ATH_DEBUG_FATAL = 0x80000000, /* fatal errors */
246 ATH_DEBUG_ANY = 0xffffffff
247 };
248 #define IFF_DUMPPKTS(sc, m) \
249 ((sc->sc_debug & (m)) || \
250 (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
251 #define DPRINTF(sc, m, fmt, ...) do { \
252 if (sc->sc_debug & (m)) \
253 printf(fmt, __VA_ARGS__); \
254 } while (0)
255 #define KEYPRINTF(sc, ix, hk, mac) do { \
256 if (sc->sc_debug & ATH_DEBUG_KEYCACHE) \
257 ath_keyprint(__func__, ix, hk, mac); \
258 } while (0)
259 static void ath_printrxbuf(struct ath_buf *bf, int);
260 static void ath_printtxbuf(struct ath_buf *bf, int);
261 #else
262 #define IFF_DUMPPKTS(sc, m) \
263 ((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
264 #define DPRINTF(m, fmt, ...)
265 #define KEYPRINTF(sc, k, ix, mac)
266 #endif
267
268 #ifdef __NetBSD__
269 int
270 ath_activate(struct device *self, enum devact act)
271 {
272 struct ath_softc *sc = (struct ath_softc *)self;
273 int rv = 0, s;
274
275 s = splnet();
276 switch (act) {
277 case DVACT_ACTIVATE:
278 rv = EOPNOTSUPP;
279 break;
280 case DVACT_DEACTIVATE:
281 if_deactivate(&sc->sc_if);
282 break;
283 }
284 splx(s);
285 return rv;
286 }
287
288 int
289 ath_enable(struct ath_softc *sc)
290 {
291 if (ATH_IS_ENABLED(sc) == 0) {
292 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
293 printf("%s: device enable failed\n",
294 sc->sc_dev.dv_xname);
295 return (EIO);
296 }
297 sc->sc_flags |= ATH_ENABLED;
298 }
299 return (0);
300 }
301
302 void
303 ath_disable(struct ath_softc *sc)
304 {
305 if (!ATH_IS_ENABLED(sc))
306 return;
307 if (sc->sc_disable != NULL)
308 (*sc->sc_disable)(sc);
309 sc->sc_flags &= ~ATH_ENABLED;
310 }
311 #endif /* __NetBSD__ */
312
313 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
314
315 int
316 ath_attach(u_int16_t devid, struct ath_softc *sc)
317 {
318 struct ifnet *ifp = &sc->sc_if;
319 struct ieee80211com *ic = &sc->sc_ic;
320 struct ath_hal *ah = NULL;
321 HAL_STATUS status;
322 int error = 0, i;
323
324 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
325
326 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
327
328 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
329 if (ah == NULL) {
330 if_printf(ifp, "unable to attach hardware; HAL status %u\n",
331 status);
332 error = ENXIO;
333 goto bad;
334 }
335 if (ah->ah_abi != HAL_ABI_VERSION) {
336 if_printf(ifp, "HAL ABI mismatch detected "
337 "(HAL:0x%x != driver:0x%x)\n",
338 ah->ah_abi, HAL_ABI_VERSION);
339 error = ENXIO;
340 goto bad;
341 }
342 sc->sc_ah = ah;
343 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */
344
345 /*
346 * Check if the MAC has multi-rate retry support.
347 * We do this by trying to setup a fake extended
348 * descriptor. MAC's that don't have support will
349 * return false w/o doing anything. MAC's that do
350 * support it will return true w/o doing anything.
351 */
352 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
353
354 /*
355 * Check if the device has hardware counters for PHY
356 * errors. If so we need to enable the MIB interrupt
357 * so we can act on stat triggers.
358 */
359 if (ath_hal_hwphycounters(ah))
360 sc->sc_needmib = 1;
361
362 /*
363 * Get the hardware key cache size.
364 */
365 sc->sc_keymax = ath_hal_keycachesize(ah);
366 if (sc->sc_keymax > ATH_KEYMAX) {
367 if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
368 ATH_KEYMAX, sc->sc_keymax);
369 sc->sc_keymax = ATH_KEYMAX;
370 }
371 /*
372 * Reset the key cache since some parts do not
373 * reset the contents on initial power up.
374 */
375 for (i = 0; i < sc->sc_keymax; i++)
376 ath_hal_keyreset(ah, i);
377 /*
378 * Mark key cache slots associated with global keys
379 * as in use. If we knew TKIP was not to be used we
380 * could leave the +32, +64, and +32+64 slots free.
381 * XXX only for splitmic.
382 */
383 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
384 setbit(sc->sc_keymap, i);
385 setbit(sc->sc_keymap, i+32);
386 setbit(sc->sc_keymap, i+64);
387 setbit(sc->sc_keymap, i+32+64);
388 }
389
390 /*
391 * Collect the channel list using the default country
392 * code and including outdoor channels. The 802.11 layer
393 * is resposible for filtering this list based on settings
394 * like the phy mode.
395 */
396 error = ath_getchannels(sc, ath_countrycode,
397 ath_outdoor, ath_xchanmode);
398 if (error != 0)
399 goto bad;
400
401 /*
402 * Setup rate tables for all potential media types.
403 */
404 ath_rate_setup(sc, IEEE80211_MODE_11A);
405 ath_rate_setup(sc, IEEE80211_MODE_11B);
406 ath_rate_setup(sc, IEEE80211_MODE_11G);
407 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
408 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
409 /* NB: setup here so ath_rate_update is happy */
410 ath_setcurmode(sc, IEEE80211_MODE_11A);
411
412 /*
413 * Allocate tx+rx descriptors and populate the lists.
414 */
415 error = ath_desc_alloc(sc);
416 if (error != 0) {
417 if_printf(ifp, "failed to allocate descriptors: %d\n", error);
418 goto bad;
419 }
420 ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
421 ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE);
422 ATH_CALLOUT_INIT(&sc->sc_dfs_ch, CALLOUT_MPSAFE);
423
424 ATH_TXBUF_LOCK_INIT(sc);
425
426 TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
427 TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
428 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
429 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
430 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
431 TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc);
432
433 /*
434 * Allocate hardware transmit queues: one queue for
435 * beacon frames and one data queue for each QoS
436 * priority. Note that the hal handles reseting
437 * these queues at the needed time.
438 *
439 * XXX PS-Poll
440 */
441 sc->sc_bhalq = ath_beaconq_setup(ah);
442 if (sc->sc_bhalq == (u_int) -1) {
443 if_printf(ifp, "unable to setup a beacon xmit queue!\n");
444 error = EIO;
445 goto bad2;
446 }
447 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
448 if (sc->sc_cabq == NULL) {
449 if_printf(ifp, "unable to setup CAB xmit queue!\n");
450 error = EIO;
451 goto bad2;
452 }
453 /* NB: insure BK queue is the lowest priority h/w queue */
454 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
455 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
456 ieee80211_wme_acnames[WME_AC_BK]);
457 error = EIO;
458 goto bad2;
459 }
460 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
461 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
462 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
463 /*
464 * Not enough hardware tx queues to properly do WME;
465 * just punt and assign them all to the same h/w queue.
466 * We could do a better job of this if, for example,
467 * we allocate queues when we switch from station to
468 * AP mode.
469 */
470 if (sc->sc_ac2q[WME_AC_VI] != NULL)
471 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
472 if (sc->sc_ac2q[WME_AC_BE] != NULL)
473 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
474 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
475 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
476 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
477 }
478
479 /*
480 * Special case certain configurations. Note the
481 * CAB queue is handled by these specially so don't
482 * include them when checking the txq setup mask.
483 */
484 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
485 case 0x01:
486 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
487 break;
488 case 0x0f:
489 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
490 break;
491 default:
492 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
493 break;
494 }
495
496 /*
497 * Setup rate control. Some rate control modules
498 * call back to change the anntena state so expose
499 * the necessary entry points.
500 * XXX maybe belongs in struct ath_ratectrl?
501 */
502 sc->sc_setdefantenna = ath_setdefantenna;
503 sc->sc_rc = ath_rate_attach(sc);
504 if (sc->sc_rc == NULL) {
505 error = EIO;
506 goto bad2;
507 }
508
509 sc->sc_blinking = 0;
510 sc->sc_ledstate = 1;
511 sc->sc_ledon = 0; /* low true */
512 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */
513 ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE);
514 /*
515 * Auto-enable soft led processing for IBM cards and for
516 * 5211 minipci cards. Users can also manually enable/disable
517 * support with a sysctl.
518 */
519 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
520 if (sc->sc_softled) {
521 ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
522 ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
523 }
524
525 ifp->if_softc = sc;
526 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
527 ifp->if_start = ath_start;
528 ifp->if_watchdog = ath_watchdog;
529 ifp->if_ioctl = ath_ioctl;
530 ifp->if_init = ath_ifinit;
531 IFQ_SET_READY(&ifp->if_snd);
532
533 ic->ic_ifp = ifp;
534 ic->ic_reset = ath_reset;
535 ic->ic_newassoc = ath_newassoc;
536 ic->ic_updateslot = ath_updateslot;
537 ic->ic_wme.wme_update = ath_wme_update;
538 /* XXX not right but it's not used anywhere important */
539 ic->ic_phytype = IEEE80211_T_OFDM;
540 ic->ic_opmode = IEEE80211_M_STA;
541 ic->ic_caps =
542 IEEE80211_C_IBSS /* ibss, nee adhoc, mode */
543 | IEEE80211_C_HOSTAP /* hostap mode */
544 | IEEE80211_C_MONITOR /* monitor mode */
545 | IEEE80211_C_SHPREAMBLE /* short preamble supported */
546 | IEEE80211_C_SHSLOT /* short slot time supported */
547 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */
548 | IEEE80211_C_TXFRAG /* handle tx frags */
549 ;
550 /*
551 * Query the hal to figure out h/w crypto support.
552 */
553 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
554 ic->ic_caps |= IEEE80211_C_WEP;
555 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
556 ic->ic_caps |= IEEE80211_C_AES;
557 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
558 ic->ic_caps |= IEEE80211_C_AES_CCM;
559 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
560 ic->ic_caps |= IEEE80211_C_CKIP;
561 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
562 ic->ic_caps |= IEEE80211_C_TKIP;
563 /*
564 * Check if h/w does the MIC and/or whether the
565 * separate key cache entries are required to
566 * handle both tx+rx MIC keys.
567 */
568 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
569 ic->ic_caps |= IEEE80211_C_TKIPMIC;
570 if (ath_hal_tkipsplit(ah))
571 sc->sc_splitmic = 1;
572 }
573 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
574 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
575 /*
576 * TPC support can be done either with a global cap or
577 * per-packet support. The latter is not available on
578 * all parts. We're a bit pedantic here as all parts
579 * support a global cap.
580 */
581 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
582 ic->ic_caps |= IEEE80211_C_TXPMGT;
583
584 /*
585 * Mark WME capability only if we have sufficient
586 * hardware queues to do proper priority scheduling.
587 */
588 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
589 ic->ic_caps |= IEEE80211_C_WME;
590 /*
591 * Check for misc other capabilities.
592 */
593 if (ath_hal_hasbursting(ah))
594 ic->ic_caps |= IEEE80211_C_BURST;
595
596 /*
597 * Indicate we need the 802.11 header padded to a
598 * 32-bit boundary for 4-address and QoS frames.
599 */
600 ic->ic_flags |= IEEE80211_F_DATAPAD;
601
602 /*
603 * Query the hal about antenna support.
604 */
605 sc->sc_defant = ath_hal_getdefantenna(ah);
606
607 /*
608 * Not all chips have the VEOL support we want to
609 * use with IBSS beacons; check here for it.
610 */
611 sc->sc_hasveol = ath_hal_hasveol(ah);
612
613 /* get mac address from hardware */
614 ath_hal_getmac(ah, ic->ic_myaddr);
615
616 if_attach(ifp);
617 /* call MI attach routine. */
618 ieee80211_ifattach(ic);
619 /* override default methods */
620 ic->ic_node_alloc = ath_node_alloc;
621 sc->sc_node_free = ic->ic_node_free;
622 ic->ic_node_free = ath_node_free;
623 ic->ic_node_getrssi = ath_node_getrssi;
624 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
625 ic->ic_recv_mgmt = ath_recv_mgmt;
626 sc->sc_newstate = ic->ic_newstate;
627 ic->ic_newstate = ath_newstate;
628 ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
629 ic->ic_crypto.cs_key_alloc = ath_key_alloc;
630 ic->ic_crypto.cs_key_delete = ath_key_delete;
631 ic->ic_crypto.cs_key_set = ath_key_set;
632 ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
633 ic->ic_crypto.cs_key_update_end = ath_key_update_end;
634 /* complete initialization */
635 ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
636
637 #if NBPFILTER > 0
638 ath_bpfattach(sc);
639 #endif
640
641 #ifdef __NetBSD__
642 sc->sc_flags |= ATH_ATTACHED;
643 sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
644 ath_power, sc);
645 if (sc->sc_powerhook == NULL)
646 printf("%s: WARNING: unable to establish power hook\n",
647 sc->sc_dev.dv_xname);
648 #endif
649
650 /*
651 * Setup dynamic sysctl's now that country code and
652 * regdomain are available from the hal.
653 */
654 ath_sysctlattach(sc);
655
656 ieee80211_announce(ic);
657 ath_announce(sc);
658 return 0;
659 bad2:
660 ath_tx_cleanup(sc);
661 ath_desc_free(sc);
662 bad:
663 if (ah)
664 ath_hal_detach(ah);
665 sc->sc_invalid = 1;
666 return error;
667 }
668
669 int
670 ath_detach(struct ath_softc *sc)
671 {
672 struct ifnet *ifp = &sc->sc_if;
673 int s;
674
675 if ((sc->sc_flags & ATH_ATTACHED) == 0)
676 return (0);
677
678 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
679 __func__, ifp->if_flags);
680
681 s = splnet();
682 ath_stop(ifp, 1);
683 #if NBPFILTER > 0
684 bpfdetach(ifp);
685 #endif
686 /*
687 * NB: the order of these is important:
688 * o call the 802.11 layer before detaching the hal to
689 * insure callbacks into the driver to delete global
690 * key cache entries can be handled
691 * o reclaim the tx queue data structures after calling
692 * the 802.11 layer as we'll get called back to reclaim
693 * node state and potentially want to use them
694 * o to cleanup the tx queues the hal is called, so detach
695 * it last
696 * Other than that, it's straightforward...
697 */
698 ieee80211_ifdetach(&sc->sc_ic);
699 #ifdef ATH_TX99_DIAG
700 if (sc->sc_tx99 != NULL)
701 sc->sc_tx99->detach(sc->sc_tx99);
702 #endif
703 ath_rate_detach(sc->sc_rc);
704 ath_desc_free(sc);
705 ath_tx_cleanup(sc);
706 sysctl_teardown(&sc->sc_sysctllog);
707 ath_hal_detach(sc->sc_ah);
708 if_detach(ifp);
709 splx(s);
710 powerhook_disestablish(sc->sc_powerhook);
711
712 return 0;
713 }
714
715 #ifdef __NetBSD__
716 void
717 ath_power(int why, void *arg)
718 {
719 struct ath_softc *sc = arg;
720 int s;
721
722 DPRINTF(sc, ATH_DEBUG_ANY, "ath_power(%d)\n", why);
723
724 s = splnet();
725 switch (why) {
726 case PWR_SUSPEND:
727 case PWR_STANDBY:
728 ath_suspend(sc, why);
729 break;
730 case PWR_RESUME:
731 ath_resume(sc, why);
732 break;
733 case PWR_SOFTSUSPEND:
734 case PWR_SOFTSTANDBY:
735 case PWR_SOFTRESUME:
736 break;
737 }
738 splx(s);
739 }
740 #endif
741
742 void
743 ath_suspend(struct ath_softc *sc, int why)
744 {
745 struct ifnet *ifp = &sc->sc_if;
746
747 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
748 __func__, ifp->if_flags);
749
750 ath_stop(ifp, 1);
751 if (sc->sc_power != NULL)
752 (*sc->sc_power)(sc, why);
753 }
754
755 void
756 ath_resume(struct ath_softc *sc, int why)
757 {
758 struct ifnet *ifp = &sc->sc_if;
759
760 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
761 __func__, ifp->if_flags);
762
763 if (ifp->if_flags & IFF_UP) {
764 ath_init(sc);
765 #if 0
766 (void)ath_intr(sc);
767 #endif
768 if (sc->sc_power != NULL)
769 (*sc->sc_power)(sc, why);
770 if (ifp->if_flags & IFF_RUNNING)
771 ath_start(ifp);
772 }
773 if (sc->sc_softled) {
774 ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
775 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
776 }
777 }
778
779 void
780 ath_shutdown(void *arg)
781 {
782 struct ath_softc *sc = arg;
783
784 ath_stop(&sc->sc_if, 1);
785 }
786
787 /*
788 * Interrupt handler. Most of the actual processing is deferred.
789 */
790 int
791 ath_intr(void *arg)
792 {
793 struct ath_softc *sc = arg;
794 struct ifnet *ifp = &sc->sc_if;
795 struct ath_hal *ah = sc->sc_ah;
796 HAL_INT status;
797
798 if (sc->sc_invalid) {
799 /*
800 * The hardware is not ready/present, don't touch anything.
801 * Note this can happen early on if the IRQ is shared.
802 */
803 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
804 return 0;
805 }
806
807 if (!ath_hal_intrpend(ah)) /* shared irq, not for us */
808 return 0;
809
810 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
811 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
812 __func__, ifp->if_flags);
813 ath_hal_getisr(ah, &status); /* clear ISR */
814 ath_hal_intrset(ah, 0); /* disable further intr's */
815 return 1; /* XXX */
816 }
817 /*
818 * Figure out the reason(s) for the interrupt. Note
819 * that the hal returns a pseudo-ISR that may include
820 * bits we haven't explicitly enabled so we mask the
821 * value to insure we only process bits we requested.
822 */
823 ath_hal_getisr(ah, &status); /* NB: clears ISR too */
824 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
825 status &= sc->sc_imask; /* discard unasked for bits */
826 if (status & HAL_INT_FATAL) {
827 /*
828 * Fatal errors are unrecoverable. Typically
829 * these are caused by DMA errors. Unfortunately
830 * the exact reason is not (presently) returned
831 * by the hal.
832 */
833 sc->sc_stats.ast_hardware++;
834 ath_hal_intrset(ah, 0); /* disable intr's until reset */
835 TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
836 } else if (status & HAL_INT_RXORN) {
837 sc->sc_stats.ast_rxorn++;
838 ath_hal_intrset(ah, 0); /* disable intr's until reset */
839 TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
840 } else {
841 if (status & HAL_INT_SWBA) {
842 /*
843 * Software beacon alert--time to send a beacon.
844 * Handle beacon transmission directly; deferring
845 * this is too slow to meet timing constraints
846 * under load.
847 */
848 ath_beacon_proc(sc, 0);
849 }
850 if (status & HAL_INT_RXEOL) {
851 /*
852 * NB: the hardware should re-read the link when
853 * RXE bit is written, but it doesn't work at
854 * least on older hardware revs.
855 */
856 sc->sc_stats.ast_rxeol++;
857 sc->sc_rxlink = NULL;
858 }
859 if (status & HAL_INT_TXURN) {
860 sc->sc_stats.ast_txurn++;
861 /* bump tx trigger level */
862 ath_hal_updatetxtriglevel(ah, AH_TRUE);
863 }
864 if (status & HAL_INT_RX)
865 TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
866 if (status & HAL_INT_TX)
867 TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
868 if (status & HAL_INT_BMISS) {
869 sc->sc_stats.ast_bmiss++;
870 TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
871 }
872 if (status & HAL_INT_MIB) {
873 sc->sc_stats.ast_mib++;
874 /*
875 * Disable interrupts until we service the MIB
876 * interrupt; otherwise it will continue to fire.
877 */
878 ath_hal_intrset(ah, 0);
879 /*
880 * Let the hal handle the event. We assume it will
881 * clear whatever condition caused the interrupt.
882 */
883 ath_hal_mibevent(ah, &sc->sc_halstats);
884 ath_hal_intrset(ah, sc->sc_imask);
885 }
886 }
887 return 1;
888 }
889
890 /* Swap transmit descriptor.
891 * if AH_NEED_DESC_SWAP flag is not defined this becomes a "null"
892 * function.
893 */
894 static inline void
895 ath_desc_swap(struct ath_desc *ds)
896 {
897 #ifdef AH_NEED_DESC_SWAP
898 ds->ds_link = htole32(ds->ds_link);
899 ds->ds_data = htole32(ds->ds_data);
900 ds->ds_ctl0 = htole32(ds->ds_ctl0);
901 ds->ds_ctl1 = htole32(ds->ds_ctl1);
902 ds->ds_hw[0] = htole32(ds->ds_hw[0]);
903 ds->ds_hw[1] = htole32(ds->ds_hw[1]);
904 #endif
905 }
906
907 static void
908 ath_fatal_proc(void *arg, int pending)
909 {
910 struct ath_softc *sc = arg;
911 struct ifnet *ifp = &sc->sc_if;
912
913 if_printf(ifp, "hardware error; resetting\n");
914 ath_reset(ifp);
915 }
916
917 static void
918 ath_rxorn_proc(void *arg, int pending)
919 {
920 struct ath_softc *sc = arg;
921 struct ifnet *ifp = &sc->sc_if;
922
923 if_printf(ifp, "rx FIFO overrun; resetting\n");
924 ath_reset(ifp);
925 }
926
927 static void
928 ath_bmiss_proc(void *arg, int pending)
929 {
930 struct ath_softc *sc = arg;
931 struct ieee80211com *ic = &sc->sc_ic;
932
933 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
934 KASSERT(ic->ic_opmode == IEEE80211_M_STA,
935 ("unexpect operating mode %u", ic->ic_opmode));
936 if (ic->ic_state == IEEE80211_S_RUN) {
937 u_int64_t lastrx = sc->sc_lastrx;
938 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
939
940 DPRINTF(sc, ATH_DEBUG_BEACON,
941 "%s: tsf %" PRIu64 " lastrx %" PRId64
942 " (%" PRIu64 ") bmiss %u\n",
943 __func__, tsf, tsf - lastrx, lastrx,
944 ic->ic_bmisstimeout*1024);
945 /*
946 * Workaround phantom bmiss interrupts by sanity-checking
947 * the time of our last rx'd frame. If it is within the
948 * beacon miss interval then ignore the interrupt. If it's
949 * truly a bmiss we'll get another interrupt soon and that'll
950 * be dispatched up for processing.
951 */
952 if (tsf - lastrx > ic->ic_bmisstimeout*1024) {
953 NET_LOCK_GIANT();
954 ieee80211_beacon_miss(ic);
955 NET_UNLOCK_GIANT();
956 } else
957 sc->sc_stats.ast_bmiss_phantom++;
958 }
959 }
960
961 static void
962 ath_radar_proc(void *arg, int pending)
963 {
964 struct ath_softc *sc = arg;
965 struct ifnet *ifp = &sc->sc_if;
966 struct ath_hal *ah = sc->sc_ah;
967 HAL_CHANNEL hchan;
968
969 if (ath_hal_procdfs(ah, &hchan)) {
970 if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n",
971 hchan.channel, hchan.channelFlags, hchan.privFlags);
972 /*
973 * Initiate channel change.
974 */
975 /* XXX not yet */
976 }
977 }
978
979 static u_int
980 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
981 {
982 #define N(a) (sizeof(a) / sizeof(a[0]))
983 static const u_int modeflags[] = {
984 0, /* IEEE80211_MODE_AUTO */
985 CHANNEL_A, /* IEEE80211_MODE_11A */
986 CHANNEL_B, /* IEEE80211_MODE_11B */
987 CHANNEL_PUREG, /* IEEE80211_MODE_11G */
988 0, /* IEEE80211_MODE_FH */
989 CHANNEL_ST, /* IEEE80211_MODE_TURBO_A */
990 CHANNEL_108G /* IEEE80211_MODE_TURBO_G */
991 };
992 enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
993
994 KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
995 KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
996 return modeflags[mode];
997 #undef N
998 }
999
1000 static int
1001 ath_ifinit(struct ifnet *ifp)
1002 {
1003 struct ath_softc *sc = (struct ath_softc *)ifp->if_softc;
1004
1005 return ath_init(sc);
1006 }
1007
1008 static int
1009 ath_init(struct ath_softc *sc)
1010 {
1011 struct ifnet *ifp = &sc->sc_if;
1012 struct ieee80211com *ic = &sc->sc_ic;
1013 struct ath_hal *ah = sc->sc_ah;
1014 HAL_STATUS status;
1015 int error = 0;
1016
1017 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1018 __func__, ifp->if_flags);
1019
1020 ATH_LOCK(sc);
1021
1022 if ((error = ath_enable(sc)) != 0)
1023 return error;
1024
1025 /*
1026 * Stop anything previously setup. This is safe
1027 * whether this is the first time through or not.
1028 */
1029 ath_stop_locked(ifp, 0);
1030
1031 /*
1032 * The basic interface to setting the hardware in a good
1033 * state is ``reset''. On return the hardware is known to
1034 * be powered up and with interrupts disabled. This must
1035 * be followed by initialization of the appropriate bits
1036 * and then setup of the interrupt mask.
1037 */
1038 sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
1039 sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
1040 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
1041 if_printf(ifp, "unable to reset hardware; hal status %u\n",
1042 status);
1043 error = EIO;
1044 goto done;
1045 }
1046
1047 /*
1048 * This is needed only to setup initial state
1049 * but it's best done after a reset.
1050 */
1051 ath_update_txpow(sc);
1052 /*
1053 * Likewise this is set during reset so update
1054 * state cached in the driver.
1055 */
1056 sc->sc_diversity = ath_hal_getdiversity(ah);
1057 sc->sc_calinterval = 1;
1058 sc->sc_caltries = 0;
1059
1060 /*
1061 * Setup the hardware after reset: the key cache
1062 * is filled as needed and the receive engine is
1063 * set going. Frame transmit is handled entirely
1064 * in the frame output path; there's nothing to do
1065 * here except setup the interrupt mask.
1066 */
1067 if ((error = ath_startrecv(sc)) != 0) {
1068 if_printf(ifp, "unable to start recv logic\n");
1069 goto done;
1070 }
1071
1072 /*
1073 * Enable interrupts.
1074 */
1075 sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1076 | HAL_INT_RXEOL | HAL_INT_RXORN
1077 | HAL_INT_FATAL | HAL_INT_GLOBAL;
1078 /*
1079 * Enable MIB interrupts when there are hardware phy counters.
1080 * Note we only do this (at the moment) for station mode.
1081 */
1082 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1083 sc->sc_imask |= HAL_INT_MIB;
1084 ath_hal_intrset(ah, sc->sc_imask);
1085
1086 ifp->if_flags |= IFF_RUNNING;
1087 ic->ic_state = IEEE80211_S_INIT;
1088
1089 /*
1090 * The hardware should be ready to go now so it's safe
1091 * to kick the 802.11 state machine as it's likely to
1092 * immediately call back to us to send mgmt frames.
1093 */
1094 ath_chan_change(sc, ic->ic_curchan);
1095 #ifdef ATH_TX99_DIAG
1096 if (sc->sc_tx99 != NULL)
1097 sc->sc_tx99->start(sc->sc_tx99);
1098 else
1099 #endif
1100 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1101 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
1102 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1103 } else
1104 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1105 done:
1106 ATH_UNLOCK(sc);
1107 return error;
1108 }
1109
1110 static void
1111 ath_stop_locked(struct ifnet *ifp, int disable)
1112 {
1113 struct ath_softc *sc = ifp->if_softc;
1114 struct ieee80211com *ic = &sc->sc_ic;
1115 struct ath_hal *ah = sc->sc_ah;
1116
1117 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1118 __func__, sc->sc_invalid, ifp->if_flags);
1119
1120 ATH_LOCK_ASSERT(sc);
1121 if (ifp->if_flags & IFF_RUNNING) {
1122 /*
1123 * Shutdown the hardware and driver:
1124 * reset 802.11 state machine
1125 * turn off timers
1126 * disable interrupts
1127 * turn off the radio
1128 * clear transmit machinery
1129 * clear receive machinery
1130 * drain and release tx queues
1131 * reclaim beacon resources
1132 * power down hardware
1133 *
1134 * Note that some of this work is not possible if the
1135 * hardware is gone (invalid).
1136 */
1137 #ifdef ATH_TX99_DIAG
1138 if (sc->sc_tx99 != NULL)
1139 sc->sc_tx99->stop(sc->sc_tx99);
1140 #endif
1141 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1142 ifp->if_flags &= ~IFF_RUNNING;
1143 ifp->if_timer = 0;
1144 if (!sc->sc_invalid) {
1145 if (sc->sc_softled) {
1146 callout_stop(&sc->sc_ledtimer);
1147 ath_hal_gpioset(ah, sc->sc_ledpin,
1148 !sc->sc_ledon);
1149 sc->sc_blinking = 0;
1150 }
1151 ath_hal_intrset(ah, 0);
1152 }
1153 ath_draintxq(sc);
1154 if (!sc->sc_invalid) {
1155 ath_stoprecv(sc);
1156 ath_hal_phydisable(ah);
1157 } else
1158 sc->sc_rxlink = NULL;
1159 IF_PURGE(&ifp->if_snd);
1160 ath_beacon_free(sc);
1161 if (disable)
1162 ath_disable(sc);
1163 }
1164 }
1165
1166 static void
1167 ath_stop(struct ifnet *ifp, int disable)
1168 {
1169 struct ath_softc *sc = ifp->if_softc;
1170
1171 ATH_LOCK(sc);
1172 ath_stop_locked(ifp, disable);
1173 if (!sc->sc_invalid) {
1174 /*
1175 * Set the chip in full sleep mode. Note that we are
1176 * careful to do this only when bringing the interface
1177 * completely to a stop. When the chip is in this state
1178 * it must be carefully woken up or references to
1179 * registers in the PCI clock domain may freeze the bus
1180 * (and system). This varies by chip and is mostly an
1181 * issue with newer parts that go to sleep more quickly.
1182 */
1183 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
1184 }
1185 ATH_UNLOCK(sc);
1186 }
1187
1188 /*
1189 * Reset the hardware w/o losing operational state. This is
1190 * basically a more efficient way of doing ath_stop, ath_init,
1191 * followed by state transitions to the current 802.11
1192 * operational state. Used to recover from various errors and
1193 * to reset or reload hardware state.
1194 */
1195 int
1196 ath_reset(struct ifnet *ifp)
1197 {
1198 struct ath_softc *sc = ifp->if_softc;
1199 struct ieee80211com *ic = &sc->sc_ic;
1200 struct ath_hal *ah = sc->sc_ah;
1201 struct ieee80211_channel *c;
1202 HAL_STATUS status;
1203
1204 /*
1205 * Convert to a HAL channel description with the flags
1206 * constrained to reflect the current operating mode.
1207 */
1208 c = ic->ic_curchan;
1209 sc->sc_curchan.channel = c->ic_freq;
1210 sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
1211
1212 ath_hal_intrset(ah, 0); /* disable interrupts */
1213 ath_draintxq(sc); /* stop xmit side */
1214 ath_stoprecv(sc); /* stop recv side */
1215 /* NB: indicate channel change so we do a full reset */
1216 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
1217 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1218 __func__, status);
1219 ath_update_txpow(sc); /* update tx power state */
1220 sc->sc_diversity = ath_hal_getdiversity(ah);
1221 sc->sc_calinterval = 1;
1222 sc->sc_caltries = 0;
1223 if (ath_startrecv(sc) != 0) /* restart recv */
1224 if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1225 /*
1226 * We may be doing a reset in response to an ioctl
1227 * that changes the channel so update any state that
1228 * might change as a result.
1229 */
1230 ath_chan_change(sc, c);
1231 if (ic->ic_state == IEEE80211_S_RUN)
1232 ath_beacon_config(sc); /* restart beacons */
1233 ath_hal_intrset(ah, sc->sc_imask);
1234
1235 ath_start(ifp); /* restart xmit */
1236 return 0;
1237 }
1238
1239 /*
1240 * Cleanup driver resources when we run out of buffers
1241 * while processing fragments; return the tx buffers
1242 * allocated and drop node references.
1243 */
1244 static void
1245 ath_txfrag_cleanup(struct ath_softc *sc,
1246 ath_bufhead *frags, struct ieee80211_node *ni)
1247 {
1248 struct ath_buf *bf;
1249
1250 ATH_TXBUF_LOCK_ASSERT(sc);
1251
1252 while ((bf = STAILQ_FIRST(frags)) != NULL) {
1253 STAILQ_REMOVE_HEAD(frags, bf_list);
1254 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1255 ieee80211_node_decref(ni);
1256 }
1257 }
1258
1259 /*
1260 * Setup xmit of a fragmented frame. Allocate a buffer
1261 * for each frag and bump the node reference count to
1262 * reflect the held reference to be setup by ath_tx_start.
1263 */
1264 static int
1265 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
1266 struct mbuf *m0, struct ieee80211_node *ni)
1267 {
1268 struct mbuf *m;
1269 struct ath_buf *bf;
1270
1271 ATH_TXBUF_LOCK(sc);
1272 for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
1273 bf = STAILQ_FIRST(&sc->sc_txbuf);
1274 if (bf == NULL) { /* out of buffers, cleanup */
1275 ath_txfrag_cleanup(sc, frags, ni);
1276 break;
1277 }
1278 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1279 ieee80211_node_incref(ni);
1280 STAILQ_INSERT_TAIL(frags, bf, bf_list);
1281 }
1282 ATH_TXBUF_UNLOCK(sc);
1283
1284 return !STAILQ_EMPTY(frags);
1285 }
1286
1287 static void
1288 ath_start(struct ifnet *ifp)
1289 {
1290 struct ath_softc *sc = ifp->if_softc;
1291 struct ath_hal *ah = sc->sc_ah;
1292 struct ieee80211com *ic = &sc->sc_ic;
1293 struct ieee80211_node *ni;
1294 struct ath_buf *bf;
1295 struct mbuf *m, *next;
1296 struct ieee80211_frame *wh;
1297 struct ether_header *eh;
1298 ath_bufhead frags;
1299
1300 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
1301 return;
1302 for (;;) {
1303 /*
1304 * Grab a TX buffer and associated resources.
1305 */
1306 ATH_TXBUF_LOCK(sc);
1307 bf = STAILQ_FIRST(&sc->sc_txbuf);
1308 if (bf != NULL)
1309 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1310 ATH_TXBUF_UNLOCK(sc);
1311 if (bf == NULL) {
1312 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1313 __func__);
1314 sc->sc_stats.ast_tx_qstop++;
1315 ifp->if_flags |= IFF_OACTIVE;
1316 break;
1317 }
1318 /*
1319 * Poll the management queue for frames; they
1320 * have priority over normal data frames.
1321 */
1322 IF_DEQUEUE(&ic->ic_mgtq, m);
1323 if (m == NULL) {
1324 /*
1325 * No data frames go out unless we're associated.
1326 */
1327 if (ic->ic_state != IEEE80211_S_RUN) {
1328 DPRINTF(sc, ATH_DEBUG_XMIT,
1329 "%s: discard data packet, state %s\n",
1330 __func__,
1331 ieee80211_state_name[ic->ic_state]);
1332 sc->sc_stats.ast_tx_discard++;
1333 ATH_TXBUF_LOCK(sc);
1334 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1335 ATH_TXBUF_UNLOCK(sc);
1336 break;
1337 }
1338 IFQ_DEQUEUE(&ifp->if_snd, m); /* XXX: LOCK */
1339 if (m == NULL) {
1340 ATH_TXBUF_LOCK(sc);
1341 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1342 ATH_TXBUF_UNLOCK(sc);
1343 break;
1344 }
1345 STAILQ_INIT(&frags);
1346 /*
1347 * Find the node for the destination so we can do
1348 * things like power save and fast frames aggregation.
1349 */
1350 if (m->m_len < sizeof(struct ether_header) &&
1351 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
1352 ic->ic_stats.is_tx_nobuf++; /* XXX */
1353 ni = NULL;
1354 goto bad;
1355 }
1356 eh = mtod(m, struct ether_header *);
1357 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1358 if (ni == NULL) {
1359 /* NB: ieee80211_find_txnode does stat+msg */
1360 m_freem(m);
1361 goto bad;
1362 }
1363 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1364 (m->m_flags & M_PWR_SAV) == 0) {
1365 /*
1366 * Station in power save mode; pass the frame
1367 * to the 802.11 layer and continue. We'll get
1368 * the frame back when the time is right.
1369 */
1370 ieee80211_pwrsave(ic, ni, m);
1371 goto reclaim;
1372 }
1373 /* calculate priority so we can find the tx queue */
1374 if (ieee80211_classify(ic, m, ni)) {
1375 DPRINTF(sc, ATH_DEBUG_XMIT,
1376 "%s: discard, classification failure\n",
1377 __func__);
1378 m_freem(m);
1379 goto bad;
1380 }
1381 ifp->if_opackets++;
1382
1383 #if NBPFILTER > 0
1384 if (ifp->if_bpf)
1385 bpf_mtap(ifp->if_bpf, m);
1386 #endif
1387 /*
1388 * Encapsulate the packet in prep for transmission.
1389 */
1390 m = ieee80211_encap(ic, m, ni);
1391 if (m == NULL) {
1392 DPRINTF(sc, ATH_DEBUG_XMIT,
1393 "%s: encapsulation failure\n",
1394 __func__);
1395 sc->sc_stats.ast_tx_encap++;
1396 goto bad;
1397 }
1398 /*
1399 * Check for fragmentation. If this has frame
1400 * has been broken up verify we have enough
1401 * buffers to send all the fragments so all
1402 * go out or none...
1403 */
1404 if ((m->m_flags & M_FRAG) &&
1405 !ath_txfrag_setup(sc, &frags, m, ni)) {
1406 DPRINTF(sc, ATH_DEBUG_ANY,
1407 "%s: out of txfrag buffers\n", __func__);
1408 ic->ic_stats.is_tx_nobuf++; /* XXX */
1409 ath_freetx(m);
1410 goto bad;
1411 }
1412 } else {
1413 /*
1414 * Hack! The referenced node pointer is in the
1415 * rcvif field of the packet header. This is
1416 * placed there by ieee80211_mgmt_output because
1417 * we need to hold the reference with the frame
1418 * and there's no other way (other than packet
1419 * tags which we consider too expensive to use)
1420 * to pass it along.
1421 */
1422 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1423 m->m_pkthdr.rcvif = NULL;
1424
1425 wh = mtod(m, struct ieee80211_frame *);
1426 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1427 IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1428 /* fill time stamp */
1429 u_int64_t tsf;
1430 u_int32_t *tstamp;
1431
1432 tsf = ath_hal_gettsf64(ah);
1433 /* XXX: adjust 100us delay to xmit */
1434 tsf += 100;
1435 tstamp = (u_int32_t *)&wh[1];
1436 tstamp[0] = htole32(tsf & 0xffffffff);
1437 tstamp[1] = htole32(tsf >> 32);
1438 }
1439 sc->sc_stats.ast_tx_mgmt++;
1440 }
1441
1442 nextfrag:
1443 next = m->m_nextpkt;
1444 if (ath_tx_start(sc, ni, bf, m)) {
1445 bad:
1446 ifp->if_oerrors++;
1447 reclaim:
1448 ATH_TXBUF_LOCK(sc);
1449 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1450 ath_txfrag_cleanup(sc, &frags, ni);
1451 ATH_TXBUF_UNLOCK(sc);
1452 if (ni != NULL)
1453 ieee80211_free_node(ni);
1454 continue;
1455 }
1456 if (next != NULL) {
1457 m = next;
1458 bf = STAILQ_FIRST(&frags);
1459 KASSERT(bf != NULL, ("no buf for txfrag"));
1460 STAILQ_REMOVE_HEAD(&frags, bf_list);
1461 goto nextfrag;
1462 }
1463
1464 sc->sc_tx_timer = 5;
1465 ifp->if_timer = 1;
1466 }
1467 }
1468
1469 static int
1470 ath_media_change(struct ifnet *ifp)
1471 {
1472 #define IS_UP(ifp) \
1473 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
1474 int error;
1475
1476 error = ieee80211_media_change(ifp);
1477 if (error == ENETRESET) {
1478 if (IS_UP(ifp))
1479 ath_init(ifp->if_softc); /* XXX lose error */
1480 error = 0;
1481 }
1482 return error;
1483 #undef IS_UP
1484 }
1485
1486 #ifdef AR_DEBUG
1487 static void
1488 ath_keyprint(const char *tag, u_int ix,
1489 const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1490 {
1491 static const char *ciphers[] = {
1492 "WEP",
1493 "AES-OCB",
1494 "AES-CCM",
1495 "CKIP",
1496 "TKIP",
1497 "CLR",
1498 };
1499 int i, n;
1500
1501 printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1502 for (i = 0, n = hk->kv_len; i < n; i++)
1503 printf("%02x", hk->kv_val[i]);
1504 printf(" mac %s", ether_sprintf(mac));
1505 if (hk->kv_type == HAL_CIPHER_TKIP) {
1506 printf(" mic ");
1507 for (i = 0; i < sizeof(hk->kv_mic); i++)
1508 printf("%02x", hk->kv_mic[i]);
1509 }
1510 printf("\n");
1511 }
1512 #endif
1513
1514 /*
1515 * Set a TKIP key into the hardware. This handles the
1516 * potential distribution of key state to multiple key
1517 * cache slots for TKIP.
1518 */
1519 static int
1520 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1521 HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1522 {
1523 #define IEEE80211_KEY_XR (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1524 static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1525 struct ath_hal *ah = sc->sc_ah;
1526
1527 KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1528 ("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1529 KASSERT(sc->sc_splitmic, ("key cache !split"));
1530 if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1531 /*
1532 * TX key goes at first index, RX key at the rx index.
1533 * The hal handles the MIC keys at index+64.
1534 */
1535 memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1536 KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1537 if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
1538 return 0;
1539
1540 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1541 KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1542 /* XXX delete tx key on failure? */
1543 return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
1544 } else if (k->wk_flags & IEEE80211_KEY_XR) {
1545 /*
1546 * TX/RX key goes at first index.
1547 * The hal handles the MIC keys are index+64.
1548 */
1549 memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
1550 k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
1551 KEYPRINTF(sc, k->wk_keyix, hk, mac);
1552 return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1553 }
1554 return 0;
1555 #undef IEEE80211_KEY_XR
1556 }
1557
1558 /*
1559 * Set a net80211 key into the hardware. This handles the
1560 * potential distribution of key state to multiple key
1561 * cache slots for TKIP with hardware MIC support.
1562 */
1563 static int
1564 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1565 const u_int8_t mac0[IEEE80211_ADDR_LEN],
1566 struct ieee80211_node *bss)
1567 {
1568 #define N(a) (sizeof(a)/sizeof(a[0]))
1569 static const u_int8_t ciphermap[] = {
1570 HAL_CIPHER_WEP, /* IEEE80211_CIPHER_WEP */
1571 HAL_CIPHER_TKIP, /* IEEE80211_CIPHER_TKIP */
1572 HAL_CIPHER_AES_OCB, /* IEEE80211_CIPHER_AES_OCB */
1573 HAL_CIPHER_AES_CCM, /* IEEE80211_CIPHER_AES_CCM */
1574 (u_int8_t) -1, /* 4 is not allocated */
1575 HAL_CIPHER_CKIP, /* IEEE80211_CIPHER_CKIP */
1576 HAL_CIPHER_CLR, /* IEEE80211_CIPHER_NONE */
1577 };
1578 struct ath_hal *ah = sc->sc_ah;
1579 const struct ieee80211_cipher *cip = k->wk_cipher;
1580 u_int8_t gmac[IEEE80211_ADDR_LEN];
1581 const u_int8_t *mac;
1582 HAL_KEYVAL hk;
1583
1584 memset(&hk, 0, sizeof(hk));
1585 /*
1586 * Software crypto uses a "clear key" so non-crypto
1587 * state kept in the key cache are maintained and
1588 * so that rx frames have an entry to match.
1589 */
1590 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1591 KASSERT(cip->ic_cipher < N(ciphermap),
1592 ("invalid cipher type %u", cip->ic_cipher));
1593 hk.kv_type = ciphermap[cip->ic_cipher];
1594 hk.kv_len = k->wk_keylen;
1595 memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1596 } else
1597 hk.kv_type = HAL_CIPHER_CLR;
1598
1599 if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
1600 /*
1601 * Group keys on hardware that supports multicast frame
1602 * key search use a mac that is the sender's address with
1603 * the high bit set instead of the app-specified address.
1604 */
1605 IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
1606 gmac[0] |= 0x80;
1607 mac = gmac;
1608 } else
1609 mac = mac0;
1610
1611 if (hk.kv_type == HAL_CIPHER_TKIP &&
1612 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1613 sc->sc_splitmic) {
1614 return ath_keyset_tkip(sc, k, &hk, mac);
1615 } else {
1616 KEYPRINTF(sc, k->wk_keyix, &hk, mac);
1617 return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
1618 }
1619 #undef N
1620 }
1621
1622 /*
1623 * Allocate tx/rx key slots for TKIP. We allocate two slots for
1624 * each key, one for decrypt/encrypt and the other for the MIC.
1625 */
1626 static u_int16_t
1627 key_alloc_2pair(struct ath_softc *sc,
1628 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1629 {
1630 #define N(a) (sizeof(a)/sizeof(a[0]))
1631 u_int i, keyix;
1632
1633 KASSERT(sc->sc_splitmic, ("key cache !split"));
1634 /* XXX could optimize */
1635 for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1636 u_int8_t b = sc->sc_keymap[i];
1637 if (b != 0xff) {
1638 /*
1639 * One or more slots in this byte are free.
1640 */
1641 keyix = i*NBBY;
1642 while (b & 1) {
1643 again:
1644 keyix++;
1645 b >>= 1;
1646 }
1647 /* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1648 if (isset(sc->sc_keymap, keyix+32) ||
1649 isset(sc->sc_keymap, keyix+64) ||
1650 isset(sc->sc_keymap, keyix+32+64)) {
1651 /* full pair unavailable */
1652 /* XXX statistic */
1653 if (keyix == (i+1)*NBBY) {
1654 /* no slots were appropriate, advance */
1655 continue;
1656 }
1657 goto again;
1658 }
1659 setbit(sc->sc_keymap, keyix);
1660 setbit(sc->sc_keymap, keyix+64);
1661 setbit(sc->sc_keymap, keyix+32);
1662 setbit(sc->sc_keymap, keyix+32+64);
1663 DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1664 "%s: key pair %u,%u %u,%u\n",
1665 __func__, keyix, keyix+64,
1666 keyix+32, keyix+32+64);
1667 *txkeyix = keyix;
1668 *rxkeyix = keyix+32;
1669 return 1;
1670 }
1671 }
1672 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1673 return 0;
1674 #undef N
1675 }
1676
1677 /*
1678 * Allocate a single key cache slot.
1679 */
1680 static int
1681 key_alloc_single(struct ath_softc *sc,
1682 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1683 {
1684 #define N(a) (sizeof(a)/sizeof(a[0]))
1685 u_int i, keyix;
1686
1687 /* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
1688 for (i = 0; i < N(sc->sc_keymap); i++) {
1689 u_int8_t b = sc->sc_keymap[i];
1690 if (b != 0xff) {
1691 /*
1692 * One or more slots are free.
1693 */
1694 keyix = i*NBBY;
1695 while (b & 1)
1696 keyix++, b >>= 1;
1697 setbit(sc->sc_keymap, keyix);
1698 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
1699 __func__, keyix);
1700 *txkeyix = *rxkeyix = keyix;
1701 return 1;
1702 }
1703 }
1704 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
1705 return 0;
1706 #undef N
1707 }
1708
1709 /*
1710 * Allocate one or more key cache slots for a uniacst key. The
1711 * key itself is needed only to identify the cipher. For hardware
1712 * TKIP with split cipher+MIC keys we allocate two key cache slot
1713 * pairs so that we can setup separate TX and RX MIC keys. Note
1714 * that the MIC key for a TKIP key at slot i is assumed by the
1715 * hardware to be at slot i+64. This limits TKIP keys to the first
1716 * 64 entries.
1717 */
1718 static int
1719 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
1720 ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
1721 {
1722 struct ath_softc *sc = ic->ic_ifp->if_softc;
1723
1724 /*
1725 * Group key allocation must be handled specially for
1726 * parts that do not support multicast key cache search
1727 * functionality. For those parts the key id must match
1728 * the h/w key index so lookups find the right key. On
1729 * parts w/ the key search facility we install the sender's
1730 * mac address (with the high bit set) and let the hardware
1731 * find the key w/o using the key id. This is preferred as
1732 * it permits us to support multiple users for adhoc and/or
1733 * multi-station operation.
1734 */
1735 if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
1736 if (!(&ic->ic_nw_keys[0] <= k &&
1737 k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
1738 /* should not happen */
1739 DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1740 "%s: bogus group key\n", __func__);
1741 return 0;
1742 }
1743 /*
1744 * XXX we pre-allocate the global keys so
1745 * have no way to check if they've already been allocated.
1746 */
1747 *keyix = *rxkeyix = k - ic->ic_nw_keys;
1748 return 1;
1749 }
1750
1751 /*
1752 * We allocate two pair for TKIP when using the h/w to do
1753 * the MIC. For everything else, including software crypto,
1754 * we allocate a single entry. Note that s/w crypto requires
1755 * a pass-through slot on the 5211 and 5212. The 5210 does
1756 * not support pass-through cache entries and we map all
1757 * those requests to slot 0.
1758 */
1759 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1760 return key_alloc_single(sc, keyix, rxkeyix);
1761 } else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
1762 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
1763 return key_alloc_2pair(sc, keyix, rxkeyix);
1764 } else {
1765 return key_alloc_single(sc, keyix, rxkeyix);
1766 }
1767 }
1768
1769 /*
1770 * Delete an entry in the key cache allocated by ath_key_alloc.
1771 */
1772 static int
1773 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
1774 {
1775 struct ath_softc *sc = ic->ic_ifp->if_softc;
1776 struct ath_hal *ah = sc->sc_ah;
1777 const struct ieee80211_cipher *cip = k->wk_cipher;
1778 u_int keyix = k->wk_keyix;
1779
1780 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
1781
1782 ath_hal_keyreset(ah, keyix);
1783 /*
1784 * Handle split tx/rx keying required for TKIP with h/w MIC.
1785 */
1786 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1787 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
1788 ath_hal_keyreset(ah, keyix+32); /* RX key */
1789 if (keyix >= IEEE80211_WEP_NKID) {
1790 /*
1791 * Don't touch keymap entries for global keys so
1792 * they are never considered for dynamic allocation.
1793 */
1794 clrbit(sc->sc_keymap, keyix);
1795 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1796 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1797 sc->sc_splitmic) {
1798 clrbit(sc->sc_keymap, keyix+64); /* TX key MIC */
1799 clrbit(sc->sc_keymap, keyix+32); /* RX key */
1800 clrbit(sc->sc_keymap, keyix+32+64); /* RX key MIC */
1801 }
1802 }
1803 return 1;
1804 }
1805
1806 /*
1807 * Set the key cache contents for the specified key. Key cache
1808 * slot(s) must already have been allocated by ath_key_alloc.
1809 */
1810 static int
1811 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
1812 const u_int8_t mac[IEEE80211_ADDR_LEN])
1813 {
1814 struct ath_softc *sc = ic->ic_ifp->if_softc;
1815
1816 return ath_keyset(sc, k, mac, ic->ic_bss);
1817 }
1818
1819 /*
1820 * Block/unblock tx+rx processing while a key change is done.
1821 * We assume the caller serializes key management operations
1822 * so we only need to worry about synchronization with other
1823 * uses that originate in the driver.
1824 */
1825 static void
1826 ath_key_update_begin(struct ieee80211com *ic)
1827 {
1828 struct ifnet *ifp = ic->ic_ifp;
1829 struct ath_softc *sc = ifp->if_softc;
1830
1831 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1832 #if 0
1833 tasklet_disable(&sc->sc_rxtq);
1834 #endif
1835 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */
1836 }
1837
1838 static void
1839 ath_key_update_end(struct ieee80211com *ic)
1840 {
1841 struct ifnet *ifp = ic->ic_ifp;
1842 struct ath_softc *sc = ifp->if_softc;
1843
1844 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1845 IF_UNLOCK(&ifp->if_snd);
1846 #if 0
1847 tasklet_enable(&sc->sc_rxtq);
1848 #endif
1849 }
1850
1851 /*
1852 * Calculate the receive filter according to the
1853 * operating mode and state:
1854 *
1855 * o always accept unicast, broadcast, and multicast traffic
1856 * o maintain current state of phy error reception (the hal
1857 * may enable phy error frames for noise immunity work)
1858 * o probe request frames are accepted only when operating in
1859 * hostap, adhoc, or monitor modes
1860 * o enable promiscuous mode according to the interface state
1861 * o accept beacons:
1862 * - when operating in adhoc mode so the 802.11 layer creates
1863 * node table entries for peers,
1864 * - when operating in station mode for collecting rssi data when
1865 * the station is otherwise quiet, or
1866 * - when scanning
1867 */
1868 static u_int32_t
1869 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
1870 {
1871 struct ieee80211com *ic = &sc->sc_ic;
1872 struct ath_hal *ah = sc->sc_ah;
1873 struct ifnet *ifp = &sc->sc_if;
1874 u_int32_t rfilt;
1875
1876 rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1877 | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1878 if (ic->ic_opmode != IEEE80211_M_STA)
1879 rfilt |= HAL_RX_FILTER_PROBEREQ;
1880 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1881 (ifp->if_flags & IFF_PROMISC))
1882 rfilt |= HAL_RX_FILTER_PROM;
1883 if (ic->ic_opmode == IEEE80211_M_STA ||
1884 ic->ic_opmode == IEEE80211_M_IBSS ||
1885 state == IEEE80211_S_SCAN)
1886 rfilt |= HAL_RX_FILTER_BEACON;
1887 return rfilt;
1888 }
1889
1890 static void
1891 ath_mcastfilter_accum(void *dl, u_int32_t *mfilt)
1892 {
1893 u_int32_t val;
1894 u_int8_t pos;
1895
1896 /* calculate XOR of eight 6bit values */
1897 val = LE_READ_4((char *)dl + 0);
1898 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1899 val = LE_READ_4((char *)dl + 3);
1900 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1901 pos &= 0x3f;
1902 mfilt[pos / 32] |= (1 << (pos % 32));
1903 }
1904
1905 static void
1906 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t *mfilt)
1907 {
1908 struct ifnet *ifp = &sc->sc_if;
1909 struct ether_multi *enm;
1910 struct ether_multistep estep;
1911
1912 mfilt[0] = mfilt[1] = 0;
1913 ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
1914 while (enm != NULL) {
1915 /* XXX Punt on ranges. */
1916 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
1917 mfilt[0] = mfilt[1] = ~((u_int32_t)0);
1918 ifp->if_flags |= IFF_ALLMULTI;
1919 return;
1920 }
1921 ath_mcastfilter_accum(enm->enm_addrlo, mfilt);
1922 ETHER_NEXT_MULTI(estep, enm);
1923 }
1924 ifp->if_flags &= ~IFF_ALLMULTI;
1925 }
1926
1927 static void
1928 ath_mode_init(struct ath_softc *sc)
1929 {
1930 struct ieee80211com *ic = &sc->sc_ic;
1931 struct ath_hal *ah = sc->sc_ah;
1932 u_int32_t rfilt, mfilt[2];
1933 int i;
1934
1935 /* configure rx filter */
1936 rfilt = ath_calcrxfilter(sc, ic->ic_state);
1937 ath_hal_setrxfilter(ah, rfilt);
1938
1939 /* configure operational mode */
1940 ath_hal_setopmode(ah);
1941
1942 /* Write keys to hardware; it may have been powered down. */
1943 ath_key_update_begin(ic);
1944 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1945 ath_key_set(ic,
1946 &ic->ic_crypto.cs_nw_keys[i],
1947 ic->ic_myaddr);
1948 }
1949 ath_key_update_end(ic);
1950
1951 /*
1952 * Handle any link-level address change. Note that we only
1953 * need to force ic_myaddr; any other addresses are handled
1954 * as a byproduct of the ifnet code marking the interface
1955 * down then up.
1956 *
1957 * XXX should get from lladdr instead of arpcom but that's more work
1958 */
1959 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(sc->sc_if.if_sadl));
1960 ath_hal_setmac(ah, ic->ic_myaddr);
1961
1962 /* calculate and install multicast filter */
1963 #ifdef __FreeBSD__
1964 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1965 mfilt[0] = mfilt[1] = 0;
1966 IF_ADDR_LOCK(ifp);
1967 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1968 void *dl;
1969
1970 /* calculate XOR of eight 6bit values */
1971 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
1972 val = LE_READ_4((char *)dl + 0);
1973 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1974 val = LE_READ_4((char *)dl + 3);
1975 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1976 pos &= 0x3f;
1977 mfilt[pos / 32] |= (1 << (pos % 32));
1978 }
1979 IF_ADDR_UNLOCK(ifp);
1980 } else {
1981 mfilt[0] = mfilt[1] = ~0;
1982 }
1983 #endif
1984 #ifdef __NetBSD__
1985 ath_mcastfilter_compute(sc, mfilt);
1986 #endif
1987 ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1988 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
1989 __func__, rfilt, mfilt[0], mfilt[1]);
1990 }
1991
1992 /*
1993 * Set the slot time based on the current setting.
1994 */
1995 static void
1996 ath_setslottime(struct ath_softc *sc)
1997 {
1998 struct ieee80211com *ic = &sc->sc_ic;
1999 struct ath_hal *ah = sc->sc_ah;
2000
2001 if (ic->ic_flags & IEEE80211_F_SHSLOT)
2002 ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
2003 else
2004 ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
2005 sc->sc_updateslot = OK;
2006 }
2007
2008 /*
2009 * Callback from the 802.11 layer to update the
2010 * slot time based on the current setting.
2011 */
2012 static void
2013 ath_updateslot(struct ifnet *ifp)
2014 {
2015 struct ath_softc *sc = ifp->if_softc;
2016 struct ieee80211com *ic = &sc->sc_ic;
2017
2018 /*
2019 * When not coordinating the BSS, change the hardware
2020 * immediately. For other operation we defer the change
2021 * until beacon updates have propagated to the stations.
2022 */
2023 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
2024 sc->sc_updateslot = UPDATE;
2025 else
2026 ath_setslottime(sc);
2027 }
2028
2029 /*
2030 * Setup a h/w transmit queue for beacons.
2031 */
2032 static int
2033 ath_beaconq_setup(struct ath_hal *ah)
2034 {
2035 HAL_TXQ_INFO qi;
2036
2037 memset(&qi, 0, sizeof(qi));
2038 qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
2039 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
2040 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
2041 /* NB: for dynamic turbo, don't enable any other interrupts */
2042 qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
2043 return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
2044 }
2045
2046 /*
2047 * Setup the transmit queue parameters for the beacon queue.
2048 */
2049 static int
2050 ath_beaconq_config(struct ath_softc *sc)
2051 {
2052 #define ATH_EXPONENT_TO_VALUE(v) ((1<<(v))-1)
2053 struct ieee80211com *ic = &sc->sc_ic;
2054 struct ath_hal *ah = sc->sc_ah;
2055 HAL_TXQ_INFO qi;
2056
2057 ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
2058 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2059 /*
2060 * Always burst out beacon and CAB traffic.
2061 */
2062 qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
2063 qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
2064 qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
2065 } else {
2066 struct wmeParams *wmep =
2067 &ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
2068 /*
2069 * Adhoc mode; important thing is to use 2x cwmin.
2070 */
2071 qi.tqi_aifs = wmep->wmep_aifsn;
2072 qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2073 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2074 }
2075
2076 if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
2077 device_printf(sc->sc_dev, "unable to update parameters for "
2078 "beacon hardware queue!\n");
2079 return 0;
2080 } else {
2081 ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
2082 return 1;
2083 }
2084 #undef ATH_EXPONENT_TO_VALUE
2085 }
2086
2087 /*
2088 * Allocate and setup an initial beacon frame.
2089 */
2090 static int
2091 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
2092 {
2093 struct ieee80211com *ic = ni->ni_ic;
2094 struct ath_buf *bf;
2095 struct mbuf *m;
2096 int error;
2097
2098 bf = STAILQ_FIRST(&sc->sc_bbuf);
2099 if (bf == NULL) {
2100 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
2101 sc->sc_stats.ast_be_nombuf++; /* XXX */
2102 return ENOMEM; /* XXX */
2103 }
2104 /*
2105 * NB: the beacon data buffer must be 32-bit aligned;
2106 * we assume the mbuf routines will return us something
2107 * with this alignment (perhaps should assert).
2108 */
2109 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
2110 if (m == NULL) {
2111 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
2112 __func__);
2113 sc->sc_stats.ast_be_nombuf++;
2114 return ENOMEM;
2115 }
2116 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2117 BUS_DMA_NOWAIT);
2118 if (error == 0) {
2119 bf->bf_m = m;
2120 bf->bf_node = ieee80211_ref_node(ni);
2121 } else {
2122 m_freem(m);
2123 }
2124 return error;
2125 }
2126
2127 /*
2128 * Setup the beacon frame for transmit.
2129 */
2130 static void
2131 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
2132 {
2133 #define USE_SHPREAMBLE(_ic) \
2134 (((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
2135 == IEEE80211_F_SHPREAMBLE)
2136 struct ieee80211_node *ni = bf->bf_node;
2137 struct ieee80211com *ic = ni->ni_ic;
2138 struct mbuf *m = bf->bf_m;
2139 struct ath_hal *ah = sc->sc_ah;
2140 struct ath_desc *ds;
2141 int flags, antenna;
2142 const HAL_RATE_TABLE *rt;
2143 u_int8_t rix, rate;
2144
2145 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
2146 __func__, m, m->m_len);
2147
2148 /* setup descriptors */
2149 ds = bf->bf_desc;
2150
2151 flags = HAL_TXDESC_NOACK;
2152 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
2153 ds->ds_link = HTOAH32(bf->bf_daddr); /* self-linked */
2154 flags |= HAL_TXDESC_VEOL;
2155 /*
2156 * Let hardware handle antenna switching unless
2157 * the user has selected a transmit antenna
2158 * (sc_txantenna is not 0).
2159 */
2160 antenna = sc->sc_txantenna;
2161 } else {
2162 ds->ds_link = 0;
2163 /*
2164 * Switch antenna every 4 beacons, unless the user
2165 * has selected a transmit antenna (sc_txantenna
2166 * is not 0).
2167 *
2168 * XXX assumes two antenna
2169 */
2170 if (sc->sc_txantenna == 0)
2171 antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2172 else
2173 antenna = sc->sc_txantenna;
2174 }
2175
2176 KASSERT(bf->bf_nseg == 1,
2177 ("multi-segment beacon frame; nseg %u", bf->bf_nseg));
2178 ds->ds_data = bf->bf_segs[0].ds_addr;
2179 /*
2180 * Calculate rate code.
2181 * XXX everything at min xmit rate
2182 */
2183 rix = sc->sc_minrateix;
2184 rt = sc->sc_currates;
2185 rate = rt->info[rix].rateCode;
2186 if (USE_SHPREAMBLE(ic))
2187 rate |= rt->info[rix].shortPreamble;
2188 ath_hal_setuptxdesc(ah, ds
2189 , m->m_len + IEEE80211_CRC_LEN /* frame length */
2190 , sizeof(struct ieee80211_frame)/* header length */
2191 , HAL_PKT_TYPE_BEACON /* Atheros packet type */
2192 , ni->ni_txpower /* txpower XXX */
2193 , rate, 1 /* series 0 rate/tries */
2194 , HAL_TXKEYIX_INVALID /* no encryption */
2195 , antenna /* antenna mode */
2196 , flags /* no ack, veol for beacons */
2197 , 0 /* rts/cts rate */
2198 , 0 /* rts/cts duration */
2199 );
2200 /* NB: beacon's BufLen must be a multiple of 4 bytes */
2201 ath_hal_filltxdesc(ah, ds
2202 , roundup(m->m_len, 4) /* buffer length */
2203 , AH_TRUE /* first segment */
2204 , AH_TRUE /* last segment */
2205 , ds /* first descriptor */
2206 );
2207
2208 /* NB: The desc swap function becomes void,
2209 * if descriptor swapping is not enabled
2210 */
2211 ath_desc_swap(ds);
2212
2213 #undef USE_SHPREAMBLE
2214 }
2215
2216 /*
2217 * Transmit a beacon frame at SWBA. Dynamic updates to the
2218 * frame contents are done as needed and the slot time is
2219 * also adjusted based on current state.
2220 */
2221 static void
2222 ath_beacon_proc(void *arg, int pending)
2223 {
2224 struct ath_softc *sc = arg;
2225 struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
2226 struct ieee80211_node *ni = bf->bf_node;
2227 struct ieee80211com *ic = ni->ni_ic;
2228 struct ath_hal *ah = sc->sc_ah;
2229 struct mbuf *m;
2230 int ncabq, error, otherant;
2231
2232 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2233 __func__, pending);
2234
2235 if (ic->ic_opmode == IEEE80211_M_STA ||
2236 ic->ic_opmode == IEEE80211_M_MONITOR ||
2237 bf == NULL || bf->bf_m == NULL) {
2238 DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
2239 __func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
2240 return;
2241 }
2242 /*
2243 * Check if the previous beacon has gone out. If
2244 * not don't try to post another, skip this period
2245 * and wait for the next. Missed beacons indicate
2246 * a problem and should not occur. If we miss too
2247 * many consecutive beacons reset the device.
2248 */
2249 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2250 sc->sc_bmisscount++;
2251 DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2252 "%s: missed %u consecutive beacons\n",
2253 __func__, sc->sc_bmisscount);
2254 if (sc->sc_bmisscount > 3) /* NB: 3 is a guess */
2255 TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask);
2256 return;
2257 }
2258 if (sc->sc_bmisscount != 0) {
2259 DPRINTF(sc, ATH_DEBUG_BEACON,
2260 "%s: resume beacon xmit after %u misses\n",
2261 __func__, sc->sc_bmisscount);
2262 sc->sc_bmisscount = 0;
2263 }
2264
2265 /*
2266 * Update dynamic beacon contents. If this returns
2267 * non-zero then we need to remap the memory because
2268 * the beacon frame changed size (probably because
2269 * of the TIM bitmap).
2270 */
2271 m = bf->bf_m;
2272 ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
2273 if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
2274 /* XXX too conservative? */
2275 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2276 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2277 BUS_DMA_NOWAIT);
2278 if (error != 0) {
2279 if_printf(&sc->sc_if,
2280 "%s: bus_dmamap_load_mbuf failed, error %u\n",
2281 __func__, error);
2282 return;
2283 }
2284 }
2285
2286 /*
2287 * Handle slot time change when a non-ERP station joins/leaves
2288 * an 11g network. The 802.11 layer notifies us via callback,
2289 * we mark updateslot, then wait one beacon before effecting
2290 * the change. This gives associated stations at least one
2291 * beacon interval to note the state change.
2292 */
2293 /* XXX locking */
2294 if (sc->sc_updateslot == UPDATE)
2295 sc->sc_updateslot = COMMIT; /* commit next beacon */
2296 else if (sc->sc_updateslot == COMMIT)
2297 ath_setslottime(sc); /* commit change to h/w */
2298
2299 /*
2300 * Check recent per-antenna transmit statistics and flip
2301 * the default antenna if noticeably more frames went out
2302 * on the non-default antenna.
2303 * XXX assumes 2 anntenae
2304 */
2305 otherant = sc->sc_defant & 1 ? 2 : 1;
2306 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2307 ath_setdefantenna(sc, otherant);
2308 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2309
2310 /*
2311 * Construct tx descriptor.
2312 */
2313 ath_beacon_setup(sc, bf);
2314
2315 /*
2316 * Stop any current dma and put the new frame on the queue.
2317 * This should never fail since we check above that no frames
2318 * are still pending on the queue.
2319 */
2320 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2321 DPRINTF(sc, ATH_DEBUG_ANY,
2322 "%s: beacon queue %u did not stop?\n",
2323 __func__, sc->sc_bhalq);
2324 }
2325 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2326 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2327
2328 /*
2329 * Enable the CAB queue before the beacon queue to
2330 * insure cab frames are triggered by this beacon.
2331 */
2332 if (ncabq != 0 && (sc->sc_boff.bo_tim[4] & 1)) /* NB: only at DTIM */
2333 ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
2334 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
2335 ath_hal_txstart(ah, sc->sc_bhalq);
2336 DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2337 "%s: TXDP[%u] = %" PRIx64 " (%p)\n", __func__,
2338 sc->sc_bhalq, (uint64_t)bf->bf_daddr, bf->bf_desc);
2339
2340 sc->sc_stats.ast_be_xmit++;
2341 }
2342
2343 /*
2344 * Reset the hardware after detecting beacons have stopped.
2345 */
2346 static void
2347 ath_bstuck_proc(void *arg, int pending)
2348 {
2349 struct ath_softc *sc = arg;
2350 struct ifnet *ifp = &sc->sc_if;
2351
2352 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2353 sc->sc_bmisscount);
2354 ath_reset(ifp);
2355 }
2356
2357 /*
2358 * Reclaim beacon resources.
2359 */
2360 static void
2361 ath_beacon_free(struct ath_softc *sc)
2362 {
2363 struct ath_buf *bf;
2364
2365 STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
2366 if (bf->bf_m != NULL) {
2367 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2368 m_freem(bf->bf_m);
2369 bf->bf_m = NULL;
2370 }
2371 if (bf->bf_node != NULL) {
2372 ieee80211_free_node(bf->bf_node);
2373 bf->bf_node = NULL;
2374 }
2375 }
2376 }
2377
2378 /*
2379 * Configure the beacon and sleep timers.
2380 *
2381 * When operating as an AP this resets the TSF and sets
2382 * up the hardware to notify us when we need to issue beacons.
2383 *
2384 * When operating in station mode this sets up the beacon
2385 * timers according to the timestamp of the last received
2386 * beacon and the current TSF, configures PCF and DTIM
2387 * handling, programs the sleep registers so the hardware
2388 * will wakeup in time to receive beacons, and configures
2389 * the beacon miss handling so we'll receive a BMISS
2390 * interrupt when we stop seeing beacons from the AP
2391 * we've associated with.
2392 */
2393 static void
2394 ath_beacon_config(struct ath_softc *sc)
2395 {
2396 #define TSF_TO_TU(_h,_l) \
2397 ((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
2398 #define FUDGE 2
2399 struct ath_hal *ah = sc->sc_ah;
2400 struct ieee80211com *ic = &sc->sc_ic;
2401 struct ieee80211_node *ni = ic->ic_bss;
2402 u_int32_t nexttbtt, intval, tsftu;
2403 u_int64_t tsf;
2404
2405 /* extract tstamp from last beacon and convert to TU */
2406 nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
2407 LE_READ_4(ni->ni_tstamp.data));
2408 /* NB: the beacon interval is kept internally in TU's */
2409 intval = ni->ni_intval & HAL_BEACON_PERIOD;
2410 if (nexttbtt == 0) /* e.g. for ap mode */
2411 nexttbtt = intval;
2412 else if (intval) /* NB: can be 0 for monitor mode */
2413 nexttbtt = roundup(nexttbtt, intval);
2414 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2415 __func__, nexttbtt, intval, ni->ni_intval);
2416 if (ic->ic_opmode == IEEE80211_M_STA) {
2417 HAL_BEACON_STATE bs;
2418 int dtimperiod, dtimcount;
2419 int cfpperiod, cfpcount;
2420
2421 /*
2422 * Setup dtim and cfp parameters according to
2423 * last beacon we received (which may be none).
2424 */
2425 dtimperiod = ni->ni_dtim_period;
2426 if (dtimperiod <= 0) /* NB: 0 if not known */
2427 dtimperiod = 1;
2428 dtimcount = ni->ni_dtim_count;
2429 if (dtimcount >= dtimperiod) /* NB: sanity check */
2430 dtimcount = 0; /* XXX? */
2431 cfpperiod = 1; /* NB: no PCF support yet */
2432 cfpcount = 0;
2433 /*
2434 * Pull nexttbtt forward to reflect the current
2435 * TSF and calculate dtim+cfp state for the result.
2436 */
2437 tsf = ath_hal_gettsf64(ah);
2438 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2439 do {
2440 nexttbtt += intval;
2441 if (--dtimcount < 0) {
2442 dtimcount = dtimperiod - 1;
2443 if (--cfpcount < 0)
2444 cfpcount = cfpperiod - 1;
2445 }
2446 } while (nexttbtt < tsftu);
2447 memset(&bs, 0, sizeof(bs));
2448 bs.bs_intval = intval;
2449 bs.bs_nexttbtt = nexttbtt;
2450 bs.bs_dtimperiod = dtimperiod*intval;
2451 bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
2452 bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
2453 bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
2454 bs.bs_cfpmaxduration = 0;
2455 #if 0
2456 /*
2457 * The 802.11 layer records the offset to the DTIM
2458 * bitmap while receiving beacons; use it here to
2459 * enable h/w detection of our AID being marked in
2460 * the bitmap vector (to indicate frames for us are
2461 * pending at the AP).
2462 * XXX do DTIM handling in s/w to WAR old h/w bugs
2463 * XXX enable based on h/w rev for newer chips
2464 */
2465 bs.bs_timoffset = ni->ni_timoff;
2466 #endif
2467 /*
2468 * Calculate the number of consecutive beacons to miss
2469 * before taking a BMISS interrupt. The configuration
2470 * is specified in ms, so we need to convert that to
2471 * TU's and then calculate based on the beacon interval.
2472 * Note that we clamp the result to at most 10 beacons.
2473 */
2474 bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
2475 if (bs.bs_bmissthreshold > 10)
2476 bs.bs_bmissthreshold = 10;
2477 else if (bs.bs_bmissthreshold <= 0)
2478 bs.bs_bmissthreshold = 1;
2479
2480 /*
2481 * Calculate sleep duration. The configuration is
2482 * given in ms. We insure a multiple of the beacon
2483 * period is used. Also, if the sleep duration is
2484 * greater than the DTIM period then it makes senses
2485 * to make it a multiple of that.
2486 *
2487 * XXX fixed at 100ms
2488 */
2489 bs.bs_sleepduration =
2490 roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2491 if (bs.bs_sleepduration > bs.bs_dtimperiod)
2492 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2493
2494 DPRINTF(sc, ATH_DEBUG_BEACON,
2495 "%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2496 , __func__
2497 , tsf, tsftu
2498 , bs.bs_intval
2499 , bs.bs_nexttbtt
2500 , bs.bs_dtimperiod
2501 , bs.bs_nextdtim
2502 , bs.bs_bmissthreshold
2503 , bs.bs_sleepduration
2504 , bs.bs_cfpperiod
2505 , bs.bs_cfpmaxduration
2506 , bs.bs_cfpnext
2507 , bs.bs_timoffset
2508 );
2509 ath_hal_intrset(ah, 0);
2510 ath_hal_beacontimers(ah, &bs);
2511 sc->sc_imask |= HAL_INT_BMISS;
2512 ath_hal_intrset(ah, sc->sc_imask);
2513 } else {
2514 ath_hal_intrset(ah, 0);
2515 if (nexttbtt == intval)
2516 intval |= HAL_BEACON_RESET_TSF;
2517 if (ic->ic_opmode == IEEE80211_M_IBSS) {
2518 /*
2519 * In IBSS mode enable the beacon timers but only
2520 * enable SWBA interrupts if we need to manually
2521 * prepare beacon frames. Otherwise we use a
2522 * self-linked tx descriptor and let the hardware
2523 * deal with things.
2524 */
2525 intval |= HAL_BEACON_ENA;
2526 if (!sc->sc_hasveol)
2527 sc->sc_imask |= HAL_INT_SWBA;
2528 if ((intval & HAL_BEACON_RESET_TSF) == 0) {
2529 /*
2530 * Pull nexttbtt forward to reflect
2531 * the current TSF.
2532 */
2533 tsf = ath_hal_gettsf64(ah);
2534 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2535 do {
2536 nexttbtt += intval;
2537 } while (nexttbtt < tsftu);
2538 }
2539 ath_beaconq_config(sc);
2540 } else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2541 /*
2542 * In AP mode we enable the beacon timers and
2543 * SWBA interrupts to prepare beacon frames.
2544 */
2545 intval |= HAL_BEACON_ENA;
2546 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */
2547 ath_beaconq_config(sc);
2548 }
2549 ath_hal_beaconinit(ah, nexttbtt, intval);
2550 sc->sc_bmisscount = 0;
2551 ath_hal_intrset(ah, sc->sc_imask);
2552 /*
2553 * When using a self-linked beacon descriptor in
2554 * ibss mode load it once here.
2555 */
2556 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2557 ath_beacon_proc(sc, 0);
2558 }
2559 sc->sc_syncbeacon = 0;
2560 #undef UNDEF
2561 #undef TSF_TO_TU
2562 }
2563
2564 static int
2565 ath_descdma_setup(struct ath_softc *sc,
2566 struct ath_descdma *dd, ath_bufhead *head,
2567 const char *name, int nbuf, int ndesc)
2568 {
2569 #define DS2PHYS(_dd, _ds) \
2570 ((_dd)->dd_desc_paddr + ((char *)(_ds) - (char *)(_dd)->dd_desc))
2571 struct ifnet *ifp = &sc->sc_if;
2572 struct ath_desc *ds;
2573 struct ath_buf *bf;
2574 int i, bsize, error;
2575
2576 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2577 __func__, name, nbuf, ndesc);
2578
2579 dd->dd_name = name;
2580 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2581
2582 /*
2583 * Setup DMA descriptor area.
2584 */
2585 dd->dd_dmat = sc->sc_dmat;
2586
2587 error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE,
2588 0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0);
2589
2590 if (error != 0) {
2591 if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2592 "error %u\n", nbuf * ndesc, dd->dd_name, error);
2593 goto fail0;
2594 }
2595
2596 error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg,
2597 dd->dd_desc_len, (void **)&dd->dd_desc, BUS_DMA_COHERENT);
2598 if (error != 0) {
2599 if_printf(ifp, "unable to map %u %s descriptors, error = %u\n",
2600 nbuf * ndesc, dd->dd_name, error);
2601 goto fail1;
2602 }
2603
2604 /* allocate descriptors */
2605 error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1,
2606 dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2607 if (error != 0) {
2608 if_printf(ifp, "unable to create dmamap for %s descriptors, "
2609 "error %u\n", dd->dd_name, error);
2610 goto fail2;
2611 }
2612
2613 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc,
2614 dd->dd_desc_len, NULL, BUS_DMA_NOWAIT);
2615 if (error != 0) {
2616 if_printf(ifp, "unable to map %s descriptors, error %u\n",
2617 dd->dd_name, error);
2618 goto fail3;
2619 }
2620
2621 ds = dd->dd_desc;
2622 dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr;
2623 DPRINTF(sc, ATH_DEBUG_RESET,
2624 "%s: %s DMA map: %p (%lu) -> %" PRIx64 " (%lu)\n",
2625 __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2626 (uint64_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2627
2628 /* allocate rx buffers */
2629 bsize = sizeof(struct ath_buf) * nbuf;
2630 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2631 if (bf == NULL) {
2632 if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2633 dd->dd_name, bsize);
2634 goto fail4;
2635 }
2636 dd->dd_bufptr = bf;
2637
2638 STAILQ_INIT(head);
2639 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2640 bf->bf_desc = ds;
2641 bf->bf_daddr = DS2PHYS(dd, ds);
2642 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc,
2643 MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap);
2644 if (error != 0) {
2645 if_printf(ifp, "unable to create dmamap for %s "
2646 "buffer %u, error %u\n", dd->dd_name, i, error);
2647 ath_descdma_cleanup(sc, dd, head);
2648 return error;
2649 }
2650 STAILQ_INSERT_TAIL(head, bf, bf_list);
2651 }
2652 return 0;
2653 fail4:
2654 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2655 fail3:
2656 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2657 fail2:
2658 bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
2659 fail1:
2660 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2661 fail0:
2662 memset(dd, 0, sizeof(*dd));
2663 return error;
2664 #undef DS2PHYS
2665 }
2666
2667 static void
2668 ath_descdma_cleanup(struct ath_softc *sc,
2669 struct ath_descdma *dd, ath_bufhead *head)
2670 {
2671 struct ath_buf *bf;
2672 struct ieee80211_node *ni;
2673
2674 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2675 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2676 bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
2677 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2678
2679 STAILQ_FOREACH(bf, head, bf_list) {
2680 if (bf->bf_m) {
2681 m_freem(bf->bf_m);
2682 bf->bf_m = NULL;
2683 }
2684 if (bf->bf_dmamap != NULL) {
2685 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2686 bf->bf_dmamap = NULL;
2687 }
2688 ni = bf->bf_node;
2689 bf->bf_node = NULL;
2690 if (ni != NULL) {
2691 /*
2692 * Reclaim node reference.
2693 */
2694 ieee80211_free_node(ni);
2695 }
2696 }
2697
2698 STAILQ_INIT(head);
2699 free(dd->dd_bufptr, M_ATHDEV);
2700 memset(dd, 0, sizeof(*dd));
2701 }
2702
2703 static int
2704 ath_desc_alloc(struct ath_softc *sc)
2705 {
2706 int error;
2707
2708 error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2709 "rx", ath_rxbuf, 1);
2710 if (error != 0)
2711 return error;
2712
2713 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2714 "tx", ath_txbuf, ATH_TXDESC);
2715 if (error != 0) {
2716 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2717 return error;
2718 }
2719
2720 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2721 "beacon", 1, 1);
2722 if (error != 0) {
2723 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2724 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2725 return error;
2726 }
2727 return 0;
2728 }
2729
2730 static void
2731 ath_desc_free(struct ath_softc *sc)
2732 {
2733
2734 if (sc->sc_bdma.dd_desc_len != 0)
2735 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2736 if (sc->sc_txdma.dd_desc_len != 0)
2737 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2738 if (sc->sc_rxdma.dd_desc_len != 0)
2739 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2740 }
2741
2742 static struct ieee80211_node *
2743 ath_node_alloc(struct ieee80211_node_table *nt)
2744 {
2745 struct ieee80211com *ic = nt->nt_ic;
2746 struct ath_softc *sc = ic->ic_ifp->if_softc;
2747 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2748 struct ath_node *an;
2749
2750 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2751 if (an == NULL) {
2752 /* XXX stat+msg */
2753 return NULL;
2754 }
2755 an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
2756 ath_rate_node_init(sc, an);
2757
2758 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2759 return &an->an_node;
2760 }
2761
2762 static void
2763 ath_node_free(struct ieee80211_node *ni)
2764 {
2765 struct ieee80211com *ic = ni->ni_ic;
2766 struct ath_softc *sc = ic->ic_ifp->if_softc;
2767
2768 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2769
2770 ath_rate_node_cleanup(sc, ATH_NODE(ni));
2771 sc->sc_node_free(ni);
2772 }
2773
2774 static u_int8_t
2775 ath_node_getrssi(const struct ieee80211_node *ni)
2776 {
2777 #define HAL_EP_RND(x, mul) \
2778 ((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
2779 u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
2780 int32_t rssi;
2781
2782 /*
2783 * When only one frame is received there will be no state in
2784 * avgrssi so fallback on the value recorded by the 802.11 layer.
2785 */
2786 if (avgrssi != ATH_RSSI_DUMMY_MARKER)
2787 rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
2788 else
2789 rssi = ni->ni_rssi;
2790 return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
2791 #undef HAL_EP_RND
2792 }
2793
2794 static int
2795 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2796 {
2797 struct ath_hal *ah = sc->sc_ah;
2798 int error;
2799 struct mbuf *m;
2800 struct ath_desc *ds;
2801
2802 m = bf->bf_m;
2803 if (m == NULL) {
2804 /*
2805 * NB: by assigning a page to the rx dma buffer we
2806 * implicitly satisfy the Atheros requirement that
2807 * this buffer be cache-line-aligned and sized to be
2808 * multiple of the cache line size. Not doing this
2809 * causes weird stuff to happen (for the 5210 at least).
2810 */
2811 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2812 if (m == NULL) {
2813 DPRINTF(sc, ATH_DEBUG_ANY,
2814 "%s: no mbuf/cluster\n", __func__);
2815 sc->sc_stats.ast_rx_nombuf++;
2816 return ENOMEM;
2817 }
2818 bf->bf_m = m;
2819 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2820
2821 error = bus_dmamap_load_mbuf(sc->sc_dmat,
2822 bf->bf_dmamap, m,
2823 BUS_DMA_NOWAIT);
2824 if (error != 0) {
2825 DPRINTF(sc, ATH_DEBUG_ANY,
2826 "%s: bus_dmamap_load_mbuf failed; error %d\n",
2827 __func__, error);
2828 sc->sc_stats.ast_rx_busdma++;
2829 return error;
2830 }
2831 KASSERT(bf->bf_nseg == 1,
2832 ("multi-segment packet; nseg %u", bf->bf_nseg));
2833 }
2834 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2835 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2836
2837 /*
2838 * Setup descriptors. For receive we always terminate
2839 * the descriptor list with a self-linked entry so we'll
2840 * not get overrun under high load (as can happen with a
2841 * 5212 when ANI processing enables PHY error frames).
2842 *
2843 * To insure the last descriptor is self-linked we create
2844 * each descriptor as self-linked and add it to the end. As
2845 * each additional descriptor is added the previous self-linked
2846 * entry is ``fixed'' naturally. This should be safe even
2847 * if DMA is happening. When processing RX interrupts we
2848 * never remove/process the last, self-linked, entry on the
2849 * descriptor list. This insures the hardware always has
2850 * someplace to write a new frame.
2851 */
2852 ds = bf->bf_desc;
2853 ds->ds_link = HTOAH32(bf->bf_daddr); /* link to self */
2854 ds->ds_data = bf->bf_segs[0].ds_addr;
2855 ds->ds_vdata = mtod(m, void *); /* for radar */
2856 ath_hal_setuprxdesc(ah, ds
2857 , m->m_len /* buffer size */
2858 , 0
2859 );
2860
2861 if (sc->sc_rxlink != NULL)
2862 *sc->sc_rxlink = bf->bf_daddr;
2863 sc->sc_rxlink = &ds->ds_link;
2864 return 0;
2865 }
2866
2867 /*
2868 * Extend 15-bit time stamp from rx descriptor to
2869 * a full 64-bit TSF using the specified TSF.
2870 */
2871 static inline u_int64_t
2872 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
2873 {
2874 if ((tsf & 0x7fff) < rstamp)
2875 tsf -= 0x8000;
2876 return ((tsf &~ 0x7fff) | rstamp);
2877 }
2878
2879 /*
2880 * Intercept management frames to collect beacon rssi data
2881 * and to do ibss merges.
2882 */
2883 static void
2884 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2885 struct ieee80211_node *ni,
2886 int subtype, int rssi, u_int32_t rstamp)
2887 {
2888 struct ath_softc *sc = ic->ic_ifp->if_softc;
2889
2890 /*
2891 * Call up first so subsequent work can use information
2892 * potentially stored in the node (e.g. for ibss merge).
2893 */
2894 sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
2895 switch (subtype) {
2896 case IEEE80211_FC0_SUBTYPE_BEACON:
2897 /* update rssi statistics for use by the hal */
2898 ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
2899 if (sc->sc_syncbeacon &&
2900 ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) {
2901 /*
2902 * Resync beacon timers using the tsf of the beacon
2903 * frame we just received.
2904 */
2905 ath_beacon_config(sc);
2906 }
2907 /* fall thru... */
2908 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2909 if (ic->ic_opmode == IEEE80211_M_IBSS &&
2910 ic->ic_state == IEEE80211_S_RUN) {
2911 u_int64_t tsf = ath_extend_tsf(rstamp,
2912 ath_hal_gettsf64(sc->sc_ah));
2913
2914 /*
2915 * Handle ibss merge as needed; check the tsf on the
2916 * frame before attempting the merge. The 802.11 spec
2917 * says the station should change it's bssid to match
2918 * the oldest station with the same ssid, where oldest
2919 * is determined by the tsf. Note that hardware
2920 * reconfiguration happens through callback to
2921 * ath_newstate as the state machine will go from
2922 * RUN -> RUN when this happens.
2923 */
2924 if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
2925 DPRINTF(sc, ATH_DEBUG_STATE,
2926 "ibss merge, rstamp %u tsf %ju "
2927 "tstamp %ju\n", rstamp, (uintmax_t)tsf,
2928 (uintmax_t)ni->ni_tstamp.tsf);
2929 (void) ieee80211_ibss_merge(ni);
2930 }
2931 }
2932 break;
2933 }
2934 }
2935
2936 /*
2937 * Set the default antenna.
2938 */
2939 static void
2940 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
2941 {
2942 struct ath_hal *ah = sc->sc_ah;
2943
2944 /* XXX block beacon interrupts */
2945 ath_hal_setdefantenna(ah, antenna);
2946 if (sc->sc_defant != antenna)
2947 sc->sc_stats.ast_ant_defswitch++;
2948 sc->sc_defant = antenna;
2949 sc->sc_rxotherant = 0;
2950 }
2951
2952 static void
2953 ath_rx_proc(void *arg, int npending)
2954 {
2955 #define PA2DESC(_sc, _pa) \
2956 ((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
2957 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
2958 struct ath_softc *sc = arg;
2959 struct ath_buf *bf;
2960 struct ieee80211com *ic = &sc->sc_ic;
2961 struct ifnet *ifp = &sc->sc_if;
2962 struct ath_hal *ah = sc->sc_ah;
2963 struct ath_desc *ds;
2964 struct mbuf *m;
2965 struct ieee80211_node *ni;
2966 struct ath_node *an;
2967 int len, type, ngood;
2968 u_int phyerr;
2969 HAL_STATUS status;
2970 int16_t nf;
2971 u_int64_t tsf;
2972
2973 NET_LOCK_GIANT(); /* XXX */
2974
2975 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
2976 ngood = 0;
2977 nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
2978 tsf = ath_hal_gettsf64(ah);
2979 do {
2980 bf = STAILQ_FIRST(&sc->sc_rxbuf);
2981 if (bf == NULL) { /* NB: shouldn't happen */
2982 if_printf(ifp, "%s: no buffer!\n", __func__);
2983 break;
2984 }
2985 ds = bf->bf_desc;
2986 if (ds->ds_link == bf->bf_daddr) {
2987 /* NB: never process the self-linked entry at the end */
2988 break;
2989 }
2990 m = bf->bf_m;
2991 if (m == NULL) { /* NB: shouldn't happen */
2992 if_printf(ifp, "%s: no mbuf!\n", __func__);
2993 break;
2994 }
2995 /* XXX sync descriptor memory */
2996 /*
2997 * Must provide the virtual address of the current
2998 * descriptor, the physical address, and the virtual
2999 * address of the next descriptor in the h/w chain.
3000 * This allows the HAL to look ahead to see if the
3001 * hardware is done with a descriptor by checking the
3002 * done bit in the following descriptor and the address
3003 * of the current descriptor the DMA engine is working
3004 * on. All this is necessary because of our use of
3005 * a self-linked list to avoid rx overruns.
3006 */
3007 status = ath_hal_rxprocdesc(ah, ds,
3008 bf->bf_daddr, PA2DESC(sc, ds->ds_link));
3009 #ifdef AR_DEBUG
3010 if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
3011 ath_printrxbuf(bf, status == HAL_OK);
3012 #endif
3013 if (status == HAL_EINPROGRESS)
3014 break;
3015 STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
3016 if (ds->ds_rxstat.rs_more) {
3017 /*
3018 * Frame spans multiple descriptors; this
3019 * cannot happen yet as we don't support
3020 * jumbograms. If not in monitor mode,
3021 * discard the frame.
3022 */
3023 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3024 sc->sc_stats.ast_rx_toobig++;
3025 goto rx_next;
3026 }
3027 /* fall thru for monitor mode handling... */
3028 } else if (ds->ds_rxstat.rs_status != 0) {
3029 if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
3030 sc->sc_stats.ast_rx_crcerr++;
3031 if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
3032 sc->sc_stats.ast_rx_fifoerr++;
3033 if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
3034 sc->sc_stats.ast_rx_phyerr++;
3035 phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
3036 sc->sc_stats.ast_rx_phy[phyerr]++;
3037 goto rx_next;
3038 }
3039 if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
3040 /*
3041 * Decrypt error. If the error occurred
3042 * because there was no hardware key, then
3043 * let the frame through so the upper layers
3044 * can process it. This is necessary for 5210
3045 * parts which have no way to setup a ``clear''
3046 * key cache entry.
3047 *
3048 * XXX do key cache faulting
3049 */
3050 if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
3051 goto rx_accept;
3052 sc->sc_stats.ast_rx_badcrypt++;
3053 }
3054 if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
3055 sc->sc_stats.ast_rx_badmic++;
3056 /*
3057 * Do minimal work required to hand off
3058 * the 802.11 header for notifcation.
3059 */
3060 /* XXX frag's and qos frames */
3061 len = ds->ds_rxstat.rs_datalen;
3062 if (len >= sizeof (struct ieee80211_frame)) {
3063 bus_dmamap_sync(sc->sc_dmat,
3064 bf->bf_dmamap,
3065 0, bf->bf_dmamap->dm_mapsize,
3066 BUS_DMASYNC_POSTREAD);
3067 ieee80211_notify_michael_failure(ic,
3068 mtod(m, struct ieee80211_frame *),
3069 sc->sc_splitmic ?
3070 ds->ds_rxstat.rs_keyix-32 :
3071 ds->ds_rxstat.rs_keyix
3072 );
3073 }
3074 }
3075 ifp->if_ierrors++;
3076 /*
3077 * Reject error frames, we normally don't want
3078 * to see them in monitor mode (in monitor mode
3079 * allow through packets that have crypto problems).
3080 */
3081 if ((ds->ds_rxstat.rs_status &~
3082 (HAL_RXERR_DECRYPT|HAL_RXERR_MIC)) ||
3083 sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
3084 goto rx_next;
3085 }
3086 rx_accept:
3087 /*
3088 * Sync and unmap the frame. At this point we're
3089 * committed to passing the mbuf somewhere so clear
3090 * bf_m; this means a new sk_buff must be allocated
3091 * when the rx descriptor is setup again to receive
3092 * another frame.
3093 */
3094 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3095 0, bf->bf_dmamap->dm_mapsize,
3096 BUS_DMASYNC_POSTREAD);
3097 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3098 bf->bf_m = NULL;
3099
3100 m->m_pkthdr.rcvif = ifp;
3101 len = ds->ds_rxstat.rs_datalen;
3102 m->m_pkthdr.len = m->m_len = len;
3103
3104 sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
3105
3106 #if NBPFILTER > 0
3107 if (sc->sc_drvbpf) {
3108 u_int8_t rix;
3109
3110 /*
3111 * Discard anything shorter than an ack or cts.
3112 */
3113 if (len < IEEE80211_ACK_LEN) {
3114 DPRINTF(sc, ATH_DEBUG_RECV,
3115 "%s: runt packet %d\n",
3116 __func__, len);
3117 sc->sc_stats.ast_rx_tooshort++;
3118 m_freem(m);
3119 goto rx_next;
3120 }
3121 rix = ds->ds_rxstat.rs_rate;
3122 sc->sc_rx_th.wr_tsf = htole64(
3123 ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf));
3124 sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
3125 sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
3126 sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf;
3127 sc->sc_rx_th.wr_antnoise = nf;
3128 sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
3129
3130 bpf_mtap2(sc->sc_drvbpf,
3131 &sc->sc_rx_th, sc->sc_rx_th_len, m);
3132 }
3133 #endif
3134
3135 /*
3136 * From this point on we assume the frame is at least
3137 * as large as ieee80211_frame_min; verify that.
3138 */
3139 if (len < IEEE80211_MIN_LEN) {
3140 DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
3141 __func__, len);
3142 sc->sc_stats.ast_rx_tooshort++;
3143 m_freem(m);
3144 goto rx_next;
3145 }
3146
3147 if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
3148 ieee80211_dump_pkt(mtod(m, void *), len,
3149 sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
3150 ds->ds_rxstat.rs_rssi);
3151 }
3152
3153 m_adj(m, -IEEE80211_CRC_LEN);
3154
3155 /*
3156 * Locate the node for sender, track state, and then
3157 * pass the (referenced) node up to the 802.11 layer
3158 * for its use.
3159 */
3160 ni = ieee80211_find_rxnode_withkey(ic,
3161 mtod(m, const struct ieee80211_frame_min *),
3162 ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
3163 IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
3164 /*
3165 * Track rx rssi and do any rx antenna management.
3166 */
3167 an = ATH_NODE(ni);
3168 ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
3169 ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi);
3170 /*
3171 * Send frame up for processing.
3172 */
3173 type = ieee80211_input(ic, m, ni,
3174 ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
3175 ieee80211_free_node(ni);
3176 if (sc->sc_diversity) {
3177 /*
3178 * When using fast diversity, change the default rx
3179 * antenna if diversity chooses the other antenna 3
3180 * times in a row.
3181 */
3182 if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
3183 if (++sc->sc_rxotherant >= 3)
3184 ath_setdefantenna(sc,
3185 ds->ds_rxstat.rs_antenna);
3186 } else
3187 sc->sc_rxotherant = 0;
3188 }
3189 if (sc->sc_softled) {
3190 /*
3191 * Blink for any data frame. Otherwise do a
3192 * heartbeat-style blink when idle. The latter
3193 * is mainly for station mode where we depend on
3194 * periodic beacon frames to trigger the poll event.
3195 */
3196 if (type == IEEE80211_FC0_TYPE_DATA) {
3197 sc->sc_rxrate = ds->ds_rxstat.rs_rate;
3198 ath_led_event(sc, ATH_LED_RX);
3199 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
3200 ath_led_event(sc, ATH_LED_POLL);
3201 }
3202 /*
3203 * Arrange to update the last rx timestamp only for
3204 * frames from our ap when operating in station mode.
3205 * This assumes the rx key is always setup when associated.
3206 */
3207 if (ic->ic_opmode == IEEE80211_M_STA &&
3208 ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID)
3209 ngood++;
3210 rx_next:
3211 STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
3212 } while (ath_rxbuf_init(sc, bf) == 0);
3213
3214 /* rx signal state monitoring */
3215 ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
3216 if (ath_hal_radar_event(ah))
3217 TASK_RUN_OR_ENQUEUE(&sc->sc_radartask);
3218 if (ngood)
3219 sc->sc_lastrx = tsf;
3220
3221 #ifdef __NetBSD__
3222 /* XXX Why isn't this necessary in FreeBSD? */
3223 if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
3224 ath_start(ifp);
3225 #endif /* __NetBSD__ */
3226
3227 NET_UNLOCK_GIANT(); /* XXX */
3228 #undef PA2DESC
3229 }
3230
3231 /*
3232 * Setup a h/w transmit queue.
3233 */
3234 static struct ath_txq *
3235 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3236 {
3237 #define N(a) (sizeof(a)/sizeof(a[0]))
3238 struct ath_hal *ah = sc->sc_ah;
3239 HAL_TXQ_INFO qi;
3240 int qnum;
3241
3242 memset(&qi, 0, sizeof(qi));
3243 qi.tqi_subtype = subtype;
3244 qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3245 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3246 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3247 /*
3248 * Enable interrupts only for EOL and DESC conditions.
3249 * We mark tx descriptors to receive a DESC interrupt
3250 * when a tx queue gets deep; otherwise waiting for the
3251 * EOL to reap descriptors. Note that this is done to
3252 * reduce interrupt load and this only defers reaping
3253 * descriptors, never transmitting frames. Aside from
3254 * reducing interrupts this also permits more concurrency.
3255 * The only potential downside is if the tx queue backs
3256 * up in which case the top half of the kernel may backup
3257 * due to a lack of tx descriptors.
3258 */
3259 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
3260 qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3261 if (qnum == -1) {
3262 /*
3263 * NB: don't print a message, this happens
3264 * normally on parts with too few tx queues
3265 */
3266 return NULL;
3267 }
3268 if (qnum >= N(sc->sc_txq)) {
3269 device_printf(sc->sc_dev,
3270 "hal qnum %u out of range, max %zu!\n",
3271 qnum, N(sc->sc_txq));
3272 ath_hal_releasetxqueue(ah, qnum);
3273 return NULL;
3274 }
3275 if (!ATH_TXQ_SETUP(sc, qnum)) {
3276 struct ath_txq *txq = &sc->sc_txq[qnum];
3277
3278 txq->axq_qnum = qnum;
3279 txq->axq_depth = 0;
3280 txq->axq_intrcnt = 0;
3281 txq->axq_link = NULL;
3282 STAILQ_INIT(&txq->axq_q);
3283 ATH_TXQ_LOCK_INIT(sc, txq);
3284 sc->sc_txqsetup |= 1<<qnum;
3285 }
3286 return &sc->sc_txq[qnum];
3287 #undef N
3288 }
3289
3290 /*
3291 * Setup a hardware data transmit queue for the specified
3292 * access control. The hal may not support all requested
3293 * queues in which case it will return a reference to a
3294 * previously setup queue. We record the mapping from ac's
3295 * to h/w queues for use by ath_tx_start and also track
3296 * the set of h/w queues being used to optimize work in the
3297 * transmit interrupt handler and related routines.
3298 */
3299 static int
3300 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3301 {
3302 #define N(a) (sizeof(a)/sizeof(a[0]))
3303 struct ath_txq *txq;
3304
3305 if (ac >= N(sc->sc_ac2q)) {
3306 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3307 ac, N(sc->sc_ac2q));
3308 return 0;
3309 }
3310 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3311 if (txq != NULL) {
3312 sc->sc_ac2q[ac] = txq;
3313 return 1;
3314 } else
3315 return 0;
3316 #undef N
3317 }
3318
3319 /*
3320 * Update WME parameters for a transmit queue.
3321 */
3322 static int
3323 ath_txq_update(struct ath_softc *sc, int ac)
3324 {
3325 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1)
3326 #define ATH_TXOP_TO_US(v) (v<<5)
3327 struct ieee80211com *ic = &sc->sc_ic;
3328 struct ath_txq *txq = sc->sc_ac2q[ac];
3329 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3330 struct ath_hal *ah = sc->sc_ah;
3331 HAL_TXQ_INFO qi;
3332
3333 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3334 qi.tqi_aifs = wmep->wmep_aifsn;
3335 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3336 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3337 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3338
3339 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3340 device_printf(sc->sc_dev, "unable to update hardware queue "
3341 "parameters for %s traffic!\n",
3342 ieee80211_wme_acnames[ac]);
3343 return 0;
3344 } else {
3345 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3346 return 1;
3347 }
3348 #undef ATH_TXOP_TO_US
3349 #undef ATH_EXPONENT_TO_VALUE
3350 }
3351
3352 /*
3353 * Callback from the 802.11 layer to update WME parameters.
3354 */
3355 static int
3356 ath_wme_update(struct ieee80211com *ic)
3357 {
3358 struct ath_softc *sc = ic->ic_ifp->if_softc;
3359
3360 return !ath_txq_update(sc, WME_AC_BE) ||
3361 !ath_txq_update(sc, WME_AC_BK) ||
3362 !ath_txq_update(sc, WME_AC_VI) ||
3363 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3364 }
3365
3366 /*
3367 * Reclaim resources for a setup queue.
3368 */
3369 static void
3370 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3371 {
3372
3373 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3374 ATH_TXQ_LOCK_DESTROY(txq);
3375 sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3376 }
3377
3378 /*
3379 * Reclaim all tx queue resources.
3380 */
3381 static void
3382 ath_tx_cleanup(struct ath_softc *sc)
3383 {
3384 int i;
3385
3386 ATH_TXBUF_LOCK_DESTROY(sc);
3387 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3388 if (ATH_TXQ_SETUP(sc, i))
3389 ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3390 }
3391
3392 /*
3393 * Defragment an mbuf chain, returning at most maxfrags separate
3394 * mbufs+clusters. If this is not possible NULL is returned and
3395 * the original mbuf chain is left in it's present (potentially
3396 * modified) state. We use two techniques: collapsing consecutive
3397 * mbufs and replacing consecutive mbufs by a cluster.
3398 */
3399 static struct mbuf *
3400 ath_defrag(struct mbuf *m0, int how, int maxfrags)
3401 {
3402 struct mbuf *m, *n, *n2, **prev;
3403 u_int curfrags;
3404
3405 /*
3406 * Calculate the current number of frags.
3407 */
3408 curfrags = 0;
3409 for (m = m0; m != NULL; m = m->m_next)
3410 curfrags++;
3411 /*
3412 * First, try to collapse mbufs. Note that we always collapse
3413 * towards the front so we don't need to deal with moving the
3414 * pkthdr. This may be suboptimal if the first mbuf has much
3415 * less data than the following.
3416 */
3417 m = m0;
3418 again:
3419 for (;;) {
3420 n = m->m_next;
3421 if (n == NULL)
3422 break;
3423 if ((m->m_flags & M_RDONLY) == 0 &&
3424 n->m_len < M_TRAILINGSPACE(m)) {
3425 bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
3426 n->m_len);
3427 m->m_len += n->m_len;
3428 m->m_next = n->m_next;
3429 m_free(n);
3430 if (--curfrags <= maxfrags)
3431 return m0;
3432 } else
3433 m = n;
3434 }
3435 KASSERT(maxfrags > 1,
3436 ("maxfrags %u, but normal collapse failed", maxfrags));
3437 /*
3438 * Collapse consecutive mbufs to a cluster.
3439 */
3440 prev = &m0->m_next; /* NB: not the first mbuf */
3441 while ((n = *prev) != NULL) {
3442 if ((n2 = n->m_next) != NULL &&
3443 n->m_len + n2->m_len < MCLBYTES) {
3444 m = m_getcl(how, MT_DATA, 0);
3445 if (m == NULL)
3446 goto bad;
3447 bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
3448 bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
3449 n2->m_len);
3450 m->m_len = n->m_len + n2->m_len;
3451 m->m_next = n2->m_next;
3452 *prev = m;
3453 m_free(n);
3454 m_free(n2);
3455 if (--curfrags <= maxfrags) /* +1 cl -2 mbufs */
3456 return m0;
3457 /*
3458 * Still not there, try the normal collapse
3459 * again before we allocate another cluster.
3460 */
3461 goto again;
3462 }
3463 prev = &n->m_next;
3464 }
3465 /*
3466 * No place where we can collapse to a cluster; punt.
3467 * This can occur if, for example, you request 2 frags
3468 * but the packet requires that both be clusters (we
3469 * never reallocate the first mbuf to avoid moving the
3470 * packet header).
3471 */
3472 bad:
3473 return NULL;
3474 }
3475
3476 /*
3477 * Return h/w rate index for an IEEE rate (w/o basic rate bit).
3478 */
3479 static int
3480 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
3481 {
3482 int i;
3483
3484 for (i = 0; i < rt->rateCount; i++)
3485 if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
3486 return i;
3487 return 0; /* NB: lowest rate */
3488 }
3489
3490 static void
3491 ath_freetx(struct mbuf *m)
3492 {
3493 struct mbuf *next;
3494
3495 do {
3496 next = m->m_nextpkt;
3497 m->m_nextpkt = NULL;
3498 m_freem(m);
3499 } while ((m = next) != NULL);
3500 }
3501
3502 static int
3503 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
3504 struct mbuf *m0)
3505 {
3506 struct ieee80211com *ic = &sc->sc_ic;
3507 struct ath_hal *ah = sc->sc_ah;
3508 struct ifnet *ifp = &sc->sc_if;
3509 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
3510 int i, error, iswep, ismcast, isfrag, ismrr;
3511 int keyix, hdrlen, pktlen, try0;
3512 u_int8_t rix, txrate, ctsrate;
3513 u_int8_t cix = 0xff; /* NB: silence compiler */
3514 struct ath_desc *ds, *ds0;
3515 struct ath_txq *txq;
3516 struct ieee80211_frame *wh;
3517 u_int subtype, flags, ctsduration;
3518 HAL_PKT_TYPE atype;
3519 const HAL_RATE_TABLE *rt;
3520 HAL_BOOL shortPreamble;
3521 struct ath_node *an;
3522 struct mbuf *m;
3523 u_int pri;
3524
3525 wh = mtod(m0, struct ieee80211_frame *);
3526 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
3527 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3528 isfrag = m0->m_flags & M_FRAG;
3529 hdrlen = ieee80211_anyhdrsize(wh);
3530 /*
3531 * Packet length must not include any
3532 * pad bytes; deduct them here.
3533 */
3534 pktlen = m0->m_pkthdr.len - (hdrlen & 3);
3535
3536 if (iswep) {
3537 const struct ieee80211_cipher *cip;
3538 struct ieee80211_key *k;
3539
3540 /*
3541 * Construct the 802.11 header+trailer for an encrypted
3542 * frame. The only reason this can fail is because of an
3543 * unknown or unsupported cipher/key type.
3544 */
3545 k = ieee80211_crypto_encap(ic, ni, m0);
3546 if (k == NULL) {
3547 /*
3548 * This can happen when the key is yanked after the
3549 * frame was queued. Just discard the frame; the
3550 * 802.11 layer counts failures and provides
3551 * debugging/diagnostics.
3552 */
3553 ath_freetx(m0);
3554 return EIO;
3555 }
3556 /*
3557 * Adjust the packet + header lengths for the crypto
3558 * additions and calculate the h/w key index. When
3559 * a s/w mic is done the frame will have had any mic
3560 * added to it prior to entry so m0->m_pkthdr.len above will
3561 * account for it. Otherwise we need to add it to the
3562 * packet length.
3563 */
3564 cip = k->wk_cipher;
3565 hdrlen += cip->ic_header;
3566 pktlen += cip->ic_header + cip->ic_trailer;
3567 /* NB: frags always have any TKIP MIC done in s/w */
3568 if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
3569 pktlen += cip->ic_miclen;
3570 keyix = k->wk_keyix;
3571
3572 /* packet header may have moved, reset our local pointer */
3573 wh = mtod(m0, struct ieee80211_frame *);
3574 } else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
3575 /*
3576 * Use station key cache slot, if assigned.
3577 */
3578 keyix = ni->ni_ucastkey.wk_keyix;
3579 if (keyix == IEEE80211_KEYIX_NONE)
3580 keyix = HAL_TXKEYIX_INVALID;
3581 } else
3582 keyix = HAL_TXKEYIX_INVALID;
3583
3584 pktlen += IEEE80211_CRC_LEN;
3585
3586 /*
3587 * Load the DMA map so any coalescing is done. This
3588 * also calculates the number of descriptors we need.
3589 */
3590 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3591 BUS_DMA_NOWAIT);
3592 if (error == EFBIG) {
3593 /* XXX packet requires too many descriptors */
3594 bf->bf_nseg = ATH_TXDESC+1;
3595 } else if (error != 0) {
3596 sc->sc_stats.ast_tx_busdma++;
3597 ath_freetx(m0);
3598 return error;
3599 }
3600 /*
3601 * Discard null packets and check for packets that
3602 * require too many TX descriptors. We try to convert
3603 * the latter to a cluster.
3604 */
3605 if (error == EFBIG) { /* too many desc's, linearize */
3606 sc->sc_stats.ast_tx_linear++;
3607 m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
3608 if (m == NULL) {
3609 ath_freetx(m0);
3610 sc->sc_stats.ast_tx_nombuf++;
3611 return ENOMEM;
3612 }
3613 m0 = m;
3614 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3615 BUS_DMA_NOWAIT);
3616 if (error != 0) {
3617 sc->sc_stats.ast_tx_busdma++;
3618 ath_freetx(m0);
3619 return error;
3620 }
3621 KASSERT(bf->bf_nseg <= ATH_TXDESC,
3622 ("too many segments after defrag; nseg %u", bf->bf_nseg));
3623 } else if (bf->bf_nseg == 0) { /* null packet, discard */
3624 sc->sc_stats.ast_tx_nodata++;
3625 ath_freetx(m0);
3626 return EIO;
3627 }
3628 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
3629 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
3630 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
3631 bf->bf_m = m0;
3632 bf->bf_node = ni; /* NB: held reference */
3633
3634 /* setup descriptors */
3635 ds = bf->bf_desc;
3636 rt = sc->sc_currates;
3637 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3638
3639 /*
3640 * NB: the 802.11 layer marks whether or not we should
3641 * use short preamble based on the current mode and
3642 * negotiated parameters.
3643 */
3644 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3645 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) {
3646 shortPreamble = AH_TRUE;
3647 sc->sc_stats.ast_tx_shortpre++;
3648 } else {
3649 shortPreamble = AH_FALSE;
3650 }
3651
3652 an = ATH_NODE(ni);
3653 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */
3654 ismrr = 0; /* default no multi-rate retry*/
3655 /*
3656 * Calculate Atheros packet type from IEEE80211 packet header,
3657 * setup for rate calculations, and select h/w transmit queue.
3658 */
3659 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3660 case IEEE80211_FC0_TYPE_MGT:
3661 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3662 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
3663 atype = HAL_PKT_TYPE_BEACON;
3664 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3665 atype = HAL_PKT_TYPE_PROBE_RESP;
3666 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
3667 atype = HAL_PKT_TYPE_ATIM;
3668 else
3669 atype = HAL_PKT_TYPE_NORMAL; /* XXX */
3670 rix = sc->sc_minrateix;
3671 txrate = rt->info[rix].rateCode;
3672 if (shortPreamble)
3673 txrate |= rt->info[rix].shortPreamble;
3674 try0 = ATH_TXMGTTRY;
3675 /* NB: force all management frames to highest queue */
3676 if (ni->ni_flags & IEEE80211_NODE_QOS) {
3677 /* NB: force all management frames to highest queue */
3678 pri = WME_AC_VO;
3679 } else
3680 pri = WME_AC_BE;
3681 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
3682 break;
3683 case IEEE80211_FC0_TYPE_CTL:
3684 atype = HAL_PKT_TYPE_PSPOLL; /* stop setting of duration */
3685 rix = sc->sc_minrateix;
3686 txrate = rt->info[rix].rateCode;
3687 if (shortPreamble)
3688 txrate |= rt->info[rix].shortPreamble;
3689 try0 = ATH_TXMGTTRY;
3690 /* NB: force all ctl frames to highest queue */
3691 if (ni->ni_flags & IEEE80211_NODE_QOS) {
3692 /* NB: force all ctl frames to highest queue */
3693 pri = WME_AC_VO;
3694 } else
3695 pri = WME_AC_BE;
3696 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
3697 break;
3698 case IEEE80211_FC0_TYPE_DATA:
3699 atype = HAL_PKT_TYPE_NORMAL; /* default */
3700 /*
3701 * Data frames: multicast frames go out at a fixed rate,
3702 * otherwise consult the rate control module for the
3703 * rate to use.
3704 */
3705 if (ismcast) {
3706 /*
3707 * Check mcast rate setting in case it's changed.
3708 * XXX move out of fastpath
3709 */
3710 if (ic->ic_mcast_rate != sc->sc_mcastrate) {
3711 sc->sc_mcastrix =
3712 ath_tx_findrix(rt, ic->ic_mcast_rate);
3713 sc->sc_mcastrate = ic->ic_mcast_rate;
3714 }
3715 rix = sc->sc_mcastrix;
3716 txrate = rt->info[rix].rateCode;
3717 try0 = 1;
3718 } else {
3719 ath_rate_findrate(sc, an, shortPreamble, pktlen,
3720 &rix, &try0, &txrate);
3721 sc->sc_txrate = txrate; /* for LED blinking */
3722 if (try0 != ATH_TXMAXTRY)
3723 ismrr = 1;
3724 }
3725 pri = M_WME_GETAC(m0);
3726 if (cap->cap_wmeParams[pri].wmep_noackPolicy)
3727 flags |= HAL_TXDESC_NOACK;
3728 break;
3729 default:
3730 if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3731 wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3732 /* XXX statistic */
3733 ath_freetx(m0);
3734 return EIO;
3735 }
3736 txq = sc->sc_ac2q[pri];
3737
3738 /*
3739 * When servicing one or more stations in power-save mode
3740 * multicast frames must be buffered until after the beacon.
3741 * We use the CAB queue for that.
3742 */
3743 if (ismcast && ic->ic_ps_sta) {
3744 txq = sc->sc_cabq;
3745 /* XXX? more bit in 802.11 frame header */
3746 }
3747
3748 /*
3749 * Calculate miscellaneous flags.
3750 */
3751 if (ismcast) {
3752 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */
3753 } else if (pktlen > ic->ic_rtsthreshold) {
3754 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */
3755 cix = rt->info[rix].controlRate;
3756 sc->sc_stats.ast_tx_rts++;
3757 }
3758 if (flags & HAL_TXDESC_NOACK) /* NB: avoid double counting */
3759 sc->sc_stats.ast_tx_noack++;
3760
3761 /*
3762 * If 802.11g protection is enabled, determine whether
3763 * to use RTS/CTS or just CTS. Note that this is only
3764 * done for OFDM unicast frames.
3765 */
3766 if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3767 rt->info[rix].phy == IEEE80211_T_OFDM &&
3768 (flags & HAL_TXDESC_NOACK) == 0) {
3769 /* XXX fragments must use CCK rates w/ protection */
3770 if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3771 flags |= HAL_TXDESC_RTSENA;
3772 else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3773 flags |= HAL_TXDESC_CTSENA;
3774 if (isfrag) {
3775 /*
3776 * For frags it would be desirable to use the
3777 * highest CCK rate for RTS/CTS. But stations
3778 * farther away may detect it at a lower CCK rate
3779 * so use the configured protection rate instead
3780 * (for now).
3781 */
3782 cix = rt->info[sc->sc_protrix].controlRate;
3783 } else
3784 cix = rt->info[sc->sc_protrix].controlRate;
3785 sc->sc_stats.ast_tx_protect++;
3786 }
3787
3788 /*
3789 * Calculate duration. This logically belongs in the 802.11
3790 * layer but it lacks sufficient information to calculate it.
3791 */
3792 if ((flags & HAL_TXDESC_NOACK) == 0 &&
3793 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
3794 u_int16_t dur;
3795 /*
3796 * XXX not right with fragmentation.
3797 */
3798 if (shortPreamble)
3799 dur = rt->info[rix].spAckDuration;
3800 else
3801 dur = rt->info[rix].lpAckDuration;
3802 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
3803 dur += dur; /* additional SIFS+ACK */
3804 KASSERT(m0->m_nextpkt != NULL, ("no fragment"));
3805 /*
3806 * Include the size of next fragment so NAV is
3807 * updated properly. The last fragment uses only
3808 * the ACK duration
3809 */
3810 dur += ath_hal_computetxtime(ah, rt,
3811 m0->m_nextpkt->m_pkthdr.len,
3812 rix, shortPreamble);
3813 }
3814 if (isfrag) {
3815 /*
3816 * Force hardware to use computed duration for next
3817 * fragment by disabling multi-rate retry which updates
3818 * duration based on the multi-rate duration table.
3819 */
3820 try0 = ATH_TXMAXTRY;
3821 }
3822 *(u_int16_t *)wh->i_dur = htole16(dur);
3823 }
3824
3825 /*
3826 * Calculate RTS/CTS rate and duration if needed.
3827 */
3828 ctsduration = 0;
3829 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
3830 /*
3831 * CTS transmit rate is derived from the transmit rate
3832 * by looking in the h/w rate table. We must also factor
3833 * in whether or not a short preamble is to be used.
3834 */
3835 /* NB: cix is set above where RTS/CTS is enabled */
3836 KASSERT(cix != 0xff, ("cix not setup"));
3837 ctsrate = rt->info[cix].rateCode;
3838 /*
3839 * Compute the transmit duration based on the frame
3840 * size and the size of an ACK frame. We call into the
3841 * HAL to do the computation since it depends on the
3842 * characteristics of the actual PHY being used.
3843 *
3844 * NB: CTS is assumed the same size as an ACK so we can
3845 * use the precalculated ACK durations.
3846 */
3847 if (shortPreamble) {
3848 ctsrate |= rt->info[cix].shortPreamble;
3849 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
3850 ctsduration += rt->info[cix].spAckDuration;
3851 ctsduration += ath_hal_computetxtime(ah,
3852 rt, pktlen, rix, AH_TRUE);
3853 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
3854 ctsduration += rt->info[rix].spAckDuration;
3855 } else {
3856 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
3857 ctsduration += rt->info[cix].lpAckDuration;
3858 ctsduration += ath_hal_computetxtime(ah,
3859 rt, pktlen, rix, AH_FALSE);
3860 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
3861 ctsduration += rt->info[rix].lpAckDuration;
3862 }
3863 /*
3864 * Must disable multi-rate retry when using RTS/CTS.
3865 */
3866 ismrr = 0;
3867 try0 = ATH_TXMGTTRY; /* XXX */
3868 } else
3869 ctsrate = 0;
3870
3871 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3872 ieee80211_dump_pkt(mtod(m0, void *), m0->m_len,
3873 sc->sc_hwmap[txrate].ieeerate, -1);
3874 #if NBPFILTER > 0
3875 if (ic->ic_rawbpf)
3876 bpf_mtap(ic->ic_rawbpf, m0);
3877 if (sc->sc_drvbpf) {
3878 u_int64_t tsf = ath_hal_gettsf64(ah);
3879
3880 sc->sc_tx_th.wt_tsf = htole64(tsf);
3881 sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
3882 if (iswep)
3883 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3884 if (isfrag)
3885 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
3886 sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
3887 sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3888 sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3889
3890 bpf_mtap2(sc->sc_drvbpf,
3891 &sc->sc_tx_th, sc->sc_tx_th_len, m0);
3892 }
3893 #endif
3894
3895 /*
3896 * Determine if a tx interrupt should be generated for
3897 * this descriptor. We take a tx interrupt to reap
3898 * descriptors when the h/w hits an EOL condition or
3899 * when the descriptor is specifically marked to generate
3900 * an interrupt. We periodically mark descriptors in this
3901 * way to insure timely replenishing of the supply needed
3902 * for sending frames. Defering interrupts reduces system
3903 * load and potentially allows more concurrent work to be
3904 * done but if done to aggressively can cause senders to
3905 * backup.
3906 *
3907 * NB: use >= to deal with sc_txintrperiod changing
3908 * dynamically through sysctl.
3909 */
3910 if (flags & HAL_TXDESC_INTREQ) {
3911 txq->axq_intrcnt = 0;
3912 } else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
3913 flags |= HAL_TXDESC_INTREQ;
3914 txq->axq_intrcnt = 0;
3915 }
3916
3917 /*
3918 * Formulate first tx descriptor with tx controls.
3919 */
3920 /* XXX check return value? */
3921 ath_hal_setuptxdesc(ah, ds
3922 , pktlen /* packet length */
3923 , hdrlen /* header length */
3924 , atype /* Atheros packet type */
3925 , ni->ni_txpower /* txpower */
3926 , txrate, try0 /* series 0 rate/tries */
3927 , keyix /* key cache index */
3928 , sc->sc_txantenna /* antenna mode */
3929 , flags /* flags */
3930 , ctsrate /* rts/cts rate */
3931 , ctsduration /* rts/cts duration */
3932 );
3933 bf->bf_flags = flags;
3934 /*
3935 * Setup the multi-rate retry state only when we're
3936 * going to use it. This assumes ath_hal_setuptxdesc
3937 * initializes the descriptors (so we don't have to)
3938 * when the hardware supports multi-rate retry and
3939 * we don't use it.
3940 */
3941 if (ismrr)
3942 ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
3943
3944 /*
3945 * Fillin the remainder of the descriptor info.
3946 */
3947 ds0 = ds;
3948 for (i = 0; i < bf->bf_nseg; i++, ds++) {
3949 ds->ds_data = bf->bf_segs[i].ds_addr;
3950 if (i == bf->bf_nseg - 1)
3951 ds->ds_link = 0;
3952 else
3953 ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
3954 ath_hal_filltxdesc(ah, ds
3955 , bf->bf_segs[i].ds_len /* segment length */
3956 , i == 0 /* first segment */
3957 , i == bf->bf_nseg - 1 /* last segment */
3958 , ds0 /* first descriptor */
3959 );
3960
3961 /* NB: The desc swap function becomes void,
3962 * if descriptor swapping is not enabled
3963 */
3964 ath_desc_swap(ds);
3965
3966 DPRINTF(sc, ATH_DEBUG_XMIT,
3967 "%s: %d: %08x %08x %08x %08x %08x %08x\n",
3968 __func__, i, ds->ds_link, ds->ds_data,
3969 ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
3970 }
3971 /*
3972 * Insert the frame on the outbound list and
3973 * pass it on to the hardware.
3974 */
3975 ATH_TXQ_LOCK(txq);
3976 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
3977 if (txq->axq_link == NULL) {
3978 ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
3979 DPRINTF(sc, ATH_DEBUG_XMIT,
3980 "%s: TXDP[%u] = %" PRIx64 " (%p) depth %d\n", __func__,
3981 txq->axq_qnum, (uint64_t)bf->bf_daddr, bf->bf_desc,
3982 txq->axq_depth);
3983 } else {
3984 *txq->axq_link = HTOAH32(bf->bf_daddr);
3985 DPRINTF(sc, ATH_DEBUG_XMIT,
3986 "%s: link[%u](%p)=%" PRIx64 " (%p) depth %d\n",
3987 __func__, txq->axq_qnum, txq->axq_link,
3988 (uint64_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
3989 }
3990 txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
3991 /*
3992 * The CAB queue is started from the SWBA handler since
3993 * frames only go out on DTIM and to avoid possible races.
3994 */
3995 if (txq != sc->sc_cabq)
3996 ath_hal_txstart(ah, txq->axq_qnum);
3997 ATH_TXQ_UNLOCK(txq);
3998
3999 return 0;
4000 }
4001
4002 /*
4003 * Process completed xmit descriptors from the specified queue.
4004 */
4005 static int
4006 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
4007 {
4008 struct ath_hal *ah = sc->sc_ah;
4009 struct ieee80211com *ic = &sc->sc_ic;
4010 struct ath_buf *bf;
4011 struct ath_desc *ds, *ds0;
4012 struct ieee80211_node *ni;
4013 struct ath_node *an;
4014 int sr, lr, pri, nacked;
4015 HAL_STATUS status;
4016
4017 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
4018 __func__, txq->axq_qnum,
4019 (void *)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4020 txq->axq_link);
4021 nacked = 0;
4022 for (;;) {
4023 ATH_TXQ_LOCK(txq);
4024 txq->axq_intrcnt = 0; /* reset periodic desc intr count */
4025 bf = STAILQ_FIRST(&txq->axq_q);
4026 if (bf == NULL) {
4027 txq->axq_link = NULL;
4028 ATH_TXQ_UNLOCK(txq);
4029 break;
4030 }
4031 ds0 = &bf->bf_desc[0];
4032 ds = &bf->bf_desc[bf->bf_nseg - 1];
4033 status = ath_hal_txprocdesc(ah, ds);
4034 #ifdef AR_DEBUG
4035 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
4036 ath_printtxbuf(bf, status == HAL_OK);
4037 #endif
4038 if (status == HAL_EINPROGRESS) {
4039 ATH_TXQ_UNLOCK(txq);
4040 break;
4041 }
4042 ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4043 ATH_TXQ_UNLOCK(txq);
4044
4045 ni = bf->bf_node;
4046 if (ni != NULL) {
4047 an = ATH_NODE(ni);
4048 if (ds->ds_txstat.ts_status == 0) {
4049 u_int8_t txant = ds->ds_txstat.ts_antenna;
4050 sc->sc_stats.ast_ant_tx[txant]++;
4051 sc->sc_ant_tx[txant]++;
4052 if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
4053 sc->sc_stats.ast_tx_altrate++;
4054 sc->sc_stats.ast_tx_rssi =
4055 ds->ds_txstat.ts_rssi;
4056 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
4057 ds->ds_txstat.ts_rssi);
4058 pri = M_WME_GETAC(bf->bf_m);
4059 if (pri >= WME_AC_VO)
4060 ic->ic_wme.wme_hipri_traffic++;
4061 ni->ni_inact = ni->ni_inact_reload;
4062 } else {
4063 if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
4064 sc->sc_stats.ast_tx_xretries++;
4065 if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
4066 sc->sc_stats.ast_tx_fifoerr++;
4067 if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
4068 sc->sc_stats.ast_tx_filtered++;
4069 }
4070 sr = ds->ds_txstat.ts_shortretry;
4071 lr = ds->ds_txstat.ts_longretry;
4072 sc->sc_stats.ast_tx_shortretry += sr;
4073 sc->sc_stats.ast_tx_longretry += lr;
4074 /*
4075 * Hand the descriptor to the rate control algorithm.
4076 */
4077 if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
4078 (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
4079 /*
4080 * If frame was ack'd update the last rx time
4081 * used to workaround phantom bmiss interrupts.
4082 */
4083 if (ds->ds_txstat.ts_status == 0)
4084 nacked++;
4085 ath_rate_tx_complete(sc, an, ds, ds0);
4086 }
4087 /*
4088 * Reclaim reference to node.
4089 *
4090 * NB: the node may be reclaimed here if, for example
4091 * this is a DEAUTH message that was sent and the
4092 * node was timed out due to inactivity.
4093 */
4094 ieee80211_free_node(ni);
4095 }
4096 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
4097 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4098 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4099 m_freem(bf->bf_m);
4100 bf->bf_m = NULL;
4101 bf->bf_node = NULL;
4102
4103 ATH_TXBUF_LOCK(sc);
4104 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4105 ATH_TXBUF_UNLOCK(sc);
4106 }
4107 return nacked;
4108 }
4109
4110 static inline int
4111 txqactive(struct ath_hal *ah, int qnum)
4112 {
4113 u_int32_t txqs = 1<<qnum;
4114 ath_hal_gettxintrtxqs(ah, &txqs);
4115 return (txqs & (1<<qnum));
4116 }
4117
4118 /*
4119 * Deferred processing of transmit interrupt; special-cased
4120 * for a single hardware transmit queue (e.g. 5210 and 5211).
4121 */
4122 static void
4123 ath_tx_proc_q0(void *arg, int npending)
4124 {
4125 struct ath_softc *sc = arg;
4126 struct ifnet *ifp = &sc->sc_if;
4127
4128 if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]) > 0){
4129 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4130 ifp->if_flags &= ~IFF_OACTIVE;
4131 sc->sc_tx_timer = 0;
4132 }
4133 if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4134 ath_tx_processq(sc, sc->sc_cabq);
4135
4136 if (sc->sc_softled)
4137 ath_led_event(sc, ATH_LED_TX);
4138
4139 ath_start(ifp);
4140 }
4141
4142 /*
4143 * Deferred processing of transmit interrupt; special-cased
4144 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4145 */
4146 static void
4147 ath_tx_proc_q0123(void *arg, int npending)
4148 {
4149 struct ath_softc *sc = arg;
4150 struct ifnet *ifp = &sc->sc_if;
4151 int nacked;
4152
4153 /*
4154 * Process each active queue.
4155 */
4156 nacked = 0;
4157 if (txqactive(sc->sc_ah, 0))
4158 nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
4159 if (txqactive(sc->sc_ah, 1))
4160 nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
4161 if (txqactive(sc->sc_ah, 2))
4162 nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
4163 if (txqactive(sc->sc_ah, 3))
4164 nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
4165 if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4166 ath_tx_processq(sc, sc->sc_cabq);
4167 if (nacked) {
4168 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4169 ifp->if_flags &= ~IFF_OACTIVE;
4170 sc->sc_tx_timer = 0;
4171 }
4172 ath_tx_processq(sc, sc->sc_cabq);
4173
4174 if (sc->sc_softled)
4175 ath_led_event(sc, ATH_LED_TX);
4176
4177 ath_start(ifp);
4178 }
4179
4180 /*
4181 * Deferred processing of transmit interrupt.
4182 */
4183 static void
4184 ath_tx_proc(void *arg, int npending)
4185 {
4186 struct ath_softc *sc = arg;
4187 struct ifnet *ifp = &sc->sc_if;
4188 int i, nacked;
4189
4190 /*
4191 * Process each active queue.
4192 */
4193 nacked = 0;
4194 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4195 if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
4196 nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
4197 if (nacked) {
4198 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4199
4200 ifp->if_flags &= ~IFF_OACTIVE;
4201 sc->sc_tx_timer = 0;
4202 }
4203
4204 if (sc->sc_softled)
4205 ath_led_event(sc, ATH_LED_TX);
4206
4207 ath_start(ifp);
4208 }
4209
4210 static void
4211 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
4212 {
4213 struct ath_hal *ah = sc->sc_ah;
4214 struct ieee80211_node *ni;
4215 struct ath_buf *bf;
4216
4217 /*
4218 * NB: this assumes output has been stopped and
4219 * we do not need to block ath_tx_tasklet
4220 */
4221 for (;;) {
4222 ATH_TXQ_LOCK(txq);
4223 bf = STAILQ_FIRST(&txq->axq_q);
4224 if (bf == NULL) {
4225 txq->axq_link = NULL;
4226 ATH_TXQ_UNLOCK(txq);
4227 break;
4228 }
4229 ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4230 ATH_TXQ_UNLOCK(txq);
4231 #ifdef AR_DEBUG
4232 if (sc->sc_debug & ATH_DEBUG_RESET)
4233 ath_printtxbuf(bf,
4234 ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
4235 #endif /* AR_DEBUG */
4236 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4237 m_freem(bf->bf_m);
4238 bf->bf_m = NULL;
4239 ni = bf->bf_node;
4240 bf->bf_node = NULL;
4241 if (ni != NULL) {
4242 /*
4243 * Reclaim node reference.
4244 */
4245 ieee80211_free_node(ni);
4246 }
4247 ATH_TXBUF_LOCK(sc);
4248 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4249 ATH_TXBUF_UNLOCK(sc);
4250 }
4251 }
4252
4253 static void
4254 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4255 {
4256 struct ath_hal *ah = sc->sc_ah;
4257
4258 (void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4259 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4260 __func__, txq->axq_qnum,
4261 (void *)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4262 txq->axq_link);
4263 }
4264
4265 /*
4266 * Drain the transmit queues and reclaim resources.
4267 */
4268 static void
4269 ath_draintxq(struct ath_softc *sc)
4270 {
4271 struct ath_hal *ah = sc->sc_ah;
4272 struct ifnet *ifp = &sc->sc_if;
4273 int i;
4274
4275 /* XXX return value */
4276 if (!sc->sc_invalid) {
4277 /* don't touch the hardware if marked invalid */
4278 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4279 DPRINTF(sc, ATH_DEBUG_RESET,
4280 "%s: beacon queue %p\n", __func__,
4281 (void *)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
4282 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4283 if (ATH_TXQ_SETUP(sc, i))
4284 ath_tx_stopdma(sc, &sc->sc_txq[i]);
4285 }
4286 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4287 if (ATH_TXQ_SETUP(sc, i))
4288 ath_tx_draintxq(sc, &sc->sc_txq[i]);
4289 ifp->if_flags &= ~IFF_OACTIVE;
4290 sc->sc_tx_timer = 0;
4291 }
4292
4293 /*
4294 * Disable the receive h/w in preparation for a reset.
4295 */
4296 static void
4297 ath_stoprecv(struct ath_softc *sc)
4298 {
4299 #define PA2DESC(_sc, _pa) \
4300 ((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
4301 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
4302 struct ath_hal *ah = sc->sc_ah;
4303
4304 ath_hal_stoppcurecv(ah); /* disable PCU */
4305 ath_hal_setrxfilter(ah, 0); /* clear recv filter */
4306 ath_hal_stopdmarecv(ah); /* disable DMA engine */
4307 DELAY(3000); /* 3ms is long enough for 1 frame */
4308 #ifdef AR_DEBUG
4309 if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
4310 struct ath_buf *bf;
4311
4312 printf("%s: rx queue %p, link %p\n", __func__,
4313 (void *)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
4314 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4315 struct ath_desc *ds = bf->bf_desc;
4316 HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
4317 bf->bf_daddr, PA2DESC(sc, ds->ds_link));
4318 if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
4319 ath_printrxbuf(bf, status == HAL_OK);
4320 }
4321 }
4322 #endif
4323 sc->sc_rxlink = NULL; /* just in case */
4324 #undef PA2DESC
4325 }
4326
4327 /*
4328 * Enable the receive h/w following a reset.
4329 */
4330 static int
4331 ath_startrecv(struct ath_softc *sc)
4332 {
4333 struct ath_hal *ah = sc->sc_ah;
4334 struct ath_buf *bf;
4335
4336 sc->sc_rxlink = NULL;
4337 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4338 int error = ath_rxbuf_init(sc, bf);
4339 if (error != 0) {
4340 DPRINTF(sc, ATH_DEBUG_RECV,
4341 "%s: ath_rxbuf_init failed %d\n",
4342 __func__, error);
4343 return error;
4344 }
4345 }
4346
4347 bf = STAILQ_FIRST(&sc->sc_rxbuf);
4348 ath_hal_putrxbuf(ah, bf->bf_daddr);
4349 ath_hal_rxena(ah); /* enable recv descriptors */
4350 ath_mode_init(sc); /* set filters, etc. */
4351 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */
4352 return 0;
4353 }
4354
4355 /*
4356 * Update internal state after a channel change.
4357 */
4358 static void
4359 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4360 {
4361 struct ieee80211com *ic = &sc->sc_ic;
4362 enum ieee80211_phymode mode;
4363 u_int16_t flags;
4364
4365 /*
4366 * Change channels and update the h/w rate map
4367 * if we're switching; e.g. 11a to 11b/g.
4368 */
4369 mode = ieee80211_chan2mode(ic, chan);
4370 if (mode != sc->sc_curmode)
4371 ath_setcurmode(sc, mode);
4372 /*
4373 * Update BPF state. NB: ethereal et. al. don't handle
4374 * merged flags well so pick a unique mode for their use.
4375 */
4376 if (IEEE80211_IS_CHAN_A(chan))
4377 flags = IEEE80211_CHAN_A;
4378 /* XXX 11g schizophrenia */
4379 else if (IEEE80211_IS_CHAN_G(chan) ||
4380 IEEE80211_IS_CHAN_PUREG(chan))
4381 flags = IEEE80211_CHAN_G;
4382 else
4383 flags = IEEE80211_CHAN_B;
4384 if (IEEE80211_IS_CHAN_T(chan))
4385 flags |= IEEE80211_CHAN_TURBO;
4386 sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
4387 htole16(chan->ic_freq);
4388 sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
4389 htole16(flags);
4390 }
4391
4392 /*
4393 * Poll for a channel clear indication; this is required
4394 * for channels requiring DFS and not previously visited
4395 * and/or with a recent radar detection.
4396 */
4397 static void
4398 ath_dfswait(void *arg)
4399 {
4400 struct ath_softc *sc = arg;
4401 struct ath_hal *ah = sc->sc_ah;
4402 HAL_CHANNEL hchan;
4403
4404 ath_hal_radar_wait(ah, &hchan);
4405 if (hchan.privFlags & CHANNEL_INTERFERENCE) {
4406 if_printf(&sc->sc_if,
4407 "channel %u/0x%x/0x%x has interference\n",
4408 hchan.channel, hchan.channelFlags, hchan.privFlags);
4409 return;
4410 }
4411 if ((hchan.privFlags & CHANNEL_DFS) == 0) {
4412 /* XXX should not happen */
4413 return;
4414 }
4415 if (hchan.privFlags & CHANNEL_DFS_CLEAR) {
4416 sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR;
4417 sc->sc_if.if_flags &= ~IFF_OACTIVE;
4418 if_printf(&sc->sc_if,
4419 "channel %u/0x%x/0x%x marked clear\n",
4420 hchan.channel, hchan.channelFlags, hchan.privFlags);
4421 } else
4422 callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc);
4423 }
4424
4425 /*
4426 * Set/change channels. If the channel is really being changed,
4427 * it's done by reseting the chip. To accomplish this we must
4428 * first cleanup any pending DMA, then restart stuff after a la
4429 * ath_init.
4430 */
4431 static int
4432 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4433 {
4434 struct ath_hal *ah = sc->sc_ah;
4435 struct ieee80211com *ic = &sc->sc_ic;
4436 HAL_CHANNEL hchan;
4437
4438 /*
4439 * Convert to a HAL channel description with
4440 * the flags constrained to reflect the current
4441 * operating mode.
4442 */
4443 hchan.channel = chan->ic_freq;
4444 hchan.channelFlags = ath_chan2flags(ic, chan);
4445
4446 DPRINTF(sc, ATH_DEBUG_RESET,
4447 "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
4448 __func__,
4449 ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
4450 sc->sc_curchan.channelFlags),
4451 sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
4452 ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
4453 hchan.channel, hchan.channelFlags);
4454 if (hchan.channel != sc->sc_curchan.channel ||
4455 hchan.channelFlags != sc->sc_curchan.channelFlags) {
4456 HAL_STATUS status;
4457
4458 /*
4459 * To switch channels clear any pending DMA operations;
4460 * wait long enough for the RX fifo to drain, reset the
4461 * hardware at the new frequency, and then re-enable
4462 * the relevant bits of the h/w.
4463 */
4464 ath_hal_intrset(ah, 0); /* disable interrupts */
4465 ath_draintxq(sc); /* clear pending tx frames */
4466 ath_stoprecv(sc); /* turn off frame recv */
4467 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
4468 if_printf(ic->ic_ifp, "%s: unable to reset "
4469 "channel %u (%u MHz, flags 0x%x hal flags 0x%x)\n",
4470 __func__, ieee80211_chan2ieee(ic, chan),
4471 chan->ic_freq, chan->ic_flags, hchan.channelFlags);
4472 return EIO;
4473 }
4474 sc->sc_curchan = hchan;
4475 ath_update_txpow(sc); /* update tx power state */
4476 sc->sc_diversity = ath_hal_getdiversity(ah);
4477 sc->sc_calinterval = 1;
4478 sc->sc_caltries = 0;
4479
4480 /*
4481 * Re-enable rx framework.
4482 */
4483 if (ath_startrecv(sc) != 0) {
4484 if_printf(&sc->sc_if,
4485 "%s: unable to restart recv logic\n", __func__);
4486 return EIO;
4487 }
4488
4489 /*
4490 * Change channels and update the h/w rate map
4491 * if we're switching; e.g. 11a to 11b/g.
4492 */
4493 ic->ic_ibss_chan = chan;
4494 ath_chan_change(sc, chan);
4495
4496 /*
4497 * Handle DFS required waiting period to determine
4498 * if channel is clear of radar traffic.
4499 */
4500 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
4501 #define DFS_AND_NOT_CLEAR(_c) \
4502 (((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS)
4503 if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) {
4504 if_printf(&sc->sc_if,
4505 "wait for DFS clear channel signal\n");
4506 /* XXX stop sndq */
4507 sc->sc_if.if_flags |= IFF_OACTIVE;
4508 callout_reset(&sc->sc_dfs_ch,
4509 2 * hz, ath_dfswait, sc);
4510 } else
4511 callout_stop(&sc->sc_dfs_ch);
4512 #undef DFS_NOT_CLEAR
4513 }
4514
4515 /*
4516 * Re-enable interrupts.
4517 */
4518 ath_hal_intrset(ah, sc->sc_imask);
4519 }
4520 return 0;
4521 }
4522
4523 static void
4524 ath_next_scan(void *arg)
4525 {
4526 struct ath_softc *sc = arg;
4527 struct ieee80211com *ic = &sc->sc_ic;
4528 int s;
4529
4530 /* don't call ath_start w/o network interrupts blocked */
4531 s = splnet();
4532
4533 if (ic->ic_state == IEEE80211_S_SCAN)
4534 ieee80211_next_scan(ic);
4535 splx(s);
4536 }
4537
4538 /*
4539 * Periodically recalibrate the PHY to account
4540 * for temperature/environment changes.
4541 */
4542 static void
4543 ath_calibrate(void *arg)
4544 {
4545 struct ath_softc *sc = arg;
4546 struct ath_hal *ah = sc->sc_ah;
4547 HAL_BOOL iqCalDone;
4548
4549 sc->sc_stats.ast_per_cal++;
4550
4551 ATH_LOCK(sc);
4552
4553 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4554 /*
4555 * Rfgain is out of bounds, reset the chip
4556 * to load new gain values.
4557 */
4558 DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4559 "%s: rfgain change\n", __func__);
4560 sc->sc_stats.ast_per_rfgain++;
4561 ath_reset(&sc->sc_if);
4562 }
4563 if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
4564 DPRINTF(sc, ATH_DEBUG_ANY,
4565 "%s: calibration of channel %u failed\n",
4566 __func__, sc->sc_curchan.channel);
4567 sc->sc_stats.ast_per_calfail++;
4568 }
4569 /*
4570 * Calibrate noise floor data again in case of change.
4571 */
4572 ath_hal_process_noisefloor(ah);
4573 /*
4574 * Poll more frequently when the IQ calibration is in
4575 * progress to speedup loading the final settings.
4576 * We temper this aggressive polling with an exponential
4577 * back off after 4 tries up to ath_calinterval.
4578 */
4579 if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
4580 sc->sc_caltries = 0;
4581 sc->sc_calinterval = ath_calinterval;
4582 } else if (sc->sc_caltries > 4) {
4583 sc->sc_caltries = 0;
4584 sc->sc_calinterval <<= 1;
4585 if (sc->sc_calinterval > ath_calinterval)
4586 sc->sc_calinterval = ath_calinterval;
4587 }
4588 KASSERT(0 < sc->sc_calinterval && sc->sc_calinterval <= ath_calinterval,
4589 ("bad calibration interval %u", sc->sc_calinterval));
4590
4591 DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4592 "%s: next +%u (%siqCalDone tries %u)\n", __func__,
4593 sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
4594 sc->sc_caltries++;
4595 callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4596 ath_calibrate, sc);
4597 ATH_UNLOCK(sc);
4598 }
4599
4600 static int
4601 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
4602 {
4603 struct ifnet *ifp = ic->ic_ifp;
4604 struct ath_softc *sc = ifp->if_softc;
4605 struct ath_hal *ah = sc->sc_ah;
4606 struct ieee80211_node *ni;
4607 int i, error;
4608 const u_int8_t *bssid;
4609 u_int32_t rfilt;
4610 static const HAL_LED_STATE leds[] = {
4611 HAL_LED_INIT, /* IEEE80211_S_INIT */
4612 HAL_LED_SCAN, /* IEEE80211_S_SCAN */
4613 HAL_LED_AUTH, /* IEEE80211_S_AUTH */
4614 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */
4615 HAL_LED_RUN, /* IEEE80211_S_RUN */
4616 };
4617
4618 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4619 ieee80211_state_name[ic->ic_state],
4620 ieee80211_state_name[nstate]);
4621
4622 callout_stop(&sc->sc_scan_ch);
4623 callout_stop(&sc->sc_cal_ch);
4624 callout_stop(&sc->sc_dfs_ch);
4625 ath_hal_setledstate(ah, leds[nstate]); /* set LED */
4626
4627 if (nstate == IEEE80211_S_INIT) {
4628 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4629 /*
4630 * NB: disable interrupts so we don't rx frames.
4631 */
4632 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4633 /*
4634 * Notify the rate control algorithm.
4635 */
4636 ath_rate_newstate(sc, nstate);
4637 goto done;
4638 }
4639 ni = ic->ic_bss;
4640 error = ath_chan_set(sc, ic->ic_curchan);
4641 if (error != 0)
4642 goto bad;
4643 rfilt = ath_calcrxfilter(sc, nstate);
4644 if (nstate == IEEE80211_S_SCAN)
4645 bssid = ifp->if_broadcastaddr;
4646 else
4647 bssid = ni->ni_bssid;
4648 ath_hal_setrxfilter(ah, rfilt);
4649 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
4650 __func__, rfilt, ether_sprintf(bssid));
4651
4652 if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
4653 ath_hal_setassocid(ah, bssid, ni->ni_associd);
4654 else
4655 ath_hal_setassocid(ah, bssid, 0);
4656 if (ic->ic_flags & IEEE80211_F_PRIVACY) {
4657 for (i = 0; i < IEEE80211_WEP_NKID; i++)
4658 if (ath_hal_keyisvalid(ah, i))
4659 ath_hal_keysetmac(ah, i, bssid);
4660 }
4661
4662 /*
4663 * Notify the rate control algorithm so rates
4664 * are setup should ath_beacon_alloc be called.
4665 */
4666 ath_rate_newstate(sc, nstate);
4667
4668 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4669 /* nothing to do */;
4670 } else if (nstate == IEEE80211_S_RUN) {
4671 DPRINTF(sc, ATH_DEBUG_STATE,
4672 "%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
4673 "capinfo=0x%04x chan=%d\n"
4674 , __func__
4675 , ic->ic_flags
4676 , ni->ni_intval
4677 , ether_sprintf(ni->ni_bssid)
4678 , ni->ni_capinfo
4679 , ieee80211_chan2ieee(ic, ic->ic_curchan));
4680
4681 switch (ic->ic_opmode) {
4682 case IEEE80211_M_HOSTAP:
4683 case IEEE80211_M_IBSS:
4684 /*
4685 * Allocate and setup the beacon frame.
4686 *
4687 * Stop any previous beacon DMA. This may be
4688 * necessary, for example, when an ibss merge
4689 * causes reconfiguration; there will be a state
4690 * transition from RUN->RUN that means we may
4691 * be called with beacon transmission active.
4692 */
4693 ath_hal_stoptxdma(ah, sc->sc_bhalq);
4694 ath_beacon_free(sc);
4695 error = ath_beacon_alloc(sc, ni);
4696 if (error != 0)
4697 goto bad;
4698 /*
4699 * If joining an adhoc network defer beacon timer
4700 * configuration to the next beacon frame so we
4701 * have a current TSF to use. Otherwise we're
4702 * starting an ibss/bss so there's no need to delay.
4703 */
4704 if (ic->ic_opmode == IEEE80211_M_IBSS &&
4705 ic->ic_bss->ni_tstamp.tsf != 0)
4706 sc->sc_syncbeacon = 1;
4707 else
4708 ath_beacon_config(sc);
4709 break;
4710 case IEEE80211_M_STA:
4711 /*
4712 * Allocate a key cache slot to the station.
4713 */
4714 if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
4715 sc->sc_hasclrkey &&
4716 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4717 ath_setup_stationkey(ni);
4718 /*
4719 * Defer beacon timer configuration to the next
4720 * beacon frame so we have a current TSF to use
4721 * (any TSF collected when scanning is likely old).
4722 */
4723 sc->sc_syncbeacon = 1;
4724 break;
4725 default:
4726 break;
4727 }
4728 /*
4729 * Let the hal process statistics collected during a
4730 * scan so it can provide calibrated noise floor data.
4731 */
4732 ath_hal_process_noisefloor(ah);
4733 /*
4734 * Reset rssi stats; maybe not the best place...
4735 */
4736 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
4737 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
4738 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
4739 } else {
4740 ath_hal_intrset(ah,
4741 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4742 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4743 }
4744 done:
4745 /*
4746 * Invoke the parent method to complete the work.
4747 */
4748 error = sc->sc_newstate(ic, nstate, arg);
4749 /*
4750 * Finally, start any timers.
4751 */
4752 if (nstate == IEEE80211_S_RUN) {
4753 /* start periodic recalibration timer */
4754 callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4755 ath_calibrate, sc);
4756 } else if (nstate == IEEE80211_S_SCAN) {
4757 /* start ap/neighbor scan timer */
4758 callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
4759 ath_next_scan, sc);
4760 }
4761 bad:
4762 return error;
4763 }
4764
4765 /*
4766 * Allocate a key cache slot to the station so we can
4767 * setup a mapping from key index to node. The key cache
4768 * slot is needed for managing antenna state and for
4769 * compression when stations do not use crypto. We do
4770 * it uniliaterally here; if crypto is employed this slot
4771 * will be reassigned.
4772 */
4773 static void
4774 ath_setup_stationkey(struct ieee80211_node *ni)
4775 {
4776 struct ieee80211com *ic = ni->ni_ic;
4777 struct ath_softc *sc = ic->ic_ifp->if_softc;
4778 ieee80211_keyix keyix, rxkeyix;
4779
4780 if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
4781 /*
4782 * Key cache is full; we'll fall back to doing
4783 * the more expensive lookup in software. Note
4784 * this also means no h/w compression.
4785 */
4786 /* XXX msg+statistic */
4787 } else {
4788 /* XXX locking? */
4789 ni->ni_ucastkey.wk_keyix = keyix;
4790 ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
4791 /* NB: this will create a pass-thru key entry */
4792 ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
4793 }
4794 }
4795
4796 /*
4797 * Setup driver-specific state for a newly associated node.
4798 * Note that we're called also on a re-associate, the isnew
4799 * param tells us if this is the first time or not.
4800 */
4801 static void
4802 ath_newassoc(struct ieee80211_node *ni, int isnew)
4803 {
4804 struct ieee80211com *ic = ni->ni_ic;
4805 struct ath_softc *sc = ic->ic_ifp->if_softc;
4806
4807 ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
4808 if (isnew &&
4809 (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
4810 KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
4811 ("new assoc with a unicast key already setup (keyix %u)",
4812 ni->ni_ucastkey.wk_keyix));
4813 ath_setup_stationkey(ni);
4814 }
4815 }
4816
4817 static int
4818 ath_getchannels(struct ath_softc *sc, u_int cc,
4819 HAL_BOOL outdoor, HAL_BOOL xchanmode)
4820 {
4821 #define COMPAT (CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
4822 struct ieee80211com *ic = &sc->sc_ic;
4823 struct ifnet *ifp = &sc->sc_if;
4824 struct ath_hal *ah = sc->sc_ah;
4825 HAL_CHANNEL *chans;
4826 int i, ix, nchan;
4827
4828 chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
4829 M_TEMP, M_NOWAIT);
4830 if (chans == NULL) {
4831 if_printf(ifp, "unable to allocate channel table\n");
4832 return ENOMEM;
4833 }
4834 if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
4835 NULL, 0, NULL,
4836 cc, HAL_MODE_ALL, outdoor, xchanmode)) {
4837 u_int32_t rd;
4838
4839 (void)ath_hal_getregdomain(ah, &rd);
4840 if_printf(ifp, "unable to collect channel list from hal; "
4841 "regdomain likely %u country code %u\n", rd, cc);
4842 free(chans, M_TEMP);
4843 return EINVAL;
4844 }
4845
4846 /*
4847 * Convert HAL channels to ieee80211 ones and insert
4848 * them in the table according to their channel number.
4849 */
4850 for (i = 0; i < nchan; i++) {
4851 HAL_CHANNEL *c = &chans[i];
4852 u_int16_t flags;
4853
4854 ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags);
4855 if (ix > IEEE80211_CHAN_MAX) {
4856 if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n",
4857 ix, c->channel, c->channelFlags);
4858 continue;
4859 }
4860 if (ix < 0) {
4861 /* XXX can't handle stuff <2400 right now */
4862 if (bootverbose)
4863 if_printf(ifp, "hal channel %d (%u/%x) "
4864 "cannot be handled; ignored\n",
4865 ix, c->channel, c->channelFlags);
4866 continue;
4867 }
4868 /*
4869 * Calculate net80211 flags; most are compatible
4870 * but some need massaging. Note the static turbo
4871 * conversion can be removed once net80211 is updated
4872 * to understand static vs. dynamic turbo.
4873 */
4874 flags = c->channelFlags & COMPAT;
4875 if (c->channelFlags & CHANNEL_STURBO)
4876 flags |= IEEE80211_CHAN_TURBO;
4877 if (ic->ic_channels[ix].ic_freq == 0) {
4878 ic->ic_channels[ix].ic_freq = c->channel;
4879 ic->ic_channels[ix].ic_flags = flags;
4880 } else {
4881 /* channels overlap; e.g. 11g and 11b */
4882 ic->ic_channels[ix].ic_flags |= flags;
4883 }
4884 }
4885 free(chans, M_TEMP);
4886 return 0;
4887 #undef COMPAT
4888 }
4889
4890 static void
4891 ath_led_done(void *arg)
4892 {
4893 struct ath_softc *sc = arg;
4894
4895 sc->sc_blinking = 0;
4896 }
4897
4898 /*
4899 * Turn the LED off: flip the pin and then set a timer so no
4900 * update will happen for the specified duration.
4901 */
4902 static void
4903 ath_led_off(void *arg)
4904 {
4905 struct ath_softc *sc = arg;
4906
4907 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
4908 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
4909 }
4910
4911 /*
4912 * Blink the LED according to the specified on/off times.
4913 */
4914 static void
4915 ath_led_blink(struct ath_softc *sc, int on, int off)
4916 {
4917 DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
4918 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
4919 sc->sc_blinking = 1;
4920 sc->sc_ledoff = off;
4921 callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
4922 }
4923
4924 static void
4925 ath_led_event(struct ath_softc *sc, int event)
4926 {
4927
4928 sc->sc_ledevent = ticks; /* time of last event */
4929 if (sc->sc_blinking) /* don't interrupt active blink */
4930 return;
4931 switch (event) {
4932 case ATH_LED_POLL:
4933 ath_led_blink(sc, sc->sc_hwmap[0].ledon,
4934 sc->sc_hwmap[0].ledoff);
4935 break;
4936 case ATH_LED_TX:
4937 ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
4938 sc->sc_hwmap[sc->sc_txrate].ledoff);
4939 break;
4940 case ATH_LED_RX:
4941 ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
4942 sc->sc_hwmap[sc->sc_rxrate].ledoff);
4943 break;
4944 }
4945 }
4946
4947 static void
4948 ath_update_txpow(struct ath_softc *sc)
4949 {
4950 #define COMPAT (CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
4951 struct ieee80211com *ic = &sc->sc_ic;
4952 struct ath_hal *ah = sc->sc_ah;
4953 u_int32_t txpow;
4954
4955 if (sc->sc_curtxpow != ic->ic_txpowlimit) {
4956 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
4957 /* read back in case value is clamped */
4958 (void)ath_hal_gettxpowlimit(ah, &txpow);
4959 ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
4960 }
4961 /*
4962 * Fetch max tx power level for status requests.
4963 */
4964 (void)ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
4965 ic->ic_bss->ni_txpower = txpow;
4966 }
4967
4968 static void
4969 rate_setup(struct ath_softc *sc,
4970 const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs)
4971 {
4972 int i, maxrates;
4973
4974 if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
4975 DPRINTF(sc, ATH_DEBUG_ANY,
4976 "%s: rate table too small (%u > %u)\n",
4977 __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
4978 maxrates = IEEE80211_RATE_MAXSIZE;
4979 } else
4980 maxrates = rt->rateCount;
4981 for (i = 0; i < maxrates; i++)
4982 rs->rs_rates[i] = rt->info[i].dot11Rate;
4983 rs->rs_nrates = maxrates;
4984 }
4985
4986 static int
4987 ath_rate_setup(struct ath_softc *sc, u_int mode)
4988 {
4989 struct ath_hal *ah = sc->sc_ah;
4990 struct ieee80211com *ic = &sc->sc_ic;
4991 const HAL_RATE_TABLE *rt;
4992
4993 switch (mode) {
4994 case IEEE80211_MODE_11A:
4995 rt = ath_hal_getratetable(ah, HAL_MODE_11A);
4996 break;
4997 case IEEE80211_MODE_11B:
4998 rt = ath_hal_getratetable(ah, HAL_MODE_11B);
4999 break;
5000 case IEEE80211_MODE_11G:
5001 rt = ath_hal_getratetable(ah, HAL_MODE_11G);
5002 break;
5003 case IEEE80211_MODE_TURBO_A:
5004 /* XXX until static/dynamic turbo is fixed */
5005 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
5006 break;
5007 case IEEE80211_MODE_TURBO_G:
5008 rt = ath_hal_getratetable(ah, HAL_MODE_108G);
5009 break;
5010 default:
5011 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
5012 __func__, mode);
5013 return 0;
5014 }
5015 sc->sc_rates[mode] = rt;
5016 if (rt != NULL) {
5017 rate_setup(sc, rt, &ic->ic_sup_rates[mode]);
5018 return 1;
5019 } else
5020 return 0;
5021 }
5022
5023 static void
5024 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
5025 {
5026 #define N(a) (sizeof(a)/sizeof(a[0]))
5027 /* NB: on/off times from the Atheros NDIS driver, w/ permission */
5028 static const struct {
5029 u_int rate; /* tx/rx 802.11 rate */
5030 u_int16_t timeOn; /* LED on time (ms) */
5031 u_int16_t timeOff; /* LED off time (ms) */
5032 } blinkrates[] = {
5033 { 108, 40, 10 },
5034 { 96, 44, 11 },
5035 { 72, 50, 13 },
5036 { 48, 57, 14 },
5037 { 36, 67, 16 },
5038 { 24, 80, 20 },
5039 { 22, 100, 25 },
5040 { 18, 133, 34 },
5041 { 12, 160, 40 },
5042 { 10, 200, 50 },
5043 { 6, 240, 58 },
5044 { 4, 267, 66 },
5045 { 2, 400, 100 },
5046 { 0, 500, 130 },
5047 };
5048 const HAL_RATE_TABLE *rt;
5049 int i, j;
5050
5051 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
5052 rt = sc->sc_rates[mode];
5053 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
5054 for (i = 0; i < rt->rateCount; i++)
5055 sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
5056 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
5057 for (i = 0; i < 32; i++) {
5058 u_int8_t ix = rt->rateCodeToIndex[i];
5059 if (ix == 0xff) {
5060 sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
5061 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
5062 continue;
5063 }
5064 sc->sc_hwmap[i].ieeerate =
5065 rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
5066 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
5067 if (rt->info[ix].shortPreamble ||
5068 rt->info[ix].phy == IEEE80211_T_OFDM)
5069 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
5070 /* NB: receive frames include FCS */
5071 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
5072 IEEE80211_RADIOTAP_F_FCS;
5073 /* setup blink rate table to avoid per-packet lookup */
5074 for (j = 0; j < N(blinkrates)-1; j++)
5075 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
5076 break;
5077 /* NB: this uses the last entry if the rate isn't found */
5078 /* XXX beware of overlow */
5079 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
5080 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
5081 }
5082 sc->sc_currates = rt;
5083 sc->sc_curmode = mode;
5084 /*
5085 * All protection frames are transmited at 2Mb/s for
5086 * 11g, otherwise at 1Mb/s.
5087 */
5088 if (mode == IEEE80211_MODE_11G)
5089 sc->sc_protrix = ath_tx_findrix(rt, 2*2);
5090 else
5091 sc->sc_protrix = ath_tx_findrix(rt, 2*1);
5092 /* rate index used to send management frames */
5093 sc->sc_minrateix = 0;
5094 /*
5095 * Setup multicast rate state.
5096 */
5097 /* XXX layering violation */
5098 sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate);
5099 sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate;
5100 /* NB: caller is responsible for reseting rate control state */
5101 #undef N
5102 }
5103
5104 #ifdef AR_DEBUG
5105 static void
5106 ath_printrxbuf(struct ath_buf *bf, int done)
5107 {
5108 struct ath_desc *ds;
5109 int i;
5110
5111 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5112 printf("R%d (%p %" PRIx64
5113 ") %08x %08x %08x %08x %08x %08x %c\n", i, ds,
5114 (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
5115 ds->ds_link, ds->ds_data,
5116 ds->ds_ctl0, ds->ds_ctl1,
5117 ds->ds_hw[0], ds->ds_hw[1],
5118 !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
5119 }
5120 }
5121
5122 static void
5123 ath_printtxbuf(struct ath_buf *bf, int done)
5124 {
5125 struct ath_desc *ds;
5126 int i;
5127
5128 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5129 printf("T%d (%p %" PRIx64
5130 ") %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
5131 i, ds,
5132 (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
5133 ds->ds_link, ds->ds_data,
5134 ds->ds_ctl0, ds->ds_ctl1,
5135 ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
5136 !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
5137 }
5138 }
5139 #endif /* AR_DEBUG */
5140
5141 static void
5142 ath_watchdog(struct ifnet *ifp)
5143 {
5144 struct ath_softc *sc = ifp->if_softc;
5145 struct ieee80211com *ic = &sc->sc_ic;
5146
5147 ifp->if_timer = 0;
5148 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
5149 return;
5150 if (sc->sc_tx_timer) {
5151 if (--sc->sc_tx_timer == 0) {
5152 if_printf(ifp, "device timeout\n");
5153 ath_reset(ifp);
5154 ifp->if_oerrors++;
5155 sc->sc_stats.ast_watchdog++;
5156 } else
5157 ifp->if_timer = 1;
5158 }
5159 ieee80211_watchdog(ic);
5160 }
5161
5162 /*
5163 * Diagnostic interface to the HAL. This is used by various
5164 * tools to do things like retrieve register contents for
5165 * debugging. The mechanism is intentionally opaque so that
5166 * it can change frequently w/o concern for compatiblity.
5167 */
5168 static int
5169 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
5170 {
5171 struct ath_hal *ah = sc->sc_ah;
5172 u_int id = ad->ad_id & ATH_DIAG_ID;
5173 void *indata = NULL;
5174 void *outdata = NULL;
5175 u_int32_t insize = ad->ad_in_size;
5176 u_int32_t outsize = ad->ad_out_size;
5177 int error = 0;
5178
5179 if (ad->ad_id & ATH_DIAG_IN) {
5180 /*
5181 * Copy in data.
5182 */
5183 indata = malloc(insize, M_TEMP, M_NOWAIT);
5184 if (indata == NULL) {
5185 error = ENOMEM;
5186 goto bad;
5187 }
5188 error = copyin(ad->ad_in_data, indata, insize);
5189 if (error)
5190 goto bad;
5191 }
5192 if (ad->ad_id & ATH_DIAG_DYN) {
5193 /*
5194 * Allocate a buffer for the results (otherwise the HAL
5195 * returns a pointer to a buffer where we can read the
5196 * results). Note that we depend on the HAL leaving this
5197 * pointer for us to use below in reclaiming the buffer;
5198 * may want to be more defensive.
5199 */
5200 outdata = malloc(outsize, M_TEMP, M_NOWAIT);
5201 if (outdata == NULL) {
5202 error = ENOMEM;
5203 goto bad;
5204 }
5205 }
5206 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
5207 if (outsize < ad->ad_out_size)
5208 ad->ad_out_size = outsize;
5209 if (outdata != NULL)
5210 error = copyout(outdata, ad->ad_out_data,
5211 ad->ad_out_size);
5212 } else {
5213 error = EINVAL;
5214 }
5215 bad:
5216 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
5217 free(indata, M_TEMP);
5218 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
5219 free(outdata, M_TEMP);
5220 return error;
5221 }
5222
5223 static int
5224 ath_ioctl(struct ifnet *ifp, u_long cmd, void *data)
5225 {
5226 #define IS_RUNNING(ifp) \
5227 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
5228 struct ath_softc *sc = ifp->if_softc;
5229 struct ieee80211com *ic = &sc->sc_ic;
5230 struct ifreq *ifr = (struct ifreq *)data;
5231 int error = 0;
5232
5233 ATH_LOCK(sc);
5234 switch (cmd) {
5235 case SIOCSIFFLAGS:
5236 if (IS_RUNNING(ifp)) {
5237 /*
5238 * To avoid rescanning another access point,
5239 * do not call ath_init() here. Instead,
5240 * only reflect promisc mode settings.
5241 */
5242 ath_mode_init(sc);
5243 } else if (ifp->if_flags & IFF_UP) {
5244 /*
5245 * Beware of being called during attach/detach
5246 * to reset promiscuous mode. In that case we
5247 * will still be marked UP but not RUNNING.
5248 * However trying to re-init the interface
5249 * is the wrong thing to do as we've already
5250 * torn down much of our state. There's
5251 * probably a better way to deal with this.
5252 */
5253 if (!sc->sc_invalid && ic->ic_bss != NULL)
5254 ath_init(sc); /* XXX lose error */
5255 } else
5256 ath_stop_locked(ifp, 1);
5257 break;
5258 case SIOCADDMULTI:
5259 case SIOCDELMULTI:
5260 error = (cmd == SIOCADDMULTI) ?
5261 ether_addmulti(ifr, &sc->sc_ec) :
5262 ether_delmulti(ifr, &sc->sc_ec);
5263 if (error == ENETRESET) {
5264 if (ifp->if_flags & IFF_RUNNING)
5265 ath_mode_init(sc);
5266 error = 0;
5267 }
5268 break;
5269 case SIOCGATHSTATS:
5270 /* NB: embed these numbers to get a consistent view */
5271 sc->sc_stats.ast_tx_packets = ifp->if_opackets;
5272 sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
5273 sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
5274 ATH_UNLOCK(sc);
5275 /*
5276 * NB: Drop the softc lock in case of a page fault;
5277 * we'll accept any potential inconsisentcy in the
5278 * statistics. The alternative is to copy the data
5279 * to a local structure.
5280 */
5281 return copyout(&sc->sc_stats,
5282 ifr->ifr_data, sizeof (sc->sc_stats));
5283 case SIOCGATHDIAG:
5284 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
5285 break;
5286 default:
5287 error = ieee80211_ioctl(ic, cmd, data);
5288 if (error == ENETRESET) {
5289 if (IS_RUNNING(ifp) &&
5290 ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
5291 ath_init(sc); /* XXX lose error */
5292 error = 0;
5293 }
5294 if (error == ERESTART)
5295 error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0;
5296 break;
5297 }
5298 ATH_UNLOCK(sc);
5299 return error;
5300 #undef IS_RUNNING
5301 }
5302
5303 #if NBPFILTER > 0
5304 static void
5305 ath_bpfattach(struct ath_softc *sc)
5306 {
5307 struct ifnet *ifp = &sc->sc_if;
5308
5309 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
5310 sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
5311 &sc->sc_drvbpf);
5312 /*
5313 * Initialize constant fields.
5314 * XXX make header lengths a multiple of 32-bits so subsequent
5315 * headers are properly aligned; this is a kludge to keep
5316 * certain applications happy.
5317 *
5318 * NB: the channel is setup each time we transition to the
5319 * RUN state to avoid filling it in for each frame.
5320 */
5321 sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
5322 sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
5323 sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
5324
5325 sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
5326 sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
5327 sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
5328 }
5329 #endif
5330
5331 /*
5332 * Announce various information on device/driver attach.
5333 */
5334 static void
5335 ath_announce(struct ath_softc *sc)
5336 {
5337 #define HAL_MODE_DUALBAND (HAL_MODE_11A|HAL_MODE_11B)
5338 struct ifnet *ifp = &sc->sc_if;
5339 struct ath_hal *ah = sc->sc_ah;
5340 u_int modes, cc;
5341
5342 if_printf(ifp, "mac %d.%d phy %d.%d",
5343 ah->ah_macVersion, ah->ah_macRev,
5344 ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
5345 /*
5346 * Print radio revision(s). We check the wireless modes
5347 * to avoid falsely printing revs for inoperable parts.
5348 * Dual-band radio revs are returned in the 5 GHz rev number.
5349 */
5350 ath_hal_getcountrycode(ah, &cc);
5351 modes = ath_hal_getwirelessmodes(ah, cc);
5352 if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
5353 if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
5354 printf(" 5 GHz radio %d.%d 2 GHz radio %d.%d",
5355 ah->ah_analog5GhzRev >> 4,
5356 ah->ah_analog5GhzRev & 0xf,
5357 ah->ah_analog2GhzRev >> 4,
5358 ah->ah_analog2GhzRev & 0xf);
5359 else
5360 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5361 ah->ah_analog5GhzRev & 0xf);
5362 } else
5363 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5364 ah->ah_analog5GhzRev & 0xf);
5365 printf("\n");
5366 if (bootverbose) {
5367 int i;
5368 for (i = 0; i <= WME_AC_VO; i++) {
5369 struct ath_txq *txq = sc->sc_ac2q[i];
5370 if_printf(ifp, "Use hw queue %u for %s traffic\n",
5371 txq->axq_qnum, ieee80211_wme_acnames[i]);
5372 }
5373 if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5374 sc->sc_cabq->axq_qnum);
5375 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5376 }
5377 if (ath_rxbuf != ATH_RXBUF)
5378 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
5379 if (ath_txbuf != ATH_TXBUF)
5380 if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
5381 #undef HAL_MODE_DUALBAND
5382 }
5383