Home | History | Annotate | Line # | Download | only in ic
ath.c revision 1.82.2.1
      1 /*	$NetBSD: ath.c,v 1.82.2.1 2007/05/27 14:30:00 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer,
     12  *    without modification.
     13  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
     14  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
     15  *    redistribution must be conditioned upon including a substantially
     16  *    similar Disclaimer requirement for further binary redistribution.
     17  * 3. Neither the names of the above-listed copyright holders nor the names
     18  *    of any contributors may be used to endorse or promote products derived
     19  *    from this software without specific prior written permission.
     20  *
     21  * Alternatively, this software may be distributed under the terms of the
     22  * GNU General Public License ("GPL") version 2 as published by the Free
     23  * Software Foundation.
     24  *
     25  * NO WARRANTY
     26  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     28  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
     29  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
     30  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
     31  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
     34  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     36  * THE POSSIBILITY OF SUCH DAMAGES.
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 #ifdef __FreeBSD__
     41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $");
     42 #endif
     43 #ifdef __NetBSD__
     44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.82.2.1 2007/05/27 14:30:00 ad Exp $");
     45 #endif
     46 
     47 /*
     48  * Driver for the Atheros Wireless LAN controller.
     49  *
     50  * This software is derived from work of Atsushi Onoe; his contribution
     51  * is greatly appreciated.
     52  */
     53 
     54 #include "opt_inet.h"
     55 
     56 #ifdef __NetBSD__
     57 #include "bpfilter.h"
     58 #endif /* __NetBSD__ */
     59 
     60 #include <sys/param.h>
     61 #include <sys/reboot.h>
     62 #include <sys/systm.h>
     63 #include <sys/types.h>
     64 #include <sys/sysctl.h>
     65 #include <sys/mbuf.h>
     66 #include <sys/malloc.h>
     67 #include <sys/lock.h>
     68 #include <sys/kernel.h>
     69 #include <sys/socket.h>
     70 #include <sys/sockio.h>
     71 #include <sys/errno.h>
     72 #include <sys/callout.h>
     73 #include <machine/bus.h>
     74 #include <sys/endian.h>
     75 
     76 #include <net/if.h>
     77 #include <net/if_dl.h>
     78 #include <net/if_media.h>
     79 #include <net/if_types.h>
     80 #include <net/if_arp.h>
     81 #include <net/if_ether.h>
     82 #include <net/if_llc.h>
     83 
     84 #include <net80211/ieee80211_netbsd.h>
     85 #include <net80211/ieee80211_var.h>
     86 
     87 #if NBPFILTER > 0
     88 #include <net/bpf.h>
     89 #endif
     90 
     91 #ifdef INET
     92 #include <netinet/in.h>
     93 #endif
     94 
     95 #include <sys/device.h>
     96 #include <dev/ic/ath_netbsd.h>
     97 
     98 #define	AR_DEBUG
     99 #include <dev/ic/athvar.h>
    100 #include <contrib/dev/ath/ah_desc.h>
    101 #include <contrib/dev/ath/ah_devid.h>	/* XXX for softled */
    102 #include "athhal_options.h"
    103 
    104 #ifdef ATH_TX99_DIAG
    105 #include <dev/ath/ath_tx99/ath_tx99.h>
    106 #endif
    107 
    108 /* unaligned little endian access */
    109 #define LE_READ_2(p)							\
    110 	((u_int16_t)							\
    111 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
    112 #define LE_READ_4(p)							\
    113 	((u_int32_t)							\
    114 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
    115 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
    116 
    117 enum {
    118 	ATH_LED_TX,
    119 	ATH_LED_RX,
    120 	ATH_LED_POLL,
    121 };
    122 
    123 #ifdef	AH_NEED_DESC_SWAP
    124 #define	HTOAH32(x)	htole32(x)
    125 #else
    126 #define	HTOAH32(x)	(x)
    127 #endif
    128 
    129 static int	ath_ifinit(struct ifnet *);
    130 static int	ath_init(struct ath_softc *);
    131 static void	ath_stop_locked(struct ifnet *, int);
    132 static void	ath_stop(struct ifnet *, int);
    133 static void	ath_start(struct ifnet *);
    134 static int	ath_media_change(struct ifnet *);
    135 static void	ath_watchdog(struct ifnet *);
    136 static int	ath_ioctl(struct ifnet *, u_long, void *);
    137 static void	ath_fatal_proc(void *, int);
    138 static void	ath_rxorn_proc(void *, int);
    139 static void	ath_bmiss_proc(void *, int);
    140 static void	ath_radar_proc(void *, int);
    141 static int	ath_key_alloc(struct ieee80211com *,
    142 			const struct ieee80211_key *,
    143 			ieee80211_keyix *, ieee80211_keyix *);
    144 static int	ath_key_delete(struct ieee80211com *,
    145 			const struct ieee80211_key *);
    146 static int	ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
    147 			const u_int8_t mac[IEEE80211_ADDR_LEN]);
    148 static void	ath_key_update_begin(struct ieee80211com *);
    149 static void	ath_key_update_end(struct ieee80211com *);
    150 static void	ath_mode_init(struct ath_softc *);
    151 static void	ath_setslottime(struct ath_softc *);
    152 static void	ath_updateslot(struct ifnet *);
    153 static int	ath_beaconq_setup(struct ath_hal *);
    154 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
    155 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
    156 static void	ath_beacon_proc(void *, int);
    157 static void	ath_bstuck_proc(void *, int);
    158 static void	ath_beacon_free(struct ath_softc *);
    159 static void	ath_beacon_config(struct ath_softc *);
    160 static void	ath_descdma_cleanup(struct ath_softc *sc,
    161 			struct ath_descdma *, ath_bufhead *);
    162 static int	ath_desc_alloc(struct ath_softc *);
    163 static void	ath_desc_free(struct ath_softc *);
    164 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
    165 static void	ath_node_free(struct ieee80211_node *);
    166 static u_int8_t	ath_node_getrssi(const struct ieee80211_node *);
    167 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
    168 static void	ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
    169 			struct ieee80211_node *ni,
    170 			int subtype, int rssi, u_int32_t rstamp);
    171 static void	ath_setdefantenna(struct ath_softc *, u_int);
    172 static void	ath_rx_proc(void *, int);
    173 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
    174 static int	ath_tx_setup(struct ath_softc *, int, int);
    175 static int	ath_wme_update(struct ieee80211com *);
    176 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
    177 static void	ath_tx_cleanup(struct ath_softc *);
    178 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
    179 			     struct ath_buf *, struct mbuf *);
    180 static void	ath_tx_proc_q0(void *, int);
    181 static void	ath_tx_proc_q0123(void *, int);
    182 static void	ath_tx_proc(void *, int);
    183 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
    184 static void	ath_draintxq(struct ath_softc *);
    185 static void	ath_stoprecv(struct ath_softc *);
    186 static int	ath_startrecv(struct ath_softc *);
    187 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
    188 static void	ath_next_scan(void *);
    189 static void	ath_calibrate(void *);
    190 static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
    191 static void	ath_setup_stationkey(struct ieee80211_node *);
    192 static void	ath_newassoc(struct ieee80211_node *, int);
    193 static int	ath_getchannels(struct ath_softc *, u_int cc,
    194 			HAL_BOOL outdoor, HAL_BOOL xchanmode);
    195 static void	ath_led_event(struct ath_softc *, int);
    196 static void	ath_update_txpow(struct ath_softc *);
    197 static void	ath_freetx(struct mbuf *);
    198 
    199 static int	ath_rate_setup(struct ath_softc *, u_int mode);
    200 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
    201 
    202 #ifdef __NetBSD__
    203 int	ath_enable(struct ath_softc *);
    204 void	ath_disable(struct ath_softc *);
    205 void	ath_power(int, void *);
    206 #endif
    207 
    208 #if NBPFILTER > 0
    209 static void	ath_bpfattach(struct ath_softc *);
    210 #endif
    211 static void	ath_announce(struct ath_softc *);
    212 
    213 int ath_dwelltime = 200;		/* 5 channels/second */
    214 int ath_calinterval = 30;		/* calibrate every 30 secs */
    215 int ath_outdoor = AH_TRUE;		/* outdoor operation */
    216 int ath_xchanmode = AH_TRUE;		/* enable extended channels */
    217 int ath_countrycode = CTRY_DEFAULT;	/* country code */
    218 int ath_regdomain = 0;			/* regulatory domain */
    219 int ath_debug = 0;
    220 int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
    221 int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
    222 
    223 #ifdef AR_DEBUG
    224 enum {
    225 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
    226 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
    227 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
    228 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
    229 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
    230 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
    231 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
    232 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
    233 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
    234 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
    235 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
    236 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
    237 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
    238 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
    239 	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
    240 	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
    241 	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
    242 	ATH_DEBUG_LED		= 0x00100000,	/* led management */
    243 	ATH_DEBUG_FF		= 0x00200000,	/* fast frames */
    244 	ATH_DEBUG_DFS		= 0x00400000,	/* DFS processing */
    245 	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
    246 	ATH_DEBUG_ANY		= 0xffffffff
    247 };
    248 #define	IFF_DUMPPKTS(sc, m) \
    249 	((sc->sc_debug & (m)) || \
    250 	    (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
    251 #define	DPRINTF(sc, m, fmt, ...) do {				\
    252 	if (sc->sc_debug & (m))					\
    253 		printf(fmt, __VA_ARGS__);			\
    254 } while (0)
    255 #define	KEYPRINTF(sc, ix, hk, mac) do {				\
    256 	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
    257 		ath_keyprint(__func__, ix, hk, mac);		\
    258 } while (0)
    259 static	void ath_printrxbuf(struct ath_buf *bf, int);
    260 static	void ath_printtxbuf(struct ath_buf *bf, int);
    261 #else
    262 #define	IFF_DUMPPKTS(sc, m) \
    263 	((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
    264 #define	DPRINTF(m, fmt, ...)
    265 #define	KEYPRINTF(sc, k, ix, mac)
    266 #endif
    267 
    268 #ifdef __NetBSD__
    269 int
    270 ath_activate(struct device *self, enum devact act)
    271 {
    272 	struct ath_softc *sc = (struct ath_softc *)self;
    273 	int rv = 0, s;
    274 
    275 	s = splnet();
    276 	switch (act) {
    277 	case DVACT_ACTIVATE:
    278 		rv = EOPNOTSUPP;
    279 		break;
    280 	case DVACT_DEACTIVATE:
    281 		if_deactivate(&sc->sc_if);
    282 		break;
    283 	}
    284 	splx(s);
    285 	return rv;
    286 }
    287 
    288 int
    289 ath_enable(struct ath_softc *sc)
    290 {
    291 	if (ATH_IS_ENABLED(sc) == 0) {
    292 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
    293 			printf("%s: device enable failed\n",
    294 				sc->sc_dev.dv_xname);
    295 			return (EIO);
    296 		}
    297 		sc->sc_flags |= ATH_ENABLED;
    298 	}
    299 	return (0);
    300 }
    301 
    302 void
    303 ath_disable(struct ath_softc *sc)
    304 {
    305 	if (!ATH_IS_ENABLED(sc))
    306 		return;
    307 	if (sc->sc_disable != NULL)
    308 		(*sc->sc_disable)(sc);
    309 	sc->sc_flags &= ~ATH_ENABLED;
    310 }
    311 #endif /* __NetBSD__ */
    312 
    313 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
    314 
    315 int
    316 ath_attach(u_int16_t devid, struct ath_softc *sc)
    317 {
    318 	struct ifnet *ifp = &sc->sc_if;
    319 	struct ieee80211com *ic = &sc->sc_ic;
    320 	struct ath_hal *ah = NULL;
    321 	HAL_STATUS status;
    322 	int error = 0, i;
    323 
    324 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
    325 
    326 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
    327 
    328 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
    329 	if (ah == NULL) {
    330 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
    331 			status);
    332 		error = ENXIO;
    333 		goto bad;
    334 	}
    335 	if (ah->ah_abi != HAL_ABI_VERSION) {
    336 		if_printf(ifp, "HAL ABI mismatch detected "
    337 			"(HAL:0x%x != driver:0x%x)\n",
    338 			ah->ah_abi, HAL_ABI_VERSION);
    339 		error = ENXIO;
    340 		goto bad;
    341 	}
    342 	sc->sc_ah = ah;
    343 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
    344 
    345 	/*
    346 	 * Check if the MAC has multi-rate retry support.
    347 	 * We do this by trying to setup a fake extended
    348 	 * descriptor.  MAC's that don't have support will
    349 	 * return false w/o doing anything.  MAC's that do
    350 	 * support it will return true w/o doing anything.
    351 	 */
    352 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
    353 
    354 	/*
    355 	 * Check if the device has hardware counters for PHY
    356 	 * errors.  If so we need to enable the MIB interrupt
    357 	 * so we can act on stat triggers.
    358 	 */
    359 	if (ath_hal_hwphycounters(ah))
    360 		sc->sc_needmib = 1;
    361 
    362 	/*
    363 	 * Get the hardware key cache size.
    364 	 */
    365 	sc->sc_keymax = ath_hal_keycachesize(ah);
    366 	if (sc->sc_keymax > ATH_KEYMAX) {
    367 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
    368 			ATH_KEYMAX, sc->sc_keymax);
    369 		sc->sc_keymax = ATH_KEYMAX;
    370 	}
    371 	/*
    372 	 * Reset the key cache since some parts do not
    373 	 * reset the contents on initial power up.
    374 	 */
    375 	for (i = 0; i < sc->sc_keymax; i++)
    376 		ath_hal_keyreset(ah, i);
    377 	/*
    378 	 * Mark key cache slots associated with global keys
    379 	 * as in use.  If we knew TKIP was not to be used we
    380 	 * could leave the +32, +64, and +32+64 slots free.
    381 	 * XXX only for splitmic.
    382 	 */
    383 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
    384 		setbit(sc->sc_keymap, i);
    385 		setbit(sc->sc_keymap, i+32);
    386 		setbit(sc->sc_keymap, i+64);
    387 		setbit(sc->sc_keymap, i+32+64);
    388 	}
    389 
    390 	/*
    391 	 * Collect the channel list using the default country
    392 	 * code and including outdoor channels.  The 802.11 layer
    393 	 * is resposible for filtering this list based on settings
    394 	 * like the phy mode.
    395 	 */
    396 	error = ath_getchannels(sc, ath_countrycode,
    397 			ath_outdoor, ath_xchanmode);
    398 	if (error != 0)
    399 		goto bad;
    400 
    401 	/*
    402 	 * Setup rate tables for all potential media types.
    403 	 */
    404 	ath_rate_setup(sc, IEEE80211_MODE_11A);
    405 	ath_rate_setup(sc, IEEE80211_MODE_11B);
    406 	ath_rate_setup(sc, IEEE80211_MODE_11G);
    407 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
    408 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
    409 	/* NB: setup here so ath_rate_update is happy */
    410 	ath_setcurmode(sc, IEEE80211_MODE_11A);
    411 
    412 	/*
    413 	 * Allocate tx+rx descriptors and populate the lists.
    414 	 */
    415 	error = ath_desc_alloc(sc);
    416 	if (error != 0) {
    417 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
    418 		goto bad;
    419 	}
    420 	ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
    421 	ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE);
    422 	ATH_CALLOUT_INIT(&sc->sc_dfs_ch, CALLOUT_MPSAFE);
    423 
    424 	ATH_TXBUF_LOCK_INIT(sc);
    425 
    426 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
    427 	TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
    428 	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
    429 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
    430 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
    431 	TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc);
    432 
    433 	/*
    434 	 * Allocate hardware transmit queues: one queue for
    435 	 * beacon frames and one data queue for each QoS
    436 	 * priority.  Note that the hal handles reseting
    437 	 * these queues at the needed time.
    438 	 *
    439 	 * XXX PS-Poll
    440 	 */
    441 	sc->sc_bhalq = ath_beaconq_setup(ah);
    442 	if (sc->sc_bhalq == (u_int) -1) {
    443 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
    444 		error = EIO;
    445 		goto bad2;
    446 	}
    447 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
    448 	if (sc->sc_cabq == NULL) {
    449 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
    450 		error = EIO;
    451 		goto bad2;
    452 	}
    453 	/* NB: insure BK queue is the lowest priority h/w queue */
    454 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
    455 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
    456 			ieee80211_wme_acnames[WME_AC_BK]);
    457 		error = EIO;
    458 		goto bad2;
    459 	}
    460 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
    461 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
    462 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
    463 		/*
    464 		 * Not enough hardware tx queues to properly do WME;
    465 		 * just punt and assign them all to the same h/w queue.
    466 		 * We could do a better job of this if, for example,
    467 		 * we allocate queues when we switch from station to
    468 		 * AP mode.
    469 		 */
    470 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
    471 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
    472 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
    473 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
    474 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
    475 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
    476 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
    477 	}
    478 
    479 	/*
    480 	 * Special case certain configurations.  Note the
    481 	 * CAB queue is handled by these specially so don't
    482 	 * include them when checking the txq setup mask.
    483 	 */
    484 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
    485 	case 0x01:
    486 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
    487 		break;
    488 	case 0x0f:
    489 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
    490 		break;
    491 	default:
    492 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
    493 		break;
    494 	}
    495 
    496 	/*
    497 	 * Setup rate control.  Some rate control modules
    498 	 * call back to change the anntena state so expose
    499 	 * the necessary entry points.
    500 	 * XXX maybe belongs in struct ath_ratectrl?
    501 	 */
    502 	sc->sc_setdefantenna = ath_setdefantenna;
    503 	sc->sc_rc = ath_rate_attach(sc);
    504 	if (sc->sc_rc == NULL) {
    505 		error = EIO;
    506 		goto bad2;
    507 	}
    508 
    509 	sc->sc_blinking = 0;
    510 	sc->sc_ledstate = 1;
    511 	sc->sc_ledon = 0;			/* low true */
    512 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
    513 	ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE);
    514 	/*
    515 	 * Auto-enable soft led processing for IBM cards and for
    516 	 * 5211 minipci cards.  Users can also manually enable/disable
    517 	 * support with a sysctl.
    518 	 */
    519 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
    520 	if (sc->sc_softled) {
    521 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
    522 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
    523 	}
    524 
    525 	ifp->if_softc = sc;
    526 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
    527 	ifp->if_start = ath_start;
    528 	ifp->if_watchdog = ath_watchdog;
    529 	ifp->if_ioctl = ath_ioctl;
    530 	ifp->if_init = ath_ifinit;
    531 	IFQ_SET_READY(&ifp->if_snd);
    532 
    533 	ic->ic_ifp = ifp;
    534 	ic->ic_reset = ath_reset;
    535 	ic->ic_newassoc = ath_newassoc;
    536 	ic->ic_updateslot = ath_updateslot;
    537 	ic->ic_wme.wme_update = ath_wme_update;
    538 	/* XXX not right but it's not used anywhere important */
    539 	ic->ic_phytype = IEEE80211_T_OFDM;
    540 	ic->ic_opmode = IEEE80211_M_STA;
    541 	ic->ic_caps =
    542 		  IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
    543 		| IEEE80211_C_HOSTAP		/* hostap mode */
    544 		| IEEE80211_C_MONITOR		/* monitor mode */
    545 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
    546 		| IEEE80211_C_SHSLOT		/* short slot time supported */
    547 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
    548 		| IEEE80211_C_TXFRAG		/* handle tx frags */
    549 		;
    550 	/*
    551 	 * Query the hal to figure out h/w crypto support.
    552 	 */
    553 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
    554 		ic->ic_caps |= IEEE80211_C_WEP;
    555 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
    556 		ic->ic_caps |= IEEE80211_C_AES;
    557 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
    558 		ic->ic_caps |= IEEE80211_C_AES_CCM;
    559 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
    560 		ic->ic_caps |= IEEE80211_C_CKIP;
    561 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
    562 		ic->ic_caps |= IEEE80211_C_TKIP;
    563 		/*
    564 		 * Check if h/w does the MIC and/or whether the
    565 		 * separate key cache entries are required to
    566 		 * handle both tx+rx MIC keys.
    567 		 */
    568 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
    569 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
    570 		if (ath_hal_tkipsplit(ah))
    571 			sc->sc_splitmic = 1;
    572 	}
    573 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
    574 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
    575 	/*
    576 	 * TPC support can be done either with a global cap or
    577 	 * per-packet support.  The latter is not available on
    578 	 * all parts.  We're a bit pedantic here as all parts
    579 	 * support a global cap.
    580 	 */
    581 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
    582 		ic->ic_caps |= IEEE80211_C_TXPMGT;
    583 
    584 	/*
    585 	 * Mark WME capability only if we have sufficient
    586 	 * hardware queues to do proper priority scheduling.
    587 	 */
    588 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
    589 		ic->ic_caps |= IEEE80211_C_WME;
    590 	/*
    591 	 * Check for misc other capabilities.
    592 	 */
    593 	if (ath_hal_hasbursting(ah))
    594 		ic->ic_caps |= IEEE80211_C_BURST;
    595 
    596 	/*
    597 	 * Indicate we need the 802.11 header padded to a
    598 	 * 32-bit boundary for 4-address and QoS frames.
    599 	 */
    600 	ic->ic_flags |= IEEE80211_F_DATAPAD;
    601 
    602 	/*
    603 	 * Query the hal about antenna support.
    604 	 */
    605 	sc->sc_defant = ath_hal_getdefantenna(ah);
    606 
    607 	/*
    608 	 * Not all chips have the VEOL support we want to
    609 	 * use with IBSS beacons; check here for it.
    610 	 */
    611 	sc->sc_hasveol = ath_hal_hasveol(ah);
    612 
    613 	/* get mac address from hardware */
    614 	ath_hal_getmac(ah, ic->ic_myaddr);
    615 
    616 	if_attach(ifp);
    617 	/* call MI attach routine. */
    618 	ieee80211_ifattach(ic);
    619 	/* override default methods */
    620 	ic->ic_node_alloc = ath_node_alloc;
    621 	sc->sc_node_free = ic->ic_node_free;
    622 	ic->ic_node_free = ath_node_free;
    623 	ic->ic_node_getrssi = ath_node_getrssi;
    624 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
    625 	ic->ic_recv_mgmt = ath_recv_mgmt;
    626 	sc->sc_newstate = ic->ic_newstate;
    627 	ic->ic_newstate = ath_newstate;
    628 	ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
    629 	ic->ic_crypto.cs_key_alloc = ath_key_alloc;
    630 	ic->ic_crypto.cs_key_delete = ath_key_delete;
    631 	ic->ic_crypto.cs_key_set = ath_key_set;
    632 	ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
    633 	ic->ic_crypto.cs_key_update_end = ath_key_update_end;
    634 	/* complete initialization */
    635 	ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
    636 
    637 #if NBPFILTER > 0
    638 	ath_bpfattach(sc);
    639 #endif
    640 
    641 #ifdef __NetBSD__
    642 	sc->sc_flags |= ATH_ATTACHED;
    643 	sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
    644 	    ath_power, sc);
    645 	if (sc->sc_powerhook == NULL)
    646 		printf("%s: WARNING: unable to establish power hook\n",
    647 			sc->sc_dev.dv_xname);
    648 #endif
    649 
    650 	/*
    651 	 * Setup dynamic sysctl's now that country code and
    652 	 * regdomain are available from the hal.
    653 	 */
    654 	ath_sysctlattach(sc);
    655 
    656 	ieee80211_announce(ic);
    657 	ath_announce(sc);
    658 	return 0;
    659 bad2:
    660 	ath_tx_cleanup(sc);
    661 	ath_desc_free(sc);
    662 bad:
    663 	if (ah)
    664 		ath_hal_detach(ah);
    665 	sc->sc_invalid = 1;
    666 	return error;
    667 }
    668 
    669 int
    670 ath_detach(struct ath_softc *sc)
    671 {
    672 	struct ifnet *ifp = &sc->sc_if;
    673 	int s;
    674 
    675 	if ((sc->sc_flags & ATH_ATTACHED) == 0)
    676 		return (0);
    677 
    678 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
    679 		__func__, ifp->if_flags);
    680 
    681 	s = splnet();
    682 	ath_stop(ifp, 1);
    683 #if NBPFILTER > 0
    684 	bpfdetach(ifp);
    685 #endif
    686 	/*
    687 	 * NB: the order of these is important:
    688 	 * o call the 802.11 layer before detaching the hal to
    689 	 *   insure callbacks into the driver to delete global
    690 	 *   key cache entries can be handled
    691 	 * o reclaim the tx queue data structures after calling
    692 	 *   the 802.11 layer as we'll get called back to reclaim
    693 	 *   node state and potentially want to use them
    694 	 * o to cleanup the tx queues the hal is called, so detach
    695 	 *   it last
    696 	 * Other than that, it's straightforward...
    697 	 */
    698 	ieee80211_ifdetach(&sc->sc_ic);
    699 #ifdef ATH_TX99_DIAG
    700 	if (sc->sc_tx99 != NULL)
    701 		sc->sc_tx99->detach(sc->sc_tx99);
    702 #endif
    703 	ath_rate_detach(sc->sc_rc);
    704 	ath_desc_free(sc);
    705 	ath_tx_cleanup(sc);
    706 	sysctl_teardown(&sc->sc_sysctllog);
    707 	ath_hal_detach(sc->sc_ah);
    708 	if_detach(ifp);
    709 	splx(s);
    710 	powerhook_disestablish(sc->sc_powerhook);
    711 
    712 	return 0;
    713 }
    714 
    715 #ifdef __NetBSD__
    716 void
    717 ath_power(int why, void *arg)
    718 {
    719 	struct ath_softc *sc = arg;
    720 	int s;
    721 
    722 	DPRINTF(sc, ATH_DEBUG_ANY, "ath_power(%d)\n", why);
    723 
    724 	s = splnet();
    725 	switch (why) {
    726 	case PWR_SUSPEND:
    727 	case PWR_STANDBY:
    728 		ath_suspend(sc, why);
    729 		break;
    730 	case PWR_RESUME:
    731 		ath_resume(sc, why);
    732 		break;
    733 	case PWR_SOFTSUSPEND:
    734 	case PWR_SOFTSTANDBY:
    735 	case PWR_SOFTRESUME:
    736 		break;
    737 	}
    738 	splx(s);
    739 }
    740 #endif
    741 
    742 void
    743 ath_suspend(struct ath_softc *sc, int why)
    744 {
    745 	struct ifnet *ifp = &sc->sc_if;
    746 
    747 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
    748 		__func__, ifp->if_flags);
    749 
    750 	ath_stop(ifp, 1);
    751 	if (sc->sc_power != NULL)
    752 		(*sc->sc_power)(sc, why);
    753 }
    754 
    755 void
    756 ath_resume(struct ath_softc *sc, int why)
    757 {
    758 	struct ifnet *ifp = &sc->sc_if;
    759 
    760 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
    761 		__func__, ifp->if_flags);
    762 
    763 	if (ifp->if_flags & IFF_UP) {
    764 		ath_init(sc);
    765 #if 0
    766 		(void)ath_intr(sc);
    767 #endif
    768 		if (sc->sc_power != NULL)
    769 			(*sc->sc_power)(sc, why);
    770 		if (ifp->if_flags & IFF_RUNNING)
    771 			ath_start(ifp);
    772 	}
    773 	if (sc->sc_softled) {
    774 		ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
    775 		ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
    776 	}
    777 }
    778 
    779 void
    780 ath_shutdown(void *arg)
    781 {
    782 	struct ath_softc *sc = arg;
    783 
    784 	ath_stop(&sc->sc_if, 1);
    785 }
    786 
    787 /*
    788  * Interrupt handler.  Most of the actual processing is deferred.
    789  */
    790 int
    791 ath_intr(void *arg)
    792 {
    793 	struct ath_softc *sc = arg;
    794 	struct ifnet *ifp = &sc->sc_if;
    795 	struct ath_hal *ah = sc->sc_ah;
    796 	HAL_INT status;
    797 
    798 	if (sc->sc_invalid) {
    799 		/*
    800 		 * The hardware is not ready/present, don't touch anything.
    801 		 * Note this can happen early on if the IRQ is shared.
    802 		 */
    803 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
    804 		return 0;
    805 	}
    806 
    807 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
    808 		return 0;
    809 
    810 	if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
    811 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
    812 			__func__, ifp->if_flags);
    813 		ath_hal_getisr(ah, &status);	/* clear ISR */
    814 		ath_hal_intrset(ah, 0);		/* disable further intr's */
    815 		return 1; /* XXX */
    816 	}
    817 	/*
    818 	 * Figure out the reason(s) for the interrupt.  Note
    819 	 * that the hal returns a pseudo-ISR that may include
    820 	 * bits we haven't explicitly enabled so we mask the
    821 	 * value to insure we only process bits we requested.
    822 	 */
    823 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
    824 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
    825 	status &= sc->sc_imask;			/* discard unasked for bits */
    826 	if (status & HAL_INT_FATAL) {
    827 		/*
    828 		 * Fatal errors are unrecoverable.  Typically
    829 		 * these are caused by DMA errors.  Unfortunately
    830 		 * the exact reason is not (presently) returned
    831 		 * by the hal.
    832 		 */
    833 		sc->sc_stats.ast_hardware++;
    834 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
    835 		TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
    836 	} else if (status & HAL_INT_RXORN) {
    837 		sc->sc_stats.ast_rxorn++;
    838 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
    839 		TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
    840 	} else {
    841 		if (status & HAL_INT_SWBA) {
    842 			/*
    843 			 * Software beacon alert--time to send a beacon.
    844 			 * Handle beacon transmission directly; deferring
    845 			 * this is too slow to meet timing constraints
    846 			 * under load.
    847 			 */
    848 			ath_beacon_proc(sc, 0);
    849 		}
    850 		if (status & HAL_INT_RXEOL) {
    851 			/*
    852 			 * NB: the hardware should re-read the link when
    853 			 *     RXE bit is written, but it doesn't work at
    854 			 *     least on older hardware revs.
    855 			 */
    856 			sc->sc_stats.ast_rxeol++;
    857 			sc->sc_rxlink = NULL;
    858 		}
    859 		if (status & HAL_INT_TXURN) {
    860 			sc->sc_stats.ast_txurn++;
    861 			/* bump tx trigger level */
    862 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
    863 		}
    864 		if (status & HAL_INT_RX)
    865 			TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
    866 		if (status & HAL_INT_TX)
    867 			TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
    868 		if (status & HAL_INT_BMISS) {
    869 			sc->sc_stats.ast_bmiss++;
    870 			TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
    871 		}
    872 		if (status & HAL_INT_MIB) {
    873 			sc->sc_stats.ast_mib++;
    874 			/*
    875 			 * Disable interrupts until we service the MIB
    876 			 * interrupt; otherwise it will continue to fire.
    877 			 */
    878 			ath_hal_intrset(ah, 0);
    879 			/*
    880 			 * Let the hal handle the event.  We assume it will
    881 			 * clear whatever condition caused the interrupt.
    882 			 */
    883 			ath_hal_mibevent(ah, &sc->sc_halstats);
    884 			ath_hal_intrset(ah, sc->sc_imask);
    885 		}
    886 	}
    887 	return 1;
    888 }
    889 
    890 /* Swap transmit descriptor.
    891  * if AH_NEED_DESC_SWAP flag is not defined this becomes a "null"
    892  * function.
    893  */
    894 static inline void
    895 ath_desc_swap(struct ath_desc *ds)
    896 {
    897 #ifdef AH_NEED_DESC_SWAP
    898 	ds->ds_link = htole32(ds->ds_link);
    899 	ds->ds_data = htole32(ds->ds_data);
    900 	ds->ds_ctl0 = htole32(ds->ds_ctl0);
    901 	ds->ds_ctl1 = htole32(ds->ds_ctl1);
    902 	ds->ds_hw[0] = htole32(ds->ds_hw[0]);
    903 	ds->ds_hw[1] = htole32(ds->ds_hw[1]);
    904 #endif
    905 }
    906 
    907 static void
    908 ath_fatal_proc(void *arg, int pending)
    909 {
    910 	struct ath_softc *sc = arg;
    911 	struct ifnet *ifp = &sc->sc_if;
    912 
    913 	if_printf(ifp, "hardware error; resetting\n");
    914 	ath_reset(ifp);
    915 }
    916 
    917 static void
    918 ath_rxorn_proc(void *arg, int pending)
    919 {
    920 	struct ath_softc *sc = arg;
    921 	struct ifnet *ifp = &sc->sc_if;
    922 
    923 	if_printf(ifp, "rx FIFO overrun; resetting\n");
    924 	ath_reset(ifp);
    925 }
    926 
    927 static void
    928 ath_bmiss_proc(void *arg, int pending)
    929 {
    930 	struct ath_softc *sc = arg;
    931 	struct ieee80211com *ic = &sc->sc_ic;
    932 
    933 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
    934 	KASSERT(ic->ic_opmode == IEEE80211_M_STA,
    935 		("unexpect operating mode %u", ic->ic_opmode));
    936 	if (ic->ic_state == IEEE80211_S_RUN) {
    937 		u_int64_t lastrx = sc->sc_lastrx;
    938 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
    939 
    940 		DPRINTF(sc, ATH_DEBUG_BEACON,
    941 		    "%s: tsf %" PRIu64 " lastrx %" PRId64
    942 		    " (%" PRIu64 ") bmiss %u\n",
    943 		    __func__, tsf, tsf - lastrx, lastrx,
    944 		    ic->ic_bmisstimeout*1024);
    945 		/*
    946 		 * Workaround phantom bmiss interrupts by sanity-checking
    947 		 * the time of our last rx'd frame.  If it is within the
    948 		 * beacon miss interval then ignore the interrupt.  If it's
    949 		 * truly a bmiss we'll get another interrupt soon and that'll
    950 		 * be dispatched up for processing.
    951 		 */
    952 		if (tsf - lastrx > ic->ic_bmisstimeout*1024) {
    953 			NET_LOCK_GIANT();
    954 			ieee80211_beacon_miss(ic);
    955 			NET_UNLOCK_GIANT();
    956 		} else
    957 			sc->sc_stats.ast_bmiss_phantom++;
    958 	}
    959 }
    960 
    961 static void
    962 ath_radar_proc(void *arg, int pending)
    963 {
    964 	struct ath_softc *sc = arg;
    965 	struct ifnet *ifp = &sc->sc_if;
    966 	struct ath_hal *ah = sc->sc_ah;
    967 	HAL_CHANNEL hchan;
    968 
    969 	if (ath_hal_procdfs(ah, &hchan)) {
    970 		if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n",
    971 			hchan.channel, hchan.channelFlags, hchan.privFlags);
    972 		/*
    973 		 * Initiate channel change.
    974 		 */
    975 		/* XXX not yet */
    976 	}
    977 }
    978 
    979 static u_int
    980 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
    981 {
    982 #define	N(a)	(sizeof(a) / sizeof(a[0]))
    983 	static const u_int modeflags[] = {
    984 		0,			/* IEEE80211_MODE_AUTO */
    985 		CHANNEL_A,		/* IEEE80211_MODE_11A */
    986 		CHANNEL_B,		/* IEEE80211_MODE_11B */
    987 		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
    988 		0,			/* IEEE80211_MODE_FH */
    989 		CHANNEL_ST,		/* IEEE80211_MODE_TURBO_A */
    990 		CHANNEL_108G		/* IEEE80211_MODE_TURBO_G */
    991 	};
    992 	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
    993 
    994 	KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
    995 	KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
    996 	return modeflags[mode];
    997 #undef N
    998 }
    999 
   1000 static int
   1001 ath_ifinit(struct ifnet *ifp)
   1002 {
   1003 	struct ath_softc *sc = (struct ath_softc *)ifp->if_softc;
   1004 
   1005 	return ath_init(sc);
   1006 }
   1007 
   1008 static int
   1009 ath_init(struct ath_softc *sc)
   1010 {
   1011 	struct ifnet *ifp = &sc->sc_if;
   1012 	struct ieee80211com *ic = &sc->sc_ic;
   1013 	struct ath_hal *ah = sc->sc_ah;
   1014 	HAL_STATUS status;
   1015 	int error = 0;
   1016 
   1017 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
   1018 		__func__, ifp->if_flags);
   1019 
   1020 	ATH_LOCK(sc);
   1021 
   1022 	if ((error = ath_enable(sc)) != 0)
   1023 		return error;
   1024 
   1025 	/*
   1026 	 * Stop anything previously setup.  This is safe
   1027 	 * whether this is the first time through or not.
   1028 	 */
   1029 	ath_stop_locked(ifp, 0);
   1030 
   1031 	/*
   1032 	 * The basic interface to setting the hardware in a good
   1033 	 * state is ``reset''.  On return the hardware is known to
   1034 	 * be powered up and with interrupts disabled.  This must
   1035 	 * be followed by initialization of the appropriate bits
   1036 	 * and then setup of the interrupt mask.
   1037 	 */
   1038 	sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
   1039 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
   1040 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
   1041 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
   1042 			status);
   1043 		error = EIO;
   1044 		goto done;
   1045 	}
   1046 
   1047 	/*
   1048 	 * This is needed only to setup initial state
   1049 	 * but it's best done after a reset.
   1050 	 */
   1051 	ath_update_txpow(sc);
   1052 	/*
   1053 	 * Likewise this is set during reset so update
   1054 	 * state cached in the driver.
   1055 	 */
   1056 	sc->sc_diversity = ath_hal_getdiversity(ah);
   1057 	sc->sc_calinterval = 1;
   1058 	sc->sc_caltries = 0;
   1059 
   1060 	/*
   1061 	 * Setup the hardware after reset: the key cache
   1062 	 * is filled as needed and the receive engine is
   1063 	 * set going.  Frame transmit is handled entirely
   1064 	 * in the frame output path; there's nothing to do
   1065 	 * here except setup the interrupt mask.
   1066 	 */
   1067 	if ((error = ath_startrecv(sc)) != 0) {
   1068 		if_printf(ifp, "unable to start recv logic\n");
   1069 		goto done;
   1070 	}
   1071 
   1072 	/*
   1073 	 * Enable interrupts.
   1074 	 */
   1075 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
   1076 		  | HAL_INT_RXEOL | HAL_INT_RXORN
   1077 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
   1078 	/*
   1079 	 * Enable MIB interrupts when there are hardware phy counters.
   1080 	 * Note we only do this (at the moment) for station mode.
   1081 	 */
   1082 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
   1083 		sc->sc_imask |= HAL_INT_MIB;
   1084 	ath_hal_intrset(ah, sc->sc_imask);
   1085 
   1086 	ifp->if_flags |= IFF_RUNNING;
   1087 	ic->ic_state = IEEE80211_S_INIT;
   1088 
   1089 	/*
   1090 	 * The hardware should be ready to go now so it's safe
   1091 	 * to kick the 802.11 state machine as it's likely to
   1092 	 * immediately call back to us to send mgmt frames.
   1093 	 */
   1094 	ath_chan_change(sc, ic->ic_curchan);
   1095 #ifdef ATH_TX99_DIAG
   1096 	if (sc->sc_tx99 != NULL)
   1097 		sc->sc_tx99->start(sc->sc_tx99);
   1098 	else
   1099 #endif
   1100 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   1101 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
   1102 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   1103 	} else
   1104 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   1105 done:
   1106 	ATH_UNLOCK(sc);
   1107 	return error;
   1108 }
   1109 
   1110 static void
   1111 ath_stop_locked(struct ifnet *ifp, int disable)
   1112 {
   1113 	struct ath_softc *sc = ifp->if_softc;
   1114 	struct ieee80211com *ic = &sc->sc_ic;
   1115 	struct ath_hal *ah = sc->sc_ah;
   1116 
   1117 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
   1118 		__func__, sc->sc_invalid, ifp->if_flags);
   1119 
   1120 	ATH_LOCK_ASSERT(sc);
   1121 	if (ifp->if_flags & IFF_RUNNING) {
   1122 		/*
   1123 		 * Shutdown the hardware and driver:
   1124 		 *    reset 802.11 state machine
   1125 		 *    turn off timers
   1126 		 *    disable interrupts
   1127 		 *    turn off the radio
   1128 		 *    clear transmit machinery
   1129 		 *    clear receive machinery
   1130 		 *    drain and release tx queues
   1131 		 *    reclaim beacon resources
   1132 		 *    power down hardware
   1133 		 *
   1134 		 * Note that some of this work is not possible if the
   1135 		 * hardware is gone (invalid).
   1136 		 */
   1137 #ifdef ATH_TX99_DIAG
   1138 		if (sc->sc_tx99 != NULL)
   1139 			sc->sc_tx99->stop(sc->sc_tx99);
   1140 #endif
   1141 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   1142 		ifp->if_flags &= ~IFF_RUNNING;
   1143 		ifp->if_timer = 0;
   1144 		if (!sc->sc_invalid) {
   1145 			if (sc->sc_softled) {
   1146 				callout_stop(&sc->sc_ledtimer);
   1147 				ath_hal_gpioset(ah, sc->sc_ledpin,
   1148 					!sc->sc_ledon);
   1149 				sc->sc_blinking = 0;
   1150 			}
   1151 			ath_hal_intrset(ah, 0);
   1152 		}
   1153 		ath_draintxq(sc);
   1154 		if (!sc->sc_invalid) {
   1155 			ath_stoprecv(sc);
   1156 			ath_hal_phydisable(ah);
   1157 		} else
   1158 			sc->sc_rxlink = NULL;
   1159 		IF_PURGE(&ifp->if_snd);
   1160 		ath_beacon_free(sc);
   1161 		if (disable)
   1162 			ath_disable(sc);
   1163 	}
   1164 }
   1165 
   1166 static void
   1167 ath_stop(struct ifnet *ifp, int disable)
   1168 {
   1169 	struct ath_softc *sc = ifp->if_softc;
   1170 
   1171 	ATH_LOCK(sc);
   1172 	ath_stop_locked(ifp, disable);
   1173 	if (!sc->sc_invalid) {
   1174 		/*
   1175 		 * Set the chip in full sleep mode.  Note that we are
   1176 		 * careful to do this only when bringing the interface
   1177 		 * completely to a stop.  When the chip is in this state
   1178 		 * it must be carefully woken up or references to
   1179 		 * registers in the PCI clock domain may freeze the bus
   1180 		 * (and system).  This varies by chip and is mostly an
   1181 		 * issue with newer parts that go to sleep more quickly.
   1182 		 */
   1183 		ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
   1184 	}
   1185 	ATH_UNLOCK(sc);
   1186 }
   1187 
   1188 /*
   1189  * Reset the hardware w/o losing operational state.  This is
   1190  * basically a more efficient way of doing ath_stop, ath_init,
   1191  * followed by state transitions to the current 802.11
   1192  * operational state.  Used to recover from various errors and
   1193  * to reset or reload hardware state.
   1194  */
   1195 int
   1196 ath_reset(struct ifnet *ifp)
   1197 {
   1198 	struct ath_softc *sc = ifp->if_softc;
   1199 	struct ieee80211com *ic = &sc->sc_ic;
   1200 	struct ath_hal *ah = sc->sc_ah;
   1201 	struct ieee80211_channel *c;
   1202 	HAL_STATUS status;
   1203 
   1204 	/*
   1205 	 * Convert to a HAL channel description with the flags
   1206 	 * constrained to reflect the current operating mode.
   1207 	 */
   1208 	c = ic->ic_curchan;
   1209 	sc->sc_curchan.channel = c->ic_freq;
   1210 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
   1211 
   1212 	ath_hal_intrset(ah, 0);		/* disable interrupts */
   1213 	ath_draintxq(sc);		/* stop xmit side */
   1214 	ath_stoprecv(sc);		/* stop recv side */
   1215 	/* NB: indicate channel change so we do a full reset */
   1216 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
   1217 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
   1218 			__func__, status);
   1219 	ath_update_txpow(sc);		/* update tx power state */
   1220 	sc->sc_diversity = ath_hal_getdiversity(ah);
   1221 	sc->sc_calinterval = 1;
   1222 	sc->sc_caltries = 0;
   1223 	if (ath_startrecv(sc) != 0)	/* restart recv */
   1224 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
   1225 	/*
   1226 	 * We may be doing a reset in response to an ioctl
   1227 	 * that changes the channel so update any state that
   1228 	 * might change as a result.
   1229 	 */
   1230 	ath_chan_change(sc, c);
   1231 	if (ic->ic_state == IEEE80211_S_RUN)
   1232 		ath_beacon_config(sc);	/* restart beacons */
   1233 	ath_hal_intrset(ah, sc->sc_imask);
   1234 
   1235 	ath_start(ifp);			/* restart xmit */
   1236 	return 0;
   1237 }
   1238 
   1239 /*
   1240  * Cleanup driver resources when we run out of buffers
   1241  * while processing fragments; return the tx buffers
   1242  * allocated and drop node references.
   1243  */
   1244 static void
   1245 ath_txfrag_cleanup(struct ath_softc *sc,
   1246 	ath_bufhead *frags, struct ieee80211_node *ni)
   1247 {
   1248 	struct ath_buf *bf;
   1249 
   1250 	ATH_TXBUF_LOCK_ASSERT(sc);
   1251 
   1252 	while ((bf = STAILQ_FIRST(frags)) != NULL) {
   1253 		STAILQ_REMOVE_HEAD(frags, bf_list);
   1254 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1255 		ieee80211_node_decref(ni);
   1256 	}
   1257 }
   1258 
   1259 /*
   1260  * Setup xmit of a fragmented frame.  Allocate a buffer
   1261  * for each frag and bump the node reference count to
   1262  * reflect the held reference to be setup by ath_tx_start.
   1263  */
   1264 static int
   1265 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
   1266 	struct mbuf *m0, struct ieee80211_node *ni)
   1267 {
   1268 	struct mbuf *m;
   1269 	struct ath_buf *bf;
   1270 
   1271 	ATH_TXBUF_LOCK(sc);
   1272 	for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
   1273 		bf = STAILQ_FIRST(&sc->sc_txbuf);
   1274 		if (bf == NULL) {       /* out of buffers, cleanup */
   1275 			ath_txfrag_cleanup(sc, frags, ni);
   1276 			break;
   1277 		}
   1278 		STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
   1279 		ieee80211_node_incref(ni);
   1280 		STAILQ_INSERT_TAIL(frags, bf, bf_list);
   1281 	}
   1282 	ATH_TXBUF_UNLOCK(sc);
   1283 
   1284 	return !STAILQ_EMPTY(frags);
   1285 }
   1286 
   1287 static void
   1288 ath_start(struct ifnet *ifp)
   1289 {
   1290 	struct ath_softc *sc = ifp->if_softc;
   1291 	struct ath_hal *ah = sc->sc_ah;
   1292 	struct ieee80211com *ic = &sc->sc_ic;
   1293 	struct ieee80211_node *ni;
   1294 	struct ath_buf *bf;
   1295 	struct mbuf *m, *next;
   1296 	struct ieee80211_frame *wh;
   1297 	struct ether_header *eh;
   1298 	ath_bufhead frags;
   1299 
   1300 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
   1301 		return;
   1302 	for (;;) {
   1303 		/*
   1304 		 * Grab a TX buffer and associated resources.
   1305 		 */
   1306 		ATH_TXBUF_LOCK(sc);
   1307 		bf = STAILQ_FIRST(&sc->sc_txbuf);
   1308 		if (bf != NULL)
   1309 			STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
   1310 		ATH_TXBUF_UNLOCK(sc);
   1311 		if (bf == NULL) {
   1312 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
   1313 				__func__);
   1314 			sc->sc_stats.ast_tx_qstop++;
   1315 			ifp->if_flags |= IFF_OACTIVE;
   1316 			break;
   1317 		}
   1318 		/*
   1319 		 * Poll the management queue for frames; they
   1320 		 * have priority over normal data frames.
   1321 		 */
   1322 		IF_DEQUEUE(&ic->ic_mgtq, m);
   1323 		if (m == NULL) {
   1324 			/*
   1325 			 * No data frames go out unless we're associated.
   1326 			 */
   1327 			if (ic->ic_state != IEEE80211_S_RUN) {
   1328 				DPRINTF(sc, ATH_DEBUG_XMIT,
   1329 				    "%s: discard data packet, state %s\n",
   1330 				    __func__,
   1331 				    ieee80211_state_name[ic->ic_state]);
   1332 				sc->sc_stats.ast_tx_discard++;
   1333 				ATH_TXBUF_LOCK(sc);
   1334 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1335 				ATH_TXBUF_UNLOCK(sc);
   1336 				break;
   1337 			}
   1338 			IFQ_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
   1339 			if (m == NULL) {
   1340 				ATH_TXBUF_LOCK(sc);
   1341 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1342 				ATH_TXBUF_UNLOCK(sc);
   1343 				break;
   1344 			}
   1345 			STAILQ_INIT(&frags);
   1346 			/*
   1347 			 * Find the node for the destination so we can do
   1348 			 * things like power save and fast frames aggregation.
   1349 			 */
   1350 			if (m->m_len < sizeof(struct ether_header) &&
   1351 			   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
   1352 				ic->ic_stats.is_tx_nobuf++;	/* XXX */
   1353 				ni = NULL;
   1354 				goto bad;
   1355 			}
   1356 			eh = mtod(m, struct ether_header *);
   1357 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   1358 			if (ni == NULL) {
   1359 				/* NB: ieee80211_find_txnode does stat+msg */
   1360 				m_freem(m);
   1361 				goto bad;
   1362 			}
   1363 			if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
   1364 			    (m->m_flags & M_PWR_SAV) == 0) {
   1365 				/*
   1366 				 * Station in power save mode; pass the frame
   1367 				 * to the 802.11 layer and continue.  We'll get
   1368 				 * the frame back when the time is right.
   1369 				 */
   1370 				ieee80211_pwrsave(ic, ni, m);
   1371 				goto reclaim;
   1372 			}
   1373 			/* calculate priority so we can find the tx queue */
   1374 			if (ieee80211_classify(ic, m, ni)) {
   1375 				DPRINTF(sc, ATH_DEBUG_XMIT,
   1376 					"%s: discard, classification failure\n",
   1377 					__func__);
   1378 				m_freem(m);
   1379 				goto bad;
   1380 			}
   1381 			ifp->if_opackets++;
   1382 
   1383 #if NBPFILTER > 0
   1384 			if (ifp->if_bpf)
   1385 				bpf_mtap(ifp->if_bpf, m);
   1386 #endif
   1387 			/*
   1388 			 * Encapsulate the packet in prep for transmission.
   1389 			 */
   1390 			m = ieee80211_encap(ic, m, ni);
   1391 			if (m == NULL) {
   1392 				DPRINTF(sc, ATH_DEBUG_XMIT,
   1393 					"%s: encapsulation failure\n",
   1394 					__func__);
   1395 				sc->sc_stats.ast_tx_encap++;
   1396 				goto bad;
   1397 			}
   1398 			/*
   1399 			 * Check for fragmentation.  If this has frame
   1400 			 * has been broken up verify we have enough
   1401 			 * buffers to send all the fragments so all
   1402 			 * go out or none...
   1403 			 */
   1404 			if ((m->m_flags & M_FRAG) &&
   1405 			    !ath_txfrag_setup(sc, &frags, m, ni)) {
   1406 				DPRINTF(sc, ATH_DEBUG_ANY,
   1407 				    "%s: out of txfrag buffers\n", __func__);
   1408 				ic->ic_stats.is_tx_nobuf++;     /* XXX */
   1409 				ath_freetx(m);
   1410 				goto bad;
   1411 			}
   1412 		} else {
   1413 			/*
   1414 			 * Hack!  The referenced node pointer is in the
   1415 			 * rcvif field of the packet header.  This is
   1416 			 * placed there by ieee80211_mgmt_output because
   1417 			 * we need to hold the reference with the frame
   1418 			 * and there's no other way (other than packet
   1419 			 * tags which we consider too expensive to use)
   1420 			 * to pass it along.
   1421 			 */
   1422 			ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
   1423 			m->m_pkthdr.rcvif = NULL;
   1424 
   1425 			wh = mtod(m, struct ieee80211_frame *);
   1426 			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
   1427 			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
   1428 				/* fill time stamp */
   1429 				u_int64_t tsf;
   1430 				u_int32_t *tstamp;
   1431 
   1432 				tsf = ath_hal_gettsf64(ah);
   1433 				/* XXX: adjust 100us delay to xmit */
   1434 				tsf += 100;
   1435 				tstamp = (u_int32_t *)&wh[1];
   1436 				tstamp[0] = htole32(tsf & 0xffffffff);
   1437 				tstamp[1] = htole32(tsf >> 32);
   1438 			}
   1439 			sc->sc_stats.ast_tx_mgmt++;
   1440 		}
   1441 
   1442 	nextfrag:
   1443 		next = m->m_nextpkt;
   1444 		if (ath_tx_start(sc, ni, bf, m)) {
   1445 	bad:
   1446 			ifp->if_oerrors++;
   1447 	reclaim:
   1448 			ATH_TXBUF_LOCK(sc);
   1449 			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1450 			ath_txfrag_cleanup(sc, &frags, ni);
   1451 			ATH_TXBUF_UNLOCK(sc);
   1452 			if (ni != NULL)
   1453 				ieee80211_free_node(ni);
   1454 			continue;
   1455 		}
   1456 		if (next != NULL) {
   1457 			m = next;
   1458 			bf = STAILQ_FIRST(&frags);
   1459 			KASSERT(bf != NULL, ("no buf for txfrag"));
   1460 			STAILQ_REMOVE_HEAD(&frags, bf_list);
   1461 			goto nextfrag;
   1462 		}
   1463 
   1464 		sc->sc_tx_timer = 5;
   1465 		ifp->if_timer = 1;
   1466 	}
   1467 }
   1468 
   1469 static int
   1470 ath_media_change(struct ifnet *ifp)
   1471 {
   1472 #define	IS_UP(ifp) \
   1473 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
   1474 	int error;
   1475 
   1476 	error = ieee80211_media_change(ifp);
   1477 	if (error == ENETRESET) {
   1478 		if (IS_UP(ifp))
   1479 			ath_init(ifp->if_softc);	/* XXX lose error */
   1480 		error = 0;
   1481 	}
   1482 	return error;
   1483 #undef IS_UP
   1484 }
   1485 
   1486 #ifdef AR_DEBUG
   1487 static void
   1488 ath_keyprint(const char *tag, u_int ix,
   1489 	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
   1490 {
   1491 	static const char *ciphers[] = {
   1492 		"WEP",
   1493 		"AES-OCB",
   1494 		"AES-CCM",
   1495 		"CKIP",
   1496 		"TKIP",
   1497 		"CLR",
   1498 	};
   1499 	int i, n;
   1500 
   1501 	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
   1502 	for (i = 0, n = hk->kv_len; i < n; i++)
   1503 		printf("%02x", hk->kv_val[i]);
   1504 	printf(" mac %s", ether_sprintf(mac));
   1505 	if (hk->kv_type == HAL_CIPHER_TKIP) {
   1506 		printf(" mic ");
   1507 		for (i = 0; i < sizeof(hk->kv_mic); i++)
   1508 			printf("%02x", hk->kv_mic[i]);
   1509 	}
   1510 	printf("\n");
   1511 }
   1512 #endif
   1513 
   1514 /*
   1515  * Set a TKIP key into the hardware.  This handles the
   1516  * potential distribution of key state to multiple key
   1517  * cache slots for TKIP.
   1518  */
   1519 static int
   1520 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
   1521 	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
   1522 {
   1523 #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
   1524 	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
   1525 	struct ath_hal *ah = sc->sc_ah;
   1526 
   1527 	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
   1528 		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
   1529 	KASSERT(sc->sc_splitmic, ("key cache !split"));
   1530 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
   1531 		/*
   1532 		 * TX key goes at first index, RX key at the rx index.
   1533 		 * The hal handles the MIC keys at index+64.
   1534 		 */
   1535 		memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
   1536 		KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
   1537 		if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
   1538 			return 0;
   1539 
   1540 		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
   1541 		KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
   1542 		/* XXX delete tx key on failure? */
   1543 		return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
   1544 	} else if (k->wk_flags & IEEE80211_KEY_XR) {
   1545 		/*
   1546 		 * TX/RX key goes at first index.
   1547 		 * The hal handles the MIC keys are index+64.
   1548 		 */
   1549 		memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
   1550 			k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
   1551 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
   1552 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
   1553 	}
   1554 	return 0;
   1555 #undef IEEE80211_KEY_XR
   1556 }
   1557 
   1558 /*
   1559  * Set a net80211 key into the hardware.  This handles the
   1560  * potential distribution of key state to multiple key
   1561  * cache slots for TKIP with hardware MIC support.
   1562  */
   1563 static int
   1564 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
   1565 	const u_int8_t mac0[IEEE80211_ADDR_LEN],
   1566 	struct ieee80211_node *bss)
   1567 {
   1568 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1569 	static const u_int8_t ciphermap[] = {
   1570 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
   1571 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
   1572 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
   1573 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
   1574 		(u_int8_t) -1,		/* 4 is not allocated */
   1575 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
   1576 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
   1577 	};
   1578 	struct ath_hal *ah = sc->sc_ah;
   1579 	const struct ieee80211_cipher *cip = k->wk_cipher;
   1580 	u_int8_t gmac[IEEE80211_ADDR_LEN];
   1581 	const u_int8_t *mac;
   1582 	HAL_KEYVAL hk;
   1583 
   1584 	memset(&hk, 0, sizeof(hk));
   1585 	/*
   1586 	 * Software crypto uses a "clear key" so non-crypto
   1587 	 * state kept in the key cache are maintained and
   1588 	 * so that rx frames have an entry to match.
   1589 	 */
   1590 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
   1591 		KASSERT(cip->ic_cipher < N(ciphermap),
   1592 			("invalid cipher type %u", cip->ic_cipher));
   1593 		hk.kv_type = ciphermap[cip->ic_cipher];
   1594 		hk.kv_len = k->wk_keylen;
   1595 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
   1596 	} else
   1597 		hk.kv_type = HAL_CIPHER_CLR;
   1598 
   1599 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
   1600 		/*
   1601 		 * Group keys on hardware that supports multicast frame
   1602 		 * key search use a mac that is the sender's address with
   1603 		 * the high bit set instead of the app-specified address.
   1604 		 */
   1605 		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
   1606 		gmac[0] |= 0x80;
   1607 		mac = gmac;
   1608 	} else
   1609 		mac = mac0;
   1610 
   1611 	if (hk.kv_type == HAL_CIPHER_TKIP &&
   1612 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
   1613 	    sc->sc_splitmic) {
   1614 		return ath_keyset_tkip(sc, k, &hk, mac);
   1615 	} else {
   1616 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
   1617 		return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
   1618 	}
   1619 #undef N
   1620 }
   1621 
   1622 /*
   1623  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
   1624  * each key, one for decrypt/encrypt and the other for the MIC.
   1625  */
   1626 static u_int16_t
   1627 key_alloc_2pair(struct ath_softc *sc,
   1628 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
   1629 {
   1630 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1631 	u_int i, keyix;
   1632 
   1633 	KASSERT(sc->sc_splitmic, ("key cache !split"));
   1634 	/* XXX could optimize */
   1635 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
   1636 		u_int8_t b = sc->sc_keymap[i];
   1637 		if (b != 0xff) {
   1638 			/*
   1639 			 * One or more slots in this byte are free.
   1640 			 */
   1641 			keyix = i*NBBY;
   1642 			while (b & 1) {
   1643 		again:
   1644 				keyix++;
   1645 				b >>= 1;
   1646 			}
   1647 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
   1648 			if (isset(sc->sc_keymap, keyix+32) ||
   1649 			    isset(sc->sc_keymap, keyix+64) ||
   1650 			    isset(sc->sc_keymap, keyix+32+64)) {
   1651 				/* full pair unavailable */
   1652 				/* XXX statistic */
   1653 				if (keyix == (i+1)*NBBY) {
   1654 					/* no slots were appropriate, advance */
   1655 					continue;
   1656 				}
   1657 				goto again;
   1658 			}
   1659 			setbit(sc->sc_keymap, keyix);
   1660 			setbit(sc->sc_keymap, keyix+64);
   1661 			setbit(sc->sc_keymap, keyix+32);
   1662 			setbit(sc->sc_keymap, keyix+32+64);
   1663 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
   1664 				"%s: key pair %u,%u %u,%u\n",
   1665 				__func__, keyix, keyix+64,
   1666 				keyix+32, keyix+32+64);
   1667 			*txkeyix = keyix;
   1668 			*rxkeyix = keyix+32;
   1669 			return 1;
   1670 		}
   1671 	}
   1672 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
   1673 	return 0;
   1674 #undef N
   1675 }
   1676 
   1677 /*
   1678  * Allocate a single key cache slot.
   1679  */
   1680 static int
   1681 key_alloc_single(struct ath_softc *sc,
   1682 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
   1683 {
   1684 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1685 	u_int i, keyix;
   1686 
   1687 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
   1688 	for (i = 0; i < N(sc->sc_keymap); i++) {
   1689 		u_int8_t b = sc->sc_keymap[i];
   1690 		if (b != 0xff) {
   1691 			/*
   1692 			 * One or more slots are free.
   1693 			 */
   1694 			keyix = i*NBBY;
   1695 			while (b & 1)
   1696 				keyix++, b >>= 1;
   1697 			setbit(sc->sc_keymap, keyix);
   1698 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
   1699 				__func__, keyix);
   1700 			*txkeyix = *rxkeyix = keyix;
   1701 			return 1;
   1702 		}
   1703 	}
   1704 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
   1705 	return 0;
   1706 #undef N
   1707 }
   1708 
   1709 /*
   1710  * Allocate one or more key cache slots for a uniacst key.  The
   1711  * key itself is needed only to identify the cipher.  For hardware
   1712  * TKIP with split cipher+MIC keys we allocate two key cache slot
   1713  * pairs so that we can setup separate TX and RX MIC keys.  Note
   1714  * that the MIC key for a TKIP key at slot i is assumed by the
   1715  * hardware to be at slot i+64.  This limits TKIP keys to the first
   1716  * 64 entries.
   1717  */
   1718 static int
   1719 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
   1720 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
   1721 {
   1722 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1723 
   1724 	/*
   1725 	 * Group key allocation must be handled specially for
   1726 	 * parts that do not support multicast key cache search
   1727 	 * functionality.  For those parts the key id must match
   1728 	 * the h/w key index so lookups find the right key.  On
   1729 	 * parts w/ the key search facility we install the sender's
   1730 	 * mac address (with the high bit set) and let the hardware
   1731 	 * find the key w/o using the key id.  This is preferred as
   1732 	 * it permits us to support multiple users for adhoc and/or
   1733 	 * multi-station operation.
   1734 	 */
   1735 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
   1736 		if (!(&ic->ic_nw_keys[0] <= k &&
   1737 		      k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
   1738 			/* should not happen */
   1739 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
   1740 				"%s: bogus group key\n", __func__);
   1741 			return 0;
   1742 		}
   1743 		/*
   1744 		 * XXX we pre-allocate the global keys so
   1745 		 * have no way to check if they've already been allocated.
   1746 		 */
   1747 		*keyix = *rxkeyix = k - ic->ic_nw_keys;
   1748 		return 1;
   1749 	}
   1750 
   1751 	/*
   1752 	 * We allocate two pair for TKIP when using the h/w to do
   1753 	 * the MIC.  For everything else, including software crypto,
   1754 	 * we allocate a single entry.  Note that s/w crypto requires
   1755 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
   1756 	 * not support pass-through cache entries and we map all
   1757 	 * those requests to slot 0.
   1758 	 */
   1759 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
   1760 		return key_alloc_single(sc, keyix, rxkeyix);
   1761 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1762 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
   1763 		return key_alloc_2pair(sc, keyix, rxkeyix);
   1764 	} else {
   1765 		return key_alloc_single(sc, keyix, rxkeyix);
   1766 	}
   1767 }
   1768 
   1769 /*
   1770  * Delete an entry in the key cache allocated by ath_key_alloc.
   1771  */
   1772 static int
   1773 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
   1774 {
   1775 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1776 	struct ath_hal *ah = sc->sc_ah;
   1777 	const struct ieee80211_cipher *cip = k->wk_cipher;
   1778 	u_int keyix = k->wk_keyix;
   1779 
   1780 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
   1781 
   1782 	ath_hal_keyreset(ah, keyix);
   1783 	/*
   1784 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
   1785 	 */
   1786 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1787 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
   1788 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
   1789 	if (keyix >= IEEE80211_WEP_NKID) {
   1790 		/*
   1791 		 * Don't touch keymap entries for global keys so
   1792 		 * they are never considered for dynamic allocation.
   1793 		 */
   1794 		clrbit(sc->sc_keymap, keyix);
   1795 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1796 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
   1797 		    sc->sc_splitmic) {
   1798 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
   1799 			clrbit(sc->sc_keymap, keyix+32);	/* RX key */
   1800 			clrbit(sc->sc_keymap, keyix+32+64);	/* RX key MIC */
   1801 		}
   1802 	}
   1803 	return 1;
   1804 }
   1805 
   1806 /*
   1807  * Set the key cache contents for the specified key.  Key cache
   1808  * slot(s) must already have been allocated by ath_key_alloc.
   1809  */
   1810 static int
   1811 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
   1812 	const u_int8_t mac[IEEE80211_ADDR_LEN])
   1813 {
   1814 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1815 
   1816 	return ath_keyset(sc, k, mac, ic->ic_bss);
   1817 }
   1818 
   1819 /*
   1820  * Block/unblock tx+rx processing while a key change is done.
   1821  * We assume the caller serializes key management operations
   1822  * so we only need to worry about synchronization with other
   1823  * uses that originate in the driver.
   1824  */
   1825 static void
   1826 ath_key_update_begin(struct ieee80211com *ic)
   1827 {
   1828 	struct ifnet *ifp = ic->ic_ifp;
   1829 	struct ath_softc *sc = ifp->if_softc;
   1830 
   1831 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
   1832 #if 0
   1833 	tasklet_disable(&sc->sc_rxtq);
   1834 #endif
   1835 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
   1836 }
   1837 
   1838 static void
   1839 ath_key_update_end(struct ieee80211com *ic)
   1840 {
   1841 	struct ifnet *ifp = ic->ic_ifp;
   1842 	struct ath_softc *sc = ifp->if_softc;
   1843 
   1844 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
   1845 	IF_UNLOCK(&ifp->if_snd);
   1846 #if 0
   1847 	tasklet_enable(&sc->sc_rxtq);
   1848 #endif
   1849 }
   1850 
   1851 /*
   1852  * Calculate the receive filter according to the
   1853  * operating mode and state:
   1854  *
   1855  * o always accept unicast, broadcast, and multicast traffic
   1856  * o maintain current state of phy error reception (the hal
   1857  *   may enable phy error frames for noise immunity work)
   1858  * o probe request frames are accepted only when operating in
   1859  *   hostap, adhoc, or monitor modes
   1860  * o enable promiscuous mode according to the interface state
   1861  * o accept beacons:
   1862  *   - when operating in adhoc mode so the 802.11 layer creates
   1863  *     node table entries for peers,
   1864  *   - when operating in station mode for collecting rssi data when
   1865  *     the station is otherwise quiet, or
   1866  *   - when scanning
   1867  */
   1868 static u_int32_t
   1869 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
   1870 {
   1871 	struct ieee80211com *ic = &sc->sc_ic;
   1872 	struct ath_hal *ah = sc->sc_ah;
   1873 	struct ifnet *ifp = &sc->sc_if;
   1874 	u_int32_t rfilt;
   1875 
   1876 	rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
   1877 	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
   1878 	if (ic->ic_opmode != IEEE80211_M_STA)
   1879 		rfilt |= HAL_RX_FILTER_PROBEREQ;
   1880 	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
   1881 	    (ifp->if_flags & IFF_PROMISC))
   1882 		rfilt |= HAL_RX_FILTER_PROM;
   1883 	if (ic->ic_opmode == IEEE80211_M_STA ||
   1884 	    ic->ic_opmode == IEEE80211_M_IBSS ||
   1885 	    state == IEEE80211_S_SCAN)
   1886 		rfilt |= HAL_RX_FILTER_BEACON;
   1887 	return rfilt;
   1888 }
   1889 
   1890 static void
   1891 ath_mcastfilter_accum(void *dl, u_int32_t *mfilt)
   1892 {
   1893 	u_int32_t val;
   1894 	u_int8_t pos;
   1895 
   1896 	/* calculate XOR of eight 6bit values */
   1897 	val = LE_READ_4((char *)dl + 0);
   1898 	pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1899 	val = LE_READ_4((char *)dl + 3);
   1900 	pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1901 	pos &= 0x3f;
   1902 	mfilt[pos / 32] |= (1 << (pos % 32));
   1903 }
   1904 
   1905 static void
   1906 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t *mfilt)
   1907 {
   1908 	struct ifnet *ifp = &sc->sc_if;
   1909 	struct ether_multi *enm;
   1910 	struct ether_multistep estep;
   1911 
   1912 	mfilt[0] = mfilt[1] = 0;
   1913 	ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
   1914 	while (enm != NULL) {
   1915 		/* XXX Punt on ranges. */
   1916 		if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
   1917 			mfilt[0] = mfilt[1] = ~((u_int32_t)0);
   1918 			ifp->if_flags |= IFF_ALLMULTI;
   1919 			return;
   1920 		}
   1921 		ath_mcastfilter_accum(enm->enm_addrlo, mfilt);
   1922 		ETHER_NEXT_MULTI(estep, enm);
   1923 	}
   1924 	ifp->if_flags &= ~IFF_ALLMULTI;
   1925 }
   1926 
   1927 static void
   1928 ath_mode_init(struct ath_softc *sc)
   1929 {
   1930 	struct ieee80211com *ic = &sc->sc_ic;
   1931 	struct ath_hal *ah = sc->sc_ah;
   1932 	u_int32_t rfilt, mfilt[2];
   1933 	int i;
   1934 
   1935 	/* configure rx filter */
   1936 	rfilt = ath_calcrxfilter(sc, ic->ic_state);
   1937 	ath_hal_setrxfilter(ah, rfilt);
   1938 
   1939 	/* configure operational mode */
   1940 	ath_hal_setopmode(ah);
   1941 
   1942 	/* Write keys to hardware; it may have been powered down. */
   1943 	ath_key_update_begin(ic);
   1944 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
   1945 		ath_key_set(ic,
   1946 			    &ic->ic_crypto.cs_nw_keys[i],
   1947 			    ic->ic_myaddr);
   1948 	}
   1949 	ath_key_update_end(ic);
   1950 
   1951 	/*
   1952 	 * Handle any link-level address change.  Note that we only
   1953 	 * need to force ic_myaddr; any other addresses are handled
   1954 	 * as a byproduct of the ifnet code marking the interface
   1955 	 * down then up.
   1956 	 *
   1957 	 * XXX should get from lladdr instead of arpcom but that's more work
   1958 	 */
   1959 	IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(sc->sc_if.if_sadl));
   1960 	ath_hal_setmac(ah, ic->ic_myaddr);
   1961 
   1962 	/* calculate and install multicast filter */
   1963 #ifdef __FreeBSD__
   1964 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   1965 		mfilt[0] = mfilt[1] = 0;
   1966 		IF_ADDR_LOCK(ifp);
   1967 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
   1968 			void *dl;
   1969 
   1970 			/* calculate XOR of eight 6bit values */
   1971 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
   1972 			val = LE_READ_4((char *)dl + 0);
   1973 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1974 			val = LE_READ_4((char *)dl + 3);
   1975 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1976 			pos &= 0x3f;
   1977 			mfilt[pos / 32] |= (1 << (pos % 32));
   1978 		}
   1979 		IF_ADDR_UNLOCK(ifp);
   1980 	} else {
   1981 		mfilt[0] = mfilt[1] = ~0;
   1982 	}
   1983 #endif
   1984 #ifdef __NetBSD__
   1985 	ath_mcastfilter_compute(sc, mfilt);
   1986 #endif
   1987 	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
   1988 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
   1989 		__func__, rfilt, mfilt[0], mfilt[1]);
   1990 }
   1991 
   1992 /*
   1993  * Set the slot time based on the current setting.
   1994  */
   1995 static void
   1996 ath_setslottime(struct ath_softc *sc)
   1997 {
   1998 	struct ieee80211com *ic = &sc->sc_ic;
   1999 	struct ath_hal *ah = sc->sc_ah;
   2000 
   2001 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   2002 		ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
   2003 	else
   2004 		ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
   2005 	sc->sc_updateslot = OK;
   2006 }
   2007 
   2008 /*
   2009  * Callback from the 802.11 layer to update the
   2010  * slot time based on the current setting.
   2011  */
   2012 static void
   2013 ath_updateslot(struct ifnet *ifp)
   2014 {
   2015 	struct ath_softc *sc = ifp->if_softc;
   2016 	struct ieee80211com *ic = &sc->sc_ic;
   2017 
   2018 	/*
   2019 	 * When not coordinating the BSS, change the hardware
   2020 	 * immediately.  For other operation we defer the change
   2021 	 * until beacon updates have propagated to the stations.
   2022 	 */
   2023 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
   2024 		sc->sc_updateslot = UPDATE;
   2025 	else
   2026 		ath_setslottime(sc);
   2027 }
   2028 
   2029 /*
   2030  * Setup a h/w transmit queue for beacons.
   2031  */
   2032 static int
   2033 ath_beaconq_setup(struct ath_hal *ah)
   2034 {
   2035 	HAL_TXQ_INFO qi;
   2036 
   2037 	memset(&qi, 0, sizeof(qi));
   2038 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
   2039 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
   2040 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
   2041 	/* NB: for dynamic turbo, don't enable any other interrupts */
   2042 	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
   2043 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
   2044 }
   2045 
   2046 /*
   2047  * Setup the transmit queue parameters for the beacon queue.
   2048  */
   2049 static int
   2050 ath_beaconq_config(struct ath_softc *sc)
   2051 {
   2052 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
   2053 	struct ieee80211com *ic = &sc->sc_ic;
   2054 	struct ath_hal *ah = sc->sc_ah;
   2055 	HAL_TXQ_INFO qi;
   2056 
   2057 	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
   2058 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   2059 		/*
   2060 		 * Always burst out beacon and CAB traffic.
   2061 		 */
   2062 		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
   2063 		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
   2064 		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
   2065 	} else {
   2066 		struct wmeParams *wmep =
   2067 			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
   2068 		/*
   2069 		 * Adhoc mode; important thing is to use 2x cwmin.
   2070 		 */
   2071 		qi.tqi_aifs = wmep->wmep_aifsn;
   2072 		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
   2073 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
   2074 	}
   2075 
   2076 	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
   2077 		device_printf(sc->sc_dev, "unable to update parameters for "
   2078 			"beacon hardware queue!\n");
   2079 		return 0;
   2080 	} else {
   2081 		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
   2082 		return 1;
   2083 	}
   2084 #undef ATH_EXPONENT_TO_VALUE
   2085 }
   2086 
   2087 /*
   2088  * Allocate and setup an initial beacon frame.
   2089  */
   2090 static int
   2091 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
   2092 {
   2093 	struct ieee80211com *ic = ni->ni_ic;
   2094 	struct ath_buf *bf;
   2095 	struct mbuf *m;
   2096 	int error;
   2097 
   2098 	bf = STAILQ_FIRST(&sc->sc_bbuf);
   2099 	if (bf == NULL) {
   2100 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
   2101 		sc->sc_stats.ast_be_nombuf++;	/* XXX */
   2102 		return ENOMEM;			/* XXX */
   2103 	}
   2104 	/*
   2105 	 * NB: the beacon data buffer must be 32-bit aligned;
   2106 	 * we assume the mbuf routines will return us something
   2107 	 * with this alignment (perhaps should assert).
   2108 	 */
   2109 	m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
   2110 	if (m == NULL) {
   2111 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
   2112 			__func__);
   2113 		sc->sc_stats.ast_be_nombuf++;
   2114 		return ENOMEM;
   2115 	}
   2116 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
   2117 				     BUS_DMA_NOWAIT);
   2118 	if (error == 0) {
   2119 		bf->bf_m = m;
   2120 		bf->bf_node = ieee80211_ref_node(ni);
   2121 	} else {
   2122 		m_freem(m);
   2123 	}
   2124 	return error;
   2125 }
   2126 
   2127 /*
   2128  * Setup the beacon frame for transmit.
   2129  */
   2130 static void
   2131 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
   2132 {
   2133 #define	USE_SHPREAMBLE(_ic) \
   2134 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
   2135 		== IEEE80211_F_SHPREAMBLE)
   2136 	struct ieee80211_node *ni = bf->bf_node;
   2137 	struct ieee80211com *ic = ni->ni_ic;
   2138 	struct mbuf *m = bf->bf_m;
   2139 	struct ath_hal *ah = sc->sc_ah;
   2140 	struct ath_desc *ds;
   2141 	int flags, antenna;
   2142 	const HAL_RATE_TABLE *rt;
   2143 	u_int8_t rix, rate;
   2144 
   2145 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
   2146 		__func__, m, m->m_len);
   2147 
   2148 	/* setup descriptors */
   2149 	ds = bf->bf_desc;
   2150 
   2151 	flags = HAL_TXDESC_NOACK;
   2152 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
   2153 		ds->ds_link = HTOAH32(bf->bf_daddr);	/* self-linked */
   2154 		flags |= HAL_TXDESC_VEOL;
   2155 		/*
   2156 		 * Let hardware handle antenna switching unless
   2157 		 * the user has selected a transmit antenna
   2158 		 * (sc_txantenna is not 0).
   2159 		 */
   2160 		antenna = sc->sc_txantenna;
   2161 	} else {
   2162 		ds->ds_link = 0;
   2163 		/*
   2164 		 * Switch antenna every 4 beacons, unless the user
   2165 		 * has selected a transmit antenna (sc_txantenna
   2166 		 * is not 0).
   2167 		 *
   2168 		 * XXX assumes two antenna
   2169 		 */
   2170 		if (sc->sc_txantenna == 0)
   2171 			antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
   2172 		else
   2173 			antenna = sc->sc_txantenna;
   2174 	}
   2175 
   2176 	KASSERT(bf->bf_nseg == 1,
   2177 		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
   2178 	ds->ds_data = bf->bf_segs[0].ds_addr;
   2179 	/*
   2180 	 * Calculate rate code.
   2181 	 * XXX everything at min xmit rate
   2182 	 */
   2183 	rix = sc->sc_minrateix;
   2184 	rt = sc->sc_currates;
   2185 	rate = rt->info[rix].rateCode;
   2186 	if (USE_SHPREAMBLE(ic))
   2187 		rate |= rt->info[rix].shortPreamble;
   2188 	ath_hal_setuptxdesc(ah, ds
   2189 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
   2190 		, sizeof(struct ieee80211_frame)/* header length */
   2191 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
   2192 		, ni->ni_txpower		/* txpower XXX */
   2193 		, rate, 1			/* series 0 rate/tries */
   2194 		, HAL_TXKEYIX_INVALID		/* no encryption */
   2195 		, antenna			/* antenna mode */
   2196 		, flags				/* no ack, veol for beacons */
   2197 		, 0				/* rts/cts rate */
   2198 		, 0				/* rts/cts duration */
   2199 	);
   2200 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
   2201 	ath_hal_filltxdesc(ah, ds
   2202 		, roundup(m->m_len, 4)		/* buffer length */
   2203 		, AH_TRUE			/* first segment */
   2204 		, AH_TRUE			/* last segment */
   2205 		, ds				/* first descriptor */
   2206 	);
   2207 
   2208 	/* NB: The desc swap function becomes void,
   2209 	 * if descriptor swapping is not enabled
   2210 	 */
   2211 	ath_desc_swap(ds);
   2212 
   2213 #undef USE_SHPREAMBLE
   2214 }
   2215 
   2216 /*
   2217  * Transmit a beacon frame at SWBA.  Dynamic updates to the
   2218  * frame contents are done as needed and the slot time is
   2219  * also adjusted based on current state.
   2220  */
   2221 static void
   2222 ath_beacon_proc(void *arg, int pending)
   2223 {
   2224 	struct ath_softc *sc = arg;
   2225 	struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
   2226 	struct ieee80211_node *ni = bf->bf_node;
   2227 	struct ieee80211com *ic = ni->ni_ic;
   2228 	struct ath_hal *ah = sc->sc_ah;
   2229 	struct mbuf *m;
   2230 	int ncabq, error, otherant;
   2231 
   2232 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
   2233 		__func__, pending);
   2234 
   2235 	if (ic->ic_opmode == IEEE80211_M_STA ||
   2236 	    ic->ic_opmode == IEEE80211_M_MONITOR ||
   2237 	    bf == NULL || bf->bf_m == NULL) {
   2238 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
   2239 			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
   2240 		return;
   2241 	}
   2242 	/*
   2243 	 * Check if the previous beacon has gone out.  If
   2244 	 * not don't try to post another, skip this period
   2245 	 * and wait for the next.  Missed beacons indicate
   2246 	 * a problem and should not occur.  If we miss too
   2247 	 * many consecutive beacons reset the device.
   2248 	 */
   2249 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
   2250 		sc->sc_bmisscount++;
   2251 		DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
   2252 			"%s: missed %u consecutive beacons\n",
   2253 			__func__, sc->sc_bmisscount);
   2254 		if (sc->sc_bmisscount > 3)		/* NB: 3 is a guess */
   2255 			TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask);
   2256 		return;
   2257 	}
   2258 	if (sc->sc_bmisscount != 0) {
   2259 		DPRINTF(sc, ATH_DEBUG_BEACON,
   2260 			"%s: resume beacon xmit after %u misses\n",
   2261 			__func__, sc->sc_bmisscount);
   2262 		sc->sc_bmisscount = 0;
   2263 	}
   2264 
   2265 	/*
   2266 	 * Update dynamic beacon contents.  If this returns
   2267 	 * non-zero then we need to remap the memory because
   2268 	 * the beacon frame changed size (probably because
   2269 	 * of the TIM bitmap).
   2270 	 */
   2271 	m = bf->bf_m;
   2272 	ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
   2273 	if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
   2274 		/* XXX too conservative? */
   2275 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   2276 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
   2277 					     BUS_DMA_NOWAIT);
   2278 		if (error != 0) {
   2279 			if_printf(&sc->sc_if,
   2280 			    "%s: bus_dmamap_load_mbuf failed, error %u\n",
   2281 			    __func__, error);
   2282 			return;
   2283 		}
   2284 	}
   2285 
   2286 	/*
   2287 	 * Handle slot time change when a non-ERP station joins/leaves
   2288 	 * an 11g network.  The 802.11 layer notifies us via callback,
   2289 	 * we mark updateslot, then wait one beacon before effecting
   2290 	 * the change.  This gives associated stations at least one
   2291 	 * beacon interval to note the state change.
   2292 	 */
   2293 	/* XXX locking */
   2294 	if (sc->sc_updateslot == UPDATE)
   2295 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
   2296 	else if (sc->sc_updateslot == COMMIT)
   2297 		ath_setslottime(sc);		/* commit change to h/w */
   2298 
   2299 	/*
   2300 	 * Check recent per-antenna transmit statistics and flip
   2301 	 * the default antenna if noticeably more frames went out
   2302 	 * on the non-default antenna.
   2303 	 * XXX assumes 2 anntenae
   2304 	 */
   2305 	otherant = sc->sc_defant & 1 ? 2 : 1;
   2306 	if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
   2307 		ath_setdefantenna(sc, otherant);
   2308 	sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
   2309 
   2310 	/*
   2311 	 * Construct tx descriptor.
   2312 	 */
   2313 	ath_beacon_setup(sc, bf);
   2314 
   2315 	/*
   2316 	 * Stop any current dma and put the new frame on the queue.
   2317 	 * This should never fail since we check above that no frames
   2318 	 * are still pending on the queue.
   2319 	 */
   2320 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
   2321 		DPRINTF(sc, ATH_DEBUG_ANY,
   2322 			"%s: beacon queue %u did not stop?\n",
   2323 			__func__, sc->sc_bhalq);
   2324 	}
   2325 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   2326 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2327 
   2328 	/*
   2329 	 * Enable the CAB queue before the beacon queue to
   2330 	 * insure cab frames are triggered by this beacon.
   2331 	 */
   2332 	if (ncabq != 0 && (sc->sc_boff.bo_tim[4] & 1))	/* NB: only at DTIM */
   2333 		ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
   2334 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
   2335 	ath_hal_txstart(ah, sc->sc_bhalq);
   2336 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
   2337 	    "%s: TXDP[%u] = %" PRIx64 " (%p)\n", __func__,
   2338 	    sc->sc_bhalq, (uint64_t)bf->bf_daddr, bf->bf_desc);
   2339 
   2340 	sc->sc_stats.ast_be_xmit++;
   2341 }
   2342 
   2343 /*
   2344  * Reset the hardware after detecting beacons have stopped.
   2345  */
   2346 static void
   2347 ath_bstuck_proc(void *arg, int pending)
   2348 {
   2349 	struct ath_softc *sc = arg;
   2350 	struct ifnet *ifp = &sc->sc_if;
   2351 
   2352 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
   2353 		sc->sc_bmisscount);
   2354 	ath_reset(ifp);
   2355 }
   2356 
   2357 /*
   2358  * Reclaim beacon resources.
   2359  */
   2360 static void
   2361 ath_beacon_free(struct ath_softc *sc)
   2362 {
   2363 	struct ath_buf *bf;
   2364 
   2365 	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
   2366 		if (bf->bf_m != NULL) {
   2367 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   2368 			m_freem(bf->bf_m);
   2369 			bf->bf_m = NULL;
   2370 		}
   2371 		if (bf->bf_node != NULL) {
   2372 			ieee80211_free_node(bf->bf_node);
   2373 			bf->bf_node = NULL;
   2374 		}
   2375 	}
   2376 }
   2377 
   2378 /*
   2379  * Configure the beacon and sleep timers.
   2380  *
   2381  * When operating as an AP this resets the TSF and sets
   2382  * up the hardware to notify us when we need to issue beacons.
   2383  *
   2384  * When operating in station mode this sets up the beacon
   2385  * timers according to the timestamp of the last received
   2386  * beacon and the current TSF, configures PCF and DTIM
   2387  * handling, programs the sleep registers so the hardware
   2388  * will wakeup in time to receive beacons, and configures
   2389  * the beacon miss handling so we'll receive a BMISS
   2390  * interrupt when we stop seeing beacons from the AP
   2391  * we've associated with.
   2392  */
   2393 static void
   2394 ath_beacon_config(struct ath_softc *sc)
   2395 {
   2396 #define	TSF_TO_TU(_h,_l) \
   2397 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
   2398 #define	FUDGE	2
   2399 	struct ath_hal *ah = sc->sc_ah;
   2400 	struct ieee80211com *ic = &sc->sc_ic;
   2401 	struct ieee80211_node *ni = ic->ic_bss;
   2402 	u_int32_t nexttbtt, intval, tsftu;
   2403 	u_int64_t tsf;
   2404 
   2405 	/* extract tstamp from last beacon and convert to TU */
   2406 	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
   2407 			     LE_READ_4(ni->ni_tstamp.data));
   2408 	/* NB: the beacon interval is kept internally in TU's */
   2409 	intval = ni->ni_intval & HAL_BEACON_PERIOD;
   2410 	if (nexttbtt == 0)		/* e.g. for ap mode */
   2411 		nexttbtt = intval;
   2412 	else if (intval)		/* NB: can be 0 for monitor mode */
   2413 		nexttbtt = roundup(nexttbtt, intval);
   2414 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
   2415 		__func__, nexttbtt, intval, ni->ni_intval);
   2416 	if (ic->ic_opmode == IEEE80211_M_STA) {
   2417 		HAL_BEACON_STATE bs;
   2418 		int dtimperiod, dtimcount;
   2419 		int cfpperiod, cfpcount;
   2420 
   2421 		/*
   2422 		 * Setup dtim and cfp parameters according to
   2423 		 * last beacon we received (which may be none).
   2424 		 */
   2425 		dtimperiod = ni->ni_dtim_period;
   2426 		if (dtimperiod <= 0)		/* NB: 0 if not known */
   2427 			dtimperiod = 1;
   2428 		dtimcount = ni->ni_dtim_count;
   2429 		if (dtimcount >= dtimperiod)	/* NB: sanity check */
   2430 			dtimcount = 0;		/* XXX? */
   2431 		cfpperiod = 1;			/* NB: no PCF support yet */
   2432 		cfpcount = 0;
   2433 		/*
   2434 		 * Pull nexttbtt forward to reflect the current
   2435 		 * TSF and calculate dtim+cfp state for the result.
   2436 		 */
   2437 		tsf = ath_hal_gettsf64(ah);
   2438 		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
   2439 		do {
   2440 			nexttbtt += intval;
   2441 			if (--dtimcount < 0) {
   2442 				dtimcount = dtimperiod - 1;
   2443 				if (--cfpcount < 0)
   2444 					cfpcount = cfpperiod - 1;
   2445 			}
   2446 		} while (nexttbtt < tsftu);
   2447 		memset(&bs, 0, sizeof(bs));
   2448 		bs.bs_intval = intval;
   2449 		bs.bs_nexttbtt = nexttbtt;
   2450 		bs.bs_dtimperiod = dtimperiod*intval;
   2451 		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
   2452 		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
   2453 		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
   2454 		bs.bs_cfpmaxduration = 0;
   2455 #if 0
   2456 		/*
   2457 		 * The 802.11 layer records the offset to the DTIM
   2458 		 * bitmap while receiving beacons; use it here to
   2459 		 * enable h/w detection of our AID being marked in
   2460 		 * the bitmap vector (to indicate frames for us are
   2461 		 * pending at the AP).
   2462 		 * XXX do DTIM handling in s/w to WAR old h/w bugs
   2463 		 * XXX enable based on h/w rev for newer chips
   2464 		 */
   2465 		bs.bs_timoffset = ni->ni_timoff;
   2466 #endif
   2467 		/*
   2468 		 * Calculate the number of consecutive beacons to miss
   2469 		 * before taking a BMISS interrupt.  The configuration
   2470 		 * is specified in ms, so we need to convert that to
   2471 		 * TU's and then calculate based on the beacon interval.
   2472 		 * Note that we clamp the result to at most 10 beacons.
   2473 		 */
   2474 		bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
   2475 		if (bs.bs_bmissthreshold > 10)
   2476 			bs.bs_bmissthreshold = 10;
   2477 		else if (bs.bs_bmissthreshold <= 0)
   2478 			bs.bs_bmissthreshold = 1;
   2479 
   2480 		/*
   2481 		 * Calculate sleep duration.  The configuration is
   2482 		 * given in ms.  We insure a multiple of the beacon
   2483 		 * period is used.  Also, if the sleep duration is
   2484 		 * greater than the DTIM period then it makes senses
   2485 		 * to make it a multiple of that.
   2486 		 *
   2487 		 * XXX fixed at 100ms
   2488 		 */
   2489 		bs.bs_sleepduration =
   2490 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
   2491 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
   2492 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
   2493 
   2494 		DPRINTF(sc, ATH_DEBUG_BEACON,
   2495 			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
   2496 			, __func__
   2497 			, tsf, tsftu
   2498 			, bs.bs_intval
   2499 			, bs.bs_nexttbtt
   2500 			, bs.bs_dtimperiod
   2501 			, bs.bs_nextdtim
   2502 			, bs.bs_bmissthreshold
   2503 			, bs.bs_sleepduration
   2504 			, bs.bs_cfpperiod
   2505 			, bs.bs_cfpmaxduration
   2506 			, bs.bs_cfpnext
   2507 			, bs.bs_timoffset
   2508 		);
   2509 		ath_hal_intrset(ah, 0);
   2510 		ath_hal_beacontimers(ah, &bs);
   2511 		sc->sc_imask |= HAL_INT_BMISS;
   2512 		ath_hal_intrset(ah, sc->sc_imask);
   2513 	} else {
   2514 		ath_hal_intrset(ah, 0);
   2515 		if (nexttbtt == intval)
   2516 			intval |= HAL_BEACON_RESET_TSF;
   2517 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
   2518 			/*
   2519 			 * In IBSS mode enable the beacon timers but only
   2520 			 * enable SWBA interrupts if we need to manually
   2521 			 * prepare beacon frames.  Otherwise we use a
   2522 			 * self-linked tx descriptor and let the hardware
   2523 			 * deal with things.
   2524 			 */
   2525 			intval |= HAL_BEACON_ENA;
   2526 			if (!sc->sc_hasveol)
   2527 				sc->sc_imask |= HAL_INT_SWBA;
   2528 			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
   2529 				/*
   2530 				 * Pull nexttbtt forward to reflect
   2531 				 * the current TSF.
   2532 				 */
   2533 				tsf = ath_hal_gettsf64(ah);
   2534 				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
   2535 				do {
   2536 					nexttbtt += intval;
   2537 				} while (nexttbtt < tsftu);
   2538 			}
   2539 			ath_beaconq_config(sc);
   2540 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   2541 			/*
   2542 			 * In AP mode we enable the beacon timers and
   2543 			 * SWBA interrupts to prepare beacon frames.
   2544 			 */
   2545 			intval |= HAL_BEACON_ENA;
   2546 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
   2547 			ath_beaconq_config(sc);
   2548 		}
   2549 		ath_hal_beaconinit(ah, nexttbtt, intval);
   2550 		sc->sc_bmisscount = 0;
   2551 		ath_hal_intrset(ah, sc->sc_imask);
   2552 		/*
   2553 		 * When using a self-linked beacon descriptor in
   2554 		 * ibss mode load it once here.
   2555 		 */
   2556 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
   2557 			ath_beacon_proc(sc, 0);
   2558 	}
   2559 	sc->sc_syncbeacon = 0;
   2560 #undef UNDEF
   2561 #undef TSF_TO_TU
   2562 }
   2563 
   2564 static int
   2565 ath_descdma_setup(struct ath_softc *sc,
   2566 	struct ath_descdma *dd, ath_bufhead *head,
   2567 	const char *name, int nbuf, int ndesc)
   2568 {
   2569 #define	DS2PHYS(_dd, _ds) \
   2570 	((_dd)->dd_desc_paddr + ((char *)(_ds) - (char *)(_dd)->dd_desc))
   2571 	struct ifnet *ifp = &sc->sc_if;
   2572 	struct ath_desc *ds;
   2573 	struct ath_buf *bf;
   2574 	int i, bsize, error;
   2575 
   2576 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
   2577 	    __func__, name, nbuf, ndesc);
   2578 
   2579 	dd->dd_name = name;
   2580 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
   2581 
   2582 	/*
   2583 	 * Setup DMA descriptor area.
   2584 	 */
   2585 	dd->dd_dmat = sc->sc_dmat;
   2586 
   2587 	error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE,
   2588 	    0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0);
   2589 
   2590 	if (error != 0) {
   2591 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
   2592 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
   2593 		goto fail0;
   2594 	}
   2595 
   2596 	error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg,
   2597 	    dd->dd_desc_len, (void **)&dd->dd_desc, BUS_DMA_COHERENT);
   2598 	if (error != 0) {
   2599 		if_printf(ifp, "unable to map %u %s descriptors, error = %u\n",
   2600 		    nbuf * ndesc, dd->dd_name, error);
   2601 		goto fail1;
   2602 	}
   2603 
   2604 	/* allocate descriptors */
   2605 	error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1,
   2606 	    dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap);
   2607 	if (error != 0) {
   2608 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
   2609 			"error %u\n", dd->dd_name, error);
   2610 		goto fail2;
   2611 	}
   2612 
   2613 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc,
   2614 	    dd->dd_desc_len, NULL, BUS_DMA_NOWAIT);
   2615 	if (error != 0) {
   2616 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
   2617 			dd->dd_name, error);
   2618 		goto fail3;
   2619 	}
   2620 
   2621 	ds = dd->dd_desc;
   2622 	dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr;
   2623 	DPRINTF(sc, ATH_DEBUG_RESET,
   2624 	    "%s: %s DMA map: %p (%lu) -> %" PRIx64 " (%lu)\n",
   2625 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
   2626 	    (uint64_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
   2627 
   2628 	/* allocate rx buffers */
   2629 	bsize = sizeof(struct ath_buf) * nbuf;
   2630 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
   2631 	if (bf == NULL) {
   2632 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
   2633 			dd->dd_name, bsize);
   2634 		goto fail4;
   2635 	}
   2636 	dd->dd_bufptr = bf;
   2637 
   2638 	STAILQ_INIT(head);
   2639 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
   2640 		bf->bf_desc = ds;
   2641 		bf->bf_daddr = DS2PHYS(dd, ds);
   2642 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc,
   2643 				MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap);
   2644 		if (error != 0) {
   2645 			if_printf(ifp, "unable to create dmamap for %s "
   2646 				"buffer %u, error %u\n", dd->dd_name, i, error);
   2647 			ath_descdma_cleanup(sc, dd, head);
   2648 			return error;
   2649 		}
   2650 		STAILQ_INSERT_TAIL(head, bf, bf_list);
   2651 	}
   2652 	return 0;
   2653 fail4:
   2654 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
   2655 fail3:
   2656 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
   2657 fail2:
   2658 	bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
   2659 fail1:
   2660 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
   2661 fail0:
   2662 	memset(dd, 0, sizeof(*dd));
   2663 	return error;
   2664 #undef DS2PHYS
   2665 }
   2666 
   2667 static void
   2668 ath_descdma_cleanup(struct ath_softc *sc,
   2669 	struct ath_descdma *dd, ath_bufhead *head)
   2670 {
   2671 	struct ath_buf *bf;
   2672 	struct ieee80211_node *ni;
   2673 
   2674 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
   2675 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
   2676 	bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
   2677 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
   2678 
   2679 	STAILQ_FOREACH(bf, head, bf_list) {
   2680 		if (bf->bf_m) {
   2681 			m_freem(bf->bf_m);
   2682 			bf->bf_m = NULL;
   2683 		}
   2684 		if (bf->bf_dmamap != NULL) {
   2685 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
   2686 			bf->bf_dmamap = NULL;
   2687 		}
   2688 		ni = bf->bf_node;
   2689 		bf->bf_node = NULL;
   2690 		if (ni != NULL) {
   2691 			/*
   2692 			 * Reclaim node reference.
   2693 			 */
   2694 			ieee80211_free_node(ni);
   2695 		}
   2696 	}
   2697 
   2698 	STAILQ_INIT(head);
   2699 	free(dd->dd_bufptr, M_ATHDEV);
   2700 	memset(dd, 0, sizeof(*dd));
   2701 }
   2702 
   2703 static int
   2704 ath_desc_alloc(struct ath_softc *sc)
   2705 {
   2706 	int error;
   2707 
   2708 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
   2709 			"rx", ath_rxbuf, 1);
   2710 	if (error != 0)
   2711 		return error;
   2712 
   2713 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
   2714 			"tx", ath_txbuf, ATH_TXDESC);
   2715 	if (error != 0) {
   2716 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2717 		return error;
   2718 	}
   2719 
   2720 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
   2721 			"beacon", 1, 1);
   2722 	if (error != 0) {
   2723 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
   2724 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2725 		return error;
   2726 	}
   2727 	return 0;
   2728 }
   2729 
   2730 static void
   2731 ath_desc_free(struct ath_softc *sc)
   2732 {
   2733 
   2734 	if (sc->sc_bdma.dd_desc_len != 0)
   2735 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
   2736 	if (sc->sc_txdma.dd_desc_len != 0)
   2737 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
   2738 	if (sc->sc_rxdma.dd_desc_len != 0)
   2739 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2740 }
   2741 
   2742 static struct ieee80211_node *
   2743 ath_node_alloc(struct ieee80211_node_table *nt)
   2744 {
   2745 	struct ieee80211com *ic = nt->nt_ic;
   2746 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   2747 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
   2748 	struct ath_node *an;
   2749 
   2750 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
   2751 	if (an == NULL) {
   2752 		/* XXX stat+msg */
   2753 		return NULL;
   2754 	}
   2755 	an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
   2756 	ath_rate_node_init(sc, an);
   2757 
   2758 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
   2759 	return &an->an_node;
   2760 }
   2761 
   2762 static void
   2763 ath_node_free(struct ieee80211_node *ni)
   2764 {
   2765 	struct ieee80211com *ic = ni->ni_ic;
   2766         struct ath_softc *sc = ic->ic_ifp->if_softc;
   2767 
   2768 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
   2769 
   2770 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
   2771 	sc->sc_node_free(ni);
   2772 }
   2773 
   2774 static u_int8_t
   2775 ath_node_getrssi(const struct ieee80211_node *ni)
   2776 {
   2777 #define	HAL_EP_RND(x, mul) \
   2778 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
   2779 	u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
   2780 	int32_t rssi;
   2781 
   2782 	/*
   2783 	 * When only one frame is received there will be no state in
   2784 	 * avgrssi so fallback on the value recorded by the 802.11 layer.
   2785 	 */
   2786 	if (avgrssi != ATH_RSSI_DUMMY_MARKER)
   2787 		rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
   2788 	else
   2789 		rssi = ni->ni_rssi;
   2790 	return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
   2791 #undef HAL_EP_RND
   2792 }
   2793 
   2794 static int
   2795 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
   2796 {
   2797 	struct ath_hal *ah = sc->sc_ah;
   2798 	int error;
   2799 	struct mbuf *m;
   2800 	struct ath_desc *ds;
   2801 
   2802 	m = bf->bf_m;
   2803 	if (m == NULL) {
   2804 		/*
   2805 		 * NB: by assigning a page to the rx dma buffer we
   2806 		 * implicitly satisfy the Atheros requirement that
   2807 		 * this buffer be cache-line-aligned and sized to be
   2808 		 * multiple of the cache line size.  Not doing this
   2809 		 * causes weird stuff to happen (for the 5210 at least).
   2810 		 */
   2811 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
   2812 		if (m == NULL) {
   2813 			DPRINTF(sc, ATH_DEBUG_ANY,
   2814 				"%s: no mbuf/cluster\n", __func__);
   2815 			sc->sc_stats.ast_rx_nombuf++;
   2816 			return ENOMEM;
   2817 		}
   2818 		bf->bf_m = m;
   2819 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
   2820 
   2821 		error = bus_dmamap_load_mbuf(sc->sc_dmat,
   2822 					     bf->bf_dmamap, m,
   2823 					     BUS_DMA_NOWAIT);
   2824 		if (error != 0) {
   2825 			DPRINTF(sc, ATH_DEBUG_ANY,
   2826 			    "%s: bus_dmamap_load_mbuf failed; error %d\n",
   2827 			    __func__, error);
   2828 			sc->sc_stats.ast_rx_busdma++;
   2829 			return error;
   2830 		}
   2831 		KASSERT(bf->bf_nseg == 1,
   2832 			("multi-segment packet; nseg %u", bf->bf_nseg));
   2833 	}
   2834 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   2835 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2836 
   2837 	/*
   2838 	 * Setup descriptors.  For receive we always terminate
   2839 	 * the descriptor list with a self-linked entry so we'll
   2840 	 * not get overrun under high load (as can happen with a
   2841 	 * 5212 when ANI processing enables PHY error frames).
   2842 	 *
   2843 	 * To insure the last descriptor is self-linked we create
   2844 	 * each descriptor as self-linked and add it to the end.  As
   2845 	 * each additional descriptor is added the previous self-linked
   2846 	 * entry is ``fixed'' naturally.  This should be safe even
   2847 	 * if DMA is happening.  When processing RX interrupts we
   2848 	 * never remove/process the last, self-linked, entry on the
   2849 	 * descriptor list.  This insures the hardware always has
   2850 	 * someplace to write a new frame.
   2851 	 */
   2852 	ds = bf->bf_desc;
   2853 	ds->ds_link = HTOAH32(bf->bf_daddr);	/* link to self */
   2854 	ds->ds_data = bf->bf_segs[0].ds_addr;
   2855 	ds->ds_vdata = mtod(m, void *);	/* for radar */
   2856 	ath_hal_setuprxdesc(ah, ds
   2857 		, m->m_len		/* buffer size */
   2858 		, 0
   2859 	);
   2860 
   2861 	if (sc->sc_rxlink != NULL)
   2862 		*sc->sc_rxlink = bf->bf_daddr;
   2863 	sc->sc_rxlink = &ds->ds_link;
   2864 	return 0;
   2865 }
   2866 
   2867 /*
   2868  * Extend 15-bit time stamp from rx descriptor to
   2869  * a full 64-bit TSF using the specified TSF.
   2870  */
   2871 static inline u_int64_t
   2872 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
   2873 {
   2874 	if ((tsf & 0x7fff) < rstamp)
   2875 		tsf -= 0x8000;
   2876 	return ((tsf &~ 0x7fff) | rstamp);
   2877 }
   2878 
   2879 /*
   2880  * Intercept management frames to collect beacon rssi data
   2881  * and to do ibss merges.
   2882  */
   2883 static void
   2884 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
   2885 	struct ieee80211_node *ni,
   2886 	int subtype, int rssi, u_int32_t rstamp)
   2887 {
   2888 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   2889 
   2890 	/*
   2891 	 * Call up first so subsequent work can use information
   2892 	 * potentially stored in the node (e.g. for ibss merge).
   2893 	 */
   2894 	sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
   2895 	switch (subtype) {
   2896 	case IEEE80211_FC0_SUBTYPE_BEACON:
   2897 		/* update rssi statistics for use by the hal */
   2898 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
   2899 		if (sc->sc_syncbeacon &&
   2900 		    ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) {
   2901 			/*
   2902 			 * Resync beacon timers using the tsf of the beacon
   2903 			 * frame we just received.
   2904 			 */
   2905 			ath_beacon_config(sc);
   2906 		}
   2907 		/* fall thru... */
   2908 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
   2909 		if (ic->ic_opmode == IEEE80211_M_IBSS &&
   2910 		    ic->ic_state == IEEE80211_S_RUN) {
   2911 			u_int64_t tsf = ath_extend_tsf(rstamp,
   2912 				ath_hal_gettsf64(sc->sc_ah));
   2913 
   2914 			/*
   2915 			 * Handle ibss merge as needed; check the tsf on the
   2916 			 * frame before attempting the merge.  The 802.11 spec
   2917 			 * says the station should change it's bssid to match
   2918 			 * the oldest station with the same ssid, where oldest
   2919 			 * is determined by the tsf.  Note that hardware
   2920 			 * reconfiguration happens through callback to
   2921 			 * ath_newstate as the state machine will go from
   2922 			 * RUN -> RUN when this happens.
   2923 			 */
   2924 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
   2925 				DPRINTF(sc, ATH_DEBUG_STATE,
   2926 				    "ibss merge, rstamp %u tsf %ju "
   2927 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
   2928 				    (uintmax_t)ni->ni_tstamp.tsf);
   2929 				(void) ieee80211_ibss_merge(ni);
   2930 			}
   2931 		}
   2932 		break;
   2933 	}
   2934 }
   2935 
   2936 /*
   2937  * Set the default antenna.
   2938  */
   2939 static void
   2940 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
   2941 {
   2942 	struct ath_hal *ah = sc->sc_ah;
   2943 
   2944 	/* XXX block beacon interrupts */
   2945 	ath_hal_setdefantenna(ah, antenna);
   2946 	if (sc->sc_defant != antenna)
   2947 		sc->sc_stats.ast_ant_defswitch++;
   2948 	sc->sc_defant = antenna;
   2949 	sc->sc_rxotherant = 0;
   2950 }
   2951 
   2952 static void
   2953 ath_rx_proc(void *arg, int npending)
   2954 {
   2955 #define	PA2DESC(_sc, _pa) \
   2956 	((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
   2957 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
   2958 	struct ath_softc *sc = arg;
   2959 	struct ath_buf *bf;
   2960 	struct ieee80211com *ic = &sc->sc_ic;
   2961 	struct ifnet *ifp = &sc->sc_if;
   2962 	struct ath_hal *ah = sc->sc_ah;
   2963 	struct ath_desc *ds;
   2964 	struct mbuf *m;
   2965 	struct ieee80211_node *ni;
   2966 	struct ath_node *an;
   2967 	int len, type, ngood;
   2968 	u_int phyerr;
   2969 	HAL_STATUS status;
   2970 	int16_t nf;
   2971 	u_int64_t tsf;
   2972 
   2973 	NET_LOCK_GIANT();		/* XXX */
   2974 
   2975 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
   2976 	ngood = 0;
   2977 	nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
   2978 	tsf = ath_hal_gettsf64(ah);
   2979 	do {
   2980 		bf = STAILQ_FIRST(&sc->sc_rxbuf);
   2981 		if (bf == NULL) {		/* NB: shouldn't happen */
   2982 			if_printf(ifp, "%s: no buffer!\n", __func__);
   2983 			break;
   2984 		}
   2985 		ds = bf->bf_desc;
   2986 		if (ds->ds_link == bf->bf_daddr) {
   2987 			/* NB: never process the self-linked entry at the end */
   2988 			break;
   2989 		}
   2990 		m = bf->bf_m;
   2991 		if (m == NULL) {		/* NB: shouldn't happen */
   2992 			if_printf(ifp, "%s: no mbuf!\n", __func__);
   2993 			break;
   2994 		}
   2995 		/* XXX sync descriptor memory */
   2996 		/*
   2997 		 * Must provide the virtual address of the current
   2998 		 * descriptor, the physical address, and the virtual
   2999 		 * address of the next descriptor in the h/w chain.
   3000 		 * This allows the HAL to look ahead to see if the
   3001 		 * hardware is done with a descriptor by checking the
   3002 		 * done bit in the following descriptor and the address
   3003 		 * of the current descriptor the DMA engine is working
   3004 		 * on.  All this is necessary because of our use of
   3005 		 * a self-linked list to avoid rx overruns.
   3006 		 */
   3007 		status = ath_hal_rxprocdesc(ah, ds,
   3008 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
   3009 #ifdef AR_DEBUG
   3010 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
   3011 			ath_printrxbuf(bf, status == HAL_OK);
   3012 #endif
   3013 		if (status == HAL_EINPROGRESS)
   3014 			break;
   3015 		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
   3016 		if (ds->ds_rxstat.rs_more) {
   3017 			/*
   3018 			 * Frame spans multiple descriptors; this
   3019 			 * cannot happen yet as we don't support
   3020 			 * jumbograms.  If not in monitor mode,
   3021 			 * discard the frame.
   3022 			 */
   3023 			if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   3024 				sc->sc_stats.ast_rx_toobig++;
   3025 				goto rx_next;
   3026 			}
   3027 			/* fall thru for monitor mode handling... */
   3028 		} else if (ds->ds_rxstat.rs_status != 0) {
   3029 			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
   3030 				sc->sc_stats.ast_rx_crcerr++;
   3031 			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
   3032 				sc->sc_stats.ast_rx_fifoerr++;
   3033 			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
   3034 				sc->sc_stats.ast_rx_phyerr++;
   3035 				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
   3036 				sc->sc_stats.ast_rx_phy[phyerr]++;
   3037 				goto rx_next;
   3038 			}
   3039 			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
   3040 				/*
   3041 				 * Decrypt error.  If the error occurred
   3042 				 * because there was no hardware key, then
   3043 				 * let the frame through so the upper layers
   3044 				 * can process it.  This is necessary for 5210
   3045 				 * parts which have no way to setup a ``clear''
   3046 				 * key cache entry.
   3047 				 *
   3048 				 * XXX do key cache faulting
   3049 				 */
   3050 				if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
   3051 					goto rx_accept;
   3052 				sc->sc_stats.ast_rx_badcrypt++;
   3053 			}
   3054 			if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
   3055 				sc->sc_stats.ast_rx_badmic++;
   3056 				/*
   3057 				 * Do minimal work required to hand off
   3058 				 * the 802.11 header for notifcation.
   3059 				 */
   3060 				/* XXX frag's and qos frames */
   3061 				len = ds->ds_rxstat.rs_datalen;
   3062 				if (len >= sizeof (struct ieee80211_frame)) {
   3063 					bus_dmamap_sync(sc->sc_dmat,
   3064 					    bf->bf_dmamap,
   3065 					    0, bf->bf_dmamap->dm_mapsize,
   3066 					    BUS_DMASYNC_POSTREAD);
   3067 					ieee80211_notify_michael_failure(ic,
   3068 					    mtod(m, struct ieee80211_frame *),
   3069 					    sc->sc_splitmic ?
   3070 					        ds->ds_rxstat.rs_keyix-32 :
   3071 					        ds->ds_rxstat.rs_keyix
   3072 					);
   3073 				}
   3074 			}
   3075 			ifp->if_ierrors++;
   3076 			/*
   3077 			 * Reject error frames, we normally don't want
   3078 			 * to see them in monitor mode (in monitor mode
   3079 			 * allow through packets that have crypto problems).
   3080 			 */
   3081 			if ((ds->ds_rxstat.rs_status &~
   3082 				(HAL_RXERR_DECRYPT|HAL_RXERR_MIC)) ||
   3083 			    sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
   3084 				goto rx_next;
   3085 		}
   3086 rx_accept:
   3087 		/*
   3088 		 * Sync and unmap the frame.  At this point we're
   3089 		 * committed to passing the mbuf somewhere so clear
   3090 		 * bf_m; this means a new sk_buff must be allocated
   3091 		 * when the rx descriptor is setup again to receive
   3092 		 * another frame.
   3093 		 */
   3094 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
   3095 		    0, bf->bf_dmamap->dm_mapsize,
   3096 		    BUS_DMASYNC_POSTREAD);
   3097 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   3098 		bf->bf_m = NULL;
   3099 
   3100 		m->m_pkthdr.rcvif = ifp;
   3101 		len = ds->ds_rxstat.rs_datalen;
   3102 		m->m_pkthdr.len = m->m_len = len;
   3103 
   3104 		sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
   3105 
   3106 #if NBPFILTER > 0
   3107 		if (sc->sc_drvbpf) {
   3108 			u_int8_t rix;
   3109 
   3110 			/*
   3111 			 * Discard anything shorter than an ack or cts.
   3112 			 */
   3113 			if (len < IEEE80211_ACK_LEN) {
   3114 				DPRINTF(sc, ATH_DEBUG_RECV,
   3115 					"%s: runt packet %d\n",
   3116 					__func__, len);
   3117 				sc->sc_stats.ast_rx_tooshort++;
   3118 				m_freem(m);
   3119 				goto rx_next;
   3120 			}
   3121 			rix = ds->ds_rxstat.rs_rate;
   3122 			sc->sc_rx_th.wr_tsf = htole64(
   3123 				ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf));
   3124 			sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
   3125 			sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
   3126 			sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf;
   3127 			sc->sc_rx_th.wr_antnoise = nf;
   3128 			sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
   3129 
   3130 			bpf_mtap2(sc->sc_drvbpf,
   3131 				&sc->sc_rx_th, sc->sc_rx_th_len, m);
   3132 		}
   3133 #endif
   3134 
   3135 		/*
   3136 		 * From this point on we assume the frame is at least
   3137 		 * as large as ieee80211_frame_min; verify that.
   3138 		 */
   3139 		if (len < IEEE80211_MIN_LEN) {
   3140 			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
   3141 				__func__, len);
   3142 			sc->sc_stats.ast_rx_tooshort++;
   3143 			m_freem(m);
   3144 			goto rx_next;
   3145 		}
   3146 
   3147 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
   3148 			ieee80211_dump_pkt(mtod(m, void *), len,
   3149 				   sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
   3150 				   ds->ds_rxstat.rs_rssi);
   3151 		}
   3152 
   3153 		m_adj(m, -IEEE80211_CRC_LEN);
   3154 
   3155 		/*
   3156 		 * Locate the node for sender, track state, and then
   3157 		 * pass the (referenced) node up to the 802.11 layer
   3158 		 * for its use.
   3159 		 */
   3160 		ni = ieee80211_find_rxnode_withkey(ic,
   3161 			mtod(m, const struct ieee80211_frame_min *),
   3162 			ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
   3163 				IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
   3164 		/*
   3165 		 * Track rx rssi and do any rx antenna management.
   3166 		 */
   3167 		an = ATH_NODE(ni);
   3168 		ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
   3169 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi);
   3170 		/*
   3171 		 * Send frame up for processing.
   3172 		 */
   3173 		type = ieee80211_input(ic, m, ni,
   3174 			ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
   3175 		ieee80211_free_node(ni);
   3176 		if (sc->sc_diversity) {
   3177 			/*
   3178 			 * When using fast diversity, change the default rx
   3179 			 * antenna if diversity chooses the other antenna 3
   3180 			 * times in a row.
   3181 			 */
   3182 			if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
   3183 				if (++sc->sc_rxotherant >= 3)
   3184 					ath_setdefantenna(sc,
   3185 						ds->ds_rxstat.rs_antenna);
   3186 			} else
   3187 				sc->sc_rxotherant = 0;
   3188 		}
   3189 		if (sc->sc_softled) {
   3190 			/*
   3191 			 * Blink for any data frame.  Otherwise do a
   3192 			 * heartbeat-style blink when idle.  The latter
   3193 			 * is mainly for station mode where we depend on
   3194 			 * periodic beacon frames to trigger the poll event.
   3195 			 */
   3196 			if (type == IEEE80211_FC0_TYPE_DATA) {
   3197 				sc->sc_rxrate = ds->ds_rxstat.rs_rate;
   3198 				ath_led_event(sc, ATH_LED_RX);
   3199 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
   3200 				ath_led_event(sc, ATH_LED_POLL);
   3201 		}
   3202 		/*
   3203 		 * Arrange to update the last rx timestamp only for
   3204 		 * frames from our ap when operating in station mode.
   3205 		 * This assumes the rx key is always setup when associated.
   3206 		 */
   3207 		if (ic->ic_opmode == IEEE80211_M_STA &&
   3208 		    ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID)
   3209 			ngood++;
   3210 rx_next:
   3211 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
   3212 	} while (ath_rxbuf_init(sc, bf) == 0);
   3213 
   3214 	/* rx signal state monitoring */
   3215 	ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
   3216 	if (ath_hal_radar_event(ah))
   3217 		TASK_RUN_OR_ENQUEUE(&sc->sc_radartask);
   3218 	if (ngood)
   3219 		sc->sc_lastrx = tsf;
   3220 
   3221 #ifdef __NetBSD__
   3222 	/* XXX Why isn't this necessary in FreeBSD? */
   3223 	if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
   3224 		ath_start(ifp);
   3225 #endif /* __NetBSD__ */
   3226 
   3227 	NET_UNLOCK_GIANT();		/* XXX */
   3228 #undef PA2DESC
   3229 }
   3230 
   3231 /*
   3232  * Setup a h/w transmit queue.
   3233  */
   3234 static struct ath_txq *
   3235 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
   3236 {
   3237 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   3238 	struct ath_hal *ah = sc->sc_ah;
   3239 	HAL_TXQ_INFO qi;
   3240 	int qnum;
   3241 
   3242 	memset(&qi, 0, sizeof(qi));
   3243 	qi.tqi_subtype = subtype;
   3244 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
   3245 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
   3246 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
   3247 	/*
   3248 	 * Enable interrupts only for EOL and DESC conditions.
   3249 	 * We mark tx descriptors to receive a DESC interrupt
   3250 	 * when a tx queue gets deep; otherwise waiting for the
   3251 	 * EOL to reap descriptors.  Note that this is done to
   3252 	 * reduce interrupt load and this only defers reaping
   3253 	 * descriptors, never transmitting frames.  Aside from
   3254 	 * reducing interrupts this also permits more concurrency.
   3255 	 * The only potential downside is if the tx queue backs
   3256 	 * up in which case the top half of the kernel may backup
   3257 	 * due to a lack of tx descriptors.
   3258 	 */
   3259 	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
   3260 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
   3261 	if (qnum == -1) {
   3262 		/*
   3263 		 * NB: don't print a message, this happens
   3264 		 * normally on parts with too few tx queues
   3265 		 */
   3266 		return NULL;
   3267 	}
   3268 	if (qnum >= N(sc->sc_txq)) {
   3269 		device_printf(sc->sc_dev,
   3270 			"hal qnum %u out of range, max %zu!\n",
   3271 			qnum, N(sc->sc_txq));
   3272 		ath_hal_releasetxqueue(ah, qnum);
   3273 		return NULL;
   3274 	}
   3275 	if (!ATH_TXQ_SETUP(sc, qnum)) {
   3276 		struct ath_txq *txq = &sc->sc_txq[qnum];
   3277 
   3278 		txq->axq_qnum = qnum;
   3279 		txq->axq_depth = 0;
   3280 		txq->axq_intrcnt = 0;
   3281 		txq->axq_link = NULL;
   3282 		STAILQ_INIT(&txq->axq_q);
   3283 		ATH_TXQ_LOCK_INIT(sc, txq);
   3284 		sc->sc_txqsetup |= 1<<qnum;
   3285 	}
   3286 	return &sc->sc_txq[qnum];
   3287 #undef N
   3288 }
   3289 
   3290 /*
   3291  * Setup a hardware data transmit queue for the specified
   3292  * access control.  The hal may not support all requested
   3293  * queues in which case it will return a reference to a
   3294  * previously setup queue.  We record the mapping from ac's
   3295  * to h/w queues for use by ath_tx_start and also track
   3296  * the set of h/w queues being used to optimize work in the
   3297  * transmit interrupt handler and related routines.
   3298  */
   3299 static int
   3300 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
   3301 {
   3302 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   3303 	struct ath_txq *txq;
   3304 
   3305 	if (ac >= N(sc->sc_ac2q)) {
   3306 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
   3307 			ac, N(sc->sc_ac2q));
   3308 		return 0;
   3309 	}
   3310 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
   3311 	if (txq != NULL) {
   3312 		sc->sc_ac2q[ac] = txq;
   3313 		return 1;
   3314 	} else
   3315 		return 0;
   3316 #undef N
   3317 }
   3318 
   3319 /*
   3320  * Update WME parameters for a transmit queue.
   3321  */
   3322 static int
   3323 ath_txq_update(struct ath_softc *sc, int ac)
   3324 {
   3325 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
   3326 #define	ATH_TXOP_TO_US(v)		(v<<5)
   3327 	struct ieee80211com *ic = &sc->sc_ic;
   3328 	struct ath_txq *txq = sc->sc_ac2q[ac];
   3329 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
   3330 	struct ath_hal *ah = sc->sc_ah;
   3331 	HAL_TXQ_INFO qi;
   3332 
   3333 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
   3334 	qi.tqi_aifs = wmep->wmep_aifsn;
   3335 	qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
   3336 	qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
   3337 	qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
   3338 
   3339 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
   3340 		device_printf(sc->sc_dev, "unable to update hardware queue "
   3341 			"parameters for %s traffic!\n",
   3342 			ieee80211_wme_acnames[ac]);
   3343 		return 0;
   3344 	} else {
   3345 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
   3346 		return 1;
   3347 	}
   3348 #undef ATH_TXOP_TO_US
   3349 #undef ATH_EXPONENT_TO_VALUE
   3350 }
   3351 
   3352 /*
   3353  * Callback from the 802.11 layer to update WME parameters.
   3354  */
   3355 static int
   3356 ath_wme_update(struct ieee80211com *ic)
   3357 {
   3358 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   3359 
   3360 	return !ath_txq_update(sc, WME_AC_BE) ||
   3361 	    !ath_txq_update(sc, WME_AC_BK) ||
   3362 	    !ath_txq_update(sc, WME_AC_VI) ||
   3363 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
   3364 }
   3365 
   3366 /*
   3367  * Reclaim resources for a setup queue.
   3368  */
   3369 static void
   3370 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
   3371 {
   3372 
   3373 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
   3374 	ATH_TXQ_LOCK_DESTROY(txq);
   3375 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
   3376 }
   3377 
   3378 /*
   3379  * Reclaim all tx queue resources.
   3380  */
   3381 static void
   3382 ath_tx_cleanup(struct ath_softc *sc)
   3383 {
   3384 	int i;
   3385 
   3386 	ATH_TXBUF_LOCK_DESTROY(sc);
   3387 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   3388 		if (ATH_TXQ_SETUP(sc, i))
   3389 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
   3390 }
   3391 
   3392 /*
   3393  * Defragment an mbuf chain, returning at most maxfrags separate
   3394  * mbufs+clusters.  If this is not possible NULL is returned and
   3395  * the original mbuf chain is left in it's present (potentially
   3396  * modified) state.  We use two techniques: collapsing consecutive
   3397  * mbufs and replacing consecutive mbufs by a cluster.
   3398  */
   3399 static struct mbuf *
   3400 ath_defrag(struct mbuf *m0, int how, int maxfrags)
   3401 {
   3402 	struct mbuf *m, *n, *n2, **prev;
   3403 	u_int curfrags;
   3404 
   3405 	/*
   3406 	 * Calculate the current number of frags.
   3407 	 */
   3408 	curfrags = 0;
   3409 	for (m = m0; m != NULL; m = m->m_next)
   3410 		curfrags++;
   3411 	/*
   3412 	 * First, try to collapse mbufs.  Note that we always collapse
   3413 	 * towards the front so we don't need to deal with moving the
   3414 	 * pkthdr.  This may be suboptimal if the first mbuf has much
   3415 	 * less data than the following.
   3416 	 */
   3417 	m = m0;
   3418 again:
   3419 	for (;;) {
   3420 		n = m->m_next;
   3421 		if (n == NULL)
   3422 			break;
   3423 		if ((m->m_flags & M_RDONLY) == 0 &&
   3424 		    n->m_len < M_TRAILINGSPACE(m)) {
   3425 			bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
   3426 				n->m_len);
   3427 			m->m_len += n->m_len;
   3428 			m->m_next = n->m_next;
   3429 			m_free(n);
   3430 			if (--curfrags <= maxfrags)
   3431 				return m0;
   3432 		} else
   3433 			m = n;
   3434 	}
   3435 	KASSERT(maxfrags > 1,
   3436 		("maxfrags %u, but normal collapse failed", maxfrags));
   3437 	/*
   3438 	 * Collapse consecutive mbufs to a cluster.
   3439 	 */
   3440 	prev = &m0->m_next;		/* NB: not the first mbuf */
   3441 	while ((n = *prev) != NULL) {
   3442 		if ((n2 = n->m_next) != NULL &&
   3443 		    n->m_len + n2->m_len < MCLBYTES) {
   3444 			m = m_getcl(how, MT_DATA, 0);
   3445 			if (m == NULL)
   3446 				goto bad;
   3447 			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
   3448 			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
   3449 				n2->m_len);
   3450 			m->m_len = n->m_len + n2->m_len;
   3451 			m->m_next = n2->m_next;
   3452 			*prev = m;
   3453 			m_free(n);
   3454 			m_free(n2);
   3455 			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
   3456 				return m0;
   3457 			/*
   3458 			 * Still not there, try the normal collapse
   3459 			 * again before we allocate another cluster.
   3460 			 */
   3461 			goto again;
   3462 		}
   3463 		prev = &n->m_next;
   3464 	}
   3465 	/*
   3466 	 * No place where we can collapse to a cluster; punt.
   3467 	 * This can occur if, for example, you request 2 frags
   3468 	 * but the packet requires that both be clusters (we
   3469 	 * never reallocate the first mbuf to avoid moving the
   3470 	 * packet header).
   3471 	 */
   3472 bad:
   3473 	return NULL;
   3474 }
   3475 
   3476 /*
   3477  * Return h/w rate index for an IEEE rate (w/o basic rate bit).
   3478  */
   3479 static int
   3480 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
   3481 {
   3482 	int i;
   3483 
   3484 	for (i = 0; i < rt->rateCount; i++)
   3485 		if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
   3486 			return i;
   3487 	return 0;		/* NB: lowest rate */
   3488 }
   3489 
   3490 static void
   3491 ath_freetx(struct mbuf *m)
   3492 {
   3493 	struct mbuf *next;
   3494 
   3495 	do {
   3496 		next = m->m_nextpkt;
   3497 		m->m_nextpkt = NULL;
   3498 		m_freem(m);
   3499 	} while ((m = next) != NULL);
   3500 }
   3501 
   3502 static int
   3503 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
   3504     struct mbuf *m0)
   3505 {
   3506 	struct ieee80211com *ic = &sc->sc_ic;
   3507 	struct ath_hal *ah = sc->sc_ah;
   3508 	struct ifnet *ifp = &sc->sc_if;
   3509 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
   3510 	int i, error, iswep, ismcast, isfrag, ismrr;
   3511 	int keyix, hdrlen, pktlen, try0;
   3512 	u_int8_t rix, txrate, ctsrate;
   3513 	u_int8_t cix = 0xff;		/* NB: silence compiler */
   3514 	struct ath_desc *ds, *ds0;
   3515 	struct ath_txq *txq;
   3516 	struct ieee80211_frame *wh;
   3517 	u_int subtype, flags, ctsduration;
   3518 	HAL_PKT_TYPE atype;
   3519 	const HAL_RATE_TABLE *rt;
   3520 	HAL_BOOL shortPreamble;
   3521 	struct ath_node *an;
   3522 	struct mbuf *m;
   3523 	u_int pri;
   3524 
   3525 	wh = mtod(m0, struct ieee80211_frame *);
   3526 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
   3527 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
   3528 	isfrag = m0->m_flags & M_FRAG;
   3529 	hdrlen = ieee80211_anyhdrsize(wh);
   3530 	/*
   3531 	 * Packet length must not include any
   3532 	 * pad bytes; deduct them here.
   3533 	 */
   3534 	pktlen = m0->m_pkthdr.len - (hdrlen & 3);
   3535 
   3536 	if (iswep) {
   3537 		const struct ieee80211_cipher *cip;
   3538 		struct ieee80211_key *k;
   3539 
   3540 		/*
   3541 		 * Construct the 802.11 header+trailer for an encrypted
   3542 		 * frame. The only reason this can fail is because of an
   3543 		 * unknown or unsupported cipher/key type.
   3544 		 */
   3545 		k = ieee80211_crypto_encap(ic, ni, m0);
   3546 		if (k == NULL) {
   3547 			/*
   3548 			 * This can happen when the key is yanked after the
   3549 			 * frame was queued.  Just discard the frame; the
   3550 			 * 802.11 layer counts failures and provides
   3551 			 * debugging/diagnostics.
   3552 			 */
   3553 			ath_freetx(m0);
   3554 			return EIO;
   3555 		}
   3556 		/*
   3557 		 * Adjust the packet + header lengths for the crypto
   3558 		 * additions and calculate the h/w key index.  When
   3559 		 * a s/w mic is done the frame will have had any mic
   3560 		 * added to it prior to entry so m0->m_pkthdr.len above will
   3561 		 * account for it. Otherwise we need to add it to the
   3562 		 * packet length.
   3563 		 */
   3564 		cip = k->wk_cipher;
   3565 		hdrlen += cip->ic_header;
   3566 		pktlen += cip->ic_header + cip->ic_trailer;
   3567 		/* NB: frags always have any TKIP MIC done in s/w */
   3568 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
   3569 			pktlen += cip->ic_miclen;
   3570 		keyix = k->wk_keyix;
   3571 
   3572 		/* packet header may have moved, reset our local pointer */
   3573 		wh = mtod(m0, struct ieee80211_frame *);
   3574 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
   3575 		/*
   3576 		 * Use station key cache slot, if assigned.
   3577 		 */
   3578 		keyix = ni->ni_ucastkey.wk_keyix;
   3579 		if (keyix == IEEE80211_KEYIX_NONE)
   3580 			keyix = HAL_TXKEYIX_INVALID;
   3581 	} else
   3582 		keyix = HAL_TXKEYIX_INVALID;
   3583 
   3584 	pktlen += IEEE80211_CRC_LEN;
   3585 
   3586 	/*
   3587 	 * Load the DMA map so any coalescing is done.  This
   3588 	 * also calculates the number of descriptors we need.
   3589 	 */
   3590 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
   3591 				     BUS_DMA_NOWAIT);
   3592 	if (error == EFBIG) {
   3593 		/* XXX packet requires too many descriptors */
   3594 		bf->bf_nseg = ATH_TXDESC+1;
   3595 	} else if (error != 0) {
   3596 		sc->sc_stats.ast_tx_busdma++;
   3597 		ath_freetx(m0);
   3598 		return error;
   3599 	}
   3600 	/*
   3601 	 * Discard null packets and check for packets that
   3602 	 * require too many TX descriptors.  We try to convert
   3603 	 * the latter to a cluster.
   3604 	 */
   3605 	if (error == EFBIG) {		/* too many desc's, linearize */
   3606 		sc->sc_stats.ast_tx_linear++;
   3607 		m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
   3608 		if (m == NULL) {
   3609 			ath_freetx(m0);
   3610 			sc->sc_stats.ast_tx_nombuf++;
   3611 			return ENOMEM;
   3612 		}
   3613 		m0 = m;
   3614 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
   3615 					     BUS_DMA_NOWAIT);
   3616 		if (error != 0) {
   3617 			sc->sc_stats.ast_tx_busdma++;
   3618 			ath_freetx(m0);
   3619 			return error;
   3620 		}
   3621 		KASSERT(bf->bf_nseg <= ATH_TXDESC,
   3622 		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
   3623 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
   3624 		sc->sc_stats.ast_tx_nodata++;
   3625 		ath_freetx(m0);
   3626 		return EIO;
   3627 	}
   3628 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
   3629 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   3630             bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
   3631 	bf->bf_m = m0;
   3632 	bf->bf_node = ni;			/* NB: held reference */
   3633 
   3634 	/* setup descriptors */
   3635 	ds = bf->bf_desc;
   3636 	rt = sc->sc_currates;
   3637 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
   3638 
   3639 	/*
   3640 	 * NB: the 802.11 layer marks whether or not we should
   3641 	 * use short preamble based on the current mode and
   3642 	 * negotiated parameters.
   3643 	 */
   3644 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
   3645 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) {
   3646 		shortPreamble = AH_TRUE;
   3647 		sc->sc_stats.ast_tx_shortpre++;
   3648 	} else {
   3649 		shortPreamble = AH_FALSE;
   3650 	}
   3651 
   3652 	an = ATH_NODE(ni);
   3653 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
   3654 	ismrr = 0;				/* default no multi-rate retry*/
   3655 	/*
   3656 	 * Calculate Atheros packet type from IEEE80211 packet header,
   3657 	 * setup for rate calculations, and select h/w transmit queue.
   3658 	 */
   3659 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
   3660 	case IEEE80211_FC0_TYPE_MGT:
   3661 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   3662 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
   3663 			atype = HAL_PKT_TYPE_BEACON;
   3664 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
   3665 			atype = HAL_PKT_TYPE_PROBE_RESP;
   3666 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
   3667 			atype = HAL_PKT_TYPE_ATIM;
   3668 		else
   3669 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
   3670 		rix = sc->sc_minrateix;
   3671 		txrate = rt->info[rix].rateCode;
   3672 		if (shortPreamble)
   3673 			txrate |= rt->info[rix].shortPreamble;
   3674 		try0 = ATH_TXMGTTRY;
   3675 		/* NB: force all management frames to highest queue */
   3676 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
   3677 			/* NB: force all management frames to highest queue */
   3678 			pri = WME_AC_VO;
   3679 		} else
   3680 			pri = WME_AC_BE;
   3681 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
   3682 		break;
   3683 	case IEEE80211_FC0_TYPE_CTL:
   3684 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
   3685 		rix = sc->sc_minrateix;
   3686 		txrate = rt->info[rix].rateCode;
   3687 		if (shortPreamble)
   3688 			txrate |= rt->info[rix].shortPreamble;
   3689 		try0 = ATH_TXMGTTRY;
   3690 		/* NB: force all ctl frames to highest queue */
   3691 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
   3692 			/* NB: force all ctl frames to highest queue */
   3693 			pri = WME_AC_VO;
   3694 		} else
   3695 			pri = WME_AC_BE;
   3696 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
   3697 		break;
   3698 	case IEEE80211_FC0_TYPE_DATA:
   3699 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
   3700 		/*
   3701 		 * Data frames: multicast frames go out at a fixed rate,
   3702 		 * otherwise consult the rate control module for the
   3703 		 * rate to use.
   3704 		 */
   3705 		if (ismcast) {
   3706 			/*
   3707 			 * Check mcast rate setting in case it's changed.
   3708 			 * XXX move out of fastpath
   3709 			 */
   3710 			if (ic->ic_mcast_rate != sc->sc_mcastrate) {
   3711 				sc->sc_mcastrix =
   3712 					ath_tx_findrix(rt, ic->ic_mcast_rate);
   3713 				sc->sc_mcastrate = ic->ic_mcast_rate;
   3714 			}
   3715 			rix = sc->sc_mcastrix;
   3716 			txrate = rt->info[rix].rateCode;
   3717 			try0 = 1;
   3718 		} else {
   3719 			ath_rate_findrate(sc, an, shortPreamble, pktlen,
   3720 				&rix, &try0, &txrate);
   3721 			sc->sc_txrate = txrate;		/* for LED blinking */
   3722 			if (try0 != ATH_TXMAXTRY)
   3723 				ismrr = 1;
   3724 		}
   3725 		pri = M_WME_GETAC(m0);
   3726 		if (cap->cap_wmeParams[pri].wmep_noackPolicy)
   3727 			flags |= HAL_TXDESC_NOACK;
   3728 		break;
   3729 	default:
   3730 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
   3731 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
   3732 		/* XXX statistic */
   3733 		ath_freetx(m0);
   3734 		return EIO;
   3735 	}
   3736 	txq = sc->sc_ac2q[pri];
   3737 
   3738 	/*
   3739 	 * When servicing one or more stations in power-save mode
   3740 	 * multicast frames must be buffered until after the beacon.
   3741 	 * We use the CAB queue for that.
   3742 	 */
   3743 	if (ismcast && ic->ic_ps_sta) {
   3744 		txq = sc->sc_cabq;
   3745 		/* XXX? more bit in 802.11 frame header */
   3746 	}
   3747 
   3748 	/*
   3749 	 * Calculate miscellaneous flags.
   3750 	 */
   3751 	if (ismcast) {
   3752 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
   3753 	} else if (pktlen > ic->ic_rtsthreshold) {
   3754 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
   3755 		cix = rt->info[rix].controlRate;
   3756 		sc->sc_stats.ast_tx_rts++;
   3757 	}
   3758 	if (flags & HAL_TXDESC_NOACK)		/* NB: avoid double counting */
   3759 		sc->sc_stats.ast_tx_noack++;
   3760 
   3761 	/*
   3762 	 * If 802.11g protection is enabled, determine whether
   3763 	 * to use RTS/CTS or just CTS.  Note that this is only
   3764 	 * done for OFDM unicast frames.
   3765 	 */
   3766 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
   3767 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
   3768 	    (flags & HAL_TXDESC_NOACK) == 0) {
   3769 		/* XXX fragments must use CCK rates w/ protection */
   3770 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
   3771 			flags |= HAL_TXDESC_RTSENA;
   3772 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
   3773 			flags |= HAL_TXDESC_CTSENA;
   3774 		if (isfrag) {
   3775 			/*
   3776 			 * For frags it would be desirable to use the
   3777 			 * highest CCK rate for RTS/CTS.  But stations
   3778 			 * farther away may detect it at a lower CCK rate
   3779 			 * so use the configured protection rate instead
   3780 			 * (for now).
   3781 			 */
   3782 			cix = rt->info[sc->sc_protrix].controlRate;
   3783 		} else
   3784 			cix = rt->info[sc->sc_protrix].controlRate;
   3785 		sc->sc_stats.ast_tx_protect++;
   3786 	}
   3787 
   3788 	/*
   3789 	 * Calculate duration.  This logically belongs in the 802.11
   3790 	 * layer but it lacks sufficient information to calculate it.
   3791 	 */
   3792 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
   3793 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
   3794 		u_int16_t dur;
   3795 		/*
   3796 		 * XXX not right with fragmentation.
   3797 		 */
   3798 		if (shortPreamble)
   3799 			dur = rt->info[rix].spAckDuration;
   3800 		else
   3801 			dur = rt->info[rix].lpAckDuration;
   3802 		if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
   3803 			dur += dur;             /* additional SIFS+ACK */
   3804 			KASSERT(m0->m_nextpkt != NULL, ("no fragment"));
   3805 			/*
   3806 			 * Include the size of next fragment so NAV is
   3807 			 * updated properly.  The last fragment uses only
   3808 			 * the ACK duration
   3809 			 */
   3810 			dur += ath_hal_computetxtime(ah, rt,
   3811 					m0->m_nextpkt->m_pkthdr.len,
   3812 					rix, shortPreamble);
   3813 		}
   3814 		if (isfrag) {
   3815 			/*
   3816 			 * Force hardware to use computed duration for next
   3817 			 * fragment by disabling multi-rate retry which updates
   3818 			 * duration based on the multi-rate duration table.
   3819 			 */
   3820 			try0 = ATH_TXMAXTRY;
   3821 		}
   3822 		*(u_int16_t *)wh->i_dur = htole16(dur);
   3823 	}
   3824 
   3825 	/*
   3826 	 * Calculate RTS/CTS rate and duration if needed.
   3827 	 */
   3828 	ctsduration = 0;
   3829 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
   3830 		/*
   3831 		 * CTS transmit rate is derived from the transmit rate
   3832 		 * by looking in the h/w rate table.  We must also factor
   3833 		 * in whether or not a short preamble is to be used.
   3834 		 */
   3835 		/* NB: cix is set above where RTS/CTS is enabled */
   3836 		KASSERT(cix != 0xff, ("cix not setup"));
   3837 		ctsrate = rt->info[cix].rateCode;
   3838 		/*
   3839 		 * Compute the transmit duration based on the frame
   3840 		 * size and the size of an ACK frame.  We call into the
   3841 		 * HAL to do the computation since it depends on the
   3842 		 * characteristics of the actual PHY being used.
   3843 		 *
   3844 		 * NB: CTS is assumed the same size as an ACK so we can
   3845 		 *     use the precalculated ACK durations.
   3846 		 */
   3847 		if (shortPreamble) {
   3848 			ctsrate |= rt->info[cix].shortPreamble;
   3849 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
   3850 				ctsduration += rt->info[cix].spAckDuration;
   3851 			ctsduration += ath_hal_computetxtime(ah,
   3852 				rt, pktlen, rix, AH_TRUE);
   3853 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
   3854 				ctsduration += rt->info[rix].spAckDuration;
   3855 		} else {
   3856 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
   3857 				ctsduration += rt->info[cix].lpAckDuration;
   3858 			ctsduration += ath_hal_computetxtime(ah,
   3859 				rt, pktlen, rix, AH_FALSE);
   3860 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
   3861 				ctsduration += rt->info[rix].lpAckDuration;
   3862 		}
   3863 		/*
   3864 		 * Must disable multi-rate retry when using RTS/CTS.
   3865 		 */
   3866 		ismrr = 0;
   3867 		try0 = ATH_TXMGTTRY;		/* XXX */
   3868 	} else
   3869 		ctsrate = 0;
   3870 
   3871 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
   3872 		ieee80211_dump_pkt(mtod(m0, void *), m0->m_len,
   3873 			sc->sc_hwmap[txrate].ieeerate, -1);
   3874 #if NBPFILTER > 0
   3875 	if (ic->ic_rawbpf)
   3876 		bpf_mtap(ic->ic_rawbpf, m0);
   3877 	if (sc->sc_drvbpf) {
   3878 		u_int64_t tsf = ath_hal_gettsf64(ah);
   3879 
   3880 		sc->sc_tx_th.wt_tsf = htole64(tsf);
   3881 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
   3882 		if (iswep)
   3883 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
   3884 		if (isfrag)
   3885 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
   3886 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
   3887 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
   3888 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
   3889 
   3890 		bpf_mtap2(sc->sc_drvbpf,
   3891 			&sc->sc_tx_th, sc->sc_tx_th_len, m0);
   3892 	}
   3893 #endif
   3894 
   3895 	/*
   3896 	 * Determine if a tx interrupt should be generated for
   3897 	 * this descriptor.  We take a tx interrupt to reap
   3898 	 * descriptors when the h/w hits an EOL condition or
   3899 	 * when the descriptor is specifically marked to generate
   3900 	 * an interrupt.  We periodically mark descriptors in this
   3901 	 * way to insure timely replenishing of the supply needed
   3902 	 * for sending frames.  Defering interrupts reduces system
   3903 	 * load and potentially allows more concurrent work to be
   3904 	 * done but if done to aggressively can cause senders to
   3905 	 * backup.
   3906 	 *
   3907 	 * NB: use >= to deal with sc_txintrperiod changing
   3908 	 *     dynamically through sysctl.
   3909 	 */
   3910 	if (flags & HAL_TXDESC_INTREQ) {
   3911 		txq->axq_intrcnt = 0;
   3912 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
   3913 		flags |= HAL_TXDESC_INTREQ;
   3914 		txq->axq_intrcnt = 0;
   3915 	}
   3916 
   3917 	/*
   3918 	 * Formulate first tx descriptor with tx controls.
   3919 	 */
   3920 	/* XXX check return value? */
   3921 	ath_hal_setuptxdesc(ah, ds
   3922 		, pktlen		/* packet length */
   3923 		, hdrlen		/* header length */
   3924 		, atype			/* Atheros packet type */
   3925 		, ni->ni_txpower	/* txpower */
   3926 		, txrate, try0		/* series 0 rate/tries */
   3927 		, keyix			/* key cache index */
   3928 		, sc->sc_txantenna	/* antenna mode */
   3929 		, flags			/* flags */
   3930 		, ctsrate		/* rts/cts rate */
   3931 		, ctsduration		/* rts/cts duration */
   3932 	);
   3933 	bf->bf_flags = flags;
   3934 	/*
   3935 	 * Setup the multi-rate retry state only when we're
   3936 	 * going to use it.  This assumes ath_hal_setuptxdesc
   3937 	 * initializes the descriptors (so we don't have to)
   3938 	 * when the hardware supports multi-rate retry and
   3939 	 * we don't use it.
   3940 	 */
   3941 	if (ismrr)
   3942 		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
   3943 
   3944 	/*
   3945 	 * Fillin the remainder of the descriptor info.
   3946 	 */
   3947 	ds0 = ds;
   3948 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
   3949 		ds->ds_data = bf->bf_segs[i].ds_addr;
   3950 		if (i == bf->bf_nseg - 1)
   3951 			ds->ds_link = 0;
   3952 		else
   3953 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
   3954 		ath_hal_filltxdesc(ah, ds
   3955 			, bf->bf_segs[i].ds_len	/* segment length */
   3956 			, i == 0		/* first segment */
   3957 			, i == bf->bf_nseg - 1	/* last segment */
   3958 			, ds0			/* first descriptor */
   3959 		);
   3960 
   3961 		/* NB: The desc swap function becomes void,
   3962 		 * if descriptor swapping is not enabled
   3963 		 */
   3964 		ath_desc_swap(ds);
   3965 
   3966 		DPRINTF(sc, ATH_DEBUG_XMIT,
   3967 			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
   3968 			__func__, i, ds->ds_link, ds->ds_data,
   3969 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
   3970 	}
   3971 	/*
   3972 	 * Insert the frame on the outbound list and
   3973 	 * pass it on to the hardware.
   3974 	 */
   3975 	ATH_TXQ_LOCK(txq);
   3976 	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
   3977 	if (txq->axq_link == NULL) {
   3978 		ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
   3979 		DPRINTF(sc, ATH_DEBUG_XMIT,
   3980 		    "%s: TXDP[%u] = %" PRIx64 " (%p) depth %d\n", __func__,
   3981 		    txq->axq_qnum, (uint64_t)bf->bf_daddr, bf->bf_desc,
   3982 		    txq->axq_depth);
   3983 	} else {
   3984 		*txq->axq_link = HTOAH32(bf->bf_daddr);
   3985 		DPRINTF(sc, ATH_DEBUG_XMIT,
   3986 		    "%s: link[%u](%p)=%" PRIx64 " (%p) depth %d\n",
   3987 		    __func__, txq->axq_qnum, txq->axq_link,
   3988 		    (uint64_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
   3989 	}
   3990 	txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
   3991 	/*
   3992 	 * The CAB queue is started from the SWBA handler since
   3993 	 * frames only go out on DTIM and to avoid possible races.
   3994 	 */
   3995 	if (txq != sc->sc_cabq)
   3996 		ath_hal_txstart(ah, txq->axq_qnum);
   3997 	ATH_TXQ_UNLOCK(txq);
   3998 
   3999 	return 0;
   4000 }
   4001 
   4002 /*
   4003  * Process completed xmit descriptors from the specified queue.
   4004  */
   4005 static int
   4006 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
   4007 {
   4008 	struct ath_hal *ah = sc->sc_ah;
   4009 	struct ieee80211com *ic = &sc->sc_ic;
   4010 	struct ath_buf *bf;
   4011 	struct ath_desc *ds, *ds0;
   4012 	struct ieee80211_node *ni;
   4013 	struct ath_node *an;
   4014 	int sr, lr, pri, nacked;
   4015 	HAL_STATUS status;
   4016 
   4017 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
   4018 		__func__, txq->axq_qnum,
   4019 		(void *)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
   4020 		txq->axq_link);
   4021 	nacked = 0;
   4022 	for (;;) {
   4023 		ATH_TXQ_LOCK(txq);
   4024 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
   4025 		bf = STAILQ_FIRST(&txq->axq_q);
   4026 		if (bf == NULL) {
   4027 			txq->axq_link = NULL;
   4028 			ATH_TXQ_UNLOCK(txq);
   4029 			break;
   4030 		}
   4031 		ds0 = &bf->bf_desc[0];
   4032 		ds = &bf->bf_desc[bf->bf_nseg - 1];
   4033 		status = ath_hal_txprocdesc(ah, ds);
   4034 #ifdef AR_DEBUG
   4035 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
   4036 			ath_printtxbuf(bf, status == HAL_OK);
   4037 #endif
   4038 		if (status == HAL_EINPROGRESS) {
   4039 			ATH_TXQ_UNLOCK(txq);
   4040 			break;
   4041 		}
   4042 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
   4043 		ATH_TXQ_UNLOCK(txq);
   4044 
   4045 		ni = bf->bf_node;
   4046 		if (ni != NULL) {
   4047 			an = ATH_NODE(ni);
   4048 			if (ds->ds_txstat.ts_status == 0) {
   4049 				u_int8_t txant = ds->ds_txstat.ts_antenna;
   4050 				sc->sc_stats.ast_ant_tx[txant]++;
   4051 				sc->sc_ant_tx[txant]++;
   4052 				if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
   4053 					sc->sc_stats.ast_tx_altrate++;
   4054 				sc->sc_stats.ast_tx_rssi =
   4055 					ds->ds_txstat.ts_rssi;
   4056 				ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
   4057 					ds->ds_txstat.ts_rssi);
   4058 				pri = M_WME_GETAC(bf->bf_m);
   4059 				if (pri >= WME_AC_VO)
   4060 					ic->ic_wme.wme_hipri_traffic++;
   4061 				ni->ni_inact = ni->ni_inact_reload;
   4062 			} else {
   4063 				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
   4064 					sc->sc_stats.ast_tx_xretries++;
   4065 				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
   4066 					sc->sc_stats.ast_tx_fifoerr++;
   4067 				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
   4068 					sc->sc_stats.ast_tx_filtered++;
   4069 			}
   4070 			sr = ds->ds_txstat.ts_shortretry;
   4071 			lr = ds->ds_txstat.ts_longretry;
   4072 			sc->sc_stats.ast_tx_shortretry += sr;
   4073 			sc->sc_stats.ast_tx_longretry += lr;
   4074 			/*
   4075 			 * Hand the descriptor to the rate control algorithm.
   4076 			 */
   4077 			if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
   4078 			    (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
   4079 				/*
   4080 				 * If frame was ack'd update the last rx time
   4081 				 * used to workaround phantom bmiss interrupts.
   4082 				 */
   4083 				if (ds->ds_txstat.ts_status == 0)
   4084 					nacked++;
   4085 				ath_rate_tx_complete(sc, an, ds, ds0);
   4086 			}
   4087 			/*
   4088 			 * Reclaim reference to node.
   4089 			 *
   4090 			 * NB: the node may be reclaimed here if, for example
   4091 			 *     this is a DEAUTH message that was sent and the
   4092 			 *     node was timed out due to inactivity.
   4093 			 */
   4094 			ieee80211_free_node(ni);
   4095 		}
   4096 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   4097 		    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4098 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   4099 		m_freem(bf->bf_m);
   4100 		bf->bf_m = NULL;
   4101 		bf->bf_node = NULL;
   4102 
   4103 		ATH_TXBUF_LOCK(sc);
   4104 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   4105 		ATH_TXBUF_UNLOCK(sc);
   4106 	}
   4107 	return nacked;
   4108 }
   4109 
   4110 static inline int
   4111 txqactive(struct ath_hal *ah, int qnum)
   4112 {
   4113 	u_int32_t txqs = 1<<qnum;
   4114 	ath_hal_gettxintrtxqs(ah, &txqs);
   4115 	return (txqs & (1<<qnum));
   4116 }
   4117 
   4118 /*
   4119  * Deferred processing of transmit interrupt; special-cased
   4120  * for a single hardware transmit queue (e.g. 5210 and 5211).
   4121  */
   4122 static void
   4123 ath_tx_proc_q0(void *arg, int npending)
   4124 {
   4125 	struct ath_softc *sc = arg;
   4126 	struct ifnet *ifp = &sc->sc_if;
   4127 
   4128 	if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]) > 0){
   4129 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
   4130 		ifp->if_flags &= ~IFF_OACTIVE;
   4131 		sc->sc_tx_timer = 0;
   4132 	}
   4133 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
   4134 		ath_tx_processq(sc, sc->sc_cabq);
   4135 
   4136 	if (sc->sc_softled)
   4137 		ath_led_event(sc, ATH_LED_TX);
   4138 
   4139 	ath_start(ifp);
   4140 }
   4141 
   4142 /*
   4143  * Deferred processing of transmit interrupt; special-cased
   4144  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
   4145  */
   4146 static void
   4147 ath_tx_proc_q0123(void *arg, int npending)
   4148 {
   4149 	struct ath_softc *sc = arg;
   4150 	struct ifnet *ifp = &sc->sc_if;
   4151 	int nacked;
   4152 
   4153 	/*
   4154 	 * Process each active queue.
   4155 	 */
   4156 	nacked = 0;
   4157 	if (txqactive(sc->sc_ah, 0))
   4158 		nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
   4159 	if (txqactive(sc->sc_ah, 1))
   4160 		nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
   4161 	if (txqactive(sc->sc_ah, 2))
   4162 		nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
   4163 	if (txqactive(sc->sc_ah, 3))
   4164 		nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
   4165 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
   4166 		ath_tx_processq(sc, sc->sc_cabq);
   4167 	if (nacked) {
   4168 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
   4169 		ifp->if_flags &= ~IFF_OACTIVE;
   4170 		sc->sc_tx_timer = 0;
   4171 	}
   4172 	ath_tx_processq(sc, sc->sc_cabq);
   4173 
   4174 	if (sc->sc_softled)
   4175 		ath_led_event(sc, ATH_LED_TX);
   4176 
   4177 	ath_start(ifp);
   4178 }
   4179 
   4180 /*
   4181  * Deferred processing of transmit interrupt.
   4182  */
   4183 static void
   4184 ath_tx_proc(void *arg, int npending)
   4185 {
   4186 	struct ath_softc *sc = arg;
   4187 	struct ifnet *ifp = &sc->sc_if;
   4188 	int i, nacked;
   4189 
   4190 	/*
   4191 	 * Process each active queue.
   4192 	 */
   4193 	nacked = 0;
   4194 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   4195 		if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
   4196 			nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
   4197 	if (nacked) {
   4198 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
   4199 
   4200 		ifp->if_flags &= ~IFF_OACTIVE;
   4201 		sc->sc_tx_timer = 0;
   4202 	}
   4203 
   4204 	if (sc->sc_softled)
   4205 		ath_led_event(sc, ATH_LED_TX);
   4206 
   4207 	ath_start(ifp);
   4208 }
   4209 
   4210 static void
   4211 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
   4212 {
   4213 	struct ath_hal *ah = sc->sc_ah;
   4214 	struct ieee80211_node *ni;
   4215 	struct ath_buf *bf;
   4216 
   4217 	/*
   4218 	 * NB: this assumes output has been stopped and
   4219 	 *     we do not need to block ath_tx_tasklet
   4220 	 */
   4221 	for (;;) {
   4222 		ATH_TXQ_LOCK(txq);
   4223 		bf = STAILQ_FIRST(&txq->axq_q);
   4224 		if (bf == NULL) {
   4225 			txq->axq_link = NULL;
   4226 			ATH_TXQ_UNLOCK(txq);
   4227 			break;
   4228 		}
   4229 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
   4230 		ATH_TXQ_UNLOCK(txq);
   4231 #ifdef AR_DEBUG
   4232 		if (sc->sc_debug & ATH_DEBUG_RESET)
   4233 			ath_printtxbuf(bf,
   4234 				ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
   4235 #endif /* AR_DEBUG */
   4236 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   4237 		m_freem(bf->bf_m);
   4238 		bf->bf_m = NULL;
   4239 		ni = bf->bf_node;
   4240 		bf->bf_node = NULL;
   4241 		if (ni != NULL) {
   4242 			/*
   4243 			 * Reclaim node reference.
   4244 			 */
   4245 			ieee80211_free_node(ni);
   4246 		}
   4247 		ATH_TXBUF_LOCK(sc);
   4248 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   4249 		ATH_TXBUF_UNLOCK(sc);
   4250 	}
   4251 }
   4252 
   4253 static void
   4254 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
   4255 {
   4256 	struct ath_hal *ah = sc->sc_ah;
   4257 
   4258 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
   4259 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
   4260 	    __func__, txq->axq_qnum,
   4261 	    (void *)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
   4262 	    txq->axq_link);
   4263 }
   4264 
   4265 /*
   4266  * Drain the transmit queues and reclaim resources.
   4267  */
   4268 static void
   4269 ath_draintxq(struct ath_softc *sc)
   4270 {
   4271 	struct ath_hal *ah = sc->sc_ah;
   4272 	struct ifnet *ifp = &sc->sc_if;
   4273 	int i;
   4274 
   4275 	/* XXX return value */
   4276 	if (!sc->sc_invalid) {
   4277 		/* don't touch the hardware if marked invalid */
   4278 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
   4279 		DPRINTF(sc, ATH_DEBUG_RESET,
   4280 		    "%s: beacon queue %p\n", __func__,
   4281 		    (void *)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
   4282 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   4283 			if (ATH_TXQ_SETUP(sc, i))
   4284 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
   4285 	}
   4286 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   4287 		if (ATH_TXQ_SETUP(sc, i))
   4288 			ath_tx_draintxq(sc, &sc->sc_txq[i]);
   4289 	ifp->if_flags &= ~IFF_OACTIVE;
   4290 	sc->sc_tx_timer = 0;
   4291 }
   4292 
   4293 /*
   4294  * Disable the receive h/w in preparation for a reset.
   4295  */
   4296 static void
   4297 ath_stoprecv(struct ath_softc *sc)
   4298 {
   4299 #define	PA2DESC(_sc, _pa) \
   4300 	((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
   4301 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
   4302 	struct ath_hal *ah = sc->sc_ah;
   4303 
   4304 	ath_hal_stoppcurecv(ah);	/* disable PCU */
   4305 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
   4306 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
   4307 	DELAY(3000);			/* 3ms is long enough for 1 frame */
   4308 #ifdef AR_DEBUG
   4309 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
   4310 		struct ath_buf *bf;
   4311 
   4312 		printf("%s: rx queue %p, link %p\n", __func__,
   4313 			(void *)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
   4314 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
   4315 			struct ath_desc *ds = bf->bf_desc;
   4316 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
   4317 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
   4318 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
   4319 				ath_printrxbuf(bf, status == HAL_OK);
   4320 		}
   4321 	}
   4322 #endif
   4323 	sc->sc_rxlink = NULL;		/* just in case */
   4324 #undef PA2DESC
   4325 }
   4326 
   4327 /*
   4328  * Enable the receive h/w following a reset.
   4329  */
   4330 static int
   4331 ath_startrecv(struct ath_softc *sc)
   4332 {
   4333 	struct ath_hal *ah = sc->sc_ah;
   4334 	struct ath_buf *bf;
   4335 
   4336 	sc->sc_rxlink = NULL;
   4337 	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
   4338 		int error = ath_rxbuf_init(sc, bf);
   4339 		if (error != 0) {
   4340 			DPRINTF(sc, ATH_DEBUG_RECV,
   4341 				"%s: ath_rxbuf_init failed %d\n",
   4342 				__func__, error);
   4343 			return error;
   4344 		}
   4345 	}
   4346 
   4347 	bf = STAILQ_FIRST(&sc->sc_rxbuf);
   4348 	ath_hal_putrxbuf(ah, bf->bf_daddr);
   4349 	ath_hal_rxena(ah);		/* enable recv descriptors */
   4350 	ath_mode_init(sc);		/* set filters, etc. */
   4351 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
   4352 	return 0;
   4353 }
   4354 
   4355 /*
   4356  * Update internal state after a channel change.
   4357  */
   4358 static void
   4359 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
   4360 {
   4361 	struct ieee80211com *ic = &sc->sc_ic;
   4362 	enum ieee80211_phymode mode;
   4363 	u_int16_t flags;
   4364 
   4365 	/*
   4366 	 * Change channels and update the h/w rate map
   4367 	 * if we're switching; e.g. 11a to 11b/g.
   4368 	 */
   4369 	mode = ieee80211_chan2mode(ic, chan);
   4370 	if (mode != sc->sc_curmode)
   4371 		ath_setcurmode(sc, mode);
   4372 	/*
   4373 	 * Update BPF state.  NB: ethereal et. al. don't handle
   4374 	 * merged flags well so pick a unique mode for their use.
   4375 	 */
   4376 	if (IEEE80211_IS_CHAN_A(chan))
   4377 		flags = IEEE80211_CHAN_A;
   4378 	/* XXX 11g schizophrenia */
   4379 	else if (IEEE80211_IS_CHAN_G(chan) ||
   4380 	    IEEE80211_IS_CHAN_PUREG(chan))
   4381 		flags = IEEE80211_CHAN_G;
   4382 	else
   4383 		flags = IEEE80211_CHAN_B;
   4384 	if (IEEE80211_IS_CHAN_T(chan))
   4385 		flags |= IEEE80211_CHAN_TURBO;
   4386 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
   4387 		htole16(chan->ic_freq);
   4388 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
   4389 		htole16(flags);
   4390 }
   4391 
   4392 /*
   4393  * Poll for a channel clear indication; this is required
   4394  * for channels requiring DFS and not previously visited
   4395  * and/or with a recent radar detection.
   4396  */
   4397 static void
   4398 ath_dfswait(void *arg)
   4399 {
   4400 	struct ath_softc *sc = arg;
   4401 	struct ath_hal *ah = sc->sc_ah;
   4402 	HAL_CHANNEL hchan;
   4403 
   4404 	ath_hal_radar_wait(ah, &hchan);
   4405 	if (hchan.privFlags & CHANNEL_INTERFERENCE) {
   4406 		if_printf(&sc->sc_if,
   4407 		    "channel %u/0x%x/0x%x has interference\n",
   4408 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
   4409 		return;
   4410 	}
   4411 	if ((hchan.privFlags & CHANNEL_DFS) == 0) {
   4412 		/* XXX should not happen */
   4413 		return;
   4414 	}
   4415 	if (hchan.privFlags & CHANNEL_DFS_CLEAR) {
   4416 		sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR;
   4417 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
   4418 		if_printf(&sc->sc_if,
   4419 		    "channel %u/0x%x/0x%x marked clear\n",
   4420 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
   4421 	} else
   4422 		callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc);
   4423 }
   4424 
   4425 /*
   4426  * Set/change channels.  If the channel is really being changed,
   4427  * it's done by reseting the chip.  To accomplish this we must
   4428  * first cleanup any pending DMA, then restart stuff after a la
   4429  * ath_init.
   4430  */
   4431 static int
   4432 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
   4433 {
   4434 	struct ath_hal *ah = sc->sc_ah;
   4435 	struct ieee80211com *ic = &sc->sc_ic;
   4436 	HAL_CHANNEL hchan;
   4437 
   4438 	/*
   4439 	 * Convert to a HAL channel description with
   4440 	 * the flags constrained to reflect the current
   4441 	 * operating mode.
   4442 	 */
   4443 	hchan.channel = chan->ic_freq;
   4444 	hchan.channelFlags = ath_chan2flags(ic, chan);
   4445 
   4446 	DPRINTF(sc, ATH_DEBUG_RESET,
   4447 	    "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
   4448 	    __func__,
   4449 	    ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
   4450 		sc->sc_curchan.channelFlags),
   4451 	    	sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
   4452 	    ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
   4453 	        hchan.channel, hchan.channelFlags);
   4454 	if (hchan.channel != sc->sc_curchan.channel ||
   4455 	    hchan.channelFlags != sc->sc_curchan.channelFlags) {
   4456 		HAL_STATUS status;
   4457 
   4458 		/*
   4459 		 * To switch channels clear any pending DMA operations;
   4460 		 * wait long enough for the RX fifo to drain, reset the
   4461 		 * hardware at the new frequency, and then re-enable
   4462 		 * the relevant bits of the h/w.
   4463 		 */
   4464 		ath_hal_intrset(ah, 0);		/* disable interrupts */
   4465 		ath_draintxq(sc);		/* clear pending tx frames */
   4466 		ath_stoprecv(sc);		/* turn off frame recv */
   4467 		if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
   4468 			if_printf(ic->ic_ifp, "%s: unable to reset "
   4469 			    "channel %u (%u MHz, flags 0x%x hal flags 0x%x)\n",
   4470 			    __func__, ieee80211_chan2ieee(ic, chan),
   4471 			    chan->ic_freq, chan->ic_flags, hchan.channelFlags);
   4472 			return EIO;
   4473 		}
   4474 		sc->sc_curchan = hchan;
   4475 		ath_update_txpow(sc);		/* update tx power state */
   4476 		sc->sc_diversity = ath_hal_getdiversity(ah);
   4477 		sc->sc_calinterval = 1;
   4478 		sc->sc_caltries = 0;
   4479 
   4480 		/*
   4481 		 * Re-enable rx framework.
   4482 		 */
   4483 		if (ath_startrecv(sc) != 0) {
   4484 			if_printf(&sc->sc_if,
   4485 				"%s: unable to restart recv logic\n", __func__);
   4486 			return EIO;
   4487 		}
   4488 
   4489 		/*
   4490 		 * Change channels and update the h/w rate map
   4491 		 * if we're switching; e.g. 11a to 11b/g.
   4492 		 */
   4493 		ic->ic_ibss_chan = chan;
   4494 		ath_chan_change(sc, chan);
   4495 
   4496 		/*
   4497 		 * Handle DFS required waiting period to determine
   4498 		 * if channel is clear of radar traffic.
   4499 		 */
   4500 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   4501 #define	DFS_AND_NOT_CLEAR(_c) \
   4502 	(((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS)
   4503 			if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) {
   4504 				if_printf(&sc->sc_if,
   4505 					"wait for DFS clear channel signal\n");
   4506 				/* XXX stop sndq */
   4507 				sc->sc_if.if_flags |= IFF_OACTIVE;
   4508 				callout_reset(&sc->sc_dfs_ch,
   4509 					2 * hz, ath_dfswait, sc);
   4510 			} else
   4511 				callout_stop(&sc->sc_dfs_ch);
   4512 #undef DFS_NOT_CLEAR
   4513 		}
   4514 
   4515 		/*
   4516 		 * Re-enable interrupts.
   4517 		 */
   4518 		ath_hal_intrset(ah, sc->sc_imask);
   4519 	}
   4520 	return 0;
   4521 }
   4522 
   4523 static void
   4524 ath_next_scan(void *arg)
   4525 {
   4526 	struct ath_softc *sc = arg;
   4527 	struct ieee80211com *ic = &sc->sc_ic;
   4528 	int s;
   4529 
   4530 	/* don't call ath_start w/o network interrupts blocked */
   4531 	s = splnet();
   4532 
   4533 	if (ic->ic_state == IEEE80211_S_SCAN)
   4534 		ieee80211_next_scan(ic);
   4535 	splx(s);
   4536 }
   4537 
   4538 /*
   4539  * Periodically recalibrate the PHY to account
   4540  * for temperature/environment changes.
   4541  */
   4542 static void
   4543 ath_calibrate(void *arg)
   4544 {
   4545 	struct ath_softc *sc = arg;
   4546 	struct ath_hal *ah = sc->sc_ah;
   4547 	HAL_BOOL iqCalDone;
   4548 
   4549 	sc->sc_stats.ast_per_cal++;
   4550 
   4551 	ATH_LOCK(sc);
   4552 
   4553 	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
   4554 		/*
   4555 		 * Rfgain is out of bounds, reset the chip
   4556 		 * to load new gain values.
   4557 		 */
   4558 		DPRINTF(sc, ATH_DEBUG_CALIBRATE,
   4559 			"%s: rfgain change\n", __func__);
   4560 		sc->sc_stats.ast_per_rfgain++;
   4561 		ath_reset(&sc->sc_if);
   4562 	}
   4563 	if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
   4564 		DPRINTF(sc, ATH_DEBUG_ANY,
   4565 			"%s: calibration of channel %u failed\n",
   4566 			__func__, sc->sc_curchan.channel);
   4567 		sc->sc_stats.ast_per_calfail++;
   4568 	}
   4569 	/*
   4570 	 * Calibrate noise floor data again in case of change.
   4571 	 */
   4572 	ath_hal_process_noisefloor(ah);
   4573 	/*
   4574 	 * Poll more frequently when the IQ calibration is in
   4575 	 * progress to speedup loading the final settings.
   4576 	 * We temper this aggressive polling with an exponential
   4577 	 * back off after 4 tries up to ath_calinterval.
   4578 	 */
   4579 	if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
   4580 		sc->sc_caltries = 0;
   4581 		sc->sc_calinterval = ath_calinterval;
   4582 	} else if (sc->sc_caltries > 4) {
   4583 		sc->sc_caltries = 0;
   4584 		sc->sc_calinterval <<= 1;
   4585 		if (sc->sc_calinterval > ath_calinterval)
   4586 			sc->sc_calinterval = ath_calinterval;
   4587 	}
   4588 	KASSERT(0 < sc->sc_calinterval && sc->sc_calinterval <= ath_calinterval,
   4589 		("bad calibration interval %u", sc->sc_calinterval));
   4590 
   4591 	DPRINTF(sc, ATH_DEBUG_CALIBRATE,
   4592 		"%s: next +%u (%siqCalDone tries %u)\n", __func__,
   4593 		sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
   4594 	sc->sc_caltries++;
   4595 	callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
   4596 		ath_calibrate, sc);
   4597 	ATH_UNLOCK(sc);
   4598 }
   4599 
   4600 static int
   4601 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
   4602 {
   4603 	struct ifnet *ifp = ic->ic_ifp;
   4604 	struct ath_softc *sc = ifp->if_softc;
   4605 	struct ath_hal *ah = sc->sc_ah;
   4606 	struct ieee80211_node *ni;
   4607 	int i, error;
   4608 	const u_int8_t *bssid;
   4609 	u_int32_t rfilt;
   4610 	static const HAL_LED_STATE leds[] = {
   4611 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
   4612 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
   4613 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
   4614 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
   4615 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
   4616 	};
   4617 
   4618 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
   4619 		ieee80211_state_name[ic->ic_state],
   4620 		ieee80211_state_name[nstate]);
   4621 
   4622 	callout_stop(&sc->sc_scan_ch);
   4623 	callout_stop(&sc->sc_cal_ch);
   4624 	callout_stop(&sc->sc_dfs_ch);
   4625 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
   4626 
   4627 	if (nstate == IEEE80211_S_INIT) {
   4628 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
   4629 		/*
   4630 		 * NB: disable interrupts so we don't rx frames.
   4631 		 */
   4632 		ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
   4633 		/*
   4634 		 * Notify the rate control algorithm.
   4635 		 */
   4636 		ath_rate_newstate(sc, nstate);
   4637 		goto done;
   4638 	}
   4639 	ni = ic->ic_bss;
   4640 	error = ath_chan_set(sc, ic->ic_curchan);
   4641 	if (error != 0)
   4642 		goto bad;
   4643 	rfilt = ath_calcrxfilter(sc, nstate);
   4644 	if (nstate == IEEE80211_S_SCAN)
   4645 		bssid = ifp->if_broadcastaddr;
   4646 	else
   4647 		bssid = ni->ni_bssid;
   4648 	ath_hal_setrxfilter(ah, rfilt);
   4649 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
   4650 		 __func__, rfilt, ether_sprintf(bssid));
   4651 
   4652 	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
   4653 		ath_hal_setassocid(ah, bssid, ni->ni_associd);
   4654 	else
   4655 		ath_hal_setassocid(ah, bssid, 0);
   4656 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
   4657 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
   4658 			if (ath_hal_keyisvalid(ah, i))
   4659 				ath_hal_keysetmac(ah, i, bssid);
   4660 	}
   4661 
   4662 	/*
   4663 	 * Notify the rate control algorithm so rates
   4664 	 * are setup should ath_beacon_alloc be called.
   4665 	 */
   4666 	ath_rate_newstate(sc, nstate);
   4667 
   4668 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
   4669 		/* nothing to do */;
   4670 	} else if (nstate == IEEE80211_S_RUN) {
   4671 		DPRINTF(sc, ATH_DEBUG_STATE,
   4672 			"%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
   4673 			"capinfo=0x%04x chan=%d\n"
   4674 			 , __func__
   4675 			 , ic->ic_flags
   4676 			 , ni->ni_intval
   4677 			 , ether_sprintf(ni->ni_bssid)
   4678 			 , ni->ni_capinfo
   4679 			 , ieee80211_chan2ieee(ic, ic->ic_curchan));
   4680 
   4681 		switch (ic->ic_opmode) {
   4682 		case IEEE80211_M_HOSTAP:
   4683 		case IEEE80211_M_IBSS:
   4684 			/*
   4685 			 * Allocate and setup the beacon frame.
   4686 			 *
   4687 			 * Stop any previous beacon DMA.  This may be
   4688 			 * necessary, for example, when an ibss merge
   4689 			 * causes reconfiguration; there will be a state
   4690 			 * transition from RUN->RUN that means we may
   4691 			 * be called with beacon transmission active.
   4692 			 */
   4693 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
   4694 			ath_beacon_free(sc);
   4695 			error = ath_beacon_alloc(sc, ni);
   4696 			if (error != 0)
   4697 				goto bad;
   4698 			/*
   4699 			 * If joining an adhoc network defer beacon timer
   4700 			 * configuration to the next beacon frame so we
   4701 			 * have a current TSF to use.  Otherwise we're
   4702 			 * starting an ibss/bss so there's no need to delay.
   4703 			 */
   4704 			if (ic->ic_opmode == IEEE80211_M_IBSS &&
   4705 			    ic->ic_bss->ni_tstamp.tsf != 0)
   4706 				sc->sc_syncbeacon = 1;
   4707 			else
   4708 				ath_beacon_config(sc);
   4709 			break;
   4710 		case IEEE80211_M_STA:
   4711 			/*
   4712 			 * Allocate a key cache slot to the station.
   4713 			 */
   4714 			if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
   4715 			    sc->sc_hasclrkey &&
   4716 			    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
   4717 				ath_setup_stationkey(ni);
   4718 			/*
   4719 			 * Defer beacon timer configuration to the next
   4720 			 * beacon frame so we have a current TSF to use
   4721 			 * (any TSF collected when scanning is likely old).
   4722 			 */
   4723 			sc->sc_syncbeacon = 1;
   4724 			break;
   4725 		default:
   4726 			break;
   4727 		}
   4728 		/*
   4729 		 * Let the hal process statistics collected during a
   4730 		 * scan so it can provide calibrated noise floor data.
   4731 		 */
   4732 		ath_hal_process_noisefloor(ah);
   4733 		/*
   4734 		 * Reset rssi stats; maybe not the best place...
   4735 		 */
   4736 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
   4737 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
   4738 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
   4739 	} else {
   4740 		ath_hal_intrset(ah,
   4741 			sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
   4742 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
   4743 	}
   4744 done:
   4745 	/*
   4746 	 * Invoke the parent method to complete the work.
   4747 	 */
   4748 	error = sc->sc_newstate(ic, nstate, arg);
   4749 	/*
   4750 	 * Finally, start any timers.
   4751 	 */
   4752 	if (nstate == IEEE80211_S_RUN) {
   4753 		/* start periodic recalibration timer */
   4754 		callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
   4755 			ath_calibrate, sc);
   4756 	} else if (nstate == IEEE80211_S_SCAN) {
   4757 		/* start ap/neighbor scan timer */
   4758 		callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
   4759 			ath_next_scan, sc);
   4760 	}
   4761 bad:
   4762 	return error;
   4763 }
   4764 
   4765 /*
   4766  * Allocate a key cache slot to the station so we can
   4767  * setup a mapping from key index to node. The key cache
   4768  * slot is needed for managing antenna state and for
   4769  * compression when stations do not use crypto.  We do
   4770  * it uniliaterally here; if crypto is employed this slot
   4771  * will be reassigned.
   4772  */
   4773 static void
   4774 ath_setup_stationkey(struct ieee80211_node *ni)
   4775 {
   4776 	struct ieee80211com *ic = ni->ni_ic;
   4777 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   4778 	ieee80211_keyix keyix, rxkeyix;
   4779 
   4780 	if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
   4781 		/*
   4782 		 * Key cache is full; we'll fall back to doing
   4783 		 * the more expensive lookup in software.  Note
   4784 		 * this also means no h/w compression.
   4785 		 */
   4786 		/* XXX msg+statistic */
   4787 	} else {
   4788 		/* XXX locking? */
   4789 		ni->ni_ucastkey.wk_keyix = keyix;
   4790 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
   4791 		/* NB: this will create a pass-thru key entry */
   4792 		ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
   4793 	}
   4794 }
   4795 
   4796 /*
   4797  * Setup driver-specific state for a newly associated node.
   4798  * Note that we're called also on a re-associate, the isnew
   4799  * param tells us if this is the first time or not.
   4800  */
   4801 static void
   4802 ath_newassoc(struct ieee80211_node *ni, int isnew)
   4803 {
   4804 	struct ieee80211com *ic = ni->ni_ic;
   4805 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   4806 
   4807 	ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
   4808 	if (isnew &&
   4809 	    (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
   4810 		KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
   4811 		    ("new assoc with a unicast key already setup (keyix %u)",
   4812 		    ni->ni_ucastkey.wk_keyix));
   4813 		ath_setup_stationkey(ni);
   4814 	}
   4815 }
   4816 
   4817 static int
   4818 ath_getchannels(struct ath_softc *sc, u_int cc,
   4819 	HAL_BOOL outdoor, HAL_BOOL xchanmode)
   4820 {
   4821 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
   4822 	struct ieee80211com *ic = &sc->sc_ic;
   4823 	struct ifnet *ifp = &sc->sc_if;
   4824 	struct ath_hal *ah = sc->sc_ah;
   4825 	HAL_CHANNEL *chans;
   4826 	int i, ix, nchan;
   4827 
   4828 	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
   4829 			M_TEMP, M_NOWAIT);
   4830 	if (chans == NULL) {
   4831 		if_printf(ifp, "unable to allocate channel table\n");
   4832 		return ENOMEM;
   4833 	}
   4834 	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
   4835 	    NULL, 0, NULL,
   4836 	    cc, HAL_MODE_ALL, outdoor, xchanmode)) {
   4837 		u_int32_t rd;
   4838 
   4839 		(void)ath_hal_getregdomain(ah, &rd);
   4840 		if_printf(ifp, "unable to collect channel list from hal; "
   4841 			"regdomain likely %u country code %u\n", rd, cc);
   4842 		free(chans, M_TEMP);
   4843 		return EINVAL;
   4844 	}
   4845 
   4846 	/*
   4847 	 * Convert HAL channels to ieee80211 ones and insert
   4848 	 * them in the table according to their channel number.
   4849 	 */
   4850 	for (i = 0; i < nchan; i++) {
   4851 		HAL_CHANNEL *c = &chans[i];
   4852 		u_int16_t flags;
   4853 
   4854 		ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags);
   4855 		if (ix > IEEE80211_CHAN_MAX) {
   4856 			if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n",
   4857 				ix, c->channel, c->channelFlags);
   4858 			continue;
   4859 		}
   4860 		if (ix < 0) {
   4861 			/* XXX can't handle stuff <2400 right now */
   4862 			if (bootverbose)
   4863 				if_printf(ifp, "hal channel %d (%u/%x) "
   4864 				    "cannot be handled; ignored\n",
   4865 				    ix, c->channel, c->channelFlags);
   4866 			continue;
   4867 		}
   4868 		/*
   4869 		 * Calculate net80211 flags; most are compatible
   4870 		 * but some need massaging.  Note the static turbo
   4871 		 * conversion can be removed once net80211 is updated
   4872 		 * to understand static vs. dynamic turbo.
   4873 		 */
   4874 		flags = c->channelFlags & COMPAT;
   4875 		if (c->channelFlags & CHANNEL_STURBO)
   4876 			flags |= IEEE80211_CHAN_TURBO;
   4877 		if (ic->ic_channels[ix].ic_freq == 0) {
   4878 			ic->ic_channels[ix].ic_freq = c->channel;
   4879 			ic->ic_channels[ix].ic_flags = flags;
   4880 		} else {
   4881 			/* channels overlap; e.g. 11g and 11b */
   4882 			ic->ic_channels[ix].ic_flags |= flags;
   4883 		}
   4884 	}
   4885 	free(chans, M_TEMP);
   4886 	return 0;
   4887 #undef COMPAT
   4888 }
   4889 
   4890 static void
   4891 ath_led_done(void *arg)
   4892 {
   4893 	struct ath_softc *sc = arg;
   4894 
   4895 	sc->sc_blinking = 0;
   4896 }
   4897 
   4898 /*
   4899  * Turn the LED off: flip the pin and then set a timer so no
   4900  * update will happen for the specified duration.
   4901  */
   4902 static void
   4903 ath_led_off(void *arg)
   4904 {
   4905 	struct ath_softc *sc = arg;
   4906 
   4907 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
   4908 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
   4909 }
   4910 
   4911 /*
   4912  * Blink the LED according to the specified on/off times.
   4913  */
   4914 static void
   4915 ath_led_blink(struct ath_softc *sc, int on, int off)
   4916 {
   4917 	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
   4918 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
   4919 	sc->sc_blinking = 1;
   4920 	sc->sc_ledoff = off;
   4921 	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
   4922 }
   4923 
   4924 static void
   4925 ath_led_event(struct ath_softc *sc, int event)
   4926 {
   4927 
   4928 	sc->sc_ledevent = ticks;	/* time of last event */
   4929 	if (sc->sc_blinking)		/* don't interrupt active blink */
   4930 		return;
   4931 	switch (event) {
   4932 	case ATH_LED_POLL:
   4933 		ath_led_blink(sc, sc->sc_hwmap[0].ledon,
   4934 			sc->sc_hwmap[0].ledoff);
   4935 		break;
   4936 	case ATH_LED_TX:
   4937 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
   4938 			sc->sc_hwmap[sc->sc_txrate].ledoff);
   4939 		break;
   4940 	case ATH_LED_RX:
   4941 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
   4942 			sc->sc_hwmap[sc->sc_rxrate].ledoff);
   4943 		break;
   4944 	}
   4945 }
   4946 
   4947 static void
   4948 ath_update_txpow(struct ath_softc *sc)
   4949 {
   4950 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
   4951 	struct ieee80211com *ic = &sc->sc_ic;
   4952 	struct ath_hal *ah = sc->sc_ah;
   4953 	u_int32_t txpow;
   4954 
   4955 	if (sc->sc_curtxpow != ic->ic_txpowlimit) {
   4956 		ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
   4957 		/* read back in case value is clamped */
   4958 		(void)ath_hal_gettxpowlimit(ah, &txpow);
   4959 		ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
   4960 	}
   4961 	/*
   4962 	 * Fetch max tx power level for status requests.
   4963 	 */
   4964 	(void)ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
   4965 	ic->ic_bss->ni_txpower = txpow;
   4966 }
   4967 
   4968 static void
   4969 rate_setup(struct ath_softc *sc,
   4970 	const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs)
   4971 {
   4972 	int i, maxrates;
   4973 
   4974 	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
   4975 		DPRINTF(sc, ATH_DEBUG_ANY,
   4976 			"%s: rate table too small (%u > %u)\n",
   4977 		       __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
   4978 		maxrates = IEEE80211_RATE_MAXSIZE;
   4979 	} else
   4980 		maxrates = rt->rateCount;
   4981 	for (i = 0; i < maxrates; i++)
   4982 		rs->rs_rates[i] = rt->info[i].dot11Rate;
   4983 	rs->rs_nrates = maxrates;
   4984 }
   4985 
   4986 static int
   4987 ath_rate_setup(struct ath_softc *sc, u_int mode)
   4988 {
   4989 	struct ath_hal *ah = sc->sc_ah;
   4990 	struct ieee80211com *ic = &sc->sc_ic;
   4991 	const HAL_RATE_TABLE *rt;
   4992 
   4993 	switch (mode) {
   4994 	case IEEE80211_MODE_11A:
   4995 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
   4996 		break;
   4997 	case IEEE80211_MODE_11B:
   4998 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
   4999 		break;
   5000 	case IEEE80211_MODE_11G:
   5001 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
   5002 		break;
   5003 	case IEEE80211_MODE_TURBO_A:
   5004 		/* XXX until static/dynamic turbo is fixed */
   5005 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
   5006 		break;
   5007 	case IEEE80211_MODE_TURBO_G:
   5008 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
   5009 		break;
   5010 	default:
   5011 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
   5012 			__func__, mode);
   5013 		return 0;
   5014 	}
   5015 	sc->sc_rates[mode] = rt;
   5016 	if (rt != NULL) {
   5017 		rate_setup(sc, rt, &ic->ic_sup_rates[mode]);
   5018 		return 1;
   5019 	} else
   5020 		return 0;
   5021 }
   5022 
   5023 static void
   5024 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
   5025 {
   5026 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   5027 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
   5028 	static const struct {
   5029 		u_int		rate;		/* tx/rx 802.11 rate */
   5030 		u_int16_t	timeOn;		/* LED on time (ms) */
   5031 		u_int16_t	timeOff;	/* LED off time (ms) */
   5032 	} blinkrates[] = {
   5033 		{ 108,  40,  10 },
   5034 		{  96,  44,  11 },
   5035 		{  72,  50,  13 },
   5036 		{  48,  57,  14 },
   5037 		{  36,  67,  16 },
   5038 		{  24,  80,  20 },
   5039 		{  22, 100,  25 },
   5040 		{  18, 133,  34 },
   5041 		{  12, 160,  40 },
   5042 		{  10, 200,  50 },
   5043 		{   6, 240,  58 },
   5044 		{   4, 267,  66 },
   5045 		{   2, 400, 100 },
   5046 		{   0, 500, 130 },
   5047 	};
   5048 	const HAL_RATE_TABLE *rt;
   5049 	int i, j;
   5050 
   5051 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
   5052 	rt = sc->sc_rates[mode];
   5053 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
   5054 	for (i = 0; i < rt->rateCount; i++)
   5055 		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
   5056 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
   5057 	for (i = 0; i < 32; i++) {
   5058 		u_int8_t ix = rt->rateCodeToIndex[i];
   5059 		if (ix == 0xff) {
   5060 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
   5061 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
   5062 			continue;
   5063 		}
   5064 		sc->sc_hwmap[i].ieeerate =
   5065 			rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
   5066 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
   5067 		if (rt->info[ix].shortPreamble ||
   5068 		    rt->info[ix].phy == IEEE80211_T_OFDM)
   5069 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
   5070 		/* NB: receive frames include FCS */
   5071 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
   5072 			IEEE80211_RADIOTAP_F_FCS;
   5073 		/* setup blink rate table to avoid per-packet lookup */
   5074 		for (j = 0; j < N(blinkrates)-1; j++)
   5075 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
   5076 				break;
   5077 		/* NB: this uses the last entry if the rate isn't found */
   5078 		/* XXX beware of overlow */
   5079 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
   5080 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
   5081 	}
   5082 	sc->sc_currates = rt;
   5083 	sc->sc_curmode = mode;
   5084 	/*
   5085 	 * All protection frames are transmited at 2Mb/s for
   5086 	 * 11g, otherwise at 1Mb/s.
   5087 	 */
   5088 	if (mode == IEEE80211_MODE_11G)
   5089 		sc->sc_protrix = ath_tx_findrix(rt, 2*2);
   5090 	else
   5091 		sc->sc_protrix = ath_tx_findrix(rt, 2*1);
   5092 	/* rate index used to send management frames */
   5093 	sc->sc_minrateix = 0;
   5094 	/*
   5095 	 * Setup multicast rate state.
   5096 	 */
   5097 	/* XXX layering violation */
   5098 	sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate);
   5099 	sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate;
   5100 	/* NB: caller is responsible for reseting rate control state */
   5101 #undef N
   5102 }
   5103 
   5104 #ifdef AR_DEBUG
   5105 static void
   5106 ath_printrxbuf(struct ath_buf *bf, int done)
   5107 {
   5108 	struct ath_desc *ds;
   5109 	int i;
   5110 
   5111 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
   5112 		printf("R%d (%p %" PRIx64
   5113 		    ") %08x %08x %08x %08x %08x %08x %c\n", i, ds,
   5114 		    (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
   5115 		    ds->ds_link, ds->ds_data,
   5116 		    ds->ds_ctl0, ds->ds_ctl1,
   5117 		    ds->ds_hw[0], ds->ds_hw[1],
   5118 		    !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
   5119 	}
   5120 }
   5121 
   5122 static void
   5123 ath_printtxbuf(struct ath_buf *bf, int done)
   5124 {
   5125 	struct ath_desc *ds;
   5126 	int i;
   5127 
   5128 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
   5129 		printf("T%d (%p %" PRIx64
   5130 		    ") %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
   5131 		    i, ds,
   5132 		    (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
   5133 		    ds->ds_link, ds->ds_data,
   5134 		    ds->ds_ctl0, ds->ds_ctl1,
   5135 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
   5136 		    !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
   5137 	}
   5138 }
   5139 #endif /* AR_DEBUG */
   5140 
   5141 static void
   5142 ath_watchdog(struct ifnet *ifp)
   5143 {
   5144 	struct ath_softc *sc = ifp->if_softc;
   5145 	struct ieee80211com *ic = &sc->sc_ic;
   5146 
   5147 	ifp->if_timer = 0;
   5148 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
   5149 		return;
   5150 	if (sc->sc_tx_timer) {
   5151 		if (--sc->sc_tx_timer == 0) {
   5152 			if_printf(ifp, "device timeout\n");
   5153 			ath_reset(ifp);
   5154 			ifp->if_oerrors++;
   5155 			sc->sc_stats.ast_watchdog++;
   5156 		} else
   5157 			ifp->if_timer = 1;
   5158 	}
   5159 	ieee80211_watchdog(ic);
   5160 }
   5161 
   5162 /*
   5163  * Diagnostic interface to the HAL.  This is used by various
   5164  * tools to do things like retrieve register contents for
   5165  * debugging.  The mechanism is intentionally opaque so that
   5166  * it can change frequently w/o concern for compatiblity.
   5167  */
   5168 static int
   5169 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
   5170 {
   5171 	struct ath_hal *ah = sc->sc_ah;
   5172 	u_int id = ad->ad_id & ATH_DIAG_ID;
   5173 	void *indata = NULL;
   5174 	void *outdata = NULL;
   5175 	u_int32_t insize = ad->ad_in_size;
   5176 	u_int32_t outsize = ad->ad_out_size;
   5177 	int error = 0;
   5178 
   5179 	if (ad->ad_id & ATH_DIAG_IN) {
   5180 		/*
   5181 		 * Copy in data.
   5182 		 */
   5183 		indata = malloc(insize, M_TEMP, M_NOWAIT);
   5184 		if (indata == NULL) {
   5185 			error = ENOMEM;
   5186 			goto bad;
   5187 		}
   5188 		error = copyin(ad->ad_in_data, indata, insize);
   5189 		if (error)
   5190 			goto bad;
   5191 	}
   5192 	if (ad->ad_id & ATH_DIAG_DYN) {
   5193 		/*
   5194 		 * Allocate a buffer for the results (otherwise the HAL
   5195 		 * returns a pointer to a buffer where we can read the
   5196 		 * results).  Note that we depend on the HAL leaving this
   5197 		 * pointer for us to use below in reclaiming the buffer;
   5198 		 * may want to be more defensive.
   5199 		 */
   5200 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
   5201 		if (outdata == NULL) {
   5202 			error = ENOMEM;
   5203 			goto bad;
   5204 		}
   5205 	}
   5206 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
   5207 		if (outsize < ad->ad_out_size)
   5208 			ad->ad_out_size = outsize;
   5209 		if (outdata != NULL)
   5210 			error = copyout(outdata, ad->ad_out_data,
   5211 					ad->ad_out_size);
   5212 	} else {
   5213 		error = EINVAL;
   5214 	}
   5215 bad:
   5216 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
   5217 		free(indata, M_TEMP);
   5218 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
   5219 		free(outdata, M_TEMP);
   5220 	return error;
   5221 }
   5222 
   5223 static int
   5224 ath_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   5225 {
   5226 #define	IS_RUNNING(ifp) \
   5227 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
   5228 	struct ath_softc *sc = ifp->if_softc;
   5229 	struct ieee80211com *ic = &sc->sc_ic;
   5230 	struct ifreq *ifr = (struct ifreq *)data;
   5231 	int error = 0;
   5232 
   5233 	ATH_LOCK(sc);
   5234 	switch (cmd) {
   5235 	case SIOCSIFFLAGS:
   5236 		if (IS_RUNNING(ifp)) {
   5237 			/*
   5238 			 * To avoid rescanning another access point,
   5239 			 * do not call ath_init() here.  Instead,
   5240 			 * only reflect promisc mode settings.
   5241 			 */
   5242 			ath_mode_init(sc);
   5243 		} else if (ifp->if_flags & IFF_UP) {
   5244 			/*
   5245 			 * Beware of being called during attach/detach
   5246 			 * to reset promiscuous mode.  In that case we
   5247 			 * will still be marked UP but not RUNNING.
   5248 			 * However trying to re-init the interface
   5249 			 * is the wrong thing to do as we've already
   5250 			 * torn down much of our state.  There's
   5251 			 * probably a better way to deal with this.
   5252 			 */
   5253 			if (!sc->sc_invalid && ic->ic_bss != NULL)
   5254 				ath_init(sc);	/* XXX lose error */
   5255 		} else
   5256 			ath_stop_locked(ifp, 1);
   5257 		break;
   5258 	case SIOCADDMULTI:
   5259 	case SIOCDELMULTI:
   5260 		error = (cmd == SIOCADDMULTI) ?
   5261 		    ether_addmulti(ifr, &sc->sc_ec) :
   5262 		    ether_delmulti(ifr, &sc->sc_ec);
   5263 		if (error == ENETRESET) {
   5264 			if (ifp->if_flags & IFF_RUNNING)
   5265 				ath_mode_init(sc);
   5266 			error = 0;
   5267 		}
   5268 		break;
   5269 	case SIOCGATHSTATS:
   5270 		/* NB: embed these numbers to get a consistent view */
   5271 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
   5272 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
   5273 		sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
   5274 		ATH_UNLOCK(sc);
   5275 		/*
   5276 		 * NB: Drop the softc lock in case of a page fault;
   5277 		 * we'll accept any potential inconsisentcy in the
   5278 		 * statistics.  The alternative is to copy the data
   5279 		 * to a local structure.
   5280 		 */
   5281 		return copyout(&sc->sc_stats,
   5282 				ifr->ifr_data, sizeof (sc->sc_stats));
   5283 	case SIOCGATHDIAG:
   5284 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
   5285 		break;
   5286 	default:
   5287 		error = ieee80211_ioctl(ic, cmd, data);
   5288 		if (error == ENETRESET) {
   5289 			if (IS_RUNNING(ifp) &&
   5290 			    ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
   5291 				ath_init(sc);	/* XXX lose error */
   5292 			error = 0;
   5293 		}
   5294 		if (error == ERESTART)
   5295 			error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0;
   5296 		break;
   5297 	}
   5298 	ATH_UNLOCK(sc);
   5299 	return error;
   5300 #undef IS_RUNNING
   5301 }
   5302 
   5303 #if NBPFILTER > 0
   5304 static void
   5305 ath_bpfattach(struct ath_softc *sc)
   5306 {
   5307 	struct ifnet *ifp = &sc->sc_if;
   5308 
   5309 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
   5310 		sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
   5311 		&sc->sc_drvbpf);
   5312 	/*
   5313 	 * Initialize constant fields.
   5314 	 * XXX make header lengths a multiple of 32-bits so subsequent
   5315 	 *     headers are properly aligned; this is a kludge to keep
   5316 	 *     certain applications happy.
   5317 	 *
   5318 	 * NB: the channel is setup each time we transition to the
   5319 	 *     RUN state to avoid filling it in for each frame.
   5320 	 */
   5321 	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
   5322 	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
   5323 	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
   5324 
   5325 	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
   5326 	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
   5327 	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
   5328 }
   5329 #endif
   5330 
   5331 /*
   5332  * Announce various information on device/driver attach.
   5333  */
   5334 static void
   5335 ath_announce(struct ath_softc *sc)
   5336 {
   5337 #define	HAL_MODE_DUALBAND	(HAL_MODE_11A|HAL_MODE_11B)
   5338 	struct ifnet *ifp = &sc->sc_if;
   5339 	struct ath_hal *ah = sc->sc_ah;
   5340 	u_int modes, cc;
   5341 
   5342 	if_printf(ifp, "mac %d.%d phy %d.%d",
   5343 		ah->ah_macVersion, ah->ah_macRev,
   5344 		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
   5345 	/*
   5346 	 * Print radio revision(s).  We check the wireless modes
   5347 	 * to avoid falsely printing revs for inoperable parts.
   5348 	 * Dual-band radio revs are returned in the 5 GHz rev number.
   5349 	 */
   5350 	ath_hal_getcountrycode(ah, &cc);
   5351 	modes = ath_hal_getwirelessmodes(ah, cc);
   5352 	if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
   5353 		if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
   5354 			printf(" 5 GHz radio %d.%d 2 GHz radio %d.%d",
   5355 				ah->ah_analog5GhzRev >> 4,
   5356 				ah->ah_analog5GhzRev & 0xf,
   5357 				ah->ah_analog2GhzRev >> 4,
   5358 				ah->ah_analog2GhzRev & 0xf);
   5359 		else
   5360 			printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
   5361 				ah->ah_analog5GhzRev & 0xf);
   5362 	} else
   5363 		printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
   5364 			ah->ah_analog5GhzRev & 0xf);
   5365 	printf("\n");
   5366 	if (bootverbose) {
   5367 		int i;
   5368 		for (i = 0; i <= WME_AC_VO; i++) {
   5369 			struct ath_txq *txq = sc->sc_ac2q[i];
   5370 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
   5371 				txq->axq_qnum, ieee80211_wme_acnames[i]);
   5372 		}
   5373 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
   5374 			sc->sc_cabq->axq_qnum);
   5375 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
   5376 	}
   5377 	if (ath_rxbuf != ATH_RXBUF)
   5378 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
   5379 	if (ath_txbuf != ATH_TXBUF)
   5380 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
   5381 #undef HAL_MODE_DUALBAND
   5382 }
   5383