Home | History | Annotate | Line # | Download | only in ic
ath.c revision 1.84.2.1
      1 /*	$NetBSD: ath.c,v 1.84.2.1 2007/09/03 10:20:17 skrll Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer,
     12  *    without modification.
     13  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
     14  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
     15  *    redistribution must be conditioned upon including a substantially
     16  *    similar Disclaimer requirement for further binary redistribution.
     17  * 3. Neither the names of the above-listed copyright holders nor the names
     18  *    of any contributors may be used to endorse or promote products derived
     19  *    from this software without specific prior written permission.
     20  *
     21  * Alternatively, this software may be distributed under the terms of the
     22  * GNU General Public License ("GPL") version 2 as published by the Free
     23  * Software Foundation.
     24  *
     25  * NO WARRANTY
     26  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     28  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
     29  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
     30  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
     31  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
     34  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     36  * THE POSSIBILITY OF SUCH DAMAGES.
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 #ifdef __FreeBSD__
     41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $");
     42 #endif
     43 #ifdef __NetBSD__
     44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.84.2.1 2007/09/03 10:20:17 skrll Exp $");
     45 #endif
     46 
     47 /*
     48  * Driver for the Atheros Wireless LAN controller.
     49  *
     50  * This software is derived from work of Atsushi Onoe; his contribution
     51  * is greatly appreciated.
     52  */
     53 
     54 #include "opt_inet.h"
     55 
     56 #ifdef __NetBSD__
     57 #include "bpfilter.h"
     58 #endif /* __NetBSD__ */
     59 
     60 #include <sys/param.h>
     61 #include <sys/reboot.h>
     62 #include <sys/systm.h>
     63 #include <sys/types.h>
     64 #include <sys/sysctl.h>
     65 #include <sys/mbuf.h>
     66 #include <sys/malloc.h>
     67 #include <sys/lock.h>
     68 #include <sys/kernel.h>
     69 #include <sys/socket.h>
     70 #include <sys/sockio.h>
     71 #include <sys/errno.h>
     72 #include <sys/callout.h>
     73 #include <machine/bus.h>
     74 #include <sys/endian.h>
     75 
     76 #include <net/if.h>
     77 #include <net/if_dl.h>
     78 #include <net/if_media.h>
     79 #include <net/if_types.h>
     80 #include <net/if_arp.h>
     81 #include <net/if_ether.h>
     82 #include <net/if_llc.h>
     83 
     84 #include <net80211/ieee80211_netbsd.h>
     85 #include <net80211/ieee80211_var.h>
     86 
     87 #if NBPFILTER > 0
     88 #include <net/bpf.h>
     89 #endif
     90 
     91 #ifdef INET
     92 #include <netinet/in.h>
     93 #endif
     94 
     95 #include <sys/device.h>
     96 #include <dev/ic/ath_netbsd.h>
     97 
     98 #define	AR_DEBUG
     99 #include <dev/ic/athvar.h>
    100 #include <contrib/dev/ath/ah_desc.h>
    101 #include <contrib/dev/ath/ah_devid.h>	/* XXX for softled */
    102 #include "athhal_options.h"
    103 
    104 #ifdef ATH_TX99_DIAG
    105 #include <dev/ath/ath_tx99/ath_tx99.h>
    106 #endif
    107 
    108 /* unaligned little endian access */
    109 #define LE_READ_2(p)							\
    110 	((u_int16_t)							\
    111 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
    112 #define LE_READ_4(p)							\
    113 	((u_int32_t)							\
    114 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
    115 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
    116 
    117 enum {
    118 	ATH_LED_TX,
    119 	ATH_LED_RX,
    120 	ATH_LED_POLL,
    121 };
    122 
    123 #ifdef	AH_NEED_DESC_SWAP
    124 #define	HTOAH32(x)	htole32(x)
    125 #else
    126 #define	HTOAH32(x)	(x)
    127 #endif
    128 
    129 static int	ath_ifinit(struct ifnet *);
    130 static int	ath_init(struct ath_softc *);
    131 static void	ath_stop_locked(struct ifnet *, int);
    132 static void	ath_stop(struct ifnet *, int);
    133 static void	ath_start(struct ifnet *);
    134 static int	ath_media_change(struct ifnet *);
    135 static void	ath_watchdog(struct ifnet *);
    136 static int	ath_ioctl(struct ifnet *, u_long, void *);
    137 static void	ath_fatal_proc(void *, int);
    138 static void	ath_rxorn_proc(void *, int);
    139 static void	ath_bmiss_proc(void *, int);
    140 static void	ath_radar_proc(void *, int);
    141 static int	ath_key_alloc(struct ieee80211com *,
    142 			const struct ieee80211_key *,
    143 			ieee80211_keyix *, ieee80211_keyix *);
    144 static int	ath_key_delete(struct ieee80211com *,
    145 			const struct ieee80211_key *);
    146 static int	ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
    147 			const u_int8_t mac[IEEE80211_ADDR_LEN]);
    148 static void	ath_key_update_begin(struct ieee80211com *);
    149 static void	ath_key_update_end(struct ieee80211com *);
    150 static void	ath_mode_init(struct ath_softc *);
    151 static void	ath_setslottime(struct ath_softc *);
    152 static void	ath_updateslot(struct ifnet *);
    153 static int	ath_beaconq_setup(struct ath_hal *);
    154 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
    155 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
    156 static void	ath_beacon_proc(void *, int);
    157 static void	ath_bstuck_proc(void *, int);
    158 static void	ath_beacon_free(struct ath_softc *);
    159 static void	ath_beacon_config(struct ath_softc *);
    160 static void	ath_descdma_cleanup(struct ath_softc *sc,
    161 			struct ath_descdma *, ath_bufhead *);
    162 static int	ath_desc_alloc(struct ath_softc *);
    163 static void	ath_desc_free(struct ath_softc *);
    164 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
    165 static void	ath_node_free(struct ieee80211_node *);
    166 static u_int8_t	ath_node_getrssi(const struct ieee80211_node *);
    167 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
    168 static void	ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
    169 			struct ieee80211_node *ni,
    170 			int subtype, int rssi, u_int32_t rstamp);
    171 static void	ath_setdefantenna(struct ath_softc *, u_int);
    172 static void	ath_rx_proc(void *, int);
    173 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
    174 static int	ath_tx_setup(struct ath_softc *, int, int);
    175 static int	ath_wme_update(struct ieee80211com *);
    176 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
    177 static void	ath_tx_cleanup(struct ath_softc *);
    178 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
    179 			     struct ath_buf *, struct mbuf *);
    180 static void	ath_tx_proc_q0(void *, int);
    181 static void	ath_tx_proc_q0123(void *, int);
    182 static void	ath_tx_proc(void *, int);
    183 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
    184 static void	ath_draintxq(struct ath_softc *);
    185 static void	ath_stoprecv(struct ath_softc *);
    186 static int	ath_startrecv(struct ath_softc *);
    187 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
    188 static void	ath_next_scan(void *);
    189 static void	ath_calibrate(void *);
    190 static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
    191 static void	ath_setup_stationkey(struct ieee80211_node *);
    192 static void	ath_newassoc(struct ieee80211_node *, int);
    193 static int	ath_getchannels(struct ath_softc *, u_int cc,
    194 			HAL_BOOL outdoor, HAL_BOOL xchanmode);
    195 static void	ath_led_event(struct ath_softc *, int);
    196 static void	ath_update_txpow(struct ath_softc *);
    197 static void	ath_freetx(struct mbuf *);
    198 
    199 static int	ath_rate_setup(struct ath_softc *, u_int mode);
    200 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
    201 
    202 #ifdef __NetBSD__
    203 int	ath_enable(struct ath_softc *);
    204 void	ath_disable(struct ath_softc *);
    205 void	ath_power(int, void *);
    206 #endif
    207 
    208 #if NBPFILTER > 0
    209 static void	ath_bpfattach(struct ath_softc *);
    210 #endif
    211 static void	ath_announce(struct ath_softc *);
    212 
    213 int ath_dwelltime = 200;		/* 5 channels/second */
    214 int ath_calinterval = 30;		/* calibrate every 30 secs */
    215 int ath_outdoor = AH_TRUE;		/* outdoor operation */
    216 int ath_xchanmode = AH_TRUE;		/* enable extended channels */
    217 int ath_countrycode = CTRY_DEFAULT;	/* country code */
    218 int ath_regdomain = 0;			/* regulatory domain */
    219 int ath_debug = 0;
    220 int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
    221 int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
    222 
    223 #ifdef AR_DEBUG
    224 enum {
    225 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
    226 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
    227 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
    228 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
    229 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
    230 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
    231 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
    232 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
    233 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
    234 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
    235 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
    236 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
    237 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
    238 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
    239 	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
    240 	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
    241 	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
    242 	ATH_DEBUG_LED		= 0x00100000,	/* led management */
    243 	ATH_DEBUG_FF		= 0x00200000,	/* fast frames */
    244 	ATH_DEBUG_DFS		= 0x00400000,	/* DFS processing */
    245 	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
    246 	ATH_DEBUG_ANY		= 0xffffffff
    247 };
    248 #define	IFF_DUMPPKTS(sc, m) \
    249 	((sc->sc_debug & (m)) || \
    250 	    (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
    251 #define	DPRINTF(sc, m, fmt, ...) do {				\
    252 	if (sc->sc_debug & (m))					\
    253 		printf(fmt, __VA_ARGS__);			\
    254 } while (0)
    255 #define	KEYPRINTF(sc, ix, hk, mac) do {				\
    256 	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
    257 		ath_keyprint(__func__, ix, hk, mac);		\
    258 } while (0)
    259 static	void ath_printrxbuf(struct ath_buf *bf, int);
    260 static	void ath_printtxbuf(struct ath_buf *bf, int);
    261 #else
    262 #define	IFF_DUMPPKTS(sc, m) \
    263 	((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
    264 #define	DPRINTF(m, fmt, ...)
    265 #define	KEYPRINTF(sc, k, ix, mac)
    266 #endif
    267 
    268 #ifdef __NetBSD__
    269 int
    270 ath_activate(struct device *self, enum devact act)
    271 {
    272 	struct ath_softc *sc = (struct ath_softc *)self;
    273 	int rv = 0, s;
    274 
    275 	s = splnet();
    276 	switch (act) {
    277 	case DVACT_ACTIVATE:
    278 		rv = EOPNOTSUPP;
    279 		break;
    280 	case DVACT_DEACTIVATE:
    281 		if_deactivate(&sc->sc_if);
    282 		break;
    283 	}
    284 	splx(s);
    285 	return rv;
    286 }
    287 
    288 int
    289 ath_enable(struct ath_softc *sc)
    290 {
    291 	if (ATH_IS_ENABLED(sc) == 0) {
    292 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
    293 			printf("%s: device enable failed\n",
    294 				sc->sc_dev.dv_xname);
    295 			return (EIO);
    296 		}
    297 		sc->sc_flags |= ATH_ENABLED;
    298 	}
    299 	return (0);
    300 }
    301 
    302 void
    303 ath_disable(struct ath_softc *sc)
    304 {
    305 	if (!ATH_IS_ENABLED(sc))
    306 		return;
    307 	if (sc->sc_disable != NULL)
    308 		(*sc->sc_disable)(sc);
    309 	sc->sc_flags &= ~ATH_ENABLED;
    310 }
    311 #endif /* __NetBSD__ */
    312 
    313 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
    314 
    315 int
    316 ath_attach(u_int16_t devid, struct ath_softc *sc)
    317 {
    318 	struct ifnet *ifp = &sc->sc_if;
    319 	struct ieee80211com *ic = &sc->sc_ic;
    320 	struct ath_hal *ah = NULL;
    321 	HAL_STATUS status;
    322 	int error = 0, i;
    323 
    324 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
    325 
    326 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
    327 
    328 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
    329 	if (ah == NULL) {
    330 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
    331 			status);
    332 		error = ENXIO;
    333 		goto bad;
    334 	}
    335 	if (ah->ah_abi != HAL_ABI_VERSION) {
    336 		if_printf(ifp, "HAL ABI mismatch detected "
    337 			"(HAL:0x%x != driver:0x%x)\n",
    338 			ah->ah_abi, HAL_ABI_VERSION);
    339 		error = ENXIO;
    340 		goto bad;
    341 	}
    342 	sc->sc_ah = ah;
    343 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
    344 
    345 	/*
    346 	 * Check if the MAC has multi-rate retry support.
    347 	 * We do this by trying to setup a fake extended
    348 	 * descriptor.  MAC's that don't have support will
    349 	 * return false w/o doing anything.  MAC's that do
    350 	 * support it will return true w/o doing anything.
    351 	 */
    352 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
    353 
    354 	/*
    355 	 * Check if the device has hardware counters for PHY
    356 	 * errors.  If so we need to enable the MIB interrupt
    357 	 * so we can act on stat triggers.
    358 	 */
    359 	if (ath_hal_hwphycounters(ah))
    360 		sc->sc_needmib = 1;
    361 
    362 	/*
    363 	 * Get the hardware key cache size.
    364 	 */
    365 	sc->sc_keymax = ath_hal_keycachesize(ah);
    366 	if (sc->sc_keymax > ATH_KEYMAX) {
    367 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
    368 			ATH_KEYMAX, sc->sc_keymax);
    369 		sc->sc_keymax = ATH_KEYMAX;
    370 	}
    371 	/*
    372 	 * Reset the key cache since some parts do not
    373 	 * reset the contents on initial power up.
    374 	 */
    375 	for (i = 0; i < sc->sc_keymax; i++)
    376 		ath_hal_keyreset(ah, i);
    377 	/*
    378 	 * Mark key cache slots associated with global keys
    379 	 * as in use.  If we knew TKIP was not to be used we
    380 	 * could leave the +32, +64, and +32+64 slots free.
    381 	 * XXX only for splitmic.
    382 	 */
    383 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
    384 		setbit(sc->sc_keymap, i);
    385 		setbit(sc->sc_keymap, i+32);
    386 		setbit(sc->sc_keymap, i+64);
    387 		setbit(sc->sc_keymap, i+32+64);
    388 	}
    389 
    390 	/*
    391 	 * Collect the channel list using the default country
    392 	 * code and including outdoor channels.  The 802.11 layer
    393 	 * is resposible for filtering this list based on settings
    394 	 * like the phy mode.
    395 	 */
    396 	error = ath_getchannels(sc, ath_countrycode,
    397 			ath_outdoor, ath_xchanmode);
    398 	if (error != 0)
    399 		goto bad;
    400 
    401 	/*
    402 	 * Setup rate tables for all potential media types.
    403 	 */
    404 	ath_rate_setup(sc, IEEE80211_MODE_11A);
    405 	ath_rate_setup(sc, IEEE80211_MODE_11B);
    406 	ath_rate_setup(sc, IEEE80211_MODE_11G);
    407 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
    408 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
    409 	/* NB: setup here so ath_rate_update is happy */
    410 	ath_setcurmode(sc, IEEE80211_MODE_11A);
    411 
    412 	/*
    413 	 * Allocate tx+rx descriptors and populate the lists.
    414 	 */
    415 	error = ath_desc_alloc(sc);
    416 	if (error != 0) {
    417 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
    418 		goto bad;
    419 	}
    420 	ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
    421 	ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE);
    422 	ATH_CALLOUT_INIT(&sc->sc_dfs_ch, CALLOUT_MPSAFE);
    423 
    424 	ATH_TXBUF_LOCK_INIT(sc);
    425 
    426 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
    427 	TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
    428 	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
    429 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
    430 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
    431 	TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc);
    432 
    433 	/*
    434 	 * Allocate hardware transmit queues: one queue for
    435 	 * beacon frames and one data queue for each QoS
    436 	 * priority.  Note that the hal handles reseting
    437 	 * these queues at the needed time.
    438 	 *
    439 	 * XXX PS-Poll
    440 	 */
    441 	sc->sc_bhalq = ath_beaconq_setup(ah);
    442 	if (sc->sc_bhalq == (u_int) -1) {
    443 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
    444 		error = EIO;
    445 		goto bad2;
    446 	}
    447 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
    448 	if (sc->sc_cabq == NULL) {
    449 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
    450 		error = EIO;
    451 		goto bad2;
    452 	}
    453 	/* NB: insure BK queue is the lowest priority h/w queue */
    454 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
    455 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
    456 			ieee80211_wme_acnames[WME_AC_BK]);
    457 		error = EIO;
    458 		goto bad2;
    459 	}
    460 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
    461 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
    462 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
    463 		/*
    464 		 * Not enough hardware tx queues to properly do WME;
    465 		 * just punt and assign them all to the same h/w queue.
    466 		 * We could do a better job of this if, for example,
    467 		 * we allocate queues when we switch from station to
    468 		 * AP mode.
    469 		 */
    470 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
    471 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
    472 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
    473 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
    474 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
    475 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
    476 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
    477 	}
    478 
    479 	/*
    480 	 * Special case certain configurations.  Note the
    481 	 * CAB queue is handled by these specially so don't
    482 	 * include them when checking the txq setup mask.
    483 	 */
    484 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
    485 	case 0x01:
    486 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
    487 		break;
    488 	case 0x0f:
    489 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
    490 		break;
    491 	default:
    492 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
    493 		break;
    494 	}
    495 
    496 	/*
    497 	 * Setup rate control.  Some rate control modules
    498 	 * call back to change the anntena state so expose
    499 	 * the necessary entry points.
    500 	 * XXX maybe belongs in struct ath_ratectrl?
    501 	 */
    502 	sc->sc_setdefantenna = ath_setdefantenna;
    503 	sc->sc_rc = ath_rate_attach(sc);
    504 	if (sc->sc_rc == NULL) {
    505 		error = EIO;
    506 		goto bad2;
    507 	}
    508 
    509 	sc->sc_blinking = 0;
    510 	sc->sc_ledstate = 1;
    511 	sc->sc_ledon = 0;			/* low true */
    512 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
    513 	ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE);
    514 	/*
    515 	 * Auto-enable soft led processing for IBM cards and for
    516 	 * 5211 minipci cards.  Users can also manually enable/disable
    517 	 * support with a sysctl.
    518 	 */
    519 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
    520 	if (sc->sc_softled) {
    521 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
    522 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
    523 	}
    524 
    525 	ifp->if_softc = sc;
    526 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
    527 	ifp->if_start = ath_start;
    528 	ifp->if_watchdog = ath_watchdog;
    529 	ifp->if_ioctl = ath_ioctl;
    530 	ifp->if_init = ath_ifinit;
    531 	IFQ_SET_READY(&ifp->if_snd);
    532 
    533 	ic->ic_ifp = ifp;
    534 	ic->ic_reset = ath_reset;
    535 	ic->ic_newassoc = ath_newassoc;
    536 	ic->ic_updateslot = ath_updateslot;
    537 	ic->ic_wme.wme_update = ath_wme_update;
    538 	/* XXX not right but it's not used anywhere important */
    539 	ic->ic_phytype = IEEE80211_T_OFDM;
    540 	ic->ic_opmode = IEEE80211_M_STA;
    541 	ic->ic_caps =
    542 		  IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
    543 		| IEEE80211_C_HOSTAP		/* hostap mode */
    544 		| IEEE80211_C_MONITOR		/* monitor mode */
    545 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
    546 		| IEEE80211_C_SHSLOT		/* short slot time supported */
    547 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
    548 		| IEEE80211_C_TXFRAG		/* handle tx frags */
    549 		;
    550 	/*
    551 	 * Query the hal to figure out h/w crypto support.
    552 	 */
    553 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
    554 		ic->ic_caps |= IEEE80211_C_WEP;
    555 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
    556 		ic->ic_caps |= IEEE80211_C_AES;
    557 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
    558 		ic->ic_caps |= IEEE80211_C_AES_CCM;
    559 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
    560 		ic->ic_caps |= IEEE80211_C_CKIP;
    561 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
    562 		ic->ic_caps |= IEEE80211_C_TKIP;
    563 		/*
    564 		 * Check if h/w does the MIC and/or whether the
    565 		 * separate key cache entries are required to
    566 		 * handle both tx+rx MIC keys.
    567 		 */
    568 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
    569 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
    570 		if (ath_hal_tkipsplit(ah))
    571 			sc->sc_splitmic = 1;
    572 	}
    573 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
    574 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
    575 	/*
    576 	 * TPC support can be done either with a global cap or
    577 	 * per-packet support.  The latter is not available on
    578 	 * all parts.  We're a bit pedantic here as all parts
    579 	 * support a global cap.
    580 	 */
    581 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
    582 		ic->ic_caps |= IEEE80211_C_TXPMGT;
    583 
    584 	/*
    585 	 * Mark WME capability only if we have sufficient
    586 	 * hardware queues to do proper priority scheduling.
    587 	 */
    588 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
    589 		ic->ic_caps |= IEEE80211_C_WME;
    590 	/*
    591 	 * Check for misc other capabilities.
    592 	 */
    593 	if (ath_hal_hasbursting(ah))
    594 		ic->ic_caps |= IEEE80211_C_BURST;
    595 
    596 	/*
    597 	 * Indicate we need the 802.11 header padded to a
    598 	 * 32-bit boundary for 4-address and QoS frames.
    599 	 */
    600 	ic->ic_flags |= IEEE80211_F_DATAPAD;
    601 
    602 	/*
    603 	 * Query the hal about antenna support.
    604 	 */
    605 	sc->sc_defant = ath_hal_getdefantenna(ah);
    606 
    607 	/*
    608 	 * Not all chips have the VEOL support we want to
    609 	 * use with IBSS beacons; check here for it.
    610 	 */
    611 	sc->sc_hasveol = ath_hal_hasveol(ah);
    612 
    613 	/* get mac address from hardware */
    614 	ath_hal_getmac(ah, ic->ic_myaddr);
    615 
    616 	if_attach(ifp);
    617 	/* call MI attach routine. */
    618 	ieee80211_ifattach(ic);
    619 	/* override default methods */
    620 	ic->ic_node_alloc = ath_node_alloc;
    621 	sc->sc_node_free = ic->ic_node_free;
    622 	ic->ic_node_free = ath_node_free;
    623 	ic->ic_node_getrssi = ath_node_getrssi;
    624 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
    625 	ic->ic_recv_mgmt = ath_recv_mgmt;
    626 	sc->sc_newstate = ic->ic_newstate;
    627 	ic->ic_newstate = ath_newstate;
    628 	ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
    629 	ic->ic_crypto.cs_key_alloc = ath_key_alloc;
    630 	ic->ic_crypto.cs_key_delete = ath_key_delete;
    631 	ic->ic_crypto.cs_key_set = ath_key_set;
    632 	ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
    633 	ic->ic_crypto.cs_key_update_end = ath_key_update_end;
    634 	/* complete initialization */
    635 	ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
    636 
    637 #if NBPFILTER > 0
    638 	ath_bpfattach(sc);
    639 #endif
    640 
    641 #ifdef __NetBSD__
    642 	sc->sc_flags |= ATH_ATTACHED;
    643 	sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
    644 	    ath_power, sc);
    645 	if (sc->sc_powerhook == NULL)
    646 		printf("%s: WARNING: unable to establish power hook\n",
    647 			sc->sc_dev.dv_xname);
    648 #endif
    649 
    650 	/*
    651 	 * Setup dynamic sysctl's now that country code and
    652 	 * regdomain are available from the hal.
    653 	 */
    654 	ath_sysctlattach(sc);
    655 
    656 	ieee80211_announce(ic);
    657 	ath_announce(sc);
    658 	return 0;
    659 bad2:
    660 	ath_tx_cleanup(sc);
    661 	ath_desc_free(sc);
    662 bad:
    663 	if (ah)
    664 		ath_hal_detach(ah);
    665 	sc->sc_invalid = 1;
    666 	return error;
    667 }
    668 
    669 int
    670 ath_detach(struct ath_softc *sc)
    671 {
    672 	struct ifnet *ifp = &sc->sc_if;
    673 	int s;
    674 
    675 	if ((sc->sc_flags & ATH_ATTACHED) == 0)
    676 		return (0);
    677 
    678 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
    679 		__func__, ifp->if_flags);
    680 
    681 	s = splnet();
    682 	ath_stop(ifp, 1);
    683 #if NBPFILTER > 0
    684 	bpfdetach(ifp);
    685 #endif
    686 	/*
    687 	 * NB: the order of these is important:
    688 	 * o call the 802.11 layer before detaching the hal to
    689 	 *   insure callbacks into the driver to delete global
    690 	 *   key cache entries can be handled
    691 	 * o reclaim the tx queue data structures after calling
    692 	 *   the 802.11 layer as we'll get called back to reclaim
    693 	 *   node state and potentially want to use them
    694 	 * o to cleanup the tx queues the hal is called, so detach
    695 	 *   it last
    696 	 * Other than that, it's straightforward...
    697 	 */
    698 	ieee80211_ifdetach(&sc->sc_ic);
    699 #ifdef ATH_TX99_DIAG
    700 	if (sc->sc_tx99 != NULL)
    701 		sc->sc_tx99->detach(sc->sc_tx99);
    702 #endif
    703 	ath_rate_detach(sc->sc_rc);
    704 	ath_desc_free(sc);
    705 	ath_tx_cleanup(sc);
    706 	sysctl_teardown(&sc->sc_sysctllog);
    707 	ath_hal_detach(sc->sc_ah);
    708 	if_detach(ifp);
    709 	splx(s);
    710 	powerhook_disestablish(sc->sc_powerhook);
    711 
    712 	return 0;
    713 }
    714 
    715 #ifdef __NetBSD__
    716 void
    717 ath_power(int why, void *arg)
    718 {
    719 	struct ath_softc *sc = arg;
    720 	int s;
    721 
    722 	DPRINTF(sc, ATH_DEBUG_ANY, "ath_power(%d)\n", why);
    723 
    724 	s = splnet();
    725 	switch (why) {
    726 	case PWR_SUSPEND:
    727 	case PWR_STANDBY:
    728 		ath_suspend(sc, why);
    729 		break;
    730 	case PWR_RESUME:
    731 		ath_resume(sc, why);
    732 		break;
    733 	case PWR_SOFTSUSPEND:
    734 	case PWR_SOFTSTANDBY:
    735 	case PWR_SOFTRESUME:
    736 		break;
    737 	}
    738 	splx(s);
    739 }
    740 #endif
    741 
    742 void
    743 ath_suspend(struct ath_softc *sc, int why)
    744 {
    745 	struct ifnet *ifp = &sc->sc_if;
    746 
    747 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
    748 		__func__, ifp->if_flags);
    749 
    750 	ath_stop(ifp, 1);
    751 	if (sc->sc_power != NULL)
    752 		(*sc->sc_power)(sc, why);
    753 }
    754 
    755 void
    756 ath_resume(struct ath_softc *sc, int why)
    757 {
    758 	struct ifnet *ifp = &sc->sc_if;
    759 
    760 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
    761 		__func__, ifp->if_flags);
    762 
    763 	if (ifp->if_flags & IFF_UP) {
    764 		ath_init(sc);
    765 #if 0
    766 		(void)ath_intr(sc);
    767 #endif
    768 		if (sc->sc_power != NULL)
    769 			(*sc->sc_power)(sc, why);
    770 		if (ifp->if_flags & IFF_RUNNING)
    771 			ath_start(ifp);
    772 	}
    773 	if (sc->sc_softled) {
    774 		ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
    775 		ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
    776 	}
    777 }
    778 
    779 void
    780 ath_shutdown(void *arg)
    781 {
    782 	struct ath_softc *sc = arg;
    783 
    784 	ath_stop(&sc->sc_if, 1);
    785 }
    786 
    787 /*
    788  * Interrupt handler.  Most of the actual processing is deferred.
    789  */
    790 int
    791 ath_intr(void *arg)
    792 {
    793 	struct ath_softc *sc = arg;
    794 	struct ifnet *ifp = &sc->sc_if;
    795 	struct ath_hal *ah = sc->sc_ah;
    796 	HAL_INT status;
    797 
    798 	if (sc->sc_invalid) {
    799 		/*
    800 		 * The hardware is not ready/present, don't touch anything.
    801 		 * Note this can happen early on if the IRQ is shared.
    802 		 */
    803 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
    804 		return 0;
    805 	}
    806 
    807 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
    808 		return 0;
    809 
    810 	if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
    811 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
    812 			__func__, ifp->if_flags);
    813 		ath_hal_getisr(ah, &status);	/* clear ISR */
    814 		ath_hal_intrset(ah, 0);		/* disable further intr's */
    815 		return 1; /* XXX */
    816 	}
    817 	/*
    818 	 * Figure out the reason(s) for the interrupt.  Note
    819 	 * that the hal returns a pseudo-ISR that may include
    820 	 * bits we haven't explicitly enabled so we mask the
    821 	 * value to insure we only process bits we requested.
    822 	 */
    823 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
    824 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
    825 	status &= sc->sc_imask;			/* discard unasked for bits */
    826 	if (status & HAL_INT_FATAL) {
    827 		/*
    828 		 * Fatal errors are unrecoverable.  Typically
    829 		 * these are caused by DMA errors.  Unfortunately
    830 		 * the exact reason is not (presently) returned
    831 		 * by the hal.
    832 		 */
    833 		sc->sc_stats.ast_hardware++;
    834 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
    835 		TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
    836 	} else if (status & HAL_INT_RXORN) {
    837 		sc->sc_stats.ast_rxorn++;
    838 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
    839 		TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
    840 	} else {
    841 		if (status & HAL_INT_SWBA) {
    842 			/*
    843 			 * Software beacon alert--time to send a beacon.
    844 			 * Handle beacon transmission directly; deferring
    845 			 * this is too slow to meet timing constraints
    846 			 * under load.
    847 			 */
    848 			ath_beacon_proc(sc, 0);
    849 		}
    850 		if (status & HAL_INT_RXEOL) {
    851 			/*
    852 			 * NB: the hardware should re-read the link when
    853 			 *     RXE bit is written, but it doesn't work at
    854 			 *     least on older hardware revs.
    855 			 */
    856 			sc->sc_stats.ast_rxeol++;
    857 			sc->sc_rxlink = NULL;
    858 		}
    859 		if (status & HAL_INT_TXURN) {
    860 			sc->sc_stats.ast_txurn++;
    861 			/* bump tx trigger level */
    862 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
    863 		}
    864 		if (status & HAL_INT_RX)
    865 			TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
    866 		if (status & HAL_INT_TX)
    867 			TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
    868 		if (status & HAL_INT_BMISS) {
    869 			sc->sc_stats.ast_bmiss++;
    870 			TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
    871 		}
    872 		if (status & HAL_INT_MIB) {
    873 			sc->sc_stats.ast_mib++;
    874 			/*
    875 			 * Disable interrupts until we service the MIB
    876 			 * interrupt; otherwise it will continue to fire.
    877 			 */
    878 			ath_hal_intrset(ah, 0);
    879 			/*
    880 			 * Let the hal handle the event.  We assume it will
    881 			 * clear whatever condition caused the interrupt.
    882 			 */
    883 			ath_hal_mibevent(ah, &sc->sc_halstats);
    884 			ath_hal_intrset(ah, sc->sc_imask);
    885 		}
    886 	}
    887 	return 1;
    888 }
    889 
    890 /* Swap transmit descriptor.
    891  * if AH_NEED_DESC_SWAP flag is not defined this becomes a "null"
    892  * function.
    893  */
    894 static inline void
    895 ath_desc_swap(struct ath_desc *ds)
    896 {
    897 #ifdef AH_NEED_DESC_SWAP
    898 	ds->ds_link = htole32(ds->ds_link);
    899 	ds->ds_data = htole32(ds->ds_data);
    900 	ds->ds_ctl0 = htole32(ds->ds_ctl0);
    901 	ds->ds_ctl1 = htole32(ds->ds_ctl1);
    902 	ds->ds_hw[0] = htole32(ds->ds_hw[0]);
    903 	ds->ds_hw[1] = htole32(ds->ds_hw[1]);
    904 #endif
    905 }
    906 
    907 static void
    908 ath_fatal_proc(void *arg, int pending)
    909 {
    910 	struct ath_softc *sc = arg;
    911 	struct ifnet *ifp = &sc->sc_if;
    912 
    913 	if_printf(ifp, "hardware error; resetting\n");
    914 	ath_reset(ifp);
    915 }
    916 
    917 static void
    918 ath_rxorn_proc(void *arg, int pending)
    919 {
    920 	struct ath_softc *sc = arg;
    921 	struct ifnet *ifp = &sc->sc_if;
    922 
    923 	if_printf(ifp, "rx FIFO overrun; resetting\n");
    924 	ath_reset(ifp);
    925 }
    926 
    927 static void
    928 ath_bmiss_proc(void *arg, int pending)
    929 {
    930 	struct ath_softc *sc = arg;
    931 	struct ieee80211com *ic = &sc->sc_ic;
    932 
    933 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
    934 	KASSERT(ic->ic_opmode == IEEE80211_M_STA,
    935 		("unexpect operating mode %u", ic->ic_opmode));
    936 	if (ic->ic_state == IEEE80211_S_RUN) {
    937 		u_int64_t lastrx = sc->sc_lastrx;
    938 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
    939 
    940 		DPRINTF(sc, ATH_DEBUG_BEACON,
    941 		    "%s: tsf %" PRIu64 " lastrx %" PRId64
    942 		    " (%" PRIu64 ") bmiss %u\n",
    943 		    __func__, tsf, tsf - lastrx, lastrx,
    944 		    ic->ic_bmisstimeout*1024);
    945 		/*
    946 		 * Workaround phantom bmiss interrupts by sanity-checking
    947 		 * the time of our last rx'd frame.  If it is within the
    948 		 * beacon miss interval then ignore the interrupt.  If it's
    949 		 * truly a bmiss we'll get another interrupt soon and that'll
    950 		 * be dispatched up for processing.
    951 		 */
    952 		if (tsf - lastrx > ic->ic_bmisstimeout*1024) {
    953 			NET_LOCK_GIANT();
    954 			ieee80211_beacon_miss(ic);
    955 			NET_UNLOCK_GIANT();
    956 		} else
    957 			sc->sc_stats.ast_bmiss_phantom++;
    958 	}
    959 }
    960 
    961 static void
    962 ath_radar_proc(void *arg, int pending)
    963 {
    964 	struct ath_softc *sc = arg;
    965 	struct ifnet *ifp = &sc->sc_if;
    966 	struct ath_hal *ah = sc->sc_ah;
    967 	HAL_CHANNEL hchan;
    968 
    969 	if (ath_hal_procdfs(ah, &hchan)) {
    970 		if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n",
    971 			hchan.channel, hchan.channelFlags, hchan.privFlags);
    972 		/*
    973 		 * Initiate channel change.
    974 		 */
    975 		/* XXX not yet */
    976 	}
    977 }
    978 
    979 static u_int
    980 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
    981 {
    982 #define	N(a)	(sizeof(a) / sizeof(a[0]))
    983 	static const u_int modeflags[] = {
    984 		0,			/* IEEE80211_MODE_AUTO */
    985 		CHANNEL_A,		/* IEEE80211_MODE_11A */
    986 		CHANNEL_B,		/* IEEE80211_MODE_11B */
    987 		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
    988 		0,			/* IEEE80211_MODE_FH */
    989 		CHANNEL_ST,		/* IEEE80211_MODE_TURBO_A */
    990 		CHANNEL_108G		/* IEEE80211_MODE_TURBO_G */
    991 	};
    992 	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
    993 
    994 	KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
    995 	KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
    996 	return modeflags[mode];
    997 #undef N
    998 }
    999 
   1000 static int
   1001 ath_ifinit(struct ifnet *ifp)
   1002 {
   1003 	struct ath_softc *sc = (struct ath_softc *)ifp->if_softc;
   1004 
   1005 	return ath_init(sc);
   1006 }
   1007 
   1008 static int
   1009 ath_init(struct ath_softc *sc)
   1010 {
   1011 	struct ifnet *ifp = &sc->sc_if;
   1012 	struct ieee80211com *ic = &sc->sc_ic;
   1013 	struct ath_hal *ah = sc->sc_ah;
   1014 	HAL_STATUS status;
   1015 	int error = 0;
   1016 
   1017 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
   1018 		__func__, ifp->if_flags);
   1019 
   1020 	ATH_LOCK(sc);
   1021 
   1022 	if ((error = ath_enable(sc)) != 0)
   1023 		return error;
   1024 
   1025 	/*
   1026 	 * Stop anything previously setup.  This is safe
   1027 	 * whether this is the first time through or not.
   1028 	 */
   1029 	ath_stop_locked(ifp, 0);
   1030 
   1031 	/*
   1032 	 * The basic interface to setting the hardware in a good
   1033 	 * state is ``reset''.  On return the hardware is known to
   1034 	 * be powered up and with interrupts disabled.  This must
   1035 	 * be followed by initialization of the appropriate bits
   1036 	 * and then setup of the interrupt mask.
   1037 	 */
   1038 	sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
   1039 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
   1040 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
   1041 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
   1042 			status);
   1043 		error = EIO;
   1044 		goto done;
   1045 	}
   1046 
   1047 	/*
   1048 	 * This is needed only to setup initial state
   1049 	 * but it's best done after a reset.
   1050 	 */
   1051 	ath_update_txpow(sc);
   1052 	/*
   1053 	 * Likewise this is set during reset so update
   1054 	 * state cached in the driver.
   1055 	 */
   1056 	sc->sc_diversity = ath_hal_getdiversity(ah);
   1057 	sc->sc_calinterval = 1;
   1058 	sc->sc_caltries = 0;
   1059 
   1060 	/*
   1061 	 * Setup the hardware after reset: the key cache
   1062 	 * is filled as needed and the receive engine is
   1063 	 * set going.  Frame transmit is handled entirely
   1064 	 * in the frame output path; there's nothing to do
   1065 	 * here except setup the interrupt mask.
   1066 	 */
   1067 	if ((error = ath_startrecv(sc)) != 0) {
   1068 		if_printf(ifp, "unable to start recv logic\n");
   1069 		goto done;
   1070 	}
   1071 
   1072 	/*
   1073 	 * Enable interrupts.
   1074 	 */
   1075 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
   1076 		  | HAL_INT_RXEOL | HAL_INT_RXORN
   1077 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
   1078 	/*
   1079 	 * Enable MIB interrupts when there are hardware phy counters.
   1080 	 * Note we only do this (at the moment) for station mode.
   1081 	 */
   1082 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
   1083 		sc->sc_imask |= HAL_INT_MIB;
   1084 	ath_hal_intrset(ah, sc->sc_imask);
   1085 
   1086 	ifp->if_flags |= IFF_RUNNING;
   1087 	ic->ic_state = IEEE80211_S_INIT;
   1088 
   1089 	/*
   1090 	 * The hardware should be ready to go now so it's safe
   1091 	 * to kick the 802.11 state machine as it's likely to
   1092 	 * immediately call back to us to send mgmt frames.
   1093 	 */
   1094 	ath_chan_change(sc, ic->ic_curchan);
   1095 #ifdef ATH_TX99_DIAG
   1096 	if (sc->sc_tx99 != NULL)
   1097 		sc->sc_tx99->start(sc->sc_tx99);
   1098 	else
   1099 #endif
   1100 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   1101 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
   1102 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   1103 	} else
   1104 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   1105 done:
   1106 	ATH_UNLOCK(sc);
   1107 	return error;
   1108 }
   1109 
   1110 static void
   1111 ath_stop_locked(struct ifnet *ifp, int disable)
   1112 {
   1113 	struct ath_softc *sc = ifp->if_softc;
   1114 	struct ieee80211com *ic = &sc->sc_ic;
   1115 	struct ath_hal *ah = sc->sc_ah;
   1116 
   1117 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
   1118 		__func__, sc->sc_invalid, ifp->if_flags);
   1119 
   1120 	ATH_LOCK_ASSERT(sc);
   1121 	if (ifp->if_flags & IFF_RUNNING) {
   1122 		/*
   1123 		 * Shutdown the hardware and driver:
   1124 		 *    reset 802.11 state machine
   1125 		 *    turn off timers
   1126 		 *    disable interrupts
   1127 		 *    turn off the radio
   1128 		 *    clear transmit machinery
   1129 		 *    clear receive machinery
   1130 		 *    drain and release tx queues
   1131 		 *    reclaim beacon resources
   1132 		 *    power down hardware
   1133 		 *
   1134 		 * Note that some of this work is not possible if the
   1135 		 * hardware is gone (invalid).
   1136 		 */
   1137 #ifdef ATH_TX99_DIAG
   1138 		if (sc->sc_tx99 != NULL)
   1139 			sc->sc_tx99->stop(sc->sc_tx99);
   1140 #endif
   1141 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   1142 		ifp->if_flags &= ~IFF_RUNNING;
   1143 		ifp->if_timer = 0;
   1144 		if (!sc->sc_invalid) {
   1145 			if (sc->sc_softled) {
   1146 				callout_stop(&sc->sc_ledtimer);
   1147 				ath_hal_gpioset(ah, sc->sc_ledpin,
   1148 					!sc->sc_ledon);
   1149 				sc->sc_blinking = 0;
   1150 			}
   1151 			ath_hal_intrset(ah, 0);
   1152 		}
   1153 		ath_draintxq(sc);
   1154 		if (!sc->sc_invalid) {
   1155 			ath_stoprecv(sc);
   1156 			ath_hal_phydisable(ah);
   1157 		} else
   1158 			sc->sc_rxlink = NULL;
   1159 		IF_PURGE(&ifp->if_snd);
   1160 		ath_beacon_free(sc);
   1161 		if (disable)
   1162 			ath_disable(sc);
   1163 	}
   1164 }
   1165 
   1166 static void
   1167 ath_stop(struct ifnet *ifp, int disable)
   1168 {
   1169 	struct ath_softc *sc = ifp->if_softc;
   1170 
   1171 	ATH_LOCK(sc);
   1172 	ath_stop_locked(ifp, disable);
   1173 	if (!sc->sc_invalid) {
   1174 		/*
   1175 		 * Set the chip in full sleep mode.  Note that we are
   1176 		 * careful to do this only when bringing the interface
   1177 		 * completely to a stop.  When the chip is in this state
   1178 		 * it must be carefully woken up or references to
   1179 		 * registers in the PCI clock domain may freeze the bus
   1180 		 * (and system).  This varies by chip and is mostly an
   1181 		 * issue with newer parts that go to sleep more quickly.
   1182 		 */
   1183 		ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
   1184 	}
   1185 	ATH_UNLOCK(sc);
   1186 }
   1187 
   1188 /*
   1189  * Reset the hardware w/o losing operational state.  This is
   1190  * basically a more efficient way of doing ath_stop, ath_init,
   1191  * followed by state transitions to the current 802.11
   1192  * operational state.  Used to recover from various errors and
   1193  * to reset or reload hardware state.
   1194  */
   1195 int
   1196 ath_reset(struct ifnet *ifp)
   1197 {
   1198 	struct ath_softc *sc = ifp->if_softc;
   1199 	struct ieee80211com *ic = &sc->sc_ic;
   1200 	struct ath_hal *ah = sc->sc_ah;
   1201 	struct ieee80211_channel *c;
   1202 	HAL_STATUS status;
   1203 
   1204 	/*
   1205 	 * Convert to a HAL channel description with the flags
   1206 	 * constrained to reflect the current operating mode.
   1207 	 */
   1208 	c = ic->ic_curchan;
   1209 	sc->sc_curchan.channel = c->ic_freq;
   1210 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
   1211 
   1212 	ath_hal_intrset(ah, 0);		/* disable interrupts */
   1213 	ath_draintxq(sc);		/* stop xmit side */
   1214 	ath_stoprecv(sc);		/* stop recv side */
   1215 	/* NB: indicate channel change so we do a full reset */
   1216 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
   1217 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
   1218 			__func__, status);
   1219 	ath_update_txpow(sc);		/* update tx power state */
   1220 	sc->sc_diversity = ath_hal_getdiversity(ah);
   1221 	sc->sc_calinterval = 1;
   1222 	sc->sc_caltries = 0;
   1223 	if (ath_startrecv(sc) != 0)	/* restart recv */
   1224 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
   1225 	/*
   1226 	 * We may be doing a reset in response to an ioctl
   1227 	 * that changes the channel so update any state that
   1228 	 * might change as a result.
   1229 	 */
   1230 	ath_chan_change(sc, c);
   1231 	if (ic->ic_state == IEEE80211_S_RUN)
   1232 		ath_beacon_config(sc);	/* restart beacons */
   1233 	ath_hal_intrset(ah, sc->sc_imask);
   1234 
   1235 	ath_start(ifp);			/* restart xmit */
   1236 	return 0;
   1237 }
   1238 
   1239 /*
   1240  * Cleanup driver resources when we run out of buffers
   1241  * while processing fragments; return the tx buffers
   1242  * allocated and drop node references.
   1243  */
   1244 static void
   1245 ath_txfrag_cleanup(struct ath_softc *sc,
   1246 	ath_bufhead *frags, struct ieee80211_node *ni)
   1247 {
   1248 	struct ath_buf *bf;
   1249 
   1250 	ATH_TXBUF_LOCK_ASSERT(sc);
   1251 
   1252 	while ((bf = STAILQ_FIRST(frags)) != NULL) {
   1253 		STAILQ_REMOVE_HEAD(frags, bf_list);
   1254 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1255 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
   1256 		ieee80211_node_decref(ni);
   1257 	}
   1258 }
   1259 
   1260 /*
   1261  * Setup xmit of a fragmented frame.  Allocate a buffer
   1262  * for each frag and bump the node reference count to
   1263  * reflect the held reference to be setup by ath_tx_start.
   1264  */
   1265 static int
   1266 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
   1267 	struct mbuf *m0, struct ieee80211_node *ni)
   1268 {
   1269 	struct mbuf *m;
   1270 	struct ath_buf *bf;
   1271 
   1272 	ATH_TXBUF_LOCK(sc);
   1273 	for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
   1274 		bf = STAILQ_FIRST(&sc->sc_txbuf);
   1275 		if (bf == NULL) {       /* out of buffers, cleanup */
   1276 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
   1277 				__func__);
   1278 			sc->sc_if.if_flags |= IFF_OACTIVE;
   1279 			ath_txfrag_cleanup(sc, frags, ni);
   1280 			break;
   1281 		}
   1282 		STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
   1283 		ieee80211_node_incref(ni);
   1284 		STAILQ_INSERT_TAIL(frags, bf, bf_list);
   1285 	}
   1286 	ATH_TXBUF_UNLOCK(sc);
   1287 
   1288 	return !STAILQ_EMPTY(frags);
   1289 }
   1290 
   1291 static void
   1292 ath_start(struct ifnet *ifp)
   1293 {
   1294 	struct ath_softc *sc = ifp->if_softc;
   1295 	struct ath_hal *ah = sc->sc_ah;
   1296 	struct ieee80211com *ic = &sc->sc_ic;
   1297 	struct ieee80211_node *ni;
   1298 	struct ath_buf *bf;
   1299 	struct mbuf *m, *next;
   1300 	struct ieee80211_frame *wh;
   1301 	struct ether_header *eh;
   1302 	ath_bufhead frags;
   1303 
   1304 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
   1305 		return;
   1306 	for (;;) {
   1307 		/*
   1308 		 * Grab a TX buffer and associated resources.
   1309 		 */
   1310 		ATH_TXBUF_LOCK(sc);
   1311 		bf = STAILQ_FIRST(&sc->sc_txbuf);
   1312 		if (bf != NULL)
   1313 			STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
   1314 		ATH_TXBUF_UNLOCK(sc);
   1315 		if (bf == NULL) {
   1316 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
   1317 				__func__);
   1318 			sc->sc_stats.ast_tx_qstop++;
   1319 			ifp->if_flags |= IFF_OACTIVE;
   1320 			break;
   1321 		}
   1322 		/*
   1323 		 * Poll the management queue for frames; they
   1324 		 * have priority over normal data frames.
   1325 		 */
   1326 		IF_DEQUEUE(&ic->ic_mgtq, m);
   1327 		if (m == NULL) {
   1328 			/*
   1329 			 * No data frames go out unless we're associated.
   1330 			 */
   1331 			if (ic->ic_state != IEEE80211_S_RUN) {
   1332 				DPRINTF(sc, ATH_DEBUG_XMIT,
   1333 				    "%s: discard data packet, state %s\n",
   1334 				    __func__,
   1335 				    ieee80211_state_name[ic->ic_state]);
   1336 				sc->sc_stats.ast_tx_discard++;
   1337 				ATH_TXBUF_LOCK(sc);
   1338 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1339 				ATH_TXBUF_UNLOCK(sc);
   1340 				break;
   1341 			}
   1342 			IFQ_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
   1343 			if (m == NULL) {
   1344 				ATH_TXBUF_LOCK(sc);
   1345 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1346 				ATH_TXBUF_UNLOCK(sc);
   1347 				break;
   1348 			}
   1349 			STAILQ_INIT(&frags);
   1350 			/*
   1351 			 * Find the node for the destination so we can do
   1352 			 * things like power save and fast frames aggregation.
   1353 			 */
   1354 			if (m->m_len < sizeof(struct ether_header) &&
   1355 			   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
   1356 				ic->ic_stats.is_tx_nobuf++;	/* XXX */
   1357 				ni = NULL;
   1358 				goto bad;
   1359 			}
   1360 			eh = mtod(m, struct ether_header *);
   1361 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   1362 			if (ni == NULL) {
   1363 				/* NB: ieee80211_find_txnode does stat+msg */
   1364 				m_freem(m);
   1365 				goto bad;
   1366 			}
   1367 			if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
   1368 			    (m->m_flags & M_PWR_SAV) == 0) {
   1369 				/*
   1370 				 * Station in power save mode; pass the frame
   1371 				 * to the 802.11 layer and continue.  We'll get
   1372 				 * the frame back when the time is right.
   1373 				 */
   1374 				ieee80211_pwrsave(ic, ni, m);
   1375 				goto reclaim;
   1376 			}
   1377 			/* calculate priority so we can find the tx queue */
   1378 			if (ieee80211_classify(ic, m, ni)) {
   1379 				DPRINTF(sc, ATH_DEBUG_XMIT,
   1380 					"%s: discard, classification failure\n",
   1381 					__func__);
   1382 				m_freem(m);
   1383 				goto bad;
   1384 			}
   1385 			ifp->if_opackets++;
   1386 
   1387 #if NBPFILTER > 0
   1388 			if (ifp->if_bpf)
   1389 				bpf_mtap(ifp->if_bpf, m);
   1390 #endif
   1391 			/*
   1392 			 * Encapsulate the packet in prep for transmission.
   1393 			 */
   1394 			m = ieee80211_encap(ic, m, ni);
   1395 			if (m == NULL) {
   1396 				DPRINTF(sc, ATH_DEBUG_XMIT,
   1397 					"%s: encapsulation failure\n",
   1398 					__func__);
   1399 				sc->sc_stats.ast_tx_encap++;
   1400 				goto bad;
   1401 			}
   1402 			/*
   1403 			 * Check for fragmentation.  If this has frame
   1404 			 * has been broken up verify we have enough
   1405 			 * buffers to send all the fragments so all
   1406 			 * go out or none...
   1407 			 */
   1408 			if ((m->m_flags & M_FRAG) &&
   1409 			    !ath_txfrag_setup(sc, &frags, m, ni)) {
   1410 				DPRINTF(sc, ATH_DEBUG_ANY,
   1411 				    "%s: out of txfrag buffers\n", __func__);
   1412 				ic->ic_stats.is_tx_nobuf++;     /* XXX */
   1413 				ath_freetx(m);
   1414 				goto bad;
   1415 			}
   1416 		} else {
   1417 			/*
   1418 			 * Hack!  The referenced node pointer is in the
   1419 			 * rcvif field of the packet header.  This is
   1420 			 * placed there by ieee80211_mgmt_output because
   1421 			 * we need to hold the reference with the frame
   1422 			 * and there's no other way (other than packet
   1423 			 * tags which we consider too expensive to use)
   1424 			 * to pass it along.
   1425 			 */
   1426 			ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
   1427 			m->m_pkthdr.rcvif = NULL;
   1428 
   1429 			wh = mtod(m, struct ieee80211_frame *);
   1430 			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
   1431 			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
   1432 				/* fill time stamp */
   1433 				u_int64_t tsf;
   1434 				u_int32_t *tstamp;
   1435 
   1436 				tsf = ath_hal_gettsf64(ah);
   1437 				/* XXX: adjust 100us delay to xmit */
   1438 				tsf += 100;
   1439 				tstamp = (u_int32_t *)&wh[1];
   1440 				tstamp[0] = htole32(tsf & 0xffffffff);
   1441 				tstamp[1] = htole32(tsf >> 32);
   1442 			}
   1443 			sc->sc_stats.ast_tx_mgmt++;
   1444 		}
   1445 
   1446 	nextfrag:
   1447 		next = m->m_nextpkt;
   1448 		if (ath_tx_start(sc, ni, bf, m)) {
   1449 	bad:
   1450 			ifp->if_oerrors++;
   1451 	reclaim:
   1452 			ATH_TXBUF_LOCK(sc);
   1453 			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1454 			ath_txfrag_cleanup(sc, &frags, ni);
   1455 			ATH_TXBUF_UNLOCK(sc);
   1456 			if (ni != NULL)
   1457 				ieee80211_free_node(ni);
   1458 			continue;
   1459 		}
   1460 		if (next != NULL) {
   1461 			m = next;
   1462 			bf = STAILQ_FIRST(&frags);
   1463 			KASSERT(bf != NULL, ("no buf for txfrag"));
   1464 			STAILQ_REMOVE_HEAD(&frags, bf_list);
   1465 			goto nextfrag;
   1466 		}
   1467 
   1468 		ifp->if_timer = 1;
   1469 	}
   1470 }
   1471 
   1472 static int
   1473 ath_media_change(struct ifnet *ifp)
   1474 {
   1475 #define	IS_UP(ifp) \
   1476 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
   1477 	int error;
   1478 
   1479 	error = ieee80211_media_change(ifp);
   1480 	if (error == ENETRESET) {
   1481 		if (IS_UP(ifp))
   1482 			ath_init(ifp->if_softc);	/* XXX lose error */
   1483 		error = 0;
   1484 	}
   1485 	return error;
   1486 #undef IS_UP
   1487 }
   1488 
   1489 #ifdef AR_DEBUG
   1490 static void
   1491 ath_keyprint(const char *tag, u_int ix,
   1492 	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
   1493 {
   1494 	static const char *ciphers[] = {
   1495 		"WEP",
   1496 		"AES-OCB",
   1497 		"AES-CCM",
   1498 		"CKIP",
   1499 		"TKIP",
   1500 		"CLR",
   1501 	};
   1502 	int i, n;
   1503 
   1504 	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
   1505 	for (i = 0, n = hk->kv_len; i < n; i++)
   1506 		printf("%02x", hk->kv_val[i]);
   1507 	printf(" mac %s", ether_sprintf(mac));
   1508 	if (hk->kv_type == HAL_CIPHER_TKIP) {
   1509 		printf(" mic ");
   1510 		for (i = 0; i < sizeof(hk->kv_mic); i++)
   1511 			printf("%02x", hk->kv_mic[i]);
   1512 	}
   1513 	printf("\n");
   1514 }
   1515 #endif
   1516 
   1517 /*
   1518  * Set a TKIP key into the hardware.  This handles the
   1519  * potential distribution of key state to multiple key
   1520  * cache slots for TKIP.
   1521  */
   1522 static int
   1523 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
   1524 	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
   1525 {
   1526 #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
   1527 	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
   1528 	struct ath_hal *ah = sc->sc_ah;
   1529 
   1530 	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
   1531 		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
   1532 	KASSERT(sc->sc_splitmic, ("key cache !split"));
   1533 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
   1534 		/*
   1535 		 * TX key goes at first index, RX key at the rx index.
   1536 		 * The hal handles the MIC keys at index+64.
   1537 		 */
   1538 		memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
   1539 		KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
   1540 		if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
   1541 			return 0;
   1542 
   1543 		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
   1544 		KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
   1545 		/* XXX delete tx key on failure? */
   1546 		return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
   1547 	} else if (k->wk_flags & IEEE80211_KEY_XR) {
   1548 		/*
   1549 		 * TX/RX key goes at first index.
   1550 		 * The hal handles the MIC keys are index+64.
   1551 		 */
   1552 		memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
   1553 			k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
   1554 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
   1555 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
   1556 	}
   1557 	return 0;
   1558 #undef IEEE80211_KEY_XR
   1559 }
   1560 
   1561 /*
   1562  * Set a net80211 key into the hardware.  This handles the
   1563  * potential distribution of key state to multiple key
   1564  * cache slots for TKIP with hardware MIC support.
   1565  */
   1566 static int
   1567 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
   1568 	const u_int8_t mac0[IEEE80211_ADDR_LEN],
   1569 	struct ieee80211_node *bss)
   1570 {
   1571 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1572 	static const u_int8_t ciphermap[] = {
   1573 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
   1574 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
   1575 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
   1576 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
   1577 		(u_int8_t) -1,		/* 4 is not allocated */
   1578 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
   1579 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
   1580 	};
   1581 	struct ath_hal *ah = sc->sc_ah;
   1582 	const struct ieee80211_cipher *cip = k->wk_cipher;
   1583 	u_int8_t gmac[IEEE80211_ADDR_LEN];
   1584 	const u_int8_t *mac;
   1585 	HAL_KEYVAL hk;
   1586 
   1587 	memset(&hk, 0, sizeof(hk));
   1588 	/*
   1589 	 * Software crypto uses a "clear key" so non-crypto
   1590 	 * state kept in the key cache are maintained and
   1591 	 * so that rx frames have an entry to match.
   1592 	 */
   1593 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
   1594 		KASSERT(cip->ic_cipher < N(ciphermap),
   1595 			("invalid cipher type %u", cip->ic_cipher));
   1596 		hk.kv_type = ciphermap[cip->ic_cipher];
   1597 		hk.kv_len = k->wk_keylen;
   1598 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
   1599 	} else
   1600 		hk.kv_type = HAL_CIPHER_CLR;
   1601 
   1602 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
   1603 		/*
   1604 		 * Group keys on hardware that supports multicast frame
   1605 		 * key search use a mac that is the sender's address with
   1606 		 * the high bit set instead of the app-specified address.
   1607 		 */
   1608 		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
   1609 		gmac[0] |= 0x80;
   1610 		mac = gmac;
   1611 	} else
   1612 		mac = mac0;
   1613 
   1614 	if (hk.kv_type == HAL_CIPHER_TKIP &&
   1615 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
   1616 	    sc->sc_splitmic) {
   1617 		return ath_keyset_tkip(sc, k, &hk, mac);
   1618 	} else {
   1619 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
   1620 		return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
   1621 	}
   1622 #undef N
   1623 }
   1624 
   1625 /*
   1626  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
   1627  * each key, one for decrypt/encrypt and the other for the MIC.
   1628  */
   1629 static u_int16_t
   1630 key_alloc_2pair(struct ath_softc *sc,
   1631 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
   1632 {
   1633 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1634 	u_int i, keyix;
   1635 
   1636 	KASSERT(sc->sc_splitmic, ("key cache !split"));
   1637 	/* XXX could optimize */
   1638 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
   1639 		u_int8_t b = sc->sc_keymap[i];
   1640 		if (b != 0xff) {
   1641 			/*
   1642 			 * One or more slots in this byte are free.
   1643 			 */
   1644 			keyix = i*NBBY;
   1645 			while (b & 1) {
   1646 		again:
   1647 				keyix++;
   1648 				b >>= 1;
   1649 			}
   1650 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
   1651 			if (isset(sc->sc_keymap, keyix+32) ||
   1652 			    isset(sc->sc_keymap, keyix+64) ||
   1653 			    isset(sc->sc_keymap, keyix+32+64)) {
   1654 				/* full pair unavailable */
   1655 				/* XXX statistic */
   1656 				if (keyix == (i+1)*NBBY) {
   1657 					/* no slots were appropriate, advance */
   1658 					continue;
   1659 				}
   1660 				goto again;
   1661 			}
   1662 			setbit(sc->sc_keymap, keyix);
   1663 			setbit(sc->sc_keymap, keyix+64);
   1664 			setbit(sc->sc_keymap, keyix+32);
   1665 			setbit(sc->sc_keymap, keyix+32+64);
   1666 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
   1667 				"%s: key pair %u,%u %u,%u\n",
   1668 				__func__, keyix, keyix+64,
   1669 				keyix+32, keyix+32+64);
   1670 			*txkeyix = keyix;
   1671 			*rxkeyix = keyix+32;
   1672 			return 1;
   1673 		}
   1674 	}
   1675 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
   1676 	return 0;
   1677 #undef N
   1678 }
   1679 
   1680 /*
   1681  * Allocate a single key cache slot.
   1682  */
   1683 static int
   1684 key_alloc_single(struct ath_softc *sc,
   1685 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
   1686 {
   1687 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1688 	u_int i, keyix;
   1689 
   1690 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
   1691 	for (i = 0; i < N(sc->sc_keymap); i++) {
   1692 		u_int8_t b = sc->sc_keymap[i];
   1693 		if (b != 0xff) {
   1694 			/*
   1695 			 * One or more slots are free.
   1696 			 */
   1697 			keyix = i*NBBY;
   1698 			while (b & 1)
   1699 				keyix++, b >>= 1;
   1700 			setbit(sc->sc_keymap, keyix);
   1701 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
   1702 				__func__, keyix);
   1703 			*txkeyix = *rxkeyix = keyix;
   1704 			return 1;
   1705 		}
   1706 	}
   1707 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
   1708 	return 0;
   1709 #undef N
   1710 }
   1711 
   1712 /*
   1713  * Allocate one or more key cache slots for a uniacst key.  The
   1714  * key itself is needed only to identify the cipher.  For hardware
   1715  * TKIP with split cipher+MIC keys we allocate two key cache slot
   1716  * pairs so that we can setup separate TX and RX MIC keys.  Note
   1717  * that the MIC key for a TKIP key at slot i is assumed by the
   1718  * hardware to be at slot i+64.  This limits TKIP keys to the first
   1719  * 64 entries.
   1720  */
   1721 static int
   1722 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
   1723 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
   1724 {
   1725 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1726 
   1727 	/*
   1728 	 * Group key allocation must be handled specially for
   1729 	 * parts that do not support multicast key cache search
   1730 	 * functionality.  For those parts the key id must match
   1731 	 * the h/w key index so lookups find the right key.  On
   1732 	 * parts w/ the key search facility we install the sender's
   1733 	 * mac address (with the high bit set) and let the hardware
   1734 	 * find the key w/o using the key id.  This is preferred as
   1735 	 * it permits us to support multiple users for adhoc and/or
   1736 	 * multi-station operation.
   1737 	 */
   1738 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
   1739 		if (!(&ic->ic_nw_keys[0] <= k &&
   1740 		      k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
   1741 			/* should not happen */
   1742 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
   1743 				"%s: bogus group key\n", __func__);
   1744 			return 0;
   1745 		}
   1746 		/*
   1747 		 * XXX we pre-allocate the global keys so
   1748 		 * have no way to check if they've already been allocated.
   1749 		 */
   1750 		*keyix = *rxkeyix = k - ic->ic_nw_keys;
   1751 		return 1;
   1752 	}
   1753 
   1754 	/*
   1755 	 * We allocate two pair for TKIP when using the h/w to do
   1756 	 * the MIC.  For everything else, including software crypto,
   1757 	 * we allocate a single entry.  Note that s/w crypto requires
   1758 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
   1759 	 * not support pass-through cache entries and we map all
   1760 	 * those requests to slot 0.
   1761 	 */
   1762 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
   1763 		return key_alloc_single(sc, keyix, rxkeyix);
   1764 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1765 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
   1766 		return key_alloc_2pair(sc, keyix, rxkeyix);
   1767 	} else {
   1768 		return key_alloc_single(sc, keyix, rxkeyix);
   1769 	}
   1770 }
   1771 
   1772 /*
   1773  * Delete an entry in the key cache allocated by ath_key_alloc.
   1774  */
   1775 static int
   1776 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
   1777 {
   1778 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1779 	struct ath_hal *ah = sc->sc_ah;
   1780 	const struct ieee80211_cipher *cip = k->wk_cipher;
   1781 	u_int keyix = k->wk_keyix;
   1782 
   1783 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
   1784 
   1785 	ath_hal_keyreset(ah, keyix);
   1786 	/*
   1787 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
   1788 	 */
   1789 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1790 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
   1791 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
   1792 	if (keyix >= IEEE80211_WEP_NKID) {
   1793 		/*
   1794 		 * Don't touch keymap entries for global keys so
   1795 		 * they are never considered for dynamic allocation.
   1796 		 */
   1797 		clrbit(sc->sc_keymap, keyix);
   1798 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1799 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
   1800 		    sc->sc_splitmic) {
   1801 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
   1802 			clrbit(sc->sc_keymap, keyix+32);	/* RX key */
   1803 			clrbit(sc->sc_keymap, keyix+32+64);	/* RX key MIC */
   1804 		}
   1805 	}
   1806 	return 1;
   1807 }
   1808 
   1809 /*
   1810  * Set the key cache contents for the specified key.  Key cache
   1811  * slot(s) must already have been allocated by ath_key_alloc.
   1812  */
   1813 static int
   1814 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
   1815 	const u_int8_t mac[IEEE80211_ADDR_LEN])
   1816 {
   1817 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1818 
   1819 	return ath_keyset(sc, k, mac, ic->ic_bss);
   1820 }
   1821 
   1822 /*
   1823  * Block/unblock tx+rx processing while a key change is done.
   1824  * We assume the caller serializes key management operations
   1825  * so we only need to worry about synchronization with other
   1826  * uses that originate in the driver.
   1827  */
   1828 static void
   1829 ath_key_update_begin(struct ieee80211com *ic)
   1830 {
   1831 	struct ifnet *ifp = ic->ic_ifp;
   1832 	struct ath_softc *sc = ifp->if_softc;
   1833 
   1834 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
   1835 #if 0
   1836 	tasklet_disable(&sc->sc_rxtq);
   1837 #endif
   1838 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
   1839 }
   1840 
   1841 static void
   1842 ath_key_update_end(struct ieee80211com *ic)
   1843 {
   1844 	struct ifnet *ifp = ic->ic_ifp;
   1845 	struct ath_softc *sc = ifp->if_softc;
   1846 
   1847 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
   1848 	IF_UNLOCK(&ifp->if_snd);
   1849 #if 0
   1850 	tasklet_enable(&sc->sc_rxtq);
   1851 #endif
   1852 }
   1853 
   1854 /*
   1855  * Calculate the receive filter according to the
   1856  * operating mode and state:
   1857  *
   1858  * o always accept unicast, broadcast, and multicast traffic
   1859  * o maintain current state of phy error reception (the hal
   1860  *   may enable phy error frames for noise immunity work)
   1861  * o probe request frames are accepted only when operating in
   1862  *   hostap, adhoc, or monitor modes
   1863  * o enable promiscuous mode according to the interface state
   1864  * o accept beacons:
   1865  *   - when operating in adhoc mode so the 802.11 layer creates
   1866  *     node table entries for peers,
   1867  *   - when operating in station mode for collecting rssi data when
   1868  *     the station is otherwise quiet, or
   1869  *   - when scanning
   1870  */
   1871 static u_int32_t
   1872 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
   1873 {
   1874 	struct ieee80211com *ic = &sc->sc_ic;
   1875 	struct ath_hal *ah = sc->sc_ah;
   1876 	struct ifnet *ifp = &sc->sc_if;
   1877 	u_int32_t rfilt;
   1878 
   1879 	rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
   1880 	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
   1881 	if (ic->ic_opmode != IEEE80211_M_STA)
   1882 		rfilt |= HAL_RX_FILTER_PROBEREQ;
   1883 	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
   1884 	    (ifp->if_flags & IFF_PROMISC))
   1885 		rfilt |= HAL_RX_FILTER_PROM;
   1886 	if (ic->ic_opmode == IEEE80211_M_STA ||
   1887 	    ic->ic_opmode == IEEE80211_M_IBSS ||
   1888 	    state == IEEE80211_S_SCAN)
   1889 		rfilt |= HAL_RX_FILTER_BEACON;
   1890 	return rfilt;
   1891 }
   1892 
   1893 static void
   1894 ath_mcastfilter_accum(void *dl, u_int32_t *mfilt)
   1895 {
   1896 	u_int32_t val;
   1897 	u_int8_t pos;
   1898 
   1899 	/* calculate XOR of eight 6bit values */
   1900 	val = LE_READ_4((char *)dl + 0);
   1901 	pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1902 	val = LE_READ_4((char *)dl + 3);
   1903 	pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1904 	pos &= 0x3f;
   1905 	mfilt[pos / 32] |= (1 << (pos % 32));
   1906 }
   1907 
   1908 static void
   1909 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t *mfilt)
   1910 {
   1911 	struct ifnet *ifp = &sc->sc_if;
   1912 	struct ether_multi *enm;
   1913 	struct ether_multistep estep;
   1914 
   1915 	mfilt[0] = mfilt[1] = 0;
   1916 	ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
   1917 	while (enm != NULL) {
   1918 		/* XXX Punt on ranges. */
   1919 		if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
   1920 			mfilt[0] = mfilt[1] = ~((u_int32_t)0);
   1921 			ifp->if_flags |= IFF_ALLMULTI;
   1922 			return;
   1923 		}
   1924 		ath_mcastfilter_accum(enm->enm_addrlo, mfilt);
   1925 		ETHER_NEXT_MULTI(estep, enm);
   1926 	}
   1927 	ifp->if_flags &= ~IFF_ALLMULTI;
   1928 }
   1929 
   1930 static void
   1931 ath_mode_init(struct ath_softc *sc)
   1932 {
   1933 	struct ieee80211com *ic = &sc->sc_ic;
   1934 	struct ath_hal *ah = sc->sc_ah;
   1935 	u_int32_t rfilt, mfilt[2];
   1936 	int i;
   1937 
   1938 	/* configure rx filter */
   1939 	rfilt = ath_calcrxfilter(sc, ic->ic_state);
   1940 	ath_hal_setrxfilter(ah, rfilt);
   1941 
   1942 	/* configure operational mode */
   1943 	ath_hal_setopmode(ah);
   1944 
   1945 	/* Write keys to hardware; it may have been powered down. */
   1946 	ath_key_update_begin(ic);
   1947 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
   1948 		ath_key_set(ic,
   1949 			    &ic->ic_crypto.cs_nw_keys[i],
   1950 			    ic->ic_myaddr);
   1951 	}
   1952 	ath_key_update_end(ic);
   1953 
   1954 	/*
   1955 	 * Handle any link-level address change.  Note that we only
   1956 	 * need to force ic_myaddr; any other addresses are handled
   1957 	 * as a byproduct of the ifnet code marking the interface
   1958 	 * down then up.
   1959 	 *
   1960 	 * XXX should get from lladdr instead of arpcom but that's more work
   1961 	 */
   1962 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(sc->sc_if.if_sadl));
   1963 	ath_hal_setmac(ah, ic->ic_myaddr);
   1964 
   1965 	/* calculate and install multicast filter */
   1966 #ifdef __FreeBSD__
   1967 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   1968 		mfilt[0] = mfilt[1] = 0;
   1969 		IF_ADDR_LOCK(ifp);
   1970 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
   1971 			void *dl;
   1972 
   1973 			/* calculate XOR of eight 6bit values */
   1974 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
   1975 			val = LE_READ_4((char *)dl + 0);
   1976 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1977 			val = LE_READ_4((char *)dl + 3);
   1978 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1979 			pos &= 0x3f;
   1980 			mfilt[pos / 32] |= (1 << (pos % 32));
   1981 		}
   1982 		IF_ADDR_UNLOCK(ifp);
   1983 	} else {
   1984 		mfilt[0] = mfilt[1] = ~0;
   1985 	}
   1986 #endif
   1987 #ifdef __NetBSD__
   1988 	ath_mcastfilter_compute(sc, mfilt);
   1989 #endif
   1990 	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
   1991 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
   1992 		__func__, rfilt, mfilt[0], mfilt[1]);
   1993 }
   1994 
   1995 /*
   1996  * Set the slot time based on the current setting.
   1997  */
   1998 static void
   1999 ath_setslottime(struct ath_softc *sc)
   2000 {
   2001 	struct ieee80211com *ic = &sc->sc_ic;
   2002 	struct ath_hal *ah = sc->sc_ah;
   2003 
   2004 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   2005 		ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
   2006 	else
   2007 		ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
   2008 	sc->sc_updateslot = OK;
   2009 }
   2010 
   2011 /*
   2012  * Callback from the 802.11 layer to update the
   2013  * slot time based on the current setting.
   2014  */
   2015 static void
   2016 ath_updateslot(struct ifnet *ifp)
   2017 {
   2018 	struct ath_softc *sc = ifp->if_softc;
   2019 	struct ieee80211com *ic = &sc->sc_ic;
   2020 
   2021 	/*
   2022 	 * When not coordinating the BSS, change the hardware
   2023 	 * immediately.  For other operation we defer the change
   2024 	 * until beacon updates have propagated to the stations.
   2025 	 */
   2026 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
   2027 		sc->sc_updateslot = UPDATE;
   2028 	else
   2029 		ath_setslottime(sc);
   2030 }
   2031 
   2032 /*
   2033  * Setup a h/w transmit queue for beacons.
   2034  */
   2035 static int
   2036 ath_beaconq_setup(struct ath_hal *ah)
   2037 {
   2038 	HAL_TXQ_INFO qi;
   2039 
   2040 	memset(&qi, 0, sizeof(qi));
   2041 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
   2042 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
   2043 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
   2044 	/* NB: for dynamic turbo, don't enable any other interrupts */
   2045 	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
   2046 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
   2047 }
   2048 
   2049 /*
   2050  * Setup the transmit queue parameters for the beacon queue.
   2051  */
   2052 static int
   2053 ath_beaconq_config(struct ath_softc *sc)
   2054 {
   2055 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
   2056 	struct ieee80211com *ic = &sc->sc_ic;
   2057 	struct ath_hal *ah = sc->sc_ah;
   2058 	HAL_TXQ_INFO qi;
   2059 
   2060 	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
   2061 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   2062 		/*
   2063 		 * Always burst out beacon and CAB traffic.
   2064 		 */
   2065 		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
   2066 		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
   2067 		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
   2068 	} else {
   2069 		struct wmeParams *wmep =
   2070 			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
   2071 		/*
   2072 		 * Adhoc mode; important thing is to use 2x cwmin.
   2073 		 */
   2074 		qi.tqi_aifs = wmep->wmep_aifsn;
   2075 		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
   2076 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
   2077 	}
   2078 
   2079 	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
   2080 		device_printf(sc->sc_dev, "unable to update parameters for "
   2081 			"beacon hardware queue!\n");
   2082 		return 0;
   2083 	} else {
   2084 		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
   2085 		return 1;
   2086 	}
   2087 #undef ATH_EXPONENT_TO_VALUE
   2088 }
   2089 
   2090 /*
   2091  * Allocate and setup an initial beacon frame.
   2092  */
   2093 static int
   2094 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
   2095 {
   2096 	struct ieee80211com *ic = ni->ni_ic;
   2097 	struct ath_buf *bf;
   2098 	struct mbuf *m;
   2099 	int error;
   2100 
   2101 	bf = STAILQ_FIRST(&sc->sc_bbuf);
   2102 	if (bf == NULL) {
   2103 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
   2104 		sc->sc_stats.ast_be_nombuf++;	/* XXX */
   2105 		return ENOMEM;			/* XXX */
   2106 	}
   2107 	/*
   2108 	 * NB: the beacon data buffer must be 32-bit aligned;
   2109 	 * we assume the mbuf routines will return us something
   2110 	 * with this alignment (perhaps should assert).
   2111 	 */
   2112 	m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
   2113 	if (m == NULL) {
   2114 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
   2115 			__func__);
   2116 		sc->sc_stats.ast_be_nombuf++;
   2117 		return ENOMEM;
   2118 	}
   2119 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
   2120 				     BUS_DMA_NOWAIT);
   2121 	if (error == 0) {
   2122 		bf->bf_m = m;
   2123 		bf->bf_node = ieee80211_ref_node(ni);
   2124 	} else {
   2125 		m_freem(m);
   2126 	}
   2127 	return error;
   2128 }
   2129 
   2130 /*
   2131  * Setup the beacon frame for transmit.
   2132  */
   2133 static void
   2134 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
   2135 {
   2136 #define	USE_SHPREAMBLE(_ic) \
   2137 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
   2138 		== IEEE80211_F_SHPREAMBLE)
   2139 	struct ieee80211_node *ni = bf->bf_node;
   2140 	struct ieee80211com *ic = ni->ni_ic;
   2141 	struct mbuf *m = bf->bf_m;
   2142 	struct ath_hal *ah = sc->sc_ah;
   2143 	struct ath_desc *ds;
   2144 	int flags, antenna;
   2145 	const HAL_RATE_TABLE *rt;
   2146 	u_int8_t rix, rate;
   2147 
   2148 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
   2149 		__func__, m, m->m_len);
   2150 
   2151 	/* setup descriptors */
   2152 	ds = bf->bf_desc;
   2153 
   2154 	flags = HAL_TXDESC_NOACK;
   2155 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
   2156 		ds->ds_link = HTOAH32(bf->bf_daddr);	/* self-linked */
   2157 		flags |= HAL_TXDESC_VEOL;
   2158 		/*
   2159 		 * Let hardware handle antenna switching unless
   2160 		 * the user has selected a transmit antenna
   2161 		 * (sc_txantenna is not 0).
   2162 		 */
   2163 		antenna = sc->sc_txantenna;
   2164 	} else {
   2165 		ds->ds_link = 0;
   2166 		/*
   2167 		 * Switch antenna every 4 beacons, unless the user
   2168 		 * has selected a transmit antenna (sc_txantenna
   2169 		 * is not 0).
   2170 		 *
   2171 		 * XXX assumes two antenna
   2172 		 */
   2173 		if (sc->sc_txantenna == 0)
   2174 			antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
   2175 		else
   2176 			antenna = sc->sc_txantenna;
   2177 	}
   2178 
   2179 	KASSERT(bf->bf_nseg == 1,
   2180 		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
   2181 	ds->ds_data = bf->bf_segs[0].ds_addr;
   2182 	/*
   2183 	 * Calculate rate code.
   2184 	 * XXX everything at min xmit rate
   2185 	 */
   2186 	rix = sc->sc_minrateix;
   2187 	rt = sc->sc_currates;
   2188 	rate = rt->info[rix].rateCode;
   2189 	if (USE_SHPREAMBLE(ic))
   2190 		rate |= rt->info[rix].shortPreamble;
   2191 	ath_hal_setuptxdesc(ah, ds
   2192 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
   2193 		, sizeof(struct ieee80211_frame)/* header length */
   2194 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
   2195 		, ni->ni_txpower		/* txpower XXX */
   2196 		, rate, 1			/* series 0 rate/tries */
   2197 		, HAL_TXKEYIX_INVALID		/* no encryption */
   2198 		, antenna			/* antenna mode */
   2199 		, flags				/* no ack, veol for beacons */
   2200 		, 0				/* rts/cts rate */
   2201 		, 0				/* rts/cts duration */
   2202 	);
   2203 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
   2204 	ath_hal_filltxdesc(ah, ds
   2205 		, roundup(m->m_len, 4)		/* buffer length */
   2206 		, AH_TRUE			/* first segment */
   2207 		, AH_TRUE			/* last segment */
   2208 		, ds				/* first descriptor */
   2209 	);
   2210 
   2211 	/* NB: The desc swap function becomes void,
   2212 	 * if descriptor swapping is not enabled
   2213 	 */
   2214 	ath_desc_swap(ds);
   2215 
   2216 #undef USE_SHPREAMBLE
   2217 }
   2218 
   2219 /*
   2220  * Transmit a beacon frame at SWBA.  Dynamic updates to the
   2221  * frame contents are done as needed and the slot time is
   2222  * also adjusted based on current state.
   2223  */
   2224 static void
   2225 ath_beacon_proc(void *arg, int pending)
   2226 {
   2227 	struct ath_softc *sc = arg;
   2228 	struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
   2229 	struct ieee80211_node *ni = bf->bf_node;
   2230 	struct ieee80211com *ic = ni->ni_ic;
   2231 	struct ath_hal *ah = sc->sc_ah;
   2232 	struct mbuf *m;
   2233 	int ncabq, error, otherant;
   2234 
   2235 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
   2236 		__func__, pending);
   2237 
   2238 	if (ic->ic_opmode == IEEE80211_M_STA ||
   2239 	    ic->ic_opmode == IEEE80211_M_MONITOR ||
   2240 	    bf == NULL || bf->bf_m == NULL) {
   2241 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
   2242 			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
   2243 		return;
   2244 	}
   2245 	/*
   2246 	 * Check if the previous beacon has gone out.  If
   2247 	 * not don't try to post another, skip this period
   2248 	 * and wait for the next.  Missed beacons indicate
   2249 	 * a problem and should not occur.  If we miss too
   2250 	 * many consecutive beacons reset the device.
   2251 	 */
   2252 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
   2253 		sc->sc_bmisscount++;
   2254 		DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
   2255 			"%s: missed %u consecutive beacons\n",
   2256 			__func__, sc->sc_bmisscount);
   2257 		if (sc->sc_bmisscount > 3)		/* NB: 3 is a guess */
   2258 			TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask);
   2259 		return;
   2260 	}
   2261 	if (sc->sc_bmisscount != 0) {
   2262 		DPRINTF(sc, ATH_DEBUG_BEACON,
   2263 			"%s: resume beacon xmit after %u misses\n",
   2264 			__func__, sc->sc_bmisscount);
   2265 		sc->sc_bmisscount = 0;
   2266 	}
   2267 
   2268 	/*
   2269 	 * Update dynamic beacon contents.  If this returns
   2270 	 * non-zero then we need to remap the memory because
   2271 	 * the beacon frame changed size (probably because
   2272 	 * of the TIM bitmap).
   2273 	 */
   2274 	m = bf->bf_m;
   2275 	ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
   2276 	if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
   2277 		/* XXX too conservative? */
   2278 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   2279 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
   2280 					     BUS_DMA_NOWAIT);
   2281 		if (error != 0) {
   2282 			if_printf(&sc->sc_if,
   2283 			    "%s: bus_dmamap_load_mbuf failed, error %u\n",
   2284 			    __func__, error);
   2285 			return;
   2286 		}
   2287 	}
   2288 
   2289 	/*
   2290 	 * Handle slot time change when a non-ERP station joins/leaves
   2291 	 * an 11g network.  The 802.11 layer notifies us via callback,
   2292 	 * we mark updateslot, then wait one beacon before effecting
   2293 	 * the change.  This gives associated stations at least one
   2294 	 * beacon interval to note the state change.
   2295 	 */
   2296 	/* XXX locking */
   2297 	if (sc->sc_updateslot == UPDATE)
   2298 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
   2299 	else if (sc->sc_updateslot == COMMIT)
   2300 		ath_setslottime(sc);		/* commit change to h/w */
   2301 
   2302 	/*
   2303 	 * Check recent per-antenna transmit statistics and flip
   2304 	 * the default antenna if noticeably more frames went out
   2305 	 * on the non-default antenna.
   2306 	 * XXX assumes 2 anntenae
   2307 	 */
   2308 	otherant = sc->sc_defant & 1 ? 2 : 1;
   2309 	if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
   2310 		ath_setdefantenna(sc, otherant);
   2311 	sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
   2312 
   2313 	/*
   2314 	 * Construct tx descriptor.
   2315 	 */
   2316 	ath_beacon_setup(sc, bf);
   2317 
   2318 	/*
   2319 	 * Stop any current dma and put the new frame on the queue.
   2320 	 * This should never fail since we check above that no frames
   2321 	 * are still pending on the queue.
   2322 	 */
   2323 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
   2324 		DPRINTF(sc, ATH_DEBUG_ANY,
   2325 			"%s: beacon queue %u did not stop?\n",
   2326 			__func__, sc->sc_bhalq);
   2327 	}
   2328 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   2329 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2330 
   2331 	/*
   2332 	 * Enable the CAB queue before the beacon queue to
   2333 	 * insure cab frames are triggered by this beacon.
   2334 	 */
   2335 	if (ncabq != 0 && (sc->sc_boff.bo_tim[4] & 1))	/* NB: only at DTIM */
   2336 		ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
   2337 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
   2338 	ath_hal_txstart(ah, sc->sc_bhalq);
   2339 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
   2340 	    "%s: TXDP[%u] = %" PRIx64 " (%p)\n", __func__,
   2341 	    sc->sc_bhalq, (uint64_t)bf->bf_daddr, bf->bf_desc);
   2342 
   2343 	sc->sc_stats.ast_be_xmit++;
   2344 }
   2345 
   2346 /*
   2347  * Reset the hardware after detecting beacons have stopped.
   2348  */
   2349 static void
   2350 ath_bstuck_proc(void *arg, int pending)
   2351 {
   2352 	struct ath_softc *sc = arg;
   2353 	struct ifnet *ifp = &sc->sc_if;
   2354 
   2355 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
   2356 		sc->sc_bmisscount);
   2357 	ath_reset(ifp);
   2358 }
   2359 
   2360 /*
   2361  * Reclaim beacon resources.
   2362  */
   2363 static void
   2364 ath_beacon_free(struct ath_softc *sc)
   2365 {
   2366 	struct ath_buf *bf;
   2367 
   2368 	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
   2369 		if (bf->bf_m != NULL) {
   2370 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   2371 			m_freem(bf->bf_m);
   2372 			bf->bf_m = NULL;
   2373 		}
   2374 		if (bf->bf_node != NULL) {
   2375 			ieee80211_free_node(bf->bf_node);
   2376 			bf->bf_node = NULL;
   2377 		}
   2378 	}
   2379 }
   2380 
   2381 /*
   2382  * Configure the beacon and sleep timers.
   2383  *
   2384  * When operating as an AP this resets the TSF and sets
   2385  * up the hardware to notify us when we need to issue beacons.
   2386  *
   2387  * When operating in station mode this sets up the beacon
   2388  * timers according to the timestamp of the last received
   2389  * beacon and the current TSF, configures PCF and DTIM
   2390  * handling, programs the sleep registers so the hardware
   2391  * will wakeup in time to receive beacons, and configures
   2392  * the beacon miss handling so we'll receive a BMISS
   2393  * interrupt when we stop seeing beacons from the AP
   2394  * we've associated with.
   2395  */
   2396 static void
   2397 ath_beacon_config(struct ath_softc *sc)
   2398 {
   2399 #define	TSF_TO_TU(_h,_l) \
   2400 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
   2401 #define	FUDGE	2
   2402 	struct ath_hal *ah = sc->sc_ah;
   2403 	struct ieee80211com *ic = &sc->sc_ic;
   2404 	struct ieee80211_node *ni = ic->ic_bss;
   2405 	u_int32_t nexttbtt, intval, tsftu;
   2406 	u_int64_t tsf;
   2407 
   2408 	/* extract tstamp from last beacon and convert to TU */
   2409 	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
   2410 			     LE_READ_4(ni->ni_tstamp.data));
   2411 	/* NB: the beacon interval is kept internally in TU's */
   2412 	intval = ni->ni_intval & HAL_BEACON_PERIOD;
   2413 	if (nexttbtt == 0)		/* e.g. for ap mode */
   2414 		nexttbtt = intval;
   2415 	else if (intval)		/* NB: can be 0 for monitor mode */
   2416 		nexttbtt = roundup(nexttbtt, intval);
   2417 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
   2418 		__func__, nexttbtt, intval, ni->ni_intval);
   2419 	if (ic->ic_opmode == IEEE80211_M_STA) {
   2420 		HAL_BEACON_STATE bs;
   2421 		int dtimperiod, dtimcount;
   2422 		int cfpperiod, cfpcount;
   2423 
   2424 		/*
   2425 		 * Setup dtim and cfp parameters according to
   2426 		 * last beacon we received (which may be none).
   2427 		 */
   2428 		dtimperiod = ni->ni_dtim_period;
   2429 		if (dtimperiod <= 0)		/* NB: 0 if not known */
   2430 			dtimperiod = 1;
   2431 		dtimcount = ni->ni_dtim_count;
   2432 		if (dtimcount >= dtimperiod)	/* NB: sanity check */
   2433 			dtimcount = 0;		/* XXX? */
   2434 		cfpperiod = 1;			/* NB: no PCF support yet */
   2435 		cfpcount = 0;
   2436 		/*
   2437 		 * Pull nexttbtt forward to reflect the current
   2438 		 * TSF and calculate dtim+cfp state for the result.
   2439 		 */
   2440 		tsf = ath_hal_gettsf64(ah);
   2441 		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
   2442 		do {
   2443 			nexttbtt += intval;
   2444 			if (--dtimcount < 0) {
   2445 				dtimcount = dtimperiod - 1;
   2446 				if (--cfpcount < 0)
   2447 					cfpcount = cfpperiod - 1;
   2448 			}
   2449 		} while (nexttbtt < tsftu);
   2450 		memset(&bs, 0, sizeof(bs));
   2451 		bs.bs_intval = intval;
   2452 		bs.bs_nexttbtt = nexttbtt;
   2453 		bs.bs_dtimperiod = dtimperiod*intval;
   2454 		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
   2455 		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
   2456 		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
   2457 		bs.bs_cfpmaxduration = 0;
   2458 #if 0
   2459 		/*
   2460 		 * The 802.11 layer records the offset to the DTIM
   2461 		 * bitmap while receiving beacons; use it here to
   2462 		 * enable h/w detection of our AID being marked in
   2463 		 * the bitmap vector (to indicate frames for us are
   2464 		 * pending at the AP).
   2465 		 * XXX do DTIM handling in s/w to WAR old h/w bugs
   2466 		 * XXX enable based on h/w rev for newer chips
   2467 		 */
   2468 		bs.bs_timoffset = ni->ni_timoff;
   2469 #endif
   2470 		/*
   2471 		 * Calculate the number of consecutive beacons to miss
   2472 		 * before taking a BMISS interrupt.  The configuration
   2473 		 * is specified in ms, so we need to convert that to
   2474 		 * TU's and then calculate based on the beacon interval.
   2475 		 * Note that we clamp the result to at most 10 beacons.
   2476 		 */
   2477 		bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
   2478 		if (bs.bs_bmissthreshold > 10)
   2479 			bs.bs_bmissthreshold = 10;
   2480 		else if (bs.bs_bmissthreshold <= 0)
   2481 			bs.bs_bmissthreshold = 1;
   2482 
   2483 		/*
   2484 		 * Calculate sleep duration.  The configuration is
   2485 		 * given in ms.  We insure a multiple of the beacon
   2486 		 * period is used.  Also, if the sleep duration is
   2487 		 * greater than the DTIM period then it makes senses
   2488 		 * to make it a multiple of that.
   2489 		 *
   2490 		 * XXX fixed at 100ms
   2491 		 */
   2492 		bs.bs_sleepduration =
   2493 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
   2494 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
   2495 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
   2496 
   2497 		DPRINTF(sc, ATH_DEBUG_BEACON,
   2498 			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
   2499 			, __func__
   2500 			, tsf, tsftu
   2501 			, bs.bs_intval
   2502 			, bs.bs_nexttbtt
   2503 			, bs.bs_dtimperiod
   2504 			, bs.bs_nextdtim
   2505 			, bs.bs_bmissthreshold
   2506 			, bs.bs_sleepduration
   2507 			, bs.bs_cfpperiod
   2508 			, bs.bs_cfpmaxduration
   2509 			, bs.bs_cfpnext
   2510 			, bs.bs_timoffset
   2511 		);
   2512 		ath_hal_intrset(ah, 0);
   2513 		ath_hal_beacontimers(ah, &bs);
   2514 		sc->sc_imask |= HAL_INT_BMISS;
   2515 		ath_hal_intrset(ah, sc->sc_imask);
   2516 	} else {
   2517 		ath_hal_intrset(ah, 0);
   2518 		if (nexttbtt == intval)
   2519 			intval |= HAL_BEACON_RESET_TSF;
   2520 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
   2521 			/*
   2522 			 * In IBSS mode enable the beacon timers but only
   2523 			 * enable SWBA interrupts if we need to manually
   2524 			 * prepare beacon frames.  Otherwise we use a
   2525 			 * self-linked tx descriptor and let the hardware
   2526 			 * deal with things.
   2527 			 */
   2528 			intval |= HAL_BEACON_ENA;
   2529 			if (!sc->sc_hasveol)
   2530 				sc->sc_imask |= HAL_INT_SWBA;
   2531 			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
   2532 				/*
   2533 				 * Pull nexttbtt forward to reflect
   2534 				 * the current TSF.
   2535 				 */
   2536 				tsf = ath_hal_gettsf64(ah);
   2537 				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
   2538 				do {
   2539 					nexttbtt += intval;
   2540 				} while (nexttbtt < tsftu);
   2541 			}
   2542 			ath_beaconq_config(sc);
   2543 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   2544 			/*
   2545 			 * In AP mode we enable the beacon timers and
   2546 			 * SWBA interrupts to prepare beacon frames.
   2547 			 */
   2548 			intval |= HAL_BEACON_ENA;
   2549 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
   2550 			ath_beaconq_config(sc);
   2551 		}
   2552 		ath_hal_beaconinit(ah, nexttbtt, intval);
   2553 		sc->sc_bmisscount = 0;
   2554 		ath_hal_intrset(ah, sc->sc_imask);
   2555 		/*
   2556 		 * When using a self-linked beacon descriptor in
   2557 		 * ibss mode load it once here.
   2558 		 */
   2559 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
   2560 			ath_beacon_proc(sc, 0);
   2561 	}
   2562 	sc->sc_syncbeacon = 0;
   2563 #undef UNDEF
   2564 #undef TSF_TO_TU
   2565 }
   2566 
   2567 static int
   2568 ath_descdma_setup(struct ath_softc *sc,
   2569 	struct ath_descdma *dd, ath_bufhead *head,
   2570 	const char *name, int nbuf, int ndesc)
   2571 {
   2572 #define	DS2PHYS(_dd, _ds) \
   2573 	((_dd)->dd_desc_paddr + ((char *)(_ds) - (char *)(_dd)->dd_desc))
   2574 	struct ifnet *ifp = &sc->sc_if;
   2575 	struct ath_desc *ds;
   2576 	struct ath_buf *bf;
   2577 	int i, bsize, error;
   2578 
   2579 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
   2580 	    __func__, name, nbuf, ndesc);
   2581 
   2582 	dd->dd_name = name;
   2583 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
   2584 
   2585 	/*
   2586 	 * Setup DMA descriptor area.
   2587 	 */
   2588 	dd->dd_dmat = sc->sc_dmat;
   2589 
   2590 	error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE,
   2591 	    0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0);
   2592 
   2593 	if (error != 0) {
   2594 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
   2595 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
   2596 		goto fail0;
   2597 	}
   2598 
   2599 	error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg,
   2600 	    dd->dd_desc_len, (void **)&dd->dd_desc, BUS_DMA_COHERENT);
   2601 	if (error != 0) {
   2602 		if_printf(ifp, "unable to map %u %s descriptors, error = %u\n",
   2603 		    nbuf * ndesc, dd->dd_name, error);
   2604 		goto fail1;
   2605 	}
   2606 
   2607 	/* allocate descriptors */
   2608 	error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1,
   2609 	    dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap);
   2610 	if (error != 0) {
   2611 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
   2612 			"error %u\n", dd->dd_name, error);
   2613 		goto fail2;
   2614 	}
   2615 
   2616 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc,
   2617 	    dd->dd_desc_len, NULL, BUS_DMA_NOWAIT);
   2618 	if (error != 0) {
   2619 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
   2620 			dd->dd_name, error);
   2621 		goto fail3;
   2622 	}
   2623 
   2624 	ds = dd->dd_desc;
   2625 	dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr;
   2626 	DPRINTF(sc, ATH_DEBUG_RESET,
   2627 	    "%s: %s DMA map: %p (%lu) -> %" PRIx64 " (%lu)\n",
   2628 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
   2629 	    (uint64_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
   2630 
   2631 	/* allocate rx buffers */
   2632 	bsize = sizeof(struct ath_buf) * nbuf;
   2633 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
   2634 	if (bf == NULL) {
   2635 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
   2636 			dd->dd_name, bsize);
   2637 		goto fail4;
   2638 	}
   2639 	dd->dd_bufptr = bf;
   2640 
   2641 	STAILQ_INIT(head);
   2642 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
   2643 		bf->bf_desc = ds;
   2644 		bf->bf_daddr = DS2PHYS(dd, ds);
   2645 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc,
   2646 				MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap);
   2647 		if (error != 0) {
   2648 			if_printf(ifp, "unable to create dmamap for %s "
   2649 				"buffer %u, error %u\n", dd->dd_name, i, error);
   2650 			ath_descdma_cleanup(sc, dd, head);
   2651 			return error;
   2652 		}
   2653 		STAILQ_INSERT_TAIL(head, bf, bf_list);
   2654 	}
   2655 	return 0;
   2656 fail4:
   2657 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
   2658 fail3:
   2659 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
   2660 fail2:
   2661 	bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
   2662 fail1:
   2663 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
   2664 fail0:
   2665 	memset(dd, 0, sizeof(*dd));
   2666 	return error;
   2667 #undef DS2PHYS
   2668 }
   2669 
   2670 static void
   2671 ath_descdma_cleanup(struct ath_softc *sc,
   2672 	struct ath_descdma *dd, ath_bufhead *head)
   2673 {
   2674 	struct ath_buf *bf;
   2675 	struct ieee80211_node *ni;
   2676 
   2677 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
   2678 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
   2679 	bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
   2680 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
   2681 
   2682 	STAILQ_FOREACH(bf, head, bf_list) {
   2683 		if (bf->bf_m) {
   2684 			m_freem(bf->bf_m);
   2685 			bf->bf_m = NULL;
   2686 		}
   2687 		if (bf->bf_dmamap != NULL) {
   2688 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
   2689 			bf->bf_dmamap = NULL;
   2690 		}
   2691 		ni = bf->bf_node;
   2692 		bf->bf_node = NULL;
   2693 		if (ni != NULL) {
   2694 			/*
   2695 			 * Reclaim node reference.
   2696 			 */
   2697 			ieee80211_free_node(ni);
   2698 		}
   2699 	}
   2700 
   2701 	STAILQ_INIT(head);
   2702 	free(dd->dd_bufptr, M_ATHDEV);
   2703 	memset(dd, 0, sizeof(*dd));
   2704 }
   2705 
   2706 static int
   2707 ath_desc_alloc(struct ath_softc *sc)
   2708 {
   2709 	int error;
   2710 
   2711 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
   2712 			"rx", ath_rxbuf, 1);
   2713 	if (error != 0)
   2714 		return error;
   2715 
   2716 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
   2717 			"tx", ath_txbuf, ATH_TXDESC);
   2718 	if (error != 0) {
   2719 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2720 		return error;
   2721 	}
   2722 
   2723 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
   2724 			"beacon", 1, 1);
   2725 	if (error != 0) {
   2726 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
   2727 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2728 		return error;
   2729 	}
   2730 	return 0;
   2731 }
   2732 
   2733 static void
   2734 ath_desc_free(struct ath_softc *sc)
   2735 {
   2736 
   2737 	if (sc->sc_bdma.dd_desc_len != 0)
   2738 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
   2739 	if (sc->sc_txdma.dd_desc_len != 0)
   2740 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
   2741 	if (sc->sc_rxdma.dd_desc_len != 0)
   2742 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2743 }
   2744 
   2745 static struct ieee80211_node *
   2746 ath_node_alloc(struct ieee80211_node_table *nt)
   2747 {
   2748 	struct ieee80211com *ic = nt->nt_ic;
   2749 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   2750 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
   2751 	struct ath_node *an;
   2752 
   2753 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
   2754 	if (an == NULL) {
   2755 		/* XXX stat+msg */
   2756 		return NULL;
   2757 	}
   2758 	an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
   2759 	ath_rate_node_init(sc, an);
   2760 
   2761 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
   2762 	return &an->an_node;
   2763 }
   2764 
   2765 static void
   2766 ath_node_free(struct ieee80211_node *ni)
   2767 {
   2768 	struct ieee80211com *ic = ni->ni_ic;
   2769         struct ath_softc *sc = ic->ic_ifp->if_softc;
   2770 
   2771 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
   2772 
   2773 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
   2774 	sc->sc_node_free(ni);
   2775 }
   2776 
   2777 static u_int8_t
   2778 ath_node_getrssi(const struct ieee80211_node *ni)
   2779 {
   2780 #define	HAL_EP_RND(x, mul) \
   2781 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
   2782 	u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
   2783 	int32_t rssi;
   2784 
   2785 	/*
   2786 	 * When only one frame is received there will be no state in
   2787 	 * avgrssi so fallback on the value recorded by the 802.11 layer.
   2788 	 */
   2789 	if (avgrssi != ATH_RSSI_DUMMY_MARKER)
   2790 		rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
   2791 	else
   2792 		rssi = ni->ni_rssi;
   2793 	return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
   2794 #undef HAL_EP_RND
   2795 }
   2796 
   2797 static int
   2798 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
   2799 {
   2800 	struct ath_hal *ah = sc->sc_ah;
   2801 	int error;
   2802 	struct mbuf *m;
   2803 	struct ath_desc *ds;
   2804 
   2805 	m = bf->bf_m;
   2806 	if (m == NULL) {
   2807 		/*
   2808 		 * NB: by assigning a page to the rx dma buffer we
   2809 		 * implicitly satisfy the Atheros requirement that
   2810 		 * this buffer be cache-line-aligned and sized to be
   2811 		 * multiple of the cache line size.  Not doing this
   2812 		 * causes weird stuff to happen (for the 5210 at least).
   2813 		 */
   2814 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
   2815 		if (m == NULL) {
   2816 			DPRINTF(sc, ATH_DEBUG_ANY,
   2817 				"%s: no mbuf/cluster\n", __func__);
   2818 			sc->sc_stats.ast_rx_nombuf++;
   2819 			return ENOMEM;
   2820 		}
   2821 		bf->bf_m = m;
   2822 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
   2823 
   2824 		error = bus_dmamap_load_mbuf(sc->sc_dmat,
   2825 					     bf->bf_dmamap, m,
   2826 					     BUS_DMA_NOWAIT);
   2827 		if (error != 0) {
   2828 			DPRINTF(sc, ATH_DEBUG_ANY,
   2829 			    "%s: bus_dmamap_load_mbuf failed; error %d\n",
   2830 			    __func__, error);
   2831 			sc->sc_stats.ast_rx_busdma++;
   2832 			return error;
   2833 		}
   2834 		KASSERT(bf->bf_nseg == 1,
   2835 			("multi-segment packet; nseg %u", bf->bf_nseg));
   2836 	}
   2837 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   2838 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2839 
   2840 	/*
   2841 	 * Setup descriptors.  For receive we always terminate
   2842 	 * the descriptor list with a self-linked entry so we'll
   2843 	 * not get overrun under high load (as can happen with a
   2844 	 * 5212 when ANI processing enables PHY error frames).
   2845 	 *
   2846 	 * To insure the last descriptor is self-linked we create
   2847 	 * each descriptor as self-linked and add it to the end.  As
   2848 	 * each additional descriptor is added the previous self-linked
   2849 	 * entry is ``fixed'' naturally.  This should be safe even
   2850 	 * if DMA is happening.  When processing RX interrupts we
   2851 	 * never remove/process the last, self-linked, entry on the
   2852 	 * descriptor list.  This insures the hardware always has
   2853 	 * someplace to write a new frame.
   2854 	 */
   2855 	ds = bf->bf_desc;
   2856 	ds->ds_link = HTOAH32(bf->bf_daddr);	/* link to self */
   2857 	ds->ds_data = bf->bf_segs[0].ds_addr;
   2858 	ds->ds_vdata = mtod(m, void *);	/* for radar */
   2859 	ath_hal_setuprxdesc(ah, ds
   2860 		, m->m_len		/* buffer size */
   2861 		, 0
   2862 	);
   2863 
   2864 	if (sc->sc_rxlink != NULL)
   2865 		*sc->sc_rxlink = bf->bf_daddr;
   2866 	sc->sc_rxlink = &ds->ds_link;
   2867 	return 0;
   2868 }
   2869 
   2870 /*
   2871  * Extend 15-bit time stamp from rx descriptor to
   2872  * a full 64-bit TSF using the specified TSF.
   2873  */
   2874 static inline u_int64_t
   2875 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
   2876 {
   2877 	if ((tsf & 0x7fff) < rstamp)
   2878 		tsf -= 0x8000;
   2879 	return ((tsf &~ 0x7fff) | rstamp);
   2880 }
   2881 
   2882 /*
   2883  * Intercept management frames to collect beacon rssi data
   2884  * and to do ibss merges.
   2885  */
   2886 static void
   2887 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
   2888 	struct ieee80211_node *ni,
   2889 	int subtype, int rssi, u_int32_t rstamp)
   2890 {
   2891 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   2892 
   2893 	/*
   2894 	 * Call up first so subsequent work can use information
   2895 	 * potentially stored in the node (e.g. for ibss merge).
   2896 	 */
   2897 	sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
   2898 	switch (subtype) {
   2899 	case IEEE80211_FC0_SUBTYPE_BEACON:
   2900 		/* update rssi statistics for use by the hal */
   2901 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
   2902 		if (sc->sc_syncbeacon &&
   2903 		    ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) {
   2904 			/*
   2905 			 * Resync beacon timers using the tsf of the beacon
   2906 			 * frame we just received.
   2907 			 */
   2908 			ath_beacon_config(sc);
   2909 		}
   2910 		/* fall thru... */
   2911 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
   2912 		if (ic->ic_opmode == IEEE80211_M_IBSS &&
   2913 		    ic->ic_state == IEEE80211_S_RUN) {
   2914 			u_int64_t tsf = ath_extend_tsf(rstamp,
   2915 				ath_hal_gettsf64(sc->sc_ah));
   2916 
   2917 			/*
   2918 			 * Handle ibss merge as needed; check the tsf on the
   2919 			 * frame before attempting the merge.  The 802.11 spec
   2920 			 * says the station should change it's bssid to match
   2921 			 * the oldest station with the same ssid, where oldest
   2922 			 * is determined by the tsf.  Note that hardware
   2923 			 * reconfiguration happens through callback to
   2924 			 * ath_newstate as the state machine will go from
   2925 			 * RUN -> RUN when this happens.
   2926 			 */
   2927 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
   2928 				DPRINTF(sc, ATH_DEBUG_STATE,
   2929 				    "ibss merge, rstamp %u tsf %ju "
   2930 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
   2931 				    (uintmax_t)ni->ni_tstamp.tsf);
   2932 				(void) ieee80211_ibss_merge(ni);
   2933 			}
   2934 		}
   2935 		break;
   2936 	}
   2937 }
   2938 
   2939 /*
   2940  * Set the default antenna.
   2941  */
   2942 static void
   2943 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
   2944 {
   2945 	struct ath_hal *ah = sc->sc_ah;
   2946 
   2947 	/* XXX block beacon interrupts */
   2948 	ath_hal_setdefantenna(ah, antenna);
   2949 	if (sc->sc_defant != antenna)
   2950 		sc->sc_stats.ast_ant_defswitch++;
   2951 	sc->sc_defant = antenna;
   2952 	sc->sc_rxotherant = 0;
   2953 }
   2954 
   2955 static void
   2956 ath_rx_proc(void *arg, int npending)
   2957 {
   2958 #define	PA2DESC(_sc, _pa) \
   2959 	((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
   2960 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
   2961 	struct ath_softc *sc = arg;
   2962 	struct ath_buf *bf;
   2963 	struct ieee80211com *ic = &sc->sc_ic;
   2964 	struct ifnet *ifp = &sc->sc_if;
   2965 	struct ath_hal *ah = sc->sc_ah;
   2966 	struct ath_desc *ds;
   2967 	struct mbuf *m;
   2968 	struct ieee80211_node *ni;
   2969 	struct ath_node *an;
   2970 	int len, type, ngood;
   2971 	u_int phyerr;
   2972 	HAL_STATUS status;
   2973 	int16_t nf;
   2974 	u_int64_t tsf;
   2975 
   2976 	NET_LOCK_GIANT();		/* XXX */
   2977 
   2978 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
   2979 	ngood = 0;
   2980 	nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
   2981 	tsf = ath_hal_gettsf64(ah);
   2982 	do {
   2983 		bf = STAILQ_FIRST(&sc->sc_rxbuf);
   2984 		if (bf == NULL) {		/* NB: shouldn't happen */
   2985 			if_printf(ifp, "%s: no buffer!\n", __func__);
   2986 			break;
   2987 		}
   2988 		ds = bf->bf_desc;
   2989 		if (ds->ds_link == bf->bf_daddr) {
   2990 			/* NB: never process the self-linked entry at the end */
   2991 			break;
   2992 		}
   2993 		m = bf->bf_m;
   2994 		if (m == NULL) {		/* NB: shouldn't happen */
   2995 			if_printf(ifp, "%s: no mbuf!\n", __func__);
   2996 			break;
   2997 		}
   2998 		/* XXX sync descriptor memory */
   2999 		/*
   3000 		 * Must provide the virtual address of the current
   3001 		 * descriptor, the physical address, and the virtual
   3002 		 * address of the next descriptor in the h/w chain.
   3003 		 * This allows the HAL to look ahead to see if the
   3004 		 * hardware is done with a descriptor by checking the
   3005 		 * done bit in the following descriptor and the address
   3006 		 * of the current descriptor the DMA engine is working
   3007 		 * on.  All this is necessary because of our use of
   3008 		 * a self-linked list to avoid rx overruns.
   3009 		 */
   3010 		status = ath_hal_rxprocdesc(ah, ds,
   3011 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
   3012 #ifdef AR_DEBUG
   3013 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
   3014 			ath_printrxbuf(bf, status == HAL_OK);
   3015 #endif
   3016 		if (status == HAL_EINPROGRESS)
   3017 			break;
   3018 		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
   3019 		if (ds->ds_rxstat.rs_more) {
   3020 			/*
   3021 			 * Frame spans multiple descriptors; this
   3022 			 * cannot happen yet as we don't support
   3023 			 * jumbograms.  If not in monitor mode,
   3024 			 * discard the frame.
   3025 			 */
   3026 			if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   3027 				sc->sc_stats.ast_rx_toobig++;
   3028 				goto rx_next;
   3029 			}
   3030 			/* fall thru for monitor mode handling... */
   3031 		} else if (ds->ds_rxstat.rs_status != 0) {
   3032 			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
   3033 				sc->sc_stats.ast_rx_crcerr++;
   3034 			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
   3035 				sc->sc_stats.ast_rx_fifoerr++;
   3036 			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
   3037 				sc->sc_stats.ast_rx_phyerr++;
   3038 				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
   3039 				sc->sc_stats.ast_rx_phy[phyerr]++;
   3040 				goto rx_next;
   3041 			}
   3042 			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
   3043 				/*
   3044 				 * Decrypt error.  If the error occurred
   3045 				 * because there was no hardware key, then
   3046 				 * let the frame through so the upper layers
   3047 				 * can process it.  This is necessary for 5210
   3048 				 * parts which have no way to setup a ``clear''
   3049 				 * key cache entry.
   3050 				 *
   3051 				 * XXX do key cache faulting
   3052 				 */
   3053 				if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
   3054 					goto rx_accept;
   3055 				sc->sc_stats.ast_rx_badcrypt++;
   3056 			}
   3057 			if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
   3058 				sc->sc_stats.ast_rx_badmic++;
   3059 				/*
   3060 				 * Do minimal work required to hand off
   3061 				 * the 802.11 header for notifcation.
   3062 				 */
   3063 				/* XXX frag's and qos frames */
   3064 				len = ds->ds_rxstat.rs_datalen;
   3065 				if (len >= sizeof (struct ieee80211_frame)) {
   3066 					bus_dmamap_sync(sc->sc_dmat,
   3067 					    bf->bf_dmamap,
   3068 					    0, bf->bf_dmamap->dm_mapsize,
   3069 					    BUS_DMASYNC_POSTREAD);
   3070 					ieee80211_notify_michael_failure(ic,
   3071 					    mtod(m, struct ieee80211_frame *),
   3072 					    sc->sc_splitmic ?
   3073 					        ds->ds_rxstat.rs_keyix-32 :
   3074 					        ds->ds_rxstat.rs_keyix
   3075 					);
   3076 				}
   3077 			}
   3078 			ifp->if_ierrors++;
   3079 			/*
   3080 			 * Reject error frames, we normally don't want
   3081 			 * to see them in monitor mode (in monitor mode
   3082 			 * allow through packets that have crypto problems).
   3083 			 */
   3084 			if ((ds->ds_rxstat.rs_status &~
   3085 				(HAL_RXERR_DECRYPT|HAL_RXERR_MIC)) ||
   3086 			    sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
   3087 				goto rx_next;
   3088 		}
   3089 rx_accept:
   3090 		/*
   3091 		 * Sync and unmap the frame.  At this point we're
   3092 		 * committed to passing the mbuf somewhere so clear
   3093 		 * bf_m; this means a new sk_buff must be allocated
   3094 		 * when the rx descriptor is setup again to receive
   3095 		 * another frame.
   3096 		 */
   3097 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
   3098 		    0, bf->bf_dmamap->dm_mapsize,
   3099 		    BUS_DMASYNC_POSTREAD);
   3100 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   3101 		bf->bf_m = NULL;
   3102 
   3103 		m->m_pkthdr.rcvif = ifp;
   3104 		len = ds->ds_rxstat.rs_datalen;
   3105 		m->m_pkthdr.len = m->m_len = len;
   3106 
   3107 		sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
   3108 
   3109 #if NBPFILTER > 0
   3110 		if (sc->sc_drvbpf) {
   3111 			u_int8_t rix;
   3112 
   3113 			/*
   3114 			 * Discard anything shorter than an ack or cts.
   3115 			 */
   3116 			if (len < IEEE80211_ACK_LEN) {
   3117 				DPRINTF(sc, ATH_DEBUG_RECV,
   3118 					"%s: runt packet %d\n",
   3119 					__func__, len);
   3120 				sc->sc_stats.ast_rx_tooshort++;
   3121 				m_freem(m);
   3122 				goto rx_next;
   3123 			}
   3124 			rix = ds->ds_rxstat.rs_rate;
   3125 			sc->sc_rx_th.wr_tsf = htole64(
   3126 				ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf));
   3127 			sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
   3128 			sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
   3129 			sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf;
   3130 			sc->sc_rx_th.wr_antnoise = nf;
   3131 			sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
   3132 
   3133 			bpf_mtap2(sc->sc_drvbpf,
   3134 				&sc->sc_rx_th, sc->sc_rx_th_len, m);
   3135 		}
   3136 #endif
   3137 
   3138 		/*
   3139 		 * From this point on we assume the frame is at least
   3140 		 * as large as ieee80211_frame_min; verify that.
   3141 		 */
   3142 		if (len < IEEE80211_MIN_LEN) {
   3143 			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
   3144 				__func__, len);
   3145 			sc->sc_stats.ast_rx_tooshort++;
   3146 			m_freem(m);
   3147 			goto rx_next;
   3148 		}
   3149 
   3150 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
   3151 			ieee80211_dump_pkt(mtod(m, void *), len,
   3152 				   sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
   3153 				   ds->ds_rxstat.rs_rssi);
   3154 		}
   3155 
   3156 		m_adj(m, -IEEE80211_CRC_LEN);
   3157 
   3158 		/*
   3159 		 * Locate the node for sender, track state, and then
   3160 		 * pass the (referenced) node up to the 802.11 layer
   3161 		 * for its use.
   3162 		 */
   3163 		ni = ieee80211_find_rxnode_withkey(ic,
   3164 			mtod(m, const struct ieee80211_frame_min *),
   3165 			ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
   3166 				IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
   3167 		/*
   3168 		 * Track rx rssi and do any rx antenna management.
   3169 		 */
   3170 		an = ATH_NODE(ni);
   3171 		ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
   3172 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi);
   3173 		/*
   3174 		 * Send frame up for processing.
   3175 		 */
   3176 		type = ieee80211_input(ic, m, ni,
   3177 			ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
   3178 		ieee80211_free_node(ni);
   3179 		if (sc->sc_diversity) {
   3180 			/*
   3181 			 * When using fast diversity, change the default rx
   3182 			 * antenna if diversity chooses the other antenna 3
   3183 			 * times in a row.
   3184 			 */
   3185 			if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
   3186 				if (++sc->sc_rxotherant >= 3)
   3187 					ath_setdefantenna(sc,
   3188 						ds->ds_rxstat.rs_antenna);
   3189 			} else
   3190 				sc->sc_rxotherant = 0;
   3191 		}
   3192 		if (sc->sc_softled) {
   3193 			/*
   3194 			 * Blink for any data frame.  Otherwise do a
   3195 			 * heartbeat-style blink when idle.  The latter
   3196 			 * is mainly for station mode where we depend on
   3197 			 * periodic beacon frames to trigger the poll event.
   3198 			 */
   3199 			if (type == IEEE80211_FC0_TYPE_DATA) {
   3200 				sc->sc_rxrate = ds->ds_rxstat.rs_rate;
   3201 				ath_led_event(sc, ATH_LED_RX);
   3202 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
   3203 				ath_led_event(sc, ATH_LED_POLL);
   3204 		}
   3205 		/*
   3206 		 * Arrange to update the last rx timestamp only for
   3207 		 * frames from our ap when operating in station mode.
   3208 		 * This assumes the rx key is always setup when associated.
   3209 		 */
   3210 		if (ic->ic_opmode == IEEE80211_M_STA &&
   3211 		    ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID)
   3212 			ngood++;
   3213 rx_next:
   3214 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
   3215 	} while (ath_rxbuf_init(sc, bf) == 0);
   3216 
   3217 	/* rx signal state monitoring */
   3218 	ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
   3219 	if (ath_hal_radar_event(ah))
   3220 		TASK_RUN_OR_ENQUEUE(&sc->sc_radartask);
   3221 	if (ngood)
   3222 		sc->sc_lastrx = tsf;
   3223 
   3224 #ifdef __NetBSD__
   3225 	/* XXX Why isn't this necessary in FreeBSD? */
   3226 	if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
   3227 		ath_start(ifp);
   3228 #endif /* __NetBSD__ */
   3229 
   3230 	NET_UNLOCK_GIANT();		/* XXX */
   3231 #undef PA2DESC
   3232 }
   3233 
   3234 /*
   3235  * Setup a h/w transmit queue.
   3236  */
   3237 static struct ath_txq *
   3238 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
   3239 {
   3240 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   3241 	struct ath_hal *ah = sc->sc_ah;
   3242 	HAL_TXQ_INFO qi;
   3243 	int qnum;
   3244 
   3245 	memset(&qi, 0, sizeof(qi));
   3246 	qi.tqi_subtype = subtype;
   3247 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
   3248 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
   3249 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
   3250 	/*
   3251 	 * Enable interrupts only for EOL and DESC conditions.
   3252 	 * We mark tx descriptors to receive a DESC interrupt
   3253 	 * when a tx queue gets deep; otherwise waiting for the
   3254 	 * EOL to reap descriptors.  Note that this is done to
   3255 	 * reduce interrupt load and this only defers reaping
   3256 	 * descriptors, never transmitting frames.  Aside from
   3257 	 * reducing interrupts this also permits more concurrency.
   3258 	 * The only potential downside is if the tx queue backs
   3259 	 * up in which case the top half of the kernel may backup
   3260 	 * due to a lack of tx descriptors.
   3261 	 */
   3262 	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
   3263 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
   3264 	if (qnum == -1) {
   3265 		/*
   3266 		 * NB: don't print a message, this happens
   3267 		 * normally on parts with too few tx queues
   3268 		 */
   3269 		return NULL;
   3270 	}
   3271 	if (qnum >= N(sc->sc_txq)) {
   3272 		device_printf(sc->sc_dev,
   3273 			"hal qnum %u out of range, max %zu!\n",
   3274 			qnum, N(sc->sc_txq));
   3275 		ath_hal_releasetxqueue(ah, qnum);
   3276 		return NULL;
   3277 	}
   3278 	if (!ATH_TXQ_SETUP(sc, qnum)) {
   3279 		struct ath_txq *txq = &sc->sc_txq[qnum];
   3280 
   3281 		txq->axq_qnum = qnum;
   3282 		txq->axq_depth = 0;
   3283 		txq->axq_intrcnt = 0;
   3284 		txq->axq_link = NULL;
   3285 		STAILQ_INIT(&txq->axq_q);
   3286 		ATH_TXQ_LOCK_INIT(sc, txq);
   3287 		sc->sc_txqsetup |= 1<<qnum;
   3288 	}
   3289 	return &sc->sc_txq[qnum];
   3290 #undef N
   3291 }
   3292 
   3293 /*
   3294  * Setup a hardware data transmit queue for the specified
   3295  * access control.  The hal may not support all requested
   3296  * queues in which case it will return a reference to a
   3297  * previously setup queue.  We record the mapping from ac's
   3298  * to h/w queues for use by ath_tx_start and also track
   3299  * the set of h/w queues being used to optimize work in the
   3300  * transmit interrupt handler and related routines.
   3301  */
   3302 static int
   3303 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
   3304 {
   3305 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   3306 	struct ath_txq *txq;
   3307 
   3308 	if (ac >= N(sc->sc_ac2q)) {
   3309 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
   3310 			ac, N(sc->sc_ac2q));
   3311 		return 0;
   3312 	}
   3313 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
   3314 	if (txq != NULL) {
   3315 		sc->sc_ac2q[ac] = txq;
   3316 		return 1;
   3317 	} else
   3318 		return 0;
   3319 #undef N
   3320 }
   3321 
   3322 /*
   3323  * Update WME parameters for a transmit queue.
   3324  */
   3325 static int
   3326 ath_txq_update(struct ath_softc *sc, int ac)
   3327 {
   3328 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
   3329 #define	ATH_TXOP_TO_US(v)		(v<<5)
   3330 	struct ieee80211com *ic = &sc->sc_ic;
   3331 	struct ath_txq *txq = sc->sc_ac2q[ac];
   3332 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
   3333 	struct ath_hal *ah = sc->sc_ah;
   3334 	HAL_TXQ_INFO qi;
   3335 
   3336 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
   3337 	qi.tqi_aifs = wmep->wmep_aifsn;
   3338 	qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
   3339 	qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
   3340 	qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
   3341 
   3342 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
   3343 		device_printf(sc->sc_dev, "unable to update hardware queue "
   3344 			"parameters for %s traffic!\n",
   3345 			ieee80211_wme_acnames[ac]);
   3346 		return 0;
   3347 	} else {
   3348 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
   3349 		return 1;
   3350 	}
   3351 #undef ATH_TXOP_TO_US
   3352 #undef ATH_EXPONENT_TO_VALUE
   3353 }
   3354 
   3355 /*
   3356  * Callback from the 802.11 layer to update WME parameters.
   3357  */
   3358 static int
   3359 ath_wme_update(struct ieee80211com *ic)
   3360 {
   3361 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   3362 
   3363 	return !ath_txq_update(sc, WME_AC_BE) ||
   3364 	    !ath_txq_update(sc, WME_AC_BK) ||
   3365 	    !ath_txq_update(sc, WME_AC_VI) ||
   3366 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
   3367 }
   3368 
   3369 /*
   3370  * Reclaim resources for a setup queue.
   3371  */
   3372 static void
   3373 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
   3374 {
   3375 
   3376 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
   3377 	ATH_TXQ_LOCK_DESTROY(txq);
   3378 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
   3379 }
   3380 
   3381 /*
   3382  * Reclaim all tx queue resources.
   3383  */
   3384 static void
   3385 ath_tx_cleanup(struct ath_softc *sc)
   3386 {
   3387 	int i;
   3388 
   3389 	ATH_TXBUF_LOCK_DESTROY(sc);
   3390 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   3391 		if (ATH_TXQ_SETUP(sc, i))
   3392 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
   3393 }
   3394 
   3395 /*
   3396  * Defragment an mbuf chain, returning at most maxfrags separate
   3397  * mbufs+clusters.  If this is not possible NULL is returned and
   3398  * the original mbuf chain is left in it's present (potentially
   3399  * modified) state.  We use two techniques: collapsing consecutive
   3400  * mbufs and replacing consecutive mbufs by a cluster.
   3401  */
   3402 static struct mbuf *
   3403 ath_defrag(struct mbuf *m0, int how, int maxfrags)
   3404 {
   3405 	struct mbuf *m, *n, *n2, **prev;
   3406 	u_int curfrags;
   3407 
   3408 	/*
   3409 	 * Calculate the current number of frags.
   3410 	 */
   3411 	curfrags = 0;
   3412 	for (m = m0; m != NULL; m = m->m_next)
   3413 		curfrags++;
   3414 	/*
   3415 	 * First, try to collapse mbufs.  Note that we always collapse
   3416 	 * towards the front so we don't need to deal with moving the
   3417 	 * pkthdr.  This may be suboptimal if the first mbuf has much
   3418 	 * less data than the following.
   3419 	 */
   3420 	m = m0;
   3421 again:
   3422 	for (;;) {
   3423 		n = m->m_next;
   3424 		if (n == NULL)
   3425 			break;
   3426 		if ((m->m_flags & M_RDONLY) == 0 &&
   3427 		    n->m_len < M_TRAILINGSPACE(m)) {
   3428 			bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
   3429 				n->m_len);
   3430 			m->m_len += n->m_len;
   3431 			m->m_next = n->m_next;
   3432 			m_free(n);
   3433 			if (--curfrags <= maxfrags)
   3434 				return m0;
   3435 		} else
   3436 			m = n;
   3437 	}
   3438 	KASSERT(maxfrags > 1,
   3439 		("maxfrags %u, but normal collapse failed", maxfrags));
   3440 	/*
   3441 	 * Collapse consecutive mbufs to a cluster.
   3442 	 */
   3443 	prev = &m0->m_next;		/* NB: not the first mbuf */
   3444 	while ((n = *prev) != NULL) {
   3445 		if ((n2 = n->m_next) != NULL &&
   3446 		    n->m_len + n2->m_len < MCLBYTES) {
   3447 			m = m_getcl(how, MT_DATA, 0);
   3448 			if (m == NULL)
   3449 				goto bad;
   3450 			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
   3451 			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
   3452 				n2->m_len);
   3453 			m->m_len = n->m_len + n2->m_len;
   3454 			m->m_next = n2->m_next;
   3455 			*prev = m;
   3456 			m_free(n);
   3457 			m_free(n2);
   3458 			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
   3459 				return m0;
   3460 			/*
   3461 			 * Still not there, try the normal collapse
   3462 			 * again before we allocate another cluster.
   3463 			 */
   3464 			goto again;
   3465 		}
   3466 		prev = &n->m_next;
   3467 	}
   3468 	/*
   3469 	 * No place where we can collapse to a cluster; punt.
   3470 	 * This can occur if, for example, you request 2 frags
   3471 	 * but the packet requires that both be clusters (we
   3472 	 * never reallocate the first mbuf to avoid moving the
   3473 	 * packet header).
   3474 	 */
   3475 bad:
   3476 	return NULL;
   3477 }
   3478 
   3479 /*
   3480  * Return h/w rate index for an IEEE rate (w/o basic rate bit).
   3481  */
   3482 static int
   3483 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
   3484 {
   3485 	int i;
   3486 
   3487 	for (i = 0; i < rt->rateCount; i++)
   3488 		if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
   3489 			return i;
   3490 	return 0;		/* NB: lowest rate */
   3491 }
   3492 
   3493 static void
   3494 ath_freetx(struct mbuf *m)
   3495 {
   3496 	struct mbuf *next;
   3497 
   3498 	do {
   3499 		next = m->m_nextpkt;
   3500 		m->m_nextpkt = NULL;
   3501 		m_freem(m);
   3502 	} while ((m = next) != NULL);
   3503 }
   3504 
   3505 static int
   3506 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
   3507     struct mbuf *m0)
   3508 {
   3509 	struct ieee80211com *ic = &sc->sc_ic;
   3510 	struct ath_hal *ah = sc->sc_ah;
   3511 	struct ifnet *ifp = &sc->sc_if;
   3512 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
   3513 	int i, error, iswep, ismcast, isfrag, ismrr;
   3514 	int keyix, hdrlen, pktlen, try0;
   3515 	u_int8_t rix, txrate, ctsrate;
   3516 	u_int8_t cix = 0xff;		/* NB: silence compiler */
   3517 	struct ath_desc *ds, *ds0;
   3518 	struct ath_txq *txq;
   3519 	struct ieee80211_frame *wh;
   3520 	u_int subtype, flags, ctsduration;
   3521 	HAL_PKT_TYPE atype;
   3522 	const HAL_RATE_TABLE *rt;
   3523 	HAL_BOOL shortPreamble;
   3524 	struct ath_node *an;
   3525 	struct mbuf *m;
   3526 	u_int pri;
   3527 
   3528 	wh = mtod(m0, struct ieee80211_frame *);
   3529 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
   3530 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
   3531 	isfrag = m0->m_flags & M_FRAG;
   3532 	hdrlen = ieee80211_anyhdrsize(wh);
   3533 	/*
   3534 	 * Packet length must not include any
   3535 	 * pad bytes; deduct them here.
   3536 	 */
   3537 	pktlen = m0->m_pkthdr.len - (hdrlen & 3);
   3538 
   3539 	if (iswep) {
   3540 		const struct ieee80211_cipher *cip;
   3541 		struct ieee80211_key *k;
   3542 
   3543 		/*
   3544 		 * Construct the 802.11 header+trailer for an encrypted
   3545 		 * frame. The only reason this can fail is because of an
   3546 		 * unknown or unsupported cipher/key type.
   3547 		 */
   3548 		k = ieee80211_crypto_encap(ic, ni, m0);
   3549 		if (k == NULL) {
   3550 			/*
   3551 			 * This can happen when the key is yanked after the
   3552 			 * frame was queued.  Just discard the frame; the
   3553 			 * 802.11 layer counts failures and provides
   3554 			 * debugging/diagnostics.
   3555 			 */
   3556 			ath_freetx(m0);
   3557 			return EIO;
   3558 		}
   3559 		/*
   3560 		 * Adjust the packet + header lengths for the crypto
   3561 		 * additions and calculate the h/w key index.  When
   3562 		 * a s/w mic is done the frame will have had any mic
   3563 		 * added to it prior to entry so m0->m_pkthdr.len above will
   3564 		 * account for it. Otherwise we need to add it to the
   3565 		 * packet length.
   3566 		 */
   3567 		cip = k->wk_cipher;
   3568 		hdrlen += cip->ic_header;
   3569 		pktlen += cip->ic_header + cip->ic_trailer;
   3570 		/* NB: frags always have any TKIP MIC done in s/w */
   3571 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
   3572 			pktlen += cip->ic_miclen;
   3573 		keyix = k->wk_keyix;
   3574 
   3575 		/* packet header may have moved, reset our local pointer */
   3576 		wh = mtod(m0, struct ieee80211_frame *);
   3577 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
   3578 		/*
   3579 		 * Use station key cache slot, if assigned.
   3580 		 */
   3581 		keyix = ni->ni_ucastkey.wk_keyix;
   3582 		if (keyix == IEEE80211_KEYIX_NONE)
   3583 			keyix = HAL_TXKEYIX_INVALID;
   3584 	} else
   3585 		keyix = HAL_TXKEYIX_INVALID;
   3586 
   3587 	pktlen += IEEE80211_CRC_LEN;
   3588 
   3589 	/*
   3590 	 * Load the DMA map so any coalescing is done.  This
   3591 	 * also calculates the number of descriptors we need.
   3592 	 */
   3593 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
   3594 				     BUS_DMA_NOWAIT);
   3595 	if (error == EFBIG) {
   3596 		/* XXX packet requires too many descriptors */
   3597 		bf->bf_nseg = ATH_TXDESC+1;
   3598 	} else if (error != 0) {
   3599 		sc->sc_stats.ast_tx_busdma++;
   3600 		ath_freetx(m0);
   3601 		return error;
   3602 	}
   3603 	/*
   3604 	 * Discard null packets and check for packets that
   3605 	 * require too many TX descriptors.  We try to convert
   3606 	 * the latter to a cluster.
   3607 	 */
   3608 	if (error == EFBIG) {		/* too many desc's, linearize */
   3609 		sc->sc_stats.ast_tx_linear++;
   3610 		m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
   3611 		if (m == NULL) {
   3612 			ath_freetx(m0);
   3613 			sc->sc_stats.ast_tx_nombuf++;
   3614 			return ENOMEM;
   3615 		}
   3616 		m0 = m;
   3617 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
   3618 					     BUS_DMA_NOWAIT);
   3619 		if (error != 0) {
   3620 			sc->sc_stats.ast_tx_busdma++;
   3621 			ath_freetx(m0);
   3622 			return error;
   3623 		}
   3624 		KASSERT(bf->bf_nseg <= ATH_TXDESC,
   3625 		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
   3626 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
   3627 		sc->sc_stats.ast_tx_nodata++;
   3628 		ath_freetx(m0);
   3629 		return EIO;
   3630 	}
   3631 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
   3632 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   3633             bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
   3634 	bf->bf_m = m0;
   3635 	bf->bf_node = ni;			/* NB: held reference */
   3636 
   3637 	/* setup descriptors */
   3638 	ds = bf->bf_desc;
   3639 	rt = sc->sc_currates;
   3640 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
   3641 
   3642 	/*
   3643 	 * NB: the 802.11 layer marks whether or not we should
   3644 	 * use short preamble based on the current mode and
   3645 	 * negotiated parameters.
   3646 	 */
   3647 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
   3648 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) {
   3649 		shortPreamble = AH_TRUE;
   3650 		sc->sc_stats.ast_tx_shortpre++;
   3651 	} else {
   3652 		shortPreamble = AH_FALSE;
   3653 	}
   3654 
   3655 	an = ATH_NODE(ni);
   3656 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
   3657 	ismrr = 0;				/* default no multi-rate retry*/
   3658 	/*
   3659 	 * Calculate Atheros packet type from IEEE80211 packet header,
   3660 	 * setup for rate calculations, and select h/w transmit queue.
   3661 	 */
   3662 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
   3663 	case IEEE80211_FC0_TYPE_MGT:
   3664 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   3665 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
   3666 			atype = HAL_PKT_TYPE_BEACON;
   3667 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
   3668 			atype = HAL_PKT_TYPE_PROBE_RESP;
   3669 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
   3670 			atype = HAL_PKT_TYPE_ATIM;
   3671 		else
   3672 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
   3673 		rix = sc->sc_minrateix;
   3674 		txrate = rt->info[rix].rateCode;
   3675 		if (shortPreamble)
   3676 			txrate |= rt->info[rix].shortPreamble;
   3677 		try0 = ATH_TXMGTTRY;
   3678 		/* NB: force all management frames to highest queue */
   3679 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
   3680 			/* NB: force all management frames to highest queue */
   3681 			pri = WME_AC_VO;
   3682 		} else
   3683 			pri = WME_AC_BE;
   3684 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
   3685 		break;
   3686 	case IEEE80211_FC0_TYPE_CTL:
   3687 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
   3688 		rix = sc->sc_minrateix;
   3689 		txrate = rt->info[rix].rateCode;
   3690 		if (shortPreamble)
   3691 			txrate |= rt->info[rix].shortPreamble;
   3692 		try0 = ATH_TXMGTTRY;
   3693 		/* NB: force all ctl frames to highest queue */
   3694 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
   3695 			/* NB: force all ctl frames to highest queue */
   3696 			pri = WME_AC_VO;
   3697 		} else
   3698 			pri = WME_AC_BE;
   3699 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
   3700 		break;
   3701 	case IEEE80211_FC0_TYPE_DATA:
   3702 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
   3703 		/*
   3704 		 * Data frames: multicast frames go out at a fixed rate,
   3705 		 * otherwise consult the rate control module for the
   3706 		 * rate to use.
   3707 		 */
   3708 		if (ismcast) {
   3709 			/*
   3710 			 * Check mcast rate setting in case it's changed.
   3711 			 * XXX move out of fastpath
   3712 			 */
   3713 			if (ic->ic_mcast_rate != sc->sc_mcastrate) {
   3714 				sc->sc_mcastrix =
   3715 					ath_tx_findrix(rt, ic->ic_mcast_rate);
   3716 				sc->sc_mcastrate = ic->ic_mcast_rate;
   3717 			}
   3718 			rix = sc->sc_mcastrix;
   3719 			txrate = rt->info[rix].rateCode;
   3720 			try0 = 1;
   3721 		} else {
   3722 			ath_rate_findrate(sc, an, shortPreamble, pktlen,
   3723 				&rix, &try0, &txrate);
   3724 			sc->sc_txrate = txrate;		/* for LED blinking */
   3725 			if (try0 != ATH_TXMAXTRY)
   3726 				ismrr = 1;
   3727 		}
   3728 		pri = M_WME_GETAC(m0);
   3729 		if (cap->cap_wmeParams[pri].wmep_noackPolicy)
   3730 			flags |= HAL_TXDESC_NOACK;
   3731 		break;
   3732 	default:
   3733 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
   3734 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
   3735 		/* XXX statistic */
   3736 		ath_freetx(m0);
   3737 		return EIO;
   3738 	}
   3739 	txq = sc->sc_ac2q[pri];
   3740 
   3741 	/*
   3742 	 * When servicing one or more stations in power-save mode
   3743 	 * multicast frames must be buffered until after the beacon.
   3744 	 * We use the CAB queue for that.
   3745 	 */
   3746 	if (ismcast && ic->ic_ps_sta) {
   3747 		txq = sc->sc_cabq;
   3748 		/* XXX? more bit in 802.11 frame header */
   3749 	}
   3750 
   3751 	/*
   3752 	 * Calculate miscellaneous flags.
   3753 	 */
   3754 	if (ismcast) {
   3755 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
   3756 	} else if (pktlen > ic->ic_rtsthreshold) {
   3757 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
   3758 		cix = rt->info[rix].controlRate;
   3759 		sc->sc_stats.ast_tx_rts++;
   3760 	}
   3761 	if (flags & HAL_TXDESC_NOACK)		/* NB: avoid double counting */
   3762 		sc->sc_stats.ast_tx_noack++;
   3763 
   3764 	/*
   3765 	 * If 802.11g protection is enabled, determine whether
   3766 	 * to use RTS/CTS or just CTS.  Note that this is only
   3767 	 * done for OFDM unicast frames.
   3768 	 */
   3769 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
   3770 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
   3771 	    (flags & HAL_TXDESC_NOACK) == 0) {
   3772 		/* XXX fragments must use CCK rates w/ protection */
   3773 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
   3774 			flags |= HAL_TXDESC_RTSENA;
   3775 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
   3776 			flags |= HAL_TXDESC_CTSENA;
   3777 		if (isfrag) {
   3778 			/*
   3779 			 * For frags it would be desirable to use the
   3780 			 * highest CCK rate for RTS/CTS.  But stations
   3781 			 * farther away may detect it at a lower CCK rate
   3782 			 * so use the configured protection rate instead
   3783 			 * (for now).
   3784 			 */
   3785 			cix = rt->info[sc->sc_protrix].controlRate;
   3786 		} else
   3787 			cix = rt->info[sc->sc_protrix].controlRate;
   3788 		sc->sc_stats.ast_tx_protect++;
   3789 	}
   3790 
   3791 	/*
   3792 	 * Calculate duration.  This logically belongs in the 802.11
   3793 	 * layer but it lacks sufficient information to calculate it.
   3794 	 */
   3795 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
   3796 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
   3797 		u_int16_t dur;
   3798 		/*
   3799 		 * XXX not right with fragmentation.
   3800 		 */
   3801 		if (shortPreamble)
   3802 			dur = rt->info[rix].spAckDuration;
   3803 		else
   3804 			dur = rt->info[rix].lpAckDuration;
   3805 		if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
   3806 			dur += dur;             /* additional SIFS+ACK */
   3807 			KASSERT(m0->m_nextpkt != NULL, ("no fragment"));
   3808 			/*
   3809 			 * Include the size of next fragment so NAV is
   3810 			 * updated properly.  The last fragment uses only
   3811 			 * the ACK duration
   3812 			 */
   3813 			dur += ath_hal_computetxtime(ah, rt,
   3814 					m0->m_nextpkt->m_pkthdr.len,
   3815 					rix, shortPreamble);
   3816 		}
   3817 		if (isfrag) {
   3818 			/*
   3819 			 * Force hardware to use computed duration for next
   3820 			 * fragment by disabling multi-rate retry which updates
   3821 			 * duration based on the multi-rate duration table.
   3822 			 */
   3823 			try0 = ATH_TXMAXTRY;
   3824 		}
   3825 		*(u_int16_t *)wh->i_dur = htole16(dur);
   3826 	}
   3827 
   3828 	/*
   3829 	 * Calculate RTS/CTS rate and duration if needed.
   3830 	 */
   3831 	ctsduration = 0;
   3832 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
   3833 		/*
   3834 		 * CTS transmit rate is derived from the transmit rate
   3835 		 * by looking in the h/w rate table.  We must also factor
   3836 		 * in whether or not a short preamble is to be used.
   3837 		 */
   3838 		/* NB: cix is set above where RTS/CTS is enabled */
   3839 		KASSERT(cix != 0xff, ("cix not setup"));
   3840 		ctsrate = rt->info[cix].rateCode;
   3841 		/*
   3842 		 * Compute the transmit duration based on the frame
   3843 		 * size and the size of an ACK frame.  We call into the
   3844 		 * HAL to do the computation since it depends on the
   3845 		 * characteristics of the actual PHY being used.
   3846 		 *
   3847 		 * NB: CTS is assumed the same size as an ACK so we can
   3848 		 *     use the precalculated ACK durations.
   3849 		 */
   3850 		if (shortPreamble) {
   3851 			ctsrate |= rt->info[cix].shortPreamble;
   3852 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
   3853 				ctsduration += rt->info[cix].spAckDuration;
   3854 			ctsduration += ath_hal_computetxtime(ah,
   3855 				rt, pktlen, rix, AH_TRUE);
   3856 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
   3857 				ctsduration += rt->info[rix].spAckDuration;
   3858 		} else {
   3859 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
   3860 				ctsduration += rt->info[cix].lpAckDuration;
   3861 			ctsduration += ath_hal_computetxtime(ah,
   3862 				rt, pktlen, rix, AH_FALSE);
   3863 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
   3864 				ctsduration += rt->info[rix].lpAckDuration;
   3865 		}
   3866 		/*
   3867 		 * Must disable multi-rate retry when using RTS/CTS.
   3868 		 */
   3869 		ismrr = 0;
   3870 		try0 = ATH_TXMGTTRY;		/* XXX */
   3871 	} else
   3872 		ctsrate = 0;
   3873 
   3874 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
   3875 		ieee80211_dump_pkt(mtod(m0, void *), m0->m_len,
   3876 			sc->sc_hwmap[txrate].ieeerate, -1);
   3877 #if NBPFILTER > 0
   3878 	if (ic->ic_rawbpf)
   3879 		bpf_mtap(ic->ic_rawbpf, m0);
   3880 	if (sc->sc_drvbpf) {
   3881 		u_int64_t tsf = ath_hal_gettsf64(ah);
   3882 
   3883 		sc->sc_tx_th.wt_tsf = htole64(tsf);
   3884 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
   3885 		if (iswep)
   3886 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
   3887 		if (isfrag)
   3888 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
   3889 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
   3890 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
   3891 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
   3892 
   3893 		bpf_mtap2(sc->sc_drvbpf,
   3894 			&sc->sc_tx_th, sc->sc_tx_th_len, m0);
   3895 	}
   3896 #endif
   3897 
   3898 	/*
   3899 	 * Determine if a tx interrupt should be generated for
   3900 	 * this descriptor.  We take a tx interrupt to reap
   3901 	 * descriptors when the h/w hits an EOL condition or
   3902 	 * when the descriptor is specifically marked to generate
   3903 	 * an interrupt.  We periodically mark descriptors in this
   3904 	 * way to insure timely replenishing of the supply needed
   3905 	 * for sending frames.  Defering interrupts reduces system
   3906 	 * load and potentially allows more concurrent work to be
   3907 	 * done but if done to aggressively can cause senders to
   3908 	 * backup.
   3909 	 *
   3910 	 * NB: use >= to deal with sc_txintrperiod changing
   3911 	 *     dynamically through sysctl.
   3912 	 */
   3913 	if (flags & HAL_TXDESC_INTREQ) {
   3914 		txq->axq_intrcnt = 0;
   3915 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
   3916 		flags |= HAL_TXDESC_INTREQ;
   3917 		txq->axq_intrcnt = 0;
   3918 	}
   3919 
   3920 	/*
   3921 	 * Formulate first tx descriptor with tx controls.
   3922 	 */
   3923 	/* XXX check return value? */
   3924 	ath_hal_setuptxdesc(ah, ds
   3925 		, pktlen		/* packet length */
   3926 		, hdrlen		/* header length */
   3927 		, atype			/* Atheros packet type */
   3928 		, ni->ni_txpower	/* txpower */
   3929 		, txrate, try0		/* series 0 rate/tries */
   3930 		, keyix			/* key cache index */
   3931 		, sc->sc_txantenna	/* antenna mode */
   3932 		, flags			/* flags */
   3933 		, ctsrate		/* rts/cts rate */
   3934 		, ctsduration		/* rts/cts duration */
   3935 	);
   3936 	bf->bf_flags = flags;
   3937 	/*
   3938 	 * Setup the multi-rate retry state only when we're
   3939 	 * going to use it.  This assumes ath_hal_setuptxdesc
   3940 	 * initializes the descriptors (so we don't have to)
   3941 	 * when the hardware supports multi-rate retry and
   3942 	 * we don't use it.
   3943 	 */
   3944 	if (ismrr)
   3945 		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
   3946 
   3947 	/*
   3948 	 * Fillin the remainder of the descriptor info.
   3949 	 */
   3950 	ds0 = ds;
   3951 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
   3952 		ds->ds_data = bf->bf_segs[i].ds_addr;
   3953 		if (i == bf->bf_nseg - 1)
   3954 			ds->ds_link = 0;
   3955 		else
   3956 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
   3957 		ath_hal_filltxdesc(ah, ds
   3958 			, bf->bf_segs[i].ds_len	/* segment length */
   3959 			, i == 0		/* first segment */
   3960 			, i == bf->bf_nseg - 1	/* last segment */
   3961 			, ds0			/* first descriptor */
   3962 		);
   3963 
   3964 		/* NB: The desc swap function becomes void,
   3965 		 * if descriptor swapping is not enabled
   3966 		 */
   3967 		ath_desc_swap(ds);
   3968 
   3969 		DPRINTF(sc, ATH_DEBUG_XMIT,
   3970 			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
   3971 			__func__, i, ds->ds_link, ds->ds_data,
   3972 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
   3973 	}
   3974 	/*
   3975 	 * Insert the frame on the outbound list and
   3976 	 * pass it on to the hardware.
   3977 	 */
   3978 	ATH_TXQ_LOCK(txq);
   3979 	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
   3980 	if (txq->axq_link == NULL) {
   3981 		ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
   3982 		DPRINTF(sc, ATH_DEBUG_XMIT,
   3983 		    "%s: TXDP[%u] = %" PRIx64 " (%p) depth %d\n", __func__,
   3984 		    txq->axq_qnum, (uint64_t)bf->bf_daddr, bf->bf_desc,
   3985 		    txq->axq_depth);
   3986 	} else {
   3987 		*txq->axq_link = HTOAH32(bf->bf_daddr);
   3988 		DPRINTF(sc, ATH_DEBUG_XMIT,
   3989 		    "%s: link[%u](%p)=%" PRIx64 " (%p) depth %d\n",
   3990 		    __func__, txq->axq_qnum, txq->axq_link,
   3991 		    (uint64_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
   3992 	}
   3993 	txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
   3994 	/*
   3995 	 * The CAB queue is started from the SWBA handler since
   3996 	 * frames only go out on DTIM and to avoid possible races.
   3997 	 */
   3998 	if (txq != sc->sc_cabq)
   3999 		ath_hal_txstart(ah, txq->axq_qnum);
   4000 	ATH_TXQ_UNLOCK(txq);
   4001 
   4002 	return 0;
   4003 }
   4004 
   4005 /*
   4006  * Process completed xmit descriptors from the specified queue.
   4007  */
   4008 static int
   4009 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
   4010 {
   4011 	struct ath_hal *ah = sc->sc_ah;
   4012 	struct ieee80211com *ic = &sc->sc_ic;
   4013 	struct ath_buf *bf;
   4014 	struct ath_desc *ds, *ds0;
   4015 	struct ieee80211_node *ni;
   4016 	struct ath_node *an;
   4017 	int sr, lr, pri, nacked;
   4018 	HAL_STATUS status;
   4019 
   4020 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
   4021 		__func__, txq->axq_qnum,
   4022 		(void *)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
   4023 		txq->axq_link);
   4024 	nacked = 0;
   4025 	for (;;) {
   4026 		ATH_TXQ_LOCK(txq);
   4027 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
   4028 		bf = STAILQ_FIRST(&txq->axq_q);
   4029 		if (bf == NULL) {
   4030 			txq->axq_link = NULL;
   4031 			ATH_TXQ_UNLOCK(txq);
   4032 			break;
   4033 		}
   4034 		ds0 = &bf->bf_desc[0];
   4035 		ds = &bf->bf_desc[bf->bf_nseg - 1];
   4036 		status = ath_hal_txprocdesc(ah, ds);
   4037 #ifdef AR_DEBUG
   4038 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
   4039 			ath_printtxbuf(bf, status == HAL_OK);
   4040 #endif
   4041 		if (status == HAL_EINPROGRESS) {
   4042 			ATH_TXQ_UNLOCK(txq);
   4043 			break;
   4044 		}
   4045 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
   4046 		ATH_TXQ_UNLOCK(txq);
   4047 
   4048 		ni = bf->bf_node;
   4049 		if (ni != NULL) {
   4050 			an = ATH_NODE(ni);
   4051 			if (ds->ds_txstat.ts_status == 0) {
   4052 				u_int8_t txant = ds->ds_txstat.ts_antenna;
   4053 				sc->sc_stats.ast_ant_tx[txant]++;
   4054 				sc->sc_ant_tx[txant]++;
   4055 				if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
   4056 					sc->sc_stats.ast_tx_altrate++;
   4057 				sc->sc_stats.ast_tx_rssi =
   4058 					ds->ds_txstat.ts_rssi;
   4059 				ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
   4060 					ds->ds_txstat.ts_rssi);
   4061 				pri = M_WME_GETAC(bf->bf_m);
   4062 				if (pri >= WME_AC_VO)
   4063 					ic->ic_wme.wme_hipri_traffic++;
   4064 				ni->ni_inact = ni->ni_inact_reload;
   4065 			} else {
   4066 				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
   4067 					sc->sc_stats.ast_tx_xretries++;
   4068 				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
   4069 					sc->sc_stats.ast_tx_fifoerr++;
   4070 				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
   4071 					sc->sc_stats.ast_tx_filtered++;
   4072 			}
   4073 			sr = ds->ds_txstat.ts_shortretry;
   4074 			lr = ds->ds_txstat.ts_longretry;
   4075 			sc->sc_stats.ast_tx_shortretry += sr;
   4076 			sc->sc_stats.ast_tx_longretry += lr;
   4077 			/*
   4078 			 * Hand the descriptor to the rate control algorithm.
   4079 			 */
   4080 			if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
   4081 			    (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
   4082 				/*
   4083 				 * If frame was ack'd update the last rx time
   4084 				 * used to workaround phantom bmiss interrupts.
   4085 				 */
   4086 				if (ds->ds_txstat.ts_status == 0)
   4087 					nacked++;
   4088 				ath_rate_tx_complete(sc, an, ds, ds0);
   4089 			}
   4090 			/*
   4091 			 * Reclaim reference to node.
   4092 			 *
   4093 			 * NB: the node may be reclaimed here if, for example
   4094 			 *     this is a DEAUTH message that was sent and the
   4095 			 *     node was timed out due to inactivity.
   4096 			 */
   4097 			ieee80211_free_node(ni);
   4098 		}
   4099 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   4100 		    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4101 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   4102 		m_freem(bf->bf_m);
   4103 		bf->bf_m = NULL;
   4104 		bf->bf_node = NULL;
   4105 
   4106 		ATH_TXBUF_LOCK(sc);
   4107 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   4108 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
   4109 		ATH_TXBUF_UNLOCK(sc);
   4110 	}
   4111 	return nacked;
   4112 }
   4113 
   4114 static inline int
   4115 txqactive(struct ath_hal *ah, int qnum)
   4116 {
   4117 	u_int32_t txqs = 1<<qnum;
   4118 	ath_hal_gettxintrtxqs(ah, &txqs);
   4119 	return (txqs & (1<<qnum));
   4120 }
   4121 
   4122 /*
   4123  * Deferred processing of transmit interrupt; special-cased
   4124  * for a single hardware transmit queue (e.g. 5210 and 5211).
   4125  */
   4126 static void
   4127 ath_tx_proc_q0(void *arg, int npending)
   4128 {
   4129 	struct ath_softc *sc = arg;
   4130 	struct ifnet *ifp = &sc->sc_if;
   4131 
   4132 	if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]) > 0){
   4133 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
   4134 	}
   4135 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
   4136 		ath_tx_processq(sc, sc->sc_cabq);
   4137 
   4138 	if (sc->sc_softled)
   4139 		ath_led_event(sc, ATH_LED_TX);
   4140 
   4141 	ath_start(ifp);
   4142 }
   4143 
   4144 /*
   4145  * Deferred processing of transmit interrupt; special-cased
   4146  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
   4147  */
   4148 static void
   4149 ath_tx_proc_q0123(void *arg, int npending)
   4150 {
   4151 	struct ath_softc *sc = arg;
   4152 	struct ifnet *ifp = &sc->sc_if;
   4153 	int nacked;
   4154 
   4155 	/*
   4156 	 * Process each active queue.
   4157 	 */
   4158 	nacked = 0;
   4159 	if (txqactive(sc->sc_ah, 0))
   4160 		nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
   4161 	if (txqactive(sc->sc_ah, 1))
   4162 		nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
   4163 	if (txqactive(sc->sc_ah, 2))
   4164 		nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
   4165 	if (txqactive(sc->sc_ah, 3))
   4166 		nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
   4167 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
   4168 		ath_tx_processq(sc, sc->sc_cabq);
   4169 	if (nacked) {
   4170 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
   4171 	}
   4172 	ath_tx_processq(sc, sc->sc_cabq);
   4173 
   4174 	if (sc->sc_softled)
   4175 		ath_led_event(sc, ATH_LED_TX);
   4176 
   4177 	ath_start(ifp);
   4178 }
   4179 
   4180 /*
   4181  * Deferred processing of transmit interrupt.
   4182  */
   4183 static void
   4184 ath_tx_proc(void *arg, int npending)
   4185 {
   4186 	struct ath_softc *sc = arg;
   4187 	struct ifnet *ifp = &sc->sc_if;
   4188 	int i, nacked;
   4189 
   4190 	/*
   4191 	 * Process each active queue.
   4192 	 */
   4193 	nacked = 0;
   4194 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   4195 		if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
   4196 			nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
   4197 	if (nacked) {
   4198 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
   4199 	}
   4200 
   4201 	if (sc->sc_softled)
   4202 		ath_led_event(sc, ATH_LED_TX);
   4203 
   4204 	ath_start(ifp);
   4205 }
   4206 
   4207 static void
   4208 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
   4209 {
   4210 	struct ath_hal *ah = sc->sc_ah;
   4211 	struct ieee80211_node *ni;
   4212 	struct ath_buf *bf;
   4213 
   4214 	/*
   4215 	 * NB: this assumes output has been stopped and
   4216 	 *     we do not need to block ath_tx_tasklet
   4217 	 */
   4218 	for (;;) {
   4219 		ATH_TXQ_LOCK(txq);
   4220 		bf = STAILQ_FIRST(&txq->axq_q);
   4221 		if (bf == NULL) {
   4222 			txq->axq_link = NULL;
   4223 			ATH_TXQ_UNLOCK(txq);
   4224 			break;
   4225 		}
   4226 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
   4227 		ATH_TXQ_UNLOCK(txq);
   4228 #ifdef AR_DEBUG
   4229 		if (sc->sc_debug & ATH_DEBUG_RESET)
   4230 			ath_printtxbuf(bf,
   4231 				ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
   4232 #endif /* AR_DEBUG */
   4233 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   4234 		m_freem(bf->bf_m);
   4235 		bf->bf_m = NULL;
   4236 		ni = bf->bf_node;
   4237 		bf->bf_node = NULL;
   4238 		if (ni != NULL) {
   4239 			/*
   4240 			 * Reclaim node reference.
   4241 			 */
   4242 			ieee80211_free_node(ni);
   4243 		}
   4244 		ATH_TXBUF_LOCK(sc);
   4245 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   4246 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
   4247 		ATH_TXBUF_UNLOCK(sc);
   4248 	}
   4249 }
   4250 
   4251 static void
   4252 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
   4253 {
   4254 	struct ath_hal *ah = sc->sc_ah;
   4255 
   4256 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
   4257 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
   4258 	    __func__, txq->axq_qnum,
   4259 	    (void *)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
   4260 	    txq->axq_link);
   4261 }
   4262 
   4263 /*
   4264  * Drain the transmit queues and reclaim resources.
   4265  */
   4266 static void
   4267 ath_draintxq(struct ath_softc *sc)
   4268 {
   4269 	struct ath_hal *ah = sc->sc_ah;
   4270 	int i;
   4271 
   4272 	/* XXX return value */
   4273 	if (!sc->sc_invalid) {
   4274 		/* don't touch the hardware if marked invalid */
   4275 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
   4276 		DPRINTF(sc, ATH_DEBUG_RESET,
   4277 		    "%s: beacon queue %p\n", __func__,
   4278 		    (void *)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
   4279 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   4280 			if (ATH_TXQ_SETUP(sc, i))
   4281 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
   4282 	}
   4283 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   4284 		if (ATH_TXQ_SETUP(sc, i))
   4285 			ath_tx_draintxq(sc, &sc->sc_txq[i]);
   4286 }
   4287 
   4288 /*
   4289  * Disable the receive h/w in preparation for a reset.
   4290  */
   4291 static void
   4292 ath_stoprecv(struct ath_softc *sc)
   4293 {
   4294 #define	PA2DESC(_sc, _pa) \
   4295 	((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
   4296 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
   4297 	struct ath_hal *ah = sc->sc_ah;
   4298 
   4299 	ath_hal_stoppcurecv(ah);	/* disable PCU */
   4300 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
   4301 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
   4302 	DELAY(3000);			/* 3ms is long enough for 1 frame */
   4303 #ifdef AR_DEBUG
   4304 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
   4305 		struct ath_buf *bf;
   4306 
   4307 		printf("%s: rx queue %p, link %p\n", __func__,
   4308 			(void *)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
   4309 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
   4310 			struct ath_desc *ds = bf->bf_desc;
   4311 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
   4312 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
   4313 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
   4314 				ath_printrxbuf(bf, status == HAL_OK);
   4315 		}
   4316 	}
   4317 #endif
   4318 	sc->sc_rxlink = NULL;		/* just in case */
   4319 #undef PA2DESC
   4320 }
   4321 
   4322 /*
   4323  * Enable the receive h/w following a reset.
   4324  */
   4325 static int
   4326 ath_startrecv(struct ath_softc *sc)
   4327 {
   4328 	struct ath_hal *ah = sc->sc_ah;
   4329 	struct ath_buf *bf;
   4330 
   4331 	sc->sc_rxlink = NULL;
   4332 	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
   4333 		int error = ath_rxbuf_init(sc, bf);
   4334 		if (error != 0) {
   4335 			DPRINTF(sc, ATH_DEBUG_RECV,
   4336 				"%s: ath_rxbuf_init failed %d\n",
   4337 				__func__, error);
   4338 			return error;
   4339 		}
   4340 	}
   4341 
   4342 	bf = STAILQ_FIRST(&sc->sc_rxbuf);
   4343 	ath_hal_putrxbuf(ah, bf->bf_daddr);
   4344 	ath_hal_rxena(ah);		/* enable recv descriptors */
   4345 	ath_mode_init(sc);		/* set filters, etc. */
   4346 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
   4347 	return 0;
   4348 }
   4349 
   4350 /*
   4351  * Update internal state after a channel change.
   4352  */
   4353 static void
   4354 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
   4355 {
   4356 	struct ieee80211com *ic = &sc->sc_ic;
   4357 	enum ieee80211_phymode mode;
   4358 	u_int16_t flags;
   4359 
   4360 	/*
   4361 	 * Change channels and update the h/w rate map
   4362 	 * if we're switching; e.g. 11a to 11b/g.
   4363 	 */
   4364 	mode = ieee80211_chan2mode(ic, chan);
   4365 	if (mode != sc->sc_curmode)
   4366 		ath_setcurmode(sc, mode);
   4367 	/*
   4368 	 * Update BPF state.  NB: ethereal et. al. don't handle
   4369 	 * merged flags well so pick a unique mode for their use.
   4370 	 */
   4371 	if (IEEE80211_IS_CHAN_A(chan))
   4372 		flags = IEEE80211_CHAN_A;
   4373 	/* XXX 11g schizophrenia */
   4374 	else if (IEEE80211_IS_CHAN_G(chan) ||
   4375 	    IEEE80211_IS_CHAN_PUREG(chan))
   4376 		flags = IEEE80211_CHAN_G;
   4377 	else
   4378 		flags = IEEE80211_CHAN_B;
   4379 	if (IEEE80211_IS_CHAN_T(chan))
   4380 		flags |= IEEE80211_CHAN_TURBO;
   4381 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
   4382 		htole16(chan->ic_freq);
   4383 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
   4384 		htole16(flags);
   4385 }
   4386 
   4387 /*
   4388  * Poll for a channel clear indication; this is required
   4389  * for channels requiring DFS and not previously visited
   4390  * and/or with a recent radar detection.
   4391  */
   4392 static void
   4393 ath_dfswait(void *arg)
   4394 {
   4395 	struct ath_softc *sc = arg;
   4396 	struct ath_hal *ah = sc->sc_ah;
   4397 	HAL_CHANNEL hchan;
   4398 
   4399 	ath_hal_radar_wait(ah, &hchan);
   4400 	if (hchan.privFlags & CHANNEL_INTERFERENCE) {
   4401 		if_printf(&sc->sc_if,
   4402 		    "channel %u/0x%x/0x%x has interference\n",
   4403 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
   4404 		return;
   4405 	}
   4406 	if ((hchan.privFlags & CHANNEL_DFS) == 0) {
   4407 		/* XXX should not happen */
   4408 		return;
   4409 	}
   4410 	if (hchan.privFlags & CHANNEL_DFS_CLEAR) {
   4411 		sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR;
   4412 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
   4413 		if_printf(&sc->sc_if,
   4414 		    "channel %u/0x%x/0x%x marked clear\n",
   4415 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
   4416 	} else
   4417 		callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc);
   4418 }
   4419 
   4420 /*
   4421  * Set/change channels.  If the channel is really being changed,
   4422  * it's done by reseting the chip.  To accomplish this we must
   4423  * first cleanup any pending DMA, then restart stuff after a la
   4424  * ath_init.
   4425  */
   4426 static int
   4427 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
   4428 {
   4429 	struct ath_hal *ah = sc->sc_ah;
   4430 	struct ieee80211com *ic = &sc->sc_ic;
   4431 	HAL_CHANNEL hchan;
   4432 
   4433 	/*
   4434 	 * Convert to a HAL channel description with
   4435 	 * the flags constrained to reflect the current
   4436 	 * operating mode.
   4437 	 */
   4438 	hchan.channel = chan->ic_freq;
   4439 	hchan.channelFlags = ath_chan2flags(ic, chan);
   4440 
   4441 	DPRINTF(sc, ATH_DEBUG_RESET,
   4442 	    "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
   4443 	    __func__,
   4444 	    ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
   4445 		sc->sc_curchan.channelFlags),
   4446 	    	sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
   4447 	    ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
   4448 	        hchan.channel, hchan.channelFlags);
   4449 	if (hchan.channel != sc->sc_curchan.channel ||
   4450 	    hchan.channelFlags != sc->sc_curchan.channelFlags) {
   4451 		HAL_STATUS status;
   4452 
   4453 		/*
   4454 		 * To switch channels clear any pending DMA operations;
   4455 		 * wait long enough for the RX fifo to drain, reset the
   4456 		 * hardware at the new frequency, and then re-enable
   4457 		 * the relevant bits of the h/w.
   4458 		 */
   4459 		ath_hal_intrset(ah, 0);		/* disable interrupts */
   4460 		ath_draintxq(sc);		/* clear pending tx frames */
   4461 		ath_stoprecv(sc);		/* turn off frame recv */
   4462 		if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
   4463 			if_printf(ic->ic_ifp, "%s: unable to reset "
   4464 			    "channel %u (%u MHz, flags 0x%x hal flags 0x%x)\n",
   4465 			    __func__, ieee80211_chan2ieee(ic, chan),
   4466 			    chan->ic_freq, chan->ic_flags, hchan.channelFlags);
   4467 			return EIO;
   4468 		}
   4469 		sc->sc_curchan = hchan;
   4470 		ath_update_txpow(sc);		/* update tx power state */
   4471 		sc->sc_diversity = ath_hal_getdiversity(ah);
   4472 		sc->sc_calinterval = 1;
   4473 		sc->sc_caltries = 0;
   4474 
   4475 		/*
   4476 		 * Re-enable rx framework.
   4477 		 */
   4478 		if (ath_startrecv(sc) != 0) {
   4479 			if_printf(&sc->sc_if,
   4480 				"%s: unable to restart recv logic\n", __func__);
   4481 			return EIO;
   4482 		}
   4483 
   4484 		/*
   4485 		 * Change channels and update the h/w rate map
   4486 		 * if we're switching; e.g. 11a to 11b/g.
   4487 		 */
   4488 		ic->ic_ibss_chan = chan;
   4489 		ath_chan_change(sc, chan);
   4490 
   4491 		/*
   4492 		 * Handle DFS required waiting period to determine
   4493 		 * if channel is clear of radar traffic.
   4494 		 */
   4495 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   4496 #define	DFS_AND_NOT_CLEAR(_c) \
   4497 	(((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS)
   4498 			if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) {
   4499 				if_printf(&sc->sc_if,
   4500 					"wait for DFS clear channel signal\n");
   4501 				/* XXX stop sndq */
   4502 				sc->sc_if.if_flags |= IFF_OACTIVE;
   4503 				callout_reset(&sc->sc_dfs_ch,
   4504 					2 * hz, ath_dfswait, sc);
   4505 			} else
   4506 				callout_stop(&sc->sc_dfs_ch);
   4507 #undef DFS_NOT_CLEAR
   4508 		}
   4509 
   4510 		/*
   4511 		 * Re-enable interrupts.
   4512 		 */
   4513 		ath_hal_intrset(ah, sc->sc_imask);
   4514 	}
   4515 	return 0;
   4516 }
   4517 
   4518 static void
   4519 ath_next_scan(void *arg)
   4520 {
   4521 	struct ath_softc *sc = arg;
   4522 	struct ieee80211com *ic = &sc->sc_ic;
   4523 	int s;
   4524 
   4525 	/* don't call ath_start w/o network interrupts blocked */
   4526 	s = splnet();
   4527 
   4528 	if (ic->ic_state == IEEE80211_S_SCAN)
   4529 		ieee80211_next_scan(ic);
   4530 	splx(s);
   4531 }
   4532 
   4533 /*
   4534  * Periodically recalibrate the PHY to account
   4535  * for temperature/environment changes.
   4536  */
   4537 static void
   4538 ath_calibrate(void *arg)
   4539 {
   4540 	struct ath_softc *sc = arg;
   4541 	struct ath_hal *ah = sc->sc_ah;
   4542 	HAL_BOOL iqCalDone;
   4543 
   4544 	sc->sc_stats.ast_per_cal++;
   4545 
   4546 	ATH_LOCK(sc);
   4547 
   4548 	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
   4549 		/*
   4550 		 * Rfgain is out of bounds, reset the chip
   4551 		 * to load new gain values.
   4552 		 */
   4553 		DPRINTF(sc, ATH_DEBUG_CALIBRATE,
   4554 			"%s: rfgain change\n", __func__);
   4555 		sc->sc_stats.ast_per_rfgain++;
   4556 		ath_reset(&sc->sc_if);
   4557 	}
   4558 	if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
   4559 		DPRINTF(sc, ATH_DEBUG_ANY,
   4560 			"%s: calibration of channel %u failed\n",
   4561 			__func__, sc->sc_curchan.channel);
   4562 		sc->sc_stats.ast_per_calfail++;
   4563 	}
   4564 	/*
   4565 	 * Calibrate noise floor data again in case of change.
   4566 	 */
   4567 	ath_hal_process_noisefloor(ah);
   4568 	/*
   4569 	 * Poll more frequently when the IQ calibration is in
   4570 	 * progress to speedup loading the final settings.
   4571 	 * We temper this aggressive polling with an exponential
   4572 	 * back off after 4 tries up to ath_calinterval.
   4573 	 */
   4574 	if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
   4575 		sc->sc_caltries = 0;
   4576 		sc->sc_calinterval = ath_calinterval;
   4577 	} else if (sc->sc_caltries > 4) {
   4578 		sc->sc_caltries = 0;
   4579 		sc->sc_calinterval <<= 1;
   4580 		if (sc->sc_calinterval > ath_calinterval)
   4581 			sc->sc_calinterval = ath_calinterval;
   4582 	}
   4583 	KASSERT(0 < sc->sc_calinterval && sc->sc_calinterval <= ath_calinterval,
   4584 		("bad calibration interval %u", sc->sc_calinterval));
   4585 
   4586 	DPRINTF(sc, ATH_DEBUG_CALIBRATE,
   4587 		"%s: next +%u (%siqCalDone tries %u)\n", __func__,
   4588 		sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
   4589 	sc->sc_caltries++;
   4590 	callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
   4591 		ath_calibrate, sc);
   4592 	ATH_UNLOCK(sc);
   4593 }
   4594 
   4595 static int
   4596 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
   4597 {
   4598 	struct ifnet *ifp = ic->ic_ifp;
   4599 	struct ath_softc *sc = ifp->if_softc;
   4600 	struct ath_hal *ah = sc->sc_ah;
   4601 	struct ieee80211_node *ni;
   4602 	int i, error;
   4603 	const u_int8_t *bssid;
   4604 	u_int32_t rfilt;
   4605 	static const HAL_LED_STATE leds[] = {
   4606 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
   4607 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
   4608 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
   4609 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
   4610 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
   4611 	};
   4612 
   4613 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
   4614 		ieee80211_state_name[ic->ic_state],
   4615 		ieee80211_state_name[nstate]);
   4616 
   4617 	callout_stop(&sc->sc_scan_ch);
   4618 	callout_stop(&sc->sc_cal_ch);
   4619 	callout_stop(&sc->sc_dfs_ch);
   4620 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
   4621 
   4622 	if (nstate == IEEE80211_S_INIT) {
   4623 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
   4624 		/*
   4625 		 * NB: disable interrupts so we don't rx frames.
   4626 		 */
   4627 		ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
   4628 		/*
   4629 		 * Notify the rate control algorithm.
   4630 		 */
   4631 		ath_rate_newstate(sc, nstate);
   4632 		goto done;
   4633 	}
   4634 	ni = ic->ic_bss;
   4635 	error = ath_chan_set(sc, ic->ic_curchan);
   4636 	if (error != 0)
   4637 		goto bad;
   4638 	rfilt = ath_calcrxfilter(sc, nstate);
   4639 	if (nstate == IEEE80211_S_SCAN)
   4640 		bssid = ifp->if_broadcastaddr;
   4641 	else
   4642 		bssid = ni->ni_bssid;
   4643 	ath_hal_setrxfilter(ah, rfilt);
   4644 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
   4645 		 __func__, rfilt, ether_sprintf(bssid));
   4646 
   4647 	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
   4648 		ath_hal_setassocid(ah, bssid, ni->ni_associd);
   4649 	else
   4650 		ath_hal_setassocid(ah, bssid, 0);
   4651 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
   4652 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
   4653 			if (ath_hal_keyisvalid(ah, i))
   4654 				ath_hal_keysetmac(ah, i, bssid);
   4655 	}
   4656 
   4657 	/*
   4658 	 * Notify the rate control algorithm so rates
   4659 	 * are setup should ath_beacon_alloc be called.
   4660 	 */
   4661 	ath_rate_newstate(sc, nstate);
   4662 
   4663 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
   4664 		/* nothing to do */;
   4665 	} else if (nstate == IEEE80211_S_RUN) {
   4666 		DPRINTF(sc, ATH_DEBUG_STATE,
   4667 			"%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
   4668 			"capinfo=0x%04x chan=%d\n"
   4669 			 , __func__
   4670 			 , ic->ic_flags
   4671 			 , ni->ni_intval
   4672 			 , ether_sprintf(ni->ni_bssid)
   4673 			 , ni->ni_capinfo
   4674 			 , ieee80211_chan2ieee(ic, ic->ic_curchan));
   4675 
   4676 		switch (ic->ic_opmode) {
   4677 		case IEEE80211_M_HOSTAP:
   4678 		case IEEE80211_M_IBSS:
   4679 			/*
   4680 			 * Allocate and setup the beacon frame.
   4681 			 *
   4682 			 * Stop any previous beacon DMA.  This may be
   4683 			 * necessary, for example, when an ibss merge
   4684 			 * causes reconfiguration; there will be a state
   4685 			 * transition from RUN->RUN that means we may
   4686 			 * be called with beacon transmission active.
   4687 			 */
   4688 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
   4689 			ath_beacon_free(sc);
   4690 			error = ath_beacon_alloc(sc, ni);
   4691 			if (error != 0)
   4692 				goto bad;
   4693 			/*
   4694 			 * If joining an adhoc network defer beacon timer
   4695 			 * configuration to the next beacon frame so we
   4696 			 * have a current TSF to use.  Otherwise we're
   4697 			 * starting an ibss/bss so there's no need to delay.
   4698 			 */
   4699 			if (ic->ic_opmode == IEEE80211_M_IBSS &&
   4700 			    ic->ic_bss->ni_tstamp.tsf != 0)
   4701 				sc->sc_syncbeacon = 1;
   4702 			else
   4703 				ath_beacon_config(sc);
   4704 			break;
   4705 		case IEEE80211_M_STA:
   4706 			/*
   4707 			 * Allocate a key cache slot to the station.
   4708 			 */
   4709 			if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
   4710 			    sc->sc_hasclrkey &&
   4711 			    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
   4712 				ath_setup_stationkey(ni);
   4713 			/*
   4714 			 * Defer beacon timer configuration to the next
   4715 			 * beacon frame so we have a current TSF to use
   4716 			 * (any TSF collected when scanning is likely old).
   4717 			 */
   4718 			sc->sc_syncbeacon = 1;
   4719 			break;
   4720 		default:
   4721 			break;
   4722 		}
   4723 		/*
   4724 		 * Let the hal process statistics collected during a
   4725 		 * scan so it can provide calibrated noise floor data.
   4726 		 */
   4727 		ath_hal_process_noisefloor(ah);
   4728 		/*
   4729 		 * Reset rssi stats; maybe not the best place...
   4730 		 */
   4731 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
   4732 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
   4733 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
   4734 	} else {
   4735 		ath_hal_intrset(ah,
   4736 			sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
   4737 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
   4738 	}
   4739 done:
   4740 	/*
   4741 	 * Invoke the parent method to complete the work.
   4742 	 */
   4743 	error = sc->sc_newstate(ic, nstate, arg);
   4744 	/*
   4745 	 * Finally, start any timers.
   4746 	 */
   4747 	if (nstate == IEEE80211_S_RUN) {
   4748 		/* start periodic recalibration timer */
   4749 		callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
   4750 			ath_calibrate, sc);
   4751 	} else if (nstate == IEEE80211_S_SCAN) {
   4752 		/* start ap/neighbor scan timer */
   4753 		callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
   4754 			ath_next_scan, sc);
   4755 	}
   4756 bad:
   4757 	return error;
   4758 }
   4759 
   4760 /*
   4761  * Allocate a key cache slot to the station so we can
   4762  * setup a mapping from key index to node. The key cache
   4763  * slot is needed for managing antenna state and for
   4764  * compression when stations do not use crypto.  We do
   4765  * it uniliaterally here; if crypto is employed this slot
   4766  * will be reassigned.
   4767  */
   4768 static void
   4769 ath_setup_stationkey(struct ieee80211_node *ni)
   4770 {
   4771 	struct ieee80211com *ic = ni->ni_ic;
   4772 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   4773 	ieee80211_keyix keyix, rxkeyix;
   4774 
   4775 	if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
   4776 		/*
   4777 		 * Key cache is full; we'll fall back to doing
   4778 		 * the more expensive lookup in software.  Note
   4779 		 * this also means no h/w compression.
   4780 		 */
   4781 		/* XXX msg+statistic */
   4782 	} else {
   4783 		/* XXX locking? */
   4784 		ni->ni_ucastkey.wk_keyix = keyix;
   4785 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
   4786 		/* NB: this will create a pass-thru key entry */
   4787 		ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
   4788 	}
   4789 }
   4790 
   4791 /*
   4792  * Setup driver-specific state for a newly associated node.
   4793  * Note that we're called also on a re-associate, the isnew
   4794  * param tells us if this is the first time or not.
   4795  */
   4796 static void
   4797 ath_newassoc(struct ieee80211_node *ni, int isnew)
   4798 {
   4799 	struct ieee80211com *ic = ni->ni_ic;
   4800 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   4801 
   4802 	ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
   4803 	if (isnew &&
   4804 	    (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
   4805 		KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
   4806 		    ("new assoc with a unicast key already setup (keyix %u)",
   4807 		    ni->ni_ucastkey.wk_keyix));
   4808 		ath_setup_stationkey(ni);
   4809 	}
   4810 }
   4811 
   4812 static int
   4813 ath_getchannels(struct ath_softc *sc, u_int cc,
   4814 	HAL_BOOL outdoor, HAL_BOOL xchanmode)
   4815 {
   4816 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
   4817 	struct ieee80211com *ic = &sc->sc_ic;
   4818 	struct ifnet *ifp = &sc->sc_if;
   4819 	struct ath_hal *ah = sc->sc_ah;
   4820 	HAL_CHANNEL *chans;
   4821 	int i, ix, nchan;
   4822 
   4823 	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
   4824 			M_TEMP, M_NOWAIT);
   4825 	if (chans == NULL) {
   4826 		if_printf(ifp, "unable to allocate channel table\n");
   4827 		return ENOMEM;
   4828 	}
   4829 	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
   4830 	    NULL, 0, NULL,
   4831 	    cc, HAL_MODE_ALL, outdoor, xchanmode)) {
   4832 		u_int32_t rd;
   4833 
   4834 		(void)ath_hal_getregdomain(ah, &rd);
   4835 		if_printf(ifp, "unable to collect channel list from hal; "
   4836 			"regdomain likely %u country code %u\n", rd, cc);
   4837 		free(chans, M_TEMP);
   4838 		return EINVAL;
   4839 	}
   4840 
   4841 	/*
   4842 	 * Convert HAL channels to ieee80211 ones and insert
   4843 	 * them in the table according to their channel number.
   4844 	 */
   4845 	for (i = 0; i < nchan; i++) {
   4846 		HAL_CHANNEL *c = &chans[i];
   4847 		u_int16_t flags;
   4848 
   4849 		ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags);
   4850 		if (ix > IEEE80211_CHAN_MAX) {
   4851 			if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n",
   4852 				ix, c->channel, c->channelFlags);
   4853 			continue;
   4854 		}
   4855 		if (ix < 0) {
   4856 			/* XXX can't handle stuff <2400 right now */
   4857 			if (bootverbose)
   4858 				if_printf(ifp, "hal channel %d (%u/%x) "
   4859 				    "cannot be handled; ignored\n",
   4860 				    ix, c->channel, c->channelFlags);
   4861 			continue;
   4862 		}
   4863 		/*
   4864 		 * Calculate net80211 flags; most are compatible
   4865 		 * but some need massaging.  Note the static turbo
   4866 		 * conversion can be removed once net80211 is updated
   4867 		 * to understand static vs. dynamic turbo.
   4868 		 */
   4869 		flags = c->channelFlags & COMPAT;
   4870 		if (c->channelFlags & CHANNEL_STURBO)
   4871 			flags |= IEEE80211_CHAN_TURBO;
   4872 		if (ic->ic_channels[ix].ic_freq == 0) {
   4873 			ic->ic_channels[ix].ic_freq = c->channel;
   4874 			ic->ic_channels[ix].ic_flags = flags;
   4875 		} else {
   4876 			/* channels overlap; e.g. 11g and 11b */
   4877 			ic->ic_channels[ix].ic_flags |= flags;
   4878 		}
   4879 	}
   4880 	free(chans, M_TEMP);
   4881 	return 0;
   4882 #undef COMPAT
   4883 }
   4884 
   4885 static void
   4886 ath_led_done(void *arg)
   4887 {
   4888 	struct ath_softc *sc = arg;
   4889 
   4890 	sc->sc_blinking = 0;
   4891 }
   4892 
   4893 /*
   4894  * Turn the LED off: flip the pin and then set a timer so no
   4895  * update will happen for the specified duration.
   4896  */
   4897 static void
   4898 ath_led_off(void *arg)
   4899 {
   4900 	struct ath_softc *sc = arg;
   4901 
   4902 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
   4903 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
   4904 }
   4905 
   4906 /*
   4907  * Blink the LED according to the specified on/off times.
   4908  */
   4909 static void
   4910 ath_led_blink(struct ath_softc *sc, int on, int off)
   4911 {
   4912 	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
   4913 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
   4914 	sc->sc_blinking = 1;
   4915 	sc->sc_ledoff = off;
   4916 	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
   4917 }
   4918 
   4919 static void
   4920 ath_led_event(struct ath_softc *sc, int event)
   4921 {
   4922 
   4923 	sc->sc_ledevent = ticks;	/* time of last event */
   4924 	if (sc->sc_blinking)		/* don't interrupt active blink */
   4925 		return;
   4926 	switch (event) {
   4927 	case ATH_LED_POLL:
   4928 		ath_led_blink(sc, sc->sc_hwmap[0].ledon,
   4929 			sc->sc_hwmap[0].ledoff);
   4930 		break;
   4931 	case ATH_LED_TX:
   4932 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
   4933 			sc->sc_hwmap[sc->sc_txrate].ledoff);
   4934 		break;
   4935 	case ATH_LED_RX:
   4936 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
   4937 			sc->sc_hwmap[sc->sc_rxrate].ledoff);
   4938 		break;
   4939 	}
   4940 }
   4941 
   4942 static void
   4943 ath_update_txpow(struct ath_softc *sc)
   4944 {
   4945 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
   4946 	struct ieee80211com *ic = &sc->sc_ic;
   4947 	struct ath_hal *ah = sc->sc_ah;
   4948 	u_int32_t txpow;
   4949 
   4950 	if (sc->sc_curtxpow != ic->ic_txpowlimit) {
   4951 		ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
   4952 		/* read back in case value is clamped */
   4953 		(void)ath_hal_gettxpowlimit(ah, &txpow);
   4954 		ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
   4955 	}
   4956 	/*
   4957 	 * Fetch max tx power level for status requests.
   4958 	 */
   4959 	(void)ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
   4960 	ic->ic_bss->ni_txpower = txpow;
   4961 }
   4962 
   4963 static void
   4964 rate_setup(struct ath_softc *sc,
   4965 	const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs)
   4966 {
   4967 	int i, maxrates;
   4968 
   4969 	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
   4970 		DPRINTF(sc, ATH_DEBUG_ANY,
   4971 			"%s: rate table too small (%u > %u)\n",
   4972 		       __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
   4973 		maxrates = IEEE80211_RATE_MAXSIZE;
   4974 	} else
   4975 		maxrates = rt->rateCount;
   4976 	for (i = 0; i < maxrates; i++)
   4977 		rs->rs_rates[i] = rt->info[i].dot11Rate;
   4978 	rs->rs_nrates = maxrates;
   4979 }
   4980 
   4981 static int
   4982 ath_rate_setup(struct ath_softc *sc, u_int mode)
   4983 {
   4984 	struct ath_hal *ah = sc->sc_ah;
   4985 	struct ieee80211com *ic = &sc->sc_ic;
   4986 	const HAL_RATE_TABLE *rt;
   4987 
   4988 	switch (mode) {
   4989 	case IEEE80211_MODE_11A:
   4990 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
   4991 		break;
   4992 	case IEEE80211_MODE_11B:
   4993 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
   4994 		break;
   4995 	case IEEE80211_MODE_11G:
   4996 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
   4997 		break;
   4998 	case IEEE80211_MODE_TURBO_A:
   4999 		/* XXX until static/dynamic turbo is fixed */
   5000 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
   5001 		break;
   5002 	case IEEE80211_MODE_TURBO_G:
   5003 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
   5004 		break;
   5005 	default:
   5006 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
   5007 			__func__, mode);
   5008 		return 0;
   5009 	}
   5010 	sc->sc_rates[mode] = rt;
   5011 	if (rt != NULL) {
   5012 		rate_setup(sc, rt, &ic->ic_sup_rates[mode]);
   5013 		return 1;
   5014 	} else
   5015 		return 0;
   5016 }
   5017 
   5018 static void
   5019 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
   5020 {
   5021 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   5022 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
   5023 	static const struct {
   5024 		u_int		rate;		/* tx/rx 802.11 rate */
   5025 		u_int16_t	timeOn;		/* LED on time (ms) */
   5026 		u_int16_t	timeOff;	/* LED off time (ms) */
   5027 	} blinkrates[] = {
   5028 		{ 108,  40,  10 },
   5029 		{  96,  44,  11 },
   5030 		{  72,  50,  13 },
   5031 		{  48,  57,  14 },
   5032 		{  36,  67,  16 },
   5033 		{  24,  80,  20 },
   5034 		{  22, 100,  25 },
   5035 		{  18, 133,  34 },
   5036 		{  12, 160,  40 },
   5037 		{  10, 200,  50 },
   5038 		{   6, 240,  58 },
   5039 		{   4, 267,  66 },
   5040 		{   2, 400, 100 },
   5041 		{   0, 500, 130 },
   5042 	};
   5043 	const HAL_RATE_TABLE *rt;
   5044 	int i, j;
   5045 
   5046 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
   5047 	rt = sc->sc_rates[mode];
   5048 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
   5049 	for (i = 0; i < rt->rateCount; i++)
   5050 		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
   5051 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
   5052 	for (i = 0; i < 32; i++) {
   5053 		u_int8_t ix = rt->rateCodeToIndex[i];
   5054 		if (ix == 0xff) {
   5055 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
   5056 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
   5057 			continue;
   5058 		}
   5059 		sc->sc_hwmap[i].ieeerate =
   5060 			rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
   5061 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
   5062 		if (rt->info[ix].shortPreamble ||
   5063 		    rt->info[ix].phy == IEEE80211_T_OFDM)
   5064 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
   5065 		/* NB: receive frames include FCS */
   5066 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
   5067 			IEEE80211_RADIOTAP_F_FCS;
   5068 		/* setup blink rate table to avoid per-packet lookup */
   5069 		for (j = 0; j < N(blinkrates)-1; j++)
   5070 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
   5071 				break;
   5072 		/* NB: this uses the last entry if the rate isn't found */
   5073 		/* XXX beware of overlow */
   5074 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
   5075 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
   5076 	}
   5077 	sc->sc_currates = rt;
   5078 	sc->sc_curmode = mode;
   5079 	/*
   5080 	 * All protection frames are transmited at 2Mb/s for
   5081 	 * 11g, otherwise at 1Mb/s.
   5082 	 */
   5083 	if (mode == IEEE80211_MODE_11G)
   5084 		sc->sc_protrix = ath_tx_findrix(rt, 2*2);
   5085 	else
   5086 		sc->sc_protrix = ath_tx_findrix(rt, 2*1);
   5087 	/* rate index used to send management frames */
   5088 	sc->sc_minrateix = 0;
   5089 	/*
   5090 	 * Setup multicast rate state.
   5091 	 */
   5092 	/* XXX layering violation */
   5093 	sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate);
   5094 	sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate;
   5095 	/* NB: caller is responsible for reseting rate control state */
   5096 #undef N
   5097 }
   5098 
   5099 #ifdef AR_DEBUG
   5100 static void
   5101 ath_printrxbuf(struct ath_buf *bf, int done)
   5102 {
   5103 	struct ath_desc *ds;
   5104 	int i;
   5105 
   5106 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
   5107 		printf("R%d (%p %" PRIx64
   5108 		    ") %08x %08x %08x %08x %08x %08x %c\n", i, ds,
   5109 		    (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
   5110 		    ds->ds_link, ds->ds_data,
   5111 		    ds->ds_ctl0, ds->ds_ctl1,
   5112 		    ds->ds_hw[0], ds->ds_hw[1],
   5113 		    !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
   5114 	}
   5115 }
   5116 
   5117 static void
   5118 ath_printtxbuf(struct ath_buf *bf, int done)
   5119 {
   5120 	struct ath_desc *ds;
   5121 	int i;
   5122 
   5123 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
   5124 		printf("T%d (%p %" PRIx64
   5125 		    ") %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
   5126 		    i, ds,
   5127 		    (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
   5128 		    ds->ds_link, ds->ds_data,
   5129 		    ds->ds_ctl0, ds->ds_ctl1,
   5130 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
   5131 		    !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
   5132 	}
   5133 }
   5134 #endif /* AR_DEBUG */
   5135 
   5136 static void
   5137 ath_watchdog(struct ifnet *ifp)
   5138 {
   5139 	struct ath_softc *sc = ifp->if_softc;
   5140 	struct ieee80211com *ic = &sc->sc_ic;
   5141 	struct ath_txq *axq;
   5142 	int i;
   5143 
   5144 	ifp->if_timer = 0;
   5145 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
   5146 		return;
   5147 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
   5148 		if (!ATH_TXQ_SETUP(sc, i))
   5149 			continue;
   5150 		axq = &sc->sc_txq[i];
   5151 		ATH_TXQ_LOCK(axq);
   5152 		if (axq->axq_timer == 0)
   5153 			;
   5154 		else if (--axq->axq_timer == 0) {
   5155 			ATH_TXQ_UNLOCK(axq);
   5156 			if_printf(ifp, "device timeout (txq %d)\n", i);
   5157 			ath_reset(ifp);
   5158 			ifp->if_oerrors++;
   5159 			sc->sc_stats.ast_watchdog++;
   5160 			break;
   5161 		} else
   5162 			ifp->if_timer = 1;
   5163 		ATH_TXQ_UNLOCK(axq);
   5164 	}
   5165 	ieee80211_watchdog(ic);
   5166 }
   5167 
   5168 /*
   5169  * Diagnostic interface to the HAL.  This is used by various
   5170  * tools to do things like retrieve register contents for
   5171  * debugging.  The mechanism is intentionally opaque so that
   5172  * it can change frequently w/o concern for compatiblity.
   5173  */
   5174 static int
   5175 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
   5176 {
   5177 	struct ath_hal *ah = sc->sc_ah;
   5178 	u_int id = ad->ad_id & ATH_DIAG_ID;
   5179 	void *indata = NULL;
   5180 	void *outdata = NULL;
   5181 	u_int32_t insize = ad->ad_in_size;
   5182 	u_int32_t outsize = ad->ad_out_size;
   5183 	int error = 0;
   5184 
   5185 	if (ad->ad_id & ATH_DIAG_IN) {
   5186 		/*
   5187 		 * Copy in data.
   5188 		 */
   5189 		indata = malloc(insize, M_TEMP, M_NOWAIT);
   5190 		if (indata == NULL) {
   5191 			error = ENOMEM;
   5192 			goto bad;
   5193 		}
   5194 		error = copyin(ad->ad_in_data, indata, insize);
   5195 		if (error)
   5196 			goto bad;
   5197 	}
   5198 	if (ad->ad_id & ATH_DIAG_DYN) {
   5199 		/*
   5200 		 * Allocate a buffer for the results (otherwise the HAL
   5201 		 * returns a pointer to a buffer where we can read the
   5202 		 * results).  Note that we depend on the HAL leaving this
   5203 		 * pointer for us to use below in reclaiming the buffer;
   5204 		 * may want to be more defensive.
   5205 		 */
   5206 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
   5207 		if (outdata == NULL) {
   5208 			error = ENOMEM;
   5209 			goto bad;
   5210 		}
   5211 	}
   5212 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
   5213 		if (outsize < ad->ad_out_size)
   5214 			ad->ad_out_size = outsize;
   5215 		if (outdata != NULL)
   5216 			error = copyout(outdata, ad->ad_out_data,
   5217 					ad->ad_out_size);
   5218 	} else {
   5219 		error = EINVAL;
   5220 	}
   5221 bad:
   5222 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
   5223 		free(indata, M_TEMP);
   5224 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
   5225 		free(outdata, M_TEMP);
   5226 	return error;
   5227 }
   5228 
   5229 static int
   5230 ath_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   5231 {
   5232 #define	IS_RUNNING(ifp) \
   5233 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
   5234 	struct ath_softc *sc = ifp->if_softc;
   5235 	struct ieee80211com *ic = &sc->sc_ic;
   5236 	struct ifreq *ifr = (struct ifreq *)data;
   5237 	int error = 0;
   5238 
   5239 	ATH_LOCK(sc);
   5240 	switch (cmd) {
   5241 	case SIOCSIFFLAGS:
   5242 		if (IS_RUNNING(ifp)) {
   5243 			/*
   5244 			 * To avoid rescanning another access point,
   5245 			 * do not call ath_init() here.  Instead,
   5246 			 * only reflect promisc mode settings.
   5247 			 */
   5248 			ath_mode_init(sc);
   5249 		} else if (ifp->if_flags & IFF_UP) {
   5250 			/*
   5251 			 * Beware of being called during attach/detach
   5252 			 * to reset promiscuous mode.  In that case we
   5253 			 * will still be marked UP but not RUNNING.
   5254 			 * However trying to re-init the interface
   5255 			 * is the wrong thing to do as we've already
   5256 			 * torn down much of our state.  There's
   5257 			 * probably a better way to deal with this.
   5258 			 */
   5259 			if (!sc->sc_invalid && ic->ic_bss != NULL)
   5260 				ath_init(sc);	/* XXX lose error */
   5261 		} else
   5262 			ath_stop_locked(ifp, 1);
   5263 		break;
   5264 	case SIOCADDMULTI:
   5265 	case SIOCDELMULTI:
   5266 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
   5267 			if (ifp->if_flags & IFF_RUNNING)
   5268 				ath_mode_init(sc);
   5269 			error = 0;
   5270 		}
   5271 		break;
   5272 	case SIOCGATHSTATS:
   5273 		/* NB: embed these numbers to get a consistent view */
   5274 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
   5275 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
   5276 		sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
   5277 		ATH_UNLOCK(sc);
   5278 		/*
   5279 		 * NB: Drop the softc lock in case of a page fault;
   5280 		 * we'll accept any potential inconsisentcy in the
   5281 		 * statistics.  The alternative is to copy the data
   5282 		 * to a local structure.
   5283 		 */
   5284 		return copyout(&sc->sc_stats,
   5285 				ifr->ifr_data, sizeof (sc->sc_stats));
   5286 	case SIOCGATHDIAG:
   5287 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
   5288 		break;
   5289 	default:
   5290 		error = ieee80211_ioctl(ic, cmd, data);
   5291 		if (error == ENETRESET) {
   5292 			if (IS_RUNNING(ifp) &&
   5293 			    ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
   5294 				ath_init(sc);	/* XXX lose error */
   5295 			error = 0;
   5296 		}
   5297 		if (error == ERESTART)
   5298 			error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0;
   5299 		break;
   5300 	}
   5301 	ATH_UNLOCK(sc);
   5302 	return error;
   5303 #undef IS_RUNNING
   5304 }
   5305 
   5306 #if NBPFILTER > 0
   5307 static void
   5308 ath_bpfattach(struct ath_softc *sc)
   5309 {
   5310 	struct ifnet *ifp = &sc->sc_if;
   5311 
   5312 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
   5313 		sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
   5314 		&sc->sc_drvbpf);
   5315 	/*
   5316 	 * Initialize constant fields.
   5317 	 * XXX make header lengths a multiple of 32-bits so subsequent
   5318 	 *     headers are properly aligned; this is a kludge to keep
   5319 	 *     certain applications happy.
   5320 	 *
   5321 	 * NB: the channel is setup each time we transition to the
   5322 	 *     RUN state to avoid filling it in for each frame.
   5323 	 */
   5324 	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
   5325 	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
   5326 	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
   5327 
   5328 	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
   5329 	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
   5330 	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
   5331 }
   5332 #endif
   5333 
   5334 /*
   5335  * Announce various information on device/driver attach.
   5336  */
   5337 static void
   5338 ath_announce(struct ath_softc *sc)
   5339 {
   5340 #define	HAL_MODE_DUALBAND	(HAL_MODE_11A|HAL_MODE_11B)
   5341 	struct ifnet *ifp = &sc->sc_if;
   5342 	struct ath_hal *ah = sc->sc_ah;
   5343 	u_int modes, cc;
   5344 
   5345 	if_printf(ifp, "mac %d.%d phy %d.%d",
   5346 		ah->ah_macVersion, ah->ah_macRev,
   5347 		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
   5348 	/*
   5349 	 * Print radio revision(s).  We check the wireless modes
   5350 	 * to avoid falsely printing revs for inoperable parts.
   5351 	 * Dual-band radio revs are returned in the 5 GHz rev number.
   5352 	 */
   5353 	ath_hal_getcountrycode(ah, &cc);
   5354 	modes = ath_hal_getwirelessmodes(ah, cc);
   5355 	if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
   5356 		if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
   5357 			printf(" 5 GHz radio %d.%d 2 GHz radio %d.%d",
   5358 				ah->ah_analog5GhzRev >> 4,
   5359 				ah->ah_analog5GhzRev & 0xf,
   5360 				ah->ah_analog2GhzRev >> 4,
   5361 				ah->ah_analog2GhzRev & 0xf);
   5362 		else
   5363 			printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
   5364 				ah->ah_analog5GhzRev & 0xf);
   5365 	} else
   5366 		printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
   5367 			ah->ah_analog5GhzRev & 0xf);
   5368 	printf("\n");
   5369 	if (bootverbose) {
   5370 		int i;
   5371 		for (i = 0; i <= WME_AC_VO; i++) {
   5372 			struct ath_txq *txq = sc->sc_ac2q[i];
   5373 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
   5374 				txq->axq_qnum, ieee80211_wme_acnames[i]);
   5375 		}
   5376 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
   5377 			sc->sc_cabq->axq_qnum);
   5378 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
   5379 	}
   5380 	if (ath_rxbuf != ATH_RXBUF)
   5381 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
   5382 	if (ath_txbuf != ATH_TXBUF)
   5383 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
   5384 #undef HAL_MODE_DUALBAND
   5385 }
   5386