Home | History | Annotate | Line # | Download | only in ic
ath.c revision 1.84.6.1
      1 /*	$NetBSD: ath.c,v 1.84.6.1 2007/08/23 16:19:47 joerg Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer,
     12  *    without modification.
     13  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
     14  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
     15  *    redistribution must be conditioned upon including a substantially
     16  *    similar Disclaimer requirement for further binary redistribution.
     17  * 3. Neither the names of the above-listed copyright holders nor the names
     18  *    of any contributors may be used to endorse or promote products derived
     19  *    from this software without specific prior written permission.
     20  *
     21  * Alternatively, this software may be distributed under the terms of the
     22  * GNU General Public License ("GPL") version 2 as published by the Free
     23  * Software Foundation.
     24  *
     25  * NO WARRANTY
     26  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     28  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
     29  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
     30  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
     31  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
     34  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     36  * THE POSSIBILITY OF SUCH DAMAGES.
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 #ifdef __FreeBSD__
     41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $");
     42 #endif
     43 #ifdef __NetBSD__
     44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.84.6.1 2007/08/23 16:19:47 joerg Exp $");
     45 #endif
     46 
     47 /*
     48  * Driver for the Atheros Wireless LAN controller.
     49  *
     50  * This software is derived from work of Atsushi Onoe; his contribution
     51  * is greatly appreciated.
     52  */
     53 
     54 #include "opt_inet.h"
     55 
     56 #ifdef __NetBSD__
     57 #include "bpfilter.h"
     58 #endif /* __NetBSD__ */
     59 
     60 #include <sys/param.h>
     61 #include <sys/reboot.h>
     62 #include <sys/systm.h>
     63 #include <sys/types.h>
     64 #include <sys/sysctl.h>
     65 #include <sys/mbuf.h>
     66 #include <sys/malloc.h>
     67 #include <sys/lock.h>
     68 #include <sys/kernel.h>
     69 #include <sys/socket.h>
     70 #include <sys/sockio.h>
     71 #include <sys/errno.h>
     72 #include <sys/callout.h>
     73 #include <machine/bus.h>
     74 #include <sys/endian.h>
     75 
     76 #include <net/if.h>
     77 #include <net/if_dl.h>
     78 #include <net/if_media.h>
     79 #include <net/if_types.h>
     80 #include <net/if_arp.h>
     81 #include <net/if_ether.h>
     82 #include <net/if_llc.h>
     83 
     84 #include <net80211/ieee80211_netbsd.h>
     85 #include <net80211/ieee80211_var.h>
     86 
     87 #if NBPFILTER > 0
     88 #include <net/bpf.h>
     89 #endif
     90 
     91 #ifdef INET
     92 #include <netinet/in.h>
     93 #endif
     94 
     95 #include <sys/device.h>
     96 #include <dev/ic/ath_netbsd.h>
     97 
     98 #define	AR_DEBUG
     99 #include <dev/ic/athvar.h>
    100 #include <contrib/dev/ath/ah_desc.h>
    101 #include <contrib/dev/ath/ah_devid.h>	/* XXX for softled */
    102 #include "athhal_options.h"
    103 
    104 #ifdef ATH_TX99_DIAG
    105 #include <dev/ath/ath_tx99/ath_tx99.h>
    106 #endif
    107 
    108 /* unaligned little endian access */
    109 #define LE_READ_2(p)							\
    110 	((u_int16_t)							\
    111 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
    112 #define LE_READ_4(p)							\
    113 	((u_int32_t)							\
    114 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
    115 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
    116 
    117 enum {
    118 	ATH_LED_TX,
    119 	ATH_LED_RX,
    120 	ATH_LED_POLL,
    121 };
    122 
    123 #ifdef	AH_NEED_DESC_SWAP
    124 #define	HTOAH32(x)	htole32(x)
    125 #else
    126 #define	HTOAH32(x)	(x)
    127 #endif
    128 
    129 static int	ath_ifinit(struct ifnet *);
    130 static int	ath_init(struct ath_softc *);
    131 static void	ath_stop_locked(struct ifnet *, int);
    132 static void	ath_stop(struct ifnet *, int);
    133 static void	ath_start(struct ifnet *);
    134 static int	ath_media_change(struct ifnet *);
    135 static void	ath_watchdog(struct ifnet *);
    136 static int	ath_ioctl(struct ifnet *, u_long, void *);
    137 static void	ath_fatal_proc(void *, int);
    138 static void	ath_rxorn_proc(void *, int);
    139 static void	ath_bmiss_proc(void *, int);
    140 static void	ath_radar_proc(void *, int);
    141 static int	ath_key_alloc(struct ieee80211com *,
    142 			const struct ieee80211_key *,
    143 			ieee80211_keyix *, ieee80211_keyix *);
    144 static int	ath_key_delete(struct ieee80211com *,
    145 			const struct ieee80211_key *);
    146 static int	ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
    147 			const u_int8_t mac[IEEE80211_ADDR_LEN]);
    148 static void	ath_key_update_begin(struct ieee80211com *);
    149 static void	ath_key_update_end(struct ieee80211com *);
    150 static void	ath_mode_init(struct ath_softc *);
    151 static void	ath_setslottime(struct ath_softc *);
    152 static void	ath_updateslot(struct ifnet *);
    153 static int	ath_beaconq_setup(struct ath_hal *);
    154 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
    155 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
    156 static void	ath_beacon_proc(void *, int);
    157 static void	ath_bstuck_proc(void *, int);
    158 static void	ath_beacon_free(struct ath_softc *);
    159 static void	ath_beacon_config(struct ath_softc *);
    160 static void	ath_descdma_cleanup(struct ath_softc *sc,
    161 			struct ath_descdma *, ath_bufhead *);
    162 static int	ath_desc_alloc(struct ath_softc *);
    163 static void	ath_desc_free(struct ath_softc *);
    164 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
    165 static void	ath_node_free(struct ieee80211_node *);
    166 static u_int8_t	ath_node_getrssi(const struct ieee80211_node *);
    167 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
    168 static void	ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
    169 			struct ieee80211_node *ni,
    170 			int subtype, int rssi, u_int32_t rstamp);
    171 static void	ath_setdefantenna(struct ath_softc *, u_int);
    172 static void	ath_rx_proc(void *, int);
    173 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
    174 static int	ath_tx_setup(struct ath_softc *, int, int);
    175 static int	ath_wme_update(struct ieee80211com *);
    176 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
    177 static void	ath_tx_cleanup(struct ath_softc *);
    178 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
    179 			     struct ath_buf *, struct mbuf *);
    180 static void	ath_tx_proc_q0(void *, int);
    181 static void	ath_tx_proc_q0123(void *, int);
    182 static void	ath_tx_proc(void *, int);
    183 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
    184 static void	ath_draintxq(struct ath_softc *);
    185 static void	ath_stoprecv(struct ath_softc *);
    186 static int	ath_startrecv(struct ath_softc *);
    187 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
    188 static void	ath_next_scan(void *);
    189 static void	ath_calibrate(void *);
    190 static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
    191 static void	ath_setup_stationkey(struct ieee80211_node *);
    192 static void	ath_newassoc(struct ieee80211_node *, int);
    193 static int	ath_getchannels(struct ath_softc *, u_int cc,
    194 			HAL_BOOL outdoor, HAL_BOOL xchanmode);
    195 static void	ath_led_event(struct ath_softc *, int);
    196 static void	ath_update_txpow(struct ath_softc *);
    197 static void	ath_freetx(struct mbuf *);
    198 
    199 static int	ath_rate_setup(struct ath_softc *, u_int mode);
    200 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
    201 
    202 #ifdef __NetBSD__
    203 int	ath_enable(struct ath_softc *);
    204 void	ath_disable(struct ath_softc *);
    205 #endif
    206 
    207 #if NBPFILTER > 0
    208 static void	ath_bpfattach(struct ath_softc *);
    209 #endif
    210 static void	ath_announce(struct ath_softc *);
    211 
    212 int ath_dwelltime = 200;		/* 5 channels/second */
    213 int ath_calinterval = 30;		/* calibrate every 30 secs */
    214 int ath_outdoor = AH_TRUE;		/* outdoor operation */
    215 int ath_xchanmode = AH_TRUE;		/* enable extended channels */
    216 int ath_countrycode = CTRY_DEFAULT;	/* country code */
    217 int ath_regdomain = 0;			/* regulatory domain */
    218 int ath_debug = 0;
    219 int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
    220 int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
    221 
    222 #ifdef AR_DEBUG
    223 enum {
    224 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
    225 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
    226 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
    227 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
    228 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
    229 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
    230 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
    231 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
    232 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
    233 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
    234 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
    235 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
    236 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
    237 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
    238 	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
    239 	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
    240 	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
    241 	ATH_DEBUG_LED		= 0x00100000,	/* led management */
    242 	ATH_DEBUG_FF		= 0x00200000,	/* fast frames */
    243 	ATH_DEBUG_DFS		= 0x00400000,	/* DFS processing */
    244 	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
    245 	ATH_DEBUG_ANY		= 0xffffffff
    246 };
    247 #define	IFF_DUMPPKTS(sc, m) \
    248 	((sc->sc_debug & (m)) || \
    249 	    (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
    250 #define	DPRINTF(sc, m, fmt, ...) do {				\
    251 	if (sc->sc_debug & (m))					\
    252 		printf(fmt, __VA_ARGS__);			\
    253 } while (0)
    254 #define	KEYPRINTF(sc, ix, hk, mac) do {				\
    255 	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
    256 		ath_keyprint(__func__, ix, hk, mac);		\
    257 } while (0)
    258 static	void ath_printrxbuf(struct ath_buf *bf, int);
    259 static	void ath_printtxbuf(struct ath_buf *bf, int);
    260 #else
    261 #define	IFF_DUMPPKTS(sc, m) \
    262 	((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
    263 #define	DPRINTF(m, fmt, ...)
    264 #define	KEYPRINTF(sc, k, ix, mac)
    265 #endif
    266 
    267 #ifdef __NetBSD__
    268 int
    269 ath_activate(struct device *self, enum devact act)
    270 {
    271 	struct ath_softc *sc = (struct ath_softc *)self;
    272 	int rv = 0, s;
    273 
    274 	s = splnet();
    275 	switch (act) {
    276 	case DVACT_ACTIVATE:
    277 		rv = EOPNOTSUPP;
    278 		break;
    279 	case DVACT_DEACTIVATE:
    280 		if_deactivate(&sc->sc_if);
    281 		break;
    282 	}
    283 	splx(s);
    284 	return rv;
    285 }
    286 
    287 int
    288 ath_enable(struct ath_softc *sc)
    289 {
    290 	if (ATH_IS_ENABLED(sc) == 0) {
    291 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
    292 			printf("%s: device enable failed\n",
    293 				sc->sc_dev.dv_xname);
    294 			return (EIO);
    295 		}
    296 		sc->sc_flags |= ATH_ENABLED;
    297 	}
    298 	return (0);
    299 }
    300 
    301 void
    302 ath_disable(struct ath_softc *sc)
    303 {
    304 	if (!ATH_IS_ENABLED(sc))
    305 		return;
    306 	if (sc->sc_disable != NULL)
    307 		(*sc->sc_disable)(sc);
    308 	sc->sc_flags &= ~ATH_ENABLED;
    309 }
    310 #endif /* __NetBSD__ */
    311 
    312 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
    313 
    314 int
    315 ath_attach(u_int16_t devid, struct ath_softc *sc)
    316 {
    317 	struct ifnet *ifp = &sc->sc_if;
    318 	struct ieee80211com *ic = &sc->sc_ic;
    319 	struct ath_hal *ah = NULL;
    320 	HAL_STATUS status;
    321 	int error = 0, i;
    322 
    323 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
    324 
    325 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
    326 
    327 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
    328 	if (ah == NULL) {
    329 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
    330 			status);
    331 		error = ENXIO;
    332 		goto bad;
    333 	}
    334 	if (ah->ah_abi != HAL_ABI_VERSION) {
    335 		if_printf(ifp, "HAL ABI mismatch detected "
    336 			"(HAL:0x%x != driver:0x%x)\n",
    337 			ah->ah_abi, HAL_ABI_VERSION);
    338 		error = ENXIO;
    339 		goto bad;
    340 	}
    341 	sc->sc_ah = ah;
    342 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
    343 
    344 	/*
    345 	 * Check if the MAC has multi-rate retry support.
    346 	 * We do this by trying to setup a fake extended
    347 	 * descriptor.  MAC's that don't have support will
    348 	 * return false w/o doing anything.  MAC's that do
    349 	 * support it will return true w/o doing anything.
    350 	 */
    351 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
    352 
    353 	/*
    354 	 * Check if the device has hardware counters for PHY
    355 	 * errors.  If so we need to enable the MIB interrupt
    356 	 * so we can act on stat triggers.
    357 	 */
    358 	if (ath_hal_hwphycounters(ah))
    359 		sc->sc_needmib = 1;
    360 
    361 	/*
    362 	 * Get the hardware key cache size.
    363 	 */
    364 	sc->sc_keymax = ath_hal_keycachesize(ah);
    365 	if (sc->sc_keymax > ATH_KEYMAX) {
    366 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
    367 			ATH_KEYMAX, sc->sc_keymax);
    368 		sc->sc_keymax = ATH_KEYMAX;
    369 	}
    370 	/*
    371 	 * Reset the key cache since some parts do not
    372 	 * reset the contents on initial power up.
    373 	 */
    374 	for (i = 0; i < sc->sc_keymax; i++)
    375 		ath_hal_keyreset(ah, i);
    376 	/*
    377 	 * Mark key cache slots associated with global keys
    378 	 * as in use.  If we knew TKIP was not to be used we
    379 	 * could leave the +32, +64, and +32+64 slots free.
    380 	 * XXX only for splitmic.
    381 	 */
    382 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
    383 		setbit(sc->sc_keymap, i);
    384 		setbit(sc->sc_keymap, i+32);
    385 		setbit(sc->sc_keymap, i+64);
    386 		setbit(sc->sc_keymap, i+32+64);
    387 	}
    388 
    389 	/*
    390 	 * Collect the channel list using the default country
    391 	 * code and including outdoor channels.  The 802.11 layer
    392 	 * is resposible for filtering this list based on settings
    393 	 * like the phy mode.
    394 	 */
    395 	error = ath_getchannels(sc, ath_countrycode,
    396 			ath_outdoor, ath_xchanmode);
    397 	if (error != 0)
    398 		goto bad;
    399 
    400 	/*
    401 	 * Setup rate tables for all potential media types.
    402 	 */
    403 	ath_rate_setup(sc, IEEE80211_MODE_11A);
    404 	ath_rate_setup(sc, IEEE80211_MODE_11B);
    405 	ath_rate_setup(sc, IEEE80211_MODE_11G);
    406 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
    407 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
    408 	/* NB: setup here so ath_rate_update is happy */
    409 	ath_setcurmode(sc, IEEE80211_MODE_11A);
    410 
    411 	/*
    412 	 * Allocate tx+rx descriptors and populate the lists.
    413 	 */
    414 	error = ath_desc_alloc(sc);
    415 	if (error != 0) {
    416 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
    417 		goto bad;
    418 	}
    419 	ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
    420 	ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE);
    421 	ATH_CALLOUT_INIT(&sc->sc_dfs_ch, CALLOUT_MPSAFE);
    422 
    423 	ATH_TXBUF_LOCK_INIT(sc);
    424 
    425 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
    426 	TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
    427 	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
    428 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
    429 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
    430 	TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc);
    431 
    432 	/*
    433 	 * Allocate hardware transmit queues: one queue for
    434 	 * beacon frames and one data queue for each QoS
    435 	 * priority.  Note that the hal handles reseting
    436 	 * these queues at the needed time.
    437 	 *
    438 	 * XXX PS-Poll
    439 	 */
    440 	sc->sc_bhalq = ath_beaconq_setup(ah);
    441 	if (sc->sc_bhalq == (u_int) -1) {
    442 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
    443 		error = EIO;
    444 		goto bad2;
    445 	}
    446 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
    447 	if (sc->sc_cabq == NULL) {
    448 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
    449 		error = EIO;
    450 		goto bad2;
    451 	}
    452 	/* NB: insure BK queue is the lowest priority h/w queue */
    453 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
    454 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
    455 			ieee80211_wme_acnames[WME_AC_BK]);
    456 		error = EIO;
    457 		goto bad2;
    458 	}
    459 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
    460 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
    461 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
    462 		/*
    463 		 * Not enough hardware tx queues to properly do WME;
    464 		 * just punt and assign them all to the same h/w queue.
    465 		 * We could do a better job of this if, for example,
    466 		 * we allocate queues when we switch from station to
    467 		 * AP mode.
    468 		 */
    469 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
    470 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
    471 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
    472 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
    473 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
    474 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
    475 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
    476 	}
    477 
    478 	/*
    479 	 * Special case certain configurations.  Note the
    480 	 * CAB queue is handled by these specially so don't
    481 	 * include them when checking the txq setup mask.
    482 	 */
    483 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
    484 	case 0x01:
    485 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
    486 		break;
    487 	case 0x0f:
    488 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
    489 		break;
    490 	default:
    491 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
    492 		break;
    493 	}
    494 
    495 	/*
    496 	 * Setup rate control.  Some rate control modules
    497 	 * call back to change the anntena state so expose
    498 	 * the necessary entry points.
    499 	 * XXX maybe belongs in struct ath_ratectrl?
    500 	 */
    501 	sc->sc_setdefantenna = ath_setdefantenna;
    502 	sc->sc_rc = ath_rate_attach(sc);
    503 	if (sc->sc_rc == NULL) {
    504 		error = EIO;
    505 		goto bad2;
    506 	}
    507 
    508 	sc->sc_blinking = 0;
    509 	sc->sc_ledstate = 1;
    510 	sc->sc_ledon = 0;			/* low true */
    511 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
    512 	ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE);
    513 	/*
    514 	 * Auto-enable soft led processing for IBM cards and for
    515 	 * 5211 minipci cards.  Users can also manually enable/disable
    516 	 * support with a sysctl.
    517 	 */
    518 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
    519 	if (sc->sc_softled) {
    520 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
    521 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
    522 	}
    523 
    524 	ifp->if_softc = sc;
    525 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
    526 	ifp->if_start = ath_start;
    527 	ifp->if_stop = ath_stop;
    528 	ifp->if_watchdog = ath_watchdog;
    529 	ifp->if_ioctl = ath_ioctl;
    530 	ifp->if_init = ath_ifinit;
    531 	IFQ_SET_READY(&ifp->if_snd);
    532 
    533 	ic->ic_ifp = ifp;
    534 	ic->ic_reset = ath_reset;
    535 	ic->ic_newassoc = ath_newassoc;
    536 	ic->ic_updateslot = ath_updateslot;
    537 	ic->ic_wme.wme_update = ath_wme_update;
    538 	/* XXX not right but it's not used anywhere important */
    539 	ic->ic_phytype = IEEE80211_T_OFDM;
    540 	ic->ic_opmode = IEEE80211_M_STA;
    541 	ic->ic_caps =
    542 		  IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
    543 		| IEEE80211_C_HOSTAP		/* hostap mode */
    544 		| IEEE80211_C_MONITOR		/* monitor mode */
    545 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
    546 		| IEEE80211_C_SHSLOT		/* short slot time supported */
    547 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
    548 		| IEEE80211_C_TXFRAG		/* handle tx frags */
    549 		;
    550 	/*
    551 	 * Query the hal to figure out h/w crypto support.
    552 	 */
    553 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
    554 		ic->ic_caps |= IEEE80211_C_WEP;
    555 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
    556 		ic->ic_caps |= IEEE80211_C_AES;
    557 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
    558 		ic->ic_caps |= IEEE80211_C_AES_CCM;
    559 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
    560 		ic->ic_caps |= IEEE80211_C_CKIP;
    561 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
    562 		ic->ic_caps |= IEEE80211_C_TKIP;
    563 		/*
    564 		 * Check if h/w does the MIC and/or whether the
    565 		 * separate key cache entries are required to
    566 		 * handle both tx+rx MIC keys.
    567 		 */
    568 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
    569 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
    570 		if (ath_hal_tkipsplit(ah))
    571 			sc->sc_splitmic = 1;
    572 	}
    573 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
    574 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
    575 	/*
    576 	 * TPC support can be done either with a global cap or
    577 	 * per-packet support.  The latter is not available on
    578 	 * all parts.  We're a bit pedantic here as all parts
    579 	 * support a global cap.
    580 	 */
    581 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
    582 		ic->ic_caps |= IEEE80211_C_TXPMGT;
    583 
    584 	/*
    585 	 * Mark WME capability only if we have sufficient
    586 	 * hardware queues to do proper priority scheduling.
    587 	 */
    588 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
    589 		ic->ic_caps |= IEEE80211_C_WME;
    590 	/*
    591 	 * Check for misc other capabilities.
    592 	 */
    593 	if (ath_hal_hasbursting(ah))
    594 		ic->ic_caps |= IEEE80211_C_BURST;
    595 
    596 	/*
    597 	 * Indicate we need the 802.11 header padded to a
    598 	 * 32-bit boundary for 4-address and QoS frames.
    599 	 */
    600 	ic->ic_flags |= IEEE80211_F_DATAPAD;
    601 
    602 	/*
    603 	 * Query the hal about antenna support.
    604 	 */
    605 	sc->sc_defant = ath_hal_getdefantenna(ah);
    606 
    607 	/*
    608 	 * Not all chips have the VEOL support we want to
    609 	 * use with IBSS beacons; check here for it.
    610 	 */
    611 	sc->sc_hasveol = ath_hal_hasveol(ah);
    612 
    613 	/* get mac address from hardware */
    614 	ath_hal_getmac(ah, ic->ic_myaddr);
    615 
    616 	if_attach(ifp);
    617 	/* call MI attach routine. */
    618 	ieee80211_ifattach(ic);
    619 	/* override default methods */
    620 	ic->ic_node_alloc = ath_node_alloc;
    621 	sc->sc_node_free = ic->ic_node_free;
    622 	ic->ic_node_free = ath_node_free;
    623 	ic->ic_node_getrssi = ath_node_getrssi;
    624 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
    625 	ic->ic_recv_mgmt = ath_recv_mgmt;
    626 	sc->sc_newstate = ic->ic_newstate;
    627 	ic->ic_newstate = ath_newstate;
    628 	ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
    629 	ic->ic_crypto.cs_key_alloc = ath_key_alloc;
    630 	ic->ic_crypto.cs_key_delete = ath_key_delete;
    631 	ic->ic_crypto.cs_key_set = ath_key_set;
    632 	ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
    633 	ic->ic_crypto.cs_key_update_end = ath_key_update_end;
    634 	/* complete initialization */
    635 	ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
    636 
    637 #if NBPFILTER > 0
    638 	ath_bpfattach(sc);
    639 #endif
    640 
    641 	sc->sc_flags |= ATH_ATTACHED;
    642 
    643 	/*
    644 	 * Setup dynamic sysctl's now that country code and
    645 	 * regdomain are available from the hal.
    646 	 */
    647 	ath_sysctlattach(sc);
    648 
    649 	ieee80211_announce(ic);
    650 	ath_announce(sc);
    651 	return 0;
    652 bad2:
    653 	ath_tx_cleanup(sc);
    654 	ath_desc_free(sc);
    655 bad:
    656 	if (ah)
    657 		ath_hal_detach(ah);
    658 	sc->sc_invalid = 1;
    659 	return error;
    660 }
    661 
    662 int
    663 ath_detach(struct ath_softc *sc)
    664 {
    665 	struct ifnet *ifp = &sc->sc_if;
    666 	int s;
    667 
    668 	if ((sc->sc_flags & ATH_ATTACHED) == 0)
    669 		return (0);
    670 
    671 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
    672 		__func__, ifp->if_flags);
    673 
    674 	s = splnet();
    675 	ath_stop(ifp, 1);
    676 #if NBPFILTER > 0
    677 	bpfdetach(ifp);
    678 #endif
    679 	/*
    680 	 * NB: the order of these is important:
    681 	 * o call the 802.11 layer before detaching the hal to
    682 	 *   insure callbacks into the driver to delete global
    683 	 *   key cache entries can be handled
    684 	 * o reclaim the tx queue data structures after calling
    685 	 *   the 802.11 layer as we'll get called back to reclaim
    686 	 *   node state and potentially want to use them
    687 	 * o to cleanup the tx queues the hal is called, so detach
    688 	 *   it last
    689 	 * Other than that, it's straightforward...
    690 	 */
    691 	ieee80211_ifdetach(&sc->sc_ic);
    692 #ifdef ATH_TX99_DIAG
    693 	if (sc->sc_tx99 != NULL)
    694 		sc->sc_tx99->detach(sc->sc_tx99);
    695 #endif
    696 	ath_rate_detach(sc->sc_rc);
    697 	ath_desc_free(sc);
    698 	ath_tx_cleanup(sc);
    699 	sysctl_teardown(&sc->sc_sysctllog);
    700 	ath_hal_detach(sc->sc_ah);
    701 	if_detach(ifp);
    702 	splx(s);
    703 	powerhook_disestablish(sc->sc_powerhook);
    704 
    705 	return 0;
    706 }
    707 
    708 /*
    709  * Interrupt handler.  Most of the actual processing is deferred.
    710  */
    711 int
    712 ath_intr(void *arg)
    713 {
    714 	struct ath_softc *sc = arg;
    715 	struct ifnet *ifp = &sc->sc_if;
    716 	struct ath_hal *ah = sc->sc_ah;
    717 	HAL_INT status;
    718 
    719 	if (sc->sc_invalid) {
    720 		/*
    721 		 * The hardware is not ready/present, don't touch anything.
    722 		 * Note this can happen early on if the IRQ is shared.
    723 		 */
    724 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
    725 		return 0;
    726 	}
    727 
    728 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
    729 		return 0;
    730 
    731 	if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
    732 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
    733 			__func__, ifp->if_flags);
    734 		ath_hal_getisr(ah, &status);	/* clear ISR */
    735 		ath_hal_intrset(ah, 0);		/* disable further intr's */
    736 		return 1; /* XXX */
    737 	}
    738 	/*
    739 	 * Figure out the reason(s) for the interrupt.  Note
    740 	 * that the hal returns a pseudo-ISR that may include
    741 	 * bits we haven't explicitly enabled so we mask the
    742 	 * value to insure we only process bits we requested.
    743 	 */
    744 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
    745 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
    746 	status &= sc->sc_imask;			/* discard unasked for bits */
    747 	if (status & HAL_INT_FATAL) {
    748 		/*
    749 		 * Fatal errors are unrecoverable.  Typically
    750 		 * these are caused by DMA errors.  Unfortunately
    751 		 * the exact reason is not (presently) returned
    752 		 * by the hal.
    753 		 */
    754 		sc->sc_stats.ast_hardware++;
    755 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
    756 		TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
    757 	} else if (status & HAL_INT_RXORN) {
    758 		sc->sc_stats.ast_rxorn++;
    759 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
    760 		TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
    761 	} else {
    762 		if (status & HAL_INT_SWBA) {
    763 			/*
    764 			 * Software beacon alert--time to send a beacon.
    765 			 * Handle beacon transmission directly; deferring
    766 			 * this is too slow to meet timing constraints
    767 			 * under load.
    768 			 */
    769 			ath_beacon_proc(sc, 0);
    770 		}
    771 		if (status & HAL_INT_RXEOL) {
    772 			/*
    773 			 * NB: the hardware should re-read the link when
    774 			 *     RXE bit is written, but it doesn't work at
    775 			 *     least on older hardware revs.
    776 			 */
    777 			sc->sc_stats.ast_rxeol++;
    778 			sc->sc_rxlink = NULL;
    779 		}
    780 		if (status & HAL_INT_TXURN) {
    781 			sc->sc_stats.ast_txurn++;
    782 			/* bump tx trigger level */
    783 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
    784 		}
    785 		if (status & HAL_INT_RX)
    786 			TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
    787 		if (status & HAL_INT_TX)
    788 			TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
    789 		if (status & HAL_INT_BMISS) {
    790 			sc->sc_stats.ast_bmiss++;
    791 			TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
    792 		}
    793 		if (status & HAL_INT_MIB) {
    794 			sc->sc_stats.ast_mib++;
    795 			/*
    796 			 * Disable interrupts until we service the MIB
    797 			 * interrupt; otherwise it will continue to fire.
    798 			 */
    799 			ath_hal_intrset(ah, 0);
    800 			/*
    801 			 * Let the hal handle the event.  We assume it will
    802 			 * clear whatever condition caused the interrupt.
    803 			 */
    804 			ath_hal_mibevent(ah, &sc->sc_halstats);
    805 			ath_hal_intrset(ah, sc->sc_imask);
    806 		}
    807 	}
    808 	return 1;
    809 }
    810 
    811 /* Swap transmit descriptor.
    812  * if AH_NEED_DESC_SWAP flag is not defined this becomes a "null"
    813  * function.
    814  */
    815 static inline void
    816 ath_desc_swap(struct ath_desc *ds)
    817 {
    818 #ifdef AH_NEED_DESC_SWAP
    819 	ds->ds_link = htole32(ds->ds_link);
    820 	ds->ds_data = htole32(ds->ds_data);
    821 	ds->ds_ctl0 = htole32(ds->ds_ctl0);
    822 	ds->ds_ctl1 = htole32(ds->ds_ctl1);
    823 	ds->ds_hw[0] = htole32(ds->ds_hw[0]);
    824 	ds->ds_hw[1] = htole32(ds->ds_hw[1]);
    825 #endif
    826 }
    827 
    828 static void
    829 ath_fatal_proc(void *arg, int pending)
    830 {
    831 	struct ath_softc *sc = arg;
    832 	struct ifnet *ifp = &sc->sc_if;
    833 
    834 	if_printf(ifp, "hardware error; resetting\n");
    835 	ath_reset(ifp);
    836 }
    837 
    838 static void
    839 ath_rxorn_proc(void *arg, int pending)
    840 {
    841 	struct ath_softc *sc = arg;
    842 	struct ifnet *ifp = &sc->sc_if;
    843 
    844 	if_printf(ifp, "rx FIFO overrun; resetting\n");
    845 	ath_reset(ifp);
    846 }
    847 
    848 static void
    849 ath_bmiss_proc(void *arg, int pending)
    850 {
    851 	struct ath_softc *sc = arg;
    852 	struct ieee80211com *ic = &sc->sc_ic;
    853 
    854 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
    855 	KASSERT(ic->ic_opmode == IEEE80211_M_STA,
    856 		("unexpect operating mode %u", ic->ic_opmode));
    857 	if (ic->ic_state == IEEE80211_S_RUN) {
    858 		u_int64_t lastrx = sc->sc_lastrx;
    859 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
    860 
    861 		DPRINTF(sc, ATH_DEBUG_BEACON,
    862 		    "%s: tsf %" PRIu64 " lastrx %" PRId64
    863 		    " (%" PRIu64 ") bmiss %u\n",
    864 		    __func__, tsf, tsf - lastrx, lastrx,
    865 		    ic->ic_bmisstimeout*1024);
    866 		/*
    867 		 * Workaround phantom bmiss interrupts by sanity-checking
    868 		 * the time of our last rx'd frame.  If it is within the
    869 		 * beacon miss interval then ignore the interrupt.  If it's
    870 		 * truly a bmiss we'll get another interrupt soon and that'll
    871 		 * be dispatched up for processing.
    872 		 */
    873 		if (tsf - lastrx > ic->ic_bmisstimeout*1024) {
    874 			NET_LOCK_GIANT();
    875 			ieee80211_beacon_miss(ic);
    876 			NET_UNLOCK_GIANT();
    877 		} else
    878 			sc->sc_stats.ast_bmiss_phantom++;
    879 	}
    880 }
    881 
    882 static void
    883 ath_radar_proc(void *arg, int pending)
    884 {
    885 	struct ath_softc *sc = arg;
    886 	struct ifnet *ifp = &sc->sc_if;
    887 	struct ath_hal *ah = sc->sc_ah;
    888 	HAL_CHANNEL hchan;
    889 
    890 	if (ath_hal_procdfs(ah, &hchan)) {
    891 		if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n",
    892 			hchan.channel, hchan.channelFlags, hchan.privFlags);
    893 		/*
    894 		 * Initiate channel change.
    895 		 */
    896 		/* XXX not yet */
    897 	}
    898 }
    899 
    900 static u_int
    901 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
    902 {
    903 #define	N(a)	(sizeof(a) / sizeof(a[0]))
    904 	static const u_int modeflags[] = {
    905 		0,			/* IEEE80211_MODE_AUTO */
    906 		CHANNEL_A,		/* IEEE80211_MODE_11A */
    907 		CHANNEL_B,		/* IEEE80211_MODE_11B */
    908 		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
    909 		0,			/* IEEE80211_MODE_FH */
    910 		CHANNEL_ST,		/* IEEE80211_MODE_TURBO_A */
    911 		CHANNEL_108G		/* IEEE80211_MODE_TURBO_G */
    912 	};
    913 	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
    914 
    915 	KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
    916 	KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
    917 	return modeflags[mode];
    918 #undef N
    919 }
    920 
    921 static int
    922 ath_ifinit(struct ifnet *ifp)
    923 {
    924 	struct ath_softc *sc = (struct ath_softc *)ifp->if_softc;
    925 
    926 	return ath_init(sc);
    927 }
    928 
    929 static int
    930 ath_init(struct ath_softc *sc)
    931 {
    932 	struct ifnet *ifp = &sc->sc_if;
    933 	struct ieee80211com *ic = &sc->sc_ic;
    934 	struct ath_hal *ah = sc->sc_ah;
    935 	HAL_STATUS status;
    936 	int error = 0;
    937 
    938 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
    939 		__func__, ifp->if_flags);
    940 
    941 	ATH_LOCK(sc);
    942 
    943 	if ((error = ath_enable(sc)) != 0)
    944 		return error;
    945 
    946 	/*
    947 	 * Stop anything previously setup.  This is safe
    948 	 * whether this is the first time through or not.
    949 	 */
    950 	ath_stop_locked(ifp, 0);
    951 
    952 	/*
    953 	 * The basic interface to setting the hardware in a good
    954 	 * state is ``reset''.  On return the hardware is known to
    955 	 * be powered up and with interrupts disabled.  This must
    956 	 * be followed by initialization of the appropriate bits
    957 	 * and then setup of the interrupt mask.
    958 	 */
    959 	sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
    960 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
    961 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
    962 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
    963 			status);
    964 		error = EIO;
    965 		goto done;
    966 	}
    967 
    968 	/*
    969 	 * This is needed only to setup initial state
    970 	 * but it's best done after a reset.
    971 	 */
    972 	ath_update_txpow(sc);
    973 	/*
    974 	 * Likewise this is set during reset so update
    975 	 * state cached in the driver.
    976 	 */
    977 	sc->sc_diversity = ath_hal_getdiversity(ah);
    978 	sc->sc_calinterval = 1;
    979 	sc->sc_caltries = 0;
    980 
    981 	/*
    982 	 * Setup the hardware after reset: the key cache
    983 	 * is filled as needed and the receive engine is
    984 	 * set going.  Frame transmit is handled entirely
    985 	 * in the frame output path; there's nothing to do
    986 	 * here except setup the interrupt mask.
    987 	 */
    988 	if ((error = ath_startrecv(sc)) != 0) {
    989 		if_printf(ifp, "unable to start recv logic\n");
    990 		goto done;
    991 	}
    992 
    993 	/*
    994 	 * Enable interrupts.
    995 	 */
    996 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
    997 		  | HAL_INT_RXEOL | HAL_INT_RXORN
    998 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
    999 	/*
   1000 	 * Enable MIB interrupts when there are hardware phy counters.
   1001 	 * Note we only do this (at the moment) for station mode.
   1002 	 */
   1003 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
   1004 		sc->sc_imask |= HAL_INT_MIB;
   1005 	ath_hal_intrset(ah, sc->sc_imask);
   1006 
   1007 	ifp->if_flags |= IFF_RUNNING;
   1008 	ic->ic_state = IEEE80211_S_INIT;
   1009 
   1010 	/*
   1011 	 * The hardware should be ready to go now so it's safe
   1012 	 * to kick the 802.11 state machine as it's likely to
   1013 	 * immediately call back to us to send mgmt frames.
   1014 	 */
   1015 	ath_chan_change(sc, ic->ic_curchan);
   1016 #ifdef ATH_TX99_DIAG
   1017 	if (sc->sc_tx99 != NULL)
   1018 		sc->sc_tx99->start(sc->sc_tx99);
   1019 	else
   1020 #endif
   1021 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   1022 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
   1023 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   1024 	} else
   1025 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   1026 done:
   1027 	ATH_UNLOCK(sc);
   1028 	return error;
   1029 }
   1030 
   1031 static void
   1032 ath_stop_locked(struct ifnet *ifp, int disable)
   1033 {
   1034 	struct ath_softc *sc = ifp->if_softc;
   1035 	struct ieee80211com *ic = &sc->sc_ic;
   1036 	struct ath_hal *ah = sc->sc_ah;
   1037 
   1038 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
   1039 		__func__, sc->sc_invalid, ifp->if_flags);
   1040 
   1041 	ATH_LOCK_ASSERT(sc);
   1042 	if (ifp->if_flags & IFF_RUNNING) {
   1043 		/*
   1044 		 * Shutdown the hardware and driver:
   1045 		 *    reset 802.11 state machine
   1046 		 *    turn off timers
   1047 		 *    disable interrupts
   1048 		 *    turn off the radio
   1049 		 *    clear transmit machinery
   1050 		 *    clear receive machinery
   1051 		 *    drain and release tx queues
   1052 		 *    reclaim beacon resources
   1053 		 *    power down hardware
   1054 		 *
   1055 		 * Note that some of this work is not possible if the
   1056 		 * hardware is gone (invalid).
   1057 		 */
   1058 #ifdef ATH_TX99_DIAG
   1059 		if (sc->sc_tx99 != NULL)
   1060 			sc->sc_tx99->stop(sc->sc_tx99);
   1061 #endif
   1062 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   1063 		ifp->if_flags &= ~IFF_RUNNING;
   1064 		ifp->if_timer = 0;
   1065 		if (!sc->sc_invalid) {
   1066 			if (sc->sc_softled) {
   1067 				callout_stop(&sc->sc_ledtimer);
   1068 				ath_hal_gpioset(ah, sc->sc_ledpin,
   1069 					!sc->sc_ledon);
   1070 				sc->sc_blinking = 0;
   1071 			}
   1072 			ath_hal_intrset(ah, 0);
   1073 		}
   1074 		ath_draintxq(sc);
   1075 		if (!sc->sc_invalid) {
   1076 			ath_stoprecv(sc);
   1077 			ath_hal_phydisable(ah);
   1078 		} else
   1079 			sc->sc_rxlink = NULL;
   1080 		IF_PURGE(&ifp->if_snd);
   1081 		ath_beacon_free(sc);
   1082 		if (disable)
   1083 			ath_disable(sc);
   1084 	}
   1085 }
   1086 
   1087 static void
   1088 ath_stop(struct ifnet *ifp, int disable)
   1089 {
   1090 	struct ath_softc *sc = ifp->if_softc;
   1091 
   1092 	ATH_LOCK(sc);
   1093 	ath_stop_locked(ifp, disable);
   1094 	if (!sc->sc_invalid) {
   1095 		/*
   1096 		 * Set the chip in full sleep mode.  Note that we are
   1097 		 * careful to do this only when bringing the interface
   1098 		 * completely to a stop.  When the chip is in this state
   1099 		 * it must be carefully woken up or references to
   1100 		 * registers in the PCI clock domain may freeze the bus
   1101 		 * (and system).  This varies by chip and is mostly an
   1102 		 * issue with newer parts that go to sleep more quickly.
   1103 		 */
   1104 		ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
   1105 	}
   1106 	ATH_UNLOCK(sc);
   1107 }
   1108 
   1109 /*
   1110  * Reset the hardware w/o losing operational state.  This is
   1111  * basically a more efficient way of doing ath_stop, ath_init,
   1112  * followed by state transitions to the current 802.11
   1113  * operational state.  Used to recover from various errors and
   1114  * to reset or reload hardware state.
   1115  */
   1116 int
   1117 ath_reset(struct ifnet *ifp)
   1118 {
   1119 	struct ath_softc *sc = ifp->if_softc;
   1120 	struct ieee80211com *ic = &sc->sc_ic;
   1121 	struct ath_hal *ah = sc->sc_ah;
   1122 	struct ieee80211_channel *c;
   1123 	HAL_STATUS status;
   1124 
   1125 	/*
   1126 	 * Convert to a HAL channel description with the flags
   1127 	 * constrained to reflect the current operating mode.
   1128 	 */
   1129 	c = ic->ic_curchan;
   1130 	sc->sc_curchan.channel = c->ic_freq;
   1131 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
   1132 
   1133 	ath_hal_intrset(ah, 0);		/* disable interrupts */
   1134 	ath_draintxq(sc);		/* stop xmit side */
   1135 	ath_stoprecv(sc);		/* stop recv side */
   1136 	/* NB: indicate channel change so we do a full reset */
   1137 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
   1138 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
   1139 			__func__, status);
   1140 	ath_update_txpow(sc);		/* update tx power state */
   1141 	sc->sc_diversity = ath_hal_getdiversity(ah);
   1142 	sc->sc_calinterval = 1;
   1143 	sc->sc_caltries = 0;
   1144 	if (ath_startrecv(sc) != 0)	/* restart recv */
   1145 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
   1146 	/*
   1147 	 * We may be doing a reset in response to an ioctl
   1148 	 * that changes the channel so update any state that
   1149 	 * might change as a result.
   1150 	 */
   1151 	ath_chan_change(sc, c);
   1152 	if (ic->ic_state == IEEE80211_S_RUN)
   1153 		ath_beacon_config(sc);	/* restart beacons */
   1154 	ath_hal_intrset(ah, sc->sc_imask);
   1155 
   1156 	ath_start(ifp);			/* restart xmit */
   1157 	return 0;
   1158 }
   1159 
   1160 /*
   1161  * Cleanup driver resources when we run out of buffers
   1162  * while processing fragments; return the tx buffers
   1163  * allocated and drop node references.
   1164  */
   1165 static void
   1166 ath_txfrag_cleanup(struct ath_softc *sc,
   1167 	ath_bufhead *frags, struct ieee80211_node *ni)
   1168 {
   1169 	struct ath_buf *bf;
   1170 
   1171 	ATH_TXBUF_LOCK_ASSERT(sc);
   1172 
   1173 	while ((bf = STAILQ_FIRST(frags)) != NULL) {
   1174 		STAILQ_REMOVE_HEAD(frags, bf_list);
   1175 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1176 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
   1177 		ieee80211_node_decref(ni);
   1178 	}
   1179 }
   1180 
   1181 /*
   1182  * Setup xmit of a fragmented frame.  Allocate a buffer
   1183  * for each frag and bump the node reference count to
   1184  * reflect the held reference to be setup by ath_tx_start.
   1185  */
   1186 static int
   1187 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
   1188 	struct mbuf *m0, struct ieee80211_node *ni)
   1189 {
   1190 	struct mbuf *m;
   1191 	struct ath_buf *bf;
   1192 
   1193 	ATH_TXBUF_LOCK(sc);
   1194 	for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
   1195 		bf = STAILQ_FIRST(&sc->sc_txbuf);
   1196 		if (bf == NULL) {       /* out of buffers, cleanup */
   1197 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
   1198 				__func__);
   1199 			sc->sc_if.if_flags |= IFF_OACTIVE;
   1200 			ath_txfrag_cleanup(sc, frags, ni);
   1201 			break;
   1202 		}
   1203 		STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
   1204 		ieee80211_node_incref(ni);
   1205 		STAILQ_INSERT_TAIL(frags, bf, bf_list);
   1206 	}
   1207 	ATH_TXBUF_UNLOCK(sc);
   1208 
   1209 	return !STAILQ_EMPTY(frags);
   1210 }
   1211 
   1212 static void
   1213 ath_start(struct ifnet *ifp)
   1214 {
   1215 	struct ath_softc *sc = ifp->if_softc;
   1216 	struct ath_hal *ah = sc->sc_ah;
   1217 	struct ieee80211com *ic = &sc->sc_ic;
   1218 	struct ieee80211_node *ni;
   1219 	struct ath_buf *bf;
   1220 	struct mbuf *m, *next;
   1221 	struct ieee80211_frame *wh;
   1222 	struct ether_header *eh;
   1223 	ath_bufhead frags;
   1224 
   1225 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
   1226 		return;
   1227 	for (;;) {
   1228 		/*
   1229 		 * Grab a TX buffer and associated resources.
   1230 		 */
   1231 		ATH_TXBUF_LOCK(sc);
   1232 		bf = STAILQ_FIRST(&sc->sc_txbuf);
   1233 		if (bf != NULL)
   1234 			STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
   1235 		ATH_TXBUF_UNLOCK(sc);
   1236 		if (bf == NULL) {
   1237 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
   1238 				__func__);
   1239 			sc->sc_stats.ast_tx_qstop++;
   1240 			ifp->if_flags |= IFF_OACTIVE;
   1241 			break;
   1242 		}
   1243 		/*
   1244 		 * Poll the management queue for frames; they
   1245 		 * have priority over normal data frames.
   1246 		 */
   1247 		IF_DEQUEUE(&ic->ic_mgtq, m);
   1248 		if (m == NULL) {
   1249 			/*
   1250 			 * No data frames go out unless we're associated.
   1251 			 */
   1252 			if (ic->ic_state != IEEE80211_S_RUN) {
   1253 				DPRINTF(sc, ATH_DEBUG_XMIT,
   1254 				    "%s: discard data packet, state %s\n",
   1255 				    __func__,
   1256 				    ieee80211_state_name[ic->ic_state]);
   1257 				sc->sc_stats.ast_tx_discard++;
   1258 				ATH_TXBUF_LOCK(sc);
   1259 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1260 				ATH_TXBUF_UNLOCK(sc);
   1261 				break;
   1262 			}
   1263 			IFQ_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
   1264 			if (m == NULL) {
   1265 				ATH_TXBUF_LOCK(sc);
   1266 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1267 				ATH_TXBUF_UNLOCK(sc);
   1268 				break;
   1269 			}
   1270 			STAILQ_INIT(&frags);
   1271 			/*
   1272 			 * Find the node for the destination so we can do
   1273 			 * things like power save and fast frames aggregation.
   1274 			 */
   1275 			if (m->m_len < sizeof(struct ether_header) &&
   1276 			   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
   1277 				ic->ic_stats.is_tx_nobuf++;	/* XXX */
   1278 				ni = NULL;
   1279 				goto bad;
   1280 			}
   1281 			eh = mtod(m, struct ether_header *);
   1282 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   1283 			if (ni == NULL) {
   1284 				/* NB: ieee80211_find_txnode does stat+msg */
   1285 				m_freem(m);
   1286 				goto bad;
   1287 			}
   1288 			if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
   1289 			    (m->m_flags & M_PWR_SAV) == 0) {
   1290 				/*
   1291 				 * Station in power save mode; pass the frame
   1292 				 * to the 802.11 layer and continue.  We'll get
   1293 				 * the frame back when the time is right.
   1294 				 */
   1295 				ieee80211_pwrsave(ic, ni, m);
   1296 				goto reclaim;
   1297 			}
   1298 			/* calculate priority so we can find the tx queue */
   1299 			if (ieee80211_classify(ic, m, ni)) {
   1300 				DPRINTF(sc, ATH_DEBUG_XMIT,
   1301 					"%s: discard, classification failure\n",
   1302 					__func__);
   1303 				m_freem(m);
   1304 				goto bad;
   1305 			}
   1306 			ifp->if_opackets++;
   1307 
   1308 #if NBPFILTER > 0
   1309 			if (ifp->if_bpf)
   1310 				bpf_mtap(ifp->if_bpf, m);
   1311 #endif
   1312 			/*
   1313 			 * Encapsulate the packet in prep for transmission.
   1314 			 */
   1315 			m = ieee80211_encap(ic, m, ni);
   1316 			if (m == NULL) {
   1317 				DPRINTF(sc, ATH_DEBUG_XMIT,
   1318 					"%s: encapsulation failure\n",
   1319 					__func__);
   1320 				sc->sc_stats.ast_tx_encap++;
   1321 				goto bad;
   1322 			}
   1323 			/*
   1324 			 * Check for fragmentation.  If this has frame
   1325 			 * has been broken up verify we have enough
   1326 			 * buffers to send all the fragments so all
   1327 			 * go out or none...
   1328 			 */
   1329 			if ((m->m_flags & M_FRAG) &&
   1330 			    !ath_txfrag_setup(sc, &frags, m, ni)) {
   1331 				DPRINTF(sc, ATH_DEBUG_ANY,
   1332 				    "%s: out of txfrag buffers\n", __func__);
   1333 				ic->ic_stats.is_tx_nobuf++;     /* XXX */
   1334 				ath_freetx(m);
   1335 				goto bad;
   1336 			}
   1337 		} else {
   1338 			/*
   1339 			 * Hack!  The referenced node pointer is in the
   1340 			 * rcvif field of the packet header.  This is
   1341 			 * placed there by ieee80211_mgmt_output because
   1342 			 * we need to hold the reference with the frame
   1343 			 * and there's no other way (other than packet
   1344 			 * tags which we consider too expensive to use)
   1345 			 * to pass it along.
   1346 			 */
   1347 			ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
   1348 			m->m_pkthdr.rcvif = NULL;
   1349 
   1350 			wh = mtod(m, struct ieee80211_frame *);
   1351 			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
   1352 			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
   1353 				/* fill time stamp */
   1354 				u_int64_t tsf;
   1355 				u_int32_t *tstamp;
   1356 
   1357 				tsf = ath_hal_gettsf64(ah);
   1358 				/* XXX: adjust 100us delay to xmit */
   1359 				tsf += 100;
   1360 				tstamp = (u_int32_t *)&wh[1];
   1361 				tstamp[0] = htole32(tsf & 0xffffffff);
   1362 				tstamp[1] = htole32(tsf >> 32);
   1363 			}
   1364 			sc->sc_stats.ast_tx_mgmt++;
   1365 		}
   1366 
   1367 	nextfrag:
   1368 		next = m->m_nextpkt;
   1369 		if (ath_tx_start(sc, ni, bf, m)) {
   1370 	bad:
   1371 			ifp->if_oerrors++;
   1372 	reclaim:
   1373 			ATH_TXBUF_LOCK(sc);
   1374 			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1375 			ath_txfrag_cleanup(sc, &frags, ni);
   1376 			ATH_TXBUF_UNLOCK(sc);
   1377 			if (ni != NULL)
   1378 				ieee80211_free_node(ni);
   1379 			continue;
   1380 		}
   1381 		if (next != NULL) {
   1382 			m = next;
   1383 			bf = STAILQ_FIRST(&frags);
   1384 			KASSERT(bf != NULL, ("no buf for txfrag"));
   1385 			STAILQ_REMOVE_HEAD(&frags, bf_list);
   1386 			goto nextfrag;
   1387 		}
   1388 
   1389 		ifp->if_timer = 1;
   1390 	}
   1391 }
   1392 
   1393 static int
   1394 ath_media_change(struct ifnet *ifp)
   1395 {
   1396 #define	IS_UP(ifp) \
   1397 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
   1398 	int error;
   1399 
   1400 	error = ieee80211_media_change(ifp);
   1401 	if (error == ENETRESET) {
   1402 		if (IS_UP(ifp))
   1403 			ath_init(ifp->if_softc);	/* XXX lose error */
   1404 		error = 0;
   1405 	}
   1406 	return error;
   1407 #undef IS_UP
   1408 }
   1409 
   1410 #ifdef AR_DEBUG
   1411 static void
   1412 ath_keyprint(const char *tag, u_int ix,
   1413 	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
   1414 {
   1415 	static const char *ciphers[] = {
   1416 		"WEP",
   1417 		"AES-OCB",
   1418 		"AES-CCM",
   1419 		"CKIP",
   1420 		"TKIP",
   1421 		"CLR",
   1422 	};
   1423 	int i, n;
   1424 
   1425 	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
   1426 	for (i = 0, n = hk->kv_len; i < n; i++)
   1427 		printf("%02x", hk->kv_val[i]);
   1428 	printf(" mac %s", ether_sprintf(mac));
   1429 	if (hk->kv_type == HAL_CIPHER_TKIP) {
   1430 		printf(" mic ");
   1431 		for (i = 0; i < sizeof(hk->kv_mic); i++)
   1432 			printf("%02x", hk->kv_mic[i]);
   1433 	}
   1434 	printf("\n");
   1435 }
   1436 #endif
   1437 
   1438 /*
   1439  * Set a TKIP key into the hardware.  This handles the
   1440  * potential distribution of key state to multiple key
   1441  * cache slots for TKIP.
   1442  */
   1443 static int
   1444 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
   1445 	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
   1446 {
   1447 #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
   1448 	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
   1449 	struct ath_hal *ah = sc->sc_ah;
   1450 
   1451 	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
   1452 		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
   1453 	KASSERT(sc->sc_splitmic, ("key cache !split"));
   1454 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
   1455 		/*
   1456 		 * TX key goes at first index, RX key at the rx index.
   1457 		 * The hal handles the MIC keys at index+64.
   1458 		 */
   1459 		memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
   1460 		KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
   1461 		if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
   1462 			return 0;
   1463 
   1464 		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
   1465 		KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
   1466 		/* XXX delete tx key on failure? */
   1467 		return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
   1468 	} else if (k->wk_flags & IEEE80211_KEY_XR) {
   1469 		/*
   1470 		 * TX/RX key goes at first index.
   1471 		 * The hal handles the MIC keys are index+64.
   1472 		 */
   1473 		memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
   1474 			k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
   1475 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
   1476 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
   1477 	}
   1478 	return 0;
   1479 #undef IEEE80211_KEY_XR
   1480 }
   1481 
   1482 /*
   1483  * Set a net80211 key into the hardware.  This handles the
   1484  * potential distribution of key state to multiple key
   1485  * cache slots for TKIP with hardware MIC support.
   1486  */
   1487 static int
   1488 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
   1489 	const u_int8_t mac0[IEEE80211_ADDR_LEN],
   1490 	struct ieee80211_node *bss)
   1491 {
   1492 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1493 	static const u_int8_t ciphermap[] = {
   1494 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
   1495 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
   1496 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
   1497 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
   1498 		(u_int8_t) -1,		/* 4 is not allocated */
   1499 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
   1500 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
   1501 	};
   1502 	struct ath_hal *ah = sc->sc_ah;
   1503 	const struct ieee80211_cipher *cip = k->wk_cipher;
   1504 	u_int8_t gmac[IEEE80211_ADDR_LEN];
   1505 	const u_int8_t *mac;
   1506 	HAL_KEYVAL hk;
   1507 
   1508 	memset(&hk, 0, sizeof(hk));
   1509 	/*
   1510 	 * Software crypto uses a "clear key" so non-crypto
   1511 	 * state kept in the key cache are maintained and
   1512 	 * so that rx frames have an entry to match.
   1513 	 */
   1514 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
   1515 		KASSERT(cip->ic_cipher < N(ciphermap),
   1516 			("invalid cipher type %u", cip->ic_cipher));
   1517 		hk.kv_type = ciphermap[cip->ic_cipher];
   1518 		hk.kv_len = k->wk_keylen;
   1519 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
   1520 	} else
   1521 		hk.kv_type = HAL_CIPHER_CLR;
   1522 
   1523 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
   1524 		/*
   1525 		 * Group keys on hardware that supports multicast frame
   1526 		 * key search use a mac that is the sender's address with
   1527 		 * the high bit set instead of the app-specified address.
   1528 		 */
   1529 		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
   1530 		gmac[0] |= 0x80;
   1531 		mac = gmac;
   1532 	} else
   1533 		mac = mac0;
   1534 
   1535 	if (hk.kv_type == HAL_CIPHER_TKIP &&
   1536 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
   1537 	    sc->sc_splitmic) {
   1538 		return ath_keyset_tkip(sc, k, &hk, mac);
   1539 	} else {
   1540 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
   1541 		return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
   1542 	}
   1543 #undef N
   1544 }
   1545 
   1546 /*
   1547  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
   1548  * each key, one for decrypt/encrypt and the other for the MIC.
   1549  */
   1550 static u_int16_t
   1551 key_alloc_2pair(struct ath_softc *sc,
   1552 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
   1553 {
   1554 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1555 	u_int i, keyix;
   1556 
   1557 	KASSERT(sc->sc_splitmic, ("key cache !split"));
   1558 	/* XXX could optimize */
   1559 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
   1560 		u_int8_t b = sc->sc_keymap[i];
   1561 		if (b != 0xff) {
   1562 			/*
   1563 			 * One or more slots in this byte are free.
   1564 			 */
   1565 			keyix = i*NBBY;
   1566 			while (b & 1) {
   1567 		again:
   1568 				keyix++;
   1569 				b >>= 1;
   1570 			}
   1571 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
   1572 			if (isset(sc->sc_keymap, keyix+32) ||
   1573 			    isset(sc->sc_keymap, keyix+64) ||
   1574 			    isset(sc->sc_keymap, keyix+32+64)) {
   1575 				/* full pair unavailable */
   1576 				/* XXX statistic */
   1577 				if (keyix == (i+1)*NBBY) {
   1578 					/* no slots were appropriate, advance */
   1579 					continue;
   1580 				}
   1581 				goto again;
   1582 			}
   1583 			setbit(sc->sc_keymap, keyix);
   1584 			setbit(sc->sc_keymap, keyix+64);
   1585 			setbit(sc->sc_keymap, keyix+32);
   1586 			setbit(sc->sc_keymap, keyix+32+64);
   1587 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
   1588 				"%s: key pair %u,%u %u,%u\n",
   1589 				__func__, keyix, keyix+64,
   1590 				keyix+32, keyix+32+64);
   1591 			*txkeyix = keyix;
   1592 			*rxkeyix = keyix+32;
   1593 			return 1;
   1594 		}
   1595 	}
   1596 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
   1597 	return 0;
   1598 #undef N
   1599 }
   1600 
   1601 /*
   1602  * Allocate a single key cache slot.
   1603  */
   1604 static int
   1605 key_alloc_single(struct ath_softc *sc,
   1606 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
   1607 {
   1608 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1609 	u_int i, keyix;
   1610 
   1611 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
   1612 	for (i = 0; i < N(sc->sc_keymap); i++) {
   1613 		u_int8_t b = sc->sc_keymap[i];
   1614 		if (b != 0xff) {
   1615 			/*
   1616 			 * One or more slots are free.
   1617 			 */
   1618 			keyix = i*NBBY;
   1619 			while (b & 1)
   1620 				keyix++, b >>= 1;
   1621 			setbit(sc->sc_keymap, keyix);
   1622 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
   1623 				__func__, keyix);
   1624 			*txkeyix = *rxkeyix = keyix;
   1625 			return 1;
   1626 		}
   1627 	}
   1628 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
   1629 	return 0;
   1630 #undef N
   1631 }
   1632 
   1633 /*
   1634  * Allocate one or more key cache slots for a uniacst key.  The
   1635  * key itself is needed only to identify the cipher.  For hardware
   1636  * TKIP with split cipher+MIC keys we allocate two key cache slot
   1637  * pairs so that we can setup separate TX and RX MIC keys.  Note
   1638  * that the MIC key for a TKIP key at slot i is assumed by the
   1639  * hardware to be at slot i+64.  This limits TKIP keys to the first
   1640  * 64 entries.
   1641  */
   1642 static int
   1643 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
   1644 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
   1645 {
   1646 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1647 
   1648 	/*
   1649 	 * Group key allocation must be handled specially for
   1650 	 * parts that do not support multicast key cache search
   1651 	 * functionality.  For those parts the key id must match
   1652 	 * the h/w key index so lookups find the right key.  On
   1653 	 * parts w/ the key search facility we install the sender's
   1654 	 * mac address (with the high bit set) and let the hardware
   1655 	 * find the key w/o using the key id.  This is preferred as
   1656 	 * it permits us to support multiple users for adhoc and/or
   1657 	 * multi-station operation.
   1658 	 */
   1659 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
   1660 		if (!(&ic->ic_nw_keys[0] <= k &&
   1661 		      k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
   1662 			/* should not happen */
   1663 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
   1664 				"%s: bogus group key\n", __func__);
   1665 			return 0;
   1666 		}
   1667 		/*
   1668 		 * XXX we pre-allocate the global keys so
   1669 		 * have no way to check if they've already been allocated.
   1670 		 */
   1671 		*keyix = *rxkeyix = k - ic->ic_nw_keys;
   1672 		return 1;
   1673 	}
   1674 
   1675 	/*
   1676 	 * We allocate two pair for TKIP when using the h/w to do
   1677 	 * the MIC.  For everything else, including software crypto,
   1678 	 * we allocate a single entry.  Note that s/w crypto requires
   1679 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
   1680 	 * not support pass-through cache entries and we map all
   1681 	 * those requests to slot 0.
   1682 	 */
   1683 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
   1684 		return key_alloc_single(sc, keyix, rxkeyix);
   1685 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1686 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
   1687 		return key_alloc_2pair(sc, keyix, rxkeyix);
   1688 	} else {
   1689 		return key_alloc_single(sc, keyix, rxkeyix);
   1690 	}
   1691 }
   1692 
   1693 /*
   1694  * Delete an entry in the key cache allocated by ath_key_alloc.
   1695  */
   1696 static int
   1697 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
   1698 {
   1699 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1700 	struct ath_hal *ah = sc->sc_ah;
   1701 	const struct ieee80211_cipher *cip = k->wk_cipher;
   1702 	u_int keyix = k->wk_keyix;
   1703 
   1704 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
   1705 
   1706 	ath_hal_keyreset(ah, keyix);
   1707 	/*
   1708 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
   1709 	 */
   1710 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1711 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
   1712 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
   1713 	if (keyix >= IEEE80211_WEP_NKID) {
   1714 		/*
   1715 		 * Don't touch keymap entries for global keys so
   1716 		 * they are never considered for dynamic allocation.
   1717 		 */
   1718 		clrbit(sc->sc_keymap, keyix);
   1719 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1720 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
   1721 		    sc->sc_splitmic) {
   1722 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
   1723 			clrbit(sc->sc_keymap, keyix+32);	/* RX key */
   1724 			clrbit(sc->sc_keymap, keyix+32+64);	/* RX key MIC */
   1725 		}
   1726 	}
   1727 	return 1;
   1728 }
   1729 
   1730 /*
   1731  * Set the key cache contents for the specified key.  Key cache
   1732  * slot(s) must already have been allocated by ath_key_alloc.
   1733  */
   1734 static int
   1735 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
   1736 	const u_int8_t mac[IEEE80211_ADDR_LEN])
   1737 {
   1738 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1739 
   1740 	return ath_keyset(sc, k, mac, ic->ic_bss);
   1741 }
   1742 
   1743 /*
   1744  * Block/unblock tx+rx processing while a key change is done.
   1745  * We assume the caller serializes key management operations
   1746  * so we only need to worry about synchronization with other
   1747  * uses that originate in the driver.
   1748  */
   1749 static void
   1750 ath_key_update_begin(struct ieee80211com *ic)
   1751 {
   1752 	struct ifnet *ifp = ic->ic_ifp;
   1753 	struct ath_softc *sc = ifp->if_softc;
   1754 
   1755 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
   1756 #if 0
   1757 	tasklet_disable(&sc->sc_rxtq);
   1758 #endif
   1759 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
   1760 }
   1761 
   1762 static void
   1763 ath_key_update_end(struct ieee80211com *ic)
   1764 {
   1765 	struct ifnet *ifp = ic->ic_ifp;
   1766 	struct ath_softc *sc = ifp->if_softc;
   1767 
   1768 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
   1769 	IF_UNLOCK(&ifp->if_snd);
   1770 #if 0
   1771 	tasklet_enable(&sc->sc_rxtq);
   1772 #endif
   1773 }
   1774 
   1775 /*
   1776  * Calculate the receive filter according to the
   1777  * operating mode and state:
   1778  *
   1779  * o always accept unicast, broadcast, and multicast traffic
   1780  * o maintain current state of phy error reception (the hal
   1781  *   may enable phy error frames for noise immunity work)
   1782  * o probe request frames are accepted only when operating in
   1783  *   hostap, adhoc, or monitor modes
   1784  * o enable promiscuous mode according to the interface state
   1785  * o accept beacons:
   1786  *   - when operating in adhoc mode so the 802.11 layer creates
   1787  *     node table entries for peers,
   1788  *   - when operating in station mode for collecting rssi data when
   1789  *     the station is otherwise quiet, or
   1790  *   - when scanning
   1791  */
   1792 static u_int32_t
   1793 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
   1794 {
   1795 	struct ieee80211com *ic = &sc->sc_ic;
   1796 	struct ath_hal *ah = sc->sc_ah;
   1797 	struct ifnet *ifp = &sc->sc_if;
   1798 	u_int32_t rfilt;
   1799 
   1800 	rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
   1801 	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
   1802 	if (ic->ic_opmode != IEEE80211_M_STA)
   1803 		rfilt |= HAL_RX_FILTER_PROBEREQ;
   1804 	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
   1805 	    (ifp->if_flags & IFF_PROMISC))
   1806 		rfilt |= HAL_RX_FILTER_PROM;
   1807 	if (ic->ic_opmode == IEEE80211_M_STA ||
   1808 	    ic->ic_opmode == IEEE80211_M_IBSS ||
   1809 	    state == IEEE80211_S_SCAN)
   1810 		rfilt |= HAL_RX_FILTER_BEACON;
   1811 	return rfilt;
   1812 }
   1813 
   1814 static void
   1815 ath_mcastfilter_accum(void *dl, u_int32_t *mfilt)
   1816 {
   1817 	u_int32_t val;
   1818 	u_int8_t pos;
   1819 
   1820 	/* calculate XOR of eight 6bit values */
   1821 	val = LE_READ_4((char *)dl + 0);
   1822 	pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1823 	val = LE_READ_4((char *)dl + 3);
   1824 	pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1825 	pos &= 0x3f;
   1826 	mfilt[pos / 32] |= (1 << (pos % 32));
   1827 }
   1828 
   1829 static void
   1830 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t *mfilt)
   1831 {
   1832 	struct ifnet *ifp = &sc->sc_if;
   1833 	struct ether_multi *enm;
   1834 	struct ether_multistep estep;
   1835 
   1836 	mfilt[0] = mfilt[1] = 0;
   1837 	ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
   1838 	while (enm != NULL) {
   1839 		/* XXX Punt on ranges. */
   1840 		if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
   1841 			mfilt[0] = mfilt[1] = ~((u_int32_t)0);
   1842 			ifp->if_flags |= IFF_ALLMULTI;
   1843 			return;
   1844 		}
   1845 		ath_mcastfilter_accum(enm->enm_addrlo, mfilt);
   1846 		ETHER_NEXT_MULTI(estep, enm);
   1847 	}
   1848 	ifp->if_flags &= ~IFF_ALLMULTI;
   1849 }
   1850 
   1851 static void
   1852 ath_mode_init(struct ath_softc *sc)
   1853 {
   1854 	struct ieee80211com *ic = &sc->sc_ic;
   1855 	struct ath_hal *ah = sc->sc_ah;
   1856 	u_int32_t rfilt, mfilt[2];
   1857 	int i;
   1858 
   1859 	/* configure rx filter */
   1860 	rfilt = ath_calcrxfilter(sc, ic->ic_state);
   1861 	ath_hal_setrxfilter(ah, rfilt);
   1862 
   1863 	/* configure operational mode */
   1864 	ath_hal_setopmode(ah);
   1865 
   1866 	/* Write keys to hardware; it may have been powered down. */
   1867 	ath_key_update_begin(ic);
   1868 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
   1869 		ath_key_set(ic,
   1870 			    &ic->ic_crypto.cs_nw_keys[i],
   1871 			    ic->ic_myaddr);
   1872 	}
   1873 	ath_key_update_end(ic);
   1874 
   1875 	/*
   1876 	 * Handle any link-level address change.  Note that we only
   1877 	 * need to force ic_myaddr; any other addresses are handled
   1878 	 * as a byproduct of the ifnet code marking the interface
   1879 	 * down then up.
   1880 	 *
   1881 	 * XXX should get from lladdr instead of arpcom but that's more work
   1882 	 */
   1883 	IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(sc->sc_if.if_sadl));
   1884 	ath_hal_setmac(ah, ic->ic_myaddr);
   1885 
   1886 	/* calculate and install multicast filter */
   1887 #ifdef __FreeBSD__
   1888 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   1889 		mfilt[0] = mfilt[1] = 0;
   1890 		IF_ADDR_LOCK(ifp);
   1891 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
   1892 			void *dl;
   1893 
   1894 			/* calculate XOR of eight 6bit values */
   1895 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
   1896 			val = LE_READ_4((char *)dl + 0);
   1897 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1898 			val = LE_READ_4((char *)dl + 3);
   1899 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1900 			pos &= 0x3f;
   1901 			mfilt[pos / 32] |= (1 << (pos % 32));
   1902 		}
   1903 		IF_ADDR_UNLOCK(ifp);
   1904 	} else {
   1905 		mfilt[0] = mfilt[1] = ~0;
   1906 	}
   1907 #endif
   1908 #ifdef __NetBSD__
   1909 	ath_mcastfilter_compute(sc, mfilt);
   1910 #endif
   1911 	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
   1912 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
   1913 		__func__, rfilt, mfilt[0], mfilt[1]);
   1914 }
   1915 
   1916 /*
   1917  * Set the slot time based on the current setting.
   1918  */
   1919 static void
   1920 ath_setslottime(struct ath_softc *sc)
   1921 {
   1922 	struct ieee80211com *ic = &sc->sc_ic;
   1923 	struct ath_hal *ah = sc->sc_ah;
   1924 
   1925 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   1926 		ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
   1927 	else
   1928 		ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
   1929 	sc->sc_updateslot = OK;
   1930 }
   1931 
   1932 /*
   1933  * Callback from the 802.11 layer to update the
   1934  * slot time based on the current setting.
   1935  */
   1936 static void
   1937 ath_updateslot(struct ifnet *ifp)
   1938 {
   1939 	struct ath_softc *sc = ifp->if_softc;
   1940 	struct ieee80211com *ic = &sc->sc_ic;
   1941 
   1942 	/*
   1943 	 * When not coordinating the BSS, change the hardware
   1944 	 * immediately.  For other operation we defer the change
   1945 	 * until beacon updates have propagated to the stations.
   1946 	 */
   1947 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
   1948 		sc->sc_updateslot = UPDATE;
   1949 	else
   1950 		ath_setslottime(sc);
   1951 }
   1952 
   1953 /*
   1954  * Setup a h/w transmit queue for beacons.
   1955  */
   1956 static int
   1957 ath_beaconq_setup(struct ath_hal *ah)
   1958 {
   1959 	HAL_TXQ_INFO qi;
   1960 
   1961 	memset(&qi, 0, sizeof(qi));
   1962 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
   1963 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
   1964 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
   1965 	/* NB: for dynamic turbo, don't enable any other interrupts */
   1966 	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
   1967 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
   1968 }
   1969 
   1970 /*
   1971  * Setup the transmit queue parameters for the beacon queue.
   1972  */
   1973 static int
   1974 ath_beaconq_config(struct ath_softc *sc)
   1975 {
   1976 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
   1977 	struct ieee80211com *ic = &sc->sc_ic;
   1978 	struct ath_hal *ah = sc->sc_ah;
   1979 	HAL_TXQ_INFO qi;
   1980 
   1981 	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
   1982 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   1983 		/*
   1984 		 * Always burst out beacon and CAB traffic.
   1985 		 */
   1986 		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
   1987 		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
   1988 		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
   1989 	} else {
   1990 		struct wmeParams *wmep =
   1991 			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
   1992 		/*
   1993 		 * Adhoc mode; important thing is to use 2x cwmin.
   1994 		 */
   1995 		qi.tqi_aifs = wmep->wmep_aifsn;
   1996 		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
   1997 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
   1998 	}
   1999 
   2000 	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
   2001 		device_printf(sc->sc_dev, "unable to update parameters for "
   2002 			"beacon hardware queue!\n");
   2003 		return 0;
   2004 	} else {
   2005 		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
   2006 		return 1;
   2007 	}
   2008 #undef ATH_EXPONENT_TO_VALUE
   2009 }
   2010 
   2011 /*
   2012  * Allocate and setup an initial beacon frame.
   2013  */
   2014 static int
   2015 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
   2016 {
   2017 	struct ieee80211com *ic = ni->ni_ic;
   2018 	struct ath_buf *bf;
   2019 	struct mbuf *m;
   2020 	int error;
   2021 
   2022 	bf = STAILQ_FIRST(&sc->sc_bbuf);
   2023 	if (bf == NULL) {
   2024 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
   2025 		sc->sc_stats.ast_be_nombuf++;	/* XXX */
   2026 		return ENOMEM;			/* XXX */
   2027 	}
   2028 	/*
   2029 	 * NB: the beacon data buffer must be 32-bit aligned;
   2030 	 * we assume the mbuf routines will return us something
   2031 	 * with this alignment (perhaps should assert).
   2032 	 */
   2033 	m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
   2034 	if (m == NULL) {
   2035 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
   2036 			__func__);
   2037 		sc->sc_stats.ast_be_nombuf++;
   2038 		return ENOMEM;
   2039 	}
   2040 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
   2041 				     BUS_DMA_NOWAIT);
   2042 	if (error == 0) {
   2043 		bf->bf_m = m;
   2044 		bf->bf_node = ieee80211_ref_node(ni);
   2045 	} else {
   2046 		m_freem(m);
   2047 	}
   2048 	return error;
   2049 }
   2050 
   2051 /*
   2052  * Setup the beacon frame for transmit.
   2053  */
   2054 static void
   2055 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
   2056 {
   2057 #define	USE_SHPREAMBLE(_ic) \
   2058 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
   2059 		== IEEE80211_F_SHPREAMBLE)
   2060 	struct ieee80211_node *ni = bf->bf_node;
   2061 	struct ieee80211com *ic = ni->ni_ic;
   2062 	struct mbuf *m = bf->bf_m;
   2063 	struct ath_hal *ah = sc->sc_ah;
   2064 	struct ath_desc *ds;
   2065 	int flags, antenna;
   2066 	const HAL_RATE_TABLE *rt;
   2067 	u_int8_t rix, rate;
   2068 
   2069 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
   2070 		__func__, m, m->m_len);
   2071 
   2072 	/* setup descriptors */
   2073 	ds = bf->bf_desc;
   2074 
   2075 	flags = HAL_TXDESC_NOACK;
   2076 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
   2077 		ds->ds_link = HTOAH32(bf->bf_daddr);	/* self-linked */
   2078 		flags |= HAL_TXDESC_VEOL;
   2079 		/*
   2080 		 * Let hardware handle antenna switching unless
   2081 		 * the user has selected a transmit antenna
   2082 		 * (sc_txantenna is not 0).
   2083 		 */
   2084 		antenna = sc->sc_txantenna;
   2085 	} else {
   2086 		ds->ds_link = 0;
   2087 		/*
   2088 		 * Switch antenna every 4 beacons, unless the user
   2089 		 * has selected a transmit antenna (sc_txantenna
   2090 		 * is not 0).
   2091 		 *
   2092 		 * XXX assumes two antenna
   2093 		 */
   2094 		if (sc->sc_txantenna == 0)
   2095 			antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
   2096 		else
   2097 			antenna = sc->sc_txantenna;
   2098 	}
   2099 
   2100 	KASSERT(bf->bf_nseg == 1,
   2101 		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
   2102 	ds->ds_data = bf->bf_segs[0].ds_addr;
   2103 	/*
   2104 	 * Calculate rate code.
   2105 	 * XXX everything at min xmit rate
   2106 	 */
   2107 	rix = sc->sc_minrateix;
   2108 	rt = sc->sc_currates;
   2109 	rate = rt->info[rix].rateCode;
   2110 	if (USE_SHPREAMBLE(ic))
   2111 		rate |= rt->info[rix].shortPreamble;
   2112 	ath_hal_setuptxdesc(ah, ds
   2113 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
   2114 		, sizeof(struct ieee80211_frame)/* header length */
   2115 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
   2116 		, ni->ni_txpower		/* txpower XXX */
   2117 		, rate, 1			/* series 0 rate/tries */
   2118 		, HAL_TXKEYIX_INVALID		/* no encryption */
   2119 		, antenna			/* antenna mode */
   2120 		, flags				/* no ack, veol for beacons */
   2121 		, 0				/* rts/cts rate */
   2122 		, 0				/* rts/cts duration */
   2123 	);
   2124 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
   2125 	ath_hal_filltxdesc(ah, ds
   2126 		, roundup(m->m_len, 4)		/* buffer length */
   2127 		, AH_TRUE			/* first segment */
   2128 		, AH_TRUE			/* last segment */
   2129 		, ds				/* first descriptor */
   2130 	);
   2131 
   2132 	/* NB: The desc swap function becomes void,
   2133 	 * if descriptor swapping is not enabled
   2134 	 */
   2135 	ath_desc_swap(ds);
   2136 
   2137 #undef USE_SHPREAMBLE
   2138 }
   2139 
   2140 /*
   2141  * Transmit a beacon frame at SWBA.  Dynamic updates to the
   2142  * frame contents are done as needed and the slot time is
   2143  * also adjusted based on current state.
   2144  */
   2145 static void
   2146 ath_beacon_proc(void *arg, int pending)
   2147 {
   2148 	struct ath_softc *sc = arg;
   2149 	struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
   2150 	struct ieee80211_node *ni = bf->bf_node;
   2151 	struct ieee80211com *ic = ni->ni_ic;
   2152 	struct ath_hal *ah = sc->sc_ah;
   2153 	struct mbuf *m;
   2154 	int ncabq, error, otherant;
   2155 
   2156 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
   2157 		__func__, pending);
   2158 
   2159 	if (ic->ic_opmode == IEEE80211_M_STA ||
   2160 	    ic->ic_opmode == IEEE80211_M_MONITOR ||
   2161 	    bf == NULL || bf->bf_m == NULL) {
   2162 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
   2163 			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
   2164 		return;
   2165 	}
   2166 	/*
   2167 	 * Check if the previous beacon has gone out.  If
   2168 	 * not don't try to post another, skip this period
   2169 	 * and wait for the next.  Missed beacons indicate
   2170 	 * a problem and should not occur.  If we miss too
   2171 	 * many consecutive beacons reset the device.
   2172 	 */
   2173 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
   2174 		sc->sc_bmisscount++;
   2175 		DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
   2176 			"%s: missed %u consecutive beacons\n",
   2177 			__func__, sc->sc_bmisscount);
   2178 		if (sc->sc_bmisscount > 3)		/* NB: 3 is a guess */
   2179 			TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask);
   2180 		return;
   2181 	}
   2182 	if (sc->sc_bmisscount != 0) {
   2183 		DPRINTF(sc, ATH_DEBUG_BEACON,
   2184 			"%s: resume beacon xmit after %u misses\n",
   2185 			__func__, sc->sc_bmisscount);
   2186 		sc->sc_bmisscount = 0;
   2187 	}
   2188 
   2189 	/*
   2190 	 * Update dynamic beacon contents.  If this returns
   2191 	 * non-zero then we need to remap the memory because
   2192 	 * the beacon frame changed size (probably because
   2193 	 * of the TIM bitmap).
   2194 	 */
   2195 	m = bf->bf_m;
   2196 	ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
   2197 	if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
   2198 		/* XXX too conservative? */
   2199 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   2200 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
   2201 					     BUS_DMA_NOWAIT);
   2202 		if (error != 0) {
   2203 			if_printf(&sc->sc_if,
   2204 			    "%s: bus_dmamap_load_mbuf failed, error %u\n",
   2205 			    __func__, error);
   2206 			return;
   2207 		}
   2208 	}
   2209 
   2210 	/*
   2211 	 * Handle slot time change when a non-ERP station joins/leaves
   2212 	 * an 11g network.  The 802.11 layer notifies us via callback,
   2213 	 * we mark updateslot, then wait one beacon before effecting
   2214 	 * the change.  This gives associated stations at least one
   2215 	 * beacon interval to note the state change.
   2216 	 */
   2217 	/* XXX locking */
   2218 	if (sc->sc_updateslot == UPDATE)
   2219 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
   2220 	else if (sc->sc_updateslot == COMMIT)
   2221 		ath_setslottime(sc);		/* commit change to h/w */
   2222 
   2223 	/*
   2224 	 * Check recent per-antenna transmit statistics and flip
   2225 	 * the default antenna if noticeably more frames went out
   2226 	 * on the non-default antenna.
   2227 	 * XXX assumes 2 anntenae
   2228 	 */
   2229 	otherant = sc->sc_defant & 1 ? 2 : 1;
   2230 	if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
   2231 		ath_setdefantenna(sc, otherant);
   2232 	sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
   2233 
   2234 	/*
   2235 	 * Construct tx descriptor.
   2236 	 */
   2237 	ath_beacon_setup(sc, bf);
   2238 
   2239 	/*
   2240 	 * Stop any current dma and put the new frame on the queue.
   2241 	 * This should never fail since we check above that no frames
   2242 	 * are still pending on the queue.
   2243 	 */
   2244 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
   2245 		DPRINTF(sc, ATH_DEBUG_ANY,
   2246 			"%s: beacon queue %u did not stop?\n",
   2247 			__func__, sc->sc_bhalq);
   2248 	}
   2249 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   2250 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2251 
   2252 	/*
   2253 	 * Enable the CAB queue before the beacon queue to
   2254 	 * insure cab frames are triggered by this beacon.
   2255 	 */
   2256 	if (ncabq != 0 && (sc->sc_boff.bo_tim[4] & 1))	/* NB: only at DTIM */
   2257 		ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
   2258 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
   2259 	ath_hal_txstart(ah, sc->sc_bhalq);
   2260 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
   2261 	    "%s: TXDP[%u] = %" PRIx64 " (%p)\n", __func__,
   2262 	    sc->sc_bhalq, (uint64_t)bf->bf_daddr, bf->bf_desc);
   2263 
   2264 	sc->sc_stats.ast_be_xmit++;
   2265 }
   2266 
   2267 /*
   2268  * Reset the hardware after detecting beacons have stopped.
   2269  */
   2270 static void
   2271 ath_bstuck_proc(void *arg, int pending)
   2272 {
   2273 	struct ath_softc *sc = arg;
   2274 	struct ifnet *ifp = &sc->sc_if;
   2275 
   2276 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
   2277 		sc->sc_bmisscount);
   2278 	ath_reset(ifp);
   2279 }
   2280 
   2281 /*
   2282  * Reclaim beacon resources.
   2283  */
   2284 static void
   2285 ath_beacon_free(struct ath_softc *sc)
   2286 {
   2287 	struct ath_buf *bf;
   2288 
   2289 	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
   2290 		if (bf->bf_m != NULL) {
   2291 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   2292 			m_freem(bf->bf_m);
   2293 			bf->bf_m = NULL;
   2294 		}
   2295 		if (bf->bf_node != NULL) {
   2296 			ieee80211_free_node(bf->bf_node);
   2297 			bf->bf_node = NULL;
   2298 		}
   2299 	}
   2300 }
   2301 
   2302 /*
   2303  * Configure the beacon and sleep timers.
   2304  *
   2305  * When operating as an AP this resets the TSF and sets
   2306  * up the hardware to notify us when we need to issue beacons.
   2307  *
   2308  * When operating in station mode this sets up the beacon
   2309  * timers according to the timestamp of the last received
   2310  * beacon and the current TSF, configures PCF and DTIM
   2311  * handling, programs the sleep registers so the hardware
   2312  * will wakeup in time to receive beacons, and configures
   2313  * the beacon miss handling so we'll receive a BMISS
   2314  * interrupt when we stop seeing beacons from the AP
   2315  * we've associated with.
   2316  */
   2317 static void
   2318 ath_beacon_config(struct ath_softc *sc)
   2319 {
   2320 #define	TSF_TO_TU(_h,_l) \
   2321 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
   2322 #define	FUDGE	2
   2323 	struct ath_hal *ah = sc->sc_ah;
   2324 	struct ieee80211com *ic = &sc->sc_ic;
   2325 	struct ieee80211_node *ni = ic->ic_bss;
   2326 	u_int32_t nexttbtt, intval, tsftu;
   2327 	u_int64_t tsf;
   2328 
   2329 	/* extract tstamp from last beacon and convert to TU */
   2330 	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
   2331 			     LE_READ_4(ni->ni_tstamp.data));
   2332 	/* NB: the beacon interval is kept internally in TU's */
   2333 	intval = ni->ni_intval & HAL_BEACON_PERIOD;
   2334 	if (nexttbtt == 0)		/* e.g. for ap mode */
   2335 		nexttbtt = intval;
   2336 	else if (intval)		/* NB: can be 0 for monitor mode */
   2337 		nexttbtt = roundup(nexttbtt, intval);
   2338 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
   2339 		__func__, nexttbtt, intval, ni->ni_intval);
   2340 	if (ic->ic_opmode == IEEE80211_M_STA) {
   2341 		HAL_BEACON_STATE bs;
   2342 		int dtimperiod, dtimcount;
   2343 		int cfpperiod, cfpcount;
   2344 
   2345 		/*
   2346 		 * Setup dtim and cfp parameters according to
   2347 		 * last beacon we received (which may be none).
   2348 		 */
   2349 		dtimperiod = ni->ni_dtim_period;
   2350 		if (dtimperiod <= 0)		/* NB: 0 if not known */
   2351 			dtimperiod = 1;
   2352 		dtimcount = ni->ni_dtim_count;
   2353 		if (dtimcount >= dtimperiod)	/* NB: sanity check */
   2354 			dtimcount = 0;		/* XXX? */
   2355 		cfpperiod = 1;			/* NB: no PCF support yet */
   2356 		cfpcount = 0;
   2357 		/*
   2358 		 * Pull nexttbtt forward to reflect the current
   2359 		 * TSF and calculate dtim+cfp state for the result.
   2360 		 */
   2361 		tsf = ath_hal_gettsf64(ah);
   2362 		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
   2363 		do {
   2364 			nexttbtt += intval;
   2365 			if (--dtimcount < 0) {
   2366 				dtimcount = dtimperiod - 1;
   2367 				if (--cfpcount < 0)
   2368 					cfpcount = cfpperiod - 1;
   2369 			}
   2370 		} while (nexttbtt < tsftu);
   2371 		memset(&bs, 0, sizeof(bs));
   2372 		bs.bs_intval = intval;
   2373 		bs.bs_nexttbtt = nexttbtt;
   2374 		bs.bs_dtimperiod = dtimperiod*intval;
   2375 		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
   2376 		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
   2377 		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
   2378 		bs.bs_cfpmaxduration = 0;
   2379 #if 0
   2380 		/*
   2381 		 * The 802.11 layer records the offset to the DTIM
   2382 		 * bitmap while receiving beacons; use it here to
   2383 		 * enable h/w detection of our AID being marked in
   2384 		 * the bitmap vector (to indicate frames for us are
   2385 		 * pending at the AP).
   2386 		 * XXX do DTIM handling in s/w to WAR old h/w bugs
   2387 		 * XXX enable based on h/w rev for newer chips
   2388 		 */
   2389 		bs.bs_timoffset = ni->ni_timoff;
   2390 #endif
   2391 		/*
   2392 		 * Calculate the number of consecutive beacons to miss
   2393 		 * before taking a BMISS interrupt.  The configuration
   2394 		 * is specified in ms, so we need to convert that to
   2395 		 * TU's and then calculate based on the beacon interval.
   2396 		 * Note that we clamp the result to at most 10 beacons.
   2397 		 */
   2398 		bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
   2399 		if (bs.bs_bmissthreshold > 10)
   2400 			bs.bs_bmissthreshold = 10;
   2401 		else if (bs.bs_bmissthreshold <= 0)
   2402 			bs.bs_bmissthreshold = 1;
   2403 
   2404 		/*
   2405 		 * Calculate sleep duration.  The configuration is
   2406 		 * given in ms.  We insure a multiple of the beacon
   2407 		 * period is used.  Also, if the sleep duration is
   2408 		 * greater than the DTIM period then it makes senses
   2409 		 * to make it a multiple of that.
   2410 		 *
   2411 		 * XXX fixed at 100ms
   2412 		 */
   2413 		bs.bs_sleepduration =
   2414 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
   2415 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
   2416 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
   2417 
   2418 		DPRINTF(sc, ATH_DEBUG_BEACON,
   2419 			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
   2420 			, __func__
   2421 			, tsf, tsftu
   2422 			, bs.bs_intval
   2423 			, bs.bs_nexttbtt
   2424 			, bs.bs_dtimperiod
   2425 			, bs.bs_nextdtim
   2426 			, bs.bs_bmissthreshold
   2427 			, bs.bs_sleepduration
   2428 			, bs.bs_cfpperiod
   2429 			, bs.bs_cfpmaxduration
   2430 			, bs.bs_cfpnext
   2431 			, bs.bs_timoffset
   2432 		);
   2433 		ath_hal_intrset(ah, 0);
   2434 		ath_hal_beacontimers(ah, &bs);
   2435 		sc->sc_imask |= HAL_INT_BMISS;
   2436 		ath_hal_intrset(ah, sc->sc_imask);
   2437 	} else {
   2438 		ath_hal_intrset(ah, 0);
   2439 		if (nexttbtt == intval)
   2440 			intval |= HAL_BEACON_RESET_TSF;
   2441 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
   2442 			/*
   2443 			 * In IBSS mode enable the beacon timers but only
   2444 			 * enable SWBA interrupts if we need to manually
   2445 			 * prepare beacon frames.  Otherwise we use a
   2446 			 * self-linked tx descriptor and let the hardware
   2447 			 * deal with things.
   2448 			 */
   2449 			intval |= HAL_BEACON_ENA;
   2450 			if (!sc->sc_hasveol)
   2451 				sc->sc_imask |= HAL_INT_SWBA;
   2452 			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
   2453 				/*
   2454 				 * Pull nexttbtt forward to reflect
   2455 				 * the current TSF.
   2456 				 */
   2457 				tsf = ath_hal_gettsf64(ah);
   2458 				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
   2459 				do {
   2460 					nexttbtt += intval;
   2461 				} while (nexttbtt < tsftu);
   2462 			}
   2463 			ath_beaconq_config(sc);
   2464 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   2465 			/*
   2466 			 * In AP mode we enable the beacon timers and
   2467 			 * SWBA interrupts to prepare beacon frames.
   2468 			 */
   2469 			intval |= HAL_BEACON_ENA;
   2470 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
   2471 			ath_beaconq_config(sc);
   2472 		}
   2473 		ath_hal_beaconinit(ah, nexttbtt, intval);
   2474 		sc->sc_bmisscount = 0;
   2475 		ath_hal_intrset(ah, sc->sc_imask);
   2476 		/*
   2477 		 * When using a self-linked beacon descriptor in
   2478 		 * ibss mode load it once here.
   2479 		 */
   2480 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
   2481 			ath_beacon_proc(sc, 0);
   2482 	}
   2483 	sc->sc_syncbeacon = 0;
   2484 #undef UNDEF
   2485 #undef TSF_TO_TU
   2486 }
   2487 
   2488 static int
   2489 ath_descdma_setup(struct ath_softc *sc,
   2490 	struct ath_descdma *dd, ath_bufhead *head,
   2491 	const char *name, int nbuf, int ndesc)
   2492 {
   2493 #define	DS2PHYS(_dd, _ds) \
   2494 	((_dd)->dd_desc_paddr + ((char *)(_ds) - (char *)(_dd)->dd_desc))
   2495 	struct ifnet *ifp = &sc->sc_if;
   2496 	struct ath_desc *ds;
   2497 	struct ath_buf *bf;
   2498 	int i, bsize, error;
   2499 
   2500 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
   2501 	    __func__, name, nbuf, ndesc);
   2502 
   2503 	dd->dd_name = name;
   2504 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
   2505 
   2506 	/*
   2507 	 * Setup DMA descriptor area.
   2508 	 */
   2509 	dd->dd_dmat = sc->sc_dmat;
   2510 
   2511 	error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE,
   2512 	    0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0);
   2513 
   2514 	if (error != 0) {
   2515 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
   2516 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
   2517 		goto fail0;
   2518 	}
   2519 
   2520 	error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg,
   2521 	    dd->dd_desc_len, (void **)&dd->dd_desc, BUS_DMA_COHERENT);
   2522 	if (error != 0) {
   2523 		if_printf(ifp, "unable to map %u %s descriptors, error = %u\n",
   2524 		    nbuf * ndesc, dd->dd_name, error);
   2525 		goto fail1;
   2526 	}
   2527 
   2528 	/* allocate descriptors */
   2529 	error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1,
   2530 	    dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap);
   2531 	if (error != 0) {
   2532 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
   2533 			"error %u\n", dd->dd_name, error);
   2534 		goto fail2;
   2535 	}
   2536 
   2537 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc,
   2538 	    dd->dd_desc_len, NULL, BUS_DMA_NOWAIT);
   2539 	if (error != 0) {
   2540 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
   2541 			dd->dd_name, error);
   2542 		goto fail3;
   2543 	}
   2544 
   2545 	ds = dd->dd_desc;
   2546 	dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr;
   2547 	DPRINTF(sc, ATH_DEBUG_RESET,
   2548 	    "%s: %s DMA map: %p (%lu) -> %" PRIx64 " (%lu)\n",
   2549 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
   2550 	    (uint64_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
   2551 
   2552 	/* allocate rx buffers */
   2553 	bsize = sizeof(struct ath_buf) * nbuf;
   2554 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
   2555 	if (bf == NULL) {
   2556 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
   2557 			dd->dd_name, bsize);
   2558 		goto fail4;
   2559 	}
   2560 	dd->dd_bufptr = bf;
   2561 
   2562 	STAILQ_INIT(head);
   2563 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
   2564 		bf->bf_desc = ds;
   2565 		bf->bf_daddr = DS2PHYS(dd, ds);
   2566 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc,
   2567 				MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap);
   2568 		if (error != 0) {
   2569 			if_printf(ifp, "unable to create dmamap for %s "
   2570 				"buffer %u, error %u\n", dd->dd_name, i, error);
   2571 			ath_descdma_cleanup(sc, dd, head);
   2572 			return error;
   2573 		}
   2574 		STAILQ_INSERT_TAIL(head, bf, bf_list);
   2575 	}
   2576 	return 0;
   2577 fail4:
   2578 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
   2579 fail3:
   2580 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
   2581 fail2:
   2582 	bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
   2583 fail1:
   2584 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
   2585 fail0:
   2586 	memset(dd, 0, sizeof(*dd));
   2587 	return error;
   2588 #undef DS2PHYS
   2589 }
   2590 
   2591 static void
   2592 ath_descdma_cleanup(struct ath_softc *sc,
   2593 	struct ath_descdma *dd, ath_bufhead *head)
   2594 {
   2595 	struct ath_buf *bf;
   2596 	struct ieee80211_node *ni;
   2597 
   2598 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
   2599 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
   2600 	bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
   2601 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
   2602 
   2603 	STAILQ_FOREACH(bf, head, bf_list) {
   2604 		if (bf->bf_m) {
   2605 			m_freem(bf->bf_m);
   2606 			bf->bf_m = NULL;
   2607 		}
   2608 		if (bf->bf_dmamap != NULL) {
   2609 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
   2610 			bf->bf_dmamap = NULL;
   2611 		}
   2612 		ni = bf->bf_node;
   2613 		bf->bf_node = NULL;
   2614 		if (ni != NULL) {
   2615 			/*
   2616 			 * Reclaim node reference.
   2617 			 */
   2618 			ieee80211_free_node(ni);
   2619 		}
   2620 	}
   2621 
   2622 	STAILQ_INIT(head);
   2623 	free(dd->dd_bufptr, M_ATHDEV);
   2624 	memset(dd, 0, sizeof(*dd));
   2625 }
   2626 
   2627 static int
   2628 ath_desc_alloc(struct ath_softc *sc)
   2629 {
   2630 	int error;
   2631 
   2632 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
   2633 			"rx", ath_rxbuf, 1);
   2634 	if (error != 0)
   2635 		return error;
   2636 
   2637 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
   2638 			"tx", ath_txbuf, ATH_TXDESC);
   2639 	if (error != 0) {
   2640 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2641 		return error;
   2642 	}
   2643 
   2644 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
   2645 			"beacon", 1, 1);
   2646 	if (error != 0) {
   2647 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
   2648 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2649 		return error;
   2650 	}
   2651 	return 0;
   2652 }
   2653 
   2654 static void
   2655 ath_desc_free(struct ath_softc *sc)
   2656 {
   2657 
   2658 	if (sc->sc_bdma.dd_desc_len != 0)
   2659 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
   2660 	if (sc->sc_txdma.dd_desc_len != 0)
   2661 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
   2662 	if (sc->sc_rxdma.dd_desc_len != 0)
   2663 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2664 }
   2665 
   2666 static struct ieee80211_node *
   2667 ath_node_alloc(struct ieee80211_node_table *nt)
   2668 {
   2669 	struct ieee80211com *ic = nt->nt_ic;
   2670 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   2671 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
   2672 	struct ath_node *an;
   2673 
   2674 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
   2675 	if (an == NULL) {
   2676 		/* XXX stat+msg */
   2677 		return NULL;
   2678 	}
   2679 	an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
   2680 	ath_rate_node_init(sc, an);
   2681 
   2682 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
   2683 	return &an->an_node;
   2684 }
   2685 
   2686 static void
   2687 ath_node_free(struct ieee80211_node *ni)
   2688 {
   2689 	struct ieee80211com *ic = ni->ni_ic;
   2690         struct ath_softc *sc = ic->ic_ifp->if_softc;
   2691 
   2692 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
   2693 
   2694 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
   2695 	sc->sc_node_free(ni);
   2696 }
   2697 
   2698 static u_int8_t
   2699 ath_node_getrssi(const struct ieee80211_node *ni)
   2700 {
   2701 #define	HAL_EP_RND(x, mul) \
   2702 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
   2703 	u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
   2704 	int32_t rssi;
   2705 
   2706 	/*
   2707 	 * When only one frame is received there will be no state in
   2708 	 * avgrssi so fallback on the value recorded by the 802.11 layer.
   2709 	 */
   2710 	if (avgrssi != ATH_RSSI_DUMMY_MARKER)
   2711 		rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
   2712 	else
   2713 		rssi = ni->ni_rssi;
   2714 	return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
   2715 #undef HAL_EP_RND
   2716 }
   2717 
   2718 static int
   2719 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
   2720 {
   2721 	struct ath_hal *ah = sc->sc_ah;
   2722 	int error;
   2723 	struct mbuf *m;
   2724 	struct ath_desc *ds;
   2725 
   2726 	m = bf->bf_m;
   2727 	if (m == NULL) {
   2728 		/*
   2729 		 * NB: by assigning a page to the rx dma buffer we
   2730 		 * implicitly satisfy the Atheros requirement that
   2731 		 * this buffer be cache-line-aligned and sized to be
   2732 		 * multiple of the cache line size.  Not doing this
   2733 		 * causes weird stuff to happen (for the 5210 at least).
   2734 		 */
   2735 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
   2736 		if (m == NULL) {
   2737 			DPRINTF(sc, ATH_DEBUG_ANY,
   2738 				"%s: no mbuf/cluster\n", __func__);
   2739 			sc->sc_stats.ast_rx_nombuf++;
   2740 			return ENOMEM;
   2741 		}
   2742 		bf->bf_m = m;
   2743 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
   2744 
   2745 		error = bus_dmamap_load_mbuf(sc->sc_dmat,
   2746 					     bf->bf_dmamap, m,
   2747 					     BUS_DMA_NOWAIT);
   2748 		if (error != 0) {
   2749 			DPRINTF(sc, ATH_DEBUG_ANY,
   2750 			    "%s: bus_dmamap_load_mbuf failed; error %d\n",
   2751 			    __func__, error);
   2752 			sc->sc_stats.ast_rx_busdma++;
   2753 			return error;
   2754 		}
   2755 		KASSERT(bf->bf_nseg == 1,
   2756 			("multi-segment packet; nseg %u", bf->bf_nseg));
   2757 	}
   2758 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   2759 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2760 
   2761 	/*
   2762 	 * Setup descriptors.  For receive we always terminate
   2763 	 * the descriptor list with a self-linked entry so we'll
   2764 	 * not get overrun under high load (as can happen with a
   2765 	 * 5212 when ANI processing enables PHY error frames).
   2766 	 *
   2767 	 * To insure the last descriptor is self-linked we create
   2768 	 * each descriptor as self-linked and add it to the end.  As
   2769 	 * each additional descriptor is added the previous self-linked
   2770 	 * entry is ``fixed'' naturally.  This should be safe even
   2771 	 * if DMA is happening.  When processing RX interrupts we
   2772 	 * never remove/process the last, self-linked, entry on the
   2773 	 * descriptor list.  This insures the hardware always has
   2774 	 * someplace to write a new frame.
   2775 	 */
   2776 	ds = bf->bf_desc;
   2777 	ds->ds_link = HTOAH32(bf->bf_daddr);	/* link to self */
   2778 	ds->ds_data = bf->bf_segs[0].ds_addr;
   2779 	ds->ds_vdata = mtod(m, void *);	/* for radar */
   2780 	ath_hal_setuprxdesc(ah, ds
   2781 		, m->m_len		/* buffer size */
   2782 		, 0
   2783 	);
   2784 
   2785 	if (sc->sc_rxlink != NULL)
   2786 		*sc->sc_rxlink = bf->bf_daddr;
   2787 	sc->sc_rxlink = &ds->ds_link;
   2788 	return 0;
   2789 }
   2790 
   2791 /*
   2792  * Extend 15-bit time stamp from rx descriptor to
   2793  * a full 64-bit TSF using the specified TSF.
   2794  */
   2795 static inline u_int64_t
   2796 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
   2797 {
   2798 	if ((tsf & 0x7fff) < rstamp)
   2799 		tsf -= 0x8000;
   2800 	return ((tsf &~ 0x7fff) | rstamp);
   2801 }
   2802 
   2803 /*
   2804  * Intercept management frames to collect beacon rssi data
   2805  * and to do ibss merges.
   2806  */
   2807 static void
   2808 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
   2809 	struct ieee80211_node *ni,
   2810 	int subtype, int rssi, u_int32_t rstamp)
   2811 {
   2812 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   2813 
   2814 	/*
   2815 	 * Call up first so subsequent work can use information
   2816 	 * potentially stored in the node (e.g. for ibss merge).
   2817 	 */
   2818 	sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
   2819 	switch (subtype) {
   2820 	case IEEE80211_FC0_SUBTYPE_BEACON:
   2821 		/* update rssi statistics for use by the hal */
   2822 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
   2823 		if (sc->sc_syncbeacon &&
   2824 		    ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) {
   2825 			/*
   2826 			 * Resync beacon timers using the tsf of the beacon
   2827 			 * frame we just received.
   2828 			 */
   2829 			ath_beacon_config(sc);
   2830 		}
   2831 		/* fall thru... */
   2832 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
   2833 		if (ic->ic_opmode == IEEE80211_M_IBSS &&
   2834 		    ic->ic_state == IEEE80211_S_RUN) {
   2835 			u_int64_t tsf = ath_extend_tsf(rstamp,
   2836 				ath_hal_gettsf64(sc->sc_ah));
   2837 
   2838 			/*
   2839 			 * Handle ibss merge as needed; check the tsf on the
   2840 			 * frame before attempting the merge.  The 802.11 spec
   2841 			 * says the station should change it's bssid to match
   2842 			 * the oldest station with the same ssid, where oldest
   2843 			 * is determined by the tsf.  Note that hardware
   2844 			 * reconfiguration happens through callback to
   2845 			 * ath_newstate as the state machine will go from
   2846 			 * RUN -> RUN when this happens.
   2847 			 */
   2848 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
   2849 				DPRINTF(sc, ATH_DEBUG_STATE,
   2850 				    "ibss merge, rstamp %u tsf %ju "
   2851 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
   2852 				    (uintmax_t)ni->ni_tstamp.tsf);
   2853 				(void) ieee80211_ibss_merge(ni);
   2854 			}
   2855 		}
   2856 		break;
   2857 	}
   2858 }
   2859 
   2860 /*
   2861  * Set the default antenna.
   2862  */
   2863 static void
   2864 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
   2865 {
   2866 	struct ath_hal *ah = sc->sc_ah;
   2867 
   2868 	/* XXX block beacon interrupts */
   2869 	ath_hal_setdefantenna(ah, antenna);
   2870 	if (sc->sc_defant != antenna)
   2871 		sc->sc_stats.ast_ant_defswitch++;
   2872 	sc->sc_defant = antenna;
   2873 	sc->sc_rxotherant = 0;
   2874 }
   2875 
   2876 static void
   2877 ath_rx_proc(void *arg, int npending)
   2878 {
   2879 #define	PA2DESC(_sc, _pa) \
   2880 	((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
   2881 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
   2882 	struct ath_softc *sc = arg;
   2883 	struct ath_buf *bf;
   2884 	struct ieee80211com *ic = &sc->sc_ic;
   2885 	struct ifnet *ifp = &sc->sc_if;
   2886 	struct ath_hal *ah = sc->sc_ah;
   2887 	struct ath_desc *ds;
   2888 	struct mbuf *m;
   2889 	struct ieee80211_node *ni;
   2890 	struct ath_node *an;
   2891 	int len, type, ngood;
   2892 	u_int phyerr;
   2893 	HAL_STATUS status;
   2894 	int16_t nf;
   2895 	u_int64_t tsf;
   2896 
   2897 	NET_LOCK_GIANT();		/* XXX */
   2898 
   2899 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
   2900 	ngood = 0;
   2901 	nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
   2902 	tsf = ath_hal_gettsf64(ah);
   2903 	do {
   2904 		bf = STAILQ_FIRST(&sc->sc_rxbuf);
   2905 		if (bf == NULL) {		/* NB: shouldn't happen */
   2906 			if_printf(ifp, "%s: no buffer!\n", __func__);
   2907 			break;
   2908 		}
   2909 		ds = bf->bf_desc;
   2910 		if (ds->ds_link == bf->bf_daddr) {
   2911 			/* NB: never process the self-linked entry at the end */
   2912 			break;
   2913 		}
   2914 		m = bf->bf_m;
   2915 		if (m == NULL) {		/* NB: shouldn't happen */
   2916 			if_printf(ifp, "%s: no mbuf!\n", __func__);
   2917 			break;
   2918 		}
   2919 		/* XXX sync descriptor memory */
   2920 		/*
   2921 		 * Must provide the virtual address of the current
   2922 		 * descriptor, the physical address, and the virtual
   2923 		 * address of the next descriptor in the h/w chain.
   2924 		 * This allows the HAL to look ahead to see if the
   2925 		 * hardware is done with a descriptor by checking the
   2926 		 * done bit in the following descriptor and the address
   2927 		 * of the current descriptor the DMA engine is working
   2928 		 * on.  All this is necessary because of our use of
   2929 		 * a self-linked list to avoid rx overruns.
   2930 		 */
   2931 		status = ath_hal_rxprocdesc(ah, ds,
   2932 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
   2933 #ifdef AR_DEBUG
   2934 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
   2935 			ath_printrxbuf(bf, status == HAL_OK);
   2936 #endif
   2937 		if (status == HAL_EINPROGRESS)
   2938 			break;
   2939 		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
   2940 		if (ds->ds_rxstat.rs_more) {
   2941 			/*
   2942 			 * Frame spans multiple descriptors; this
   2943 			 * cannot happen yet as we don't support
   2944 			 * jumbograms.  If not in monitor mode,
   2945 			 * discard the frame.
   2946 			 */
   2947 			if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   2948 				sc->sc_stats.ast_rx_toobig++;
   2949 				goto rx_next;
   2950 			}
   2951 			/* fall thru for monitor mode handling... */
   2952 		} else if (ds->ds_rxstat.rs_status != 0) {
   2953 			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
   2954 				sc->sc_stats.ast_rx_crcerr++;
   2955 			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
   2956 				sc->sc_stats.ast_rx_fifoerr++;
   2957 			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
   2958 				sc->sc_stats.ast_rx_phyerr++;
   2959 				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
   2960 				sc->sc_stats.ast_rx_phy[phyerr]++;
   2961 				goto rx_next;
   2962 			}
   2963 			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
   2964 				/*
   2965 				 * Decrypt error.  If the error occurred
   2966 				 * because there was no hardware key, then
   2967 				 * let the frame through so the upper layers
   2968 				 * can process it.  This is necessary for 5210
   2969 				 * parts which have no way to setup a ``clear''
   2970 				 * key cache entry.
   2971 				 *
   2972 				 * XXX do key cache faulting
   2973 				 */
   2974 				if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
   2975 					goto rx_accept;
   2976 				sc->sc_stats.ast_rx_badcrypt++;
   2977 			}
   2978 			if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
   2979 				sc->sc_stats.ast_rx_badmic++;
   2980 				/*
   2981 				 * Do minimal work required to hand off
   2982 				 * the 802.11 header for notifcation.
   2983 				 */
   2984 				/* XXX frag's and qos frames */
   2985 				len = ds->ds_rxstat.rs_datalen;
   2986 				if (len >= sizeof (struct ieee80211_frame)) {
   2987 					bus_dmamap_sync(sc->sc_dmat,
   2988 					    bf->bf_dmamap,
   2989 					    0, bf->bf_dmamap->dm_mapsize,
   2990 					    BUS_DMASYNC_POSTREAD);
   2991 					ieee80211_notify_michael_failure(ic,
   2992 					    mtod(m, struct ieee80211_frame *),
   2993 					    sc->sc_splitmic ?
   2994 					        ds->ds_rxstat.rs_keyix-32 :
   2995 					        ds->ds_rxstat.rs_keyix
   2996 					);
   2997 				}
   2998 			}
   2999 			ifp->if_ierrors++;
   3000 			/*
   3001 			 * Reject error frames, we normally don't want
   3002 			 * to see them in monitor mode (in monitor mode
   3003 			 * allow through packets that have crypto problems).
   3004 			 */
   3005 			if ((ds->ds_rxstat.rs_status &~
   3006 				(HAL_RXERR_DECRYPT|HAL_RXERR_MIC)) ||
   3007 			    sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
   3008 				goto rx_next;
   3009 		}
   3010 rx_accept:
   3011 		/*
   3012 		 * Sync and unmap the frame.  At this point we're
   3013 		 * committed to passing the mbuf somewhere so clear
   3014 		 * bf_m; this means a new sk_buff must be allocated
   3015 		 * when the rx descriptor is setup again to receive
   3016 		 * another frame.
   3017 		 */
   3018 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
   3019 		    0, bf->bf_dmamap->dm_mapsize,
   3020 		    BUS_DMASYNC_POSTREAD);
   3021 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   3022 		bf->bf_m = NULL;
   3023 
   3024 		m->m_pkthdr.rcvif = ifp;
   3025 		len = ds->ds_rxstat.rs_datalen;
   3026 		m->m_pkthdr.len = m->m_len = len;
   3027 
   3028 		sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
   3029 
   3030 #if NBPFILTER > 0
   3031 		if (sc->sc_drvbpf) {
   3032 			u_int8_t rix;
   3033 
   3034 			/*
   3035 			 * Discard anything shorter than an ack or cts.
   3036 			 */
   3037 			if (len < IEEE80211_ACK_LEN) {
   3038 				DPRINTF(sc, ATH_DEBUG_RECV,
   3039 					"%s: runt packet %d\n",
   3040 					__func__, len);
   3041 				sc->sc_stats.ast_rx_tooshort++;
   3042 				m_freem(m);
   3043 				goto rx_next;
   3044 			}
   3045 			rix = ds->ds_rxstat.rs_rate;
   3046 			sc->sc_rx_th.wr_tsf = htole64(
   3047 				ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf));
   3048 			sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
   3049 			sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
   3050 			sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf;
   3051 			sc->sc_rx_th.wr_antnoise = nf;
   3052 			sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
   3053 
   3054 			bpf_mtap2(sc->sc_drvbpf,
   3055 				&sc->sc_rx_th, sc->sc_rx_th_len, m);
   3056 		}
   3057 #endif
   3058 
   3059 		/*
   3060 		 * From this point on we assume the frame is at least
   3061 		 * as large as ieee80211_frame_min; verify that.
   3062 		 */
   3063 		if (len < IEEE80211_MIN_LEN) {
   3064 			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
   3065 				__func__, len);
   3066 			sc->sc_stats.ast_rx_tooshort++;
   3067 			m_freem(m);
   3068 			goto rx_next;
   3069 		}
   3070 
   3071 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
   3072 			ieee80211_dump_pkt(mtod(m, void *), len,
   3073 				   sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
   3074 				   ds->ds_rxstat.rs_rssi);
   3075 		}
   3076 
   3077 		m_adj(m, -IEEE80211_CRC_LEN);
   3078 
   3079 		/*
   3080 		 * Locate the node for sender, track state, and then
   3081 		 * pass the (referenced) node up to the 802.11 layer
   3082 		 * for its use.
   3083 		 */
   3084 		ni = ieee80211_find_rxnode_withkey(ic,
   3085 			mtod(m, const struct ieee80211_frame_min *),
   3086 			ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
   3087 				IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
   3088 		/*
   3089 		 * Track rx rssi and do any rx antenna management.
   3090 		 */
   3091 		an = ATH_NODE(ni);
   3092 		ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
   3093 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi);
   3094 		/*
   3095 		 * Send frame up for processing.
   3096 		 */
   3097 		type = ieee80211_input(ic, m, ni,
   3098 			ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
   3099 		ieee80211_free_node(ni);
   3100 		if (sc->sc_diversity) {
   3101 			/*
   3102 			 * When using fast diversity, change the default rx
   3103 			 * antenna if diversity chooses the other antenna 3
   3104 			 * times in a row.
   3105 			 */
   3106 			if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
   3107 				if (++sc->sc_rxotherant >= 3)
   3108 					ath_setdefantenna(sc,
   3109 						ds->ds_rxstat.rs_antenna);
   3110 			} else
   3111 				sc->sc_rxotherant = 0;
   3112 		}
   3113 		if (sc->sc_softled) {
   3114 			/*
   3115 			 * Blink for any data frame.  Otherwise do a
   3116 			 * heartbeat-style blink when idle.  The latter
   3117 			 * is mainly for station mode where we depend on
   3118 			 * periodic beacon frames to trigger the poll event.
   3119 			 */
   3120 			if (type == IEEE80211_FC0_TYPE_DATA) {
   3121 				sc->sc_rxrate = ds->ds_rxstat.rs_rate;
   3122 				ath_led_event(sc, ATH_LED_RX);
   3123 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
   3124 				ath_led_event(sc, ATH_LED_POLL);
   3125 		}
   3126 		/*
   3127 		 * Arrange to update the last rx timestamp only for
   3128 		 * frames from our ap when operating in station mode.
   3129 		 * This assumes the rx key is always setup when associated.
   3130 		 */
   3131 		if (ic->ic_opmode == IEEE80211_M_STA &&
   3132 		    ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID)
   3133 			ngood++;
   3134 rx_next:
   3135 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
   3136 	} while (ath_rxbuf_init(sc, bf) == 0);
   3137 
   3138 	/* rx signal state monitoring */
   3139 	ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
   3140 	if (ath_hal_radar_event(ah))
   3141 		TASK_RUN_OR_ENQUEUE(&sc->sc_radartask);
   3142 	if (ngood)
   3143 		sc->sc_lastrx = tsf;
   3144 
   3145 #ifdef __NetBSD__
   3146 	/* XXX Why isn't this necessary in FreeBSD? */
   3147 	if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
   3148 		ath_start(ifp);
   3149 #endif /* __NetBSD__ */
   3150 
   3151 	NET_UNLOCK_GIANT();		/* XXX */
   3152 #undef PA2DESC
   3153 }
   3154 
   3155 /*
   3156  * Setup a h/w transmit queue.
   3157  */
   3158 static struct ath_txq *
   3159 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
   3160 {
   3161 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   3162 	struct ath_hal *ah = sc->sc_ah;
   3163 	HAL_TXQ_INFO qi;
   3164 	int qnum;
   3165 
   3166 	memset(&qi, 0, sizeof(qi));
   3167 	qi.tqi_subtype = subtype;
   3168 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
   3169 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
   3170 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
   3171 	/*
   3172 	 * Enable interrupts only for EOL and DESC conditions.
   3173 	 * We mark tx descriptors to receive a DESC interrupt
   3174 	 * when a tx queue gets deep; otherwise waiting for the
   3175 	 * EOL to reap descriptors.  Note that this is done to
   3176 	 * reduce interrupt load and this only defers reaping
   3177 	 * descriptors, never transmitting frames.  Aside from
   3178 	 * reducing interrupts this also permits more concurrency.
   3179 	 * The only potential downside is if the tx queue backs
   3180 	 * up in which case the top half of the kernel may backup
   3181 	 * due to a lack of tx descriptors.
   3182 	 */
   3183 	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
   3184 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
   3185 	if (qnum == -1) {
   3186 		/*
   3187 		 * NB: don't print a message, this happens
   3188 		 * normally on parts with too few tx queues
   3189 		 */
   3190 		return NULL;
   3191 	}
   3192 	if (qnum >= N(sc->sc_txq)) {
   3193 		device_printf(sc->sc_dev,
   3194 			"hal qnum %u out of range, max %zu!\n",
   3195 			qnum, N(sc->sc_txq));
   3196 		ath_hal_releasetxqueue(ah, qnum);
   3197 		return NULL;
   3198 	}
   3199 	if (!ATH_TXQ_SETUP(sc, qnum)) {
   3200 		struct ath_txq *txq = &sc->sc_txq[qnum];
   3201 
   3202 		txq->axq_qnum = qnum;
   3203 		txq->axq_depth = 0;
   3204 		txq->axq_intrcnt = 0;
   3205 		txq->axq_link = NULL;
   3206 		STAILQ_INIT(&txq->axq_q);
   3207 		ATH_TXQ_LOCK_INIT(sc, txq);
   3208 		sc->sc_txqsetup |= 1<<qnum;
   3209 	}
   3210 	return &sc->sc_txq[qnum];
   3211 #undef N
   3212 }
   3213 
   3214 /*
   3215  * Setup a hardware data transmit queue for the specified
   3216  * access control.  The hal may not support all requested
   3217  * queues in which case it will return a reference to a
   3218  * previously setup queue.  We record the mapping from ac's
   3219  * to h/w queues for use by ath_tx_start and also track
   3220  * the set of h/w queues being used to optimize work in the
   3221  * transmit interrupt handler and related routines.
   3222  */
   3223 static int
   3224 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
   3225 {
   3226 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   3227 	struct ath_txq *txq;
   3228 
   3229 	if (ac >= N(sc->sc_ac2q)) {
   3230 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
   3231 			ac, N(sc->sc_ac2q));
   3232 		return 0;
   3233 	}
   3234 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
   3235 	if (txq != NULL) {
   3236 		sc->sc_ac2q[ac] = txq;
   3237 		return 1;
   3238 	} else
   3239 		return 0;
   3240 #undef N
   3241 }
   3242 
   3243 /*
   3244  * Update WME parameters for a transmit queue.
   3245  */
   3246 static int
   3247 ath_txq_update(struct ath_softc *sc, int ac)
   3248 {
   3249 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
   3250 #define	ATH_TXOP_TO_US(v)		(v<<5)
   3251 	struct ieee80211com *ic = &sc->sc_ic;
   3252 	struct ath_txq *txq = sc->sc_ac2q[ac];
   3253 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
   3254 	struct ath_hal *ah = sc->sc_ah;
   3255 	HAL_TXQ_INFO qi;
   3256 
   3257 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
   3258 	qi.tqi_aifs = wmep->wmep_aifsn;
   3259 	qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
   3260 	qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
   3261 	qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
   3262 
   3263 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
   3264 		device_printf(sc->sc_dev, "unable to update hardware queue "
   3265 			"parameters for %s traffic!\n",
   3266 			ieee80211_wme_acnames[ac]);
   3267 		return 0;
   3268 	} else {
   3269 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
   3270 		return 1;
   3271 	}
   3272 #undef ATH_TXOP_TO_US
   3273 #undef ATH_EXPONENT_TO_VALUE
   3274 }
   3275 
   3276 /*
   3277  * Callback from the 802.11 layer to update WME parameters.
   3278  */
   3279 static int
   3280 ath_wme_update(struct ieee80211com *ic)
   3281 {
   3282 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   3283 
   3284 	return !ath_txq_update(sc, WME_AC_BE) ||
   3285 	    !ath_txq_update(sc, WME_AC_BK) ||
   3286 	    !ath_txq_update(sc, WME_AC_VI) ||
   3287 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
   3288 }
   3289 
   3290 /*
   3291  * Reclaim resources for a setup queue.
   3292  */
   3293 static void
   3294 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
   3295 {
   3296 
   3297 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
   3298 	ATH_TXQ_LOCK_DESTROY(txq);
   3299 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
   3300 }
   3301 
   3302 /*
   3303  * Reclaim all tx queue resources.
   3304  */
   3305 static void
   3306 ath_tx_cleanup(struct ath_softc *sc)
   3307 {
   3308 	int i;
   3309 
   3310 	ATH_TXBUF_LOCK_DESTROY(sc);
   3311 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   3312 		if (ATH_TXQ_SETUP(sc, i))
   3313 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
   3314 }
   3315 
   3316 /*
   3317  * Defragment an mbuf chain, returning at most maxfrags separate
   3318  * mbufs+clusters.  If this is not possible NULL is returned and
   3319  * the original mbuf chain is left in it's present (potentially
   3320  * modified) state.  We use two techniques: collapsing consecutive
   3321  * mbufs and replacing consecutive mbufs by a cluster.
   3322  */
   3323 static struct mbuf *
   3324 ath_defrag(struct mbuf *m0, int how, int maxfrags)
   3325 {
   3326 	struct mbuf *m, *n, *n2, **prev;
   3327 	u_int curfrags;
   3328 
   3329 	/*
   3330 	 * Calculate the current number of frags.
   3331 	 */
   3332 	curfrags = 0;
   3333 	for (m = m0; m != NULL; m = m->m_next)
   3334 		curfrags++;
   3335 	/*
   3336 	 * First, try to collapse mbufs.  Note that we always collapse
   3337 	 * towards the front so we don't need to deal with moving the
   3338 	 * pkthdr.  This may be suboptimal if the first mbuf has much
   3339 	 * less data than the following.
   3340 	 */
   3341 	m = m0;
   3342 again:
   3343 	for (;;) {
   3344 		n = m->m_next;
   3345 		if (n == NULL)
   3346 			break;
   3347 		if ((m->m_flags & M_RDONLY) == 0 &&
   3348 		    n->m_len < M_TRAILINGSPACE(m)) {
   3349 			bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
   3350 				n->m_len);
   3351 			m->m_len += n->m_len;
   3352 			m->m_next = n->m_next;
   3353 			m_free(n);
   3354 			if (--curfrags <= maxfrags)
   3355 				return m0;
   3356 		} else
   3357 			m = n;
   3358 	}
   3359 	KASSERT(maxfrags > 1,
   3360 		("maxfrags %u, but normal collapse failed", maxfrags));
   3361 	/*
   3362 	 * Collapse consecutive mbufs to a cluster.
   3363 	 */
   3364 	prev = &m0->m_next;		/* NB: not the first mbuf */
   3365 	while ((n = *prev) != NULL) {
   3366 		if ((n2 = n->m_next) != NULL &&
   3367 		    n->m_len + n2->m_len < MCLBYTES) {
   3368 			m = m_getcl(how, MT_DATA, 0);
   3369 			if (m == NULL)
   3370 				goto bad;
   3371 			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
   3372 			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
   3373 				n2->m_len);
   3374 			m->m_len = n->m_len + n2->m_len;
   3375 			m->m_next = n2->m_next;
   3376 			*prev = m;
   3377 			m_free(n);
   3378 			m_free(n2);
   3379 			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
   3380 				return m0;
   3381 			/*
   3382 			 * Still not there, try the normal collapse
   3383 			 * again before we allocate another cluster.
   3384 			 */
   3385 			goto again;
   3386 		}
   3387 		prev = &n->m_next;
   3388 	}
   3389 	/*
   3390 	 * No place where we can collapse to a cluster; punt.
   3391 	 * This can occur if, for example, you request 2 frags
   3392 	 * but the packet requires that both be clusters (we
   3393 	 * never reallocate the first mbuf to avoid moving the
   3394 	 * packet header).
   3395 	 */
   3396 bad:
   3397 	return NULL;
   3398 }
   3399 
   3400 /*
   3401  * Return h/w rate index for an IEEE rate (w/o basic rate bit).
   3402  */
   3403 static int
   3404 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
   3405 {
   3406 	int i;
   3407 
   3408 	for (i = 0; i < rt->rateCount; i++)
   3409 		if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
   3410 			return i;
   3411 	return 0;		/* NB: lowest rate */
   3412 }
   3413 
   3414 static void
   3415 ath_freetx(struct mbuf *m)
   3416 {
   3417 	struct mbuf *next;
   3418 
   3419 	do {
   3420 		next = m->m_nextpkt;
   3421 		m->m_nextpkt = NULL;
   3422 		m_freem(m);
   3423 	} while ((m = next) != NULL);
   3424 }
   3425 
   3426 static int
   3427 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
   3428     struct mbuf *m0)
   3429 {
   3430 	struct ieee80211com *ic = &sc->sc_ic;
   3431 	struct ath_hal *ah = sc->sc_ah;
   3432 	struct ifnet *ifp = &sc->sc_if;
   3433 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
   3434 	int i, error, iswep, ismcast, isfrag, ismrr;
   3435 	int keyix, hdrlen, pktlen, try0;
   3436 	u_int8_t rix, txrate, ctsrate;
   3437 	u_int8_t cix = 0xff;		/* NB: silence compiler */
   3438 	struct ath_desc *ds, *ds0;
   3439 	struct ath_txq *txq;
   3440 	struct ieee80211_frame *wh;
   3441 	u_int subtype, flags, ctsduration;
   3442 	HAL_PKT_TYPE atype;
   3443 	const HAL_RATE_TABLE *rt;
   3444 	HAL_BOOL shortPreamble;
   3445 	struct ath_node *an;
   3446 	struct mbuf *m;
   3447 	u_int pri;
   3448 
   3449 	wh = mtod(m0, struct ieee80211_frame *);
   3450 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
   3451 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
   3452 	isfrag = m0->m_flags & M_FRAG;
   3453 	hdrlen = ieee80211_anyhdrsize(wh);
   3454 	/*
   3455 	 * Packet length must not include any
   3456 	 * pad bytes; deduct them here.
   3457 	 */
   3458 	pktlen = m0->m_pkthdr.len - (hdrlen & 3);
   3459 
   3460 	if (iswep) {
   3461 		const struct ieee80211_cipher *cip;
   3462 		struct ieee80211_key *k;
   3463 
   3464 		/*
   3465 		 * Construct the 802.11 header+trailer for an encrypted
   3466 		 * frame. The only reason this can fail is because of an
   3467 		 * unknown or unsupported cipher/key type.
   3468 		 */
   3469 		k = ieee80211_crypto_encap(ic, ni, m0);
   3470 		if (k == NULL) {
   3471 			/*
   3472 			 * This can happen when the key is yanked after the
   3473 			 * frame was queued.  Just discard the frame; the
   3474 			 * 802.11 layer counts failures and provides
   3475 			 * debugging/diagnostics.
   3476 			 */
   3477 			ath_freetx(m0);
   3478 			return EIO;
   3479 		}
   3480 		/*
   3481 		 * Adjust the packet + header lengths for the crypto
   3482 		 * additions and calculate the h/w key index.  When
   3483 		 * a s/w mic is done the frame will have had any mic
   3484 		 * added to it prior to entry so m0->m_pkthdr.len above will
   3485 		 * account for it. Otherwise we need to add it to the
   3486 		 * packet length.
   3487 		 */
   3488 		cip = k->wk_cipher;
   3489 		hdrlen += cip->ic_header;
   3490 		pktlen += cip->ic_header + cip->ic_trailer;
   3491 		/* NB: frags always have any TKIP MIC done in s/w */
   3492 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
   3493 			pktlen += cip->ic_miclen;
   3494 		keyix = k->wk_keyix;
   3495 
   3496 		/* packet header may have moved, reset our local pointer */
   3497 		wh = mtod(m0, struct ieee80211_frame *);
   3498 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
   3499 		/*
   3500 		 * Use station key cache slot, if assigned.
   3501 		 */
   3502 		keyix = ni->ni_ucastkey.wk_keyix;
   3503 		if (keyix == IEEE80211_KEYIX_NONE)
   3504 			keyix = HAL_TXKEYIX_INVALID;
   3505 	} else
   3506 		keyix = HAL_TXKEYIX_INVALID;
   3507 
   3508 	pktlen += IEEE80211_CRC_LEN;
   3509 
   3510 	/*
   3511 	 * Load the DMA map so any coalescing is done.  This
   3512 	 * also calculates the number of descriptors we need.
   3513 	 */
   3514 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
   3515 				     BUS_DMA_NOWAIT);
   3516 	if (error == EFBIG) {
   3517 		/* XXX packet requires too many descriptors */
   3518 		bf->bf_nseg = ATH_TXDESC+1;
   3519 	} else if (error != 0) {
   3520 		sc->sc_stats.ast_tx_busdma++;
   3521 		ath_freetx(m0);
   3522 		return error;
   3523 	}
   3524 	/*
   3525 	 * Discard null packets and check for packets that
   3526 	 * require too many TX descriptors.  We try to convert
   3527 	 * the latter to a cluster.
   3528 	 */
   3529 	if (error == EFBIG) {		/* too many desc's, linearize */
   3530 		sc->sc_stats.ast_tx_linear++;
   3531 		m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
   3532 		if (m == NULL) {
   3533 			ath_freetx(m0);
   3534 			sc->sc_stats.ast_tx_nombuf++;
   3535 			return ENOMEM;
   3536 		}
   3537 		m0 = m;
   3538 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
   3539 					     BUS_DMA_NOWAIT);
   3540 		if (error != 0) {
   3541 			sc->sc_stats.ast_tx_busdma++;
   3542 			ath_freetx(m0);
   3543 			return error;
   3544 		}
   3545 		KASSERT(bf->bf_nseg <= ATH_TXDESC,
   3546 		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
   3547 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
   3548 		sc->sc_stats.ast_tx_nodata++;
   3549 		ath_freetx(m0);
   3550 		return EIO;
   3551 	}
   3552 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
   3553 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   3554             bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
   3555 	bf->bf_m = m0;
   3556 	bf->bf_node = ni;			/* NB: held reference */
   3557 
   3558 	/* setup descriptors */
   3559 	ds = bf->bf_desc;
   3560 	rt = sc->sc_currates;
   3561 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
   3562 
   3563 	/*
   3564 	 * NB: the 802.11 layer marks whether or not we should
   3565 	 * use short preamble based on the current mode and
   3566 	 * negotiated parameters.
   3567 	 */
   3568 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
   3569 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) {
   3570 		shortPreamble = AH_TRUE;
   3571 		sc->sc_stats.ast_tx_shortpre++;
   3572 	} else {
   3573 		shortPreamble = AH_FALSE;
   3574 	}
   3575 
   3576 	an = ATH_NODE(ni);
   3577 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
   3578 	ismrr = 0;				/* default no multi-rate retry*/
   3579 	/*
   3580 	 * Calculate Atheros packet type from IEEE80211 packet header,
   3581 	 * setup for rate calculations, and select h/w transmit queue.
   3582 	 */
   3583 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
   3584 	case IEEE80211_FC0_TYPE_MGT:
   3585 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   3586 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
   3587 			atype = HAL_PKT_TYPE_BEACON;
   3588 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
   3589 			atype = HAL_PKT_TYPE_PROBE_RESP;
   3590 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
   3591 			atype = HAL_PKT_TYPE_ATIM;
   3592 		else
   3593 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
   3594 		rix = sc->sc_minrateix;
   3595 		txrate = rt->info[rix].rateCode;
   3596 		if (shortPreamble)
   3597 			txrate |= rt->info[rix].shortPreamble;
   3598 		try0 = ATH_TXMGTTRY;
   3599 		/* NB: force all management frames to highest queue */
   3600 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
   3601 			/* NB: force all management frames to highest queue */
   3602 			pri = WME_AC_VO;
   3603 		} else
   3604 			pri = WME_AC_BE;
   3605 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
   3606 		break;
   3607 	case IEEE80211_FC0_TYPE_CTL:
   3608 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
   3609 		rix = sc->sc_minrateix;
   3610 		txrate = rt->info[rix].rateCode;
   3611 		if (shortPreamble)
   3612 			txrate |= rt->info[rix].shortPreamble;
   3613 		try0 = ATH_TXMGTTRY;
   3614 		/* NB: force all ctl frames to highest queue */
   3615 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
   3616 			/* NB: force all ctl frames to highest queue */
   3617 			pri = WME_AC_VO;
   3618 		} else
   3619 			pri = WME_AC_BE;
   3620 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
   3621 		break;
   3622 	case IEEE80211_FC0_TYPE_DATA:
   3623 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
   3624 		/*
   3625 		 * Data frames: multicast frames go out at a fixed rate,
   3626 		 * otherwise consult the rate control module for the
   3627 		 * rate to use.
   3628 		 */
   3629 		if (ismcast) {
   3630 			/*
   3631 			 * Check mcast rate setting in case it's changed.
   3632 			 * XXX move out of fastpath
   3633 			 */
   3634 			if (ic->ic_mcast_rate != sc->sc_mcastrate) {
   3635 				sc->sc_mcastrix =
   3636 					ath_tx_findrix(rt, ic->ic_mcast_rate);
   3637 				sc->sc_mcastrate = ic->ic_mcast_rate;
   3638 			}
   3639 			rix = sc->sc_mcastrix;
   3640 			txrate = rt->info[rix].rateCode;
   3641 			try0 = 1;
   3642 		} else {
   3643 			ath_rate_findrate(sc, an, shortPreamble, pktlen,
   3644 				&rix, &try0, &txrate);
   3645 			sc->sc_txrate = txrate;		/* for LED blinking */
   3646 			if (try0 != ATH_TXMAXTRY)
   3647 				ismrr = 1;
   3648 		}
   3649 		pri = M_WME_GETAC(m0);
   3650 		if (cap->cap_wmeParams[pri].wmep_noackPolicy)
   3651 			flags |= HAL_TXDESC_NOACK;
   3652 		break;
   3653 	default:
   3654 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
   3655 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
   3656 		/* XXX statistic */
   3657 		ath_freetx(m0);
   3658 		return EIO;
   3659 	}
   3660 	txq = sc->sc_ac2q[pri];
   3661 
   3662 	/*
   3663 	 * When servicing one or more stations in power-save mode
   3664 	 * multicast frames must be buffered until after the beacon.
   3665 	 * We use the CAB queue for that.
   3666 	 */
   3667 	if (ismcast && ic->ic_ps_sta) {
   3668 		txq = sc->sc_cabq;
   3669 		/* XXX? more bit in 802.11 frame header */
   3670 	}
   3671 
   3672 	/*
   3673 	 * Calculate miscellaneous flags.
   3674 	 */
   3675 	if (ismcast) {
   3676 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
   3677 	} else if (pktlen > ic->ic_rtsthreshold) {
   3678 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
   3679 		cix = rt->info[rix].controlRate;
   3680 		sc->sc_stats.ast_tx_rts++;
   3681 	}
   3682 	if (flags & HAL_TXDESC_NOACK)		/* NB: avoid double counting */
   3683 		sc->sc_stats.ast_tx_noack++;
   3684 
   3685 	/*
   3686 	 * If 802.11g protection is enabled, determine whether
   3687 	 * to use RTS/CTS or just CTS.  Note that this is only
   3688 	 * done for OFDM unicast frames.
   3689 	 */
   3690 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
   3691 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
   3692 	    (flags & HAL_TXDESC_NOACK) == 0) {
   3693 		/* XXX fragments must use CCK rates w/ protection */
   3694 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
   3695 			flags |= HAL_TXDESC_RTSENA;
   3696 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
   3697 			flags |= HAL_TXDESC_CTSENA;
   3698 		if (isfrag) {
   3699 			/*
   3700 			 * For frags it would be desirable to use the
   3701 			 * highest CCK rate for RTS/CTS.  But stations
   3702 			 * farther away may detect it at a lower CCK rate
   3703 			 * so use the configured protection rate instead
   3704 			 * (for now).
   3705 			 */
   3706 			cix = rt->info[sc->sc_protrix].controlRate;
   3707 		} else
   3708 			cix = rt->info[sc->sc_protrix].controlRate;
   3709 		sc->sc_stats.ast_tx_protect++;
   3710 	}
   3711 
   3712 	/*
   3713 	 * Calculate duration.  This logically belongs in the 802.11
   3714 	 * layer but it lacks sufficient information to calculate it.
   3715 	 */
   3716 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
   3717 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
   3718 		u_int16_t dur;
   3719 		/*
   3720 		 * XXX not right with fragmentation.
   3721 		 */
   3722 		if (shortPreamble)
   3723 			dur = rt->info[rix].spAckDuration;
   3724 		else
   3725 			dur = rt->info[rix].lpAckDuration;
   3726 		if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
   3727 			dur += dur;             /* additional SIFS+ACK */
   3728 			KASSERT(m0->m_nextpkt != NULL, ("no fragment"));
   3729 			/*
   3730 			 * Include the size of next fragment so NAV is
   3731 			 * updated properly.  The last fragment uses only
   3732 			 * the ACK duration
   3733 			 */
   3734 			dur += ath_hal_computetxtime(ah, rt,
   3735 					m0->m_nextpkt->m_pkthdr.len,
   3736 					rix, shortPreamble);
   3737 		}
   3738 		if (isfrag) {
   3739 			/*
   3740 			 * Force hardware to use computed duration for next
   3741 			 * fragment by disabling multi-rate retry which updates
   3742 			 * duration based on the multi-rate duration table.
   3743 			 */
   3744 			try0 = ATH_TXMAXTRY;
   3745 		}
   3746 		*(u_int16_t *)wh->i_dur = htole16(dur);
   3747 	}
   3748 
   3749 	/*
   3750 	 * Calculate RTS/CTS rate and duration if needed.
   3751 	 */
   3752 	ctsduration = 0;
   3753 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
   3754 		/*
   3755 		 * CTS transmit rate is derived from the transmit rate
   3756 		 * by looking in the h/w rate table.  We must also factor
   3757 		 * in whether or not a short preamble is to be used.
   3758 		 */
   3759 		/* NB: cix is set above where RTS/CTS is enabled */
   3760 		KASSERT(cix != 0xff, ("cix not setup"));
   3761 		ctsrate = rt->info[cix].rateCode;
   3762 		/*
   3763 		 * Compute the transmit duration based on the frame
   3764 		 * size and the size of an ACK frame.  We call into the
   3765 		 * HAL to do the computation since it depends on the
   3766 		 * characteristics of the actual PHY being used.
   3767 		 *
   3768 		 * NB: CTS is assumed the same size as an ACK so we can
   3769 		 *     use the precalculated ACK durations.
   3770 		 */
   3771 		if (shortPreamble) {
   3772 			ctsrate |= rt->info[cix].shortPreamble;
   3773 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
   3774 				ctsduration += rt->info[cix].spAckDuration;
   3775 			ctsduration += ath_hal_computetxtime(ah,
   3776 				rt, pktlen, rix, AH_TRUE);
   3777 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
   3778 				ctsduration += rt->info[rix].spAckDuration;
   3779 		} else {
   3780 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
   3781 				ctsduration += rt->info[cix].lpAckDuration;
   3782 			ctsduration += ath_hal_computetxtime(ah,
   3783 				rt, pktlen, rix, AH_FALSE);
   3784 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
   3785 				ctsduration += rt->info[rix].lpAckDuration;
   3786 		}
   3787 		/*
   3788 		 * Must disable multi-rate retry when using RTS/CTS.
   3789 		 */
   3790 		ismrr = 0;
   3791 		try0 = ATH_TXMGTTRY;		/* XXX */
   3792 	} else
   3793 		ctsrate = 0;
   3794 
   3795 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
   3796 		ieee80211_dump_pkt(mtod(m0, void *), m0->m_len,
   3797 			sc->sc_hwmap[txrate].ieeerate, -1);
   3798 #if NBPFILTER > 0
   3799 	if (ic->ic_rawbpf)
   3800 		bpf_mtap(ic->ic_rawbpf, m0);
   3801 	if (sc->sc_drvbpf) {
   3802 		u_int64_t tsf = ath_hal_gettsf64(ah);
   3803 
   3804 		sc->sc_tx_th.wt_tsf = htole64(tsf);
   3805 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
   3806 		if (iswep)
   3807 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
   3808 		if (isfrag)
   3809 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
   3810 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
   3811 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
   3812 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
   3813 
   3814 		bpf_mtap2(sc->sc_drvbpf,
   3815 			&sc->sc_tx_th, sc->sc_tx_th_len, m0);
   3816 	}
   3817 #endif
   3818 
   3819 	/*
   3820 	 * Determine if a tx interrupt should be generated for
   3821 	 * this descriptor.  We take a tx interrupt to reap
   3822 	 * descriptors when the h/w hits an EOL condition or
   3823 	 * when the descriptor is specifically marked to generate
   3824 	 * an interrupt.  We periodically mark descriptors in this
   3825 	 * way to insure timely replenishing of the supply needed
   3826 	 * for sending frames.  Defering interrupts reduces system
   3827 	 * load and potentially allows more concurrent work to be
   3828 	 * done but if done to aggressively can cause senders to
   3829 	 * backup.
   3830 	 *
   3831 	 * NB: use >= to deal with sc_txintrperiod changing
   3832 	 *     dynamically through sysctl.
   3833 	 */
   3834 	if (flags & HAL_TXDESC_INTREQ) {
   3835 		txq->axq_intrcnt = 0;
   3836 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
   3837 		flags |= HAL_TXDESC_INTREQ;
   3838 		txq->axq_intrcnt = 0;
   3839 	}
   3840 
   3841 	/*
   3842 	 * Formulate first tx descriptor with tx controls.
   3843 	 */
   3844 	/* XXX check return value? */
   3845 	ath_hal_setuptxdesc(ah, ds
   3846 		, pktlen		/* packet length */
   3847 		, hdrlen		/* header length */
   3848 		, atype			/* Atheros packet type */
   3849 		, ni->ni_txpower	/* txpower */
   3850 		, txrate, try0		/* series 0 rate/tries */
   3851 		, keyix			/* key cache index */
   3852 		, sc->sc_txantenna	/* antenna mode */
   3853 		, flags			/* flags */
   3854 		, ctsrate		/* rts/cts rate */
   3855 		, ctsduration		/* rts/cts duration */
   3856 	);
   3857 	bf->bf_flags = flags;
   3858 	/*
   3859 	 * Setup the multi-rate retry state only when we're
   3860 	 * going to use it.  This assumes ath_hal_setuptxdesc
   3861 	 * initializes the descriptors (so we don't have to)
   3862 	 * when the hardware supports multi-rate retry and
   3863 	 * we don't use it.
   3864 	 */
   3865 	if (ismrr)
   3866 		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
   3867 
   3868 	/*
   3869 	 * Fillin the remainder of the descriptor info.
   3870 	 */
   3871 	ds0 = ds;
   3872 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
   3873 		ds->ds_data = bf->bf_segs[i].ds_addr;
   3874 		if (i == bf->bf_nseg - 1)
   3875 			ds->ds_link = 0;
   3876 		else
   3877 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
   3878 		ath_hal_filltxdesc(ah, ds
   3879 			, bf->bf_segs[i].ds_len	/* segment length */
   3880 			, i == 0		/* first segment */
   3881 			, i == bf->bf_nseg - 1	/* last segment */
   3882 			, ds0			/* first descriptor */
   3883 		);
   3884 
   3885 		/* NB: The desc swap function becomes void,
   3886 		 * if descriptor swapping is not enabled
   3887 		 */
   3888 		ath_desc_swap(ds);
   3889 
   3890 		DPRINTF(sc, ATH_DEBUG_XMIT,
   3891 			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
   3892 			__func__, i, ds->ds_link, ds->ds_data,
   3893 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
   3894 	}
   3895 	/*
   3896 	 * Insert the frame on the outbound list and
   3897 	 * pass it on to the hardware.
   3898 	 */
   3899 	ATH_TXQ_LOCK(txq);
   3900 	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
   3901 	if (txq->axq_link == NULL) {
   3902 		ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
   3903 		DPRINTF(sc, ATH_DEBUG_XMIT,
   3904 		    "%s: TXDP[%u] = %" PRIx64 " (%p) depth %d\n", __func__,
   3905 		    txq->axq_qnum, (uint64_t)bf->bf_daddr, bf->bf_desc,
   3906 		    txq->axq_depth);
   3907 	} else {
   3908 		*txq->axq_link = HTOAH32(bf->bf_daddr);
   3909 		DPRINTF(sc, ATH_DEBUG_XMIT,
   3910 		    "%s: link[%u](%p)=%" PRIx64 " (%p) depth %d\n",
   3911 		    __func__, txq->axq_qnum, txq->axq_link,
   3912 		    (uint64_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
   3913 	}
   3914 	txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
   3915 	/*
   3916 	 * The CAB queue is started from the SWBA handler since
   3917 	 * frames only go out on DTIM and to avoid possible races.
   3918 	 */
   3919 	if (txq != sc->sc_cabq)
   3920 		ath_hal_txstart(ah, txq->axq_qnum);
   3921 	ATH_TXQ_UNLOCK(txq);
   3922 
   3923 	return 0;
   3924 }
   3925 
   3926 /*
   3927  * Process completed xmit descriptors from the specified queue.
   3928  */
   3929 static int
   3930 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
   3931 {
   3932 	struct ath_hal *ah = sc->sc_ah;
   3933 	struct ieee80211com *ic = &sc->sc_ic;
   3934 	struct ath_buf *bf;
   3935 	struct ath_desc *ds, *ds0;
   3936 	struct ieee80211_node *ni;
   3937 	struct ath_node *an;
   3938 	int sr, lr, pri, nacked;
   3939 	HAL_STATUS status;
   3940 
   3941 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
   3942 		__func__, txq->axq_qnum,
   3943 		(void *)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
   3944 		txq->axq_link);
   3945 	nacked = 0;
   3946 	for (;;) {
   3947 		ATH_TXQ_LOCK(txq);
   3948 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
   3949 		bf = STAILQ_FIRST(&txq->axq_q);
   3950 		if (bf == NULL) {
   3951 			txq->axq_link = NULL;
   3952 			ATH_TXQ_UNLOCK(txq);
   3953 			break;
   3954 		}
   3955 		ds0 = &bf->bf_desc[0];
   3956 		ds = &bf->bf_desc[bf->bf_nseg - 1];
   3957 		status = ath_hal_txprocdesc(ah, ds);
   3958 #ifdef AR_DEBUG
   3959 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
   3960 			ath_printtxbuf(bf, status == HAL_OK);
   3961 #endif
   3962 		if (status == HAL_EINPROGRESS) {
   3963 			ATH_TXQ_UNLOCK(txq);
   3964 			break;
   3965 		}
   3966 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
   3967 		ATH_TXQ_UNLOCK(txq);
   3968 
   3969 		ni = bf->bf_node;
   3970 		if (ni != NULL) {
   3971 			an = ATH_NODE(ni);
   3972 			if (ds->ds_txstat.ts_status == 0) {
   3973 				u_int8_t txant = ds->ds_txstat.ts_antenna;
   3974 				sc->sc_stats.ast_ant_tx[txant]++;
   3975 				sc->sc_ant_tx[txant]++;
   3976 				if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
   3977 					sc->sc_stats.ast_tx_altrate++;
   3978 				sc->sc_stats.ast_tx_rssi =
   3979 					ds->ds_txstat.ts_rssi;
   3980 				ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
   3981 					ds->ds_txstat.ts_rssi);
   3982 				pri = M_WME_GETAC(bf->bf_m);
   3983 				if (pri >= WME_AC_VO)
   3984 					ic->ic_wme.wme_hipri_traffic++;
   3985 				ni->ni_inact = ni->ni_inact_reload;
   3986 			} else {
   3987 				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
   3988 					sc->sc_stats.ast_tx_xretries++;
   3989 				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
   3990 					sc->sc_stats.ast_tx_fifoerr++;
   3991 				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
   3992 					sc->sc_stats.ast_tx_filtered++;
   3993 			}
   3994 			sr = ds->ds_txstat.ts_shortretry;
   3995 			lr = ds->ds_txstat.ts_longretry;
   3996 			sc->sc_stats.ast_tx_shortretry += sr;
   3997 			sc->sc_stats.ast_tx_longretry += lr;
   3998 			/*
   3999 			 * Hand the descriptor to the rate control algorithm.
   4000 			 */
   4001 			if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
   4002 			    (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
   4003 				/*
   4004 				 * If frame was ack'd update the last rx time
   4005 				 * used to workaround phantom bmiss interrupts.
   4006 				 */
   4007 				if (ds->ds_txstat.ts_status == 0)
   4008 					nacked++;
   4009 				ath_rate_tx_complete(sc, an, ds, ds0);
   4010 			}
   4011 			/*
   4012 			 * Reclaim reference to node.
   4013 			 *
   4014 			 * NB: the node may be reclaimed here if, for example
   4015 			 *     this is a DEAUTH message that was sent and the
   4016 			 *     node was timed out due to inactivity.
   4017 			 */
   4018 			ieee80211_free_node(ni);
   4019 		}
   4020 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   4021 		    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4022 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   4023 		m_freem(bf->bf_m);
   4024 		bf->bf_m = NULL;
   4025 		bf->bf_node = NULL;
   4026 
   4027 		ATH_TXBUF_LOCK(sc);
   4028 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   4029 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
   4030 		ATH_TXBUF_UNLOCK(sc);
   4031 	}
   4032 	return nacked;
   4033 }
   4034 
   4035 static inline int
   4036 txqactive(struct ath_hal *ah, int qnum)
   4037 {
   4038 	u_int32_t txqs = 1<<qnum;
   4039 	ath_hal_gettxintrtxqs(ah, &txqs);
   4040 	return (txqs & (1<<qnum));
   4041 }
   4042 
   4043 /*
   4044  * Deferred processing of transmit interrupt; special-cased
   4045  * for a single hardware transmit queue (e.g. 5210 and 5211).
   4046  */
   4047 static void
   4048 ath_tx_proc_q0(void *arg, int npending)
   4049 {
   4050 	struct ath_softc *sc = arg;
   4051 	struct ifnet *ifp = &sc->sc_if;
   4052 
   4053 	if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]) > 0){
   4054 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
   4055 	}
   4056 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
   4057 		ath_tx_processq(sc, sc->sc_cabq);
   4058 
   4059 	if (sc->sc_softled)
   4060 		ath_led_event(sc, ATH_LED_TX);
   4061 
   4062 	ath_start(ifp);
   4063 }
   4064 
   4065 /*
   4066  * Deferred processing of transmit interrupt; special-cased
   4067  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
   4068  */
   4069 static void
   4070 ath_tx_proc_q0123(void *arg, int npending)
   4071 {
   4072 	struct ath_softc *sc = arg;
   4073 	struct ifnet *ifp = &sc->sc_if;
   4074 	int nacked;
   4075 
   4076 	/*
   4077 	 * Process each active queue.
   4078 	 */
   4079 	nacked = 0;
   4080 	if (txqactive(sc->sc_ah, 0))
   4081 		nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
   4082 	if (txqactive(sc->sc_ah, 1))
   4083 		nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
   4084 	if (txqactive(sc->sc_ah, 2))
   4085 		nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
   4086 	if (txqactive(sc->sc_ah, 3))
   4087 		nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
   4088 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
   4089 		ath_tx_processq(sc, sc->sc_cabq);
   4090 	if (nacked) {
   4091 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
   4092 	}
   4093 	ath_tx_processq(sc, sc->sc_cabq);
   4094 
   4095 	if (sc->sc_softled)
   4096 		ath_led_event(sc, ATH_LED_TX);
   4097 
   4098 	ath_start(ifp);
   4099 }
   4100 
   4101 /*
   4102  * Deferred processing of transmit interrupt.
   4103  */
   4104 static void
   4105 ath_tx_proc(void *arg, int npending)
   4106 {
   4107 	struct ath_softc *sc = arg;
   4108 	struct ifnet *ifp = &sc->sc_if;
   4109 	int i, nacked;
   4110 
   4111 	/*
   4112 	 * Process each active queue.
   4113 	 */
   4114 	nacked = 0;
   4115 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   4116 		if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
   4117 			nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
   4118 	if (nacked) {
   4119 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
   4120 	}
   4121 
   4122 	if (sc->sc_softled)
   4123 		ath_led_event(sc, ATH_LED_TX);
   4124 
   4125 	ath_start(ifp);
   4126 }
   4127 
   4128 static void
   4129 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
   4130 {
   4131 	struct ath_hal *ah = sc->sc_ah;
   4132 	struct ieee80211_node *ni;
   4133 	struct ath_buf *bf;
   4134 
   4135 	/*
   4136 	 * NB: this assumes output has been stopped and
   4137 	 *     we do not need to block ath_tx_tasklet
   4138 	 */
   4139 	for (;;) {
   4140 		ATH_TXQ_LOCK(txq);
   4141 		bf = STAILQ_FIRST(&txq->axq_q);
   4142 		if (bf == NULL) {
   4143 			txq->axq_link = NULL;
   4144 			ATH_TXQ_UNLOCK(txq);
   4145 			break;
   4146 		}
   4147 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
   4148 		ATH_TXQ_UNLOCK(txq);
   4149 #ifdef AR_DEBUG
   4150 		if (sc->sc_debug & ATH_DEBUG_RESET)
   4151 			ath_printtxbuf(bf,
   4152 				ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
   4153 #endif /* AR_DEBUG */
   4154 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   4155 		m_freem(bf->bf_m);
   4156 		bf->bf_m = NULL;
   4157 		ni = bf->bf_node;
   4158 		bf->bf_node = NULL;
   4159 		if (ni != NULL) {
   4160 			/*
   4161 			 * Reclaim node reference.
   4162 			 */
   4163 			ieee80211_free_node(ni);
   4164 		}
   4165 		ATH_TXBUF_LOCK(sc);
   4166 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   4167 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
   4168 		ATH_TXBUF_UNLOCK(sc);
   4169 	}
   4170 }
   4171 
   4172 static void
   4173 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
   4174 {
   4175 	struct ath_hal *ah = sc->sc_ah;
   4176 
   4177 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
   4178 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
   4179 	    __func__, txq->axq_qnum,
   4180 	    (void *)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
   4181 	    txq->axq_link);
   4182 }
   4183 
   4184 /*
   4185  * Drain the transmit queues and reclaim resources.
   4186  */
   4187 static void
   4188 ath_draintxq(struct ath_softc *sc)
   4189 {
   4190 	struct ath_hal *ah = sc->sc_ah;
   4191 	int i;
   4192 
   4193 	/* XXX return value */
   4194 	if (!sc->sc_invalid) {
   4195 		/* don't touch the hardware if marked invalid */
   4196 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
   4197 		DPRINTF(sc, ATH_DEBUG_RESET,
   4198 		    "%s: beacon queue %p\n", __func__,
   4199 		    (void *)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
   4200 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   4201 			if (ATH_TXQ_SETUP(sc, i))
   4202 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
   4203 	}
   4204 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   4205 		if (ATH_TXQ_SETUP(sc, i))
   4206 			ath_tx_draintxq(sc, &sc->sc_txq[i]);
   4207 }
   4208 
   4209 /*
   4210  * Disable the receive h/w in preparation for a reset.
   4211  */
   4212 static void
   4213 ath_stoprecv(struct ath_softc *sc)
   4214 {
   4215 #define	PA2DESC(_sc, _pa) \
   4216 	((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
   4217 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
   4218 	struct ath_hal *ah = sc->sc_ah;
   4219 
   4220 	ath_hal_stoppcurecv(ah);	/* disable PCU */
   4221 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
   4222 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
   4223 	DELAY(3000);			/* 3ms is long enough for 1 frame */
   4224 #ifdef AR_DEBUG
   4225 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
   4226 		struct ath_buf *bf;
   4227 
   4228 		printf("%s: rx queue %p, link %p\n", __func__,
   4229 			(void *)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
   4230 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
   4231 			struct ath_desc *ds = bf->bf_desc;
   4232 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
   4233 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
   4234 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
   4235 				ath_printrxbuf(bf, status == HAL_OK);
   4236 		}
   4237 	}
   4238 #endif
   4239 	sc->sc_rxlink = NULL;		/* just in case */
   4240 #undef PA2DESC
   4241 }
   4242 
   4243 /*
   4244  * Enable the receive h/w following a reset.
   4245  */
   4246 static int
   4247 ath_startrecv(struct ath_softc *sc)
   4248 {
   4249 	struct ath_hal *ah = sc->sc_ah;
   4250 	struct ath_buf *bf;
   4251 
   4252 	sc->sc_rxlink = NULL;
   4253 	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
   4254 		int error = ath_rxbuf_init(sc, bf);
   4255 		if (error != 0) {
   4256 			DPRINTF(sc, ATH_DEBUG_RECV,
   4257 				"%s: ath_rxbuf_init failed %d\n",
   4258 				__func__, error);
   4259 			return error;
   4260 		}
   4261 	}
   4262 
   4263 	bf = STAILQ_FIRST(&sc->sc_rxbuf);
   4264 	ath_hal_putrxbuf(ah, bf->bf_daddr);
   4265 	ath_hal_rxena(ah);		/* enable recv descriptors */
   4266 	ath_mode_init(sc);		/* set filters, etc. */
   4267 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
   4268 	return 0;
   4269 }
   4270 
   4271 /*
   4272  * Update internal state after a channel change.
   4273  */
   4274 static void
   4275 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
   4276 {
   4277 	struct ieee80211com *ic = &sc->sc_ic;
   4278 	enum ieee80211_phymode mode;
   4279 	u_int16_t flags;
   4280 
   4281 	/*
   4282 	 * Change channels and update the h/w rate map
   4283 	 * if we're switching; e.g. 11a to 11b/g.
   4284 	 */
   4285 	mode = ieee80211_chan2mode(ic, chan);
   4286 	if (mode != sc->sc_curmode)
   4287 		ath_setcurmode(sc, mode);
   4288 	/*
   4289 	 * Update BPF state.  NB: ethereal et. al. don't handle
   4290 	 * merged flags well so pick a unique mode for their use.
   4291 	 */
   4292 	if (IEEE80211_IS_CHAN_A(chan))
   4293 		flags = IEEE80211_CHAN_A;
   4294 	/* XXX 11g schizophrenia */
   4295 	else if (IEEE80211_IS_CHAN_G(chan) ||
   4296 	    IEEE80211_IS_CHAN_PUREG(chan))
   4297 		flags = IEEE80211_CHAN_G;
   4298 	else
   4299 		flags = IEEE80211_CHAN_B;
   4300 	if (IEEE80211_IS_CHAN_T(chan))
   4301 		flags |= IEEE80211_CHAN_TURBO;
   4302 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
   4303 		htole16(chan->ic_freq);
   4304 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
   4305 		htole16(flags);
   4306 }
   4307 
   4308 /*
   4309  * Poll for a channel clear indication; this is required
   4310  * for channels requiring DFS and not previously visited
   4311  * and/or with a recent radar detection.
   4312  */
   4313 static void
   4314 ath_dfswait(void *arg)
   4315 {
   4316 	struct ath_softc *sc = arg;
   4317 	struct ath_hal *ah = sc->sc_ah;
   4318 	HAL_CHANNEL hchan;
   4319 
   4320 	ath_hal_radar_wait(ah, &hchan);
   4321 	if (hchan.privFlags & CHANNEL_INTERFERENCE) {
   4322 		if_printf(&sc->sc_if,
   4323 		    "channel %u/0x%x/0x%x has interference\n",
   4324 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
   4325 		return;
   4326 	}
   4327 	if ((hchan.privFlags & CHANNEL_DFS) == 0) {
   4328 		/* XXX should not happen */
   4329 		return;
   4330 	}
   4331 	if (hchan.privFlags & CHANNEL_DFS_CLEAR) {
   4332 		sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR;
   4333 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
   4334 		if_printf(&sc->sc_if,
   4335 		    "channel %u/0x%x/0x%x marked clear\n",
   4336 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
   4337 	} else
   4338 		callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc);
   4339 }
   4340 
   4341 /*
   4342  * Set/change channels.  If the channel is really being changed,
   4343  * it's done by reseting the chip.  To accomplish this we must
   4344  * first cleanup any pending DMA, then restart stuff after a la
   4345  * ath_init.
   4346  */
   4347 static int
   4348 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
   4349 {
   4350 	struct ath_hal *ah = sc->sc_ah;
   4351 	struct ieee80211com *ic = &sc->sc_ic;
   4352 	HAL_CHANNEL hchan;
   4353 
   4354 	/*
   4355 	 * Convert to a HAL channel description with
   4356 	 * the flags constrained to reflect the current
   4357 	 * operating mode.
   4358 	 */
   4359 	hchan.channel = chan->ic_freq;
   4360 	hchan.channelFlags = ath_chan2flags(ic, chan);
   4361 
   4362 	DPRINTF(sc, ATH_DEBUG_RESET,
   4363 	    "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
   4364 	    __func__,
   4365 	    ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
   4366 		sc->sc_curchan.channelFlags),
   4367 	    	sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
   4368 	    ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
   4369 	        hchan.channel, hchan.channelFlags);
   4370 	if (hchan.channel != sc->sc_curchan.channel ||
   4371 	    hchan.channelFlags != sc->sc_curchan.channelFlags) {
   4372 		HAL_STATUS status;
   4373 
   4374 		/*
   4375 		 * To switch channels clear any pending DMA operations;
   4376 		 * wait long enough for the RX fifo to drain, reset the
   4377 		 * hardware at the new frequency, and then re-enable
   4378 		 * the relevant bits of the h/w.
   4379 		 */
   4380 		ath_hal_intrset(ah, 0);		/* disable interrupts */
   4381 		ath_draintxq(sc);		/* clear pending tx frames */
   4382 		ath_stoprecv(sc);		/* turn off frame recv */
   4383 		if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
   4384 			if_printf(ic->ic_ifp, "%s: unable to reset "
   4385 			    "channel %u (%u MHz, flags 0x%x hal flags 0x%x)\n",
   4386 			    __func__, ieee80211_chan2ieee(ic, chan),
   4387 			    chan->ic_freq, chan->ic_flags, hchan.channelFlags);
   4388 			return EIO;
   4389 		}
   4390 		sc->sc_curchan = hchan;
   4391 		ath_update_txpow(sc);		/* update tx power state */
   4392 		sc->sc_diversity = ath_hal_getdiversity(ah);
   4393 		sc->sc_calinterval = 1;
   4394 		sc->sc_caltries = 0;
   4395 
   4396 		/*
   4397 		 * Re-enable rx framework.
   4398 		 */
   4399 		if (ath_startrecv(sc) != 0) {
   4400 			if_printf(&sc->sc_if,
   4401 				"%s: unable to restart recv logic\n", __func__);
   4402 			return EIO;
   4403 		}
   4404 
   4405 		/*
   4406 		 * Change channels and update the h/w rate map
   4407 		 * if we're switching; e.g. 11a to 11b/g.
   4408 		 */
   4409 		ic->ic_ibss_chan = chan;
   4410 		ath_chan_change(sc, chan);
   4411 
   4412 		/*
   4413 		 * Handle DFS required waiting period to determine
   4414 		 * if channel is clear of radar traffic.
   4415 		 */
   4416 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   4417 #define	DFS_AND_NOT_CLEAR(_c) \
   4418 	(((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS)
   4419 			if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) {
   4420 				if_printf(&sc->sc_if,
   4421 					"wait for DFS clear channel signal\n");
   4422 				/* XXX stop sndq */
   4423 				sc->sc_if.if_flags |= IFF_OACTIVE;
   4424 				callout_reset(&sc->sc_dfs_ch,
   4425 					2 * hz, ath_dfswait, sc);
   4426 			} else
   4427 				callout_stop(&sc->sc_dfs_ch);
   4428 #undef DFS_NOT_CLEAR
   4429 		}
   4430 
   4431 		/*
   4432 		 * Re-enable interrupts.
   4433 		 */
   4434 		ath_hal_intrset(ah, sc->sc_imask);
   4435 	}
   4436 	return 0;
   4437 }
   4438 
   4439 static void
   4440 ath_next_scan(void *arg)
   4441 {
   4442 	struct ath_softc *sc = arg;
   4443 	struct ieee80211com *ic = &sc->sc_ic;
   4444 	int s;
   4445 
   4446 	/* don't call ath_start w/o network interrupts blocked */
   4447 	s = splnet();
   4448 
   4449 	if (ic->ic_state == IEEE80211_S_SCAN)
   4450 		ieee80211_next_scan(ic);
   4451 	splx(s);
   4452 }
   4453 
   4454 /*
   4455  * Periodically recalibrate the PHY to account
   4456  * for temperature/environment changes.
   4457  */
   4458 static void
   4459 ath_calibrate(void *arg)
   4460 {
   4461 	struct ath_softc *sc = arg;
   4462 	struct ath_hal *ah = sc->sc_ah;
   4463 	HAL_BOOL iqCalDone;
   4464 
   4465 	sc->sc_stats.ast_per_cal++;
   4466 
   4467 	ATH_LOCK(sc);
   4468 
   4469 	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
   4470 		/*
   4471 		 * Rfgain is out of bounds, reset the chip
   4472 		 * to load new gain values.
   4473 		 */
   4474 		DPRINTF(sc, ATH_DEBUG_CALIBRATE,
   4475 			"%s: rfgain change\n", __func__);
   4476 		sc->sc_stats.ast_per_rfgain++;
   4477 		ath_reset(&sc->sc_if);
   4478 	}
   4479 	if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
   4480 		DPRINTF(sc, ATH_DEBUG_ANY,
   4481 			"%s: calibration of channel %u failed\n",
   4482 			__func__, sc->sc_curchan.channel);
   4483 		sc->sc_stats.ast_per_calfail++;
   4484 	}
   4485 	/*
   4486 	 * Calibrate noise floor data again in case of change.
   4487 	 */
   4488 	ath_hal_process_noisefloor(ah);
   4489 	/*
   4490 	 * Poll more frequently when the IQ calibration is in
   4491 	 * progress to speedup loading the final settings.
   4492 	 * We temper this aggressive polling with an exponential
   4493 	 * back off after 4 tries up to ath_calinterval.
   4494 	 */
   4495 	if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
   4496 		sc->sc_caltries = 0;
   4497 		sc->sc_calinterval = ath_calinterval;
   4498 	} else if (sc->sc_caltries > 4) {
   4499 		sc->sc_caltries = 0;
   4500 		sc->sc_calinterval <<= 1;
   4501 		if (sc->sc_calinterval > ath_calinterval)
   4502 			sc->sc_calinterval = ath_calinterval;
   4503 	}
   4504 	KASSERT(0 < sc->sc_calinterval && sc->sc_calinterval <= ath_calinterval,
   4505 		("bad calibration interval %u", sc->sc_calinterval));
   4506 
   4507 	DPRINTF(sc, ATH_DEBUG_CALIBRATE,
   4508 		"%s: next +%u (%siqCalDone tries %u)\n", __func__,
   4509 		sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
   4510 	sc->sc_caltries++;
   4511 	callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
   4512 		ath_calibrate, sc);
   4513 	ATH_UNLOCK(sc);
   4514 }
   4515 
   4516 static int
   4517 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
   4518 {
   4519 	struct ifnet *ifp = ic->ic_ifp;
   4520 	struct ath_softc *sc = ifp->if_softc;
   4521 	struct ath_hal *ah = sc->sc_ah;
   4522 	struct ieee80211_node *ni;
   4523 	int i, error;
   4524 	const u_int8_t *bssid;
   4525 	u_int32_t rfilt;
   4526 	static const HAL_LED_STATE leds[] = {
   4527 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
   4528 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
   4529 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
   4530 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
   4531 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
   4532 	};
   4533 
   4534 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
   4535 		ieee80211_state_name[ic->ic_state],
   4536 		ieee80211_state_name[nstate]);
   4537 
   4538 	callout_stop(&sc->sc_scan_ch);
   4539 	callout_stop(&sc->sc_cal_ch);
   4540 	callout_stop(&sc->sc_dfs_ch);
   4541 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
   4542 
   4543 	if (nstate == IEEE80211_S_INIT) {
   4544 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
   4545 		/*
   4546 		 * NB: disable interrupts so we don't rx frames.
   4547 		 */
   4548 		ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
   4549 		/*
   4550 		 * Notify the rate control algorithm.
   4551 		 */
   4552 		ath_rate_newstate(sc, nstate);
   4553 		goto done;
   4554 	}
   4555 	ni = ic->ic_bss;
   4556 	error = ath_chan_set(sc, ic->ic_curchan);
   4557 	if (error != 0)
   4558 		goto bad;
   4559 	rfilt = ath_calcrxfilter(sc, nstate);
   4560 	if (nstate == IEEE80211_S_SCAN)
   4561 		bssid = ifp->if_broadcastaddr;
   4562 	else
   4563 		bssid = ni->ni_bssid;
   4564 	ath_hal_setrxfilter(ah, rfilt);
   4565 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
   4566 		 __func__, rfilt, ether_sprintf(bssid));
   4567 
   4568 	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
   4569 		ath_hal_setassocid(ah, bssid, ni->ni_associd);
   4570 	else
   4571 		ath_hal_setassocid(ah, bssid, 0);
   4572 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
   4573 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
   4574 			if (ath_hal_keyisvalid(ah, i))
   4575 				ath_hal_keysetmac(ah, i, bssid);
   4576 	}
   4577 
   4578 	/*
   4579 	 * Notify the rate control algorithm so rates
   4580 	 * are setup should ath_beacon_alloc be called.
   4581 	 */
   4582 	ath_rate_newstate(sc, nstate);
   4583 
   4584 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
   4585 		/* nothing to do */;
   4586 	} else if (nstate == IEEE80211_S_RUN) {
   4587 		DPRINTF(sc, ATH_DEBUG_STATE,
   4588 			"%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
   4589 			"capinfo=0x%04x chan=%d\n"
   4590 			 , __func__
   4591 			 , ic->ic_flags
   4592 			 , ni->ni_intval
   4593 			 , ether_sprintf(ni->ni_bssid)
   4594 			 , ni->ni_capinfo
   4595 			 , ieee80211_chan2ieee(ic, ic->ic_curchan));
   4596 
   4597 		switch (ic->ic_opmode) {
   4598 		case IEEE80211_M_HOSTAP:
   4599 		case IEEE80211_M_IBSS:
   4600 			/*
   4601 			 * Allocate and setup the beacon frame.
   4602 			 *
   4603 			 * Stop any previous beacon DMA.  This may be
   4604 			 * necessary, for example, when an ibss merge
   4605 			 * causes reconfiguration; there will be a state
   4606 			 * transition from RUN->RUN that means we may
   4607 			 * be called with beacon transmission active.
   4608 			 */
   4609 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
   4610 			ath_beacon_free(sc);
   4611 			error = ath_beacon_alloc(sc, ni);
   4612 			if (error != 0)
   4613 				goto bad;
   4614 			/*
   4615 			 * If joining an adhoc network defer beacon timer
   4616 			 * configuration to the next beacon frame so we
   4617 			 * have a current TSF to use.  Otherwise we're
   4618 			 * starting an ibss/bss so there's no need to delay.
   4619 			 */
   4620 			if (ic->ic_opmode == IEEE80211_M_IBSS &&
   4621 			    ic->ic_bss->ni_tstamp.tsf != 0)
   4622 				sc->sc_syncbeacon = 1;
   4623 			else
   4624 				ath_beacon_config(sc);
   4625 			break;
   4626 		case IEEE80211_M_STA:
   4627 			/*
   4628 			 * Allocate a key cache slot to the station.
   4629 			 */
   4630 			if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
   4631 			    sc->sc_hasclrkey &&
   4632 			    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
   4633 				ath_setup_stationkey(ni);
   4634 			/*
   4635 			 * Defer beacon timer configuration to the next
   4636 			 * beacon frame so we have a current TSF to use
   4637 			 * (any TSF collected when scanning is likely old).
   4638 			 */
   4639 			sc->sc_syncbeacon = 1;
   4640 			break;
   4641 		default:
   4642 			break;
   4643 		}
   4644 		/*
   4645 		 * Let the hal process statistics collected during a
   4646 		 * scan so it can provide calibrated noise floor data.
   4647 		 */
   4648 		ath_hal_process_noisefloor(ah);
   4649 		/*
   4650 		 * Reset rssi stats; maybe not the best place...
   4651 		 */
   4652 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
   4653 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
   4654 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
   4655 	} else {
   4656 		ath_hal_intrset(ah,
   4657 			sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
   4658 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
   4659 	}
   4660 done:
   4661 	/*
   4662 	 * Invoke the parent method to complete the work.
   4663 	 */
   4664 	error = sc->sc_newstate(ic, nstate, arg);
   4665 	/*
   4666 	 * Finally, start any timers.
   4667 	 */
   4668 	if (nstate == IEEE80211_S_RUN) {
   4669 		/* start periodic recalibration timer */
   4670 		callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
   4671 			ath_calibrate, sc);
   4672 	} else if (nstate == IEEE80211_S_SCAN) {
   4673 		/* start ap/neighbor scan timer */
   4674 		callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
   4675 			ath_next_scan, sc);
   4676 	}
   4677 bad:
   4678 	return error;
   4679 }
   4680 
   4681 /*
   4682  * Allocate a key cache slot to the station so we can
   4683  * setup a mapping from key index to node. The key cache
   4684  * slot is needed for managing antenna state and for
   4685  * compression when stations do not use crypto.  We do
   4686  * it uniliaterally here; if crypto is employed this slot
   4687  * will be reassigned.
   4688  */
   4689 static void
   4690 ath_setup_stationkey(struct ieee80211_node *ni)
   4691 {
   4692 	struct ieee80211com *ic = ni->ni_ic;
   4693 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   4694 	ieee80211_keyix keyix, rxkeyix;
   4695 
   4696 	if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
   4697 		/*
   4698 		 * Key cache is full; we'll fall back to doing
   4699 		 * the more expensive lookup in software.  Note
   4700 		 * this also means no h/w compression.
   4701 		 */
   4702 		/* XXX msg+statistic */
   4703 	} else {
   4704 		/* XXX locking? */
   4705 		ni->ni_ucastkey.wk_keyix = keyix;
   4706 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
   4707 		/* NB: this will create a pass-thru key entry */
   4708 		ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
   4709 	}
   4710 }
   4711 
   4712 /*
   4713  * Setup driver-specific state for a newly associated node.
   4714  * Note that we're called also on a re-associate, the isnew
   4715  * param tells us if this is the first time or not.
   4716  */
   4717 static void
   4718 ath_newassoc(struct ieee80211_node *ni, int isnew)
   4719 {
   4720 	struct ieee80211com *ic = ni->ni_ic;
   4721 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   4722 
   4723 	ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
   4724 	if (isnew &&
   4725 	    (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
   4726 		KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
   4727 		    ("new assoc with a unicast key already setup (keyix %u)",
   4728 		    ni->ni_ucastkey.wk_keyix));
   4729 		ath_setup_stationkey(ni);
   4730 	}
   4731 }
   4732 
   4733 static int
   4734 ath_getchannels(struct ath_softc *sc, u_int cc,
   4735 	HAL_BOOL outdoor, HAL_BOOL xchanmode)
   4736 {
   4737 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
   4738 	struct ieee80211com *ic = &sc->sc_ic;
   4739 	struct ifnet *ifp = &sc->sc_if;
   4740 	struct ath_hal *ah = sc->sc_ah;
   4741 	HAL_CHANNEL *chans;
   4742 	int i, ix, nchan;
   4743 
   4744 	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
   4745 			M_TEMP, M_NOWAIT);
   4746 	if (chans == NULL) {
   4747 		if_printf(ifp, "unable to allocate channel table\n");
   4748 		return ENOMEM;
   4749 	}
   4750 	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
   4751 	    NULL, 0, NULL,
   4752 	    cc, HAL_MODE_ALL, outdoor, xchanmode)) {
   4753 		u_int32_t rd;
   4754 
   4755 		(void)ath_hal_getregdomain(ah, &rd);
   4756 		if_printf(ifp, "unable to collect channel list from hal; "
   4757 			"regdomain likely %u country code %u\n", rd, cc);
   4758 		free(chans, M_TEMP);
   4759 		return EINVAL;
   4760 	}
   4761 
   4762 	/*
   4763 	 * Convert HAL channels to ieee80211 ones and insert
   4764 	 * them in the table according to their channel number.
   4765 	 */
   4766 	for (i = 0; i < nchan; i++) {
   4767 		HAL_CHANNEL *c = &chans[i];
   4768 		u_int16_t flags;
   4769 
   4770 		ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags);
   4771 		if (ix > IEEE80211_CHAN_MAX) {
   4772 			if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n",
   4773 				ix, c->channel, c->channelFlags);
   4774 			continue;
   4775 		}
   4776 		if (ix < 0) {
   4777 			/* XXX can't handle stuff <2400 right now */
   4778 			if (bootverbose)
   4779 				if_printf(ifp, "hal channel %d (%u/%x) "
   4780 				    "cannot be handled; ignored\n",
   4781 				    ix, c->channel, c->channelFlags);
   4782 			continue;
   4783 		}
   4784 		/*
   4785 		 * Calculate net80211 flags; most are compatible
   4786 		 * but some need massaging.  Note the static turbo
   4787 		 * conversion can be removed once net80211 is updated
   4788 		 * to understand static vs. dynamic turbo.
   4789 		 */
   4790 		flags = c->channelFlags & COMPAT;
   4791 		if (c->channelFlags & CHANNEL_STURBO)
   4792 			flags |= IEEE80211_CHAN_TURBO;
   4793 		if (ic->ic_channels[ix].ic_freq == 0) {
   4794 			ic->ic_channels[ix].ic_freq = c->channel;
   4795 			ic->ic_channels[ix].ic_flags = flags;
   4796 		} else {
   4797 			/* channels overlap; e.g. 11g and 11b */
   4798 			ic->ic_channels[ix].ic_flags |= flags;
   4799 		}
   4800 	}
   4801 	free(chans, M_TEMP);
   4802 	return 0;
   4803 #undef COMPAT
   4804 }
   4805 
   4806 static void
   4807 ath_led_done(void *arg)
   4808 {
   4809 	struct ath_softc *sc = arg;
   4810 
   4811 	sc->sc_blinking = 0;
   4812 }
   4813 
   4814 /*
   4815  * Turn the LED off: flip the pin and then set a timer so no
   4816  * update will happen for the specified duration.
   4817  */
   4818 static void
   4819 ath_led_off(void *arg)
   4820 {
   4821 	struct ath_softc *sc = arg;
   4822 
   4823 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
   4824 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
   4825 }
   4826 
   4827 /*
   4828  * Blink the LED according to the specified on/off times.
   4829  */
   4830 static void
   4831 ath_led_blink(struct ath_softc *sc, int on, int off)
   4832 {
   4833 	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
   4834 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
   4835 	sc->sc_blinking = 1;
   4836 	sc->sc_ledoff = off;
   4837 	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
   4838 }
   4839 
   4840 static void
   4841 ath_led_event(struct ath_softc *sc, int event)
   4842 {
   4843 
   4844 	sc->sc_ledevent = ticks;	/* time of last event */
   4845 	if (sc->sc_blinking)		/* don't interrupt active blink */
   4846 		return;
   4847 	switch (event) {
   4848 	case ATH_LED_POLL:
   4849 		ath_led_blink(sc, sc->sc_hwmap[0].ledon,
   4850 			sc->sc_hwmap[0].ledoff);
   4851 		break;
   4852 	case ATH_LED_TX:
   4853 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
   4854 			sc->sc_hwmap[sc->sc_txrate].ledoff);
   4855 		break;
   4856 	case ATH_LED_RX:
   4857 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
   4858 			sc->sc_hwmap[sc->sc_rxrate].ledoff);
   4859 		break;
   4860 	}
   4861 }
   4862 
   4863 static void
   4864 ath_update_txpow(struct ath_softc *sc)
   4865 {
   4866 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
   4867 	struct ieee80211com *ic = &sc->sc_ic;
   4868 	struct ath_hal *ah = sc->sc_ah;
   4869 	u_int32_t txpow;
   4870 
   4871 	if (sc->sc_curtxpow != ic->ic_txpowlimit) {
   4872 		ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
   4873 		/* read back in case value is clamped */
   4874 		(void)ath_hal_gettxpowlimit(ah, &txpow);
   4875 		ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
   4876 	}
   4877 	/*
   4878 	 * Fetch max tx power level for status requests.
   4879 	 */
   4880 	(void)ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
   4881 	ic->ic_bss->ni_txpower = txpow;
   4882 }
   4883 
   4884 static void
   4885 rate_setup(struct ath_softc *sc,
   4886 	const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs)
   4887 {
   4888 	int i, maxrates;
   4889 
   4890 	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
   4891 		DPRINTF(sc, ATH_DEBUG_ANY,
   4892 			"%s: rate table too small (%u > %u)\n",
   4893 		       __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
   4894 		maxrates = IEEE80211_RATE_MAXSIZE;
   4895 	} else
   4896 		maxrates = rt->rateCount;
   4897 	for (i = 0; i < maxrates; i++)
   4898 		rs->rs_rates[i] = rt->info[i].dot11Rate;
   4899 	rs->rs_nrates = maxrates;
   4900 }
   4901 
   4902 static int
   4903 ath_rate_setup(struct ath_softc *sc, u_int mode)
   4904 {
   4905 	struct ath_hal *ah = sc->sc_ah;
   4906 	struct ieee80211com *ic = &sc->sc_ic;
   4907 	const HAL_RATE_TABLE *rt;
   4908 
   4909 	switch (mode) {
   4910 	case IEEE80211_MODE_11A:
   4911 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
   4912 		break;
   4913 	case IEEE80211_MODE_11B:
   4914 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
   4915 		break;
   4916 	case IEEE80211_MODE_11G:
   4917 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
   4918 		break;
   4919 	case IEEE80211_MODE_TURBO_A:
   4920 		/* XXX until static/dynamic turbo is fixed */
   4921 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
   4922 		break;
   4923 	case IEEE80211_MODE_TURBO_G:
   4924 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
   4925 		break;
   4926 	default:
   4927 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
   4928 			__func__, mode);
   4929 		return 0;
   4930 	}
   4931 	sc->sc_rates[mode] = rt;
   4932 	if (rt != NULL) {
   4933 		rate_setup(sc, rt, &ic->ic_sup_rates[mode]);
   4934 		return 1;
   4935 	} else
   4936 		return 0;
   4937 }
   4938 
   4939 static void
   4940 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
   4941 {
   4942 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   4943 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
   4944 	static const struct {
   4945 		u_int		rate;		/* tx/rx 802.11 rate */
   4946 		u_int16_t	timeOn;		/* LED on time (ms) */
   4947 		u_int16_t	timeOff;	/* LED off time (ms) */
   4948 	} blinkrates[] = {
   4949 		{ 108,  40,  10 },
   4950 		{  96,  44,  11 },
   4951 		{  72,  50,  13 },
   4952 		{  48,  57,  14 },
   4953 		{  36,  67,  16 },
   4954 		{  24,  80,  20 },
   4955 		{  22, 100,  25 },
   4956 		{  18, 133,  34 },
   4957 		{  12, 160,  40 },
   4958 		{  10, 200,  50 },
   4959 		{   6, 240,  58 },
   4960 		{   4, 267,  66 },
   4961 		{   2, 400, 100 },
   4962 		{   0, 500, 130 },
   4963 	};
   4964 	const HAL_RATE_TABLE *rt;
   4965 	int i, j;
   4966 
   4967 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
   4968 	rt = sc->sc_rates[mode];
   4969 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
   4970 	for (i = 0; i < rt->rateCount; i++)
   4971 		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
   4972 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
   4973 	for (i = 0; i < 32; i++) {
   4974 		u_int8_t ix = rt->rateCodeToIndex[i];
   4975 		if (ix == 0xff) {
   4976 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
   4977 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
   4978 			continue;
   4979 		}
   4980 		sc->sc_hwmap[i].ieeerate =
   4981 			rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
   4982 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
   4983 		if (rt->info[ix].shortPreamble ||
   4984 		    rt->info[ix].phy == IEEE80211_T_OFDM)
   4985 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
   4986 		/* NB: receive frames include FCS */
   4987 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
   4988 			IEEE80211_RADIOTAP_F_FCS;
   4989 		/* setup blink rate table to avoid per-packet lookup */
   4990 		for (j = 0; j < N(blinkrates)-1; j++)
   4991 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
   4992 				break;
   4993 		/* NB: this uses the last entry if the rate isn't found */
   4994 		/* XXX beware of overlow */
   4995 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
   4996 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
   4997 	}
   4998 	sc->sc_currates = rt;
   4999 	sc->sc_curmode = mode;
   5000 	/*
   5001 	 * All protection frames are transmited at 2Mb/s for
   5002 	 * 11g, otherwise at 1Mb/s.
   5003 	 */
   5004 	if (mode == IEEE80211_MODE_11G)
   5005 		sc->sc_protrix = ath_tx_findrix(rt, 2*2);
   5006 	else
   5007 		sc->sc_protrix = ath_tx_findrix(rt, 2*1);
   5008 	/* rate index used to send management frames */
   5009 	sc->sc_minrateix = 0;
   5010 	/*
   5011 	 * Setup multicast rate state.
   5012 	 */
   5013 	/* XXX layering violation */
   5014 	sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate);
   5015 	sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate;
   5016 	/* NB: caller is responsible for reseting rate control state */
   5017 #undef N
   5018 }
   5019 
   5020 #ifdef AR_DEBUG
   5021 static void
   5022 ath_printrxbuf(struct ath_buf *bf, int done)
   5023 {
   5024 	struct ath_desc *ds;
   5025 	int i;
   5026 
   5027 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
   5028 		printf("R%d (%p %" PRIx64
   5029 		    ") %08x %08x %08x %08x %08x %08x %c\n", i, ds,
   5030 		    (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
   5031 		    ds->ds_link, ds->ds_data,
   5032 		    ds->ds_ctl0, ds->ds_ctl1,
   5033 		    ds->ds_hw[0], ds->ds_hw[1],
   5034 		    !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
   5035 	}
   5036 }
   5037 
   5038 static void
   5039 ath_printtxbuf(struct ath_buf *bf, int done)
   5040 {
   5041 	struct ath_desc *ds;
   5042 	int i;
   5043 
   5044 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
   5045 		printf("T%d (%p %" PRIx64
   5046 		    ") %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
   5047 		    i, ds,
   5048 		    (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
   5049 		    ds->ds_link, ds->ds_data,
   5050 		    ds->ds_ctl0, ds->ds_ctl1,
   5051 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
   5052 		    !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
   5053 	}
   5054 }
   5055 #endif /* AR_DEBUG */
   5056 
   5057 static void
   5058 ath_watchdog(struct ifnet *ifp)
   5059 {
   5060 	struct ath_softc *sc = ifp->if_softc;
   5061 	struct ieee80211com *ic = &sc->sc_ic;
   5062 	struct ath_txq *axq;
   5063 	int i;
   5064 
   5065 	ifp->if_timer = 0;
   5066 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
   5067 		return;
   5068 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
   5069 		if (!ATH_TXQ_SETUP(sc, i))
   5070 			continue;
   5071 		axq = &sc->sc_txq[i];
   5072 		ATH_TXQ_LOCK(axq);
   5073 		if (axq->axq_timer == 0)
   5074 			;
   5075 		else if (--axq->axq_timer == 0) {
   5076 			ATH_TXQ_UNLOCK(axq);
   5077 			if_printf(ifp, "device timeout (txq %d)\n", i);
   5078 			ath_reset(ifp);
   5079 			ifp->if_oerrors++;
   5080 			sc->sc_stats.ast_watchdog++;
   5081 			break;
   5082 		} else
   5083 			ifp->if_timer = 1;
   5084 		ATH_TXQ_UNLOCK(axq);
   5085 	}
   5086 	ieee80211_watchdog(ic);
   5087 }
   5088 
   5089 /*
   5090  * Diagnostic interface to the HAL.  This is used by various
   5091  * tools to do things like retrieve register contents for
   5092  * debugging.  The mechanism is intentionally opaque so that
   5093  * it can change frequently w/o concern for compatiblity.
   5094  */
   5095 static int
   5096 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
   5097 {
   5098 	struct ath_hal *ah = sc->sc_ah;
   5099 	u_int id = ad->ad_id & ATH_DIAG_ID;
   5100 	void *indata = NULL;
   5101 	void *outdata = NULL;
   5102 	u_int32_t insize = ad->ad_in_size;
   5103 	u_int32_t outsize = ad->ad_out_size;
   5104 	int error = 0;
   5105 
   5106 	if (ad->ad_id & ATH_DIAG_IN) {
   5107 		/*
   5108 		 * Copy in data.
   5109 		 */
   5110 		indata = malloc(insize, M_TEMP, M_NOWAIT);
   5111 		if (indata == NULL) {
   5112 			error = ENOMEM;
   5113 			goto bad;
   5114 		}
   5115 		error = copyin(ad->ad_in_data, indata, insize);
   5116 		if (error)
   5117 			goto bad;
   5118 	}
   5119 	if (ad->ad_id & ATH_DIAG_DYN) {
   5120 		/*
   5121 		 * Allocate a buffer for the results (otherwise the HAL
   5122 		 * returns a pointer to a buffer where we can read the
   5123 		 * results).  Note that we depend on the HAL leaving this
   5124 		 * pointer for us to use below in reclaiming the buffer;
   5125 		 * may want to be more defensive.
   5126 		 */
   5127 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
   5128 		if (outdata == NULL) {
   5129 			error = ENOMEM;
   5130 			goto bad;
   5131 		}
   5132 	}
   5133 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
   5134 		if (outsize < ad->ad_out_size)
   5135 			ad->ad_out_size = outsize;
   5136 		if (outdata != NULL)
   5137 			error = copyout(outdata, ad->ad_out_data,
   5138 					ad->ad_out_size);
   5139 	} else {
   5140 		error = EINVAL;
   5141 	}
   5142 bad:
   5143 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
   5144 		free(indata, M_TEMP);
   5145 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
   5146 		free(outdata, M_TEMP);
   5147 	return error;
   5148 }
   5149 
   5150 static int
   5151 ath_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   5152 {
   5153 #define	IS_RUNNING(ifp) \
   5154 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
   5155 	struct ath_softc *sc = ifp->if_softc;
   5156 	struct ieee80211com *ic = &sc->sc_ic;
   5157 	struct ifreq *ifr = (struct ifreq *)data;
   5158 	int error = 0;
   5159 
   5160 	ATH_LOCK(sc);
   5161 	switch (cmd) {
   5162 	case SIOCSIFFLAGS:
   5163 		if (IS_RUNNING(ifp)) {
   5164 			/*
   5165 			 * To avoid rescanning another access point,
   5166 			 * do not call ath_init() here.  Instead,
   5167 			 * only reflect promisc mode settings.
   5168 			 */
   5169 			ath_mode_init(sc);
   5170 		} else if (ifp->if_flags & IFF_UP) {
   5171 			/*
   5172 			 * Beware of being called during attach/detach
   5173 			 * to reset promiscuous mode.  In that case we
   5174 			 * will still be marked UP but not RUNNING.
   5175 			 * However trying to re-init the interface
   5176 			 * is the wrong thing to do as we've already
   5177 			 * torn down much of our state.  There's
   5178 			 * probably a better way to deal with this.
   5179 			 */
   5180 			if (!sc->sc_invalid && ic->ic_bss != NULL)
   5181 				ath_init(sc);	/* XXX lose error */
   5182 		} else
   5183 			ath_stop_locked(ifp, 1);
   5184 		break;
   5185 	case SIOCADDMULTI:
   5186 	case SIOCDELMULTI:
   5187 		error = (cmd == SIOCADDMULTI) ?
   5188 		    ether_addmulti(ifr, &sc->sc_ec) :
   5189 		    ether_delmulti(ifr, &sc->sc_ec);
   5190 		if (error == ENETRESET) {
   5191 			if (ifp->if_flags & IFF_RUNNING)
   5192 				ath_mode_init(sc);
   5193 			error = 0;
   5194 		}
   5195 		break;
   5196 	case SIOCGATHSTATS:
   5197 		/* NB: embed these numbers to get a consistent view */
   5198 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
   5199 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
   5200 		sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
   5201 		ATH_UNLOCK(sc);
   5202 		/*
   5203 		 * NB: Drop the softc lock in case of a page fault;
   5204 		 * we'll accept any potential inconsisentcy in the
   5205 		 * statistics.  The alternative is to copy the data
   5206 		 * to a local structure.
   5207 		 */
   5208 		return copyout(&sc->sc_stats,
   5209 				ifr->ifr_data, sizeof (sc->sc_stats));
   5210 	case SIOCGATHDIAG:
   5211 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
   5212 		break;
   5213 	default:
   5214 		error = ieee80211_ioctl(ic, cmd, data);
   5215 		if (error == ENETRESET) {
   5216 			if (IS_RUNNING(ifp) &&
   5217 			    ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
   5218 				ath_init(sc);	/* XXX lose error */
   5219 			error = 0;
   5220 		}
   5221 		if (error == ERESTART)
   5222 			error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0;
   5223 		break;
   5224 	}
   5225 	ATH_UNLOCK(sc);
   5226 	return error;
   5227 #undef IS_RUNNING
   5228 }
   5229 
   5230 #if NBPFILTER > 0
   5231 static void
   5232 ath_bpfattach(struct ath_softc *sc)
   5233 {
   5234 	struct ifnet *ifp = &sc->sc_if;
   5235 
   5236 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
   5237 		sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
   5238 		&sc->sc_drvbpf);
   5239 	/*
   5240 	 * Initialize constant fields.
   5241 	 * XXX make header lengths a multiple of 32-bits so subsequent
   5242 	 *     headers are properly aligned; this is a kludge to keep
   5243 	 *     certain applications happy.
   5244 	 *
   5245 	 * NB: the channel is setup each time we transition to the
   5246 	 *     RUN state to avoid filling it in for each frame.
   5247 	 */
   5248 	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
   5249 	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
   5250 	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
   5251 
   5252 	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
   5253 	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
   5254 	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
   5255 }
   5256 #endif
   5257 
   5258 /*
   5259  * Announce various information on device/driver attach.
   5260  */
   5261 static void
   5262 ath_announce(struct ath_softc *sc)
   5263 {
   5264 #define	HAL_MODE_DUALBAND	(HAL_MODE_11A|HAL_MODE_11B)
   5265 	struct ifnet *ifp = &sc->sc_if;
   5266 	struct ath_hal *ah = sc->sc_ah;
   5267 	u_int modes, cc;
   5268 
   5269 	if_printf(ifp, "mac %d.%d phy %d.%d",
   5270 		ah->ah_macVersion, ah->ah_macRev,
   5271 		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
   5272 	/*
   5273 	 * Print radio revision(s).  We check the wireless modes
   5274 	 * to avoid falsely printing revs for inoperable parts.
   5275 	 * Dual-band radio revs are returned in the 5 GHz rev number.
   5276 	 */
   5277 	ath_hal_getcountrycode(ah, &cc);
   5278 	modes = ath_hal_getwirelessmodes(ah, cc);
   5279 	if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
   5280 		if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
   5281 			printf(" 5 GHz radio %d.%d 2 GHz radio %d.%d",
   5282 				ah->ah_analog5GhzRev >> 4,
   5283 				ah->ah_analog5GhzRev & 0xf,
   5284 				ah->ah_analog2GhzRev >> 4,
   5285 				ah->ah_analog2GhzRev & 0xf);
   5286 		else
   5287 			printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
   5288 				ah->ah_analog5GhzRev & 0xf);
   5289 	} else
   5290 		printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
   5291 			ah->ah_analog5GhzRev & 0xf);
   5292 	printf("\n");
   5293 	if (bootverbose) {
   5294 		int i;
   5295 		for (i = 0; i <= WME_AC_VO; i++) {
   5296 			struct ath_txq *txq = sc->sc_ac2q[i];
   5297 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
   5298 				txq->axq_qnum, ieee80211_wme_acnames[i]);
   5299 		}
   5300 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
   5301 			sc->sc_cabq->axq_qnum);
   5302 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
   5303 	}
   5304 	if (ath_rxbuf != ATH_RXBUF)
   5305 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
   5306 	if (ath_txbuf != ATH_TXBUF)
   5307 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
   5308 #undef HAL_MODE_DUALBAND
   5309 }
   5310