Home | History | Annotate | Line # | Download | only in ic
ath.c revision 1.84.6.3
      1 /*	$NetBSD: ath.c,v 1.84.6.3 2007/10/01 05:37:24 joerg Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer,
     12  *    without modification.
     13  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
     14  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
     15  *    redistribution must be conditioned upon including a substantially
     16  *    similar Disclaimer requirement for further binary redistribution.
     17  * 3. Neither the names of the above-listed copyright holders nor the names
     18  *    of any contributors may be used to endorse or promote products derived
     19  *    from this software without specific prior written permission.
     20  *
     21  * Alternatively, this software may be distributed under the terms of the
     22  * GNU General Public License ("GPL") version 2 as published by the Free
     23  * Software Foundation.
     24  *
     25  * NO WARRANTY
     26  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     28  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
     29  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
     30  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
     31  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
     34  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     36  * THE POSSIBILITY OF SUCH DAMAGES.
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 #ifdef __FreeBSD__
     41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $");
     42 #endif
     43 #ifdef __NetBSD__
     44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.84.6.3 2007/10/01 05:37:24 joerg Exp $");
     45 #endif
     46 
     47 /*
     48  * Driver for the Atheros Wireless LAN controller.
     49  *
     50  * This software is derived from work of Atsushi Onoe; his contribution
     51  * is greatly appreciated.
     52  */
     53 
     54 #include "opt_inet.h"
     55 
     56 #ifdef __NetBSD__
     57 #include "bpfilter.h"
     58 #endif /* __NetBSD__ */
     59 
     60 #include <sys/param.h>
     61 #include <sys/reboot.h>
     62 #include <sys/systm.h>
     63 #include <sys/types.h>
     64 #include <sys/sysctl.h>
     65 #include <sys/mbuf.h>
     66 #include <sys/malloc.h>
     67 #include <sys/lock.h>
     68 #include <sys/kernel.h>
     69 #include <sys/socket.h>
     70 #include <sys/sockio.h>
     71 #include <sys/errno.h>
     72 #include <sys/callout.h>
     73 #include <machine/bus.h>
     74 #include <sys/endian.h>
     75 
     76 #include <net/if.h>
     77 #include <net/if_dl.h>
     78 #include <net/if_media.h>
     79 #include <net/if_types.h>
     80 #include <net/if_arp.h>
     81 #include <net/if_ether.h>
     82 #include <net/if_llc.h>
     83 
     84 #include <net80211/ieee80211_netbsd.h>
     85 #include <net80211/ieee80211_var.h>
     86 
     87 #if NBPFILTER > 0
     88 #include <net/bpf.h>
     89 #endif
     90 
     91 #ifdef INET
     92 #include <netinet/in.h>
     93 #endif
     94 
     95 #include <sys/device.h>
     96 #include <dev/ic/ath_netbsd.h>
     97 
     98 #define	AR_DEBUG
     99 #include <dev/ic/athvar.h>
    100 #include <contrib/dev/ath/ah_desc.h>
    101 #include <contrib/dev/ath/ah_devid.h>	/* XXX for softled */
    102 #include "athhal_options.h"
    103 
    104 #ifdef ATH_TX99_DIAG
    105 #include <dev/ath/ath_tx99/ath_tx99.h>
    106 #endif
    107 
    108 /* unaligned little endian access */
    109 #define LE_READ_2(p)							\
    110 	((u_int16_t)							\
    111 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
    112 #define LE_READ_4(p)							\
    113 	((u_int32_t)							\
    114 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
    115 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
    116 
    117 enum {
    118 	ATH_LED_TX,
    119 	ATH_LED_RX,
    120 	ATH_LED_POLL,
    121 };
    122 
    123 #ifdef	AH_NEED_DESC_SWAP
    124 #define	HTOAH32(x)	htole32(x)
    125 #else
    126 #define	HTOAH32(x)	(x)
    127 #endif
    128 
    129 static int	ath_ifinit(struct ifnet *);
    130 static int	ath_init(struct ath_softc *);
    131 static void	ath_stop_locked(struct ifnet *, int);
    132 static void	ath_stop(struct ifnet *, int);
    133 static void	ath_start(struct ifnet *);
    134 static int	ath_media_change(struct ifnet *);
    135 static void	ath_watchdog(struct ifnet *);
    136 static int	ath_ioctl(struct ifnet *, u_long, void *);
    137 static void	ath_fatal_proc(void *, int);
    138 static void	ath_rxorn_proc(void *, int);
    139 static void	ath_bmiss_proc(void *, int);
    140 static void	ath_radar_proc(void *, int);
    141 static int	ath_key_alloc(struct ieee80211com *,
    142 			const struct ieee80211_key *,
    143 			ieee80211_keyix *, ieee80211_keyix *);
    144 static int	ath_key_delete(struct ieee80211com *,
    145 			const struct ieee80211_key *);
    146 static int	ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
    147 			const u_int8_t mac[IEEE80211_ADDR_LEN]);
    148 static void	ath_key_update_begin(struct ieee80211com *);
    149 static void	ath_key_update_end(struct ieee80211com *);
    150 static void	ath_mode_init(struct ath_softc *);
    151 static void	ath_setslottime(struct ath_softc *);
    152 static void	ath_updateslot(struct ifnet *);
    153 static int	ath_beaconq_setup(struct ath_hal *);
    154 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
    155 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
    156 static void	ath_beacon_proc(void *, int);
    157 static void	ath_bstuck_proc(void *, int);
    158 static void	ath_beacon_free(struct ath_softc *);
    159 static void	ath_beacon_config(struct ath_softc *);
    160 static void	ath_descdma_cleanup(struct ath_softc *sc,
    161 			struct ath_descdma *, ath_bufhead *);
    162 static int	ath_desc_alloc(struct ath_softc *);
    163 static void	ath_desc_free(struct ath_softc *);
    164 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
    165 static void	ath_node_free(struct ieee80211_node *);
    166 static u_int8_t	ath_node_getrssi(const struct ieee80211_node *);
    167 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
    168 static void	ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
    169 			struct ieee80211_node *ni,
    170 			int subtype, int rssi, u_int32_t rstamp);
    171 static void	ath_setdefantenna(struct ath_softc *, u_int);
    172 static void	ath_rx_proc(void *, int);
    173 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
    174 static int	ath_tx_setup(struct ath_softc *, int, int);
    175 static int	ath_wme_update(struct ieee80211com *);
    176 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
    177 static void	ath_tx_cleanup(struct ath_softc *);
    178 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
    179 			     struct ath_buf *, struct mbuf *);
    180 static void	ath_tx_proc_q0(void *, int);
    181 static void	ath_tx_proc_q0123(void *, int);
    182 static void	ath_tx_proc(void *, int);
    183 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
    184 static void	ath_draintxq(struct ath_softc *);
    185 static void	ath_stoprecv(struct ath_softc *);
    186 static int	ath_startrecv(struct ath_softc *);
    187 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
    188 static void	ath_next_scan(void *);
    189 static void	ath_calibrate(void *);
    190 static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
    191 static void	ath_setup_stationkey(struct ieee80211_node *);
    192 static void	ath_newassoc(struct ieee80211_node *, int);
    193 static int	ath_getchannels(struct ath_softc *, u_int cc,
    194 			HAL_BOOL outdoor, HAL_BOOL xchanmode);
    195 static void	ath_led_event(struct ath_softc *, int);
    196 static void	ath_update_txpow(struct ath_softc *);
    197 static void	ath_freetx(struct mbuf *);
    198 
    199 static int	ath_rate_setup(struct ath_softc *, u_int mode);
    200 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
    201 
    202 #ifdef __NetBSD__
    203 int	ath_enable(struct ath_softc *);
    204 void	ath_disable(struct ath_softc *);
    205 #endif
    206 
    207 #if NBPFILTER > 0
    208 static void	ath_bpfattach(struct ath_softc *);
    209 #endif
    210 static void	ath_announce(struct ath_softc *);
    211 
    212 int ath_dwelltime = 200;		/* 5 channels/second */
    213 int ath_calinterval = 30;		/* calibrate every 30 secs */
    214 int ath_outdoor = AH_TRUE;		/* outdoor operation */
    215 int ath_xchanmode = AH_TRUE;		/* enable extended channels */
    216 int ath_countrycode = CTRY_DEFAULT;	/* country code */
    217 int ath_regdomain = 0;			/* regulatory domain */
    218 int ath_debug = 0;
    219 int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
    220 int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
    221 
    222 #ifdef AR_DEBUG
    223 enum {
    224 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
    225 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
    226 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
    227 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
    228 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
    229 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
    230 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
    231 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
    232 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
    233 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
    234 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
    235 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
    236 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
    237 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
    238 	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
    239 	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
    240 	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
    241 	ATH_DEBUG_LED		= 0x00100000,	/* led management */
    242 	ATH_DEBUG_FF		= 0x00200000,	/* fast frames */
    243 	ATH_DEBUG_DFS		= 0x00400000,	/* DFS processing */
    244 	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
    245 	ATH_DEBUG_ANY		= 0xffffffff
    246 };
    247 #define	IFF_DUMPPKTS(sc, m) \
    248 	((sc->sc_debug & (m)) || \
    249 	    (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
    250 #define	DPRINTF(sc, m, fmt, ...) do {				\
    251 	if (sc->sc_debug & (m))					\
    252 		printf(fmt, __VA_ARGS__);			\
    253 } while (0)
    254 #define	KEYPRINTF(sc, ix, hk, mac) do {				\
    255 	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
    256 		ath_keyprint(__func__, ix, hk, mac);		\
    257 } while (0)
    258 static	void ath_printrxbuf(struct ath_buf *bf, int);
    259 static	void ath_printtxbuf(struct ath_buf *bf, int);
    260 #else
    261 #define	IFF_DUMPPKTS(sc, m) \
    262 	((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
    263 #define	DPRINTF(m, fmt, ...)
    264 #define	KEYPRINTF(sc, k, ix, mac)
    265 #endif
    266 
    267 #ifdef __NetBSD__
    268 int
    269 ath_activate(struct device *self, enum devact act)
    270 {
    271 	struct ath_softc *sc = (struct ath_softc *)self;
    272 	int rv = 0, s;
    273 
    274 	s = splnet();
    275 	switch (act) {
    276 	case DVACT_ACTIVATE:
    277 		rv = EOPNOTSUPP;
    278 		break;
    279 	case DVACT_DEACTIVATE:
    280 		if_deactivate(&sc->sc_if);
    281 		break;
    282 	}
    283 	splx(s);
    284 	return rv;
    285 }
    286 
    287 int
    288 ath_enable(struct ath_softc *sc)
    289 {
    290 	if (ATH_IS_ENABLED(sc) == 0) {
    291 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
    292 			printf("%s: device enable failed\n",
    293 				sc->sc_dev.dv_xname);
    294 			return (EIO);
    295 		}
    296 		sc->sc_flags |= ATH_ENABLED;
    297 	}
    298 	return (0);
    299 }
    300 
    301 void
    302 ath_disable(struct ath_softc *sc)
    303 {
    304 	if (!ATH_IS_ENABLED(sc))
    305 		return;
    306 	if (sc->sc_disable != NULL)
    307 		(*sc->sc_disable)(sc);
    308 	sc->sc_flags &= ~ATH_ENABLED;
    309 }
    310 #endif /* __NetBSD__ */
    311 
    312 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
    313 
    314 int
    315 ath_attach(u_int16_t devid, struct ath_softc *sc)
    316 {
    317 	struct ifnet *ifp = &sc->sc_if;
    318 	struct ieee80211com *ic = &sc->sc_ic;
    319 	struct ath_hal *ah = NULL;
    320 	HAL_STATUS status;
    321 	int error = 0, i;
    322 
    323 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
    324 
    325 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
    326 
    327 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
    328 	if (ah == NULL) {
    329 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
    330 			status);
    331 		error = ENXIO;
    332 		goto bad;
    333 	}
    334 	if (ah->ah_abi != HAL_ABI_VERSION) {
    335 		if_printf(ifp, "HAL ABI mismatch detected "
    336 			"(HAL:0x%x != driver:0x%x)\n",
    337 			ah->ah_abi, HAL_ABI_VERSION);
    338 		error = ENXIO;
    339 		goto bad;
    340 	}
    341 	sc->sc_ah = ah;
    342 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
    343 
    344 	/*
    345 	 * Check if the MAC has multi-rate retry support.
    346 	 * We do this by trying to setup a fake extended
    347 	 * descriptor.  MAC's that don't have support will
    348 	 * return false w/o doing anything.  MAC's that do
    349 	 * support it will return true w/o doing anything.
    350 	 */
    351 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
    352 
    353 	/*
    354 	 * Check if the device has hardware counters for PHY
    355 	 * errors.  If so we need to enable the MIB interrupt
    356 	 * so we can act on stat triggers.
    357 	 */
    358 	if (ath_hal_hwphycounters(ah))
    359 		sc->sc_needmib = 1;
    360 
    361 	/*
    362 	 * Get the hardware key cache size.
    363 	 */
    364 	sc->sc_keymax = ath_hal_keycachesize(ah);
    365 	if (sc->sc_keymax > ATH_KEYMAX) {
    366 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
    367 			ATH_KEYMAX, sc->sc_keymax);
    368 		sc->sc_keymax = ATH_KEYMAX;
    369 	}
    370 	/*
    371 	 * Reset the key cache since some parts do not
    372 	 * reset the contents on initial power up.
    373 	 */
    374 	for (i = 0; i < sc->sc_keymax; i++)
    375 		ath_hal_keyreset(ah, i);
    376 	/*
    377 	 * Mark key cache slots associated with global keys
    378 	 * as in use.  If we knew TKIP was not to be used we
    379 	 * could leave the +32, +64, and +32+64 slots free.
    380 	 * XXX only for splitmic.
    381 	 */
    382 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
    383 		setbit(sc->sc_keymap, i);
    384 		setbit(sc->sc_keymap, i+32);
    385 		setbit(sc->sc_keymap, i+64);
    386 		setbit(sc->sc_keymap, i+32+64);
    387 	}
    388 
    389 	/*
    390 	 * Collect the channel list using the default country
    391 	 * code and including outdoor channels.  The 802.11 layer
    392 	 * is resposible for filtering this list based on settings
    393 	 * like the phy mode.
    394 	 */
    395 	error = ath_getchannels(sc, ath_countrycode,
    396 			ath_outdoor, ath_xchanmode);
    397 	if (error != 0)
    398 		goto bad;
    399 
    400 	/*
    401 	 * Setup rate tables for all potential media types.
    402 	 */
    403 	ath_rate_setup(sc, IEEE80211_MODE_11A);
    404 	ath_rate_setup(sc, IEEE80211_MODE_11B);
    405 	ath_rate_setup(sc, IEEE80211_MODE_11G);
    406 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
    407 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
    408 	/* NB: setup here so ath_rate_update is happy */
    409 	ath_setcurmode(sc, IEEE80211_MODE_11A);
    410 
    411 	/*
    412 	 * Allocate tx+rx descriptors and populate the lists.
    413 	 */
    414 	error = ath_desc_alloc(sc);
    415 	if (error != 0) {
    416 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
    417 		goto bad;
    418 	}
    419 	ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
    420 	ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE);
    421 	ATH_CALLOUT_INIT(&sc->sc_dfs_ch, CALLOUT_MPSAFE);
    422 
    423 	ATH_TXBUF_LOCK_INIT(sc);
    424 
    425 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
    426 	TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
    427 	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
    428 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
    429 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
    430 	TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc);
    431 
    432 	/*
    433 	 * Allocate hardware transmit queues: one queue for
    434 	 * beacon frames and one data queue for each QoS
    435 	 * priority.  Note that the hal handles reseting
    436 	 * these queues at the needed time.
    437 	 *
    438 	 * XXX PS-Poll
    439 	 */
    440 	sc->sc_bhalq = ath_beaconq_setup(ah);
    441 	if (sc->sc_bhalq == (u_int) -1) {
    442 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
    443 		error = EIO;
    444 		goto bad2;
    445 	}
    446 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
    447 	if (sc->sc_cabq == NULL) {
    448 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
    449 		error = EIO;
    450 		goto bad2;
    451 	}
    452 	/* NB: insure BK queue is the lowest priority h/w queue */
    453 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
    454 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
    455 			ieee80211_wme_acnames[WME_AC_BK]);
    456 		error = EIO;
    457 		goto bad2;
    458 	}
    459 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
    460 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
    461 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
    462 		/*
    463 		 * Not enough hardware tx queues to properly do WME;
    464 		 * just punt and assign them all to the same h/w queue.
    465 		 * We could do a better job of this if, for example,
    466 		 * we allocate queues when we switch from station to
    467 		 * AP mode.
    468 		 */
    469 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
    470 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
    471 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
    472 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
    473 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
    474 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
    475 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
    476 	}
    477 
    478 	/*
    479 	 * Special case certain configurations.  Note the
    480 	 * CAB queue is handled by these specially so don't
    481 	 * include them when checking the txq setup mask.
    482 	 */
    483 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
    484 	case 0x01:
    485 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
    486 		break;
    487 	case 0x0f:
    488 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
    489 		break;
    490 	default:
    491 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
    492 		break;
    493 	}
    494 
    495 	/*
    496 	 * Setup rate control.  Some rate control modules
    497 	 * call back to change the anntena state so expose
    498 	 * the necessary entry points.
    499 	 * XXX maybe belongs in struct ath_ratectrl?
    500 	 */
    501 	sc->sc_setdefantenna = ath_setdefantenna;
    502 	sc->sc_rc = ath_rate_attach(sc);
    503 	if (sc->sc_rc == NULL) {
    504 		error = EIO;
    505 		goto bad2;
    506 	}
    507 
    508 	sc->sc_blinking = 0;
    509 	sc->sc_ledstate = 1;
    510 	sc->sc_ledon = 0;			/* low true */
    511 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
    512 	ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE);
    513 	/*
    514 	 * Auto-enable soft led processing for IBM cards and for
    515 	 * 5211 minipci cards.  Users can also manually enable/disable
    516 	 * support with a sysctl.
    517 	 */
    518 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
    519 	if (sc->sc_softled) {
    520 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
    521 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
    522 	}
    523 
    524 	ifp->if_softc = sc;
    525 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
    526 	ifp->if_start = ath_start;
    527 	ifp->if_stop = ath_stop;
    528 	ifp->if_watchdog = ath_watchdog;
    529 	ifp->if_ioctl = ath_ioctl;
    530 	ifp->if_init = ath_ifinit;
    531 	IFQ_SET_READY(&ifp->if_snd);
    532 
    533 	ic->ic_ifp = ifp;
    534 	ic->ic_reset = ath_reset;
    535 	ic->ic_newassoc = ath_newassoc;
    536 	ic->ic_updateslot = ath_updateslot;
    537 	ic->ic_wme.wme_update = ath_wme_update;
    538 	/* XXX not right but it's not used anywhere important */
    539 	ic->ic_phytype = IEEE80211_T_OFDM;
    540 	ic->ic_opmode = IEEE80211_M_STA;
    541 	ic->ic_caps =
    542 		  IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
    543 		| IEEE80211_C_HOSTAP		/* hostap mode */
    544 		| IEEE80211_C_MONITOR		/* monitor mode */
    545 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
    546 		| IEEE80211_C_SHSLOT		/* short slot time supported */
    547 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
    548 		| IEEE80211_C_TXFRAG		/* handle tx frags */
    549 		;
    550 	/*
    551 	 * Query the hal to figure out h/w crypto support.
    552 	 */
    553 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
    554 		ic->ic_caps |= IEEE80211_C_WEP;
    555 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
    556 		ic->ic_caps |= IEEE80211_C_AES;
    557 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
    558 		ic->ic_caps |= IEEE80211_C_AES_CCM;
    559 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
    560 		ic->ic_caps |= IEEE80211_C_CKIP;
    561 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
    562 		ic->ic_caps |= IEEE80211_C_TKIP;
    563 		/*
    564 		 * Check if h/w does the MIC and/or whether the
    565 		 * separate key cache entries are required to
    566 		 * handle both tx+rx MIC keys.
    567 		 */
    568 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
    569 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
    570 		if (ath_hal_tkipsplit(ah))
    571 			sc->sc_splitmic = 1;
    572 	}
    573 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
    574 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
    575 	/*
    576 	 * TPC support can be done either with a global cap or
    577 	 * per-packet support.  The latter is not available on
    578 	 * all parts.  We're a bit pedantic here as all parts
    579 	 * support a global cap.
    580 	 */
    581 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
    582 		ic->ic_caps |= IEEE80211_C_TXPMGT;
    583 
    584 	/*
    585 	 * Mark WME capability only if we have sufficient
    586 	 * hardware queues to do proper priority scheduling.
    587 	 */
    588 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
    589 		ic->ic_caps |= IEEE80211_C_WME;
    590 	/*
    591 	 * Check for misc other capabilities.
    592 	 */
    593 	if (ath_hal_hasbursting(ah))
    594 		ic->ic_caps |= IEEE80211_C_BURST;
    595 
    596 	/*
    597 	 * Indicate we need the 802.11 header padded to a
    598 	 * 32-bit boundary for 4-address and QoS frames.
    599 	 */
    600 	ic->ic_flags |= IEEE80211_F_DATAPAD;
    601 
    602 	/*
    603 	 * Query the hal about antenna support.
    604 	 */
    605 	sc->sc_defant = ath_hal_getdefantenna(ah);
    606 
    607 	/*
    608 	 * Not all chips have the VEOL support we want to
    609 	 * use with IBSS beacons; check here for it.
    610 	 */
    611 	sc->sc_hasveol = ath_hal_hasveol(ah);
    612 
    613 	/* get mac address from hardware */
    614 	ath_hal_getmac(ah, ic->ic_myaddr);
    615 
    616 	if_attach(ifp);
    617 	/* call MI attach routine. */
    618 	ieee80211_ifattach(ic);
    619 	/* override default methods */
    620 	ic->ic_node_alloc = ath_node_alloc;
    621 	sc->sc_node_free = ic->ic_node_free;
    622 	ic->ic_node_free = ath_node_free;
    623 	ic->ic_node_getrssi = ath_node_getrssi;
    624 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
    625 	ic->ic_recv_mgmt = ath_recv_mgmt;
    626 	sc->sc_newstate = ic->ic_newstate;
    627 	ic->ic_newstate = ath_newstate;
    628 	ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
    629 	ic->ic_crypto.cs_key_alloc = ath_key_alloc;
    630 	ic->ic_crypto.cs_key_delete = ath_key_delete;
    631 	ic->ic_crypto.cs_key_set = ath_key_set;
    632 	ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
    633 	ic->ic_crypto.cs_key_update_end = ath_key_update_end;
    634 	/* complete initialization */
    635 	ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
    636 
    637 #if NBPFILTER > 0
    638 	ath_bpfattach(sc);
    639 #endif
    640 
    641 	sc->sc_flags |= ATH_ATTACHED;
    642 
    643 	/*
    644 	 * Setup dynamic sysctl's now that country code and
    645 	 * regdomain are available from the hal.
    646 	 */
    647 	ath_sysctlattach(sc);
    648 
    649 	ieee80211_announce(ic);
    650 	ath_announce(sc);
    651 	return 0;
    652 bad2:
    653 	ath_tx_cleanup(sc);
    654 	ath_desc_free(sc);
    655 bad:
    656 	if (ah)
    657 		ath_hal_detach(ah);
    658 	sc->sc_invalid = 1;
    659 	return error;
    660 }
    661 
    662 int
    663 ath_detach(struct ath_softc *sc)
    664 {
    665 	struct ifnet *ifp = &sc->sc_if;
    666 	int s;
    667 
    668 	if ((sc->sc_flags & ATH_ATTACHED) == 0)
    669 		return (0);
    670 
    671 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
    672 		__func__, ifp->if_flags);
    673 
    674 	s = splnet();
    675 	ath_stop(ifp, 1);
    676 #if NBPFILTER > 0
    677 	bpfdetach(ifp);
    678 #endif
    679 	/*
    680 	 * NB: the order of these is important:
    681 	 * o call the 802.11 layer before detaching the hal to
    682 	 *   insure callbacks into the driver to delete global
    683 	 *   key cache entries can be handled
    684 	 * o reclaim the tx queue data structures after calling
    685 	 *   the 802.11 layer as we'll get called back to reclaim
    686 	 *   node state and potentially want to use them
    687 	 * o to cleanup the tx queues the hal is called, so detach
    688 	 *   it last
    689 	 * Other than that, it's straightforward...
    690 	 */
    691 	ieee80211_ifdetach(&sc->sc_ic);
    692 #ifdef ATH_TX99_DIAG
    693 	if (sc->sc_tx99 != NULL)
    694 		sc->sc_tx99->detach(sc->sc_tx99);
    695 #endif
    696 	ath_rate_detach(sc->sc_rc);
    697 	ath_desc_free(sc);
    698 	ath_tx_cleanup(sc);
    699 	sysctl_teardown(&sc->sc_sysctllog);
    700 	ath_hal_detach(sc->sc_ah);
    701 	if_detach(ifp);
    702 	splx(s);
    703 	powerhook_disestablish(sc->sc_powerhook);
    704 
    705 	return 0;
    706 }
    707 
    708 void
    709 ath_resume(struct ath_softc *sc)
    710 {
    711 	if (sc->sc_softled) {
    712 		ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
    713 		ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
    714 	}
    715 }
    716 
    717 /*
    718  * Interrupt handler.  Most of the actual processing is deferred.
    719  */
    720 int
    721 ath_intr(void *arg)
    722 {
    723 	struct ath_softc *sc = arg;
    724 	struct ifnet *ifp = &sc->sc_if;
    725 	struct ath_hal *ah = sc->sc_ah;
    726 	HAL_INT status;
    727 
    728 	if (sc->sc_invalid) {
    729 		/*
    730 		 * The hardware is not ready/present, don't touch anything.
    731 		 * Note this can happen early on if the IRQ is shared.
    732 		 */
    733 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
    734 		return 0;
    735 	}
    736 
    737 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
    738 		return 0;
    739 
    740 	if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
    741 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
    742 			__func__, ifp->if_flags);
    743 		ath_hal_getisr(ah, &status);	/* clear ISR */
    744 		ath_hal_intrset(ah, 0);		/* disable further intr's */
    745 		return 1; /* XXX */
    746 	}
    747 	/*
    748 	 * Figure out the reason(s) for the interrupt.  Note
    749 	 * that the hal returns a pseudo-ISR that may include
    750 	 * bits we haven't explicitly enabled so we mask the
    751 	 * value to insure we only process bits we requested.
    752 	 */
    753 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
    754 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
    755 	status &= sc->sc_imask;			/* discard unasked for bits */
    756 	if (status & HAL_INT_FATAL) {
    757 		/*
    758 		 * Fatal errors are unrecoverable.  Typically
    759 		 * these are caused by DMA errors.  Unfortunately
    760 		 * the exact reason is not (presently) returned
    761 		 * by the hal.
    762 		 */
    763 		sc->sc_stats.ast_hardware++;
    764 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
    765 		TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
    766 	} else if (status & HAL_INT_RXORN) {
    767 		sc->sc_stats.ast_rxorn++;
    768 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
    769 		TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
    770 	} else {
    771 		if (status & HAL_INT_SWBA) {
    772 			/*
    773 			 * Software beacon alert--time to send a beacon.
    774 			 * Handle beacon transmission directly; deferring
    775 			 * this is too slow to meet timing constraints
    776 			 * under load.
    777 			 */
    778 			ath_beacon_proc(sc, 0);
    779 		}
    780 		if (status & HAL_INT_RXEOL) {
    781 			/*
    782 			 * NB: the hardware should re-read the link when
    783 			 *     RXE bit is written, but it doesn't work at
    784 			 *     least on older hardware revs.
    785 			 */
    786 			sc->sc_stats.ast_rxeol++;
    787 			sc->sc_rxlink = NULL;
    788 		}
    789 		if (status & HAL_INT_TXURN) {
    790 			sc->sc_stats.ast_txurn++;
    791 			/* bump tx trigger level */
    792 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
    793 		}
    794 		if (status & HAL_INT_RX)
    795 			TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
    796 		if (status & HAL_INT_TX)
    797 			TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
    798 		if (status & HAL_INT_BMISS) {
    799 			sc->sc_stats.ast_bmiss++;
    800 			TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
    801 		}
    802 		if (status & HAL_INT_MIB) {
    803 			sc->sc_stats.ast_mib++;
    804 			/*
    805 			 * Disable interrupts until we service the MIB
    806 			 * interrupt; otherwise it will continue to fire.
    807 			 */
    808 			ath_hal_intrset(ah, 0);
    809 			/*
    810 			 * Let the hal handle the event.  We assume it will
    811 			 * clear whatever condition caused the interrupt.
    812 			 */
    813 			ath_hal_mibevent(ah, &sc->sc_halstats);
    814 			ath_hal_intrset(ah, sc->sc_imask);
    815 		}
    816 	}
    817 	return 1;
    818 }
    819 
    820 /* Swap transmit descriptor.
    821  * if AH_NEED_DESC_SWAP flag is not defined this becomes a "null"
    822  * function.
    823  */
    824 static inline void
    825 ath_desc_swap(struct ath_desc *ds)
    826 {
    827 #ifdef AH_NEED_DESC_SWAP
    828 	ds->ds_link = htole32(ds->ds_link);
    829 	ds->ds_data = htole32(ds->ds_data);
    830 	ds->ds_ctl0 = htole32(ds->ds_ctl0);
    831 	ds->ds_ctl1 = htole32(ds->ds_ctl1);
    832 	ds->ds_hw[0] = htole32(ds->ds_hw[0]);
    833 	ds->ds_hw[1] = htole32(ds->ds_hw[1]);
    834 #endif
    835 }
    836 
    837 static void
    838 ath_fatal_proc(void *arg, int pending)
    839 {
    840 	struct ath_softc *sc = arg;
    841 	struct ifnet *ifp = &sc->sc_if;
    842 
    843 	if_printf(ifp, "hardware error; resetting\n");
    844 	ath_reset(ifp);
    845 }
    846 
    847 static void
    848 ath_rxorn_proc(void *arg, int pending)
    849 {
    850 	struct ath_softc *sc = arg;
    851 	struct ifnet *ifp = &sc->sc_if;
    852 
    853 	if_printf(ifp, "rx FIFO overrun; resetting\n");
    854 	ath_reset(ifp);
    855 }
    856 
    857 static void
    858 ath_bmiss_proc(void *arg, int pending)
    859 {
    860 	struct ath_softc *sc = arg;
    861 	struct ieee80211com *ic = &sc->sc_ic;
    862 
    863 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
    864 	KASSERT(ic->ic_opmode == IEEE80211_M_STA,
    865 		("unexpect operating mode %u", ic->ic_opmode));
    866 	if (ic->ic_state == IEEE80211_S_RUN) {
    867 		u_int64_t lastrx = sc->sc_lastrx;
    868 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
    869 
    870 		DPRINTF(sc, ATH_DEBUG_BEACON,
    871 		    "%s: tsf %" PRIu64 " lastrx %" PRId64
    872 		    " (%" PRIu64 ") bmiss %u\n",
    873 		    __func__, tsf, tsf - lastrx, lastrx,
    874 		    ic->ic_bmisstimeout*1024);
    875 		/*
    876 		 * Workaround phantom bmiss interrupts by sanity-checking
    877 		 * the time of our last rx'd frame.  If it is within the
    878 		 * beacon miss interval then ignore the interrupt.  If it's
    879 		 * truly a bmiss we'll get another interrupt soon and that'll
    880 		 * be dispatched up for processing.
    881 		 */
    882 		if (tsf - lastrx > ic->ic_bmisstimeout*1024) {
    883 			NET_LOCK_GIANT();
    884 			ieee80211_beacon_miss(ic);
    885 			NET_UNLOCK_GIANT();
    886 		} else
    887 			sc->sc_stats.ast_bmiss_phantom++;
    888 	}
    889 }
    890 
    891 static void
    892 ath_radar_proc(void *arg, int pending)
    893 {
    894 	struct ath_softc *sc = arg;
    895 	struct ifnet *ifp = &sc->sc_if;
    896 	struct ath_hal *ah = sc->sc_ah;
    897 	HAL_CHANNEL hchan;
    898 
    899 	if (ath_hal_procdfs(ah, &hchan)) {
    900 		if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n",
    901 			hchan.channel, hchan.channelFlags, hchan.privFlags);
    902 		/*
    903 		 * Initiate channel change.
    904 		 */
    905 		/* XXX not yet */
    906 	}
    907 }
    908 
    909 static u_int
    910 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
    911 {
    912 #define	N(a)	(sizeof(a) / sizeof(a[0]))
    913 	static const u_int modeflags[] = {
    914 		0,			/* IEEE80211_MODE_AUTO */
    915 		CHANNEL_A,		/* IEEE80211_MODE_11A */
    916 		CHANNEL_B,		/* IEEE80211_MODE_11B */
    917 		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
    918 		0,			/* IEEE80211_MODE_FH */
    919 		CHANNEL_ST,		/* IEEE80211_MODE_TURBO_A */
    920 		CHANNEL_108G		/* IEEE80211_MODE_TURBO_G */
    921 	};
    922 	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
    923 
    924 	KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
    925 	KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
    926 	return modeflags[mode];
    927 #undef N
    928 }
    929 
    930 static int
    931 ath_ifinit(struct ifnet *ifp)
    932 {
    933 	struct ath_softc *sc = (struct ath_softc *)ifp->if_softc;
    934 
    935 	return ath_init(sc);
    936 }
    937 
    938 static int
    939 ath_init(struct ath_softc *sc)
    940 {
    941 	struct ifnet *ifp = &sc->sc_if;
    942 	struct ieee80211com *ic = &sc->sc_ic;
    943 	struct ath_hal *ah = sc->sc_ah;
    944 	HAL_STATUS status;
    945 	int error = 0;
    946 
    947 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
    948 		__func__, ifp->if_flags);
    949 
    950 	ATH_LOCK(sc);
    951 
    952 	if ((error = ath_enable(sc)) != 0)
    953 		return error;
    954 
    955 	/*
    956 	 * Stop anything previously setup.  This is safe
    957 	 * whether this is the first time through or not.
    958 	 */
    959 	ath_stop_locked(ifp, 0);
    960 
    961 	/*
    962 	 * The basic interface to setting the hardware in a good
    963 	 * state is ``reset''.  On return the hardware is known to
    964 	 * be powered up and with interrupts disabled.  This must
    965 	 * be followed by initialization of the appropriate bits
    966 	 * and then setup of the interrupt mask.
    967 	 */
    968 	sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
    969 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
    970 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
    971 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
    972 			status);
    973 		error = EIO;
    974 		goto done;
    975 	}
    976 
    977 	/*
    978 	 * This is needed only to setup initial state
    979 	 * but it's best done after a reset.
    980 	 */
    981 	ath_update_txpow(sc);
    982 	/*
    983 	 * Likewise this is set during reset so update
    984 	 * state cached in the driver.
    985 	 */
    986 	sc->sc_diversity = ath_hal_getdiversity(ah);
    987 	sc->sc_calinterval = 1;
    988 	sc->sc_caltries = 0;
    989 
    990 	/*
    991 	 * Setup the hardware after reset: the key cache
    992 	 * is filled as needed and the receive engine is
    993 	 * set going.  Frame transmit is handled entirely
    994 	 * in the frame output path; there's nothing to do
    995 	 * here except setup the interrupt mask.
    996 	 */
    997 	if ((error = ath_startrecv(sc)) != 0) {
    998 		if_printf(ifp, "unable to start recv logic\n");
    999 		goto done;
   1000 	}
   1001 
   1002 	/*
   1003 	 * Enable interrupts.
   1004 	 */
   1005 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
   1006 		  | HAL_INT_RXEOL | HAL_INT_RXORN
   1007 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
   1008 	/*
   1009 	 * Enable MIB interrupts when there are hardware phy counters.
   1010 	 * Note we only do this (at the moment) for station mode.
   1011 	 */
   1012 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
   1013 		sc->sc_imask |= HAL_INT_MIB;
   1014 	ath_hal_intrset(ah, sc->sc_imask);
   1015 
   1016 	ifp->if_flags |= IFF_RUNNING;
   1017 	ic->ic_state = IEEE80211_S_INIT;
   1018 
   1019 	/*
   1020 	 * The hardware should be ready to go now so it's safe
   1021 	 * to kick the 802.11 state machine as it's likely to
   1022 	 * immediately call back to us to send mgmt frames.
   1023 	 */
   1024 	ath_chan_change(sc, ic->ic_curchan);
   1025 #ifdef ATH_TX99_DIAG
   1026 	if (sc->sc_tx99 != NULL)
   1027 		sc->sc_tx99->start(sc->sc_tx99);
   1028 	else
   1029 #endif
   1030 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   1031 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
   1032 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   1033 	} else
   1034 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   1035 done:
   1036 	ATH_UNLOCK(sc);
   1037 	return error;
   1038 }
   1039 
   1040 static void
   1041 ath_stop_locked(struct ifnet *ifp, int disable)
   1042 {
   1043 	struct ath_softc *sc = ifp->if_softc;
   1044 	struct ieee80211com *ic = &sc->sc_ic;
   1045 	struct ath_hal *ah = sc->sc_ah;
   1046 
   1047 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
   1048 		__func__, sc->sc_invalid, ifp->if_flags);
   1049 
   1050 	ATH_LOCK_ASSERT(sc);
   1051 	if (ifp->if_flags & IFF_RUNNING) {
   1052 		/*
   1053 		 * Shutdown the hardware and driver:
   1054 		 *    reset 802.11 state machine
   1055 		 *    turn off timers
   1056 		 *    disable interrupts
   1057 		 *    turn off the radio
   1058 		 *    clear transmit machinery
   1059 		 *    clear receive machinery
   1060 		 *    drain and release tx queues
   1061 		 *    reclaim beacon resources
   1062 		 *    power down hardware
   1063 		 *
   1064 		 * Note that some of this work is not possible if the
   1065 		 * hardware is gone (invalid).
   1066 		 */
   1067 #ifdef ATH_TX99_DIAG
   1068 		if (sc->sc_tx99 != NULL)
   1069 			sc->sc_tx99->stop(sc->sc_tx99);
   1070 #endif
   1071 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   1072 		ifp->if_flags &= ~IFF_RUNNING;
   1073 		ifp->if_timer = 0;
   1074 		if (!sc->sc_invalid) {
   1075 			if (sc->sc_softled) {
   1076 				callout_stop(&sc->sc_ledtimer);
   1077 				ath_hal_gpioset(ah, sc->sc_ledpin,
   1078 					!sc->sc_ledon);
   1079 				sc->sc_blinking = 0;
   1080 			}
   1081 			ath_hal_intrset(ah, 0);
   1082 		}
   1083 		ath_draintxq(sc);
   1084 		if (!sc->sc_invalid) {
   1085 			ath_stoprecv(sc);
   1086 			ath_hal_phydisable(ah);
   1087 		} else
   1088 			sc->sc_rxlink = NULL;
   1089 		IF_PURGE(&ifp->if_snd);
   1090 		ath_beacon_free(sc);
   1091 		if (disable)
   1092 			ath_disable(sc);
   1093 	}
   1094 }
   1095 
   1096 static void
   1097 ath_stop(struct ifnet *ifp, int disable)
   1098 {
   1099 	struct ath_softc *sc = ifp->if_softc;
   1100 
   1101 	ATH_LOCK(sc);
   1102 	ath_stop_locked(ifp, disable);
   1103 	if (!sc->sc_invalid) {
   1104 		/*
   1105 		 * Set the chip in full sleep mode.  Note that we are
   1106 		 * careful to do this only when bringing the interface
   1107 		 * completely to a stop.  When the chip is in this state
   1108 		 * it must be carefully woken up or references to
   1109 		 * registers in the PCI clock domain may freeze the bus
   1110 		 * (and system).  This varies by chip and is mostly an
   1111 		 * issue with newer parts that go to sleep more quickly.
   1112 		 */
   1113 		ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
   1114 	}
   1115 	ATH_UNLOCK(sc);
   1116 }
   1117 
   1118 /*
   1119  * Reset the hardware w/o losing operational state.  This is
   1120  * basically a more efficient way of doing ath_stop, ath_init,
   1121  * followed by state transitions to the current 802.11
   1122  * operational state.  Used to recover from various errors and
   1123  * to reset or reload hardware state.
   1124  */
   1125 int
   1126 ath_reset(struct ifnet *ifp)
   1127 {
   1128 	struct ath_softc *sc = ifp->if_softc;
   1129 	struct ieee80211com *ic = &sc->sc_ic;
   1130 	struct ath_hal *ah = sc->sc_ah;
   1131 	struct ieee80211_channel *c;
   1132 	HAL_STATUS status;
   1133 
   1134 	/*
   1135 	 * Convert to a HAL channel description with the flags
   1136 	 * constrained to reflect the current operating mode.
   1137 	 */
   1138 	c = ic->ic_curchan;
   1139 	sc->sc_curchan.channel = c->ic_freq;
   1140 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
   1141 
   1142 	ath_hal_intrset(ah, 0);		/* disable interrupts */
   1143 	ath_draintxq(sc);		/* stop xmit side */
   1144 	ath_stoprecv(sc);		/* stop recv side */
   1145 	/* NB: indicate channel change so we do a full reset */
   1146 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
   1147 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
   1148 			__func__, status);
   1149 	ath_update_txpow(sc);		/* update tx power state */
   1150 	sc->sc_diversity = ath_hal_getdiversity(ah);
   1151 	sc->sc_calinterval = 1;
   1152 	sc->sc_caltries = 0;
   1153 	if (ath_startrecv(sc) != 0)	/* restart recv */
   1154 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
   1155 	/*
   1156 	 * We may be doing a reset in response to an ioctl
   1157 	 * that changes the channel so update any state that
   1158 	 * might change as a result.
   1159 	 */
   1160 	ath_chan_change(sc, c);
   1161 	if (ic->ic_state == IEEE80211_S_RUN)
   1162 		ath_beacon_config(sc);	/* restart beacons */
   1163 	ath_hal_intrset(ah, sc->sc_imask);
   1164 
   1165 	ath_start(ifp);			/* restart xmit */
   1166 	return 0;
   1167 }
   1168 
   1169 /*
   1170  * Cleanup driver resources when we run out of buffers
   1171  * while processing fragments; return the tx buffers
   1172  * allocated and drop node references.
   1173  */
   1174 static void
   1175 ath_txfrag_cleanup(struct ath_softc *sc,
   1176 	ath_bufhead *frags, struct ieee80211_node *ni)
   1177 {
   1178 	struct ath_buf *bf;
   1179 
   1180 	ATH_TXBUF_LOCK_ASSERT(sc);
   1181 
   1182 	while ((bf = STAILQ_FIRST(frags)) != NULL) {
   1183 		STAILQ_REMOVE_HEAD(frags, bf_list);
   1184 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1185 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
   1186 		ieee80211_node_decref(ni);
   1187 	}
   1188 }
   1189 
   1190 /*
   1191  * Setup xmit of a fragmented frame.  Allocate a buffer
   1192  * for each frag and bump the node reference count to
   1193  * reflect the held reference to be setup by ath_tx_start.
   1194  */
   1195 static int
   1196 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
   1197 	struct mbuf *m0, struct ieee80211_node *ni)
   1198 {
   1199 	struct mbuf *m;
   1200 	struct ath_buf *bf;
   1201 
   1202 	ATH_TXBUF_LOCK(sc);
   1203 	for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
   1204 		bf = STAILQ_FIRST(&sc->sc_txbuf);
   1205 		if (bf == NULL) {       /* out of buffers, cleanup */
   1206 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
   1207 				__func__);
   1208 			sc->sc_if.if_flags |= IFF_OACTIVE;
   1209 			ath_txfrag_cleanup(sc, frags, ni);
   1210 			break;
   1211 		}
   1212 		STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
   1213 		ieee80211_node_incref(ni);
   1214 		STAILQ_INSERT_TAIL(frags, bf, bf_list);
   1215 	}
   1216 	ATH_TXBUF_UNLOCK(sc);
   1217 
   1218 	return !STAILQ_EMPTY(frags);
   1219 }
   1220 
   1221 static void
   1222 ath_start(struct ifnet *ifp)
   1223 {
   1224 	struct ath_softc *sc = ifp->if_softc;
   1225 	struct ath_hal *ah = sc->sc_ah;
   1226 	struct ieee80211com *ic = &sc->sc_ic;
   1227 	struct ieee80211_node *ni;
   1228 	struct ath_buf *bf;
   1229 	struct mbuf *m, *next;
   1230 	struct ieee80211_frame *wh;
   1231 	struct ether_header *eh;
   1232 	ath_bufhead frags;
   1233 
   1234 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
   1235 		return;
   1236 	for (;;) {
   1237 		/*
   1238 		 * Grab a TX buffer and associated resources.
   1239 		 */
   1240 		ATH_TXBUF_LOCK(sc);
   1241 		bf = STAILQ_FIRST(&sc->sc_txbuf);
   1242 		if (bf != NULL)
   1243 			STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
   1244 		ATH_TXBUF_UNLOCK(sc);
   1245 		if (bf == NULL) {
   1246 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
   1247 				__func__);
   1248 			sc->sc_stats.ast_tx_qstop++;
   1249 			ifp->if_flags |= IFF_OACTIVE;
   1250 			break;
   1251 		}
   1252 		/*
   1253 		 * Poll the management queue for frames; they
   1254 		 * have priority over normal data frames.
   1255 		 */
   1256 		IF_DEQUEUE(&ic->ic_mgtq, m);
   1257 		if (m == NULL) {
   1258 			/*
   1259 			 * No data frames go out unless we're associated.
   1260 			 */
   1261 			if (ic->ic_state != IEEE80211_S_RUN) {
   1262 				DPRINTF(sc, ATH_DEBUG_XMIT,
   1263 				    "%s: discard data packet, state %s\n",
   1264 				    __func__,
   1265 				    ieee80211_state_name[ic->ic_state]);
   1266 				sc->sc_stats.ast_tx_discard++;
   1267 				ATH_TXBUF_LOCK(sc);
   1268 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1269 				ATH_TXBUF_UNLOCK(sc);
   1270 				break;
   1271 			}
   1272 			IFQ_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
   1273 			if (m == NULL) {
   1274 				ATH_TXBUF_LOCK(sc);
   1275 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1276 				ATH_TXBUF_UNLOCK(sc);
   1277 				break;
   1278 			}
   1279 			STAILQ_INIT(&frags);
   1280 			/*
   1281 			 * Find the node for the destination so we can do
   1282 			 * things like power save and fast frames aggregation.
   1283 			 */
   1284 			if (m->m_len < sizeof(struct ether_header) &&
   1285 			   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
   1286 				ic->ic_stats.is_tx_nobuf++;	/* XXX */
   1287 				ni = NULL;
   1288 				goto bad;
   1289 			}
   1290 			eh = mtod(m, struct ether_header *);
   1291 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   1292 			if (ni == NULL) {
   1293 				/* NB: ieee80211_find_txnode does stat+msg */
   1294 				m_freem(m);
   1295 				goto bad;
   1296 			}
   1297 			if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
   1298 			    (m->m_flags & M_PWR_SAV) == 0) {
   1299 				/*
   1300 				 * Station in power save mode; pass the frame
   1301 				 * to the 802.11 layer and continue.  We'll get
   1302 				 * the frame back when the time is right.
   1303 				 */
   1304 				ieee80211_pwrsave(ic, ni, m);
   1305 				goto reclaim;
   1306 			}
   1307 			/* calculate priority so we can find the tx queue */
   1308 			if (ieee80211_classify(ic, m, ni)) {
   1309 				DPRINTF(sc, ATH_DEBUG_XMIT,
   1310 					"%s: discard, classification failure\n",
   1311 					__func__);
   1312 				m_freem(m);
   1313 				goto bad;
   1314 			}
   1315 			ifp->if_opackets++;
   1316 
   1317 #if NBPFILTER > 0
   1318 			if (ifp->if_bpf)
   1319 				bpf_mtap(ifp->if_bpf, m);
   1320 #endif
   1321 			/*
   1322 			 * Encapsulate the packet in prep for transmission.
   1323 			 */
   1324 			m = ieee80211_encap(ic, m, ni);
   1325 			if (m == NULL) {
   1326 				DPRINTF(sc, ATH_DEBUG_XMIT,
   1327 					"%s: encapsulation failure\n",
   1328 					__func__);
   1329 				sc->sc_stats.ast_tx_encap++;
   1330 				goto bad;
   1331 			}
   1332 			/*
   1333 			 * Check for fragmentation.  If this has frame
   1334 			 * has been broken up verify we have enough
   1335 			 * buffers to send all the fragments so all
   1336 			 * go out or none...
   1337 			 */
   1338 			if ((m->m_flags & M_FRAG) &&
   1339 			    !ath_txfrag_setup(sc, &frags, m, ni)) {
   1340 				DPRINTF(sc, ATH_DEBUG_ANY,
   1341 				    "%s: out of txfrag buffers\n", __func__);
   1342 				ic->ic_stats.is_tx_nobuf++;     /* XXX */
   1343 				ath_freetx(m);
   1344 				goto bad;
   1345 			}
   1346 		} else {
   1347 			/*
   1348 			 * Hack!  The referenced node pointer is in the
   1349 			 * rcvif field of the packet header.  This is
   1350 			 * placed there by ieee80211_mgmt_output because
   1351 			 * we need to hold the reference with the frame
   1352 			 * and there's no other way (other than packet
   1353 			 * tags which we consider too expensive to use)
   1354 			 * to pass it along.
   1355 			 */
   1356 			ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
   1357 			m->m_pkthdr.rcvif = NULL;
   1358 
   1359 			wh = mtod(m, struct ieee80211_frame *);
   1360 			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
   1361 			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
   1362 				/* fill time stamp */
   1363 				u_int64_t tsf;
   1364 				u_int32_t *tstamp;
   1365 
   1366 				tsf = ath_hal_gettsf64(ah);
   1367 				/* XXX: adjust 100us delay to xmit */
   1368 				tsf += 100;
   1369 				tstamp = (u_int32_t *)&wh[1];
   1370 				tstamp[0] = htole32(tsf & 0xffffffff);
   1371 				tstamp[1] = htole32(tsf >> 32);
   1372 			}
   1373 			sc->sc_stats.ast_tx_mgmt++;
   1374 		}
   1375 
   1376 	nextfrag:
   1377 		next = m->m_nextpkt;
   1378 		if (ath_tx_start(sc, ni, bf, m)) {
   1379 	bad:
   1380 			ifp->if_oerrors++;
   1381 	reclaim:
   1382 			ATH_TXBUF_LOCK(sc);
   1383 			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1384 			ath_txfrag_cleanup(sc, &frags, ni);
   1385 			ATH_TXBUF_UNLOCK(sc);
   1386 			if (ni != NULL)
   1387 				ieee80211_free_node(ni);
   1388 			continue;
   1389 		}
   1390 		if (next != NULL) {
   1391 			m = next;
   1392 			bf = STAILQ_FIRST(&frags);
   1393 			KASSERT(bf != NULL, ("no buf for txfrag"));
   1394 			STAILQ_REMOVE_HEAD(&frags, bf_list);
   1395 			goto nextfrag;
   1396 		}
   1397 
   1398 		ifp->if_timer = 1;
   1399 	}
   1400 }
   1401 
   1402 static int
   1403 ath_media_change(struct ifnet *ifp)
   1404 {
   1405 #define	IS_UP(ifp) \
   1406 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
   1407 	int error;
   1408 
   1409 	error = ieee80211_media_change(ifp);
   1410 	if (error == ENETRESET) {
   1411 		if (IS_UP(ifp))
   1412 			ath_init(ifp->if_softc);	/* XXX lose error */
   1413 		error = 0;
   1414 	}
   1415 	return error;
   1416 #undef IS_UP
   1417 }
   1418 
   1419 #ifdef AR_DEBUG
   1420 static void
   1421 ath_keyprint(const char *tag, u_int ix,
   1422 	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
   1423 {
   1424 	static const char *ciphers[] = {
   1425 		"WEP",
   1426 		"AES-OCB",
   1427 		"AES-CCM",
   1428 		"CKIP",
   1429 		"TKIP",
   1430 		"CLR",
   1431 	};
   1432 	int i, n;
   1433 
   1434 	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
   1435 	for (i = 0, n = hk->kv_len; i < n; i++)
   1436 		printf("%02x", hk->kv_val[i]);
   1437 	printf(" mac %s", ether_sprintf(mac));
   1438 	if (hk->kv_type == HAL_CIPHER_TKIP) {
   1439 		printf(" mic ");
   1440 		for (i = 0; i < sizeof(hk->kv_mic); i++)
   1441 			printf("%02x", hk->kv_mic[i]);
   1442 	}
   1443 	printf("\n");
   1444 }
   1445 #endif
   1446 
   1447 /*
   1448  * Set a TKIP key into the hardware.  This handles the
   1449  * potential distribution of key state to multiple key
   1450  * cache slots for TKIP.
   1451  */
   1452 static int
   1453 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
   1454 	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
   1455 {
   1456 #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
   1457 	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
   1458 	struct ath_hal *ah = sc->sc_ah;
   1459 
   1460 	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
   1461 		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
   1462 	KASSERT(sc->sc_splitmic, ("key cache !split"));
   1463 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
   1464 		/*
   1465 		 * TX key goes at first index, RX key at the rx index.
   1466 		 * The hal handles the MIC keys at index+64.
   1467 		 */
   1468 		memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
   1469 		KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
   1470 		if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
   1471 			return 0;
   1472 
   1473 		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
   1474 		KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
   1475 		/* XXX delete tx key on failure? */
   1476 		return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
   1477 	} else if (k->wk_flags & IEEE80211_KEY_XR) {
   1478 		/*
   1479 		 * TX/RX key goes at first index.
   1480 		 * The hal handles the MIC keys are index+64.
   1481 		 */
   1482 		memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
   1483 			k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
   1484 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
   1485 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
   1486 	}
   1487 	return 0;
   1488 #undef IEEE80211_KEY_XR
   1489 }
   1490 
   1491 /*
   1492  * Set a net80211 key into the hardware.  This handles the
   1493  * potential distribution of key state to multiple key
   1494  * cache slots for TKIP with hardware MIC support.
   1495  */
   1496 static int
   1497 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
   1498 	const u_int8_t mac0[IEEE80211_ADDR_LEN],
   1499 	struct ieee80211_node *bss)
   1500 {
   1501 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1502 	static const u_int8_t ciphermap[] = {
   1503 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
   1504 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
   1505 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
   1506 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
   1507 		(u_int8_t) -1,		/* 4 is not allocated */
   1508 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
   1509 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
   1510 	};
   1511 	struct ath_hal *ah = sc->sc_ah;
   1512 	const struct ieee80211_cipher *cip = k->wk_cipher;
   1513 	u_int8_t gmac[IEEE80211_ADDR_LEN];
   1514 	const u_int8_t *mac;
   1515 	HAL_KEYVAL hk;
   1516 
   1517 	memset(&hk, 0, sizeof(hk));
   1518 	/*
   1519 	 * Software crypto uses a "clear key" so non-crypto
   1520 	 * state kept in the key cache are maintained and
   1521 	 * so that rx frames have an entry to match.
   1522 	 */
   1523 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
   1524 		KASSERT(cip->ic_cipher < N(ciphermap),
   1525 			("invalid cipher type %u", cip->ic_cipher));
   1526 		hk.kv_type = ciphermap[cip->ic_cipher];
   1527 		hk.kv_len = k->wk_keylen;
   1528 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
   1529 	} else
   1530 		hk.kv_type = HAL_CIPHER_CLR;
   1531 
   1532 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
   1533 		/*
   1534 		 * Group keys on hardware that supports multicast frame
   1535 		 * key search use a mac that is the sender's address with
   1536 		 * the high bit set instead of the app-specified address.
   1537 		 */
   1538 		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
   1539 		gmac[0] |= 0x80;
   1540 		mac = gmac;
   1541 	} else
   1542 		mac = mac0;
   1543 
   1544 	if (hk.kv_type == HAL_CIPHER_TKIP &&
   1545 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
   1546 	    sc->sc_splitmic) {
   1547 		return ath_keyset_tkip(sc, k, &hk, mac);
   1548 	} else {
   1549 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
   1550 		return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
   1551 	}
   1552 #undef N
   1553 }
   1554 
   1555 /*
   1556  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
   1557  * each key, one for decrypt/encrypt and the other for the MIC.
   1558  */
   1559 static u_int16_t
   1560 key_alloc_2pair(struct ath_softc *sc,
   1561 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
   1562 {
   1563 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1564 	u_int i, keyix;
   1565 
   1566 	KASSERT(sc->sc_splitmic, ("key cache !split"));
   1567 	/* XXX could optimize */
   1568 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
   1569 		u_int8_t b = sc->sc_keymap[i];
   1570 		if (b != 0xff) {
   1571 			/*
   1572 			 * One or more slots in this byte are free.
   1573 			 */
   1574 			keyix = i*NBBY;
   1575 			while (b & 1) {
   1576 		again:
   1577 				keyix++;
   1578 				b >>= 1;
   1579 			}
   1580 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
   1581 			if (isset(sc->sc_keymap, keyix+32) ||
   1582 			    isset(sc->sc_keymap, keyix+64) ||
   1583 			    isset(sc->sc_keymap, keyix+32+64)) {
   1584 				/* full pair unavailable */
   1585 				/* XXX statistic */
   1586 				if (keyix == (i+1)*NBBY) {
   1587 					/* no slots were appropriate, advance */
   1588 					continue;
   1589 				}
   1590 				goto again;
   1591 			}
   1592 			setbit(sc->sc_keymap, keyix);
   1593 			setbit(sc->sc_keymap, keyix+64);
   1594 			setbit(sc->sc_keymap, keyix+32);
   1595 			setbit(sc->sc_keymap, keyix+32+64);
   1596 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
   1597 				"%s: key pair %u,%u %u,%u\n",
   1598 				__func__, keyix, keyix+64,
   1599 				keyix+32, keyix+32+64);
   1600 			*txkeyix = keyix;
   1601 			*rxkeyix = keyix+32;
   1602 			return 1;
   1603 		}
   1604 	}
   1605 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
   1606 	return 0;
   1607 #undef N
   1608 }
   1609 
   1610 /*
   1611  * Allocate a single key cache slot.
   1612  */
   1613 static int
   1614 key_alloc_single(struct ath_softc *sc,
   1615 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
   1616 {
   1617 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1618 	u_int i, keyix;
   1619 
   1620 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
   1621 	for (i = 0; i < N(sc->sc_keymap); i++) {
   1622 		u_int8_t b = sc->sc_keymap[i];
   1623 		if (b != 0xff) {
   1624 			/*
   1625 			 * One or more slots are free.
   1626 			 */
   1627 			keyix = i*NBBY;
   1628 			while (b & 1)
   1629 				keyix++, b >>= 1;
   1630 			setbit(sc->sc_keymap, keyix);
   1631 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
   1632 				__func__, keyix);
   1633 			*txkeyix = *rxkeyix = keyix;
   1634 			return 1;
   1635 		}
   1636 	}
   1637 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
   1638 	return 0;
   1639 #undef N
   1640 }
   1641 
   1642 /*
   1643  * Allocate one or more key cache slots for a uniacst key.  The
   1644  * key itself is needed only to identify the cipher.  For hardware
   1645  * TKIP with split cipher+MIC keys we allocate two key cache slot
   1646  * pairs so that we can setup separate TX and RX MIC keys.  Note
   1647  * that the MIC key for a TKIP key at slot i is assumed by the
   1648  * hardware to be at slot i+64.  This limits TKIP keys to the first
   1649  * 64 entries.
   1650  */
   1651 static int
   1652 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
   1653 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
   1654 {
   1655 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1656 
   1657 	/*
   1658 	 * Group key allocation must be handled specially for
   1659 	 * parts that do not support multicast key cache search
   1660 	 * functionality.  For those parts the key id must match
   1661 	 * the h/w key index so lookups find the right key.  On
   1662 	 * parts w/ the key search facility we install the sender's
   1663 	 * mac address (with the high bit set) and let the hardware
   1664 	 * find the key w/o using the key id.  This is preferred as
   1665 	 * it permits us to support multiple users for adhoc and/or
   1666 	 * multi-station operation.
   1667 	 */
   1668 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
   1669 		if (!(&ic->ic_nw_keys[0] <= k &&
   1670 		      k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
   1671 			/* should not happen */
   1672 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
   1673 				"%s: bogus group key\n", __func__);
   1674 			return 0;
   1675 		}
   1676 		/*
   1677 		 * XXX we pre-allocate the global keys so
   1678 		 * have no way to check if they've already been allocated.
   1679 		 */
   1680 		*keyix = *rxkeyix = k - ic->ic_nw_keys;
   1681 		return 1;
   1682 	}
   1683 
   1684 	/*
   1685 	 * We allocate two pair for TKIP when using the h/w to do
   1686 	 * the MIC.  For everything else, including software crypto,
   1687 	 * we allocate a single entry.  Note that s/w crypto requires
   1688 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
   1689 	 * not support pass-through cache entries and we map all
   1690 	 * those requests to slot 0.
   1691 	 */
   1692 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
   1693 		return key_alloc_single(sc, keyix, rxkeyix);
   1694 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1695 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
   1696 		return key_alloc_2pair(sc, keyix, rxkeyix);
   1697 	} else {
   1698 		return key_alloc_single(sc, keyix, rxkeyix);
   1699 	}
   1700 }
   1701 
   1702 /*
   1703  * Delete an entry in the key cache allocated by ath_key_alloc.
   1704  */
   1705 static int
   1706 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
   1707 {
   1708 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1709 	struct ath_hal *ah = sc->sc_ah;
   1710 	const struct ieee80211_cipher *cip = k->wk_cipher;
   1711 	u_int keyix = k->wk_keyix;
   1712 
   1713 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
   1714 
   1715 	ath_hal_keyreset(ah, keyix);
   1716 	/*
   1717 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
   1718 	 */
   1719 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1720 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
   1721 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
   1722 	if (keyix >= IEEE80211_WEP_NKID) {
   1723 		/*
   1724 		 * Don't touch keymap entries for global keys so
   1725 		 * they are never considered for dynamic allocation.
   1726 		 */
   1727 		clrbit(sc->sc_keymap, keyix);
   1728 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1729 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
   1730 		    sc->sc_splitmic) {
   1731 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
   1732 			clrbit(sc->sc_keymap, keyix+32);	/* RX key */
   1733 			clrbit(sc->sc_keymap, keyix+32+64);	/* RX key MIC */
   1734 		}
   1735 	}
   1736 	return 1;
   1737 }
   1738 
   1739 /*
   1740  * Set the key cache contents for the specified key.  Key cache
   1741  * slot(s) must already have been allocated by ath_key_alloc.
   1742  */
   1743 static int
   1744 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
   1745 	const u_int8_t mac[IEEE80211_ADDR_LEN])
   1746 {
   1747 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1748 
   1749 	return ath_keyset(sc, k, mac, ic->ic_bss);
   1750 }
   1751 
   1752 /*
   1753  * Block/unblock tx+rx processing while a key change is done.
   1754  * We assume the caller serializes key management operations
   1755  * so we only need to worry about synchronization with other
   1756  * uses that originate in the driver.
   1757  */
   1758 static void
   1759 ath_key_update_begin(struct ieee80211com *ic)
   1760 {
   1761 	struct ifnet *ifp = ic->ic_ifp;
   1762 	struct ath_softc *sc = ifp->if_softc;
   1763 
   1764 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
   1765 #if 0
   1766 	tasklet_disable(&sc->sc_rxtq);
   1767 #endif
   1768 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
   1769 }
   1770 
   1771 static void
   1772 ath_key_update_end(struct ieee80211com *ic)
   1773 {
   1774 	struct ifnet *ifp = ic->ic_ifp;
   1775 	struct ath_softc *sc = ifp->if_softc;
   1776 
   1777 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
   1778 	IF_UNLOCK(&ifp->if_snd);
   1779 #if 0
   1780 	tasklet_enable(&sc->sc_rxtq);
   1781 #endif
   1782 }
   1783 
   1784 /*
   1785  * Calculate the receive filter according to the
   1786  * operating mode and state:
   1787  *
   1788  * o always accept unicast, broadcast, and multicast traffic
   1789  * o maintain current state of phy error reception (the hal
   1790  *   may enable phy error frames for noise immunity work)
   1791  * o probe request frames are accepted only when operating in
   1792  *   hostap, adhoc, or monitor modes
   1793  * o enable promiscuous mode according to the interface state
   1794  * o accept beacons:
   1795  *   - when operating in adhoc mode so the 802.11 layer creates
   1796  *     node table entries for peers,
   1797  *   - when operating in station mode for collecting rssi data when
   1798  *     the station is otherwise quiet, or
   1799  *   - when scanning
   1800  */
   1801 static u_int32_t
   1802 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
   1803 {
   1804 	struct ieee80211com *ic = &sc->sc_ic;
   1805 	struct ath_hal *ah = sc->sc_ah;
   1806 	struct ifnet *ifp = &sc->sc_if;
   1807 	u_int32_t rfilt;
   1808 
   1809 	rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
   1810 	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
   1811 	if (ic->ic_opmode != IEEE80211_M_STA)
   1812 		rfilt |= HAL_RX_FILTER_PROBEREQ;
   1813 	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
   1814 	    (ifp->if_flags & IFF_PROMISC))
   1815 		rfilt |= HAL_RX_FILTER_PROM;
   1816 	if (ic->ic_opmode == IEEE80211_M_STA ||
   1817 	    ic->ic_opmode == IEEE80211_M_IBSS ||
   1818 	    state == IEEE80211_S_SCAN)
   1819 		rfilt |= HAL_RX_FILTER_BEACON;
   1820 	return rfilt;
   1821 }
   1822 
   1823 static void
   1824 ath_mcastfilter_accum(void *dl, u_int32_t *mfilt)
   1825 {
   1826 	u_int32_t val;
   1827 	u_int8_t pos;
   1828 
   1829 	/* calculate XOR of eight 6bit values */
   1830 	val = LE_READ_4((char *)dl + 0);
   1831 	pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1832 	val = LE_READ_4((char *)dl + 3);
   1833 	pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1834 	pos &= 0x3f;
   1835 	mfilt[pos / 32] |= (1 << (pos % 32));
   1836 }
   1837 
   1838 static void
   1839 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t *mfilt)
   1840 {
   1841 	struct ifnet *ifp = &sc->sc_if;
   1842 	struct ether_multi *enm;
   1843 	struct ether_multistep estep;
   1844 
   1845 	mfilt[0] = mfilt[1] = 0;
   1846 	ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
   1847 	while (enm != NULL) {
   1848 		/* XXX Punt on ranges. */
   1849 		if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
   1850 			mfilt[0] = mfilt[1] = ~((u_int32_t)0);
   1851 			ifp->if_flags |= IFF_ALLMULTI;
   1852 			return;
   1853 		}
   1854 		ath_mcastfilter_accum(enm->enm_addrlo, mfilt);
   1855 		ETHER_NEXT_MULTI(estep, enm);
   1856 	}
   1857 	ifp->if_flags &= ~IFF_ALLMULTI;
   1858 }
   1859 
   1860 static void
   1861 ath_mode_init(struct ath_softc *sc)
   1862 {
   1863 	struct ieee80211com *ic = &sc->sc_ic;
   1864 	struct ath_hal *ah = sc->sc_ah;
   1865 	u_int32_t rfilt, mfilt[2];
   1866 	int i;
   1867 
   1868 	/* configure rx filter */
   1869 	rfilt = ath_calcrxfilter(sc, ic->ic_state);
   1870 	ath_hal_setrxfilter(ah, rfilt);
   1871 
   1872 	/* configure operational mode */
   1873 	ath_hal_setopmode(ah);
   1874 
   1875 	/* Write keys to hardware; it may have been powered down. */
   1876 	ath_key_update_begin(ic);
   1877 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
   1878 		ath_key_set(ic,
   1879 			    &ic->ic_crypto.cs_nw_keys[i],
   1880 			    ic->ic_myaddr);
   1881 	}
   1882 	ath_key_update_end(ic);
   1883 
   1884 	/*
   1885 	 * Handle any link-level address change.  Note that we only
   1886 	 * need to force ic_myaddr; any other addresses are handled
   1887 	 * as a byproduct of the ifnet code marking the interface
   1888 	 * down then up.
   1889 	 *
   1890 	 * XXX should get from lladdr instead of arpcom but that's more work
   1891 	 */
   1892 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(sc->sc_if.if_sadl));
   1893 	ath_hal_setmac(ah, ic->ic_myaddr);
   1894 
   1895 	/* calculate and install multicast filter */
   1896 #ifdef __FreeBSD__
   1897 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   1898 		mfilt[0] = mfilt[1] = 0;
   1899 		IF_ADDR_LOCK(ifp);
   1900 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
   1901 			void *dl;
   1902 
   1903 			/* calculate XOR of eight 6bit values */
   1904 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
   1905 			val = LE_READ_4((char *)dl + 0);
   1906 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1907 			val = LE_READ_4((char *)dl + 3);
   1908 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1909 			pos &= 0x3f;
   1910 			mfilt[pos / 32] |= (1 << (pos % 32));
   1911 		}
   1912 		IF_ADDR_UNLOCK(ifp);
   1913 	} else {
   1914 		mfilt[0] = mfilt[1] = ~0;
   1915 	}
   1916 #endif
   1917 #ifdef __NetBSD__
   1918 	ath_mcastfilter_compute(sc, mfilt);
   1919 #endif
   1920 	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
   1921 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
   1922 		__func__, rfilt, mfilt[0], mfilt[1]);
   1923 }
   1924 
   1925 /*
   1926  * Set the slot time based on the current setting.
   1927  */
   1928 static void
   1929 ath_setslottime(struct ath_softc *sc)
   1930 {
   1931 	struct ieee80211com *ic = &sc->sc_ic;
   1932 	struct ath_hal *ah = sc->sc_ah;
   1933 
   1934 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   1935 		ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
   1936 	else
   1937 		ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
   1938 	sc->sc_updateslot = OK;
   1939 }
   1940 
   1941 /*
   1942  * Callback from the 802.11 layer to update the
   1943  * slot time based on the current setting.
   1944  */
   1945 static void
   1946 ath_updateslot(struct ifnet *ifp)
   1947 {
   1948 	struct ath_softc *sc = ifp->if_softc;
   1949 	struct ieee80211com *ic = &sc->sc_ic;
   1950 
   1951 	/*
   1952 	 * When not coordinating the BSS, change the hardware
   1953 	 * immediately.  For other operation we defer the change
   1954 	 * until beacon updates have propagated to the stations.
   1955 	 */
   1956 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
   1957 		sc->sc_updateslot = UPDATE;
   1958 	else
   1959 		ath_setslottime(sc);
   1960 }
   1961 
   1962 /*
   1963  * Setup a h/w transmit queue for beacons.
   1964  */
   1965 static int
   1966 ath_beaconq_setup(struct ath_hal *ah)
   1967 {
   1968 	HAL_TXQ_INFO qi;
   1969 
   1970 	memset(&qi, 0, sizeof(qi));
   1971 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
   1972 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
   1973 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
   1974 	/* NB: for dynamic turbo, don't enable any other interrupts */
   1975 	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
   1976 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
   1977 }
   1978 
   1979 /*
   1980  * Setup the transmit queue parameters for the beacon queue.
   1981  */
   1982 static int
   1983 ath_beaconq_config(struct ath_softc *sc)
   1984 {
   1985 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
   1986 	struct ieee80211com *ic = &sc->sc_ic;
   1987 	struct ath_hal *ah = sc->sc_ah;
   1988 	HAL_TXQ_INFO qi;
   1989 
   1990 	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
   1991 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   1992 		/*
   1993 		 * Always burst out beacon and CAB traffic.
   1994 		 */
   1995 		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
   1996 		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
   1997 		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
   1998 	} else {
   1999 		struct wmeParams *wmep =
   2000 			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
   2001 		/*
   2002 		 * Adhoc mode; important thing is to use 2x cwmin.
   2003 		 */
   2004 		qi.tqi_aifs = wmep->wmep_aifsn;
   2005 		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
   2006 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
   2007 	}
   2008 
   2009 	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
   2010 		device_printf(sc->sc_dev, "unable to update parameters for "
   2011 			"beacon hardware queue!\n");
   2012 		return 0;
   2013 	} else {
   2014 		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
   2015 		return 1;
   2016 	}
   2017 #undef ATH_EXPONENT_TO_VALUE
   2018 }
   2019 
   2020 /*
   2021  * Allocate and setup an initial beacon frame.
   2022  */
   2023 static int
   2024 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
   2025 {
   2026 	struct ieee80211com *ic = ni->ni_ic;
   2027 	struct ath_buf *bf;
   2028 	struct mbuf *m;
   2029 	int error;
   2030 
   2031 	bf = STAILQ_FIRST(&sc->sc_bbuf);
   2032 	if (bf == NULL) {
   2033 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
   2034 		sc->sc_stats.ast_be_nombuf++;	/* XXX */
   2035 		return ENOMEM;			/* XXX */
   2036 	}
   2037 	/*
   2038 	 * NB: the beacon data buffer must be 32-bit aligned;
   2039 	 * we assume the mbuf routines will return us something
   2040 	 * with this alignment (perhaps should assert).
   2041 	 */
   2042 	m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
   2043 	if (m == NULL) {
   2044 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
   2045 			__func__);
   2046 		sc->sc_stats.ast_be_nombuf++;
   2047 		return ENOMEM;
   2048 	}
   2049 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
   2050 				     BUS_DMA_NOWAIT);
   2051 	if (error == 0) {
   2052 		bf->bf_m = m;
   2053 		bf->bf_node = ieee80211_ref_node(ni);
   2054 	} else {
   2055 		m_freem(m);
   2056 	}
   2057 	return error;
   2058 }
   2059 
   2060 /*
   2061  * Setup the beacon frame for transmit.
   2062  */
   2063 static void
   2064 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
   2065 {
   2066 #define	USE_SHPREAMBLE(_ic) \
   2067 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
   2068 		== IEEE80211_F_SHPREAMBLE)
   2069 	struct ieee80211_node *ni = bf->bf_node;
   2070 	struct ieee80211com *ic = ni->ni_ic;
   2071 	struct mbuf *m = bf->bf_m;
   2072 	struct ath_hal *ah = sc->sc_ah;
   2073 	struct ath_desc *ds;
   2074 	int flags, antenna;
   2075 	const HAL_RATE_TABLE *rt;
   2076 	u_int8_t rix, rate;
   2077 
   2078 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
   2079 		__func__, m, m->m_len);
   2080 
   2081 	/* setup descriptors */
   2082 	ds = bf->bf_desc;
   2083 
   2084 	flags = HAL_TXDESC_NOACK;
   2085 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
   2086 		ds->ds_link = HTOAH32(bf->bf_daddr);	/* self-linked */
   2087 		flags |= HAL_TXDESC_VEOL;
   2088 		/*
   2089 		 * Let hardware handle antenna switching unless
   2090 		 * the user has selected a transmit antenna
   2091 		 * (sc_txantenna is not 0).
   2092 		 */
   2093 		antenna = sc->sc_txantenna;
   2094 	} else {
   2095 		ds->ds_link = 0;
   2096 		/*
   2097 		 * Switch antenna every 4 beacons, unless the user
   2098 		 * has selected a transmit antenna (sc_txantenna
   2099 		 * is not 0).
   2100 		 *
   2101 		 * XXX assumes two antenna
   2102 		 */
   2103 		if (sc->sc_txantenna == 0)
   2104 			antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
   2105 		else
   2106 			antenna = sc->sc_txantenna;
   2107 	}
   2108 
   2109 	KASSERT(bf->bf_nseg == 1,
   2110 		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
   2111 	ds->ds_data = bf->bf_segs[0].ds_addr;
   2112 	/*
   2113 	 * Calculate rate code.
   2114 	 * XXX everything at min xmit rate
   2115 	 */
   2116 	rix = sc->sc_minrateix;
   2117 	rt = sc->sc_currates;
   2118 	rate = rt->info[rix].rateCode;
   2119 	if (USE_SHPREAMBLE(ic))
   2120 		rate |= rt->info[rix].shortPreamble;
   2121 	ath_hal_setuptxdesc(ah, ds
   2122 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
   2123 		, sizeof(struct ieee80211_frame)/* header length */
   2124 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
   2125 		, ni->ni_txpower		/* txpower XXX */
   2126 		, rate, 1			/* series 0 rate/tries */
   2127 		, HAL_TXKEYIX_INVALID		/* no encryption */
   2128 		, antenna			/* antenna mode */
   2129 		, flags				/* no ack, veol for beacons */
   2130 		, 0				/* rts/cts rate */
   2131 		, 0				/* rts/cts duration */
   2132 	);
   2133 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
   2134 	ath_hal_filltxdesc(ah, ds
   2135 		, roundup(m->m_len, 4)		/* buffer length */
   2136 		, AH_TRUE			/* first segment */
   2137 		, AH_TRUE			/* last segment */
   2138 		, ds				/* first descriptor */
   2139 	);
   2140 
   2141 	/* NB: The desc swap function becomes void,
   2142 	 * if descriptor swapping is not enabled
   2143 	 */
   2144 	ath_desc_swap(ds);
   2145 
   2146 #undef USE_SHPREAMBLE
   2147 }
   2148 
   2149 /*
   2150  * Transmit a beacon frame at SWBA.  Dynamic updates to the
   2151  * frame contents are done as needed and the slot time is
   2152  * also adjusted based on current state.
   2153  */
   2154 static void
   2155 ath_beacon_proc(void *arg, int pending)
   2156 {
   2157 	struct ath_softc *sc = arg;
   2158 	struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
   2159 	struct ieee80211_node *ni = bf->bf_node;
   2160 	struct ieee80211com *ic = ni->ni_ic;
   2161 	struct ath_hal *ah = sc->sc_ah;
   2162 	struct mbuf *m;
   2163 	int ncabq, error, otherant;
   2164 
   2165 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
   2166 		__func__, pending);
   2167 
   2168 	if (ic->ic_opmode == IEEE80211_M_STA ||
   2169 	    ic->ic_opmode == IEEE80211_M_MONITOR ||
   2170 	    bf == NULL || bf->bf_m == NULL) {
   2171 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
   2172 			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
   2173 		return;
   2174 	}
   2175 	/*
   2176 	 * Check if the previous beacon has gone out.  If
   2177 	 * not don't try to post another, skip this period
   2178 	 * and wait for the next.  Missed beacons indicate
   2179 	 * a problem and should not occur.  If we miss too
   2180 	 * many consecutive beacons reset the device.
   2181 	 */
   2182 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
   2183 		sc->sc_bmisscount++;
   2184 		DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
   2185 			"%s: missed %u consecutive beacons\n",
   2186 			__func__, sc->sc_bmisscount);
   2187 		if (sc->sc_bmisscount > 3)		/* NB: 3 is a guess */
   2188 			TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask);
   2189 		return;
   2190 	}
   2191 	if (sc->sc_bmisscount != 0) {
   2192 		DPRINTF(sc, ATH_DEBUG_BEACON,
   2193 			"%s: resume beacon xmit after %u misses\n",
   2194 			__func__, sc->sc_bmisscount);
   2195 		sc->sc_bmisscount = 0;
   2196 	}
   2197 
   2198 	/*
   2199 	 * Update dynamic beacon contents.  If this returns
   2200 	 * non-zero then we need to remap the memory because
   2201 	 * the beacon frame changed size (probably because
   2202 	 * of the TIM bitmap).
   2203 	 */
   2204 	m = bf->bf_m;
   2205 	ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
   2206 	if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
   2207 		/* XXX too conservative? */
   2208 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   2209 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
   2210 					     BUS_DMA_NOWAIT);
   2211 		if (error != 0) {
   2212 			if_printf(&sc->sc_if,
   2213 			    "%s: bus_dmamap_load_mbuf failed, error %u\n",
   2214 			    __func__, error);
   2215 			return;
   2216 		}
   2217 	}
   2218 
   2219 	/*
   2220 	 * Handle slot time change when a non-ERP station joins/leaves
   2221 	 * an 11g network.  The 802.11 layer notifies us via callback,
   2222 	 * we mark updateslot, then wait one beacon before effecting
   2223 	 * the change.  This gives associated stations at least one
   2224 	 * beacon interval to note the state change.
   2225 	 */
   2226 	/* XXX locking */
   2227 	if (sc->sc_updateslot == UPDATE)
   2228 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
   2229 	else if (sc->sc_updateslot == COMMIT)
   2230 		ath_setslottime(sc);		/* commit change to h/w */
   2231 
   2232 	/*
   2233 	 * Check recent per-antenna transmit statistics and flip
   2234 	 * the default antenna if noticeably more frames went out
   2235 	 * on the non-default antenna.
   2236 	 * XXX assumes 2 anntenae
   2237 	 */
   2238 	otherant = sc->sc_defant & 1 ? 2 : 1;
   2239 	if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
   2240 		ath_setdefantenna(sc, otherant);
   2241 	sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
   2242 
   2243 	/*
   2244 	 * Construct tx descriptor.
   2245 	 */
   2246 	ath_beacon_setup(sc, bf);
   2247 
   2248 	/*
   2249 	 * Stop any current dma and put the new frame on the queue.
   2250 	 * This should never fail since we check above that no frames
   2251 	 * are still pending on the queue.
   2252 	 */
   2253 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
   2254 		DPRINTF(sc, ATH_DEBUG_ANY,
   2255 			"%s: beacon queue %u did not stop?\n",
   2256 			__func__, sc->sc_bhalq);
   2257 	}
   2258 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   2259 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2260 
   2261 	/*
   2262 	 * Enable the CAB queue before the beacon queue to
   2263 	 * insure cab frames are triggered by this beacon.
   2264 	 */
   2265 	if (ncabq != 0 && (sc->sc_boff.bo_tim[4] & 1))	/* NB: only at DTIM */
   2266 		ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
   2267 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
   2268 	ath_hal_txstart(ah, sc->sc_bhalq);
   2269 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
   2270 	    "%s: TXDP[%u] = %" PRIx64 " (%p)\n", __func__,
   2271 	    sc->sc_bhalq, (uint64_t)bf->bf_daddr, bf->bf_desc);
   2272 
   2273 	sc->sc_stats.ast_be_xmit++;
   2274 }
   2275 
   2276 /*
   2277  * Reset the hardware after detecting beacons have stopped.
   2278  */
   2279 static void
   2280 ath_bstuck_proc(void *arg, int pending)
   2281 {
   2282 	struct ath_softc *sc = arg;
   2283 	struct ifnet *ifp = &sc->sc_if;
   2284 
   2285 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
   2286 		sc->sc_bmisscount);
   2287 	ath_reset(ifp);
   2288 }
   2289 
   2290 /*
   2291  * Reclaim beacon resources.
   2292  */
   2293 static void
   2294 ath_beacon_free(struct ath_softc *sc)
   2295 {
   2296 	struct ath_buf *bf;
   2297 
   2298 	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
   2299 		if (bf->bf_m != NULL) {
   2300 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   2301 			m_freem(bf->bf_m);
   2302 			bf->bf_m = NULL;
   2303 		}
   2304 		if (bf->bf_node != NULL) {
   2305 			ieee80211_free_node(bf->bf_node);
   2306 			bf->bf_node = NULL;
   2307 		}
   2308 	}
   2309 }
   2310 
   2311 /*
   2312  * Configure the beacon and sleep timers.
   2313  *
   2314  * When operating as an AP this resets the TSF and sets
   2315  * up the hardware to notify us when we need to issue beacons.
   2316  *
   2317  * When operating in station mode this sets up the beacon
   2318  * timers according to the timestamp of the last received
   2319  * beacon and the current TSF, configures PCF and DTIM
   2320  * handling, programs the sleep registers so the hardware
   2321  * will wakeup in time to receive beacons, and configures
   2322  * the beacon miss handling so we'll receive a BMISS
   2323  * interrupt when we stop seeing beacons from the AP
   2324  * we've associated with.
   2325  */
   2326 static void
   2327 ath_beacon_config(struct ath_softc *sc)
   2328 {
   2329 #define	TSF_TO_TU(_h,_l) \
   2330 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
   2331 #define	FUDGE	2
   2332 	struct ath_hal *ah = sc->sc_ah;
   2333 	struct ieee80211com *ic = &sc->sc_ic;
   2334 	struct ieee80211_node *ni = ic->ic_bss;
   2335 	u_int32_t nexttbtt, intval, tsftu;
   2336 	u_int64_t tsf;
   2337 
   2338 	/* extract tstamp from last beacon and convert to TU */
   2339 	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
   2340 			     LE_READ_4(ni->ni_tstamp.data));
   2341 	/* NB: the beacon interval is kept internally in TU's */
   2342 	intval = ni->ni_intval & HAL_BEACON_PERIOD;
   2343 	if (nexttbtt == 0)		/* e.g. for ap mode */
   2344 		nexttbtt = intval;
   2345 	else if (intval)		/* NB: can be 0 for monitor mode */
   2346 		nexttbtt = roundup(nexttbtt, intval);
   2347 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
   2348 		__func__, nexttbtt, intval, ni->ni_intval);
   2349 	if (ic->ic_opmode == IEEE80211_M_STA) {
   2350 		HAL_BEACON_STATE bs;
   2351 		int dtimperiod, dtimcount;
   2352 		int cfpperiod, cfpcount;
   2353 
   2354 		/*
   2355 		 * Setup dtim and cfp parameters according to
   2356 		 * last beacon we received (which may be none).
   2357 		 */
   2358 		dtimperiod = ni->ni_dtim_period;
   2359 		if (dtimperiod <= 0)		/* NB: 0 if not known */
   2360 			dtimperiod = 1;
   2361 		dtimcount = ni->ni_dtim_count;
   2362 		if (dtimcount >= dtimperiod)	/* NB: sanity check */
   2363 			dtimcount = 0;		/* XXX? */
   2364 		cfpperiod = 1;			/* NB: no PCF support yet */
   2365 		cfpcount = 0;
   2366 		/*
   2367 		 * Pull nexttbtt forward to reflect the current
   2368 		 * TSF and calculate dtim+cfp state for the result.
   2369 		 */
   2370 		tsf = ath_hal_gettsf64(ah);
   2371 		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
   2372 		do {
   2373 			nexttbtt += intval;
   2374 			if (--dtimcount < 0) {
   2375 				dtimcount = dtimperiod - 1;
   2376 				if (--cfpcount < 0)
   2377 					cfpcount = cfpperiod - 1;
   2378 			}
   2379 		} while (nexttbtt < tsftu);
   2380 		memset(&bs, 0, sizeof(bs));
   2381 		bs.bs_intval = intval;
   2382 		bs.bs_nexttbtt = nexttbtt;
   2383 		bs.bs_dtimperiod = dtimperiod*intval;
   2384 		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
   2385 		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
   2386 		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
   2387 		bs.bs_cfpmaxduration = 0;
   2388 #if 0
   2389 		/*
   2390 		 * The 802.11 layer records the offset to the DTIM
   2391 		 * bitmap while receiving beacons; use it here to
   2392 		 * enable h/w detection of our AID being marked in
   2393 		 * the bitmap vector (to indicate frames for us are
   2394 		 * pending at the AP).
   2395 		 * XXX do DTIM handling in s/w to WAR old h/w bugs
   2396 		 * XXX enable based on h/w rev for newer chips
   2397 		 */
   2398 		bs.bs_timoffset = ni->ni_timoff;
   2399 #endif
   2400 		/*
   2401 		 * Calculate the number of consecutive beacons to miss
   2402 		 * before taking a BMISS interrupt.  The configuration
   2403 		 * is specified in ms, so we need to convert that to
   2404 		 * TU's and then calculate based on the beacon interval.
   2405 		 * Note that we clamp the result to at most 10 beacons.
   2406 		 */
   2407 		bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
   2408 		if (bs.bs_bmissthreshold > 10)
   2409 			bs.bs_bmissthreshold = 10;
   2410 		else if (bs.bs_bmissthreshold <= 0)
   2411 			bs.bs_bmissthreshold = 1;
   2412 
   2413 		/*
   2414 		 * Calculate sleep duration.  The configuration is
   2415 		 * given in ms.  We insure a multiple of the beacon
   2416 		 * period is used.  Also, if the sleep duration is
   2417 		 * greater than the DTIM period then it makes senses
   2418 		 * to make it a multiple of that.
   2419 		 *
   2420 		 * XXX fixed at 100ms
   2421 		 */
   2422 		bs.bs_sleepduration =
   2423 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
   2424 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
   2425 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
   2426 
   2427 		DPRINTF(sc, ATH_DEBUG_BEACON,
   2428 			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
   2429 			, __func__
   2430 			, tsf, tsftu
   2431 			, bs.bs_intval
   2432 			, bs.bs_nexttbtt
   2433 			, bs.bs_dtimperiod
   2434 			, bs.bs_nextdtim
   2435 			, bs.bs_bmissthreshold
   2436 			, bs.bs_sleepduration
   2437 			, bs.bs_cfpperiod
   2438 			, bs.bs_cfpmaxduration
   2439 			, bs.bs_cfpnext
   2440 			, bs.bs_timoffset
   2441 		);
   2442 		ath_hal_intrset(ah, 0);
   2443 		ath_hal_beacontimers(ah, &bs);
   2444 		sc->sc_imask |= HAL_INT_BMISS;
   2445 		ath_hal_intrset(ah, sc->sc_imask);
   2446 	} else {
   2447 		ath_hal_intrset(ah, 0);
   2448 		if (nexttbtt == intval)
   2449 			intval |= HAL_BEACON_RESET_TSF;
   2450 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
   2451 			/*
   2452 			 * In IBSS mode enable the beacon timers but only
   2453 			 * enable SWBA interrupts if we need to manually
   2454 			 * prepare beacon frames.  Otherwise we use a
   2455 			 * self-linked tx descriptor and let the hardware
   2456 			 * deal with things.
   2457 			 */
   2458 			intval |= HAL_BEACON_ENA;
   2459 			if (!sc->sc_hasveol)
   2460 				sc->sc_imask |= HAL_INT_SWBA;
   2461 			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
   2462 				/*
   2463 				 * Pull nexttbtt forward to reflect
   2464 				 * the current TSF.
   2465 				 */
   2466 				tsf = ath_hal_gettsf64(ah);
   2467 				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
   2468 				do {
   2469 					nexttbtt += intval;
   2470 				} while (nexttbtt < tsftu);
   2471 			}
   2472 			ath_beaconq_config(sc);
   2473 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   2474 			/*
   2475 			 * In AP mode we enable the beacon timers and
   2476 			 * SWBA interrupts to prepare beacon frames.
   2477 			 */
   2478 			intval |= HAL_BEACON_ENA;
   2479 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
   2480 			ath_beaconq_config(sc);
   2481 		}
   2482 		ath_hal_beaconinit(ah, nexttbtt, intval);
   2483 		sc->sc_bmisscount = 0;
   2484 		ath_hal_intrset(ah, sc->sc_imask);
   2485 		/*
   2486 		 * When using a self-linked beacon descriptor in
   2487 		 * ibss mode load it once here.
   2488 		 */
   2489 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
   2490 			ath_beacon_proc(sc, 0);
   2491 	}
   2492 	sc->sc_syncbeacon = 0;
   2493 #undef UNDEF
   2494 #undef TSF_TO_TU
   2495 }
   2496 
   2497 static int
   2498 ath_descdma_setup(struct ath_softc *sc,
   2499 	struct ath_descdma *dd, ath_bufhead *head,
   2500 	const char *name, int nbuf, int ndesc)
   2501 {
   2502 #define	DS2PHYS(_dd, _ds) \
   2503 	((_dd)->dd_desc_paddr + ((char *)(_ds) - (char *)(_dd)->dd_desc))
   2504 	struct ifnet *ifp = &sc->sc_if;
   2505 	struct ath_desc *ds;
   2506 	struct ath_buf *bf;
   2507 	int i, bsize, error;
   2508 
   2509 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
   2510 	    __func__, name, nbuf, ndesc);
   2511 
   2512 	dd->dd_name = name;
   2513 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
   2514 
   2515 	/*
   2516 	 * Setup DMA descriptor area.
   2517 	 */
   2518 	dd->dd_dmat = sc->sc_dmat;
   2519 
   2520 	error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE,
   2521 	    0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0);
   2522 
   2523 	if (error != 0) {
   2524 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
   2525 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
   2526 		goto fail0;
   2527 	}
   2528 
   2529 	error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg,
   2530 	    dd->dd_desc_len, (void **)&dd->dd_desc, BUS_DMA_COHERENT);
   2531 	if (error != 0) {
   2532 		if_printf(ifp, "unable to map %u %s descriptors, error = %u\n",
   2533 		    nbuf * ndesc, dd->dd_name, error);
   2534 		goto fail1;
   2535 	}
   2536 
   2537 	/* allocate descriptors */
   2538 	error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1,
   2539 	    dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap);
   2540 	if (error != 0) {
   2541 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
   2542 			"error %u\n", dd->dd_name, error);
   2543 		goto fail2;
   2544 	}
   2545 
   2546 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc,
   2547 	    dd->dd_desc_len, NULL, BUS_DMA_NOWAIT);
   2548 	if (error != 0) {
   2549 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
   2550 			dd->dd_name, error);
   2551 		goto fail3;
   2552 	}
   2553 
   2554 	ds = dd->dd_desc;
   2555 	dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr;
   2556 	DPRINTF(sc, ATH_DEBUG_RESET,
   2557 	    "%s: %s DMA map: %p (%lu) -> %" PRIx64 " (%lu)\n",
   2558 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
   2559 	    (uint64_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
   2560 
   2561 	/* allocate rx buffers */
   2562 	bsize = sizeof(struct ath_buf) * nbuf;
   2563 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
   2564 	if (bf == NULL) {
   2565 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
   2566 			dd->dd_name, bsize);
   2567 		goto fail4;
   2568 	}
   2569 	dd->dd_bufptr = bf;
   2570 
   2571 	STAILQ_INIT(head);
   2572 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
   2573 		bf->bf_desc = ds;
   2574 		bf->bf_daddr = DS2PHYS(dd, ds);
   2575 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc,
   2576 				MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap);
   2577 		if (error != 0) {
   2578 			if_printf(ifp, "unable to create dmamap for %s "
   2579 				"buffer %u, error %u\n", dd->dd_name, i, error);
   2580 			ath_descdma_cleanup(sc, dd, head);
   2581 			return error;
   2582 		}
   2583 		STAILQ_INSERT_TAIL(head, bf, bf_list);
   2584 	}
   2585 	return 0;
   2586 fail4:
   2587 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
   2588 fail3:
   2589 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
   2590 fail2:
   2591 	bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
   2592 fail1:
   2593 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
   2594 fail0:
   2595 	memset(dd, 0, sizeof(*dd));
   2596 	return error;
   2597 #undef DS2PHYS
   2598 }
   2599 
   2600 static void
   2601 ath_descdma_cleanup(struct ath_softc *sc,
   2602 	struct ath_descdma *dd, ath_bufhead *head)
   2603 {
   2604 	struct ath_buf *bf;
   2605 	struct ieee80211_node *ni;
   2606 
   2607 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
   2608 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
   2609 	bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
   2610 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
   2611 
   2612 	STAILQ_FOREACH(bf, head, bf_list) {
   2613 		if (bf->bf_m) {
   2614 			m_freem(bf->bf_m);
   2615 			bf->bf_m = NULL;
   2616 		}
   2617 		if (bf->bf_dmamap != NULL) {
   2618 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
   2619 			bf->bf_dmamap = NULL;
   2620 		}
   2621 		ni = bf->bf_node;
   2622 		bf->bf_node = NULL;
   2623 		if (ni != NULL) {
   2624 			/*
   2625 			 * Reclaim node reference.
   2626 			 */
   2627 			ieee80211_free_node(ni);
   2628 		}
   2629 	}
   2630 
   2631 	STAILQ_INIT(head);
   2632 	free(dd->dd_bufptr, M_ATHDEV);
   2633 	memset(dd, 0, sizeof(*dd));
   2634 }
   2635 
   2636 static int
   2637 ath_desc_alloc(struct ath_softc *sc)
   2638 {
   2639 	int error;
   2640 
   2641 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
   2642 			"rx", ath_rxbuf, 1);
   2643 	if (error != 0)
   2644 		return error;
   2645 
   2646 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
   2647 			"tx", ath_txbuf, ATH_TXDESC);
   2648 	if (error != 0) {
   2649 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2650 		return error;
   2651 	}
   2652 
   2653 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
   2654 			"beacon", 1, 1);
   2655 	if (error != 0) {
   2656 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
   2657 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2658 		return error;
   2659 	}
   2660 	return 0;
   2661 }
   2662 
   2663 static void
   2664 ath_desc_free(struct ath_softc *sc)
   2665 {
   2666 
   2667 	if (sc->sc_bdma.dd_desc_len != 0)
   2668 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
   2669 	if (sc->sc_txdma.dd_desc_len != 0)
   2670 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
   2671 	if (sc->sc_rxdma.dd_desc_len != 0)
   2672 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2673 }
   2674 
   2675 static struct ieee80211_node *
   2676 ath_node_alloc(struct ieee80211_node_table *nt)
   2677 {
   2678 	struct ieee80211com *ic = nt->nt_ic;
   2679 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   2680 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
   2681 	struct ath_node *an;
   2682 
   2683 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
   2684 	if (an == NULL) {
   2685 		/* XXX stat+msg */
   2686 		return NULL;
   2687 	}
   2688 	an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
   2689 	ath_rate_node_init(sc, an);
   2690 
   2691 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
   2692 	return &an->an_node;
   2693 }
   2694 
   2695 static void
   2696 ath_node_free(struct ieee80211_node *ni)
   2697 {
   2698 	struct ieee80211com *ic = ni->ni_ic;
   2699         struct ath_softc *sc = ic->ic_ifp->if_softc;
   2700 
   2701 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
   2702 
   2703 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
   2704 	sc->sc_node_free(ni);
   2705 }
   2706 
   2707 static u_int8_t
   2708 ath_node_getrssi(const struct ieee80211_node *ni)
   2709 {
   2710 #define	HAL_EP_RND(x, mul) \
   2711 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
   2712 	u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
   2713 	int32_t rssi;
   2714 
   2715 	/*
   2716 	 * When only one frame is received there will be no state in
   2717 	 * avgrssi so fallback on the value recorded by the 802.11 layer.
   2718 	 */
   2719 	if (avgrssi != ATH_RSSI_DUMMY_MARKER)
   2720 		rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
   2721 	else
   2722 		rssi = ni->ni_rssi;
   2723 	return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
   2724 #undef HAL_EP_RND
   2725 }
   2726 
   2727 static int
   2728 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
   2729 {
   2730 	struct ath_hal *ah = sc->sc_ah;
   2731 	int error;
   2732 	struct mbuf *m;
   2733 	struct ath_desc *ds;
   2734 
   2735 	m = bf->bf_m;
   2736 	if (m == NULL) {
   2737 		/*
   2738 		 * NB: by assigning a page to the rx dma buffer we
   2739 		 * implicitly satisfy the Atheros requirement that
   2740 		 * this buffer be cache-line-aligned and sized to be
   2741 		 * multiple of the cache line size.  Not doing this
   2742 		 * causes weird stuff to happen (for the 5210 at least).
   2743 		 */
   2744 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
   2745 		if (m == NULL) {
   2746 			DPRINTF(sc, ATH_DEBUG_ANY,
   2747 				"%s: no mbuf/cluster\n", __func__);
   2748 			sc->sc_stats.ast_rx_nombuf++;
   2749 			return ENOMEM;
   2750 		}
   2751 		bf->bf_m = m;
   2752 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
   2753 
   2754 		error = bus_dmamap_load_mbuf(sc->sc_dmat,
   2755 					     bf->bf_dmamap, m,
   2756 					     BUS_DMA_NOWAIT);
   2757 		if (error != 0) {
   2758 			DPRINTF(sc, ATH_DEBUG_ANY,
   2759 			    "%s: bus_dmamap_load_mbuf failed; error %d\n",
   2760 			    __func__, error);
   2761 			sc->sc_stats.ast_rx_busdma++;
   2762 			return error;
   2763 		}
   2764 		KASSERT(bf->bf_nseg == 1,
   2765 			("multi-segment packet; nseg %u", bf->bf_nseg));
   2766 	}
   2767 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   2768 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2769 
   2770 	/*
   2771 	 * Setup descriptors.  For receive we always terminate
   2772 	 * the descriptor list with a self-linked entry so we'll
   2773 	 * not get overrun under high load (as can happen with a
   2774 	 * 5212 when ANI processing enables PHY error frames).
   2775 	 *
   2776 	 * To insure the last descriptor is self-linked we create
   2777 	 * each descriptor as self-linked and add it to the end.  As
   2778 	 * each additional descriptor is added the previous self-linked
   2779 	 * entry is ``fixed'' naturally.  This should be safe even
   2780 	 * if DMA is happening.  When processing RX interrupts we
   2781 	 * never remove/process the last, self-linked, entry on the
   2782 	 * descriptor list.  This insures the hardware always has
   2783 	 * someplace to write a new frame.
   2784 	 */
   2785 	ds = bf->bf_desc;
   2786 	ds->ds_link = HTOAH32(bf->bf_daddr);	/* link to self */
   2787 	ds->ds_data = bf->bf_segs[0].ds_addr;
   2788 	ds->ds_vdata = mtod(m, void *);	/* for radar */
   2789 	ath_hal_setuprxdesc(ah, ds
   2790 		, m->m_len		/* buffer size */
   2791 		, 0
   2792 	);
   2793 
   2794 	if (sc->sc_rxlink != NULL)
   2795 		*sc->sc_rxlink = bf->bf_daddr;
   2796 	sc->sc_rxlink = &ds->ds_link;
   2797 	return 0;
   2798 }
   2799 
   2800 /*
   2801  * Extend 15-bit time stamp from rx descriptor to
   2802  * a full 64-bit TSF using the specified TSF.
   2803  */
   2804 static inline u_int64_t
   2805 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
   2806 {
   2807 	if ((tsf & 0x7fff) < rstamp)
   2808 		tsf -= 0x8000;
   2809 	return ((tsf &~ 0x7fff) | rstamp);
   2810 }
   2811 
   2812 /*
   2813  * Intercept management frames to collect beacon rssi data
   2814  * and to do ibss merges.
   2815  */
   2816 static void
   2817 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
   2818 	struct ieee80211_node *ni,
   2819 	int subtype, int rssi, u_int32_t rstamp)
   2820 {
   2821 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   2822 
   2823 	/*
   2824 	 * Call up first so subsequent work can use information
   2825 	 * potentially stored in the node (e.g. for ibss merge).
   2826 	 */
   2827 	sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
   2828 	switch (subtype) {
   2829 	case IEEE80211_FC0_SUBTYPE_BEACON:
   2830 		/* update rssi statistics for use by the hal */
   2831 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
   2832 		if (sc->sc_syncbeacon &&
   2833 		    ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) {
   2834 			/*
   2835 			 * Resync beacon timers using the tsf of the beacon
   2836 			 * frame we just received.
   2837 			 */
   2838 			ath_beacon_config(sc);
   2839 		}
   2840 		/* fall thru... */
   2841 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
   2842 		if (ic->ic_opmode == IEEE80211_M_IBSS &&
   2843 		    ic->ic_state == IEEE80211_S_RUN) {
   2844 			u_int64_t tsf = ath_extend_tsf(rstamp,
   2845 				ath_hal_gettsf64(sc->sc_ah));
   2846 
   2847 			/*
   2848 			 * Handle ibss merge as needed; check the tsf on the
   2849 			 * frame before attempting the merge.  The 802.11 spec
   2850 			 * says the station should change it's bssid to match
   2851 			 * the oldest station with the same ssid, where oldest
   2852 			 * is determined by the tsf.  Note that hardware
   2853 			 * reconfiguration happens through callback to
   2854 			 * ath_newstate as the state machine will go from
   2855 			 * RUN -> RUN when this happens.
   2856 			 */
   2857 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
   2858 				DPRINTF(sc, ATH_DEBUG_STATE,
   2859 				    "ibss merge, rstamp %u tsf %ju "
   2860 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
   2861 				    (uintmax_t)ni->ni_tstamp.tsf);
   2862 				(void) ieee80211_ibss_merge(ni);
   2863 			}
   2864 		}
   2865 		break;
   2866 	}
   2867 }
   2868 
   2869 /*
   2870  * Set the default antenna.
   2871  */
   2872 static void
   2873 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
   2874 {
   2875 	struct ath_hal *ah = sc->sc_ah;
   2876 
   2877 	/* XXX block beacon interrupts */
   2878 	ath_hal_setdefantenna(ah, antenna);
   2879 	if (sc->sc_defant != antenna)
   2880 		sc->sc_stats.ast_ant_defswitch++;
   2881 	sc->sc_defant = antenna;
   2882 	sc->sc_rxotherant = 0;
   2883 }
   2884 
   2885 static void
   2886 ath_rx_proc(void *arg, int npending)
   2887 {
   2888 #define	PA2DESC(_sc, _pa) \
   2889 	((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
   2890 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
   2891 	struct ath_softc *sc = arg;
   2892 	struct ath_buf *bf;
   2893 	struct ieee80211com *ic = &sc->sc_ic;
   2894 	struct ifnet *ifp = &sc->sc_if;
   2895 	struct ath_hal *ah = sc->sc_ah;
   2896 	struct ath_desc *ds;
   2897 	struct mbuf *m;
   2898 	struct ieee80211_node *ni;
   2899 	struct ath_node *an;
   2900 	int len, type, ngood;
   2901 	u_int phyerr;
   2902 	HAL_STATUS status;
   2903 	int16_t nf;
   2904 	u_int64_t tsf;
   2905 
   2906 	NET_LOCK_GIANT();		/* XXX */
   2907 
   2908 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
   2909 	ngood = 0;
   2910 	nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
   2911 	tsf = ath_hal_gettsf64(ah);
   2912 	do {
   2913 		bf = STAILQ_FIRST(&sc->sc_rxbuf);
   2914 		if (bf == NULL) {		/* NB: shouldn't happen */
   2915 			if_printf(ifp, "%s: no buffer!\n", __func__);
   2916 			break;
   2917 		}
   2918 		ds = bf->bf_desc;
   2919 		if (ds->ds_link == bf->bf_daddr) {
   2920 			/* NB: never process the self-linked entry at the end */
   2921 			break;
   2922 		}
   2923 		m = bf->bf_m;
   2924 		if (m == NULL) {		/* NB: shouldn't happen */
   2925 			if_printf(ifp, "%s: no mbuf!\n", __func__);
   2926 			break;
   2927 		}
   2928 		/* XXX sync descriptor memory */
   2929 		/*
   2930 		 * Must provide the virtual address of the current
   2931 		 * descriptor, the physical address, and the virtual
   2932 		 * address of the next descriptor in the h/w chain.
   2933 		 * This allows the HAL to look ahead to see if the
   2934 		 * hardware is done with a descriptor by checking the
   2935 		 * done bit in the following descriptor and the address
   2936 		 * of the current descriptor the DMA engine is working
   2937 		 * on.  All this is necessary because of our use of
   2938 		 * a self-linked list to avoid rx overruns.
   2939 		 */
   2940 		status = ath_hal_rxprocdesc(ah, ds,
   2941 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
   2942 #ifdef AR_DEBUG
   2943 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
   2944 			ath_printrxbuf(bf, status == HAL_OK);
   2945 #endif
   2946 		if (status == HAL_EINPROGRESS)
   2947 			break;
   2948 		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
   2949 		if (ds->ds_rxstat.rs_more) {
   2950 			/*
   2951 			 * Frame spans multiple descriptors; this
   2952 			 * cannot happen yet as we don't support
   2953 			 * jumbograms.  If not in monitor mode,
   2954 			 * discard the frame.
   2955 			 */
   2956 			if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   2957 				sc->sc_stats.ast_rx_toobig++;
   2958 				goto rx_next;
   2959 			}
   2960 			/* fall thru for monitor mode handling... */
   2961 		} else if (ds->ds_rxstat.rs_status != 0) {
   2962 			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
   2963 				sc->sc_stats.ast_rx_crcerr++;
   2964 			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
   2965 				sc->sc_stats.ast_rx_fifoerr++;
   2966 			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
   2967 				sc->sc_stats.ast_rx_phyerr++;
   2968 				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
   2969 				sc->sc_stats.ast_rx_phy[phyerr]++;
   2970 				goto rx_next;
   2971 			}
   2972 			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
   2973 				/*
   2974 				 * Decrypt error.  If the error occurred
   2975 				 * because there was no hardware key, then
   2976 				 * let the frame through so the upper layers
   2977 				 * can process it.  This is necessary for 5210
   2978 				 * parts which have no way to setup a ``clear''
   2979 				 * key cache entry.
   2980 				 *
   2981 				 * XXX do key cache faulting
   2982 				 */
   2983 				if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
   2984 					goto rx_accept;
   2985 				sc->sc_stats.ast_rx_badcrypt++;
   2986 			}
   2987 			if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
   2988 				sc->sc_stats.ast_rx_badmic++;
   2989 				/*
   2990 				 * Do minimal work required to hand off
   2991 				 * the 802.11 header for notifcation.
   2992 				 */
   2993 				/* XXX frag's and qos frames */
   2994 				len = ds->ds_rxstat.rs_datalen;
   2995 				if (len >= sizeof (struct ieee80211_frame)) {
   2996 					bus_dmamap_sync(sc->sc_dmat,
   2997 					    bf->bf_dmamap,
   2998 					    0, bf->bf_dmamap->dm_mapsize,
   2999 					    BUS_DMASYNC_POSTREAD);
   3000 					ieee80211_notify_michael_failure(ic,
   3001 					    mtod(m, struct ieee80211_frame *),
   3002 					    sc->sc_splitmic ?
   3003 					        ds->ds_rxstat.rs_keyix-32 :
   3004 					        ds->ds_rxstat.rs_keyix
   3005 					);
   3006 				}
   3007 			}
   3008 			ifp->if_ierrors++;
   3009 			/*
   3010 			 * Reject error frames, we normally don't want
   3011 			 * to see them in monitor mode (in monitor mode
   3012 			 * allow through packets that have crypto problems).
   3013 			 */
   3014 			if ((ds->ds_rxstat.rs_status &~
   3015 				(HAL_RXERR_DECRYPT|HAL_RXERR_MIC)) ||
   3016 			    sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
   3017 				goto rx_next;
   3018 		}
   3019 rx_accept:
   3020 		/*
   3021 		 * Sync and unmap the frame.  At this point we're
   3022 		 * committed to passing the mbuf somewhere so clear
   3023 		 * bf_m; this means a new sk_buff must be allocated
   3024 		 * when the rx descriptor is setup again to receive
   3025 		 * another frame.
   3026 		 */
   3027 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
   3028 		    0, bf->bf_dmamap->dm_mapsize,
   3029 		    BUS_DMASYNC_POSTREAD);
   3030 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   3031 		bf->bf_m = NULL;
   3032 
   3033 		m->m_pkthdr.rcvif = ifp;
   3034 		len = ds->ds_rxstat.rs_datalen;
   3035 		m->m_pkthdr.len = m->m_len = len;
   3036 
   3037 		sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
   3038 
   3039 #if NBPFILTER > 0
   3040 		if (sc->sc_drvbpf) {
   3041 			u_int8_t rix;
   3042 
   3043 			/*
   3044 			 * Discard anything shorter than an ack or cts.
   3045 			 */
   3046 			if (len < IEEE80211_ACK_LEN) {
   3047 				DPRINTF(sc, ATH_DEBUG_RECV,
   3048 					"%s: runt packet %d\n",
   3049 					__func__, len);
   3050 				sc->sc_stats.ast_rx_tooshort++;
   3051 				m_freem(m);
   3052 				goto rx_next;
   3053 			}
   3054 			rix = ds->ds_rxstat.rs_rate;
   3055 			sc->sc_rx_th.wr_tsf = htole64(
   3056 				ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf));
   3057 			sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
   3058 			sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
   3059 			sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf;
   3060 			sc->sc_rx_th.wr_antnoise = nf;
   3061 			sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
   3062 
   3063 			bpf_mtap2(sc->sc_drvbpf,
   3064 				&sc->sc_rx_th, sc->sc_rx_th_len, m);
   3065 		}
   3066 #endif
   3067 
   3068 		/*
   3069 		 * From this point on we assume the frame is at least
   3070 		 * as large as ieee80211_frame_min; verify that.
   3071 		 */
   3072 		if (len < IEEE80211_MIN_LEN) {
   3073 			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
   3074 				__func__, len);
   3075 			sc->sc_stats.ast_rx_tooshort++;
   3076 			m_freem(m);
   3077 			goto rx_next;
   3078 		}
   3079 
   3080 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
   3081 			ieee80211_dump_pkt(mtod(m, void *), len,
   3082 				   sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
   3083 				   ds->ds_rxstat.rs_rssi);
   3084 		}
   3085 
   3086 		m_adj(m, -IEEE80211_CRC_LEN);
   3087 
   3088 		/*
   3089 		 * Locate the node for sender, track state, and then
   3090 		 * pass the (referenced) node up to the 802.11 layer
   3091 		 * for its use.
   3092 		 */
   3093 		ni = ieee80211_find_rxnode_withkey(ic,
   3094 			mtod(m, const struct ieee80211_frame_min *),
   3095 			ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
   3096 				IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
   3097 		/*
   3098 		 * Track rx rssi and do any rx antenna management.
   3099 		 */
   3100 		an = ATH_NODE(ni);
   3101 		ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
   3102 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi);
   3103 		/*
   3104 		 * Send frame up for processing.
   3105 		 */
   3106 		type = ieee80211_input(ic, m, ni,
   3107 			ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
   3108 		ieee80211_free_node(ni);
   3109 		if (sc->sc_diversity) {
   3110 			/*
   3111 			 * When using fast diversity, change the default rx
   3112 			 * antenna if diversity chooses the other antenna 3
   3113 			 * times in a row.
   3114 			 */
   3115 			if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
   3116 				if (++sc->sc_rxotherant >= 3)
   3117 					ath_setdefantenna(sc,
   3118 						ds->ds_rxstat.rs_antenna);
   3119 			} else
   3120 				sc->sc_rxotherant = 0;
   3121 		}
   3122 		if (sc->sc_softled) {
   3123 			/*
   3124 			 * Blink for any data frame.  Otherwise do a
   3125 			 * heartbeat-style blink when idle.  The latter
   3126 			 * is mainly for station mode where we depend on
   3127 			 * periodic beacon frames to trigger the poll event.
   3128 			 */
   3129 			if (type == IEEE80211_FC0_TYPE_DATA) {
   3130 				sc->sc_rxrate = ds->ds_rxstat.rs_rate;
   3131 				ath_led_event(sc, ATH_LED_RX);
   3132 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
   3133 				ath_led_event(sc, ATH_LED_POLL);
   3134 		}
   3135 		/*
   3136 		 * Arrange to update the last rx timestamp only for
   3137 		 * frames from our ap when operating in station mode.
   3138 		 * This assumes the rx key is always setup when associated.
   3139 		 */
   3140 		if (ic->ic_opmode == IEEE80211_M_STA &&
   3141 		    ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID)
   3142 			ngood++;
   3143 rx_next:
   3144 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
   3145 	} while (ath_rxbuf_init(sc, bf) == 0);
   3146 
   3147 	/* rx signal state monitoring */
   3148 	ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
   3149 	if (ath_hal_radar_event(ah))
   3150 		TASK_RUN_OR_ENQUEUE(&sc->sc_radartask);
   3151 	if (ngood)
   3152 		sc->sc_lastrx = tsf;
   3153 
   3154 #ifdef __NetBSD__
   3155 	/* XXX Why isn't this necessary in FreeBSD? */
   3156 	if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
   3157 		ath_start(ifp);
   3158 #endif /* __NetBSD__ */
   3159 
   3160 	NET_UNLOCK_GIANT();		/* XXX */
   3161 #undef PA2DESC
   3162 }
   3163 
   3164 /*
   3165  * Setup a h/w transmit queue.
   3166  */
   3167 static struct ath_txq *
   3168 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
   3169 {
   3170 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   3171 	struct ath_hal *ah = sc->sc_ah;
   3172 	HAL_TXQ_INFO qi;
   3173 	int qnum;
   3174 
   3175 	memset(&qi, 0, sizeof(qi));
   3176 	qi.tqi_subtype = subtype;
   3177 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
   3178 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
   3179 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
   3180 	/*
   3181 	 * Enable interrupts only for EOL and DESC conditions.
   3182 	 * We mark tx descriptors to receive a DESC interrupt
   3183 	 * when a tx queue gets deep; otherwise waiting for the
   3184 	 * EOL to reap descriptors.  Note that this is done to
   3185 	 * reduce interrupt load and this only defers reaping
   3186 	 * descriptors, never transmitting frames.  Aside from
   3187 	 * reducing interrupts this also permits more concurrency.
   3188 	 * The only potential downside is if the tx queue backs
   3189 	 * up in which case the top half of the kernel may backup
   3190 	 * due to a lack of tx descriptors.
   3191 	 */
   3192 	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
   3193 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
   3194 	if (qnum == -1) {
   3195 		/*
   3196 		 * NB: don't print a message, this happens
   3197 		 * normally on parts with too few tx queues
   3198 		 */
   3199 		return NULL;
   3200 	}
   3201 	if (qnum >= N(sc->sc_txq)) {
   3202 		device_printf(sc->sc_dev,
   3203 			"hal qnum %u out of range, max %zu!\n",
   3204 			qnum, N(sc->sc_txq));
   3205 		ath_hal_releasetxqueue(ah, qnum);
   3206 		return NULL;
   3207 	}
   3208 	if (!ATH_TXQ_SETUP(sc, qnum)) {
   3209 		struct ath_txq *txq = &sc->sc_txq[qnum];
   3210 
   3211 		txq->axq_qnum = qnum;
   3212 		txq->axq_depth = 0;
   3213 		txq->axq_intrcnt = 0;
   3214 		txq->axq_link = NULL;
   3215 		STAILQ_INIT(&txq->axq_q);
   3216 		ATH_TXQ_LOCK_INIT(sc, txq);
   3217 		sc->sc_txqsetup |= 1<<qnum;
   3218 	}
   3219 	return &sc->sc_txq[qnum];
   3220 #undef N
   3221 }
   3222 
   3223 /*
   3224  * Setup a hardware data transmit queue for the specified
   3225  * access control.  The hal may not support all requested
   3226  * queues in which case it will return a reference to a
   3227  * previously setup queue.  We record the mapping from ac's
   3228  * to h/w queues for use by ath_tx_start and also track
   3229  * the set of h/w queues being used to optimize work in the
   3230  * transmit interrupt handler and related routines.
   3231  */
   3232 static int
   3233 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
   3234 {
   3235 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   3236 	struct ath_txq *txq;
   3237 
   3238 	if (ac >= N(sc->sc_ac2q)) {
   3239 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
   3240 			ac, N(sc->sc_ac2q));
   3241 		return 0;
   3242 	}
   3243 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
   3244 	if (txq != NULL) {
   3245 		sc->sc_ac2q[ac] = txq;
   3246 		return 1;
   3247 	} else
   3248 		return 0;
   3249 #undef N
   3250 }
   3251 
   3252 /*
   3253  * Update WME parameters for a transmit queue.
   3254  */
   3255 static int
   3256 ath_txq_update(struct ath_softc *sc, int ac)
   3257 {
   3258 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
   3259 #define	ATH_TXOP_TO_US(v)		(v<<5)
   3260 	struct ieee80211com *ic = &sc->sc_ic;
   3261 	struct ath_txq *txq = sc->sc_ac2q[ac];
   3262 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
   3263 	struct ath_hal *ah = sc->sc_ah;
   3264 	HAL_TXQ_INFO qi;
   3265 
   3266 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
   3267 	qi.tqi_aifs = wmep->wmep_aifsn;
   3268 	qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
   3269 	qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
   3270 	qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
   3271 
   3272 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
   3273 		device_printf(sc->sc_dev, "unable to update hardware queue "
   3274 			"parameters for %s traffic!\n",
   3275 			ieee80211_wme_acnames[ac]);
   3276 		return 0;
   3277 	} else {
   3278 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
   3279 		return 1;
   3280 	}
   3281 #undef ATH_TXOP_TO_US
   3282 #undef ATH_EXPONENT_TO_VALUE
   3283 }
   3284 
   3285 /*
   3286  * Callback from the 802.11 layer to update WME parameters.
   3287  */
   3288 static int
   3289 ath_wme_update(struct ieee80211com *ic)
   3290 {
   3291 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   3292 
   3293 	return !ath_txq_update(sc, WME_AC_BE) ||
   3294 	    !ath_txq_update(sc, WME_AC_BK) ||
   3295 	    !ath_txq_update(sc, WME_AC_VI) ||
   3296 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
   3297 }
   3298 
   3299 /*
   3300  * Reclaim resources for a setup queue.
   3301  */
   3302 static void
   3303 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
   3304 {
   3305 
   3306 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
   3307 	ATH_TXQ_LOCK_DESTROY(txq);
   3308 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
   3309 }
   3310 
   3311 /*
   3312  * Reclaim all tx queue resources.
   3313  */
   3314 static void
   3315 ath_tx_cleanup(struct ath_softc *sc)
   3316 {
   3317 	int i;
   3318 
   3319 	ATH_TXBUF_LOCK_DESTROY(sc);
   3320 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   3321 		if (ATH_TXQ_SETUP(sc, i))
   3322 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
   3323 }
   3324 
   3325 /*
   3326  * Defragment an mbuf chain, returning at most maxfrags separate
   3327  * mbufs+clusters.  If this is not possible NULL is returned and
   3328  * the original mbuf chain is left in it's present (potentially
   3329  * modified) state.  We use two techniques: collapsing consecutive
   3330  * mbufs and replacing consecutive mbufs by a cluster.
   3331  */
   3332 static struct mbuf *
   3333 ath_defrag(struct mbuf *m0, int how, int maxfrags)
   3334 {
   3335 	struct mbuf *m, *n, *n2, **prev;
   3336 	u_int curfrags;
   3337 
   3338 	/*
   3339 	 * Calculate the current number of frags.
   3340 	 */
   3341 	curfrags = 0;
   3342 	for (m = m0; m != NULL; m = m->m_next)
   3343 		curfrags++;
   3344 	/*
   3345 	 * First, try to collapse mbufs.  Note that we always collapse
   3346 	 * towards the front so we don't need to deal with moving the
   3347 	 * pkthdr.  This may be suboptimal if the first mbuf has much
   3348 	 * less data than the following.
   3349 	 */
   3350 	m = m0;
   3351 again:
   3352 	for (;;) {
   3353 		n = m->m_next;
   3354 		if (n == NULL)
   3355 			break;
   3356 		if ((m->m_flags & M_RDONLY) == 0 &&
   3357 		    n->m_len < M_TRAILINGSPACE(m)) {
   3358 			bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
   3359 				n->m_len);
   3360 			m->m_len += n->m_len;
   3361 			m->m_next = n->m_next;
   3362 			m_free(n);
   3363 			if (--curfrags <= maxfrags)
   3364 				return m0;
   3365 		} else
   3366 			m = n;
   3367 	}
   3368 	KASSERT(maxfrags > 1,
   3369 		("maxfrags %u, but normal collapse failed", maxfrags));
   3370 	/*
   3371 	 * Collapse consecutive mbufs to a cluster.
   3372 	 */
   3373 	prev = &m0->m_next;		/* NB: not the first mbuf */
   3374 	while ((n = *prev) != NULL) {
   3375 		if ((n2 = n->m_next) != NULL &&
   3376 		    n->m_len + n2->m_len < MCLBYTES) {
   3377 			m = m_getcl(how, MT_DATA, 0);
   3378 			if (m == NULL)
   3379 				goto bad;
   3380 			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
   3381 			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
   3382 				n2->m_len);
   3383 			m->m_len = n->m_len + n2->m_len;
   3384 			m->m_next = n2->m_next;
   3385 			*prev = m;
   3386 			m_free(n);
   3387 			m_free(n2);
   3388 			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
   3389 				return m0;
   3390 			/*
   3391 			 * Still not there, try the normal collapse
   3392 			 * again before we allocate another cluster.
   3393 			 */
   3394 			goto again;
   3395 		}
   3396 		prev = &n->m_next;
   3397 	}
   3398 	/*
   3399 	 * No place where we can collapse to a cluster; punt.
   3400 	 * This can occur if, for example, you request 2 frags
   3401 	 * but the packet requires that both be clusters (we
   3402 	 * never reallocate the first mbuf to avoid moving the
   3403 	 * packet header).
   3404 	 */
   3405 bad:
   3406 	return NULL;
   3407 }
   3408 
   3409 /*
   3410  * Return h/w rate index for an IEEE rate (w/o basic rate bit).
   3411  */
   3412 static int
   3413 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
   3414 {
   3415 	int i;
   3416 
   3417 	for (i = 0; i < rt->rateCount; i++)
   3418 		if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
   3419 			return i;
   3420 	return 0;		/* NB: lowest rate */
   3421 }
   3422 
   3423 static void
   3424 ath_freetx(struct mbuf *m)
   3425 {
   3426 	struct mbuf *next;
   3427 
   3428 	do {
   3429 		next = m->m_nextpkt;
   3430 		m->m_nextpkt = NULL;
   3431 		m_freem(m);
   3432 	} while ((m = next) != NULL);
   3433 }
   3434 
   3435 static int
   3436 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
   3437     struct mbuf *m0)
   3438 {
   3439 	struct ieee80211com *ic = &sc->sc_ic;
   3440 	struct ath_hal *ah = sc->sc_ah;
   3441 	struct ifnet *ifp = &sc->sc_if;
   3442 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
   3443 	int i, error, iswep, ismcast, isfrag, ismrr;
   3444 	int keyix, hdrlen, pktlen, try0;
   3445 	u_int8_t rix, txrate, ctsrate;
   3446 	u_int8_t cix = 0xff;		/* NB: silence compiler */
   3447 	struct ath_desc *ds, *ds0;
   3448 	struct ath_txq *txq;
   3449 	struct ieee80211_frame *wh;
   3450 	u_int subtype, flags, ctsduration;
   3451 	HAL_PKT_TYPE atype;
   3452 	const HAL_RATE_TABLE *rt;
   3453 	HAL_BOOL shortPreamble;
   3454 	struct ath_node *an;
   3455 	struct mbuf *m;
   3456 	u_int pri;
   3457 
   3458 	wh = mtod(m0, struct ieee80211_frame *);
   3459 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
   3460 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
   3461 	isfrag = m0->m_flags & M_FRAG;
   3462 	hdrlen = ieee80211_anyhdrsize(wh);
   3463 	/*
   3464 	 * Packet length must not include any
   3465 	 * pad bytes; deduct them here.
   3466 	 */
   3467 	pktlen = m0->m_pkthdr.len - (hdrlen & 3);
   3468 
   3469 	if (iswep) {
   3470 		const struct ieee80211_cipher *cip;
   3471 		struct ieee80211_key *k;
   3472 
   3473 		/*
   3474 		 * Construct the 802.11 header+trailer for an encrypted
   3475 		 * frame. The only reason this can fail is because of an
   3476 		 * unknown or unsupported cipher/key type.
   3477 		 */
   3478 		k = ieee80211_crypto_encap(ic, ni, m0);
   3479 		if (k == NULL) {
   3480 			/*
   3481 			 * This can happen when the key is yanked after the
   3482 			 * frame was queued.  Just discard the frame; the
   3483 			 * 802.11 layer counts failures and provides
   3484 			 * debugging/diagnostics.
   3485 			 */
   3486 			ath_freetx(m0);
   3487 			return EIO;
   3488 		}
   3489 		/*
   3490 		 * Adjust the packet + header lengths for the crypto
   3491 		 * additions and calculate the h/w key index.  When
   3492 		 * a s/w mic is done the frame will have had any mic
   3493 		 * added to it prior to entry so m0->m_pkthdr.len above will
   3494 		 * account for it. Otherwise we need to add it to the
   3495 		 * packet length.
   3496 		 */
   3497 		cip = k->wk_cipher;
   3498 		hdrlen += cip->ic_header;
   3499 		pktlen += cip->ic_header + cip->ic_trailer;
   3500 		/* NB: frags always have any TKIP MIC done in s/w */
   3501 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
   3502 			pktlen += cip->ic_miclen;
   3503 		keyix = k->wk_keyix;
   3504 
   3505 		/* packet header may have moved, reset our local pointer */
   3506 		wh = mtod(m0, struct ieee80211_frame *);
   3507 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
   3508 		/*
   3509 		 * Use station key cache slot, if assigned.
   3510 		 */
   3511 		keyix = ni->ni_ucastkey.wk_keyix;
   3512 		if (keyix == IEEE80211_KEYIX_NONE)
   3513 			keyix = HAL_TXKEYIX_INVALID;
   3514 	} else
   3515 		keyix = HAL_TXKEYIX_INVALID;
   3516 
   3517 	pktlen += IEEE80211_CRC_LEN;
   3518 
   3519 	/*
   3520 	 * Load the DMA map so any coalescing is done.  This
   3521 	 * also calculates the number of descriptors we need.
   3522 	 */
   3523 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
   3524 				     BUS_DMA_NOWAIT);
   3525 	if (error == EFBIG) {
   3526 		/* XXX packet requires too many descriptors */
   3527 		bf->bf_nseg = ATH_TXDESC+1;
   3528 	} else if (error != 0) {
   3529 		sc->sc_stats.ast_tx_busdma++;
   3530 		ath_freetx(m0);
   3531 		return error;
   3532 	}
   3533 	/*
   3534 	 * Discard null packets and check for packets that
   3535 	 * require too many TX descriptors.  We try to convert
   3536 	 * the latter to a cluster.
   3537 	 */
   3538 	if (error == EFBIG) {		/* too many desc's, linearize */
   3539 		sc->sc_stats.ast_tx_linear++;
   3540 		m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
   3541 		if (m == NULL) {
   3542 			ath_freetx(m0);
   3543 			sc->sc_stats.ast_tx_nombuf++;
   3544 			return ENOMEM;
   3545 		}
   3546 		m0 = m;
   3547 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
   3548 					     BUS_DMA_NOWAIT);
   3549 		if (error != 0) {
   3550 			sc->sc_stats.ast_tx_busdma++;
   3551 			ath_freetx(m0);
   3552 			return error;
   3553 		}
   3554 		KASSERT(bf->bf_nseg <= ATH_TXDESC,
   3555 		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
   3556 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
   3557 		sc->sc_stats.ast_tx_nodata++;
   3558 		ath_freetx(m0);
   3559 		return EIO;
   3560 	}
   3561 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
   3562 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   3563             bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
   3564 	bf->bf_m = m0;
   3565 	bf->bf_node = ni;			/* NB: held reference */
   3566 
   3567 	/* setup descriptors */
   3568 	ds = bf->bf_desc;
   3569 	rt = sc->sc_currates;
   3570 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
   3571 
   3572 	/*
   3573 	 * NB: the 802.11 layer marks whether or not we should
   3574 	 * use short preamble based on the current mode and
   3575 	 * negotiated parameters.
   3576 	 */
   3577 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
   3578 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) {
   3579 		shortPreamble = AH_TRUE;
   3580 		sc->sc_stats.ast_tx_shortpre++;
   3581 	} else {
   3582 		shortPreamble = AH_FALSE;
   3583 	}
   3584 
   3585 	an = ATH_NODE(ni);
   3586 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
   3587 	ismrr = 0;				/* default no multi-rate retry*/
   3588 	/*
   3589 	 * Calculate Atheros packet type from IEEE80211 packet header,
   3590 	 * setup for rate calculations, and select h/w transmit queue.
   3591 	 */
   3592 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
   3593 	case IEEE80211_FC0_TYPE_MGT:
   3594 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   3595 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
   3596 			atype = HAL_PKT_TYPE_BEACON;
   3597 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
   3598 			atype = HAL_PKT_TYPE_PROBE_RESP;
   3599 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
   3600 			atype = HAL_PKT_TYPE_ATIM;
   3601 		else
   3602 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
   3603 		rix = sc->sc_minrateix;
   3604 		txrate = rt->info[rix].rateCode;
   3605 		if (shortPreamble)
   3606 			txrate |= rt->info[rix].shortPreamble;
   3607 		try0 = ATH_TXMGTTRY;
   3608 		/* NB: force all management frames to highest queue */
   3609 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
   3610 			/* NB: force all management frames to highest queue */
   3611 			pri = WME_AC_VO;
   3612 		} else
   3613 			pri = WME_AC_BE;
   3614 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
   3615 		break;
   3616 	case IEEE80211_FC0_TYPE_CTL:
   3617 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
   3618 		rix = sc->sc_minrateix;
   3619 		txrate = rt->info[rix].rateCode;
   3620 		if (shortPreamble)
   3621 			txrate |= rt->info[rix].shortPreamble;
   3622 		try0 = ATH_TXMGTTRY;
   3623 		/* NB: force all ctl frames to highest queue */
   3624 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
   3625 			/* NB: force all ctl frames to highest queue */
   3626 			pri = WME_AC_VO;
   3627 		} else
   3628 			pri = WME_AC_BE;
   3629 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
   3630 		break;
   3631 	case IEEE80211_FC0_TYPE_DATA:
   3632 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
   3633 		/*
   3634 		 * Data frames: multicast frames go out at a fixed rate,
   3635 		 * otherwise consult the rate control module for the
   3636 		 * rate to use.
   3637 		 */
   3638 		if (ismcast) {
   3639 			/*
   3640 			 * Check mcast rate setting in case it's changed.
   3641 			 * XXX move out of fastpath
   3642 			 */
   3643 			if (ic->ic_mcast_rate != sc->sc_mcastrate) {
   3644 				sc->sc_mcastrix =
   3645 					ath_tx_findrix(rt, ic->ic_mcast_rate);
   3646 				sc->sc_mcastrate = ic->ic_mcast_rate;
   3647 			}
   3648 			rix = sc->sc_mcastrix;
   3649 			txrate = rt->info[rix].rateCode;
   3650 			try0 = 1;
   3651 		} else {
   3652 			ath_rate_findrate(sc, an, shortPreamble, pktlen,
   3653 				&rix, &try0, &txrate);
   3654 			sc->sc_txrate = txrate;		/* for LED blinking */
   3655 			if (try0 != ATH_TXMAXTRY)
   3656 				ismrr = 1;
   3657 		}
   3658 		pri = M_WME_GETAC(m0);
   3659 		if (cap->cap_wmeParams[pri].wmep_noackPolicy)
   3660 			flags |= HAL_TXDESC_NOACK;
   3661 		break;
   3662 	default:
   3663 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
   3664 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
   3665 		/* XXX statistic */
   3666 		ath_freetx(m0);
   3667 		return EIO;
   3668 	}
   3669 	txq = sc->sc_ac2q[pri];
   3670 
   3671 	/*
   3672 	 * When servicing one or more stations in power-save mode
   3673 	 * multicast frames must be buffered until after the beacon.
   3674 	 * We use the CAB queue for that.
   3675 	 */
   3676 	if (ismcast && ic->ic_ps_sta) {
   3677 		txq = sc->sc_cabq;
   3678 		/* XXX? more bit in 802.11 frame header */
   3679 	}
   3680 
   3681 	/*
   3682 	 * Calculate miscellaneous flags.
   3683 	 */
   3684 	if (ismcast) {
   3685 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
   3686 	} else if (pktlen > ic->ic_rtsthreshold) {
   3687 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
   3688 		cix = rt->info[rix].controlRate;
   3689 		sc->sc_stats.ast_tx_rts++;
   3690 	}
   3691 	if (flags & HAL_TXDESC_NOACK)		/* NB: avoid double counting */
   3692 		sc->sc_stats.ast_tx_noack++;
   3693 
   3694 	/*
   3695 	 * If 802.11g protection is enabled, determine whether
   3696 	 * to use RTS/CTS or just CTS.  Note that this is only
   3697 	 * done for OFDM unicast frames.
   3698 	 */
   3699 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
   3700 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
   3701 	    (flags & HAL_TXDESC_NOACK) == 0) {
   3702 		/* XXX fragments must use CCK rates w/ protection */
   3703 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
   3704 			flags |= HAL_TXDESC_RTSENA;
   3705 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
   3706 			flags |= HAL_TXDESC_CTSENA;
   3707 		if (isfrag) {
   3708 			/*
   3709 			 * For frags it would be desirable to use the
   3710 			 * highest CCK rate for RTS/CTS.  But stations
   3711 			 * farther away may detect it at a lower CCK rate
   3712 			 * so use the configured protection rate instead
   3713 			 * (for now).
   3714 			 */
   3715 			cix = rt->info[sc->sc_protrix].controlRate;
   3716 		} else
   3717 			cix = rt->info[sc->sc_protrix].controlRate;
   3718 		sc->sc_stats.ast_tx_protect++;
   3719 	}
   3720 
   3721 	/*
   3722 	 * Calculate duration.  This logically belongs in the 802.11
   3723 	 * layer but it lacks sufficient information to calculate it.
   3724 	 */
   3725 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
   3726 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
   3727 		u_int16_t dur;
   3728 		/*
   3729 		 * XXX not right with fragmentation.
   3730 		 */
   3731 		if (shortPreamble)
   3732 			dur = rt->info[rix].spAckDuration;
   3733 		else
   3734 			dur = rt->info[rix].lpAckDuration;
   3735 		if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
   3736 			dur += dur;             /* additional SIFS+ACK */
   3737 			KASSERT(m0->m_nextpkt != NULL, ("no fragment"));
   3738 			/*
   3739 			 * Include the size of next fragment so NAV is
   3740 			 * updated properly.  The last fragment uses only
   3741 			 * the ACK duration
   3742 			 */
   3743 			dur += ath_hal_computetxtime(ah, rt,
   3744 					m0->m_nextpkt->m_pkthdr.len,
   3745 					rix, shortPreamble);
   3746 		}
   3747 		if (isfrag) {
   3748 			/*
   3749 			 * Force hardware to use computed duration for next
   3750 			 * fragment by disabling multi-rate retry which updates
   3751 			 * duration based on the multi-rate duration table.
   3752 			 */
   3753 			try0 = ATH_TXMAXTRY;
   3754 		}
   3755 		*(u_int16_t *)wh->i_dur = htole16(dur);
   3756 	}
   3757 
   3758 	/*
   3759 	 * Calculate RTS/CTS rate and duration if needed.
   3760 	 */
   3761 	ctsduration = 0;
   3762 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
   3763 		/*
   3764 		 * CTS transmit rate is derived from the transmit rate
   3765 		 * by looking in the h/w rate table.  We must also factor
   3766 		 * in whether or not a short preamble is to be used.
   3767 		 */
   3768 		/* NB: cix is set above where RTS/CTS is enabled */
   3769 		KASSERT(cix != 0xff, ("cix not setup"));
   3770 		ctsrate = rt->info[cix].rateCode;
   3771 		/*
   3772 		 * Compute the transmit duration based on the frame
   3773 		 * size and the size of an ACK frame.  We call into the
   3774 		 * HAL to do the computation since it depends on the
   3775 		 * characteristics of the actual PHY being used.
   3776 		 *
   3777 		 * NB: CTS is assumed the same size as an ACK so we can
   3778 		 *     use the precalculated ACK durations.
   3779 		 */
   3780 		if (shortPreamble) {
   3781 			ctsrate |= rt->info[cix].shortPreamble;
   3782 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
   3783 				ctsduration += rt->info[cix].spAckDuration;
   3784 			ctsduration += ath_hal_computetxtime(ah,
   3785 				rt, pktlen, rix, AH_TRUE);
   3786 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
   3787 				ctsduration += rt->info[rix].spAckDuration;
   3788 		} else {
   3789 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
   3790 				ctsduration += rt->info[cix].lpAckDuration;
   3791 			ctsduration += ath_hal_computetxtime(ah,
   3792 				rt, pktlen, rix, AH_FALSE);
   3793 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
   3794 				ctsduration += rt->info[rix].lpAckDuration;
   3795 		}
   3796 		/*
   3797 		 * Must disable multi-rate retry when using RTS/CTS.
   3798 		 */
   3799 		ismrr = 0;
   3800 		try0 = ATH_TXMGTTRY;		/* XXX */
   3801 	} else
   3802 		ctsrate = 0;
   3803 
   3804 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
   3805 		ieee80211_dump_pkt(mtod(m0, void *), m0->m_len,
   3806 			sc->sc_hwmap[txrate].ieeerate, -1);
   3807 #if NBPFILTER > 0
   3808 	if (ic->ic_rawbpf)
   3809 		bpf_mtap(ic->ic_rawbpf, m0);
   3810 	if (sc->sc_drvbpf) {
   3811 		u_int64_t tsf = ath_hal_gettsf64(ah);
   3812 
   3813 		sc->sc_tx_th.wt_tsf = htole64(tsf);
   3814 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
   3815 		if (iswep)
   3816 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
   3817 		if (isfrag)
   3818 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
   3819 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
   3820 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
   3821 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
   3822 
   3823 		bpf_mtap2(sc->sc_drvbpf,
   3824 			&sc->sc_tx_th, sc->sc_tx_th_len, m0);
   3825 	}
   3826 #endif
   3827 
   3828 	/*
   3829 	 * Determine if a tx interrupt should be generated for
   3830 	 * this descriptor.  We take a tx interrupt to reap
   3831 	 * descriptors when the h/w hits an EOL condition or
   3832 	 * when the descriptor is specifically marked to generate
   3833 	 * an interrupt.  We periodically mark descriptors in this
   3834 	 * way to insure timely replenishing of the supply needed
   3835 	 * for sending frames.  Defering interrupts reduces system
   3836 	 * load and potentially allows more concurrent work to be
   3837 	 * done but if done to aggressively can cause senders to
   3838 	 * backup.
   3839 	 *
   3840 	 * NB: use >= to deal with sc_txintrperiod changing
   3841 	 *     dynamically through sysctl.
   3842 	 */
   3843 	if (flags & HAL_TXDESC_INTREQ) {
   3844 		txq->axq_intrcnt = 0;
   3845 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
   3846 		flags |= HAL_TXDESC_INTREQ;
   3847 		txq->axq_intrcnt = 0;
   3848 	}
   3849 
   3850 	/*
   3851 	 * Formulate first tx descriptor with tx controls.
   3852 	 */
   3853 	/* XXX check return value? */
   3854 	ath_hal_setuptxdesc(ah, ds
   3855 		, pktlen		/* packet length */
   3856 		, hdrlen		/* header length */
   3857 		, atype			/* Atheros packet type */
   3858 		, ni->ni_txpower	/* txpower */
   3859 		, txrate, try0		/* series 0 rate/tries */
   3860 		, keyix			/* key cache index */
   3861 		, sc->sc_txantenna	/* antenna mode */
   3862 		, flags			/* flags */
   3863 		, ctsrate		/* rts/cts rate */
   3864 		, ctsduration		/* rts/cts duration */
   3865 	);
   3866 	bf->bf_flags = flags;
   3867 	/*
   3868 	 * Setup the multi-rate retry state only when we're
   3869 	 * going to use it.  This assumes ath_hal_setuptxdesc
   3870 	 * initializes the descriptors (so we don't have to)
   3871 	 * when the hardware supports multi-rate retry and
   3872 	 * we don't use it.
   3873 	 */
   3874 	if (ismrr)
   3875 		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
   3876 
   3877 	/*
   3878 	 * Fillin the remainder of the descriptor info.
   3879 	 */
   3880 	ds0 = ds;
   3881 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
   3882 		ds->ds_data = bf->bf_segs[i].ds_addr;
   3883 		if (i == bf->bf_nseg - 1)
   3884 			ds->ds_link = 0;
   3885 		else
   3886 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
   3887 		ath_hal_filltxdesc(ah, ds
   3888 			, bf->bf_segs[i].ds_len	/* segment length */
   3889 			, i == 0		/* first segment */
   3890 			, i == bf->bf_nseg - 1	/* last segment */
   3891 			, ds0			/* first descriptor */
   3892 		);
   3893 
   3894 		/* NB: The desc swap function becomes void,
   3895 		 * if descriptor swapping is not enabled
   3896 		 */
   3897 		ath_desc_swap(ds);
   3898 
   3899 		DPRINTF(sc, ATH_DEBUG_XMIT,
   3900 			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
   3901 			__func__, i, ds->ds_link, ds->ds_data,
   3902 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
   3903 	}
   3904 	/*
   3905 	 * Insert the frame on the outbound list and
   3906 	 * pass it on to the hardware.
   3907 	 */
   3908 	ATH_TXQ_LOCK(txq);
   3909 	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
   3910 	if (txq->axq_link == NULL) {
   3911 		ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
   3912 		DPRINTF(sc, ATH_DEBUG_XMIT,
   3913 		    "%s: TXDP[%u] = %" PRIx64 " (%p) depth %d\n", __func__,
   3914 		    txq->axq_qnum, (uint64_t)bf->bf_daddr, bf->bf_desc,
   3915 		    txq->axq_depth);
   3916 	} else {
   3917 		*txq->axq_link = HTOAH32(bf->bf_daddr);
   3918 		DPRINTF(sc, ATH_DEBUG_XMIT,
   3919 		    "%s: link[%u](%p)=%" PRIx64 " (%p) depth %d\n",
   3920 		    __func__, txq->axq_qnum, txq->axq_link,
   3921 		    (uint64_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
   3922 	}
   3923 	txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
   3924 	/*
   3925 	 * The CAB queue is started from the SWBA handler since
   3926 	 * frames only go out on DTIM and to avoid possible races.
   3927 	 */
   3928 	if (txq != sc->sc_cabq)
   3929 		ath_hal_txstart(ah, txq->axq_qnum);
   3930 	ATH_TXQ_UNLOCK(txq);
   3931 
   3932 	return 0;
   3933 }
   3934 
   3935 /*
   3936  * Process completed xmit descriptors from the specified queue.
   3937  */
   3938 static int
   3939 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
   3940 {
   3941 	struct ath_hal *ah = sc->sc_ah;
   3942 	struct ieee80211com *ic = &sc->sc_ic;
   3943 	struct ath_buf *bf;
   3944 	struct ath_desc *ds, *ds0;
   3945 	struct ieee80211_node *ni;
   3946 	struct ath_node *an;
   3947 	int sr, lr, pri, nacked;
   3948 	HAL_STATUS status;
   3949 
   3950 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
   3951 		__func__, txq->axq_qnum,
   3952 		(void *)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
   3953 		txq->axq_link);
   3954 	nacked = 0;
   3955 	for (;;) {
   3956 		ATH_TXQ_LOCK(txq);
   3957 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
   3958 		bf = STAILQ_FIRST(&txq->axq_q);
   3959 		if (bf == NULL) {
   3960 			txq->axq_link = NULL;
   3961 			ATH_TXQ_UNLOCK(txq);
   3962 			break;
   3963 		}
   3964 		ds0 = &bf->bf_desc[0];
   3965 		ds = &bf->bf_desc[bf->bf_nseg - 1];
   3966 		status = ath_hal_txprocdesc(ah, ds);
   3967 #ifdef AR_DEBUG
   3968 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
   3969 			ath_printtxbuf(bf, status == HAL_OK);
   3970 #endif
   3971 		if (status == HAL_EINPROGRESS) {
   3972 			ATH_TXQ_UNLOCK(txq);
   3973 			break;
   3974 		}
   3975 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
   3976 		ATH_TXQ_UNLOCK(txq);
   3977 
   3978 		ni = bf->bf_node;
   3979 		if (ni != NULL) {
   3980 			an = ATH_NODE(ni);
   3981 			if (ds->ds_txstat.ts_status == 0) {
   3982 				u_int8_t txant = ds->ds_txstat.ts_antenna;
   3983 				sc->sc_stats.ast_ant_tx[txant]++;
   3984 				sc->sc_ant_tx[txant]++;
   3985 				if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
   3986 					sc->sc_stats.ast_tx_altrate++;
   3987 				sc->sc_stats.ast_tx_rssi =
   3988 					ds->ds_txstat.ts_rssi;
   3989 				ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
   3990 					ds->ds_txstat.ts_rssi);
   3991 				pri = M_WME_GETAC(bf->bf_m);
   3992 				if (pri >= WME_AC_VO)
   3993 					ic->ic_wme.wme_hipri_traffic++;
   3994 				ni->ni_inact = ni->ni_inact_reload;
   3995 			} else {
   3996 				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
   3997 					sc->sc_stats.ast_tx_xretries++;
   3998 				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
   3999 					sc->sc_stats.ast_tx_fifoerr++;
   4000 				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
   4001 					sc->sc_stats.ast_tx_filtered++;
   4002 			}
   4003 			sr = ds->ds_txstat.ts_shortretry;
   4004 			lr = ds->ds_txstat.ts_longretry;
   4005 			sc->sc_stats.ast_tx_shortretry += sr;
   4006 			sc->sc_stats.ast_tx_longretry += lr;
   4007 			/*
   4008 			 * Hand the descriptor to the rate control algorithm.
   4009 			 */
   4010 			if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
   4011 			    (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
   4012 				/*
   4013 				 * If frame was ack'd update the last rx time
   4014 				 * used to workaround phantom bmiss interrupts.
   4015 				 */
   4016 				if (ds->ds_txstat.ts_status == 0)
   4017 					nacked++;
   4018 				ath_rate_tx_complete(sc, an, ds, ds0);
   4019 			}
   4020 			/*
   4021 			 * Reclaim reference to node.
   4022 			 *
   4023 			 * NB: the node may be reclaimed here if, for example
   4024 			 *     this is a DEAUTH message that was sent and the
   4025 			 *     node was timed out due to inactivity.
   4026 			 */
   4027 			ieee80211_free_node(ni);
   4028 		}
   4029 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   4030 		    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4031 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   4032 		m_freem(bf->bf_m);
   4033 		bf->bf_m = NULL;
   4034 		bf->bf_node = NULL;
   4035 
   4036 		ATH_TXBUF_LOCK(sc);
   4037 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   4038 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
   4039 		ATH_TXBUF_UNLOCK(sc);
   4040 	}
   4041 	return nacked;
   4042 }
   4043 
   4044 static inline int
   4045 txqactive(struct ath_hal *ah, int qnum)
   4046 {
   4047 	u_int32_t txqs = 1<<qnum;
   4048 	ath_hal_gettxintrtxqs(ah, &txqs);
   4049 	return (txqs & (1<<qnum));
   4050 }
   4051 
   4052 /*
   4053  * Deferred processing of transmit interrupt; special-cased
   4054  * for a single hardware transmit queue (e.g. 5210 and 5211).
   4055  */
   4056 static void
   4057 ath_tx_proc_q0(void *arg, int npending)
   4058 {
   4059 	struct ath_softc *sc = arg;
   4060 	struct ifnet *ifp = &sc->sc_if;
   4061 
   4062 	if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]) > 0){
   4063 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
   4064 	}
   4065 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
   4066 		ath_tx_processq(sc, sc->sc_cabq);
   4067 
   4068 	if (sc->sc_softled)
   4069 		ath_led_event(sc, ATH_LED_TX);
   4070 
   4071 	ath_start(ifp);
   4072 }
   4073 
   4074 /*
   4075  * Deferred processing of transmit interrupt; special-cased
   4076  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
   4077  */
   4078 static void
   4079 ath_tx_proc_q0123(void *arg, int npending)
   4080 {
   4081 	struct ath_softc *sc = arg;
   4082 	struct ifnet *ifp = &sc->sc_if;
   4083 	int nacked;
   4084 
   4085 	/*
   4086 	 * Process each active queue.
   4087 	 */
   4088 	nacked = 0;
   4089 	if (txqactive(sc->sc_ah, 0))
   4090 		nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
   4091 	if (txqactive(sc->sc_ah, 1))
   4092 		nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
   4093 	if (txqactive(sc->sc_ah, 2))
   4094 		nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
   4095 	if (txqactive(sc->sc_ah, 3))
   4096 		nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
   4097 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
   4098 		ath_tx_processq(sc, sc->sc_cabq);
   4099 	if (nacked) {
   4100 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
   4101 	}
   4102 	ath_tx_processq(sc, sc->sc_cabq);
   4103 
   4104 	if (sc->sc_softled)
   4105 		ath_led_event(sc, ATH_LED_TX);
   4106 
   4107 	ath_start(ifp);
   4108 }
   4109 
   4110 /*
   4111  * Deferred processing of transmit interrupt.
   4112  */
   4113 static void
   4114 ath_tx_proc(void *arg, int npending)
   4115 {
   4116 	struct ath_softc *sc = arg;
   4117 	struct ifnet *ifp = &sc->sc_if;
   4118 	int i, nacked;
   4119 
   4120 	/*
   4121 	 * Process each active queue.
   4122 	 */
   4123 	nacked = 0;
   4124 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   4125 		if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
   4126 			nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
   4127 	if (nacked) {
   4128 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
   4129 	}
   4130 
   4131 	if (sc->sc_softled)
   4132 		ath_led_event(sc, ATH_LED_TX);
   4133 
   4134 	ath_start(ifp);
   4135 }
   4136 
   4137 static void
   4138 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
   4139 {
   4140 	struct ath_hal *ah = sc->sc_ah;
   4141 	struct ieee80211_node *ni;
   4142 	struct ath_buf *bf;
   4143 
   4144 	/*
   4145 	 * NB: this assumes output has been stopped and
   4146 	 *     we do not need to block ath_tx_tasklet
   4147 	 */
   4148 	for (;;) {
   4149 		ATH_TXQ_LOCK(txq);
   4150 		bf = STAILQ_FIRST(&txq->axq_q);
   4151 		if (bf == NULL) {
   4152 			txq->axq_link = NULL;
   4153 			ATH_TXQ_UNLOCK(txq);
   4154 			break;
   4155 		}
   4156 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
   4157 		ATH_TXQ_UNLOCK(txq);
   4158 #ifdef AR_DEBUG
   4159 		if (sc->sc_debug & ATH_DEBUG_RESET)
   4160 			ath_printtxbuf(bf,
   4161 				ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
   4162 #endif /* AR_DEBUG */
   4163 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   4164 		m_freem(bf->bf_m);
   4165 		bf->bf_m = NULL;
   4166 		ni = bf->bf_node;
   4167 		bf->bf_node = NULL;
   4168 		if (ni != NULL) {
   4169 			/*
   4170 			 * Reclaim node reference.
   4171 			 */
   4172 			ieee80211_free_node(ni);
   4173 		}
   4174 		ATH_TXBUF_LOCK(sc);
   4175 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   4176 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
   4177 		ATH_TXBUF_UNLOCK(sc);
   4178 	}
   4179 }
   4180 
   4181 static void
   4182 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
   4183 {
   4184 	struct ath_hal *ah = sc->sc_ah;
   4185 
   4186 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
   4187 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
   4188 	    __func__, txq->axq_qnum,
   4189 	    (void *)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
   4190 	    txq->axq_link);
   4191 }
   4192 
   4193 /*
   4194  * Drain the transmit queues and reclaim resources.
   4195  */
   4196 static void
   4197 ath_draintxq(struct ath_softc *sc)
   4198 {
   4199 	struct ath_hal *ah = sc->sc_ah;
   4200 	int i;
   4201 
   4202 	/* XXX return value */
   4203 	if (!sc->sc_invalid) {
   4204 		/* don't touch the hardware if marked invalid */
   4205 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
   4206 		DPRINTF(sc, ATH_DEBUG_RESET,
   4207 		    "%s: beacon queue %p\n", __func__,
   4208 		    (void *)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
   4209 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   4210 			if (ATH_TXQ_SETUP(sc, i))
   4211 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
   4212 	}
   4213 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   4214 		if (ATH_TXQ_SETUP(sc, i))
   4215 			ath_tx_draintxq(sc, &sc->sc_txq[i]);
   4216 }
   4217 
   4218 /*
   4219  * Disable the receive h/w in preparation for a reset.
   4220  */
   4221 static void
   4222 ath_stoprecv(struct ath_softc *sc)
   4223 {
   4224 #define	PA2DESC(_sc, _pa) \
   4225 	((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
   4226 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
   4227 	struct ath_hal *ah = sc->sc_ah;
   4228 
   4229 	ath_hal_stoppcurecv(ah);	/* disable PCU */
   4230 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
   4231 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
   4232 	DELAY(3000);			/* 3ms is long enough for 1 frame */
   4233 #ifdef AR_DEBUG
   4234 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
   4235 		struct ath_buf *bf;
   4236 
   4237 		printf("%s: rx queue %p, link %p\n", __func__,
   4238 			(void *)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
   4239 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
   4240 			struct ath_desc *ds = bf->bf_desc;
   4241 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
   4242 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
   4243 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
   4244 				ath_printrxbuf(bf, status == HAL_OK);
   4245 		}
   4246 	}
   4247 #endif
   4248 	sc->sc_rxlink = NULL;		/* just in case */
   4249 #undef PA2DESC
   4250 }
   4251 
   4252 /*
   4253  * Enable the receive h/w following a reset.
   4254  */
   4255 static int
   4256 ath_startrecv(struct ath_softc *sc)
   4257 {
   4258 	struct ath_hal *ah = sc->sc_ah;
   4259 	struct ath_buf *bf;
   4260 
   4261 	sc->sc_rxlink = NULL;
   4262 	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
   4263 		int error = ath_rxbuf_init(sc, bf);
   4264 		if (error != 0) {
   4265 			DPRINTF(sc, ATH_DEBUG_RECV,
   4266 				"%s: ath_rxbuf_init failed %d\n",
   4267 				__func__, error);
   4268 			return error;
   4269 		}
   4270 	}
   4271 
   4272 	bf = STAILQ_FIRST(&sc->sc_rxbuf);
   4273 	ath_hal_putrxbuf(ah, bf->bf_daddr);
   4274 	ath_hal_rxena(ah);		/* enable recv descriptors */
   4275 	ath_mode_init(sc);		/* set filters, etc. */
   4276 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
   4277 	return 0;
   4278 }
   4279 
   4280 /*
   4281  * Update internal state after a channel change.
   4282  */
   4283 static void
   4284 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
   4285 {
   4286 	struct ieee80211com *ic = &sc->sc_ic;
   4287 	enum ieee80211_phymode mode;
   4288 	u_int16_t flags;
   4289 
   4290 	/*
   4291 	 * Change channels and update the h/w rate map
   4292 	 * if we're switching; e.g. 11a to 11b/g.
   4293 	 */
   4294 	mode = ieee80211_chan2mode(ic, chan);
   4295 	if (mode != sc->sc_curmode)
   4296 		ath_setcurmode(sc, mode);
   4297 	/*
   4298 	 * Update BPF state.  NB: ethereal et. al. don't handle
   4299 	 * merged flags well so pick a unique mode for their use.
   4300 	 */
   4301 	if (IEEE80211_IS_CHAN_A(chan))
   4302 		flags = IEEE80211_CHAN_A;
   4303 	/* XXX 11g schizophrenia */
   4304 	else if (IEEE80211_IS_CHAN_G(chan) ||
   4305 	    IEEE80211_IS_CHAN_PUREG(chan))
   4306 		flags = IEEE80211_CHAN_G;
   4307 	else
   4308 		flags = IEEE80211_CHAN_B;
   4309 	if (IEEE80211_IS_CHAN_T(chan))
   4310 		flags |= IEEE80211_CHAN_TURBO;
   4311 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
   4312 		htole16(chan->ic_freq);
   4313 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
   4314 		htole16(flags);
   4315 }
   4316 
   4317 /*
   4318  * Poll for a channel clear indication; this is required
   4319  * for channels requiring DFS and not previously visited
   4320  * and/or with a recent radar detection.
   4321  */
   4322 static void
   4323 ath_dfswait(void *arg)
   4324 {
   4325 	struct ath_softc *sc = arg;
   4326 	struct ath_hal *ah = sc->sc_ah;
   4327 	HAL_CHANNEL hchan;
   4328 
   4329 	ath_hal_radar_wait(ah, &hchan);
   4330 	if (hchan.privFlags & CHANNEL_INTERFERENCE) {
   4331 		if_printf(&sc->sc_if,
   4332 		    "channel %u/0x%x/0x%x has interference\n",
   4333 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
   4334 		return;
   4335 	}
   4336 	if ((hchan.privFlags & CHANNEL_DFS) == 0) {
   4337 		/* XXX should not happen */
   4338 		return;
   4339 	}
   4340 	if (hchan.privFlags & CHANNEL_DFS_CLEAR) {
   4341 		sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR;
   4342 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
   4343 		if_printf(&sc->sc_if,
   4344 		    "channel %u/0x%x/0x%x marked clear\n",
   4345 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
   4346 	} else
   4347 		callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc);
   4348 }
   4349 
   4350 /*
   4351  * Set/change channels.  If the channel is really being changed,
   4352  * it's done by reseting the chip.  To accomplish this we must
   4353  * first cleanup any pending DMA, then restart stuff after a la
   4354  * ath_init.
   4355  */
   4356 static int
   4357 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
   4358 {
   4359 	struct ath_hal *ah = sc->sc_ah;
   4360 	struct ieee80211com *ic = &sc->sc_ic;
   4361 	HAL_CHANNEL hchan;
   4362 
   4363 	/*
   4364 	 * Convert to a HAL channel description with
   4365 	 * the flags constrained to reflect the current
   4366 	 * operating mode.
   4367 	 */
   4368 	hchan.channel = chan->ic_freq;
   4369 	hchan.channelFlags = ath_chan2flags(ic, chan);
   4370 
   4371 	DPRINTF(sc, ATH_DEBUG_RESET,
   4372 	    "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
   4373 	    __func__,
   4374 	    ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
   4375 		sc->sc_curchan.channelFlags),
   4376 	    	sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
   4377 	    ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
   4378 	        hchan.channel, hchan.channelFlags);
   4379 	if (hchan.channel != sc->sc_curchan.channel ||
   4380 	    hchan.channelFlags != sc->sc_curchan.channelFlags) {
   4381 		HAL_STATUS status;
   4382 
   4383 		/*
   4384 		 * To switch channels clear any pending DMA operations;
   4385 		 * wait long enough for the RX fifo to drain, reset the
   4386 		 * hardware at the new frequency, and then re-enable
   4387 		 * the relevant bits of the h/w.
   4388 		 */
   4389 		ath_hal_intrset(ah, 0);		/* disable interrupts */
   4390 		ath_draintxq(sc);		/* clear pending tx frames */
   4391 		ath_stoprecv(sc);		/* turn off frame recv */
   4392 		if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
   4393 			if_printf(ic->ic_ifp, "%s: unable to reset "
   4394 			    "channel %u (%u MHz, flags 0x%x hal flags 0x%x)\n",
   4395 			    __func__, ieee80211_chan2ieee(ic, chan),
   4396 			    chan->ic_freq, chan->ic_flags, hchan.channelFlags);
   4397 			return EIO;
   4398 		}
   4399 		sc->sc_curchan = hchan;
   4400 		ath_update_txpow(sc);		/* update tx power state */
   4401 		sc->sc_diversity = ath_hal_getdiversity(ah);
   4402 		sc->sc_calinterval = 1;
   4403 		sc->sc_caltries = 0;
   4404 
   4405 		/*
   4406 		 * Re-enable rx framework.
   4407 		 */
   4408 		if (ath_startrecv(sc) != 0) {
   4409 			if_printf(&sc->sc_if,
   4410 				"%s: unable to restart recv logic\n", __func__);
   4411 			return EIO;
   4412 		}
   4413 
   4414 		/*
   4415 		 * Change channels and update the h/w rate map
   4416 		 * if we're switching; e.g. 11a to 11b/g.
   4417 		 */
   4418 		ic->ic_ibss_chan = chan;
   4419 		ath_chan_change(sc, chan);
   4420 
   4421 		/*
   4422 		 * Handle DFS required waiting period to determine
   4423 		 * if channel is clear of radar traffic.
   4424 		 */
   4425 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   4426 #define	DFS_AND_NOT_CLEAR(_c) \
   4427 	(((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS)
   4428 			if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) {
   4429 				if_printf(&sc->sc_if,
   4430 					"wait for DFS clear channel signal\n");
   4431 				/* XXX stop sndq */
   4432 				sc->sc_if.if_flags |= IFF_OACTIVE;
   4433 				callout_reset(&sc->sc_dfs_ch,
   4434 					2 * hz, ath_dfswait, sc);
   4435 			} else
   4436 				callout_stop(&sc->sc_dfs_ch);
   4437 #undef DFS_NOT_CLEAR
   4438 		}
   4439 
   4440 		/*
   4441 		 * Re-enable interrupts.
   4442 		 */
   4443 		ath_hal_intrset(ah, sc->sc_imask);
   4444 	}
   4445 	return 0;
   4446 }
   4447 
   4448 static void
   4449 ath_next_scan(void *arg)
   4450 {
   4451 	struct ath_softc *sc = arg;
   4452 	struct ieee80211com *ic = &sc->sc_ic;
   4453 	int s;
   4454 
   4455 	/* don't call ath_start w/o network interrupts blocked */
   4456 	s = splnet();
   4457 
   4458 	if (ic->ic_state == IEEE80211_S_SCAN)
   4459 		ieee80211_next_scan(ic);
   4460 	splx(s);
   4461 }
   4462 
   4463 /*
   4464  * Periodically recalibrate the PHY to account
   4465  * for temperature/environment changes.
   4466  */
   4467 static void
   4468 ath_calibrate(void *arg)
   4469 {
   4470 	struct ath_softc *sc = arg;
   4471 	struct ath_hal *ah = sc->sc_ah;
   4472 	HAL_BOOL iqCalDone;
   4473 
   4474 	sc->sc_stats.ast_per_cal++;
   4475 
   4476 	ATH_LOCK(sc);
   4477 
   4478 	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
   4479 		/*
   4480 		 * Rfgain is out of bounds, reset the chip
   4481 		 * to load new gain values.
   4482 		 */
   4483 		DPRINTF(sc, ATH_DEBUG_CALIBRATE,
   4484 			"%s: rfgain change\n", __func__);
   4485 		sc->sc_stats.ast_per_rfgain++;
   4486 		ath_reset(&sc->sc_if);
   4487 	}
   4488 	if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
   4489 		DPRINTF(sc, ATH_DEBUG_ANY,
   4490 			"%s: calibration of channel %u failed\n",
   4491 			__func__, sc->sc_curchan.channel);
   4492 		sc->sc_stats.ast_per_calfail++;
   4493 	}
   4494 	/*
   4495 	 * Calibrate noise floor data again in case of change.
   4496 	 */
   4497 	ath_hal_process_noisefloor(ah);
   4498 	/*
   4499 	 * Poll more frequently when the IQ calibration is in
   4500 	 * progress to speedup loading the final settings.
   4501 	 * We temper this aggressive polling with an exponential
   4502 	 * back off after 4 tries up to ath_calinterval.
   4503 	 */
   4504 	if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
   4505 		sc->sc_caltries = 0;
   4506 		sc->sc_calinterval = ath_calinterval;
   4507 	} else if (sc->sc_caltries > 4) {
   4508 		sc->sc_caltries = 0;
   4509 		sc->sc_calinterval <<= 1;
   4510 		if (sc->sc_calinterval > ath_calinterval)
   4511 			sc->sc_calinterval = ath_calinterval;
   4512 	}
   4513 	KASSERT(0 < sc->sc_calinterval && sc->sc_calinterval <= ath_calinterval,
   4514 		("bad calibration interval %u", sc->sc_calinterval));
   4515 
   4516 	DPRINTF(sc, ATH_DEBUG_CALIBRATE,
   4517 		"%s: next +%u (%siqCalDone tries %u)\n", __func__,
   4518 		sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
   4519 	sc->sc_caltries++;
   4520 	callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
   4521 		ath_calibrate, sc);
   4522 	ATH_UNLOCK(sc);
   4523 }
   4524 
   4525 static int
   4526 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
   4527 {
   4528 	struct ifnet *ifp = ic->ic_ifp;
   4529 	struct ath_softc *sc = ifp->if_softc;
   4530 	struct ath_hal *ah = sc->sc_ah;
   4531 	struct ieee80211_node *ni;
   4532 	int i, error;
   4533 	const u_int8_t *bssid;
   4534 	u_int32_t rfilt;
   4535 	static const HAL_LED_STATE leds[] = {
   4536 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
   4537 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
   4538 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
   4539 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
   4540 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
   4541 	};
   4542 
   4543 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
   4544 		ieee80211_state_name[ic->ic_state],
   4545 		ieee80211_state_name[nstate]);
   4546 
   4547 	callout_stop(&sc->sc_scan_ch);
   4548 	callout_stop(&sc->sc_cal_ch);
   4549 	callout_stop(&sc->sc_dfs_ch);
   4550 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
   4551 
   4552 	if (nstate == IEEE80211_S_INIT) {
   4553 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
   4554 		/*
   4555 		 * NB: disable interrupts so we don't rx frames.
   4556 		 */
   4557 		ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
   4558 		/*
   4559 		 * Notify the rate control algorithm.
   4560 		 */
   4561 		ath_rate_newstate(sc, nstate);
   4562 		goto done;
   4563 	}
   4564 	ni = ic->ic_bss;
   4565 	error = ath_chan_set(sc, ic->ic_curchan);
   4566 	if (error != 0)
   4567 		goto bad;
   4568 	rfilt = ath_calcrxfilter(sc, nstate);
   4569 	if (nstate == IEEE80211_S_SCAN)
   4570 		bssid = ifp->if_broadcastaddr;
   4571 	else
   4572 		bssid = ni->ni_bssid;
   4573 	ath_hal_setrxfilter(ah, rfilt);
   4574 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
   4575 		 __func__, rfilt, ether_sprintf(bssid));
   4576 
   4577 	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
   4578 		ath_hal_setassocid(ah, bssid, ni->ni_associd);
   4579 	else
   4580 		ath_hal_setassocid(ah, bssid, 0);
   4581 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
   4582 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
   4583 			if (ath_hal_keyisvalid(ah, i))
   4584 				ath_hal_keysetmac(ah, i, bssid);
   4585 	}
   4586 
   4587 	/*
   4588 	 * Notify the rate control algorithm so rates
   4589 	 * are setup should ath_beacon_alloc be called.
   4590 	 */
   4591 	ath_rate_newstate(sc, nstate);
   4592 
   4593 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
   4594 		/* nothing to do */;
   4595 	} else if (nstate == IEEE80211_S_RUN) {
   4596 		DPRINTF(sc, ATH_DEBUG_STATE,
   4597 			"%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
   4598 			"capinfo=0x%04x chan=%d\n"
   4599 			 , __func__
   4600 			 , ic->ic_flags
   4601 			 , ni->ni_intval
   4602 			 , ether_sprintf(ni->ni_bssid)
   4603 			 , ni->ni_capinfo
   4604 			 , ieee80211_chan2ieee(ic, ic->ic_curchan));
   4605 
   4606 		switch (ic->ic_opmode) {
   4607 		case IEEE80211_M_HOSTAP:
   4608 		case IEEE80211_M_IBSS:
   4609 			/*
   4610 			 * Allocate and setup the beacon frame.
   4611 			 *
   4612 			 * Stop any previous beacon DMA.  This may be
   4613 			 * necessary, for example, when an ibss merge
   4614 			 * causes reconfiguration; there will be a state
   4615 			 * transition from RUN->RUN that means we may
   4616 			 * be called with beacon transmission active.
   4617 			 */
   4618 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
   4619 			ath_beacon_free(sc);
   4620 			error = ath_beacon_alloc(sc, ni);
   4621 			if (error != 0)
   4622 				goto bad;
   4623 			/*
   4624 			 * If joining an adhoc network defer beacon timer
   4625 			 * configuration to the next beacon frame so we
   4626 			 * have a current TSF to use.  Otherwise we're
   4627 			 * starting an ibss/bss so there's no need to delay.
   4628 			 */
   4629 			if (ic->ic_opmode == IEEE80211_M_IBSS &&
   4630 			    ic->ic_bss->ni_tstamp.tsf != 0)
   4631 				sc->sc_syncbeacon = 1;
   4632 			else
   4633 				ath_beacon_config(sc);
   4634 			break;
   4635 		case IEEE80211_M_STA:
   4636 			/*
   4637 			 * Allocate a key cache slot to the station.
   4638 			 */
   4639 			if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
   4640 			    sc->sc_hasclrkey &&
   4641 			    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
   4642 				ath_setup_stationkey(ni);
   4643 			/*
   4644 			 * Defer beacon timer configuration to the next
   4645 			 * beacon frame so we have a current TSF to use
   4646 			 * (any TSF collected when scanning is likely old).
   4647 			 */
   4648 			sc->sc_syncbeacon = 1;
   4649 			break;
   4650 		default:
   4651 			break;
   4652 		}
   4653 		/*
   4654 		 * Let the hal process statistics collected during a
   4655 		 * scan so it can provide calibrated noise floor data.
   4656 		 */
   4657 		ath_hal_process_noisefloor(ah);
   4658 		/*
   4659 		 * Reset rssi stats; maybe not the best place...
   4660 		 */
   4661 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
   4662 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
   4663 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
   4664 	} else {
   4665 		ath_hal_intrset(ah,
   4666 			sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
   4667 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
   4668 	}
   4669 done:
   4670 	/*
   4671 	 * Invoke the parent method to complete the work.
   4672 	 */
   4673 	error = sc->sc_newstate(ic, nstate, arg);
   4674 	/*
   4675 	 * Finally, start any timers.
   4676 	 */
   4677 	if (nstate == IEEE80211_S_RUN) {
   4678 		/* start periodic recalibration timer */
   4679 		callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
   4680 			ath_calibrate, sc);
   4681 	} else if (nstate == IEEE80211_S_SCAN) {
   4682 		/* start ap/neighbor scan timer */
   4683 		callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
   4684 			ath_next_scan, sc);
   4685 	}
   4686 bad:
   4687 	return error;
   4688 }
   4689 
   4690 /*
   4691  * Allocate a key cache slot to the station so we can
   4692  * setup a mapping from key index to node. The key cache
   4693  * slot is needed for managing antenna state and for
   4694  * compression when stations do not use crypto.  We do
   4695  * it uniliaterally here; if crypto is employed this slot
   4696  * will be reassigned.
   4697  */
   4698 static void
   4699 ath_setup_stationkey(struct ieee80211_node *ni)
   4700 {
   4701 	struct ieee80211com *ic = ni->ni_ic;
   4702 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   4703 	ieee80211_keyix keyix, rxkeyix;
   4704 
   4705 	if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
   4706 		/*
   4707 		 * Key cache is full; we'll fall back to doing
   4708 		 * the more expensive lookup in software.  Note
   4709 		 * this also means no h/w compression.
   4710 		 */
   4711 		/* XXX msg+statistic */
   4712 	} else {
   4713 		/* XXX locking? */
   4714 		ni->ni_ucastkey.wk_keyix = keyix;
   4715 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
   4716 		/* NB: this will create a pass-thru key entry */
   4717 		ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
   4718 	}
   4719 }
   4720 
   4721 /*
   4722  * Setup driver-specific state for a newly associated node.
   4723  * Note that we're called also on a re-associate, the isnew
   4724  * param tells us if this is the first time or not.
   4725  */
   4726 static void
   4727 ath_newassoc(struct ieee80211_node *ni, int isnew)
   4728 {
   4729 	struct ieee80211com *ic = ni->ni_ic;
   4730 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   4731 
   4732 	ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
   4733 	if (isnew &&
   4734 	    (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
   4735 		KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
   4736 		    ("new assoc with a unicast key already setup (keyix %u)",
   4737 		    ni->ni_ucastkey.wk_keyix));
   4738 		ath_setup_stationkey(ni);
   4739 	}
   4740 }
   4741 
   4742 static int
   4743 ath_getchannels(struct ath_softc *sc, u_int cc,
   4744 	HAL_BOOL outdoor, HAL_BOOL xchanmode)
   4745 {
   4746 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
   4747 	struct ieee80211com *ic = &sc->sc_ic;
   4748 	struct ifnet *ifp = &sc->sc_if;
   4749 	struct ath_hal *ah = sc->sc_ah;
   4750 	HAL_CHANNEL *chans;
   4751 	int i, ix, nchan;
   4752 
   4753 	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
   4754 			M_TEMP, M_NOWAIT);
   4755 	if (chans == NULL) {
   4756 		if_printf(ifp, "unable to allocate channel table\n");
   4757 		return ENOMEM;
   4758 	}
   4759 	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
   4760 	    NULL, 0, NULL,
   4761 	    cc, HAL_MODE_ALL, outdoor, xchanmode)) {
   4762 		u_int32_t rd;
   4763 
   4764 		(void)ath_hal_getregdomain(ah, &rd);
   4765 		if_printf(ifp, "unable to collect channel list from hal; "
   4766 			"regdomain likely %u country code %u\n", rd, cc);
   4767 		free(chans, M_TEMP);
   4768 		return EINVAL;
   4769 	}
   4770 
   4771 	/*
   4772 	 * Convert HAL channels to ieee80211 ones and insert
   4773 	 * them in the table according to their channel number.
   4774 	 */
   4775 	for (i = 0; i < nchan; i++) {
   4776 		HAL_CHANNEL *c = &chans[i];
   4777 		u_int16_t flags;
   4778 
   4779 		ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags);
   4780 		if (ix > IEEE80211_CHAN_MAX) {
   4781 			if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n",
   4782 				ix, c->channel, c->channelFlags);
   4783 			continue;
   4784 		}
   4785 		if (ix < 0) {
   4786 			/* XXX can't handle stuff <2400 right now */
   4787 			if (bootverbose)
   4788 				if_printf(ifp, "hal channel %d (%u/%x) "
   4789 				    "cannot be handled; ignored\n",
   4790 				    ix, c->channel, c->channelFlags);
   4791 			continue;
   4792 		}
   4793 		/*
   4794 		 * Calculate net80211 flags; most are compatible
   4795 		 * but some need massaging.  Note the static turbo
   4796 		 * conversion can be removed once net80211 is updated
   4797 		 * to understand static vs. dynamic turbo.
   4798 		 */
   4799 		flags = c->channelFlags & COMPAT;
   4800 		if (c->channelFlags & CHANNEL_STURBO)
   4801 			flags |= IEEE80211_CHAN_TURBO;
   4802 		if (ic->ic_channels[ix].ic_freq == 0) {
   4803 			ic->ic_channels[ix].ic_freq = c->channel;
   4804 			ic->ic_channels[ix].ic_flags = flags;
   4805 		} else {
   4806 			/* channels overlap; e.g. 11g and 11b */
   4807 			ic->ic_channels[ix].ic_flags |= flags;
   4808 		}
   4809 	}
   4810 	free(chans, M_TEMP);
   4811 	return 0;
   4812 #undef COMPAT
   4813 }
   4814 
   4815 static void
   4816 ath_led_done(void *arg)
   4817 {
   4818 	struct ath_softc *sc = arg;
   4819 
   4820 	sc->sc_blinking = 0;
   4821 }
   4822 
   4823 /*
   4824  * Turn the LED off: flip the pin and then set a timer so no
   4825  * update will happen for the specified duration.
   4826  */
   4827 static void
   4828 ath_led_off(void *arg)
   4829 {
   4830 	struct ath_softc *sc = arg;
   4831 
   4832 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
   4833 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
   4834 }
   4835 
   4836 /*
   4837  * Blink the LED according to the specified on/off times.
   4838  */
   4839 static void
   4840 ath_led_blink(struct ath_softc *sc, int on, int off)
   4841 {
   4842 	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
   4843 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
   4844 	sc->sc_blinking = 1;
   4845 	sc->sc_ledoff = off;
   4846 	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
   4847 }
   4848 
   4849 static void
   4850 ath_led_event(struct ath_softc *sc, int event)
   4851 {
   4852 
   4853 	sc->sc_ledevent = ticks;	/* time of last event */
   4854 	if (sc->sc_blinking)		/* don't interrupt active blink */
   4855 		return;
   4856 	switch (event) {
   4857 	case ATH_LED_POLL:
   4858 		ath_led_blink(sc, sc->sc_hwmap[0].ledon,
   4859 			sc->sc_hwmap[0].ledoff);
   4860 		break;
   4861 	case ATH_LED_TX:
   4862 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
   4863 			sc->sc_hwmap[sc->sc_txrate].ledoff);
   4864 		break;
   4865 	case ATH_LED_RX:
   4866 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
   4867 			sc->sc_hwmap[sc->sc_rxrate].ledoff);
   4868 		break;
   4869 	}
   4870 }
   4871 
   4872 static void
   4873 ath_update_txpow(struct ath_softc *sc)
   4874 {
   4875 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
   4876 	struct ieee80211com *ic = &sc->sc_ic;
   4877 	struct ath_hal *ah = sc->sc_ah;
   4878 	u_int32_t txpow;
   4879 
   4880 	if (sc->sc_curtxpow != ic->ic_txpowlimit) {
   4881 		ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
   4882 		/* read back in case value is clamped */
   4883 		(void)ath_hal_gettxpowlimit(ah, &txpow);
   4884 		ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
   4885 	}
   4886 	/*
   4887 	 * Fetch max tx power level for status requests.
   4888 	 */
   4889 	(void)ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
   4890 	ic->ic_bss->ni_txpower = txpow;
   4891 }
   4892 
   4893 static void
   4894 rate_setup(struct ath_softc *sc,
   4895 	const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs)
   4896 {
   4897 	int i, maxrates;
   4898 
   4899 	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
   4900 		DPRINTF(sc, ATH_DEBUG_ANY,
   4901 			"%s: rate table too small (%u > %u)\n",
   4902 		       __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
   4903 		maxrates = IEEE80211_RATE_MAXSIZE;
   4904 	} else
   4905 		maxrates = rt->rateCount;
   4906 	for (i = 0; i < maxrates; i++)
   4907 		rs->rs_rates[i] = rt->info[i].dot11Rate;
   4908 	rs->rs_nrates = maxrates;
   4909 }
   4910 
   4911 static int
   4912 ath_rate_setup(struct ath_softc *sc, u_int mode)
   4913 {
   4914 	struct ath_hal *ah = sc->sc_ah;
   4915 	struct ieee80211com *ic = &sc->sc_ic;
   4916 	const HAL_RATE_TABLE *rt;
   4917 
   4918 	switch (mode) {
   4919 	case IEEE80211_MODE_11A:
   4920 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
   4921 		break;
   4922 	case IEEE80211_MODE_11B:
   4923 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
   4924 		break;
   4925 	case IEEE80211_MODE_11G:
   4926 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
   4927 		break;
   4928 	case IEEE80211_MODE_TURBO_A:
   4929 		/* XXX until static/dynamic turbo is fixed */
   4930 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
   4931 		break;
   4932 	case IEEE80211_MODE_TURBO_G:
   4933 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
   4934 		break;
   4935 	default:
   4936 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
   4937 			__func__, mode);
   4938 		return 0;
   4939 	}
   4940 	sc->sc_rates[mode] = rt;
   4941 	if (rt != NULL) {
   4942 		rate_setup(sc, rt, &ic->ic_sup_rates[mode]);
   4943 		return 1;
   4944 	} else
   4945 		return 0;
   4946 }
   4947 
   4948 static void
   4949 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
   4950 {
   4951 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   4952 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
   4953 	static const struct {
   4954 		u_int		rate;		/* tx/rx 802.11 rate */
   4955 		u_int16_t	timeOn;		/* LED on time (ms) */
   4956 		u_int16_t	timeOff;	/* LED off time (ms) */
   4957 	} blinkrates[] = {
   4958 		{ 108,  40,  10 },
   4959 		{  96,  44,  11 },
   4960 		{  72,  50,  13 },
   4961 		{  48,  57,  14 },
   4962 		{  36,  67,  16 },
   4963 		{  24,  80,  20 },
   4964 		{  22, 100,  25 },
   4965 		{  18, 133,  34 },
   4966 		{  12, 160,  40 },
   4967 		{  10, 200,  50 },
   4968 		{   6, 240,  58 },
   4969 		{   4, 267,  66 },
   4970 		{   2, 400, 100 },
   4971 		{   0, 500, 130 },
   4972 	};
   4973 	const HAL_RATE_TABLE *rt;
   4974 	int i, j;
   4975 
   4976 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
   4977 	rt = sc->sc_rates[mode];
   4978 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
   4979 	for (i = 0; i < rt->rateCount; i++)
   4980 		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
   4981 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
   4982 	for (i = 0; i < 32; i++) {
   4983 		u_int8_t ix = rt->rateCodeToIndex[i];
   4984 		if (ix == 0xff) {
   4985 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
   4986 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
   4987 			continue;
   4988 		}
   4989 		sc->sc_hwmap[i].ieeerate =
   4990 			rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
   4991 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
   4992 		if (rt->info[ix].shortPreamble ||
   4993 		    rt->info[ix].phy == IEEE80211_T_OFDM)
   4994 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
   4995 		/* NB: receive frames include FCS */
   4996 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
   4997 			IEEE80211_RADIOTAP_F_FCS;
   4998 		/* setup blink rate table to avoid per-packet lookup */
   4999 		for (j = 0; j < N(blinkrates)-1; j++)
   5000 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
   5001 				break;
   5002 		/* NB: this uses the last entry if the rate isn't found */
   5003 		/* XXX beware of overlow */
   5004 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
   5005 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
   5006 	}
   5007 	sc->sc_currates = rt;
   5008 	sc->sc_curmode = mode;
   5009 	/*
   5010 	 * All protection frames are transmited at 2Mb/s for
   5011 	 * 11g, otherwise at 1Mb/s.
   5012 	 */
   5013 	if (mode == IEEE80211_MODE_11G)
   5014 		sc->sc_protrix = ath_tx_findrix(rt, 2*2);
   5015 	else
   5016 		sc->sc_protrix = ath_tx_findrix(rt, 2*1);
   5017 	/* rate index used to send management frames */
   5018 	sc->sc_minrateix = 0;
   5019 	/*
   5020 	 * Setup multicast rate state.
   5021 	 */
   5022 	/* XXX layering violation */
   5023 	sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate);
   5024 	sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate;
   5025 	/* NB: caller is responsible for reseting rate control state */
   5026 #undef N
   5027 }
   5028 
   5029 #ifdef AR_DEBUG
   5030 static void
   5031 ath_printrxbuf(struct ath_buf *bf, int done)
   5032 {
   5033 	struct ath_desc *ds;
   5034 	int i;
   5035 
   5036 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
   5037 		printf("R%d (%p %" PRIx64
   5038 		    ") %08x %08x %08x %08x %08x %08x %c\n", i, ds,
   5039 		    (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
   5040 		    ds->ds_link, ds->ds_data,
   5041 		    ds->ds_ctl0, ds->ds_ctl1,
   5042 		    ds->ds_hw[0], ds->ds_hw[1],
   5043 		    !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
   5044 	}
   5045 }
   5046 
   5047 static void
   5048 ath_printtxbuf(struct ath_buf *bf, int done)
   5049 {
   5050 	struct ath_desc *ds;
   5051 	int i;
   5052 
   5053 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
   5054 		printf("T%d (%p %" PRIx64
   5055 		    ") %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
   5056 		    i, ds,
   5057 		    (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
   5058 		    ds->ds_link, ds->ds_data,
   5059 		    ds->ds_ctl0, ds->ds_ctl1,
   5060 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
   5061 		    !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
   5062 	}
   5063 }
   5064 #endif /* AR_DEBUG */
   5065 
   5066 static void
   5067 ath_watchdog(struct ifnet *ifp)
   5068 {
   5069 	struct ath_softc *sc = ifp->if_softc;
   5070 	struct ieee80211com *ic = &sc->sc_ic;
   5071 	struct ath_txq *axq;
   5072 	int i;
   5073 
   5074 	ifp->if_timer = 0;
   5075 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
   5076 		return;
   5077 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
   5078 		if (!ATH_TXQ_SETUP(sc, i))
   5079 			continue;
   5080 		axq = &sc->sc_txq[i];
   5081 		ATH_TXQ_LOCK(axq);
   5082 		if (axq->axq_timer == 0)
   5083 			;
   5084 		else if (--axq->axq_timer == 0) {
   5085 			ATH_TXQ_UNLOCK(axq);
   5086 			if_printf(ifp, "device timeout (txq %d)\n", i);
   5087 			ath_reset(ifp);
   5088 			ifp->if_oerrors++;
   5089 			sc->sc_stats.ast_watchdog++;
   5090 			break;
   5091 		} else
   5092 			ifp->if_timer = 1;
   5093 		ATH_TXQ_UNLOCK(axq);
   5094 	}
   5095 	ieee80211_watchdog(ic);
   5096 }
   5097 
   5098 /*
   5099  * Diagnostic interface to the HAL.  This is used by various
   5100  * tools to do things like retrieve register contents for
   5101  * debugging.  The mechanism is intentionally opaque so that
   5102  * it can change frequently w/o concern for compatiblity.
   5103  */
   5104 static int
   5105 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
   5106 {
   5107 	struct ath_hal *ah = sc->sc_ah;
   5108 	u_int id = ad->ad_id & ATH_DIAG_ID;
   5109 	void *indata = NULL;
   5110 	void *outdata = NULL;
   5111 	u_int32_t insize = ad->ad_in_size;
   5112 	u_int32_t outsize = ad->ad_out_size;
   5113 	int error = 0;
   5114 
   5115 	if (ad->ad_id & ATH_DIAG_IN) {
   5116 		/*
   5117 		 * Copy in data.
   5118 		 */
   5119 		indata = malloc(insize, M_TEMP, M_NOWAIT);
   5120 		if (indata == NULL) {
   5121 			error = ENOMEM;
   5122 			goto bad;
   5123 		}
   5124 		error = copyin(ad->ad_in_data, indata, insize);
   5125 		if (error)
   5126 			goto bad;
   5127 	}
   5128 	if (ad->ad_id & ATH_DIAG_DYN) {
   5129 		/*
   5130 		 * Allocate a buffer for the results (otherwise the HAL
   5131 		 * returns a pointer to a buffer where we can read the
   5132 		 * results).  Note that we depend on the HAL leaving this
   5133 		 * pointer for us to use below in reclaiming the buffer;
   5134 		 * may want to be more defensive.
   5135 		 */
   5136 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
   5137 		if (outdata == NULL) {
   5138 			error = ENOMEM;
   5139 			goto bad;
   5140 		}
   5141 	}
   5142 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
   5143 		if (outsize < ad->ad_out_size)
   5144 			ad->ad_out_size = outsize;
   5145 		if (outdata != NULL)
   5146 			error = copyout(outdata, ad->ad_out_data,
   5147 					ad->ad_out_size);
   5148 	} else {
   5149 		error = EINVAL;
   5150 	}
   5151 bad:
   5152 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
   5153 		free(indata, M_TEMP);
   5154 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
   5155 		free(outdata, M_TEMP);
   5156 	return error;
   5157 }
   5158 
   5159 static int
   5160 ath_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   5161 {
   5162 #define	IS_RUNNING(ifp) \
   5163 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
   5164 	struct ath_softc *sc = ifp->if_softc;
   5165 	struct ieee80211com *ic = &sc->sc_ic;
   5166 	struct ifreq *ifr = (struct ifreq *)data;
   5167 	int error = 0;
   5168 
   5169 	ATH_LOCK(sc);
   5170 	switch (cmd) {
   5171 	case SIOCSIFFLAGS:
   5172 		if (IS_RUNNING(ifp)) {
   5173 			/*
   5174 			 * To avoid rescanning another access point,
   5175 			 * do not call ath_init() here.  Instead,
   5176 			 * only reflect promisc mode settings.
   5177 			 */
   5178 			ath_mode_init(sc);
   5179 		} else if (ifp->if_flags & IFF_UP) {
   5180 			/*
   5181 			 * Beware of being called during attach/detach
   5182 			 * to reset promiscuous mode.  In that case we
   5183 			 * will still be marked UP but not RUNNING.
   5184 			 * However trying to re-init the interface
   5185 			 * is the wrong thing to do as we've already
   5186 			 * torn down much of our state.  There's
   5187 			 * probably a better way to deal with this.
   5188 			 */
   5189 			if (!sc->sc_invalid && ic->ic_bss != NULL)
   5190 				ath_init(sc);	/* XXX lose error */
   5191 		} else
   5192 			ath_stop_locked(ifp, 1);
   5193 		break;
   5194 	case SIOCADDMULTI:
   5195 	case SIOCDELMULTI:
   5196 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
   5197 			if (ifp->if_flags & IFF_RUNNING)
   5198 				ath_mode_init(sc);
   5199 			error = 0;
   5200 		}
   5201 		break;
   5202 	case SIOCGATHSTATS:
   5203 		/* NB: embed these numbers to get a consistent view */
   5204 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
   5205 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
   5206 		sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
   5207 		ATH_UNLOCK(sc);
   5208 		/*
   5209 		 * NB: Drop the softc lock in case of a page fault;
   5210 		 * we'll accept any potential inconsisentcy in the
   5211 		 * statistics.  The alternative is to copy the data
   5212 		 * to a local structure.
   5213 		 */
   5214 		return copyout(&sc->sc_stats,
   5215 				ifr->ifr_data, sizeof (sc->sc_stats));
   5216 	case SIOCGATHDIAG:
   5217 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
   5218 		break;
   5219 	default:
   5220 		error = ieee80211_ioctl(ic, cmd, data);
   5221 		if (error == ENETRESET) {
   5222 			if (IS_RUNNING(ifp) &&
   5223 			    ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
   5224 				ath_init(sc);	/* XXX lose error */
   5225 			error = 0;
   5226 		}
   5227 		if (error == ERESTART)
   5228 			error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0;
   5229 		break;
   5230 	}
   5231 	ATH_UNLOCK(sc);
   5232 	return error;
   5233 #undef IS_RUNNING
   5234 }
   5235 
   5236 #if NBPFILTER > 0
   5237 static void
   5238 ath_bpfattach(struct ath_softc *sc)
   5239 {
   5240 	struct ifnet *ifp = &sc->sc_if;
   5241 
   5242 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
   5243 		sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
   5244 		&sc->sc_drvbpf);
   5245 	/*
   5246 	 * Initialize constant fields.
   5247 	 * XXX make header lengths a multiple of 32-bits so subsequent
   5248 	 *     headers are properly aligned; this is a kludge to keep
   5249 	 *     certain applications happy.
   5250 	 *
   5251 	 * NB: the channel is setup each time we transition to the
   5252 	 *     RUN state to avoid filling it in for each frame.
   5253 	 */
   5254 	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
   5255 	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
   5256 	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
   5257 
   5258 	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
   5259 	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
   5260 	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
   5261 }
   5262 #endif
   5263 
   5264 /*
   5265  * Announce various information on device/driver attach.
   5266  */
   5267 static void
   5268 ath_announce(struct ath_softc *sc)
   5269 {
   5270 #define	HAL_MODE_DUALBAND	(HAL_MODE_11A|HAL_MODE_11B)
   5271 	struct ifnet *ifp = &sc->sc_if;
   5272 	struct ath_hal *ah = sc->sc_ah;
   5273 	u_int modes, cc;
   5274 
   5275 	if_printf(ifp, "mac %d.%d phy %d.%d",
   5276 		ah->ah_macVersion, ah->ah_macRev,
   5277 		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
   5278 	/*
   5279 	 * Print radio revision(s).  We check the wireless modes
   5280 	 * to avoid falsely printing revs for inoperable parts.
   5281 	 * Dual-band radio revs are returned in the 5 GHz rev number.
   5282 	 */
   5283 	ath_hal_getcountrycode(ah, &cc);
   5284 	modes = ath_hal_getwirelessmodes(ah, cc);
   5285 	if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
   5286 		if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
   5287 			printf(" 5 GHz radio %d.%d 2 GHz radio %d.%d",
   5288 				ah->ah_analog5GhzRev >> 4,
   5289 				ah->ah_analog5GhzRev & 0xf,
   5290 				ah->ah_analog2GhzRev >> 4,
   5291 				ah->ah_analog2GhzRev & 0xf);
   5292 		else
   5293 			printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
   5294 				ah->ah_analog5GhzRev & 0xf);
   5295 	} else
   5296 		printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
   5297 			ah->ah_analog5GhzRev & 0xf);
   5298 	printf("\n");
   5299 	if (bootverbose) {
   5300 		int i;
   5301 		for (i = 0; i <= WME_AC_VO; i++) {
   5302 			struct ath_txq *txq = sc->sc_ac2q[i];
   5303 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
   5304 				txq->axq_qnum, ieee80211_wme_acnames[i]);
   5305 		}
   5306 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
   5307 			sc->sc_cabq->axq_qnum);
   5308 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
   5309 	}
   5310 	if (ath_rxbuf != ATH_RXBUF)
   5311 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
   5312 	if (ath_txbuf != ATH_TXBUF)
   5313 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
   5314 #undef HAL_MODE_DUALBAND
   5315 }
   5316