ath.c revision 1.84.6.4 1 /* $NetBSD: ath.c,v 1.84.6.4 2007/10/26 15:44:37 joerg Exp $ */
2
3 /*-
4 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15 * redistribution must be conditioned upon including a substantially
16 * similar Disclaimer requirement for further binary redistribution.
17 * 3. Neither the names of the above-listed copyright holders nor the names
18 * of any contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * Alternatively, this software may be distributed under the terms of the
22 * GNU General Public License ("GPL") version 2 as published by the Free
23 * Software Foundation.
24 *
25 * NO WARRANTY
26 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
28 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
29 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
30 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
31 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
34 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
36 * THE POSSIBILITY OF SUCH DAMAGES.
37 */
38
39 #include <sys/cdefs.h>
40 #ifdef __FreeBSD__
41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $");
42 #endif
43 #ifdef __NetBSD__
44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.84.6.4 2007/10/26 15:44:37 joerg Exp $");
45 #endif
46
47 /*
48 * Driver for the Atheros Wireless LAN controller.
49 *
50 * This software is derived from work of Atsushi Onoe; his contribution
51 * is greatly appreciated.
52 */
53
54 #include "opt_inet.h"
55
56 #ifdef __NetBSD__
57 #include "bpfilter.h"
58 #endif /* __NetBSD__ */
59
60 #include <sys/param.h>
61 #include <sys/reboot.h>
62 #include <sys/systm.h>
63 #include <sys/types.h>
64 #include <sys/sysctl.h>
65 #include <sys/mbuf.h>
66 #include <sys/malloc.h>
67 #include <sys/lock.h>
68 #include <sys/kernel.h>
69 #include <sys/socket.h>
70 #include <sys/sockio.h>
71 #include <sys/errno.h>
72 #include <sys/callout.h>
73 #include <sys/bus.h>
74 #include <sys/endian.h>
75
76 #include <net/if.h>
77 #include <net/if_dl.h>
78 #include <net/if_media.h>
79 #include <net/if_types.h>
80 #include <net/if_arp.h>
81 #include <net/if_ether.h>
82 #include <net/if_llc.h>
83
84 #include <net80211/ieee80211_netbsd.h>
85 #include <net80211/ieee80211_var.h>
86
87 #if NBPFILTER > 0
88 #include <net/bpf.h>
89 #endif
90
91 #ifdef INET
92 #include <netinet/in.h>
93 #endif
94
95 #include <sys/device.h>
96 #include <dev/ic/ath_netbsd.h>
97
98 #define AR_DEBUG
99 #include <dev/ic/athvar.h>
100 #include <contrib/dev/ath/ah_desc.h>
101 #include <contrib/dev/ath/ah_devid.h> /* XXX for softled */
102 #include "athhal_options.h"
103
104 #ifdef ATH_TX99_DIAG
105 #include <dev/ath/ath_tx99/ath_tx99.h>
106 #endif
107
108 /* unaligned little endian access */
109 #define LE_READ_2(p) \
110 ((u_int16_t) \
111 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8)))
112 #define LE_READ_4(p) \
113 ((u_int32_t) \
114 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \
115 (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
116
117 enum {
118 ATH_LED_TX,
119 ATH_LED_RX,
120 ATH_LED_POLL,
121 };
122
123 #ifdef AH_NEED_DESC_SWAP
124 #define HTOAH32(x) htole32(x)
125 #else
126 #define HTOAH32(x) (x)
127 #endif
128
129 static int ath_ifinit(struct ifnet *);
130 static int ath_init(struct ath_softc *);
131 static void ath_stop_locked(struct ifnet *, int);
132 static void ath_stop(struct ifnet *, int);
133 static void ath_start(struct ifnet *);
134 static int ath_media_change(struct ifnet *);
135 static void ath_watchdog(struct ifnet *);
136 static int ath_ioctl(struct ifnet *, u_long, void *);
137 static void ath_fatal_proc(void *, int);
138 static void ath_rxorn_proc(void *, int);
139 static void ath_bmiss_proc(void *, int);
140 static void ath_radar_proc(void *, int);
141 static int ath_key_alloc(struct ieee80211com *,
142 const struct ieee80211_key *,
143 ieee80211_keyix *, ieee80211_keyix *);
144 static int ath_key_delete(struct ieee80211com *,
145 const struct ieee80211_key *);
146 static int ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
147 const u_int8_t mac[IEEE80211_ADDR_LEN]);
148 static void ath_key_update_begin(struct ieee80211com *);
149 static void ath_key_update_end(struct ieee80211com *);
150 static void ath_mode_init(struct ath_softc *);
151 static void ath_setslottime(struct ath_softc *);
152 static void ath_updateslot(struct ifnet *);
153 static int ath_beaconq_setup(struct ath_hal *);
154 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
155 static void ath_beacon_setup(struct ath_softc *, struct ath_buf *);
156 static void ath_beacon_proc(void *, int);
157 static void ath_bstuck_proc(void *, int);
158 static void ath_beacon_free(struct ath_softc *);
159 static void ath_beacon_config(struct ath_softc *);
160 static void ath_descdma_cleanup(struct ath_softc *sc,
161 struct ath_descdma *, ath_bufhead *);
162 static int ath_desc_alloc(struct ath_softc *);
163 static void ath_desc_free(struct ath_softc *);
164 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
165 static void ath_node_free(struct ieee80211_node *);
166 static u_int8_t ath_node_getrssi(const struct ieee80211_node *);
167 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
168 static void ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
169 struct ieee80211_node *ni,
170 int subtype, int rssi, u_int32_t rstamp);
171 static void ath_setdefantenna(struct ath_softc *, u_int);
172 static void ath_rx_proc(void *, int);
173 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
174 static int ath_tx_setup(struct ath_softc *, int, int);
175 static int ath_wme_update(struct ieee80211com *);
176 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
177 static void ath_tx_cleanup(struct ath_softc *);
178 static int ath_tx_start(struct ath_softc *, struct ieee80211_node *,
179 struct ath_buf *, struct mbuf *);
180 static void ath_tx_proc_q0(void *, int);
181 static void ath_tx_proc_q0123(void *, int);
182 static void ath_tx_proc(void *, int);
183 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
184 static void ath_draintxq(struct ath_softc *);
185 static void ath_stoprecv(struct ath_softc *);
186 static int ath_startrecv(struct ath_softc *);
187 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
188 static void ath_next_scan(void *);
189 static void ath_calibrate(void *);
190 static int ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
191 static void ath_setup_stationkey(struct ieee80211_node *);
192 static void ath_newassoc(struct ieee80211_node *, int);
193 static int ath_getchannels(struct ath_softc *, u_int cc,
194 HAL_BOOL outdoor, HAL_BOOL xchanmode);
195 static void ath_led_event(struct ath_softc *, int);
196 static void ath_update_txpow(struct ath_softc *);
197 static void ath_freetx(struct mbuf *);
198
199 static int ath_rate_setup(struct ath_softc *, u_int mode);
200 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
201
202 #ifdef __NetBSD__
203 int ath_enable(struct ath_softc *);
204 void ath_disable(struct ath_softc *);
205 #endif
206
207 #if NBPFILTER > 0
208 static void ath_bpfattach(struct ath_softc *);
209 #endif
210 static void ath_announce(struct ath_softc *);
211
212 int ath_dwelltime = 200; /* 5 channels/second */
213 int ath_calinterval = 30; /* calibrate every 30 secs */
214 int ath_outdoor = AH_TRUE; /* outdoor operation */
215 int ath_xchanmode = AH_TRUE; /* enable extended channels */
216 int ath_countrycode = CTRY_DEFAULT; /* country code */
217 int ath_regdomain = 0; /* regulatory domain */
218 int ath_debug = 0;
219 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */
220 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */
221
222 #ifdef AR_DEBUG
223 enum {
224 ATH_DEBUG_XMIT = 0x00000001, /* basic xmit operation */
225 ATH_DEBUG_XMIT_DESC = 0x00000002, /* xmit descriptors */
226 ATH_DEBUG_RECV = 0x00000004, /* basic recv operation */
227 ATH_DEBUG_RECV_DESC = 0x00000008, /* recv descriptors */
228 ATH_DEBUG_RATE = 0x00000010, /* rate control */
229 ATH_DEBUG_RESET = 0x00000020, /* reset processing */
230 ATH_DEBUG_MODE = 0x00000040, /* mode init/setup */
231 ATH_DEBUG_BEACON = 0x00000080, /* beacon handling */
232 ATH_DEBUG_WATCHDOG = 0x00000100, /* watchdog timeout */
233 ATH_DEBUG_INTR = 0x00001000, /* ISR */
234 ATH_DEBUG_TX_PROC = 0x00002000, /* tx ISR proc */
235 ATH_DEBUG_RX_PROC = 0x00004000, /* rx ISR proc */
236 ATH_DEBUG_BEACON_PROC = 0x00008000, /* beacon ISR proc */
237 ATH_DEBUG_CALIBRATE = 0x00010000, /* periodic calibration */
238 ATH_DEBUG_KEYCACHE = 0x00020000, /* key cache management */
239 ATH_DEBUG_STATE = 0x00040000, /* 802.11 state transitions */
240 ATH_DEBUG_NODE = 0x00080000, /* node management */
241 ATH_DEBUG_LED = 0x00100000, /* led management */
242 ATH_DEBUG_FF = 0x00200000, /* fast frames */
243 ATH_DEBUG_DFS = 0x00400000, /* DFS processing */
244 ATH_DEBUG_FATAL = 0x80000000, /* fatal errors */
245 ATH_DEBUG_ANY = 0xffffffff
246 };
247 #define IFF_DUMPPKTS(sc, m) \
248 ((sc->sc_debug & (m)) || \
249 (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
250 #define DPRINTF(sc, m, fmt, ...) do { \
251 if (sc->sc_debug & (m)) \
252 printf(fmt, __VA_ARGS__); \
253 } while (0)
254 #define KEYPRINTF(sc, ix, hk, mac) do { \
255 if (sc->sc_debug & ATH_DEBUG_KEYCACHE) \
256 ath_keyprint(__func__, ix, hk, mac); \
257 } while (0)
258 static void ath_printrxbuf(struct ath_buf *bf, int);
259 static void ath_printtxbuf(struct ath_buf *bf, int);
260 #else
261 #define IFF_DUMPPKTS(sc, m) \
262 ((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
263 #define DPRINTF(m, fmt, ...)
264 #define KEYPRINTF(sc, k, ix, mac)
265 #endif
266
267 #ifdef __NetBSD__
268 int
269 ath_activate(struct device *self, enum devact act)
270 {
271 struct ath_softc *sc = (struct ath_softc *)self;
272 int rv = 0, s;
273
274 s = splnet();
275 switch (act) {
276 case DVACT_ACTIVATE:
277 rv = EOPNOTSUPP;
278 break;
279 case DVACT_DEACTIVATE:
280 if_deactivate(&sc->sc_if);
281 break;
282 }
283 splx(s);
284 return rv;
285 }
286
287 int
288 ath_enable(struct ath_softc *sc)
289 {
290 if (ATH_IS_ENABLED(sc) == 0) {
291 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
292 printf("%s: device enable failed\n",
293 sc->sc_dev.dv_xname);
294 return (EIO);
295 }
296 sc->sc_flags |= ATH_ENABLED;
297 }
298 return (0);
299 }
300
301 void
302 ath_disable(struct ath_softc *sc)
303 {
304 if (!ATH_IS_ENABLED(sc))
305 return;
306 if (sc->sc_disable != NULL)
307 (*sc->sc_disable)(sc);
308 sc->sc_flags &= ~ATH_ENABLED;
309 }
310 #endif /* __NetBSD__ */
311
312 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
313
314 int
315 ath_attach(u_int16_t devid, struct ath_softc *sc)
316 {
317 struct ifnet *ifp = &sc->sc_if;
318 struct ieee80211com *ic = &sc->sc_ic;
319 struct ath_hal *ah = NULL;
320 HAL_STATUS status;
321 int error = 0, i;
322
323 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
324
325 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
326
327 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
328 if (ah == NULL) {
329 if_printf(ifp, "unable to attach hardware; HAL status %u\n",
330 status);
331 error = ENXIO;
332 goto bad;
333 }
334 if (ah->ah_abi != HAL_ABI_VERSION) {
335 if_printf(ifp, "HAL ABI mismatch detected "
336 "(HAL:0x%x != driver:0x%x)\n",
337 ah->ah_abi, HAL_ABI_VERSION);
338 error = ENXIO;
339 goto bad;
340 }
341 sc->sc_ah = ah;
342 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */
343
344 /*
345 * Check if the MAC has multi-rate retry support.
346 * We do this by trying to setup a fake extended
347 * descriptor. MAC's that don't have support will
348 * return false w/o doing anything. MAC's that do
349 * support it will return true w/o doing anything.
350 */
351 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
352
353 /*
354 * Check if the device has hardware counters for PHY
355 * errors. If so we need to enable the MIB interrupt
356 * so we can act on stat triggers.
357 */
358 if (ath_hal_hwphycounters(ah))
359 sc->sc_needmib = 1;
360
361 /*
362 * Get the hardware key cache size.
363 */
364 sc->sc_keymax = ath_hal_keycachesize(ah);
365 if (sc->sc_keymax > ATH_KEYMAX) {
366 if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
367 ATH_KEYMAX, sc->sc_keymax);
368 sc->sc_keymax = ATH_KEYMAX;
369 }
370 /*
371 * Reset the key cache since some parts do not
372 * reset the contents on initial power up.
373 */
374 for (i = 0; i < sc->sc_keymax; i++)
375 ath_hal_keyreset(ah, i);
376 /*
377 * Mark key cache slots associated with global keys
378 * as in use. If we knew TKIP was not to be used we
379 * could leave the +32, +64, and +32+64 slots free.
380 * XXX only for splitmic.
381 */
382 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
383 setbit(sc->sc_keymap, i);
384 setbit(sc->sc_keymap, i+32);
385 setbit(sc->sc_keymap, i+64);
386 setbit(sc->sc_keymap, i+32+64);
387 }
388
389 /*
390 * Collect the channel list using the default country
391 * code and including outdoor channels. The 802.11 layer
392 * is resposible for filtering this list based on settings
393 * like the phy mode.
394 */
395 error = ath_getchannels(sc, ath_countrycode,
396 ath_outdoor, ath_xchanmode);
397 if (error != 0)
398 goto bad;
399
400 /*
401 * Setup rate tables for all potential media types.
402 */
403 ath_rate_setup(sc, IEEE80211_MODE_11A);
404 ath_rate_setup(sc, IEEE80211_MODE_11B);
405 ath_rate_setup(sc, IEEE80211_MODE_11G);
406 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
407 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
408 /* NB: setup here so ath_rate_update is happy */
409 ath_setcurmode(sc, IEEE80211_MODE_11A);
410
411 /*
412 * Allocate tx+rx descriptors and populate the lists.
413 */
414 error = ath_desc_alloc(sc);
415 if (error != 0) {
416 if_printf(ifp, "failed to allocate descriptors: %d\n", error);
417 goto bad;
418 }
419 ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
420 ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE);
421 ATH_CALLOUT_INIT(&sc->sc_dfs_ch, CALLOUT_MPSAFE);
422
423 ATH_TXBUF_LOCK_INIT(sc);
424
425 TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
426 TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
427 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
428 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
429 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
430 TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc);
431
432 /*
433 * Allocate hardware transmit queues: one queue for
434 * beacon frames and one data queue for each QoS
435 * priority. Note that the hal handles reseting
436 * these queues at the needed time.
437 *
438 * XXX PS-Poll
439 */
440 sc->sc_bhalq = ath_beaconq_setup(ah);
441 if (sc->sc_bhalq == (u_int) -1) {
442 if_printf(ifp, "unable to setup a beacon xmit queue!\n");
443 error = EIO;
444 goto bad2;
445 }
446 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
447 if (sc->sc_cabq == NULL) {
448 if_printf(ifp, "unable to setup CAB xmit queue!\n");
449 error = EIO;
450 goto bad2;
451 }
452 /* NB: insure BK queue is the lowest priority h/w queue */
453 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
454 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
455 ieee80211_wme_acnames[WME_AC_BK]);
456 error = EIO;
457 goto bad2;
458 }
459 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
460 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
461 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
462 /*
463 * Not enough hardware tx queues to properly do WME;
464 * just punt and assign them all to the same h/w queue.
465 * We could do a better job of this if, for example,
466 * we allocate queues when we switch from station to
467 * AP mode.
468 */
469 if (sc->sc_ac2q[WME_AC_VI] != NULL)
470 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
471 if (sc->sc_ac2q[WME_AC_BE] != NULL)
472 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
473 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
474 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
475 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
476 }
477
478 /*
479 * Special case certain configurations. Note the
480 * CAB queue is handled by these specially so don't
481 * include them when checking the txq setup mask.
482 */
483 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
484 case 0x01:
485 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
486 break;
487 case 0x0f:
488 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
489 break;
490 default:
491 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
492 break;
493 }
494
495 /*
496 * Setup rate control. Some rate control modules
497 * call back to change the anntena state so expose
498 * the necessary entry points.
499 * XXX maybe belongs in struct ath_ratectrl?
500 */
501 sc->sc_setdefantenna = ath_setdefantenna;
502 sc->sc_rc = ath_rate_attach(sc);
503 if (sc->sc_rc == NULL) {
504 error = EIO;
505 goto bad2;
506 }
507
508 sc->sc_blinking = 0;
509 sc->sc_ledstate = 1;
510 sc->sc_ledon = 0; /* low true */
511 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */
512 ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE);
513 /*
514 * Auto-enable soft led processing for IBM cards and for
515 * 5211 minipci cards. Users can also manually enable/disable
516 * support with a sysctl.
517 */
518 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
519 if (sc->sc_softled) {
520 ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
521 ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
522 }
523
524 ifp->if_softc = sc;
525 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
526 ifp->if_start = ath_start;
527 ifp->if_stop = ath_stop;
528 ifp->if_watchdog = ath_watchdog;
529 ifp->if_ioctl = ath_ioctl;
530 ifp->if_init = ath_ifinit;
531 IFQ_SET_READY(&ifp->if_snd);
532
533 ic->ic_ifp = ifp;
534 ic->ic_reset = ath_reset;
535 ic->ic_newassoc = ath_newassoc;
536 ic->ic_updateslot = ath_updateslot;
537 ic->ic_wme.wme_update = ath_wme_update;
538 /* XXX not right but it's not used anywhere important */
539 ic->ic_phytype = IEEE80211_T_OFDM;
540 ic->ic_opmode = IEEE80211_M_STA;
541 ic->ic_caps =
542 IEEE80211_C_IBSS /* ibss, nee adhoc, mode */
543 | IEEE80211_C_HOSTAP /* hostap mode */
544 | IEEE80211_C_MONITOR /* monitor mode */
545 | IEEE80211_C_SHPREAMBLE /* short preamble supported */
546 | IEEE80211_C_SHSLOT /* short slot time supported */
547 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */
548 | IEEE80211_C_TXFRAG /* handle tx frags */
549 ;
550 /*
551 * Query the hal to figure out h/w crypto support.
552 */
553 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
554 ic->ic_caps |= IEEE80211_C_WEP;
555 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
556 ic->ic_caps |= IEEE80211_C_AES;
557 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
558 ic->ic_caps |= IEEE80211_C_AES_CCM;
559 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
560 ic->ic_caps |= IEEE80211_C_CKIP;
561 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
562 ic->ic_caps |= IEEE80211_C_TKIP;
563 /*
564 * Check if h/w does the MIC and/or whether the
565 * separate key cache entries are required to
566 * handle both tx+rx MIC keys.
567 */
568 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
569 ic->ic_caps |= IEEE80211_C_TKIPMIC;
570 if (ath_hal_tkipsplit(ah))
571 sc->sc_splitmic = 1;
572 }
573 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
574 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
575 /*
576 * TPC support can be done either with a global cap or
577 * per-packet support. The latter is not available on
578 * all parts. We're a bit pedantic here as all parts
579 * support a global cap.
580 */
581 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
582 ic->ic_caps |= IEEE80211_C_TXPMGT;
583
584 /*
585 * Mark WME capability only if we have sufficient
586 * hardware queues to do proper priority scheduling.
587 */
588 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
589 ic->ic_caps |= IEEE80211_C_WME;
590 /*
591 * Check for misc other capabilities.
592 */
593 if (ath_hal_hasbursting(ah))
594 ic->ic_caps |= IEEE80211_C_BURST;
595
596 /*
597 * Indicate we need the 802.11 header padded to a
598 * 32-bit boundary for 4-address and QoS frames.
599 */
600 ic->ic_flags |= IEEE80211_F_DATAPAD;
601
602 /*
603 * Query the hal about antenna support.
604 */
605 sc->sc_defant = ath_hal_getdefantenna(ah);
606
607 /*
608 * Not all chips have the VEOL support we want to
609 * use with IBSS beacons; check here for it.
610 */
611 sc->sc_hasveol = ath_hal_hasveol(ah);
612
613 /* get mac address from hardware */
614 ath_hal_getmac(ah, ic->ic_myaddr);
615
616 if_attach(ifp);
617 /* call MI attach routine. */
618 ieee80211_ifattach(ic);
619 /* override default methods */
620 ic->ic_node_alloc = ath_node_alloc;
621 sc->sc_node_free = ic->ic_node_free;
622 ic->ic_node_free = ath_node_free;
623 ic->ic_node_getrssi = ath_node_getrssi;
624 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
625 ic->ic_recv_mgmt = ath_recv_mgmt;
626 sc->sc_newstate = ic->ic_newstate;
627 ic->ic_newstate = ath_newstate;
628 ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
629 ic->ic_crypto.cs_key_alloc = ath_key_alloc;
630 ic->ic_crypto.cs_key_delete = ath_key_delete;
631 ic->ic_crypto.cs_key_set = ath_key_set;
632 ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
633 ic->ic_crypto.cs_key_update_end = ath_key_update_end;
634 /* complete initialization */
635 ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
636
637 #if NBPFILTER > 0
638 ath_bpfattach(sc);
639 #endif
640
641 sc->sc_flags |= ATH_ATTACHED;
642
643 /*
644 * Setup dynamic sysctl's now that country code and
645 * regdomain are available from the hal.
646 */
647 ath_sysctlattach(sc);
648
649 ieee80211_announce(ic);
650 ath_announce(sc);
651 return 0;
652 bad2:
653 ath_tx_cleanup(sc);
654 ath_desc_free(sc);
655 bad:
656 if (ah)
657 ath_hal_detach(ah);
658 sc->sc_invalid = 1;
659 return error;
660 }
661
662 int
663 ath_detach(struct ath_softc *sc)
664 {
665 struct ifnet *ifp = &sc->sc_if;
666 int s;
667
668 if ((sc->sc_flags & ATH_ATTACHED) == 0)
669 return (0);
670
671 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
672 __func__, ifp->if_flags);
673
674 s = splnet();
675 ath_stop(ifp, 1);
676 #if NBPFILTER > 0
677 bpfdetach(ifp);
678 #endif
679 /*
680 * NB: the order of these is important:
681 * o call the 802.11 layer before detaching the hal to
682 * insure callbacks into the driver to delete global
683 * key cache entries can be handled
684 * o reclaim the tx queue data structures after calling
685 * the 802.11 layer as we'll get called back to reclaim
686 * node state and potentially want to use them
687 * o to cleanup the tx queues the hal is called, so detach
688 * it last
689 * Other than that, it's straightforward...
690 */
691 ieee80211_ifdetach(&sc->sc_ic);
692 #ifdef ATH_TX99_DIAG
693 if (sc->sc_tx99 != NULL)
694 sc->sc_tx99->detach(sc->sc_tx99);
695 #endif
696 ath_rate_detach(sc->sc_rc);
697 ath_desc_free(sc);
698 ath_tx_cleanup(sc);
699 sysctl_teardown(&sc->sc_sysctllog);
700 ath_hal_detach(sc->sc_ah);
701 if_detach(ifp);
702 splx(s);
703 powerhook_disestablish(sc->sc_powerhook);
704
705 return 0;
706 }
707
708 void
709 ath_resume(struct ath_softc *sc)
710 {
711 if (sc->sc_softled) {
712 ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
713 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
714 }
715 }
716
717 /*
718 * Interrupt handler. Most of the actual processing is deferred.
719 */
720 int
721 ath_intr(void *arg)
722 {
723 struct ath_softc *sc = arg;
724 struct ifnet *ifp = &sc->sc_if;
725 struct ath_hal *ah = sc->sc_ah;
726 HAL_INT status;
727
728 if (sc->sc_invalid) {
729 /*
730 * The hardware is not ready/present, don't touch anything.
731 * Note this can happen early on if the IRQ is shared.
732 */
733 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
734 return 0;
735 }
736
737 if (!ath_hal_intrpend(ah)) /* shared irq, not for us */
738 return 0;
739
740 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
741 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
742 __func__, ifp->if_flags);
743 ath_hal_getisr(ah, &status); /* clear ISR */
744 ath_hal_intrset(ah, 0); /* disable further intr's */
745 return 1; /* XXX */
746 }
747 /*
748 * Figure out the reason(s) for the interrupt. Note
749 * that the hal returns a pseudo-ISR that may include
750 * bits we haven't explicitly enabled so we mask the
751 * value to insure we only process bits we requested.
752 */
753 ath_hal_getisr(ah, &status); /* NB: clears ISR too */
754 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
755 status &= sc->sc_imask; /* discard unasked for bits */
756 if (status & HAL_INT_FATAL) {
757 /*
758 * Fatal errors are unrecoverable. Typically
759 * these are caused by DMA errors. Unfortunately
760 * the exact reason is not (presently) returned
761 * by the hal.
762 */
763 sc->sc_stats.ast_hardware++;
764 ath_hal_intrset(ah, 0); /* disable intr's until reset */
765 TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
766 } else if (status & HAL_INT_RXORN) {
767 sc->sc_stats.ast_rxorn++;
768 ath_hal_intrset(ah, 0); /* disable intr's until reset */
769 TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
770 } else {
771 if (status & HAL_INT_SWBA) {
772 /*
773 * Software beacon alert--time to send a beacon.
774 * Handle beacon transmission directly; deferring
775 * this is too slow to meet timing constraints
776 * under load.
777 */
778 ath_beacon_proc(sc, 0);
779 }
780 if (status & HAL_INT_RXEOL) {
781 /*
782 * NB: the hardware should re-read the link when
783 * RXE bit is written, but it doesn't work at
784 * least on older hardware revs.
785 */
786 sc->sc_stats.ast_rxeol++;
787 sc->sc_rxlink = NULL;
788 }
789 if (status & HAL_INT_TXURN) {
790 sc->sc_stats.ast_txurn++;
791 /* bump tx trigger level */
792 ath_hal_updatetxtriglevel(ah, AH_TRUE);
793 }
794 if (status & HAL_INT_RX)
795 TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
796 if (status & HAL_INT_TX)
797 TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
798 if (status & HAL_INT_BMISS) {
799 sc->sc_stats.ast_bmiss++;
800 TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
801 }
802 if (status & HAL_INT_MIB) {
803 sc->sc_stats.ast_mib++;
804 /*
805 * Disable interrupts until we service the MIB
806 * interrupt; otherwise it will continue to fire.
807 */
808 ath_hal_intrset(ah, 0);
809 /*
810 * Let the hal handle the event. We assume it will
811 * clear whatever condition caused the interrupt.
812 */
813 ath_hal_mibevent(ah, &sc->sc_halstats);
814 ath_hal_intrset(ah, sc->sc_imask);
815 }
816 }
817 return 1;
818 }
819
820 /* Swap transmit descriptor.
821 * if AH_NEED_DESC_SWAP flag is not defined this becomes a "null"
822 * function.
823 */
824 static inline void
825 ath_desc_swap(struct ath_desc *ds)
826 {
827 #ifdef AH_NEED_DESC_SWAP
828 ds->ds_link = htole32(ds->ds_link);
829 ds->ds_data = htole32(ds->ds_data);
830 ds->ds_ctl0 = htole32(ds->ds_ctl0);
831 ds->ds_ctl1 = htole32(ds->ds_ctl1);
832 ds->ds_hw[0] = htole32(ds->ds_hw[0]);
833 ds->ds_hw[1] = htole32(ds->ds_hw[1]);
834 #endif
835 }
836
837 static void
838 ath_fatal_proc(void *arg, int pending)
839 {
840 struct ath_softc *sc = arg;
841 struct ifnet *ifp = &sc->sc_if;
842
843 if_printf(ifp, "hardware error; resetting\n");
844 ath_reset(ifp);
845 }
846
847 static void
848 ath_rxorn_proc(void *arg, int pending)
849 {
850 struct ath_softc *sc = arg;
851 struct ifnet *ifp = &sc->sc_if;
852
853 if_printf(ifp, "rx FIFO overrun; resetting\n");
854 ath_reset(ifp);
855 }
856
857 static void
858 ath_bmiss_proc(void *arg, int pending)
859 {
860 struct ath_softc *sc = arg;
861 struct ieee80211com *ic = &sc->sc_ic;
862
863 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
864 KASSERT(ic->ic_opmode == IEEE80211_M_STA,
865 ("unexpect operating mode %u", ic->ic_opmode));
866 if (ic->ic_state == IEEE80211_S_RUN) {
867 u_int64_t lastrx = sc->sc_lastrx;
868 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
869
870 DPRINTF(sc, ATH_DEBUG_BEACON,
871 "%s: tsf %" PRIu64 " lastrx %" PRId64
872 " (%" PRIu64 ") bmiss %u\n",
873 __func__, tsf, tsf - lastrx, lastrx,
874 ic->ic_bmisstimeout*1024);
875 /*
876 * Workaround phantom bmiss interrupts by sanity-checking
877 * the time of our last rx'd frame. If it is within the
878 * beacon miss interval then ignore the interrupt. If it's
879 * truly a bmiss we'll get another interrupt soon and that'll
880 * be dispatched up for processing.
881 */
882 if (tsf - lastrx > ic->ic_bmisstimeout*1024) {
883 NET_LOCK_GIANT();
884 ieee80211_beacon_miss(ic);
885 NET_UNLOCK_GIANT();
886 } else
887 sc->sc_stats.ast_bmiss_phantom++;
888 }
889 }
890
891 static void
892 ath_radar_proc(void *arg, int pending)
893 {
894 struct ath_softc *sc = arg;
895 struct ifnet *ifp = &sc->sc_if;
896 struct ath_hal *ah = sc->sc_ah;
897 HAL_CHANNEL hchan;
898
899 if (ath_hal_procdfs(ah, &hchan)) {
900 if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n",
901 hchan.channel, hchan.channelFlags, hchan.privFlags);
902 /*
903 * Initiate channel change.
904 */
905 /* XXX not yet */
906 }
907 }
908
909 static u_int
910 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
911 {
912 #define N(a) (sizeof(a) / sizeof(a[0]))
913 static const u_int modeflags[] = {
914 0, /* IEEE80211_MODE_AUTO */
915 CHANNEL_A, /* IEEE80211_MODE_11A */
916 CHANNEL_B, /* IEEE80211_MODE_11B */
917 CHANNEL_PUREG, /* IEEE80211_MODE_11G */
918 0, /* IEEE80211_MODE_FH */
919 CHANNEL_ST, /* IEEE80211_MODE_TURBO_A */
920 CHANNEL_108G /* IEEE80211_MODE_TURBO_G */
921 };
922 enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
923
924 KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
925 KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
926 return modeflags[mode];
927 #undef N
928 }
929
930 static int
931 ath_ifinit(struct ifnet *ifp)
932 {
933 struct ath_softc *sc = (struct ath_softc *)ifp->if_softc;
934
935 return ath_init(sc);
936 }
937
938 static int
939 ath_init(struct ath_softc *sc)
940 {
941 struct ifnet *ifp = &sc->sc_if;
942 struct ieee80211com *ic = &sc->sc_ic;
943 struct ath_hal *ah = sc->sc_ah;
944 HAL_STATUS status;
945 int error = 0;
946
947 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
948 __func__, ifp->if_flags);
949
950 ATH_LOCK(sc);
951
952 if ((error = ath_enable(sc)) != 0)
953 return error;
954
955 /*
956 * Stop anything previously setup. This is safe
957 * whether this is the first time through or not.
958 */
959 ath_stop_locked(ifp, 0);
960
961 /*
962 * The basic interface to setting the hardware in a good
963 * state is ``reset''. On return the hardware is known to
964 * be powered up and with interrupts disabled. This must
965 * be followed by initialization of the appropriate bits
966 * and then setup of the interrupt mask.
967 */
968 sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
969 sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
970 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
971 if_printf(ifp, "unable to reset hardware; hal status %u\n",
972 status);
973 error = EIO;
974 goto done;
975 }
976
977 /*
978 * This is needed only to setup initial state
979 * but it's best done after a reset.
980 */
981 ath_update_txpow(sc);
982 /*
983 * Likewise this is set during reset so update
984 * state cached in the driver.
985 */
986 sc->sc_diversity = ath_hal_getdiversity(ah);
987 sc->sc_calinterval = 1;
988 sc->sc_caltries = 0;
989
990 /*
991 * Setup the hardware after reset: the key cache
992 * is filled as needed and the receive engine is
993 * set going. Frame transmit is handled entirely
994 * in the frame output path; there's nothing to do
995 * here except setup the interrupt mask.
996 */
997 if ((error = ath_startrecv(sc)) != 0) {
998 if_printf(ifp, "unable to start recv logic\n");
999 goto done;
1000 }
1001
1002 /*
1003 * Enable interrupts.
1004 */
1005 sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1006 | HAL_INT_RXEOL | HAL_INT_RXORN
1007 | HAL_INT_FATAL | HAL_INT_GLOBAL;
1008 /*
1009 * Enable MIB interrupts when there are hardware phy counters.
1010 * Note we only do this (at the moment) for station mode.
1011 */
1012 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1013 sc->sc_imask |= HAL_INT_MIB;
1014 ath_hal_intrset(ah, sc->sc_imask);
1015
1016 ifp->if_flags |= IFF_RUNNING;
1017 ic->ic_state = IEEE80211_S_INIT;
1018
1019 /*
1020 * The hardware should be ready to go now so it's safe
1021 * to kick the 802.11 state machine as it's likely to
1022 * immediately call back to us to send mgmt frames.
1023 */
1024 ath_chan_change(sc, ic->ic_curchan);
1025 #ifdef ATH_TX99_DIAG
1026 if (sc->sc_tx99 != NULL)
1027 sc->sc_tx99->start(sc->sc_tx99);
1028 else
1029 #endif
1030 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1031 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
1032 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1033 } else
1034 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1035 done:
1036 ATH_UNLOCK(sc);
1037 return error;
1038 }
1039
1040 static void
1041 ath_stop_locked(struct ifnet *ifp, int disable)
1042 {
1043 struct ath_softc *sc = ifp->if_softc;
1044 struct ieee80211com *ic = &sc->sc_ic;
1045 struct ath_hal *ah = sc->sc_ah;
1046
1047 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1048 __func__, sc->sc_invalid, ifp->if_flags);
1049
1050 ATH_LOCK_ASSERT(sc);
1051 if (ifp->if_flags & IFF_RUNNING) {
1052 /*
1053 * Shutdown the hardware and driver:
1054 * reset 802.11 state machine
1055 * turn off timers
1056 * disable interrupts
1057 * turn off the radio
1058 * clear transmit machinery
1059 * clear receive machinery
1060 * drain and release tx queues
1061 * reclaim beacon resources
1062 * power down hardware
1063 *
1064 * Note that some of this work is not possible if the
1065 * hardware is gone (invalid).
1066 */
1067 #ifdef ATH_TX99_DIAG
1068 if (sc->sc_tx99 != NULL)
1069 sc->sc_tx99->stop(sc->sc_tx99);
1070 #endif
1071 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1072 ifp->if_flags &= ~IFF_RUNNING;
1073 ifp->if_timer = 0;
1074 if (!sc->sc_invalid) {
1075 if (sc->sc_softled) {
1076 callout_stop(&sc->sc_ledtimer);
1077 ath_hal_gpioset(ah, sc->sc_ledpin,
1078 !sc->sc_ledon);
1079 sc->sc_blinking = 0;
1080 }
1081 ath_hal_intrset(ah, 0);
1082 }
1083 ath_draintxq(sc);
1084 if (!sc->sc_invalid) {
1085 ath_stoprecv(sc);
1086 ath_hal_phydisable(ah);
1087 } else
1088 sc->sc_rxlink = NULL;
1089 IF_PURGE(&ifp->if_snd);
1090 ath_beacon_free(sc);
1091 if (disable)
1092 ath_disable(sc);
1093 }
1094 }
1095
1096 static void
1097 ath_stop(struct ifnet *ifp, int disable)
1098 {
1099 struct ath_softc *sc = ifp->if_softc;
1100
1101 ATH_LOCK(sc);
1102 ath_stop_locked(ifp, disable);
1103 if (!sc->sc_invalid) {
1104 /*
1105 * Set the chip in full sleep mode. Note that we are
1106 * careful to do this only when bringing the interface
1107 * completely to a stop. When the chip is in this state
1108 * it must be carefully woken up or references to
1109 * registers in the PCI clock domain may freeze the bus
1110 * (and system). This varies by chip and is mostly an
1111 * issue with newer parts that go to sleep more quickly.
1112 */
1113 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
1114 }
1115 ATH_UNLOCK(sc);
1116 }
1117
1118 /*
1119 * Reset the hardware w/o losing operational state. This is
1120 * basically a more efficient way of doing ath_stop, ath_init,
1121 * followed by state transitions to the current 802.11
1122 * operational state. Used to recover from various errors and
1123 * to reset or reload hardware state.
1124 */
1125 int
1126 ath_reset(struct ifnet *ifp)
1127 {
1128 struct ath_softc *sc = ifp->if_softc;
1129 struct ieee80211com *ic = &sc->sc_ic;
1130 struct ath_hal *ah = sc->sc_ah;
1131 struct ieee80211_channel *c;
1132 HAL_STATUS status;
1133
1134 /*
1135 * Convert to a HAL channel description with the flags
1136 * constrained to reflect the current operating mode.
1137 */
1138 c = ic->ic_curchan;
1139 sc->sc_curchan.channel = c->ic_freq;
1140 sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
1141
1142 ath_hal_intrset(ah, 0); /* disable interrupts */
1143 ath_draintxq(sc); /* stop xmit side */
1144 ath_stoprecv(sc); /* stop recv side */
1145 /* NB: indicate channel change so we do a full reset */
1146 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
1147 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1148 __func__, status);
1149 ath_update_txpow(sc); /* update tx power state */
1150 sc->sc_diversity = ath_hal_getdiversity(ah);
1151 sc->sc_calinterval = 1;
1152 sc->sc_caltries = 0;
1153 if (ath_startrecv(sc) != 0) /* restart recv */
1154 if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1155 /*
1156 * We may be doing a reset in response to an ioctl
1157 * that changes the channel so update any state that
1158 * might change as a result.
1159 */
1160 ath_chan_change(sc, c);
1161 if (ic->ic_state == IEEE80211_S_RUN)
1162 ath_beacon_config(sc); /* restart beacons */
1163 ath_hal_intrset(ah, sc->sc_imask);
1164
1165 ath_start(ifp); /* restart xmit */
1166 return 0;
1167 }
1168
1169 /*
1170 * Cleanup driver resources when we run out of buffers
1171 * while processing fragments; return the tx buffers
1172 * allocated and drop node references.
1173 */
1174 static void
1175 ath_txfrag_cleanup(struct ath_softc *sc,
1176 ath_bufhead *frags, struct ieee80211_node *ni)
1177 {
1178 struct ath_buf *bf;
1179
1180 ATH_TXBUF_LOCK_ASSERT(sc);
1181
1182 while ((bf = STAILQ_FIRST(frags)) != NULL) {
1183 STAILQ_REMOVE_HEAD(frags, bf_list);
1184 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1185 sc->sc_if.if_flags &= ~IFF_OACTIVE;
1186 ieee80211_node_decref(ni);
1187 }
1188 }
1189
1190 /*
1191 * Setup xmit of a fragmented frame. Allocate a buffer
1192 * for each frag and bump the node reference count to
1193 * reflect the held reference to be setup by ath_tx_start.
1194 */
1195 static int
1196 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
1197 struct mbuf *m0, struct ieee80211_node *ni)
1198 {
1199 struct mbuf *m;
1200 struct ath_buf *bf;
1201
1202 ATH_TXBUF_LOCK(sc);
1203 for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
1204 bf = STAILQ_FIRST(&sc->sc_txbuf);
1205 if (bf == NULL) { /* out of buffers, cleanup */
1206 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1207 __func__);
1208 sc->sc_if.if_flags |= IFF_OACTIVE;
1209 ath_txfrag_cleanup(sc, frags, ni);
1210 break;
1211 }
1212 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1213 ieee80211_node_incref(ni);
1214 STAILQ_INSERT_TAIL(frags, bf, bf_list);
1215 }
1216 ATH_TXBUF_UNLOCK(sc);
1217
1218 return !STAILQ_EMPTY(frags);
1219 }
1220
1221 static void
1222 ath_start(struct ifnet *ifp)
1223 {
1224 struct ath_softc *sc = ifp->if_softc;
1225 struct ath_hal *ah = sc->sc_ah;
1226 struct ieee80211com *ic = &sc->sc_ic;
1227 struct ieee80211_node *ni;
1228 struct ath_buf *bf;
1229 struct mbuf *m, *next;
1230 struct ieee80211_frame *wh;
1231 struct ether_header *eh;
1232 ath_bufhead frags;
1233
1234 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
1235 return;
1236 for (;;) {
1237 /*
1238 * Grab a TX buffer and associated resources.
1239 */
1240 ATH_TXBUF_LOCK(sc);
1241 bf = STAILQ_FIRST(&sc->sc_txbuf);
1242 if (bf != NULL)
1243 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1244 ATH_TXBUF_UNLOCK(sc);
1245 if (bf == NULL) {
1246 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1247 __func__);
1248 sc->sc_stats.ast_tx_qstop++;
1249 ifp->if_flags |= IFF_OACTIVE;
1250 break;
1251 }
1252 /*
1253 * Poll the management queue for frames; they
1254 * have priority over normal data frames.
1255 */
1256 IF_DEQUEUE(&ic->ic_mgtq, m);
1257 if (m == NULL) {
1258 /*
1259 * No data frames go out unless we're associated.
1260 */
1261 if (ic->ic_state != IEEE80211_S_RUN) {
1262 DPRINTF(sc, ATH_DEBUG_XMIT,
1263 "%s: discard data packet, state %s\n",
1264 __func__,
1265 ieee80211_state_name[ic->ic_state]);
1266 sc->sc_stats.ast_tx_discard++;
1267 ATH_TXBUF_LOCK(sc);
1268 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1269 ATH_TXBUF_UNLOCK(sc);
1270 break;
1271 }
1272 IFQ_DEQUEUE(&ifp->if_snd, m); /* XXX: LOCK */
1273 if (m == NULL) {
1274 ATH_TXBUF_LOCK(sc);
1275 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1276 ATH_TXBUF_UNLOCK(sc);
1277 break;
1278 }
1279 STAILQ_INIT(&frags);
1280 /*
1281 * Find the node for the destination so we can do
1282 * things like power save and fast frames aggregation.
1283 */
1284 if (m->m_len < sizeof(struct ether_header) &&
1285 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
1286 ic->ic_stats.is_tx_nobuf++; /* XXX */
1287 ni = NULL;
1288 goto bad;
1289 }
1290 eh = mtod(m, struct ether_header *);
1291 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1292 if (ni == NULL) {
1293 /* NB: ieee80211_find_txnode does stat+msg */
1294 m_freem(m);
1295 goto bad;
1296 }
1297 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1298 (m->m_flags & M_PWR_SAV) == 0) {
1299 /*
1300 * Station in power save mode; pass the frame
1301 * to the 802.11 layer and continue. We'll get
1302 * the frame back when the time is right.
1303 */
1304 ieee80211_pwrsave(ic, ni, m);
1305 goto reclaim;
1306 }
1307 /* calculate priority so we can find the tx queue */
1308 if (ieee80211_classify(ic, m, ni)) {
1309 DPRINTF(sc, ATH_DEBUG_XMIT,
1310 "%s: discard, classification failure\n",
1311 __func__);
1312 m_freem(m);
1313 goto bad;
1314 }
1315 ifp->if_opackets++;
1316
1317 #if NBPFILTER > 0
1318 if (ifp->if_bpf)
1319 bpf_mtap(ifp->if_bpf, m);
1320 #endif
1321 /*
1322 * Encapsulate the packet in prep for transmission.
1323 */
1324 m = ieee80211_encap(ic, m, ni);
1325 if (m == NULL) {
1326 DPRINTF(sc, ATH_DEBUG_XMIT,
1327 "%s: encapsulation failure\n",
1328 __func__);
1329 sc->sc_stats.ast_tx_encap++;
1330 goto bad;
1331 }
1332 /*
1333 * Check for fragmentation. If this has frame
1334 * has been broken up verify we have enough
1335 * buffers to send all the fragments so all
1336 * go out or none...
1337 */
1338 if ((m->m_flags & M_FRAG) &&
1339 !ath_txfrag_setup(sc, &frags, m, ni)) {
1340 DPRINTF(sc, ATH_DEBUG_ANY,
1341 "%s: out of txfrag buffers\n", __func__);
1342 ic->ic_stats.is_tx_nobuf++; /* XXX */
1343 ath_freetx(m);
1344 goto bad;
1345 }
1346 } else {
1347 /*
1348 * Hack! The referenced node pointer is in the
1349 * rcvif field of the packet header. This is
1350 * placed there by ieee80211_mgmt_output because
1351 * we need to hold the reference with the frame
1352 * and there's no other way (other than packet
1353 * tags which we consider too expensive to use)
1354 * to pass it along.
1355 */
1356 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1357 m->m_pkthdr.rcvif = NULL;
1358
1359 wh = mtod(m, struct ieee80211_frame *);
1360 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1361 IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1362 /* fill time stamp */
1363 u_int64_t tsf;
1364 u_int32_t *tstamp;
1365
1366 tsf = ath_hal_gettsf64(ah);
1367 /* XXX: adjust 100us delay to xmit */
1368 tsf += 100;
1369 tstamp = (u_int32_t *)&wh[1];
1370 tstamp[0] = htole32(tsf & 0xffffffff);
1371 tstamp[1] = htole32(tsf >> 32);
1372 }
1373 sc->sc_stats.ast_tx_mgmt++;
1374 }
1375
1376 nextfrag:
1377 next = m->m_nextpkt;
1378 if (ath_tx_start(sc, ni, bf, m)) {
1379 bad:
1380 ifp->if_oerrors++;
1381 reclaim:
1382 ATH_TXBUF_LOCK(sc);
1383 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1384 ath_txfrag_cleanup(sc, &frags, ni);
1385 ATH_TXBUF_UNLOCK(sc);
1386 if (ni != NULL)
1387 ieee80211_free_node(ni);
1388 continue;
1389 }
1390 if (next != NULL) {
1391 m = next;
1392 bf = STAILQ_FIRST(&frags);
1393 KASSERT(bf != NULL, ("no buf for txfrag"));
1394 STAILQ_REMOVE_HEAD(&frags, bf_list);
1395 goto nextfrag;
1396 }
1397
1398 ifp->if_timer = 1;
1399 }
1400 }
1401
1402 static int
1403 ath_media_change(struct ifnet *ifp)
1404 {
1405 #define IS_UP(ifp) \
1406 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
1407 int error;
1408
1409 error = ieee80211_media_change(ifp);
1410 if (error == ENETRESET) {
1411 if (IS_UP(ifp))
1412 ath_init(ifp->if_softc); /* XXX lose error */
1413 error = 0;
1414 }
1415 return error;
1416 #undef IS_UP
1417 }
1418
1419 #ifdef AR_DEBUG
1420 static void
1421 ath_keyprint(const char *tag, u_int ix,
1422 const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1423 {
1424 static const char *ciphers[] = {
1425 "WEP",
1426 "AES-OCB",
1427 "AES-CCM",
1428 "CKIP",
1429 "TKIP",
1430 "CLR",
1431 };
1432 int i, n;
1433
1434 printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1435 for (i = 0, n = hk->kv_len; i < n; i++)
1436 printf("%02x", hk->kv_val[i]);
1437 printf(" mac %s", ether_sprintf(mac));
1438 if (hk->kv_type == HAL_CIPHER_TKIP) {
1439 printf(" mic ");
1440 for (i = 0; i < sizeof(hk->kv_mic); i++)
1441 printf("%02x", hk->kv_mic[i]);
1442 }
1443 printf("\n");
1444 }
1445 #endif
1446
1447 /*
1448 * Set a TKIP key into the hardware. This handles the
1449 * potential distribution of key state to multiple key
1450 * cache slots for TKIP.
1451 */
1452 static int
1453 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1454 HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1455 {
1456 #define IEEE80211_KEY_XR (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1457 static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1458 struct ath_hal *ah = sc->sc_ah;
1459
1460 KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1461 ("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1462 KASSERT(sc->sc_splitmic, ("key cache !split"));
1463 if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1464 /*
1465 * TX key goes at first index, RX key at the rx index.
1466 * The hal handles the MIC keys at index+64.
1467 */
1468 memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1469 KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1470 if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
1471 return 0;
1472
1473 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1474 KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1475 /* XXX delete tx key on failure? */
1476 return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
1477 } else if (k->wk_flags & IEEE80211_KEY_XR) {
1478 /*
1479 * TX/RX key goes at first index.
1480 * The hal handles the MIC keys are index+64.
1481 */
1482 memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
1483 k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
1484 KEYPRINTF(sc, k->wk_keyix, hk, mac);
1485 return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1486 }
1487 return 0;
1488 #undef IEEE80211_KEY_XR
1489 }
1490
1491 /*
1492 * Set a net80211 key into the hardware. This handles the
1493 * potential distribution of key state to multiple key
1494 * cache slots for TKIP with hardware MIC support.
1495 */
1496 static int
1497 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1498 const u_int8_t mac0[IEEE80211_ADDR_LEN],
1499 struct ieee80211_node *bss)
1500 {
1501 #define N(a) (sizeof(a)/sizeof(a[0]))
1502 static const u_int8_t ciphermap[] = {
1503 HAL_CIPHER_WEP, /* IEEE80211_CIPHER_WEP */
1504 HAL_CIPHER_TKIP, /* IEEE80211_CIPHER_TKIP */
1505 HAL_CIPHER_AES_OCB, /* IEEE80211_CIPHER_AES_OCB */
1506 HAL_CIPHER_AES_CCM, /* IEEE80211_CIPHER_AES_CCM */
1507 (u_int8_t) -1, /* 4 is not allocated */
1508 HAL_CIPHER_CKIP, /* IEEE80211_CIPHER_CKIP */
1509 HAL_CIPHER_CLR, /* IEEE80211_CIPHER_NONE */
1510 };
1511 struct ath_hal *ah = sc->sc_ah;
1512 const struct ieee80211_cipher *cip = k->wk_cipher;
1513 u_int8_t gmac[IEEE80211_ADDR_LEN];
1514 const u_int8_t *mac;
1515 HAL_KEYVAL hk;
1516
1517 memset(&hk, 0, sizeof(hk));
1518 /*
1519 * Software crypto uses a "clear key" so non-crypto
1520 * state kept in the key cache are maintained and
1521 * so that rx frames have an entry to match.
1522 */
1523 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1524 KASSERT(cip->ic_cipher < N(ciphermap),
1525 ("invalid cipher type %u", cip->ic_cipher));
1526 hk.kv_type = ciphermap[cip->ic_cipher];
1527 hk.kv_len = k->wk_keylen;
1528 memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1529 } else
1530 hk.kv_type = HAL_CIPHER_CLR;
1531
1532 if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
1533 /*
1534 * Group keys on hardware that supports multicast frame
1535 * key search use a mac that is the sender's address with
1536 * the high bit set instead of the app-specified address.
1537 */
1538 IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
1539 gmac[0] |= 0x80;
1540 mac = gmac;
1541 } else
1542 mac = mac0;
1543
1544 if (hk.kv_type == HAL_CIPHER_TKIP &&
1545 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1546 sc->sc_splitmic) {
1547 return ath_keyset_tkip(sc, k, &hk, mac);
1548 } else {
1549 KEYPRINTF(sc, k->wk_keyix, &hk, mac);
1550 return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
1551 }
1552 #undef N
1553 }
1554
1555 /*
1556 * Allocate tx/rx key slots for TKIP. We allocate two slots for
1557 * each key, one for decrypt/encrypt and the other for the MIC.
1558 */
1559 static u_int16_t
1560 key_alloc_2pair(struct ath_softc *sc,
1561 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1562 {
1563 #define N(a) (sizeof(a)/sizeof(a[0]))
1564 u_int i, keyix;
1565
1566 KASSERT(sc->sc_splitmic, ("key cache !split"));
1567 /* XXX could optimize */
1568 for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1569 u_int8_t b = sc->sc_keymap[i];
1570 if (b != 0xff) {
1571 /*
1572 * One or more slots in this byte are free.
1573 */
1574 keyix = i*NBBY;
1575 while (b & 1) {
1576 again:
1577 keyix++;
1578 b >>= 1;
1579 }
1580 /* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1581 if (isset(sc->sc_keymap, keyix+32) ||
1582 isset(sc->sc_keymap, keyix+64) ||
1583 isset(sc->sc_keymap, keyix+32+64)) {
1584 /* full pair unavailable */
1585 /* XXX statistic */
1586 if (keyix == (i+1)*NBBY) {
1587 /* no slots were appropriate, advance */
1588 continue;
1589 }
1590 goto again;
1591 }
1592 setbit(sc->sc_keymap, keyix);
1593 setbit(sc->sc_keymap, keyix+64);
1594 setbit(sc->sc_keymap, keyix+32);
1595 setbit(sc->sc_keymap, keyix+32+64);
1596 DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1597 "%s: key pair %u,%u %u,%u\n",
1598 __func__, keyix, keyix+64,
1599 keyix+32, keyix+32+64);
1600 *txkeyix = keyix;
1601 *rxkeyix = keyix+32;
1602 return 1;
1603 }
1604 }
1605 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1606 return 0;
1607 #undef N
1608 }
1609
1610 /*
1611 * Allocate a single key cache slot.
1612 */
1613 static int
1614 key_alloc_single(struct ath_softc *sc,
1615 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1616 {
1617 #define N(a) (sizeof(a)/sizeof(a[0]))
1618 u_int i, keyix;
1619
1620 /* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
1621 for (i = 0; i < N(sc->sc_keymap); i++) {
1622 u_int8_t b = sc->sc_keymap[i];
1623 if (b != 0xff) {
1624 /*
1625 * One or more slots are free.
1626 */
1627 keyix = i*NBBY;
1628 while (b & 1)
1629 keyix++, b >>= 1;
1630 setbit(sc->sc_keymap, keyix);
1631 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
1632 __func__, keyix);
1633 *txkeyix = *rxkeyix = keyix;
1634 return 1;
1635 }
1636 }
1637 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
1638 return 0;
1639 #undef N
1640 }
1641
1642 /*
1643 * Allocate one or more key cache slots for a uniacst key. The
1644 * key itself is needed only to identify the cipher. For hardware
1645 * TKIP with split cipher+MIC keys we allocate two key cache slot
1646 * pairs so that we can setup separate TX and RX MIC keys. Note
1647 * that the MIC key for a TKIP key at slot i is assumed by the
1648 * hardware to be at slot i+64. This limits TKIP keys to the first
1649 * 64 entries.
1650 */
1651 static int
1652 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
1653 ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
1654 {
1655 struct ath_softc *sc = ic->ic_ifp->if_softc;
1656
1657 /*
1658 * Group key allocation must be handled specially for
1659 * parts that do not support multicast key cache search
1660 * functionality. For those parts the key id must match
1661 * the h/w key index so lookups find the right key. On
1662 * parts w/ the key search facility we install the sender's
1663 * mac address (with the high bit set) and let the hardware
1664 * find the key w/o using the key id. This is preferred as
1665 * it permits us to support multiple users for adhoc and/or
1666 * multi-station operation.
1667 */
1668 if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
1669 if (!(&ic->ic_nw_keys[0] <= k &&
1670 k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
1671 /* should not happen */
1672 DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1673 "%s: bogus group key\n", __func__);
1674 return 0;
1675 }
1676 /*
1677 * XXX we pre-allocate the global keys so
1678 * have no way to check if they've already been allocated.
1679 */
1680 *keyix = *rxkeyix = k - ic->ic_nw_keys;
1681 return 1;
1682 }
1683
1684 /*
1685 * We allocate two pair for TKIP when using the h/w to do
1686 * the MIC. For everything else, including software crypto,
1687 * we allocate a single entry. Note that s/w crypto requires
1688 * a pass-through slot on the 5211 and 5212. The 5210 does
1689 * not support pass-through cache entries and we map all
1690 * those requests to slot 0.
1691 */
1692 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1693 return key_alloc_single(sc, keyix, rxkeyix);
1694 } else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
1695 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
1696 return key_alloc_2pair(sc, keyix, rxkeyix);
1697 } else {
1698 return key_alloc_single(sc, keyix, rxkeyix);
1699 }
1700 }
1701
1702 /*
1703 * Delete an entry in the key cache allocated by ath_key_alloc.
1704 */
1705 static int
1706 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
1707 {
1708 struct ath_softc *sc = ic->ic_ifp->if_softc;
1709 struct ath_hal *ah = sc->sc_ah;
1710 const struct ieee80211_cipher *cip = k->wk_cipher;
1711 u_int keyix = k->wk_keyix;
1712
1713 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
1714
1715 ath_hal_keyreset(ah, keyix);
1716 /*
1717 * Handle split tx/rx keying required for TKIP with h/w MIC.
1718 */
1719 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1720 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
1721 ath_hal_keyreset(ah, keyix+32); /* RX key */
1722 if (keyix >= IEEE80211_WEP_NKID) {
1723 /*
1724 * Don't touch keymap entries for global keys so
1725 * they are never considered for dynamic allocation.
1726 */
1727 clrbit(sc->sc_keymap, keyix);
1728 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1729 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1730 sc->sc_splitmic) {
1731 clrbit(sc->sc_keymap, keyix+64); /* TX key MIC */
1732 clrbit(sc->sc_keymap, keyix+32); /* RX key */
1733 clrbit(sc->sc_keymap, keyix+32+64); /* RX key MIC */
1734 }
1735 }
1736 return 1;
1737 }
1738
1739 /*
1740 * Set the key cache contents for the specified key. Key cache
1741 * slot(s) must already have been allocated by ath_key_alloc.
1742 */
1743 static int
1744 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
1745 const u_int8_t mac[IEEE80211_ADDR_LEN])
1746 {
1747 struct ath_softc *sc = ic->ic_ifp->if_softc;
1748
1749 return ath_keyset(sc, k, mac, ic->ic_bss);
1750 }
1751
1752 /*
1753 * Block/unblock tx+rx processing while a key change is done.
1754 * We assume the caller serializes key management operations
1755 * so we only need to worry about synchronization with other
1756 * uses that originate in the driver.
1757 */
1758 static void
1759 ath_key_update_begin(struct ieee80211com *ic)
1760 {
1761 struct ifnet *ifp = ic->ic_ifp;
1762 struct ath_softc *sc = ifp->if_softc;
1763
1764 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1765 #if 0
1766 tasklet_disable(&sc->sc_rxtq);
1767 #endif
1768 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */
1769 }
1770
1771 static void
1772 ath_key_update_end(struct ieee80211com *ic)
1773 {
1774 struct ifnet *ifp = ic->ic_ifp;
1775 struct ath_softc *sc = ifp->if_softc;
1776
1777 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1778 IF_UNLOCK(&ifp->if_snd);
1779 #if 0
1780 tasklet_enable(&sc->sc_rxtq);
1781 #endif
1782 }
1783
1784 /*
1785 * Calculate the receive filter according to the
1786 * operating mode and state:
1787 *
1788 * o always accept unicast, broadcast, and multicast traffic
1789 * o maintain current state of phy error reception (the hal
1790 * may enable phy error frames for noise immunity work)
1791 * o probe request frames are accepted only when operating in
1792 * hostap, adhoc, or monitor modes
1793 * o enable promiscuous mode according to the interface state
1794 * o accept beacons:
1795 * - when operating in adhoc mode so the 802.11 layer creates
1796 * node table entries for peers,
1797 * - when operating in station mode for collecting rssi data when
1798 * the station is otherwise quiet, or
1799 * - when scanning
1800 */
1801 static u_int32_t
1802 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
1803 {
1804 struct ieee80211com *ic = &sc->sc_ic;
1805 struct ath_hal *ah = sc->sc_ah;
1806 struct ifnet *ifp = &sc->sc_if;
1807 u_int32_t rfilt;
1808
1809 rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1810 | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1811 if (ic->ic_opmode != IEEE80211_M_STA)
1812 rfilt |= HAL_RX_FILTER_PROBEREQ;
1813 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1814 (ifp->if_flags & IFF_PROMISC))
1815 rfilt |= HAL_RX_FILTER_PROM;
1816 if (ic->ic_opmode == IEEE80211_M_STA ||
1817 ic->ic_opmode == IEEE80211_M_IBSS ||
1818 state == IEEE80211_S_SCAN)
1819 rfilt |= HAL_RX_FILTER_BEACON;
1820 return rfilt;
1821 }
1822
1823 static void
1824 ath_mcastfilter_accum(void *dl, u_int32_t *mfilt)
1825 {
1826 u_int32_t val;
1827 u_int8_t pos;
1828
1829 /* calculate XOR of eight 6bit values */
1830 val = LE_READ_4((char *)dl + 0);
1831 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1832 val = LE_READ_4((char *)dl + 3);
1833 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1834 pos &= 0x3f;
1835 mfilt[pos / 32] |= (1 << (pos % 32));
1836 }
1837
1838 static void
1839 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t *mfilt)
1840 {
1841 struct ifnet *ifp = &sc->sc_if;
1842 struct ether_multi *enm;
1843 struct ether_multistep estep;
1844
1845 mfilt[0] = mfilt[1] = 0;
1846 ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
1847 while (enm != NULL) {
1848 /* XXX Punt on ranges. */
1849 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
1850 mfilt[0] = mfilt[1] = ~((u_int32_t)0);
1851 ifp->if_flags |= IFF_ALLMULTI;
1852 return;
1853 }
1854 ath_mcastfilter_accum(enm->enm_addrlo, mfilt);
1855 ETHER_NEXT_MULTI(estep, enm);
1856 }
1857 ifp->if_flags &= ~IFF_ALLMULTI;
1858 }
1859
1860 static void
1861 ath_mode_init(struct ath_softc *sc)
1862 {
1863 struct ieee80211com *ic = &sc->sc_ic;
1864 struct ath_hal *ah = sc->sc_ah;
1865 u_int32_t rfilt, mfilt[2];
1866 int i;
1867
1868 /* configure rx filter */
1869 rfilt = ath_calcrxfilter(sc, ic->ic_state);
1870 ath_hal_setrxfilter(ah, rfilt);
1871
1872 /* configure operational mode */
1873 ath_hal_setopmode(ah);
1874
1875 /* Write keys to hardware; it may have been powered down. */
1876 ath_key_update_begin(ic);
1877 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1878 ath_key_set(ic,
1879 &ic->ic_crypto.cs_nw_keys[i],
1880 ic->ic_myaddr);
1881 }
1882 ath_key_update_end(ic);
1883
1884 /*
1885 * Handle any link-level address change. Note that we only
1886 * need to force ic_myaddr; any other addresses are handled
1887 * as a byproduct of the ifnet code marking the interface
1888 * down then up.
1889 *
1890 * XXX should get from lladdr instead of arpcom but that's more work
1891 */
1892 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(sc->sc_if.if_sadl));
1893 ath_hal_setmac(ah, ic->ic_myaddr);
1894
1895 /* calculate and install multicast filter */
1896 #ifdef __FreeBSD__
1897 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1898 mfilt[0] = mfilt[1] = 0;
1899 IF_ADDR_LOCK(ifp);
1900 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1901 void *dl;
1902
1903 /* calculate XOR of eight 6bit values */
1904 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
1905 val = LE_READ_4((char *)dl + 0);
1906 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1907 val = LE_READ_4((char *)dl + 3);
1908 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1909 pos &= 0x3f;
1910 mfilt[pos / 32] |= (1 << (pos % 32));
1911 }
1912 IF_ADDR_UNLOCK(ifp);
1913 } else {
1914 mfilt[0] = mfilt[1] = ~0;
1915 }
1916 #endif
1917 #ifdef __NetBSD__
1918 ath_mcastfilter_compute(sc, mfilt);
1919 #endif
1920 ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1921 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
1922 __func__, rfilt, mfilt[0], mfilt[1]);
1923 }
1924
1925 /*
1926 * Set the slot time based on the current setting.
1927 */
1928 static void
1929 ath_setslottime(struct ath_softc *sc)
1930 {
1931 struct ieee80211com *ic = &sc->sc_ic;
1932 struct ath_hal *ah = sc->sc_ah;
1933
1934 if (ic->ic_flags & IEEE80211_F_SHSLOT)
1935 ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
1936 else
1937 ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
1938 sc->sc_updateslot = OK;
1939 }
1940
1941 /*
1942 * Callback from the 802.11 layer to update the
1943 * slot time based on the current setting.
1944 */
1945 static void
1946 ath_updateslot(struct ifnet *ifp)
1947 {
1948 struct ath_softc *sc = ifp->if_softc;
1949 struct ieee80211com *ic = &sc->sc_ic;
1950
1951 /*
1952 * When not coordinating the BSS, change the hardware
1953 * immediately. For other operation we defer the change
1954 * until beacon updates have propagated to the stations.
1955 */
1956 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1957 sc->sc_updateslot = UPDATE;
1958 else
1959 ath_setslottime(sc);
1960 }
1961
1962 /*
1963 * Setup a h/w transmit queue for beacons.
1964 */
1965 static int
1966 ath_beaconq_setup(struct ath_hal *ah)
1967 {
1968 HAL_TXQ_INFO qi;
1969
1970 memset(&qi, 0, sizeof(qi));
1971 qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
1972 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
1973 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
1974 /* NB: for dynamic turbo, don't enable any other interrupts */
1975 qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
1976 return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
1977 }
1978
1979 /*
1980 * Setup the transmit queue parameters for the beacon queue.
1981 */
1982 static int
1983 ath_beaconq_config(struct ath_softc *sc)
1984 {
1985 #define ATH_EXPONENT_TO_VALUE(v) ((1<<(v))-1)
1986 struct ieee80211com *ic = &sc->sc_ic;
1987 struct ath_hal *ah = sc->sc_ah;
1988 HAL_TXQ_INFO qi;
1989
1990 ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
1991 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
1992 /*
1993 * Always burst out beacon and CAB traffic.
1994 */
1995 qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
1996 qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
1997 qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
1998 } else {
1999 struct wmeParams *wmep =
2000 &ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
2001 /*
2002 * Adhoc mode; important thing is to use 2x cwmin.
2003 */
2004 qi.tqi_aifs = wmep->wmep_aifsn;
2005 qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2006 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2007 }
2008
2009 if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
2010 device_printf(sc->sc_dev, "unable to update parameters for "
2011 "beacon hardware queue!\n");
2012 return 0;
2013 } else {
2014 ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
2015 return 1;
2016 }
2017 #undef ATH_EXPONENT_TO_VALUE
2018 }
2019
2020 /*
2021 * Allocate and setup an initial beacon frame.
2022 */
2023 static int
2024 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
2025 {
2026 struct ieee80211com *ic = ni->ni_ic;
2027 struct ath_buf *bf;
2028 struct mbuf *m;
2029 int error;
2030
2031 bf = STAILQ_FIRST(&sc->sc_bbuf);
2032 if (bf == NULL) {
2033 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
2034 sc->sc_stats.ast_be_nombuf++; /* XXX */
2035 return ENOMEM; /* XXX */
2036 }
2037 /*
2038 * NB: the beacon data buffer must be 32-bit aligned;
2039 * we assume the mbuf routines will return us something
2040 * with this alignment (perhaps should assert).
2041 */
2042 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
2043 if (m == NULL) {
2044 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
2045 __func__);
2046 sc->sc_stats.ast_be_nombuf++;
2047 return ENOMEM;
2048 }
2049 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2050 BUS_DMA_NOWAIT);
2051 if (error == 0) {
2052 bf->bf_m = m;
2053 bf->bf_node = ieee80211_ref_node(ni);
2054 } else {
2055 m_freem(m);
2056 }
2057 return error;
2058 }
2059
2060 /*
2061 * Setup the beacon frame for transmit.
2062 */
2063 static void
2064 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
2065 {
2066 #define USE_SHPREAMBLE(_ic) \
2067 (((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
2068 == IEEE80211_F_SHPREAMBLE)
2069 struct ieee80211_node *ni = bf->bf_node;
2070 struct ieee80211com *ic = ni->ni_ic;
2071 struct mbuf *m = bf->bf_m;
2072 struct ath_hal *ah = sc->sc_ah;
2073 struct ath_desc *ds;
2074 int flags, antenna;
2075 const HAL_RATE_TABLE *rt;
2076 u_int8_t rix, rate;
2077
2078 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
2079 __func__, m, m->m_len);
2080
2081 /* setup descriptors */
2082 ds = bf->bf_desc;
2083
2084 flags = HAL_TXDESC_NOACK;
2085 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
2086 ds->ds_link = HTOAH32(bf->bf_daddr); /* self-linked */
2087 flags |= HAL_TXDESC_VEOL;
2088 /*
2089 * Let hardware handle antenna switching unless
2090 * the user has selected a transmit antenna
2091 * (sc_txantenna is not 0).
2092 */
2093 antenna = sc->sc_txantenna;
2094 } else {
2095 ds->ds_link = 0;
2096 /*
2097 * Switch antenna every 4 beacons, unless the user
2098 * has selected a transmit antenna (sc_txantenna
2099 * is not 0).
2100 *
2101 * XXX assumes two antenna
2102 */
2103 if (sc->sc_txantenna == 0)
2104 antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2105 else
2106 antenna = sc->sc_txantenna;
2107 }
2108
2109 KASSERT(bf->bf_nseg == 1,
2110 ("multi-segment beacon frame; nseg %u", bf->bf_nseg));
2111 ds->ds_data = bf->bf_segs[0].ds_addr;
2112 /*
2113 * Calculate rate code.
2114 * XXX everything at min xmit rate
2115 */
2116 rix = sc->sc_minrateix;
2117 rt = sc->sc_currates;
2118 rate = rt->info[rix].rateCode;
2119 if (USE_SHPREAMBLE(ic))
2120 rate |= rt->info[rix].shortPreamble;
2121 ath_hal_setuptxdesc(ah, ds
2122 , m->m_len + IEEE80211_CRC_LEN /* frame length */
2123 , sizeof(struct ieee80211_frame)/* header length */
2124 , HAL_PKT_TYPE_BEACON /* Atheros packet type */
2125 , ni->ni_txpower /* txpower XXX */
2126 , rate, 1 /* series 0 rate/tries */
2127 , HAL_TXKEYIX_INVALID /* no encryption */
2128 , antenna /* antenna mode */
2129 , flags /* no ack, veol for beacons */
2130 , 0 /* rts/cts rate */
2131 , 0 /* rts/cts duration */
2132 );
2133 /* NB: beacon's BufLen must be a multiple of 4 bytes */
2134 ath_hal_filltxdesc(ah, ds
2135 , roundup(m->m_len, 4) /* buffer length */
2136 , AH_TRUE /* first segment */
2137 , AH_TRUE /* last segment */
2138 , ds /* first descriptor */
2139 );
2140
2141 /* NB: The desc swap function becomes void,
2142 * if descriptor swapping is not enabled
2143 */
2144 ath_desc_swap(ds);
2145
2146 #undef USE_SHPREAMBLE
2147 }
2148
2149 /*
2150 * Transmit a beacon frame at SWBA. Dynamic updates to the
2151 * frame contents are done as needed and the slot time is
2152 * also adjusted based on current state.
2153 */
2154 static void
2155 ath_beacon_proc(void *arg, int pending)
2156 {
2157 struct ath_softc *sc = arg;
2158 struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
2159 struct ieee80211_node *ni = bf->bf_node;
2160 struct ieee80211com *ic = ni->ni_ic;
2161 struct ath_hal *ah = sc->sc_ah;
2162 struct mbuf *m;
2163 int ncabq, error, otherant;
2164
2165 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2166 __func__, pending);
2167
2168 if (ic->ic_opmode == IEEE80211_M_STA ||
2169 ic->ic_opmode == IEEE80211_M_MONITOR ||
2170 bf == NULL || bf->bf_m == NULL) {
2171 DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
2172 __func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
2173 return;
2174 }
2175 /*
2176 * Check if the previous beacon has gone out. If
2177 * not don't try to post another, skip this period
2178 * and wait for the next. Missed beacons indicate
2179 * a problem and should not occur. If we miss too
2180 * many consecutive beacons reset the device.
2181 */
2182 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2183 sc->sc_bmisscount++;
2184 DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2185 "%s: missed %u consecutive beacons\n",
2186 __func__, sc->sc_bmisscount);
2187 if (sc->sc_bmisscount > 3) /* NB: 3 is a guess */
2188 TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask);
2189 return;
2190 }
2191 if (sc->sc_bmisscount != 0) {
2192 DPRINTF(sc, ATH_DEBUG_BEACON,
2193 "%s: resume beacon xmit after %u misses\n",
2194 __func__, sc->sc_bmisscount);
2195 sc->sc_bmisscount = 0;
2196 }
2197
2198 /*
2199 * Update dynamic beacon contents. If this returns
2200 * non-zero then we need to remap the memory because
2201 * the beacon frame changed size (probably because
2202 * of the TIM bitmap).
2203 */
2204 m = bf->bf_m;
2205 ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
2206 if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
2207 /* XXX too conservative? */
2208 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2209 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2210 BUS_DMA_NOWAIT);
2211 if (error != 0) {
2212 if_printf(&sc->sc_if,
2213 "%s: bus_dmamap_load_mbuf failed, error %u\n",
2214 __func__, error);
2215 return;
2216 }
2217 }
2218
2219 /*
2220 * Handle slot time change when a non-ERP station joins/leaves
2221 * an 11g network. The 802.11 layer notifies us via callback,
2222 * we mark updateslot, then wait one beacon before effecting
2223 * the change. This gives associated stations at least one
2224 * beacon interval to note the state change.
2225 */
2226 /* XXX locking */
2227 if (sc->sc_updateslot == UPDATE)
2228 sc->sc_updateslot = COMMIT; /* commit next beacon */
2229 else if (sc->sc_updateslot == COMMIT)
2230 ath_setslottime(sc); /* commit change to h/w */
2231
2232 /*
2233 * Check recent per-antenna transmit statistics and flip
2234 * the default antenna if noticeably more frames went out
2235 * on the non-default antenna.
2236 * XXX assumes 2 anntenae
2237 */
2238 otherant = sc->sc_defant & 1 ? 2 : 1;
2239 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2240 ath_setdefantenna(sc, otherant);
2241 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2242
2243 /*
2244 * Construct tx descriptor.
2245 */
2246 ath_beacon_setup(sc, bf);
2247
2248 /*
2249 * Stop any current dma and put the new frame on the queue.
2250 * This should never fail since we check above that no frames
2251 * are still pending on the queue.
2252 */
2253 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2254 DPRINTF(sc, ATH_DEBUG_ANY,
2255 "%s: beacon queue %u did not stop?\n",
2256 __func__, sc->sc_bhalq);
2257 }
2258 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2259 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2260
2261 /*
2262 * Enable the CAB queue before the beacon queue to
2263 * insure cab frames are triggered by this beacon.
2264 */
2265 if (ncabq != 0 && (sc->sc_boff.bo_tim[4] & 1)) /* NB: only at DTIM */
2266 ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
2267 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
2268 ath_hal_txstart(ah, sc->sc_bhalq);
2269 DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2270 "%s: TXDP[%u] = %" PRIx64 " (%p)\n", __func__,
2271 sc->sc_bhalq, (uint64_t)bf->bf_daddr, bf->bf_desc);
2272
2273 sc->sc_stats.ast_be_xmit++;
2274 }
2275
2276 /*
2277 * Reset the hardware after detecting beacons have stopped.
2278 */
2279 static void
2280 ath_bstuck_proc(void *arg, int pending)
2281 {
2282 struct ath_softc *sc = arg;
2283 struct ifnet *ifp = &sc->sc_if;
2284
2285 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2286 sc->sc_bmisscount);
2287 ath_reset(ifp);
2288 }
2289
2290 /*
2291 * Reclaim beacon resources.
2292 */
2293 static void
2294 ath_beacon_free(struct ath_softc *sc)
2295 {
2296 struct ath_buf *bf;
2297
2298 STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
2299 if (bf->bf_m != NULL) {
2300 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2301 m_freem(bf->bf_m);
2302 bf->bf_m = NULL;
2303 }
2304 if (bf->bf_node != NULL) {
2305 ieee80211_free_node(bf->bf_node);
2306 bf->bf_node = NULL;
2307 }
2308 }
2309 }
2310
2311 /*
2312 * Configure the beacon and sleep timers.
2313 *
2314 * When operating as an AP this resets the TSF and sets
2315 * up the hardware to notify us when we need to issue beacons.
2316 *
2317 * When operating in station mode this sets up the beacon
2318 * timers according to the timestamp of the last received
2319 * beacon and the current TSF, configures PCF and DTIM
2320 * handling, programs the sleep registers so the hardware
2321 * will wakeup in time to receive beacons, and configures
2322 * the beacon miss handling so we'll receive a BMISS
2323 * interrupt when we stop seeing beacons from the AP
2324 * we've associated with.
2325 */
2326 static void
2327 ath_beacon_config(struct ath_softc *sc)
2328 {
2329 #define TSF_TO_TU(_h,_l) \
2330 ((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
2331 #define FUDGE 2
2332 struct ath_hal *ah = sc->sc_ah;
2333 struct ieee80211com *ic = &sc->sc_ic;
2334 struct ieee80211_node *ni = ic->ic_bss;
2335 u_int32_t nexttbtt, intval, tsftu;
2336 u_int64_t tsf;
2337
2338 /* extract tstamp from last beacon and convert to TU */
2339 nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
2340 LE_READ_4(ni->ni_tstamp.data));
2341 /* NB: the beacon interval is kept internally in TU's */
2342 intval = ni->ni_intval & HAL_BEACON_PERIOD;
2343 if (nexttbtt == 0) /* e.g. for ap mode */
2344 nexttbtt = intval;
2345 else if (intval) /* NB: can be 0 for monitor mode */
2346 nexttbtt = roundup(nexttbtt, intval);
2347 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2348 __func__, nexttbtt, intval, ni->ni_intval);
2349 if (ic->ic_opmode == IEEE80211_M_STA) {
2350 HAL_BEACON_STATE bs;
2351 int dtimperiod, dtimcount;
2352 int cfpperiod, cfpcount;
2353
2354 /*
2355 * Setup dtim and cfp parameters according to
2356 * last beacon we received (which may be none).
2357 */
2358 dtimperiod = ni->ni_dtim_period;
2359 if (dtimperiod <= 0) /* NB: 0 if not known */
2360 dtimperiod = 1;
2361 dtimcount = ni->ni_dtim_count;
2362 if (dtimcount >= dtimperiod) /* NB: sanity check */
2363 dtimcount = 0; /* XXX? */
2364 cfpperiod = 1; /* NB: no PCF support yet */
2365 cfpcount = 0;
2366 /*
2367 * Pull nexttbtt forward to reflect the current
2368 * TSF and calculate dtim+cfp state for the result.
2369 */
2370 tsf = ath_hal_gettsf64(ah);
2371 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2372 do {
2373 nexttbtt += intval;
2374 if (--dtimcount < 0) {
2375 dtimcount = dtimperiod - 1;
2376 if (--cfpcount < 0)
2377 cfpcount = cfpperiod - 1;
2378 }
2379 } while (nexttbtt < tsftu);
2380 memset(&bs, 0, sizeof(bs));
2381 bs.bs_intval = intval;
2382 bs.bs_nexttbtt = nexttbtt;
2383 bs.bs_dtimperiod = dtimperiod*intval;
2384 bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
2385 bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
2386 bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
2387 bs.bs_cfpmaxduration = 0;
2388 #if 0
2389 /*
2390 * The 802.11 layer records the offset to the DTIM
2391 * bitmap while receiving beacons; use it here to
2392 * enable h/w detection of our AID being marked in
2393 * the bitmap vector (to indicate frames for us are
2394 * pending at the AP).
2395 * XXX do DTIM handling in s/w to WAR old h/w bugs
2396 * XXX enable based on h/w rev for newer chips
2397 */
2398 bs.bs_timoffset = ni->ni_timoff;
2399 #endif
2400 /*
2401 * Calculate the number of consecutive beacons to miss
2402 * before taking a BMISS interrupt. The configuration
2403 * is specified in ms, so we need to convert that to
2404 * TU's and then calculate based on the beacon interval.
2405 * Note that we clamp the result to at most 10 beacons.
2406 */
2407 bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
2408 if (bs.bs_bmissthreshold > 10)
2409 bs.bs_bmissthreshold = 10;
2410 else if (bs.bs_bmissthreshold <= 0)
2411 bs.bs_bmissthreshold = 1;
2412
2413 /*
2414 * Calculate sleep duration. The configuration is
2415 * given in ms. We insure a multiple of the beacon
2416 * period is used. Also, if the sleep duration is
2417 * greater than the DTIM period then it makes senses
2418 * to make it a multiple of that.
2419 *
2420 * XXX fixed at 100ms
2421 */
2422 bs.bs_sleepduration =
2423 roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2424 if (bs.bs_sleepduration > bs.bs_dtimperiod)
2425 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2426
2427 DPRINTF(sc, ATH_DEBUG_BEACON,
2428 "%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2429 , __func__
2430 , tsf, tsftu
2431 , bs.bs_intval
2432 , bs.bs_nexttbtt
2433 , bs.bs_dtimperiod
2434 , bs.bs_nextdtim
2435 , bs.bs_bmissthreshold
2436 , bs.bs_sleepduration
2437 , bs.bs_cfpperiod
2438 , bs.bs_cfpmaxduration
2439 , bs.bs_cfpnext
2440 , bs.bs_timoffset
2441 );
2442 ath_hal_intrset(ah, 0);
2443 ath_hal_beacontimers(ah, &bs);
2444 sc->sc_imask |= HAL_INT_BMISS;
2445 ath_hal_intrset(ah, sc->sc_imask);
2446 } else {
2447 ath_hal_intrset(ah, 0);
2448 if (nexttbtt == intval)
2449 intval |= HAL_BEACON_RESET_TSF;
2450 if (ic->ic_opmode == IEEE80211_M_IBSS) {
2451 /*
2452 * In IBSS mode enable the beacon timers but only
2453 * enable SWBA interrupts if we need to manually
2454 * prepare beacon frames. Otherwise we use a
2455 * self-linked tx descriptor and let the hardware
2456 * deal with things.
2457 */
2458 intval |= HAL_BEACON_ENA;
2459 if (!sc->sc_hasveol)
2460 sc->sc_imask |= HAL_INT_SWBA;
2461 if ((intval & HAL_BEACON_RESET_TSF) == 0) {
2462 /*
2463 * Pull nexttbtt forward to reflect
2464 * the current TSF.
2465 */
2466 tsf = ath_hal_gettsf64(ah);
2467 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2468 do {
2469 nexttbtt += intval;
2470 } while (nexttbtt < tsftu);
2471 }
2472 ath_beaconq_config(sc);
2473 } else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2474 /*
2475 * In AP mode we enable the beacon timers and
2476 * SWBA interrupts to prepare beacon frames.
2477 */
2478 intval |= HAL_BEACON_ENA;
2479 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */
2480 ath_beaconq_config(sc);
2481 }
2482 ath_hal_beaconinit(ah, nexttbtt, intval);
2483 sc->sc_bmisscount = 0;
2484 ath_hal_intrset(ah, sc->sc_imask);
2485 /*
2486 * When using a self-linked beacon descriptor in
2487 * ibss mode load it once here.
2488 */
2489 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2490 ath_beacon_proc(sc, 0);
2491 }
2492 sc->sc_syncbeacon = 0;
2493 #undef UNDEF
2494 #undef TSF_TO_TU
2495 }
2496
2497 static int
2498 ath_descdma_setup(struct ath_softc *sc,
2499 struct ath_descdma *dd, ath_bufhead *head,
2500 const char *name, int nbuf, int ndesc)
2501 {
2502 #define DS2PHYS(_dd, _ds) \
2503 ((_dd)->dd_desc_paddr + ((char *)(_ds) - (char *)(_dd)->dd_desc))
2504 struct ifnet *ifp = &sc->sc_if;
2505 struct ath_desc *ds;
2506 struct ath_buf *bf;
2507 int i, bsize, error;
2508
2509 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2510 __func__, name, nbuf, ndesc);
2511
2512 dd->dd_name = name;
2513 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2514
2515 /*
2516 * Setup DMA descriptor area.
2517 */
2518 dd->dd_dmat = sc->sc_dmat;
2519
2520 error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE,
2521 0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0);
2522
2523 if (error != 0) {
2524 if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2525 "error %u\n", nbuf * ndesc, dd->dd_name, error);
2526 goto fail0;
2527 }
2528
2529 error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg,
2530 dd->dd_desc_len, (void **)&dd->dd_desc, BUS_DMA_COHERENT);
2531 if (error != 0) {
2532 if_printf(ifp, "unable to map %u %s descriptors, error = %u\n",
2533 nbuf * ndesc, dd->dd_name, error);
2534 goto fail1;
2535 }
2536
2537 /* allocate descriptors */
2538 error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1,
2539 dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2540 if (error != 0) {
2541 if_printf(ifp, "unable to create dmamap for %s descriptors, "
2542 "error %u\n", dd->dd_name, error);
2543 goto fail2;
2544 }
2545
2546 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc,
2547 dd->dd_desc_len, NULL, BUS_DMA_NOWAIT);
2548 if (error != 0) {
2549 if_printf(ifp, "unable to map %s descriptors, error %u\n",
2550 dd->dd_name, error);
2551 goto fail3;
2552 }
2553
2554 ds = dd->dd_desc;
2555 dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr;
2556 DPRINTF(sc, ATH_DEBUG_RESET,
2557 "%s: %s DMA map: %p (%lu) -> %" PRIx64 " (%lu)\n",
2558 __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2559 (uint64_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2560
2561 /* allocate rx buffers */
2562 bsize = sizeof(struct ath_buf) * nbuf;
2563 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2564 if (bf == NULL) {
2565 if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2566 dd->dd_name, bsize);
2567 goto fail4;
2568 }
2569 dd->dd_bufptr = bf;
2570
2571 STAILQ_INIT(head);
2572 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2573 bf->bf_desc = ds;
2574 bf->bf_daddr = DS2PHYS(dd, ds);
2575 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc,
2576 MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap);
2577 if (error != 0) {
2578 if_printf(ifp, "unable to create dmamap for %s "
2579 "buffer %u, error %u\n", dd->dd_name, i, error);
2580 ath_descdma_cleanup(sc, dd, head);
2581 return error;
2582 }
2583 STAILQ_INSERT_TAIL(head, bf, bf_list);
2584 }
2585 return 0;
2586 fail4:
2587 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2588 fail3:
2589 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2590 fail2:
2591 bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
2592 fail1:
2593 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2594 fail0:
2595 memset(dd, 0, sizeof(*dd));
2596 return error;
2597 #undef DS2PHYS
2598 }
2599
2600 static void
2601 ath_descdma_cleanup(struct ath_softc *sc,
2602 struct ath_descdma *dd, ath_bufhead *head)
2603 {
2604 struct ath_buf *bf;
2605 struct ieee80211_node *ni;
2606
2607 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2608 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2609 bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
2610 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2611
2612 STAILQ_FOREACH(bf, head, bf_list) {
2613 if (bf->bf_m) {
2614 m_freem(bf->bf_m);
2615 bf->bf_m = NULL;
2616 }
2617 if (bf->bf_dmamap != NULL) {
2618 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2619 bf->bf_dmamap = NULL;
2620 }
2621 ni = bf->bf_node;
2622 bf->bf_node = NULL;
2623 if (ni != NULL) {
2624 /*
2625 * Reclaim node reference.
2626 */
2627 ieee80211_free_node(ni);
2628 }
2629 }
2630
2631 STAILQ_INIT(head);
2632 free(dd->dd_bufptr, M_ATHDEV);
2633 memset(dd, 0, sizeof(*dd));
2634 }
2635
2636 static int
2637 ath_desc_alloc(struct ath_softc *sc)
2638 {
2639 int error;
2640
2641 error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2642 "rx", ath_rxbuf, 1);
2643 if (error != 0)
2644 return error;
2645
2646 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2647 "tx", ath_txbuf, ATH_TXDESC);
2648 if (error != 0) {
2649 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2650 return error;
2651 }
2652
2653 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2654 "beacon", 1, 1);
2655 if (error != 0) {
2656 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2657 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2658 return error;
2659 }
2660 return 0;
2661 }
2662
2663 static void
2664 ath_desc_free(struct ath_softc *sc)
2665 {
2666
2667 if (sc->sc_bdma.dd_desc_len != 0)
2668 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2669 if (sc->sc_txdma.dd_desc_len != 0)
2670 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2671 if (sc->sc_rxdma.dd_desc_len != 0)
2672 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2673 }
2674
2675 static struct ieee80211_node *
2676 ath_node_alloc(struct ieee80211_node_table *nt)
2677 {
2678 struct ieee80211com *ic = nt->nt_ic;
2679 struct ath_softc *sc = ic->ic_ifp->if_softc;
2680 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2681 struct ath_node *an;
2682
2683 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2684 if (an == NULL) {
2685 /* XXX stat+msg */
2686 return NULL;
2687 }
2688 an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
2689 ath_rate_node_init(sc, an);
2690
2691 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2692 return &an->an_node;
2693 }
2694
2695 static void
2696 ath_node_free(struct ieee80211_node *ni)
2697 {
2698 struct ieee80211com *ic = ni->ni_ic;
2699 struct ath_softc *sc = ic->ic_ifp->if_softc;
2700
2701 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2702
2703 ath_rate_node_cleanup(sc, ATH_NODE(ni));
2704 sc->sc_node_free(ni);
2705 }
2706
2707 static u_int8_t
2708 ath_node_getrssi(const struct ieee80211_node *ni)
2709 {
2710 #define HAL_EP_RND(x, mul) \
2711 ((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
2712 u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
2713 int32_t rssi;
2714
2715 /*
2716 * When only one frame is received there will be no state in
2717 * avgrssi so fallback on the value recorded by the 802.11 layer.
2718 */
2719 if (avgrssi != ATH_RSSI_DUMMY_MARKER)
2720 rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
2721 else
2722 rssi = ni->ni_rssi;
2723 return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
2724 #undef HAL_EP_RND
2725 }
2726
2727 static int
2728 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2729 {
2730 struct ath_hal *ah = sc->sc_ah;
2731 int error;
2732 struct mbuf *m;
2733 struct ath_desc *ds;
2734
2735 m = bf->bf_m;
2736 if (m == NULL) {
2737 /*
2738 * NB: by assigning a page to the rx dma buffer we
2739 * implicitly satisfy the Atheros requirement that
2740 * this buffer be cache-line-aligned and sized to be
2741 * multiple of the cache line size. Not doing this
2742 * causes weird stuff to happen (for the 5210 at least).
2743 */
2744 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2745 if (m == NULL) {
2746 DPRINTF(sc, ATH_DEBUG_ANY,
2747 "%s: no mbuf/cluster\n", __func__);
2748 sc->sc_stats.ast_rx_nombuf++;
2749 return ENOMEM;
2750 }
2751 bf->bf_m = m;
2752 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2753
2754 error = bus_dmamap_load_mbuf(sc->sc_dmat,
2755 bf->bf_dmamap, m,
2756 BUS_DMA_NOWAIT);
2757 if (error != 0) {
2758 DPRINTF(sc, ATH_DEBUG_ANY,
2759 "%s: bus_dmamap_load_mbuf failed; error %d\n",
2760 __func__, error);
2761 sc->sc_stats.ast_rx_busdma++;
2762 return error;
2763 }
2764 KASSERT(bf->bf_nseg == 1,
2765 ("multi-segment packet; nseg %u", bf->bf_nseg));
2766 }
2767 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2768 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2769
2770 /*
2771 * Setup descriptors. For receive we always terminate
2772 * the descriptor list with a self-linked entry so we'll
2773 * not get overrun under high load (as can happen with a
2774 * 5212 when ANI processing enables PHY error frames).
2775 *
2776 * To insure the last descriptor is self-linked we create
2777 * each descriptor as self-linked and add it to the end. As
2778 * each additional descriptor is added the previous self-linked
2779 * entry is ``fixed'' naturally. This should be safe even
2780 * if DMA is happening. When processing RX interrupts we
2781 * never remove/process the last, self-linked, entry on the
2782 * descriptor list. This insures the hardware always has
2783 * someplace to write a new frame.
2784 */
2785 ds = bf->bf_desc;
2786 ds->ds_link = HTOAH32(bf->bf_daddr); /* link to self */
2787 ds->ds_data = bf->bf_segs[0].ds_addr;
2788 ds->ds_vdata = mtod(m, void *); /* for radar */
2789 ath_hal_setuprxdesc(ah, ds
2790 , m->m_len /* buffer size */
2791 , 0
2792 );
2793
2794 if (sc->sc_rxlink != NULL)
2795 *sc->sc_rxlink = bf->bf_daddr;
2796 sc->sc_rxlink = &ds->ds_link;
2797 return 0;
2798 }
2799
2800 /*
2801 * Extend 15-bit time stamp from rx descriptor to
2802 * a full 64-bit TSF using the specified TSF.
2803 */
2804 static inline u_int64_t
2805 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
2806 {
2807 if ((tsf & 0x7fff) < rstamp)
2808 tsf -= 0x8000;
2809 return ((tsf &~ 0x7fff) | rstamp);
2810 }
2811
2812 /*
2813 * Intercept management frames to collect beacon rssi data
2814 * and to do ibss merges.
2815 */
2816 static void
2817 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2818 struct ieee80211_node *ni,
2819 int subtype, int rssi, u_int32_t rstamp)
2820 {
2821 struct ath_softc *sc = ic->ic_ifp->if_softc;
2822
2823 /*
2824 * Call up first so subsequent work can use information
2825 * potentially stored in the node (e.g. for ibss merge).
2826 */
2827 sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
2828 switch (subtype) {
2829 case IEEE80211_FC0_SUBTYPE_BEACON:
2830 /* update rssi statistics for use by the hal */
2831 ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
2832 if (sc->sc_syncbeacon &&
2833 ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) {
2834 /*
2835 * Resync beacon timers using the tsf of the beacon
2836 * frame we just received.
2837 */
2838 ath_beacon_config(sc);
2839 }
2840 /* fall thru... */
2841 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2842 if (ic->ic_opmode == IEEE80211_M_IBSS &&
2843 ic->ic_state == IEEE80211_S_RUN) {
2844 u_int64_t tsf = ath_extend_tsf(rstamp,
2845 ath_hal_gettsf64(sc->sc_ah));
2846
2847 /*
2848 * Handle ibss merge as needed; check the tsf on the
2849 * frame before attempting the merge. The 802.11 spec
2850 * says the station should change it's bssid to match
2851 * the oldest station with the same ssid, where oldest
2852 * is determined by the tsf. Note that hardware
2853 * reconfiguration happens through callback to
2854 * ath_newstate as the state machine will go from
2855 * RUN -> RUN when this happens.
2856 */
2857 if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
2858 DPRINTF(sc, ATH_DEBUG_STATE,
2859 "ibss merge, rstamp %u tsf %ju "
2860 "tstamp %ju\n", rstamp, (uintmax_t)tsf,
2861 (uintmax_t)ni->ni_tstamp.tsf);
2862 (void) ieee80211_ibss_merge(ni);
2863 }
2864 }
2865 break;
2866 }
2867 }
2868
2869 /*
2870 * Set the default antenna.
2871 */
2872 static void
2873 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
2874 {
2875 struct ath_hal *ah = sc->sc_ah;
2876
2877 /* XXX block beacon interrupts */
2878 ath_hal_setdefantenna(ah, antenna);
2879 if (sc->sc_defant != antenna)
2880 sc->sc_stats.ast_ant_defswitch++;
2881 sc->sc_defant = antenna;
2882 sc->sc_rxotherant = 0;
2883 }
2884
2885 static void
2886 ath_rx_proc(void *arg, int npending)
2887 {
2888 #define PA2DESC(_sc, _pa) \
2889 ((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
2890 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
2891 struct ath_softc *sc = arg;
2892 struct ath_buf *bf;
2893 struct ieee80211com *ic = &sc->sc_ic;
2894 struct ifnet *ifp = &sc->sc_if;
2895 struct ath_hal *ah = sc->sc_ah;
2896 struct ath_desc *ds;
2897 struct mbuf *m;
2898 struct ieee80211_node *ni;
2899 struct ath_node *an;
2900 int len, type, ngood;
2901 u_int phyerr;
2902 HAL_STATUS status;
2903 int16_t nf;
2904 u_int64_t tsf;
2905
2906 NET_LOCK_GIANT(); /* XXX */
2907
2908 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
2909 ngood = 0;
2910 nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
2911 tsf = ath_hal_gettsf64(ah);
2912 do {
2913 bf = STAILQ_FIRST(&sc->sc_rxbuf);
2914 if (bf == NULL) { /* NB: shouldn't happen */
2915 if_printf(ifp, "%s: no buffer!\n", __func__);
2916 break;
2917 }
2918 ds = bf->bf_desc;
2919 if (ds->ds_link == bf->bf_daddr) {
2920 /* NB: never process the self-linked entry at the end */
2921 break;
2922 }
2923 m = bf->bf_m;
2924 if (m == NULL) { /* NB: shouldn't happen */
2925 if_printf(ifp, "%s: no mbuf!\n", __func__);
2926 break;
2927 }
2928 /* XXX sync descriptor memory */
2929 /*
2930 * Must provide the virtual address of the current
2931 * descriptor, the physical address, and the virtual
2932 * address of the next descriptor in the h/w chain.
2933 * This allows the HAL to look ahead to see if the
2934 * hardware is done with a descriptor by checking the
2935 * done bit in the following descriptor and the address
2936 * of the current descriptor the DMA engine is working
2937 * on. All this is necessary because of our use of
2938 * a self-linked list to avoid rx overruns.
2939 */
2940 status = ath_hal_rxprocdesc(ah, ds,
2941 bf->bf_daddr, PA2DESC(sc, ds->ds_link));
2942 #ifdef AR_DEBUG
2943 if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
2944 ath_printrxbuf(bf, status == HAL_OK);
2945 #endif
2946 if (status == HAL_EINPROGRESS)
2947 break;
2948 STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
2949 if (ds->ds_rxstat.rs_more) {
2950 /*
2951 * Frame spans multiple descriptors; this
2952 * cannot happen yet as we don't support
2953 * jumbograms. If not in monitor mode,
2954 * discard the frame.
2955 */
2956 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2957 sc->sc_stats.ast_rx_toobig++;
2958 goto rx_next;
2959 }
2960 /* fall thru for monitor mode handling... */
2961 } else if (ds->ds_rxstat.rs_status != 0) {
2962 if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
2963 sc->sc_stats.ast_rx_crcerr++;
2964 if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
2965 sc->sc_stats.ast_rx_fifoerr++;
2966 if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
2967 sc->sc_stats.ast_rx_phyerr++;
2968 phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
2969 sc->sc_stats.ast_rx_phy[phyerr]++;
2970 goto rx_next;
2971 }
2972 if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
2973 /*
2974 * Decrypt error. If the error occurred
2975 * because there was no hardware key, then
2976 * let the frame through so the upper layers
2977 * can process it. This is necessary for 5210
2978 * parts which have no way to setup a ``clear''
2979 * key cache entry.
2980 *
2981 * XXX do key cache faulting
2982 */
2983 if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
2984 goto rx_accept;
2985 sc->sc_stats.ast_rx_badcrypt++;
2986 }
2987 if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
2988 sc->sc_stats.ast_rx_badmic++;
2989 /*
2990 * Do minimal work required to hand off
2991 * the 802.11 header for notifcation.
2992 */
2993 /* XXX frag's and qos frames */
2994 len = ds->ds_rxstat.rs_datalen;
2995 if (len >= sizeof (struct ieee80211_frame)) {
2996 bus_dmamap_sync(sc->sc_dmat,
2997 bf->bf_dmamap,
2998 0, bf->bf_dmamap->dm_mapsize,
2999 BUS_DMASYNC_POSTREAD);
3000 ieee80211_notify_michael_failure(ic,
3001 mtod(m, struct ieee80211_frame *),
3002 sc->sc_splitmic ?
3003 ds->ds_rxstat.rs_keyix-32 :
3004 ds->ds_rxstat.rs_keyix
3005 );
3006 }
3007 }
3008 ifp->if_ierrors++;
3009 /*
3010 * Reject error frames, we normally don't want
3011 * to see them in monitor mode (in monitor mode
3012 * allow through packets that have crypto problems).
3013 */
3014 if ((ds->ds_rxstat.rs_status &~
3015 (HAL_RXERR_DECRYPT|HAL_RXERR_MIC)) ||
3016 sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
3017 goto rx_next;
3018 }
3019 rx_accept:
3020 /*
3021 * Sync and unmap the frame. At this point we're
3022 * committed to passing the mbuf somewhere so clear
3023 * bf_m; this means a new sk_buff must be allocated
3024 * when the rx descriptor is setup again to receive
3025 * another frame.
3026 */
3027 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3028 0, bf->bf_dmamap->dm_mapsize,
3029 BUS_DMASYNC_POSTREAD);
3030 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3031 bf->bf_m = NULL;
3032
3033 m->m_pkthdr.rcvif = ifp;
3034 len = ds->ds_rxstat.rs_datalen;
3035 m->m_pkthdr.len = m->m_len = len;
3036
3037 sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
3038
3039 #if NBPFILTER > 0
3040 if (sc->sc_drvbpf) {
3041 u_int8_t rix;
3042
3043 /*
3044 * Discard anything shorter than an ack or cts.
3045 */
3046 if (len < IEEE80211_ACK_LEN) {
3047 DPRINTF(sc, ATH_DEBUG_RECV,
3048 "%s: runt packet %d\n",
3049 __func__, len);
3050 sc->sc_stats.ast_rx_tooshort++;
3051 m_freem(m);
3052 goto rx_next;
3053 }
3054 rix = ds->ds_rxstat.rs_rate;
3055 sc->sc_rx_th.wr_tsf = htole64(
3056 ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf));
3057 sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
3058 sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
3059 sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf;
3060 sc->sc_rx_th.wr_antnoise = nf;
3061 sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
3062
3063 bpf_mtap2(sc->sc_drvbpf,
3064 &sc->sc_rx_th, sc->sc_rx_th_len, m);
3065 }
3066 #endif
3067
3068 /*
3069 * From this point on we assume the frame is at least
3070 * as large as ieee80211_frame_min; verify that.
3071 */
3072 if (len < IEEE80211_MIN_LEN) {
3073 DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
3074 __func__, len);
3075 sc->sc_stats.ast_rx_tooshort++;
3076 m_freem(m);
3077 goto rx_next;
3078 }
3079
3080 if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
3081 ieee80211_dump_pkt(mtod(m, void *), len,
3082 sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
3083 ds->ds_rxstat.rs_rssi);
3084 }
3085
3086 m_adj(m, -IEEE80211_CRC_LEN);
3087
3088 /*
3089 * Locate the node for sender, track state, and then
3090 * pass the (referenced) node up to the 802.11 layer
3091 * for its use.
3092 */
3093 ni = ieee80211_find_rxnode_withkey(ic,
3094 mtod(m, const struct ieee80211_frame_min *),
3095 ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
3096 IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
3097 /*
3098 * Track rx rssi and do any rx antenna management.
3099 */
3100 an = ATH_NODE(ni);
3101 ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
3102 ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi);
3103 /*
3104 * Send frame up for processing.
3105 */
3106 type = ieee80211_input(ic, m, ni,
3107 ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
3108 ieee80211_free_node(ni);
3109 if (sc->sc_diversity) {
3110 /*
3111 * When using fast diversity, change the default rx
3112 * antenna if diversity chooses the other antenna 3
3113 * times in a row.
3114 */
3115 if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
3116 if (++sc->sc_rxotherant >= 3)
3117 ath_setdefantenna(sc,
3118 ds->ds_rxstat.rs_antenna);
3119 } else
3120 sc->sc_rxotherant = 0;
3121 }
3122 if (sc->sc_softled) {
3123 /*
3124 * Blink for any data frame. Otherwise do a
3125 * heartbeat-style blink when idle. The latter
3126 * is mainly for station mode where we depend on
3127 * periodic beacon frames to trigger the poll event.
3128 */
3129 if (type == IEEE80211_FC0_TYPE_DATA) {
3130 sc->sc_rxrate = ds->ds_rxstat.rs_rate;
3131 ath_led_event(sc, ATH_LED_RX);
3132 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
3133 ath_led_event(sc, ATH_LED_POLL);
3134 }
3135 /*
3136 * Arrange to update the last rx timestamp only for
3137 * frames from our ap when operating in station mode.
3138 * This assumes the rx key is always setup when associated.
3139 */
3140 if (ic->ic_opmode == IEEE80211_M_STA &&
3141 ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID)
3142 ngood++;
3143 rx_next:
3144 STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
3145 } while (ath_rxbuf_init(sc, bf) == 0);
3146
3147 /* rx signal state monitoring */
3148 ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
3149 if (ath_hal_radar_event(ah))
3150 TASK_RUN_OR_ENQUEUE(&sc->sc_radartask);
3151 if (ngood)
3152 sc->sc_lastrx = tsf;
3153
3154 #ifdef __NetBSD__
3155 /* XXX Why isn't this necessary in FreeBSD? */
3156 if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
3157 ath_start(ifp);
3158 #endif /* __NetBSD__ */
3159
3160 NET_UNLOCK_GIANT(); /* XXX */
3161 #undef PA2DESC
3162 }
3163
3164 /*
3165 * Setup a h/w transmit queue.
3166 */
3167 static struct ath_txq *
3168 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3169 {
3170 #define N(a) (sizeof(a)/sizeof(a[0]))
3171 struct ath_hal *ah = sc->sc_ah;
3172 HAL_TXQ_INFO qi;
3173 int qnum;
3174
3175 memset(&qi, 0, sizeof(qi));
3176 qi.tqi_subtype = subtype;
3177 qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3178 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3179 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3180 /*
3181 * Enable interrupts only for EOL and DESC conditions.
3182 * We mark tx descriptors to receive a DESC interrupt
3183 * when a tx queue gets deep; otherwise waiting for the
3184 * EOL to reap descriptors. Note that this is done to
3185 * reduce interrupt load and this only defers reaping
3186 * descriptors, never transmitting frames. Aside from
3187 * reducing interrupts this also permits more concurrency.
3188 * The only potential downside is if the tx queue backs
3189 * up in which case the top half of the kernel may backup
3190 * due to a lack of tx descriptors.
3191 */
3192 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
3193 qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3194 if (qnum == -1) {
3195 /*
3196 * NB: don't print a message, this happens
3197 * normally on parts with too few tx queues
3198 */
3199 return NULL;
3200 }
3201 if (qnum >= N(sc->sc_txq)) {
3202 device_printf(sc->sc_dev,
3203 "hal qnum %u out of range, max %zu!\n",
3204 qnum, N(sc->sc_txq));
3205 ath_hal_releasetxqueue(ah, qnum);
3206 return NULL;
3207 }
3208 if (!ATH_TXQ_SETUP(sc, qnum)) {
3209 struct ath_txq *txq = &sc->sc_txq[qnum];
3210
3211 txq->axq_qnum = qnum;
3212 txq->axq_depth = 0;
3213 txq->axq_intrcnt = 0;
3214 txq->axq_link = NULL;
3215 STAILQ_INIT(&txq->axq_q);
3216 ATH_TXQ_LOCK_INIT(sc, txq);
3217 sc->sc_txqsetup |= 1<<qnum;
3218 }
3219 return &sc->sc_txq[qnum];
3220 #undef N
3221 }
3222
3223 /*
3224 * Setup a hardware data transmit queue for the specified
3225 * access control. The hal may not support all requested
3226 * queues in which case it will return a reference to a
3227 * previously setup queue. We record the mapping from ac's
3228 * to h/w queues for use by ath_tx_start and also track
3229 * the set of h/w queues being used to optimize work in the
3230 * transmit interrupt handler and related routines.
3231 */
3232 static int
3233 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3234 {
3235 #define N(a) (sizeof(a)/sizeof(a[0]))
3236 struct ath_txq *txq;
3237
3238 if (ac >= N(sc->sc_ac2q)) {
3239 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3240 ac, N(sc->sc_ac2q));
3241 return 0;
3242 }
3243 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3244 if (txq != NULL) {
3245 sc->sc_ac2q[ac] = txq;
3246 return 1;
3247 } else
3248 return 0;
3249 #undef N
3250 }
3251
3252 /*
3253 * Update WME parameters for a transmit queue.
3254 */
3255 static int
3256 ath_txq_update(struct ath_softc *sc, int ac)
3257 {
3258 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1)
3259 #define ATH_TXOP_TO_US(v) (v<<5)
3260 struct ieee80211com *ic = &sc->sc_ic;
3261 struct ath_txq *txq = sc->sc_ac2q[ac];
3262 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3263 struct ath_hal *ah = sc->sc_ah;
3264 HAL_TXQ_INFO qi;
3265
3266 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3267 qi.tqi_aifs = wmep->wmep_aifsn;
3268 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3269 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3270 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3271
3272 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3273 device_printf(sc->sc_dev, "unable to update hardware queue "
3274 "parameters for %s traffic!\n",
3275 ieee80211_wme_acnames[ac]);
3276 return 0;
3277 } else {
3278 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3279 return 1;
3280 }
3281 #undef ATH_TXOP_TO_US
3282 #undef ATH_EXPONENT_TO_VALUE
3283 }
3284
3285 /*
3286 * Callback from the 802.11 layer to update WME parameters.
3287 */
3288 static int
3289 ath_wme_update(struct ieee80211com *ic)
3290 {
3291 struct ath_softc *sc = ic->ic_ifp->if_softc;
3292
3293 return !ath_txq_update(sc, WME_AC_BE) ||
3294 !ath_txq_update(sc, WME_AC_BK) ||
3295 !ath_txq_update(sc, WME_AC_VI) ||
3296 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3297 }
3298
3299 /*
3300 * Reclaim resources for a setup queue.
3301 */
3302 static void
3303 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3304 {
3305
3306 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3307 ATH_TXQ_LOCK_DESTROY(txq);
3308 sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3309 }
3310
3311 /*
3312 * Reclaim all tx queue resources.
3313 */
3314 static void
3315 ath_tx_cleanup(struct ath_softc *sc)
3316 {
3317 int i;
3318
3319 ATH_TXBUF_LOCK_DESTROY(sc);
3320 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3321 if (ATH_TXQ_SETUP(sc, i))
3322 ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3323 }
3324
3325 /*
3326 * Defragment an mbuf chain, returning at most maxfrags separate
3327 * mbufs+clusters. If this is not possible NULL is returned and
3328 * the original mbuf chain is left in it's present (potentially
3329 * modified) state. We use two techniques: collapsing consecutive
3330 * mbufs and replacing consecutive mbufs by a cluster.
3331 */
3332 static struct mbuf *
3333 ath_defrag(struct mbuf *m0, int how, int maxfrags)
3334 {
3335 struct mbuf *m, *n, *n2, **prev;
3336 u_int curfrags;
3337
3338 /*
3339 * Calculate the current number of frags.
3340 */
3341 curfrags = 0;
3342 for (m = m0; m != NULL; m = m->m_next)
3343 curfrags++;
3344 /*
3345 * First, try to collapse mbufs. Note that we always collapse
3346 * towards the front so we don't need to deal with moving the
3347 * pkthdr. This may be suboptimal if the first mbuf has much
3348 * less data than the following.
3349 */
3350 m = m0;
3351 again:
3352 for (;;) {
3353 n = m->m_next;
3354 if (n == NULL)
3355 break;
3356 if ((m->m_flags & M_RDONLY) == 0 &&
3357 n->m_len < M_TRAILINGSPACE(m)) {
3358 bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
3359 n->m_len);
3360 m->m_len += n->m_len;
3361 m->m_next = n->m_next;
3362 m_free(n);
3363 if (--curfrags <= maxfrags)
3364 return m0;
3365 } else
3366 m = n;
3367 }
3368 KASSERT(maxfrags > 1,
3369 ("maxfrags %u, but normal collapse failed", maxfrags));
3370 /*
3371 * Collapse consecutive mbufs to a cluster.
3372 */
3373 prev = &m0->m_next; /* NB: not the first mbuf */
3374 while ((n = *prev) != NULL) {
3375 if ((n2 = n->m_next) != NULL &&
3376 n->m_len + n2->m_len < MCLBYTES) {
3377 m = m_getcl(how, MT_DATA, 0);
3378 if (m == NULL)
3379 goto bad;
3380 bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
3381 bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
3382 n2->m_len);
3383 m->m_len = n->m_len + n2->m_len;
3384 m->m_next = n2->m_next;
3385 *prev = m;
3386 m_free(n);
3387 m_free(n2);
3388 if (--curfrags <= maxfrags) /* +1 cl -2 mbufs */
3389 return m0;
3390 /*
3391 * Still not there, try the normal collapse
3392 * again before we allocate another cluster.
3393 */
3394 goto again;
3395 }
3396 prev = &n->m_next;
3397 }
3398 /*
3399 * No place where we can collapse to a cluster; punt.
3400 * This can occur if, for example, you request 2 frags
3401 * but the packet requires that both be clusters (we
3402 * never reallocate the first mbuf to avoid moving the
3403 * packet header).
3404 */
3405 bad:
3406 return NULL;
3407 }
3408
3409 /*
3410 * Return h/w rate index for an IEEE rate (w/o basic rate bit).
3411 */
3412 static int
3413 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
3414 {
3415 int i;
3416
3417 for (i = 0; i < rt->rateCount; i++)
3418 if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
3419 return i;
3420 return 0; /* NB: lowest rate */
3421 }
3422
3423 static void
3424 ath_freetx(struct mbuf *m)
3425 {
3426 struct mbuf *next;
3427
3428 do {
3429 next = m->m_nextpkt;
3430 m->m_nextpkt = NULL;
3431 m_freem(m);
3432 } while ((m = next) != NULL);
3433 }
3434
3435 static int
3436 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
3437 struct mbuf *m0)
3438 {
3439 struct ieee80211com *ic = &sc->sc_ic;
3440 struct ath_hal *ah = sc->sc_ah;
3441 struct ifnet *ifp = &sc->sc_if;
3442 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
3443 int i, error, iswep, ismcast, isfrag, ismrr;
3444 int keyix, hdrlen, pktlen, try0;
3445 u_int8_t rix, txrate, ctsrate;
3446 u_int8_t cix = 0xff; /* NB: silence compiler */
3447 struct ath_desc *ds, *ds0;
3448 struct ath_txq *txq;
3449 struct ieee80211_frame *wh;
3450 u_int subtype, flags, ctsduration;
3451 HAL_PKT_TYPE atype;
3452 const HAL_RATE_TABLE *rt;
3453 HAL_BOOL shortPreamble;
3454 struct ath_node *an;
3455 struct mbuf *m;
3456 u_int pri;
3457
3458 wh = mtod(m0, struct ieee80211_frame *);
3459 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
3460 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3461 isfrag = m0->m_flags & M_FRAG;
3462 hdrlen = ieee80211_anyhdrsize(wh);
3463 /*
3464 * Packet length must not include any
3465 * pad bytes; deduct them here.
3466 */
3467 pktlen = m0->m_pkthdr.len - (hdrlen & 3);
3468
3469 if (iswep) {
3470 const struct ieee80211_cipher *cip;
3471 struct ieee80211_key *k;
3472
3473 /*
3474 * Construct the 802.11 header+trailer for an encrypted
3475 * frame. The only reason this can fail is because of an
3476 * unknown or unsupported cipher/key type.
3477 */
3478 k = ieee80211_crypto_encap(ic, ni, m0);
3479 if (k == NULL) {
3480 /*
3481 * This can happen when the key is yanked after the
3482 * frame was queued. Just discard the frame; the
3483 * 802.11 layer counts failures and provides
3484 * debugging/diagnostics.
3485 */
3486 ath_freetx(m0);
3487 return EIO;
3488 }
3489 /*
3490 * Adjust the packet + header lengths for the crypto
3491 * additions and calculate the h/w key index. When
3492 * a s/w mic is done the frame will have had any mic
3493 * added to it prior to entry so m0->m_pkthdr.len above will
3494 * account for it. Otherwise we need to add it to the
3495 * packet length.
3496 */
3497 cip = k->wk_cipher;
3498 hdrlen += cip->ic_header;
3499 pktlen += cip->ic_header + cip->ic_trailer;
3500 /* NB: frags always have any TKIP MIC done in s/w */
3501 if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
3502 pktlen += cip->ic_miclen;
3503 keyix = k->wk_keyix;
3504
3505 /* packet header may have moved, reset our local pointer */
3506 wh = mtod(m0, struct ieee80211_frame *);
3507 } else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
3508 /*
3509 * Use station key cache slot, if assigned.
3510 */
3511 keyix = ni->ni_ucastkey.wk_keyix;
3512 if (keyix == IEEE80211_KEYIX_NONE)
3513 keyix = HAL_TXKEYIX_INVALID;
3514 } else
3515 keyix = HAL_TXKEYIX_INVALID;
3516
3517 pktlen += IEEE80211_CRC_LEN;
3518
3519 /*
3520 * Load the DMA map so any coalescing is done. This
3521 * also calculates the number of descriptors we need.
3522 */
3523 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3524 BUS_DMA_NOWAIT);
3525 if (error == EFBIG) {
3526 /* XXX packet requires too many descriptors */
3527 bf->bf_nseg = ATH_TXDESC+1;
3528 } else if (error != 0) {
3529 sc->sc_stats.ast_tx_busdma++;
3530 ath_freetx(m0);
3531 return error;
3532 }
3533 /*
3534 * Discard null packets and check for packets that
3535 * require too many TX descriptors. We try to convert
3536 * the latter to a cluster.
3537 */
3538 if (error == EFBIG) { /* too many desc's, linearize */
3539 sc->sc_stats.ast_tx_linear++;
3540 m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
3541 if (m == NULL) {
3542 ath_freetx(m0);
3543 sc->sc_stats.ast_tx_nombuf++;
3544 return ENOMEM;
3545 }
3546 m0 = m;
3547 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3548 BUS_DMA_NOWAIT);
3549 if (error != 0) {
3550 sc->sc_stats.ast_tx_busdma++;
3551 ath_freetx(m0);
3552 return error;
3553 }
3554 KASSERT(bf->bf_nseg <= ATH_TXDESC,
3555 ("too many segments after defrag; nseg %u", bf->bf_nseg));
3556 } else if (bf->bf_nseg == 0) { /* null packet, discard */
3557 sc->sc_stats.ast_tx_nodata++;
3558 ath_freetx(m0);
3559 return EIO;
3560 }
3561 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
3562 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
3563 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
3564 bf->bf_m = m0;
3565 bf->bf_node = ni; /* NB: held reference */
3566
3567 /* setup descriptors */
3568 ds = bf->bf_desc;
3569 rt = sc->sc_currates;
3570 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3571
3572 /*
3573 * NB: the 802.11 layer marks whether or not we should
3574 * use short preamble based on the current mode and
3575 * negotiated parameters.
3576 */
3577 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3578 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) {
3579 shortPreamble = AH_TRUE;
3580 sc->sc_stats.ast_tx_shortpre++;
3581 } else {
3582 shortPreamble = AH_FALSE;
3583 }
3584
3585 an = ATH_NODE(ni);
3586 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */
3587 ismrr = 0; /* default no multi-rate retry*/
3588 /*
3589 * Calculate Atheros packet type from IEEE80211 packet header,
3590 * setup for rate calculations, and select h/w transmit queue.
3591 */
3592 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3593 case IEEE80211_FC0_TYPE_MGT:
3594 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3595 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
3596 atype = HAL_PKT_TYPE_BEACON;
3597 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3598 atype = HAL_PKT_TYPE_PROBE_RESP;
3599 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
3600 atype = HAL_PKT_TYPE_ATIM;
3601 else
3602 atype = HAL_PKT_TYPE_NORMAL; /* XXX */
3603 rix = sc->sc_minrateix;
3604 txrate = rt->info[rix].rateCode;
3605 if (shortPreamble)
3606 txrate |= rt->info[rix].shortPreamble;
3607 try0 = ATH_TXMGTTRY;
3608 /* NB: force all management frames to highest queue */
3609 if (ni->ni_flags & IEEE80211_NODE_QOS) {
3610 /* NB: force all management frames to highest queue */
3611 pri = WME_AC_VO;
3612 } else
3613 pri = WME_AC_BE;
3614 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
3615 break;
3616 case IEEE80211_FC0_TYPE_CTL:
3617 atype = HAL_PKT_TYPE_PSPOLL; /* stop setting of duration */
3618 rix = sc->sc_minrateix;
3619 txrate = rt->info[rix].rateCode;
3620 if (shortPreamble)
3621 txrate |= rt->info[rix].shortPreamble;
3622 try0 = ATH_TXMGTTRY;
3623 /* NB: force all ctl frames to highest queue */
3624 if (ni->ni_flags & IEEE80211_NODE_QOS) {
3625 /* NB: force all ctl frames to highest queue */
3626 pri = WME_AC_VO;
3627 } else
3628 pri = WME_AC_BE;
3629 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
3630 break;
3631 case IEEE80211_FC0_TYPE_DATA:
3632 atype = HAL_PKT_TYPE_NORMAL; /* default */
3633 /*
3634 * Data frames: multicast frames go out at a fixed rate,
3635 * otherwise consult the rate control module for the
3636 * rate to use.
3637 */
3638 if (ismcast) {
3639 /*
3640 * Check mcast rate setting in case it's changed.
3641 * XXX move out of fastpath
3642 */
3643 if (ic->ic_mcast_rate != sc->sc_mcastrate) {
3644 sc->sc_mcastrix =
3645 ath_tx_findrix(rt, ic->ic_mcast_rate);
3646 sc->sc_mcastrate = ic->ic_mcast_rate;
3647 }
3648 rix = sc->sc_mcastrix;
3649 txrate = rt->info[rix].rateCode;
3650 try0 = 1;
3651 } else {
3652 ath_rate_findrate(sc, an, shortPreamble, pktlen,
3653 &rix, &try0, &txrate);
3654 sc->sc_txrate = txrate; /* for LED blinking */
3655 if (try0 != ATH_TXMAXTRY)
3656 ismrr = 1;
3657 }
3658 pri = M_WME_GETAC(m0);
3659 if (cap->cap_wmeParams[pri].wmep_noackPolicy)
3660 flags |= HAL_TXDESC_NOACK;
3661 break;
3662 default:
3663 if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3664 wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3665 /* XXX statistic */
3666 ath_freetx(m0);
3667 return EIO;
3668 }
3669 txq = sc->sc_ac2q[pri];
3670
3671 /*
3672 * When servicing one or more stations in power-save mode
3673 * multicast frames must be buffered until after the beacon.
3674 * We use the CAB queue for that.
3675 */
3676 if (ismcast && ic->ic_ps_sta) {
3677 txq = sc->sc_cabq;
3678 /* XXX? more bit in 802.11 frame header */
3679 }
3680
3681 /*
3682 * Calculate miscellaneous flags.
3683 */
3684 if (ismcast) {
3685 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */
3686 } else if (pktlen > ic->ic_rtsthreshold) {
3687 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */
3688 cix = rt->info[rix].controlRate;
3689 sc->sc_stats.ast_tx_rts++;
3690 }
3691 if (flags & HAL_TXDESC_NOACK) /* NB: avoid double counting */
3692 sc->sc_stats.ast_tx_noack++;
3693
3694 /*
3695 * If 802.11g protection is enabled, determine whether
3696 * to use RTS/CTS or just CTS. Note that this is only
3697 * done for OFDM unicast frames.
3698 */
3699 if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3700 rt->info[rix].phy == IEEE80211_T_OFDM &&
3701 (flags & HAL_TXDESC_NOACK) == 0) {
3702 /* XXX fragments must use CCK rates w/ protection */
3703 if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3704 flags |= HAL_TXDESC_RTSENA;
3705 else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3706 flags |= HAL_TXDESC_CTSENA;
3707 if (isfrag) {
3708 /*
3709 * For frags it would be desirable to use the
3710 * highest CCK rate for RTS/CTS. But stations
3711 * farther away may detect it at a lower CCK rate
3712 * so use the configured protection rate instead
3713 * (for now).
3714 */
3715 cix = rt->info[sc->sc_protrix].controlRate;
3716 } else
3717 cix = rt->info[sc->sc_protrix].controlRate;
3718 sc->sc_stats.ast_tx_protect++;
3719 }
3720
3721 /*
3722 * Calculate duration. This logically belongs in the 802.11
3723 * layer but it lacks sufficient information to calculate it.
3724 */
3725 if ((flags & HAL_TXDESC_NOACK) == 0 &&
3726 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
3727 u_int16_t dur;
3728 /*
3729 * XXX not right with fragmentation.
3730 */
3731 if (shortPreamble)
3732 dur = rt->info[rix].spAckDuration;
3733 else
3734 dur = rt->info[rix].lpAckDuration;
3735 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
3736 dur += dur; /* additional SIFS+ACK */
3737 KASSERT(m0->m_nextpkt != NULL, ("no fragment"));
3738 /*
3739 * Include the size of next fragment so NAV is
3740 * updated properly. The last fragment uses only
3741 * the ACK duration
3742 */
3743 dur += ath_hal_computetxtime(ah, rt,
3744 m0->m_nextpkt->m_pkthdr.len,
3745 rix, shortPreamble);
3746 }
3747 if (isfrag) {
3748 /*
3749 * Force hardware to use computed duration for next
3750 * fragment by disabling multi-rate retry which updates
3751 * duration based on the multi-rate duration table.
3752 */
3753 try0 = ATH_TXMAXTRY;
3754 }
3755 *(u_int16_t *)wh->i_dur = htole16(dur);
3756 }
3757
3758 /*
3759 * Calculate RTS/CTS rate and duration if needed.
3760 */
3761 ctsduration = 0;
3762 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
3763 /*
3764 * CTS transmit rate is derived from the transmit rate
3765 * by looking in the h/w rate table. We must also factor
3766 * in whether or not a short preamble is to be used.
3767 */
3768 /* NB: cix is set above where RTS/CTS is enabled */
3769 KASSERT(cix != 0xff, ("cix not setup"));
3770 ctsrate = rt->info[cix].rateCode;
3771 /*
3772 * Compute the transmit duration based on the frame
3773 * size and the size of an ACK frame. We call into the
3774 * HAL to do the computation since it depends on the
3775 * characteristics of the actual PHY being used.
3776 *
3777 * NB: CTS is assumed the same size as an ACK so we can
3778 * use the precalculated ACK durations.
3779 */
3780 if (shortPreamble) {
3781 ctsrate |= rt->info[cix].shortPreamble;
3782 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
3783 ctsduration += rt->info[cix].spAckDuration;
3784 ctsduration += ath_hal_computetxtime(ah,
3785 rt, pktlen, rix, AH_TRUE);
3786 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
3787 ctsduration += rt->info[rix].spAckDuration;
3788 } else {
3789 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
3790 ctsduration += rt->info[cix].lpAckDuration;
3791 ctsduration += ath_hal_computetxtime(ah,
3792 rt, pktlen, rix, AH_FALSE);
3793 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
3794 ctsduration += rt->info[rix].lpAckDuration;
3795 }
3796 /*
3797 * Must disable multi-rate retry when using RTS/CTS.
3798 */
3799 ismrr = 0;
3800 try0 = ATH_TXMGTTRY; /* XXX */
3801 } else
3802 ctsrate = 0;
3803
3804 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3805 ieee80211_dump_pkt(mtod(m0, void *), m0->m_len,
3806 sc->sc_hwmap[txrate].ieeerate, -1);
3807 #if NBPFILTER > 0
3808 if (ic->ic_rawbpf)
3809 bpf_mtap(ic->ic_rawbpf, m0);
3810 if (sc->sc_drvbpf) {
3811 u_int64_t tsf = ath_hal_gettsf64(ah);
3812
3813 sc->sc_tx_th.wt_tsf = htole64(tsf);
3814 sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
3815 if (iswep)
3816 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3817 if (isfrag)
3818 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
3819 sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
3820 sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3821 sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3822
3823 bpf_mtap2(sc->sc_drvbpf,
3824 &sc->sc_tx_th, sc->sc_tx_th_len, m0);
3825 }
3826 #endif
3827
3828 /*
3829 * Determine if a tx interrupt should be generated for
3830 * this descriptor. We take a tx interrupt to reap
3831 * descriptors when the h/w hits an EOL condition or
3832 * when the descriptor is specifically marked to generate
3833 * an interrupt. We periodically mark descriptors in this
3834 * way to insure timely replenishing of the supply needed
3835 * for sending frames. Defering interrupts reduces system
3836 * load and potentially allows more concurrent work to be
3837 * done but if done to aggressively can cause senders to
3838 * backup.
3839 *
3840 * NB: use >= to deal with sc_txintrperiod changing
3841 * dynamically through sysctl.
3842 */
3843 if (flags & HAL_TXDESC_INTREQ) {
3844 txq->axq_intrcnt = 0;
3845 } else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
3846 flags |= HAL_TXDESC_INTREQ;
3847 txq->axq_intrcnt = 0;
3848 }
3849
3850 /*
3851 * Formulate first tx descriptor with tx controls.
3852 */
3853 /* XXX check return value? */
3854 ath_hal_setuptxdesc(ah, ds
3855 , pktlen /* packet length */
3856 , hdrlen /* header length */
3857 , atype /* Atheros packet type */
3858 , ni->ni_txpower /* txpower */
3859 , txrate, try0 /* series 0 rate/tries */
3860 , keyix /* key cache index */
3861 , sc->sc_txantenna /* antenna mode */
3862 , flags /* flags */
3863 , ctsrate /* rts/cts rate */
3864 , ctsduration /* rts/cts duration */
3865 );
3866 bf->bf_flags = flags;
3867 /*
3868 * Setup the multi-rate retry state only when we're
3869 * going to use it. This assumes ath_hal_setuptxdesc
3870 * initializes the descriptors (so we don't have to)
3871 * when the hardware supports multi-rate retry and
3872 * we don't use it.
3873 */
3874 if (ismrr)
3875 ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
3876
3877 /*
3878 * Fillin the remainder of the descriptor info.
3879 */
3880 ds0 = ds;
3881 for (i = 0; i < bf->bf_nseg; i++, ds++) {
3882 ds->ds_data = bf->bf_segs[i].ds_addr;
3883 if (i == bf->bf_nseg - 1)
3884 ds->ds_link = 0;
3885 else
3886 ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
3887 ath_hal_filltxdesc(ah, ds
3888 , bf->bf_segs[i].ds_len /* segment length */
3889 , i == 0 /* first segment */
3890 , i == bf->bf_nseg - 1 /* last segment */
3891 , ds0 /* first descriptor */
3892 );
3893
3894 /* NB: The desc swap function becomes void,
3895 * if descriptor swapping is not enabled
3896 */
3897 ath_desc_swap(ds);
3898
3899 DPRINTF(sc, ATH_DEBUG_XMIT,
3900 "%s: %d: %08x %08x %08x %08x %08x %08x\n",
3901 __func__, i, ds->ds_link, ds->ds_data,
3902 ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
3903 }
3904 /*
3905 * Insert the frame on the outbound list and
3906 * pass it on to the hardware.
3907 */
3908 ATH_TXQ_LOCK(txq);
3909 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
3910 if (txq->axq_link == NULL) {
3911 ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
3912 DPRINTF(sc, ATH_DEBUG_XMIT,
3913 "%s: TXDP[%u] = %" PRIx64 " (%p) depth %d\n", __func__,
3914 txq->axq_qnum, (uint64_t)bf->bf_daddr, bf->bf_desc,
3915 txq->axq_depth);
3916 } else {
3917 *txq->axq_link = HTOAH32(bf->bf_daddr);
3918 DPRINTF(sc, ATH_DEBUG_XMIT,
3919 "%s: link[%u](%p)=%" PRIx64 " (%p) depth %d\n",
3920 __func__, txq->axq_qnum, txq->axq_link,
3921 (uint64_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
3922 }
3923 txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
3924 /*
3925 * The CAB queue is started from the SWBA handler since
3926 * frames only go out on DTIM and to avoid possible races.
3927 */
3928 if (txq != sc->sc_cabq)
3929 ath_hal_txstart(ah, txq->axq_qnum);
3930 ATH_TXQ_UNLOCK(txq);
3931
3932 return 0;
3933 }
3934
3935 /*
3936 * Process completed xmit descriptors from the specified queue.
3937 */
3938 static int
3939 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
3940 {
3941 struct ath_hal *ah = sc->sc_ah;
3942 struct ieee80211com *ic = &sc->sc_ic;
3943 struct ath_buf *bf;
3944 struct ath_desc *ds, *ds0;
3945 struct ieee80211_node *ni;
3946 struct ath_node *an;
3947 int sr, lr, pri, nacked;
3948 HAL_STATUS status;
3949
3950 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
3951 __func__, txq->axq_qnum,
3952 (void *)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3953 txq->axq_link);
3954 nacked = 0;
3955 for (;;) {
3956 ATH_TXQ_LOCK(txq);
3957 txq->axq_intrcnt = 0; /* reset periodic desc intr count */
3958 bf = STAILQ_FIRST(&txq->axq_q);
3959 if (bf == NULL) {
3960 txq->axq_link = NULL;
3961 ATH_TXQ_UNLOCK(txq);
3962 break;
3963 }
3964 ds0 = &bf->bf_desc[0];
3965 ds = &bf->bf_desc[bf->bf_nseg - 1];
3966 status = ath_hal_txprocdesc(ah, ds);
3967 #ifdef AR_DEBUG
3968 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
3969 ath_printtxbuf(bf, status == HAL_OK);
3970 #endif
3971 if (status == HAL_EINPROGRESS) {
3972 ATH_TXQ_UNLOCK(txq);
3973 break;
3974 }
3975 ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3976 ATH_TXQ_UNLOCK(txq);
3977
3978 ni = bf->bf_node;
3979 if (ni != NULL) {
3980 an = ATH_NODE(ni);
3981 if (ds->ds_txstat.ts_status == 0) {
3982 u_int8_t txant = ds->ds_txstat.ts_antenna;
3983 sc->sc_stats.ast_ant_tx[txant]++;
3984 sc->sc_ant_tx[txant]++;
3985 if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
3986 sc->sc_stats.ast_tx_altrate++;
3987 sc->sc_stats.ast_tx_rssi =
3988 ds->ds_txstat.ts_rssi;
3989 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
3990 ds->ds_txstat.ts_rssi);
3991 pri = M_WME_GETAC(bf->bf_m);
3992 if (pri >= WME_AC_VO)
3993 ic->ic_wme.wme_hipri_traffic++;
3994 ni->ni_inact = ni->ni_inact_reload;
3995 } else {
3996 if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
3997 sc->sc_stats.ast_tx_xretries++;
3998 if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
3999 sc->sc_stats.ast_tx_fifoerr++;
4000 if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
4001 sc->sc_stats.ast_tx_filtered++;
4002 }
4003 sr = ds->ds_txstat.ts_shortretry;
4004 lr = ds->ds_txstat.ts_longretry;
4005 sc->sc_stats.ast_tx_shortretry += sr;
4006 sc->sc_stats.ast_tx_longretry += lr;
4007 /*
4008 * Hand the descriptor to the rate control algorithm.
4009 */
4010 if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
4011 (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
4012 /*
4013 * If frame was ack'd update the last rx time
4014 * used to workaround phantom bmiss interrupts.
4015 */
4016 if (ds->ds_txstat.ts_status == 0)
4017 nacked++;
4018 ath_rate_tx_complete(sc, an, ds, ds0);
4019 }
4020 /*
4021 * Reclaim reference to node.
4022 *
4023 * NB: the node may be reclaimed here if, for example
4024 * this is a DEAUTH message that was sent and the
4025 * node was timed out due to inactivity.
4026 */
4027 ieee80211_free_node(ni);
4028 }
4029 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
4030 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4031 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4032 m_freem(bf->bf_m);
4033 bf->bf_m = NULL;
4034 bf->bf_node = NULL;
4035
4036 ATH_TXBUF_LOCK(sc);
4037 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4038 sc->sc_if.if_flags &= ~IFF_OACTIVE;
4039 ATH_TXBUF_UNLOCK(sc);
4040 }
4041 return nacked;
4042 }
4043
4044 static inline int
4045 txqactive(struct ath_hal *ah, int qnum)
4046 {
4047 u_int32_t txqs = 1<<qnum;
4048 ath_hal_gettxintrtxqs(ah, &txqs);
4049 return (txqs & (1<<qnum));
4050 }
4051
4052 /*
4053 * Deferred processing of transmit interrupt; special-cased
4054 * for a single hardware transmit queue (e.g. 5210 and 5211).
4055 */
4056 static void
4057 ath_tx_proc_q0(void *arg, int npending)
4058 {
4059 struct ath_softc *sc = arg;
4060 struct ifnet *ifp = &sc->sc_if;
4061
4062 if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]) > 0){
4063 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4064 }
4065 if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4066 ath_tx_processq(sc, sc->sc_cabq);
4067
4068 if (sc->sc_softled)
4069 ath_led_event(sc, ATH_LED_TX);
4070
4071 ath_start(ifp);
4072 }
4073
4074 /*
4075 * Deferred processing of transmit interrupt; special-cased
4076 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4077 */
4078 static void
4079 ath_tx_proc_q0123(void *arg, int npending)
4080 {
4081 struct ath_softc *sc = arg;
4082 struct ifnet *ifp = &sc->sc_if;
4083 int nacked;
4084
4085 /*
4086 * Process each active queue.
4087 */
4088 nacked = 0;
4089 if (txqactive(sc->sc_ah, 0))
4090 nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
4091 if (txqactive(sc->sc_ah, 1))
4092 nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
4093 if (txqactive(sc->sc_ah, 2))
4094 nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
4095 if (txqactive(sc->sc_ah, 3))
4096 nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
4097 if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4098 ath_tx_processq(sc, sc->sc_cabq);
4099 if (nacked) {
4100 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4101 }
4102 ath_tx_processq(sc, sc->sc_cabq);
4103
4104 if (sc->sc_softled)
4105 ath_led_event(sc, ATH_LED_TX);
4106
4107 ath_start(ifp);
4108 }
4109
4110 /*
4111 * Deferred processing of transmit interrupt.
4112 */
4113 static void
4114 ath_tx_proc(void *arg, int npending)
4115 {
4116 struct ath_softc *sc = arg;
4117 struct ifnet *ifp = &sc->sc_if;
4118 int i, nacked;
4119
4120 /*
4121 * Process each active queue.
4122 */
4123 nacked = 0;
4124 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4125 if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
4126 nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
4127 if (nacked) {
4128 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4129 }
4130
4131 if (sc->sc_softled)
4132 ath_led_event(sc, ATH_LED_TX);
4133
4134 ath_start(ifp);
4135 }
4136
4137 static void
4138 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
4139 {
4140 struct ath_hal *ah = sc->sc_ah;
4141 struct ieee80211_node *ni;
4142 struct ath_buf *bf;
4143
4144 /*
4145 * NB: this assumes output has been stopped and
4146 * we do not need to block ath_tx_tasklet
4147 */
4148 for (;;) {
4149 ATH_TXQ_LOCK(txq);
4150 bf = STAILQ_FIRST(&txq->axq_q);
4151 if (bf == NULL) {
4152 txq->axq_link = NULL;
4153 ATH_TXQ_UNLOCK(txq);
4154 break;
4155 }
4156 ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4157 ATH_TXQ_UNLOCK(txq);
4158 #ifdef AR_DEBUG
4159 if (sc->sc_debug & ATH_DEBUG_RESET)
4160 ath_printtxbuf(bf,
4161 ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
4162 #endif /* AR_DEBUG */
4163 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4164 m_freem(bf->bf_m);
4165 bf->bf_m = NULL;
4166 ni = bf->bf_node;
4167 bf->bf_node = NULL;
4168 if (ni != NULL) {
4169 /*
4170 * Reclaim node reference.
4171 */
4172 ieee80211_free_node(ni);
4173 }
4174 ATH_TXBUF_LOCK(sc);
4175 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4176 sc->sc_if.if_flags &= ~IFF_OACTIVE;
4177 ATH_TXBUF_UNLOCK(sc);
4178 }
4179 }
4180
4181 static void
4182 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4183 {
4184 struct ath_hal *ah = sc->sc_ah;
4185
4186 (void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4187 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4188 __func__, txq->axq_qnum,
4189 (void *)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4190 txq->axq_link);
4191 }
4192
4193 /*
4194 * Drain the transmit queues and reclaim resources.
4195 */
4196 static void
4197 ath_draintxq(struct ath_softc *sc)
4198 {
4199 struct ath_hal *ah = sc->sc_ah;
4200 int i;
4201
4202 /* XXX return value */
4203 if (!sc->sc_invalid) {
4204 /* don't touch the hardware if marked invalid */
4205 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4206 DPRINTF(sc, ATH_DEBUG_RESET,
4207 "%s: beacon queue %p\n", __func__,
4208 (void *)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
4209 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4210 if (ATH_TXQ_SETUP(sc, i))
4211 ath_tx_stopdma(sc, &sc->sc_txq[i]);
4212 }
4213 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4214 if (ATH_TXQ_SETUP(sc, i))
4215 ath_tx_draintxq(sc, &sc->sc_txq[i]);
4216 }
4217
4218 /*
4219 * Disable the receive h/w in preparation for a reset.
4220 */
4221 static void
4222 ath_stoprecv(struct ath_softc *sc)
4223 {
4224 #define PA2DESC(_sc, _pa) \
4225 ((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
4226 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
4227 struct ath_hal *ah = sc->sc_ah;
4228
4229 ath_hal_stoppcurecv(ah); /* disable PCU */
4230 ath_hal_setrxfilter(ah, 0); /* clear recv filter */
4231 ath_hal_stopdmarecv(ah); /* disable DMA engine */
4232 DELAY(3000); /* 3ms is long enough for 1 frame */
4233 #ifdef AR_DEBUG
4234 if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
4235 struct ath_buf *bf;
4236
4237 printf("%s: rx queue %p, link %p\n", __func__,
4238 (void *)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
4239 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4240 struct ath_desc *ds = bf->bf_desc;
4241 HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
4242 bf->bf_daddr, PA2DESC(sc, ds->ds_link));
4243 if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
4244 ath_printrxbuf(bf, status == HAL_OK);
4245 }
4246 }
4247 #endif
4248 sc->sc_rxlink = NULL; /* just in case */
4249 #undef PA2DESC
4250 }
4251
4252 /*
4253 * Enable the receive h/w following a reset.
4254 */
4255 static int
4256 ath_startrecv(struct ath_softc *sc)
4257 {
4258 struct ath_hal *ah = sc->sc_ah;
4259 struct ath_buf *bf;
4260
4261 sc->sc_rxlink = NULL;
4262 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4263 int error = ath_rxbuf_init(sc, bf);
4264 if (error != 0) {
4265 DPRINTF(sc, ATH_DEBUG_RECV,
4266 "%s: ath_rxbuf_init failed %d\n",
4267 __func__, error);
4268 return error;
4269 }
4270 }
4271
4272 bf = STAILQ_FIRST(&sc->sc_rxbuf);
4273 ath_hal_putrxbuf(ah, bf->bf_daddr);
4274 ath_hal_rxena(ah); /* enable recv descriptors */
4275 ath_mode_init(sc); /* set filters, etc. */
4276 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */
4277 return 0;
4278 }
4279
4280 /*
4281 * Update internal state after a channel change.
4282 */
4283 static void
4284 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4285 {
4286 struct ieee80211com *ic = &sc->sc_ic;
4287 enum ieee80211_phymode mode;
4288 u_int16_t flags;
4289
4290 /*
4291 * Change channels and update the h/w rate map
4292 * if we're switching; e.g. 11a to 11b/g.
4293 */
4294 mode = ieee80211_chan2mode(ic, chan);
4295 if (mode != sc->sc_curmode)
4296 ath_setcurmode(sc, mode);
4297 /*
4298 * Update BPF state. NB: ethereal et. al. don't handle
4299 * merged flags well so pick a unique mode for their use.
4300 */
4301 if (IEEE80211_IS_CHAN_A(chan))
4302 flags = IEEE80211_CHAN_A;
4303 /* XXX 11g schizophrenia */
4304 else if (IEEE80211_IS_CHAN_G(chan) ||
4305 IEEE80211_IS_CHAN_PUREG(chan))
4306 flags = IEEE80211_CHAN_G;
4307 else
4308 flags = IEEE80211_CHAN_B;
4309 if (IEEE80211_IS_CHAN_T(chan))
4310 flags |= IEEE80211_CHAN_TURBO;
4311 sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
4312 htole16(chan->ic_freq);
4313 sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
4314 htole16(flags);
4315 }
4316
4317 /*
4318 * Poll for a channel clear indication; this is required
4319 * for channels requiring DFS and not previously visited
4320 * and/or with a recent radar detection.
4321 */
4322 static void
4323 ath_dfswait(void *arg)
4324 {
4325 struct ath_softc *sc = arg;
4326 struct ath_hal *ah = sc->sc_ah;
4327 HAL_CHANNEL hchan;
4328
4329 ath_hal_radar_wait(ah, &hchan);
4330 if (hchan.privFlags & CHANNEL_INTERFERENCE) {
4331 if_printf(&sc->sc_if,
4332 "channel %u/0x%x/0x%x has interference\n",
4333 hchan.channel, hchan.channelFlags, hchan.privFlags);
4334 return;
4335 }
4336 if ((hchan.privFlags & CHANNEL_DFS) == 0) {
4337 /* XXX should not happen */
4338 return;
4339 }
4340 if (hchan.privFlags & CHANNEL_DFS_CLEAR) {
4341 sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR;
4342 sc->sc_if.if_flags &= ~IFF_OACTIVE;
4343 if_printf(&sc->sc_if,
4344 "channel %u/0x%x/0x%x marked clear\n",
4345 hchan.channel, hchan.channelFlags, hchan.privFlags);
4346 } else
4347 callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc);
4348 }
4349
4350 /*
4351 * Set/change channels. If the channel is really being changed,
4352 * it's done by reseting the chip. To accomplish this we must
4353 * first cleanup any pending DMA, then restart stuff after a la
4354 * ath_init.
4355 */
4356 static int
4357 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4358 {
4359 struct ath_hal *ah = sc->sc_ah;
4360 struct ieee80211com *ic = &sc->sc_ic;
4361 HAL_CHANNEL hchan;
4362
4363 /*
4364 * Convert to a HAL channel description with
4365 * the flags constrained to reflect the current
4366 * operating mode.
4367 */
4368 hchan.channel = chan->ic_freq;
4369 hchan.channelFlags = ath_chan2flags(ic, chan);
4370
4371 DPRINTF(sc, ATH_DEBUG_RESET,
4372 "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
4373 __func__,
4374 ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
4375 sc->sc_curchan.channelFlags),
4376 sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
4377 ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
4378 hchan.channel, hchan.channelFlags);
4379 if (hchan.channel != sc->sc_curchan.channel ||
4380 hchan.channelFlags != sc->sc_curchan.channelFlags) {
4381 HAL_STATUS status;
4382
4383 /*
4384 * To switch channels clear any pending DMA operations;
4385 * wait long enough for the RX fifo to drain, reset the
4386 * hardware at the new frequency, and then re-enable
4387 * the relevant bits of the h/w.
4388 */
4389 ath_hal_intrset(ah, 0); /* disable interrupts */
4390 ath_draintxq(sc); /* clear pending tx frames */
4391 ath_stoprecv(sc); /* turn off frame recv */
4392 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
4393 if_printf(ic->ic_ifp, "%s: unable to reset "
4394 "channel %u (%u MHz, flags 0x%x hal flags 0x%x)\n",
4395 __func__, ieee80211_chan2ieee(ic, chan),
4396 chan->ic_freq, chan->ic_flags, hchan.channelFlags);
4397 return EIO;
4398 }
4399 sc->sc_curchan = hchan;
4400 ath_update_txpow(sc); /* update tx power state */
4401 sc->sc_diversity = ath_hal_getdiversity(ah);
4402 sc->sc_calinterval = 1;
4403 sc->sc_caltries = 0;
4404
4405 /*
4406 * Re-enable rx framework.
4407 */
4408 if (ath_startrecv(sc) != 0) {
4409 if_printf(&sc->sc_if,
4410 "%s: unable to restart recv logic\n", __func__);
4411 return EIO;
4412 }
4413
4414 /*
4415 * Change channels and update the h/w rate map
4416 * if we're switching; e.g. 11a to 11b/g.
4417 */
4418 ic->ic_ibss_chan = chan;
4419 ath_chan_change(sc, chan);
4420
4421 /*
4422 * Handle DFS required waiting period to determine
4423 * if channel is clear of radar traffic.
4424 */
4425 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
4426 #define DFS_AND_NOT_CLEAR(_c) \
4427 (((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS)
4428 if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) {
4429 if_printf(&sc->sc_if,
4430 "wait for DFS clear channel signal\n");
4431 /* XXX stop sndq */
4432 sc->sc_if.if_flags |= IFF_OACTIVE;
4433 callout_reset(&sc->sc_dfs_ch,
4434 2 * hz, ath_dfswait, sc);
4435 } else
4436 callout_stop(&sc->sc_dfs_ch);
4437 #undef DFS_NOT_CLEAR
4438 }
4439
4440 /*
4441 * Re-enable interrupts.
4442 */
4443 ath_hal_intrset(ah, sc->sc_imask);
4444 }
4445 return 0;
4446 }
4447
4448 static void
4449 ath_next_scan(void *arg)
4450 {
4451 struct ath_softc *sc = arg;
4452 struct ieee80211com *ic = &sc->sc_ic;
4453 int s;
4454
4455 /* don't call ath_start w/o network interrupts blocked */
4456 s = splnet();
4457
4458 if (ic->ic_state == IEEE80211_S_SCAN)
4459 ieee80211_next_scan(ic);
4460 splx(s);
4461 }
4462
4463 /*
4464 * Periodically recalibrate the PHY to account
4465 * for temperature/environment changes.
4466 */
4467 static void
4468 ath_calibrate(void *arg)
4469 {
4470 struct ath_softc *sc = arg;
4471 struct ath_hal *ah = sc->sc_ah;
4472 HAL_BOOL iqCalDone;
4473
4474 sc->sc_stats.ast_per_cal++;
4475
4476 ATH_LOCK(sc);
4477
4478 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4479 /*
4480 * Rfgain is out of bounds, reset the chip
4481 * to load new gain values.
4482 */
4483 DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4484 "%s: rfgain change\n", __func__);
4485 sc->sc_stats.ast_per_rfgain++;
4486 ath_reset(&sc->sc_if);
4487 }
4488 if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
4489 DPRINTF(sc, ATH_DEBUG_ANY,
4490 "%s: calibration of channel %u failed\n",
4491 __func__, sc->sc_curchan.channel);
4492 sc->sc_stats.ast_per_calfail++;
4493 }
4494 /*
4495 * Calibrate noise floor data again in case of change.
4496 */
4497 ath_hal_process_noisefloor(ah);
4498 /*
4499 * Poll more frequently when the IQ calibration is in
4500 * progress to speedup loading the final settings.
4501 * We temper this aggressive polling with an exponential
4502 * back off after 4 tries up to ath_calinterval.
4503 */
4504 if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
4505 sc->sc_caltries = 0;
4506 sc->sc_calinterval = ath_calinterval;
4507 } else if (sc->sc_caltries > 4) {
4508 sc->sc_caltries = 0;
4509 sc->sc_calinterval <<= 1;
4510 if (sc->sc_calinterval > ath_calinterval)
4511 sc->sc_calinterval = ath_calinterval;
4512 }
4513 KASSERT(0 < sc->sc_calinterval && sc->sc_calinterval <= ath_calinterval,
4514 ("bad calibration interval %u", sc->sc_calinterval));
4515
4516 DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4517 "%s: next +%u (%siqCalDone tries %u)\n", __func__,
4518 sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
4519 sc->sc_caltries++;
4520 callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4521 ath_calibrate, sc);
4522 ATH_UNLOCK(sc);
4523 }
4524
4525 static int
4526 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
4527 {
4528 struct ifnet *ifp = ic->ic_ifp;
4529 struct ath_softc *sc = ifp->if_softc;
4530 struct ath_hal *ah = sc->sc_ah;
4531 struct ieee80211_node *ni;
4532 int i, error;
4533 const u_int8_t *bssid;
4534 u_int32_t rfilt;
4535 static const HAL_LED_STATE leds[] = {
4536 HAL_LED_INIT, /* IEEE80211_S_INIT */
4537 HAL_LED_SCAN, /* IEEE80211_S_SCAN */
4538 HAL_LED_AUTH, /* IEEE80211_S_AUTH */
4539 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */
4540 HAL_LED_RUN, /* IEEE80211_S_RUN */
4541 };
4542
4543 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4544 ieee80211_state_name[ic->ic_state],
4545 ieee80211_state_name[nstate]);
4546
4547 callout_stop(&sc->sc_scan_ch);
4548 callout_stop(&sc->sc_cal_ch);
4549 callout_stop(&sc->sc_dfs_ch);
4550 ath_hal_setledstate(ah, leds[nstate]); /* set LED */
4551
4552 if (nstate == IEEE80211_S_INIT) {
4553 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4554 /*
4555 * NB: disable interrupts so we don't rx frames.
4556 */
4557 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4558 /*
4559 * Notify the rate control algorithm.
4560 */
4561 ath_rate_newstate(sc, nstate);
4562 goto done;
4563 }
4564 ni = ic->ic_bss;
4565 error = ath_chan_set(sc, ic->ic_curchan);
4566 if (error != 0)
4567 goto bad;
4568 rfilt = ath_calcrxfilter(sc, nstate);
4569 if (nstate == IEEE80211_S_SCAN)
4570 bssid = ifp->if_broadcastaddr;
4571 else
4572 bssid = ni->ni_bssid;
4573 ath_hal_setrxfilter(ah, rfilt);
4574 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
4575 __func__, rfilt, ether_sprintf(bssid));
4576
4577 if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
4578 ath_hal_setassocid(ah, bssid, ni->ni_associd);
4579 else
4580 ath_hal_setassocid(ah, bssid, 0);
4581 if (ic->ic_flags & IEEE80211_F_PRIVACY) {
4582 for (i = 0; i < IEEE80211_WEP_NKID; i++)
4583 if (ath_hal_keyisvalid(ah, i))
4584 ath_hal_keysetmac(ah, i, bssid);
4585 }
4586
4587 /*
4588 * Notify the rate control algorithm so rates
4589 * are setup should ath_beacon_alloc be called.
4590 */
4591 ath_rate_newstate(sc, nstate);
4592
4593 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4594 /* nothing to do */;
4595 } else if (nstate == IEEE80211_S_RUN) {
4596 DPRINTF(sc, ATH_DEBUG_STATE,
4597 "%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
4598 "capinfo=0x%04x chan=%d\n"
4599 , __func__
4600 , ic->ic_flags
4601 , ni->ni_intval
4602 , ether_sprintf(ni->ni_bssid)
4603 , ni->ni_capinfo
4604 , ieee80211_chan2ieee(ic, ic->ic_curchan));
4605
4606 switch (ic->ic_opmode) {
4607 case IEEE80211_M_HOSTAP:
4608 case IEEE80211_M_IBSS:
4609 /*
4610 * Allocate and setup the beacon frame.
4611 *
4612 * Stop any previous beacon DMA. This may be
4613 * necessary, for example, when an ibss merge
4614 * causes reconfiguration; there will be a state
4615 * transition from RUN->RUN that means we may
4616 * be called with beacon transmission active.
4617 */
4618 ath_hal_stoptxdma(ah, sc->sc_bhalq);
4619 ath_beacon_free(sc);
4620 error = ath_beacon_alloc(sc, ni);
4621 if (error != 0)
4622 goto bad;
4623 /*
4624 * If joining an adhoc network defer beacon timer
4625 * configuration to the next beacon frame so we
4626 * have a current TSF to use. Otherwise we're
4627 * starting an ibss/bss so there's no need to delay.
4628 */
4629 if (ic->ic_opmode == IEEE80211_M_IBSS &&
4630 ic->ic_bss->ni_tstamp.tsf != 0)
4631 sc->sc_syncbeacon = 1;
4632 else
4633 ath_beacon_config(sc);
4634 break;
4635 case IEEE80211_M_STA:
4636 /*
4637 * Allocate a key cache slot to the station.
4638 */
4639 if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
4640 sc->sc_hasclrkey &&
4641 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4642 ath_setup_stationkey(ni);
4643 /*
4644 * Defer beacon timer configuration to the next
4645 * beacon frame so we have a current TSF to use
4646 * (any TSF collected when scanning is likely old).
4647 */
4648 sc->sc_syncbeacon = 1;
4649 break;
4650 default:
4651 break;
4652 }
4653 /*
4654 * Let the hal process statistics collected during a
4655 * scan so it can provide calibrated noise floor data.
4656 */
4657 ath_hal_process_noisefloor(ah);
4658 /*
4659 * Reset rssi stats; maybe not the best place...
4660 */
4661 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
4662 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
4663 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
4664 } else {
4665 ath_hal_intrset(ah,
4666 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4667 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4668 }
4669 done:
4670 /*
4671 * Invoke the parent method to complete the work.
4672 */
4673 error = sc->sc_newstate(ic, nstate, arg);
4674 /*
4675 * Finally, start any timers.
4676 */
4677 if (nstate == IEEE80211_S_RUN) {
4678 /* start periodic recalibration timer */
4679 callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4680 ath_calibrate, sc);
4681 } else if (nstate == IEEE80211_S_SCAN) {
4682 /* start ap/neighbor scan timer */
4683 callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
4684 ath_next_scan, sc);
4685 }
4686 bad:
4687 return error;
4688 }
4689
4690 /*
4691 * Allocate a key cache slot to the station so we can
4692 * setup a mapping from key index to node. The key cache
4693 * slot is needed for managing antenna state and for
4694 * compression when stations do not use crypto. We do
4695 * it uniliaterally here; if crypto is employed this slot
4696 * will be reassigned.
4697 */
4698 static void
4699 ath_setup_stationkey(struct ieee80211_node *ni)
4700 {
4701 struct ieee80211com *ic = ni->ni_ic;
4702 struct ath_softc *sc = ic->ic_ifp->if_softc;
4703 ieee80211_keyix keyix, rxkeyix;
4704
4705 if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
4706 /*
4707 * Key cache is full; we'll fall back to doing
4708 * the more expensive lookup in software. Note
4709 * this also means no h/w compression.
4710 */
4711 /* XXX msg+statistic */
4712 } else {
4713 /* XXX locking? */
4714 ni->ni_ucastkey.wk_keyix = keyix;
4715 ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
4716 /* NB: this will create a pass-thru key entry */
4717 ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
4718 }
4719 }
4720
4721 /*
4722 * Setup driver-specific state for a newly associated node.
4723 * Note that we're called also on a re-associate, the isnew
4724 * param tells us if this is the first time or not.
4725 */
4726 static void
4727 ath_newassoc(struct ieee80211_node *ni, int isnew)
4728 {
4729 struct ieee80211com *ic = ni->ni_ic;
4730 struct ath_softc *sc = ic->ic_ifp->if_softc;
4731
4732 ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
4733 if (isnew &&
4734 (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
4735 KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
4736 ("new assoc with a unicast key already setup (keyix %u)",
4737 ni->ni_ucastkey.wk_keyix));
4738 ath_setup_stationkey(ni);
4739 }
4740 }
4741
4742 static int
4743 ath_getchannels(struct ath_softc *sc, u_int cc,
4744 HAL_BOOL outdoor, HAL_BOOL xchanmode)
4745 {
4746 #define COMPAT (CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
4747 struct ieee80211com *ic = &sc->sc_ic;
4748 struct ifnet *ifp = &sc->sc_if;
4749 struct ath_hal *ah = sc->sc_ah;
4750 HAL_CHANNEL *chans;
4751 int i, ix, nchan;
4752
4753 chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
4754 M_TEMP, M_NOWAIT);
4755 if (chans == NULL) {
4756 if_printf(ifp, "unable to allocate channel table\n");
4757 return ENOMEM;
4758 }
4759 if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
4760 NULL, 0, NULL,
4761 cc, HAL_MODE_ALL, outdoor, xchanmode)) {
4762 u_int32_t rd;
4763
4764 (void)ath_hal_getregdomain(ah, &rd);
4765 if_printf(ifp, "unable to collect channel list from hal; "
4766 "regdomain likely %u country code %u\n", rd, cc);
4767 free(chans, M_TEMP);
4768 return EINVAL;
4769 }
4770
4771 /*
4772 * Convert HAL channels to ieee80211 ones and insert
4773 * them in the table according to their channel number.
4774 */
4775 for (i = 0; i < nchan; i++) {
4776 HAL_CHANNEL *c = &chans[i];
4777 u_int16_t flags;
4778
4779 ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags);
4780 if (ix > IEEE80211_CHAN_MAX) {
4781 if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n",
4782 ix, c->channel, c->channelFlags);
4783 continue;
4784 }
4785 if (ix < 0) {
4786 /* XXX can't handle stuff <2400 right now */
4787 if (bootverbose)
4788 if_printf(ifp, "hal channel %d (%u/%x) "
4789 "cannot be handled; ignored\n",
4790 ix, c->channel, c->channelFlags);
4791 continue;
4792 }
4793 /*
4794 * Calculate net80211 flags; most are compatible
4795 * but some need massaging. Note the static turbo
4796 * conversion can be removed once net80211 is updated
4797 * to understand static vs. dynamic turbo.
4798 */
4799 flags = c->channelFlags & COMPAT;
4800 if (c->channelFlags & CHANNEL_STURBO)
4801 flags |= IEEE80211_CHAN_TURBO;
4802 if (ic->ic_channels[ix].ic_freq == 0) {
4803 ic->ic_channels[ix].ic_freq = c->channel;
4804 ic->ic_channels[ix].ic_flags = flags;
4805 } else {
4806 /* channels overlap; e.g. 11g and 11b */
4807 ic->ic_channels[ix].ic_flags |= flags;
4808 }
4809 }
4810 free(chans, M_TEMP);
4811 return 0;
4812 #undef COMPAT
4813 }
4814
4815 static void
4816 ath_led_done(void *arg)
4817 {
4818 struct ath_softc *sc = arg;
4819
4820 sc->sc_blinking = 0;
4821 }
4822
4823 /*
4824 * Turn the LED off: flip the pin and then set a timer so no
4825 * update will happen for the specified duration.
4826 */
4827 static void
4828 ath_led_off(void *arg)
4829 {
4830 struct ath_softc *sc = arg;
4831
4832 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
4833 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
4834 }
4835
4836 /*
4837 * Blink the LED according to the specified on/off times.
4838 */
4839 static void
4840 ath_led_blink(struct ath_softc *sc, int on, int off)
4841 {
4842 DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
4843 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
4844 sc->sc_blinking = 1;
4845 sc->sc_ledoff = off;
4846 callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
4847 }
4848
4849 static void
4850 ath_led_event(struct ath_softc *sc, int event)
4851 {
4852
4853 sc->sc_ledevent = ticks; /* time of last event */
4854 if (sc->sc_blinking) /* don't interrupt active blink */
4855 return;
4856 switch (event) {
4857 case ATH_LED_POLL:
4858 ath_led_blink(sc, sc->sc_hwmap[0].ledon,
4859 sc->sc_hwmap[0].ledoff);
4860 break;
4861 case ATH_LED_TX:
4862 ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
4863 sc->sc_hwmap[sc->sc_txrate].ledoff);
4864 break;
4865 case ATH_LED_RX:
4866 ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
4867 sc->sc_hwmap[sc->sc_rxrate].ledoff);
4868 break;
4869 }
4870 }
4871
4872 static void
4873 ath_update_txpow(struct ath_softc *sc)
4874 {
4875 #define COMPAT (CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
4876 struct ieee80211com *ic = &sc->sc_ic;
4877 struct ath_hal *ah = sc->sc_ah;
4878 u_int32_t txpow;
4879
4880 if (sc->sc_curtxpow != ic->ic_txpowlimit) {
4881 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
4882 /* read back in case value is clamped */
4883 (void)ath_hal_gettxpowlimit(ah, &txpow);
4884 ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
4885 }
4886 /*
4887 * Fetch max tx power level for status requests.
4888 */
4889 (void)ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
4890 ic->ic_bss->ni_txpower = txpow;
4891 }
4892
4893 static void
4894 rate_setup(struct ath_softc *sc,
4895 const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs)
4896 {
4897 int i, maxrates;
4898
4899 if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
4900 DPRINTF(sc, ATH_DEBUG_ANY,
4901 "%s: rate table too small (%u > %u)\n",
4902 __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
4903 maxrates = IEEE80211_RATE_MAXSIZE;
4904 } else
4905 maxrates = rt->rateCount;
4906 for (i = 0; i < maxrates; i++)
4907 rs->rs_rates[i] = rt->info[i].dot11Rate;
4908 rs->rs_nrates = maxrates;
4909 }
4910
4911 static int
4912 ath_rate_setup(struct ath_softc *sc, u_int mode)
4913 {
4914 struct ath_hal *ah = sc->sc_ah;
4915 struct ieee80211com *ic = &sc->sc_ic;
4916 const HAL_RATE_TABLE *rt;
4917
4918 switch (mode) {
4919 case IEEE80211_MODE_11A:
4920 rt = ath_hal_getratetable(ah, HAL_MODE_11A);
4921 break;
4922 case IEEE80211_MODE_11B:
4923 rt = ath_hal_getratetable(ah, HAL_MODE_11B);
4924 break;
4925 case IEEE80211_MODE_11G:
4926 rt = ath_hal_getratetable(ah, HAL_MODE_11G);
4927 break;
4928 case IEEE80211_MODE_TURBO_A:
4929 /* XXX until static/dynamic turbo is fixed */
4930 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
4931 break;
4932 case IEEE80211_MODE_TURBO_G:
4933 rt = ath_hal_getratetable(ah, HAL_MODE_108G);
4934 break;
4935 default:
4936 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
4937 __func__, mode);
4938 return 0;
4939 }
4940 sc->sc_rates[mode] = rt;
4941 if (rt != NULL) {
4942 rate_setup(sc, rt, &ic->ic_sup_rates[mode]);
4943 return 1;
4944 } else
4945 return 0;
4946 }
4947
4948 static void
4949 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
4950 {
4951 #define N(a) (sizeof(a)/sizeof(a[0]))
4952 /* NB: on/off times from the Atheros NDIS driver, w/ permission */
4953 static const struct {
4954 u_int rate; /* tx/rx 802.11 rate */
4955 u_int16_t timeOn; /* LED on time (ms) */
4956 u_int16_t timeOff; /* LED off time (ms) */
4957 } blinkrates[] = {
4958 { 108, 40, 10 },
4959 { 96, 44, 11 },
4960 { 72, 50, 13 },
4961 { 48, 57, 14 },
4962 { 36, 67, 16 },
4963 { 24, 80, 20 },
4964 { 22, 100, 25 },
4965 { 18, 133, 34 },
4966 { 12, 160, 40 },
4967 { 10, 200, 50 },
4968 { 6, 240, 58 },
4969 { 4, 267, 66 },
4970 { 2, 400, 100 },
4971 { 0, 500, 130 },
4972 };
4973 const HAL_RATE_TABLE *rt;
4974 int i, j;
4975
4976 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
4977 rt = sc->sc_rates[mode];
4978 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
4979 for (i = 0; i < rt->rateCount; i++)
4980 sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
4981 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
4982 for (i = 0; i < 32; i++) {
4983 u_int8_t ix = rt->rateCodeToIndex[i];
4984 if (ix == 0xff) {
4985 sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
4986 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
4987 continue;
4988 }
4989 sc->sc_hwmap[i].ieeerate =
4990 rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
4991 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
4992 if (rt->info[ix].shortPreamble ||
4993 rt->info[ix].phy == IEEE80211_T_OFDM)
4994 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
4995 /* NB: receive frames include FCS */
4996 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
4997 IEEE80211_RADIOTAP_F_FCS;
4998 /* setup blink rate table to avoid per-packet lookup */
4999 for (j = 0; j < N(blinkrates)-1; j++)
5000 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
5001 break;
5002 /* NB: this uses the last entry if the rate isn't found */
5003 /* XXX beware of overlow */
5004 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
5005 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
5006 }
5007 sc->sc_currates = rt;
5008 sc->sc_curmode = mode;
5009 /*
5010 * All protection frames are transmited at 2Mb/s for
5011 * 11g, otherwise at 1Mb/s.
5012 */
5013 if (mode == IEEE80211_MODE_11G)
5014 sc->sc_protrix = ath_tx_findrix(rt, 2*2);
5015 else
5016 sc->sc_protrix = ath_tx_findrix(rt, 2*1);
5017 /* rate index used to send management frames */
5018 sc->sc_minrateix = 0;
5019 /*
5020 * Setup multicast rate state.
5021 */
5022 /* XXX layering violation */
5023 sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate);
5024 sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate;
5025 /* NB: caller is responsible for reseting rate control state */
5026 #undef N
5027 }
5028
5029 #ifdef AR_DEBUG
5030 static void
5031 ath_printrxbuf(struct ath_buf *bf, int done)
5032 {
5033 struct ath_desc *ds;
5034 int i;
5035
5036 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5037 printf("R%d (%p %" PRIx64
5038 ") %08x %08x %08x %08x %08x %08x %c\n", i, ds,
5039 (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
5040 ds->ds_link, ds->ds_data,
5041 ds->ds_ctl0, ds->ds_ctl1,
5042 ds->ds_hw[0], ds->ds_hw[1],
5043 !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
5044 }
5045 }
5046
5047 static void
5048 ath_printtxbuf(struct ath_buf *bf, int done)
5049 {
5050 struct ath_desc *ds;
5051 int i;
5052
5053 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5054 printf("T%d (%p %" PRIx64
5055 ") %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
5056 i, ds,
5057 (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
5058 ds->ds_link, ds->ds_data,
5059 ds->ds_ctl0, ds->ds_ctl1,
5060 ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
5061 !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
5062 }
5063 }
5064 #endif /* AR_DEBUG */
5065
5066 static void
5067 ath_watchdog(struct ifnet *ifp)
5068 {
5069 struct ath_softc *sc = ifp->if_softc;
5070 struct ieee80211com *ic = &sc->sc_ic;
5071 struct ath_txq *axq;
5072 int i;
5073
5074 ifp->if_timer = 0;
5075 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
5076 return;
5077 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5078 if (!ATH_TXQ_SETUP(sc, i))
5079 continue;
5080 axq = &sc->sc_txq[i];
5081 ATH_TXQ_LOCK(axq);
5082 if (axq->axq_timer == 0)
5083 ;
5084 else if (--axq->axq_timer == 0) {
5085 ATH_TXQ_UNLOCK(axq);
5086 if_printf(ifp, "device timeout (txq %d)\n", i);
5087 ath_reset(ifp);
5088 ifp->if_oerrors++;
5089 sc->sc_stats.ast_watchdog++;
5090 break;
5091 } else
5092 ifp->if_timer = 1;
5093 ATH_TXQ_UNLOCK(axq);
5094 }
5095 ieee80211_watchdog(ic);
5096 }
5097
5098 /*
5099 * Diagnostic interface to the HAL. This is used by various
5100 * tools to do things like retrieve register contents for
5101 * debugging. The mechanism is intentionally opaque so that
5102 * it can change frequently w/o concern for compatiblity.
5103 */
5104 static int
5105 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
5106 {
5107 struct ath_hal *ah = sc->sc_ah;
5108 u_int id = ad->ad_id & ATH_DIAG_ID;
5109 void *indata = NULL;
5110 void *outdata = NULL;
5111 u_int32_t insize = ad->ad_in_size;
5112 u_int32_t outsize = ad->ad_out_size;
5113 int error = 0;
5114
5115 if (ad->ad_id & ATH_DIAG_IN) {
5116 /*
5117 * Copy in data.
5118 */
5119 indata = malloc(insize, M_TEMP, M_NOWAIT);
5120 if (indata == NULL) {
5121 error = ENOMEM;
5122 goto bad;
5123 }
5124 error = copyin(ad->ad_in_data, indata, insize);
5125 if (error)
5126 goto bad;
5127 }
5128 if (ad->ad_id & ATH_DIAG_DYN) {
5129 /*
5130 * Allocate a buffer for the results (otherwise the HAL
5131 * returns a pointer to a buffer where we can read the
5132 * results). Note that we depend on the HAL leaving this
5133 * pointer for us to use below in reclaiming the buffer;
5134 * may want to be more defensive.
5135 */
5136 outdata = malloc(outsize, M_TEMP, M_NOWAIT);
5137 if (outdata == NULL) {
5138 error = ENOMEM;
5139 goto bad;
5140 }
5141 }
5142 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
5143 if (outsize < ad->ad_out_size)
5144 ad->ad_out_size = outsize;
5145 if (outdata != NULL)
5146 error = copyout(outdata, ad->ad_out_data,
5147 ad->ad_out_size);
5148 } else {
5149 error = EINVAL;
5150 }
5151 bad:
5152 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
5153 free(indata, M_TEMP);
5154 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
5155 free(outdata, M_TEMP);
5156 return error;
5157 }
5158
5159 static int
5160 ath_ioctl(struct ifnet *ifp, u_long cmd, void *data)
5161 {
5162 #define IS_RUNNING(ifp) \
5163 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
5164 struct ath_softc *sc = ifp->if_softc;
5165 struct ieee80211com *ic = &sc->sc_ic;
5166 struct ifreq *ifr = (struct ifreq *)data;
5167 int error = 0;
5168
5169 ATH_LOCK(sc);
5170 switch (cmd) {
5171 case SIOCSIFFLAGS:
5172 if (IS_RUNNING(ifp)) {
5173 /*
5174 * To avoid rescanning another access point,
5175 * do not call ath_init() here. Instead,
5176 * only reflect promisc mode settings.
5177 */
5178 ath_mode_init(sc);
5179 } else if (ifp->if_flags & IFF_UP) {
5180 /*
5181 * Beware of being called during attach/detach
5182 * to reset promiscuous mode. In that case we
5183 * will still be marked UP but not RUNNING.
5184 * However trying to re-init the interface
5185 * is the wrong thing to do as we've already
5186 * torn down much of our state. There's
5187 * probably a better way to deal with this.
5188 */
5189 if (!sc->sc_invalid && ic->ic_bss != NULL)
5190 ath_init(sc); /* XXX lose error */
5191 } else
5192 ath_stop_locked(ifp, 1);
5193 break;
5194 case SIOCADDMULTI:
5195 case SIOCDELMULTI:
5196 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
5197 if (ifp->if_flags & IFF_RUNNING)
5198 ath_mode_init(sc);
5199 error = 0;
5200 }
5201 break;
5202 case SIOCGATHSTATS:
5203 /* NB: embed these numbers to get a consistent view */
5204 sc->sc_stats.ast_tx_packets = ifp->if_opackets;
5205 sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
5206 sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
5207 ATH_UNLOCK(sc);
5208 /*
5209 * NB: Drop the softc lock in case of a page fault;
5210 * we'll accept any potential inconsisentcy in the
5211 * statistics. The alternative is to copy the data
5212 * to a local structure.
5213 */
5214 return copyout(&sc->sc_stats,
5215 ifr->ifr_data, sizeof (sc->sc_stats));
5216 case SIOCGATHDIAG:
5217 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
5218 break;
5219 default:
5220 error = ieee80211_ioctl(ic, cmd, data);
5221 if (error == ENETRESET) {
5222 if (IS_RUNNING(ifp) &&
5223 ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
5224 ath_init(sc); /* XXX lose error */
5225 error = 0;
5226 }
5227 if (error == ERESTART)
5228 error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0;
5229 break;
5230 }
5231 ATH_UNLOCK(sc);
5232 return error;
5233 #undef IS_RUNNING
5234 }
5235
5236 #if NBPFILTER > 0
5237 static void
5238 ath_bpfattach(struct ath_softc *sc)
5239 {
5240 struct ifnet *ifp = &sc->sc_if;
5241
5242 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
5243 sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
5244 &sc->sc_drvbpf);
5245 /*
5246 * Initialize constant fields.
5247 * XXX make header lengths a multiple of 32-bits so subsequent
5248 * headers are properly aligned; this is a kludge to keep
5249 * certain applications happy.
5250 *
5251 * NB: the channel is setup each time we transition to the
5252 * RUN state to avoid filling it in for each frame.
5253 */
5254 sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
5255 sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
5256 sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
5257
5258 sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
5259 sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
5260 sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
5261 }
5262 #endif
5263
5264 /*
5265 * Announce various information on device/driver attach.
5266 */
5267 static void
5268 ath_announce(struct ath_softc *sc)
5269 {
5270 #define HAL_MODE_DUALBAND (HAL_MODE_11A|HAL_MODE_11B)
5271 struct ifnet *ifp = &sc->sc_if;
5272 struct ath_hal *ah = sc->sc_ah;
5273 u_int modes, cc;
5274
5275 if_printf(ifp, "mac %d.%d phy %d.%d",
5276 ah->ah_macVersion, ah->ah_macRev,
5277 ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
5278 /*
5279 * Print radio revision(s). We check the wireless modes
5280 * to avoid falsely printing revs for inoperable parts.
5281 * Dual-band radio revs are returned in the 5 GHz rev number.
5282 */
5283 ath_hal_getcountrycode(ah, &cc);
5284 modes = ath_hal_getwirelessmodes(ah, cc);
5285 if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
5286 if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
5287 printf(" 5 GHz radio %d.%d 2 GHz radio %d.%d",
5288 ah->ah_analog5GhzRev >> 4,
5289 ah->ah_analog5GhzRev & 0xf,
5290 ah->ah_analog2GhzRev >> 4,
5291 ah->ah_analog2GhzRev & 0xf);
5292 else
5293 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5294 ah->ah_analog5GhzRev & 0xf);
5295 } else
5296 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5297 ah->ah_analog5GhzRev & 0xf);
5298 printf("\n");
5299 if (bootverbose) {
5300 int i;
5301 for (i = 0; i <= WME_AC_VO; i++) {
5302 struct ath_txq *txq = sc->sc_ac2q[i];
5303 if_printf(ifp, "Use hw queue %u for %s traffic\n",
5304 txq->axq_qnum, ieee80211_wme_acnames[i]);
5305 }
5306 if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5307 sc->sc_cabq->axq_qnum);
5308 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5309 }
5310 if (ath_rxbuf != ATH_RXBUF)
5311 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
5312 if (ath_txbuf != ATH_TXBUF)
5313 if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
5314 #undef HAL_MODE_DUALBAND
5315 }
5316