ath.c revision 1.87 1 /* $NetBSD: ath.c,v 1.87 2007/10/19 11:59:47 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15 * redistribution must be conditioned upon including a substantially
16 * similar Disclaimer requirement for further binary redistribution.
17 * 3. Neither the names of the above-listed copyright holders nor the names
18 * of any contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * Alternatively, this software may be distributed under the terms of the
22 * GNU General Public License ("GPL") version 2 as published by the Free
23 * Software Foundation.
24 *
25 * NO WARRANTY
26 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
28 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
29 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
30 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
31 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
34 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
36 * THE POSSIBILITY OF SUCH DAMAGES.
37 */
38
39 #include <sys/cdefs.h>
40 #ifdef __FreeBSD__
41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $");
42 #endif
43 #ifdef __NetBSD__
44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.87 2007/10/19 11:59:47 ad Exp $");
45 #endif
46
47 /*
48 * Driver for the Atheros Wireless LAN controller.
49 *
50 * This software is derived from work of Atsushi Onoe; his contribution
51 * is greatly appreciated.
52 */
53
54 #include "opt_inet.h"
55
56 #ifdef __NetBSD__
57 #include "bpfilter.h"
58 #endif /* __NetBSD__ */
59
60 #include <sys/param.h>
61 #include <sys/reboot.h>
62 #include <sys/systm.h>
63 #include <sys/types.h>
64 #include <sys/sysctl.h>
65 #include <sys/mbuf.h>
66 #include <sys/malloc.h>
67 #include <sys/lock.h>
68 #include <sys/kernel.h>
69 #include <sys/socket.h>
70 #include <sys/sockio.h>
71 #include <sys/errno.h>
72 #include <sys/callout.h>
73 #include <sys/bus.h>
74 #include <sys/endian.h>
75
76 #include <net/if.h>
77 #include <net/if_dl.h>
78 #include <net/if_media.h>
79 #include <net/if_types.h>
80 #include <net/if_arp.h>
81 #include <net/if_ether.h>
82 #include <net/if_llc.h>
83
84 #include <net80211/ieee80211_netbsd.h>
85 #include <net80211/ieee80211_var.h>
86
87 #if NBPFILTER > 0
88 #include <net/bpf.h>
89 #endif
90
91 #ifdef INET
92 #include <netinet/in.h>
93 #endif
94
95 #include <sys/device.h>
96 #include <dev/ic/ath_netbsd.h>
97
98 #define AR_DEBUG
99 #include <dev/ic/athvar.h>
100 #include <contrib/dev/ath/ah_desc.h>
101 #include <contrib/dev/ath/ah_devid.h> /* XXX for softled */
102 #include "athhal_options.h"
103
104 #ifdef ATH_TX99_DIAG
105 #include <dev/ath/ath_tx99/ath_tx99.h>
106 #endif
107
108 /* unaligned little endian access */
109 #define LE_READ_2(p) \
110 ((u_int16_t) \
111 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8)))
112 #define LE_READ_4(p) \
113 ((u_int32_t) \
114 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \
115 (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
116
117 enum {
118 ATH_LED_TX,
119 ATH_LED_RX,
120 ATH_LED_POLL,
121 };
122
123 #ifdef AH_NEED_DESC_SWAP
124 #define HTOAH32(x) htole32(x)
125 #else
126 #define HTOAH32(x) (x)
127 #endif
128
129 static int ath_ifinit(struct ifnet *);
130 static int ath_init(struct ath_softc *);
131 static void ath_stop_locked(struct ifnet *, int);
132 static void ath_stop(struct ifnet *, int);
133 static void ath_start(struct ifnet *);
134 static int ath_media_change(struct ifnet *);
135 static void ath_watchdog(struct ifnet *);
136 static int ath_ioctl(struct ifnet *, u_long, void *);
137 static void ath_fatal_proc(void *, int);
138 static void ath_rxorn_proc(void *, int);
139 static void ath_bmiss_proc(void *, int);
140 static void ath_radar_proc(void *, int);
141 static int ath_key_alloc(struct ieee80211com *,
142 const struct ieee80211_key *,
143 ieee80211_keyix *, ieee80211_keyix *);
144 static int ath_key_delete(struct ieee80211com *,
145 const struct ieee80211_key *);
146 static int ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
147 const u_int8_t mac[IEEE80211_ADDR_LEN]);
148 static void ath_key_update_begin(struct ieee80211com *);
149 static void ath_key_update_end(struct ieee80211com *);
150 static void ath_mode_init(struct ath_softc *);
151 static void ath_setslottime(struct ath_softc *);
152 static void ath_updateslot(struct ifnet *);
153 static int ath_beaconq_setup(struct ath_hal *);
154 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
155 static void ath_beacon_setup(struct ath_softc *, struct ath_buf *);
156 static void ath_beacon_proc(void *, int);
157 static void ath_bstuck_proc(void *, int);
158 static void ath_beacon_free(struct ath_softc *);
159 static void ath_beacon_config(struct ath_softc *);
160 static void ath_descdma_cleanup(struct ath_softc *sc,
161 struct ath_descdma *, ath_bufhead *);
162 static int ath_desc_alloc(struct ath_softc *);
163 static void ath_desc_free(struct ath_softc *);
164 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
165 static void ath_node_free(struct ieee80211_node *);
166 static u_int8_t ath_node_getrssi(const struct ieee80211_node *);
167 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
168 static void ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
169 struct ieee80211_node *ni,
170 int subtype, int rssi, u_int32_t rstamp);
171 static void ath_setdefantenna(struct ath_softc *, u_int);
172 static void ath_rx_proc(void *, int);
173 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
174 static int ath_tx_setup(struct ath_softc *, int, int);
175 static int ath_wme_update(struct ieee80211com *);
176 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
177 static void ath_tx_cleanup(struct ath_softc *);
178 static int ath_tx_start(struct ath_softc *, struct ieee80211_node *,
179 struct ath_buf *, struct mbuf *);
180 static void ath_tx_proc_q0(void *, int);
181 static void ath_tx_proc_q0123(void *, int);
182 static void ath_tx_proc(void *, int);
183 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
184 static void ath_draintxq(struct ath_softc *);
185 static void ath_stoprecv(struct ath_softc *);
186 static int ath_startrecv(struct ath_softc *);
187 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
188 static void ath_next_scan(void *);
189 static void ath_calibrate(void *);
190 static int ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
191 static void ath_setup_stationkey(struct ieee80211_node *);
192 static void ath_newassoc(struct ieee80211_node *, int);
193 static int ath_getchannels(struct ath_softc *, u_int cc,
194 HAL_BOOL outdoor, HAL_BOOL xchanmode);
195 static void ath_led_event(struct ath_softc *, int);
196 static void ath_update_txpow(struct ath_softc *);
197 static void ath_freetx(struct mbuf *);
198
199 static int ath_rate_setup(struct ath_softc *, u_int mode);
200 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
201
202 #ifdef __NetBSD__
203 int ath_enable(struct ath_softc *);
204 void ath_disable(struct ath_softc *);
205 void ath_power(int, void *);
206 #endif
207
208 #if NBPFILTER > 0
209 static void ath_bpfattach(struct ath_softc *);
210 #endif
211 static void ath_announce(struct ath_softc *);
212
213 int ath_dwelltime = 200; /* 5 channels/second */
214 int ath_calinterval = 30; /* calibrate every 30 secs */
215 int ath_outdoor = AH_TRUE; /* outdoor operation */
216 int ath_xchanmode = AH_TRUE; /* enable extended channels */
217 int ath_countrycode = CTRY_DEFAULT; /* country code */
218 int ath_regdomain = 0; /* regulatory domain */
219 int ath_debug = 0;
220 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */
221 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */
222
223 #ifdef AR_DEBUG
224 enum {
225 ATH_DEBUG_XMIT = 0x00000001, /* basic xmit operation */
226 ATH_DEBUG_XMIT_DESC = 0x00000002, /* xmit descriptors */
227 ATH_DEBUG_RECV = 0x00000004, /* basic recv operation */
228 ATH_DEBUG_RECV_DESC = 0x00000008, /* recv descriptors */
229 ATH_DEBUG_RATE = 0x00000010, /* rate control */
230 ATH_DEBUG_RESET = 0x00000020, /* reset processing */
231 ATH_DEBUG_MODE = 0x00000040, /* mode init/setup */
232 ATH_DEBUG_BEACON = 0x00000080, /* beacon handling */
233 ATH_DEBUG_WATCHDOG = 0x00000100, /* watchdog timeout */
234 ATH_DEBUG_INTR = 0x00001000, /* ISR */
235 ATH_DEBUG_TX_PROC = 0x00002000, /* tx ISR proc */
236 ATH_DEBUG_RX_PROC = 0x00004000, /* rx ISR proc */
237 ATH_DEBUG_BEACON_PROC = 0x00008000, /* beacon ISR proc */
238 ATH_DEBUG_CALIBRATE = 0x00010000, /* periodic calibration */
239 ATH_DEBUG_KEYCACHE = 0x00020000, /* key cache management */
240 ATH_DEBUG_STATE = 0x00040000, /* 802.11 state transitions */
241 ATH_DEBUG_NODE = 0x00080000, /* node management */
242 ATH_DEBUG_LED = 0x00100000, /* led management */
243 ATH_DEBUG_FF = 0x00200000, /* fast frames */
244 ATH_DEBUG_DFS = 0x00400000, /* DFS processing */
245 ATH_DEBUG_FATAL = 0x80000000, /* fatal errors */
246 ATH_DEBUG_ANY = 0xffffffff
247 };
248 #define IFF_DUMPPKTS(sc, m) \
249 ((sc->sc_debug & (m)) || \
250 (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
251 #define DPRINTF(sc, m, fmt, ...) do { \
252 if (sc->sc_debug & (m)) \
253 printf(fmt, __VA_ARGS__); \
254 } while (0)
255 #define KEYPRINTF(sc, ix, hk, mac) do { \
256 if (sc->sc_debug & ATH_DEBUG_KEYCACHE) \
257 ath_keyprint(__func__, ix, hk, mac); \
258 } while (0)
259 static void ath_printrxbuf(struct ath_buf *bf, int);
260 static void ath_printtxbuf(struct ath_buf *bf, int);
261 #else
262 #define IFF_DUMPPKTS(sc, m) \
263 ((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
264 #define DPRINTF(m, fmt, ...)
265 #define KEYPRINTF(sc, k, ix, mac)
266 #endif
267
268 #ifdef __NetBSD__
269 int
270 ath_activate(struct device *self, enum devact act)
271 {
272 struct ath_softc *sc = (struct ath_softc *)self;
273 int rv = 0, s;
274
275 s = splnet();
276 switch (act) {
277 case DVACT_ACTIVATE:
278 rv = EOPNOTSUPP;
279 break;
280 case DVACT_DEACTIVATE:
281 if_deactivate(&sc->sc_if);
282 break;
283 }
284 splx(s);
285 return rv;
286 }
287
288 int
289 ath_enable(struct ath_softc *sc)
290 {
291 if (ATH_IS_ENABLED(sc) == 0) {
292 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
293 printf("%s: device enable failed\n",
294 sc->sc_dev.dv_xname);
295 return (EIO);
296 }
297 sc->sc_flags |= ATH_ENABLED;
298 }
299 return (0);
300 }
301
302 void
303 ath_disable(struct ath_softc *sc)
304 {
305 if (!ATH_IS_ENABLED(sc))
306 return;
307 if (sc->sc_disable != NULL)
308 (*sc->sc_disable)(sc);
309 sc->sc_flags &= ~ATH_ENABLED;
310 }
311 #endif /* __NetBSD__ */
312
313 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
314
315 int
316 ath_attach(u_int16_t devid, struct ath_softc *sc)
317 {
318 struct ifnet *ifp = &sc->sc_if;
319 struct ieee80211com *ic = &sc->sc_ic;
320 struct ath_hal *ah = NULL;
321 HAL_STATUS status;
322 int error = 0, i;
323
324 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
325
326 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
327
328 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
329 if (ah == NULL) {
330 if_printf(ifp, "unable to attach hardware; HAL status %u\n",
331 status);
332 error = ENXIO;
333 goto bad;
334 }
335 if (ah->ah_abi != HAL_ABI_VERSION) {
336 if_printf(ifp, "HAL ABI mismatch detected "
337 "(HAL:0x%x != driver:0x%x)\n",
338 ah->ah_abi, HAL_ABI_VERSION);
339 error = ENXIO;
340 goto bad;
341 }
342 sc->sc_ah = ah;
343 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */
344
345 /*
346 * Check if the MAC has multi-rate retry support.
347 * We do this by trying to setup a fake extended
348 * descriptor. MAC's that don't have support will
349 * return false w/o doing anything. MAC's that do
350 * support it will return true w/o doing anything.
351 */
352 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
353
354 /*
355 * Check if the device has hardware counters for PHY
356 * errors. If so we need to enable the MIB interrupt
357 * so we can act on stat triggers.
358 */
359 if (ath_hal_hwphycounters(ah))
360 sc->sc_needmib = 1;
361
362 /*
363 * Get the hardware key cache size.
364 */
365 sc->sc_keymax = ath_hal_keycachesize(ah);
366 if (sc->sc_keymax > ATH_KEYMAX) {
367 if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
368 ATH_KEYMAX, sc->sc_keymax);
369 sc->sc_keymax = ATH_KEYMAX;
370 }
371 /*
372 * Reset the key cache since some parts do not
373 * reset the contents on initial power up.
374 */
375 for (i = 0; i < sc->sc_keymax; i++)
376 ath_hal_keyreset(ah, i);
377 /*
378 * Mark key cache slots associated with global keys
379 * as in use. If we knew TKIP was not to be used we
380 * could leave the +32, +64, and +32+64 slots free.
381 * XXX only for splitmic.
382 */
383 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
384 setbit(sc->sc_keymap, i);
385 setbit(sc->sc_keymap, i+32);
386 setbit(sc->sc_keymap, i+64);
387 setbit(sc->sc_keymap, i+32+64);
388 }
389
390 /*
391 * Collect the channel list using the default country
392 * code and including outdoor channels. The 802.11 layer
393 * is resposible for filtering this list based on settings
394 * like the phy mode.
395 */
396 error = ath_getchannels(sc, ath_countrycode,
397 ath_outdoor, ath_xchanmode);
398 if (error != 0)
399 goto bad;
400
401 /*
402 * Setup rate tables for all potential media types.
403 */
404 ath_rate_setup(sc, IEEE80211_MODE_11A);
405 ath_rate_setup(sc, IEEE80211_MODE_11B);
406 ath_rate_setup(sc, IEEE80211_MODE_11G);
407 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
408 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
409 /* NB: setup here so ath_rate_update is happy */
410 ath_setcurmode(sc, IEEE80211_MODE_11A);
411
412 /*
413 * Allocate tx+rx descriptors and populate the lists.
414 */
415 error = ath_desc_alloc(sc);
416 if (error != 0) {
417 if_printf(ifp, "failed to allocate descriptors: %d\n", error);
418 goto bad;
419 }
420 ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
421 ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE);
422 ATH_CALLOUT_INIT(&sc->sc_dfs_ch, CALLOUT_MPSAFE);
423
424 ATH_TXBUF_LOCK_INIT(sc);
425
426 TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
427 TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
428 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
429 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
430 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
431 TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc);
432
433 /*
434 * Allocate hardware transmit queues: one queue for
435 * beacon frames and one data queue for each QoS
436 * priority. Note that the hal handles reseting
437 * these queues at the needed time.
438 *
439 * XXX PS-Poll
440 */
441 sc->sc_bhalq = ath_beaconq_setup(ah);
442 if (sc->sc_bhalq == (u_int) -1) {
443 if_printf(ifp, "unable to setup a beacon xmit queue!\n");
444 error = EIO;
445 goto bad2;
446 }
447 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
448 if (sc->sc_cabq == NULL) {
449 if_printf(ifp, "unable to setup CAB xmit queue!\n");
450 error = EIO;
451 goto bad2;
452 }
453 /* NB: insure BK queue is the lowest priority h/w queue */
454 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
455 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
456 ieee80211_wme_acnames[WME_AC_BK]);
457 error = EIO;
458 goto bad2;
459 }
460 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
461 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
462 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
463 /*
464 * Not enough hardware tx queues to properly do WME;
465 * just punt and assign them all to the same h/w queue.
466 * We could do a better job of this if, for example,
467 * we allocate queues when we switch from station to
468 * AP mode.
469 */
470 if (sc->sc_ac2q[WME_AC_VI] != NULL)
471 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
472 if (sc->sc_ac2q[WME_AC_BE] != NULL)
473 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
474 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
475 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
476 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
477 }
478
479 /*
480 * Special case certain configurations. Note the
481 * CAB queue is handled by these specially so don't
482 * include them when checking the txq setup mask.
483 */
484 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
485 case 0x01:
486 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
487 break;
488 case 0x0f:
489 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
490 break;
491 default:
492 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
493 break;
494 }
495
496 /*
497 * Setup rate control. Some rate control modules
498 * call back to change the anntena state so expose
499 * the necessary entry points.
500 * XXX maybe belongs in struct ath_ratectrl?
501 */
502 sc->sc_setdefantenna = ath_setdefantenna;
503 sc->sc_rc = ath_rate_attach(sc);
504 if (sc->sc_rc == NULL) {
505 error = EIO;
506 goto bad2;
507 }
508
509 sc->sc_blinking = 0;
510 sc->sc_ledstate = 1;
511 sc->sc_ledon = 0; /* low true */
512 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */
513 ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE);
514 /*
515 * Auto-enable soft led processing for IBM cards and for
516 * 5211 minipci cards. Users can also manually enable/disable
517 * support with a sysctl.
518 */
519 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
520 if (sc->sc_softled) {
521 ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
522 ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
523 }
524
525 ifp->if_softc = sc;
526 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
527 ifp->if_start = ath_start;
528 ifp->if_watchdog = ath_watchdog;
529 ifp->if_ioctl = ath_ioctl;
530 ifp->if_init = ath_ifinit;
531 IFQ_SET_READY(&ifp->if_snd);
532
533 ic->ic_ifp = ifp;
534 ic->ic_reset = ath_reset;
535 ic->ic_newassoc = ath_newassoc;
536 ic->ic_updateslot = ath_updateslot;
537 ic->ic_wme.wme_update = ath_wme_update;
538 /* XXX not right but it's not used anywhere important */
539 ic->ic_phytype = IEEE80211_T_OFDM;
540 ic->ic_opmode = IEEE80211_M_STA;
541 ic->ic_caps =
542 IEEE80211_C_IBSS /* ibss, nee adhoc, mode */
543 | IEEE80211_C_HOSTAP /* hostap mode */
544 | IEEE80211_C_MONITOR /* monitor mode */
545 | IEEE80211_C_SHPREAMBLE /* short preamble supported */
546 | IEEE80211_C_SHSLOT /* short slot time supported */
547 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */
548 | IEEE80211_C_TXFRAG /* handle tx frags */
549 ;
550 /*
551 * Query the hal to figure out h/w crypto support.
552 */
553 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
554 ic->ic_caps |= IEEE80211_C_WEP;
555 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
556 ic->ic_caps |= IEEE80211_C_AES;
557 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
558 ic->ic_caps |= IEEE80211_C_AES_CCM;
559 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
560 ic->ic_caps |= IEEE80211_C_CKIP;
561 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
562 ic->ic_caps |= IEEE80211_C_TKIP;
563 /*
564 * Check if h/w does the MIC and/or whether the
565 * separate key cache entries are required to
566 * handle both tx+rx MIC keys.
567 */
568 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
569 ic->ic_caps |= IEEE80211_C_TKIPMIC;
570 if (ath_hal_tkipsplit(ah))
571 sc->sc_splitmic = 1;
572 }
573 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
574 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
575 /*
576 * TPC support can be done either with a global cap or
577 * per-packet support. The latter is not available on
578 * all parts. We're a bit pedantic here as all parts
579 * support a global cap.
580 */
581 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
582 ic->ic_caps |= IEEE80211_C_TXPMGT;
583
584 /*
585 * Mark WME capability only if we have sufficient
586 * hardware queues to do proper priority scheduling.
587 */
588 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
589 ic->ic_caps |= IEEE80211_C_WME;
590 /*
591 * Check for misc other capabilities.
592 */
593 if (ath_hal_hasbursting(ah))
594 ic->ic_caps |= IEEE80211_C_BURST;
595
596 /*
597 * Indicate we need the 802.11 header padded to a
598 * 32-bit boundary for 4-address and QoS frames.
599 */
600 ic->ic_flags |= IEEE80211_F_DATAPAD;
601
602 /*
603 * Query the hal about antenna support.
604 */
605 sc->sc_defant = ath_hal_getdefantenna(ah);
606
607 /*
608 * Not all chips have the VEOL support we want to
609 * use with IBSS beacons; check here for it.
610 */
611 sc->sc_hasveol = ath_hal_hasveol(ah);
612
613 /* get mac address from hardware */
614 ath_hal_getmac(ah, ic->ic_myaddr);
615
616 if_attach(ifp);
617 /* call MI attach routine. */
618 ieee80211_ifattach(ic);
619 /* override default methods */
620 ic->ic_node_alloc = ath_node_alloc;
621 sc->sc_node_free = ic->ic_node_free;
622 ic->ic_node_free = ath_node_free;
623 ic->ic_node_getrssi = ath_node_getrssi;
624 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
625 ic->ic_recv_mgmt = ath_recv_mgmt;
626 sc->sc_newstate = ic->ic_newstate;
627 ic->ic_newstate = ath_newstate;
628 ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
629 ic->ic_crypto.cs_key_alloc = ath_key_alloc;
630 ic->ic_crypto.cs_key_delete = ath_key_delete;
631 ic->ic_crypto.cs_key_set = ath_key_set;
632 ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
633 ic->ic_crypto.cs_key_update_end = ath_key_update_end;
634 /* complete initialization */
635 ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
636
637 #if NBPFILTER > 0
638 ath_bpfattach(sc);
639 #endif
640
641 #ifdef __NetBSD__
642 sc->sc_flags |= ATH_ATTACHED;
643 sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
644 ath_power, sc);
645 if (sc->sc_powerhook == NULL)
646 printf("%s: WARNING: unable to establish power hook\n",
647 sc->sc_dev.dv_xname);
648 #endif
649
650 /*
651 * Setup dynamic sysctl's now that country code and
652 * regdomain are available from the hal.
653 */
654 ath_sysctlattach(sc);
655
656 ieee80211_announce(ic);
657 ath_announce(sc);
658 return 0;
659 bad2:
660 ath_tx_cleanup(sc);
661 ath_desc_free(sc);
662 bad:
663 if (ah)
664 ath_hal_detach(ah);
665 sc->sc_invalid = 1;
666 return error;
667 }
668
669 int
670 ath_detach(struct ath_softc *sc)
671 {
672 struct ifnet *ifp = &sc->sc_if;
673 int s;
674
675 if ((sc->sc_flags & ATH_ATTACHED) == 0)
676 return (0);
677
678 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
679 __func__, ifp->if_flags);
680
681 s = splnet();
682 ath_stop(ifp, 1);
683 #if NBPFILTER > 0
684 bpfdetach(ifp);
685 #endif
686 /*
687 * NB: the order of these is important:
688 * o call the 802.11 layer before detaching the hal to
689 * insure callbacks into the driver to delete global
690 * key cache entries can be handled
691 * o reclaim the tx queue data structures after calling
692 * the 802.11 layer as we'll get called back to reclaim
693 * node state and potentially want to use them
694 * o to cleanup the tx queues the hal is called, so detach
695 * it last
696 * Other than that, it's straightforward...
697 */
698 ieee80211_ifdetach(&sc->sc_ic);
699 #ifdef ATH_TX99_DIAG
700 if (sc->sc_tx99 != NULL)
701 sc->sc_tx99->detach(sc->sc_tx99);
702 #endif
703 ath_rate_detach(sc->sc_rc);
704 ath_desc_free(sc);
705 ath_tx_cleanup(sc);
706 sysctl_teardown(&sc->sc_sysctllog);
707 ath_hal_detach(sc->sc_ah);
708 if_detach(ifp);
709 splx(s);
710 powerhook_disestablish(sc->sc_powerhook);
711
712 return 0;
713 }
714
715 #ifdef __NetBSD__
716 void
717 ath_power(int why, void *arg)
718 {
719 struct ath_softc *sc = arg;
720 int s;
721
722 DPRINTF(sc, ATH_DEBUG_ANY, "ath_power(%d)\n", why);
723
724 s = splnet();
725 switch (why) {
726 case PWR_SUSPEND:
727 case PWR_STANDBY:
728 ath_suspend(sc, why);
729 break;
730 case PWR_RESUME:
731 ath_resume(sc, why);
732 break;
733 case PWR_SOFTSUSPEND:
734 case PWR_SOFTSTANDBY:
735 case PWR_SOFTRESUME:
736 break;
737 }
738 splx(s);
739 }
740 #endif
741
742 void
743 ath_suspend(struct ath_softc *sc, int why)
744 {
745 struct ifnet *ifp = &sc->sc_if;
746
747 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
748 __func__, ifp->if_flags);
749
750 ath_stop(ifp, 1);
751 if (sc->sc_power != NULL)
752 (*sc->sc_power)(sc, why);
753 }
754
755 void
756 ath_resume(struct ath_softc *sc, int why)
757 {
758 struct ifnet *ifp = &sc->sc_if;
759
760 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
761 __func__, ifp->if_flags);
762
763 if (ifp->if_flags & IFF_UP) {
764 ath_init(sc);
765 #if 0
766 (void)ath_intr(sc);
767 #endif
768 if (sc->sc_power != NULL)
769 (*sc->sc_power)(sc, why);
770 if (ifp->if_flags & IFF_RUNNING)
771 ath_start(ifp);
772 }
773 if (sc->sc_softled) {
774 ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
775 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
776 }
777 }
778
779 void
780 ath_shutdown(void *arg)
781 {
782 struct ath_softc *sc = arg;
783
784 ath_stop(&sc->sc_if, 1);
785 }
786
787 /*
788 * Interrupt handler. Most of the actual processing is deferred.
789 */
790 int
791 ath_intr(void *arg)
792 {
793 struct ath_softc *sc = arg;
794 struct ifnet *ifp = &sc->sc_if;
795 struct ath_hal *ah = sc->sc_ah;
796 HAL_INT status;
797
798 if (sc->sc_invalid) {
799 /*
800 * The hardware is not ready/present, don't touch anything.
801 * Note this can happen early on if the IRQ is shared.
802 */
803 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
804 return 0;
805 }
806
807 if (!ath_hal_intrpend(ah)) /* shared irq, not for us */
808 return 0;
809
810 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
811 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
812 __func__, ifp->if_flags);
813 ath_hal_getisr(ah, &status); /* clear ISR */
814 ath_hal_intrset(ah, 0); /* disable further intr's */
815 return 1; /* XXX */
816 }
817 /*
818 * Figure out the reason(s) for the interrupt. Note
819 * that the hal returns a pseudo-ISR that may include
820 * bits we haven't explicitly enabled so we mask the
821 * value to insure we only process bits we requested.
822 */
823 ath_hal_getisr(ah, &status); /* NB: clears ISR too */
824 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
825 status &= sc->sc_imask; /* discard unasked for bits */
826 if (status & HAL_INT_FATAL) {
827 /*
828 * Fatal errors are unrecoverable. Typically
829 * these are caused by DMA errors. Unfortunately
830 * the exact reason is not (presently) returned
831 * by the hal.
832 */
833 sc->sc_stats.ast_hardware++;
834 ath_hal_intrset(ah, 0); /* disable intr's until reset */
835 TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
836 } else if (status & HAL_INT_RXORN) {
837 sc->sc_stats.ast_rxorn++;
838 ath_hal_intrset(ah, 0); /* disable intr's until reset */
839 TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
840 } else {
841 if (status & HAL_INT_SWBA) {
842 /*
843 * Software beacon alert--time to send a beacon.
844 * Handle beacon transmission directly; deferring
845 * this is too slow to meet timing constraints
846 * under load.
847 */
848 ath_beacon_proc(sc, 0);
849 }
850 if (status & HAL_INT_RXEOL) {
851 /*
852 * NB: the hardware should re-read the link when
853 * RXE bit is written, but it doesn't work at
854 * least on older hardware revs.
855 */
856 sc->sc_stats.ast_rxeol++;
857 sc->sc_rxlink = NULL;
858 }
859 if (status & HAL_INT_TXURN) {
860 sc->sc_stats.ast_txurn++;
861 /* bump tx trigger level */
862 ath_hal_updatetxtriglevel(ah, AH_TRUE);
863 }
864 if (status & HAL_INT_RX)
865 TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
866 if (status & HAL_INT_TX)
867 TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
868 if (status & HAL_INT_BMISS) {
869 sc->sc_stats.ast_bmiss++;
870 TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
871 }
872 if (status & HAL_INT_MIB) {
873 sc->sc_stats.ast_mib++;
874 /*
875 * Disable interrupts until we service the MIB
876 * interrupt; otherwise it will continue to fire.
877 */
878 ath_hal_intrset(ah, 0);
879 /*
880 * Let the hal handle the event. We assume it will
881 * clear whatever condition caused the interrupt.
882 */
883 ath_hal_mibevent(ah, &sc->sc_halstats);
884 ath_hal_intrset(ah, sc->sc_imask);
885 }
886 }
887 return 1;
888 }
889
890 /* Swap transmit descriptor.
891 * if AH_NEED_DESC_SWAP flag is not defined this becomes a "null"
892 * function.
893 */
894 static inline void
895 ath_desc_swap(struct ath_desc *ds)
896 {
897 #ifdef AH_NEED_DESC_SWAP
898 ds->ds_link = htole32(ds->ds_link);
899 ds->ds_data = htole32(ds->ds_data);
900 ds->ds_ctl0 = htole32(ds->ds_ctl0);
901 ds->ds_ctl1 = htole32(ds->ds_ctl1);
902 ds->ds_hw[0] = htole32(ds->ds_hw[0]);
903 ds->ds_hw[1] = htole32(ds->ds_hw[1]);
904 #endif
905 }
906
907 static void
908 ath_fatal_proc(void *arg, int pending)
909 {
910 struct ath_softc *sc = arg;
911 struct ifnet *ifp = &sc->sc_if;
912
913 if_printf(ifp, "hardware error; resetting\n");
914 ath_reset(ifp);
915 }
916
917 static void
918 ath_rxorn_proc(void *arg, int pending)
919 {
920 struct ath_softc *sc = arg;
921 struct ifnet *ifp = &sc->sc_if;
922
923 if_printf(ifp, "rx FIFO overrun; resetting\n");
924 ath_reset(ifp);
925 }
926
927 static void
928 ath_bmiss_proc(void *arg, int pending)
929 {
930 struct ath_softc *sc = arg;
931 struct ieee80211com *ic = &sc->sc_ic;
932
933 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
934 KASSERT(ic->ic_opmode == IEEE80211_M_STA,
935 ("unexpect operating mode %u", ic->ic_opmode));
936 if (ic->ic_state == IEEE80211_S_RUN) {
937 u_int64_t lastrx = sc->sc_lastrx;
938 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
939
940 DPRINTF(sc, ATH_DEBUG_BEACON,
941 "%s: tsf %" PRIu64 " lastrx %" PRId64
942 " (%" PRIu64 ") bmiss %u\n",
943 __func__, tsf, tsf - lastrx, lastrx,
944 ic->ic_bmisstimeout*1024);
945 /*
946 * Workaround phantom bmiss interrupts by sanity-checking
947 * the time of our last rx'd frame. If it is within the
948 * beacon miss interval then ignore the interrupt. If it's
949 * truly a bmiss we'll get another interrupt soon and that'll
950 * be dispatched up for processing.
951 */
952 if (tsf - lastrx > ic->ic_bmisstimeout*1024) {
953 NET_LOCK_GIANT();
954 ieee80211_beacon_miss(ic);
955 NET_UNLOCK_GIANT();
956 } else
957 sc->sc_stats.ast_bmiss_phantom++;
958 }
959 }
960
961 static void
962 ath_radar_proc(void *arg, int pending)
963 {
964 struct ath_softc *sc = arg;
965 struct ifnet *ifp = &sc->sc_if;
966 struct ath_hal *ah = sc->sc_ah;
967 HAL_CHANNEL hchan;
968
969 if (ath_hal_procdfs(ah, &hchan)) {
970 if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n",
971 hchan.channel, hchan.channelFlags, hchan.privFlags);
972 /*
973 * Initiate channel change.
974 */
975 /* XXX not yet */
976 }
977 }
978
979 static u_int
980 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
981 {
982 #define N(a) (sizeof(a) / sizeof(a[0]))
983 static const u_int modeflags[] = {
984 0, /* IEEE80211_MODE_AUTO */
985 CHANNEL_A, /* IEEE80211_MODE_11A */
986 CHANNEL_B, /* IEEE80211_MODE_11B */
987 CHANNEL_PUREG, /* IEEE80211_MODE_11G */
988 0, /* IEEE80211_MODE_FH */
989 CHANNEL_ST, /* IEEE80211_MODE_TURBO_A */
990 CHANNEL_108G /* IEEE80211_MODE_TURBO_G */
991 };
992 enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
993
994 KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
995 KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
996 return modeflags[mode];
997 #undef N
998 }
999
1000 static int
1001 ath_ifinit(struct ifnet *ifp)
1002 {
1003 struct ath_softc *sc = (struct ath_softc *)ifp->if_softc;
1004
1005 return ath_init(sc);
1006 }
1007
1008 static int
1009 ath_init(struct ath_softc *sc)
1010 {
1011 struct ifnet *ifp = &sc->sc_if;
1012 struct ieee80211com *ic = &sc->sc_ic;
1013 struct ath_hal *ah = sc->sc_ah;
1014 HAL_STATUS status;
1015 int error = 0;
1016
1017 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1018 __func__, ifp->if_flags);
1019
1020 ATH_LOCK(sc);
1021
1022 if ((error = ath_enable(sc)) != 0)
1023 return error;
1024
1025 /*
1026 * Stop anything previously setup. This is safe
1027 * whether this is the first time through or not.
1028 */
1029 ath_stop_locked(ifp, 0);
1030
1031 /*
1032 * The basic interface to setting the hardware in a good
1033 * state is ``reset''. On return the hardware is known to
1034 * be powered up and with interrupts disabled. This must
1035 * be followed by initialization of the appropriate bits
1036 * and then setup of the interrupt mask.
1037 */
1038 sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
1039 sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
1040 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
1041 if_printf(ifp, "unable to reset hardware; hal status %u\n",
1042 status);
1043 error = EIO;
1044 goto done;
1045 }
1046
1047 /*
1048 * This is needed only to setup initial state
1049 * but it's best done after a reset.
1050 */
1051 ath_update_txpow(sc);
1052 /*
1053 * Likewise this is set during reset so update
1054 * state cached in the driver.
1055 */
1056 sc->sc_diversity = ath_hal_getdiversity(ah);
1057 sc->sc_calinterval = 1;
1058 sc->sc_caltries = 0;
1059
1060 /*
1061 * Setup the hardware after reset: the key cache
1062 * is filled as needed and the receive engine is
1063 * set going. Frame transmit is handled entirely
1064 * in the frame output path; there's nothing to do
1065 * here except setup the interrupt mask.
1066 */
1067 if ((error = ath_startrecv(sc)) != 0) {
1068 if_printf(ifp, "unable to start recv logic\n");
1069 goto done;
1070 }
1071
1072 /*
1073 * Enable interrupts.
1074 */
1075 sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1076 | HAL_INT_RXEOL | HAL_INT_RXORN
1077 | HAL_INT_FATAL | HAL_INT_GLOBAL;
1078 /*
1079 * Enable MIB interrupts when there are hardware phy counters.
1080 * Note we only do this (at the moment) for station mode.
1081 */
1082 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1083 sc->sc_imask |= HAL_INT_MIB;
1084 ath_hal_intrset(ah, sc->sc_imask);
1085
1086 ifp->if_flags |= IFF_RUNNING;
1087 ic->ic_state = IEEE80211_S_INIT;
1088
1089 /*
1090 * The hardware should be ready to go now so it's safe
1091 * to kick the 802.11 state machine as it's likely to
1092 * immediately call back to us to send mgmt frames.
1093 */
1094 ath_chan_change(sc, ic->ic_curchan);
1095 #ifdef ATH_TX99_DIAG
1096 if (sc->sc_tx99 != NULL)
1097 sc->sc_tx99->start(sc->sc_tx99);
1098 else
1099 #endif
1100 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1101 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
1102 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1103 } else
1104 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1105 done:
1106 ATH_UNLOCK(sc);
1107 return error;
1108 }
1109
1110 static void
1111 ath_stop_locked(struct ifnet *ifp, int disable)
1112 {
1113 struct ath_softc *sc = ifp->if_softc;
1114 struct ieee80211com *ic = &sc->sc_ic;
1115 struct ath_hal *ah = sc->sc_ah;
1116
1117 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1118 __func__, sc->sc_invalid, ifp->if_flags);
1119
1120 ATH_LOCK_ASSERT(sc);
1121 if (ifp->if_flags & IFF_RUNNING) {
1122 /*
1123 * Shutdown the hardware and driver:
1124 * reset 802.11 state machine
1125 * turn off timers
1126 * disable interrupts
1127 * turn off the radio
1128 * clear transmit machinery
1129 * clear receive machinery
1130 * drain and release tx queues
1131 * reclaim beacon resources
1132 * power down hardware
1133 *
1134 * Note that some of this work is not possible if the
1135 * hardware is gone (invalid).
1136 */
1137 #ifdef ATH_TX99_DIAG
1138 if (sc->sc_tx99 != NULL)
1139 sc->sc_tx99->stop(sc->sc_tx99);
1140 #endif
1141 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1142 ifp->if_flags &= ~IFF_RUNNING;
1143 ifp->if_timer = 0;
1144 if (!sc->sc_invalid) {
1145 if (sc->sc_softled) {
1146 callout_stop(&sc->sc_ledtimer);
1147 ath_hal_gpioset(ah, sc->sc_ledpin,
1148 !sc->sc_ledon);
1149 sc->sc_blinking = 0;
1150 }
1151 ath_hal_intrset(ah, 0);
1152 }
1153 ath_draintxq(sc);
1154 if (!sc->sc_invalid) {
1155 ath_stoprecv(sc);
1156 ath_hal_phydisable(ah);
1157 } else
1158 sc->sc_rxlink = NULL;
1159 IF_PURGE(&ifp->if_snd);
1160 ath_beacon_free(sc);
1161 if (disable)
1162 ath_disable(sc);
1163 }
1164 }
1165
1166 static void
1167 ath_stop(struct ifnet *ifp, int disable)
1168 {
1169 struct ath_softc *sc = ifp->if_softc;
1170
1171 ATH_LOCK(sc);
1172 ath_stop_locked(ifp, disable);
1173 if (!sc->sc_invalid) {
1174 /*
1175 * Set the chip in full sleep mode. Note that we are
1176 * careful to do this only when bringing the interface
1177 * completely to a stop. When the chip is in this state
1178 * it must be carefully woken up or references to
1179 * registers in the PCI clock domain may freeze the bus
1180 * (and system). This varies by chip and is mostly an
1181 * issue with newer parts that go to sleep more quickly.
1182 */
1183 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
1184 }
1185 ATH_UNLOCK(sc);
1186 }
1187
1188 /*
1189 * Reset the hardware w/o losing operational state. This is
1190 * basically a more efficient way of doing ath_stop, ath_init,
1191 * followed by state transitions to the current 802.11
1192 * operational state. Used to recover from various errors and
1193 * to reset or reload hardware state.
1194 */
1195 int
1196 ath_reset(struct ifnet *ifp)
1197 {
1198 struct ath_softc *sc = ifp->if_softc;
1199 struct ieee80211com *ic = &sc->sc_ic;
1200 struct ath_hal *ah = sc->sc_ah;
1201 struct ieee80211_channel *c;
1202 HAL_STATUS status;
1203
1204 /*
1205 * Convert to a HAL channel description with the flags
1206 * constrained to reflect the current operating mode.
1207 */
1208 c = ic->ic_curchan;
1209 sc->sc_curchan.channel = c->ic_freq;
1210 sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
1211
1212 ath_hal_intrset(ah, 0); /* disable interrupts */
1213 ath_draintxq(sc); /* stop xmit side */
1214 ath_stoprecv(sc); /* stop recv side */
1215 /* NB: indicate channel change so we do a full reset */
1216 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
1217 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1218 __func__, status);
1219 ath_update_txpow(sc); /* update tx power state */
1220 sc->sc_diversity = ath_hal_getdiversity(ah);
1221 sc->sc_calinterval = 1;
1222 sc->sc_caltries = 0;
1223 if (ath_startrecv(sc) != 0) /* restart recv */
1224 if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1225 /*
1226 * We may be doing a reset in response to an ioctl
1227 * that changes the channel so update any state that
1228 * might change as a result.
1229 */
1230 ath_chan_change(sc, c);
1231 if (ic->ic_state == IEEE80211_S_RUN)
1232 ath_beacon_config(sc); /* restart beacons */
1233 ath_hal_intrset(ah, sc->sc_imask);
1234
1235 ath_start(ifp); /* restart xmit */
1236 return 0;
1237 }
1238
1239 /*
1240 * Cleanup driver resources when we run out of buffers
1241 * while processing fragments; return the tx buffers
1242 * allocated and drop node references.
1243 */
1244 static void
1245 ath_txfrag_cleanup(struct ath_softc *sc,
1246 ath_bufhead *frags, struct ieee80211_node *ni)
1247 {
1248 struct ath_buf *bf;
1249
1250 ATH_TXBUF_LOCK_ASSERT(sc);
1251
1252 while ((bf = STAILQ_FIRST(frags)) != NULL) {
1253 STAILQ_REMOVE_HEAD(frags, bf_list);
1254 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1255 sc->sc_if.if_flags &= ~IFF_OACTIVE;
1256 ieee80211_node_decref(ni);
1257 }
1258 }
1259
1260 /*
1261 * Setup xmit of a fragmented frame. Allocate a buffer
1262 * for each frag and bump the node reference count to
1263 * reflect the held reference to be setup by ath_tx_start.
1264 */
1265 static int
1266 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
1267 struct mbuf *m0, struct ieee80211_node *ni)
1268 {
1269 struct mbuf *m;
1270 struct ath_buf *bf;
1271
1272 ATH_TXBUF_LOCK(sc);
1273 for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
1274 bf = STAILQ_FIRST(&sc->sc_txbuf);
1275 if (bf == NULL) { /* out of buffers, cleanup */
1276 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1277 __func__);
1278 sc->sc_if.if_flags |= IFF_OACTIVE;
1279 ath_txfrag_cleanup(sc, frags, ni);
1280 break;
1281 }
1282 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1283 ieee80211_node_incref(ni);
1284 STAILQ_INSERT_TAIL(frags, bf, bf_list);
1285 }
1286 ATH_TXBUF_UNLOCK(sc);
1287
1288 return !STAILQ_EMPTY(frags);
1289 }
1290
1291 static void
1292 ath_start(struct ifnet *ifp)
1293 {
1294 struct ath_softc *sc = ifp->if_softc;
1295 struct ath_hal *ah = sc->sc_ah;
1296 struct ieee80211com *ic = &sc->sc_ic;
1297 struct ieee80211_node *ni;
1298 struct ath_buf *bf;
1299 struct mbuf *m, *next;
1300 struct ieee80211_frame *wh;
1301 struct ether_header *eh;
1302 ath_bufhead frags;
1303
1304 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
1305 return;
1306 for (;;) {
1307 /*
1308 * Grab a TX buffer and associated resources.
1309 */
1310 ATH_TXBUF_LOCK(sc);
1311 bf = STAILQ_FIRST(&sc->sc_txbuf);
1312 if (bf != NULL)
1313 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1314 ATH_TXBUF_UNLOCK(sc);
1315 if (bf == NULL) {
1316 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1317 __func__);
1318 sc->sc_stats.ast_tx_qstop++;
1319 ifp->if_flags |= IFF_OACTIVE;
1320 break;
1321 }
1322 /*
1323 * Poll the management queue for frames; they
1324 * have priority over normal data frames.
1325 */
1326 IF_DEQUEUE(&ic->ic_mgtq, m);
1327 if (m == NULL) {
1328 /*
1329 * No data frames go out unless we're associated.
1330 */
1331 if (ic->ic_state != IEEE80211_S_RUN) {
1332 DPRINTF(sc, ATH_DEBUG_XMIT,
1333 "%s: discard data packet, state %s\n",
1334 __func__,
1335 ieee80211_state_name[ic->ic_state]);
1336 sc->sc_stats.ast_tx_discard++;
1337 ATH_TXBUF_LOCK(sc);
1338 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1339 ATH_TXBUF_UNLOCK(sc);
1340 break;
1341 }
1342 IFQ_DEQUEUE(&ifp->if_snd, m); /* XXX: LOCK */
1343 if (m == NULL) {
1344 ATH_TXBUF_LOCK(sc);
1345 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1346 ATH_TXBUF_UNLOCK(sc);
1347 break;
1348 }
1349 STAILQ_INIT(&frags);
1350 /*
1351 * Find the node for the destination so we can do
1352 * things like power save and fast frames aggregation.
1353 */
1354 if (m->m_len < sizeof(struct ether_header) &&
1355 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
1356 ic->ic_stats.is_tx_nobuf++; /* XXX */
1357 ni = NULL;
1358 goto bad;
1359 }
1360 eh = mtod(m, struct ether_header *);
1361 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1362 if (ni == NULL) {
1363 /* NB: ieee80211_find_txnode does stat+msg */
1364 m_freem(m);
1365 goto bad;
1366 }
1367 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1368 (m->m_flags & M_PWR_SAV) == 0) {
1369 /*
1370 * Station in power save mode; pass the frame
1371 * to the 802.11 layer and continue. We'll get
1372 * the frame back when the time is right.
1373 */
1374 ieee80211_pwrsave(ic, ni, m);
1375 goto reclaim;
1376 }
1377 /* calculate priority so we can find the tx queue */
1378 if (ieee80211_classify(ic, m, ni)) {
1379 DPRINTF(sc, ATH_DEBUG_XMIT,
1380 "%s: discard, classification failure\n",
1381 __func__);
1382 m_freem(m);
1383 goto bad;
1384 }
1385 ifp->if_opackets++;
1386
1387 #if NBPFILTER > 0
1388 if (ifp->if_bpf)
1389 bpf_mtap(ifp->if_bpf, m);
1390 #endif
1391 /*
1392 * Encapsulate the packet in prep for transmission.
1393 */
1394 m = ieee80211_encap(ic, m, ni);
1395 if (m == NULL) {
1396 DPRINTF(sc, ATH_DEBUG_XMIT,
1397 "%s: encapsulation failure\n",
1398 __func__);
1399 sc->sc_stats.ast_tx_encap++;
1400 goto bad;
1401 }
1402 /*
1403 * Check for fragmentation. If this has frame
1404 * has been broken up verify we have enough
1405 * buffers to send all the fragments so all
1406 * go out or none...
1407 */
1408 if ((m->m_flags & M_FRAG) &&
1409 !ath_txfrag_setup(sc, &frags, m, ni)) {
1410 DPRINTF(sc, ATH_DEBUG_ANY,
1411 "%s: out of txfrag buffers\n", __func__);
1412 ic->ic_stats.is_tx_nobuf++; /* XXX */
1413 ath_freetx(m);
1414 goto bad;
1415 }
1416 } else {
1417 /*
1418 * Hack! The referenced node pointer is in the
1419 * rcvif field of the packet header. This is
1420 * placed there by ieee80211_mgmt_output because
1421 * we need to hold the reference with the frame
1422 * and there's no other way (other than packet
1423 * tags which we consider too expensive to use)
1424 * to pass it along.
1425 */
1426 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1427 m->m_pkthdr.rcvif = NULL;
1428
1429 wh = mtod(m, struct ieee80211_frame *);
1430 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1431 IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1432 /* fill time stamp */
1433 u_int64_t tsf;
1434 u_int32_t *tstamp;
1435
1436 tsf = ath_hal_gettsf64(ah);
1437 /* XXX: adjust 100us delay to xmit */
1438 tsf += 100;
1439 tstamp = (u_int32_t *)&wh[1];
1440 tstamp[0] = htole32(tsf & 0xffffffff);
1441 tstamp[1] = htole32(tsf >> 32);
1442 }
1443 sc->sc_stats.ast_tx_mgmt++;
1444 }
1445
1446 nextfrag:
1447 next = m->m_nextpkt;
1448 if (ath_tx_start(sc, ni, bf, m)) {
1449 bad:
1450 ifp->if_oerrors++;
1451 reclaim:
1452 ATH_TXBUF_LOCK(sc);
1453 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1454 ath_txfrag_cleanup(sc, &frags, ni);
1455 ATH_TXBUF_UNLOCK(sc);
1456 if (ni != NULL)
1457 ieee80211_free_node(ni);
1458 continue;
1459 }
1460 if (next != NULL) {
1461 m = next;
1462 bf = STAILQ_FIRST(&frags);
1463 KASSERT(bf != NULL, ("no buf for txfrag"));
1464 STAILQ_REMOVE_HEAD(&frags, bf_list);
1465 goto nextfrag;
1466 }
1467
1468 ifp->if_timer = 1;
1469 }
1470 }
1471
1472 static int
1473 ath_media_change(struct ifnet *ifp)
1474 {
1475 #define IS_UP(ifp) \
1476 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
1477 int error;
1478
1479 error = ieee80211_media_change(ifp);
1480 if (error == ENETRESET) {
1481 if (IS_UP(ifp))
1482 ath_init(ifp->if_softc); /* XXX lose error */
1483 error = 0;
1484 }
1485 return error;
1486 #undef IS_UP
1487 }
1488
1489 #ifdef AR_DEBUG
1490 static void
1491 ath_keyprint(const char *tag, u_int ix,
1492 const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1493 {
1494 static const char *ciphers[] = {
1495 "WEP",
1496 "AES-OCB",
1497 "AES-CCM",
1498 "CKIP",
1499 "TKIP",
1500 "CLR",
1501 };
1502 int i, n;
1503
1504 printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1505 for (i = 0, n = hk->kv_len; i < n; i++)
1506 printf("%02x", hk->kv_val[i]);
1507 printf(" mac %s", ether_sprintf(mac));
1508 if (hk->kv_type == HAL_CIPHER_TKIP) {
1509 printf(" mic ");
1510 for (i = 0; i < sizeof(hk->kv_mic); i++)
1511 printf("%02x", hk->kv_mic[i]);
1512 }
1513 printf("\n");
1514 }
1515 #endif
1516
1517 /*
1518 * Set a TKIP key into the hardware. This handles the
1519 * potential distribution of key state to multiple key
1520 * cache slots for TKIP.
1521 */
1522 static int
1523 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1524 HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1525 {
1526 #define IEEE80211_KEY_XR (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1527 static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1528 struct ath_hal *ah = sc->sc_ah;
1529
1530 KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1531 ("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1532 KASSERT(sc->sc_splitmic, ("key cache !split"));
1533 if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1534 /*
1535 * TX key goes at first index, RX key at the rx index.
1536 * The hal handles the MIC keys at index+64.
1537 */
1538 memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1539 KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1540 if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
1541 return 0;
1542
1543 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1544 KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1545 /* XXX delete tx key on failure? */
1546 return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
1547 } else if (k->wk_flags & IEEE80211_KEY_XR) {
1548 /*
1549 * TX/RX key goes at first index.
1550 * The hal handles the MIC keys are index+64.
1551 */
1552 memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
1553 k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
1554 KEYPRINTF(sc, k->wk_keyix, hk, mac);
1555 return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1556 }
1557 return 0;
1558 #undef IEEE80211_KEY_XR
1559 }
1560
1561 /*
1562 * Set a net80211 key into the hardware. This handles the
1563 * potential distribution of key state to multiple key
1564 * cache slots for TKIP with hardware MIC support.
1565 */
1566 static int
1567 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1568 const u_int8_t mac0[IEEE80211_ADDR_LEN],
1569 struct ieee80211_node *bss)
1570 {
1571 #define N(a) (sizeof(a)/sizeof(a[0]))
1572 static const u_int8_t ciphermap[] = {
1573 HAL_CIPHER_WEP, /* IEEE80211_CIPHER_WEP */
1574 HAL_CIPHER_TKIP, /* IEEE80211_CIPHER_TKIP */
1575 HAL_CIPHER_AES_OCB, /* IEEE80211_CIPHER_AES_OCB */
1576 HAL_CIPHER_AES_CCM, /* IEEE80211_CIPHER_AES_CCM */
1577 (u_int8_t) -1, /* 4 is not allocated */
1578 HAL_CIPHER_CKIP, /* IEEE80211_CIPHER_CKIP */
1579 HAL_CIPHER_CLR, /* IEEE80211_CIPHER_NONE */
1580 };
1581 struct ath_hal *ah = sc->sc_ah;
1582 const struct ieee80211_cipher *cip = k->wk_cipher;
1583 u_int8_t gmac[IEEE80211_ADDR_LEN];
1584 const u_int8_t *mac;
1585 HAL_KEYVAL hk;
1586
1587 memset(&hk, 0, sizeof(hk));
1588 /*
1589 * Software crypto uses a "clear key" so non-crypto
1590 * state kept in the key cache are maintained and
1591 * so that rx frames have an entry to match.
1592 */
1593 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1594 KASSERT(cip->ic_cipher < N(ciphermap),
1595 ("invalid cipher type %u", cip->ic_cipher));
1596 hk.kv_type = ciphermap[cip->ic_cipher];
1597 hk.kv_len = k->wk_keylen;
1598 memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1599 } else
1600 hk.kv_type = HAL_CIPHER_CLR;
1601
1602 if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
1603 /*
1604 * Group keys on hardware that supports multicast frame
1605 * key search use a mac that is the sender's address with
1606 * the high bit set instead of the app-specified address.
1607 */
1608 IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
1609 gmac[0] |= 0x80;
1610 mac = gmac;
1611 } else
1612 mac = mac0;
1613
1614 if (hk.kv_type == HAL_CIPHER_TKIP &&
1615 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1616 sc->sc_splitmic) {
1617 return ath_keyset_tkip(sc, k, &hk, mac);
1618 } else {
1619 KEYPRINTF(sc, k->wk_keyix, &hk, mac);
1620 return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
1621 }
1622 #undef N
1623 }
1624
1625 /*
1626 * Allocate tx/rx key slots for TKIP. We allocate two slots for
1627 * each key, one for decrypt/encrypt and the other for the MIC.
1628 */
1629 static u_int16_t
1630 key_alloc_2pair(struct ath_softc *sc,
1631 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1632 {
1633 #define N(a) (sizeof(a)/sizeof(a[0]))
1634 u_int i, keyix;
1635
1636 KASSERT(sc->sc_splitmic, ("key cache !split"));
1637 /* XXX could optimize */
1638 for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1639 u_int8_t b = sc->sc_keymap[i];
1640 if (b != 0xff) {
1641 /*
1642 * One or more slots in this byte are free.
1643 */
1644 keyix = i*NBBY;
1645 while (b & 1) {
1646 again:
1647 keyix++;
1648 b >>= 1;
1649 }
1650 /* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1651 if (isset(sc->sc_keymap, keyix+32) ||
1652 isset(sc->sc_keymap, keyix+64) ||
1653 isset(sc->sc_keymap, keyix+32+64)) {
1654 /* full pair unavailable */
1655 /* XXX statistic */
1656 if (keyix == (i+1)*NBBY) {
1657 /* no slots were appropriate, advance */
1658 continue;
1659 }
1660 goto again;
1661 }
1662 setbit(sc->sc_keymap, keyix);
1663 setbit(sc->sc_keymap, keyix+64);
1664 setbit(sc->sc_keymap, keyix+32);
1665 setbit(sc->sc_keymap, keyix+32+64);
1666 DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1667 "%s: key pair %u,%u %u,%u\n",
1668 __func__, keyix, keyix+64,
1669 keyix+32, keyix+32+64);
1670 *txkeyix = keyix;
1671 *rxkeyix = keyix+32;
1672 return 1;
1673 }
1674 }
1675 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1676 return 0;
1677 #undef N
1678 }
1679
1680 /*
1681 * Allocate a single key cache slot.
1682 */
1683 static int
1684 key_alloc_single(struct ath_softc *sc,
1685 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1686 {
1687 #define N(a) (sizeof(a)/sizeof(a[0]))
1688 u_int i, keyix;
1689
1690 /* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
1691 for (i = 0; i < N(sc->sc_keymap); i++) {
1692 u_int8_t b = sc->sc_keymap[i];
1693 if (b != 0xff) {
1694 /*
1695 * One or more slots are free.
1696 */
1697 keyix = i*NBBY;
1698 while (b & 1)
1699 keyix++, b >>= 1;
1700 setbit(sc->sc_keymap, keyix);
1701 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
1702 __func__, keyix);
1703 *txkeyix = *rxkeyix = keyix;
1704 return 1;
1705 }
1706 }
1707 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
1708 return 0;
1709 #undef N
1710 }
1711
1712 /*
1713 * Allocate one or more key cache slots for a uniacst key. The
1714 * key itself is needed only to identify the cipher. For hardware
1715 * TKIP with split cipher+MIC keys we allocate two key cache slot
1716 * pairs so that we can setup separate TX and RX MIC keys. Note
1717 * that the MIC key for a TKIP key at slot i is assumed by the
1718 * hardware to be at slot i+64. This limits TKIP keys to the first
1719 * 64 entries.
1720 */
1721 static int
1722 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
1723 ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
1724 {
1725 struct ath_softc *sc = ic->ic_ifp->if_softc;
1726
1727 /*
1728 * Group key allocation must be handled specially for
1729 * parts that do not support multicast key cache search
1730 * functionality. For those parts the key id must match
1731 * the h/w key index so lookups find the right key. On
1732 * parts w/ the key search facility we install the sender's
1733 * mac address (with the high bit set) and let the hardware
1734 * find the key w/o using the key id. This is preferred as
1735 * it permits us to support multiple users for adhoc and/or
1736 * multi-station operation.
1737 */
1738 if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
1739 if (!(&ic->ic_nw_keys[0] <= k &&
1740 k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
1741 /* should not happen */
1742 DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1743 "%s: bogus group key\n", __func__);
1744 return 0;
1745 }
1746 /*
1747 * XXX we pre-allocate the global keys so
1748 * have no way to check if they've already been allocated.
1749 */
1750 *keyix = *rxkeyix = k - ic->ic_nw_keys;
1751 return 1;
1752 }
1753
1754 /*
1755 * We allocate two pair for TKIP when using the h/w to do
1756 * the MIC. For everything else, including software crypto,
1757 * we allocate a single entry. Note that s/w crypto requires
1758 * a pass-through slot on the 5211 and 5212. The 5210 does
1759 * not support pass-through cache entries and we map all
1760 * those requests to slot 0.
1761 */
1762 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1763 return key_alloc_single(sc, keyix, rxkeyix);
1764 } else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
1765 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
1766 return key_alloc_2pair(sc, keyix, rxkeyix);
1767 } else {
1768 return key_alloc_single(sc, keyix, rxkeyix);
1769 }
1770 }
1771
1772 /*
1773 * Delete an entry in the key cache allocated by ath_key_alloc.
1774 */
1775 static int
1776 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
1777 {
1778 struct ath_softc *sc = ic->ic_ifp->if_softc;
1779 struct ath_hal *ah = sc->sc_ah;
1780 const struct ieee80211_cipher *cip = k->wk_cipher;
1781 u_int keyix = k->wk_keyix;
1782
1783 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
1784
1785 ath_hal_keyreset(ah, keyix);
1786 /*
1787 * Handle split tx/rx keying required for TKIP with h/w MIC.
1788 */
1789 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1790 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
1791 ath_hal_keyreset(ah, keyix+32); /* RX key */
1792 if (keyix >= IEEE80211_WEP_NKID) {
1793 /*
1794 * Don't touch keymap entries for global keys so
1795 * they are never considered for dynamic allocation.
1796 */
1797 clrbit(sc->sc_keymap, keyix);
1798 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1799 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1800 sc->sc_splitmic) {
1801 clrbit(sc->sc_keymap, keyix+64); /* TX key MIC */
1802 clrbit(sc->sc_keymap, keyix+32); /* RX key */
1803 clrbit(sc->sc_keymap, keyix+32+64); /* RX key MIC */
1804 }
1805 }
1806 return 1;
1807 }
1808
1809 /*
1810 * Set the key cache contents for the specified key. Key cache
1811 * slot(s) must already have been allocated by ath_key_alloc.
1812 */
1813 static int
1814 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
1815 const u_int8_t mac[IEEE80211_ADDR_LEN])
1816 {
1817 struct ath_softc *sc = ic->ic_ifp->if_softc;
1818
1819 return ath_keyset(sc, k, mac, ic->ic_bss);
1820 }
1821
1822 /*
1823 * Block/unblock tx+rx processing while a key change is done.
1824 * We assume the caller serializes key management operations
1825 * so we only need to worry about synchronization with other
1826 * uses that originate in the driver.
1827 */
1828 static void
1829 ath_key_update_begin(struct ieee80211com *ic)
1830 {
1831 struct ifnet *ifp = ic->ic_ifp;
1832 struct ath_softc *sc = ifp->if_softc;
1833
1834 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1835 #if 0
1836 tasklet_disable(&sc->sc_rxtq);
1837 #endif
1838 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */
1839 }
1840
1841 static void
1842 ath_key_update_end(struct ieee80211com *ic)
1843 {
1844 struct ifnet *ifp = ic->ic_ifp;
1845 struct ath_softc *sc = ifp->if_softc;
1846
1847 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1848 IF_UNLOCK(&ifp->if_snd);
1849 #if 0
1850 tasklet_enable(&sc->sc_rxtq);
1851 #endif
1852 }
1853
1854 /*
1855 * Calculate the receive filter according to the
1856 * operating mode and state:
1857 *
1858 * o always accept unicast, broadcast, and multicast traffic
1859 * o maintain current state of phy error reception (the hal
1860 * may enable phy error frames for noise immunity work)
1861 * o probe request frames are accepted only when operating in
1862 * hostap, adhoc, or monitor modes
1863 * o enable promiscuous mode according to the interface state
1864 * o accept beacons:
1865 * - when operating in adhoc mode so the 802.11 layer creates
1866 * node table entries for peers,
1867 * - when operating in station mode for collecting rssi data when
1868 * the station is otherwise quiet, or
1869 * - when scanning
1870 */
1871 static u_int32_t
1872 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
1873 {
1874 struct ieee80211com *ic = &sc->sc_ic;
1875 struct ath_hal *ah = sc->sc_ah;
1876 struct ifnet *ifp = &sc->sc_if;
1877 u_int32_t rfilt;
1878
1879 rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1880 | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1881 if (ic->ic_opmode != IEEE80211_M_STA)
1882 rfilt |= HAL_RX_FILTER_PROBEREQ;
1883 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1884 (ifp->if_flags & IFF_PROMISC))
1885 rfilt |= HAL_RX_FILTER_PROM;
1886 if (ic->ic_opmode == IEEE80211_M_STA ||
1887 ic->ic_opmode == IEEE80211_M_IBSS ||
1888 state == IEEE80211_S_SCAN)
1889 rfilt |= HAL_RX_FILTER_BEACON;
1890 return rfilt;
1891 }
1892
1893 static void
1894 ath_mcastfilter_accum(void *dl, u_int32_t *mfilt)
1895 {
1896 u_int32_t val;
1897 u_int8_t pos;
1898
1899 /* calculate XOR of eight 6bit values */
1900 val = LE_READ_4((char *)dl + 0);
1901 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1902 val = LE_READ_4((char *)dl + 3);
1903 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1904 pos &= 0x3f;
1905 mfilt[pos / 32] |= (1 << (pos % 32));
1906 }
1907
1908 static void
1909 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t *mfilt)
1910 {
1911 struct ifnet *ifp = &sc->sc_if;
1912 struct ether_multi *enm;
1913 struct ether_multistep estep;
1914
1915 mfilt[0] = mfilt[1] = 0;
1916 ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
1917 while (enm != NULL) {
1918 /* XXX Punt on ranges. */
1919 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
1920 mfilt[0] = mfilt[1] = ~((u_int32_t)0);
1921 ifp->if_flags |= IFF_ALLMULTI;
1922 return;
1923 }
1924 ath_mcastfilter_accum(enm->enm_addrlo, mfilt);
1925 ETHER_NEXT_MULTI(estep, enm);
1926 }
1927 ifp->if_flags &= ~IFF_ALLMULTI;
1928 }
1929
1930 static void
1931 ath_mode_init(struct ath_softc *sc)
1932 {
1933 struct ieee80211com *ic = &sc->sc_ic;
1934 struct ath_hal *ah = sc->sc_ah;
1935 u_int32_t rfilt, mfilt[2];
1936 int i;
1937
1938 /* configure rx filter */
1939 rfilt = ath_calcrxfilter(sc, ic->ic_state);
1940 ath_hal_setrxfilter(ah, rfilt);
1941
1942 /* configure operational mode */
1943 ath_hal_setopmode(ah);
1944
1945 /* Write keys to hardware; it may have been powered down. */
1946 ath_key_update_begin(ic);
1947 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1948 ath_key_set(ic,
1949 &ic->ic_crypto.cs_nw_keys[i],
1950 ic->ic_myaddr);
1951 }
1952 ath_key_update_end(ic);
1953
1954 /*
1955 * Handle any link-level address change. Note that we only
1956 * need to force ic_myaddr; any other addresses are handled
1957 * as a byproduct of the ifnet code marking the interface
1958 * down then up.
1959 *
1960 * XXX should get from lladdr instead of arpcom but that's more work
1961 */
1962 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(sc->sc_if.if_sadl));
1963 ath_hal_setmac(ah, ic->ic_myaddr);
1964
1965 /* calculate and install multicast filter */
1966 #ifdef __FreeBSD__
1967 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1968 mfilt[0] = mfilt[1] = 0;
1969 IF_ADDR_LOCK(ifp);
1970 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1971 void *dl;
1972
1973 /* calculate XOR of eight 6bit values */
1974 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
1975 val = LE_READ_4((char *)dl + 0);
1976 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1977 val = LE_READ_4((char *)dl + 3);
1978 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1979 pos &= 0x3f;
1980 mfilt[pos / 32] |= (1 << (pos % 32));
1981 }
1982 IF_ADDR_UNLOCK(ifp);
1983 } else {
1984 mfilt[0] = mfilt[1] = ~0;
1985 }
1986 #endif
1987 #ifdef __NetBSD__
1988 ath_mcastfilter_compute(sc, mfilt);
1989 #endif
1990 ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1991 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
1992 __func__, rfilt, mfilt[0], mfilt[1]);
1993 }
1994
1995 /*
1996 * Set the slot time based on the current setting.
1997 */
1998 static void
1999 ath_setslottime(struct ath_softc *sc)
2000 {
2001 struct ieee80211com *ic = &sc->sc_ic;
2002 struct ath_hal *ah = sc->sc_ah;
2003
2004 if (ic->ic_flags & IEEE80211_F_SHSLOT)
2005 ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
2006 else
2007 ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
2008 sc->sc_updateslot = OK;
2009 }
2010
2011 /*
2012 * Callback from the 802.11 layer to update the
2013 * slot time based on the current setting.
2014 */
2015 static void
2016 ath_updateslot(struct ifnet *ifp)
2017 {
2018 struct ath_softc *sc = ifp->if_softc;
2019 struct ieee80211com *ic = &sc->sc_ic;
2020
2021 /*
2022 * When not coordinating the BSS, change the hardware
2023 * immediately. For other operation we defer the change
2024 * until beacon updates have propagated to the stations.
2025 */
2026 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
2027 sc->sc_updateslot = UPDATE;
2028 else
2029 ath_setslottime(sc);
2030 }
2031
2032 /*
2033 * Setup a h/w transmit queue for beacons.
2034 */
2035 static int
2036 ath_beaconq_setup(struct ath_hal *ah)
2037 {
2038 HAL_TXQ_INFO qi;
2039
2040 memset(&qi, 0, sizeof(qi));
2041 qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
2042 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
2043 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
2044 /* NB: for dynamic turbo, don't enable any other interrupts */
2045 qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
2046 return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
2047 }
2048
2049 /*
2050 * Setup the transmit queue parameters for the beacon queue.
2051 */
2052 static int
2053 ath_beaconq_config(struct ath_softc *sc)
2054 {
2055 #define ATH_EXPONENT_TO_VALUE(v) ((1<<(v))-1)
2056 struct ieee80211com *ic = &sc->sc_ic;
2057 struct ath_hal *ah = sc->sc_ah;
2058 HAL_TXQ_INFO qi;
2059
2060 ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
2061 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2062 /*
2063 * Always burst out beacon and CAB traffic.
2064 */
2065 qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
2066 qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
2067 qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
2068 } else {
2069 struct wmeParams *wmep =
2070 &ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
2071 /*
2072 * Adhoc mode; important thing is to use 2x cwmin.
2073 */
2074 qi.tqi_aifs = wmep->wmep_aifsn;
2075 qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2076 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2077 }
2078
2079 if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
2080 device_printf(sc->sc_dev, "unable to update parameters for "
2081 "beacon hardware queue!\n");
2082 return 0;
2083 } else {
2084 ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
2085 return 1;
2086 }
2087 #undef ATH_EXPONENT_TO_VALUE
2088 }
2089
2090 /*
2091 * Allocate and setup an initial beacon frame.
2092 */
2093 static int
2094 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
2095 {
2096 struct ieee80211com *ic = ni->ni_ic;
2097 struct ath_buf *bf;
2098 struct mbuf *m;
2099 int error;
2100
2101 bf = STAILQ_FIRST(&sc->sc_bbuf);
2102 if (bf == NULL) {
2103 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
2104 sc->sc_stats.ast_be_nombuf++; /* XXX */
2105 return ENOMEM; /* XXX */
2106 }
2107 /*
2108 * NB: the beacon data buffer must be 32-bit aligned;
2109 * we assume the mbuf routines will return us something
2110 * with this alignment (perhaps should assert).
2111 */
2112 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
2113 if (m == NULL) {
2114 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
2115 __func__);
2116 sc->sc_stats.ast_be_nombuf++;
2117 return ENOMEM;
2118 }
2119 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2120 BUS_DMA_NOWAIT);
2121 if (error == 0) {
2122 bf->bf_m = m;
2123 bf->bf_node = ieee80211_ref_node(ni);
2124 } else {
2125 m_freem(m);
2126 }
2127 return error;
2128 }
2129
2130 /*
2131 * Setup the beacon frame for transmit.
2132 */
2133 static void
2134 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
2135 {
2136 #define USE_SHPREAMBLE(_ic) \
2137 (((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
2138 == IEEE80211_F_SHPREAMBLE)
2139 struct ieee80211_node *ni = bf->bf_node;
2140 struct ieee80211com *ic = ni->ni_ic;
2141 struct mbuf *m = bf->bf_m;
2142 struct ath_hal *ah = sc->sc_ah;
2143 struct ath_desc *ds;
2144 int flags, antenna;
2145 const HAL_RATE_TABLE *rt;
2146 u_int8_t rix, rate;
2147
2148 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
2149 __func__, m, m->m_len);
2150
2151 /* setup descriptors */
2152 ds = bf->bf_desc;
2153
2154 flags = HAL_TXDESC_NOACK;
2155 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
2156 ds->ds_link = HTOAH32(bf->bf_daddr); /* self-linked */
2157 flags |= HAL_TXDESC_VEOL;
2158 /*
2159 * Let hardware handle antenna switching unless
2160 * the user has selected a transmit antenna
2161 * (sc_txantenna is not 0).
2162 */
2163 antenna = sc->sc_txantenna;
2164 } else {
2165 ds->ds_link = 0;
2166 /*
2167 * Switch antenna every 4 beacons, unless the user
2168 * has selected a transmit antenna (sc_txantenna
2169 * is not 0).
2170 *
2171 * XXX assumes two antenna
2172 */
2173 if (sc->sc_txantenna == 0)
2174 antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2175 else
2176 antenna = sc->sc_txantenna;
2177 }
2178
2179 KASSERT(bf->bf_nseg == 1,
2180 ("multi-segment beacon frame; nseg %u", bf->bf_nseg));
2181 ds->ds_data = bf->bf_segs[0].ds_addr;
2182 /*
2183 * Calculate rate code.
2184 * XXX everything at min xmit rate
2185 */
2186 rix = sc->sc_minrateix;
2187 rt = sc->sc_currates;
2188 rate = rt->info[rix].rateCode;
2189 if (USE_SHPREAMBLE(ic))
2190 rate |= rt->info[rix].shortPreamble;
2191 ath_hal_setuptxdesc(ah, ds
2192 , m->m_len + IEEE80211_CRC_LEN /* frame length */
2193 , sizeof(struct ieee80211_frame)/* header length */
2194 , HAL_PKT_TYPE_BEACON /* Atheros packet type */
2195 , ni->ni_txpower /* txpower XXX */
2196 , rate, 1 /* series 0 rate/tries */
2197 , HAL_TXKEYIX_INVALID /* no encryption */
2198 , antenna /* antenna mode */
2199 , flags /* no ack, veol for beacons */
2200 , 0 /* rts/cts rate */
2201 , 0 /* rts/cts duration */
2202 );
2203 /* NB: beacon's BufLen must be a multiple of 4 bytes */
2204 ath_hal_filltxdesc(ah, ds
2205 , roundup(m->m_len, 4) /* buffer length */
2206 , AH_TRUE /* first segment */
2207 , AH_TRUE /* last segment */
2208 , ds /* first descriptor */
2209 );
2210
2211 /* NB: The desc swap function becomes void,
2212 * if descriptor swapping is not enabled
2213 */
2214 ath_desc_swap(ds);
2215
2216 #undef USE_SHPREAMBLE
2217 }
2218
2219 /*
2220 * Transmit a beacon frame at SWBA. Dynamic updates to the
2221 * frame contents are done as needed and the slot time is
2222 * also adjusted based on current state.
2223 */
2224 static void
2225 ath_beacon_proc(void *arg, int pending)
2226 {
2227 struct ath_softc *sc = arg;
2228 struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
2229 struct ieee80211_node *ni = bf->bf_node;
2230 struct ieee80211com *ic = ni->ni_ic;
2231 struct ath_hal *ah = sc->sc_ah;
2232 struct mbuf *m;
2233 int ncabq, error, otherant;
2234
2235 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2236 __func__, pending);
2237
2238 if (ic->ic_opmode == IEEE80211_M_STA ||
2239 ic->ic_opmode == IEEE80211_M_MONITOR ||
2240 bf == NULL || bf->bf_m == NULL) {
2241 DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
2242 __func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
2243 return;
2244 }
2245 /*
2246 * Check if the previous beacon has gone out. If
2247 * not don't try to post another, skip this period
2248 * and wait for the next. Missed beacons indicate
2249 * a problem and should not occur. If we miss too
2250 * many consecutive beacons reset the device.
2251 */
2252 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2253 sc->sc_bmisscount++;
2254 DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2255 "%s: missed %u consecutive beacons\n",
2256 __func__, sc->sc_bmisscount);
2257 if (sc->sc_bmisscount > 3) /* NB: 3 is a guess */
2258 TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask);
2259 return;
2260 }
2261 if (sc->sc_bmisscount != 0) {
2262 DPRINTF(sc, ATH_DEBUG_BEACON,
2263 "%s: resume beacon xmit after %u misses\n",
2264 __func__, sc->sc_bmisscount);
2265 sc->sc_bmisscount = 0;
2266 }
2267
2268 /*
2269 * Update dynamic beacon contents. If this returns
2270 * non-zero then we need to remap the memory because
2271 * the beacon frame changed size (probably because
2272 * of the TIM bitmap).
2273 */
2274 m = bf->bf_m;
2275 ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
2276 if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
2277 /* XXX too conservative? */
2278 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2279 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2280 BUS_DMA_NOWAIT);
2281 if (error != 0) {
2282 if_printf(&sc->sc_if,
2283 "%s: bus_dmamap_load_mbuf failed, error %u\n",
2284 __func__, error);
2285 return;
2286 }
2287 }
2288
2289 /*
2290 * Handle slot time change when a non-ERP station joins/leaves
2291 * an 11g network. The 802.11 layer notifies us via callback,
2292 * we mark updateslot, then wait one beacon before effecting
2293 * the change. This gives associated stations at least one
2294 * beacon interval to note the state change.
2295 */
2296 /* XXX locking */
2297 if (sc->sc_updateslot == UPDATE)
2298 sc->sc_updateslot = COMMIT; /* commit next beacon */
2299 else if (sc->sc_updateslot == COMMIT)
2300 ath_setslottime(sc); /* commit change to h/w */
2301
2302 /*
2303 * Check recent per-antenna transmit statistics and flip
2304 * the default antenna if noticeably more frames went out
2305 * on the non-default antenna.
2306 * XXX assumes 2 anntenae
2307 */
2308 otherant = sc->sc_defant & 1 ? 2 : 1;
2309 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2310 ath_setdefantenna(sc, otherant);
2311 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2312
2313 /*
2314 * Construct tx descriptor.
2315 */
2316 ath_beacon_setup(sc, bf);
2317
2318 /*
2319 * Stop any current dma and put the new frame on the queue.
2320 * This should never fail since we check above that no frames
2321 * are still pending on the queue.
2322 */
2323 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2324 DPRINTF(sc, ATH_DEBUG_ANY,
2325 "%s: beacon queue %u did not stop?\n",
2326 __func__, sc->sc_bhalq);
2327 }
2328 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2329 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2330
2331 /*
2332 * Enable the CAB queue before the beacon queue to
2333 * insure cab frames are triggered by this beacon.
2334 */
2335 if (ncabq != 0 && (sc->sc_boff.bo_tim[4] & 1)) /* NB: only at DTIM */
2336 ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
2337 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
2338 ath_hal_txstart(ah, sc->sc_bhalq);
2339 DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2340 "%s: TXDP[%u] = %" PRIx64 " (%p)\n", __func__,
2341 sc->sc_bhalq, (uint64_t)bf->bf_daddr, bf->bf_desc);
2342
2343 sc->sc_stats.ast_be_xmit++;
2344 }
2345
2346 /*
2347 * Reset the hardware after detecting beacons have stopped.
2348 */
2349 static void
2350 ath_bstuck_proc(void *arg, int pending)
2351 {
2352 struct ath_softc *sc = arg;
2353 struct ifnet *ifp = &sc->sc_if;
2354
2355 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2356 sc->sc_bmisscount);
2357 ath_reset(ifp);
2358 }
2359
2360 /*
2361 * Reclaim beacon resources.
2362 */
2363 static void
2364 ath_beacon_free(struct ath_softc *sc)
2365 {
2366 struct ath_buf *bf;
2367
2368 STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
2369 if (bf->bf_m != NULL) {
2370 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2371 m_freem(bf->bf_m);
2372 bf->bf_m = NULL;
2373 }
2374 if (bf->bf_node != NULL) {
2375 ieee80211_free_node(bf->bf_node);
2376 bf->bf_node = NULL;
2377 }
2378 }
2379 }
2380
2381 /*
2382 * Configure the beacon and sleep timers.
2383 *
2384 * When operating as an AP this resets the TSF and sets
2385 * up the hardware to notify us when we need to issue beacons.
2386 *
2387 * When operating in station mode this sets up the beacon
2388 * timers according to the timestamp of the last received
2389 * beacon and the current TSF, configures PCF and DTIM
2390 * handling, programs the sleep registers so the hardware
2391 * will wakeup in time to receive beacons, and configures
2392 * the beacon miss handling so we'll receive a BMISS
2393 * interrupt when we stop seeing beacons from the AP
2394 * we've associated with.
2395 */
2396 static void
2397 ath_beacon_config(struct ath_softc *sc)
2398 {
2399 #define TSF_TO_TU(_h,_l) \
2400 ((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
2401 #define FUDGE 2
2402 struct ath_hal *ah = sc->sc_ah;
2403 struct ieee80211com *ic = &sc->sc_ic;
2404 struct ieee80211_node *ni = ic->ic_bss;
2405 u_int32_t nexttbtt, intval, tsftu;
2406 u_int64_t tsf;
2407
2408 /* extract tstamp from last beacon and convert to TU */
2409 nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
2410 LE_READ_4(ni->ni_tstamp.data));
2411 /* NB: the beacon interval is kept internally in TU's */
2412 intval = ni->ni_intval & HAL_BEACON_PERIOD;
2413 if (nexttbtt == 0) /* e.g. for ap mode */
2414 nexttbtt = intval;
2415 else if (intval) /* NB: can be 0 for monitor mode */
2416 nexttbtt = roundup(nexttbtt, intval);
2417 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2418 __func__, nexttbtt, intval, ni->ni_intval);
2419 if (ic->ic_opmode == IEEE80211_M_STA) {
2420 HAL_BEACON_STATE bs;
2421 int dtimperiod, dtimcount;
2422 int cfpperiod, cfpcount;
2423
2424 /*
2425 * Setup dtim and cfp parameters according to
2426 * last beacon we received (which may be none).
2427 */
2428 dtimperiod = ni->ni_dtim_period;
2429 if (dtimperiod <= 0) /* NB: 0 if not known */
2430 dtimperiod = 1;
2431 dtimcount = ni->ni_dtim_count;
2432 if (dtimcount >= dtimperiod) /* NB: sanity check */
2433 dtimcount = 0; /* XXX? */
2434 cfpperiod = 1; /* NB: no PCF support yet */
2435 cfpcount = 0;
2436 /*
2437 * Pull nexttbtt forward to reflect the current
2438 * TSF and calculate dtim+cfp state for the result.
2439 */
2440 tsf = ath_hal_gettsf64(ah);
2441 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2442 do {
2443 nexttbtt += intval;
2444 if (--dtimcount < 0) {
2445 dtimcount = dtimperiod - 1;
2446 if (--cfpcount < 0)
2447 cfpcount = cfpperiod - 1;
2448 }
2449 } while (nexttbtt < tsftu);
2450 memset(&bs, 0, sizeof(bs));
2451 bs.bs_intval = intval;
2452 bs.bs_nexttbtt = nexttbtt;
2453 bs.bs_dtimperiod = dtimperiod*intval;
2454 bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
2455 bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
2456 bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
2457 bs.bs_cfpmaxduration = 0;
2458 #if 0
2459 /*
2460 * The 802.11 layer records the offset to the DTIM
2461 * bitmap while receiving beacons; use it here to
2462 * enable h/w detection of our AID being marked in
2463 * the bitmap vector (to indicate frames for us are
2464 * pending at the AP).
2465 * XXX do DTIM handling in s/w to WAR old h/w bugs
2466 * XXX enable based on h/w rev for newer chips
2467 */
2468 bs.bs_timoffset = ni->ni_timoff;
2469 #endif
2470 /*
2471 * Calculate the number of consecutive beacons to miss
2472 * before taking a BMISS interrupt. The configuration
2473 * is specified in ms, so we need to convert that to
2474 * TU's and then calculate based on the beacon interval.
2475 * Note that we clamp the result to at most 10 beacons.
2476 */
2477 bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
2478 if (bs.bs_bmissthreshold > 10)
2479 bs.bs_bmissthreshold = 10;
2480 else if (bs.bs_bmissthreshold <= 0)
2481 bs.bs_bmissthreshold = 1;
2482
2483 /*
2484 * Calculate sleep duration. The configuration is
2485 * given in ms. We insure a multiple of the beacon
2486 * period is used. Also, if the sleep duration is
2487 * greater than the DTIM period then it makes senses
2488 * to make it a multiple of that.
2489 *
2490 * XXX fixed at 100ms
2491 */
2492 bs.bs_sleepduration =
2493 roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2494 if (bs.bs_sleepduration > bs.bs_dtimperiod)
2495 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2496
2497 DPRINTF(sc, ATH_DEBUG_BEACON,
2498 "%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2499 , __func__
2500 , tsf, tsftu
2501 , bs.bs_intval
2502 , bs.bs_nexttbtt
2503 , bs.bs_dtimperiod
2504 , bs.bs_nextdtim
2505 , bs.bs_bmissthreshold
2506 , bs.bs_sleepduration
2507 , bs.bs_cfpperiod
2508 , bs.bs_cfpmaxduration
2509 , bs.bs_cfpnext
2510 , bs.bs_timoffset
2511 );
2512 ath_hal_intrset(ah, 0);
2513 ath_hal_beacontimers(ah, &bs);
2514 sc->sc_imask |= HAL_INT_BMISS;
2515 ath_hal_intrset(ah, sc->sc_imask);
2516 } else {
2517 ath_hal_intrset(ah, 0);
2518 if (nexttbtt == intval)
2519 intval |= HAL_BEACON_RESET_TSF;
2520 if (ic->ic_opmode == IEEE80211_M_IBSS) {
2521 /*
2522 * In IBSS mode enable the beacon timers but only
2523 * enable SWBA interrupts if we need to manually
2524 * prepare beacon frames. Otherwise we use a
2525 * self-linked tx descriptor and let the hardware
2526 * deal with things.
2527 */
2528 intval |= HAL_BEACON_ENA;
2529 if (!sc->sc_hasveol)
2530 sc->sc_imask |= HAL_INT_SWBA;
2531 if ((intval & HAL_BEACON_RESET_TSF) == 0) {
2532 /*
2533 * Pull nexttbtt forward to reflect
2534 * the current TSF.
2535 */
2536 tsf = ath_hal_gettsf64(ah);
2537 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2538 do {
2539 nexttbtt += intval;
2540 } while (nexttbtt < tsftu);
2541 }
2542 ath_beaconq_config(sc);
2543 } else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2544 /*
2545 * In AP mode we enable the beacon timers and
2546 * SWBA interrupts to prepare beacon frames.
2547 */
2548 intval |= HAL_BEACON_ENA;
2549 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */
2550 ath_beaconq_config(sc);
2551 }
2552 ath_hal_beaconinit(ah, nexttbtt, intval);
2553 sc->sc_bmisscount = 0;
2554 ath_hal_intrset(ah, sc->sc_imask);
2555 /*
2556 * When using a self-linked beacon descriptor in
2557 * ibss mode load it once here.
2558 */
2559 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2560 ath_beacon_proc(sc, 0);
2561 }
2562 sc->sc_syncbeacon = 0;
2563 #undef UNDEF
2564 #undef TSF_TO_TU
2565 }
2566
2567 static int
2568 ath_descdma_setup(struct ath_softc *sc,
2569 struct ath_descdma *dd, ath_bufhead *head,
2570 const char *name, int nbuf, int ndesc)
2571 {
2572 #define DS2PHYS(_dd, _ds) \
2573 ((_dd)->dd_desc_paddr + ((char *)(_ds) - (char *)(_dd)->dd_desc))
2574 struct ifnet *ifp = &sc->sc_if;
2575 struct ath_desc *ds;
2576 struct ath_buf *bf;
2577 int i, bsize, error;
2578
2579 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2580 __func__, name, nbuf, ndesc);
2581
2582 dd->dd_name = name;
2583 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2584
2585 /*
2586 * Setup DMA descriptor area.
2587 */
2588 dd->dd_dmat = sc->sc_dmat;
2589
2590 error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE,
2591 0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0);
2592
2593 if (error != 0) {
2594 if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2595 "error %u\n", nbuf * ndesc, dd->dd_name, error);
2596 goto fail0;
2597 }
2598
2599 error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg,
2600 dd->dd_desc_len, (void **)&dd->dd_desc, BUS_DMA_COHERENT);
2601 if (error != 0) {
2602 if_printf(ifp, "unable to map %u %s descriptors, error = %u\n",
2603 nbuf * ndesc, dd->dd_name, error);
2604 goto fail1;
2605 }
2606
2607 /* allocate descriptors */
2608 error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1,
2609 dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2610 if (error != 0) {
2611 if_printf(ifp, "unable to create dmamap for %s descriptors, "
2612 "error %u\n", dd->dd_name, error);
2613 goto fail2;
2614 }
2615
2616 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc,
2617 dd->dd_desc_len, NULL, BUS_DMA_NOWAIT);
2618 if (error != 0) {
2619 if_printf(ifp, "unable to map %s descriptors, error %u\n",
2620 dd->dd_name, error);
2621 goto fail3;
2622 }
2623
2624 ds = dd->dd_desc;
2625 dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr;
2626 DPRINTF(sc, ATH_DEBUG_RESET,
2627 "%s: %s DMA map: %p (%lu) -> %" PRIx64 " (%lu)\n",
2628 __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2629 (uint64_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2630
2631 /* allocate rx buffers */
2632 bsize = sizeof(struct ath_buf) * nbuf;
2633 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2634 if (bf == NULL) {
2635 if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2636 dd->dd_name, bsize);
2637 goto fail4;
2638 }
2639 dd->dd_bufptr = bf;
2640
2641 STAILQ_INIT(head);
2642 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2643 bf->bf_desc = ds;
2644 bf->bf_daddr = DS2PHYS(dd, ds);
2645 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc,
2646 MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap);
2647 if (error != 0) {
2648 if_printf(ifp, "unable to create dmamap for %s "
2649 "buffer %u, error %u\n", dd->dd_name, i, error);
2650 ath_descdma_cleanup(sc, dd, head);
2651 return error;
2652 }
2653 STAILQ_INSERT_TAIL(head, bf, bf_list);
2654 }
2655 return 0;
2656 fail4:
2657 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2658 fail3:
2659 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2660 fail2:
2661 bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
2662 fail1:
2663 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2664 fail0:
2665 memset(dd, 0, sizeof(*dd));
2666 return error;
2667 #undef DS2PHYS
2668 }
2669
2670 static void
2671 ath_descdma_cleanup(struct ath_softc *sc,
2672 struct ath_descdma *dd, ath_bufhead *head)
2673 {
2674 struct ath_buf *bf;
2675 struct ieee80211_node *ni;
2676
2677 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2678 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2679 bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
2680 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2681
2682 STAILQ_FOREACH(bf, head, bf_list) {
2683 if (bf->bf_m) {
2684 m_freem(bf->bf_m);
2685 bf->bf_m = NULL;
2686 }
2687 if (bf->bf_dmamap != NULL) {
2688 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2689 bf->bf_dmamap = NULL;
2690 }
2691 ni = bf->bf_node;
2692 bf->bf_node = NULL;
2693 if (ni != NULL) {
2694 /*
2695 * Reclaim node reference.
2696 */
2697 ieee80211_free_node(ni);
2698 }
2699 }
2700
2701 STAILQ_INIT(head);
2702 free(dd->dd_bufptr, M_ATHDEV);
2703 memset(dd, 0, sizeof(*dd));
2704 }
2705
2706 static int
2707 ath_desc_alloc(struct ath_softc *sc)
2708 {
2709 int error;
2710
2711 error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2712 "rx", ath_rxbuf, 1);
2713 if (error != 0)
2714 return error;
2715
2716 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2717 "tx", ath_txbuf, ATH_TXDESC);
2718 if (error != 0) {
2719 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2720 return error;
2721 }
2722
2723 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2724 "beacon", 1, 1);
2725 if (error != 0) {
2726 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2727 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2728 return error;
2729 }
2730 return 0;
2731 }
2732
2733 static void
2734 ath_desc_free(struct ath_softc *sc)
2735 {
2736
2737 if (sc->sc_bdma.dd_desc_len != 0)
2738 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2739 if (sc->sc_txdma.dd_desc_len != 0)
2740 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2741 if (sc->sc_rxdma.dd_desc_len != 0)
2742 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2743 }
2744
2745 static struct ieee80211_node *
2746 ath_node_alloc(struct ieee80211_node_table *nt)
2747 {
2748 struct ieee80211com *ic = nt->nt_ic;
2749 struct ath_softc *sc = ic->ic_ifp->if_softc;
2750 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2751 struct ath_node *an;
2752
2753 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2754 if (an == NULL) {
2755 /* XXX stat+msg */
2756 return NULL;
2757 }
2758 an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
2759 ath_rate_node_init(sc, an);
2760
2761 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2762 return &an->an_node;
2763 }
2764
2765 static void
2766 ath_node_free(struct ieee80211_node *ni)
2767 {
2768 struct ieee80211com *ic = ni->ni_ic;
2769 struct ath_softc *sc = ic->ic_ifp->if_softc;
2770
2771 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2772
2773 ath_rate_node_cleanup(sc, ATH_NODE(ni));
2774 sc->sc_node_free(ni);
2775 }
2776
2777 static u_int8_t
2778 ath_node_getrssi(const struct ieee80211_node *ni)
2779 {
2780 #define HAL_EP_RND(x, mul) \
2781 ((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
2782 u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
2783 int32_t rssi;
2784
2785 /*
2786 * When only one frame is received there will be no state in
2787 * avgrssi so fallback on the value recorded by the 802.11 layer.
2788 */
2789 if (avgrssi != ATH_RSSI_DUMMY_MARKER)
2790 rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
2791 else
2792 rssi = ni->ni_rssi;
2793 return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
2794 #undef HAL_EP_RND
2795 }
2796
2797 static int
2798 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2799 {
2800 struct ath_hal *ah = sc->sc_ah;
2801 int error;
2802 struct mbuf *m;
2803 struct ath_desc *ds;
2804
2805 m = bf->bf_m;
2806 if (m == NULL) {
2807 /*
2808 * NB: by assigning a page to the rx dma buffer we
2809 * implicitly satisfy the Atheros requirement that
2810 * this buffer be cache-line-aligned and sized to be
2811 * multiple of the cache line size. Not doing this
2812 * causes weird stuff to happen (for the 5210 at least).
2813 */
2814 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2815 if (m == NULL) {
2816 DPRINTF(sc, ATH_DEBUG_ANY,
2817 "%s: no mbuf/cluster\n", __func__);
2818 sc->sc_stats.ast_rx_nombuf++;
2819 return ENOMEM;
2820 }
2821 bf->bf_m = m;
2822 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2823
2824 error = bus_dmamap_load_mbuf(sc->sc_dmat,
2825 bf->bf_dmamap, m,
2826 BUS_DMA_NOWAIT);
2827 if (error != 0) {
2828 DPRINTF(sc, ATH_DEBUG_ANY,
2829 "%s: bus_dmamap_load_mbuf failed; error %d\n",
2830 __func__, error);
2831 sc->sc_stats.ast_rx_busdma++;
2832 return error;
2833 }
2834 KASSERT(bf->bf_nseg == 1,
2835 ("multi-segment packet; nseg %u", bf->bf_nseg));
2836 }
2837 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2838 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2839
2840 /*
2841 * Setup descriptors. For receive we always terminate
2842 * the descriptor list with a self-linked entry so we'll
2843 * not get overrun under high load (as can happen with a
2844 * 5212 when ANI processing enables PHY error frames).
2845 *
2846 * To insure the last descriptor is self-linked we create
2847 * each descriptor as self-linked and add it to the end. As
2848 * each additional descriptor is added the previous self-linked
2849 * entry is ``fixed'' naturally. This should be safe even
2850 * if DMA is happening. When processing RX interrupts we
2851 * never remove/process the last, self-linked, entry on the
2852 * descriptor list. This insures the hardware always has
2853 * someplace to write a new frame.
2854 */
2855 ds = bf->bf_desc;
2856 ds->ds_link = HTOAH32(bf->bf_daddr); /* link to self */
2857 ds->ds_data = bf->bf_segs[0].ds_addr;
2858 ds->ds_vdata = mtod(m, void *); /* for radar */
2859 ath_hal_setuprxdesc(ah, ds
2860 , m->m_len /* buffer size */
2861 , 0
2862 );
2863
2864 if (sc->sc_rxlink != NULL)
2865 *sc->sc_rxlink = bf->bf_daddr;
2866 sc->sc_rxlink = &ds->ds_link;
2867 return 0;
2868 }
2869
2870 /*
2871 * Extend 15-bit time stamp from rx descriptor to
2872 * a full 64-bit TSF using the specified TSF.
2873 */
2874 static inline u_int64_t
2875 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
2876 {
2877 if ((tsf & 0x7fff) < rstamp)
2878 tsf -= 0x8000;
2879 return ((tsf &~ 0x7fff) | rstamp);
2880 }
2881
2882 /*
2883 * Intercept management frames to collect beacon rssi data
2884 * and to do ibss merges.
2885 */
2886 static void
2887 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2888 struct ieee80211_node *ni,
2889 int subtype, int rssi, u_int32_t rstamp)
2890 {
2891 struct ath_softc *sc = ic->ic_ifp->if_softc;
2892
2893 /*
2894 * Call up first so subsequent work can use information
2895 * potentially stored in the node (e.g. for ibss merge).
2896 */
2897 sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
2898 switch (subtype) {
2899 case IEEE80211_FC0_SUBTYPE_BEACON:
2900 /* update rssi statistics for use by the hal */
2901 ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
2902 if (sc->sc_syncbeacon &&
2903 ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) {
2904 /*
2905 * Resync beacon timers using the tsf of the beacon
2906 * frame we just received.
2907 */
2908 ath_beacon_config(sc);
2909 }
2910 /* fall thru... */
2911 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2912 if (ic->ic_opmode == IEEE80211_M_IBSS &&
2913 ic->ic_state == IEEE80211_S_RUN) {
2914 u_int64_t tsf = ath_extend_tsf(rstamp,
2915 ath_hal_gettsf64(sc->sc_ah));
2916
2917 /*
2918 * Handle ibss merge as needed; check the tsf on the
2919 * frame before attempting the merge. The 802.11 spec
2920 * says the station should change it's bssid to match
2921 * the oldest station with the same ssid, where oldest
2922 * is determined by the tsf. Note that hardware
2923 * reconfiguration happens through callback to
2924 * ath_newstate as the state machine will go from
2925 * RUN -> RUN when this happens.
2926 */
2927 if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
2928 DPRINTF(sc, ATH_DEBUG_STATE,
2929 "ibss merge, rstamp %u tsf %ju "
2930 "tstamp %ju\n", rstamp, (uintmax_t)tsf,
2931 (uintmax_t)ni->ni_tstamp.tsf);
2932 (void) ieee80211_ibss_merge(ni);
2933 }
2934 }
2935 break;
2936 }
2937 }
2938
2939 /*
2940 * Set the default antenna.
2941 */
2942 static void
2943 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
2944 {
2945 struct ath_hal *ah = sc->sc_ah;
2946
2947 /* XXX block beacon interrupts */
2948 ath_hal_setdefantenna(ah, antenna);
2949 if (sc->sc_defant != antenna)
2950 sc->sc_stats.ast_ant_defswitch++;
2951 sc->sc_defant = antenna;
2952 sc->sc_rxotherant = 0;
2953 }
2954
2955 static void
2956 ath_rx_proc(void *arg, int npending)
2957 {
2958 #define PA2DESC(_sc, _pa) \
2959 ((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
2960 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
2961 struct ath_softc *sc = arg;
2962 struct ath_buf *bf;
2963 struct ieee80211com *ic = &sc->sc_ic;
2964 struct ifnet *ifp = &sc->sc_if;
2965 struct ath_hal *ah = sc->sc_ah;
2966 struct ath_desc *ds;
2967 struct mbuf *m;
2968 struct ieee80211_node *ni;
2969 struct ath_node *an;
2970 int len, type, ngood;
2971 u_int phyerr;
2972 HAL_STATUS status;
2973 int16_t nf;
2974 u_int64_t tsf;
2975
2976 NET_LOCK_GIANT(); /* XXX */
2977
2978 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
2979 ngood = 0;
2980 nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
2981 tsf = ath_hal_gettsf64(ah);
2982 do {
2983 bf = STAILQ_FIRST(&sc->sc_rxbuf);
2984 if (bf == NULL) { /* NB: shouldn't happen */
2985 if_printf(ifp, "%s: no buffer!\n", __func__);
2986 break;
2987 }
2988 ds = bf->bf_desc;
2989 if (ds->ds_link == bf->bf_daddr) {
2990 /* NB: never process the self-linked entry at the end */
2991 break;
2992 }
2993 m = bf->bf_m;
2994 if (m == NULL) { /* NB: shouldn't happen */
2995 if_printf(ifp, "%s: no mbuf!\n", __func__);
2996 break;
2997 }
2998 /* XXX sync descriptor memory */
2999 /*
3000 * Must provide the virtual address of the current
3001 * descriptor, the physical address, and the virtual
3002 * address of the next descriptor in the h/w chain.
3003 * This allows the HAL to look ahead to see if the
3004 * hardware is done with a descriptor by checking the
3005 * done bit in the following descriptor and the address
3006 * of the current descriptor the DMA engine is working
3007 * on. All this is necessary because of our use of
3008 * a self-linked list to avoid rx overruns.
3009 */
3010 status = ath_hal_rxprocdesc(ah, ds,
3011 bf->bf_daddr, PA2DESC(sc, ds->ds_link));
3012 #ifdef AR_DEBUG
3013 if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
3014 ath_printrxbuf(bf, status == HAL_OK);
3015 #endif
3016 if (status == HAL_EINPROGRESS)
3017 break;
3018 STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
3019 if (ds->ds_rxstat.rs_more) {
3020 /*
3021 * Frame spans multiple descriptors; this
3022 * cannot happen yet as we don't support
3023 * jumbograms. If not in monitor mode,
3024 * discard the frame.
3025 */
3026 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3027 sc->sc_stats.ast_rx_toobig++;
3028 goto rx_next;
3029 }
3030 /* fall thru for monitor mode handling... */
3031 } else if (ds->ds_rxstat.rs_status != 0) {
3032 if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
3033 sc->sc_stats.ast_rx_crcerr++;
3034 if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
3035 sc->sc_stats.ast_rx_fifoerr++;
3036 if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
3037 sc->sc_stats.ast_rx_phyerr++;
3038 phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
3039 sc->sc_stats.ast_rx_phy[phyerr]++;
3040 goto rx_next;
3041 }
3042 if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
3043 /*
3044 * Decrypt error. If the error occurred
3045 * because there was no hardware key, then
3046 * let the frame through so the upper layers
3047 * can process it. This is necessary for 5210
3048 * parts which have no way to setup a ``clear''
3049 * key cache entry.
3050 *
3051 * XXX do key cache faulting
3052 */
3053 if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
3054 goto rx_accept;
3055 sc->sc_stats.ast_rx_badcrypt++;
3056 }
3057 if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
3058 sc->sc_stats.ast_rx_badmic++;
3059 /*
3060 * Do minimal work required to hand off
3061 * the 802.11 header for notifcation.
3062 */
3063 /* XXX frag's and qos frames */
3064 len = ds->ds_rxstat.rs_datalen;
3065 if (len >= sizeof (struct ieee80211_frame)) {
3066 bus_dmamap_sync(sc->sc_dmat,
3067 bf->bf_dmamap,
3068 0, bf->bf_dmamap->dm_mapsize,
3069 BUS_DMASYNC_POSTREAD);
3070 ieee80211_notify_michael_failure(ic,
3071 mtod(m, struct ieee80211_frame *),
3072 sc->sc_splitmic ?
3073 ds->ds_rxstat.rs_keyix-32 :
3074 ds->ds_rxstat.rs_keyix
3075 );
3076 }
3077 }
3078 ifp->if_ierrors++;
3079 /*
3080 * Reject error frames, we normally don't want
3081 * to see them in monitor mode (in monitor mode
3082 * allow through packets that have crypto problems).
3083 */
3084 if ((ds->ds_rxstat.rs_status &~
3085 (HAL_RXERR_DECRYPT|HAL_RXERR_MIC)) ||
3086 sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
3087 goto rx_next;
3088 }
3089 rx_accept:
3090 /*
3091 * Sync and unmap the frame. At this point we're
3092 * committed to passing the mbuf somewhere so clear
3093 * bf_m; this means a new sk_buff must be allocated
3094 * when the rx descriptor is setup again to receive
3095 * another frame.
3096 */
3097 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3098 0, bf->bf_dmamap->dm_mapsize,
3099 BUS_DMASYNC_POSTREAD);
3100 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3101 bf->bf_m = NULL;
3102
3103 m->m_pkthdr.rcvif = ifp;
3104 len = ds->ds_rxstat.rs_datalen;
3105 m->m_pkthdr.len = m->m_len = len;
3106
3107 sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
3108
3109 #if NBPFILTER > 0
3110 if (sc->sc_drvbpf) {
3111 u_int8_t rix;
3112
3113 /*
3114 * Discard anything shorter than an ack or cts.
3115 */
3116 if (len < IEEE80211_ACK_LEN) {
3117 DPRINTF(sc, ATH_DEBUG_RECV,
3118 "%s: runt packet %d\n",
3119 __func__, len);
3120 sc->sc_stats.ast_rx_tooshort++;
3121 m_freem(m);
3122 goto rx_next;
3123 }
3124 rix = ds->ds_rxstat.rs_rate;
3125 sc->sc_rx_th.wr_tsf = htole64(
3126 ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf));
3127 sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
3128 sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
3129 sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf;
3130 sc->sc_rx_th.wr_antnoise = nf;
3131 sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
3132
3133 bpf_mtap2(sc->sc_drvbpf,
3134 &sc->sc_rx_th, sc->sc_rx_th_len, m);
3135 }
3136 #endif
3137
3138 /*
3139 * From this point on we assume the frame is at least
3140 * as large as ieee80211_frame_min; verify that.
3141 */
3142 if (len < IEEE80211_MIN_LEN) {
3143 DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
3144 __func__, len);
3145 sc->sc_stats.ast_rx_tooshort++;
3146 m_freem(m);
3147 goto rx_next;
3148 }
3149
3150 if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
3151 ieee80211_dump_pkt(mtod(m, void *), len,
3152 sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
3153 ds->ds_rxstat.rs_rssi);
3154 }
3155
3156 m_adj(m, -IEEE80211_CRC_LEN);
3157
3158 /*
3159 * Locate the node for sender, track state, and then
3160 * pass the (referenced) node up to the 802.11 layer
3161 * for its use.
3162 */
3163 ni = ieee80211_find_rxnode_withkey(ic,
3164 mtod(m, const struct ieee80211_frame_min *),
3165 ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
3166 IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
3167 /*
3168 * Track rx rssi and do any rx antenna management.
3169 */
3170 an = ATH_NODE(ni);
3171 ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
3172 ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi);
3173 /*
3174 * Send frame up for processing.
3175 */
3176 type = ieee80211_input(ic, m, ni,
3177 ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
3178 ieee80211_free_node(ni);
3179 if (sc->sc_diversity) {
3180 /*
3181 * When using fast diversity, change the default rx
3182 * antenna if diversity chooses the other antenna 3
3183 * times in a row.
3184 */
3185 if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
3186 if (++sc->sc_rxotherant >= 3)
3187 ath_setdefantenna(sc,
3188 ds->ds_rxstat.rs_antenna);
3189 } else
3190 sc->sc_rxotherant = 0;
3191 }
3192 if (sc->sc_softled) {
3193 /*
3194 * Blink for any data frame. Otherwise do a
3195 * heartbeat-style blink when idle. The latter
3196 * is mainly for station mode where we depend on
3197 * periodic beacon frames to trigger the poll event.
3198 */
3199 if (type == IEEE80211_FC0_TYPE_DATA) {
3200 sc->sc_rxrate = ds->ds_rxstat.rs_rate;
3201 ath_led_event(sc, ATH_LED_RX);
3202 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
3203 ath_led_event(sc, ATH_LED_POLL);
3204 }
3205 /*
3206 * Arrange to update the last rx timestamp only for
3207 * frames from our ap when operating in station mode.
3208 * This assumes the rx key is always setup when associated.
3209 */
3210 if (ic->ic_opmode == IEEE80211_M_STA &&
3211 ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID)
3212 ngood++;
3213 rx_next:
3214 STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
3215 } while (ath_rxbuf_init(sc, bf) == 0);
3216
3217 /* rx signal state monitoring */
3218 ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
3219 if (ath_hal_radar_event(ah))
3220 TASK_RUN_OR_ENQUEUE(&sc->sc_radartask);
3221 if (ngood)
3222 sc->sc_lastrx = tsf;
3223
3224 #ifdef __NetBSD__
3225 /* XXX Why isn't this necessary in FreeBSD? */
3226 if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
3227 ath_start(ifp);
3228 #endif /* __NetBSD__ */
3229
3230 NET_UNLOCK_GIANT(); /* XXX */
3231 #undef PA2DESC
3232 }
3233
3234 /*
3235 * Setup a h/w transmit queue.
3236 */
3237 static struct ath_txq *
3238 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3239 {
3240 #define N(a) (sizeof(a)/sizeof(a[0]))
3241 struct ath_hal *ah = sc->sc_ah;
3242 HAL_TXQ_INFO qi;
3243 int qnum;
3244
3245 memset(&qi, 0, sizeof(qi));
3246 qi.tqi_subtype = subtype;
3247 qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3248 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3249 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3250 /*
3251 * Enable interrupts only for EOL and DESC conditions.
3252 * We mark tx descriptors to receive a DESC interrupt
3253 * when a tx queue gets deep; otherwise waiting for the
3254 * EOL to reap descriptors. Note that this is done to
3255 * reduce interrupt load and this only defers reaping
3256 * descriptors, never transmitting frames. Aside from
3257 * reducing interrupts this also permits more concurrency.
3258 * The only potential downside is if the tx queue backs
3259 * up in which case the top half of the kernel may backup
3260 * due to a lack of tx descriptors.
3261 */
3262 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
3263 qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3264 if (qnum == -1) {
3265 /*
3266 * NB: don't print a message, this happens
3267 * normally on parts with too few tx queues
3268 */
3269 return NULL;
3270 }
3271 if (qnum >= N(sc->sc_txq)) {
3272 device_printf(sc->sc_dev,
3273 "hal qnum %u out of range, max %zu!\n",
3274 qnum, N(sc->sc_txq));
3275 ath_hal_releasetxqueue(ah, qnum);
3276 return NULL;
3277 }
3278 if (!ATH_TXQ_SETUP(sc, qnum)) {
3279 struct ath_txq *txq = &sc->sc_txq[qnum];
3280
3281 txq->axq_qnum = qnum;
3282 txq->axq_depth = 0;
3283 txq->axq_intrcnt = 0;
3284 txq->axq_link = NULL;
3285 STAILQ_INIT(&txq->axq_q);
3286 ATH_TXQ_LOCK_INIT(sc, txq);
3287 sc->sc_txqsetup |= 1<<qnum;
3288 }
3289 return &sc->sc_txq[qnum];
3290 #undef N
3291 }
3292
3293 /*
3294 * Setup a hardware data transmit queue for the specified
3295 * access control. The hal may not support all requested
3296 * queues in which case it will return a reference to a
3297 * previously setup queue. We record the mapping from ac's
3298 * to h/w queues for use by ath_tx_start and also track
3299 * the set of h/w queues being used to optimize work in the
3300 * transmit interrupt handler and related routines.
3301 */
3302 static int
3303 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3304 {
3305 #define N(a) (sizeof(a)/sizeof(a[0]))
3306 struct ath_txq *txq;
3307
3308 if (ac >= N(sc->sc_ac2q)) {
3309 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3310 ac, N(sc->sc_ac2q));
3311 return 0;
3312 }
3313 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3314 if (txq != NULL) {
3315 sc->sc_ac2q[ac] = txq;
3316 return 1;
3317 } else
3318 return 0;
3319 #undef N
3320 }
3321
3322 /*
3323 * Update WME parameters for a transmit queue.
3324 */
3325 static int
3326 ath_txq_update(struct ath_softc *sc, int ac)
3327 {
3328 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1)
3329 #define ATH_TXOP_TO_US(v) (v<<5)
3330 struct ieee80211com *ic = &sc->sc_ic;
3331 struct ath_txq *txq = sc->sc_ac2q[ac];
3332 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3333 struct ath_hal *ah = sc->sc_ah;
3334 HAL_TXQ_INFO qi;
3335
3336 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3337 qi.tqi_aifs = wmep->wmep_aifsn;
3338 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3339 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3340 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3341
3342 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3343 device_printf(sc->sc_dev, "unable to update hardware queue "
3344 "parameters for %s traffic!\n",
3345 ieee80211_wme_acnames[ac]);
3346 return 0;
3347 } else {
3348 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3349 return 1;
3350 }
3351 #undef ATH_TXOP_TO_US
3352 #undef ATH_EXPONENT_TO_VALUE
3353 }
3354
3355 /*
3356 * Callback from the 802.11 layer to update WME parameters.
3357 */
3358 static int
3359 ath_wme_update(struct ieee80211com *ic)
3360 {
3361 struct ath_softc *sc = ic->ic_ifp->if_softc;
3362
3363 return !ath_txq_update(sc, WME_AC_BE) ||
3364 !ath_txq_update(sc, WME_AC_BK) ||
3365 !ath_txq_update(sc, WME_AC_VI) ||
3366 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3367 }
3368
3369 /*
3370 * Reclaim resources for a setup queue.
3371 */
3372 static void
3373 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3374 {
3375
3376 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3377 ATH_TXQ_LOCK_DESTROY(txq);
3378 sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3379 }
3380
3381 /*
3382 * Reclaim all tx queue resources.
3383 */
3384 static void
3385 ath_tx_cleanup(struct ath_softc *sc)
3386 {
3387 int i;
3388
3389 ATH_TXBUF_LOCK_DESTROY(sc);
3390 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3391 if (ATH_TXQ_SETUP(sc, i))
3392 ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3393 }
3394
3395 /*
3396 * Defragment an mbuf chain, returning at most maxfrags separate
3397 * mbufs+clusters. If this is not possible NULL is returned and
3398 * the original mbuf chain is left in it's present (potentially
3399 * modified) state. We use two techniques: collapsing consecutive
3400 * mbufs and replacing consecutive mbufs by a cluster.
3401 */
3402 static struct mbuf *
3403 ath_defrag(struct mbuf *m0, int how, int maxfrags)
3404 {
3405 struct mbuf *m, *n, *n2, **prev;
3406 u_int curfrags;
3407
3408 /*
3409 * Calculate the current number of frags.
3410 */
3411 curfrags = 0;
3412 for (m = m0; m != NULL; m = m->m_next)
3413 curfrags++;
3414 /*
3415 * First, try to collapse mbufs. Note that we always collapse
3416 * towards the front so we don't need to deal with moving the
3417 * pkthdr. This may be suboptimal if the first mbuf has much
3418 * less data than the following.
3419 */
3420 m = m0;
3421 again:
3422 for (;;) {
3423 n = m->m_next;
3424 if (n == NULL)
3425 break;
3426 if ((m->m_flags & M_RDONLY) == 0 &&
3427 n->m_len < M_TRAILINGSPACE(m)) {
3428 bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
3429 n->m_len);
3430 m->m_len += n->m_len;
3431 m->m_next = n->m_next;
3432 m_free(n);
3433 if (--curfrags <= maxfrags)
3434 return m0;
3435 } else
3436 m = n;
3437 }
3438 KASSERT(maxfrags > 1,
3439 ("maxfrags %u, but normal collapse failed", maxfrags));
3440 /*
3441 * Collapse consecutive mbufs to a cluster.
3442 */
3443 prev = &m0->m_next; /* NB: not the first mbuf */
3444 while ((n = *prev) != NULL) {
3445 if ((n2 = n->m_next) != NULL &&
3446 n->m_len + n2->m_len < MCLBYTES) {
3447 m = m_getcl(how, MT_DATA, 0);
3448 if (m == NULL)
3449 goto bad;
3450 bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
3451 bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
3452 n2->m_len);
3453 m->m_len = n->m_len + n2->m_len;
3454 m->m_next = n2->m_next;
3455 *prev = m;
3456 m_free(n);
3457 m_free(n2);
3458 if (--curfrags <= maxfrags) /* +1 cl -2 mbufs */
3459 return m0;
3460 /*
3461 * Still not there, try the normal collapse
3462 * again before we allocate another cluster.
3463 */
3464 goto again;
3465 }
3466 prev = &n->m_next;
3467 }
3468 /*
3469 * No place where we can collapse to a cluster; punt.
3470 * This can occur if, for example, you request 2 frags
3471 * but the packet requires that both be clusters (we
3472 * never reallocate the first mbuf to avoid moving the
3473 * packet header).
3474 */
3475 bad:
3476 return NULL;
3477 }
3478
3479 /*
3480 * Return h/w rate index for an IEEE rate (w/o basic rate bit).
3481 */
3482 static int
3483 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
3484 {
3485 int i;
3486
3487 for (i = 0; i < rt->rateCount; i++)
3488 if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
3489 return i;
3490 return 0; /* NB: lowest rate */
3491 }
3492
3493 static void
3494 ath_freetx(struct mbuf *m)
3495 {
3496 struct mbuf *next;
3497
3498 do {
3499 next = m->m_nextpkt;
3500 m->m_nextpkt = NULL;
3501 m_freem(m);
3502 } while ((m = next) != NULL);
3503 }
3504
3505 static int
3506 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
3507 struct mbuf *m0)
3508 {
3509 struct ieee80211com *ic = &sc->sc_ic;
3510 struct ath_hal *ah = sc->sc_ah;
3511 struct ifnet *ifp = &sc->sc_if;
3512 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
3513 int i, error, iswep, ismcast, isfrag, ismrr;
3514 int keyix, hdrlen, pktlen, try0;
3515 u_int8_t rix, txrate, ctsrate;
3516 u_int8_t cix = 0xff; /* NB: silence compiler */
3517 struct ath_desc *ds, *ds0;
3518 struct ath_txq *txq;
3519 struct ieee80211_frame *wh;
3520 u_int subtype, flags, ctsduration;
3521 HAL_PKT_TYPE atype;
3522 const HAL_RATE_TABLE *rt;
3523 HAL_BOOL shortPreamble;
3524 struct ath_node *an;
3525 struct mbuf *m;
3526 u_int pri;
3527
3528 wh = mtod(m0, struct ieee80211_frame *);
3529 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
3530 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3531 isfrag = m0->m_flags & M_FRAG;
3532 hdrlen = ieee80211_anyhdrsize(wh);
3533 /*
3534 * Packet length must not include any
3535 * pad bytes; deduct them here.
3536 */
3537 pktlen = m0->m_pkthdr.len - (hdrlen & 3);
3538
3539 if (iswep) {
3540 const struct ieee80211_cipher *cip;
3541 struct ieee80211_key *k;
3542
3543 /*
3544 * Construct the 802.11 header+trailer for an encrypted
3545 * frame. The only reason this can fail is because of an
3546 * unknown or unsupported cipher/key type.
3547 */
3548 k = ieee80211_crypto_encap(ic, ni, m0);
3549 if (k == NULL) {
3550 /*
3551 * This can happen when the key is yanked after the
3552 * frame was queued. Just discard the frame; the
3553 * 802.11 layer counts failures and provides
3554 * debugging/diagnostics.
3555 */
3556 ath_freetx(m0);
3557 return EIO;
3558 }
3559 /*
3560 * Adjust the packet + header lengths for the crypto
3561 * additions and calculate the h/w key index. When
3562 * a s/w mic is done the frame will have had any mic
3563 * added to it prior to entry so m0->m_pkthdr.len above will
3564 * account for it. Otherwise we need to add it to the
3565 * packet length.
3566 */
3567 cip = k->wk_cipher;
3568 hdrlen += cip->ic_header;
3569 pktlen += cip->ic_header + cip->ic_trailer;
3570 /* NB: frags always have any TKIP MIC done in s/w */
3571 if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
3572 pktlen += cip->ic_miclen;
3573 keyix = k->wk_keyix;
3574
3575 /* packet header may have moved, reset our local pointer */
3576 wh = mtod(m0, struct ieee80211_frame *);
3577 } else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
3578 /*
3579 * Use station key cache slot, if assigned.
3580 */
3581 keyix = ni->ni_ucastkey.wk_keyix;
3582 if (keyix == IEEE80211_KEYIX_NONE)
3583 keyix = HAL_TXKEYIX_INVALID;
3584 } else
3585 keyix = HAL_TXKEYIX_INVALID;
3586
3587 pktlen += IEEE80211_CRC_LEN;
3588
3589 /*
3590 * Load the DMA map so any coalescing is done. This
3591 * also calculates the number of descriptors we need.
3592 */
3593 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3594 BUS_DMA_NOWAIT);
3595 if (error == EFBIG) {
3596 /* XXX packet requires too many descriptors */
3597 bf->bf_nseg = ATH_TXDESC+1;
3598 } else if (error != 0) {
3599 sc->sc_stats.ast_tx_busdma++;
3600 ath_freetx(m0);
3601 return error;
3602 }
3603 /*
3604 * Discard null packets and check for packets that
3605 * require too many TX descriptors. We try to convert
3606 * the latter to a cluster.
3607 */
3608 if (error == EFBIG) { /* too many desc's, linearize */
3609 sc->sc_stats.ast_tx_linear++;
3610 m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
3611 if (m == NULL) {
3612 ath_freetx(m0);
3613 sc->sc_stats.ast_tx_nombuf++;
3614 return ENOMEM;
3615 }
3616 m0 = m;
3617 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3618 BUS_DMA_NOWAIT);
3619 if (error != 0) {
3620 sc->sc_stats.ast_tx_busdma++;
3621 ath_freetx(m0);
3622 return error;
3623 }
3624 KASSERT(bf->bf_nseg <= ATH_TXDESC,
3625 ("too many segments after defrag; nseg %u", bf->bf_nseg));
3626 } else if (bf->bf_nseg == 0) { /* null packet, discard */
3627 sc->sc_stats.ast_tx_nodata++;
3628 ath_freetx(m0);
3629 return EIO;
3630 }
3631 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
3632 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
3633 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
3634 bf->bf_m = m0;
3635 bf->bf_node = ni; /* NB: held reference */
3636
3637 /* setup descriptors */
3638 ds = bf->bf_desc;
3639 rt = sc->sc_currates;
3640 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3641
3642 /*
3643 * NB: the 802.11 layer marks whether or not we should
3644 * use short preamble based on the current mode and
3645 * negotiated parameters.
3646 */
3647 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3648 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) {
3649 shortPreamble = AH_TRUE;
3650 sc->sc_stats.ast_tx_shortpre++;
3651 } else {
3652 shortPreamble = AH_FALSE;
3653 }
3654
3655 an = ATH_NODE(ni);
3656 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */
3657 ismrr = 0; /* default no multi-rate retry*/
3658 /*
3659 * Calculate Atheros packet type from IEEE80211 packet header,
3660 * setup for rate calculations, and select h/w transmit queue.
3661 */
3662 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3663 case IEEE80211_FC0_TYPE_MGT:
3664 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3665 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
3666 atype = HAL_PKT_TYPE_BEACON;
3667 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3668 atype = HAL_PKT_TYPE_PROBE_RESP;
3669 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
3670 atype = HAL_PKT_TYPE_ATIM;
3671 else
3672 atype = HAL_PKT_TYPE_NORMAL; /* XXX */
3673 rix = sc->sc_minrateix;
3674 txrate = rt->info[rix].rateCode;
3675 if (shortPreamble)
3676 txrate |= rt->info[rix].shortPreamble;
3677 try0 = ATH_TXMGTTRY;
3678 /* NB: force all management frames to highest queue */
3679 if (ni->ni_flags & IEEE80211_NODE_QOS) {
3680 /* NB: force all management frames to highest queue */
3681 pri = WME_AC_VO;
3682 } else
3683 pri = WME_AC_BE;
3684 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
3685 break;
3686 case IEEE80211_FC0_TYPE_CTL:
3687 atype = HAL_PKT_TYPE_PSPOLL; /* stop setting of duration */
3688 rix = sc->sc_minrateix;
3689 txrate = rt->info[rix].rateCode;
3690 if (shortPreamble)
3691 txrate |= rt->info[rix].shortPreamble;
3692 try0 = ATH_TXMGTTRY;
3693 /* NB: force all ctl frames to highest queue */
3694 if (ni->ni_flags & IEEE80211_NODE_QOS) {
3695 /* NB: force all ctl frames to highest queue */
3696 pri = WME_AC_VO;
3697 } else
3698 pri = WME_AC_BE;
3699 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
3700 break;
3701 case IEEE80211_FC0_TYPE_DATA:
3702 atype = HAL_PKT_TYPE_NORMAL; /* default */
3703 /*
3704 * Data frames: multicast frames go out at a fixed rate,
3705 * otherwise consult the rate control module for the
3706 * rate to use.
3707 */
3708 if (ismcast) {
3709 /*
3710 * Check mcast rate setting in case it's changed.
3711 * XXX move out of fastpath
3712 */
3713 if (ic->ic_mcast_rate != sc->sc_mcastrate) {
3714 sc->sc_mcastrix =
3715 ath_tx_findrix(rt, ic->ic_mcast_rate);
3716 sc->sc_mcastrate = ic->ic_mcast_rate;
3717 }
3718 rix = sc->sc_mcastrix;
3719 txrate = rt->info[rix].rateCode;
3720 try0 = 1;
3721 } else {
3722 ath_rate_findrate(sc, an, shortPreamble, pktlen,
3723 &rix, &try0, &txrate);
3724 sc->sc_txrate = txrate; /* for LED blinking */
3725 if (try0 != ATH_TXMAXTRY)
3726 ismrr = 1;
3727 }
3728 pri = M_WME_GETAC(m0);
3729 if (cap->cap_wmeParams[pri].wmep_noackPolicy)
3730 flags |= HAL_TXDESC_NOACK;
3731 break;
3732 default:
3733 if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3734 wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3735 /* XXX statistic */
3736 ath_freetx(m0);
3737 return EIO;
3738 }
3739 txq = sc->sc_ac2q[pri];
3740
3741 /*
3742 * When servicing one or more stations in power-save mode
3743 * multicast frames must be buffered until after the beacon.
3744 * We use the CAB queue for that.
3745 */
3746 if (ismcast && ic->ic_ps_sta) {
3747 txq = sc->sc_cabq;
3748 /* XXX? more bit in 802.11 frame header */
3749 }
3750
3751 /*
3752 * Calculate miscellaneous flags.
3753 */
3754 if (ismcast) {
3755 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */
3756 } else if (pktlen > ic->ic_rtsthreshold) {
3757 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */
3758 cix = rt->info[rix].controlRate;
3759 sc->sc_stats.ast_tx_rts++;
3760 }
3761 if (flags & HAL_TXDESC_NOACK) /* NB: avoid double counting */
3762 sc->sc_stats.ast_tx_noack++;
3763
3764 /*
3765 * If 802.11g protection is enabled, determine whether
3766 * to use RTS/CTS or just CTS. Note that this is only
3767 * done for OFDM unicast frames.
3768 */
3769 if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3770 rt->info[rix].phy == IEEE80211_T_OFDM &&
3771 (flags & HAL_TXDESC_NOACK) == 0) {
3772 /* XXX fragments must use CCK rates w/ protection */
3773 if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3774 flags |= HAL_TXDESC_RTSENA;
3775 else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3776 flags |= HAL_TXDESC_CTSENA;
3777 if (isfrag) {
3778 /*
3779 * For frags it would be desirable to use the
3780 * highest CCK rate for RTS/CTS. But stations
3781 * farther away may detect it at a lower CCK rate
3782 * so use the configured protection rate instead
3783 * (for now).
3784 */
3785 cix = rt->info[sc->sc_protrix].controlRate;
3786 } else
3787 cix = rt->info[sc->sc_protrix].controlRate;
3788 sc->sc_stats.ast_tx_protect++;
3789 }
3790
3791 /*
3792 * Calculate duration. This logically belongs in the 802.11
3793 * layer but it lacks sufficient information to calculate it.
3794 */
3795 if ((flags & HAL_TXDESC_NOACK) == 0 &&
3796 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
3797 u_int16_t dur;
3798 /*
3799 * XXX not right with fragmentation.
3800 */
3801 if (shortPreamble)
3802 dur = rt->info[rix].spAckDuration;
3803 else
3804 dur = rt->info[rix].lpAckDuration;
3805 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
3806 dur += dur; /* additional SIFS+ACK */
3807 KASSERT(m0->m_nextpkt != NULL, ("no fragment"));
3808 /*
3809 * Include the size of next fragment so NAV is
3810 * updated properly. The last fragment uses only
3811 * the ACK duration
3812 */
3813 dur += ath_hal_computetxtime(ah, rt,
3814 m0->m_nextpkt->m_pkthdr.len,
3815 rix, shortPreamble);
3816 }
3817 if (isfrag) {
3818 /*
3819 * Force hardware to use computed duration for next
3820 * fragment by disabling multi-rate retry which updates
3821 * duration based on the multi-rate duration table.
3822 */
3823 try0 = ATH_TXMAXTRY;
3824 }
3825 *(u_int16_t *)wh->i_dur = htole16(dur);
3826 }
3827
3828 /*
3829 * Calculate RTS/CTS rate and duration if needed.
3830 */
3831 ctsduration = 0;
3832 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
3833 /*
3834 * CTS transmit rate is derived from the transmit rate
3835 * by looking in the h/w rate table. We must also factor
3836 * in whether or not a short preamble is to be used.
3837 */
3838 /* NB: cix is set above where RTS/CTS is enabled */
3839 KASSERT(cix != 0xff, ("cix not setup"));
3840 ctsrate = rt->info[cix].rateCode;
3841 /*
3842 * Compute the transmit duration based on the frame
3843 * size and the size of an ACK frame. We call into the
3844 * HAL to do the computation since it depends on the
3845 * characteristics of the actual PHY being used.
3846 *
3847 * NB: CTS is assumed the same size as an ACK so we can
3848 * use the precalculated ACK durations.
3849 */
3850 if (shortPreamble) {
3851 ctsrate |= rt->info[cix].shortPreamble;
3852 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
3853 ctsduration += rt->info[cix].spAckDuration;
3854 ctsduration += ath_hal_computetxtime(ah,
3855 rt, pktlen, rix, AH_TRUE);
3856 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
3857 ctsduration += rt->info[rix].spAckDuration;
3858 } else {
3859 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
3860 ctsduration += rt->info[cix].lpAckDuration;
3861 ctsduration += ath_hal_computetxtime(ah,
3862 rt, pktlen, rix, AH_FALSE);
3863 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
3864 ctsduration += rt->info[rix].lpAckDuration;
3865 }
3866 /*
3867 * Must disable multi-rate retry when using RTS/CTS.
3868 */
3869 ismrr = 0;
3870 try0 = ATH_TXMGTTRY; /* XXX */
3871 } else
3872 ctsrate = 0;
3873
3874 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3875 ieee80211_dump_pkt(mtod(m0, void *), m0->m_len,
3876 sc->sc_hwmap[txrate].ieeerate, -1);
3877 #if NBPFILTER > 0
3878 if (ic->ic_rawbpf)
3879 bpf_mtap(ic->ic_rawbpf, m0);
3880 if (sc->sc_drvbpf) {
3881 u_int64_t tsf = ath_hal_gettsf64(ah);
3882
3883 sc->sc_tx_th.wt_tsf = htole64(tsf);
3884 sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
3885 if (iswep)
3886 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3887 if (isfrag)
3888 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
3889 sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
3890 sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3891 sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3892
3893 bpf_mtap2(sc->sc_drvbpf,
3894 &sc->sc_tx_th, sc->sc_tx_th_len, m0);
3895 }
3896 #endif
3897
3898 /*
3899 * Determine if a tx interrupt should be generated for
3900 * this descriptor. We take a tx interrupt to reap
3901 * descriptors when the h/w hits an EOL condition or
3902 * when the descriptor is specifically marked to generate
3903 * an interrupt. We periodically mark descriptors in this
3904 * way to insure timely replenishing of the supply needed
3905 * for sending frames. Defering interrupts reduces system
3906 * load and potentially allows more concurrent work to be
3907 * done but if done to aggressively can cause senders to
3908 * backup.
3909 *
3910 * NB: use >= to deal with sc_txintrperiod changing
3911 * dynamically through sysctl.
3912 */
3913 if (flags & HAL_TXDESC_INTREQ) {
3914 txq->axq_intrcnt = 0;
3915 } else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
3916 flags |= HAL_TXDESC_INTREQ;
3917 txq->axq_intrcnt = 0;
3918 }
3919
3920 /*
3921 * Formulate first tx descriptor with tx controls.
3922 */
3923 /* XXX check return value? */
3924 ath_hal_setuptxdesc(ah, ds
3925 , pktlen /* packet length */
3926 , hdrlen /* header length */
3927 , atype /* Atheros packet type */
3928 , ni->ni_txpower /* txpower */
3929 , txrate, try0 /* series 0 rate/tries */
3930 , keyix /* key cache index */
3931 , sc->sc_txantenna /* antenna mode */
3932 , flags /* flags */
3933 , ctsrate /* rts/cts rate */
3934 , ctsduration /* rts/cts duration */
3935 );
3936 bf->bf_flags = flags;
3937 /*
3938 * Setup the multi-rate retry state only when we're
3939 * going to use it. This assumes ath_hal_setuptxdesc
3940 * initializes the descriptors (so we don't have to)
3941 * when the hardware supports multi-rate retry and
3942 * we don't use it.
3943 */
3944 if (ismrr)
3945 ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
3946
3947 /*
3948 * Fillin the remainder of the descriptor info.
3949 */
3950 ds0 = ds;
3951 for (i = 0; i < bf->bf_nseg; i++, ds++) {
3952 ds->ds_data = bf->bf_segs[i].ds_addr;
3953 if (i == bf->bf_nseg - 1)
3954 ds->ds_link = 0;
3955 else
3956 ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
3957 ath_hal_filltxdesc(ah, ds
3958 , bf->bf_segs[i].ds_len /* segment length */
3959 , i == 0 /* first segment */
3960 , i == bf->bf_nseg - 1 /* last segment */
3961 , ds0 /* first descriptor */
3962 );
3963
3964 /* NB: The desc swap function becomes void,
3965 * if descriptor swapping is not enabled
3966 */
3967 ath_desc_swap(ds);
3968
3969 DPRINTF(sc, ATH_DEBUG_XMIT,
3970 "%s: %d: %08x %08x %08x %08x %08x %08x\n",
3971 __func__, i, ds->ds_link, ds->ds_data,
3972 ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
3973 }
3974 /*
3975 * Insert the frame on the outbound list and
3976 * pass it on to the hardware.
3977 */
3978 ATH_TXQ_LOCK(txq);
3979 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
3980 if (txq->axq_link == NULL) {
3981 ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
3982 DPRINTF(sc, ATH_DEBUG_XMIT,
3983 "%s: TXDP[%u] = %" PRIx64 " (%p) depth %d\n", __func__,
3984 txq->axq_qnum, (uint64_t)bf->bf_daddr, bf->bf_desc,
3985 txq->axq_depth);
3986 } else {
3987 *txq->axq_link = HTOAH32(bf->bf_daddr);
3988 DPRINTF(sc, ATH_DEBUG_XMIT,
3989 "%s: link[%u](%p)=%" PRIx64 " (%p) depth %d\n",
3990 __func__, txq->axq_qnum, txq->axq_link,
3991 (uint64_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
3992 }
3993 txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
3994 /*
3995 * The CAB queue is started from the SWBA handler since
3996 * frames only go out on DTIM and to avoid possible races.
3997 */
3998 if (txq != sc->sc_cabq)
3999 ath_hal_txstart(ah, txq->axq_qnum);
4000 ATH_TXQ_UNLOCK(txq);
4001
4002 return 0;
4003 }
4004
4005 /*
4006 * Process completed xmit descriptors from the specified queue.
4007 */
4008 static int
4009 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
4010 {
4011 struct ath_hal *ah = sc->sc_ah;
4012 struct ieee80211com *ic = &sc->sc_ic;
4013 struct ath_buf *bf;
4014 struct ath_desc *ds, *ds0;
4015 struct ieee80211_node *ni;
4016 struct ath_node *an;
4017 int sr, lr, pri, nacked;
4018 HAL_STATUS status;
4019
4020 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
4021 __func__, txq->axq_qnum,
4022 (void *)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4023 txq->axq_link);
4024 nacked = 0;
4025 for (;;) {
4026 ATH_TXQ_LOCK(txq);
4027 txq->axq_intrcnt = 0; /* reset periodic desc intr count */
4028 bf = STAILQ_FIRST(&txq->axq_q);
4029 if (bf == NULL) {
4030 txq->axq_link = NULL;
4031 ATH_TXQ_UNLOCK(txq);
4032 break;
4033 }
4034 ds0 = &bf->bf_desc[0];
4035 ds = &bf->bf_desc[bf->bf_nseg - 1];
4036 status = ath_hal_txprocdesc(ah, ds);
4037 #ifdef AR_DEBUG
4038 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
4039 ath_printtxbuf(bf, status == HAL_OK);
4040 #endif
4041 if (status == HAL_EINPROGRESS) {
4042 ATH_TXQ_UNLOCK(txq);
4043 break;
4044 }
4045 ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4046 ATH_TXQ_UNLOCK(txq);
4047
4048 ni = bf->bf_node;
4049 if (ni != NULL) {
4050 an = ATH_NODE(ni);
4051 if (ds->ds_txstat.ts_status == 0) {
4052 u_int8_t txant = ds->ds_txstat.ts_antenna;
4053 sc->sc_stats.ast_ant_tx[txant]++;
4054 sc->sc_ant_tx[txant]++;
4055 if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
4056 sc->sc_stats.ast_tx_altrate++;
4057 sc->sc_stats.ast_tx_rssi =
4058 ds->ds_txstat.ts_rssi;
4059 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
4060 ds->ds_txstat.ts_rssi);
4061 pri = M_WME_GETAC(bf->bf_m);
4062 if (pri >= WME_AC_VO)
4063 ic->ic_wme.wme_hipri_traffic++;
4064 ni->ni_inact = ni->ni_inact_reload;
4065 } else {
4066 if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
4067 sc->sc_stats.ast_tx_xretries++;
4068 if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
4069 sc->sc_stats.ast_tx_fifoerr++;
4070 if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
4071 sc->sc_stats.ast_tx_filtered++;
4072 }
4073 sr = ds->ds_txstat.ts_shortretry;
4074 lr = ds->ds_txstat.ts_longretry;
4075 sc->sc_stats.ast_tx_shortretry += sr;
4076 sc->sc_stats.ast_tx_longretry += lr;
4077 /*
4078 * Hand the descriptor to the rate control algorithm.
4079 */
4080 if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
4081 (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
4082 /*
4083 * If frame was ack'd update the last rx time
4084 * used to workaround phantom bmiss interrupts.
4085 */
4086 if (ds->ds_txstat.ts_status == 0)
4087 nacked++;
4088 ath_rate_tx_complete(sc, an, ds, ds0);
4089 }
4090 /*
4091 * Reclaim reference to node.
4092 *
4093 * NB: the node may be reclaimed here if, for example
4094 * this is a DEAUTH message that was sent and the
4095 * node was timed out due to inactivity.
4096 */
4097 ieee80211_free_node(ni);
4098 }
4099 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
4100 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4101 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4102 m_freem(bf->bf_m);
4103 bf->bf_m = NULL;
4104 bf->bf_node = NULL;
4105
4106 ATH_TXBUF_LOCK(sc);
4107 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4108 sc->sc_if.if_flags &= ~IFF_OACTIVE;
4109 ATH_TXBUF_UNLOCK(sc);
4110 }
4111 return nacked;
4112 }
4113
4114 static inline int
4115 txqactive(struct ath_hal *ah, int qnum)
4116 {
4117 u_int32_t txqs = 1<<qnum;
4118 ath_hal_gettxintrtxqs(ah, &txqs);
4119 return (txqs & (1<<qnum));
4120 }
4121
4122 /*
4123 * Deferred processing of transmit interrupt; special-cased
4124 * for a single hardware transmit queue (e.g. 5210 and 5211).
4125 */
4126 static void
4127 ath_tx_proc_q0(void *arg, int npending)
4128 {
4129 struct ath_softc *sc = arg;
4130 struct ifnet *ifp = &sc->sc_if;
4131
4132 if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]) > 0){
4133 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4134 }
4135 if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4136 ath_tx_processq(sc, sc->sc_cabq);
4137
4138 if (sc->sc_softled)
4139 ath_led_event(sc, ATH_LED_TX);
4140
4141 ath_start(ifp);
4142 }
4143
4144 /*
4145 * Deferred processing of transmit interrupt; special-cased
4146 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4147 */
4148 static void
4149 ath_tx_proc_q0123(void *arg, int npending)
4150 {
4151 struct ath_softc *sc = arg;
4152 struct ifnet *ifp = &sc->sc_if;
4153 int nacked;
4154
4155 /*
4156 * Process each active queue.
4157 */
4158 nacked = 0;
4159 if (txqactive(sc->sc_ah, 0))
4160 nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
4161 if (txqactive(sc->sc_ah, 1))
4162 nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
4163 if (txqactive(sc->sc_ah, 2))
4164 nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
4165 if (txqactive(sc->sc_ah, 3))
4166 nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
4167 if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4168 ath_tx_processq(sc, sc->sc_cabq);
4169 if (nacked) {
4170 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4171 }
4172 ath_tx_processq(sc, sc->sc_cabq);
4173
4174 if (sc->sc_softled)
4175 ath_led_event(sc, ATH_LED_TX);
4176
4177 ath_start(ifp);
4178 }
4179
4180 /*
4181 * Deferred processing of transmit interrupt.
4182 */
4183 static void
4184 ath_tx_proc(void *arg, int npending)
4185 {
4186 struct ath_softc *sc = arg;
4187 struct ifnet *ifp = &sc->sc_if;
4188 int i, nacked;
4189
4190 /*
4191 * Process each active queue.
4192 */
4193 nacked = 0;
4194 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4195 if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
4196 nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
4197 if (nacked) {
4198 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4199 }
4200
4201 if (sc->sc_softled)
4202 ath_led_event(sc, ATH_LED_TX);
4203
4204 ath_start(ifp);
4205 }
4206
4207 static void
4208 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
4209 {
4210 struct ath_hal *ah = sc->sc_ah;
4211 struct ieee80211_node *ni;
4212 struct ath_buf *bf;
4213
4214 /*
4215 * NB: this assumes output has been stopped and
4216 * we do not need to block ath_tx_tasklet
4217 */
4218 for (;;) {
4219 ATH_TXQ_LOCK(txq);
4220 bf = STAILQ_FIRST(&txq->axq_q);
4221 if (bf == NULL) {
4222 txq->axq_link = NULL;
4223 ATH_TXQ_UNLOCK(txq);
4224 break;
4225 }
4226 ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4227 ATH_TXQ_UNLOCK(txq);
4228 #ifdef AR_DEBUG
4229 if (sc->sc_debug & ATH_DEBUG_RESET)
4230 ath_printtxbuf(bf,
4231 ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
4232 #endif /* AR_DEBUG */
4233 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4234 m_freem(bf->bf_m);
4235 bf->bf_m = NULL;
4236 ni = bf->bf_node;
4237 bf->bf_node = NULL;
4238 if (ni != NULL) {
4239 /*
4240 * Reclaim node reference.
4241 */
4242 ieee80211_free_node(ni);
4243 }
4244 ATH_TXBUF_LOCK(sc);
4245 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4246 sc->sc_if.if_flags &= ~IFF_OACTIVE;
4247 ATH_TXBUF_UNLOCK(sc);
4248 }
4249 }
4250
4251 static void
4252 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4253 {
4254 struct ath_hal *ah = sc->sc_ah;
4255
4256 (void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4257 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4258 __func__, txq->axq_qnum,
4259 (void *)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4260 txq->axq_link);
4261 }
4262
4263 /*
4264 * Drain the transmit queues and reclaim resources.
4265 */
4266 static void
4267 ath_draintxq(struct ath_softc *sc)
4268 {
4269 struct ath_hal *ah = sc->sc_ah;
4270 int i;
4271
4272 /* XXX return value */
4273 if (!sc->sc_invalid) {
4274 /* don't touch the hardware if marked invalid */
4275 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4276 DPRINTF(sc, ATH_DEBUG_RESET,
4277 "%s: beacon queue %p\n", __func__,
4278 (void *)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
4279 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4280 if (ATH_TXQ_SETUP(sc, i))
4281 ath_tx_stopdma(sc, &sc->sc_txq[i]);
4282 }
4283 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4284 if (ATH_TXQ_SETUP(sc, i))
4285 ath_tx_draintxq(sc, &sc->sc_txq[i]);
4286 }
4287
4288 /*
4289 * Disable the receive h/w in preparation for a reset.
4290 */
4291 static void
4292 ath_stoprecv(struct ath_softc *sc)
4293 {
4294 #define PA2DESC(_sc, _pa) \
4295 ((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
4296 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
4297 struct ath_hal *ah = sc->sc_ah;
4298
4299 ath_hal_stoppcurecv(ah); /* disable PCU */
4300 ath_hal_setrxfilter(ah, 0); /* clear recv filter */
4301 ath_hal_stopdmarecv(ah); /* disable DMA engine */
4302 DELAY(3000); /* 3ms is long enough for 1 frame */
4303 #ifdef AR_DEBUG
4304 if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
4305 struct ath_buf *bf;
4306
4307 printf("%s: rx queue %p, link %p\n", __func__,
4308 (void *)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
4309 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4310 struct ath_desc *ds = bf->bf_desc;
4311 HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
4312 bf->bf_daddr, PA2DESC(sc, ds->ds_link));
4313 if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
4314 ath_printrxbuf(bf, status == HAL_OK);
4315 }
4316 }
4317 #endif
4318 sc->sc_rxlink = NULL; /* just in case */
4319 #undef PA2DESC
4320 }
4321
4322 /*
4323 * Enable the receive h/w following a reset.
4324 */
4325 static int
4326 ath_startrecv(struct ath_softc *sc)
4327 {
4328 struct ath_hal *ah = sc->sc_ah;
4329 struct ath_buf *bf;
4330
4331 sc->sc_rxlink = NULL;
4332 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4333 int error = ath_rxbuf_init(sc, bf);
4334 if (error != 0) {
4335 DPRINTF(sc, ATH_DEBUG_RECV,
4336 "%s: ath_rxbuf_init failed %d\n",
4337 __func__, error);
4338 return error;
4339 }
4340 }
4341
4342 bf = STAILQ_FIRST(&sc->sc_rxbuf);
4343 ath_hal_putrxbuf(ah, bf->bf_daddr);
4344 ath_hal_rxena(ah); /* enable recv descriptors */
4345 ath_mode_init(sc); /* set filters, etc. */
4346 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */
4347 return 0;
4348 }
4349
4350 /*
4351 * Update internal state after a channel change.
4352 */
4353 static void
4354 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4355 {
4356 struct ieee80211com *ic = &sc->sc_ic;
4357 enum ieee80211_phymode mode;
4358 u_int16_t flags;
4359
4360 /*
4361 * Change channels and update the h/w rate map
4362 * if we're switching; e.g. 11a to 11b/g.
4363 */
4364 mode = ieee80211_chan2mode(ic, chan);
4365 if (mode != sc->sc_curmode)
4366 ath_setcurmode(sc, mode);
4367 /*
4368 * Update BPF state. NB: ethereal et. al. don't handle
4369 * merged flags well so pick a unique mode for their use.
4370 */
4371 if (IEEE80211_IS_CHAN_A(chan))
4372 flags = IEEE80211_CHAN_A;
4373 /* XXX 11g schizophrenia */
4374 else if (IEEE80211_IS_CHAN_G(chan) ||
4375 IEEE80211_IS_CHAN_PUREG(chan))
4376 flags = IEEE80211_CHAN_G;
4377 else
4378 flags = IEEE80211_CHAN_B;
4379 if (IEEE80211_IS_CHAN_T(chan))
4380 flags |= IEEE80211_CHAN_TURBO;
4381 sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
4382 htole16(chan->ic_freq);
4383 sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
4384 htole16(flags);
4385 }
4386
4387 /*
4388 * Poll for a channel clear indication; this is required
4389 * for channels requiring DFS and not previously visited
4390 * and/or with a recent radar detection.
4391 */
4392 static void
4393 ath_dfswait(void *arg)
4394 {
4395 struct ath_softc *sc = arg;
4396 struct ath_hal *ah = sc->sc_ah;
4397 HAL_CHANNEL hchan;
4398
4399 ath_hal_radar_wait(ah, &hchan);
4400 if (hchan.privFlags & CHANNEL_INTERFERENCE) {
4401 if_printf(&sc->sc_if,
4402 "channel %u/0x%x/0x%x has interference\n",
4403 hchan.channel, hchan.channelFlags, hchan.privFlags);
4404 return;
4405 }
4406 if ((hchan.privFlags & CHANNEL_DFS) == 0) {
4407 /* XXX should not happen */
4408 return;
4409 }
4410 if (hchan.privFlags & CHANNEL_DFS_CLEAR) {
4411 sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR;
4412 sc->sc_if.if_flags &= ~IFF_OACTIVE;
4413 if_printf(&sc->sc_if,
4414 "channel %u/0x%x/0x%x marked clear\n",
4415 hchan.channel, hchan.channelFlags, hchan.privFlags);
4416 } else
4417 callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc);
4418 }
4419
4420 /*
4421 * Set/change channels. If the channel is really being changed,
4422 * it's done by reseting the chip. To accomplish this we must
4423 * first cleanup any pending DMA, then restart stuff after a la
4424 * ath_init.
4425 */
4426 static int
4427 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4428 {
4429 struct ath_hal *ah = sc->sc_ah;
4430 struct ieee80211com *ic = &sc->sc_ic;
4431 HAL_CHANNEL hchan;
4432
4433 /*
4434 * Convert to a HAL channel description with
4435 * the flags constrained to reflect the current
4436 * operating mode.
4437 */
4438 hchan.channel = chan->ic_freq;
4439 hchan.channelFlags = ath_chan2flags(ic, chan);
4440
4441 DPRINTF(sc, ATH_DEBUG_RESET,
4442 "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
4443 __func__,
4444 ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
4445 sc->sc_curchan.channelFlags),
4446 sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
4447 ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
4448 hchan.channel, hchan.channelFlags);
4449 if (hchan.channel != sc->sc_curchan.channel ||
4450 hchan.channelFlags != sc->sc_curchan.channelFlags) {
4451 HAL_STATUS status;
4452
4453 /*
4454 * To switch channels clear any pending DMA operations;
4455 * wait long enough for the RX fifo to drain, reset the
4456 * hardware at the new frequency, and then re-enable
4457 * the relevant bits of the h/w.
4458 */
4459 ath_hal_intrset(ah, 0); /* disable interrupts */
4460 ath_draintxq(sc); /* clear pending tx frames */
4461 ath_stoprecv(sc); /* turn off frame recv */
4462 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
4463 if_printf(ic->ic_ifp, "%s: unable to reset "
4464 "channel %u (%u MHz, flags 0x%x hal flags 0x%x)\n",
4465 __func__, ieee80211_chan2ieee(ic, chan),
4466 chan->ic_freq, chan->ic_flags, hchan.channelFlags);
4467 return EIO;
4468 }
4469 sc->sc_curchan = hchan;
4470 ath_update_txpow(sc); /* update tx power state */
4471 sc->sc_diversity = ath_hal_getdiversity(ah);
4472 sc->sc_calinterval = 1;
4473 sc->sc_caltries = 0;
4474
4475 /*
4476 * Re-enable rx framework.
4477 */
4478 if (ath_startrecv(sc) != 0) {
4479 if_printf(&sc->sc_if,
4480 "%s: unable to restart recv logic\n", __func__);
4481 return EIO;
4482 }
4483
4484 /*
4485 * Change channels and update the h/w rate map
4486 * if we're switching; e.g. 11a to 11b/g.
4487 */
4488 ic->ic_ibss_chan = chan;
4489 ath_chan_change(sc, chan);
4490
4491 /*
4492 * Handle DFS required waiting period to determine
4493 * if channel is clear of radar traffic.
4494 */
4495 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
4496 #define DFS_AND_NOT_CLEAR(_c) \
4497 (((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS)
4498 if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) {
4499 if_printf(&sc->sc_if,
4500 "wait for DFS clear channel signal\n");
4501 /* XXX stop sndq */
4502 sc->sc_if.if_flags |= IFF_OACTIVE;
4503 callout_reset(&sc->sc_dfs_ch,
4504 2 * hz, ath_dfswait, sc);
4505 } else
4506 callout_stop(&sc->sc_dfs_ch);
4507 #undef DFS_NOT_CLEAR
4508 }
4509
4510 /*
4511 * Re-enable interrupts.
4512 */
4513 ath_hal_intrset(ah, sc->sc_imask);
4514 }
4515 return 0;
4516 }
4517
4518 static void
4519 ath_next_scan(void *arg)
4520 {
4521 struct ath_softc *sc = arg;
4522 struct ieee80211com *ic = &sc->sc_ic;
4523 int s;
4524
4525 /* don't call ath_start w/o network interrupts blocked */
4526 s = splnet();
4527
4528 if (ic->ic_state == IEEE80211_S_SCAN)
4529 ieee80211_next_scan(ic);
4530 splx(s);
4531 }
4532
4533 /*
4534 * Periodically recalibrate the PHY to account
4535 * for temperature/environment changes.
4536 */
4537 static void
4538 ath_calibrate(void *arg)
4539 {
4540 struct ath_softc *sc = arg;
4541 struct ath_hal *ah = sc->sc_ah;
4542 HAL_BOOL iqCalDone;
4543
4544 sc->sc_stats.ast_per_cal++;
4545
4546 ATH_LOCK(sc);
4547
4548 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4549 /*
4550 * Rfgain is out of bounds, reset the chip
4551 * to load new gain values.
4552 */
4553 DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4554 "%s: rfgain change\n", __func__);
4555 sc->sc_stats.ast_per_rfgain++;
4556 ath_reset(&sc->sc_if);
4557 }
4558 if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
4559 DPRINTF(sc, ATH_DEBUG_ANY,
4560 "%s: calibration of channel %u failed\n",
4561 __func__, sc->sc_curchan.channel);
4562 sc->sc_stats.ast_per_calfail++;
4563 }
4564 /*
4565 * Calibrate noise floor data again in case of change.
4566 */
4567 ath_hal_process_noisefloor(ah);
4568 /*
4569 * Poll more frequently when the IQ calibration is in
4570 * progress to speedup loading the final settings.
4571 * We temper this aggressive polling with an exponential
4572 * back off after 4 tries up to ath_calinterval.
4573 */
4574 if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
4575 sc->sc_caltries = 0;
4576 sc->sc_calinterval = ath_calinterval;
4577 } else if (sc->sc_caltries > 4) {
4578 sc->sc_caltries = 0;
4579 sc->sc_calinterval <<= 1;
4580 if (sc->sc_calinterval > ath_calinterval)
4581 sc->sc_calinterval = ath_calinterval;
4582 }
4583 KASSERT(0 < sc->sc_calinterval && sc->sc_calinterval <= ath_calinterval,
4584 ("bad calibration interval %u", sc->sc_calinterval));
4585
4586 DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4587 "%s: next +%u (%siqCalDone tries %u)\n", __func__,
4588 sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
4589 sc->sc_caltries++;
4590 callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4591 ath_calibrate, sc);
4592 ATH_UNLOCK(sc);
4593 }
4594
4595 static int
4596 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
4597 {
4598 struct ifnet *ifp = ic->ic_ifp;
4599 struct ath_softc *sc = ifp->if_softc;
4600 struct ath_hal *ah = sc->sc_ah;
4601 struct ieee80211_node *ni;
4602 int i, error;
4603 const u_int8_t *bssid;
4604 u_int32_t rfilt;
4605 static const HAL_LED_STATE leds[] = {
4606 HAL_LED_INIT, /* IEEE80211_S_INIT */
4607 HAL_LED_SCAN, /* IEEE80211_S_SCAN */
4608 HAL_LED_AUTH, /* IEEE80211_S_AUTH */
4609 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */
4610 HAL_LED_RUN, /* IEEE80211_S_RUN */
4611 };
4612
4613 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4614 ieee80211_state_name[ic->ic_state],
4615 ieee80211_state_name[nstate]);
4616
4617 callout_stop(&sc->sc_scan_ch);
4618 callout_stop(&sc->sc_cal_ch);
4619 callout_stop(&sc->sc_dfs_ch);
4620 ath_hal_setledstate(ah, leds[nstate]); /* set LED */
4621
4622 if (nstate == IEEE80211_S_INIT) {
4623 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4624 /*
4625 * NB: disable interrupts so we don't rx frames.
4626 */
4627 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4628 /*
4629 * Notify the rate control algorithm.
4630 */
4631 ath_rate_newstate(sc, nstate);
4632 goto done;
4633 }
4634 ni = ic->ic_bss;
4635 error = ath_chan_set(sc, ic->ic_curchan);
4636 if (error != 0)
4637 goto bad;
4638 rfilt = ath_calcrxfilter(sc, nstate);
4639 if (nstate == IEEE80211_S_SCAN)
4640 bssid = ifp->if_broadcastaddr;
4641 else
4642 bssid = ni->ni_bssid;
4643 ath_hal_setrxfilter(ah, rfilt);
4644 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
4645 __func__, rfilt, ether_sprintf(bssid));
4646
4647 if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
4648 ath_hal_setassocid(ah, bssid, ni->ni_associd);
4649 else
4650 ath_hal_setassocid(ah, bssid, 0);
4651 if (ic->ic_flags & IEEE80211_F_PRIVACY) {
4652 for (i = 0; i < IEEE80211_WEP_NKID; i++)
4653 if (ath_hal_keyisvalid(ah, i))
4654 ath_hal_keysetmac(ah, i, bssid);
4655 }
4656
4657 /*
4658 * Notify the rate control algorithm so rates
4659 * are setup should ath_beacon_alloc be called.
4660 */
4661 ath_rate_newstate(sc, nstate);
4662
4663 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4664 /* nothing to do */;
4665 } else if (nstate == IEEE80211_S_RUN) {
4666 DPRINTF(sc, ATH_DEBUG_STATE,
4667 "%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
4668 "capinfo=0x%04x chan=%d\n"
4669 , __func__
4670 , ic->ic_flags
4671 , ni->ni_intval
4672 , ether_sprintf(ni->ni_bssid)
4673 , ni->ni_capinfo
4674 , ieee80211_chan2ieee(ic, ic->ic_curchan));
4675
4676 switch (ic->ic_opmode) {
4677 case IEEE80211_M_HOSTAP:
4678 case IEEE80211_M_IBSS:
4679 /*
4680 * Allocate and setup the beacon frame.
4681 *
4682 * Stop any previous beacon DMA. This may be
4683 * necessary, for example, when an ibss merge
4684 * causes reconfiguration; there will be a state
4685 * transition from RUN->RUN that means we may
4686 * be called with beacon transmission active.
4687 */
4688 ath_hal_stoptxdma(ah, sc->sc_bhalq);
4689 ath_beacon_free(sc);
4690 error = ath_beacon_alloc(sc, ni);
4691 if (error != 0)
4692 goto bad;
4693 /*
4694 * If joining an adhoc network defer beacon timer
4695 * configuration to the next beacon frame so we
4696 * have a current TSF to use. Otherwise we're
4697 * starting an ibss/bss so there's no need to delay.
4698 */
4699 if (ic->ic_opmode == IEEE80211_M_IBSS &&
4700 ic->ic_bss->ni_tstamp.tsf != 0)
4701 sc->sc_syncbeacon = 1;
4702 else
4703 ath_beacon_config(sc);
4704 break;
4705 case IEEE80211_M_STA:
4706 /*
4707 * Allocate a key cache slot to the station.
4708 */
4709 if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
4710 sc->sc_hasclrkey &&
4711 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4712 ath_setup_stationkey(ni);
4713 /*
4714 * Defer beacon timer configuration to the next
4715 * beacon frame so we have a current TSF to use
4716 * (any TSF collected when scanning is likely old).
4717 */
4718 sc->sc_syncbeacon = 1;
4719 break;
4720 default:
4721 break;
4722 }
4723 /*
4724 * Let the hal process statistics collected during a
4725 * scan so it can provide calibrated noise floor data.
4726 */
4727 ath_hal_process_noisefloor(ah);
4728 /*
4729 * Reset rssi stats; maybe not the best place...
4730 */
4731 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
4732 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
4733 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
4734 } else {
4735 ath_hal_intrset(ah,
4736 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4737 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4738 }
4739 done:
4740 /*
4741 * Invoke the parent method to complete the work.
4742 */
4743 error = sc->sc_newstate(ic, nstate, arg);
4744 /*
4745 * Finally, start any timers.
4746 */
4747 if (nstate == IEEE80211_S_RUN) {
4748 /* start periodic recalibration timer */
4749 callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4750 ath_calibrate, sc);
4751 } else if (nstate == IEEE80211_S_SCAN) {
4752 /* start ap/neighbor scan timer */
4753 callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
4754 ath_next_scan, sc);
4755 }
4756 bad:
4757 return error;
4758 }
4759
4760 /*
4761 * Allocate a key cache slot to the station so we can
4762 * setup a mapping from key index to node. The key cache
4763 * slot is needed for managing antenna state and for
4764 * compression when stations do not use crypto. We do
4765 * it uniliaterally here; if crypto is employed this slot
4766 * will be reassigned.
4767 */
4768 static void
4769 ath_setup_stationkey(struct ieee80211_node *ni)
4770 {
4771 struct ieee80211com *ic = ni->ni_ic;
4772 struct ath_softc *sc = ic->ic_ifp->if_softc;
4773 ieee80211_keyix keyix, rxkeyix;
4774
4775 if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
4776 /*
4777 * Key cache is full; we'll fall back to doing
4778 * the more expensive lookup in software. Note
4779 * this also means no h/w compression.
4780 */
4781 /* XXX msg+statistic */
4782 } else {
4783 /* XXX locking? */
4784 ni->ni_ucastkey.wk_keyix = keyix;
4785 ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
4786 /* NB: this will create a pass-thru key entry */
4787 ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
4788 }
4789 }
4790
4791 /*
4792 * Setup driver-specific state for a newly associated node.
4793 * Note that we're called also on a re-associate, the isnew
4794 * param tells us if this is the first time or not.
4795 */
4796 static void
4797 ath_newassoc(struct ieee80211_node *ni, int isnew)
4798 {
4799 struct ieee80211com *ic = ni->ni_ic;
4800 struct ath_softc *sc = ic->ic_ifp->if_softc;
4801
4802 ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
4803 if (isnew &&
4804 (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
4805 KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
4806 ("new assoc with a unicast key already setup (keyix %u)",
4807 ni->ni_ucastkey.wk_keyix));
4808 ath_setup_stationkey(ni);
4809 }
4810 }
4811
4812 static int
4813 ath_getchannels(struct ath_softc *sc, u_int cc,
4814 HAL_BOOL outdoor, HAL_BOOL xchanmode)
4815 {
4816 #define COMPAT (CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
4817 struct ieee80211com *ic = &sc->sc_ic;
4818 struct ifnet *ifp = &sc->sc_if;
4819 struct ath_hal *ah = sc->sc_ah;
4820 HAL_CHANNEL *chans;
4821 int i, ix, nchan;
4822
4823 chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
4824 M_TEMP, M_NOWAIT);
4825 if (chans == NULL) {
4826 if_printf(ifp, "unable to allocate channel table\n");
4827 return ENOMEM;
4828 }
4829 if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
4830 NULL, 0, NULL,
4831 cc, HAL_MODE_ALL, outdoor, xchanmode)) {
4832 u_int32_t rd;
4833
4834 (void)ath_hal_getregdomain(ah, &rd);
4835 if_printf(ifp, "unable to collect channel list from hal; "
4836 "regdomain likely %u country code %u\n", rd, cc);
4837 free(chans, M_TEMP);
4838 return EINVAL;
4839 }
4840
4841 /*
4842 * Convert HAL channels to ieee80211 ones and insert
4843 * them in the table according to their channel number.
4844 */
4845 for (i = 0; i < nchan; i++) {
4846 HAL_CHANNEL *c = &chans[i];
4847 u_int16_t flags;
4848
4849 ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags);
4850 if (ix > IEEE80211_CHAN_MAX) {
4851 if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n",
4852 ix, c->channel, c->channelFlags);
4853 continue;
4854 }
4855 if (ix < 0) {
4856 /* XXX can't handle stuff <2400 right now */
4857 if (bootverbose)
4858 if_printf(ifp, "hal channel %d (%u/%x) "
4859 "cannot be handled; ignored\n",
4860 ix, c->channel, c->channelFlags);
4861 continue;
4862 }
4863 /*
4864 * Calculate net80211 flags; most are compatible
4865 * but some need massaging. Note the static turbo
4866 * conversion can be removed once net80211 is updated
4867 * to understand static vs. dynamic turbo.
4868 */
4869 flags = c->channelFlags & COMPAT;
4870 if (c->channelFlags & CHANNEL_STURBO)
4871 flags |= IEEE80211_CHAN_TURBO;
4872 if (ic->ic_channels[ix].ic_freq == 0) {
4873 ic->ic_channels[ix].ic_freq = c->channel;
4874 ic->ic_channels[ix].ic_flags = flags;
4875 } else {
4876 /* channels overlap; e.g. 11g and 11b */
4877 ic->ic_channels[ix].ic_flags |= flags;
4878 }
4879 }
4880 free(chans, M_TEMP);
4881 return 0;
4882 #undef COMPAT
4883 }
4884
4885 static void
4886 ath_led_done(void *arg)
4887 {
4888 struct ath_softc *sc = arg;
4889
4890 sc->sc_blinking = 0;
4891 }
4892
4893 /*
4894 * Turn the LED off: flip the pin and then set a timer so no
4895 * update will happen for the specified duration.
4896 */
4897 static void
4898 ath_led_off(void *arg)
4899 {
4900 struct ath_softc *sc = arg;
4901
4902 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
4903 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
4904 }
4905
4906 /*
4907 * Blink the LED according to the specified on/off times.
4908 */
4909 static void
4910 ath_led_blink(struct ath_softc *sc, int on, int off)
4911 {
4912 DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
4913 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
4914 sc->sc_blinking = 1;
4915 sc->sc_ledoff = off;
4916 callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
4917 }
4918
4919 static void
4920 ath_led_event(struct ath_softc *sc, int event)
4921 {
4922
4923 sc->sc_ledevent = ticks; /* time of last event */
4924 if (sc->sc_blinking) /* don't interrupt active blink */
4925 return;
4926 switch (event) {
4927 case ATH_LED_POLL:
4928 ath_led_blink(sc, sc->sc_hwmap[0].ledon,
4929 sc->sc_hwmap[0].ledoff);
4930 break;
4931 case ATH_LED_TX:
4932 ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
4933 sc->sc_hwmap[sc->sc_txrate].ledoff);
4934 break;
4935 case ATH_LED_RX:
4936 ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
4937 sc->sc_hwmap[sc->sc_rxrate].ledoff);
4938 break;
4939 }
4940 }
4941
4942 static void
4943 ath_update_txpow(struct ath_softc *sc)
4944 {
4945 #define COMPAT (CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
4946 struct ieee80211com *ic = &sc->sc_ic;
4947 struct ath_hal *ah = sc->sc_ah;
4948 u_int32_t txpow;
4949
4950 if (sc->sc_curtxpow != ic->ic_txpowlimit) {
4951 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
4952 /* read back in case value is clamped */
4953 (void)ath_hal_gettxpowlimit(ah, &txpow);
4954 ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
4955 }
4956 /*
4957 * Fetch max tx power level for status requests.
4958 */
4959 (void)ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
4960 ic->ic_bss->ni_txpower = txpow;
4961 }
4962
4963 static void
4964 rate_setup(struct ath_softc *sc,
4965 const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs)
4966 {
4967 int i, maxrates;
4968
4969 if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
4970 DPRINTF(sc, ATH_DEBUG_ANY,
4971 "%s: rate table too small (%u > %u)\n",
4972 __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
4973 maxrates = IEEE80211_RATE_MAXSIZE;
4974 } else
4975 maxrates = rt->rateCount;
4976 for (i = 0; i < maxrates; i++)
4977 rs->rs_rates[i] = rt->info[i].dot11Rate;
4978 rs->rs_nrates = maxrates;
4979 }
4980
4981 static int
4982 ath_rate_setup(struct ath_softc *sc, u_int mode)
4983 {
4984 struct ath_hal *ah = sc->sc_ah;
4985 struct ieee80211com *ic = &sc->sc_ic;
4986 const HAL_RATE_TABLE *rt;
4987
4988 switch (mode) {
4989 case IEEE80211_MODE_11A:
4990 rt = ath_hal_getratetable(ah, HAL_MODE_11A);
4991 break;
4992 case IEEE80211_MODE_11B:
4993 rt = ath_hal_getratetable(ah, HAL_MODE_11B);
4994 break;
4995 case IEEE80211_MODE_11G:
4996 rt = ath_hal_getratetable(ah, HAL_MODE_11G);
4997 break;
4998 case IEEE80211_MODE_TURBO_A:
4999 /* XXX until static/dynamic turbo is fixed */
5000 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
5001 break;
5002 case IEEE80211_MODE_TURBO_G:
5003 rt = ath_hal_getratetable(ah, HAL_MODE_108G);
5004 break;
5005 default:
5006 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
5007 __func__, mode);
5008 return 0;
5009 }
5010 sc->sc_rates[mode] = rt;
5011 if (rt != NULL) {
5012 rate_setup(sc, rt, &ic->ic_sup_rates[mode]);
5013 return 1;
5014 } else
5015 return 0;
5016 }
5017
5018 static void
5019 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
5020 {
5021 #define N(a) (sizeof(a)/sizeof(a[0]))
5022 /* NB: on/off times from the Atheros NDIS driver, w/ permission */
5023 static const struct {
5024 u_int rate; /* tx/rx 802.11 rate */
5025 u_int16_t timeOn; /* LED on time (ms) */
5026 u_int16_t timeOff; /* LED off time (ms) */
5027 } blinkrates[] = {
5028 { 108, 40, 10 },
5029 { 96, 44, 11 },
5030 { 72, 50, 13 },
5031 { 48, 57, 14 },
5032 { 36, 67, 16 },
5033 { 24, 80, 20 },
5034 { 22, 100, 25 },
5035 { 18, 133, 34 },
5036 { 12, 160, 40 },
5037 { 10, 200, 50 },
5038 { 6, 240, 58 },
5039 { 4, 267, 66 },
5040 { 2, 400, 100 },
5041 { 0, 500, 130 },
5042 };
5043 const HAL_RATE_TABLE *rt;
5044 int i, j;
5045
5046 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
5047 rt = sc->sc_rates[mode];
5048 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
5049 for (i = 0; i < rt->rateCount; i++)
5050 sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
5051 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
5052 for (i = 0; i < 32; i++) {
5053 u_int8_t ix = rt->rateCodeToIndex[i];
5054 if (ix == 0xff) {
5055 sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
5056 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
5057 continue;
5058 }
5059 sc->sc_hwmap[i].ieeerate =
5060 rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
5061 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
5062 if (rt->info[ix].shortPreamble ||
5063 rt->info[ix].phy == IEEE80211_T_OFDM)
5064 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
5065 /* NB: receive frames include FCS */
5066 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
5067 IEEE80211_RADIOTAP_F_FCS;
5068 /* setup blink rate table to avoid per-packet lookup */
5069 for (j = 0; j < N(blinkrates)-1; j++)
5070 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
5071 break;
5072 /* NB: this uses the last entry if the rate isn't found */
5073 /* XXX beware of overlow */
5074 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
5075 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
5076 }
5077 sc->sc_currates = rt;
5078 sc->sc_curmode = mode;
5079 /*
5080 * All protection frames are transmited at 2Mb/s for
5081 * 11g, otherwise at 1Mb/s.
5082 */
5083 if (mode == IEEE80211_MODE_11G)
5084 sc->sc_protrix = ath_tx_findrix(rt, 2*2);
5085 else
5086 sc->sc_protrix = ath_tx_findrix(rt, 2*1);
5087 /* rate index used to send management frames */
5088 sc->sc_minrateix = 0;
5089 /*
5090 * Setup multicast rate state.
5091 */
5092 /* XXX layering violation */
5093 sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate);
5094 sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate;
5095 /* NB: caller is responsible for reseting rate control state */
5096 #undef N
5097 }
5098
5099 #ifdef AR_DEBUG
5100 static void
5101 ath_printrxbuf(struct ath_buf *bf, int done)
5102 {
5103 struct ath_desc *ds;
5104 int i;
5105
5106 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5107 printf("R%d (%p %" PRIx64
5108 ") %08x %08x %08x %08x %08x %08x %c\n", i, ds,
5109 (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
5110 ds->ds_link, ds->ds_data,
5111 ds->ds_ctl0, ds->ds_ctl1,
5112 ds->ds_hw[0], ds->ds_hw[1],
5113 !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
5114 }
5115 }
5116
5117 static void
5118 ath_printtxbuf(struct ath_buf *bf, int done)
5119 {
5120 struct ath_desc *ds;
5121 int i;
5122
5123 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5124 printf("T%d (%p %" PRIx64
5125 ") %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
5126 i, ds,
5127 (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
5128 ds->ds_link, ds->ds_data,
5129 ds->ds_ctl0, ds->ds_ctl1,
5130 ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
5131 !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
5132 }
5133 }
5134 #endif /* AR_DEBUG */
5135
5136 static void
5137 ath_watchdog(struct ifnet *ifp)
5138 {
5139 struct ath_softc *sc = ifp->if_softc;
5140 struct ieee80211com *ic = &sc->sc_ic;
5141 struct ath_txq *axq;
5142 int i;
5143
5144 ifp->if_timer = 0;
5145 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
5146 return;
5147 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5148 if (!ATH_TXQ_SETUP(sc, i))
5149 continue;
5150 axq = &sc->sc_txq[i];
5151 ATH_TXQ_LOCK(axq);
5152 if (axq->axq_timer == 0)
5153 ;
5154 else if (--axq->axq_timer == 0) {
5155 ATH_TXQ_UNLOCK(axq);
5156 if_printf(ifp, "device timeout (txq %d)\n", i);
5157 ath_reset(ifp);
5158 ifp->if_oerrors++;
5159 sc->sc_stats.ast_watchdog++;
5160 break;
5161 } else
5162 ifp->if_timer = 1;
5163 ATH_TXQ_UNLOCK(axq);
5164 }
5165 ieee80211_watchdog(ic);
5166 }
5167
5168 /*
5169 * Diagnostic interface to the HAL. This is used by various
5170 * tools to do things like retrieve register contents for
5171 * debugging. The mechanism is intentionally opaque so that
5172 * it can change frequently w/o concern for compatiblity.
5173 */
5174 static int
5175 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
5176 {
5177 struct ath_hal *ah = sc->sc_ah;
5178 u_int id = ad->ad_id & ATH_DIAG_ID;
5179 void *indata = NULL;
5180 void *outdata = NULL;
5181 u_int32_t insize = ad->ad_in_size;
5182 u_int32_t outsize = ad->ad_out_size;
5183 int error = 0;
5184
5185 if (ad->ad_id & ATH_DIAG_IN) {
5186 /*
5187 * Copy in data.
5188 */
5189 indata = malloc(insize, M_TEMP, M_NOWAIT);
5190 if (indata == NULL) {
5191 error = ENOMEM;
5192 goto bad;
5193 }
5194 error = copyin(ad->ad_in_data, indata, insize);
5195 if (error)
5196 goto bad;
5197 }
5198 if (ad->ad_id & ATH_DIAG_DYN) {
5199 /*
5200 * Allocate a buffer for the results (otherwise the HAL
5201 * returns a pointer to a buffer where we can read the
5202 * results). Note that we depend on the HAL leaving this
5203 * pointer for us to use below in reclaiming the buffer;
5204 * may want to be more defensive.
5205 */
5206 outdata = malloc(outsize, M_TEMP, M_NOWAIT);
5207 if (outdata == NULL) {
5208 error = ENOMEM;
5209 goto bad;
5210 }
5211 }
5212 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
5213 if (outsize < ad->ad_out_size)
5214 ad->ad_out_size = outsize;
5215 if (outdata != NULL)
5216 error = copyout(outdata, ad->ad_out_data,
5217 ad->ad_out_size);
5218 } else {
5219 error = EINVAL;
5220 }
5221 bad:
5222 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
5223 free(indata, M_TEMP);
5224 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
5225 free(outdata, M_TEMP);
5226 return error;
5227 }
5228
5229 static int
5230 ath_ioctl(struct ifnet *ifp, u_long cmd, void *data)
5231 {
5232 #define IS_RUNNING(ifp) \
5233 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
5234 struct ath_softc *sc = ifp->if_softc;
5235 struct ieee80211com *ic = &sc->sc_ic;
5236 struct ifreq *ifr = (struct ifreq *)data;
5237 int error = 0;
5238
5239 ATH_LOCK(sc);
5240 switch (cmd) {
5241 case SIOCSIFFLAGS:
5242 if (IS_RUNNING(ifp)) {
5243 /*
5244 * To avoid rescanning another access point,
5245 * do not call ath_init() here. Instead,
5246 * only reflect promisc mode settings.
5247 */
5248 ath_mode_init(sc);
5249 } else if (ifp->if_flags & IFF_UP) {
5250 /*
5251 * Beware of being called during attach/detach
5252 * to reset promiscuous mode. In that case we
5253 * will still be marked UP but not RUNNING.
5254 * However trying to re-init the interface
5255 * is the wrong thing to do as we've already
5256 * torn down much of our state. There's
5257 * probably a better way to deal with this.
5258 */
5259 if (!sc->sc_invalid && ic->ic_bss != NULL)
5260 ath_init(sc); /* XXX lose error */
5261 } else
5262 ath_stop_locked(ifp, 1);
5263 break;
5264 case SIOCADDMULTI:
5265 case SIOCDELMULTI:
5266 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
5267 if (ifp->if_flags & IFF_RUNNING)
5268 ath_mode_init(sc);
5269 error = 0;
5270 }
5271 break;
5272 case SIOCGATHSTATS:
5273 /* NB: embed these numbers to get a consistent view */
5274 sc->sc_stats.ast_tx_packets = ifp->if_opackets;
5275 sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
5276 sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
5277 ATH_UNLOCK(sc);
5278 /*
5279 * NB: Drop the softc lock in case of a page fault;
5280 * we'll accept any potential inconsisentcy in the
5281 * statistics. The alternative is to copy the data
5282 * to a local structure.
5283 */
5284 return copyout(&sc->sc_stats,
5285 ifr->ifr_data, sizeof (sc->sc_stats));
5286 case SIOCGATHDIAG:
5287 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
5288 break;
5289 default:
5290 error = ieee80211_ioctl(ic, cmd, data);
5291 if (error == ENETRESET) {
5292 if (IS_RUNNING(ifp) &&
5293 ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
5294 ath_init(sc); /* XXX lose error */
5295 error = 0;
5296 }
5297 if (error == ERESTART)
5298 error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0;
5299 break;
5300 }
5301 ATH_UNLOCK(sc);
5302 return error;
5303 #undef IS_RUNNING
5304 }
5305
5306 #if NBPFILTER > 0
5307 static void
5308 ath_bpfattach(struct ath_softc *sc)
5309 {
5310 struct ifnet *ifp = &sc->sc_if;
5311
5312 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
5313 sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
5314 &sc->sc_drvbpf);
5315 /*
5316 * Initialize constant fields.
5317 * XXX make header lengths a multiple of 32-bits so subsequent
5318 * headers are properly aligned; this is a kludge to keep
5319 * certain applications happy.
5320 *
5321 * NB: the channel is setup each time we transition to the
5322 * RUN state to avoid filling it in for each frame.
5323 */
5324 sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
5325 sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
5326 sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
5327
5328 sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
5329 sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
5330 sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
5331 }
5332 #endif
5333
5334 /*
5335 * Announce various information on device/driver attach.
5336 */
5337 static void
5338 ath_announce(struct ath_softc *sc)
5339 {
5340 #define HAL_MODE_DUALBAND (HAL_MODE_11A|HAL_MODE_11B)
5341 struct ifnet *ifp = &sc->sc_if;
5342 struct ath_hal *ah = sc->sc_ah;
5343 u_int modes, cc;
5344
5345 if_printf(ifp, "mac %d.%d phy %d.%d",
5346 ah->ah_macVersion, ah->ah_macRev,
5347 ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
5348 /*
5349 * Print radio revision(s). We check the wireless modes
5350 * to avoid falsely printing revs for inoperable parts.
5351 * Dual-band radio revs are returned in the 5 GHz rev number.
5352 */
5353 ath_hal_getcountrycode(ah, &cc);
5354 modes = ath_hal_getwirelessmodes(ah, cc);
5355 if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
5356 if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
5357 printf(" 5 GHz radio %d.%d 2 GHz radio %d.%d",
5358 ah->ah_analog5GhzRev >> 4,
5359 ah->ah_analog5GhzRev & 0xf,
5360 ah->ah_analog2GhzRev >> 4,
5361 ah->ah_analog2GhzRev & 0xf);
5362 else
5363 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5364 ah->ah_analog5GhzRev & 0xf);
5365 } else
5366 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5367 ah->ah_analog5GhzRev & 0xf);
5368 printf("\n");
5369 if (bootverbose) {
5370 int i;
5371 for (i = 0; i <= WME_AC_VO; i++) {
5372 struct ath_txq *txq = sc->sc_ac2q[i];
5373 if_printf(ifp, "Use hw queue %u for %s traffic\n",
5374 txq->axq_qnum, ieee80211_wme_acnames[i]);
5375 }
5376 if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5377 sc->sc_cabq->axq_qnum);
5378 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5379 }
5380 if (ath_rxbuf != ATH_RXBUF)
5381 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
5382 if (ath_txbuf != ATH_TXBUF)
5383 if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
5384 #undef HAL_MODE_DUALBAND
5385 }
5386