ath.c revision 1.87.2.1 1 /* $NetBSD: ath.c,v 1.87.2.1 2007/12/08 18:19:33 mjf Exp $ */
2
3 /*-
4 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15 * redistribution must be conditioned upon including a substantially
16 * similar Disclaimer requirement for further binary redistribution.
17 * 3. Neither the names of the above-listed copyright holders nor the names
18 * of any contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * Alternatively, this software may be distributed under the terms of the
22 * GNU General Public License ("GPL") version 2 as published by the Free
23 * Software Foundation.
24 *
25 * NO WARRANTY
26 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
28 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
29 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
30 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
31 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
34 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
36 * THE POSSIBILITY OF SUCH DAMAGES.
37 */
38
39 #include <sys/cdefs.h>
40 #ifdef __FreeBSD__
41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $");
42 #endif
43 #ifdef __NetBSD__
44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.87.2.1 2007/12/08 18:19:33 mjf Exp $");
45 #endif
46
47 /*
48 * Driver for the Atheros Wireless LAN controller.
49 *
50 * This software is derived from work of Atsushi Onoe; his contribution
51 * is greatly appreciated.
52 */
53
54 #include "opt_inet.h"
55
56 #ifdef __NetBSD__
57 #include "bpfilter.h"
58 #endif /* __NetBSD__ */
59
60 #include <sys/param.h>
61 #include <sys/reboot.h>
62 #include <sys/systm.h>
63 #include <sys/types.h>
64 #include <sys/sysctl.h>
65 #include <sys/mbuf.h>
66 #include <sys/malloc.h>
67 #include <sys/lock.h>
68 #include <sys/kernel.h>
69 #include <sys/socket.h>
70 #include <sys/sockio.h>
71 #include <sys/errno.h>
72 #include <sys/callout.h>
73 #include <sys/bus.h>
74 #include <sys/endian.h>
75
76 #include <net/if.h>
77 #include <net/if_dl.h>
78 #include <net/if_media.h>
79 #include <net/if_types.h>
80 #include <net/if_arp.h>
81 #include <net/if_ether.h>
82 #include <net/if_llc.h>
83
84 #include <net80211/ieee80211_netbsd.h>
85 #include <net80211/ieee80211_var.h>
86
87 #if NBPFILTER > 0
88 #include <net/bpf.h>
89 #endif
90
91 #ifdef INET
92 #include <netinet/in.h>
93 #endif
94
95 #include <sys/device.h>
96 #include <dev/ic/ath_netbsd.h>
97
98 #define AR_DEBUG
99 #include <dev/ic/athvar.h>
100 #include <contrib/dev/ath/ah_desc.h>
101 #include <contrib/dev/ath/ah_devid.h> /* XXX for softled */
102 #include "athhal_options.h"
103
104 #ifdef ATH_TX99_DIAG
105 #include <dev/ath/ath_tx99/ath_tx99.h>
106 #endif
107
108 /* unaligned little endian access */
109 #define LE_READ_2(p) \
110 ((u_int16_t) \
111 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8)))
112 #define LE_READ_4(p) \
113 ((u_int32_t) \
114 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \
115 (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
116
117 enum {
118 ATH_LED_TX,
119 ATH_LED_RX,
120 ATH_LED_POLL,
121 };
122
123 #ifdef AH_NEED_DESC_SWAP
124 #define HTOAH32(x) htole32(x)
125 #else
126 #define HTOAH32(x) (x)
127 #endif
128
129 static int ath_ifinit(struct ifnet *);
130 static int ath_init(struct ath_softc *);
131 static void ath_stop_locked(struct ifnet *, int);
132 static void ath_stop(struct ifnet *, int);
133 static void ath_start(struct ifnet *);
134 static int ath_media_change(struct ifnet *);
135 static void ath_watchdog(struct ifnet *);
136 static int ath_ioctl(struct ifnet *, u_long, void *);
137 static void ath_fatal_proc(void *, int);
138 static void ath_rxorn_proc(void *, int);
139 static void ath_bmiss_proc(void *, int);
140 static void ath_radar_proc(void *, int);
141 static int ath_key_alloc(struct ieee80211com *,
142 const struct ieee80211_key *,
143 ieee80211_keyix *, ieee80211_keyix *);
144 static int ath_key_delete(struct ieee80211com *,
145 const struct ieee80211_key *);
146 static int ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
147 const u_int8_t mac[IEEE80211_ADDR_LEN]);
148 static void ath_key_update_begin(struct ieee80211com *);
149 static void ath_key_update_end(struct ieee80211com *);
150 static void ath_mode_init(struct ath_softc *);
151 static void ath_setslottime(struct ath_softc *);
152 static void ath_updateslot(struct ifnet *);
153 static int ath_beaconq_setup(struct ath_hal *);
154 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
155 static void ath_beacon_setup(struct ath_softc *, struct ath_buf *);
156 static void ath_beacon_proc(void *, int);
157 static void ath_bstuck_proc(void *, int);
158 static void ath_beacon_free(struct ath_softc *);
159 static void ath_beacon_config(struct ath_softc *);
160 static void ath_descdma_cleanup(struct ath_softc *sc,
161 struct ath_descdma *, ath_bufhead *);
162 static int ath_desc_alloc(struct ath_softc *);
163 static void ath_desc_free(struct ath_softc *);
164 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
165 static void ath_node_free(struct ieee80211_node *);
166 static u_int8_t ath_node_getrssi(const struct ieee80211_node *);
167 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
168 static void ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
169 struct ieee80211_node *ni,
170 int subtype, int rssi, u_int32_t rstamp);
171 static void ath_setdefantenna(struct ath_softc *, u_int);
172 static void ath_rx_proc(void *, int);
173 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
174 static int ath_tx_setup(struct ath_softc *, int, int);
175 static int ath_wme_update(struct ieee80211com *);
176 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
177 static void ath_tx_cleanup(struct ath_softc *);
178 static int ath_tx_start(struct ath_softc *, struct ieee80211_node *,
179 struct ath_buf *, struct mbuf *);
180 static void ath_tx_proc_q0(void *, int);
181 static void ath_tx_proc_q0123(void *, int);
182 static void ath_tx_proc(void *, int);
183 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
184 static void ath_draintxq(struct ath_softc *);
185 static void ath_stoprecv(struct ath_softc *);
186 static int ath_startrecv(struct ath_softc *);
187 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
188 static void ath_next_scan(void *);
189 static void ath_calibrate(void *);
190 static int ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
191 static void ath_setup_stationkey(struct ieee80211_node *);
192 static void ath_newassoc(struct ieee80211_node *, int);
193 static int ath_getchannels(struct ath_softc *, u_int cc,
194 HAL_BOOL outdoor, HAL_BOOL xchanmode);
195 static void ath_led_event(struct ath_softc *, int);
196 static void ath_update_txpow(struct ath_softc *);
197 static void ath_freetx(struct mbuf *);
198 static void ath_restore_diversity(struct ath_softc *);
199
200 static int ath_rate_setup(struct ath_softc *, u_int mode);
201 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
202
203 #ifdef __NetBSD__
204 int ath_enable(struct ath_softc *);
205 void ath_disable(struct ath_softc *);
206 void ath_power(int, void *);
207 #endif
208
209 #if NBPFILTER > 0
210 static void ath_bpfattach(struct ath_softc *);
211 #endif
212 static void ath_announce(struct ath_softc *);
213
214 int ath_dwelltime = 200; /* 5 channels/second */
215 int ath_calinterval = 30; /* calibrate every 30 secs */
216 int ath_outdoor = AH_TRUE; /* outdoor operation */
217 int ath_xchanmode = AH_TRUE; /* enable extended channels */
218 int ath_countrycode = CTRY_DEFAULT; /* country code */
219 int ath_regdomain = 0; /* regulatory domain */
220 int ath_debug = 0;
221 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */
222 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */
223
224 #ifdef AR_DEBUG
225 enum {
226 ATH_DEBUG_XMIT = 0x00000001, /* basic xmit operation */
227 ATH_DEBUG_XMIT_DESC = 0x00000002, /* xmit descriptors */
228 ATH_DEBUG_RECV = 0x00000004, /* basic recv operation */
229 ATH_DEBUG_RECV_DESC = 0x00000008, /* recv descriptors */
230 ATH_DEBUG_RATE = 0x00000010, /* rate control */
231 ATH_DEBUG_RESET = 0x00000020, /* reset processing */
232 ATH_DEBUG_MODE = 0x00000040, /* mode init/setup */
233 ATH_DEBUG_BEACON = 0x00000080, /* beacon handling */
234 ATH_DEBUG_WATCHDOG = 0x00000100, /* watchdog timeout */
235 ATH_DEBUG_INTR = 0x00001000, /* ISR */
236 ATH_DEBUG_TX_PROC = 0x00002000, /* tx ISR proc */
237 ATH_DEBUG_RX_PROC = 0x00004000, /* rx ISR proc */
238 ATH_DEBUG_BEACON_PROC = 0x00008000, /* beacon ISR proc */
239 ATH_DEBUG_CALIBRATE = 0x00010000, /* periodic calibration */
240 ATH_DEBUG_KEYCACHE = 0x00020000, /* key cache management */
241 ATH_DEBUG_STATE = 0x00040000, /* 802.11 state transitions */
242 ATH_DEBUG_NODE = 0x00080000, /* node management */
243 ATH_DEBUG_LED = 0x00100000, /* led management */
244 ATH_DEBUG_FF = 0x00200000, /* fast frames */
245 ATH_DEBUG_DFS = 0x00400000, /* DFS processing */
246 ATH_DEBUG_FATAL = 0x80000000, /* fatal errors */
247 ATH_DEBUG_ANY = 0xffffffff
248 };
249 #define IFF_DUMPPKTS(sc, m) \
250 ((sc->sc_debug & (m)) || \
251 (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
252 #define DPRINTF(sc, m, fmt, ...) do { \
253 if (sc->sc_debug & (m)) \
254 printf(fmt, __VA_ARGS__); \
255 } while (0)
256 #define KEYPRINTF(sc, ix, hk, mac) do { \
257 if (sc->sc_debug & ATH_DEBUG_KEYCACHE) \
258 ath_keyprint(__func__, ix, hk, mac); \
259 } while (0)
260 static void ath_printrxbuf(struct ath_buf *bf, int);
261 static void ath_printtxbuf(struct ath_buf *bf, int);
262 #else
263 #define IFF_DUMPPKTS(sc, m) \
264 ((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
265 #define DPRINTF(m, fmt, ...)
266 #define KEYPRINTF(sc, k, ix, mac)
267 #endif
268
269 #ifdef __NetBSD__
270 int
271 ath_activate(struct device *self, enum devact act)
272 {
273 struct ath_softc *sc = (struct ath_softc *)self;
274 int rv = 0, s;
275
276 s = splnet();
277 switch (act) {
278 case DVACT_ACTIVATE:
279 rv = EOPNOTSUPP;
280 break;
281 case DVACT_DEACTIVATE:
282 if_deactivate(&sc->sc_if);
283 break;
284 }
285 splx(s);
286 return rv;
287 }
288
289 int
290 ath_enable(struct ath_softc *sc)
291 {
292 if (ATH_IS_ENABLED(sc) == 0) {
293 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
294 printf("%s: device enable failed\n",
295 device_xname(&sc->sc_dev));
296 return (EIO);
297 }
298 sc->sc_flags |= ATH_ENABLED;
299 }
300 return (0);
301 }
302
303 void
304 ath_disable(struct ath_softc *sc)
305 {
306 if (!ATH_IS_ENABLED(sc))
307 return;
308 if (sc->sc_disable != NULL)
309 (*sc->sc_disable)(sc);
310 sc->sc_flags &= ~ATH_ENABLED;
311 }
312 #endif /* __NetBSD__ */
313
314 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
315
316 int
317 ath_attach(u_int16_t devid, struct ath_softc *sc)
318 {
319 struct ifnet *ifp = &sc->sc_if;
320 struct ieee80211com *ic = &sc->sc_ic;
321 struct ath_hal *ah = NULL;
322 HAL_STATUS status;
323 int error = 0, i;
324
325 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
326
327 memcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
328
329 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
330 if (ah == NULL) {
331 if_printf(ifp, "unable to attach hardware; HAL status %u\n",
332 status);
333 error = ENXIO;
334 goto bad;
335 }
336 if (ah->ah_abi != HAL_ABI_VERSION) {
337 if_printf(ifp, "HAL ABI mismatch detected "
338 "(HAL:0x%x != driver:0x%x)\n",
339 ah->ah_abi, HAL_ABI_VERSION);
340 error = ENXIO;
341 goto bad;
342 }
343 sc->sc_ah = ah;
344 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */
345
346 /*
347 * Check if the MAC has multi-rate retry support.
348 * We do this by trying to setup a fake extended
349 * descriptor. MAC's that don't have support will
350 * return false w/o doing anything. MAC's that do
351 * support it will return true w/o doing anything.
352 */
353 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
354
355 /*
356 * Check if the device has hardware counters for PHY
357 * errors. If so we need to enable the MIB interrupt
358 * so we can act on stat triggers.
359 */
360 if (ath_hal_hwphycounters(ah))
361 sc->sc_needmib = 1;
362
363 /*
364 * Get the hardware key cache size.
365 */
366 sc->sc_keymax = ath_hal_keycachesize(ah);
367 if (sc->sc_keymax > ATH_KEYMAX) {
368 if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
369 ATH_KEYMAX, sc->sc_keymax);
370 sc->sc_keymax = ATH_KEYMAX;
371 }
372 /*
373 * Reset the key cache since some parts do not
374 * reset the contents on initial power up.
375 */
376 for (i = 0; i < sc->sc_keymax; i++)
377 ath_hal_keyreset(ah, i);
378 /*
379 * Mark key cache slots associated with global keys
380 * as in use. If we knew TKIP was not to be used we
381 * could leave the +32, +64, and +32+64 slots free.
382 * XXX only for splitmic.
383 */
384 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
385 setbit(sc->sc_keymap, i);
386 setbit(sc->sc_keymap, i+32);
387 setbit(sc->sc_keymap, i+64);
388 setbit(sc->sc_keymap, i+32+64);
389 }
390
391 /*
392 * Collect the channel list using the default country
393 * code and including outdoor channels. The 802.11 layer
394 * is resposible for filtering this list based on settings
395 * like the phy mode.
396 */
397 error = ath_getchannels(sc, ath_countrycode,
398 ath_outdoor, ath_xchanmode);
399 if (error != 0)
400 goto bad;
401
402 /*
403 * Setup rate tables for all potential media types.
404 */
405 ath_rate_setup(sc, IEEE80211_MODE_11A);
406 ath_rate_setup(sc, IEEE80211_MODE_11B);
407 ath_rate_setup(sc, IEEE80211_MODE_11G);
408 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
409 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
410 /* NB: setup here so ath_rate_update is happy */
411 ath_setcurmode(sc, IEEE80211_MODE_11A);
412
413 /*
414 * Allocate tx+rx descriptors and populate the lists.
415 */
416 error = ath_desc_alloc(sc);
417 if (error != 0) {
418 if_printf(ifp, "failed to allocate descriptors: %d\n", error);
419 goto bad;
420 }
421 ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
422 ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE);
423 ATH_CALLOUT_INIT(&sc->sc_dfs_ch, CALLOUT_MPSAFE);
424
425 ATH_TXBUF_LOCK_INIT(sc);
426
427 TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
428 TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
429 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
430 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
431 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
432 TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc);
433
434 /*
435 * Allocate hardware transmit queues: one queue for
436 * beacon frames and one data queue for each QoS
437 * priority. Note that the hal handles reseting
438 * these queues at the needed time.
439 *
440 * XXX PS-Poll
441 */
442 sc->sc_bhalq = ath_beaconq_setup(ah);
443 if (sc->sc_bhalq == (u_int) -1) {
444 if_printf(ifp, "unable to setup a beacon xmit queue!\n");
445 error = EIO;
446 goto bad2;
447 }
448 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
449 if (sc->sc_cabq == NULL) {
450 if_printf(ifp, "unable to setup CAB xmit queue!\n");
451 error = EIO;
452 goto bad2;
453 }
454 /* NB: insure BK queue is the lowest priority h/w queue */
455 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
456 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
457 ieee80211_wme_acnames[WME_AC_BK]);
458 error = EIO;
459 goto bad2;
460 }
461 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
462 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
463 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
464 /*
465 * Not enough hardware tx queues to properly do WME;
466 * just punt and assign them all to the same h/w queue.
467 * We could do a better job of this if, for example,
468 * we allocate queues when we switch from station to
469 * AP mode.
470 */
471 if (sc->sc_ac2q[WME_AC_VI] != NULL)
472 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
473 if (sc->sc_ac2q[WME_AC_BE] != NULL)
474 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
475 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
476 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
477 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
478 }
479
480 /*
481 * Special case certain configurations. Note the
482 * CAB queue is handled by these specially so don't
483 * include them when checking the txq setup mask.
484 */
485 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
486 case 0x01:
487 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
488 break;
489 case 0x0f:
490 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
491 break;
492 default:
493 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
494 break;
495 }
496
497 /*
498 * Setup rate control. Some rate control modules
499 * call back to change the anntena state so expose
500 * the necessary entry points.
501 * XXX maybe belongs in struct ath_ratectrl?
502 */
503 sc->sc_setdefantenna = ath_setdefantenna;
504 sc->sc_rc = ath_rate_attach(sc);
505 if (sc->sc_rc == NULL) {
506 error = EIO;
507 goto bad2;
508 }
509
510 sc->sc_blinking = 0;
511 sc->sc_ledstate = 1;
512 sc->sc_ledon = 0; /* low true */
513 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */
514 ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE);
515 /*
516 * Auto-enable soft led processing for IBM cards and for
517 * 5211 minipci cards. Users can also manually enable/disable
518 * support with a sysctl.
519 */
520 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
521 if (sc->sc_softled) {
522 ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
523 ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
524 }
525
526 ifp->if_softc = sc;
527 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
528 ifp->if_start = ath_start;
529 ifp->if_watchdog = ath_watchdog;
530 ifp->if_ioctl = ath_ioctl;
531 ifp->if_init = ath_ifinit;
532 IFQ_SET_READY(&ifp->if_snd);
533
534 ic->ic_ifp = ifp;
535 ic->ic_reset = ath_reset;
536 ic->ic_newassoc = ath_newassoc;
537 ic->ic_updateslot = ath_updateslot;
538 ic->ic_wme.wme_update = ath_wme_update;
539 /* XXX not right but it's not used anywhere important */
540 ic->ic_phytype = IEEE80211_T_OFDM;
541 ic->ic_opmode = IEEE80211_M_STA;
542 ic->ic_caps =
543 IEEE80211_C_IBSS /* ibss, nee adhoc, mode */
544 | IEEE80211_C_HOSTAP /* hostap mode */
545 | IEEE80211_C_MONITOR /* monitor mode */
546 | IEEE80211_C_SHPREAMBLE /* short preamble supported */
547 | IEEE80211_C_SHSLOT /* short slot time supported */
548 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */
549 | IEEE80211_C_TXFRAG /* handle tx frags */
550 ;
551 /*
552 * Query the hal to figure out h/w crypto support.
553 */
554 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
555 ic->ic_caps |= IEEE80211_C_WEP;
556 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
557 ic->ic_caps |= IEEE80211_C_AES;
558 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
559 ic->ic_caps |= IEEE80211_C_AES_CCM;
560 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
561 ic->ic_caps |= IEEE80211_C_CKIP;
562 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
563 ic->ic_caps |= IEEE80211_C_TKIP;
564 /*
565 * Check if h/w does the MIC and/or whether the
566 * separate key cache entries are required to
567 * handle both tx+rx MIC keys.
568 */
569 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
570 ic->ic_caps |= IEEE80211_C_TKIPMIC;
571 if (ath_hal_tkipsplit(ah))
572 sc->sc_splitmic = 1;
573 }
574 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
575 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
576 /*
577 * TPC support can be done either with a global cap or
578 * per-packet support. The latter is not available on
579 * all parts. We're a bit pedantic here as all parts
580 * support a global cap.
581 */
582 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
583 ic->ic_caps |= IEEE80211_C_TXPMGT;
584
585 /*
586 * Mark WME capability only if we have sufficient
587 * hardware queues to do proper priority scheduling.
588 */
589 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
590 ic->ic_caps |= IEEE80211_C_WME;
591 /*
592 * Check for misc other capabilities.
593 */
594 if (ath_hal_hasbursting(ah))
595 ic->ic_caps |= IEEE80211_C_BURST;
596
597 /*
598 * Indicate we need the 802.11 header padded to a
599 * 32-bit boundary for 4-address and QoS frames.
600 */
601 ic->ic_flags |= IEEE80211_F_DATAPAD;
602
603 /*
604 * Query the hal about antenna support.
605 */
606 sc->sc_defant = ath_hal_getdefantenna(ah);
607
608 /*
609 * Not all chips have the VEOL support we want to
610 * use with IBSS beacons; check here for it.
611 */
612 sc->sc_hasveol = ath_hal_hasveol(ah);
613
614 /* get mac address from hardware */
615 ath_hal_getmac(ah, ic->ic_myaddr);
616
617 if_attach(ifp);
618 /* call MI attach routine. */
619 ieee80211_ifattach(ic);
620 /* override default methods */
621 ic->ic_node_alloc = ath_node_alloc;
622 sc->sc_node_free = ic->ic_node_free;
623 ic->ic_node_free = ath_node_free;
624 ic->ic_node_getrssi = ath_node_getrssi;
625 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
626 ic->ic_recv_mgmt = ath_recv_mgmt;
627 sc->sc_newstate = ic->ic_newstate;
628 ic->ic_newstate = ath_newstate;
629 ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
630 ic->ic_crypto.cs_key_alloc = ath_key_alloc;
631 ic->ic_crypto.cs_key_delete = ath_key_delete;
632 ic->ic_crypto.cs_key_set = ath_key_set;
633 ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
634 ic->ic_crypto.cs_key_update_end = ath_key_update_end;
635 /* complete initialization */
636 ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
637
638 #if NBPFILTER > 0
639 ath_bpfattach(sc);
640 #endif
641
642 #ifdef __NetBSD__
643 sc->sc_flags |= ATH_ATTACHED;
644 sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
645 ath_power, sc);
646 if (sc->sc_powerhook == NULL)
647 printf("%s: WARNING: unable to establish power hook\n",
648 sc->sc_dev.dv_xname);
649 #endif
650
651 /*
652 * Setup dynamic sysctl's now that country code and
653 * regdomain are available from the hal.
654 */
655 ath_sysctlattach(sc);
656
657 ieee80211_announce(ic);
658 ath_announce(sc);
659 return 0;
660 bad2:
661 ath_tx_cleanup(sc);
662 ath_desc_free(sc);
663 bad:
664 if (ah)
665 ath_hal_detach(ah);
666 sc->sc_invalid = 1;
667 return error;
668 }
669
670 int
671 ath_detach(struct ath_softc *sc)
672 {
673 struct ifnet *ifp = &sc->sc_if;
674 int s;
675
676 if ((sc->sc_flags & ATH_ATTACHED) == 0)
677 return (0);
678
679 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
680 __func__, ifp->if_flags);
681
682 s = splnet();
683 ath_stop(ifp, 1);
684 #if NBPFILTER > 0
685 bpfdetach(ifp);
686 #endif
687 /*
688 * NB: the order of these is important:
689 * o call the 802.11 layer before detaching the hal to
690 * insure callbacks into the driver to delete global
691 * key cache entries can be handled
692 * o reclaim the tx queue data structures after calling
693 * the 802.11 layer as we'll get called back to reclaim
694 * node state and potentially want to use them
695 * o to cleanup the tx queues the hal is called, so detach
696 * it last
697 * Other than that, it's straightforward...
698 */
699 ieee80211_ifdetach(&sc->sc_ic);
700 #ifdef ATH_TX99_DIAG
701 if (sc->sc_tx99 != NULL)
702 sc->sc_tx99->detach(sc->sc_tx99);
703 #endif
704 ath_rate_detach(sc->sc_rc);
705 ath_desc_free(sc);
706 ath_tx_cleanup(sc);
707 sysctl_teardown(&sc->sc_sysctllog);
708 ath_hal_detach(sc->sc_ah);
709 if_detach(ifp);
710 splx(s);
711 powerhook_disestablish(sc->sc_powerhook);
712
713 return 0;
714 }
715
716 #ifdef __NetBSD__
717 void
718 ath_power(int why, void *arg)
719 {
720 struct ath_softc *sc = arg;
721 int s;
722
723 DPRINTF(sc, ATH_DEBUG_ANY, "ath_power(%d)\n", why);
724
725 s = splnet();
726 switch (why) {
727 case PWR_SUSPEND:
728 case PWR_STANDBY:
729 ath_suspend(sc, why);
730 break;
731 case PWR_RESUME:
732 ath_resume(sc, why);
733 break;
734 case PWR_SOFTSUSPEND:
735 case PWR_SOFTSTANDBY:
736 case PWR_SOFTRESUME:
737 break;
738 }
739 splx(s);
740 }
741 #endif
742
743 void
744 ath_suspend(struct ath_softc *sc, int why)
745 {
746 struct ifnet *ifp = &sc->sc_if;
747
748 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
749 __func__, ifp->if_flags);
750
751 ath_stop(ifp, 1);
752 if (sc->sc_power != NULL)
753 (*sc->sc_power)(sc, why);
754 }
755
756 void
757 ath_resume(struct ath_softc *sc, int why)
758 {
759 struct ifnet *ifp = &sc->sc_if;
760
761 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
762 __func__, ifp->if_flags);
763
764 if (ifp->if_flags & IFF_UP) {
765 ath_init(sc);
766 #if 0
767 (void)ath_intr(sc);
768 #endif
769 if (sc->sc_power != NULL)
770 (*sc->sc_power)(sc, why);
771 if (ifp->if_flags & IFF_RUNNING)
772 ath_start(ifp);
773 }
774 if (sc->sc_softled) {
775 ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
776 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
777 }
778 }
779
780 void
781 ath_shutdown(void *arg)
782 {
783 struct ath_softc *sc = arg;
784
785 ath_stop(&sc->sc_if, 1);
786 }
787
788 /*
789 * Interrupt handler. Most of the actual processing is deferred.
790 */
791 int
792 ath_intr(void *arg)
793 {
794 struct ath_softc *sc = arg;
795 struct ifnet *ifp = &sc->sc_if;
796 struct ath_hal *ah = sc->sc_ah;
797 HAL_INT status;
798
799 if (sc->sc_invalid) {
800 /*
801 * The hardware is not ready/present, don't touch anything.
802 * Note this can happen early on if the IRQ is shared.
803 */
804 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
805 return 0;
806 }
807
808 if (!ath_hal_intrpend(ah)) /* shared irq, not for us */
809 return 0;
810
811 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
812 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
813 __func__, ifp->if_flags);
814 ath_hal_getisr(ah, &status); /* clear ISR */
815 ath_hal_intrset(ah, 0); /* disable further intr's */
816 return 1; /* XXX */
817 }
818 /*
819 * Figure out the reason(s) for the interrupt. Note
820 * that the hal returns a pseudo-ISR that may include
821 * bits we haven't explicitly enabled so we mask the
822 * value to insure we only process bits we requested.
823 */
824 ath_hal_getisr(ah, &status); /* NB: clears ISR too */
825 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
826 status &= sc->sc_imask; /* discard unasked for bits */
827 if (status & HAL_INT_FATAL) {
828 /*
829 * Fatal errors are unrecoverable. Typically
830 * these are caused by DMA errors. Unfortunately
831 * the exact reason is not (presently) returned
832 * by the hal.
833 */
834 sc->sc_stats.ast_hardware++;
835 ath_hal_intrset(ah, 0); /* disable intr's until reset */
836 TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
837 } else if (status & HAL_INT_RXORN) {
838 sc->sc_stats.ast_rxorn++;
839 ath_hal_intrset(ah, 0); /* disable intr's until reset */
840 TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
841 } else {
842 if (status & HAL_INT_SWBA) {
843 /*
844 * Software beacon alert--time to send a beacon.
845 * Handle beacon transmission directly; deferring
846 * this is too slow to meet timing constraints
847 * under load.
848 */
849 ath_beacon_proc(sc, 0);
850 }
851 if (status & HAL_INT_RXEOL) {
852 /*
853 * NB: the hardware should re-read the link when
854 * RXE bit is written, but it doesn't work at
855 * least on older hardware revs.
856 */
857 sc->sc_stats.ast_rxeol++;
858 sc->sc_rxlink = NULL;
859 }
860 if (status & HAL_INT_TXURN) {
861 sc->sc_stats.ast_txurn++;
862 /* bump tx trigger level */
863 ath_hal_updatetxtriglevel(ah, AH_TRUE);
864 }
865 if (status & HAL_INT_RX)
866 TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
867 if (status & HAL_INT_TX)
868 TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
869 if (status & HAL_INT_BMISS) {
870 sc->sc_stats.ast_bmiss++;
871 TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
872 }
873 if (status & HAL_INT_MIB) {
874 sc->sc_stats.ast_mib++;
875 /*
876 * Disable interrupts until we service the MIB
877 * interrupt; otherwise it will continue to fire.
878 */
879 ath_hal_intrset(ah, 0);
880 /*
881 * Let the hal handle the event. We assume it will
882 * clear whatever condition caused the interrupt.
883 */
884 ath_hal_mibevent(ah, &sc->sc_halstats);
885 ath_hal_intrset(ah, sc->sc_imask);
886 }
887 }
888 return 1;
889 }
890
891 /* Swap transmit descriptor.
892 * if AH_NEED_DESC_SWAP flag is not defined this becomes a "null"
893 * function.
894 */
895 static inline void
896 ath_desc_swap(struct ath_desc *ds)
897 {
898 #ifdef AH_NEED_DESC_SWAP
899 ds->ds_link = htole32(ds->ds_link);
900 ds->ds_data = htole32(ds->ds_data);
901 ds->ds_ctl0 = htole32(ds->ds_ctl0);
902 ds->ds_ctl1 = htole32(ds->ds_ctl1);
903 ds->ds_hw[0] = htole32(ds->ds_hw[0]);
904 ds->ds_hw[1] = htole32(ds->ds_hw[1]);
905 #endif
906 }
907
908 static void
909 ath_fatal_proc(void *arg, int pending)
910 {
911 struct ath_softc *sc = arg;
912 struct ifnet *ifp = &sc->sc_if;
913
914 if_printf(ifp, "hardware error; resetting\n");
915 ath_reset(ifp);
916 }
917
918 static void
919 ath_rxorn_proc(void *arg, int pending)
920 {
921 struct ath_softc *sc = arg;
922 struct ifnet *ifp = &sc->sc_if;
923
924 if_printf(ifp, "rx FIFO overrun; resetting\n");
925 ath_reset(ifp);
926 }
927
928 static void
929 ath_bmiss_proc(void *arg, int pending)
930 {
931 struct ath_softc *sc = arg;
932 struct ieee80211com *ic = &sc->sc_ic;
933
934 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
935 KASSERT(ic->ic_opmode == IEEE80211_M_STA,
936 ("unexpect operating mode %u", ic->ic_opmode));
937 if (ic->ic_state == IEEE80211_S_RUN) {
938 u_int64_t lastrx = sc->sc_lastrx;
939 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
940
941 DPRINTF(sc, ATH_DEBUG_BEACON,
942 "%s: tsf %" PRIu64 " lastrx %" PRId64
943 " (%" PRIu64 ") bmiss %u\n",
944 __func__, tsf, tsf - lastrx, lastrx,
945 ic->ic_bmisstimeout*1024);
946 /*
947 * Workaround phantom bmiss interrupts by sanity-checking
948 * the time of our last rx'd frame. If it is within the
949 * beacon miss interval then ignore the interrupt. If it's
950 * truly a bmiss we'll get another interrupt soon and that'll
951 * be dispatched up for processing.
952 */
953 if (tsf - lastrx > ic->ic_bmisstimeout*1024) {
954 NET_LOCK_GIANT();
955 ieee80211_beacon_miss(ic);
956 NET_UNLOCK_GIANT();
957 } else
958 sc->sc_stats.ast_bmiss_phantom++;
959 }
960 }
961
962 static void
963 ath_radar_proc(void *arg, int pending)
964 {
965 struct ath_softc *sc = arg;
966 struct ifnet *ifp = &sc->sc_if;
967 struct ath_hal *ah = sc->sc_ah;
968 HAL_CHANNEL hchan;
969
970 if (ath_hal_procdfs(ah, &hchan)) {
971 if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n",
972 hchan.channel, hchan.channelFlags, hchan.privFlags);
973 /*
974 * Initiate channel change.
975 */
976 /* XXX not yet */
977 }
978 }
979
980 static u_int
981 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
982 {
983 #define N(a) (sizeof(a) / sizeof(a[0]))
984 static const u_int modeflags[] = {
985 0, /* IEEE80211_MODE_AUTO */
986 CHANNEL_A, /* IEEE80211_MODE_11A */
987 CHANNEL_B, /* IEEE80211_MODE_11B */
988 CHANNEL_PUREG, /* IEEE80211_MODE_11G */
989 0, /* IEEE80211_MODE_FH */
990 CHANNEL_ST, /* IEEE80211_MODE_TURBO_A */
991 CHANNEL_108G /* IEEE80211_MODE_TURBO_G */
992 };
993 enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
994
995 KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
996 KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
997 return modeflags[mode];
998 #undef N
999 }
1000
1001 static int
1002 ath_ifinit(struct ifnet *ifp)
1003 {
1004 struct ath_softc *sc = (struct ath_softc *)ifp->if_softc;
1005
1006 return ath_init(sc);
1007 }
1008
1009 static int
1010 ath_init(struct ath_softc *sc)
1011 {
1012 struct ifnet *ifp = &sc->sc_if;
1013 struct ieee80211com *ic = &sc->sc_ic;
1014 struct ath_hal *ah = sc->sc_ah;
1015 HAL_STATUS status;
1016 int error = 0;
1017
1018 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1019 __func__, ifp->if_flags);
1020
1021 ATH_LOCK(sc);
1022
1023 if ((error = ath_enable(sc)) != 0) {
1024 ATH_UNLOCK(sc);
1025 return error;
1026 }
1027
1028 /*
1029 * Stop anything previously setup. This is safe
1030 * whether this is the first time through or not.
1031 */
1032 ath_stop_locked(ifp, 0);
1033
1034 /*
1035 * The basic interface to setting the hardware in a good
1036 * state is ``reset''. On return the hardware is known to
1037 * be powered up and with interrupts disabled. This must
1038 * be followed by initialization of the appropriate bits
1039 * and then setup of the interrupt mask.
1040 */
1041 sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
1042 sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
1043 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
1044 if_printf(ifp, "unable to reset hardware; hal status %u\n",
1045 status);
1046 error = EIO;
1047 goto done;
1048 }
1049
1050 /*
1051 * This is needed only to setup initial state
1052 * but it's best done after a reset.
1053 */
1054 ath_update_txpow(sc);
1055 /*
1056 * Likewise this is set during reset so update
1057 * state cached in the driver.
1058 */
1059 ath_restore_diversity(sc);
1060 sc->sc_calinterval = 1;
1061 sc->sc_caltries = 0;
1062
1063 /*
1064 * Setup the hardware after reset: the key cache
1065 * is filled as needed and the receive engine is
1066 * set going. Frame transmit is handled entirely
1067 * in the frame output path; there's nothing to do
1068 * here except setup the interrupt mask.
1069 */
1070 if ((error = ath_startrecv(sc)) != 0) {
1071 if_printf(ifp, "unable to start recv logic\n");
1072 goto done;
1073 }
1074
1075 /*
1076 * Enable interrupts.
1077 */
1078 sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1079 | HAL_INT_RXEOL | HAL_INT_RXORN
1080 | HAL_INT_FATAL | HAL_INT_GLOBAL;
1081 /*
1082 * Enable MIB interrupts when there are hardware phy counters.
1083 * Note we only do this (at the moment) for station mode.
1084 */
1085 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1086 sc->sc_imask |= HAL_INT_MIB;
1087 ath_hal_intrset(ah, sc->sc_imask);
1088
1089 ifp->if_flags |= IFF_RUNNING;
1090 ic->ic_state = IEEE80211_S_INIT;
1091
1092 /*
1093 * The hardware should be ready to go now so it's safe
1094 * to kick the 802.11 state machine as it's likely to
1095 * immediately call back to us to send mgmt frames.
1096 */
1097 ath_chan_change(sc, ic->ic_curchan);
1098 #ifdef ATH_TX99_DIAG
1099 if (sc->sc_tx99 != NULL)
1100 sc->sc_tx99->start(sc->sc_tx99);
1101 else
1102 #endif
1103 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1104 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
1105 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1106 } else
1107 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1108 done:
1109 ATH_UNLOCK(sc);
1110 return error;
1111 }
1112
1113 static void
1114 ath_stop_locked(struct ifnet *ifp, int disable)
1115 {
1116 struct ath_softc *sc = ifp->if_softc;
1117 struct ieee80211com *ic = &sc->sc_ic;
1118 struct ath_hal *ah = sc->sc_ah;
1119
1120 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1121 __func__, sc->sc_invalid, ifp->if_flags);
1122
1123 ATH_LOCK_ASSERT(sc);
1124 if (ifp->if_flags & IFF_RUNNING) {
1125 /*
1126 * Shutdown the hardware and driver:
1127 * reset 802.11 state machine
1128 * turn off timers
1129 * disable interrupts
1130 * turn off the radio
1131 * clear transmit machinery
1132 * clear receive machinery
1133 * drain and release tx queues
1134 * reclaim beacon resources
1135 * power down hardware
1136 *
1137 * Note that some of this work is not possible if the
1138 * hardware is gone (invalid).
1139 */
1140 #ifdef ATH_TX99_DIAG
1141 if (sc->sc_tx99 != NULL)
1142 sc->sc_tx99->stop(sc->sc_tx99);
1143 #endif
1144 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1145 ifp->if_flags &= ~IFF_RUNNING;
1146 ifp->if_timer = 0;
1147 if (!sc->sc_invalid) {
1148 if (sc->sc_softled) {
1149 callout_stop(&sc->sc_ledtimer);
1150 ath_hal_gpioset(ah, sc->sc_ledpin,
1151 !sc->sc_ledon);
1152 sc->sc_blinking = 0;
1153 }
1154 ath_hal_intrset(ah, 0);
1155 }
1156 ath_draintxq(sc);
1157 if (!sc->sc_invalid) {
1158 ath_stoprecv(sc);
1159 ath_hal_phydisable(ah);
1160 } else
1161 sc->sc_rxlink = NULL;
1162 IF_PURGE(&ifp->if_snd);
1163 ath_beacon_free(sc);
1164 if (disable)
1165 ath_disable(sc);
1166 }
1167 }
1168
1169 static void
1170 ath_stop(struct ifnet *ifp, int disable)
1171 {
1172 struct ath_softc *sc = ifp->if_softc;
1173
1174 ATH_LOCK(sc);
1175 ath_stop_locked(ifp, disable);
1176 if (!sc->sc_invalid) {
1177 /*
1178 * Set the chip in full sleep mode. Note that we are
1179 * careful to do this only when bringing the interface
1180 * completely to a stop. When the chip is in this state
1181 * it must be carefully woken up or references to
1182 * registers in the PCI clock domain may freeze the bus
1183 * (and system). This varies by chip and is mostly an
1184 * issue with newer parts that go to sleep more quickly.
1185 */
1186 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
1187 }
1188 ATH_UNLOCK(sc);
1189 }
1190
1191 static void
1192 ath_restore_diversity(struct ath_softc *sc)
1193 {
1194 struct ifnet *ifp = &sc->sc_if;
1195 struct ath_hal *ah = sc->sc_ah;
1196
1197 if (!ath_hal_setdiversity(sc->sc_ah, sc->sc_diversity) ||
1198 sc->sc_diversity != ath_hal_getdiversity(ah)) {
1199 if_printf(ifp, "could not restore diversity setting %d\n",
1200 sc->sc_diversity);
1201 sc->sc_diversity = ath_hal_getdiversity(ah);
1202 }
1203 }
1204
1205 /*
1206 * Reset the hardware w/o losing operational state. This is
1207 * basically a more efficient way of doing ath_stop, ath_init,
1208 * followed by state transitions to the current 802.11
1209 * operational state. Used to recover from various errors and
1210 * to reset or reload hardware state.
1211 */
1212 int
1213 ath_reset(struct ifnet *ifp)
1214 {
1215 struct ath_softc *sc = ifp->if_softc;
1216 struct ieee80211com *ic = &sc->sc_ic;
1217 struct ath_hal *ah = sc->sc_ah;
1218 struct ieee80211_channel *c;
1219 HAL_STATUS status;
1220
1221 /*
1222 * Convert to a HAL channel description with the flags
1223 * constrained to reflect the current operating mode.
1224 */
1225 c = ic->ic_curchan;
1226 sc->sc_curchan.channel = c->ic_freq;
1227 sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
1228
1229 ath_hal_intrset(ah, 0); /* disable interrupts */
1230 ath_draintxq(sc); /* stop xmit side */
1231 ath_stoprecv(sc); /* stop recv side */
1232 /* NB: indicate channel change so we do a full reset */
1233 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
1234 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1235 __func__, status);
1236 ath_update_txpow(sc); /* update tx power state */
1237 ath_restore_diversity(sc);
1238 sc->sc_calinterval = 1;
1239 sc->sc_caltries = 0;
1240 if (ath_startrecv(sc) != 0) /* restart recv */
1241 if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1242 /*
1243 * We may be doing a reset in response to an ioctl
1244 * that changes the channel so update any state that
1245 * might change as a result.
1246 */
1247 ath_chan_change(sc, c);
1248 if (ic->ic_state == IEEE80211_S_RUN)
1249 ath_beacon_config(sc); /* restart beacons */
1250 ath_hal_intrset(ah, sc->sc_imask);
1251
1252 ath_start(ifp); /* restart xmit */
1253 return 0;
1254 }
1255
1256 /*
1257 * Cleanup driver resources when we run out of buffers
1258 * while processing fragments; return the tx buffers
1259 * allocated and drop node references.
1260 */
1261 static void
1262 ath_txfrag_cleanup(struct ath_softc *sc,
1263 ath_bufhead *frags, struct ieee80211_node *ni)
1264 {
1265 struct ath_buf *bf;
1266
1267 ATH_TXBUF_LOCK_ASSERT(sc);
1268
1269 while ((bf = STAILQ_FIRST(frags)) != NULL) {
1270 STAILQ_REMOVE_HEAD(frags, bf_list);
1271 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1272 sc->sc_if.if_flags &= ~IFF_OACTIVE;
1273 ieee80211_node_decref(ni);
1274 }
1275 }
1276
1277 /*
1278 * Setup xmit of a fragmented frame. Allocate a buffer
1279 * for each frag and bump the node reference count to
1280 * reflect the held reference to be setup by ath_tx_start.
1281 */
1282 static int
1283 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
1284 struct mbuf *m0, struct ieee80211_node *ni)
1285 {
1286 struct mbuf *m;
1287 struct ath_buf *bf;
1288
1289 ATH_TXBUF_LOCK(sc);
1290 for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
1291 bf = STAILQ_FIRST(&sc->sc_txbuf);
1292 if (bf == NULL) { /* out of buffers, cleanup */
1293 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1294 __func__);
1295 sc->sc_if.if_flags |= IFF_OACTIVE;
1296 ath_txfrag_cleanup(sc, frags, ni);
1297 break;
1298 }
1299 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1300 ieee80211_node_incref(ni);
1301 STAILQ_INSERT_TAIL(frags, bf, bf_list);
1302 }
1303 ATH_TXBUF_UNLOCK(sc);
1304
1305 return !STAILQ_EMPTY(frags);
1306 }
1307
1308 static void
1309 ath_start(struct ifnet *ifp)
1310 {
1311 struct ath_softc *sc = ifp->if_softc;
1312 struct ath_hal *ah = sc->sc_ah;
1313 struct ieee80211com *ic = &sc->sc_ic;
1314 struct ieee80211_node *ni;
1315 struct ath_buf *bf;
1316 struct mbuf *m, *next;
1317 struct ieee80211_frame *wh;
1318 struct ether_header *eh;
1319 ath_bufhead frags;
1320
1321 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
1322 return;
1323 for (;;) {
1324 /*
1325 * Grab a TX buffer and associated resources.
1326 */
1327 ATH_TXBUF_LOCK(sc);
1328 bf = STAILQ_FIRST(&sc->sc_txbuf);
1329 if (bf != NULL)
1330 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1331 ATH_TXBUF_UNLOCK(sc);
1332 if (bf == NULL) {
1333 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1334 __func__);
1335 sc->sc_stats.ast_tx_qstop++;
1336 ifp->if_flags |= IFF_OACTIVE;
1337 break;
1338 }
1339 /*
1340 * Poll the management queue for frames; they
1341 * have priority over normal data frames.
1342 */
1343 IF_DEQUEUE(&ic->ic_mgtq, m);
1344 if (m == NULL) {
1345 /*
1346 * No data frames go out unless we're associated.
1347 */
1348 if (ic->ic_state != IEEE80211_S_RUN) {
1349 DPRINTF(sc, ATH_DEBUG_XMIT,
1350 "%s: discard data packet, state %s\n",
1351 __func__,
1352 ieee80211_state_name[ic->ic_state]);
1353 sc->sc_stats.ast_tx_discard++;
1354 ATH_TXBUF_LOCK(sc);
1355 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1356 ATH_TXBUF_UNLOCK(sc);
1357 break;
1358 }
1359 IFQ_DEQUEUE(&ifp->if_snd, m); /* XXX: LOCK */
1360 if (m == NULL) {
1361 ATH_TXBUF_LOCK(sc);
1362 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1363 ATH_TXBUF_UNLOCK(sc);
1364 break;
1365 }
1366 STAILQ_INIT(&frags);
1367 /*
1368 * Find the node for the destination so we can do
1369 * things like power save and fast frames aggregation.
1370 */
1371 if (m->m_len < sizeof(struct ether_header) &&
1372 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
1373 ic->ic_stats.is_tx_nobuf++; /* XXX */
1374 ni = NULL;
1375 goto bad;
1376 }
1377 eh = mtod(m, struct ether_header *);
1378 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1379 if (ni == NULL) {
1380 /* NB: ieee80211_find_txnode does stat+msg */
1381 m_freem(m);
1382 goto bad;
1383 }
1384 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1385 (m->m_flags & M_PWR_SAV) == 0) {
1386 /*
1387 * Station in power save mode; pass the frame
1388 * to the 802.11 layer and continue. We'll get
1389 * the frame back when the time is right.
1390 */
1391 ieee80211_pwrsave(ic, ni, m);
1392 goto reclaim;
1393 }
1394 /* calculate priority so we can find the tx queue */
1395 if (ieee80211_classify(ic, m, ni)) {
1396 DPRINTF(sc, ATH_DEBUG_XMIT,
1397 "%s: discard, classification failure\n",
1398 __func__);
1399 m_freem(m);
1400 goto bad;
1401 }
1402 ifp->if_opackets++;
1403
1404 #if NBPFILTER > 0
1405 if (ifp->if_bpf)
1406 bpf_mtap(ifp->if_bpf, m);
1407 #endif
1408 /*
1409 * Encapsulate the packet in prep for transmission.
1410 */
1411 m = ieee80211_encap(ic, m, ni);
1412 if (m == NULL) {
1413 DPRINTF(sc, ATH_DEBUG_XMIT,
1414 "%s: encapsulation failure\n",
1415 __func__);
1416 sc->sc_stats.ast_tx_encap++;
1417 goto bad;
1418 }
1419 /*
1420 * Check for fragmentation. If this has frame
1421 * has been broken up verify we have enough
1422 * buffers to send all the fragments so all
1423 * go out or none...
1424 */
1425 if ((m->m_flags & M_FRAG) &&
1426 !ath_txfrag_setup(sc, &frags, m, ni)) {
1427 DPRINTF(sc, ATH_DEBUG_ANY,
1428 "%s: out of txfrag buffers\n", __func__);
1429 ic->ic_stats.is_tx_nobuf++; /* XXX */
1430 ath_freetx(m);
1431 goto bad;
1432 }
1433 } else {
1434 /*
1435 * Hack! The referenced node pointer is in the
1436 * rcvif field of the packet header. This is
1437 * placed there by ieee80211_mgmt_output because
1438 * we need to hold the reference with the frame
1439 * and there's no other way (other than packet
1440 * tags which we consider too expensive to use)
1441 * to pass it along.
1442 */
1443 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1444 m->m_pkthdr.rcvif = NULL;
1445
1446 wh = mtod(m, struct ieee80211_frame *);
1447 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1448 IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1449 /* fill time stamp */
1450 u_int64_t tsf;
1451 u_int32_t *tstamp;
1452
1453 tsf = ath_hal_gettsf64(ah);
1454 /* XXX: adjust 100us delay to xmit */
1455 tsf += 100;
1456 tstamp = (u_int32_t *)&wh[1];
1457 tstamp[0] = htole32(tsf & 0xffffffff);
1458 tstamp[1] = htole32(tsf >> 32);
1459 }
1460 sc->sc_stats.ast_tx_mgmt++;
1461 }
1462
1463 nextfrag:
1464 next = m->m_nextpkt;
1465 if (ath_tx_start(sc, ni, bf, m)) {
1466 bad:
1467 ifp->if_oerrors++;
1468 reclaim:
1469 ATH_TXBUF_LOCK(sc);
1470 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1471 ath_txfrag_cleanup(sc, &frags, ni);
1472 ATH_TXBUF_UNLOCK(sc);
1473 if (ni != NULL)
1474 ieee80211_free_node(ni);
1475 continue;
1476 }
1477 if (next != NULL) {
1478 m = next;
1479 bf = STAILQ_FIRST(&frags);
1480 KASSERT(bf != NULL, ("no buf for txfrag"));
1481 STAILQ_REMOVE_HEAD(&frags, bf_list);
1482 goto nextfrag;
1483 }
1484
1485 ifp->if_timer = 1;
1486 }
1487 }
1488
1489 static int
1490 ath_media_change(struct ifnet *ifp)
1491 {
1492 #define IS_UP(ifp) \
1493 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
1494 int error;
1495
1496 error = ieee80211_media_change(ifp);
1497 if (error == ENETRESET) {
1498 if (IS_UP(ifp))
1499 ath_init(ifp->if_softc); /* XXX lose error */
1500 error = 0;
1501 }
1502 return error;
1503 #undef IS_UP
1504 }
1505
1506 #ifdef AR_DEBUG
1507 static void
1508 ath_keyprint(const char *tag, u_int ix,
1509 const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1510 {
1511 static const char *ciphers[] = {
1512 "WEP",
1513 "AES-OCB",
1514 "AES-CCM",
1515 "CKIP",
1516 "TKIP",
1517 "CLR",
1518 };
1519 int i, n;
1520
1521 printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1522 for (i = 0, n = hk->kv_len; i < n; i++)
1523 printf("%02x", hk->kv_val[i]);
1524 printf(" mac %s", ether_sprintf(mac));
1525 if (hk->kv_type == HAL_CIPHER_TKIP) {
1526 printf(" mic ");
1527 for (i = 0; i < sizeof(hk->kv_mic); i++)
1528 printf("%02x", hk->kv_mic[i]);
1529 }
1530 printf("\n");
1531 }
1532 #endif
1533
1534 /*
1535 * Set a TKIP key into the hardware. This handles the
1536 * potential distribution of key state to multiple key
1537 * cache slots for TKIP.
1538 */
1539 static int
1540 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1541 HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1542 {
1543 #define IEEE80211_KEY_XR (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1544 static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1545 struct ath_hal *ah = sc->sc_ah;
1546
1547 KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1548 ("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1549 KASSERT(sc->sc_splitmic, ("key cache !split"));
1550 if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1551 /*
1552 * TX key goes at first index, RX key at the rx index.
1553 * The hal handles the MIC keys at index+64.
1554 */
1555 memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1556 KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1557 if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
1558 return 0;
1559
1560 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1561 KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1562 /* XXX delete tx key on failure? */
1563 return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
1564 } else if (k->wk_flags & IEEE80211_KEY_XR) {
1565 /*
1566 * TX/RX key goes at first index.
1567 * The hal handles the MIC keys are index+64.
1568 */
1569 memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
1570 k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
1571 KEYPRINTF(sc, k->wk_keyix, hk, mac);
1572 return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1573 }
1574 return 0;
1575 #undef IEEE80211_KEY_XR
1576 }
1577
1578 /*
1579 * Set a net80211 key into the hardware. This handles the
1580 * potential distribution of key state to multiple key
1581 * cache slots for TKIP with hardware MIC support.
1582 */
1583 static int
1584 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1585 const u_int8_t mac0[IEEE80211_ADDR_LEN],
1586 struct ieee80211_node *bss)
1587 {
1588 #define N(a) (sizeof(a)/sizeof(a[0]))
1589 static const u_int8_t ciphermap[] = {
1590 HAL_CIPHER_WEP, /* IEEE80211_CIPHER_WEP */
1591 HAL_CIPHER_TKIP, /* IEEE80211_CIPHER_TKIP */
1592 HAL_CIPHER_AES_OCB, /* IEEE80211_CIPHER_AES_OCB */
1593 HAL_CIPHER_AES_CCM, /* IEEE80211_CIPHER_AES_CCM */
1594 (u_int8_t) -1, /* 4 is not allocated */
1595 HAL_CIPHER_CKIP, /* IEEE80211_CIPHER_CKIP */
1596 HAL_CIPHER_CLR, /* IEEE80211_CIPHER_NONE */
1597 };
1598 struct ath_hal *ah = sc->sc_ah;
1599 const struct ieee80211_cipher *cip = k->wk_cipher;
1600 u_int8_t gmac[IEEE80211_ADDR_LEN];
1601 const u_int8_t *mac;
1602 HAL_KEYVAL hk;
1603
1604 memset(&hk, 0, sizeof(hk));
1605 /*
1606 * Software crypto uses a "clear key" so non-crypto
1607 * state kept in the key cache are maintained and
1608 * so that rx frames have an entry to match.
1609 */
1610 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1611 KASSERT(cip->ic_cipher < N(ciphermap),
1612 ("invalid cipher type %u", cip->ic_cipher));
1613 hk.kv_type = ciphermap[cip->ic_cipher];
1614 hk.kv_len = k->wk_keylen;
1615 memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1616 } else
1617 hk.kv_type = HAL_CIPHER_CLR;
1618
1619 if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
1620 /*
1621 * Group keys on hardware that supports multicast frame
1622 * key search use a mac that is the sender's address with
1623 * the high bit set instead of the app-specified address.
1624 */
1625 IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
1626 gmac[0] |= 0x80;
1627 mac = gmac;
1628 } else
1629 mac = mac0;
1630
1631 if (hk.kv_type == HAL_CIPHER_TKIP &&
1632 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1633 sc->sc_splitmic) {
1634 return ath_keyset_tkip(sc, k, &hk, mac);
1635 } else {
1636 KEYPRINTF(sc, k->wk_keyix, &hk, mac);
1637 return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
1638 }
1639 #undef N
1640 }
1641
1642 /*
1643 * Allocate tx/rx key slots for TKIP. We allocate two slots for
1644 * each key, one for decrypt/encrypt and the other for the MIC.
1645 */
1646 static u_int16_t
1647 key_alloc_2pair(struct ath_softc *sc,
1648 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1649 {
1650 #define N(a) (sizeof(a)/sizeof(a[0]))
1651 u_int i, keyix;
1652
1653 KASSERT(sc->sc_splitmic, ("key cache !split"));
1654 /* XXX could optimize */
1655 for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1656 u_int8_t b = sc->sc_keymap[i];
1657 if (b != 0xff) {
1658 /*
1659 * One or more slots in this byte are free.
1660 */
1661 keyix = i*NBBY;
1662 while (b & 1) {
1663 again:
1664 keyix++;
1665 b >>= 1;
1666 }
1667 /* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1668 if (isset(sc->sc_keymap, keyix+32) ||
1669 isset(sc->sc_keymap, keyix+64) ||
1670 isset(sc->sc_keymap, keyix+32+64)) {
1671 /* full pair unavailable */
1672 /* XXX statistic */
1673 if (keyix == (i+1)*NBBY) {
1674 /* no slots were appropriate, advance */
1675 continue;
1676 }
1677 goto again;
1678 }
1679 setbit(sc->sc_keymap, keyix);
1680 setbit(sc->sc_keymap, keyix+64);
1681 setbit(sc->sc_keymap, keyix+32);
1682 setbit(sc->sc_keymap, keyix+32+64);
1683 DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1684 "%s: key pair %u,%u %u,%u\n",
1685 __func__, keyix, keyix+64,
1686 keyix+32, keyix+32+64);
1687 *txkeyix = keyix;
1688 *rxkeyix = keyix+32;
1689 return 1;
1690 }
1691 }
1692 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1693 return 0;
1694 #undef N
1695 }
1696
1697 /*
1698 * Allocate a single key cache slot.
1699 */
1700 static int
1701 key_alloc_single(struct ath_softc *sc,
1702 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1703 {
1704 #define N(a) (sizeof(a)/sizeof(a[0]))
1705 u_int i, keyix;
1706
1707 /* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
1708 for (i = 0; i < N(sc->sc_keymap); i++) {
1709 u_int8_t b = sc->sc_keymap[i];
1710 if (b != 0xff) {
1711 /*
1712 * One or more slots are free.
1713 */
1714 keyix = i*NBBY;
1715 while (b & 1)
1716 keyix++, b >>= 1;
1717 setbit(sc->sc_keymap, keyix);
1718 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
1719 __func__, keyix);
1720 *txkeyix = *rxkeyix = keyix;
1721 return 1;
1722 }
1723 }
1724 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
1725 return 0;
1726 #undef N
1727 }
1728
1729 /*
1730 * Allocate one or more key cache slots for a uniacst key. The
1731 * key itself is needed only to identify the cipher. For hardware
1732 * TKIP with split cipher+MIC keys we allocate two key cache slot
1733 * pairs so that we can setup separate TX and RX MIC keys. Note
1734 * that the MIC key for a TKIP key at slot i is assumed by the
1735 * hardware to be at slot i+64. This limits TKIP keys to the first
1736 * 64 entries.
1737 */
1738 static int
1739 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
1740 ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
1741 {
1742 struct ath_softc *sc = ic->ic_ifp->if_softc;
1743
1744 /*
1745 * Group key allocation must be handled specially for
1746 * parts that do not support multicast key cache search
1747 * functionality. For those parts the key id must match
1748 * the h/w key index so lookups find the right key. On
1749 * parts w/ the key search facility we install the sender's
1750 * mac address (with the high bit set) and let the hardware
1751 * find the key w/o using the key id. This is preferred as
1752 * it permits us to support multiple users for adhoc and/or
1753 * multi-station operation.
1754 */
1755 if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
1756 if (!(&ic->ic_nw_keys[0] <= k &&
1757 k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
1758 /* should not happen */
1759 DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1760 "%s: bogus group key\n", __func__);
1761 return 0;
1762 }
1763 /*
1764 * XXX we pre-allocate the global keys so
1765 * have no way to check if they've already been allocated.
1766 */
1767 *keyix = *rxkeyix = k - ic->ic_nw_keys;
1768 return 1;
1769 }
1770
1771 /*
1772 * We allocate two pair for TKIP when using the h/w to do
1773 * the MIC. For everything else, including software crypto,
1774 * we allocate a single entry. Note that s/w crypto requires
1775 * a pass-through slot on the 5211 and 5212. The 5210 does
1776 * not support pass-through cache entries and we map all
1777 * those requests to slot 0.
1778 */
1779 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1780 return key_alloc_single(sc, keyix, rxkeyix);
1781 } else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
1782 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
1783 return key_alloc_2pair(sc, keyix, rxkeyix);
1784 } else {
1785 return key_alloc_single(sc, keyix, rxkeyix);
1786 }
1787 }
1788
1789 /*
1790 * Delete an entry in the key cache allocated by ath_key_alloc.
1791 */
1792 static int
1793 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
1794 {
1795 struct ath_softc *sc = ic->ic_ifp->if_softc;
1796 struct ath_hal *ah = sc->sc_ah;
1797 const struct ieee80211_cipher *cip = k->wk_cipher;
1798 u_int keyix = k->wk_keyix;
1799
1800 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
1801
1802 ath_hal_keyreset(ah, keyix);
1803 /*
1804 * Handle split tx/rx keying required for TKIP with h/w MIC.
1805 */
1806 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1807 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
1808 ath_hal_keyreset(ah, keyix+32); /* RX key */
1809 if (keyix >= IEEE80211_WEP_NKID) {
1810 /*
1811 * Don't touch keymap entries for global keys so
1812 * they are never considered for dynamic allocation.
1813 */
1814 clrbit(sc->sc_keymap, keyix);
1815 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1816 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1817 sc->sc_splitmic) {
1818 clrbit(sc->sc_keymap, keyix+64); /* TX key MIC */
1819 clrbit(sc->sc_keymap, keyix+32); /* RX key */
1820 clrbit(sc->sc_keymap, keyix+32+64); /* RX key MIC */
1821 }
1822 }
1823 return 1;
1824 }
1825
1826 /*
1827 * Set the key cache contents for the specified key. Key cache
1828 * slot(s) must already have been allocated by ath_key_alloc.
1829 */
1830 static int
1831 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
1832 const u_int8_t mac[IEEE80211_ADDR_LEN])
1833 {
1834 struct ath_softc *sc = ic->ic_ifp->if_softc;
1835
1836 return ath_keyset(sc, k, mac, ic->ic_bss);
1837 }
1838
1839 /*
1840 * Block/unblock tx+rx processing while a key change is done.
1841 * We assume the caller serializes key management operations
1842 * so we only need to worry about synchronization with other
1843 * uses that originate in the driver.
1844 */
1845 static void
1846 ath_key_update_begin(struct ieee80211com *ic)
1847 {
1848 struct ifnet *ifp = ic->ic_ifp;
1849 struct ath_softc *sc = ifp->if_softc;
1850
1851 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1852 #if 0
1853 tasklet_disable(&sc->sc_rxtq);
1854 #endif
1855 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */
1856 }
1857
1858 static void
1859 ath_key_update_end(struct ieee80211com *ic)
1860 {
1861 struct ifnet *ifp = ic->ic_ifp;
1862 struct ath_softc *sc = ifp->if_softc;
1863
1864 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1865 IF_UNLOCK(&ifp->if_snd);
1866 #if 0
1867 tasklet_enable(&sc->sc_rxtq);
1868 #endif
1869 }
1870
1871 /*
1872 * Calculate the receive filter according to the
1873 * operating mode and state:
1874 *
1875 * o always accept unicast, broadcast, and multicast traffic
1876 * o maintain current state of phy error reception (the hal
1877 * may enable phy error frames for noise immunity work)
1878 * o probe request frames are accepted only when operating in
1879 * hostap, adhoc, or monitor modes
1880 * o enable promiscuous mode according to the interface state
1881 * o accept beacons:
1882 * - when operating in adhoc mode so the 802.11 layer creates
1883 * node table entries for peers,
1884 * - when operating in station mode for collecting rssi data when
1885 * the station is otherwise quiet, or
1886 * - when scanning
1887 */
1888 static u_int32_t
1889 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
1890 {
1891 struct ieee80211com *ic = &sc->sc_ic;
1892 struct ath_hal *ah = sc->sc_ah;
1893 struct ifnet *ifp = &sc->sc_if;
1894 u_int32_t rfilt;
1895
1896 rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1897 | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1898 if (ic->ic_opmode != IEEE80211_M_STA)
1899 rfilt |= HAL_RX_FILTER_PROBEREQ;
1900 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1901 (ifp->if_flags & IFF_PROMISC))
1902 rfilt |= HAL_RX_FILTER_PROM;
1903 if (ic->ic_opmode == IEEE80211_M_STA ||
1904 ic->ic_opmode == IEEE80211_M_IBSS ||
1905 state == IEEE80211_S_SCAN)
1906 rfilt |= HAL_RX_FILTER_BEACON;
1907 return rfilt;
1908 }
1909
1910 static void
1911 ath_mcastfilter_accum(void *dl, u_int32_t *mfilt)
1912 {
1913 u_int32_t val;
1914 u_int8_t pos;
1915
1916 /* calculate XOR of eight 6bit values */
1917 val = LE_READ_4((char *)dl + 0);
1918 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1919 val = LE_READ_4((char *)dl + 3);
1920 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1921 pos &= 0x3f;
1922 mfilt[pos / 32] |= (1 << (pos % 32));
1923 }
1924
1925 static void
1926 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t *mfilt)
1927 {
1928 struct ifnet *ifp = &sc->sc_if;
1929 struct ether_multi *enm;
1930 struct ether_multistep estep;
1931
1932 mfilt[0] = mfilt[1] = 0;
1933 ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
1934 while (enm != NULL) {
1935 /* XXX Punt on ranges. */
1936 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
1937 mfilt[0] = mfilt[1] = ~((u_int32_t)0);
1938 ifp->if_flags |= IFF_ALLMULTI;
1939 return;
1940 }
1941 ath_mcastfilter_accum(enm->enm_addrlo, mfilt);
1942 ETHER_NEXT_MULTI(estep, enm);
1943 }
1944 ifp->if_flags &= ~IFF_ALLMULTI;
1945 }
1946
1947 static void
1948 ath_mode_init(struct ath_softc *sc)
1949 {
1950 struct ieee80211com *ic = &sc->sc_ic;
1951 struct ath_hal *ah = sc->sc_ah;
1952 u_int32_t rfilt, mfilt[2];
1953 int i;
1954
1955 /* configure rx filter */
1956 rfilt = ath_calcrxfilter(sc, ic->ic_state);
1957 ath_hal_setrxfilter(ah, rfilt);
1958
1959 /* configure operational mode */
1960 ath_hal_setopmode(ah);
1961
1962 /* Write keys to hardware; it may have been powered down. */
1963 ath_key_update_begin(ic);
1964 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1965 ath_key_set(ic,
1966 &ic->ic_crypto.cs_nw_keys[i],
1967 ic->ic_myaddr);
1968 }
1969 ath_key_update_end(ic);
1970
1971 /*
1972 * Handle any link-level address change. Note that we only
1973 * need to force ic_myaddr; any other addresses are handled
1974 * as a byproduct of the ifnet code marking the interface
1975 * down then up.
1976 *
1977 * XXX should get from lladdr instead of arpcom but that's more work
1978 */
1979 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(sc->sc_if.if_sadl));
1980 ath_hal_setmac(ah, ic->ic_myaddr);
1981
1982 /* calculate and install multicast filter */
1983 #ifdef __FreeBSD__
1984 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1985 mfilt[0] = mfilt[1] = 0;
1986 IF_ADDR_LOCK(ifp);
1987 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1988 void *dl;
1989
1990 /* calculate XOR of eight 6bit values */
1991 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
1992 val = LE_READ_4((char *)dl + 0);
1993 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1994 val = LE_READ_4((char *)dl + 3);
1995 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1996 pos &= 0x3f;
1997 mfilt[pos / 32] |= (1 << (pos % 32));
1998 }
1999 IF_ADDR_UNLOCK(ifp);
2000 } else {
2001 mfilt[0] = mfilt[1] = ~0;
2002 }
2003 #endif
2004 #ifdef __NetBSD__
2005 ath_mcastfilter_compute(sc, mfilt);
2006 #endif
2007 ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
2008 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
2009 __func__, rfilt, mfilt[0], mfilt[1]);
2010 }
2011
2012 /*
2013 * Set the slot time based on the current setting.
2014 */
2015 static void
2016 ath_setslottime(struct ath_softc *sc)
2017 {
2018 struct ieee80211com *ic = &sc->sc_ic;
2019 struct ath_hal *ah = sc->sc_ah;
2020
2021 if (ic->ic_flags & IEEE80211_F_SHSLOT)
2022 ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
2023 else
2024 ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
2025 sc->sc_updateslot = OK;
2026 }
2027
2028 /*
2029 * Callback from the 802.11 layer to update the
2030 * slot time based on the current setting.
2031 */
2032 static void
2033 ath_updateslot(struct ifnet *ifp)
2034 {
2035 struct ath_softc *sc = ifp->if_softc;
2036 struct ieee80211com *ic = &sc->sc_ic;
2037
2038 /*
2039 * When not coordinating the BSS, change the hardware
2040 * immediately. For other operation we defer the change
2041 * until beacon updates have propagated to the stations.
2042 */
2043 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
2044 sc->sc_updateslot = UPDATE;
2045 else
2046 ath_setslottime(sc);
2047 }
2048
2049 /*
2050 * Setup a h/w transmit queue for beacons.
2051 */
2052 static int
2053 ath_beaconq_setup(struct ath_hal *ah)
2054 {
2055 HAL_TXQ_INFO qi;
2056
2057 memset(&qi, 0, sizeof(qi));
2058 qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
2059 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
2060 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
2061 /* NB: for dynamic turbo, don't enable any other interrupts */
2062 qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
2063 return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
2064 }
2065
2066 /*
2067 * Setup the transmit queue parameters for the beacon queue.
2068 */
2069 static int
2070 ath_beaconq_config(struct ath_softc *sc)
2071 {
2072 #define ATH_EXPONENT_TO_VALUE(v) ((1<<(v))-1)
2073 struct ieee80211com *ic = &sc->sc_ic;
2074 struct ath_hal *ah = sc->sc_ah;
2075 HAL_TXQ_INFO qi;
2076
2077 ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
2078 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2079 /*
2080 * Always burst out beacon and CAB traffic.
2081 */
2082 qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
2083 qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
2084 qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
2085 } else {
2086 struct wmeParams *wmep =
2087 &ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
2088 /*
2089 * Adhoc mode; important thing is to use 2x cwmin.
2090 */
2091 qi.tqi_aifs = wmep->wmep_aifsn;
2092 qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2093 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2094 }
2095
2096 if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
2097 device_printf(&sc->sc_dev, "unable to update parameters for "
2098 "beacon hardware queue!\n");
2099 return 0;
2100 } else {
2101 ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
2102 return 1;
2103 }
2104 #undef ATH_EXPONENT_TO_VALUE
2105 }
2106
2107 /*
2108 * Allocate and setup an initial beacon frame.
2109 */
2110 static int
2111 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
2112 {
2113 struct ieee80211com *ic = ni->ni_ic;
2114 struct ath_buf *bf;
2115 struct mbuf *m;
2116 int error;
2117
2118 bf = STAILQ_FIRST(&sc->sc_bbuf);
2119 if (bf == NULL) {
2120 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
2121 sc->sc_stats.ast_be_nombuf++; /* XXX */
2122 return ENOMEM; /* XXX */
2123 }
2124 /*
2125 * NB: the beacon data buffer must be 32-bit aligned;
2126 * we assume the mbuf routines will return us something
2127 * with this alignment (perhaps should assert).
2128 */
2129 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
2130 if (m == NULL) {
2131 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
2132 __func__);
2133 sc->sc_stats.ast_be_nombuf++;
2134 return ENOMEM;
2135 }
2136 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2137 BUS_DMA_NOWAIT);
2138 if (error == 0) {
2139 bf->bf_m = m;
2140 bf->bf_node = ieee80211_ref_node(ni);
2141 } else {
2142 m_freem(m);
2143 }
2144 return error;
2145 }
2146
2147 /*
2148 * Setup the beacon frame for transmit.
2149 */
2150 static void
2151 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
2152 {
2153 #define USE_SHPREAMBLE(_ic) \
2154 (((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
2155 == IEEE80211_F_SHPREAMBLE)
2156 struct ieee80211_node *ni = bf->bf_node;
2157 struct ieee80211com *ic = ni->ni_ic;
2158 struct mbuf *m = bf->bf_m;
2159 struct ath_hal *ah = sc->sc_ah;
2160 struct ath_desc *ds;
2161 int flags, antenna;
2162 const HAL_RATE_TABLE *rt;
2163 u_int8_t rix, rate;
2164
2165 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
2166 __func__, m, m->m_len);
2167
2168 /* setup descriptors */
2169 ds = bf->bf_desc;
2170
2171 flags = HAL_TXDESC_NOACK;
2172 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
2173 ds->ds_link = HTOAH32(bf->bf_daddr); /* self-linked */
2174 flags |= HAL_TXDESC_VEOL;
2175 /*
2176 * Let hardware handle antenna switching unless
2177 * the user has selected a transmit antenna
2178 * (sc_txantenna is not 0).
2179 */
2180 antenna = sc->sc_txantenna;
2181 } else {
2182 ds->ds_link = 0;
2183 /*
2184 * Switch antenna every 4 beacons, unless the user
2185 * has selected a transmit antenna (sc_txantenna
2186 * is not 0).
2187 *
2188 * XXX assumes two antenna
2189 */
2190 if (sc->sc_txantenna == 0)
2191 antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2192 else
2193 antenna = sc->sc_txantenna;
2194 }
2195
2196 KASSERT(bf->bf_nseg == 1,
2197 ("multi-segment beacon frame; nseg %u", bf->bf_nseg));
2198 ds->ds_data = bf->bf_segs[0].ds_addr;
2199 /*
2200 * Calculate rate code.
2201 * XXX everything at min xmit rate
2202 */
2203 rix = sc->sc_minrateix;
2204 rt = sc->sc_currates;
2205 rate = rt->info[rix].rateCode;
2206 if (USE_SHPREAMBLE(ic))
2207 rate |= rt->info[rix].shortPreamble;
2208 ath_hal_setuptxdesc(ah, ds
2209 , m->m_len + IEEE80211_CRC_LEN /* frame length */
2210 , sizeof(struct ieee80211_frame)/* header length */
2211 , HAL_PKT_TYPE_BEACON /* Atheros packet type */
2212 , ni->ni_txpower /* txpower XXX */
2213 , rate, 1 /* series 0 rate/tries */
2214 , HAL_TXKEYIX_INVALID /* no encryption */
2215 , antenna /* antenna mode */
2216 , flags /* no ack, veol for beacons */
2217 , 0 /* rts/cts rate */
2218 , 0 /* rts/cts duration */
2219 );
2220 /* NB: beacon's BufLen must be a multiple of 4 bytes */
2221 ath_hal_filltxdesc(ah, ds
2222 , roundup(m->m_len, 4) /* buffer length */
2223 , AH_TRUE /* first segment */
2224 , AH_TRUE /* last segment */
2225 , ds /* first descriptor */
2226 );
2227
2228 /* NB: The desc swap function becomes void,
2229 * if descriptor swapping is not enabled
2230 */
2231 ath_desc_swap(ds);
2232
2233 #undef USE_SHPREAMBLE
2234 }
2235
2236 /*
2237 * Transmit a beacon frame at SWBA. Dynamic updates to the
2238 * frame contents are done as needed and the slot time is
2239 * also adjusted based on current state.
2240 */
2241 static void
2242 ath_beacon_proc(void *arg, int pending)
2243 {
2244 struct ath_softc *sc = arg;
2245 struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
2246 struct ieee80211_node *ni = bf->bf_node;
2247 struct ieee80211com *ic = ni->ni_ic;
2248 struct ath_hal *ah = sc->sc_ah;
2249 struct mbuf *m;
2250 int ncabq, error, otherant;
2251
2252 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2253 __func__, pending);
2254
2255 if (ic->ic_opmode == IEEE80211_M_STA ||
2256 ic->ic_opmode == IEEE80211_M_MONITOR ||
2257 bf == NULL || bf->bf_m == NULL) {
2258 DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
2259 __func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
2260 return;
2261 }
2262 /*
2263 * Check if the previous beacon has gone out. If
2264 * not don't try to post another, skip this period
2265 * and wait for the next. Missed beacons indicate
2266 * a problem and should not occur. If we miss too
2267 * many consecutive beacons reset the device.
2268 */
2269 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2270 sc->sc_bmisscount++;
2271 DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2272 "%s: missed %u consecutive beacons\n",
2273 __func__, sc->sc_bmisscount);
2274 if (sc->sc_bmisscount > 3) /* NB: 3 is a guess */
2275 TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask);
2276 return;
2277 }
2278 if (sc->sc_bmisscount != 0) {
2279 DPRINTF(sc, ATH_DEBUG_BEACON,
2280 "%s: resume beacon xmit after %u misses\n",
2281 __func__, sc->sc_bmisscount);
2282 sc->sc_bmisscount = 0;
2283 }
2284
2285 /*
2286 * Update dynamic beacon contents. If this returns
2287 * non-zero then we need to remap the memory because
2288 * the beacon frame changed size (probably because
2289 * of the TIM bitmap).
2290 */
2291 m = bf->bf_m;
2292 ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
2293 if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
2294 /* XXX too conservative? */
2295 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2296 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2297 BUS_DMA_NOWAIT);
2298 if (error != 0) {
2299 if_printf(&sc->sc_if,
2300 "%s: bus_dmamap_load_mbuf failed, error %u\n",
2301 __func__, error);
2302 return;
2303 }
2304 }
2305
2306 /*
2307 * Handle slot time change when a non-ERP station joins/leaves
2308 * an 11g network. The 802.11 layer notifies us via callback,
2309 * we mark updateslot, then wait one beacon before effecting
2310 * the change. This gives associated stations at least one
2311 * beacon interval to note the state change.
2312 */
2313 /* XXX locking */
2314 if (sc->sc_updateslot == UPDATE)
2315 sc->sc_updateslot = COMMIT; /* commit next beacon */
2316 else if (sc->sc_updateslot == COMMIT)
2317 ath_setslottime(sc); /* commit change to h/w */
2318
2319 /*
2320 * Check recent per-antenna transmit statistics and flip
2321 * the default antenna if noticeably more frames went out
2322 * on the non-default antenna.
2323 * XXX assumes 2 anntenae
2324 */
2325 otherant = sc->sc_defant & 1 ? 2 : 1;
2326 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2327 ath_setdefantenna(sc, otherant);
2328 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2329
2330 /*
2331 * Construct tx descriptor.
2332 */
2333 ath_beacon_setup(sc, bf);
2334
2335 /*
2336 * Stop any current dma and put the new frame on the queue.
2337 * This should never fail since we check above that no frames
2338 * are still pending on the queue.
2339 */
2340 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2341 DPRINTF(sc, ATH_DEBUG_ANY,
2342 "%s: beacon queue %u did not stop?\n",
2343 __func__, sc->sc_bhalq);
2344 }
2345 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2346 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2347
2348 /*
2349 * Enable the CAB queue before the beacon queue to
2350 * insure cab frames are triggered by this beacon.
2351 */
2352 if (ncabq != 0 && (sc->sc_boff.bo_tim[4] & 1)) /* NB: only at DTIM */
2353 ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
2354 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
2355 ath_hal_txstart(ah, sc->sc_bhalq);
2356 DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2357 "%s: TXDP[%u] = %" PRIx64 " (%p)\n", __func__,
2358 sc->sc_bhalq, (uint64_t)bf->bf_daddr, bf->bf_desc);
2359
2360 sc->sc_stats.ast_be_xmit++;
2361 }
2362
2363 /*
2364 * Reset the hardware after detecting beacons have stopped.
2365 */
2366 static void
2367 ath_bstuck_proc(void *arg, int pending)
2368 {
2369 struct ath_softc *sc = arg;
2370 struct ifnet *ifp = &sc->sc_if;
2371
2372 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2373 sc->sc_bmisscount);
2374 ath_reset(ifp);
2375 }
2376
2377 /*
2378 * Reclaim beacon resources.
2379 */
2380 static void
2381 ath_beacon_free(struct ath_softc *sc)
2382 {
2383 struct ath_buf *bf;
2384
2385 STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
2386 if (bf->bf_m != NULL) {
2387 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2388 m_freem(bf->bf_m);
2389 bf->bf_m = NULL;
2390 }
2391 if (bf->bf_node != NULL) {
2392 ieee80211_free_node(bf->bf_node);
2393 bf->bf_node = NULL;
2394 }
2395 }
2396 }
2397
2398 /*
2399 * Configure the beacon and sleep timers.
2400 *
2401 * When operating as an AP this resets the TSF and sets
2402 * up the hardware to notify us when we need to issue beacons.
2403 *
2404 * When operating in station mode this sets up the beacon
2405 * timers according to the timestamp of the last received
2406 * beacon and the current TSF, configures PCF and DTIM
2407 * handling, programs the sleep registers so the hardware
2408 * will wakeup in time to receive beacons, and configures
2409 * the beacon miss handling so we'll receive a BMISS
2410 * interrupt when we stop seeing beacons from the AP
2411 * we've associated with.
2412 */
2413 static void
2414 ath_beacon_config(struct ath_softc *sc)
2415 {
2416 #define TSF_TO_TU(_h,_l) \
2417 ((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
2418 #define FUDGE 2
2419 struct ath_hal *ah = sc->sc_ah;
2420 struct ieee80211com *ic = &sc->sc_ic;
2421 struct ieee80211_node *ni = ic->ic_bss;
2422 u_int32_t nexttbtt, intval, tsftu;
2423 u_int64_t tsf;
2424
2425 /* extract tstamp from last beacon and convert to TU */
2426 nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
2427 LE_READ_4(ni->ni_tstamp.data));
2428 /* NB: the beacon interval is kept internally in TU's */
2429 intval = ni->ni_intval & HAL_BEACON_PERIOD;
2430 if (nexttbtt == 0) /* e.g. for ap mode */
2431 nexttbtt = intval;
2432 else if (intval) /* NB: can be 0 for monitor mode */
2433 nexttbtt = roundup(nexttbtt, intval);
2434 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2435 __func__, nexttbtt, intval, ni->ni_intval);
2436 if (ic->ic_opmode == IEEE80211_M_STA) {
2437 HAL_BEACON_STATE bs;
2438 int dtimperiod, dtimcount;
2439 int cfpperiod, cfpcount;
2440
2441 /*
2442 * Setup dtim and cfp parameters according to
2443 * last beacon we received (which may be none).
2444 */
2445 dtimperiod = ni->ni_dtim_period;
2446 if (dtimperiod <= 0) /* NB: 0 if not known */
2447 dtimperiod = 1;
2448 dtimcount = ni->ni_dtim_count;
2449 if (dtimcount >= dtimperiod) /* NB: sanity check */
2450 dtimcount = 0; /* XXX? */
2451 cfpperiod = 1; /* NB: no PCF support yet */
2452 cfpcount = 0;
2453 /*
2454 * Pull nexttbtt forward to reflect the current
2455 * TSF and calculate dtim+cfp state for the result.
2456 */
2457 tsf = ath_hal_gettsf64(ah);
2458 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2459 do {
2460 nexttbtt += intval;
2461 if (--dtimcount < 0) {
2462 dtimcount = dtimperiod - 1;
2463 if (--cfpcount < 0)
2464 cfpcount = cfpperiod - 1;
2465 }
2466 } while (nexttbtt < tsftu);
2467 memset(&bs, 0, sizeof(bs));
2468 bs.bs_intval = intval;
2469 bs.bs_nexttbtt = nexttbtt;
2470 bs.bs_dtimperiod = dtimperiod*intval;
2471 bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
2472 bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
2473 bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
2474 bs.bs_cfpmaxduration = 0;
2475 #if 0
2476 /*
2477 * The 802.11 layer records the offset to the DTIM
2478 * bitmap while receiving beacons; use it here to
2479 * enable h/w detection of our AID being marked in
2480 * the bitmap vector (to indicate frames for us are
2481 * pending at the AP).
2482 * XXX do DTIM handling in s/w to WAR old h/w bugs
2483 * XXX enable based on h/w rev for newer chips
2484 */
2485 bs.bs_timoffset = ni->ni_timoff;
2486 #endif
2487 /*
2488 * Calculate the number of consecutive beacons to miss
2489 * before taking a BMISS interrupt. The configuration
2490 * is specified in ms, so we need to convert that to
2491 * TU's and then calculate based on the beacon interval.
2492 * Note that we clamp the result to at most 10 beacons.
2493 */
2494 bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
2495 if (bs.bs_bmissthreshold > 10)
2496 bs.bs_bmissthreshold = 10;
2497 else if (bs.bs_bmissthreshold <= 0)
2498 bs.bs_bmissthreshold = 1;
2499
2500 /*
2501 * Calculate sleep duration. The configuration is
2502 * given in ms. We insure a multiple of the beacon
2503 * period is used. Also, if the sleep duration is
2504 * greater than the DTIM period then it makes senses
2505 * to make it a multiple of that.
2506 *
2507 * XXX fixed at 100ms
2508 */
2509 bs.bs_sleepduration =
2510 roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2511 if (bs.bs_sleepduration > bs.bs_dtimperiod)
2512 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2513
2514 DPRINTF(sc, ATH_DEBUG_BEACON,
2515 "%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2516 , __func__
2517 , tsf, tsftu
2518 , bs.bs_intval
2519 , bs.bs_nexttbtt
2520 , bs.bs_dtimperiod
2521 , bs.bs_nextdtim
2522 , bs.bs_bmissthreshold
2523 , bs.bs_sleepduration
2524 , bs.bs_cfpperiod
2525 , bs.bs_cfpmaxduration
2526 , bs.bs_cfpnext
2527 , bs.bs_timoffset
2528 );
2529 ath_hal_intrset(ah, 0);
2530 ath_hal_beacontimers(ah, &bs);
2531 sc->sc_imask |= HAL_INT_BMISS;
2532 ath_hal_intrset(ah, sc->sc_imask);
2533 } else {
2534 ath_hal_intrset(ah, 0);
2535 if (nexttbtt == intval)
2536 intval |= HAL_BEACON_RESET_TSF;
2537 if (ic->ic_opmode == IEEE80211_M_IBSS) {
2538 /*
2539 * In IBSS mode enable the beacon timers but only
2540 * enable SWBA interrupts if we need to manually
2541 * prepare beacon frames. Otherwise we use a
2542 * self-linked tx descriptor and let the hardware
2543 * deal with things.
2544 */
2545 intval |= HAL_BEACON_ENA;
2546 if (!sc->sc_hasveol)
2547 sc->sc_imask |= HAL_INT_SWBA;
2548 if ((intval & HAL_BEACON_RESET_TSF) == 0) {
2549 /*
2550 * Pull nexttbtt forward to reflect
2551 * the current TSF.
2552 */
2553 tsf = ath_hal_gettsf64(ah);
2554 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2555 do {
2556 nexttbtt += intval;
2557 } while (nexttbtt < tsftu);
2558 }
2559 ath_beaconq_config(sc);
2560 } else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2561 /*
2562 * In AP mode we enable the beacon timers and
2563 * SWBA interrupts to prepare beacon frames.
2564 */
2565 intval |= HAL_BEACON_ENA;
2566 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */
2567 ath_beaconq_config(sc);
2568 }
2569 ath_hal_beaconinit(ah, nexttbtt, intval);
2570 sc->sc_bmisscount = 0;
2571 ath_hal_intrset(ah, sc->sc_imask);
2572 /*
2573 * When using a self-linked beacon descriptor in
2574 * ibss mode load it once here.
2575 */
2576 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2577 ath_beacon_proc(sc, 0);
2578 }
2579 sc->sc_syncbeacon = 0;
2580 #undef UNDEF
2581 #undef TSF_TO_TU
2582 }
2583
2584 static int
2585 ath_descdma_setup(struct ath_softc *sc,
2586 struct ath_descdma *dd, ath_bufhead *head,
2587 const char *name, int nbuf, int ndesc)
2588 {
2589 #define DS2PHYS(_dd, _ds) \
2590 ((_dd)->dd_desc_paddr + ((char *)(_ds) - (char *)(_dd)->dd_desc))
2591 struct ifnet *ifp = &sc->sc_if;
2592 struct ath_desc *ds;
2593 struct ath_buf *bf;
2594 int i, bsize, error;
2595
2596 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2597 __func__, name, nbuf, ndesc);
2598
2599 dd->dd_name = name;
2600 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2601
2602 /*
2603 * Setup DMA descriptor area.
2604 */
2605 dd->dd_dmat = sc->sc_dmat;
2606
2607 error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE,
2608 0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0);
2609
2610 if (error != 0) {
2611 if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2612 "error %u\n", nbuf * ndesc, dd->dd_name, error);
2613 goto fail0;
2614 }
2615
2616 error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg,
2617 dd->dd_desc_len, (void **)&dd->dd_desc, BUS_DMA_COHERENT);
2618 if (error != 0) {
2619 if_printf(ifp, "unable to map %u %s descriptors, error = %u\n",
2620 nbuf * ndesc, dd->dd_name, error);
2621 goto fail1;
2622 }
2623
2624 /* allocate descriptors */
2625 error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1,
2626 dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2627 if (error != 0) {
2628 if_printf(ifp, "unable to create dmamap for %s descriptors, "
2629 "error %u\n", dd->dd_name, error);
2630 goto fail2;
2631 }
2632
2633 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc,
2634 dd->dd_desc_len, NULL, BUS_DMA_NOWAIT);
2635 if (error != 0) {
2636 if_printf(ifp, "unable to map %s descriptors, error %u\n",
2637 dd->dd_name, error);
2638 goto fail3;
2639 }
2640
2641 ds = dd->dd_desc;
2642 dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr;
2643 DPRINTF(sc, ATH_DEBUG_RESET,
2644 "%s: %s DMA map: %p (%lu) -> %" PRIx64 " (%lu)\n",
2645 __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2646 (uint64_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2647
2648 /* allocate rx buffers */
2649 bsize = sizeof(struct ath_buf) * nbuf;
2650 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2651 if (bf == NULL) {
2652 if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2653 dd->dd_name, bsize);
2654 goto fail4;
2655 }
2656 dd->dd_bufptr = bf;
2657
2658 STAILQ_INIT(head);
2659 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2660 bf->bf_desc = ds;
2661 bf->bf_daddr = DS2PHYS(dd, ds);
2662 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc,
2663 MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap);
2664 if (error != 0) {
2665 if_printf(ifp, "unable to create dmamap for %s "
2666 "buffer %u, error %u\n", dd->dd_name, i, error);
2667 ath_descdma_cleanup(sc, dd, head);
2668 return error;
2669 }
2670 STAILQ_INSERT_TAIL(head, bf, bf_list);
2671 }
2672 return 0;
2673 fail4:
2674 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2675 fail3:
2676 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2677 fail2:
2678 bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
2679 fail1:
2680 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2681 fail0:
2682 memset(dd, 0, sizeof(*dd));
2683 return error;
2684 #undef DS2PHYS
2685 }
2686
2687 static void
2688 ath_descdma_cleanup(struct ath_softc *sc,
2689 struct ath_descdma *dd, ath_bufhead *head)
2690 {
2691 struct ath_buf *bf;
2692 struct ieee80211_node *ni;
2693
2694 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2695 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2696 bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
2697 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2698
2699 STAILQ_FOREACH(bf, head, bf_list) {
2700 if (bf->bf_m) {
2701 m_freem(bf->bf_m);
2702 bf->bf_m = NULL;
2703 }
2704 if (bf->bf_dmamap != NULL) {
2705 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2706 bf->bf_dmamap = NULL;
2707 }
2708 ni = bf->bf_node;
2709 bf->bf_node = NULL;
2710 if (ni != NULL) {
2711 /*
2712 * Reclaim node reference.
2713 */
2714 ieee80211_free_node(ni);
2715 }
2716 }
2717
2718 STAILQ_INIT(head);
2719 free(dd->dd_bufptr, M_ATHDEV);
2720 memset(dd, 0, sizeof(*dd));
2721 }
2722
2723 static int
2724 ath_desc_alloc(struct ath_softc *sc)
2725 {
2726 int error;
2727
2728 error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2729 "rx", ath_rxbuf, 1);
2730 if (error != 0)
2731 return error;
2732
2733 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2734 "tx", ath_txbuf, ATH_TXDESC);
2735 if (error != 0) {
2736 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2737 return error;
2738 }
2739
2740 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2741 "beacon", 1, 1);
2742 if (error != 0) {
2743 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2744 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2745 return error;
2746 }
2747 return 0;
2748 }
2749
2750 static void
2751 ath_desc_free(struct ath_softc *sc)
2752 {
2753
2754 if (sc->sc_bdma.dd_desc_len != 0)
2755 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2756 if (sc->sc_txdma.dd_desc_len != 0)
2757 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2758 if (sc->sc_rxdma.dd_desc_len != 0)
2759 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2760 }
2761
2762 static struct ieee80211_node *
2763 ath_node_alloc(struct ieee80211_node_table *nt)
2764 {
2765 struct ieee80211com *ic = nt->nt_ic;
2766 struct ath_softc *sc = ic->ic_ifp->if_softc;
2767 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2768 struct ath_node *an;
2769
2770 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2771 if (an == NULL) {
2772 /* XXX stat+msg */
2773 return NULL;
2774 }
2775 an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
2776 ath_rate_node_init(sc, an);
2777
2778 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2779 return &an->an_node;
2780 }
2781
2782 static void
2783 ath_node_free(struct ieee80211_node *ni)
2784 {
2785 struct ieee80211com *ic = ni->ni_ic;
2786 struct ath_softc *sc = ic->ic_ifp->if_softc;
2787
2788 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2789
2790 ath_rate_node_cleanup(sc, ATH_NODE(ni));
2791 sc->sc_node_free(ni);
2792 }
2793
2794 static u_int8_t
2795 ath_node_getrssi(const struct ieee80211_node *ni)
2796 {
2797 #define HAL_EP_RND(x, mul) \
2798 ((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
2799 u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
2800 int32_t rssi;
2801
2802 /*
2803 * When only one frame is received there will be no state in
2804 * avgrssi so fallback on the value recorded by the 802.11 layer.
2805 */
2806 if (avgrssi != ATH_RSSI_DUMMY_MARKER)
2807 rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
2808 else
2809 rssi = ni->ni_rssi;
2810 return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
2811 #undef HAL_EP_RND
2812 }
2813
2814 static int
2815 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2816 {
2817 struct ath_hal *ah = sc->sc_ah;
2818 int error;
2819 struct mbuf *m;
2820 struct ath_desc *ds;
2821
2822 m = bf->bf_m;
2823 if (m == NULL) {
2824 /*
2825 * NB: by assigning a page to the rx dma buffer we
2826 * implicitly satisfy the Atheros requirement that
2827 * this buffer be cache-line-aligned and sized to be
2828 * multiple of the cache line size. Not doing this
2829 * causes weird stuff to happen (for the 5210 at least).
2830 */
2831 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2832 if (m == NULL) {
2833 DPRINTF(sc, ATH_DEBUG_ANY,
2834 "%s: no mbuf/cluster\n", __func__);
2835 sc->sc_stats.ast_rx_nombuf++;
2836 return ENOMEM;
2837 }
2838 bf->bf_m = m;
2839 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2840
2841 error = bus_dmamap_load_mbuf(sc->sc_dmat,
2842 bf->bf_dmamap, m,
2843 BUS_DMA_NOWAIT);
2844 if (error != 0) {
2845 DPRINTF(sc, ATH_DEBUG_ANY,
2846 "%s: bus_dmamap_load_mbuf failed; error %d\n",
2847 __func__, error);
2848 sc->sc_stats.ast_rx_busdma++;
2849 return error;
2850 }
2851 KASSERT(bf->bf_nseg == 1,
2852 ("multi-segment packet; nseg %u", bf->bf_nseg));
2853 }
2854 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2855 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2856
2857 /*
2858 * Setup descriptors. For receive we always terminate
2859 * the descriptor list with a self-linked entry so we'll
2860 * not get overrun under high load (as can happen with a
2861 * 5212 when ANI processing enables PHY error frames).
2862 *
2863 * To insure the last descriptor is self-linked we create
2864 * each descriptor as self-linked and add it to the end. As
2865 * each additional descriptor is added the previous self-linked
2866 * entry is ``fixed'' naturally. This should be safe even
2867 * if DMA is happening. When processing RX interrupts we
2868 * never remove/process the last, self-linked, entry on the
2869 * descriptor list. This insures the hardware always has
2870 * someplace to write a new frame.
2871 */
2872 ds = bf->bf_desc;
2873 ds->ds_link = HTOAH32(bf->bf_daddr); /* link to self */
2874 ds->ds_data = bf->bf_segs[0].ds_addr;
2875 ds->ds_vdata = mtod(m, void *); /* for radar */
2876 ath_hal_setuprxdesc(ah, ds
2877 , m->m_len /* buffer size */
2878 , 0
2879 );
2880
2881 if (sc->sc_rxlink != NULL)
2882 *sc->sc_rxlink = bf->bf_daddr;
2883 sc->sc_rxlink = &ds->ds_link;
2884 return 0;
2885 }
2886
2887 /*
2888 * Extend 15-bit time stamp from rx descriptor to
2889 * a full 64-bit TSF using the specified TSF.
2890 */
2891 static inline u_int64_t
2892 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
2893 {
2894 if ((tsf & 0x7fff) < rstamp)
2895 tsf -= 0x8000;
2896 return ((tsf &~ 0x7fff) | rstamp);
2897 }
2898
2899 /*
2900 * Intercept management frames to collect beacon rssi data
2901 * and to do ibss merges.
2902 */
2903 static void
2904 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2905 struct ieee80211_node *ni,
2906 int subtype, int rssi, u_int32_t rstamp)
2907 {
2908 struct ath_softc *sc = ic->ic_ifp->if_softc;
2909
2910 /*
2911 * Call up first so subsequent work can use information
2912 * potentially stored in the node (e.g. for ibss merge).
2913 */
2914 sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
2915 switch (subtype) {
2916 case IEEE80211_FC0_SUBTYPE_BEACON:
2917 /* update rssi statistics for use by the hal */
2918 ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
2919 if (sc->sc_syncbeacon &&
2920 ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) {
2921 /*
2922 * Resync beacon timers using the tsf of the beacon
2923 * frame we just received.
2924 */
2925 ath_beacon_config(sc);
2926 }
2927 /* fall thru... */
2928 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2929 if (ic->ic_opmode == IEEE80211_M_IBSS &&
2930 ic->ic_state == IEEE80211_S_RUN) {
2931 u_int64_t tsf = ath_extend_tsf(rstamp,
2932 ath_hal_gettsf64(sc->sc_ah));
2933
2934 /*
2935 * Handle ibss merge as needed; check the tsf on the
2936 * frame before attempting the merge. The 802.11 spec
2937 * says the station should change it's bssid to match
2938 * the oldest station with the same ssid, where oldest
2939 * is determined by the tsf. Note that hardware
2940 * reconfiguration happens through callback to
2941 * ath_newstate as the state machine will go from
2942 * RUN -> RUN when this happens.
2943 */
2944 if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
2945 DPRINTF(sc, ATH_DEBUG_STATE,
2946 "ibss merge, rstamp %u tsf %ju "
2947 "tstamp %ju\n", rstamp, (uintmax_t)tsf,
2948 (uintmax_t)ni->ni_tstamp.tsf);
2949 (void) ieee80211_ibss_merge(ni);
2950 }
2951 }
2952 break;
2953 }
2954 }
2955
2956 /*
2957 * Set the default antenna.
2958 */
2959 static void
2960 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
2961 {
2962 struct ath_hal *ah = sc->sc_ah;
2963
2964 /* XXX block beacon interrupts */
2965 ath_hal_setdefantenna(ah, antenna);
2966 if (sc->sc_defant != antenna)
2967 sc->sc_stats.ast_ant_defswitch++;
2968 sc->sc_defant = antenna;
2969 sc->sc_rxotherant = 0;
2970 }
2971
2972 static void
2973 ath_rx_proc(void *arg, int npending)
2974 {
2975 #define PA2DESC(_sc, _pa) \
2976 ((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
2977 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
2978 struct ath_softc *sc = arg;
2979 struct ath_buf *bf;
2980 struct ieee80211com *ic = &sc->sc_ic;
2981 struct ifnet *ifp = &sc->sc_if;
2982 struct ath_hal *ah = sc->sc_ah;
2983 struct ath_desc *ds;
2984 struct mbuf *m;
2985 struct ieee80211_node *ni;
2986 struct ath_node *an;
2987 int len, type, ngood;
2988 u_int phyerr;
2989 HAL_STATUS status;
2990 int16_t nf;
2991 u_int64_t tsf;
2992
2993 NET_LOCK_GIANT(); /* XXX */
2994
2995 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
2996 ngood = 0;
2997 nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
2998 tsf = ath_hal_gettsf64(ah);
2999 do {
3000 bf = STAILQ_FIRST(&sc->sc_rxbuf);
3001 if (bf == NULL) { /* NB: shouldn't happen */
3002 if_printf(ifp, "%s: no buffer!\n", __func__);
3003 break;
3004 }
3005 ds = bf->bf_desc;
3006 if (ds->ds_link == bf->bf_daddr) {
3007 /* NB: never process the self-linked entry at the end */
3008 break;
3009 }
3010 m = bf->bf_m;
3011 if (m == NULL) { /* NB: shouldn't happen */
3012 if_printf(ifp, "%s: no mbuf!\n", __func__);
3013 break;
3014 }
3015 /* XXX sync descriptor memory */
3016 /*
3017 * Must provide the virtual address of the current
3018 * descriptor, the physical address, and the virtual
3019 * address of the next descriptor in the h/w chain.
3020 * This allows the HAL to look ahead to see if the
3021 * hardware is done with a descriptor by checking the
3022 * done bit in the following descriptor and the address
3023 * of the current descriptor the DMA engine is working
3024 * on. All this is necessary because of our use of
3025 * a self-linked list to avoid rx overruns.
3026 */
3027 status = ath_hal_rxprocdesc(ah, ds,
3028 bf->bf_daddr, PA2DESC(sc, ds->ds_link));
3029 #ifdef AR_DEBUG
3030 if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
3031 ath_printrxbuf(bf, status == HAL_OK);
3032 #endif
3033 if (status == HAL_EINPROGRESS)
3034 break;
3035 STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
3036 if (ds->ds_rxstat.rs_more) {
3037 /*
3038 * Frame spans multiple descriptors; this
3039 * cannot happen yet as we don't support
3040 * jumbograms. If not in monitor mode,
3041 * discard the frame.
3042 */
3043 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3044 sc->sc_stats.ast_rx_toobig++;
3045 goto rx_next;
3046 }
3047 /* fall thru for monitor mode handling... */
3048 } else if (ds->ds_rxstat.rs_status != 0) {
3049 if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
3050 sc->sc_stats.ast_rx_crcerr++;
3051 if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
3052 sc->sc_stats.ast_rx_fifoerr++;
3053 if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
3054 sc->sc_stats.ast_rx_phyerr++;
3055 phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
3056 sc->sc_stats.ast_rx_phy[phyerr]++;
3057 goto rx_next;
3058 }
3059 if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
3060 /*
3061 * Decrypt error. If the error occurred
3062 * because there was no hardware key, then
3063 * let the frame through so the upper layers
3064 * can process it. This is necessary for 5210
3065 * parts which have no way to setup a ``clear''
3066 * key cache entry.
3067 *
3068 * XXX do key cache faulting
3069 */
3070 if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
3071 goto rx_accept;
3072 sc->sc_stats.ast_rx_badcrypt++;
3073 }
3074 if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
3075 sc->sc_stats.ast_rx_badmic++;
3076 /*
3077 * Do minimal work required to hand off
3078 * the 802.11 header for notifcation.
3079 */
3080 /* XXX frag's and qos frames */
3081 len = ds->ds_rxstat.rs_datalen;
3082 if (len >= sizeof (struct ieee80211_frame)) {
3083 bus_dmamap_sync(sc->sc_dmat,
3084 bf->bf_dmamap,
3085 0, bf->bf_dmamap->dm_mapsize,
3086 BUS_DMASYNC_POSTREAD);
3087 ieee80211_notify_michael_failure(ic,
3088 mtod(m, struct ieee80211_frame *),
3089 sc->sc_splitmic ?
3090 ds->ds_rxstat.rs_keyix-32 :
3091 ds->ds_rxstat.rs_keyix
3092 );
3093 }
3094 }
3095 ifp->if_ierrors++;
3096 /*
3097 * Reject error frames, we normally don't want
3098 * to see them in monitor mode (in monitor mode
3099 * allow through packets that have crypto problems).
3100 */
3101 if ((ds->ds_rxstat.rs_status &~
3102 (HAL_RXERR_DECRYPT|HAL_RXERR_MIC)) ||
3103 sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
3104 goto rx_next;
3105 }
3106 rx_accept:
3107 /*
3108 * Sync and unmap the frame. At this point we're
3109 * committed to passing the mbuf somewhere so clear
3110 * bf_m; this means a new sk_buff must be allocated
3111 * when the rx descriptor is setup again to receive
3112 * another frame.
3113 */
3114 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3115 0, bf->bf_dmamap->dm_mapsize,
3116 BUS_DMASYNC_POSTREAD);
3117 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3118 bf->bf_m = NULL;
3119
3120 m->m_pkthdr.rcvif = ifp;
3121 len = ds->ds_rxstat.rs_datalen;
3122 m->m_pkthdr.len = m->m_len = len;
3123
3124 sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
3125
3126 #if NBPFILTER > 0
3127 if (sc->sc_drvbpf) {
3128 u_int8_t rix;
3129
3130 /*
3131 * Discard anything shorter than an ack or cts.
3132 */
3133 if (len < IEEE80211_ACK_LEN) {
3134 DPRINTF(sc, ATH_DEBUG_RECV,
3135 "%s: runt packet %d\n",
3136 __func__, len);
3137 sc->sc_stats.ast_rx_tooshort++;
3138 m_freem(m);
3139 goto rx_next;
3140 }
3141 rix = ds->ds_rxstat.rs_rate;
3142 sc->sc_rx_th.wr_tsf = htole64(
3143 ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf));
3144 sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
3145 sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
3146 sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf;
3147 sc->sc_rx_th.wr_antnoise = nf;
3148 sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
3149
3150 bpf_mtap2(sc->sc_drvbpf,
3151 &sc->sc_rx_th, sc->sc_rx_th_len, m);
3152 }
3153 #endif
3154
3155 /*
3156 * From this point on we assume the frame is at least
3157 * as large as ieee80211_frame_min; verify that.
3158 */
3159 if (len < IEEE80211_MIN_LEN) {
3160 DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
3161 __func__, len);
3162 sc->sc_stats.ast_rx_tooshort++;
3163 m_freem(m);
3164 goto rx_next;
3165 }
3166
3167 if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
3168 ieee80211_dump_pkt(mtod(m, void *), len,
3169 sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
3170 ds->ds_rxstat.rs_rssi);
3171 }
3172
3173 m_adj(m, -IEEE80211_CRC_LEN);
3174
3175 /*
3176 * Locate the node for sender, track state, and then
3177 * pass the (referenced) node up to the 802.11 layer
3178 * for its use.
3179 */
3180 ni = ieee80211_find_rxnode_withkey(ic,
3181 mtod(m, const struct ieee80211_frame_min *),
3182 ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
3183 IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
3184 /*
3185 * Track rx rssi and do any rx antenna management.
3186 */
3187 an = ATH_NODE(ni);
3188 ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
3189 ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi);
3190 /*
3191 * Send frame up for processing.
3192 */
3193 type = ieee80211_input(ic, m, ni,
3194 ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
3195 ieee80211_free_node(ni);
3196 if (sc->sc_diversity) {
3197 /*
3198 * When using fast diversity, change the default rx
3199 * antenna if diversity chooses the other antenna 3
3200 * times in a row.
3201 */
3202 if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
3203 if (++sc->sc_rxotherant >= 3)
3204 ath_setdefantenna(sc,
3205 ds->ds_rxstat.rs_antenna);
3206 } else
3207 sc->sc_rxotherant = 0;
3208 }
3209 if (sc->sc_softled) {
3210 /*
3211 * Blink for any data frame. Otherwise do a
3212 * heartbeat-style blink when idle. The latter
3213 * is mainly for station mode where we depend on
3214 * periodic beacon frames to trigger the poll event.
3215 */
3216 if (type == IEEE80211_FC0_TYPE_DATA) {
3217 sc->sc_rxrate = ds->ds_rxstat.rs_rate;
3218 ath_led_event(sc, ATH_LED_RX);
3219 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
3220 ath_led_event(sc, ATH_LED_POLL);
3221 }
3222 /*
3223 * Arrange to update the last rx timestamp only for
3224 * frames from our ap when operating in station mode.
3225 * This assumes the rx key is always setup when associated.
3226 */
3227 if (ic->ic_opmode == IEEE80211_M_STA &&
3228 ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID)
3229 ngood++;
3230 rx_next:
3231 STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
3232 } while (ath_rxbuf_init(sc, bf) == 0);
3233
3234 /* rx signal state monitoring */
3235 ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
3236 if (ath_hal_radar_event(ah))
3237 TASK_RUN_OR_ENQUEUE(&sc->sc_radartask);
3238 if (ngood)
3239 sc->sc_lastrx = tsf;
3240
3241 #ifdef __NetBSD__
3242 /* XXX Why isn't this necessary in FreeBSD? */
3243 if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
3244 ath_start(ifp);
3245 #endif /* __NetBSD__ */
3246
3247 NET_UNLOCK_GIANT(); /* XXX */
3248 #undef PA2DESC
3249 }
3250
3251 /*
3252 * Setup a h/w transmit queue.
3253 */
3254 static struct ath_txq *
3255 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3256 {
3257 #define N(a) (sizeof(a)/sizeof(a[0]))
3258 struct ath_hal *ah = sc->sc_ah;
3259 HAL_TXQ_INFO qi;
3260 int qnum;
3261
3262 memset(&qi, 0, sizeof(qi));
3263 qi.tqi_subtype = subtype;
3264 qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3265 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3266 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3267 /*
3268 * Enable interrupts only for EOL and DESC conditions.
3269 * We mark tx descriptors to receive a DESC interrupt
3270 * when a tx queue gets deep; otherwise waiting for the
3271 * EOL to reap descriptors. Note that this is done to
3272 * reduce interrupt load and this only defers reaping
3273 * descriptors, never transmitting frames. Aside from
3274 * reducing interrupts this also permits more concurrency.
3275 * The only potential downside is if the tx queue backs
3276 * up in which case the top half of the kernel may backup
3277 * due to a lack of tx descriptors.
3278 */
3279 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
3280 qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3281 if (qnum == -1) {
3282 /*
3283 * NB: don't print a message, this happens
3284 * normally on parts with too few tx queues
3285 */
3286 return NULL;
3287 }
3288 if (qnum >= N(sc->sc_txq)) {
3289 device_printf(&sc->sc_dev,
3290 "hal qnum %u out of range, max %zu!\n",
3291 qnum, N(sc->sc_txq));
3292 ath_hal_releasetxqueue(ah, qnum);
3293 return NULL;
3294 }
3295 if (!ATH_TXQ_SETUP(sc, qnum)) {
3296 struct ath_txq *txq = &sc->sc_txq[qnum];
3297
3298 txq->axq_qnum = qnum;
3299 txq->axq_depth = 0;
3300 txq->axq_intrcnt = 0;
3301 txq->axq_link = NULL;
3302 STAILQ_INIT(&txq->axq_q);
3303 ATH_TXQ_LOCK_INIT(sc, txq);
3304 sc->sc_txqsetup |= 1<<qnum;
3305 }
3306 return &sc->sc_txq[qnum];
3307 #undef N
3308 }
3309
3310 /*
3311 * Setup a hardware data transmit queue for the specified
3312 * access control. The hal may not support all requested
3313 * queues in which case it will return a reference to a
3314 * previously setup queue. We record the mapping from ac's
3315 * to h/w queues for use by ath_tx_start and also track
3316 * the set of h/w queues being used to optimize work in the
3317 * transmit interrupt handler and related routines.
3318 */
3319 static int
3320 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3321 {
3322 #define N(a) (sizeof(a)/sizeof(a[0]))
3323 struct ath_txq *txq;
3324
3325 if (ac >= N(sc->sc_ac2q)) {
3326 device_printf(&sc->sc_dev, "AC %u out of range, max %zu!\n",
3327 ac, N(sc->sc_ac2q));
3328 return 0;
3329 }
3330 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3331 if (txq != NULL) {
3332 sc->sc_ac2q[ac] = txq;
3333 return 1;
3334 } else
3335 return 0;
3336 #undef N
3337 }
3338
3339 /*
3340 * Update WME parameters for a transmit queue.
3341 */
3342 static int
3343 ath_txq_update(struct ath_softc *sc, int ac)
3344 {
3345 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1)
3346 #define ATH_TXOP_TO_US(v) (v<<5)
3347 struct ieee80211com *ic = &sc->sc_ic;
3348 struct ath_txq *txq = sc->sc_ac2q[ac];
3349 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3350 struct ath_hal *ah = sc->sc_ah;
3351 HAL_TXQ_INFO qi;
3352
3353 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3354 qi.tqi_aifs = wmep->wmep_aifsn;
3355 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3356 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3357 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3358
3359 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3360 device_printf(&sc->sc_dev, "unable to update hardware queue "
3361 "parameters for %s traffic!\n",
3362 ieee80211_wme_acnames[ac]);
3363 return 0;
3364 } else {
3365 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3366 return 1;
3367 }
3368 #undef ATH_TXOP_TO_US
3369 #undef ATH_EXPONENT_TO_VALUE
3370 }
3371
3372 /*
3373 * Callback from the 802.11 layer to update WME parameters.
3374 */
3375 static int
3376 ath_wme_update(struct ieee80211com *ic)
3377 {
3378 struct ath_softc *sc = ic->ic_ifp->if_softc;
3379
3380 return !ath_txq_update(sc, WME_AC_BE) ||
3381 !ath_txq_update(sc, WME_AC_BK) ||
3382 !ath_txq_update(sc, WME_AC_VI) ||
3383 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3384 }
3385
3386 /*
3387 * Reclaim resources for a setup queue.
3388 */
3389 static void
3390 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3391 {
3392
3393 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3394 ATH_TXQ_LOCK_DESTROY(txq);
3395 sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3396 }
3397
3398 /*
3399 * Reclaim all tx queue resources.
3400 */
3401 static void
3402 ath_tx_cleanup(struct ath_softc *sc)
3403 {
3404 int i;
3405
3406 ATH_TXBUF_LOCK_DESTROY(sc);
3407 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3408 if (ATH_TXQ_SETUP(sc, i))
3409 ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3410 }
3411
3412 /*
3413 * Defragment an mbuf chain, returning at most maxfrags separate
3414 * mbufs+clusters. If this is not possible NULL is returned and
3415 * the original mbuf chain is left in it's present (potentially
3416 * modified) state. We use two techniques: collapsing consecutive
3417 * mbufs and replacing consecutive mbufs by a cluster.
3418 */
3419 static struct mbuf *
3420 ath_defrag(struct mbuf *m0, int how, int maxfrags)
3421 {
3422 struct mbuf *m, *n, *n2, **prev;
3423 u_int curfrags;
3424
3425 /*
3426 * Calculate the current number of frags.
3427 */
3428 curfrags = 0;
3429 for (m = m0; m != NULL; m = m->m_next)
3430 curfrags++;
3431 /*
3432 * First, try to collapse mbufs. Note that we always collapse
3433 * towards the front so we don't need to deal with moving the
3434 * pkthdr. This may be suboptimal if the first mbuf has much
3435 * less data than the following.
3436 */
3437 m = m0;
3438 again:
3439 for (;;) {
3440 n = m->m_next;
3441 if (n == NULL)
3442 break;
3443 if (n->m_len < M_TRAILINGSPACE(m)) {
3444 memcpy(mtod(m, char *) + m->m_len, mtod(n, void *),
3445 n->m_len);
3446 m->m_len += n->m_len;
3447 m->m_next = n->m_next;
3448 m_free(n);
3449 if (--curfrags <= maxfrags)
3450 return m0;
3451 } else
3452 m = n;
3453 }
3454 KASSERT(maxfrags > 1,
3455 ("maxfrags %u, but normal collapse failed", maxfrags));
3456 /*
3457 * Collapse consecutive mbufs to a cluster.
3458 */
3459 prev = &m0->m_next; /* NB: not the first mbuf */
3460 while ((n = *prev) != NULL) {
3461 if ((n2 = n->m_next) != NULL &&
3462 n->m_len + n2->m_len < MCLBYTES) {
3463 m = m_getcl(how, MT_DATA, 0);
3464 if (m == NULL)
3465 goto bad;
3466 bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
3467 bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
3468 n2->m_len);
3469 m->m_len = n->m_len + n2->m_len;
3470 m->m_next = n2->m_next;
3471 *prev = m;
3472 m_free(n);
3473 m_free(n2);
3474 if (--curfrags <= maxfrags) /* +1 cl -2 mbufs */
3475 return m0;
3476 /*
3477 * Still not there, try the normal collapse
3478 * again before we allocate another cluster.
3479 */
3480 goto again;
3481 }
3482 prev = &n->m_next;
3483 }
3484 /*
3485 * No place where we can collapse to a cluster; punt.
3486 * This can occur if, for example, you request 2 frags
3487 * but the packet requires that both be clusters (we
3488 * never reallocate the first mbuf to avoid moving the
3489 * packet header).
3490 */
3491 bad:
3492 return NULL;
3493 }
3494
3495 /*
3496 * Return h/w rate index for an IEEE rate (w/o basic rate bit).
3497 */
3498 static int
3499 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
3500 {
3501 int i;
3502
3503 for (i = 0; i < rt->rateCount; i++)
3504 if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
3505 return i;
3506 return 0; /* NB: lowest rate */
3507 }
3508
3509 static void
3510 ath_freetx(struct mbuf *m)
3511 {
3512 struct mbuf *next;
3513
3514 do {
3515 next = m->m_nextpkt;
3516 m->m_nextpkt = NULL;
3517 m_freem(m);
3518 } while ((m = next) != NULL);
3519 }
3520
3521 static int
3522 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
3523 struct mbuf *m0)
3524 {
3525 struct ieee80211com *ic = &sc->sc_ic;
3526 struct ath_hal *ah = sc->sc_ah;
3527 struct ifnet *ifp = &sc->sc_if;
3528 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
3529 int i, error, iswep, ismcast, isfrag, ismrr;
3530 int keyix, hdrlen, pktlen, try0;
3531 u_int8_t rix, txrate, ctsrate;
3532 u_int8_t cix = 0xff; /* NB: silence compiler */
3533 struct ath_desc *ds, *ds0;
3534 struct ath_txq *txq;
3535 struct ieee80211_frame *wh;
3536 u_int subtype, flags, ctsduration;
3537 HAL_PKT_TYPE atype;
3538 const HAL_RATE_TABLE *rt;
3539 HAL_BOOL shortPreamble;
3540 struct ath_node *an;
3541 struct mbuf *m;
3542 u_int pri;
3543
3544 wh = mtod(m0, struct ieee80211_frame *);
3545 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
3546 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3547 isfrag = m0->m_flags & M_FRAG;
3548 hdrlen = ieee80211_anyhdrsize(wh);
3549 /*
3550 * Packet length must not include any
3551 * pad bytes; deduct them here.
3552 */
3553 pktlen = m0->m_pkthdr.len - (hdrlen & 3);
3554
3555 if (iswep) {
3556 const struct ieee80211_cipher *cip;
3557 struct ieee80211_key *k;
3558
3559 /*
3560 * Construct the 802.11 header+trailer for an encrypted
3561 * frame. The only reason this can fail is because of an
3562 * unknown or unsupported cipher/key type.
3563 */
3564 k = ieee80211_crypto_encap(ic, ni, m0);
3565 if (k == NULL) {
3566 /*
3567 * This can happen when the key is yanked after the
3568 * frame was queued. Just discard the frame; the
3569 * 802.11 layer counts failures and provides
3570 * debugging/diagnostics.
3571 */
3572 ath_freetx(m0);
3573 return EIO;
3574 }
3575 /*
3576 * Adjust the packet + header lengths for the crypto
3577 * additions and calculate the h/w key index. When
3578 * a s/w mic is done the frame will have had any mic
3579 * added to it prior to entry so m0->m_pkthdr.len above will
3580 * account for it. Otherwise we need to add it to the
3581 * packet length.
3582 */
3583 cip = k->wk_cipher;
3584 hdrlen += cip->ic_header;
3585 pktlen += cip->ic_header + cip->ic_trailer;
3586 /* NB: frags always have any TKIP MIC done in s/w */
3587 if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
3588 pktlen += cip->ic_miclen;
3589 keyix = k->wk_keyix;
3590
3591 /* packet header may have moved, reset our local pointer */
3592 wh = mtod(m0, struct ieee80211_frame *);
3593 } else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
3594 /*
3595 * Use station key cache slot, if assigned.
3596 */
3597 keyix = ni->ni_ucastkey.wk_keyix;
3598 if (keyix == IEEE80211_KEYIX_NONE)
3599 keyix = HAL_TXKEYIX_INVALID;
3600 } else
3601 keyix = HAL_TXKEYIX_INVALID;
3602
3603 pktlen += IEEE80211_CRC_LEN;
3604
3605 /*
3606 * Load the DMA map so any coalescing is done. This
3607 * also calculates the number of descriptors we need.
3608 */
3609 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3610 BUS_DMA_NOWAIT);
3611 if (error == EFBIG) {
3612 /* XXX packet requires too many descriptors */
3613 bf->bf_nseg = ATH_TXDESC+1;
3614 } else if (error != 0) {
3615 sc->sc_stats.ast_tx_busdma++;
3616 ath_freetx(m0);
3617 return error;
3618 }
3619 /*
3620 * Discard null packets and check for packets that
3621 * require too many TX descriptors. We try to convert
3622 * the latter to a cluster.
3623 */
3624 if (error == EFBIG) { /* too many desc's, linearize */
3625 sc->sc_stats.ast_tx_linear++;
3626 m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
3627 if (m == NULL) {
3628 ath_freetx(m0);
3629 sc->sc_stats.ast_tx_nombuf++;
3630 return ENOMEM;
3631 }
3632 m0 = m;
3633 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3634 BUS_DMA_NOWAIT);
3635 if (error != 0) {
3636 sc->sc_stats.ast_tx_busdma++;
3637 ath_freetx(m0);
3638 return error;
3639 }
3640 KASSERT(bf->bf_nseg <= ATH_TXDESC,
3641 ("too many segments after defrag; nseg %u", bf->bf_nseg));
3642 } else if (bf->bf_nseg == 0) { /* null packet, discard */
3643 sc->sc_stats.ast_tx_nodata++;
3644 ath_freetx(m0);
3645 return EIO;
3646 }
3647 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
3648 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
3649 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
3650 bf->bf_m = m0;
3651 bf->bf_node = ni; /* NB: held reference */
3652
3653 /* setup descriptors */
3654 ds = bf->bf_desc;
3655 rt = sc->sc_currates;
3656 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3657
3658 /*
3659 * NB: the 802.11 layer marks whether or not we should
3660 * use short preamble based on the current mode and
3661 * negotiated parameters.
3662 */
3663 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3664 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) {
3665 shortPreamble = AH_TRUE;
3666 sc->sc_stats.ast_tx_shortpre++;
3667 } else {
3668 shortPreamble = AH_FALSE;
3669 }
3670
3671 an = ATH_NODE(ni);
3672 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */
3673 ismrr = 0; /* default no multi-rate retry*/
3674 /*
3675 * Calculate Atheros packet type from IEEE80211 packet header,
3676 * setup for rate calculations, and select h/w transmit queue.
3677 */
3678 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3679 case IEEE80211_FC0_TYPE_MGT:
3680 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3681 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
3682 atype = HAL_PKT_TYPE_BEACON;
3683 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3684 atype = HAL_PKT_TYPE_PROBE_RESP;
3685 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
3686 atype = HAL_PKT_TYPE_ATIM;
3687 else
3688 atype = HAL_PKT_TYPE_NORMAL; /* XXX */
3689 rix = sc->sc_minrateix;
3690 txrate = rt->info[rix].rateCode;
3691 if (shortPreamble)
3692 txrate |= rt->info[rix].shortPreamble;
3693 try0 = ATH_TXMGTTRY;
3694 /* NB: force all management frames to highest queue */
3695 if (ni->ni_flags & IEEE80211_NODE_QOS) {
3696 /* NB: force all management frames to highest queue */
3697 pri = WME_AC_VO;
3698 } else
3699 pri = WME_AC_BE;
3700 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
3701 break;
3702 case IEEE80211_FC0_TYPE_CTL:
3703 atype = HAL_PKT_TYPE_PSPOLL; /* stop setting of duration */
3704 rix = sc->sc_minrateix;
3705 txrate = rt->info[rix].rateCode;
3706 if (shortPreamble)
3707 txrate |= rt->info[rix].shortPreamble;
3708 try0 = ATH_TXMGTTRY;
3709 /* NB: force all ctl frames to highest queue */
3710 if (ni->ni_flags & IEEE80211_NODE_QOS) {
3711 /* NB: force all ctl frames to highest queue */
3712 pri = WME_AC_VO;
3713 } else
3714 pri = WME_AC_BE;
3715 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
3716 break;
3717 case IEEE80211_FC0_TYPE_DATA:
3718 atype = HAL_PKT_TYPE_NORMAL; /* default */
3719 /*
3720 * Data frames: multicast frames go out at a fixed rate,
3721 * otherwise consult the rate control module for the
3722 * rate to use.
3723 */
3724 if (ismcast) {
3725 /*
3726 * Check mcast rate setting in case it's changed.
3727 * XXX move out of fastpath
3728 */
3729 if (ic->ic_mcast_rate != sc->sc_mcastrate) {
3730 sc->sc_mcastrix =
3731 ath_tx_findrix(rt, ic->ic_mcast_rate);
3732 sc->sc_mcastrate = ic->ic_mcast_rate;
3733 }
3734 rix = sc->sc_mcastrix;
3735 txrate = rt->info[rix].rateCode;
3736 try0 = 1;
3737 } else {
3738 ath_rate_findrate(sc, an, shortPreamble, pktlen,
3739 &rix, &try0, &txrate);
3740 sc->sc_txrate = txrate; /* for LED blinking */
3741 if (try0 != ATH_TXMAXTRY)
3742 ismrr = 1;
3743 }
3744 pri = M_WME_GETAC(m0);
3745 if (cap->cap_wmeParams[pri].wmep_noackPolicy)
3746 flags |= HAL_TXDESC_NOACK;
3747 break;
3748 default:
3749 if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3750 wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3751 /* XXX statistic */
3752 ath_freetx(m0);
3753 return EIO;
3754 }
3755 txq = sc->sc_ac2q[pri];
3756
3757 /*
3758 * When servicing one or more stations in power-save mode
3759 * multicast frames must be buffered until after the beacon.
3760 * We use the CAB queue for that.
3761 */
3762 if (ismcast && ic->ic_ps_sta) {
3763 txq = sc->sc_cabq;
3764 /* XXX? more bit in 802.11 frame header */
3765 }
3766
3767 /*
3768 * Calculate miscellaneous flags.
3769 */
3770 if (ismcast) {
3771 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */
3772 } else if (pktlen > ic->ic_rtsthreshold) {
3773 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */
3774 cix = rt->info[rix].controlRate;
3775 sc->sc_stats.ast_tx_rts++;
3776 }
3777 if (flags & HAL_TXDESC_NOACK) /* NB: avoid double counting */
3778 sc->sc_stats.ast_tx_noack++;
3779
3780 /*
3781 * If 802.11g protection is enabled, determine whether
3782 * to use RTS/CTS or just CTS. Note that this is only
3783 * done for OFDM unicast frames.
3784 */
3785 if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3786 rt->info[rix].phy == IEEE80211_T_OFDM &&
3787 (flags & HAL_TXDESC_NOACK) == 0) {
3788 /* XXX fragments must use CCK rates w/ protection */
3789 if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3790 flags |= HAL_TXDESC_RTSENA;
3791 else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3792 flags |= HAL_TXDESC_CTSENA;
3793 if (isfrag) {
3794 /*
3795 * For frags it would be desirable to use the
3796 * highest CCK rate for RTS/CTS. But stations
3797 * farther away may detect it at a lower CCK rate
3798 * so use the configured protection rate instead
3799 * (for now).
3800 */
3801 cix = rt->info[sc->sc_protrix].controlRate;
3802 } else
3803 cix = rt->info[sc->sc_protrix].controlRate;
3804 sc->sc_stats.ast_tx_protect++;
3805 }
3806
3807 /*
3808 * Calculate duration. This logically belongs in the 802.11
3809 * layer but it lacks sufficient information to calculate it.
3810 */
3811 if ((flags & HAL_TXDESC_NOACK) == 0 &&
3812 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
3813 u_int16_t dur;
3814 /*
3815 * XXX not right with fragmentation.
3816 */
3817 if (shortPreamble)
3818 dur = rt->info[rix].spAckDuration;
3819 else
3820 dur = rt->info[rix].lpAckDuration;
3821 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
3822 dur += dur; /* additional SIFS+ACK */
3823 KASSERT(m0->m_nextpkt != NULL, ("no fragment"));
3824 /*
3825 * Include the size of next fragment so NAV is
3826 * updated properly. The last fragment uses only
3827 * the ACK duration
3828 */
3829 dur += ath_hal_computetxtime(ah, rt,
3830 m0->m_nextpkt->m_pkthdr.len,
3831 rix, shortPreamble);
3832 }
3833 if (isfrag) {
3834 /*
3835 * Force hardware to use computed duration for next
3836 * fragment by disabling multi-rate retry which updates
3837 * duration based on the multi-rate duration table.
3838 */
3839 try0 = ATH_TXMAXTRY;
3840 }
3841 *(u_int16_t *)wh->i_dur = htole16(dur);
3842 }
3843
3844 /*
3845 * Calculate RTS/CTS rate and duration if needed.
3846 */
3847 ctsduration = 0;
3848 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
3849 /*
3850 * CTS transmit rate is derived from the transmit rate
3851 * by looking in the h/w rate table. We must also factor
3852 * in whether or not a short preamble is to be used.
3853 */
3854 /* NB: cix is set above where RTS/CTS is enabled */
3855 KASSERT(cix != 0xff, ("cix not setup"));
3856 ctsrate = rt->info[cix].rateCode;
3857 /*
3858 * Compute the transmit duration based on the frame
3859 * size and the size of an ACK frame. We call into the
3860 * HAL to do the computation since it depends on the
3861 * characteristics of the actual PHY being used.
3862 *
3863 * NB: CTS is assumed the same size as an ACK so we can
3864 * use the precalculated ACK durations.
3865 */
3866 if (shortPreamble) {
3867 ctsrate |= rt->info[cix].shortPreamble;
3868 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
3869 ctsduration += rt->info[cix].spAckDuration;
3870 ctsduration += ath_hal_computetxtime(ah,
3871 rt, pktlen, rix, AH_TRUE);
3872 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
3873 ctsduration += rt->info[rix].spAckDuration;
3874 } else {
3875 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
3876 ctsduration += rt->info[cix].lpAckDuration;
3877 ctsduration += ath_hal_computetxtime(ah,
3878 rt, pktlen, rix, AH_FALSE);
3879 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
3880 ctsduration += rt->info[rix].lpAckDuration;
3881 }
3882 /*
3883 * Must disable multi-rate retry when using RTS/CTS.
3884 */
3885 ismrr = 0;
3886 try0 = ATH_TXMGTTRY; /* XXX */
3887 } else
3888 ctsrate = 0;
3889
3890 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3891 ieee80211_dump_pkt(mtod(m0, void *), m0->m_len,
3892 sc->sc_hwmap[txrate].ieeerate, -1);
3893 #if NBPFILTER > 0
3894 if (ic->ic_rawbpf)
3895 bpf_mtap(ic->ic_rawbpf, m0);
3896 if (sc->sc_drvbpf) {
3897 u_int64_t tsf = ath_hal_gettsf64(ah);
3898
3899 sc->sc_tx_th.wt_tsf = htole64(tsf);
3900 sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
3901 if (iswep)
3902 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3903 if (isfrag)
3904 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
3905 sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
3906 sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3907 sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3908
3909 bpf_mtap2(sc->sc_drvbpf,
3910 &sc->sc_tx_th, sc->sc_tx_th_len, m0);
3911 }
3912 #endif
3913
3914 /*
3915 * Determine if a tx interrupt should be generated for
3916 * this descriptor. We take a tx interrupt to reap
3917 * descriptors when the h/w hits an EOL condition or
3918 * when the descriptor is specifically marked to generate
3919 * an interrupt. We periodically mark descriptors in this
3920 * way to insure timely replenishing of the supply needed
3921 * for sending frames. Defering interrupts reduces system
3922 * load and potentially allows more concurrent work to be
3923 * done but if done to aggressively can cause senders to
3924 * backup.
3925 *
3926 * NB: use >= to deal with sc_txintrperiod changing
3927 * dynamically through sysctl.
3928 */
3929 if (flags & HAL_TXDESC_INTREQ) {
3930 txq->axq_intrcnt = 0;
3931 } else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
3932 flags |= HAL_TXDESC_INTREQ;
3933 txq->axq_intrcnt = 0;
3934 }
3935
3936 /*
3937 * Formulate first tx descriptor with tx controls.
3938 */
3939 /* XXX check return value? */
3940 ath_hal_setuptxdesc(ah, ds
3941 , pktlen /* packet length */
3942 , hdrlen /* header length */
3943 , atype /* Atheros packet type */
3944 , ni->ni_txpower /* txpower */
3945 , txrate, try0 /* series 0 rate/tries */
3946 , keyix /* key cache index */
3947 , sc->sc_txantenna /* antenna mode */
3948 , flags /* flags */
3949 , ctsrate /* rts/cts rate */
3950 , ctsduration /* rts/cts duration */
3951 );
3952 bf->bf_flags = flags;
3953 /*
3954 * Setup the multi-rate retry state only when we're
3955 * going to use it. This assumes ath_hal_setuptxdesc
3956 * initializes the descriptors (so we don't have to)
3957 * when the hardware supports multi-rate retry and
3958 * we don't use it.
3959 */
3960 if (ismrr)
3961 ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
3962
3963 /*
3964 * Fillin the remainder of the descriptor info.
3965 */
3966 ds0 = ds;
3967 for (i = 0; i < bf->bf_nseg; i++, ds++) {
3968 ds->ds_data = bf->bf_segs[i].ds_addr;
3969 if (i == bf->bf_nseg - 1)
3970 ds->ds_link = 0;
3971 else
3972 ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
3973 ath_hal_filltxdesc(ah, ds
3974 , bf->bf_segs[i].ds_len /* segment length */
3975 , i == 0 /* first segment */
3976 , i == bf->bf_nseg - 1 /* last segment */
3977 , ds0 /* first descriptor */
3978 );
3979
3980 /* NB: The desc swap function becomes void,
3981 * if descriptor swapping is not enabled
3982 */
3983 ath_desc_swap(ds);
3984
3985 DPRINTF(sc, ATH_DEBUG_XMIT,
3986 "%s: %d: %08x %08x %08x %08x %08x %08x\n",
3987 __func__, i, ds->ds_link, ds->ds_data,
3988 ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
3989 }
3990 /*
3991 * Insert the frame on the outbound list and
3992 * pass it on to the hardware.
3993 */
3994 ATH_TXQ_LOCK(txq);
3995 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
3996 if (txq->axq_link == NULL) {
3997 ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
3998 DPRINTF(sc, ATH_DEBUG_XMIT,
3999 "%s: TXDP[%u] = %" PRIx64 " (%p) depth %d\n", __func__,
4000 txq->axq_qnum, (uint64_t)bf->bf_daddr, bf->bf_desc,
4001 txq->axq_depth);
4002 } else {
4003 *txq->axq_link = HTOAH32(bf->bf_daddr);
4004 DPRINTF(sc, ATH_DEBUG_XMIT,
4005 "%s: link[%u](%p)=%" PRIx64 " (%p) depth %d\n",
4006 __func__, txq->axq_qnum, txq->axq_link,
4007 (uint64_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
4008 }
4009 txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
4010 /*
4011 * The CAB queue is started from the SWBA handler since
4012 * frames only go out on DTIM and to avoid possible races.
4013 */
4014 if (txq != sc->sc_cabq)
4015 ath_hal_txstart(ah, txq->axq_qnum);
4016 ATH_TXQ_UNLOCK(txq);
4017
4018 return 0;
4019 }
4020
4021 /*
4022 * Process completed xmit descriptors from the specified queue.
4023 */
4024 static int
4025 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
4026 {
4027 struct ath_hal *ah = sc->sc_ah;
4028 struct ieee80211com *ic = &sc->sc_ic;
4029 struct ath_buf *bf;
4030 struct ath_desc *ds, *ds0;
4031 struct ieee80211_node *ni;
4032 struct ath_node *an;
4033 int sr, lr, pri, nacked;
4034 HAL_STATUS status;
4035
4036 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
4037 __func__, txq->axq_qnum,
4038 (void *)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4039 txq->axq_link);
4040 nacked = 0;
4041 for (;;) {
4042 ATH_TXQ_LOCK(txq);
4043 txq->axq_intrcnt = 0; /* reset periodic desc intr count */
4044 bf = STAILQ_FIRST(&txq->axq_q);
4045 if (bf == NULL) {
4046 txq->axq_link = NULL;
4047 ATH_TXQ_UNLOCK(txq);
4048 break;
4049 }
4050 ds0 = &bf->bf_desc[0];
4051 ds = &bf->bf_desc[bf->bf_nseg - 1];
4052 status = ath_hal_txprocdesc(ah, ds);
4053 #ifdef AR_DEBUG
4054 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
4055 ath_printtxbuf(bf, status == HAL_OK);
4056 #endif
4057 if (status == HAL_EINPROGRESS) {
4058 ATH_TXQ_UNLOCK(txq);
4059 break;
4060 }
4061 ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4062 ATH_TXQ_UNLOCK(txq);
4063
4064 ni = bf->bf_node;
4065 if (ni != NULL) {
4066 an = ATH_NODE(ni);
4067 if (ds->ds_txstat.ts_status == 0) {
4068 u_int8_t txant = ds->ds_txstat.ts_antenna;
4069 sc->sc_stats.ast_ant_tx[txant]++;
4070 sc->sc_ant_tx[txant]++;
4071 if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
4072 sc->sc_stats.ast_tx_altrate++;
4073 sc->sc_stats.ast_tx_rssi =
4074 ds->ds_txstat.ts_rssi;
4075 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
4076 ds->ds_txstat.ts_rssi);
4077 pri = M_WME_GETAC(bf->bf_m);
4078 if (pri >= WME_AC_VO)
4079 ic->ic_wme.wme_hipri_traffic++;
4080 ni->ni_inact = ni->ni_inact_reload;
4081 } else {
4082 if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
4083 sc->sc_stats.ast_tx_xretries++;
4084 if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
4085 sc->sc_stats.ast_tx_fifoerr++;
4086 if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
4087 sc->sc_stats.ast_tx_filtered++;
4088 }
4089 sr = ds->ds_txstat.ts_shortretry;
4090 lr = ds->ds_txstat.ts_longretry;
4091 sc->sc_stats.ast_tx_shortretry += sr;
4092 sc->sc_stats.ast_tx_longretry += lr;
4093 /*
4094 * Hand the descriptor to the rate control algorithm.
4095 */
4096 if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
4097 (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
4098 /*
4099 * If frame was ack'd update the last rx time
4100 * used to workaround phantom bmiss interrupts.
4101 */
4102 if (ds->ds_txstat.ts_status == 0)
4103 nacked++;
4104 ath_rate_tx_complete(sc, an, ds, ds0);
4105 }
4106 /*
4107 * Reclaim reference to node.
4108 *
4109 * NB: the node may be reclaimed here if, for example
4110 * this is a DEAUTH message that was sent and the
4111 * node was timed out due to inactivity.
4112 */
4113 ieee80211_free_node(ni);
4114 }
4115 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
4116 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4117 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4118 m_freem(bf->bf_m);
4119 bf->bf_m = NULL;
4120 bf->bf_node = NULL;
4121
4122 ATH_TXBUF_LOCK(sc);
4123 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4124 sc->sc_if.if_flags &= ~IFF_OACTIVE;
4125 ATH_TXBUF_UNLOCK(sc);
4126 }
4127 return nacked;
4128 }
4129
4130 static inline int
4131 txqactive(struct ath_hal *ah, int qnum)
4132 {
4133 u_int32_t txqs = 1<<qnum;
4134 ath_hal_gettxintrtxqs(ah, &txqs);
4135 return (txqs & (1<<qnum));
4136 }
4137
4138 /*
4139 * Deferred processing of transmit interrupt; special-cased
4140 * for a single hardware transmit queue (e.g. 5210 and 5211).
4141 */
4142 static void
4143 ath_tx_proc_q0(void *arg, int npending)
4144 {
4145 struct ath_softc *sc = arg;
4146 struct ifnet *ifp = &sc->sc_if;
4147
4148 if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]) > 0){
4149 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4150 }
4151 if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4152 ath_tx_processq(sc, sc->sc_cabq);
4153
4154 if (sc->sc_softled)
4155 ath_led_event(sc, ATH_LED_TX);
4156
4157 ath_start(ifp);
4158 }
4159
4160 /*
4161 * Deferred processing of transmit interrupt; special-cased
4162 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4163 */
4164 static void
4165 ath_tx_proc_q0123(void *arg, int npending)
4166 {
4167 struct ath_softc *sc = arg;
4168 struct ifnet *ifp = &sc->sc_if;
4169 int nacked;
4170
4171 /*
4172 * Process each active queue.
4173 */
4174 nacked = 0;
4175 if (txqactive(sc->sc_ah, 0))
4176 nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
4177 if (txqactive(sc->sc_ah, 1))
4178 nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
4179 if (txqactive(sc->sc_ah, 2))
4180 nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
4181 if (txqactive(sc->sc_ah, 3))
4182 nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
4183 if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4184 ath_tx_processq(sc, sc->sc_cabq);
4185 if (nacked) {
4186 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4187 }
4188
4189 if (sc->sc_softled)
4190 ath_led_event(sc, ATH_LED_TX);
4191
4192 ath_start(ifp);
4193 }
4194
4195 /*
4196 * Deferred processing of transmit interrupt.
4197 */
4198 static void
4199 ath_tx_proc(void *arg, int npending)
4200 {
4201 struct ath_softc *sc = arg;
4202 struct ifnet *ifp = &sc->sc_if;
4203 int i, nacked;
4204
4205 /*
4206 * Process each active queue.
4207 */
4208 nacked = 0;
4209 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4210 if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
4211 nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
4212 if (nacked) {
4213 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4214 }
4215
4216 if (sc->sc_softled)
4217 ath_led_event(sc, ATH_LED_TX);
4218
4219 ath_start(ifp);
4220 }
4221
4222 static void
4223 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
4224 {
4225 struct ath_hal *ah = sc->sc_ah;
4226 struct ieee80211_node *ni;
4227 struct ath_buf *bf;
4228
4229 /*
4230 * NB: this assumes output has been stopped and
4231 * we do not need to block ath_tx_tasklet
4232 */
4233 for (;;) {
4234 ATH_TXQ_LOCK(txq);
4235 bf = STAILQ_FIRST(&txq->axq_q);
4236 if (bf == NULL) {
4237 txq->axq_link = NULL;
4238 ATH_TXQ_UNLOCK(txq);
4239 break;
4240 }
4241 ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4242 ATH_TXQ_UNLOCK(txq);
4243 #ifdef AR_DEBUG
4244 if (sc->sc_debug & ATH_DEBUG_RESET)
4245 ath_printtxbuf(bf,
4246 ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
4247 #endif /* AR_DEBUG */
4248 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4249 m_freem(bf->bf_m);
4250 bf->bf_m = NULL;
4251 ni = bf->bf_node;
4252 bf->bf_node = NULL;
4253 if (ni != NULL) {
4254 /*
4255 * Reclaim node reference.
4256 */
4257 ieee80211_free_node(ni);
4258 }
4259 ATH_TXBUF_LOCK(sc);
4260 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4261 sc->sc_if.if_flags &= ~IFF_OACTIVE;
4262 ATH_TXBUF_UNLOCK(sc);
4263 }
4264 }
4265
4266 static void
4267 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4268 {
4269 struct ath_hal *ah = sc->sc_ah;
4270
4271 (void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4272 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4273 __func__, txq->axq_qnum,
4274 (void *)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4275 txq->axq_link);
4276 }
4277
4278 /*
4279 * Drain the transmit queues and reclaim resources.
4280 */
4281 static void
4282 ath_draintxq(struct ath_softc *sc)
4283 {
4284 struct ath_hal *ah = sc->sc_ah;
4285 int i;
4286
4287 /* XXX return value */
4288 if (!sc->sc_invalid) {
4289 /* don't touch the hardware if marked invalid */
4290 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4291 DPRINTF(sc, ATH_DEBUG_RESET,
4292 "%s: beacon queue %p\n", __func__,
4293 (void *)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
4294 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4295 if (ATH_TXQ_SETUP(sc, i))
4296 ath_tx_stopdma(sc, &sc->sc_txq[i]);
4297 }
4298 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4299 if (ATH_TXQ_SETUP(sc, i))
4300 ath_tx_draintxq(sc, &sc->sc_txq[i]);
4301 }
4302
4303 /*
4304 * Disable the receive h/w in preparation for a reset.
4305 */
4306 static void
4307 ath_stoprecv(struct ath_softc *sc)
4308 {
4309 #define PA2DESC(_sc, _pa) \
4310 ((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
4311 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
4312 struct ath_hal *ah = sc->sc_ah;
4313
4314 ath_hal_stoppcurecv(ah); /* disable PCU */
4315 ath_hal_setrxfilter(ah, 0); /* clear recv filter */
4316 ath_hal_stopdmarecv(ah); /* disable DMA engine */
4317 DELAY(3000); /* 3ms is long enough for 1 frame */
4318 #ifdef AR_DEBUG
4319 if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
4320 struct ath_buf *bf;
4321
4322 printf("%s: rx queue %p, link %p\n", __func__,
4323 (void *)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
4324 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4325 struct ath_desc *ds = bf->bf_desc;
4326 HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
4327 bf->bf_daddr, PA2DESC(sc, ds->ds_link));
4328 if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
4329 ath_printrxbuf(bf, status == HAL_OK);
4330 }
4331 }
4332 #endif
4333 sc->sc_rxlink = NULL; /* just in case */
4334 #undef PA2DESC
4335 }
4336
4337 /*
4338 * Enable the receive h/w following a reset.
4339 */
4340 static int
4341 ath_startrecv(struct ath_softc *sc)
4342 {
4343 struct ath_hal *ah = sc->sc_ah;
4344 struct ath_buf *bf;
4345
4346 sc->sc_rxlink = NULL;
4347 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4348 int error = ath_rxbuf_init(sc, bf);
4349 if (error != 0) {
4350 DPRINTF(sc, ATH_DEBUG_RECV,
4351 "%s: ath_rxbuf_init failed %d\n",
4352 __func__, error);
4353 return error;
4354 }
4355 }
4356
4357 bf = STAILQ_FIRST(&sc->sc_rxbuf);
4358 ath_hal_putrxbuf(ah, bf->bf_daddr);
4359 ath_hal_rxena(ah); /* enable recv descriptors */
4360 ath_mode_init(sc); /* set filters, etc. */
4361 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */
4362 return 0;
4363 }
4364
4365 /*
4366 * Update internal state after a channel change.
4367 */
4368 static void
4369 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4370 {
4371 struct ieee80211com *ic = &sc->sc_ic;
4372 enum ieee80211_phymode mode;
4373 u_int16_t flags;
4374
4375 /*
4376 * Change channels and update the h/w rate map
4377 * if we're switching; e.g. 11a to 11b/g.
4378 */
4379 mode = ieee80211_chan2mode(ic, chan);
4380 if (mode != sc->sc_curmode)
4381 ath_setcurmode(sc, mode);
4382 /*
4383 * Update BPF state. NB: ethereal et. al. don't handle
4384 * merged flags well so pick a unique mode for their use.
4385 */
4386 if (IEEE80211_IS_CHAN_A(chan))
4387 flags = IEEE80211_CHAN_A;
4388 /* XXX 11g schizophrenia */
4389 else if (IEEE80211_IS_CHAN_G(chan) ||
4390 IEEE80211_IS_CHAN_PUREG(chan))
4391 flags = IEEE80211_CHAN_G;
4392 else
4393 flags = IEEE80211_CHAN_B;
4394 if (IEEE80211_IS_CHAN_T(chan))
4395 flags |= IEEE80211_CHAN_TURBO;
4396 sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
4397 htole16(chan->ic_freq);
4398 sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
4399 htole16(flags);
4400 }
4401
4402 /*
4403 * Poll for a channel clear indication; this is required
4404 * for channels requiring DFS and not previously visited
4405 * and/or with a recent radar detection.
4406 */
4407 static void
4408 ath_dfswait(void *arg)
4409 {
4410 struct ath_softc *sc = arg;
4411 struct ath_hal *ah = sc->sc_ah;
4412 HAL_CHANNEL hchan;
4413
4414 ath_hal_radar_wait(ah, &hchan);
4415 if (hchan.privFlags & CHANNEL_INTERFERENCE) {
4416 if_printf(&sc->sc_if,
4417 "channel %u/0x%x/0x%x has interference\n",
4418 hchan.channel, hchan.channelFlags, hchan.privFlags);
4419 return;
4420 }
4421 if ((hchan.privFlags & CHANNEL_DFS) == 0) {
4422 /* XXX should not happen */
4423 return;
4424 }
4425 if (hchan.privFlags & CHANNEL_DFS_CLEAR) {
4426 sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR;
4427 sc->sc_if.if_flags &= ~IFF_OACTIVE;
4428 if_printf(&sc->sc_if,
4429 "channel %u/0x%x/0x%x marked clear\n",
4430 hchan.channel, hchan.channelFlags, hchan.privFlags);
4431 } else
4432 callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc);
4433 }
4434
4435 /*
4436 * Set/change channels. If the channel is really being changed,
4437 * it's done by reseting the chip. To accomplish this we must
4438 * first cleanup any pending DMA, then restart stuff after a la
4439 * ath_init.
4440 */
4441 static int
4442 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4443 {
4444 struct ath_hal *ah = sc->sc_ah;
4445 struct ieee80211com *ic = &sc->sc_ic;
4446 HAL_CHANNEL hchan;
4447
4448 /*
4449 * Convert to a HAL channel description with
4450 * the flags constrained to reflect the current
4451 * operating mode.
4452 */
4453 hchan.channel = chan->ic_freq;
4454 hchan.channelFlags = ath_chan2flags(ic, chan);
4455
4456 DPRINTF(sc, ATH_DEBUG_RESET,
4457 "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
4458 __func__,
4459 ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
4460 sc->sc_curchan.channelFlags),
4461 sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
4462 ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
4463 hchan.channel, hchan.channelFlags);
4464 if (hchan.channel != sc->sc_curchan.channel ||
4465 hchan.channelFlags != sc->sc_curchan.channelFlags) {
4466 HAL_STATUS status;
4467
4468 /*
4469 * To switch channels clear any pending DMA operations;
4470 * wait long enough for the RX fifo to drain, reset the
4471 * hardware at the new frequency, and then re-enable
4472 * the relevant bits of the h/w.
4473 */
4474 ath_hal_intrset(ah, 0); /* disable interrupts */
4475 ath_draintxq(sc); /* clear pending tx frames */
4476 ath_stoprecv(sc); /* turn off frame recv */
4477 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
4478 if_printf(ic->ic_ifp, "%s: unable to reset "
4479 "channel %u (%u MHz, flags 0x%x hal flags 0x%x)\n",
4480 __func__, ieee80211_chan2ieee(ic, chan),
4481 chan->ic_freq, chan->ic_flags, hchan.channelFlags);
4482 return EIO;
4483 }
4484 sc->sc_curchan = hchan;
4485 ath_update_txpow(sc); /* update tx power state */
4486 ath_restore_diversity(sc);
4487 sc->sc_calinterval = 1;
4488 sc->sc_caltries = 0;
4489
4490 /*
4491 * Re-enable rx framework.
4492 */
4493 if (ath_startrecv(sc) != 0) {
4494 if_printf(&sc->sc_if,
4495 "%s: unable to restart recv logic\n", __func__);
4496 return EIO;
4497 }
4498
4499 /*
4500 * Change channels and update the h/w rate map
4501 * if we're switching; e.g. 11a to 11b/g.
4502 */
4503 ic->ic_ibss_chan = chan;
4504 ath_chan_change(sc, chan);
4505
4506 /*
4507 * Handle DFS required waiting period to determine
4508 * if channel is clear of radar traffic.
4509 */
4510 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
4511 #define DFS_AND_NOT_CLEAR(_c) \
4512 (((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS)
4513 if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) {
4514 if_printf(&sc->sc_if,
4515 "wait for DFS clear channel signal\n");
4516 /* XXX stop sndq */
4517 sc->sc_if.if_flags |= IFF_OACTIVE;
4518 callout_reset(&sc->sc_dfs_ch,
4519 2 * hz, ath_dfswait, sc);
4520 } else
4521 callout_stop(&sc->sc_dfs_ch);
4522 #undef DFS_NOT_CLEAR
4523 }
4524
4525 /*
4526 * Re-enable interrupts.
4527 */
4528 ath_hal_intrset(ah, sc->sc_imask);
4529 }
4530 return 0;
4531 }
4532
4533 static void
4534 ath_next_scan(void *arg)
4535 {
4536 struct ath_softc *sc = arg;
4537 struct ieee80211com *ic = &sc->sc_ic;
4538 int s;
4539
4540 /* don't call ath_start w/o network interrupts blocked */
4541 s = splnet();
4542
4543 if (ic->ic_state == IEEE80211_S_SCAN)
4544 ieee80211_next_scan(ic);
4545 splx(s);
4546 }
4547
4548 /*
4549 * Periodically recalibrate the PHY to account
4550 * for temperature/environment changes.
4551 */
4552 static void
4553 ath_calibrate(void *arg)
4554 {
4555 struct ath_softc *sc = arg;
4556 struct ath_hal *ah = sc->sc_ah;
4557 HAL_BOOL iqCalDone;
4558
4559 sc->sc_stats.ast_per_cal++;
4560
4561 ATH_LOCK(sc);
4562
4563 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4564 /*
4565 * Rfgain is out of bounds, reset the chip
4566 * to load new gain values.
4567 */
4568 DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4569 "%s: rfgain change\n", __func__);
4570 sc->sc_stats.ast_per_rfgain++;
4571 ath_reset(&sc->sc_if);
4572 }
4573 if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
4574 DPRINTF(sc, ATH_DEBUG_ANY,
4575 "%s: calibration of channel %u failed\n",
4576 __func__, sc->sc_curchan.channel);
4577 sc->sc_stats.ast_per_calfail++;
4578 }
4579 /*
4580 * Calibrate noise floor data again in case of change.
4581 */
4582 ath_hal_process_noisefloor(ah);
4583 /*
4584 * Poll more frequently when the IQ calibration is in
4585 * progress to speedup loading the final settings.
4586 * We temper this aggressive polling with an exponential
4587 * back off after 4 tries up to ath_calinterval.
4588 */
4589 if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
4590 sc->sc_caltries = 0;
4591 sc->sc_calinterval = ath_calinterval;
4592 } else if (sc->sc_caltries > 4) {
4593 sc->sc_caltries = 0;
4594 sc->sc_calinterval <<= 1;
4595 if (sc->sc_calinterval > ath_calinterval)
4596 sc->sc_calinterval = ath_calinterval;
4597 }
4598 KASSERT(0 < sc->sc_calinterval && sc->sc_calinterval <= ath_calinterval,
4599 ("bad calibration interval %u", sc->sc_calinterval));
4600
4601 DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4602 "%s: next +%u (%siqCalDone tries %u)\n", __func__,
4603 sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
4604 sc->sc_caltries++;
4605 callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4606 ath_calibrate, sc);
4607 ATH_UNLOCK(sc);
4608 }
4609
4610 static int
4611 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
4612 {
4613 struct ifnet *ifp = ic->ic_ifp;
4614 struct ath_softc *sc = ifp->if_softc;
4615 struct ath_hal *ah = sc->sc_ah;
4616 struct ieee80211_node *ni;
4617 int i, error;
4618 const u_int8_t *bssid;
4619 u_int32_t rfilt;
4620 static const HAL_LED_STATE leds[] = {
4621 HAL_LED_INIT, /* IEEE80211_S_INIT */
4622 HAL_LED_SCAN, /* IEEE80211_S_SCAN */
4623 HAL_LED_AUTH, /* IEEE80211_S_AUTH */
4624 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */
4625 HAL_LED_RUN, /* IEEE80211_S_RUN */
4626 };
4627
4628 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4629 ieee80211_state_name[ic->ic_state],
4630 ieee80211_state_name[nstate]);
4631
4632 callout_stop(&sc->sc_scan_ch);
4633 callout_stop(&sc->sc_cal_ch);
4634 callout_stop(&sc->sc_dfs_ch);
4635 ath_hal_setledstate(ah, leds[nstate]); /* set LED */
4636
4637 if (nstate == IEEE80211_S_INIT) {
4638 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4639 /*
4640 * NB: disable interrupts so we don't rx frames.
4641 */
4642 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4643 /*
4644 * Notify the rate control algorithm.
4645 */
4646 ath_rate_newstate(sc, nstate);
4647 goto done;
4648 }
4649 ni = ic->ic_bss;
4650 error = ath_chan_set(sc, ic->ic_curchan);
4651 if (error != 0)
4652 goto bad;
4653 rfilt = ath_calcrxfilter(sc, nstate);
4654 if (nstate == IEEE80211_S_SCAN)
4655 bssid = ifp->if_broadcastaddr;
4656 else
4657 bssid = ni->ni_bssid;
4658 ath_hal_setrxfilter(ah, rfilt);
4659 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
4660 __func__, rfilt, ether_sprintf(bssid));
4661
4662 if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
4663 ath_hal_setassocid(ah, bssid, ni->ni_associd);
4664 else
4665 ath_hal_setassocid(ah, bssid, 0);
4666 if (ic->ic_flags & IEEE80211_F_PRIVACY) {
4667 for (i = 0; i < IEEE80211_WEP_NKID; i++)
4668 if (ath_hal_keyisvalid(ah, i))
4669 ath_hal_keysetmac(ah, i, bssid);
4670 }
4671
4672 /*
4673 * Notify the rate control algorithm so rates
4674 * are setup should ath_beacon_alloc be called.
4675 */
4676 ath_rate_newstate(sc, nstate);
4677
4678 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4679 /* nothing to do */;
4680 } else if (nstate == IEEE80211_S_RUN) {
4681 DPRINTF(sc, ATH_DEBUG_STATE,
4682 "%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
4683 "capinfo=0x%04x chan=%d\n"
4684 , __func__
4685 , ic->ic_flags
4686 , ni->ni_intval
4687 , ether_sprintf(ni->ni_bssid)
4688 , ni->ni_capinfo
4689 , ieee80211_chan2ieee(ic, ic->ic_curchan));
4690
4691 switch (ic->ic_opmode) {
4692 case IEEE80211_M_HOSTAP:
4693 case IEEE80211_M_IBSS:
4694 /*
4695 * Allocate and setup the beacon frame.
4696 *
4697 * Stop any previous beacon DMA. This may be
4698 * necessary, for example, when an ibss merge
4699 * causes reconfiguration; there will be a state
4700 * transition from RUN->RUN that means we may
4701 * be called with beacon transmission active.
4702 */
4703 ath_hal_stoptxdma(ah, sc->sc_bhalq);
4704 ath_beacon_free(sc);
4705 error = ath_beacon_alloc(sc, ni);
4706 if (error != 0)
4707 goto bad;
4708 /*
4709 * If joining an adhoc network defer beacon timer
4710 * configuration to the next beacon frame so we
4711 * have a current TSF to use. Otherwise we're
4712 * starting an ibss/bss so there's no need to delay.
4713 */
4714 if (ic->ic_opmode == IEEE80211_M_IBSS &&
4715 ic->ic_bss->ni_tstamp.tsf != 0)
4716 sc->sc_syncbeacon = 1;
4717 else
4718 ath_beacon_config(sc);
4719 break;
4720 case IEEE80211_M_STA:
4721 /*
4722 * Allocate a key cache slot to the station.
4723 */
4724 if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
4725 sc->sc_hasclrkey &&
4726 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4727 ath_setup_stationkey(ni);
4728 /*
4729 * Defer beacon timer configuration to the next
4730 * beacon frame so we have a current TSF to use
4731 * (any TSF collected when scanning is likely old).
4732 */
4733 sc->sc_syncbeacon = 1;
4734 break;
4735 default:
4736 break;
4737 }
4738 /*
4739 * Let the hal process statistics collected during a
4740 * scan so it can provide calibrated noise floor data.
4741 */
4742 ath_hal_process_noisefloor(ah);
4743 /*
4744 * Reset rssi stats; maybe not the best place...
4745 */
4746 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
4747 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
4748 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
4749 } else {
4750 ath_hal_intrset(ah,
4751 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4752 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4753 }
4754 done:
4755 /*
4756 * Invoke the parent method to complete the work.
4757 */
4758 error = sc->sc_newstate(ic, nstate, arg);
4759 /*
4760 * Finally, start any timers.
4761 */
4762 if (nstate == IEEE80211_S_RUN) {
4763 /* start periodic recalibration timer */
4764 callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4765 ath_calibrate, sc);
4766 } else if (nstate == IEEE80211_S_SCAN) {
4767 /* start ap/neighbor scan timer */
4768 callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
4769 ath_next_scan, sc);
4770 }
4771 bad:
4772 return error;
4773 }
4774
4775 /*
4776 * Allocate a key cache slot to the station so we can
4777 * setup a mapping from key index to node. The key cache
4778 * slot is needed for managing antenna state and for
4779 * compression when stations do not use crypto. We do
4780 * it uniliaterally here; if crypto is employed this slot
4781 * will be reassigned.
4782 */
4783 static void
4784 ath_setup_stationkey(struct ieee80211_node *ni)
4785 {
4786 struct ieee80211com *ic = ni->ni_ic;
4787 struct ath_softc *sc = ic->ic_ifp->if_softc;
4788 ieee80211_keyix keyix, rxkeyix;
4789
4790 if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
4791 /*
4792 * Key cache is full; we'll fall back to doing
4793 * the more expensive lookup in software. Note
4794 * this also means no h/w compression.
4795 */
4796 /* XXX msg+statistic */
4797 } else {
4798 /* XXX locking? */
4799 ni->ni_ucastkey.wk_keyix = keyix;
4800 ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
4801 /* NB: this will create a pass-thru key entry */
4802 ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
4803 }
4804 }
4805
4806 /*
4807 * Setup driver-specific state for a newly associated node.
4808 * Note that we're called also on a re-associate, the isnew
4809 * param tells us if this is the first time or not.
4810 */
4811 static void
4812 ath_newassoc(struct ieee80211_node *ni, int isnew)
4813 {
4814 struct ieee80211com *ic = ni->ni_ic;
4815 struct ath_softc *sc = ic->ic_ifp->if_softc;
4816
4817 ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
4818 if (isnew &&
4819 (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
4820 KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
4821 ("new assoc with a unicast key already setup (keyix %u)",
4822 ni->ni_ucastkey.wk_keyix));
4823 ath_setup_stationkey(ni);
4824 }
4825 }
4826
4827 static int
4828 ath_getchannels(struct ath_softc *sc, u_int cc,
4829 HAL_BOOL outdoor, HAL_BOOL xchanmode)
4830 {
4831 #define COMPAT (CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
4832 struct ieee80211com *ic = &sc->sc_ic;
4833 struct ifnet *ifp = &sc->sc_if;
4834 struct ath_hal *ah = sc->sc_ah;
4835 HAL_CHANNEL *chans;
4836 int i, ix, nchan;
4837
4838 chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
4839 M_TEMP, M_NOWAIT);
4840 if (chans == NULL) {
4841 if_printf(ifp, "unable to allocate channel table\n");
4842 return ENOMEM;
4843 }
4844 if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
4845 NULL, 0, NULL,
4846 cc, HAL_MODE_ALL, outdoor, xchanmode)) {
4847 u_int32_t rd;
4848
4849 (void)ath_hal_getregdomain(ah, &rd);
4850 if_printf(ifp, "unable to collect channel list from hal; "
4851 "regdomain likely %u country code %u\n", rd, cc);
4852 free(chans, M_TEMP);
4853 return EINVAL;
4854 }
4855
4856 /*
4857 * Convert HAL channels to ieee80211 ones and insert
4858 * them in the table according to their channel number.
4859 */
4860 for (i = 0; i < nchan; i++) {
4861 HAL_CHANNEL *c = &chans[i];
4862 u_int16_t flags;
4863
4864 ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags);
4865 if (ix > IEEE80211_CHAN_MAX) {
4866 if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n",
4867 ix, c->channel, c->channelFlags);
4868 continue;
4869 }
4870 if (ix < 0) {
4871 /* XXX can't handle stuff <2400 right now */
4872 if (bootverbose)
4873 if_printf(ifp, "hal channel %d (%u/%x) "
4874 "cannot be handled; ignored\n",
4875 ix, c->channel, c->channelFlags);
4876 continue;
4877 }
4878 /*
4879 * Calculate net80211 flags; most are compatible
4880 * but some need massaging. Note the static turbo
4881 * conversion can be removed once net80211 is updated
4882 * to understand static vs. dynamic turbo.
4883 */
4884 flags = c->channelFlags & COMPAT;
4885 if (c->channelFlags & CHANNEL_STURBO)
4886 flags |= IEEE80211_CHAN_TURBO;
4887 if (ic->ic_channels[ix].ic_freq == 0) {
4888 ic->ic_channels[ix].ic_freq = c->channel;
4889 ic->ic_channels[ix].ic_flags = flags;
4890 } else {
4891 /* channels overlap; e.g. 11g and 11b */
4892 ic->ic_channels[ix].ic_flags |= flags;
4893 }
4894 }
4895 free(chans, M_TEMP);
4896 return 0;
4897 #undef COMPAT
4898 }
4899
4900 static void
4901 ath_led_done(void *arg)
4902 {
4903 struct ath_softc *sc = arg;
4904
4905 sc->sc_blinking = 0;
4906 }
4907
4908 /*
4909 * Turn the LED off: flip the pin and then set a timer so no
4910 * update will happen for the specified duration.
4911 */
4912 static void
4913 ath_led_off(void *arg)
4914 {
4915 struct ath_softc *sc = arg;
4916
4917 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
4918 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
4919 }
4920
4921 /*
4922 * Blink the LED according to the specified on/off times.
4923 */
4924 static void
4925 ath_led_blink(struct ath_softc *sc, int on, int off)
4926 {
4927 DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
4928 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
4929 sc->sc_blinking = 1;
4930 sc->sc_ledoff = off;
4931 callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
4932 }
4933
4934 static void
4935 ath_led_event(struct ath_softc *sc, int event)
4936 {
4937
4938 sc->sc_ledevent = ticks; /* time of last event */
4939 if (sc->sc_blinking) /* don't interrupt active blink */
4940 return;
4941 switch (event) {
4942 case ATH_LED_POLL:
4943 ath_led_blink(sc, sc->sc_hwmap[0].ledon,
4944 sc->sc_hwmap[0].ledoff);
4945 break;
4946 case ATH_LED_TX:
4947 ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
4948 sc->sc_hwmap[sc->sc_txrate].ledoff);
4949 break;
4950 case ATH_LED_RX:
4951 ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
4952 sc->sc_hwmap[sc->sc_rxrate].ledoff);
4953 break;
4954 }
4955 }
4956
4957 static void
4958 ath_update_txpow(struct ath_softc *sc)
4959 {
4960 #define COMPAT (CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
4961 struct ieee80211com *ic = &sc->sc_ic;
4962 struct ath_hal *ah = sc->sc_ah;
4963 u_int32_t txpow;
4964
4965 if (sc->sc_curtxpow != ic->ic_txpowlimit) {
4966 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
4967 /* read back in case value is clamped */
4968 (void)ath_hal_gettxpowlimit(ah, &txpow);
4969 ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
4970 }
4971 /*
4972 * Fetch max tx power level for status requests.
4973 */
4974 (void)ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
4975 ic->ic_bss->ni_txpower = txpow;
4976 }
4977
4978 static void
4979 rate_setup(struct ath_softc *sc,
4980 const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs)
4981 {
4982 int i, maxrates;
4983
4984 if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
4985 DPRINTF(sc, ATH_DEBUG_ANY,
4986 "%s: rate table too small (%u > %u)\n",
4987 __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
4988 maxrates = IEEE80211_RATE_MAXSIZE;
4989 } else
4990 maxrates = rt->rateCount;
4991 for (i = 0; i < maxrates; i++)
4992 rs->rs_rates[i] = rt->info[i].dot11Rate;
4993 rs->rs_nrates = maxrates;
4994 }
4995
4996 static int
4997 ath_rate_setup(struct ath_softc *sc, u_int mode)
4998 {
4999 struct ath_hal *ah = sc->sc_ah;
5000 struct ieee80211com *ic = &sc->sc_ic;
5001 const HAL_RATE_TABLE *rt;
5002
5003 switch (mode) {
5004 case IEEE80211_MODE_11A:
5005 rt = ath_hal_getratetable(ah, HAL_MODE_11A);
5006 break;
5007 case IEEE80211_MODE_11B:
5008 rt = ath_hal_getratetable(ah, HAL_MODE_11B);
5009 break;
5010 case IEEE80211_MODE_11G:
5011 rt = ath_hal_getratetable(ah, HAL_MODE_11G);
5012 break;
5013 case IEEE80211_MODE_TURBO_A:
5014 /* XXX until static/dynamic turbo is fixed */
5015 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
5016 break;
5017 case IEEE80211_MODE_TURBO_G:
5018 rt = ath_hal_getratetable(ah, HAL_MODE_108G);
5019 break;
5020 default:
5021 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
5022 __func__, mode);
5023 return 0;
5024 }
5025 sc->sc_rates[mode] = rt;
5026 if (rt != NULL) {
5027 rate_setup(sc, rt, &ic->ic_sup_rates[mode]);
5028 return 1;
5029 } else
5030 return 0;
5031 }
5032
5033 static void
5034 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
5035 {
5036 #define N(a) (sizeof(a)/sizeof(a[0]))
5037 /* NB: on/off times from the Atheros NDIS driver, w/ permission */
5038 static const struct {
5039 u_int rate; /* tx/rx 802.11 rate */
5040 u_int16_t timeOn; /* LED on time (ms) */
5041 u_int16_t timeOff; /* LED off time (ms) */
5042 } blinkrates[] = {
5043 { 108, 40, 10 },
5044 { 96, 44, 11 },
5045 { 72, 50, 13 },
5046 { 48, 57, 14 },
5047 { 36, 67, 16 },
5048 { 24, 80, 20 },
5049 { 22, 100, 25 },
5050 { 18, 133, 34 },
5051 { 12, 160, 40 },
5052 { 10, 200, 50 },
5053 { 6, 240, 58 },
5054 { 4, 267, 66 },
5055 { 2, 400, 100 },
5056 { 0, 500, 130 },
5057 };
5058 const HAL_RATE_TABLE *rt;
5059 int i, j;
5060
5061 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
5062 rt = sc->sc_rates[mode];
5063 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
5064 for (i = 0; i < rt->rateCount; i++)
5065 sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
5066 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
5067 for (i = 0; i < 32; i++) {
5068 u_int8_t ix = rt->rateCodeToIndex[i];
5069 if (ix == 0xff) {
5070 sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
5071 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
5072 continue;
5073 }
5074 sc->sc_hwmap[i].ieeerate =
5075 rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
5076 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
5077 if (rt->info[ix].shortPreamble ||
5078 rt->info[ix].phy == IEEE80211_T_OFDM)
5079 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
5080 /* NB: receive frames include FCS */
5081 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
5082 IEEE80211_RADIOTAP_F_FCS;
5083 /* setup blink rate table to avoid per-packet lookup */
5084 for (j = 0; j < N(blinkrates)-1; j++)
5085 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
5086 break;
5087 /* NB: this uses the last entry if the rate isn't found */
5088 /* XXX beware of overlow */
5089 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
5090 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
5091 }
5092 sc->sc_currates = rt;
5093 sc->sc_curmode = mode;
5094 /*
5095 * All protection frames are transmited at 2Mb/s for
5096 * 11g, otherwise at 1Mb/s.
5097 */
5098 if (mode == IEEE80211_MODE_11G)
5099 sc->sc_protrix = ath_tx_findrix(rt, 2*2);
5100 else
5101 sc->sc_protrix = ath_tx_findrix(rt, 2*1);
5102 /* rate index used to send management frames */
5103 sc->sc_minrateix = 0;
5104 /*
5105 * Setup multicast rate state.
5106 */
5107 /* XXX layering violation */
5108 sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate);
5109 sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate;
5110 /* NB: caller is responsible for reseting rate control state */
5111 #undef N
5112 }
5113
5114 #ifdef AR_DEBUG
5115 static void
5116 ath_printrxbuf(struct ath_buf *bf, int done)
5117 {
5118 struct ath_desc *ds;
5119 int i;
5120
5121 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5122 printf("R%d (%p %" PRIx64
5123 ") %08x %08x %08x %08x %08x %08x %c\n", i, ds,
5124 (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
5125 ds->ds_link, ds->ds_data,
5126 ds->ds_ctl0, ds->ds_ctl1,
5127 ds->ds_hw[0], ds->ds_hw[1],
5128 !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
5129 }
5130 }
5131
5132 static void
5133 ath_printtxbuf(struct ath_buf *bf, int done)
5134 {
5135 struct ath_desc *ds;
5136 int i;
5137
5138 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5139 printf("T%d (%p %" PRIx64
5140 ") %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
5141 i, ds,
5142 (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
5143 ds->ds_link, ds->ds_data,
5144 ds->ds_ctl0, ds->ds_ctl1,
5145 ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
5146 !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
5147 }
5148 }
5149 #endif /* AR_DEBUG */
5150
5151 static void
5152 ath_watchdog(struct ifnet *ifp)
5153 {
5154 struct ath_softc *sc = ifp->if_softc;
5155 struct ieee80211com *ic = &sc->sc_ic;
5156 struct ath_txq *axq;
5157 int i;
5158
5159 ifp->if_timer = 0;
5160 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
5161 return;
5162 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5163 if (!ATH_TXQ_SETUP(sc, i))
5164 continue;
5165 axq = &sc->sc_txq[i];
5166 ATH_TXQ_LOCK(axq);
5167 if (axq->axq_timer == 0)
5168 ;
5169 else if (--axq->axq_timer == 0) {
5170 ATH_TXQ_UNLOCK(axq);
5171 if_printf(ifp, "device timeout (txq %d)\n", i);
5172 ath_reset(ifp);
5173 ifp->if_oerrors++;
5174 sc->sc_stats.ast_watchdog++;
5175 break;
5176 } else
5177 ifp->if_timer = 1;
5178 ATH_TXQ_UNLOCK(axq);
5179 }
5180 ieee80211_watchdog(ic);
5181 }
5182
5183 /*
5184 * Diagnostic interface to the HAL. This is used by various
5185 * tools to do things like retrieve register contents for
5186 * debugging. The mechanism is intentionally opaque so that
5187 * it can change frequently w/o concern for compatiblity.
5188 */
5189 static int
5190 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
5191 {
5192 struct ath_hal *ah = sc->sc_ah;
5193 u_int id = ad->ad_id & ATH_DIAG_ID;
5194 void *indata = NULL;
5195 void *outdata = NULL;
5196 u_int32_t insize = ad->ad_in_size;
5197 u_int32_t outsize = ad->ad_out_size;
5198 int error = 0;
5199
5200 if (ad->ad_id & ATH_DIAG_IN) {
5201 /*
5202 * Copy in data.
5203 */
5204 indata = malloc(insize, M_TEMP, M_NOWAIT);
5205 if (indata == NULL) {
5206 error = ENOMEM;
5207 goto bad;
5208 }
5209 error = copyin(ad->ad_in_data, indata, insize);
5210 if (error)
5211 goto bad;
5212 }
5213 if (ad->ad_id & ATH_DIAG_DYN) {
5214 /*
5215 * Allocate a buffer for the results (otherwise the HAL
5216 * returns a pointer to a buffer where we can read the
5217 * results). Note that we depend on the HAL leaving this
5218 * pointer for us to use below in reclaiming the buffer;
5219 * may want to be more defensive.
5220 */
5221 outdata = malloc(outsize, M_TEMP, M_NOWAIT);
5222 if (outdata == NULL) {
5223 error = ENOMEM;
5224 goto bad;
5225 }
5226 }
5227 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
5228 if (outsize < ad->ad_out_size)
5229 ad->ad_out_size = outsize;
5230 if (outdata != NULL)
5231 error = copyout(outdata, ad->ad_out_data,
5232 ad->ad_out_size);
5233 } else {
5234 error = EINVAL;
5235 }
5236 bad:
5237 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
5238 free(indata, M_TEMP);
5239 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
5240 free(outdata, M_TEMP);
5241 return error;
5242 }
5243
5244 static int
5245 ath_ioctl(struct ifnet *ifp, u_long cmd, void *data)
5246 {
5247 #define IS_RUNNING(ifp) \
5248 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
5249 struct ath_softc *sc = ifp->if_softc;
5250 struct ieee80211com *ic = &sc->sc_ic;
5251 struct ifreq *ifr = (struct ifreq *)data;
5252 int error = 0;
5253
5254 ATH_LOCK(sc);
5255 switch (cmd) {
5256 case SIOCSIFFLAGS:
5257 if (IS_RUNNING(ifp)) {
5258 /*
5259 * To avoid rescanning another access point,
5260 * do not call ath_init() here. Instead,
5261 * only reflect promisc mode settings.
5262 */
5263 ath_mode_init(sc);
5264 } else if (ifp->if_flags & IFF_UP) {
5265 /*
5266 * Beware of being called during attach/detach
5267 * to reset promiscuous mode. In that case we
5268 * will still be marked UP but not RUNNING.
5269 * However trying to re-init the interface
5270 * is the wrong thing to do as we've already
5271 * torn down much of our state. There's
5272 * probably a better way to deal with this.
5273 */
5274 if (!sc->sc_invalid && ic->ic_bss != NULL)
5275 ath_init(sc); /* XXX lose error */
5276 } else
5277 ath_stop_locked(ifp, 1);
5278 break;
5279 case SIOCADDMULTI:
5280 case SIOCDELMULTI:
5281 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
5282 if (ifp->if_flags & IFF_RUNNING)
5283 ath_mode_init(sc);
5284 error = 0;
5285 }
5286 break;
5287 case SIOCGATHSTATS:
5288 /* NB: embed these numbers to get a consistent view */
5289 sc->sc_stats.ast_tx_packets = ifp->if_opackets;
5290 sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
5291 sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
5292 ATH_UNLOCK(sc);
5293 /*
5294 * NB: Drop the softc lock in case of a page fault;
5295 * we'll accept any potential inconsisentcy in the
5296 * statistics. The alternative is to copy the data
5297 * to a local structure.
5298 */
5299 return copyout(&sc->sc_stats,
5300 ifr->ifr_data, sizeof (sc->sc_stats));
5301 case SIOCGATHDIAG:
5302 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
5303 break;
5304 default:
5305 error = ieee80211_ioctl(ic, cmd, data);
5306 if (error == ENETRESET) {
5307 if (IS_RUNNING(ifp) &&
5308 ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
5309 ath_init(sc); /* XXX lose error */
5310 error = 0;
5311 }
5312 if (error == ERESTART)
5313 error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0;
5314 break;
5315 }
5316 ATH_UNLOCK(sc);
5317 return error;
5318 #undef IS_RUNNING
5319 }
5320
5321 #if NBPFILTER > 0
5322 static void
5323 ath_bpfattach(struct ath_softc *sc)
5324 {
5325 struct ifnet *ifp = &sc->sc_if;
5326
5327 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
5328 sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
5329 &sc->sc_drvbpf);
5330 /*
5331 * Initialize constant fields.
5332 * XXX make header lengths a multiple of 32-bits so subsequent
5333 * headers are properly aligned; this is a kludge to keep
5334 * certain applications happy.
5335 *
5336 * NB: the channel is setup each time we transition to the
5337 * RUN state to avoid filling it in for each frame.
5338 */
5339 sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
5340 sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
5341 sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
5342
5343 sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
5344 sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
5345 sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
5346 }
5347 #endif
5348
5349 /*
5350 * Announce various information on device/driver attach.
5351 */
5352 static void
5353 ath_announce(struct ath_softc *sc)
5354 {
5355 #define HAL_MODE_DUALBAND (HAL_MODE_11A|HAL_MODE_11B)
5356 struct ifnet *ifp = &sc->sc_if;
5357 struct ath_hal *ah = sc->sc_ah;
5358 u_int modes, cc;
5359
5360 if_printf(ifp, "mac %d.%d phy %d.%d",
5361 ah->ah_macVersion, ah->ah_macRev,
5362 ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
5363 /*
5364 * Print radio revision(s). We check the wireless modes
5365 * to avoid falsely printing revs for inoperable parts.
5366 * Dual-band radio revs are returned in the 5 GHz rev number.
5367 */
5368 ath_hal_getcountrycode(ah, &cc);
5369 modes = ath_hal_getwirelessmodes(ah, cc);
5370 if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
5371 if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
5372 printf(" 5 GHz radio %d.%d 2 GHz radio %d.%d",
5373 ah->ah_analog5GhzRev >> 4,
5374 ah->ah_analog5GhzRev & 0xf,
5375 ah->ah_analog2GhzRev >> 4,
5376 ah->ah_analog2GhzRev & 0xf);
5377 else
5378 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5379 ah->ah_analog5GhzRev & 0xf);
5380 } else
5381 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5382 ah->ah_analog5GhzRev & 0xf);
5383 printf("\n");
5384 if (bootverbose) {
5385 int i;
5386 for (i = 0; i <= WME_AC_VO; i++) {
5387 struct ath_txq *txq = sc->sc_ac2q[i];
5388 if_printf(ifp, "Use hw queue %u for %s traffic\n",
5389 txq->axq_qnum, ieee80211_wme_acnames[i]);
5390 }
5391 if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5392 sc->sc_cabq->axq_qnum);
5393 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5394 }
5395 if (ath_rxbuf != ATH_RXBUF)
5396 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
5397 if (ath_txbuf != ATH_TXBUF)
5398 if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
5399 #undef HAL_MODE_DUALBAND
5400 }
5401