Home | History | Annotate | Line # | Download | only in ic
ath.c revision 1.87.2.2
      1 /*	$NetBSD: ath.c,v 1.87.2.2 2007/12/27 00:45:05 mjf Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer,
     12  *    without modification.
     13  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
     14  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
     15  *    redistribution must be conditioned upon including a substantially
     16  *    similar Disclaimer requirement for further binary redistribution.
     17  * 3. Neither the names of the above-listed copyright holders nor the names
     18  *    of any contributors may be used to endorse or promote products derived
     19  *    from this software without specific prior written permission.
     20  *
     21  * Alternatively, this software may be distributed under the terms of the
     22  * GNU General Public License ("GPL") version 2 as published by the Free
     23  * Software Foundation.
     24  *
     25  * NO WARRANTY
     26  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     28  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
     29  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
     30  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
     31  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
     34  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     36  * THE POSSIBILITY OF SUCH DAMAGES.
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 #ifdef __FreeBSD__
     41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $");
     42 #endif
     43 #ifdef __NetBSD__
     44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.87.2.2 2007/12/27 00:45:05 mjf Exp $");
     45 #endif
     46 
     47 /*
     48  * Driver for the Atheros Wireless LAN controller.
     49  *
     50  * This software is derived from work of Atsushi Onoe; his contribution
     51  * is greatly appreciated.
     52  */
     53 
     54 #include "opt_inet.h"
     55 
     56 #ifdef __NetBSD__
     57 #include "bpfilter.h"
     58 #endif /* __NetBSD__ */
     59 
     60 #include <sys/param.h>
     61 #include <sys/reboot.h>
     62 #include <sys/systm.h>
     63 #include <sys/types.h>
     64 #include <sys/sysctl.h>
     65 #include <sys/mbuf.h>
     66 #include <sys/malloc.h>
     67 #include <sys/lock.h>
     68 #include <sys/kernel.h>
     69 #include <sys/socket.h>
     70 #include <sys/sockio.h>
     71 #include <sys/errno.h>
     72 #include <sys/callout.h>
     73 #include <sys/bus.h>
     74 #include <sys/endian.h>
     75 
     76 #include <net/if.h>
     77 #include <net/if_dl.h>
     78 #include <net/if_media.h>
     79 #include <net/if_types.h>
     80 #include <net/if_arp.h>
     81 #include <net/if_ether.h>
     82 #include <net/if_llc.h>
     83 
     84 #include <net80211/ieee80211_netbsd.h>
     85 #include <net80211/ieee80211_var.h>
     86 
     87 #if NBPFILTER > 0
     88 #include <net/bpf.h>
     89 #endif
     90 
     91 #ifdef INET
     92 #include <netinet/in.h>
     93 #endif
     94 
     95 #include <sys/device.h>
     96 #include <dev/ic/ath_netbsd.h>
     97 
     98 #define	AR_DEBUG
     99 #include <dev/ic/athvar.h>
    100 #include <contrib/dev/ath/ah_desc.h>
    101 #include <contrib/dev/ath/ah_devid.h>	/* XXX for softled */
    102 #include "athhal_options.h"
    103 
    104 #ifdef ATH_TX99_DIAG
    105 #include <dev/ath/ath_tx99/ath_tx99.h>
    106 #endif
    107 
    108 /* unaligned little endian access */
    109 #define LE_READ_2(p)							\
    110 	((u_int16_t)							\
    111 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
    112 #define LE_READ_4(p)							\
    113 	((u_int32_t)							\
    114 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
    115 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
    116 
    117 enum {
    118 	ATH_LED_TX,
    119 	ATH_LED_RX,
    120 	ATH_LED_POLL,
    121 };
    122 
    123 #ifdef	AH_NEED_DESC_SWAP
    124 #define	HTOAH32(x)	htole32(x)
    125 #else
    126 #define	HTOAH32(x)	(x)
    127 #endif
    128 
    129 static int	ath_ifinit(struct ifnet *);
    130 static int	ath_init(struct ath_softc *);
    131 static void	ath_stop_locked(struct ifnet *, int);
    132 static void	ath_stop(struct ifnet *, int);
    133 static void	ath_start(struct ifnet *);
    134 static int	ath_media_change(struct ifnet *);
    135 static void	ath_watchdog(struct ifnet *);
    136 static int	ath_ioctl(struct ifnet *, u_long, void *);
    137 static void	ath_fatal_proc(void *, int);
    138 static void	ath_rxorn_proc(void *, int);
    139 static void	ath_bmiss_proc(void *, int);
    140 static void	ath_radar_proc(void *, int);
    141 static int	ath_key_alloc(struct ieee80211com *,
    142 			const struct ieee80211_key *,
    143 			ieee80211_keyix *, ieee80211_keyix *);
    144 static int	ath_key_delete(struct ieee80211com *,
    145 			const struct ieee80211_key *);
    146 static int	ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
    147 			const u_int8_t mac[IEEE80211_ADDR_LEN]);
    148 static void	ath_key_update_begin(struct ieee80211com *);
    149 static void	ath_key_update_end(struct ieee80211com *);
    150 static void	ath_mode_init(struct ath_softc *);
    151 static void	ath_setslottime(struct ath_softc *);
    152 static void	ath_updateslot(struct ifnet *);
    153 static int	ath_beaconq_setup(struct ath_hal *);
    154 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
    155 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
    156 static void	ath_beacon_proc(void *, int);
    157 static void	ath_bstuck_proc(void *, int);
    158 static void	ath_beacon_free(struct ath_softc *);
    159 static void	ath_beacon_config(struct ath_softc *);
    160 static void	ath_descdma_cleanup(struct ath_softc *sc,
    161 			struct ath_descdma *, ath_bufhead *);
    162 static int	ath_desc_alloc(struct ath_softc *);
    163 static void	ath_desc_free(struct ath_softc *);
    164 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
    165 static void	ath_node_free(struct ieee80211_node *);
    166 static u_int8_t	ath_node_getrssi(const struct ieee80211_node *);
    167 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
    168 static void	ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
    169 			struct ieee80211_node *ni,
    170 			int subtype, int rssi, u_int32_t rstamp);
    171 static void	ath_setdefantenna(struct ath_softc *, u_int);
    172 static void	ath_rx_proc(void *, int);
    173 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
    174 static int	ath_tx_setup(struct ath_softc *, int, int);
    175 static int	ath_wme_update(struct ieee80211com *);
    176 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
    177 static void	ath_tx_cleanup(struct ath_softc *);
    178 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
    179 			     struct ath_buf *, struct mbuf *);
    180 static void	ath_tx_proc_q0(void *, int);
    181 static void	ath_tx_proc_q0123(void *, int);
    182 static void	ath_tx_proc(void *, int);
    183 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
    184 static void	ath_draintxq(struct ath_softc *);
    185 static void	ath_stoprecv(struct ath_softc *);
    186 static int	ath_startrecv(struct ath_softc *);
    187 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
    188 static void	ath_next_scan(void *);
    189 static void	ath_calibrate(void *);
    190 static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
    191 static void	ath_setup_stationkey(struct ieee80211_node *);
    192 static void	ath_newassoc(struct ieee80211_node *, int);
    193 static int	ath_getchannels(struct ath_softc *, u_int cc,
    194 			HAL_BOOL outdoor, HAL_BOOL xchanmode);
    195 static void	ath_led_event(struct ath_softc *, int);
    196 static void	ath_update_txpow(struct ath_softc *);
    197 static void	ath_freetx(struct mbuf *);
    198 static void	ath_restore_diversity(struct ath_softc *);
    199 
    200 static int	ath_rate_setup(struct ath_softc *, u_int mode);
    201 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
    202 
    203 #ifdef __NetBSD__
    204 int	ath_enable(struct ath_softc *);
    205 void	ath_disable(struct ath_softc *);
    206 #endif
    207 
    208 #if NBPFILTER > 0
    209 static void	ath_bpfattach(struct ath_softc *);
    210 #endif
    211 static void	ath_announce(struct ath_softc *);
    212 
    213 int ath_dwelltime = 200;		/* 5 channels/second */
    214 int ath_calinterval = 30;		/* calibrate every 30 secs */
    215 int ath_outdoor = AH_TRUE;		/* outdoor operation */
    216 int ath_xchanmode = AH_TRUE;		/* enable extended channels */
    217 int ath_countrycode = CTRY_DEFAULT;	/* country code */
    218 int ath_regdomain = 0;			/* regulatory domain */
    219 int ath_debug = 0;
    220 int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
    221 int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
    222 
    223 #ifdef AR_DEBUG
    224 enum {
    225 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
    226 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
    227 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
    228 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
    229 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
    230 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
    231 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
    232 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
    233 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
    234 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
    235 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
    236 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
    237 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
    238 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
    239 	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
    240 	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
    241 	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
    242 	ATH_DEBUG_LED		= 0x00100000,	/* led management */
    243 	ATH_DEBUG_FF		= 0x00200000,	/* fast frames */
    244 	ATH_DEBUG_DFS		= 0x00400000,	/* DFS processing */
    245 	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
    246 	ATH_DEBUG_ANY		= 0xffffffff
    247 };
    248 #define	IFF_DUMPPKTS(sc, m) \
    249 	((sc->sc_debug & (m)) || \
    250 	    (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
    251 #define	DPRINTF(sc, m, fmt, ...) do {				\
    252 	if (sc->sc_debug & (m))					\
    253 		printf(fmt, __VA_ARGS__);			\
    254 } while (0)
    255 #define	KEYPRINTF(sc, ix, hk, mac) do {				\
    256 	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
    257 		ath_keyprint(__func__, ix, hk, mac);		\
    258 } while (0)
    259 static	void ath_printrxbuf(struct ath_buf *bf, int);
    260 static	void ath_printtxbuf(struct ath_buf *bf, int);
    261 #else
    262 #define	IFF_DUMPPKTS(sc, m) \
    263 	((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
    264 #define	DPRINTF(m, fmt, ...)
    265 #define	KEYPRINTF(sc, k, ix, mac)
    266 #endif
    267 
    268 #ifdef __NetBSD__
    269 int
    270 ath_activate(struct device *self, enum devact act)
    271 {
    272 	struct ath_softc *sc = (struct ath_softc *)self;
    273 	int rv = 0, s;
    274 
    275 	s = splnet();
    276 	switch (act) {
    277 	case DVACT_ACTIVATE:
    278 		rv = EOPNOTSUPP;
    279 		break;
    280 	case DVACT_DEACTIVATE:
    281 		if_deactivate(&sc->sc_if);
    282 		break;
    283 	}
    284 	splx(s);
    285 	return rv;
    286 }
    287 
    288 int
    289 ath_enable(struct ath_softc *sc)
    290 {
    291 	if (ATH_IS_ENABLED(sc) == 0) {
    292 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
    293 			printf("%s: device enable failed\n",
    294 				device_xname(&sc->sc_dev));
    295 			return (EIO);
    296 		}
    297 		sc->sc_flags |= ATH_ENABLED;
    298 	}
    299 	return (0);
    300 }
    301 
    302 void
    303 ath_disable(struct ath_softc *sc)
    304 {
    305 	if (!ATH_IS_ENABLED(sc))
    306 		return;
    307 	if (sc->sc_disable != NULL)
    308 		(*sc->sc_disable)(sc);
    309 	sc->sc_flags &= ~ATH_ENABLED;
    310 }
    311 #endif /* __NetBSD__ */
    312 
    313 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
    314 
    315 int
    316 ath_attach(u_int16_t devid, struct ath_softc *sc)
    317 {
    318 	struct ifnet *ifp = &sc->sc_if;
    319 	struct ieee80211com *ic = &sc->sc_ic;
    320 	struct ath_hal *ah = NULL;
    321 	HAL_STATUS status;
    322 	int error = 0, i;
    323 
    324 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
    325 
    326 	memcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
    327 
    328 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
    329 	if (ah == NULL) {
    330 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
    331 			status);
    332 		error = ENXIO;
    333 		goto bad;
    334 	}
    335 	if (ah->ah_abi != HAL_ABI_VERSION) {
    336 		if_printf(ifp, "HAL ABI mismatch detected "
    337 			"(HAL:0x%x != driver:0x%x)\n",
    338 			ah->ah_abi, HAL_ABI_VERSION);
    339 		error = ENXIO;
    340 		goto bad;
    341 	}
    342 	sc->sc_ah = ah;
    343 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
    344 
    345 	/*
    346 	 * Check if the MAC has multi-rate retry support.
    347 	 * We do this by trying to setup a fake extended
    348 	 * descriptor.  MAC's that don't have support will
    349 	 * return false w/o doing anything.  MAC's that do
    350 	 * support it will return true w/o doing anything.
    351 	 */
    352 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
    353 
    354 	/*
    355 	 * Check if the device has hardware counters for PHY
    356 	 * errors.  If so we need to enable the MIB interrupt
    357 	 * so we can act on stat triggers.
    358 	 */
    359 	if (ath_hal_hwphycounters(ah))
    360 		sc->sc_needmib = 1;
    361 
    362 	/*
    363 	 * Get the hardware key cache size.
    364 	 */
    365 	sc->sc_keymax = ath_hal_keycachesize(ah);
    366 	if (sc->sc_keymax > ATH_KEYMAX) {
    367 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
    368 			ATH_KEYMAX, sc->sc_keymax);
    369 		sc->sc_keymax = ATH_KEYMAX;
    370 	}
    371 	/*
    372 	 * Reset the key cache since some parts do not
    373 	 * reset the contents on initial power up.
    374 	 */
    375 	for (i = 0; i < sc->sc_keymax; i++)
    376 		ath_hal_keyreset(ah, i);
    377 	/*
    378 	 * Mark key cache slots associated with global keys
    379 	 * as in use.  If we knew TKIP was not to be used we
    380 	 * could leave the +32, +64, and +32+64 slots free.
    381 	 * XXX only for splitmic.
    382 	 */
    383 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
    384 		setbit(sc->sc_keymap, i);
    385 		setbit(sc->sc_keymap, i+32);
    386 		setbit(sc->sc_keymap, i+64);
    387 		setbit(sc->sc_keymap, i+32+64);
    388 	}
    389 
    390 	/*
    391 	 * Collect the channel list using the default country
    392 	 * code and including outdoor channels.  The 802.11 layer
    393 	 * is resposible for filtering this list based on settings
    394 	 * like the phy mode.
    395 	 */
    396 	error = ath_getchannels(sc, ath_countrycode,
    397 			ath_outdoor, ath_xchanmode);
    398 	if (error != 0)
    399 		goto bad;
    400 
    401 	/*
    402 	 * Setup rate tables for all potential media types.
    403 	 */
    404 	ath_rate_setup(sc, IEEE80211_MODE_11A);
    405 	ath_rate_setup(sc, IEEE80211_MODE_11B);
    406 	ath_rate_setup(sc, IEEE80211_MODE_11G);
    407 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
    408 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
    409 	/* NB: setup here so ath_rate_update is happy */
    410 	ath_setcurmode(sc, IEEE80211_MODE_11A);
    411 
    412 	/*
    413 	 * Allocate tx+rx descriptors and populate the lists.
    414 	 */
    415 	error = ath_desc_alloc(sc);
    416 	if (error != 0) {
    417 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
    418 		goto bad;
    419 	}
    420 	ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
    421 	ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE);
    422 	ATH_CALLOUT_INIT(&sc->sc_dfs_ch, CALLOUT_MPSAFE);
    423 
    424 	ATH_TXBUF_LOCK_INIT(sc);
    425 
    426 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
    427 	TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
    428 	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
    429 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
    430 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
    431 	TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc);
    432 
    433 	/*
    434 	 * Allocate hardware transmit queues: one queue for
    435 	 * beacon frames and one data queue for each QoS
    436 	 * priority.  Note that the hal handles reseting
    437 	 * these queues at the needed time.
    438 	 *
    439 	 * XXX PS-Poll
    440 	 */
    441 	sc->sc_bhalq = ath_beaconq_setup(ah);
    442 	if (sc->sc_bhalq == (u_int) -1) {
    443 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
    444 		error = EIO;
    445 		goto bad2;
    446 	}
    447 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
    448 	if (sc->sc_cabq == NULL) {
    449 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
    450 		error = EIO;
    451 		goto bad2;
    452 	}
    453 	/* NB: insure BK queue is the lowest priority h/w queue */
    454 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
    455 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
    456 			ieee80211_wme_acnames[WME_AC_BK]);
    457 		error = EIO;
    458 		goto bad2;
    459 	}
    460 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
    461 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
    462 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
    463 		/*
    464 		 * Not enough hardware tx queues to properly do WME;
    465 		 * just punt and assign them all to the same h/w queue.
    466 		 * We could do a better job of this if, for example,
    467 		 * we allocate queues when we switch from station to
    468 		 * AP mode.
    469 		 */
    470 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
    471 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
    472 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
    473 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
    474 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
    475 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
    476 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
    477 	}
    478 
    479 	/*
    480 	 * Special case certain configurations.  Note the
    481 	 * CAB queue is handled by these specially so don't
    482 	 * include them when checking the txq setup mask.
    483 	 */
    484 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
    485 	case 0x01:
    486 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
    487 		break;
    488 	case 0x0f:
    489 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
    490 		break;
    491 	default:
    492 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
    493 		break;
    494 	}
    495 
    496 	/*
    497 	 * Setup rate control.  Some rate control modules
    498 	 * call back to change the anntena state so expose
    499 	 * the necessary entry points.
    500 	 * XXX maybe belongs in struct ath_ratectrl?
    501 	 */
    502 	sc->sc_setdefantenna = ath_setdefantenna;
    503 	sc->sc_rc = ath_rate_attach(sc);
    504 	if (sc->sc_rc == NULL) {
    505 		error = EIO;
    506 		goto bad2;
    507 	}
    508 
    509 	sc->sc_blinking = 0;
    510 	sc->sc_ledstate = 1;
    511 	sc->sc_ledon = 0;			/* low true */
    512 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
    513 	ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE);
    514 	/*
    515 	 * Auto-enable soft led processing for IBM cards and for
    516 	 * 5211 minipci cards.  Users can also manually enable/disable
    517 	 * support with a sysctl.
    518 	 */
    519 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
    520 	if (sc->sc_softled) {
    521 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
    522 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
    523 	}
    524 
    525 	ifp->if_softc = sc;
    526 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
    527 	ifp->if_start = ath_start;
    528 	ifp->if_stop = ath_stop;
    529 	ifp->if_watchdog = ath_watchdog;
    530 	ifp->if_ioctl = ath_ioctl;
    531 	ifp->if_init = ath_ifinit;
    532 	IFQ_SET_READY(&ifp->if_snd);
    533 
    534 	ic->ic_ifp = ifp;
    535 	ic->ic_reset = ath_reset;
    536 	ic->ic_newassoc = ath_newassoc;
    537 	ic->ic_updateslot = ath_updateslot;
    538 	ic->ic_wme.wme_update = ath_wme_update;
    539 	/* XXX not right but it's not used anywhere important */
    540 	ic->ic_phytype = IEEE80211_T_OFDM;
    541 	ic->ic_opmode = IEEE80211_M_STA;
    542 	ic->ic_caps =
    543 		  IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
    544 		| IEEE80211_C_HOSTAP		/* hostap mode */
    545 		| IEEE80211_C_MONITOR		/* monitor mode */
    546 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
    547 		| IEEE80211_C_SHSLOT		/* short slot time supported */
    548 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
    549 		| IEEE80211_C_TXFRAG		/* handle tx frags */
    550 		;
    551 	/*
    552 	 * Query the hal to figure out h/w crypto support.
    553 	 */
    554 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
    555 		ic->ic_caps |= IEEE80211_C_WEP;
    556 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
    557 		ic->ic_caps |= IEEE80211_C_AES;
    558 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
    559 		ic->ic_caps |= IEEE80211_C_AES_CCM;
    560 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
    561 		ic->ic_caps |= IEEE80211_C_CKIP;
    562 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
    563 		ic->ic_caps |= IEEE80211_C_TKIP;
    564 		/*
    565 		 * Check if h/w does the MIC and/or whether the
    566 		 * separate key cache entries are required to
    567 		 * handle both tx+rx MIC keys.
    568 		 */
    569 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
    570 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
    571 		if (ath_hal_tkipsplit(ah))
    572 			sc->sc_splitmic = 1;
    573 	}
    574 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
    575 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
    576 	/*
    577 	 * TPC support can be done either with a global cap or
    578 	 * per-packet support.  The latter is not available on
    579 	 * all parts.  We're a bit pedantic here as all parts
    580 	 * support a global cap.
    581 	 */
    582 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
    583 		ic->ic_caps |= IEEE80211_C_TXPMGT;
    584 
    585 	/*
    586 	 * Mark WME capability only if we have sufficient
    587 	 * hardware queues to do proper priority scheduling.
    588 	 */
    589 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
    590 		ic->ic_caps |= IEEE80211_C_WME;
    591 	/*
    592 	 * Check for misc other capabilities.
    593 	 */
    594 	if (ath_hal_hasbursting(ah))
    595 		ic->ic_caps |= IEEE80211_C_BURST;
    596 
    597 	/*
    598 	 * Indicate we need the 802.11 header padded to a
    599 	 * 32-bit boundary for 4-address and QoS frames.
    600 	 */
    601 	ic->ic_flags |= IEEE80211_F_DATAPAD;
    602 
    603 	/*
    604 	 * Query the hal about antenna support.
    605 	 */
    606 	sc->sc_defant = ath_hal_getdefantenna(ah);
    607 
    608 	/*
    609 	 * Not all chips have the VEOL support we want to
    610 	 * use with IBSS beacons; check here for it.
    611 	 */
    612 	sc->sc_hasveol = ath_hal_hasveol(ah);
    613 
    614 	/* get mac address from hardware */
    615 	ath_hal_getmac(ah, ic->ic_myaddr);
    616 
    617 	if_attach(ifp);
    618 	/* call MI attach routine. */
    619 	ieee80211_ifattach(ic);
    620 	/* override default methods */
    621 	ic->ic_node_alloc = ath_node_alloc;
    622 	sc->sc_node_free = ic->ic_node_free;
    623 	ic->ic_node_free = ath_node_free;
    624 	ic->ic_node_getrssi = ath_node_getrssi;
    625 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
    626 	ic->ic_recv_mgmt = ath_recv_mgmt;
    627 	sc->sc_newstate = ic->ic_newstate;
    628 	ic->ic_newstate = ath_newstate;
    629 	ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
    630 	ic->ic_crypto.cs_key_alloc = ath_key_alloc;
    631 	ic->ic_crypto.cs_key_delete = ath_key_delete;
    632 	ic->ic_crypto.cs_key_set = ath_key_set;
    633 	ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
    634 	ic->ic_crypto.cs_key_update_end = ath_key_update_end;
    635 	/* complete initialization */
    636 	ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
    637 
    638 #if NBPFILTER > 0
    639 	ath_bpfattach(sc);
    640 #endif
    641 
    642 	sc->sc_flags |= ATH_ATTACHED;
    643 
    644 	/*
    645 	 * Setup dynamic sysctl's now that country code and
    646 	 * regdomain are available from the hal.
    647 	 */
    648 	ath_sysctlattach(sc);
    649 
    650 	ieee80211_announce(ic);
    651 	ath_announce(sc);
    652 	return 0;
    653 bad2:
    654 	ath_tx_cleanup(sc);
    655 	ath_desc_free(sc);
    656 bad:
    657 	if (ah)
    658 		ath_hal_detach(ah);
    659 	sc->sc_invalid = 1;
    660 	return error;
    661 }
    662 
    663 int
    664 ath_detach(struct ath_softc *sc)
    665 {
    666 	struct ifnet *ifp = &sc->sc_if;
    667 	int s;
    668 
    669 	if ((sc->sc_flags & ATH_ATTACHED) == 0)
    670 		return (0);
    671 
    672 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
    673 		__func__, ifp->if_flags);
    674 
    675 	s = splnet();
    676 	ath_stop(ifp, 1);
    677 #if NBPFILTER > 0
    678 	bpfdetach(ifp);
    679 #endif
    680 	/*
    681 	 * NB: the order of these is important:
    682 	 * o call the 802.11 layer before detaching the hal to
    683 	 *   insure callbacks into the driver to delete global
    684 	 *   key cache entries can be handled
    685 	 * o reclaim the tx queue data structures after calling
    686 	 *   the 802.11 layer as we'll get called back to reclaim
    687 	 *   node state and potentially want to use them
    688 	 * o to cleanup the tx queues the hal is called, so detach
    689 	 *   it last
    690 	 * Other than that, it's straightforward...
    691 	 */
    692 	ieee80211_ifdetach(&sc->sc_ic);
    693 #ifdef ATH_TX99_DIAG
    694 	if (sc->sc_tx99 != NULL)
    695 		sc->sc_tx99->detach(sc->sc_tx99);
    696 #endif
    697 	ath_rate_detach(sc->sc_rc);
    698 	ath_desc_free(sc);
    699 	ath_tx_cleanup(sc);
    700 	sysctl_teardown(&sc->sc_sysctllog);
    701 	ath_hal_detach(sc->sc_ah);
    702 	if_detach(ifp);
    703 	splx(s);
    704 
    705 	return 0;
    706 }
    707 
    708 void
    709 ath_resume(struct ath_softc *sc)
    710 {
    711 	if (sc->sc_softled) {
    712 		ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
    713 		ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
    714 	}
    715 }
    716 
    717 /*
    718  * Interrupt handler.  Most of the actual processing is deferred.
    719  */
    720 int
    721 ath_intr(void *arg)
    722 {
    723 	struct ath_softc *sc = arg;
    724 	struct ifnet *ifp = &sc->sc_if;
    725 	struct ath_hal *ah = sc->sc_ah;
    726 	HAL_INT status;
    727 
    728 	if (sc->sc_invalid) {
    729 		/*
    730 		 * The hardware is not ready/present, don't touch anything.
    731 		 * Note this can happen early on if the IRQ is shared.
    732 		 */
    733 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
    734 		return 0;
    735 	}
    736 
    737 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
    738 		return 0;
    739 
    740 	if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
    741 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
    742 			__func__, ifp->if_flags);
    743 		ath_hal_getisr(ah, &status);	/* clear ISR */
    744 		ath_hal_intrset(ah, 0);		/* disable further intr's */
    745 		return 1; /* XXX */
    746 	}
    747 	/*
    748 	 * Figure out the reason(s) for the interrupt.  Note
    749 	 * that the hal returns a pseudo-ISR that may include
    750 	 * bits we haven't explicitly enabled so we mask the
    751 	 * value to insure we only process bits we requested.
    752 	 */
    753 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
    754 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
    755 	status &= sc->sc_imask;			/* discard unasked for bits */
    756 	if (status & HAL_INT_FATAL) {
    757 		/*
    758 		 * Fatal errors are unrecoverable.  Typically
    759 		 * these are caused by DMA errors.  Unfortunately
    760 		 * the exact reason is not (presently) returned
    761 		 * by the hal.
    762 		 */
    763 		sc->sc_stats.ast_hardware++;
    764 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
    765 		TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
    766 	} else if (status & HAL_INT_RXORN) {
    767 		sc->sc_stats.ast_rxorn++;
    768 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
    769 		TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
    770 	} else {
    771 		if (status & HAL_INT_SWBA) {
    772 			/*
    773 			 * Software beacon alert--time to send a beacon.
    774 			 * Handle beacon transmission directly; deferring
    775 			 * this is too slow to meet timing constraints
    776 			 * under load.
    777 			 */
    778 			ath_beacon_proc(sc, 0);
    779 		}
    780 		if (status & HAL_INT_RXEOL) {
    781 			/*
    782 			 * NB: the hardware should re-read the link when
    783 			 *     RXE bit is written, but it doesn't work at
    784 			 *     least on older hardware revs.
    785 			 */
    786 			sc->sc_stats.ast_rxeol++;
    787 			sc->sc_rxlink = NULL;
    788 		}
    789 		if (status & HAL_INT_TXURN) {
    790 			sc->sc_stats.ast_txurn++;
    791 			/* bump tx trigger level */
    792 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
    793 		}
    794 		if (status & HAL_INT_RX)
    795 			TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
    796 		if (status & HAL_INT_TX)
    797 			TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
    798 		if (status & HAL_INT_BMISS) {
    799 			sc->sc_stats.ast_bmiss++;
    800 			TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
    801 		}
    802 		if (status & HAL_INT_MIB) {
    803 			sc->sc_stats.ast_mib++;
    804 			/*
    805 			 * Disable interrupts until we service the MIB
    806 			 * interrupt; otherwise it will continue to fire.
    807 			 */
    808 			ath_hal_intrset(ah, 0);
    809 			/*
    810 			 * Let the hal handle the event.  We assume it will
    811 			 * clear whatever condition caused the interrupt.
    812 			 */
    813 			ath_hal_mibevent(ah, &sc->sc_halstats);
    814 			ath_hal_intrset(ah, sc->sc_imask);
    815 		}
    816 	}
    817 	return 1;
    818 }
    819 
    820 /* Swap transmit descriptor.
    821  * if AH_NEED_DESC_SWAP flag is not defined this becomes a "null"
    822  * function.
    823  */
    824 static inline void
    825 ath_desc_swap(struct ath_desc *ds)
    826 {
    827 #ifdef AH_NEED_DESC_SWAP
    828 	ds->ds_link = htole32(ds->ds_link);
    829 	ds->ds_data = htole32(ds->ds_data);
    830 	ds->ds_ctl0 = htole32(ds->ds_ctl0);
    831 	ds->ds_ctl1 = htole32(ds->ds_ctl1);
    832 	ds->ds_hw[0] = htole32(ds->ds_hw[0]);
    833 	ds->ds_hw[1] = htole32(ds->ds_hw[1]);
    834 #endif
    835 }
    836 
    837 static void
    838 ath_fatal_proc(void *arg, int pending)
    839 {
    840 	struct ath_softc *sc = arg;
    841 	struct ifnet *ifp = &sc->sc_if;
    842 
    843 	if_printf(ifp, "hardware error; resetting\n");
    844 	ath_reset(ifp);
    845 }
    846 
    847 static void
    848 ath_rxorn_proc(void *arg, int pending)
    849 {
    850 	struct ath_softc *sc = arg;
    851 	struct ifnet *ifp = &sc->sc_if;
    852 
    853 	if_printf(ifp, "rx FIFO overrun; resetting\n");
    854 	ath_reset(ifp);
    855 }
    856 
    857 static void
    858 ath_bmiss_proc(void *arg, int pending)
    859 {
    860 	struct ath_softc *sc = arg;
    861 	struct ieee80211com *ic = &sc->sc_ic;
    862 
    863 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
    864 	KASSERT(ic->ic_opmode == IEEE80211_M_STA,
    865 		("unexpect operating mode %u", ic->ic_opmode));
    866 	if (ic->ic_state == IEEE80211_S_RUN) {
    867 		u_int64_t lastrx = sc->sc_lastrx;
    868 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
    869 
    870 		DPRINTF(sc, ATH_DEBUG_BEACON,
    871 		    "%s: tsf %" PRIu64 " lastrx %" PRId64
    872 		    " (%" PRIu64 ") bmiss %u\n",
    873 		    __func__, tsf, tsf - lastrx, lastrx,
    874 		    ic->ic_bmisstimeout*1024);
    875 		/*
    876 		 * Workaround phantom bmiss interrupts by sanity-checking
    877 		 * the time of our last rx'd frame.  If it is within the
    878 		 * beacon miss interval then ignore the interrupt.  If it's
    879 		 * truly a bmiss we'll get another interrupt soon and that'll
    880 		 * be dispatched up for processing.
    881 		 */
    882 		if (tsf - lastrx > ic->ic_bmisstimeout*1024) {
    883 			NET_LOCK_GIANT();
    884 			ieee80211_beacon_miss(ic);
    885 			NET_UNLOCK_GIANT();
    886 		} else
    887 			sc->sc_stats.ast_bmiss_phantom++;
    888 	}
    889 }
    890 
    891 static void
    892 ath_radar_proc(void *arg, int pending)
    893 {
    894 	struct ath_softc *sc = arg;
    895 	struct ifnet *ifp = &sc->sc_if;
    896 	struct ath_hal *ah = sc->sc_ah;
    897 	HAL_CHANNEL hchan;
    898 
    899 	if (ath_hal_procdfs(ah, &hchan)) {
    900 		if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n",
    901 			hchan.channel, hchan.channelFlags, hchan.privFlags);
    902 		/*
    903 		 * Initiate channel change.
    904 		 */
    905 		/* XXX not yet */
    906 	}
    907 }
    908 
    909 static u_int
    910 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
    911 {
    912 #define	N(a)	(sizeof(a) / sizeof(a[0]))
    913 	static const u_int modeflags[] = {
    914 		0,			/* IEEE80211_MODE_AUTO */
    915 		CHANNEL_A,		/* IEEE80211_MODE_11A */
    916 		CHANNEL_B,		/* IEEE80211_MODE_11B */
    917 		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
    918 		0,			/* IEEE80211_MODE_FH */
    919 		CHANNEL_ST,		/* IEEE80211_MODE_TURBO_A */
    920 		CHANNEL_108G		/* IEEE80211_MODE_TURBO_G */
    921 	};
    922 	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
    923 
    924 	KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
    925 	KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
    926 	return modeflags[mode];
    927 #undef N
    928 }
    929 
    930 static int
    931 ath_ifinit(struct ifnet *ifp)
    932 {
    933 	struct ath_softc *sc = (struct ath_softc *)ifp->if_softc;
    934 
    935 	return ath_init(sc);
    936 }
    937 
    938 static int
    939 ath_init(struct ath_softc *sc)
    940 {
    941 	struct ifnet *ifp = &sc->sc_if;
    942 	struct ieee80211com *ic = &sc->sc_ic;
    943 	struct ath_hal *ah = sc->sc_ah;
    944 	HAL_STATUS status;
    945 	int error = 0;
    946 
    947 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
    948 		__func__, ifp->if_flags);
    949 
    950 	if (!device_has_power(&sc->sc_dev))
    951 		return EBUSY;
    952 
    953 	ATH_LOCK(sc);
    954 
    955 	if ((error = ath_enable(sc)) != 0) {
    956 		ATH_UNLOCK(sc);
    957 		return error;
    958 	}
    959 
    960 	/*
    961 	 * Stop anything previously setup.  This is safe
    962 	 * whether this is the first time through or not.
    963 	 */
    964 	ath_stop_locked(ifp, 0);
    965 
    966 	/*
    967 	 * The basic interface to setting the hardware in a good
    968 	 * state is ``reset''.  On return the hardware is known to
    969 	 * be powered up and with interrupts disabled.  This must
    970 	 * be followed by initialization of the appropriate bits
    971 	 * and then setup of the interrupt mask.
    972 	 */
    973 	sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
    974 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
    975 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
    976 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
    977 			status);
    978 		error = EIO;
    979 		goto done;
    980 	}
    981 
    982 	/*
    983 	 * This is needed only to setup initial state
    984 	 * but it's best done after a reset.
    985 	 */
    986 	ath_update_txpow(sc);
    987 	/*
    988 	 * Likewise this is set during reset so update
    989 	 * state cached in the driver.
    990 	 */
    991 	ath_restore_diversity(sc);
    992 	sc->sc_calinterval = 1;
    993 	sc->sc_caltries = 0;
    994 
    995 	/*
    996 	 * Setup the hardware after reset: the key cache
    997 	 * is filled as needed and the receive engine is
    998 	 * set going.  Frame transmit is handled entirely
    999 	 * in the frame output path; there's nothing to do
   1000 	 * here except setup the interrupt mask.
   1001 	 */
   1002 	if ((error = ath_startrecv(sc)) != 0) {
   1003 		if_printf(ifp, "unable to start recv logic\n");
   1004 		goto done;
   1005 	}
   1006 
   1007 	/*
   1008 	 * Enable interrupts.
   1009 	 */
   1010 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
   1011 		  | HAL_INT_RXEOL | HAL_INT_RXORN
   1012 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
   1013 	/*
   1014 	 * Enable MIB interrupts when there are hardware phy counters.
   1015 	 * Note we only do this (at the moment) for station mode.
   1016 	 */
   1017 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
   1018 		sc->sc_imask |= HAL_INT_MIB;
   1019 	ath_hal_intrset(ah, sc->sc_imask);
   1020 
   1021 	ifp->if_flags |= IFF_RUNNING;
   1022 	ic->ic_state = IEEE80211_S_INIT;
   1023 
   1024 	/*
   1025 	 * The hardware should be ready to go now so it's safe
   1026 	 * to kick the 802.11 state machine as it's likely to
   1027 	 * immediately call back to us to send mgmt frames.
   1028 	 */
   1029 	ath_chan_change(sc, ic->ic_curchan);
   1030 #ifdef ATH_TX99_DIAG
   1031 	if (sc->sc_tx99 != NULL)
   1032 		sc->sc_tx99->start(sc->sc_tx99);
   1033 	else
   1034 #endif
   1035 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   1036 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
   1037 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   1038 	} else
   1039 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   1040 done:
   1041 	ATH_UNLOCK(sc);
   1042 	return error;
   1043 }
   1044 
   1045 static void
   1046 ath_stop_locked(struct ifnet *ifp, int disable)
   1047 {
   1048 	struct ath_softc *sc = ifp->if_softc;
   1049 	struct ieee80211com *ic = &sc->sc_ic;
   1050 	struct ath_hal *ah = sc->sc_ah;
   1051 
   1052 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
   1053 		__func__, sc->sc_invalid, ifp->if_flags);
   1054 
   1055 	ATH_LOCK_ASSERT(sc);
   1056 	if (ifp->if_flags & IFF_RUNNING) {
   1057 		/*
   1058 		 * Shutdown the hardware and driver:
   1059 		 *    reset 802.11 state machine
   1060 		 *    turn off timers
   1061 		 *    disable interrupts
   1062 		 *    turn off the radio
   1063 		 *    clear transmit machinery
   1064 		 *    clear receive machinery
   1065 		 *    drain and release tx queues
   1066 		 *    reclaim beacon resources
   1067 		 *    power down hardware
   1068 		 *
   1069 		 * Note that some of this work is not possible if the
   1070 		 * hardware is gone (invalid).
   1071 		 */
   1072 #ifdef ATH_TX99_DIAG
   1073 		if (sc->sc_tx99 != NULL)
   1074 			sc->sc_tx99->stop(sc->sc_tx99);
   1075 #endif
   1076 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   1077 		ifp->if_flags &= ~IFF_RUNNING;
   1078 		ifp->if_timer = 0;
   1079 		if (!sc->sc_invalid) {
   1080 			if (sc->sc_softled) {
   1081 				callout_stop(&sc->sc_ledtimer);
   1082 				ath_hal_gpioset(ah, sc->sc_ledpin,
   1083 					!sc->sc_ledon);
   1084 				sc->sc_blinking = 0;
   1085 			}
   1086 			ath_hal_intrset(ah, 0);
   1087 		}
   1088 		ath_draintxq(sc);
   1089 		if (!sc->sc_invalid) {
   1090 			ath_stoprecv(sc);
   1091 			ath_hal_phydisable(ah);
   1092 		} else
   1093 			sc->sc_rxlink = NULL;
   1094 		IF_PURGE(&ifp->if_snd);
   1095 		ath_beacon_free(sc);
   1096 		if (disable)
   1097 			ath_disable(sc);
   1098 	}
   1099 }
   1100 
   1101 static void
   1102 ath_stop(struct ifnet *ifp, int disable)
   1103 {
   1104 	struct ath_softc *sc = ifp->if_softc;
   1105 
   1106 	ATH_LOCK(sc);
   1107 	ath_stop_locked(ifp, disable);
   1108 	if (!sc->sc_invalid) {
   1109 		/*
   1110 		 * Set the chip in full sleep mode.  Note that we are
   1111 		 * careful to do this only when bringing the interface
   1112 		 * completely to a stop.  When the chip is in this state
   1113 		 * it must be carefully woken up or references to
   1114 		 * registers in the PCI clock domain may freeze the bus
   1115 		 * (and system).  This varies by chip and is mostly an
   1116 		 * issue with newer parts that go to sleep more quickly.
   1117 		 */
   1118 		ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
   1119 	}
   1120 	ATH_UNLOCK(sc);
   1121 }
   1122 
   1123 static void
   1124 ath_restore_diversity(struct ath_softc *sc)
   1125 {
   1126 	struct ifnet *ifp = &sc->sc_if;
   1127 	struct ath_hal *ah = sc->sc_ah;
   1128 
   1129 	if (!ath_hal_setdiversity(sc->sc_ah, sc->sc_diversity) ||
   1130 	    sc->sc_diversity != ath_hal_getdiversity(ah)) {
   1131 		if_printf(ifp, "could not restore diversity setting %d\n",
   1132 		    sc->sc_diversity);
   1133 		sc->sc_diversity = ath_hal_getdiversity(ah);
   1134 	}
   1135 }
   1136 
   1137 /*
   1138  * Reset the hardware w/o losing operational state.  This is
   1139  * basically a more efficient way of doing ath_stop, ath_init,
   1140  * followed by state transitions to the current 802.11
   1141  * operational state.  Used to recover from various errors and
   1142  * to reset or reload hardware state.
   1143  */
   1144 int
   1145 ath_reset(struct ifnet *ifp)
   1146 {
   1147 	struct ath_softc *sc = ifp->if_softc;
   1148 	struct ieee80211com *ic = &sc->sc_ic;
   1149 	struct ath_hal *ah = sc->sc_ah;
   1150 	struct ieee80211_channel *c;
   1151 	HAL_STATUS status;
   1152 
   1153 	/*
   1154 	 * Convert to a HAL channel description with the flags
   1155 	 * constrained to reflect the current operating mode.
   1156 	 */
   1157 	c = ic->ic_curchan;
   1158 	sc->sc_curchan.channel = c->ic_freq;
   1159 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
   1160 
   1161 	ath_hal_intrset(ah, 0);		/* disable interrupts */
   1162 	ath_draintxq(sc);		/* stop xmit side */
   1163 	ath_stoprecv(sc);		/* stop recv side */
   1164 	/* NB: indicate channel change so we do a full reset */
   1165 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
   1166 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
   1167 			__func__, status);
   1168 	ath_update_txpow(sc);		/* update tx power state */
   1169 	ath_restore_diversity(sc);
   1170 	sc->sc_calinterval = 1;
   1171 	sc->sc_caltries = 0;
   1172 	if (ath_startrecv(sc) != 0)	/* restart recv */
   1173 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
   1174 	/*
   1175 	 * We may be doing a reset in response to an ioctl
   1176 	 * that changes the channel so update any state that
   1177 	 * might change as a result.
   1178 	 */
   1179 	ath_chan_change(sc, c);
   1180 	if (ic->ic_state == IEEE80211_S_RUN)
   1181 		ath_beacon_config(sc);	/* restart beacons */
   1182 	ath_hal_intrset(ah, sc->sc_imask);
   1183 
   1184 	ath_start(ifp);			/* restart xmit */
   1185 	return 0;
   1186 }
   1187 
   1188 /*
   1189  * Cleanup driver resources when we run out of buffers
   1190  * while processing fragments; return the tx buffers
   1191  * allocated and drop node references.
   1192  */
   1193 static void
   1194 ath_txfrag_cleanup(struct ath_softc *sc,
   1195 	ath_bufhead *frags, struct ieee80211_node *ni)
   1196 {
   1197 	struct ath_buf *bf;
   1198 
   1199 	ATH_TXBUF_LOCK_ASSERT(sc);
   1200 
   1201 	while ((bf = STAILQ_FIRST(frags)) != NULL) {
   1202 		STAILQ_REMOVE_HEAD(frags, bf_list);
   1203 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1204 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
   1205 		ieee80211_node_decref(ni);
   1206 	}
   1207 }
   1208 
   1209 /*
   1210  * Setup xmit of a fragmented frame.  Allocate a buffer
   1211  * for each frag and bump the node reference count to
   1212  * reflect the held reference to be setup by ath_tx_start.
   1213  */
   1214 static int
   1215 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
   1216 	struct mbuf *m0, struct ieee80211_node *ni)
   1217 {
   1218 	struct mbuf *m;
   1219 	struct ath_buf *bf;
   1220 
   1221 	ATH_TXBUF_LOCK(sc);
   1222 	for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
   1223 		bf = STAILQ_FIRST(&sc->sc_txbuf);
   1224 		if (bf == NULL) {       /* out of buffers, cleanup */
   1225 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
   1226 				__func__);
   1227 			sc->sc_if.if_flags |= IFF_OACTIVE;
   1228 			ath_txfrag_cleanup(sc, frags, ni);
   1229 			break;
   1230 		}
   1231 		STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
   1232 		ieee80211_node_incref(ni);
   1233 		STAILQ_INSERT_TAIL(frags, bf, bf_list);
   1234 	}
   1235 	ATH_TXBUF_UNLOCK(sc);
   1236 
   1237 	return !STAILQ_EMPTY(frags);
   1238 }
   1239 
   1240 static void
   1241 ath_start(struct ifnet *ifp)
   1242 {
   1243 	struct ath_softc *sc = ifp->if_softc;
   1244 	struct ath_hal *ah = sc->sc_ah;
   1245 	struct ieee80211com *ic = &sc->sc_ic;
   1246 	struct ieee80211_node *ni;
   1247 	struct ath_buf *bf;
   1248 	struct mbuf *m, *next;
   1249 	struct ieee80211_frame *wh;
   1250 	struct ether_header *eh;
   1251 	ath_bufhead frags;
   1252 
   1253 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
   1254 		return;
   1255 	for (;;) {
   1256 		/*
   1257 		 * Grab a TX buffer and associated resources.
   1258 		 */
   1259 		ATH_TXBUF_LOCK(sc);
   1260 		bf = STAILQ_FIRST(&sc->sc_txbuf);
   1261 		if (bf != NULL)
   1262 			STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
   1263 		ATH_TXBUF_UNLOCK(sc);
   1264 		if (bf == NULL) {
   1265 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
   1266 				__func__);
   1267 			sc->sc_stats.ast_tx_qstop++;
   1268 			ifp->if_flags |= IFF_OACTIVE;
   1269 			break;
   1270 		}
   1271 		/*
   1272 		 * Poll the management queue for frames; they
   1273 		 * have priority over normal data frames.
   1274 		 */
   1275 		IF_DEQUEUE(&ic->ic_mgtq, m);
   1276 		if (m == NULL) {
   1277 			/*
   1278 			 * No data frames go out unless we're associated.
   1279 			 */
   1280 			if (ic->ic_state != IEEE80211_S_RUN) {
   1281 				DPRINTF(sc, ATH_DEBUG_XMIT,
   1282 				    "%s: discard data packet, state %s\n",
   1283 				    __func__,
   1284 				    ieee80211_state_name[ic->ic_state]);
   1285 				sc->sc_stats.ast_tx_discard++;
   1286 				ATH_TXBUF_LOCK(sc);
   1287 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1288 				ATH_TXBUF_UNLOCK(sc);
   1289 				break;
   1290 			}
   1291 			IFQ_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
   1292 			if (m == NULL) {
   1293 				ATH_TXBUF_LOCK(sc);
   1294 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1295 				ATH_TXBUF_UNLOCK(sc);
   1296 				break;
   1297 			}
   1298 			STAILQ_INIT(&frags);
   1299 			/*
   1300 			 * Find the node for the destination so we can do
   1301 			 * things like power save and fast frames aggregation.
   1302 			 */
   1303 			if (m->m_len < sizeof(struct ether_header) &&
   1304 			   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
   1305 				ic->ic_stats.is_tx_nobuf++;	/* XXX */
   1306 				ni = NULL;
   1307 				goto bad;
   1308 			}
   1309 			eh = mtod(m, struct ether_header *);
   1310 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   1311 			if (ni == NULL) {
   1312 				/* NB: ieee80211_find_txnode does stat+msg */
   1313 				m_freem(m);
   1314 				goto bad;
   1315 			}
   1316 			if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
   1317 			    (m->m_flags & M_PWR_SAV) == 0) {
   1318 				/*
   1319 				 * Station in power save mode; pass the frame
   1320 				 * to the 802.11 layer and continue.  We'll get
   1321 				 * the frame back when the time is right.
   1322 				 */
   1323 				ieee80211_pwrsave(ic, ni, m);
   1324 				goto reclaim;
   1325 			}
   1326 			/* calculate priority so we can find the tx queue */
   1327 			if (ieee80211_classify(ic, m, ni)) {
   1328 				DPRINTF(sc, ATH_DEBUG_XMIT,
   1329 					"%s: discard, classification failure\n",
   1330 					__func__);
   1331 				m_freem(m);
   1332 				goto bad;
   1333 			}
   1334 			ifp->if_opackets++;
   1335 
   1336 #if NBPFILTER > 0
   1337 			if (ifp->if_bpf)
   1338 				bpf_mtap(ifp->if_bpf, m);
   1339 #endif
   1340 			/*
   1341 			 * Encapsulate the packet in prep for transmission.
   1342 			 */
   1343 			m = ieee80211_encap(ic, m, ni);
   1344 			if (m == NULL) {
   1345 				DPRINTF(sc, ATH_DEBUG_XMIT,
   1346 					"%s: encapsulation failure\n",
   1347 					__func__);
   1348 				sc->sc_stats.ast_tx_encap++;
   1349 				goto bad;
   1350 			}
   1351 			/*
   1352 			 * Check for fragmentation.  If this has frame
   1353 			 * has been broken up verify we have enough
   1354 			 * buffers to send all the fragments so all
   1355 			 * go out or none...
   1356 			 */
   1357 			if ((m->m_flags & M_FRAG) &&
   1358 			    !ath_txfrag_setup(sc, &frags, m, ni)) {
   1359 				DPRINTF(sc, ATH_DEBUG_ANY,
   1360 				    "%s: out of txfrag buffers\n", __func__);
   1361 				ic->ic_stats.is_tx_nobuf++;     /* XXX */
   1362 				ath_freetx(m);
   1363 				goto bad;
   1364 			}
   1365 		} else {
   1366 			/*
   1367 			 * Hack!  The referenced node pointer is in the
   1368 			 * rcvif field of the packet header.  This is
   1369 			 * placed there by ieee80211_mgmt_output because
   1370 			 * we need to hold the reference with the frame
   1371 			 * and there's no other way (other than packet
   1372 			 * tags which we consider too expensive to use)
   1373 			 * to pass it along.
   1374 			 */
   1375 			ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
   1376 			m->m_pkthdr.rcvif = NULL;
   1377 
   1378 			wh = mtod(m, struct ieee80211_frame *);
   1379 			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
   1380 			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
   1381 				/* fill time stamp */
   1382 				u_int64_t tsf;
   1383 				u_int32_t *tstamp;
   1384 
   1385 				tsf = ath_hal_gettsf64(ah);
   1386 				/* XXX: adjust 100us delay to xmit */
   1387 				tsf += 100;
   1388 				tstamp = (u_int32_t *)&wh[1];
   1389 				tstamp[0] = htole32(tsf & 0xffffffff);
   1390 				tstamp[1] = htole32(tsf >> 32);
   1391 			}
   1392 			sc->sc_stats.ast_tx_mgmt++;
   1393 		}
   1394 
   1395 	nextfrag:
   1396 		next = m->m_nextpkt;
   1397 		if (ath_tx_start(sc, ni, bf, m)) {
   1398 	bad:
   1399 			ifp->if_oerrors++;
   1400 	reclaim:
   1401 			ATH_TXBUF_LOCK(sc);
   1402 			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1403 			ath_txfrag_cleanup(sc, &frags, ni);
   1404 			ATH_TXBUF_UNLOCK(sc);
   1405 			if (ni != NULL)
   1406 				ieee80211_free_node(ni);
   1407 			continue;
   1408 		}
   1409 		if (next != NULL) {
   1410 			m = next;
   1411 			bf = STAILQ_FIRST(&frags);
   1412 			KASSERT(bf != NULL, ("no buf for txfrag"));
   1413 			STAILQ_REMOVE_HEAD(&frags, bf_list);
   1414 			goto nextfrag;
   1415 		}
   1416 
   1417 		ifp->if_timer = 1;
   1418 	}
   1419 }
   1420 
   1421 static int
   1422 ath_media_change(struct ifnet *ifp)
   1423 {
   1424 #define	IS_UP(ifp) \
   1425 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
   1426 	int error;
   1427 
   1428 	error = ieee80211_media_change(ifp);
   1429 	if (error == ENETRESET) {
   1430 		if (IS_UP(ifp))
   1431 			ath_init(ifp->if_softc);	/* XXX lose error */
   1432 		error = 0;
   1433 	}
   1434 	return error;
   1435 #undef IS_UP
   1436 }
   1437 
   1438 #ifdef AR_DEBUG
   1439 static void
   1440 ath_keyprint(const char *tag, u_int ix,
   1441 	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
   1442 {
   1443 	static const char *ciphers[] = {
   1444 		"WEP",
   1445 		"AES-OCB",
   1446 		"AES-CCM",
   1447 		"CKIP",
   1448 		"TKIP",
   1449 		"CLR",
   1450 	};
   1451 	int i, n;
   1452 
   1453 	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
   1454 	for (i = 0, n = hk->kv_len; i < n; i++)
   1455 		printf("%02x", hk->kv_val[i]);
   1456 	printf(" mac %s", ether_sprintf(mac));
   1457 	if (hk->kv_type == HAL_CIPHER_TKIP) {
   1458 		printf(" mic ");
   1459 		for (i = 0; i < sizeof(hk->kv_mic); i++)
   1460 			printf("%02x", hk->kv_mic[i]);
   1461 	}
   1462 	printf("\n");
   1463 }
   1464 #endif
   1465 
   1466 /*
   1467  * Set a TKIP key into the hardware.  This handles the
   1468  * potential distribution of key state to multiple key
   1469  * cache slots for TKIP.
   1470  */
   1471 static int
   1472 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
   1473 	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
   1474 {
   1475 #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
   1476 	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
   1477 	struct ath_hal *ah = sc->sc_ah;
   1478 
   1479 	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
   1480 		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
   1481 	KASSERT(sc->sc_splitmic, ("key cache !split"));
   1482 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
   1483 		/*
   1484 		 * TX key goes at first index, RX key at the rx index.
   1485 		 * The hal handles the MIC keys at index+64.
   1486 		 */
   1487 		memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
   1488 		KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
   1489 		if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
   1490 			return 0;
   1491 
   1492 		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
   1493 		KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
   1494 		/* XXX delete tx key on failure? */
   1495 		return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
   1496 	} else if (k->wk_flags & IEEE80211_KEY_XR) {
   1497 		/*
   1498 		 * TX/RX key goes at first index.
   1499 		 * The hal handles the MIC keys are index+64.
   1500 		 */
   1501 		memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
   1502 			k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
   1503 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
   1504 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
   1505 	}
   1506 	return 0;
   1507 #undef IEEE80211_KEY_XR
   1508 }
   1509 
   1510 /*
   1511  * Set a net80211 key into the hardware.  This handles the
   1512  * potential distribution of key state to multiple key
   1513  * cache slots for TKIP with hardware MIC support.
   1514  */
   1515 static int
   1516 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
   1517 	const u_int8_t mac0[IEEE80211_ADDR_LEN],
   1518 	struct ieee80211_node *bss)
   1519 {
   1520 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1521 	static const u_int8_t ciphermap[] = {
   1522 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
   1523 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
   1524 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
   1525 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
   1526 		(u_int8_t) -1,		/* 4 is not allocated */
   1527 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
   1528 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
   1529 	};
   1530 	struct ath_hal *ah = sc->sc_ah;
   1531 	const struct ieee80211_cipher *cip = k->wk_cipher;
   1532 	u_int8_t gmac[IEEE80211_ADDR_LEN];
   1533 	const u_int8_t *mac;
   1534 	HAL_KEYVAL hk;
   1535 
   1536 	memset(&hk, 0, sizeof(hk));
   1537 	/*
   1538 	 * Software crypto uses a "clear key" so non-crypto
   1539 	 * state kept in the key cache are maintained and
   1540 	 * so that rx frames have an entry to match.
   1541 	 */
   1542 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
   1543 		KASSERT(cip->ic_cipher < N(ciphermap),
   1544 			("invalid cipher type %u", cip->ic_cipher));
   1545 		hk.kv_type = ciphermap[cip->ic_cipher];
   1546 		hk.kv_len = k->wk_keylen;
   1547 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
   1548 	} else
   1549 		hk.kv_type = HAL_CIPHER_CLR;
   1550 
   1551 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
   1552 		/*
   1553 		 * Group keys on hardware that supports multicast frame
   1554 		 * key search use a mac that is the sender's address with
   1555 		 * the high bit set instead of the app-specified address.
   1556 		 */
   1557 		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
   1558 		gmac[0] |= 0x80;
   1559 		mac = gmac;
   1560 	} else
   1561 		mac = mac0;
   1562 
   1563 	if (hk.kv_type == HAL_CIPHER_TKIP &&
   1564 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
   1565 	    sc->sc_splitmic) {
   1566 		return ath_keyset_tkip(sc, k, &hk, mac);
   1567 	} else {
   1568 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
   1569 		return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
   1570 	}
   1571 #undef N
   1572 }
   1573 
   1574 /*
   1575  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
   1576  * each key, one for decrypt/encrypt and the other for the MIC.
   1577  */
   1578 static u_int16_t
   1579 key_alloc_2pair(struct ath_softc *sc,
   1580 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
   1581 {
   1582 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1583 	u_int i, keyix;
   1584 
   1585 	KASSERT(sc->sc_splitmic, ("key cache !split"));
   1586 	/* XXX could optimize */
   1587 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
   1588 		u_int8_t b = sc->sc_keymap[i];
   1589 		if (b != 0xff) {
   1590 			/*
   1591 			 * One or more slots in this byte are free.
   1592 			 */
   1593 			keyix = i*NBBY;
   1594 			while (b & 1) {
   1595 		again:
   1596 				keyix++;
   1597 				b >>= 1;
   1598 			}
   1599 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
   1600 			if (isset(sc->sc_keymap, keyix+32) ||
   1601 			    isset(sc->sc_keymap, keyix+64) ||
   1602 			    isset(sc->sc_keymap, keyix+32+64)) {
   1603 				/* full pair unavailable */
   1604 				/* XXX statistic */
   1605 				if (keyix == (i+1)*NBBY) {
   1606 					/* no slots were appropriate, advance */
   1607 					continue;
   1608 				}
   1609 				goto again;
   1610 			}
   1611 			setbit(sc->sc_keymap, keyix);
   1612 			setbit(sc->sc_keymap, keyix+64);
   1613 			setbit(sc->sc_keymap, keyix+32);
   1614 			setbit(sc->sc_keymap, keyix+32+64);
   1615 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
   1616 				"%s: key pair %u,%u %u,%u\n",
   1617 				__func__, keyix, keyix+64,
   1618 				keyix+32, keyix+32+64);
   1619 			*txkeyix = keyix;
   1620 			*rxkeyix = keyix+32;
   1621 			return 1;
   1622 		}
   1623 	}
   1624 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
   1625 	return 0;
   1626 #undef N
   1627 }
   1628 
   1629 /*
   1630  * Allocate a single key cache slot.
   1631  */
   1632 static int
   1633 key_alloc_single(struct ath_softc *sc,
   1634 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
   1635 {
   1636 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1637 	u_int i, keyix;
   1638 
   1639 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
   1640 	for (i = 0; i < N(sc->sc_keymap); i++) {
   1641 		u_int8_t b = sc->sc_keymap[i];
   1642 		if (b != 0xff) {
   1643 			/*
   1644 			 * One or more slots are free.
   1645 			 */
   1646 			keyix = i*NBBY;
   1647 			while (b & 1)
   1648 				keyix++, b >>= 1;
   1649 			setbit(sc->sc_keymap, keyix);
   1650 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
   1651 				__func__, keyix);
   1652 			*txkeyix = *rxkeyix = keyix;
   1653 			return 1;
   1654 		}
   1655 	}
   1656 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
   1657 	return 0;
   1658 #undef N
   1659 }
   1660 
   1661 /*
   1662  * Allocate one or more key cache slots for a uniacst key.  The
   1663  * key itself is needed only to identify the cipher.  For hardware
   1664  * TKIP with split cipher+MIC keys we allocate two key cache slot
   1665  * pairs so that we can setup separate TX and RX MIC keys.  Note
   1666  * that the MIC key for a TKIP key at slot i is assumed by the
   1667  * hardware to be at slot i+64.  This limits TKIP keys to the first
   1668  * 64 entries.
   1669  */
   1670 static int
   1671 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
   1672 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
   1673 {
   1674 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1675 
   1676 	/*
   1677 	 * Group key allocation must be handled specially for
   1678 	 * parts that do not support multicast key cache search
   1679 	 * functionality.  For those parts the key id must match
   1680 	 * the h/w key index so lookups find the right key.  On
   1681 	 * parts w/ the key search facility we install the sender's
   1682 	 * mac address (with the high bit set) and let the hardware
   1683 	 * find the key w/o using the key id.  This is preferred as
   1684 	 * it permits us to support multiple users for adhoc and/or
   1685 	 * multi-station operation.
   1686 	 */
   1687 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
   1688 		if (!(&ic->ic_nw_keys[0] <= k &&
   1689 		      k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
   1690 			/* should not happen */
   1691 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
   1692 				"%s: bogus group key\n", __func__);
   1693 			return 0;
   1694 		}
   1695 		/*
   1696 		 * XXX we pre-allocate the global keys so
   1697 		 * have no way to check if they've already been allocated.
   1698 		 */
   1699 		*keyix = *rxkeyix = k - ic->ic_nw_keys;
   1700 		return 1;
   1701 	}
   1702 
   1703 	/*
   1704 	 * We allocate two pair for TKIP when using the h/w to do
   1705 	 * the MIC.  For everything else, including software crypto,
   1706 	 * we allocate a single entry.  Note that s/w crypto requires
   1707 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
   1708 	 * not support pass-through cache entries and we map all
   1709 	 * those requests to slot 0.
   1710 	 */
   1711 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
   1712 		return key_alloc_single(sc, keyix, rxkeyix);
   1713 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1714 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
   1715 		return key_alloc_2pair(sc, keyix, rxkeyix);
   1716 	} else {
   1717 		return key_alloc_single(sc, keyix, rxkeyix);
   1718 	}
   1719 }
   1720 
   1721 /*
   1722  * Delete an entry in the key cache allocated by ath_key_alloc.
   1723  */
   1724 static int
   1725 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
   1726 {
   1727 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1728 	struct ath_hal *ah = sc->sc_ah;
   1729 	const struct ieee80211_cipher *cip = k->wk_cipher;
   1730 	u_int keyix = k->wk_keyix;
   1731 
   1732 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
   1733 
   1734 	ath_hal_keyreset(ah, keyix);
   1735 	/*
   1736 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
   1737 	 */
   1738 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1739 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
   1740 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
   1741 	if (keyix >= IEEE80211_WEP_NKID) {
   1742 		/*
   1743 		 * Don't touch keymap entries for global keys so
   1744 		 * they are never considered for dynamic allocation.
   1745 		 */
   1746 		clrbit(sc->sc_keymap, keyix);
   1747 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1748 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
   1749 		    sc->sc_splitmic) {
   1750 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
   1751 			clrbit(sc->sc_keymap, keyix+32);	/* RX key */
   1752 			clrbit(sc->sc_keymap, keyix+32+64);	/* RX key MIC */
   1753 		}
   1754 	}
   1755 	return 1;
   1756 }
   1757 
   1758 /*
   1759  * Set the key cache contents for the specified key.  Key cache
   1760  * slot(s) must already have been allocated by ath_key_alloc.
   1761  */
   1762 static int
   1763 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
   1764 	const u_int8_t mac[IEEE80211_ADDR_LEN])
   1765 {
   1766 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1767 
   1768 	return ath_keyset(sc, k, mac, ic->ic_bss);
   1769 }
   1770 
   1771 /*
   1772  * Block/unblock tx+rx processing while a key change is done.
   1773  * We assume the caller serializes key management operations
   1774  * so we only need to worry about synchronization with other
   1775  * uses that originate in the driver.
   1776  */
   1777 static void
   1778 ath_key_update_begin(struct ieee80211com *ic)
   1779 {
   1780 	struct ifnet *ifp = ic->ic_ifp;
   1781 	struct ath_softc *sc = ifp->if_softc;
   1782 
   1783 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
   1784 #if 0
   1785 	tasklet_disable(&sc->sc_rxtq);
   1786 #endif
   1787 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
   1788 }
   1789 
   1790 static void
   1791 ath_key_update_end(struct ieee80211com *ic)
   1792 {
   1793 	struct ifnet *ifp = ic->ic_ifp;
   1794 	struct ath_softc *sc = ifp->if_softc;
   1795 
   1796 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
   1797 	IF_UNLOCK(&ifp->if_snd);
   1798 #if 0
   1799 	tasklet_enable(&sc->sc_rxtq);
   1800 #endif
   1801 }
   1802 
   1803 /*
   1804  * Calculate the receive filter according to the
   1805  * operating mode and state:
   1806  *
   1807  * o always accept unicast, broadcast, and multicast traffic
   1808  * o maintain current state of phy error reception (the hal
   1809  *   may enable phy error frames for noise immunity work)
   1810  * o probe request frames are accepted only when operating in
   1811  *   hostap, adhoc, or monitor modes
   1812  * o enable promiscuous mode according to the interface state
   1813  * o accept beacons:
   1814  *   - when operating in adhoc mode so the 802.11 layer creates
   1815  *     node table entries for peers,
   1816  *   - when operating in station mode for collecting rssi data when
   1817  *     the station is otherwise quiet, or
   1818  *   - when scanning
   1819  */
   1820 static u_int32_t
   1821 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
   1822 {
   1823 	struct ieee80211com *ic = &sc->sc_ic;
   1824 	struct ath_hal *ah = sc->sc_ah;
   1825 	struct ifnet *ifp = &sc->sc_if;
   1826 	u_int32_t rfilt;
   1827 
   1828 	rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
   1829 	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
   1830 	if (ic->ic_opmode != IEEE80211_M_STA)
   1831 		rfilt |= HAL_RX_FILTER_PROBEREQ;
   1832 	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
   1833 	    (ifp->if_flags & IFF_PROMISC))
   1834 		rfilt |= HAL_RX_FILTER_PROM;
   1835 	if (ic->ic_opmode == IEEE80211_M_STA ||
   1836 	    ic->ic_opmode == IEEE80211_M_IBSS ||
   1837 	    state == IEEE80211_S_SCAN)
   1838 		rfilt |= HAL_RX_FILTER_BEACON;
   1839 	return rfilt;
   1840 }
   1841 
   1842 static void
   1843 ath_mcastfilter_accum(void *dl, u_int32_t *mfilt)
   1844 {
   1845 	u_int32_t val;
   1846 	u_int8_t pos;
   1847 
   1848 	/* calculate XOR of eight 6bit values */
   1849 	val = LE_READ_4((char *)dl + 0);
   1850 	pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1851 	val = LE_READ_4((char *)dl + 3);
   1852 	pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1853 	pos &= 0x3f;
   1854 	mfilt[pos / 32] |= (1 << (pos % 32));
   1855 }
   1856 
   1857 static void
   1858 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t *mfilt)
   1859 {
   1860 	struct ifnet *ifp = &sc->sc_if;
   1861 	struct ether_multi *enm;
   1862 	struct ether_multistep estep;
   1863 
   1864 	mfilt[0] = mfilt[1] = 0;
   1865 	ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
   1866 	while (enm != NULL) {
   1867 		/* XXX Punt on ranges. */
   1868 		if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
   1869 			mfilt[0] = mfilt[1] = ~((u_int32_t)0);
   1870 			ifp->if_flags |= IFF_ALLMULTI;
   1871 			return;
   1872 		}
   1873 		ath_mcastfilter_accum(enm->enm_addrlo, mfilt);
   1874 		ETHER_NEXT_MULTI(estep, enm);
   1875 	}
   1876 	ifp->if_flags &= ~IFF_ALLMULTI;
   1877 }
   1878 
   1879 static void
   1880 ath_mode_init(struct ath_softc *sc)
   1881 {
   1882 	struct ieee80211com *ic = &sc->sc_ic;
   1883 	struct ath_hal *ah = sc->sc_ah;
   1884 	u_int32_t rfilt, mfilt[2];
   1885 	int i;
   1886 
   1887 	/* configure rx filter */
   1888 	rfilt = ath_calcrxfilter(sc, ic->ic_state);
   1889 	ath_hal_setrxfilter(ah, rfilt);
   1890 
   1891 	/* configure operational mode */
   1892 	ath_hal_setopmode(ah);
   1893 
   1894 	/* Write keys to hardware; it may have been powered down. */
   1895 	ath_key_update_begin(ic);
   1896 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
   1897 		ath_key_set(ic,
   1898 			    &ic->ic_crypto.cs_nw_keys[i],
   1899 			    ic->ic_myaddr);
   1900 	}
   1901 	ath_key_update_end(ic);
   1902 
   1903 	/*
   1904 	 * Handle any link-level address change.  Note that we only
   1905 	 * need to force ic_myaddr; any other addresses are handled
   1906 	 * as a byproduct of the ifnet code marking the interface
   1907 	 * down then up.
   1908 	 *
   1909 	 * XXX should get from lladdr instead of arpcom but that's more work
   1910 	 */
   1911 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(sc->sc_if.if_sadl));
   1912 	ath_hal_setmac(ah, ic->ic_myaddr);
   1913 
   1914 	/* calculate and install multicast filter */
   1915 #ifdef __FreeBSD__
   1916 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   1917 		mfilt[0] = mfilt[1] = 0;
   1918 		IF_ADDR_LOCK(ifp);
   1919 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
   1920 			void *dl;
   1921 
   1922 			/* calculate XOR of eight 6bit values */
   1923 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
   1924 			val = LE_READ_4((char *)dl + 0);
   1925 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1926 			val = LE_READ_4((char *)dl + 3);
   1927 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1928 			pos &= 0x3f;
   1929 			mfilt[pos / 32] |= (1 << (pos % 32));
   1930 		}
   1931 		IF_ADDR_UNLOCK(ifp);
   1932 	} else {
   1933 		mfilt[0] = mfilt[1] = ~0;
   1934 	}
   1935 #endif
   1936 #ifdef __NetBSD__
   1937 	ath_mcastfilter_compute(sc, mfilt);
   1938 #endif
   1939 	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
   1940 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
   1941 		__func__, rfilt, mfilt[0], mfilt[1]);
   1942 }
   1943 
   1944 /*
   1945  * Set the slot time based on the current setting.
   1946  */
   1947 static void
   1948 ath_setslottime(struct ath_softc *sc)
   1949 {
   1950 	struct ieee80211com *ic = &sc->sc_ic;
   1951 	struct ath_hal *ah = sc->sc_ah;
   1952 
   1953 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   1954 		ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
   1955 	else
   1956 		ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
   1957 	sc->sc_updateslot = OK;
   1958 }
   1959 
   1960 /*
   1961  * Callback from the 802.11 layer to update the
   1962  * slot time based on the current setting.
   1963  */
   1964 static void
   1965 ath_updateslot(struct ifnet *ifp)
   1966 {
   1967 	struct ath_softc *sc = ifp->if_softc;
   1968 	struct ieee80211com *ic = &sc->sc_ic;
   1969 
   1970 	/*
   1971 	 * When not coordinating the BSS, change the hardware
   1972 	 * immediately.  For other operation we defer the change
   1973 	 * until beacon updates have propagated to the stations.
   1974 	 */
   1975 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
   1976 		sc->sc_updateslot = UPDATE;
   1977 	else
   1978 		ath_setslottime(sc);
   1979 }
   1980 
   1981 /*
   1982  * Setup a h/w transmit queue for beacons.
   1983  */
   1984 static int
   1985 ath_beaconq_setup(struct ath_hal *ah)
   1986 {
   1987 	HAL_TXQ_INFO qi;
   1988 
   1989 	memset(&qi, 0, sizeof(qi));
   1990 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
   1991 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
   1992 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
   1993 	/* NB: for dynamic turbo, don't enable any other interrupts */
   1994 	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
   1995 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
   1996 }
   1997 
   1998 /*
   1999  * Setup the transmit queue parameters for the beacon queue.
   2000  */
   2001 static int
   2002 ath_beaconq_config(struct ath_softc *sc)
   2003 {
   2004 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
   2005 	struct ieee80211com *ic = &sc->sc_ic;
   2006 	struct ath_hal *ah = sc->sc_ah;
   2007 	HAL_TXQ_INFO qi;
   2008 
   2009 	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
   2010 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   2011 		/*
   2012 		 * Always burst out beacon and CAB traffic.
   2013 		 */
   2014 		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
   2015 		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
   2016 		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
   2017 	} else {
   2018 		struct wmeParams *wmep =
   2019 			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
   2020 		/*
   2021 		 * Adhoc mode; important thing is to use 2x cwmin.
   2022 		 */
   2023 		qi.tqi_aifs = wmep->wmep_aifsn;
   2024 		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
   2025 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
   2026 	}
   2027 
   2028 	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
   2029 		device_printf(&sc->sc_dev, "unable to update parameters for "
   2030 			"beacon hardware queue!\n");
   2031 		return 0;
   2032 	} else {
   2033 		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
   2034 		return 1;
   2035 	}
   2036 #undef ATH_EXPONENT_TO_VALUE
   2037 }
   2038 
   2039 /*
   2040  * Allocate and setup an initial beacon frame.
   2041  */
   2042 static int
   2043 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
   2044 {
   2045 	struct ieee80211com *ic = ni->ni_ic;
   2046 	struct ath_buf *bf;
   2047 	struct mbuf *m;
   2048 	int error;
   2049 
   2050 	bf = STAILQ_FIRST(&sc->sc_bbuf);
   2051 	if (bf == NULL) {
   2052 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
   2053 		sc->sc_stats.ast_be_nombuf++;	/* XXX */
   2054 		return ENOMEM;			/* XXX */
   2055 	}
   2056 	/*
   2057 	 * NB: the beacon data buffer must be 32-bit aligned;
   2058 	 * we assume the mbuf routines will return us something
   2059 	 * with this alignment (perhaps should assert).
   2060 	 */
   2061 	m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
   2062 	if (m == NULL) {
   2063 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
   2064 			__func__);
   2065 		sc->sc_stats.ast_be_nombuf++;
   2066 		return ENOMEM;
   2067 	}
   2068 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
   2069 				     BUS_DMA_NOWAIT);
   2070 	if (error == 0) {
   2071 		bf->bf_m = m;
   2072 		bf->bf_node = ieee80211_ref_node(ni);
   2073 	} else {
   2074 		m_freem(m);
   2075 	}
   2076 	return error;
   2077 }
   2078 
   2079 /*
   2080  * Setup the beacon frame for transmit.
   2081  */
   2082 static void
   2083 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
   2084 {
   2085 #define	USE_SHPREAMBLE(_ic) \
   2086 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
   2087 		== IEEE80211_F_SHPREAMBLE)
   2088 	struct ieee80211_node *ni = bf->bf_node;
   2089 	struct ieee80211com *ic = ni->ni_ic;
   2090 	struct mbuf *m = bf->bf_m;
   2091 	struct ath_hal *ah = sc->sc_ah;
   2092 	struct ath_desc *ds;
   2093 	int flags, antenna;
   2094 	const HAL_RATE_TABLE *rt;
   2095 	u_int8_t rix, rate;
   2096 
   2097 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
   2098 		__func__, m, m->m_len);
   2099 
   2100 	/* setup descriptors */
   2101 	ds = bf->bf_desc;
   2102 
   2103 	flags = HAL_TXDESC_NOACK;
   2104 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
   2105 		ds->ds_link = HTOAH32(bf->bf_daddr);	/* self-linked */
   2106 		flags |= HAL_TXDESC_VEOL;
   2107 		/*
   2108 		 * Let hardware handle antenna switching unless
   2109 		 * the user has selected a transmit antenna
   2110 		 * (sc_txantenna is not 0).
   2111 		 */
   2112 		antenna = sc->sc_txantenna;
   2113 	} else {
   2114 		ds->ds_link = 0;
   2115 		/*
   2116 		 * Switch antenna every 4 beacons, unless the user
   2117 		 * has selected a transmit antenna (sc_txantenna
   2118 		 * is not 0).
   2119 		 *
   2120 		 * XXX assumes two antenna
   2121 		 */
   2122 		if (sc->sc_txantenna == 0)
   2123 			antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
   2124 		else
   2125 			antenna = sc->sc_txantenna;
   2126 	}
   2127 
   2128 	KASSERT(bf->bf_nseg == 1,
   2129 		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
   2130 	ds->ds_data = bf->bf_segs[0].ds_addr;
   2131 	/*
   2132 	 * Calculate rate code.
   2133 	 * XXX everything at min xmit rate
   2134 	 */
   2135 	rix = sc->sc_minrateix;
   2136 	rt = sc->sc_currates;
   2137 	rate = rt->info[rix].rateCode;
   2138 	if (USE_SHPREAMBLE(ic))
   2139 		rate |= rt->info[rix].shortPreamble;
   2140 	ath_hal_setuptxdesc(ah, ds
   2141 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
   2142 		, sizeof(struct ieee80211_frame)/* header length */
   2143 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
   2144 		, ni->ni_txpower		/* txpower XXX */
   2145 		, rate, 1			/* series 0 rate/tries */
   2146 		, HAL_TXKEYIX_INVALID		/* no encryption */
   2147 		, antenna			/* antenna mode */
   2148 		, flags				/* no ack, veol for beacons */
   2149 		, 0				/* rts/cts rate */
   2150 		, 0				/* rts/cts duration */
   2151 	);
   2152 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
   2153 	ath_hal_filltxdesc(ah, ds
   2154 		, roundup(m->m_len, 4)		/* buffer length */
   2155 		, AH_TRUE			/* first segment */
   2156 		, AH_TRUE			/* last segment */
   2157 		, ds				/* first descriptor */
   2158 	);
   2159 
   2160 	/* NB: The desc swap function becomes void,
   2161 	 * if descriptor swapping is not enabled
   2162 	 */
   2163 	ath_desc_swap(ds);
   2164 
   2165 #undef USE_SHPREAMBLE
   2166 }
   2167 
   2168 /*
   2169  * Transmit a beacon frame at SWBA.  Dynamic updates to the
   2170  * frame contents are done as needed and the slot time is
   2171  * also adjusted based on current state.
   2172  */
   2173 static void
   2174 ath_beacon_proc(void *arg, int pending)
   2175 {
   2176 	struct ath_softc *sc = arg;
   2177 	struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
   2178 	struct ieee80211_node *ni = bf->bf_node;
   2179 	struct ieee80211com *ic = ni->ni_ic;
   2180 	struct ath_hal *ah = sc->sc_ah;
   2181 	struct mbuf *m;
   2182 	int ncabq, error, otherant;
   2183 
   2184 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
   2185 		__func__, pending);
   2186 
   2187 	if (ic->ic_opmode == IEEE80211_M_STA ||
   2188 	    ic->ic_opmode == IEEE80211_M_MONITOR ||
   2189 	    bf == NULL || bf->bf_m == NULL) {
   2190 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
   2191 			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
   2192 		return;
   2193 	}
   2194 	/*
   2195 	 * Check if the previous beacon has gone out.  If
   2196 	 * not don't try to post another, skip this period
   2197 	 * and wait for the next.  Missed beacons indicate
   2198 	 * a problem and should not occur.  If we miss too
   2199 	 * many consecutive beacons reset the device.
   2200 	 */
   2201 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
   2202 		sc->sc_bmisscount++;
   2203 		DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
   2204 			"%s: missed %u consecutive beacons\n",
   2205 			__func__, sc->sc_bmisscount);
   2206 		if (sc->sc_bmisscount > 3)		/* NB: 3 is a guess */
   2207 			TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask);
   2208 		return;
   2209 	}
   2210 	if (sc->sc_bmisscount != 0) {
   2211 		DPRINTF(sc, ATH_DEBUG_BEACON,
   2212 			"%s: resume beacon xmit after %u misses\n",
   2213 			__func__, sc->sc_bmisscount);
   2214 		sc->sc_bmisscount = 0;
   2215 	}
   2216 
   2217 	/*
   2218 	 * Update dynamic beacon contents.  If this returns
   2219 	 * non-zero then we need to remap the memory because
   2220 	 * the beacon frame changed size (probably because
   2221 	 * of the TIM bitmap).
   2222 	 */
   2223 	m = bf->bf_m;
   2224 	ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
   2225 	if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
   2226 		/* XXX too conservative? */
   2227 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   2228 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
   2229 					     BUS_DMA_NOWAIT);
   2230 		if (error != 0) {
   2231 			if_printf(&sc->sc_if,
   2232 			    "%s: bus_dmamap_load_mbuf failed, error %u\n",
   2233 			    __func__, error);
   2234 			return;
   2235 		}
   2236 	}
   2237 
   2238 	/*
   2239 	 * Handle slot time change when a non-ERP station joins/leaves
   2240 	 * an 11g network.  The 802.11 layer notifies us via callback,
   2241 	 * we mark updateslot, then wait one beacon before effecting
   2242 	 * the change.  This gives associated stations at least one
   2243 	 * beacon interval to note the state change.
   2244 	 */
   2245 	/* XXX locking */
   2246 	if (sc->sc_updateslot == UPDATE)
   2247 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
   2248 	else if (sc->sc_updateslot == COMMIT)
   2249 		ath_setslottime(sc);		/* commit change to h/w */
   2250 
   2251 	/*
   2252 	 * Check recent per-antenna transmit statistics and flip
   2253 	 * the default antenna if noticeably more frames went out
   2254 	 * on the non-default antenna.
   2255 	 * XXX assumes 2 anntenae
   2256 	 */
   2257 	otherant = sc->sc_defant & 1 ? 2 : 1;
   2258 	if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
   2259 		ath_setdefantenna(sc, otherant);
   2260 	sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
   2261 
   2262 	/*
   2263 	 * Construct tx descriptor.
   2264 	 */
   2265 	ath_beacon_setup(sc, bf);
   2266 
   2267 	/*
   2268 	 * Stop any current dma and put the new frame on the queue.
   2269 	 * This should never fail since we check above that no frames
   2270 	 * are still pending on the queue.
   2271 	 */
   2272 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
   2273 		DPRINTF(sc, ATH_DEBUG_ANY,
   2274 			"%s: beacon queue %u did not stop?\n",
   2275 			__func__, sc->sc_bhalq);
   2276 	}
   2277 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   2278 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2279 
   2280 	/*
   2281 	 * Enable the CAB queue before the beacon queue to
   2282 	 * insure cab frames are triggered by this beacon.
   2283 	 */
   2284 	if (ncabq != 0 && (sc->sc_boff.bo_tim[4] & 1))	/* NB: only at DTIM */
   2285 		ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
   2286 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
   2287 	ath_hal_txstart(ah, sc->sc_bhalq);
   2288 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
   2289 	    "%s: TXDP[%u] = %" PRIx64 " (%p)\n", __func__,
   2290 	    sc->sc_bhalq, (uint64_t)bf->bf_daddr, bf->bf_desc);
   2291 
   2292 	sc->sc_stats.ast_be_xmit++;
   2293 }
   2294 
   2295 /*
   2296  * Reset the hardware after detecting beacons have stopped.
   2297  */
   2298 static void
   2299 ath_bstuck_proc(void *arg, int pending)
   2300 {
   2301 	struct ath_softc *sc = arg;
   2302 	struct ifnet *ifp = &sc->sc_if;
   2303 
   2304 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
   2305 		sc->sc_bmisscount);
   2306 	ath_reset(ifp);
   2307 }
   2308 
   2309 /*
   2310  * Reclaim beacon resources.
   2311  */
   2312 static void
   2313 ath_beacon_free(struct ath_softc *sc)
   2314 {
   2315 	struct ath_buf *bf;
   2316 
   2317 	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
   2318 		if (bf->bf_m != NULL) {
   2319 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   2320 			m_freem(bf->bf_m);
   2321 			bf->bf_m = NULL;
   2322 		}
   2323 		if (bf->bf_node != NULL) {
   2324 			ieee80211_free_node(bf->bf_node);
   2325 			bf->bf_node = NULL;
   2326 		}
   2327 	}
   2328 }
   2329 
   2330 /*
   2331  * Configure the beacon and sleep timers.
   2332  *
   2333  * When operating as an AP this resets the TSF and sets
   2334  * up the hardware to notify us when we need to issue beacons.
   2335  *
   2336  * When operating in station mode this sets up the beacon
   2337  * timers according to the timestamp of the last received
   2338  * beacon and the current TSF, configures PCF and DTIM
   2339  * handling, programs the sleep registers so the hardware
   2340  * will wakeup in time to receive beacons, and configures
   2341  * the beacon miss handling so we'll receive a BMISS
   2342  * interrupt when we stop seeing beacons from the AP
   2343  * we've associated with.
   2344  */
   2345 static void
   2346 ath_beacon_config(struct ath_softc *sc)
   2347 {
   2348 #define	TSF_TO_TU(_h,_l) \
   2349 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
   2350 #define	FUDGE	2
   2351 	struct ath_hal *ah = sc->sc_ah;
   2352 	struct ieee80211com *ic = &sc->sc_ic;
   2353 	struct ieee80211_node *ni = ic->ic_bss;
   2354 	u_int32_t nexttbtt, intval, tsftu;
   2355 	u_int64_t tsf;
   2356 
   2357 	/* extract tstamp from last beacon and convert to TU */
   2358 	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
   2359 			     LE_READ_4(ni->ni_tstamp.data));
   2360 	/* NB: the beacon interval is kept internally in TU's */
   2361 	intval = ni->ni_intval & HAL_BEACON_PERIOD;
   2362 	if (nexttbtt == 0)		/* e.g. for ap mode */
   2363 		nexttbtt = intval;
   2364 	else if (intval)		/* NB: can be 0 for monitor mode */
   2365 		nexttbtt = roundup(nexttbtt, intval);
   2366 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
   2367 		__func__, nexttbtt, intval, ni->ni_intval);
   2368 	if (ic->ic_opmode == IEEE80211_M_STA) {
   2369 		HAL_BEACON_STATE bs;
   2370 		int dtimperiod, dtimcount;
   2371 		int cfpperiod, cfpcount;
   2372 
   2373 		/*
   2374 		 * Setup dtim and cfp parameters according to
   2375 		 * last beacon we received (which may be none).
   2376 		 */
   2377 		dtimperiod = ni->ni_dtim_period;
   2378 		if (dtimperiod <= 0)		/* NB: 0 if not known */
   2379 			dtimperiod = 1;
   2380 		dtimcount = ni->ni_dtim_count;
   2381 		if (dtimcount >= dtimperiod)	/* NB: sanity check */
   2382 			dtimcount = 0;		/* XXX? */
   2383 		cfpperiod = 1;			/* NB: no PCF support yet */
   2384 		cfpcount = 0;
   2385 		/*
   2386 		 * Pull nexttbtt forward to reflect the current
   2387 		 * TSF and calculate dtim+cfp state for the result.
   2388 		 */
   2389 		tsf = ath_hal_gettsf64(ah);
   2390 		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
   2391 		do {
   2392 			nexttbtt += intval;
   2393 			if (--dtimcount < 0) {
   2394 				dtimcount = dtimperiod - 1;
   2395 				if (--cfpcount < 0)
   2396 					cfpcount = cfpperiod - 1;
   2397 			}
   2398 		} while (nexttbtt < tsftu);
   2399 		memset(&bs, 0, sizeof(bs));
   2400 		bs.bs_intval = intval;
   2401 		bs.bs_nexttbtt = nexttbtt;
   2402 		bs.bs_dtimperiod = dtimperiod*intval;
   2403 		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
   2404 		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
   2405 		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
   2406 		bs.bs_cfpmaxduration = 0;
   2407 #if 0
   2408 		/*
   2409 		 * The 802.11 layer records the offset to the DTIM
   2410 		 * bitmap while receiving beacons; use it here to
   2411 		 * enable h/w detection of our AID being marked in
   2412 		 * the bitmap vector (to indicate frames for us are
   2413 		 * pending at the AP).
   2414 		 * XXX do DTIM handling in s/w to WAR old h/w bugs
   2415 		 * XXX enable based on h/w rev for newer chips
   2416 		 */
   2417 		bs.bs_timoffset = ni->ni_timoff;
   2418 #endif
   2419 		/*
   2420 		 * Calculate the number of consecutive beacons to miss
   2421 		 * before taking a BMISS interrupt.  The configuration
   2422 		 * is specified in ms, so we need to convert that to
   2423 		 * TU's and then calculate based on the beacon interval.
   2424 		 * Note that we clamp the result to at most 10 beacons.
   2425 		 */
   2426 		bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
   2427 		if (bs.bs_bmissthreshold > 10)
   2428 			bs.bs_bmissthreshold = 10;
   2429 		else if (bs.bs_bmissthreshold <= 0)
   2430 			bs.bs_bmissthreshold = 1;
   2431 
   2432 		/*
   2433 		 * Calculate sleep duration.  The configuration is
   2434 		 * given in ms.  We insure a multiple of the beacon
   2435 		 * period is used.  Also, if the sleep duration is
   2436 		 * greater than the DTIM period then it makes senses
   2437 		 * to make it a multiple of that.
   2438 		 *
   2439 		 * XXX fixed at 100ms
   2440 		 */
   2441 		bs.bs_sleepduration =
   2442 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
   2443 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
   2444 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
   2445 
   2446 		DPRINTF(sc, ATH_DEBUG_BEACON,
   2447 			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
   2448 			, __func__
   2449 			, tsf, tsftu
   2450 			, bs.bs_intval
   2451 			, bs.bs_nexttbtt
   2452 			, bs.bs_dtimperiod
   2453 			, bs.bs_nextdtim
   2454 			, bs.bs_bmissthreshold
   2455 			, bs.bs_sleepduration
   2456 			, bs.bs_cfpperiod
   2457 			, bs.bs_cfpmaxduration
   2458 			, bs.bs_cfpnext
   2459 			, bs.bs_timoffset
   2460 		);
   2461 		ath_hal_intrset(ah, 0);
   2462 		ath_hal_beacontimers(ah, &bs);
   2463 		sc->sc_imask |= HAL_INT_BMISS;
   2464 		ath_hal_intrset(ah, sc->sc_imask);
   2465 	} else {
   2466 		ath_hal_intrset(ah, 0);
   2467 		if (nexttbtt == intval)
   2468 			intval |= HAL_BEACON_RESET_TSF;
   2469 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
   2470 			/*
   2471 			 * In IBSS mode enable the beacon timers but only
   2472 			 * enable SWBA interrupts if we need to manually
   2473 			 * prepare beacon frames.  Otherwise we use a
   2474 			 * self-linked tx descriptor and let the hardware
   2475 			 * deal with things.
   2476 			 */
   2477 			intval |= HAL_BEACON_ENA;
   2478 			if (!sc->sc_hasveol)
   2479 				sc->sc_imask |= HAL_INT_SWBA;
   2480 			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
   2481 				/*
   2482 				 * Pull nexttbtt forward to reflect
   2483 				 * the current TSF.
   2484 				 */
   2485 				tsf = ath_hal_gettsf64(ah);
   2486 				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
   2487 				do {
   2488 					nexttbtt += intval;
   2489 				} while (nexttbtt < tsftu);
   2490 			}
   2491 			ath_beaconq_config(sc);
   2492 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   2493 			/*
   2494 			 * In AP mode we enable the beacon timers and
   2495 			 * SWBA interrupts to prepare beacon frames.
   2496 			 */
   2497 			intval |= HAL_BEACON_ENA;
   2498 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
   2499 			ath_beaconq_config(sc);
   2500 		}
   2501 		ath_hal_beaconinit(ah, nexttbtt, intval);
   2502 		sc->sc_bmisscount = 0;
   2503 		ath_hal_intrset(ah, sc->sc_imask);
   2504 		/*
   2505 		 * When using a self-linked beacon descriptor in
   2506 		 * ibss mode load it once here.
   2507 		 */
   2508 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
   2509 			ath_beacon_proc(sc, 0);
   2510 	}
   2511 	sc->sc_syncbeacon = 0;
   2512 #undef UNDEF
   2513 #undef TSF_TO_TU
   2514 }
   2515 
   2516 static int
   2517 ath_descdma_setup(struct ath_softc *sc,
   2518 	struct ath_descdma *dd, ath_bufhead *head,
   2519 	const char *name, int nbuf, int ndesc)
   2520 {
   2521 #define	DS2PHYS(_dd, _ds) \
   2522 	((_dd)->dd_desc_paddr + ((char *)(_ds) - (char *)(_dd)->dd_desc))
   2523 	struct ifnet *ifp = &sc->sc_if;
   2524 	struct ath_desc *ds;
   2525 	struct ath_buf *bf;
   2526 	int i, bsize, error;
   2527 
   2528 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
   2529 	    __func__, name, nbuf, ndesc);
   2530 
   2531 	dd->dd_name = name;
   2532 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
   2533 
   2534 	/*
   2535 	 * Setup DMA descriptor area.
   2536 	 */
   2537 	dd->dd_dmat = sc->sc_dmat;
   2538 
   2539 	error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE,
   2540 	    0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0);
   2541 
   2542 	if (error != 0) {
   2543 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
   2544 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
   2545 		goto fail0;
   2546 	}
   2547 
   2548 	error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg,
   2549 	    dd->dd_desc_len, (void **)&dd->dd_desc, BUS_DMA_COHERENT);
   2550 	if (error != 0) {
   2551 		if_printf(ifp, "unable to map %u %s descriptors, error = %u\n",
   2552 		    nbuf * ndesc, dd->dd_name, error);
   2553 		goto fail1;
   2554 	}
   2555 
   2556 	/* allocate descriptors */
   2557 	error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1,
   2558 	    dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap);
   2559 	if (error != 0) {
   2560 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
   2561 			"error %u\n", dd->dd_name, error);
   2562 		goto fail2;
   2563 	}
   2564 
   2565 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc,
   2566 	    dd->dd_desc_len, NULL, BUS_DMA_NOWAIT);
   2567 	if (error != 0) {
   2568 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
   2569 			dd->dd_name, error);
   2570 		goto fail3;
   2571 	}
   2572 
   2573 	ds = dd->dd_desc;
   2574 	dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr;
   2575 	DPRINTF(sc, ATH_DEBUG_RESET,
   2576 	    "%s: %s DMA map: %p (%lu) -> %" PRIx64 " (%lu)\n",
   2577 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
   2578 	    (uint64_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
   2579 
   2580 	/* allocate rx buffers */
   2581 	bsize = sizeof(struct ath_buf) * nbuf;
   2582 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
   2583 	if (bf == NULL) {
   2584 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
   2585 			dd->dd_name, bsize);
   2586 		goto fail4;
   2587 	}
   2588 	dd->dd_bufptr = bf;
   2589 
   2590 	STAILQ_INIT(head);
   2591 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
   2592 		bf->bf_desc = ds;
   2593 		bf->bf_daddr = DS2PHYS(dd, ds);
   2594 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc,
   2595 				MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap);
   2596 		if (error != 0) {
   2597 			if_printf(ifp, "unable to create dmamap for %s "
   2598 				"buffer %u, error %u\n", dd->dd_name, i, error);
   2599 			ath_descdma_cleanup(sc, dd, head);
   2600 			return error;
   2601 		}
   2602 		STAILQ_INSERT_TAIL(head, bf, bf_list);
   2603 	}
   2604 	return 0;
   2605 fail4:
   2606 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
   2607 fail3:
   2608 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
   2609 fail2:
   2610 	bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
   2611 fail1:
   2612 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
   2613 fail0:
   2614 	memset(dd, 0, sizeof(*dd));
   2615 	return error;
   2616 #undef DS2PHYS
   2617 }
   2618 
   2619 static void
   2620 ath_descdma_cleanup(struct ath_softc *sc,
   2621 	struct ath_descdma *dd, ath_bufhead *head)
   2622 {
   2623 	struct ath_buf *bf;
   2624 	struct ieee80211_node *ni;
   2625 
   2626 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
   2627 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
   2628 	bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
   2629 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
   2630 
   2631 	STAILQ_FOREACH(bf, head, bf_list) {
   2632 		if (bf->bf_m) {
   2633 			m_freem(bf->bf_m);
   2634 			bf->bf_m = NULL;
   2635 		}
   2636 		if (bf->bf_dmamap != NULL) {
   2637 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
   2638 			bf->bf_dmamap = NULL;
   2639 		}
   2640 		ni = bf->bf_node;
   2641 		bf->bf_node = NULL;
   2642 		if (ni != NULL) {
   2643 			/*
   2644 			 * Reclaim node reference.
   2645 			 */
   2646 			ieee80211_free_node(ni);
   2647 		}
   2648 	}
   2649 
   2650 	STAILQ_INIT(head);
   2651 	free(dd->dd_bufptr, M_ATHDEV);
   2652 	memset(dd, 0, sizeof(*dd));
   2653 }
   2654 
   2655 static int
   2656 ath_desc_alloc(struct ath_softc *sc)
   2657 {
   2658 	int error;
   2659 
   2660 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
   2661 			"rx", ath_rxbuf, 1);
   2662 	if (error != 0)
   2663 		return error;
   2664 
   2665 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
   2666 			"tx", ath_txbuf, ATH_TXDESC);
   2667 	if (error != 0) {
   2668 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2669 		return error;
   2670 	}
   2671 
   2672 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
   2673 			"beacon", 1, 1);
   2674 	if (error != 0) {
   2675 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
   2676 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2677 		return error;
   2678 	}
   2679 	return 0;
   2680 }
   2681 
   2682 static void
   2683 ath_desc_free(struct ath_softc *sc)
   2684 {
   2685 
   2686 	if (sc->sc_bdma.dd_desc_len != 0)
   2687 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
   2688 	if (sc->sc_txdma.dd_desc_len != 0)
   2689 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
   2690 	if (sc->sc_rxdma.dd_desc_len != 0)
   2691 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2692 }
   2693 
   2694 static struct ieee80211_node *
   2695 ath_node_alloc(struct ieee80211_node_table *nt)
   2696 {
   2697 	struct ieee80211com *ic = nt->nt_ic;
   2698 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   2699 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
   2700 	struct ath_node *an;
   2701 
   2702 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
   2703 	if (an == NULL) {
   2704 		/* XXX stat+msg */
   2705 		return NULL;
   2706 	}
   2707 	an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
   2708 	ath_rate_node_init(sc, an);
   2709 
   2710 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
   2711 	return &an->an_node;
   2712 }
   2713 
   2714 static void
   2715 ath_node_free(struct ieee80211_node *ni)
   2716 {
   2717 	struct ieee80211com *ic = ni->ni_ic;
   2718         struct ath_softc *sc = ic->ic_ifp->if_softc;
   2719 
   2720 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
   2721 
   2722 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
   2723 	sc->sc_node_free(ni);
   2724 }
   2725 
   2726 static u_int8_t
   2727 ath_node_getrssi(const struct ieee80211_node *ni)
   2728 {
   2729 #define	HAL_EP_RND(x, mul) \
   2730 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
   2731 	u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
   2732 	int32_t rssi;
   2733 
   2734 	/*
   2735 	 * When only one frame is received there will be no state in
   2736 	 * avgrssi so fallback on the value recorded by the 802.11 layer.
   2737 	 */
   2738 	if (avgrssi != ATH_RSSI_DUMMY_MARKER)
   2739 		rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
   2740 	else
   2741 		rssi = ni->ni_rssi;
   2742 	return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
   2743 #undef HAL_EP_RND
   2744 }
   2745 
   2746 static int
   2747 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
   2748 {
   2749 	struct ath_hal *ah = sc->sc_ah;
   2750 	int error;
   2751 	struct mbuf *m;
   2752 	struct ath_desc *ds;
   2753 
   2754 	m = bf->bf_m;
   2755 	if (m == NULL) {
   2756 		/*
   2757 		 * NB: by assigning a page to the rx dma buffer we
   2758 		 * implicitly satisfy the Atheros requirement that
   2759 		 * this buffer be cache-line-aligned and sized to be
   2760 		 * multiple of the cache line size.  Not doing this
   2761 		 * causes weird stuff to happen (for the 5210 at least).
   2762 		 */
   2763 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
   2764 		if (m == NULL) {
   2765 			DPRINTF(sc, ATH_DEBUG_ANY,
   2766 				"%s: no mbuf/cluster\n", __func__);
   2767 			sc->sc_stats.ast_rx_nombuf++;
   2768 			return ENOMEM;
   2769 		}
   2770 		bf->bf_m = m;
   2771 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
   2772 
   2773 		error = bus_dmamap_load_mbuf(sc->sc_dmat,
   2774 					     bf->bf_dmamap, m,
   2775 					     BUS_DMA_NOWAIT);
   2776 		if (error != 0) {
   2777 			DPRINTF(sc, ATH_DEBUG_ANY,
   2778 			    "%s: bus_dmamap_load_mbuf failed; error %d\n",
   2779 			    __func__, error);
   2780 			sc->sc_stats.ast_rx_busdma++;
   2781 			return error;
   2782 		}
   2783 		KASSERT(bf->bf_nseg == 1,
   2784 			("multi-segment packet; nseg %u", bf->bf_nseg));
   2785 	}
   2786 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   2787 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2788 
   2789 	/*
   2790 	 * Setup descriptors.  For receive we always terminate
   2791 	 * the descriptor list with a self-linked entry so we'll
   2792 	 * not get overrun under high load (as can happen with a
   2793 	 * 5212 when ANI processing enables PHY error frames).
   2794 	 *
   2795 	 * To insure the last descriptor is self-linked we create
   2796 	 * each descriptor as self-linked and add it to the end.  As
   2797 	 * each additional descriptor is added the previous self-linked
   2798 	 * entry is ``fixed'' naturally.  This should be safe even
   2799 	 * if DMA is happening.  When processing RX interrupts we
   2800 	 * never remove/process the last, self-linked, entry on the
   2801 	 * descriptor list.  This insures the hardware always has
   2802 	 * someplace to write a new frame.
   2803 	 */
   2804 	ds = bf->bf_desc;
   2805 	ds->ds_link = HTOAH32(bf->bf_daddr);	/* link to self */
   2806 	ds->ds_data = bf->bf_segs[0].ds_addr;
   2807 	ds->ds_vdata = mtod(m, void *);	/* for radar */
   2808 	ath_hal_setuprxdesc(ah, ds
   2809 		, m->m_len		/* buffer size */
   2810 		, 0
   2811 	);
   2812 
   2813 	if (sc->sc_rxlink != NULL)
   2814 		*sc->sc_rxlink = bf->bf_daddr;
   2815 	sc->sc_rxlink = &ds->ds_link;
   2816 	return 0;
   2817 }
   2818 
   2819 /*
   2820  * Extend 15-bit time stamp from rx descriptor to
   2821  * a full 64-bit TSF using the specified TSF.
   2822  */
   2823 static inline u_int64_t
   2824 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
   2825 {
   2826 	if ((tsf & 0x7fff) < rstamp)
   2827 		tsf -= 0x8000;
   2828 	return ((tsf &~ 0x7fff) | rstamp);
   2829 }
   2830 
   2831 /*
   2832  * Intercept management frames to collect beacon rssi data
   2833  * and to do ibss merges.
   2834  */
   2835 static void
   2836 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
   2837 	struct ieee80211_node *ni,
   2838 	int subtype, int rssi, u_int32_t rstamp)
   2839 {
   2840 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   2841 
   2842 	/*
   2843 	 * Call up first so subsequent work can use information
   2844 	 * potentially stored in the node (e.g. for ibss merge).
   2845 	 */
   2846 	sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
   2847 	switch (subtype) {
   2848 	case IEEE80211_FC0_SUBTYPE_BEACON:
   2849 		/* update rssi statistics for use by the hal */
   2850 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
   2851 		if (sc->sc_syncbeacon &&
   2852 		    ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) {
   2853 			/*
   2854 			 * Resync beacon timers using the tsf of the beacon
   2855 			 * frame we just received.
   2856 			 */
   2857 			ath_beacon_config(sc);
   2858 		}
   2859 		/* fall thru... */
   2860 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
   2861 		if (ic->ic_opmode == IEEE80211_M_IBSS &&
   2862 		    ic->ic_state == IEEE80211_S_RUN) {
   2863 			u_int64_t tsf = ath_extend_tsf(rstamp,
   2864 				ath_hal_gettsf64(sc->sc_ah));
   2865 
   2866 			/*
   2867 			 * Handle ibss merge as needed; check the tsf on the
   2868 			 * frame before attempting the merge.  The 802.11 spec
   2869 			 * says the station should change it's bssid to match
   2870 			 * the oldest station with the same ssid, where oldest
   2871 			 * is determined by the tsf.  Note that hardware
   2872 			 * reconfiguration happens through callback to
   2873 			 * ath_newstate as the state machine will go from
   2874 			 * RUN -> RUN when this happens.
   2875 			 */
   2876 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
   2877 				DPRINTF(sc, ATH_DEBUG_STATE,
   2878 				    "ibss merge, rstamp %u tsf %ju "
   2879 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
   2880 				    (uintmax_t)ni->ni_tstamp.tsf);
   2881 				(void) ieee80211_ibss_merge(ni);
   2882 			}
   2883 		}
   2884 		break;
   2885 	}
   2886 }
   2887 
   2888 /*
   2889  * Set the default antenna.
   2890  */
   2891 static void
   2892 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
   2893 {
   2894 	struct ath_hal *ah = sc->sc_ah;
   2895 
   2896 	/* XXX block beacon interrupts */
   2897 	ath_hal_setdefantenna(ah, antenna);
   2898 	if (sc->sc_defant != antenna)
   2899 		sc->sc_stats.ast_ant_defswitch++;
   2900 	sc->sc_defant = antenna;
   2901 	sc->sc_rxotherant = 0;
   2902 }
   2903 
   2904 static void
   2905 ath_rx_proc(void *arg, int npending)
   2906 {
   2907 #define	PA2DESC(_sc, _pa) \
   2908 	((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
   2909 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
   2910 	struct ath_softc *sc = arg;
   2911 	struct ath_buf *bf;
   2912 	struct ieee80211com *ic = &sc->sc_ic;
   2913 	struct ifnet *ifp = &sc->sc_if;
   2914 	struct ath_hal *ah = sc->sc_ah;
   2915 	struct ath_desc *ds;
   2916 	struct mbuf *m;
   2917 	struct ieee80211_node *ni;
   2918 	struct ath_node *an;
   2919 	int len, type, ngood;
   2920 	u_int phyerr;
   2921 	HAL_STATUS status;
   2922 	int16_t nf;
   2923 	u_int64_t tsf;
   2924 
   2925 	NET_LOCK_GIANT();		/* XXX */
   2926 
   2927 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
   2928 	ngood = 0;
   2929 	nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
   2930 	tsf = ath_hal_gettsf64(ah);
   2931 	do {
   2932 		bf = STAILQ_FIRST(&sc->sc_rxbuf);
   2933 		if (bf == NULL) {		/* NB: shouldn't happen */
   2934 			if_printf(ifp, "%s: no buffer!\n", __func__);
   2935 			break;
   2936 		}
   2937 		ds = bf->bf_desc;
   2938 		if (ds->ds_link == bf->bf_daddr) {
   2939 			/* NB: never process the self-linked entry at the end */
   2940 			break;
   2941 		}
   2942 		m = bf->bf_m;
   2943 		if (m == NULL) {		/* NB: shouldn't happen */
   2944 			if_printf(ifp, "%s: no mbuf!\n", __func__);
   2945 			break;
   2946 		}
   2947 		/* XXX sync descriptor memory */
   2948 		/*
   2949 		 * Must provide the virtual address of the current
   2950 		 * descriptor, the physical address, and the virtual
   2951 		 * address of the next descriptor in the h/w chain.
   2952 		 * This allows the HAL to look ahead to see if the
   2953 		 * hardware is done with a descriptor by checking the
   2954 		 * done bit in the following descriptor and the address
   2955 		 * of the current descriptor the DMA engine is working
   2956 		 * on.  All this is necessary because of our use of
   2957 		 * a self-linked list to avoid rx overruns.
   2958 		 */
   2959 		status = ath_hal_rxprocdesc(ah, ds,
   2960 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
   2961 #ifdef AR_DEBUG
   2962 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
   2963 			ath_printrxbuf(bf, status == HAL_OK);
   2964 #endif
   2965 		if (status == HAL_EINPROGRESS)
   2966 			break;
   2967 		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
   2968 		if (ds->ds_rxstat.rs_more) {
   2969 			/*
   2970 			 * Frame spans multiple descriptors; this
   2971 			 * cannot happen yet as we don't support
   2972 			 * jumbograms.  If not in monitor mode,
   2973 			 * discard the frame.
   2974 			 */
   2975 			if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   2976 				sc->sc_stats.ast_rx_toobig++;
   2977 				goto rx_next;
   2978 			}
   2979 			/* fall thru for monitor mode handling... */
   2980 		} else if (ds->ds_rxstat.rs_status != 0) {
   2981 			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
   2982 				sc->sc_stats.ast_rx_crcerr++;
   2983 			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
   2984 				sc->sc_stats.ast_rx_fifoerr++;
   2985 			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
   2986 				sc->sc_stats.ast_rx_phyerr++;
   2987 				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
   2988 				sc->sc_stats.ast_rx_phy[phyerr]++;
   2989 				goto rx_next;
   2990 			}
   2991 			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
   2992 				/*
   2993 				 * Decrypt error.  If the error occurred
   2994 				 * because there was no hardware key, then
   2995 				 * let the frame through so the upper layers
   2996 				 * can process it.  This is necessary for 5210
   2997 				 * parts which have no way to setup a ``clear''
   2998 				 * key cache entry.
   2999 				 *
   3000 				 * XXX do key cache faulting
   3001 				 */
   3002 				if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
   3003 					goto rx_accept;
   3004 				sc->sc_stats.ast_rx_badcrypt++;
   3005 			}
   3006 			if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
   3007 				sc->sc_stats.ast_rx_badmic++;
   3008 				/*
   3009 				 * Do minimal work required to hand off
   3010 				 * the 802.11 header for notifcation.
   3011 				 */
   3012 				/* XXX frag's and qos frames */
   3013 				len = ds->ds_rxstat.rs_datalen;
   3014 				if (len >= sizeof (struct ieee80211_frame)) {
   3015 					bus_dmamap_sync(sc->sc_dmat,
   3016 					    bf->bf_dmamap,
   3017 					    0, bf->bf_dmamap->dm_mapsize,
   3018 					    BUS_DMASYNC_POSTREAD);
   3019 					ieee80211_notify_michael_failure(ic,
   3020 					    mtod(m, struct ieee80211_frame *),
   3021 					    sc->sc_splitmic ?
   3022 					        ds->ds_rxstat.rs_keyix-32 :
   3023 					        ds->ds_rxstat.rs_keyix
   3024 					);
   3025 				}
   3026 			}
   3027 			ifp->if_ierrors++;
   3028 			/*
   3029 			 * Reject error frames, we normally don't want
   3030 			 * to see them in monitor mode (in monitor mode
   3031 			 * allow through packets that have crypto problems).
   3032 			 */
   3033 			if ((ds->ds_rxstat.rs_status &~
   3034 				(HAL_RXERR_DECRYPT|HAL_RXERR_MIC)) ||
   3035 			    sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
   3036 				goto rx_next;
   3037 		}
   3038 rx_accept:
   3039 		/*
   3040 		 * Sync and unmap the frame.  At this point we're
   3041 		 * committed to passing the mbuf somewhere so clear
   3042 		 * bf_m; this means a new sk_buff must be allocated
   3043 		 * when the rx descriptor is setup again to receive
   3044 		 * another frame.
   3045 		 */
   3046 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
   3047 		    0, bf->bf_dmamap->dm_mapsize,
   3048 		    BUS_DMASYNC_POSTREAD);
   3049 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   3050 		bf->bf_m = NULL;
   3051 
   3052 		m->m_pkthdr.rcvif = ifp;
   3053 		len = ds->ds_rxstat.rs_datalen;
   3054 		m->m_pkthdr.len = m->m_len = len;
   3055 
   3056 		sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
   3057 
   3058 #if NBPFILTER > 0
   3059 		if (sc->sc_drvbpf) {
   3060 			u_int8_t rix;
   3061 
   3062 			/*
   3063 			 * Discard anything shorter than an ack or cts.
   3064 			 */
   3065 			if (len < IEEE80211_ACK_LEN) {
   3066 				DPRINTF(sc, ATH_DEBUG_RECV,
   3067 					"%s: runt packet %d\n",
   3068 					__func__, len);
   3069 				sc->sc_stats.ast_rx_tooshort++;
   3070 				m_freem(m);
   3071 				goto rx_next;
   3072 			}
   3073 			rix = ds->ds_rxstat.rs_rate;
   3074 			sc->sc_rx_th.wr_tsf = htole64(
   3075 				ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf));
   3076 			sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
   3077 			sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
   3078 			sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf;
   3079 			sc->sc_rx_th.wr_antnoise = nf;
   3080 			sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
   3081 
   3082 			bpf_mtap2(sc->sc_drvbpf,
   3083 				&sc->sc_rx_th, sc->sc_rx_th_len, m);
   3084 		}
   3085 #endif
   3086 
   3087 		/*
   3088 		 * From this point on we assume the frame is at least
   3089 		 * as large as ieee80211_frame_min; verify that.
   3090 		 */
   3091 		if (len < IEEE80211_MIN_LEN) {
   3092 			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
   3093 				__func__, len);
   3094 			sc->sc_stats.ast_rx_tooshort++;
   3095 			m_freem(m);
   3096 			goto rx_next;
   3097 		}
   3098 
   3099 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
   3100 			ieee80211_dump_pkt(mtod(m, void *), len,
   3101 				   sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
   3102 				   ds->ds_rxstat.rs_rssi);
   3103 		}
   3104 
   3105 		m_adj(m, -IEEE80211_CRC_LEN);
   3106 
   3107 		/*
   3108 		 * Locate the node for sender, track state, and then
   3109 		 * pass the (referenced) node up to the 802.11 layer
   3110 		 * for its use.
   3111 		 */
   3112 		ni = ieee80211_find_rxnode_withkey(ic,
   3113 			mtod(m, const struct ieee80211_frame_min *),
   3114 			ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
   3115 				IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
   3116 		/*
   3117 		 * Track rx rssi and do any rx antenna management.
   3118 		 */
   3119 		an = ATH_NODE(ni);
   3120 		ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
   3121 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi);
   3122 		/*
   3123 		 * Send frame up for processing.
   3124 		 */
   3125 		type = ieee80211_input(ic, m, ni,
   3126 			ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
   3127 		ieee80211_free_node(ni);
   3128 		if (sc->sc_diversity) {
   3129 			/*
   3130 			 * When using fast diversity, change the default rx
   3131 			 * antenna if diversity chooses the other antenna 3
   3132 			 * times in a row.
   3133 			 */
   3134 			if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
   3135 				if (++sc->sc_rxotherant >= 3)
   3136 					ath_setdefantenna(sc,
   3137 						ds->ds_rxstat.rs_antenna);
   3138 			} else
   3139 				sc->sc_rxotherant = 0;
   3140 		}
   3141 		if (sc->sc_softled) {
   3142 			/*
   3143 			 * Blink for any data frame.  Otherwise do a
   3144 			 * heartbeat-style blink when idle.  The latter
   3145 			 * is mainly for station mode where we depend on
   3146 			 * periodic beacon frames to trigger the poll event.
   3147 			 */
   3148 			if (type == IEEE80211_FC0_TYPE_DATA) {
   3149 				sc->sc_rxrate = ds->ds_rxstat.rs_rate;
   3150 				ath_led_event(sc, ATH_LED_RX);
   3151 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
   3152 				ath_led_event(sc, ATH_LED_POLL);
   3153 		}
   3154 		/*
   3155 		 * Arrange to update the last rx timestamp only for
   3156 		 * frames from our ap when operating in station mode.
   3157 		 * This assumes the rx key is always setup when associated.
   3158 		 */
   3159 		if (ic->ic_opmode == IEEE80211_M_STA &&
   3160 		    ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID)
   3161 			ngood++;
   3162 rx_next:
   3163 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
   3164 	} while (ath_rxbuf_init(sc, bf) == 0);
   3165 
   3166 	/* rx signal state monitoring */
   3167 	ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
   3168 	if (ath_hal_radar_event(ah))
   3169 		TASK_RUN_OR_ENQUEUE(&sc->sc_radartask);
   3170 	if (ngood)
   3171 		sc->sc_lastrx = tsf;
   3172 
   3173 #ifdef __NetBSD__
   3174 	/* XXX Why isn't this necessary in FreeBSD? */
   3175 	if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
   3176 		ath_start(ifp);
   3177 #endif /* __NetBSD__ */
   3178 
   3179 	NET_UNLOCK_GIANT();		/* XXX */
   3180 #undef PA2DESC
   3181 }
   3182 
   3183 /*
   3184  * Setup a h/w transmit queue.
   3185  */
   3186 static struct ath_txq *
   3187 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
   3188 {
   3189 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   3190 	struct ath_hal *ah = sc->sc_ah;
   3191 	HAL_TXQ_INFO qi;
   3192 	int qnum;
   3193 
   3194 	memset(&qi, 0, sizeof(qi));
   3195 	qi.tqi_subtype = subtype;
   3196 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
   3197 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
   3198 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
   3199 	/*
   3200 	 * Enable interrupts only for EOL and DESC conditions.
   3201 	 * We mark tx descriptors to receive a DESC interrupt
   3202 	 * when a tx queue gets deep; otherwise waiting for the
   3203 	 * EOL to reap descriptors.  Note that this is done to
   3204 	 * reduce interrupt load and this only defers reaping
   3205 	 * descriptors, never transmitting frames.  Aside from
   3206 	 * reducing interrupts this also permits more concurrency.
   3207 	 * The only potential downside is if the tx queue backs
   3208 	 * up in which case the top half of the kernel may backup
   3209 	 * due to a lack of tx descriptors.
   3210 	 */
   3211 	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
   3212 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
   3213 	if (qnum == -1) {
   3214 		/*
   3215 		 * NB: don't print a message, this happens
   3216 		 * normally on parts with too few tx queues
   3217 		 */
   3218 		return NULL;
   3219 	}
   3220 	if (qnum >= N(sc->sc_txq)) {
   3221 		device_printf(&sc->sc_dev,
   3222 			"hal qnum %u out of range, max %zu!\n",
   3223 			qnum, N(sc->sc_txq));
   3224 		ath_hal_releasetxqueue(ah, qnum);
   3225 		return NULL;
   3226 	}
   3227 	if (!ATH_TXQ_SETUP(sc, qnum)) {
   3228 		struct ath_txq *txq = &sc->sc_txq[qnum];
   3229 
   3230 		txq->axq_qnum = qnum;
   3231 		txq->axq_depth = 0;
   3232 		txq->axq_intrcnt = 0;
   3233 		txq->axq_link = NULL;
   3234 		STAILQ_INIT(&txq->axq_q);
   3235 		ATH_TXQ_LOCK_INIT(sc, txq);
   3236 		sc->sc_txqsetup |= 1<<qnum;
   3237 	}
   3238 	return &sc->sc_txq[qnum];
   3239 #undef N
   3240 }
   3241 
   3242 /*
   3243  * Setup a hardware data transmit queue for the specified
   3244  * access control.  The hal may not support all requested
   3245  * queues in which case it will return a reference to a
   3246  * previously setup queue.  We record the mapping from ac's
   3247  * to h/w queues for use by ath_tx_start and also track
   3248  * the set of h/w queues being used to optimize work in the
   3249  * transmit interrupt handler and related routines.
   3250  */
   3251 static int
   3252 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
   3253 {
   3254 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   3255 	struct ath_txq *txq;
   3256 
   3257 	if (ac >= N(sc->sc_ac2q)) {
   3258 		device_printf(&sc->sc_dev, "AC %u out of range, max %zu!\n",
   3259 			ac, N(sc->sc_ac2q));
   3260 		return 0;
   3261 	}
   3262 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
   3263 	if (txq != NULL) {
   3264 		sc->sc_ac2q[ac] = txq;
   3265 		return 1;
   3266 	} else
   3267 		return 0;
   3268 #undef N
   3269 }
   3270 
   3271 /*
   3272  * Update WME parameters for a transmit queue.
   3273  */
   3274 static int
   3275 ath_txq_update(struct ath_softc *sc, int ac)
   3276 {
   3277 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
   3278 #define	ATH_TXOP_TO_US(v)		(v<<5)
   3279 	struct ieee80211com *ic = &sc->sc_ic;
   3280 	struct ath_txq *txq = sc->sc_ac2q[ac];
   3281 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
   3282 	struct ath_hal *ah = sc->sc_ah;
   3283 	HAL_TXQ_INFO qi;
   3284 
   3285 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
   3286 	qi.tqi_aifs = wmep->wmep_aifsn;
   3287 	qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
   3288 	qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
   3289 	qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
   3290 
   3291 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
   3292 		device_printf(&sc->sc_dev, "unable to update hardware queue "
   3293 			"parameters for %s traffic!\n",
   3294 			ieee80211_wme_acnames[ac]);
   3295 		return 0;
   3296 	} else {
   3297 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
   3298 		return 1;
   3299 	}
   3300 #undef ATH_TXOP_TO_US
   3301 #undef ATH_EXPONENT_TO_VALUE
   3302 }
   3303 
   3304 /*
   3305  * Callback from the 802.11 layer to update WME parameters.
   3306  */
   3307 static int
   3308 ath_wme_update(struct ieee80211com *ic)
   3309 {
   3310 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   3311 
   3312 	return !ath_txq_update(sc, WME_AC_BE) ||
   3313 	    !ath_txq_update(sc, WME_AC_BK) ||
   3314 	    !ath_txq_update(sc, WME_AC_VI) ||
   3315 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
   3316 }
   3317 
   3318 /*
   3319  * Reclaim resources for a setup queue.
   3320  */
   3321 static void
   3322 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
   3323 {
   3324 
   3325 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
   3326 	ATH_TXQ_LOCK_DESTROY(txq);
   3327 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
   3328 }
   3329 
   3330 /*
   3331  * Reclaim all tx queue resources.
   3332  */
   3333 static void
   3334 ath_tx_cleanup(struct ath_softc *sc)
   3335 {
   3336 	int i;
   3337 
   3338 	ATH_TXBUF_LOCK_DESTROY(sc);
   3339 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   3340 		if (ATH_TXQ_SETUP(sc, i))
   3341 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
   3342 }
   3343 
   3344 /*
   3345  * Defragment an mbuf chain, returning at most maxfrags separate
   3346  * mbufs+clusters.  If this is not possible NULL is returned and
   3347  * the original mbuf chain is left in it's present (potentially
   3348  * modified) state.  We use two techniques: collapsing consecutive
   3349  * mbufs and replacing consecutive mbufs by a cluster.
   3350  */
   3351 static struct mbuf *
   3352 ath_defrag(struct mbuf *m0, int how, int maxfrags)
   3353 {
   3354 	struct mbuf *m, *n, *n2, **prev;
   3355 	u_int curfrags;
   3356 
   3357 	/*
   3358 	 * Calculate the current number of frags.
   3359 	 */
   3360 	curfrags = 0;
   3361 	for (m = m0; m != NULL; m = m->m_next)
   3362 		curfrags++;
   3363 	/*
   3364 	 * First, try to collapse mbufs.  Note that we always collapse
   3365 	 * towards the front so we don't need to deal with moving the
   3366 	 * pkthdr.  This may be suboptimal if the first mbuf has much
   3367 	 * less data than the following.
   3368 	 */
   3369 	m = m0;
   3370 again:
   3371 	for (;;) {
   3372 		n = m->m_next;
   3373 		if (n == NULL)
   3374 			break;
   3375 		if (n->m_len < M_TRAILINGSPACE(m)) {
   3376 			memcpy(mtod(m, char *) + m->m_len, mtod(n, void *),
   3377 				n->m_len);
   3378 			m->m_len += n->m_len;
   3379 			m->m_next = n->m_next;
   3380 			m_free(n);
   3381 			if (--curfrags <= maxfrags)
   3382 				return m0;
   3383 		} else
   3384 			m = n;
   3385 	}
   3386 	KASSERT(maxfrags > 1,
   3387 		("maxfrags %u, but normal collapse failed", maxfrags));
   3388 	/*
   3389 	 * Collapse consecutive mbufs to a cluster.
   3390 	 */
   3391 	prev = &m0->m_next;		/* NB: not the first mbuf */
   3392 	while ((n = *prev) != NULL) {
   3393 		if ((n2 = n->m_next) != NULL &&
   3394 		    n->m_len + n2->m_len < MCLBYTES) {
   3395 			m = m_getcl(how, MT_DATA, 0);
   3396 			if (m == NULL)
   3397 				goto bad;
   3398 			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
   3399 			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
   3400 				n2->m_len);
   3401 			m->m_len = n->m_len + n2->m_len;
   3402 			m->m_next = n2->m_next;
   3403 			*prev = m;
   3404 			m_free(n);
   3405 			m_free(n2);
   3406 			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
   3407 				return m0;
   3408 			/*
   3409 			 * Still not there, try the normal collapse
   3410 			 * again before we allocate another cluster.
   3411 			 */
   3412 			goto again;
   3413 		}
   3414 		prev = &n->m_next;
   3415 	}
   3416 	/*
   3417 	 * No place where we can collapse to a cluster; punt.
   3418 	 * This can occur if, for example, you request 2 frags
   3419 	 * but the packet requires that both be clusters (we
   3420 	 * never reallocate the first mbuf to avoid moving the
   3421 	 * packet header).
   3422 	 */
   3423 bad:
   3424 	return NULL;
   3425 }
   3426 
   3427 /*
   3428  * Return h/w rate index for an IEEE rate (w/o basic rate bit).
   3429  */
   3430 static int
   3431 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
   3432 {
   3433 	int i;
   3434 
   3435 	for (i = 0; i < rt->rateCount; i++)
   3436 		if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
   3437 			return i;
   3438 	return 0;		/* NB: lowest rate */
   3439 }
   3440 
   3441 static void
   3442 ath_freetx(struct mbuf *m)
   3443 {
   3444 	struct mbuf *next;
   3445 
   3446 	do {
   3447 		next = m->m_nextpkt;
   3448 		m->m_nextpkt = NULL;
   3449 		m_freem(m);
   3450 	} while ((m = next) != NULL);
   3451 }
   3452 
   3453 static int
   3454 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
   3455     struct mbuf *m0)
   3456 {
   3457 	struct ieee80211com *ic = &sc->sc_ic;
   3458 	struct ath_hal *ah = sc->sc_ah;
   3459 	struct ifnet *ifp = &sc->sc_if;
   3460 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
   3461 	int i, error, iswep, ismcast, isfrag, ismrr;
   3462 	int keyix, hdrlen, pktlen, try0;
   3463 	u_int8_t rix, txrate, ctsrate;
   3464 	u_int8_t cix = 0xff;		/* NB: silence compiler */
   3465 	struct ath_desc *ds, *ds0;
   3466 	struct ath_txq *txq;
   3467 	struct ieee80211_frame *wh;
   3468 	u_int subtype, flags, ctsduration;
   3469 	HAL_PKT_TYPE atype;
   3470 	const HAL_RATE_TABLE *rt;
   3471 	HAL_BOOL shortPreamble;
   3472 	struct ath_node *an;
   3473 	struct mbuf *m;
   3474 	u_int pri;
   3475 
   3476 	wh = mtod(m0, struct ieee80211_frame *);
   3477 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
   3478 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
   3479 	isfrag = m0->m_flags & M_FRAG;
   3480 	hdrlen = ieee80211_anyhdrsize(wh);
   3481 	/*
   3482 	 * Packet length must not include any
   3483 	 * pad bytes; deduct them here.
   3484 	 */
   3485 	pktlen = m0->m_pkthdr.len - (hdrlen & 3);
   3486 
   3487 	if (iswep) {
   3488 		const struct ieee80211_cipher *cip;
   3489 		struct ieee80211_key *k;
   3490 
   3491 		/*
   3492 		 * Construct the 802.11 header+trailer for an encrypted
   3493 		 * frame. The only reason this can fail is because of an
   3494 		 * unknown or unsupported cipher/key type.
   3495 		 */
   3496 		k = ieee80211_crypto_encap(ic, ni, m0);
   3497 		if (k == NULL) {
   3498 			/*
   3499 			 * This can happen when the key is yanked after the
   3500 			 * frame was queued.  Just discard the frame; the
   3501 			 * 802.11 layer counts failures and provides
   3502 			 * debugging/diagnostics.
   3503 			 */
   3504 			ath_freetx(m0);
   3505 			return EIO;
   3506 		}
   3507 		/*
   3508 		 * Adjust the packet + header lengths for the crypto
   3509 		 * additions and calculate the h/w key index.  When
   3510 		 * a s/w mic is done the frame will have had any mic
   3511 		 * added to it prior to entry so m0->m_pkthdr.len above will
   3512 		 * account for it. Otherwise we need to add it to the
   3513 		 * packet length.
   3514 		 */
   3515 		cip = k->wk_cipher;
   3516 		hdrlen += cip->ic_header;
   3517 		pktlen += cip->ic_header + cip->ic_trailer;
   3518 		/* NB: frags always have any TKIP MIC done in s/w */
   3519 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
   3520 			pktlen += cip->ic_miclen;
   3521 		keyix = k->wk_keyix;
   3522 
   3523 		/* packet header may have moved, reset our local pointer */
   3524 		wh = mtod(m0, struct ieee80211_frame *);
   3525 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
   3526 		/*
   3527 		 * Use station key cache slot, if assigned.
   3528 		 */
   3529 		keyix = ni->ni_ucastkey.wk_keyix;
   3530 		if (keyix == IEEE80211_KEYIX_NONE)
   3531 			keyix = HAL_TXKEYIX_INVALID;
   3532 	} else
   3533 		keyix = HAL_TXKEYIX_INVALID;
   3534 
   3535 	pktlen += IEEE80211_CRC_LEN;
   3536 
   3537 	/*
   3538 	 * Load the DMA map so any coalescing is done.  This
   3539 	 * also calculates the number of descriptors we need.
   3540 	 */
   3541 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
   3542 				     BUS_DMA_NOWAIT);
   3543 	if (error == EFBIG) {
   3544 		/* XXX packet requires too many descriptors */
   3545 		bf->bf_nseg = ATH_TXDESC+1;
   3546 	} else if (error != 0) {
   3547 		sc->sc_stats.ast_tx_busdma++;
   3548 		ath_freetx(m0);
   3549 		return error;
   3550 	}
   3551 	/*
   3552 	 * Discard null packets and check for packets that
   3553 	 * require too many TX descriptors.  We try to convert
   3554 	 * the latter to a cluster.
   3555 	 */
   3556 	if (error == EFBIG) {		/* too many desc's, linearize */
   3557 		sc->sc_stats.ast_tx_linear++;
   3558 		m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
   3559 		if (m == NULL) {
   3560 			ath_freetx(m0);
   3561 			sc->sc_stats.ast_tx_nombuf++;
   3562 			return ENOMEM;
   3563 		}
   3564 		m0 = m;
   3565 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
   3566 					     BUS_DMA_NOWAIT);
   3567 		if (error != 0) {
   3568 			sc->sc_stats.ast_tx_busdma++;
   3569 			ath_freetx(m0);
   3570 			return error;
   3571 		}
   3572 		KASSERT(bf->bf_nseg <= ATH_TXDESC,
   3573 		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
   3574 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
   3575 		sc->sc_stats.ast_tx_nodata++;
   3576 		ath_freetx(m0);
   3577 		return EIO;
   3578 	}
   3579 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
   3580 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   3581             bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
   3582 	bf->bf_m = m0;
   3583 	bf->bf_node = ni;			/* NB: held reference */
   3584 
   3585 	/* setup descriptors */
   3586 	ds = bf->bf_desc;
   3587 	rt = sc->sc_currates;
   3588 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
   3589 
   3590 	/*
   3591 	 * NB: the 802.11 layer marks whether or not we should
   3592 	 * use short preamble based on the current mode and
   3593 	 * negotiated parameters.
   3594 	 */
   3595 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
   3596 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) {
   3597 		shortPreamble = AH_TRUE;
   3598 		sc->sc_stats.ast_tx_shortpre++;
   3599 	} else {
   3600 		shortPreamble = AH_FALSE;
   3601 	}
   3602 
   3603 	an = ATH_NODE(ni);
   3604 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
   3605 	ismrr = 0;				/* default no multi-rate retry*/
   3606 	/*
   3607 	 * Calculate Atheros packet type from IEEE80211 packet header,
   3608 	 * setup for rate calculations, and select h/w transmit queue.
   3609 	 */
   3610 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
   3611 	case IEEE80211_FC0_TYPE_MGT:
   3612 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   3613 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
   3614 			atype = HAL_PKT_TYPE_BEACON;
   3615 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
   3616 			atype = HAL_PKT_TYPE_PROBE_RESP;
   3617 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
   3618 			atype = HAL_PKT_TYPE_ATIM;
   3619 		else
   3620 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
   3621 		rix = sc->sc_minrateix;
   3622 		txrate = rt->info[rix].rateCode;
   3623 		if (shortPreamble)
   3624 			txrate |= rt->info[rix].shortPreamble;
   3625 		try0 = ATH_TXMGTTRY;
   3626 		/* NB: force all management frames to highest queue */
   3627 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
   3628 			/* NB: force all management frames to highest queue */
   3629 			pri = WME_AC_VO;
   3630 		} else
   3631 			pri = WME_AC_BE;
   3632 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
   3633 		break;
   3634 	case IEEE80211_FC0_TYPE_CTL:
   3635 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
   3636 		rix = sc->sc_minrateix;
   3637 		txrate = rt->info[rix].rateCode;
   3638 		if (shortPreamble)
   3639 			txrate |= rt->info[rix].shortPreamble;
   3640 		try0 = ATH_TXMGTTRY;
   3641 		/* NB: force all ctl frames to highest queue */
   3642 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
   3643 			/* NB: force all ctl frames to highest queue */
   3644 			pri = WME_AC_VO;
   3645 		} else
   3646 			pri = WME_AC_BE;
   3647 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
   3648 		break;
   3649 	case IEEE80211_FC0_TYPE_DATA:
   3650 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
   3651 		/*
   3652 		 * Data frames: multicast frames go out at a fixed rate,
   3653 		 * otherwise consult the rate control module for the
   3654 		 * rate to use.
   3655 		 */
   3656 		if (ismcast) {
   3657 			/*
   3658 			 * Check mcast rate setting in case it's changed.
   3659 			 * XXX move out of fastpath
   3660 			 */
   3661 			if (ic->ic_mcast_rate != sc->sc_mcastrate) {
   3662 				sc->sc_mcastrix =
   3663 					ath_tx_findrix(rt, ic->ic_mcast_rate);
   3664 				sc->sc_mcastrate = ic->ic_mcast_rate;
   3665 			}
   3666 			rix = sc->sc_mcastrix;
   3667 			txrate = rt->info[rix].rateCode;
   3668 			try0 = 1;
   3669 		} else {
   3670 			ath_rate_findrate(sc, an, shortPreamble, pktlen,
   3671 				&rix, &try0, &txrate);
   3672 			sc->sc_txrate = txrate;		/* for LED blinking */
   3673 			if (try0 != ATH_TXMAXTRY)
   3674 				ismrr = 1;
   3675 		}
   3676 		pri = M_WME_GETAC(m0);
   3677 		if (cap->cap_wmeParams[pri].wmep_noackPolicy)
   3678 			flags |= HAL_TXDESC_NOACK;
   3679 		break;
   3680 	default:
   3681 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
   3682 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
   3683 		/* XXX statistic */
   3684 		ath_freetx(m0);
   3685 		return EIO;
   3686 	}
   3687 	txq = sc->sc_ac2q[pri];
   3688 
   3689 	/*
   3690 	 * When servicing one or more stations in power-save mode
   3691 	 * multicast frames must be buffered until after the beacon.
   3692 	 * We use the CAB queue for that.
   3693 	 */
   3694 	if (ismcast && ic->ic_ps_sta) {
   3695 		txq = sc->sc_cabq;
   3696 		/* XXX? more bit in 802.11 frame header */
   3697 	}
   3698 
   3699 	/*
   3700 	 * Calculate miscellaneous flags.
   3701 	 */
   3702 	if (ismcast) {
   3703 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
   3704 	} else if (pktlen > ic->ic_rtsthreshold) {
   3705 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
   3706 		cix = rt->info[rix].controlRate;
   3707 		sc->sc_stats.ast_tx_rts++;
   3708 	}
   3709 	if (flags & HAL_TXDESC_NOACK)		/* NB: avoid double counting */
   3710 		sc->sc_stats.ast_tx_noack++;
   3711 
   3712 	/*
   3713 	 * If 802.11g protection is enabled, determine whether
   3714 	 * to use RTS/CTS or just CTS.  Note that this is only
   3715 	 * done for OFDM unicast frames.
   3716 	 */
   3717 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
   3718 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
   3719 	    (flags & HAL_TXDESC_NOACK) == 0) {
   3720 		/* XXX fragments must use CCK rates w/ protection */
   3721 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
   3722 			flags |= HAL_TXDESC_RTSENA;
   3723 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
   3724 			flags |= HAL_TXDESC_CTSENA;
   3725 		if (isfrag) {
   3726 			/*
   3727 			 * For frags it would be desirable to use the
   3728 			 * highest CCK rate for RTS/CTS.  But stations
   3729 			 * farther away may detect it at a lower CCK rate
   3730 			 * so use the configured protection rate instead
   3731 			 * (for now).
   3732 			 */
   3733 			cix = rt->info[sc->sc_protrix].controlRate;
   3734 		} else
   3735 			cix = rt->info[sc->sc_protrix].controlRate;
   3736 		sc->sc_stats.ast_tx_protect++;
   3737 	}
   3738 
   3739 	/*
   3740 	 * Calculate duration.  This logically belongs in the 802.11
   3741 	 * layer but it lacks sufficient information to calculate it.
   3742 	 */
   3743 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
   3744 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
   3745 		u_int16_t dur;
   3746 		/*
   3747 		 * XXX not right with fragmentation.
   3748 		 */
   3749 		if (shortPreamble)
   3750 			dur = rt->info[rix].spAckDuration;
   3751 		else
   3752 			dur = rt->info[rix].lpAckDuration;
   3753 		if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
   3754 			dur += dur;             /* additional SIFS+ACK */
   3755 			KASSERT(m0->m_nextpkt != NULL, ("no fragment"));
   3756 			/*
   3757 			 * Include the size of next fragment so NAV is
   3758 			 * updated properly.  The last fragment uses only
   3759 			 * the ACK duration
   3760 			 */
   3761 			dur += ath_hal_computetxtime(ah, rt,
   3762 					m0->m_nextpkt->m_pkthdr.len,
   3763 					rix, shortPreamble);
   3764 		}
   3765 		if (isfrag) {
   3766 			/*
   3767 			 * Force hardware to use computed duration for next
   3768 			 * fragment by disabling multi-rate retry which updates
   3769 			 * duration based on the multi-rate duration table.
   3770 			 */
   3771 			try0 = ATH_TXMAXTRY;
   3772 		}
   3773 		*(u_int16_t *)wh->i_dur = htole16(dur);
   3774 	}
   3775 
   3776 	/*
   3777 	 * Calculate RTS/CTS rate and duration if needed.
   3778 	 */
   3779 	ctsduration = 0;
   3780 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
   3781 		/*
   3782 		 * CTS transmit rate is derived from the transmit rate
   3783 		 * by looking in the h/w rate table.  We must also factor
   3784 		 * in whether or not a short preamble is to be used.
   3785 		 */
   3786 		/* NB: cix is set above where RTS/CTS is enabled */
   3787 		KASSERT(cix != 0xff, ("cix not setup"));
   3788 		ctsrate = rt->info[cix].rateCode;
   3789 		/*
   3790 		 * Compute the transmit duration based on the frame
   3791 		 * size and the size of an ACK frame.  We call into the
   3792 		 * HAL to do the computation since it depends on the
   3793 		 * characteristics of the actual PHY being used.
   3794 		 *
   3795 		 * NB: CTS is assumed the same size as an ACK so we can
   3796 		 *     use the precalculated ACK durations.
   3797 		 */
   3798 		if (shortPreamble) {
   3799 			ctsrate |= rt->info[cix].shortPreamble;
   3800 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
   3801 				ctsduration += rt->info[cix].spAckDuration;
   3802 			ctsduration += ath_hal_computetxtime(ah,
   3803 				rt, pktlen, rix, AH_TRUE);
   3804 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
   3805 				ctsduration += rt->info[rix].spAckDuration;
   3806 		} else {
   3807 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
   3808 				ctsduration += rt->info[cix].lpAckDuration;
   3809 			ctsduration += ath_hal_computetxtime(ah,
   3810 				rt, pktlen, rix, AH_FALSE);
   3811 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
   3812 				ctsduration += rt->info[rix].lpAckDuration;
   3813 		}
   3814 		/*
   3815 		 * Must disable multi-rate retry when using RTS/CTS.
   3816 		 */
   3817 		ismrr = 0;
   3818 		try0 = ATH_TXMGTTRY;		/* XXX */
   3819 	} else
   3820 		ctsrate = 0;
   3821 
   3822 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
   3823 		ieee80211_dump_pkt(mtod(m0, void *), m0->m_len,
   3824 			sc->sc_hwmap[txrate].ieeerate, -1);
   3825 #if NBPFILTER > 0
   3826 	if (ic->ic_rawbpf)
   3827 		bpf_mtap(ic->ic_rawbpf, m0);
   3828 	if (sc->sc_drvbpf) {
   3829 		u_int64_t tsf = ath_hal_gettsf64(ah);
   3830 
   3831 		sc->sc_tx_th.wt_tsf = htole64(tsf);
   3832 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
   3833 		if (iswep)
   3834 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
   3835 		if (isfrag)
   3836 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
   3837 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
   3838 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
   3839 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
   3840 
   3841 		bpf_mtap2(sc->sc_drvbpf,
   3842 			&sc->sc_tx_th, sc->sc_tx_th_len, m0);
   3843 	}
   3844 #endif
   3845 
   3846 	/*
   3847 	 * Determine if a tx interrupt should be generated for
   3848 	 * this descriptor.  We take a tx interrupt to reap
   3849 	 * descriptors when the h/w hits an EOL condition or
   3850 	 * when the descriptor is specifically marked to generate
   3851 	 * an interrupt.  We periodically mark descriptors in this
   3852 	 * way to insure timely replenishing of the supply needed
   3853 	 * for sending frames.  Defering interrupts reduces system
   3854 	 * load and potentially allows more concurrent work to be
   3855 	 * done but if done to aggressively can cause senders to
   3856 	 * backup.
   3857 	 *
   3858 	 * NB: use >= to deal with sc_txintrperiod changing
   3859 	 *     dynamically through sysctl.
   3860 	 */
   3861 	if (flags & HAL_TXDESC_INTREQ) {
   3862 		txq->axq_intrcnt = 0;
   3863 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
   3864 		flags |= HAL_TXDESC_INTREQ;
   3865 		txq->axq_intrcnt = 0;
   3866 	}
   3867 
   3868 	/*
   3869 	 * Formulate first tx descriptor with tx controls.
   3870 	 */
   3871 	/* XXX check return value? */
   3872 	ath_hal_setuptxdesc(ah, ds
   3873 		, pktlen		/* packet length */
   3874 		, hdrlen		/* header length */
   3875 		, atype			/* Atheros packet type */
   3876 		, ni->ni_txpower	/* txpower */
   3877 		, txrate, try0		/* series 0 rate/tries */
   3878 		, keyix			/* key cache index */
   3879 		, sc->sc_txantenna	/* antenna mode */
   3880 		, flags			/* flags */
   3881 		, ctsrate		/* rts/cts rate */
   3882 		, ctsduration		/* rts/cts duration */
   3883 	);
   3884 	bf->bf_flags = flags;
   3885 	/*
   3886 	 * Setup the multi-rate retry state only when we're
   3887 	 * going to use it.  This assumes ath_hal_setuptxdesc
   3888 	 * initializes the descriptors (so we don't have to)
   3889 	 * when the hardware supports multi-rate retry and
   3890 	 * we don't use it.
   3891 	 */
   3892 	if (ismrr)
   3893 		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
   3894 
   3895 	/*
   3896 	 * Fillin the remainder of the descriptor info.
   3897 	 */
   3898 	ds0 = ds;
   3899 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
   3900 		ds->ds_data = bf->bf_segs[i].ds_addr;
   3901 		if (i == bf->bf_nseg - 1)
   3902 			ds->ds_link = 0;
   3903 		else
   3904 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
   3905 		ath_hal_filltxdesc(ah, ds
   3906 			, bf->bf_segs[i].ds_len	/* segment length */
   3907 			, i == 0		/* first segment */
   3908 			, i == bf->bf_nseg - 1	/* last segment */
   3909 			, ds0			/* first descriptor */
   3910 		);
   3911 
   3912 		/* NB: The desc swap function becomes void,
   3913 		 * if descriptor swapping is not enabled
   3914 		 */
   3915 		ath_desc_swap(ds);
   3916 
   3917 		DPRINTF(sc, ATH_DEBUG_XMIT,
   3918 			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
   3919 			__func__, i, ds->ds_link, ds->ds_data,
   3920 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
   3921 	}
   3922 	/*
   3923 	 * Insert the frame on the outbound list and
   3924 	 * pass it on to the hardware.
   3925 	 */
   3926 	ATH_TXQ_LOCK(txq);
   3927 	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
   3928 	if (txq->axq_link == NULL) {
   3929 		ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
   3930 		DPRINTF(sc, ATH_DEBUG_XMIT,
   3931 		    "%s: TXDP[%u] = %" PRIx64 " (%p) depth %d\n", __func__,
   3932 		    txq->axq_qnum, (uint64_t)bf->bf_daddr, bf->bf_desc,
   3933 		    txq->axq_depth);
   3934 	} else {
   3935 		*txq->axq_link = HTOAH32(bf->bf_daddr);
   3936 		DPRINTF(sc, ATH_DEBUG_XMIT,
   3937 		    "%s: link[%u](%p)=%" PRIx64 " (%p) depth %d\n",
   3938 		    __func__, txq->axq_qnum, txq->axq_link,
   3939 		    (uint64_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
   3940 	}
   3941 	txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
   3942 	/*
   3943 	 * The CAB queue is started from the SWBA handler since
   3944 	 * frames only go out on DTIM and to avoid possible races.
   3945 	 */
   3946 	if (txq != sc->sc_cabq)
   3947 		ath_hal_txstart(ah, txq->axq_qnum);
   3948 	ATH_TXQ_UNLOCK(txq);
   3949 
   3950 	return 0;
   3951 }
   3952 
   3953 /*
   3954  * Process completed xmit descriptors from the specified queue.
   3955  */
   3956 static int
   3957 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
   3958 {
   3959 	struct ath_hal *ah = sc->sc_ah;
   3960 	struct ieee80211com *ic = &sc->sc_ic;
   3961 	struct ath_buf *bf;
   3962 	struct ath_desc *ds, *ds0;
   3963 	struct ieee80211_node *ni;
   3964 	struct ath_node *an;
   3965 	int sr, lr, pri, nacked;
   3966 	HAL_STATUS status;
   3967 
   3968 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
   3969 		__func__, txq->axq_qnum,
   3970 		(void *)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
   3971 		txq->axq_link);
   3972 	nacked = 0;
   3973 	for (;;) {
   3974 		ATH_TXQ_LOCK(txq);
   3975 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
   3976 		bf = STAILQ_FIRST(&txq->axq_q);
   3977 		if (bf == NULL) {
   3978 			txq->axq_link = NULL;
   3979 			ATH_TXQ_UNLOCK(txq);
   3980 			break;
   3981 		}
   3982 		ds0 = &bf->bf_desc[0];
   3983 		ds = &bf->bf_desc[bf->bf_nseg - 1];
   3984 		status = ath_hal_txprocdesc(ah, ds);
   3985 #ifdef AR_DEBUG
   3986 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
   3987 			ath_printtxbuf(bf, status == HAL_OK);
   3988 #endif
   3989 		if (status == HAL_EINPROGRESS) {
   3990 			ATH_TXQ_UNLOCK(txq);
   3991 			break;
   3992 		}
   3993 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
   3994 		ATH_TXQ_UNLOCK(txq);
   3995 
   3996 		ni = bf->bf_node;
   3997 		if (ni != NULL) {
   3998 			an = ATH_NODE(ni);
   3999 			if (ds->ds_txstat.ts_status == 0) {
   4000 				u_int8_t txant = ds->ds_txstat.ts_antenna;
   4001 				sc->sc_stats.ast_ant_tx[txant]++;
   4002 				sc->sc_ant_tx[txant]++;
   4003 				if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
   4004 					sc->sc_stats.ast_tx_altrate++;
   4005 				sc->sc_stats.ast_tx_rssi =
   4006 					ds->ds_txstat.ts_rssi;
   4007 				ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
   4008 					ds->ds_txstat.ts_rssi);
   4009 				pri = M_WME_GETAC(bf->bf_m);
   4010 				if (pri >= WME_AC_VO)
   4011 					ic->ic_wme.wme_hipri_traffic++;
   4012 				ni->ni_inact = ni->ni_inact_reload;
   4013 			} else {
   4014 				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
   4015 					sc->sc_stats.ast_tx_xretries++;
   4016 				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
   4017 					sc->sc_stats.ast_tx_fifoerr++;
   4018 				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
   4019 					sc->sc_stats.ast_tx_filtered++;
   4020 			}
   4021 			sr = ds->ds_txstat.ts_shortretry;
   4022 			lr = ds->ds_txstat.ts_longretry;
   4023 			sc->sc_stats.ast_tx_shortretry += sr;
   4024 			sc->sc_stats.ast_tx_longretry += lr;
   4025 			/*
   4026 			 * Hand the descriptor to the rate control algorithm.
   4027 			 */
   4028 			if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
   4029 			    (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
   4030 				/*
   4031 				 * If frame was ack'd update the last rx time
   4032 				 * used to workaround phantom bmiss interrupts.
   4033 				 */
   4034 				if (ds->ds_txstat.ts_status == 0)
   4035 					nacked++;
   4036 				ath_rate_tx_complete(sc, an, ds, ds0);
   4037 			}
   4038 			/*
   4039 			 * Reclaim reference to node.
   4040 			 *
   4041 			 * NB: the node may be reclaimed here if, for example
   4042 			 *     this is a DEAUTH message that was sent and the
   4043 			 *     node was timed out due to inactivity.
   4044 			 */
   4045 			ieee80211_free_node(ni);
   4046 		}
   4047 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   4048 		    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4049 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   4050 		m_freem(bf->bf_m);
   4051 		bf->bf_m = NULL;
   4052 		bf->bf_node = NULL;
   4053 
   4054 		ATH_TXBUF_LOCK(sc);
   4055 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   4056 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
   4057 		ATH_TXBUF_UNLOCK(sc);
   4058 	}
   4059 	return nacked;
   4060 }
   4061 
   4062 static inline int
   4063 txqactive(struct ath_hal *ah, int qnum)
   4064 {
   4065 	u_int32_t txqs = 1<<qnum;
   4066 	ath_hal_gettxintrtxqs(ah, &txqs);
   4067 	return (txqs & (1<<qnum));
   4068 }
   4069 
   4070 /*
   4071  * Deferred processing of transmit interrupt; special-cased
   4072  * for a single hardware transmit queue (e.g. 5210 and 5211).
   4073  */
   4074 static void
   4075 ath_tx_proc_q0(void *arg, int npending)
   4076 {
   4077 	struct ath_softc *sc = arg;
   4078 	struct ifnet *ifp = &sc->sc_if;
   4079 
   4080 	if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]) > 0){
   4081 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
   4082 	}
   4083 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
   4084 		ath_tx_processq(sc, sc->sc_cabq);
   4085 
   4086 	if (sc->sc_softled)
   4087 		ath_led_event(sc, ATH_LED_TX);
   4088 
   4089 	ath_start(ifp);
   4090 }
   4091 
   4092 /*
   4093  * Deferred processing of transmit interrupt; special-cased
   4094  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
   4095  */
   4096 static void
   4097 ath_tx_proc_q0123(void *arg, int npending)
   4098 {
   4099 	struct ath_softc *sc = arg;
   4100 	struct ifnet *ifp = &sc->sc_if;
   4101 	int nacked;
   4102 
   4103 	/*
   4104 	 * Process each active queue.
   4105 	 */
   4106 	nacked = 0;
   4107 	if (txqactive(sc->sc_ah, 0))
   4108 		nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
   4109 	if (txqactive(sc->sc_ah, 1))
   4110 		nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
   4111 	if (txqactive(sc->sc_ah, 2))
   4112 		nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
   4113 	if (txqactive(sc->sc_ah, 3))
   4114 		nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
   4115 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
   4116 		ath_tx_processq(sc, sc->sc_cabq);
   4117 	if (nacked) {
   4118 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
   4119 	}
   4120 
   4121 	if (sc->sc_softled)
   4122 		ath_led_event(sc, ATH_LED_TX);
   4123 
   4124 	ath_start(ifp);
   4125 }
   4126 
   4127 /*
   4128  * Deferred processing of transmit interrupt.
   4129  */
   4130 static void
   4131 ath_tx_proc(void *arg, int npending)
   4132 {
   4133 	struct ath_softc *sc = arg;
   4134 	struct ifnet *ifp = &sc->sc_if;
   4135 	int i, nacked;
   4136 
   4137 	/*
   4138 	 * Process each active queue.
   4139 	 */
   4140 	nacked = 0;
   4141 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   4142 		if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
   4143 			nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
   4144 	if (nacked) {
   4145 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
   4146 	}
   4147 
   4148 	if (sc->sc_softled)
   4149 		ath_led_event(sc, ATH_LED_TX);
   4150 
   4151 	ath_start(ifp);
   4152 }
   4153 
   4154 static void
   4155 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
   4156 {
   4157 	struct ath_hal *ah = sc->sc_ah;
   4158 	struct ieee80211_node *ni;
   4159 	struct ath_buf *bf;
   4160 
   4161 	/*
   4162 	 * NB: this assumes output has been stopped and
   4163 	 *     we do not need to block ath_tx_tasklet
   4164 	 */
   4165 	for (;;) {
   4166 		ATH_TXQ_LOCK(txq);
   4167 		bf = STAILQ_FIRST(&txq->axq_q);
   4168 		if (bf == NULL) {
   4169 			txq->axq_link = NULL;
   4170 			ATH_TXQ_UNLOCK(txq);
   4171 			break;
   4172 		}
   4173 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
   4174 		ATH_TXQ_UNLOCK(txq);
   4175 #ifdef AR_DEBUG
   4176 		if (sc->sc_debug & ATH_DEBUG_RESET)
   4177 			ath_printtxbuf(bf,
   4178 				ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
   4179 #endif /* AR_DEBUG */
   4180 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   4181 		m_freem(bf->bf_m);
   4182 		bf->bf_m = NULL;
   4183 		ni = bf->bf_node;
   4184 		bf->bf_node = NULL;
   4185 		if (ni != NULL) {
   4186 			/*
   4187 			 * Reclaim node reference.
   4188 			 */
   4189 			ieee80211_free_node(ni);
   4190 		}
   4191 		ATH_TXBUF_LOCK(sc);
   4192 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   4193 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
   4194 		ATH_TXBUF_UNLOCK(sc);
   4195 	}
   4196 }
   4197 
   4198 static void
   4199 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
   4200 {
   4201 	struct ath_hal *ah = sc->sc_ah;
   4202 
   4203 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
   4204 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
   4205 	    __func__, txq->axq_qnum,
   4206 	    (void *)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
   4207 	    txq->axq_link);
   4208 }
   4209 
   4210 /*
   4211  * Drain the transmit queues and reclaim resources.
   4212  */
   4213 static void
   4214 ath_draintxq(struct ath_softc *sc)
   4215 {
   4216 	struct ath_hal *ah = sc->sc_ah;
   4217 	int i;
   4218 
   4219 	/* XXX return value */
   4220 	if (!sc->sc_invalid) {
   4221 		/* don't touch the hardware if marked invalid */
   4222 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
   4223 		DPRINTF(sc, ATH_DEBUG_RESET,
   4224 		    "%s: beacon queue %p\n", __func__,
   4225 		    (void *)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
   4226 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   4227 			if (ATH_TXQ_SETUP(sc, i))
   4228 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
   4229 	}
   4230 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   4231 		if (ATH_TXQ_SETUP(sc, i))
   4232 			ath_tx_draintxq(sc, &sc->sc_txq[i]);
   4233 }
   4234 
   4235 /*
   4236  * Disable the receive h/w in preparation for a reset.
   4237  */
   4238 static void
   4239 ath_stoprecv(struct ath_softc *sc)
   4240 {
   4241 #define	PA2DESC(_sc, _pa) \
   4242 	((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
   4243 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
   4244 	struct ath_hal *ah = sc->sc_ah;
   4245 
   4246 	ath_hal_stoppcurecv(ah);	/* disable PCU */
   4247 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
   4248 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
   4249 	DELAY(3000);			/* 3ms is long enough for 1 frame */
   4250 #ifdef AR_DEBUG
   4251 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
   4252 		struct ath_buf *bf;
   4253 
   4254 		printf("%s: rx queue %p, link %p\n", __func__,
   4255 			(void *)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
   4256 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
   4257 			struct ath_desc *ds = bf->bf_desc;
   4258 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
   4259 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
   4260 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
   4261 				ath_printrxbuf(bf, status == HAL_OK);
   4262 		}
   4263 	}
   4264 #endif
   4265 	sc->sc_rxlink = NULL;		/* just in case */
   4266 #undef PA2DESC
   4267 }
   4268 
   4269 /*
   4270  * Enable the receive h/w following a reset.
   4271  */
   4272 static int
   4273 ath_startrecv(struct ath_softc *sc)
   4274 {
   4275 	struct ath_hal *ah = sc->sc_ah;
   4276 	struct ath_buf *bf;
   4277 
   4278 	sc->sc_rxlink = NULL;
   4279 	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
   4280 		int error = ath_rxbuf_init(sc, bf);
   4281 		if (error != 0) {
   4282 			DPRINTF(sc, ATH_DEBUG_RECV,
   4283 				"%s: ath_rxbuf_init failed %d\n",
   4284 				__func__, error);
   4285 			return error;
   4286 		}
   4287 	}
   4288 
   4289 	bf = STAILQ_FIRST(&sc->sc_rxbuf);
   4290 	ath_hal_putrxbuf(ah, bf->bf_daddr);
   4291 	ath_hal_rxena(ah);		/* enable recv descriptors */
   4292 	ath_mode_init(sc);		/* set filters, etc. */
   4293 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
   4294 	return 0;
   4295 }
   4296 
   4297 /*
   4298  * Update internal state after a channel change.
   4299  */
   4300 static void
   4301 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
   4302 {
   4303 	struct ieee80211com *ic = &sc->sc_ic;
   4304 	enum ieee80211_phymode mode;
   4305 	u_int16_t flags;
   4306 
   4307 	/*
   4308 	 * Change channels and update the h/w rate map
   4309 	 * if we're switching; e.g. 11a to 11b/g.
   4310 	 */
   4311 	mode = ieee80211_chan2mode(ic, chan);
   4312 	if (mode != sc->sc_curmode)
   4313 		ath_setcurmode(sc, mode);
   4314 	/*
   4315 	 * Update BPF state.  NB: ethereal et. al. don't handle
   4316 	 * merged flags well so pick a unique mode for their use.
   4317 	 */
   4318 	if (IEEE80211_IS_CHAN_A(chan))
   4319 		flags = IEEE80211_CHAN_A;
   4320 	/* XXX 11g schizophrenia */
   4321 	else if (IEEE80211_IS_CHAN_G(chan) ||
   4322 	    IEEE80211_IS_CHAN_PUREG(chan))
   4323 		flags = IEEE80211_CHAN_G;
   4324 	else
   4325 		flags = IEEE80211_CHAN_B;
   4326 	if (IEEE80211_IS_CHAN_T(chan))
   4327 		flags |= IEEE80211_CHAN_TURBO;
   4328 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
   4329 		htole16(chan->ic_freq);
   4330 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
   4331 		htole16(flags);
   4332 }
   4333 
   4334 /*
   4335  * Poll for a channel clear indication; this is required
   4336  * for channels requiring DFS and not previously visited
   4337  * and/or with a recent radar detection.
   4338  */
   4339 static void
   4340 ath_dfswait(void *arg)
   4341 {
   4342 	struct ath_softc *sc = arg;
   4343 	struct ath_hal *ah = sc->sc_ah;
   4344 	HAL_CHANNEL hchan;
   4345 
   4346 	ath_hal_radar_wait(ah, &hchan);
   4347 	if (hchan.privFlags & CHANNEL_INTERFERENCE) {
   4348 		if_printf(&sc->sc_if,
   4349 		    "channel %u/0x%x/0x%x has interference\n",
   4350 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
   4351 		return;
   4352 	}
   4353 	if ((hchan.privFlags & CHANNEL_DFS) == 0) {
   4354 		/* XXX should not happen */
   4355 		return;
   4356 	}
   4357 	if (hchan.privFlags & CHANNEL_DFS_CLEAR) {
   4358 		sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR;
   4359 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
   4360 		if_printf(&sc->sc_if,
   4361 		    "channel %u/0x%x/0x%x marked clear\n",
   4362 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
   4363 	} else
   4364 		callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc);
   4365 }
   4366 
   4367 /*
   4368  * Set/change channels.  If the channel is really being changed,
   4369  * it's done by reseting the chip.  To accomplish this we must
   4370  * first cleanup any pending DMA, then restart stuff after a la
   4371  * ath_init.
   4372  */
   4373 static int
   4374 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
   4375 {
   4376 	struct ath_hal *ah = sc->sc_ah;
   4377 	struct ieee80211com *ic = &sc->sc_ic;
   4378 	HAL_CHANNEL hchan;
   4379 
   4380 	/*
   4381 	 * Convert to a HAL channel description with
   4382 	 * the flags constrained to reflect the current
   4383 	 * operating mode.
   4384 	 */
   4385 	hchan.channel = chan->ic_freq;
   4386 	hchan.channelFlags = ath_chan2flags(ic, chan);
   4387 
   4388 	DPRINTF(sc, ATH_DEBUG_RESET,
   4389 	    "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
   4390 	    __func__,
   4391 	    ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
   4392 		sc->sc_curchan.channelFlags),
   4393 	    	sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
   4394 	    ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
   4395 	        hchan.channel, hchan.channelFlags);
   4396 	if (hchan.channel != sc->sc_curchan.channel ||
   4397 	    hchan.channelFlags != sc->sc_curchan.channelFlags) {
   4398 		HAL_STATUS status;
   4399 
   4400 		/*
   4401 		 * To switch channels clear any pending DMA operations;
   4402 		 * wait long enough for the RX fifo to drain, reset the
   4403 		 * hardware at the new frequency, and then re-enable
   4404 		 * the relevant bits of the h/w.
   4405 		 */
   4406 		ath_hal_intrset(ah, 0);		/* disable interrupts */
   4407 		ath_draintxq(sc);		/* clear pending tx frames */
   4408 		ath_stoprecv(sc);		/* turn off frame recv */
   4409 		if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
   4410 			if_printf(ic->ic_ifp, "%s: unable to reset "
   4411 			    "channel %u (%u MHz, flags 0x%x hal flags 0x%x)\n",
   4412 			    __func__, ieee80211_chan2ieee(ic, chan),
   4413 			    chan->ic_freq, chan->ic_flags, hchan.channelFlags);
   4414 			return EIO;
   4415 		}
   4416 		sc->sc_curchan = hchan;
   4417 		ath_update_txpow(sc);		/* update tx power state */
   4418 		ath_restore_diversity(sc);
   4419 		sc->sc_calinterval = 1;
   4420 		sc->sc_caltries = 0;
   4421 
   4422 		/*
   4423 		 * Re-enable rx framework.
   4424 		 */
   4425 		if (ath_startrecv(sc) != 0) {
   4426 			if_printf(&sc->sc_if,
   4427 				"%s: unable to restart recv logic\n", __func__);
   4428 			return EIO;
   4429 		}
   4430 
   4431 		/*
   4432 		 * Change channels and update the h/w rate map
   4433 		 * if we're switching; e.g. 11a to 11b/g.
   4434 		 */
   4435 		ic->ic_ibss_chan = chan;
   4436 		ath_chan_change(sc, chan);
   4437 
   4438 		/*
   4439 		 * Handle DFS required waiting period to determine
   4440 		 * if channel is clear of radar traffic.
   4441 		 */
   4442 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   4443 #define	DFS_AND_NOT_CLEAR(_c) \
   4444 	(((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS)
   4445 			if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) {
   4446 				if_printf(&sc->sc_if,
   4447 					"wait for DFS clear channel signal\n");
   4448 				/* XXX stop sndq */
   4449 				sc->sc_if.if_flags |= IFF_OACTIVE;
   4450 				callout_reset(&sc->sc_dfs_ch,
   4451 					2 * hz, ath_dfswait, sc);
   4452 			} else
   4453 				callout_stop(&sc->sc_dfs_ch);
   4454 #undef DFS_NOT_CLEAR
   4455 		}
   4456 
   4457 		/*
   4458 		 * Re-enable interrupts.
   4459 		 */
   4460 		ath_hal_intrset(ah, sc->sc_imask);
   4461 	}
   4462 	return 0;
   4463 }
   4464 
   4465 static void
   4466 ath_next_scan(void *arg)
   4467 {
   4468 	struct ath_softc *sc = arg;
   4469 	struct ieee80211com *ic = &sc->sc_ic;
   4470 	int s;
   4471 
   4472 	/* don't call ath_start w/o network interrupts blocked */
   4473 	s = splnet();
   4474 
   4475 	if (ic->ic_state == IEEE80211_S_SCAN)
   4476 		ieee80211_next_scan(ic);
   4477 	splx(s);
   4478 }
   4479 
   4480 /*
   4481  * Periodically recalibrate the PHY to account
   4482  * for temperature/environment changes.
   4483  */
   4484 static void
   4485 ath_calibrate(void *arg)
   4486 {
   4487 	struct ath_softc *sc = arg;
   4488 	struct ath_hal *ah = sc->sc_ah;
   4489 	HAL_BOOL iqCalDone;
   4490 
   4491 	sc->sc_stats.ast_per_cal++;
   4492 
   4493 	ATH_LOCK(sc);
   4494 
   4495 	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
   4496 		/*
   4497 		 * Rfgain is out of bounds, reset the chip
   4498 		 * to load new gain values.
   4499 		 */
   4500 		DPRINTF(sc, ATH_DEBUG_CALIBRATE,
   4501 			"%s: rfgain change\n", __func__);
   4502 		sc->sc_stats.ast_per_rfgain++;
   4503 		ath_reset(&sc->sc_if);
   4504 	}
   4505 	if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
   4506 		DPRINTF(sc, ATH_DEBUG_ANY,
   4507 			"%s: calibration of channel %u failed\n",
   4508 			__func__, sc->sc_curchan.channel);
   4509 		sc->sc_stats.ast_per_calfail++;
   4510 	}
   4511 	/*
   4512 	 * Calibrate noise floor data again in case of change.
   4513 	 */
   4514 	ath_hal_process_noisefloor(ah);
   4515 	/*
   4516 	 * Poll more frequently when the IQ calibration is in
   4517 	 * progress to speedup loading the final settings.
   4518 	 * We temper this aggressive polling with an exponential
   4519 	 * back off after 4 tries up to ath_calinterval.
   4520 	 */
   4521 	if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
   4522 		sc->sc_caltries = 0;
   4523 		sc->sc_calinterval = ath_calinterval;
   4524 	} else if (sc->sc_caltries > 4) {
   4525 		sc->sc_caltries = 0;
   4526 		sc->sc_calinterval <<= 1;
   4527 		if (sc->sc_calinterval > ath_calinterval)
   4528 			sc->sc_calinterval = ath_calinterval;
   4529 	}
   4530 	KASSERT(0 < sc->sc_calinterval && sc->sc_calinterval <= ath_calinterval,
   4531 		("bad calibration interval %u", sc->sc_calinterval));
   4532 
   4533 	DPRINTF(sc, ATH_DEBUG_CALIBRATE,
   4534 		"%s: next +%u (%siqCalDone tries %u)\n", __func__,
   4535 		sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
   4536 	sc->sc_caltries++;
   4537 	callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
   4538 		ath_calibrate, sc);
   4539 	ATH_UNLOCK(sc);
   4540 }
   4541 
   4542 static int
   4543 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
   4544 {
   4545 	struct ifnet *ifp = ic->ic_ifp;
   4546 	struct ath_softc *sc = ifp->if_softc;
   4547 	struct ath_hal *ah = sc->sc_ah;
   4548 	struct ieee80211_node *ni;
   4549 	int i, error;
   4550 	const u_int8_t *bssid;
   4551 	u_int32_t rfilt;
   4552 	static const HAL_LED_STATE leds[] = {
   4553 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
   4554 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
   4555 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
   4556 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
   4557 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
   4558 	};
   4559 
   4560 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
   4561 		ieee80211_state_name[ic->ic_state],
   4562 		ieee80211_state_name[nstate]);
   4563 
   4564 	callout_stop(&sc->sc_scan_ch);
   4565 	callout_stop(&sc->sc_cal_ch);
   4566 	callout_stop(&sc->sc_dfs_ch);
   4567 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
   4568 
   4569 	if (nstate == IEEE80211_S_INIT) {
   4570 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
   4571 		/*
   4572 		 * NB: disable interrupts so we don't rx frames.
   4573 		 */
   4574 		ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
   4575 		/*
   4576 		 * Notify the rate control algorithm.
   4577 		 */
   4578 		ath_rate_newstate(sc, nstate);
   4579 		goto done;
   4580 	}
   4581 	ni = ic->ic_bss;
   4582 	error = ath_chan_set(sc, ic->ic_curchan);
   4583 	if (error != 0)
   4584 		goto bad;
   4585 	rfilt = ath_calcrxfilter(sc, nstate);
   4586 	if (nstate == IEEE80211_S_SCAN)
   4587 		bssid = ifp->if_broadcastaddr;
   4588 	else
   4589 		bssid = ni->ni_bssid;
   4590 	ath_hal_setrxfilter(ah, rfilt);
   4591 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
   4592 		 __func__, rfilt, ether_sprintf(bssid));
   4593 
   4594 	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
   4595 		ath_hal_setassocid(ah, bssid, ni->ni_associd);
   4596 	else
   4597 		ath_hal_setassocid(ah, bssid, 0);
   4598 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
   4599 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
   4600 			if (ath_hal_keyisvalid(ah, i))
   4601 				ath_hal_keysetmac(ah, i, bssid);
   4602 	}
   4603 
   4604 	/*
   4605 	 * Notify the rate control algorithm so rates
   4606 	 * are setup should ath_beacon_alloc be called.
   4607 	 */
   4608 	ath_rate_newstate(sc, nstate);
   4609 
   4610 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
   4611 		/* nothing to do */;
   4612 	} else if (nstate == IEEE80211_S_RUN) {
   4613 		DPRINTF(sc, ATH_DEBUG_STATE,
   4614 			"%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
   4615 			"capinfo=0x%04x chan=%d\n"
   4616 			 , __func__
   4617 			 , ic->ic_flags
   4618 			 , ni->ni_intval
   4619 			 , ether_sprintf(ni->ni_bssid)
   4620 			 , ni->ni_capinfo
   4621 			 , ieee80211_chan2ieee(ic, ic->ic_curchan));
   4622 
   4623 		switch (ic->ic_opmode) {
   4624 		case IEEE80211_M_HOSTAP:
   4625 		case IEEE80211_M_IBSS:
   4626 			/*
   4627 			 * Allocate and setup the beacon frame.
   4628 			 *
   4629 			 * Stop any previous beacon DMA.  This may be
   4630 			 * necessary, for example, when an ibss merge
   4631 			 * causes reconfiguration; there will be a state
   4632 			 * transition from RUN->RUN that means we may
   4633 			 * be called with beacon transmission active.
   4634 			 */
   4635 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
   4636 			ath_beacon_free(sc);
   4637 			error = ath_beacon_alloc(sc, ni);
   4638 			if (error != 0)
   4639 				goto bad;
   4640 			/*
   4641 			 * If joining an adhoc network defer beacon timer
   4642 			 * configuration to the next beacon frame so we
   4643 			 * have a current TSF to use.  Otherwise we're
   4644 			 * starting an ibss/bss so there's no need to delay.
   4645 			 */
   4646 			if (ic->ic_opmode == IEEE80211_M_IBSS &&
   4647 			    ic->ic_bss->ni_tstamp.tsf != 0)
   4648 				sc->sc_syncbeacon = 1;
   4649 			else
   4650 				ath_beacon_config(sc);
   4651 			break;
   4652 		case IEEE80211_M_STA:
   4653 			/*
   4654 			 * Allocate a key cache slot to the station.
   4655 			 */
   4656 			if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
   4657 			    sc->sc_hasclrkey &&
   4658 			    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
   4659 				ath_setup_stationkey(ni);
   4660 			/*
   4661 			 * Defer beacon timer configuration to the next
   4662 			 * beacon frame so we have a current TSF to use
   4663 			 * (any TSF collected when scanning is likely old).
   4664 			 */
   4665 			sc->sc_syncbeacon = 1;
   4666 			break;
   4667 		default:
   4668 			break;
   4669 		}
   4670 		/*
   4671 		 * Let the hal process statistics collected during a
   4672 		 * scan so it can provide calibrated noise floor data.
   4673 		 */
   4674 		ath_hal_process_noisefloor(ah);
   4675 		/*
   4676 		 * Reset rssi stats; maybe not the best place...
   4677 		 */
   4678 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
   4679 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
   4680 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
   4681 	} else {
   4682 		ath_hal_intrset(ah,
   4683 			sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
   4684 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
   4685 	}
   4686 done:
   4687 	/*
   4688 	 * Invoke the parent method to complete the work.
   4689 	 */
   4690 	error = sc->sc_newstate(ic, nstate, arg);
   4691 	/*
   4692 	 * Finally, start any timers.
   4693 	 */
   4694 	if (nstate == IEEE80211_S_RUN) {
   4695 		/* start periodic recalibration timer */
   4696 		callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
   4697 			ath_calibrate, sc);
   4698 	} else if (nstate == IEEE80211_S_SCAN) {
   4699 		/* start ap/neighbor scan timer */
   4700 		callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
   4701 			ath_next_scan, sc);
   4702 	}
   4703 bad:
   4704 	return error;
   4705 }
   4706 
   4707 /*
   4708  * Allocate a key cache slot to the station so we can
   4709  * setup a mapping from key index to node. The key cache
   4710  * slot is needed for managing antenna state and for
   4711  * compression when stations do not use crypto.  We do
   4712  * it uniliaterally here; if crypto is employed this slot
   4713  * will be reassigned.
   4714  */
   4715 static void
   4716 ath_setup_stationkey(struct ieee80211_node *ni)
   4717 {
   4718 	struct ieee80211com *ic = ni->ni_ic;
   4719 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   4720 	ieee80211_keyix keyix, rxkeyix;
   4721 
   4722 	if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
   4723 		/*
   4724 		 * Key cache is full; we'll fall back to doing
   4725 		 * the more expensive lookup in software.  Note
   4726 		 * this also means no h/w compression.
   4727 		 */
   4728 		/* XXX msg+statistic */
   4729 	} else {
   4730 		/* XXX locking? */
   4731 		ni->ni_ucastkey.wk_keyix = keyix;
   4732 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
   4733 		/* NB: this will create a pass-thru key entry */
   4734 		ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
   4735 	}
   4736 }
   4737 
   4738 /*
   4739  * Setup driver-specific state for a newly associated node.
   4740  * Note that we're called also on a re-associate, the isnew
   4741  * param tells us if this is the first time or not.
   4742  */
   4743 static void
   4744 ath_newassoc(struct ieee80211_node *ni, int isnew)
   4745 {
   4746 	struct ieee80211com *ic = ni->ni_ic;
   4747 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   4748 
   4749 	ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
   4750 	if (isnew &&
   4751 	    (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
   4752 		KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
   4753 		    ("new assoc with a unicast key already setup (keyix %u)",
   4754 		    ni->ni_ucastkey.wk_keyix));
   4755 		ath_setup_stationkey(ni);
   4756 	}
   4757 }
   4758 
   4759 static int
   4760 ath_getchannels(struct ath_softc *sc, u_int cc,
   4761 	HAL_BOOL outdoor, HAL_BOOL xchanmode)
   4762 {
   4763 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
   4764 	struct ieee80211com *ic = &sc->sc_ic;
   4765 	struct ifnet *ifp = &sc->sc_if;
   4766 	struct ath_hal *ah = sc->sc_ah;
   4767 	HAL_CHANNEL *chans;
   4768 	int i, ix, nchan;
   4769 
   4770 	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
   4771 			M_TEMP, M_NOWAIT);
   4772 	if (chans == NULL) {
   4773 		if_printf(ifp, "unable to allocate channel table\n");
   4774 		return ENOMEM;
   4775 	}
   4776 	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
   4777 	    NULL, 0, NULL,
   4778 	    cc, HAL_MODE_ALL, outdoor, xchanmode)) {
   4779 		u_int32_t rd;
   4780 
   4781 		(void)ath_hal_getregdomain(ah, &rd);
   4782 		if_printf(ifp, "unable to collect channel list from hal; "
   4783 			"regdomain likely %u country code %u\n", rd, cc);
   4784 		free(chans, M_TEMP);
   4785 		return EINVAL;
   4786 	}
   4787 
   4788 	/*
   4789 	 * Convert HAL channels to ieee80211 ones and insert
   4790 	 * them in the table according to their channel number.
   4791 	 */
   4792 	for (i = 0; i < nchan; i++) {
   4793 		HAL_CHANNEL *c = &chans[i];
   4794 		u_int16_t flags;
   4795 
   4796 		ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags);
   4797 		if (ix > IEEE80211_CHAN_MAX) {
   4798 			if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n",
   4799 				ix, c->channel, c->channelFlags);
   4800 			continue;
   4801 		}
   4802 		if (ix < 0) {
   4803 			/* XXX can't handle stuff <2400 right now */
   4804 			if (bootverbose)
   4805 				if_printf(ifp, "hal channel %d (%u/%x) "
   4806 				    "cannot be handled; ignored\n",
   4807 				    ix, c->channel, c->channelFlags);
   4808 			continue;
   4809 		}
   4810 		/*
   4811 		 * Calculate net80211 flags; most are compatible
   4812 		 * but some need massaging.  Note the static turbo
   4813 		 * conversion can be removed once net80211 is updated
   4814 		 * to understand static vs. dynamic turbo.
   4815 		 */
   4816 		flags = c->channelFlags & COMPAT;
   4817 		if (c->channelFlags & CHANNEL_STURBO)
   4818 			flags |= IEEE80211_CHAN_TURBO;
   4819 		if (ic->ic_channels[ix].ic_freq == 0) {
   4820 			ic->ic_channels[ix].ic_freq = c->channel;
   4821 			ic->ic_channels[ix].ic_flags = flags;
   4822 		} else {
   4823 			/* channels overlap; e.g. 11g and 11b */
   4824 			ic->ic_channels[ix].ic_flags |= flags;
   4825 		}
   4826 	}
   4827 	free(chans, M_TEMP);
   4828 	return 0;
   4829 #undef COMPAT
   4830 }
   4831 
   4832 static void
   4833 ath_led_done(void *arg)
   4834 {
   4835 	struct ath_softc *sc = arg;
   4836 
   4837 	sc->sc_blinking = 0;
   4838 }
   4839 
   4840 /*
   4841  * Turn the LED off: flip the pin and then set a timer so no
   4842  * update will happen for the specified duration.
   4843  */
   4844 static void
   4845 ath_led_off(void *arg)
   4846 {
   4847 	struct ath_softc *sc = arg;
   4848 
   4849 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
   4850 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
   4851 }
   4852 
   4853 /*
   4854  * Blink the LED according to the specified on/off times.
   4855  */
   4856 static void
   4857 ath_led_blink(struct ath_softc *sc, int on, int off)
   4858 {
   4859 	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
   4860 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
   4861 	sc->sc_blinking = 1;
   4862 	sc->sc_ledoff = off;
   4863 	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
   4864 }
   4865 
   4866 static void
   4867 ath_led_event(struct ath_softc *sc, int event)
   4868 {
   4869 
   4870 	sc->sc_ledevent = ticks;	/* time of last event */
   4871 	if (sc->sc_blinking)		/* don't interrupt active blink */
   4872 		return;
   4873 	switch (event) {
   4874 	case ATH_LED_POLL:
   4875 		ath_led_blink(sc, sc->sc_hwmap[0].ledon,
   4876 			sc->sc_hwmap[0].ledoff);
   4877 		break;
   4878 	case ATH_LED_TX:
   4879 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
   4880 			sc->sc_hwmap[sc->sc_txrate].ledoff);
   4881 		break;
   4882 	case ATH_LED_RX:
   4883 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
   4884 			sc->sc_hwmap[sc->sc_rxrate].ledoff);
   4885 		break;
   4886 	}
   4887 }
   4888 
   4889 static void
   4890 ath_update_txpow(struct ath_softc *sc)
   4891 {
   4892 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
   4893 	struct ieee80211com *ic = &sc->sc_ic;
   4894 	struct ath_hal *ah = sc->sc_ah;
   4895 	u_int32_t txpow;
   4896 
   4897 	if (sc->sc_curtxpow != ic->ic_txpowlimit) {
   4898 		ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
   4899 		/* read back in case value is clamped */
   4900 		(void)ath_hal_gettxpowlimit(ah, &txpow);
   4901 		ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
   4902 	}
   4903 	/*
   4904 	 * Fetch max tx power level for status requests.
   4905 	 */
   4906 	(void)ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
   4907 	ic->ic_bss->ni_txpower = txpow;
   4908 }
   4909 
   4910 static void
   4911 rate_setup(struct ath_softc *sc,
   4912 	const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs)
   4913 {
   4914 	int i, maxrates;
   4915 
   4916 	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
   4917 		DPRINTF(sc, ATH_DEBUG_ANY,
   4918 			"%s: rate table too small (%u > %u)\n",
   4919 		       __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
   4920 		maxrates = IEEE80211_RATE_MAXSIZE;
   4921 	} else
   4922 		maxrates = rt->rateCount;
   4923 	for (i = 0; i < maxrates; i++)
   4924 		rs->rs_rates[i] = rt->info[i].dot11Rate;
   4925 	rs->rs_nrates = maxrates;
   4926 }
   4927 
   4928 static int
   4929 ath_rate_setup(struct ath_softc *sc, u_int mode)
   4930 {
   4931 	struct ath_hal *ah = sc->sc_ah;
   4932 	struct ieee80211com *ic = &sc->sc_ic;
   4933 	const HAL_RATE_TABLE *rt;
   4934 
   4935 	switch (mode) {
   4936 	case IEEE80211_MODE_11A:
   4937 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
   4938 		break;
   4939 	case IEEE80211_MODE_11B:
   4940 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
   4941 		break;
   4942 	case IEEE80211_MODE_11G:
   4943 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
   4944 		break;
   4945 	case IEEE80211_MODE_TURBO_A:
   4946 		/* XXX until static/dynamic turbo is fixed */
   4947 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
   4948 		break;
   4949 	case IEEE80211_MODE_TURBO_G:
   4950 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
   4951 		break;
   4952 	default:
   4953 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
   4954 			__func__, mode);
   4955 		return 0;
   4956 	}
   4957 	sc->sc_rates[mode] = rt;
   4958 	if (rt != NULL) {
   4959 		rate_setup(sc, rt, &ic->ic_sup_rates[mode]);
   4960 		return 1;
   4961 	} else
   4962 		return 0;
   4963 }
   4964 
   4965 static void
   4966 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
   4967 {
   4968 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   4969 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
   4970 	static const struct {
   4971 		u_int		rate;		/* tx/rx 802.11 rate */
   4972 		u_int16_t	timeOn;		/* LED on time (ms) */
   4973 		u_int16_t	timeOff;	/* LED off time (ms) */
   4974 	} blinkrates[] = {
   4975 		{ 108,  40,  10 },
   4976 		{  96,  44,  11 },
   4977 		{  72,  50,  13 },
   4978 		{  48,  57,  14 },
   4979 		{  36,  67,  16 },
   4980 		{  24,  80,  20 },
   4981 		{  22, 100,  25 },
   4982 		{  18, 133,  34 },
   4983 		{  12, 160,  40 },
   4984 		{  10, 200,  50 },
   4985 		{   6, 240,  58 },
   4986 		{   4, 267,  66 },
   4987 		{   2, 400, 100 },
   4988 		{   0, 500, 130 },
   4989 	};
   4990 	const HAL_RATE_TABLE *rt;
   4991 	int i, j;
   4992 
   4993 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
   4994 	rt = sc->sc_rates[mode];
   4995 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
   4996 	for (i = 0; i < rt->rateCount; i++)
   4997 		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
   4998 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
   4999 	for (i = 0; i < 32; i++) {
   5000 		u_int8_t ix = rt->rateCodeToIndex[i];
   5001 		if (ix == 0xff) {
   5002 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
   5003 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
   5004 			continue;
   5005 		}
   5006 		sc->sc_hwmap[i].ieeerate =
   5007 			rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
   5008 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
   5009 		if (rt->info[ix].shortPreamble ||
   5010 		    rt->info[ix].phy == IEEE80211_T_OFDM)
   5011 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
   5012 		/* NB: receive frames include FCS */
   5013 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
   5014 			IEEE80211_RADIOTAP_F_FCS;
   5015 		/* setup blink rate table to avoid per-packet lookup */
   5016 		for (j = 0; j < N(blinkrates)-1; j++)
   5017 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
   5018 				break;
   5019 		/* NB: this uses the last entry if the rate isn't found */
   5020 		/* XXX beware of overlow */
   5021 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
   5022 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
   5023 	}
   5024 	sc->sc_currates = rt;
   5025 	sc->sc_curmode = mode;
   5026 	/*
   5027 	 * All protection frames are transmited at 2Mb/s for
   5028 	 * 11g, otherwise at 1Mb/s.
   5029 	 */
   5030 	if (mode == IEEE80211_MODE_11G)
   5031 		sc->sc_protrix = ath_tx_findrix(rt, 2*2);
   5032 	else
   5033 		sc->sc_protrix = ath_tx_findrix(rt, 2*1);
   5034 	/* rate index used to send management frames */
   5035 	sc->sc_minrateix = 0;
   5036 	/*
   5037 	 * Setup multicast rate state.
   5038 	 */
   5039 	/* XXX layering violation */
   5040 	sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate);
   5041 	sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate;
   5042 	/* NB: caller is responsible for reseting rate control state */
   5043 #undef N
   5044 }
   5045 
   5046 #ifdef AR_DEBUG
   5047 static void
   5048 ath_printrxbuf(struct ath_buf *bf, int done)
   5049 {
   5050 	struct ath_desc *ds;
   5051 	int i;
   5052 
   5053 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
   5054 		printf("R%d (%p %" PRIx64
   5055 		    ") %08x %08x %08x %08x %08x %08x %c\n", i, ds,
   5056 		    (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
   5057 		    ds->ds_link, ds->ds_data,
   5058 		    ds->ds_ctl0, ds->ds_ctl1,
   5059 		    ds->ds_hw[0], ds->ds_hw[1],
   5060 		    !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
   5061 	}
   5062 }
   5063 
   5064 static void
   5065 ath_printtxbuf(struct ath_buf *bf, int done)
   5066 {
   5067 	struct ath_desc *ds;
   5068 	int i;
   5069 
   5070 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
   5071 		printf("T%d (%p %" PRIx64
   5072 		    ") %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
   5073 		    i, ds,
   5074 		    (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
   5075 		    ds->ds_link, ds->ds_data,
   5076 		    ds->ds_ctl0, ds->ds_ctl1,
   5077 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
   5078 		    !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
   5079 	}
   5080 }
   5081 #endif /* AR_DEBUG */
   5082 
   5083 static void
   5084 ath_watchdog(struct ifnet *ifp)
   5085 {
   5086 	struct ath_softc *sc = ifp->if_softc;
   5087 	struct ieee80211com *ic = &sc->sc_ic;
   5088 	struct ath_txq *axq;
   5089 	int i;
   5090 
   5091 	ifp->if_timer = 0;
   5092 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
   5093 		return;
   5094 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
   5095 		if (!ATH_TXQ_SETUP(sc, i))
   5096 			continue;
   5097 		axq = &sc->sc_txq[i];
   5098 		ATH_TXQ_LOCK(axq);
   5099 		if (axq->axq_timer == 0)
   5100 			;
   5101 		else if (--axq->axq_timer == 0) {
   5102 			ATH_TXQ_UNLOCK(axq);
   5103 			if_printf(ifp, "device timeout (txq %d)\n", i);
   5104 			ath_reset(ifp);
   5105 			ifp->if_oerrors++;
   5106 			sc->sc_stats.ast_watchdog++;
   5107 			break;
   5108 		} else
   5109 			ifp->if_timer = 1;
   5110 		ATH_TXQ_UNLOCK(axq);
   5111 	}
   5112 	ieee80211_watchdog(ic);
   5113 }
   5114 
   5115 /*
   5116  * Diagnostic interface to the HAL.  This is used by various
   5117  * tools to do things like retrieve register contents for
   5118  * debugging.  The mechanism is intentionally opaque so that
   5119  * it can change frequently w/o concern for compatiblity.
   5120  */
   5121 static int
   5122 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
   5123 {
   5124 	struct ath_hal *ah = sc->sc_ah;
   5125 	u_int id = ad->ad_id & ATH_DIAG_ID;
   5126 	void *indata = NULL;
   5127 	void *outdata = NULL;
   5128 	u_int32_t insize = ad->ad_in_size;
   5129 	u_int32_t outsize = ad->ad_out_size;
   5130 	int error = 0;
   5131 
   5132 	if (ad->ad_id & ATH_DIAG_IN) {
   5133 		/*
   5134 		 * Copy in data.
   5135 		 */
   5136 		indata = malloc(insize, M_TEMP, M_NOWAIT);
   5137 		if (indata == NULL) {
   5138 			error = ENOMEM;
   5139 			goto bad;
   5140 		}
   5141 		error = copyin(ad->ad_in_data, indata, insize);
   5142 		if (error)
   5143 			goto bad;
   5144 	}
   5145 	if (ad->ad_id & ATH_DIAG_DYN) {
   5146 		/*
   5147 		 * Allocate a buffer for the results (otherwise the HAL
   5148 		 * returns a pointer to a buffer where we can read the
   5149 		 * results).  Note that we depend on the HAL leaving this
   5150 		 * pointer for us to use below in reclaiming the buffer;
   5151 		 * may want to be more defensive.
   5152 		 */
   5153 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
   5154 		if (outdata == NULL) {
   5155 			error = ENOMEM;
   5156 			goto bad;
   5157 		}
   5158 	}
   5159 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
   5160 		if (outsize < ad->ad_out_size)
   5161 			ad->ad_out_size = outsize;
   5162 		if (outdata != NULL)
   5163 			error = copyout(outdata, ad->ad_out_data,
   5164 					ad->ad_out_size);
   5165 	} else {
   5166 		error = EINVAL;
   5167 	}
   5168 bad:
   5169 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
   5170 		free(indata, M_TEMP);
   5171 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
   5172 		free(outdata, M_TEMP);
   5173 	return error;
   5174 }
   5175 
   5176 static int
   5177 ath_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   5178 {
   5179 #define	IS_RUNNING(ifp) \
   5180 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
   5181 	struct ath_softc *sc = ifp->if_softc;
   5182 	struct ieee80211com *ic = &sc->sc_ic;
   5183 	struct ifreq *ifr = (struct ifreq *)data;
   5184 	int error = 0;
   5185 
   5186 	ATH_LOCK(sc);
   5187 	switch (cmd) {
   5188 	case SIOCSIFFLAGS:
   5189 		if (IS_RUNNING(ifp)) {
   5190 			/*
   5191 			 * To avoid rescanning another access point,
   5192 			 * do not call ath_init() here.  Instead,
   5193 			 * only reflect promisc mode settings.
   5194 			 */
   5195 			ath_mode_init(sc);
   5196 		} else if (ifp->if_flags & IFF_UP) {
   5197 			/*
   5198 			 * Beware of being called during attach/detach
   5199 			 * to reset promiscuous mode.  In that case we
   5200 			 * will still be marked UP but not RUNNING.
   5201 			 * However trying to re-init the interface
   5202 			 * is the wrong thing to do as we've already
   5203 			 * torn down much of our state.  There's
   5204 			 * probably a better way to deal with this.
   5205 			 */
   5206 			if (!sc->sc_invalid && ic->ic_bss != NULL)
   5207 				ath_init(sc);	/* XXX lose error */
   5208 		} else
   5209 			ath_stop_locked(ifp, 1);
   5210 		break;
   5211 	case SIOCADDMULTI:
   5212 	case SIOCDELMULTI:
   5213 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
   5214 			if (ifp->if_flags & IFF_RUNNING)
   5215 				ath_mode_init(sc);
   5216 			error = 0;
   5217 		}
   5218 		break;
   5219 	case SIOCGATHSTATS:
   5220 		/* NB: embed these numbers to get a consistent view */
   5221 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
   5222 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
   5223 		sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
   5224 		ATH_UNLOCK(sc);
   5225 		/*
   5226 		 * NB: Drop the softc lock in case of a page fault;
   5227 		 * we'll accept any potential inconsisentcy in the
   5228 		 * statistics.  The alternative is to copy the data
   5229 		 * to a local structure.
   5230 		 */
   5231 		return copyout(&sc->sc_stats,
   5232 				ifr->ifr_data, sizeof (sc->sc_stats));
   5233 	case SIOCGATHDIAG:
   5234 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
   5235 		break;
   5236 	default:
   5237 		error = ieee80211_ioctl(ic, cmd, data);
   5238 		if (error == ENETRESET) {
   5239 			if (IS_RUNNING(ifp) &&
   5240 			    ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
   5241 				ath_init(sc);	/* XXX lose error */
   5242 			error = 0;
   5243 		}
   5244 		if (error == ERESTART)
   5245 			error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0;
   5246 		break;
   5247 	}
   5248 	ATH_UNLOCK(sc);
   5249 	return error;
   5250 #undef IS_RUNNING
   5251 }
   5252 
   5253 #if NBPFILTER > 0
   5254 static void
   5255 ath_bpfattach(struct ath_softc *sc)
   5256 {
   5257 	struct ifnet *ifp = &sc->sc_if;
   5258 
   5259 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
   5260 		sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
   5261 		&sc->sc_drvbpf);
   5262 	/*
   5263 	 * Initialize constant fields.
   5264 	 * XXX make header lengths a multiple of 32-bits so subsequent
   5265 	 *     headers are properly aligned; this is a kludge to keep
   5266 	 *     certain applications happy.
   5267 	 *
   5268 	 * NB: the channel is setup each time we transition to the
   5269 	 *     RUN state to avoid filling it in for each frame.
   5270 	 */
   5271 	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
   5272 	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
   5273 	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
   5274 
   5275 	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
   5276 	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
   5277 	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
   5278 }
   5279 #endif
   5280 
   5281 /*
   5282  * Announce various information on device/driver attach.
   5283  */
   5284 static void
   5285 ath_announce(struct ath_softc *sc)
   5286 {
   5287 #define	HAL_MODE_DUALBAND	(HAL_MODE_11A|HAL_MODE_11B)
   5288 	struct ifnet *ifp = &sc->sc_if;
   5289 	struct ath_hal *ah = sc->sc_ah;
   5290 	u_int modes, cc;
   5291 
   5292 	if_printf(ifp, "mac %d.%d phy %d.%d",
   5293 		ah->ah_macVersion, ah->ah_macRev,
   5294 		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
   5295 	/*
   5296 	 * Print radio revision(s).  We check the wireless modes
   5297 	 * to avoid falsely printing revs for inoperable parts.
   5298 	 * Dual-band radio revs are returned in the 5 GHz rev number.
   5299 	 */
   5300 	ath_hal_getcountrycode(ah, &cc);
   5301 	modes = ath_hal_getwirelessmodes(ah, cc);
   5302 	if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
   5303 		if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
   5304 			printf(" 5 GHz radio %d.%d 2 GHz radio %d.%d",
   5305 				ah->ah_analog5GhzRev >> 4,
   5306 				ah->ah_analog5GhzRev & 0xf,
   5307 				ah->ah_analog2GhzRev >> 4,
   5308 				ah->ah_analog2GhzRev & 0xf);
   5309 		else
   5310 			printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
   5311 				ah->ah_analog5GhzRev & 0xf);
   5312 	} else
   5313 		printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
   5314 			ah->ah_analog5GhzRev & 0xf);
   5315 	printf("\n");
   5316 	if (bootverbose) {
   5317 		int i;
   5318 		for (i = 0; i <= WME_AC_VO; i++) {
   5319 			struct ath_txq *txq = sc->sc_ac2q[i];
   5320 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
   5321 				txq->axq_qnum, ieee80211_wme_acnames[i]);
   5322 		}
   5323 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
   5324 			sc->sc_cabq->axq_qnum);
   5325 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
   5326 	}
   5327 	if (ath_rxbuf != ATH_RXBUF)
   5328 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
   5329 	if (ath_txbuf != ATH_TXBUF)
   5330 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
   5331 #undef HAL_MODE_DUALBAND
   5332 }
   5333