Home | History | Annotate | Line # | Download | only in ic
ath.c revision 1.89
      1 /*	$NetBSD: ath.c,v 1.89 2007/11/26 23:49:55 dyoung Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer,
     12  *    without modification.
     13  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
     14  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
     15  *    redistribution must be conditioned upon including a substantially
     16  *    similar Disclaimer requirement for further binary redistribution.
     17  * 3. Neither the names of the above-listed copyright holders nor the names
     18  *    of any contributors may be used to endorse or promote products derived
     19  *    from this software without specific prior written permission.
     20  *
     21  * Alternatively, this software may be distributed under the terms of the
     22  * GNU General Public License ("GPL") version 2 as published by the Free
     23  * Software Foundation.
     24  *
     25  * NO WARRANTY
     26  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     28  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
     29  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
     30  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
     31  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
     34  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     36  * THE POSSIBILITY OF SUCH DAMAGES.
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 #ifdef __FreeBSD__
     41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $");
     42 #endif
     43 #ifdef __NetBSD__
     44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.89 2007/11/26 23:49:55 dyoung Exp $");
     45 #endif
     46 
     47 /*
     48  * Driver for the Atheros Wireless LAN controller.
     49  *
     50  * This software is derived from work of Atsushi Onoe; his contribution
     51  * is greatly appreciated.
     52  */
     53 
     54 #include "opt_inet.h"
     55 
     56 #ifdef __NetBSD__
     57 #include "bpfilter.h"
     58 #endif /* __NetBSD__ */
     59 
     60 #include <sys/param.h>
     61 #include <sys/reboot.h>
     62 #include <sys/systm.h>
     63 #include <sys/types.h>
     64 #include <sys/sysctl.h>
     65 #include <sys/mbuf.h>
     66 #include <sys/malloc.h>
     67 #include <sys/lock.h>
     68 #include <sys/kernel.h>
     69 #include <sys/socket.h>
     70 #include <sys/sockio.h>
     71 #include <sys/errno.h>
     72 #include <sys/callout.h>
     73 #include <sys/bus.h>
     74 #include <sys/endian.h>
     75 
     76 #include <net/if.h>
     77 #include <net/if_dl.h>
     78 #include <net/if_media.h>
     79 #include <net/if_types.h>
     80 #include <net/if_arp.h>
     81 #include <net/if_ether.h>
     82 #include <net/if_llc.h>
     83 
     84 #include <net80211/ieee80211_netbsd.h>
     85 #include <net80211/ieee80211_var.h>
     86 
     87 #if NBPFILTER > 0
     88 #include <net/bpf.h>
     89 #endif
     90 
     91 #ifdef INET
     92 #include <netinet/in.h>
     93 #endif
     94 
     95 #include <sys/device.h>
     96 #include <dev/ic/ath_netbsd.h>
     97 
     98 #define	AR_DEBUG
     99 #include <dev/ic/athvar.h>
    100 #include <contrib/dev/ath/ah_desc.h>
    101 #include <contrib/dev/ath/ah_devid.h>	/* XXX for softled */
    102 #include "athhal_options.h"
    103 
    104 #ifdef ATH_TX99_DIAG
    105 #include <dev/ath/ath_tx99/ath_tx99.h>
    106 #endif
    107 
    108 /* unaligned little endian access */
    109 #define LE_READ_2(p)							\
    110 	((u_int16_t)							\
    111 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
    112 #define LE_READ_4(p)							\
    113 	((u_int32_t)							\
    114 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
    115 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
    116 
    117 enum {
    118 	ATH_LED_TX,
    119 	ATH_LED_RX,
    120 	ATH_LED_POLL,
    121 };
    122 
    123 #ifdef	AH_NEED_DESC_SWAP
    124 #define	HTOAH32(x)	htole32(x)
    125 #else
    126 #define	HTOAH32(x)	(x)
    127 #endif
    128 
    129 static int	ath_ifinit(struct ifnet *);
    130 static int	ath_init(struct ath_softc *);
    131 static void	ath_stop_locked(struct ifnet *, int);
    132 static void	ath_stop(struct ifnet *, int);
    133 static void	ath_start(struct ifnet *);
    134 static int	ath_media_change(struct ifnet *);
    135 static void	ath_watchdog(struct ifnet *);
    136 static int	ath_ioctl(struct ifnet *, u_long, void *);
    137 static void	ath_fatal_proc(void *, int);
    138 static void	ath_rxorn_proc(void *, int);
    139 static void	ath_bmiss_proc(void *, int);
    140 static void	ath_radar_proc(void *, int);
    141 static int	ath_key_alloc(struct ieee80211com *,
    142 			const struct ieee80211_key *,
    143 			ieee80211_keyix *, ieee80211_keyix *);
    144 static int	ath_key_delete(struct ieee80211com *,
    145 			const struct ieee80211_key *);
    146 static int	ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
    147 			const u_int8_t mac[IEEE80211_ADDR_LEN]);
    148 static void	ath_key_update_begin(struct ieee80211com *);
    149 static void	ath_key_update_end(struct ieee80211com *);
    150 static void	ath_mode_init(struct ath_softc *);
    151 static void	ath_setslottime(struct ath_softc *);
    152 static void	ath_updateslot(struct ifnet *);
    153 static int	ath_beaconq_setup(struct ath_hal *);
    154 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
    155 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
    156 static void	ath_beacon_proc(void *, int);
    157 static void	ath_bstuck_proc(void *, int);
    158 static void	ath_beacon_free(struct ath_softc *);
    159 static void	ath_beacon_config(struct ath_softc *);
    160 static void	ath_descdma_cleanup(struct ath_softc *sc,
    161 			struct ath_descdma *, ath_bufhead *);
    162 static int	ath_desc_alloc(struct ath_softc *);
    163 static void	ath_desc_free(struct ath_softc *);
    164 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
    165 static void	ath_node_free(struct ieee80211_node *);
    166 static u_int8_t	ath_node_getrssi(const struct ieee80211_node *);
    167 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
    168 static void	ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
    169 			struct ieee80211_node *ni,
    170 			int subtype, int rssi, u_int32_t rstamp);
    171 static void	ath_setdefantenna(struct ath_softc *, u_int);
    172 static void	ath_rx_proc(void *, int);
    173 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
    174 static int	ath_tx_setup(struct ath_softc *, int, int);
    175 static int	ath_wme_update(struct ieee80211com *);
    176 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
    177 static void	ath_tx_cleanup(struct ath_softc *);
    178 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
    179 			     struct ath_buf *, struct mbuf *);
    180 static void	ath_tx_proc_q0(void *, int);
    181 static void	ath_tx_proc_q0123(void *, int);
    182 static void	ath_tx_proc(void *, int);
    183 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
    184 static void	ath_draintxq(struct ath_softc *);
    185 static void	ath_stoprecv(struct ath_softc *);
    186 static int	ath_startrecv(struct ath_softc *);
    187 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
    188 static void	ath_next_scan(void *);
    189 static void	ath_calibrate(void *);
    190 static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
    191 static void	ath_setup_stationkey(struct ieee80211_node *);
    192 static void	ath_newassoc(struct ieee80211_node *, int);
    193 static int	ath_getchannels(struct ath_softc *, u_int cc,
    194 			HAL_BOOL outdoor, HAL_BOOL xchanmode);
    195 static void	ath_led_event(struct ath_softc *, int);
    196 static void	ath_update_txpow(struct ath_softc *);
    197 static void	ath_freetx(struct mbuf *);
    198 static void	ath_restore_diversity(struct ath_softc *);
    199 
    200 static int	ath_rate_setup(struct ath_softc *, u_int mode);
    201 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
    202 
    203 #ifdef __NetBSD__
    204 int	ath_enable(struct ath_softc *);
    205 void	ath_disable(struct ath_softc *);
    206 void	ath_power(int, void *);
    207 #endif
    208 
    209 #if NBPFILTER > 0
    210 static void	ath_bpfattach(struct ath_softc *);
    211 #endif
    212 static void	ath_announce(struct ath_softc *);
    213 
    214 int ath_dwelltime = 200;		/* 5 channels/second */
    215 int ath_calinterval = 30;		/* calibrate every 30 secs */
    216 int ath_outdoor = AH_TRUE;		/* outdoor operation */
    217 int ath_xchanmode = AH_TRUE;		/* enable extended channels */
    218 int ath_countrycode = CTRY_DEFAULT;	/* country code */
    219 int ath_regdomain = 0;			/* regulatory domain */
    220 int ath_debug = 0;
    221 int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
    222 int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
    223 
    224 #ifdef AR_DEBUG
    225 enum {
    226 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
    227 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
    228 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
    229 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
    230 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
    231 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
    232 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
    233 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
    234 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
    235 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
    236 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
    237 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
    238 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
    239 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
    240 	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
    241 	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
    242 	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
    243 	ATH_DEBUG_LED		= 0x00100000,	/* led management */
    244 	ATH_DEBUG_FF		= 0x00200000,	/* fast frames */
    245 	ATH_DEBUG_DFS		= 0x00400000,	/* DFS processing */
    246 	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
    247 	ATH_DEBUG_ANY		= 0xffffffff
    248 };
    249 #define	IFF_DUMPPKTS(sc, m) \
    250 	((sc->sc_debug & (m)) || \
    251 	    (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
    252 #define	DPRINTF(sc, m, fmt, ...) do {				\
    253 	if (sc->sc_debug & (m))					\
    254 		printf(fmt, __VA_ARGS__);			\
    255 } while (0)
    256 #define	KEYPRINTF(sc, ix, hk, mac) do {				\
    257 	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
    258 		ath_keyprint(__func__, ix, hk, mac);		\
    259 } while (0)
    260 static	void ath_printrxbuf(struct ath_buf *bf, int);
    261 static	void ath_printtxbuf(struct ath_buf *bf, int);
    262 #else
    263 #define	IFF_DUMPPKTS(sc, m) \
    264 	((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
    265 #define	DPRINTF(m, fmt, ...)
    266 #define	KEYPRINTF(sc, k, ix, mac)
    267 #endif
    268 
    269 #ifdef __NetBSD__
    270 int
    271 ath_activate(struct device *self, enum devact act)
    272 {
    273 	struct ath_softc *sc = (struct ath_softc *)self;
    274 	int rv = 0, s;
    275 
    276 	s = splnet();
    277 	switch (act) {
    278 	case DVACT_ACTIVATE:
    279 		rv = EOPNOTSUPP;
    280 		break;
    281 	case DVACT_DEACTIVATE:
    282 		if_deactivate(&sc->sc_if);
    283 		break;
    284 	}
    285 	splx(s);
    286 	return rv;
    287 }
    288 
    289 int
    290 ath_enable(struct ath_softc *sc)
    291 {
    292 	if (ATH_IS_ENABLED(sc) == 0) {
    293 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
    294 			printf("%s: device enable failed\n",
    295 				device_xname(&sc->sc_dev));
    296 			return (EIO);
    297 		}
    298 		sc->sc_flags |= ATH_ENABLED;
    299 	}
    300 	return (0);
    301 }
    302 
    303 void
    304 ath_disable(struct ath_softc *sc)
    305 {
    306 	if (!ATH_IS_ENABLED(sc))
    307 		return;
    308 	if (sc->sc_disable != NULL)
    309 		(*sc->sc_disable)(sc);
    310 	sc->sc_flags &= ~ATH_ENABLED;
    311 }
    312 #endif /* __NetBSD__ */
    313 
    314 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
    315 
    316 int
    317 ath_attach(u_int16_t devid, struct ath_softc *sc)
    318 {
    319 	struct ifnet *ifp = &sc->sc_if;
    320 	struct ieee80211com *ic = &sc->sc_ic;
    321 	struct ath_hal *ah = NULL;
    322 	HAL_STATUS status;
    323 	int error = 0, i;
    324 
    325 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
    326 
    327 	memcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
    328 
    329 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
    330 	if (ah == NULL) {
    331 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
    332 			status);
    333 		error = ENXIO;
    334 		goto bad;
    335 	}
    336 	if (ah->ah_abi != HAL_ABI_VERSION) {
    337 		if_printf(ifp, "HAL ABI mismatch detected "
    338 			"(HAL:0x%x != driver:0x%x)\n",
    339 			ah->ah_abi, HAL_ABI_VERSION);
    340 		error = ENXIO;
    341 		goto bad;
    342 	}
    343 	sc->sc_ah = ah;
    344 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
    345 
    346 	/*
    347 	 * Check if the MAC has multi-rate retry support.
    348 	 * We do this by trying to setup a fake extended
    349 	 * descriptor.  MAC's that don't have support will
    350 	 * return false w/o doing anything.  MAC's that do
    351 	 * support it will return true w/o doing anything.
    352 	 */
    353 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
    354 
    355 	/*
    356 	 * Check if the device has hardware counters for PHY
    357 	 * errors.  If so we need to enable the MIB interrupt
    358 	 * so we can act on stat triggers.
    359 	 */
    360 	if (ath_hal_hwphycounters(ah))
    361 		sc->sc_needmib = 1;
    362 
    363 	/*
    364 	 * Get the hardware key cache size.
    365 	 */
    366 	sc->sc_keymax = ath_hal_keycachesize(ah);
    367 	if (sc->sc_keymax > ATH_KEYMAX) {
    368 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
    369 			ATH_KEYMAX, sc->sc_keymax);
    370 		sc->sc_keymax = ATH_KEYMAX;
    371 	}
    372 	/*
    373 	 * Reset the key cache since some parts do not
    374 	 * reset the contents on initial power up.
    375 	 */
    376 	for (i = 0; i < sc->sc_keymax; i++)
    377 		ath_hal_keyreset(ah, i);
    378 	/*
    379 	 * Mark key cache slots associated with global keys
    380 	 * as in use.  If we knew TKIP was not to be used we
    381 	 * could leave the +32, +64, and +32+64 slots free.
    382 	 * XXX only for splitmic.
    383 	 */
    384 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
    385 		setbit(sc->sc_keymap, i);
    386 		setbit(sc->sc_keymap, i+32);
    387 		setbit(sc->sc_keymap, i+64);
    388 		setbit(sc->sc_keymap, i+32+64);
    389 	}
    390 
    391 	/*
    392 	 * Collect the channel list using the default country
    393 	 * code and including outdoor channels.  The 802.11 layer
    394 	 * is resposible for filtering this list based on settings
    395 	 * like the phy mode.
    396 	 */
    397 	error = ath_getchannels(sc, ath_countrycode,
    398 			ath_outdoor, ath_xchanmode);
    399 	if (error != 0)
    400 		goto bad;
    401 
    402 	/*
    403 	 * Setup rate tables for all potential media types.
    404 	 */
    405 	ath_rate_setup(sc, IEEE80211_MODE_11A);
    406 	ath_rate_setup(sc, IEEE80211_MODE_11B);
    407 	ath_rate_setup(sc, IEEE80211_MODE_11G);
    408 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
    409 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
    410 	/* NB: setup here so ath_rate_update is happy */
    411 	ath_setcurmode(sc, IEEE80211_MODE_11A);
    412 
    413 	/*
    414 	 * Allocate tx+rx descriptors and populate the lists.
    415 	 */
    416 	error = ath_desc_alloc(sc);
    417 	if (error != 0) {
    418 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
    419 		goto bad;
    420 	}
    421 	ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
    422 	ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE);
    423 	ATH_CALLOUT_INIT(&sc->sc_dfs_ch, CALLOUT_MPSAFE);
    424 
    425 	ATH_TXBUF_LOCK_INIT(sc);
    426 
    427 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
    428 	TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
    429 	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
    430 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
    431 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
    432 	TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc);
    433 
    434 	/*
    435 	 * Allocate hardware transmit queues: one queue for
    436 	 * beacon frames and one data queue for each QoS
    437 	 * priority.  Note that the hal handles reseting
    438 	 * these queues at the needed time.
    439 	 *
    440 	 * XXX PS-Poll
    441 	 */
    442 	sc->sc_bhalq = ath_beaconq_setup(ah);
    443 	if (sc->sc_bhalq == (u_int) -1) {
    444 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
    445 		error = EIO;
    446 		goto bad2;
    447 	}
    448 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
    449 	if (sc->sc_cabq == NULL) {
    450 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
    451 		error = EIO;
    452 		goto bad2;
    453 	}
    454 	/* NB: insure BK queue is the lowest priority h/w queue */
    455 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
    456 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
    457 			ieee80211_wme_acnames[WME_AC_BK]);
    458 		error = EIO;
    459 		goto bad2;
    460 	}
    461 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
    462 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
    463 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
    464 		/*
    465 		 * Not enough hardware tx queues to properly do WME;
    466 		 * just punt and assign them all to the same h/w queue.
    467 		 * We could do a better job of this if, for example,
    468 		 * we allocate queues when we switch from station to
    469 		 * AP mode.
    470 		 */
    471 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
    472 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
    473 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
    474 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
    475 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
    476 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
    477 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
    478 	}
    479 
    480 	/*
    481 	 * Special case certain configurations.  Note the
    482 	 * CAB queue is handled by these specially so don't
    483 	 * include them when checking the txq setup mask.
    484 	 */
    485 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
    486 	case 0x01:
    487 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
    488 		break;
    489 	case 0x0f:
    490 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
    491 		break;
    492 	default:
    493 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
    494 		break;
    495 	}
    496 
    497 	/*
    498 	 * Setup rate control.  Some rate control modules
    499 	 * call back to change the anntena state so expose
    500 	 * the necessary entry points.
    501 	 * XXX maybe belongs in struct ath_ratectrl?
    502 	 */
    503 	sc->sc_setdefantenna = ath_setdefantenna;
    504 	sc->sc_rc = ath_rate_attach(sc);
    505 	if (sc->sc_rc == NULL) {
    506 		error = EIO;
    507 		goto bad2;
    508 	}
    509 
    510 	sc->sc_blinking = 0;
    511 	sc->sc_ledstate = 1;
    512 	sc->sc_ledon = 0;			/* low true */
    513 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
    514 	ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE);
    515 	/*
    516 	 * Auto-enable soft led processing for IBM cards and for
    517 	 * 5211 minipci cards.  Users can also manually enable/disable
    518 	 * support with a sysctl.
    519 	 */
    520 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
    521 	if (sc->sc_softled) {
    522 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
    523 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
    524 	}
    525 
    526 	ifp->if_softc = sc;
    527 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
    528 	ifp->if_start = ath_start;
    529 	ifp->if_watchdog = ath_watchdog;
    530 	ifp->if_ioctl = ath_ioctl;
    531 	ifp->if_init = ath_ifinit;
    532 	IFQ_SET_READY(&ifp->if_snd);
    533 
    534 	ic->ic_ifp = ifp;
    535 	ic->ic_reset = ath_reset;
    536 	ic->ic_newassoc = ath_newassoc;
    537 	ic->ic_updateslot = ath_updateslot;
    538 	ic->ic_wme.wme_update = ath_wme_update;
    539 	/* XXX not right but it's not used anywhere important */
    540 	ic->ic_phytype = IEEE80211_T_OFDM;
    541 	ic->ic_opmode = IEEE80211_M_STA;
    542 	ic->ic_caps =
    543 		  IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
    544 		| IEEE80211_C_HOSTAP		/* hostap mode */
    545 		| IEEE80211_C_MONITOR		/* monitor mode */
    546 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
    547 		| IEEE80211_C_SHSLOT		/* short slot time supported */
    548 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
    549 		| IEEE80211_C_TXFRAG		/* handle tx frags */
    550 		;
    551 	/*
    552 	 * Query the hal to figure out h/w crypto support.
    553 	 */
    554 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
    555 		ic->ic_caps |= IEEE80211_C_WEP;
    556 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
    557 		ic->ic_caps |= IEEE80211_C_AES;
    558 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
    559 		ic->ic_caps |= IEEE80211_C_AES_CCM;
    560 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
    561 		ic->ic_caps |= IEEE80211_C_CKIP;
    562 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
    563 		ic->ic_caps |= IEEE80211_C_TKIP;
    564 		/*
    565 		 * Check if h/w does the MIC and/or whether the
    566 		 * separate key cache entries are required to
    567 		 * handle both tx+rx MIC keys.
    568 		 */
    569 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
    570 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
    571 		if (ath_hal_tkipsplit(ah))
    572 			sc->sc_splitmic = 1;
    573 	}
    574 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
    575 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
    576 	/*
    577 	 * TPC support can be done either with a global cap or
    578 	 * per-packet support.  The latter is not available on
    579 	 * all parts.  We're a bit pedantic here as all parts
    580 	 * support a global cap.
    581 	 */
    582 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
    583 		ic->ic_caps |= IEEE80211_C_TXPMGT;
    584 
    585 	/*
    586 	 * Mark WME capability only if we have sufficient
    587 	 * hardware queues to do proper priority scheduling.
    588 	 */
    589 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
    590 		ic->ic_caps |= IEEE80211_C_WME;
    591 	/*
    592 	 * Check for misc other capabilities.
    593 	 */
    594 	if (ath_hal_hasbursting(ah))
    595 		ic->ic_caps |= IEEE80211_C_BURST;
    596 
    597 	/*
    598 	 * Indicate we need the 802.11 header padded to a
    599 	 * 32-bit boundary for 4-address and QoS frames.
    600 	 */
    601 	ic->ic_flags |= IEEE80211_F_DATAPAD;
    602 
    603 	/*
    604 	 * Query the hal about antenna support.
    605 	 */
    606 	sc->sc_defant = ath_hal_getdefantenna(ah);
    607 
    608 	/*
    609 	 * Not all chips have the VEOL support we want to
    610 	 * use with IBSS beacons; check here for it.
    611 	 */
    612 	sc->sc_hasveol = ath_hal_hasveol(ah);
    613 
    614 	/* get mac address from hardware */
    615 	ath_hal_getmac(ah, ic->ic_myaddr);
    616 
    617 	if_attach(ifp);
    618 	/* call MI attach routine. */
    619 	ieee80211_ifattach(ic);
    620 	/* override default methods */
    621 	ic->ic_node_alloc = ath_node_alloc;
    622 	sc->sc_node_free = ic->ic_node_free;
    623 	ic->ic_node_free = ath_node_free;
    624 	ic->ic_node_getrssi = ath_node_getrssi;
    625 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
    626 	ic->ic_recv_mgmt = ath_recv_mgmt;
    627 	sc->sc_newstate = ic->ic_newstate;
    628 	ic->ic_newstate = ath_newstate;
    629 	ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
    630 	ic->ic_crypto.cs_key_alloc = ath_key_alloc;
    631 	ic->ic_crypto.cs_key_delete = ath_key_delete;
    632 	ic->ic_crypto.cs_key_set = ath_key_set;
    633 	ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
    634 	ic->ic_crypto.cs_key_update_end = ath_key_update_end;
    635 	/* complete initialization */
    636 	ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
    637 
    638 #if NBPFILTER > 0
    639 	ath_bpfattach(sc);
    640 #endif
    641 
    642 #ifdef __NetBSD__
    643 	sc->sc_flags |= ATH_ATTACHED;
    644 	sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
    645 	    ath_power, sc);
    646 	if (sc->sc_powerhook == NULL)
    647 		printf("%s: WARNING: unable to establish power hook\n",
    648 			sc->sc_dev.dv_xname);
    649 #endif
    650 
    651 	/*
    652 	 * Setup dynamic sysctl's now that country code and
    653 	 * regdomain are available from the hal.
    654 	 */
    655 	ath_sysctlattach(sc);
    656 
    657 	ieee80211_announce(ic);
    658 	ath_announce(sc);
    659 	return 0;
    660 bad2:
    661 	ath_tx_cleanup(sc);
    662 	ath_desc_free(sc);
    663 bad:
    664 	if (ah)
    665 		ath_hal_detach(ah);
    666 	sc->sc_invalid = 1;
    667 	return error;
    668 }
    669 
    670 int
    671 ath_detach(struct ath_softc *sc)
    672 {
    673 	struct ifnet *ifp = &sc->sc_if;
    674 	int s;
    675 
    676 	if ((sc->sc_flags & ATH_ATTACHED) == 0)
    677 		return (0);
    678 
    679 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
    680 		__func__, ifp->if_flags);
    681 
    682 	s = splnet();
    683 	ath_stop(ifp, 1);
    684 #if NBPFILTER > 0
    685 	bpfdetach(ifp);
    686 #endif
    687 	/*
    688 	 * NB: the order of these is important:
    689 	 * o call the 802.11 layer before detaching the hal to
    690 	 *   insure callbacks into the driver to delete global
    691 	 *   key cache entries can be handled
    692 	 * o reclaim the tx queue data structures after calling
    693 	 *   the 802.11 layer as we'll get called back to reclaim
    694 	 *   node state and potentially want to use them
    695 	 * o to cleanup the tx queues the hal is called, so detach
    696 	 *   it last
    697 	 * Other than that, it's straightforward...
    698 	 */
    699 	ieee80211_ifdetach(&sc->sc_ic);
    700 #ifdef ATH_TX99_DIAG
    701 	if (sc->sc_tx99 != NULL)
    702 		sc->sc_tx99->detach(sc->sc_tx99);
    703 #endif
    704 	ath_rate_detach(sc->sc_rc);
    705 	ath_desc_free(sc);
    706 	ath_tx_cleanup(sc);
    707 	sysctl_teardown(&sc->sc_sysctllog);
    708 	ath_hal_detach(sc->sc_ah);
    709 	if_detach(ifp);
    710 	splx(s);
    711 	powerhook_disestablish(sc->sc_powerhook);
    712 
    713 	return 0;
    714 }
    715 
    716 #ifdef __NetBSD__
    717 void
    718 ath_power(int why, void *arg)
    719 {
    720 	struct ath_softc *sc = arg;
    721 	int s;
    722 
    723 	DPRINTF(sc, ATH_DEBUG_ANY, "ath_power(%d)\n", why);
    724 
    725 	s = splnet();
    726 	switch (why) {
    727 	case PWR_SUSPEND:
    728 	case PWR_STANDBY:
    729 		ath_suspend(sc, why);
    730 		break;
    731 	case PWR_RESUME:
    732 		ath_resume(sc, why);
    733 		break;
    734 	case PWR_SOFTSUSPEND:
    735 	case PWR_SOFTSTANDBY:
    736 	case PWR_SOFTRESUME:
    737 		break;
    738 	}
    739 	splx(s);
    740 }
    741 #endif
    742 
    743 void
    744 ath_suspend(struct ath_softc *sc, int why)
    745 {
    746 	struct ifnet *ifp = &sc->sc_if;
    747 
    748 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
    749 		__func__, ifp->if_flags);
    750 
    751 	ath_stop(ifp, 1);
    752 	if (sc->sc_power != NULL)
    753 		(*sc->sc_power)(sc, why);
    754 }
    755 
    756 void
    757 ath_resume(struct ath_softc *sc, int why)
    758 {
    759 	struct ifnet *ifp = &sc->sc_if;
    760 
    761 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
    762 		__func__, ifp->if_flags);
    763 
    764 	if (ifp->if_flags & IFF_UP) {
    765 		ath_init(sc);
    766 #if 0
    767 		(void)ath_intr(sc);
    768 #endif
    769 		if (sc->sc_power != NULL)
    770 			(*sc->sc_power)(sc, why);
    771 		if (ifp->if_flags & IFF_RUNNING)
    772 			ath_start(ifp);
    773 	}
    774 	if (sc->sc_softled) {
    775 		ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
    776 		ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
    777 	}
    778 }
    779 
    780 void
    781 ath_shutdown(void *arg)
    782 {
    783 	struct ath_softc *sc = arg;
    784 
    785 	ath_stop(&sc->sc_if, 1);
    786 }
    787 
    788 /*
    789  * Interrupt handler.  Most of the actual processing is deferred.
    790  */
    791 int
    792 ath_intr(void *arg)
    793 {
    794 	struct ath_softc *sc = arg;
    795 	struct ifnet *ifp = &sc->sc_if;
    796 	struct ath_hal *ah = sc->sc_ah;
    797 	HAL_INT status;
    798 
    799 	if (sc->sc_invalid) {
    800 		/*
    801 		 * The hardware is not ready/present, don't touch anything.
    802 		 * Note this can happen early on if the IRQ is shared.
    803 		 */
    804 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
    805 		return 0;
    806 	}
    807 
    808 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
    809 		return 0;
    810 
    811 	if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
    812 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
    813 			__func__, ifp->if_flags);
    814 		ath_hal_getisr(ah, &status);	/* clear ISR */
    815 		ath_hal_intrset(ah, 0);		/* disable further intr's */
    816 		return 1; /* XXX */
    817 	}
    818 	/*
    819 	 * Figure out the reason(s) for the interrupt.  Note
    820 	 * that the hal returns a pseudo-ISR that may include
    821 	 * bits we haven't explicitly enabled so we mask the
    822 	 * value to insure we only process bits we requested.
    823 	 */
    824 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
    825 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
    826 	status &= sc->sc_imask;			/* discard unasked for bits */
    827 	if (status & HAL_INT_FATAL) {
    828 		/*
    829 		 * Fatal errors are unrecoverable.  Typically
    830 		 * these are caused by DMA errors.  Unfortunately
    831 		 * the exact reason is not (presently) returned
    832 		 * by the hal.
    833 		 */
    834 		sc->sc_stats.ast_hardware++;
    835 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
    836 		TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
    837 	} else if (status & HAL_INT_RXORN) {
    838 		sc->sc_stats.ast_rxorn++;
    839 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
    840 		TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
    841 	} else {
    842 		if (status & HAL_INT_SWBA) {
    843 			/*
    844 			 * Software beacon alert--time to send a beacon.
    845 			 * Handle beacon transmission directly; deferring
    846 			 * this is too slow to meet timing constraints
    847 			 * under load.
    848 			 */
    849 			ath_beacon_proc(sc, 0);
    850 		}
    851 		if (status & HAL_INT_RXEOL) {
    852 			/*
    853 			 * NB: the hardware should re-read the link when
    854 			 *     RXE bit is written, but it doesn't work at
    855 			 *     least on older hardware revs.
    856 			 */
    857 			sc->sc_stats.ast_rxeol++;
    858 			sc->sc_rxlink = NULL;
    859 		}
    860 		if (status & HAL_INT_TXURN) {
    861 			sc->sc_stats.ast_txurn++;
    862 			/* bump tx trigger level */
    863 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
    864 		}
    865 		if (status & HAL_INT_RX)
    866 			TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
    867 		if (status & HAL_INT_TX)
    868 			TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
    869 		if (status & HAL_INT_BMISS) {
    870 			sc->sc_stats.ast_bmiss++;
    871 			TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
    872 		}
    873 		if (status & HAL_INT_MIB) {
    874 			sc->sc_stats.ast_mib++;
    875 			/*
    876 			 * Disable interrupts until we service the MIB
    877 			 * interrupt; otherwise it will continue to fire.
    878 			 */
    879 			ath_hal_intrset(ah, 0);
    880 			/*
    881 			 * Let the hal handle the event.  We assume it will
    882 			 * clear whatever condition caused the interrupt.
    883 			 */
    884 			ath_hal_mibevent(ah, &sc->sc_halstats);
    885 			ath_hal_intrset(ah, sc->sc_imask);
    886 		}
    887 	}
    888 	return 1;
    889 }
    890 
    891 /* Swap transmit descriptor.
    892  * if AH_NEED_DESC_SWAP flag is not defined this becomes a "null"
    893  * function.
    894  */
    895 static inline void
    896 ath_desc_swap(struct ath_desc *ds)
    897 {
    898 #ifdef AH_NEED_DESC_SWAP
    899 	ds->ds_link = htole32(ds->ds_link);
    900 	ds->ds_data = htole32(ds->ds_data);
    901 	ds->ds_ctl0 = htole32(ds->ds_ctl0);
    902 	ds->ds_ctl1 = htole32(ds->ds_ctl1);
    903 	ds->ds_hw[0] = htole32(ds->ds_hw[0]);
    904 	ds->ds_hw[1] = htole32(ds->ds_hw[1]);
    905 #endif
    906 }
    907 
    908 static void
    909 ath_fatal_proc(void *arg, int pending)
    910 {
    911 	struct ath_softc *sc = arg;
    912 	struct ifnet *ifp = &sc->sc_if;
    913 
    914 	if_printf(ifp, "hardware error; resetting\n");
    915 	ath_reset(ifp);
    916 }
    917 
    918 static void
    919 ath_rxorn_proc(void *arg, int pending)
    920 {
    921 	struct ath_softc *sc = arg;
    922 	struct ifnet *ifp = &sc->sc_if;
    923 
    924 	if_printf(ifp, "rx FIFO overrun; resetting\n");
    925 	ath_reset(ifp);
    926 }
    927 
    928 static void
    929 ath_bmiss_proc(void *arg, int pending)
    930 {
    931 	struct ath_softc *sc = arg;
    932 	struct ieee80211com *ic = &sc->sc_ic;
    933 
    934 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
    935 	KASSERT(ic->ic_opmode == IEEE80211_M_STA,
    936 		("unexpect operating mode %u", ic->ic_opmode));
    937 	if (ic->ic_state == IEEE80211_S_RUN) {
    938 		u_int64_t lastrx = sc->sc_lastrx;
    939 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
    940 
    941 		DPRINTF(sc, ATH_DEBUG_BEACON,
    942 		    "%s: tsf %" PRIu64 " lastrx %" PRId64
    943 		    " (%" PRIu64 ") bmiss %u\n",
    944 		    __func__, tsf, tsf - lastrx, lastrx,
    945 		    ic->ic_bmisstimeout*1024);
    946 		/*
    947 		 * Workaround phantom bmiss interrupts by sanity-checking
    948 		 * the time of our last rx'd frame.  If it is within the
    949 		 * beacon miss interval then ignore the interrupt.  If it's
    950 		 * truly a bmiss we'll get another interrupt soon and that'll
    951 		 * be dispatched up for processing.
    952 		 */
    953 		if (tsf - lastrx > ic->ic_bmisstimeout*1024) {
    954 			NET_LOCK_GIANT();
    955 			ieee80211_beacon_miss(ic);
    956 			NET_UNLOCK_GIANT();
    957 		} else
    958 			sc->sc_stats.ast_bmiss_phantom++;
    959 	}
    960 }
    961 
    962 static void
    963 ath_radar_proc(void *arg, int pending)
    964 {
    965 	struct ath_softc *sc = arg;
    966 	struct ifnet *ifp = &sc->sc_if;
    967 	struct ath_hal *ah = sc->sc_ah;
    968 	HAL_CHANNEL hchan;
    969 
    970 	if (ath_hal_procdfs(ah, &hchan)) {
    971 		if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n",
    972 			hchan.channel, hchan.channelFlags, hchan.privFlags);
    973 		/*
    974 		 * Initiate channel change.
    975 		 */
    976 		/* XXX not yet */
    977 	}
    978 }
    979 
    980 static u_int
    981 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
    982 {
    983 #define	N(a)	(sizeof(a) / sizeof(a[0]))
    984 	static const u_int modeflags[] = {
    985 		0,			/* IEEE80211_MODE_AUTO */
    986 		CHANNEL_A,		/* IEEE80211_MODE_11A */
    987 		CHANNEL_B,		/* IEEE80211_MODE_11B */
    988 		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
    989 		0,			/* IEEE80211_MODE_FH */
    990 		CHANNEL_ST,		/* IEEE80211_MODE_TURBO_A */
    991 		CHANNEL_108G		/* IEEE80211_MODE_TURBO_G */
    992 	};
    993 	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
    994 
    995 	KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
    996 	KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
    997 	return modeflags[mode];
    998 #undef N
    999 }
   1000 
   1001 static int
   1002 ath_ifinit(struct ifnet *ifp)
   1003 {
   1004 	struct ath_softc *sc = (struct ath_softc *)ifp->if_softc;
   1005 
   1006 	return ath_init(sc);
   1007 }
   1008 
   1009 static int
   1010 ath_init(struct ath_softc *sc)
   1011 {
   1012 	struct ifnet *ifp = &sc->sc_if;
   1013 	struct ieee80211com *ic = &sc->sc_ic;
   1014 	struct ath_hal *ah = sc->sc_ah;
   1015 	HAL_STATUS status;
   1016 	int error = 0;
   1017 
   1018 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
   1019 		__func__, ifp->if_flags);
   1020 
   1021 	ATH_LOCK(sc);
   1022 
   1023 	if ((error = ath_enable(sc)) != 0)
   1024 		return error;
   1025 
   1026 	/*
   1027 	 * Stop anything previously setup.  This is safe
   1028 	 * whether this is the first time through or not.
   1029 	 */
   1030 	ath_stop_locked(ifp, 0);
   1031 
   1032 	/*
   1033 	 * The basic interface to setting the hardware in a good
   1034 	 * state is ``reset''.  On return the hardware is known to
   1035 	 * be powered up and with interrupts disabled.  This must
   1036 	 * be followed by initialization of the appropriate bits
   1037 	 * and then setup of the interrupt mask.
   1038 	 */
   1039 	sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
   1040 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
   1041 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
   1042 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
   1043 			status);
   1044 		error = EIO;
   1045 		goto done;
   1046 	}
   1047 
   1048 	/*
   1049 	 * This is needed only to setup initial state
   1050 	 * but it's best done after a reset.
   1051 	 */
   1052 	ath_update_txpow(sc);
   1053 	/*
   1054 	 * Likewise this is set during reset so update
   1055 	 * state cached in the driver.
   1056 	 */
   1057 	ath_restore_diversity(sc);
   1058 	sc->sc_calinterval = 1;
   1059 	sc->sc_caltries = 0;
   1060 
   1061 	/*
   1062 	 * Setup the hardware after reset: the key cache
   1063 	 * is filled as needed and the receive engine is
   1064 	 * set going.  Frame transmit is handled entirely
   1065 	 * in the frame output path; there's nothing to do
   1066 	 * here except setup the interrupt mask.
   1067 	 */
   1068 	if ((error = ath_startrecv(sc)) != 0) {
   1069 		if_printf(ifp, "unable to start recv logic\n");
   1070 		goto done;
   1071 	}
   1072 
   1073 	/*
   1074 	 * Enable interrupts.
   1075 	 */
   1076 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
   1077 		  | HAL_INT_RXEOL | HAL_INT_RXORN
   1078 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
   1079 	/*
   1080 	 * Enable MIB interrupts when there are hardware phy counters.
   1081 	 * Note we only do this (at the moment) for station mode.
   1082 	 */
   1083 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
   1084 		sc->sc_imask |= HAL_INT_MIB;
   1085 	ath_hal_intrset(ah, sc->sc_imask);
   1086 
   1087 	ifp->if_flags |= IFF_RUNNING;
   1088 	ic->ic_state = IEEE80211_S_INIT;
   1089 
   1090 	/*
   1091 	 * The hardware should be ready to go now so it's safe
   1092 	 * to kick the 802.11 state machine as it's likely to
   1093 	 * immediately call back to us to send mgmt frames.
   1094 	 */
   1095 	ath_chan_change(sc, ic->ic_curchan);
   1096 #ifdef ATH_TX99_DIAG
   1097 	if (sc->sc_tx99 != NULL)
   1098 		sc->sc_tx99->start(sc->sc_tx99);
   1099 	else
   1100 #endif
   1101 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   1102 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
   1103 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   1104 	} else
   1105 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   1106 done:
   1107 	ATH_UNLOCK(sc);
   1108 	return error;
   1109 }
   1110 
   1111 static void
   1112 ath_stop_locked(struct ifnet *ifp, int disable)
   1113 {
   1114 	struct ath_softc *sc = ifp->if_softc;
   1115 	struct ieee80211com *ic = &sc->sc_ic;
   1116 	struct ath_hal *ah = sc->sc_ah;
   1117 
   1118 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
   1119 		__func__, sc->sc_invalid, ifp->if_flags);
   1120 
   1121 	ATH_LOCK_ASSERT(sc);
   1122 	if (ifp->if_flags & IFF_RUNNING) {
   1123 		/*
   1124 		 * Shutdown the hardware and driver:
   1125 		 *    reset 802.11 state machine
   1126 		 *    turn off timers
   1127 		 *    disable interrupts
   1128 		 *    turn off the radio
   1129 		 *    clear transmit machinery
   1130 		 *    clear receive machinery
   1131 		 *    drain and release tx queues
   1132 		 *    reclaim beacon resources
   1133 		 *    power down hardware
   1134 		 *
   1135 		 * Note that some of this work is not possible if the
   1136 		 * hardware is gone (invalid).
   1137 		 */
   1138 #ifdef ATH_TX99_DIAG
   1139 		if (sc->sc_tx99 != NULL)
   1140 			sc->sc_tx99->stop(sc->sc_tx99);
   1141 #endif
   1142 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   1143 		ifp->if_flags &= ~IFF_RUNNING;
   1144 		ifp->if_timer = 0;
   1145 		if (!sc->sc_invalid) {
   1146 			if (sc->sc_softled) {
   1147 				callout_stop(&sc->sc_ledtimer);
   1148 				ath_hal_gpioset(ah, sc->sc_ledpin,
   1149 					!sc->sc_ledon);
   1150 				sc->sc_blinking = 0;
   1151 			}
   1152 			ath_hal_intrset(ah, 0);
   1153 		}
   1154 		ath_draintxq(sc);
   1155 		if (!sc->sc_invalid) {
   1156 			ath_stoprecv(sc);
   1157 			ath_hal_phydisable(ah);
   1158 		} else
   1159 			sc->sc_rxlink = NULL;
   1160 		IF_PURGE(&ifp->if_snd);
   1161 		ath_beacon_free(sc);
   1162 		if (disable)
   1163 			ath_disable(sc);
   1164 	}
   1165 }
   1166 
   1167 static void
   1168 ath_stop(struct ifnet *ifp, int disable)
   1169 {
   1170 	struct ath_softc *sc = ifp->if_softc;
   1171 
   1172 	ATH_LOCK(sc);
   1173 	ath_stop_locked(ifp, disable);
   1174 	if (!sc->sc_invalid) {
   1175 		/*
   1176 		 * Set the chip in full sleep mode.  Note that we are
   1177 		 * careful to do this only when bringing the interface
   1178 		 * completely to a stop.  When the chip is in this state
   1179 		 * it must be carefully woken up or references to
   1180 		 * registers in the PCI clock domain may freeze the bus
   1181 		 * (and system).  This varies by chip and is mostly an
   1182 		 * issue with newer parts that go to sleep more quickly.
   1183 		 */
   1184 		ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
   1185 	}
   1186 	ATH_UNLOCK(sc);
   1187 }
   1188 
   1189 static void
   1190 ath_restore_diversity(struct ath_softc *sc)
   1191 {
   1192 	struct ifnet *ifp = &sc->sc_if;
   1193 	struct ath_hal *ah = sc->sc_ah;
   1194 
   1195 	if (!ath_hal_setdiversity(sc->sc_ah, sc->sc_diversity) ||
   1196 	    sc->sc_diversity != ath_hal_getdiversity(ah)) {
   1197 		if_printf(ifp, "could not restore diversity setting %d\n",
   1198 		    sc->sc_diversity);
   1199 		sc->sc_diversity = ath_hal_getdiversity(ah);
   1200 	}
   1201 }
   1202 
   1203 /*
   1204  * Reset the hardware w/o losing operational state.  This is
   1205  * basically a more efficient way of doing ath_stop, ath_init,
   1206  * followed by state transitions to the current 802.11
   1207  * operational state.  Used to recover from various errors and
   1208  * to reset or reload hardware state.
   1209  */
   1210 int
   1211 ath_reset(struct ifnet *ifp)
   1212 {
   1213 	struct ath_softc *sc = ifp->if_softc;
   1214 	struct ieee80211com *ic = &sc->sc_ic;
   1215 	struct ath_hal *ah = sc->sc_ah;
   1216 	struct ieee80211_channel *c;
   1217 	HAL_STATUS status;
   1218 
   1219 	/*
   1220 	 * Convert to a HAL channel description with the flags
   1221 	 * constrained to reflect the current operating mode.
   1222 	 */
   1223 	c = ic->ic_curchan;
   1224 	sc->sc_curchan.channel = c->ic_freq;
   1225 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
   1226 
   1227 	ath_hal_intrset(ah, 0);		/* disable interrupts */
   1228 	ath_draintxq(sc);		/* stop xmit side */
   1229 	ath_stoprecv(sc);		/* stop recv side */
   1230 	/* NB: indicate channel change so we do a full reset */
   1231 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
   1232 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
   1233 			__func__, status);
   1234 	ath_update_txpow(sc);		/* update tx power state */
   1235 	ath_restore_diversity(sc);
   1236 	sc->sc_calinterval = 1;
   1237 	sc->sc_caltries = 0;
   1238 	if (ath_startrecv(sc) != 0)	/* restart recv */
   1239 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
   1240 	/*
   1241 	 * We may be doing a reset in response to an ioctl
   1242 	 * that changes the channel so update any state that
   1243 	 * might change as a result.
   1244 	 */
   1245 	ath_chan_change(sc, c);
   1246 	if (ic->ic_state == IEEE80211_S_RUN)
   1247 		ath_beacon_config(sc);	/* restart beacons */
   1248 	ath_hal_intrset(ah, sc->sc_imask);
   1249 
   1250 	ath_start(ifp);			/* restart xmit */
   1251 	return 0;
   1252 }
   1253 
   1254 /*
   1255  * Cleanup driver resources when we run out of buffers
   1256  * while processing fragments; return the tx buffers
   1257  * allocated and drop node references.
   1258  */
   1259 static void
   1260 ath_txfrag_cleanup(struct ath_softc *sc,
   1261 	ath_bufhead *frags, struct ieee80211_node *ni)
   1262 {
   1263 	struct ath_buf *bf;
   1264 
   1265 	ATH_TXBUF_LOCK_ASSERT(sc);
   1266 
   1267 	while ((bf = STAILQ_FIRST(frags)) != NULL) {
   1268 		STAILQ_REMOVE_HEAD(frags, bf_list);
   1269 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1270 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
   1271 		ieee80211_node_decref(ni);
   1272 	}
   1273 }
   1274 
   1275 /*
   1276  * Setup xmit of a fragmented frame.  Allocate a buffer
   1277  * for each frag and bump the node reference count to
   1278  * reflect the held reference to be setup by ath_tx_start.
   1279  */
   1280 static int
   1281 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
   1282 	struct mbuf *m0, struct ieee80211_node *ni)
   1283 {
   1284 	struct mbuf *m;
   1285 	struct ath_buf *bf;
   1286 
   1287 	ATH_TXBUF_LOCK(sc);
   1288 	for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
   1289 		bf = STAILQ_FIRST(&sc->sc_txbuf);
   1290 		if (bf == NULL) {       /* out of buffers, cleanup */
   1291 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
   1292 				__func__);
   1293 			sc->sc_if.if_flags |= IFF_OACTIVE;
   1294 			ath_txfrag_cleanup(sc, frags, ni);
   1295 			break;
   1296 		}
   1297 		STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
   1298 		ieee80211_node_incref(ni);
   1299 		STAILQ_INSERT_TAIL(frags, bf, bf_list);
   1300 	}
   1301 	ATH_TXBUF_UNLOCK(sc);
   1302 
   1303 	return !STAILQ_EMPTY(frags);
   1304 }
   1305 
   1306 static void
   1307 ath_start(struct ifnet *ifp)
   1308 {
   1309 	struct ath_softc *sc = ifp->if_softc;
   1310 	struct ath_hal *ah = sc->sc_ah;
   1311 	struct ieee80211com *ic = &sc->sc_ic;
   1312 	struct ieee80211_node *ni;
   1313 	struct ath_buf *bf;
   1314 	struct mbuf *m, *next;
   1315 	struct ieee80211_frame *wh;
   1316 	struct ether_header *eh;
   1317 	ath_bufhead frags;
   1318 
   1319 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
   1320 		return;
   1321 	for (;;) {
   1322 		/*
   1323 		 * Grab a TX buffer and associated resources.
   1324 		 */
   1325 		ATH_TXBUF_LOCK(sc);
   1326 		bf = STAILQ_FIRST(&sc->sc_txbuf);
   1327 		if (bf != NULL)
   1328 			STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
   1329 		ATH_TXBUF_UNLOCK(sc);
   1330 		if (bf == NULL) {
   1331 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
   1332 				__func__);
   1333 			sc->sc_stats.ast_tx_qstop++;
   1334 			ifp->if_flags |= IFF_OACTIVE;
   1335 			break;
   1336 		}
   1337 		/*
   1338 		 * Poll the management queue for frames; they
   1339 		 * have priority over normal data frames.
   1340 		 */
   1341 		IF_DEQUEUE(&ic->ic_mgtq, m);
   1342 		if (m == NULL) {
   1343 			/*
   1344 			 * No data frames go out unless we're associated.
   1345 			 */
   1346 			if (ic->ic_state != IEEE80211_S_RUN) {
   1347 				DPRINTF(sc, ATH_DEBUG_XMIT,
   1348 				    "%s: discard data packet, state %s\n",
   1349 				    __func__,
   1350 				    ieee80211_state_name[ic->ic_state]);
   1351 				sc->sc_stats.ast_tx_discard++;
   1352 				ATH_TXBUF_LOCK(sc);
   1353 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1354 				ATH_TXBUF_UNLOCK(sc);
   1355 				break;
   1356 			}
   1357 			IFQ_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
   1358 			if (m == NULL) {
   1359 				ATH_TXBUF_LOCK(sc);
   1360 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1361 				ATH_TXBUF_UNLOCK(sc);
   1362 				break;
   1363 			}
   1364 			STAILQ_INIT(&frags);
   1365 			/*
   1366 			 * Find the node for the destination so we can do
   1367 			 * things like power save and fast frames aggregation.
   1368 			 */
   1369 			if (m->m_len < sizeof(struct ether_header) &&
   1370 			   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
   1371 				ic->ic_stats.is_tx_nobuf++;	/* XXX */
   1372 				ni = NULL;
   1373 				goto bad;
   1374 			}
   1375 			eh = mtod(m, struct ether_header *);
   1376 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   1377 			if (ni == NULL) {
   1378 				/* NB: ieee80211_find_txnode does stat+msg */
   1379 				m_freem(m);
   1380 				goto bad;
   1381 			}
   1382 			if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
   1383 			    (m->m_flags & M_PWR_SAV) == 0) {
   1384 				/*
   1385 				 * Station in power save mode; pass the frame
   1386 				 * to the 802.11 layer and continue.  We'll get
   1387 				 * the frame back when the time is right.
   1388 				 */
   1389 				ieee80211_pwrsave(ic, ni, m);
   1390 				goto reclaim;
   1391 			}
   1392 			/* calculate priority so we can find the tx queue */
   1393 			if (ieee80211_classify(ic, m, ni)) {
   1394 				DPRINTF(sc, ATH_DEBUG_XMIT,
   1395 					"%s: discard, classification failure\n",
   1396 					__func__);
   1397 				m_freem(m);
   1398 				goto bad;
   1399 			}
   1400 			ifp->if_opackets++;
   1401 
   1402 #if NBPFILTER > 0
   1403 			if (ifp->if_bpf)
   1404 				bpf_mtap(ifp->if_bpf, m);
   1405 #endif
   1406 			/*
   1407 			 * Encapsulate the packet in prep for transmission.
   1408 			 */
   1409 			m = ieee80211_encap(ic, m, ni);
   1410 			if (m == NULL) {
   1411 				DPRINTF(sc, ATH_DEBUG_XMIT,
   1412 					"%s: encapsulation failure\n",
   1413 					__func__);
   1414 				sc->sc_stats.ast_tx_encap++;
   1415 				goto bad;
   1416 			}
   1417 			/*
   1418 			 * Check for fragmentation.  If this has frame
   1419 			 * has been broken up verify we have enough
   1420 			 * buffers to send all the fragments so all
   1421 			 * go out or none...
   1422 			 */
   1423 			if ((m->m_flags & M_FRAG) &&
   1424 			    !ath_txfrag_setup(sc, &frags, m, ni)) {
   1425 				DPRINTF(sc, ATH_DEBUG_ANY,
   1426 				    "%s: out of txfrag buffers\n", __func__);
   1427 				ic->ic_stats.is_tx_nobuf++;     /* XXX */
   1428 				ath_freetx(m);
   1429 				goto bad;
   1430 			}
   1431 		} else {
   1432 			/*
   1433 			 * Hack!  The referenced node pointer is in the
   1434 			 * rcvif field of the packet header.  This is
   1435 			 * placed there by ieee80211_mgmt_output because
   1436 			 * we need to hold the reference with the frame
   1437 			 * and there's no other way (other than packet
   1438 			 * tags which we consider too expensive to use)
   1439 			 * to pass it along.
   1440 			 */
   1441 			ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
   1442 			m->m_pkthdr.rcvif = NULL;
   1443 
   1444 			wh = mtod(m, struct ieee80211_frame *);
   1445 			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
   1446 			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
   1447 				/* fill time stamp */
   1448 				u_int64_t tsf;
   1449 				u_int32_t *tstamp;
   1450 
   1451 				tsf = ath_hal_gettsf64(ah);
   1452 				/* XXX: adjust 100us delay to xmit */
   1453 				tsf += 100;
   1454 				tstamp = (u_int32_t *)&wh[1];
   1455 				tstamp[0] = htole32(tsf & 0xffffffff);
   1456 				tstamp[1] = htole32(tsf >> 32);
   1457 			}
   1458 			sc->sc_stats.ast_tx_mgmt++;
   1459 		}
   1460 
   1461 	nextfrag:
   1462 		next = m->m_nextpkt;
   1463 		if (ath_tx_start(sc, ni, bf, m)) {
   1464 	bad:
   1465 			ifp->if_oerrors++;
   1466 	reclaim:
   1467 			ATH_TXBUF_LOCK(sc);
   1468 			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1469 			ath_txfrag_cleanup(sc, &frags, ni);
   1470 			ATH_TXBUF_UNLOCK(sc);
   1471 			if (ni != NULL)
   1472 				ieee80211_free_node(ni);
   1473 			continue;
   1474 		}
   1475 		if (next != NULL) {
   1476 			m = next;
   1477 			bf = STAILQ_FIRST(&frags);
   1478 			KASSERT(bf != NULL, ("no buf for txfrag"));
   1479 			STAILQ_REMOVE_HEAD(&frags, bf_list);
   1480 			goto nextfrag;
   1481 		}
   1482 
   1483 		ifp->if_timer = 1;
   1484 	}
   1485 }
   1486 
   1487 static int
   1488 ath_media_change(struct ifnet *ifp)
   1489 {
   1490 #define	IS_UP(ifp) \
   1491 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
   1492 	int error;
   1493 
   1494 	error = ieee80211_media_change(ifp);
   1495 	if (error == ENETRESET) {
   1496 		if (IS_UP(ifp))
   1497 			ath_init(ifp->if_softc);	/* XXX lose error */
   1498 		error = 0;
   1499 	}
   1500 	return error;
   1501 #undef IS_UP
   1502 }
   1503 
   1504 #ifdef AR_DEBUG
   1505 static void
   1506 ath_keyprint(const char *tag, u_int ix,
   1507 	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
   1508 {
   1509 	static const char *ciphers[] = {
   1510 		"WEP",
   1511 		"AES-OCB",
   1512 		"AES-CCM",
   1513 		"CKIP",
   1514 		"TKIP",
   1515 		"CLR",
   1516 	};
   1517 	int i, n;
   1518 
   1519 	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
   1520 	for (i = 0, n = hk->kv_len; i < n; i++)
   1521 		printf("%02x", hk->kv_val[i]);
   1522 	printf(" mac %s", ether_sprintf(mac));
   1523 	if (hk->kv_type == HAL_CIPHER_TKIP) {
   1524 		printf(" mic ");
   1525 		for (i = 0; i < sizeof(hk->kv_mic); i++)
   1526 			printf("%02x", hk->kv_mic[i]);
   1527 	}
   1528 	printf("\n");
   1529 }
   1530 #endif
   1531 
   1532 /*
   1533  * Set a TKIP key into the hardware.  This handles the
   1534  * potential distribution of key state to multiple key
   1535  * cache slots for TKIP.
   1536  */
   1537 static int
   1538 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
   1539 	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
   1540 {
   1541 #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
   1542 	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
   1543 	struct ath_hal *ah = sc->sc_ah;
   1544 
   1545 	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
   1546 		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
   1547 	KASSERT(sc->sc_splitmic, ("key cache !split"));
   1548 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
   1549 		/*
   1550 		 * TX key goes at first index, RX key at the rx index.
   1551 		 * The hal handles the MIC keys at index+64.
   1552 		 */
   1553 		memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
   1554 		KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
   1555 		if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
   1556 			return 0;
   1557 
   1558 		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
   1559 		KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
   1560 		/* XXX delete tx key on failure? */
   1561 		return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
   1562 	} else if (k->wk_flags & IEEE80211_KEY_XR) {
   1563 		/*
   1564 		 * TX/RX key goes at first index.
   1565 		 * The hal handles the MIC keys are index+64.
   1566 		 */
   1567 		memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
   1568 			k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
   1569 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
   1570 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
   1571 	}
   1572 	return 0;
   1573 #undef IEEE80211_KEY_XR
   1574 }
   1575 
   1576 /*
   1577  * Set a net80211 key into the hardware.  This handles the
   1578  * potential distribution of key state to multiple key
   1579  * cache slots for TKIP with hardware MIC support.
   1580  */
   1581 static int
   1582 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
   1583 	const u_int8_t mac0[IEEE80211_ADDR_LEN],
   1584 	struct ieee80211_node *bss)
   1585 {
   1586 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1587 	static const u_int8_t ciphermap[] = {
   1588 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
   1589 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
   1590 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
   1591 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
   1592 		(u_int8_t) -1,		/* 4 is not allocated */
   1593 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
   1594 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
   1595 	};
   1596 	struct ath_hal *ah = sc->sc_ah;
   1597 	const struct ieee80211_cipher *cip = k->wk_cipher;
   1598 	u_int8_t gmac[IEEE80211_ADDR_LEN];
   1599 	const u_int8_t *mac;
   1600 	HAL_KEYVAL hk;
   1601 
   1602 	memset(&hk, 0, sizeof(hk));
   1603 	/*
   1604 	 * Software crypto uses a "clear key" so non-crypto
   1605 	 * state kept in the key cache are maintained and
   1606 	 * so that rx frames have an entry to match.
   1607 	 */
   1608 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
   1609 		KASSERT(cip->ic_cipher < N(ciphermap),
   1610 			("invalid cipher type %u", cip->ic_cipher));
   1611 		hk.kv_type = ciphermap[cip->ic_cipher];
   1612 		hk.kv_len = k->wk_keylen;
   1613 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
   1614 	} else
   1615 		hk.kv_type = HAL_CIPHER_CLR;
   1616 
   1617 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
   1618 		/*
   1619 		 * Group keys on hardware that supports multicast frame
   1620 		 * key search use a mac that is the sender's address with
   1621 		 * the high bit set instead of the app-specified address.
   1622 		 */
   1623 		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
   1624 		gmac[0] |= 0x80;
   1625 		mac = gmac;
   1626 	} else
   1627 		mac = mac0;
   1628 
   1629 	if (hk.kv_type == HAL_CIPHER_TKIP &&
   1630 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
   1631 	    sc->sc_splitmic) {
   1632 		return ath_keyset_tkip(sc, k, &hk, mac);
   1633 	} else {
   1634 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
   1635 		return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
   1636 	}
   1637 #undef N
   1638 }
   1639 
   1640 /*
   1641  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
   1642  * each key, one for decrypt/encrypt and the other for the MIC.
   1643  */
   1644 static u_int16_t
   1645 key_alloc_2pair(struct ath_softc *sc,
   1646 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
   1647 {
   1648 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1649 	u_int i, keyix;
   1650 
   1651 	KASSERT(sc->sc_splitmic, ("key cache !split"));
   1652 	/* XXX could optimize */
   1653 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
   1654 		u_int8_t b = sc->sc_keymap[i];
   1655 		if (b != 0xff) {
   1656 			/*
   1657 			 * One or more slots in this byte are free.
   1658 			 */
   1659 			keyix = i*NBBY;
   1660 			while (b & 1) {
   1661 		again:
   1662 				keyix++;
   1663 				b >>= 1;
   1664 			}
   1665 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
   1666 			if (isset(sc->sc_keymap, keyix+32) ||
   1667 			    isset(sc->sc_keymap, keyix+64) ||
   1668 			    isset(sc->sc_keymap, keyix+32+64)) {
   1669 				/* full pair unavailable */
   1670 				/* XXX statistic */
   1671 				if (keyix == (i+1)*NBBY) {
   1672 					/* no slots were appropriate, advance */
   1673 					continue;
   1674 				}
   1675 				goto again;
   1676 			}
   1677 			setbit(sc->sc_keymap, keyix);
   1678 			setbit(sc->sc_keymap, keyix+64);
   1679 			setbit(sc->sc_keymap, keyix+32);
   1680 			setbit(sc->sc_keymap, keyix+32+64);
   1681 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
   1682 				"%s: key pair %u,%u %u,%u\n",
   1683 				__func__, keyix, keyix+64,
   1684 				keyix+32, keyix+32+64);
   1685 			*txkeyix = keyix;
   1686 			*rxkeyix = keyix+32;
   1687 			return 1;
   1688 		}
   1689 	}
   1690 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
   1691 	return 0;
   1692 #undef N
   1693 }
   1694 
   1695 /*
   1696  * Allocate a single key cache slot.
   1697  */
   1698 static int
   1699 key_alloc_single(struct ath_softc *sc,
   1700 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
   1701 {
   1702 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1703 	u_int i, keyix;
   1704 
   1705 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
   1706 	for (i = 0; i < N(sc->sc_keymap); i++) {
   1707 		u_int8_t b = sc->sc_keymap[i];
   1708 		if (b != 0xff) {
   1709 			/*
   1710 			 * One or more slots are free.
   1711 			 */
   1712 			keyix = i*NBBY;
   1713 			while (b & 1)
   1714 				keyix++, b >>= 1;
   1715 			setbit(sc->sc_keymap, keyix);
   1716 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
   1717 				__func__, keyix);
   1718 			*txkeyix = *rxkeyix = keyix;
   1719 			return 1;
   1720 		}
   1721 	}
   1722 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
   1723 	return 0;
   1724 #undef N
   1725 }
   1726 
   1727 /*
   1728  * Allocate one or more key cache slots for a uniacst key.  The
   1729  * key itself is needed only to identify the cipher.  For hardware
   1730  * TKIP with split cipher+MIC keys we allocate two key cache slot
   1731  * pairs so that we can setup separate TX and RX MIC keys.  Note
   1732  * that the MIC key for a TKIP key at slot i is assumed by the
   1733  * hardware to be at slot i+64.  This limits TKIP keys to the first
   1734  * 64 entries.
   1735  */
   1736 static int
   1737 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
   1738 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
   1739 {
   1740 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1741 
   1742 	/*
   1743 	 * Group key allocation must be handled specially for
   1744 	 * parts that do not support multicast key cache search
   1745 	 * functionality.  For those parts the key id must match
   1746 	 * the h/w key index so lookups find the right key.  On
   1747 	 * parts w/ the key search facility we install the sender's
   1748 	 * mac address (with the high bit set) and let the hardware
   1749 	 * find the key w/o using the key id.  This is preferred as
   1750 	 * it permits us to support multiple users for adhoc and/or
   1751 	 * multi-station operation.
   1752 	 */
   1753 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
   1754 		if (!(&ic->ic_nw_keys[0] <= k &&
   1755 		      k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
   1756 			/* should not happen */
   1757 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
   1758 				"%s: bogus group key\n", __func__);
   1759 			return 0;
   1760 		}
   1761 		/*
   1762 		 * XXX we pre-allocate the global keys so
   1763 		 * have no way to check if they've already been allocated.
   1764 		 */
   1765 		*keyix = *rxkeyix = k - ic->ic_nw_keys;
   1766 		return 1;
   1767 	}
   1768 
   1769 	/*
   1770 	 * We allocate two pair for TKIP when using the h/w to do
   1771 	 * the MIC.  For everything else, including software crypto,
   1772 	 * we allocate a single entry.  Note that s/w crypto requires
   1773 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
   1774 	 * not support pass-through cache entries and we map all
   1775 	 * those requests to slot 0.
   1776 	 */
   1777 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
   1778 		return key_alloc_single(sc, keyix, rxkeyix);
   1779 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1780 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
   1781 		return key_alloc_2pair(sc, keyix, rxkeyix);
   1782 	} else {
   1783 		return key_alloc_single(sc, keyix, rxkeyix);
   1784 	}
   1785 }
   1786 
   1787 /*
   1788  * Delete an entry in the key cache allocated by ath_key_alloc.
   1789  */
   1790 static int
   1791 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
   1792 {
   1793 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1794 	struct ath_hal *ah = sc->sc_ah;
   1795 	const struct ieee80211_cipher *cip = k->wk_cipher;
   1796 	u_int keyix = k->wk_keyix;
   1797 
   1798 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
   1799 
   1800 	ath_hal_keyreset(ah, keyix);
   1801 	/*
   1802 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
   1803 	 */
   1804 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1805 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
   1806 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
   1807 	if (keyix >= IEEE80211_WEP_NKID) {
   1808 		/*
   1809 		 * Don't touch keymap entries for global keys so
   1810 		 * they are never considered for dynamic allocation.
   1811 		 */
   1812 		clrbit(sc->sc_keymap, keyix);
   1813 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1814 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
   1815 		    sc->sc_splitmic) {
   1816 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
   1817 			clrbit(sc->sc_keymap, keyix+32);	/* RX key */
   1818 			clrbit(sc->sc_keymap, keyix+32+64);	/* RX key MIC */
   1819 		}
   1820 	}
   1821 	return 1;
   1822 }
   1823 
   1824 /*
   1825  * Set the key cache contents for the specified key.  Key cache
   1826  * slot(s) must already have been allocated by ath_key_alloc.
   1827  */
   1828 static int
   1829 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
   1830 	const u_int8_t mac[IEEE80211_ADDR_LEN])
   1831 {
   1832 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1833 
   1834 	return ath_keyset(sc, k, mac, ic->ic_bss);
   1835 }
   1836 
   1837 /*
   1838  * Block/unblock tx+rx processing while a key change is done.
   1839  * We assume the caller serializes key management operations
   1840  * so we only need to worry about synchronization with other
   1841  * uses that originate in the driver.
   1842  */
   1843 static void
   1844 ath_key_update_begin(struct ieee80211com *ic)
   1845 {
   1846 	struct ifnet *ifp = ic->ic_ifp;
   1847 	struct ath_softc *sc = ifp->if_softc;
   1848 
   1849 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
   1850 #if 0
   1851 	tasklet_disable(&sc->sc_rxtq);
   1852 #endif
   1853 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
   1854 }
   1855 
   1856 static void
   1857 ath_key_update_end(struct ieee80211com *ic)
   1858 {
   1859 	struct ifnet *ifp = ic->ic_ifp;
   1860 	struct ath_softc *sc = ifp->if_softc;
   1861 
   1862 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
   1863 	IF_UNLOCK(&ifp->if_snd);
   1864 #if 0
   1865 	tasklet_enable(&sc->sc_rxtq);
   1866 #endif
   1867 }
   1868 
   1869 /*
   1870  * Calculate the receive filter according to the
   1871  * operating mode and state:
   1872  *
   1873  * o always accept unicast, broadcast, and multicast traffic
   1874  * o maintain current state of phy error reception (the hal
   1875  *   may enable phy error frames for noise immunity work)
   1876  * o probe request frames are accepted only when operating in
   1877  *   hostap, adhoc, or monitor modes
   1878  * o enable promiscuous mode according to the interface state
   1879  * o accept beacons:
   1880  *   - when operating in adhoc mode so the 802.11 layer creates
   1881  *     node table entries for peers,
   1882  *   - when operating in station mode for collecting rssi data when
   1883  *     the station is otherwise quiet, or
   1884  *   - when scanning
   1885  */
   1886 static u_int32_t
   1887 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
   1888 {
   1889 	struct ieee80211com *ic = &sc->sc_ic;
   1890 	struct ath_hal *ah = sc->sc_ah;
   1891 	struct ifnet *ifp = &sc->sc_if;
   1892 	u_int32_t rfilt;
   1893 
   1894 	rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
   1895 	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
   1896 	if (ic->ic_opmode != IEEE80211_M_STA)
   1897 		rfilt |= HAL_RX_FILTER_PROBEREQ;
   1898 	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
   1899 	    (ifp->if_flags & IFF_PROMISC))
   1900 		rfilt |= HAL_RX_FILTER_PROM;
   1901 	if (ic->ic_opmode == IEEE80211_M_STA ||
   1902 	    ic->ic_opmode == IEEE80211_M_IBSS ||
   1903 	    state == IEEE80211_S_SCAN)
   1904 		rfilt |= HAL_RX_FILTER_BEACON;
   1905 	return rfilt;
   1906 }
   1907 
   1908 static void
   1909 ath_mcastfilter_accum(void *dl, u_int32_t *mfilt)
   1910 {
   1911 	u_int32_t val;
   1912 	u_int8_t pos;
   1913 
   1914 	/* calculate XOR of eight 6bit values */
   1915 	val = LE_READ_4((char *)dl + 0);
   1916 	pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1917 	val = LE_READ_4((char *)dl + 3);
   1918 	pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1919 	pos &= 0x3f;
   1920 	mfilt[pos / 32] |= (1 << (pos % 32));
   1921 }
   1922 
   1923 static void
   1924 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t *mfilt)
   1925 {
   1926 	struct ifnet *ifp = &sc->sc_if;
   1927 	struct ether_multi *enm;
   1928 	struct ether_multistep estep;
   1929 
   1930 	mfilt[0] = mfilt[1] = 0;
   1931 	ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
   1932 	while (enm != NULL) {
   1933 		/* XXX Punt on ranges. */
   1934 		if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
   1935 			mfilt[0] = mfilt[1] = ~((u_int32_t)0);
   1936 			ifp->if_flags |= IFF_ALLMULTI;
   1937 			return;
   1938 		}
   1939 		ath_mcastfilter_accum(enm->enm_addrlo, mfilt);
   1940 		ETHER_NEXT_MULTI(estep, enm);
   1941 	}
   1942 	ifp->if_flags &= ~IFF_ALLMULTI;
   1943 }
   1944 
   1945 static void
   1946 ath_mode_init(struct ath_softc *sc)
   1947 {
   1948 	struct ieee80211com *ic = &sc->sc_ic;
   1949 	struct ath_hal *ah = sc->sc_ah;
   1950 	u_int32_t rfilt, mfilt[2];
   1951 	int i;
   1952 
   1953 	/* configure rx filter */
   1954 	rfilt = ath_calcrxfilter(sc, ic->ic_state);
   1955 	ath_hal_setrxfilter(ah, rfilt);
   1956 
   1957 	/* configure operational mode */
   1958 	ath_hal_setopmode(ah);
   1959 
   1960 	/* Write keys to hardware; it may have been powered down. */
   1961 	ath_key_update_begin(ic);
   1962 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
   1963 		ath_key_set(ic,
   1964 			    &ic->ic_crypto.cs_nw_keys[i],
   1965 			    ic->ic_myaddr);
   1966 	}
   1967 	ath_key_update_end(ic);
   1968 
   1969 	/*
   1970 	 * Handle any link-level address change.  Note that we only
   1971 	 * need to force ic_myaddr; any other addresses are handled
   1972 	 * as a byproduct of the ifnet code marking the interface
   1973 	 * down then up.
   1974 	 *
   1975 	 * XXX should get from lladdr instead of arpcom but that's more work
   1976 	 */
   1977 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(sc->sc_if.if_sadl));
   1978 	ath_hal_setmac(ah, ic->ic_myaddr);
   1979 
   1980 	/* calculate and install multicast filter */
   1981 #ifdef __FreeBSD__
   1982 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   1983 		mfilt[0] = mfilt[1] = 0;
   1984 		IF_ADDR_LOCK(ifp);
   1985 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
   1986 			void *dl;
   1987 
   1988 			/* calculate XOR of eight 6bit values */
   1989 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
   1990 			val = LE_READ_4((char *)dl + 0);
   1991 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1992 			val = LE_READ_4((char *)dl + 3);
   1993 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1994 			pos &= 0x3f;
   1995 			mfilt[pos / 32] |= (1 << (pos % 32));
   1996 		}
   1997 		IF_ADDR_UNLOCK(ifp);
   1998 	} else {
   1999 		mfilt[0] = mfilt[1] = ~0;
   2000 	}
   2001 #endif
   2002 #ifdef __NetBSD__
   2003 	ath_mcastfilter_compute(sc, mfilt);
   2004 #endif
   2005 	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
   2006 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
   2007 		__func__, rfilt, mfilt[0], mfilt[1]);
   2008 }
   2009 
   2010 /*
   2011  * Set the slot time based on the current setting.
   2012  */
   2013 static void
   2014 ath_setslottime(struct ath_softc *sc)
   2015 {
   2016 	struct ieee80211com *ic = &sc->sc_ic;
   2017 	struct ath_hal *ah = sc->sc_ah;
   2018 
   2019 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   2020 		ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
   2021 	else
   2022 		ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
   2023 	sc->sc_updateslot = OK;
   2024 }
   2025 
   2026 /*
   2027  * Callback from the 802.11 layer to update the
   2028  * slot time based on the current setting.
   2029  */
   2030 static void
   2031 ath_updateslot(struct ifnet *ifp)
   2032 {
   2033 	struct ath_softc *sc = ifp->if_softc;
   2034 	struct ieee80211com *ic = &sc->sc_ic;
   2035 
   2036 	/*
   2037 	 * When not coordinating the BSS, change the hardware
   2038 	 * immediately.  For other operation we defer the change
   2039 	 * until beacon updates have propagated to the stations.
   2040 	 */
   2041 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
   2042 		sc->sc_updateslot = UPDATE;
   2043 	else
   2044 		ath_setslottime(sc);
   2045 }
   2046 
   2047 /*
   2048  * Setup a h/w transmit queue for beacons.
   2049  */
   2050 static int
   2051 ath_beaconq_setup(struct ath_hal *ah)
   2052 {
   2053 	HAL_TXQ_INFO qi;
   2054 
   2055 	memset(&qi, 0, sizeof(qi));
   2056 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
   2057 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
   2058 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
   2059 	/* NB: for dynamic turbo, don't enable any other interrupts */
   2060 	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
   2061 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
   2062 }
   2063 
   2064 /*
   2065  * Setup the transmit queue parameters for the beacon queue.
   2066  */
   2067 static int
   2068 ath_beaconq_config(struct ath_softc *sc)
   2069 {
   2070 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
   2071 	struct ieee80211com *ic = &sc->sc_ic;
   2072 	struct ath_hal *ah = sc->sc_ah;
   2073 	HAL_TXQ_INFO qi;
   2074 
   2075 	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
   2076 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   2077 		/*
   2078 		 * Always burst out beacon and CAB traffic.
   2079 		 */
   2080 		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
   2081 		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
   2082 		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
   2083 	} else {
   2084 		struct wmeParams *wmep =
   2085 			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
   2086 		/*
   2087 		 * Adhoc mode; important thing is to use 2x cwmin.
   2088 		 */
   2089 		qi.tqi_aifs = wmep->wmep_aifsn;
   2090 		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
   2091 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
   2092 	}
   2093 
   2094 	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
   2095 		device_printf(&sc->sc_dev, "unable to update parameters for "
   2096 			"beacon hardware queue!\n");
   2097 		return 0;
   2098 	} else {
   2099 		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
   2100 		return 1;
   2101 	}
   2102 #undef ATH_EXPONENT_TO_VALUE
   2103 }
   2104 
   2105 /*
   2106  * Allocate and setup an initial beacon frame.
   2107  */
   2108 static int
   2109 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
   2110 {
   2111 	struct ieee80211com *ic = ni->ni_ic;
   2112 	struct ath_buf *bf;
   2113 	struct mbuf *m;
   2114 	int error;
   2115 
   2116 	bf = STAILQ_FIRST(&sc->sc_bbuf);
   2117 	if (bf == NULL) {
   2118 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
   2119 		sc->sc_stats.ast_be_nombuf++;	/* XXX */
   2120 		return ENOMEM;			/* XXX */
   2121 	}
   2122 	/*
   2123 	 * NB: the beacon data buffer must be 32-bit aligned;
   2124 	 * we assume the mbuf routines will return us something
   2125 	 * with this alignment (perhaps should assert).
   2126 	 */
   2127 	m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
   2128 	if (m == NULL) {
   2129 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
   2130 			__func__);
   2131 		sc->sc_stats.ast_be_nombuf++;
   2132 		return ENOMEM;
   2133 	}
   2134 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
   2135 				     BUS_DMA_NOWAIT);
   2136 	if (error == 0) {
   2137 		bf->bf_m = m;
   2138 		bf->bf_node = ieee80211_ref_node(ni);
   2139 	} else {
   2140 		m_freem(m);
   2141 	}
   2142 	return error;
   2143 }
   2144 
   2145 /*
   2146  * Setup the beacon frame for transmit.
   2147  */
   2148 static void
   2149 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
   2150 {
   2151 #define	USE_SHPREAMBLE(_ic) \
   2152 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
   2153 		== IEEE80211_F_SHPREAMBLE)
   2154 	struct ieee80211_node *ni = bf->bf_node;
   2155 	struct ieee80211com *ic = ni->ni_ic;
   2156 	struct mbuf *m = bf->bf_m;
   2157 	struct ath_hal *ah = sc->sc_ah;
   2158 	struct ath_desc *ds;
   2159 	int flags, antenna;
   2160 	const HAL_RATE_TABLE *rt;
   2161 	u_int8_t rix, rate;
   2162 
   2163 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
   2164 		__func__, m, m->m_len);
   2165 
   2166 	/* setup descriptors */
   2167 	ds = bf->bf_desc;
   2168 
   2169 	flags = HAL_TXDESC_NOACK;
   2170 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
   2171 		ds->ds_link = HTOAH32(bf->bf_daddr);	/* self-linked */
   2172 		flags |= HAL_TXDESC_VEOL;
   2173 		/*
   2174 		 * Let hardware handle antenna switching unless
   2175 		 * the user has selected a transmit antenna
   2176 		 * (sc_txantenna is not 0).
   2177 		 */
   2178 		antenna = sc->sc_txantenna;
   2179 	} else {
   2180 		ds->ds_link = 0;
   2181 		/*
   2182 		 * Switch antenna every 4 beacons, unless the user
   2183 		 * has selected a transmit antenna (sc_txantenna
   2184 		 * is not 0).
   2185 		 *
   2186 		 * XXX assumes two antenna
   2187 		 */
   2188 		if (sc->sc_txantenna == 0)
   2189 			antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
   2190 		else
   2191 			antenna = sc->sc_txantenna;
   2192 	}
   2193 
   2194 	KASSERT(bf->bf_nseg == 1,
   2195 		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
   2196 	ds->ds_data = bf->bf_segs[0].ds_addr;
   2197 	/*
   2198 	 * Calculate rate code.
   2199 	 * XXX everything at min xmit rate
   2200 	 */
   2201 	rix = sc->sc_minrateix;
   2202 	rt = sc->sc_currates;
   2203 	rate = rt->info[rix].rateCode;
   2204 	if (USE_SHPREAMBLE(ic))
   2205 		rate |= rt->info[rix].shortPreamble;
   2206 	ath_hal_setuptxdesc(ah, ds
   2207 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
   2208 		, sizeof(struct ieee80211_frame)/* header length */
   2209 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
   2210 		, ni->ni_txpower		/* txpower XXX */
   2211 		, rate, 1			/* series 0 rate/tries */
   2212 		, HAL_TXKEYIX_INVALID		/* no encryption */
   2213 		, antenna			/* antenna mode */
   2214 		, flags				/* no ack, veol for beacons */
   2215 		, 0				/* rts/cts rate */
   2216 		, 0				/* rts/cts duration */
   2217 	);
   2218 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
   2219 	ath_hal_filltxdesc(ah, ds
   2220 		, roundup(m->m_len, 4)		/* buffer length */
   2221 		, AH_TRUE			/* first segment */
   2222 		, AH_TRUE			/* last segment */
   2223 		, ds				/* first descriptor */
   2224 	);
   2225 
   2226 	/* NB: The desc swap function becomes void,
   2227 	 * if descriptor swapping is not enabled
   2228 	 */
   2229 	ath_desc_swap(ds);
   2230 
   2231 #undef USE_SHPREAMBLE
   2232 }
   2233 
   2234 /*
   2235  * Transmit a beacon frame at SWBA.  Dynamic updates to the
   2236  * frame contents are done as needed and the slot time is
   2237  * also adjusted based on current state.
   2238  */
   2239 static void
   2240 ath_beacon_proc(void *arg, int pending)
   2241 {
   2242 	struct ath_softc *sc = arg;
   2243 	struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
   2244 	struct ieee80211_node *ni = bf->bf_node;
   2245 	struct ieee80211com *ic = ni->ni_ic;
   2246 	struct ath_hal *ah = sc->sc_ah;
   2247 	struct mbuf *m;
   2248 	int ncabq, error, otherant;
   2249 
   2250 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
   2251 		__func__, pending);
   2252 
   2253 	if (ic->ic_opmode == IEEE80211_M_STA ||
   2254 	    ic->ic_opmode == IEEE80211_M_MONITOR ||
   2255 	    bf == NULL || bf->bf_m == NULL) {
   2256 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
   2257 			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
   2258 		return;
   2259 	}
   2260 	/*
   2261 	 * Check if the previous beacon has gone out.  If
   2262 	 * not don't try to post another, skip this period
   2263 	 * and wait for the next.  Missed beacons indicate
   2264 	 * a problem and should not occur.  If we miss too
   2265 	 * many consecutive beacons reset the device.
   2266 	 */
   2267 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
   2268 		sc->sc_bmisscount++;
   2269 		DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
   2270 			"%s: missed %u consecutive beacons\n",
   2271 			__func__, sc->sc_bmisscount);
   2272 		if (sc->sc_bmisscount > 3)		/* NB: 3 is a guess */
   2273 			TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask);
   2274 		return;
   2275 	}
   2276 	if (sc->sc_bmisscount != 0) {
   2277 		DPRINTF(sc, ATH_DEBUG_BEACON,
   2278 			"%s: resume beacon xmit after %u misses\n",
   2279 			__func__, sc->sc_bmisscount);
   2280 		sc->sc_bmisscount = 0;
   2281 	}
   2282 
   2283 	/*
   2284 	 * Update dynamic beacon contents.  If this returns
   2285 	 * non-zero then we need to remap the memory because
   2286 	 * the beacon frame changed size (probably because
   2287 	 * of the TIM bitmap).
   2288 	 */
   2289 	m = bf->bf_m;
   2290 	ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
   2291 	if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
   2292 		/* XXX too conservative? */
   2293 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   2294 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
   2295 					     BUS_DMA_NOWAIT);
   2296 		if (error != 0) {
   2297 			if_printf(&sc->sc_if,
   2298 			    "%s: bus_dmamap_load_mbuf failed, error %u\n",
   2299 			    __func__, error);
   2300 			return;
   2301 		}
   2302 	}
   2303 
   2304 	/*
   2305 	 * Handle slot time change when a non-ERP station joins/leaves
   2306 	 * an 11g network.  The 802.11 layer notifies us via callback,
   2307 	 * we mark updateslot, then wait one beacon before effecting
   2308 	 * the change.  This gives associated stations at least one
   2309 	 * beacon interval to note the state change.
   2310 	 */
   2311 	/* XXX locking */
   2312 	if (sc->sc_updateslot == UPDATE)
   2313 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
   2314 	else if (sc->sc_updateslot == COMMIT)
   2315 		ath_setslottime(sc);		/* commit change to h/w */
   2316 
   2317 	/*
   2318 	 * Check recent per-antenna transmit statistics and flip
   2319 	 * the default antenna if noticeably more frames went out
   2320 	 * on the non-default antenna.
   2321 	 * XXX assumes 2 anntenae
   2322 	 */
   2323 	otherant = sc->sc_defant & 1 ? 2 : 1;
   2324 	if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
   2325 		ath_setdefantenna(sc, otherant);
   2326 	sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
   2327 
   2328 	/*
   2329 	 * Construct tx descriptor.
   2330 	 */
   2331 	ath_beacon_setup(sc, bf);
   2332 
   2333 	/*
   2334 	 * Stop any current dma and put the new frame on the queue.
   2335 	 * This should never fail since we check above that no frames
   2336 	 * are still pending on the queue.
   2337 	 */
   2338 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
   2339 		DPRINTF(sc, ATH_DEBUG_ANY,
   2340 			"%s: beacon queue %u did not stop?\n",
   2341 			__func__, sc->sc_bhalq);
   2342 	}
   2343 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   2344 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2345 
   2346 	/*
   2347 	 * Enable the CAB queue before the beacon queue to
   2348 	 * insure cab frames are triggered by this beacon.
   2349 	 */
   2350 	if (ncabq != 0 && (sc->sc_boff.bo_tim[4] & 1))	/* NB: only at DTIM */
   2351 		ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
   2352 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
   2353 	ath_hal_txstart(ah, sc->sc_bhalq);
   2354 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
   2355 	    "%s: TXDP[%u] = %" PRIx64 " (%p)\n", __func__,
   2356 	    sc->sc_bhalq, (uint64_t)bf->bf_daddr, bf->bf_desc);
   2357 
   2358 	sc->sc_stats.ast_be_xmit++;
   2359 }
   2360 
   2361 /*
   2362  * Reset the hardware after detecting beacons have stopped.
   2363  */
   2364 static void
   2365 ath_bstuck_proc(void *arg, int pending)
   2366 {
   2367 	struct ath_softc *sc = arg;
   2368 	struct ifnet *ifp = &sc->sc_if;
   2369 
   2370 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
   2371 		sc->sc_bmisscount);
   2372 	ath_reset(ifp);
   2373 }
   2374 
   2375 /*
   2376  * Reclaim beacon resources.
   2377  */
   2378 static void
   2379 ath_beacon_free(struct ath_softc *sc)
   2380 {
   2381 	struct ath_buf *bf;
   2382 
   2383 	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
   2384 		if (bf->bf_m != NULL) {
   2385 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   2386 			m_freem(bf->bf_m);
   2387 			bf->bf_m = NULL;
   2388 		}
   2389 		if (bf->bf_node != NULL) {
   2390 			ieee80211_free_node(bf->bf_node);
   2391 			bf->bf_node = NULL;
   2392 		}
   2393 	}
   2394 }
   2395 
   2396 /*
   2397  * Configure the beacon and sleep timers.
   2398  *
   2399  * When operating as an AP this resets the TSF and sets
   2400  * up the hardware to notify us when we need to issue beacons.
   2401  *
   2402  * When operating in station mode this sets up the beacon
   2403  * timers according to the timestamp of the last received
   2404  * beacon and the current TSF, configures PCF and DTIM
   2405  * handling, programs the sleep registers so the hardware
   2406  * will wakeup in time to receive beacons, and configures
   2407  * the beacon miss handling so we'll receive a BMISS
   2408  * interrupt when we stop seeing beacons from the AP
   2409  * we've associated with.
   2410  */
   2411 static void
   2412 ath_beacon_config(struct ath_softc *sc)
   2413 {
   2414 #define	TSF_TO_TU(_h,_l) \
   2415 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
   2416 #define	FUDGE	2
   2417 	struct ath_hal *ah = sc->sc_ah;
   2418 	struct ieee80211com *ic = &sc->sc_ic;
   2419 	struct ieee80211_node *ni = ic->ic_bss;
   2420 	u_int32_t nexttbtt, intval, tsftu;
   2421 	u_int64_t tsf;
   2422 
   2423 	/* extract tstamp from last beacon and convert to TU */
   2424 	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
   2425 			     LE_READ_4(ni->ni_tstamp.data));
   2426 	/* NB: the beacon interval is kept internally in TU's */
   2427 	intval = ni->ni_intval & HAL_BEACON_PERIOD;
   2428 	if (nexttbtt == 0)		/* e.g. for ap mode */
   2429 		nexttbtt = intval;
   2430 	else if (intval)		/* NB: can be 0 for monitor mode */
   2431 		nexttbtt = roundup(nexttbtt, intval);
   2432 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
   2433 		__func__, nexttbtt, intval, ni->ni_intval);
   2434 	if (ic->ic_opmode == IEEE80211_M_STA) {
   2435 		HAL_BEACON_STATE bs;
   2436 		int dtimperiod, dtimcount;
   2437 		int cfpperiod, cfpcount;
   2438 
   2439 		/*
   2440 		 * Setup dtim and cfp parameters according to
   2441 		 * last beacon we received (which may be none).
   2442 		 */
   2443 		dtimperiod = ni->ni_dtim_period;
   2444 		if (dtimperiod <= 0)		/* NB: 0 if not known */
   2445 			dtimperiod = 1;
   2446 		dtimcount = ni->ni_dtim_count;
   2447 		if (dtimcount >= dtimperiod)	/* NB: sanity check */
   2448 			dtimcount = 0;		/* XXX? */
   2449 		cfpperiod = 1;			/* NB: no PCF support yet */
   2450 		cfpcount = 0;
   2451 		/*
   2452 		 * Pull nexttbtt forward to reflect the current
   2453 		 * TSF and calculate dtim+cfp state for the result.
   2454 		 */
   2455 		tsf = ath_hal_gettsf64(ah);
   2456 		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
   2457 		do {
   2458 			nexttbtt += intval;
   2459 			if (--dtimcount < 0) {
   2460 				dtimcount = dtimperiod - 1;
   2461 				if (--cfpcount < 0)
   2462 					cfpcount = cfpperiod - 1;
   2463 			}
   2464 		} while (nexttbtt < tsftu);
   2465 		memset(&bs, 0, sizeof(bs));
   2466 		bs.bs_intval = intval;
   2467 		bs.bs_nexttbtt = nexttbtt;
   2468 		bs.bs_dtimperiod = dtimperiod*intval;
   2469 		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
   2470 		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
   2471 		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
   2472 		bs.bs_cfpmaxduration = 0;
   2473 #if 0
   2474 		/*
   2475 		 * The 802.11 layer records the offset to the DTIM
   2476 		 * bitmap while receiving beacons; use it here to
   2477 		 * enable h/w detection of our AID being marked in
   2478 		 * the bitmap vector (to indicate frames for us are
   2479 		 * pending at the AP).
   2480 		 * XXX do DTIM handling in s/w to WAR old h/w bugs
   2481 		 * XXX enable based on h/w rev for newer chips
   2482 		 */
   2483 		bs.bs_timoffset = ni->ni_timoff;
   2484 #endif
   2485 		/*
   2486 		 * Calculate the number of consecutive beacons to miss
   2487 		 * before taking a BMISS interrupt.  The configuration
   2488 		 * is specified in ms, so we need to convert that to
   2489 		 * TU's and then calculate based on the beacon interval.
   2490 		 * Note that we clamp the result to at most 10 beacons.
   2491 		 */
   2492 		bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
   2493 		if (bs.bs_bmissthreshold > 10)
   2494 			bs.bs_bmissthreshold = 10;
   2495 		else if (bs.bs_bmissthreshold <= 0)
   2496 			bs.bs_bmissthreshold = 1;
   2497 
   2498 		/*
   2499 		 * Calculate sleep duration.  The configuration is
   2500 		 * given in ms.  We insure a multiple of the beacon
   2501 		 * period is used.  Also, if the sleep duration is
   2502 		 * greater than the DTIM period then it makes senses
   2503 		 * to make it a multiple of that.
   2504 		 *
   2505 		 * XXX fixed at 100ms
   2506 		 */
   2507 		bs.bs_sleepduration =
   2508 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
   2509 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
   2510 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
   2511 
   2512 		DPRINTF(sc, ATH_DEBUG_BEACON,
   2513 			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
   2514 			, __func__
   2515 			, tsf, tsftu
   2516 			, bs.bs_intval
   2517 			, bs.bs_nexttbtt
   2518 			, bs.bs_dtimperiod
   2519 			, bs.bs_nextdtim
   2520 			, bs.bs_bmissthreshold
   2521 			, bs.bs_sleepduration
   2522 			, bs.bs_cfpperiod
   2523 			, bs.bs_cfpmaxduration
   2524 			, bs.bs_cfpnext
   2525 			, bs.bs_timoffset
   2526 		);
   2527 		ath_hal_intrset(ah, 0);
   2528 		ath_hal_beacontimers(ah, &bs);
   2529 		sc->sc_imask |= HAL_INT_BMISS;
   2530 		ath_hal_intrset(ah, sc->sc_imask);
   2531 	} else {
   2532 		ath_hal_intrset(ah, 0);
   2533 		if (nexttbtt == intval)
   2534 			intval |= HAL_BEACON_RESET_TSF;
   2535 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
   2536 			/*
   2537 			 * In IBSS mode enable the beacon timers but only
   2538 			 * enable SWBA interrupts if we need to manually
   2539 			 * prepare beacon frames.  Otherwise we use a
   2540 			 * self-linked tx descriptor and let the hardware
   2541 			 * deal with things.
   2542 			 */
   2543 			intval |= HAL_BEACON_ENA;
   2544 			if (!sc->sc_hasveol)
   2545 				sc->sc_imask |= HAL_INT_SWBA;
   2546 			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
   2547 				/*
   2548 				 * Pull nexttbtt forward to reflect
   2549 				 * the current TSF.
   2550 				 */
   2551 				tsf = ath_hal_gettsf64(ah);
   2552 				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
   2553 				do {
   2554 					nexttbtt += intval;
   2555 				} while (nexttbtt < tsftu);
   2556 			}
   2557 			ath_beaconq_config(sc);
   2558 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   2559 			/*
   2560 			 * In AP mode we enable the beacon timers and
   2561 			 * SWBA interrupts to prepare beacon frames.
   2562 			 */
   2563 			intval |= HAL_BEACON_ENA;
   2564 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
   2565 			ath_beaconq_config(sc);
   2566 		}
   2567 		ath_hal_beaconinit(ah, nexttbtt, intval);
   2568 		sc->sc_bmisscount = 0;
   2569 		ath_hal_intrset(ah, sc->sc_imask);
   2570 		/*
   2571 		 * When using a self-linked beacon descriptor in
   2572 		 * ibss mode load it once here.
   2573 		 */
   2574 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
   2575 			ath_beacon_proc(sc, 0);
   2576 	}
   2577 	sc->sc_syncbeacon = 0;
   2578 #undef UNDEF
   2579 #undef TSF_TO_TU
   2580 }
   2581 
   2582 static int
   2583 ath_descdma_setup(struct ath_softc *sc,
   2584 	struct ath_descdma *dd, ath_bufhead *head,
   2585 	const char *name, int nbuf, int ndesc)
   2586 {
   2587 #define	DS2PHYS(_dd, _ds) \
   2588 	((_dd)->dd_desc_paddr + ((char *)(_ds) - (char *)(_dd)->dd_desc))
   2589 	struct ifnet *ifp = &sc->sc_if;
   2590 	struct ath_desc *ds;
   2591 	struct ath_buf *bf;
   2592 	int i, bsize, error;
   2593 
   2594 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
   2595 	    __func__, name, nbuf, ndesc);
   2596 
   2597 	dd->dd_name = name;
   2598 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
   2599 
   2600 	/*
   2601 	 * Setup DMA descriptor area.
   2602 	 */
   2603 	dd->dd_dmat = sc->sc_dmat;
   2604 
   2605 	error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE,
   2606 	    0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0);
   2607 
   2608 	if (error != 0) {
   2609 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
   2610 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
   2611 		goto fail0;
   2612 	}
   2613 
   2614 	error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg,
   2615 	    dd->dd_desc_len, (void **)&dd->dd_desc, BUS_DMA_COHERENT);
   2616 	if (error != 0) {
   2617 		if_printf(ifp, "unable to map %u %s descriptors, error = %u\n",
   2618 		    nbuf * ndesc, dd->dd_name, error);
   2619 		goto fail1;
   2620 	}
   2621 
   2622 	/* allocate descriptors */
   2623 	error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1,
   2624 	    dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap);
   2625 	if (error != 0) {
   2626 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
   2627 			"error %u\n", dd->dd_name, error);
   2628 		goto fail2;
   2629 	}
   2630 
   2631 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc,
   2632 	    dd->dd_desc_len, NULL, BUS_DMA_NOWAIT);
   2633 	if (error != 0) {
   2634 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
   2635 			dd->dd_name, error);
   2636 		goto fail3;
   2637 	}
   2638 
   2639 	ds = dd->dd_desc;
   2640 	dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr;
   2641 	DPRINTF(sc, ATH_DEBUG_RESET,
   2642 	    "%s: %s DMA map: %p (%lu) -> %" PRIx64 " (%lu)\n",
   2643 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
   2644 	    (uint64_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
   2645 
   2646 	/* allocate rx buffers */
   2647 	bsize = sizeof(struct ath_buf) * nbuf;
   2648 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
   2649 	if (bf == NULL) {
   2650 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
   2651 			dd->dd_name, bsize);
   2652 		goto fail4;
   2653 	}
   2654 	dd->dd_bufptr = bf;
   2655 
   2656 	STAILQ_INIT(head);
   2657 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
   2658 		bf->bf_desc = ds;
   2659 		bf->bf_daddr = DS2PHYS(dd, ds);
   2660 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc,
   2661 				MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap);
   2662 		if (error != 0) {
   2663 			if_printf(ifp, "unable to create dmamap for %s "
   2664 				"buffer %u, error %u\n", dd->dd_name, i, error);
   2665 			ath_descdma_cleanup(sc, dd, head);
   2666 			return error;
   2667 		}
   2668 		STAILQ_INSERT_TAIL(head, bf, bf_list);
   2669 	}
   2670 	return 0;
   2671 fail4:
   2672 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
   2673 fail3:
   2674 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
   2675 fail2:
   2676 	bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
   2677 fail1:
   2678 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
   2679 fail0:
   2680 	memset(dd, 0, sizeof(*dd));
   2681 	return error;
   2682 #undef DS2PHYS
   2683 }
   2684 
   2685 static void
   2686 ath_descdma_cleanup(struct ath_softc *sc,
   2687 	struct ath_descdma *dd, ath_bufhead *head)
   2688 {
   2689 	struct ath_buf *bf;
   2690 	struct ieee80211_node *ni;
   2691 
   2692 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
   2693 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
   2694 	bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
   2695 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
   2696 
   2697 	STAILQ_FOREACH(bf, head, bf_list) {
   2698 		if (bf->bf_m) {
   2699 			m_freem(bf->bf_m);
   2700 			bf->bf_m = NULL;
   2701 		}
   2702 		if (bf->bf_dmamap != NULL) {
   2703 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
   2704 			bf->bf_dmamap = NULL;
   2705 		}
   2706 		ni = bf->bf_node;
   2707 		bf->bf_node = NULL;
   2708 		if (ni != NULL) {
   2709 			/*
   2710 			 * Reclaim node reference.
   2711 			 */
   2712 			ieee80211_free_node(ni);
   2713 		}
   2714 	}
   2715 
   2716 	STAILQ_INIT(head);
   2717 	free(dd->dd_bufptr, M_ATHDEV);
   2718 	memset(dd, 0, sizeof(*dd));
   2719 }
   2720 
   2721 static int
   2722 ath_desc_alloc(struct ath_softc *sc)
   2723 {
   2724 	int error;
   2725 
   2726 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
   2727 			"rx", ath_rxbuf, 1);
   2728 	if (error != 0)
   2729 		return error;
   2730 
   2731 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
   2732 			"tx", ath_txbuf, ATH_TXDESC);
   2733 	if (error != 0) {
   2734 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2735 		return error;
   2736 	}
   2737 
   2738 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
   2739 			"beacon", 1, 1);
   2740 	if (error != 0) {
   2741 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
   2742 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2743 		return error;
   2744 	}
   2745 	return 0;
   2746 }
   2747 
   2748 static void
   2749 ath_desc_free(struct ath_softc *sc)
   2750 {
   2751 
   2752 	if (sc->sc_bdma.dd_desc_len != 0)
   2753 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
   2754 	if (sc->sc_txdma.dd_desc_len != 0)
   2755 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
   2756 	if (sc->sc_rxdma.dd_desc_len != 0)
   2757 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2758 }
   2759 
   2760 static struct ieee80211_node *
   2761 ath_node_alloc(struct ieee80211_node_table *nt)
   2762 {
   2763 	struct ieee80211com *ic = nt->nt_ic;
   2764 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   2765 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
   2766 	struct ath_node *an;
   2767 
   2768 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
   2769 	if (an == NULL) {
   2770 		/* XXX stat+msg */
   2771 		return NULL;
   2772 	}
   2773 	an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
   2774 	ath_rate_node_init(sc, an);
   2775 
   2776 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
   2777 	return &an->an_node;
   2778 }
   2779 
   2780 static void
   2781 ath_node_free(struct ieee80211_node *ni)
   2782 {
   2783 	struct ieee80211com *ic = ni->ni_ic;
   2784         struct ath_softc *sc = ic->ic_ifp->if_softc;
   2785 
   2786 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
   2787 
   2788 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
   2789 	sc->sc_node_free(ni);
   2790 }
   2791 
   2792 static u_int8_t
   2793 ath_node_getrssi(const struct ieee80211_node *ni)
   2794 {
   2795 #define	HAL_EP_RND(x, mul) \
   2796 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
   2797 	u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
   2798 	int32_t rssi;
   2799 
   2800 	/*
   2801 	 * When only one frame is received there will be no state in
   2802 	 * avgrssi so fallback on the value recorded by the 802.11 layer.
   2803 	 */
   2804 	if (avgrssi != ATH_RSSI_DUMMY_MARKER)
   2805 		rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
   2806 	else
   2807 		rssi = ni->ni_rssi;
   2808 	return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
   2809 #undef HAL_EP_RND
   2810 }
   2811 
   2812 static int
   2813 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
   2814 {
   2815 	struct ath_hal *ah = sc->sc_ah;
   2816 	int error;
   2817 	struct mbuf *m;
   2818 	struct ath_desc *ds;
   2819 
   2820 	m = bf->bf_m;
   2821 	if (m == NULL) {
   2822 		/*
   2823 		 * NB: by assigning a page to the rx dma buffer we
   2824 		 * implicitly satisfy the Atheros requirement that
   2825 		 * this buffer be cache-line-aligned and sized to be
   2826 		 * multiple of the cache line size.  Not doing this
   2827 		 * causes weird stuff to happen (for the 5210 at least).
   2828 		 */
   2829 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
   2830 		if (m == NULL) {
   2831 			DPRINTF(sc, ATH_DEBUG_ANY,
   2832 				"%s: no mbuf/cluster\n", __func__);
   2833 			sc->sc_stats.ast_rx_nombuf++;
   2834 			return ENOMEM;
   2835 		}
   2836 		bf->bf_m = m;
   2837 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
   2838 
   2839 		error = bus_dmamap_load_mbuf(sc->sc_dmat,
   2840 					     bf->bf_dmamap, m,
   2841 					     BUS_DMA_NOWAIT);
   2842 		if (error != 0) {
   2843 			DPRINTF(sc, ATH_DEBUG_ANY,
   2844 			    "%s: bus_dmamap_load_mbuf failed; error %d\n",
   2845 			    __func__, error);
   2846 			sc->sc_stats.ast_rx_busdma++;
   2847 			return error;
   2848 		}
   2849 		KASSERT(bf->bf_nseg == 1,
   2850 			("multi-segment packet; nseg %u", bf->bf_nseg));
   2851 	}
   2852 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   2853 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2854 
   2855 	/*
   2856 	 * Setup descriptors.  For receive we always terminate
   2857 	 * the descriptor list with a self-linked entry so we'll
   2858 	 * not get overrun under high load (as can happen with a
   2859 	 * 5212 when ANI processing enables PHY error frames).
   2860 	 *
   2861 	 * To insure the last descriptor is self-linked we create
   2862 	 * each descriptor as self-linked and add it to the end.  As
   2863 	 * each additional descriptor is added the previous self-linked
   2864 	 * entry is ``fixed'' naturally.  This should be safe even
   2865 	 * if DMA is happening.  When processing RX interrupts we
   2866 	 * never remove/process the last, self-linked, entry on the
   2867 	 * descriptor list.  This insures the hardware always has
   2868 	 * someplace to write a new frame.
   2869 	 */
   2870 	ds = bf->bf_desc;
   2871 	ds->ds_link = HTOAH32(bf->bf_daddr);	/* link to self */
   2872 	ds->ds_data = bf->bf_segs[0].ds_addr;
   2873 	ds->ds_vdata = mtod(m, void *);	/* for radar */
   2874 	ath_hal_setuprxdesc(ah, ds
   2875 		, m->m_len		/* buffer size */
   2876 		, 0
   2877 	);
   2878 
   2879 	if (sc->sc_rxlink != NULL)
   2880 		*sc->sc_rxlink = bf->bf_daddr;
   2881 	sc->sc_rxlink = &ds->ds_link;
   2882 	return 0;
   2883 }
   2884 
   2885 /*
   2886  * Extend 15-bit time stamp from rx descriptor to
   2887  * a full 64-bit TSF using the specified TSF.
   2888  */
   2889 static inline u_int64_t
   2890 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
   2891 {
   2892 	if ((tsf & 0x7fff) < rstamp)
   2893 		tsf -= 0x8000;
   2894 	return ((tsf &~ 0x7fff) | rstamp);
   2895 }
   2896 
   2897 /*
   2898  * Intercept management frames to collect beacon rssi data
   2899  * and to do ibss merges.
   2900  */
   2901 static void
   2902 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
   2903 	struct ieee80211_node *ni,
   2904 	int subtype, int rssi, u_int32_t rstamp)
   2905 {
   2906 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   2907 
   2908 	/*
   2909 	 * Call up first so subsequent work can use information
   2910 	 * potentially stored in the node (e.g. for ibss merge).
   2911 	 */
   2912 	sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
   2913 	switch (subtype) {
   2914 	case IEEE80211_FC0_SUBTYPE_BEACON:
   2915 		/* update rssi statistics for use by the hal */
   2916 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
   2917 		if (sc->sc_syncbeacon &&
   2918 		    ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) {
   2919 			/*
   2920 			 * Resync beacon timers using the tsf of the beacon
   2921 			 * frame we just received.
   2922 			 */
   2923 			ath_beacon_config(sc);
   2924 		}
   2925 		/* fall thru... */
   2926 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
   2927 		if (ic->ic_opmode == IEEE80211_M_IBSS &&
   2928 		    ic->ic_state == IEEE80211_S_RUN) {
   2929 			u_int64_t tsf = ath_extend_tsf(rstamp,
   2930 				ath_hal_gettsf64(sc->sc_ah));
   2931 
   2932 			/*
   2933 			 * Handle ibss merge as needed; check the tsf on the
   2934 			 * frame before attempting the merge.  The 802.11 spec
   2935 			 * says the station should change it's bssid to match
   2936 			 * the oldest station with the same ssid, where oldest
   2937 			 * is determined by the tsf.  Note that hardware
   2938 			 * reconfiguration happens through callback to
   2939 			 * ath_newstate as the state machine will go from
   2940 			 * RUN -> RUN when this happens.
   2941 			 */
   2942 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
   2943 				DPRINTF(sc, ATH_DEBUG_STATE,
   2944 				    "ibss merge, rstamp %u tsf %ju "
   2945 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
   2946 				    (uintmax_t)ni->ni_tstamp.tsf);
   2947 				(void) ieee80211_ibss_merge(ni);
   2948 			}
   2949 		}
   2950 		break;
   2951 	}
   2952 }
   2953 
   2954 /*
   2955  * Set the default antenna.
   2956  */
   2957 static void
   2958 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
   2959 {
   2960 	struct ath_hal *ah = sc->sc_ah;
   2961 
   2962 	/* XXX block beacon interrupts */
   2963 	ath_hal_setdefantenna(ah, antenna);
   2964 	if (sc->sc_defant != antenna)
   2965 		sc->sc_stats.ast_ant_defswitch++;
   2966 	sc->sc_defant = antenna;
   2967 	sc->sc_rxotherant = 0;
   2968 }
   2969 
   2970 static void
   2971 ath_rx_proc(void *arg, int npending)
   2972 {
   2973 #define	PA2DESC(_sc, _pa) \
   2974 	((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
   2975 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
   2976 	struct ath_softc *sc = arg;
   2977 	struct ath_buf *bf;
   2978 	struct ieee80211com *ic = &sc->sc_ic;
   2979 	struct ifnet *ifp = &sc->sc_if;
   2980 	struct ath_hal *ah = sc->sc_ah;
   2981 	struct ath_desc *ds;
   2982 	struct mbuf *m;
   2983 	struct ieee80211_node *ni;
   2984 	struct ath_node *an;
   2985 	int len, type, ngood;
   2986 	u_int phyerr;
   2987 	HAL_STATUS status;
   2988 	int16_t nf;
   2989 	u_int64_t tsf;
   2990 
   2991 	NET_LOCK_GIANT();		/* XXX */
   2992 
   2993 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
   2994 	ngood = 0;
   2995 	nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
   2996 	tsf = ath_hal_gettsf64(ah);
   2997 	do {
   2998 		bf = STAILQ_FIRST(&sc->sc_rxbuf);
   2999 		if (bf == NULL) {		/* NB: shouldn't happen */
   3000 			if_printf(ifp, "%s: no buffer!\n", __func__);
   3001 			break;
   3002 		}
   3003 		ds = bf->bf_desc;
   3004 		if (ds->ds_link == bf->bf_daddr) {
   3005 			/* NB: never process the self-linked entry at the end */
   3006 			break;
   3007 		}
   3008 		m = bf->bf_m;
   3009 		if (m == NULL) {		/* NB: shouldn't happen */
   3010 			if_printf(ifp, "%s: no mbuf!\n", __func__);
   3011 			break;
   3012 		}
   3013 		/* XXX sync descriptor memory */
   3014 		/*
   3015 		 * Must provide the virtual address of the current
   3016 		 * descriptor, the physical address, and the virtual
   3017 		 * address of the next descriptor in the h/w chain.
   3018 		 * This allows the HAL to look ahead to see if the
   3019 		 * hardware is done with a descriptor by checking the
   3020 		 * done bit in the following descriptor and the address
   3021 		 * of the current descriptor the DMA engine is working
   3022 		 * on.  All this is necessary because of our use of
   3023 		 * a self-linked list to avoid rx overruns.
   3024 		 */
   3025 		status = ath_hal_rxprocdesc(ah, ds,
   3026 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
   3027 #ifdef AR_DEBUG
   3028 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
   3029 			ath_printrxbuf(bf, status == HAL_OK);
   3030 #endif
   3031 		if (status == HAL_EINPROGRESS)
   3032 			break;
   3033 		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
   3034 		if (ds->ds_rxstat.rs_more) {
   3035 			/*
   3036 			 * Frame spans multiple descriptors; this
   3037 			 * cannot happen yet as we don't support
   3038 			 * jumbograms.  If not in monitor mode,
   3039 			 * discard the frame.
   3040 			 */
   3041 			if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   3042 				sc->sc_stats.ast_rx_toobig++;
   3043 				goto rx_next;
   3044 			}
   3045 			/* fall thru for monitor mode handling... */
   3046 		} else if (ds->ds_rxstat.rs_status != 0) {
   3047 			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
   3048 				sc->sc_stats.ast_rx_crcerr++;
   3049 			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
   3050 				sc->sc_stats.ast_rx_fifoerr++;
   3051 			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
   3052 				sc->sc_stats.ast_rx_phyerr++;
   3053 				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
   3054 				sc->sc_stats.ast_rx_phy[phyerr]++;
   3055 				goto rx_next;
   3056 			}
   3057 			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
   3058 				/*
   3059 				 * Decrypt error.  If the error occurred
   3060 				 * because there was no hardware key, then
   3061 				 * let the frame through so the upper layers
   3062 				 * can process it.  This is necessary for 5210
   3063 				 * parts which have no way to setup a ``clear''
   3064 				 * key cache entry.
   3065 				 *
   3066 				 * XXX do key cache faulting
   3067 				 */
   3068 				if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
   3069 					goto rx_accept;
   3070 				sc->sc_stats.ast_rx_badcrypt++;
   3071 			}
   3072 			if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
   3073 				sc->sc_stats.ast_rx_badmic++;
   3074 				/*
   3075 				 * Do minimal work required to hand off
   3076 				 * the 802.11 header for notifcation.
   3077 				 */
   3078 				/* XXX frag's and qos frames */
   3079 				len = ds->ds_rxstat.rs_datalen;
   3080 				if (len >= sizeof (struct ieee80211_frame)) {
   3081 					bus_dmamap_sync(sc->sc_dmat,
   3082 					    bf->bf_dmamap,
   3083 					    0, bf->bf_dmamap->dm_mapsize,
   3084 					    BUS_DMASYNC_POSTREAD);
   3085 					ieee80211_notify_michael_failure(ic,
   3086 					    mtod(m, struct ieee80211_frame *),
   3087 					    sc->sc_splitmic ?
   3088 					        ds->ds_rxstat.rs_keyix-32 :
   3089 					        ds->ds_rxstat.rs_keyix
   3090 					);
   3091 				}
   3092 			}
   3093 			ifp->if_ierrors++;
   3094 			/*
   3095 			 * Reject error frames, we normally don't want
   3096 			 * to see them in monitor mode (in monitor mode
   3097 			 * allow through packets that have crypto problems).
   3098 			 */
   3099 			if ((ds->ds_rxstat.rs_status &~
   3100 				(HAL_RXERR_DECRYPT|HAL_RXERR_MIC)) ||
   3101 			    sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
   3102 				goto rx_next;
   3103 		}
   3104 rx_accept:
   3105 		/*
   3106 		 * Sync and unmap the frame.  At this point we're
   3107 		 * committed to passing the mbuf somewhere so clear
   3108 		 * bf_m; this means a new sk_buff must be allocated
   3109 		 * when the rx descriptor is setup again to receive
   3110 		 * another frame.
   3111 		 */
   3112 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
   3113 		    0, bf->bf_dmamap->dm_mapsize,
   3114 		    BUS_DMASYNC_POSTREAD);
   3115 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   3116 		bf->bf_m = NULL;
   3117 
   3118 		m->m_pkthdr.rcvif = ifp;
   3119 		len = ds->ds_rxstat.rs_datalen;
   3120 		m->m_pkthdr.len = m->m_len = len;
   3121 
   3122 		sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
   3123 
   3124 #if NBPFILTER > 0
   3125 		if (sc->sc_drvbpf) {
   3126 			u_int8_t rix;
   3127 
   3128 			/*
   3129 			 * Discard anything shorter than an ack or cts.
   3130 			 */
   3131 			if (len < IEEE80211_ACK_LEN) {
   3132 				DPRINTF(sc, ATH_DEBUG_RECV,
   3133 					"%s: runt packet %d\n",
   3134 					__func__, len);
   3135 				sc->sc_stats.ast_rx_tooshort++;
   3136 				m_freem(m);
   3137 				goto rx_next;
   3138 			}
   3139 			rix = ds->ds_rxstat.rs_rate;
   3140 			sc->sc_rx_th.wr_tsf = htole64(
   3141 				ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf));
   3142 			sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
   3143 			sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
   3144 			sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf;
   3145 			sc->sc_rx_th.wr_antnoise = nf;
   3146 			sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
   3147 
   3148 			bpf_mtap2(sc->sc_drvbpf,
   3149 				&sc->sc_rx_th, sc->sc_rx_th_len, m);
   3150 		}
   3151 #endif
   3152 
   3153 		/*
   3154 		 * From this point on we assume the frame is at least
   3155 		 * as large as ieee80211_frame_min; verify that.
   3156 		 */
   3157 		if (len < IEEE80211_MIN_LEN) {
   3158 			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
   3159 				__func__, len);
   3160 			sc->sc_stats.ast_rx_tooshort++;
   3161 			m_freem(m);
   3162 			goto rx_next;
   3163 		}
   3164 
   3165 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
   3166 			ieee80211_dump_pkt(mtod(m, void *), len,
   3167 				   sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
   3168 				   ds->ds_rxstat.rs_rssi);
   3169 		}
   3170 
   3171 		m_adj(m, -IEEE80211_CRC_LEN);
   3172 
   3173 		/*
   3174 		 * Locate the node for sender, track state, and then
   3175 		 * pass the (referenced) node up to the 802.11 layer
   3176 		 * for its use.
   3177 		 */
   3178 		ni = ieee80211_find_rxnode_withkey(ic,
   3179 			mtod(m, const struct ieee80211_frame_min *),
   3180 			ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
   3181 				IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
   3182 		/*
   3183 		 * Track rx rssi and do any rx antenna management.
   3184 		 */
   3185 		an = ATH_NODE(ni);
   3186 		ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
   3187 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi);
   3188 		/*
   3189 		 * Send frame up for processing.
   3190 		 */
   3191 		type = ieee80211_input(ic, m, ni,
   3192 			ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
   3193 		ieee80211_free_node(ni);
   3194 		if (sc->sc_diversity) {
   3195 			/*
   3196 			 * When using fast diversity, change the default rx
   3197 			 * antenna if diversity chooses the other antenna 3
   3198 			 * times in a row.
   3199 			 */
   3200 			if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
   3201 				if (++sc->sc_rxotherant >= 3)
   3202 					ath_setdefantenna(sc,
   3203 						ds->ds_rxstat.rs_antenna);
   3204 			} else
   3205 				sc->sc_rxotherant = 0;
   3206 		}
   3207 		if (sc->sc_softled) {
   3208 			/*
   3209 			 * Blink for any data frame.  Otherwise do a
   3210 			 * heartbeat-style blink when idle.  The latter
   3211 			 * is mainly for station mode where we depend on
   3212 			 * periodic beacon frames to trigger the poll event.
   3213 			 */
   3214 			if (type == IEEE80211_FC0_TYPE_DATA) {
   3215 				sc->sc_rxrate = ds->ds_rxstat.rs_rate;
   3216 				ath_led_event(sc, ATH_LED_RX);
   3217 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
   3218 				ath_led_event(sc, ATH_LED_POLL);
   3219 		}
   3220 		/*
   3221 		 * Arrange to update the last rx timestamp only for
   3222 		 * frames from our ap when operating in station mode.
   3223 		 * This assumes the rx key is always setup when associated.
   3224 		 */
   3225 		if (ic->ic_opmode == IEEE80211_M_STA &&
   3226 		    ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID)
   3227 			ngood++;
   3228 rx_next:
   3229 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
   3230 	} while (ath_rxbuf_init(sc, bf) == 0);
   3231 
   3232 	/* rx signal state monitoring */
   3233 	ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
   3234 	if (ath_hal_radar_event(ah))
   3235 		TASK_RUN_OR_ENQUEUE(&sc->sc_radartask);
   3236 	if (ngood)
   3237 		sc->sc_lastrx = tsf;
   3238 
   3239 #ifdef __NetBSD__
   3240 	/* XXX Why isn't this necessary in FreeBSD? */
   3241 	if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
   3242 		ath_start(ifp);
   3243 #endif /* __NetBSD__ */
   3244 
   3245 	NET_UNLOCK_GIANT();		/* XXX */
   3246 #undef PA2DESC
   3247 }
   3248 
   3249 /*
   3250  * Setup a h/w transmit queue.
   3251  */
   3252 static struct ath_txq *
   3253 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
   3254 {
   3255 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   3256 	struct ath_hal *ah = sc->sc_ah;
   3257 	HAL_TXQ_INFO qi;
   3258 	int qnum;
   3259 
   3260 	memset(&qi, 0, sizeof(qi));
   3261 	qi.tqi_subtype = subtype;
   3262 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
   3263 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
   3264 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
   3265 	/*
   3266 	 * Enable interrupts only for EOL and DESC conditions.
   3267 	 * We mark tx descriptors to receive a DESC interrupt
   3268 	 * when a tx queue gets deep; otherwise waiting for the
   3269 	 * EOL to reap descriptors.  Note that this is done to
   3270 	 * reduce interrupt load and this only defers reaping
   3271 	 * descriptors, never transmitting frames.  Aside from
   3272 	 * reducing interrupts this also permits more concurrency.
   3273 	 * The only potential downside is if the tx queue backs
   3274 	 * up in which case the top half of the kernel may backup
   3275 	 * due to a lack of tx descriptors.
   3276 	 */
   3277 	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
   3278 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
   3279 	if (qnum == -1) {
   3280 		/*
   3281 		 * NB: don't print a message, this happens
   3282 		 * normally on parts with too few tx queues
   3283 		 */
   3284 		return NULL;
   3285 	}
   3286 	if (qnum >= N(sc->sc_txq)) {
   3287 		device_printf(&sc->sc_dev,
   3288 			"hal qnum %u out of range, max %zu!\n",
   3289 			qnum, N(sc->sc_txq));
   3290 		ath_hal_releasetxqueue(ah, qnum);
   3291 		return NULL;
   3292 	}
   3293 	if (!ATH_TXQ_SETUP(sc, qnum)) {
   3294 		struct ath_txq *txq = &sc->sc_txq[qnum];
   3295 
   3296 		txq->axq_qnum = qnum;
   3297 		txq->axq_depth = 0;
   3298 		txq->axq_intrcnt = 0;
   3299 		txq->axq_link = NULL;
   3300 		STAILQ_INIT(&txq->axq_q);
   3301 		ATH_TXQ_LOCK_INIT(sc, txq);
   3302 		sc->sc_txqsetup |= 1<<qnum;
   3303 	}
   3304 	return &sc->sc_txq[qnum];
   3305 #undef N
   3306 }
   3307 
   3308 /*
   3309  * Setup a hardware data transmit queue for the specified
   3310  * access control.  The hal may not support all requested
   3311  * queues in which case it will return a reference to a
   3312  * previously setup queue.  We record the mapping from ac's
   3313  * to h/w queues for use by ath_tx_start and also track
   3314  * the set of h/w queues being used to optimize work in the
   3315  * transmit interrupt handler and related routines.
   3316  */
   3317 static int
   3318 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
   3319 {
   3320 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   3321 	struct ath_txq *txq;
   3322 
   3323 	if (ac >= N(sc->sc_ac2q)) {
   3324 		device_printf(&sc->sc_dev, "AC %u out of range, max %zu!\n",
   3325 			ac, N(sc->sc_ac2q));
   3326 		return 0;
   3327 	}
   3328 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
   3329 	if (txq != NULL) {
   3330 		sc->sc_ac2q[ac] = txq;
   3331 		return 1;
   3332 	} else
   3333 		return 0;
   3334 #undef N
   3335 }
   3336 
   3337 /*
   3338  * Update WME parameters for a transmit queue.
   3339  */
   3340 static int
   3341 ath_txq_update(struct ath_softc *sc, int ac)
   3342 {
   3343 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
   3344 #define	ATH_TXOP_TO_US(v)		(v<<5)
   3345 	struct ieee80211com *ic = &sc->sc_ic;
   3346 	struct ath_txq *txq = sc->sc_ac2q[ac];
   3347 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
   3348 	struct ath_hal *ah = sc->sc_ah;
   3349 	HAL_TXQ_INFO qi;
   3350 
   3351 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
   3352 	qi.tqi_aifs = wmep->wmep_aifsn;
   3353 	qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
   3354 	qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
   3355 	qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
   3356 
   3357 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
   3358 		device_printf(&sc->sc_dev, "unable to update hardware queue "
   3359 			"parameters for %s traffic!\n",
   3360 			ieee80211_wme_acnames[ac]);
   3361 		return 0;
   3362 	} else {
   3363 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
   3364 		return 1;
   3365 	}
   3366 #undef ATH_TXOP_TO_US
   3367 #undef ATH_EXPONENT_TO_VALUE
   3368 }
   3369 
   3370 /*
   3371  * Callback from the 802.11 layer to update WME parameters.
   3372  */
   3373 static int
   3374 ath_wme_update(struct ieee80211com *ic)
   3375 {
   3376 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   3377 
   3378 	return !ath_txq_update(sc, WME_AC_BE) ||
   3379 	    !ath_txq_update(sc, WME_AC_BK) ||
   3380 	    !ath_txq_update(sc, WME_AC_VI) ||
   3381 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
   3382 }
   3383 
   3384 /*
   3385  * Reclaim resources for a setup queue.
   3386  */
   3387 static void
   3388 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
   3389 {
   3390 
   3391 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
   3392 	ATH_TXQ_LOCK_DESTROY(txq);
   3393 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
   3394 }
   3395 
   3396 /*
   3397  * Reclaim all tx queue resources.
   3398  */
   3399 static void
   3400 ath_tx_cleanup(struct ath_softc *sc)
   3401 {
   3402 	int i;
   3403 
   3404 	ATH_TXBUF_LOCK_DESTROY(sc);
   3405 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   3406 		if (ATH_TXQ_SETUP(sc, i))
   3407 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
   3408 }
   3409 
   3410 /*
   3411  * Defragment an mbuf chain, returning at most maxfrags separate
   3412  * mbufs+clusters.  If this is not possible NULL is returned and
   3413  * the original mbuf chain is left in it's present (potentially
   3414  * modified) state.  We use two techniques: collapsing consecutive
   3415  * mbufs and replacing consecutive mbufs by a cluster.
   3416  */
   3417 static struct mbuf *
   3418 ath_defrag(struct mbuf *m0, int how, int maxfrags)
   3419 {
   3420 	struct mbuf *m, *n, *n2, **prev;
   3421 	u_int curfrags;
   3422 
   3423 	/*
   3424 	 * Calculate the current number of frags.
   3425 	 */
   3426 	curfrags = 0;
   3427 	for (m = m0; m != NULL; m = m->m_next)
   3428 		curfrags++;
   3429 	/*
   3430 	 * First, try to collapse mbufs.  Note that we always collapse
   3431 	 * towards the front so we don't need to deal with moving the
   3432 	 * pkthdr.  This may be suboptimal if the first mbuf has much
   3433 	 * less data than the following.
   3434 	 */
   3435 	m = m0;
   3436 again:
   3437 	for (;;) {
   3438 		n = m->m_next;
   3439 		if (n == NULL)
   3440 			break;
   3441 		if ((m->m_flags & M_RDONLY) == 0 &&
   3442 		    n->m_len < M_TRAILINGSPACE(m)) {
   3443 			bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
   3444 				n->m_len);
   3445 			m->m_len += n->m_len;
   3446 			m->m_next = n->m_next;
   3447 			m_free(n);
   3448 			if (--curfrags <= maxfrags)
   3449 				return m0;
   3450 		} else
   3451 			m = n;
   3452 	}
   3453 	KASSERT(maxfrags > 1,
   3454 		("maxfrags %u, but normal collapse failed", maxfrags));
   3455 	/*
   3456 	 * Collapse consecutive mbufs to a cluster.
   3457 	 */
   3458 	prev = &m0->m_next;		/* NB: not the first mbuf */
   3459 	while ((n = *prev) != NULL) {
   3460 		if ((n2 = n->m_next) != NULL &&
   3461 		    n->m_len + n2->m_len < MCLBYTES) {
   3462 			m = m_getcl(how, MT_DATA, 0);
   3463 			if (m == NULL)
   3464 				goto bad;
   3465 			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
   3466 			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
   3467 				n2->m_len);
   3468 			m->m_len = n->m_len + n2->m_len;
   3469 			m->m_next = n2->m_next;
   3470 			*prev = m;
   3471 			m_free(n);
   3472 			m_free(n2);
   3473 			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
   3474 				return m0;
   3475 			/*
   3476 			 * Still not there, try the normal collapse
   3477 			 * again before we allocate another cluster.
   3478 			 */
   3479 			goto again;
   3480 		}
   3481 		prev = &n->m_next;
   3482 	}
   3483 	/*
   3484 	 * No place where we can collapse to a cluster; punt.
   3485 	 * This can occur if, for example, you request 2 frags
   3486 	 * but the packet requires that both be clusters (we
   3487 	 * never reallocate the first mbuf to avoid moving the
   3488 	 * packet header).
   3489 	 */
   3490 bad:
   3491 	return NULL;
   3492 }
   3493 
   3494 /*
   3495  * Return h/w rate index for an IEEE rate (w/o basic rate bit).
   3496  */
   3497 static int
   3498 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
   3499 {
   3500 	int i;
   3501 
   3502 	for (i = 0; i < rt->rateCount; i++)
   3503 		if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
   3504 			return i;
   3505 	return 0;		/* NB: lowest rate */
   3506 }
   3507 
   3508 static void
   3509 ath_freetx(struct mbuf *m)
   3510 {
   3511 	struct mbuf *next;
   3512 
   3513 	do {
   3514 		next = m->m_nextpkt;
   3515 		m->m_nextpkt = NULL;
   3516 		m_freem(m);
   3517 	} while ((m = next) != NULL);
   3518 }
   3519 
   3520 static int
   3521 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
   3522     struct mbuf *m0)
   3523 {
   3524 	struct ieee80211com *ic = &sc->sc_ic;
   3525 	struct ath_hal *ah = sc->sc_ah;
   3526 	struct ifnet *ifp = &sc->sc_if;
   3527 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
   3528 	int i, error, iswep, ismcast, isfrag, ismrr;
   3529 	int keyix, hdrlen, pktlen, try0;
   3530 	u_int8_t rix, txrate, ctsrate;
   3531 	u_int8_t cix = 0xff;		/* NB: silence compiler */
   3532 	struct ath_desc *ds, *ds0;
   3533 	struct ath_txq *txq;
   3534 	struct ieee80211_frame *wh;
   3535 	u_int subtype, flags, ctsduration;
   3536 	HAL_PKT_TYPE atype;
   3537 	const HAL_RATE_TABLE *rt;
   3538 	HAL_BOOL shortPreamble;
   3539 	struct ath_node *an;
   3540 	struct mbuf *m;
   3541 	u_int pri;
   3542 
   3543 	wh = mtod(m0, struct ieee80211_frame *);
   3544 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
   3545 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
   3546 	isfrag = m0->m_flags & M_FRAG;
   3547 	hdrlen = ieee80211_anyhdrsize(wh);
   3548 	/*
   3549 	 * Packet length must not include any
   3550 	 * pad bytes; deduct them here.
   3551 	 */
   3552 	pktlen = m0->m_pkthdr.len - (hdrlen & 3);
   3553 
   3554 	if (iswep) {
   3555 		const struct ieee80211_cipher *cip;
   3556 		struct ieee80211_key *k;
   3557 
   3558 		/*
   3559 		 * Construct the 802.11 header+trailer for an encrypted
   3560 		 * frame. The only reason this can fail is because of an
   3561 		 * unknown or unsupported cipher/key type.
   3562 		 */
   3563 		k = ieee80211_crypto_encap(ic, ni, m0);
   3564 		if (k == NULL) {
   3565 			/*
   3566 			 * This can happen when the key is yanked after the
   3567 			 * frame was queued.  Just discard the frame; the
   3568 			 * 802.11 layer counts failures and provides
   3569 			 * debugging/diagnostics.
   3570 			 */
   3571 			ath_freetx(m0);
   3572 			return EIO;
   3573 		}
   3574 		/*
   3575 		 * Adjust the packet + header lengths for the crypto
   3576 		 * additions and calculate the h/w key index.  When
   3577 		 * a s/w mic is done the frame will have had any mic
   3578 		 * added to it prior to entry so m0->m_pkthdr.len above will
   3579 		 * account for it. Otherwise we need to add it to the
   3580 		 * packet length.
   3581 		 */
   3582 		cip = k->wk_cipher;
   3583 		hdrlen += cip->ic_header;
   3584 		pktlen += cip->ic_header + cip->ic_trailer;
   3585 		/* NB: frags always have any TKIP MIC done in s/w */
   3586 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
   3587 			pktlen += cip->ic_miclen;
   3588 		keyix = k->wk_keyix;
   3589 
   3590 		/* packet header may have moved, reset our local pointer */
   3591 		wh = mtod(m0, struct ieee80211_frame *);
   3592 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
   3593 		/*
   3594 		 * Use station key cache slot, if assigned.
   3595 		 */
   3596 		keyix = ni->ni_ucastkey.wk_keyix;
   3597 		if (keyix == IEEE80211_KEYIX_NONE)
   3598 			keyix = HAL_TXKEYIX_INVALID;
   3599 	} else
   3600 		keyix = HAL_TXKEYIX_INVALID;
   3601 
   3602 	pktlen += IEEE80211_CRC_LEN;
   3603 
   3604 	/*
   3605 	 * Load the DMA map so any coalescing is done.  This
   3606 	 * also calculates the number of descriptors we need.
   3607 	 */
   3608 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
   3609 				     BUS_DMA_NOWAIT);
   3610 	if (error == EFBIG) {
   3611 		/* XXX packet requires too many descriptors */
   3612 		bf->bf_nseg = ATH_TXDESC+1;
   3613 	} else if (error != 0) {
   3614 		sc->sc_stats.ast_tx_busdma++;
   3615 		ath_freetx(m0);
   3616 		return error;
   3617 	}
   3618 	/*
   3619 	 * Discard null packets and check for packets that
   3620 	 * require too many TX descriptors.  We try to convert
   3621 	 * the latter to a cluster.
   3622 	 */
   3623 	if (error == EFBIG) {		/* too many desc's, linearize */
   3624 		sc->sc_stats.ast_tx_linear++;
   3625 		m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
   3626 		if (m == NULL) {
   3627 			ath_freetx(m0);
   3628 			sc->sc_stats.ast_tx_nombuf++;
   3629 			return ENOMEM;
   3630 		}
   3631 		m0 = m;
   3632 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
   3633 					     BUS_DMA_NOWAIT);
   3634 		if (error != 0) {
   3635 			sc->sc_stats.ast_tx_busdma++;
   3636 			ath_freetx(m0);
   3637 			return error;
   3638 		}
   3639 		KASSERT(bf->bf_nseg <= ATH_TXDESC,
   3640 		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
   3641 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
   3642 		sc->sc_stats.ast_tx_nodata++;
   3643 		ath_freetx(m0);
   3644 		return EIO;
   3645 	}
   3646 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
   3647 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   3648             bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
   3649 	bf->bf_m = m0;
   3650 	bf->bf_node = ni;			/* NB: held reference */
   3651 
   3652 	/* setup descriptors */
   3653 	ds = bf->bf_desc;
   3654 	rt = sc->sc_currates;
   3655 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
   3656 
   3657 	/*
   3658 	 * NB: the 802.11 layer marks whether or not we should
   3659 	 * use short preamble based on the current mode and
   3660 	 * negotiated parameters.
   3661 	 */
   3662 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
   3663 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) {
   3664 		shortPreamble = AH_TRUE;
   3665 		sc->sc_stats.ast_tx_shortpre++;
   3666 	} else {
   3667 		shortPreamble = AH_FALSE;
   3668 	}
   3669 
   3670 	an = ATH_NODE(ni);
   3671 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
   3672 	ismrr = 0;				/* default no multi-rate retry*/
   3673 	/*
   3674 	 * Calculate Atheros packet type from IEEE80211 packet header,
   3675 	 * setup for rate calculations, and select h/w transmit queue.
   3676 	 */
   3677 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
   3678 	case IEEE80211_FC0_TYPE_MGT:
   3679 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   3680 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
   3681 			atype = HAL_PKT_TYPE_BEACON;
   3682 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
   3683 			atype = HAL_PKT_TYPE_PROBE_RESP;
   3684 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
   3685 			atype = HAL_PKT_TYPE_ATIM;
   3686 		else
   3687 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
   3688 		rix = sc->sc_minrateix;
   3689 		txrate = rt->info[rix].rateCode;
   3690 		if (shortPreamble)
   3691 			txrate |= rt->info[rix].shortPreamble;
   3692 		try0 = ATH_TXMGTTRY;
   3693 		/* NB: force all management frames to highest queue */
   3694 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
   3695 			/* NB: force all management frames to highest queue */
   3696 			pri = WME_AC_VO;
   3697 		} else
   3698 			pri = WME_AC_BE;
   3699 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
   3700 		break;
   3701 	case IEEE80211_FC0_TYPE_CTL:
   3702 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
   3703 		rix = sc->sc_minrateix;
   3704 		txrate = rt->info[rix].rateCode;
   3705 		if (shortPreamble)
   3706 			txrate |= rt->info[rix].shortPreamble;
   3707 		try0 = ATH_TXMGTTRY;
   3708 		/* NB: force all ctl frames to highest queue */
   3709 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
   3710 			/* NB: force all ctl frames to highest queue */
   3711 			pri = WME_AC_VO;
   3712 		} else
   3713 			pri = WME_AC_BE;
   3714 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
   3715 		break;
   3716 	case IEEE80211_FC0_TYPE_DATA:
   3717 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
   3718 		/*
   3719 		 * Data frames: multicast frames go out at a fixed rate,
   3720 		 * otherwise consult the rate control module for the
   3721 		 * rate to use.
   3722 		 */
   3723 		if (ismcast) {
   3724 			/*
   3725 			 * Check mcast rate setting in case it's changed.
   3726 			 * XXX move out of fastpath
   3727 			 */
   3728 			if (ic->ic_mcast_rate != sc->sc_mcastrate) {
   3729 				sc->sc_mcastrix =
   3730 					ath_tx_findrix(rt, ic->ic_mcast_rate);
   3731 				sc->sc_mcastrate = ic->ic_mcast_rate;
   3732 			}
   3733 			rix = sc->sc_mcastrix;
   3734 			txrate = rt->info[rix].rateCode;
   3735 			try0 = 1;
   3736 		} else {
   3737 			ath_rate_findrate(sc, an, shortPreamble, pktlen,
   3738 				&rix, &try0, &txrate);
   3739 			sc->sc_txrate = txrate;		/* for LED blinking */
   3740 			if (try0 != ATH_TXMAXTRY)
   3741 				ismrr = 1;
   3742 		}
   3743 		pri = M_WME_GETAC(m0);
   3744 		if (cap->cap_wmeParams[pri].wmep_noackPolicy)
   3745 			flags |= HAL_TXDESC_NOACK;
   3746 		break;
   3747 	default:
   3748 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
   3749 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
   3750 		/* XXX statistic */
   3751 		ath_freetx(m0);
   3752 		return EIO;
   3753 	}
   3754 	txq = sc->sc_ac2q[pri];
   3755 
   3756 	/*
   3757 	 * When servicing one or more stations in power-save mode
   3758 	 * multicast frames must be buffered until after the beacon.
   3759 	 * We use the CAB queue for that.
   3760 	 */
   3761 	if (ismcast && ic->ic_ps_sta) {
   3762 		txq = sc->sc_cabq;
   3763 		/* XXX? more bit in 802.11 frame header */
   3764 	}
   3765 
   3766 	/*
   3767 	 * Calculate miscellaneous flags.
   3768 	 */
   3769 	if (ismcast) {
   3770 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
   3771 	} else if (pktlen > ic->ic_rtsthreshold) {
   3772 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
   3773 		cix = rt->info[rix].controlRate;
   3774 		sc->sc_stats.ast_tx_rts++;
   3775 	}
   3776 	if (flags & HAL_TXDESC_NOACK)		/* NB: avoid double counting */
   3777 		sc->sc_stats.ast_tx_noack++;
   3778 
   3779 	/*
   3780 	 * If 802.11g protection is enabled, determine whether
   3781 	 * to use RTS/CTS or just CTS.  Note that this is only
   3782 	 * done for OFDM unicast frames.
   3783 	 */
   3784 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
   3785 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
   3786 	    (flags & HAL_TXDESC_NOACK) == 0) {
   3787 		/* XXX fragments must use CCK rates w/ protection */
   3788 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
   3789 			flags |= HAL_TXDESC_RTSENA;
   3790 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
   3791 			flags |= HAL_TXDESC_CTSENA;
   3792 		if (isfrag) {
   3793 			/*
   3794 			 * For frags it would be desirable to use the
   3795 			 * highest CCK rate for RTS/CTS.  But stations
   3796 			 * farther away may detect it at a lower CCK rate
   3797 			 * so use the configured protection rate instead
   3798 			 * (for now).
   3799 			 */
   3800 			cix = rt->info[sc->sc_protrix].controlRate;
   3801 		} else
   3802 			cix = rt->info[sc->sc_protrix].controlRate;
   3803 		sc->sc_stats.ast_tx_protect++;
   3804 	}
   3805 
   3806 	/*
   3807 	 * Calculate duration.  This logically belongs in the 802.11
   3808 	 * layer but it lacks sufficient information to calculate it.
   3809 	 */
   3810 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
   3811 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
   3812 		u_int16_t dur;
   3813 		/*
   3814 		 * XXX not right with fragmentation.
   3815 		 */
   3816 		if (shortPreamble)
   3817 			dur = rt->info[rix].spAckDuration;
   3818 		else
   3819 			dur = rt->info[rix].lpAckDuration;
   3820 		if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
   3821 			dur += dur;             /* additional SIFS+ACK */
   3822 			KASSERT(m0->m_nextpkt != NULL, ("no fragment"));
   3823 			/*
   3824 			 * Include the size of next fragment so NAV is
   3825 			 * updated properly.  The last fragment uses only
   3826 			 * the ACK duration
   3827 			 */
   3828 			dur += ath_hal_computetxtime(ah, rt,
   3829 					m0->m_nextpkt->m_pkthdr.len,
   3830 					rix, shortPreamble);
   3831 		}
   3832 		if (isfrag) {
   3833 			/*
   3834 			 * Force hardware to use computed duration for next
   3835 			 * fragment by disabling multi-rate retry which updates
   3836 			 * duration based on the multi-rate duration table.
   3837 			 */
   3838 			try0 = ATH_TXMAXTRY;
   3839 		}
   3840 		*(u_int16_t *)wh->i_dur = htole16(dur);
   3841 	}
   3842 
   3843 	/*
   3844 	 * Calculate RTS/CTS rate and duration if needed.
   3845 	 */
   3846 	ctsduration = 0;
   3847 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
   3848 		/*
   3849 		 * CTS transmit rate is derived from the transmit rate
   3850 		 * by looking in the h/w rate table.  We must also factor
   3851 		 * in whether or not a short preamble is to be used.
   3852 		 */
   3853 		/* NB: cix is set above where RTS/CTS is enabled */
   3854 		KASSERT(cix != 0xff, ("cix not setup"));
   3855 		ctsrate = rt->info[cix].rateCode;
   3856 		/*
   3857 		 * Compute the transmit duration based on the frame
   3858 		 * size and the size of an ACK frame.  We call into the
   3859 		 * HAL to do the computation since it depends on the
   3860 		 * characteristics of the actual PHY being used.
   3861 		 *
   3862 		 * NB: CTS is assumed the same size as an ACK so we can
   3863 		 *     use the precalculated ACK durations.
   3864 		 */
   3865 		if (shortPreamble) {
   3866 			ctsrate |= rt->info[cix].shortPreamble;
   3867 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
   3868 				ctsduration += rt->info[cix].spAckDuration;
   3869 			ctsduration += ath_hal_computetxtime(ah,
   3870 				rt, pktlen, rix, AH_TRUE);
   3871 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
   3872 				ctsduration += rt->info[rix].spAckDuration;
   3873 		} else {
   3874 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
   3875 				ctsduration += rt->info[cix].lpAckDuration;
   3876 			ctsduration += ath_hal_computetxtime(ah,
   3877 				rt, pktlen, rix, AH_FALSE);
   3878 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
   3879 				ctsduration += rt->info[rix].lpAckDuration;
   3880 		}
   3881 		/*
   3882 		 * Must disable multi-rate retry when using RTS/CTS.
   3883 		 */
   3884 		ismrr = 0;
   3885 		try0 = ATH_TXMGTTRY;		/* XXX */
   3886 	} else
   3887 		ctsrate = 0;
   3888 
   3889 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
   3890 		ieee80211_dump_pkt(mtod(m0, void *), m0->m_len,
   3891 			sc->sc_hwmap[txrate].ieeerate, -1);
   3892 #if NBPFILTER > 0
   3893 	if (ic->ic_rawbpf)
   3894 		bpf_mtap(ic->ic_rawbpf, m0);
   3895 	if (sc->sc_drvbpf) {
   3896 		u_int64_t tsf = ath_hal_gettsf64(ah);
   3897 
   3898 		sc->sc_tx_th.wt_tsf = htole64(tsf);
   3899 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
   3900 		if (iswep)
   3901 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
   3902 		if (isfrag)
   3903 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
   3904 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
   3905 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
   3906 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
   3907 
   3908 		bpf_mtap2(sc->sc_drvbpf,
   3909 			&sc->sc_tx_th, sc->sc_tx_th_len, m0);
   3910 	}
   3911 #endif
   3912 
   3913 	/*
   3914 	 * Determine if a tx interrupt should be generated for
   3915 	 * this descriptor.  We take a tx interrupt to reap
   3916 	 * descriptors when the h/w hits an EOL condition or
   3917 	 * when the descriptor is specifically marked to generate
   3918 	 * an interrupt.  We periodically mark descriptors in this
   3919 	 * way to insure timely replenishing of the supply needed
   3920 	 * for sending frames.  Defering interrupts reduces system
   3921 	 * load and potentially allows more concurrent work to be
   3922 	 * done but if done to aggressively can cause senders to
   3923 	 * backup.
   3924 	 *
   3925 	 * NB: use >= to deal with sc_txintrperiod changing
   3926 	 *     dynamically through sysctl.
   3927 	 */
   3928 	if (flags & HAL_TXDESC_INTREQ) {
   3929 		txq->axq_intrcnt = 0;
   3930 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
   3931 		flags |= HAL_TXDESC_INTREQ;
   3932 		txq->axq_intrcnt = 0;
   3933 	}
   3934 
   3935 	/*
   3936 	 * Formulate first tx descriptor with tx controls.
   3937 	 */
   3938 	/* XXX check return value? */
   3939 	ath_hal_setuptxdesc(ah, ds
   3940 		, pktlen		/* packet length */
   3941 		, hdrlen		/* header length */
   3942 		, atype			/* Atheros packet type */
   3943 		, ni->ni_txpower	/* txpower */
   3944 		, txrate, try0		/* series 0 rate/tries */
   3945 		, keyix			/* key cache index */
   3946 		, sc->sc_txantenna	/* antenna mode */
   3947 		, flags			/* flags */
   3948 		, ctsrate		/* rts/cts rate */
   3949 		, ctsduration		/* rts/cts duration */
   3950 	);
   3951 	bf->bf_flags = flags;
   3952 	/*
   3953 	 * Setup the multi-rate retry state only when we're
   3954 	 * going to use it.  This assumes ath_hal_setuptxdesc
   3955 	 * initializes the descriptors (so we don't have to)
   3956 	 * when the hardware supports multi-rate retry and
   3957 	 * we don't use it.
   3958 	 */
   3959 	if (ismrr)
   3960 		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
   3961 
   3962 	/*
   3963 	 * Fillin the remainder of the descriptor info.
   3964 	 */
   3965 	ds0 = ds;
   3966 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
   3967 		ds->ds_data = bf->bf_segs[i].ds_addr;
   3968 		if (i == bf->bf_nseg - 1)
   3969 			ds->ds_link = 0;
   3970 		else
   3971 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
   3972 		ath_hal_filltxdesc(ah, ds
   3973 			, bf->bf_segs[i].ds_len	/* segment length */
   3974 			, i == 0		/* first segment */
   3975 			, i == bf->bf_nseg - 1	/* last segment */
   3976 			, ds0			/* first descriptor */
   3977 		);
   3978 
   3979 		/* NB: The desc swap function becomes void,
   3980 		 * if descriptor swapping is not enabled
   3981 		 */
   3982 		ath_desc_swap(ds);
   3983 
   3984 		DPRINTF(sc, ATH_DEBUG_XMIT,
   3985 			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
   3986 			__func__, i, ds->ds_link, ds->ds_data,
   3987 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
   3988 	}
   3989 	/*
   3990 	 * Insert the frame on the outbound list and
   3991 	 * pass it on to the hardware.
   3992 	 */
   3993 	ATH_TXQ_LOCK(txq);
   3994 	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
   3995 	if (txq->axq_link == NULL) {
   3996 		ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
   3997 		DPRINTF(sc, ATH_DEBUG_XMIT,
   3998 		    "%s: TXDP[%u] = %" PRIx64 " (%p) depth %d\n", __func__,
   3999 		    txq->axq_qnum, (uint64_t)bf->bf_daddr, bf->bf_desc,
   4000 		    txq->axq_depth);
   4001 	} else {
   4002 		*txq->axq_link = HTOAH32(bf->bf_daddr);
   4003 		DPRINTF(sc, ATH_DEBUG_XMIT,
   4004 		    "%s: link[%u](%p)=%" PRIx64 " (%p) depth %d\n",
   4005 		    __func__, txq->axq_qnum, txq->axq_link,
   4006 		    (uint64_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
   4007 	}
   4008 	txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
   4009 	/*
   4010 	 * The CAB queue is started from the SWBA handler since
   4011 	 * frames only go out on DTIM and to avoid possible races.
   4012 	 */
   4013 	if (txq != sc->sc_cabq)
   4014 		ath_hal_txstart(ah, txq->axq_qnum);
   4015 	ATH_TXQ_UNLOCK(txq);
   4016 
   4017 	return 0;
   4018 }
   4019 
   4020 /*
   4021  * Process completed xmit descriptors from the specified queue.
   4022  */
   4023 static int
   4024 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
   4025 {
   4026 	struct ath_hal *ah = sc->sc_ah;
   4027 	struct ieee80211com *ic = &sc->sc_ic;
   4028 	struct ath_buf *bf;
   4029 	struct ath_desc *ds, *ds0;
   4030 	struct ieee80211_node *ni;
   4031 	struct ath_node *an;
   4032 	int sr, lr, pri, nacked;
   4033 	HAL_STATUS status;
   4034 
   4035 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
   4036 		__func__, txq->axq_qnum,
   4037 		(void *)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
   4038 		txq->axq_link);
   4039 	nacked = 0;
   4040 	for (;;) {
   4041 		ATH_TXQ_LOCK(txq);
   4042 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
   4043 		bf = STAILQ_FIRST(&txq->axq_q);
   4044 		if (bf == NULL) {
   4045 			txq->axq_link = NULL;
   4046 			ATH_TXQ_UNLOCK(txq);
   4047 			break;
   4048 		}
   4049 		ds0 = &bf->bf_desc[0];
   4050 		ds = &bf->bf_desc[bf->bf_nseg - 1];
   4051 		status = ath_hal_txprocdesc(ah, ds);
   4052 #ifdef AR_DEBUG
   4053 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
   4054 			ath_printtxbuf(bf, status == HAL_OK);
   4055 #endif
   4056 		if (status == HAL_EINPROGRESS) {
   4057 			ATH_TXQ_UNLOCK(txq);
   4058 			break;
   4059 		}
   4060 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
   4061 		ATH_TXQ_UNLOCK(txq);
   4062 
   4063 		ni = bf->bf_node;
   4064 		if (ni != NULL) {
   4065 			an = ATH_NODE(ni);
   4066 			if (ds->ds_txstat.ts_status == 0) {
   4067 				u_int8_t txant = ds->ds_txstat.ts_antenna;
   4068 				sc->sc_stats.ast_ant_tx[txant]++;
   4069 				sc->sc_ant_tx[txant]++;
   4070 				if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
   4071 					sc->sc_stats.ast_tx_altrate++;
   4072 				sc->sc_stats.ast_tx_rssi =
   4073 					ds->ds_txstat.ts_rssi;
   4074 				ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
   4075 					ds->ds_txstat.ts_rssi);
   4076 				pri = M_WME_GETAC(bf->bf_m);
   4077 				if (pri >= WME_AC_VO)
   4078 					ic->ic_wme.wme_hipri_traffic++;
   4079 				ni->ni_inact = ni->ni_inact_reload;
   4080 			} else {
   4081 				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
   4082 					sc->sc_stats.ast_tx_xretries++;
   4083 				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
   4084 					sc->sc_stats.ast_tx_fifoerr++;
   4085 				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
   4086 					sc->sc_stats.ast_tx_filtered++;
   4087 			}
   4088 			sr = ds->ds_txstat.ts_shortretry;
   4089 			lr = ds->ds_txstat.ts_longretry;
   4090 			sc->sc_stats.ast_tx_shortretry += sr;
   4091 			sc->sc_stats.ast_tx_longretry += lr;
   4092 			/*
   4093 			 * Hand the descriptor to the rate control algorithm.
   4094 			 */
   4095 			if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
   4096 			    (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
   4097 				/*
   4098 				 * If frame was ack'd update the last rx time
   4099 				 * used to workaround phantom bmiss interrupts.
   4100 				 */
   4101 				if (ds->ds_txstat.ts_status == 0)
   4102 					nacked++;
   4103 				ath_rate_tx_complete(sc, an, ds, ds0);
   4104 			}
   4105 			/*
   4106 			 * Reclaim reference to node.
   4107 			 *
   4108 			 * NB: the node may be reclaimed here if, for example
   4109 			 *     this is a DEAUTH message that was sent and the
   4110 			 *     node was timed out due to inactivity.
   4111 			 */
   4112 			ieee80211_free_node(ni);
   4113 		}
   4114 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   4115 		    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4116 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   4117 		m_freem(bf->bf_m);
   4118 		bf->bf_m = NULL;
   4119 		bf->bf_node = NULL;
   4120 
   4121 		ATH_TXBUF_LOCK(sc);
   4122 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   4123 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
   4124 		ATH_TXBUF_UNLOCK(sc);
   4125 	}
   4126 	return nacked;
   4127 }
   4128 
   4129 static inline int
   4130 txqactive(struct ath_hal *ah, int qnum)
   4131 {
   4132 	u_int32_t txqs = 1<<qnum;
   4133 	ath_hal_gettxintrtxqs(ah, &txqs);
   4134 	return (txqs & (1<<qnum));
   4135 }
   4136 
   4137 /*
   4138  * Deferred processing of transmit interrupt; special-cased
   4139  * for a single hardware transmit queue (e.g. 5210 and 5211).
   4140  */
   4141 static void
   4142 ath_tx_proc_q0(void *arg, int npending)
   4143 {
   4144 	struct ath_softc *sc = arg;
   4145 	struct ifnet *ifp = &sc->sc_if;
   4146 
   4147 	if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]) > 0){
   4148 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
   4149 	}
   4150 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
   4151 		ath_tx_processq(sc, sc->sc_cabq);
   4152 
   4153 	if (sc->sc_softled)
   4154 		ath_led_event(sc, ATH_LED_TX);
   4155 
   4156 	ath_start(ifp);
   4157 }
   4158 
   4159 /*
   4160  * Deferred processing of transmit interrupt; special-cased
   4161  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
   4162  */
   4163 static void
   4164 ath_tx_proc_q0123(void *arg, int npending)
   4165 {
   4166 	struct ath_softc *sc = arg;
   4167 	struct ifnet *ifp = &sc->sc_if;
   4168 	int nacked;
   4169 
   4170 	/*
   4171 	 * Process each active queue.
   4172 	 */
   4173 	nacked = 0;
   4174 	if (txqactive(sc->sc_ah, 0))
   4175 		nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
   4176 	if (txqactive(sc->sc_ah, 1))
   4177 		nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
   4178 	if (txqactive(sc->sc_ah, 2))
   4179 		nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
   4180 	if (txqactive(sc->sc_ah, 3))
   4181 		nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
   4182 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
   4183 		ath_tx_processq(sc, sc->sc_cabq);
   4184 	if (nacked) {
   4185 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
   4186 	}
   4187 	ath_tx_processq(sc, sc->sc_cabq);
   4188 
   4189 	if (sc->sc_softled)
   4190 		ath_led_event(sc, ATH_LED_TX);
   4191 
   4192 	ath_start(ifp);
   4193 }
   4194 
   4195 /*
   4196  * Deferred processing of transmit interrupt.
   4197  */
   4198 static void
   4199 ath_tx_proc(void *arg, int npending)
   4200 {
   4201 	struct ath_softc *sc = arg;
   4202 	struct ifnet *ifp = &sc->sc_if;
   4203 	int i, nacked;
   4204 
   4205 	/*
   4206 	 * Process each active queue.
   4207 	 */
   4208 	nacked = 0;
   4209 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   4210 		if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
   4211 			nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
   4212 	if (nacked) {
   4213 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
   4214 	}
   4215 
   4216 	if (sc->sc_softled)
   4217 		ath_led_event(sc, ATH_LED_TX);
   4218 
   4219 	ath_start(ifp);
   4220 }
   4221 
   4222 static void
   4223 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
   4224 {
   4225 	struct ath_hal *ah = sc->sc_ah;
   4226 	struct ieee80211_node *ni;
   4227 	struct ath_buf *bf;
   4228 
   4229 	/*
   4230 	 * NB: this assumes output has been stopped and
   4231 	 *     we do not need to block ath_tx_tasklet
   4232 	 */
   4233 	for (;;) {
   4234 		ATH_TXQ_LOCK(txq);
   4235 		bf = STAILQ_FIRST(&txq->axq_q);
   4236 		if (bf == NULL) {
   4237 			txq->axq_link = NULL;
   4238 			ATH_TXQ_UNLOCK(txq);
   4239 			break;
   4240 		}
   4241 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
   4242 		ATH_TXQ_UNLOCK(txq);
   4243 #ifdef AR_DEBUG
   4244 		if (sc->sc_debug & ATH_DEBUG_RESET)
   4245 			ath_printtxbuf(bf,
   4246 				ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
   4247 #endif /* AR_DEBUG */
   4248 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   4249 		m_freem(bf->bf_m);
   4250 		bf->bf_m = NULL;
   4251 		ni = bf->bf_node;
   4252 		bf->bf_node = NULL;
   4253 		if (ni != NULL) {
   4254 			/*
   4255 			 * Reclaim node reference.
   4256 			 */
   4257 			ieee80211_free_node(ni);
   4258 		}
   4259 		ATH_TXBUF_LOCK(sc);
   4260 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   4261 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
   4262 		ATH_TXBUF_UNLOCK(sc);
   4263 	}
   4264 }
   4265 
   4266 static void
   4267 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
   4268 {
   4269 	struct ath_hal *ah = sc->sc_ah;
   4270 
   4271 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
   4272 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
   4273 	    __func__, txq->axq_qnum,
   4274 	    (void *)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
   4275 	    txq->axq_link);
   4276 }
   4277 
   4278 /*
   4279  * Drain the transmit queues and reclaim resources.
   4280  */
   4281 static void
   4282 ath_draintxq(struct ath_softc *sc)
   4283 {
   4284 	struct ath_hal *ah = sc->sc_ah;
   4285 	int i;
   4286 
   4287 	/* XXX return value */
   4288 	if (!sc->sc_invalid) {
   4289 		/* don't touch the hardware if marked invalid */
   4290 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
   4291 		DPRINTF(sc, ATH_DEBUG_RESET,
   4292 		    "%s: beacon queue %p\n", __func__,
   4293 		    (void *)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
   4294 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   4295 			if (ATH_TXQ_SETUP(sc, i))
   4296 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
   4297 	}
   4298 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   4299 		if (ATH_TXQ_SETUP(sc, i))
   4300 			ath_tx_draintxq(sc, &sc->sc_txq[i]);
   4301 }
   4302 
   4303 /*
   4304  * Disable the receive h/w in preparation for a reset.
   4305  */
   4306 static void
   4307 ath_stoprecv(struct ath_softc *sc)
   4308 {
   4309 #define	PA2DESC(_sc, _pa) \
   4310 	((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
   4311 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
   4312 	struct ath_hal *ah = sc->sc_ah;
   4313 
   4314 	ath_hal_stoppcurecv(ah);	/* disable PCU */
   4315 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
   4316 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
   4317 	DELAY(3000);			/* 3ms is long enough for 1 frame */
   4318 #ifdef AR_DEBUG
   4319 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
   4320 		struct ath_buf *bf;
   4321 
   4322 		printf("%s: rx queue %p, link %p\n", __func__,
   4323 			(void *)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
   4324 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
   4325 			struct ath_desc *ds = bf->bf_desc;
   4326 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
   4327 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
   4328 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
   4329 				ath_printrxbuf(bf, status == HAL_OK);
   4330 		}
   4331 	}
   4332 #endif
   4333 	sc->sc_rxlink = NULL;		/* just in case */
   4334 #undef PA2DESC
   4335 }
   4336 
   4337 /*
   4338  * Enable the receive h/w following a reset.
   4339  */
   4340 static int
   4341 ath_startrecv(struct ath_softc *sc)
   4342 {
   4343 	struct ath_hal *ah = sc->sc_ah;
   4344 	struct ath_buf *bf;
   4345 
   4346 	sc->sc_rxlink = NULL;
   4347 	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
   4348 		int error = ath_rxbuf_init(sc, bf);
   4349 		if (error != 0) {
   4350 			DPRINTF(sc, ATH_DEBUG_RECV,
   4351 				"%s: ath_rxbuf_init failed %d\n",
   4352 				__func__, error);
   4353 			return error;
   4354 		}
   4355 	}
   4356 
   4357 	bf = STAILQ_FIRST(&sc->sc_rxbuf);
   4358 	ath_hal_putrxbuf(ah, bf->bf_daddr);
   4359 	ath_hal_rxena(ah);		/* enable recv descriptors */
   4360 	ath_mode_init(sc);		/* set filters, etc. */
   4361 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
   4362 	return 0;
   4363 }
   4364 
   4365 /*
   4366  * Update internal state after a channel change.
   4367  */
   4368 static void
   4369 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
   4370 {
   4371 	struct ieee80211com *ic = &sc->sc_ic;
   4372 	enum ieee80211_phymode mode;
   4373 	u_int16_t flags;
   4374 
   4375 	/*
   4376 	 * Change channels and update the h/w rate map
   4377 	 * if we're switching; e.g. 11a to 11b/g.
   4378 	 */
   4379 	mode = ieee80211_chan2mode(ic, chan);
   4380 	if (mode != sc->sc_curmode)
   4381 		ath_setcurmode(sc, mode);
   4382 	/*
   4383 	 * Update BPF state.  NB: ethereal et. al. don't handle
   4384 	 * merged flags well so pick a unique mode for their use.
   4385 	 */
   4386 	if (IEEE80211_IS_CHAN_A(chan))
   4387 		flags = IEEE80211_CHAN_A;
   4388 	/* XXX 11g schizophrenia */
   4389 	else if (IEEE80211_IS_CHAN_G(chan) ||
   4390 	    IEEE80211_IS_CHAN_PUREG(chan))
   4391 		flags = IEEE80211_CHAN_G;
   4392 	else
   4393 		flags = IEEE80211_CHAN_B;
   4394 	if (IEEE80211_IS_CHAN_T(chan))
   4395 		flags |= IEEE80211_CHAN_TURBO;
   4396 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
   4397 		htole16(chan->ic_freq);
   4398 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
   4399 		htole16(flags);
   4400 }
   4401 
   4402 /*
   4403  * Poll for a channel clear indication; this is required
   4404  * for channels requiring DFS and not previously visited
   4405  * and/or with a recent radar detection.
   4406  */
   4407 static void
   4408 ath_dfswait(void *arg)
   4409 {
   4410 	struct ath_softc *sc = arg;
   4411 	struct ath_hal *ah = sc->sc_ah;
   4412 	HAL_CHANNEL hchan;
   4413 
   4414 	ath_hal_radar_wait(ah, &hchan);
   4415 	if (hchan.privFlags & CHANNEL_INTERFERENCE) {
   4416 		if_printf(&sc->sc_if,
   4417 		    "channel %u/0x%x/0x%x has interference\n",
   4418 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
   4419 		return;
   4420 	}
   4421 	if ((hchan.privFlags & CHANNEL_DFS) == 0) {
   4422 		/* XXX should not happen */
   4423 		return;
   4424 	}
   4425 	if (hchan.privFlags & CHANNEL_DFS_CLEAR) {
   4426 		sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR;
   4427 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
   4428 		if_printf(&sc->sc_if,
   4429 		    "channel %u/0x%x/0x%x marked clear\n",
   4430 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
   4431 	} else
   4432 		callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc);
   4433 }
   4434 
   4435 /*
   4436  * Set/change channels.  If the channel is really being changed,
   4437  * it's done by reseting the chip.  To accomplish this we must
   4438  * first cleanup any pending DMA, then restart stuff after a la
   4439  * ath_init.
   4440  */
   4441 static int
   4442 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
   4443 {
   4444 	struct ath_hal *ah = sc->sc_ah;
   4445 	struct ieee80211com *ic = &sc->sc_ic;
   4446 	HAL_CHANNEL hchan;
   4447 
   4448 	/*
   4449 	 * Convert to a HAL channel description with
   4450 	 * the flags constrained to reflect the current
   4451 	 * operating mode.
   4452 	 */
   4453 	hchan.channel = chan->ic_freq;
   4454 	hchan.channelFlags = ath_chan2flags(ic, chan);
   4455 
   4456 	DPRINTF(sc, ATH_DEBUG_RESET,
   4457 	    "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
   4458 	    __func__,
   4459 	    ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
   4460 		sc->sc_curchan.channelFlags),
   4461 	    	sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
   4462 	    ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
   4463 	        hchan.channel, hchan.channelFlags);
   4464 	if (hchan.channel != sc->sc_curchan.channel ||
   4465 	    hchan.channelFlags != sc->sc_curchan.channelFlags) {
   4466 		HAL_STATUS status;
   4467 
   4468 		/*
   4469 		 * To switch channels clear any pending DMA operations;
   4470 		 * wait long enough for the RX fifo to drain, reset the
   4471 		 * hardware at the new frequency, and then re-enable
   4472 		 * the relevant bits of the h/w.
   4473 		 */
   4474 		ath_hal_intrset(ah, 0);		/* disable interrupts */
   4475 		ath_draintxq(sc);		/* clear pending tx frames */
   4476 		ath_stoprecv(sc);		/* turn off frame recv */
   4477 		if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
   4478 			if_printf(ic->ic_ifp, "%s: unable to reset "
   4479 			    "channel %u (%u MHz, flags 0x%x hal flags 0x%x)\n",
   4480 			    __func__, ieee80211_chan2ieee(ic, chan),
   4481 			    chan->ic_freq, chan->ic_flags, hchan.channelFlags);
   4482 			return EIO;
   4483 		}
   4484 		sc->sc_curchan = hchan;
   4485 		ath_update_txpow(sc);		/* update tx power state */
   4486 		ath_restore_diversity(sc);
   4487 		sc->sc_calinterval = 1;
   4488 		sc->sc_caltries = 0;
   4489 
   4490 		/*
   4491 		 * Re-enable rx framework.
   4492 		 */
   4493 		if (ath_startrecv(sc) != 0) {
   4494 			if_printf(&sc->sc_if,
   4495 				"%s: unable to restart recv logic\n", __func__);
   4496 			return EIO;
   4497 		}
   4498 
   4499 		/*
   4500 		 * Change channels and update the h/w rate map
   4501 		 * if we're switching; e.g. 11a to 11b/g.
   4502 		 */
   4503 		ic->ic_ibss_chan = chan;
   4504 		ath_chan_change(sc, chan);
   4505 
   4506 		/*
   4507 		 * Handle DFS required waiting period to determine
   4508 		 * if channel is clear of radar traffic.
   4509 		 */
   4510 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   4511 #define	DFS_AND_NOT_CLEAR(_c) \
   4512 	(((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS)
   4513 			if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) {
   4514 				if_printf(&sc->sc_if,
   4515 					"wait for DFS clear channel signal\n");
   4516 				/* XXX stop sndq */
   4517 				sc->sc_if.if_flags |= IFF_OACTIVE;
   4518 				callout_reset(&sc->sc_dfs_ch,
   4519 					2 * hz, ath_dfswait, sc);
   4520 			} else
   4521 				callout_stop(&sc->sc_dfs_ch);
   4522 #undef DFS_NOT_CLEAR
   4523 		}
   4524 
   4525 		/*
   4526 		 * Re-enable interrupts.
   4527 		 */
   4528 		ath_hal_intrset(ah, sc->sc_imask);
   4529 	}
   4530 	return 0;
   4531 }
   4532 
   4533 static void
   4534 ath_next_scan(void *arg)
   4535 {
   4536 	struct ath_softc *sc = arg;
   4537 	struct ieee80211com *ic = &sc->sc_ic;
   4538 	int s;
   4539 
   4540 	/* don't call ath_start w/o network interrupts blocked */
   4541 	s = splnet();
   4542 
   4543 	if (ic->ic_state == IEEE80211_S_SCAN)
   4544 		ieee80211_next_scan(ic);
   4545 	splx(s);
   4546 }
   4547 
   4548 /*
   4549  * Periodically recalibrate the PHY to account
   4550  * for temperature/environment changes.
   4551  */
   4552 static void
   4553 ath_calibrate(void *arg)
   4554 {
   4555 	struct ath_softc *sc = arg;
   4556 	struct ath_hal *ah = sc->sc_ah;
   4557 	HAL_BOOL iqCalDone;
   4558 
   4559 	sc->sc_stats.ast_per_cal++;
   4560 
   4561 	ATH_LOCK(sc);
   4562 
   4563 	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
   4564 		/*
   4565 		 * Rfgain is out of bounds, reset the chip
   4566 		 * to load new gain values.
   4567 		 */
   4568 		DPRINTF(sc, ATH_DEBUG_CALIBRATE,
   4569 			"%s: rfgain change\n", __func__);
   4570 		sc->sc_stats.ast_per_rfgain++;
   4571 		ath_reset(&sc->sc_if);
   4572 	}
   4573 	if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
   4574 		DPRINTF(sc, ATH_DEBUG_ANY,
   4575 			"%s: calibration of channel %u failed\n",
   4576 			__func__, sc->sc_curchan.channel);
   4577 		sc->sc_stats.ast_per_calfail++;
   4578 	}
   4579 	/*
   4580 	 * Calibrate noise floor data again in case of change.
   4581 	 */
   4582 	ath_hal_process_noisefloor(ah);
   4583 	/*
   4584 	 * Poll more frequently when the IQ calibration is in
   4585 	 * progress to speedup loading the final settings.
   4586 	 * We temper this aggressive polling with an exponential
   4587 	 * back off after 4 tries up to ath_calinterval.
   4588 	 */
   4589 	if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
   4590 		sc->sc_caltries = 0;
   4591 		sc->sc_calinterval = ath_calinterval;
   4592 	} else if (sc->sc_caltries > 4) {
   4593 		sc->sc_caltries = 0;
   4594 		sc->sc_calinterval <<= 1;
   4595 		if (sc->sc_calinterval > ath_calinterval)
   4596 			sc->sc_calinterval = ath_calinterval;
   4597 	}
   4598 	KASSERT(0 < sc->sc_calinterval && sc->sc_calinterval <= ath_calinterval,
   4599 		("bad calibration interval %u", sc->sc_calinterval));
   4600 
   4601 	DPRINTF(sc, ATH_DEBUG_CALIBRATE,
   4602 		"%s: next +%u (%siqCalDone tries %u)\n", __func__,
   4603 		sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
   4604 	sc->sc_caltries++;
   4605 	callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
   4606 		ath_calibrate, sc);
   4607 	ATH_UNLOCK(sc);
   4608 }
   4609 
   4610 static int
   4611 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
   4612 {
   4613 	struct ifnet *ifp = ic->ic_ifp;
   4614 	struct ath_softc *sc = ifp->if_softc;
   4615 	struct ath_hal *ah = sc->sc_ah;
   4616 	struct ieee80211_node *ni;
   4617 	int i, error;
   4618 	const u_int8_t *bssid;
   4619 	u_int32_t rfilt;
   4620 	static const HAL_LED_STATE leds[] = {
   4621 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
   4622 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
   4623 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
   4624 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
   4625 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
   4626 	};
   4627 
   4628 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
   4629 		ieee80211_state_name[ic->ic_state],
   4630 		ieee80211_state_name[nstate]);
   4631 
   4632 	callout_stop(&sc->sc_scan_ch);
   4633 	callout_stop(&sc->sc_cal_ch);
   4634 	callout_stop(&sc->sc_dfs_ch);
   4635 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
   4636 
   4637 	if (nstate == IEEE80211_S_INIT) {
   4638 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
   4639 		/*
   4640 		 * NB: disable interrupts so we don't rx frames.
   4641 		 */
   4642 		ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
   4643 		/*
   4644 		 * Notify the rate control algorithm.
   4645 		 */
   4646 		ath_rate_newstate(sc, nstate);
   4647 		goto done;
   4648 	}
   4649 	ni = ic->ic_bss;
   4650 	error = ath_chan_set(sc, ic->ic_curchan);
   4651 	if (error != 0)
   4652 		goto bad;
   4653 	rfilt = ath_calcrxfilter(sc, nstate);
   4654 	if (nstate == IEEE80211_S_SCAN)
   4655 		bssid = ifp->if_broadcastaddr;
   4656 	else
   4657 		bssid = ni->ni_bssid;
   4658 	ath_hal_setrxfilter(ah, rfilt);
   4659 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
   4660 		 __func__, rfilt, ether_sprintf(bssid));
   4661 
   4662 	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
   4663 		ath_hal_setassocid(ah, bssid, ni->ni_associd);
   4664 	else
   4665 		ath_hal_setassocid(ah, bssid, 0);
   4666 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
   4667 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
   4668 			if (ath_hal_keyisvalid(ah, i))
   4669 				ath_hal_keysetmac(ah, i, bssid);
   4670 	}
   4671 
   4672 	/*
   4673 	 * Notify the rate control algorithm so rates
   4674 	 * are setup should ath_beacon_alloc be called.
   4675 	 */
   4676 	ath_rate_newstate(sc, nstate);
   4677 
   4678 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
   4679 		/* nothing to do */;
   4680 	} else if (nstate == IEEE80211_S_RUN) {
   4681 		DPRINTF(sc, ATH_DEBUG_STATE,
   4682 			"%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
   4683 			"capinfo=0x%04x chan=%d\n"
   4684 			 , __func__
   4685 			 , ic->ic_flags
   4686 			 , ni->ni_intval
   4687 			 , ether_sprintf(ni->ni_bssid)
   4688 			 , ni->ni_capinfo
   4689 			 , ieee80211_chan2ieee(ic, ic->ic_curchan));
   4690 
   4691 		switch (ic->ic_opmode) {
   4692 		case IEEE80211_M_HOSTAP:
   4693 		case IEEE80211_M_IBSS:
   4694 			/*
   4695 			 * Allocate and setup the beacon frame.
   4696 			 *
   4697 			 * Stop any previous beacon DMA.  This may be
   4698 			 * necessary, for example, when an ibss merge
   4699 			 * causes reconfiguration; there will be a state
   4700 			 * transition from RUN->RUN that means we may
   4701 			 * be called with beacon transmission active.
   4702 			 */
   4703 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
   4704 			ath_beacon_free(sc);
   4705 			error = ath_beacon_alloc(sc, ni);
   4706 			if (error != 0)
   4707 				goto bad;
   4708 			/*
   4709 			 * If joining an adhoc network defer beacon timer
   4710 			 * configuration to the next beacon frame so we
   4711 			 * have a current TSF to use.  Otherwise we're
   4712 			 * starting an ibss/bss so there's no need to delay.
   4713 			 */
   4714 			if (ic->ic_opmode == IEEE80211_M_IBSS &&
   4715 			    ic->ic_bss->ni_tstamp.tsf != 0)
   4716 				sc->sc_syncbeacon = 1;
   4717 			else
   4718 				ath_beacon_config(sc);
   4719 			break;
   4720 		case IEEE80211_M_STA:
   4721 			/*
   4722 			 * Allocate a key cache slot to the station.
   4723 			 */
   4724 			if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
   4725 			    sc->sc_hasclrkey &&
   4726 			    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
   4727 				ath_setup_stationkey(ni);
   4728 			/*
   4729 			 * Defer beacon timer configuration to the next
   4730 			 * beacon frame so we have a current TSF to use
   4731 			 * (any TSF collected when scanning is likely old).
   4732 			 */
   4733 			sc->sc_syncbeacon = 1;
   4734 			break;
   4735 		default:
   4736 			break;
   4737 		}
   4738 		/*
   4739 		 * Let the hal process statistics collected during a
   4740 		 * scan so it can provide calibrated noise floor data.
   4741 		 */
   4742 		ath_hal_process_noisefloor(ah);
   4743 		/*
   4744 		 * Reset rssi stats; maybe not the best place...
   4745 		 */
   4746 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
   4747 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
   4748 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
   4749 	} else {
   4750 		ath_hal_intrset(ah,
   4751 			sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
   4752 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
   4753 	}
   4754 done:
   4755 	/*
   4756 	 * Invoke the parent method to complete the work.
   4757 	 */
   4758 	error = sc->sc_newstate(ic, nstate, arg);
   4759 	/*
   4760 	 * Finally, start any timers.
   4761 	 */
   4762 	if (nstate == IEEE80211_S_RUN) {
   4763 		/* start periodic recalibration timer */
   4764 		callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
   4765 			ath_calibrate, sc);
   4766 	} else if (nstate == IEEE80211_S_SCAN) {
   4767 		/* start ap/neighbor scan timer */
   4768 		callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
   4769 			ath_next_scan, sc);
   4770 	}
   4771 bad:
   4772 	return error;
   4773 }
   4774 
   4775 /*
   4776  * Allocate a key cache slot to the station so we can
   4777  * setup a mapping from key index to node. The key cache
   4778  * slot is needed for managing antenna state and for
   4779  * compression when stations do not use crypto.  We do
   4780  * it uniliaterally here; if crypto is employed this slot
   4781  * will be reassigned.
   4782  */
   4783 static void
   4784 ath_setup_stationkey(struct ieee80211_node *ni)
   4785 {
   4786 	struct ieee80211com *ic = ni->ni_ic;
   4787 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   4788 	ieee80211_keyix keyix, rxkeyix;
   4789 
   4790 	if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
   4791 		/*
   4792 		 * Key cache is full; we'll fall back to doing
   4793 		 * the more expensive lookup in software.  Note
   4794 		 * this also means no h/w compression.
   4795 		 */
   4796 		/* XXX msg+statistic */
   4797 	} else {
   4798 		/* XXX locking? */
   4799 		ni->ni_ucastkey.wk_keyix = keyix;
   4800 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
   4801 		/* NB: this will create a pass-thru key entry */
   4802 		ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
   4803 	}
   4804 }
   4805 
   4806 /*
   4807  * Setup driver-specific state for a newly associated node.
   4808  * Note that we're called also on a re-associate, the isnew
   4809  * param tells us if this is the first time or not.
   4810  */
   4811 static void
   4812 ath_newassoc(struct ieee80211_node *ni, int isnew)
   4813 {
   4814 	struct ieee80211com *ic = ni->ni_ic;
   4815 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   4816 
   4817 	ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
   4818 	if (isnew &&
   4819 	    (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
   4820 		KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
   4821 		    ("new assoc with a unicast key already setup (keyix %u)",
   4822 		    ni->ni_ucastkey.wk_keyix));
   4823 		ath_setup_stationkey(ni);
   4824 	}
   4825 }
   4826 
   4827 static int
   4828 ath_getchannels(struct ath_softc *sc, u_int cc,
   4829 	HAL_BOOL outdoor, HAL_BOOL xchanmode)
   4830 {
   4831 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
   4832 	struct ieee80211com *ic = &sc->sc_ic;
   4833 	struct ifnet *ifp = &sc->sc_if;
   4834 	struct ath_hal *ah = sc->sc_ah;
   4835 	HAL_CHANNEL *chans;
   4836 	int i, ix, nchan;
   4837 
   4838 	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
   4839 			M_TEMP, M_NOWAIT);
   4840 	if (chans == NULL) {
   4841 		if_printf(ifp, "unable to allocate channel table\n");
   4842 		return ENOMEM;
   4843 	}
   4844 	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
   4845 	    NULL, 0, NULL,
   4846 	    cc, HAL_MODE_ALL, outdoor, xchanmode)) {
   4847 		u_int32_t rd;
   4848 
   4849 		(void)ath_hal_getregdomain(ah, &rd);
   4850 		if_printf(ifp, "unable to collect channel list from hal; "
   4851 			"regdomain likely %u country code %u\n", rd, cc);
   4852 		free(chans, M_TEMP);
   4853 		return EINVAL;
   4854 	}
   4855 
   4856 	/*
   4857 	 * Convert HAL channels to ieee80211 ones and insert
   4858 	 * them in the table according to their channel number.
   4859 	 */
   4860 	for (i = 0; i < nchan; i++) {
   4861 		HAL_CHANNEL *c = &chans[i];
   4862 		u_int16_t flags;
   4863 
   4864 		ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags);
   4865 		if (ix > IEEE80211_CHAN_MAX) {
   4866 			if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n",
   4867 				ix, c->channel, c->channelFlags);
   4868 			continue;
   4869 		}
   4870 		if (ix < 0) {
   4871 			/* XXX can't handle stuff <2400 right now */
   4872 			if (bootverbose)
   4873 				if_printf(ifp, "hal channel %d (%u/%x) "
   4874 				    "cannot be handled; ignored\n",
   4875 				    ix, c->channel, c->channelFlags);
   4876 			continue;
   4877 		}
   4878 		/*
   4879 		 * Calculate net80211 flags; most are compatible
   4880 		 * but some need massaging.  Note the static turbo
   4881 		 * conversion can be removed once net80211 is updated
   4882 		 * to understand static vs. dynamic turbo.
   4883 		 */
   4884 		flags = c->channelFlags & COMPAT;
   4885 		if (c->channelFlags & CHANNEL_STURBO)
   4886 			flags |= IEEE80211_CHAN_TURBO;
   4887 		if (ic->ic_channels[ix].ic_freq == 0) {
   4888 			ic->ic_channels[ix].ic_freq = c->channel;
   4889 			ic->ic_channels[ix].ic_flags = flags;
   4890 		} else {
   4891 			/* channels overlap; e.g. 11g and 11b */
   4892 			ic->ic_channels[ix].ic_flags |= flags;
   4893 		}
   4894 	}
   4895 	free(chans, M_TEMP);
   4896 	return 0;
   4897 #undef COMPAT
   4898 }
   4899 
   4900 static void
   4901 ath_led_done(void *arg)
   4902 {
   4903 	struct ath_softc *sc = arg;
   4904 
   4905 	sc->sc_blinking = 0;
   4906 }
   4907 
   4908 /*
   4909  * Turn the LED off: flip the pin and then set a timer so no
   4910  * update will happen for the specified duration.
   4911  */
   4912 static void
   4913 ath_led_off(void *arg)
   4914 {
   4915 	struct ath_softc *sc = arg;
   4916 
   4917 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
   4918 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
   4919 }
   4920 
   4921 /*
   4922  * Blink the LED according to the specified on/off times.
   4923  */
   4924 static void
   4925 ath_led_blink(struct ath_softc *sc, int on, int off)
   4926 {
   4927 	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
   4928 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
   4929 	sc->sc_blinking = 1;
   4930 	sc->sc_ledoff = off;
   4931 	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
   4932 }
   4933 
   4934 static void
   4935 ath_led_event(struct ath_softc *sc, int event)
   4936 {
   4937 
   4938 	sc->sc_ledevent = ticks;	/* time of last event */
   4939 	if (sc->sc_blinking)		/* don't interrupt active blink */
   4940 		return;
   4941 	switch (event) {
   4942 	case ATH_LED_POLL:
   4943 		ath_led_blink(sc, sc->sc_hwmap[0].ledon,
   4944 			sc->sc_hwmap[0].ledoff);
   4945 		break;
   4946 	case ATH_LED_TX:
   4947 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
   4948 			sc->sc_hwmap[sc->sc_txrate].ledoff);
   4949 		break;
   4950 	case ATH_LED_RX:
   4951 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
   4952 			sc->sc_hwmap[sc->sc_rxrate].ledoff);
   4953 		break;
   4954 	}
   4955 }
   4956 
   4957 static void
   4958 ath_update_txpow(struct ath_softc *sc)
   4959 {
   4960 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
   4961 	struct ieee80211com *ic = &sc->sc_ic;
   4962 	struct ath_hal *ah = sc->sc_ah;
   4963 	u_int32_t txpow;
   4964 
   4965 	if (sc->sc_curtxpow != ic->ic_txpowlimit) {
   4966 		ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
   4967 		/* read back in case value is clamped */
   4968 		(void)ath_hal_gettxpowlimit(ah, &txpow);
   4969 		ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
   4970 	}
   4971 	/*
   4972 	 * Fetch max tx power level for status requests.
   4973 	 */
   4974 	(void)ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
   4975 	ic->ic_bss->ni_txpower = txpow;
   4976 }
   4977 
   4978 static void
   4979 rate_setup(struct ath_softc *sc,
   4980 	const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs)
   4981 {
   4982 	int i, maxrates;
   4983 
   4984 	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
   4985 		DPRINTF(sc, ATH_DEBUG_ANY,
   4986 			"%s: rate table too small (%u > %u)\n",
   4987 		       __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
   4988 		maxrates = IEEE80211_RATE_MAXSIZE;
   4989 	} else
   4990 		maxrates = rt->rateCount;
   4991 	for (i = 0; i < maxrates; i++)
   4992 		rs->rs_rates[i] = rt->info[i].dot11Rate;
   4993 	rs->rs_nrates = maxrates;
   4994 }
   4995 
   4996 static int
   4997 ath_rate_setup(struct ath_softc *sc, u_int mode)
   4998 {
   4999 	struct ath_hal *ah = sc->sc_ah;
   5000 	struct ieee80211com *ic = &sc->sc_ic;
   5001 	const HAL_RATE_TABLE *rt;
   5002 
   5003 	switch (mode) {
   5004 	case IEEE80211_MODE_11A:
   5005 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
   5006 		break;
   5007 	case IEEE80211_MODE_11B:
   5008 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
   5009 		break;
   5010 	case IEEE80211_MODE_11G:
   5011 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
   5012 		break;
   5013 	case IEEE80211_MODE_TURBO_A:
   5014 		/* XXX until static/dynamic turbo is fixed */
   5015 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
   5016 		break;
   5017 	case IEEE80211_MODE_TURBO_G:
   5018 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
   5019 		break;
   5020 	default:
   5021 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
   5022 			__func__, mode);
   5023 		return 0;
   5024 	}
   5025 	sc->sc_rates[mode] = rt;
   5026 	if (rt != NULL) {
   5027 		rate_setup(sc, rt, &ic->ic_sup_rates[mode]);
   5028 		return 1;
   5029 	} else
   5030 		return 0;
   5031 }
   5032 
   5033 static void
   5034 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
   5035 {
   5036 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   5037 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
   5038 	static const struct {
   5039 		u_int		rate;		/* tx/rx 802.11 rate */
   5040 		u_int16_t	timeOn;		/* LED on time (ms) */
   5041 		u_int16_t	timeOff;	/* LED off time (ms) */
   5042 	} blinkrates[] = {
   5043 		{ 108,  40,  10 },
   5044 		{  96,  44,  11 },
   5045 		{  72,  50,  13 },
   5046 		{  48,  57,  14 },
   5047 		{  36,  67,  16 },
   5048 		{  24,  80,  20 },
   5049 		{  22, 100,  25 },
   5050 		{  18, 133,  34 },
   5051 		{  12, 160,  40 },
   5052 		{  10, 200,  50 },
   5053 		{   6, 240,  58 },
   5054 		{   4, 267,  66 },
   5055 		{   2, 400, 100 },
   5056 		{   0, 500, 130 },
   5057 	};
   5058 	const HAL_RATE_TABLE *rt;
   5059 	int i, j;
   5060 
   5061 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
   5062 	rt = sc->sc_rates[mode];
   5063 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
   5064 	for (i = 0; i < rt->rateCount; i++)
   5065 		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
   5066 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
   5067 	for (i = 0; i < 32; i++) {
   5068 		u_int8_t ix = rt->rateCodeToIndex[i];
   5069 		if (ix == 0xff) {
   5070 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
   5071 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
   5072 			continue;
   5073 		}
   5074 		sc->sc_hwmap[i].ieeerate =
   5075 			rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
   5076 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
   5077 		if (rt->info[ix].shortPreamble ||
   5078 		    rt->info[ix].phy == IEEE80211_T_OFDM)
   5079 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
   5080 		/* NB: receive frames include FCS */
   5081 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
   5082 			IEEE80211_RADIOTAP_F_FCS;
   5083 		/* setup blink rate table to avoid per-packet lookup */
   5084 		for (j = 0; j < N(blinkrates)-1; j++)
   5085 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
   5086 				break;
   5087 		/* NB: this uses the last entry if the rate isn't found */
   5088 		/* XXX beware of overlow */
   5089 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
   5090 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
   5091 	}
   5092 	sc->sc_currates = rt;
   5093 	sc->sc_curmode = mode;
   5094 	/*
   5095 	 * All protection frames are transmited at 2Mb/s for
   5096 	 * 11g, otherwise at 1Mb/s.
   5097 	 */
   5098 	if (mode == IEEE80211_MODE_11G)
   5099 		sc->sc_protrix = ath_tx_findrix(rt, 2*2);
   5100 	else
   5101 		sc->sc_protrix = ath_tx_findrix(rt, 2*1);
   5102 	/* rate index used to send management frames */
   5103 	sc->sc_minrateix = 0;
   5104 	/*
   5105 	 * Setup multicast rate state.
   5106 	 */
   5107 	/* XXX layering violation */
   5108 	sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate);
   5109 	sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate;
   5110 	/* NB: caller is responsible for reseting rate control state */
   5111 #undef N
   5112 }
   5113 
   5114 #ifdef AR_DEBUG
   5115 static void
   5116 ath_printrxbuf(struct ath_buf *bf, int done)
   5117 {
   5118 	struct ath_desc *ds;
   5119 	int i;
   5120 
   5121 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
   5122 		printf("R%d (%p %" PRIx64
   5123 		    ") %08x %08x %08x %08x %08x %08x %c\n", i, ds,
   5124 		    (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
   5125 		    ds->ds_link, ds->ds_data,
   5126 		    ds->ds_ctl0, ds->ds_ctl1,
   5127 		    ds->ds_hw[0], ds->ds_hw[1],
   5128 		    !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
   5129 	}
   5130 }
   5131 
   5132 static void
   5133 ath_printtxbuf(struct ath_buf *bf, int done)
   5134 {
   5135 	struct ath_desc *ds;
   5136 	int i;
   5137 
   5138 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
   5139 		printf("T%d (%p %" PRIx64
   5140 		    ") %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
   5141 		    i, ds,
   5142 		    (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
   5143 		    ds->ds_link, ds->ds_data,
   5144 		    ds->ds_ctl0, ds->ds_ctl1,
   5145 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
   5146 		    !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
   5147 	}
   5148 }
   5149 #endif /* AR_DEBUG */
   5150 
   5151 static void
   5152 ath_watchdog(struct ifnet *ifp)
   5153 {
   5154 	struct ath_softc *sc = ifp->if_softc;
   5155 	struct ieee80211com *ic = &sc->sc_ic;
   5156 	struct ath_txq *axq;
   5157 	int i;
   5158 
   5159 	ifp->if_timer = 0;
   5160 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
   5161 		return;
   5162 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
   5163 		if (!ATH_TXQ_SETUP(sc, i))
   5164 			continue;
   5165 		axq = &sc->sc_txq[i];
   5166 		ATH_TXQ_LOCK(axq);
   5167 		if (axq->axq_timer == 0)
   5168 			;
   5169 		else if (--axq->axq_timer == 0) {
   5170 			ATH_TXQ_UNLOCK(axq);
   5171 			if_printf(ifp, "device timeout (txq %d)\n", i);
   5172 			ath_reset(ifp);
   5173 			ifp->if_oerrors++;
   5174 			sc->sc_stats.ast_watchdog++;
   5175 			break;
   5176 		} else
   5177 			ifp->if_timer = 1;
   5178 		ATH_TXQ_UNLOCK(axq);
   5179 	}
   5180 	ieee80211_watchdog(ic);
   5181 }
   5182 
   5183 /*
   5184  * Diagnostic interface to the HAL.  This is used by various
   5185  * tools to do things like retrieve register contents for
   5186  * debugging.  The mechanism is intentionally opaque so that
   5187  * it can change frequently w/o concern for compatiblity.
   5188  */
   5189 static int
   5190 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
   5191 {
   5192 	struct ath_hal *ah = sc->sc_ah;
   5193 	u_int id = ad->ad_id & ATH_DIAG_ID;
   5194 	void *indata = NULL;
   5195 	void *outdata = NULL;
   5196 	u_int32_t insize = ad->ad_in_size;
   5197 	u_int32_t outsize = ad->ad_out_size;
   5198 	int error = 0;
   5199 
   5200 	if (ad->ad_id & ATH_DIAG_IN) {
   5201 		/*
   5202 		 * Copy in data.
   5203 		 */
   5204 		indata = malloc(insize, M_TEMP, M_NOWAIT);
   5205 		if (indata == NULL) {
   5206 			error = ENOMEM;
   5207 			goto bad;
   5208 		}
   5209 		error = copyin(ad->ad_in_data, indata, insize);
   5210 		if (error)
   5211 			goto bad;
   5212 	}
   5213 	if (ad->ad_id & ATH_DIAG_DYN) {
   5214 		/*
   5215 		 * Allocate a buffer for the results (otherwise the HAL
   5216 		 * returns a pointer to a buffer where we can read the
   5217 		 * results).  Note that we depend on the HAL leaving this
   5218 		 * pointer for us to use below in reclaiming the buffer;
   5219 		 * may want to be more defensive.
   5220 		 */
   5221 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
   5222 		if (outdata == NULL) {
   5223 			error = ENOMEM;
   5224 			goto bad;
   5225 		}
   5226 	}
   5227 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
   5228 		if (outsize < ad->ad_out_size)
   5229 			ad->ad_out_size = outsize;
   5230 		if (outdata != NULL)
   5231 			error = copyout(outdata, ad->ad_out_data,
   5232 					ad->ad_out_size);
   5233 	} else {
   5234 		error = EINVAL;
   5235 	}
   5236 bad:
   5237 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
   5238 		free(indata, M_TEMP);
   5239 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
   5240 		free(outdata, M_TEMP);
   5241 	return error;
   5242 }
   5243 
   5244 static int
   5245 ath_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   5246 {
   5247 #define	IS_RUNNING(ifp) \
   5248 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
   5249 	struct ath_softc *sc = ifp->if_softc;
   5250 	struct ieee80211com *ic = &sc->sc_ic;
   5251 	struct ifreq *ifr = (struct ifreq *)data;
   5252 	int error = 0;
   5253 
   5254 	ATH_LOCK(sc);
   5255 	switch (cmd) {
   5256 	case SIOCSIFFLAGS:
   5257 		if (IS_RUNNING(ifp)) {
   5258 			/*
   5259 			 * To avoid rescanning another access point,
   5260 			 * do not call ath_init() here.  Instead,
   5261 			 * only reflect promisc mode settings.
   5262 			 */
   5263 			ath_mode_init(sc);
   5264 		} else if (ifp->if_flags & IFF_UP) {
   5265 			/*
   5266 			 * Beware of being called during attach/detach
   5267 			 * to reset promiscuous mode.  In that case we
   5268 			 * will still be marked UP but not RUNNING.
   5269 			 * However trying to re-init the interface
   5270 			 * is the wrong thing to do as we've already
   5271 			 * torn down much of our state.  There's
   5272 			 * probably a better way to deal with this.
   5273 			 */
   5274 			if (!sc->sc_invalid && ic->ic_bss != NULL)
   5275 				ath_init(sc);	/* XXX lose error */
   5276 		} else
   5277 			ath_stop_locked(ifp, 1);
   5278 		break;
   5279 	case SIOCADDMULTI:
   5280 	case SIOCDELMULTI:
   5281 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
   5282 			if (ifp->if_flags & IFF_RUNNING)
   5283 				ath_mode_init(sc);
   5284 			error = 0;
   5285 		}
   5286 		break;
   5287 	case SIOCGATHSTATS:
   5288 		/* NB: embed these numbers to get a consistent view */
   5289 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
   5290 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
   5291 		sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
   5292 		ATH_UNLOCK(sc);
   5293 		/*
   5294 		 * NB: Drop the softc lock in case of a page fault;
   5295 		 * we'll accept any potential inconsisentcy in the
   5296 		 * statistics.  The alternative is to copy the data
   5297 		 * to a local structure.
   5298 		 */
   5299 		return copyout(&sc->sc_stats,
   5300 				ifr->ifr_data, sizeof (sc->sc_stats));
   5301 	case SIOCGATHDIAG:
   5302 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
   5303 		break;
   5304 	default:
   5305 		error = ieee80211_ioctl(ic, cmd, data);
   5306 		if (error == ENETRESET) {
   5307 			if (IS_RUNNING(ifp) &&
   5308 			    ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
   5309 				ath_init(sc);	/* XXX lose error */
   5310 			error = 0;
   5311 		}
   5312 		if (error == ERESTART)
   5313 			error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0;
   5314 		break;
   5315 	}
   5316 	ATH_UNLOCK(sc);
   5317 	return error;
   5318 #undef IS_RUNNING
   5319 }
   5320 
   5321 #if NBPFILTER > 0
   5322 static void
   5323 ath_bpfattach(struct ath_softc *sc)
   5324 {
   5325 	struct ifnet *ifp = &sc->sc_if;
   5326 
   5327 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
   5328 		sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
   5329 		&sc->sc_drvbpf);
   5330 	/*
   5331 	 * Initialize constant fields.
   5332 	 * XXX make header lengths a multiple of 32-bits so subsequent
   5333 	 *     headers are properly aligned; this is a kludge to keep
   5334 	 *     certain applications happy.
   5335 	 *
   5336 	 * NB: the channel is setup each time we transition to the
   5337 	 *     RUN state to avoid filling it in for each frame.
   5338 	 */
   5339 	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
   5340 	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
   5341 	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
   5342 
   5343 	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
   5344 	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
   5345 	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
   5346 }
   5347 #endif
   5348 
   5349 /*
   5350  * Announce various information on device/driver attach.
   5351  */
   5352 static void
   5353 ath_announce(struct ath_softc *sc)
   5354 {
   5355 #define	HAL_MODE_DUALBAND	(HAL_MODE_11A|HAL_MODE_11B)
   5356 	struct ifnet *ifp = &sc->sc_if;
   5357 	struct ath_hal *ah = sc->sc_ah;
   5358 	u_int modes, cc;
   5359 
   5360 	if_printf(ifp, "mac %d.%d phy %d.%d",
   5361 		ah->ah_macVersion, ah->ah_macRev,
   5362 		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
   5363 	/*
   5364 	 * Print radio revision(s).  We check the wireless modes
   5365 	 * to avoid falsely printing revs for inoperable parts.
   5366 	 * Dual-band radio revs are returned in the 5 GHz rev number.
   5367 	 */
   5368 	ath_hal_getcountrycode(ah, &cc);
   5369 	modes = ath_hal_getwirelessmodes(ah, cc);
   5370 	if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
   5371 		if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
   5372 			printf(" 5 GHz radio %d.%d 2 GHz radio %d.%d",
   5373 				ah->ah_analog5GhzRev >> 4,
   5374 				ah->ah_analog5GhzRev & 0xf,
   5375 				ah->ah_analog2GhzRev >> 4,
   5376 				ah->ah_analog2GhzRev & 0xf);
   5377 		else
   5378 			printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
   5379 				ah->ah_analog5GhzRev & 0xf);
   5380 	} else
   5381 		printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
   5382 			ah->ah_analog5GhzRev & 0xf);
   5383 	printf("\n");
   5384 	if (bootverbose) {
   5385 		int i;
   5386 		for (i = 0; i <= WME_AC_VO; i++) {
   5387 			struct ath_txq *txq = sc->sc_ac2q[i];
   5388 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
   5389 				txq->axq_qnum, ieee80211_wme_acnames[i]);
   5390 		}
   5391 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
   5392 			sc->sc_cabq->axq_qnum);
   5393 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
   5394 	}
   5395 	if (ath_rxbuf != ATH_RXBUF)
   5396 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
   5397 	if (ath_txbuf != ATH_TXBUF)
   5398 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
   5399 #undef HAL_MODE_DUALBAND
   5400 }
   5401