ath.c revision 1.9 1 /* $NetBSD: ath.c,v 1.9 2003/10/15 23:23:39 itojun Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2003 Sam Leffler, Errno Consulting
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15 * redistribution must be conditioned upon including a substantially
16 * similar Disclaimer requirement for further binary redistribution.
17 * 3. Neither the names of the above-listed copyright holders nor the names
18 * of any contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * Alternatively, this software may be distributed under the terms of the
22 * GNU General Public License ("GPL") version 2 as published by the Free
23 * Software Foundation.
24 *
25 * NO WARRANTY
26 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
28 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
29 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
30 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
31 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
34 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
36 * THE POSSIBILITY OF SUCH DAMAGES.
37 */
38
39 #include <sys/cdefs.h>
40 #ifdef __FreeBSD__
41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.14 2003/09/05 22:22:49 sam Exp $");
42 #endif
43 #ifdef __NetBSD__
44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.9 2003/10/15 23:23:39 itojun Exp $");
45 #endif
46
47 /*
48 * Driver for the Atheros Wireless LAN controller.
49 *
50 * This software is derived from work of Atsushi Onoe; his contribution
51 * is greatly appreciated.
52 */
53
54 #include "opt_inet.h"
55
56 #ifdef __NetBSD__
57 #include "bpfilter.h"
58 #endif /* __NetBSD__ */
59
60 #include <sys/param.h>
61 #include <sys/systm.h>
62 #include <sys/types.h>
63 #include <sys/sysctl.h>
64 #include <sys/mbuf.h>
65 #include <sys/malloc.h>
66 #include <sys/lock.h>
67 #ifdef __FreeBSD__
68 #include <sys/mutex.h>
69 #endif
70 #include <sys/kernel.h>
71 #include <sys/socket.h>
72 #include <sys/sockio.h>
73 #include <sys/errno.h>
74 #include <sys/callout.h>
75 #ifdef __FreeBSD__
76 #include <sys/bus.h>
77 #else
78 #include <machine/bus.h>
79 #endif
80 #include <sys/endian.h>
81
82 #include <machine/bus.h>
83
84 #include <net/if.h>
85 #include <net/if_dl.h>
86 #include <net/if_media.h>
87 #include <net/if_arp.h>
88 #ifdef __FreeBSD__
89 #include <net/ethernet.h>
90 #else
91 #include <net/if_ether.h>
92 #endif
93 #include <net/if_llc.h>
94
95 #include <net80211/ieee80211_var.h>
96 #include <net80211/ieee80211_compat.h>
97
98 #if NBPFILTER > 0
99 #include <net/bpf.h>
100 #endif
101
102 #ifdef INET
103 #include <netinet/in.h>
104 #endif
105
106 #include <dev/ic/athcompat.h>
107
108 #define AR_DEBUG
109 #ifdef __FreeBSD__
110 #include <dev/ath/if_athvar.h>
111 #include <contrib/dev/ath/ah_desc.h>
112 #else
113 #include <dev/ic/athvar.h>
114 #include <../contrib/sys/dev/ic/athhal_desc.h>
115 #endif
116
117 /* unalligned little endian access */
118 #define LE_READ_2(p) \
119 ((u_int16_t) \
120 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8)))
121 #define LE_READ_4(p) \
122 ((u_int32_t) \
123 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \
124 (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
125
126 #ifdef __FreeBSD__
127 static void ath_init(void *);
128 #else
129 static int ath_init(struct ifnet *);
130 #endif
131 static int ath_init1(struct ath_softc *);
132 static int ath_intr1(struct ath_softc *);
133 static void ath_stop(struct ifnet *);
134 static void ath_start(struct ifnet *);
135 static void ath_reset(struct ath_softc *);
136 static int ath_media_change(struct ifnet *);
137 static void ath_watchdog(struct ifnet *);
138 static int ath_ioctl(struct ifnet *, u_long, caddr_t);
139 static void ath_fatal_proc(void *, int);
140 static void ath_rxorn_proc(void *, int);
141 static void ath_bmiss_proc(void *, int);
142 static void ath_initkeytable(struct ath_softc *);
143 static void ath_mode_init(struct ath_softc *);
144 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
145 static void ath_beacon_proc(void *, int);
146 static void ath_beacon_free(struct ath_softc *);
147 static void ath_beacon_config(struct ath_softc *);
148 static int ath_desc_alloc(struct ath_softc *);
149 static void ath_desc_free(struct ath_softc *);
150 static struct ieee80211_node *ath_node_alloc(struct ieee80211com *);
151 static void ath_node_free(struct ieee80211com *, struct ieee80211_node *);
152 static void ath_node_copy(struct ieee80211com *,
153 struct ieee80211_node *, const struct ieee80211_node *);
154 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
155 static void ath_rx_proc(void *, int);
156 static int ath_tx_start(struct ath_softc *, struct ieee80211_node *,
157 struct ath_buf *, struct mbuf *);
158 static void ath_tx_proc(void *, int);
159 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
160 static void ath_draintxq(struct ath_softc *);
161 static void ath_stoprecv(struct ath_softc *);
162 static int ath_startrecv(struct ath_softc *);
163 static void ath_next_scan(void *);
164 static void ath_calibrate(void *);
165 static int ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
166 static void ath_newassoc(struct ieee80211com *,
167 struct ieee80211_node *, int);
168 static int ath_getchannels(struct ath_softc *, u_int cc, HAL_BOOL outdoor);
169
170 static int ath_rate_setup(struct ath_softc *sc, u_int mode);
171 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
172 static void ath_rate_ctl_reset(struct ath_softc *, enum ieee80211_state);
173 static void ath_rate_ctl(void *, struct ieee80211_node *);
174
175 #ifdef __NetBSD__
176 int ath_enable(struct ath_softc *);
177 void ath_disable(struct ath_softc *);
178 void ath_power(int, void *);
179 #endif
180
181 #ifdef __FreeBSD__
182 SYSCTL_DECL(_hw_ath);
183 /* XXX validate sysctl values */
184 SYSCTL_INT(_hw_ath, OID_AUTO, dwell, CTLFLAG_RW, &ath_dwelltime,
185 0, "channel dwell time (ms) for AP/station scanning");
186 SYSCTL_INT(_hw_ath, OID_AUTO, calibrate, CTLFLAG_RW, &ath_calinterval,
187 0, "chip calibration interval (secs)");
188 SYSCTL_INT(_hw_ath, OID_AUTO, outdoor, CTLFLAG_RD, &ath_outdoor,
189 0, "enable/disable outdoor operation");
190 SYSCTL_INT(_hw_ath, OID_AUTO, countrycode, CTLFLAG_RD, &ath_countrycode,
191 0, "country code");
192 SYSCTL_INT(_hw_ath, OID_AUTO, regdomain, CTLFLAG_RD, &ath_regdomain,
193 0, "regulatory domain");
194 #endif /* __FreeBSD__ */
195
196 static int ath_dwelltime = 200; /* 5 channels/second */
197 static int ath_calinterval = 30; /* calibrate every 30 secs */
198 static int ath_outdoor = AH_TRUE; /* outdoor operation */
199 static int ath_countrycode = CTRY_DEFAULT; /* country code */
200 static int ath_regdomain = 0; /* regulatory domain */
201
202 #ifdef AR_DEBUG
203 int ath_debug = 0;
204 #ifdef __FreeBSD__
205 SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
206 0, "control debugging printfs");
207 #endif /* __FreeBSD__ */
208 #define IFF_DUMPPKTS(_ifp) \
209 (ath_debug || \
210 ((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
211 static void ath_printrxbuf(struct ath_buf *bf, int);
212 static void ath_printtxbuf(struct ath_buf *bf, int);
213 #define DPRINTF(X) if (ath_debug) printf X
214 #define DPRINTF2(X) if (ath_debug > 1) printf X
215 #else
216 #define IFF_DUMPPKTS(_ifp) \
217 (((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
218 #define DPRINTF(X)
219 #define DPRINTF2(X)
220 #endif
221
222 #ifdef __NetBSD__
223 int
224 ath_activate(struct device *self, enum devact act)
225 {
226 struct ath_softc *sc = (struct ath_softc *)self;
227 int rv = 0, s;
228
229 s = splnet();
230 switch (act) {
231 case DVACT_ACTIVATE:
232 rv = EOPNOTSUPP;
233 break;
234 case DVACT_DEACTIVATE:
235 if_deactivate(&sc->sc_ic.ic_if);
236 break;
237 }
238 splx(s);
239 return rv;
240 }
241
242 int
243 ath_enable(struct ath_softc *sc)
244 {
245 if (ATH_IS_ENABLED(sc) == 0) {
246 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
247 printf("%s: device enable failed\n",
248 sc->sc_dev.dv_xname);
249 return (EIO);
250 }
251 sc->sc_flags |= ATH_ENABLED;
252 }
253 return (0);
254 }
255
256 void
257 ath_disable(struct ath_softc *sc)
258 {
259 if (!ATH_IS_ENABLED(sc))
260 return;
261 if (sc->sc_disable != NULL)
262 (*sc->sc_disable)(sc);
263 sc->sc_flags &= ~ATH_ENABLED;
264 }
265 #endif /* #ifdef __NetBSD__ */
266
267 int
268 ath_attach(u_int16_t devid, struct ath_softc *sc)
269 {
270 struct ieee80211com *ic = &sc->sc_ic;
271 struct ifnet *ifp = &ic->ic_if;
272 struct ath_hal *ah;
273 HAL_STATUS status;
274 int error = 0;
275
276 DPRINTF(("ath_attach: devid 0x%x\n", devid));
277
278 #ifdef __FreeBSD__
279 /* set these up early for if_printf use */
280 ifp->if_unit = device_get_unit(sc->sc_dev);
281 ifp->if_name = "ath";
282 #else
283 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
284 #endif
285
286 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
287 if (ah == NULL) {
288 if_printf(ifp, "unable to attach hardware; HAL status %u\n",
289 status);
290 error = ENXIO;
291 goto bad;
292 }
293 sc->sc_ah = ah;
294 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */
295
296 /*
297 * Collect the channel list using the default country
298 * code and including outdoor channels. The 802.11 layer
299 * is resposible for filtering this list based on settings
300 * like the phy mode.
301 */
302 error = ath_getchannels(sc, ath_countrycode, ath_outdoor);
303 if (error != 0)
304 goto bad;
305 /*
306 * Copy these back; they are set as a side effect
307 * of constructing the channel list.
308 */
309 ath_regdomain = ath_hal_getregdomain(ah);
310 ath_countrycode = ath_hal_getcountrycode(ah);
311
312 /*
313 * Setup rate tables for all potential media types.
314 */
315 ath_rate_setup(sc, IEEE80211_MODE_11A);
316 ath_rate_setup(sc, IEEE80211_MODE_11B);
317 ath_rate_setup(sc, IEEE80211_MODE_11G);
318 ath_rate_setup(sc, IEEE80211_MODE_TURBO);
319
320 error = ath_desc_alloc(sc);
321 if (error != 0) {
322 if_printf(ifp, "failed to allocate descriptors: %d\n", error);
323 goto bad;
324 }
325 ATH_CALLOUT_INIT(&sc->sc_scan_ch);
326 ATH_CALLOUT_INIT(&sc->sc_cal_ch);
327
328 #ifdef __FreeBSD__
329 mtx_init(&sc->sc_txbuflock,
330 device_get_nameunit(sc->sc_dev), "xmit buf q", MTX_DEF);
331 mtx_init(&sc->sc_txqlock,
332 device_get_nameunit(sc->sc_dev), "xmit q", MTX_DEF);
333 #endif
334
335 ATH_TASK_INIT(&sc->sc_txtask, ath_tx_proc, sc);
336 ATH_TASK_INIT(&sc->sc_rxtask, ath_rx_proc, sc);
337 ATH_TASK_INIT(&sc->sc_swbatask, ath_beacon_proc, sc);
338 ATH_TASK_INIT(&sc->sc_rxorntask, ath_rxorn_proc, sc);
339 ATH_TASK_INIT(&sc->sc_fataltask, ath_fatal_proc, sc);
340 ATH_TASK_INIT(&sc->sc_bmisstask, ath_bmiss_proc, sc);
341
342 /*
343 * For now just pre-allocate one data queue and one
344 * beacon queue. Note that the HAL handles resetting
345 * them at the needed time. Eventually we'll want to
346 * allocate more tx queues for splitting management
347 * frames and for QOS support.
348 */
349 sc->sc_txhalq = ath_hal_setuptxqueue(ah,
350 HAL_TX_QUEUE_DATA,
351 AH_TRUE /* enable interrupts */
352 );
353 if (sc->sc_txhalq == (u_int) -1) {
354 if_printf(ifp, "unable to setup a data xmit queue!\n");
355 goto bad;
356 }
357 sc->sc_bhalq = ath_hal_setuptxqueue(ah,
358 HAL_TX_QUEUE_BEACON,
359 AH_TRUE /* enable interrupts */
360 );
361 if (sc->sc_bhalq == (u_int) -1) {
362 if_printf(ifp, "unable to setup a beacon xmit queue!\n");
363 goto bad;
364 }
365
366 ifp->if_softc = sc;
367 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
368 ifp->if_start = ath_start;
369 ifp->if_watchdog = ath_watchdog;
370 ifp->if_ioctl = ath_ioctl;
371 ifp->if_init = ath_init;
372 #ifdef __FreeBSD__
373 ifp->if_snd.ifq_maxlen = IFQ_MAXLEN;
374 #else
375 #if 0
376 ifp->if_stop = ath_stop; /* XXX */
377 #endif
378 IFQ_SET_READY(&ifp->if_snd);
379 #endif
380
381 ic->ic_softc = sc;
382 ic->ic_newassoc = ath_newassoc;
383 /* XXX not right but it's not used anywhere important */
384 ic->ic_phytype = IEEE80211_T_OFDM;
385 ic->ic_opmode = IEEE80211_M_STA;
386 ic->ic_caps = IEEE80211_C_WEP | IEEE80211_C_IBSS | IEEE80211_C_HOSTAP
387 | IEEE80211_C_MONITOR;
388 /* NB: 11g support is identified when we fetch the channel set */
389 if (sc->sc_have11g)
390 ic->ic_caps |= IEEE80211_C_SHPREAMBLE;
391
392 /* get mac address from hardware */
393 ath_hal_getmac(ah, ic->ic_myaddr);
394
395 #ifdef __NetBSD__
396 if_attach(ifp);
397 #endif
398 /* call MI attach routine. */
399 ieee80211_ifattach(ifp);
400 /* override default methods */
401 ic->ic_node_alloc = ath_node_alloc;
402 ic->ic_node_free = ath_node_free;
403 ic->ic_node_copy = ath_node_copy;
404 sc->sc_newstate = ic->ic_newstate;
405 ic->ic_newstate = ath_newstate;
406 /* complete initialization */
407 ieee80211_media_init(ifp, ath_media_change, ieee80211_media_status);
408
409 #if NBPFILTER > 0
410 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
411 sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
412 &sc->sc_drvbpf);
413 #endif
414 /*
415 * Initialize constant fields.
416 *
417 * NB: the channel is setup each time we transition to the
418 * RUN state to avoid filling it in for each frame.
419 */
420 sc->sc_tx_th.wt_ihdr.it_len = sizeof(sc->sc_tx_th);
421 sc->sc_tx_th.wt_ihdr.it_present = ATH_TX_RADIOTAP_PRESENT;
422
423 sc->sc_rx_th.wr_ihdr.it_len = sizeof(sc->sc_rx_th);
424 sc->sc_rx_th.wr_ihdr.it_present = ATH_RX_RADIOTAP_PRESENT;
425
426 if_printf(ifp, "802.11 address: %s\n", ether_sprintf(ic->ic_myaddr));
427
428 #ifdef __NetBSD__
429 sc->sc_flags |= ATH_ATTACHED;
430 /*
431 * Make sure the interface is shutdown during reboot.
432 */
433 #if 0
434 sc->sc_sdhook = shutdownhook_establish(ath_shutdown, sc);
435 if (sc->sc_sdhook == NULL)
436 printf("%s: WARNING: unable to establish shutdown hook\n",
437 sc->sc_dev.dv_xname);
438 #endif
439 sc->sc_powerhook = powerhook_establish(ath_power, sc);
440 if (sc->sc_powerhook == NULL)
441 printf("%s: WARNING: unable to establish power hook\n",
442 sc->sc_dev.dv_xname);
443 #endif
444 return 0;
445 bad:
446 if (ah)
447 ath_hal_detach(ah);
448 sc->sc_invalid = 1;
449 return error;
450 }
451
452 int
453 ath_detach(struct ath_softc *sc)
454 {
455 struct ifnet *ifp = &sc->sc_ic.ic_if;
456 ath_softc_critsect_decl(s);
457
458 DPRINTF(("ath_detach: if_flags %x\n", ifp->if_flags));
459 if ((sc->sc_flags & ATH_ATTACHED) == 0)
460 return (0);
461
462 ath_softc_critsect_begin(sc, s);
463 ath_stop(ifp);
464 #if NBPFILTER > 0
465 bpfdetach(ifp);
466 #endif
467 ath_desc_free(sc);
468 ath_hal_detach(sc->sc_ah);
469 ieee80211_ifdetach(ifp);
470 #ifdef __NetBSD__
471 if_detach(ifp);
472 #endif
473 ath_softc_critsect_end(sc, s);
474 return 0;
475 }
476
477 void
478 ath_power(int why, void *arg)
479 {
480 struct ath_softc *sc = arg;
481 int s;
482
483 DPRINTF(("ath_power(%d)\n", why));
484
485 s = splnet();
486 switch (why) {
487 case PWR_SUSPEND:
488 case PWR_STANDBY:
489 ath_suspend(sc, why);
490 break;
491 case PWR_RESUME:
492 ath_resume(sc, why);
493 break;
494 case PWR_SOFTSUSPEND:
495 case PWR_SOFTSTANDBY:
496 case PWR_SOFTRESUME:
497 break;
498 }
499 splx(s);
500 }
501
502 void
503 ath_suspend(struct ath_softc *sc, int why)
504 {
505 struct ifnet *ifp = &sc->sc_ic.ic_if;
506
507 DPRINTF(("ath_suspend: if_flags %x\n", ifp->if_flags));
508
509 ath_stop(ifp);
510 if (sc->sc_power != NULL)
511 (*sc->sc_power)(sc, why);
512 }
513
514 void
515 ath_resume(struct ath_softc *sc, int why)
516 {
517 struct ifnet *ifp = &sc->sc_ic.ic_if;
518
519 DPRINTF(("ath_resume: if_flags %x\n", ifp->if_flags));
520
521 if (ifp->if_flags & IFF_UP) {
522 ath_init(ifp);
523 #if 0
524 (void)ath_intr(sc);
525 #endif
526 if (sc->sc_power != NULL)
527 (*sc->sc_power)(sc, why);
528 if (ifp->if_flags & IFF_RUNNING)
529 ath_start(ifp);
530 }
531 }
532
533 void
534 ath_shutdown(struct ath_softc *sc)
535 {
536 #if 1
537 return;
538 #else
539 struct ifnet *ifp = &sc->sc_ic.ic_if;
540
541 DPRINTF(("ath_shutdown: if_flags %x\n", ifp->if_flags));
542
543 ath_stop(ifp);
544 #endif
545 }
546
547 #ifdef __NetBSD__
548 int
549 ath_intr(void *arg)
550 {
551 return ath_intr1((struct ath_softc *)arg);
552 }
553 #else
554 void
555 ath_intr(void *arg)
556 {
557 (void)ath_intr1((struct ath_softc *)arg);
558 }
559 #endif
560
561 static int
562 ath_intr1(struct ath_softc *sc)
563 {
564 struct ieee80211com *ic = &sc->sc_ic;
565 struct ifnet *ifp = &ic->ic_if;
566 struct ath_hal *ah = sc->sc_ah;
567 HAL_INT status;
568
569 if (sc->sc_invalid) {
570 /*
571 * The hardware is not ready/present, don't touch anything.
572 * Note this can happen early on if the IRQ is shared.
573 */
574 DPRINTF(("ath_intr: invalid; ignored\n"));
575 return 0;
576 }
577 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
578 DPRINTF(("ath_intr: if_flags 0x%x\n", ifp->if_flags));
579 ath_hal_getisr(ah, &status); /* clear ISR */
580 ath_hal_intrset(ah, 0); /* disable further intr's */
581 return 1; /* XXX */
582 }
583 ath_hal_getisr(ah, &status); /* NB: clears ISR too */
584 DPRINTF2(("ath_intr: status 0x%x\n", status));
585 #ifdef AR_DEBUG
586 if (ath_debug &&
587 (status & (HAL_INT_FATAL|HAL_INT_RXORN|HAL_INT_BMISS))) {
588 if_printf(ifp, "ath_intr: status 0x%x\n", status);
589 ath_hal_dumpstate(ah);
590 }
591 #endif /* AR_DEBUG */
592 if (status & HAL_INT_FATAL) {
593 sc->sc_stats.ast_hardware++;
594 ath_hal_intrset(ah, 0); /* disable intr's until reset */
595 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
596 } else if (status & HAL_INT_RXORN) {
597 sc->sc_stats.ast_rxorn++;
598 ath_hal_intrset(ah, 0); /* disable intr's until reset */
599 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
600 } else {
601 if (status & HAL_INT_RXEOL) {
602 /*
603 * NB: the hardware should re-read the link when
604 * RXE bit is written, but it doesn't work at
605 * least on older hardware revs.
606 */
607 sc->sc_stats.ast_rxeol++;
608 sc->sc_rxlink = NULL;
609 }
610 if (status & HAL_INT_TXURN) {
611 sc->sc_stats.ast_txurn++;
612 /* bump tx trigger level */
613 ath_hal_updatetxtriglevel(ah, AH_TRUE);
614 }
615 if (status & HAL_INT_RX)
616 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
617 if (status & HAL_INT_TX)
618 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
619 if (status & HAL_INT_SWBA)
620 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_swbatask);
621 if (status & HAL_INT_BMISS) {
622 sc->sc_stats.ast_bmiss++;
623 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
624 }
625 }
626 return 1;
627 }
628
629 static void
630 ath_fatal_proc(void *arg, int pending)
631 {
632 struct ath_softc *sc = arg;
633
634 device_printf(sc->sc_dev, "hardware error; resetting\n");
635 ath_reset(sc);
636 }
637
638 static void
639 ath_rxorn_proc(void *arg, int pending)
640 {
641 struct ath_softc *sc = arg;
642
643 device_printf(sc->sc_dev, "rx FIFO overrun; resetting\n");
644 ath_reset(sc);
645 }
646
647 static void
648 ath_bmiss_proc(void *arg, int pending)
649 {
650 struct ath_softc *sc = arg;
651 struct ieee80211com *ic = &sc->sc_ic;
652
653 DPRINTF(("ath_bmiss_proc: pending %u\n", pending));
654 KASSERT(ic->ic_opmode == IEEE80211_M_STA,
655 ("unexpect operating mode %u", ic->ic_opmode));
656 if (ic->ic_state == IEEE80211_S_RUN)
657 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
658 }
659
660 static u_int
661 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
662 {
663 enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
664
665 switch (mode) {
666 case IEEE80211_MODE_AUTO:
667 return 0;
668 case IEEE80211_MODE_11A:
669 return CHANNEL_A;
670 case IEEE80211_MODE_11B:
671 return CHANNEL_B;
672 case IEEE80211_MODE_11G:
673 return CHANNEL_PUREG;
674 case IEEE80211_MODE_TURBO:
675 return CHANNEL_T;
676 default:
677 panic("%s: unsupported mode %d\n", __func__, mode);
678 return 0;
679 }
680 }
681
682 #ifdef __NetBSD__
683 static int
684 ath_init(struct ifnet *ifp)
685 {
686 return ath_init1((struct ath_softc *)ifp->if_softc);
687 }
688 #else
689 static void
690 ath_init(void *arg)
691 {
692 (void)ath_init1((struct ath_softc *)arg);
693 }
694 #endif
695
696 static int
697 ath_init1(struct ath_softc *sc)
698 {
699 struct ieee80211com *ic = &sc->sc_ic;
700 struct ifnet *ifp = &ic->ic_if;
701 struct ieee80211_node *ni;
702 enum ieee80211_phymode mode;
703 struct ath_hal *ah = sc->sc_ah;
704 HAL_STATUS status;
705 HAL_CHANNEL hchan;
706 int error = 0;
707 ath_softc_critsect_decl(s);
708
709 DPRINTF(("ath_init: if_flags 0x%x\n", ifp->if_flags));
710
711 #ifdef __NetBSD__
712 if ((error = ath_enable(sc)) != 0)
713 return error;
714 #endif
715
716 ath_softc_critsect_begin(sc, s);
717 /*
718 * Stop anything previously setup. This is safe
719 * whether this is the first time through or not.
720 */
721 ath_stop(ifp);
722
723 /*
724 * The basic interface to setting the hardware in a good
725 * state is ``reset''. On return the hardware is known to
726 * be powered up and with interrupts disabled. This must
727 * be followed by initialization of the appropriate bits
728 * and then setup of the interrupt mask.
729 */
730 hchan.channel = ic->ic_ibss_chan->ic_freq;
731 hchan.channelFlags = ath_chan2flags(ic, ic->ic_ibss_chan);
732 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_FALSE, &status)) {
733 if_printf(ifp, "unable to reset hardware; hal status %u\n",
734 status);
735 error = -1;
736 goto done;
737 }
738
739 /*
740 * Setup the hardware after reset: the key cache
741 * is filled as needed and the receive engine is
742 * set going. Frame transmit is handled entirely
743 * in the frame output path; there's nothing to do
744 * here except setup the interrupt mask.
745 */
746 if (ic->ic_flags & IEEE80211_F_WEPON)
747 ath_initkeytable(sc);
748 if ((error = ath_startrecv(sc)) != 0) {
749 if_printf(ifp, "unable to start recv logic\n");
750 goto done;
751 }
752
753 /*
754 * Enable interrupts.
755 */
756 sc->sc_imask = HAL_INT_RX | HAL_INT_TX
757 | HAL_INT_RXEOL | HAL_INT_RXORN
758 | HAL_INT_FATAL | HAL_INT_GLOBAL;
759 ath_hal_intrset(ah, sc->sc_imask);
760
761 ifp->if_flags |= IFF_RUNNING;
762 ic->ic_state = IEEE80211_S_INIT;
763
764 /*
765 * The hardware should be ready to go now so it's safe
766 * to kick the 802.11 state machine as it's likely to
767 * immediately call back to us to send mgmt frames.
768 */
769 ni = ic->ic_bss;
770 ni->ni_chan = ic->ic_ibss_chan;
771 mode = ieee80211_chan2mode(ic, ni->ni_chan);
772 if (mode != sc->sc_curmode)
773 ath_setcurmode(sc, mode);
774 if (ic->ic_opmode != IEEE80211_M_MONITOR)
775 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
776 else
777 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
778 done:
779 ath_softc_critsect_end(sc, s);
780 return error;
781 }
782
783 static void
784 ath_stop(struct ifnet *ifp)
785 {
786 struct ieee80211com *ic = (struct ieee80211com *) ifp;
787 struct ath_softc *sc = ifp->if_softc;
788 struct ath_hal *ah = sc->sc_ah;
789 ath_softc_critsect_decl(s);
790
791 DPRINTF(("ath_stop: invalid %u if_flags 0x%x\n",
792 sc->sc_invalid, ifp->if_flags));
793
794 ath_softc_critsect_begin(sc, s);
795 if (ifp->if_flags & IFF_RUNNING) {
796 /*
797 * Shutdown the hardware and driver:
798 * disable interrupts
799 * turn off timers
800 * clear transmit machinery
801 * clear receive machinery
802 * drain and release tx queues
803 * reclaim beacon resources
804 * reset 802.11 state machine
805 * power down hardware
806 *
807 * Note that some of this work is not possible if the
808 * hardware is gone (invalid).
809 */
810 ifp->if_flags &= ~IFF_RUNNING;
811 ifp->if_timer = 0;
812 if (!sc->sc_invalid)
813 ath_hal_intrset(ah, 0);
814 ath_draintxq(sc);
815 if (!sc->sc_invalid)
816 ath_stoprecv(sc);
817 else
818 sc->sc_rxlink = NULL;
819 #ifdef __FreeBSD__
820 IF_DRAIN(&ifp->if_snd);
821 #else
822 IF_PURGE(&ifp->if_snd);
823 #endif
824 ath_beacon_free(sc);
825 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
826 if (!sc->sc_invalid) {
827 ath_hal_setpower(ah, HAL_PM_FULL_SLEEP, 0);
828 }
829 #ifdef __NetBSD__
830 ath_disable(sc);
831 #endif
832 }
833 ath_softc_critsect_end(sc, s);
834 }
835
836 /*
837 * Reset the hardware w/o losing operational state. This is
838 * basically a more efficient way of doing ath_stop, ath_init,
839 * followed by state transitions to the current 802.11
840 * operational state. Used to recover from errors rx overrun
841 * and to reset the hardware when rf gain settings must be reset.
842 */
843 static void
844 ath_reset(struct ath_softc *sc)
845 {
846 struct ieee80211com *ic = &sc->sc_ic;
847 struct ifnet *ifp = &ic->ic_if;
848 struct ath_hal *ah = sc->sc_ah;
849 struct ieee80211_channel *c;
850 HAL_STATUS status;
851 HAL_CHANNEL hchan;
852
853 /*
854 * Convert to a HAL channel description with the flags
855 * constrained to reflect the current operating mode.
856 */
857 c = ic->ic_ibss_chan;
858 hchan.channel = c->ic_freq;
859 hchan.channelFlags = ath_chan2flags(ic, c);
860
861 ath_hal_intrset(ah, 0); /* disable interrupts */
862 ath_draintxq(sc); /* stop xmit side */
863 ath_stoprecv(sc); /* stop recv side */
864 /* NB: indicate channel change so we do a full reset */
865 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status))
866 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
867 __func__, status);
868 ath_hal_intrset(ah, sc->sc_imask);
869 if (ath_startrecv(sc) != 0) /* restart recv */
870 if_printf(ifp, "%s: unable to start recv logic\n", __func__);
871 ath_start(ifp); /* restart xmit */
872 if (ic->ic_state == IEEE80211_S_RUN)
873 ath_beacon_config(sc); /* restart beacons */
874 }
875
876 static void
877 ath_start(struct ifnet *ifp)
878 {
879 struct ath_softc *sc = ifp->if_softc;
880 struct ath_hal *ah = sc->sc_ah;
881 struct ieee80211com *ic = &sc->sc_ic;
882 struct ieee80211_node *ni;
883 struct ath_buf *bf;
884 struct mbuf *m;
885 struct ieee80211_frame *wh;
886 ath_txbuf_critsect_decl(s);
887
888 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
889 return;
890 for (;;) {
891 /*
892 * Grab a TX buffer and associated resources.
893 */
894 ath_txbuf_critsect_begin(sc, s);
895 bf = TAILQ_FIRST(&sc->sc_txbuf);
896 if (bf != NULL)
897 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
898 ath_txbuf_critsect_end(sc, s);
899 if (bf == NULL) {
900 DPRINTF(("ath_start: out of xmit buffers\n"));
901 sc->sc_stats.ast_tx_qstop++;
902 ifp->if_flags |= IFF_OACTIVE;
903 break;
904 }
905 /*
906 * Poll the management queue for frames; they
907 * have priority over normal data frames.
908 */
909 IF_DEQUEUE(&ic->ic_mgtq, m);
910 if (m == NULL) {
911 /*
912 * No data frames go out unless we're associated.
913 */
914 if (ic->ic_state != IEEE80211_S_RUN) {
915 DPRINTF(("ath_start: ignore data packet, "
916 "state %u\n", ic->ic_state));
917 sc->sc_stats.ast_tx_discard++;
918 ath_txbuf_critsect_begin(sc, s);
919 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
920 ath_txbuf_critsect_end(sc, s);
921 break;
922 }
923 IF_DEQUEUE(&ifp->if_snd, m);
924 if (m == NULL) {
925 ath_txbuf_critsect_begin(sc, s);
926 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
927 ath_txbuf_critsect_end(sc, s);
928 break;
929 }
930 ifp->if_opackets++;
931
932 #ifdef __NetBSD__
933 #if NBPFILTER > 0
934 if (ifp->if_bpf)
935 bpf_mtap(ifp->if_bpf, m);
936 #endif
937 #endif
938 #ifdef __FreeBSD__
939 BPF_MTAP(ifp, m);
940 #endif
941 /*
942 * Encapsulate the packet in prep for transmission.
943 */
944 m = ieee80211_encap(ifp, m, &ni);
945 if (m == NULL) {
946 DPRINTF(("ath_start: encapsulation failure\n"));
947 sc->sc_stats.ast_tx_encap++;
948 goto bad;
949 }
950 wh = mtod(m, struct ieee80211_frame *);
951 if (ic->ic_flags & IEEE80211_F_WEPON)
952 wh->i_fc[1] |= IEEE80211_FC1_WEP;
953 } else {
954 /*
955 * Hack! The referenced node pointer is in the
956 * rcvif field of the packet header. This is
957 * placed there by ieee80211_mgmt_output because
958 * we need to hold the reference with the frame
959 * and there's no other way (other than packet
960 * tags which we consider too expensive to use)
961 * to pass it along.
962 */
963 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
964 m->m_pkthdr.rcvif = NULL;
965
966 wh = mtod(m, struct ieee80211_frame *);
967 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
968 IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
969 /* fill time stamp */
970 u_int64_t tsf;
971 u_int32_t *tstamp;
972
973 tsf = ath_hal_gettsf64(ah);
974 /* XXX: adjust 100us delay to xmit */
975 tsf += 100;
976 tstamp = (u_int32_t *)&wh[1];
977 tstamp[0] = htole32(tsf & 0xffffffff);
978 tstamp[1] = htole32(tsf >> 32);
979 }
980 sc->sc_stats.ast_tx_mgmt++;
981 }
982 #if NBPFILTER > 0
983 if (ic->ic_rawbpf)
984 bpf_mtap(ic->ic_rawbpf, m);
985 #endif
986
987 #if NBPFILTER > 0
988 if (sc->sc_drvbpf) {
989 #ifdef __FreeBSD__
990 struct mbuf *mb;
991
992 MGETHDR(mb, M_DONTWAIT, m->m_type);
993 if (mb != NULL) {
994 sc->sc_tx_th.wt_rate =
995 ni->ni_rates.rs_rates[ni->ni_txrate];
996
997 mb->m_next = m;
998 mb->m_data = (caddr_t)&sc->sc_tx_th;
999 mb->m_len = sizeof(sc->sc_tx_th);
1000 mb->m_pkthdr.len += mb->m_len;
1001 bpf_mtap(sc->sc_drvbpf, mb);
1002 m_free(mb);
1003 }
1004 #else
1005 struct mbuf mb;
1006
1007 M_COPY_PKTHDR(&mb, m);
1008 sc->sc_tx_th.wt_rate =
1009 ni->ni_rates.rs_rates[ni->ni_txrate];
1010
1011 mb.m_next = m;
1012 mb.m_data = (caddr_t)&sc->sc_tx_th;
1013 mb.m_len = sizeof(sc->sc_tx_th);
1014 mb.m_pkthdr.len += mb.m_len;
1015 bpf_mtap(sc->sc_drvbpf, &mb);
1016 #endif
1017 }
1018 #endif
1019
1020 /*
1021 * TODO:
1022 * The duration field of 802.11 header should be filled.
1023 * XXX This may be done in the ieee80211 layer, but the upper
1024 * doesn't know the detail of parameters such as IFS
1025 * for now..
1026 */
1027 if (ath_tx_start(sc, ni, bf, m)) {
1028 bad:
1029 ath_txbuf_critsect_begin(sc, s);
1030 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1031 ath_txbuf_critsect_end(sc, s);
1032 ifp->if_oerrors++;
1033 if (ni && ni != ic->ic_bss)
1034 ieee80211_free_node(ic, ni);
1035 continue;
1036 }
1037
1038 sc->sc_tx_timer = 5;
1039 ifp->if_timer = 1;
1040 }
1041 }
1042
1043 static int
1044 ath_media_change(struct ifnet *ifp)
1045 {
1046 int error;
1047
1048 error = ieee80211_media_change(ifp);
1049 if (error == ENETRESET) {
1050 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
1051 (IFF_RUNNING|IFF_UP))
1052 ath_init(ifp); /* XXX lose error */
1053 error = 0;
1054 }
1055 return error;
1056 }
1057
1058 static void
1059 ath_watchdog(struct ifnet *ifp)
1060 {
1061 struct ath_softc *sc = ifp->if_softc;
1062 struct ieee80211com *ic = &sc->sc_ic;
1063
1064 ifp->if_timer = 0;
1065 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
1066 return;
1067 if (sc->sc_tx_timer) {
1068 if (--sc->sc_tx_timer == 0) {
1069 if_printf(ifp, "device timeout\n");
1070 #ifdef AR_DEBUG
1071 if (ath_debug)
1072 ath_hal_dumpstate(sc->sc_ah);
1073 #endif /* AR_DEBUG */
1074 ath_init(ifp); /* XXX ath_reset??? */
1075 ifp->if_oerrors++;
1076 sc->sc_stats.ast_watchdog++;
1077 return;
1078 }
1079 ifp->if_timer = 1;
1080 }
1081 if (ic->ic_fixed_rate == -1) {
1082 /*
1083 * Run the rate control algorithm if we're not
1084 * locked at a fixed rate.
1085 */
1086 if (ic->ic_opmode == IEEE80211_M_STA)
1087 ath_rate_ctl(sc, ic->ic_bss);
1088 else
1089 ieee80211_iterate_nodes(ic, ath_rate_ctl, sc);
1090 }
1091 ieee80211_watchdog(ifp);
1092 }
1093
1094 static int
1095 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1096 {
1097 struct ath_softc *sc = ifp->if_softc;
1098 struct ifreq *ifr = (struct ifreq *)data;
1099 int error = 0;
1100 ath_softc_critsect_decl(s);
1101
1102 ath_softc_critsect_begin(sc, s);
1103 switch (cmd) {
1104 case SIOCSIFFLAGS:
1105 if (ifp->if_flags & IFF_UP) {
1106 if (ifp->if_flags & IFF_RUNNING) {
1107 /*
1108 * To avoid rescanning another access point,
1109 * do not call ath_init() here. Instead,
1110 * only reflect promisc mode settings.
1111 */
1112 ath_mode_init(sc);
1113 } else
1114 ath_init(ifp); /* XXX lose error */
1115 } else
1116 ath_stop(ifp);
1117 break;
1118 case SIOCADDMULTI:
1119 case SIOCDELMULTI:
1120 #ifdef __FreeBSD__
1121 /*
1122 * The upper layer has already installed/removed
1123 * the multicast address(es), just recalculate the
1124 * multicast filter for the card.
1125 */
1126 if (ifp->if_flags & IFF_RUNNING)
1127 ath_mode_init(sc);
1128 #endif
1129 #ifdef __NetBSD__
1130 error = (cmd == SIOCADDMULTI) ?
1131 ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
1132 ether_delmulti(ifr, &sc->sc_ic.ic_ec);
1133 if (error == ENETRESET) {
1134 if (ifp->if_flags & IFF_RUNNING)
1135 ath_mode_init(sc);
1136 error = 0;
1137 }
1138 #endif
1139 break;
1140 case SIOCGATHSTATS:
1141 copyout(&sc->sc_stats, ifr->ifr_data, sizeof (sc->sc_stats));
1142 break;
1143 default:
1144 error = ieee80211_ioctl(ifp, cmd, data);
1145 if (error == ENETRESET) {
1146 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
1147 (IFF_RUNNING|IFF_UP))
1148 ath_init(ifp); /* XXX lose error */
1149 error = 0;
1150 }
1151 break;
1152 }
1153 ath_softc_critsect_end(sc, s);
1154 return error;
1155 }
1156
1157 /*
1158 * Fill the hardware key cache with key entries.
1159 */
1160 static void
1161 ath_initkeytable(struct ath_softc *sc)
1162 {
1163 struct ieee80211com *ic = &sc->sc_ic;
1164 struct ath_hal *ah = sc->sc_ah;
1165 int i;
1166
1167 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1168 struct ieee80211_wepkey *k = &ic->ic_nw_keys[i];
1169 if (k->wk_len == 0)
1170 ath_hal_keyreset(ah, i);
1171 else
1172 /* XXX return value */
1173 /* NB: this uses HAL_KEYVAL == ieee80211_wepkey */
1174 ath_hal_keyset(ah, i, (const HAL_KEYVAL *) k);
1175 }
1176 }
1177
1178 static void
1179 ath_mcastfilter_accum(caddr_t dl, u_int32_t (*mfilt)[2])
1180 {
1181 u_int32_t val;
1182 u_int8_t pos;
1183
1184 val = LE_READ_4(dl + 0);
1185 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1186 val = LE_READ_4(dl + 3);
1187 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1188 pos &= 0x3f;
1189 (*mfilt)[pos / 32] |= (1 << (pos % 32));
1190 }
1191
1192 #ifdef __FreeBSD__
1193 static void
1194 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t (*mfilt)[2])
1195 {
1196 struct ieee80211com *ic = &sc->sc_ic;
1197 struct ifnet *ifp = &ic->ic_if;
1198 struct ifmultiaddr *ifma;
1199
1200 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1201 caddr_t dl;
1202
1203 /* calculate XOR of eight 6bit values */
1204 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
1205 ath_mcastfilter_accum(dl, &mfilt);
1206 }
1207 }
1208 #else
1209 static void
1210 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t (*mfilt)[2])
1211 {
1212 struct ifnet *ifp = &sc->sc_ic.ic_if;
1213 struct ether_multi *enm;
1214 struct ether_multistep estep;
1215
1216 ETHER_FIRST_MULTI(estep, &sc->sc_ic.ic_ec, enm);
1217 while (enm != NULL) {
1218 /* XXX Punt on ranges. */
1219 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
1220 (*mfilt)[0] = (*mfilt)[1] = ~((u_int32_t)0);
1221 ifp->if_flags |= IFF_ALLMULTI;
1222 return;
1223 }
1224 ath_mcastfilter_accum(enm->enm_addrlo, mfilt);
1225 ETHER_NEXT_MULTI(estep, enm);
1226 }
1227 ifp->if_flags &= ~IFF_ALLMULTI;
1228 }
1229 #endif
1230
1231 static void
1232 ath_mode_init(struct ath_softc *sc)
1233 {
1234 struct ieee80211com *ic = &sc->sc_ic;
1235 struct ath_hal *ah = sc->sc_ah;
1236 struct ifnet *ifp = &ic->ic_if;
1237 u_int32_t rfilt, mfilt[2];
1238
1239 /* configure operational mode */
1240 ath_hal_setopmode(ah, ic->ic_opmode);
1241
1242 /* receive filter */
1243 rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1244 | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1245 if (ic->ic_opmode != IEEE80211_M_STA)
1246 rfilt |= HAL_RX_FILTER_PROBEREQ;
1247 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1248 (ifp->if_flags & IFF_PROMISC))
1249 rfilt |= HAL_RX_FILTER_PROM;
1250 if (ic->ic_state == IEEE80211_S_SCAN)
1251 rfilt |= HAL_RX_FILTER_BEACON;
1252 ath_hal_setrxfilter(ah, rfilt);
1253
1254 /* calculate and install multicast filter */
1255 #ifdef __FreeBSD__
1256 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1257 mfilt[0] = mfilt[1] = 0;
1258 ath_mcastfilter_compute(sc, &mfilt);
1259 } else {
1260 mfilt[0] = mfilt[1] = ~0;
1261 }
1262 #endif
1263 #ifdef __NetBSD__
1264 mfilt[0] = mfilt[1] = 0;
1265 ath_mcastfilter_compute(sc, &mfilt);
1266 #endif
1267 ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1268 DPRINTF(("ath_mode_init: RX filter 0x%x, MC filter %08x:%08x\n",
1269 rfilt, mfilt[0], mfilt[1]));
1270 }
1271
1272 #ifdef __FreeBSD__
1273 static void
1274 ath_mbuf_load_cb(void *arg, bus_dma_segment_t *seg, int nseg, bus_size_t mapsize, int error)
1275 {
1276 struct ath_buf *bf = arg;
1277
1278 KASSERT(nseg <= ATH_MAX_SCATTER,
1279 ("ath_mbuf_load_cb: too many DMA segments %u", nseg));
1280 bf->bf_mapsize = mapsize;
1281 bf->bf_nseg = nseg;
1282 bcopy(seg, bf->bf_segs, nseg * sizeof (seg[0]));
1283 }
1284 #endif /* __FreeBSD__ */
1285
1286 static struct mbuf *
1287 ath_getmbuf(int flags, int type, u_int pktlen)
1288 {
1289 struct mbuf *m;
1290
1291 KASSERT(pktlen <= MCLBYTES, ("802.11 packet too large: %u", pktlen));
1292 #ifdef __FreeBSD__
1293 if (pktlen <= MHLEN)
1294 MGETHDR(m, flags, type);
1295 else
1296 m = m_getcl(flags, type, M_PKTHDR);
1297 #else
1298 MGETHDR(m, flags, type);
1299 if (m != NULL && pktlen > MHLEN)
1300 MCLGET(m, flags);
1301 #endif
1302 return m;
1303 }
1304
1305 static int
1306 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
1307 {
1308 struct ieee80211com *ic = &sc->sc_ic;
1309 struct ifnet *ifp = &ic->ic_if;
1310 struct ath_hal *ah = sc->sc_ah;
1311 struct ieee80211_frame *wh;
1312 struct ath_buf *bf;
1313 struct ath_desc *ds;
1314 struct mbuf *m;
1315 int error, pktlen;
1316 u_int8_t *frm, rate;
1317 u_int16_t capinfo;
1318 struct ieee80211_rateset *rs;
1319 const HAL_RATE_TABLE *rt;
1320
1321 bf = sc->sc_bcbuf;
1322 if (bf->bf_m != NULL) {
1323 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1324 m_freem(bf->bf_m);
1325 bf->bf_m = NULL;
1326 bf->bf_node = NULL;
1327 }
1328 /*
1329 * NB: the beacon data buffer must be 32-bit aligned;
1330 * we assume the mbuf routines will return us something
1331 * with this alignment (perhaps should assert).
1332 */
1333 rs = &ni->ni_rates;
1334 pktlen = sizeof (struct ieee80211_frame)
1335 + 8 + 2 + 2 + 2+ni->ni_esslen + 2+rs->rs_nrates + 6;
1336 if (rs->rs_nrates > IEEE80211_RATE_SIZE)
1337 pktlen += 2;
1338 m = ath_getmbuf(M_DONTWAIT, MT_DATA, pktlen);
1339 if (m == NULL) {
1340 DPRINTF(("ath_beacon_alloc: cannot get mbuf/cluster; size %u\n",
1341 pktlen));
1342 sc->sc_stats.ast_be_nombuf++;
1343 return ENOMEM;
1344 }
1345
1346 wh = mtod(m, struct ieee80211_frame *);
1347 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
1348 IEEE80211_FC0_SUBTYPE_BEACON;
1349 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1350 *(u_int16_t *)wh->i_dur = 0;
1351 memcpy(wh->i_addr1, ifp->if_broadcastaddr, IEEE80211_ADDR_LEN);
1352 memcpy(wh->i_addr2, ic->ic_myaddr, IEEE80211_ADDR_LEN);
1353 memcpy(wh->i_addr3, ni->ni_bssid, IEEE80211_ADDR_LEN);
1354 *(u_int16_t *)wh->i_seq = 0;
1355
1356 /*
1357 * beacon frame format
1358 * [8] time stamp
1359 * [2] beacon interval
1360 * [2] cabability information
1361 * [tlv] ssid
1362 * [tlv] supported rates
1363 * [tlv] parameter set (IBSS)
1364 * [tlv] extended supported rates
1365 */
1366 frm = (u_int8_t *)&wh[1];
1367 memset(frm, 0, 8); /* timestamp is set by hardware */
1368 frm += 8;
1369 *(u_int16_t *)frm = htole16(ni->ni_intval);
1370 frm += 2;
1371 if (ic->ic_opmode == IEEE80211_M_IBSS)
1372 capinfo = IEEE80211_CAPINFO_IBSS;
1373 else
1374 capinfo = IEEE80211_CAPINFO_ESS;
1375 if (ic->ic_flags & IEEE80211_F_WEPON)
1376 capinfo |= IEEE80211_CAPINFO_PRIVACY;
1377 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1378 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1379 if (ic->ic_flags & IEEE80211_F_SHSLOT)
1380 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1381 *(u_int16_t *)frm = htole16(capinfo);
1382 frm += 2;
1383 *frm++ = IEEE80211_ELEMID_SSID;
1384 *frm++ = ni->ni_esslen;
1385 memcpy(frm, ni->ni_essid, ni->ni_esslen);
1386 frm += ni->ni_esslen;
1387 frm = ieee80211_add_rates(frm, rs);
1388 if (ic->ic_opmode == IEEE80211_M_IBSS) {
1389 *frm++ = IEEE80211_ELEMID_IBSSPARMS;
1390 *frm++ = 2;
1391 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */
1392 } else {
1393 /* TODO: TIM */
1394 *frm++ = IEEE80211_ELEMID_TIM;
1395 *frm++ = 4; /* length */
1396 *frm++ = 0; /* DTIM count */
1397 *frm++ = 1; /* DTIM period */
1398 *frm++ = 0; /* bitmap control */
1399 *frm++ = 0; /* Partial Virtual Bitmap (variable length) */
1400 }
1401 frm = ieee80211_add_xrates(frm, rs);
1402 m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
1403 KASSERT(m->m_pkthdr.len <= pktlen,
1404 ("beacon bigger than expected, len %u calculated %u",
1405 m->m_pkthdr.len, pktlen));
1406
1407 DPRINTF2(("ath_beacon_alloc: m %p len %u\n", m, m->m_len));
1408 error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m, BUS_DMA_NOWAIT);
1409 if (error != 0) {
1410 m_freem(m);
1411 return error;
1412 }
1413 KASSERT(bf->bf_nseg == 1,
1414 ("ath_beacon_alloc: multi-segment packet; nseg %u",
1415 bf->bf_nseg));
1416 bf->bf_m = m;
1417
1418 /* setup descriptors */
1419 ds = bf->bf_desc;
1420
1421 ds->ds_link = 0;
1422 ds->ds_data = bf->bf_segs[0].ds_addr;
1423
1424 DPRINTF2(("%s: segaddr %p seglen %u\n", __func__,
1425 (caddr_t)bf->bf_segs[0].ds_addr, (u_int)bf->bf_segs[0].ds_len));
1426
1427 /*
1428 * Calculate rate code.
1429 * XXX everything at min xmit rate
1430 */
1431 rt = sc->sc_currates;
1432 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
1433 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1434 rate = rt->info[0].rateCode | rt->info[0].shortPreamble;
1435 else
1436 rate = rt->info[0].rateCode;
1437 if (!ath_hal_setuptxdesc(ah, ds
1438 , m->m_pkthdr.len + IEEE80211_CRC_LEN /* packet length */
1439 , sizeof(struct ieee80211_frame) /* header length */
1440 , HAL_PKT_TYPE_BEACON /* Atheros packet type */
1441 , 0x20 /* txpower XXX */
1442 , rate, 1 /* series 0 rate/tries */
1443 , HAL_TXKEYIX_INVALID /* no encryption */
1444 , 0 /* antenna mode */
1445 , HAL_TXDESC_NOACK /* no ack for beacons */
1446 , 0 /* rts/cts rate */
1447 , 0 /* rts/cts duration */
1448 )) {
1449 printf("%s: ath_hal_setuptxdesc failed\n", __func__);
1450 return -1;
1451 }
1452 /* NB: beacon's BufLen must be a multiple of 4 bytes */
1453 /* XXX verify mbuf data area covers this roundup */
1454 if (!ath_hal_filltxdesc(ah, ds
1455 , roundup(bf->bf_segs[0].ds_len, 4) /* buffer length */
1456 , AH_TRUE /* first segment */
1457 , AH_TRUE /* last segment */
1458 )) {
1459 printf("%s: ath_hal_filltxdesc failed\n", __func__);
1460 return -1;
1461 }
1462
1463 /* XXX it is not appropriate to bus_dmamap_sync? -dcy */
1464
1465 return 0;
1466 }
1467
1468 static void
1469 ath_beacon_proc(void *arg, int pending)
1470 {
1471 struct ath_softc *sc = arg;
1472 struct ieee80211com *ic = &sc->sc_ic;
1473 struct ath_buf *bf = sc->sc_bcbuf;
1474 struct ath_hal *ah = sc->sc_ah;
1475
1476 DPRINTF2(("%s: pending %u\n", __func__, pending));
1477 if (ic->ic_opmode == IEEE80211_M_STA ||
1478 bf == NULL || bf->bf_m == NULL) {
1479 DPRINTF(("%s: ic_flags=%x bf=%p bf_m=%p\n",
1480 __func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL));
1481 return;
1482 }
1483 /* TODO: update beacon to reflect PS poll state */
1484 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
1485 DPRINTF(("%s: beacon queue %u did not stop?",
1486 __func__, sc->sc_bhalq));
1487 return; /* busy, XXX is this right? */
1488 }
1489 ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_PREWRITE);
1490
1491 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
1492 ath_hal_txstart(ah, sc->sc_bhalq);
1493 DPRINTF2(("%s: BCDP%u = %p (%p)\n", __func__,
1494 sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc));
1495 }
1496
1497 static void
1498 ath_beacon_free(struct ath_softc *sc)
1499 {
1500 struct ath_buf *bf = sc->sc_bcbuf;
1501
1502 if (bf->bf_m != NULL) {
1503 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1504 m_freem(bf->bf_m);
1505 bf->bf_m = NULL;
1506 bf->bf_node = NULL;
1507 }
1508 }
1509
1510 /*
1511 * Configure the beacon and sleep timers.
1512 *
1513 * When operating as an AP this resets the TSF and sets
1514 * up the hardware to notify us when we need to issue beacons.
1515 *
1516 * When operating in station mode this sets up the beacon
1517 * timers according to the timestamp of the last received
1518 * beacon and the current TSF, configures PCF and DTIM
1519 * handling, programs the sleep registers so the hardware
1520 * will wakeup in time to receive beacons, and configures
1521 * the beacon miss handling so we'll receive a BMISS
1522 * interrupt when we stop seeing beacons from the AP
1523 * we've associated with.
1524 */
1525 static void
1526 ath_beacon_config(struct ath_softc *sc)
1527 {
1528 struct ath_hal *ah = sc->sc_ah;
1529 struct ieee80211com *ic = &sc->sc_ic;
1530 struct ieee80211_node *ni = ic->ic_bss;
1531 u_int32_t nexttbtt;
1532
1533 nexttbtt = (LE_READ_4(ni->ni_tstamp + 4) << 22) |
1534 (LE_READ_4(ni->ni_tstamp) >> 10);
1535 DPRINTF(("%s: nexttbtt=%u\n", __func__, nexttbtt));
1536 nexttbtt += ni->ni_intval;
1537 if (ic->ic_opmode == IEEE80211_M_STA) {
1538 HAL_BEACON_STATE bs;
1539 u_int32_t bmisstime;
1540
1541 /* NB: no PCF support right now */
1542 memset(&bs, 0, sizeof(bs));
1543 bs.bs_intval = ni->ni_intval;
1544 bs.bs_nexttbtt = nexttbtt;
1545 bs.bs_dtimperiod = bs.bs_intval;
1546 bs.bs_nextdtim = nexttbtt;
1547 /*
1548 * Calculate the number of consecutive beacons to miss
1549 * before taking a BMISS interrupt. The configuration
1550 * is specified in ms, so we need to convert that to
1551 * TU's and then calculate based on the beacon interval.
1552 * Note that we clamp the result to at most 10 beacons.
1553 */
1554 bmisstime = (ic->ic_bmisstimeout * 1000) / 1024;
1555 bs.bs_bmissthreshold = howmany(bmisstime,ni->ni_intval);
1556 if (bs.bs_bmissthreshold > 10)
1557 bs.bs_bmissthreshold = 10;
1558 else if (bs.bs_bmissthreshold <= 0)
1559 bs.bs_bmissthreshold = 1;
1560
1561 /*
1562 * Calculate sleep duration. The configuration is
1563 * given in ms. We insure a multiple of the beacon
1564 * period is used. Also, if the sleep duration is
1565 * greater than the DTIM period then it makes senses
1566 * to make it a multiple of that.
1567 *
1568 * XXX fixed at 100ms
1569 */
1570 bs.bs_sleepduration =
1571 roundup((100 * 1000) / 1024, bs.bs_intval);
1572 if (bs.bs_sleepduration > bs.bs_dtimperiod)
1573 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
1574
1575 DPRINTF(("%s: intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u\n"
1576 , __func__
1577 , bs.bs_intval
1578 , bs.bs_nexttbtt
1579 , bs.bs_dtimperiod
1580 , bs.bs_nextdtim
1581 , bs.bs_bmissthreshold
1582 , bs.bs_sleepduration
1583 ));
1584 ath_hal_intrset(ah, 0);
1585 /*
1586 * Reset our tsf so the hardware will update the
1587 * tsf register to reflect timestamps found in
1588 * received beacons.
1589 */
1590 ath_hal_resettsf(ah);
1591 ath_hal_beacontimers(ah, &bs, 0/*XXX*/, 0, 0);
1592 sc->sc_imask |= HAL_INT_BMISS;
1593 ath_hal_intrset(ah, sc->sc_imask);
1594 } else {
1595 DPRINTF(("%s: intval %u nexttbtt %u\n",
1596 __func__, ni->ni_intval, nexttbtt));
1597 ath_hal_intrset(ah, 0);
1598 ath_hal_beaconinit(ah, ic->ic_opmode,
1599 nexttbtt, ni->ni_intval);
1600 if (ic->ic_opmode != IEEE80211_M_MONITOR)
1601 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */
1602 ath_hal_intrset(ah, sc->sc_imask);
1603 }
1604 }
1605
1606 #ifdef __FreeBSD__
1607 static void
1608 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1609 {
1610 bus_addr_t *paddr = (bus_addr_t*) arg;
1611 *paddr = segs->ds_addr;
1612 }
1613 #endif
1614
1615 #ifdef __FreeBSD__
1616 static int
1617 ath_desc_alloc(struct ath_softc *sc)
1618 {
1619 int i, bsize, error;
1620 struct ath_desc *ds;
1621 struct ath_buf *bf;
1622
1623 /* allocate descriptors */
1624 sc->sc_desc_len = sizeof(struct ath_desc) *
1625 (ATH_TXBUF * ATH_TXDESC + ATH_RXBUF + 1);
1626 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &sc->sc_ddmamap);
1627 if (error != 0)
1628 return error;
1629
1630 error = bus_dmamem_alloc(sc->sc_dmat, (void**) &sc->sc_desc,
1631 BUS_DMA_NOWAIT, &sc->sc_ddmamap);
1632
1633 if (error != 0)
1634 goto fail0;
1635
1636 error = bus_dmamap_load(sc->sc_dmat, sc->sc_ddmamap,
1637 sc->sc_desc, sc->sc_desc_len,
1638 ath_load_cb, &sc->sc_desc_paddr,
1639 BUS_DMA_NOWAIT);
1640 if (error != 0)
1641 goto fail1;
1642
1643 ds = sc->sc_desc;
1644 DPRINTF(("ath_desc_alloc: DMA map: %p (%d) -> %p (%lu)\n",
1645 ds, sc->sc_desc_len,
1646 (caddr_t) sc->sc_desc_paddr, /*XXX*/ (u_long) sc->sc_desc_len));
1647
1648 /* allocate buffers */
1649 bsize = sizeof(struct ath_buf) * (ATH_TXBUF + ATH_RXBUF + 1);
1650 bf = malloc(bsize, M_DEVBUF, M_NOWAIT | M_ZERO);
1651 if (bf == NULL) {
1652 printf("%s: unable to allocate Tx/Rx buffers\n",
1653 sc->sc_dev.dv_xname);
1654 error = -1;
1655 goto fail2;
1656 }
1657 sc->sc_bufptr = bf;
1658
1659 TAILQ_INIT(&sc->sc_rxbuf);
1660 for (i = 0; i < ATH_RXBUF; i++, bf++, ds++) {
1661 bf->bf_desc = ds;
1662 bf->bf_daddr = sc->sc_desc_paddr +
1663 ((caddr_t)ds - (caddr_t)sc->sc_desc);
1664 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
1665 &bf->bf_dmamap);
1666 if (error != 0)
1667 break;
1668 TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
1669 }
1670
1671 TAILQ_INIT(&sc->sc_txbuf);
1672 for (i = 0; i < ATH_TXBUF; i++, bf++, ds += ATH_TXDESC) {
1673 bf->bf_desc = ds;
1674 bf->bf_daddr = sc->sc_desc_paddr +
1675 ((caddr_t)ds - (caddr_t)sc->sc_desc);
1676 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
1677 &bf->bf_dmamap);
1678 if (error != 0)
1679 break;
1680 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1681 }
1682 TAILQ_INIT(&sc->sc_txq);
1683
1684 /* beacon buffer */
1685 bf->bf_desc = ds;
1686 bf->bf_daddr = sc->sc_desc_paddr + ((caddr_t)ds - (caddr_t)sc->sc_desc);
1687 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &bf->bf_dmamap);
1688 if (error != 0)
1689 return error;
1690 sc->sc_bcbuf = bf;
1691 return 0;
1692
1693 fail2:
1694 bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
1695 fail1:
1696 bus_dmamem_free(sc->sc_dmat, sc->sc_desc, sc->sc_ddmamap);
1697 fail0:
1698 bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
1699 sc->sc_ddmamap = NULL;
1700 return error;
1701 }
1702 #else
1703 static int
1704 ath_desc_alloc(struct ath_softc *sc)
1705 {
1706 int i, bsize, error = -1;
1707 struct ath_desc *ds;
1708 struct ath_buf *bf;
1709
1710 /* allocate descriptors */
1711 sc->sc_desc_len = sizeof(struct ath_desc) *
1712 (ATH_TXBUF * ATH_TXDESC + ATH_RXBUF + 1);
1713 if ((error = bus_dmamem_alloc(sc->sc_dmat, sc->sc_desc_len, PAGE_SIZE,
1714 0, &sc->sc_dseg, 1, &sc->sc_dnseg, 0)) != 0) {
1715 printf("%s: unable to allocate control data, error = %d\n",
1716 sc->sc_dev.dv_xname, error);
1717 goto fail0;
1718 }
1719
1720 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg,
1721 sc->sc_desc_len, (caddr_t *)&sc->sc_desc, BUS_DMA_COHERENT)) != 0) {
1722 printf("%s: unable to map control data, error = %d\n",
1723 sc->sc_dev.dv_xname, error);
1724 goto fail1;
1725 }
1726
1727 if ((error = bus_dmamap_create(sc->sc_dmat, sc->sc_desc_len, 1,
1728 sc->sc_desc_len, 0, 0, &sc->sc_ddmamap)) != 0) {
1729 printf("%s: unable to create control data DMA map, "
1730 "error = %d\n", sc->sc_dev.dv_xname, error);
1731 goto fail2;
1732 }
1733
1734 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_ddmamap, sc->sc_desc,
1735 sc->sc_desc_len, NULL, 0)) != 0) {
1736 printf("%s: unable to load control data DMA map, error = %d\n",
1737 sc->sc_dev.dv_xname, error);
1738 goto fail3;
1739 }
1740
1741 ds = sc->sc_desc;
1742 sc->sc_desc_paddr = sc->sc_ddmamap->dm_segs[0].ds_addr;
1743
1744 DPRINTF(("ath_desc_alloc: DMA map: %p (%lu) -> %p (%lu)\n",
1745 ds, (u_long)sc->sc_desc_len,
1746 (caddr_t) sc->sc_desc_paddr, /*XXX*/ (u_long) sc->sc_desc_len));
1747
1748 /* allocate buffers */
1749 bsize = sizeof(struct ath_buf) * (ATH_TXBUF + ATH_RXBUF + 1);
1750 bf = malloc(bsize, M_DEVBUF, M_NOWAIT | M_ZERO);
1751 if (bf == NULL) {
1752 printf("%s: unable to allocate Tx/Rx buffers\n",
1753 sc->sc_dev.dv_xname);
1754 error = ENOMEM;
1755 goto fail3;
1756 }
1757 sc->sc_bufptr = bf;
1758
1759 TAILQ_INIT(&sc->sc_rxbuf);
1760 for (i = 0; i < ATH_RXBUF; i++, bf++, ds++) {
1761 bf->bf_desc = ds;
1762 bf->bf_daddr = sc->sc_desc_paddr +
1763 ((caddr_t)ds - (caddr_t)sc->sc_desc);
1764 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1765 MCLBYTES, 0, 0, &bf->bf_dmamap)) != 0) {
1766 printf("%s: unable to create Rx dmamap, error = %d\n",
1767 sc->sc_dev.dv_xname, error);
1768 goto fail4;
1769 }
1770 TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
1771 }
1772
1773 TAILQ_INIT(&sc->sc_txbuf);
1774 for (i = 0; i < ATH_TXBUF; i++, bf++, ds += ATH_TXDESC) {
1775 bf->bf_desc = ds;
1776 bf->bf_daddr = sc->sc_desc_paddr +
1777 ((caddr_t)ds - (caddr_t)sc->sc_desc);
1778 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1779 ATH_TXDESC, MCLBYTES, 0, 0, &bf->bf_dmamap)) != 0) {
1780 printf("%s: unable to create Tx dmamap, error = %d\n",
1781 sc->sc_dev.dv_xname, error);
1782 goto fail5;
1783 }
1784 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1785 }
1786 TAILQ_INIT(&sc->sc_txq);
1787
1788 /* beacon buffer */
1789 bf->bf_desc = ds;
1790 bf->bf_daddr = sc->sc_desc_paddr + ((caddr_t)ds - (caddr_t)sc->sc_desc);
1791 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
1792 &bf->bf_dmamap)) != 0) {
1793 printf("%s: unable to create beacon dmamap, error = %d\n",
1794 sc->sc_dev.dv_xname, error);
1795 goto fail5;
1796 }
1797 sc->sc_bcbuf = bf;
1798 return 0;
1799
1800 fail5:
1801 for (i = ATH_RXBUF; i < ATH_RXBUF + ATH_TXBUF; i++) {
1802 if (sc->sc_bufptr[i].bf_dmamap == NULL)
1803 continue;
1804 bus_dmamap_destroy(sc->sc_dmat, sc->sc_bufptr[i].bf_dmamap);
1805 }
1806 fail4:
1807 for (i = 0; i < ATH_RXBUF; i++) {
1808 if (sc->sc_bufptr[i].bf_dmamap == NULL)
1809 continue;
1810 bus_dmamap_destroy(sc->sc_dmat, sc->sc_bufptr[i].bf_dmamap);
1811 }
1812 fail3:
1813 bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
1814 fail2:
1815 bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
1816 sc->sc_ddmamap = NULL;
1817 fail1:
1818 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_desc, sc->sc_desc_len);
1819 fail0:
1820 bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg);
1821 return error;
1822 }
1823 #endif
1824
1825 static void
1826 ath_desc_free(struct ath_softc *sc)
1827 {
1828 struct ath_buf *bf;
1829
1830 #ifdef __FreeBSD__
1831 bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
1832 bus_dmamem_free(sc->sc_dmat, sc->sc_desc, sc->sc_ddmamap);
1833 bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
1834 #else
1835 bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
1836 bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
1837 bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg);
1838 #endif
1839
1840 TAILQ_FOREACH(bf, &sc->sc_txq, bf_list) {
1841 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1842 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
1843 m_freem(bf->bf_m);
1844 }
1845 TAILQ_FOREACH(bf, &sc->sc_txbuf, bf_list)
1846 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
1847 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
1848 if (bf->bf_m) {
1849 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1850 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
1851 m_freem(bf->bf_m);
1852 bf->bf_m = NULL;
1853 }
1854 }
1855 if (sc->sc_bcbuf != NULL) {
1856 bus_dmamap_unload(sc->sc_dmat, sc->sc_bcbuf->bf_dmamap);
1857 bus_dmamap_destroy(sc->sc_dmat, sc->sc_bcbuf->bf_dmamap);
1858 sc->sc_bcbuf = NULL;
1859 }
1860
1861 TAILQ_INIT(&sc->sc_rxbuf);
1862 TAILQ_INIT(&sc->sc_txbuf);
1863 TAILQ_INIT(&sc->sc_txq);
1864 free(sc->sc_bufptr, M_DEVBUF);
1865 sc->sc_bufptr = NULL;
1866 }
1867
1868 static struct ieee80211_node *
1869 ath_node_alloc(struct ieee80211com *ic)
1870 {
1871 struct ath_node *an =
1872 malloc(sizeof(struct ath_node), M_DEVBUF, M_NOWAIT | M_ZERO);
1873 return an ? &an->an_node : NULL;
1874 }
1875
1876 static void
1877 ath_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
1878 {
1879 struct ath_softc *sc = ic->ic_if.if_softc;
1880 struct ath_buf *bf;
1881
1882 TAILQ_FOREACH(bf, &sc->sc_txq, bf_list) {
1883 if (bf->bf_node == ni)
1884 bf->bf_node = NULL;
1885 }
1886 free(ni, M_DEVBUF);
1887 }
1888
1889 static void
1890 ath_node_copy(struct ieee80211com *ic,
1891 struct ieee80211_node *dst, const struct ieee80211_node *src)
1892 {
1893 *(struct ath_node *)dst = *(const struct ath_node *)src;
1894 }
1895
1896 static int
1897 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
1898 {
1899 struct ath_hal *ah = sc->sc_ah;
1900 int error;
1901 struct mbuf *m;
1902 struct ath_desc *ds;
1903
1904 m = bf->bf_m;
1905 if (m == NULL) {
1906 /*
1907 * NB: by assigning a page to the rx dma buffer we
1908 * implicitly satisfy the Atheros requirement that
1909 * this buffer be cache-line-aligned and sized to be
1910 * multiple of the cache line size. Not doing this
1911 * causes weird stuff to happen (for the 5210 at least).
1912 */
1913 m = ath_getmbuf(M_DONTWAIT, MT_DATA, MCLBYTES);
1914 if (m == NULL) {
1915 DPRINTF(("ath_rxbuf_init: no mbuf/cluster\n"));
1916 sc->sc_stats.ast_rx_nombuf++;
1917 return ENOMEM;
1918 }
1919 bf->bf_m = m;
1920 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
1921
1922 error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m,
1923 BUS_DMA_NOWAIT);
1924 if (error != 0) {
1925 DPRINTF(("ath_rxbuf_init: ath_buf_dmamap_load_mbuf failed;"
1926 " error %d\n", error));
1927 sc->sc_stats.ast_rx_busdma++;
1928 return error;
1929 }
1930 KASSERT(bf->bf_nseg == 1,
1931 ("ath_rxbuf_init: multi-segment packet; nseg %u",
1932 bf->bf_nseg));
1933 }
1934 ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_PREREAD);
1935
1936 /* setup descriptors */
1937 ds = bf->bf_desc;
1938 ds->ds_link = 0;
1939 ds->ds_data = bf->bf_segs[0].ds_addr;
1940 ath_hal_setuprxdesc(ah, ds
1941 , m->m_len /* buffer size */
1942 , 0
1943 );
1944
1945 if (sc->sc_rxlink != NULL)
1946 *sc->sc_rxlink = bf->bf_daddr;
1947 sc->sc_rxlink = &ds->ds_link;
1948 return 0;
1949 }
1950
1951 static void
1952 ath_rx_proc(void *arg, int npending)
1953 {
1954 struct ath_softc *sc = arg;
1955 struct ath_buf *bf;
1956 struct ieee80211com *ic = &sc->sc_ic;
1957 struct ifnet *ifp = &ic->ic_if;
1958 struct ath_hal *ah = sc->sc_ah;
1959 struct ath_desc *ds;
1960 struct mbuf *m;
1961 struct ieee80211_frame *wh, whbuf;
1962 struct ieee80211_node *ni;
1963 int len;
1964 u_int phyerr;
1965 HAL_STATUS status;
1966
1967 DPRINTF2(("ath_rx_proc: pending %u\n", npending));
1968 do {
1969 bf = TAILQ_FIRST(&sc->sc_rxbuf);
1970 if (bf == NULL) { /* NB: shouldn't happen */
1971 if_printf(ifp, "ath_rx_proc: no buffer!\n");
1972 break;
1973 }
1974 m = bf->bf_m;
1975 if (m == NULL) { /* NB: shouldn't happen */
1976 if_printf(ifp, "ath_rx_proc: no mbuf!\n");
1977 continue;
1978 }
1979 ds = bf->bf_desc;
1980 status = ath_hal_rxprocdesc(ah, ds);
1981 #ifdef AR_DEBUG
1982 if (ath_debug > 1)
1983 ath_printrxbuf(bf, status == HAL_OK);
1984 #endif
1985 if (status == HAL_EINPROGRESS)
1986 break;
1987 TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list);
1988 if (ds->ds_rxstat.rs_status != 0) {
1989 ifp->if_ierrors++;
1990 if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
1991 sc->sc_stats.ast_rx_crcerr++;
1992 if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
1993 sc->sc_stats.ast_rx_fifoerr++;
1994 if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT)
1995 sc->sc_stats.ast_rx_badcrypt++;
1996 if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
1997 sc->sc_stats.ast_rx_phyerr++;
1998 phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
1999 sc->sc_stats.ast_rx_phy[phyerr]++;
2000 }
2001 goto rx_next;
2002 }
2003
2004 len = ds->ds_rxstat.rs_datalen;
2005 if (len < sizeof(struct ieee80211_frame)) {
2006 DPRINTF(("ath_rx_proc: short packet %d\n", len));
2007 sc->sc_stats.ast_rx_tooshort++;
2008 goto rx_next;
2009 }
2010
2011 ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_POSTREAD);
2012
2013 wh = mtod(m, struct ieee80211_frame *);
2014 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
2015 IEEE80211_FC0_TYPE_CTL &&
2016 ic->ic_opmode != IEEE80211_M_MONITOR) {
2017 /*
2018 * Discard control frame when not in monitor mode.
2019 */
2020 DPRINTF(("ath_rx_proc: control frame\n"));
2021 sc->sc_stats.ast_rx_ctl++;
2022 goto rx_next;
2023 }
2024
2025 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2026 bf->bf_m = NULL;
2027 m->m_pkthdr.rcvif = ifp;
2028 m->m_pkthdr.len = m->m_len = len;
2029
2030 #if NBPFILTER > 0
2031 if (sc->sc_drvbpf) {
2032 #ifdef __FreeBSD__
2033 struct mbuf *mb;
2034
2035 /* XXX pre-allocate space when setting up recv's */
2036 MGETHDR(mb, M_DONTWAIT, m->m_type);
2037 if (mb != NULL) {
2038 sc->sc_rx_th.wr_rate =
2039 sc->sc_hwmap[ds->ds_rxstat.rs_rate];
2040 sc->sc_rx_th.wr_antsignal =
2041 ds->ds_rxstat.rs_rssi;
2042 sc->sc_rx_th.wr_antenna =
2043 ds->ds_rxstat.rs_antenna;
2044 /* XXX TSF */
2045
2046 (void) m_dup_pkthdr(mb, m, M_DONTWAIT);
2047 mb->m_next = m;
2048 mb->m_data = (caddr_t)&sc->sc_rx_th;
2049 mb->m_len = sizeof(sc->sc_rx_th);
2050 mb->m_pkthdr.len += mb->m_len;
2051 bpf_mtap(sc->sc_drvbpf, mb);
2052 m_free(mb);
2053 }
2054 #else
2055 /* XXX pre-allocate space when setting up recv's */
2056 struct mbuf mb;
2057
2058 sc->sc_rx_th.wr_rate =
2059 sc->sc_hwmap[ds->ds_rxstat.rs_rate];
2060 sc->sc_rx_th.wr_antsignal =
2061 ds->ds_rxstat.rs_rssi;
2062 sc->sc_rx_th.wr_antenna =
2063 ds->ds_rxstat.rs_antenna;
2064 /* XXX TSF */
2065
2066 M_COPY_PKTHDR(&mb, m);
2067 mb.m_next = m;
2068 mb.m_data = (caddr_t)&sc->sc_rx_th;
2069 mb.m_len = sizeof(sc->sc_rx_th);
2070 mb.m_pkthdr.len += mb.m_len;
2071 bpf_mtap(sc->sc_drvbpf, &mb);
2072 #endif
2073 }
2074 #endif
2075
2076 m_adj(m, -IEEE80211_CRC_LEN);
2077 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2078 /*
2079 * WEP is decrypted by hardware. Clear WEP bit
2080 * and trim WEP header for ieee80211_input().
2081 */
2082 wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
2083 memcpy(&whbuf, wh, sizeof(whbuf));
2084 m_adj(m, IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN);
2085 memcpy(mtod(m, caddr_t), &whbuf, sizeof(whbuf));
2086 /*
2087 * Also trim WEP ICV from the tail.
2088 */
2089 m_adj(m, -IEEE80211_WEP_CRCLEN);
2090 /*
2091 * The header has probably moved.
2092 */
2093 wh = mtod(m, struct ieee80211_frame *);
2094 }
2095
2096 /*
2097 * Locate the node for sender, track state, and
2098 * then pass this node (referenced) up to the 802.11
2099 * layer for its use. We are required to pass
2100 * something so we fall back to ic_bss when this frame
2101 * is from an unknown sender.
2102 */
2103 if (ic->ic_opmode != IEEE80211_M_STA) {
2104 ni = ieee80211_find_node(ic, wh->i_addr2);
2105 if (ni == NULL)
2106 ni = ieee80211_ref_node(ic->ic_bss);
2107 } else
2108 ni = ieee80211_ref_node(ic->ic_bss);
2109 ATH_NODE(ni)->an_rx_antenna = ds->ds_rxstat.rs_antenna;
2110 /*
2111 * Send frame up for processing.
2112 */
2113 ieee80211_input(ifp, m, ni,
2114 ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
2115 /*
2116 * The frame may have caused the node to be marked for
2117 * reclamation (e.g. in response to a DEAUTH message)
2118 * so use free_node here instead of unref_node.
2119 */
2120 if (ni == ic->ic_bss)
2121 ieee80211_unref_node(&ni);
2122 else
2123 ieee80211_free_node(ic, ni);
2124 rx_next:
2125 TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
2126 } while (ath_rxbuf_init(sc, bf) == 0);
2127
2128 ath_hal_rxmonitor(ah); /* rx signal state monitoring */
2129 ath_hal_rxena(ah); /* in case of RXEOL */
2130 }
2131
2132 /*
2133 * XXX Size of an ACK control frame in bytes.
2134 */
2135 #define IEEE80211_ACK_SIZE (2+2+IEEE80211_ADDR_LEN+4)
2136
2137 static int
2138 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
2139 struct mbuf *m0)
2140 {
2141 struct ieee80211com *ic = &sc->sc_ic;
2142 struct ath_hal *ah = sc->sc_ah;
2143 struct ifnet *ifp = &sc->sc_ic.ic_if;
2144 int i, error, iswep, hdrlen, pktlen;
2145 u_int8_t rix, cix, txrate, ctsrate;
2146 struct ath_desc *ds;
2147 struct mbuf *m;
2148 struct ieee80211_frame *wh;
2149 u_int32_t iv;
2150 u_int8_t *ivp;
2151 u_int8_t hdrbuf[sizeof(struct ieee80211_frame) +
2152 IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN];
2153 u_int subtype, flags, ctsduration, antenna;
2154 HAL_PKT_TYPE atype;
2155 const HAL_RATE_TABLE *rt;
2156 HAL_BOOL shortPreamble;
2157 struct ath_node *an;
2158 ath_txq_critsect_decl(s);
2159
2160 wh = mtod(m0, struct ieee80211_frame *);
2161 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
2162 hdrlen = sizeof(struct ieee80211_frame);
2163 pktlen = m0->m_pkthdr.len;
2164
2165 if (iswep) {
2166 memcpy(hdrbuf, mtod(m0, caddr_t), hdrlen);
2167 m_adj(m0, hdrlen);
2168 M_PREPEND(m0, sizeof(hdrbuf), M_DONTWAIT);
2169 if (m0 == NULL) {
2170 sc->sc_stats.ast_tx_nombuf++;
2171 return ENOMEM;
2172 }
2173 ivp = hdrbuf + hdrlen;
2174 /*
2175 * XXX
2176 * IV must not duplicate during the lifetime of the key.
2177 * But no mechanism to renew keys is defined in IEEE 802.11
2178 * WEP. And IV may be duplicated between other stations
2179 * because of the session key itself is shared.
2180 * So we use pseudo random IV for now, though it is not the
2181 * right way.
2182 */
2183 iv = arc4random();
2184 for (i = 0; i < IEEE80211_WEP_IVLEN; i++) {
2185 ivp[i] = iv;
2186 iv >>= 8;
2187 }
2188 ivp[i] = sc->sc_ic.ic_wep_txkey << 6; /* Key ID and pad */
2189 memcpy(mtod(m0, caddr_t), hdrbuf, sizeof(hdrbuf));
2190 /*
2191 * The ICV length must be included into hdrlen and pktlen.
2192 */
2193 hdrlen = sizeof(hdrbuf) + IEEE80211_WEP_CRCLEN;
2194 pktlen = m0->m_pkthdr.len + IEEE80211_WEP_CRCLEN;
2195 }
2196 pktlen += IEEE80211_CRC_LEN;
2197
2198 /*
2199 * Load the DMA map so any coalescing is done. This
2200 * also calculates the number of descriptors we need.
2201 */
2202 error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m0, BUS_DMA_NOWAIT);
2203 if (error != 0) {
2204 sc->sc_stats.ast_tx_busdma++;
2205 m_freem(m0);
2206 return error;
2207 }
2208 /*
2209 * Discard null packets and check for packets that
2210 * require too many TX descriptors. We try to convert
2211 * the latter to a cluster.
2212 */
2213 if (bf->bf_nseg > ATH_TXDESC) { /* too many desc's, linearize */
2214 sc->sc_stats.ast_tx_linear++;
2215 MGETHDR(m, M_DONTWAIT, MT_DATA);
2216 if (m == NULL) {
2217 sc->sc_stats.ast_tx_nombuf++;
2218 m_freem(m0);
2219 return ENOMEM;
2220 }
2221 #ifdef __FreeBSD__
2222 M_MOVE_PKTHDR(m, m0);
2223 #else
2224 M_COPY_PKTHDR(m, m0);
2225 #endif
2226 MCLGET(m, M_DONTWAIT);
2227 if ((m->m_flags & M_EXT) == 0) {
2228 sc->sc_stats.ast_tx_nomcl++;
2229 m_freem(m0);
2230 m_free(m);
2231 return ENOMEM;
2232 }
2233 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
2234 m_freem(m0);
2235 m->m_len = m->m_pkthdr.len;
2236 m0 = m;
2237 error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m0,
2238 BUS_DMA_NOWAIT);
2239 if (error != 0) {
2240 sc->sc_stats.ast_tx_busdma++;
2241 m_freem(m0);
2242 return error;
2243 }
2244 KASSERT(bf->bf_nseg == 1,
2245 ("ath_tx_start: packet not one segment; nseg %u",
2246 bf->bf_nseg));
2247 } else if (bf->bf_nseg == 0) { /* null packet, discard */
2248 sc->sc_stats.ast_tx_nodata++;
2249 m_freem(m0);
2250 return EIO;
2251 }
2252 DPRINTF2(("ath_tx_start: m %p len %u\n", m0, pktlen));
2253 ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_PREWRITE);
2254 bf->bf_m = m0;
2255 bf->bf_node = ni; /* NB: held reference */
2256
2257 /* setup descriptors */
2258 ds = bf->bf_desc;
2259 rt = sc->sc_currates;
2260 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
2261
2262 /*
2263 * Calculate Atheros packet type from IEEE80211 packet header
2264 * and setup for rate calculations.
2265 */
2266 atype = HAL_PKT_TYPE_NORMAL; /* default */
2267 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
2268 case IEEE80211_FC0_TYPE_MGT:
2269 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2270 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
2271 atype = HAL_PKT_TYPE_BEACON;
2272 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2273 atype = HAL_PKT_TYPE_PROBE_RESP;
2274 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
2275 atype = HAL_PKT_TYPE_ATIM;
2276 rix = 0; /* XXX lowest rate */
2277 break;
2278 case IEEE80211_FC0_TYPE_CTL:
2279 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2280 if (subtype == IEEE80211_FC0_SUBTYPE_PS_POLL)
2281 atype = HAL_PKT_TYPE_PSPOLL;
2282 rix = 0; /* XXX lowest rate */
2283 break;
2284 default:
2285 rix = sc->sc_rixmap[ni->ni_rates.rs_rates[ni->ni_txrate] &
2286 IEEE80211_RATE_VAL];
2287 if (rix == 0xff) {
2288 if_printf(ifp, "bogus xmit rate 0x%x\n",
2289 ni->ni_rates.rs_rates[ni->ni_txrate]);
2290 sc->sc_stats.ast_tx_badrate++;
2291 m_freem(m0);
2292 return EIO;
2293 }
2294 break;
2295 }
2296 /*
2297 * NB: the 802.11 layer marks whether or not we should
2298 * use short preamble based on the current mode and
2299 * negotiated parameters.
2300 */
2301 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) {
2302 txrate = rt->info[rix].rateCode | rt->info[rix].shortPreamble;
2303 shortPreamble = AH_TRUE;
2304 sc->sc_stats.ast_tx_shortpre++;
2305 } else {
2306 txrate = rt->info[rix].rateCode;
2307 shortPreamble = AH_FALSE;
2308 }
2309
2310 /*
2311 * Calculate miscellaneous flags.
2312 */
2313 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for wep errors */
2314 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2315 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */
2316 sc->sc_stats.ast_tx_noack++;
2317 } else if (pktlen > ic->ic_rtsthreshold) {
2318 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */
2319 sc->sc_stats.ast_tx_rts++;
2320 }
2321
2322 /*
2323 * Calculate RTS/CTS rate and duration if needed.
2324 */
2325 ctsduration = 0;
2326 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
2327 /*
2328 * CTS transmit rate is derived from the transmit rate
2329 * by looking in the h/w rate table. We must also factor
2330 * in whether or not a short preamble is to be used.
2331 */
2332 cix = rt->info[rix].controlRate;
2333 ctsrate = rt->info[cix].rateCode;
2334 if (shortPreamble)
2335 ctsrate |= rt->info[cix].shortPreamble;
2336 /*
2337 * Compute the transmit duration based on the size
2338 * of an ACK frame. We call into the HAL to do the
2339 * computation since it depends on the characteristics
2340 * of the actual PHY being used.
2341 */
2342 if (flags & HAL_TXDESC_RTSENA) { /* SIFS + CTS */
2343 ctsduration += ath_hal_computetxtime(ah,
2344 rt, IEEE80211_ACK_SIZE, cix, shortPreamble);
2345 }
2346 /* SIFS + data */
2347 ctsduration += ath_hal_computetxtime(ah,
2348 rt, pktlen, rix, shortPreamble);
2349 if ((flags & HAL_TXDESC_NOACK) == 0) { /* SIFS + ACK */
2350 ctsduration += ath_hal_computetxtime(ah,
2351 rt, IEEE80211_ACK_SIZE, cix, shortPreamble);
2352 }
2353 } else
2354 ctsrate = 0;
2355
2356 /*
2357 * For now use the antenna on which the last good
2358 * frame was received on. We assume this field is
2359 * initialized to 0 which gives us ``auto'' or the
2360 * ``default'' antenna.
2361 */
2362 an = (struct ath_node *) ni;
2363 if (an->an_tx_antenna)
2364 antenna = an->an_tx_antenna;
2365 else
2366 antenna = an->an_rx_antenna;
2367
2368 /*
2369 * Formulate first tx descriptor with tx controls.
2370 */
2371 /* XXX check return value? */
2372 ath_hal_setuptxdesc(ah, ds
2373 , pktlen /* packet length */
2374 , hdrlen /* header length */
2375 , atype /* Atheros packet type */
2376 , 60 /* txpower XXX */
2377 , txrate, 1+10 /* series 0 rate/tries */
2378 , iswep ? sc->sc_ic.ic_wep_txkey : HAL_TXKEYIX_INVALID
2379 , antenna /* antenna mode */
2380 , flags /* flags */
2381 , ctsrate /* rts/cts rate */
2382 , ctsduration /* rts/cts duration */
2383 );
2384 #ifdef notyet
2385 ath_hal_setupxtxdesc(ah, ds
2386 , AH_FALSE /* short preamble */
2387 , 0, 0 /* series 1 rate/tries */
2388 , 0, 0 /* series 2 rate/tries */
2389 , 0, 0 /* series 3 rate/tries */
2390 );
2391 #endif
2392 /*
2393 * Fillin the remainder of the descriptor info.
2394 */
2395 for (i = 0; i < bf->bf_nseg; i++, ds++) {
2396 ds->ds_data = bf->bf_segs[i].ds_addr;
2397 if (i == bf->bf_nseg - 1)
2398 ds->ds_link = 0;
2399 else
2400 ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
2401 ath_hal_filltxdesc(ah, ds
2402 , bf->bf_segs[i].ds_len /* segment length */
2403 , i == 0 /* first segment */
2404 , i == bf->bf_nseg - 1 /* last segment */
2405 );
2406 DPRINTF2(("ath_tx_start: %d: %08x %08x %08x %08x %08x %08x\n",
2407 i, ds->ds_link, ds->ds_data, ds->ds_ctl0, ds->ds_ctl1,
2408 ds->ds_hw[0], ds->ds_hw[1]));
2409 }
2410
2411 /*
2412 * Insert the frame on the outbound list and
2413 * pass it on to the hardware.
2414 */
2415 ath_txq_critsect_begin(sc, s);
2416 TAILQ_INSERT_TAIL(&sc->sc_txq, bf, bf_list);
2417 if (sc->sc_txlink == NULL) {
2418 ath_hal_puttxbuf(ah, sc->sc_txhalq, bf->bf_daddr);
2419 DPRINTF2(("ath_tx_start: TXDP0 = %p (%p)\n",
2420 (caddr_t)bf->bf_daddr, bf->bf_desc));
2421 } else {
2422 *sc->sc_txlink = bf->bf_daddr;
2423 DPRINTF2(("ath_tx_start: link(%p)=%p (%p)\n",
2424 sc->sc_txlink, (caddr_t)bf->bf_daddr, bf->bf_desc));
2425 }
2426 sc->sc_txlink = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
2427 ath_txq_critsect_end(sc, s);
2428
2429 ath_hal_txstart(ah, sc->sc_txhalq);
2430 return 0;
2431 }
2432
2433 static void
2434 ath_tx_proc(void *arg, int npending)
2435 {
2436 struct ath_softc *sc = arg;
2437 struct ath_hal *ah = sc->sc_ah;
2438 struct ath_buf *bf;
2439 struct ieee80211com *ic = &sc->sc_ic;
2440 struct ifnet *ifp = &ic->ic_if;
2441 struct ath_desc *ds;
2442 struct ieee80211_node *ni;
2443 struct ath_node *an;
2444 int sr, lr;
2445 HAL_STATUS status;
2446 ath_txq_critsect_decl(s);
2447 ath_txbuf_critsect_decl(s2);
2448
2449 DPRINTF2(("ath_tx_proc: pending %u tx queue %p, link %p\n",
2450 npending, (caddr_t) ath_hal_gettxbuf(sc->sc_ah, sc->sc_txhalq),
2451 sc->sc_txlink));
2452 for (;;) {
2453 ath_txq_critsect_begin(sc, s);
2454 bf = TAILQ_FIRST(&sc->sc_txq);
2455 if (bf == NULL) {
2456 sc->sc_txlink = NULL;
2457 ath_txq_critsect_end(sc, s);
2458 break;
2459 }
2460 /* only the last descriptor is needed */
2461 ds = &bf->bf_desc[bf->bf_nseg - 1];
2462 status = ath_hal_txprocdesc(ah, ds);
2463 #ifdef AR_DEBUG
2464 if (ath_debug > 1)
2465 ath_printtxbuf(bf, status == HAL_OK);
2466 #endif
2467 if (status == HAL_EINPROGRESS) {
2468 ath_txq_critsect_end(sc, s);
2469 break;
2470 }
2471 TAILQ_REMOVE(&sc->sc_txq, bf, bf_list);
2472 ath_txq_critsect_end(sc, s);
2473
2474 ni = bf->bf_node;
2475 if (ni != NULL) {
2476 an = (struct ath_node *) ni;
2477 if (ds->ds_txstat.ts_status == 0) {
2478 an->an_tx_ok++;
2479 an->an_tx_antenna = ds->ds_txstat.ts_antenna;
2480 } else {
2481 an->an_tx_err++;
2482 ifp->if_oerrors++;
2483 if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
2484 sc->sc_stats.ast_tx_xretries++;
2485 if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
2486 sc->sc_stats.ast_tx_fifoerr++;
2487 if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
2488 sc->sc_stats.ast_tx_filtered++;
2489 an->an_tx_antenna = 0; /* invalidate */
2490 }
2491 sr = ds->ds_txstat.ts_shortretry;
2492 lr = ds->ds_txstat.ts_longretry;
2493 sc->sc_stats.ast_tx_shortretry += sr;
2494 sc->sc_stats.ast_tx_longretry += lr;
2495 if (sr + lr)
2496 an->an_tx_retr++;
2497 /*
2498 * Reclaim reference to node.
2499 *
2500 * NB: the node may be reclaimed here if, for example
2501 * this is a DEAUTH message that was sent and the
2502 * node was timed out due to inactivity.
2503 */
2504 if (ni != ic->ic_bss)
2505 ieee80211_free_node(ic, ni);
2506 }
2507 ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_POSTWRITE);
2508 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2509 m_freem(bf->bf_m);
2510 bf->bf_m = NULL;
2511 bf->bf_node = NULL;
2512
2513 ath_txbuf_critsect_begin(sc, s2);
2514 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
2515 ath_txbuf_critsect_end(sc, s2);
2516 }
2517 ifp->if_flags &= ~IFF_OACTIVE;
2518 sc->sc_tx_timer = 0;
2519
2520 ath_start(ifp);
2521 }
2522
2523 /*
2524 * Drain the transmit queue and reclaim resources.
2525 */
2526 static void
2527 ath_draintxq(struct ath_softc *sc)
2528 {
2529 struct ath_hal *ah = sc->sc_ah;
2530 struct ifnet *ifp = &sc->sc_ic.ic_if;
2531 struct ath_buf *bf;
2532 ath_txq_critsect_decl(s);
2533 ath_txbuf_critsect_decl(s2);
2534
2535 /* XXX return value */
2536 if (!sc->sc_invalid) {
2537 /* don't touch the hardware if marked invalid */
2538 (void) ath_hal_stoptxdma(ah, sc->sc_txhalq);
2539 DPRINTF(("ath_draintxq: tx queue %p, link %p\n",
2540 (caddr_t) ath_hal_gettxbuf(ah, sc->sc_txhalq),
2541 sc->sc_txlink));
2542 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
2543 DPRINTF(("ath_draintxq: beacon queue %p\n",
2544 (caddr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq)));
2545 }
2546 for (;;) {
2547 ath_txq_critsect_begin(sc, s);
2548 bf = TAILQ_FIRST(&sc->sc_txq);
2549 if (bf == NULL) {
2550 sc->sc_txlink = NULL;
2551 ath_txq_critsect_end(sc, s);
2552 break;
2553 }
2554 TAILQ_REMOVE(&sc->sc_txq, bf, bf_list);
2555 ath_txq_critsect_end(sc, s);
2556 #ifdef AR_DEBUG
2557 if (ath_debug)
2558 ath_printtxbuf(bf,
2559 ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
2560 #endif /* AR_DEBUG */
2561 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2562 m_freem(bf->bf_m);
2563 bf->bf_m = NULL;
2564 bf->bf_node = NULL;
2565 ath_txbuf_critsect_begin(sc, s2);
2566 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
2567 ath_txbuf_critsect_end(sc, s2);
2568 }
2569 ifp->if_flags &= ~IFF_OACTIVE;
2570 sc->sc_tx_timer = 0;
2571 }
2572
2573 /*
2574 * Disable the receive h/w in preparation for a reset.
2575 */
2576 static void
2577 ath_stoprecv(struct ath_softc *sc)
2578 {
2579 struct ath_hal *ah = sc->sc_ah;
2580
2581 ath_hal_stoppcurecv(ah); /* disable PCU */
2582 ath_hal_setrxfilter(ah, 0); /* clear recv filter */
2583 ath_hal_stopdmarecv(ah); /* disable DMA engine */
2584 DELAY(3000); /* long enough for 1 frame */
2585 #ifdef AR_DEBUG
2586 if (ath_debug) {
2587 struct ath_buf *bf;
2588
2589 DPRINTF(("ath_stoprecv: rx queue %p, link %p\n",
2590 (caddr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink));
2591 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
2592 if (ath_hal_rxprocdesc(ah, bf->bf_desc) == HAL_OK)
2593 ath_printrxbuf(bf, 1);
2594 }
2595 }
2596 #endif
2597 sc->sc_rxlink = NULL; /* just in case */
2598 }
2599
2600 /*
2601 * Enable the receive h/w following a reset.
2602 */
2603 static int
2604 ath_startrecv(struct ath_softc *sc)
2605 {
2606 struct ath_hal *ah = sc->sc_ah;
2607 struct ath_buf *bf;
2608
2609 sc->sc_rxlink = NULL;
2610 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
2611 int error = ath_rxbuf_init(sc, bf);
2612 if (error != 0) {
2613 DPRINTF(("ath_startrecv: ath_rxbuf_init failed %d\n",
2614 error));
2615 return error;
2616 }
2617 }
2618
2619 bf = TAILQ_FIRST(&sc->sc_rxbuf);
2620 ath_hal_putrxbuf(ah, bf->bf_daddr);
2621 ath_hal_rxena(ah); /* enable recv descriptors */
2622 ath_mode_init(sc); /* set filters, etc. */
2623 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */
2624 return 0;
2625 }
2626
2627 /*
2628 * Set/change channels. If the channel is really being changed,
2629 * it's done by resetting the chip. To accomplish this we must
2630 * first cleanup any pending DMA, then restart stuff after a la
2631 * ath_init.
2632 */
2633 static int
2634 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
2635 {
2636 struct ath_hal *ah = sc->sc_ah;
2637 struct ieee80211com *ic = &sc->sc_ic;
2638
2639 DPRINTF(("ath_chan_set: %u (%u MHz) -> %u (%u MHz)\n",
2640 ieee80211_chan2ieee(ic, ic->ic_ibss_chan),
2641 ic->ic_ibss_chan->ic_freq,
2642 ieee80211_chan2ieee(ic, chan), chan->ic_freq));
2643 if (chan != ic->ic_ibss_chan) {
2644 HAL_STATUS status;
2645 HAL_CHANNEL hchan;
2646 enum ieee80211_phymode mode;
2647
2648 /*
2649 * To switch channels clear any pending DMA operations;
2650 * wait long enough for the RX fifo to drain, reset the
2651 * hardware at the new frequency, and then re-enable
2652 * the relevant bits of the h/w.
2653 */
2654 ath_hal_intrset(ah, 0); /* disable interrupts */
2655 ath_draintxq(sc); /* clear pending tx frames */
2656 ath_stoprecv(sc); /* turn off frame recv */
2657 /*
2658 * Convert to a HAL channel description with
2659 * the flags constrained to reflect the current
2660 * operating mode.
2661 */
2662 hchan.channel = chan->ic_freq;
2663 hchan.channelFlags = ath_chan2flags(ic, chan);
2664 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
2665 if_printf(&ic->ic_if, "ath_chan_set: unable to reset "
2666 "channel %u (%u Mhz)\n",
2667 ieee80211_chan2ieee(ic, chan), chan->ic_freq);
2668 return EIO;
2669 }
2670 /*
2671 * Re-enable rx framework.
2672 */
2673 if (ath_startrecv(sc) != 0) {
2674 if_printf(&ic->ic_if,
2675 "ath_chan_set: unable to restart recv logic\n");
2676 return EIO;
2677 }
2678
2679 /*
2680 * Update BPF state.
2681 */
2682 sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
2683 htole16(chan->ic_freq);
2684 sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
2685 htole16(chan->ic_flags);
2686
2687 /*
2688 * Change channels and update the h/w rate map
2689 * if we're switching; e.g. 11a to 11b/g.
2690 */
2691 ic->ic_ibss_chan = chan;
2692 mode = ieee80211_chan2mode(ic, chan);
2693 if (mode != sc->sc_curmode)
2694 ath_setcurmode(sc, mode);
2695
2696 /*
2697 * Re-enable interrupts.
2698 */
2699 ath_hal_intrset(ah, sc->sc_imask);
2700 }
2701 return 0;
2702 }
2703
2704 static void
2705 ath_next_scan(void *arg)
2706 {
2707 struct ath_softc *sc = arg;
2708 struct ieee80211com *ic = &sc->sc_ic;
2709 struct ifnet *ifp = &ic->ic_if;
2710 int s;
2711
2712 /* don't call ath_start w/o network interrupts blocked */
2713 s = splnet();
2714
2715 if (ic->ic_state == IEEE80211_S_SCAN)
2716 ieee80211_next_scan(ifp);
2717 splx(s);
2718 }
2719
2720 /*
2721 * Periodically recalibrate the PHY to account
2722 * for temperature/environment changes.
2723 */
2724 static void
2725 ath_calibrate(void *arg)
2726 {
2727 struct ath_softc *sc = arg;
2728 struct ath_hal *ah = sc->sc_ah;
2729 struct ieee80211com *ic = &sc->sc_ic;
2730 struct ieee80211_channel *c;
2731 HAL_CHANNEL hchan;
2732
2733 sc->sc_stats.ast_per_cal++;
2734
2735 /*
2736 * Convert to a HAL channel description with the flags
2737 * constrained to reflect the current operating mode.
2738 */
2739 c = ic->ic_ibss_chan;
2740 hchan.channel = c->ic_freq;
2741 hchan.channelFlags = ath_chan2flags(ic, c);
2742
2743 DPRINTF(("%s: channel %u/%x\n", __func__, c->ic_freq, c->ic_flags));
2744
2745 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
2746 /*
2747 * Rfgain is out of bounds, reset the chip
2748 * to load new gain values.
2749 */
2750 sc->sc_stats.ast_per_rfgain++;
2751 ath_reset(sc);
2752 }
2753 if (!ath_hal_calibrate(ah, &hchan)) {
2754 DPRINTF(("%s: calibration of channel %u failed\n",
2755 __func__, c->ic_freq));
2756 sc->sc_stats.ast_per_calfail++;
2757 }
2758 callout_reset(&sc->sc_cal_ch, hz * ath_calinterval, ath_calibrate, sc);
2759 }
2760
2761 static HAL_LED_STATE
2762 ath_state_to_led(enum ieee80211_state state)
2763 {
2764 switch (state) {
2765 case IEEE80211_S_INIT:
2766 return HAL_LED_INIT;
2767 case IEEE80211_S_SCAN:
2768 return HAL_LED_SCAN;
2769 case IEEE80211_S_AUTH:
2770 return HAL_LED_AUTH;
2771 case IEEE80211_S_ASSOC:
2772 return HAL_LED_ASSOC;
2773 case IEEE80211_S_RUN:
2774 return HAL_LED_RUN;
2775 default:
2776 panic("%s: unknown 802.11 state %d\n", __func__, state);
2777 return HAL_LED_INIT;
2778 }
2779 }
2780
2781 static int
2782 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2783 {
2784 struct ifnet *ifp = &ic->ic_if;
2785 struct ath_softc *sc = ifp->if_softc;
2786 struct ath_hal *ah = sc->sc_ah;
2787 struct ieee80211_node *ni;
2788 int i, error;
2789 u_int8_t *bssid;
2790 u_int32_t rfilt;
2791
2792 DPRINTF(("%s: %s -> %s\n", __func__,
2793 ieee80211_state_name[ic->ic_state],
2794 ieee80211_state_name[nstate]));
2795
2796 ath_hal_setledstate(ah, ath_state_to_led(nstate)); /* set LED */
2797
2798 if (nstate == IEEE80211_S_INIT) {
2799 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
2800 ath_hal_intrset(ah, sc->sc_imask);
2801 callout_stop(&sc->sc_scan_ch);
2802 callout_stop(&sc->sc_cal_ch);
2803 return (*sc->sc_newstate)(ic, nstate, arg);
2804 }
2805 ni = ic->ic_bss;
2806 error = ath_chan_set(sc, ni->ni_chan);
2807 if (error != 0)
2808 goto bad;
2809 rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
2810 | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
2811 if (ic->ic_opmode != IEEE80211_M_STA)
2812 rfilt |= HAL_RX_FILTER_PROBEREQ;
2813 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
2814 (ifp->if_flags & IFF_PROMISC))
2815 rfilt |= HAL_RX_FILTER_PROM;
2816 if (nstate == IEEE80211_S_SCAN) {
2817 callout_reset(&sc->sc_scan_ch, (hz * ath_dwelltime) / 1000,
2818 ath_next_scan, sc);
2819 bssid = ifp->if_broadcastaddr;
2820 rfilt |= HAL_RX_FILTER_BEACON;
2821 } else {
2822 callout_stop(&sc->sc_scan_ch);
2823 bssid = ni->ni_bssid;
2824 }
2825 ath_hal_setrxfilter(ah, rfilt);
2826 DPRINTF(("%s: RX filter 0x%x bssid %s\n",
2827 __func__, rfilt, ether_sprintf(bssid)));
2828
2829 if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
2830 ath_hal_setassocid(ah, bssid, ni->ni_associd);
2831 else
2832 ath_hal_setassocid(ah, bssid, 0);
2833 if (ic->ic_flags & IEEE80211_F_WEPON) {
2834 for (i = 0; i < IEEE80211_WEP_NKID; i++)
2835 if (ath_hal_keyisvalid(ah, i))
2836 ath_hal_keysetmac(ah, i, bssid);
2837 }
2838
2839 if (nstate == IEEE80211_S_RUN) {
2840 DPRINTF(("%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
2841 "capinfo=0x%04x chan=%d\n"
2842 , __func__
2843 , ic->ic_flags
2844 , ni->ni_intval
2845 , ether_sprintf(ni->ni_bssid)
2846 , ni->ni_capinfo
2847 , ieee80211_chan2ieee(ic, ni->ni_chan)));
2848
2849 /*
2850 * Allocate and setup the beacon frame for AP or adhoc mode.
2851 */
2852 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2853 ic->ic_opmode == IEEE80211_M_IBSS) {
2854 error = ath_beacon_alloc(sc, ni);
2855 if (error != 0)
2856 goto bad;
2857 }
2858
2859 /*
2860 * Configure the beacon and sleep timers.
2861 */
2862 ath_beacon_config(sc);
2863
2864 /* start periodic recalibration timer */
2865 callout_reset(&sc->sc_cal_ch, hz * ath_calinterval,
2866 ath_calibrate, sc);
2867 } else {
2868 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
2869 ath_hal_intrset(ah, sc->sc_imask);
2870 callout_stop(&sc->sc_cal_ch); /* no calibration */
2871 }
2872 /*
2873 * Reset the rate control state.
2874 */
2875 ath_rate_ctl_reset(sc, nstate);
2876 /*
2877 * Invoke the parent method to complete the work.
2878 */
2879 return (*sc->sc_newstate)(ic, nstate, arg);
2880 bad:
2881 callout_stop(&sc->sc_scan_ch);
2882 callout_stop(&sc->sc_cal_ch);
2883 /* NB: do not invoke the parent */
2884 return error;
2885 }
2886
2887 /*
2888 * Setup driver-specific state for a newly associated node.
2889 * Note that we're called also on a re-associate, the isnew
2890 * param tells us if this is the first time or not.
2891 */
2892 static void
2893 ath_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
2894 {
2895 if (isnew) {
2896 struct ath_node *an = (struct ath_node *) ni;
2897
2898 an->an_tx_ok = an->an_tx_err =
2899 an->an_tx_retr = an->an_tx_upper = 0;
2900 /* start with highest negotiated rate */
2901 /*
2902 * XXX should do otherwise but only when
2903 * the rate control algorithm is better.
2904 */
2905 KASSERT(ni->ni_rates.rs_nrates > 0,
2906 ("new association w/ no rates!"));
2907 ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
2908 }
2909 }
2910
2911 static int
2912 ath_getchannels(struct ath_softc *sc, u_int cc, HAL_BOOL outdoor)
2913 {
2914 struct ieee80211com *ic = &sc->sc_ic;
2915 struct ifnet *ifp = &ic->ic_if;
2916 struct ath_hal *ah = sc->sc_ah;
2917 HAL_CHANNEL *chans;
2918 int i, ix, nchan;
2919
2920 sc->sc_have11g = 0;
2921 chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
2922 M_TEMP, M_NOWAIT);
2923 if (chans == NULL) {
2924 if_printf(ifp, "unable to allocate channel table\n");
2925 return ENOMEM;
2926 }
2927 if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
2928 cc, HAL_MODE_ALL, outdoor)) {
2929 if_printf(ifp, "unable to collect channel list from hal\n");
2930 free(chans, M_TEMP);
2931 return EINVAL;
2932 }
2933
2934 /*
2935 * Convert HAL channels to ieee80211 ones and insert
2936 * them in the table according to their channel number.
2937 */
2938 for (i = 0; i < nchan; i++) {
2939 HAL_CHANNEL *c = &chans[i];
2940 ix = ath_hal_mhz2ieee(c->channel, c->channelFlags);
2941 if (ix > IEEE80211_CHAN_MAX) {
2942 if_printf(ifp, "bad hal channel %u (%u/%x) ignored\n",
2943 ix, c->channel, c->channelFlags);
2944 continue;
2945 }
2946 /* NB: flags are known to be compatible */
2947 if (ic->ic_channels[ix].ic_freq == 0) {
2948 ic->ic_channels[ix].ic_freq = c->channel;
2949 ic->ic_channels[ix].ic_flags = c->channelFlags;
2950 } else {
2951 /* channels overlap; e.g. 11g and 11b */
2952 ic->ic_channels[ix].ic_flags |= c->channelFlags;
2953 }
2954 if ((c->channelFlags & CHANNEL_G) == CHANNEL_G)
2955 sc->sc_have11g = 1;
2956 }
2957 free(chans, M_TEMP);
2958 return 0;
2959 }
2960
2961 static int
2962 ath_rate_setup(struct ath_softc *sc, u_int mode)
2963 {
2964 struct ath_hal *ah = sc->sc_ah;
2965 struct ieee80211com *ic = &sc->sc_ic;
2966 const HAL_RATE_TABLE *rt;
2967 struct ieee80211_rateset *rs;
2968 int i, maxrates;
2969
2970 switch (mode) {
2971 case IEEE80211_MODE_11A:
2972 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11A);
2973 break;
2974 case IEEE80211_MODE_11B:
2975 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11B);
2976 break;
2977 case IEEE80211_MODE_11G:
2978 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11G);
2979 break;
2980 case IEEE80211_MODE_TURBO:
2981 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_TURBO);
2982 break;
2983 default:
2984 DPRINTF(("%s: invalid mode %u\n", __func__, mode));
2985 return 0;
2986 }
2987 rt = sc->sc_rates[mode];
2988 if (rt == NULL)
2989 return 0;
2990 if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
2991 DPRINTF(("%s: rate table too small (%u > %u)\n",
2992 __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE));
2993 maxrates = IEEE80211_RATE_MAXSIZE;
2994 } else
2995 maxrates = rt->rateCount;
2996 rs = &ic->ic_sup_rates[mode];
2997 for (i = 0; i < maxrates; i++)
2998 rs->rs_rates[i] = rt->info[i].dot11Rate;
2999 rs->rs_nrates = maxrates;
3000 return 1;
3001 }
3002
3003 static void
3004 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
3005 {
3006 const HAL_RATE_TABLE *rt;
3007 int i;
3008
3009 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
3010 rt = sc->sc_rates[mode];
3011 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
3012 for (i = 0; i < rt->rateCount; i++)
3013 sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
3014 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
3015 for (i = 0; i < 32; i++)
3016 sc->sc_hwmap[i] = rt->info[rt->rateCodeToIndex[i]].dot11Rate;
3017 sc->sc_currates = rt;
3018 sc->sc_curmode = mode;
3019 }
3020
3021 /*
3022 * Reset the rate control state for each 802.11 state transition.
3023 */
3024 static void
3025 ath_rate_ctl_reset(struct ath_softc *sc, enum ieee80211_state state)
3026 {
3027 struct ieee80211com *ic = &sc->sc_ic;
3028 struct ieee80211_node *ni;
3029 struct ath_node *an;
3030
3031 an = (struct ath_node *) ic->ic_bss;
3032 an->an_tx_ok = an->an_tx_err = an->an_tx_retr = an->an_tx_upper = 0;
3033 if (ic->ic_opmode == IEEE80211_M_STA) {
3034 ni = ic->ic_bss;
3035 if (state == IEEE80211_S_RUN) {
3036 /* start with highest negotiated rate */
3037 KASSERT(ni->ni_rates.rs_nrates > 0,
3038 ("transition to RUN state w/ no rates!"));
3039 ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
3040 } else {
3041 /* use lowest rate */
3042 ni->ni_txrate = 0;
3043 }
3044 } else {
3045 TAILQ_FOREACH(ni, &ic->ic_node, ni_list) {
3046 ni->ni_txrate = 0; /* use lowest rate */
3047 an = (struct ath_node *) ni;
3048 an->an_tx_ok = an->an_tx_err = an->an_tx_retr =
3049 an->an_tx_upper = 0;
3050 }
3051 }
3052 }
3053
3054 /*
3055 * Examine and potentially adjust the transmit rate.
3056 */
3057 static void
3058 ath_rate_ctl(void *arg, struct ieee80211_node *ni)
3059 {
3060 struct ath_softc *sc = arg;
3061 struct ath_node *an = (struct ath_node *) ni;
3062 struct ieee80211_rateset *rs = &ni->ni_rates;
3063 int mod = 0, orate, enough;
3064
3065 /*
3066 * Rate control
3067 * XXX: very primitive version.
3068 */
3069 sc->sc_stats.ast_rate_calls++;
3070
3071 enough = (an->an_tx_ok + an->an_tx_err >= 10);
3072
3073 /* no packet reached -> down */
3074 if (an->an_tx_err > 0 && an->an_tx_ok == 0)
3075 mod = -1;
3076
3077 /* all packets needs retry in average -> down */
3078 if (enough && an->an_tx_ok < an->an_tx_retr)
3079 mod = -1;
3080
3081 /* no error and less than 10% of packets needs retry -> up */
3082 if (enough && an->an_tx_err == 0 && an->an_tx_ok > an->an_tx_retr * 10)
3083 mod = 1;
3084
3085 orate = ni->ni_txrate;
3086 switch (mod) {
3087 case 0:
3088 if (enough && an->an_tx_upper > 0)
3089 an->an_tx_upper--;
3090 break;
3091 case -1:
3092 if (ni->ni_txrate > 0) {
3093 ni->ni_txrate--;
3094 sc->sc_stats.ast_rate_drop++;
3095 }
3096 an->an_tx_upper = 0;
3097 break;
3098 case 1:
3099 if (++an->an_tx_upper < 2)
3100 break;
3101 an->an_tx_upper = 0;
3102 if (ni->ni_txrate + 1 < rs->rs_nrates) {
3103 ni->ni_txrate++;
3104 sc->sc_stats.ast_rate_raise++;
3105 }
3106 break;
3107 }
3108
3109 if (ni->ni_txrate != orate) {
3110 DPRINTF(("%s: %dM -> %dM (%d ok, %d err, %d retr)\n",
3111 __func__,
3112 (rs->rs_rates[orate] & IEEE80211_RATE_VAL) / 2,
3113 (rs->rs_rates[ni->ni_txrate] & IEEE80211_RATE_VAL) / 2,
3114 an->an_tx_ok, an->an_tx_err, an->an_tx_retr));
3115 }
3116 if (ni->ni_txrate != orate || enough)
3117 an->an_tx_ok = an->an_tx_err = an->an_tx_retr = 0;
3118 }
3119
3120 #ifdef AR_DEBUG
3121 #ifdef __FreeBSD__
3122 static int
3123 sysctl_hw_ath_dump(SYSCTL_HANDLER_ARGS)
3124 {
3125 char dmode[64];
3126 int error;
3127
3128 strncpy(dmode, "", sizeof(dmode) - 1);
3129 dmode[sizeof(dmode) - 1] = '\0';
3130 error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req);
3131
3132 if (error == 0 && req->newptr != NULL) {
3133 struct ifnet *ifp;
3134 struct ath_softc *sc;
3135
3136 ifp = ifunit("ath0"); /* XXX */
3137 if (!ifp)
3138 return EINVAL;
3139 sc = ifp->if_softc;
3140 if (strcmp(dmode, "hal") == 0)
3141 ath_hal_dumpstate(sc->sc_ah);
3142 else if (strcmp(dmode, "eeprom") == 0)
3143 ath_hal_dumpeeprom(sc->sc_ah);
3144 else if (strcmp(dmode, "rfgain") == 0)
3145 ath_hal_dumprfgain(sc->sc_ah);
3146 else if (strcmp(dmode, "ani") == 0)
3147 ath_hal_dumpani(sc->sc_ah);
3148 else
3149 return EINVAL;
3150 }
3151 return error;
3152 }
3153 SYSCTL_PROC(_hw_ath, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW,
3154 0, 0, sysctl_hw_ath_dump, "A", "Dump driver state");
3155 #endif /* __FreeBSD__ */
3156
3157 static void
3158 ath_printrxbuf(struct ath_buf *bf, int done)
3159 {
3160 struct ath_desc *ds;
3161 int i;
3162
3163 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
3164 printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n",
3165 i, ds, (struct ath_desc *)bf->bf_daddr + i,
3166 ds->ds_link, ds->ds_data,
3167 ds->ds_ctl0, ds->ds_ctl1,
3168 ds->ds_hw[0], ds->ds_hw[1],
3169 !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
3170 }
3171 }
3172
3173 static void
3174 ath_printtxbuf(struct ath_buf *bf, int done)
3175 {
3176 struct ath_desc *ds;
3177 int i;
3178
3179 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
3180 printf("T%d (%p %p) %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
3181 i, ds, (struct ath_desc *)bf->bf_daddr + i,
3182 ds->ds_link, ds->ds_data,
3183 ds->ds_ctl0, ds->ds_ctl1,
3184 ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
3185 !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
3186 }
3187 }
3188 #endif /* AR_DEBUG */
3189