ath.c revision 1.91 1 /* $NetBSD: ath.c,v 1.91 2007/11/26 23:54:48 dyoung Exp $ */
2
3 /*-
4 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15 * redistribution must be conditioned upon including a substantially
16 * similar Disclaimer requirement for further binary redistribution.
17 * 3. Neither the names of the above-listed copyright holders nor the names
18 * of any contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * Alternatively, this software may be distributed under the terms of the
22 * GNU General Public License ("GPL") version 2 as published by the Free
23 * Software Foundation.
24 *
25 * NO WARRANTY
26 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
28 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
29 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
30 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
31 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
34 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
36 * THE POSSIBILITY OF SUCH DAMAGES.
37 */
38
39 #include <sys/cdefs.h>
40 #ifdef __FreeBSD__
41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $");
42 #endif
43 #ifdef __NetBSD__
44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.91 2007/11/26 23:54:48 dyoung Exp $");
45 #endif
46
47 /*
48 * Driver for the Atheros Wireless LAN controller.
49 *
50 * This software is derived from work of Atsushi Onoe; his contribution
51 * is greatly appreciated.
52 */
53
54 #include "opt_inet.h"
55
56 #ifdef __NetBSD__
57 #include "bpfilter.h"
58 #endif /* __NetBSD__ */
59
60 #include <sys/param.h>
61 #include <sys/reboot.h>
62 #include <sys/systm.h>
63 #include <sys/types.h>
64 #include <sys/sysctl.h>
65 #include <sys/mbuf.h>
66 #include <sys/malloc.h>
67 #include <sys/lock.h>
68 #include <sys/kernel.h>
69 #include <sys/socket.h>
70 #include <sys/sockio.h>
71 #include <sys/errno.h>
72 #include <sys/callout.h>
73 #include <sys/bus.h>
74 #include <sys/endian.h>
75
76 #include <net/if.h>
77 #include <net/if_dl.h>
78 #include <net/if_media.h>
79 #include <net/if_types.h>
80 #include <net/if_arp.h>
81 #include <net/if_ether.h>
82 #include <net/if_llc.h>
83
84 #include <net80211/ieee80211_netbsd.h>
85 #include <net80211/ieee80211_var.h>
86
87 #if NBPFILTER > 0
88 #include <net/bpf.h>
89 #endif
90
91 #ifdef INET
92 #include <netinet/in.h>
93 #endif
94
95 #include <sys/device.h>
96 #include <dev/ic/ath_netbsd.h>
97
98 #define AR_DEBUG
99 #include <dev/ic/athvar.h>
100 #include <contrib/dev/ath/ah_desc.h>
101 #include <contrib/dev/ath/ah_devid.h> /* XXX for softled */
102 #include "athhal_options.h"
103
104 #ifdef ATH_TX99_DIAG
105 #include <dev/ath/ath_tx99/ath_tx99.h>
106 #endif
107
108 /* unaligned little endian access */
109 #define LE_READ_2(p) \
110 ((u_int16_t) \
111 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8)))
112 #define LE_READ_4(p) \
113 ((u_int32_t) \
114 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \
115 (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
116
117 enum {
118 ATH_LED_TX,
119 ATH_LED_RX,
120 ATH_LED_POLL,
121 };
122
123 #ifdef AH_NEED_DESC_SWAP
124 #define HTOAH32(x) htole32(x)
125 #else
126 #define HTOAH32(x) (x)
127 #endif
128
129 static int ath_ifinit(struct ifnet *);
130 static int ath_init(struct ath_softc *);
131 static void ath_stop_locked(struct ifnet *, int);
132 static void ath_stop(struct ifnet *, int);
133 static void ath_start(struct ifnet *);
134 static int ath_media_change(struct ifnet *);
135 static void ath_watchdog(struct ifnet *);
136 static int ath_ioctl(struct ifnet *, u_long, void *);
137 static void ath_fatal_proc(void *, int);
138 static void ath_rxorn_proc(void *, int);
139 static void ath_bmiss_proc(void *, int);
140 static void ath_radar_proc(void *, int);
141 static int ath_key_alloc(struct ieee80211com *,
142 const struct ieee80211_key *,
143 ieee80211_keyix *, ieee80211_keyix *);
144 static int ath_key_delete(struct ieee80211com *,
145 const struct ieee80211_key *);
146 static int ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
147 const u_int8_t mac[IEEE80211_ADDR_LEN]);
148 static void ath_key_update_begin(struct ieee80211com *);
149 static void ath_key_update_end(struct ieee80211com *);
150 static void ath_mode_init(struct ath_softc *);
151 static void ath_setslottime(struct ath_softc *);
152 static void ath_updateslot(struct ifnet *);
153 static int ath_beaconq_setup(struct ath_hal *);
154 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
155 static void ath_beacon_setup(struct ath_softc *, struct ath_buf *);
156 static void ath_beacon_proc(void *, int);
157 static void ath_bstuck_proc(void *, int);
158 static void ath_beacon_free(struct ath_softc *);
159 static void ath_beacon_config(struct ath_softc *);
160 static void ath_descdma_cleanup(struct ath_softc *sc,
161 struct ath_descdma *, ath_bufhead *);
162 static int ath_desc_alloc(struct ath_softc *);
163 static void ath_desc_free(struct ath_softc *);
164 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
165 static void ath_node_free(struct ieee80211_node *);
166 static u_int8_t ath_node_getrssi(const struct ieee80211_node *);
167 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
168 static void ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
169 struct ieee80211_node *ni,
170 int subtype, int rssi, u_int32_t rstamp);
171 static void ath_setdefantenna(struct ath_softc *, u_int);
172 static void ath_rx_proc(void *, int);
173 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
174 static int ath_tx_setup(struct ath_softc *, int, int);
175 static int ath_wme_update(struct ieee80211com *);
176 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
177 static void ath_tx_cleanup(struct ath_softc *);
178 static int ath_tx_start(struct ath_softc *, struct ieee80211_node *,
179 struct ath_buf *, struct mbuf *);
180 static void ath_tx_proc_q0(void *, int);
181 static void ath_tx_proc_q0123(void *, int);
182 static void ath_tx_proc(void *, int);
183 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
184 static void ath_draintxq(struct ath_softc *);
185 static void ath_stoprecv(struct ath_softc *);
186 static int ath_startrecv(struct ath_softc *);
187 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
188 static void ath_next_scan(void *);
189 static void ath_calibrate(void *);
190 static int ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
191 static void ath_setup_stationkey(struct ieee80211_node *);
192 static void ath_newassoc(struct ieee80211_node *, int);
193 static int ath_getchannels(struct ath_softc *, u_int cc,
194 HAL_BOOL outdoor, HAL_BOOL xchanmode);
195 static void ath_led_event(struct ath_softc *, int);
196 static void ath_update_txpow(struct ath_softc *);
197 static void ath_freetx(struct mbuf *);
198 static void ath_restore_diversity(struct ath_softc *);
199
200 static int ath_rate_setup(struct ath_softc *, u_int mode);
201 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
202
203 #ifdef __NetBSD__
204 int ath_enable(struct ath_softc *);
205 void ath_disable(struct ath_softc *);
206 void ath_power(int, void *);
207 #endif
208
209 #if NBPFILTER > 0
210 static void ath_bpfattach(struct ath_softc *);
211 #endif
212 static void ath_announce(struct ath_softc *);
213
214 int ath_dwelltime = 200; /* 5 channels/second */
215 int ath_calinterval = 30; /* calibrate every 30 secs */
216 int ath_outdoor = AH_TRUE; /* outdoor operation */
217 int ath_xchanmode = AH_TRUE; /* enable extended channels */
218 int ath_countrycode = CTRY_DEFAULT; /* country code */
219 int ath_regdomain = 0; /* regulatory domain */
220 int ath_debug = 0;
221 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */
222 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */
223
224 #ifdef AR_DEBUG
225 enum {
226 ATH_DEBUG_XMIT = 0x00000001, /* basic xmit operation */
227 ATH_DEBUG_XMIT_DESC = 0x00000002, /* xmit descriptors */
228 ATH_DEBUG_RECV = 0x00000004, /* basic recv operation */
229 ATH_DEBUG_RECV_DESC = 0x00000008, /* recv descriptors */
230 ATH_DEBUG_RATE = 0x00000010, /* rate control */
231 ATH_DEBUG_RESET = 0x00000020, /* reset processing */
232 ATH_DEBUG_MODE = 0x00000040, /* mode init/setup */
233 ATH_DEBUG_BEACON = 0x00000080, /* beacon handling */
234 ATH_DEBUG_WATCHDOG = 0x00000100, /* watchdog timeout */
235 ATH_DEBUG_INTR = 0x00001000, /* ISR */
236 ATH_DEBUG_TX_PROC = 0x00002000, /* tx ISR proc */
237 ATH_DEBUG_RX_PROC = 0x00004000, /* rx ISR proc */
238 ATH_DEBUG_BEACON_PROC = 0x00008000, /* beacon ISR proc */
239 ATH_DEBUG_CALIBRATE = 0x00010000, /* periodic calibration */
240 ATH_DEBUG_KEYCACHE = 0x00020000, /* key cache management */
241 ATH_DEBUG_STATE = 0x00040000, /* 802.11 state transitions */
242 ATH_DEBUG_NODE = 0x00080000, /* node management */
243 ATH_DEBUG_LED = 0x00100000, /* led management */
244 ATH_DEBUG_FF = 0x00200000, /* fast frames */
245 ATH_DEBUG_DFS = 0x00400000, /* DFS processing */
246 ATH_DEBUG_FATAL = 0x80000000, /* fatal errors */
247 ATH_DEBUG_ANY = 0xffffffff
248 };
249 #define IFF_DUMPPKTS(sc, m) \
250 ((sc->sc_debug & (m)) || \
251 (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
252 #define DPRINTF(sc, m, fmt, ...) do { \
253 if (sc->sc_debug & (m)) \
254 printf(fmt, __VA_ARGS__); \
255 } while (0)
256 #define KEYPRINTF(sc, ix, hk, mac) do { \
257 if (sc->sc_debug & ATH_DEBUG_KEYCACHE) \
258 ath_keyprint(__func__, ix, hk, mac); \
259 } while (0)
260 static void ath_printrxbuf(struct ath_buf *bf, int);
261 static void ath_printtxbuf(struct ath_buf *bf, int);
262 #else
263 #define IFF_DUMPPKTS(sc, m) \
264 ((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
265 #define DPRINTF(m, fmt, ...)
266 #define KEYPRINTF(sc, k, ix, mac)
267 #endif
268
269 #ifdef __NetBSD__
270 int
271 ath_activate(struct device *self, enum devact act)
272 {
273 struct ath_softc *sc = (struct ath_softc *)self;
274 int rv = 0, s;
275
276 s = splnet();
277 switch (act) {
278 case DVACT_ACTIVATE:
279 rv = EOPNOTSUPP;
280 break;
281 case DVACT_DEACTIVATE:
282 if_deactivate(&sc->sc_if);
283 break;
284 }
285 splx(s);
286 return rv;
287 }
288
289 int
290 ath_enable(struct ath_softc *sc)
291 {
292 if (ATH_IS_ENABLED(sc) == 0) {
293 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
294 printf("%s: device enable failed\n",
295 device_xname(&sc->sc_dev));
296 return (EIO);
297 }
298 sc->sc_flags |= ATH_ENABLED;
299 }
300 return (0);
301 }
302
303 void
304 ath_disable(struct ath_softc *sc)
305 {
306 if (!ATH_IS_ENABLED(sc))
307 return;
308 if (sc->sc_disable != NULL)
309 (*sc->sc_disable)(sc);
310 sc->sc_flags &= ~ATH_ENABLED;
311 }
312 #endif /* __NetBSD__ */
313
314 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
315
316 int
317 ath_attach(u_int16_t devid, struct ath_softc *sc)
318 {
319 struct ifnet *ifp = &sc->sc_if;
320 struct ieee80211com *ic = &sc->sc_ic;
321 struct ath_hal *ah = NULL;
322 HAL_STATUS status;
323 int error = 0, i;
324
325 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
326
327 memcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
328
329 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
330 if (ah == NULL) {
331 if_printf(ifp, "unable to attach hardware; HAL status %u\n",
332 status);
333 error = ENXIO;
334 goto bad;
335 }
336 if (ah->ah_abi != HAL_ABI_VERSION) {
337 if_printf(ifp, "HAL ABI mismatch detected "
338 "(HAL:0x%x != driver:0x%x)\n",
339 ah->ah_abi, HAL_ABI_VERSION);
340 error = ENXIO;
341 goto bad;
342 }
343 sc->sc_ah = ah;
344 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */
345
346 /*
347 * Check if the MAC has multi-rate retry support.
348 * We do this by trying to setup a fake extended
349 * descriptor. MAC's that don't have support will
350 * return false w/o doing anything. MAC's that do
351 * support it will return true w/o doing anything.
352 */
353 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
354
355 /*
356 * Check if the device has hardware counters for PHY
357 * errors. If so we need to enable the MIB interrupt
358 * so we can act on stat triggers.
359 */
360 if (ath_hal_hwphycounters(ah))
361 sc->sc_needmib = 1;
362
363 /*
364 * Get the hardware key cache size.
365 */
366 sc->sc_keymax = ath_hal_keycachesize(ah);
367 if (sc->sc_keymax > ATH_KEYMAX) {
368 if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
369 ATH_KEYMAX, sc->sc_keymax);
370 sc->sc_keymax = ATH_KEYMAX;
371 }
372 /*
373 * Reset the key cache since some parts do not
374 * reset the contents on initial power up.
375 */
376 for (i = 0; i < sc->sc_keymax; i++)
377 ath_hal_keyreset(ah, i);
378 /*
379 * Mark key cache slots associated with global keys
380 * as in use. If we knew TKIP was not to be used we
381 * could leave the +32, +64, and +32+64 slots free.
382 * XXX only for splitmic.
383 */
384 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
385 setbit(sc->sc_keymap, i);
386 setbit(sc->sc_keymap, i+32);
387 setbit(sc->sc_keymap, i+64);
388 setbit(sc->sc_keymap, i+32+64);
389 }
390
391 /*
392 * Collect the channel list using the default country
393 * code and including outdoor channels. The 802.11 layer
394 * is resposible for filtering this list based on settings
395 * like the phy mode.
396 */
397 error = ath_getchannels(sc, ath_countrycode,
398 ath_outdoor, ath_xchanmode);
399 if (error != 0)
400 goto bad;
401
402 /*
403 * Setup rate tables for all potential media types.
404 */
405 ath_rate_setup(sc, IEEE80211_MODE_11A);
406 ath_rate_setup(sc, IEEE80211_MODE_11B);
407 ath_rate_setup(sc, IEEE80211_MODE_11G);
408 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
409 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
410 /* NB: setup here so ath_rate_update is happy */
411 ath_setcurmode(sc, IEEE80211_MODE_11A);
412
413 /*
414 * Allocate tx+rx descriptors and populate the lists.
415 */
416 error = ath_desc_alloc(sc);
417 if (error != 0) {
418 if_printf(ifp, "failed to allocate descriptors: %d\n", error);
419 goto bad;
420 }
421 ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
422 ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE);
423 ATH_CALLOUT_INIT(&sc->sc_dfs_ch, CALLOUT_MPSAFE);
424
425 ATH_TXBUF_LOCK_INIT(sc);
426
427 TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
428 TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
429 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
430 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
431 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
432 TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc);
433
434 /*
435 * Allocate hardware transmit queues: one queue for
436 * beacon frames and one data queue for each QoS
437 * priority. Note that the hal handles reseting
438 * these queues at the needed time.
439 *
440 * XXX PS-Poll
441 */
442 sc->sc_bhalq = ath_beaconq_setup(ah);
443 if (sc->sc_bhalq == (u_int) -1) {
444 if_printf(ifp, "unable to setup a beacon xmit queue!\n");
445 error = EIO;
446 goto bad2;
447 }
448 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
449 if (sc->sc_cabq == NULL) {
450 if_printf(ifp, "unable to setup CAB xmit queue!\n");
451 error = EIO;
452 goto bad2;
453 }
454 /* NB: insure BK queue is the lowest priority h/w queue */
455 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
456 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
457 ieee80211_wme_acnames[WME_AC_BK]);
458 error = EIO;
459 goto bad2;
460 }
461 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
462 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
463 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
464 /*
465 * Not enough hardware tx queues to properly do WME;
466 * just punt and assign them all to the same h/w queue.
467 * We could do a better job of this if, for example,
468 * we allocate queues when we switch from station to
469 * AP mode.
470 */
471 if (sc->sc_ac2q[WME_AC_VI] != NULL)
472 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
473 if (sc->sc_ac2q[WME_AC_BE] != NULL)
474 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
475 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
476 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
477 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
478 }
479
480 /*
481 * Special case certain configurations. Note the
482 * CAB queue is handled by these specially so don't
483 * include them when checking the txq setup mask.
484 */
485 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
486 case 0x01:
487 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
488 break;
489 case 0x0f:
490 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
491 break;
492 default:
493 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
494 break;
495 }
496
497 /*
498 * Setup rate control. Some rate control modules
499 * call back to change the anntena state so expose
500 * the necessary entry points.
501 * XXX maybe belongs in struct ath_ratectrl?
502 */
503 sc->sc_setdefantenna = ath_setdefantenna;
504 sc->sc_rc = ath_rate_attach(sc);
505 if (sc->sc_rc == NULL) {
506 error = EIO;
507 goto bad2;
508 }
509
510 sc->sc_blinking = 0;
511 sc->sc_ledstate = 1;
512 sc->sc_ledon = 0; /* low true */
513 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */
514 ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE);
515 /*
516 * Auto-enable soft led processing for IBM cards and for
517 * 5211 minipci cards. Users can also manually enable/disable
518 * support with a sysctl.
519 */
520 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
521 if (sc->sc_softled) {
522 ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
523 ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
524 }
525
526 ifp->if_softc = sc;
527 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
528 ifp->if_start = ath_start;
529 ifp->if_watchdog = ath_watchdog;
530 ifp->if_ioctl = ath_ioctl;
531 ifp->if_init = ath_ifinit;
532 IFQ_SET_READY(&ifp->if_snd);
533
534 ic->ic_ifp = ifp;
535 ic->ic_reset = ath_reset;
536 ic->ic_newassoc = ath_newassoc;
537 ic->ic_updateslot = ath_updateslot;
538 ic->ic_wme.wme_update = ath_wme_update;
539 /* XXX not right but it's not used anywhere important */
540 ic->ic_phytype = IEEE80211_T_OFDM;
541 ic->ic_opmode = IEEE80211_M_STA;
542 ic->ic_caps =
543 IEEE80211_C_IBSS /* ibss, nee adhoc, mode */
544 | IEEE80211_C_HOSTAP /* hostap mode */
545 | IEEE80211_C_MONITOR /* monitor mode */
546 | IEEE80211_C_SHPREAMBLE /* short preamble supported */
547 | IEEE80211_C_SHSLOT /* short slot time supported */
548 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */
549 | IEEE80211_C_TXFRAG /* handle tx frags */
550 ;
551 /*
552 * Query the hal to figure out h/w crypto support.
553 */
554 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
555 ic->ic_caps |= IEEE80211_C_WEP;
556 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
557 ic->ic_caps |= IEEE80211_C_AES;
558 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
559 ic->ic_caps |= IEEE80211_C_AES_CCM;
560 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
561 ic->ic_caps |= IEEE80211_C_CKIP;
562 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
563 ic->ic_caps |= IEEE80211_C_TKIP;
564 /*
565 * Check if h/w does the MIC and/or whether the
566 * separate key cache entries are required to
567 * handle both tx+rx MIC keys.
568 */
569 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
570 ic->ic_caps |= IEEE80211_C_TKIPMIC;
571 if (ath_hal_tkipsplit(ah))
572 sc->sc_splitmic = 1;
573 }
574 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
575 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
576 /*
577 * TPC support can be done either with a global cap or
578 * per-packet support. The latter is not available on
579 * all parts. We're a bit pedantic here as all parts
580 * support a global cap.
581 */
582 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
583 ic->ic_caps |= IEEE80211_C_TXPMGT;
584
585 /*
586 * Mark WME capability only if we have sufficient
587 * hardware queues to do proper priority scheduling.
588 */
589 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
590 ic->ic_caps |= IEEE80211_C_WME;
591 /*
592 * Check for misc other capabilities.
593 */
594 if (ath_hal_hasbursting(ah))
595 ic->ic_caps |= IEEE80211_C_BURST;
596
597 /*
598 * Indicate we need the 802.11 header padded to a
599 * 32-bit boundary for 4-address and QoS frames.
600 */
601 ic->ic_flags |= IEEE80211_F_DATAPAD;
602
603 /*
604 * Query the hal about antenna support.
605 */
606 sc->sc_defant = ath_hal_getdefantenna(ah);
607
608 /*
609 * Not all chips have the VEOL support we want to
610 * use with IBSS beacons; check here for it.
611 */
612 sc->sc_hasveol = ath_hal_hasveol(ah);
613
614 /* get mac address from hardware */
615 ath_hal_getmac(ah, ic->ic_myaddr);
616
617 if_attach(ifp);
618 /* call MI attach routine. */
619 ieee80211_ifattach(ic);
620 /* override default methods */
621 ic->ic_node_alloc = ath_node_alloc;
622 sc->sc_node_free = ic->ic_node_free;
623 ic->ic_node_free = ath_node_free;
624 ic->ic_node_getrssi = ath_node_getrssi;
625 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
626 ic->ic_recv_mgmt = ath_recv_mgmt;
627 sc->sc_newstate = ic->ic_newstate;
628 ic->ic_newstate = ath_newstate;
629 ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
630 ic->ic_crypto.cs_key_alloc = ath_key_alloc;
631 ic->ic_crypto.cs_key_delete = ath_key_delete;
632 ic->ic_crypto.cs_key_set = ath_key_set;
633 ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
634 ic->ic_crypto.cs_key_update_end = ath_key_update_end;
635 /* complete initialization */
636 ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
637
638 #if NBPFILTER > 0
639 ath_bpfattach(sc);
640 #endif
641
642 #ifdef __NetBSD__
643 sc->sc_flags |= ATH_ATTACHED;
644 sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
645 ath_power, sc);
646 if (sc->sc_powerhook == NULL)
647 printf("%s: WARNING: unable to establish power hook\n",
648 sc->sc_dev.dv_xname);
649 #endif
650
651 /*
652 * Setup dynamic sysctl's now that country code and
653 * regdomain are available from the hal.
654 */
655 ath_sysctlattach(sc);
656
657 ieee80211_announce(ic);
658 ath_announce(sc);
659 return 0;
660 bad2:
661 ath_tx_cleanup(sc);
662 ath_desc_free(sc);
663 bad:
664 if (ah)
665 ath_hal_detach(ah);
666 sc->sc_invalid = 1;
667 return error;
668 }
669
670 int
671 ath_detach(struct ath_softc *sc)
672 {
673 struct ifnet *ifp = &sc->sc_if;
674 int s;
675
676 if ((sc->sc_flags & ATH_ATTACHED) == 0)
677 return (0);
678
679 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
680 __func__, ifp->if_flags);
681
682 s = splnet();
683 ath_stop(ifp, 1);
684 #if NBPFILTER > 0
685 bpfdetach(ifp);
686 #endif
687 /*
688 * NB: the order of these is important:
689 * o call the 802.11 layer before detaching the hal to
690 * insure callbacks into the driver to delete global
691 * key cache entries can be handled
692 * o reclaim the tx queue data structures after calling
693 * the 802.11 layer as we'll get called back to reclaim
694 * node state and potentially want to use them
695 * o to cleanup the tx queues the hal is called, so detach
696 * it last
697 * Other than that, it's straightforward...
698 */
699 ieee80211_ifdetach(&sc->sc_ic);
700 #ifdef ATH_TX99_DIAG
701 if (sc->sc_tx99 != NULL)
702 sc->sc_tx99->detach(sc->sc_tx99);
703 #endif
704 ath_rate_detach(sc->sc_rc);
705 ath_desc_free(sc);
706 ath_tx_cleanup(sc);
707 sysctl_teardown(&sc->sc_sysctllog);
708 ath_hal_detach(sc->sc_ah);
709 if_detach(ifp);
710 splx(s);
711 powerhook_disestablish(sc->sc_powerhook);
712
713 return 0;
714 }
715
716 #ifdef __NetBSD__
717 void
718 ath_power(int why, void *arg)
719 {
720 struct ath_softc *sc = arg;
721 int s;
722
723 DPRINTF(sc, ATH_DEBUG_ANY, "ath_power(%d)\n", why);
724
725 s = splnet();
726 switch (why) {
727 case PWR_SUSPEND:
728 case PWR_STANDBY:
729 ath_suspend(sc, why);
730 break;
731 case PWR_RESUME:
732 ath_resume(sc, why);
733 break;
734 case PWR_SOFTSUSPEND:
735 case PWR_SOFTSTANDBY:
736 case PWR_SOFTRESUME:
737 break;
738 }
739 splx(s);
740 }
741 #endif
742
743 void
744 ath_suspend(struct ath_softc *sc, int why)
745 {
746 struct ifnet *ifp = &sc->sc_if;
747
748 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
749 __func__, ifp->if_flags);
750
751 ath_stop(ifp, 1);
752 if (sc->sc_power != NULL)
753 (*sc->sc_power)(sc, why);
754 }
755
756 void
757 ath_resume(struct ath_softc *sc, int why)
758 {
759 struct ifnet *ifp = &sc->sc_if;
760
761 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
762 __func__, ifp->if_flags);
763
764 if (ifp->if_flags & IFF_UP) {
765 ath_init(sc);
766 #if 0
767 (void)ath_intr(sc);
768 #endif
769 if (sc->sc_power != NULL)
770 (*sc->sc_power)(sc, why);
771 if (ifp->if_flags & IFF_RUNNING)
772 ath_start(ifp);
773 }
774 if (sc->sc_softled) {
775 ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
776 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
777 }
778 }
779
780 void
781 ath_shutdown(void *arg)
782 {
783 struct ath_softc *sc = arg;
784
785 ath_stop(&sc->sc_if, 1);
786 }
787
788 /*
789 * Interrupt handler. Most of the actual processing is deferred.
790 */
791 int
792 ath_intr(void *arg)
793 {
794 struct ath_softc *sc = arg;
795 struct ifnet *ifp = &sc->sc_if;
796 struct ath_hal *ah = sc->sc_ah;
797 HAL_INT status;
798
799 if (sc->sc_invalid) {
800 /*
801 * The hardware is not ready/present, don't touch anything.
802 * Note this can happen early on if the IRQ is shared.
803 */
804 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
805 return 0;
806 }
807
808 if (!ath_hal_intrpend(ah)) /* shared irq, not for us */
809 return 0;
810
811 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
812 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
813 __func__, ifp->if_flags);
814 ath_hal_getisr(ah, &status); /* clear ISR */
815 ath_hal_intrset(ah, 0); /* disable further intr's */
816 return 1; /* XXX */
817 }
818 /*
819 * Figure out the reason(s) for the interrupt. Note
820 * that the hal returns a pseudo-ISR that may include
821 * bits we haven't explicitly enabled so we mask the
822 * value to insure we only process bits we requested.
823 */
824 ath_hal_getisr(ah, &status); /* NB: clears ISR too */
825 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
826 status &= sc->sc_imask; /* discard unasked for bits */
827 if (status & HAL_INT_FATAL) {
828 /*
829 * Fatal errors are unrecoverable. Typically
830 * these are caused by DMA errors. Unfortunately
831 * the exact reason is not (presently) returned
832 * by the hal.
833 */
834 sc->sc_stats.ast_hardware++;
835 ath_hal_intrset(ah, 0); /* disable intr's until reset */
836 TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
837 } else if (status & HAL_INT_RXORN) {
838 sc->sc_stats.ast_rxorn++;
839 ath_hal_intrset(ah, 0); /* disable intr's until reset */
840 TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
841 } else {
842 if (status & HAL_INT_SWBA) {
843 /*
844 * Software beacon alert--time to send a beacon.
845 * Handle beacon transmission directly; deferring
846 * this is too slow to meet timing constraints
847 * under load.
848 */
849 ath_beacon_proc(sc, 0);
850 }
851 if (status & HAL_INT_RXEOL) {
852 /*
853 * NB: the hardware should re-read the link when
854 * RXE bit is written, but it doesn't work at
855 * least on older hardware revs.
856 */
857 sc->sc_stats.ast_rxeol++;
858 sc->sc_rxlink = NULL;
859 }
860 if (status & HAL_INT_TXURN) {
861 sc->sc_stats.ast_txurn++;
862 /* bump tx trigger level */
863 ath_hal_updatetxtriglevel(ah, AH_TRUE);
864 }
865 if (status & HAL_INT_RX)
866 TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
867 if (status & HAL_INT_TX)
868 TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
869 if (status & HAL_INT_BMISS) {
870 sc->sc_stats.ast_bmiss++;
871 TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
872 }
873 if (status & HAL_INT_MIB) {
874 sc->sc_stats.ast_mib++;
875 /*
876 * Disable interrupts until we service the MIB
877 * interrupt; otherwise it will continue to fire.
878 */
879 ath_hal_intrset(ah, 0);
880 /*
881 * Let the hal handle the event. We assume it will
882 * clear whatever condition caused the interrupt.
883 */
884 ath_hal_mibevent(ah, &sc->sc_halstats);
885 ath_hal_intrset(ah, sc->sc_imask);
886 }
887 }
888 return 1;
889 }
890
891 /* Swap transmit descriptor.
892 * if AH_NEED_DESC_SWAP flag is not defined this becomes a "null"
893 * function.
894 */
895 static inline void
896 ath_desc_swap(struct ath_desc *ds)
897 {
898 #ifdef AH_NEED_DESC_SWAP
899 ds->ds_link = htole32(ds->ds_link);
900 ds->ds_data = htole32(ds->ds_data);
901 ds->ds_ctl0 = htole32(ds->ds_ctl0);
902 ds->ds_ctl1 = htole32(ds->ds_ctl1);
903 ds->ds_hw[0] = htole32(ds->ds_hw[0]);
904 ds->ds_hw[1] = htole32(ds->ds_hw[1]);
905 #endif
906 }
907
908 static void
909 ath_fatal_proc(void *arg, int pending)
910 {
911 struct ath_softc *sc = arg;
912 struct ifnet *ifp = &sc->sc_if;
913
914 if_printf(ifp, "hardware error; resetting\n");
915 ath_reset(ifp);
916 }
917
918 static void
919 ath_rxorn_proc(void *arg, int pending)
920 {
921 struct ath_softc *sc = arg;
922 struct ifnet *ifp = &sc->sc_if;
923
924 if_printf(ifp, "rx FIFO overrun; resetting\n");
925 ath_reset(ifp);
926 }
927
928 static void
929 ath_bmiss_proc(void *arg, int pending)
930 {
931 struct ath_softc *sc = arg;
932 struct ieee80211com *ic = &sc->sc_ic;
933
934 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
935 KASSERT(ic->ic_opmode == IEEE80211_M_STA,
936 ("unexpect operating mode %u", ic->ic_opmode));
937 if (ic->ic_state == IEEE80211_S_RUN) {
938 u_int64_t lastrx = sc->sc_lastrx;
939 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
940
941 DPRINTF(sc, ATH_DEBUG_BEACON,
942 "%s: tsf %" PRIu64 " lastrx %" PRId64
943 " (%" PRIu64 ") bmiss %u\n",
944 __func__, tsf, tsf - lastrx, lastrx,
945 ic->ic_bmisstimeout*1024);
946 /*
947 * Workaround phantom bmiss interrupts by sanity-checking
948 * the time of our last rx'd frame. If it is within the
949 * beacon miss interval then ignore the interrupt. If it's
950 * truly a bmiss we'll get another interrupt soon and that'll
951 * be dispatched up for processing.
952 */
953 if (tsf - lastrx > ic->ic_bmisstimeout*1024) {
954 NET_LOCK_GIANT();
955 ieee80211_beacon_miss(ic);
956 NET_UNLOCK_GIANT();
957 } else
958 sc->sc_stats.ast_bmiss_phantom++;
959 }
960 }
961
962 static void
963 ath_radar_proc(void *arg, int pending)
964 {
965 struct ath_softc *sc = arg;
966 struct ifnet *ifp = &sc->sc_if;
967 struct ath_hal *ah = sc->sc_ah;
968 HAL_CHANNEL hchan;
969
970 if (ath_hal_procdfs(ah, &hchan)) {
971 if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n",
972 hchan.channel, hchan.channelFlags, hchan.privFlags);
973 /*
974 * Initiate channel change.
975 */
976 /* XXX not yet */
977 }
978 }
979
980 static u_int
981 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
982 {
983 #define N(a) (sizeof(a) / sizeof(a[0]))
984 static const u_int modeflags[] = {
985 0, /* IEEE80211_MODE_AUTO */
986 CHANNEL_A, /* IEEE80211_MODE_11A */
987 CHANNEL_B, /* IEEE80211_MODE_11B */
988 CHANNEL_PUREG, /* IEEE80211_MODE_11G */
989 0, /* IEEE80211_MODE_FH */
990 CHANNEL_ST, /* IEEE80211_MODE_TURBO_A */
991 CHANNEL_108G /* IEEE80211_MODE_TURBO_G */
992 };
993 enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
994
995 KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
996 KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
997 return modeflags[mode];
998 #undef N
999 }
1000
1001 static int
1002 ath_ifinit(struct ifnet *ifp)
1003 {
1004 struct ath_softc *sc = (struct ath_softc *)ifp->if_softc;
1005
1006 return ath_init(sc);
1007 }
1008
1009 static int
1010 ath_init(struct ath_softc *sc)
1011 {
1012 struct ifnet *ifp = &sc->sc_if;
1013 struct ieee80211com *ic = &sc->sc_ic;
1014 struct ath_hal *ah = sc->sc_ah;
1015 HAL_STATUS status;
1016 int error = 0;
1017
1018 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1019 __func__, ifp->if_flags);
1020
1021 ATH_LOCK(sc);
1022
1023 if ((error = ath_enable(sc)) != 0)
1024 return error;
1025
1026 /*
1027 * Stop anything previously setup. This is safe
1028 * whether this is the first time through or not.
1029 */
1030 ath_stop_locked(ifp, 0);
1031
1032 /*
1033 * The basic interface to setting the hardware in a good
1034 * state is ``reset''. On return the hardware is known to
1035 * be powered up and with interrupts disabled. This must
1036 * be followed by initialization of the appropriate bits
1037 * and then setup of the interrupt mask.
1038 */
1039 sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
1040 sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
1041 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
1042 if_printf(ifp, "unable to reset hardware; hal status %u\n",
1043 status);
1044 error = EIO;
1045 goto done;
1046 }
1047
1048 /*
1049 * This is needed only to setup initial state
1050 * but it's best done after a reset.
1051 */
1052 ath_update_txpow(sc);
1053 /*
1054 * Likewise this is set during reset so update
1055 * state cached in the driver.
1056 */
1057 ath_restore_diversity(sc);
1058 sc->sc_calinterval = 1;
1059 sc->sc_caltries = 0;
1060
1061 /*
1062 * Setup the hardware after reset: the key cache
1063 * is filled as needed and the receive engine is
1064 * set going. Frame transmit is handled entirely
1065 * in the frame output path; there's nothing to do
1066 * here except setup the interrupt mask.
1067 */
1068 if ((error = ath_startrecv(sc)) != 0) {
1069 if_printf(ifp, "unable to start recv logic\n");
1070 goto done;
1071 }
1072
1073 /*
1074 * Enable interrupts.
1075 */
1076 sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1077 | HAL_INT_RXEOL | HAL_INT_RXORN
1078 | HAL_INT_FATAL | HAL_INT_GLOBAL;
1079 /*
1080 * Enable MIB interrupts when there are hardware phy counters.
1081 * Note we only do this (at the moment) for station mode.
1082 */
1083 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1084 sc->sc_imask |= HAL_INT_MIB;
1085 ath_hal_intrset(ah, sc->sc_imask);
1086
1087 ifp->if_flags |= IFF_RUNNING;
1088 ic->ic_state = IEEE80211_S_INIT;
1089
1090 /*
1091 * The hardware should be ready to go now so it's safe
1092 * to kick the 802.11 state machine as it's likely to
1093 * immediately call back to us to send mgmt frames.
1094 */
1095 ath_chan_change(sc, ic->ic_curchan);
1096 #ifdef ATH_TX99_DIAG
1097 if (sc->sc_tx99 != NULL)
1098 sc->sc_tx99->start(sc->sc_tx99);
1099 else
1100 #endif
1101 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1102 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
1103 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1104 } else
1105 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1106 done:
1107 ATH_UNLOCK(sc);
1108 return error;
1109 }
1110
1111 static void
1112 ath_stop_locked(struct ifnet *ifp, int disable)
1113 {
1114 struct ath_softc *sc = ifp->if_softc;
1115 struct ieee80211com *ic = &sc->sc_ic;
1116 struct ath_hal *ah = sc->sc_ah;
1117
1118 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1119 __func__, sc->sc_invalid, ifp->if_flags);
1120
1121 ATH_LOCK_ASSERT(sc);
1122 if (ifp->if_flags & IFF_RUNNING) {
1123 /*
1124 * Shutdown the hardware and driver:
1125 * reset 802.11 state machine
1126 * turn off timers
1127 * disable interrupts
1128 * turn off the radio
1129 * clear transmit machinery
1130 * clear receive machinery
1131 * drain and release tx queues
1132 * reclaim beacon resources
1133 * power down hardware
1134 *
1135 * Note that some of this work is not possible if the
1136 * hardware is gone (invalid).
1137 */
1138 #ifdef ATH_TX99_DIAG
1139 if (sc->sc_tx99 != NULL)
1140 sc->sc_tx99->stop(sc->sc_tx99);
1141 #endif
1142 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1143 ifp->if_flags &= ~IFF_RUNNING;
1144 ifp->if_timer = 0;
1145 if (!sc->sc_invalid) {
1146 if (sc->sc_softled) {
1147 callout_stop(&sc->sc_ledtimer);
1148 ath_hal_gpioset(ah, sc->sc_ledpin,
1149 !sc->sc_ledon);
1150 sc->sc_blinking = 0;
1151 }
1152 ath_hal_intrset(ah, 0);
1153 }
1154 ath_draintxq(sc);
1155 if (!sc->sc_invalid) {
1156 ath_stoprecv(sc);
1157 ath_hal_phydisable(ah);
1158 } else
1159 sc->sc_rxlink = NULL;
1160 IF_PURGE(&ifp->if_snd);
1161 ath_beacon_free(sc);
1162 if (disable)
1163 ath_disable(sc);
1164 }
1165 }
1166
1167 static void
1168 ath_stop(struct ifnet *ifp, int disable)
1169 {
1170 struct ath_softc *sc = ifp->if_softc;
1171
1172 ATH_LOCK(sc);
1173 ath_stop_locked(ifp, disable);
1174 if (!sc->sc_invalid) {
1175 /*
1176 * Set the chip in full sleep mode. Note that we are
1177 * careful to do this only when bringing the interface
1178 * completely to a stop. When the chip is in this state
1179 * it must be carefully woken up or references to
1180 * registers in the PCI clock domain may freeze the bus
1181 * (and system). This varies by chip and is mostly an
1182 * issue with newer parts that go to sleep more quickly.
1183 */
1184 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
1185 }
1186 ATH_UNLOCK(sc);
1187 }
1188
1189 static void
1190 ath_restore_diversity(struct ath_softc *sc)
1191 {
1192 struct ifnet *ifp = &sc->sc_if;
1193 struct ath_hal *ah = sc->sc_ah;
1194
1195 if (!ath_hal_setdiversity(sc->sc_ah, sc->sc_diversity) ||
1196 sc->sc_diversity != ath_hal_getdiversity(ah)) {
1197 if_printf(ifp, "could not restore diversity setting %d\n",
1198 sc->sc_diversity);
1199 sc->sc_diversity = ath_hal_getdiversity(ah);
1200 }
1201 }
1202
1203 /*
1204 * Reset the hardware w/o losing operational state. This is
1205 * basically a more efficient way of doing ath_stop, ath_init,
1206 * followed by state transitions to the current 802.11
1207 * operational state. Used to recover from various errors and
1208 * to reset or reload hardware state.
1209 */
1210 int
1211 ath_reset(struct ifnet *ifp)
1212 {
1213 struct ath_softc *sc = ifp->if_softc;
1214 struct ieee80211com *ic = &sc->sc_ic;
1215 struct ath_hal *ah = sc->sc_ah;
1216 struct ieee80211_channel *c;
1217 HAL_STATUS status;
1218
1219 /*
1220 * Convert to a HAL channel description with the flags
1221 * constrained to reflect the current operating mode.
1222 */
1223 c = ic->ic_curchan;
1224 sc->sc_curchan.channel = c->ic_freq;
1225 sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
1226
1227 ath_hal_intrset(ah, 0); /* disable interrupts */
1228 ath_draintxq(sc); /* stop xmit side */
1229 ath_stoprecv(sc); /* stop recv side */
1230 /* NB: indicate channel change so we do a full reset */
1231 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
1232 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1233 __func__, status);
1234 ath_update_txpow(sc); /* update tx power state */
1235 ath_restore_diversity(sc);
1236 sc->sc_calinterval = 1;
1237 sc->sc_caltries = 0;
1238 if (ath_startrecv(sc) != 0) /* restart recv */
1239 if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1240 /*
1241 * We may be doing a reset in response to an ioctl
1242 * that changes the channel so update any state that
1243 * might change as a result.
1244 */
1245 ath_chan_change(sc, c);
1246 if (ic->ic_state == IEEE80211_S_RUN)
1247 ath_beacon_config(sc); /* restart beacons */
1248 ath_hal_intrset(ah, sc->sc_imask);
1249
1250 ath_start(ifp); /* restart xmit */
1251 return 0;
1252 }
1253
1254 /*
1255 * Cleanup driver resources when we run out of buffers
1256 * while processing fragments; return the tx buffers
1257 * allocated and drop node references.
1258 */
1259 static void
1260 ath_txfrag_cleanup(struct ath_softc *sc,
1261 ath_bufhead *frags, struct ieee80211_node *ni)
1262 {
1263 struct ath_buf *bf;
1264
1265 ATH_TXBUF_LOCK_ASSERT(sc);
1266
1267 while ((bf = STAILQ_FIRST(frags)) != NULL) {
1268 STAILQ_REMOVE_HEAD(frags, bf_list);
1269 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1270 sc->sc_if.if_flags &= ~IFF_OACTIVE;
1271 ieee80211_node_decref(ni);
1272 }
1273 }
1274
1275 /*
1276 * Setup xmit of a fragmented frame. Allocate a buffer
1277 * for each frag and bump the node reference count to
1278 * reflect the held reference to be setup by ath_tx_start.
1279 */
1280 static int
1281 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
1282 struct mbuf *m0, struct ieee80211_node *ni)
1283 {
1284 struct mbuf *m;
1285 struct ath_buf *bf;
1286
1287 ATH_TXBUF_LOCK(sc);
1288 for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
1289 bf = STAILQ_FIRST(&sc->sc_txbuf);
1290 if (bf == NULL) { /* out of buffers, cleanup */
1291 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1292 __func__);
1293 sc->sc_if.if_flags |= IFF_OACTIVE;
1294 ath_txfrag_cleanup(sc, frags, ni);
1295 break;
1296 }
1297 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1298 ieee80211_node_incref(ni);
1299 STAILQ_INSERT_TAIL(frags, bf, bf_list);
1300 }
1301 ATH_TXBUF_UNLOCK(sc);
1302
1303 return !STAILQ_EMPTY(frags);
1304 }
1305
1306 static void
1307 ath_start(struct ifnet *ifp)
1308 {
1309 struct ath_softc *sc = ifp->if_softc;
1310 struct ath_hal *ah = sc->sc_ah;
1311 struct ieee80211com *ic = &sc->sc_ic;
1312 struct ieee80211_node *ni;
1313 struct ath_buf *bf;
1314 struct mbuf *m, *next;
1315 struct ieee80211_frame *wh;
1316 struct ether_header *eh;
1317 ath_bufhead frags;
1318
1319 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
1320 return;
1321 for (;;) {
1322 /*
1323 * Grab a TX buffer and associated resources.
1324 */
1325 ATH_TXBUF_LOCK(sc);
1326 bf = STAILQ_FIRST(&sc->sc_txbuf);
1327 if (bf != NULL)
1328 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1329 ATH_TXBUF_UNLOCK(sc);
1330 if (bf == NULL) {
1331 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1332 __func__);
1333 sc->sc_stats.ast_tx_qstop++;
1334 ifp->if_flags |= IFF_OACTIVE;
1335 break;
1336 }
1337 /*
1338 * Poll the management queue for frames; they
1339 * have priority over normal data frames.
1340 */
1341 IF_DEQUEUE(&ic->ic_mgtq, m);
1342 if (m == NULL) {
1343 /*
1344 * No data frames go out unless we're associated.
1345 */
1346 if (ic->ic_state != IEEE80211_S_RUN) {
1347 DPRINTF(sc, ATH_DEBUG_XMIT,
1348 "%s: discard data packet, state %s\n",
1349 __func__,
1350 ieee80211_state_name[ic->ic_state]);
1351 sc->sc_stats.ast_tx_discard++;
1352 ATH_TXBUF_LOCK(sc);
1353 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1354 ATH_TXBUF_UNLOCK(sc);
1355 break;
1356 }
1357 IFQ_DEQUEUE(&ifp->if_snd, m); /* XXX: LOCK */
1358 if (m == NULL) {
1359 ATH_TXBUF_LOCK(sc);
1360 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1361 ATH_TXBUF_UNLOCK(sc);
1362 break;
1363 }
1364 STAILQ_INIT(&frags);
1365 /*
1366 * Find the node for the destination so we can do
1367 * things like power save and fast frames aggregation.
1368 */
1369 if (m->m_len < sizeof(struct ether_header) &&
1370 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
1371 ic->ic_stats.is_tx_nobuf++; /* XXX */
1372 ni = NULL;
1373 goto bad;
1374 }
1375 eh = mtod(m, struct ether_header *);
1376 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1377 if (ni == NULL) {
1378 /* NB: ieee80211_find_txnode does stat+msg */
1379 m_freem(m);
1380 goto bad;
1381 }
1382 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1383 (m->m_flags & M_PWR_SAV) == 0) {
1384 /*
1385 * Station in power save mode; pass the frame
1386 * to the 802.11 layer and continue. We'll get
1387 * the frame back when the time is right.
1388 */
1389 ieee80211_pwrsave(ic, ni, m);
1390 goto reclaim;
1391 }
1392 /* calculate priority so we can find the tx queue */
1393 if (ieee80211_classify(ic, m, ni)) {
1394 DPRINTF(sc, ATH_DEBUG_XMIT,
1395 "%s: discard, classification failure\n",
1396 __func__);
1397 m_freem(m);
1398 goto bad;
1399 }
1400 ifp->if_opackets++;
1401
1402 #if NBPFILTER > 0
1403 if (ifp->if_bpf)
1404 bpf_mtap(ifp->if_bpf, m);
1405 #endif
1406 /*
1407 * Encapsulate the packet in prep for transmission.
1408 */
1409 m = ieee80211_encap(ic, m, ni);
1410 if (m == NULL) {
1411 DPRINTF(sc, ATH_DEBUG_XMIT,
1412 "%s: encapsulation failure\n",
1413 __func__);
1414 sc->sc_stats.ast_tx_encap++;
1415 goto bad;
1416 }
1417 /*
1418 * Check for fragmentation. If this has frame
1419 * has been broken up verify we have enough
1420 * buffers to send all the fragments so all
1421 * go out or none...
1422 */
1423 if ((m->m_flags & M_FRAG) &&
1424 !ath_txfrag_setup(sc, &frags, m, ni)) {
1425 DPRINTF(sc, ATH_DEBUG_ANY,
1426 "%s: out of txfrag buffers\n", __func__);
1427 ic->ic_stats.is_tx_nobuf++; /* XXX */
1428 ath_freetx(m);
1429 goto bad;
1430 }
1431 } else {
1432 /*
1433 * Hack! The referenced node pointer is in the
1434 * rcvif field of the packet header. This is
1435 * placed there by ieee80211_mgmt_output because
1436 * we need to hold the reference with the frame
1437 * and there's no other way (other than packet
1438 * tags which we consider too expensive to use)
1439 * to pass it along.
1440 */
1441 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1442 m->m_pkthdr.rcvif = NULL;
1443
1444 wh = mtod(m, struct ieee80211_frame *);
1445 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1446 IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1447 /* fill time stamp */
1448 u_int64_t tsf;
1449 u_int32_t *tstamp;
1450
1451 tsf = ath_hal_gettsf64(ah);
1452 /* XXX: adjust 100us delay to xmit */
1453 tsf += 100;
1454 tstamp = (u_int32_t *)&wh[1];
1455 tstamp[0] = htole32(tsf & 0xffffffff);
1456 tstamp[1] = htole32(tsf >> 32);
1457 }
1458 sc->sc_stats.ast_tx_mgmt++;
1459 }
1460
1461 nextfrag:
1462 next = m->m_nextpkt;
1463 if (ath_tx_start(sc, ni, bf, m)) {
1464 bad:
1465 ifp->if_oerrors++;
1466 reclaim:
1467 ATH_TXBUF_LOCK(sc);
1468 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1469 ath_txfrag_cleanup(sc, &frags, ni);
1470 ATH_TXBUF_UNLOCK(sc);
1471 if (ni != NULL)
1472 ieee80211_free_node(ni);
1473 continue;
1474 }
1475 if (next != NULL) {
1476 m = next;
1477 bf = STAILQ_FIRST(&frags);
1478 KASSERT(bf != NULL, ("no buf for txfrag"));
1479 STAILQ_REMOVE_HEAD(&frags, bf_list);
1480 goto nextfrag;
1481 }
1482
1483 ifp->if_timer = 1;
1484 }
1485 }
1486
1487 static int
1488 ath_media_change(struct ifnet *ifp)
1489 {
1490 #define IS_UP(ifp) \
1491 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
1492 int error;
1493
1494 error = ieee80211_media_change(ifp);
1495 if (error == ENETRESET) {
1496 if (IS_UP(ifp))
1497 ath_init(ifp->if_softc); /* XXX lose error */
1498 error = 0;
1499 }
1500 return error;
1501 #undef IS_UP
1502 }
1503
1504 #ifdef AR_DEBUG
1505 static void
1506 ath_keyprint(const char *tag, u_int ix,
1507 const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1508 {
1509 static const char *ciphers[] = {
1510 "WEP",
1511 "AES-OCB",
1512 "AES-CCM",
1513 "CKIP",
1514 "TKIP",
1515 "CLR",
1516 };
1517 int i, n;
1518
1519 printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1520 for (i = 0, n = hk->kv_len; i < n; i++)
1521 printf("%02x", hk->kv_val[i]);
1522 printf(" mac %s", ether_sprintf(mac));
1523 if (hk->kv_type == HAL_CIPHER_TKIP) {
1524 printf(" mic ");
1525 for (i = 0; i < sizeof(hk->kv_mic); i++)
1526 printf("%02x", hk->kv_mic[i]);
1527 }
1528 printf("\n");
1529 }
1530 #endif
1531
1532 /*
1533 * Set a TKIP key into the hardware. This handles the
1534 * potential distribution of key state to multiple key
1535 * cache slots for TKIP.
1536 */
1537 static int
1538 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1539 HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1540 {
1541 #define IEEE80211_KEY_XR (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1542 static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1543 struct ath_hal *ah = sc->sc_ah;
1544
1545 KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1546 ("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1547 KASSERT(sc->sc_splitmic, ("key cache !split"));
1548 if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1549 /*
1550 * TX key goes at first index, RX key at the rx index.
1551 * The hal handles the MIC keys at index+64.
1552 */
1553 memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1554 KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1555 if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
1556 return 0;
1557
1558 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1559 KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1560 /* XXX delete tx key on failure? */
1561 return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
1562 } else if (k->wk_flags & IEEE80211_KEY_XR) {
1563 /*
1564 * TX/RX key goes at first index.
1565 * The hal handles the MIC keys are index+64.
1566 */
1567 memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
1568 k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
1569 KEYPRINTF(sc, k->wk_keyix, hk, mac);
1570 return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1571 }
1572 return 0;
1573 #undef IEEE80211_KEY_XR
1574 }
1575
1576 /*
1577 * Set a net80211 key into the hardware. This handles the
1578 * potential distribution of key state to multiple key
1579 * cache slots for TKIP with hardware MIC support.
1580 */
1581 static int
1582 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1583 const u_int8_t mac0[IEEE80211_ADDR_LEN],
1584 struct ieee80211_node *bss)
1585 {
1586 #define N(a) (sizeof(a)/sizeof(a[0]))
1587 static const u_int8_t ciphermap[] = {
1588 HAL_CIPHER_WEP, /* IEEE80211_CIPHER_WEP */
1589 HAL_CIPHER_TKIP, /* IEEE80211_CIPHER_TKIP */
1590 HAL_CIPHER_AES_OCB, /* IEEE80211_CIPHER_AES_OCB */
1591 HAL_CIPHER_AES_CCM, /* IEEE80211_CIPHER_AES_CCM */
1592 (u_int8_t) -1, /* 4 is not allocated */
1593 HAL_CIPHER_CKIP, /* IEEE80211_CIPHER_CKIP */
1594 HAL_CIPHER_CLR, /* IEEE80211_CIPHER_NONE */
1595 };
1596 struct ath_hal *ah = sc->sc_ah;
1597 const struct ieee80211_cipher *cip = k->wk_cipher;
1598 u_int8_t gmac[IEEE80211_ADDR_LEN];
1599 const u_int8_t *mac;
1600 HAL_KEYVAL hk;
1601
1602 memset(&hk, 0, sizeof(hk));
1603 /*
1604 * Software crypto uses a "clear key" so non-crypto
1605 * state kept in the key cache are maintained and
1606 * so that rx frames have an entry to match.
1607 */
1608 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1609 KASSERT(cip->ic_cipher < N(ciphermap),
1610 ("invalid cipher type %u", cip->ic_cipher));
1611 hk.kv_type = ciphermap[cip->ic_cipher];
1612 hk.kv_len = k->wk_keylen;
1613 memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1614 } else
1615 hk.kv_type = HAL_CIPHER_CLR;
1616
1617 if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
1618 /*
1619 * Group keys on hardware that supports multicast frame
1620 * key search use a mac that is the sender's address with
1621 * the high bit set instead of the app-specified address.
1622 */
1623 IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
1624 gmac[0] |= 0x80;
1625 mac = gmac;
1626 } else
1627 mac = mac0;
1628
1629 if (hk.kv_type == HAL_CIPHER_TKIP &&
1630 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1631 sc->sc_splitmic) {
1632 return ath_keyset_tkip(sc, k, &hk, mac);
1633 } else {
1634 KEYPRINTF(sc, k->wk_keyix, &hk, mac);
1635 return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
1636 }
1637 #undef N
1638 }
1639
1640 /*
1641 * Allocate tx/rx key slots for TKIP. We allocate two slots for
1642 * each key, one for decrypt/encrypt and the other for the MIC.
1643 */
1644 static u_int16_t
1645 key_alloc_2pair(struct ath_softc *sc,
1646 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1647 {
1648 #define N(a) (sizeof(a)/sizeof(a[0]))
1649 u_int i, keyix;
1650
1651 KASSERT(sc->sc_splitmic, ("key cache !split"));
1652 /* XXX could optimize */
1653 for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1654 u_int8_t b = sc->sc_keymap[i];
1655 if (b != 0xff) {
1656 /*
1657 * One or more slots in this byte are free.
1658 */
1659 keyix = i*NBBY;
1660 while (b & 1) {
1661 again:
1662 keyix++;
1663 b >>= 1;
1664 }
1665 /* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1666 if (isset(sc->sc_keymap, keyix+32) ||
1667 isset(sc->sc_keymap, keyix+64) ||
1668 isset(sc->sc_keymap, keyix+32+64)) {
1669 /* full pair unavailable */
1670 /* XXX statistic */
1671 if (keyix == (i+1)*NBBY) {
1672 /* no slots were appropriate, advance */
1673 continue;
1674 }
1675 goto again;
1676 }
1677 setbit(sc->sc_keymap, keyix);
1678 setbit(sc->sc_keymap, keyix+64);
1679 setbit(sc->sc_keymap, keyix+32);
1680 setbit(sc->sc_keymap, keyix+32+64);
1681 DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1682 "%s: key pair %u,%u %u,%u\n",
1683 __func__, keyix, keyix+64,
1684 keyix+32, keyix+32+64);
1685 *txkeyix = keyix;
1686 *rxkeyix = keyix+32;
1687 return 1;
1688 }
1689 }
1690 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1691 return 0;
1692 #undef N
1693 }
1694
1695 /*
1696 * Allocate a single key cache slot.
1697 */
1698 static int
1699 key_alloc_single(struct ath_softc *sc,
1700 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1701 {
1702 #define N(a) (sizeof(a)/sizeof(a[0]))
1703 u_int i, keyix;
1704
1705 /* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
1706 for (i = 0; i < N(sc->sc_keymap); i++) {
1707 u_int8_t b = sc->sc_keymap[i];
1708 if (b != 0xff) {
1709 /*
1710 * One or more slots are free.
1711 */
1712 keyix = i*NBBY;
1713 while (b & 1)
1714 keyix++, b >>= 1;
1715 setbit(sc->sc_keymap, keyix);
1716 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
1717 __func__, keyix);
1718 *txkeyix = *rxkeyix = keyix;
1719 return 1;
1720 }
1721 }
1722 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
1723 return 0;
1724 #undef N
1725 }
1726
1727 /*
1728 * Allocate one or more key cache slots for a uniacst key. The
1729 * key itself is needed only to identify the cipher. For hardware
1730 * TKIP with split cipher+MIC keys we allocate two key cache slot
1731 * pairs so that we can setup separate TX and RX MIC keys. Note
1732 * that the MIC key for a TKIP key at slot i is assumed by the
1733 * hardware to be at slot i+64. This limits TKIP keys to the first
1734 * 64 entries.
1735 */
1736 static int
1737 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
1738 ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
1739 {
1740 struct ath_softc *sc = ic->ic_ifp->if_softc;
1741
1742 /*
1743 * Group key allocation must be handled specially for
1744 * parts that do not support multicast key cache search
1745 * functionality. For those parts the key id must match
1746 * the h/w key index so lookups find the right key. On
1747 * parts w/ the key search facility we install the sender's
1748 * mac address (with the high bit set) and let the hardware
1749 * find the key w/o using the key id. This is preferred as
1750 * it permits us to support multiple users for adhoc and/or
1751 * multi-station operation.
1752 */
1753 if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
1754 if (!(&ic->ic_nw_keys[0] <= k &&
1755 k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
1756 /* should not happen */
1757 DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1758 "%s: bogus group key\n", __func__);
1759 return 0;
1760 }
1761 /*
1762 * XXX we pre-allocate the global keys so
1763 * have no way to check if they've already been allocated.
1764 */
1765 *keyix = *rxkeyix = k - ic->ic_nw_keys;
1766 return 1;
1767 }
1768
1769 /*
1770 * We allocate two pair for TKIP when using the h/w to do
1771 * the MIC. For everything else, including software crypto,
1772 * we allocate a single entry. Note that s/w crypto requires
1773 * a pass-through slot on the 5211 and 5212. The 5210 does
1774 * not support pass-through cache entries and we map all
1775 * those requests to slot 0.
1776 */
1777 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1778 return key_alloc_single(sc, keyix, rxkeyix);
1779 } else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
1780 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
1781 return key_alloc_2pair(sc, keyix, rxkeyix);
1782 } else {
1783 return key_alloc_single(sc, keyix, rxkeyix);
1784 }
1785 }
1786
1787 /*
1788 * Delete an entry in the key cache allocated by ath_key_alloc.
1789 */
1790 static int
1791 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
1792 {
1793 struct ath_softc *sc = ic->ic_ifp->if_softc;
1794 struct ath_hal *ah = sc->sc_ah;
1795 const struct ieee80211_cipher *cip = k->wk_cipher;
1796 u_int keyix = k->wk_keyix;
1797
1798 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
1799
1800 ath_hal_keyreset(ah, keyix);
1801 /*
1802 * Handle split tx/rx keying required for TKIP with h/w MIC.
1803 */
1804 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1805 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
1806 ath_hal_keyreset(ah, keyix+32); /* RX key */
1807 if (keyix >= IEEE80211_WEP_NKID) {
1808 /*
1809 * Don't touch keymap entries for global keys so
1810 * they are never considered for dynamic allocation.
1811 */
1812 clrbit(sc->sc_keymap, keyix);
1813 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1814 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1815 sc->sc_splitmic) {
1816 clrbit(sc->sc_keymap, keyix+64); /* TX key MIC */
1817 clrbit(sc->sc_keymap, keyix+32); /* RX key */
1818 clrbit(sc->sc_keymap, keyix+32+64); /* RX key MIC */
1819 }
1820 }
1821 return 1;
1822 }
1823
1824 /*
1825 * Set the key cache contents for the specified key. Key cache
1826 * slot(s) must already have been allocated by ath_key_alloc.
1827 */
1828 static int
1829 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
1830 const u_int8_t mac[IEEE80211_ADDR_LEN])
1831 {
1832 struct ath_softc *sc = ic->ic_ifp->if_softc;
1833
1834 return ath_keyset(sc, k, mac, ic->ic_bss);
1835 }
1836
1837 /*
1838 * Block/unblock tx+rx processing while a key change is done.
1839 * We assume the caller serializes key management operations
1840 * so we only need to worry about synchronization with other
1841 * uses that originate in the driver.
1842 */
1843 static void
1844 ath_key_update_begin(struct ieee80211com *ic)
1845 {
1846 struct ifnet *ifp = ic->ic_ifp;
1847 struct ath_softc *sc = ifp->if_softc;
1848
1849 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1850 #if 0
1851 tasklet_disable(&sc->sc_rxtq);
1852 #endif
1853 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */
1854 }
1855
1856 static void
1857 ath_key_update_end(struct ieee80211com *ic)
1858 {
1859 struct ifnet *ifp = ic->ic_ifp;
1860 struct ath_softc *sc = ifp->if_softc;
1861
1862 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1863 IF_UNLOCK(&ifp->if_snd);
1864 #if 0
1865 tasklet_enable(&sc->sc_rxtq);
1866 #endif
1867 }
1868
1869 /*
1870 * Calculate the receive filter according to the
1871 * operating mode and state:
1872 *
1873 * o always accept unicast, broadcast, and multicast traffic
1874 * o maintain current state of phy error reception (the hal
1875 * may enable phy error frames for noise immunity work)
1876 * o probe request frames are accepted only when operating in
1877 * hostap, adhoc, or monitor modes
1878 * o enable promiscuous mode according to the interface state
1879 * o accept beacons:
1880 * - when operating in adhoc mode so the 802.11 layer creates
1881 * node table entries for peers,
1882 * - when operating in station mode for collecting rssi data when
1883 * the station is otherwise quiet, or
1884 * - when scanning
1885 */
1886 static u_int32_t
1887 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
1888 {
1889 struct ieee80211com *ic = &sc->sc_ic;
1890 struct ath_hal *ah = sc->sc_ah;
1891 struct ifnet *ifp = &sc->sc_if;
1892 u_int32_t rfilt;
1893
1894 rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1895 | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1896 if (ic->ic_opmode != IEEE80211_M_STA)
1897 rfilt |= HAL_RX_FILTER_PROBEREQ;
1898 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1899 (ifp->if_flags & IFF_PROMISC))
1900 rfilt |= HAL_RX_FILTER_PROM;
1901 if (ic->ic_opmode == IEEE80211_M_STA ||
1902 ic->ic_opmode == IEEE80211_M_IBSS ||
1903 state == IEEE80211_S_SCAN)
1904 rfilt |= HAL_RX_FILTER_BEACON;
1905 return rfilt;
1906 }
1907
1908 static void
1909 ath_mcastfilter_accum(void *dl, u_int32_t *mfilt)
1910 {
1911 u_int32_t val;
1912 u_int8_t pos;
1913
1914 /* calculate XOR of eight 6bit values */
1915 val = LE_READ_4((char *)dl + 0);
1916 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1917 val = LE_READ_4((char *)dl + 3);
1918 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1919 pos &= 0x3f;
1920 mfilt[pos / 32] |= (1 << (pos % 32));
1921 }
1922
1923 static void
1924 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t *mfilt)
1925 {
1926 struct ifnet *ifp = &sc->sc_if;
1927 struct ether_multi *enm;
1928 struct ether_multistep estep;
1929
1930 mfilt[0] = mfilt[1] = 0;
1931 ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
1932 while (enm != NULL) {
1933 /* XXX Punt on ranges. */
1934 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
1935 mfilt[0] = mfilt[1] = ~((u_int32_t)0);
1936 ifp->if_flags |= IFF_ALLMULTI;
1937 return;
1938 }
1939 ath_mcastfilter_accum(enm->enm_addrlo, mfilt);
1940 ETHER_NEXT_MULTI(estep, enm);
1941 }
1942 ifp->if_flags &= ~IFF_ALLMULTI;
1943 }
1944
1945 static void
1946 ath_mode_init(struct ath_softc *sc)
1947 {
1948 struct ieee80211com *ic = &sc->sc_ic;
1949 struct ath_hal *ah = sc->sc_ah;
1950 u_int32_t rfilt, mfilt[2];
1951 int i;
1952
1953 /* configure rx filter */
1954 rfilt = ath_calcrxfilter(sc, ic->ic_state);
1955 ath_hal_setrxfilter(ah, rfilt);
1956
1957 /* configure operational mode */
1958 ath_hal_setopmode(ah);
1959
1960 /* Write keys to hardware; it may have been powered down. */
1961 ath_key_update_begin(ic);
1962 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1963 ath_key_set(ic,
1964 &ic->ic_crypto.cs_nw_keys[i],
1965 ic->ic_myaddr);
1966 }
1967 ath_key_update_end(ic);
1968
1969 /*
1970 * Handle any link-level address change. Note that we only
1971 * need to force ic_myaddr; any other addresses are handled
1972 * as a byproduct of the ifnet code marking the interface
1973 * down then up.
1974 *
1975 * XXX should get from lladdr instead of arpcom but that's more work
1976 */
1977 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(sc->sc_if.if_sadl));
1978 ath_hal_setmac(ah, ic->ic_myaddr);
1979
1980 /* calculate and install multicast filter */
1981 #ifdef __FreeBSD__
1982 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1983 mfilt[0] = mfilt[1] = 0;
1984 IF_ADDR_LOCK(ifp);
1985 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1986 void *dl;
1987
1988 /* calculate XOR of eight 6bit values */
1989 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
1990 val = LE_READ_4((char *)dl + 0);
1991 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1992 val = LE_READ_4((char *)dl + 3);
1993 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1994 pos &= 0x3f;
1995 mfilt[pos / 32] |= (1 << (pos % 32));
1996 }
1997 IF_ADDR_UNLOCK(ifp);
1998 } else {
1999 mfilt[0] = mfilt[1] = ~0;
2000 }
2001 #endif
2002 #ifdef __NetBSD__
2003 ath_mcastfilter_compute(sc, mfilt);
2004 #endif
2005 ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
2006 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
2007 __func__, rfilt, mfilt[0], mfilt[1]);
2008 }
2009
2010 /*
2011 * Set the slot time based on the current setting.
2012 */
2013 static void
2014 ath_setslottime(struct ath_softc *sc)
2015 {
2016 struct ieee80211com *ic = &sc->sc_ic;
2017 struct ath_hal *ah = sc->sc_ah;
2018
2019 if (ic->ic_flags & IEEE80211_F_SHSLOT)
2020 ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
2021 else
2022 ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
2023 sc->sc_updateslot = OK;
2024 }
2025
2026 /*
2027 * Callback from the 802.11 layer to update the
2028 * slot time based on the current setting.
2029 */
2030 static void
2031 ath_updateslot(struct ifnet *ifp)
2032 {
2033 struct ath_softc *sc = ifp->if_softc;
2034 struct ieee80211com *ic = &sc->sc_ic;
2035
2036 /*
2037 * When not coordinating the BSS, change the hardware
2038 * immediately. For other operation we defer the change
2039 * until beacon updates have propagated to the stations.
2040 */
2041 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
2042 sc->sc_updateslot = UPDATE;
2043 else
2044 ath_setslottime(sc);
2045 }
2046
2047 /*
2048 * Setup a h/w transmit queue for beacons.
2049 */
2050 static int
2051 ath_beaconq_setup(struct ath_hal *ah)
2052 {
2053 HAL_TXQ_INFO qi;
2054
2055 memset(&qi, 0, sizeof(qi));
2056 qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
2057 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
2058 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
2059 /* NB: for dynamic turbo, don't enable any other interrupts */
2060 qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
2061 return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
2062 }
2063
2064 /*
2065 * Setup the transmit queue parameters for the beacon queue.
2066 */
2067 static int
2068 ath_beaconq_config(struct ath_softc *sc)
2069 {
2070 #define ATH_EXPONENT_TO_VALUE(v) ((1<<(v))-1)
2071 struct ieee80211com *ic = &sc->sc_ic;
2072 struct ath_hal *ah = sc->sc_ah;
2073 HAL_TXQ_INFO qi;
2074
2075 ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
2076 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2077 /*
2078 * Always burst out beacon and CAB traffic.
2079 */
2080 qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
2081 qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
2082 qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
2083 } else {
2084 struct wmeParams *wmep =
2085 &ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
2086 /*
2087 * Adhoc mode; important thing is to use 2x cwmin.
2088 */
2089 qi.tqi_aifs = wmep->wmep_aifsn;
2090 qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2091 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2092 }
2093
2094 if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
2095 device_printf(&sc->sc_dev, "unable to update parameters for "
2096 "beacon hardware queue!\n");
2097 return 0;
2098 } else {
2099 ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
2100 return 1;
2101 }
2102 #undef ATH_EXPONENT_TO_VALUE
2103 }
2104
2105 /*
2106 * Allocate and setup an initial beacon frame.
2107 */
2108 static int
2109 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
2110 {
2111 struct ieee80211com *ic = ni->ni_ic;
2112 struct ath_buf *bf;
2113 struct mbuf *m;
2114 int error;
2115
2116 bf = STAILQ_FIRST(&sc->sc_bbuf);
2117 if (bf == NULL) {
2118 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
2119 sc->sc_stats.ast_be_nombuf++; /* XXX */
2120 return ENOMEM; /* XXX */
2121 }
2122 /*
2123 * NB: the beacon data buffer must be 32-bit aligned;
2124 * we assume the mbuf routines will return us something
2125 * with this alignment (perhaps should assert).
2126 */
2127 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
2128 if (m == NULL) {
2129 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
2130 __func__);
2131 sc->sc_stats.ast_be_nombuf++;
2132 return ENOMEM;
2133 }
2134 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2135 BUS_DMA_NOWAIT);
2136 if (error == 0) {
2137 bf->bf_m = m;
2138 bf->bf_node = ieee80211_ref_node(ni);
2139 } else {
2140 m_freem(m);
2141 }
2142 return error;
2143 }
2144
2145 /*
2146 * Setup the beacon frame for transmit.
2147 */
2148 static void
2149 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
2150 {
2151 #define USE_SHPREAMBLE(_ic) \
2152 (((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
2153 == IEEE80211_F_SHPREAMBLE)
2154 struct ieee80211_node *ni = bf->bf_node;
2155 struct ieee80211com *ic = ni->ni_ic;
2156 struct mbuf *m = bf->bf_m;
2157 struct ath_hal *ah = sc->sc_ah;
2158 struct ath_desc *ds;
2159 int flags, antenna;
2160 const HAL_RATE_TABLE *rt;
2161 u_int8_t rix, rate;
2162
2163 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
2164 __func__, m, m->m_len);
2165
2166 /* setup descriptors */
2167 ds = bf->bf_desc;
2168
2169 flags = HAL_TXDESC_NOACK;
2170 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
2171 ds->ds_link = HTOAH32(bf->bf_daddr); /* self-linked */
2172 flags |= HAL_TXDESC_VEOL;
2173 /*
2174 * Let hardware handle antenna switching unless
2175 * the user has selected a transmit antenna
2176 * (sc_txantenna is not 0).
2177 */
2178 antenna = sc->sc_txantenna;
2179 } else {
2180 ds->ds_link = 0;
2181 /*
2182 * Switch antenna every 4 beacons, unless the user
2183 * has selected a transmit antenna (sc_txantenna
2184 * is not 0).
2185 *
2186 * XXX assumes two antenna
2187 */
2188 if (sc->sc_txantenna == 0)
2189 antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2190 else
2191 antenna = sc->sc_txantenna;
2192 }
2193
2194 KASSERT(bf->bf_nseg == 1,
2195 ("multi-segment beacon frame; nseg %u", bf->bf_nseg));
2196 ds->ds_data = bf->bf_segs[0].ds_addr;
2197 /*
2198 * Calculate rate code.
2199 * XXX everything at min xmit rate
2200 */
2201 rix = sc->sc_minrateix;
2202 rt = sc->sc_currates;
2203 rate = rt->info[rix].rateCode;
2204 if (USE_SHPREAMBLE(ic))
2205 rate |= rt->info[rix].shortPreamble;
2206 ath_hal_setuptxdesc(ah, ds
2207 , m->m_len + IEEE80211_CRC_LEN /* frame length */
2208 , sizeof(struct ieee80211_frame)/* header length */
2209 , HAL_PKT_TYPE_BEACON /* Atheros packet type */
2210 , ni->ni_txpower /* txpower XXX */
2211 , rate, 1 /* series 0 rate/tries */
2212 , HAL_TXKEYIX_INVALID /* no encryption */
2213 , antenna /* antenna mode */
2214 , flags /* no ack, veol for beacons */
2215 , 0 /* rts/cts rate */
2216 , 0 /* rts/cts duration */
2217 );
2218 /* NB: beacon's BufLen must be a multiple of 4 bytes */
2219 ath_hal_filltxdesc(ah, ds
2220 , roundup(m->m_len, 4) /* buffer length */
2221 , AH_TRUE /* first segment */
2222 , AH_TRUE /* last segment */
2223 , ds /* first descriptor */
2224 );
2225
2226 /* NB: The desc swap function becomes void,
2227 * if descriptor swapping is not enabled
2228 */
2229 ath_desc_swap(ds);
2230
2231 #undef USE_SHPREAMBLE
2232 }
2233
2234 /*
2235 * Transmit a beacon frame at SWBA. Dynamic updates to the
2236 * frame contents are done as needed and the slot time is
2237 * also adjusted based on current state.
2238 */
2239 static void
2240 ath_beacon_proc(void *arg, int pending)
2241 {
2242 struct ath_softc *sc = arg;
2243 struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
2244 struct ieee80211_node *ni = bf->bf_node;
2245 struct ieee80211com *ic = ni->ni_ic;
2246 struct ath_hal *ah = sc->sc_ah;
2247 struct mbuf *m;
2248 int ncabq, error, otherant;
2249
2250 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2251 __func__, pending);
2252
2253 if (ic->ic_opmode == IEEE80211_M_STA ||
2254 ic->ic_opmode == IEEE80211_M_MONITOR ||
2255 bf == NULL || bf->bf_m == NULL) {
2256 DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
2257 __func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
2258 return;
2259 }
2260 /*
2261 * Check if the previous beacon has gone out. If
2262 * not don't try to post another, skip this period
2263 * and wait for the next. Missed beacons indicate
2264 * a problem and should not occur. If we miss too
2265 * many consecutive beacons reset the device.
2266 */
2267 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2268 sc->sc_bmisscount++;
2269 DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2270 "%s: missed %u consecutive beacons\n",
2271 __func__, sc->sc_bmisscount);
2272 if (sc->sc_bmisscount > 3) /* NB: 3 is a guess */
2273 TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask);
2274 return;
2275 }
2276 if (sc->sc_bmisscount != 0) {
2277 DPRINTF(sc, ATH_DEBUG_BEACON,
2278 "%s: resume beacon xmit after %u misses\n",
2279 __func__, sc->sc_bmisscount);
2280 sc->sc_bmisscount = 0;
2281 }
2282
2283 /*
2284 * Update dynamic beacon contents. If this returns
2285 * non-zero then we need to remap the memory because
2286 * the beacon frame changed size (probably because
2287 * of the TIM bitmap).
2288 */
2289 m = bf->bf_m;
2290 ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
2291 if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
2292 /* XXX too conservative? */
2293 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2294 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2295 BUS_DMA_NOWAIT);
2296 if (error != 0) {
2297 if_printf(&sc->sc_if,
2298 "%s: bus_dmamap_load_mbuf failed, error %u\n",
2299 __func__, error);
2300 return;
2301 }
2302 }
2303
2304 /*
2305 * Handle slot time change when a non-ERP station joins/leaves
2306 * an 11g network. The 802.11 layer notifies us via callback,
2307 * we mark updateslot, then wait one beacon before effecting
2308 * the change. This gives associated stations at least one
2309 * beacon interval to note the state change.
2310 */
2311 /* XXX locking */
2312 if (sc->sc_updateslot == UPDATE)
2313 sc->sc_updateslot = COMMIT; /* commit next beacon */
2314 else if (sc->sc_updateslot == COMMIT)
2315 ath_setslottime(sc); /* commit change to h/w */
2316
2317 /*
2318 * Check recent per-antenna transmit statistics and flip
2319 * the default antenna if noticeably more frames went out
2320 * on the non-default antenna.
2321 * XXX assumes 2 anntenae
2322 */
2323 otherant = sc->sc_defant & 1 ? 2 : 1;
2324 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2325 ath_setdefantenna(sc, otherant);
2326 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2327
2328 /*
2329 * Construct tx descriptor.
2330 */
2331 ath_beacon_setup(sc, bf);
2332
2333 /*
2334 * Stop any current dma and put the new frame on the queue.
2335 * This should never fail since we check above that no frames
2336 * are still pending on the queue.
2337 */
2338 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2339 DPRINTF(sc, ATH_DEBUG_ANY,
2340 "%s: beacon queue %u did not stop?\n",
2341 __func__, sc->sc_bhalq);
2342 }
2343 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2344 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2345
2346 /*
2347 * Enable the CAB queue before the beacon queue to
2348 * insure cab frames are triggered by this beacon.
2349 */
2350 if (ncabq != 0 && (sc->sc_boff.bo_tim[4] & 1)) /* NB: only at DTIM */
2351 ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
2352 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
2353 ath_hal_txstart(ah, sc->sc_bhalq);
2354 DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2355 "%s: TXDP[%u] = %" PRIx64 " (%p)\n", __func__,
2356 sc->sc_bhalq, (uint64_t)bf->bf_daddr, bf->bf_desc);
2357
2358 sc->sc_stats.ast_be_xmit++;
2359 }
2360
2361 /*
2362 * Reset the hardware after detecting beacons have stopped.
2363 */
2364 static void
2365 ath_bstuck_proc(void *arg, int pending)
2366 {
2367 struct ath_softc *sc = arg;
2368 struct ifnet *ifp = &sc->sc_if;
2369
2370 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2371 sc->sc_bmisscount);
2372 ath_reset(ifp);
2373 }
2374
2375 /*
2376 * Reclaim beacon resources.
2377 */
2378 static void
2379 ath_beacon_free(struct ath_softc *sc)
2380 {
2381 struct ath_buf *bf;
2382
2383 STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
2384 if (bf->bf_m != NULL) {
2385 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2386 m_freem(bf->bf_m);
2387 bf->bf_m = NULL;
2388 }
2389 if (bf->bf_node != NULL) {
2390 ieee80211_free_node(bf->bf_node);
2391 bf->bf_node = NULL;
2392 }
2393 }
2394 }
2395
2396 /*
2397 * Configure the beacon and sleep timers.
2398 *
2399 * When operating as an AP this resets the TSF and sets
2400 * up the hardware to notify us when we need to issue beacons.
2401 *
2402 * When operating in station mode this sets up the beacon
2403 * timers according to the timestamp of the last received
2404 * beacon and the current TSF, configures PCF and DTIM
2405 * handling, programs the sleep registers so the hardware
2406 * will wakeup in time to receive beacons, and configures
2407 * the beacon miss handling so we'll receive a BMISS
2408 * interrupt when we stop seeing beacons from the AP
2409 * we've associated with.
2410 */
2411 static void
2412 ath_beacon_config(struct ath_softc *sc)
2413 {
2414 #define TSF_TO_TU(_h,_l) \
2415 ((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
2416 #define FUDGE 2
2417 struct ath_hal *ah = sc->sc_ah;
2418 struct ieee80211com *ic = &sc->sc_ic;
2419 struct ieee80211_node *ni = ic->ic_bss;
2420 u_int32_t nexttbtt, intval, tsftu;
2421 u_int64_t tsf;
2422
2423 /* extract tstamp from last beacon and convert to TU */
2424 nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
2425 LE_READ_4(ni->ni_tstamp.data));
2426 /* NB: the beacon interval is kept internally in TU's */
2427 intval = ni->ni_intval & HAL_BEACON_PERIOD;
2428 if (nexttbtt == 0) /* e.g. for ap mode */
2429 nexttbtt = intval;
2430 else if (intval) /* NB: can be 0 for monitor mode */
2431 nexttbtt = roundup(nexttbtt, intval);
2432 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2433 __func__, nexttbtt, intval, ni->ni_intval);
2434 if (ic->ic_opmode == IEEE80211_M_STA) {
2435 HAL_BEACON_STATE bs;
2436 int dtimperiod, dtimcount;
2437 int cfpperiod, cfpcount;
2438
2439 /*
2440 * Setup dtim and cfp parameters according to
2441 * last beacon we received (which may be none).
2442 */
2443 dtimperiod = ni->ni_dtim_period;
2444 if (dtimperiod <= 0) /* NB: 0 if not known */
2445 dtimperiod = 1;
2446 dtimcount = ni->ni_dtim_count;
2447 if (dtimcount >= dtimperiod) /* NB: sanity check */
2448 dtimcount = 0; /* XXX? */
2449 cfpperiod = 1; /* NB: no PCF support yet */
2450 cfpcount = 0;
2451 /*
2452 * Pull nexttbtt forward to reflect the current
2453 * TSF and calculate dtim+cfp state for the result.
2454 */
2455 tsf = ath_hal_gettsf64(ah);
2456 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2457 do {
2458 nexttbtt += intval;
2459 if (--dtimcount < 0) {
2460 dtimcount = dtimperiod - 1;
2461 if (--cfpcount < 0)
2462 cfpcount = cfpperiod - 1;
2463 }
2464 } while (nexttbtt < tsftu);
2465 memset(&bs, 0, sizeof(bs));
2466 bs.bs_intval = intval;
2467 bs.bs_nexttbtt = nexttbtt;
2468 bs.bs_dtimperiod = dtimperiod*intval;
2469 bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
2470 bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
2471 bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
2472 bs.bs_cfpmaxduration = 0;
2473 #if 0
2474 /*
2475 * The 802.11 layer records the offset to the DTIM
2476 * bitmap while receiving beacons; use it here to
2477 * enable h/w detection of our AID being marked in
2478 * the bitmap vector (to indicate frames for us are
2479 * pending at the AP).
2480 * XXX do DTIM handling in s/w to WAR old h/w bugs
2481 * XXX enable based on h/w rev for newer chips
2482 */
2483 bs.bs_timoffset = ni->ni_timoff;
2484 #endif
2485 /*
2486 * Calculate the number of consecutive beacons to miss
2487 * before taking a BMISS interrupt. The configuration
2488 * is specified in ms, so we need to convert that to
2489 * TU's and then calculate based on the beacon interval.
2490 * Note that we clamp the result to at most 10 beacons.
2491 */
2492 bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
2493 if (bs.bs_bmissthreshold > 10)
2494 bs.bs_bmissthreshold = 10;
2495 else if (bs.bs_bmissthreshold <= 0)
2496 bs.bs_bmissthreshold = 1;
2497
2498 /*
2499 * Calculate sleep duration. The configuration is
2500 * given in ms. We insure a multiple of the beacon
2501 * period is used. Also, if the sleep duration is
2502 * greater than the DTIM period then it makes senses
2503 * to make it a multiple of that.
2504 *
2505 * XXX fixed at 100ms
2506 */
2507 bs.bs_sleepduration =
2508 roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2509 if (bs.bs_sleepduration > bs.bs_dtimperiod)
2510 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2511
2512 DPRINTF(sc, ATH_DEBUG_BEACON,
2513 "%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2514 , __func__
2515 , tsf, tsftu
2516 , bs.bs_intval
2517 , bs.bs_nexttbtt
2518 , bs.bs_dtimperiod
2519 , bs.bs_nextdtim
2520 , bs.bs_bmissthreshold
2521 , bs.bs_sleepduration
2522 , bs.bs_cfpperiod
2523 , bs.bs_cfpmaxduration
2524 , bs.bs_cfpnext
2525 , bs.bs_timoffset
2526 );
2527 ath_hal_intrset(ah, 0);
2528 ath_hal_beacontimers(ah, &bs);
2529 sc->sc_imask |= HAL_INT_BMISS;
2530 ath_hal_intrset(ah, sc->sc_imask);
2531 } else {
2532 ath_hal_intrset(ah, 0);
2533 if (nexttbtt == intval)
2534 intval |= HAL_BEACON_RESET_TSF;
2535 if (ic->ic_opmode == IEEE80211_M_IBSS) {
2536 /*
2537 * In IBSS mode enable the beacon timers but only
2538 * enable SWBA interrupts if we need to manually
2539 * prepare beacon frames. Otherwise we use a
2540 * self-linked tx descriptor and let the hardware
2541 * deal with things.
2542 */
2543 intval |= HAL_BEACON_ENA;
2544 if (!sc->sc_hasveol)
2545 sc->sc_imask |= HAL_INT_SWBA;
2546 if ((intval & HAL_BEACON_RESET_TSF) == 0) {
2547 /*
2548 * Pull nexttbtt forward to reflect
2549 * the current TSF.
2550 */
2551 tsf = ath_hal_gettsf64(ah);
2552 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2553 do {
2554 nexttbtt += intval;
2555 } while (nexttbtt < tsftu);
2556 }
2557 ath_beaconq_config(sc);
2558 } else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2559 /*
2560 * In AP mode we enable the beacon timers and
2561 * SWBA interrupts to prepare beacon frames.
2562 */
2563 intval |= HAL_BEACON_ENA;
2564 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */
2565 ath_beaconq_config(sc);
2566 }
2567 ath_hal_beaconinit(ah, nexttbtt, intval);
2568 sc->sc_bmisscount = 0;
2569 ath_hal_intrset(ah, sc->sc_imask);
2570 /*
2571 * When using a self-linked beacon descriptor in
2572 * ibss mode load it once here.
2573 */
2574 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2575 ath_beacon_proc(sc, 0);
2576 }
2577 sc->sc_syncbeacon = 0;
2578 #undef UNDEF
2579 #undef TSF_TO_TU
2580 }
2581
2582 static int
2583 ath_descdma_setup(struct ath_softc *sc,
2584 struct ath_descdma *dd, ath_bufhead *head,
2585 const char *name, int nbuf, int ndesc)
2586 {
2587 #define DS2PHYS(_dd, _ds) \
2588 ((_dd)->dd_desc_paddr + ((char *)(_ds) - (char *)(_dd)->dd_desc))
2589 struct ifnet *ifp = &sc->sc_if;
2590 struct ath_desc *ds;
2591 struct ath_buf *bf;
2592 int i, bsize, error;
2593
2594 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2595 __func__, name, nbuf, ndesc);
2596
2597 dd->dd_name = name;
2598 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2599
2600 /*
2601 * Setup DMA descriptor area.
2602 */
2603 dd->dd_dmat = sc->sc_dmat;
2604
2605 error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE,
2606 0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0);
2607
2608 if (error != 0) {
2609 if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2610 "error %u\n", nbuf * ndesc, dd->dd_name, error);
2611 goto fail0;
2612 }
2613
2614 error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg,
2615 dd->dd_desc_len, (void **)&dd->dd_desc, BUS_DMA_COHERENT);
2616 if (error != 0) {
2617 if_printf(ifp, "unable to map %u %s descriptors, error = %u\n",
2618 nbuf * ndesc, dd->dd_name, error);
2619 goto fail1;
2620 }
2621
2622 /* allocate descriptors */
2623 error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1,
2624 dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2625 if (error != 0) {
2626 if_printf(ifp, "unable to create dmamap for %s descriptors, "
2627 "error %u\n", dd->dd_name, error);
2628 goto fail2;
2629 }
2630
2631 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc,
2632 dd->dd_desc_len, NULL, BUS_DMA_NOWAIT);
2633 if (error != 0) {
2634 if_printf(ifp, "unable to map %s descriptors, error %u\n",
2635 dd->dd_name, error);
2636 goto fail3;
2637 }
2638
2639 ds = dd->dd_desc;
2640 dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr;
2641 DPRINTF(sc, ATH_DEBUG_RESET,
2642 "%s: %s DMA map: %p (%lu) -> %" PRIx64 " (%lu)\n",
2643 __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2644 (uint64_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2645
2646 /* allocate rx buffers */
2647 bsize = sizeof(struct ath_buf) * nbuf;
2648 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2649 if (bf == NULL) {
2650 if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2651 dd->dd_name, bsize);
2652 goto fail4;
2653 }
2654 dd->dd_bufptr = bf;
2655
2656 STAILQ_INIT(head);
2657 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2658 bf->bf_desc = ds;
2659 bf->bf_daddr = DS2PHYS(dd, ds);
2660 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc,
2661 MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap);
2662 if (error != 0) {
2663 if_printf(ifp, "unable to create dmamap for %s "
2664 "buffer %u, error %u\n", dd->dd_name, i, error);
2665 ath_descdma_cleanup(sc, dd, head);
2666 return error;
2667 }
2668 STAILQ_INSERT_TAIL(head, bf, bf_list);
2669 }
2670 return 0;
2671 fail4:
2672 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2673 fail3:
2674 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2675 fail2:
2676 bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
2677 fail1:
2678 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2679 fail0:
2680 memset(dd, 0, sizeof(*dd));
2681 return error;
2682 #undef DS2PHYS
2683 }
2684
2685 static void
2686 ath_descdma_cleanup(struct ath_softc *sc,
2687 struct ath_descdma *dd, ath_bufhead *head)
2688 {
2689 struct ath_buf *bf;
2690 struct ieee80211_node *ni;
2691
2692 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2693 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2694 bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
2695 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2696
2697 STAILQ_FOREACH(bf, head, bf_list) {
2698 if (bf->bf_m) {
2699 m_freem(bf->bf_m);
2700 bf->bf_m = NULL;
2701 }
2702 if (bf->bf_dmamap != NULL) {
2703 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2704 bf->bf_dmamap = NULL;
2705 }
2706 ni = bf->bf_node;
2707 bf->bf_node = NULL;
2708 if (ni != NULL) {
2709 /*
2710 * Reclaim node reference.
2711 */
2712 ieee80211_free_node(ni);
2713 }
2714 }
2715
2716 STAILQ_INIT(head);
2717 free(dd->dd_bufptr, M_ATHDEV);
2718 memset(dd, 0, sizeof(*dd));
2719 }
2720
2721 static int
2722 ath_desc_alloc(struct ath_softc *sc)
2723 {
2724 int error;
2725
2726 error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2727 "rx", ath_rxbuf, 1);
2728 if (error != 0)
2729 return error;
2730
2731 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2732 "tx", ath_txbuf, ATH_TXDESC);
2733 if (error != 0) {
2734 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2735 return error;
2736 }
2737
2738 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2739 "beacon", 1, 1);
2740 if (error != 0) {
2741 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2742 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2743 return error;
2744 }
2745 return 0;
2746 }
2747
2748 static void
2749 ath_desc_free(struct ath_softc *sc)
2750 {
2751
2752 if (sc->sc_bdma.dd_desc_len != 0)
2753 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2754 if (sc->sc_txdma.dd_desc_len != 0)
2755 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2756 if (sc->sc_rxdma.dd_desc_len != 0)
2757 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2758 }
2759
2760 static struct ieee80211_node *
2761 ath_node_alloc(struct ieee80211_node_table *nt)
2762 {
2763 struct ieee80211com *ic = nt->nt_ic;
2764 struct ath_softc *sc = ic->ic_ifp->if_softc;
2765 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2766 struct ath_node *an;
2767
2768 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2769 if (an == NULL) {
2770 /* XXX stat+msg */
2771 return NULL;
2772 }
2773 an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
2774 ath_rate_node_init(sc, an);
2775
2776 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2777 return &an->an_node;
2778 }
2779
2780 static void
2781 ath_node_free(struct ieee80211_node *ni)
2782 {
2783 struct ieee80211com *ic = ni->ni_ic;
2784 struct ath_softc *sc = ic->ic_ifp->if_softc;
2785
2786 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2787
2788 ath_rate_node_cleanup(sc, ATH_NODE(ni));
2789 sc->sc_node_free(ni);
2790 }
2791
2792 static u_int8_t
2793 ath_node_getrssi(const struct ieee80211_node *ni)
2794 {
2795 #define HAL_EP_RND(x, mul) \
2796 ((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
2797 u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
2798 int32_t rssi;
2799
2800 /*
2801 * When only one frame is received there will be no state in
2802 * avgrssi so fallback on the value recorded by the 802.11 layer.
2803 */
2804 if (avgrssi != ATH_RSSI_DUMMY_MARKER)
2805 rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
2806 else
2807 rssi = ni->ni_rssi;
2808 return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
2809 #undef HAL_EP_RND
2810 }
2811
2812 static int
2813 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2814 {
2815 struct ath_hal *ah = sc->sc_ah;
2816 int error;
2817 struct mbuf *m;
2818 struct ath_desc *ds;
2819
2820 m = bf->bf_m;
2821 if (m == NULL) {
2822 /*
2823 * NB: by assigning a page to the rx dma buffer we
2824 * implicitly satisfy the Atheros requirement that
2825 * this buffer be cache-line-aligned and sized to be
2826 * multiple of the cache line size. Not doing this
2827 * causes weird stuff to happen (for the 5210 at least).
2828 */
2829 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2830 if (m == NULL) {
2831 DPRINTF(sc, ATH_DEBUG_ANY,
2832 "%s: no mbuf/cluster\n", __func__);
2833 sc->sc_stats.ast_rx_nombuf++;
2834 return ENOMEM;
2835 }
2836 bf->bf_m = m;
2837 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2838
2839 error = bus_dmamap_load_mbuf(sc->sc_dmat,
2840 bf->bf_dmamap, m,
2841 BUS_DMA_NOWAIT);
2842 if (error != 0) {
2843 DPRINTF(sc, ATH_DEBUG_ANY,
2844 "%s: bus_dmamap_load_mbuf failed; error %d\n",
2845 __func__, error);
2846 sc->sc_stats.ast_rx_busdma++;
2847 return error;
2848 }
2849 KASSERT(bf->bf_nseg == 1,
2850 ("multi-segment packet; nseg %u", bf->bf_nseg));
2851 }
2852 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2853 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2854
2855 /*
2856 * Setup descriptors. For receive we always terminate
2857 * the descriptor list with a self-linked entry so we'll
2858 * not get overrun under high load (as can happen with a
2859 * 5212 when ANI processing enables PHY error frames).
2860 *
2861 * To insure the last descriptor is self-linked we create
2862 * each descriptor as self-linked and add it to the end. As
2863 * each additional descriptor is added the previous self-linked
2864 * entry is ``fixed'' naturally. This should be safe even
2865 * if DMA is happening. When processing RX interrupts we
2866 * never remove/process the last, self-linked, entry on the
2867 * descriptor list. This insures the hardware always has
2868 * someplace to write a new frame.
2869 */
2870 ds = bf->bf_desc;
2871 ds->ds_link = HTOAH32(bf->bf_daddr); /* link to self */
2872 ds->ds_data = bf->bf_segs[0].ds_addr;
2873 ds->ds_vdata = mtod(m, void *); /* for radar */
2874 ath_hal_setuprxdesc(ah, ds
2875 , m->m_len /* buffer size */
2876 , 0
2877 );
2878
2879 if (sc->sc_rxlink != NULL)
2880 *sc->sc_rxlink = bf->bf_daddr;
2881 sc->sc_rxlink = &ds->ds_link;
2882 return 0;
2883 }
2884
2885 /*
2886 * Extend 15-bit time stamp from rx descriptor to
2887 * a full 64-bit TSF using the specified TSF.
2888 */
2889 static inline u_int64_t
2890 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
2891 {
2892 if ((tsf & 0x7fff) < rstamp)
2893 tsf -= 0x8000;
2894 return ((tsf &~ 0x7fff) | rstamp);
2895 }
2896
2897 /*
2898 * Intercept management frames to collect beacon rssi data
2899 * and to do ibss merges.
2900 */
2901 static void
2902 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2903 struct ieee80211_node *ni,
2904 int subtype, int rssi, u_int32_t rstamp)
2905 {
2906 struct ath_softc *sc = ic->ic_ifp->if_softc;
2907
2908 /*
2909 * Call up first so subsequent work can use information
2910 * potentially stored in the node (e.g. for ibss merge).
2911 */
2912 sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
2913 switch (subtype) {
2914 case IEEE80211_FC0_SUBTYPE_BEACON:
2915 /* update rssi statistics for use by the hal */
2916 ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
2917 if (sc->sc_syncbeacon &&
2918 ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) {
2919 /*
2920 * Resync beacon timers using the tsf of the beacon
2921 * frame we just received.
2922 */
2923 ath_beacon_config(sc);
2924 }
2925 /* fall thru... */
2926 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2927 if (ic->ic_opmode == IEEE80211_M_IBSS &&
2928 ic->ic_state == IEEE80211_S_RUN) {
2929 u_int64_t tsf = ath_extend_tsf(rstamp,
2930 ath_hal_gettsf64(sc->sc_ah));
2931
2932 /*
2933 * Handle ibss merge as needed; check the tsf on the
2934 * frame before attempting the merge. The 802.11 spec
2935 * says the station should change it's bssid to match
2936 * the oldest station with the same ssid, where oldest
2937 * is determined by the tsf. Note that hardware
2938 * reconfiguration happens through callback to
2939 * ath_newstate as the state machine will go from
2940 * RUN -> RUN when this happens.
2941 */
2942 if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
2943 DPRINTF(sc, ATH_DEBUG_STATE,
2944 "ibss merge, rstamp %u tsf %ju "
2945 "tstamp %ju\n", rstamp, (uintmax_t)tsf,
2946 (uintmax_t)ni->ni_tstamp.tsf);
2947 (void) ieee80211_ibss_merge(ni);
2948 }
2949 }
2950 break;
2951 }
2952 }
2953
2954 /*
2955 * Set the default antenna.
2956 */
2957 static void
2958 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
2959 {
2960 struct ath_hal *ah = sc->sc_ah;
2961
2962 /* XXX block beacon interrupts */
2963 ath_hal_setdefantenna(ah, antenna);
2964 if (sc->sc_defant != antenna)
2965 sc->sc_stats.ast_ant_defswitch++;
2966 sc->sc_defant = antenna;
2967 sc->sc_rxotherant = 0;
2968 }
2969
2970 static void
2971 ath_rx_proc(void *arg, int npending)
2972 {
2973 #define PA2DESC(_sc, _pa) \
2974 ((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
2975 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
2976 struct ath_softc *sc = arg;
2977 struct ath_buf *bf;
2978 struct ieee80211com *ic = &sc->sc_ic;
2979 struct ifnet *ifp = &sc->sc_if;
2980 struct ath_hal *ah = sc->sc_ah;
2981 struct ath_desc *ds;
2982 struct mbuf *m;
2983 struct ieee80211_node *ni;
2984 struct ath_node *an;
2985 int len, type, ngood;
2986 u_int phyerr;
2987 HAL_STATUS status;
2988 int16_t nf;
2989 u_int64_t tsf;
2990
2991 NET_LOCK_GIANT(); /* XXX */
2992
2993 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
2994 ngood = 0;
2995 nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
2996 tsf = ath_hal_gettsf64(ah);
2997 do {
2998 bf = STAILQ_FIRST(&sc->sc_rxbuf);
2999 if (bf == NULL) { /* NB: shouldn't happen */
3000 if_printf(ifp, "%s: no buffer!\n", __func__);
3001 break;
3002 }
3003 ds = bf->bf_desc;
3004 if (ds->ds_link == bf->bf_daddr) {
3005 /* NB: never process the self-linked entry at the end */
3006 break;
3007 }
3008 m = bf->bf_m;
3009 if (m == NULL) { /* NB: shouldn't happen */
3010 if_printf(ifp, "%s: no mbuf!\n", __func__);
3011 break;
3012 }
3013 /* XXX sync descriptor memory */
3014 /*
3015 * Must provide the virtual address of the current
3016 * descriptor, the physical address, and the virtual
3017 * address of the next descriptor in the h/w chain.
3018 * This allows the HAL to look ahead to see if the
3019 * hardware is done with a descriptor by checking the
3020 * done bit in the following descriptor and the address
3021 * of the current descriptor the DMA engine is working
3022 * on. All this is necessary because of our use of
3023 * a self-linked list to avoid rx overruns.
3024 */
3025 status = ath_hal_rxprocdesc(ah, ds,
3026 bf->bf_daddr, PA2DESC(sc, ds->ds_link));
3027 #ifdef AR_DEBUG
3028 if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
3029 ath_printrxbuf(bf, status == HAL_OK);
3030 #endif
3031 if (status == HAL_EINPROGRESS)
3032 break;
3033 STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
3034 if (ds->ds_rxstat.rs_more) {
3035 /*
3036 * Frame spans multiple descriptors; this
3037 * cannot happen yet as we don't support
3038 * jumbograms. If not in monitor mode,
3039 * discard the frame.
3040 */
3041 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3042 sc->sc_stats.ast_rx_toobig++;
3043 goto rx_next;
3044 }
3045 /* fall thru for monitor mode handling... */
3046 } else if (ds->ds_rxstat.rs_status != 0) {
3047 if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
3048 sc->sc_stats.ast_rx_crcerr++;
3049 if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
3050 sc->sc_stats.ast_rx_fifoerr++;
3051 if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
3052 sc->sc_stats.ast_rx_phyerr++;
3053 phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
3054 sc->sc_stats.ast_rx_phy[phyerr]++;
3055 goto rx_next;
3056 }
3057 if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
3058 /*
3059 * Decrypt error. If the error occurred
3060 * because there was no hardware key, then
3061 * let the frame through so the upper layers
3062 * can process it. This is necessary for 5210
3063 * parts which have no way to setup a ``clear''
3064 * key cache entry.
3065 *
3066 * XXX do key cache faulting
3067 */
3068 if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
3069 goto rx_accept;
3070 sc->sc_stats.ast_rx_badcrypt++;
3071 }
3072 if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
3073 sc->sc_stats.ast_rx_badmic++;
3074 /*
3075 * Do minimal work required to hand off
3076 * the 802.11 header for notifcation.
3077 */
3078 /* XXX frag's and qos frames */
3079 len = ds->ds_rxstat.rs_datalen;
3080 if (len >= sizeof (struct ieee80211_frame)) {
3081 bus_dmamap_sync(sc->sc_dmat,
3082 bf->bf_dmamap,
3083 0, bf->bf_dmamap->dm_mapsize,
3084 BUS_DMASYNC_POSTREAD);
3085 ieee80211_notify_michael_failure(ic,
3086 mtod(m, struct ieee80211_frame *),
3087 sc->sc_splitmic ?
3088 ds->ds_rxstat.rs_keyix-32 :
3089 ds->ds_rxstat.rs_keyix
3090 );
3091 }
3092 }
3093 ifp->if_ierrors++;
3094 /*
3095 * Reject error frames, we normally don't want
3096 * to see them in monitor mode (in monitor mode
3097 * allow through packets that have crypto problems).
3098 */
3099 if ((ds->ds_rxstat.rs_status &~
3100 (HAL_RXERR_DECRYPT|HAL_RXERR_MIC)) ||
3101 sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
3102 goto rx_next;
3103 }
3104 rx_accept:
3105 /*
3106 * Sync and unmap the frame. At this point we're
3107 * committed to passing the mbuf somewhere so clear
3108 * bf_m; this means a new sk_buff must be allocated
3109 * when the rx descriptor is setup again to receive
3110 * another frame.
3111 */
3112 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3113 0, bf->bf_dmamap->dm_mapsize,
3114 BUS_DMASYNC_POSTREAD);
3115 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3116 bf->bf_m = NULL;
3117
3118 m->m_pkthdr.rcvif = ifp;
3119 len = ds->ds_rxstat.rs_datalen;
3120 m->m_pkthdr.len = m->m_len = len;
3121
3122 sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
3123
3124 #if NBPFILTER > 0
3125 if (sc->sc_drvbpf) {
3126 u_int8_t rix;
3127
3128 /*
3129 * Discard anything shorter than an ack or cts.
3130 */
3131 if (len < IEEE80211_ACK_LEN) {
3132 DPRINTF(sc, ATH_DEBUG_RECV,
3133 "%s: runt packet %d\n",
3134 __func__, len);
3135 sc->sc_stats.ast_rx_tooshort++;
3136 m_freem(m);
3137 goto rx_next;
3138 }
3139 rix = ds->ds_rxstat.rs_rate;
3140 sc->sc_rx_th.wr_tsf = htole64(
3141 ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf));
3142 sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
3143 sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
3144 sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf;
3145 sc->sc_rx_th.wr_antnoise = nf;
3146 sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
3147
3148 bpf_mtap2(sc->sc_drvbpf,
3149 &sc->sc_rx_th, sc->sc_rx_th_len, m);
3150 }
3151 #endif
3152
3153 /*
3154 * From this point on we assume the frame is at least
3155 * as large as ieee80211_frame_min; verify that.
3156 */
3157 if (len < IEEE80211_MIN_LEN) {
3158 DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
3159 __func__, len);
3160 sc->sc_stats.ast_rx_tooshort++;
3161 m_freem(m);
3162 goto rx_next;
3163 }
3164
3165 if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
3166 ieee80211_dump_pkt(mtod(m, void *), len,
3167 sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
3168 ds->ds_rxstat.rs_rssi);
3169 }
3170
3171 m_adj(m, -IEEE80211_CRC_LEN);
3172
3173 /*
3174 * Locate the node for sender, track state, and then
3175 * pass the (referenced) node up to the 802.11 layer
3176 * for its use.
3177 */
3178 ni = ieee80211_find_rxnode_withkey(ic,
3179 mtod(m, const struct ieee80211_frame_min *),
3180 ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
3181 IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
3182 /*
3183 * Track rx rssi and do any rx antenna management.
3184 */
3185 an = ATH_NODE(ni);
3186 ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
3187 ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi);
3188 /*
3189 * Send frame up for processing.
3190 */
3191 type = ieee80211_input(ic, m, ni,
3192 ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
3193 ieee80211_free_node(ni);
3194 if (sc->sc_diversity) {
3195 /*
3196 * When using fast diversity, change the default rx
3197 * antenna if diversity chooses the other antenna 3
3198 * times in a row.
3199 */
3200 if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
3201 if (++sc->sc_rxotherant >= 3)
3202 ath_setdefantenna(sc,
3203 ds->ds_rxstat.rs_antenna);
3204 } else
3205 sc->sc_rxotherant = 0;
3206 }
3207 if (sc->sc_softled) {
3208 /*
3209 * Blink for any data frame. Otherwise do a
3210 * heartbeat-style blink when idle. The latter
3211 * is mainly for station mode where we depend on
3212 * periodic beacon frames to trigger the poll event.
3213 */
3214 if (type == IEEE80211_FC0_TYPE_DATA) {
3215 sc->sc_rxrate = ds->ds_rxstat.rs_rate;
3216 ath_led_event(sc, ATH_LED_RX);
3217 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
3218 ath_led_event(sc, ATH_LED_POLL);
3219 }
3220 /*
3221 * Arrange to update the last rx timestamp only for
3222 * frames from our ap when operating in station mode.
3223 * This assumes the rx key is always setup when associated.
3224 */
3225 if (ic->ic_opmode == IEEE80211_M_STA &&
3226 ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID)
3227 ngood++;
3228 rx_next:
3229 STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
3230 } while (ath_rxbuf_init(sc, bf) == 0);
3231
3232 /* rx signal state monitoring */
3233 ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
3234 if (ath_hal_radar_event(ah))
3235 TASK_RUN_OR_ENQUEUE(&sc->sc_radartask);
3236 if (ngood)
3237 sc->sc_lastrx = tsf;
3238
3239 #ifdef __NetBSD__
3240 /* XXX Why isn't this necessary in FreeBSD? */
3241 if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
3242 ath_start(ifp);
3243 #endif /* __NetBSD__ */
3244
3245 NET_UNLOCK_GIANT(); /* XXX */
3246 #undef PA2DESC
3247 }
3248
3249 /*
3250 * Setup a h/w transmit queue.
3251 */
3252 static struct ath_txq *
3253 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3254 {
3255 #define N(a) (sizeof(a)/sizeof(a[0]))
3256 struct ath_hal *ah = sc->sc_ah;
3257 HAL_TXQ_INFO qi;
3258 int qnum;
3259
3260 memset(&qi, 0, sizeof(qi));
3261 qi.tqi_subtype = subtype;
3262 qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3263 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3264 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3265 /*
3266 * Enable interrupts only for EOL and DESC conditions.
3267 * We mark tx descriptors to receive a DESC interrupt
3268 * when a tx queue gets deep; otherwise waiting for the
3269 * EOL to reap descriptors. Note that this is done to
3270 * reduce interrupt load and this only defers reaping
3271 * descriptors, never transmitting frames. Aside from
3272 * reducing interrupts this also permits more concurrency.
3273 * The only potential downside is if the tx queue backs
3274 * up in which case the top half of the kernel may backup
3275 * due to a lack of tx descriptors.
3276 */
3277 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
3278 qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3279 if (qnum == -1) {
3280 /*
3281 * NB: don't print a message, this happens
3282 * normally on parts with too few tx queues
3283 */
3284 return NULL;
3285 }
3286 if (qnum >= N(sc->sc_txq)) {
3287 device_printf(&sc->sc_dev,
3288 "hal qnum %u out of range, max %zu!\n",
3289 qnum, N(sc->sc_txq));
3290 ath_hal_releasetxqueue(ah, qnum);
3291 return NULL;
3292 }
3293 if (!ATH_TXQ_SETUP(sc, qnum)) {
3294 struct ath_txq *txq = &sc->sc_txq[qnum];
3295
3296 txq->axq_qnum = qnum;
3297 txq->axq_depth = 0;
3298 txq->axq_intrcnt = 0;
3299 txq->axq_link = NULL;
3300 STAILQ_INIT(&txq->axq_q);
3301 ATH_TXQ_LOCK_INIT(sc, txq);
3302 sc->sc_txqsetup |= 1<<qnum;
3303 }
3304 return &sc->sc_txq[qnum];
3305 #undef N
3306 }
3307
3308 /*
3309 * Setup a hardware data transmit queue for the specified
3310 * access control. The hal may not support all requested
3311 * queues in which case it will return a reference to a
3312 * previously setup queue. We record the mapping from ac's
3313 * to h/w queues for use by ath_tx_start and also track
3314 * the set of h/w queues being used to optimize work in the
3315 * transmit interrupt handler and related routines.
3316 */
3317 static int
3318 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3319 {
3320 #define N(a) (sizeof(a)/sizeof(a[0]))
3321 struct ath_txq *txq;
3322
3323 if (ac >= N(sc->sc_ac2q)) {
3324 device_printf(&sc->sc_dev, "AC %u out of range, max %zu!\n",
3325 ac, N(sc->sc_ac2q));
3326 return 0;
3327 }
3328 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3329 if (txq != NULL) {
3330 sc->sc_ac2q[ac] = txq;
3331 return 1;
3332 } else
3333 return 0;
3334 #undef N
3335 }
3336
3337 /*
3338 * Update WME parameters for a transmit queue.
3339 */
3340 static int
3341 ath_txq_update(struct ath_softc *sc, int ac)
3342 {
3343 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1)
3344 #define ATH_TXOP_TO_US(v) (v<<5)
3345 struct ieee80211com *ic = &sc->sc_ic;
3346 struct ath_txq *txq = sc->sc_ac2q[ac];
3347 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3348 struct ath_hal *ah = sc->sc_ah;
3349 HAL_TXQ_INFO qi;
3350
3351 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3352 qi.tqi_aifs = wmep->wmep_aifsn;
3353 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3354 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3355 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3356
3357 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3358 device_printf(&sc->sc_dev, "unable to update hardware queue "
3359 "parameters for %s traffic!\n",
3360 ieee80211_wme_acnames[ac]);
3361 return 0;
3362 } else {
3363 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3364 return 1;
3365 }
3366 #undef ATH_TXOP_TO_US
3367 #undef ATH_EXPONENT_TO_VALUE
3368 }
3369
3370 /*
3371 * Callback from the 802.11 layer to update WME parameters.
3372 */
3373 static int
3374 ath_wme_update(struct ieee80211com *ic)
3375 {
3376 struct ath_softc *sc = ic->ic_ifp->if_softc;
3377
3378 return !ath_txq_update(sc, WME_AC_BE) ||
3379 !ath_txq_update(sc, WME_AC_BK) ||
3380 !ath_txq_update(sc, WME_AC_VI) ||
3381 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3382 }
3383
3384 /*
3385 * Reclaim resources for a setup queue.
3386 */
3387 static void
3388 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3389 {
3390
3391 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3392 ATH_TXQ_LOCK_DESTROY(txq);
3393 sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3394 }
3395
3396 /*
3397 * Reclaim all tx queue resources.
3398 */
3399 static void
3400 ath_tx_cleanup(struct ath_softc *sc)
3401 {
3402 int i;
3403
3404 ATH_TXBUF_LOCK_DESTROY(sc);
3405 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3406 if (ATH_TXQ_SETUP(sc, i))
3407 ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3408 }
3409
3410 /*
3411 * Defragment an mbuf chain, returning at most maxfrags separate
3412 * mbufs+clusters. If this is not possible NULL is returned and
3413 * the original mbuf chain is left in it's present (potentially
3414 * modified) state. We use two techniques: collapsing consecutive
3415 * mbufs and replacing consecutive mbufs by a cluster.
3416 */
3417 static struct mbuf *
3418 ath_defrag(struct mbuf *m0, int how, int maxfrags)
3419 {
3420 struct mbuf *m, *n, *n2, **prev;
3421 u_int curfrags;
3422
3423 /*
3424 * Calculate the current number of frags.
3425 */
3426 curfrags = 0;
3427 for (m = m0; m != NULL; m = m->m_next)
3428 curfrags++;
3429 /*
3430 * First, try to collapse mbufs. Note that we always collapse
3431 * towards the front so we don't need to deal with moving the
3432 * pkthdr. This may be suboptimal if the first mbuf has much
3433 * less data than the following.
3434 */
3435 m = m0;
3436 again:
3437 for (;;) {
3438 n = m->m_next;
3439 if (n == NULL)
3440 break;
3441 if (n->m_len < M_TRAILINGSPACE(m)) {
3442 memcpy(mtod(m, char *) + m->m_len, mtod(n, void *),
3443 n->m_len);
3444 m->m_len += n->m_len;
3445 m->m_next = n->m_next;
3446 m_free(n);
3447 if (--curfrags <= maxfrags)
3448 return m0;
3449 } else
3450 m = n;
3451 }
3452 KASSERT(maxfrags > 1,
3453 ("maxfrags %u, but normal collapse failed", maxfrags));
3454 /*
3455 * Collapse consecutive mbufs to a cluster.
3456 */
3457 prev = &m0->m_next; /* NB: not the first mbuf */
3458 while ((n = *prev) != NULL) {
3459 if ((n2 = n->m_next) != NULL &&
3460 n->m_len + n2->m_len < MCLBYTES) {
3461 m = m_getcl(how, MT_DATA, 0);
3462 if (m == NULL)
3463 goto bad;
3464 bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
3465 bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
3466 n2->m_len);
3467 m->m_len = n->m_len + n2->m_len;
3468 m->m_next = n2->m_next;
3469 *prev = m;
3470 m_free(n);
3471 m_free(n2);
3472 if (--curfrags <= maxfrags) /* +1 cl -2 mbufs */
3473 return m0;
3474 /*
3475 * Still not there, try the normal collapse
3476 * again before we allocate another cluster.
3477 */
3478 goto again;
3479 }
3480 prev = &n->m_next;
3481 }
3482 /*
3483 * No place where we can collapse to a cluster; punt.
3484 * This can occur if, for example, you request 2 frags
3485 * but the packet requires that both be clusters (we
3486 * never reallocate the first mbuf to avoid moving the
3487 * packet header).
3488 */
3489 bad:
3490 return NULL;
3491 }
3492
3493 /*
3494 * Return h/w rate index for an IEEE rate (w/o basic rate bit).
3495 */
3496 static int
3497 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
3498 {
3499 int i;
3500
3501 for (i = 0; i < rt->rateCount; i++)
3502 if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
3503 return i;
3504 return 0; /* NB: lowest rate */
3505 }
3506
3507 static void
3508 ath_freetx(struct mbuf *m)
3509 {
3510 struct mbuf *next;
3511
3512 do {
3513 next = m->m_nextpkt;
3514 m->m_nextpkt = NULL;
3515 m_freem(m);
3516 } while ((m = next) != NULL);
3517 }
3518
3519 static int
3520 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
3521 struct mbuf *m0)
3522 {
3523 struct ieee80211com *ic = &sc->sc_ic;
3524 struct ath_hal *ah = sc->sc_ah;
3525 struct ifnet *ifp = &sc->sc_if;
3526 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
3527 int i, error, iswep, ismcast, isfrag, ismrr;
3528 int keyix, hdrlen, pktlen, try0;
3529 u_int8_t rix, txrate, ctsrate;
3530 u_int8_t cix = 0xff; /* NB: silence compiler */
3531 struct ath_desc *ds, *ds0;
3532 struct ath_txq *txq;
3533 struct ieee80211_frame *wh;
3534 u_int subtype, flags, ctsduration;
3535 HAL_PKT_TYPE atype;
3536 const HAL_RATE_TABLE *rt;
3537 HAL_BOOL shortPreamble;
3538 struct ath_node *an;
3539 struct mbuf *m;
3540 u_int pri;
3541
3542 wh = mtod(m0, struct ieee80211_frame *);
3543 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
3544 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3545 isfrag = m0->m_flags & M_FRAG;
3546 hdrlen = ieee80211_anyhdrsize(wh);
3547 /*
3548 * Packet length must not include any
3549 * pad bytes; deduct them here.
3550 */
3551 pktlen = m0->m_pkthdr.len - (hdrlen & 3);
3552
3553 if (iswep) {
3554 const struct ieee80211_cipher *cip;
3555 struct ieee80211_key *k;
3556
3557 /*
3558 * Construct the 802.11 header+trailer for an encrypted
3559 * frame. The only reason this can fail is because of an
3560 * unknown or unsupported cipher/key type.
3561 */
3562 k = ieee80211_crypto_encap(ic, ni, m0);
3563 if (k == NULL) {
3564 /*
3565 * This can happen when the key is yanked after the
3566 * frame was queued. Just discard the frame; the
3567 * 802.11 layer counts failures and provides
3568 * debugging/diagnostics.
3569 */
3570 ath_freetx(m0);
3571 return EIO;
3572 }
3573 /*
3574 * Adjust the packet + header lengths for the crypto
3575 * additions and calculate the h/w key index. When
3576 * a s/w mic is done the frame will have had any mic
3577 * added to it prior to entry so m0->m_pkthdr.len above will
3578 * account for it. Otherwise we need to add it to the
3579 * packet length.
3580 */
3581 cip = k->wk_cipher;
3582 hdrlen += cip->ic_header;
3583 pktlen += cip->ic_header + cip->ic_trailer;
3584 /* NB: frags always have any TKIP MIC done in s/w */
3585 if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
3586 pktlen += cip->ic_miclen;
3587 keyix = k->wk_keyix;
3588
3589 /* packet header may have moved, reset our local pointer */
3590 wh = mtod(m0, struct ieee80211_frame *);
3591 } else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
3592 /*
3593 * Use station key cache slot, if assigned.
3594 */
3595 keyix = ni->ni_ucastkey.wk_keyix;
3596 if (keyix == IEEE80211_KEYIX_NONE)
3597 keyix = HAL_TXKEYIX_INVALID;
3598 } else
3599 keyix = HAL_TXKEYIX_INVALID;
3600
3601 pktlen += IEEE80211_CRC_LEN;
3602
3603 /*
3604 * Load the DMA map so any coalescing is done. This
3605 * also calculates the number of descriptors we need.
3606 */
3607 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3608 BUS_DMA_NOWAIT);
3609 if (error == EFBIG) {
3610 /* XXX packet requires too many descriptors */
3611 bf->bf_nseg = ATH_TXDESC+1;
3612 } else if (error != 0) {
3613 sc->sc_stats.ast_tx_busdma++;
3614 ath_freetx(m0);
3615 return error;
3616 }
3617 /*
3618 * Discard null packets and check for packets that
3619 * require too many TX descriptors. We try to convert
3620 * the latter to a cluster.
3621 */
3622 if (error == EFBIG) { /* too many desc's, linearize */
3623 sc->sc_stats.ast_tx_linear++;
3624 m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
3625 if (m == NULL) {
3626 ath_freetx(m0);
3627 sc->sc_stats.ast_tx_nombuf++;
3628 return ENOMEM;
3629 }
3630 m0 = m;
3631 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3632 BUS_DMA_NOWAIT);
3633 if (error != 0) {
3634 sc->sc_stats.ast_tx_busdma++;
3635 ath_freetx(m0);
3636 return error;
3637 }
3638 KASSERT(bf->bf_nseg <= ATH_TXDESC,
3639 ("too many segments after defrag; nseg %u", bf->bf_nseg));
3640 } else if (bf->bf_nseg == 0) { /* null packet, discard */
3641 sc->sc_stats.ast_tx_nodata++;
3642 ath_freetx(m0);
3643 return EIO;
3644 }
3645 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
3646 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
3647 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
3648 bf->bf_m = m0;
3649 bf->bf_node = ni; /* NB: held reference */
3650
3651 /* setup descriptors */
3652 ds = bf->bf_desc;
3653 rt = sc->sc_currates;
3654 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3655
3656 /*
3657 * NB: the 802.11 layer marks whether or not we should
3658 * use short preamble based on the current mode and
3659 * negotiated parameters.
3660 */
3661 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3662 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) {
3663 shortPreamble = AH_TRUE;
3664 sc->sc_stats.ast_tx_shortpre++;
3665 } else {
3666 shortPreamble = AH_FALSE;
3667 }
3668
3669 an = ATH_NODE(ni);
3670 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */
3671 ismrr = 0; /* default no multi-rate retry*/
3672 /*
3673 * Calculate Atheros packet type from IEEE80211 packet header,
3674 * setup for rate calculations, and select h/w transmit queue.
3675 */
3676 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3677 case IEEE80211_FC0_TYPE_MGT:
3678 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3679 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
3680 atype = HAL_PKT_TYPE_BEACON;
3681 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3682 atype = HAL_PKT_TYPE_PROBE_RESP;
3683 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
3684 atype = HAL_PKT_TYPE_ATIM;
3685 else
3686 atype = HAL_PKT_TYPE_NORMAL; /* XXX */
3687 rix = sc->sc_minrateix;
3688 txrate = rt->info[rix].rateCode;
3689 if (shortPreamble)
3690 txrate |= rt->info[rix].shortPreamble;
3691 try0 = ATH_TXMGTTRY;
3692 /* NB: force all management frames to highest queue */
3693 if (ni->ni_flags & IEEE80211_NODE_QOS) {
3694 /* NB: force all management frames to highest queue */
3695 pri = WME_AC_VO;
3696 } else
3697 pri = WME_AC_BE;
3698 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
3699 break;
3700 case IEEE80211_FC0_TYPE_CTL:
3701 atype = HAL_PKT_TYPE_PSPOLL; /* stop setting of duration */
3702 rix = sc->sc_minrateix;
3703 txrate = rt->info[rix].rateCode;
3704 if (shortPreamble)
3705 txrate |= rt->info[rix].shortPreamble;
3706 try0 = ATH_TXMGTTRY;
3707 /* NB: force all ctl frames to highest queue */
3708 if (ni->ni_flags & IEEE80211_NODE_QOS) {
3709 /* NB: force all ctl frames to highest queue */
3710 pri = WME_AC_VO;
3711 } else
3712 pri = WME_AC_BE;
3713 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
3714 break;
3715 case IEEE80211_FC0_TYPE_DATA:
3716 atype = HAL_PKT_TYPE_NORMAL; /* default */
3717 /*
3718 * Data frames: multicast frames go out at a fixed rate,
3719 * otherwise consult the rate control module for the
3720 * rate to use.
3721 */
3722 if (ismcast) {
3723 /*
3724 * Check mcast rate setting in case it's changed.
3725 * XXX move out of fastpath
3726 */
3727 if (ic->ic_mcast_rate != sc->sc_mcastrate) {
3728 sc->sc_mcastrix =
3729 ath_tx_findrix(rt, ic->ic_mcast_rate);
3730 sc->sc_mcastrate = ic->ic_mcast_rate;
3731 }
3732 rix = sc->sc_mcastrix;
3733 txrate = rt->info[rix].rateCode;
3734 try0 = 1;
3735 } else {
3736 ath_rate_findrate(sc, an, shortPreamble, pktlen,
3737 &rix, &try0, &txrate);
3738 sc->sc_txrate = txrate; /* for LED blinking */
3739 if (try0 != ATH_TXMAXTRY)
3740 ismrr = 1;
3741 }
3742 pri = M_WME_GETAC(m0);
3743 if (cap->cap_wmeParams[pri].wmep_noackPolicy)
3744 flags |= HAL_TXDESC_NOACK;
3745 break;
3746 default:
3747 if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3748 wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3749 /* XXX statistic */
3750 ath_freetx(m0);
3751 return EIO;
3752 }
3753 txq = sc->sc_ac2q[pri];
3754
3755 /*
3756 * When servicing one or more stations in power-save mode
3757 * multicast frames must be buffered until after the beacon.
3758 * We use the CAB queue for that.
3759 */
3760 if (ismcast && ic->ic_ps_sta) {
3761 txq = sc->sc_cabq;
3762 /* XXX? more bit in 802.11 frame header */
3763 }
3764
3765 /*
3766 * Calculate miscellaneous flags.
3767 */
3768 if (ismcast) {
3769 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */
3770 } else if (pktlen > ic->ic_rtsthreshold) {
3771 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */
3772 cix = rt->info[rix].controlRate;
3773 sc->sc_stats.ast_tx_rts++;
3774 }
3775 if (flags & HAL_TXDESC_NOACK) /* NB: avoid double counting */
3776 sc->sc_stats.ast_tx_noack++;
3777
3778 /*
3779 * If 802.11g protection is enabled, determine whether
3780 * to use RTS/CTS or just CTS. Note that this is only
3781 * done for OFDM unicast frames.
3782 */
3783 if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3784 rt->info[rix].phy == IEEE80211_T_OFDM &&
3785 (flags & HAL_TXDESC_NOACK) == 0) {
3786 /* XXX fragments must use CCK rates w/ protection */
3787 if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3788 flags |= HAL_TXDESC_RTSENA;
3789 else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3790 flags |= HAL_TXDESC_CTSENA;
3791 if (isfrag) {
3792 /*
3793 * For frags it would be desirable to use the
3794 * highest CCK rate for RTS/CTS. But stations
3795 * farther away may detect it at a lower CCK rate
3796 * so use the configured protection rate instead
3797 * (for now).
3798 */
3799 cix = rt->info[sc->sc_protrix].controlRate;
3800 } else
3801 cix = rt->info[sc->sc_protrix].controlRate;
3802 sc->sc_stats.ast_tx_protect++;
3803 }
3804
3805 /*
3806 * Calculate duration. This logically belongs in the 802.11
3807 * layer but it lacks sufficient information to calculate it.
3808 */
3809 if ((flags & HAL_TXDESC_NOACK) == 0 &&
3810 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
3811 u_int16_t dur;
3812 /*
3813 * XXX not right with fragmentation.
3814 */
3815 if (shortPreamble)
3816 dur = rt->info[rix].spAckDuration;
3817 else
3818 dur = rt->info[rix].lpAckDuration;
3819 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
3820 dur += dur; /* additional SIFS+ACK */
3821 KASSERT(m0->m_nextpkt != NULL, ("no fragment"));
3822 /*
3823 * Include the size of next fragment so NAV is
3824 * updated properly. The last fragment uses only
3825 * the ACK duration
3826 */
3827 dur += ath_hal_computetxtime(ah, rt,
3828 m0->m_nextpkt->m_pkthdr.len,
3829 rix, shortPreamble);
3830 }
3831 if (isfrag) {
3832 /*
3833 * Force hardware to use computed duration for next
3834 * fragment by disabling multi-rate retry which updates
3835 * duration based on the multi-rate duration table.
3836 */
3837 try0 = ATH_TXMAXTRY;
3838 }
3839 *(u_int16_t *)wh->i_dur = htole16(dur);
3840 }
3841
3842 /*
3843 * Calculate RTS/CTS rate and duration if needed.
3844 */
3845 ctsduration = 0;
3846 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
3847 /*
3848 * CTS transmit rate is derived from the transmit rate
3849 * by looking in the h/w rate table. We must also factor
3850 * in whether or not a short preamble is to be used.
3851 */
3852 /* NB: cix is set above where RTS/CTS is enabled */
3853 KASSERT(cix != 0xff, ("cix not setup"));
3854 ctsrate = rt->info[cix].rateCode;
3855 /*
3856 * Compute the transmit duration based on the frame
3857 * size and the size of an ACK frame. We call into the
3858 * HAL to do the computation since it depends on the
3859 * characteristics of the actual PHY being used.
3860 *
3861 * NB: CTS is assumed the same size as an ACK so we can
3862 * use the precalculated ACK durations.
3863 */
3864 if (shortPreamble) {
3865 ctsrate |= rt->info[cix].shortPreamble;
3866 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
3867 ctsduration += rt->info[cix].spAckDuration;
3868 ctsduration += ath_hal_computetxtime(ah,
3869 rt, pktlen, rix, AH_TRUE);
3870 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
3871 ctsduration += rt->info[rix].spAckDuration;
3872 } else {
3873 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
3874 ctsduration += rt->info[cix].lpAckDuration;
3875 ctsduration += ath_hal_computetxtime(ah,
3876 rt, pktlen, rix, AH_FALSE);
3877 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
3878 ctsduration += rt->info[rix].lpAckDuration;
3879 }
3880 /*
3881 * Must disable multi-rate retry when using RTS/CTS.
3882 */
3883 ismrr = 0;
3884 try0 = ATH_TXMGTTRY; /* XXX */
3885 } else
3886 ctsrate = 0;
3887
3888 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3889 ieee80211_dump_pkt(mtod(m0, void *), m0->m_len,
3890 sc->sc_hwmap[txrate].ieeerate, -1);
3891 #if NBPFILTER > 0
3892 if (ic->ic_rawbpf)
3893 bpf_mtap(ic->ic_rawbpf, m0);
3894 if (sc->sc_drvbpf) {
3895 u_int64_t tsf = ath_hal_gettsf64(ah);
3896
3897 sc->sc_tx_th.wt_tsf = htole64(tsf);
3898 sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
3899 if (iswep)
3900 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3901 if (isfrag)
3902 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
3903 sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
3904 sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3905 sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3906
3907 bpf_mtap2(sc->sc_drvbpf,
3908 &sc->sc_tx_th, sc->sc_tx_th_len, m0);
3909 }
3910 #endif
3911
3912 /*
3913 * Determine if a tx interrupt should be generated for
3914 * this descriptor. We take a tx interrupt to reap
3915 * descriptors when the h/w hits an EOL condition or
3916 * when the descriptor is specifically marked to generate
3917 * an interrupt. We periodically mark descriptors in this
3918 * way to insure timely replenishing of the supply needed
3919 * for sending frames. Defering interrupts reduces system
3920 * load and potentially allows more concurrent work to be
3921 * done but if done to aggressively can cause senders to
3922 * backup.
3923 *
3924 * NB: use >= to deal with sc_txintrperiod changing
3925 * dynamically through sysctl.
3926 */
3927 if (flags & HAL_TXDESC_INTREQ) {
3928 txq->axq_intrcnt = 0;
3929 } else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
3930 flags |= HAL_TXDESC_INTREQ;
3931 txq->axq_intrcnt = 0;
3932 }
3933
3934 /*
3935 * Formulate first tx descriptor with tx controls.
3936 */
3937 /* XXX check return value? */
3938 ath_hal_setuptxdesc(ah, ds
3939 , pktlen /* packet length */
3940 , hdrlen /* header length */
3941 , atype /* Atheros packet type */
3942 , ni->ni_txpower /* txpower */
3943 , txrate, try0 /* series 0 rate/tries */
3944 , keyix /* key cache index */
3945 , sc->sc_txantenna /* antenna mode */
3946 , flags /* flags */
3947 , ctsrate /* rts/cts rate */
3948 , ctsduration /* rts/cts duration */
3949 );
3950 bf->bf_flags = flags;
3951 /*
3952 * Setup the multi-rate retry state only when we're
3953 * going to use it. This assumes ath_hal_setuptxdesc
3954 * initializes the descriptors (so we don't have to)
3955 * when the hardware supports multi-rate retry and
3956 * we don't use it.
3957 */
3958 if (ismrr)
3959 ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
3960
3961 /*
3962 * Fillin the remainder of the descriptor info.
3963 */
3964 ds0 = ds;
3965 for (i = 0; i < bf->bf_nseg; i++, ds++) {
3966 ds->ds_data = bf->bf_segs[i].ds_addr;
3967 if (i == bf->bf_nseg - 1)
3968 ds->ds_link = 0;
3969 else
3970 ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
3971 ath_hal_filltxdesc(ah, ds
3972 , bf->bf_segs[i].ds_len /* segment length */
3973 , i == 0 /* first segment */
3974 , i == bf->bf_nseg - 1 /* last segment */
3975 , ds0 /* first descriptor */
3976 );
3977
3978 /* NB: The desc swap function becomes void,
3979 * if descriptor swapping is not enabled
3980 */
3981 ath_desc_swap(ds);
3982
3983 DPRINTF(sc, ATH_DEBUG_XMIT,
3984 "%s: %d: %08x %08x %08x %08x %08x %08x\n",
3985 __func__, i, ds->ds_link, ds->ds_data,
3986 ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
3987 }
3988 /*
3989 * Insert the frame on the outbound list and
3990 * pass it on to the hardware.
3991 */
3992 ATH_TXQ_LOCK(txq);
3993 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
3994 if (txq->axq_link == NULL) {
3995 ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
3996 DPRINTF(sc, ATH_DEBUG_XMIT,
3997 "%s: TXDP[%u] = %" PRIx64 " (%p) depth %d\n", __func__,
3998 txq->axq_qnum, (uint64_t)bf->bf_daddr, bf->bf_desc,
3999 txq->axq_depth);
4000 } else {
4001 *txq->axq_link = HTOAH32(bf->bf_daddr);
4002 DPRINTF(sc, ATH_DEBUG_XMIT,
4003 "%s: link[%u](%p)=%" PRIx64 " (%p) depth %d\n",
4004 __func__, txq->axq_qnum, txq->axq_link,
4005 (uint64_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
4006 }
4007 txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
4008 /*
4009 * The CAB queue is started from the SWBA handler since
4010 * frames only go out on DTIM and to avoid possible races.
4011 */
4012 if (txq != sc->sc_cabq)
4013 ath_hal_txstart(ah, txq->axq_qnum);
4014 ATH_TXQ_UNLOCK(txq);
4015
4016 return 0;
4017 }
4018
4019 /*
4020 * Process completed xmit descriptors from the specified queue.
4021 */
4022 static int
4023 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
4024 {
4025 struct ath_hal *ah = sc->sc_ah;
4026 struct ieee80211com *ic = &sc->sc_ic;
4027 struct ath_buf *bf;
4028 struct ath_desc *ds, *ds0;
4029 struct ieee80211_node *ni;
4030 struct ath_node *an;
4031 int sr, lr, pri, nacked;
4032 HAL_STATUS status;
4033
4034 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
4035 __func__, txq->axq_qnum,
4036 (void *)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4037 txq->axq_link);
4038 nacked = 0;
4039 for (;;) {
4040 ATH_TXQ_LOCK(txq);
4041 txq->axq_intrcnt = 0; /* reset periodic desc intr count */
4042 bf = STAILQ_FIRST(&txq->axq_q);
4043 if (bf == NULL) {
4044 txq->axq_link = NULL;
4045 ATH_TXQ_UNLOCK(txq);
4046 break;
4047 }
4048 ds0 = &bf->bf_desc[0];
4049 ds = &bf->bf_desc[bf->bf_nseg - 1];
4050 status = ath_hal_txprocdesc(ah, ds);
4051 #ifdef AR_DEBUG
4052 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
4053 ath_printtxbuf(bf, status == HAL_OK);
4054 #endif
4055 if (status == HAL_EINPROGRESS) {
4056 ATH_TXQ_UNLOCK(txq);
4057 break;
4058 }
4059 ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4060 ATH_TXQ_UNLOCK(txq);
4061
4062 ni = bf->bf_node;
4063 if (ni != NULL) {
4064 an = ATH_NODE(ni);
4065 if (ds->ds_txstat.ts_status == 0) {
4066 u_int8_t txant = ds->ds_txstat.ts_antenna;
4067 sc->sc_stats.ast_ant_tx[txant]++;
4068 sc->sc_ant_tx[txant]++;
4069 if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
4070 sc->sc_stats.ast_tx_altrate++;
4071 sc->sc_stats.ast_tx_rssi =
4072 ds->ds_txstat.ts_rssi;
4073 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
4074 ds->ds_txstat.ts_rssi);
4075 pri = M_WME_GETAC(bf->bf_m);
4076 if (pri >= WME_AC_VO)
4077 ic->ic_wme.wme_hipri_traffic++;
4078 ni->ni_inact = ni->ni_inact_reload;
4079 } else {
4080 if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
4081 sc->sc_stats.ast_tx_xretries++;
4082 if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
4083 sc->sc_stats.ast_tx_fifoerr++;
4084 if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
4085 sc->sc_stats.ast_tx_filtered++;
4086 }
4087 sr = ds->ds_txstat.ts_shortretry;
4088 lr = ds->ds_txstat.ts_longretry;
4089 sc->sc_stats.ast_tx_shortretry += sr;
4090 sc->sc_stats.ast_tx_longretry += lr;
4091 /*
4092 * Hand the descriptor to the rate control algorithm.
4093 */
4094 if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
4095 (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
4096 /*
4097 * If frame was ack'd update the last rx time
4098 * used to workaround phantom bmiss interrupts.
4099 */
4100 if (ds->ds_txstat.ts_status == 0)
4101 nacked++;
4102 ath_rate_tx_complete(sc, an, ds, ds0);
4103 }
4104 /*
4105 * Reclaim reference to node.
4106 *
4107 * NB: the node may be reclaimed here if, for example
4108 * this is a DEAUTH message that was sent and the
4109 * node was timed out due to inactivity.
4110 */
4111 ieee80211_free_node(ni);
4112 }
4113 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
4114 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4115 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4116 m_freem(bf->bf_m);
4117 bf->bf_m = NULL;
4118 bf->bf_node = NULL;
4119
4120 ATH_TXBUF_LOCK(sc);
4121 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4122 sc->sc_if.if_flags &= ~IFF_OACTIVE;
4123 ATH_TXBUF_UNLOCK(sc);
4124 }
4125 return nacked;
4126 }
4127
4128 static inline int
4129 txqactive(struct ath_hal *ah, int qnum)
4130 {
4131 u_int32_t txqs = 1<<qnum;
4132 ath_hal_gettxintrtxqs(ah, &txqs);
4133 return (txqs & (1<<qnum));
4134 }
4135
4136 /*
4137 * Deferred processing of transmit interrupt; special-cased
4138 * for a single hardware transmit queue (e.g. 5210 and 5211).
4139 */
4140 static void
4141 ath_tx_proc_q0(void *arg, int npending)
4142 {
4143 struct ath_softc *sc = arg;
4144 struct ifnet *ifp = &sc->sc_if;
4145
4146 if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]) > 0){
4147 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4148 }
4149 if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4150 ath_tx_processq(sc, sc->sc_cabq);
4151
4152 if (sc->sc_softled)
4153 ath_led_event(sc, ATH_LED_TX);
4154
4155 ath_start(ifp);
4156 }
4157
4158 /*
4159 * Deferred processing of transmit interrupt; special-cased
4160 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4161 */
4162 static void
4163 ath_tx_proc_q0123(void *arg, int npending)
4164 {
4165 struct ath_softc *sc = arg;
4166 struct ifnet *ifp = &sc->sc_if;
4167 int nacked;
4168
4169 /*
4170 * Process each active queue.
4171 */
4172 nacked = 0;
4173 if (txqactive(sc->sc_ah, 0))
4174 nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
4175 if (txqactive(sc->sc_ah, 1))
4176 nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
4177 if (txqactive(sc->sc_ah, 2))
4178 nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
4179 if (txqactive(sc->sc_ah, 3))
4180 nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
4181 if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4182 ath_tx_processq(sc, sc->sc_cabq);
4183 if (nacked) {
4184 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4185 }
4186
4187 if (sc->sc_softled)
4188 ath_led_event(sc, ATH_LED_TX);
4189
4190 ath_start(ifp);
4191 }
4192
4193 /*
4194 * Deferred processing of transmit interrupt.
4195 */
4196 static void
4197 ath_tx_proc(void *arg, int npending)
4198 {
4199 struct ath_softc *sc = arg;
4200 struct ifnet *ifp = &sc->sc_if;
4201 int i, nacked;
4202
4203 /*
4204 * Process each active queue.
4205 */
4206 nacked = 0;
4207 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4208 if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
4209 nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
4210 if (nacked) {
4211 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4212 }
4213
4214 if (sc->sc_softled)
4215 ath_led_event(sc, ATH_LED_TX);
4216
4217 ath_start(ifp);
4218 }
4219
4220 static void
4221 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
4222 {
4223 struct ath_hal *ah = sc->sc_ah;
4224 struct ieee80211_node *ni;
4225 struct ath_buf *bf;
4226
4227 /*
4228 * NB: this assumes output has been stopped and
4229 * we do not need to block ath_tx_tasklet
4230 */
4231 for (;;) {
4232 ATH_TXQ_LOCK(txq);
4233 bf = STAILQ_FIRST(&txq->axq_q);
4234 if (bf == NULL) {
4235 txq->axq_link = NULL;
4236 ATH_TXQ_UNLOCK(txq);
4237 break;
4238 }
4239 ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4240 ATH_TXQ_UNLOCK(txq);
4241 #ifdef AR_DEBUG
4242 if (sc->sc_debug & ATH_DEBUG_RESET)
4243 ath_printtxbuf(bf,
4244 ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
4245 #endif /* AR_DEBUG */
4246 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4247 m_freem(bf->bf_m);
4248 bf->bf_m = NULL;
4249 ni = bf->bf_node;
4250 bf->bf_node = NULL;
4251 if (ni != NULL) {
4252 /*
4253 * Reclaim node reference.
4254 */
4255 ieee80211_free_node(ni);
4256 }
4257 ATH_TXBUF_LOCK(sc);
4258 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4259 sc->sc_if.if_flags &= ~IFF_OACTIVE;
4260 ATH_TXBUF_UNLOCK(sc);
4261 }
4262 }
4263
4264 static void
4265 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4266 {
4267 struct ath_hal *ah = sc->sc_ah;
4268
4269 (void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4270 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4271 __func__, txq->axq_qnum,
4272 (void *)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4273 txq->axq_link);
4274 }
4275
4276 /*
4277 * Drain the transmit queues and reclaim resources.
4278 */
4279 static void
4280 ath_draintxq(struct ath_softc *sc)
4281 {
4282 struct ath_hal *ah = sc->sc_ah;
4283 int i;
4284
4285 /* XXX return value */
4286 if (!sc->sc_invalid) {
4287 /* don't touch the hardware if marked invalid */
4288 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4289 DPRINTF(sc, ATH_DEBUG_RESET,
4290 "%s: beacon queue %p\n", __func__,
4291 (void *)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
4292 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4293 if (ATH_TXQ_SETUP(sc, i))
4294 ath_tx_stopdma(sc, &sc->sc_txq[i]);
4295 }
4296 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4297 if (ATH_TXQ_SETUP(sc, i))
4298 ath_tx_draintxq(sc, &sc->sc_txq[i]);
4299 }
4300
4301 /*
4302 * Disable the receive h/w in preparation for a reset.
4303 */
4304 static void
4305 ath_stoprecv(struct ath_softc *sc)
4306 {
4307 #define PA2DESC(_sc, _pa) \
4308 ((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
4309 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
4310 struct ath_hal *ah = sc->sc_ah;
4311
4312 ath_hal_stoppcurecv(ah); /* disable PCU */
4313 ath_hal_setrxfilter(ah, 0); /* clear recv filter */
4314 ath_hal_stopdmarecv(ah); /* disable DMA engine */
4315 DELAY(3000); /* 3ms is long enough for 1 frame */
4316 #ifdef AR_DEBUG
4317 if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
4318 struct ath_buf *bf;
4319
4320 printf("%s: rx queue %p, link %p\n", __func__,
4321 (void *)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
4322 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4323 struct ath_desc *ds = bf->bf_desc;
4324 HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
4325 bf->bf_daddr, PA2DESC(sc, ds->ds_link));
4326 if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
4327 ath_printrxbuf(bf, status == HAL_OK);
4328 }
4329 }
4330 #endif
4331 sc->sc_rxlink = NULL; /* just in case */
4332 #undef PA2DESC
4333 }
4334
4335 /*
4336 * Enable the receive h/w following a reset.
4337 */
4338 static int
4339 ath_startrecv(struct ath_softc *sc)
4340 {
4341 struct ath_hal *ah = sc->sc_ah;
4342 struct ath_buf *bf;
4343
4344 sc->sc_rxlink = NULL;
4345 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4346 int error = ath_rxbuf_init(sc, bf);
4347 if (error != 0) {
4348 DPRINTF(sc, ATH_DEBUG_RECV,
4349 "%s: ath_rxbuf_init failed %d\n",
4350 __func__, error);
4351 return error;
4352 }
4353 }
4354
4355 bf = STAILQ_FIRST(&sc->sc_rxbuf);
4356 ath_hal_putrxbuf(ah, bf->bf_daddr);
4357 ath_hal_rxena(ah); /* enable recv descriptors */
4358 ath_mode_init(sc); /* set filters, etc. */
4359 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */
4360 return 0;
4361 }
4362
4363 /*
4364 * Update internal state after a channel change.
4365 */
4366 static void
4367 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4368 {
4369 struct ieee80211com *ic = &sc->sc_ic;
4370 enum ieee80211_phymode mode;
4371 u_int16_t flags;
4372
4373 /*
4374 * Change channels and update the h/w rate map
4375 * if we're switching; e.g. 11a to 11b/g.
4376 */
4377 mode = ieee80211_chan2mode(ic, chan);
4378 if (mode != sc->sc_curmode)
4379 ath_setcurmode(sc, mode);
4380 /*
4381 * Update BPF state. NB: ethereal et. al. don't handle
4382 * merged flags well so pick a unique mode for their use.
4383 */
4384 if (IEEE80211_IS_CHAN_A(chan))
4385 flags = IEEE80211_CHAN_A;
4386 /* XXX 11g schizophrenia */
4387 else if (IEEE80211_IS_CHAN_G(chan) ||
4388 IEEE80211_IS_CHAN_PUREG(chan))
4389 flags = IEEE80211_CHAN_G;
4390 else
4391 flags = IEEE80211_CHAN_B;
4392 if (IEEE80211_IS_CHAN_T(chan))
4393 flags |= IEEE80211_CHAN_TURBO;
4394 sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
4395 htole16(chan->ic_freq);
4396 sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
4397 htole16(flags);
4398 }
4399
4400 /*
4401 * Poll for a channel clear indication; this is required
4402 * for channels requiring DFS and not previously visited
4403 * and/or with a recent radar detection.
4404 */
4405 static void
4406 ath_dfswait(void *arg)
4407 {
4408 struct ath_softc *sc = arg;
4409 struct ath_hal *ah = sc->sc_ah;
4410 HAL_CHANNEL hchan;
4411
4412 ath_hal_radar_wait(ah, &hchan);
4413 if (hchan.privFlags & CHANNEL_INTERFERENCE) {
4414 if_printf(&sc->sc_if,
4415 "channel %u/0x%x/0x%x has interference\n",
4416 hchan.channel, hchan.channelFlags, hchan.privFlags);
4417 return;
4418 }
4419 if ((hchan.privFlags & CHANNEL_DFS) == 0) {
4420 /* XXX should not happen */
4421 return;
4422 }
4423 if (hchan.privFlags & CHANNEL_DFS_CLEAR) {
4424 sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR;
4425 sc->sc_if.if_flags &= ~IFF_OACTIVE;
4426 if_printf(&sc->sc_if,
4427 "channel %u/0x%x/0x%x marked clear\n",
4428 hchan.channel, hchan.channelFlags, hchan.privFlags);
4429 } else
4430 callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc);
4431 }
4432
4433 /*
4434 * Set/change channels. If the channel is really being changed,
4435 * it's done by reseting the chip. To accomplish this we must
4436 * first cleanup any pending DMA, then restart stuff after a la
4437 * ath_init.
4438 */
4439 static int
4440 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4441 {
4442 struct ath_hal *ah = sc->sc_ah;
4443 struct ieee80211com *ic = &sc->sc_ic;
4444 HAL_CHANNEL hchan;
4445
4446 /*
4447 * Convert to a HAL channel description with
4448 * the flags constrained to reflect the current
4449 * operating mode.
4450 */
4451 hchan.channel = chan->ic_freq;
4452 hchan.channelFlags = ath_chan2flags(ic, chan);
4453
4454 DPRINTF(sc, ATH_DEBUG_RESET,
4455 "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
4456 __func__,
4457 ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
4458 sc->sc_curchan.channelFlags),
4459 sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
4460 ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
4461 hchan.channel, hchan.channelFlags);
4462 if (hchan.channel != sc->sc_curchan.channel ||
4463 hchan.channelFlags != sc->sc_curchan.channelFlags) {
4464 HAL_STATUS status;
4465
4466 /*
4467 * To switch channels clear any pending DMA operations;
4468 * wait long enough for the RX fifo to drain, reset the
4469 * hardware at the new frequency, and then re-enable
4470 * the relevant bits of the h/w.
4471 */
4472 ath_hal_intrset(ah, 0); /* disable interrupts */
4473 ath_draintxq(sc); /* clear pending tx frames */
4474 ath_stoprecv(sc); /* turn off frame recv */
4475 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
4476 if_printf(ic->ic_ifp, "%s: unable to reset "
4477 "channel %u (%u MHz, flags 0x%x hal flags 0x%x)\n",
4478 __func__, ieee80211_chan2ieee(ic, chan),
4479 chan->ic_freq, chan->ic_flags, hchan.channelFlags);
4480 return EIO;
4481 }
4482 sc->sc_curchan = hchan;
4483 ath_update_txpow(sc); /* update tx power state */
4484 ath_restore_diversity(sc);
4485 sc->sc_calinterval = 1;
4486 sc->sc_caltries = 0;
4487
4488 /*
4489 * Re-enable rx framework.
4490 */
4491 if (ath_startrecv(sc) != 0) {
4492 if_printf(&sc->sc_if,
4493 "%s: unable to restart recv logic\n", __func__);
4494 return EIO;
4495 }
4496
4497 /*
4498 * Change channels and update the h/w rate map
4499 * if we're switching; e.g. 11a to 11b/g.
4500 */
4501 ic->ic_ibss_chan = chan;
4502 ath_chan_change(sc, chan);
4503
4504 /*
4505 * Handle DFS required waiting period to determine
4506 * if channel is clear of radar traffic.
4507 */
4508 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
4509 #define DFS_AND_NOT_CLEAR(_c) \
4510 (((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS)
4511 if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) {
4512 if_printf(&sc->sc_if,
4513 "wait for DFS clear channel signal\n");
4514 /* XXX stop sndq */
4515 sc->sc_if.if_flags |= IFF_OACTIVE;
4516 callout_reset(&sc->sc_dfs_ch,
4517 2 * hz, ath_dfswait, sc);
4518 } else
4519 callout_stop(&sc->sc_dfs_ch);
4520 #undef DFS_NOT_CLEAR
4521 }
4522
4523 /*
4524 * Re-enable interrupts.
4525 */
4526 ath_hal_intrset(ah, sc->sc_imask);
4527 }
4528 return 0;
4529 }
4530
4531 static void
4532 ath_next_scan(void *arg)
4533 {
4534 struct ath_softc *sc = arg;
4535 struct ieee80211com *ic = &sc->sc_ic;
4536 int s;
4537
4538 /* don't call ath_start w/o network interrupts blocked */
4539 s = splnet();
4540
4541 if (ic->ic_state == IEEE80211_S_SCAN)
4542 ieee80211_next_scan(ic);
4543 splx(s);
4544 }
4545
4546 /*
4547 * Periodically recalibrate the PHY to account
4548 * for temperature/environment changes.
4549 */
4550 static void
4551 ath_calibrate(void *arg)
4552 {
4553 struct ath_softc *sc = arg;
4554 struct ath_hal *ah = sc->sc_ah;
4555 HAL_BOOL iqCalDone;
4556
4557 sc->sc_stats.ast_per_cal++;
4558
4559 ATH_LOCK(sc);
4560
4561 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4562 /*
4563 * Rfgain is out of bounds, reset the chip
4564 * to load new gain values.
4565 */
4566 DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4567 "%s: rfgain change\n", __func__);
4568 sc->sc_stats.ast_per_rfgain++;
4569 ath_reset(&sc->sc_if);
4570 }
4571 if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
4572 DPRINTF(sc, ATH_DEBUG_ANY,
4573 "%s: calibration of channel %u failed\n",
4574 __func__, sc->sc_curchan.channel);
4575 sc->sc_stats.ast_per_calfail++;
4576 }
4577 /*
4578 * Calibrate noise floor data again in case of change.
4579 */
4580 ath_hal_process_noisefloor(ah);
4581 /*
4582 * Poll more frequently when the IQ calibration is in
4583 * progress to speedup loading the final settings.
4584 * We temper this aggressive polling with an exponential
4585 * back off after 4 tries up to ath_calinterval.
4586 */
4587 if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
4588 sc->sc_caltries = 0;
4589 sc->sc_calinterval = ath_calinterval;
4590 } else if (sc->sc_caltries > 4) {
4591 sc->sc_caltries = 0;
4592 sc->sc_calinterval <<= 1;
4593 if (sc->sc_calinterval > ath_calinterval)
4594 sc->sc_calinterval = ath_calinterval;
4595 }
4596 KASSERT(0 < sc->sc_calinterval && sc->sc_calinterval <= ath_calinterval,
4597 ("bad calibration interval %u", sc->sc_calinterval));
4598
4599 DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4600 "%s: next +%u (%siqCalDone tries %u)\n", __func__,
4601 sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
4602 sc->sc_caltries++;
4603 callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4604 ath_calibrate, sc);
4605 ATH_UNLOCK(sc);
4606 }
4607
4608 static int
4609 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
4610 {
4611 struct ifnet *ifp = ic->ic_ifp;
4612 struct ath_softc *sc = ifp->if_softc;
4613 struct ath_hal *ah = sc->sc_ah;
4614 struct ieee80211_node *ni;
4615 int i, error;
4616 const u_int8_t *bssid;
4617 u_int32_t rfilt;
4618 static const HAL_LED_STATE leds[] = {
4619 HAL_LED_INIT, /* IEEE80211_S_INIT */
4620 HAL_LED_SCAN, /* IEEE80211_S_SCAN */
4621 HAL_LED_AUTH, /* IEEE80211_S_AUTH */
4622 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */
4623 HAL_LED_RUN, /* IEEE80211_S_RUN */
4624 };
4625
4626 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4627 ieee80211_state_name[ic->ic_state],
4628 ieee80211_state_name[nstate]);
4629
4630 callout_stop(&sc->sc_scan_ch);
4631 callout_stop(&sc->sc_cal_ch);
4632 callout_stop(&sc->sc_dfs_ch);
4633 ath_hal_setledstate(ah, leds[nstate]); /* set LED */
4634
4635 if (nstate == IEEE80211_S_INIT) {
4636 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4637 /*
4638 * NB: disable interrupts so we don't rx frames.
4639 */
4640 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4641 /*
4642 * Notify the rate control algorithm.
4643 */
4644 ath_rate_newstate(sc, nstate);
4645 goto done;
4646 }
4647 ni = ic->ic_bss;
4648 error = ath_chan_set(sc, ic->ic_curchan);
4649 if (error != 0)
4650 goto bad;
4651 rfilt = ath_calcrxfilter(sc, nstate);
4652 if (nstate == IEEE80211_S_SCAN)
4653 bssid = ifp->if_broadcastaddr;
4654 else
4655 bssid = ni->ni_bssid;
4656 ath_hal_setrxfilter(ah, rfilt);
4657 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
4658 __func__, rfilt, ether_sprintf(bssid));
4659
4660 if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
4661 ath_hal_setassocid(ah, bssid, ni->ni_associd);
4662 else
4663 ath_hal_setassocid(ah, bssid, 0);
4664 if (ic->ic_flags & IEEE80211_F_PRIVACY) {
4665 for (i = 0; i < IEEE80211_WEP_NKID; i++)
4666 if (ath_hal_keyisvalid(ah, i))
4667 ath_hal_keysetmac(ah, i, bssid);
4668 }
4669
4670 /*
4671 * Notify the rate control algorithm so rates
4672 * are setup should ath_beacon_alloc be called.
4673 */
4674 ath_rate_newstate(sc, nstate);
4675
4676 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4677 /* nothing to do */;
4678 } else if (nstate == IEEE80211_S_RUN) {
4679 DPRINTF(sc, ATH_DEBUG_STATE,
4680 "%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
4681 "capinfo=0x%04x chan=%d\n"
4682 , __func__
4683 , ic->ic_flags
4684 , ni->ni_intval
4685 , ether_sprintf(ni->ni_bssid)
4686 , ni->ni_capinfo
4687 , ieee80211_chan2ieee(ic, ic->ic_curchan));
4688
4689 switch (ic->ic_opmode) {
4690 case IEEE80211_M_HOSTAP:
4691 case IEEE80211_M_IBSS:
4692 /*
4693 * Allocate and setup the beacon frame.
4694 *
4695 * Stop any previous beacon DMA. This may be
4696 * necessary, for example, when an ibss merge
4697 * causes reconfiguration; there will be a state
4698 * transition from RUN->RUN that means we may
4699 * be called with beacon transmission active.
4700 */
4701 ath_hal_stoptxdma(ah, sc->sc_bhalq);
4702 ath_beacon_free(sc);
4703 error = ath_beacon_alloc(sc, ni);
4704 if (error != 0)
4705 goto bad;
4706 /*
4707 * If joining an adhoc network defer beacon timer
4708 * configuration to the next beacon frame so we
4709 * have a current TSF to use. Otherwise we're
4710 * starting an ibss/bss so there's no need to delay.
4711 */
4712 if (ic->ic_opmode == IEEE80211_M_IBSS &&
4713 ic->ic_bss->ni_tstamp.tsf != 0)
4714 sc->sc_syncbeacon = 1;
4715 else
4716 ath_beacon_config(sc);
4717 break;
4718 case IEEE80211_M_STA:
4719 /*
4720 * Allocate a key cache slot to the station.
4721 */
4722 if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
4723 sc->sc_hasclrkey &&
4724 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4725 ath_setup_stationkey(ni);
4726 /*
4727 * Defer beacon timer configuration to the next
4728 * beacon frame so we have a current TSF to use
4729 * (any TSF collected when scanning is likely old).
4730 */
4731 sc->sc_syncbeacon = 1;
4732 break;
4733 default:
4734 break;
4735 }
4736 /*
4737 * Let the hal process statistics collected during a
4738 * scan so it can provide calibrated noise floor data.
4739 */
4740 ath_hal_process_noisefloor(ah);
4741 /*
4742 * Reset rssi stats; maybe not the best place...
4743 */
4744 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
4745 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
4746 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
4747 } else {
4748 ath_hal_intrset(ah,
4749 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4750 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4751 }
4752 done:
4753 /*
4754 * Invoke the parent method to complete the work.
4755 */
4756 error = sc->sc_newstate(ic, nstate, arg);
4757 /*
4758 * Finally, start any timers.
4759 */
4760 if (nstate == IEEE80211_S_RUN) {
4761 /* start periodic recalibration timer */
4762 callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4763 ath_calibrate, sc);
4764 } else if (nstate == IEEE80211_S_SCAN) {
4765 /* start ap/neighbor scan timer */
4766 callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
4767 ath_next_scan, sc);
4768 }
4769 bad:
4770 return error;
4771 }
4772
4773 /*
4774 * Allocate a key cache slot to the station so we can
4775 * setup a mapping from key index to node. The key cache
4776 * slot is needed for managing antenna state and for
4777 * compression when stations do not use crypto. We do
4778 * it uniliaterally here; if crypto is employed this slot
4779 * will be reassigned.
4780 */
4781 static void
4782 ath_setup_stationkey(struct ieee80211_node *ni)
4783 {
4784 struct ieee80211com *ic = ni->ni_ic;
4785 struct ath_softc *sc = ic->ic_ifp->if_softc;
4786 ieee80211_keyix keyix, rxkeyix;
4787
4788 if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
4789 /*
4790 * Key cache is full; we'll fall back to doing
4791 * the more expensive lookup in software. Note
4792 * this also means no h/w compression.
4793 */
4794 /* XXX msg+statistic */
4795 } else {
4796 /* XXX locking? */
4797 ni->ni_ucastkey.wk_keyix = keyix;
4798 ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
4799 /* NB: this will create a pass-thru key entry */
4800 ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
4801 }
4802 }
4803
4804 /*
4805 * Setup driver-specific state for a newly associated node.
4806 * Note that we're called also on a re-associate, the isnew
4807 * param tells us if this is the first time or not.
4808 */
4809 static void
4810 ath_newassoc(struct ieee80211_node *ni, int isnew)
4811 {
4812 struct ieee80211com *ic = ni->ni_ic;
4813 struct ath_softc *sc = ic->ic_ifp->if_softc;
4814
4815 ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
4816 if (isnew &&
4817 (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
4818 KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
4819 ("new assoc with a unicast key already setup (keyix %u)",
4820 ni->ni_ucastkey.wk_keyix));
4821 ath_setup_stationkey(ni);
4822 }
4823 }
4824
4825 static int
4826 ath_getchannels(struct ath_softc *sc, u_int cc,
4827 HAL_BOOL outdoor, HAL_BOOL xchanmode)
4828 {
4829 #define COMPAT (CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
4830 struct ieee80211com *ic = &sc->sc_ic;
4831 struct ifnet *ifp = &sc->sc_if;
4832 struct ath_hal *ah = sc->sc_ah;
4833 HAL_CHANNEL *chans;
4834 int i, ix, nchan;
4835
4836 chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
4837 M_TEMP, M_NOWAIT);
4838 if (chans == NULL) {
4839 if_printf(ifp, "unable to allocate channel table\n");
4840 return ENOMEM;
4841 }
4842 if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
4843 NULL, 0, NULL,
4844 cc, HAL_MODE_ALL, outdoor, xchanmode)) {
4845 u_int32_t rd;
4846
4847 (void)ath_hal_getregdomain(ah, &rd);
4848 if_printf(ifp, "unable to collect channel list from hal; "
4849 "regdomain likely %u country code %u\n", rd, cc);
4850 free(chans, M_TEMP);
4851 return EINVAL;
4852 }
4853
4854 /*
4855 * Convert HAL channels to ieee80211 ones and insert
4856 * them in the table according to their channel number.
4857 */
4858 for (i = 0; i < nchan; i++) {
4859 HAL_CHANNEL *c = &chans[i];
4860 u_int16_t flags;
4861
4862 ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags);
4863 if (ix > IEEE80211_CHAN_MAX) {
4864 if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n",
4865 ix, c->channel, c->channelFlags);
4866 continue;
4867 }
4868 if (ix < 0) {
4869 /* XXX can't handle stuff <2400 right now */
4870 if (bootverbose)
4871 if_printf(ifp, "hal channel %d (%u/%x) "
4872 "cannot be handled; ignored\n",
4873 ix, c->channel, c->channelFlags);
4874 continue;
4875 }
4876 /*
4877 * Calculate net80211 flags; most are compatible
4878 * but some need massaging. Note the static turbo
4879 * conversion can be removed once net80211 is updated
4880 * to understand static vs. dynamic turbo.
4881 */
4882 flags = c->channelFlags & COMPAT;
4883 if (c->channelFlags & CHANNEL_STURBO)
4884 flags |= IEEE80211_CHAN_TURBO;
4885 if (ic->ic_channels[ix].ic_freq == 0) {
4886 ic->ic_channels[ix].ic_freq = c->channel;
4887 ic->ic_channels[ix].ic_flags = flags;
4888 } else {
4889 /* channels overlap; e.g. 11g and 11b */
4890 ic->ic_channels[ix].ic_flags |= flags;
4891 }
4892 }
4893 free(chans, M_TEMP);
4894 return 0;
4895 #undef COMPAT
4896 }
4897
4898 static void
4899 ath_led_done(void *arg)
4900 {
4901 struct ath_softc *sc = arg;
4902
4903 sc->sc_blinking = 0;
4904 }
4905
4906 /*
4907 * Turn the LED off: flip the pin and then set a timer so no
4908 * update will happen for the specified duration.
4909 */
4910 static void
4911 ath_led_off(void *arg)
4912 {
4913 struct ath_softc *sc = arg;
4914
4915 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
4916 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
4917 }
4918
4919 /*
4920 * Blink the LED according to the specified on/off times.
4921 */
4922 static void
4923 ath_led_blink(struct ath_softc *sc, int on, int off)
4924 {
4925 DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
4926 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
4927 sc->sc_blinking = 1;
4928 sc->sc_ledoff = off;
4929 callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
4930 }
4931
4932 static void
4933 ath_led_event(struct ath_softc *sc, int event)
4934 {
4935
4936 sc->sc_ledevent = ticks; /* time of last event */
4937 if (sc->sc_blinking) /* don't interrupt active blink */
4938 return;
4939 switch (event) {
4940 case ATH_LED_POLL:
4941 ath_led_blink(sc, sc->sc_hwmap[0].ledon,
4942 sc->sc_hwmap[0].ledoff);
4943 break;
4944 case ATH_LED_TX:
4945 ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
4946 sc->sc_hwmap[sc->sc_txrate].ledoff);
4947 break;
4948 case ATH_LED_RX:
4949 ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
4950 sc->sc_hwmap[sc->sc_rxrate].ledoff);
4951 break;
4952 }
4953 }
4954
4955 static void
4956 ath_update_txpow(struct ath_softc *sc)
4957 {
4958 #define COMPAT (CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
4959 struct ieee80211com *ic = &sc->sc_ic;
4960 struct ath_hal *ah = sc->sc_ah;
4961 u_int32_t txpow;
4962
4963 if (sc->sc_curtxpow != ic->ic_txpowlimit) {
4964 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
4965 /* read back in case value is clamped */
4966 (void)ath_hal_gettxpowlimit(ah, &txpow);
4967 ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
4968 }
4969 /*
4970 * Fetch max tx power level for status requests.
4971 */
4972 (void)ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
4973 ic->ic_bss->ni_txpower = txpow;
4974 }
4975
4976 static void
4977 rate_setup(struct ath_softc *sc,
4978 const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs)
4979 {
4980 int i, maxrates;
4981
4982 if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
4983 DPRINTF(sc, ATH_DEBUG_ANY,
4984 "%s: rate table too small (%u > %u)\n",
4985 __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
4986 maxrates = IEEE80211_RATE_MAXSIZE;
4987 } else
4988 maxrates = rt->rateCount;
4989 for (i = 0; i < maxrates; i++)
4990 rs->rs_rates[i] = rt->info[i].dot11Rate;
4991 rs->rs_nrates = maxrates;
4992 }
4993
4994 static int
4995 ath_rate_setup(struct ath_softc *sc, u_int mode)
4996 {
4997 struct ath_hal *ah = sc->sc_ah;
4998 struct ieee80211com *ic = &sc->sc_ic;
4999 const HAL_RATE_TABLE *rt;
5000
5001 switch (mode) {
5002 case IEEE80211_MODE_11A:
5003 rt = ath_hal_getratetable(ah, HAL_MODE_11A);
5004 break;
5005 case IEEE80211_MODE_11B:
5006 rt = ath_hal_getratetable(ah, HAL_MODE_11B);
5007 break;
5008 case IEEE80211_MODE_11G:
5009 rt = ath_hal_getratetable(ah, HAL_MODE_11G);
5010 break;
5011 case IEEE80211_MODE_TURBO_A:
5012 /* XXX until static/dynamic turbo is fixed */
5013 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
5014 break;
5015 case IEEE80211_MODE_TURBO_G:
5016 rt = ath_hal_getratetable(ah, HAL_MODE_108G);
5017 break;
5018 default:
5019 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
5020 __func__, mode);
5021 return 0;
5022 }
5023 sc->sc_rates[mode] = rt;
5024 if (rt != NULL) {
5025 rate_setup(sc, rt, &ic->ic_sup_rates[mode]);
5026 return 1;
5027 } else
5028 return 0;
5029 }
5030
5031 static void
5032 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
5033 {
5034 #define N(a) (sizeof(a)/sizeof(a[0]))
5035 /* NB: on/off times from the Atheros NDIS driver, w/ permission */
5036 static const struct {
5037 u_int rate; /* tx/rx 802.11 rate */
5038 u_int16_t timeOn; /* LED on time (ms) */
5039 u_int16_t timeOff; /* LED off time (ms) */
5040 } blinkrates[] = {
5041 { 108, 40, 10 },
5042 { 96, 44, 11 },
5043 { 72, 50, 13 },
5044 { 48, 57, 14 },
5045 { 36, 67, 16 },
5046 { 24, 80, 20 },
5047 { 22, 100, 25 },
5048 { 18, 133, 34 },
5049 { 12, 160, 40 },
5050 { 10, 200, 50 },
5051 { 6, 240, 58 },
5052 { 4, 267, 66 },
5053 { 2, 400, 100 },
5054 { 0, 500, 130 },
5055 };
5056 const HAL_RATE_TABLE *rt;
5057 int i, j;
5058
5059 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
5060 rt = sc->sc_rates[mode];
5061 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
5062 for (i = 0; i < rt->rateCount; i++)
5063 sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
5064 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
5065 for (i = 0; i < 32; i++) {
5066 u_int8_t ix = rt->rateCodeToIndex[i];
5067 if (ix == 0xff) {
5068 sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
5069 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
5070 continue;
5071 }
5072 sc->sc_hwmap[i].ieeerate =
5073 rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
5074 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
5075 if (rt->info[ix].shortPreamble ||
5076 rt->info[ix].phy == IEEE80211_T_OFDM)
5077 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
5078 /* NB: receive frames include FCS */
5079 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
5080 IEEE80211_RADIOTAP_F_FCS;
5081 /* setup blink rate table to avoid per-packet lookup */
5082 for (j = 0; j < N(blinkrates)-1; j++)
5083 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
5084 break;
5085 /* NB: this uses the last entry if the rate isn't found */
5086 /* XXX beware of overlow */
5087 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
5088 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
5089 }
5090 sc->sc_currates = rt;
5091 sc->sc_curmode = mode;
5092 /*
5093 * All protection frames are transmited at 2Mb/s for
5094 * 11g, otherwise at 1Mb/s.
5095 */
5096 if (mode == IEEE80211_MODE_11G)
5097 sc->sc_protrix = ath_tx_findrix(rt, 2*2);
5098 else
5099 sc->sc_protrix = ath_tx_findrix(rt, 2*1);
5100 /* rate index used to send management frames */
5101 sc->sc_minrateix = 0;
5102 /*
5103 * Setup multicast rate state.
5104 */
5105 /* XXX layering violation */
5106 sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate);
5107 sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate;
5108 /* NB: caller is responsible for reseting rate control state */
5109 #undef N
5110 }
5111
5112 #ifdef AR_DEBUG
5113 static void
5114 ath_printrxbuf(struct ath_buf *bf, int done)
5115 {
5116 struct ath_desc *ds;
5117 int i;
5118
5119 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5120 printf("R%d (%p %" PRIx64
5121 ") %08x %08x %08x %08x %08x %08x %c\n", i, ds,
5122 (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
5123 ds->ds_link, ds->ds_data,
5124 ds->ds_ctl0, ds->ds_ctl1,
5125 ds->ds_hw[0], ds->ds_hw[1],
5126 !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
5127 }
5128 }
5129
5130 static void
5131 ath_printtxbuf(struct ath_buf *bf, int done)
5132 {
5133 struct ath_desc *ds;
5134 int i;
5135
5136 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5137 printf("T%d (%p %" PRIx64
5138 ") %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
5139 i, ds,
5140 (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
5141 ds->ds_link, ds->ds_data,
5142 ds->ds_ctl0, ds->ds_ctl1,
5143 ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
5144 !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
5145 }
5146 }
5147 #endif /* AR_DEBUG */
5148
5149 static void
5150 ath_watchdog(struct ifnet *ifp)
5151 {
5152 struct ath_softc *sc = ifp->if_softc;
5153 struct ieee80211com *ic = &sc->sc_ic;
5154 struct ath_txq *axq;
5155 int i;
5156
5157 ifp->if_timer = 0;
5158 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
5159 return;
5160 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5161 if (!ATH_TXQ_SETUP(sc, i))
5162 continue;
5163 axq = &sc->sc_txq[i];
5164 ATH_TXQ_LOCK(axq);
5165 if (axq->axq_timer == 0)
5166 ;
5167 else if (--axq->axq_timer == 0) {
5168 ATH_TXQ_UNLOCK(axq);
5169 if_printf(ifp, "device timeout (txq %d)\n", i);
5170 ath_reset(ifp);
5171 ifp->if_oerrors++;
5172 sc->sc_stats.ast_watchdog++;
5173 break;
5174 } else
5175 ifp->if_timer = 1;
5176 ATH_TXQ_UNLOCK(axq);
5177 }
5178 ieee80211_watchdog(ic);
5179 }
5180
5181 /*
5182 * Diagnostic interface to the HAL. This is used by various
5183 * tools to do things like retrieve register contents for
5184 * debugging. The mechanism is intentionally opaque so that
5185 * it can change frequently w/o concern for compatiblity.
5186 */
5187 static int
5188 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
5189 {
5190 struct ath_hal *ah = sc->sc_ah;
5191 u_int id = ad->ad_id & ATH_DIAG_ID;
5192 void *indata = NULL;
5193 void *outdata = NULL;
5194 u_int32_t insize = ad->ad_in_size;
5195 u_int32_t outsize = ad->ad_out_size;
5196 int error = 0;
5197
5198 if (ad->ad_id & ATH_DIAG_IN) {
5199 /*
5200 * Copy in data.
5201 */
5202 indata = malloc(insize, M_TEMP, M_NOWAIT);
5203 if (indata == NULL) {
5204 error = ENOMEM;
5205 goto bad;
5206 }
5207 error = copyin(ad->ad_in_data, indata, insize);
5208 if (error)
5209 goto bad;
5210 }
5211 if (ad->ad_id & ATH_DIAG_DYN) {
5212 /*
5213 * Allocate a buffer for the results (otherwise the HAL
5214 * returns a pointer to a buffer where we can read the
5215 * results). Note that we depend on the HAL leaving this
5216 * pointer for us to use below in reclaiming the buffer;
5217 * may want to be more defensive.
5218 */
5219 outdata = malloc(outsize, M_TEMP, M_NOWAIT);
5220 if (outdata == NULL) {
5221 error = ENOMEM;
5222 goto bad;
5223 }
5224 }
5225 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
5226 if (outsize < ad->ad_out_size)
5227 ad->ad_out_size = outsize;
5228 if (outdata != NULL)
5229 error = copyout(outdata, ad->ad_out_data,
5230 ad->ad_out_size);
5231 } else {
5232 error = EINVAL;
5233 }
5234 bad:
5235 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
5236 free(indata, M_TEMP);
5237 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
5238 free(outdata, M_TEMP);
5239 return error;
5240 }
5241
5242 static int
5243 ath_ioctl(struct ifnet *ifp, u_long cmd, void *data)
5244 {
5245 #define IS_RUNNING(ifp) \
5246 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
5247 struct ath_softc *sc = ifp->if_softc;
5248 struct ieee80211com *ic = &sc->sc_ic;
5249 struct ifreq *ifr = (struct ifreq *)data;
5250 int error = 0;
5251
5252 ATH_LOCK(sc);
5253 switch (cmd) {
5254 case SIOCSIFFLAGS:
5255 if (IS_RUNNING(ifp)) {
5256 /*
5257 * To avoid rescanning another access point,
5258 * do not call ath_init() here. Instead,
5259 * only reflect promisc mode settings.
5260 */
5261 ath_mode_init(sc);
5262 } else if (ifp->if_flags & IFF_UP) {
5263 /*
5264 * Beware of being called during attach/detach
5265 * to reset promiscuous mode. In that case we
5266 * will still be marked UP but not RUNNING.
5267 * However trying to re-init the interface
5268 * is the wrong thing to do as we've already
5269 * torn down much of our state. There's
5270 * probably a better way to deal with this.
5271 */
5272 if (!sc->sc_invalid && ic->ic_bss != NULL)
5273 ath_init(sc); /* XXX lose error */
5274 } else
5275 ath_stop_locked(ifp, 1);
5276 break;
5277 case SIOCADDMULTI:
5278 case SIOCDELMULTI:
5279 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
5280 if (ifp->if_flags & IFF_RUNNING)
5281 ath_mode_init(sc);
5282 error = 0;
5283 }
5284 break;
5285 case SIOCGATHSTATS:
5286 /* NB: embed these numbers to get a consistent view */
5287 sc->sc_stats.ast_tx_packets = ifp->if_opackets;
5288 sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
5289 sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
5290 ATH_UNLOCK(sc);
5291 /*
5292 * NB: Drop the softc lock in case of a page fault;
5293 * we'll accept any potential inconsisentcy in the
5294 * statistics. The alternative is to copy the data
5295 * to a local structure.
5296 */
5297 return copyout(&sc->sc_stats,
5298 ifr->ifr_data, sizeof (sc->sc_stats));
5299 case SIOCGATHDIAG:
5300 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
5301 break;
5302 default:
5303 error = ieee80211_ioctl(ic, cmd, data);
5304 if (error == ENETRESET) {
5305 if (IS_RUNNING(ifp) &&
5306 ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
5307 ath_init(sc); /* XXX lose error */
5308 error = 0;
5309 }
5310 if (error == ERESTART)
5311 error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0;
5312 break;
5313 }
5314 ATH_UNLOCK(sc);
5315 return error;
5316 #undef IS_RUNNING
5317 }
5318
5319 #if NBPFILTER > 0
5320 static void
5321 ath_bpfattach(struct ath_softc *sc)
5322 {
5323 struct ifnet *ifp = &sc->sc_if;
5324
5325 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
5326 sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
5327 &sc->sc_drvbpf);
5328 /*
5329 * Initialize constant fields.
5330 * XXX make header lengths a multiple of 32-bits so subsequent
5331 * headers are properly aligned; this is a kludge to keep
5332 * certain applications happy.
5333 *
5334 * NB: the channel is setup each time we transition to the
5335 * RUN state to avoid filling it in for each frame.
5336 */
5337 sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
5338 sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
5339 sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
5340
5341 sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
5342 sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
5343 sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
5344 }
5345 #endif
5346
5347 /*
5348 * Announce various information on device/driver attach.
5349 */
5350 static void
5351 ath_announce(struct ath_softc *sc)
5352 {
5353 #define HAL_MODE_DUALBAND (HAL_MODE_11A|HAL_MODE_11B)
5354 struct ifnet *ifp = &sc->sc_if;
5355 struct ath_hal *ah = sc->sc_ah;
5356 u_int modes, cc;
5357
5358 if_printf(ifp, "mac %d.%d phy %d.%d",
5359 ah->ah_macVersion, ah->ah_macRev,
5360 ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
5361 /*
5362 * Print radio revision(s). We check the wireless modes
5363 * to avoid falsely printing revs for inoperable parts.
5364 * Dual-band radio revs are returned in the 5 GHz rev number.
5365 */
5366 ath_hal_getcountrycode(ah, &cc);
5367 modes = ath_hal_getwirelessmodes(ah, cc);
5368 if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
5369 if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
5370 printf(" 5 GHz radio %d.%d 2 GHz radio %d.%d",
5371 ah->ah_analog5GhzRev >> 4,
5372 ah->ah_analog5GhzRev & 0xf,
5373 ah->ah_analog2GhzRev >> 4,
5374 ah->ah_analog2GhzRev & 0xf);
5375 else
5376 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5377 ah->ah_analog5GhzRev & 0xf);
5378 } else
5379 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5380 ah->ah_analog5GhzRev & 0xf);
5381 printf("\n");
5382 if (bootverbose) {
5383 int i;
5384 for (i = 0; i <= WME_AC_VO; i++) {
5385 struct ath_txq *txq = sc->sc_ac2q[i];
5386 if_printf(ifp, "Use hw queue %u for %s traffic\n",
5387 txq->axq_qnum, ieee80211_wme_acnames[i]);
5388 }
5389 if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5390 sc->sc_cabq->axq_qnum);
5391 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5392 }
5393 if (ath_rxbuf != ATH_RXBUF)
5394 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
5395 if (ath_txbuf != ATH_TXBUF)
5396 if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
5397 #undef HAL_MODE_DUALBAND
5398 }
5399