Home | History | Annotate | Line # | Download | only in ic
ath.c revision 1.92
      1 /*	$NetBSD: ath.c,v 1.92 2007/11/27 00:07:42 dyoung Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer,
     12  *    without modification.
     13  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
     14  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
     15  *    redistribution must be conditioned upon including a substantially
     16  *    similar Disclaimer requirement for further binary redistribution.
     17  * 3. Neither the names of the above-listed copyright holders nor the names
     18  *    of any contributors may be used to endorse or promote products derived
     19  *    from this software without specific prior written permission.
     20  *
     21  * Alternatively, this software may be distributed under the terms of the
     22  * GNU General Public License ("GPL") version 2 as published by the Free
     23  * Software Foundation.
     24  *
     25  * NO WARRANTY
     26  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     28  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
     29  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
     30  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
     31  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
     34  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     36  * THE POSSIBILITY OF SUCH DAMAGES.
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 #ifdef __FreeBSD__
     41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $");
     42 #endif
     43 #ifdef __NetBSD__
     44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.92 2007/11/27 00:07:42 dyoung Exp $");
     45 #endif
     46 
     47 /*
     48  * Driver for the Atheros Wireless LAN controller.
     49  *
     50  * This software is derived from work of Atsushi Onoe; his contribution
     51  * is greatly appreciated.
     52  */
     53 
     54 #include "opt_inet.h"
     55 
     56 #ifdef __NetBSD__
     57 #include "bpfilter.h"
     58 #endif /* __NetBSD__ */
     59 
     60 #include <sys/param.h>
     61 #include <sys/reboot.h>
     62 #include <sys/systm.h>
     63 #include <sys/types.h>
     64 #include <sys/sysctl.h>
     65 #include <sys/mbuf.h>
     66 #include <sys/malloc.h>
     67 #include <sys/lock.h>
     68 #include <sys/kernel.h>
     69 #include <sys/socket.h>
     70 #include <sys/sockio.h>
     71 #include <sys/errno.h>
     72 #include <sys/callout.h>
     73 #include <sys/bus.h>
     74 #include <sys/endian.h>
     75 
     76 #include <net/if.h>
     77 #include <net/if_dl.h>
     78 #include <net/if_media.h>
     79 #include <net/if_types.h>
     80 #include <net/if_arp.h>
     81 #include <net/if_ether.h>
     82 #include <net/if_llc.h>
     83 
     84 #include <net80211/ieee80211_netbsd.h>
     85 #include <net80211/ieee80211_var.h>
     86 
     87 #if NBPFILTER > 0
     88 #include <net/bpf.h>
     89 #endif
     90 
     91 #ifdef INET
     92 #include <netinet/in.h>
     93 #endif
     94 
     95 #include <sys/device.h>
     96 #include <dev/ic/ath_netbsd.h>
     97 
     98 #define	AR_DEBUG
     99 #include <dev/ic/athvar.h>
    100 #include <contrib/dev/ath/ah_desc.h>
    101 #include <contrib/dev/ath/ah_devid.h>	/* XXX for softled */
    102 #include "athhal_options.h"
    103 
    104 #ifdef ATH_TX99_DIAG
    105 #include <dev/ath/ath_tx99/ath_tx99.h>
    106 #endif
    107 
    108 /* unaligned little endian access */
    109 #define LE_READ_2(p)							\
    110 	((u_int16_t)							\
    111 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
    112 #define LE_READ_4(p)							\
    113 	((u_int32_t)							\
    114 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
    115 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
    116 
    117 enum {
    118 	ATH_LED_TX,
    119 	ATH_LED_RX,
    120 	ATH_LED_POLL,
    121 };
    122 
    123 #ifdef	AH_NEED_DESC_SWAP
    124 #define	HTOAH32(x)	htole32(x)
    125 #else
    126 #define	HTOAH32(x)	(x)
    127 #endif
    128 
    129 static int	ath_ifinit(struct ifnet *);
    130 static int	ath_init(struct ath_softc *);
    131 static void	ath_stop_locked(struct ifnet *, int);
    132 static void	ath_stop(struct ifnet *, int);
    133 static void	ath_start(struct ifnet *);
    134 static int	ath_media_change(struct ifnet *);
    135 static void	ath_watchdog(struct ifnet *);
    136 static int	ath_ioctl(struct ifnet *, u_long, void *);
    137 static void	ath_fatal_proc(void *, int);
    138 static void	ath_rxorn_proc(void *, int);
    139 static void	ath_bmiss_proc(void *, int);
    140 static void	ath_radar_proc(void *, int);
    141 static int	ath_key_alloc(struct ieee80211com *,
    142 			const struct ieee80211_key *,
    143 			ieee80211_keyix *, ieee80211_keyix *);
    144 static int	ath_key_delete(struct ieee80211com *,
    145 			const struct ieee80211_key *);
    146 static int	ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
    147 			const u_int8_t mac[IEEE80211_ADDR_LEN]);
    148 static void	ath_key_update_begin(struct ieee80211com *);
    149 static void	ath_key_update_end(struct ieee80211com *);
    150 static void	ath_mode_init(struct ath_softc *);
    151 static void	ath_setslottime(struct ath_softc *);
    152 static void	ath_updateslot(struct ifnet *);
    153 static int	ath_beaconq_setup(struct ath_hal *);
    154 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
    155 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
    156 static void	ath_beacon_proc(void *, int);
    157 static void	ath_bstuck_proc(void *, int);
    158 static void	ath_beacon_free(struct ath_softc *);
    159 static void	ath_beacon_config(struct ath_softc *);
    160 static void	ath_descdma_cleanup(struct ath_softc *sc,
    161 			struct ath_descdma *, ath_bufhead *);
    162 static int	ath_desc_alloc(struct ath_softc *);
    163 static void	ath_desc_free(struct ath_softc *);
    164 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
    165 static void	ath_node_free(struct ieee80211_node *);
    166 static u_int8_t	ath_node_getrssi(const struct ieee80211_node *);
    167 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
    168 static void	ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
    169 			struct ieee80211_node *ni,
    170 			int subtype, int rssi, u_int32_t rstamp);
    171 static void	ath_setdefantenna(struct ath_softc *, u_int);
    172 static void	ath_rx_proc(void *, int);
    173 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
    174 static int	ath_tx_setup(struct ath_softc *, int, int);
    175 static int	ath_wme_update(struct ieee80211com *);
    176 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
    177 static void	ath_tx_cleanup(struct ath_softc *);
    178 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
    179 			     struct ath_buf *, struct mbuf *);
    180 static void	ath_tx_proc_q0(void *, int);
    181 static void	ath_tx_proc_q0123(void *, int);
    182 static void	ath_tx_proc(void *, int);
    183 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
    184 static void	ath_draintxq(struct ath_softc *);
    185 static void	ath_stoprecv(struct ath_softc *);
    186 static int	ath_startrecv(struct ath_softc *);
    187 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
    188 static void	ath_next_scan(void *);
    189 static void	ath_calibrate(void *);
    190 static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
    191 static void	ath_setup_stationkey(struct ieee80211_node *);
    192 static void	ath_newassoc(struct ieee80211_node *, int);
    193 static int	ath_getchannels(struct ath_softc *, u_int cc,
    194 			HAL_BOOL outdoor, HAL_BOOL xchanmode);
    195 static void	ath_led_event(struct ath_softc *, int);
    196 static void	ath_update_txpow(struct ath_softc *);
    197 static void	ath_freetx(struct mbuf *);
    198 static void	ath_restore_diversity(struct ath_softc *);
    199 
    200 static int	ath_rate_setup(struct ath_softc *, u_int mode);
    201 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
    202 
    203 #ifdef __NetBSD__
    204 int	ath_enable(struct ath_softc *);
    205 void	ath_disable(struct ath_softc *);
    206 void	ath_power(int, void *);
    207 #endif
    208 
    209 #if NBPFILTER > 0
    210 static void	ath_bpfattach(struct ath_softc *);
    211 #endif
    212 static void	ath_announce(struct ath_softc *);
    213 
    214 int ath_dwelltime = 200;		/* 5 channels/second */
    215 int ath_calinterval = 30;		/* calibrate every 30 secs */
    216 int ath_outdoor = AH_TRUE;		/* outdoor operation */
    217 int ath_xchanmode = AH_TRUE;		/* enable extended channels */
    218 int ath_countrycode = CTRY_DEFAULT;	/* country code */
    219 int ath_regdomain = 0;			/* regulatory domain */
    220 int ath_debug = 0;
    221 int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
    222 int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
    223 
    224 #ifdef AR_DEBUG
    225 enum {
    226 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
    227 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
    228 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
    229 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
    230 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
    231 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
    232 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
    233 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
    234 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
    235 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
    236 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
    237 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
    238 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
    239 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
    240 	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
    241 	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
    242 	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
    243 	ATH_DEBUG_LED		= 0x00100000,	/* led management */
    244 	ATH_DEBUG_FF		= 0x00200000,	/* fast frames */
    245 	ATH_DEBUG_DFS		= 0x00400000,	/* DFS processing */
    246 	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
    247 	ATH_DEBUG_ANY		= 0xffffffff
    248 };
    249 #define	IFF_DUMPPKTS(sc, m) \
    250 	((sc->sc_debug & (m)) || \
    251 	    (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
    252 #define	DPRINTF(sc, m, fmt, ...) do {				\
    253 	if (sc->sc_debug & (m))					\
    254 		printf(fmt, __VA_ARGS__);			\
    255 } while (0)
    256 #define	KEYPRINTF(sc, ix, hk, mac) do {				\
    257 	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
    258 		ath_keyprint(__func__, ix, hk, mac);		\
    259 } while (0)
    260 static	void ath_printrxbuf(struct ath_buf *bf, int);
    261 static	void ath_printtxbuf(struct ath_buf *bf, int);
    262 #else
    263 #define	IFF_DUMPPKTS(sc, m) \
    264 	((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
    265 #define	DPRINTF(m, fmt, ...)
    266 #define	KEYPRINTF(sc, k, ix, mac)
    267 #endif
    268 
    269 #ifdef __NetBSD__
    270 int
    271 ath_activate(struct device *self, enum devact act)
    272 {
    273 	struct ath_softc *sc = (struct ath_softc *)self;
    274 	int rv = 0, s;
    275 
    276 	s = splnet();
    277 	switch (act) {
    278 	case DVACT_ACTIVATE:
    279 		rv = EOPNOTSUPP;
    280 		break;
    281 	case DVACT_DEACTIVATE:
    282 		if_deactivate(&sc->sc_if);
    283 		break;
    284 	}
    285 	splx(s);
    286 	return rv;
    287 }
    288 
    289 int
    290 ath_enable(struct ath_softc *sc)
    291 {
    292 	if (ATH_IS_ENABLED(sc) == 0) {
    293 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
    294 			printf("%s: device enable failed\n",
    295 				device_xname(&sc->sc_dev));
    296 			return (EIO);
    297 		}
    298 		sc->sc_flags |= ATH_ENABLED;
    299 	}
    300 	return (0);
    301 }
    302 
    303 void
    304 ath_disable(struct ath_softc *sc)
    305 {
    306 	if (!ATH_IS_ENABLED(sc))
    307 		return;
    308 	if (sc->sc_disable != NULL)
    309 		(*sc->sc_disable)(sc);
    310 	sc->sc_flags &= ~ATH_ENABLED;
    311 }
    312 #endif /* __NetBSD__ */
    313 
    314 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
    315 
    316 int
    317 ath_attach(u_int16_t devid, struct ath_softc *sc)
    318 {
    319 	struct ifnet *ifp = &sc->sc_if;
    320 	struct ieee80211com *ic = &sc->sc_ic;
    321 	struct ath_hal *ah = NULL;
    322 	HAL_STATUS status;
    323 	int error = 0, i;
    324 
    325 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
    326 
    327 	memcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
    328 
    329 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
    330 	if (ah == NULL) {
    331 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
    332 			status);
    333 		error = ENXIO;
    334 		goto bad;
    335 	}
    336 	if (ah->ah_abi != HAL_ABI_VERSION) {
    337 		if_printf(ifp, "HAL ABI mismatch detected "
    338 			"(HAL:0x%x != driver:0x%x)\n",
    339 			ah->ah_abi, HAL_ABI_VERSION);
    340 		error = ENXIO;
    341 		goto bad;
    342 	}
    343 	sc->sc_ah = ah;
    344 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
    345 
    346 	/*
    347 	 * Check if the MAC has multi-rate retry support.
    348 	 * We do this by trying to setup a fake extended
    349 	 * descriptor.  MAC's that don't have support will
    350 	 * return false w/o doing anything.  MAC's that do
    351 	 * support it will return true w/o doing anything.
    352 	 */
    353 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
    354 
    355 	/*
    356 	 * Check if the device has hardware counters for PHY
    357 	 * errors.  If so we need to enable the MIB interrupt
    358 	 * so we can act on stat triggers.
    359 	 */
    360 	if (ath_hal_hwphycounters(ah))
    361 		sc->sc_needmib = 1;
    362 
    363 	/*
    364 	 * Get the hardware key cache size.
    365 	 */
    366 	sc->sc_keymax = ath_hal_keycachesize(ah);
    367 	if (sc->sc_keymax > ATH_KEYMAX) {
    368 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
    369 			ATH_KEYMAX, sc->sc_keymax);
    370 		sc->sc_keymax = ATH_KEYMAX;
    371 	}
    372 	/*
    373 	 * Reset the key cache since some parts do not
    374 	 * reset the contents on initial power up.
    375 	 */
    376 	for (i = 0; i < sc->sc_keymax; i++)
    377 		ath_hal_keyreset(ah, i);
    378 	/*
    379 	 * Mark key cache slots associated with global keys
    380 	 * as in use.  If we knew TKIP was not to be used we
    381 	 * could leave the +32, +64, and +32+64 slots free.
    382 	 * XXX only for splitmic.
    383 	 */
    384 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
    385 		setbit(sc->sc_keymap, i);
    386 		setbit(sc->sc_keymap, i+32);
    387 		setbit(sc->sc_keymap, i+64);
    388 		setbit(sc->sc_keymap, i+32+64);
    389 	}
    390 
    391 	/*
    392 	 * Collect the channel list using the default country
    393 	 * code and including outdoor channels.  The 802.11 layer
    394 	 * is resposible for filtering this list based on settings
    395 	 * like the phy mode.
    396 	 */
    397 	error = ath_getchannels(sc, ath_countrycode,
    398 			ath_outdoor, ath_xchanmode);
    399 	if (error != 0)
    400 		goto bad;
    401 
    402 	/*
    403 	 * Setup rate tables for all potential media types.
    404 	 */
    405 	ath_rate_setup(sc, IEEE80211_MODE_11A);
    406 	ath_rate_setup(sc, IEEE80211_MODE_11B);
    407 	ath_rate_setup(sc, IEEE80211_MODE_11G);
    408 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
    409 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
    410 	/* NB: setup here so ath_rate_update is happy */
    411 	ath_setcurmode(sc, IEEE80211_MODE_11A);
    412 
    413 	/*
    414 	 * Allocate tx+rx descriptors and populate the lists.
    415 	 */
    416 	error = ath_desc_alloc(sc);
    417 	if (error != 0) {
    418 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
    419 		goto bad;
    420 	}
    421 	ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
    422 	ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE);
    423 	ATH_CALLOUT_INIT(&sc->sc_dfs_ch, CALLOUT_MPSAFE);
    424 
    425 	ATH_TXBUF_LOCK_INIT(sc);
    426 
    427 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
    428 	TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
    429 	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
    430 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
    431 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
    432 	TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc);
    433 
    434 	/*
    435 	 * Allocate hardware transmit queues: one queue for
    436 	 * beacon frames and one data queue for each QoS
    437 	 * priority.  Note that the hal handles reseting
    438 	 * these queues at the needed time.
    439 	 *
    440 	 * XXX PS-Poll
    441 	 */
    442 	sc->sc_bhalq = ath_beaconq_setup(ah);
    443 	if (sc->sc_bhalq == (u_int) -1) {
    444 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
    445 		error = EIO;
    446 		goto bad2;
    447 	}
    448 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
    449 	if (sc->sc_cabq == NULL) {
    450 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
    451 		error = EIO;
    452 		goto bad2;
    453 	}
    454 	/* NB: insure BK queue is the lowest priority h/w queue */
    455 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
    456 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
    457 			ieee80211_wme_acnames[WME_AC_BK]);
    458 		error = EIO;
    459 		goto bad2;
    460 	}
    461 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
    462 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
    463 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
    464 		/*
    465 		 * Not enough hardware tx queues to properly do WME;
    466 		 * just punt and assign them all to the same h/w queue.
    467 		 * We could do a better job of this if, for example,
    468 		 * we allocate queues when we switch from station to
    469 		 * AP mode.
    470 		 */
    471 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
    472 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
    473 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
    474 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
    475 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
    476 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
    477 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
    478 	}
    479 
    480 	/*
    481 	 * Special case certain configurations.  Note the
    482 	 * CAB queue is handled by these specially so don't
    483 	 * include them when checking the txq setup mask.
    484 	 */
    485 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
    486 	case 0x01:
    487 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
    488 		break;
    489 	case 0x0f:
    490 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
    491 		break;
    492 	default:
    493 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
    494 		break;
    495 	}
    496 
    497 	/*
    498 	 * Setup rate control.  Some rate control modules
    499 	 * call back to change the anntena state so expose
    500 	 * the necessary entry points.
    501 	 * XXX maybe belongs in struct ath_ratectrl?
    502 	 */
    503 	sc->sc_setdefantenna = ath_setdefantenna;
    504 	sc->sc_rc = ath_rate_attach(sc);
    505 	if (sc->sc_rc == NULL) {
    506 		error = EIO;
    507 		goto bad2;
    508 	}
    509 
    510 	sc->sc_blinking = 0;
    511 	sc->sc_ledstate = 1;
    512 	sc->sc_ledon = 0;			/* low true */
    513 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
    514 	ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE);
    515 	/*
    516 	 * Auto-enable soft led processing for IBM cards and for
    517 	 * 5211 minipci cards.  Users can also manually enable/disable
    518 	 * support with a sysctl.
    519 	 */
    520 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
    521 	if (sc->sc_softled) {
    522 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
    523 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
    524 	}
    525 
    526 	ifp->if_softc = sc;
    527 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
    528 	ifp->if_start = ath_start;
    529 	ifp->if_watchdog = ath_watchdog;
    530 	ifp->if_ioctl = ath_ioctl;
    531 	ifp->if_init = ath_ifinit;
    532 	IFQ_SET_READY(&ifp->if_snd);
    533 
    534 	ic->ic_ifp = ifp;
    535 	ic->ic_reset = ath_reset;
    536 	ic->ic_newassoc = ath_newassoc;
    537 	ic->ic_updateslot = ath_updateslot;
    538 	ic->ic_wme.wme_update = ath_wme_update;
    539 	/* XXX not right but it's not used anywhere important */
    540 	ic->ic_phytype = IEEE80211_T_OFDM;
    541 	ic->ic_opmode = IEEE80211_M_STA;
    542 	ic->ic_caps =
    543 		  IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
    544 		| IEEE80211_C_HOSTAP		/* hostap mode */
    545 		| IEEE80211_C_MONITOR		/* monitor mode */
    546 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
    547 		| IEEE80211_C_SHSLOT		/* short slot time supported */
    548 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
    549 		| IEEE80211_C_TXFRAG		/* handle tx frags */
    550 		;
    551 	/*
    552 	 * Query the hal to figure out h/w crypto support.
    553 	 */
    554 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
    555 		ic->ic_caps |= IEEE80211_C_WEP;
    556 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
    557 		ic->ic_caps |= IEEE80211_C_AES;
    558 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
    559 		ic->ic_caps |= IEEE80211_C_AES_CCM;
    560 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
    561 		ic->ic_caps |= IEEE80211_C_CKIP;
    562 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
    563 		ic->ic_caps |= IEEE80211_C_TKIP;
    564 		/*
    565 		 * Check if h/w does the MIC and/or whether the
    566 		 * separate key cache entries are required to
    567 		 * handle both tx+rx MIC keys.
    568 		 */
    569 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
    570 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
    571 		if (ath_hal_tkipsplit(ah))
    572 			sc->sc_splitmic = 1;
    573 	}
    574 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
    575 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
    576 	/*
    577 	 * TPC support can be done either with a global cap or
    578 	 * per-packet support.  The latter is not available on
    579 	 * all parts.  We're a bit pedantic here as all parts
    580 	 * support a global cap.
    581 	 */
    582 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
    583 		ic->ic_caps |= IEEE80211_C_TXPMGT;
    584 
    585 	/*
    586 	 * Mark WME capability only if we have sufficient
    587 	 * hardware queues to do proper priority scheduling.
    588 	 */
    589 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
    590 		ic->ic_caps |= IEEE80211_C_WME;
    591 	/*
    592 	 * Check for misc other capabilities.
    593 	 */
    594 	if (ath_hal_hasbursting(ah))
    595 		ic->ic_caps |= IEEE80211_C_BURST;
    596 
    597 	/*
    598 	 * Indicate we need the 802.11 header padded to a
    599 	 * 32-bit boundary for 4-address and QoS frames.
    600 	 */
    601 	ic->ic_flags |= IEEE80211_F_DATAPAD;
    602 
    603 	/*
    604 	 * Query the hal about antenna support.
    605 	 */
    606 	sc->sc_defant = ath_hal_getdefantenna(ah);
    607 
    608 	/*
    609 	 * Not all chips have the VEOL support we want to
    610 	 * use with IBSS beacons; check here for it.
    611 	 */
    612 	sc->sc_hasveol = ath_hal_hasveol(ah);
    613 
    614 	/* get mac address from hardware */
    615 	ath_hal_getmac(ah, ic->ic_myaddr);
    616 
    617 	if_attach(ifp);
    618 	/* call MI attach routine. */
    619 	ieee80211_ifattach(ic);
    620 	/* override default methods */
    621 	ic->ic_node_alloc = ath_node_alloc;
    622 	sc->sc_node_free = ic->ic_node_free;
    623 	ic->ic_node_free = ath_node_free;
    624 	ic->ic_node_getrssi = ath_node_getrssi;
    625 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
    626 	ic->ic_recv_mgmt = ath_recv_mgmt;
    627 	sc->sc_newstate = ic->ic_newstate;
    628 	ic->ic_newstate = ath_newstate;
    629 	ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
    630 	ic->ic_crypto.cs_key_alloc = ath_key_alloc;
    631 	ic->ic_crypto.cs_key_delete = ath_key_delete;
    632 	ic->ic_crypto.cs_key_set = ath_key_set;
    633 	ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
    634 	ic->ic_crypto.cs_key_update_end = ath_key_update_end;
    635 	/* complete initialization */
    636 	ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
    637 
    638 #if NBPFILTER > 0
    639 	ath_bpfattach(sc);
    640 #endif
    641 
    642 #ifdef __NetBSD__
    643 	sc->sc_flags |= ATH_ATTACHED;
    644 	sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
    645 	    ath_power, sc);
    646 	if (sc->sc_powerhook == NULL)
    647 		printf("%s: WARNING: unable to establish power hook\n",
    648 			sc->sc_dev.dv_xname);
    649 #endif
    650 
    651 	/*
    652 	 * Setup dynamic sysctl's now that country code and
    653 	 * regdomain are available from the hal.
    654 	 */
    655 	ath_sysctlattach(sc);
    656 
    657 	ieee80211_announce(ic);
    658 	ath_announce(sc);
    659 	return 0;
    660 bad2:
    661 	ath_tx_cleanup(sc);
    662 	ath_desc_free(sc);
    663 bad:
    664 	if (ah)
    665 		ath_hal_detach(ah);
    666 	sc->sc_invalid = 1;
    667 	return error;
    668 }
    669 
    670 int
    671 ath_detach(struct ath_softc *sc)
    672 {
    673 	struct ifnet *ifp = &sc->sc_if;
    674 	int s;
    675 
    676 	if ((sc->sc_flags & ATH_ATTACHED) == 0)
    677 		return (0);
    678 
    679 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
    680 		__func__, ifp->if_flags);
    681 
    682 	s = splnet();
    683 	ath_stop(ifp, 1);
    684 #if NBPFILTER > 0
    685 	bpfdetach(ifp);
    686 #endif
    687 	/*
    688 	 * NB: the order of these is important:
    689 	 * o call the 802.11 layer before detaching the hal to
    690 	 *   insure callbacks into the driver to delete global
    691 	 *   key cache entries can be handled
    692 	 * o reclaim the tx queue data structures after calling
    693 	 *   the 802.11 layer as we'll get called back to reclaim
    694 	 *   node state and potentially want to use them
    695 	 * o to cleanup the tx queues the hal is called, so detach
    696 	 *   it last
    697 	 * Other than that, it's straightforward...
    698 	 */
    699 	ieee80211_ifdetach(&sc->sc_ic);
    700 #ifdef ATH_TX99_DIAG
    701 	if (sc->sc_tx99 != NULL)
    702 		sc->sc_tx99->detach(sc->sc_tx99);
    703 #endif
    704 	ath_rate_detach(sc->sc_rc);
    705 	ath_desc_free(sc);
    706 	ath_tx_cleanup(sc);
    707 	sysctl_teardown(&sc->sc_sysctllog);
    708 	ath_hal_detach(sc->sc_ah);
    709 	if_detach(ifp);
    710 	splx(s);
    711 	powerhook_disestablish(sc->sc_powerhook);
    712 
    713 	return 0;
    714 }
    715 
    716 #ifdef __NetBSD__
    717 void
    718 ath_power(int why, void *arg)
    719 {
    720 	struct ath_softc *sc = arg;
    721 	int s;
    722 
    723 	DPRINTF(sc, ATH_DEBUG_ANY, "ath_power(%d)\n", why);
    724 
    725 	s = splnet();
    726 	switch (why) {
    727 	case PWR_SUSPEND:
    728 	case PWR_STANDBY:
    729 		ath_suspend(sc, why);
    730 		break;
    731 	case PWR_RESUME:
    732 		ath_resume(sc, why);
    733 		break;
    734 	case PWR_SOFTSUSPEND:
    735 	case PWR_SOFTSTANDBY:
    736 	case PWR_SOFTRESUME:
    737 		break;
    738 	}
    739 	splx(s);
    740 }
    741 #endif
    742 
    743 void
    744 ath_suspend(struct ath_softc *sc, int why)
    745 {
    746 	struct ifnet *ifp = &sc->sc_if;
    747 
    748 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
    749 		__func__, ifp->if_flags);
    750 
    751 	ath_stop(ifp, 1);
    752 	if (sc->sc_power != NULL)
    753 		(*sc->sc_power)(sc, why);
    754 }
    755 
    756 void
    757 ath_resume(struct ath_softc *sc, int why)
    758 {
    759 	struct ifnet *ifp = &sc->sc_if;
    760 
    761 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
    762 		__func__, ifp->if_flags);
    763 
    764 	if (ifp->if_flags & IFF_UP) {
    765 		ath_init(sc);
    766 #if 0
    767 		(void)ath_intr(sc);
    768 #endif
    769 		if (sc->sc_power != NULL)
    770 			(*sc->sc_power)(sc, why);
    771 		if (ifp->if_flags & IFF_RUNNING)
    772 			ath_start(ifp);
    773 	}
    774 	if (sc->sc_softled) {
    775 		ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
    776 		ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
    777 	}
    778 }
    779 
    780 void
    781 ath_shutdown(void *arg)
    782 {
    783 	struct ath_softc *sc = arg;
    784 
    785 	ath_stop(&sc->sc_if, 1);
    786 }
    787 
    788 /*
    789  * Interrupt handler.  Most of the actual processing is deferred.
    790  */
    791 int
    792 ath_intr(void *arg)
    793 {
    794 	struct ath_softc *sc = arg;
    795 	struct ifnet *ifp = &sc->sc_if;
    796 	struct ath_hal *ah = sc->sc_ah;
    797 	HAL_INT status;
    798 
    799 	if (sc->sc_invalid) {
    800 		/*
    801 		 * The hardware is not ready/present, don't touch anything.
    802 		 * Note this can happen early on if the IRQ is shared.
    803 		 */
    804 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
    805 		return 0;
    806 	}
    807 
    808 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
    809 		return 0;
    810 
    811 	if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
    812 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
    813 			__func__, ifp->if_flags);
    814 		ath_hal_getisr(ah, &status);	/* clear ISR */
    815 		ath_hal_intrset(ah, 0);		/* disable further intr's */
    816 		return 1; /* XXX */
    817 	}
    818 	/*
    819 	 * Figure out the reason(s) for the interrupt.  Note
    820 	 * that the hal returns a pseudo-ISR that may include
    821 	 * bits we haven't explicitly enabled so we mask the
    822 	 * value to insure we only process bits we requested.
    823 	 */
    824 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
    825 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
    826 	status &= sc->sc_imask;			/* discard unasked for bits */
    827 	if (status & HAL_INT_FATAL) {
    828 		/*
    829 		 * Fatal errors are unrecoverable.  Typically
    830 		 * these are caused by DMA errors.  Unfortunately
    831 		 * the exact reason is not (presently) returned
    832 		 * by the hal.
    833 		 */
    834 		sc->sc_stats.ast_hardware++;
    835 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
    836 		TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
    837 	} else if (status & HAL_INT_RXORN) {
    838 		sc->sc_stats.ast_rxorn++;
    839 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
    840 		TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
    841 	} else {
    842 		if (status & HAL_INT_SWBA) {
    843 			/*
    844 			 * Software beacon alert--time to send a beacon.
    845 			 * Handle beacon transmission directly; deferring
    846 			 * this is too slow to meet timing constraints
    847 			 * under load.
    848 			 */
    849 			ath_beacon_proc(sc, 0);
    850 		}
    851 		if (status & HAL_INT_RXEOL) {
    852 			/*
    853 			 * NB: the hardware should re-read the link when
    854 			 *     RXE bit is written, but it doesn't work at
    855 			 *     least on older hardware revs.
    856 			 */
    857 			sc->sc_stats.ast_rxeol++;
    858 			sc->sc_rxlink = NULL;
    859 		}
    860 		if (status & HAL_INT_TXURN) {
    861 			sc->sc_stats.ast_txurn++;
    862 			/* bump tx trigger level */
    863 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
    864 		}
    865 		if (status & HAL_INT_RX)
    866 			TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
    867 		if (status & HAL_INT_TX)
    868 			TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
    869 		if (status & HAL_INT_BMISS) {
    870 			sc->sc_stats.ast_bmiss++;
    871 			TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
    872 		}
    873 		if (status & HAL_INT_MIB) {
    874 			sc->sc_stats.ast_mib++;
    875 			/*
    876 			 * Disable interrupts until we service the MIB
    877 			 * interrupt; otherwise it will continue to fire.
    878 			 */
    879 			ath_hal_intrset(ah, 0);
    880 			/*
    881 			 * Let the hal handle the event.  We assume it will
    882 			 * clear whatever condition caused the interrupt.
    883 			 */
    884 			ath_hal_mibevent(ah, &sc->sc_halstats);
    885 			ath_hal_intrset(ah, sc->sc_imask);
    886 		}
    887 	}
    888 	return 1;
    889 }
    890 
    891 /* Swap transmit descriptor.
    892  * if AH_NEED_DESC_SWAP flag is not defined this becomes a "null"
    893  * function.
    894  */
    895 static inline void
    896 ath_desc_swap(struct ath_desc *ds)
    897 {
    898 #ifdef AH_NEED_DESC_SWAP
    899 	ds->ds_link = htole32(ds->ds_link);
    900 	ds->ds_data = htole32(ds->ds_data);
    901 	ds->ds_ctl0 = htole32(ds->ds_ctl0);
    902 	ds->ds_ctl1 = htole32(ds->ds_ctl1);
    903 	ds->ds_hw[0] = htole32(ds->ds_hw[0]);
    904 	ds->ds_hw[1] = htole32(ds->ds_hw[1]);
    905 #endif
    906 }
    907 
    908 static void
    909 ath_fatal_proc(void *arg, int pending)
    910 {
    911 	struct ath_softc *sc = arg;
    912 	struct ifnet *ifp = &sc->sc_if;
    913 
    914 	if_printf(ifp, "hardware error; resetting\n");
    915 	ath_reset(ifp);
    916 }
    917 
    918 static void
    919 ath_rxorn_proc(void *arg, int pending)
    920 {
    921 	struct ath_softc *sc = arg;
    922 	struct ifnet *ifp = &sc->sc_if;
    923 
    924 	if_printf(ifp, "rx FIFO overrun; resetting\n");
    925 	ath_reset(ifp);
    926 }
    927 
    928 static void
    929 ath_bmiss_proc(void *arg, int pending)
    930 {
    931 	struct ath_softc *sc = arg;
    932 	struct ieee80211com *ic = &sc->sc_ic;
    933 
    934 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
    935 	KASSERT(ic->ic_opmode == IEEE80211_M_STA,
    936 		("unexpect operating mode %u", ic->ic_opmode));
    937 	if (ic->ic_state == IEEE80211_S_RUN) {
    938 		u_int64_t lastrx = sc->sc_lastrx;
    939 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
    940 
    941 		DPRINTF(sc, ATH_DEBUG_BEACON,
    942 		    "%s: tsf %" PRIu64 " lastrx %" PRId64
    943 		    " (%" PRIu64 ") bmiss %u\n",
    944 		    __func__, tsf, tsf - lastrx, lastrx,
    945 		    ic->ic_bmisstimeout*1024);
    946 		/*
    947 		 * Workaround phantom bmiss interrupts by sanity-checking
    948 		 * the time of our last rx'd frame.  If it is within the
    949 		 * beacon miss interval then ignore the interrupt.  If it's
    950 		 * truly a bmiss we'll get another interrupt soon and that'll
    951 		 * be dispatched up for processing.
    952 		 */
    953 		if (tsf - lastrx > ic->ic_bmisstimeout*1024) {
    954 			NET_LOCK_GIANT();
    955 			ieee80211_beacon_miss(ic);
    956 			NET_UNLOCK_GIANT();
    957 		} else
    958 			sc->sc_stats.ast_bmiss_phantom++;
    959 	}
    960 }
    961 
    962 static void
    963 ath_radar_proc(void *arg, int pending)
    964 {
    965 	struct ath_softc *sc = arg;
    966 	struct ifnet *ifp = &sc->sc_if;
    967 	struct ath_hal *ah = sc->sc_ah;
    968 	HAL_CHANNEL hchan;
    969 
    970 	if (ath_hal_procdfs(ah, &hchan)) {
    971 		if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n",
    972 			hchan.channel, hchan.channelFlags, hchan.privFlags);
    973 		/*
    974 		 * Initiate channel change.
    975 		 */
    976 		/* XXX not yet */
    977 	}
    978 }
    979 
    980 static u_int
    981 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
    982 {
    983 #define	N(a)	(sizeof(a) / sizeof(a[0]))
    984 	static const u_int modeflags[] = {
    985 		0,			/* IEEE80211_MODE_AUTO */
    986 		CHANNEL_A,		/* IEEE80211_MODE_11A */
    987 		CHANNEL_B,		/* IEEE80211_MODE_11B */
    988 		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
    989 		0,			/* IEEE80211_MODE_FH */
    990 		CHANNEL_ST,		/* IEEE80211_MODE_TURBO_A */
    991 		CHANNEL_108G		/* IEEE80211_MODE_TURBO_G */
    992 	};
    993 	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
    994 
    995 	KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
    996 	KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
    997 	return modeflags[mode];
    998 #undef N
    999 }
   1000 
   1001 static int
   1002 ath_ifinit(struct ifnet *ifp)
   1003 {
   1004 	struct ath_softc *sc = (struct ath_softc *)ifp->if_softc;
   1005 
   1006 	return ath_init(sc);
   1007 }
   1008 
   1009 static int
   1010 ath_init(struct ath_softc *sc)
   1011 {
   1012 	struct ifnet *ifp = &sc->sc_if;
   1013 	struct ieee80211com *ic = &sc->sc_ic;
   1014 	struct ath_hal *ah = sc->sc_ah;
   1015 	HAL_STATUS status;
   1016 	int error = 0;
   1017 
   1018 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
   1019 		__func__, ifp->if_flags);
   1020 
   1021 	ATH_LOCK(sc);
   1022 
   1023 	if ((error = ath_enable(sc)) != 0) {
   1024 		ATH_UNLOCK(sc);
   1025 		return error;
   1026 	}
   1027 
   1028 	/*
   1029 	 * Stop anything previously setup.  This is safe
   1030 	 * whether this is the first time through or not.
   1031 	 */
   1032 	ath_stop_locked(ifp, 0);
   1033 
   1034 	/*
   1035 	 * The basic interface to setting the hardware in a good
   1036 	 * state is ``reset''.  On return the hardware is known to
   1037 	 * be powered up and with interrupts disabled.  This must
   1038 	 * be followed by initialization of the appropriate bits
   1039 	 * and then setup of the interrupt mask.
   1040 	 */
   1041 	sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
   1042 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
   1043 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
   1044 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
   1045 			status);
   1046 		error = EIO;
   1047 		goto done;
   1048 	}
   1049 
   1050 	/*
   1051 	 * This is needed only to setup initial state
   1052 	 * but it's best done after a reset.
   1053 	 */
   1054 	ath_update_txpow(sc);
   1055 	/*
   1056 	 * Likewise this is set during reset so update
   1057 	 * state cached in the driver.
   1058 	 */
   1059 	ath_restore_diversity(sc);
   1060 	sc->sc_calinterval = 1;
   1061 	sc->sc_caltries = 0;
   1062 
   1063 	/*
   1064 	 * Setup the hardware after reset: the key cache
   1065 	 * is filled as needed and the receive engine is
   1066 	 * set going.  Frame transmit is handled entirely
   1067 	 * in the frame output path; there's nothing to do
   1068 	 * here except setup the interrupt mask.
   1069 	 */
   1070 	if ((error = ath_startrecv(sc)) != 0) {
   1071 		if_printf(ifp, "unable to start recv logic\n");
   1072 		goto done;
   1073 	}
   1074 
   1075 	/*
   1076 	 * Enable interrupts.
   1077 	 */
   1078 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
   1079 		  | HAL_INT_RXEOL | HAL_INT_RXORN
   1080 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
   1081 	/*
   1082 	 * Enable MIB interrupts when there are hardware phy counters.
   1083 	 * Note we only do this (at the moment) for station mode.
   1084 	 */
   1085 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
   1086 		sc->sc_imask |= HAL_INT_MIB;
   1087 	ath_hal_intrset(ah, sc->sc_imask);
   1088 
   1089 	ifp->if_flags |= IFF_RUNNING;
   1090 	ic->ic_state = IEEE80211_S_INIT;
   1091 
   1092 	/*
   1093 	 * The hardware should be ready to go now so it's safe
   1094 	 * to kick the 802.11 state machine as it's likely to
   1095 	 * immediately call back to us to send mgmt frames.
   1096 	 */
   1097 	ath_chan_change(sc, ic->ic_curchan);
   1098 #ifdef ATH_TX99_DIAG
   1099 	if (sc->sc_tx99 != NULL)
   1100 		sc->sc_tx99->start(sc->sc_tx99);
   1101 	else
   1102 #endif
   1103 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   1104 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
   1105 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   1106 	} else
   1107 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   1108 done:
   1109 	ATH_UNLOCK(sc);
   1110 	return error;
   1111 }
   1112 
   1113 static void
   1114 ath_stop_locked(struct ifnet *ifp, int disable)
   1115 {
   1116 	struct ath_softc *sc = ifp->if_softc;
   1117 	struct ieee80211com *ic = &sc->sc_ic;
   1118 	struct ath_hal *ah = sc->sc_ah;
   1119 
   1120 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
   1121 		__func__, sc->sc_invalid, ifp->if_flags);
   1122 
   1123 	ATH_LOCK_ASSERT(sc);
   1124 	if (ifp->if_flags & IFF_RUNNING) {
   1125 		/*
   1126 		 * Shutdown the hardware and driver:
   1127 		 *    reset 802.11 state machine
   1128 		 *    turn off timers
   1129 		 *    disable interrupts
   1130 		 *    turn off the radio
   1131 		 *    clear transmit machinery
   1132 		 *    clear receive machinery
   1133 		 *    drain and release tx queues
   1134 		 *    reclaim beacon resources
   1135 		 *    power down hardware
   1136 		 *
   1137 		 * Note that some of this work is not possible if the
   1138 		 * hardware is gone (invalid).
   1139 		 */
   1140 #ifdef ATH_TX99_DIAG
   1141 		if (sc->sc_tx99 != NULL)
   1142 			sc->sc_tx99->stop(sc->sc_tx99);
   1143 #endif
   1144 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   1145 		ifp->if_flags &= ~IFF_RUNNING;
   1146 		ifp->if_timer = 0;
   1147 		if (!sc->sc_invalid) {
   1148 			if (sc->sc_softled) {
   1149 				callout_stop(&sc->sc_ledtimer);
   1150 				ath_hal_gpioset(ah, sc->sc_ledpin,
   1151 					!sc->sc_ledon);
   1152 				sc->sc_blinking = 0;
   1153 			}
   1154 			ath_hal_intrset(ah, 0);
   1155 		}
   1156 		ath_draintxq(sc);
   1157 		if (!sc->sc_invalid) {
   1158 			ath_stoprecv(sc);
   1159 			ath_hal_phydisable(ah);
   1160 		} else
   1161 			sc->sc_rxlink = NULL;
   1162 		IF_PURGE(&ifp->if_snd);
   1163 		ath_beacon_free(sc);
   1164 		if (disable)
   1165 			ath_disable(sc);
   1166 	}
   1167 }
   1168 
   1169 static void
   1170 ath_stop(struct ifnet *ifp, int disable)
   1171 {
   1172 	struct ath_softc *sc = ifp->if_softc;
   1173 
   1174 	ATH_LOCK(sc);
   1175 	ath_stop_locked(ifp, disable);
   1176 	if (!sc->sc_invalid) {
   1177 		/*
   1178 		 * Set the chip in full sleep mode.  Note that we are
   1179 		 * careful to do this only when bringing the interface
   1180 		 * completely to a stop.  When the chip is in this state
   1181 		 * it must be carefully woken up or references to
   1182 		 * registers in the PCI clock domain may freeze the bus
   1183 		 * (and system).  This varies by chip and is mostly an
   1184 		 * issue with newer parts that go to sleep more quickly.
   1185 		 */
   1186 		ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
   1187 	}
   1188 	ATH_UNLOCK(sc);
   1189 }
   1190 
   1191 static void
   1192 ath_restore_diversity(struct ath_softc *sc)
   1193 {
   1194 	struct ifnet *ifp = &sc->sc_if;
   1195 	struct ath_hal *ah = sc->sc_ah;
   1196 
   1197 	if (!ath_hal_setdiversity(sc->sc_ah, sc->sc_diversity) ||
   1198 	    sc->sc_diversity != ath_hal_getdiversity(ah)) {
   1199 		if_printf(ifp, "could not restore diversity setting %d\n",
   1200 		    sc->sc_diversity);
   1201 		sc->sc_diversity = ath_hal_getdiversity(ah);
   1202 	}
   1203 }
   1204 
   1205 /*
   1206  * Reset the hardware w/o losing operational state.  This is
   1207  * basically a more efficient way of doing ath_stop, ath_init,
   1208  * followed by state transitions to the current 802.11
   1209  * operational state.  Used to recover from various errors and
   1210  * to reset or reload hardware state.
   1211  */
   1212 int
   1213 ath_reset(struct ifnet *ifp)
   1214 {
   1215 	struct ath_softc *sc = ifp->if_softc;
   1216 	struct ieee80211com *ic = &sc->sc_ic;
   1217 	struct ath_hal *ah = sc->sc_ah;
   1218 	struct ieee80211_channel *c;
   1219 	HAL_STATUS status;
   1220 
   1221 	/*
   1222 	 * Convert to a HAL channel description with the flags
   1223 	 * constrained to reflect the current operating mode.
   1224 	 */
   1225 	c = ic->ic_curchan;
   1226 	sc->sc_curchan.channel = c->ic_freq;
   1227 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
   1228 
   1229 	ath_hal_intrset(ah, 0);		/* disable interrupts */
   1230 	ath_draintxq(sc);		/* stop xmit side */
   1231 	ath_stoprecv(sc);		/* stop recv side */
   1232 	/* NB: indicate channel change so we do a full reset */
   1233 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
   1234 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
   1235 			__func__, status);
   1236 	ath_update_txpow(sc);		/* update tx power state */
   1237 	ath_restore_diversity(sc);
   1238 	sc->sc_calinterval = 1;
   1239 	sc->sc_caltries = 0;
   1240 	if (ath_startrecv(sc) != 0)	/* restart recv */
   1241 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
   1242 	/*
   1243 	 * We may be doing a reset in response to an ioctl
   1244 	 * that changes the channel so update any state that
   1245 	 * might change as a result.
   1246 	 */
   1247 	ath_chan_change(sc, c);
   1248 	if (ic->ic_state == IEEE80211_S_RUN)
   1249 		ath_beacon_config(sc);	/* restart beacons */
   1250 	ath_hal_intrset(ah, sc->sc_imask);
   1251 
   1252 	ath_start(ifp);			/* restart xmit */
   1253 	return 0;
   1254 }
   1255 
   1256 /*
   1257  * Cleanup driver resources when we run out of buffers
   1258  * while processing fragments; return the tx buffers
   1259  * allocated and drop node references.
   1260  */
   1261 static void
   1262 ath_txfrag_cleanup(struct ath_softc *sc,
   1263 	ath_bufhead *frags, struct ieee80211_node *ni)
   1264 {
   1265 	struct ath_buf *bf;
   1266 
   1267 	ATH_TXBUF_LOCK_ASSERT(sc);
   1268 
   1269 	while ((bf = STAILQ_FIRST(frags)) != NULL) {
   1270 		STAILQ_REMOVE_HEAD(frags, bf_list);
   1271 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1272 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
   1273 		ieee80211_node_decref(ni);
   1274 	}
   1275 }
   1276 
   1277 /*
   1278  * Setup xmit of a fragmented frame.  Allocate a buffer
   1279  * for each frag and bump the node reference count to
   1280  * reflect the held reference to be setup by ath_tx_start.
   1281  */
   1282 static int
   1283 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
   1284 	struct mbuf *m0, struct ieee80211_node *ni)
   1285 {
   1286 	struct mbuf *m;
   1287 	struct ath_buf *bf;
   1288 
   1289 	ATH_TXBUF_LOCK(sc);
   1290 	for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
   1291 		bf = STAILQ_FIRST(&sc->sc_txbuf);
   1292 		if (bf == NULL) {       /* out of buffers, cleanup */
   1293 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
   1294 				__func__);
   1295 			sc->sc_if.if_flags |= IFF_OACTIVE;
   1296 			ath_txfrag_cleanup(sc, frags, ni);
   1297 			break;
   1298 		}
   1299 		STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
   1300 		ieee80211_node_incref(ni);
   1301 		STAILQ_INSERT_TAIL(frags, bf, bf_list);
   1302 	}
   1303 	ATH_TXBUF_UNLOCK(sc);
   1304 
   1305 	return !STAILQ_EMPTY(frags);
   1306 }
   1307 
   1308 static void
   1309 ath_start(struct ifnet *ifp)
   1310 {
   1311 	struct ath_softc *sc = ifp->if_softc;
   1312 	struct ath_hal *ah = sc->sc_ah;
   1313 	struct ieee80211com *ic = &sc->sc_ic;
   1314 	struct ieee80211_node *ni;
   1315 	struct ath_buf *bf;
   1316 	struct mbuf *m, *next;
   1317 	struct ieee80211_frame *wh;
   1318 	struct ether_header *eh;
   1319 	ath_bufhead frags;
   1320 
   1321 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
   1322 		return;
   1323 	for (;;) {
   1324 		/*
   1325 		 * Grab a TX buffer and associated resources.
   1326 		 */
   1327 		ATH_TXBUF_LOCK(sc);
   1328 		bf = STAILQ_FIRST(&sc->sc_txbuf);
   1329 		if (bf != NULL)
   1330 			STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
   1331 		ATH_TXBUF_UNLOCK(sc);
   1332 		if (bf == NULL) {
   1333 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
   1334 				__func__);
   1335 			sc->sc_stats.ast_tx_qstop++;
   1336 			ifp->if_flags |= IFF_OACTIVE;
   1337 			break;
   1338 		}
   1339 		/*
   1340 		 * Poll the management queue for frames; they
   1341 		 * have priority over normal data frames.
   1342 		 */
   1343 		IF_DEQUEUE(&ic->ic_mgtq, m);
   1344 		if (m == NULL) {
   1345 			/*
   1346 			 * No data frames go out unless we're associated.
   1347 			 */
   1348 			if (ic->ic_state != IEEE80211_S_RUN) {
   1349 				DPRINTF(sc, ATH_DEBUG_XMIT,
   1350 				    "%s: discard data packet, state %s\n",
   1351 				    __func__,
   1352 				    ieee80211_state_name[ic->ic_state]);
   1353 				sc->sc_stats.ast_tx_discard++;
   1354 				ATH_TXBUF_LOCK(sc);
   1355 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1356 				ATH_TXBUF_UNLOCK(sc);
   1357 				break;
   1358 			}
   1359 			IFQ_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
   1360 			if (m == NULL) {
   1361 				ATH_TXBUF_LOCK(sc);
   1362 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1363 				ATH_TXBUF_UNLOCK(sc);
   1364 				break;
   1365 			}
   1366 			STAILQ_INIT(&frags);
   1367 			/*
   1368 			 * Find the node for the destination so we can do
   1369 			 * things like power save and fast frames aggregation.
   1370 			 */
   1371 			if (m->m_len < sizeof(struct ether_header) &&
   1372 			   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
   1373 				ic->ic_stats.is_tx_nobuf++;	/* XXX */
   1374 				ni = NULL;
   1375 				goto bad;
   1376 			}
   1377 			eh = mtod(m, struct ether_header *);
   1378 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   1379 			if (ni == NULL) {
   1380 				/* NB: ieee80211_find_txnode does stat+msg */
   1381 				m_freem(m);
   1382 				goto bad;
   1383 			}
   1384 			if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
   1385 			    (m->m_flags & M_PWR_SAV) == 0) {
   1386 				/*
   1387 				 * Station in power save mode; pass the frame
   1388 				 * to the 802.11 layer and continue.  We'll get
   1389 				 * the frame back when the time is right.
   1390 				 */
   1391 				ieee80211_pwrsave(ic, ni, m);
   1392 				goto reclaim;
   1393 			}
   1394 			/* calculate priority so we can find the tx queue */
   1395 			if (ieee80211_classify(ic, m, ni)) {
   1396 				DPRINTF(sc, ATH_DEBUG_XMIT,
   1397 					"%s: discard, classification failure\n",
   1398 					__func__);
   1399 				m_freem(m);
   1400 				goto bad;
   1401 			}
   1402 			ifp->if_opackets++;
   1403 
   1404 #if NBPFILTER > 0
   1405 			if (ifp->if_bpf)
   1406 				bpf_mtap(ifp->if_bpf, m);
   1407 #endif
   1408 			/*
   1409 			 * Encapsulate the packet in prep for transmission.
   1410 			 */
   1411 			m = ieee80211_encap(ic, m, ni);
   1412 			if (m == NULL) {
   1413 				DPRINTF(sc, ATH_DEBUG_XMIT,
   1414 					"%s: encapsulation failure\n",
   1415 					__func__);
   1416 				sc->sc_stats.ast_tx_encap++;
   1417 				goto bad;
   1418 			}
   1419 			/*
   1420 			 * Check for fragmentation.  If this has frame
   1421 			 * has been broken up verify we have enough
   1422 			 * buffers to send all the fragments so all
   1423 			 * go out or none...
   1424 			 */
   1425 			if ((m->m_flags & M_FRAG) &&
   1426 			    !ath_txfrag_setup(sc, &frags, m, ni)) {
   1427 				DPRINTF(sc, ATH_DEBUG_ANY,
   1428 				    "%s: out of txfrag buffers\n", __func__);
   1429 				ic->ic_stats.is_tx_nobuf++;     /* XXX */
   1430 				ath_freetx(m);
   1431 				goto bad;
   1432 			}
   1433 		} else {
   1434 			/*
   1435 			 * Hack!  The referenced node pointer is in the
   1436 			 * rcvif field of the packet header.  This is
   1437 			 * placed there by ieee80211_mgmt_output because
   1438 			 * we need to hold the reference with the frame
   1439 			 * and there's no other way (other than packet
   1440 			 * tags which we consider too expensive to use)
   1441 			 * to pass it along.
   1442 			 */
   1443 			ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
   1444 			m->m_pkthdr.rcvif = NULL;
   1445 
   1446 			wh = mtod(m, struct ieee80211_frame *);
   1447 			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
   1448 			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
   1449 				/* fill time stamp */
   1450 				u_int64_t tsf;
   1451 				u_int32_t *tstamp;
   1452 
   1453 				tsf = ath_hal_gettsf64(ah);
   1454 				/* XXX: adjust 100us delay to xmit */
   1455 				tsf += 100;
   1456 				tstamp = (u_int32_t *)&wh[1];
   1457 				tstamp[0] = htole32(tsf & 0xffffffff);
   1458 				tstamp[1] = htole32(tsf >> 32);
   1459 			}
   1460 			sc->sc_stats.ast_tx_mgmt++;
   1461 		}
   1462 
   1463 	nextfrag:
   1464 		next = m->m_nextpkt;
   1465 		if (ath_tx_start(sc, ni, bf, m)) {
   1466 	bad:
   1467 			ifp->if_oerrors++;
   1468 	reclaim:
   1469 			ATH_TXBUF_LOCK(sc);
   1470 			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1471 			ath_txfrag_cleanup(sc, &frags, ni);
   1472 			ATH_TXBUF_UNLOCK(sc);
   1473 			if (ni != NULL)
   1474 				ieee80211_free_node(ni);
   1475 			continue;
   1476 		}
   1477 		if (next != NULL) {
   1478 			m = next;
   1479 			bf = STAILQ_FIRST(&frags);
   1480 			KASSERT(bf != NULL, ("no buf for txfrag"));
   1481 			STAILQ_REMOVE_HEAD(&frags, bf_list);
   1482 			goto nextfrag;
   1483 		}
   1484 
   1485 		ifp->if_timer = 1;
   1486 	}
   1487 }
   1488 
   1489 static int
   1490 ath_media_change(struct ifnet *ifp)
   1491 {
   1492 #define	IS_UP(ifp) \
   1493 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
   1494 	int error;
   1495 
   1496 	error = ieee80211_media_change(ifp);
   1497 	if (error == ENETRESET) {
   1498 		if (IS_UP(ifp))
   1499 			ath_init(ifp->if_softc);	/* XXX lose error */
   1500 		error = 0;
   1501 	}
   1502 	return error;
   1503 #undef IS_UP
   1504 }
   1505 
   1506 #ifdef AR_DEBUG
   1507 static void
   1508 ath_keyprint(const char *tag, u_int ix,
   1509 	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
   1510 {
   1511 	static const char *ciphers[] = {
   1512 		"WEP",
   1513 		"AES-OCB",
   1514 		"AES-CCM",
   1515 		"CKIP",
   1516 		"TKIP",
   1517 		"CLR",
   1518 	};
   1519 	int i, n;
   1520 
   1521 	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
   1522 	for (i = 0, n = hk->kv_len; i < n; i++)
   1523 		printf("%02x", hk->kv_val[i]);
   1524 	printf(" mac %s", ether_sprintf(mac));
   1525 	if (hk->kv_type == HAL_CIPHER_TKIP) {
   1526 		printf(" mic ");
   1527 		for (i = 0; i < sizeof(hk->kv_mic); i++)
   1528 			printf("%02x", hk->kv_mic[i]);
   1529 	}
   1530 	printf("\n");
   1531 }
   1532 #endif
   1533 
   1534 /*
   1535  * Set a TKIP key into the hardware.  This handles the
   1536  * potential distribution of key state to multiple key
   1537  * cache slots for TKIP.
   1538  */
   1539 static int
   1540 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
   1541 	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
   1542 {
   1543 #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
   1544 	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
   1545 	struct ath_hal *ah = sc->sc_ah;
   1546 
   1547 	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
   1548 		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
   1549 	KASSERT(sc->sc_splitmic, ("key cache !split"));
   1550 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
   1551 		/*
   1552 		 * TX key goes at first index, RX key at the rx index.
   1553 		 * The hal handles the MIC keys at index+64.
   1554 		 */
   1555 		memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
   1556 		KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
   1557 		if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
   1558 			return 0;
   1559 
   1560 		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
   1561 		KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
   1562 		/* XXX delete tx key on failure? */
   1563 		return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
   1564 	} else if (k->wk_flags & IEEE80211_KEY_XR) {
   1565 		/*
   1566 		 * TX/RX key goes at first index.
   1567 		 * The hal handles the MIC keys are index+64.
   1568 		 */
   1569 		memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
   1570 			k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
   1571 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
   1572 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
   1573 	}
   1574 	return 0;
   1575 #undef IEEE80211_KEY_XR
   1576 }
   1577 
   1578 /*
   1579  * Set a net80211 key into the hardware.  This handles the
   1580  * potential distribution of key state to multiple key
   1581  * cache slots for TKIP with hardware MIC support.
   1582  */
   1583 static int
   1584 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
   1585 	const u_int8_t mac0[IEEE80211_ADDR_LEN],
   1586 	struct ieee80211_node *bss)
   1587 {
   1588 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1589 	static const u_int8_t ciphermap[] = {
   1590 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
   1591 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
   1592 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
   1593 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
   1594 		(u_int8_t) -1,		/* 4 is not allocated */
   1595 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
   1596 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
   1597 	};
   1598 	struct ath_hal *ah = sc->sc_ah;
   1599 	const struct ieee80211_cipher *cip = k->wk_cipher;
   1600 	u_int8_t gmac[IEEE80211_ADDR_LEN];
   1601 	const u_int8_t *mac;
   1602 	HAL_KEYVAL hk;
   1603 
   1604 	memset(&hk, 0, sizeof(hk));
   1605 	/*
   1606 	 * Software crypto uses a "clear key" so non-crypto
   1607 	 * state kept in the key cache are maintained and
   1608 	 * so that rx frames have an entry to match.
   1609 	 */
   1610 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
   1611 		KASSERT(cip->ic_cipher < N(ciphermap),
   1612 			("invalid cipher type %u", cip->ic_cipher));
   1613 		hk.kv_type = ciphermap[cip->ic_cipher];
   1614 		hk.kv_len = k->wk_keylen;
   1615 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
   1616 	} else
   1617 		hk.kv_type = HAL_CIPHER_CLR;
   1618 
   1619 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
   1620 		/*
   1621 		 * Group keys on hardware that supports multicast frame
   1622 		 * key search use a mac that is the sender's address with
   1623 		 * the high bit set instead of the app-specified address.
   1624 		 */
   1625 		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
   1626 		gmac[0] |= 0x80;
   1627 		mac = gmac;
   1628 	} else
   1629 		mac = mac0;
   1630 
   1631 	if (hk.kv_type == HAL_CIPHER_TKIP &&
   1632 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
   1633 	    sc->sc_splitmic) {
   1634 		return ath_keyset_tkip(sc, k, &hk, mac);
   1635 	} else {
   1636 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
   1637 		return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
   1638 	}
   1639 #undef N
   1640 }
   1641 
   1642 /*
   1643  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
   1644  * each key, one for decrypt/encrypt and the other for the MIC.
   1645  */
   1646 static u_int16_t
   1647 key_alloc_2pair(struct ath_softc *sc,
   1648 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
   1649 {
   1650 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1651 	u_int i, keyix;
   1652 
   1653 	KASSERT(sc->sc_splitmic, ("key cache !split"));
   1654 	/* XXX could optimize */
   1655 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
   1656 		u_int8_t b = sc->sc_keymap[i];
   1657 		if (b != 0xff) {
   1658 			/*
   1659 			 * One or more slots in this byte are free.
   1660 			 */
   1661 			keyix = i*NBBY;
   1662 			while (b & 1) {
   1663 		again:
   1664 				keyix++;
   1665 				b >>= 1;
   1666 			}
   1667 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
   1668 			if (isset(sc->sc_keymap, keyix+32) ||
   1669 			    isset(sc->sc_keymap, keyix+64) ||
   1670 			    isset(sc->sc_keymap, keyix+32+64)) {
   1671 				/* full pair unavailable */
   1672 				/* XXX statistic */
   1673 				if (keyix == (i+1)*NBBY) {
   1674 					/* no slots were appropriate, advance */
   1675 					continue;
   1676 				}
   1677 				goto again;
   1678 			}
   1679 			setbit(sc->sc_keymap, keyix);
   1680 			setbit(sc->sc_keymap, keyix+64);
   1681 			setbit(sc->sc_keymap, keyix+32);
   1682 			setbit(sc->sc_keymap, keyix+32+64);
   1683 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
   1684 				"%s: key pair %u,%u %u,%u\n",
   1685 				__func__, keyix, keyix+64,
   1686 				keyix+32, keyix+32+64);
   1687 			*txkeyix = keyix;
   1688 			*rxkeyix = keyix+32;
   1689 			return 1;
   1690 		}
   1691 	}
   1692 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
   1693 	return 0;
   1694 #undef N
   1695 }
   1696 
   1697 /*
   1698  * Allocate a single key cache slot.
   1699  */
   1700 static int
   1701 key_alloc_single(struct ath_softc *sc,
   1702 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
   1703 {
   1704 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1705 	u_int i, keyix;
   1706 
   1707 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
   1708 	for (i = 0; i < N(sc->sc_keymap); i++) {
   1709 		u_int8_t b = sc->sc_keymap[i];
   1710 		if (b != 0xff) {
   1711 			/*
   1712 			 * One or more slots are free.
   1713 			 */
   1714 			keyix = i*NBBY;
   1715 			while (b & 1)
   1716 				keyix++, b >>= 1;
   1717 			setbit(sc->sc_keymap, keyix);
   1718 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
   1719 				__func__, keyix);
   1720 			*txkeyix = *rxkeyix = keyix;
   1721 			return 1;
   1722 		}
   1723 	}
   1724 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
   1725 	return 0;
   1726 #undef N
   1727 }
   1728 
   1729 /*
   1730  * Allocate one or more key cache slots for a uniacst key.  The
   1731  * key itself is needed only to identify the cipher.  For hardware
   1732  * TKIP with split cipher+MIC keys we allocate two key cache slot
   1733  * pairs so that we can setup separate TX and RX MIC keys.  Note
   1734  * that the MIC key for a TKIP key at slot i is assumed by the
   1735  * hardware to be at slot i+64.  This limits TKIP keys to the first
   1736  * 64 entries.
   1737  */
   1738 static int
   1739 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
   1740 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
   1741 {
   1742 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1743 
   1744 	/*
   1745 	 * Group key allocation must be handled specially for
   1746 	 * parts that do not support multicast key cache search
   1747 	 * functionality.  For those parts the key id must match
   1748 	 * the h/w key index so lookups find the right key.  On
   1749 	 * parts w/ the key search facility we install the sender's
   1750 	 * mac address (with the high bit set) and let the hardware
   1751 	 * find the key w/o using the key id.  This is preferred as
   1752 	 * it permits us to support multiple users for adhoc and/or
   1753 	 * multi-station operation.
   1754 	 */
   1755 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
   1756 		if (!(&ic->ic_nw_keys[0] <= k &&
   1757 		      k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
   1758 			/* should not happen */
   1759 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
   1760 				"%s: bogus group key\n", __func__);
   1761 			return 0;
   1762 		}
   1763 		/*
   1764 		 * XXX we pre-allocate the global keys so
   1765 		 * have no way to check if they've already been allocated.
   1766 		 */
   1767 		*keyix = *rxkeyix = k - ic->ic_nw_keys;
   1768 		return 1;
   1769 	}
   1770 
   1771 	/*
   1772 	 * We allocate two pair for TKIP when using the h/w to do
   1773 	 * the MIC.  For everything else, including software crypto,
   1774 	 * we allocate a single entry.  Note that s/w crypto requires
   1775 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
   1776 	 * not support pass-through cache entries and we map all
   1777 	 * those requests to slot 0.
   1778 	 */
   1779 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
   1780 		return key_alloc_single(sc, keyix, rxkeyix);
   1781 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1782 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
   1783 		return key_alloc_2pair(sc, keyix, rxkeyix);
   1784 	} else {
   1785 		return key_alloc_single(sc, keyix, rxkeyix);
   1786 	}
   1787 }
   1788 
   1789 /*
   1790  * Delete an entry in the key cache allocated by ath_key_alloc.
   1791  */
   1792 static int
   1793 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
   1794 {
   1795 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1796 	struct ath_hal *ah = sc->sc_ah;
   1797 	const struct ieee80211_cipher *cip = k->wk_cipher;
   1798 	u_int keyix = k->wk_keyix;
   1799 
   1800 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
   1801 
   1802 	ath_hal_keyreset(ah, keyix);
   1803 	/*
   1804 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
   1805 	 */
   1806 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1807 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
   1808 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
   1809 	if (keyix >= IEEE80211_WEP_NKID) {
   1810 		/*
   1811 		 * Don't touch keymap entries for global keys so
   1812 		 * they are never considered for dynamic allocation.
   1813 		 */
   1814 		clrbit(sc->sc_keymap, keyix);
   1815 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1816 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
   1817 		    sc->sc_splitmic) {
   1818 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
   1819 			clrbit(sc->sc_keymap, keyix+32);	/* RX key */
   1820 			clrbit(sc->sc_keymap, keyix+32+64);	/* RX key MIC */
   1821 		}
   1822 	}
   1823 	return 1;
   1824 }
   1825 
   1826 /*
   1827  * Set the key cache contents for the specified key.  Key cache
   1828  * slot(s) must already have been allocated by ath_key_alloc.
   1829  */
   1830 static int
   1831 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
   1832 	const u_int8_t mac[IEEE80211_ADDR_LEN])
   1833 {
   1834 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1835 
   1836 	return ath_keyset(sc, k, mac, ic->ic_bss);
   1837 }
   1838 
   1839 /*
   1840  * Block/unblock tx+rx processing while a key change is done.
   1841  * We assume the caller serializes key management operations
   1842  * so we only need to worry about synchronization with other
   1843  * uses that originate in the driver.
   1844  */
   1845 static void
   1846 ath_key_update_begin(struct ieee80211com *ic)
   1847 {
   1848 	struct ifnet *ifp = ic->ic_ifp;
   1849 	struct ath_softc *sc = ifp->if_softc;
   1850 
   1851 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
   1852 #if 0
   1853 	tasklet_disable(&sc->sc_rxtq);
   1854 #endif
   1855 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
   1856 }
   1857 
   1858 static void
   1859 ath_key_update_end(struct ieee80211com *ic)
   1860 {
   1861 	struct ifnet *ifp = ic->ic_ifp;
   1862 	struct ath_softc *sc = ifp->if_softc;
   1863 
   1864 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
   1865 	IF_UNLOCK(&ifp->if_snd);
   1866 #if 0
   1867 	tasklet_enable(&sc->sc_rxtq);
   1868 #endif
   1869 }
   1870 
   1871 /*
   1872  * Calculate the receive filter according to the
   1873  * operating mode and state:
   1874  *
   1875  * o always accept unicast, broadcast, and multicast traffic
   1876  * o maintain current state of phy error reception (the hal
   1877  *   may enable phy error frames for noise immunity work)
   1878  * o probe request frames are accepted only when operating in
   1879  *   hostap, adhoc, or monitor modes
   1880  * o enable promiscuous mode according to the interface state
   1881  * o accept beacons:
   1882  *   - when operating in adhoc mode so the 802.11 layer creates
   1883  *     node table entries for peers,
   1884  *   - when operating in station mode for collecting rssi data when
   1885  *     the station is otherwise quiet, or
   1886  *   - when scanning
   1887  */
   1888 static u_int32_t
   1889 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
   1890 {
   1891 	struct ieee80211com *ic = &sc->sc_ic;
   1892 	struct ath_hal *ah = sc->sc_ah;
   1893 	struct ifnet *ifp = &sc->sc_if;
   1894 	u_int32_t rfilt;
   1895 
   1896 	rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
   1897 	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
   1898 	if (ic->ic_opmode != IEEE80211_M_STA)
   1899 		rfilt |= HAL_RX_FILTER_PROBEREQ;
   1900 	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
   1901 	    (ifp->if_flags & IFF_PROMISC))
   1902 		rfilt |= HAL_RX_FILTER_PROM;
   1903 	if (ic->ic_opmode == IEEE80211_M_STA ||
   1904 	    ic->ic_opmode == IEEE80211_M_IBSS ||
   1905 	    state == IEEE80211_S_SCAN)
   1906 		rfilt |= HAL_RX_FILTER_BEACON;
   1907 	return rfilt;
   1908 }
   1909 
   1910 static void
   1911 ath_mcastfilter_accum(void *dl, u_int32_t *mfilt)
   1912 {
   1913 	u_int32_t val;
   1914 	u_int8_t pos;
   1915 
   1916 	/* calculate XOR of eight 6bit values */
   1917 	val = LE_READ_4((char *)dl + 0);
   1918 	pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1919 	val = LE_READ_4((char *)dl + 3);
   1920 	pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1921 	pos &= 0x3f;
   1922 	mfilt[pos / 32] |= (1 << (pos % 32));
   1923 }
   1924 
   1925 static void
   1926 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t *mfilt)
   1927 {
   1928 	struct ifnet *ifp = &sc->sc_if;
   1929 	struct ether_multi *enm;
   1930 	struct ether_multistep estep;
   1931 
   1932 	mfilt[0] = mfilt[1] = 0;
   1933 	ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
   1934 	while (enm != NULL) {
   1935 		/* XXX Punt on ranges. */
   1936 		if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
   1937 			mfilt[0] = mfilt[1] = ~((u_int32_t)0);
   1938 			ifp->if_flags |= IFF_ALLMULTI;
   1939 			return;
   1940 		}
   1941 		ath_mcastfilter_accum(enm->enm_addrlo, mfilt);
   1942 		ETHER_NEXT_MULTI(estep, enm);
   1943 	}
   1944 	ifp->if_flags &= ~IFF_ALLMULTI;
   1945 }
   1946 
   1947 static void
   1948 ath_mode_init(struct ath_softc *sc)
   1949 {
   1950 	struct ieee80211com *ic = &sc->sc_ic;
   1951 	struct ath_hal *ah = sc->sc_ah;
   1952 	u_int32_t rfilt, mfilt[2];
   1953 	int i;
   1954 
   1955 	/* configure rx filter */
   1956 	rfilt = ath_calcrxfilter(sc, ic->ic_state);
   1957 	ath_hal_setrxfilter(ah, rfilt);
   1958 
   1959 	/* configure operational mode */
   1960 	ath_hal_setopmode(ah);
   1961 
   1962 	/* Write keys to hardware; it may have been powered down. */
   1963 	ath_key_update_begin(ic);
   1964 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
   1965 		ath_key_set(ic,
   1966 			    &ic->ic_crypto.cs_nw_keys[i],
   1967 			    ic->ic_myaddr);
   1968 	}
   1969 	ath_key_update_end(ic);
   1970 
   1971 	/*
   1972 	 * Handle any link-level address change.  Note that we only
   1973 	 * need to force ic_myaddr; any other addresses are handled
   1974 	 * as a byproduct of the ifnet code marking the interface
   1975 	 * down then up.
   1976 	 *
   1977 	 * XXX should get from lladdr instead of arpcom but that's more work
   1978 	 */
   1979 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(sc->sc_if.if_sadl));
   1980 	ath_hal_setmac(ah, ic->ic_myaddr);
   1981 
   1982 	/* calculate and install multicast filter */
   1983 #ifdef __FreeBSD__
   1984 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   1985 		mfilt[0] = mfilt[1] = 0;
   1986 		IF_ADDR_LOCK(ifp);
   1987 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
   1988 			void *dl;
   1989 
   1990 			/* calculate XOR of eight 6bit values */
   1991 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
   1992 			val = LE_READ_4((char *)dl + 0);
   1993 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1994 			val = LE_READ_4((char *)dl + 3);
   1995 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1996 			pos &= 0x3f;
   1997 			mfilt[pos / 32] |= (1 << (pos % 32));
   1998 		}
   1999 		IF_ADDR_UNLOCK(ifp);
   2000 	} else {
   2001 		mfilt[0] = mfilt[1] = ~0;
   2002 	}
   2003 #endif
   2004 #ifdef __NetBSD__
   2005 	ath_mcastfilter_compute(sc, mfilt);
   2006 #endif
   2007 	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
   2008 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
   2009 		__func__, rfilt, mfilt[0], mfilt[1]);
   2010 }
   2011 
   2012 /*
   2013  * Set the slot time based on the current setting.
   2014  */
   2015 static void
   2016 ath_setslottime(struct ath_softc *sc)
   2017 {
   2018 	struct ieee80211com *ic = &sc->sc_ic;
   2019 	struct ath_hal *ah = sc->sc_ah;
   2020 
   2021 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   2022 		ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
   2023 	else
   2024 		ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
   2025 	sc->sc_updateslot = OK;
   2026 }
   2027 
   2028 /*
   2029  * Callback from the 802.11 layer to update the
   2030  * slot time based on the current setting.
   2031  */
   2032 static void
   2033 ath_updateslot(struct ifnet *ifp)
   2034 {
   2035 	struct ath_softc *sc = ifp->if_softc;
   2036 	struct ieee80211com *ic = &sc->sc_ic;
   2037 
   2038 	/*
   2039 	 * When not coordinating the BSS, change the hardware
   2040 	 * immediately.  For other operation we defer the change
   2041 	 * until beacon updates have propagated to the stations.
   2042 	 */
   2043 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
   2044 		sc->sc_updateslot = UPDATE;
   2045 	else
   2046 		ath_setslottime(sc);
   2047 }
   2048 
   2049 /*
   2050  * Setup a h/w transmit queue for beacons.
   2051  */
   2052 static int
   2053 ath_beaconq_setup(struct ath_hal *ah)
   2054 {
   2055 	HAL_TXQ_INFO qi;
   2056 
   2057 	memset(&qi, 0, sizeof(qi));
   2058 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
   2059 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
   2060 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
   2061 	/* NB: for dynamic turbo, don't enable any other interrupts */
   2062 	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
   2063 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
   2064 }
   2065 
   2066 /*
   2067  * Setup the transmit queue parameters for the beacon queue.
   2068  */
   2069 static int
   2070 ath_beaconq_config(struct ath_softc *sc)
   2071 {
   2072 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
   2073 	struct ieee80211com *ic = &sc->sc_ic;
   2074 	struct ath_hal *ah = sc->sc_ah;
   2075 	HAL_TXQ_INFO qi;
   2076 
   2077 	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
   2078 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   2079 		/*
   2080 		 * Always burst out beacon and CAB traffic.
   2081 		 */
   2082 		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
   2083 		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
   2084 		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
   2085 	} else {
   2086 		struct wmeParams *wmep =
   2087 			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
   2088 		/*
   2089 		 * Adhoc mode; important thing is to use 2x cwmin.
   2090 		 */
   2091 		qi.tqi_aifs = wmep->wmep_aifsn;
   2092 		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
   2093 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
   2094 	}
   2095 
   2096 	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
   2097 		device_printf(&sc->sc_dev, "unable to update parameters for "
   2098 			"beacon hardware queue!\n");
   2099 		return 0;
   2100 	} else {
   2101 		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
   2102 		return 1;
   2103 	}
   2104 #undef ATH_EXPONENT_TO_VALUE
   2105 }
   2106 
   2107 /*
   2108  * Allocate and setup an initial beacon frame.
   2109  */
   2110 static int
   2111 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
   2112 {
   2113 	struct ieee80211com *ic = ni->ni_ic;
   2114 	struct ath_buf *bf;
   2115 	struct mbuf *m;
   2116 	int error;
   2117 
   2118 	bf = STAILQ_FIRST(&sc->sc_bbuf);
   2119 	if (bf == NULL) {
   2120 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
   2121 		sc->sc_stats.ast_be_nombuf++;	/* XXX */
   2122 		return ENOMEM;			/* XXX */
   2123 	}
   2124 	/*
   2125 	 * NB: the beacon data buffer must be 32-bit aligned;
   2126 	 * we assume the mbuf routines will return us something
   2127 	 * with this alignment (perhaps should assert).
   2128 	 */
   2129 	m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
   2130 	if (m == NULL) {
   2131 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
   2132 			__func__);
   2133 		sc->sc_stats.ast_be_nombuf++;
   2134 		return ENOMEM;
   2135 	}
   2136 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
   2137 				     BUS_DMA_NOWAIT);
   2138 	if (error == 0) {
   2139 		bf->bf_m = m;
   2140 		bf->bf_node = ieee80211_ref_node(ni);
   2141 	} else {
   2142 		m_freem(m);
   2143 	}
   2144 	return error;
   2145 }
   2146 
   2147 /*
   2148  * Setup the beacon frame for transmit.
   2149  */
   2150 static void
   2151 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
   2152 {
   2153 #define	USE_SHPREAMBLE(_ic) \
   2154 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
   2155 		== IEEE80211_F_SHPREAMBLE)
   2156 	struct ieee80211_node *ni = bf->bf_node;
   2157 	struct ieee80211com *ic = ni->ni_ic;
   2158 	struct mbuf *m = bf->bf_m;
   2159 	struct ath_hal *ah = sc->sc_ah;
   2160 	struct ath_desc *ds;
   2161 	int flags, antenna;
   2162 	const HAL_RATE_TABLE *rt;
   2163 	u_int8_t rix, rate;
   2164 
   2165 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
   2166 		__func__, m, m->m_len);
   2167 
   2168 	/* setup descriptors */
   2169 	ds = bf->bf_desc;
   2170 
   2171 	flags = HAL_TXDESC_NOACK;
   2172 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
   2173 		ds->ds_link = HTOAH32(bf->bf_daddr);	/* self-linked */
   2174 		flags |= HAL_TXDESC_VEOL;
   2175 		/*
   2176 		 * Let hardware handle antenna switching unless
   2177 		 * the user has selected a transmit antenna
   2178 		 * (sc_txantenna is not 0).
   2179 		 */
   2180 		antenna = sc->sc_txantenna;
   2181 	} else {
   2182 		ds->ds_link = 0;
   2183 		/*
   2184 		 * Switch antenna every 4 beacons, unless the user
   2185 		 * has selected a transmit antenna (sc_txantenna
   2186 		 * is not 0).
   2187 		 *
   2188 		 * XXX assumes two antenna
   2189 		 */
   2190 		if (sc->sc_txantenna == 0)
   2191 			antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
   2192 		else
   2193 			antenna = sc->sc_txantenna;
   2194 	}
   2195 
   2196 	KASSERT(bf->bf_nseg == 1,
   2197 		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
   2198 	ds->ds_data = bf->bf_segs[0].ds_addr;
   2199 	/*
   2200 	 * Calculate rate code.
   2201 	 * XXX everything at min xmit rate
   2202 	 */
   2203 	rix = sc->sc_minrateix;
   2204 	rt = sc->sc_currates;
   2205 	rate = rt->info[rix].rateCode;
   2206 	if (USE_SHPREAMBLE(ic))
   2207 		rate |= rt->info[rix].shortPreamble;
   2208 	ath_hal_setuptxdesc(ah, ds
   2209 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
   2210 		, sizeof(struct ieee80211_frame)/* header length */
   2211 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
   2212 		, ni->ni_txpower		/* txpower XXX */
   2213 		, rate, 1			/* series 0 rate/tries */
   2214 		, HAL_TXKEYIX_INVALID		/* no encryption */
   2215 		, antenna			/* antenna mode */
   2216 		, flags				/* no ack, veol for beacons */
   2217 		, 0				/* rts/cts rate */
   2218 		, 0				/* rts/cts duration */
   2219 	);
   2220 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
   2221 	ath_hal_filltxdesc(ah, ds
   2222 		, roundup(m->m_len, 4)		/* buffer length */
   2223 		, AH_TRUE			/* first segment */
   2224 		, AH_TRUE			/* last segment */
   2225 		, ds				/* first descriptor */
   2226 	);
   2227 
   2228 	/* NB: The desc swap function becomes void,
   2229 	 * if descriptor swapping is not enabled
   2230 	 */
   2231 	ath_desc_swap(ds);
   2232 
   2233 #undef USE_SHPREAMBLE
   2234 }
   2235 
   2236 /*
   2237  * Transmit a beacon frame at SWBA.  Dynamic updates to the
   2238  * frame contents are done as needed and the slot time is
   2239  * also adjusted based on current state.
   2240  */
   2241 static void
   2242 ath_beacon_proc(void *arg, int pending)
   2243 {
   2244 	struct ath_softc *sc = arg;
   2245 	struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
   2246 	struct ieee80211_node *ni = bf->bf_node;
   2247 	struct ieee80211com *ic = ni->ni_ic;
   2248 	struct ath_hal *ah = sc->sc_ah;
   2249 	struct mbuf *m;
   2250 	int ncabq, error, otherant;
   2251 
   2252 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
   2253 		__func__, pending);
   2254 
   2255 	if (ic->ic_opmode == IEEE80211_M_STA ||
   2256 	    ic->ic_opmode == IEEE80211_M_MONITOR ||
   2257 	    bf == NULL || bf->bf_m == NULL) {
   2258 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
   2259 			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
   2260 		return;
   2261 	}
   2262 	/*
   2263 	 * Check if the previous beacon has gone out.  If
   2264 	 * not don't try to post another, skip this period
   2265 	 * and wait for the next.  Missed beacons indicate
   2266 	 * a problem and should not occur.  If we miss too
   2267 	 * many consecutive beacons reset the device.
   2268 	 */
   2269 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
   2270 		sc->sc_bmisscount++;
   2271 		DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
   2272 			"%s: missed %u consecutive beacons\n",
   2273 			__func__, sc->sc_bmisscount);
   2274 		if (sc->sc_bmisscount > 3)		/* NB: 3 is a guess */
   2275 			TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask);
   2276 		return;
   2277 	}
   2278 	if (sc->sc_bmisscount != 0) {
   2279 		DPRINTF(sc, ATH_DEBUG_BEACON,
   2280 			"%s: resume beacon xmit after %u misses\n",
   2281 			__func__, sc->sc_bmisscount);
   2282 		sc->sc_bmisscount = 0;
   2283 	}
   2284 
   2285 	/*
   2286 	 * Update dynamic beacon contents.  If this returns
   2287 	 * non-zero then we need to remap the memory because
   2288 	 * the beacon frame changed size (probably because
   2289 	 * of the TIM bitmap).
   2290 	 */
   2291 	m = bf->bf_m;
   2292 	ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
   2293 	if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
   2294 		/* XXX too conservative? */
   2295 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   2296 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
   2297 					     BUS_DMA_NOWAIT);
   2298 		if (error != 0) {
   2299 			if_printf(&sc->sc_if,
   2300 			    "%s: bus_dmamap_load_mbuf failed, error %u\n",
   2301 			    __func__, error);
   2302 			return;
   2303 		}
   2304 	}
   2305 
   2306 	/*
   2307 	 * Handle slot time change when a non-ERP station joins/leaves
   2308 	 * an 11g network.  The 802.11 layer notifies us via callback,
   2309 	 * we mark updateslot, then wait one beacon before effecting
   2310 	 * the change.  This gives associated stations at least one
   2311 	 * beacon interval to note the state change.
   2312 	 */
   2313 	/* XXX locking */
   2314 	if (sc->sc_updateslot == UPDATE)
   2315 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
   2316 	else if (sc->sc_updateslot == COMMIT)
   2317 		ath_setslottime(sc);		/* commit change to h/w */
   2318 
   2319 	/*
   2320 	 * Check recent per-antenna transmit statistics and flip
   2321 	 * the default antenna if noticeably more frames went out
   2322 	 * on the non-default antenna.
   2323 	 * XXX assumes 2 anntenae
   2324 	 */
   2325 	otherant = sc->sc_defant & 1 ? 2 : 1;
   2326 	if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
   2327 		ath_setdefantenna(sc, otherant);
   2328 	sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
   2329 
   2330 	/*
   2331 	 * Construct tx descriptor.
   2332 	 */
   2333 	ath_beacon_setup(sc, bf);
   2334 
   2335 	/*
   2336 	 * Stop any current dma and put the new frame on the queue.
   2337 	 * This should never fail since we check above that no frames
   2338 	 * are still pending on the queue.
   2339 	 */
   2340 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
   2341 		DPRINTF(sc, ATH_DEBUG_ANY,
   2342 			"%s: beacon queue %u did not stop?\n",
   2343 			__func__, sc->sc_bhalq);
   2344 	}
   2345 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   2346 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2347 
   2348 	/*
   2349 	 * Enable the CAB queue before the beacon queue to
   2350 	 * insure cab frames are triggered by this beacon.
   2351 	 */
   2352 	if (ncabq != 0 && (sc->sc_boff.bo_tim[4] & 1))	/* NB: only at DTIM */
   2353 		ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
   2354 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
   2355 	ath_hal_txstart(ah, sc->sc_bhalq);
   2356 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
   2357 	    "%s: TXDP[%u] = %" PRIx64 " (%p)\n", __func__,
   2358 	    sc->sc_bhalq, (uint64_t)bf->bf_daddr, bf->bf_desc);
   2359 
   2360 	sc->sc_stats.ast_be_xmit++;
   2361 }
   2362 
   2363 /*
   2364  * Reset the hardware after detecting beacons have stopped.
   2365  */
   2366 static void
   2367 ath_bstuck_proc(void *arg, int pending)
   2368 {
   2369 	struct ath_softc *sc = arg;
   2370 	struct ifnet *ifp = &sc->sc_if;
   2371 
   2372 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
   2373 		sc->sc_bmisscount);
   2374 	ath_reset(ifp);
   2375 }
   2376 
   2377 /*
   2378  * Reclaim beacon resources.
   2379  */
   2380 static void
   2381 ath_beacon_free(struct ath_softc *sc)
   2382 {
   2383 	struct ath_buf *bf;
   2384 
   2385 	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
   2386 		if (bf->bf_m != NULL) {
   2387 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   2388 			m_freem(bf->bf_m);
   2389 			bf->bf_m = NULL;
   2390 		}
   2391 		if (bf->bf_node != NULL) {
   2392 			ieee80211_free_node(bf->bf_node);
   2393 			bf->bf_node = NULL;
   2394 		}
   2395 	}
   2396 }
   2397 
   2398 /*
   2399  * Configure the beacon and sleep timers.
   2400  *
   2401  * When operating as an AP this resets the TSF and sets
   2402  * up the hardware to notify us when we need to issue beacons.
   2403  *
   2404  * When operating in station mode this sets up the beacon
   2405  * timers according to the timestamp of the last received
   2406  * beacon and the current TSF, configures PCF and DTIM
   2407  * handling, programs the sleep registers so the hardware
   2408  * will wakeup in time to receive beacons, and configures
   2409  * the beacon miss handling so we'll receive a BMISS
   2410  * interrupt when we stop seeing beacons from the AP
   2411  * we've associated with.
   2412  */
   2413 static void
   2414 ath_beacon_config(struct ath_softc *sc)
   2415 {
   2416 #define	TSF_TO_TU(_h,_l) \
   2417 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
   2418 #define	FUDGE	2
   2419 	struct ath_hal *ah = sc->sc_ah;
   2420 	struct ieee80211com *ic = &sc->sc_ic;
   2421 	struct ieee80211_node *ni = ic->ic_bss;
   2422 	u_int32_t nexttbtt, intval, tsftu;
   2423 	u_int64_t tsf;
   2424 
   2425 	/* extract tstamp from last beacon and convert to TU */
   2426 	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
   2427 			     LE_READ_4(ni->ni_tstamp.data));
   2428 	/* NB: the beacon interval is kept internally in TU's */
   2429 	intval = ni->ni_intval & HAL_BEACON_PERIOD;
   2430 	if (nexttbtt == 0)		/* e.g. for ap mode */
   2431 		nexttbtt = intval;
   2432 	else if (intval)		/* NB: can be 0 for monitor mode */
   2433 		nexttbtt = roundup(nexttbtt, intval);
   2434 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
   2435 		__func__, nexttbtt, intval, ni->ni_intval);
   2436 	if (ic->ic_opmode == IEEE80211_M_STA) {
   2437 		HAL_BEACON_STATE bs;
   2438 		int dtimperiod, dtimcount;
   2439 		int cfpperiod, cfpcount;
   2440 
   2441 		/*
   2442 		 * Setup dtim and cfp parameters according to
   2443 		 * last beacon we received (which may be none).
   2444 		 */
   2445 		dtimperiod = ni->ni_dtim_period;
   2446 		if (dtimperiod <= 0)		/* NB: 0 if not known */
   2447 			dtimperiod = 1;
   2448 		dtimcount = ni->ni_dtim_count;
   2449 		if (dtimcount >= dtimperiod)	/* NB: sanity check */
   2450 			dtimcount = 0;		/* XXX? */
   2451 		cfpperiod = 1;			/* NB: no PCF support yet */
   2452 		cfpcount = 0;
   2453 		/*
   2454 		 * Pull nexttbtt forward to reflect the current
   2455 		 * TSF and calculate dtim+cfp state for the result.
   2456 		 */
   2457 		tsf = ath_hal_gettsf64(ah);
   2458 		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
   2459 		do {
   2460 			nexttbtt += intval;
   2461 			if (--dtimcount < 0) {
   2462 				dtimcount = dtimperiod - 1;
   2463 				if (--cfpcount < 0)
   2464 					cfpcount = cfpperiod - 1;
   2465 			}
   2466 		} while (nexttbtt < tsftu);
   2467 		memset(&bs, 0, sizeof(bs));
   2468 		bs.bs_intval = intval;
   2469 		bs.bs_nexttbtt = nexttbtt;
   2470 		bs.bs_dtimperiod = dtimperiod*intval;
   2471 		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
   2472 		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
   2473 		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
   2474 		bs.bs_cfpmaxduration = 0;
   2475 #if 0
   2476 		/*
   2477 		 * The 802.11 layer records the offset to the DTIM
   2478 		 * bitmap while receiving beacons; use it here to
   2479 		 * enable h/w detection of our AID being marked in
   2480 		 * the bitmap vector (to indicate frames for us are
   2481 		 * pending at the AP).
   2482 		 * XXX do DTIM handling in s/w to WAR old h/w bugs
   2483 		 * XXX enable based on h/w rev for newer chips
   2484 		 */
   2485 		bs.bs_timoffset = ni->ni_timoff;
   2486 #endif
   2487 		/*
   2488 		 * Calculate the number of consecutive beacons to miss
   2489 		 * before taking a BMISS interrupt.  The configuration
   2490 		 * is specified in ms, so we need to convert that to
   2491 		 * TU's and then calculate based on the beacon interval.
   2492 		 * Note that we clamp the result to at most 10 beacons.
   2493 		 */
   2494 		bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
   2495 		if (bs.bs_bmissthreshold > 10)
   2496 			bs.bs_bmissthreshold = 10;
   2497 		else if (bs.bs_bmissthreshold <= 0)
   2498 			bs.bs_bmissthreshold = 1;
   2499 
   2500 		/*
   2501 		 * Calculate sleep duration.  The configuration is
   2502 		 * given in ms.  We insure a multiple of the beacon
   2503 		 * period is used.  Also, if the sleep duration is
   2504 		 * greater than the DTIM period then it makes senses
   2505 		 * to make it a multiple of that.
   2506 		 *
   2507 		 * XXX fixed at 100ms
   2508 		 */
   2509 		bs.bs_sleepduration =
   2510 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
   2511 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
   2512 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
   2513 
   2514 		DPRINTF(sc, ATH_DEBUG_BEACON,
   2515 			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
   2516 			, __func__
   2517 			, tsf, tsftu
   2518 			, bs.bs_intval
   2519 			, bs.bs_nexttbtt
   2520 			, bs.bs_dtimperiod
   2521 			, bs.bs_nextdtim
   2522 			, bs.bs_bmissthreshold
   2523 			, bs.bs_sleepduration
   2524 			, bs.bs_cfpperiod
   2525 			, bs.bs_cfpmaxduration
   2526 			, bs.bs_cfpnext
   2527 			, bs.bs_timoffset
   2528 		);
   2529 		ath_hal_intrset(ah, 0);
   2530 		ath_hal_beacontimers(ah, &bs);
   2531 		sc->sc_imask |= HAL_INT_BMISS;
   2532 		ath_hal_intrset(ah, sc->sc_imask);
   2533 	} else {
   2534 		ath_hal_intrset(ah, 0);
   2535 		if (nexttbtt == intval)
   2536 			intval |= HAL_BEACON_RESET_TSF;
   2537 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
   2538 			/*
   2539 			 * In IBSS mode enable the beacon timers but only
   2540 			 * enable SWBA interrupts if we need to manually
   2541 			 * prepare beacon frames.  Otherwise we use a
   2542 			 * self-linked tx descriptor and let the hardware
   2543 			 * deal with things.
   2544 			 */
   2545 			intval |= HAL_BEACON_ENA;
   2546 			if (!sc->sc_hasveol)
   2547 				sc->sc_imask |= HAL_INT_SWBA;
   2548 			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
   2549 				/*
   2550 				 * Pull nexttbtt forward to reflect
   2551 				 * the current TSF.
   2552 				 */
   2553 				tsf = ath_hal_gettsf64(ah);
   2554 				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
   2555 				do {
   2556 					nexttbtt += intval;
   2557 				} while (nexttbtt < tsftu);
   2558 			}
   2559 			ath_beaconq_config(sc);
   2560 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   2561 			/*
   2562 			 * In AP mode we enable the beacon timers and
   2563 			 * SWBA interrupts to prepare beacon frames.
   2564 			 */
   2565 			intval |= HAL_BEACON_ENA;
   2566 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
   2567 			ath_beaconq_config(sc);
   2568 		}
   2569 		ath_hal_beaconinit(ah, nexttbtt, intval);
   2570 		sc->sc_bmisscount = 0;
   2571 		ath_hal_intrset(ah, sc->sc_imask);
   2572 		/*
   2573 		 * When using a self-linked beacon descriptor in
   2574 		 * ibss mode load it once here.
   2575 		 */
   2576 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
   2577 			ath_beacon_proc(sc, 0);
   2578 	}
   2579 	sc->sc_syncbeacon = 0;
   2580 #undef UNDEF
   2581 #undef TSF_TO_TU
   2582 }
   2583 
   2584 static int
   2585 ath_descdma_setup(struct ath_softc *sc,
   2586 	struct ath_descdma *dd, ath_bufhead *head,
   2587 	const char *name, int nbuf, int ndesc)
   2588 {
   2589 #define	DS2PHYS(_dd, _ds) \
   2590 	((_dd)->dd_desc_paddr + ((char *)(_ds) - (char *)(_dd)->dd_desc))
   2591 	struct ifnet *ifp = &sc->sc_if;
   2592 	struct ath_desc *ds;
   2593 	struct ath_buf *bf;
   2594 	int i, bsize, error;
   2595 
   2596 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
   2597 	    __func__, name, nbuf, ndesc);
   2598 
   2599 	dd->dd_name = name;
   2600 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
   2601 
   2602 	/*
   2603 	 * Setup DMA descriptor area.
   2604 	 */
   2605 	dd->dd_dmat = sc->sc_dmat;
   2606 
   2607 	error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE,
   2608 	    0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0);
   2609 
   2610 	if (error != 0) {
   2611 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
   2612 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
   2613 		goto fail0;
   2614 	}
   2615 
   2616 	error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg,
   2617 	    dd->dd_desc_len, (void **)&dd->dd_desc, BUS_DMA_COHERENT);
   2618 	if (error != 0) {
   2619 		if_printf(ifp, "unable to map %u %s descriptors, error = %u\n",
   2620 		    nbuf * ndesc, dd->dd_name, error);
   2621 		goto fail1;
   2622 	}
   2623 
   2624 	/* allocate descriptors */
   2625 	error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1,
   2626 	    dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap);
   2627 	if (error != 0) {
   2628 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
   2629 			"error %u\n", dd->dd_name, error);
   2630 		goto fail2;
   2631 	}
   2632 
   2633 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc,
   2634 	    dd->dd_desc_len, NULL, BUS_DMA_NOWAIT);
   2635 	if (error != 0) {
   2636 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
   2637 			dd->dd_name, error);
   2638 		goto fail3;
   2639 	}
   2640 
   2641 	ds = dd->dd_desc;
   2642 	dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr;
   2643 	DPRINTF(sc, ATH_DEBUG_RESET,
   2644 	    "%s: %s DMA map: %p (%lu) -> %" PRIx64 " (%lu)\n",
   2645 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
   2646 	    (uint64_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
   2647 
   2648 	/* allocate rx buffers */
   2649 	bsize = sizeof(struct ath_buf) * nbuf;
   2650 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
   2651 	if (bf == NULL) {
   2652 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
   2653 			dd->dd_name, bsize);
   2654 		goto fail4;
   2655 	}
   2656 	dd->dd_bufptr = bf;
   2657 
   2658 	STAILQ_INIT(head);
   2659 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
   2660 		bf->bf_desc = ds;
   2661 		bf->bf_daddr = DS2PHYS(dd, ds);
   2662 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc,
   2663 				MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap);
   2664 		if (error != 0) {
   2665 			if_printf(ifp, "unable to create dmamap for %s "
   2666 				"buffer %u, error %u\n", dd->dd_name, i, error);
   2667 			ath_descdma_cleanup(sc, dd, head);
   2668 			return error;
   2669 		}
   2670 		STAILQ_INSERT_TAIL(head, bf, bf_list);
   2671 	}
   2672 	return 0;
   2673 fail4:
   2674 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
   2675 fail3:
   2676 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
   2677 fail2:
   2678 	bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
   2679 fail1:
   2680 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
   2681 fail0:
   2682 	memset(dd, 0, sizeof(*dd));
   2683 	return error;
   2684 #undef DS2PHYS
   2685 }
   2686 
   2687 static void
   2688 ath_descdma_cleanup(struct ath_softc *sc,
   2689 	struct ath_descdma *dd, ath_bufhead *head)
   2690 {
   2691 	struct ath_buf *bf;
   2692 	struct ieee80211_node *ni;
   2693 
   2694 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
   2695 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
   2696 	bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
   2697 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
   2698 
   2699 	STAILQ_FOREACH(bf, head, bf_list) {
   2700 		if (bf->bf_m) {
   2701 			m_freem(bf->bf_m);
   2702 			bf->bf_m = NULL;
   2703 		}
   2704 		if (bf->bf_dmamap != NULL) {
   2705 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
   2706 			bf->bf_dmamap = NULL;
   2707 		}
   2708 		ni = bf->bf_node;
   2709 		bf->bf_node = NULL;
   2710 		if (ni != NULL) {
   2711 			/*
   2712 			 * Reclaim node reference.
   2713 			 */
   2714 			ieee80211_free_node(ni);
   2715 		}
   2716 	}
   2717 
   2718 	STAILQ_INIT(head);
   2719 	free(dd->dd_bufptr, M_ATHDEV);
   2720 	memset(dd, 0, sizeof(*dd));
   2721 }
   2722 
   2723 static int
   2724 ath_desc_alloc(struct ath_softc *sc)
   2725 {
   2726 	int error;
   2727 
   2728 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
   2729 			"rx", ath_rxbuf, 1);
   2730 	if (error != 0)
   2731 		return error;
   2732 
   2733 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
   2734 			"tx", ath_txbuf, ATH_TXDESC);
   2735 	if (error != 0) {
   2736 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2737 		return error;
   2738 	}
   2739 
   2740 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
   2741 			"beacon", 1, 1);
   2742 	if (error != 0) {
   2743 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
   2744 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2745 		return error;
   2746 	}
   2747 	return 0;
   2748 }
   2749 
   2750 static void
   2751 ath_desc_free(struct ath_softc *sc)
   2752 {
   2753 
   2754 	if (sc->sc_bdma.dd_desc_len != 0)
   2755 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
   2756 	if (sc->sc_txdma.dd_desc_len != 0)
   2757 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
   2758 	if (sc->sc_rxdma.dd_desc_len != 0)
   2759 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2760 }
   2761 
   2762 static struct ieee80211_node *
   2763 ath_node_alloc(struct ieee80211_node_table *nt)
   2764 {
   2765 	struct ieee80211com *ic = nt->nt_ic;
   2766 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   2767 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
   2768 	struct ath_node *an;
   2769 
   2770 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
   2771 	if (an == NULL) {
   2772 		/* XXX stat+msg */
   2773 		return NULL;
   2774 	}
   2775 	an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
   2776 	ath_rate_node_init(sc, an);
   2777 
   2778 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
   2779 	return &an->an_node;
   2780 }
   2781 
   2782 static void
   2783 ath_node_free(struct ieee80211_node *ni)
   2784 {
   2785 	struct ieee80211com *ic = ni->ni_ic;
   2786         struct ath_softc *sc = ic->ic_ifp->if_softc;
   2787 
   2788 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
   2789 
   2790 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
   2791 	sc->sc_node_free(ni);
   2792 }
   2793 
   2794 static u_int8_t
   2795 ath_node_getrssi(const struct ieee80211_node *ni)
   2796 {
   2797 #define	HAL_EP_RND(x, mul) \
   2798 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
   2799 	u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
   2800 	int32_t rssi;
   2801 
   2802 	/*
   2803 	 * When only one frame is received there will be no state in
   2804 	 * avgrssi so fallback on the value recorded by the 802.11 layer.
   2805 	 */
   2806 	if (avgrssi != ATH_RSSI_DUMMY_MARKER)
   2807 		rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
   2808 	else
   2809 		rssi = ni->ni_rssi;
   2810 	return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
   2811 #undef HAL_EP_RND
   2812 }
   2813 
   2814 static int
   2815 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
   2816 {
   2817 	struct ath_hal *ah = sc->sc_ah;
   2818 	int error;
   2819 	struct mbuf *m;
   2820 	struct ath_desc *ds;
   2821 
   2822 	m = bf->bf_m;
   2823 	if (m == NULL) {
   2824 		/*
   2825 		 * NB: by assigning a page to the rx dma buffer we
   2826 		 * implicitly satisfy the Atheros requirement that
   2827 		 * this buffer be cache-line-aligned and sized to be
   2828 		 * multiple of the cache line size.  Not doing this
   2829 		 * causes weird stuff to happen (for the 5210 at least).
   2830 		 */
   2831 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
   2832 		if (m == NULL) {
   2833 			DPRINTF(sc, ATH_DEBUG_ANY,
   2834 				"%s: no mbuf/cluster\n", __func__);
   2835 			sc->sc_stats.ast_rx_nombuf++;
   2836 			return ENOMEM;
   2837 		}
   2838 		bf->bf_m = m;
   2839 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
   2840 
   2841 		error = bus_dmamap_load_mbuf(sc->sc_dmat,
   2842 					     bf->bf_dmamap, m,
   2843 					     BUS_DMA_NOWAIT);
   2844 		if (error != 0) {
   2845 			DPRINTF(sc, ATH_DEBUG_ANY,
   2846 			    "%s: bus_dmamap_load_mbuf failed; error %d\n",
   2847 			    __func__, error);
   2848 			sc->sc_stats.ast_rx_busdma++;
   2849 			return error;
   2850 		}
   2851 		KASSERT(bf->bf_nseg == 1,
   2852 			("multi-segment packet; nseg %u", bf->bf_nseg));
   2853 	}
   2854 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   2855 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2856 
   2857 	/*
   2858 	 * Setup descriptors.  For receive we always terminate
   2859 	 * the descriptor list with a self-linked entry so we'll
   2860 	 * not get overrun under high load (as can happen with a
   2861 	 * 5212 when ANI processing enables PHY error frames).
   2862 	 *
   2863 	 * To insure the last descriptor is self-linked we create
   2864 	 * each descriptor as self-linked and add it to the end.  As
   2865 	 * each additional descriptor is added the previous self-linked
   2866 	 * entry is ``fixed'' naturally.  This should be safe even
   2867 	 * if DMA is happening.  When processing RX interrupts we
   2868 	 * never remove/process the last, self-linked, entry on the
   2869 	 * descriptor list.  This insures the hardware always has
   2870 	 * someplace to write a new frame.
   2871 	 */
   2872 	ds = bf->bf_desc;
   2873 	ds->ds_link = HTOAH32(bf->bf_daddr);	/* link to self */
   2874 	ds->ds_data = bf->bf_segs[0].ds_addr;
   2875 	ds->ds_vdata = mtod(m, void *);	/* for radar */
   2876 	ath_hal_setuprxdesc(ah, ds
   2877 		, m->m_len		/* buffer size */
   2878 		, 0
   2879 	);
   2880 
   2881 	if (sc->sc_rxlink != NULL)
   2882 		*sc->sc_rxlink = bf->bf_daddr;
   2883 	sc->sc_rxlink = &ds->ds_link;
   2884 	return 0;
   2885 }
   2886 
   2887 /*
   2888  * Extend 15-bit time stamp from rx descriptor to
   2889  * a full 64-bit TSF using the specified TSF.
   2890  */
   2891 static inline u_int64_t
   2892 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
   2893 {
   2894 	if ((tsf & 0x7fff) < rstamp)
   2895 		tsf -= 0x8000;
   2896 	return ((tsf &~ 0x7fff) | rstamp);
   2897 }
   2898 
   2899 /*
   2900  * Intercept management frames to collect beacon rssi data
   2901  * and to do ibss merges.
   2902  */
   2903 static void
   2904 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
   2905 	struct ieee80211_node *ni,
   2906 	int subtype, int rssi, u_int32_t rstamp)
   2907 {
   2908 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   2909 
   2910 	/*
   2911 	 * Call up first so subsequent work can use information
   2912 	 * potentially stored in the node (e.g. for ibss merge).
   2913 	 */
   2914 	sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
   2915 	switch (subtype) {
   2916 	case IEEE80211_FC0_SUBTYPE_BEACON:
   2917 		/* update rssi statistics for use by the hal */
   2918 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
   2919 		if (sc->sc_syncbeacon &&
   2920 		    ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) {
   2921 			/*
   2922 			 * Resync beacon timers using the tsf of the beacon
   2923 			 * frame we just received.
   2924 			 */
   2925 			ath_beacon_config(sc);
   2926 		}
   2927 		/* fall thru... */
   2928 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
   2929 		if (ic->ic_opmode == IEEE80211_M_IBSS &&
   2930 		    ic->ic_state == IEEE80211_S_RUN) {
   2931 			u_int64_t tsf = ath_extend_tsf(rstamp,
   2932 				ath_hal_gettsf64(sc->sc_ah));
   2933 
   2934 			/*
   2935 			 * Handle ibss merge as needed; check the tsf on the
   2936 			 * frame before attempting the merge.  The 802.11 spec
   2937 			 * says the station should change it's bssid to match
   2938 			 * the oldest station with the same ssid, where oldest
   2939 			 * is determined by the tsf.  Note that hardware
   2940 			 * reconfiguration happens through callback to
   2941 			 * ath_newstate as the state machine will go from
   2942 			 * RUN -> RUN when this happens.
   2943 			 */
   2944 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
   2945 				DPRINTF(sc, ATH_DEBUG_STATE,
   2946 				    "ibss merge, rstamp %u tsf %ju "
   2947 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
   2948 				    (uintmax_t)ni->ni_tstamp.tsf);
   2949 				(void) ieee80211_ibss_merge(ni);
   2950 			}
   2951 		}
   2952 		break;
   2953 	}
   2954 }
   2955 
   2956 /*
   2957  * Set the default antenna.
   2958  */
   2959 static void
   2960 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
   2961 {
   2962 	struct ath_hal *ah = sc->sc_ah;
   2963 
   2964 	/* XXX block beacon interrupts */
   2965 	ath_hal_setdefantenna(ah, antenna);
   2966 	if (sc->sc_defant != antenna)
   2967 		sc->sc_stats.ast_ant_defswitch++;
   2968 	sc->sc_defant = antenna;
   2969 	sc->sc_rxotherant = 0;
   2970 }
   2971 
   2972 static void
   2973 ath_rx_proc(void *arg, int npending)
   2974 {
   2975 #define	PA2DESC(_sc, _pa) \
   2976 	((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
   2977 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
   2978 	struct ath_softc *sc = arg;
   2979 	struct ath_buf *bf;
   2980 	struct ieee80211com *ic = &sc->sc_ic;
   2981 	struct ifnet *ifp = &sc->sc_if;
   2982 	struct ath_hal *ah = sc->sc_ah;
   2983 	struct ath_desc *ds;
   2984 	struct mbuf *m;
   2985 	struct ieee80211_node *ni;
   2986 	struct ath_node *an;
   2987 	int len, type, ngood;
   2988 	u_int phyerr;
   2989 	HAL_STATUS status;
   2990 	int16_t nf;
   2991 	u_int64_t tsf;
   2992 
   2993 	NET_LOCK_GIANT();		/* XXX */
   2994 
   2995 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
   2996 	ngood = 0;
   2997 	nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
   2998 	tsf = ath_hal_gettsf64(ah);
   2999 	do {
   3000 		bf = STAILQ_FIRST(&sc->sc_rxbuf);
   3001 		if (bf == NULL) {		/* NB: shouldn't happen */
   3002 			if_printf(ifp, "%s: no buffer!\n", __func__);
   3003 			break;
   3004 		}
   3005 		ds = bf->bf_desc;
   3006 		if (ds->ds_link == bf->bf_daddr) {
   3007 			/* NB: never process the self-linked entry at the end */
   3008 			break;
   3009 		}
   3010 		m = bf->bf_m;
   3011 		if (m == NULL) {		/* NB: shouldn't happen */
   3012 			if_printf(ifp, "%s: no mbuf!\n", __func__);
   3013 			break;
   3014 		}
   3015 		/* XXX sync descriptor memory */
   3016 		/*
   3017 		 * Must provide the virtual address of the current
   3018 		 * descriptor, the physical address, and the virtual
   3019 		 * address of the next descriptor in the h/w chain.
   3020 		 * This allows the HAL to look ahead to see if the
   3021 		 * hardware is done with a descriptor by checking the
   3022 		 * done bit in the following descriptor and the address
   3023 		 * of the current descriptor the DMA engine is working
   3024 		 * on.  All this is necessary because of our use of
   3025 		 * a self-linked list to avoid rx overruns.
   3026 		 */
   3027 		status = ath_hal_rxprocdesc(ah, ds,
   3028 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
   3029 #ifdef AR_DEBUG
   3030 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
   3031 			ath_printrxbuf(bf, status == HAL_OK);
   3032 #endif
   3033 		if (status == HAL_EINPROGRESS)
   3034 			break;
   3035 		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
   3036 		if (ds->ds_rxstat.rs_more) {
   3037 			/*
   3038 			 * Frame spans multiple descriptors; this
   3039 			 * cannot happen yet as we don't support
   3040 			 * jumbograms.  If not in monitor mode,
   3041 			 * discard the frame.
   3042 			 */
   3043 			if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   3044 				sc->sc_stats.ast_rx_toobig++;
   3045 				goto rx_next;
   3046 			}
   3047 			/* fall thru for monitor mode handling... */
   3048 		} else if (ds->ds_rxstat.rs_status != 0) {
   3049 			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
   3050 				sc->sc_stats.ast_rx_crcerr++;
   3051 			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
   3052 				sc->sc_stats.ast_rx_fifoerr++;
   3053 			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
   3054 				sc->sc_stats.ast_rx_phyerr++;
   3055 				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
   3056 				sc->sc_stats.ast_rx_phy[phyerr]++;
   3057 				goto rx_next;
   3058 			}
   3059 			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
   3060 				/*
   3061 				 * Decrypt error.  If the error occurred
   3062 				 * because there was no hardware key, then
   3063 				 * let the frame through so the upper layers
   3064 				 * can process it.  This is necessary for 5210
   3065 				 * parts which have no way to setup a ``clear''
   3066 				 * key cache entry.
   3067 				 *
   3068 				 * XXX do key cache faulting
   3069 				 */
   3070 				if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
   3071 					goto rx_accept;
   3072 				sc->sc_stats.ast_rx_badcrypt++;
   3073 			}
   3074 			if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
   3075 				sc->sc_stats.ast_rx_badmic++;
   3076 				/*
   3077 				 * Do minimal work required to hand off
   3078 				 * the 802.11 header for notifcation.
   3079 				 */
   3080 				/* XXX frag's and qos frames */
   3081 				len = ds->ds_rxstat.rs_datalen;
   3082 				if (len >= sizeof (struct ieee80211_frame)) {
   3083 					bus_dmamap_sync(sc->sc_dmat,
   3084 					    bf->bf_dmamap,
   3085 					    0, bf->bf_dmamap->dm_mapsize,
   3086 					    BUS_DMASYNC_POSTREAD);
   3087 					ieee80211_notify_michael_failure(ic,
   3088 					    mtod(m, struct ieee80211_frame *),
   3089 					    sc->sc_splitmic ?
   3090 					        ds->ds_rxstat.rs_keyix-32 :
   3091 					        ds->ds_rxstat.rs_keyix
   3092 					);
   3093 				}
   3094 			}
   3095 			ifp->if_ierrors++;
   3096 			/*
   3097 			 * Reject error frames, we normally don't want
   3098 			 * to see them in monitor mode (in monitor mode
   3099 			 * allow through packets that have crypto problems).
   3100 			 */
   3101 			if ((ds->ds_rxstat.rs_status &~
   3102 				(HAL_RXERR_DECRYPT|HAL_RXERR_MIC)) ||
   3103 			    sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
   3104 				goto rx_next;
   3105 		}
   3106 rx_accept:
   3107 		/*
   3108 		 * Sync and unmap the frame.  At this point we're
   3109 		 * committed to passing the mbuf somewhere so clear
   3110 		 * bf_m; this means a new sk_buff must be allocated
   3111 		 * when the rx descriptor is setup again to receive
   3112 		 * another frame.
   3113 		 */
   3114 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
   3115 		    0, bf->bf_dmamap->dm_mapsize,
   3116 		    BUS_DMASYNC_POSTREAD);
   3117 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   3118 		bf->bf_m = NULL;
   3119 
   3120 		m->m_pkthdr.rcvif = ifp;
   3121 		len = ds->ds_rxstat.rs_datalen;
   3122 		m->m_pkthdr.len = m->m_len = len;
   3123 
   3124 		sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
   3125 
   3126 #if NBPFILTER > 0
   3127 		if (sc->sc_drvbpf) {
   3128 			u_int8_t rix;
   3129 
   3130 			/*
   3131 			 * Discard anything shorter than an ack or cts.
   3132 			 */
   3133 			if (len < IEEE80211_ACK_LEN) {
   3134 				DPRINTF(sc, ATH_DEBUG_RECV,
   3135 					"%s: runt packet %d\n",
   3136 					__func__, len);
   3137 				sc->sc_stats.ast_rx_tooshort++;
   3138 				m_freem(m);
   3139 				goto rx_next;
   3140 			}
   3141 			rix = ds->ds_rxstat.rs_rate;
   3142 			sc->sc_rx_th.wr_tsf = htole64(
   3143 				ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf));
   3144 			sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
   3145 			sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
   3146 			sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf;
   3147 			sc->sc_rx_th.wr_antnoise = nf;
   3148 			sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
   3149 
   3150 			bpf_mtap2(sc->sc_drvbpf,
   3151 				&sc->sc_rx_th, sc->sc_rx_th_len, m);
   3152 		}
   3153 #endif
   3154 
   3155 		/*
   3156 		 * From this point on we assume the frame is at least
   3157 		 * as large as ieee80211_frame_min; verify that.
   3158 		 */
   3159 		if (len < IEEE80211_MIN_LEN) {
   3160 			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
   3161 				__func__, len);
   3162 			sc->sc_stats.ast_rx_tooshort++;
   3163 			m_freem(m);
   3164 			goto rx_next;
   3165 		}
   3166 
   3167 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
   3168 			ieee80211_dump_pkt(mtod(m, void *), len,
   3169 				   sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
   3170 				   ds->ds_rxstat.rs_rssi);
   3171 		}
   3172 
   3173 		m_adj(m, -IEEE80211_CRC_LEN);
   3174 
   3175 		/*
   3176 		 * Locate the node for sender, track state, and then
   3177 		 * pass the (referenced) node up to the 802.11 layer
   3178 		 * for its use.
   3179 		 */
   3180 		ni = ieee80211_find_rxnode_withkey(ic,
   3181 			mtod(m, const struct ieee80211_frame_min *),
   3182 			ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
   3183 				IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
   3184 		/*
   3185 		 * Track rx rssi and do any rx antenna management.
   3186 		 */
   3187 		an = ATH_NODE(ni);
   3188 		ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
   3189 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi);
   3190 		/*
   3191 		 * Send frame up for processing.
   3192 		 */
   3193 		type = ieee80211_input(ic, m, ni,
   3194 			ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
   3195 		ieee80211_free_node(ni);
   3196 		if (sc->sc_diversity) {
   3197 			/*
   3198 			 * When using fast diversity, change the default rx
   3199 			 * antenna if diversity chooses the other antenna 3
   3200 			 * times in a row.
   3201 			 */
   3202 			if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
   3203 				if (++sc->sc_rxotherant >= 3)
   3204 					ath_setdefantenna(sc,
   3205 						ds->ds_rxstat.rs_antenna);
   3206 			} else
   3207 				sc->sc_rxotherant = 0;
   3208 		}
   3209 		if (sc->sc_softled) {
   3210 			/*
   3211 			 * Blink for any data frame.  Otherwise do a
   3212 			 * heartbeat-style blink when idle.  The latter
   3213 			 * is mainly for station mode where we depend on
   3214 			 * periodic beacon frames to trigger the poll event.
   3215 			 */
   3216 			if (type == IEEE80211_FC0_TYPE_DATA) {
   3217 				sc->sc_rxrate = ds->ds_rxstat.rs_rate;
   3218 				ath_led_event(sc, ATH_LED_RX);
   3219 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
   3220 				ath_led_event(sc, ATH_LED_POLL);
   3221 		}
   3222 		/*
   3223 		 * Arrange to update the last rx timestamp only for
   3224 		 * frames from our ap when operating in station mode.
   3225 		 * This assumes the rx key is always setup when associated.
   3226 		 */
   3227 		if (ic->ic_opmode == IEEE80211_M_STA &&
   3228 		    ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID)
   3229 			ngood++;
   3230 rx_next:
   3231 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
   3232 	} while (ath_rxbuf_init(sc, bf) == 0);
   3233 
   3234 	/* rx signal state monitoring */
   3235 	ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
   3236 	if (ath_hal_radar_event(ah))
   3237 		TASK_RUN_OR_ENQUEUE(&sc->sc_radartask);
   3238 	if (ngood)
   3239 		sc->sc_lastrx = tsf;
   3240 
   3241 #ifdef __NetBSD__
   3242 	/* XXX Why isn't this necessary in FreeBSD? */
   3243 	if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
   3244 		ath_start(ifp);
   3245 #endif /* __NetBSD__ */
   3246 
   3247 	NET_UNLOCK_GIANT();		/* XXX */
   3248 #undef PA2DESC
   3249 }
   3250 
   3251 /*
   3252  * Setup a h/w transmit queue.
   3253  */
   3254 static struct ath_txq *
   3255 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
   3256 {
   3257 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   3258 	struct ath_hal *ah = sc->sc_ah;
   3259 	HAL_TXQ_INFO qi;
   3260 	int qnum;
   3261 
   3262 	memset(&qi, 0, sizeof(qi));
   3263 	qi.tqi_subtype = subtype;
   3264 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
   3265 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
   3266 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
   3267 	/*
   3268 	 * Enable interrupts only for EOL and DESC conditions.
   3269 	 * We mark tx descriptors to receive a DESC interrupt
   3270 	 * when a tx queue gets deep; otherwise waiting for the
   3271 	 * EOL to reap descriptors.  Note that this is done to
   3272 	 * reduce interrupt load and this only defers reaping
   3273 	 * descriptors, never transmitting frames.  Aside from
   3274 	 * reducing interrupts this also permits more concurrency.
   3275 	 * The only potential downside is if the tx queue backs
   3276 	 * up in which case the top half of the kernel may backup
   3277 	 * due to a lack of tx descriptors.
   3278 	 */
   3279 	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
   3280 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
   3281 	if (qnum == -1) {
   3282 		/*
   3283 		 * NB: don't print a message, this happens
   3284 		 * normally on parts with too few tx queues
   3285 		 */
   3286 		return NULL;
   3287 	}
   3288 	if (qnum >= N(sc->sc_txq)) {
   3289 		device_printf(&sc->sc_dev,
   3290 			"hal qnum %u out of range, max %zu!\n",
   3291 			qnum, N(sc->sc_txq));
   3292 		ath_hal_releasetxqueue(ah, qnum);
   3293 		return NULL;
   3294 	}
   3295 	if (!ATH_TXQ_SETUP(sc, qnum)) {
   3296 		struct ath_txq *txq = &sc->sc_txq[qnum];
   3297 
   3298 		txq->axq_qnum = qnum;
   3299 		txq->axq_depth = 0;
   3300 		txq->axq_intrcnt = 0;
   3301 		txq->axq_link = NULL;
   3302 		STAILQ_INIT(&txq->axq_q);
   3303 		ATH_TXQ_LOCK_INIT(sc, txq);
   3304 		sc->sc_txqsetup |= 1<<qnum;
   3305 	}
   3306 	return &sc->sc_txq[qnum];
   3307 #undef N
   3308 }
   3309 
   3310 /*
   3311  * Setup a hardware data transmit queue for the specified
   3312  * access control.  The hal may not support all requested
   3313  * queues in which case it will return a reference to a
   3314  * previously setup queue.  We record the mapping from ac's
   3315  * to h/w queues for use by ath_tx_start and also track
   3316  * the set of h/w queues being used to optimize work in the
   3317  * transmit interrupt handler and related routines.
   3318  */
   3319 static int
   3320 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
   3321 {
   3322 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   3323 	struct ath_txq *txq;
   3324 
   3325 	if (ac >= N(sc->sc_ac2q)) {
   3326 		device_printf(&sc->sc_dev, "AC %u out of range, max %zu!\n",
   3327 			ac, N(sc->sc_ac2q));
   3328 		return 0;
   3329 	}
   3330 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
   3331 	if (txq != NULL) {
   3332 		sc->sc_ac2q[ac] = txq;
   3333 		return 1;
   3334 	} else
   3335 		return 0;
   3336 #undef N
   3337 }
   3338 
   3339 /*
   3340  * Update WME parameters for a transmit queue.
   3341  */
   3342 static int
   3343 ath_txq_update(struct ath_softc *sc, int ac)
   3344 {
   3345 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
   3346 #define	ATH_TXOP_TO_US(v)		(v<<5)
   3347 	struct ieee80211com *ic = &sc->sc_ic;
   3348 	struct ath_txq *txq = sc->sc_ac2q[ac];
   3349 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
   3350 	struct ath_hal *ah = sc->sc_ah;
   3351 	HAL_TXQ_INFO qi;
   3352 
   3353 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
   3354 	qi.tqi_aifs = wmep->wmep_aifsn;
   3355 	qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
   3356 	qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
   3357 	qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
   3358 
   3359 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
   3360 		device_printf(&sc->sc_dev, "unable to update hardware queue "
   3361 			"parameters for %s traffic!\n",
   3362 			ieee80211_wme_acnames[ac]);
   3363 		return 0;
   3364 	} else {
   3365 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
   3366 		return 1;
   3367 	}
   3368 #undef ATH_TXOP_TO_US
   3369 #undef ATH_EXPONENT_TO_VALUE
   3370 }
   3371 
   3372 /*
   3373  * Callback from the 802.11 layer to update WME parameters.
   3374  */
   3375 static int
   3376 ath_wme_update(struct ieee80211com *ic)
   3377 {
   3378 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   3379 
   3380 	return !ath_txq_update(sc, WME_AC_BE) ||
   3381 	    !ath_txq_update(sc, WME_AC_BK) ||
   3382 	    !ath_txq_update(sc, WME_AC_VI) ||
   3383 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
   3384 }
   3385 
   3386 /*
   3387  * Reclaim resources for a setup queue.
   3388  */
   3389 static void
   3390 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
   3391 {
   3392 
   3393 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
   3394 	ATH_TXQ_LOCK_DESTROY(txq);
   3395 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
   3396 }
   3397 
   3398 /*
   3399  * Reclaim all tx queue resources.
   3400  */
   3401 static void
   3402 ath_tx_cleanup(struct ath_softc *sc)
   3403 {
   3404 	int i;
   3405 
   3406 	ATH_TXBUF_LOCK_DESTROY(sc);
   3407 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   3408 		if (ATH_TXQ_SETUP(sc, i))
   3409 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
   3410 }
   3411 
   3412 /*
   3413  * Defragment an mbuf chain, returning at most maxfrags separate
   3414  * mbufs+clusters.  If this is not possible NULL is returned and
   3415  * the original mbuf chain is left in it's present (potentially
   3416  * modified) state.  We use two techniques: collapsing consecutive
   3417  * mbufs and replacing consecutive mbufs by a cluster.
   3418  */
   3419 static struct mbuf *
   3420 ath_defrag(struct mbuf *m0, int how, int maxfrags)
   3421 {
   3422 	struct mbuf *m, *n, *n2, **prev;
   3423 	u_int curfrags;
   3424 
   3425 	/*
   3426 	 * Calculate the current number of frags.
   3427 	 */
   3428 	curfrags = 0;
   3429 	for (m = m0; m != NULL; m = m->m_next)
   3430 		curfrags++;
   3431 	/*
   3432 	 * First, try to collapse mbufs.  Note that we always collapse
   3433 	 * towards the front so we don't need to deal with moving the
   3434 	 * pkthdr.  This may be suboptimal if the first mbuf has much
   3435 	 * less data than the following.
   3436 	 */
   3437 	m = m0;
   3438 again:
   3439 	for (;;) {
   3440 		n = m->m_next;
   3441 		if (n == NULL)
   3442 			break;
   3443 		if (n->m_len < M_TRAILINGSPACE(m)) {
   3444 			memcpy(mtod(m, char *) + m->m_len, mtod(n, void *),
   3445 				n->m_len);
   3446 			m->m_len += n->m_len;
   3447 			m->m_next = n->m_next;
   3448 			m_free(n);
   3449 			if (--curfrags <= maxfrags)
   3450 				return m0;
   3451 		} else
   3452 			m = n;
   3453 	}
   3454 	KASSERT(maxfrags > 1,
   3455 		("maxfrags %u, but normal collapse failed", maxfrags));
   3456 	/*
   3457 	 * Collapse consecutive mbufs to a cluster.
   3458 	 */
   3459 	prev = &m0->m_next;		/* NB: not the first mbuf */
   3460 	while ((n = *prev) != NULL) {
   3461 		if ((n2 = n->m_next) != NULL &&
   3462 		    n->m_len + n2->m_len < MCLBYTES) {
   3463 			m = m_getcl(how, MT_DATA, 0);
   3464 			if (m == NULL)
   3465 				goto bad;
   3466 			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
   3467 			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
   3468 				n2->m_len);
   3469 			m->m_len = n->m_len + n2->m_len;
   3470 			m->m_next = n2->m_next;
   3471 			*prev = m;
   3472 			m_free(n);
   3473 			m_free(n2);
   3474 			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
   3475 				return m0;
   3476 			/*
   3477 			 * Still not there, try the normal collapse
   3478 			 * again before we allocate another cluster.
   3479 			 */
   3480 			goto again;
   3481 		}
   3482 		prev = &n->m_next;
   3483 	}
   3484 	/*
   3485 	 * No place where we can collapse to a cluster; punt.
   3486 	 * This can occur if, for example, you request 2 frags
   3487 	 * but the packet requires that both be clusters (we
   3488 	 * never reallocate the first mbuf to avoid moving the
   3489 	 * packet header).
   3490 	 */
   3491 bad:
   3492 	return NULL;
   3493 }
   3494 
   3495 /*
   3496  * Return h/w rate index for an IEEE rate (w/o basic rate bit).
   3497  */
   3498 static int
   3499 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
   3500 {
   3501 	int i;
   3502 
   3503 	for (i = 0; i < rt->rateCount; i++)
   3504 		if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
   3505 			return i;
   3506 	return 0;		/* NB: lowest rate */
   3507 }
   3508 
   3509 static void
   3510 ath_freetx(struct mbuf *m)
   3511 {
   3512 	struct mbuf *next;
   3513 
   3514 	do {
   3515 		next = m->m_nextpkt;
   3516 		m->m_nextpkt = NULL;
   3517 		m_freem(m);
   3518 	} while ((m = next) != NULL);
   3519 }
   3520 
   3521 static int
   3522 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
   3523     struct mbuf *m0)
   3524 {
   3525 	struct ieee80211com *ic = &sc->sc_ic;
   3526 	struct ath_hal *ah = sc->sc_ah;
   3527 	struct ifnet *ifp = &sc->sc_if;
   3528 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
   3529 	int i, error, iswep, ismcast, isfrag, ismrr;
   3530 	int keyix, hdrlen, pktlen, try0;
   3531 	u_int8_t rix, txrate, ctsrate;
   3532 	u_int8_t cix = 0xff;		/* NB: silence compiler */
   3533 	struct ath_desc *ds, *ds0;
   3534 	struct ath_txq *txq;
   3535 	struct ieee80211_frame *wh;
   3536 	u_int subtype, flags, ctsduration;
   3537 	HAL_PKT_TYPE atype;
   3538 	const HAL_RATE_TABLE *rt;
   3539 	HAL_BOOL shortPreamble;
   3540 	struct ath_node *an;
   3541 	struct mbuf *m;
   3542 	u_int pri;
   3543 
   3544 	wh = mtod(m0, struct ieee80211_frame *);
   3545 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
   3546 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
   3547 	isfrag = m0->m_flags & M_FRAG;
   3548 	hdrlen = ieee80211_anyhdrsize(wh);
   3549 	/*
   3550 	 * Packet length must not include any
   3551 	 * pad bytes; deduct them here.
   3552 	 */
   3553 	pktlen = m0->m_pkthdr.len - (hdrlen & 3);
   3554 
   3555 	if (iswep) {
   3556 		const struct ieee80211_cipher *cip;
   3557 		struct ieee80211_key *k;
   3558 
   3559 		/*
   3560 		 * Construct the 802.11 header+trailer for an encrypted
   3561 		 * frame. The only reason this can fail is because of an
   3562 		 * unknown or unsupported cipher/key type.
   3563 		 */
   3564 		k = ieee80211_crypto_encap(ic, ni, m0);
   3565 		if (k == NULL) {
   3566 			/*
   3567 			 * This can happen when the key is yanked after the
   3568 			 * frame was queued.  Just discard the frame; the
   3569 			 * 802.11 layer counts failures and provides
   3570 			 * debugging/diagnostics.
   3571 			 */
   3572 			ath_freetx(m0);
   3573 			return EIO;
   3574 		}
   3575 		/*
   3576 		 * Adjust the packet + header lengths for the crypto
   3577 		 * additions and calculate the h/w key index.  When
   3578 		 * a s/w mic is done the frame will have had any mic
   3579 		 * added to it prior to entry so m0->m_pkthdr.len above will
   3580 		 * account for it. Otherwise we need to add it to the
   3581 		 * packet length.
   3582 		 */
   3583 		cip = k->wk_cipher;
   3584 		hdrlen += cip->ic_header;
   3585 		pktlen += cip->ic_header + cip->ic_trailer;
   3586 		/* NB: frags always have any TKIP MIC done in s/w */
   3587 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
   3588 			pktlen += cip->ic_miclen;
   3589 		keyix = k->wk_keyix;
   3590 
   3591 		/* packet header may have moved, reset our local pointer */
   3592 		wh = mtod(m0, struct ieee80211_frame *);
   3593 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
   3594 		/*
   3595 		 * Use station key cache slot, if assigned.
   3596 		 */
   3597 		keyix = ni->ni_ucastkey.wk_keyix;
   3598 		if (keyix == IEEE80211_KEYIX_NONE)
   3599 			keyix = HAL_TXKEYIX_INVALID;
   3600 	} else
   3601 		keyix = HAL_TXKEYIX_INVALID;
   3602 
   3603 	pktlen += IEEE80211_CRC_LEN;
   3604 
   3605 	/*
   3606 	 * Load the DMA map so any coalescing is done.  This
   3607 	 * also calculates the number of descriptors we need.
   3608 	 */
   3609 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
   3610 				     BUS_DMA_NOWAIT);
   3611 	if (error == EFBIG) {
   3612 		/* XXX packet requires too many descriptors */
   3613 		bf->bf_nseg = ATH_TXDESC+1;
   3614 	} else if (error != 0) {
   3615 		sc->sc_stats.ast_tx_busdma++;
   3616 		ath_freetx(m0);
   3617 		return error;
   3618 	}
   3619 	/*
   3620 	 * Discard null packets and check for packets that
   3621 	 * require too many TX descriptors.  We try to convert
   3622 	 * the latter to a cluster.
   3623 	 */
   3624 	if (error == EFBIG) {		/* too many desc's, linearize */
   3625 		sc->sc_stats.ast_tx_linear++;
   3626 		m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
   3627 		if (m == NULL) {
   3628 			ath_freetx(m0);
   3629 			sc->sc_stats.ast_tx_nombuf++;
   3630 			return ENOMEM;
   3631 		}
   3632 		m0 = m;
   3633 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
   3634 					     BUS_DMA_NOWAIT);
   3635 		if (error != 0) {
   3636 			sc->sc_stats.ast_tx_busdma++;
   3637 			ath_freetx(m0);
   3638 			return error;
   3639 		}
   3640 		KASSERT(bf->bf_nseg <= ATH_TXDESC,
   3641 		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
   3642 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
   3643 		sc->sc_stats.ast_tx_nodata++;
   3644 		ath_freetx(m0);
   3645 		return EIO;
   3646 	}
   3647 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
   3648 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   3649             bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
   3650 	bf->bf_m = m0;
   3651 	bf->bf_node = ni;			/* NB: held reference */
   3652 
   3653 	/* setup descriptors */
   3654 	ds = bf->bf_desc;
   3655 	rt = sc->sc_currates;
   3656 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
   3657 
   3658 	/*
   3659 	 * NB: the 802.11 layer marks whether or not we should
   3660 	 * use short preamble based on the current mode and
   3661 	 * negotiated parameters.
   3662 	 */
   3663 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
   3664 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) {
   3665 		shortPreamble = AH_TRUE;
   3666 		sc->sc_stats.ast_tx_shortpre++;
   3667 	} else {
   3668 		shortPreamble = AH_FALSE;
   3669 	}
   3670 
   3671 	an = ATH_NODE(ni);
   3672 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
   3673 	ismrr = 0;				/* default no multi-rate retry*/
   3674 	/*
   3675 	 * Calculate Atheros packet type from IEEE80211 packet header,
   3676 	 * setup for rate calculations, and select h/w transmit queue.
   3677 	 */
   3678 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
   3679 	case IEEE80211_FC0_TYPE_MGT:
   3680 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   3681 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
   3682 			atype = HAL_PKT_TYPE_BEACON;
   3683 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
   3684 			atype = HAL_PKT_TYPE_PROBE_RESP;
   3685 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
   3686 			atype = HAL_PKT_TYPE_ATIM;
   3687 		else
   3688 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
   3689 		rix = sc->sc_minrateix;
   3690 		txrate = rt->info[rix].rateCode;
   3691 		if (shortPreamble)
   3692 			txrate |= rt->info[rix].shortPreamble;
   3693 		try0 = ATH_TXMGTTRY;
   3694 		/* NB: force all management frames to highest queue */
   3695 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
   3696 			/* NB: force all management frames to highest queue */
   3697 			pri = WME_AC_VO;
   3698 		} else
   3699 			pri = WME_AC_BE;
   3700 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
   3701 		break;
   3702 	case IEEE80211_FC0_TYPE_CTL:
   3703 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
   3704 		rix = sc->sc_minrateix;
   3705 		txrate = rt->info[rix].rateCode;
   3706 		if (shortPreamble)
   3707 			txrate |= rt->info[rix].shortPreamble;
   3708 		try0 = ATH_TXMGTTRY;
   3709 		/* NB: force all ctl frames to highest queue */
   3710 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
   3711 			/* NB: force all ctl frames to highest queue */
   3712 			pri = WME_AC_VO;
   3713 		} else
   3714 			pri = WME_AC_BE;
   3715 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
   3716 		break;
   3717 	case IEEE80211_FC0_TYPE_DATA:
   3718 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
   3719 		/*
   3720 		 * Data frames: multicast frames go out at a fixed rate,
   3721 		 * otherwise consult the rate control module for the
   3722 		 * rate to use.
   3723 		 */
   3724 		if (ismcast) {
   3725 			/*
   3726 			 * Check mcast rate setting in case it's changed.
   3727 			 * XXX move out of fastpath
   3728 			 */
   3729 			if (ic->ic_mcast_rate != sc->sc_mcastrate) {
   3730 				sc->sc_mcastrix =
   3731 					ath_tx_findrix(rt, ic->ic_mcast_rate);
   3732 				sc->sc_mcastrate = ic->ic_mcast_rate;
   3733 			}
   3734 			rix = sc->sc_mcastrix;
   3735 			txrate = rt->info[rix].rateCode;
   3736 			try0 = 1;
   3737 		} else {
   3738 			ath_rate_findrate(sc, an, shortPreamble, pktlen,
   3739 				&rix, &try0, &txrate);
   3740 			sc->sc_txrate = txrate;		/* for LED blinking */
   3741 			if (try0 != ATH_TXMAXTRY)
   3742 				ismrr = 1;
   3743 		}
   3744 		pri = M_WME_GETAC(m0);
   3745 		if (cap->cap_wmeParams[pri].wmep_noackPolicy)
   3746 			flags |= HAL_TXDESC_NOACK;
   3747 		break;
   3748 	default:
   3749 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
   3750 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
   3751 		/* XXX statistic */
   3752 		ath_freetx(m0);
   3753 		return EIO;
   3754 	}
   3755 	txq = sc->sc_ac2q[pri];
   3756 
   3757 	/*
   3758 	 * When servicing one or more stations in power-save mode
   3759 	 * multicast frames must be buffered until after the beacon.
   3760 	 * We use the CAB queue for that.
   3761 	 */
   3762 	if (ismcast && ic->ic_ps_sta) {
   3763 		txq = sc->sc_cabq;
   3764 		/* XXX? more bit in 802.11 frame header */
   3765 	}
   3766 
   3767 	/*
   3768 	 * Calculate miscellaneous flags.
   3769 	 */
   3770 	if (ismcast) {
   3771 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
   3772 	} else if (pktlen > ic->ic_rtsthreshold) {
   3773 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
   3774 		cix = rt->info[rix].controlRate;
   3775 		sc->sc_stats.ast_tx_rts++;
   3776 	}
   3777 	if (flags & HAL_TXDESC_NOACK)		/* NB: avoid double counting */
   3778 		sc->sc_stats.ast_tx_noack++;
   3779 
   3780 	/*
   3781 	 * If 802.11g protection is enabled, determine whether
   3782 	 * to use RTS/CTS or just CTS.  Note that this is only
   3783 	 * done for OFDM unicast frames.
   3784 	 */
   3785 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
   3786 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
   3787 	    (flags & HAL_TXDESC_NOACK) == 0) {
   3788 		/* XXX fragments must use CCK rates w/ protection */
   3789 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
   3790 			flags |= HAL_TXDESC_RTSENA;
   3791 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
   3792 			flags |= HAL_TXDESC_CTSENA;
   3793 		if (isfrag) {
   3794 			/*
   3795 			 * For frags it would be desirable to use the
   3796 			 * highest CCK rate for RTS/CTS.  But stations
   3797 			 * farther away may detect it at a lower CCK rate
   3798 			 * so use the configured protection rate instead
   3799 			 * (for now).
   3800 			 */
   3801 			cix = rt->info[sc->sc_protrix].controlRate;
   3802 		} else
   3803 			cix = rt->info[sc->sc_protrix].controlRate;
   3804 		sc->sc_stats.ast_tx_protect++;
   3805 	}
   3806 
   3807 	/*
   3808 	 * Calculate duration.  This logically belongs in the 802.11
   3809 	 * layer but it lacks sufficient information to calculate it.
   3810 	 */
   3811 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
   3812 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
   3813 		u_int16_t dur;
   3814 		/*
   3815 		 * XXX not right with fragmentation.
   3816 		 */
   3817 		if (shortPreamble)
   3818 			dur = rt->info[rix].spAckDuration;
   3819 		else
   3820 			dur = rt->info[rix].lpAckDuration;
   3821 		if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
   3822 			dur += dur;             /* additional SIFS+ACK */
   3823 			KASSERT(m0->m_nextpkt != NULL, ("no fragment"));
   3824 			/*
   3825 			 * Include the size of next fragment so NAV is
   3826 			 * updated properly.  The last fragment uses only
   3827 			 * the ACK duration
   3828 			 */
   3829 			dur += ath_hal_computetxtime(ah, rt,
   3830 					m0->m_nextpkt->m_pkthdr.len,
   3831 					rix, shortPreamble);
   3832 		}
   3833 		if (isfrag) {
   3834 			/*
   3835 			 * Force hardware to use computed duration for next
   3836 			 * fragment by disabling multi-rate retry which updates
   3837 			 * duration based on the multi-rate duration table.
   3838 			 */
   3839 			try0 = ATH_TXMAXTRY;
   3840 		}
   3841 		*(u_int16_t *)wh->i_dur = htole16(dur);
   3842 	}
   3843 
   3844 	/*
   3845 	 * Calculate RTS/CTS rate and duration if needed.
   3846 	 */
   3847 	ctsduration = 0;
   3848 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
   3849 		/*
   3850 		 * CTS transmit rate is derived from the transmit rate
   3851 		 * by looking in the h/w rate table.  We must also factor
   3852 		 * in whether or not a short preamble is to be used.
   3853 		 */
   3854 		/* NB: cix is set above where RTS/CTS is enabled */
   3855 		KASSERT(cix != 0xff, ("cix not setup"));
   3856 		ctsrate = rt->info[cix].rateCode;
   3857 		/*
   3858 		 * Compute the transmit duration based on the frame
   3859 		 * size and the size of an ACK frame.  We call into the
   3860 		 * HAL to do the computation since it depends on the
   3861 		 * characteristics of the actual PHY being used.
   3862 		 *
   3863 		 * NB: CTS is assumed the same size as an ACK so we can
   3864 		 *     use the precalculated ACK durations.
   3865 		 */
   3866 		if (shortPreamble) {
   3867 			ctsrate |= rt->info[cix].shortPreamble;
   3868 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
   3869 				ctsduration += rt->info[cix].spAckDuration;
   3870 			ctsduration += ath_hal_computetxtime(ah,
   3871 				rt, pktlen, rix, AH_TRUE);
   3872 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
   3873 				ctsduration += rt->info[rix].spAckDuration;
   3874 		} else {
   3875 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
   3876 				ctsduration += rt->info[cix].lpAckDuration;
   3877 			ctsduration += ath_hal_computetxtime(ah,
   3878 				rt, pktlen, rix, AH_FALSE);
   3879 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
   3880 				ctsduration += rt->info[rix].lpAckDuration;
   3881 		}
   3882 		/*
   3883 		 * Must disable multi-rate retry when using RTS/CTS.
   3884 		 */
   3885 		ismrr = 0;
   3886 		try0 = ATH_TXMGTTRY;		/* XXX */
   3887 	} else
   3888 		ctsrate = 0;
   3889 
   3890 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
   3891 		ieee80211_dump_pkt(mtod(m0, void *), m0->m_len,
   3892 			sc->sc_hwmap[txrate].ieeerate, -1);
   3893 #if NBPFILTER > 0
   3894 	if (ic->ic_rawbpf)
   3895 		bpf_mtap(ic->ic_rawbpf, m0);
   3896 	if (sc->sc_drvbpf) {
   3897 		u_int64_t tsf = ath_hal_gettsf64(ah);
   3898 
   3899 		sc->sc_tx_th.wt_tsf = htole64(tsf);
   3900 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
   3901 		if (iswep)
   3902 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
   3903 		if (isfrag)
   3904 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
   3905 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
   3906 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
   3907 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
   3908 
   3909 		bpf_mtap2(sc->sc_drvbpf,
   3910 			&sc->sc_tx_th, sc->sc_tx_th_len, m0);
   3911 	}
   3912 #endif
   3913 
   3914 	/*
   3915 	 * Determine if a tx interrupt should be generated for
   3916 	 * this descriptor.  We take a tx interrupt to reap
   3917 	 * descriptors when the h/w hits an EOL condition or
   3918 	 * when the descriptor is specifically marked to generate
   3919 	 * an interrupt.  We periodically mark descriptors in this
   3920 	 * way to insure timely replenishing of the supply needed
   3921 	 * for sending frames.  Defering interrupts reduces system
   3922 	 * load and potentially allows more concurrent work to be
   3923 	 * done but if done to aggressively can cause senders to
   3924 	 * backup.
   3925 	 *
   3926 	 * NB: use >= to deal with sc_txintrperiod changing
   3927 	 *     dynamically through sysctl.
   3928 	 */
   3929 	if (flags & HAL_TXDESC_INTREQ) {
   3930 		txq->axq_intrcnt = 0;
   3931 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
   3932 		flags |= HAL_TXDESC_INTREQ;
   3933 		txq->axq_intrcnt = 0;
   3934 	}
   3935 
   3936 	/*
   3937 	 * Formulate first tx descriptor with tx controls.
   3938 	 */
   3939 	/* XXX check return value? */
   3940 	ath_hal_setuptxdesc(ah, ds
   3941 		, pktlen		/* packet length */
   3942 		, hdrlen		/* header length */
   3943 		, atype			/* Atheros packet type */
   3944 		, ni->ni_txpower	/* txpower */
   3945 		, txrate, try0		/* series 0 rate/tries */
   3946 		, keyix			/* key cache index */
   3947 		, sc->sc_txantenna	/* antenna mode */
   3948 		, flags			/* flags */
   3949 		, ctsrate		/* rts/cts rate */
   3950 		, ctsduration		/* rts/cts duration */
   3951 	);
   3952 	bf->bf_flags = flags;
   3953 	/*
   3954 	 * Setup the multi-rate retry state only when we're
   3955 	 * going to use it.  This assumes ath_hal_setuptxdesc
   3956 	 * initializes the descriptors (so we don't have to)
   3957 	 * when the hardware supports multi-rate retry and
   3958 	 * we don't use it.
   3959 	 */
   3960 	if (ismrr)
   3961 		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
   3962 
   3963 	/*
   3964 	 * Fillin the remainder of the descriptor info.
   3965 	 */
   3966 	ds0 = ds;
   3967 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
   3968 		ds->ds_data = bf->bf_segs[i].ds_addr;
   3969 		if (i == bf->bf_nseg - 1)
   3970 			ds->ds_link = 0;
   3971 		else
   3972 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
   3973 		ath_hal_filltxdesc(ah, ds
   3974 			, bf->bf_segs[i].ds_len	/* segment length */
   3975 			, i == 0		/* first segment */
   3976 			, i == bf->bf_nseg - 1	/* last segment */
   3977 			, ds0			/* first descriptor */
   3978 		);
   3979 
   3980 		/* NB: The desc swap function becomes void,
   3981 		 * if descriptor swapping is not enabled
   3982 		 */
   3983 		ath_desc_swap(ds);
   3984 
   3985 		DPRINTF(sc, ATH_DEBUG_XMIT,
   3986 			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
   3987 			__func__, i, ds->ds_link, ds->ds_data,
   3988 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
   3989 	}
   3990 	/*
   3991 	 * Insert the frame on the outbound list and
   3992 	 * pass it on to the hardware.
   3993 	 */
   3994 	ATH_TXQ_LOCK(txq);
   3995 	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
   3996 	if (txq->axq_link == NULL) {
   3997 		ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
   3998 		DPRINTF(sc, ATH_DEBUG_XMIT,
   3999 		    "%s: TXDP[%u] = %" PRIx64 " (%p) depth %d\n", __func__,
   4000 		    txq->axq_qnum, (uint64_t)bf->bf_daddr, bf->bf_desc,
   4001 		    txq->axq_depth);
   4002 	} else {
   4003 		*txq->axq_link = HTOAH32(bf->bf_daddr);
   4004 		DPRINTF(sc, ATH_DEBUG_XMIT,
   4005 		    "%s: link[%u](%p)=%" PRIx64 " (%p) depth %d\n",
   4006 		    __func__, txq->axq_qnum, txq->axq_link,
   4007 		    (uint64_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
   4008 	}
   4009 	txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
   4010 	/*
   4011 	 * The CAB queue is started from the SWBA handler since
   4012 	 * frames only go out on DTIM and to avoid possible races.
   4013 	 */
   4014 	if (txq != sc->sc_cabq)
   4015 		ath_hal_txstart(ah, txq->axq_qnum);
   4016 	ATH_TXQ_UNLOCK(txq);
   4017 
   4018 	return 0;
   4019 }
   4020 
   4021 /*
   4022  * Process completed xmit descriptors from the specified queue.
   4023  */
   4024 static int
   4025 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
   4026 {
   4027 	struct ath_hal *ah = sc->sc_ah;
   4028 	struct ieee80211com *ic = &sc->sc_ic;
   4029 	struct ath_buf *bf;
   4030 	struct ath_desc *ds, *ds0;
   4031 	struct ieee80211_node *ni;
   4032 	struct ath_node *an;
   4033 	int sr, lr, pri, nacked;
   4034 	HAL_STATUS status;
   4035 
   4036 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
   4037 		__func__, txq->axq_qnum,
   4038 		(void *)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
   4039 		txq->axq_link);
   4040 	nacked = 0;
   4041 	for (;;) {
   4042 		ATH_TXQ_LOCK(txq);
   4043 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
   4044 		bf = STAILQ_FIRST(&txq->axq_q);
   4045 		if (bf == NULL) {
   4046 			txq->axq_link = NULL;
   4047 			ATH_TXQ_UNLOCK(txq);
   4048 			break;
   4049 		}
   4050 		ds0 = &bf->bf_desc[0];
   4051 		ds = &bf->bf_desc[bf->bf_nseg - 1];
   4052 		status = ath_hal_txprocdesc(ah, ds);
   4053 #ifdef AR_DEBUG
   4054 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
   4055 			ath_printtxbuf(bf, status == HAL_OK);
   4056 #endif
   4057 		if (status == HAL_EINPROGRESS) {
   4058 			ATH_TXQ_UNLOCK(txq);
   4059 			break;
   4060 		}
   4061 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
   4062 		ATH_TXQ_UNLOCK(txq);
   4063 
   4064 		ni = bf->bf_node;
   4065 		if (ni != NULL) {
   4066 			an = ATH_NODE(ni);
   4067 			if (ds->ds_txstat.ts_status == 0) {
   4068 				u_int8_t txant = ds->ds_txstat.ts_antenna;
   4069 				sc->sc_stats.ast_ant_tx[txant]++;
   4070 				sc->sc_ant_tx[txant]++;
   4071 				if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
   4072 					sc->sc_stats.ast_tx_altrate++;
   4073 				sc->sc_stats.ast_tx_rssi =
   4074 					ds->ds_txstat.ts_rssi;
   4075 				ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
   4076 					ds->ds_txstat.ts_rssi);
   4077 				pri = M_WME_GETAC(bf->bf_m);
   4078 				if (pri >= WME_AC_VO)
   4079 					ic->ic_wme.wme_hipri_traffic++;
   4080 				ni->ni_inact = ni->ni_inact_reload;
   4081 			} else {
   4082 				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
   4083 					sc->sc_stats.ast_tx_xretries++;
   4084 				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
   4085 					sc->sc_stats.ast_tx_fifoerr++;
   4086 				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
   4087 					sc->sc_stats.ast_tx_filtered++;
   4088 			}
   4089 			sr = ds->ds_txstat.ts_shortretry;
   4090 			lr = ds->ds_txstat.ts_longretry;
   4091 			sc->sc_stats.ast_tx_shortretry += sr;
   4092 			sc->sc_stats.ast_tx_longretry += lr;
   4093 			/*
   4094 			 * Hand the descriptor to the rate control algorithm.
   4095 			 */
   4096 			if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
   4097 			    (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
   4098 				/*
   4099 				 * If frame was ack'd update the last rx time
   4100 				 * used to workaround phantom bmiss interrupts.
   4101 				 */
   4102 				if (ds->ds_txstat.ts_status == 0)
   4103 					nacked++;
   4104 				ath_rate_tx_complete(sc, an, ds, ds0);
   4105 			}
   4106 			/*
   4107 			 * Reclaim reference to node.
   4108 			 *
   4109 			 * NB: the node may be reclaimed here if, for example
   4110 			 *     this is a DEAUTH message that was sent and the
   4111 			 *     node was timed out due to inactivity.
   4112 			 */
   4113 			ieee80211_free_node(ni);
   4114 		}
   4115 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   4116 		    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4117 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   4118 		m_freem(bf->bf_m);
   4119 		bf->bf_m = NULL;
   4120 		bf->bf_node = NULL;
   4121 
   4122 		ATH_TXBUF_LOCK(sc);
   4123 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   4124 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
   4125 		ATH_TXBUF_UNLOCK(sc);
   4126 	}
   4127 	return nacked;
   4128 }
   4129 
   4130 static inline int
   4131 txqactive(struct ath_hal *ah, int qnum)
   4132 {
   4133 	u_int32_t txqs = 1<<qnum;
   4134 	ath_hal_gettxintrtxqs(ah, &txqs);
   4135 	return (txqs & (1<<qnum));
   4136 }
   4137 
   4138 /*
   4139  * Deferred processing of transmit interrupt; special-cased
   4140  * for a single hardware transmit queue (e.g. 5210 and 5211).
   4141  */
   4142 static void
   4143 ath_tx_proc_q0(void *arg, int npending)
   4144 {
   4145 	struct ath_softc *sc = arg;
   4146 	struct ifnet *ifp = &sc->sc_if;
   4147 
   4148 	if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]) > 0){
   4149 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
   4150 	}
   4151 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
   4152 		ath_tx_processq(sc, sc->sc_cabq);
   4153 
   4154 	if (sc->sc_softled)
   4155 		ath_led_event(sc, ATH_LED_TX);
   4156 
   4157 	ath_start(ifp);
   4158 }
   4159 
   4160 /*
   4161  * Deferred processing of transmit interrupt; special-cased
   4162  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
   4163  */
   4164 static void
   4165 ath_tx_proc_q0123(void *arg, int npending)
   4166 {
   4167 	struct ath_softc *sc = arg;
   4168 	struct ifnet *ifp = &sc->sc_if;
   4169 	int nacked;
   4170 
   4171 	/*
   4172 	 * Process each active queue.
   4173 	 */
   4174 	nacked = 0;
   4175 	if (txqactive(sc->sc_ah, 0))
   4176 		nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
   4177 	if (txqactive(sc->sc_ah, 1))
   4178 		nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
   4179 	if (txqactive(sc->sc_ah, 2))
   4180 		nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
   4181 	if (txqactive(sc->sc_ah, 3))
   4182 		nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
   4183 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
   4184 		ath_tx_processq(sc, sc->sc_cabq);
   4185 	if (nacked) {
   4186 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
   4187 	}
   4188 
   4189 	if (sc->sc_softled)
   4190 		ath_led_event(sc, ATH_LED_TX);
   4191 
   4192 	ath_start(ifp);
   4193 }
   4194 
   4195 /*
   4196  * Deferred processing of transmit interrupt.
   4197  */
   4198 static void
   4199 ath_tx_proc(void *arg, int npending)
   4200 {
   4201 	struct ath_softc *sc = arg;
   4202 	struct ifnet *ifp = &sc->sc_if;
   4203 	int i, nacked;
   4204 
   4205 	/*
   4206 	 * Process each active queue.
   4207 	 */
   4208 	nacked = 0;
   4209 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   4210 		if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
   4211 			nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
   4212 	if (nacked) {
   4213 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
   4214 	}
   4215 
   4216 	if (sc->sc_softled)
   4217 		ath_led_event(sc, ATH_LED_TX);
   4218 
   4219 	ath_start(ifp);
   4220 }
   4221 
   4222 static void
   4223 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
   4224 {
   4225 	struct ath_hal *ah = sc->sc_ah;
   4226 	struct ieee80211_node *ni;
   4227 	struct ath_buf *bf;
   4228 
   4229 	/*
   4230 	 * NB: this assumes output has been stopped and
   4231 	 *     we do not need to block ath_tx_tasklet
   4232 	 */
   4233 	for (;;) {
   4234 		ATH_TXQ_LOCK(txq);
   4235 		bf = STAILQ_FIRST(&txq->axq_q);
   4236 		if (bf == NULL) {
   4237 			txq->axq_link = NULL;
   4238 			ATH_TXQ_UNLOCK(txq);
   4239 			break;
   4240 		}
   4241 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
   4242 		ATH_TXQ_UNLOCK(txq);
   4243 #ifdef AR_DEBUG
   4244 		if (sc->sc_debug & ATH_DEBUG_RESET)
   4245 			ath_printtxbuf(bf,
   4246 				ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
   4247 #endif /* AR_DEBUG */
   4248 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   4249 		m_freem(bf->bf_m);
   4250 		bf->bf_m = NULL;
   4251 		ni = bf->bf_node;
   4252 		bf->bf_node = NULL;
   4253 		if (ni != NULL) {
   4254 			/*
   4255 			 * Reclaim node reference.
   4256 			 */
   4257 			ieee80211_free_node(ni);
   4258 		}
   4259 		ATH_TXBUF_LOCK(sc);
   4260 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   4261 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
   4262 		ATH_TXBUF_UNLOCK(sc);
   4263 	}
   4264 }
   4265 
   4266 static void
   4267 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
   4268 {
   4269 	struct ath_hal *ah = sc->sc_ah;
   4270 
   4271 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
   4272 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
   4273 	    __func__, txq->axq_qnum,
   4274 	    (void *)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
   4275 	    txq->axq_link);
   4276 }
   4277 
   4278 /*
   4279  * Drain the transmit queues and reclaim resources.
   4280  */
   4281 static void
   4282 ath_draintxq(struct ath_softc *sc)
   4283 {
   4284 	struct ath_hal *ah = sc->sc_ah;
   4285 	int i;
   4286 
   4287 	/* XXX return value */
   4288 	if (!sc->sc_invalid) {
   4289 		/* don't touch the hardware if marked invalid */
   4290 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
   4291 		DPRINTF(sc, ATH_DEBUG_RESET,
   4292 		    "%s: beacon queue %p\n", __func__,
   4293 		    (void *)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
   4294 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   4295 			if (ATH_TXQ_SETUP(sc, i))
   4296 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
   4297 	}
   4298 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   4299 		if (ATH_TXQ_SETUP(sc, i))
   4300 			ath_tx_draintxq(sc, &sc->sc_txq[i]);
   4301 }
   4302 
   4303 /*
   4304  * Disable the receive h/w in preparation for a reset.
   4305  */
   4306 static void
   4307 ath_stoprecv(struct ath_softc *sc)
   4308 {
   4309 #define	PA2DESC(_sc, _pa) \
   4310 	((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
   4311 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
   4312 	struct ath_hal *ah = sc->sc_ah;
   4313 
   4314 	ath_hal_stoppcurecv(ah);	/* disable PCU */
   4315 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
   4316 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
   4317 	DELAY(3000);			/* 3ms is long enough for 1 frame */
   4318 #ifdef AR_DEBUG
   4319 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
   4320 		struct ath_buf *bf;
   4321 
   4322 		printf("%s: rx queue %p, link %p\n", __func__,
   4323 			(void *)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
   4324 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
   4325 			struct ath_desc *ds = bf->bf_desc;
   4326 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
   4327 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
   4328 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
   4329 				ath_printrxbuf(bf, status == HAL_OK);
   4330 		}
   4331 	}
   4332 #endif
   4333 	sc->sc_rxlink = NULL;		/* just in case */
   4334 #undef PA2DESC
   4335 }
   4336 
   4337 /*
   4338  * Enable the receive h/w following a reset.
   4339  */
   4340 static int
   4341 ath_startrecv(struct ath_softc *sc)
   4342 {
   4343 	struct ath_hal *ah = sc->sc_ah;
   4344 	struct ath_buf *bf;
   4345 
   4346 	sc->sc_rxlink = NULL;
   4347 	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
   4348 		int error = ath_rxbuf_init(sc, bf);
   4349 		if (error != 0) {
   4350 			DPRINTF(sc, ATH_DEBUG_RECV,
   4351 				"%s: ath_rxbuf_init failed %d\n",
   4352 				__func__, error);
   4353 			return error;
   4354 		}
   4355 	}
   4356 
   4357 	bf = STAILQ_FIRST(&sc->sc_rxbuf);
   4358 	ath_hal_putrxbuf(ah, bf->bf_daddr);
   4359 	ath_hal_rxena(ah);		/* enable recv descriptors */
   4360 	ath_mode_init(sc);		/* set filters, etc. */
   4361 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
   4362 	return 0;
   4363 }
   4364 
   4365 /*
   4366  * Update internal state after a channel change.
   4367  */
   4368 static void
   4369 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
   4370 {
   4371 	struct ieee80211com *ic = &sc->sc_ic;
   4372 	enum ieee80211_phymode mode;
   4373 	u_int16_t flags;
   4374 
   4375 	/*
   4376 	 * Change channels and update the h/w rate map
   4377 	 * if we're switching; e.g. 11a to 11b/g.
   4378 	 */
   4379 	mode = ieee80211_chan2mode(ic, chan);
   4380 	if (mode != sc->sc_curmode)
   4381 		ath_setcurmode(sc, mode);
   4382 	/*
   4383 	 * Update BPF state.  NB: ethereal et. al. don't handle
   4384 	 * merged flags well so pick a unique mode for their use.
   4385 	 */
   4386 	if (IEEE80211_IS_CHAN_A(chan))
   4387 		flags = IEEE80211_CHAN_A;
   4388 	/* XXX 11g schizophrenia */
   4389 	else if (IEEE80211_IS_CHAN_G(chan) ||
   4390 	    IEEE80211_IS_CHAN_PUREG(chan))
   4391 		flags = IEEE80211_CHAN_G;
   4392 	else
   4393 		flags = IEEE80211_CHAN_B;
   4394 	if (IEEE80211_IS_CHAN_T(chan))
   4395 		flags |= IEEE80211_CHAN_TURBO;
   4396 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
   4397 		htole16(chan->ic_freq);
   4398 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
   4399 		htole16(flags);
   4400 }
   4401 
   4402 /*
   4403  * Poll for a channel clear indication; this is required
   4404  * for channels requiring DFS and not previously visited
   4405  * and/or with a recent radar detection.
   4406  */
   4407 static void
   4408 ath_dfswait(void *arg)
   4409 {
   4410 	struct ath_softc *sc = arg;
   4411 	struct ath_hal *ah = sc->sc_ah;
   4412 	HAL_CHANNEL hchan;
   4413 
   4414 	ath_hal_radar_wait(ah, &hchan);
   4415 	if (hchan.privFlags & CHANNEL_INTERFERENCE) {
   4416 		if_printf(&sc->sc_if,
   4417 		    "channel %u/0x%x/0x%x has interference\n",
   4418 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
   4419 		return;
   4420 	}
   4421 	if ((hchan.privFlags & CHANNEL_DFS) == 0) {
   4422 		/* XXX should not happen */
   4423 		return;
   4424 	}
   4425 	if (hchan.privFlags & CHANNEL_DFS_CLEAR) {
   4426 		sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR;
   4427 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
   4428 		if_printf(&sc->sc_if,
   4429 		    "channel %u/0x%x/0x%x marked clear\n",
   4430 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
   4431 	} else
   4432 		callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc);
   4433 }
   4434 
   4435 /*
   4436  * Set/change channels.  If the channel is really being changed,
   4437  * it's done by reseting the chip.  To accomplish this we must
   4438  * first cleanup any pending DMA, then restart stuff after a la
   4439  * ath_init.
   4440  */
   4441 static int
   4442 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
   4443 {
   4444 	struct ath_hal *ah = sc->sc_ah;
   4445 	struct ieee80211com *ic = &sc->sc_ic;
   4446 	HAL_CHANNEL hchan;
   4447 
   4448 	/*
   4449 	 * Convert to a HAL channel description with
   4450 	 * the flags constrained to reflect the current
   4451 	 * operating mode.
   4452 	 */
   4453 	hchan.channel = chan->ic_freq;
   4454 	hchan.channelFlags = ath_chan2flags(ic, chan);
   4455 
   4456 	DPRINTF(sc, ATH_DEBUG_RESET,
   4457 	    "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
   4458 	    __func__,
   4459 	    ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
   4460 		sc->sc_curchan.channelFlags),
   4461 	    	sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
   4462 	    ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
   4463 	        hchan.channel, hchan.channelFlags);
   4464 	if (hchan.channel != sc->sc_curchan.channel ||
   4465 	    hchan.channelFlags != sc->sc_curchan.channelFlags) {
   4466 		HAL_STATUS status;
   4467 
   4468 		/*
   4469 		 * To switch channels clear any pending DMA operations;
   4470 		 * wait long enough for the RX fifo to drain, reset the
   4471 		 * hardware at the new frequency, and then re-enable
   4472 		 * the relevant bits of the h/w.
   4473 		 */
   4474 		ath_hal_intrset(ah, 0);		/* disable interrupts */
   4475 		ath_draintxq(sc);		/* clear pending tx frames */
   4476 		ath_stoprecv(sc);		/* turn off frame recv */
   4477 		if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
   4478 			if_printf(ic->ic_ifp, "%s: unable to reset "
   4479 			    "channel %u (%u MHz, flags 0x%x hal flags 0x%x)\n",
   4480 			    __func__, ieee80211_chan2ieee(ic, chan),
   4481 			    chan->ic_freq, chan->ic_flags, hchan.channelFlags);
   4482 			return EIO;
   4483 		}
   4484 		sc->sc_curchan = hchan;
   4485 		ath_update_txpow(sc);		/* update tx power state */
   4486 		ath_restore_diversity(sc);
   4487 		sc->sc_calinterval = 1;
   4488 		sc->sc_caltries = 0;
   4489 
   4490 		/*
   4491 		 * Re-enable rx framework.
   4492 		 */
   4493 		if (ath_startrecv(sc) != 0) {
   4494 			if_printf(&sc->sc_if,
   4495 				"%s: unable to restart recv logic\n", __func__);
   4496 			return EIO;
   4497 		}
   4498 
   4499 		/*
   4500 		 * Change channels and update the h/w rate map
   4501 		 * if we're switching; e.g. 11a to 11b/g.
   4502 		 */
   4503 		ic->ic_ibss_chan = chan;
   4504 		ath_chan_change(sc, chan);
   4505 
   4506 		/*
   4507 		 * Handle DFS required waiting period to determine
   4508 		 * if channel is clear of radar traffic.
   4509 		 */
   4510 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   4511 #define	DFS_AND_NOT_CLEAR(_c) \
   4512 	(((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS)
   4513 			if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) {
   4514 				if_printf(&sc->sc_if,
   4515 					"wait for DFS clear channel signal\n");
   4516 				/* XXX stop sndq */
   4517 				sc->sc_if.if_flags |= IFF_OACTIVE;
   4518 				callout_reset(&sc->sc_dfs_ch,
   4519 					2 * hz, ath_dfswait, sc);
   4520 			} else
   4521 				callout_stop(&sc->sc_dfs_ch);
   4522 #undef DFS_NOT_CLEAR
   4523 		}
   4524 
   4525 		/*
   4526 		 * Re-enable interrupts.
   4527 		 */
   4528 		ath_hal_intrset(ah, sc->sc_imask);
   4529 	}
   4530 	return 0;
   4531 }
   4532 
   4533 static void
   4534 ath_next_scan(void *arg)
   4535 {
   4536 	struct ath_softc *sc = arg;
   4537 	struct ieee80211com *ic = &sc->sc_ic;
   4538 	int s;
   4539 
   4540 	/* don't call ath_start w/o network interrupts blocked */
   4541 	s = splnet();
   4542 
   4543 	if (ic->ic_state == IEEE80211_S_SCAN)
   4544 		ieee80211_next_scan(ic);
   4545 	splx(s);
   4546 }
   4547 
   4548 /*
   4549  * Periodically recalibrate the PHY to account
   4550  * for temperature/environment changes.
   4551  */
   4552 static void
   4553 ath_calibrate(void *arg)
   4554 {
   4555 	struct ath_softc *sc = arg;
   4556 	struct ath_hal *ah = sc->sc_ah;
   4557 	HAL_BOOL iqCalDone;
   4558 
   4559 	sc->sc_stats.ast_per_cal++;
   4560 
   4561 	ATH_LOCK(sc);
   4562 
   4563 	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
   4564 		/*
   4565 		 * Rfgain is out of bounds, reset the chip
   4566 		 * to load new gain values.
   4567 		 */
   4568 		DPRINTF(sc, ATH_DEBUG_CALIBRATE,
   4569 			"%s: rfgain change\n", __func__);
   4570 		sc->sc_stats.ast_per_rfgain++;
   4571 		ath_reset(&sc->sc_if);
   4572 	}
   4573 	if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
   4574 		DPRINTF(sc, ATH_DEBUG_ANY,
   4575 			"%s: calibration of channel %u failed\n",
   4576 			__func__, sc->sc_curchan.channel);
   4577 		sc->sc_stats.ast_per_calfail++;
   4578 	}
   4579 	/*
   4580 	 * Calibrate noise floor data again in case of change.
   4581 	 */
   4582 	ath_hal_process_noisefloor(ah);
   4583 	/*
   4584 	 * Poll more frequently when the IQ calibration is in
   4585 	 * progress to speedup loading the final settings.
   4586 	 * We temper this aggressive polling with an exponential
   4587 	 * back off after 4 tries up to ath_calinterval.
   4588 	 */
   4589 	if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
   4590 		sc->sc_caltries = 0;
   4591 		sc->sc_calinterval = ath_calinterval;
   4592 	} else if (sc->sc_caltries > 4) {
   4593 		sc->sc_caltries = 0;
   4594 		sc->sc_calinterval <<= 1;
   4595 		if (sc->sc_calinterval > ath_calinterval)
   4596 			sc->sc_calinterval = ath_calinterval;
   4597 	}
   4598 	KASSERT(0 < sc->sc_calinterval && sc->sc_calinterval <= ath_calinterval,
   4599 		("bad calibration interval %u", sc->sc_calinterval));
   4600 
   4601 	DPRINTF(sc, ATH_DEBUG_CALIBRATE,
   4602 		"%s: next +%u (%siqCalDone tries %u)\n", __func__,
   4603 		sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
   4604 	sc->sc_caltries++;
   4605 	callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
   4606 		ath_calibrate, sc);
   4607 	ATH_UNLOCK(sc);
   4608 }
   4609 
   4610 static int
   4611 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
   4612 {
   4613 	struct ifnet *ifp = ic->ic_ifp;
   4614 	struct ath_softc *sc = ifp->if_softc;
   4615 	struct ath_hal *ah = sc->sc_ah;
   4616 	struct ieee80211_node *ni;
   4617 	int i, error;
   4618 	const u_int8_t *bssid;
   4619 	u_int32_t rfilt;
   4620 	static const HAL_LED_STATE leds[] = {
   4621 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
   4622 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
   4623 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
   4624 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
   4625 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
   4626 	};
   4627 
   4628 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
   4629 		ieee80211_state_name[ic->ic_state],
   4630 		ieee80211_state_name[nstate]);
   4631 
   4632 	callout_stop(&sc->sc_scan_ch);
   4633 	callout_stop(&sc->sc_cal_ch);
   4634 	callout_stop(&sc->sc_dfs_ch);
   4635 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
   4636 
   4637 	if (nstate == IEEE80211_S_INIT) {
   4638 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
   4639 		/*
   4640 		 * NB: disable interrupts so we don't rx frames.
   4641 		 */
   4642 		ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
   4643 		/*
   4644 		 * Notify the rate control algorithm.
   4645 		 */
   4646 		ath_rate_newstate(sc, nstate);
   4647 		goto done;
   4648 	}
   4649 	ni = ic->ic_bss;
   4650 	error = ath_chan_set(sc, ic->ic_curchan);
   4651 	if (error != 0)
   4652 		goto bad;
   4653 	rfilt = ath_calcrxfilter(sc, nstate);
   4654 	if (nstate == IEEE80211_S_SCAN)
   4655 		bssid = ifp->if_broadcastaddr;
   4656 	else
   4657 		bssid = ni->ni_bssid;
   4658 	ath_hal_setrxfilter(ah, rfilt);
   4659 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
   4660 		 __func__, rfilt, ether_sprintf(bssid));
   4661 
   4662 	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
   4663 		ath_hal_setassocid(ah, bssid, ni->ni_associd);
   4664 	else
   4665 		ath_hal_setassocid(ah, bssid, 0);
   4666 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
   4667 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
   4668 			if (ath_hal_keyisvalid(ah, i))
   4669 				ath_hal_keysetmac(ah, i, bssid);
   4670 	}
   4671 
   4672 	/*
   4673 	 * Notify the rate control algorithm so rates
   4674 	 * are setup should ath_beacon_alloc be called.
   4675 	 */
   4676 	ath_rate_newstate(sc, nstate);
   4677 
   4678 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
   4679 		/* nothing to do */;
   4680 	} else if (nstate == IEEE80211_S_RUN) {
   4681 		DPRINTF(sc, ATH_DEBUG_STATE,
   4682 			"%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
   4683 			"capinfo=0x%04x chan=%d\n"
   4684 			 , __func__
   4685 			 , ic->ic_flags
   4686 			 , ni->ni_intval
   4687 			 , ether_sprintf(ni->ni_bssid)
   4688 			 , ni->ni_capinfo
   4689 			 , ieee80211_chan2ieee(ic, ic->ic_curchan));
   4690 
   4691 		switch (ic->ic_opmode) {
   4692 		case IEEE80211_M_HOSTAP:
   4693 		case IEEE80211_M_IBSS:
   4694 			/*
   4695 			 * Allocate and setup the beacon frame.
   4696 			 *
   4697 			 * Stop any previous beacon DMA.  This may be
   4698 			 * necessary, for example, when an ibss merge
   4699 			 * causes reconfiguration; there will be a state
   4700 			 * transition from RUN->RUN that means we may
   4701 			 * be called with beacon transmission active.
   4702 			 */
   4703 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
   4704 			ath_beacon_free(sc);
   4705 			error = ath_beacon_alloc(sc, ni);
   4706 			if (error != 0)
   4707 				goto bad;
   4708 			/*
   4709 			 * If joining an adhoc network defer beacon timer
   4710 			 * configuration to the next beacon frame so we
   4711 			 * have a current TSF to use.  Otherwise we're
   4712 			 * starting an ibss/bss so there's no need to delay.
   4713 			 */
   4714 			if (ic->ic_opmode == IEEE80211_M_IBSS &&
   4715 			    ic->ic_bss->ni_tstamp.tsf != 0)
   4716 				sc->sc_syncbeacon = 1;
   4717 			else
   4718 				ath_beacon_config(sc);
   4719 			break;
   4720 		case IEEE80211_M_STA:
   4721 			/*
   4722 			 * Allocate a key cache slot to the station.
   4723 			 */
   4724 			if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
   4725 			    sc->sc_hasclrkey &&
   4726 			    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
   4727 				ath_setup_stationkey(ni);
   4728 			/*
   4729 			 * Defer beacon timer configuration to the next
   4730 			 * beacon frame so we have a current TSF to use
   4731 			 * (any TSF collected when scanning is likely old).
   4732 			 */
   4733 			sc->sc_syncbeacon = 1;
   4734 			break;
   4735 		default:
   4736 			break;
   4737 		}
   4738 		/*
   4739 		 * Let the hal process statistics collected during a
   4740 		 * scan so it can provide calibrated noise floor data.
   4741 		 */
   4742 		ath_hal_process_noisefloor(ah);
   4743 		/*
   4744 		 * Reset rssi stats; maybe not the best place...
   4745 		 */
   4746 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
   4747 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
   4748 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
   4749 	} else {
   4750 		ath_hal_intrset(ah,
   4751 			sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
   4752 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
   4753 	}
   4754 done:
   4755 	/*
   4756 	 * Invoke the parent method to complete the work.
   4757 	 */
   4758 	error = sc->sc_newstate(ic, nstate, arg);
   4759 	/*
   4760 	 * Finally, start any timers.
   4761 	 */
   4762 	if (nstate == IEEE80211_S_RUN) {
   4763 		/* start periodic recalibration timer */
   4764 		callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
   4765 			ath_calibrate, sc);
   4766 	} else if (nstate == IEEE80211_S_SCAN) {
   4767 		/* start ap/neighbor scan timer */
   4768 		callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
   4769 			ath_next_scan, sc);
   4770 	}
   4771 bad:
   4772 	return error;
   4773 }
   4774 
   4775 /*
   4776  * Allocate a key cache slot to the station so we can
   4777  * setup a mapping from key index to node. The key cache
   4778  * slot is needed for managing antenna state and for
   4779  * compression when stations do not use crypto.  We do
   4780  * it uniliaterally here; if crypto is employed this slot
   4781  * will be reassigned.
   4782  */
   4783 static void
   4784 ath_setup_stationkey(struct ieee80211_node *ni)
   4785 {
   4786 	struct ieee80211com *ic = ni->ni_ic;
   4787 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   4788 	ieee80211_keyix keyix, rxkeyix;
   4789 
   4790 	if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
   4791 		/*
   4792 		 * Key cache is full; we'll fall back to doing
   4793 		 * the more expensive lookup in software.  Note
   4794 		 * this also means no h/w compression.
   4795 		 */
   4796 		/* XXX msg+statistic */
   4797 	} else {
   4798 		/* XXX locking? */
   4799 		ni->ni_ucastkey.wk_keyix = keyix;
   4800 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
   4801 		/* NB: this will create a pass-thru key entry */
   4802 		ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
   4803 	}
   4804 }
   4805 
   4806 /*
   4807  * Setup driver-specific state for a newly associated node.
   4808  * Note that we're called also on a re-associate, the isnew
   4809  * param tells us if this is the first time or not.
   4810  */
   4811 static void
   4812 ath_newassoc(struct ieee80211_node *ni, int isnew)
   4813 {
   4814 	struct ieee80211com *ic = ni->ni_ic;
   4815 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   4816 
   4817 	ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
   4818 	if (isnew &&
   4819 	    (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
   4820 		KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
   4821 		    ("new assoc with a unicast key already setup (keyix %u)",
   4822 		    ni->ni_ucastkey.wk_keyix));
   4823 		ath_setup_stationkey(ni);
   4824 	}
   4825 }
   4826 
   4827 static int
   4828 ath_getchannels(struct ath_softc *sc, u_int cc,
   4829 	HAL_BOOL outdoor, HAL_BOOL xchanmode)
   4830 {
   4831 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
   4832 	struct ieee80211com *ic = &sc->sc_ic;
   4833 	struct ifnet *ifp = &sc->sc_if;
   4834 	struct ath_hal *ah = sc->sc_ah;
   4835 	HAL_CHANNEL *chans;
   4836 	int i, ix, nchan;
   4837 
   4838 	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
   4839 			M_TEMP, M_NOWAIT);
   4840 	if (chans == NULL) {
   4841 		if_printf(ifp, "unable to allocate channel table\n");
   4842 		return ENOMEM;
   4843 	}
   4844 	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
   4845 	    NULL, 0, NULL,
   4846 	    cc, HAL_MODE_ALL, outdoor, xchanmode)) {
   4847 		u_int32_t rd;
   4848 
   4849 		(void)ath_hal_getregdomain(ah, &rd);
   4850 		if_printf(ifp, "unable to collect channel list from hal; "
   4851 			"regdomain likely %u country code %u\n", rd, cc);
   4852 		free(chans, M_TEMP);
   4853 		return EINVAL;
   4854 	}
   4855 
   4856 	/*
   4857 	 * Convert HAL channels to ieee80211 ones and insert
   4858 	 * them in the table according to their channel number.
   4859 	 */
   4860 	for (i = 0; i < nchan; i++) {
   4861 		HAL_CHANNEL *c = &chans[i];
   4862 		u_int16_t flags;
   4863 
   4864 		ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags);
   4865 		if (ix > IEEE80211_CHAN_MAX) {
   4866 			if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n",
   4867 				ix, c->channel, c->channelFlags);
   4868 			continue;
   4869 		}
   4870 		if (ix < 0) {
   4871 			/* XXX can't handle stuff <2400 right now */
   4872 			if (bootverbose)
   4873 				if_printf(ifp, "hal channel %d (%u/%x) "
   4874 				    "cannot be handled; ignored\n",
   4875 				    ix, c->channel, c->channelFlags);
   4876 			continue;
   4877 		}
   4878 		/*
   4879 		 * Calculate net80211 flags; most are compatible
   4880 		 * but some need massaging.  Note the static turbo
   4881 		 * conversion can be removed once net80211 is updated
   4882 		 * to understand static vs. dynamic turbo.
   4883 		 */
   4884 		flags = c->channelFlags & COMPAT;
   4885 		if (c->channelFlags & CHANNEL_STURBO)
   4886 			flags |= IEEE80211_CHAN_TURBO;
   4887 		if (ic->ic_channels[ix].ic_freq == 0) {
   4888 			ic->ic_channels[ix].ic_freq = c->channel;
   4889 			ic->ic_channels[ix].ic_flags = flags;
   4890 		} else {
   4891 			/* channels overlap; e.g. 11g and 11b */
   4892 			ic->ic_channels[ix].ic_flags |= flags;
   4893 		}
   4894 	}
   4895 	free(chans, M_TEMP);
   4896 	return 0;
   4897 #undef COMPAT
   4898 }
   4899 
   4900 static void
   4901 ath_led_done(void *arg)
   4902 {
   4903 	struct ath_softc *sc = arg;
   4904 
   4905 	sc->sc_blinking = 0;
   4906 }
   4907 
   4908 /*
   4909  * Turn the LED off: flip the pin and then set a timer so no
   4910  * update will happen for the specified duration.
   4911  */
   4912 static void
   4913 ath_led_off(void *arg)
   4914 {
   4915 	struct ath_softc *sc = arg;
   4916 
   4917 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
   4918 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
   4919 }
   4920 
   4921 /*
   4922  * Blink the LED according to the specified on/off times.
   4923  */
   4924 static void
   4925 ath_led_blink(struct ath_softc *sc, int on, int off)
   4926 {
   4927 	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
   4928 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
   4929 	sc->sc_blinking = 1;
   4930 	sc->sc_ledoff = off;
   4931 	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
   4932 }
   4933 
   4934 static void
   4935 ath_led_event(struct ath_softc *sc, int event)
   4936 {
   4937 
   4938 	sc->sc_ledevent = ticks;	/* time of last event */
   4939 	if (sc->sc_blinking)		/* don't interrupt active blink */
   4940 		return;
   4941 	switch (event) {
   4942 	case ATH_LED_POLL:
   4943 		ath_led_blink(sc, sc->sc_hwmap[0].ledon,
   4944 			sc->sc_hwmap[0].ledoff);
   4945 		break;
   4946 	case ATH_LED_TX:
   4947 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
   4948 			sc->sc_hwmap[sc->sc_txrate].ledoff);
   4949 		break;
   4950 	case ATH_LED_RX:
   4951 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
   4952 			sc->sc_hwmap[sc->sc_rxrate].ledoff);
   4953 		break;
   4954 	}
   4955 }
   4956 
   4957 static void
   4958 ath_update_txpow(struct ath_softc *sc)
   4959 {
   4960 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
   4961 	struct ieee80211com *ic = &sc->sc_ic;
   4962 	struct ath_hal *ah = sc->sc_ah;
   4963 	u_int32_t txpow;
   4964 
   4965 	if (sc->sc_curtxpow != ic->ic_txpowlimit) {
   4966 		ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
   4967 		/* read back in case value is clamped */
   4968 		(void)ath_hal_gettxpowlimit(ah, &txpow);
   4969 		ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
   4970 	}
   4971 	/*
   4972 	 * Fetch max tx power level for status requests.
   4973 	 */
   4974 	(void)ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
   4975 	ic->ic_bss->ni_txpower = txpow;
   4976 }
   4977 
   4978 static void
   4979 rate_setup(struct ath_softc *sc,
   4980 	const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs)
   4981 {
   4982 	int i, maxrates;
   4983 
   4984 	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
   4985 		DPRINTF(sc, ATH_DEBUG_ANY,
   4986 			"%s: rate table too small (%u > %u)\n",
   4987 		       __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
   4988 		maxrates = IEEE80211_RATE_MAXSIZE;
   4989 	} else
   4990 		maxrates = rt->rateCount;
   4991 	for (i = 0; i < maxrates; i++)
   4992 		rs->rs_rates[i] = rt->info[i].dot11Rate;
   4993 	rs->rs_nrates = maxrates;
   4994 }
   4995 
   4996 static int
   4997 ath_rate_setup(struct ath_softc *sc, u_int mode)
   4998 {
   4999 	struct ath_hal *ah = sc->sc_ah;
   5000 	struct ieee80211com *ic = &sc->sc_ic;
   5001 	const HAL_RATE_TABLE *rt;
   5002 
   5003 	switch (mode) {
   5004 	case IEEE80211_MODE_11A:
   5005 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
   5006 		break;
   5007 	case IEEE80211_MODE_11B:
   5008 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
   5009 		break;
   5010 	case IEEE80211_MODE_11G:
   5011 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
   5012 		break;
   5013 	case IEEE80211_MODE_TURBO_A:
   5014 		/* XXX until static/dynamic turbo is fixed */
   5015 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
   5016 		break;
   5017 	case IEEE80211_MODE_TURBO_G:
   5018 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
   5019 		break;
   5020 	default:
   5021 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
   5022 			__func__, mode);
   5023 		return 0;
   5024 	}
   5025 	sc->sc_rates[mode] = rt;
   5026 	if (rt != NULL) {
   5027 		rate_setup(sc, rt, &ic->ic_sup_rates[mode]);
   5028 		return 1;
   5029 	} else
   5030 		return 0;
   5031 }
   5032 
   5033 static void
   5034 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
   5035 {
   5036 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   5037 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
   5038 	static const struct {
   5039 		u_int		rate;		/* tx/rx 802.11 rate */
   5040 		u_int16_t	timeOn;		/* LED on time (ms) */
   5041 		u_int16_t	timeOff;	/* LED off time (ms) */
   5042 	} blinkrates[] = {
   5043 		{ 108,  40,  10 },
   5044 		{  96,  44,  11 },
   5045 		{  72,  50,  13 },
   5046 		{  48,  57,  14 },
   5047 		{  36,  67,  16 },
   5048 		{  24,  80,  20 },
   5049 		{  22, 100,  25 },
   5050 		{  18, 133,  34 },
   5051 		{  12, 160,  40 },
   5052 		{  10, 200,  50 },
   5053 		{   6, 240,  58 },
   5054 		{   4, 267,  66 },
   5055 		{   2, 400, 100 },
   5056 		{   0, 500, 130 },
   5057 	};
   5058 	const HAL_RATE_TABLE *rt;
   5059 	int i, j;
   5060 
   5061 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
   5062 	rt = sc->sc_rates[mode];
   5063 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
   5064 	for (i = 0; i < rt->rateCount; i++)
   5065 		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
   5066 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
   5067 	for (i = 0; i < 32; i++) {
   5068 		u_int8_t ix = rt->rateCodeToIndex[i];
   5069 		if (ix == 0xff) {
   5070 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
   5071 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
   5072 			continue;
   5073 		}
   5074 		sc->sc_hwmap[i].ieeerate =
   5075 			rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
   5076 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
   5077 		if (rt->info[ix].shortPreamble ||
   5078 		    rt->info[ix].phy == IEEE80211_T_OFDM)
   5079 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
   5080 		/* NB: receive frames include FCS */
   5081 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
   5082 			IEEE80211_RADIOTAP_F_FCS;
   5083 		/* setup blink rate table to avoid per-packet lookup */
   5084 		for (j = 0; j < N(blinkrates)-1; j++)
   5085 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
   5086 				break;
   5087 		/* NB: this uses the last entry if the rate isn't found */
   5088 		/* XXX beware of overlow */
   5089 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
   5090 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
   5091 	}
   5092 	sc->sc_currates = rt;
   5093 	sc->sc_curmode = mode;
   5094 	/*
   5095 	 * All protection frames are transmited at 2Mb/s for
   5096 	 * 11g, otherwise at 1Mb/s.
   5097 	 */
   5098 	if (mode == IEEE80211_MODE_11G)
   5099 		sc->sc_protrix = ath_tx_findrix(rt, 2*2);
   5100 	else
   5101 		sc->sc_protrix = ath_tx_findrix(rt, 2*1);
   5102 	/* rate index used to send management frames */
   5103 	sc->sc_minrateix = 0;
   5104 	/*
   5105 	 * Setup multicast rate state.
   5106 	 */
   5107 	/* XXX layering violation */
   5108 	sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate);
   5109 	sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate;
   5110 	/* NB: caller is responsible for reseting rate control state */
   5111 #undef N
   5112 }
   5113 
   5114 #ifdef AR_DEBUG
   5115 static void
   5116 ath_printrxbuf(struct ath_buf *bf, int done)
   5117 {
   5118 	struct ath_desc *ds;
   5119 	int i;
   5120 
   5121 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
   5122 		printf("R%d (%p %" PRIx64
   5123 		    ") %08x %08x %08x %08x %08x %08x %c\n", i, ds,
   5124 		    (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
   5125 		    ds->ds_link, ds->ds_data,
   5126 		    ds->ds_ctl0, ds->ds_ctl1,
   5127 		    ds->ds_hw[0], ds->ds_hw[1],
   5128 		    !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
   5129 	}
   5130 }
   5131 
   5132 static void
   5133 ath_printtxbuf(struct ath_buf *bf, int done)
   5134 {
   5135 	struct ath_desc *ds;
   5136 	int i;
   5137 
   5138 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
   5139 		printf("T%d (%p %" PRIx64
   5140 		    ") %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
   5141 		    i, ds,
   5142 		    (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
   5143 		    ds->ds_link, ds->ds_data,
   5144 		    ds->ds_ctl0, ds->ds_ctl1,
   5145 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
   5146 		    !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
   5147 	}
   5148 }
   5149 #endif /* AR_DEBUG */
   5150 
   5151 static void
   5152 ath_watchdog(struct ifnet *ifp)
   5153 {
   5154 	struct ath_softc *sc = ifp->if_softc;
   5155 	struct ieee80211com *ic = &sc->sc_ic;
   5156 	struct ath_txq *axq;
   5157 	int i;
   5158 
   5159 	ifp->if_timer = 0;
   5160 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
   5161 		return;
   5162 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
   5163 		if (!ATH_TXQ_SETUP(sc, i))
   5164 			continue;
   5165 		axq = &sc->sc_txq[i];
   5166 		ATH_TXQ_LOCK(axq);
   5167 		if (axq->axq_timer == 0)
   5168 			;
   5169 		else if (--axq->axq_timer == 0) {
   5170 			ATH_TXQ_UNLOCK(axq);
   5171 			if_printf(ifp, "device timeout (txq %d)\n", i);
   5172 			ath_reset(ifp);
   5173 			ifp->if_oerrors++;
   5174 			sc->sc_stats.ast_watchdog++;
   5175 			break;
   5176 		} else
   5177 			ifp->if_timer = 1;
   5178 		ATH_TXQ_UNLOCK(axq);
   5179 	}
   5180 	ieee80211_watchdog(ic);
   5181 }
   5182 
   5183 /*
   5184  * Diagnostic interface to the HAL.  This is used by various
   5185  * tools to do things like retrieve register contents for
   5186  * debugging.  The mechanism is intentionally opaque so that
   5187  * it can change frequently w/o concern for compatiblity.
   5188  */
   5189 static int
   5190 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
   5191 {
   5192 	struct ath_hal *ah = sc->sc_ah;
   5193 	u_int id = ad->ad_id & ATH_DIAG_ID;
   5194 	void *indata = NULL;
   5195 	void *outdata = NULL;
   5196 	u_int32_t insize = ad->ad_in_size;
   5197 	u_int32_t outsize = ad->ad_out_size;
   5198 	int error = 0;
   5199 
   5200 	if (ad->ad_id & ATH_DIAG_IN) {
   5201 		/*
   5202 		 * Copy in data.
   5203 		 */
   5204 		indata = malloc(insize, M_TEMP, M_NOWAIT);
   5205 		if (indata == NULL) {
   5206 			error = ENOMEM;
   5207 			goto bad;
   5208 		}
   5209 		error = copyin(ad->ad_in_data, indata, insize);
   5210 		if (error)
   5211 			goto bad;
   5212 	}
   5213 	if (ad->ad_id & ATH_DIAG_DYN) {
   5214 		/*
   5215 		 * Allocate a buffer for the results (otherwise the HAL
   5216 		 * returns a pointer to a buffer where we can read the
   5217 		 * results).  Note that we depend on the HAL leaving this
   5218 		 * pointer for us to use below in reclaiming the buffer;
   5219 		 * may want to be more defensive.
   5220 		 */
   5221 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
   5222 		if (outdata == NULL) {
   5223 			error = ENOMEM;
   5224 			goto bad;
   5225 		}
   5226 	}
   5227 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
   5228 		if (outsize < ad->ad_out_size)
   5229 			ad->ad_out_size = outsize;
   5230 		if (outdata != NULL)
   5231 			error = copyout(outdata, ad->ad_out_data,
   5232 					ad->ad_out_size);
   5233 	} else {
   5234 		error = EINVAL;
   5235 	}
   5236 bad:
   5237 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
   5238 		free(indata, M_TEMP);
   5239 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
   5240 		free(outdata, M_TEMP);
   5241 	return error;
   5242 }
   5243 
   5244 static int
   5245 ath_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   5246 {
   5247 #define	IS_RUNNING(ifp) \
   5248 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
   5249 	struct ath_softc *sc = ifp->if_softc;
   5250 	struct ieee80211com *ic = &sc->sc_ic;
   5251 	struct ifreq *ifr = (struct ifreq *)data;
   5252 	int error = 0;
   5253 
   5254 	ATH_LOCK(sc);
   5255 	switch (cmd) {
   5256 	case SIOCSIFFLAGS:
   5257 		if (IS_RUNNING(ifp)) {
   5258 			/*
   5259 			 * To avoid rescanning another access point,
   5260 			 * do not call ath_init() here.  Instead,
   5261 			 * only reflect promisc mode settings.
   5262 			 */
   5263 			ath_mode_init(sc);
   5264 		} else if (ifp->if_flags & IFF_UP) {
   5265 			/*
   5266 			 * Beware of being called during attach/detach
   5267 			 * to reset promiscuous mode.  In that case we
   5268 			 * will still be marked UP but not RUNNING.
   5269 			 * However trying to re-init the interface
   5270 			 * is the wrong thing to do as we've already
   5271 			 * torn down much of our state.  There's
   5272 			 * probably a better way to deal with this.
   5273 			 */
   5274 			if (!sc->sc_invalid && ic->ic_bss != NULL)
   5275 				ath_init(sc);	/* XXX lose error */
   5276 		} else
   5277 			ath_stop_locked(ifp, 1);
   5278 		break;
   5279 	case SIOCADDMULTI:
   5280 	case SIOCDELMULTI:
   5281 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
   5282 			if (ifp->if_flags & IFF_RUNNING)
   5283 				ath_mode_init(sc);
   5284 			error = 0;
   5285 		}
   5286 		break;
   5287 	case SIOCGATHSTATS:
   5288 		/* NB: embed these numbers to get a consistent view */
   5289 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
   5290 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
   5291 		sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
   5292 		ATH_UNLOCK(sc);
   5293 		/*
   5294 		 * NB: Drop the softc lock in case of a page fault;
   5295 		 * we'll accept any potential inconsisentcy in the
   5296 		 * statistics.  The alternative is to copy the data
   5297 		 * to a local structure.
   5298 		 */
   5299 		return copyout(&sc->sc_stats,
   5300 				ifr->ifr_data, sizeof (sc->sc_stats));
   5301 	case SIOCGATHDIAG:
   5302 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
   5303 		break;
   5304 	default:
   5305 		error = ieee80211_ioctl(ic, cmd, data);
   5306 		if (error == ENETRESET) {
   5307 			if (IS_RUNNING(ifp) &&
   5308 			    ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
   5309 				ath_init(sc);	/* XXX lose error */
   5310 			error = 0;
   5311 		}
   5312 		if (error == ERESTART)
   5313 			error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0;
   5314 		break;
   5315 	}
   5316 	ATH_UNLOCK(sc);
   5317 	return error;
   5318 #undef IS_RUNNING
   5319 }
   5320 
   5321 #if NBPFILTER > 0
   5322 static void
   5323 ath_bpfattach(struct ath_softc *sc)
   5324 {
   5325 	struct ifnet *ifp = &sc->sc_if;
   5326 
   5327 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
   5328 		sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
   5329 		&sc->sc_drvbpf);
   5330 	/*
   5331 	 * Initialize constant fields.
   5332 	 * XXX make header lengths a multiple of 32-bits so subsequent
   5333 	 *     headers are properly aligned; this is a kludge to keep
   5334 	 *     certain applications happy.
   5335 	 *
   5336 	 * NB: the channel is setup each time we transition to the
   5337 	 *     RUN state to avoid filling it in for each frame.
   5338 	 */
   5339 	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
   5340 	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
   5341 	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
   5342 
   5343 	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
   5344 	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
   5345 	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
   5346 }
   5347 #endif
   5348 
   5349 /*
   5350  * Announce various information on device/driver attach.
   5351  */
   5352 static void
   5353 ath_announce(struct ath_softc *sc)
   5354 {
   5355 #define	HAL_MODE_DUALBAND	(HAL_MODE_11A|HAL_MODE_11B)
   5356 	struct ifnet *ifp = &sc->sc_if;
   5357 	struct ath_hal *ah = sc->sc_ah;
   5358 	u_int modes, cc;
   5359 
   5360 	if_printf(ifp, "mac %d.%d phy %d.%d",
   5361 		ah->ah_macVersion, ah->ah_macRev,
   5362 		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
   5363 	/*
   5364 	 * Print radio revision(s).  We check the wireless modes
   5365 	 * to avoid falsely printing revs for inoperable parts.
   5366 	 * Dual-band radio revs are returned in the 5 GHz rev number.
   5367 	 */
   5368 	ath_hal_getcountrycode(ah, &cc);
   5369 	modes = ath_hal_getwirelessmodes(ah, cc);
   5370 	if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
   5371 		if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
   5372 			printf(" 5 GHz radio %d.%d 2 GHz radio %d.%d",
   5373 				ah->ah_analog5GhzRev >> 4,
   5374 				ah->ah_analog5GhzRev & 0xf,
   5375 				ah->ah_analog2GhzRev >> 4,
   5376 				ah->ah_analog2GhzRev & 0xf);
   5377 		else
   5378 			printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
   5379 				ah->ah_analog5GhzRev & 0xf);
   5380 	} else
   5381 		printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
   5382 			ah->ah_analog5GhzRev & 0xf);
   5383 	printf("\n");
   5384 	if (bootverbose) {
   5385 		int i;
   5386 		for (i = 0; i <= WME_AC_VO; i++) {
   5387 			struct ath_txq *txq = sc->sc_ac2q[i];
   5388 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
   5389 				txq->axq_qnum, ieee80211_wme_acnames[i]);
   5390 		}
   5391 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
   5392 			sc->sc_cabq->axq_qnum);
   5393 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
   5394 	}
   5395 	if (ath_rxbuf != ATH_RXBUF)
   5396 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
   5397 	if (ath_txbuf != ATH_TXBUF)
   5398 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
   5399 #undef HAL_MODE_DUALBAND
   5400 }
   5401