ath.c revision 1.93.2.1 1 /* $NetBSD: ath.c,v 1.93.2.1 2008/01/02 21:54:07 bouyer Exp $ */
2
3 /*-
4 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15 * redistribution must be conditioned upon including a substantially
16 * similar Disclaimer requirement for further binary redistribution.
17 * 3. Neither the names of the above-listed copyright holders nor the names
18 * of any contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * Alternatively, this software may be distributed under the terms of the
22 * GNU General Public License ("GPL") version 2 as published by the Free
23 * Software Foundation.
24 *
25 * NO WARRANTY
26 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
28 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
29 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
30 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
31 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
34 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
36 * THE POSSIBILITY OF SUCH DAMAGES.
37 */
38
39 #include <sys/cdefs.h>
40 #ifdef __FreeBSD__
41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $");
42 #endif
43 #ifdef __NetBSD__
44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.93.2.1 2008/01/02 21:54:07 bouyer Exp $");
45 #endif
46
47 /*
48 * Driver for the Atheros Wireless LAN controller.
49 *
50 * This software is derived from work of Atsushi Onoe; his contribution
51 * is greatly appreciated.
52 */
53
54 #include "opt_inet.h"
55
56 #ifdef __NetBSD__
57 #include "bpfilter.h"
58 #endif /* __NetBSD__ */
59
60 #include <sys/param.h>
61 #include <sys/reboot.h>
62 #include <sys/systm.h>
63 #include <sys/types.h>
64 #include <sys/sysctl.h>
65 #include <sys/mbuf.h>
66 #include <sys/malloc.h>
67 #include <sys/lock.h>
68 #include <sys/kernel.h>
69 #include <sys/socket.h>
70 #include <sys/sockio.h>
71 #include <sys/errno.h>
72 #include <sys/callout.h>
73 #include <sys/bus.h>
74 #include <sys/endian.h>
75
76 #include <net/if.h>
77 #include <net/if_dl.h>
78 #include <net/if_media.h>
79 #include <net/if_types.h>
80 #include <net/if_arp.h>
81 #include <net/if_ether.h>
82 #include <net/if_llc.h>
83
84 #include <net80211/ieee80211_netbsd.h>
85 #include <net80211/ieee80211_var.h>
86
87 #if NBPFILTER > 0
88 #include <net/bpf.h>
89 #endif
90
91 #ifdef INET
92 #include <netinet/in.h>
93 #endif
94
95 #include <sys/device.h>
96 #include <dev/ic/ath_netbsd.h>
97
98 #define AR_DEBUG
99 #include <dev/ic/athvar.h>
100 #include <contrib/dev/ath/ah_desc.h>
101 #include <contrib/dev/ath/ah_devid.h> /* XXX for softled */
102 #include "athhal_options.h"
103
104 #ifdef ATH_TX99_DIAG
105 #include <dev/ath/ath_tx99/ath_tx99.h>
106 #endif
107
108 /* unaligned little endian access */
109 #define LE_READ_2(p) \
110 ((u_int16_t) \
111 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8)))
112 #define LE_READ_4(p) \
113 ((u_int32_t) \
114 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \
115 (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
116
117 enum {
118 ATH_LED_TX,
119 ATH_LED_RX,
120 ATH_LED_POLL,
121 };
122
123 #ifdef AH_NEED_DESC_SWAP
124 #define HTOAH32(x) htole32(x)
125 #else
126 #define HTOAH32(x) (x)
127 #endif
128
129 static int ath_ifinit(struct ifnet *);
130 static int ath_init(struct ath_softc *);
131 static void ath_stop_locked(struct ifnet *, int);
132 static void ath_stop(struct ifnet *, int);
133 static void ath_start(struct ifnet *);
134 static int ath_media_change(struct ifnet *);
135 static void ath_watchdog(struct ifnet *);
136 static int ath_ioctl(struct ifnet *, u_long, void *);
137 static void ath_fatal_proc(void *, int);
138 static void ath_rxorn_proc(void *, int);
139 static void ath_bmiss_proc(void *, int);
140 static void ath_radar_proc(void *, int);
141 static int ath_key_alloc(struct ieee80211com *,
142 const struct ieee80211_key *,
143 ieee80211_keyix *, ieee80211_keyix *);
144 static int ath_key_delete(struct ieee80211com *,
145 const struct ieee80211_key *);
146 static int ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
147 const u_int8_t mac[IEEE80211_ADDR_LEN]);
148 static void ath_key_update_begin(struct ieee80211com *);
149 static void ath_key_update_end(struct ieee80211com *);
150 static void ath_mode_init(struct ath_softc *);
151 static void ath_setslottime(struct ath_softc *);
152 static void ath_updateslot(struct ifnet *);
153 static int ath_beaconq_setup(struct ath_hal *);
154 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
155 static void ath_beacon_setup(struct ath_softc *, struct ath_buf *);
156 static void ath_beacon_proc(void *, int);
157 static void ath_bstuck_proc(void *, int);
158 static void ath_beacon_free(struct ath_softc *);
159 static void ath_beacon_config(struct ath_softc *);
160 static void ath_descdma_cleanup(struct ath_softc *sc,
161 struct ath_descdma *, ath_bufhead *);
162 static int ath_desc_alloc(struct ath_softc *);
163 static void ath_desc_free(struct ath_softc *);
164 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
165 static void ath_node_free(struct ieee80211_node *);
166 static u_int8_t ath_node_getrssi(const struct ieee80211_node *);
167 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
168 static void ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
169 struct ieee80211_node *ni,
170 int subtype, int rssi, u_int32_t rstamp);
171 static void ath_setdefantenna(struct ath_softc *, u_int);
172 static void ath_rx_proc(void *, int);
173 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
174 static int ath_tx_setup(struct ath_softc *, int, int);
175 static int ath_wme_update(struct ieee80211com *);
176 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
177 static void ath_tx_cleanup(struct ath_softc *);
178 static int ath_tx_start(struct ath_softc *, struct ieee80211_node *,
179 struct ath_buf *, struct mbuf *);
180 static void ath_tx_proc_q0(void *, int);
181 static void ath_tx_proc_q0123(void *, int);
182 static void ath_tx_proc(void *, int);
183 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
184 static void ath_draintxq(struct ath_softc *);
185 static void ath_stoprecv(struct ath_softc *);
186 static int ath_startrecv(struct ath_softc *);
187 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
188 static void ath_next_scan(void *);
189 static void ath_calibrate(void *);
190 static int ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
191 static void ath_setup_stationkey(struct ieee80211_node *);
192 static void ath_newassoc(struct ieee80211_node *, int);
193 static int ath_getchannels(struct ath_softc *, u_int cc,
194 HAL_BOOL outdoor, HAL_BOOL xchanmode);
195 static void ath_led_event(struct ath_softc *, int);
196 static void ath_update_txpow(struct ath_softc *);
197 static void ath_freetx(struct mbuf *);
198 static void ath_restore_diversity(struct ath_softc *);
199
200 static int ath_rate_setup(struct ath_softc *, u_int mode);
201 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
202
203 #ifdef __NetBSD__
204 int ath_enable(struct ath_softc *);
205 void ath_disable(struct ath_softc *);
206 #endif
207
208 #if NBPFILTER > 0
209 static void ath_bpfattach(struct ath_softc *);
210 #endif
211 static void ath_announce(struct ath_softc *);
212
213 int ath_dwelltime = 200; /* 5 channels/second */
214 int ath_calinterval = 30; /* calibrate every 30 secs */
215 int ath_outdoor = AH_TRUE; /* outdoor operation */
216 int ath_xchanmode = AH_TRUE; /* enable extended channels */
217 int ath_countrycode = CTRY_DEFAULT; /* country code */
218 int ath_regdomain = 0; /* regulatory domain */
219 int ath_debug = 0;
220 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */
221 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */
222
223 #ifdef AR_DEBUG
224 enum {
225 ATH_DEBUG_XMIT = 0x00000001, /* basic xmit operation */
226 ATH_DEBUG_XMIT_DESC = 0x00000002, /* xmit descriptors */
227 ATH_DEBUG_RECV = 0x00000004, /* basic recv operation */
228 ATH_DEBUG_RECV_DESC = 0x00000008, /* recv descriptors */
229 ATH_DEBUG_RATE = 0x00000010, /* rate control */
230 ATH_DEBUG_RESET = 0x00000020, /* reset processing */
231 ATH_DEBUG_MODE = 0x00000040, /* mode init/setup */
232 ATH_DEBUG_BEACON = 0x00000080, /* beacon handling */
233 ATH_DEBUG_WATCHDOG = 0x00000100, /* watchdog timeout */
234 ATH_DEBUG_INTR = 0x00001000, /* ISR */
235 ATH_DEBUG_TX_PROC = 0x00002000, /* tx ISR proc */
236 ATH_DEBUG_RX_PROC = 0x00004000, /* rx ISR proc */
237 ATH_DEBUG_BEACON_PROC = 0x00008000, /* beacon ISR proc */
238 ATH_DEBUG_CALIBRATE = 0x00010000, /* periodic calibration */
239 ATH_DEBUG_KEYCACHE = 0x00020000, /* key cache management */
240 ATH_DEBUG_STATE = 0x00040000, /* 802.11 state transitions */
241 ATH_DEBUG_NODE = 0x00080000, /* node management */
242 ATH_DEBUG_LED = 0x00100000, /* led management */
243 ATH_DEBUG_FF = 0x00200000, /* fast frames */
244 ATH_DEBUG_DFS = 0x00400000, /* DFS processing */
245 ATH_DEBUG_FATAL = 0x80000000, /* fatal errors */
246 ATH_DEBUG_ANY = 0xffffffff
247 };
248 #define IFF_DUMPPKTS(sc, m) \
249 ((sc->sc_debug & (m)) || \
250 (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
251 #define DPRINTF(sc, m, fmt, ...) do { \
252 if (sc->sc_debug & (m)) \
253 printf(fmt, __VA_ARGS__); \
254 } while (0)
255 #define KEYPRINTF(sc, ix, hk, mac) do { \
256 if (sc->sc_debug & ATH_DEBUG_KEYCACHE) \
257 ath_keyprint(__func__, ix, hk, mac); \
258 } while (0)
259 static void ath_printrxbuf(struct ath_buf *bf, int);
260 static void ath_printtxbuf(struct ath_buf *bf, int);
261 #else
262 #define IFF_DUMPPKTS(sc, m) \
263 ((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
264 #define DPRINTF(m, fmt, ...)
265 #define KEYPRINTF(sc, k, ix, mac)
266 #endif
267
268 #ifdef __NetBSD__
269 int
270 ath_activate(struct device *self, enum devact act)
271 {
272 struct ath_softc *sc = (struct ath_softc *)self;
273 int rv = 0, s;
274
275 s = splnet();
276 switch (act) {
277 case DVACT_ACTIVATE:
278 rv = EOPNOTSUPP;
279 break;
280 case DVACT_DEACTIVATE:
281 if_deactivate(&sc->sc_if);
282 break;
283 }
284 splx(s);
285 return rv;
286 }
287
288 int
289 ath_enable(struct ath_softc *sc)
290 {
291 if (ATH_IS_ENABLED(sc) == 0) {
292 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
293 printf("%s: device enable failed\n",
294 device_xname(&sc->sc_dev));
295 return (EIO);
296 }
297 sc->sc_flags |= ATH_ENABLED;
298 }
299 return (0);
300 }
301
302 void
303 ath_disable(struct ath_softc *sc)
304 {
305 if (!ATH_IS_ENABLED(sc))
306 return;
307 if (sc->sc_disable != NULL)
308 (*sc->sc_disable)(sc);
309 sc->sc_flags &= ~ATH_ENABLED;
310 }
311 #endif /* __NetBSD__ */
312
313 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
314
315 int
316 ath_attach(u_int16_t devid, struct ath_softc *sc)
317 {
318 struct ifnet *ifp = &sc->sc_if;
319 struct ieee80211com *ic = &sc->sc_ic;
320 struct ath_hal *ah = NULL;
321 HAL_STATUS status;
322 int error = 0, i;
323
324 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
325
326 memcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
327
328 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
329 if (ah == NULL) {
330 if_printf(ifp, "unable to attach hardware; HAL status %u\n",
331 status);
332 error = ENXIO;
333 goto bad;
334 }
335 if (ah->ah_abi != HAL_ABI_VERSION) {
336 if_printf(ifp, "HAL ABI mismatch detected "
337 "(HAL:0x%x != driver:0x%x)\n",
338 ah->ah_abi, HAL_ABI_VERSION);
339 error = ENXIO;
340 goto bad;
341 }
342 sc->sc_ah = ah;
343 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */
344
345 /*
346 * Check if the MAC has multi-rate retry support.
347 * We do this by trying to setup a fake extended
348 * descriptor. MAC's that don't have support will
349 * return false w/o doing anything. MAC's that do
350 * support it will return true w/o doing anything.
351 */
352 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
353
354 /*
355 * Check if the device has hardware counters for PHY
356 * errors. If so we need to enable the MIB interrupt
357 * so we can act on stat triggers.
358 */
359 if (ath_hal_hwphycounters(ah))
360 sc->sc_needmib = 1;
361
362 /*
363 * Get the hardware key cache size.
364 */
365 sc->sc_keymax = ath_hal_keycachesize(ah);
366 if (sc->sc_keymax > ATH_KEYMAX) {
367 if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
368 ATH_KEYMAX, sc->sc_keymax);
369 sc->sc_keymax = ATH_KEYMAX;
370 }
371 /*
372 * Reset the key cache since some parts do not
373 * reset the contents on initial power up.
374 */
375 for (i = 0; i < sc->sc_keymax; i++)
376 ath_hal_keyreset(ah, i);
377 /*
378 * Mark key cache slots associated with global keys
379 * as in use. If we knew TKIP was not to be used we
380 * could leave the +32, +64, and +32+64 slots free.
381 * XXX only for splitmic.
382 */
383 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
384 setbit(sc->sc_keymap, i);
385 setbit(sc->sc_keymap, i+32);
386 setbit(sc->sc_keymap, i+64);
387 setbit(sc->sc_keymap, i+32+64);
388 }
389
390 /*
391 * Collect the channel list using the default country
392 * code and including outdoor channels. The 802.11 layer
393 * is resposible for filtering this list based on settings
394 * like the phy mode.
395 */
396 error = ath_getchannels(sc, ath_countrycode,
397 ath_outdoor, ath_xchanmode);
398 if (error != 0)
399 goto bad;
400
401 /*
402 * Setup rate tables for all potential media types.
403 */
404 ath_rate_setup(sc, IEEE80211_MODE_11A);
405 ath_rate_setup(sc, IEEE80211_MODE_11B);
406 ath_rate_setup(sc, IEEE80211_MODE_11G);
407 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
408 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
409 /* NB: setup here so ath_rate_update is happy */
410 ath_setcurmode(sc, IEEE80211_MODE_11A);
411
412 /*
413 * Allocate tx+rx descriptors and populate the lists.
414 */
415 error = ath_desc_alloc(sc);
416 if (error != 0) {
417 if_printf(ifp, "failed to allocate descriptors: %d\n", error);
418 goto bad;
419 }
420 ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
421 ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE);
422 ATH_CALLOUT_INIT(&sc->sc_dfs_ch, CALLOUT_MPSAFE);
423
424 ATH_TXBUF_LOCK_INIT(sc);
425
426 TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
427 TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
428 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
429 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
430 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
431 TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc);
432
433 /*
434 * Allocate hardware transmit queues: one queue for
435 * beacon frames and one data queue for each QoS
436 * priority. Note that the hal handles reseting
437 * these queues at the needed time.
438 *
439 * XXX PS-Poll
440 */
441 sc->sc_bhalq = ath_beaconq_setup(ah);
442 if (sc->sc_bhalq == (u_int) -1) {
443 if_printf(ifp, "unable to setup a beacon xmit queue!\n");
444 error = EIO;
445 goto bad2;
446 }
447 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
448 if (sc->sc_cabq == NULL) {
449 if_printf(ifp, "unable to setup CAB xmit queue!\n");
450 error = EIO;
451 goto bad2;
452 }
453 /* NB: insure BK queue is the lowest priority h/w queue */
454 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
455 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
456 ieee80211_wme_acnames[WME_AC_BK]);
457 error = EIO;
458 goto bad2;
459 }
460 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
461 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
462 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
463 /*
464 * Not enough hardware tx queues to properly do WME;
465 * just punt and assign them all to the same h/w queue.
466 * We could do a better job of this if, for example,
467 * we allocate queues when we switch from station to
468 * AP mode.
469 */
470 if (sc->sc_ac2q[WME_AC_VI] != NULL)
471 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
472 if (sc->sc_ac2q[WME_AC_BE] != NULL)
473 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
474 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
475 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
476 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
477 }
478
479 /*
480 * Special case certain configurations. Note the
481 * CAB queue is handled by these specially so don't
482 * include them when checking the txq setup mask.
483 */
484 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
485 case 0x01:
486 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
487 break;
488 case 0x0f:
489 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
490 break;
491 default:
492 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
493 break;
494 }
495
496 /*
497 * Setup rate control. Some rate control modules
498 * call back to change the anntena state so expose
499 * the necessary entry points.
500 * XXX maybe belongs in struct ath_ratectrl?
501 */
502 sc->sc_setdefantenna = ath_setdefantenna;
503 sc->sc_rc = ath_rate_attach(sc);
504 if (sc->sc_rc == NULL) {
505 error = EIO;
506 goto bad2;
507 }
508
509 sc->sc_blinking = 0;
510 sc->sc_ledstate = 1;
511 sc->sc_ledon = 0; /* low true */
512 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */
513 ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE);
514 /*
515 * Auto-enable soft led processing for IBM cards and for
516 * 5211 minipci cards. Users can also manually enable/disable
517 * support with a sysctl.
518 */
519 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
520 if (sc->sc_softled) {
521 ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
522 ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
523 }
524
525 ifp->if_softc = sc;
526 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
527 ifp->if_start = ath_start;
528 ifp->if_stop = ath_stop;
529 ifp->if_watchdog = ath_watchdog;
530 ifp->if_ioctl = ath_ioctl;
531 ifp->if_init = ath_ifinit;
532 IFQ_SET_READY(&ifp->if_snd);
533
534 ic->ic_ifp = ifp;
535 ic->ic_reset = ath_reset;
536 ic->ic_newassoc = ath_newassoc;
537 ic->ic_updateslot = ath_updateslot;
538 ic->ic_wme.wme_update = ath_wme_update;
539 /* XXX not right but it's not used anywhere important */
540 ic->ic_phytype = IEEE80211_T_OFDM;
541 ic->ic_opmode = IEEE80211_M_STA;
542 ic->ic_caps =
543 IEEE80211_C_IBSS /* ibss, nee adhoc, mode */
544 | IEEE80211_C_HOSTAP /* hostap mode */
545 | IEEE80211_C_MONITOR /* monitor mode */
546 | IEEE80211_C_SHPREAMBLE /* short preamble supported */
547 | IEEE80211_C_SHSLOT /* short slot time supported */
548 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */
549 | IEEE80211_C_TXFRAG /* handle tx frags */
550 ;
551 /*
552 * Query the hal to figure out h/w crypto support.
553 */
554 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
555 ic->ic_caps |= IEEE80211_C_WEP;
556 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
557 ic->ic_caps |= IEEE80211_C_AES;
558 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
559 ic->ic_caps |= IEEE80211_C_AES_CCM;
560 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
561 ic->ic_caps |= IEEE80211_C_CKIP;
562 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
563 ic->ic_caps |= IEEE80211_C_TKIP;
564 /*
565 * Check if h/w does the MIC and/or whether the
566 * separate key cache entries are required to
567 * handle both tx+rx MIC keys.
568 */
569 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
570 ic->ic_caps |= IEEE80211_C_TKIPMIC;
571 if (ath_hal_tkipsplit(ah))
572 sc->sc_splitmic = 1;
573 }
574 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
575 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
576 /*
577 * TPC support can be done either with a global cap or
578 * per-packet support. The latter is not available on
579 * all parts. We're a bit pedantic here as all parts
580 * support a global cap.
581 */
582 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
583 ic->ic_caps |= IEEE80211_C_TXPMGT;
584
585 /*
586 * Mark WME capability only if we have sufficient
587 * hardware queues to do proper priority scheduling.
588 */
589 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
590 ic->ic_caps |= IEEE80211_C_WME;
591 /*
592 * Check for misc other capabilities.
593 */
594 if (ath_hal_hasbursting(ah))
595 ic->ic_caps |= IEEE80211_C_BURST;
596
597 /*
598 * Indicate we need the 802.11 header padded to a
599 * 32-bit boundary for 4-address and QoS frames.
600 */
601 ic->ic_flags |= IEEE80211_F_DATAPAD;
602
603 /*
604 * Query the hal about antenna support.
605 */
606 sc->sc_defant = ath_hal_getdefantenna(ah);
607
608 /*
609 * Not all chips have the VEOL support we want to
610 * use with IBSS beacons; check here for it.
611 */
612 sc->sc_hasveol = ath_hal_hasveol(ah);
613
614 /* get mac address from hardware */
615 ath_hal_getmac(ah, ic->ic_myaddr);
616
617 if_attach(ifp);
618 /* call MI attach routine. */
619 ieee80211_ifattach(ic);
620 /* override default methods */
621 ic->ic_node_alloc = ath_node_alloc;
622 sc->sc_node_free = ic->ic_node_free;
623 ic->ic_node_free = ath_node_free;
624 ic->ic_node_getrssi = ath_node_getrssi;
625 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
626 ic->ic_recv_mgmt = ath_recv_mgmt;
627 sc->sc_newstate = ic->ic_newstate;
628 ic->ic_newstate = ath_newstate;
629 ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
630 ic->ic_crypto.cs_key_alloc = ath_key_alloc;
631 ic->ic_crypto.cs_key_delete = ath_key_delete;
632 ic->ic_crypto.cs_key_set = ath_key_set;
633 ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
634 ic->ic_crypto.cs_key_update_end = ath_key_update_end;
635 /* complete initialization */
636 ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
637
638 #if NBPFILTER > 0
639 ath_bpfattach(sc);
640 #endif
641
642 sc->sc_flags |= ATH_ATTACHED;
643
644 /*
645 * Setup dynamic sysctl's now that country code and
646 * regdomain are available from the hal.
647 */
648 ath_sysctlattach(sc);
649
650 ieee80211_announce(ic);
651 ath_announce(sc);
652 return 0;
653 bad2:
654 ath_tx_cleanup(sc);
655 ath_desc_free(sc);
656 bad:
657 if (ah)
658 ath_hal_detach(ah);
659 sc->sc_invalid = 1;
660 return error;
661 }
662
663 int
664 ath_detach(struct ath_softc *sc)
665 {
666 struct ifnet *ifp = &sc->sc_if;
667 int s;
668
669 if ((sc->sc_flags & ATH_ATTACHED) == 0)
670 return (0);
671
672 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
673 __func__, ifp->if_flags);
674
675 s = splnet();
676 ath_stop(ifp, 1);
677 #if NBPFILTER > 0
678 bpfdetach(ifp);
679 #endif
680 /*
681 * NB: the order of these is important:
682 * o call the 802.11 layer before detaching the hal to
683 * insure callbacks into the driver to delete global
684 * key cache entries can be handled
685 * o reclaim the tx queue data structures after calling
686 * the 802.11 layer as we'll get called back to reclaim
687 * node state and potentially want to use them
688 * o to cleanup the tx queues the hal is called, so detach
689 * it last
690 * Other than that, it's straightforward...
691 */
692 ieee80211_ifdetach(&sc->sc_ic);
693 #ifdef ATH_TX99_DIAG
694 if (sc->sc_tx99 != NULL)
695 sc->sc_tx99->detach(sc->sc_tx99);
696 #endif
697 ath_rate_detach(sc->sc_rc);
698 ath_desc_free(sc);
699 ath_tx_cleanup(sc);
700 sysctl_teardown(&sc->sc_sysctllog);
701 ath_hal_detach(sc->sc_ah);
702 if_detach(ifp);
703 splx(s);
704
705 return 0;
706 }
707
708 void
709 ath_resume(struct ath_softc *sc)
710 {
711 if (sc->sc_softled) {
712 ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
713 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
714 }
715 }
716
717 /*
718 * Interrupt handler. Most of the actual processing is deferred.
719 */
720 int
721 ath_intr(void *arg)
722 {
723 struct ath_softc *sc = arg;
724 struct ifnet *ifp = &sc->sc_if;
725 struct ath_hal *ah = sc->sc_ah;
726 HAL_INT status;
727
728 if (sc->sc_invalid) {
729 /*
730 * The hardware is not ready/present, don't touch anything.
731 * Note this can happen early on if the IRQ is shared.
732 */
733 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
734 return 0;
735 }
736
737 if (!ath_hal_intrpend(ah)) /* shared irq, not for us */
738 return 0;
739
740 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
741 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
742 __func__, ifp->if_flags);
743 ath_hal_getisr(ah, &status); /* clear ISR */
744 ath_hal_intrset(ah, 0); /* disable further intr's */
745 return 1; /* XXX */
746 }
747 /*
748 * Figure out the reason(s) for the interrupt. Note
749 * that the hal returns a pseudo-ISR that may include
750 * bits we haven't explicitly enabled so we mask the
751 * value to insure we only process bits we requested.
752 */
753 ath_hal_getisr(ah, &status); /* NB: clears ISR too */
754 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
755 status &= sc->sc_imask; /* discard unasked for bits */
756 if (status & HAL_INT_FATAL) {
757 /*
758 * Fatal errors are unrecoverable. Typically
759 * these are caused by DMA errors. Unfortunately
760 * the exact reason is not (presently) returned
761 * by the hal.
762 */
763 sc->sc_stats.ast_hardware++;
764 ath_hal_intrset(ah, 0); /* disable intr's until reset */
765 TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
766 } else if (status & HAL_INT_RXORN) {
767 sc->sc_stats.ast_rxorn++;
768 ath_hal_intrset(ah, 0); /* disable intr's until reset */
769 TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
770 } else {
771 if (status & HAL_INT_SWBA) {
772 /*
773 * Software beacon alert--time to send a beacon.
774 * Handle beacon transmission directly; deferring
775 * this is too slow to meet timing constraints
776 * under load.
777 */
778 ath_beacon_proc(sc, 0);
779 }
780 if (status & HAL_INT_RXEOL) {
781 /*
782 * NB: the hardware should re-read the link when
783 * RXE bit is written, but it doesn't work at
784 * least on older hardware revs.
785 */
786 sc->sc_stats.ast_rxeol++;
787 sc->sc_rxlink = NULL;
788 }
789 if (status & HAL_INT_TXURN) {
790 sc->sc_stats.ast_txurn++;
791 /* bump tx trigger level */
792 ath_hal_updatetxtriglevel(ah, AH_TRUE);
793 }
794 if (status & HAL_INT_RX)
795 TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
796 if (status & HAL_INT_TX)
797 TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
798 if (status & HAL_INT_BMISS) {
799 sc->sc_stats.ast_bmiss++;
800 TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
801 }
802 if (status & HAL_INT_MIB) {
803 sc->sc_stats.ast_mib++;
804 /*
805 * Disable interrupts until we service the MIB
806 * interrupt; otherwise it will continue to fire.
807 */
808 ath_hal_intrset(ah, 0);
809 /*
810 * Let the hal handle the event. We assume it will
811 * clear whatever condition caused the interrupt.
812 */
813 ath_hal_mibevent(ah, &sc->sc_halstats);
814 ath_hal_intrset(ah, sc->sc_imask);
815 }
816 }
817 return 1;
818 }
819
820 /* Swap transmit descriptor.
821 * if AH_NEED_DESC_SWAP flag is not defined this becomes a "null"
822 * function.
823 */
824 static inline void
825 ath_desc_swap(struct ath_desc *ds)
826 {
827 #ifdef AH_NEED_DESC_SWAP
828 ds->ds_link = htole32(ds->ds_link);
829 ds->ds_data = htole32(ds->ds_data);
830 ds->ds_ctl0 = htole32(ds->ds_ctl0);
831 ds->ds_ctl1 = htole32(ds->ds_ctl1);
832 ds->ds_hw[0] = htole32(ds->ds_hw[0]);
833 ds->ds_hw[1] = htole32(ds->ds_hw[1]);
834 #endif
835 }
836
837 static void
838 ath_fatal_proc(void *arg, int pending)
839 {
840 struct ath_softc *sc = arg;
841 struct ifnet *ifp = &sc->sc_if;
842
843 if_printf(ifp, "hardware error; resetting\n");
844 ath_reset(ifp);
845 }
846
847 static void
848 ath_rxorn_proc(void *arg, int pending)
849 {
850 struct ath_softc *sc = arg;
851 struct ifnet *ifp = &sc->sc_if;
852
853 if_printf(ifp, "rx FIFO overrun; resetting\n");
854 ath_reset(ifp);
855 }
856
857 static void
858 ath_bmiss_proc(void *arg, int pending)
859 {
860 struct ath_softc *sc = arg;
861 struct ieee80211com *ic = &sc->sc_ic;
862
863 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
864 KASSERT(ic->ic_opmode == IEEE80211_M_STA,
865 ("unexpect operating mode %u", ic->ic_opmode));
866 if (ic->ic_state == IEEE80211_S_RUN) {
867 u_int64_t lastrx = sc->sc_lastrx;
868 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
869
870 DPRINTF(sc, ATH_DEBUG_BEACON,
871 "%s: tsf %" PRIu64 " lastrx %" PRId64
872 " (%" PRIu64 ") bmiss %u\n",
873 __func__, tsf, tsf - lastrx, lastrx,
874 ic->ic_bmisstimeout*1024);
875 /*
876 * Workaround phantom bmiss interrupts by sanity-checking
877 * the time of our last rx'd frame. If it is within the
878 * beacon miss interval then ignore the interrupt. If it's
879 * truly a bmiss we'll get another interrupt soon and that'll
880 * be dispatched up for processing.
881 */
882 if (tsf - lastrx > ic->ic_bmisstimeout*1024) {
883 NET_LOCK_GIANT();
884 ieee80211_beacon_miss(ic);
885 NET_UNLOCK_GIANT();
886 } else
887 sc->sc_stats.ast_bmiss_phantom++;
888 }
889 }
890
891 static void
892 ath_radar_proc(void *arg, int pending)
893 {
894 struct ath_softc *sc = arg;
895 struct ifnet *ifp = &sc->sc_if;
896 struct ath_hal *ah = sc->sc_ah;
897 HAL_CHANNEL hchan;
898
899 if (ath_hal_procdfs(ah, &hchan)) {
900 if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n",
901 hchan.channel, hchan.channelFlags, hchan.privFlags);
902 /*
903 * Initiate channel change.
904 */
905 /* XXX not yet */
906 }
907 }
908
909 static u_int
910 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
911 {
912 #define N(a) (sizeof(a) / sizeof(a[0]))
913 static const u_int modeflags[] = {
914 0, /* IEEE80211_MODE_AUTO */
915 CHANNEL_A, /* IEEE80211_MODE_11A */
916 CHANNEL_B, /* IEEE80211_MODE_11B */
917 CHANNEL_PUREG, /* IEEE80211_MODE_11G */
918 0, /* IEEE80211_MODE_FH */
919 CHANNEL_ST, /* IEEE80211_MODE_TURBO_A */
920 CHANNEL_108G /* IEEE80211_MODE_TURBO_G */
921 };
922 enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
923
924 KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
925 KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
926 return modeflags[mode];
927 #undef N
928 }
929
930 static int
931 ath_ifinit(struct ifnet *ifp)
932 {
933 struct ath_softc *sc = (struct ath_softc *)ifp->if_softc;
934
935 return ath_init(sc);
936 }
937
938 static int
939 ath_init(struct ath_softc *sc)
940 {
941 struct ifnet *ifp = &sc->sc_if;
942 struct ieee80211com *ic = &sc->sc_ic;
943 struct ath_hal *ah = sc->sc_ah;
944 HAL_STATUS status;
945 int error = 0;
946
947 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
948 __func__, ifp->if_flags);
949
950 if (!device_has_power(&sc->sc_dev))
951 return EBUSY;
952
953 ATH_LOCK(sc);
954
955 if ((error = ath_enable(sc)) != 0) {
956 ATH_UNLOCK(sc);
957 return error;
958 }
959
960 /*
961 * Stop anything previously setup. This is safe
962 * whether this is the first time through or not.
963 */
964 ath_stop_locked(ifp, 0);
965
966 /*
967 * The basic interface to setting the hardware in a good
968 * state is ``reset''. On return the hardware is known to
969 * be powered up and with interrupts disabled. This must
970 * be followed by initialization of the appropriate bits
971 * and then setup of the interrupt mask.
972 */
973 sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
974 sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
975 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
976 if_printf(ifp, "unable to reset hardware; hal status %u\n",
977 status);
978 error = EIO;
979 goto done;
980 }
981
982 /*
983 * This is needed only to setup initial state
984 * but it's best done after a reset.
985 */
986 ath_update_txpow(sc);
987 /*
988 * Likewise this is set during reset so update
989 * state cached in the driver.
990 */
991 ath_restore_diversity(sc);
992 sc->sc_calinterval = 1;
993 sc->sc_caltries = 0;
994
995 /*
996 * Setup the hardware after reset: the key cache
997 * is filled as needed and the receive engine is
998 * set going. Frame transmit is handled entirely
999 * in the frame output path; there's nothing to do
1000 * here except setup the interrupt mask.
1001 */
1002 if ((error = ath_startrecv(sc)) != 0) {
1003 if_printf(ifp, "unable to start recv logic\n");
1004 goto done;
1005 }
1006
1007 /*
1008 * Enable interrupts.
1009 */
1010 sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1011 | HAL_INT_RXEOL | HAL_INT_RXORN
1012 | HAL_INT_FATAL | HAL_INT_GLOBAL;
1013 /*
1014 * Enable MIB interrupts when there are hardware phy counters.
1015 * Note we only do this (at the moment) for station mode.
1016 */
1017 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1018 sc->sc_imask |= HAL_INT_MIB;
1019 ath_hal_intrset(ah, sc->sc_imask);
1020
1021 ifp->if_flags |= IFF_RUNNING;
1022 ic->ic_state = IEEE80211_S_INIT;
1023
1024 /*
1025 * The hardware should be ready to go now so it's safe
1026 * to kick the 802.11 state machine as it's likely to
1027 * immediately call back to us to send mgmt frames.
1028 */
1029 ath_chan_change(sc, ic->ic_curchan);
1030 #ifdef ATH_TX99_DIAG
1031 if (sc->sc_tx99 != NULL)
1032 sc->sc_tx99->start(sc->sc_tx99);
1033 else
1034 #endif
1035 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1036 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
1037 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1038 } else
1039 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1040 done:
1041 ATH_UNLOCK(sc);
1042 return error;
1043 }
1044
1045 static void
1046 ath_stop_locked(struct ifnet *ifp, int disable)
1047 {
1048 struct ath_softc *sc = ifp->if_softc;
1049 struct ieee80211com *ic = &sc->sc_ic;
1050 struct ath_hal *ah = sc->sc_ah;
1051
1052 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1053 __func__, sc->sc_invalid, ifp->if_flags);
1054
1055 ATH_LOCK_ASSERT(sc);
1056 if (ifp->if_flags & IFF_RUNNING) {
1057 /*
1058 * Shutdown the hardware and driver:
1059 * reset 802.11 state machine
1060 * turn off timers
1061 * disable interrupts
1062 * turn off the radio
1063 * clear transmit machinery
1064 * clear receive machinery
1065 * drain and release tx queues
1066 * reclaim beacon resources
1067 * power down hardware
1068 *
1069 * Note that some of this work is not possible if the
1070 * hardware is gone (invalid).
1071 */
1072 #ifdef ATH_TX99_DIAG
1073 if (sc->sc_tx99 != NULL)
1074 sc->sc_tx99->stop(sc->sc_tx99);
1075 #endif
1076 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1077 ifp->if_flags &= ~IFF_RUNNING;
1078 ifp->if_timer = 0;
1079 if (!sc->sc_invalid) {
1080 if (sc->sc_softled) {
1081 callout_stop(&sc->sc_ledtimer);
1082 ath_hal_gpioset(ah, sc->sc_ledpin,
1083 !sc->sc_ledon);
1084 sc->sc_blinking = 0;
1085 }
1086 ath_hal_intrset(ah, 0);
1087 }
1088 ath_draintxq(sc);
1089 if (!sc->sc_invalid) {
1090 ath_stoprecv(sc);
1091 ath_hal_phydisable(ah);
1092 } else
1093 sc->sc_rxlink = NULL;
1094 IF_PURGE(&ifp->if_snd);
1095 ath_beacon_free(sc);
1096 if (disable)
1097 ath_disable(sc);
1098 }
1099 }
1100
1101 static void
1102 ath_stop(struct ifnet *ifp, int disable)
1103 {
1104 struct ath_softc *sc = ifp->if_softc;
1105
1106 ATH_LOCK(sc);
1107 ath_stop_locked(ifp, disable);
1108 if (!sc->sc_invalid) {
1109 /*
1110 * Set the chip in full sleep mode. Note that we are
1111 * careful to do this only when bringing the interface
1112 * completely to a stop. When the chip is in this state
1113 * it must be carefully woken up or references to
1114 * registers in the PCI clock domain may freeze the bus
1115 * (and system). This varies by chip and is mostly an
1116 * issue with newer parts that go to sleep more quickly.
1117 */
1118 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
1119 }
1120 ATH_UNLOCK(sc);
1121 }
1122
1123 static void
1124 ath_restore_diversity(struct ath_softc *sc)
1125 {
1126 struct ifnet *ifp = &sc->sc_if;
1127 struct ath_hal *ah = sc->sc_ah;
1128
1129 if (!ath_hal_setdiversity(sc->sc_ah, sc->sc_diversity) ||
1130 sc->sc_diversity != ath_hal_getdiversity(ah)) {
1131 if_printf(ifp, "could not restore diversity setting %d\n",
1132 sc->sc_diversity);
1133 sc->sc_diversity = ath_hal_getdiversity(ah);
1134 }
1135 }
1136
1137 /*
1138 * Reset the hardware w/o losing operational state. This is
1139 * basically a more efficient way of doing ath_stop, ath_init,
1140 * followed by state transitions to the current 802.11
1141 * operational state. Used to recover from various errors and
1142 * to reset or reload hardware state.
1143 */
1144 int
1145 ath_reset(struct ifnet *ifp)
1146 {
1147 struct ath_softc *sc = ifp->if_softc;
1148 struct ieee80211com *ic = &sc->sc_ic;
1149 struct ath_hal *ah = sc->sc_ah;
1150 struct ieee80211_channel *c;
1151 HAL_STATUS status;
1152
1153 /*
1154 * Convert to a HAL channel description with the flags
1155 * constrained to reflect the current operating mode.
1156 */
1157 c = ic->ic_curchan;
1158 sc->sc_curchan.channel = c->ic_freq;
1159 sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
1160
1161 ath_hal_intrset(ah, 0); /* disable interrupts */
1162 ath_draintxq(sc); /* stop xmit side */
1163 ath_stoprecv(sc); /* stop recv side */
1164 /* NB: indicate channel change so we do a full reset */
1165 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
1166 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1167 __func__, status);
1168 ath_update_txpow(sc); /* update tx power state */
1169 ath_restore_diversity(sc);
1170 sc->sc_calinterval = 1;
1171 sc->sc_caltries = 0;
1172 if (ath_startrecv(sc) != 0) /* restart recv */
1173 if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1174 /*
1175 * We may be doing a reset in response to an ioctl
1176 * that changes the channel so update any state that
1177 * might change as a result.
1178 */
1179 ath_chan_change(sc, c);
1180 if (ic->ic_state == IEEE80211_S_RUN)
1181 ath_beacon_config(sc); /* restart beacons */
1182 ath_hal_intrset(ah, sc->sc_imask);
1183
1184 ath_start(ifp); /* restart xmit */
1185 return 0;
1186 }
1187
1188 /*
1189 * Cleanup driver resources when we run out of buffers
1190 * while processing fragments; return the tx buffers
1191 * allocated and drop node references.
1192 */
1193 static void
1194 ath_txfrag_cleanup(struct ath_softc *sc,
1195 ath_bufhead *frags, struct ieee80211_node *ni)
1196 {
1197 struct ath_buf *bf;
1198
1199 ATH_TXBUF_LOCK_ASSERT(sc);
1200
1201 while ((bf = STAILQ_FIRST(frags)) != NULL) {
1202 STAILQ_REMOVE_HEAD(frags, bf_list);
1203 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1204 sc->sc_if.if_flags &= ~IFF_OACTIVE;
1205 ieee80211_node_decref(ni);
1206 }
1207 }
1208
1209 /*
1210 * Setup xmit of a fragmented frame. Allocate a buffer
1211 * for each frag and bump the node reference count to
1212 * reflect the held reference to be setup by ath_tx_start.
1213 */
1214 static int
1215 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
1216 struct mbuf *m0, struct ieee80211_node *ni)
1217 {
1218 struct mbuf *m;
1219 struct ath_buf *bf;
1220
1221 ATH_TXBUF_LOCK(sc);
1222 for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
1223 bf = STAILQ_FIRST(&sc->sc_txbuf);
1224 if (bf == NULL) { /* out of buffers, cleanup */
1225 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1226 __func__);
1227 sc->sc_if.if_flags |= IFF_OACTIVE;
1228 ath_txfrag_cleanup(sc, frags, ni);
1229 break;
1230 }
1231 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1232 ieee80211_node_incref(ni);
1233 STAILQ_INSERT_TAIL(frags, bf, bf_list);
1234 }
1235 ATH_TXBUF_UNLOCK(sc);
1236
1237 return !STAILQ_EMPTY(frags);
1238 }
1239
1240 static void
1241 ath_start(struct ifnet *ifp)
1242 {
1243 struct ath_softc *sc = ifp->if_softc;
1244 struct ath_hal *ah = sc->sc_ah;
1245 struct ieee80211com *ic = &sc->sc_ic;
1246 struct ieee80211_node *ni;
1247 struct ath_buf *bf;
1248 struct mbuf *m, *next;
1249 struct ieee80211_frame *wh;
1250 struct ether_header *eh;
1251 ath_bufhead frags;
1252
1253 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
1254 return;
1255 for (;;) {
1256 /*
1257 * Grab a TX buffer and associated resources.
1258 */
1259 ATH_TXBUF_LOCK(sc);
1260 bf = STAILQ_FIRST(&sc->sc_txbuf);
1261 if (bf != NULL)
1262 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1263 ATH_TXBUF_UNLOCK(sc);
1264 if (bf == NULL) {
1265 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1266 __func__);
1267 sc->sc_stats.ast_tx_qstop++;
1268 ifp->if_flags |= IFF_OACTIVE;
1269 break;
1270 }
1271 /*
1272 * Poll the management queue for frames; they
1273 * have priority over normal data frames.
1274 */
1275 IF_DEQUEUE(&ic->ic_mgtq, m);
1276 if (m == NULL) {
1277 /*
1278 * No data frames go out unless we're associated.
1279 */
1280 if (ic->ic_state != IEEE80211_S_RUN) {
1281 DPRINTF(sc, ATH_DEBUG_XMIT,
1282 "%s: discard data packet, state %s\n",
1283 __func__,
1284 ieee80211_state_name[ic->ic_state]);
1285 sc->sc_stats.ast_tx_discard++;
1286 ATH_TXBUF_LOCK(sc);
1287 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1288 ATH_TXBUF_UNLOCK(sc);
1289 break;
1290 }
1291 IFQ_DEQUEUE(&ifp->if_snd, m); /* XXX: LOCK */
1292 if (m == NULL) {
1293 ATH_TXBUF_LOCK(sc);
1294 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1295 ATH_TXBUF_UNLOCK(sc);
1296 break;
1297 }
1298 STAILQ_INIT(&frags);
1299 /*
1300 * Find the node for the destination so we can do
1301 * things like power save and fast frames aggregation.
1302 */
1303 if (m->m_len < sizeof(struct ether_header) &&
1304 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
1305 ic->ic_stats.is_tx_nobuf++; /* XXX */
1306 ni = NULL;
1307 goto bad;
1308 }
1309 eh = mtod(m, struct ether_header *);
1310 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1311 if (ni == NULL) {
1312 /* NB: ieee80211_find_txnode does stat+msg */
1313 m_freem(m);
1314 goto bad;
1315 }
1316 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1317 (m->m_flags & M_PWR_SAV) == 0) {
1318 /*
1319 * Station in power save mode; pass the frame
1320 * to the 802.11 layer and continue. We'll get
1321 * the frame back when the time is right.
1322 */
1323 ieee80211_pwrsave(ic, ni, m);
1324 goto reclaim;
1325 }
1326 /* calculate priority so we can find the tx queue */
1327 if (ieee80211_classify(ic, m, ni)) {
1328 DPRINTF(sc, ATH_DEBUG_XMIT,
1329 "%s: discard, classification failure\n",
1330 __func__);
1331 m_freem(m);
1332 goto bad;
1333 }
1334 ifp->if_opackets++;
1335
1336 #if NBPFILTER > 0
1337 if (ifp->if_bpf)
1338 bpf_mtap(ifp->if_bpf, m);
1339 #endif
1340 /*
1341 * Encapsulate the packet in prep for transmission.
1342 */
1343 m = ieee80211_encap(ic, m, ni);
1344 if (m == NULL) {
1345 DPRINTF(sc, ATH_DEBUG_XMIT,
1346 "%s: encapsulation failure\n",
1347 __func__);
1348 sc->sc_stats.ast_tx_encap++;
1349 goto bad;
1350 }
1351 /*
1352 * Check for fragmentation. If this has frame
1353 * has been broken up verify we have enough
1354 * buffers to send all the fragments so all
1355 * go out or none...
1356 */
1357 if ((m->m_flags & M_FRAG) &&
1358 !ath_txfrag_setup(sc, &frags, m, ni)) {
1359 DPRINTF(sc, ATH_DEBUG_ANY,
1360 "%s: out of txfrag buffers\n", __func__);
1361 ic->ic_stats.is_tx_nobuf++; /* XXX */
1362 ath_freetx(m);
1363 goto bad;
1364 }
1365 } else {
1366 /*
1367 * Hack! The referenced node pointer is in the
1368 * rcvif field of the packet header. This is
1369 * placed there by ieee80211_mgmt_output because
1370 * we need to hold the reference with the frame
1371 * and there's no other way (other than packet
1372 * tags which we consider too expensive to use)
1373 * to pass it along.
1374 */
1375 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1376 m->m_pkthdr.rcvif = NULL;
1377
1378 wh = mtod(m, struct ieee80211_frame *);
1379 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1380 IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1381 /* fill time stamp */
1382 u_int64_t tsf;
1383 u_int32_t *tstamp;
1384
1385 tsf = ath_hal_gettsf64(ah);
1386 /* XXX: adjust 100us delay to xmit */
1387 tsf += 100;
1388 tstamp = (u_int32_t *)&wh[1];
1389 tstamp[0] = htole32(tsf & 0xffffffff);
1390 tstamp[1] = htole32(tsf >> 32);
1391 }
1392 sc->sc_stats.ast_tx_mgmt++;
1393 }
1394
1395 nextfrag:
1396 next = m->m_nextpkt;
1397 if (ath_tx_start(sc, ni, bf, m)) {
1398 bad:
1399 ifp->if_oerrors++;
1400 reclaim:
1401 ATH_TXBUF_LOCK(sc);
1402 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1403 ath_txfrag_cleanup(sc, &frags, ni);
1404 ATH_TXBUF_UNLOCK(sc);
1405 if (ni != NULL)
1406 ieee80211_free_node(ni);
1407 continue;
1408 }
1409 if (next != NULL) {
1410 m = next;
1411 bf = STAILQ_FIRST(&frags);
1412 KASSERT(bf != NULL, ("no buf for txfrag"));
1413 STAILQ_REMOVE_HEAD(&frags, bf_list);
1414 goto nextfrag;
1415 }
1416
1417 ifp->if_timer = 1;
1418 }
1419 }
1420
1421 static int
1422 ath_media_change(struct ifnet *ifp)
1423 {
1424 #define IS_UP(ifp) \
1425 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
1426 int error;
1427
1428 error = ieee80211_media_change(ifp);
1429 if (error == ENETRESET) {
1430 if (IS_UP(ifp))
1431 ath_init(ifp->if_softc); /* XXX lose error */
1432 error = 0;
1433 }
1434 return error;
1435 #undef IS_UP
1436 }
1437
1438 #ifdef AR_DEBUG
1439 static void
1440 ath_keyprint(const char *tag, u_int ix,
1441 const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1442 {
1443 static const char *ciphers[] = {
1444 "WEP",
1445 "AES-OCB",
1446 "AES-CCM",
1447 "CKIP",
1448 "TKIP",
1449 "CLR",
1450 };
1451 int i, n;
1452
1453 printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1454 for (i = 0, n = hk->kv_len; i < n; i++)
1455 printf("%02x", hk->kv_val[i]);
1456 printf(" mac %s", ether_sprintf(mac));
1457 if (hk->kv_type == HAL_CIPHER_TKIP) {
1458 printf(" mic ");
1459 for (i = 0; i < sizeof(hk->kv_mic); i++)
1460 printf("%02x", hk->kv_mic[i]);
1461 }
1462 printf("\n");
1463 }
1464 #endif
1465
1466 /*
1467 * Set a TKIP key into the hardware. This handles the
1468 * potential distribution of key state to multiple key
1469 * cache slots for TKIP.
1470 */
1471 static int
1472 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1473 HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1474 {
1475 #define IEEE80211_KEY_XR (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1476 static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1477 struct ath_hal *ah = sc->sc_ah;
1478
1479 KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1480 ("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1481 KASSERT(sc->sc_splitmic, ("key cache !split"));
1482 if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1483 /*
1484 * TX key goes at first index, RX key at the rx index.
1485 * The hal handles the MIC keys at index+64.
1486 */
1487 memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1488 KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1489 if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
1490 return 0;
1491
1492 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1493 KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1494 /* XXX delete tx key on failure? */
1495 return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
1496 } else if (k->wk_flags & IEEE80211_KEY_XR) {
1497 /*
1498 * TX/RX key goes at first index.
1499 * The hal handles the MIC keys are index+64.
1500 */
1501 memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
1502 k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
1503 KEYPRINTF(sc, k->wk_keyix, hk, mac);
1504 return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1505 }
1506 return 0;
1507 #undef IEEE80211_KEY_XR
1508 }
1509
1510 /*
1511 * Set a net80211 key into the hardware. This handles the
1512 * potential distribution of key state to multiple key
1513 * cache slots for TKIP with hardware MIC support.
1514 */
1515 static int
1516 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1517 const u_int8_t mac0[IEEE80211_ADDR_LEN],
1518 struct ieee80211_node *bss)
1519 {
1520 #define N(a) (sizeof(a)/sizeof(a[0]))
1521 static const u_int8_t ciphermap[] = {
1522 HAL_CIPHER_WEP, /* IEEE80211_CIPHER_WEP */
1523 HAL_CIPHER_TKIP, /* IEEE80211_CIPHER_TKIP */
1524 HAL_CIPHER_AES_OCB, /* IEEE80211_CIPHER_AES_OCB */
1525 HAL_CIPHER_AES_CCM, /* IEEE80211_CIPHER_AES_CCM */
1526 (u_int8_t) -1, /* 4 is not allocated */
1527 HAL_CIPHER_CKIP, /* IEEE80211_CIPHER_CKIP */
1528 HAL_CIPHER_CLR, /* IEEE80211_CIPHER_NONE */
1529 };
1530 struct ath_hal *ah = sc->sc_ah;
1531 const struct ieee80211_cipher *cip = k->wk_cipher;
1532 u_int8_t gmac[IEEE80211_ADDR_LEN];
1533 const u_int8_t *mac;
1534 HAL_KEYVAL hk;
1535
1536 memset(&hk, 0, sizeof(hk));
1537 /*
1538 * Software crypto uses a "clear key" so non-crypto
1539 * state kept in the key cache are maintained and
1540 * so that rx frames have an entry to match.
1541 */
1542 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1543 KASSERT(cip->ic_cipher < N(ciphermap),
1544 ("invalid cipher type %u", cip->ic_cipher));
1545 hk.kv_type = ciphermap[cip->ic_cipher];
1546 hk.kv_len = k->wk_keylen;
1547 memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1548 } else
1549 hk.kv_type = HAL_CIPHER_CLR;
1550
1551 if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
1552 /*
1553 * Group keys on hardware that supports multicast frame
1554 * key search use a mac that is the sender's address with
1555 * the high bit set instead of the app-specified address.
1556 */
1557 IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
1558 gmac[0] |= 0x80;
1559 mac = gmac;
1560 } else
1561 mac = mac0;
1562
1563 if (hk.kv_type == HAL_CIPHER_TKIP &&
1564 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1565 sc->sc_splitmic) {
1566 return ath_keyset_tkip(sc, k, &hk, mac);
1567 } else {
1568 KEYPRINTF(sc, k->wk_keyix, &hk, mac);
1569 return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
1570 }
1571 #undef N
1572 }
1573
1574 /*
1575 * Allocate tx/rx key slots for TKIP. We allocate two slots for
1576 * each key, one for decrypt/encrypt and the other for the MIC.
1577 */
1578 static u_int16_t
1579 key_alloc_2pair(struct ath_softc *sc,
1580 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1581 {
1582 #define N(a) (sizeof(a)/sizeof(a[0]))
1583 u_int i, keyix;
1584
1585 KASSERT(sc->sc_splitmic, ("key cache !split"));
1586 /* XXX could optimize */
1587 for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1588 u_int8_t b = sc->sc_keymap[i];
1589 if (b != 0xff) {
1590 /*
1591 * One or more slots in this byte are free.
1592 */
1593 keyix = i*NBBY;
1594 while (b & 1) {
1595 again:
1596 keyix++;
1597 b >>= 1;
1598 }
1599 /* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1600 if (isset(sc->sc_keymap, keyix+32) ||
1601 isset(sc->sc_keymap, keyix+64) ||
1602 isset(sc->sc_keymap, keyix+32+64)) {
1603 /* full pair unavailable */
1604 /* XXX statistic */
1605 if (keyix == (i+1)*NBBY) {
1606 /* no slots were appropriate, advance */
1607 continue;
1608 }
1609 goto again;
1610 }
1611 setbit(sc->sc_keymap, keyix);
1612 setbit(sc->sc_keymap, keyix+64);
1613 setbit(sc->sc_keymap, keyix+32);
1614 setbit(sc->sc_keymap, keyix+32+64);
1615 DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1616 "%s: key pair %u,%u %u,%u\n",
1617 __func__, keyix, keyix+64,
1618 keyix+32, keyix+32+64);
1619 *txkeyix = keyix;
1620 *rxkeyix = keyix+32;
1621 return 1;
1622 }
1623 }
1624 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1625 return 0;
1626 #undef N
1627 }
1628
1629 /*
1630 * Allocate a single key cache slot.
1631 */
1632 static int
1633 key_alloc_single(struct ath_softc *sc,
1634 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1635 {
1636 #define N(a) (sizeof(a)/sizeof(a[0]))
1637 u_int i, keyix;
1638
1639 /* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
1640 for (i = 0; i < N(sc->sc_keymap); i++) {
1641 u_int8_t b = sc->sc_keymap[i];
1642 if (b != 0xff) {
1643 /*
1644 * One or more slots are free.
1645 */
1646 keyix = i*NBBY;
1647 while (b & 1)
1648 keyix++, b >>= 1;
1649 setbit(sc->sc_keymap, keyix);
1650 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
1651 __func__, keyix);
1652 *txkeyix = *rxkeyix = keyix;
1653 return 1;
1654 }
1655 }
1656 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
1657 return 0;
1658 #undef N
1659 }
1660
1661 /*
1662 * Allocate one or more key cache slots for a uniacst key. The
1663 * key itself is needed only to identify the cipher. For hardware
1664 * TKIP with split cipher+MIC keys we allocate two key cache slot
1665 * pairs so that we can setup separate TX and RX MIC keys. Note
1666 * that the MIC key for a TKIP key at slot i is assumed by the
1667 * hardware to be at slot i+64. This limits TKIP keys to the first
1668 * 64 entries.
1669 */
1670 static int
1671 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
1672 ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
1673 {
1674 struct ath_softc *sc = ic->ic_ifp->if_softc;
1675
1676 /*
1677 * Group key allocation must be handled specially for
1678 * parts that do not support multicast key cache search
1679 * functionality. For those parts the key id must match
1680 * the h/w key index so lookups find the right key. On
1681 * parts w/ the key search facility we install the sender's
1682 * mac address (with the high bit set) and let the hardware
1683 * find the key w/o using the key id. This is preferred as
1684 * it permits us to support multiple users for adhoc and/or
1685 * multi-station operation.
1686 */
1687 if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
1688 if (!(&ic->ic_nw_keys[0] <= k &&
1689 k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
1690 /* should not happen */
1691 DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1692 "%s: bogus group key\n", __func__);
1693 return 0;
1694 }
1695 /*
1696 * XXX we pre-allocate the global keys so
1697 * have no way to check if they've already been allocated.
1698 */
1699 *keyix = *rxkeyix = k - ic->ic_nw_keys;
1700 return 1;
1701 }
1702
1703 /*
1704 * We allocate two pair for TKIP when using the h/w to do
1705 * the MIC. For everything else, including software crypto,
1706 * we allocate a single entry. Note that s/w crypto requires
1707 * a pass-through slot on the 5211 and 5212. The 5210 does
1708 * not support pass-through cache entries and we map all
1709 * those requests to slot 0.
1710 */
1711 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1712 return key_alloc_single(sc, keyix, rxkeyix);
1713 } else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
1714 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
1715 return key_alloc_2pair(sc, keyix, rxkeyix);
1716 } else {
1717 return key_alloc_single(sc, keyix, rxkeyix);
1718 }
1719 }
1720
1721 /*
1722 * Delete an entry in the key cache allocated by ath_key_alloc.
1723 */
1724 static int
1725 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
1726 {
1727 struct ath_softc *sc = ic->ic_ifp->if_softc;
1728 struct ath_hal *ah = sc->sc_ah;
1729 const struct ieee80211_cipher *cip = k->wk_cipher;
1730 u_int keyix = k->wk_keyix;
1731
1732 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
1733
1734 ath_hal_keyreset(ah, keyix);
1735 /*
1736 * Handle split tx/rx keying required for TKIP with h/w MIC.
1737 */
1738 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1739 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
1740 ath_hal_keyreset(ah, keyix+32); /* RX key */
1741 if (keyix >= IEEE80211_WEP_NKID) {
1742 /*
1743 * Don't touch keymap entries for global keys so
1744 * they are never considered for dynamic allocation.
1745 */
1746 clrbit(sc->sc_keymap, keyix);
1747 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1748 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1749 sc->sc_splitmic) {
1750 clrbit(sc->sc_keymap, keyix+64); /* TX key MIC */
1751 clrbit(sc->sc_keymap, keyix+32); /* RX key */
1752 clrbit(sc->sc_keymap, keyix+32+64); /* RX key MIC */
1753 }
1754 }
1755 return 1;
1756 }
1757
1758 /*
1759 * Set the key cache contents for the specified key. Key cache
1760 * slot(s) must already have been allocated by ath_key_alloc.
1761 */
1762 static int
1763 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
1764 const u_int8_t mac[IEEE80211_ADDR_LEN])
1765 {
1766 struct ath_softc *sc = ic->ic_ifp->if_softc;
1767
1768 return ath_keyset(sc, k, mac, ic->ic_bss);
1769 }
1770
1771 /*
1772 * Block/unblock tx+rx processing while a key change is done.
1773 * We assume the caller serializes key management operations
1774 * so we only need to worry about synchronization with other
1775 * uses that originate in the driver.
1776 */
1777 static void
1778 ath_key_update_begin(struct ieee80211com *ic)
1779 {
1780 struct ifnet *ifp = ic->ic_ifp;
1781 struct ath_softc *sc = ifp->if_softc;
1782
1783 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1784 #if 0
1785 tasklet_disable(&sc->sc_rxtq);
1786 #endif
1787 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */
1788 }
1789
1790 static void
1791 ath_key_update_end(struct ieee80211com *ic)
1792 {
1793 struct ifnet *ifp = ic->ic_ifp;
1794 struct ath_softc *sc = ifp->if_softc;
1795
1796 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1797 IF_UNLOCK(&ifp->if_snd);
1798 #if 0
1799 tasklet_enable(&sc->sc_rxtq);
1800 #endif
1801 }
1802
1803 /*
1804 * Calculate the receive filter according to the
1805 * operating mode and state:
1806 *
1807 * o always accept unicast, broadcast, and multicast traffic
1808 * o maintain current state of phy error reception (the hal
1809 * may enable phy error frames for noise immunity work)
1810 * o probe request frames are accepted only when operating in
1811 * hostap, adhoc, or monitor modes
1812 * o enable promiscuous mode according to the interface state
1813 * o accept beacons:
1814 * - when operating in adhoc mode so the 802.11 layer creates
1815 * node table entries for peers,
1816 * - when operating in station mode for collecting rssi data when
1817 * the station is otherwise quiet, or
1818 * - when scanning
1819 */
1820 static u_int32_t
1821 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
1822 {
1823 struct ieee80211com *ic = &sc->sc_ic;
1824 struct ath_hal *ah = sc->sc_ah;
1825 struct ifnet *ifp = &sc->sc_if;
1826 u_int32_t rfilt;
1827
1828 rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1829 | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1830 if (ic->ic_opmode != IEEE80211_M_STA)
1831 rfilt |= HAL_RX_FILTER_PROBEREQ;
1832 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1833 (ifp->if_flags & IFF_PROMISC))
1834 rfilt |= HAL_RX_FILTER_PROM;
1835 if (ic->ic_opmode == IEEE80211_M_STA ||
1836 ic->ic_opmode == IEEE80211_M_IBSS ||
1837 state == IEEE80211_S_SCAN)
1838 rfilt |= HAL_RX_FILTER_BEACON;
1839 return rfilt;
1840 }
1841
1842 static void
1843 ath_mcastfilter_accum(void *dl, u_int32_t *mfilt)
1844 {
1845 u_int32_t val;
1846 u_int8_t pos;
1847
1848 /* calculate XOR of eight 6bit values */
1849 val = LE_READ_4((char *)dl + 0);
1850 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1851 val = LE_READ_4((char *)dl + 3);
1852 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1853 pos &= 0x3f;
1854 mfilt[pos / 32] |= (1 << (pos % 32));
1855 }
1856
1857 static void
1858 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t *mfilt)
1859 {
1860 struct ifnet *ifp = &sc->sc_if;
1861 struct ether_multi *enm;
1862 struct ether_multistep estep;
1863
1864 mfilt[0] = mfilt[1] = 0;
1865 ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
1866 while (enm != NULL) {
1867 /* XXX Punt on ranges. */
1868 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
1869 mfilt[0] = mfilt[1] = ~((u_int32_t)0);
1870 ifp->if_flags |= IFF_ALLMULTI;
1871 return;
1872 }
1873 ath_mcastfilter_accum(enm->enm_addrlo, mfilt);
1874 ETHER_NEXT_MULTI(estep, enm);
1875 }
1876 ifp->if_flags &= ~IFF_ALLMULTI;
1877 }
1878
1879 static void
1880 ath_mode_init(struct ath_softc *sc)
1881 {
1882 struct ieee80211com *ic = &sc->sc_ic;
1883 struct ath_hal *ah = sc->sc_ah;
1884 u_int32_t rfilt, mfilt[2];
1885 int i;
1886
1887 /* configure rx filter */
1888 rfilt = ath_calcrxfilter(sc, ic->ic_state);
1889 ath_hal_setrxfilter(ah, rfilt);
1890
1891 /* configure operational mode */
1892 ath_hal_setopmode(ah);
1893
1894 /* Write keys to hardware; it may have been powered down. */
1895 ath_key_update_begin(ic);
1896 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1897 ath_key_set(ic,
1898 &ic->ic_crypto.cs_nw_keys[i],
1899 ic->ic_myaddr);
1900 }
1901 ath_key_update_end(ic);
1902
1903 /*
1904 * Handle any link-level address change. Note that we only
1905 * need to force ic_myaddr; any other addresses are handled
1906 * as a byproduct of the ifnet code marking the interface
1907 * down then up.
1908 *
1909 * XXX should get from lladdr instead of arpcom but that's more work
1910 */
1911 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(sc->sc_if.if_sadl));
1912 ath_hal_setmac(ah, ic->ic_myaddr);
1913
1914 /* calculate and install multicast filter */
1915 #ifdef __FreeBSD__
1916 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1917 mfilt[0] = mfilt[1] = 0;
1918 IF_ADDR_LOCK(ifp);
1919 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1920 void *dl;
1921
1922 /* calculate XOR of eight 6bit values */
1923 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
1924 val = LE_READ_4((char *)dl + 0);
1925 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1926 val = LE_READ_4((char *)dl + 3);
1927 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1928 pos &= 0x3f;
1929 mfilt[pos / 32] |= (1 << (pos % 32));
1930 }
1931 IF_ADDR_UNLOCK(ifp);
1932 } else {
1933 mfilt[0] = mfilt[1] = ~0;
1934 }
1935 #endif
1936 #ifdef __NetBSD__
1937 ath_mcastfilter_compute(sc, mfilt);
1938 #endif
1939 ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1940 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
1941 __func__, rfilt, mfilt[0], mfilt[1]);
1942 }
1943
1944 /*
1945 * Set the slot time based on the current setting.
1946 */
1947 static void
1948 ath_setslottime(struct ath_softc *sc)
1949 {
1950 struct ieee80211com *ic = &sc->sc_ic;
1951 struct ath_hal *ah = sc->sc_ah;
1952
1953 if (ic->ic_flags & IEEE80211_F_SHSLOT)
1954 ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
1955 else
1956 ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
1957 sc->sc_updateslot = OK;
1958 }
1959
1960 /*
1961 * Callback from the 802.11 layer to update the
1962 * slot time based on the current setting.
1963 */
1964 static void
1965 ath_updateslot(struct ifnet *ifp)
1966 {
1967 struct ath_softc *sc = ifp->if_softc;
1968 struct ieee80211com *ic = &sc->sc_ic;
1969
1970 /*
1971 * When not coordinating the BSS, change the hardware
1972 * immediately. For other operation we defer the change
1973 * until beacon updates have propagated to the stations.
1974 */
1975 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1976 sc->sc_updateslot = UPDATE;
1977 else
1978 ath_setslottime(sc);
1979 }
1980
1981 /*
1982 * Setup a h/w transmit queue for beacons.
1983 */
1984 static int
1985 ath_beaconq_setup(struct ath_hal *ah)
1986 {
1987 HAL_TXQ_INFO qi;
1988
1989 memset(&qi, 0, sizeof(qi));
1990 qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
1991 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
1992 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
1993 /* NB: for dynamic turbo, don't enable any other interrupts */
1994 qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
1995 return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
1996 }
1997
1998 /*
1999 * Setup the transmit queue parameters for the beacon queue.
2000 */
2001 static int
2002 ath_beaconq_config(struct ath_softc *sc)
2003 {
2004 #define ATH_EXPONENT_TO_VALUE(v) ((1<<(v))-1)
2005 struct ieee80211com *ic = &sc->sc_ic;
2006 struct ath_hal *ah = sc->sc_ah;
2007 HAL_TXQ_INFO qi;
2008
2009 ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
2010 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2011 /*
2012 * Always burst out beacon and CAB traffic.
2013 */
2014 qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
2015 qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
2016 qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
2017 } else {
2018 struct wmeParams *wmep =
2019 &ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
2020 /*
2021 * Adhoc mode; important thing is to use 2x cwmin.
2022 */
2023 qi.tqi_aifs = wmep->wmep_aifsn;
2024 qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2025 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2026 }
2027
2028 if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
2029 device_printf(&sc->sc_dev, "unable to update parameters for "
2030 "beacon hardware queue!\n");
2031 return 0;
2032 } else {
2033 ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
2034 return 1;
2035 }
2036 #undef ATH_EXPONENT_TO_VALUE
2037 }
2038
2039 /*
2040 * Allocate and setup an initial beacon frame.
2041 */
2042 static int
2043 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
2044 {
2045 struct ieee80211com *ic = ni->ni_ic;
2046 struct ath_buf *bf;
2047 struct mbuf *m;
2048 int error;
2049
2050 bf = STAILQ_FIRST(&sc->sc_bbuf);
2051 if (bf == NULL) {
2052 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
2053 sc->sc_stats.ast_be_nombuf++; /* XXX */
2054 return ENOMEM; /* XXX */
2055 }
2056 /*
2057 * NB: the beacon data buffer must be 32-bit aligned;
2058 * we assume the mbuf routines will return us something
2059 * with this alignment (perhaps should assert).
2060 */
2061 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
2062 if (m == NULL) {
2063 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
2064 __func__);
2065 sc->sc_stats.ast_be_nombuf++;
2066 return ENOMEM;
2067 }
2068 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2069 BUS_DMA_NOWAIT);
2070 if (error == 0) {
2071 bf->bf_m = m;
2072 bf->bf_node = ieee80211_ref_node(ni);
2073 } else {
2074 m_freem(m);
2075 }
2076 return error;
2077 }
2078
2079 /*
2080 * Setup the beacon frame for transmit.
2081 */
2082 static void
2083 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
2084 {
2085 #define USE_SHPREAMBLE(_ic) \
2086 (((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
2087 == IEEE80211_F_SHPREAMBLE)
2088 struct ieee80211_node *ni = bf->bf_node;
2089 struct ieee80211com *ic = ni->ni_ic;
2090 struct mbuf *m = bf->bf_m;
2091 struct ath_hal *ah = sc->sc_ah;
2092 struct ath_desc *ds;
2093 int flags, antenna;
2094 const HAL_RATE_TABLE *rt;
2095 u_int8_t rix, rate;
2096
2097 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
2098 __func__, m, m->m_len);
2099
2100 /* setup descriptors */
2101 ds = bf->bf_desc;
2102
2103 flags = HAL_TXDESC_NOACK;
2104 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
2105 ds->ds_link = HTOAH32(bf->bf_daddr); /* self-linked */
2106 flags |= HAL_TXDESC_VEOL;
2107 /*
2108 * Let hardware handle antenna switching unless
2109 * the user has selected a transmit antenna
2110 * (sc_txantenna is not 0).
2111 */
2112 antenna = sc->sc_txantenna;
2113 } else {
2114 ds->ds_link = 0;
2115 /*
2116 * Switch antenna every 4 beacons, unless the user
2117 * has selected a transmit antenna (sc_txantenna
2118 * is not 0).
2119 *
2120 * XXX assumes two antenna
2121 */
2122 if (sc->sc_txantenna == 0)
2123 antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2124 else
2125 antenna = sc->sc_txantenna;
2126 }
2127
2128 KASSERT(bf->bf_nseg == 1,
2129 ("multi-segment beacon frame; nseg %u", bf->bf_nseg));
2130 ds->ds_data = bf->bf_segs[0].ds_addr;
2131 /*
2132 * Calculate rate code.
2133 * XXX everything at min xmit rate
2134 */
2135 rix = sc->sc_minrateix;
2136 rt = sc->sc_currates;
2137 rate = rt->info[rix].rateCode;
2138 if (USE_SHPREAMBLE(ic))
2139 rate |= rt->info[rix].shortPreamble;
2140 ath_hal_setuptxdesc(ah, ds
2141 , m->m_len + IEEE80211_CRC_LEN /* frame length */
2142 , sizeof(struct ieee80211_frame)/* header length */
2143 , HAL_PKT_TYPE_BEACON /* Atheros packet type */
2144 , ni->ni_txpower /* txpower XXX */
2145 , rate, 1 /* series 0 rate/tries */
2146 , HAL_TXKEYIX_INVALID /* no encryption */
2147 , antenna /* antenna mode */
2148 , flags /* no ack, veol for beacons */
2149 , 0 /* rts/cts rate */
2150 , 0 /* rts/cts duration */
2151 );
2152 /* NB: beacon's BufLen must be a multiple of 4 bytes */
2153 ath_hal_filltxdesc(ah, ds
2154 , roundup(m->m_len, 4) /* buffer length */
2155 , AH_TRUE /* first segment */
2156 , AH_TRUE /* last segment */
2157 , ds /* first descriptor */
2158 );
2159
2160 /* NB: The desc swap function becomes void,
2161 * if descriptor swapping is not enabled
2162 */
2163 ath_desc_swap(ds);
2164
2165 #undef USE_SHPREAMBLE
2166 }
2167
2168 /*
2169 * Transmit a beacon frame at SWBA. Dynamic updates to the
2170 * frame contents are done as needed and the slot time is
2171 * also adjusted based on current state.
2172 */
2173 static void
2174 ath_beacon_proc(void *arg, int pending)
2175 {
2176 struct ath_softc *sc = arg;
2177 struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
2178 struct ieee80211_node *ni = bf->bf_node;
2179 struct ieee80211com *ic = ni->ni_ic;
2180 struct ath_hal *ah = sc->sc_ah;
2181 struct mbuf *m;
2182 int ncabq, error, otherant;
2183
2184 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2185 __func__, pending);
2186
2187 if (ic->ic_opmode == IEEE80211_M_STA ||
2188 ic->ic_opmode == IEEE80211_M_MONITOR ||
2189 bf == NULL || bf->bf_m == NULL) {
2190 DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
2191 __func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
2192 return;
2193 }
2194 /*
2195 * Check if the previous beacon has gone out. If
2196 * not don't try to post another, skip this period
2197 * and wait for the next. Missed beacons indicate
2198 * a problem and should not occur. If we miss too
2199 * many consecutive beacons reset the device.
2200 */
2201 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2202 sc->sc_bmisscount++;
2203 DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2204 "%s: missed %u consecutive beacons\n",
2205 __func__, sc->sc_bmisscount);
2206 if (sc->sc_bmisscount > 3) /* NB: 3 is a guess */
2207 TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask);
2208 return;
2209 }
2210 if (sc->sc_bmisscount != 0) {
2211 DPRINTF(sc, ATH_DEBUG_BEACON,
2212 "%s: resume beacon xmit after %u misses\n",
2213 __func__, sc->sc_bmisscount);
2214 sc->sc_bmisscount = 0;
2215 }
2216
2217 /*
2218 * Update dynamic beacon contents. If this returns
2219 * non-zero then we need to remap the memory because
2220 * the beacon frame changed size (probably because
2221 * of the TIM bitmap).
2222 */
2223 m = bf->bf_m;
2224 ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
2225 if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
2226 /* XXX too conservative? */
2227 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2228 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2229 BUS_DMA_NOWAIT);
2230 if (error != 0) {
2231 if_printf(&sc->sc_if,
2232 "%s: bus_dmamap_load_mbuf failed, error %u\n",
2233 __func__, error);
2234 return;
2235 }
2236 }
2237
2238 /*
2239 * Handle slot time change when a non-ERP station joins/leaves
2240 * an 11g network. The 802.11 layer notifies us via callback,
2241 * we mark updateslot, then wait one beacon before effecting
2242 * the change. This gives associated stations at least one
2243 * beacon interval to note the state change.
2244 */
2245 /* XXX locking */
2246 if (sc->sc_updateslot == UPDATE)
2247 sc->sc_updateslot = COMMIT; /* commit next beacon */
2248 else if (sc->sc_updateslot == COMMIT)
2249 ath_setslottime(sc); /* commit change to h/w */
2250
2251 /*
2252 * Check recent per-antenna transmit statistics and flip
2253 * the default antenna if noticeably more frames went out
2254 * on the non-default antenna.
2255 * XXX assumes 2 anntenae
2256 */
2257 otherant = sc->sc_defant & 1 ? 2 : 1;
2258 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2259 ath_setdefantenna(sc, otherant);
2260 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2261
2262 /*
2263 * Construct tx descriptor.
2264 */
2265 ath_beacon_setup(sc, bf);
2266
2267 /*
2268 * Stop any current dma and put the new frame on the queue.
2269 * This should never fail since we check above that no frames
2270 * are still pending on the queue.
2271 */
2272 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2273 DPRINTF(sc, ATH_DEBUG_ANY,
2274 "%s: beacon queue %u did not stop?\n",
2275 __func__, sc->sc_bhalq);
2276 }
2277 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2278 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2279
2280 /*
2281 * Enable the CAB queue before the beacon queue to
2282 * insure cab frames are triggered by this beacon.
2283 */
2284 if (ncabq != 0 && (sc->sc_boff.bo_tim[4] & 1)) /* NB: only at DTIM */
2285 ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
2286 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
2287 ath_hal_txstart(ah, sc->sc_bhalq);
2288 DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2289 "%s: TXDP[%u] = %" PRIx64 " (%p)\n", __func__,
2290 sc->sc_bhalq, (uint64_t)bf->bf_daddr, bf->bf_desc);
2291
2292 sc->sc_stats.ast_be_xmit++;
2293 }
2294
2295 /*
2296 * Reset the hardware after detecting beacons have stopped.
2297 */
2298 static void
2299 ath_bstuck_proc(void *arg, int pending)
2300 {
2301 struct ath_softc *sc = arg;
2302 struct ifnet *ifp = &sc->sc_if;
2303
2304 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2305 sc->sc_bmisscount);
2306 ath_reset(ifp);
2307 }
2308
2309 /*
2310 * Reclaim beacon resources.
2311 */
2312 static void
2313 ath_beacon_free(struct ath_softc *sc)
2314 {
2315 struct ath_buf *bf;
2316
2317 STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
2318 if (bf->bf_m != NULL) {
2319 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2320 m_freem(bf->bf_m);
2321 bf->bf_m = NULL;
2322 }
2323 if (bf->bf_node != NULL) {
2324 ieee80211_free_node(bf->bf_node);
2325 bf->bf_node = NULL;
2326 }
2327 }
2328 }
2329
2330 /*
2331 * Configure the beacon and sleep timers.
2332 *
2333 * When operating as an AP this resets the TSF and sets
2334 * up the hardware to notify us when we need to issue beacons.
2335 *
2336 * When operating in station mode this sets up the beacon
2337 * timers according to the timestamp of the last received
2338 * beacon and the current TSF, configures PCF and DTIM
2339 * handling, programs the sleep registers so the hardware
2340 * will wakeup in time to receive beacons, and configures
2341 * the beacon miss handling so we'll receive a BMISS
2342 * interrupt when we stop seeing beacons from the AP
2343 * we've associated with.
2344 */
2345 static void
2346 ath_beacon_config(struct ath_softc *sc)
2347 {
2348 #define TSF_TO_TU(_h,_l) \
2349 ((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
2350 #define FUDGE 2
2351 struct ath_hal *ah = sc->sc_ah;
2352 struct ieee80211com *ic = &sc->sc_ic;
2353 struct ieee80211_node *ni = ic->ic_bss;
2354 u_int32_t nexttbtt, intval, tsftu;
2355 u_int64_t tsf;
2356
2357 /* extract tstamp from last beacon and convert to TU */
2358 nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
2359 LE_READ_4(ni->ni_tstamp.data));
2360 /* NB: the beacon interval is kept internally in TU's */
2361 intval = ni->ni_intval & HAL_BEACON_PERIOD;
2362 if (nexttbtt == 0) /* e.g. for ap mode */
2363 nexttbtt = intval;
2364 else if (intval) /* NB: can be 0 for monitor mode */
2365 nexttbtt = roundup(nexttbtt, intval);
2366 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2367 __func__, nexttbtt, intval, ni->ni_intval);
2368 if (ic->ic_opmode == IEEE80211_M_STA) {
2369 HAL_BEACON_STATE bs;
2370 int dtimperiod, dtimcount;
2371 int cfpperiod, cfpcount;
2372
2373 /*
2374 * Setup dtim and cfp parameters according to
2375 * last beacon we received (which may be none).
2376 */
2377 dtimperiod = ni->ni_dtim_period;
2378 if (dtimperiod <= 0) /* NB: 0 if not known */
2379 dtimperiod = 1;
2380 dtimcount = ni->ni_dtim_count;
2381 if (dtimcount >= dtimperiod) /* NB: sanity check */
2382 dtimcount = 0; /* XXX? */
2383 cfpperiod = 1; /* NB: no PCF support yet */
2384 cfpcount = 0;
2385 /*
2386 * Pull nexttbtt forward to reflect the current
2387 * TSF and calculate dtim+cfp state for the result.
2388 */
2389 tsf = ath_hal_gettsf64(ah);
2390 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2391 do {
2392 nexttbtt += intval;
2393 if (--dtimcount < 0) {
2394 dtimcount = dtimperiod - 1;
2395 if (--cfpcount < 0)
2396 cfpcount = cfpperiod - 1;
2397 }
2398 } while (nexttbtt < tsftu);
2399 memset(&bs, 0, sizeof(bs));
2400 bs.bs_intval = intval;
2401 bs.bs_nexttbtt = nexttbtt;
2402 bs.bs_dtimperiod = dtimperiod*intval;
2403 bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
2404 bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
2405 bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
2406 bs.bs_cfpmaxduration = 0;
2407 #if 0
2408 /*
2409 * The 802.11 layer records the offset to the DTIM
2410 * bitmap while receiving beacons; use it here to
2411 * enable h/w detection of our AID being marked in
2412 * the bitmap vector (to indicate frames for us are
2413 * pending at the AP).
2414 * XXX do DTIM handling in s/w to WAR old h/w bugs
2415 * XXX enable based on h/w rev for newer chips
2416 */
2417 bs.bs_timoffset = ni->ni_timoff;
2418 #endif
2419 /*
2420 * Calculate the number of consecutive beacons to miss
2421 * before taking a BMISS interrupt. The configuration
2422 * is specified in ms, so we need to convert that to
2423 * TU's and then calculate based on the beacon interval.
2424 * Note that we clamp the result to at most 10 beacons.
2425 */
2426 bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
2427 if (bs.bs_bmissthreshold > 10)
2428 bs.bs_bmissthreshold = 10;
2429 else if (bs.bs_bmissthreshold <= 0)
2430 bs.bs_bmissthreshold = 1;
2431
2432 /*
2433 * Calculate sleep duration. The configuration is
2434 * given in ms. We insure a multiple of the beacon
2435 * period is used. Also, if the sleep duration is
2436 * greater than the DTIM period then it makes senses
2437 * to make it a multiple of that.
2438 *
2439 * XXX fixed at 100ms
2440 */
2441 bs.bs_sleepduration =
2442 roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2443 if (bs.bs_sleepduration > bs.bs_dtimperiod)
2444 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2445
2446 DPRINTF(sc, ATH_DEBUG_BEACON,
2447 "%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2448 , __func__
2449 , tsf, tsftu
2450 , bs.bs_intval
2451 , bs.bs_nexttbtt
2452 , bs.bs_dtimperiod
2453 , bs.bs_nextdtim
2454 , bs.bs_bmissthreshold
2455 , bs.bs_sleepduration
2456 , bs.bs_cfpperiod
2457 , bs.bs_cfpmaxduration
2458 , bs.bs_cfpnext
2459 , bs.bs_timoffset
2460 );
2461 ath_hal_intrset(ah, 0);
2462 ath_hal_beacontimers(ah, &bs);
2463 sc->sc_imask |= HAL_INT_BMISS;
2464 ath_hal_intrset(ah, sc->sc_imask);
2465 } else {
2466 ath_hal_intrset(ah, 0);
2467 if (nexttbtt == intval)
2468 intval |= HAL_BEACON_RESET_TSF;
2469 if (ic->ic_opmode == IEEE80211_M_IBSS) {
2470 /*
2471 * In IBSS mode enable the beacon timers but only
2472 * enable SWBA interrupts if we need to manually
2473 * prepare beacon frames. Otherwise we use a
2474 * self-linked tx descriptor and let the hardware
2475 * deal with things.
2476 */
2477 intval |= HAL_BEACON_ENA;
2478 if (!sc->sc_hasveol)
2479 sc->sc_imask |= HAL_INT_SWBA;
2480 if ((intval & HAL_BEACON_RESET_TSF) == 0) {
2481 /*
2482 * Pull nexttbtt forward to reflect
2483 * the current TSF.
2484 */
2485 tsf = ath_hal_gettsf64(ah);
2486 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2487 do {
2488 nexttbtt += intval;
2489 } while (nexttbtt < tsftu);
2490 }
2491 ath_beaconq_config(sc);
2492 } else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2493 /*
2494 * In AP mode we enable the beacon timers and
2495 * SWBA interrupts to prepare beacon frames.
2496 */
2497 intval |= HAL_BEACON_ENA;
2498 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */
2499 ath_beaconq_config(sc);
2500 }
2501 ath_hal_beaconinit(ah, nexttbtt, intval);
2502 sc->sc_bmisscount = 0;
2503 ath_hal_intrset(ah, sc->sc_imask);
2504 /*
2505 * When using a self-linked beacon descriptor in
2506 * ibss mode load it once here.
2507 */
2508 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2509 ath_beacon_proc(sc, 0);
2510 }
2511 sc->sc_syncbeacon = 0;
2512 #undef UNDEF
2513 #undef TSF_TO_TU
2514 }
2515
2516 static int
2517 ath_descdma_setup(struct ath_softc *sc,
2518 struct ath_descdma *dd, ath_bufhead *head,
2519 const char *name, int nbuf, int ndesc)
2520 {
2521 #define DS2PHYS(_dd, _ds) \
2522 ((_dd)->dd_desc_paddr + ((char *)(_ds) - (char *)(_dd)->dd_desc))
2523 struct ifnet *ifp = &sc->sc_if;
2524 struct ath_desc *ds;
2525 struct ath_buf *bf;
2526 int i, bsize, error;
2527
2528 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2529 __func__, name, nbuf, ndesc);
2530
2531 dd->dd_name = name;
2532 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2533
2534 /*
2535 * Setup DMA descriptor area.
2536 */
2537 dd->dd_dmat = sc->sc_dmat;
2538
2539 error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE,
2540 0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0);
2541
2542 if (error != 0) {
2543 if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2544 "error %u\n", nbuf * ndesc, dd->dd_name, error);
2545 goto fail0;
2546 }
2547
2548 error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg,
2549 dd->dd_desc_len, (void **)&dd->dd_desc, BUS_DMA_COHERENT);
2550 if (error != 0) {
2551 if_printf(ifp, "unable to map %u %s descriptors, error = %u\n",
2552 nbuf * ndesc, dd->dd_name, error);
2553 goto fail1;
2554 }
2555
2556 /* allocate descriptors */
2557 error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1,
2558 dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2559 if (error != 0) {
2560 if_printf(ifp, "unable to create dmamap for %s descriptors, "
2561 "error %u\n", dd->dd_name, error);
2562 goto fail2;
2563 }
2564
2565 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc,
2566 dd->dd_desc_len, NULL, BUS_DMA_NOWAIT);
2567 if (error != 0) {
2568 if_printf(ifp, "unable to map %s descriptors, error %u\n",
2569 dd->dd_name, error);
2570 goto fail3;
2571 }
2572
2573 ds = dd->dd_desc;
2574 dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr;
2575 DPRINTF(sc, ATH_DEBUG_RESET,
2576 "%s: %s DMA map: %p (%lu) -> %" PRIx64 " (%lu)\n",
2577 __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2578 (uint64_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2579
2580 /* allocate rx buffers */
2581 bsize = sizeof(struct ath_buf) * nbuf;
2582 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2583 if (bf == NULL) {
2584 if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2585 dd->dd_name, bsize);
2586 goto fail4;
2587 }
2588 dd->dd_bufptr = bf;
2589
2590 STAILQ_INIT(head);
2591 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2592 bf->bf_desc = ds;
2593 bf->bf_daddr = DS2PHYS(dd, ds);
2594 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc,
2595 MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap);
2596 if (error != 0) {
2597 if_printf(ifp, "unable to create dmamap for %s "
2598 "buffer %u, error %u\n", dd->dd_name, i, error);
2599 ath_descdma_cleanup(sc, dd, head);
2600 return error;
2601 }
2602 STAILQ_INSERT_TAIL(head, bf, bf_list);
2603 }
2604 return 0;
2605 fail4:
2606 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2607 fail3:
2608 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2609 fail2:
2610 bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
2611 fail1:
2612 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2613 fail0:
2614 memset(dd, 0, sizeof(*dd));
2615 return error;
2616 #undef DS2PHYS
2617 }
2618
2619 static void
2620 ath_descdma_cleanup(struct ath_softc *sc,
2621 struct ath_descdma *dd, ath_bufhead *head)
2622 {
2623 struct ath_buf *bf;
2624 struct ieee80211_node *ni;
2625
2626 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2627 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2628 bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
2629 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2630
2631 STAILQ_FOREACH(bf, head, bf_list) {
2632 if (bf->bf_m) {
2633 m_freem(bf->bf_m);
2634 bf->bf_m = NULL;
2635 }
2636 if (bf->bf_dmamap != NULL) {
2637 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2638 bf->bf_dmamap = NULL;
2639 }
2640 ni = bf->bf_node;
2641 bf->bf_node = NULL;
2642 if (ni != NULL) {
2643 /*
2644 * Reclaim node reference.
2645 */
2646 ieee80211_free_node(ni);
2647 }
2648 }
2649
2650 STAILQ_INIT(head);
2651 free(dd->dd_bufptr, M_ATHDEV);
2652 memset(dd, 0, sizeof(*dd));
2653 }
2654
2655 static int
2656 ath_desc_alloc(struct ath_softc *sc)
2657 {
2658 int error;
2659
2660 error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2661 "rx", ath_rxbuf, 1);
2662 if (error != 0)
2663 return error;
2664
2665 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2666 "tx", ath_txbuf, ATH_TXDESC);
2667 if (error != 0) {
2668 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2669 return error;
2670 }
2671
2672 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2673 "beacon", 1, 1);
2674 if (error != 0) {
2675 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2676 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2677 return error;
2678 }
2679 return 0;
2680 }
2681
2682 static void
2683 ath_desc_free(struct ath_softc *sc)
2684 {
2685
2686 if (sc->sc_bdma.dd_desc_len != 0)
2687 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2688 if (sc->sc_txdma.dd_desc_len != 0)
2689 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2690 if (sc->sc_rxdma.dd_desc_len != 0)
2691 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2692 }
2693
2694 static struct ieee80211_node *
2695 ath_node_alloc(struct ieee80211_node_table *nt)
2696 {
2697 struct ieee80211com *ic = nt->nt_ic;
2698 struct ath_softc *sc = ic->ic_ifp->if_softc;
2699 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2700 struct ath_node *an;
2701
2702 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2703 if (an == NULL) {
2704 /* XXX stat+msg */
2705 return NULL;
2706 }
2707 an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
2708 ath_rate_node_init(sc, an);
2709
2710 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2711 return &an->an_node;
2712 }
2713
2714 static void
2715 ath_node_free(struct ieee80211_node *ni)
2716 {
2717 struct ieee80211com *ic = ni->ni_ic;
2718 struct ath_softc *sc = ic->ic_ifp->if_softc;
2719
2720 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2721
2722 ath_rate_node_cleanup(sc, ATH_NODE(ni));
2723 sc->sc_node_free(ni);
2724 }
2725
2726 static u_int8_t
2727 ath_node_getrssi(const struct ieee80211_node *ni)
2728 {
2729 #define HAL_EP_RND(x, mul) \
2730 ((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
2731 u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
2732 int32_t rssi;
2733
2734 /*
2735 * When only one frame is received there will be no state in
2736 * avgrssi so fallback on the value recorded by the 802.11 layer.
2737 */
2738 if (avgrssi != ATH_RSSI_DUMMY_MARKER)
2739 rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
2740 else
2741 rssi = ni->ni_rssi;
2742 return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
2743 #undef HAL_EP_RND
2744 }
2745
2746 static int
2747 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2748 {
2749 struct ath_hal *ah = sc->sc_ah;
2750 int error;
2751 struct mbuf *m;
2752 struct ath_desc *ds;
2753
2754 m = bf->bf_m;
2755 if (m == NULL) {
2756 /*
2757 * NB: by assigning a page to the rx dma buffer we
2758 * implicitly satisfy the Atheros requirement that
2759 * this buffer be cache-line-aligned and sized to be
2760 * multiple of the cache line size. Not doing this
2761 * causes weird stuff to happen (for the 5210 at least).
2762 */
2763 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2764 if (m == NULL) {
2765 DPRINTF(sc, ATH_DEBUG_ANY,
2766 "%s: no mbuf/cluster\n", __func__);
2767 sc->sc_stats.ast_rx_nombuf++;
2768 return ENOMEM;
2769 }
2770 bf->bf_m = m;
2771 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2772
2773 error = bus_dmamap_load_mbuf(sc->sc_dmat,
2774 bf->bf_dmamap, m,
2775 BUS_DMA_NOWAIT);
2776 if (error != 0) {
2777 DPRINTF(sc, ATH_DEBUG_ANY,
2778 "%s: bus_dmamap_load_mbuf failed; error %d\n",
2779 __func__, error);
2780 sc->sc_stats.ast_rx_busdma++;
2781 return error;
2782 }
2783 KASSERT(bf->bf_nseg == 1,
2784 ("multi-segment packet; nseg %u", bf->bf_nseg));
2785 }
2786 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2787 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2788
2789 /*
2790 * Setup descriptors. For receive we always terminate
2791 * the descriptor list with a self-linked entry so we'll
2792 * not get overrun under high load (as can happen with a
2793 * 5212 when ANI processing enables PHY error frames).
2794 *
2795 * To insure the last descriptor is self-linked we create
2796 * each descriptor as self-linked and add it to the end. As
2797 * each additional descriptor is added the previous self-linked
2798 * entry is ``fixed'' naturally. This should be safe even
2799 * if DMA is happening. When processing RX interrupts we
2800 * never remove/process the last, self-linked, entry on the
2801 * descriptor list. This insures the hardware always has
2802 * someplace to write a new frame.
2803 */
2804 ds = bf->bf_desc;
2805 ds->ds_link = HTOAH32(bf->bf_daddr); /* link to self */
2806 ds->ds_data = bf->bf_segs[0].ds_addr;
2807 ds->ds_vdata = mtod(m, void *); /* for radar */
2808 ath_hal_setuprxdesc(ah, ds
2809 , m->m_len /* buffer size */
2810 , 0
2811 );
2812
2813 if (sc->sc_rxlink != NULL)
2814 *sc->sc_rxlink = bf->bf_daddr;
2815 sc->sc_rxlink = &ds->ds_link;
2816 return 0;
2817 }
2818
2819 /*
2820 * Extend 15-bit time stamp from rx descriptor to
2821 * a full 64-bit TSF using the specified TSF.
2822 */
2823 static inline u_int64_t
2824 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
2825 {
2826 if ((tsf & 0x7fff) < rstamp)
2827 tsf -= 0x8000;
2828 return ((tsf &~ 0x7fff) | rstamp);
2829 }
2830
2831 /*
2832 * Intercept management frames to collect beacon rssi data
2833 * and to do ibss merges.
2834 */
2835 static void
2836 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2837 struct ieee80211_node *ni,
2838 int subtype, int rssi, u_int32_t rstamp)
2839 {
2840 struct ath_softc *sc = ic->ic_ifp->if_softc;
2841
2842 /*
2843 * Call up first so subsequent work can use information
2844 * potentially stored in the node (e.g. for ibss merge).
2845 */
2846 sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
2847 switch (subtype) {
2848 case IEEE80211_FC0_SUBTYPE_BEACON:
2849 /* update rssi statistics for use by the hal */
2850 ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
2851 if (sc->sc_syncbeacon &&
2852 ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) {
2853 /*
2854 * Resync beacon timers using the tsf of the beacon
2855 * frame we just received.
2856 */
2857 ath_beacon_config(sc);
2858 }
2859 /* fall thru... */
2860 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2861 if (ic->ic_opmode == IEEE80211_M_IBSS &&
2862 ic->ic_state == IEEE80211_S_RUN) {
2863 u_int64_t tsf = ath_extend_tsf(rstamp,
2864 ath_hal_gettsf64(sc->sc_ah));
2865
2866 /*
2867 * Handle ibss merge as needed; check the tsf on the
2868 * frame before attempting the merge. The 802.11 spec
2869 * says the station should change it's bssid to match
2870 * the oldest station with the same ssid, where oldest
2871 * is determined by the tsf. Note that hardware
2872 * reconfiguration happens through callback to
2873 * ath_newstate as the state machine will go from
2874 * RUN -> RUN when this happens.
2875 */
2876 if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
2877 DPRINTF(sc, ATH_DEBUG_STATE,
2878 "ibss merge, rstamp %u tsf %ju "
2879 "tstamp %ju\n", rstamp, (uintmax_t)tsf,
2880 (uintmax_t)ni->ni_tstamp.tsf);
2881 (void) ieee80211_ibss_merge(ni);
2882 }
2883 }
2884 break;
2885 }
2886 }
2887
2888 /*
2889 * Set the default antenna.
2890 */
2891 static void
2892 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
2893 {
2894 struct ath_hal *ah = sc->sc_ah;
2895
2896 /* XXX block beacon interrupts */
2897 ath_hal_setdefantenna(ah, antenna);
2898 if (sc->sc_defant != antenna)
2899 sc->sc_stats.ast_ant_defswitch++;
2900 sc->sc_defant = antenna;
2901 sc->sc_rxotherant = 0;
2902 }
2903
2904 static void
2905 ath_rx_proc(void *arg, int npending)
2906 {
2907 #define PA2DESC(_sc, _pa) \
2908 ((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
2909 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
2910 struct ath_softc *sc = arg;
2911 struct ath_buf *bf;
2912 struct ieee80211com *ic = &sc->sc_ic;
2913 struct ifnet *ifp = &sc->sc_if;
2914 struct ath_hal *ah = sc->sc_ah;
2915 struct ath_desc *ds;
2916 struct mbuf *m;
2917 struct ieee80211_node *ni;
2918 struct ath_node *an;
2919 int len, type, ngood;
2920 u_int phyerr;
2921 HAL_STATUS status;
2922 int16_t nf;
2923 u_int64_t tsf;
2924
2925 NET_LOCK_GIANT(); /* XXX */
2926
2927 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
2928 ngood = 0;
2929 nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
2930 tsf = ath_hal_gettsf64(ah);
2931 do {
2932 bf = STAILQ_FIRST(&sc->sc_rxbuf);
2933 if (bf == NULL) { /* NB: shouldn't happen */
2934 if_printf(ifp, "%s: no buffer!\n", __func__);
2935 break;
2936 }
2937 ds = bf->bf_desc;
2938 if (ds->ds_link == bf->bf_daddr) {
2939 /* NB: never process the self-linked entry at the end */
2940 break;
2941 }
2942 m = bf->bf_m;
2943 if (m == NULL) { /* NB: shouldn't happen */
2944 if_printf(ifp, "%s: no mbuf!\n", __func__);
2945 break;
2946 }
2947 /* XXX sync descriptor memory */
2948 /*
2949 * Must provide the virtual address of the current
2950 * descriptor, the physical address, and the virtual
2951 * address of the next descriptor in the h/w chain.
2952 * This allows the HAL to look ahead to see if the
2953 * hardware is done with a descriptor by checking the
2954 * done bit in the following descriptor and the address
2955 * of the current descriptor the DMA engine is working
2956 * on. All this is necessary because of our use of
2957 * a self-linked list to avoid rx overruns.
2958 */
2959 status = ath_hal_rxprocdesc(ah, ds,
2960 bf->bf_daddr, PA2DESC(sc, ds->ds_link));
2961 #ifdef AR_DEBUG
2962 if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
2963 ath_printrxbuf(bf, status == HAL_OK);
2964 #endif
2965 if (status == HAL_EINPROGRESS)
2966 break;
2967 STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
2968 if (ds->ds_rxstat.rs_more) {
2969 /*
2970 * Frame spans multiple descriptors; this
2971 * cannot happen yet as we don't support
2972 * jumbograms. If not in monitor mode,
2973 * discard the frame.
2974 */
2975 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2976 sc->sc_stats.ast_rx_toobig++;
2977 goto rx_next;
2978 }
2979 /* fall thru for monitor mode handling... */
2980 } else if (ds->ds_rxstat.rs_status != 0) {
2981 if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
2982 sc->sc_stats.ast_rx_crcerr++;
2983 if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
2984 sc->sc_stats.ast_rx_fifoerr++;
2985 if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
2986 sc->sc_stats.ast_rx_phyerr++;
2987 phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
2988 sc->sc_stats.ast_rx_phy[phyerr]++;
2989 goto rx_next;
2990 }
2991 if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
2992 /*
2993 * Decrypt error. If the error occurred
2994 * because there was no hardware key, then
2995 * let the frame through so the upper layers
2996 * can process it. This is necessary for 5210
2997 * parts which have no way to setup a ``clear''
2998 * key cache entry.
2999 *
3000 * XXX do key cache faulting
3001 */
3002 if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
3003 goto rx_accept;
3004 sc->sc_stats.ast_rx_badcrypt++;
3005 }
3006 if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
3007 sc->sc_stats.ast_rx_badmic++;
3008 /*
3009 * Do minimal work required to hand off
3010 * the 802.11 header for notifcation.
3011 */
3012 /* XXX frag's and qos frames */
3013 len = ds->ds_rxstat.rs_datalen;
3014 if (len >= sizeof (struct ieee80211_frame)) {
3015 bus_dmamap_sync(sc->sc_dmat,
3016 bf->bf_dmamap,
3017 0, bf->bf_dmamap->dm_mapsize,
3018 BUS_DMASYNC_POSTREAD);
3019 ieee80211_notify_michael_failure(ic,
3020 mtod(m, struct ieee80211_frame *),
3021 sc->sc_splitmic ?
3022 ds->ds_rxstat.rs_keyix-32 :
3023 ds->ds_rxstat.rs_keyix
3024 );
3025 }
3026 }
3027 ifp->if_ierrors++;
3028 /*
3029 * Reject error frames, we normally don't want
3030 * to see them in monitor mode (in monitor mode
3031 * allow through packets that have crypto problems).
3032 */
3033 if ((ds->ds_rxstat.rs_status &~
3034 (HAL_RXERR_DECRYPT|HAL_RXERR_MIC)) ||
3035 sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
3036 goto rx_next;
3037 }
3038 rx_accept:
3039 /*
3040 * Sync and unmap the frame. At this point we're
3041 * committed to passing the mbuf somewhere so clear
3042 * bf_m; this means a new sk_buff must be allocated
3043 * when the rx descriptor is setup again to receive
3044 * another frame.
3045 */
3046 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3047 0, bf->bf_dmamap->dm_mapsize,
3048 BUS_DMASYNC_POSTREAD);
3049 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3050 bf->bf_m = NULL;
3051
3052 m->m_pkthdr.rcvif = ifp;
3053 len = ds->ds_rxstat.rs_datalen;
3054 m->m_pkthdr.len = m->m_len = len;
3055
3056 sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
3057
3058 #if NBPFILTER > 0
3059 if (sc->sc_drvbpf) {
3060 u_int8_t rix;
3061
3062 /*
3063 * Discard anything shorter than an ack or cts.
3064 */
3065 if (len < IEEE80211_ACK_LEN) {
3066 DPRINTF(sc, ATH_DEBUG_RECV,
3067 "%s: runt packet %d\n",
3068 __func__, len);
3069 sc->sc_stats.ast_rx_tooshort++;
3070 m_freem(m);
3071 goto rx_next;
3072 }
3073 rix = ds->ds_rxstat.rs_rate;
3074 sc->sc_rx_th.wr_tsf = htole64(
3075 ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf));
3076 sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
3077 sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
3078 sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf;
3079 sc->sc_rx_th.wr_antnoise = nf;
3080 sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
3081
3082 bpf_mtap2(sc->sc_drvbpf,
3083 &sc->sc_rx_th, sc->sc_rx_th_len, m);
3084 }
3085 #endif
3086
3087 /*
3088 * From this point on we assume the frame is at least
3089 * as large as ieee80211_frame_min; verify that.
3090 */
3091 if (len < IEEE80211_MIN_LEN) {
3092 DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
3093 __func__, len);
3094 sc->sc_stats.ast_rx_tooshort++;
3095 m_freem(m);
3096 goto rx_next;
3097 }
3098
3099 if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
3100 ieee80211_dump_pkt(mtod(m, void *), len,
3101 sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
3102 ds->ds_rxstat.rs_rssi);
3103 }
3104
3105 m_adj(m, -IEEE80211_CRC_LEN);
3106
3107 /*
3108 * Locate the node for sender, track state, and then
3109 * pass the (referenced) node up to the 802.11 layer
3110 * for its use.
3111 */
3112 ni = ieee80211_find_rxnode_withkey(ic,
3113 mtod(m, const struct ieee80211_frame_min *),
3114 ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
3115 IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
3116 /*
3117 * Track rx rssi and do any rx antenna management.
3118 */
3119 an = ATH_NODE(ni);
3120 ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
3121 ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi);
3122 /*
3123 * Send frame up for processing.
3124 */
3125 type = ieee80211_input(ic, m, ni,
3126 ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
3127 ieee80211_free_node(ni);
3128 if (sc->sc_diversity) {
3129 /*
3130 * When using fast diversity, change the default rx
3131 * antenna if diversity chooses the other antenna 3
3132 * times in a row.
3133 */
3134 if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
3135 if (++sc->sc_rxotherant >= 3)
3136 ath_setdefantenna(sc,
3137 ds->ds_rxstat.rs_antenna);
3138 } else
3139 sc->sc_rxotherant = 0;
3140 }
3141 if (sc->sc_softled) {
3142 /*
3143 * Blink for any data frame. Otherwise do a
3144 * heartbeat-style blink when idle. The latter
3145 * is mainly for station mode where we depend on
3146 * periodic beacon frames to trigger the poll event.
3147 */
3148 if (type == IEEE80211_FC0_TYPE_DATA) {
3149 sc->sc_rxrate = ds->ds_rxstat.rs_rate;
3150 ath_led_event(sc, ATH_LED_RX);
3151 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
3152 ath_led_event(sc, ATH_LED_POLL);
3153 }
3154 /*
3155 * Arrange to update the last rx timestamp only for
3156 * frames from our ap when operating in station mode.
3157 * This assumes the rx key is always setup when associated.
3158 */
3159 if (ic->ic_opmode == IEEE80211_M_STA &&
3160 ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID)
3161 ngood++;
3162 rx_next:
3163 STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
3164 } while (ath_rxbuf_init(sc, bf) == 0);
3165
3166 /* rx signal state monitoring */
3167 ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
3168 if (ath_hal_radar_event(ah))
3169 TASK_RUN_OR_ENQUEUE(&sc->sc_radartask);
3170 if (ngood)
3171 sc->sc_lastrx = tsf;
3172
3173 #ifdef __NetBSD__
3174 /* XXX Why isn't this necessary in FreeBSD? */
3175 if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
3176 ath_start(ifp);
3177 #endif /* __NetBSD__ */
3178
3179 NET_UNLOCK_GIANT(); /* XXX */
3180 #undef PA2DESC
3181 }
3182
3183 /*
3184 * Setup a h/w transmit queue.
3185 */
3186 static struct ath_txq *
3187 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3188 {
3189 #define N(a) (sizeof(a)/sizeof(a[0]))
3190 struct ath_hal *ah = sc->sc_ah;
3191 HAL_TXQ_INFO qi;
3192 int qnum;
3193
3194 memset(&qi, 0, sizeof(qi));
3195 qi.tqi_subtype = subtype;
3196 qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3197 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3198 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3199 /*
3200 * Enable interrupts only for EOL and DESC conditions.
3201 * We mark tx descriptors to receive a DESC interrupt
3202 * when a tx queue gets deep; otherwise waiting for the
3203 * EOL to reap descriptors. Note that this is done to
3204 * reduce interrupt load and this only defers reaping
3205 * descriptors, never transmitting frames. Aside from
3206 * reducing interrupts this also permits more concurrency.
3207 * The only potential downside is if the tx queue backs
3208 * up in which case the top half of the kernel may backup
3209 * due to a lack of tx descriptors.
3210 */
3211 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
3212 qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3213 if (qnum == -1) {
3214 /*
3215 * NB: don't print a message, this happens
3216 * normally on parts with too few tx queues
3217 */
3218 return NULL;
3219 }
3220 if (qnum >= N(sc->sc_txq)) {
3221 device_printf(&sc->sc_dev,
3222 "hal qnum %u out of range, max %zu!\n",
3223 qnum, N(sc->sc_txq));
3224 ath_hal_releasetxqueue(ah, qnum);
3225 return NULL;
3226 }
3227 if (!ATH_TXQ_SETUP(sc, qnum)) {
3228 struct ath_txq *txq = &sc->sc_txq[qnum];
3229
3230 txq->axq_qnum = qnum;
3231 txq->axq_depth = 0;
3232 txq->axq_intrcnt = 0;
3233 txq->axq_link = NULL;
3234 STAILQ_INIT(&txq->axq_q);
3235 ATH_TXQ_LOCK_INIT(sc, txq);
3236 sc->sc_txqsetup |= 1<<qnum;
3237 }
3238 return &sc->sc_txq[qnum];
3239 #undef N
3240 }
3241
3242 /*
3243 * Setup a hardware data transmit queue for the specified
3244 * access control. The hal may not support all requested
3245 * queues in which case it will return a reference to a
3246 * previously setup queue. We record the mapping from ac's
3247 * to h/w queues for use by ath_tx_start and also track
3248 * the set of h/w queues being used to optimize work in the
3249 * transmit interrupt handler and related routines.
3250 */
3251 static int
3252 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3253 {
3254 #define N(a) (sizeof(a)/sizeof(a[0]))
3255 struct ath_txq *txq;
3256
3257 if (ac >= N(sc->sc_ac2q)) {
3258 device_printf(&sc->sc_dev, "AC %u out of range, max %zu!\n",
3259 ac, N(sc->sc_ac2q));
3260 return 0;
3261 }
3262 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3263 if (txq != NULL) {
3264 sc->sc_ac2q[ac] = txq;
3265 return 1;
3266 } else
3267 return 0;
3268 #undef N
3269 }
3270
3271 /*
3272 * Update WME parameters for a transmit queue.
3273 */
3274 static int
3275 ath_txq_update(struct ath_softc *sc, int ac)
3276 {
3277 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1)
3278 #define ATH_TXOP_TO_US(v) (v<<5)
3279 struct ieee80211com *ic = &sc->sc_ic;
3280 struct ath_txq *txq = sc->sc_ac2q[ac];
3281 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3282 struct ath_hal *ah = sc->sc_ah;
3283 HAL_TXQ_INFO qi;
3284
3285 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3286 qi.tqi_aifs = wmep->wmep_aifsn;
3287 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3288 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3289 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3290
3291 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3292 device_printf(&sc->sc_dev, "unable to update hardware queue "
3293 "parameters for %s traffic!\n",
3294 ieee80211_wme_acnames[ac]);
3295 return 0;
3296 } else {
3297 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3298 return 1;
3299 }
3300 #undef ATH_TXOP_TO_US
3301 #undef ATH_EXPONENT_TO_VALUE
3302 }
3303
3304 /*
3305 * Callback from the 802.11 layer to update WME parameters.
3306 */
3307 static int
3308 ath_wme_update(struct ieee80211com *ic)
3309 {
3310 struct ath_softc *sc = ic->ic_ifp->if_softc;
3311
3312 return !ath_txq_update(sc, WME_AC_BE) ||
3313 !ath_txq_update(sc, WME_AC_BK) ||
3314 !ath_txq_update(sc, WME_AC_VI) ||
3315 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3316 }
3317
3318 /*
3319 * Reclaim resources for a setup queue.
3320 */
3321 static void
3322 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3323 {
3324
3325 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3326 ATH_TXQ_LOCK_DESTROY(txq);
3327 sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3328 }
3329
3330 /*
3331 * Reclaim all tx queue resources.
3332 */
3333 static void
3334 ath_tx_cleanup(struct ath_softc *sc)
3335 {
3336 int i;
3337
3338 ATH_TXBUF_LOCK_DESTROY(sc);
3339 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3340 if (ATH_TXQ_SETUP(sc, i))
3341 ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3342 }
3343
3344 /*
3345 * Defragment an mbuf chain, returning at most maxfrags separate
3346 * mbufs+clusters. If this is not possible NULL is returned and
3347 * the original mbuf chain is left in it's present (potentially
3348 * modified) state. We use two techniques: collapsing consecutive
3349 * mbufs and replacing consecutive mbufs by a cluster.
3350 */
3351 static struct mbuf *
3352 ath_defrag(struct mbuf *m0, int how, int maxfrags)
3353 {
3354 struct mbuf *m, *n, *n2, **prev;
3355 u_int curfrags;
3356
3357 /*
3358 * Calculate the current number of frags.
3359 */
3360 curfrags = 0;
3361 for (m = m0; m != NULL; m = m->m_next)
3362 curfrags++;
3363 /*
3364 * First, try to collapse mbufs. Note that we always collapse
3365 * towards the front so we don't need to deal with moving the
3366 * pkthdr. This may be suboptimal if the first mbuf has much
3367 * less data than the following.
3368 */
3369 m = m0;
3370 again:
3371 for (;;) {
3372 n = m->m_next;
3373 if (n == NULL)
3374 break;
3375 if (n->m_len < M_TRAILINGSPACE(m)) {
3376 memcpy(mtod(m, char *) + m->m_len, mtod(n, void *),
3377 n->m_len);
3378 m->m_len += n->m_len;
3379 m->m_next = n->m_next;
3380 m_free(n);
3381 if (--curfrags <= maxfrags)
3382 return m0;
3383 } else
3384 m = n;
3385 }
3386 KASSERT(maxfrags > 1,
3387 ("maxfrags %u, but normal collapse failed", maxfrags));
3388 /*
3389 * Collapse consecutive mbufs to a cluster.
3390 */
3391 prev = &m0->m_next; /* NB: not the first mbuf */
3392 while ((n = *prev) != NULL) {
3393 if ((n2 = n->m_next) != NULL &&
3394 n->m_len + n2->m_len < MCLBYTES) {
3395 m = m_getcl(how, MT_DATA, 0);
3396 if (m == NULL)
3397 goto bad;
3398 bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
3399 bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
3400 n2->m_len);
3401 m->m_len = n->m_len + n2->m_len;
3402 m->m_next = n2->m_next;
3403 *prev = m;
3404 m_free(n);
3405 m_free(n2);
3406 if (--curfrags <= maxfrags) /* +1 cl -2 mbufs */
3407 return m0;
3408 /*
3409 * Still not there, try the normal collapse
3410 * again before we allocate another cluster.
3411 */
3412 goto again;
3413 }
3414 prev = &n->m_next;
3415 }
3416 /*
3417 * No place where we can collapse to a cluster; punt.
3418 * This can occur if, for example, you request 2 frags
3419 * but the packet requires that both be clusters (we
3420 * never reallocate the first mbuf to avoid moving the
3421 * packet header).
3422 */
3423 bad:
3424 return NULL;
3425 }
3426
3427 /*
3428 * Return h/w rate index for an IEEE rate (w/o basic rate bit).
3429 */
3430 static int
3431 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
3432 {
3433 int i;
3434
3435 for (i = 0; i < rt->rateCount; i++)
3436 if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
3437 return i;
3438 return 0; /* NB: lowest rate */
3439 }
3440
3441 static void
3442 ath_freetx(struct mbuf *m)
3443 {
3444 struct mbuf *next;
3445
3446 do {
3447 next = m->m_nextpkt;
3448 m->m_nextpkt = NULL;
3449 m_freem(m);
3450 } while ((m = next) != NULL);
3451 }
3452
3453 static int
3454 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
3455 struct mbuf *m0)
3456 {
3457 struct ieee80211com *ic = &sc->sc_ic;
3458 struct ath_hal *ah = sc->sc_ah;
3459 struct ifnet *ifp = &sc->sc_if;
3460 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
3461 int i, error, iswep, ismcast, isfrag, ismrr;
3462 int keyix, hdrlen, pktlen, try0;
3463 u_int8_t rix, txrate, ctsrate;
3464 u_int8_t cix = 0xff; /* NB: silence compiler */
3465 struct ath_desc *ds, *ds0;
3466 struct ath_txq *txq;
3467 struct ieee80211_frame *wh;
3468 u_int subtype, flags, ctsduration;
3469 HAL_PKT_TYPE atype;
3470 const HAL_RATE_TABLE *rt;
3471 HAL_BOOL shortPreamble;
3472 struct ath_node *an;
3473 struct mbuf *m;
3474 u_int pri;
3475
3476 wh = mtod(m0, struct ieee80211_frame *);
3477 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
3478 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3479 isfrag = m0->m_flags & M_FRAG;
3480 hdrlen = ieee80211_anyhdrsize(wh);
3481 /*
3482 * Packet length must not include any
3483 * pad bytes; deduct them here.
3484 */
3485 pktlen = m0->m_pkthdr.len - (hdrlen & 3);
3486
3487 if (iswep) {
3488 const struct ieee80211_cipher *cip;
3489 struct ieee80211_key *k;
3490
3491 /*
3492 * Construct the 802.11 header+trailer for an encrypted
3493 * frame. The only reason this can fail is because of an
3494 * unknown or unsupported cipher/key type.
3495 */
3496 k = ieee80211_crypto_encap(ic, ni, m0);
3497 if (k == NULL) {
3498 /*
3499 * This can happen when the key is yanked after the
3500 * frame was queued. Just discard the frame; the
3501 * 802.11 layer counts failures and provides
3502 * debugging/diagnostics.
3503 */
3504 ath_freetx(m0);
3505 return EIO;
3506 }
3507 /*
3508 * Adjust the packet + header lengths for the crypto
3509 * additions and calculate the h/w key index. When
3510 * a s/w mic is done the frame will have had any mic
3511 * added to it prior to entry so m0->m_pkthdr.len above will
3512 * account for it. Otherwise we need to add it to the
3513 * packet length.
3514 */
3515 cip = k->wk_cipher;
3516 hdrlen += cip->ic_header;
3517 pktlen += cip->ic_header + cip->ic_trailer;
3518 /* NB: frags always have any TKIP MIC done in s/w */
3519 if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
3520 pktlen += cip->ic_miclen;
3521 keyix = k->wk_keyix;
3522
3523 /* packet header may have moved, reset our local pointer */
3524 wh = mtod(m0, struct ieee80211_frame *);
3525 } else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
3526 /*
3527 * Use station key cache slot, if assigned.
3528 */
3529 keyix = ni->ni_ucastkey.wk_keyix;
3530 if (keyix == IEEE80211_KEYIX_NONE)
3531 keyix = HAL_TXKEYIX_INVALID;
3532 } else
3533 keyix = HAL_TXKEYIX_INVALID;
3534
3535 pktlen += IEEE80211_CRC_LEN;
3536
3537 /*
3538 * Load the DMA map so any coalescing is done. This
3539 * also calculates the number of descriptors we need.
3540 */
3541 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3542 BUS_DMA_NOWAIT);
3543 if (error == EFBIG) {
3544 /* XXX packet requires too many descriptors */
3545 bf->bf_nseg = ATH_TXDESC+1;
3546 } else if (error != 0) {
3547 sc->sc_stats.ast_tx_busdma++;
3548 ath_freetx(m0);
3549 return error;
3550 }
3551 /*
3552 * Discard null packets and check for packets that
3553 * require too many TX descriptors. We try to convert
3554 * the latter to a cluster.
3555 */
3556 if (error == EFBIG) { /* too many desc's, linearize */
3557 sc->sc_stats.ast_tx_linear++;
3558 m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
3559 if (m == NULL) {
3560 ath_freetx(m0);
3561 sc->sc_stats.ast_tx_nombuf++;
3562 return ENOMEM;
3563 }
3564 m0 = m;
3565 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3566 BUS_DMA_NOWAIT);
3567 if (error != 0) {
3568 sc->sc_stats.ast_tx_busdma++;
3569 ath_freetx(m0);
3570 return error;
3571 }
3572 KASSERT(bf->bf_nseg <= ATH_TXDESC,
3573 ("too many segments after defrag; nseg %u", bf->bf_nseg));
3574 } else if (bf->bf_nseg == 0) { /* null packet, discard */
3575 sc->sc_stats.ast_tx_nodata++;
3576 ath_freetx(m0);
3577 return EIO;
3578 }
3579 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
3580 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
3581 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
3582 bf->bf_m = m0;
3583 bf->bf_node = ni; /* NB: held reference */
3584
3585 /* setup descriptors */
3586 ds = bf->bf_desc;
3587 rt = sc->sc_currates;
3588 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3589
3590 /*
3591 * NB: the 802.11 layer marks whether or not we should
3592 * use short preamble based on the current mode and
3593 * negotiated parameters.
3594 */
3595 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3596 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) {
3597 shortPreamble = AH_TRUE;
3598 sc->sc_stats.ast_tx_shortpre++;
3599 } else {
3600 shortPreamble = AH_FALSE;
3601 }
3602
3603 an = ATH_NODE(ni);
3604 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */
3605 ismrr = 0; /* default no multi-rate retry*/
3606 /*
3607 * Calculate Atheros packet type from IEEE80211 packet header,
3608 * setup for rate calculations, and select h/w transmit queue.
3609 */
3610 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3611 case IEEE80211_FC0_TYPE_MGT:
3612 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3613 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
3614 atype = HAL_PKT_TYPE_BEACON;
3615 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3616 atype = HAL_PKT_TYPE_PROBE_RESP;
3617 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
3618 atype = HAL_PKT_TYPE_ATIM;
3619 else
3620 atype = HAL_PKT_TYPE_NORMAL; /* XXX */
3621 rix = sc->sc_minrateix;
3622 txrate = rt->info[rix].rateCode;
3623 if (shortPreamble)
3624 txrate |= rt->info[rix].shortPreamble;
3625 try0 = ATH_TXMGTTRY;
3626 /* NB: force all management frames to highest queue */
3627 if (ni->ni_flags & IEEE80211_NODE_QOS) {
3628 /* NB: force all management frames to highest queue */
3629 pri = WME_AC_VO;
3630 } else
3631 pri = WME_AC_BE;
3632 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
3633 break;
3634 case IEEE80211_FC0_TYPE_CTL:
3635 atype = HAL_PKT_TYPE_PSPOLL; /* stop setting of duration */
3636 rix = sc->sc_minrateix;
3637 txrate = rt->info[rix].rateCode;
3638 if (shortPreamble)
3639 txrate |= rt->info[rix].shortPreamble;
3640 try0 = ATH_TXMGTTRY;
3641 /* NB: force all ctl frames to highest queue */
3642 if (ni->ni_flags & IEEE80211_NODE_QOS) {
3643 /* NB: force all ctl frames to highest queue */
3644 pri = WME_AC_VO;
3645 } else
3646 pri = WME_AC_BE;
3647 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
3648 break;
3649 case IEEE80211_FC0_TYPE_DATA:
3650 atype = HAL_PKT_TYPE_NORMAL; /* default */
3651 /*
3652 * Data frames: multicast frames go out at a fixed rate,
3653 * otherwise consult the rate control module for the
3654 * rate to use.
3655 */
3656 if (ismcast) {
3657 /*
3658 * Check mcast rate setting in case it's changed.
3659 * XXX move out of fastpath
3660 */
3661 if (ic->ic_mcast_rate != sc->sc_mcastrate) {
3662 sc->sc_mcastrix =
3663 ath_tx_findrix(rt, ic->ic_mcast_rate);
3664 sc->sc_mcastrate = ic->ic_mcast_rate;
3665 }
3666 rix = sc->sc_mcastrix;
3667 txrate = rt->info[rix].rateCode;
3668 try0 = 1;
3669 } else {
3670 ath_rate_findrate(sc, an, shortPreamble, pktlen,
3671 &rix, &try0, &txrate);
3672 sc->sc_txrate = txrate; /* for LED blinking */
3673 if (try0 != ATH_TXMAXTRY)
3674 ismrr = 1;
3675 }
3676 pri = M_WME_GETAC(m0);
3677 if (cap->cap_wmeParams[pri].wmep_noackPolicy)
3678 flags |= HAL_TXDESC_NOACK;
3679 break;
3680 default:
3681 if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3682 wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3683 /* XXX statistic */
3684 ath_freetx(m0);
3685 return EIO;
3686 }
3687 txq = sc->sc_ac2q[pri];
3688
3689 /*
3690 * When servicing one or more stations in power-save mode
3691 * multicast frames must be buffered until after the beacon.
3692 * We use the CAB queue for that.
3693 */
3694 if (ismcast && ic->ic_ps_sta) {
3695 txq = sc->sc_cabq;
3696 /* XXX? more bit in 802.11 frame header */
3697 }
3698
3699 /*
3700 * Calculate miscellaneous flags.
3701 */
3702 if (ismcast) {
3703 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */
3704 } else if (pktlen > ic->ic_rtsthreshold) {
3705 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */
3706 cix = rt->info[rix].controlRate;
3707 sc->sc_stats.ast_tx_rts++;
3708 }
3709 if (flags & HAL_TXDESC_NOACK) /* NB: avoid double counting */
3710 sc->sc_stats.ast_tx_noack++;
3711
3712 /*
3713 * If 802.11g protection is enabled, determine whether
3714 * to use RTS/CTS or just CTS. Note that this is only
3715 * done for OFDM unicast frames.
3716 */
3717 if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3718 rt->info[rix].phy == IEEE80211_T_OFDM &&
3719 (flags & HAL_TXDESC_NOACK) == 0) {
3720 /* XXX fragments must use CCK rates w/ protection */
3721 if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3722 flags |= HAL_TXDESC_RTSENA;
3723 else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3724 flags |= HAL_TXDESC_CTSENA;
3725 if (isfrag) {
3726 /*
3727 * For frags it would be desirable to use the
3728 * highest CCK rate for RTS/CTS. But stations
3729 * farther away may detect it at a lower CCK rate
3730 * so use the configured protection rate instead
3731 * (for now).
3732 */
3733 cix = rt->info[sc->sc_protrix].controlRate;
3734 } else
3735 cix = rt->info[sc->sc_protrix].controlRate;
3736 sc->sc_stats.ast_tx_protect++;
3737 }
3738
3739 /*
3740 * Calculate duration. This logically belongs in the 802.11
3741 * layer but it lacks sufficient information to calculate it.
3742 */
3743 if ((flags & HAL_TXDESC_NOACK) == 0 &&
3744 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
3745 u_int16_t dur;
3746 /*
3747 * XXX not right with fragmentation.
3748 */
3749 if (shortPreamble)
3750 dur = rt->info[rix].spAckDuration;
3751 else
3752 dur = rt->info[rix].lpAckDuration;
3753 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
3754 dur += dur; /* additional SIFS+ACK */
3755 KASSERT(m0->m_nextpkt != NULL, ("no fragment"));
3756 /*
3757 * Include the size of next fragment so NAV is
3758 * updated properly. The last fragment uses only
3759 * the ACK duration
3760 */
3761 dur += ath_hal_computetxtime(ah, rt,
3762 m0->m_nextpkt->m_pkthdr.len,
3763 rix, shortPreamble);
3764 }
3765 if (isfrag) {
3766 /*
3767 * Force hardware to use computed duration for next
3768 * fragment by disabling multi-rate retry which updates
3769 * duration based on the multi-rate duration table.
3770 */
3771 try0 = ATH_TXMAXTRY;
3772 }
3773 *(u_int16_t *)wh->i_dur = htole16(dur);
3774 }
3775
3776 /*
3777 * Calculate RTS/CTS rate and duration if needed.
3778 */
3779 ctsduration = 0;
3780 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
3781 /*
3782 * CTS transmit rate is derived from the transmit rate
3783 * by looking in the h/w rate table. We must also factor
3784 * in whether or not a short preamble is to be used.
3785 */
3786 /* NB: cix is set above where RTS/CTS is enabled */
3787 KASSERT(cix != 0xff, ("cix not setup"));
3788 ctsrate = rt->info[cix].rateCode;
3789 /*
3790 * Compute the transmit duration based on the frame
3791 * size and the size of an ACK frame. We call into the
3792 * HAL to do the computation since it depends on the
3793 * characteristics of the actual PHY being used.
3794 *
3795 * NB: CTS is assumed the same size as an ACK so we can
3796 * use the precalculated ACK durations.
3797 */
3798 if (shortPreamble) {
3799 ctsrate |= rt->info[cix].shortPreamble;
3800 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
3801 ctsduration += rt->info[cix].spAckDuration;
3802 ctsduration += ath_hal_computetxtime(ah,
3803 rt, pktlen, rix, AH_TRUE);
3804 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
3805 ctsduration += rt->info[rix].spAckDuration;
3806 } else {
3807 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
3808 ctsduration += rt->info[cix].lpAckDuration;
3809 ctsduration += ath_hal_computetxtime(ah,
3810 rt, pktlen, rix, AH_FALSE);
3811 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
3812 ctsduration += rt->info[rix].lpAckDuration;
3813 }
3814 /*
3815 * Must disable multi-rate retry when using RTS/CTS.
3816 */
3817 ismrr = 0;
3818 try0 = ATH_TXMGTTRY; /* XXX */
3819 } else
3820 ctsrate = 0;
3821
3822 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3823 ieee80211_dump_pkt(mtod(m0, void *), m0->m_len,
3824 sc->sc_hwmap[txrate].ieeerate, -1);
3825 #if NBPFILTER > 0
3826 if (ic->ic_rawbpf)
3827 bpf_mtap(ic->ic_rawbpf, m0);
3828 if (sc->sc_drvbpf) {
3829 u_int64_t tsf = ath_hal_gettsf64(ah);
3830
3831 sc->sc_tx_th.wt_tsf = htole64(tsf);
3832 sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
3833 if (iswep)
3834 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3835 if (isfrag)
3836 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
3837 sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
3838 sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3839 sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3840
3841 bpf_mtap2(sc->sc_drvbpf,
3842 &sc->sc_tx_th, sc->sc_tx_th_len, m0);
3843 }
3844 #endif
3845
3846 /*
3847 * Determine if a tx interrupt should be generated for
3848 * this descriptor. We take a tx interrupt to reap
3849 * descriptors when the h/w hits an EOL condition or
3850 * when the descriptor is specifically marked to generate
3851 * an interrupt. We periodically mark descriptors in this
3852 * way to insure timely replenishing of the supply needed
3853 * for sending frames. Defering interrupts reduces system
3854 * load and potentially allows more concurrent work to be
3855 * done but if done to aggressively can cause senders to
3856 * backup.
3857 *
3858 * NB: use >= to deal with sc_txintrperiod changing
3859 * dynamically through sysctl.
3860 */
3861 if (flags & HAL_TXDESC_INTREQ) {
3862 txq->axq_intrcnt = 0;
3863 } else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
3864 flags |= HAL_TXDESC_INTREQ;
3865 txq->axq_intrcnt = 0;
3866 }
3867
3868 /*
3869 * Formulate first tx descriptor with tx controls.
3870 */
3871 /* XXX check return value? */
3872 ath_hal_setuptxdesc(ah, ds
3873 , pktlen /* packet length */
3874 , hdrlen /* header length */
3875 , atype /* Atheros packet type */
3876 , ni->ni_txpower /* txpower */
3877 , txrate, try0 /* series 0 rate/tries */
3878 , keyix /* key cache index */
3879 , sc->sc_txantenna /* antenna mode */
3880 , flags /* flags */
3881 , ctsrate /* rts/cts rate */
3882 , ctsduration /* rts/cts duration */
3883 );
3884 bf->bf_flags = flags;
3885 /*
3886 * Setup the multi-rate retry state only when we're
3887 * going to use it. This assumes ath_hal_setuptxdesc
3888 * initializes the descriptors (so we don't have to)
3889 * when the hardware supports multi-rate retry and
3890 * we don't use it.
3891 */
3892 if (ismrr)
3893 ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
3894
3895 /*
3896 * Fillin the remainder of the descriptor info.
3897 */
3898 ds0 = ds;
3899 for (i = 0; i < bf->bf_nseg; i++, ds++) {
3900 ds->ds_data = bf->bf_segs[i].ds_addr;
3901 if (i == bf->bf_nseg - 1)
3902 ds->ds_link = 0;
3903 else
3904 ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
3905 ath_hal_filltxdesc(ah, ds
3906 , bf->bf_segs[i].ds_len /* segment length */
3907 , i == 0 /* first segment */
3908 , i == bf->bf_nseg - 1 /* last segment */
3909 , ds0 /* first descriptor */
3910 );
3911
3912 /* NB: The desc swap function becomes void,
3913 * if descriptor swapping is not enabled
3914 */
3915 ath_desc_swap(ds);
3916
3917 DPRINTF(sc, ATH_DEBUG_XMIT,
3918 "%s: %d: %08x %08x %08x %08x %08x %08x\n",
3919 __func__, i, ds->ds_link, ds->ds_data,
3920 ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
3921 }
3922 /*
3923 * Insert the frame on the outbound list and
3924 * pass it on to the hardware.
3925 */
3926 ATH_TXQ_LOCK(txq);
3927 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
3928 if (txq->axq_link == NULL) {
3929 ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
3930 DPRINTF(sc, ATH_DEBUG_XMIT,
3931 "%s: TXDP[%u] = %" PRIx64 " (%p) depth %d\n", __func__,
3932 txq->axq_qnum, (uint64_t)bf->bf_daddr, bf->bf_desc,
3933 txq->axq_depth);
3934 } else {
3935 *txq->axq_link = HTOAH32(bf->bf_daddr);
3936 DPRINTF(sc, ATH_DEBUG_XMIT,
3937 "%s: link[%u](%p)=%" PRIx64 " (%p) depth %d\n",
3938 __func__, txq->axq_qnum, txq->axq_link,
3939 (uint64_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
3940 }
3941 txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
3942 /*
3943 * The CAB queue is started from the SWBA handler since
3944 * frames only go out on DTIM and to avoid possible races.
3945 */
3946 if (txq != sc->sc_cabq)
3947 ath_hal_txstart(ah, txq->axq_qnum);
3948 ATH_TXQ_UNLOCK(txq);
3949
3950 return 0;
3951 }
3952
3953 /*
3954 * Process completed xmit descriptors from the specified queue.
3955 */
3956 static int
3957 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
3958 {
3959 struct ath_hal *ah = sc->sc_ah;
3960 struct ieee80211com *ic = &sc->sc_ic;
3961 struct ath_buf *bf;
3962 struct ath_desc *ds, *ds0;
3963 struct ieee80211_node *ni;
3964 struct ath_node *an;
3965 int sr, lr, pri, nacked;
3966 HAL_STATUS status;
3967
3968 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
3969 __func__, txq->axq_qnum,
3970 (void *)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3971 txq->axq_link);
3972 nacked = 0;
3973 for (;;) {
3974 ATH_TXQ_LOCK(txq);
3975 txq->axq_intrcnt = 0; /* reset periodic desc intr count */
3976 bf = STAILQ_FIRST(&txq->axq_q);
3977 if (bf == NULL) {
3978 txq->axq_link = NULL;
3979 ATH_TXQ_UNLOCK(txq);
3980 break;
3981 }
3982 ds0 = &bf->bf_desc[0];
3983 ds = &bf->bf_desc[bf->bf_nseg - 1];
3984 status = ath_hal_txprocdesc(ah, ds);
3985 #ifdef AR_DEBUG
3986 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
3987 ath_printtxbuf(bf, status == HAL_OK);
3988 #endif
3989 if (status == HAL_EINPROGRESS) {
3990 ATH_TXQ_UNLOCK(txq);
3991 break;
3992 }
3993 ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3994 ATH_TXQ_UNLOCK(txq);
3995
3996 ni = bf->bf_node;
3997 if (ni != NULL) {
3998 an = ATH_NODE(ni);
3999 if (ds->ds_txstat.ts_status == 0) {
4000 u_int8_t txant = ds->ds_txstat.ts_antenna;
4001 sc->sc_stats.ast_ant_tx[txant]++;
4002 sc->sc_ant_tx[txant]++;
4003 if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
4004 sc->sc_stats.ast_tx_altrate++;
4005 sc->sc_stats.ast_tx_rssi =
4006 ds->ds_txstat.ts_rssi;
4007 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
4008 ds->ds_txstat.ts_rssi);
4009 pri = M_WME_GETAC(bf->bf_m);
4010 if (pri >= WME_AC_VO)
4011 ic->ic_wme.wme_hipri_traffic++;
4012 ni->ni_inact = ni->ni_inact_reload;
4013 } else {
4014 if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
4015 sc->sc_stats.ast_tx_xretries++;
4016 if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
4017 sc->sc_stats.ast_tx_fifoerr++;
4018 if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
4019 sc->sc_stats.ast_tx_filtered++;
4020 }
4021 sr = ds->ds_txstat.ts_shortretry;
4022 lr = ds->ds_txstat.ts_longretry;
4023 sc->sc_stats.ast_tx_shortretry += sr;
4024 sc->sc_stats.ast_tx_longretry += lr;
4025 /*
4026 * Hand the descriptor to the rate control algorithm.
4027 */
4028 if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
4029 (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
4030 /*
4031 * If frame was ack'd update the last rx time
4032 * used to workaround phantom bmiss interrupts.
4033 */
4034 if (ds->ds_txstat.ts_status == 0)
4035 nacked++;
4036 ath_rate_tx_complete(sc, an, ds, ds0);
4037 }
4038 /*
4039 * Reclaim reference to node.
4040 *
4041 * NB: the node may be reclaimed here if, for example
4042 * this is a DEAUTH message that was sent and the
4043 * node was timed out due to inactivity.
4044 */
4045 ieee80211_free_node(ni);
4046 }
4047 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
4048 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4049 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4050 m_freem(bf->bf_m);
4051 bf->bf_m = NULL;
4052 bf->bf_node = NULL;
4053
4054 ATH_TXBUF_LOCK(sc);
4055 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4056 sc->sc_if.if_flags &= ~IFF_OACTIVE;
4057 ATH_TXBUF_UNLOCK(sc);
4058 }
4059 return nacked;
4060 }
4061
4062 static inline int
4063 txqactive(struct ath_hal *ah, int qnum)
4064 {
4065 u_int32_t txqs = 1<<qnum;
4066 ath_hal_gettxintrtxqs(ah, &txqs);
4067 return (txqs & (1<<qnum));
4068 }
4069
4070 /*
4071 * Deferred processing of transmit interrupt; special-cased
4072 * for a single hardware transmit queue (e.g. 5210 and 5211).
4073 */
4074 static void
4075 ath_tx_proc_q0(void *arg, int npending)
4076 {
4077 struct ath_softc *sc = arg;
4078 struct ifnet *ifp = &sc->sc_if;
4079
4080 if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]) > 0){
4081 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4082 }
4083 if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4084 ath_tx_processq(sc, sc->sc_cabq);
4085
4086 if (sc->sc_softled)
4087 ath_led_event(sc, ATH_LED_TX);
4088
4089 ath_start(ifp);
4090 }
4091
4092 /*
4093 * Deferred processing of transmit interrupt; special-cased
4094 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4095 */
4096 static void
4097 ath_tx_proc_q0123(void *arg, int npending)
4098 {
4099 struct ath_softc *sc = arg;
4100 struct ifnet *ifp = &sc->sc_if;
4101 int nacked;
4102
4103 /*
4104 * Process each active queue.
4105 */
4106 nacked = 0;
4107 if (txqactive(sc->sc_ah, 0))
4108 nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
4109 if (txqactive(sc->sc_ah, 1))
4110 nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
4111 if (txqactive(sc->sc_ah, 2))
4112 nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
4113 if (txqactive(sc->sc_ah, 3))
4114 nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
4115 if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4116 ath_tx_processq(sc, sc->sc_cabq);
4117 if (nacked) {
4118 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4119 }
4120
4121 if (sc->sc_softled)
4122 ath_led_event(sc, ATH_LED_TX);
4123
4124 ath_start(ifp);
4125 }
4126
4127 /*
4128 * Deferred processing of transmit interrupt.
4129 */
4130 static void
4131 ath_tx_proc(void *arg, int npending)
4132 {
4133 struct ath_softc *sc = arg;
4134 struct ifnet *ifp = &sc->sc_if;
4135 int i, nacked;
4136
4137 /*
4138 * Process each active queue.
4139 */
4140 nacked = 0;
4141 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4142 if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
4143 nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
4144 if (nacked) {
4145 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4146 }
4147
4148 if (sc->sc_softled)
4149 ath_led_event(sc, ATH_LED_TX);
4150
4151 ath_start(ifp);
4152 }
4153
4154 static void
4155 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
4156 {
4157 struct ath_hal *ah = sc->sc_ah;
4158 struct ieee80211_node *ni;
4159 struct ath_buf *bf;
4160
4161 /*
4162 * NB: this assumes output has been stopped and
4163 * we do not need to block ath_tx_tasklet
4164 */
4165 for (;;) {
4166 ATH_TXQ_LOCK(txq);
4167 bf = STAILQ_FIRST(&txq->axq_q);
4168 if (bf == NULL) {
4169 txq->axq_link = NULL;
4170 ATH_TXQ_UNLOCK(txq);
4171 break;
4172 }
4173 ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4174 ATH_TXQ_UNLOCK(txq);
4175 #ifdef AR_DEBUG
4176 if (sc->sc_debug & ATH_DEBUG_RESET)
4177 ath_printtxbuf(bf,
4178 ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
4179 #endif /* AR_DEBUG */
4180 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4181 m_freem(bf->bf_m);
4182 bf->bf_m = NULL;
4183 ni = bf->bf_node;
4184 bf->bf_node = NULL;
4185 if (ni != NULL) {
4186 /*
4187 * Reclaim node reference.
4188 */
4189 ieee80211_free_node(ni);
4190 }
4191 ATH_TXBUF_LOCK(sc);
4192 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4193 sc->sc_if.if_flags &= ~IFF_OACTIVE;
4194 ATH_TXBUF_UNLOCK(sc);
4195 }
4196 }
4197
4198 static void
4199 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4200 {
4201 struct ath_hal *ah = sc->sc_ah;
4202
4203 (void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4204 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4205 __func__, txq->axq_qnum,
4206 (void *)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4207 txq->axq_link);
4208 }
4209
4210 /*
4211 * Drain the transmit queues and reclaim resources.
4212 */
4213 static void
4214 ath_draintxq(struct ath_softc *sc)
4215 {
4216 struct ath_hal *ah = sc->sc_ah;
4217 int i;
4218
4219 /* XXX return value */
4220 if (!sc->sc_invalid) {
4221 /* don't touch the hardware if marked invalid */
4222 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4223 DPRINTF(sc, ATH_DEBUG_RESET,
4224 "%s: beacon queue %p\n", __func__,
4225 (void *)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
4226 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4227 if (ATH_TXQ_SETUP(sc, i))
4228 ath_tx_stopdma(sc, &sc->sc_txq[i]);
4229 }
4230 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4231 if (ATH_TXQ_SETUP(sc, i))
4232 ath_tx_draintxq(sc, &sc->sc_txq[i]);
4233 }
4234
4235 /*
4236 * Disable the receive h/w in preparation for a reset.
4237 */
4238 static void
4239 ath_stoprecv(struct ath_softc *sc)
4240 {
4241 #define PA2DESC(_sc, _pa) \
4242 ((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
4243 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
4244 struct ath_hal *ah = sc->sc_ah;
4245
4246 ath_hal_stoppcurecv(ah); /* disable PCU */
4247 ath_hal_setrxfilter(ah, 0); /* clear recv filter */
4248 ath_hal_stopdmarecv(ah); /* disable DMA engine */
4249 DELAY(3000); /* 3ms is long enough for 1 frame */
4250 #ifdef AR_DEBUG
4251 if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
4252 struct ath_buf *bf;
4253
4254 printf("%s: rx queue %p, link %p\n", __func__,
4255 (void *)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
4256 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4257 struct ath_desc *ds = bf->bf_desc;
4258 HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
4259 bf->bf_daddr, PA2DESC(sc, ds->ds_link));
4260 if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
4261 ath_printrxbuf(bf, status == HAL_OK);
4262 }
4263 }
4264 #endif
4265 sc->sc_rxlink = NULL; /* just in case */
4266 #undef PA2DESC
4267 }
4268
4269 /*
4270 * Enable the receive h/w following a reset.
4271 */
4272 static int
4273 ath_startrecv(struct ath_softc *sc)
4274 {
4275 struct ath_hal *ah = sc->sc_ah;
4276 struct ath_buf *bf;
4277
4278 sc->sc_rxlink = NULL;
4279 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4280 int error = ath_rxbuf_init(sc, bf);
4281 if (error != 0) {
4282 DPRINTF(sc, ATH_DEBUG_RECV,
4283 "%s: ath_rxbuf_init failed %d\n",
4284 __func__, error);
4285 return error;
4286 }
4287 }
4288
4289 bf = STAILQ_FIRST(&sc->sc_rxbuf);
4290 ath_hal_putrxbuf(ah, bf->bf_daddr);
4291 ath_hal_rxena(ah); /* enable recv descriptors */
4292 ath_mode_init(sc); /* set filters, etc. */
4293 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */
4294 return 0;
4295 }
4296
4297 /*
4298 * Update internal state after a channel change.
4299 */
4300 static void
4301 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4302 {
4303 struct ieee80211com *ic = &sc->sc_ic;
4304 enum ieee80211_phymode mode;
4305 u_int16_t flags;
4306
4307 /*
4308 * Change channels and update the h/w rate map
4309 * if we're switching; e.g. 11a to 11b/g.
4310 */
4311 mode = ieee80211_chan2mode(ic, chan);
4312 if (mode != sc->sc_curmode)
4313 ath_setcurmode(sc, mode);
4314 /*
4315 * Update BPF state. NB: ethereal et. al. don't handle
4316 * merged flags well so pick a unique mode for their use.
4317 */
4318 if (IEEE80211_IS_CHAN_A(chan))
4319 flags = IEEE80211_CHAN_A;
4320 /* XXX 11g schizophrenia */
4321 else if (IEEE80211_IS_CHAN_G(chan) ||
4322 IEEE80211_IS_CHAN_PUREG(chan))
4323 flags = IEEE80211_CHAN_G;
4324 else
4325 flags = IEEE80211_CHAN_B;
4326 if (IEEE80211_IS_CHAN_T(chan))
4327 flags |= IEEE80211_CHAN_TURBO;
4328 sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
4329 htole16(chan->ic_freq);
4330 sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
4331 htole16(flags);
4332 }
4333
4334 /*
4335 * Poll for a channel clear indication; this is required
4336 * for channels requiring DFS and not previously visited
4337 * and/or with a recent radar detection.
4338 */
4339 static void
4340 ath_dfswait(void *arg)
4341 {
4342 struct ath_softc *sc = arg;
4343 struct ath_hal *ah = sc->sc_ah;
4344 HAL_CHANNEL hchan;
4345
4346 ath_hal_radar_wait(ah, &hchan);
4347 if (hchan.privFlags & CHANNEL_INTERFERENCE) {
4348 if_printf(&sc->sc_if,
4349 "channel %u/0x%x/0x%x has interference\n",
4350 hchan.channel, hchan.channelFlags, hchan.privFlags);
4351 return;
4352 }
4353 if ((hchan.privFlags & CHANNEL_DFS) == 0) {
4354 /* XXX should not happen */
4355 return;
4356 }
4357 if (hchan.privFlags & CHANNEL_DFS_CLEAR) {
4358 sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR;
4359 sc->sc_if.if_flags &= ~IFF_OACTIVE;
4360 if_printf(&sc->sc_if,
4361 "channel %u/0x%x/0x%x marked clear\n",
4362 hchan.channel, hchan.channelFlags, hchan.privFlags);
4363 } else
4364 callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc);
4365 }
4366
4367 /*
4368 * Set/change channels. If the channel is really being changed,
4369 * it's done by reseting the chip. To accomplish this we must
4370 * first cleanup any pending DMA, then restart stuff after a la
4371 * ath_init.
4372 */
4373 static int
4374 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4375 {
4376 struct ath_hal *ah = sc->sc_ah;
4377 struct ieee80211com *ic = &sc->sc_ic;
4378 HAL_CHANNEL hchan;
4379
4380 /*
4381 * Convert to a HAL channel description with
4382 * the flags constrained to reflect the current
4383 * operating mode.
4384 */
4385 hchan.channel = chan->ic_freq;
4386 hchan.channelFlags = ath_chan2flags(ic, chan);
4387
4388 DPRINTF(sc, ATH_DEBUG_RESET,
4389 "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
4390 __func__,
4391 ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
4392 sc->sc_curchan.channelFlags),
4393 sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
4394 ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
4395 hchan.channel, hchan.channelFlags);
4396 if (hchan.channel != sc->sc_curchan.channel ||
4397 hchan.channelFlags != sc->sc_curchan.channelFlags) {
4398 HAL_STATUS status;
4399
4400 /*
4401 * To switch channels clear any pending DMA operations;
4402 * wait long enough for the RX fifo to drain, reset the
4403 * hardware at the new frequency, and then re-enable
4404 * the relevant bits of the h/w.
4405 */
4406 ath_hal_intrset(ah, 0); /* disable interrupts */
4407 ath_draintxq(sc); /* clear pending tx frames */
4408 ath_stoprecv(sc); /* turn off frame recv */
4409 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
4410 if_printf(ic->ic_ifp, "%s: unable to reset "
4411 "channel %u (%u MHz, flags 0x%x hal flags 0x%x)\n",
4412 __func__, ieee80211_chan2ieee(ic, chan),
4413 chan->ic_freq, chan->ic_flags, hchan.channelFlags);
4414 return EIO;
4415 }
4416 sc->sc_curchan = hchan;
4417 ath_update_txpow(sc); /* update tx power state */
4418 ath_restore_diversity(sc);
4419 sc->sc_calinterval = 1;
4420 sc->sc_caltries = 0;
4421
4422 /*
4423 * Re-enable rx framework.
4424 */
4425 if (ath_startrecv(sc) != 0) {
4426 if_printf(&sc->sc_if,
4427 "%s: unable to restart recv logic\n", __func__);
4428 return EIO;
4429 }
4430
4431 /*
4432 * Change channels and update the h/w rate map
4433 * if we're switching; e.g. 11a to 11b/g.
4434 */
4435 ic->ic_ibss_chan = chan;
4436 ath_chan_change(sc, chan);
4437
4438 /*
4439 * Handle DFS required waiting period to determine
4440 * if channel is clear of radar traffic.
4441 */
4442 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
4443 #define DFS_AND_NOT_CLEAR(_c) \
4444 (((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS)
4445 if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) {
4446 if_printf(&sc->sc_if,
4447 "wait for DFS clear channel signal\n");
4448 /* XXX stop sndq */
4449 sc->sc_if.if_flags |= IFF_OACTIVE;
4450 callout_reset(&sc->sc_dfs_ch,
4451 2 * hz, ath_dfswait, sc);
4452 } else
4453 callout_stop(&sc->sc_dfs_ch);
4454 #undef DFS_NOT_CLEAR
4455 }
4456
4457 /*
4458 * Re-enable interrupts.
4459 */
4460 ath_hal_intrset(ah, sc->sc_imask);
4461 }
4462 return 0;
4463 }
4464
4465 static void
4466 ath_next_scan(void *arg)
4467 {
4468 struct ath_softc *sc = arg;
4469 struct ieee80211com *ic = &sc->sc_ic;
4470 int s;
4471
4472 /* don't call ath_start w/o network interrupts blocked */
4473 s = splnet();
4474
4475 if (ic->ic_state == IEEE80211_S_SCAN)
4476 ieee80211_next_scan(ic);
4477 splx(s);
4478 }
4479
4480 /*
4481 * Periodically recalibrate the PHY to account
4482 * for temperature/environment changes.
4483 */
4484 static void
4485 ath_calibrate(void *arg)
4486 {
4487 struct ath_softc *sc = arg;
4488 struct ath_hal *ah = sc->sc_ah;
4489 HAL_BOOL iqCalDone;
4490
4491 sc->sc_stats.ast_per_cal++;
4492
4493 ATH_LOCK(sc);
4494
4495 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4496 /*
4497 * Rfgain is out of bounds, reset the chip
4498 * to load new gain values.
4499 */
4500 DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4501 "%s: rfgain change\n", __func__);
4502 sc->sc_stats.ast_per_rfgain++;
4503 ath_reset(&sc->sc_if);
4504 }
4505 if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
4506 DPRINTF(sc, ATH_DEBUG_ANY,
4507 "%s: calibration of channel %u failed\n",
4508 __func__, sc->sc_curchan.channel);
4509 sc->sc_stats.ast_per_calfail++;
4510 }
4511 /*
4512 * Calibrate noise floor data again in case of change.
4513 */
4514 ath_hal_process_noisefloor(ah);
4515 /*
4516 * Poll more frequently when the IQ calibration is in
4517 * progress to speedup loading the final settings.
4518 * We temper this aggressive polling with an exponential
4519 * back off after 4 tries up to ath_calinterval.
4520 */
4521 if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
4522 sc->sc_caltries = 0;
4523 sc->sc_calinterval = ath_calinterval;
4524 } else if (sc->sc_caltries > 4) {
4525 sc->sc_caltries = 0;
4526 sc->sc_calinterval <<= 1;
4527 if (sc->sc_calinterval > ath_calinterval)
4528 sc->sc_calinterval = ath_calinterval;
4529 }
4530 KASSERT(0 < sc->sc_calinterval && sc->sc_calinterval <= ath_calinterval,
4531 ("bad calibration interval %u", sc->sc_calinterval));
4532
4533 DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4534 "%s: next +%u (%siqCalDone tries %u)\n", __func__,
4535 sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
4536 sc->sc_caltries++;
4537 callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4538 ath_calibrate, sc);
4539 ATH_UNLOCK(sc);
4540 }
4541
4542 static int
4543 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
4544 {
4545 struct ifnet *ifp = ic->ic_ifp;
4546 struct ath_softc *sc = ifp->if_softc;
4547 struct ath_hal *ah = sc->sc_ah;
4548 struct ieee80211_node *ni;
4549 int i, error;
4550 const u_int8_t *bssid;
4551 u_int32_t rfilt;
4552 static const HAL_LED_STATE leds[] = {
4553 HAL_LED_INIT, /* IEEE80211_S_INIT */
4554 HAL_LED_SCAN, /* IEEE80211_S_SCAN */
4555 HAL_LED_AUTH, /* IEEE80211_S_AUTH */
4556 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */
4557 HAL_LED_RUN, /* IEEE80211_S_RUN */
4558 };
4559
4560 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4561 ieee80211_state_name[ic->ic_state],
4562 ieee80211_state_name[nstate]);
4563
4564 callout_stop(&sc->sc_scan_ch);
4565 callout_stop(&sc->sc_cal_ch);
4566 callout_stop(&sc->sc_dfs_ch);
4567 ath_hal_setledstate(ah, leds[nstate]); /* set LED */
4568
4569 if (nstate == IEEE80211_S_INIT) {
4570 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4571 /*
4572 * NB: disable interrupts so we don't rx frames.
4573 */
4574 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4575 /*
4576 * Notify the rate control algorithm.
4577 */
4578 ath_rate_newstate(sc, nstate);
4579 goto done;
4580 }
4581 ni = ic->ic_bss;
4582 error = ath_chan_set(sc, ic->ic_curchan);
4583 if (error != 0)
4584 goto bad;
4585 rfilt = ath_calcrxfilter(sc, nstate);
4586 if (nstate == IEEE80211_S_SCAN)
4587 bssid = ifp->if_broadcastaddr;
4588 else
4589 bssid = ni->ni_bssid;
4590 ath_hal_setrxfilter(ah, rfilt);
4591 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
4592 __func__, rfilt, ether_sprintf(bssid));
4593
4594 if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
4595 ath_hal_setassocid(ah, bssid, ni->ni_associd);
4596 else
4597 ath_hal_setassocid(ah, bssid, 0);
4598 if (ic->ic_flags & IEEE80211_F_PRIVACY) {
4599 for (i = 0; i < IEEE80211_WEP_NKID; i++)
4600 if (ath_hal_keyisvalid(ah, i))
4601 ath_hal_keysetmac(ah, i, bssid);
4602 }
4603
4604 /*
4605 * Notify the rate control algorithm so rates
4606 * are setup should ath_beacon_alloc be called.
4607 */
4608 ath_rate_newstate(sc, nstate);
4609
4610 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4611 /* nothing to do */;
4612 } else if (nstate == IEEE80211_S_RUN) {
4613 DPRINTF(sc, ATH_DEBUG_STATE,
4614 "%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
4615 "capinfo=0x%04x chan=%d\n"
4616 , __func__
4617 , ic->ic_flags
4618 , ni->ni_intval
4619 , ether_sprintf(ni->ni_bssid)
4620 , ni->ni_capinfo
4621 , ieee80211_chan2ieee(ic, ic->ic_curchan));
4622
4623 switch (ic->ic_opmode) {
4624 case IEEE80211_M_HOSTAP:
4625 case IEEE80211_M_IBSS:
4626 /*
4627 * Allocate and setup the beacon frame.
4628 *
4629 * Stop any previous beacon DMA. This may be
4630 * necessary, for example, when an ibss merge
4631 * causes reconfiguration; there will be a state
4632 * transition from RUN->RUN that means we may
4633 * be called with beacon transmission active.
4634 */
4635 ath_hal_stoptxdma(ah, sc->sc_bhalq);
4636 ath_beacon_free(sc);
4637 error = ath_beacon_alloc(sc, ni);
4638 if (error != 0)
4639 goto bad;
4640 /*
4641 * If joining an adhoc network defer beacon timer
4642 * configuration to the next beacon frame so we
4643 * have a current TSF to use. Otherwise we're
4644 * starting an ibss/bss so there's no need to delay.
4645 */
4646 if (ic->ic_opmode == IEEE80211_M_IBSS &&
4647 ic->ic_bss->ni_tstamp.tsf != 0)
4648 sc->sc_syncbeacon = 1;
4649 else
4650 ath_beacon_config(sc);
4651 break;
4652 case IEEE80211_M_STA:
4653 /*
4654 * Allocate a key cache slot to the station.
4655 */
4656 if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
4657 sc->sc_hasclrkey &&
4658 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4659 ath_setup_stationkey(ni);
4660 /*
4661 * Defer beacon timer configuration to the next
4662 * beacon frame so we have a current TSF to use
4663 * (any TSF collected when scanning is likely old).
4664 */
4665 sc->sc_syncbeacon = 1;
4666 break;
4667 default:
4668 break;
4669 }
4670 /*
4671 * Let the hal process statistics collected during a
4672 * scan so it can provide calibrated noise floor data.
4673 */
4674 ath_hal_process_noisefloor(ah);
4675 /*
4676 * Reset rssi stats; maybe not the best place...
4677 */
4678 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
4679 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
4680 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
4681 } else {
4682 ath_hal_intrset(ah,
4683 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4684 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4685 }
4686 done:
4687 /*
4688 * Invoke the parent method to complete the work.
4689 */
4690 error = sc->sc_newstate(ic, nstate, arg);
4691 /*
4692 * Finally, start any timers.
4693 */
4694 if (nstate == IEEE80211_S_RUN) {
4695 /* start periodic recalibration timer */
4696 callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4697 ath_calibrate, sc);
4698 } else if (nstate == IEEE80211_S_SCAN) {
4699 /* start ap/neighbor scan timer */
4700 callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
4701 ath_next_scan, sc);
4702 }
4703 bad:
4704 return error;
4705 }
4706
4707 /*
4708 * Allocate a key cache slot to the station so we can
4709 * setup a mapping from key index to node. The key cache
4710 * slot is needed for managing antenna state and for
4711 * compression when stations do not use crypto. We do
4712 * it uniliaterally here; if crypto is employed this slot
4713 * will be reassigned.
4714 */
4715 static void
4716 ath_setup_stationkey(struct ieee80211_node *ni)
4717 {
4718 struct ieee80211com *ic = ni->ni_ic;
4719 struct ath_softc *sc = ic->ic_ifp->if_softc;
4720 ieee80211_keyix keyix, rxkeyix;
4721
4722 if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
4723 /*
4724 * Key cache is full; we'll fall back to doing
4725 * the more expensive lookup in software. Note
4726 * this also means no h/w compression.
4727 */
4728 /* XXX msg+statistic */
4729 } else {
4730 /* XXX locking? */
4731 ni->ni_ucastkey.wk_keyix = keyix;
4732 ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
4733 /* NB: this will create a pass-thru key entry */
4734 ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
4735 }
4736 }
4737
4738 /*
4739 * Setup driver-specific state for a newly associated node.
4740 * Note that we're called also on a re-associate, the isnew
4741 * param tells us if this is the first time or not.
4742 */
4743 static void
4744 ath_newassoc(struct ieee80211_node *ni, int isnew)
4745 {
4746 struct ieee80211com *ic = ni->ni_ic;
4747 struct ath_softc *sc = ic->ic_ifp->if_softc;
4748
4749 ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
4750 if (isnew &&
4751 (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
4752 KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
4753 ("new assoc with a unicast key already setup (keyix %u)",
4754 ni->ni_ucastkey.wk_keyix));
4755 ath_setup_stationkey(ni);
4756 }
4757 }
4758
4759 static int
4760 ath_getchannels(struct ath_softc *sc, u_int cc,
4761 HAL_BOOL outdoor, HAL_BOOL xchanmode)
4762 {
4763 #define COMPAT (CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
4764 struct ieee80211com *ic = &sc->sc_ic;
4765 struct ifnet *ifp = &sc->sc_if;
4766 struct ath_hal *ah = sc->sc_ah;
4767 HAL_CHANNEL *chans;
4768 int i, ix, nchan;
4769
4770 chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
4771 M_TEMP, M_NOWAIT);
4772 if (chans == NULL) {
4773 if_printf(ifp, "unable to allocate channel table\n");
4774 return ENOMEM;
4775 }
4776 if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
4777 NULL, 0, NULL,
4778 cc, HAL_MODE_ALL, outdoor, xchanmode)) {
4779 u_int32_t rd;
4780
4781 (void)ath_hal_getregdomain(ah, &rd);
4782 if_printf(ifp, "unable to collect channel list from hal; "
4783 "regdomain likely %u country code %u\n", rd, cc);
4784 free(chans, M_TEMP);
4785 return EINVAL;
4786 }
4787
4788 /*
4789 * Convert HAL channels to ieee80211 ones and insert
4790 * them in the table according to their channel number.
4791 */
4792 for (i = 0; i < nchan; i++) {
4793 HAL_CHANNEL *c = &chans[i];
4794 u_int16_t flags;
4795
4796 ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags);
4797 if (ix > IEEE80211_CHAN_MAX) {
4798 if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n",
4799 ix, c->channel, c->channelFlags);
4800 continue;
4801 }
4802 if (ix < 0) {
4803 /* XXX can't handle stuff <2400 right now */
4804 if (bootverbose)
4805 if_printf(ifp, "hal channel %d (%u/%x) "
4806 "cannot be handled; ignored\n",
4807 ix, c->channel, c->channelFlags);
4808 continue;
4809 }
4810 /*
4811 * Calculate net80211 flags; most are compatible
4812 * but some need massaging. Note the static turbo
4813 * conversion can be removed once net80211 is updated
4814 * to understand static vs. dynamic turbo.
4815 */
4816 flags = c->channelFlags & COMPAT;
4817 if (c->channelFlags & CHANNEL_STURBO)
4818 flags |= IEEE80211_CHAN_TURBO;
4819 if (ic->ic_channels[ix].ic_freq == 0) {
4820 ic->ic_channels[ix].ic_freq = c->channel;
4821 ic->ic_channels[ix].ic_flags = flags;
4822 } else {
4823 /* channels overlap; e.g. 11g and 11b */
4824 ic->ic_channels[ix].ic_flags |= flags;
4825 }
4826 }
4827 free(chans, M_TEMP);
4828 return 0;
4829 #undef COMPAT
4830 }
4831
4832 static void
4833 ath_led_done(void *arg)
4834 {
4835 struct ath_softc *sc = arg;
4836
4837 sc->sc_blinking = 0;
4838 }
4839
4840 /*
4841 * Turn the LED off: flip the pin and then set a timer so no
4842 * update will happen for the specified duration.
4843 */
4844 static void
4845 ath_led_off(void *arg)
4846 {
4847 struct ath_softc *sc = arg;
4848
4849 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
4850 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
4851 }
4852
4853 /*
4854 * Blink the LED according to the specified on/off times.
4855 */
4856 static void
4857 ath_led_blink(struct ath_softc *sc, int on, int off)
4858 {
4859 DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
4860 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
4861 sc->sc_blinking = 1;
4862 sc->sc_ledoff = off;
4863 callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
4864 }
4865
4866 static void
4867 ath_led_event(struct ath_softc *sc, int event)
4868 {
4869
4870 sc->sc_ledevent = ticks; /* time of last event */
4871 if (sc->sc_blinking) /* don't interrupt active blink */
4872 return;
4873 switch (event) {
4874 case ATH_LED_POLL:
4875 ath_led_blink(sc, sc->sc_hwmap[0].ledon,
4876 sc->sc_hwmap[0].ledoff);
4877 break;
4878 case ATH_LED_TX:
4879 ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
4880 sc->sc_hwmap[sc->sc_txrate].ledoff);
4881 break;
4882 case ATH_LED_RX:
4883 ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
4884 sc->sc_hwmap[sc->sc_rxrate].ledoff);
4885 break;
4886 }
4887 }
4888
4889 static void
4890 ath_update_txpow(struct ath_softc *sc)
4891 {
4892 #define COMPAT (CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
4893 struct ieee80211com *ic = &sc->sc_ic;
4894 struct ath_hal *ah = sc->sc_ah;
4895 u_int32_t txpow;
4896
4897 if (sc->sc_curtxpow != ic->ic_txpowlimit) {
4898 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
4899 /* read back in case value is clamped */
4900 (void)ath_hal_gettxpowlimit(ah, &txpow);
4901 ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
4902 }
4903 /*
4904 * Fetch max tx power level for status requests.
4905 */
4906 (void)ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
4907 ic->ic_bss->ni_txpower = txpow;
4908 }
4909
4910 static void
4911 rate_setup(struct ath_softc *sc,
4912 const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs)
4913 {
4914 int i, maxrates;
4915
4916 if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
4917 DPRINTF(sc, ATH_DEBUG_ANY,
4918 "%s: rate table too small (%u > %u)\n",
4919 __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
4920 maxrates = IEEE80211_RATE_MAXSIZE;
4921 } else
4922 maxrates = rt->rateCount;
4923 for (i = 0; i < maxrates; i++)
4924 rs->rs_rates[i] = rt->info[i].dot11Rate;
4925 rs->rs_nrates = maxrates;
4926 }
4927
4928 static int
4929 ath_rate_setup(struct ath_softc *sc, u_int mode)
4930 {
4931 struct ath_hal *ah = sc->sc_ah;
4932 struct ieee80211com *ic = &sc->sc_ic;
4933 const HAL_RATE_TABLE *rt;
4934
4935 switch (mode) {
4936 case IEEE80211_MODE_11A:
4937 rt = ath_hal_getratetable(ah, HAL_MODE_11A);
4938 break;
4939 case IEEE80211_MODE_11B:
4940 rt = ath_hal_getratetable(ah, HAL_MODE_11B);
4941 break;
4942 case IEEE80211_MODE_11G:
4943 rt = ath_hal_getratetable(ah, HAL_MODE_11G);
4944 break;
4945 case IEEE80211_MODE_TURBO_A:
4946 /* XXX until static/dynamic turbo is fixed */
4947 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
4948 break;
4949 case IEEE80211_MODE_TURBO_G:
4950 rt = ath_hal_getratetable(ah, HAL_MODE_108G);
4951 break;
4952 default:
4953 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
4954 __func__, mode);
4955 return 0;
4956 }
4957 sc->sc_rates[mode] = rt;
4958 if (rt != NULL) {
4959 rate_setup(sc, rt, &ic->ic_sup_rates[mode]);
4960 return 1;
4961 } else
4962 return 0;
4963 }
4964
4965 static void
4966 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
4967 {
4968 #define N(a) (sizeof(a)/sizeof(a[0]))
4969 /* NB: on/off times from the Atheros NDIS driver, w/ permission */
4970 static const struct {
4971 u_int rate; /* tx/rx 802.11 rate */
4972 u_int16_t timeOn; /* LED on time (ms) */
4973 u_int16_t timeOff; /* LED off time (ms) */
4974 } blinkrates[] = {
4975 { 108, 40, 10 },
4976 { 96, 44, 11 },
4977 { 72, 50, 13 },
4978 { 48, 57, 14 },
4979 { 36, 67, 16 },
4980 { 24, 80, 20 },
4981 { 22, 100, 25 },
4982 { 18, 133, 34 },
4983 { 12, 160, 40 },
4984 { 10, 200, 50 },
4985 { 6, 240, 58 },
4986 { 4, 267, 66 },
4987 { 2, 400, 100 },
4988 { 0, 500, 130 },
4989 };
4990 const HAL_RATE_TABLE *rt;
4991 int i, j;
4992
4993 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
4994 rt = sc->sc_rates[mode];
4995 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
4996 for (i = 0; i < rt->rateCount; i++)
4997 sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
4998 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
4999 for (i = 0; i < 32; i++) {
5000 u_int8_t ix = rt->rateCodeToIndex[i];
5001 if (ix == 0xff) {
5002 sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
5003 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
5004 continue;
5005 }
5006 sc->sc_hwmap[i].ieeerate =
5007 rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
5008 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
5009 if (rt->info[ix].shortPreamble ||
5010 rt->info[ix].phy == IEEE80211_T_OFDM)
5011 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
5012 /* NB: receive frames include FCS */
5013 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
5014 IEEE80211_RADIOTAP_F_FCS;
5015 /* setup blink rate table to avoid per-packet lookup */
5016 for (j = 0; j < N(blinkrates)-1; j++)
5017 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
5018 break;
5019 /* NB: this uses the last entry if the rate isn't found */
5020 /* XXX beware of overlow */
5021 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
5022 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
5023 }
5024 sc->sc_currates = rt;
5025 sc->sc_curmode = mode;
5026 /*
5027 * All protection frames are transmited at 2Mb/s for
5028 * 11g, otherwise at 1Mb/s.
5029 */
5030 if (mode == IEEE80211_MODE_11G)
5031 sc->sc_protrix = ath_tx_findrix(rt, 2*2);
5032 else
5033 sc->sc_protrix = ath_tx_findrix(rt, 2*1);
5034 /* rate index used to send management frames */
5035 sc->sc_minrateix = 0;
5036 /*
5037 * Setup multicast rate state.
5038 */
5039 /* XXX layering violation */
5040 sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate);
5041 sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate;
5042 /* NB: caller is responsible for reseting rate control state */
5043 #undef N
5044 }
5045
5046 #ifdef AR_DEBUG
5047 static void
5048 ath_printrxbuf(struct ath_buf *bf, int done)
5049 {
5050 struct ath_desc *ds;
5051 int i;
5052
5053 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5054 printf("R%d (%p %" PRIx64
5055 ") %08x %08x %08x %08x %08x %08x %c\n", i, ds,
5056 (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
5057 ds->ds_link, ds->ds_data,
5058 ds->ds_ctl0, ds->ds_ctl1,
5059 ds->ds_hw[0], ds->ds_hw[1],
5060 !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
5061 }
5062 }
5063
5064 static void
5065 ath_printtxbuf(struct ath_buf *bf, int done)
5066 {
5067 struct ath_desc *ds;
5068 int i;
5069
5070 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5071 printf("T%d (%p %" PRIx64
5072 ") %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
5073 i, ds,
5074 (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
5075 ds->ds_link, ds->ds_data,
5076 ds->ds_ctl0, ds->ds_ctl1,
5077 ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
5078 !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
5079 }
5080 }
5081 #endif /* AR_DEBUG */
5082
5083 static void
5084 ath_watchdog(struct ifnet *ifp)
5085 {
5086 struct ath_softc *sc = ifp->if_softc;
5087 struct ieee80211com *ic = &sc->sc_ic;
5088 struct ath_txq *axq;
5089 int i;
5090
5091 ifp->if_timer = 0;
5092 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
5093 return;
5094 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5095 if (!ATH_TXQ_SETUP(sc, i))
5096 continue;
5097 axq = &sc->sc_txq[i];
5098 ATH_TXQ_LOCK(axq);
5099 if (axq->axq_timer == 0)
5100 ;
5101 else if (--axq->axq_timer == 0) {
5102 ATH_TXQ_UNLOCK(axq);
5103 if_printf(ifp, "device timeout (txq %d)\n", i);
5104 ath_reset(ifp);
5105 ifp->if_oerrors++;
5106 sc->sc_stats.ast_watchdog++;
5107 break;
5108 } else
5109 ifp->if_timer = 1;
5110 ATH_TXQ_UNLOCK(axq);
5111 }
5112 ieee80211_watchdog(ic);
5113 }
5114
5115 /*
5116 * Diagnostic interface to the HAL. This is used by various
5117 * tools to do things like retrieve register contents for
5118 * debugging. The mechanism is intentionally opaque so that
5119 * it can change frequently w/o concern for compatiblity.
5120 */
5121 static int
5122 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
5123 {
5124 struct ath_hal *ah = sc->sc_ah;
5125 u_int id = ad->ad_id & ATH_DIAG_ID;
5126 void *indata = NULL;
5127 void *outdata = NULL;
5128 u_int32_t insize = ad->ad_in_size;
5129 u_int32_t outsize = ad->ad_out_size;
5130 int error = 0;
5131
5132 if (ad->ad_id & ATH_DIAG_IN) {
5133 /*
5134 * Copy in data.
5135 */
5136 indata = malloc(insize, M_TEMP, M_NOWAIT);
5137 if (indata == NULL) {
5138 error = ENOMEM;
5139 goto bad;
5140 }
5141 error = copyin(ad->ad_in_data, indata, insize);
5142 if (error)
5143 goto bad;
5144 }
5145 if (ad->ad_id & ATH_DIAG_DYN) {
5146 /*
5147 * Allocate a buffer for the results (otherwise the HAL
5148 * returns a pointer to a buffer where we can read the
5149 * results). Note that we depend on the HAL leaving this
5150 * pointer for us to use below in reclaiming the buffer;
5151 * may want to be more defensive.
5152 */
5153 outdata = malloc(outsize, M_TEMP, M_NOWAIT);
5154 if (outdata == NULL) {
5155 error = ENOMEM;
5156 goto bad;
5157 }
5158 }
5159 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
5160 if (outsize < ad->ad_out_size)
5161 ad->ad_out_size = outsize;
5162 if (outdata != NULL)
5163 error = copyout(outdata, ad->ad_out_data,
5164 ad->ad_out_size);
5165 } else {
5166 error = EINVAL;
5167 }
5168 bad:
5169 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
5170 free(indata, M_TEMP);
5171 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
5172 free(outdata, M_TEMP);
5173 return error;
5174 }
5175
5176 static int
5177 ath_ioctl(struct ifnet *ifp, u_long cmd, void *data)
5178 {
5179 #define IS_RUNNING(ifp) \
5180 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
5181 struct ath_softc *sc = ifp->if_softc;
5182 struct ieee80211com *ic = &sc->sc_ic;
5183 struct ifreq *ifr = (struct ifreq *)data;
5184 int error = 0;
5185
5186 ATH_LOCK(sc);
5187 switch (cmd) {
5188 case SIOCSIFFLAGS:
5189 if (IS_RUNNING(ifp)) {
5190 /*
5191 * To avoid rescanning another access point,
5192 * do not call ath_init() here. Instead,
5193 * only reflect promisc mode settings.
5194 */
5195 ath_mode_init(sc);
5196 } else if (ifp->if_flags & IFF_UP) {
5197 /*
5198 * Beware of being called during attach/detach
5199 * to reset promiscuous mode. In that case we
5200 * will still be marked UP but not RUNNING.
5201 * However trying to re-init the interface
5202 * is the wrong thing to do as we've already
5203 * torn down much of our state. There's
5204 * probably a better way to deal with this.
5205 */
5206 if (!sc->sc_invalid && ic->ic_bss != NULL)
5207 ath_init(sc); /* XXX lose error */
5208 } else
5209 ath_stop_locked(ifp, 1);
5210 break;
5211 case SIOCADDMULTI:
5212 case SIOCDELMULTI:
5213 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
5214 if (ifp->if_flags & IFF_RUNNING)
5215 ath_mode_init(sc);
5216 error = 0;
5217 }
5218 break;
5219 case SIOCGATHSTATS:
5220 /* NB: embed these numbers to get a consistent view */
5221 sc->sc_stats.ast_tx_packets = ifp->if_opackets;
5222 sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
5223 sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
5224 ATH_UNLOCK(sc);
5225 /*
5226 * NB: Drop the softc lock in case of a page fault;
5227 * we'll accept any potential inconsisentcy in the
5228 * statistics. The alternative is to copy the data
5229 * to a local structure.
5230 */
5231 return copyout(&sc->sc_stats,
5232 ifr->ifr_data, sizeof (sc->sc_stats));
5233 case SIOCGATHDIAG:
5234 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
5235 break;
5236 default:
5237 error = ieee80211_ioctl(ic, cmd, data);
5238 if (error == ENETRESET) {
5239 if (IS_RUNNING(ifp) &&
5240 ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
5241 ath_init(sc); /* XXX lose error */
5242 error = 0;
5243 }
5244 if (error == ERESTART)
5245 error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0;
5246 break;
5247 }
5248 ATH_UNLOCK(sc);
5249 return error;
5250 #undef IS_RUNNING
5251 }
5252
5253 #if NBPFILTER > 0
5254 static void
5255 ath_bpfattach(struct ath_softc *sc)
5256 {
5257 struct ifnet *ifp = &sc->sc_if;
5258
5259 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
5260 sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
5261 &sc->sc_drvbpf);
5262 /*
5263 * Initialize constant fields.
5264 * XXX make header lengths a multiple of 32-bits so subsequent
5265 * headers are properly aligned; this is a kludge to keep
5266 * certain applications happy.
5267 *
5268 * NB: the channel is setup each time we transition to the
5269 * RUN state to avoid filling it in for each frame.
5270 */
5271 sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
5272 sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
5273 sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
5274
5275 sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
5276 sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
5277 sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
5278 }
5279 #endif
5280
5281 /*
5282 * Announce various information on device/driver attach.
5283 */
5284 static void
5285 ath_announce(struct ath_softc *sc)
5286 {
5287 #define HAL_MODE_DUALBAND (HAL_MODE_11A|HAL_MODE_11B)
5288 struct ifnet *ifp = &sc->sc_if;
5289 struct ath_hal *ah = sc->sc_ah;
5290 u_int modes, cc;
5291
5292 if_printf(ifp, "mac %d.%d phy %d.%d",
5293 ah->ah_macVersion, ah->ah_macRev,
5294 ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
5295 /*
5296 * Print radio revision(s). We check the wireless modes
5297 * to avoid falsely printing revs for inoperable parts.
5298 * Dual-band radio revs are returned in the 5 GHz rev number.
5299 */
5300 ath_hal_getcountrycode(ah, &cc);
5301 modes = ath_hal_getwirelessmodes(ah, cc);
5302 if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
5303 if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
5304 printf(" 5 GHz radio %d.%d 2 GHz radio %d.%d",
5305 ah->ah_analog5GhzRev >> 4,
5306 ah->ah_analog5GhzRev & 0xf,
5307 ah->ah_analog2GhzRev >> 4,
5308 ah->ah_analog2GhzRev & 0xf);
5309 else
5310 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5311 ah->ah_analog5GhzRev & 0xf);
5312 } else
5313 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5314 ah->ah_analog5GhzRev & 0xf);
5315 printf("\n");
5316 if (bootverbose) {
5317 int i;
5318 for (i = 0; i <= WME_AC_VO; i++) {
5319 struct ath_txq *txq = sc->sc_ac2q[i];
5320 if_printf(ifp, "Use hw queue %u for %s traffic\n",
5321 txq->axq_qnum, ieee80211_wme_acnames[i]);
5322 }
5323 if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5324 sc->sc_cabq->axq_qnum);
5325 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5326 }
5327 if (ath_rxbuf != ATH_RXBUF)
5328 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
5329 if (ath_txbuf != ATH_TXBUF)
5330 if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
5331 #undef HAL_MODE_DUALBAND
5332 }
5333