ath.c revision 1.93.2.2 1 /* $NetBSD: ath.c,v 1.93.2.2 2008/01/08 22:11:01 bouyer Exp $ */
2
3 /*-
4 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15 * redistribution must be conditioned upon including a substantially
16 * similar Disclaimer requirement for further binary redistribution.
17 * 3. Neither the names of the above-listed copyright holders nor the names
18 * of any contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * Alternatively, this software may be distributed under the terms of the
22 * GNU General Public License ("GPL") version 2 as published by the Free
23 * Software Foundation.
24 *
25 * NO WARRANTY
26 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
28 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
29 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
30 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
31 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
34 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
36 * THE POSSIBILITY OF SUCH DAMAGES.
37 */
38
39 #include <sys/cdefs.h>
40 #ifdef __FreeBSD__
41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $");
42 #endif
43 #ifdef __NetBSD__
44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.93.2.2 2008/01/08 22:11:01 bouyer Exp $");
45 #endif
46
47 /*
48 * Driver for the Atheros Wireless LAN controller.
49 *
50 * This software is derived from work of Atsushi Onoe; his contribution
51 * is greatly appreciated.
52 */
53
54 #include "opt_inet.h"
55
56 #ifdef __NetBSD__
57 #include "bpfilter.h"
58 #endif /* __NetBSD__ */
59
60 #include <sys/param.h>
61 #include <sys/reboot.h>
62 #include <sys/systm.h>
63 #include <sys/types.h>
64 #include <sys/sysctl.h>
65 #include <sys/mbuf.h>
66 #include <sys/malloc.h>
67 #include <sys/kernel.h>
68 #include <sys/socket.h>
69 #include <sys/sockio.h>
70 #include <sys/errno.h>
71 #include <sys/callout.h>
72 #include <sys/bus.h>
73 #include <sys/endian.h>
74
75 #include <net/if.h>
76 #include <net/if_dl.h>
77 #include <net/if_media.h>
78 #include <net/if_types.h>
79 #include <net/if_arp.h>
80 #include <net/if_ether.h>
81 #include <net/if_llc.h>
82
83 #include <net80211/ieee80211_netbsd.h>
84 #include <net80211/ieee80211_var.h>
85
86 #if NBPFILTER > 0
87 #include <net/bpf.h>
88 #endif
89
90 #ifdef INET
91 #include <netinet/in.h>
92 #endif
93
94 #include <sys/device.h>
95 #include <dev/ic/ath_netbsd.h>
96
97 #define AR_DEBUG
98 #include <dev/ic/athvar.h>
99 #include <contrib/dev/ath/ah_desc.h>
100 #include <contrib/dev/ath/ah_devid.h> /* XXX for softled */
101 #include "athhal_options.h"
102
103 #ifdef ATH_TX99_DIAG
104 #include <dev/ath/ath_tx99/ath_tx99.h>
105 #endif
106
107 /* unaligned little endian access */
108 #define LE_READ_2(p) \
109 ((u_int16_t) \
110 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8)))
111 #define LE_READ_4(p) \
112 ((u_int32_t) \
113 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \
114 (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
115
116 enum {
117 ATH_LED_TX,
118 ATH_LED_RX,
119 ATH_LED_POLL,
120 };
121
122 #ifdef AH_NEED_DESC_SWAP
123 #define HTOAH32(x) htole32(x)
124 #else
125 #define HTOAH32(x) (x)
126 #endif
127
128 static int ath_ifinit(struct ifnet *);
129 static int ath_init(struct ath_softc *);
130 static void ath_stop_locked(struct ifnet *, int);
131 static void ath_stop(struct ifnet *, int);
132 static void ath_start(struct ifnet *);
133 static int ath_media_change(struct ifnet *);
134 static void ath_watchdog(struct ifnet *);
135 static int ath_ioctl(struct ifnet *, u_long, void *);
136 static void ath_fatal_proc(void *, int);
137 static void ath_rxorn_proc(void *, int);
138 static void ath_bmiss_proc(void *, int);
139 static void ath_radar_proc(void *, int);
140 static int ath_key_alloc(struct ieee80211com *,
141 const struct ieee80211_key *,
142 ieee80211_keyix *, ieee80211_keyix *);
143 static int ath_key_delete(struct ieee80211com *,
144 const struct ieee80211_key *);
145 static int ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
146 const u_int8_t mac[IEEE80211_ADDR_LEN]);
147 static void ath_key_update_begin(struct ieee80211com *);
148 static void ath_key_update_end(struct ieee80211com *);
149 static void ath_mode_init(struct ath_softc *);
150 static void ath_setslottime(struct ath_softc *);
151 static void ath_updateslot(struct ifnet *);
152 static int ath_beaconq_setup(struct ath_hal *);
153 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
154 static void ath_beacon_setup(struct ath_softc *, struct ath_buf *);
155 static void ath_beacon_proc(void *, int);
156 static void ath_bstuck_proc(void *, int);
157 static void ath_beacon_free(struct ath_softc *);
158 static void ath_beacon_config(struct ath_softc *);
159 static void ath_descdma_cleanup(struct ath_softc *sc,
160 struct ath_descdma *, ath_bufhead *);
161 static int ath_desc_alloc(struct ath_softc *);
162 static void ath_desc_free(struct ath_softc *);
163 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
164 static void ath_node_free(struct ieee80211_node *);
165 static u_int8_t ath_node_getrssi(const struct ieee80211_node *);
166 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
167 static void ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
168 struct ieee80211_node *ni,
169 int subtype, int rssi, u_int32_t rstamp);
170 static void ath_setdefantenna(struct ath_softc *, u_int);
171 static void ath_rx_proc(void *, int);
172 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
173 static int ath_tx_setup(struct ath_softc *, int, int);
174 static int ath_wme_update(struct ieee80211com *);
175 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
176 static void ath_tx_cleanup(struct ath_softc *);
177 static int ath_tx_start(struct ath_softc *, struct ieee80211_node *,
178 struct ath_buf *, struct mbuf *);
179 static void ath_tx_proc_q0(void *, int);
180 static void ath_tx_proc_q0123(void *, int);
181 static void ath_tx_proc(void *, int);
182 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
183 static void ath_draintxq(struct ath_softc *);
184 static void ath_stoprecv(struct ath_softc *);
185 static int ath_startrecv(struct ath_softc *);
186 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
187 static void ath_next_scan(void *);
188 static void ath_calibrate(void *);
189 static int ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
190 static void ath_setup_stationkey(struct ieee80211_node *);
191 static void ath_newassoc(struct ieee80211_node *, int);
192 static int ath_getchannels(struct ath_softc *, u_int cc,
193 HAL_BOOL outdoor, HAL_BOOL xchanmode);
194 static void ath_led_event(struct ath_softc *, int);
195 static void ath_update_txpow(struct ath_softc *);
196 static void ath_freetx(struct mbuf *);
197 static void ath_restore_diversity(struct ath_softc *);
198
199 static int ath_rate_setup(struct ath_softc *, u_int mode);
200 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
201
202 #ifdef __NetBSD__
203 int ath_enable(struct ath_softc *);
204 void ath_disable(struct ath_softc *);
205 #endif
206
207 #if NBPFILTER > 0
208 static void ath_bpfattach(struct ath_softc *);
209 #endif
210 static void ath_announce(struct ath_softc *);
211
212 int ath_dwelltime = 200; /* 5 channels/second */
213 int ath_calinterval = 30; /* calibrate every 30 secs */
214 int ath_outdoor = AH_TRUE; /* outdoor operation */
215 int ath_xchanmode = AH_TRUE; /* enable extended channels */
216 int ath_countrycode = CTRY_DEFAULT; /* country code */
217 int ath_regdomain = 0; /* regulatory domain */
218 int ath_debug = 0;
219 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */
220 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */
221
222 #ifdef AR_DEBUG
223 enum {
224 ATH_DEBUG_XMIT = 0x00000001, /* basic xmit operation */
225 ATH_DEBUG_XMIT_DESC = 0x00000002, /* xmit descriptors */
226 ATH_DEBUG_RECV = 0x00000004, /* basic recv operation */
227 ATH_DEBUG_RECV_DESC = 0x00000008, /* recv descriptors */
228 ATH_DEBUG_RATE = 0x00000010, /* rate control */
229 ATH_DEBUG_RESET = 0x00000020, /* reset processing */
230 ATH_DEBUG_MODE = 0x00000040, /* mode init/setup */
231 ATH_DEBUG_BEACON = 0x00000080, /* beacon handling */
232 ATH_DEBUG_WATCHDOG = 0x00000100, /* watchdog timeout */
233 ATH_DEBUG_INTR = 0x00001000, /* ISR */
234 ATH_DEBUG_TX_PROC = 0x00002000, /* tx ISR proc */
235 ATH_DEBUG_RX_PROC = 0x00004000, /* rx ISR proc */
236 ATH_DEBUG_BEACON_PROC = 0x00008000, /* beacon ISR proc */
237 ATH_DEBUG_CALIBRATE = 0x00010000, /* periodic calibration */
238 ATH_DEBUG_KEYCACHE = 0x00020000, /* key cache management */
239 ATH_DEBUG_STATE = 0x00040000, /* 802.11 state transitions */
240 ATH_DEBUG_NODE = 0x00080000, /* node management */
241 ATH_DEBUG_LED = 0x00100000, /* led management */
242 ATH_DEBUG_FF = 0x00200000, /* fast frames */
243 ATH_DEBUG_DFS = 0x00400000, /* DFS processing */
244 ATH_DEBUG_FATAL = 0x80000000, /* fatal errors */
245 ATH_DEBUG_ANY = 0xffffffff
246 };
247 #define IFF_DUMPPKTS(sc, m) \
248 ((sc->sc_debug & (m)) || \
249 (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
250 #define DPRINTF(sc, m, fmt, ...) do { \
251 if (sc->sc_debug & (m)) \
252 printf(fmt, __VA_ARGS__); \
253 } while (0)
254 #define KEYPRINTF(sc, ix, hk, mac) do { \
255 if (sc->sc_debug & ATH_DEBUG_KEYCACHE) \
256 ath_keyprint(__func__, ix, hk, mac); \
257 } while (0)
258 static void ath_printrxbuf(struct ath_buf *bf, int);
259 static void ath_printtxbuf(struct ath_buf *bf, int);
260 #else
261 #define IFF_DUMPPKTS(sc, m) \
262 ((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
263 #define DPRINTF(m, fmt, ...)
264 #define KEYPRINTF(sc, k, ix, mac)
265 #endif
266
267 #ifdef __NetBSD__
268 int
269 ath_activate(struct device *self, enum devact act)
270 {
271 struct ath_softc *sc = (struct ath_softc *)self;
272 int rv = 0, s;
273
274 s = splnet();
275 switch (act) {
276 case DVACT_ACTIVATE:
277 rv = EOPNOTSUPP;
278 break;
279 case DVACT_DEACTIVATE:
280 if_deactivate(&sc->sc_if);
281 break;
282 }
283 splx(s);
284 return rv;
285 }
286
287 int
288 ath_enable(struct ath_softc *sc)
289 {
290 if (ATH_IS_ENABLED(sc) == 0) {
291 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
292 printf("%s: device enable failed\n",
293 device_xname(&sc->sc_dev));
294 return (EIO);
295 }
296 sc->sc_flags |= ATH_ENABLED;
297 }
298 return (0);
299 }
300
301 void
302 ath_disable(struct ath_softc *sc)
303 {
304 if (!ATH_IS_ENABLED(sc))
305 return;
306 if (sc->sc_disable != NULL)
307 (*sc->sc_disable)(sc);
308 sc->sc_flags &= ~ATH_ENABLED;
309 }
310 #endif /* __NetBSD__ */
311
312 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
313
314 int
315 ath_attach(u_int16_t devid, struct ath_softc *sc)
316 {
317 struct ifnet *ifp = &sc->sc_if;
318 struct ieee80211com *ic = &sc->sc_ic;
319 struct ath_hal *ah = NULL;
320 HAL_STATUS status;
321 int error = 0, i;
322
323 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
324
325 memcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
326
327 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
328 if (ah == NULL) {
329 if_printf(ifp, "unable to attach hardware; HAL status %u\n",
330 status);
331 error = ENXIO;
332 goto bad;
333 }
334 if (ah->ah_abi != HAL_ABI_VERSION) {
335 if_printf(ifp, "HAL ABI mismatch detected "
336 "(HAL:0x%x != driver:0x%x)\n",
337 ah->ah_abi, HAL_ABI_VERSION);
338 error = ENXIO;
339 goto bad;
340 }
341 sc->sc_ah = ah;
342 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */
343
344 /*
345 * Check if the MAC has multi-rate retry support.
346 * We do this by trying to setup a fake extended
347 * descriptor. MAC's that don't have support will
348 * return false w/o doing anything. MAC's that do
349 * support it will return true w/o doing anything.
350 */
351 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
352
353 /*
354 * Check if the device has hardware counters for PHY
355 * errors. If so we need to enable the MIB interrupt
356 * so we can act on stat triggers.
357 */
358 if (ath_hal_hwphycounters(ah))
359 sc->sc_needmib = 1;
360
361 /*
362 * Get the hardware key cache size.
363 */
364 sc->sc_keymax = ath_hal_keycachesize(ah);
365 if (sc->sc_keymax > ATH_KEYMAX) {
366 if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
367 ATH_KEYMAX, sc->sc_keymax);
368 sc->sc_keymax = ATH_KEYMAX;
369 }
370 /*
371 * Reset the key cache since some parts do not
372 * reset the contents on initial power up.
373 */
374 for (i = 0; i < sc->sc_keymax; i++)
375 ath_hal_keyreset(ah, i);
376 /*
377 * Mark key cache slots associated with global keys
378 * as in use. If we knew TKIP was not to be used we
379 * could leave the +32, +64, and +32+64 slots free.
380 * XXX only for splitmic.
381 */
382 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
383 setbit(sc->sc_keymap, i);
384 setbit(sc->sc_keymap, i+32);
385 setbit(sc->sc_keymap, i+64);
386 setbit(sc->sc_keymap, i+32+64);
387 }
388
389 /*
390 * Collect the channel list using the default country
391 * code and including outdoor channels. The 802.11 layer
392 * is resposible for filtering this list based on settings
393 * like the phy mode.
394 */
395 error = ath_getchannels(sc, ath_countrycode,
396 ath_outdoor, ath_xchanmode);
397 if (error != 0)
398 goto bad;
399
400 /*
401 * Setup rate tables for all potential media types.
402 */
403 ath_rate_setup(sc, IEEE80211_MODE_11A);
404 ath_rate_setup(sc, IEEE80211_MODE_11B);
405 ath_rate_setup(sc, IEEE80211_MODE_11G);
406 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
407 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
408 /* NB: setup here so ath_rate_update is happy */
409 ath_setcurmode(sc, IEEE80211_MODE_11A);
410
411 /*
412 * Allocate tx+rx descriptors and populate the lists.
413 */
414 error = ath_desc_alloc(sc);
415 if (error != 0) {
416 if_printf(ifp, "failed to allocate descriptors: %d\n", error);
417 goto bad;
418 }
419 ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
420 ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE);
421 ATH_CALLOUT_INIT(&sc->sc_dfs_ch, CALLOUT_MPSAFE);
422
423 ATH_TXBUF_LOCK_INIT(sc);
424
425 TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
426 TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
427 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
428 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
429 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
430 TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc);
431
432 /*
433 * Allocate hardware transmit queues: one queue for
434 * beacon frames and one data queue for each QoS
435 * priority. Note that the hal handles reseting
436 * these queues at the needed time.
437 *
438 * XXX PS-Poll
439 */
440 sc->sc_bhalq = ath_beaconq_setup(ah);
441 if (sc->sc_bhalq == (u_int) -1) {
442 if_printf(ifp, "unable to setup a beacon xmit queue!\n");
443 error = EIO;
444 goto bad2;
445 }
446 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
447 if (sc->sc_cabq == NULL) {
448 if_printf(ifp, "unable to setup CAB xmit queue!\n");
449 error = EIO;
450 goto bad2;
451 }
452 /* NB: insure BK queue is the lowest priority h/w queue */
453 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
454 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
455 ieee80211_wme_acnames[WME_AC_BK]);
456 error = EIO;
457 goto bad2;
458 }
459 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
460 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
461 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
462 /*
463 * Not enough hardware tx queues to properly do WME;
464 * just punt and assign them all to the same h/w queue.
465 * We could do a better job of this if, for example,
466 * we allocate queues when we switch from station to
467 * AP mode.
468 */
469 if (sc->sc_ac2q[WME_AC_VI] != NULL)
470 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
471 if (sc->sc_ac2q[WME_AC_BE] != NULL)
472 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
473 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
474 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
475 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
476 }
477
478 /*
479 * Special case certain configurations. Note the
480 * CAB queue is handled by these specially so don't
481 * include them when checking the txq setup mask.
482 */
483 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
484 case 0x01:
485 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
486 break;
487 case 0x0f:
488 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
489 break;
490 default:
491 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
492 break;
493 }
494
495 /*
496 * Setup rate control. Some rate control modules
497 * call back to change the anntena state so expose
498 * the necessary entry points.
499 * XXX maybe belongs in struct ath_ratectrl?
500 */
501 sc->sc_setdefantenna = ath_setdefantenna;
502 sc->sc_rc = ath_rate_attach(sc);
503 if (sc->sc_rc == NULL) {
504 error = EIO;
505 goto bad2;
506 }
507
508 sc->sc_blinking = 0;
509 sc->sc_ledstate = 1;
510 sc->sc_ledon = 0; /* low true */
511 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */
512 ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE);
513 /*
514 * Auto-enable soft led processing for IBM cards and for
515 * 5211 minipci cards. Users can also manually enable/disable
516 * support with a sysctl.
517 */
518 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
519 if (sc->sc_softled) {
520 ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
521 ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
522 }
523
524 ifp->if_softc = sc;
525 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
526 ifp->if_start = ath_start;
527 ifp->if_stop = ath_stop;
528 ifp->if_watchdog = ath_watchdog;
529 ifp->if_ioctl = ath_ioctl;
530 ifp->if_init = ath_ifinit;
531 IFQ_SET_READY(&ifp->if_snd);
532
533 ic->ic_ifp = ifp;
534 ic->ic_reset = ath_reset;
535 ic->ic_newassoc = ath_newassoc;
536 ic->ic_updateslot = ath_updateslot;
537 ic->ic_wme.wme_update = ath_wme_update;
538 /* XXX not right but it's not used anywhere important */
539 ic->ic_phytype = IEEE80211_T_OFDM;
540 ic->ic_opmode = IEEE80211_M_STA;
541 ic->ic_caps =
542 IEEE80211_C_IBSS /* ibss, nee adhoc, mode */
543 | IEEE80211_C_HOSTAP /* hostap mode */
544 | IEEE80211_C_MONITOR /* monitor mode */
545 | IEEE80211_C_SHPREAMBLE /* short preamble supported */
546 | IEEE80211_C_SHSLOT /* short slot time supported */
547 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */
548 | IEEE80211_C_TXFRAG /* handle tx frags */
549 ;
550 /*
551 * Query the hal to figure out h/w crypto support.
552 */
553 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
554 ic->ic_caps |= IEEE80211_C_WEP;
555 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
556 ic->ic_caps |= IEEE80211_C_AES;
557 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
558 ic->ic_caps |= IEEE80211_C_AES_CCM;
559 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
560 ic->ic_caps |= IEEE80211_C_CKIP;
561 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
562 ic->ic_caps |= IEEE80211_C_TKIP;
563 /*
564 * Check if h/w does the MIC and/or whether the
565 * separate key cache entries are required to
566 * handle both tx+rx MIC keys.
567 */
568 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
569 ic->ic_caps |= IEEE80211_C_TKIPMIC;
570 if (ath_hal_tkipsplit(ah))
571 sc->sc_splitmic = 1;
572 }
573 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
574 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
575 /*
576 * TPC support can be done either with a global cap or
577 * per-packet support. The latter is not available on
578 * all parts. We're a bit pedantic here as all parts
579 * support a global cap.
580 */
581 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
582 ic->ic_caps |= IEEE80211_C_TXPMGT;
583
584 /*
585 * Mark WME capability only if we have sufficient
586 * hardware queues to do proper priority scheduling.
587 */
588 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
589 ic->ic_caps |= IEEE80211_C_WME;
590 /*
591 * Check for misc other capabilities.
592 */
593 if (ath_hal_hasbursting(ah))
594 ic->ic_caps |= IEEE80211_C_BURST;
595
596 /*
597 * Indicate we need the 802.11 header padded to a
598 * 32-bit boundary for 4-address and QoS frames.
599 */
600 ic->ic_flags |= IEEE80211_F_DATAPAD;
601
602 /*
603 * Query the hal about antenna support.
604 */
605 sc->sc_defant = ath_hal_getdefantenna(ah);
606
607 /*
608 * Not all chips have the VEOL support we want to
609 * use with IBSS beacons; check here for it.
610 */
611 sc->sc_hasveol = ath_hal_hasveol(ah);
612
613 /* get mac address from hardware */
614 ath_hal_getmac(ah, ic->ic_myaddr);
615
616 if_attach(ifp);
617 /* call MI attach routine. */
618 ieee80211_ifattach(ic);
619 /* override default methods */
620 ic->ic_node_alloc = ath_node_alloc;
621 sc->sc_node_free = ic->ic_node_free;
622 ic->ic_node_free = ath_node_free;
623 ic->ic_node_getrssi = ath_node_getrssi;
624 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
625 ic->ic_recv_mgmt = ath_recv_mgmt;
626 sc->sc_newstate = ic->ic_newstate;
627 ic->ic_newstate = ath_newstate;
628 ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
629 ic->ic_crypto.cs_key_alloc = ath_key_alloc;
630 ic->ic_crypto.cs_key_delete = ath_key_delete;
631 ic->ic_crypto.cs_key_set = ath_key_set;
632 ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
633 ic->ic_crypto.cs_key_update_end = ath_key_update_end;
634 /* complete initialization */
635 ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
636
637 #if NBPFILTER > 0
638 ath_bpfattach(sc);
639 #endif
640
641 sc->sc_flags |= ATH_ATTACHED;
642
643 /*
644 * Setup dynamic sysctl's now that country code and
645 * regdomain are available from the hal.
646 */
647 ath_sysctlattach(sc);
648
649 ieee80211_announce(ic);
650 ath_announce(sc);
651 return 0;
652 bad2:
653 ath_tx_cleanup(sc);
654 ath_desc_free(sc);
655 bad:
656 if (ah)
657 ath_hal_detach(ah);
658 sc->sc_invalid = 1;
659 return error;
660 }
661
662 int
663 ath_detach(struct ath_softc *sc)
664 {
665 struct ifnet *ifp = &sc->sc_if;
666 int s;
667
668 if ((sc->sc_flags & ATH_ATTACHED) == 0)
669 return (0);
670
671 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
672 __func__, ifp->if_flags);
673
674 s = splnet();
675 ath_stop(ifp, 1);
676 #if NBPFILTER > 0
677 bpfdetach(ifp);
678 #endif
679 /*
680 * NB: the order of these is important:
681 * o call the 802.11 layer before detaching the hal to
682 * insure callbacks into the driver to delete global
683 * key cache entries can be handled
684 * o reclaim the tx queue data structures after calling
685 * the 802.11 layer as we'll get called back to reclaim
686 * node state and potentially want to use them
687 * o to cleanup the tx queues the hal is called, so detach
688 * it last
689 * Other than that, it's straightforward...
690 */
691 ieee80211_ifdetach(&sc->sc_ic);
692 #ifdef ATH_TX99_DIAG
693 if (sc->sc_tx99 != NULL)
694 sc->sc_tx99->detach(sc->sc_tx99);
695 #endif
696 ath_rate_detach(sc->sc_rc);
697 ath_desc_free(sc);
698 ath_tx_cleanup(sc);
699 sysctl_teardown(&sc->sc_sysctllog);
700 ath_hal_detach(sc->sc_ah);
701 if_detach(ifp);
702 splx(s);
703
704 return 0;
705 }
706
707 void
708 ath_resume(struct ath_softc *sc)
709 {
710 if (sc->sc_softled) {
711 ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
712 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
713 }
714 }
715
716 /*
717 * Interrupt handler. Most of the actual processing is deferred.
718 */
719 int
720 ath_intr(void *arg)
721 {
722 struct ath_softc *sc = arg;
723 struct ifnet *ifp = &sc->sc_if;
724 struct ath_hal *ah = sc->sc_ah;
725 HAL_INT status;
726
727 if (sc->sc_invalid) {
728 /*
729 * The hardware is not ready/present, don't touch anything.
730 * Note this can happen early on if the IRQ is shared.
731 */
732 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
733 return 0;
734 }
735
736 if (!ath_hal_intrpend(ah)) /* shared irq, not for us */
737 return 0;
738
739 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
740 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
741 __func__, ifp->if_flags);
742 ath_hal_getisr(ah, &status); /* clear ISR */
743 ath_hal_intrset(ah, 0); /* disable further intr's */
744 return 1; /* XXX */
745 }
746 /*
747 * Figure out the reason(s) for the interrupt. Note
748 * that the hal returns a pseudo-ISR that may include
749 * bits we haven't explicitly enabled so we mask the
750 * value to insure we only process bits we requested.
751 */
752 ath_hal_getisr(ah, &status); /* NB: clears ISR too */
753 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
754 status &= sc->sc_imask; /* discard unasked for bits */
755 if (status & HAL_INT_FATAL) {
756 /*
757 * Fatal errors are unrecoverable. Typically
758 * these are caused by DMA errors. Unfortunately
759 * the exact reason is not (presently) returned
760 * by the hal.
761 */
762 sc->sc_stats.ast_hardware++;
763 ath_hal_intrset(ah, 0); /* disable intr's until reset */
764 TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
765 } else if (status & HAL_INT_RXORN) {
766 sc->sc_stats.ast_rxorn++;
767 ath_hal_intrset(ah, 0); /* disable intr's until reset */
768 TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
769 } else {
770 if (status & HAL_INT_SWBA) {
771 /*
772 * Software beacon alert--time to send a beacon.
773 * Handle beacon transmission directly; deferring
774 * this is too slow to meet timing constraints
775 * under load.
776 */
777 ath_beacon_proc(sc, 0);
778 }
779 if (status & HAL_INT_RXEOL) {
780 /*
781 * NB: the hardware should re-read the link when
782 * RXE bit is written, but it doesn't work at
783 * least on older hardware revs.
784 */
785 sc->sc_stats.ast_rxeol++;
786 sc->sc_rxlink = NULL;
787 }
788 if (status & HAL_INT_TXURN) {
789 sc->sc_stats.ast_txurn++;
790 /* bump tx trigger level */
791 ath_hal_updatetxtriglevel(ah, AH_TRUE);
792 }
793 if (status & HAL_INT_RX)
794 TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
795 if (status & HAL_INT_TX)
796 TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
797 if (status & HAL_INT_BMISS) {
798 sc->sc_stats.ast_bmiss++;
799 TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
800 }
801 if (status & HAL_INT_MIB) {
802 sc->sc_stats.ast_mib++;
803 /*
804 * Disable interrupts until we service the MIB
805 * interrupt; otherwise it will continue to fire.
806 */
807 ath_hal_intrset(ah, 0);
808 /*
809 * Let the hal handle the event. We assume it will
810 * clear whatever condition caused the interrupt.
811 */
812 ath_hal_mibevent(ah, &sc->sc_halstats);
813 ath_hal_intrset(ah, sc->sc_imask);
814 }
815 }
816 return 1;
817 }
818
819 /* Swap transmit descriptor.
820 * if AH_NEED_DESC_SWAP flag is not defined this becomes a "null"
821 * function.
822 */
823 static inline void
824 ath_desc_swap(struct ath_desc *ds)
825 {
826 #ifdef AH_NEED_DESC_SWAP
827 ds->ds_link = htole32(ds->ds_link);
828 ds->ds_data = htole32(ds->ds_data);
829 ds->ds_ctl0 = htole32(ds->ds_ctl0);
830 ds->ds_ctl1 = htole32(ds->ds_ctl1);
831 ds->ds_hw[0] = htole32(ds->ds_hw[0]);
832 ds->ds_hw[1] = htole32(ds->ds_hw[1]);
833 #endif
834 }
835
836 static void
837 ath_fatal_proc(void *arg, int pending)
838 {
839 struct ath_softc *sc = arg;
840 struct ifnet *ifp = &sc->sc_if;
841
842 if_printf(ifp, "hardware error; resetting\n");
843 ath_reset(ifp);
844 }
845
846 static void
847 ath_rxorn_proc(void *arg, int pending)
848 {
849 struct ath_softc *sc = arg;
850 struct ifnet *ifp = &sc->sc_if;
851
852 if_printf(ifp, "rx FIFO overrun; resetting\n");
853 ath_reset(ifp);
854 }
855
856 static void
857 ath_bmiss_proc(void *arg, int pending)
858 {
859 struct ath_softc *sc = arg;
860 struct ieee80211com *ic = &sc->sc_ic;
861
862 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
863 KASSERT(ic->ic_opmode == IEEE80211_M_STA,
864 ("unexpect operating mode %u", ic->ic_opmode));
865 if (ic->ic_state == IEEE80211_S_RUN) {
866 u_int64_t lastrx = sc->sc_lastrx;
867 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
868
869 DPRINTF(sc, ATH_DEBUG_BEACON,
870 "%s: tsf %" PRIu64 " lastrx %" PRId64
871 " (%" PRIu64 ") bmiss %u\n",
872 __func__, tsf, tsf - lastrx, lastrx,
873 ic->ic_bmisstimeout*1024);
874 /*
875 * Workaround phantom bmiss interrupts by sanity-checking
876 * the time of our last rx'd frame. If it is within the
877 * beacon miss interval then ignore the interrupt. If it's
878 * truly a bmiss we'll get another interrupt soon and that'll
879 * be dispatched up for processing.
880 */
881 if (tsf - lastrx > ic->ic_bmisstimeout*1024) {
882 NET_LOCK_GIANT();
883 ieee80211_beacon_miss(ic);
884 NET_UNLOCK_GIANT();
885 } else
886 sc->sc_stats.ast_bmiss_phantom++;
887 }
888 }
889
890 static void
891 ath_radar_proc(void *arg, int pending)
892 {
893 struct ath_softc *sc = arg;
894 struct ifnet *ifp = &sc->sc_if;
895 struct ath_hal *ah = sc->sc_ah;
896 HAL_CHANNEL hchan;
897
898 if (ath_hal_procdfs(ah, &hchan)) {
899 if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n",
900 hchan.channel, hchan.channelFlags, hchan.privFlags);
901 /*
902 * Initiate channel change.
903 */
904 /* XXX not yet */
905 }
906 }
907
908 static u_int
909 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
910 {
911 #define N(a) (sizeof(a) / sizeof(a[0]))
912 static const u_int modeflags[] = {
913 0, /* IEEE80211_MODE_AUTO */
914 CHANNEL_A, /* IEEE80211_MODE_11A */
915 CHANNEL_B, /* IEEE80211_MODE_11B */
916 CHANNEL_PUREG, /* IEEE80211_MODE_11G */
917 0, /* IEEE80211_MODE_FH */
918 CHANNEL_ST, /* IEEE80211_MODE_TURBO_A */
919 CHANNEL_108G /* IEEE80211_MODE_TURBO_G */
920 };
921 enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
922
923 KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
924 KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
925 return modeflags[mode];
926 #undef N
927 }
928
929 static int
930 ath_ifinit(struct ifnet *ifp)
931 {
932 struct ath_softc *sc = (struct ath_softc *)ifp->if_softc;
933
934 return ath_init(sc);
935 }
936
937 static int
938 ath_init(struct ath_softc *sc)
939 {
940 struct ifnet *ifp = &sc->sc_if;
941 struct ieee80211com *ic = &sc->sc_ic;
942 struct ath_hal *ah = sc->sc_ah;
943 HAL_STATUS status;
944 int error = 0;
945
946 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
947 __func__, ifp->if_flags);
948
949 if (!device_has_power(&sc->sc_dev))
950 return EBUSY;
951
952 ATH_LOCK(sc);
953
954 if ((error = ath_enable(sc)) != 0) {
955 ATH_UNLOCK(sc);
956 return error;
957 }
958
959 /*
960 * Stop anything previously setup. This is safe
961 * whether this is the first time through or not.
962 */
963 ath_stop_locked(ifp, 0);
964
965 /*
966 * The basic interface to setting the hardware in a good
967 * state is ``reset''. On return the hardware is known to
968 * be powered up and with interrupts disabled. This must
969 * be followed by initialization of the appropriate bits
970 * and then setup of the interrupt mask.
971 */
972 sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
973 sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
974 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
975 if_printf(ifp, "unable to reset hardware; hal status %u\n",
976 status);
977 error = EIO;
978 goto done;
979 }
980
981 /*
982 * This is needed only to setup initial state
983 * but it's best done after a reset.
984 */
985 ath_update_txpow(sc);
986 /*
987 * Likewise this is set during reset so update
988 * state cached in the driver.
989 */
990 ath_restore_diversity(sc);
991 sc->sc_calinterval = 1;
992 sc->sc_caltries = 0;
993
994 /*
995 * Setup the hardware after reset: the key cache
996 * is filled as needed and the receive engine is
997 * set going. Frame transmit is handled entirely
998 * in the frame output path; there's nothing to do
999 * here except setup the interrupt mask.
1000 */
1001 if ((error = ath_startrecv(sc)) != 0) {
1002 if_printf(ifp, "unable to start recv logic\n");
1003 goto done;
1004 }
1005
1006 /*
1007 * Enable interrupts.
1008 */
1009 sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1010 | HAL_INT_RXEOL | HAL_INT_RXORN
1011 | HAL_INT_FATAL | HAL_INT_GLOBAL;
1012 /*
1013 * Enable MIB interrupts when there are hardware phy counters.
1014 * Note we only do this (at the moment) for station mode.
1015 */
1016 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1017 sc->sc_imask |= HAL_INT_MIB;
1018 ath_hal_intrset(ah, sc->sc_imask);
1019
1020 ifp->if_flags |= IFF_RUNNING;
1021 ic->ic_state = IEEE80211_S_INIT;
1022
1023 /*
1024 * The hardware should be ready to go now so it's safe
1025 * to kick the 802.11 state machine as it's likely to
1026 * immediately call back to us to send mgmt frames.
1027 */
1028 ath_chan_change(sc, ic->ic_curchan);
1029 #ifdef ATH_TX99_DIAG
1030 if (sc->sc_tx99 != NULL)
1031 sc->sc_tx99->start(sc->sc_tx99);
1032 else
1033 #endif
1034 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1035 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
1036 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1037 } else
1038 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1039 done:
1040 ATH_UNLOCK(sc);
1041 return error;
1042 }
1043
1044 static void
1045 ath_stop_locked(struct ifnet *ifp, int disable)
1046 {
1047 struct ath_softc *sc = ifp->if_softc;
1048 struct ieee80211com *ic = &sc->sc_ic;
1049 struct ath_hal *ah = sc->sc_ah;
1050
1051 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1052 __func__, sc->sc_invalid, ifp->if_flags);
1053
1054 ATH_LOCK_ASSERT(sc);
1055 if (ifp->if_flags & IFF_RUNNING) {
1056 /*
1057 * Shutdown the hardware and driver:
1058 * reset 802.11 state machine
1059 * turn off timers
1060 * disable interrupts
1061 * turn off the radio
1062 * clear transmit machinery
1063 * clear receive machinery
1064 * drain and release tx queues
1065 * reclaim beacon resources
1066 * power down hardware
1067 *
1068 * Note that some of this work is not possible if the
1069 * hardware is gone (invalid).
1070 */
1071 #ifdef ATH_TX99_DIAG
1072 if (sc->sc_tx99 != NULL)
1073 sc->sc_tx99->stop(sc->sc_tx99);
1074 #endif
1075 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1076 ifp->if_flags &= ~IFF_RUNNING;
1077 ifp->if_timer = 0;
1078 if (!sc->sc_invalid) {
1079 if (sc->sc_softled) {
1080 callout_stop(&sc->sc_ledtimer);
1081 ath_hal_gpioset(ah, sc->sc_ledpin,
1082 !sc->sc_ledon);
1083 sc->sc_blinking = 0;
1084 }
1085 ath_hal_intrset(ah, 0);
1086 }
1087 ath_draintxq(sc);
1088 if (!sc->sc_invalid) {
1089 ath_stoprecv(sc);
1090 ath_hal_phydisable(ah);
1091 } else
1092 sc->sc_rxlink = NULL;
1093 IF_PURGE(&ifp->if_snd);
1094 ath_beacon_free(sc);
1095 if (disable)
1096 ath_disable(sc);
1097 }
1098 }
1099
1100 static void
1101 ath_stop(struct ifnet *ifp, int disable)
1102 {
1103 struct ath_softc *sc = ifp->if_softc;
1104
1105 ATH_LOCK(sc);
1106 ath_stop_locked(ifp, disable);
1107 if (!sc->sc_invalid) {
1108 /*
1109 * Set the chip in full sleep mode. Note that we are
1110 * careful to do this only when bringing the interface
1111 * completely to a stop. When the chip is in this state
1112 * it must be carefully woken up or references to
1113 * registers in the PCI clock domain may freeze the bus
1114 * (and system). This varies by chip and is mostly an
1115 * issue with newer parts that go to sleep more quickly.
1116 */
1117 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
1118 }
1119 ATH_UNLOCK(sc);
1120 }
1121
1122 static void
1123 ath_restore_diversity(struct ath_softc *sc)
1124 {
1125 struct ifnet *ifp = &sc->sc_if;
1126 struct ath_hal *ah = sc->sc_ah;
1127
1128 if (!ath_hal_setdiversity(sc->sc_ah, sc->sc_diversity) ||
1129 sc->sc_diversity != ath_hal_getdiversity(ah)) {
1130 if_printf(ifp, "could not restore diversity setting %d\n",
1131 sc->sc_diversity);
1132 sc->sc_diversity = ath_hal_getdiversity(ah);
1133 }
1134 }
1135
1136 /*
1137 * Reset the hardware w/o losing operational state. This is
1138 * basically a more efficient way of doing ath_stop, ath_init,
1139 * followed by state transitions to the current 802.11
1140 * operational state. Used to recover from various errors and
1141 * to reset or reload hardware state.
1142 */
1143 int
1144 ath_reset(struct ifnet *ifp)
1145 {
1146 struct ath_softc *sc = ifp->if_softc;
1147 struct ieee80211com *ic = &sc->sc_ic;
1148 struct ath_hal *ah = sc->sc_ah;
1149 struct ieee80211_channel *c;
1150 HAL_STATUS status;
1151
1152 /*
1153 * Convert to a HAL channel description with the flags
1154 * constrained to reflect the current operating mode.
1155 */
1156 c = ic->ic_curchan;
1157 sc->sc_curchan.channel = c->ic_freq;
1158 sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
1159
1160 ath_hal_intrset(ah, 0); /* disable interrupts */
1161 ath_draintxq(sc); /* stop xmit side */
1162 ath_stoprecv(sc); /* stop recv side */
1163 /* NB: indicate channel change so we do a full reset */
1164 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
1165 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1166 __func__, status);
1167 ath_update_txpow(sc); /* update tx power state */
1168 ath_restore_diversity(sc);
1169 sc->sc_calinterval = 1;
1170 sc->sc_caltries = 0;
1171 if (ath_startrecv(sc) != 0) /* restart recv */
1172 if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1173 /*
1174 * We may be doing a reset in response to an ioctl
1175 * that changes the channel so update any state that
1176 * might change as a result.
1177 */
1178 ath_chan_change(sc, c);
1179 if (ic->ic_state == IEEE80211_S_RUN)
1180 ath_beacon_config(sc); /* restart beacons */
1181 ath_hal_intrset(ah, sc->sc_imask);
1182
1183 ath_start(ifp); /* restart xmit */
1184 return 0;
1185 }
1186
1187 /*
1188 * Cleanup driver resources when we run out of buffers
1189 * while processing fragments; return the tx buffers
1190 * allocated and drop node references.
1191 */
1192 static void
1193 ath_txfrag_cleanup(struct ath_softc *sc,
1194 ath_bufhead *frags, struct ieee80211_node *ni)
1195 {
1196 struct ath_buf *bf;
1197
1198 ATH_TXBUF_LOCK_ASSERT(sc);
1199
1200 while ((bf = STAILQ_FIRST(frags)) != NULL) {
1201 STAILQ_REMOVE_HEAD(frags, bf_list);
1202 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1203 sc->sc_if.if_flags &= ~IFF_OACTIVE;
1204 ieee80211_node_decref(ni);
1205 }
1206 }
1207
1208 /*
1209 * Setup xmit of a fragmented frame. Allocate a buffer
1210 * for each frag and bump the node reference count to
1211 * reflect the held reference to be setup by ath_tx_start.
1212 */
1213 static int
1214 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
1215 struct mbuf *m0, struct ieee80211_node *ni)
1216 {
1217 struct mbuf *m;
1218 struct ath_buf *bf;
1219
1220 ATH_TXBUF_LOCK(sc);
1221 for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
1222 bf = STAILQ_FIRST(&sc->sc_txbuf);
1223 if (bf == NULL) { /* out of buffers, cleanup */
1224 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1225 __func__);
1226 sc->sc_if.if_flags |= IFF_OACTIVE;
1227 ath_txfrag_cleanup(sc, frags, ni);
1228 break;
1229 }
1230 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1231 ieee80211_node_incref(ni);
1232 STAILQ_INSERT_TAIL(frags, bf, bf_list);
1233 }
1234 ATH_TXBUF_UNLOCK(sc);
1235
1236 return !STAILQ_EMPTY(frags);
1237 }
1238
1239 static void
1240 ath_start(struct ifnet *ifp)
1241 {
1242 struct ath_softc *sc = ifp->if_softc;
1243 struct ath_hal *ah = sc->sc_ah;
1244 struct ieee80211com *ic = &sc->sc_ic;
1245 struct ieee80211_node *ni;
1246 struct ath_buf *bf;
1247 struct mbuf *m, *next;
1248 struct ieee80211_frame *wh;
1249 struct ether_header *eh;
1250 ath_bufhead frags;
1251
1252 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
1253 return;
1254 for (;;) {
1255 /*
1256 * Grab a TX buffer and associated resources.
1257 */
1258 ATH_TXBUF_LOCK(sc);
1259 bf = STAILQ_FIRST(&sc->sc_txbuf);
1260 if (bf != NULL)
1261 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1262 ATH_TXBUF_UNLOCK(sc);
1263 if (bf == NULL) {
1264 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1265 __func__);
1266 sc->sc_stats.ast_tx_qstop++;
1267 ifp->if_flags |= IFF_OACTIVE;
1268 break;
1269 }
1270 /*
1271 * Poll the management queue for frames; they
1272 * have priority over normal data frames.
1273 */
1274 IF_DEQUEUE(&ic->ic_mgtq, m);
1275 if (m == NULL) {
1276 /*
1277 * No data frames go out unless we're associated.
1278 */
1279 if (ic->ic_state != IEEE80211_S_RUN) {
1280 DPRINTF(sc, ATH_DEBUG_XMIT,
1281 "%s: discard data packet, state %s\n",
1282 __func__,
1283 ieee80211_state_name[ic->ic_state]);
1284 sc->sc_stats.ast_tx_discard++;
1285 ATH_TXBUF_LOCK(sc);
1286 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1287 ATH_TXBUF_UNLOCK(sc);
1288 break;
1289 }
1290 IFQ_DEQUEUE(&ifp->if_snd, m); /* XXX: LOCK */
1291 if (m == NULL) {
1292 ATH_TXBUF_LOCK(sc);
1293 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1294 ATH_TXBUF_UNLOCK(sc);
1295 break;
1296 }
1297 STAILQ_INIT(&frags);
1298 /*
1299 * Find the node for the destination so we can do
1300 * things like power save and fast frames aggregation.
1301 */
1302 if (m->m_len < sizeof(struct ether_header) &&
1303 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
1304 ic->ic_stats.is_tx_nobuf++; /* XXX */
1305 ni = NULL;
1306 goto bad;
1307 }
1308 eh = mtod(m, struct ether_header *);
1309 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1310 if (ni == NULL) {
1311 /* NB: ieee80211_find_txnode does stat+msg */
1312 m_freem(m);
1313 goto bad;
1314 }
1315 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1316 (m->m_flags & M_PWR_SAV) == 0) {
1317 /*
1318 * Station in power save mode; pass the frame
1319 * to the 802.11 layer and continue. We'll get
1320 * the frame back when the time is right.
1321 */
1322 ieee80211_pwrsave(ic, ni, m);
1323 goto reclaim;
1324 }
1325 /* calculate priority so we can find the tx queue */
1326 if (ieee80211_classify(ic, m, ni)) {
1327 DPRINTF(sc, ATH_DEBUG_XMIT,
1328 "%s: discard, classification failure\n",
1329 __func__);
1330 m_freem(m);
1331 goto bad;
1332 }
1333 ifp->if_opackets++;
1334
1335 #if NBPFILTER > 0
1336 if (ifp->if_bpf)
1337 bpf_mtap(ifp->if_bpf, m);
1338 #endif
1339 /*
1340 * Encapsulate the packet in prep for transmission.
1341 */
1342 m = ieee80211_encap(ic, m, ni);
1343 if (m == NULL) {
1344 DPRINTF(sc, ATH_DEBUG_XMIT,
1345 "%s: encapsulation failure\n",
1346 __func__);
1347 sc->sc_stats.ast_tx_encap++;
1348 goto bad;
1349 }
1350 /*
1351 * Check for fragmentation. If this has frame
1352 * has been broken up verify we have enough
1353 * buffers to send all the fragments so all
1354 * go out or none...
1355 */
1356 if ((m->m_flags & M_FRAG) &&
1357 !ath_txfrag_setup(sc, &frags, m, ni)) {
1358 DPRINTF(sc, ATH_DEBUG_ANY,
1359 "%s: out of txfrag buffers\n", __func__);
1360 ic->ic_stats.is_tx_nobuf++; /* XXX */
1361 ath_freetx(m);
1362 goto bad;
1363 }
1364 } else {
1365 /*
1366 * Hack! The referenced node pointer is in the
1367 * rcvif field of the packet header. This is
1368 * placed there by ieee80211_mgmt_output because
1369 * we need to hold the reference with the frame
1370 * and there's no other way (other than packet
1371 * tags which we consider too expensive to use)
1372 * to pass it along.
1373 */
1374 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1375 m->m_pkthdr.rcvif = NULL;
1376
1377 wh = mtod(m, struct ieee80211_frame *);
1378 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1379 IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1380 /* fill time stamp */
1381 u_int64_t tsf;
1382 u_int32_t *tstamp;
1383
1384 tsf = ath_hal_gettsf64(ah);
1385 /* XXX: adjust 100us delay to xmit */
1386 tsf += 100;
1387 tstamp = (u_int32_t *)&wh[1];
1388 tstamp[0] = htole32(tsf & 0xffffffff);
1389 tstamp[1] = htole32(tsf >> 32);
1390 }
1391 sc->sc_stats.ast_tx_mgmt++;
1392 }
1393
1394 nextfrag:
1395 next = m->m_nextpkt;
1396 if (ath_tx_start(sc, ni, bf, m)) {
1397 bad:
1398 ifp->if_oerrors++;
1399 reclaim:
1400 ATH_TXBUF_LOCK(sc);
1401 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1402 ath_txfrag_cleanup(sc, &frags, ni);
1403 ATH_TXBUF_UNLOCK(sc);
1404 if (ni != NULL)
1405 ieee80211_free_node(ni);
1406 continue;
1407 }
1408 if (next != NULL) {
1409 m = next;
1410 bf = STAILQ_FIRST(&frags);
1411 KASSERT(bf != NULL, ("no buf for txfrag"));
1412 STAILQ_REMOVE_HEAD(&frags, bf_list);
1413 goto nextfrag;
1414 }
1415
1416 ifp->if_timer = 1;
1417 }
1418 }
1419
1420 static int
1421 ath_media_change(struct ifnet *ifp)
1422 {
1423 #define IS_UP(ifp) \
1424 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
1425 int error;
1426
1427 error = ieee80211_media_change(ifp);
1428 if (error == ENETRESET) {
1429 if (IS_UP(ifp))
1430 ath_init(ifp->if_softc); /* XXX lose error */
1431 error = 0;
1432 }
1433 return error;
1434 #undef IS_UP
1435 }
1436
1437 #ifdef AR_DEBUG
1438 static void
1439 ath_keyprint(const char *tag, u_int ix,
1440 const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1441 {
1442 static const char *ciphers[] = {
1443 "WEP",
1444 "AES-OCB",
1445 "AES-CCM",
1446 "CKIP",
1447 "TKIP",
1448 "CLR",
1449 };
1450 int i, n;
1451
1452 printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1453 for (i = 0, n = hk->kv_len; i < n; i++)
1454 printf("%02x", hk->kv_val[i]);
1455 printf(" mac %s", ether_sprintf(mac));
1456 if (hk->kv_type == HAL_CIPHER_TKIP) {
1457 printf(" mic ");
1458 for (i = 0; i < sizeof(hk->kv_mic); i++)
1459 printf("%02x", hk->kv_mic[i]);
1460 }
1461 printf("\n");
1462 }
1463 #endif
1464
1465 /*
1466 * Set a TKIP key into the hardware. This handles the
1467 * potential distribution of key state to multiple key
1468 * cache slots for TKIP.
1469 */
1470 static int
1471 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1472 HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1473 {
1474 #define IEEE80211_KEY_XR (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1475 static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1476 struct ath_hal *ah = sc->sc_ah;
1477
1478 KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1479 ("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1480 KASSERT(sc->sc_splitmic, ("key cache !split"));
1481 if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1482 /*
1483 * TX key goes at first index, RX key at the rx index.
1484 * The hal handles the MIC keys at index+64.
1485 */
1486 memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1487 KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1488 if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
1489 return 0;
1490
1491 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1492 KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1493 /* XXX delete tx key on failure? */
1494 return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
1495 } else if (k->wk_flags & IEEE80211_KEY_XR) {
1496 /*
1497 * TX/RX key goes at first index.
1498 * The hal handles the MIC keys are index+64.
1499 */
1500 memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
1501 k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
1502 KEYPRINTF(sc, k->wk_keyix, hk, mac);
1503 return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1504 }
1505 return 0;
1506 #undef IEEE80211_KEY_XR
1507 }
1508
1509 /*
1510 * Set a net80211 key into the hardware. This handles the
1511 * potential distribution of key state to multiple key
1512 * cache slots for TKIP with hardware MIC support.
1513 */
1514 static int
1515 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1516 const u_int8_t mac0[IEEE80211_ADDR_LEN],
1517 struct ieee80211_node *bss)
1518 {
1519 #define N(a) (sizeof(a)/sizeof(a[0]))
1520 static const u_int8_t ciphermap[] = {
1521 HAL_CIPHER_WEP, /* IEEE80211_CIPHER_WEP */
1522 HAL_CIPHER_TKIP, /* IEEE80211_CIPHER_TKIP */
1523 HAL_CIPHER_AES_OCB, /* IEEE80211_CIPHER_AES_OCB */
1524 HAL_CIPHER_AES_CCM, /* IEEE80211_CIPHER_AES_CCM */
1525 (u_int8_t) -1, /* 4 is not allocated */
1526 HAL_CIPHER_CKIP, /* IEEE80211_CIPHER_CKIP */
1527 HAL_CIPHER_CLR, /* IEEE80211_CIPHER_NONE */
1528 };
1529 struct ath_hal *ah = sc->sc_ah;
1530 const struct ieee80211_cipher *cip = k->wk_cipher;
1531 u_int8_t gmac[IEEE80211_ADDR_LEN];
1532 const u_int8_t *mac;
1533 HAL_KEYVAL hk;
1534
1535 memset(&hk, 0, sizeof(hk));
1536 /*
1537 * Software crypto uses a "clear key" so non-crypto
1538 * state kept in the key cache are maintained and
1539 * so that rx frames have an entry to match.
1540 */
1541 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1542 KASSERT(cip->ic_cipher < N(ciphermap),
1543 ("invalid cipher type %u", cip->ic_cipher));
1544 hk.kv_type = ciphermap[cip->ic_cipher];
1545 hk.kv_len = k->wk_keylen;
1546 memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1547 } else
1548 hk.kv_type = HAL_CIPHER_CLR;
1549
1550 if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
1551 /*
1552 * Group keys on hardware that supports multicast frame
1553 * key search use a mac that is the sender's address with
1554 * the high bit set instead of the app-specified address.
1555 */
1556 IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
1557 gmac[0] |= 0x80;
1558 mac = gmac;
1559 } else
1560 mac = mac0;
1561
1562 if (hk.kv_type == HAL_CIPHER_TKIP &&
1563 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1564 sc->sc_splitmic) {
1565 return ath_keyset_tkip(sc, k, &hk, mac);
1566 } else {
1567 KEYPRINTF(sc, k->wk_keyix, &hk, mac);
1568 return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
1569 }
1570 #undef N
1571 }
1572
1573 /*
1574 * Allocate tx/rx key slots for TKIP. We allocate two slots for
1575 * each key, one for decrypt/encrypt and the other for the MIC.
1576 */
1577 static u_int16_t
1578 key_alloc_2pair(struct ath_softc *sc,
1579 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1580 {
1581 #define N(a) (sizeof(a)/sizeof(a[0]))
1582 u_int i, keyix;
1583
1584 KASSERT(sc->sc_splitmic, ("key cache !split"));
1585 /* XXX could optimize */
1586 for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1587 u_int8_t b = sc->sc_keymap[i];
1588 if (b != 0xff) {
1589 /*
1590 * One or more slots in this byte are free.
1591 */
1592 keyix = i*NBBY;
1593 while (b & 1) {
1594 again:
1595 keyix++;
1596 b >>= 1;
1597 }
1598 /* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1599 if (isset(sc->sc_keymap, keyix+32) ||
1600 isset(sc->sc_keymap, keyix+64) ||
1601 isset(sc->sc_keymap, keyix+32+64)) {
1602 /* full pair unavailable */
1603 /* XXX statistic */
1604 if (keyix == (i+1)*NBBY) {
1605 /* no slots were appropriate, advance */
1606 continue;
1607 }
1608 goto again;
1609 }
1610 setbit(sc->sc_keymap, keyix);
1611 setbit(sc->sc_keymap, keyix+64);
1612 setbit(sc->sc_keymap, keyix+32);
1613 setbit(sc->sc_keymap, keyix+32+64);
1614 DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1615 "%s: key pair %u,%u %u,%u\n",
1616 __func__, keyix, keyix+64,
1617 keyix+32, keyix+32+64);
1618 *txkeyix = keyix;
1619 *rxkeyix = keyix+32;
1620 return 1;
1621 }
1622 }
1623 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1624 return 0;
1625 #undef N
1626 }
1627
1628 /*
1629 * Allocate a single key cache slot.
1630 */
1631 static int
1632 key_alloc_single(struct ath_softc *sc,
1633 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1634 {
1635 #define N(a) (sizeof(a)/sizeof(a[0]))
1636 u_int i, keyix;
1637
1638 /* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
1639 for (i = 0; i < N(sc->sc_keymap); i++) {
1640 u_int8_t b = sc->sc_keymap[i];
1641 if (b != 0xff) {
1642 /*
1643 * One or more slots are free.
1644 */
1645 keyix = i*NBBY;
1646 while (b & 1)
1647 keyix++, b >>= 1;
1648 setbit(sc->sc_keymap, keyix);
1649 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
1650 __func__, keyix);
1651 *txkeyix = *rxkeyix = keyix;
1652 return 1;
1653 }
1654 }
1655 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
1656 return 0;
1657 #undef N
1658 }
1659
1660 /*
1661 * Allocate one or more key cache slots for a uniacst key. The
1662 * key itself is needed only to identify the cipher. For hardware
1663 * TKIP with split cipher+MIC keys we allocate two key cache slot
1664 * pairs so that we can setup separate TX and RX MIC keys. Note
1665 * that the MIC key for a TKIP key at slot i is assumed by the
1666 * hardware to be at slot i+64. This limits TKIP keys to the first
1667 * 64 entries.
1668 */
1669 static int
1670 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
1671 ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
1672 {
1673 struct ath_softc *sc = ic->ic_ifp->if_softc;
1674
1675 /*
1676 * Group key allocation must be handled specially for
1677 * parts that do not support multicast key cache search
1678 * functionality. For those parts the key id must match
1679 * the h/w key index so lookups find the right key. On
1680 * parts w/ the key search facility we install the sender's
1681 * mac address (with the high bit set) and let the hardware
1682 * find the key w/o using the key id. This is preferred as
1683 * it permits us to support multiple users for adhoc and/or
1684 * multi-station operation.
1685 */
1686 if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
1687 if (!(&ic->ic_nw_keys[0] <= k &&
1688 k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
1689 /* should not happen */
1690 DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1691 "%s: bogus group key\n", __func__);
1692 return 0;
1693 }
1694 /*
1695 * XXX we pre-allocate the global keys so
1696 * have no way to check if they've already been allocated.
1697 */
1698 *keyix = *rxkeyix = k - ic->ic_nw_keys;
1699 return 1;
1700 }
1701
1702 /*
1703 * We allocate two pair for TKIP when using the h/w to do
1704 * the MIC. For everything else, including software crypto,
1705 * we allocate a single entry. Note that s/w crypto requires
1706 * a pass-through slot on the 5211 and 5212. The 5210 does
1707 * not support pass-through cache entries and we map all
1708 * those requests to slot 0.
1709 */
1710 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1711 return key_alloc_single(sc, keyix, rxkeyix);
1712 } else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
1713 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
1714 return key_alloc_2pair(sc, keyix, rxkeyix);
1715 } else {
1716 return key_alloc_single(sc, keyix, rxkeyix);
1717 }
1718 }
1719
1720 /*
1721 * Delete an entry in the key cache allocated by ath_key_alloc.
1722 */
1723 static int
1724 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
1725 {
1726 struct ath_softc *sc = ic->ic_ifp->if_softc;
1727 struct ath_hal *ah = sc->sc_ah;
1728 const struct ieee80211_cipher *cip = k->wk_cipher;
1729 u_int keyix = k->wk_keyix;
1730
1731 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
1732
1733 ath_hal_keyreset(ah, keyix);
1734 /*
1735 * Handle split tx/rx keying required for TKIP with h/w MIC.
1736 */
1737 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1738 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
1739 ath_hal_keyreset(ah, keyix+32); /* RX key */
1740 if (keyix >= IEEE80211_WEP_NKID) {
1741 /*
1742 * Don't touch keymap entries for global keys so
1743 * they are never considered for dynamic allocation.
1744 */
1745 clrbit(sc->sc_keymap, keyix);
1746 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1747 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1748 sc->sc_splitmic) {
1749 clrbit(sc->sc_keymap, keyix+64); /* TX key MIC */
1750 clrbit(sc->sc_keymap, keyix+32); /* RX key */
1751 clrbit(sc->sc_keymap, keyix+32+64); /* RX key MIC */
1752 }
1753 }
1754 return 1;
1755 }
1756
1757 /*
1758 * Set the key cache contents for the specified key. Key cache
1759 * slot(s) must already have been allocated by ath_key_alloc.
1760 */
1761 static int
1762 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
1763 const u_int8_t mac[IEEE80211_ADDR_LEN])
1764 {
1765 struct ath_softc *sc = ic->ic_ifp->if_softc;
1766
1767 return ath_keyset(sc, k, mac, ic->ic_bss);
1768 }
1769
1770 /*
1771 * Block/unblock tx+rx processing while a key change is done.
1772 * We assume the caller serializes key management operations
1773 * so we only need to worry about synchronization with other
1774 * uses that originate in the driver.
1775 */
1776 static void
1777 ath_key_update_begin(struct ieee80211com *ic)
1778 {
1779 struct ifnet *ifp = ic->ic_ifp;
1780 struct ath_softc *sc = ifp->if_softc;
1781
1782 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1783 #if 0
1784 tasklet_disable(&sc->sc_rxtq);
1785 #endif
1786 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */
1787 }
1788
1789 static void
1790 ath_key_update_end(struct ieee80211com *ic)
1791 {
1792 struct ifnet *ifp = ic->ic_ifp;
1793 struct ath_softc *sc = ifp->if_softc;
1794
1795 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1796 IF_UNLOCK(&ifp->if_snd);
1797 #if 0
1798 tasklet_enable(&sc->sc_rxtq);
1799 #endif
1800 }
1801
1802 /*
1803 * Calculate the receive filter according to the
1804 * operating mode and state:
1805 *
1806 * o always accept unicast, broadcast, and multicast traffic
1807 * o maintain current state of phy error reception (the hal
1808 * may enable phy error frames for noise immunity work)
1809 * o probe request frames are accepted only when operating in
1810 * hostap, adhoc, or monitor modes
1811 * o enable promiscuous mode according to the interface state
1812 * o accept beacons:
1813 * - when operating in adhoc mode so the 802.11 layer creates
1814 * node table entries for peers,
1815 * - when operating in station mode for collecting rssi data when
1816 * the station is otherwise quiet, or
1817 * - when scanning
1818 */
1819 static u_int32_t
1820 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
1821 {
1822 struct ieee80211com *ic = &sc->sc_ic;
1823 struct ath_hal *ah = sc->sc_ah;
1824 struct ifnet *ifp = &sc->sc_if;
1825 u_int32_t rfilt;
1826
1827 rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1828 | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1829 if (ic->ic_opmode != IEEE80211_M_STA)
1830 rfilt |= HAL_RX_FILTER_PROBEREQ;
1831 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1832 (ifp->if_flags & IFF_PROMISC))
1833 rfilt |= HAL_RX_FILTER_PROM;
1834 if (ic->ic_opmode == IEEE80211_M_STA ||
1835 ic->ic_opmode == IEEE80211_M_IBSS ||
1836 state == IEEE80211_S_SCAN)
1837 rfilt |= HAL_RX_FILTER_BEACON;
1838 return rfilt;
1839 }
1840
1841 static void
1842 ath_mcastfilter_accum(void *dl, u_int32_t *mfilt)
1843 {
1844 u_int32_t val;
1845 u_int8_t pos;
1846
1847 /* calculate XOR of eight 6bit values */
1848 val = LE_READ_4((char *)dl + 0);
1849 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1850 val = LE_READ_4((char *)dl + 3);
1851 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1852 pos &= 0x3f;
1853 mfilt[pos / 32] |= (1 << (pos % 32));
1854 }
1855
1856 static void
1857 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t *mfilt)
1858 {
1859 struct ifnet *ifp = &sc->sc_if;
1860 struct ether_multi *enm;
1861 struct ether_multistep estep;
1862
1863 mfilt[0] = mfilt[1] = 0;
1864 ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
1865 while (enm != NULL) {
1866 /* XXX Punt on ranges. */
1867 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
1868 mfilt[0] = mfilt[1] = ~((u_int32_t)0);
1869 ifp->if_flags |= IFF_ALLMULTI;
1870 return;
1871 }
1872 ath_mcastfilter_accum(enm->enm_addrlo, mfilt);
1873 ETHER_NEXT_MULTI(estep, enm);
1874 }
1875 ifp->if_flags &= ~IFF_ALLMULTI;
1876 }
1877
1878 static void
1879 ath_mode_init(struct ath_softc *sc)
1880 {
1881 struct ieee80211com *ic = &sc->sc_ic;
1882 struct ath_hal *ah = sc->sc_ah;
1883 u_int32_t rfilt, mfilt[2];
1884 int i;
1885
1886 /* configure rx filter */
1887 rfilt = ath_calcrxfilter(sc, ic->ic_state);
1888 ath_hal_setrxfilter(ah, rfilt);
1889
1890 /* configure operational mode */
1891 ath_hal_setopmode(ah);
1892
1893 /* Write keys to hardware; it may have been powered down. */
1894 ath_key_update_begin(ic);
1895 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1896 ath_key_set(ic,
1897 &ic->ic_crypto.cs_nw_keys[i],
1898 ic->ic_myaddr);
1899 }
1900 ath_key_update_end(ic);
1901
1902 /*
1903 * Handle any link-level address change. Note that we only
1904 * need to force ic_myaddr; any other addresses are handled
1905 * as a byproduct of the ifnet code marking the interface
1906 * down then up.
1907 *
1908 * XXX should get from lladdr instead of arpcom but that's more work
1909 */
1910 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(sc->sc_if.if_sadl));
1911 ath_hal_setmac(ah, ic->ic_myaddr);
1912
1913 /* calculate and install multicast filter */
1914 #ifdef __FreeBSD__
1915 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1916 mfilt[0] = mfilt[1] = 0;
1917 IF_ADDR_LOCK(ifp);
1918 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1919 void *dl;
1920
1921 /* calculate XOR of eight 6bit values */
1922 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
1923 val = LE_READ_4((char *)dl + 0);
1924 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1925 val = LE_READ_4((char *)dl + 3);
1926 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1927 pos &= 0x3f;
1928 mfilt[pos / 32] |= (1 << (pos % 32));
1929 }
1930 IF_ADDR_UNLOCK(ifp);
1931 } else {
1932 mfilt[0] = mfilt[1] = ~0;
1933 }
1934 #endif
1935 #ifdef __NetBSD__
1936 ath_mcastfilter_compute(sc, mfilt);
1937 #endif
1938 ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1939 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
1940 __func__, rfilt, mfilt[0], mfilt[1]);
1941 }
1942
1943 /*
1944 * Set the slot time based on the current setting.
1945 */
1946 static void
1947 ath_setslottime(struct ath_softc *sc)
1948 {
1949 struct ieee80211com *ic = &sc->sc_ic;
1950 struct ath_hal *ah = sc->sc_ah;
1951
1952 if (ic->ic_flags & IEEE80211_F_SHSLOT)
1953 ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
1954 else
1955 ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
1956 sc->sc_updateslot = OK;
1957 }
1958
1959 /*
1960 * Callback from the 802.11 layer to update the
1961 * slot time based on the current setting.
1962 */
1963 static void
1964 ath_updateslot(struct ifnet *ifp)
1965 {
1966 struct ath_softc *sc = ifp->if_softc;
1967 struct ieee80211com *ic = &sc->sc_ic;
1968
1969 /*
1970 * When not coordinating the BSS, change the hardware
1971 * immediately. For other operation we defer the change
1972 * until beacon updates have propagated to the stations.
1973 */
1974 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1975 sc->sc_updateslot = UPDATE;
1976 else
1977 ath_setslottime(sc);
1978 }
1979
1980 /*
1981 * Setup a h/w transmit queue for beacons.
1982 */
1983 static int
1984 ath_beaconq_setup(struct ath_hal *ah)
1985 {
1986 HAL_TXQ_INFO qi;
1987
1988 memset(&qi, 0, sizeof(qi));
1989 qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
1990 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
1991 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
1992 /* NB: for dynamic turbo, don't enable any other interrupts */
1993 qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
1994 return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
1995 }
1996
1997 /*
1998 * Setup the transmit queue parameters for the beacon queue.
1999 */
2000 static int
2001 ath_beaconq_config(struct ath_softc *sc)
2002 {
2003 #define ATH_EXPONENT_TO_VALUE(v) ((1<<(v))-1)
2004 struct ieee80211com *ic = &sc->sc_ic;
2005 struct ath_hal *ah = sc->sc_ah;
2006 HAL_TXQ_INFO qi;
2007
2008 ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
2009 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2010 /*
2011 * Always burst out beacon and CAB traffic.
2012 */
2013 qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
2014 qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
2015 qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
2016 } else {
2017 struct wmeParams *wmep =
2018 &ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
2019 /*
2020 * Adhoc mode; important thing is to use 2x cwmin.
2021 */
2022 qi.tqi_aifs = wmep->wmep_aifsn;
2023 qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2024 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2025 }
2026
2027 if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
2028 device_printf(&sc->sc_dev, "unable to update parameters for "
2029 "beacon hardware queue!\n");
2030 return 0;
2031 } else {
2032 ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
2033 return 1;
2034 }
2035 #undef ATH_EXPONENT_TO_VALUE
2036 }
2037
2038 /*
2039 * Allocate and setup an initial beacon frame.
2040 */
2041 static int
2042 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
2043 {
2044 struct ieee80211com *ic = ni->ni_ic;
2045 struct ath_buf *bf;
2046 struct mbuf *m;
2047 int error;
2048
2049 bf = STAILQ_FIRST(&sc->sc_bbuf);
2050 if (bf == NULL) {
2051 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
2052 sc->sc_stats.ast_be_nombuf++; /* XXX */
2053 return ENOMEM; /* XXX */
2054 }
2055 /*
2056 * NB: the beacon data buffer must be 32-bit aligned;
2057 * we assume the mbuf routines will return us something
2058 * with this alignment (perhaps should assert).
2059 */
2060 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
2061 if (m == NULL) {
2062 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
2063 __func__);
2064 sc->sc_stats.ast_be_nombuf++;
2065 return ENOMEM;
2066 }
2067 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2068 BUS_DMA_NOWAIT);
2069 if (error == 0) {
2070 bf->bf_m = m;
2071 bf->bf_node = ieee80211_ref_node(ni);
2072 } else {
2073 m_freem(m);
2074 }
2075 return error;
2076 }
2077
2078 /*
2079 * Setup the beacon frame for transmit.
2080 */
2081 static void
2082 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
2083 {
2084 #define USE_SHPREAMBLE(_ic) \
2085 (((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
2086 == IEEE80211_F_SHPREAMBLE)
2087 struct ieee80211_node *ni = bf->bf_node;
2088 struct ieee80211com *ic = ni->ni_ic;
2089 struct mbuf *m = bf->bf_m;
2090 struct ath_hal *ah = sc->sc_ah;
2091 struct ath_desc *ds;
2092 int flags, antenna;
2093 const HAL_RATE_TABLE *rt;
2094 u_int8_t rix, rate;
2095
2096 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
2097 __func__, m, m->m_len);
2098
2099 /* setup descriptors */
2100 ds = bf->bf_desc;
2101
2102 flags = HAL_TXDESC_NOACK;
2103 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
2104 ds->ds_link = HTOAH32(bf->bf_daddr); /* self-linked */
2105 flags |= HAL_TXDESC_VEOL;
2106 /*
2107 * Let hardware handle antenna switching unless
2108 * the user has selected a transmit antenna
2109 * (sc_txantenna is not 0).
2110 */
2111 antenna = sc->sc_txantenna;
2112 } else {
2113 ds->ds_link = 0;
2114 /*
2115 * Switch antenna every 4 beacons, unless the user
2116 * has selected a transmit antenna (sc_txantenna
2117 * is not 0).
2118 *
2119 * XXX assumes two antenna
2120 */
2121 if (sc->sc_txantenna == 0)
2122 antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2123 else
2124 antenna = sc->sc_txantenna;
2125 }
2126
2127 KASSERT(bf->bf_nseg == 1,
2128 ("multi-segment beacon frame; nseg %u", bf->bf_nseg));
2129 ds->ds_data = bf->bf_segs[0].ds_addr;
2130 /*
2131 * Calculate rate code.
2132 * XXX everything at min xmit rate
2133 */
2134 rix = sc->sc_minrateix;
2135 rt = sc->sc_currates;
2136 rate = rt->info[rix].rateCode;
2137 if (USE_SHPREAMBLE(ic))
2138 rate |= rt->info[rix].shortPreamble;
2139 ath_hal_setuptxdesc(ah, ds
2140 , m->m_len + IEEE80211_CRC_LEN /* frame length */
2141 , sizeof(struct ieee80211_frame)/* header length */
2142 , HAL_PKT_TYPE_BEACON /* Atheros packet type */
2143 , ni->ni_txpower /* txpower XXX */
2144 , rate, 1 /* series 0 rate/tries */
2145 , HAL_TXKEYIX_INVALID /* no encryption */
2146 , antenna /* antenna mode */
2147 , flags /* no ack, veol for beacons */
2148 , 0 /* rts/cts rate */
2149 , 0 /* rts/cts duration */
2150 );
2151 /* NB: beacon's BufLen must be a multiple of 4 bytes */
2152 ath_hal_filltxdesc(ah, ds
2153 , roundup(m->m_len, 4) /* buffer length */
2154 , AH_TRUE /* first segment */
2155 , AH_TRUE /* last segment */
2156 , ds /* first descriptor */
2157 );
2158
2159 /* NB: The desc swap function becomes void,
2160 * if descriptor swapping is not enabled
2161 */
2162 ath_desc_swap(ds);
2163
2164 #undef USE_SHPREAMBLE
2165 }
2166
2167 /*
2168 * Transmit a beacon frame at SWBA. Dynamic updates to the
2169 * frame contents are done as needed and the slot time is
2170 * also adjusted based on current state.
2171 */
2172 static void
2173 ath_beacon_proc(void *arg, int pending)
2174 {
2175 struct ath_softc *sc = arg;
2176 struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
2177 struct ieee80211_node *ni = bf->bf_node;
2178 struct ieee80211com *ic = ni->ni_ic;
2179 struct ath_hal *ah = sc->sc_ah;
2180 struct mbuf *m;
2181 int ncabq, error, otherant;
2182
2183 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2184 __func__, pending);
2185
2186 if (ic->ic_opmode == IEEE80211_M_STA ||
2187 ic->ic_opmode == IEEE80211_M_MONITOR ||
2188 bf == NULL || bf->bf_m == NULL) {
2189 DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
2190 __func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
2191 return;
2192 }
2193 /*
2194 * Check if the previous beacon has gone out. If
2195 * not don't try to post another, skip this period
2196 * and wait for the next. Missed beacons indicate
2197 * a problem and should not occur. If we miss too
2198 * many consecutive beacons reset the device.
2199 */
2200 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2201 sc->sc_bmisscount++;
2202 DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2203 "%s: missed %u consecutive beacons\n",
2204 __func__, sc->sc_bmisscount);
2205 if (sc->sc_bmisscount > 3) /* NB: 3 is a guess */
2206 TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask);
2207 return;
2208 }
2209 if (sc->sc_bmisscount != 0) {
2210 DPRINTF(sc, ATH_DEBUG_BEACON,
2211 "%s: resume beacon xmit after %u misses\n",
2212 __func__, sc->sc_bmisscount);
2213 sc->sc_bmisscount = 0;
2214 }
2215
2216 /*
2217 * Update dynamic beacon contents. If this returns
2218 * non-zero then we need to remap the memory because
2219 * the beacon frame changed size (probably because
2220 * of the TIM bitmap).
2221 */
2222 m = bf->bf_m;
2223 ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
2224 if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
2225 /* XXX too conservative? */
2226 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2227 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2228 BUS_DMA_NOWAIT);
2229 if (error != 0) {
2230 if_printf(&sc->sc_if,
2231 "%s: bus_dmamap_load_mbuf failed, error %u\n",
2232 __func__, error);
2233 return;
2234 }
2235 }
2236
2237 /*
2238 * Handle slot time change when a non-ERP station joins/leaves
2239 * an 11g network. The 802.11 layer notifies us via callback,
2240 * we mark updateslot, then wait one beacon before effecting
2241 * the change. This gives associated stations at least one
2242 * beacon interval to note the state change.
2243 */
2244 /* XXX locking */
2245 if (sc->sc_updateslot == UPDATE)
2246 sc->sc_updateslot = COMMIT; /* commit next beacon */
2247 else if (sc->sc_updateslot == COMMIT)
2248 ath_setslottime(sc); /* commit change to h/w */
2249
2250 /*
2251 * Check recent per-antenna transmit statistics and flip
2252 * the default antenna if noticeably more frames went out
2253 * on the non-default antenna.
2254 * XXX assumes 2 anntenae
2255 */
2256 otherant = sc->sc_defant & 1 ? 2 : 1;
2257 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2258 ath_setdefantenna(sc, otherant);
2259 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2260
2261 /*
2262 * Construct tx descriptor.
2263 */
2264 ath_beacon_setup(sc, bf);
2265
2266 /*
2267 * Stop any current dma and put the new frame on the queue.
2268 * This should never fail since we check above that no frames
2269 * are still pending on the queue.
2270 */
2271 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2272 DPRINTF(sc, ATH_DEBUG_ANY,
2273 "%s: beacon queue %u did not stop?\n",
2274 __func__, sc->sc_bhalq);
2275 }
2276 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2277 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2278
2279 /*
2280 * Enable the CAB queue before the beacon queue to
2281 * insure cab frames are triggered by this beacon.
2282 */
2283 if (ncabq != 0 && (sc->sc_boff.bo_tim[4] & 1)) /* NB: only at DTIM */
2284 ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
2285 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
2286 ath_hal_txstart(ah, sc->sc_bhalq);
2287 DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2288 "%s: TXDP[%u] = %" PRIx64 " (%p)\n", __func__,
2289 sc->sc_bhalq, (uint64_t)bf->bf_daddr, bf->bf_desc);
2290
2291 sc->sc_stats.ast_be_xmit++;
2292 }
2293
2294 /*
2295 * Reset the hardware after detecting beacons have stopped.
2296 */
2297 static void
2298 ath_bstuck_proc(void *arg, int pending)
2299 {
2300 struct ath_softc *sc = arg;
2301 struct ifnet *ifp = &sc->sc_if;
2302
2303 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2304 sc->sc_bmisscount);
2305 ath_reset(ifp);
2306 }
2307
2308 /*
2309 * Reclaim beacon resources.
2310 */
2311 static void
2312 ath_beacon_free(struct ath_softc *sc)
2313 {
2314 struct ath_buf *bf;
2315
2316 STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
2317 if (bf->bf_m != NULL) {
2318 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2319 m_freem(bf->bf_m);
2320 bf->bf_m = NULL;
2321 }
2322 if (bf->bf_node != NULL) {
2323 ieee80211_free_node(bf->bf_node);
2324 bf->bf_node = NULL;
2325 }
2326 }
2327 }
2328
2329 /*
2330 * Configure the beacon and sleep timers.
2331 *
2332 * When operating as an AP this resets the TSF and sets
2333 * up the hardware to notify us when we need to issue beacons.
2334 *
2335 * When operating in station mode this sets up the beacon
2336 * timers according to the timestamp of the last received
2337 * beacon and the current TSF, configures PCF and DTIM
2338 * handling, programs the sleep registers so the hardware
2339 * will wakeup in time to receive beacons, and configures
2340 * the beacon miss handling so we'll receive a BMISS
2341 * interrupt when we stop seeing beacons from the AP
2342 * we've associated with.
2343 */
2344 static void
2345 ath_beacon_config(struct ath_softc *sc)
2346 {
2347 #define TSF_TO_TU(_h,_l) \
2348 ((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
2349 #define FUDGE 2
2350 struct ath_hal *ah = sc->sc_ah;
2351 struct ieee80211com *ic = &sc->sc_ic;
2352 struct ieee80211_node *ni = ic->ic_bss;
2353 u_int32_t nexttbtt, intval, tsftu;
2354 u_int64_t tsf;
2355
2356 /* extract tstamp from last beacon and convert to TU */
2357 nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
2358 LE_READ_4(ni->ni_tstamp.data));
2359 /* NB: the beacon interval is kept internally in TU's */
2360 intval = ni->ni_intval & HAL_BEACON_PERIOD;
2361 if (nexttbtt == 0) /* e.g. for ap mode */
2362 nexttbtt = intval;
2363 else if (intval) /* NB: can be 0 for monitor mode */
2364 nexttbtt = roundup(nexttbtt, intval);
2365 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2366 __func__, nexttbtt, intval, ni->ni_intval);
2367 if (ic->ic_opmode == IEEE80211_M_STA) {
2368 HAL_BEACON_STATE bs;
2369 int dtimperiod, dtimcount;
2370 int cfpperiod, cfpcount;
2371
2372 /*
2373 * Setup dtim and cfp parameters according to
2374 * last beacon we received (which may be none).
2375 */
2376 dtimperiod = ni->ni_dtim_period;
2377 if (dtimperiod <= 0) /* NB: 0 if not known */
2378 dtimperiod = 1;
2379 dtimcount = ni->ni_dtim_count;
2380 if (dtimcount >= dtimperiod) /* NB: sanity check */
2381 dtimcount = 0; /* XXX? */
2382 cfpperiod = 1; /* NB: no PCF support yet */
2383 cfpcount = 0;
2384 /*
2385 * Pull nexttbtt forward to reflect the current
2386 * TSF and calculate dtim+cfp state for the result.
2387 */
2388 tsf = ath_hal_gettsf64(ah);
2389 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2390 do {
2391 nexttbtt += intval;
2392 if (--dtimcount < 0) {
2393 dtimcount = dtimperiod - 1;
2394 if (--cfpcount < 0)
2395 cfpcount = cfpperiod - 1;
2396 }
2397 } while (nexttbtt < tsftu);
2398 memset(&bs, 0, sizeof(bs));
2399 bs.bs_intval = intval;
2400 bs.bs_nexttbtt = nexttbtt;
2401 bs.bs_dtimperiod = dtimperiod*intval;
2402 bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
2403 bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
2404 bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
2405 bs.bs_cfpmaxduration = 0;
2406 #if 0
2407 /*
2408 * The 802.11 layer records the offset to the DTIM
2409 * bitmap while receiving beacons; use it here to
2410 * enable h/w detection of our AID being marked in
2411 * the bitmap vector (to indicate frames for us are
2412 * pending at the AP).
2413 * XXX do DTIM handling in s/w to WAR old h/w bugs
2414 * XXX enable based on h/w rev for newer chips
2415 */
2416 bs.bs_timoffset = ni->ni_timoff;
2417 #endif
2418 /*
2419 * Calculate the number of consecutive beacons to miss
2420 * before taking a BMISS interrupt. The configuration
2421 * is specified in ms, so we need to convert that to
2422 * TU's and then calculate based on the beacon interval.
2423 * Note that we clamp the result to at most 10 beacons.
2424 */
2425 bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
2426 if (bs.bs_bmissthreshold > 10)
2427 bs.bs_bmissthreshold = 10;
2428 else if (bs.bs_bmissthreshold <= 0)
2429 bs.bs_bmissthreshold = 1;
2430
2431 /*
2432 * Calculate sleep duration. The configuration is
2433 * given in ms. We insure a multiple of the beacon
2434 * period is used. Also, if the sleep duration is
2435 * greater than the DTIM period then it makes senses
2436 * to make it a multiple of that.
2437 *
2438 * XXX fixed at 100ms
2439 */
2440 bs.bs_sleepduration =
2441 roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2442 if (bs.bs_sleepduration > bs.bs_dtimperiod)
2443 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2444
2445 DPRINTF(sc, ATH_DEBUG_BEACON,
2446 "%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2447 , __func__
2448 , tsf, tsftu
2449 , bs.bs_intval
2450 , bs.bs_nexttbtt
2451 , bs.bs_dtimperiod
2452 , bs.bs_nextdtim
2453 , bs.bs_bmissthreshold
2454 , bs.bs_sleepduration
2455 , bs.bs_cfpperiod
2456 , bs.bs_cfpmaxduration
2457 , bs.bs_cfpnext
2458 , bs.bs_timoffset
2459 );
2460 ath_hal_intrset(ah, 0);
2461 ath_hal_beacontimers(ah, &bs);
2462 sc->sc_imask |= HAL_INT_BMISS;
2463 ath_hal_intrset(ah, sc->sc_imask);
2464 } else {
2465 ath_hal_intrset(ah, 0);
2466 if (nexttbtt == intval)
2467 intval |= HAL_BEACON_RESET_TSF;
2468 if (ic->ic_opmode == IEEE80211_M_IBSS) {
2469 /*
2470 * In IBSS mode enable the beacon timers but only
2471 * enable SWBA interrupts if we need to manually
2472 * prepare beacon frames. Otherwise we use a
2473 * self-linked tx descriptor and let the hardware
2474 * deal with things.
2475 */
2476 intval |= HAL_BEACON_ENA;
2477 if (!sc->sc_hasveol)
2478 sc->sc_imask |= HAL_INT_SWBA;
2479 if ((intval & HAL_BEACON_RESET_TSF) == 0) {
2480 /*
2481 * Pull nexttbtt forward to reflect
2482 * the current TSF.
2483 */
2484 tsf = ath_hal_gettsf64(ah);
2485 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2486 do {
2487 nexttbtt += intval;
2488 } while (nexttbtt < tsftu);
2489 }
2490 ath_beaconq_config(sc);
2491 } else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2492 /*
2493 * In AP mode we enable the beacon timers and
2494 * SWBA interrupts to prepare beacon frames.
2495 */
2496 intval |= HAL_BEACON_ENA;
2497 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */
2498 ath_beaconq_config(sc);
2499 }
2500 ath_hal_beaconinit(ah, nexttbtt, intval);
2501 sc->sc_bmisscount = 0;
2502 ath_hal_intrset(ah, sc->sc_imask);
2503 /*
2504 * When using a self-linked beacon descriptor in
2505 * ibss mode load it once here.
2506 */
2507 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2508 ath_beacon_proc(sc, 0);
2509 }
2510 sc->sc_syncbeacon = 0;
2511 #undef UNDEF
2512 #undef TSF_TO_TU
2513 }
2514
2515 static int
2516 ath_descdma_setup(struct ath_softc *sc,
2517 struct ath_descdma *dd, ath_bufhead *head,
2518 const char *name, int nbuf, int ndesc)
2519 {
2520 #define DS2PHYS(_dd, _ds) \
2521 ((_dd)->dd_desc_paddr + ((char *)(_ds) - (char *)(_dd)->dd_desc))
2522 struct ifnet *ifp = &sc->sc_if;
2523 struct ath_desc *ds;
2524 struct ath_buf *bf;
2525 int i, bsize, error;
2526
2527 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2528 __func__, name, nbuf, ndesc);
2529
2530 dd->dd_name = name;
2531 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2532
2533 /*
2534 * Setup DMA descriptor area.
2535 */
2536 dd->dd_dmat = sc->sc_dmat;
2537
2538 error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE,
2539 0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0);
2540
2541 if (error != 0) {
2542 if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2543 "error %u\n", nbuf * ndesc, dd->dd_name, error);
2544 goto fail0;
2545 }
2546
2547 error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg,
2548 dd->dd_desc_len, (void **)&dd->dd_desc, BUS_DMA_COHERENT);
2549 if (error != 0) {
2550 if_printf(ifp, "unable to map %u %s descriptors, error = %u\n",
2551 nbuf * ndesc, dd->dd_name, error);
2552 goto fail1;
2553 }
2554
2555 /* allocate descriptors */
2556 error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1,
2557 dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2558 if (error != 0) {
2559 if_printf(ifp, "unable to create dmamap for %s descriptors, "
2560 "error %u\n", dd->dd_name, error);
2561 goto fail2;
2562 }
2563
2564 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc,
2565 dd->dd_desc_len, NULL, BUS_DMA_NOWAIT);
2566 if (error != 0) {
2567 if_printf(ifp, "unable to map %s descriptors, error %u\n",
2568 dd->dd_name, error);
2569 goto fail3;
2570 }
2571
2572 ds = dd->dd_desc;
2573 dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr;
2574 DPRINTF(sc, ATH_DEBUG_RESET,
2575 "%s: %s DMA map: %p (%lu) -> %" PRIx64 " (%lu)\n",
2576 __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2577 (uint64_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2578
2579 /* allocate rx buffers */
2580 bsize = sizeof(struct ath_buf) * nbuf;
2581 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2582 if (bf == NULL) {
2583 if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2584 dd->dd_name, bsize);
2585 goto fail4;
2586 }
2587 dd->dd_bufptr = bf;
2588
2589 STAILQ_INIT(head);
2590 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2591 bf->bf_desc = ds;
2592 bf->bf_daddr = DS2PHYS(dd, ds);
2593 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc,
2594 MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap);
2595 if (error != 0) {
2596 if_printf(ifp, "unable to create dmamap for %s "
2597 "buffer %u, error %u\n", dd->dd_name, i, error);
2598 ath_descdma_cleanup(sc, dd, head);
2599 return error;
2600 }
2601 STAILQ_INSERT_TAIL(head, bf, bf_list);
2602 }
2603 return 0;
2604 fail4:
2605 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2606 fail3:
2607 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2608 fail2:
2609 bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
2610 fail1:
2611 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2612 fail0:
2613 memset(dd, 0, sizeof(*dd));
2614 return error;
2615 #undef DS2PHYS
2616 }
2617
2618 static void
2619 ath_descdma_cleanup(struct ath_softc *sc,
2620 struct ath_descdma *dd, ath_bufhead *head)
2621 {
2622 struct ath_buf *bf;
2623 struct ieee80211_node *ni;
2624
2625 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2626 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2627 bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
2628 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2629
2630 STAILQ_FOREACH(bf, head, bf_list) {
2631 if (bf->bf_m) {
2632 m_freem(bf->bf_m);
2633 bf->bf_m = NULL;
2634 }
2635 if (bf->bf_dmamap != NULL) {
2636 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2637 bf->bf_dmamap = NULL;
2638 }
2639 ni = bf->bf_node;
2640 bf->bf_node = NULL;
2641 if (ni != NULL) {
2642 /*
2643 * Reclaim node reference.
2644 */
2645 ieee80211_free_node(ni);
2646 }
2647 }
2648
2649 STAILQ_INIT(head);
2650 free(dd->dd_bufptr, M_ATHDEV);
2651 memset(dd, 0, sizeof(*dd));
2652 }
2653
2654 static int
2655 ath_desc_alloc(struct ath_softc *sc)
2656 {
2657 int error;
2658
2659 error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2660 "rx", ath_rxbuf, 1);
2661 if (error != 0)
2662 return error;
2663
2664 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2665 "tx", ath_txbuf, ATH_TXDESC);
2666 if (error != 0) {
2667 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2668 return error;
2669 }
2670
2671 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2672 "beacon", 1, 1);
2673 if (error != 0) {
2674 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2675 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2676 return error;
2677 }
2678 return 0;
2679 }
2680
2681 static void
2682 ath_desc_free(struct ath_softc *sc)
2683 {
2684
2685 if (sc->sc_bdma.dd_desc_len != 0)
2686 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2687 if (sc->sc_txdma.dd_desc_len != 0)
2688 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2689 if (sc->sc_rxdma.dd_desc_len != 0)
2690 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2691 }
2692
2693 static struct ieee80211_node *
2694 ath_node_alloc(struct ieee80211_node_table *nt)
2695 {
2696 struct ieee80211com *ic = nt->nt_ic;
2697 struct ath_softc *sc = ic->ic_ifp->if_softc;
2698 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2699 struct ath_node *an;
2700
2701 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2702 if (an == NULL) {
2703 /* XXX stat+msg */
2704 return NULL;
2705 }
2706 an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
2707 ath_rate_node_init(sc, an);
2708
2709 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2710 return &an->an_node;
2711 }
2712
2713 static void
2714 ath_node_free(struct ieee80211_node *ni)
2715 {
2716 struct ieee80211com *ic = ni->ni_ic;
2717 struct ath_softc *sc = ic->ic_ifp->if_softc;
2718
2719 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2720
2721 ath_rate_node_cleanup(sc, ATH_NODE(ni));
2722 sc->sc_node_free(ni);
2723 }
2724
2725 static u_int8_t
2726 ath_node_getrssi(const struct ieee80211_node *ni)
2727 {
2728 #define HAL_EP_RND(x, mul) \
2729 ((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
2730 u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
2731 int32_t rssi;
2732
2733 /*
2734 * When only one frame is received there will be no state in
2735 * avgrssi so fallback on the value recorded by the 802.11 layer.
2736 */
2737 if (avgrssi != ATH_RSSI_DUMMY_MARKER)
2738 rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
2739 else
2740 rssi = ni->ni_rssi;
2741 return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
2742 #undef HAL_EP_RND
2743 }
2744
2745 static int
2746 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2747 {
2748 struct ath_hal *ah = sc->sc_ah;
2749 int error;
2750 struct mbuf *m;
2751 struct ath_desc *ds;
2752
2753 m = bf->bf_m;
2754 if (m == NULL) {
2755 /*
2756 * NB: by assigning a page to the rx dma buffer we
2757 * implicitly satisfy the Atheros requirement that
2758 * this buffer be cache-line-aligned and sized to be
2759 * multiple of the cache line size. Not doing this
2760 * causes weird stuff to happen (for the 5210 at least).
2761 */
2762 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2763 if (m == NULL) {
2764 DPRINTF(sc, ATH_DEBUG_ANY,
2765 "%s: no mbuf/cluster\n", __func__);
2766 sc->sc_stats.ast_rx_nombuf++;
2767 return ENOMEM;
2768 }
2769 bf->bf_m = m;
2770 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2771
2772 error = bus_dmamap_load_mbuf(sc->sc_dmat,
2773 bf->bf_dmamap, m,
2774 BUS_DMA_NOWAIT);
2775 if (error != 0) {
2776 DPRINTF(sc, ATH_DEBUG_ANY,
2777 "%s: bus_dmamap_load_mbuf failed; error %d\n",
2778 __func__, error);
2779 sc->sc_stats.ast_rx_busdma++;
2780 return error;
2781 }
2782 KASSERT(bf->bf_nseg == 1,
2783 ("multi-segment packet; nseg %u", bf->bf_nseg));
2784 }
2785 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2786 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2787
2788 /*
2789 * Setup descriptors. For receive we always terminate
2790 * the descriptor list with a self-linked entry so we'll
2791 * not get overrun under high load (as can happen with a
2792 * 5212 when ANI processing enables PHY error frames).
2793 *
2794 * To insure the last descriptor is self-linked we create
2795 * each descriptor as self-linked and add it to the end. As
2796 * each additional descriptor is added the previous self-linked
2797 * entry is ``fixed'' naturally. This should be safe even
2798 * if DMA is happening. When processing RX interrupts we
2799 * never remove/process the last, self-linked, entry on the
2800 * descriptor list. This insures the hardware always has
2801 * someplace to write a new frame.
2802 */
2803 ds = bf->bf_desc;
2804 ds->ds_link = HTOAH32(bf->bf_daddr); /* link to self */
2805 ds->ds_data = bf->bf_segs[0].ds_addr;
2806 ds->ds_vdata = mtod(m, void *); /* for radar */
2807 ath_hal_setuprxdesc(ah, ds
2808 , m->m_len /* buffer size */
2809 , 0
2810 );
2811
2812 if (sc->sc_rxlink != NULL)
2813 *sc->sc_rxlink = bf->bf_daddr;
2814 sc->sc_rxlink = &ds->ds_link;
2815 return 0;
2816 }
2817
2818 /*
2819 * Extend 15-bit time stamp from rx descriptor to
2820 * a full 64-bit TSF using the specified TSF.
2821 */
2822 static inline u_int64_t
2823 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
2824 {
2825 if ((tsf & 0x7fff) < rstamp)
2826 tsf -= 0x8000;
2827 return ((tsf &~ 0x7fff) | rstamp);
2828 }
2829
2830 /*
2831 * Intercept management frames to collect beacon rssi data
2832 * and to do ibss merges.
2833 */
2834 static void
2835 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2836 struct ieee80211_node *ni,
2837 int subtype, int rssi, u_int32_t rstamp)
2838 {
2839 struct ath_softc *sc = ic->ic_ifp->if_softc;
2840
2841 /*
2842 * Call up first so subsequent work can use information
2843 * potentially stored in the node (e.g. for ibss merge).
2844 */
2845 sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
2846 switch (subtype) {
2847 case IEEE80211_FC0_SUBTYPE_BEACON:
2848 /* update rssi statistics for use by the hal */
2849 ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
2850 if (sc->sc_syncbeacon &&
2851 ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) {
2852 /*
2853 * Resync beacon timers using the tsf of the beacon
2854 * frame we just received.
2855 */
2856 ath_beacon_config(sc);
2857 }
2858 /* fall thru... */
2859 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2860 if (ic->ic_opmode == IEEE80211_M_IBSS &&
2861 ic->ic_state == IEEE80211_S_RUN) {
2862 u_int64_t tsf = ath_extend_tsf(rstamp,
2863 ath_hal_gettsf64(sc->sc_ah));
2864
2865 /*
2866 * Handle ibss merge as needed; check the tsf on the
2867 * frame before attempting the merge. The 802.11 spec
2868 * says the station should change it's bssid to match
2869 * the oldest station with the same ssid, where oldest
2870 * is determined by the tsf. Note that hardware
2871 * reconfiguration happens through callback to
2872 * ath_newstate as the state machine will go from
2873 * RUN -> RUN when this happens.
2874 */
2875 if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
2876 DPRINTF(sc, ATH_DEBUG_STATE,
2877 "ibss merge, rstamp %u tsf %ju "
2878 "tstamp %ju\n", rstamp, (uintmax_t)tsf,
2879 (uintmax_t)ni->ni_tstamp.tsf);
2880 (void) ieee80211_ibss_merge(ni);
2881 }
2882 }
2883 break;
2884 }
2885 }
2886
2887 /*
2888 * Set the default antenna.
2889 */
2890 static void
2891 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
2892 {
2893 struct ath_hal *ah = sc->sc_ah;
2894
2895 /* XXX block beacon interrupts */
2896 ath_hal_setdefantenna(ah, antenna);
2897 if (sc->sc_defant != antenna)
2898 sc->sc_stats.ast_ant_defswitch++;
2899 sc->sc_defant = antenna;
2900 sc->sc_rxotherant = 0;
2901 }
2902
2903 static void
2904 ath_rx_proc(void *arg, int npending)
2905 {
2906 #define PA2DESC(_sc, _pa) \
2907 ((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
2908 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
2909 struct ath_softc *sc = arg;
2910 struct ath_buf *bf;
2911 struct ieee80211com *ic = &sc->sc_ic;
2912 struct ifnet *ifp = &sc->sc_if;
2913 struct ath_hal *ah = sc->sc_ah;
2914 struct ath_desc *ds;
2915 struct mbuf *m;
2916 struct ieee80211_node *ni;
2917 struct ath_node *an;
2918 int len, type, ngood;
2919 u_int phyerr;
2920 HAL_STATUS status;
2921 int16_t nf;
2922 u_int64_t tsf;
2923
2924 NET_LOCK_GIANT(); /* XXX */
2925
2926 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
2927 ngood = 0;
2928 nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
2929 tsf = ath_hal_gettsf64(ah);
2930 do {
2931 bf = STAILQ_FIRST(&sc->sc_rxbuf);
2932 if (bf == NULL) { /* NB: shouldn't happen */
2933 if_printf(ifp, "%s: no buffer!\n", __func__);
2934 break;
2935 }
2936 ds = bf->bf_desc;
2937 if (ds->ds_link == bf->bf_daddr) {
2938 /* NB: never process the self-linked entry at the end */
2939 break;
2940 }
2941 m = bf->bf_m;
2942 if (m == NULL) { /* NB: shouldn't happen */
2943 if_printf(ifp, "%s: no mbuf!\n", __func__);
2944 break;
2945 }
2946 /* XXX sync descriptor memory */
2947 /*
2948 * Must provide the virtual address of the current
2949 * descriptor, the physical address, and the virtual
2950 * address of the next descriptor in the h/w chain.
2951 * This allows the HAL to look ahead to see if the
2952 * hardware is done with a descriptor by checking the
2953 * done bit in the following descriptor and the address
2954 * of the current descriptor the DMA engine is working
2955 * on. All this is necessary because of our use of
2956 * a self-linked list to avoid rx overruns.
2957 */
2958 status = ath_hal_rxprocdesc(ah, ds,
2959 bf->bf_daddr, PA2DESC(sc, ds->ds_link));
2960 #ifdef AR_DEBUG
2961 if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
2962 ath_printrxbuf(bf, status == HAL_OK);
2963 #endif
2964 if (status == HAL_EINPROGRESS)
2965 break;
2966 STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
2967 if (ds->ds_rxstat.rs_more) {
2968 /*
2969 * Frame spans multiple descriptors; this
2970 * cannot happen yet as we don't support
2971 * jumbograms. If not in monitor mode,
2972 * discard the frame.
2973 */
2974 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2975 sc->sc_stats.ast_rx_toobig++;
2976 goto rx_next;
2977 }
2978 /* fall thru for monitor mode handling... */
2979 } else if (ds->ds_rxstat.rs_status != 0) {
2980 if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
2981 sc->sc_stats.ast_rx_crcerr++;
2982 if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
2983 sc->sc_stats.ast_rx_fifoerr++;
2984 if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
2985 sc->sc_stats.ast_rx_phyerr++;
2986 phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
2987 sc->sc_stats.ast_rx_phy[phyerr]++;
2988 goto rx_next;
2989 }
2990 if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
2991 /*
2992 * Decrypt error. If the error occurred
2993 * because there was no hardware key, then
2994 * let the frame through so the upper layers
2995 * can process it. This is necessary for 5210
2996 * parts which have no way to setup a ``clear''
2997 * key cache entry.
2998 *
2999 * XXX do key cache faulting
3000 */
3001 if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
3002 goto rx_accept;
3003 sc->sc_stats.ast_rx_badcrypt++;
3004 }
3005 if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
3006 sc->sc_stats.ast_rx_badmic++;
3007 /*
3008 * Do minimal work required to hand off
3009 * the 802.11 header for notifcation.
3010 */
3011 /* XXX frag's and qos frames */
3012 len = ds->ds_rxstat.rs_datalen;
3013 if (len >= sizeof (struct ieee80211_frame)) {
3014 bus_dmamap_sync(sc->sc_dmat,
3015 bf->bf_dmamap,
3016 0, bf->bf_dmamap->dm_mapsize,
3017 BUS_DMASYNC_POSTREAD);
3018 ieee80211_notify_michael_failure(ic,
3019 mtod(m, struct ieee80211_frame *),
3020 sc->sc_splitmic ?
3021 ds->ds_rxstat.rs_keyix-32 :
3022 ds->ds_rxstat.rs_keyix
3023 );
3024 }
3025 }
3026 ifp->if_ierrors++;
3027 /*
3028 * Reject error frames, we normally don't want
3029 * to see them in monitor mode (in monitor mode
3030 * allow through packets that have crypto problems).
3031 */
3032 if ((ds->ds_rxstat.rs_status &~
3033 (HAL_RXERR_DECRYPT|HAL_RXERR_MIC)) ||
3034 sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
3035 goto rx_next;
3036 }
3037 rx_accept:
3038 /*
3039 * Sync and unmap the frame. At this point we're
3040 * committed to passing the mbuf somewhere so clear
3041 * bf_m; this means a new sk_buff must be allocated
3042 * when the rx descriptor is setup again to receive
3043 * another frame.
3044 */
3045 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3046 0, bf->bf_dmamap->dm_mapsize,
3047 BUS_DMASYNC_POSTREAD);
3048 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3049 bf->bf_m = NULL;
3050
3051 m->m_pkthdr.rcvif = ifp;
3052 len = ds->ds_rxstat.rs_datalen;
3053 m->m_pkthdr.len = m->m_len = len;
3054
3055 sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
3056
3057 #if NBPFILTER > 0
3058 if (sc->sc_drvbpf) {
3059 u_int8_t rix;
3060
3061 /*
3062 * Discard anything shorter than an ack or cts.
3063 */
3064 if (len < IEEE80211_ACK_LEN) {
3065 DPRINTF(sc, ATH_DEBUG_RECV,
3066 "%s: runt packet %d\n",
3067 __func__, len);
3068 sc->sc_stats.ast_rx_tooshort++;
3069 m_freem(m);
3070 goto rx_next;
3071 }
3072 rix = ds->ds_rxstat.rs_rate;
3073 sc->sc_rx_th.wr_tsf = htole64(
3074 ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf));
3075 sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
3076 sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
3077 sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf;
3078 sc->sc_rx_th.wr_antnoise = nf;
3079 sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
3080
3081 bpf_mtap2(sc->sc_drvbpf,
3082 &sc->sc_rx_th, sc->sc_rx_th_len, m);
3083 }
3084 #endif
3085
3086 /*
3087 * From this point on we assume the frame is at least
3088 * as large as ieee80211_frame_min; verify that.
3089 */
3090 if (len < IEEE80211_MIN_LEN) {
3091 DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
3092 __func__, len);
3093 sc->sc_stats.ast_rx_tooshort++;
3094 m_freem(m);
3095 goto rx_next;
3096 }
3097
3098 if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
3099 ieee80211_dump_pkt(mtod(m, void *), len,
3100 sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
3101 ds->ds_rxstat.rs_rssi);
3102 }
3103
3104 m_adj(m, -IEEE80211_CRC_LEN);
3105
3106 /*
3107 * Locate the node for sender, track state, and then
3108 * pass the (referenced) node up to the 802.11 layer
3109 * for its use.
3110 */
3111 ni = ieee80211_find_rxnode_withkey(ic,
3112 mtod(m, const struct ieee80211_frame_min *),
3113 ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
3114 IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
3115 /*
3116 * Track rx rssi and do any rx antenna management.
3117 */
3118 an = ATH_NODE(ni);
3119 ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
3120 ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi);
3121 /*
3122 * Send frame up for processing.
3123 */
3124 type = ieee80211_input(ic, m, ni,
3125 ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
3126 ieee80211_free_node(ni);
3127 if (sc->sc_diversity) {
3128 /*
3129 * When using fast diversity, change the default rx
3130 * antenna if diversity chooses the other antenna 3
3131 * times in a row.
3132 */
3133 if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
3134 if (++sc->sc_rxotherant >= 3)
3135 ath_setdefantenna(sc,
3136 ds->ds_rxstat.rs_antenna);
3137 } else
3138 sc->sc_rxotherant = 0;
3139 }
3140 if (sc->sc_softled) {
3141 /*
3142 * Blink for any data frame. Otherwise do a
3143 * heartbeat-style blink when idle. The latter
3144 * is mainly for station mode where we depend on
3145 * periodic beacon frames to trigger the poll event.
3146 */
3147 if (type == IEEE80211_FC0_TYPE_DATA) {
3148 sc->sc_rxrate = ds->ds_rxstat.rs_rate;
3149 ath_led_event(sc, ATH_LED_RX);
3150 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
3151 ath_led_event(sc, ATH_LED_POLL);
3152 }
3153 /*
3154 * Arrange to update the last rx timestamp only for
3155 * frames from our ap when operating in station mode.
3156 * This assumes the rx key is always setup when associated.
3157 */
3158 if (ic->ic_opmode == IEEE80211_M_STA &&
3159 ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID)
3160 ngood++;
3161 rx_next:
3162 STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
3163 } while (ath_rxbuf_init(sc, bf) == 0);
3164
3165 /* rx signal state monitoring */
3166 ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
3167 if (ath_hal_radar_event(ah))
3168 TASK_RUN_OR_ENQUEUE(&sc->sc_radartask);
3169 if (ngood)
3170 sc->sc_lastrx = tsf;
3171
3172 #ifdef __NetBSD__
3173 /* XXX Why isn't this necessary in FreeBSD? */
3174 if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
3175 ath_start(ifp);
3176 #endif /* __NetBSD__ */
3177
3178 NET_UNLOCK_GIANT(); /* XXX */
3179 #undef PA2DESC
3180 }
3181
3182 /*
3183 * Setup a h/w transmit queue.
3184 */
3185 static struct ath_txq *
3186 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3187 {
3188 #define N(a) (sizeof(a)/sizeof(a[0]))
3189 struct ath_hal *ah = sc->sc_ah;
3190 HAL_TXQ_INFO qi;
3191 int qnum;
3192
3193 memset(&qi, 0, sizeof(qi));
3194 qi.tqi_subtype = subtype;
3195 qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3196 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3197 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3198 /*
3199 * Enable interrupts only for EOL and DESC conditions.
3200 * We mark tx descriptors to receive a DESC interrupt
3201 * when a tx queue gets deep; otherwise waiting for the
3202 * EOL to reap descriptors. Note that this is done to
3203 * reduce interrupt load and this only defers reaping
3204 * descriptors, never transmitting frames. Aside from
3205 * reducing interrupts this also permits more concurrency.
3206 * The only potential downside is if the tx queue backs
3207 * up in which case the top half of the kernel may backup
3208 * due to a lack of tx descriptors.
3209 */
3210 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
3211 qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3212 if (qnum == -1) {
3213 /*
3214 * NB: don't print a message, this happens
3215 * normally on parts with too few tx queues
3216 */
3217 return NULL;
3218 }
3219 if (qnum >= N(sc->sc_txq)) {
3220 device_printf(&sc->sc_dev,
3221 "hal qnum %u out of range, max %zu!\n",
3222 qnum, N(sc->sc_txq));
3223 ath_hal_releasetxqueue(ah, qnum);
3224 return NULL;
3225 }
3226 if (!ATH_TXQ_SETUP(sc, qnum)) {
3227 struct ath_txq *txq = &sc->sc_txq[qnum];
3228
3229 txq->axq_qnum = qnum;
3230 txq->axq_depth = 0;
3231 txq->axq_intrcnt = 0;
3232 txq->axq_link = NULL;
3233 STAILQ_INIT(&txq->axq_q);
3234 ATH_TXQ_LOCK_INIT(sc, txq);
3235 sc->sc_txqsetup |= 1<<qnum;
3236 }
3237 return &sc->sc_txq[qnum];
3238 #undef N
3239 }
3240
3241 /*
3242 * Setup a hardware data transmit queue for the specified
3243 * access control. The hal may not support all requested
3244 * queues in which case it will return a reference to a
3245 * previously setup queue. We record the mapping from ac's
3246 * to h/w queues for use by ath_tx_start and also track
3247 * the set of h/w queues being used to optimize work in the
3248 * transmit interrupt handler and related routines.
3249 */
3250 static int
3251 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3252 {
3253 #define N(a) (sizeof(a)/sizeof(a[0]))
3254 struct ath_txq *txq;
3255
3256 if (ac >= N(sc->sc_ac2q)) {
3257 device_printf(&sc->sc_dev, "AC %u out of range, max %zu!\n",
3258 ac, N(sc->sc_ac2q));
3259 return 0;
3260 }
3261 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3262 if (txq != NULL) {
3263 sc->sc_ac2q[ac] = txq;
3264 return 1;
3265 } else
3266 return 0;
3267 #undef N
3268 }
3269
3270 /*
3271 * Update WME parameters for a transmit queue.
3272 */
3273 static int
3274 ath_txq_update(struct ath_softc *sc, int ac)
3275 {
3276 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1)
3277 #define ATH_TXOP_TO_US(v) (v<<5)
3278 struct ieee80211com *ic = &sc->sc_ic;
3279 struct ath_txq *txq = sc->sc_ac2q[ac];
3280 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3281 struct ath_hal *ah = sc->sc_ah;
3282 HAL_TXQ_INFO qi;
3283
3284 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3285 qi.tqi_aifs = wmep->wmep_aifsn;
3286 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3287 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3288 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3289
3290 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3291 device_printf(&sc->sc_dev, "unable to update hardware queue "
3292 "parameters for %s traffic!\n",
3293 ieee80211_wme_acnames[ac]);
3294 return 0;
3295 } else {
3296 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3297 return 1;
3298 }
3299 #undef ATH_TXOP_TO_US
3300 #undef ATH_EXPONENT_TO_VALUE
3301 }
3302
3303 /*
3304 * Callback from the 802.11 layer to update WME parameters.
3305 */
3306 static int
3307 ath_wme_update(struct ieee80211com *ic)
3308 {
3309 struct ath_softc *sc = ic->ic_ifp->if_softc;
3310
3311 return !ath_txq_update(sc, WME_AC_BE) ||
3312 !ath_txq_update(sc, WME_AC_BK) ||
3313 !ath_txq_update(sc, WME_AC_VI) ||
3314 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3315 }
3316
3317 /*
3318 * Reclaim resources for a setup queue.
3319 */
3320 static void
3321 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3322 {
3323
3324 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3325 ATH_TXQ_LOCK_DESTROY(txq);
3326 sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3327 }
3328
3329 /*
3330 * Reclaim all tx queue resources.
3331 */
3332 static void
3333 ath_tx_cleanup(struct ath_softc *sc)
3334 {
3335 int i;
3336
3337 ATH_TXBUF_LOCK_DESTROY(sc);
3338 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3339 if (ATH_TXQ_SETUP(sc, i))
3340 ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3341 }
3342
3343 /*
3344 * Defragment an mbuf chain, returning at most maxfrags separate
3345 * mbufs+clusters. If this is not possible NULL is returned and
3346 * the original mbuf chain is left in it's present (potentially
3347 * modified) state. We use two techniques: collapsing consecutive
3348 * mbufs and replacing consecutive mbufs by a cluster.
3349 */
3350 static struct mbuf *
3351 ath_defrag(struct mbuf *m0, int how, int maxfrags)
3352 {
3353 struct mbuf *m, *n, *n2, **prev;
3354 u_int curfrags;
3355
3356 /*
3357 * Calculate the current number of frags.
3358 */
3359 curfrags = 0;
3360 for (m = m0; m != NULL; m = m->m_next)
3361 curfrags++;
3362 /*
3363 * First, try to collapse mbufs. Note that we always collapse
3364 * towards the front so we don't need to deal with moving the
3365 * pkthdr. This may be suboptimal if the first mbuf has much
3366 * less data than the following.
3367 */
3368 m = m0;
3369 again:
3370 for (;;) {
3371 n = m->m_next;
3372 if (n == NULL)
3373 break;
3374 if (n->m_len < M_TRAILINGSPACE(m)) {
3375 memcpy(mtod(m, char *) + m->m_len, mtod(n, void *),
3376 n->m_len);
3377 m->m_len += n->m_len;
3378 m->m_next = n->m_next;
3379 m_free(n);
3380 if (--curfrags <= maxfrags)
3381 return m0;
3382 } else
3383 m = n;
3384 }
3385 KASSERT(maxfrags > 1,
3386 ("maxfrags %u, but normal collapse failed", maxfrags));
3387 /*
3388 * Collapse consecutive mbufs to a cluster.
3389 */
3390 prev = &m0->m_next; /* NB: not the first mbuf */
3391 while ((n = *prev) != NULL) {
3392 if ((n2 = n->m_next) != NULL &&
3393 n->m_len + n2->m_len < MCLBYTES) {
3394 m = m_getcl(how, MT_DATA, 0);
3395 if (m == NULL)
3396 goto bad;
3397 bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
3398 bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
3399 n2->m_len);
3400 m->m_len = n->m_len + n2->m_len;
3401 m->m_next = n2->m_next;
3402 *prev = m;
3403 m_free(n);
3404 m_free(n2);
3405 if (--curfrags <= maxfrags) /* +1 cl -2 mbufs */
3406 return m0;
3407 /*
3408 * Still not there, try the normal collapse
3409 * again before we allocate another cluster.
3410 */
3411 goto again;
3412 }
3413 prev = &n->m_next;
3414 }
3415 /*
3416 * No place where we can collapse to a cluster; punt.
3417 * This can occur if, for example, you request 2 frags
3418 * but the packet requires that both be clusters (we
3419 * never reallocate the first mbuf to avoid moving the
3420 * packet header).
3421 */
3422 bad:
3423 return NULL;
3424 }
3425
3426 /*
3427 * Return h/w rate index for an IEEE rate (w/o basic rate bit).
3428 */
3429 static int
3430 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
3431 {
3432 int i;
3433
3434 for (i = 0; i < rt->rateCount; i++)
3435 if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
3436 return i;
3437 return 0; /* NB: lowest rate */
3438 }
3439
3440 static void
3441 ath_freetx(struct mbuf *m)
3442 {
3443 struct mbuf *next;
3444
3445 do {
3446 next = m->m_nextpkt;
3447 m->m_nextpkt = NULL;
3448 m_freem(m);
3449 } while ((m = next) != NULL);
3450 }
3451
3452 static int
3453 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
3454 struct mbuf *m0)
3455 {
3456 struct ieee80211com *ic = &sc->sc_ic;
3457 struct ath_hal *ah = sc->sc_ah;
3458 struct ifnet *ifp = &sc->sc_if;
3459 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
3460 int i, error, iswep, ismcast, isfrag, ismrr;
3461 int keyix, hdrlen, pktlen, try0;
3462 u_int8_t rix, txrate, ctsrate;
3463 u_int8_t cix = 0xff; /* NB: silence compiler */
3464 struct ath_desc *ds, *ds0;
3465 struct ath_txq *txq;
3466 struct ieee80211_frame *wh;
3467 u_int subtype, flags, ctsduration;
3468 HAL_PKT_TYPE atype;
3469 const HAL_RATE_TABLE *rt;
3470 HAL_BOOL shortPreamble;
3471 struct ath_node *an;
3472 struct mbuf *m;
3473 u_int pri;
3474
3475 wh = mtod(m0, struct ieee80211_frame *);
3476 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
3477 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3478 isfrag = m0->m_flags & M_FRAG;
3479 hdrlen = ieee80211_anyhdrsize(wh);
3480 /*
3481 * Packet length must not include any
3482 * pad bytes; deduct them here.
3483 */
3484 pktlen = m0->m_pkthdr.len - (hdrlen & 3);
3485
3486 if (iswep) {
3487 const struct ieee80211_cipher *cip;
3488 struct ieee80211_key *k;
3489
3490 /*
3491 * Construct the 802.11 header+trailer for an encrypted
3492 * frame. The only reason this can fail is because of an
3493 * unknown or unsupported cipher/key type.
3494 */
3495 k = ieee80211_crypto_encap(ic, ni, m0);
3496 if (k == NULL) {
3497 /*
3498 * This can happen when the key is yanked after the
3499 * frame was queued. Just discard the frame; the
3500 * 802.11 layer counts failures and provides
3501 * debugging/diagnostics.
3502 */
3503 ath_freetx(m0);
3504 return EIO;
3505 }
3506 /*
3507 * Adjust the packet + header lengths for the crypto
3508 * additions and calculate the h/w key index. When
3509 * a s/w mic is done the frame will have had any mic
3510 * added to it prior to entry so m0->m_pkthdr.len above will
3511 * account for it. Otherwise we need to add it to the
3512 * packet length.
3513 */
3514 cip = k->wk_cipher;
3515 hdrlen += cip->ic_header;
3516 pktlen += cip->ic_header + cip->ic_trailer;
3517 /* NB: frags always have any TKIP MIC done in s/w */
3518 if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
3519 pktlen += cip->ic_miclen;
3520 keyix = k->wk_keyix;
3521
3522 /* packet header may have moved, reset our local pointer */
3523 wh = mtod(m0, struct ieee80211_frame *);
3524 } else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
3525 /*
3526 * Use station key cache slot, if assigned.
3527 */
3528 keyix = ni->ni_ucastkey.wk_keyix;
3529 if (keyix == IEEE80211_KEYIX_NONE)
3530 keyix = HAL_TXKEYIX_INVALID;
3531 } else
3532 keyix = HAL_TXKEYIX_INVALID;
3533
3534 pktlen += IEEE80211_CRC_LEN;
3535
3536 /*
3537 * Load the DMA map so any coalescing is done. This
3538 * also calculates the number of descriptors we need.
3539 */
3540 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3541 BUS_DMA_NOWAIT);
3542 if (error == EFBIG) {
3543 /* XXX packet requires too many descriptors */
3544 bf->bf_nseg = ATH_TXDESC+1;
3545 } else if (error != 0) {
3546 sc->sc_stats.ast_tx_busdma++;
3547 ath_freetx(m0);
3548 return error;
3549 }
3550 /*
3551 * Discard null packets and check for packets that
3552 * require too many TX descriptors. We try to convert
3553 * the latter to a cluster.
3554 */
3555 if (error == EFBIG) { /* too many desc's, linearize */
3556 sc->sc_stats.ast_tx_linear++;
3557 m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
3558 if (m == NULL) {
3559 ath_freetx(m0);
3560 sc->sc_stats.ast_tx_nombuf++;
3561 return ENOMEM;
3562 }
3563 m0 = m;
3564 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3565 BUS_DMA_NOWAIT);
3566 if (error != 0) {
3567 sc->sc_stats.ast_tx_busdma++;
3568 ath_freetx(m0);
3569 return error;
3570 }
3571 KASSERT(bf->bf_nseg <= ATH_TXDESC,
3572 ("too many segments after defrag; nseg %u", bf->bf_nseg));
3573 } else if (bf->bf_nseg == 0) { /* null packet, discard */
3574 sc->sc_stats.ast_tx_nodata++;
3575 ath_freetx(m0);
3576 return EIO;
3577 }
3578 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
3579 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
3580 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
3581 bf->bf_m = m0;
3582 bf->bf_node = ni; /* NB: held reference */
3583
3584 /* setup descriptors */
3585 ds = bf->bf_desc;
3586 rt = sc->sc_currates;
3587 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3588
3589 /*
3590 * NB: the 802.11 layer marks whether or not we should
3591 * use short preamble based on the current mode and
3592 * negotiated parameters.
3593 */
3594 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3595 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) {
3596 shortPreamble = AH_TRUE;
3597 sc->sc_stats.ast_tx_shortpre++;
3598 } else {
3599 shortPreamble = AH_FALSE;
3600 }
3601
3602 an = ATH_NODE(ni);
3603 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */
3604 ismrr = 0; /* default no multi-rate retry*/
3605 /*
3606 * Calculate Atheros packet type from IEEE80211 packet header,
3607 * setup for rate calculations, and select h/w transmit queue.
3608 */
3609 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3610 case IEEE80211_FC0_TYPE_MGT:
3611 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3612 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
3613 atype = HAL_PKT_TYPE_BEACON;
3614 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3615 atype = HAL_PKT_TYPE_PROBE_RESP;
3616 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
3617 atype = HAL_PKT_TYPE_ATIM;
3618 else
3619 atype = HAL_PKT_TYPE_NORMAL; /* XXX */
3620 rix = sc->sc_minrateix;
3621 txrate = rt->info[rix].rateCode;
3622 if (shortPreamble)
3623 txrate |= rt->info[rix].shortPreamble;
3624 try0 = ATH_TXMGTTRY;
3625 /* NB: force all management frames to highest queue */
3626 if (ni->ni_flags & IEEE80211_NODE_QOS) {
3627 /* NB: force all management frames to highest queue */
3628 pri = WME_AC_VO;
3629 } else
3630 pri = WME_AC_BE;
3631 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
3632 break;
3633 case IEEE80211_FC0_TYPE_CTL:
3634 atype = HAL_PKT_TYPE_PSPOLL; /* stop setting of duration */
3635 rix = sc->sc_minrateix;
3636 txrate = rt->info[rix].rateCode;
3637 if (shortPreamble)
3638 txrate |= rt->info[rix].shortPreamble;
3639 try0 = ATH_TXMGTTRY;
3640 /* NB: force all ctl frames to highest queue */
3641 if (ni->ni_flags & IEEE80211_NODE_QOS) {
3642 /* NB: force all ctl frames to highest queue */
3643 pri = WME_AC_VO;
3644 } else
3645 pri = WME_AC_BE;
3646 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
3647 break;
3648 case IEEE80211_FC0_TYPE_DATA:
3649 atype = HAL_PKT_TYPE_NORMAL; /* default */
3650 /*
3651 * Data frames: multicast frames go out at a fixed rate,
3652 * otherwise consult the rate control module for the
3653 * rate to use.
3654 */
3655 if (ismcast) {
3656 /*
3657 * Check mcast rate setting in case it's changed.
3658 * XXX move out of fastpath
3659 */
3660 if (ic->ic_mcast_rate != sc->sc_mcastrate) {
3661 sc->sc_mcastrix =
3662 ath_tx_findrix(rt, ic->ic_mcast_rate);
3663 sc->sc_mcastrate = ic->ic_mcast_rate;
3664 }
3665 rix = sc->sc_mcastrix;
3666 txrate = rt->info[rix].rateCode;
3667 try0 = 1;
3668 } else {
3669 ath_rate_findrate(sc, an, shortPreamble, pktlen,
3670 &rix, &try0, &txrate);
3671 sc->sc_txrate = txrate; /* for LED blinking */
3672 if (try0 != ATH_TXMAXTRY)
3673 ismrr = 1;
3674 }
3675 pri = M_WME_GETAC(m0);
3676 if (cap->cap_wmeParams[pri].wmep_noackPolicy)
3677 flags |= HAL_TXDESC_NOACK;
3678 break;
3679 default:
3680 if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3681 wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3682 /* XXX statistic */
3683 ath_freetx(m0);
3684 return EIO;
3685 }
3686 txq = sc->sc_ac2q[pri];
3687
3688 /*
3689 * When servicing one or more stations in power-save mode
3690 * multicast frames must be buffered until after the beacon.
3691 * We use the CAB queue for that.
3692 */
3693 if (ismcast && ic->ic_ps_sta) {
3694 txq = sc->sc_cabq;
3695 /* XXX? more bit in 802.11 frame header */
3696 }
3697
3698 /*
3699 * Calculate miscellaneous flags.
3700 */
3701 if (ismcast) {
3702 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */
3703 } else if (pktlen > ic->ic_rtsthreshold) {
3704 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */
3705 cix = rt->info[rix].controlRate;
3706 sc->sc_stats.ast_tx_rts++;
3707 }
3708 if (flags & HAL_TXDESC_NOACK) /* NB: avoid double counting */
3709 sc->sc_stats.ast_tx_noack++;
3710
3711 /*
3712 * If 802.11g protection is enabled, determine whether
3713 * to use RTS/CTS or just CTS. Note that this is only
3714 * done for OFDM unicast frames.
3715 */
3716 if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3717 rt->info[rix].phy == IEEE80211_T_OFDM &&
3718 (flags & HAL_TXDESC_NOACK) == 0) {
3719 /* XXX fragments must use CCK rates w/ protection */
3720 if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3721 flags |= HAL_TXDESC_RTSENA;
3722 else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3723 flags |= HAL_TXDESC_CTSENA;
3724 if (isfrag) {
3725 /*
3726 * For frags it would be desirable to use the
3727 * highest CCK rate for RTS/CTS. But stations
3728 * farther away may detect it at a lower CCK rate
3729 * so use the configured protection rate instead
3730 * (for now).
3731 */
3732 cix = rt->info[sc->sc_protrix].controlRate;
3733 } else
3734 cix = rt->info[sc->sc_protrix].controlRate;
3735 sc->sc_stats.ast_tx_protect++;
3736 }
3737
3738 /*
3739 * Calculate duration. This logically belongs in the 802.11
3740 * layer but it lacks sufficient information to calculate it.
3741 */
3742 if ((flags & HAL_TXDESC_NOACK) == 0 &&
3743 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
3744 u_int16_t dur;
3745 /*
3746 * XXX not right with fragmentation.
3747 */
3748 if (shortPreamble)
3749 dur = rt->info[rix].spAckDuration;
3750 else
3751 dur = rt->info[rix].lpAckDuration;
3752 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
3753 dur += dur; /* additional SIFS+ACK */
3754 KASSERT(m0->m_nextpkt != NULL, ("no fragment"));
3755 /*
3756 * Include the size of next fragment so NAV is
3757 * updated properly. The last fragment uses only
3758 * the ACK duration
3759 */
3760 dur += ath_hal_computetxtime(ah, rt,
3761 m0->m_nextpkt->m_pkthdr.len,
3762 rix, shortPreamble);
3763 }
3764 if (isfrag) {
3765 /*
3766 * Force hardware to use computed duration for next
3767 * fragment by disabling multi-rate retry which updates
3768 * duration based on the multi-rate duration table.
3769 */
3770 try0 = ATH_TXMAXTRY;
3771 }
3772 *(u_int16_t *)wh->i_dur = htole16(dur);
3773 }
3774
3775 /*
3776 * Calculate RTS/CTS rate and duration if needed.
3777 */
3778 ctsduration = 0;
3779 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
3780 /*
3781 * CTS transmit rate is derived from the transmit rate
3782 * by looking in the h/w rate table. We must also factor
3783 * in whether or not a short preamble is to be used.
3784 */
3785 /* NB: cix is set above where RTS/CTS is enabled */
3786 KASSERT(cix != 0xff, ("cix not setup"));
3787 ctsrate = rt->info[cix].rateCode;
3788 /*
3789 * Compute the transmit duration based on the frame
3790 * size and the size of an ACK frame. We call into the
3791 * HAL to do the computation since it depends on the
3792 * characteristics of the actual PHY being used.
3793 *
3794 * NB: CTS is assumed the same size as an ACK so we can
3795 * use the precalculated ACK durations.
3796 */
3797 if (shortPreamble) {
3798 ctsrate |= rt->info[cix].shortPreamble;
3799 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
3800 ctsduration += rt->info[cix].spAckDuration;
3801 ctsduration += ath_hal_computetxtime(ah,
3802 rt, pktlen, rix, AH_TRUE);
3803 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
3804 ctsduration += rt->info[rix].spAckDuration;
3805 } else {
3806 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
3807 ctsduration += rt->info[cix].lpAckDuration;
3808 ctsduration += ath_hal_computetxtime(ah,
3809 rt, pktlen, rix, AH_FALSE);
3810 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
3811 ctsduration += rt->info[rix].lpAckDuration;
3812 }
3813 /*
3814 * Must disable multi-rate retry when using RTS/CTS.
3815 */
3816 ismrr = 0;
3817 try0 = ATH_TXMGTTRY; /* XXX */
3818 } else
3819 ctsrate = 0;
3820
3821 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3822 ieee80211_dump_pkt(mtod(m0, void *), m0->m_len,
3823 sc->sc_hwmap[txrate].ieeerate, -1);
3824 #if NBPFILTER > 0
3825 if (ic->ic_rawbpf)
3826 bpf_mtap(ic->ic_rawbpf, m0);
3827 if (sc->sc_drvbpf) {
3828 u_int64_t tsf = ath_hal_gettsf64(ah);
3829
3830 sc->sc_tx_th.wt_tsf = htole64(tsf);
3831 sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
3832 if (iswep)
3833 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3834 if (isfrag)
3835 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
3836 sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
3837 sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3838 sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3839
3840 bpf_mtap2(sc->sc_drvbpf,
3841 &sc->sc_tx_th, sc->sc_tx_th_len, m0);
3842 }
3843 #endif
3844
3845 /*
3846 * Determine if a tx interrupt should be generated for
3847 * this descriptor. We take a tx interrupt to reap
3848 * descriptors when the h/w hits an EOL condition or
3849 * when the descriptor is specifically marked to generate
3850 * an interrupt. We periodically mark descriptors in this
3851 * way to insure timely replenishing of the supply needed
3852 * for sending frames. Defering interrupts reduces system
3853 * load and potentially allows more concurrent work to be
3854 * done but if done to aggressively can cause senders to
3855 * backup.
3856 *
3857 * NB: use >= to deal with sc_txintrperiod changing
3858 * dynamically through sysctl.
3859 */
3860 if (flags & HAL_TXDESC_INTREQ) {
3861 txq->axq_intrcnt = 0;
3862 } else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
3863 flags |= HAL_TXDESC_INTREQ;
3864 txq->axq_intrcnt = 0;
3865 }
3866
3867 /*
3868 * Formulate first tx descriptor with tx controls.
3869 */
3870 /* XXX check return value? */
3871 ath_hal_setuptxdesc(ah, ds
3872 , pktlen /* packet length */
3873 , hdrlen /* header length */
3874 , atype /* Atheros packet type */
3875 , ni->ni_txpower /* txpower */
3876 , txrate, try0 /* series 0 rate/tries */
3877 , keyix /* key cache index */
3878 , sc->sc_txantenna /* antenna mode */
3879 , flags /* flags */
3880 , ctsrate /* rts/cts rate */
3881 , ctsduration /* rts/cts duration */
3882 );
3883 bf->bf_flags = flags;
3884 /*
3885 * Setup the multi-rate retry state only when we're
3886 * going to use it. This assumes ath_hal_setuptxdesc
3887 * initializes the descriptors (so we don't have to)
3888 * when the hardware supports multi-rate retry and
3889 * we don't use it.
3890 */
3891 if (ismrr)
3892 ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
3893
3894 /*
3895 * Fillin the remainder of the descriptor info.
3896 */
3897 ds0 = ds;
3898 for (i = 0; i < bf->bf_nseg; i++, ds++) {
3899 ds->ds_data = bf->bf_segs[i].ds_addr;
3900 if (i == bf->bf_nseg - 1)
3901 ds->ds_link = 0;
3902 else
3903 ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
3904 ath_hal_filltxdesc(ah, ds
3905 , bf->bf_segs[i].ds_len /* segment length */
3906 , i == 0 /* first segment */
3907 , i == bf->bf_nseg - 1 /* last segment */
3908 , ds0 /* first descriptor */
3909 );
3910
3911 /* NB: The desc swap function becomes void,
3912 * if descriptor swapping is not enabled
3913 */
3914 ath_desc_swap(ds);
3915
3916 DPRINTF(sc, ATH_DEBUG_XMIT,
3917 "%s: %d: %08x %08x %08x %08x %08x %08x\n",
3918 __func__, i, ds->ds_link, ds->ds_data,
3919 ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
3920 }
3921 /*
3922 * Insert the frame on the outbound list and
3923 * pass it on to the hardware.
3924 */
3925 ATH_TXQ_LOCK(txq);
3926 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
3927 if (txq->axq_link == NULL) {
3928 ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
3929 DPRINTF(sc, ATH_DEBUG_XMIT,
3930 "%s: TXDP[%u] = %" PRIx64 " (%p) depth %d\n", __func__,
3931 txq->axq_qnum, (uint64_t)bf->bf_daddr, bf->bf_desc,
3932 txq->axq_depth);
3933 } else {
3934 *txq->axq_link = HTOAH32(bf->bf_daddr);
3935 DPRINTF(sc, ATH_DEBUG_XMIT,
3936 "%s: link[%u](%p)=%" PRIx64 " (%p) depth %d\n",
3937 __func__, txq->axq_qnum, txq->axq_link,
3938 (uint64_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
3939 }
3940 txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
3941 /*
3942 * The CAB queue is started from the SWBA handler since
3943 * frames only go out on DTIM and to avoid possible races.
3944 */
3945 if (txq != sc->sc_cabq)
3946 ath_hal_txstart(ah, txq->axq_qnum);
3947 ATH_TXQ_UNLOCK(txq);
3948
3949 return 0;
3950 }
3951
3952 /*
3953 * Process completed xmit descriptors from the specified queue.
3954 */
3955 static int
3956 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
3957 {
3958 struct ath_hal *ah = sc->sc_ah;
3959 struct ieee80211com *ic = &sc->sc_ic;
3960 struct ath_buf *bf;
3961 struct ath_desc *ds, *ds0;
3962 struct ieee80211_node *ni;
3963 struct ath_node *an;
3964 int sr, lr, pri, nacked;
3965 HAL_STATUS status;
3966
3967 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
3968 __func__, txq->axq_qnum,
3969 (void *)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3970 txq->axq_link);
3971 nacked = 0;
3972 for (;;) {
3973 ATH_TXQ_LOCK(txq);
3974 txq->axq_intrcnt = 0; /* reset periodic desc intr count */
3975 bf = STAILQ_FIRST(&txq->axq_q);
3976 if (bf == NULL) {
3977 txq->axq_link = NULL;
3978 ATH_TXQ_UNLOCK(txq);
3979 break;
3980 }
3981 ds0 = &bf->bf_desc[0];
3982 ds = &bf->bf_desc[bf->bf_nseg - 1];
3983 status = ath_hal_txprocdesc(ah, ds);
3984 #ifdef AR_DEBUG
3985 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
3986 ath_printtxbuf(bf, status == HAL_OK);
3987 #endif
3988 if (status == HAL_EINPROGRESS) {
3989 ATH_TXQ_UNLOCK(txq);
3990 break;
3991 }
3992 ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3993 ATH_TXQ_UNLOCK(txq);
3994
3995 ni = bf->bf_node;
3996 if (ni != NULL) {
3997 an = ATH_NODE(ni);
3998 if (ds->ds_txstat.ts_status == 0) {
3999 u_int8_t txant = ds->ds_txstat.ts_antenna;
4000 sc->sc_stats.ast_ant_tx[txant]++;
4001 sc->sc_ant_tx[txant]++;
4002 if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
4003 sc->sc_stats.ast_tx_altrate++;
4004 sc->sc_stats.ast_tx_rssi =
4005 ds->ds_txstat.ts_rssi;
4006 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
4007 ds->ds_txstat.ts_rssi);
4008 pri = M_WME_GETAC(bf->bf_m);
4009 if (pri >= WME_AC_VO)
4010 ic->ic_wme.wme_hipri_traffic++;
4011 ni->ni_inact = ni->ni_inact_reload;
4012 } else {
4013 if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
4014 sc->sc_stats.ast_tx_xretries++;
4015 if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
4016 sc->sc_stats.ast_tx_fifoerr++;
4017 if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
4018 sc->sc_stats.ast_tx_filtered++;
4019 }
4020 sr = ds->ds_txstat.ts_shortretry;
4021 lr = ds->ds_txstat.ts_longretry;
4022 sc->sc_stats.ast_tx_shortretry += sr;
4023 sc->sc_stats.ast_tx_longretry += lr;
4024 /*
4025 * Hand the descriptor to the rate control algorithm.
4026 */
4027 if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
4028 (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
4029 /*
4030 * If frame was ack'd update the last rx time
4031 * used to workaround phantom bmiss interrupts.
4032 */
4033 if (ds->ds_txstat.ts_status == 0)
4034 nacked++;
4035 ath_rate_tx_complete(sc, an, ds, ds0);
4036 }
4037 /*
4038 * Reclaim reference to node.
4039 *
4040 * NB: the node may be reclaimed here if, for example
4041 * this is a DEAUTH message that was sent and the
4042 * node was timed out due to inactivity.
4043 */
4044 ieee80211_free_node(ni);
4045 }
4046 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
4047 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4048 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4049 m_freem(bf->bf_m);
4050 bf->bf_m = NULL;
4051 bf->bf_node = NULL;
4052
4053 ATH_TXBUF_LOCK(sc);
4054 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4055 sc->sc_if.if_flags &= ~IFF_OACTIVE;
4056 ATH_TXBUF_UNLOCK(sc);
4057 }
4058 return nacked;
4059 }
4060
4061 static inline int
4062 txqactive(struct ath_hal *ah, int qnum)
4063 {
4064 u_int32_t txqs = 1<<qnum;
4065 ath_hal_gettxintrtxqs(ah, &txqs);
4066 return (txqs & (1<<qnum));
4067 }
4068
4069 /*
4070 * Deferred processing of transmit interrupt; special-cased
4071 * for a single hardware transmit queue (e.g. 5210 and 5211).
4072 */
4073 static void
4074 ath_tx_proc_q0(void *arg, int npending)
4075 {
4076 struct ath_softc *sc = arg;
4077 struct ifnet *ifp = &sc->sc_if;
4078
4079 if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]) > 0){
4080 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4081 }
4082 if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4083 ath_tx_processq(sc, sc->sc_cabq);
4084
4085 if (sc->sc_softled)
4086 ath_led_event(sc, ATH_LED_TX);
4087
4088 ath_start(ifp);
4089 }
4090
4091 /*
4092 * Deferred processing of transmit interrupt; special-cased
4093 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4094 */
4095 static void
4096 ath_tx_proc_q0123(void *arg, int npending)
4097 {
4098 struct ath_softc *sc = arg;
4099 struct ifnet *ifp = &sc->sc_if;
4100 int nacked;
4101
4102 /*
4103 * Process each active queue.
4104 */
4105 nacked = 0;
4106 if (txqactive(sc->sc_ah, 0))
4107 nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
4108 if (txqactive(sc->sc_ah, 1))
4109 nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
4110 if (txqactive(sc->sc_ah, 2))
4111 nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
4112 if (txqactive(sc->sc_ah, 3))
4113 nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
4114 if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4115 ath_tx_processq(sc, sc->sc_cabq);
4116 if (nacked) {
4117 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4118 }
4119
4120 if (sc->sc_softled)
4121 ath_led_event(sc, ATH_LED_TX);
4122
4123 ath_start(ifp);
4124 }
4125
4126 /*
4127 * Deferred processing of transmit interrupt.
4128 */
4129 static void
4130 ath_tx_proc(void *arg, int npending)
4131 {
4132 struct ath_softc *sc = arg;
4133 struct ifnet *ifp = &sc->sc_if;
4134 int i, nacked;
4135
4136 /*
4137 * Process each active queue.
4138 */
4139 nacked = 0;
4140 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4141 if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
4142 nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
4143 if (nacked) {
4144 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4145 }
4146
4147 if (sc->sc_softled)
4148 ath_led_event(sc, ATH_LED_TX);
4149
4150 ath_start(ifp);
4151 }
4152
4153 static void
4154 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
4155 {
4156 struct ath_hal *ah = sc->sc_ah;
4157 struct ieee80211_node *ni;
4158 struct ath_buf *bf;
4159
4160 /*
4161 * NB: this assumes output has been stopped and
4162 * we do not need to block ath_tx_tasklet
4163 */
4164 for (;;) {
4165 ATH_TXQ_LOCK(txq);
4166 bf = STAILQ_FIRST(&txq->axq_q);
4167 if (bf == NULL) {
4168 txq->axq_link = NULL;
4169 ATH_TXQ_UNLOCK(txq);
4170 break;
4171 }
4172 ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4173 ATH_TXQ_UNLOCK(txq);
4174 #ifdef AR_DEBUG
4175 if (sc->sc_debug & ATH_DEBUG_RESET)
4176 ath_printtxbuf(bf,
4177 ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
4178 #endif /* AR_DEBUG */
4179 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4180 m_freem(bf->bf_m);
4181 bf->bf_m = NULL;
4182 ni = bf->bf_node;
4183 bf->bf_node = NULL;
4184 if (ni != NULL) {
4185 /*
4186 * Reclaim node reference.
4187 */
4188 ieee80211_free_node(ni);
4189 }
4190 ATH_TXBUF_LOCK(sc);
4191 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4192 sc->sc_if.if_flags &= ~IFF_OACTIVE;
4193 ATH_TXBUF_UNLOCK(sc);
4194 }
4195 }
4196
4197 static void
4198 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4199 {
4200 struct ath_hal *ah = sc->sc_ah;
4201
4202 (void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4203 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4204 __func__, txq->axq_qnum,
4205 (void *)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4206 txq->axq_link);
4207 }
4208
4209 /*
4210 * Drain the transmit queues and reclaim resources.
4211 */
4212 static void
4213 ath_draintxq(struct ath_softc *sc)
4214 {
4215 struct ath_hal *ah = sc->sc_ah;
4216 int i;
4217
4218 /* XXX return value */
4219 if (!sc->sc_invalid) {
4220 /* don't touch the hardware if marked invalid */
4221 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4222 DPRINTF(sc, ATH_DEBUG_RESET,
4223 "%s: beacon queue %p\n", __func__,
4224 (void *)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
4225 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4226 if (ATH_TXQ_SETUP(sc, i))
4227 ath_tx_stopdma(sc, &sc->sc_txq[i]);
4228 }
4229 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4230 if (ATH_TXQ_SETUP(sc, i))
4231 ath_tx_draintxq(sc, &sc->sc_txq[i]);
4232 }
4233
4234 /*
4235 * Disable the receive h/w in preparation for a reset.
4236 */
4237 static void
4238 ath_stoprecv(struct ath_softc *sc)
4239 {
4240 #define PA2DESC(_sc, _pa) \
4241 ((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
4242 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
4243 struct ath_hal *ah = sc->sc_ah;
4244
4245 ath_hal_stoppcurecv(ah); /* disable PCU */
4246 ath_hal_setrxfilter(ah, 0); /* clear recv filter */
4247 ath_hal_stopdmarecv(ah); /* disable DMA engine */
4248 DELAY(3000); /* 3ms is long enough for 1 frame */
4249 #ifdef AR_DEBUG
4250 if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
4251 struct ath_buf *bf;
4252
4253 printf("%s: rx queue %p, link %p\n", __func__,
4254 (void *)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
4255 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4256 struct ath_desc *ds = bf->bf_desc;
4257 HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
4258 bf->bf_daddr, PA2DESC(sc, ds->ds_link));
4259 if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
4260 ath_printrxbuf(bf, status == HAL_OK);
4261 }
4262 }
4263 #endif
4264 sc->sc_rxlink = NULL; /* just in case */
4265 #undef PA2DESC
4266 }
4267
4268 /*
4269 * Enable the receive h/w following a reset.
4270 */
4271 static int
4272 ath_startrecv(struct ath_softc *sc)
4273 {
4274 struct ath_hal *ah = sc->sc_ah;
4275 struct ath_buf *bf;
4276
4277 sc->sc_rxlink = NULL;
4278 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4279 int error = ath_rxbuf_init(sc, bf);
4280 if (error != 0) {
4281 DPRINTF(sc, ATH_DEBUG_RECV,
4282 "%s: ath_rxbuf_init failed %d\n",
4283 __func__, error);
4284 return error;
4285 }
4286 }
4287
4288 bf = STAILQ_FIRST(&sc->sc_rxbuf);
4289 ath_hal_putrxbuf(ah, bf->bf_daddr);
4290 ath_hal_rxena(ah); /* enable recv descriptors */
4291 ath_mode_init(sc); /* set filters, etc. */
4292 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */
4293 return 0;
4294 }
4295
4296 /*
4297 * Update internal state after a channel change.
4298 */
4299 static void
4300 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4301 {
4302 struct ieee80211com *ic = &sc->sc_ic;
4303 enum ieee80211_phymode mode;
4304 u_int16_t flags;
4305
4306 /*
4307 * Change channels and update the h/w rate map
4308 * if we're switching; e.g. 11a to 11b/g.
4309 */
4310 mode = ieee80211_chan2mode(ic, chan);
4311 if (mode != sc->sc_curmode)
4312 ath_setcurmode(sc, mode);
4313 /*
4314 * Update BPF state. NB: ethereal et. al. don't handle
4315 * merged flags well so pick a unique mode for their use.
4316 */
4317 if (IEEE80211_IS_CHAN_A(chan))
4318 flags = IEEE80211_CHAN_A;
4319 /* XXX 11g schizophrenia */
4320 else if (IEEE80211_IS_CHAN_G(chan) ||
4321 IEEE80211_IS_CHAN_PUREG(chan))
4322 flags = IEEE80211_CHAN_G;
4323 else
4324 flags = IEEE80211_CHAN_B;
4325 if (IEEE80211_IS_CHAN_T(chan))
4326 flags |= IEEE80211_CHAN_TURBO;
4327 sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
4328 htole16(chan->ic_freq);
4329 sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
4330 htole16(flags);
4331 }
4332
4333 /*
4334 * Poll for a channel clear indication; this is required
4335 * for channels requiring DFS and not previously visited
4336 * and/or with a recent radar detection.
4337 */
4338 static void
4339 ath_dfswait(void *arg)
4340 {
4341 struct ath_softc *sc = arg;
4342 struct ath_hal *ah = sc->sc_ah;
4343 HAL_CHANNEL hchan;
4344
4345 ath_hal_radar_wait(ah, &hchan);
4346 if (hchan.privFlags & CHANNEL_INTERFERENCE) {
4347 if_printf(&sc->sc_if,
4348 "channel %u/0x%x/0x%x has interference\n",
4349 hchan.channel, hchan.channelFlags, hchan.privFlags);
4350 return;
4351 }
4352 if ((hchan.privFlags & CHANNEL_DFS) == 0) {
4353 /* XXX should not happen */
4354 return;
4355 }
4356 if (hchan.privFlags & CHANNEL_DFS_CLEAR) {
4357 sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR;
4358 sc->sc_if.if_flags &= ~IFF_OACTIVE;
4359 if_printf(&sc->sc_if,
4360 "channel %u/0x%x/0x%x marked clear\n",
4361 hchan.channel, hchan.channelFlags, hchan.privFlags);
4362 } else
4363 callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc);
4364 }
4365
4366 /*
4367 * Set/change channels. If the channel is really being changed,
4368 * it's done by reseting the chip. To accomplish this we must
4369 * first cleanup any pending DMA, then restart stuff after a la
4370 * ath_init.
4371 */
4372 static int
4373 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4374 {
4375 struct ath_hal *ah = sc->sc_ah;
4376 struct ieee80211com *ic = &sc->sc_ic;
4377 HAL_CHANNEL hchan;
4378
4379 /*
4380 * Convert to a HAL channel description with
4381 * the flags constrained to reflect the current
4382 * operating mode.
4383 */
4384 hchan.channel = chan->ic_freq;
4385 hchan.channelFlags = ath_chan2flags(ic, chan);
4386
4387 DPRINTF(sc, ATH_DEBUG_RESET,
4388 "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
4389 __func__,
4390 ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
4391 sc->sc_curchan.channelFlags),
4392 sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
4393 ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
4394 hchan.channel, hchan.channelFlags);
4395 if (hchan.channel != sc->sc_curchan.channel ||
4396 hchan.channelFlags != sc->sc_curchan.channelFlags) {
4397 HAL_STATUS status;
4398
4399 /*
4400 * To switch channels clear any pending DMA operations;
4401 * wait long enough for the RX fifo to drain, reset the
4402 * hardware at the new frequency, and then re-enable
4403 * the relevant bits of the h/w.
4404 */
4405 ath_hal_intrset(ah, 0); /* disable interrupts */
4406 ath_draintxq(sc); /* clear pending tx frames */
4407 ath_stoprecv(sc); /* turn off frame recv */
4408 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
4409 if_printf(ic->ic_ifp, "%s: unable to reset "
4410 "channel %u (%u MHz, flags 0x%x hal flags 0x%x)\n",
4411 __func__, ieee80211_chan2ieee(ic, chan),
4412 chan->ic_freq, chan->ic_flags, hchan.channelFlags);
4413 return EIO;
4414 }
4415 sc->sc_curchan = hchan;
4416 ath_update_txpow(sc); /* update tx power state */
4417 ath_restore_diversity(sc);
4418 sc->sc_calinterval = 1;
4419 sc->sc_caltries = 0;
4420
4421 /*
4422 * Re-enable rx framework.
4423 */
4424 if (ath_startrecv(sc) != 0) {
4425 if_printf(&sc->sc_if,
4426 "%s: unable to restart recv logic\n", __func__);
4427 return EIO;
4428 }
4429
4430 /*
4431 * Change channels and update the h/w rate map
4432 * if we're switching; e.g. 11a to 11b/g.
4433 */
4434 ic->ic_ibss_chan = chan;
4435 ath_chan_change(sc, chan);
4436
4437 /*
4438 * Handle DFS required waiting period to determine
4439 * if channel is clear of radar traffic.
4440 */
4441 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
4442 #define DFS_AND_NOT_CLEAR(_c) \
4443 (((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS)
4444 if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) {
4445 if_printf(&sc->sc_if,
4446 "wait for DFS clear channel signal\n");
4447 /* XXX stop sndq */
4448 sc->sc_if.if_flags |= IFF_OACTIVE;
4449 callout_reset(&sc->sc_dfs_ch,
4450 2 * hz, ath_dfswait, sc);
4451 } else
4452 callout_stop(&sc->sc_dfs_ch);
4453 #undef DFS_NOT_CLEAR
4454 }
4455
4456 /*
4457 * Re-enable interrupts.
4458 */
4459 ath_hal_intrset(ah, sc->sc_imask);
4460 }
4461 return 0;
4462 }
4463
4464 static void
4465 ath_next_scan(void *arg)
4466 {
4467 struct ath_softc *sc = arg;
4468 struct ieee80211com *ic = &sc->sc_ic;
4469 int s;
4470
4471 /* don't call ath_start w/o network interrupts blocked */
4472 s = splnet();
4473
4474 if (ic->ic_state == IEEE80211_S_SCAN)
4475 ieee80211_next_scan(ic);
4476 splx(s);
4477 }
4478
4479 /*
4480 * Periodically recalibrate the PHY to account
4481 * for temperature/environment changes.
4482 */
4483 static void
4484 ath_calibrate(void *arg)
4485 {
4486 struct ath_softc *sc = arg;
4487 struct ath_hal *ah = sc->sc_ah;
4488 HAL_BOOL iqCalDone;
4489
4490 sc->sc_stats.ast_per_cal++;
4491
4492 ATH_LOCK(sc);
4493
4494 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4495 /*
4496 * Rfgain is out of bounds, reset the chip
4497 * to load new gain values.
4498 */
4499 DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4500 "%s: rfgain change\n", __func__);
4501 sc->sc_stats.ast_per_rfgain++;
4502 ath_reset(&sc->sc_if);
4503 }
4504 if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
4505 DPRINTF(sc, ATH_DEBUG_ANY,
4506 "%s: calibration of channel %u failed\n",
4507 __func__, sc->sc_curchan.channel);
4508 sc->sc_stats.ast_per_calfail++;
4509 }
4510 /*
4511 * Calibrate noise floor data again in case of change.
4512 */
4513 ath_hal_process_noisefloor(ah);
4514 /*
4515 * Poll more frequently when the IQ calibration is in
4516 * progress to speedup loading the final settings.
4517 * We temper this aggressive polling with an exponential
4518 * back off after 4 tries up to ath_calinterval.
4519 */
4520 if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
4521 sc->sc_caltries = 0;
4522 sc->sc_calinterval = ath_calinterval;
4523 } else if (sc->sc_caltries > 4) {
4524 sc->sc_caltries = 0;
4525 sc->sc_calinterval <<= 1;
4526 if (sc->sc_calinterval > ath_calinterval)
4527 sc->sc_calinterval = ath_calinterval;
4528 }
4529 KASSERT(0 < sc->sc_calinterval && sc->sc_calinterval <= ath_calinterval,
4530 ("bad calibration interval %u", sc->sc_calinterval));
4531
4532 DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4533 "%s: next +%u (%siqCalDone tries %u)\n", __func__,
4534 sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
4535 sc->sc_caltries++;
4536 callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4537 ath_calibrate, sc);
4538 ATH_UNLOCK(sc);
4539 }
4540
4541 static int
4542 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
4543 {
4544 struct ifnet *ifp = ic->ic_ifp;
4545 struct ath_softc *sc = ifp->if_softc;
4546 struct ath_hal *ah = sc->sc_ah;
4547 struct ieee80211_node *ni;
4548 int i, error;
4549 const u_int8_t *bssid;
4550 u_int32_t rfilt;
4551 static const HAL_LED_STATE leds[] = {
4552 HAL_LED_INIT, /* IEEE80211_S_INIT */
4553 HAL_LED_SCAN, /* IEEE80211_S_SCAN */
4554 HAL_LED_AUTH, /* IEEE80211_S_AUTH */
4555 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */
4556 HAL_LED_RUN, /* IEEE80211_S_RUN */
4557 };
4558
4559 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4560 ieee80211_state_name[ic->ic_state],
4561 ieee80211_state_name[nstate]);
4562
4563 callout_stop(&sc->sc_scan_ch);
4564 callout_stop(&sc->sc_cal_ch);
4565 callout_stop(&sc->sc_dfs_ch);
4566 ath_hal_setledstate(ah, leds[nstate]); /* set LED */
4567
4568 if (nstate == IEEE80211_S_INIT) {
4569 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4570 /*
4571 * NB: disable interrupts so we don't rx frames.
4572 */
4573 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4574 /*
4575 * Notify the rate control algorithm.
4576 */
4577 ath_rate_newstate(sc, nstate);
4578 goto done;
4579 }
4580 ni = ic->ic_bss;
4581 error = ath_chan_set(sc, ic->ic_curchan);
4582 if (error != 0)
4583 goto bad;
4584 rfilt = ath_calcrxfilter(sc, nstate);
4585 if (nstate == IEEE80211_S_SCAN)
4586 bssid = ifp->if_broadcastaddr;
4587 else
4588 bssid = ni->ni_bssid;
4589 ath_hal_setrxfilter(ah, rfilt);
4590 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
4591 __func__, rfilt, ether_sprintf(bssid));
4592
4593 if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
4594 ath_hal_setassocid(ah, bssid, ni->ni_associd);
4595 else
4596 ath_hal_setassocid(ah, bssid, 0);
4597 if (ic->ic_flags & IEEE80211_F_PRIVACY) {
4598 for (i = 0; i < IEEE80211_WEP_NKID; i++)
4599 if (ath_hal_keyisvalid(ah, i))
4600 ath_hal_keysetmac(ah, i, bssid);
4601 }
4602
4603 /*
4604 * Notify the rate control algorithm so rates
4605 * are setup should ath_beacon_alloc be called.
4606 */
4607 ath_rate_newstate(sc, nstate);
4608
4609 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4610 /* nothing to do */;
4611 } else if (nstate == IEEE80211_S_RUN) {
4612 DPRINTF(sc, ATH_DEBUG_STATE,
4613 "%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
4614 "capinfo=0x%04x chan=%d\n"
4615 , __func__
4616 , ic->ic_flags
4617 , ni->ni_intval
4618 , ether_sprintf(ni->ni_bssid)
4619 , ni->ni_capinfo
4620 , ieee80211_chan2ieee(ic, ic->ic_curchan));
4621
4622 switch (ic->ic_opmode) {
4623 case IEEE80211_M_HOSTAP:
4624 case IEEE80211_M_IBSS:
4625 /*
4626 * Allocate and setup the beacon frame.
4627 *
4628 * Stop any previous beacon DMA. This may be
4629 * necessary, for example, when an ibss merge
4630 * causes reconfiguration; there will be a state
4631 * transition from RUN->RUN that means we may
4632 * be called with beacon transmission active.
4633 */
4634 ath_hal_stoptxdma(ah, sc->sc_bhalq);
4635 ath_beacon_free(sc);
4636 error = ath_beacon_alloc(sc, ni);
4637 if (error != 0)
4638 goto bad;
4639 /*
4640 * If joining an adhoc network defer beacon timer
4641 * configuration to the next beacon frame so we
4642 * have a current TSF to use. Otherwise we're
4643 * starting an ibss/bss so there's no need to delay.
4644 */
4645 if (ic->ic_opmode == IEEE80211_M_IBSS &&
4646 ic->ic_bss->ni_tstamp.tsf != 0)
4647 sc->sc_syncbeacon = 1;
4648 else
4649 ath_beacon_config(sc);
4650 break;
4651 case IEEE80211_M_STA:
4652 /*
4653 * Allocate a key cache slot to the station.
4654 */
4655 if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
4656 sc->sc_hasclrkey &&
4657 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4658 ath_setup_stationkey(ni);
4659 /*
4660 * Defer beacon timer configuration to the next
4661 * beacon frame so we have a current TSF to use
4662 * (any TSF collected when scanning is likely old).
4663 */
4664 sc->sc_syncbeacon = 1;
4665 break;
4666 default:
4667 break;
4668 }
4669 /*
4670 * Let the hal process statistics collected during a
4671 * scan so it can provide calibrated noise floor data.
4672 */
4673 ath_hal_process_noisefloor(ah);
4674 /*
4675 * Reset rssi stats; maybe not the best place...
4676 */
4677 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
4678 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
4679 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
4680 } else {
4681 ath_hal_intrset(ah,
4682 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4683 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4684 }
4685 done:
4686 /*
4687 * Invoke the parent method to complete the work.
4688 */
4689 error = sc->sc_newstate(ic, nstate, arg);
4690 /*
4691 * Finally, start any timers.
4692 */
4693 if (nstate == IEEE80211_S_RUN) {
4694 /* start periodic recalibration timer */
4695 callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4696 ath_calibrate, sc);
4697 } else if (nstate == IEEE80211_S_SCAN) {
4698 /* start ap/neighbor scan timer */
4699 callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
4700 ath_next_scan, sc);
4701 }
4702 bad:
4703 return error;
4704 }
4705
4706 /*
4707 * Allocate a key cache slot to the station so we can
4708 * setup a mapping from key index to node. The key cache
4709 * slot is needed for managing antenna state and for
4710 * compression when stations do not use crypto. We do
4711 * it uniliaterally here; if crypto is employed this slot
4712 * will be reassigned.
4713 */
4714 static void
4715 ath_setup_stationkey(struct ieee80211_node *ni)
4716 {
4717 struct ieee80211com *ic = ni->ni_ic;
4718 struct ath_softc *sc = ic->ic_ifp->if_softc;
4719 ieee80211_keyix keyix, rxkeyix;
4720
4721 if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
4722 /*
4723 * Key cache is full; we'll fall back to doing
4724 * the more expensive lookup in software. Note
4725 * this also means no h/w compression.
4726 */
4727 /* XXX msg+statistic */
4728 } else {
4729 /* XXX locking? */
4730 ni->ni_ucastkey.wk_keyix = keyix;
4731 ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
4732 /* NB: this will create a pass-thru key entry */
4733 ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
4734 }
4735 }
4736
4737 /*
4738 * Setup driver-specific state for a newly associated node.
4739 * Note that we're called also on a re-associate, the isnew
4740 * param tells us if this is the first time or not.
4741 */
4742 static void
4743 ath_newassoc(struct ieee80211_node *ni, int isnew)
4744 {
4745 struct ieee80211com *ic = ni->ni_ic;
4746 struct ath_softc *sc = ic->ic_ifp->if_softc;
4747
4748 ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
4749 if (isnew &&
4750 (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
4751 KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
4752 ("new assoc with a unicast key already setup (keyix %u)",
4753 ni->ni_ucastkey.wk_keyix));
4754 ath_setup_stationkey(ni);
4755 }
4756 }
4757
4758 static int
4759 ath_getchannels(struct ath_softc *sc, u_int cc,
4760 HAL_BOOL outdoor, HAL_BOOL xchanmode)
4761 {
4762 #define COMPAT (CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
4763 struct ieee80211com *ic = &sc->sc_ic;
4764 struct ifnet *ifp = &sc->sc_if;
4765 struct ath_hal *ah = sc->sc_ah;
4766 HAL_CHANNEL *chans;
4767 int i, ix, nchan;
4768
4769 chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
4770 M_TEMP, M_NOWAIT);
4771 if (chans == NULL) {
4772 if_printf(ifp, "unable to allocate channel table\n");
4773 return ENOMEM;
4774 }
4775 if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
4776 NULL, 0, NULL,
4777 cc, HAL_MODE_ALL, outdoor, xchanmode)) {
4778 u_int32_t rd;
4779
4780 (void)ath_hal_getregdomain(ah, &rd);
4781 if_printf(ifp, "unable to collect channel list from hal; "
4782 "regdomain likely %u country code %u\n", rd, cc);
4783 free(chans, M_TEMP);
4784 return EINVAL;
4785 }
4786
4787 /*
4788 * Convert HAL channels to ieee80211 ones and insert
4789 * them in the table according to their channel number.
4790 */
4791 for (i = 0; i < nchan; i++) {
4792 HAL_CHANNEL *c = &chans[i];
4793 u_int16_t flags;
4794
4795 ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags);
4796 if (ix > IEEE80211_CHAN_MAX) {
4797 if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n",
4798 ix, c->channel, c->channelFlags);
4799 continue;
4800 }
4801 if (ix < 0) {
4802 /* XXX can't handle stuff <2400 right now */
4803 if (bootverbose)
4804 if_printf(ifp, "hal channel %d (%u/%x) "
4805 "cannot be handled; ignored\n",
4806 ix, c->channel, c->channelFlags);
4807 continue;
4808 }
4809 /*
4810 * Calculate net80211 flags; most are compatible
4811 * but some need massaging. Note the static turbo
4812 * conversion can be removed once net80211 is updated
4813 * to understand static vs. dynamic turbo.
4814 */
4815 flags = c->channelFlags & COMPAT;
4816 if (c->channelFlags & CHANNEL_STURBO)
4817 flags |= IEEE80211_CHAN_TURBO;
4818 if (ic->ic_channels[ix].ic_freq == 0) {
4819 ic->ic_channels[ix].ic_freq = c->channel;
4820 ic->ic_channels[ix].ic_flags = flags;
4821 } else {
4822 /* channels overlap; e.g. 11g and 11b */
4823 ic->ic_channels[ix].ic_flags |= flags;
4824 }
4825 }
4826 free(chans, M_TEMP);
4827 return 0;
4828 #undef COMPAT
4829 }
4830
4831 static void
4832 ath_led_done(void *arg)
4833 {
4834 struct ath_softc *sc = arg;
4835
4836 sc->sc_blinking = 0;
4837 }
4838
4839 /*
4840 * Turn the LED off: flip the pin and then set a timer so no
4841 * update will happen for the specified duration.
4842 */
4843 static void
4844 ath_led_off(void *arg)
4845 {
4846 struct ath_softc *sc = arg;
4847
4848 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
4849 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
4850 }
4851
4852 /*
4853 * Blink the LED according to the specified on/off times.
4854 */
4855 static void
4856 ath_led_blink(struct ath_softc *sc, int on, int off)
4857 {
4858 DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
4859 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
4860 sc->sc_blinking = 1;
4861 sc->sc_ledoff = off;
4862 callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
4863 }
4864
4865 static void
4866 ath_led_event(struct ath_softc *sc, int event)
4867 {
4868
4869 sc->sc_ledevent = ticks; /* time of last event */
4870 if (sc->sc_blinking) /* don't interrupt active blink */
4871 return;
4872 switch (event) {
4873 case ATH_LED_POLL:
4874 ath_led_blink(sc, sc->sc_hwmap[0].ledon,
4875 sc->sc_hwmap[0].ledoff);
4876 break;
4877 case ATH_LED_TX:
4878 ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
4879 sc->sc_hwmap[sc->sc_txrate].ledoff);
4880 break;
4881 case ATH_LED_RX:
4882 ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
4883 sc->sc_hwmap[sc->sc_rxrate].ledoff);
4884 break;
4885 }
4886 }
4887
4888 static void
4889 ath_update_txpow(struct ath_softc *sc)
4890 {
4891 #define COMPAT (CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
4892 struct ieee80211com *ic = &sc->sc_ic;
4893 struct ath_hal *ah = sc->sc_ah;
4894 u_int32_t txpow;
4895
4896 if (sc->sc_curtxpow != ic->ic_txpowlimit) {
4897 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
4898 /* read back in case value is clamped */
4899 (void)ath_hal_gettxpowlimit(ah, &txpow);
4900 ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
4901 }
4902 /*
4903 * Fetch max tx power level for status requests.
4904 */
4905 (void)ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
4906 ic->ic_bss->ni_txpower = txpow;
4907 }
4908
4909 static void
4910 rate_setup(struct ath_softc *sc,
4911 const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs)
4912 {
4913 int i, maxrates;
4914
4915 if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
4916 DPRINTF(sc, ATH_DEBUG_ANY,
4917 "%s: rate table too small (%u > %u)\n",
4918 __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
4919 maxrates = IEEE80211_RATE_MAXSIZE;
4920 } else
4921 maxrates = rt->rateCount;
4922 for (i = 0; i < maxrates; i++)
4923 rs->rs_rates[i] = rt->info[i].dot11Rate;
4924 rs->rs_nrates = maxrates;
4925 }
4926
4927 static int
4928 ath_rate_setup(struct ath_softc *sc, u_int mode)
4929 {
4930 struct ath_hal *ah = sc->sc_ah;
4931 struct ieee80211com *ic = &sc->sc_ic;
4932 const HAL_RATE_TABLE *rt;
4933
4934 switch (mode) {
4935 case IEEE80211_MODE_11A:
4936 rt = ath_hal_getratetable(ah, HAL_MODE_11A);
4937 break;
4938 case IEEE80211_MODE_11B:
4939 rt = ath_hal_getratetable(ah, HAL_MODE_11B);
4940 break;
4941 case IEEE80211_MODE_11G:
4942 rt = ath_hal_getratetable(ah, HAL_MODE_11G);
4943 break;
4944 case IEEE80211_MODE_TURBO_A:
4945 /* XXX until static/dynamic turbo is fixed */
4946 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
4947 break;
4948 case IEEE80211_MODE_TURBO_G:
4949 rt = ath_hal_getratetable(ah, HAL_MODE_108G);
4950 break;
4951 default:
4952 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
4953 __func__, mode);
4954 return 0;
4955 }
4956 sc->sc_rates[mode] = rt;
4957 if (rt != NULL) {
4958 rate_setup(sc, rt, &ic->ic_sup_rates[mode]);
4959 return 1;
4960 } else
4961 return 0;
4962 }
4963
4964 static void
4965 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
4966 {
4967 #define N(a) (sizeof(a)/sizeof(a[0]))
4968 /* NB: on/off times from the Atheros NDIS driver, w/ permission */
4969 static const struct {
4970 u_int rate; /* tx/rx 802.11 rate */
4971 u_int16_t timeOn; /* LED on time (ms) */
4972 u_int16_t timeOff; /* LED off time (ms) */
4973 } blinkrates[] = {
4974 { 108, 40, 10 },
4975 { 96, 44, 11 },
4976 { 72, 50, 13 },
4977 { 48, 57, 14 },
4978 { 36, 67, 16 },
4979 { 24, 80, 20 },
4980 { 22, 100, 25 },
4981 { 18, 133, 34 },
4982 { 12, 160, 40 },
4983 { 10, 200, 50 },
4984 { 6, 240, 58 },
4985 { 4, 267, 66 },
4986 { 2, 400, 100 },
4987 { 0, 500, 130 },
4988 };
4989 const HAL_RATE_TABLE *rt;
4990 int i, j;
4991
4992 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
4993 rt = sc->sc_rates[mode];
4994 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
4995 for (i = 0; i < rt->rateCount; i++)
4996 sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
4997 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
4998 for (i = 0; i < 32; i++) {
4999 u_int8_t ix = rt->rateCodeToIndex[i];
5000 if (ix == 0xff) {
5001 sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
5002 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
5003 continue;
5004 }
5005 sc->sc_hwmap[i].ieeerate =
5006 rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
5007 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
5008 if (rt->info[ix].shortPreamble ||
5009 rt->info[ix].phy == IEEE80211_T_OFDM)
5010 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
5011 /* NB: receive frames include FCS */
5012 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
5013 IEEE80211_RADIOTAP_F_FCS;
5014 /* setup blink rate table to avoid per-packet lookup */
5015 for (j = 0; j < N(blinkrates)-1; j++)
5016 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
5017 break;
5018 /* NB: this uses the last entry if the rate isn't found */
5019 /* XXX beware of overlow */
5020 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
5021 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
5022 }
5023 sc->sc_currates = rt;
5024 sc->sc_curmode = mode;
5025 /*
5026 * All protection frames are transmited at 2Mb/s for
5027 * 11g, otherwise at 1Mb/s.
5028 */
5029 if (mode == IEEE80211_MODE_11G)
5030 sc->sc_protrix = ath_tx_findrix(rt, 2*2);
5031 else
5032 sc->sc_protrix = ath_tx_findrix(rt, 2*1);
5033 /* rate index used to send management frames */
5034 sc->sc_minrateix = 0;
5035 /*
5036 * Setup multicast rate state.
5037 */
5038 /* XXX layering violation */
5039 sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate);
5040 sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate;
5041 /* NB: caller is responsible for reseting rate control state */
5042 #undef N
5043 }
5044
5045 #ifdef AR_DEBUG
5046 static void
5047 ath_printrxbuf(struct ath_buf *bf, int done)
5048 {
5049 struct ath_desc *ds;
5050 int i;
5051
5052 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5053 printf("R%d (%p %" PRIx64
5054 ") %08x %08x %08x %08x %08x %08x %c\n", i, ds,
5055 (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
5056 ds->ds_link, ds->ds_data,
5057 ds->ds_ctl0, ds->ds_ctl1,
5058 ds->ds_hw[0], ds->ds_hw[1],
5059 !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
5060 }
5061 }
5062
5063 static void
5064 ath_printtxbuf(struct ath_buf *bf, int done)
5065 {
5066 struct ath_desc *ds;
5067 int i;
5068
5069 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5070 printf("T%d (%p %" PRIx64
5071 ") %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
5072 i, ds,
5073 (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
5074 ds->ds_link, ds->ds_data,
5075 ds->ds_ctl0, ds->ds_ctl1,
5076 ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
5077 !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
5078 }
5079 }
5080 #endif /* AR_DEBUG */
5081
5082 static void
5083 ath_watchdog(struct ifnet *ifp)
5084 {
5085 struct ath_softc *sc = ifp->if_softc;
5086 struct ieee80211com *ic = &sc->sc_ic;
5087 struct ath_txq *axq;
5088 int i;
5089
5090 ifp->if_timer = 0;
5091 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
5092 return;
5093 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5094 if (!ATH_TXQ_SETUP(sc, i))
5095 continue;
5096 axq = &sc->sc_txq[i];
5097 ATH_TXQ_LOCK(axq);
5098 if (axq->axq_timer == 0)
5099 ;
5100 else if (--axq->axq_timer == 0) {
5101 ATH_TXQ_UNLOCK(axq);
5102 if_printf(ifp, "device timeout (txq %d)\n", i);
5103 ath_reset(ifp);
5104 ifp->if_oerrors++;
5105 sc->sc_stats.ast_watchdog++;
5106 break;
5107 } else
5108 ifp->if_timer = 1;
5109 ATH_TXQ_UNLOCK(axq);
5110 }
5111 ieee80211_watchdog(ic);
5112 }
5113
5114 /*
5115 * Diagnostic interface to the HAL. This is used by various
5116 * tools to do things like retrieve register contents for
5117 * debugging. The mechanism is intentionally opaque so that
5118 * it can change frequently w/o concern for compatiblity.
5119 */
5120 static int
5121 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
5122 {
5123 struct ath_hal *ah = sc->sc_ah;
5124 u_int id = ad->ad_id & ATH_DIAG_ID;
5125 void *indata = NULL;
5126 void *outdata = NULL;
5127 u_int32_t insize = ad->ad_in_size;
5128 u_int32_t outsize = ad->ad_out_size;
5129 int error = 0;
5130
5131 if (ad->ad_id & ATH_DIAG_IN) {
5132 /*
5133 * Copy in data.
5134 */
5135 indata = malloc(insize, M_TEMP, M_NOWAIT);
5136 if (indata == NULL) {
5137 error = ENOMEM;
5138 goto bad;
5139 }
5140 error = copyin(ad->ad_in_data, indata, insize);
5141 if (error)
5142 goto bad;
5143 }
5144 if (ad->ad_id & ATH_DIAG_DYN) {
5145 /*
5146 * Allocate a buffer for the results (otherwise the HAL
5147 * returns a pointer to a buffer where we can read the
5148 * results). Note that we depend on the HAL leaving this
5149 * pointer for us to use below in reclaiming the buffer;
5150 * may want to be more defensive.
5151 */
5152 outdata = malloc(outsize, M_TEMP, M_NOWAIT);
5153 if (outdata == NULL) {
5154 error = ENOMEM;
5155 goto bad;
5156 }
5157 }
5158 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
5159 if (outsize < ad->ad_out_size)
5160 ad->ad_out_size = outsize;
5161 if (outdata != NULL)
5162 error = copyout(outdata, ad->ad_out_data,
5163 ad->ad_out_size);
5164 } else {
5165 error = EINVAL;
5166 }
5167 bad:
5168 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
5169 free(indata, M_TEMP);
5170 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
5171 free(outdata, M_TEMP);
5172 return error;
5173 }
5174
5175 static int
5176 ath_ioctl(struct ifnet *ifp, u_long cmd, void *data)
5177 {
5178 #define IS_RUNNING(ifp) \
5179 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
5180 struct ath_softc *sc = ifp->if_softc;
5181 struct ieee80211com *ic = &sc->sc_ic;
5182 struct ifreq *ifr = (struct ifreq *)data;
5183 int error = 0;
5184
5185 ATH_LOCK(sc);
5186 switch (cmd) {
5187 case SIOCSIFFLAGS:
5188 if (IS_RUNNING(ifp)) {
5189 /*
5190 * To avoid rescanning another access point,
5191 * do not call ath_init() here. Instead,
5192 * only reflect promisc mode settings.
5193 */
5194 ath_mode_init(sc);
5195 } else if (ifp->if_flags & IFF_UP) {
5196 /*
5197 * Beware of being called during attach/detach
5198 * to reset promiscuous mode. In that case we
5199 * will still be marked UP but not RUNNING.
5200 * However trying to re-init the interface
5201 * is the wrong thing to do as we've already
5202 * torn down much of our state. There's
5203 * probably a better way to deal with this.
5204 */
5205 if (!sc->sc_invalid && ic->ic_bss != NULL)
5206 ath_init(sc); /* XXX lose error */
5207 } else
5208 ath_stop_locked(ifp, 1);
5209 break;
5210 case SIOCADDMULTI:
5211 case SIOCDELMULTI:
5212 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
5213 if (ifp->if_flags & IFF_RUNNING)
5214 ath_mode_init(sc);
5215 error = 0;
5216 }
5217 break;
5218 case SIOCGATHSTATS:
5219 /* NB: embed these numbers to get a consistent view */
5220 sc->sc_stats.ast_tx_packets = ifp->if_opackets;
5221 sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
5222 sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
5223 ATH_UNLOCK(sc);
5224 /*
5225 * NB: Drop the softc lock in case of a page fault;
5226 * we'll accept any potential inconsisentcy in the
5227 * statistics. The alternative is to copy the data
5228 * to a local structure.
5229 */
5230 return copyout(&sc->sc_stats,
5231 ifr->ifr_data, sizeof (sc->sc_stats));
5232 case SIOCGATHDIAG:
5233 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
5234 break;
5235 default:
5236 error = ieee80211_ioctl(ic, cmd, data);
5237 if (error == ENETRESET) {
5238 if (IS_RUNNING(ifp) &&
5239 ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
5240 ath_init(sc); /* XXX lose error */
5241 error = 0;
5242 }
5243 if (error == ERESTART)
5244 error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0;
5245 break;
5246 }
5247 ATH_UNLOCK(sc);
5248 return error;
5249 #undef IS_RUNNING
5250 }
5251
5252 #if NBPFILTER > 0
5253 static void
5254 ath_bpfattach(struct ath_softc *sc)
5255 {
5256 struct ifnet *ifp = &sc->sc_if;
5257
5258 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
5259 sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
5260 &sc->sc_drvbpf);
5261 /*
5262 * Initialize constant fields.
5263 * XXX make header lengths a multiple of 32-bits so subsequent
5264 * headers are properly aligned; this is a kludge to keep
5265 * certain applications happy.
5266 *
5267 * NB: the channel is setup each time we transition to the
5268 * RUN state to avoid filling it in for each frame.
5269 */
5270 sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
5271 sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
5272 sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
5273
5274 sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
5275 sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
5276 sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
5277 }
5278 #endif
5279
5280 /*
5281 * Announce various information on device/driver attach.
5282 */
5283 static void
5284 ath_announce(struct ath_softc *sc)
5285 {
5286 #define HAL_MODE_DUALBAND (HAL_MODE_11A|HAL_MODE_11B)
5287 struct ifnet *ifp = &sc->sc_if;
5288 struct ath_hal *ah = sc->sc_ah;
5289 u_int modes, cc;
5290
5291 if_printf(ifp, "mac %d.%d phy %d.%d",
5292 ah->ah_macVersion, ah->ah_macRev,
5293 ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
5294 /*
5295 * Print radio revision(s). We check the wireless modes
5296 * to avoid falsely printing revs for inoperable parts.
5297 * Dual-band radio revs are returned in the 5 GHz rev number.
5298 */
5299 ath_hal_getcountrycode(ah, &cc);
5300 modes = ath_hal_getwirelessmodes(ah, cc);
5301 if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
5302 if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
5303 printf(" 5 GHz radio %d.%d 2 GHz radio %d.%d",
5304 ah->ah_analog5GhzRev >> 4,
5305 ah->ah_analog5GhzRev & 0xf,
5306 ah->ah_analog2GhzRev >> 4,
5307 ah->ah_analog2GhzRev & 0xf);
5308 else
5309 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5310 ah->ah_analog5GhzRev & 0xf);
5311 } else
5312 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5313 ah->ah_analog5GhzRev & 0xf);
5314 printf("\n");
5315 if (bootverbose) {
5316 int i;
5317 for (i = 0; i <= WME_AC_VO; i++) {
5318 struct ath_txq *txq = sc->sc_ac2q[i];
5319 if_printf(ifp, "Use hw queue %u for %s traffic\n",
5320 txq->axq_qnum, ieee80211_wme_acnames[i]);
5321 }
5322 if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5323 sc->sc_cabq->axq_qnum);
5324 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5325 }
5326 if (ath_rxbuf != ATH_RXBUF)
5327 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
5328 if (ath_txbuf != ATH_TXBUF)
5329 if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
5330 #undef HAL_MODE_DUALBAND
5331 }
5332