ath.c revision 1.96 1 /* $NetBSD: ath.c,v 1.96 2007/12/14 02:46:49 dyoung Exp $ */
2
3 /*-
4 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15 * redistribution must be conditioned upon including a substantially
16 * similar Disclaimer requirement for further binary redistribution.
17 * 3. Neither the names of the above-listed copyright holders nor the names
18 * of any contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * Alternatively, this software may be distributed under the terms of the
22 * GNU General Public License ("GPL") version 2 as published by the Free
23 * Software Foundation.
24 *
25 * NO WARRANTY
26 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
28 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
29 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
30 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
31 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
34 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
36 * THE POSSIBILITY OF SUCH DAMAGES.
37 */
38
39 #include <sys/cdefs.h>
40 #ifdef __FreeBSD__
41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $");
42 #endif
43 #ifdef __NetBSD__
44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.96 2007/12/14 02:46:49 dyoung Exp $");
45 #endif
46
47 /*
48 * Driver for the Atheros Wireless LAN controller.
49 *
50 * This software is derived from work of Atsushi Onoe; his contribution
51 * is greatly appreciated.
52 */
53
54 #include "opt_inet.h"
55
56 #ifdef __NetBSD__
57 #include "bpfilter.h"
58 #endif /* __NetBSD__ */
59
60 #include <sys/param.h>
61 #include <sys/reboot.h>
62 #include <sys/systm.h>
63 #include <sys/types.h>
64 #include <sys/sysctl.h>
65 #include <sys/mbuf.h>
66 #include <sys/malloc.h>
67 #include <sys/lock.h>
68 #include <sys/kernel.h>
69 #include <sys/socket.h>
70 #include <sys/sockio.h>
71 #include <sys/errno.h>
72 #include <sys/callout.h>
73 #include <sys/bus.h>
74 #include <sys/endian.h>
75
76 #include <net/if.h>
77 #include <net/if_dl.h>
78 #include <net/if_media.h>
79 #include <net/if_types.h>
80 #include <net/if_arp.h>
81 #include <net/if_ether.h>
82 #include <net/if_llc.h>
83
84 #include <net80211/ieee80211_netbsd.h>
85 #include <net80211/ieee80211_var.h>
86
87 #if NBPFILTER > 0
88 #include <net/bpf.h>
89 #endif
90
91 #ifdef INET
92 #include <netinet/in.h>
93 #endif
94
95 #include <sys/device.h>
96 #include <dev/ic/ath_netbsd.h>
97
98 #define AR_DEBUG
99 #include <dev/ic/athvar.h>
100 #include <contrib/dev/ath/ah_desc.h>
101 #include <contrib/dev/ath/ah_devid.h> /* XXX for softled */
102 #include "athhal_options.h"
103
104 #ifdef ATH_TX99_DIAG
105 #include <dev/ath/ath_tx99/ath_tx99.h>
106 #endif
107
108 /* unaligned little endian access */
109 #define LE_READ_2(p) \
110 ((u_int16_t) \
111 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8)))
112 #define LE_READ_4(p) \
113 ((u_int32_t) \
114 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \
115 (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
116
117 enum {
118 ATH_LED_TX,
119 ATH_LED_RX,
120 ATH_LED_POLL,
121 };
122
123 #ifdef AH_NEED_DESC_SWAP
124 #define HTOAH32(x) htole32(x)
125 #else
126 #define HTOAH32(x) (x)
127 #endif
128
129 static int ath_ifinit(struct ifnet *);
130 static int ath_init(struct ath_softc *);
131 static void ath_stop_locked(struct ifnet *, int);
132 static void ath_stop(struct ifnet *, int);
133 static void ath_start(struct ifnet *);
134 static int ath_media_change(struct ifnet *);
135 static void ath_watchdog(struct ifnet *);
136 static int ath_ioctl(struct ifnet *, u_long, void *);
137 static void ath_fatal_proc(void *, int);
138 static void ath_rxorn_proc(void *, int);
139 static void ath_bmiss_proc(void *, int);
140 static void ath_radar_proc(void *, int);
141 static int ath_key_alloc(struct ieee80211com *,
142 const struct ieee80211_key *,
143 ieee80211_keyix *, ieee80211_keyix *);
144 static int ath_key_delete(struct ieee80211com *,
145 const struct ieee80211_key *);
146 static int ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
147 const u_int8_t mac[IEEE80211_ADDR_LEN]);
148 static void ath_key_update_begin(struct ieee80211com *);
149 static void ath_key_update_end(struct ieee80211com *);
150 static void ath_mode_init(struct ath_softc *);
151 static void ath_setslottime(struct ath_softc *);
152 static void ath_updateslot(struct ifnet *);
153 static int ath_beaconq_setup(struct ath_hal *);
154 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
155 static void ath_beacon_setup(struct ath_softc *, struct ath_buf *);
156 static void ath_beacon_proc(void *, int);
157 static void ath_bstuck_proc(void *, int);
158 static void ath_beacon_free(struct ath_softc *);
159 static void ath_beacon_config(struct ath_softc *);
160 static void ath_descdma_cleanup(struct ath_softc *sc,
161 struct ath_descdma *, ath_bufhead *);
162 static int ath_desc_alloc(struct ath_softc *);
163 static void ath_desc_free(struct ath_softc *);
164 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
165 static void ath_node_free(struct ieee80211_node *);
166 static u_int8_t ath_node_getrssi(const struct ieee80211_node *);
167 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
168 static void ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
169 struct ieee80211_node *ni,
170 int subtype, int rssi, u_int32_t rstamp);
171 static void ath_setdefantenna(struct ath_softc *, u_int);
172 static void ath_rx_proc(void *, int);
173 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
174 static int ath_tx_setup(struct ath_softc *, int, int);
175 static int ath_wme_update(struct ieee80211com *);
176 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
177 static void ath_tx_cleanup(struct ath_softc *);
178 static int ath_tx_start(struct ath_softc *, struct ieee80211_node *,
179 struct ath_buf *, struct mbuf *);
180 static void ath_tx_proc_q0(void *, int);
181 static void ath_tx_proc_q0123(void *, int);
182 static void ath_tx_proc(void *, int);
183 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
184 static void ath_draintxq(struct ath_softc *);
185 static void ath_stoprecv(struct ath_softc *);
186 static int ath_startrecv(struct ath_softc *);
187 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
188 static void ath_next_scan(void *);
189 static void ath_calibrate(void *);
190 static int ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
191 static void ath_setup_stationkey(struct ieee80211_node *);
192 static void ath_newassoc(struct ieee80211_node *, int);
193 static int ath_getchannels(struct ath_softc *, u_int cc,
194 HAL_BOOL outdoor, HAL_BOOL xchanmode);
195 static void ath_led_event(struct ath_softc *, int);
196 static void ath_update_txpow(struct ath_softc *);
197 static void ath_freetx(struct mbuf *);
198 static void ath_restore_diversity(struct ath_softc *);
199
200 static int ath_rate_setup(struct ath_softc *, u_int mode);
201 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
202
203 #ifdef __NetBSD__
204 int ath_enable(struct ath_softc *);
205 void ath_disable(struct ath_softc *);
206 #endif
207
208 #if NBPFILTER > 0
209 static void ath_bpfattach(struct ath_softc *);
210 #endif
211 static void ath_announce(struct ath_softc *);
212
213 int ath_dwelltime = 200; /* 5 channels/second */
214 int ath_calinterval = 30; /* calibrate every 30 secs */
215 int ath_outdoor = AH_TRUE; /* outdoor operation */
216 int ath_xchanmode = AH_TRUE; /* enable extended channels */
217 int ath_countrycode = CTRY_DEFAULT; /* country code */
218 int ath_regdomain = 0; /* regulatory domain */
219 int ath_debug = 0;
220 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */
221 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */
222
223 #ifdef AR_DEBUG
224 enum {
225 ATH_DEBUG_XMIT = 0x00000001, /* basic xmit operation */
226 ATH_DEBUG_XMIT_DESC = 0x00000002, /* xmit descriptors */
227 ATH_DEBUG_RECV = 0x00000004, /* basic recv operation */
228 ATH_DEBUG_RECV_DESC = 0x00000008, /* recv descriptors */
229 ATH_DEBUG_RATE = 0x00000010, /* rate control */
230 ATH_DEBUG_RESET = 0x00000020, /* reset processing */
231 ATH_DEBUG_MODE = 0x00000040, /* mode init/setup */
232 ATH_DEBUG_BEACON = 0x00000080, /* beacon handling */
233 ATH_DEBUG_WATCHDOG = 0x00000100, /* watchdog timeout */
234 ATH_DEBUG_INTR = 0x00001000, /* ISR */
235 ATH_DEBUG_TX_PROC = 0x00002000, /* tx ISR proc */
236 ATH_DEBUG_RX_PROC = 0x00004000, /* rx ISR proc */
237 ATH_DEBUG_BEACON_PROC = 0x00008000, /* beacon ISR proc */
238 ATH_DEBUG_CALIBRATE = 0x00010000, /* periodic calibration */
239 ATH_DEBUG_KEYCACHE = 0x00020000, /* key cache management */
240 ATH_DEBUG_STATE = 0x00040000, /* 802.11 state transitions */
241 ATH_DEBUG_NODE = 0x00080000, /* node management */
242 ATH_DEBUG_LED = 0x00100000, /* led management */
243 ATH_DEBUG_FF = 0x00200000, /* fast frames */
244 ATH_DEBUG_DFS = 0x00400000, /* DFS processing */
245 ATH_DEBUG_FATAL = 0x80000000, /* fatal errors */
246 ATH_DEBUG_ANY = 0xffffffff
247 };
248 #define IFF_DUMPPKTS(sc, m) \
249 ((sc->sc_debug & (m)) || \
250 (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
251 #define DPRINTF(sc, m, fmt, ...) do { \
252 if (sc->sc_debug & (m)) \
253 printf(fmt, __VA_ARGS__); \
254 } while (0)
255 #define KEYPRINTF(sc, ix, hk, mac) do { \
256 if (sc->sc_debug & ATH_DEBUG_KEYCACHE) \
257 ath_keyprint(__func__, ix, hk, mac); \
258 } while (0)
259 static void ath_printrxbuf(struct ath_buf *bf, int);
260 static void ath_printtxbuf(struct ath_buf *bf, int);
261 #else
262 #define IFF_DUMPPKTS(sc, m) \
263 ((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
264 #define DPRINTF(m, fmt, ...)
265 #define KEYPRINTF(sc, k, ix, mac)
266 #endif
267
268 #ifdef __NetBSD__
269 int
270 ath_activate(struct device *self, enum devact act)
271 {
272 struct ath_softc *sc = (struct ath_softc *)self;
273 int rv = 0, s;
274
275 s = splnet();
276 switch (act) {
277 case DVACT_ACTIVATE:
278 rv = EOPNOTSUPP;
279 break;
280 case DVACT_DEACTIVATE:
281 if_deactivate(&sc->sc_if);
282 break;
283 }
284 splx(s);
285 return rv;
286 }
287
288 int
289 ath_enable(struct ath_softc *sc)
290 {
291 if (ATH_IS_ENABLED(sc) == 0) {
292 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
293 printf("%s: device enable failed\n",
294 device_xname(&sc->sc_dev));
295 return (EIO);
296 }
297 sc->sc_flags |= ATH_ENABLED;
298 }
299 return (0);
300 }
301
302 void
303 ath_disable(struct ath_softc *sc)
304 {
305 if (!ATH_IS_ENABLED(sc))
306 return;
307 if (sc->sc_disable != NULL)
308 (*sc->sc_disable)(sc);
309 sc->sc_flags &= ~ATH_ENABLED;
310 }
311 #endif /* __NetBSD__ */
312
313 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
314
315 int
316 ath_attach(u_int16_t devid, struct ath_softc *sc)
317 {
318 struct ifnet *ifp = &sc->sc_if;
319 struct ieee80211com *ic = &sc->sc_ic;
320 struct ath_hal *ah = NULL;
321 HAL_STATUS status;
322 int error = 0, i;
323
324 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
325
326 memcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
327
328 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
329 if (ah == NULL) {
330 if_printf(ifp, "unable to attach hardware; HAL status %u\n",
331 status);
332 error = ENXIO;
333 goto bad;
334 }
335 if (ah->ah_abi != HAL_ABI_VERSION) {
336 if_printf(ifp, "HAL ABI mismatch detected "
337 "(HAL:0x%x != driver:0x%x)\n",
338 ah->ah_abi, HAL_ABI_VERSION);
339 error = ENXIO;
340 goto bad;
341 }
342 sc->sc_ah = ah;
343 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */
344
345 /*
346 * Check if the MAC has multi-rate retry support.
347 * We do this by trying to setup a fake extended
348 * descriptor. MAC's that don't have support will
349 * return false w/o doing anything. MAC's that do
350 * support it will return true w/o doing anything.
351 */
352 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
353
354 /*
355 * Check if the device has hardware counters for PHY
356 * errors. If so we need to enable the MIB interrupt
357 * so we can act on stat triggers.
358 */
359 if (ath_hal_hwphycounters(ah))
360 sc->sc_needmib = 1;
361
362 /*
363 * Get the hardware key cache size.
364 */
365 sc->sc_keymax = ath_hal_keycachesize(ah);
366 if (sc->sc_keymax > ATH_KEYMAX) {
367 if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
368 ATH_KEYMAX, sc->sc_keymax);
369 sc->sc_keymax = ATH_KEYMAX;
370 }
371 /*
372 * Reset the key cache since some parts do not
373 * reset the contents on initial power up.
374 */
375 for (i = 0; i < sc->sc_keymax; i++)
376 ath_hal_keyreset(ah, i);
377 /*
378 * Mark key cache slots associated with global keys
379 * as in use. If we knew TKIP was not to be used we
380 * could leave the +32, +64, and +32+64 slots free.
381 * XXX only for splitmic.
382 */
383 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
384 setbit(sc->sc_keymap, i);
385 setbit(sc->sc_keymap, i+32);
386 setbit(sc->sc_keymap, i+64);
387 setbit(sc->sc_keymap, i+32+64);
388 }
389
390 /*
391 * Collect the channel list using the default country
392 * code and including outdoor channels. The 802.11 layer
393 * is resposible for filtering this list based on settings
394 * like the phy mode.
395 */
396 error = ath_getchannels(sc, ath_countrycode,
397 ath_outdoor, ath_xchanmode);
398 if (error != 0)
399 goto bad;
400
401 /*
402 * Setup rate tables for all potential media types.
403 */
404 ath_rate_setup(sc, IEEE80211_MODE_11A);
405 ath_rate_setup(sc, IEEE80211_MODE_11B);
406 ath_rate_setup(sc, IEEE80211_MODE_11G);
407 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
408 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
409 /* NB: setup here so ath_rate_update is happy */
410 ath_setcurmode(sc, IEEE80211_MODE_11A);
411
412 /*
413 * Allocate tx+rx descriptors and populate the lists.
414 */
415 error = ath_desc_alloc(sc);
416 if (error != 0) {
417 if_printf(ifp, "failed to allocate descriptors: %d\n", error);
418 goto bad;
419 }
420 ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
421 ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE);
422 ATH_CALLOUT_INIT(&sc->sc_dfs_ch, CALLOUT_MPSAFE);
423
424 ATH_TXBUF_LOCK_INIT(sc);
425
426 TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
427 TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
428 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
429 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
430 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
431 TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc);
432
433 /*
434 * Allocate hardware transmit queues: one queue for
435 * beacon frames and one data queue for each QoS
436 * priority. Note that the hal handles reseting
437 * these queues at the needed time.
438 *
439 * XXX PS-Poll
440 */
441 sc->sc_bhalq = ath_beaconq_setup(ah);
442 if (sc->sc_bhalq == (u_int) -1) {
443 if_printf(ifp, "unable to setup a beacon xmit queue!\n");
444 error = EIO;
445 goto bad2;
446 }
447 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
448 if (sc->sc_cabq == NULL) {
449 if_printf(ifp, "unable to setup CAB xmit queue!\n");
450 error = EIO;
451 goto bad2;
452 }
453 /* NB: insure BK queue is the lowest priority h/w queue */
454 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
455 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
456 ieee80211_wme_acnames[WME_AC_BK]);
457 error = EIO;
458 goto bad2;
459 }
460 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
461 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
462 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
463 /*
464 * Not enough hardware tx queues to properly do WME;
465 * just punt and assign them all to the same h/w queue.
466 * We could do a better job of this if, for example,
467 * we allocate queues when we switch from station to
468 * AP mode.
469 */
470 if (sc->sc_ac2q[WME_AC_VI] != NULL)
471 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
472 if (sc->sc_ac2q[WME_AC_BE] != NULL)
473 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
474 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
475 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
476 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
477 }
478
479 /*
480 * Special case certain configurations. Note the
481 * CAB queue is handled by these specially so don't
482 * include them when checking the txq setup mask.
483 */
484 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
485 case 0x01:
486 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
487 break;
488 case 0x0f:
489 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
490 break;
491 default:
492 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
493 break;
494 }
495
496 /*
497 * Setup rate control. Some rate control modules
498 * call back to change the anntena state so expose
499 * the necessary entry points.
500 * XXX maybe belongs in struct ath_ratectrl?
501 */
502 sc->sc_setdefantenna = ath_setdefantenna;
503 sc->sc_rc = ath_rate_attach(sc);
504 if (sc->sc_rc == NULL) {
505 error = EIO;
506 goto bad2;
507 }
508
509 sc->sc_blinking = 0;
510 sc->sc_ledstate = 1;
511 sc->sc_ledon = 0; /* low true */
512 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */
513 ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE);
514 /*
515 * Auto-enable soft led processing for IBM cards and for
516 * 5211 minipci cards. Users can also manually enable/disable
517 * support with a sysctl.
518 */
519 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
520 if (sc->sc_softled) {
521 ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
522 ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
523 }
524
525 ifp->if_softc = sc;
526 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
527 ifp->if_start = ath_start;
528 ifp->if_stop = ath_stop;
529 ifp->if_watchdog = ath_watchdog;
530 ifp->if_ioctl = ath_ioctl;
531 ifp->if_init = ath_ifinit;
532 IFQ_SET_READY(&ifp->if_snd);
533
534 ic->ic_ifp = ifp;
535 ic->ic_reset = ath_reset;
536 ic->ic_newassoc = ath_newassoc;
537 ic->ic_updateslot = ath_updateslot;
538 ic->ic_wme.wme_update = ath_wme_update;
539 /* XXX not right but it's not used anywhere important */
540 ic->ic_phytype = IEEE80211_T_OFDM;
541 ic->ic_opmode = IEEE80211_M_STA;
542 ic->ic_caps =
543 IEEE80211_C_IBSS /* ibss, nee adhoc, mode */
544 | IEEE80211_C_HOSTAP /* hostap mode */
545 | IEEE80211_C_MONITOR /* monitor mode */
546 | IEEE80211_C_SHPREAMBLE /* short preamble supported */
547 | IEEE80211_C_SHSLOT /* short slot time supported */
548 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */
549 | IEEE80211_C_TXFRAG /* handle tx frags */
550 ;
551 /*
552 * Query the hal to figure out h/w crypto support.
553 */
554 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
555 ic->ic_caps |= IEEE80211_C_WEP;
556 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
557 ic->ic_caps |= IEEE80211_C_AES;
558 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
559 ic->ic_caps |= IEEE80211_C_AES_CCM;
560 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
561 ic->ic_caps |= IEEE80211_C_CKIP;
562 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
563 ic->ic_caps |= IEEE80211_C_TKIP;
564 /*
565 * Check if h/w does the MIC and/or whether the
566 * separate key cache entries are required to
567 * handle both tx+rx MIC keys.
568 */
569 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
570 ic->ic_caps |= IEEE80211_C_TKIPMIC;
571 if (ath_hal_tkipsplit(ah))
572 sc->sc_splitmic = 1;
573 }
574 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
575 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
576 /*
577 * TPC support can be done either with a global cap or
578 * per-packet support. The latter is not available on
579 * all parts. We're a bit pedantic here as all parts
580 * support a global cap.
581 */
582 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
583 ic->ic_caps |= IEEE80211_C_TXPMGT;
584
585 /*
586 * Mark WME capability only if we have sufficient
587 * hardware queues to do proper priority scheduling.
588 */
589 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
590 ic->ic_caps |= IEEE80211_C_WME;
591 /*
592 * Check for misc other capabilities.
593 */
594 if (ath_hal_hasbursting(ah))
595 ic->ic_caps |= IEEE80211_C_BURST;
596
597 /*
598 * Indicate we need the 802.11 header padded to a
599 * 32-bit boundary for 4-address and QoS frames.
600 */
601 ic->ic_flags |= IEEE80211_F_DATAPAD;
602
603 /*
604 * Query the hal about antenna support.
605 */
606 sc->sc_defant = ath_hal_getdefantenna(ah);
607
608 /*
609 * Not all chips have the VEOL support we want to
610 * use with IBSS beacons; check here for it.
611 */
612 sc->sc_hasveol = ath_hal_hasveol(ah);
613
614 /* get mac address from hardware */
615 ath_hal_getmac(ah, ic->ic_myaddr);
616
617 if_attach(ifp);
618 /* call MI attach routine. */
619 ieee80211_ifattach(ic);
620 /* override default methods */
621 ic->ic_node_alloc = ath_node_alloc;
622 sc->sc_node_free = ic->ic_node_free;
623 ic->ic_node_free = ath_node_free;
624 ic->ic_node_getrssi = ath_node_getrssi;
625 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
626 ic->ic_recv_mgmt = ath_recv_mgmt;
627 sc->sc_newstate = ic->ic_newstate;
628 ic->ic_newstate = ath_newstate;
629 ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
630 ic->ic_crypto.cs_key_alloc = ath_key_alloc;
631 ic->ic_crypto.cs_key_delete = ath_key_delete;
632 ic->ic_crypto.cs_key_set = ath_key_set;
633 ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
634 ic->ic_crypto.cs_key_update_end = ath_key_update_end;
635 /* complete initialization */
636 ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
637
638 #if NBPFILTER > 0
639 ath_bpfattach(sc);
640 #endif
641
642 sc->sc_flags |= ATH_ATTACHED;
643
644 /*
645 * Setup dynamic sysctl's now that country code and
646 * regdomain are available from the hal.
647 */
648 ath_sysctlattach(sc);
649
650 ieee80211_announce(ic);
651 ath_announce(sc);
652 return 0;
653 bad2:
654 ath_tx_cleanup(sc);
655 ath_desc_free(sc);
656 bad:
657 if (ah)
658 ath_hal_detach(ah);
659 sc->sc_invalid = 1;
660 return error;
661 }
662
663 int
664 ath_detach(struct ath_softc *sc)
665 {
666 struct ifnet *ifp = &sc->sc_if;
667 int s;
668
669 if ((sc->sc_flags & ATH_ATTACHED) == 0)
670 return (0);
671
672 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
673 __func__, ifp->if_flags);
674
675 s = splnet();
676 ath_stop(ifp, 1);
677 #if NBPFILTER > 0
678 bpfdetach(ifp);
679 #endif
680 /*
681 * NB: the order of these is important:
682 * o call the 802.11 layer before detaching the hal to
683 * insure callbacks into the driver to delete global
684 * key cache entries can be handled
685 * o reclaim the tx queue data structures after calling
686 * the 802.11 layer as we'll get called back to reclaim
687 * node state and potentially want to use them
688 * o to cleanup the tx queues the hal is called, so detach
689 * it last
690 * Other than that, it's straightforward...
691 */
692 ieee80211_ifdetach(&sc->sc_ic);
693 #ifdef ATH_TX99_DIAG
694 if (sc->sc_tx99 != NULL)
695 sc->sc_tx99->detach(sc->sc_tx99);
696 #endif
697 ath_rate_detach(sc->sc_rc);
698 ath_desc_free(sc);
699 ath_tx_cleanup(sc);
700 sysctl_teardown(&sc->sc_sysctllog);
701 ath_hal_detach(sc->sc_ah);
702 if_detach(ifp);
703 splx(s);
704 powerhook_disestablish(sc->sc_powerhook);
705
706 return 0;
707 }
708
709 void
710 ath_resume(struct ath_softc *sc)
711 {
712 if (sc->sc_softled) {
713 ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
714 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
715 }
716 }
717
718 /*
719 * Interrupt handler. Most of the actual processing is deferred.
720 */
721 int
722 ath_intr(void *arg)
723 {
724 struct ath_softc *sc = arg;
725 struct ifnet *ifp = &sc->sc_if;
726 struct ath_hal *ah = sc->sc_ah;
727 HAL_INT status;
728
729 if (sc->sc_invalid) {
730 /*
731 * The hardware is not ready/present, don't touch anything.
732 * Note this can happen early on if the IRQ is shared.
733 */
734 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
735 return 0;
736 }
737
738 if (!ath_hal_intrpend(ah)) /* shared irq, not for us */
739 return 0;
740
741 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
742 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
743 __func__, ifp->if_flags);
744 ath_hal_getisr(ah, &status); /* clear ISR */
745 ath_hal_intrset(ah, 0); /* disable further intr's */
746 return 1; /* XXX */
747 }
748 /*
749 * Figure out the reason(s) for the interrupt. Note
750 * that the hal returns a pseudo-ISR that may include
751 * bits we haven't explicitly enabled so we mask the
752 * value to insure we only process bits we requested.
753 */
754 ath_hal_getisr(ah, &status); /* NB: clears ISR too */
755 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
756 status &= sc->sc_imask; /* discard unasked for bits */
757 if (status & HAL_INT_FATAL) {
758 /*
759 * Fatal errors are unrecoverable. Typically
760 * these are caused by DMA errors. Unfortunately
761 * the exact reason is not (presently) returned
762 * by the hal.
763 */
764 sc->sc_stats.ast_hardware++;
765 ath_hal_intrset(ah, 0); /* disable intr's until reset */
766 TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
767 } else if (status & HAL_INT_RXORN) {
768 sc->sc_stats.ast_rxorn++;
769 ath_hal_intrset(ah, 0); /* disable intr's until reset */
770 TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
771 } else {
772 if (status & HAL_INT_SWBA) {
773 /*
774 * Software beacon alert--time to send a beacon.
775 * Handle beacon transmission directly; deferring
776 * this is too slow to meet timing constraints
777 * under load.
778 */
779 ath_beacon_proc(sc, 0);
780 }
781 if (status & HAL_INT_RXEOL) {
782 /*
783 * NB: the hardware should re-read the link when
784 * RXE bit is written, but it doesn't work at
785 * least on older hardware revs.
786 */
787 sc->sc_stats.ast_rxeol++;
788 sc->sc_rxlink = NULL;
789 }
790 if (status & HAL_INT_TXURN) {
791 sc->sc_stats.ast_txurn++;
792 /* bump tx trigger level */
793 ath_hal_updatetxtriglevel(ah, AH_TRUE);
794 }
795 if (status & HAL_INT_RX)
796 TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
797 if (status & HAL_INT_TX)
798 TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
799 if (status & HAL_INT_BMISS) {
800 sc->sc_stats.ast_bmiss++;
801 TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
802 }
803 if (status & HAL_INT_MIB) {
804 sc->sc_stats.ast_mib++;
805 /*
806 * Disable interrupts until we service the MIB
807 * interrupt; otherwise it will continue to fire.
808 */
809 ath_hal_intrset(ah, 0);
810 /*
811 * Let the hal handle the event. We assume it will
812 * clear whatever condition caused the interrupt.
813 */
814 ath_hal_mibevent(ah, &sc->sc_halstats);
815 ath_hal_intrset(ah, sc->sc_imask);
816 }
817 }
818 return 1;
819 }
820
821 /* Swap transmit descriptor.
822 * if AH_NEED_DESC_SWAP flag is not defined this becomes a "null"
823 * function.
824 */
825 static inline void
826 ath_desc_swap(struct ath_desc *ds)
827 {
828 #ifdef AH_NEED_DESC_SWAP
829 ds->ds_link = htole32(ds->ds_link);
830 ds->ds_data = htole32(ds->ds_data);
831 ds->ds_ctl0 = htole32(ds->ds_ctl0);
832 ds->ds_ctl1 = htole32(ds->ds_ctl1);
833 ds->ds_hw[0] = htole32(ds->ds_hw[0]);
834 ds->ds_hw[1] = htole32(ds->ds_hw[1]);
835 #endif
836 }
837
838 static void
839 ath_fatal_proc(void *arg, int pending)
840 {
841 struct ath_softc *sc = arg;
842 struct ifnet *ifp = &sc->sc_if;
843
844 if_printf(ifp, "hardware error; resetting\n");
845 ath_reset(ifp);
846 }
847
848 static void
849 ath_rxorn_proc(void *arg, int pending)
850 {
851 struct ath_softc *sc = arg;
852 struct ifnet *ifp = &sc->sc_if;
853
854 if_printf(ifp, "rx FIFO overrun; resetting\n");
855 ath_reset(ifp);
856 }
857
858 static void
859 ath_bmiss_proc(void *arg, int pending)
860 {
861 struct ath_softc *sc = arg;
862 struct ieee80211com *ic = &sc->sc_ic;
863
864 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
865 KASSERT(ic->ic_opmode == IEEE80211_M_STA,
866 ("unexpect operating mode %u", ic->ic_opmode));
867 if (ic->ic_state == IEEE80211_S_RUN) {
868 u_int64_t lastrx = sc->sc_lastrx;
869 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
870
871 DPRINTF(sc, ATH_DEBUG_BEACON,
872 "%s: tsf %" PRIu64 " lastrx %" PRId64
873 " (%" PRIu64 ") bmiss %u\n",
874 __func__, tsf, tsf - lastrx, lastrx,
875 ic->ic_bmisstimeout*1024);
876 /*
877 * Workaround phantom bmiss interrupts by sanity-checking
878 * the time of our last rx'd frame. If it is within the
879 * beacon miss interval then ignore the interrupt. If it's
880 * truly a bmiss we'll get another interrupt soon and that'll
881 * be dispatched up for processing.
882 */
883 if (tsf - lastrx > ic->ic_bmisstimeout*1024) {
884 NET_LOCK_GIANT();
885 ieee80211_beacon_miss(ic);
886 NET_UNLOCK_GIANT();
887 } else
888 sc->sc_stats.ast_bmiss_phantom++;
889 }
890 }
891
892 static void
893 ath_radar_proc(void *arg, int pending)
894 {
895 struct ath_softc *sc = arg;
896 struct ifnet *ifp = &sc->sc_if;
897 struct ath_hal *ah = sc->sc_ah;
898 HAL_CHANNEL hchan;
899
900 if (ath_hal_procdfs(ah, &hchan)) {
901 if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n",
902 hchan.channel, hchan.channelFlags, hchan.privFlags);
903 /*
904 * Initiate channel change.
905 */
906 /* XXX not yet */
907 }
908 }
909
910 static u_int
911 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
912 {
913 #define N(a) (sizeof(a) / sizeof(a[0]))
914 static const u_int modeflags[] = {
915 0, /* IEEE80211_MODE_AUTO */
916 CHANNEL_A, /* IEEE80211_MODE_11A */
917 CHANNEL_B, /* IEEE80211_MODE_11B */
918 CHANNEL_PUREG, /* IEEE80211_MODE_11G */
919 0, /* IEEE80211_MODE_FH */
920 CHANNEL_ST, /* IEEE80211_MODE_TURBO_A */
921 CHANNEL_108G /* IEEE80211_MODE_TURBO_G */
922 };
923 enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
924
925 KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
926 KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
927 return modeflags[mode];
928 #undef N
929 }
930
931 static int
932 ath_ifinit(struct ifnet *ifp)
933 {
934 struct ath_softc *sc = (struct ath_softc *)ifp->if_softc;
935
936 return ath_init(sc);
937 }
938
939 static int
940 ath_init(struct ath_softc *sc)
941 {
942 struct ifnet *ifp = &sc->sc_if;
943 struct ieee80211com *ic = &sc->sc_ic;
944 struct ath_hal *ah = sc->sc_ah;
945 HAL_STATUS status;
946 int error = 0;
947
948 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
949 __func__, ifp->if_flags);
950
951 if (!device_has_power(&sc->sc_dev))
952 return EBUSY;
953
954 ATH_LOCK(sc);
955
956 if ((error = ath_enable(sc)) != 0) {
957 ATH_UNLOCK(sc);
958 return error;
959 }
960
961 /*
962 * Stop anything previously setup. This is safe
963 * whether this is the first time through or not.
964 */
965 ath_stop_locked(ifp, 0);
966
967 /*
968 * The basic interface to setting the hardware in a good
969 * state is ``reset''. On return the hardware is known to
970 * be powered up and with interrupts disabled. This must
971 * be followed by initialization of the appropriate bits
972 * and then setup of the interrupt mask.
973 */
974 sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
975 sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
976 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
977 if_printf(ifp, "unable to reset hardware; hal status %u\n",
978 status);
979 error = EIO;
980 goto done;
981 }
982
983 /*
984 * This is needed only to setup initial state
985 * but it's best done after a reset.
986 */
987 ath_update_txpow(sc);
988 /*
989 * Likewise this is set during reset so update
990 * state cached in the driver.
991 */
992 ath_restore_diversity(sc);
993 sc->sc_calinterval = 1;
994 sc->sc_caltries = 0;
995
996 /*
997 * Setup the hardware after reset: the key cache
998 * is filled as needed and the receive engine is
999 * set going. Frame transmit is handled entirely
1000 * in the frame output path; there's nothing to do
1001 * here except setup the interrupt mask.
1002 */
1003 if ((error = ath_startrecv(sc)) != 0) {
1004 if_printf(ifp, "unable to start recv logic\n");
1005 goto done;
1006 }
1007
1008 /*
1009 * Enable interrupts.
1010 */
1011 sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1012 | HAL_INT_RXEOL | HAL_INT_RXORN
1013 | HAL_INT_FATAL | HAL_INT_GLOBAL;
1014 /*
1015 * Enable MIB interrupts when there are hardware phy counters.
1016 * Note we only do this (at the moment) for station mode.
1017 */
1018 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1019 sc->sc_imask |= HAL_INT_MIB;
1020 ath_hal_intrset(ah, sc->sc_imask);
1021
1022 ifp->if_flags |= IFF_RUNNING;
1023 ic->ic_state = IEEE80211_S_INIT;
1024
1025 /*
1026 * The hardware should be ready to go now so it's safe
1027 * to kick the 802.11 state machine as it's likely to
1028 * immediately call back to us to send mgmt frames.
1029 */
1030 ath_chan_change(sc, ic->ic_curchan);
1031 #ifdef ATH_TX99_DIAG
1032 if (sc->sc_tx99 != NULL)
1033 sc->sc_tx99->start(sc->sc_tx99);
1034 else
1035 #endif
1036 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1037 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
1038 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1039 } else
1040 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1041 done:
1042 ATH_UNLOCK(sc);
1043 return error;
1044 }
1045
1046 static void
1047 ath_stop_locked(struct ifnet *ifp, int disable)
1048 {
1049 struct ath_softc *sc = ifp->if_softc;
1050 struct ieee80211com *ic = &sc->sc_ic;
1051 struct ath_hal *ah = sc->sc_ah;
1052
1053 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1054 __func__, sc->sc_invalid, ifp->if_flags);
1055
1056 ATH_LOCK_ASSERT(sc);
1057 if (ifp->if_flags & IFF_RUNNING) {
1058 /*
1059 * Shutdown the hardware and driver:
1060 * reset 802.11 state machine
1061 * turn off timers
1062 * disable interrupts
1063 * turn off the radio
1064 * clear transmit machinery
1065 * clear receive machinery
1066 * drain and release tx queues
1067 * reclaim beacon resources
1068 * power down hardware
1069 *
1070 * Note that some of this work is not possible if the
1071 * hardware is gone (invalid).
1072 */
1073 #ifdef ATH_TX99_DIAG
1074 if (sc->sc_tx99 != NULL)
1075 sc->sc_tx99->stop(sc->sc_tx99);
1076 #endif
1077 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1078 ifp->if_flags &= ~IFF_RUNNING;
1079 ifp->if_timer = 0;
1080 if (!sc->sc_invalid) {
1081 if (sc->sc_softled) {
1082 callout_stop(&sc->sc_ledtimer);
1083 ath_hal_gpioset(ah, sc->sc_ledpin,
1084 !sc->sc_ledon);
1085 sc->sc_blinking = 0;
1086 }
1087 ath_hal_intrset(ah, 0);
1088 }
1089 ath_draintxq(sc);
1090 if (!sc->sc_invalid) {
1091 ath_stoprecv(sc);
1092 ath_hal_phydisable(ah);
1093 } else
1094 sc->sc_rxlink = NULL;
1095 IF_PURGE(&ifp->if_snd);
1096 ath_beacon_free(sc);
1097 if (disable)
1098 ath_disable(sc);
1099 }
1100 }
1101
1102 static void
1103 ath_stop(struct ifnet *ifp, int disable)
1104 {
1105 struct ath_softc *sc = ifp->if_softc;
1106
1107 ATH_LOCK(sc);
1108 ath_stop_locked(ifp, disable);
1109 if (!sc->sc_invalid) {
1110 /*
1111 * Set the chip in full sleep mode. Note that we are
1112 * careful to do this only when bringing the interface
1113 * completely to a stop. When the chip is in this state
1114 * it must be carefully woken up or references to
1115 * registers in the PCI clock domain may freeze the bus
1116 * (and system). This varies by chip and is mostly an
1117 * issue with newer parts that go to sleep more quickly.
1118 */
1119 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
1120 }
1121 ATH_UNLOCK(sc);
1122 }
1123
1124 static void
1125 ath_restore_diversity(struct ath_softc *sc)
1126 {
1127 struct ifnet *ifp = &sc->sc_if;
1128 struct ath_hal *ah = sc->sc_ah;
1129
1130 if (!ath_hal_setdiversity(sc->sc_ah, sc->sc_diversity) ||
1131 sc->sc_diversity != ath_hal_getdiversity(ah)) {
1132 if_printf(ifp, "could not restore diversity setting %d\n",
1133 sc->sc_diversity);
1134 sc->sc_diversity = ath_hal_getdiversity(ah);
1135 }
1136 }
1137
1138 /*
1139 * Reset the hardware w/o losing operational state. This is
1140 * basically a more efficient way of doing ath_stop, ath_init,
1141 * followed by state transitions to the current 802.11
1142 * operational state. Used to recover from various errors and
1143 * to reset or reload hardware state.
1144 */
1145 int
1146 ath_reset(struct ifnet *ifp)
1147 {
1148 struct ath_softc *sc = ifp->if_softc;
1149 struct ieee80211com *ic = &sc->sc_ic;
1150 struct ath_hal *ah = sc->sc_ah;
1151 struct ieee80211_channel *c;
1152 HAL_STATUS status;
1153
1154 /*
1155 * Convert to a HAL channel description with the flags
1156 * constrained to reflect the current operating mode.
1157 */
1158 c = ic->ic_curchan;
1159 sc->sc_curchan.channel = c->ic_freq;
1160 sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
1161
1162 ath_hal_intrset(ah, 0); /* disable interrupts */
1163 ath_draintxq(sc); /* stop xmit side */
1164 ath_stoprecv(sc); /* stop recv side */
1165 /* NB: indicate channel change so we do a full reset */
1166 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
1167 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1168 __func__, status);
1169 ath_update_txpow(sc); /* update tx power state */
1170 ath_restore_diversity(sc);
1171 sc->sc_calinterval = 1;
1172 sc->sc_caltries = 0;
1173 if (ath_startrecv(sc) != 0) /* restart recv */
1174 if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1175 /*
1176 * We may be doing a reset in response to an ioctl
1177 * that changes the channel so update any state that
1178 * might change as a result.
1179 */
1180 ath_chan_change(sc, c);
1181 if (ic->ic_state == IEEE80211_S_RUN)
1182 ath_beacon_config(sc); /* restart beacons */
1183 ath_hal_intrset(ah, sc->sc_imask);
1184
1185 ath_start(ifp); /* restart xmit */
1186 return 0;
1187 }
1188
1189 /*
1190 * Cleanup driver resources when we run out of buffers
1191 * while processing fragments; return the tx buffers
1192 * allocated and drop node references.
1193 */
1194 static void
1195 ath_txfrag_cleanup(struct ath_softc *sc,
1196 ath_bufhead *frags, struct ieee80211_node *ni)
1197 {
1198 struct ath_buf *bf;
1199
1200 ATH_TXBUF_LOCK_ASSERT(sc);
1201
1202 while ((bf = STAILQ_FIRST(frags)) != NULL) {
1203 STAILQ_REMOVE_HEAD(frags, bf_list);
1204 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1205 sc->sc_if.if_flags &= ~IFF_OACTIVE;
1206 ieee80211_node_decref(ni);
1207 }
1208 }
1209
1210 /*
1211 * Setup xmit of a fragmented frame. Allocate a buffer
1212 * for each frag and bump the node reference count to
1213 * reflect the held reference to be setup by ath_tx_start.
1214 */
1215 static int
1216 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
1217 struct mbuf *m0, struct ieee80211_node *ni)
1218 {
1219 struct mbuf *m;
1220 struct ath_buf *bf;
1221
1222 ATH_TXBUF_LOCK(sc);
1223 for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
1224 bf = STAILQ_FIRST(&sc->sc_txbuf);
1225 if (bf == NULL) { /* out of buffers, cleanup */
1226 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1227 __func__);
1228 sc->sc_if.if_flags |= IFF_OACTIVE;
1229 ath_txfrag_cleanup(sc, frags, ni);
1230 break;
1231 }
1232 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1233 ieee80211_node_incref(ni);
1234 STAILQ_INSERT_TAIL(frags, bf, bf_list);
1235 }
1236 ATH_TXBUF_UNLOCK(sc);
1237
1238 return !STAILQ_EMPTY(frags);
1239 }
1240
1241 static void
1242 ath_start(struct ifnet *ifp)
1243 {
1244 struct ath_softc *sc = ifp->if_softc;
1245 struct ath_hal *ah = sc->sc_ah;
1246 struct ieee80211com *ic = &sc->sc_ic;
1247 struct ieee80211_node *ni;
1248 struct ath_buf *bf;
1249 struct mbuf *m, *next;
1250 struct ieee80211_frame *wh;
1251 struct ether_header *eh;
1252 ath_bufhead frags;
1253
1254 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
1255 return;
1256 for (;;) {
1257 /*
1258 * Grab a TX buffer and associated resources.
1259 */
1260 ATH_TXBUF_LOCK(sc);
1261 bf = STAILQ_FIRST(&sc->sc_txbuf);
1262 if (bf != NULL)
1263 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1264 ATH_TXBUF_UNLOCK(sc);
1265 if (bf == NULL) {
1266 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1267 __func__);
1268 sc->sc_stats.ast_tx_qstop++;
1269 ifp->if_flags |= IFF_OACTIVE;
1270 break;
1271 }
1272 /*
1273 * Poll the management queue for frames; they
1274 * have priority over normal data frames.
1275 */
1276 IF_DEQUEUE(&ic->ic_mgtq, m);
1277 if (m == NULL) {
1278 /*
1279 * No data frames go out unless we're associated.
1280 */
1281 if (ic->ic_state != IEEE80211_S_RUN) {
1282 DPRINTF(sc, ATH_DEBUG_XMIT,
1283 "%s: discard data packet, state %s\n",
1284 __func__,
1285 ieee80211_state_name[ic->ic_state]);
1286 sc->sc_stats.ast_tx_discard++;
1287 ATH_TXBUF_LOCK(sc);
1288 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1289 ATH_TXBUF_UNLOCK(sc);
1290 break;
1291 }
1292 IFQ_DEQUEUE(&ifp->if_snd, m); /* XXX: LOCK */
1293 if (m == NULL) {
1294 ATH_TXBUF_LOCK(sc);
1295 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1296 ATH_TXBUF_UNLOCK(sc);
1297 break;
1298 }
1299 STAILQ_INIT(&frags);
1300 /*
1301 * Find the node for the destination so we can do
1302 * things like power save and fast frames aggregation.
1303 */
1304 if (m->m_len < sizeof(struct ether_header) &&
1305 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
1306 ic->ic_stats.is_tx_nobuf++; /* XXX */
1307 ni = NULL;
1308 goto bad;
1309 }
1310 eh = mtod(m, struct ether_header *);
1311 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1312 if (ni == NULL) {
1313 /* NB: ieee80211_find_txnode does stat+msg */
1314 m_freem(m);
1315 goto bad;
1316 }
1317 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1318 (m->m_flags & M_PWR_SAV) == 0) {
1319 /*
1320 * Station in power save mode; pass the frame
1321 * to the 802.11 layer and continue. We'll get
1322 * the frame back when the time is right.
1323 */
1324 ieee80211_pwrsave(ic, ni, m);
1325 goto reclaim;
1326 }
1327 /* calculate priority so we can find the tx queue */
1328 if (ieee80211_classify(ic, m, ni)) {
1329 DPRINTF(sc, ATH_DEBUG_XMIT,
1330 "%s: discard, classification failure\n",
1331 __func__);
1332 m_freem(m);
1333 goto bad;
1334 }
1335 ifp->if_opackets++;
1336
1337 #if NBPFILTER > 0
1338 if (ifp->if_bpf)
1339 bpf_mtap(ifp->if_bpf, m);
1340 #endif
1341 /*
1342 * Encapsulate the packet in prep for transmission.
1343 */
1344 m = ieee80211_encap(ic, m, ni);
1345 if (m == NULL) {
1346 DPRINTF(sc, ATH_DEBUG_XMIT,
1347 "%s: encapsulation failure\n",
1348 __func__);
1349 sc->sc_stats.ast_tx_encap++;
1350 goto bad;
1351 }
1352 /*
1353 * Check for fragmentation. If this has frame
1354 * has been broken up verify we have enough
1355 * buffers to send all the fragments so all
1356 * go out or none...
1357 */
1358 if ((m->m_flags & M_FRAG) &&
1359 !ath_txfrag_setup(sc, &frags, m, ni)) {
1360 DPRINTF(sc, ATH_DEBUG_ANY,
1361 "%s: out of txfrag buffers\n", __func__);
1362 ic->ic_stats.is_tx_nobuf++; /* XXX */
1363 ath_freetx(m);
1364 goto bad;
1365 }
1366 } else {
1367 /*
1368 * Hack! The referenced node pointer is in the
1369 * rcvif field of the packet header. This is
1370 * placed there by ieee80211_mgmt_output because
1371 * we need to hold the reference with the frame
1372 * and there's no other way (other than packet
1373 * tags which we consider too expensive to use)
1374 * to pass it along.
1375 */
1376 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1377 m->m_pkthdr.rcvif = NULL;
1378
1379 wh = mtod(m, struct ieee80211_frame *);
1380 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1381 IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1382 /* fill time stamp */
1383 u_int64_t tsf;
1384 u_int32_t *tstamp;
1385
1386 tsf = ath_hal_gettsf64(ah);
1387 /* XXX: adjust 100us delay to xmit */
1388 tsf += 100;
1389 tstamp = (u_int32_t *)&wh[1];
1390 tstamp[0] = htole32(tsf & 0xffffffff);
1391 tstamp[1] = htole32(tsf >> 32);
1392 }
1393 sc->sc_stats.ast_tx_mgmt++;
1394 }
1395
1396 nextfrag:
1397 next = m->m_nextpkt;
1398 if (ath_tx_start(sc, ni, bf, m)) {
1399 bad:
1400 ifp->if_oerrors++;
1401 reclaim:
1402 ATH_TXBUF_LOCK(sc);
1403 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1404 ath_txfrag_cleanup(sc, &frags, ni);
1405 ATH_TXBUF_UNLOCK(sc);
1406 if (ni != NULL)
1407 ieee80211_free_node(ni);
1408 continue;
1409 }
1410 if (next != NULL) {
1411 m = next;
1412 bf = STAILQ_FIRST(&frags);
1413 KASSERT(bf != NULL, ("no buf for txfrag"));
1414 STAILQ_REMOVE_HEAD(&frags, bf_list);
1415 goto nextfrag;
1416 }
1417
1418 ifp->if_timer = 1;
1419 }
1420 }
1421
1422 static int
1423 ath_media_change(struct ifnet *ifp)
1424 {
1425 #define IS_UP(ifp) \
1426 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
1427 int error;
1428
1429 error = ieee80211_media_change(ifp);
1430 if (error == ENETRESET) {
1431 if (IS_UP(ifp))
1432 ath_init(ifp->if_softc); /* XXX lose error */
1433 error = 0;
1434 }
1435 return error;
1436 #undef IS_UP
1437 }
1438
1439 #ifdef AR_DEBUG
1440 static void
1441 ath_keyprint(const char *tag, u_int ix,
1442 const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1443 {
1444 static const char *ciphers[] = {
1445 "WEP",
1446 "AES-OCB",
1447 "AES-CCM",
1448 "CKIP",
1449 "TKIP",
1450 "CLR",
1451 };
1452 int i, n;
1453
1454 printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1455 for (i = 0, n = hk->kv_len; i < n; i++)
1456 printf("%02x", hk->kv_val[i]);
1457 printf(" mac %s", ether_sprintf(mac));
1458 if (hk->kv_type == HAL_CIPHER_TKIP) {
1459 printf(" mic ");
1460 for (i = 0; i < sizeof(hk->kv_mic); i++)
1461 printf("%02x", hk->kv_mic[i]);
1462 }
1463 printf("\n");
1464 }
1465 #endif
1466
1467 /*
1468 * Set a TKIP key into the hardware. This handles the
1469 * potential distribution of key state to multiple key
1470 * cache slots for TKIP.
1471 */
1472 static int
1473 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1474 HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1475 {
1476 #define IEEE80211_KEY_XR (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1477 static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1478 struct ath_hal *ah = sc->sc_ah;
1479
1480 KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1481 ("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1482 KASSERT(sc->sc_splitmic, ("key cache !split"));
1483 if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1484 /*
1485 * TX key goes at first index, RX key at the rx index.
1486 * The hal handles the MIC keys at index+64.
1487 */
1488 memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1489 KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1490 if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
1491 return 0;
1492
1493 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1494 KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1495 /* XXX delete tx key on failure? */
1496 return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
1497 } else if (k->wk_flags & IEEE80211_KEY_XR) {
1498 /*
1499 * TX/RX key goes at first index.
1500 * The hal handles the MIC keys are index+64.
1501 */
1502 memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
1503 k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
1504 KEYPRINTF(sc, k->wk_keyix, hk, mac);
1505 return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1506 }
1507 return 0;
1508 #undef IEEE80211_KEY_XR
1509 }
1510
1511 /*
1512 * Set a net80211 key into the hardware. This handles the
1513 * potential distribution of key state to multiple key
1514 * cache slots for TKIP with hardware MIC support.
1515 */
1516 static int
1517 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1518 const u_int8_t mac0[IEEE80211_ADDR_LEN],
1519 struct ieee80211_node *bss)
1520 {
1521 #define N(a) (sizeof(a)/sizeof(a[0]))
1522 static const u_int8_t ciphermap[] = {
1523 HAL_CIPHER_WEP, /* IEEE80211_CIPHER_WEP */
1524 HAL_CIPHER_TKIP, /* IEEE80211_CIPHER_TKIP */
1525 HAL_CIPHER_AES_OCB, /* IEEE80211_CIPHER_AES_OCB */
1526 HAL_CIPHER_AES_CCM, /* IEEE80211_CIPHER_AES_CCM */
1527 (u_int8_t) -1, /* 4 is not allocated */
1528 HAL_CIPHER_CKIP, /* IEEE80211_CIPHER_CKIP */
1529 HAL_CIPHER_CLR, /* IEEE80211_CIPHER_NONE */
1530 };
1531 struct ath_hal *ah = sc->sc_ah;
1532 const struct ieee80211_cipher *cip = k->wk_cipher;
1533 u_int8_t gmac[IEEE80211_ADDR_LEN];
1534 const u_int8_t *mac;
1535 HAL_KEYVAL hk;
1536
1537 memset(&hk, 0, sizeof(hk));
1538 /*
1539 * Software crypto uses a "clear key" so non-crypto
1540 * state kept in the key cache are maintained and
1541 * so that rx frames have an entry to match.
1542 */
1543 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1544 KASSERT(cip->ic_cipher < N(ciphermap),
1545 ("invalid cipher type %u", cip->ic_cipher));
1546 hk.kv_type = ciphermap[cip->ic_cipher];
1547 hk.kv_len = k->wk_keylen;
1548 memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1549 } else
1550 hk.kv_type = HAL_CIPHER_CLR;
1551
1552 if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
1553 /*
1554 * Group keys on hardware that supports multicast frame
1555 * key search use a mac that is the sender's address with
1556 * the high bit set instead of the app-specified address.
1557 */
1558 IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
1559 gmac[0] |= 0x80;
1560 mac = gmac;
1561 } else
1562 mac = mac0;
1563
1564 if (hk.kv_type == HAL_CIPHER_TKIP &&
1565 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1566 sc->sc_splitmic) {
1567 return ath_keyset_tkip(sc, k, &hk, mac);
1568 } else {
1569 KEYPRINTF(sc, k->wk_keyix, &hk, mac);
1570 return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
1571 }
1572 #undef N
1573 }
1574
1575 /*
1576 * Allocate tx/rx key slots for TKIP. We allocate two slots for
1577 * each key, one for decrypt/encrypt and the other for the MIC.
1578 */
1579 static u_int16_t
1580 key_alloc_2pair(struct ath_softc *sc,
1581 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1582 {
1583 #define N(a) (sizeof(a)/sizeof(a[0]))
1584 u_int i, keyix;
1585
1586 KASSERT(sc->sc_splitmic, ("key cache !split"));
1587 /* XXX could optimize */
1588 for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1589 u_int8_t b = sc->sc_keymap[i];
1590 if (b != 0xff) {
1591 /*
1592 * One or more slots in this byte are free.
1593 */
1594 keyix = i*NBBY;
1595 while (b & 1) {
1596 again:
1597 keyix++;
1598 b >>= 1;
1599 }
1600 /* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1601 if (isset(sc->sc_keymap, keyix+32) ||
1602 isset(sc->sc_keymap, keyix+64) ||
1603 isset(sc->sc_keymap, keyix+32+64)) {
1604 /* full pair unavailable */
1605 /* XXX statistic */
1606 if (keyix == (i+1)*NBBY) {
1607 /* no slots were appropriate, advance */
1608 continue;
1609 }
1610 goto again;
1611 }
1612 setbit(sc->sc_keymap, keyix);
1613 setbit(sc->sc_keymap, keyix+64);
1614 setbit(sc->sc_keymap, keyix+32);
1615 setbit(sc->sc_keymap, keyix+32+64);
1616 DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1617 "%s: key pair %u,%u %u,%u\n",
1618 __func__, keyix, keyix+64,
1619 keyix+32, keyix+32+64);
1620 *txkeyix = keyix;
1621 *rxkeyix = keyix+32;
1622 return 1;
1623 }
1624 }
1625 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1626 return 0;
1627 #undef N
1628 }
1629
1630 /*
1631 * Allocate a single key cache slot.
1632 */
1633 static int
1634 key_alloc_single(struct ath_softc *sc,
1635 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1636 {
1637 #define N(a) (sizeof(a)/sizeof(a[0]))
1638 u_int i, keyix;
1639
1640 /* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
1641 for (i = 0; i < N(sc->sc_keymap); i++) {
1642 u_int8_t b = sc->sc_keymap[i];
1643 if (b != 0xff) {
1644 /*
1645 * One or more slots are free.
1646 */
1647 keyix = i*NBBY;
1648 while (b & 1)
1649 keyix++, b >>= 1;
1650 setbit(sc->sc_keymap, keyix);
1651 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
1652 __func__, keyix);
1653 *txkeyix = *rxkeyix = keyix;
1654 return 1;
1655 }
1656 }
1657 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
1658 return 0;
1659 #undef N
1660 }
1661
1662 /*
1663 * Allocate one or more key cache slots for a uniacst key. The
1664 * key itself is needed only to identify the cipher. For hardware
1665 * TKIP with split cipher+MIC keys we allocate two key cache slot
1666 * pairs so that we can setup separate TX and RX MIC keys. Note
1667 * that the MIC key for a TKIP key at slot i is assumed by the
1668 * hardware to be at slot i+64. This limits TKIP keys to the first
1669 * 64 entries.
1670 */
1671 static int
1672 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
1673 ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
1674 {
1675 struct ath_softc *sc = ic->ic_ifp->if_softc;
1676
1677 /*
1678 * Group key allocation must be handled specially for
1679 * parts that do not support multicast key cache search
1680 * functionality. For those parts the key id must match
1681 * the h/w key index so lookups find the right key. On
1682 * parts w/ the key search facility we install the sender's
1683 * mac address (with the high bit set) and let the hardware
1684 * find the key w/o using the key id. This is preferred as
1685 * it permits us to support multiple users for adhoc and/or
1686 * multi-station operation.
1687 */
1688 if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
1689 if (!(&ic->ic_nw_keys[0] <= k &&
1690 k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
1691 /* should not happen */
1692 DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1693 "%s: bogus group key\n", __func__);
1694 return 0;
1695 }
1696 /*
1697 * XXX we pre-allocate the global keys so
1698 * have no way to check if they've already been allocated.
1699 */
1700 *keyix = *rxkeyix = k - ic->ic_nw_keys;
1701 return 1;
1702 }
1703
1704 /*
1705 * We allocate two pair for TKIP when using the h/w to do
1706 * the MIC. For everything else, including software crypto,
1707 * we allocate a single entry. Note that s/w crypto requires
1708 * a pass-through slot on the 5211 and 5212. The 5210 does
1709 * not support pass-through cache entries and we map all
1710 * those requests to slot 0.
1711 */
1712 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1713 return key_alloc_single(sc, keyix, rxkeyix);
1714 } else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
1715 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
1716 return key_alloc_2pair(sc, keyix, rxkeyix);
1717 } else {
1718 return key_alloc_single(sc, keyix, rxkeyix);
1719 }
1720 }
1721
1722 /*
1723 * Delete an entry in the key cache allocated by ath_key_alloc.
1724 */
1725 static int
1726 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
1727 {
1728 struct ath_softc *sc = ic->ic_ifp->if_softc;
1729 struct ath_hal *ah = sc->sc_ah;
1730 const struct ieee80211_cipher *cip = k->wk_cipher;
1731 u_int keyix = k->wk_keyix;
1732
1733 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
1734
1735 ath_hal_keyreset(ah, keyix);
1736 /*
1737 * Handle split tx/rx keying required for TKIP with h/w MIC.
1738 */
1739 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1740 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
1741 ath_hal_keyreset(ah, keyix+32); /* RX key */
1742 if (keyix >= IEEE80211_WEP_NKID) {
1743 /*
1744 * Don't touch keymap entries for global keys so
1745 * they are never considered for dynamic allocation.
1746 */
1747 clrbit(sc->sc_keymap, keyix);
1748 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1749 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1750 sc->sc_splitmic) {
1751 clrbit(sc->sc_keymap, keyix+64); /* TX key MIC */
1752 clrbit(sc->sc_keymap, keyix+32); /* RX key */
1753 clrbit(sc->sc_keymap, keyix+32+64); /* RX key MIC */
1754 }
1755 }
1756 return 1;
1757 }
1758
1759 /*
1760 * Set the key cache contents for the specified key. Key cache
1761 * slot(s) must already have been allocated by ath_key_alloc.
1762 */
1763 static int
1764 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
1765 const u_int8_t mac[IEEE80211_ADDR_LEN])
1766 {
1767 struct ath_softc *sc = ic->ic_ifp->if_softc;
1768
1769 return ath_keyset(sc, k, mac, ic->ic_bss);
1770 }
1771
1772 /*
1773 * Block/unblock tx+rx processing while a key change is done.
1774 * We assume the caller serializes key management operations
1775 * so we only need to worry about synchronization with other
1776 * uses that originate in the driver.
1777 */
1778 static void
1779 ath_key_update_begin(struct ieee80211com *ic)
1780 {
1781 struct ifnet *ifp = ic->ic_ifp;
1782 struct ath_softc *sc = ifp->if_softc;
1783
1784 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1785 #if 0
1786 tasklet_disable(&sc->sc_rxtq);
1787 #endif
1788 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */
1789 }
1790
1791 static void
1792 ath_key_update_end(struct ieee80211com *ic)
1793 {
1794 struct ifnet *ifp = ic->ic_ifp;
1795 struct ath_softc *sc = ifp->if_softc;
1796
1797 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1798 IF_UNLOCK(&ifp->if_snd);
1799 #if 0
1800 tasklet_enable(&sc->sc_rxtq);
1801 #endif
1802 }
1803
1804 /*
1805 * Calculate the receive filter according to the
1806 * operating mode and state:
1807 *
1808 * o always accept unicast, broadcast, and multicast traffic
1809 * o maintain current state of phy error reception (the hal
1810 * may enable phy error frames for noise immunity work)
1811 * o probe request frames are accepted only when operating in
1812 * hostap, adhoc, or monitor modes
1813 * o enable promiscuous mode according to the interface state
1814 * o accept beacons:
1815 * - when operating in adhoc mode so the 802.11 layer creates
1816 * node table entries for peers,
1817 * - when operating in station mode for collecting rssi data when
1818 * the station is otherwise quiet, or
1819 * - when scanning
1820 */
1821 static u_int32_t
1822 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
1823 {
1824 struct ieee80211com *ic = &sc->sc_ic;
1825 struct ath_hal *ah = sc->sc_ah;
1826 struct ifnet *ifp = &sc->sc_if;
1827 u_int32_t rfilt;
1828
1829 rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1830 | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1831 if (ic->ic_opmode != IEEE80211_M_STA)
1832 rfilt |= HAL_RX_FILTER_PROBEREQ;
1833 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1834 (ifp->if_flags & IFF_PROMISC))
1835 rfilt |= HAL_RX_FILTER_PROM;
1836 if (ic->ic_opmode == IEEE80211_M_STA ||
1837 ic->ic_opmode == IEEE80211_M_IBSS ||
1838 state == IEEE80211_S_SCAN)
1839 rfilt |= HAL_RX_FILTER_BEACON;
1840 return rfilt;
1841 }
1842
1843 static void
1844 ath_mcastfilter_accum(void *dl, u_int32_t *mfilt)
1845 {
1846 u_int32_t val;
1847 u_int8_t pos;
1848
1849 /* calculate XOR of eight 6bit values */
1850 val = LE_READ_4((char *)dl + 0);
1851 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1852 val = LE_READ_4((char *)dl + 3);
1853 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1854 pos &= 0x3f;
1855 mfilt[pos / 32] |= (1 << (pos % 32));
1856 }
1857
1858 static void
1859 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t *mfilt)
1860 {
1861 struct ifnet *ifp = &sc->sc_if;
1862 struct ether_multi *enm;
1863 struct ether_multistep estep;
1864
1865 mfilt[0] = mfilt[1] = 0;
1866 ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
1867 while (enm != NULL) {
1868 /* XXX Punt on ranges. */
1869 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
1870 mfilt[0] = mfilt[1] = ~((u_int32_t)0);
1871 ifp->if_flags |= IFF_ALLMULTI;
1872 return;
1873 }
1874 ath_mcastfilter_accum(enm->enm_addrlo, mfilt);
1875 ETHER_NEXT_MULTI(estep, enm);
1876 }
1877 ifp->if_flags &= ~IFF_ALLMULTI;
1878 }
1879
1880 static void
1881 ath_mode_init(struct ath_softc *sc)
1882 {
1883 struct ieee80211com *ic = &sc->sc_ic;
1884 struct ath_hal *ah = sc->sc_ah;
1885 u_int32_t rfilt, mfilt[2];
1886 int i;
1887
1888 /* configure rx filter */
1889 rfilt = ath_calcrxfilter(sc, ic->ic_state);
1890 ath_hal_setrxfilter(ah, rfilt);
1891
1892 /* configure operational mode */
1893 ath_hal_setopmode(ah);
1894
1895 /* Write keys to hardware; it may have been powered down. */
1896 ath_key_update_begin(ic);
1897 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1898 ath_key_set(ic,
1899 &ic->ic_crypto.cs_nw_keys[i],
1900 ic->ic_myaddr);
1901 }
1902 ath_key_update_end(ic);
1903
1904 /*
1905 * Handle any link-level address change. Note that we only
1906 * need to force ic_myaddr; any other addresses are handled
1907 * as a byproduct of the ifnet code marking the interface
1908 * down then up.
1909 *
1910 * XXX should get from lladdr instead of arpcom but that's more work
1911 */
1912 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(sc->sc_if.if_sadl));
1913 ath_hal_setmac(ah, ic->ic_myaddr);
1914
1915 /* calculate and install multicast filter */
1916 #ifdef __FreeBSD__
1917 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1918 mfilt[0] = mfilt[1] = 0;
1919 IF_ADDR_LOCK(ifp);
1920 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1921 void *dl;
1922
1923 /* calculate XOR of eight 6bit values */
1924 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
1925 val = LE_READ_4((char *)dl + 0);
1926 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1927 val = LE_READ_4((char *)dl + 3);
1928 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1929 pos &= 0x3f;
1930 mfilt[pos / 32] |= (1 << (pos % 32));
1931 }
1932 IF_ADDR_UNLOCK(ifp);
1933 } else {
1934 mfilt[0] = mfilt[1] = ~0;
1935 }
1936 #endif
1937 #ifdef __NetBSD__
1938 ath_mcastfilter_compute(sc, mfilt);
1939 #endif
1940 ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1941 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
1942 __func__, rfilt, mfilt[0], mfilt[1]);
1943 }
1944
1945 /*
1946 * Set the slot time based on the current setting.
1947 */
1948 static void
1949 ath_setslottime(struct ath_softc *sc)
1950 {
1951 struct ieee80211com *ic = &sc->sc_ic;
1952 struct ath_hal *ah = sc->sc_ah;
1953
1954 if (ic->ic_flags & IEEE80211_F_SHSLOT)
1955 ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
1956 else
1957 ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
1958 sc->sc_updateslot = OK;
1959 }
1960
1961 /*
1962 * Callback from the 802.11 layer to update the
1963 * slot time based on the current setting.
1964 */
1965 static void
1966 ath_updateslot(struct ifnet *ifp)
1967 {
1968 struct ath_softc *sc = ifp->if_softc;
1969 struct ieee80211com *ic = &sc->sc_ic;
1970
1971 /*
1972 * When not coordinating the BSS, change the hardware
1973 * immediately. For other operation we defer the change
1974 * until beacon updates have propagated to the stations.
1975 */
1976 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1977 sc->sc_updateslot = UPDATE;
1978 else
1979 ath_setslottime(sc);
1980 }
1981
1982 /*
1983 * Setup a h/w transmit queue for beacons.
1984 */
1985 static int
1986 ath_beaconq_setup(struct ath_hal *ah)
1987 {
1988 HAL_TXQ_INFO qi;
1989
1990 memset(&qi, 0, sizeof(qi));
1991 qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
1992 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
1993 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
1994 /* NB: for dynamic turbo, don't enable any other interrupts */
1995 qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
1996 return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
1997 }
1998
1999 /*
2000 * Setup the transmit queue parameters for the beacon queue.
2001 */
2002 static int
2003 ath_beaconq_config(struct ath_softc *sc)
2004 {
2005 #define ATH_EXPONENT_TO_VALUE(v) ((1<<(v))-1)
2006 struct ieee80211com *ic = &sc->sc_ic;
2007 struct ath_hal *ah = sc->sc_ah;
2008 HAL_TXQ_INFO qi;
2009
2010 ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
2011 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2012 /*
2013 * Always burst out beacon and CAB traffic.
2014 */
2015 qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
2016 qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
2017 qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
2018 } else {
2019 struct wmeParams *wmep =
2020 &ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
2021 /*
2022 * Adhoc mode; important thing is to use 2x cwmin.
2023 */
2024 qi.tqi_aifs = wmep->wmep_aifsn;
2025 qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2026 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2027 }
2028
2029 if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
2030 device_printf(&sc->sc_dev, "unable to update parameters for "
2031 "beacon hardware queue!\n");
2032 return 0;
2033 } else {
2034 ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
2035 return 1;
2036 }
2037 #undef ATH_EXPONENT_TO_VALUE
2038 }
2039
2040 /*
2041 * Allocate and setup an initial beacon frame.
2042 */
2043 static int
2044 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
2045 {
2046 struct ieee80211com *ic = ni->ni_ic;
2047 struct ath_buf *bf;
2048 struct mbuf *m;
2049 int error;
2050
2051 bf = STAILQ_FIRST(&sc->sc_bbuf);
2052 if (bf == NULL) {
2053 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
2054 sc->sc_stats.ast_be_nombuf++; /* XXX */
2055 return ENOMEM; /* XXX */
2056 }
2057 /*
2058 * NB: the beacon data buffer must be 32-bit aligned;
2059 * we assume the mbuf routines will return us something
2060 * with this alignment (perhaps should assert).
2061 */
2062 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
2063 if (m == NULL) {
2064 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
2065 __func__);
2066 sc->sc_stats.ast_be_nombuf++;
2067 return ENOMEM;
2068 }
2069 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2070 BUS_DMA_NOWAIT);
2071 if (error == 0) {
2072 bf->bf_m = m;
2073 bf->bf_node = ieee80211_ref_node(ni);
2074 } else {
2075 m_freem(m);
2076 }
2077 return error;
2078 }
2079
2080 /*
2081 * Setup the beacon frame for transmit.
2082 */
2083 static void
2084 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
2085 {
2086 #define USE_SHPREAMBLE(_ic) \
2087 (((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
2088 == IEEE80211_F_SHPREAMBLE)
2089 struct ieee80211_node *ni = bf->bf_node;
2090 struct ieee80211com *ic = ni->ni_ic;
2091 struct mbuf *m = bf->bf_m;
2092 struct ath_hal *ah = sc->sc_ah;
2093 struct ath_desc *ds;
2094 int flags, antenna;
2095 const HAL_RATE_TABLE *rt;
2096 u_int8_t rix, rate;
2097
2098 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
2099 __func__, m, m->m_len);
2100
2101 /* setup descriptors */
2102 ds = bf->bf_desc;
2103
2104 flags = HAL_TXDESC_NOACK;
2105 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
2106 ds->ds_link = HTOAH32(bf->bf_daddr); /* self-linked */
2107 flags |= HAL_TXDESC_VEOL;
2108 /*
2109 * Let hardware handle antenna switching unless
2110 * the user has selected a transmit antenna
2111 * (sc_txantenna is not 0).
2112 */
2113 antenna = sc->sc_txantenna;
2114 } else {
2115 ds->ds_link = 0;
2116 /*
2117 * Switch antenna every 4 beacons, unless the user
2118 * has selected a transmit antenna (sc_txantenna
2119 * is not 0).
2120 *
2121 * XXX assumes two antenna
2122 */
2123 if (sc->sc_txantenna == 0)
2124 antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2125 else
2126 antenna = sc->sc_txantenna;
2127 }
2128
2129 KASSERT(bf->bf_nseg == 1,
2130 ("multi-segment beacon frame; nseg %u", bf->bf_nseg));
2131 ds->ds_data = bf->bf_segs[0].ds_addr;
2132 /*
2133 * Calculate rate code.
2134 * XXX everything at min xmit rate
2135 */
2136 rix = sc->sc_minrateix;
2137 rt = sc->sc_currates;
2138 rate = rt->info[rix].rateCode;
2139 if (USE_SHPREAMBLE(ic))
2140 rate |= rt->info[rix].shortPreamble;
2141 ath_hal_setuptxdesc(ah, ds
2142 , m->m_len + IEEE80211_CRC_LEN /* frame length */
2143 , sizeof(struct ieee80211_frame)/* header length */
2144 , HAL_PKT_TYPE_BEACON /* Atheros packet type */
2145 , ni->ni_txpower /* txpower XXX */
2146 , rate, 1 /* series 0 rate/tries */
2147 , HAL_TXKEYIX_INVALID /* no encryption */
2148 , antenna /* antenna mode */
2149 , flags /* no ack, veol for beacons */
2150 , 0 /* rts/cts rate */
2151 , 0 /* rts/cts duration */
2152 );
2153 /* NB: beacon's BufLen must be a multiple of 4 bytes */
2154 ath_hal_filltxdesc(ah, ds
2155 , roundup(m->m_len, 4) /* buffer length */
2156 , AH_TRUE /* first segment */
2157 , AH_TRUE /* last segment */
2158 , ds /* first descriptor */
2159 );
2160
2161 /* NB: The desc swap function becomes void,
2162 * if descriptor swapping is not enabled
2163 */
2164 ath_desc_swap(ds);
2165
2166 #undef USE_SHPREAMBLE
2167 }
2168
2169 /*
2170 * Transmit a beacon frame at SWBA. Dynamic updates to the
2171 * frame contents are done as needed and the slot time is
2172 * also adjusted based on current state.
2173 */
2174 static void
2175 ath_beacon_proc(void *arg, int pending)
2176 {
2177 struct ath_softc *sc = arg;
2178 struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
2179 struct ieee80211_node *ni = bf->bf_node;
2180 struct ieee80211com *ic = ni->ni_ic;
2181 struct ath_hal *ah = sc->sc_ah;
2182 struct mbuf *m;
2183 int ncabq, error, otherant;
2184
2185 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2186 __func__, pending);
2187
2188 if (ic->ic_opmode == IEEE80211_M_STA ||
2189 ic->ic_opmode == IEEE80211_M_MONITOR ||
2190 bf == NULL || bf->bf_m == NULL) {
2191 DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
2192 __func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
2193 return;
2194 }
2195 /*
2196 * Check if the previous beacon has gone out. If
2197 * not don't try to post another, skip this period
2198 * and wait for the next. Missed beacons indicate
2199 * a problem and should not occur. If we miss too
2200 * many consecutive beacons reset the device.
2201 */
2202 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2203 sc->sc_bmisscount++;
2204 DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2205 "%s: missed %u consecutive beacons\n",
2206 __func__, sc->sc_bmisscount);
2207 if (sc->sc_bmisscount > 3) /* NB: 3 is a guess */
2208 TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask);
2209 return;
2210 }
2211 if (sc->sc_bmisscount != 0) {
2212 DPRINTF(sc, ATH_DEBUG_BEACON,
2213 "%s: resume beacon xmit after %u misses\n",
2214 __func__, sc->sc_bmisscount);
2215 sc->sc_bmisscount = 0;
2216 }
2217
2218 /*
2219 * Update dynamic beacon contents. If this returns
2220 * non-zero then we need to remap the memory because
2221 * the beacon frame changed size (probably because
2222 * of the TIM bitmap).
2223 */
2224 m = bf->bf_m;
2225 ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
2226 if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
2227 /* XXX too conservative? */
2228 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2229 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2230 BUS_DMA_NOWAIT);
2231 if (error != 0) {
2232 if_printf(&sc->sc_if,
2233 "%s: bus_dmamap_load_mbuf failed, error %u\n",
2234 __func__, error);
2235 return;
2236 }
2237 }
2238
2239 /*
2240 * Handle slot time change when a non-ERP station joins/leaves
2241 * an 11g network. The 802.11 layer notifies us via callback,
2242 * we mark updateslot, then wait one beacon before effecting
2243 * the change. This gives associated stations at least one
2244 * beacon interval to note the state change.
2245 */
2246 /* XXX locking */
2247 if (sc->sc_updateslot == UPDATE)
2248 sc->sc_updateslot = COMMIT; /* commit next beacon */
2249 else if (sc->sc_updateslot == COMMIT)
2250 ath_setslottime(sc); /* commit change to h/w */
2251
2252 /*
2253 * Check recent per-antenna transmit statistics and flip
2254 * the default antenna if noticeably more frames went out
2255 * on the non-default antenna.
2256 * XXX assumes 2 anntenae
2257 */
2258 otherant = sc->sc_defant & 1 ? 2 : 1;
2259 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2260 ath_setdefantenna(sc, otherant);
2261 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2262
2263 /*
2264 * Construct tx descriptor.
2265 */
2266 ath_beacon_setup(sc, bf);
2267
2268 /*
2269 * Stop any current dma and put the new frame on the queue.
2270 * This should never fail since we check above that no frames
2271 * are still pending on the queue.
2272 */
2273 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2274 DPRINTF(sc, ATH_DEBUG_ANY,
2275 "%s: beacon queue %u did not stop?\n",
2276 __func__, sc->sc_bhalq);
2277 }
2278 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2279 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2280
2281 /*
2282 * Enable the CAB queue before the beacon queue to
2283 * insure cab frames are triggered by this beacon.
2284 */
2285 if (ncabq != 0 && (sc->sc_boff.bo_tim[4] & 1)) /* NB: only at DTIM */
2286 ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
2287 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
2288 ath_hal_txstart(ah, sc->sc_bhalq);
2289 DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2290 "%s: TXDP[%u] = %" PRIx64 " (%p)\n", __func__,
2291 sc->sc_bhalq, (uint64_t)bf->bf_daddr, bf->bf_desc);
2292
2293 sc->sc_stats.ast_be_xmit++;
2294 }
2295
2296 /*
2297 * Reset the hardware after detecting beacons have stopped.
2298 */
2299 static void
2300 ath_bstuck_proc(void *arg, int pending)
2301 {
2302 struct ath_softc *sc = arg;
2303 struct ifnet *ifp = &sc->sc_if;
2304
2305 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2306 sc->sc_bmisscount);
2307 ath_reset(ifp);
2308 }
2309
2310 /*
2311 * Reclaim beacon resources.
2312 */
2313 static void
2314 ath_beacon_free(struct ath_softc *sc)
2315 {
2316 struct ath_buf *bf;
2317
2318 STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
2319 if (bf->bf_m != NULL) {
2320 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2321 m_freem(bf->bf_m);
2322 bf->bf_m = NULL;
2323 }
2324 if (bf->bf_node != NULL) {
2325 ieee80211_free_node(bf->bf_node);
2326 bf->bf_node = NULL;
2327 }
2328 }
2329 }
2330
2331 /*
2332 * Configure the beacon and sleep timers.
2333 *
2334 * When operating as an AP this resets the TSF and sets
2335 * up the hardware to notify us when we need to issue beacons.
2336 *
2337 * When operating in station mode this sets up the beacon
2338 * timers according to the timestamp of the last received
2339 * beacon and the current TSF, configures PCF and DTIM
2340 * handling, programs the sleep registers so the hardware
2341 * will wakeup in time to receive beacons, and configures
2342 * the beacon miss handling so we'll receive a BMISS
2343 * interrupt when we stop seeing beacons from the AP
2344 * we've associated with.
2345 */
2346 static void
2347 ath_beacon_config(struct ath_softc *sc)
2348 {
2349 #define TSF_TO_TU(_h,_l) \
2350 ((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
2351 #define FUDGE 2
2352 struct ath_hal *ah = sc->sc_ah;
2353 struct ieee80211com *ic = &sc->sc_ic;
2354 struct ieee80211_node *ni = ic->ic_bss;
2355 u_int32_t nexttbtt, intval, tsftu;
2356 u_int64_t tsf;
2357
2358 /* extract tstamp from last beacon and convert to TU */
2359 nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
2360 LE_READ_4(ni->ni_tstamp.data));
2361 /* NB: the beacon interval is kept internally in TU's */
2362 intval = ni->ni_intval & HAL_BEACON_PERIOD;
2363 if (nexttbtt == 0) /* e.g. for ap mode */
2364 nexttbtt = intval;
2365 else if (intval) /* NB: can be 0 for monitor mode */
2366 nexttbtt = roundup(nexttbtt, intval);
2367 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2368 __func__, nexttbtt, intval, ni->ni_intval);
2369 if (ic->ic_opmode == IEEE80211_M_STA) {
2370 HAL_BEACON_STATE bs;
2371 int dtimperiod, dtimcount;
2372 int cfpperiod, cfpcount;
2373
2374 /*
2375 * Setup dtim and cfp parameters according to
2376 * last beacon we received (which may be none).
2377 */
2378 dtimperiod = ni->ni_dtim_period;
2379 if (dtimperiod <= 0) /* NB: 0 if not known */
2380 dtimperiod = 1;
2381 dtimcount = ni->ni_dtim_count;
2382 if (dtimcount >= dtimperiod) /* NB: sanity check */
2383 dtimcount = 0; /* XXX? */
2384 cfpperiod = 1; /* NB: no PCF support yet */
2385 cfpcount = 0;
2386 /*
2387 * Pull nexttbtt forward to reflect the current
2388 * TSF and calculate dtim+cfp state for the result.
2389 */
2390 tsf = ath_hal_gettsf64(ah);
2391 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2392 do {
2393 nexttbtt += intval;
2394 if (--dtimcount < 0) {
2395 dtimcount = dtimperiod - 1;
2396 if (--cfpcount < 0)
2397 cfpcount = cfpperiod - 1;
2398 }
2399 } while (nexttbtt < tsftu);
2400 memset(&bs, 0, sizeof(bs));
2401 bs.bs_intval = intval;
2402 bs.bs_nexttbtt = nexttbtt;
2403 bs.bs_dtimperiod = dtimperiod*intval;
2404 bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
2405 bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
2406 bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
2407 bs.bs_cfpmaxduration = 0;
2408 #if 0
2409 /*
2410 * The 802.11 layer records the offset to the DTIM
2411 * bitmap while receiving beacons; use it here to
2412 * enable h/w detection of our AID being marked in
2413 * the bitmap vector (to indicate frames for us are
2414 * pending at the AP).
2415 * XXX do DTIM handling in s/w to WAR old h/w bugs
2416 * XXX enable based on h/w rev for newer chips
2417 */
2418 bs.bs_timoffset = ni->ni_timoff;
2419 #endif
2420 /*
2421 * Calculate the number of consecutive beacons to miss
2422 * before taking a BMISS interrupt. The configuration
2423 * is specified in ms, so we need to convert that to
2424 * TU's and then calculate based on the beacon interval.
2425 * Note that we clamp the result to at most 10 beacons.
2426 */
2427 bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
2428 if (bs.bs_bmissthreshold > 10)
2429 bs.bs_bmissthreshold = 10;
2430 else if (bs.bs_bmissthreshold <= 0)
2431 bs.bs_bmissthreshold = 1;
2432
2433 /*
2434 * Calculate sleep duration. The configuration is
2435 * given in ms. We insure a multiple of the beacon
2436 * period is used. Also, if the sleep duration is
2437 * greater than the DTIM period then it makes senses
2438 * to make it a multiple of that.
2439 *
2440 * XXX fixed at 100ms
2441 */
2442 bs.bs_sleepduration =
2443 roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2444 if (bs.bs_sleepduration > bs.bs_dtimperiod)
2445 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2446
2447 DPRINTF(sc, ATH_DEBUG_BEACON,
2448 "%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2449 , __func__
2450 , tsf, tsftu
2451 , bs.bs_intval
2452 , bs.bs_nexttbtt
2453 , bs.bs_dtimperiod
2454 , bs.bs_nextdtim
2455 , bs.bs_bmissthreshold
2456 , bs.bs_sleepduration
2457 , bs.bs_cfpperiod
2458 , bs.bs_cfpmaxduration
2459 , bs.bs_cfpnext
2460 , bs.bs_timoffset
2461 );
2462 ath_hal_intrset(ah, 0);
2463 ath_hal_beacontimers(ah, &bs);
2464 sc->sc_imask |= HAL_INT_BMISS;
2465 ath_hal_intrset(ah, sc->sc_imask);
2466 } else {
2467 ath_hal_intrset(ah, 0);
2468 if (nexttbtt == intval)
2469 intval |= HAL_BEACON_RESET_TSF;
2470 if (ic->ic_opmode == IEEE80211_M_IBSS) {
2471 /*
2472 * In IBSS mode enable the beacon timers but only
2473 * enable SWBA interrupts if we need to manually
2474 * prepare beacon frames. Otherwise we use a
2475 * self-linked tx descriptor and let the hardware
2476 * deal with things.
2477 */
2478 intval |= HAL_BEACON_ENA;
2479 if (!sc->sc_hasveol)
2480 sc->sc_imask |= HAL_INT_SWBA;
2481 if ((intval & HAL_BEACON_RESET_TSF) == 0) {
2482 /*
2483 * Pull nexttbtt forward to reflect
2484 * the current TSF.
2485 */
2486 tsf = ath_hal_gettsf64(ah);
2487 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2488 do {
2489 nexttbtt += intval;
2490 } while (nexttbtt < tsftu);
2491 }
2492 ath_beaconq_config(sc);
2493 } else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2494 /*
2495 * In AP mode we enable the beacon timers and
2496 * SWBA interrupts to prepare beacon frames.
2497 */
2498 intval |= HAL_BEACON_ENA;
2499 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */
2500 ath_beaconq_config(sc);
2501 }
2502 ath_hal_beaconinit(ah, nexttbtt, intval);
2503 sc->sc_bmisscount = 0;
2504 ath_hal_intrset(ah, sc->sc_imask);
2505 /*
2506 * When using a self-linked beacon descriptor in
2507 * ibss mode load it once here.
2508 */
2509 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2510 ath_beacon_proc(sc, 0);
2511 }
2512 sc->sc_syncbeacon = 0;
2513 #undef UNDEF
2514 #undef TSF_TO_TU
2515 }
2516
2517 static int
2518 ath_descdma_setup(struct ath_softc *sc,
2519 struct ath_descdma *dd, ath_bufhead *head,
2520 const char *name, int nbuf, int ndesc)
2521 {
2522 #define DS2PHYS(_dd, _ds) \
2523 ((_dd)->dd_desc_paddr + ((char *)(_ds) - (char *)(_dd)->dd_desc))
2524 struct ifnet *ifp = &sc->sc_if;
2525 struct ath_desc *ds;
2526 struct ath_buf *bf;
2527 int i, bsize, error;
2528
2529 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2530 __func__, name, nbuf, ndesc);
2531
2532 dd->dd_name = name;
2533 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2534
2535 /*
2536 * Setup DMA descriptor area.
2537 */
2538 dd->dd_dmat = sc->sc_dmat;
2539
2540 error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE,
2541 0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0);
2542
2543 if (error != 0) {
2544 if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2545 "error %u\n", nbuf * ndesc, dd->dd_name, error);
2546 goto fail0;
2547 }
2548
2549 error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg,
2550 dd->dd_desc_len, (void **)&dd->dd_desc, BUS_DMA_COHERENT);
2551 if (error != 0) {
2552 if_printf(ifp, "unable to map %u %s descriptors, error = %u\n",
2553 nbuf * ndesc, dd->dd_name, error);
2554 goto fail1;
2555 }
2556
2557 /* allocate descriptors */
2558 error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1,
2559 dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2560 if (error != 0) {
2561 if_printf(ifp, "unable to create dmamap for %s descriptors, "
2562 "error %u\n", dd->dd_name, error);
2563 goto fail2;
2564 }
2565
2566 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc,
2567 dd->dd_desc_len, NULL, BUS_DMA_NOWAIT);
2568 if (error != 0) {
2569 if_printf(ifp, "unable to map %s descriptors, error %u\n",
2570 dd->dd_name, error);
2571 goto fail3;
2572 }
2573
2574 ds = dd->dd_desc;
2575 dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr;
2576 DPRINTF(sc, ATH_DEBUG_RESET,
2577 "%s: %s DMA map: %p (%lu) -> %" PRIx64 " (%lu)\n",
2578 __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2579 (uint64_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2580
2581 /* allocate rx buffers */
2582 bsize = sizeof(struct ath_buf) * nbuf;
2583 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2584 if (bf == NULL) {
2585 if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2586 dd->dd_name, bsize);
2587 goto fail4;
2588 }
2589 dd->dd_bufptr = bf;
2590
2591 STAILQ_INIT(head);
2592 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2593 bf->bf_desc = ds;
2594 bf->bf_daddr = DS2PHYS(dd, ds);
2595 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc,
2596 MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap);
2597 if (error != 0) {
2598 if_printf(ifp, "unable to create dmamap for %s "
2599 "buffer %u, error %u\n", dd->dd_name, i, error);
2600 ath_descdma_cleanup(sc, dd, head);
2601 return error;
2602 }
2603 STAILQ_INSERT_TAIL(head, bf, bf_list);
2604 }
2605 return 0;
2606 fail4:
2607 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2608 fail3:
2609 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2610 fail2:
2611 bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
2612 fail1:
2613 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2614 fail0:
2615 memset(dd, 0, sizeof(*dd));
2616 return error;
2617 #undef DS2PHYS
2618 }
2619
2620 static void
2621 ath_descdma_cleanup(struct ath_softc *sc,
2622 struct ath_descdma *dd, ath_bufhead *head)
2623 {
2624 struct ath_buf *bf;
2625 struct ieee80211_node *ni;
2626
2627 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2628 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2629 bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
2630 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2631
2632 STAILQ_FOREACH(bf, head, bf_list) {
2633 if (bf->bf_m) {
2634 m_freem(bf->bf_m);
2635 bf->bf_m = NULL;
2636 }
2637 if (bf->bf_dmamap != NULL) {
2638 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2639 bf->bf_dmamap = NULL;
2640 }
2641 ni = bf->bf_node;
2642 bf->bf_node = NULL;
2643 if (ni != NULL) {
2644 /*
2645 * Reclaim node reference.
2646 */
2647 ieee80211_free_node(ni);
2648 }
2649 }
2650
2651 STAILQ_INIT(head);
2652 free(dd->dd_bufptr, M_ATHDEV);
2653 memset(dd, 0, sizeof(*dd));
2654 }
2655
2656 static int
2657 ath_desc_alloc(struct ath_softc *sc)
2658 {
2659 int error;
2660
2661 error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2662 "rx", ath_rxbuf, 1);
2663 if (error != 0)
2664 return error;
2665
2666 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2667 "tx", ath_txbuf, ATH_TXDESC);
2668 if (error != 0) {
2669 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2670 return error;
2671 }
2672
2673 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2674 "beacon", 1, 1);
2675 if (error != 0) {
2676 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2677 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2678 return error;
2679 }
2680 return 0;
2681 }
2682
2683 static void
2684 ath_desc_free(struct ath_softc *sc)
2685 {
2686
2687 if (sc->sc_bdma.dd_desc_len != 0)
2688 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2689 if (sc->sc_txdma.dd_desc_len != 0)
2690 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2691 if (sc->sc_rxdma.dd_desc_len != 0)
2692 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2693 }
2694
2695 static struct ieee80211_node *
2696 ath_node_alloc(struct ieee80211_node_table *nt)
2697 {
2698 struct ieee80211com *ic = nt->nt_ic;
2699 struct ath_softc *sc = ic->ic_ifp->if_softc;
2700 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2701 struct ath_node *an;
2702
2703 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2704 if (an == NULL) {
2705 /* XXX stat+msg */
2706 return NULL;
2707 }
2708 an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
2709 ath_rate_node_init(sc, an);
2710
2711 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2712 return &an->an_node;
2713 }
2714
2715 static void
2716 ath_node_free(struct ieee80211_node *ni)
2717 {
2718 struct ieee80211com *ic = ni->ni_ic;
2719 struct ath_softc *sc = ic->ic_ifp->if_softc;
2720
2721 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2722
2723 ath_rate_node_cleanup(sc, ATH_NODE(ni));
2724 sc->sc_node_free(ni);
2725 }
2726
2727 static u_int8_t
2728 ath_node_getrssi(const struct ieee80211_node *ni)
2729 {
2730 #define HAL_EP_RND(x, mul) \
2731 ((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
2732 u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
2733 int32_t rssi;
2734
2735 /*
2736 * When only one frame is received there will be no state in
2737 * avgrssi so fallback on the value recorded by the 802.11 layer.
2738 */
2739 if (avgrssi != ATH_RSSI_DUMMY_MARKER)
2740 rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
2741 else
2742 rssi = ni->ni_rssi;
2743 return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
2744 #undef HAL_EP_RND
2745 }
2746
2747 static int
2748 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2749 {
2750 struct ath_hal *ah = sc->sc_ah;
2751 int error;
2752 struct mbuf *m;
2753 struct ath_desc *ds;
2754
2755 m = bf->bf_m;
2756 if (m == NULL) {
2757 /*
2758 * NB: by assigning a page to the rx dma buffer we
2759 * implicitly satisfy the Atheros requirement that
2760 * this buffer be cache-line-aligned and sized to be
2761 * multiple of the cache line size. Not doing this
2762 * causes weird stuff to happen (for the 5210 at least).
2763 */
2764 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2765 if (m == NULL) {
2766 DPRINTF(sc, ATH_DEBUG_ANY,
2767 "%s: no mbuf/cluster\n", __func__);
2768 sc->sc_stats.ast_rx_nombuf++;
2769 return ENOMEM;
2770 }
2771 bf->bf_m = m;
2772 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2773
2774 error = bus_dmamap_load_mbuf(sc->sc_dmat,
2775 bf->bf_dmamap, m,
2776 BUS_DMA_NOWAIT);
2777 if (error != 0) {
2778 DPRINTF(sc, ATH_DEBUG_ANY,
2779 "%s: bus_dmamap_load_mbuf failed; error %d\n",
2780 __func__, error);
2781 sc->sc_stats.ast_rx_busdma++;
2782 return error;
2783 }
2784 KASSERT(bf->bf_nseg == 1,
2785 ("multi-segment packet; nseg %u", bf->bf_nseg));
2786 }
2787 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2788 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2789
2790 /*
2791 * Setup descriptors. For receive we always terminate
2792 * the descriptor list with a self-linked entry so we'll
2793 * not get overrun under high load (as can happen with a
2794 * 5212 when ANI processing enables PHY error frames).
2795 *
2796 * To insure the last descriptor is self-linked we create
2797 * each descriptor as self-linked and add it to the end. As
2798 * each additional descriptor is added the previous self-linked
2799 * entry is ``fixed'' naturally. This should be safe even
2800 * if DMA is happening. When processing RX interrupts we
2801 * never remove/process the last, self-linked, entry on the
2802 * descriptor list. This insures the hardware always has
2803 * someplace to write a new frame.
2804 */
2805 ds = bf->bf_desc;
2806 ds->ds_link = HTOAH32(bf->bf_daddr); /* link to self */
2807 ds->ds_data = bf->bf_segs[0].ds_addr;
2808 ds->ds_vdata = mtod(m, void *); /* for radar */
2809 ath_hal_setuprxdesc(ah, ds
2810 , m->m_len /* buffer size */
2811 , 0
2812 );
2813
2814 if (sc->sc_rxlink != NULL)
2815 *sc->sc_rxlink = bf->bf_daddr;
2816 sc->sc_rxlink = &ds->ds_link;
2817 return 0;
2818 }
2819
2820 /*
2821 * Extend 15-bit time stamp from rx descriptor to
2822 * a full 64-bit TSF using the specified TSF.
2823 */
2824 static inline u_int64_t
2825 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
2826 {
2827 if ((tsf & 0x7fff) < rstamp)
2828 tsf -= 0x8000;
2829 return ((tsf &~ 0x7fff) | rstamp);
2830 }
2831
2832 /*
2833 * Intercept management frames to collect beacon rssi data
2834 * and to do ibss merges.
2835 */
2836 static void
2837 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2838 struct ieee80211_node *ni,
2839 int subtype, int rssi, u_int32_t rstamp)
2840 {
2841 struct ath_softc *sc = ic->ic_ifp->if_softc;
2842
2843 /*
2844 * Call up first so subsequent work can use information
2845 * potentially stored in the node (e.g. for ibss merge).
2846 */
2847 sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
2848 switch (subtype) {
2849 case IEEE80211_FC0_SUBTYPE_BEACON:
2850 /* update rssi statistics for use by the hal */
2851 ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
2852 if (sc->sc_syncbeacon &&
2853 ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) {
2854 /*
2855 * Resync beacon timers using the tsf of the beacon
2856 * frame we just received.
2857 */
2858 ath_beacon_config(sc);
2859 }
2860 /* fall thru... */
2861 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2862 if (ic->ic_opmode == IEEE80211_M_IBSS &&
2863 ic->ic_state == IEEE80211_S_RUN) {
2864 u_int64_t tsf = ath_extend_tsf(rstamp,
2865 ath_hal_gettsf64(sc->sc_ah));
2866
2867 /*
2868 * Handle ibss merge as needed; check the tsf on the
2869 * frame before attempting the merge. The 802.11 spec
2870 * says the station should change it's bssid to match
2871 * the oldest station with the same ssid, where oldest
2872 * is determined by the tsf. Note that hardware
2873 * reconfiguration happens through callback to
2874 * ath_newstate as the state machine will go from
2875 * RUN -> RUN when this happens.
2876 */
2877 if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
2878 DPRINTF(sc, ATH_DEBUG_STATE,
2879 "ibss merge, rstamp %u tsf %ju "
2880 "tstamp %ju\n", rstamp, (uintmax_t)tsf,
2881 (uintmax_t)ni->ni_tstamp.tsf);
2882 (void) ieee80211_ibss_merge(ni);
2883 }
2884 }
2885 break;
2886 }
2887 }
2888
2889 /*
2890 * Set the default antenna.
2891 */
2892 static void
2893 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
2894 {
2895 struct ath_hal *ah = sc->sc_ah;
2896
2897 /* XXX block beacon interrupts */
2898 ath_hal_setdefantenna(ah, antenna);
2899 if (sc->sc_defant != antenna)
2900 sc->sc_stats.ast_ant_defswitch++;
2901 sc->sc_defant = antenna;
2902 sc->sc_rxotherant = 0;
2903 }
2904
2905 static void
2906 ath_rx_proc(void *arg, int npending)
2907 {
2908 #define PA2DESC(_sc, _pa) \
2909 ((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
2910 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
2911 struct ath_softc *sc = arg;
2912 struct ath_buf *bf;
2913 struct ieee80211com *ic = &sc->sc_ic;
2914 struct ifnet *ifp = &sc->sc_if;
2915 struct ath_hal *ah = sc->sc_ah;
2916 struct ath_desc *ds;
2917 struct mbuf *m;
2918 struct ieee80211_node *ni;
2919 struct ath_node *an;
2920 int len, type, ngood;
2921 u_int phyerr;
2922 HAL_STATUS status;
2923 int16_t nf;
2924 u_int64_t tsf;
2925
2926 NET_LOCK_GIANT(); /* XXX */
2927
2928 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
2929 ngood = 0;
2930 nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
2931 tsf = ath_hal_gettsf64(ah);
2932 do {
2933 bf = STAILQ_FIRST(&sc->sc_rxbuf);
2934 if (bf == NULL) { /* NB: shouldn't happen */
2935 if_printf(ifp, "%s: no buffer!\n", __func__);
2936 break;
2937 }
2938 ds = bf->bf_desc;
2939 if (ds->ds_link == bf->bf_daddr) {
2940 /* NB: never process the self-linked entry at the end */
2941 break;
2942 }
2943 m = bf->bf_m;
2944 if (m == NULL) { /* NB: shouldn't happen */
2945 if_printf(ifp, "%s: no mbuf!\n", __func__);
2946 break;
2947 }
2948 /* XXX sync descriptor memory */
2949 /*
2950 * Must provide the virtual address of the current
2951 * descriptor, the physical address, and the virtual
2952 * address of the next descriptor in the h/w chain.
2953 * This allows the HAL to look ahead to see if the
2954 * hardware is done with a descriptor by checking the
2955 * done bit in the following descriptor and the address
2956 * of the current descriptor the DMA engine is working
2957 * on. All this is necessary because of our use of
2958 * a self-linked list to avoid rx overruns.
2959 */
2960 status = ath_hal_rxprocdesc(ah, ds,
2961 bf->bf_daddr, PA2DESC(sc, ds->ds_link));
2962 #ifdef AR_DEBUG
2963 if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
2964 ath_printrxbuf(bf, status == HAL_OK);
2965 #endif
2966 if (status == HAL_EINPROGRESS)
2967 break;
2968 STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
2969 if (ds->ds_rxstat.rs_more) {
2970 /*
2971 * Frame spans multiple descriptors; this
2972 * cannot happen yet as we don't support
2973 * jumbograms. If not in monitor mode,
2974 * discard the frame.
2975 */
2976 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2977 sc->sc_stats.ast_rx_toobig++;
2978 goto rx_next;
2979 }
2980 /* fall thru for monitor mode handling... */
2981 } else if (ds->ds_rxstat.rs_status != 0) {
2982 if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
2983 sc->sc_stats.ast_rx_crcerr++;
2984 if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
2985 sc->sc_stats.ast_rx_fifoerr++;
2986 if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
2987 sc->sc_stats.ast_rx_phyerr++;
2988 phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
2989 sc->sc_stats.ast_rx_phy[phyerr]++;
2990 goto rx_next;
2991 }
2992 if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
2993 /*
2994 * Decrypt error. If the error occurred
2995 * because there was no hardware key, then
2996 * let the frame through so the upper layers
2997 * can process it. This is necessary for 5210
2998 * parts which have no way to setup a ``clear''
2999 * key cache entry.
3000 *
3001 * XXX do key cache faulting
3002 */
3003 if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
3004 goto rx_accept;
3005 sc->sc_stats.ast_rx_badcrypt++;
3006 }
3007 if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
3008 sc->sc_stats.ast_rx_badmic++;
3009 /*
3010 * Do minimal work required to hand off
3011 * the 802.11 header for notifcation.
3012 */
3013 /* XXX frag's and qos frames */
3014 len = ds->ds_rxstat.rs_datalen;
3015 if (len >= sizeof (struct ieee80211_frame)) {
3016 bus_dmamap_sync(sc->sc_dmat,
3017 bf->bf_dmamap,
3018 0, bf->bf_dmamap->dm_mapsize,
3019 BUS_DMASYNC_POSTREAD);
3020 ieee80211_notify_michael_failure(ic,
3021 mtod(m, struct ieee80211_frame *),
3022 sc->sc_splitmic ?
3023 ds->ds_rxstat.rs_keyix-32 :
3024 ds->ds_rxstat.rs_keyix
3025 );
3026 }
3027 }
3028 ifp->if_ierrors++;
3029 /*
3030 * Reject error frames, we normally don't want
3031 * to see them in monitor mode (in monitor mode
3032 * allow through packets that have crypto problems).
3033 */
3034 if ((ds->ds_rxstat.rs_status &~
3035 (HAL_RXERR_DECRYPT|HAL_RXERR_MIC)) ||
3036 sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
3037 goto rx_next;
3038 }
3039 rx_accept:
3040 /*
3041 * Sync and unmap the frame. At this point we're
3042 * committed to passing the mbuf somewhere so clear
3043 * bf_m; this means a new sk_buff must be allocated
3044 * when the rx descriptor is setup again to receive
3045 * another frame.
3046 */
3047 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3048 0, bf->bf_dmamap->dm_mapsize,
3049 BUS_DMASYNC_POSTREAD);
3050 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3051 bf->bf_m = NULL;
3052
3053 m->m_pkthdr.rcvif = ifp;
3054 len = ds->ds_rxstat.rs_datalen;
3055 m->m_pkthdr.len = m->m_len = len;
3056
3057 sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
3058
3059 #if NBPFILTER > 0
3060 if (sc->sc_drvbpf) {
3061 u_int8_t rix;
3062
3063 /*
3064 * Discard anything shorter than an ack or cts.
3065 */
3066 if (len < IEEE80211_ACK_LEN) {
3067 DPRINTF(sc, ATH_DEBUG_RECV,
3068 "%s: runt packet %d\n",
3069 __func__, len);
3070 sc->sc_stats.ast_rx_tooshort++;
3071 m_freem(m);
3072 goto rx_next;
3073 }
3074 rix = ds->ds_rxstat.rs_rate;
3075 sc->sc_rx_th.wr_tsf = htole64(
3076 ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf));
3077 sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
3078 sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
3079 sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf;
3080 sc->sc_rx_th.wr_antnoise = nf;
3081 sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
3082
3083 bpf_mtap2(sc->sc_drvbpf,
3084 &sc->sc_rx_th, sc->sc_rx_th_len, m);
3085 }
3086 #endif
3087
3088 /*
3089 * From this point on we assume the frame is at least
3090 * as large as ieee80211_frame_min; verify that.
3091 */
3092 if (len < IEEE80211_MIN_LEN) {
3093 DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
3094 __func__, len);
3095 sc->sc_stats.ast_rx_tooshort++;
3096 m_freem(m);
3097 goto rx_next;
3098 }
3099
3100 if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
3101 ieee80211_dump_pkt(mtod(m, void *), len,
3102 sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
3103 ds->ds_rxstat.rs_rssi);
3104 }
3105
3106 m_adj(m, -IEEE80211_CRC_LEN);
3107
3108 /*
3109 * Locate the node for sender, track state, and then
3110 * pass the (referenced) node up to the 802.11 layer
3111 * for its use.
3112 */
3113 ni = ieee80211_find_rxnode_withkey(ic,
3114 mtod(m, const struct ieee80211_frame_min *),
3115 ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
3116 IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
3117 /*
3118 * Track rx rssi and do any rx antenna management.
3119 */
3120 an = ATH_NODE(ni);
3121 ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
3122 ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi);
3123 /*
3124 * Send frame up for processing.
3125 */
3126 type = ieee80211_input(ic, m, ni,
3127 ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
3128 ieee80211_free_node(ni);
3129 if (sc->sc_diversity) {
3130 /*
3131 * When using fast diversity, change the default rx
3132 * antenna if diversity chooses the other antenna 3
3133 * times in a row.
3134 */
3135 if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
3136 if (++sc->sc_rxotherant >= 3)
3137 ath_setdefantenna(sc,
3138 ds->ds_rxstat.rs_antenna);
3139 } else
3140 sc->sc_rxotherant = 0;
3141 }
3142 if (sc->sc_softled) {
3143 /*
3144 * Blink for any data frame. Otherwise do a
3145 * heartbeat-style blink when idle. The latter
3146 * is mainly for station mode where we depend on
3147 * periodic beacon frames to trigger the poll event.
3148 */
3149 if (type == IEEE80211_FC0_TYPE_DATA) {
3150 sc->sc_rxrate = ds->ds_rxstat.rs_rate;
3151 ath_led_event(sc, ATH_LED_RX);
3152 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
3153 ath_led_event(sc, ATH_LED_POLL);
3154 }
3155 /*
3156 * Arrange to update the last rx timestamp only for
3157 * frames from our ap when operating in station mode.
3158 * This assumes the rx key is always setup when associated.
3159 */
3160 if (ic->ic_opmode == IEEE80211_M_STA &&
3161 ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID)
3162 ngood++;
3163 rx_next:
3164 STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
3165 } while (ath_rxbuf_init(sc, bf) == 0);
3166
3167 /* rx signal state monitoring */
3168 ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
3169 if (ath_hal_radar_event(ah))
3170 TASK_RUN_OR_ENQUEUE(&sc->sc_radartask);
3171 if (ngood)
3172 sc->sc_lastrx = tsf;
3173
3174 #ifdef __NetBSD__
3175 /* XXX Why isn't this necessary in FreeBSD? */
3176 if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
3177 ath_start(ifp);
3178 #endif /* __NetBSD__ */
3179
3180 NET_UNLOCK_GIANT(); /* XXX */
3181 #undef PA2DESC
3182 }
3183
3184 /*
3185 * Setup a h/w transmit queue.
3186 */
3187 static struct ath_txq *
3188 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3189 {
3190 #define N(a) (sizeof(a)/sizeof(a[0]))
3191 struct ath_hal *ah = sc->sc_ah;
3192 HAL_TXQ_INFO qi;
3193 int qnum;
3194
3195 memset(&qi, 0, sizeof(qi));
3196 qi.tqi_subtype = subtype;
3197 qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3198 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3199 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3200 /*
3201 * Enable interrupts only for EOL and DESC conditions.
3202 * We mark tx descriptors to receive a DESC interrupt
3203 * when a tx queue gets deep; otherwise waiting for the
3204 * EOL to reap descriptors. Note that this is done to
3205 * reduce interrupt load and this only defers reaping
3206 * descriptors, never transmitting frames. Aside from
3207 * reducing interrupts this also permits more concurrency.
3208 * The only potential downside is if the tx queue backs
3209 * up in which case the top half of the kernel may backup
3210 * due to a lack of tx descriptors.
3211 */
3212 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
3213 qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3214 if (qnum == -1) {
3215 /*
3216 * NB: don't print a message, this happens
3217 * normally on parts with too few tx queues
3218 */
3219 return NULL;
3220 }
3221 if (qnum >= N(sc->sc_txq)) {
3222 device_printf(&sc->sc_dev,
3223 "hal qnum %u out of range, max %zu!\n",
3224 qnum, N(sc->sc_txq));
3225 ath_hal_releasetxqueue(ah, qnum);
3226 return NULL;
3227 }
3228 if (!ATH_TXQ_SETUP(sc, qnum)) {
3229 struct ath_txq *txq = &sc->sc_txq[qnum];
3230
3231 txq->axq_qnum = qnum;
3232 txq->axq_depth = 0;
3233 txq->axq_intrcnt = 0;
3234 txq->axq_link = NULL;
3235 STAILQ_INIT(&txq->axq_q);
3236 ATH_TXQ_LOCK_INIT(sc, txq);
3237 sc->sc_txqsetup |= 1<<qnum;
3238 }
3239 return &sc->sc_txq[qnum];
3240 #undef N
3241 }
3242
3243 /*
3244 * Setup a hardware data transmit queue for the specified
3245 * access control. The hal may not support all requested
3246 * queues in which case it will return a reference to a
3247 * previously setup queue. We record the mapping from ac's
3248 * to h/w queues for use by ath_tx_start and also track
3249 * the set of h/w queues being used to optimize work in the
3250 * transmit interrupt handler and related routines.
3251 */
3252 static int
3253 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3254 {
3255 #define N(a) (sizeof(a)/sizeof(a[0]))
3256 struct ath_txq *txq;
3257
3258 if (ac >= N(sc->sc_ac2q)) {
3259 device_printf(&sc->sc_dev, "AC %u out of range, max %zu!\n",
3260 ac, N(sc->sc_ac2q));
3261 return 0;
3262 }
3263 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3264 if (txq != NULL) {
3265 sc->sc_ac2q[ac] = txq;
3266 return 1;
3267 } else
3268 return 0;
3269 #undef N
3270 }
3271
3272 /*
3273 * Update WME parameters for a transmit queue.
3274 */
3275 static int
3276 ath_txq_update(struct ath_softc *sc, int ac)
3277 {
3278 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1)
3279 #define ATH_TXOP_TO_US(v) (v<<5)
3280 struct ieee80211com *ic = &sc->sc_ic;
3281 struct ath_txq *txq = sc->sc_ac2q[ac];
3282 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3283 struct ath_hal *ah = sc->sc_ah;
3284 HAL_TXQ_INFO qi;
3285
3286 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3287 qi.tqi_aifs = wmep->wmep_aifsn;
3288 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3289 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3290 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3291
3292 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3293 device_printf(&sc->sc_dev, "unable to update hardware queue "
3294 "parameters for %s traffic!\n",
3295 ieee80211_wme_acnames[ac]);
3296 return 0;
3297 } else {
3298 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3299 return 1;
3300 }
3301 #undef ATH_TXOP_TO_US
3302 #undef ATH_EXPONENT_TO_VALUE
3303 }
3304
3305 /*
3306 * Callback from the 802.11 layer to update WME parameters.
3307 */
3308 static int
3309 ath_wme_update(struct ieee80211com *ic)
3310 {
3311 struct ath_softc *sc = ic->ic_ifp->if_softc;
3312
3313 return !ath_txq_update(sc, WME_AC_BE) ||
3314 !ath_txq_update(sc, WME_AC_BK) ||
3315 !ath_txq_update(sc, WME_AC_VI) ||
3316 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3317 }
3318
3319 /*
3320 * Reclaim resources for a setup queue.
3321 */
3322 static void
3323 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3324 {
3325
3326 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3327 ATH_TXQ_LOCK_DESTROY(txq);
3328 sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3329 }
3330
3331 /*
3332 * Reclaim all tx queue resources.
3333 */
3334 static void
3335 ath_tx_cleanup(struct ath_softc *sc)
3336 {
3337 int i;
3338
3339 ATH_TXBUF_LOCK_DESTROY(sc);
3340 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3341 if (ATH_TXQ_SETUP(sc, i))
3342 ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3343 }
3344
3345 /*
3346 * Defragment an mbuf chain, returning at most maxfrags separate
3347 * mbufs+clusters. If this is not possible NULL is returned and
3348 * the original mbuf chain is left in it's present (potentially
3349 * modified) state. We use two techniques: collapsing consecutive
3350 * mbufs and replacing consecutive mbufs by a cluster.
3351 */
3352 static struct mbuf *
3353 ath_defrag(struct mbuf *m0, int how, int maxfrags)
3354 {
3355 struct mbuf *m, *n, *n2, **prev;
3356 u_int curfrags;
3357
3358 /*
3359 * Calculate the current number of frags.
3360 */
3361 curfrags = 0;
3362 for (m = m0; m != NULL; m = m->m_next)
3363 curfrags++;
3364 /*
3365 * First, try to collapse mbufs. Note that we always collapse
3366 * towards the front so we don't need to deal with moving the
3367 * pkthdr. This may be suboptimal if the first mbuf has much
3368 * less data than the following.
3369 */
3370 m = m0;
3371 again:
3372 for (;;) {
3373 n = m->m_next;
3374 if (n == NULL)
3375 break;
3376 if (n->m_len < M_TRAILINGSPACE(m)) {
3377 memcpy(mtod(m, char *) + m->m_len, mtod(n, void *),
3378 n->m_len);
3379 m->m_len += n->m_len;
3380 m->m_next = n->m_next;
3381 m_free(n);
3382 if (--curfrags <= maxfrags)
3383 return m0;
3384 } else
3385 m = n;
3386 }
3387 KASSERT(maxfrags > 1,
3388 ("maxfrags %u, but normal collapse failed", maxfrags));
3389 /*
3390 * Collapse consecutive mbufs to a cluster.
3391 */
3392 prev = &m0->m_next; /* NB: not the first mbuf */
3393 while ((n = *prev) != NULL) {
3394 if ((n2 = n->m_next) != NULL &&
3395 n->m_len + n2->m_len < MCLBYTES) {
3396 m = m_getcl(how, MT_DATA, 0);
3397 if (m == NULL)
3398 goto bad;
3399 bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
3400 bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
3401 n2->m_len);
3402 m->m_len = n->m_len + n2->m_len;
3403 m->m_next = n2->m_next;
3404 *prev = m;
3405 m_free(n);
3406 m_free(n2);
3407 if (--curfrags <= maxfrags) /* +1 cl -2 mbufs */
3408 return m0;
3409 /*
3410 * Still not there, try the normal collapse
3411 * again before we allocate another cluster.
3412 */
3413 goto again;
3414 }
3415 prev = &n->m_next;
3416 }
3417 /*
3418 * No place where we can collapse to a cluster; punt.
3419 * This can occur if, for example, you request 2 frags
3420 * but the packet requires that both be clusters (we
3421 * never reallocate the first mbuf to avoid moving the
3422 * packet header).
3423 */
3424 bad:
3425 return NULL;
3426 }
3427
3428 /*
3429 * Return h/w rate index for an IEEE rate (w/o basic rate bit).
3430 */
3431 static int
3432 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
3433 {
3434 int i;
3435
3436 for (i = 0; i < rt->rateCount; i++)
3437 if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
3438 return i;
3439 return 0; /* NB: lowest rate */
3440 }
3441
3442 static void
3443 ath_freetx(struct mbuf *m)
3444 {
3445 struct mbuf *next;
3446
3447 do {
3448 next = m->m_nextpkt;
3449 m->m_nextpkt = NULL;
3450 m_freem(m);
3451 } while ((m = next) != NULL);
3452 }
3453
3454 static int
3455 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
3456 struct mbuf *m0)
3457 {
3458 struct ieee80211com *ic = &sc->sc_ic;
3459 struct ath_hal *ah = sc->sc_ah;
3460 struct ifnet *ifp = &sc->sc_if;
3461 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
3462 int i, error, iswep, ismcast, isfrag, ismrr;
3463 int keyix, hdrlen, pktlen, try0;
3464 u_int8_t rix, txrate, ctsrate;
3465 u_int8_t cix = 0xff; /* NB: silence compiler */
3466 struct ath_desc *ds, *ds0;
3467 struct ath_txq *txq;
3468 struct ieee80211_frame *wh;
3469 u_int subtype, flags, ctsduration;
3470 HAL_PKT_TYPE atype;
3471 const HAL_RATE_TABLE *rt;
3472 HAL_BOOL shortPreamble;
3473 struct ath_node *an;
3474 struct mbuf *m;
3475 u_int pri;
3476
3477 wh = mtod(m0, struct ieee80211_frame *);
3478 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
3479 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3480 isfrag = m0->m_flags & M_FRAG;
3481 hdrlen = ieee80211_anyhdrsize(wh);
3482 /*
3483 * Packet length must not include any
3484 * pad bytes; deduct them here.
3485 */
3486 pktlen = m0->m_pkthdr.len - (hdrlen & 3);
3487
3488 if (iswep) {
3489 const struct ieee80211_cipher *cip;
3490 struct ieee80211_key *k;
3491
3492 /*
3493 * Construct the 802.11 header+trailer for an encrypted
3494 * frame. The only reason this can fail is because of an
3495 * unknown or unsupported cipher/key type.
3496 */
3497 k = ieee80211_crypto_encap(ic, ni, m0);
3498 if (k == NULL) {
3499 /*
3500 * This can happen when the key is yanked after the
3501 * frame was queued. Just discard the frame; the
3502 * 802.11 layer counts failures and provides
3503 * debugging/diagnostics.
3504 */
3505 ath_freetx(m0);
3506 return EIO;
3507 }
3508 /*
3509 * Adjust the packet + header lengths for the crypto
3510 * additions and calculate the h/w key index. When
3511 * a s/w mic is done the frame will have had any mic
3512 * added to it prior to entry so m0->m_pkthdr.len above will
3513 * account for it. Otherwise we need to add it to the
3514 * packet length.
3515 */
3516 cip = k->wk_cipher;
3517 hdrlen += cip->ic_header;
3518 pktlen += cip->ic_header + cip->ic_trailer;
3519 /* NB: frags always have any TKIP MIC done in s/w */
3520 if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
3521 pktlen += cip->ic_miclen;
3522 keyix = k->wk_keyix;
3523
3524 /* packet header may have moved, reset our local pointer */
3525 wh = mtod(m0, struct ieee80211_frame *);
3526 } else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
3527 /*
3528 * Use station key cache slot, if assigned.
3529 */
3530 keyix = ni->ni_ucastkey.wk_keyix;
3531 if (keyix == IEEE80211_KEYIX_NONE)
3532 keyix = HAL_TXKEYIX_INVALID;
3533 } else
3534 keyix = HAL_TXKEYIX_INVALID;
3535
3536 pktlen += IEEE80211_CRC_LEN;
3537
3538 /*
3539 * Load the DMA map so any coalescing is done. This
3540 * also calculates the number of descriptors we need.
3541 */
3542 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3543 BUS_DMA_NOWAIT);
3544 if (error == EFBIG) {
3545 /* XXX packet requires too many descriptors */
3546 bf->bf_nseg = ATH_TXDESC+1;
3547 } else if (error != 0) {
3548 sc->sc_stats.ast_tx_busdma++;
3549 ath_freetx(m0);
3550 return error;
3551 }
3552 /*
3553 * Discard null packets and check for packets that
3554 * require too many TX descriptors. We try to convert
3555 * the latter to a cluster.
3556 */
3557 if (error == EFBIG) { /* too many desc's, linearize */
3558 sc->sc_stats.ast_tx_linear++;
3559 m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
3560 if (m == NULL) {
3561 ath_freetx(m0);
3562 sc->sc_stats.ast_tx_nombuf++;
3563 return ENOMEM;
3564 }
3565 m0 = m;
3566 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3567 BUS_DMA_NOWAIT);
3568 if (error != 0) {
3569 sc->sc_stats.ast_tx_busdma++;
3570 ath_freetx(m0);
3571 return error;
3572 }
3573 KASSERT(bf->bf_nseg <= ATH_TXDESC,
3574 ("too many segments after defrag; nseg %u", bf->bf_nseg));
3575 } else if (bf->bf_nseg == 0) { /* null packet, discard */
3576 sc->sc_stats.ast_tx_nodata++;
3577 ath_freetx(m0);
3578 return EIO;
3579 }
3580 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
3581 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
3582 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
3583 bf->bf_m = m0;
3584 bf->bf_node = ni; /* NB: held reference */
3585
3586 /* setup descriptors */
3587 ds = bf->bf_desc;
3588 rt = sc->sc_currates;
3589 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3590
3591 /*
3592 * NB: the 802.11 layer marks whether or not we should
3593 * use short preamble based on the current mode and
3594 * negotiated parameters.
3595 */
3596 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3597 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) {
3598 shortPreamble = AH_TRUE;
3599 sc->sc_stats.ast_tx_shortpre++;
3600 } else {
3601 shortPreamble = AH_FALSE;
3602 }
3603
3604 an = ATH_NODE(ni);
3605 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */
3606 ismrr = 0; /* default no multi-rate retry*/
3607 /*
3608 * Calculate Atheros packet type from IEEE80211 packet header,
3609 * setup for rate calculations, and select h/w transmit queue.
3610 */
3611 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3612 case IEEE80211_FC0_TYPE_MGT:
3613 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3614 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
3615 atype = HAL_PKT_TYPE_BEACON;
3616 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3617 atype = HAL_PKT_TYPE_PROBE_RESP;
3618 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
3619 atype = HAL_PKT_TYPE_ATIM;
3620 else
3621 atype = HAL_PKT_TYPE_NORMAL; /* XXX */
3622 rix = sc->sc_minrateix;
3623 txrate = rt->info[rix].rateCode;
3624 if (shortPreamble)
3625 txrate |= rt->info[rix].shortPreamble;
3626 try0 = ATH_TXMGTTRY;
3627 /* NB: force all management frames to highest queue */
3628 if (ni->ni_flags & IEEE80211_NODE_QOS) {
3629 /* NB: force all management frames to highest queue */
3630 pri = WME_AC_VO;
3631 } else
3632 pri = WME_AC_BE;
3633 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
3634 break;
3635 case IEEE80211_FC0_TYPE_CTL:
3636 atype = HAL_PKT_TYPE_PSPOLL; /* stop setting of duration */
3637 rix = sc->sc_minrateix;
3638 txrate = rt->info[rix].rateCode;
3639 if (shortPreamble)
3640 txrate |= rt->info[rix].shortPreamble;
3641 try0 = ATH_TXMGTTRY;
3642 /* NB: force all ctl frames to highest queue */
3643 if (ni->ni_flags & IEEE80211_NODE_QOS) {
3644 /* NB: force all ctl frames to highest queue */
3645 pri = WME_AC_VO;
3646 } else
3647 pri = WME_AC_BE;
3648 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
3649 break;
3650 case IEEE80211_FC0_TYPE_DATA:
3651 atype = HAL_PKT_TYPE_NORMAL; /* default */
3652 /*
3653 * Data frames: multicast frames go out at a fixed rate,
3654 * otherwise consult the rate control module for the
3655 * rate to use.
3656 */
3657 if (ismcast) {
3658 /*
3659 * Check mcast rate setting in case it's changed.
3660 * XXX move out of fastpath
3661 */
3662 if (ic->ic_mcast_rate != sc->sc_mcastrate) {
3663 sc->sc_mcastrix =
3664 ath_tx_findrix(rt, ic->ic_mcast_rate);
3665 sc->sc_mcastrate = ic->ic_mcast_rate;
3666 }
3667 rix = sc->sc_mcastrix;
3668 txrate = rt->info[rix].rateCode;
3669 try0 = 1;
3670 } else {
3671 ath_rate_findrate(sc, an, shortPreamble, pktlen,
3672 &rix, &try0, &txrate);
3673 sc->sc_txrate = txrate; /* for LED blinking */
3674 if (try0 != ATH_TXMAXTRY)
3675 ismrr = 1;
3676 }
3677 pri = M_WME_GETAC(m0);
3678 if (cap->cap_wmeParams[pri].wmep_noackPolicy)
3679 flags |= HAL_TXDESC_NOACK;
3680 break;
3681 default:
3682 if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3683 wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3684 /* XXX statistic */
3685 ath_freetx(m0);
3686 return EIO;
3687 }
3688 txq = sc->sc_ac2q[pri];
3689
3690 /*
3691 * When servicing one or more stations in power-save mode
3692 * multicast frames must be buffered until after the beacon.
3693 * We use the CAB queue for that.
3694 */
3695 if (ismcast && ic->ic_ps_sta) {
3696 txq = sc->sc_cabq;
3697 /* XXX? more bit in 802.11 frame header */
3698 }
3699
3700 /*
3701 * Calculate miscellaneous flags.
3702 */
3703 if (ismcast) {
3704 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */
3705 } else if (pktlen > ic->ic_rtsthreshold) {
3706 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */
3707 cix = rt->info[rix].controlRate;
3708 sc->sc_stats.ast_tx_rts++;
3709 }
3710 if (flags & HAL_TXDESC_NOACK) /* NB: avoid double counting */
3711 sc->sc_stats.ast_tx_noack++;
3712
3713 /*
3714 * If 802.11g protection is enabled, determine whether
3715 * to use RTS/CTS or just CTS. Note that this is only
3716 * done for OFDM unicast frames.
3717 */
3718 if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3719 rt->info[rix].phy == IEEE80211_T_OFDM &&
3720 (flags & HAL_TXDESC_NOACK) == 0) {
3721 /* XXX fragments must use CCK rates w/ protection */
3722 if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3723 flags |= HAL_TXDESC_RTSENA;
3724 else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3725 flags |= HAL_TXDESC_CTSENA;
3726 if (isfrag) {
3727 /*
3728 * For frags it would be desirable to use the
3729 * highest CCK rate for RTS/CTS. But stations
3730 * farther away may detect it at a lower CCK rate
3731 * so use the configured protection rate instead
3732 * (for now).
3733 */
3734 cix = rt->info[sc->sc_protrix].controlRate;
3735 } else
3736 cix = rt->info[sc->sc_protrix].controlRate;
3737 sc->sc_stats.ast_tx_protect++;
3738 }
3739
3740 /*
3741 * Calculate duration. This logically belongs in the 802.11
3742 * layer but it lacks sufficient information to calculate it.
3743 */
3744 if ((flags & HAL_TXDESC_NOACK) == 0 &&
3745 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
3746 u_int16_t dur;
3747 /*
3748 * XXX not right with fragmentation.
3749 */
3750 if (shortPreamble)
3751 dur = rt->info[rix].spAckDuration;
3752 else
3753 dur = rt->info[rix].lpAckDuration;
3754 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
3755 dur += dur; /* additional SIFS+ACK */
3756 KASSERT(m0->m_nextpkt != NULL, ("no fragment"));
3757 /*
3758 * Include the size of next fragment so NAV is
3759 * updated properly. The last fragment uses only
3760 * the ACK duration
3761 */
3762 dur += ath_hal_computetxtime(ah, rt,
3763 m0->m_nextpkt->m_pkthdr.len,
3764 rix, shortPreamble);
3765 }
3766 if (isfrag) {
3767 /*
3768 * Force hardware to use computed duration for next
3769 * fragment by disabling multi-rate retry which updates
3770 * duration based on the multi-rate duration table.
3771 */
3772 try0 = ATH_TXMAXTRY;
3773 }
3774 *(u_int16_t *)wh->i_dur = htole16(dur);
3775 }
3776
3777 /*
3778 * Calculate RTS/CTS rate and duration if needed.
3779 */
3780 ctsduration = 0;
3781 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
3782 /*
3783 * CTS transmit rate is derived from the transmit rate
3784 * by looking in the h/w rate table. We must also factor
3785 * in whether or not a short preamble is to be used.
3786 */
3787 /* NB: cix is set above where RTS/CTS is enabled */
3788 KASSERT(cix != 0xff, ("cix not setup"));
3789 ctsrate = rt->info[cix].rateCode;
3790 /*
3791 * Compute the transmit duration based on the frame
3792 * size and the size of an ACK frame. We call into the
3793 * HAL to do the computation since it depends on the
3794 * characteristics of the actual PHY being used.
3795 *
3796 * NB: CTS is assumed the same size as an ACK so we can
3797 * use the precalculated ACK durations.
3798 */
3799 if (shortPreamble) {
3800 ctsrate |= rt->info[cix].shortPreamble;
3801 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
3802 ctsduration += rt->info[cix].spAckDuration;
3803 ctsduration += ath_hal_computetxtime(ah,
3804 rt, pktlen, rix, AH_TRUE);
3805 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
3806 ctsduration += rt->info[rix].spAckDuration;
3807 } else {
3808 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
3809 ctsduration += rt->info[cix].lpAckDuration;
3810 ctsduration += ath_hal_computetxtime(ah,
3811 rt, pktlen, rix, AH_FALSE);
3812 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
3813 ctsduration += rt->info[rix].lpAckDuration;
3814 }
3815 /*
3816 * Must disable multi-rate retry when using RTS/CTS.
3817 */
3818 ismrr = 0;
3819 try0 = ATH_TXMGTTRY; /* XXX */
3820 } else
3821 ctsrate = 0;
3822
3823 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3824 ieee80211_dump_pkt(mtod(m0, void *), m0->m_len,
3825 sc->sc_hwmap[txrate].ieeerate, -1);
3826 #if NBPFILTER > 0
3827 if (ic->ic_rawbpf)
3828 bpf_mtap(ic->ic_rawbpf, m0);
3829 if (sc->sc_drvbpf) {
3830 u_int64_t tsf = ath_hal_gettsf64(ah);
3831
3832 sc->sc_tx_th.wt_tsf = htole64(tsf);
3833 sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
3834 if (iswep)
3835 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3836 if (isfrag)
3837 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
3838 sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
3839 sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3840 sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3841
3842 bpf_mtap2(sc->sc_drvbpf,
3843 &sc->sc_tx_th, sc->sc_tx_th_len, m0);
3844 }
3845 #endif
3846
3847 /*
3848 * Determine if a tx interrupt should be generated for
3849 * this descriptor. We take a tx interrupt to reap
3850 * descriptors when the h/w hits an EOL condition or
3851 * when the descriptor is specifically marked to generate
3852 * an interrupt. We periodically mark descriptors in this
3853 * way to insure timely replenishing of the supply needed
3854 * for sending frames. Defering interrupts reduces system
3855 * load and potentially allows more concurrent work to be
3856 * done but if done to aggressively can cause senders to
3857 * backup.
3858 *
3859 * NB: use >= to deal with sc_txintrperiod changing
3860 * dynamically through sysctl.
3861 */
3862 if (flags & HAL_TXDESC_INTREQ) {
3863 txq->axq_intrcnt = 0;
3864 } else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
3865 flags |= HAL_TXDESC_INTREQ;
3866 txq->axq_intrcnt = 0;
3867 }
3868
3869 /*
3870 * Formulate first tx descriptor with tx controls.
3871 */
3872 /* XXX check return value? */
3873 ath_hal_setuptxdesc(ah, ds
3874 , pktlen /* packet length */
3875 , hdrlen /* header length */
3876 , atype /* Atheros packet type */
3877 , ni->ni_txpower /* txpower */
3878 , txrate, try0 /* series 0 rate/tries */
3879 , keyix /* key cache index */
3880 , sc->sc_txantenna /* antenna mode */
3881 , flags /* flags */
3882 , ctsrate /* rts/cts rate */
3883 , ctsduration /* rts/cts duration */
3884 );
3885 bf->bf_flags = flags;
3886 /*
3887 * Setup the multi-rate retry state only when we're
3888 * going to use it. This assumes ath_hal_setuptxdesc
3889 * initializes the descriptors (so we don't have to)
3890 * when the hardware supports multi-rate retry and
3891 * we don't use it.
3892 */
3893 if (ismrr)
3894 ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
3895
3896 /*
3897 * Fillin the remainder of the descriptor info.
3898 */
3899 ds0 = ds;
3900 for (i = 0; i < bf->bf_nseg; i++, ds++) {
3901 ds->ds_data = bf->bf_segs[i].ds_addr;
3902 if (i == bf->bf_nseg - 1)
3903 ds->ds_link = 0;
3904 else
3905 ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
3906 ath_hal_filltxdesc(ah, ds
3907 , bf->bf_segs[i].ds_len /* segment length */
3908 , i == 0 /* first segment */
3909 , i == bf->bf_nseg - 1 /* last segment */
3910 , ds0 /* first descriptor */
3911 );
3912
3913 /* NB: The desc swap function becomes void,
3914 * if descriptor swapping is not enabled
3915 */
3916 ath_desc_swap(ds);
3917
3918 DPRINTF(sc, ATH_DEBUG_XMIT,
3919 "%s: %d: %08x %08x %08x %08x %08x %08x\n",
3920 __func__, i, ds->ds_link, ds->ds_data,
3921 ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
3922 }
3923 /*
3924 * Insert the frame on the outbound list and
3925 * pass it on to the hardware.
3926 */
3927 ATH_TXQ_LOCK(txq);
3928 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
3929 if (txq->axq_link == NULL) {
3930 ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
3931 DPRINTF(sc, ATH_DEBUG_XMIT,
3932 "%s: TXDP[%u] = %" PRIx64 " (%p) depth %d\n", __func__,
3933 txq->axq_qnum, (uint64_t)bf->bf_daddr, bf->bf_desc,
3934 txq->axq_depth);
3935 } else {
3936 *txq->axq_link = HTOAH32(bf->bf_daddr);
3937 DPRINTF(sc, ATH_DEBUG_XMIT,
3938 "%s: link[%u](%p)=%" PRIx64 " (%p) depth %d\n",
3939 __func__, txq->axq_qnum, txq->axq_link,
3940 (uint64_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
3941 }
3942 txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
3943 /*
3944 * The CAB queue is started from the SWBA handler since
3945 * frames only go out on DTIM and to avoid possible races.
3946 */
3947 if (txq != sc->sc_cabq)
3948 ath_hal_txstart(ah, txq->axq_qnum);
3949 ATH_TXQ_UNLOCK(txq);
3950
3951 return 0;
3952 }
3953
3954 /*
3955 * Process completed xmit descriptors from the specified queue.
3956 */
3957 static int
3958 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
3959 {
3960 struct ath_hal *ah = sc->sc_ah;
3961 struct ieee80211com *ic = &sc->sc_ic;
3962 struct ath_buf *bf;
3963 struct ath_desc *ds, *ds0;
3964 struct ieee80211_node *ni;
3965 struct ath_node *an;
3966 int sr, lr, pri, nacked;
3967 HAL_STATUS status;
3968
3969 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
3970 __func__, txq->axq_qnum,
3971 (void *)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3972 txq->axq_link);
3973 nacked = 0;
3974 for (;;) {
3975 ATH_TXQ_LOCK(txq);
3976 txq->axq_intrcnt = 0; /* reset periodic desc intr count */
3977 bf = STAILQ_FIRST(&txq->axq_q);
3978 if (bf == NULL) {
3979 txq->axq_link = NULL;
3980 ATH_TXQ_UNLOCK(txq);
3981 break;
3982 }
3983 ds0 = &bf->bf_desc[0];
3984 ds = &bf->bf_desc[bf->bf_nseg - 1];
3985 status = ath_hal_txprocdesc(ah, ds);
3986 #ifdef AR_DEBUG
3987 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
3988 ath_printtxbuf(bf, status == HAL_OK);
3989 #endif
3990 if (status == HAL_EINPROGRESS) {
3991 ATH_TXQ_UNLOCK(txq);
3992 break;
3993 }
3994 ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3995 ATH_TXQ_UNLOCK(txq);
3996
3997 ni = bf->bf_node;
3998 if (ni != NULL) {
3999 an = ATH_NODE(ni);
4000 if (ds->ds_txstat.ts_status == 0) {
4001 u_int8_t txant = ds->ds_txstat.ts_antenna;
4002 sc->sc_stats.ast_ant_tx[txant]++;
4003 sc->sc_ant_tx[txant]++;
4004 if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
4005 sc->sc_stats.ast_tx_altrate++;
4006 sc->sc_stats.ast_tx_rssi =
4007 ds->ds_txstat.ts_rssi;
4008 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
4009 ds->ds_txstat.ts_rssi);
4010 pri = M_WME_GETAC(bf->bf_m);
4011 if (pri >= WME_AC_VO)
4012 ic->ic_wme.wme_hipri_traffic++;
4013 ni->ni_inact = ni->ni_inact_reload;
4014 } else {
4015 if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
4016 sc->sc_stats.ast_tx_xretries++;
4017 if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
4018 sc->sc_stats.ast_tx_fifoerr++;
4019 if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
4020 sc->sc_stats.ast_tx_filtered++;
4021 }
4022 sr = ds->ds_txstat.ts_shortretry;
4023 lr = ds->ds_txstat.ts_longretry;
4024 sc->sc_stats.ast_tx_shortretry += sr;
4025 sc->sc_stats.ast_tx_longretry += lr;
4026 /*
4027 * Hand the descriptor to the rate control algorithm.
4028 */
4029 if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
4030 (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
4031 /*
4032 * If frame was ack'd update the last rx time
4033 * used to workaround phantom bmiss interrupts.
4034 */
4035 if (ds->ds_txstat.ts_status == 0)
4036 nacked++;
4037 ath_rate_tx_complete(sc, an, ds, ds0);
4038 }
4039 /*
4040 * Reclaim reference to node.
4041 *
4042 * NB: the node may be reclaimed here if, for example
4043 * this is a DEAUTH message that was sent and the
4044 * node was timed out due to inactivity.
4045 */
4046 ieee80211_free_node(ni);
4047 }
4048 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
4049 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4050 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4051 m_freem(bf->bf_m);
4052 bf->bf_m = NULL;
4053 bf->bf_node = NULL;
4054
4055 ATH_TXBUF_LOCK(sc);
4056 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4057 sc->sc_if.if_flags &= ~IFF_OACTIVE;
4058 ATH_TXBUF_UNLOCK(sc);
4059 }
4060 return nacked;
4061 }
4062
4063 static inline int
4064 txqactive(struct ath_hal *ah, int qnum)
4065 {
4066 u_int32_t txqs = 1<<qnum;
4067 ath_hal_gettxintrtxqs(ah, &txqs);
4068 return (txqs & (1<<qnum));
4069 }
4070
4071 /*
4072 * Deferred processing of transmit interrupt; special-cased
4073 * for a single hardware transmit queue (e.g. 5210 and 5211).
4074 */
4075 static void
4076 ath_tx_proc_q0(void *arg, int npending)
4077 {
4078 struct ath_softc *sc = arg;
4079 struct ifnet *ifp = &sc->sc_if;
4080
4081 if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]) > 0){
4082 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4083 }
4084 if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4085 ath_tx_processq(sc, sc->sc_cabq);
4086
4087 if (sc->sc_softled)
4088 ath_led_event(sc, ATH_LED_TX);
4089
4090 ath_start(ifp);
4091 }
4092
4093 /*
4094 * Deferred processing of transmit interrupt; special-cased
4095 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4096 */
4097 static void
4098 ath_tx_proc_q0123(void *arg, int npending)
4099 {
4100 struct ath_softc *sc = arg;
4101 struct ifnet *ifp = &sc->sc_if;
4102 int nacked;
4103
4104 /*
4105 * Process each active queue.
4106 */
4107 nacked = 0;
4108 if (txqactive(sc->sc_ah, 0))
4109 nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
4110 if (txqactive(sc->sc_ah, 1))
4111 nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
4112 if (txqactive(sc->sc_ah, 2))
4113 nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
4114 if (txqactive(sc->sc_ah, 3))
4115 nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
4116 if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4117 ath_tx_processq(sc, sc->sc_cabq);
4118 if (nacked) {
4119 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4120 }
4121
4122 if (sc->sc_softled)
4123 ath_led_event(sc, ATH_LED_TX);
4124
4125 ath_start(ifp);
4126 }
4127
4128 /*
4129 * Deferred processing of transmit interrupt.
4130 */
4131 static void
4132 ath_tx_proc(void *arg, int npending)
4133 {
4134 struct ath_softc *sc = arg;
4135 struct ifnet *ifp = &sc->sc_if;
4136 int i, nacked;
4137
4138 /*
4139 * Process each active queue.
4140 */
4141 nacked = 0;
4142 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4143 if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
4144 nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
4145 if (nacked) {
4146 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4147 }
4148
4149 if (sc->sc_softled)
4150 ath_led_event(sc, ATH_LED_TX);
4151
4152 ath_start(ifp);
4153 }
4154
4155 static void
4156 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
4157 {
4158 struct ath_hal *ah = sc->sc_ah;
4159 struct ieee80211_node *ni;
4160 struct ath_buf *bf;
4161
4162 /*
4163 * NB: this assumes output has been stopped and
4164 * we do not need to block ath_tx_tasklet
4165 */
4166 for (;;) {
4167 ATH_TXQ_LOCK(txq);
4168 bf = STAILQ_FIRST(&txq->axq_q);
4169 if (bf == NULL) {
4170 txq->axq_link = NULL;
4171 ATH_TXQ_UNLOCK(txq);
4172 break;
4173 }
4174 ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4175 ATH_TXQ_UNLOCK(txq);
4176 #ifdef AR_DEBUG
4177 if (sc->sc_debug & ATH_DEBUG_RESET)
4178 ath_printtxbuf(bf,
4179 ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
4180 #endif /* AR_DEBUG */
4181 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4182 m_freem(bf->bf_m);
4183 bf->bf_m = NULL;
4184 ni = bf->bf_node;
4185 bf->bf_node = NULL;
4186 if (ni != NULL) {
4187 /*
4188 * Reclaim node reference.
4189 */
4190 ieee80211_free_node(ni);
4191 }
4192 ATH_TXBUF_LOCK(sc);
4193 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4194 sc->sc_if.if_flags &= ~IFF_OACTIVE;
4195 ATH_TXBUF_UNLOCK(sc);
4196 }
4197 }
4198
4199 static void
4200 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4201 {
4202 struct ath_hal *ah = sc->sc_ah;
4203
4204 (void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4205 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4206 __func__, txq->axq_qnum,
4207 (void *)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4208 txq->axq_link);
4209 }
4210
4211 /*
4212 * Drain the transmit queues and reclaim resources.
4213 */
4214 static void
4215 ath_draintxq(struct ath_softc *sc)
4216 {
4217 struct ath_hal *ah = sc->sc_ah;
4218 int i;
4219
4220 /* XXX return value */
4221 if (!sc->sc_invalid) {
4222 /* don't touch the hardware if marked invalid */
4223 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4224 DPRINTF(sc, ATH_DEBUG_RESET,
4225 "%s: beacon queue %p\n", __func__,
4226 (void *)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
4227 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4228 if (ATH_TXQ_SETUP(sc, i))
4229 ath_tx_stopdma(sc, &sc->sc_txq[i]);
4230 }
4231 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4232 if (ATH_TXQ_SETUP(sc, i))
4233 ath_tx_draintxq(sc, &sc->sc_txq[i]);
4234 }
4235
4236 /*
4237 * Disable the receive h/w in preparation for a reset.
4238 */
4239 static void
4240 ath_stoprecv(struct ath_softc *sc)
4241 {
4242 #define PA2DESC(_sc, _pa) \
4243 ((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
4244 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
4245 struct ath_hal *ah = sc->sc_ah;
4246
4247 ath_hal_stoppcurecv(ah); /* disable PCU */
4248 ath_hal_setrxfilter(ah, 0); /* clear recv filter */
4249 ath_hal_stopdmarecv(ah); /* disable DMA engine */
4250 DELAY(3000); /* 3ms is long enough for 1 frame */
4251 #ifdef AR_DEBUG
4252 if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
4253 struct ath_buf *bf;
4254
4255 printf("%s: rx queue %p, link %p\n", __func__,
4256 (void *)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
4257 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4258 struct ath_desc *ds = bf->bf_desc;
4259 HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
4260 bf->bf_daddr, PA2DESC(sc, ds->ds_link));
4261 if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
4262 ath_printrxbuf(bf, status == HAL_OK);
4263 }
4264 }
4265 #endif
4266 sc->sc_rxlink = NULL; /* just in case */
4267 #undef PA2DESC
4268 }
4269
4270 /*
4271 * Enable the receive h/w following a reset.
4272 */
4273 static int
4274 ath_startrecv(struct ath_softc *sc)
4275 {
4276 struct ath_hal *ah = sc->sc_ah;
4277 struct ath_buf *bf;
4278
4279 sc->sc_rxlink = NULL;
4280 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4281 int error = ath_rxbuf_init(sc, bf);
4282 if (error != 0) {
4283 DPRINTF(sc, ATH_DEBUG_RECV,
4284 "%s: ath_rxbuf_init failed %d\n",
4285 __func__, error);
4286 return error;
4287 }
4288 }
4289
4290 bf = STAILQ_FIRST(&sc->sc_rxbuf);
4291 ath_hal_putrxbuf(ah, bf->bf_daddr);
4292 ath_hal_rxena(ah); /* enable recv descriptors */
4293 ath_mode_init(sc); /* set filters, etc. */
4294 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */
4295 return 0;
4296 }
4297
4298 /*
4299 * Update internal state after a channel change.
4300 */
4301 static void
4302 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4303 {
4304 struct ieee80211com *ic = &sc->sc_ic;
4305 enum ieee80211_phymode mode;
4306 u_int16_t flags;
4307
4308 /*
4309 * Change channels and update the h/w rate map
4310 * if we're switching; e.g. 11a to 11b/g.
4311 */
4312 mode = ieee80211_chan2mode(ic, chan);
4313 if (mode != sc->sc_curmode)
4314 ath_setcurmode(sc, mode);
4315 /*
4316 * Update BPF state. NB: ethereal et. al. don't handle
4317 * merged flags well so pick a unique mode for their use.
4318 */
4319 if (IEEE80211_IS_CHAN_A(chan))
4320 flags = IEEE80211_CHAN_A;
4321 /* XXX 11g schizophrenia */
4322 else if (IEEE80211_IS_CHAN_G(chan) ||
4323 IEEE80211_IS_CHAN_PUREG(chan))
4324 flags = IEEE80211_CHAN_G;
4325 else
4326 flags = IEEE80211_CHAN_B;
4327 if (IEEE80211_IS_CHAN_T(chan))
4328 flags |= IEEE80211_CHAN_TURBO;
4329 sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
4330 htole16(chan->ic_freq);
4331 sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
4332 htole16(flags);
4333 }
4334
4335 /*
4336 * Poll for a channel clear indication; this is required
4337 * for channels requiring DFS and not previously visited
4338 * and/or with a recent radar detection.
4339 */
4340 static void
4341 ath_dfswait(void *arg)
4342 {
4343 struct ath_softc *sc = arg;
4344 struct ath_hal *ah = sc->sc_ah;
4345 HAL_CHANNEL hchan;
4346
4347 ath_hal_radar_wait(ah, &hchan);
4348 if (hchan.privFlags & CHANNEL_INTERFERENCE) {
4349 if_printf(&sc->sc_if,
4350 "channel %u/0x%x/0x%x has interference\n",
4351 hchan.channel, hchan.channelFlags, hchan.privFlags);
4352 return;
4353 }
4354 if ((hchan.privFlags & CHANNEL_DFS) == 0) {
4355 /* XXX should not happen */
4356 return;
4357 }
4358 if (hchan.privFlags & CHANNEL_DFS_CLEAR) {
4359 sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR;
4360 sc->sc_if.if_flags &= ~IFF_OACTIVE;
4361 if_printf(&sc->sc_if,
4362 "channel %u/0x%x/0x%x marked clear\n",
4363 hchan.channel, hchan.channelFlags, hchan.privFlags);
4364 } else
4365 callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc);
4366 }
4367
4368 /*
4369 * Set/change channels. If the channel is really being changed,
4370 * it's done by reseting the chip. To accomplish this we must
4371 * first cleanup any pending DMA, then restart stuff after a la
4372 * ath_init.
4373 */
4374 static int
4375 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4376 {
4377 struct ath_hal *ah = sc->sc_ah;
4378 struct ieee80211com *ic = &sc->sc_ic;
4379 HAL_CHANNEL hchan;
4380
4381 /*
4382 * Convert to a HAL channel description with
4383 * the flags constrained to reflect the current
4384 * operating mode.
4385 */
4386 hchan.channel = chan->ic_freq;
4387 hchan.channelFlags = ath_chan2flags(ic, chan);
4388
4389 DPRINTF(sc, ATH_DEBUG_RESET,
4390 "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
4391 __func__,
4392 ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
4393 sc->sc_curchan.channelFlags),
4394 sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
4395 ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
4396 hchan.channel, hchan.channelFlags);
4397 if (hchan.channel != sc->sc_curchan.channel ||
4398 hchan.channelFlags != sc->sc_curchan.channelFlags) {
4399 HAL_STATUS status;
4400
4401 /*
4402 * To switch channels clear any pending DMA operations;
4403 * wait long enough for the RX fifo to drain, reset the
4404 * hardware at the new frequency, and then re-enable
4405 * the relevant bits of the h/w.
4406 */
4407 ath_hal_intrset(ah, 0); /* disable interrupts */
4408 ath_draintxq(sc); /* clear pending tx frames */
4409 ath_stoprecv(sc); /* turn off frame recv */
4410 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
4411 if_printf(ic->ic_ifp, "%s: unable to reset "
4412 "channel %u (%u MHz, flags 0x%x hal flags 0x%x)\n",
4413 __func__, ieee80211_chan2ieee(ic, chan),
4414 chan->ic_freq, chan->ic_flags, hchan.channelFlags);
4415 return EIO;
4416 }
4417 sc->sc_curchan = hchan;
4418 ath_update_txpow(sc); /* update tx power state */
4419 ath_restore_diversity(sc);
4420 sc->sc_calinterval = 1;
4421 sc->sc_caltries = 0;
4422
4423 /*
4424 * Re-enable rx framework.
4425 */
4426 if (ath_startrecv(sc) != 0) {
4427 if_printf(&sc->sc_if,
4428 "%s: unable to restart recv logic\n", __func__);
4429 return EIO;
4430 }
4431
4432 /*
4433 * Change channels and update the h/w rate map
4434 * if we're switching; e.g. 11a to 11b/g.
4435 */
4436 ic->ic_ibss_chan = chan;
4437 ath_chan_change(sc, chan);
4438
4439 /*
4440 * Handle DFS required waiting period to determine
4441 * if channel is clear of radar traffic.
4442 */
4443 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
4444 #define DFS_AND_NOT_CLEAR(_c) \
4445 (((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS)
4446 if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) {
4447 if_printf(&sc->sc_if,
4448 "wait for DFS clear channel signal\n");
4449 /* XXX stop sndq */
4450 sc->sc_if.if_flags |= IFF_OACTIVE;
4451 callout_reset(&sc->sc_dfs_ch,
4452 2 * hz, ath_dfswait, sc);
4453 } else
4454 callout_stop(&sc->sc_dfs_ch);
4455 #undef DFS_NOT_CLEAR
4456 }
4457
4458 /*
4459 * Re-enable interrupts.
4460 */
4461 ath_hal_intrset(ah, sc->sc_imask);
4462 }
4463 return 0;
4464 }
4465
4466 static void
4467 ath_next_scan(void *arg)
4468 {
4469 struct ath_softc *sc = arg;
4470 struct ieee80211com *ic = &sc->sc_ic;
4471 int s;
4472
4473 /* don't call ath_start w/o network interrupts blocked */
4474 s = splnet();
4475
4476 if (ic->ic_state == IEEE80211_S_SCAN)
4477 ieee80211_next_scan(ic);
4478 splx(s);
4479 }
4480
4481 /*
4482 * Periodically recalibrate the PHY to account
4483 * for temperature/environment changes.
4484 */
4485 static void
4486 ath_calibrate(void *arg)
4487 {
4488 struct ath_softc *sc = arg;
4489 struct ath_hal *ah = sc->sc_ah;
4490 HAL_BOOL iqCalDone;
4491
4492 sc->sc_stats.ast_per_cal++;
4493
4494 ATH_LOCK(sc);
4495
4496 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4497 /*
4498 * Rfgain is out of bounds, reset the chip
4499 * to load new gain values.
4500 */
4501 DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4502 "%s: rfgain change\n", __func__);
4503 sc->sc_stats.ast_per_rfgain++;
4504 ath_reset(&sc->sc_if);
4505 }
4506 if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
4507 DPRINTF(sc, ATH_DEBUG_ANY,
4508 "%s: calibration of channel %u failed\n",
4509 __func__, sc->sc_curchan.channel);
4510 sc->sc_stats.ast_per_calfail++;
4511 }
4512 /*
4513 * Calibrate noise floor data again in case of change.
4514 */
4515 ath_hal_process_noisefloor(ah);
4516 /*
4517 * Poll more frequently when the IQ calibration is in
4518 * progress to speedup loading the final settings.
4519 * We temper this aggressive polling with an exponential
4520 * back off after 4 tries up to ath_calinterval.
4521 */
4522 if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
4523 sc->sc_caltries = 0;
4524 sc->sc_calinterval = ath_calinterval;
4525 } else if (sc->sc_caltries > 4) {
4526 sc->sc_caltries = 0;
4527 sc->sc_calinterval <<= 1;
4528 if (sc->sc_calinterval > ath_calinterval)
4529 sc->sc_calinterval = ath_calinterval;
4530 }
4531 KASSERT(0 < sc->sc_calinterval && sc->sc_calinterval <= ath_calinterval,
4532 ("bad calibration interval %u", sc->sc_calinterval));
4533
4534 DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4535 "%s: next +%u (%siqCalDone tries %u)\n", __func__,
4536 sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
4537 sc->sc_caltries++;
4538 callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4539 ath_calibrate, sc);
4540 ATH_UNLOCK(sc);
4541 }
4542
4543 static int
4544 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
4545 {
4546 struct ifnet *ifp = ic->ic_ifp;
4547 struct ath_softc *sc = ifp->if_softc;
4548 struct ath_hal *ah = sc->sc_ah;
4549 struct ieee80211_node *ni;
4550 int i, error;
4551 const u_int8_t *bssid;
4552 u_int32_t rfilt;
4553 static const HAL_LED_STATE leds[] = {
4554 HAL_LED_INIT, /* IEEE80211_S_INIT */
4555 HAL_LED_SCAN, /* IEEE80211_S_SCAN */
4556 HAL_LED_AUTH, /* IEEE80211_S_AUTH */
4557 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */
4558 HAL_LED_RUN, /* IEEE80211_S_RUN */
4559 };
4560
4561 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4562 ieee80211_state_name[ic->ic_state],
4563 ieee80211_state_name[nstate]);
4564
4565 callout_stop(&sc->sc_scan_ch);
4566 callout_stop(&sc->sc_cal_ch);
4567 callout_stop(&sc->sc_dfs_ch);
4568 ath_hal_setledstate(ah, leds[nstate]); /* set LED */
4569
4570 if (nstate == IEEE80211_S_INIT) {
4571 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4572 /*
4573 * NB: disable interrupts so we don't rx frames.
4574 */
4575 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4576 /*
4577 * Notify the rate control algorithm.
4578 */
4579 ath_rate_newstate(sc, nstate);
4580 goto done;
4581 }
4582 ni = ic->ic_bss;
4583 error = ath_chan_set(sc, ic->ic_curchan);
4584 if (error != 0)
4585 goto bad;
4586 rfilt = ath_calcrxfilter(sc, nstate);
4587 if (nstate == IEEE80211_S_SCAN)
4588 bssid = ifp->if_broadcastaddr;
4589 else
4590 bssid = ni->ni_bssid;
4591 ath_hal_setrxfilter(ah, rfilt);
4592 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
4593 __func__, rfilt, ether_sprintf(bssid));
4594
4595 if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
4596 ath_hal_setassocid(ah, bssid, ni->ni_associd);
4597 else
4598 ath_hal_setassocid(ah, bssid, 0);
4599 if (ic->ic_flags & IEEE80211_F_PRIVACY) {
4600 for (i = 0; i < IEEE80211_WEP_NKID; i++)
4601 if (ath_hal_keyisvalid(ah, i))
4602 ath_hal_keysetmac(ah, i, bssid);
4603 }
4604
4605 /*
4606 * Notify the rate control algorithm so rates
4607 * are setup should ath_beacon_alloc be called.
4608 */
4609 ath_rate_newstate(sc, nstate);
4610
4611 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4612 /* nothing to do */;
4613 } else if (nstate == IEEE80211_S_RUN) {
4614 DPRINTF(sc, ATH_DEBUG_STATE,
4615 "%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
4616 "capinfo=0x%04x chan=%d\n"
4617 , __func__
4618 , ic->ic_flags
4619 , ni->ni_intval
4620 , ether_sprintf(ni->ni_bssid)
4621 , ni->ni_capinfo
4622 , ieee80211_chan2ieee(ic, ic->ic_curchan));
4623
4624 switch (ic->ic_opmode) {
4625 case IEEE80211_M_HOSTAP:
4626 case IEEE80211_M_IBSS:
4627 /*
4628 * Allocate and setup the beacon frame.
4629 *
4630 * Stop any previous beacon DMA. This may be
4631 * necessary, for example, when an ibss merge
4632 * causes reconfiguration; there will be a state
4633 * transition from RUN->RUN that means we may
4634 * be called with beacon transmission active.
4635 */
4636 ath_hal_stoptxdma(ah, sc->sc_bhalq);
4637 ath_beacon_free(sc);
4638 error = ath_beacon_alloc(sc, ni);
4639 if (error != 0)
4640 goto bad;
4641 /*
4642 * If joining an adhoc network defer beacon timer
4643 * configuration to the next beacon frame so we
4644 * have a current TSF to use. Otherwise we're
4645 * starting an ibss/bss so there's no need to delay.
4646 */
4647 if (ic->ic_opmode == IEEE80211_M_IBSS &&
4648 ic->ic_bss->ni_tstamp.tsf != 0)
4649 sc->sc_syncbeacon = 1;
4650 else
4651 ath_beacon_config(sc);
4652 break;
4653 case IEEE80211_M_STA:
4654 /*
4655 * Allocate a key cache slot to the station.
4656 */
4657 if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
4658 sc->sc_hasclrkey &&
4659 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4660 ath_setup_stationkey(ni);
4661 /*
4662 * Defer beacon timer configuration to the next
4663 * beacon frame so we have a current TSF to use
4664 * (any TSF collected when scanning is likely old).
4665 */
4666 sc->sc_syncbeacon = 1;
4667 break;
4668 default:
4669 break;
4670 }
4671 /*
4672 * Let the hal process statistics collected during a
4673 * scan so it can provide calibrated noise floor data.
4674 */
4675 ath_hal_process_noisefloor(ah);
4676 /*
4677 * Reset rssi stats; maybe not the best place...
4678 */
4679 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
4680 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
4681 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
4682 } else {
4683 ath_hal_intrset(ah,
4684 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4685 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4686 }
4687 done:
4688 /*
4689 * Invoke the parent method to complete the work.
4690 */
4691 error = sc->sc_newstate(ic, nstate, arg);
4692 /*
4693 * Finally, start any timers.
4694 */
4695 if (nstate == IEEE80211_S_RUN) {
4696 /* start periodic recalibration timer */
4697 callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4698 ath_calibrate, sc);
4699 } else if (nstate == IEEE80211_S_SCAN) {
4700 /* start ap/neighbor scan timer */
4701 callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
4702 ath_next_scan, sc);
4703 }
4704 bad:
4705 return error;
4706 }
4707
4708 /*
4709 * Allocate a key cache slot to the station so we can
4710 * setup a mapping from key index to node. The key cache
4711 * slot is needed for managing antenna state and for
4712 * compression when stations do not use crypto. We do
4713 * it uniliaterally here; if crypto is employed this slot
4714 * will be reassigned.
4715 */
4716 static void
4717 ath_setup_stationkey(struct ieee80211_node *ni)
4718 {
4719 struct ieee80211com *ic = ni->ni_ic;
4720 struct ath_softc *sc = ic->ic_ifp->if_softc;
4721 ieee80211_keyix keyix, rxkeyix;
4722
4723 if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
4724 /*
4725 * Key cache is full; we'll fall back to doing
4726 * the more expensive lookup in software. Note
4727 * this also means no h/w compression.
4728 */
4729 /* XXX msg+statistic */
4730 } else {
4731 /* XXX locking? */
4732 ni->ni_ucastkey.wk_keyix = keyix;
4733 ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
4734 /* NB: this will create a pass-thru key entry */
4735 ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
4736 }
4737 }
4738
4739 /*
4740 * Setup driver-specific state for a newly associated node.
4741 * Note that we're called also on a re-associate, the isnew
4742 * param tells us if this is the first time or not.
4743 */
4744 static void
4745 ath_newassoc(struct ieee80211_node *ni, int isnew)
4746 {
4747 struct ieee80211com *ic = ni->ni_ic;
4748 struct ath_softc *sc = ic->ic_ifp->if_softc;
4749
4750 ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
4751 if (isnew &&
4752 (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
4753 KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
4754 ("new assoc with a unicast key already setup (keyix %u)",
4755 ni->ni_ucastkey.wk_keyix));
4756 ath_setup_stationkey(ni);
4757 }
4758 }
4759
4760 static int
4761 ath_getchannels(struct ath_softc *sc, u_int cc,
4762 HAL_BOOL outdoor, HAL_BOOL xchanmode)
4763 {
4764 #define COMPAT (CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
4765 struct ieee80211com *ic = &sc->sc_ic;
4766 struct ifnet *ifp = &sc->sc_if;
4767 struct ath_hal *ah = sc->sc_ah;
4768 HAL_CHANNEL *chans;
4769 int i, ix, nchan;
4770
4771 chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
4772 M_TEMP, M_NOWAIT);
4773 if (chans == NULL) {
4774 if_printf(ifp, "unable to allocate channel table\n");
4775 return ENOMEM;
4776 }
4777 if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
4778 NULL, 0, NULL,
4779 cc, HAL_MODE_ALL, outdoor, xchanmode)) {
4780 u_int32_t rd;
4781
4782 (void)ath_hal_getregdomain(ah, &rd);
4783 if_printf(ifp, "unable to collect channel list from hal; "
4784 "regdomain likely %u country code %u\n", rd, cc);
4785 free(chans, M_TEMP);
4786 return EINVAL;
4787 }
4788
4789 /*
4790 * Convert HAL channels to ieee80211 ones and insert
4791 * them in the table according to their channel number.
4792 */
4793 for (i = 0; i < nchan; i++) {
4794 HAL_CHANNEL *c = &chans[i];
4795 u_int16_t flags;
4796
4797 ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags);
4798 if (ix > IEEE80211_CHAN_MAX) {
4799 if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n",
4800 ix, c->channel, c->channelFlags);
4801 continue;
4802 }
4803 if (ix < 0) {
4804 /* XXX can't handle stuff <2400 right now */
4805 if (bootverbose)
4806 if_printf(ifp, "hal channel %d (%u/%x) "
4807 "cannot be handled; ignored\n",
4808 ix, c->channel, c->channelFlags);
4809 continue;
4810 }
4811 /*
4812 * Calculate net80211 flags; most are compatible
4813 * but some need massaging. Note the static turbo
4814 * conversion can be removed once net80211 is updated
4815 * to understand static vs. dynamic turbo.
4816 */
4817 flags = c->channelFlags & COMPAT;
4818 if (c->channelFlags & CHANNEL_STURBO)
4819 flags |= IEEE80211_CHAN_TURBO;
4820 if (ic->ic_channels[ix].ic_freq == 0) {
4821 ic->ic_channels[ix].ic_freq = c->channel;
4822 ic->ic_channels[ix].ic_flags = flags;
4823 } else {
4824 /* channels overlap; e.g. 11g and 11b */
4825 ic->ic_channels[ix].ic_flags |= flags;
4826 }
4827 }
4828 free(chans, M_TEMP);
4829 return 0;
4830 #undef COMPAT
4831 }
4832
4833 static void
4834 ath_led_done(void *arg)
4835 {
4836 struct ath_softc *sc = arg;
4837
4838 sc->sc_blinking = 0;
4839 }
4840
4841 /*
4842 * Turn the LED off: flip the pin and then set a timer so no
4843 * update will happen for the specified duration.
4844 */
4845 static void
4846 ath_led_off(void *arg)
4847 {
4848 struct ath_softc *sc = arg;
4849
4850 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
4851 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
4852 }
4853
4854 /*
4855 * Blink the LED according to the specified on/off times.
4856 */
4857 static void
4858 ath_led_blink(struct ath_softc *sc, int on, int off)
4859 {
4860 DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
4861 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
4862 sc->sc_blinking = 1;
4863 sc->sc_ledoff = off;
4864 callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
4865 }
4866
4867 static void
4868 ath_led_event(struct ath_softc *sc, int event)
4869 {
4870
4871 sc->sc_ledevent = ticks; /* time of last event */
4872 if (sc->sc_blinking) /* don't interrupt active blink */
4873 return;
4874 switch (event) {
4875 case ATH_LED_POLL:
4876 ath_led_blink(sc, sc->sc_hwmap[0].ledon,
4877 sc->sc_hwmap[0].ledoff);
4878 break;
4879 case ATH_LED_TX:
4880 ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
4881 sc->sc_hwmap[sc->sc_txrate].ledoff);
4882 break;
4883 case ATH_LED_RX:
4884 ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
4885 sc->sc_hwmap[sc->sc_rxrate].ledoff);
4886 break;
4887 }
4888 }
4889
4890 static void
4891 ath_update_txpow(struct ath_softc *sc)
4892 {
4893 #define COMPAT (CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
4894 struct ieee80211com *ic = &sc->sc_ic;
4895 struct ath_hal *ah = sc->sc_ah;
4896 u_int32_t txpow;
4897
4898 if (sc->sc_curtxpow != ic->ic_txpowlimit) {
4899 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
4900 /* read back in case value is clamped */
4901 (void)ath_hal_gettxpowlimit(ah, &txpow);
4902 ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
4903 }
4904 /*
4905 * Fetch max tx power level for status requests.
4906 */
4907 (void)ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
4908 ic->ic_bss->ni_txpower = txpow;
4909 }
4910
4911 static void
4912 rate_setup(struct ath_softc *sc,
4913 const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs)
4914 {
4915 int i, maxrates;
4916
4917 if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
4918 DPRINTF(sc, ATH_DEBUG_ANY,
4919 "%s: rate table too small (%u > %u)\n",
4920 __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
4921 maxrates = IEEE80211_RATE_MAXSIZE;
4922 } else
4923 maxrates = rt->rateCount;
4924 for (i = 0; i < maxrates; i++)
4925 rs->rs_rates[i] = rt->info[i].dot11Rate;
4926 rs->rs_nrates = maxrates;
4927 }
4928
4929 static int
4930 ath_rate_setup(struct ath_softc *sc, u_int mode)
4931 {
4932 struct ath_hal *ah = sc->sc_ah;
4933 struct ieee80211com *ic = &sc->sc_ic;
4934 const HAL_RATE_TABLE *rt;
4935
4936 switch (mode) {
4937 case IEEE80211_MODE_11A:
4938 rt = ath_hal_getratetable(ah, HAL_MODE_11A);
4939 break;
4940 case IEEE80211_MODE_11B:
4941 rt = ath_hal_getratetable(ah, HAL_MODE_11B);
4942 break;
4943 case IEEE80211_MODE_11G:
4944 rt = ath_hal_getratetable(ah, HAL_MODE_11G);
4945 break;
4946 case IEEE80211_MODE_TURBO_A:
4947 /* XXX until static/dynamic turbo is fixed */
4948 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
4949 break;
4950 case IEEE80211_MODE_TURBO_G:
4951 rt = ath_hal_getratetable(ah, HAL_MODE_108G);
4952 break;
4953 default:
4954 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
4955 __func__, mode);
4956 return 0;
4957 }
4958 sc->sc_rates[mode] = rt;
4959 if (rt != NULL) {
4960 rate_setup(sc, rt, &ic->ic_sup_rates[mode]);
4961 return 1;
4962 } else
4963 return 0;
4964 }
4965
4966 static void
4967 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
4968 {
4969 #define N(a) (sizeof(a)/sizeof(a[0]))
4970 /* NB: on/off times from the Atheros NDIS driver, w/ permission */
4971 static const struct {
4972 u_int rate; /* tx/rx 802.11 rate */
4973 u_int16_t timeOn; /* LED on time (ms) */
4974 u_int16_t timeOff; /* LED off time (ms) */
4975 } blinkrates[] = {
4976 { 108, 40, 10 },
4977 { 96, 44, 11 },
4978 { 72, 50, 13 },
4979 { 48, 57, 14 },
4980 { 36, 67, 16 },
4981 { 24, 80, 20 },
4982 { 22, 100, 25 },
4983 { 18, 133, 34 },
4984 { 12, 160, 40 },
4985 { 10, 200, 50 },
4986 { 6, 240, 58 },
4987 { 4, 267, 66 },
4988 { 2, 400, 100 },
4989 { 0, 500, 130 },
4990 };
4991 const HAL_RATE_TABLE *rt;
4992 int i, j;
4993
4994 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
4995 rt = sc->sc_rates[mode];
4996 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
4997 for (i = 0; i < rt->rateCount; i++)
4998 sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
4999 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
5000 for (i = 0; i < 32; i++) {
5001 u_int8_t ix = rt->rateCodeToIndex[i];
5002 if (ix == 0xff) {
5003 sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
5004 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
5005 continue;
5006 }
5007 sc->sc_hwmap[i].ieeerate =
5008 rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
5009 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
5010 if (rt->info[ix].shortPreamble ||
5011 rt->info[ix].phy == IEEE80211_T_OFDM)
5012 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
5013 /* NB: receive frames include FCS */
5014 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
5015 IEEE80211_RADIOTAP_F_FCS;
5016 /* setup blink rate table to avoid per-packet lookup */
5017 for (j = 0; j < N(blinkrates)-1; j++)
5018 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
5019 break;
5020 /* NB: this uses the last entry if the rate isn't found */
5021 /* XXX beware of overlow */
5022 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
5023 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
5024 }
5025 sc->sc_currates = rt;
5026 sc->sc_curmode = mode;
5027 /*
5028 * All protection frames are transmited at 2Mb/s for
5029 * 11g, otherwise at 1Mb/s.
5030 */
5031 if (mode == IEEE80211_MODE_11G)
5032 sc->sc_protrix = ath_tx_findrix(rt, 2*2);
5033 else
5034 sc->sc_protrix = ath_tx_findrix(rt, 2*1);
5035 /* rate index used to send management frames */
5036 sc->sc_minrateix = 0;
5037 /*
5038 * Setup multicast rate state.
5039 */
5040 /* XXX layering violation */
5041 sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate);
5042 sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate;
5043 /* NB: caller is responsible for reseting rate control state */
5044 #undef N
5045 }
5046
5047 #ifdef AR_DEBUG
5048 static void
5049 ath_printrxbuf(struct ath_buf *bf, int done)
5050 {
5051 struct ath_desc *ds;
5052 int i;
5053
5054 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5055 printf("R%d (%p %" PRIx64
5056 ") %08x %08x %08x %08x %08x %08x %c\n", i, ds,
5057 (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
5058 ds->ds_link, ds->ds_data,
5059 ds->ds_ctl0, ds->ds_ctl1,
5060 ds->ds_hw[0], ds->ds_hw[1],
5061 !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
5062 }
5063 }
5064
5065 static void
5066 ath_printtxbuf(struct ath_buf *bf, int done)
5067 {
5068 struct ath_desc *ds;
5069 int i;
5070
5071 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5072 printf("T%d (%p %" PRIx64
5073 ") %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
5074 i, ds,
5075 (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
5076 ds->ds_link, ds->ds_data,
5077 ds->ds_ctl0, ds->ds_ctl1,
5078 ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
5079 !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
5080 }
5081 }
5082 #endif /* AR_DEBUG */
5083
5084 static void
5085 ath_watchdog(struct ifnet *ifp)
5086 {
5087 struct ath_softc *sc = ifp->if_softc;
5088 struct ieee80211com *ic = &sc->sc_ic;
5089 struct ath_txq *axq;
5090 int i;
5091
5092 ifp->if_timer = 0;
5093 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
5094 return;
5095 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5096 if (!ATH_TXQ_SETUP(sc, i))
5097 continue;
5098 axq = &sc->sc_txq[i];
5099 ATH_TXQ_LOCK(axq);
5100 if (axq->axq_timer == 0)
5101 ;
5102 else if (--axq->axq_timer == 0) {
5103 ATH_TXQ_UNLOCK(axq);
5104 if_printf(ifp, "device timeout (txq %d)\n", i);
5105 ath_reset(ifp);
5106 ifp->if_oerrors++;
5107 sc->sc_stats.ast_watchdog++;
5108 break;
5109 } else
5110 ifp->if_timer = 1;
5111 ATH_TXQ_UNLOCK(axq);
5112 }
5113 ieee80211_watchdog(ic);
5114 }
5115
5116 /*
5117 * Diagnostic interface to the HAL. This is used by various
5118 * tools to do things like retrieve register contents for
5119 * debugging. The mechanism is intentionally opaque so that
5120 * it can change frequently w/o concern for compatiblity.
5121 */
5122 static int
5123 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
5124 {
5125 struct ath_hal *ah = sc->sc_ah;
5126 u_int id = ad->ad_id & ATH_DIAG_ID;
5127 void *indata = NULL;
5128 void *outdata = NULL;
5129 u_int32_t insize = ad->ad_in_size;
5130 u_int32_t outsize = ad->ad_out_size;
5131 int error = 0;
5132
5133 if (ad->ad_id & ATH_DIAG_IN) {
5134 /*
5135 * Copy in data.
5136 */
5137 indata = malloc(insize, M_TEMP, M_NOWAIT);
5138 if (indata == NULL) {
5139 error = ENOMEM;
5140 goto bad;
5141 }
5142 error = copyin(ad->ad_in_data, indata, insize);
5143 if (error)
5144 goto bad;
5145 }
5146 if (ad->ad_id & ATH_DIAG_DYN) {
5147 /*
5148 * Allocate a buffer for the results (otherwise the HAL
5149 * returns a pointer to a buffer where we can read the
5150 * results). Note that we depend on the HAL leaving this
5151 * pointer for us to use below in reclaiming the buffer;
5152 * may want to be more defensive.
5153 */
5154 outdata = malloc(outsize, M_TEMP, M_NOWAIT);
5155 if (outdata == NULL) {
5156 error = ENOMEM;
5157 goto bad;
5158 }
5159 }
5160 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
5161 if (outsize < ad->ad_out_size)
5162 ad->ad_out_size = outsize;
5163 if (outdata != NULL)
5164 error = copyout(outdata, ad->ad_out_data,
5165 ad->ad_out_size);
5166 } else {
5167 error = EINVAL;
5168 }
5169 bad:
5170 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
5171 free(indata, M_TEMP);
5172 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
5173 free(outdata, M_TEMP);
5174 return error;
5175 }
5176
5177 static int
5178 ath_ioctl(struct ifnet *ifp, u_long cmd, void *data)
5179 {
5180 #define IS_RUNNING(ifp) \
5181 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
5182 struct ath_softc *sc = ifp->if_softc;
5183 struct ieee80211com *ic = &sc->sc_ic;
5184 struct ifreq *ifr = (struct ifreq *)data;
5185 int error = 0;
5186
5187 ATH_LOCK(sc);
5188 switch (cmd) {
5189 case SIOCSIFFLAGS:
5190 if (IS_RUNNING(ifp)) {
5191 /*
5192 * To avoid rescanning another access point,
5193 * do not call ath_init() here. Instead,
5194 * only reflect promisc mode settings.
5195 */
5196 ath_mode_init(sc);
5197 } else if (ifp->if_flags & IFF_UP) {
5198 /*
5199 * Beware of being called during attach/detach
5200 * to reset promiscuous mode. In that case we
5201 * will still be marked UP but not RUNNING.
5202 * However trying to re-init the interface
5203 * is the wrong thing to do as we've already
5204 * torn down much of our state. There's
5205 * probably a better way to deal with this.
5206 */
5207 if (!sc->sc_invalid && ic->ic_bss != NULL)
5208 ath_init(sc); /* XXX lose error */
5209 } else
5210 ath_stop_locked(ifp, 1);
5211 break;
5212 case SIOCADDMULTI:
5213 case SIOCDELMULTI:
5214 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
5215 if (ifp->if_flags & IFF_RUNNING)
5216 ath_mode_init(sc);
5217 error = 0;
5218 }
5219 break;
5220 case SIOCGATHSTATS:
5221 /* NB: embed these numbers to get a consistent view */
5222 sc->sc_stats.ast_tx_packets = ifp->if_opackets;
5223 sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
5224 sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
5225 ATH_UNLOCK(sc);
5226 /*
5227 * NB: Drop the softc lock in case of a page fault;
5228 * we'll accept any potential inconsisentcy in the
5229 * statistics. The alternative is to copy the data
5230 * to a local structure.
5231 */
5232 return copyout(&sc->sc_stats,
5233 ifr->ifr_data, sizeof (sc->sc_stats));
5234 case SIOCGATHDIAG:
5235 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
5236 break;
5237 default:
5238 error = ieee80211_ioctl(ic, cmd, data);
5239 if (error == ENETRESET) {
5240 if (IS_RUNNING(ifp) &&
5241 ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
5242 ath_init(sc); /* XXX lose error */
5243 error = 0;
5244 }
5245 if (error == ERESTART)
5246 error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0;
5247 break;
5248 }
5249 ATH_UNLOCK(sc);
5250 return error;
5251 #undef IS_RUNNING
5252 }
5253
5254 #if NBPFILTER > 0
5255 static void
5256 ath_bpfattach(struct ath_softc *sc)
5257 {
5258 struct ifnet *ifp = &sc->sc_if;
5259
5260 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
5261 sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
5262 &sc->sc_drvbpf);
5263 /*
5264 * Initialize constant fields.
5265 * XXX make header lengths a multiple of 32-bits so subsequent
5266 * headers are properly aligned; this is a kludge to keep
5267 * certain applications happy.
5268 *
5269 * NB: the channel is setup each time we transition to the
5270 * RUN state to avoid filling it in for each frame.
5271 */
5272 sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
5273 sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
5274 sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
5275
5276 sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
5277 sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
5278 sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
5279 }
5280 #endif
5281
5282 /*
5283 * Announce various information on device/driver attach.
5284 */
5285 static void
5286 ath_announce(struct ath_softc *sc)
5287 {
5288 #define HAL_MODE_DUALBAND (HAL_MODE_11A|HAL_MODE_11B)
5289 struct ifnet *ifp = &sc->sc_if;
5290 struct ath_hal *ah = sc->sc_ah;
5291 u_int modes, cc;
5292
5293 if_printf(ifp, "mac %d.%d phy %d.%d",
5294 ah->ah_macVersion, ah->ah_macRev,
5295 ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
5296 /*
5297 * Print radio revision(s). We check the wireless modes
5298 * to avoid falsely printing revs for inoperable parts.
5299 * Dual-band radio revs are returned in the 5 GHz rev number.
5300 */
5301 ath_hal_getcountrycode(ah, &cc);
5302 modes = ath_hal_getwirelessmodes(ah, cc);
5303 if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
5304 if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
5305 printf(" 5 GHz radio %d.%d 2 GHz radio %d.%d",
5306 ah->ah_analog5GhzRev >> 4,
5307 ah->ah_analog5GhzRev & 0xf,
5308 ah->ah_analog2GhzRev >> 4,
5309 ah->ah_analog2GhzRev & 0xf);
5310 else
5311 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5312 ah->ah_analog5GhzRev & 0xf);
5313 } else
5314 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5315 ah->ah_analog5GhzRev & 0xf);
5316 printf("\n");
5317 if (bootverbose) {
5318 int i;
5319 for (i = 0; i <= WME_AC_VO; i++) {
5320 struct ath_txq *txq = sc->sc_ac2q[i];
5321 if_printf(ifp, "Use hw queue %u for %s traffic\n",
5322 txq->axq_qnum, ieee80211_wme_acnames[i]);
5323 }
5324 if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5325 sc->sc_cabq->axq_qnum);
5326 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5327 }
5328 if (ath_rxbuf != ATH_RXBUF)
5329 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
5330 if (ath_txbuf != ATH_TXBUF)
5331 if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
5332 #undef HAL_MODE_DUALBAND
5333 }
5334