Home | History | Annotate | Line # | Download | only in ic
ath.c revision 1.96
      1 /*	$NetBSD: ath.c,v 1.96 2007/12/14 02:46:49 dyoung Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer,
     12  *    without modification.
     13  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
     14  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
     15  *    redistribution must be conditioned upon including a substantially
     16  *    similar Disclaimer requirement for further binary redistribution.
     17  * 3. Neither the names of the above-listed copyright holders nor the names
     18  *    of any contributors may be used to endorse or promote products derived
     19  *    from this software without specific prior written permission.
     20  *
     21  * Alternatively, this software may be distributed under the terms of the
     22  * GNU General Public License ("GPL") version 2 as published by the Free
     23  * Software Foundation.
     24  *
     25  * NO WARRANTY
     26  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     28  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
     29  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
     30  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
     31  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
     34  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     36  * THE POSSIBILITY OF SUCH DAMAGES.
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 #ifdef __FreeBSD__
     41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $");
     42 #endif
     43 #ifdef __NetBSD__
     44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.96 2007/12/14 02:46:49 dyoung Exp $");
     45 #endif
     46 
     47 /*
     48  * Driver for the Atheros Wireless LAN controller.
     49  *
     50  * This software is derived from work of Atsushi Onoe; his contribution
     51  * is greatly appreciated.
     52  */
     53 
     54 #include "opt_inet.h"
     55 
     56 #ifdef __NetBSD__
     57 #include "bpfilter.h"
     58 #endif /* __NetBSD__ */
     59 
     60 #include <sys/param.h>
     61 #include <sys/reboot.h>
     62 #include <sys/systm.h>
     63 #include <sys/types.h>
     64 #include <sys/sysctl.h>
     65 #include <sys/mbuf.h>
     66 #include <sys/malloc.h>
     67 #include <sys/lock.h>
     68 #include <sys/kernel.h>
     69 #include <sys/socket.h>
     70 #include <sys/sockio.h>
     71 #include <sys/errno.h>
     72 #include <sys/callout.h>
     73 #include <sys/bus.h>
     74 #include <sys/endian.h>
     75 
     76 #include <net/if.h>
     77 #include <net/if_dl.h>
     78 #include <net/if_media.h>
     79 #include <net/if_types.h>
     80 #include <net/if_arp.h>
     81 #include <net/if_ether.h>
     82 #include <net/if_llc.h>
     83 
     84 #include <net80211/ieee80211_netbsd.h>
     85 #include <net80211/ieee80211_var.h>
     86 
     87 #if NBPFILTER > 0
     88 #include <net/bpf.h>
     89 #endif
     90 
     91 #ifdef INET
     92 #include <netinet/in.h>
     93 #endif
     94 
     95 #include <sys/device.h>
     96 #include <dev/ic/ath_netbsd.h>
     97 
     98 #define	AR_DEBUG
     99 #include <dev/ic/athvar.h>
    100 #include <contrib/dev/ath/ah_desc.h>
    101 #include <contrib/dev/ath/ah_devid.h>	/* XXX for softled */
    102 #include "athhal_options.h"
    103 
    104 #ifdef ATH_TX99_DIAG
    105 #include <dev/ath/ath_tx99/ath_tx99.h>
    106 #endif
    107 
    108 /* unaligned little endian access */
    109 #define LE_READ_2(p)							\
    110 	((u_int16_t)							\
    111 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
    112 #define LE_READ_4(p)							\
    113 	((u_int32_t)							\
    114 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
    115 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
    116 
    117 enum {
    118 	ATH_LED_TX,
    119 	ATH_LED_RX,
    120 	ATH_LED_POLL,
    121 };
    122 
    123 #ifdef	AH_NEED_DESC_SWAP
    124 #define	HTOAH32(x)	htole32(x)
    125 #else
    126 #define	HTOAH32(x)	(x)
    127 #endif
    128 
    129 static int	ath_ifinit(struct ifnet *);
    130 static int	ath_init(struct ath_softc *);
    131 static void	ath_stop_locked(struct ifnet *, int);
    132 static void	ath_stop(struct ifnet *, int);
    133 static void	ath_start(struct ifnet *);
    134 static int	ath_media_change(struct ifnet *);
    135 static void	ath_watchdog(struct ifnet *);
    136 static int	ath_ioctl(struct ifnet *, u_long, void *);
    137 static void	ath_fatal_proc(void *, int);
    138 static void	ath_rxorn_proc(void *, int);
    139 static void	ath_bmiss_proc(void *, int);
    140 static void	ath_radar_proc(void *, int);
    141 static int	ath_key_alloc(struct ieee80211com *,
    142 			const struct ieee80211_key *,
    143 			ieee80211_keyix *, ieee80211_keyix *);
    144 static int	ath_key_delete(struct ieee80211com *,
    145 			const struct ieee80211_key *);
    146 static int	ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
    147 			const u_int8_t mac[IEEE80211_ADDR_LEN]);
    148 static void	ath_key_update_begin(struct ieee80211com *);
    149 static void	ath_key_update_end(struct ieee80211com *);
    150 static void	ath_mode_init(struct ath_softc *);
    151 static void	ath_setslottime(struct ath_softc *);
    152 static void	ath_updateslot(struct ifnet *);
    153 static int	ath_beaconq_setup(struct ath_hal *);
    154 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
    155 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
    156 static void	ath_beacon_proc(void *, int);
    157 static void	ath_bstuck_proc(void *, int);
    158 static void	ath_beacon_free(struct ath_softc *);
    159 static void	ath_beacon_config(struct ath_softc *);
    160 static void	ath_descdma_cleanup(struct ath_softc *sc,
    161 			struct ath_descdma *, ath_bufhead *);
    162 static int	ath_desc_alloc(struct ath_softc *);
    163 static void	ath_desc_free(struct ath_softc *);
    164 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
    165 static void	ath_node_free(struct ieee80211_node *);
    166 static u_int8_t	ath_node_getrssi(const struct ieee80211_node *);
    167 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
    168 static void	ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
    169 			struct ieee80211_node *ni,
    170 			int subtype, int rssi, u_int32_t rstamp);
    171 static void	ath_setdefantenna(struct ath_softc *, u_int);
    172 static void	ath_rx_proc(void *, int);
    173 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
    174 static int	ath_tx_setup(struct ath_softc *, int, int);
    175 static int	ath_wme_update(struct ieee80211com *);
    176 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
    177 static void	ath_tx_cleanup(struct ath_softc *);
    178 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
    179 			     struct ath_buf *, struct mbuf *);
    180 static void	ath_tx_proc_q0(void *, int);
    181 static void	ath_tx_proc_q0123(void *, int);
    182 static void	ath_tx_proc(void *, int);
    183 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
    184 static void	ath_draintxq(struct ath_softc *);
    185 static void	ath_stoprecv(struct ath_softc *);
    186 static int	ath_startrecv(struct ath_softc *);
    187 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
    188 static void	ath_next_scan(void *);
    189 static void	ath_calibrate(void *);
    190 static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
    191 static void	ath_setup_stationkey(struct ieee80211_node *);
    192 static void	ath_newassoc(struct ieee80211_node *, int);
    193 static int	ath_getchannels(struct ath_softc *, u_int cc,
    194 			HAL_BOOL outdoor, HAL_BOOL xchanmode);
    195 static void	ath_led_event(struct ath_softc *, int);
    196 static void	ath_update_txpow(struct ath_softc *);
    197 static void	ath_freetx(struct mbuf *);
    198 static void	ath_restore_diversity(struct ath_softc *);
    199 
    200 static int	ath_rate_setup(struct ath_softc *, u_int mode);
    201 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
    202 
    203 #ifdef __NetBSD__
    204 int	ath_enable(struct ath_softc *);
    205 void	ath_disable(struct ath_softc *);
    206 #endif
    207 
    208 #if NBPFILTER > 0
    209 static void	ath_bpfattach(struct ath_softc *);
    210 #endif
    211 static void	ath_announce(struct ath_softc *);
    212 
    213 int ath_dwelltime = 200;		/* 5 channels/second */
    214 int ath_calinterval = 30;		/* calibrate every 30 secs */
    215 int ath_outdoor = AH_TRUE;		/* outdoor operation */
    216 int ath_xchanmode = AH_TRUE;		/* enable extended channels */
    217 int ath_countrycode = CTRY_DEFAULT;	/* country code */
    218 int ath_regdomain = 0;			/* regulatory domain */
    219 int ath_debug = 0;
    220 int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
    221 int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
    222 
    223 #ifdef AR_DEBUG
    224 enum {
    225 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
    226 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
    227 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
    228 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
    229 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
    230 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
    231 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
    232 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
    233 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
    234 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
    235 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
    236 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
    237 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
    238 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
    239 	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
    240 	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
    241 	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
    242 	ATH_DEBUG_LED		= 0x00100000,	/* led management */
    243 	ATH_DEBUG_FF		= 0x00200000,	/* fast frames */
    244 	ATH_DEBUG_DFS		= 0x00400000,	/* DFS processing */
    245 	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
    246 	ATH_DEBUG_ANY		= 0xffffffff
    247 };
    248 #define	IFF_DUMPPKTS(sc, m) \
    249 	((sc->sc_debug & (m)) || \
    250 	    (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
    251 #define	DPRINTF(sc, m, fmt, ...) do {				\
    252 	if (sc->sc_debug & (m))					\
    253 		printf(fmt, __VA_ARGS__);			\
    254 } while (0)
    255 #define	KEYPRINTF(sc, ix, hk, mac) do {				\
    256 	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
    257 		ath_keyprint(__func__, ix, hk, mac);		\
    258 } while (0)
    259 static	void ath_printrxbuf(struct ath_buf *bf, int);
    260 static	void ath_printtxbuf(struct ath_buf *bf, int);
    261 #else
    262 #define	IFF_DUMPPKTS(sc, m) \
    263 	((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
    264 #define	DPRINTF(m, fmt, ...)
    265 #define	KEYPRINTF(sc, k, ix, mac)
    266 #endif
    267 
    268 #ifdef __NetBSD__
    269 int
    270 ath_activate(struct device *self, enum devact act)
    271 {
    272 	struct ath_softc *sc = (struct ath_softc *)self;
    273 	int rv = 0, s;
    274 
    275 	s = splnet();
    276 	switch (act) {
    277 	case DVACT_ACTIVATE:
    278 		rv = EOPNOTSUPP;
    279 		break;
    280 	case DVACT_DEACTIVATE:
    281 		if_deactivate(&sc->sc_if);
    282 		break;
    283 	}
    284 	splx(s);
    285 	return rv;
    286 }
    287 
    288 int
    289 ath_enable(struct ath_softc *sc)
    290 {
    291 	if (ATH_IS_ENABLED(sc) == 0) {
    292 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
    293 			printf("%s: device enable failed\n",
    294 				device_xname(&sc->sc_dev));
    295 			return (EIO);
    296 		}
    297 		sc->sc_flags |= ATH_ENABLED;
    298 	}
    299 	return (0);
    300 }
    301 
    302 void
    303 ath_disable(struct ath_softc *sc)
    304 {
    305 	if (!ATH_IS_ENABLED(sc))
    306 		return;
    307 	if (sc->sc_disable != NULL)
    308 		(*sc->sc_disable)(sc);
    309 	sc->sc_flags &= ~ATH_ENABLED;
    310 }
    311 #endif /* __NetBSD__ */
    312 
    313 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
    314 
    315 int
    316 ath_attach(u_int16_t devid, struct ath_softc *sc)
    317 {
    318 	struct ifnet *ifp = &sc->sc_if;
    319 	struct ieee80211com *ic = &sc->sc_ic;
    320 	struct ath_hal *ah = NULL;
    321 	HAL_STATUS status;
    322 	int error = 0, i;
    323 
    324 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
    325 
    326 	memcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
    327 
    328 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
    329 	if (ah == NULL) {
    330 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
    331 			status);
    332 		error = ENXIO;
    333 		goto bad;
    334 	}
    335 	if (ah->ah_abi != HAL_ABI_VERSION) {
    336 		if_printf(ifp, "HAL ABI mismatch detected "
    337 			"(HAL:0x%x != driver:0x%x)\n",
    338 			ah->ah_abi, HAL_ABI_VERSION);
    339 		error = ENXIO;
    340 		goto bad;
    341 	}
    342 	sc->sc_ah = ah;
    343 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
    344 
    345 	/*
    346 	 * Check if the MAC has multi-rate retry support.
    347 	 * We do this by trying to setup a fake extended
    348 	 * descriptor.  MAC's that don't have support will
    349 	 * return false w/o doing anything.  MAC's that do
    350 	 * support it will return true w/o doing anything.
    351 	 */
    352 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
    353 
    354 	/*
    355 	 * Check if the device has hardware counters for PHY
    356 	 * errors.  If so we need to enable the MIB interrupt
    357 	 * so we can act on stat triggers.
    358 	 */
    359 	if (ath_hal_hwphycounters(ah))
    360 		sc->sc_needmib = 1;
    361 
    362 	/*
    363 	 * Get the hardware key cache size.
    364 	 */
    365 	sc->sc_keymax = ath_hal_keycachesize(ah);
    366 	if (sc->sc_keymax > ATH_KEYMAX) {
    367 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
    368 			ATH_KEYMAX, sc->sc_keymax);
    369 		sc->sc_keymax = ATH_KEYMAX;
    370 	}
    371 	/*
    372 	 * Reset the key cache since some parts do not
    373 	 * reset the contents on initial power up.
    374 	 */
    375 	for (i = 0; i < sc->sc_keymax; i++)
    376 		ath_hal_keyreset(ah, i);
    377 	/*
    378 	 * Mark key cache slots associated with global keys
    379 	 * as in use.  If we knew TKIP was not to be used we
    380 	 * could leave the +32, +64, and +32+64 slots free.
    381 	 * XXX only for splitmic.
    382 	 */
    383 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
    384 		setbit(sc->sc_keymap, i);
    385 		setbit(sc->sc_keymap, i+32);
    386 		setbit(sc->sc_keymap, i+64);
    387 		setbit(sc->sc_keymap, i+32+64);
    388 	}
    389 
    390 	/*
    391 	 * Collect the channel list using the default country
    392 	 * code and including outdoor channels.  The 802.11 layer
    393 	 * is resposible for filtering this list based on settings
    394 	 * like the phy mode.
    395 	 */
    396 	error = ath_getchannels(sc, ath_countrycode,
    397 			ath_outdoor, ath_xchanmode);
    398 	if (error != 0)
    399 		goto bad;
    400 
    401 	/*
    402 	 * Setup rate tables for all potential media types.
    403 	 */
    404 	ath_rate_setup(sc, IEEE80211_MODE_11A);
    405 	ath_rate_setup(sc, IEEE80211_MODE_11B);
    406 	ath_rate_setup(sc, IEEE80211_MODE_11G);
    407 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
    408 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
    409 	/* NB: setup here so ath_rate_update is happy */
    410 	ath_setcurmode(sc, IEEE80211_MODE_11A);
    411 
    412 	/*
    413 	 * Allocate tx+rx descriptors and populate the lists.
    414 	 */
    415 	error = ath_desc_alloc(sc);
    416 	if (error != 0) {
    417 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
    418 		goto bad;
    419 	}
    420 	ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
    421 	ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE);
    422 	ATH_CALLOUT_INIT(&sc->sc_dfs_ch, CALLOUT_MPSAFE);
    423 
    424 	ATH_TXBUF_LOCK_INIT(sc);
    425 
    426 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
    427 	TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
    428 	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
    429 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
    430 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
    431 	TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc);
    432 
    433 	/*
    434 	 * Allocate hardware transmit queues: one queue for
    435 	 * beacon frames and one data queue for each QoS
    436 	 * priority.  Note that the hal handles reseting
    437 	 * these queues at the needed time.
    438 	 *
    439 	 * XXX PS-Poll
    440 	 */
    441 	sc->sc_bhalq = ath_beaconq_setup(ah);
    442 	if (sc->sc_bhalq == (u_int) -1) {
    443 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
    444 		error = EIO;
    445 		goto bad2;
    446 	}
    447 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
    448 	if (sc->sc_cabq == NULL) {
    449 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
    450 		error = EIO;
    451 		goto bad2;
    452 	}
    453 	/* NB: insure BK queue is the lowest priority h/w queue */
    454 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
    455 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
    456 			ieee80211_wme_acnames[WME_AC_BK]);
    457 		error = EIO;
    458 		goto bad2;
    459 	}
    460 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
    461 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
    462 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
    463 		/*
    464 		 * Not enough hardware tx queues to properly do WME;
    465 		 * just punt and assign them all to the same h/w queue.
    466 		 * We could do a better job of this if, for example,
    467 		 * we allocate queues when we switch from station to
    468 		 * AP mode.
    469 		 */
    470 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
    471 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
    472 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
    473 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
    474 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
    475 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
    476 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
    477 	}
    478 
    479 	/*
    480 	 * Special case certain configurations.  Note the
    481 	 * CAB queue is handled by these specially so don't
    482 	 * include them when checking the txq setup mask.
    483 	 */
    484 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
    485 	case 0x01:
    486 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
    487 		break;
    488 	case 0x0f:
    489 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
    490 		break;
    491 	default:
    492 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
    493 		break;
    494 	}
    495 
    496 	/*
    497 	 * Setup rate control.  Some rate control modules
    498 	 * call back to change the anntena state so expose
    499 	 * the necessary entry points.
    500 	 * XXX maybe belongs in struct ath_ratectrl?
    501 	 */
    502 	sc->sc_setdefantenna = ath_setdefantenna;
    503 	sc->sc_rc = ath_rate_attach(sc);
    504 	if (sc->sc_rc == NULL) {
    505 		error = EIO;
    506 		goto bad2;
    507 	}
    508 
    509 	sc->sc_blinking = 0;
    510 	sc->sc_ledstate = 1;
    511 	sc->sc_ledon = 0;			/* low true */
    512 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
    513 	ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE);
    514 	/*
    515 	 * Auto-enable soft led processing for IBM cards and for
    516 	 * 5211 minipci cards.  Users can also manually enable/disable
    517 	 * support with a sysctl.
    518 	 */
    519 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
    520 	if (sc->sc_softled) {
    521 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
    522 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
    523 	}
    524 
    525 	ifp->if_softc = sc;
    526 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
    527 	ifp->if_start = ath_start;
    528 	ifp->if_stop = ath_stop;
    529 	ifp->if_watchdog = ath_watchdog;
    530 	ifp->if_ioctl = ath_ioctl;
    531 	ifp->if_init = ath_ifinit;
    532 	IFQ_SET_READY(&ifp->if_snd);
    533 
    534 	ic->ic_ifp = ifp;
    535 	ic->ic_reset = ath_reset;
    536 	ic->ic_newassoc = ath_newassoc;
    537 	ic->ic_updateslot = ath_updateslot;
    538 	ic->ic_wme.wme_update = ath_wme_update;
    539 	/* XXX not right but it's not used anywhere important */
    540 	ic->ic_phytype = IEEE80211_T_OFDM;
    541 	ic->ic_opmode = IEEE80211_M_STA;
    542 	ic->ic_caps =
    543 		  IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
    544 		| IEEE80211_C_HOSTAP		/* hostap mode */
    545 		| IEEE80211_C_MONITOR		/* monitor mode */
    546 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
    547 		| IEEE80211_C_SHSLOT		/* short slot time supported */
    548 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
    549 		| IEEE80211_C_TXFRAG		/* handle tx frags */
    550 		;
    551 	/*
    552 	 * Query the hal to figure out h/w crypto support.
    553 	 */
    554 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
    555 		ic->ic_caps |= IEEE80211_C_WEP;
    556 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
    557 		ic->ic_caps |= IEEE80211_C_AES;
    558 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
    559 		ic->ic_caps |= IEEE80211_C_AES_CCM;
    560 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
    561 		ic->ic_caps |= IEEE80211_C_CKIP;
    562 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
    563 		ic->ic_caps |= IEEE80211_C_TKIP;
    564 		/*
    565 		 * Check if h/w does the MIC and/or whether the
    566 		 * separate key cache entries are required to
    567 		 * handle both tx+rx MIC keys.
    568 		 */
    569 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
    570 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
    571 		if (ath_hal_tkipsplit(ah))
    572 			sc->sc_splitmic = 1;
    573 	}
    574 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
    575 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
    576 	/*
    577 	 * TPC support can be done either with a global cap or
    578 	 * per-packet support.  The latter is not available on
    579 	 * all parts.  We're a bit pedantic here as all parts
    580 	 * support a global cap.
    581 	 */
    582 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
    583 		ic->ic_caps |= IEEE80211_C_TXPMGT;
    584 
    585 	/*
    586 	 * Mark WME capability only if we have sufficient
    587 	 * hardware queues to do proper priority scheduling.
    588 	 */
    589 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
    590 		ic->ic_caps |= IEEE80211_C_WME;
    591 	/*
    592 	 * Check for misc other capabilities.
    593 	 */
    594 	if (ath_hal_hasbursting(ah))
    595 		ic->ic_caps |= IEEE80211_C_BURST;
    596 
    597 	/*
    598 	 * Indicate we need the 802.11 header padded to a
    599 	 * 32-bit boundary for 4-address and QoS frames.
    600 	 */
    601 	ic->ic_flags |= IEEE80211_F_DATAPAD;
    602 
    603 	/*
    604 	 * Query the hal about antenna support.
    605 	 */
    606 	sc->sc_defant = ath_hal_getdefantenna(ah);
    607 
    608 	/*
    609 	 * Not all chips have the VEOL support we want to
    610 	 * use with IBSS beacons; check here for it.
    611 	 */
    612 	sc->sc_hasveol = ath_hal_hasveol(ah);
    613 
    614 	/* get mac address from hardware */
    615 	ath_hal_getmac(ah, ic->ic_myaddr);
    616 
    617 	if_attach(ifp);
    618 	/* call MI attach routine. */
    619 	ieee80211_ifattach(ic);
    620 	/* override default methods */
    621 	ic->ic_node_alloc = ath_node_alloc;
    622 	sc->sc_node_free = ic->ic_node_free;
    623 	ic->ic_node_free = ath_node_free;
    624 	ic->ic_node_getrssi = ath_node_getrssi;
    625 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
    626 	ic->ic_recv_mgmt = ath_recv_mgmt;
    627 	sc->sc_newstate = ic->ic_newstate;
    628 	ic->ic_newstate = ath_newstate;
    629 	ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
    630 	ic->ic_crypto.cs_key_alloc = ath_key_alloc;
    631 	ic->ic_crypto.cs_key_delete = ath_key_delete;
    632 	ic->ic_crypto.cs_key_set = ath_key_set;
    633 	ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
    634 	ic->ic_crypto.cs_key_update_end = ath_key_update_end;
    635 	/* complete initialization */
    636 	ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
    637 
    638 #if NBPFILTER > 0
    639 	ath_bpfattach(sc);
    640 #endif
    641 
    642 	sc->sc_flags |= ATH_ATTACHED;
    643 
    644 	/*
    645 	 * Setup dynamic sysctl's now that country code and
    646 	 * regdomain are available from the hal.
    647 	 */
    648 	ath_sysctlattach(sc);
    649 
    650 	ieee80211_announce(ic);
    651 	ath_announce(sc);
    652 	return 0;
    653 bad2:
    654 	ath_tx_cleanup(sc);
    655 	ath_desc_free(sc);
    656 bad:
    657 	if (ah)
    658 		ath_hal_detach(ah);
    659 	sc->sc_invalid = 1;
    660 	return error;
    661 }
    662 
    663 int
    664 ath_detach(struct ath_softc *sc)
    665 {
    666 	struct ifnet *ifp = &sc->sc_if;
    667 	int s;
    668 
    669 	if ((sc->sc_flags & ATH_ATTACHED) == 0)
    670 		return (0);
    671 
    672 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
    673 		__func__, ifp->if_flags);
    674 
    675 	s = splnet();
    676 	ath_stop(ifp, 1);
    677 #if NBPFILTER > 0
    678 	bpfdetach(ifp);
    679 #endif
    680 	/*
    681 	 * NB: the order of these is important:
    682 	 * o call the 802.11 layer before detaching the hal to
    683 	 *   insure callbacks into the driver to delete global
    684 	 *   key cache entries can be handled
    685 	 * o reclaim the tx queue data structures after calling
    686 	 *   the 802.11 layer as we'll get called back to reclaim
    687 	 *   node state and potentially want to use them
    688 	 * o to cleanup the tx queues the hal is called, so detach
    689 	 *   it last
    690 	 * Other than that, it's straightforward...
    691 	 */
    692 	ieee80211_ifdetach(&sc->sc_ic);
    693 #ifdef ATH_TX99_DIAG
    694 	if (sc->sc_tx99 != NULL)
    695 		sc->sc_tx99->detach(sc->sc_tx99);
    696 #endif
    697 	ath_rate_detach(sc->sc_rc);
    698 	ath_desc_free(sc);
    699 	ath_tx_cleanup(sc);
    700 	sysctl_teardown(&sc->sc_sysctllog);
    701 	ath_hal_detach(sc->sc_ah);
    702 	if_detach(ifp);
    703 	splx(s);
    704 	powerhook_disestablish(sc->sc_powerhook);
    705 
    706 	return 0;
    707 }
    708 
    709 void
    710 ath_resume(struct ath_softc *sc)
    711 {
    712 	if (sc->sc_softled) {
    713 		ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
    714 		ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
    715 	}
    716 }
    717 
    718 /*
    719  * Interrupt handler.  Most of the actual processing is deferred.
    720  */
    721 int
    722 ath_intr(void *arg)
    723 {
    724 	struct ath_softc *sc = arg;
    725 	struct ifnet *ifp = &sc->sc_if;
    726 	struct ath_hal *ah = sc->sc_ah;
    727 	HAL_INT status;
    728 
    729 	if (sc->sc_invalid) {
    730 		/*
    731 		 * The hardware is not ready/present, don't touch anything.
    732 		 * Note this can happen early on if the IRQ is shared.
    733 		 */
    734 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
    735 		return 0;
    736 	}
    737 
    738 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
    739 		return 0;
    740 
    741 	if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
    742 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
    743 			__func__, ifp->if_flags);
    744 		ath_hal_getisr(ah, &status);	/* clear ISR */
    745 		ath_hal_intrset(ah, 0);		/* disable further intr's */
    746 		return 1; /* XXX */
    747 	}
    748 	/*
    749 	 * Figure out the reason(s) for the interrupt.  Note
    750 	 * that the hal returns a pseudo-ISR that may include
    751 	 * bits we haven't explicitly enabled so we mask the
    752 	 * value to insure we only process bits we requested.
    753 	 */
    754 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
    755 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
    756 	status &= sc->sc_imask;			/* discard unasked for bits */
    757 	if (status & HAL_INT_FATAL) {
    758 		/*
    759 		 * Fatal errors are unrecoverable.  Typically
    760 		 * these are caused by DMA errors.  Unfortunately
    761 		 * the exact reason is not (presently) returned
    762 		 * by the hal.
    763 		 */
    764 		sc->sc_stats.ast_hardware++;
    765 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
    766 		TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
    767 	} else if (status & HAL_INT_RXORN) {
    768 		sc->sc_stats.ast_rxorn++;
    769 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
    770 		TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
    771 	} else {
    772 		if (status & HAL_INT_SWBA) {
    773 			/*
    774 			 * Software beacon alert--time to send a beacon.
    775 			 * Handle beacon transmission directly; deferring
    776 			 * this is too slow to meet timing constraints
    777 			 * under load.
    778 			 */
    779 			ath_beacon_proc(sc, 0);
    780 		}
    781 		if (status & HAL_INT_RXEOL) {
    782 			/*
    783 			 * NB: the hardware should re-read the link when
    784 			 *     RXE bit is written, but it doesn't work at
    785 			 *     least on older hardware revs.
    786 			 */
    787 			sc->sc_stats.ast_rxeol++;
    788 			sc->sc_rxlink = NULL;
    789 		}
    790 		if (status & HAL_INT_TXURN) {
    791 			sc->sc_stats.ast_txurn++;
    792 			/* bump tx trigger level */
    793 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
    794 		}
    795 		if (status & HAL_INT_RX)
    796 			TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
    797 		if (status & HAL_INT_TX)
    798 			TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
    799 		if (status & HAL_INT_BMISS) {
    800 			sc->sc_stats.ast_bmiss++;
    801 			TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
    802 		}
    803 		if (status & HAL_INT_MIB) {
    804 			sc->sc_stats.ast_mib++;
    805 			/*
    806 			 * Disable interrupts until we service the MIB
    807 			 * interrupt; otherwise it will continue to fire.
    808 			 */
    809 			ath_hal_intrset(ah, 0);
    810 			/*
    811 			 * Let the hal handle the event.  We assume it will
    812 			 * clear whatever condition caused the interrupt.
    813 			 */
    814 			ath_hal_mibevent(ah, &sc->sc_halstats);
    815 			ath_hal_intrset(ah, sc->sc_imask);
    816 		}
    817 	}
    818 	return 1;
    819 }
    820 
    821 /* Swap transmit descriptor.
    822  * if AH_NEED_DESC_SWAP flag is not defined this becomes a "null"
    823  * function.
    824  */
    825 static inline void
    826 ath_desc_swap(struct ath_desc *ds)
    827 {
    828 #ifdef AH_NEED_DESC_SWAP
    829 	ds->ds_link = htole32(ds->ds_link);
    830 	ds->ds_data = htole32(ds->ds_data);
    831 	ds->ds_ctl0 = htole32(ds->ds_ctl0);
    832 	ds->ds_ctl1 = htole32(ds->ds_ctl1);
    833 	ds->ds_hw[0] = htole32(ds->ds_hw[0]);
    834 	ds->ds_hw[1] = htole32(ds->ds_hw[1]);
    835 #endif
    836 }
    837 
    838 static void
    839 ath_fatal_proc(void *arg, int pending)
    840 {
    841 	struct ath_softc *sc = arg;
    842 	struct ifnet *ifp = &sc->sc_if;
    843 
    844 	if_printf(ifp, "hardware error; resetting\n");
    845 	ath_reset(ifp);
    846 }
    847 
    848 static void
    849 ath_rxorn_proc(void *arg, int pending)
    850 {
    851 	struct ath_softc *sc = arg;
    852 	struct ifnet *ifp = &sc->sc_if;
    853 
    854 	if_printf(ifp, "rx FIFO overrun; resetting\n");
    855 	ath_reset(ifp);
    856 }
    857 
    858 static void
    859 ath_bmiss_proc(void *arg, int pending)
    860 {
    861 	struct ath_softc *sc = arg;
    862 	struct ieee80211com *ic = &sc->sc_ic;
    863 
    864 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
    865 	KASSERT(ic->ic_opmode == IEEE80211_M_STA,
    866 		("unexpect operating mode %u", ic->ic_opmode));
    867 	if (ic->ic_state == IEEE80211_S_RUN) {
    868 		u_int64_t lastrx = sc->sc_lastrx;
    869 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
    870 
    871 		DPRINTF(sc, ATH_DEBUG_BEACON,
    872 		    "%s: tsf %" PRIu64 " lastrx %" PRId64
    873 		    " (%" PRIu64 ") bmiss %u\n",
    874 		    __func__, tsf, tsf - lastrx, lastrx,
    875 		    ic->ic_bmisstimeout*1024);
    876 		/*
    877 		 * Workaround phantom bmiss interrupts by sanity-checking
    878 		 * the time of our last rx'd frame.  If it is within the
    879 		 * beacon miss interval then ignore the interrupt.  If it's
    880 		 * truly a bmiss we'll get another interrupt soon and that'll
    881 		 * be dispatched up for processing.
    882 		 */
    883 		if (tsf - lastrx > ic->ic_bmisstimeout*1024) {
    884 			NET_LOCK_GIANT();
    885 			ieee80211_beacon_miss(ic);
    886 			NET_UNLOCK_GIANT();
    887 		} else
    888 			sc->sc_stats.ast_bmiss_phantom++;
    889 	}
    890 }
    891 
    892 static void
    893 ath_radar_proc(void *arg, int pending)
    894 {
    895 	struct ath_softc *sc = arg;
    896 	struct ifnet *ifp = &sc->sc_if;
    897 	struct ath_hal *ah = sc->sc_ah;
    898 	HAL_CHANNEL hchan;
    899 
    900 	if (ath_hal_procdfs(ah, &hchan)) {
    901 		if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n",
    902 			hchan.channel, hchan.channelFlags, hchan.privFlags);
    903 		/*
    904 		 * Initiate channel change.
    905 		 */
    906 		/* XXX not yet */
    907 	}
    908 }
    909 
    910 static u_int
    911 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
    912 {
    913 #define	N(a)	(sizeof(a) / sizeof(a[0]))
    914 	static const u_int modeflags[] = {
    915 		0,			/* IEEE80211_MODE_AUTO */
    916 		CHANNEL_A,		/* IEEE80211_MODE_11A */
    917 		CHANNEL_B,		/* IEEE80211_MODE_11B */
    918 		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
    919 		0,			/* IEEE80211_MODE_FH */
    920 		CHANNEL_ST,		/* IEEE80211_MODE_TURBO_A */
    921 		CHANNEL_108G		/* IEEE80211_MODE_TURBO_G */
    922 	};
    923 	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
    924 
    925 	KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
    926 	KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
    927 	return modeflags[mode];
    928 #undef N
    929 }
    930 
    931 static int
    932 ath_ifinit(struct ifnet *ifp)
    933 {
    934 	struct ath_softc *sc = (struct ath_softc *)ifp->if_softc;
    935 
    936 	return ath_init(sc);
    937 }
    938 
    939 static int
    940 ath_init(struct ath_softc *sc)
    941 {
    942 	struct ifnet *ifp = &sc->sc_if;
    943 	struct ieee80211com *ic = &sc->sc_ic;
    944 	struct ath_hal *ah = sc->sc_ah;
    945 	HAL_STATUS status;
    946 	int error = 0;
    947 
    948 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
    949 		__func__, ifp->if_flags);
    950 
    951 	if (!device_has_power(&sc->sc_dev))
    952 		return EBUSY;
    953 
    954 	ATH_LOCK(sc);
    955 
    956 	if ((error = ath_enable(sc)) != 0) {
    957 		ATH_UNLOCK(sc);
    958 		return error;
    959 	}
    960 
    961 	/*
    962 	 * Stop anything previously setup.  This is safe
    963 	 * whether this is the first time through or not.
    964 	 */
    965 	ath_stop_locked(ifp, 0);
    966 
    967 	/*
    968 	 * The basic interface to setting the hardware in a good
    969 	 * state is ``reset''.  On return the hardware is known to
    970 	 * be powered up and with interrupts disabled.  This must
    971 	 * be followed by initialization of the appropriate bits
    972 	 * and then setup of the interrupt mask.
    973 	 */
    974 	sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
    975 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
    976 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
    977 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
    978 			status);
    979 		error = EIO;
    980 		goto done;
    981 	}
    982 
    983 	/*
    984 	 * This is needed only to setup initial state
    985 	 * but it's best done after a reset.
    986 	 */
    987 	ath_update_txpow(sc);
    988 	/*
    989 	 * Likewise this is set during reset so update
    990 	 * state cached in the driver.
    991 	 */
    992 	ath_restore_diversity(sc);
    993 	sc->sc_calinterval = 1;
    994 	sc->sc_caltries = 0;
    995 
    996 	/*
    997 	 * Setup the hardware after reset: the key cache
    998 	 * is filled as needed and the receive engine is
    999 	 * set going.  Frame transmit is handled entirely
   1000 	 * in the frame output path; there's nothing to do
   1001 	 * here except setup the interrupt mask.
   1002 	 */
   1003 	if ((error = ath_startrecv(sc)) != 0) {
   1004 		if_printf(ifp, "unable to start recv logic\n");
   1005 		goto done;
   1006 	}
   1007 
   1008 	/*
   1009 	 * Enable interrupts.
   1010 	 */
   1011 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
   1012 		  | HAL_INT_RXEOL | HAL_INT_RXORN
   1013 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
   1014 	/*
   1015 	 * Enable MIB interrupts when there are hardware phy counters.
   1016 	 * Note we only do this (at the moment) for station mode.
   1017 	 */
   1018 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
   1019 		sc->sc_imask |= HAL_INT_MIB;
   1020 	ath_hal_intrset(ah, sc->sc_imask);
   1021 
   1022 	ifp->if_flags |= IFF_RUNNING;
   1023 	ic->ic_state = IEEE80211_S_INIT;
   1024 
   1025 	/*
   1026 	 * The hardware should be ready to go now so it's safe
   1027 	 * to kick the 802.11 state machine as it's likely to
   1028 	 * immediately call back to us to send mgmt frames.
   1029 	 */
   1030 	ath_chan_change(sc, ic->ic_curchan);
   1031 #ifdef ATH_TX99_DIAG
   1032 	if (sc->sc_tx99 != NULL)
   1033 		sc->sc_tx99->start(sc->sc_tx99);
   1034 	else
   1035 #endif
   1036 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   1037 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
   1038 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   1039 	} else
   1040 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   1041 done:
   1042 	ATH_UNLOCK(sc);
   1043 	return error;
   1044 }
   1045 
   1046 static void
   1047 ath_stop_locked(struct ifnet *ifp, int disable)
   1048 {
   1049 	struct ath_softc *sc = ifp->if_softc;
   1050 	struct ieee80211com *ic = &sc->sc_ic;
   1051 	struct ath_hal *ah = sc->sc_ah;
   1052 
   1053 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
   1054 		__func__, sc->sc_invalid, ifp->if_flags);
   1055 
   1056 	ATH_LOCK_ASSERT(sc);
   1057 	if (ifp->if_flags & IFF_RUNNING) {
   1058 		/*
   1059 		 * Shutdown the hardware and driver:
   1060 		 *    reset 802.11 state machine
   1061 		 *    turn off timers
   1062 		 *    disable interrupts
   1063 		 *    turn off the radio
   1064 		 *    clear transmit machinery
   1065 		 *    clear receive machinery
   1066 		 *    drain and release tx queues
   1067 		 *    reclaim beacon resources
   1068 		 *    power down hardware
   1069 		 *
   1070 		 * Note that some of this work is not possible if the
   1071 		 * hardware is gone (invalid).
   1072 		 */
   1073 #ifdef ATH_TX99_DIAG
   1074 		if (sc->sc_tx99 != NULL)
   1075 			sc->sc_tx99->stop(sc->sc_tx99);
   1076 #endif
   1077 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   1078 		ifp->if_flags &= ~IFF_RUNNING;
   1079 		ifp->if_timer = 0;
   1080 		if (!sc->sc_invalid) {
   1081 			if (sc->sc_softled) {
   1082 				callout_stop(&sc->sc_ledtimer);
   1083 				ath_hal_gpioset(ah, sc->sc_ledpin,
   1084 					!sc->sc_ledon);
   1085 				sc->sc_blinking = 0;
   1086 			}
   1087 			ath_hal_intrset(ah, 0);
   1088 		}
   1089 		ath_draintxq(sc);
   1090 		if (!sc->sc_invalid) {
   1091 			ath_stoprecv(sc);
   1092 			ath_hal_phydisable(ah);
   1093 		} else
   1094 			sc->sc_rxlink = NULL;
   1095 		IF_PURGE(&ifp->if_snd);
   1096 		ath_beacon_free(sc);
   1097 		if (disable)
   1098 			ath_disable(sc);
   1099 	}
   1100 }
   1101 
   1102 static void
   1103 ath_stop(struct ifnet *ifp, int disable)
   1104 {
   1105 	struct ath_softc *sc = ifp->if_softc;
   1106 
   1107 	ATH_LOCK(sc);
   1108 	ath_stop_locked(ifp, disable);
   1109 	if (!sc->sc_invalid) {
   1110 		/*
   1111 		 * Set the chip in full sleep mode.  Note that we are
   1112 		 * careful to do this only when bringing the interface
   1113 		 * completely to a stop.  When the chip is in this state
   1114 		 * it must be carefully woken up or references to
   1115 		 * registers in the PCI clock domain may freeze the bus
   1116 		 * (and system).  This varies by chip and is mostly an
   1117 		 * issue with newer parts that go to sleep more quickly.
   1118 		 */
   1119 		ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
   1120 	}
   1121 	ATH_UNLOCK(sc);
   1122 }
   1123 
   1124 static void
   1125 ath_restore_diversity(struct ath_softc *sc)
   1126 {
   1127 	struct ifnet *ifp = &sc->sc_if;
   1128 	struct ath_hal *ah = sc->sc_ah;
   1129 
   1130 	if (!ath_hal_setdiversity(sc->sc_ah, sc->sc_diversity) ||
   1131 	    sc->sc_diversity != ath_hal_getdiversity(ah)) {
   1132 		if_printf(ifp, "could not restore diversity setting %d\n",
   1133 		    sc->sc_diversity);
   1134 		sc->sc_diversity = ath_hal_getdiversity(ah);
   1135 	}
   1136 }
   1137 
   1138 /*
   1139  * Reset the hardware w/o losing operational state.  This is
   1140  * basically a more efficient way of doing ath_stop, ath_init,
   1141  * followed by state transitions to the current 802.11
   1142  * operational state.  Used to recover from various errors and
   1143  * to reset or reload hardware state.
   1144  */
   1145 int
   1146 ath_reset(struct ifnet *ifp)
   1147 {
   1148 	struct ath_softc *sc = ifp->if_softc;
   1149 	struct ieee80211com *ic = &sc->sc_ic;
   1150 	struct ath_hal *ah = sc->sc_ah;
   1151 	struct ieee80211_channel *c;
   1152 	HAL_STATUS status;
   1153 
   1154 	/*
   1155 	 * Convert to a HAL channel description with the flags
   1156 	 * constrained to reflect the current operating mode.
   1157 	 */
   1158 	c = ic->ic_curchan;
   1159 	sc->sc_curchan.channel = c->ic_freq;
   1160 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
   1161 
   1162 	ath_hal_intrset(ah, 0);		/* disable interrupts */
   1163 	ath_draintxq(sc);		/* stop xmit side */
   1164 	ath_stoprecv(sc);		/* stop recv side */
   1165 	/* NB: indicate channel change so we do a full reset */
   1166 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
   1167 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
   1168 			__func__, status);
   1169 	ath_update_txpow(sc);		/* update tx power state */
   1170 	ath_restore_diversity(sc);
   1171 	sc->sc_calinterval = 1;
   1172 	sc->sc_caltries = 0;
   1173 	if (ath_startrecv(sc) != 0)	/* restart recv */
   1174 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
   1175 	/*
   1176 	 * We may be doing a reset in response to an ioctl
   1177 	 * that changes the channel so update any state that
   1178 	 * might change as a result.
   1179 	 */
   1180 	ath_chan_change(sc, c);
   1181 	if (ic->ic_state == IEEE80211_S_RUN)
   1182 		ath_beacon_config(sc);	/* restart beacons */
   1183 	ath_hal_intrset(ah, sc->sc_imask);
   1184 
   1185 	ath_start(ifp);			/* restart xmit */
   1186 	return 0;
   1187 }
   1188 
   1189 /*
   1190  * Cleanup driver resources when we run out of buffers
   1191  * while processing fragments; return the tx buffers
   1192  * allocated and drop node references.
   1193  */
   1194 static void
   1195 ath_txfrag_cleanup(struct ath_softc *sc,
   1196 	ath_bufhead *frags, struct ieee80211_node *ni)
   1197 {
   1198 	struct ath_buf *bf;
   1199 
   1200 	ATH_TXBUF_LOCK_ASSERT(sc);
   1201 
   1202 	while ((bf = STAILQ_FIRST(frags)) != NULL) {
   1203 		STAILQ_REMOVE_HEAD(frags, bf_list);
   1204 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1205 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
   1206 		ieee80211_node_decref(ni);
   1207 	}
   1208 }
   1209 
   1210 /*
   1211  * Setup xmit of a fragmented frame.  Allocate a buffer
   1212  * for each frag and bump the node reference count to
   1213  * reflect the held reference to be setup by ath_tx_start.
   1214  */
   1215 static int
   1216 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
   1217 	struct mbuf *m0, struct ieee80211_node *ni)
   1218 {
   1219 	struct mbuf *m;
   1220 	struct ath_buf *bf;
   1221 
   1222 	ATH_TXBUF_LOCK(sc);
   1223 	for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
   1224 		bf = STAILQ_FIRST(&sc->sc_txbuf);
   1225 		if (bf == NULL) {       /* out of buffers, cleanup */
   1226 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
   1227 				__func__);
   1228 			sc->sc_if.if_flags |= IFF_OACTIVE;
   1229 			ath_txfrag_cleanup(sc, frags, ni);
   1230 			break;
   1231 		}
   1232 		STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
   1233 		ieee80211_node_incref(ni);
   1234 		STAILQ_INSERT_TAIL(frags, bf, bf_list);
   1235 	}
   1236 	ATH_TXBUF_UNLOCK(sc);
   1237 
   1238 	return !STAILQ_EMPTY(frags);
   1239 }
   1240 
   1241 static void
   1242 ath_start(struct ifnet *ifp)
   1243 {
   1244 	struct ath_softc *sc = ifp->if_softc;
   1245 	struct ath_hal *ah = sc->sc_ah;
   1246 	struct ieee80211com *ic = &sc->sc_ic;
   1247 	struct ieee80211_node *ni;
   1248 	struct ath_buf *bf;
   1249 	struct mbuf *m, *next;
   1250 	struct ieee80211_frame *wh;
   1251 	struct ether_header *eh;
   1252 	ath_bufhead frags;
   1253 
   1254 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
   1255 		return;
   1256 	for (;;) {
   1257 		/*
   1258 		 * Grab a TX buffer and associated resources.
   1259 		 */
   1260 		ATH_TXBUF_LOCK(sc);
   1261 		bf = STAILQ_FIRST(&sc->sc_txbuf);
   1262 		if (bf != NULL)
   1263 			STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
   1264 		ATH_TXBUF_UNLOCK(sc);
   1265 		if (bf == NULL) {
   1266 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
   1267 				__func__);
   1268 			sc->sc_stats.ast_tx_qstop++;
   1269 			ifp->if_flags |= IFF_OACTIVE;
   1270 			break;
   1271 		}
   1272 		/*
   1273 		 * Poll the management queue for frames; they
   1274 		 * have priority over normal data frames.
   1275 		 */
   1276 		IF_DEQUEUE(&ic->ic_mgtq, m);
   1277 		if (m == NULL) {
   1278 			/*
   1279 			 * No data frames go out unless we're associated.
   1280 			 */
   1281 			if (ic->ic_state != IEEE80211_S_RUN) {
   1282 				DPRINTF(sc, ATH_DEBUG_XMIT,
   1283 				    "%s: discard data packet, state %s\n",
   1284 				    __func__,
   1285 				    ieee80211_state_name[ic->ic_state]);
   1286 				sc->sc_stats.ast_tx_discard++;
   1287 				ATH_TXBUF_LOCK(sc);
   1288 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1289 				ATH_TXBUF_UNLOCK(sc);
   1290 				break;
   1291 			}
   1292 			IFQ_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
   1293 			if (m == NULL) {
   1294 				ATH_TXBUF_LOCK(sc);
   1295 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1296 				ATH_TXBUF_UNLOCK(sc);
   1297 				break;
   1298 			}
   1299 			STAILQ_INIT(&frags);
   1300 			/*
   1301 			 * Find the node for the destination so we can do
   1302 			 * things like power save and fast frames aggregation.
   1303 			 */
   1304 			if (m->m_len < sizeof(struct ether_header) &&
   1305 			   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
   1306 				ic->ic_stats.is_tx_nobuf++;	/* XXX */
   1307 				ni = NULL;
   1308 				goto bad;
   1309 			}
   1310 			eh = mtod(m, struct ether_header *);
   1311 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   1312 			if (ni == NULL) {
   1313 				/* NB: ieee80211_find_txnode does stat+msg */
   1314 				m_freem(m);
   1315 				goto bad;
   1316 			}
   1317 			if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
   1318 			    (m->m_flags & M_PWR_SAV) == 0) {
   1319 				/*
   1320 				 * Station in power save mode; pass the frame
   1321 				 * to the 802.11 layer and continue.  We'll get
   1322 				 * the frame back when the time is right.
   1323 				 */
   1324 				ieee80211_pwrsave(ic, ni, m);
   1325 				goto reclaim;
   1326 			}
   1327 			/* calculate priority so we can find the tx queue */
   1328 			if (ieee80211_classify(ic, m, ni)) {
   1329 				DPRINTF(sc, ATH_DEBUG_XMIT,
   1330 					"%s: discard, classification failure\n",
   1331 					__func__);
   1332 				m_freem(m);
   1333 				goto bad;
   1334 			}
   1335 			ifp->if_opackets++;
   1336 
   1337 #if NBPFILTER > 0
   1338 			if (ifp->if_bpf)
   1339 				bpf_mtap(ifp->if_bpf, m);
   1340 #endif
   1341 			/*
   1342 			 * Encapsulate the packet in prep for transmission.
   1343 			 */
   1344 			m = ieee80211_encap(ic, m, ni);
   1345 			if (m == NULL) {
   1346 				DPRINTF(sc, ATH_DEBUG_XMIT,
   1347 					"%s: encapsulation failure\n",
   1348 					__func__);
   1349 				sc->sc_stats.ast_tx_encap++;
   1350 				goto bad;
   1351 			}
   1352 			/*
   1353 			 * Check for fragmentation.  If this has frame
   1354 			 * has been broken up verify we have enough
   1355 			 * buffers to send all the fragments so all
   1356 			 * go out or none...
   1357 			 */
   1358 			if ((m->m_flags & M_FRAG) &&
   1359 			    !ath_txfrag_setup(sc, &frags, m, ni)) {
   1360 				DPRINTF(sc, ATH_DEBUG_ANY,
   1361 				    "%s: out of txfrag buffers\n", __func__);
   1362 				ic->ic_stats.is_tx_nobuf++;     /* XXX */
   1363 				ath_freetx(m);
   1364 				goto bad;
   1365 			}
   1366 		} else {
   1367 			/*
   1368 			 * Hack!  The referenced node pointer is in the
   1369 			 * rcvif field of the packet header.  This is
   1370 			 * placed there by ieee80211_mgmt_output because
   1371 			 * we need to hold the reference with the frame
   1372 			 * and there's no other way (other than packet
   1373 			 * tags which we consider too expensive to use)
   1374 			 * to pass it along.
   1375 			 */
   1376 			ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
   1377 			m->m_pkthdr.rcvif = NULL;
   1378 
   1379 			wh = mtod(m, struct ieee80211_frame *);
   1380 			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
   1381 			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
   1382 				/* fill time stamp */
   1383 				u_int64_t tsf;
   1384 				u_int32_t *tstamp;
   1385 
   1386 				tsf = ath_hal_gettsf64(ah);
   1387 				/* XXX: adjust 100us delay to xmit */
   1388 				tsf += 100;
   1389 				tstamp = (u_int32_t *)&wh[1];
   1390 				tstamp[0] = htole32(tsf & 0xffffffff);
   1391 				tstamp[1] = htole32(tsf >> 32);
   1392 			}
   1393 			sc->sc_stats.ast_tx_mgmt++;
   1394 		}
   1395 
   1396 	nextfrag:
   1397 		next = m->m_nextpkt;
   1398 		if (ath_tx_start(sc, ni, bf, m)) {
   1399 	bad:
   1400 			ifp->if_oerrors++;
   1401 	reclaim:
   1402 			ATH_TXBUF_LOCK(sc);
   1403 			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1404 			ath_txfrag_cleanup(sc, &frags, ni);
   1405 			ATH_TXBUF_UNLOCK(sc);
   1406 			if (ni != NULL)
   1407 				ieee80211_free_node(ni);
   1408 			continue;
   1409 		}
   1410 		if (next != NULL) {
   1411 			m = next;
   1412 			bf = STAILQ_FIRST(&frags);
   1413 			KASSERT(bf != NULL, ("no buf for txfrag"));
   1414 			STAILQ_REMOVE_HEAD(&frags, bf_list);
   1415 			goto nextfrag;
   1416 		}
   1417 
   1418 		ifp->if_timer = 1;
   1419 	}
   1420 }
   1421 
   1422 static int
   1423 ath_media_change(struct ifnet *ifp)
   1424 {
   1425 #define	IS_UP(ifp) \
   1426 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
   1427 	int error;
   1428 
   1429 	error = ieee80211_media_change(ifp);
   1430 	if (error == ENETRESET) {
   1431 		if (IS_UP(ifp))
   1432 			ath_init(ifp->if_softc);	/* XXX lose error */
   1433 		error = 0;
   1434 	}
   1435 	return error;
   1436 #undef IS_UP
   1437 }
   1438 
   1439 #ifdef AR_DEBUG
   1440 static void
   1441 ath_keyprint(const char *tag, u_int ix,
   1442 	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
   1443 {
   1444 	static const char *ciphers[] = {
   1445 		"WEP",
   1446 		"AES-OCB",
   1447 		"AES-CCM",
   1448 		"CKIP",
   1449 		"TKIP",
   1450 		"CLR",
   1451 	};
   1452 	int i, n;
   1453 
   1454 	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
   1455 	for (i = 0, n = hk->kv_len; i < n; i++)
   1456 		printf("%02x", hk->kv_val[i]);
   1457 	printf(" mac %s", ether_sprintf(mac));
   1458 	if (hk->kv_type == HAL_CIPHER_TKIP) {
   1459 		printf(" mic ");
   1460 		for (i = 0; i < sizeof(hk->kv_mic); i++)
   1461 			printf("%02x", hk->kv_mic[i]);
   1462 	}
   1463 	printf("\n");
   1464 }
   1465 #endif
   1466 
   1467 /*
   1468  * Set a TKIP key into the hardware.  This handles the
   1469  * potential distribution of key state to multiple key
   1470  * cache slots for TKIP.
   1471  */
   1472 static int
   1473 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
   1474 	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
   1475 {
   1476 #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
   1477 	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
   1478 	struct ath_hal *ah = sc->sc_ah;
   1479 
   1480 	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
   1481 		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
   1482 	KASSERT(sc->sc_splitmic, ("key cache !split"));
   1483 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
   1484 		/*
   1485 		 * TX key goes at first index, RX key at the rx index.
   1486 		 * The hal handles the MIC keys at index+64.
   1487 		 */
   1488 		memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
   1489 		KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
   1490 		if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
   1491 			return 0;
   1492 
   1493 		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
   1494 		KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
   1495 		/* XXX delete tx key on failure? */
   1496 		return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
   1497 	} else if (k->wk_flags & IEEE80211_KEY_XR) {
   1498 		/*
   1499 		 * TX/RX key goes at first index.
   1500 		 * The hal handles the MIC keys are index+64.
   1501 		 */
   1502 		memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
   1503 			k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
   1504 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
   1505 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
   1506 	}
   1507 	return 0;
   1508 #undef IEEE80211_KEY_XR
   1509 }
   1510 
   1511 /*
   1512  * Set a net80211 key into the hardware.  This handles the
   1513  * potential distribution of key state to multiple key
   1514  * cache slots for TKIP with hardware MIC support.
   1515  */
   1516 static int
   1517 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
   1518 	const u_int8_t mac0[IEEE80211_ADDR_LEN],
   1519 	struct ieee80211_node *bss)
   1520 {
   1521 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1522 	static const u_int8_t ciphermap[] = {
   1523 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
   1524 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
   1525 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
   1526 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
   1527 		(u_int8_t) -1,		/* 4 is not allocated */
   1528 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
   1529 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
   1530 	};
   1531 	struct ath_hal *ah = sc->sc_ah;
   1532 	const struct ieee80211_cipher *cip = k->wk_cipher;
   1533 	u_int8_t gmac[IEEE80211_ADDR_LEN];
   1534 	const u_int8_t *mac;
   1535 	HAL_KEYVAL hk;
   1536 
   1537 	memset(&hk, 0, sizeof(hk));
   1538 	/*
   1539 	 * Software crypto uses a "clear key" so non-crypto
   1540 	 * state kept in the key cache are maintained and
   1541 	 * so that rx frames have an entry to match.
   1542 	 */
   1543 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
   1544 		KASSERT(cip->ic_cipher < N(ciphermap),
   1545 			("invalid cipher type %u", cip->ic_cipher));
   1546 		hk.kv_type = ciphermap[cip->ic_cipher];
   1547 		hk.kv_len = k->wk_keylen;
   1548 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
   1549 	} else
   1550 		hk.kv_type = HAL_CIPHER_CLR;
   1551 
   1552 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
   1553 		/*
   1554 		 * Group keys on hardware that supports multicast frame
   1555 		 * key search use a mac that is the sender's address with
   1556 		 * the high bit set instead of the app-specified address.
   1557 		 */
   1558 		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
   1559 		gmac[0] |= 0x80;
   1560 		mac = gmac;
   1561 	} else
   1562 		mac = mac0;
   1563 
   1564 	if (hk.kv_type == HAL_CIPHER_TKIP &&
   1565 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
   1566 	    sc->sc_splitmic) {
   1567 		return ath_keyset_tkip(sc, k, &hk, mac);
   1568 	} else {
   1569 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
   1570 		return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
   1571 	}
   1572 #undef N
   1573 }
   1574 
   1575 /*
   1576  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
   1577  * each key, one for decrypt/encrypt and the other for the MIC.
   1578  */
   1579 static u_int16_t
   1580 key_alloc_2pair(struct ath_softc *sc,
   1581 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
   1582 {
   1583 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1584 	u_int i, keyix;
   1585 
   1586 	KASSERT(sc->sc_splitmic, ("key cache !split"));
   1587 	/* XXX could optimize */
   1588 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
   1589 		u_int8_t b = sc->sc_keymap[i];
   1590 		if (b != 0xff) {
   1591 			/*
   1592 			 * One or more slots in this byte are free.
   1593 			 */
   1594 			keyix = i*NBBY;
   1595 			while (b & 1) {
   1596 		again:
   1597 				keyix++;
   1598 				b >>= 1;
   1599 			}
   1600 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
   1601 			if (isset(sc->sc_keymap, keyix+32) ||
   1602 			    isset(sc->sc_keymap, keyix+64) ||
   1603 			    isset(sc->sc_keymap, keyix+32+64)) {
   1604 				/* full pair unavailable */
   1605 				/* XXX statistic */
   1606 				if (keyix == (i+1)*NBBY) {
   1607 					/* no slots were appropriate, advance */
   1608 					continue;
   1609 				}
   1610 				goto again;
   1611 			}
   1612 			setbit(sc->sc_keymap, keyix);
   1613 			setbit(sc->sc_keymap, keyix+64);
   1614 			setbit(sc->sc_keymap, keyix+32);
   1615 			setbit(sc->sc_keymap, keyix+32+64);
   1616 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
   1617 				"%s: key pair %u,%u %u,%u\n",
   1618 				__func__, keyix, keyix+64,
   1619 				keyix+32, keyix+32+64);
   1620 			*txkeyix = keyix;
   1621 			*rxkeyix = keyix+32;
   1622 			return 1;
   1623 		}
   1624 	}
   1625 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
   1626 	return 0;
   1627 #undef N
   1628 }
   1629 
   1630 /*
   1631  * Allocate a single key cache slot.
   1632  */
   1633 static int
   1634 key_alloc_single(struct ath_softc *sc,
   1635 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
   1636 {
   1637 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1638 	u_int i, keyix;
   1639 
   1640 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
   1641 	for (i = 0; i < N(sc->sc_keymap); i++) {
   1642 		u_int8_t b = sc->sc_keymap[i];
   1643 		if (b != 0xff) {
   1644 			/*
   1645 			 * One or more slots are free.
   1646 			 */
   1647 			keyix = i*NBBY;
   1648 			while (b & 1)
   1649 				keyix++, b >>= 1;
   1650 			setbit(sc->sc_keymap, keyix);
   1651 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
   1652 				__func__, keyix);
   1653 			*txkeyix = *rxkeyix = keyix;
   1654 			return 1;
   1655 		}
   1656 	}
   1657 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
   1658 	return 0;
   1659 #undef N
   1660 }
   1661 
   1662 /*
   1663  * Allocate one or more key cache slots for a uniacst key.  The
   1664  * key itself is needed only to identify the cipher.  For hardware
   1665  * TKIP with split cipher+MIC keys we allocate two key cache slot
   1666  * pairs so that we can setup separate TX and RX MIC keys.  Note
   1667  * that the MIC key for a TKIP key at slot i is assumed by the
   1668  * hardware to be at slot i+64.  This limits TKIP keys to the first
   1669  * 64 entries.
   1670  */
   1671 static int
   1672 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
   1673 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
   1674 {
   1675 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1676 
   1677 	/*
   1678 	 * Group key allocation must be handled specially for
   1679 	 * parts that do not support multicast key cache search
   1680 	 * functionality.  For those parts the key id must match
   1681 	 * the h/w key index so lookups find the right key.  On
   1682 	 * parts w/ the key search facility we install the sender's
   1683 	 * mac address (with the high bit set) and let the hardware
   1684 	 * find the key w/o using the key id.  This is preferred as
   1685 	 * it permits us to support multiple users for adhoc and/or
   1686 	 * multi-station operation.
   1687 	 */
   1688 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
   1689 		if (!(&ic->ic_nw_keys[0] <= k &&
   1690 		      k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
   1691 			/* should not happen */
   1692 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
   1693 				"%s: bogus group key\n", __func__);
   1694 			return 0;
   1695 		}
   1696 		/*
   1697 		 * XXX we pre-allocate the global keys so
   1698 		 * have no way to check if they've already been allocated.
   1699 		 */
   1700 		*keyix = *rxkeyix = k - ic->ic_nw_keys;
   1701 		return 1;
   1702 	}
   1703 
   1704 	/*
   1705 	 * We allocate two pair for TKIP when using the h/w to do
   1706 	 * the MIC.  For everything else, including software crypto,
   1707 	 * we allocate a single entry.  Note that s/w crypto requires
   1708 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
   1709 	 * not support pass-through cache entries and we map all
   1710 	 * those requests to slot 0.
   1711 	 */
   1712 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
   1713 		return key_alloc_single(sc, keyix, rxkeyix);
   1714 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1715 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
   1716 		return key_alloc_2pair(sc, keyix, rxkeyix);
   1717 	} else {
   1718 		return key_alloc_single(sc, keyix, rxkeyix);
   1719 	}
   1720 }
   1721 
   1722 /*
   1723  * Delete an entry in the key cache allocated by ath_key_alloc.
   1724  */
   1725 static int
   1726 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
   1727 {
   1728 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1729 	struct ath_hal *ah = sc->sc_ah;
   1730 	const struct ieee80211_cipher *cip = k->wk_cipher;
   1731 	u_int keyix = k->wk_keyix;
   1732 
   1733 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
   1734 
   1735 	ath_hal_keyreset(ah, keyix);
   1736 	/*
   1737 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
   1738 	 */
   1739 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1740 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
   1741 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
   1742 	if (keyix >= IEEE80211_WEP_NKID) {
   1743 		/*
   1744 		 * Don't touch keymap entries for global keys so
   1745 		 * they are never considered for dynamic allocation.
   1746 		 */
   1747 		clrbit(sc->sc_keymap, keyix);
   1748 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1749 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
   1750 		    sc->sc_splitmic) {
   1751 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
   1752 			clrbit(sc->sc_keymap, keyix+32);	/* RX key */
   1753 			clrbit(sc->sc_keymap, keyix+32+64);	/* RX key MIC */
   1754 		}
   1755 	}
   1756 	return 1;
   1757 }
   1758 
   1759 /*
   1760  * Set the key cache contents for the specified key.  Key cache
   1761  * slot(s) must already have been allocated by ath_key_alloc.
   1762  */
   1763 static int
   1764 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
   1765 	const u_int8_t mac[IEEE80211_ADDR_LEN])
   1766 {
   1767 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1768 
   1769 	return ath_keyset(sc, k, mac, ic->ic_bss);
   1770 }
   1771 
   1772 /*
   1773  * Block/unblock tx+rx processing while a key change is done.
   1774  * We assume the caller serializes key management operations
   1775  * so we only need to worry about synchronization with other
   1776  * uses that originate in the driver.
   1777  */
   1778 static void
   1779 ath_key_update_begin(struct ieee80211com *ic)
   1780 {
   1781 	struct ifnet *ifp = ic->ic_ifp;
   1782 	struct ath_softc *sc = ifp->if_softc;
   1783 
   1784 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
   1785 #if 0
   1786 	tasklet_disable(&sc->sc_rxtq);
   1787 #endif
   1788 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
   1789 }
   1790 
   1791 static void
   1792 ath_key_update_end(struct ieee80211com *ic)
   1793 {
   1794 	struct ifnet *ifp = ic->ic_ifp;
   1795 	struct ath_softc *sc = ifp->if_softc;
   1796 
   1797 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
   1798 	IF_UNLOCK(&ifp->if_snd);
   1799 #if 0
   1800 	tasklet_enable(&sc->sc_rxtq);
   1801 #endif
   1802 }
   1803 
   1804 /*
   1805  * Calculate the receive filter according to the
   1806  * operating mode and state:
   1807  *
   1808  * o always accept unicast, broadcast, and multicast traffic
   1809  * o maintain current state of phy error reception (the hal
   1810  *   may enable phy error frames for noise immunity work)
   1811  * o probe request frames are accepted only when operating in
   1812  *   hostap, adhoc, or monitor modes
   1813  * o enable promiscuous mode according to the interface state
   1814  * o accept beacons:
   1815  *   - when operating in adhoc mode so the 802.11 layer creates
   1816  *     node table entries for peers,
   1817  *   - when operating in station mode for collecting rssi data when
   1818  *     the station is otherwise quiet, or
   1819  *   - when scanning
   1820  */
   1821 static u_int32_t
   1822 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
   1823 {
   1824 	struct ieee80211com *ic = &sc->sc_ic;
   1825 	struct ath_hal *ah = sc->sc_ah;
   1826 	struct ifnet *ifp = &sc->sc_if;
   1827 	u_int32_t rfilt;
   1828 
   1829 	rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
   1830 	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
   1831 	if (ic->ic_opmode != IEEE80211_M_STA)
   1832 		rfilt |= HAL_RX_FILTER_PROBEREQ;
   1833 	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
   1834 	    (ifp->if_flags & IFF_PROMISC))
   1835 		rfilt |= HAL_RX_FILTER_PROM;
   1836 	if (ic->ic_opmode == IEEE80211_M_STA ||
   1837 	    ic->ic_opmode == IEEE80211_M_IBSS ||
   1838 	    state == IEEE80211_S_SCAN)
   1839 		rfilt |= HAL_RX_FILTER_BEACON;
   1840 	return rfilt;
   1841 }
   1842 
   1843 static void
   1844 ath_mcastfilter_accum(void *dl, u_int32_t *mfilt)
   1845 {
   1846 	u_int32_t val;
   1847 	u_int8_t pos;
   1848 
   1849 	/* calculate XOR of eight 6bit values */
   1850 	val = LE_READ_4((char *)dl + 0);
   1851 	pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1852 	val = LE_READ_4((char *)dl + 3);
   1853 	pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1854 	pos &= 0x3f;
   1855 	mfilt[pos / 32] |= (1 << (pos % 32));
   1856 }
   1857 
   1858 static void
   1859 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t *mfilt)
   1860 {
   1861 	struct ifnet *ifp = &sc->sc_if;
   1862 	struct ether_multi *enm;
   1863 	struct ether_multistep estep;
   1864 
   1865 	mfilt[0] = mfilt[1] = 0;
   1866 	ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
   1867 	while (enm != NULL) {
   1868 		/* XXX Punt on ranges. */
   1869 		if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
   1870 			mfilt[0] = mfilt[1] = ~((u_int32_t)0);
   1871 			ifp->if_flags |= IFF_ALLMULTI;
   1872 			return;
   1873 		}
   1874 		ath_mcastfilter_accum(enm->enm_addrlo, mfilt);
   1875 		ETHER_NEXT_MULTI(estep, enm);
   1876 	}
   1877 	ifp->if_flags &= ~IFF_ALLMULTI;
   1878 }
   1879 
   1880 static void
   1881 ath_mode_init(struct ath_softc *sc)
   1882 {
   1883 	struct ieee80211com *ic = &sc->sc_ic;
   1884 	struct ath_hal *ah = sc->sc_ah;
   1885 	u_int32_t rfilt, mfilt[2];
   1886 	int i;
   1887 
   1888 	/* configure rx filter */
   1889 	rfilt = ath_calcrxfilter(sc, ic->ic_state);
   1890 	ath_hal_setrxfilter(ah, rfilt);
   1891 
   1892 	/* configure operational mode */
   1893 	ath_hal_setopmode(ah);
   1894 
   1895 	/* Write keys to hardware; it may have been powered down. */
   1896 	ath_key_update_begin(ic);
   1897 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
   1898 		ath_key_set(ic,
   1899 			    &ic->ic_crypto.cs_nw_keys[i],
   1900 			    ic->ic_myaddr);
   1901 	}
   1902 	ath_key_update_end(ic);
   1903 
   1904 	/*
   1905 	 * Handle any link-level address change.  Note that we only
   1906 	 * need to force ic_myaddr; any other addresses are handled
   1907 	 * as a byproduct of the ifnet code marking the interface
   1908 	 * down then up.
   1909 	 *
   1910 	 * XXX should get from lladdr instead of arpcom but that's more work
   1911 	 */
   1912 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(sc->sc_if.if_sadl));
   1913 	ath_hal_setmac(ah, ic->ic_myaddr);
   1914 
   1915 	/* calculate and install multicast filter */
   1916 #ifdef __FreeBSD__
   1917 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   1918 		mfilt[0] = mfilt[1] = 0;
   1919 		IF_ADDR_LOCK(ifp);
   1920 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
   1921 			void *dl;
   1922 
   1923 			/* calculate XOR of eight 6bit values */
   1924 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
   1925 			val = LE_READ_4((char *)dl + 0);
   1926 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1927 			val = LE_READ_4((char *)dl + 3);
   1928 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1929 			pos &= 0x3f;
   1930 			mfilt[pos / 32] |= (1 << (pos % 32));
   1931 		}
   1932 		IF_ADDR_UNLOCK(ifp);
   1933 	} else {
   1934 		mfilt[0] = mfilt[1] = ~0;
   1935 	}
   1936 #endif
   1937 #ifdef __NetBSD__
   1938 	ath_mcastfilter_compute(sc, mfilt);
   1939 #endif
   1940 	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
   1941 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
   1942 		__func__, rfilt, mfilt[0], mfilt[1]);
   1943 }
   1944 
   1945 /*
   1946  * Set the slot time based on the current setting.
   1947  */
   1948 static void
   1949 ath_setslottime(struct ath_softc *sc)
   1950 {
   1951 	struct ieee80211com *ic = &sc->sc_ic;
   1952 	struct ath_hal *ah = sc->sc_ah;
   1953 
   1954 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   1955 		ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
   1956 	else
   1957 		ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
   1958 	sc->sc_updateslot = OK;
   1959 }
   1960 
   1961 /*
   1962  * Callback from the 802.11 layer to update the
   1963  * slot time based on the current setting.
   1964  */
   1965 static void
   1966 ath_updateslot(struct ifnet *ifp)
   1967 {
   1968 	struct ath_softc *sc = ifp->if_softc;
   1969 	struct ieee80211com *ic = &sc->sc_ic;
   1970 
   1971 	/*
   1972 	 * When not coordinating the BSS, change the hardware
   1973 	 * immediately.  For other operation we defer the change
   1974 	 * until beacon updates have propagated to the stations.
   1975 	 */
   1976 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
   1977 		sc->sc_updateslot = UPDATE;
   1978 	else
   1979 		ath_setslottime(sc);
   1980 }
   1981 
   1982 /*
   1983  * Setup a h/w transmit queue for beacons.
   1984  */
   1985 static int
   1986 ath_beaconq_setup(struct ath_hal *ah)
   1987 {
   1988 	HAL_TXQ_INFO qi;
   1989 
   1990 	memset(&qi, 0, sizeof(qi));
   1991 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
   1992 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
   1993 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
   1994 	/* NB: for dynamic turbo, don't enable any other interrupts */
   1995 	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
   1996 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
   1997 }
   1998 
   1999 /*
   2000  * Setup the transmit queue parameters for the beacon queue.
   2001  */
   2002 static int
   2003 ath_beaconq_config(struct ath_softc *sc)
   2004 {
   2005 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
   2006 	struct ieee80211com *ic = &sc->sc_ic;
   2007 	struct ath_hal *ah = sc->sc_ah;
   2008 	HAL_TXQ_INFO qi;
   2009 
   2010 	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
   2011 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   2012 		/*
   2013 		 * Always burst out beacon and CAB traffic.
   2014 		 */
   2015 		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
   2016 		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
   2017 		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
   2018 	} else {
   2019 		struct wmeParams *wmep =
   2020 			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
   2021 		/*
   2022 		 * Adhoc mode; important thing is to use 2x cwmin.
   2023 		 */
   2024 		qi.tqi_aifs = wmep->wmep_aifsn;
   2025 		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
   2026 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
   2027 	}
   2028 
   2029 	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
   2030 		device_printf(&sc->sc_dev, "unable to update parameters for "
   2031 			"beacon hardware queue!\n");
   2032 		return 0;
   2033 	} else {
   2034 		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
   2035 		return 1;
   2036 	}
   2037 #undef ATH_EXPONENT_TO_VALUE
   2038 }
   2039 
   2040 /*
   2041  * Allocate and setup an initial beacon frame.
   2042  */
   2043 static int
   2044 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
   2045 {
   2046 	struct ieee80211com *ic = ni->ni_ic;
   2047 	struct ath_buf *bf;
   2048 	struct mbuf *m;
   2049 	int error;
   2050 
   2051 	bf = STAILQ_FIRST(&sc->sc_bbuf);
   2052 	if (bf == NULL) {
   2053 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
   2054 		sc->sc_stats.ast_be_nombuf++;	/* XXX */
   2055 		return ENOMEM;			/* XXX */
   2056 	}
   2057 	/*
   2058 	 * NB: the beacon data buffer must be 32-bit aligned;
   2059 	 * we assume the mbuf routines will return us something
   2060 	 * with this alignment (perhaps should assert).
   2061 	 */
   2062 	m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
   2063 	if (m == NULL) {
   2064 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
   2065 			__func__);
   2066 		sc->sc_stats.ast_be_nombuf++;
   2067 		return ENOMEM;
   2068 	}
   2069 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
   2070 				     BUS_DMA_NOWAIT);
   2071 	if (error == 0) {
   2072 		bf->bf_m = m;
   2073 		bf->bf_node = ieee80211_ref_node(ni);
   2074 	} else {
   2075 		m_freem(m);
   2076 	}
   2077 	return error;
   2078 }
   2079 
   2080 /*
   2081  * Setup the beacon frame for transmit.
   2082  */
   2083 static void
   2084 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
   2085 {
   2086 #define	USE_SHPREAMBLE(_ic) \
   2087 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
   2088 		== IEEE80211_F_SHPREAMBLE)
   2089 	struct ieee80211_node *ni = bf->bf_node;
   2090 	struct ieee80211com *ic = ni->ni_ic;
   2091 	struct mbuf *m = bf->bf_m;
   2092 	struct ath_hal *ah = sc->sc_ah;
   2093 	struct ath_desc *ds;
   2094 	int flags, antenna;
   2095 	const HAL_RATE_TABLE *rt;
   2096 	u_int8_t rix, rate;
   2097 
   2098 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
   2099 		__func__, m, m->m_len);
   2100 
   2101 	/* setup descriptors */
   2102 	ds = bf->bf_desc;
   2103 
   2104 	flags = HAL_TXDESC_NOACK;
   2105 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
   2106 		ds->ds_link = HTOAH32(bf->bf_daddr);	/* self-linked */
   2107 		flags |= HAL_TXDESC_VEOL;
   2108 		/*
   2109 		 * Let hardware handle antenna switching unless
   2110 		 * the user has selected a transmit antenna
   2111 		 * (sc_txantenna is not 0).
   2112 		 */
   2113 		antenna = sc->sc_txantenna;
   2114 	} else {
   2115 		ds->ds_link = 0;
   2116 		/*
   2117 		 * Switch antenna every 4 beacons, unless the user
   2118 		 * has selected a transmit antenna (sc_txantenna
   2119 		 * is not 0).
   2120 		 *
   2121 		 * XXX assumes two antenna
   2122 		 */
   2123 		if (sc->sc_txantenna == 0)
   2124 			antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
   2125 		else
   2126 			antenna = sc->sc_txantenna;
   2127 	}
   2128 
   2129 	KASSERT(bf->bf_nseg == 1,
   2130 		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
   2131 	ds->ds_data = bf->bf_segs[0].ds_addr;
   2132 	/*
   2133 	 * Calculate rate code.
   2134 	 * XXX everything at min xmit rate
   2135 	 */
   2136 	rix = sc->sc_minrateix;
   2137 	rt = sc->sc_currates;
   2138 	rate = rt->info[rix].rateCode;
   2139 	if (USE_SHPREAMBLE(ic))
   2140 		rate |= rt->info[rix].shortPreamble;
   2141 	ath_hal_setuptxdesc(ah, ds
   2142 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
   2143 		, sizeof(struct ieee80211_frame)/* header length */
   2144 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
   2145 		, ni->ni_txpower		/* txpower XXX */
   2146 		, rate, 1			/* series 0 rate/tries */
   2147 		, HAL_TXKEYIX_INVALID		/* no encryption */
   2148 		, antenna			/* antenna mode */
   2149 		, flags				/* no ack, veol for beacons */
   2150 		, 0				/* rts/cts rate */
   2151 		, 0				/* rts/cts duration */
   2152 	);
   2153 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
   2154 	ath_hal_filltxdesc(ah, ds
   2155 		, roundup(m->m_len, 4)		/* buffer length */
   2156 		, AH_TRUE			/* first segment */
   2157 		, AH_TRUE			/* last segment */
   2158 		, ds				/* first descriptor */
   2159 	);
   2160 
   2161 	/* NB: The desc swap function becomes void,
   2162 	 * if descriptor swapping is not enabled
   2163 	 */
   2164 	ath_desc_swap(ds);
   2165 
   2166 #undef USE_SHPREAMBLE
   2167 }
   2168 
   2169 /*
   2170  * Transmit a beacon frame at SWBA.  Dynamic updates to the
   2171  * frame contents are done as needed and the slot time is
   2172  * also adjusted based on current state.
   2173  */
   2174 static void
   2175 ath_beacon_proc(void *arg, int pending)
   2176 {
   2177 	struct ath_softc *sc = arg;
   2178 	struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
   2179 	struct ieee80211_node *ni = bf->bf_node;
   2180 	struct ieee80211com *ic = ni->ni_ic;
   2181 	struct ath_hal *ah = sc->sc_ah;
   2182 	struct mbuf *m;
   2183 	int ncabq, error, otherant;
   2184 
   2185 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
   2186 		__func__, pending);
   2187 
   2188 	if (ic->ic_opmode == IEEE80211_M_STA ||
   2189 	    ic->ic_opmode == IEEE80211_M_MONITOR ||
   2190 	    bf == NULL || bf->bf_m == NULL) {
   2191 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
   2192 			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
   2193 		return;
   2194 	}
   2195 	/*
   2196 	 * Check if the previous beacon has gone out.  If
   2197 	 * not don't try to post another, skip this period
   2198 	 * and wait for the next.  Missed beacons indicate
   2199 	 * a problem and should not occur.  If we miss too
   2200 	 * many consecutive beacons reset the device.
   2201 	 */
   2202 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
   2203 		sc->sc_bmisscount++;
   2204 		DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
   2205 			"%s: missed %u consecutive beacons\n",
   2206 			__func__, sc->sc_bmisscount);
   2207 		if (sc->sc_bmisscount > 3)		/* NB: 3 is a guess */
   2208 			TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask);
   2209 		return;
   2210 	}
   2211 	if (sc->sc_bmisscount != 0) {
   2212 		DPRINTF(sc, ATH_DEBUG_BEACON,
   2213 			"%s: resume beacon xmit after %u misses\n",
   2214 			__func__, sc->sc_bmisscount);
   2215 		sc->sc_bmisscount = 0;
   2216 	}
   2217 
   2218 	/*
   2219 	 * Update dynamic beacon contents.  If this returns
   2220 	 * non-zero then we need to remap the memory because
   2221 	 * the beacon frame changed size (probably because
   2222 	 * of the TIM bitmap).
   2223 	 */
   2224 	m = bf->bf_m;
   2225 	ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
   2226 	if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
   2227 		/* XXX too conservative? */
   2228 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   2229 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
   2230 					     BUS_DMA_NOWAIT);
   2231 		if (error != 0) {
   2232 			if_printf(&sc->sc_if,
   2233 			    "%s: bus_dmamap_load_mbuf failed, error %u\n",
   2234 			    __func__, error);
   2235 			return;
   2236 		}
   2237 	}
   2238 
   2239 	/*
   2240 	 * Handle slot time change when a non-ERP station joins/leaves
   2241 	 * an 11g network.  The 802.11 layer notifies us via callback,
   2242 	 * we mark updateslot, then wait one beacon before effecting
   2243 	 * the change.  This gives associated stations at least one
   2244 	 * beacon interval to note the state change.
   2245 	 */
   2246 	/* XXX locking */
   2247 	if (sc->sc_updateslot == UPDATE)
   2248 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
   2249 	else if (sc->sc_updateslot == COMMIT)
   2250 		ath_setslottime(sc);		/* commit change to h/w */
   2251 
   2252 	/*
   2253 	 * Check recent per-antenna transmit statistics and flip
   2254 	 * the default antenna if noticeably more frames went out
   2255 	 * on the non-default antenna.
   2256 	 * XXX assumes 2 anntenae
   2257 	 */
   2258 	otherant = sc->sc_defant & 1 ? 2 : 1;
   2259 	if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
   2260 		ath_setdefantenna(sc, otherant);
   2261 	sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
   2262 
   2263 	/*
   2264 	 * Construct tx descriptor.
   2265 	 */
   2266 	ath_beacon_setup(sc, bf);
   2267 
   2268 	/*
   2269 	 * Stop any current dma and put the new frame on the queue.
   2270 	 * This should never fail since we check above that no frames
   2271 	 * are still pending on the queue.
   2272 	 */
   2273 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
   2274 		DPRINTF(sc, ATH_DEBUG_ANY,
   2275 			"%s: beacon queue %u did not stop?\n",
   2276 			__func__, sc->sc_bhalq);
   2277 	}
   2278 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   2279 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2280 
   2281 	/*
   2282 	 * Enable the CAB queue before the beacon queue to
   2283 	 * insure cab frames are triggered by this beacon.
   2284 	 */
   2285 	if (ncabq != 0 && (sc->sc_boff.bo_tim[4] & 1))	/* NB: only at DTIM */
   2286 		ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
   2287 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
   2288 	ath_hal_txstart(ah, sc->sc_bhalq);
   2289 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
   2290 	    "%s: TXDP[%u] = %" PRIx64 " (%p)\n", __func__,
   2291 	    sc->sc_bhalq, (uint64_t)bf->bf_daddr, bf->bf_desc);
   2292 
   2293 	sc->sc_stats.ast_be_xmit++;
   2294 }
   2295 
   2296 /*
   2297  * Reset the hardware after detecting beacons have stopped.
   2298  */
   2299 static void
   2300 ath_bstuck_proc(void *arg, int pending)
   2301 {
   2302 	struct ath_softc *sc = arg;
   2303 	struct ifnet *ifp = &sc->sc_if;
   2304 
   2305 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
   2306 		sc->sc_bmisscount);
   2307 	ath_reset(ifp);
   2308 }
   2309 
   2310 /*
   2311  * Reclaim beacon resources.
   2312  */
   2313 static void
   2314 ath_beacon_free(struct ath_softc *sc)
   2315 {
   2316 	struct ath_buf *bf;
   2317 
   2318 	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
   2319 		if (bf->bf_m != NULL) {
   2320 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   2321 			m_freem(bf->bf_m);
   2322 			bf->bf_m = NULL;
   2323 		}
   2324 		if (bf->bf_node != NULL) {
   2325 			ieee80211_free_node(bf->bf_node);
   2326 			bf->bf_node = NULL;
   2327 		}
   2328 	}
   2329 }
   2330 
   2331 /*
   2332  * Configure the beacon and sleep timers.
   2333  *
   2334  * When operating as an AP this resets the TSF and sets
   2335  * up the hardware to notify us when we need to issue beacons.
   2336  *
   2337  * When operating in station mode this sets up the beacon
   2338  * timers according to the timestamp of the last received
   2339  * beacon and the current TSF, configures PCF and DTIM
   2340  * handling, programs the sleep registers so the hardware
   2341  * will wakeup in time to receive beacons, and configures
   2342  * the beacon miss handling so we'll receive a BMISS
   2343  * interrupt when we stop seeing beacons from the AP
   2344  * we've associated with.
   2345  */
   2346 static void
   2347 ath_beacon_config(struct ath_softc *sc)
   2348 {
   2349 #define	TSF_TO_TU(_h,_l) \
   2350 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
   2351 #define	FUDGE	2
   2352 	struct ath_hal *ah = sc->sc_ah;
   2353 	struct ieee80211com *ic = &sc->sc_ic;
   2354 	struct ieee80211_node *ni = ic->ic_bss;
   2355 	u_int32_t nexttbtt, intval, tsftu;
   2356 	u_int64_t tsf;
   2357 
   2358 	/* extract tstamp from last beacon and convert to TU */
   2359 	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
   2360 			     LE_READ_4(ni->ni_tstamp.data));
   2361 	/* NB: the beacon interval is kept internally in TU's */
   2362 	intval = ni->ni_intval & HAL_BEACON_PERIOD;
   2363 	if (nexttbtt == 0)		/* e.g. for ap mode */
   2364 		nexttbtt = intval;
   2365 	else if (intval)		/* NB: can be 0 for monitor mode */
   2366 		nexttbtt = roundup(nexttbtt, intval);
   2367 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
   2368 		__func__, nexttbtt, intval, ni->ni_intval);
   2369 	if (ic->ic_opmode == IEEE80211_M_STA) {
   2370 		HAL_BEACON_STATE bs;
   2371 		int dtimperiod, dtimcount;
   2372 		int cfpperiod, cfpcount;
   2373 
   2374 		/*
   2375 		 * Setup dtim and cfp parameters according to
   2376 		 * last beacon we received (which may be none).
   2377 		 */
   2378 		dtimperiod = ni->ni_dtim_period;
   2379 		if (dtimperiod <= 0)		/* NB: 0 if not known */
   2380 			dtimperiod = 1;
   2381 		dtimcount = ni->ni_dtim_count;
   2382 		if (dtimcount >= dtimperiod)	/* NB: sanity check */
   2383 			dtimcount = 0;		/* XXX? */
   2384 		cfpperiod = 1;			/* NB: no PCF support yet */
   2385 		cfpcount = 0;
   2386 		/*
   2387 		 * Pull nexttbtt forward to reflect the current
   2388 		 * TSF and calculate dtim+cfp state for the result.
   2389 		 */
   2390 		tsf = ath_hal_gettsf64(ah);
   2391 		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
   2392 		do {
   2393 			nexttbtt += intval;
   2394 			if (--dtimcount < 0) {
   2395 				dtimcount = dtimperiod - 1;
   2396 				if (--cfpcount < 0)
   2397 					cfpcount = cfpperiod - 1;
   2398 			}
   2399 		} while (nexttbtt < tsftu);
   2400 		memset(&bs, 0, sizeof(bs));
   2401 		bs.bs_intval = intval;
   2402 		bs.bs_nexttbtt = nexttbtt;
   2403 		bs.bs_dtimperiod = dtimperiod*intval;
   2404 		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
   2405 		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
   2406 		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
   2407 		bs.bs_cfpmaxduration = 0;
   2408 #if 0
   2409 		/*
   2410 		 * The 802.11 layer records the offset to the DTIM
   2411 		 * bitmap while receiving beacons; use it here to
   2412 		 * enable h/w detection of our AID being marked in
   2413 		 * the bitmap vector (to indicate frames for us are
   2414 		 * pending at the AP).
   2415 		 * XXX do DTIM handling in s/w to WAR old h/w bugs
   2416 		 * XXX enable based on h/w rev for newer chips
   2417 		 */
   2418 		bs.bs_timoffset = ni->ni_timoff;
   2419 #endif
   2420 		/*
   2421 		 * Calculate the number of consecutive beacons to miss
   2422 		 * before taking a BMISS interrupt.  The configuration
   2423 		 * is specified in ms, so we need to convert that to
   2424 		 * TU's and then calculate based on the beacon interval.
   2425 		 * Note that we clamp the result to at most 10 beacons.
   2426 		 */
   2427 		bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
   2428 		if (bs.bs_bmissthreshold > 10)
   2429 			bs.bs_bmissthreshold = 10;
   2430 		else if (bs.bs_bmissthreshold <= 0)
   2431 			bs.bs_bmissthreshold = 1;
   2432 
   2433 		/*
   2434 		 * Calculate sleep duration.  The configuration is
   2435 		 * given in ms.  We insure a multiple of the beacon
   2436 		 * period is used.  Also, if the sleep duration is
   2437 		 * greater than the DTIM period then it makes senses
   2438 		 * to make it a multiple of that.
   2439 		 *
   2440 		 * XXX fixed at 100ms
   2441 		 */
   2442 		bs.bs_sleepduration =
   2443 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
   2444 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
   2445 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
   2446 
   2447 		DPRINTF(sc, ATH_DEBUG_BEACON,
   2448 			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
   2449 			, __func__
   2450 			, tsf, tsftu
   2451 			, bs.bs_intval
   2452 			, bs.bs_nexttbtt
   2453 			, bs.bs_dtimperiod
   2454 			, bs.bs_nextdtim
   2455 			, bs.bs_bmissthreshold
   2456 			, bs.bs_sleepduration
   2457 			, bs.bs_cfpperiod
   2458 			, bs.bs_cfpmaxduration
   2459 			, bs.bs_cfpnext
   2460 			, bs.bs_timoffset
   2461 		);
   2462 		ath_hal_intrset(ah, 0);
   2463 		ath_hal_beacontimers(ah, &bs);
   2464 		sc->sc_imask |= HAL_INT_BMISS;
   2465 		ath_hal_intrset(ah, sc->sc_imask);
   2466 	} else {
   2467 		ath_hal_intrset(ah, 0);
   2468 		if (nexttbtt == intval)
   2469 			intval |= HAL_BEACON_RESET_TSF;
   2470 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
   2471 			/*
   2472 			 * In IBSS mode enable the beacon timers but only
   2473 			 * enable SWBA interrupts if we need to manually
   2474 			 * prepare beacon frames.  Otherwise we use a
   2475 			 * self-linked tx descriptor and let the hardware
   2476 			 * deal with things.
   2477 			 */
   2478 			intval |= HAL_BEACON_ENA;
   2479 			if (!sc->sc_hasveol)
   2480 				sc->sc_imask |= HAL_INT_SWBA;
   2481 			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
   2482 				/*
   2483 				 * Pull nexttbtt forward to reflect
   2484 				 * the current TSF.
   2485 				 */
   2486 				tsf = ath_hal_gettsf64(ah);
   2487 				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
   2488 				do {
   2489 					nexttbtt += intval;
   2490 				} while (nexttbtt < tsftu);
   2491 			}
   2492 			ath_beaconq_config(sc);
   2493 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   2494 			/*
   2495 			 * In AP mode we enable the beacon timers and
   2496 			 * SWBA interrupts to prepare beacon frames.
   2497 			 */
   2498 			intval |= HAL_BEACON_ENA;
   2499 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
   2500 			ath_beaconq_config(sc);
   2501 		}
   2502 		ath_hal_beaconinit(ah, nexttbtt, intval);
   2503 		sc->sc_bmisscount = 0;
   2504 		ath_hal_intrset(ah, sc->sc_imask);
   2505 		/*
   2506 		 * When using a self-linked beacon descriptor in
   2507 		 * ibss mode load it once here.
   2508 		 */
   2509 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
   2510 			ath_beacon_proc(sc, 0);
   2511 	}
   2512 	sc->sc_syncbeacon = 0;
   2513 #undef UNDEF
   2514 #undef TSF_TO_TU
   2515 }
   2516 
   2517 static int
   2518 ath_descdma_setup(struct ath_softc *sc,
   2519 	struct ath_descdma *dd, ath_bufhead *head,
   2520 	const char *name, int nbuf, int ndesc)
   2521 {
   2522 #define	DS2PHYS(_dd, _ds) \
   2523 	((_dd)->dd_desc_paddr + ((char *)(_ds) - (char *)(_dd)->dd_desc))
   2524 	struct ifnet *ifp = &sc->sc_if;
   2525 	struct ath_desc *ds;
   2526 	struct ath_buf *bf;
   2527 	int i, bsize, error;
   2528 
   2529 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
   2530 	    __func__, name, nbuf, ndesc);
   2531 
   2532 	dd->dd_name = name;
   2533 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
   2534 
   2535 	/*
   2536 	 * Setup DMA descriptor area.
   2537 	 */
   2538 	dd->dd_dmat = sc->sc_dmat;
   2539 
   2540 	error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE,
   2541 	    0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0);
   2542 
   2543 	if (error != 0) {
   2544 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
   2545 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
   2546 		goto fail0;
   2547 	}
   2548 
   2549 	error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg,
   2550 	    dd->dd_desc_len, (void **)&dd->dd_desc, BUS_DMA_COHERENT);
   2551 	if (error != 0) {
   2552 		if_printf(ifp, "unable to map %u %s descriptors, error = %u\n",
   2553 		    nbuf * ndesc, dd->dd_name, error);
   2554 		goto fail1;
   2555 	}
   2556 
   2557 	/* allocate descriptors */
   2558 	error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1,
   2559 	    dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap);
   2560 	if (error != 0) {
   2561 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
   2562 			"error %u\n", dd->dd_name, error);
   2563 		goto fail2;
   2564 	}
   2565 
   2566 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc,
   2567 	    dd->dd_desc_len, NULL, BUS_DMA_NOWAIT);
   2568 	if (error != 0) {
   2569 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
   2570 			dd->dd_name, error);
   2571 		goto fail3;
   2572 	}
   2573 
   2574 	ds = dd->dd_desc;
   2575 	dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr;
   2576 	DPRINTF(sc, ATH_DEBUG_RESET,
   2577 	    "%s: %s DMA map: %p (%lu) -> %" PRIx64 " (%lu)\n",
   2578 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
   2579 	    (uint64_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
   2580 
   2581 	/* allocate rx buffers */
   2582 	bsize = sizeof(struct ath_buf) * nbuf;
   2583 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
   2584 	if (bf == NULL) {
   2585 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
   2586 			dd->dd_name, bsize);
   2587 		goto fail4;
   2588 	}
   2589 	dd->dd_bufptr = bf;
   2590 
   2591 	STAILQ_INIT(head);
   2592 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
   2593 		bf->bf_desc = ds;
   2594 		bf->bf_daddr = DS2PHYS(dd, ds);
   2595 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc,
   2596 				MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap);
   2597 		if (error != 0) {
   2598 			if_printf(ifp, "unable to create dmamap for %s "
   2599 				"buffer %u, error %u\n", dd->dd_name, i, error);
   2600 			ath_descdma_cleanup(sc, dd, head);
   2601 			return error;
   2602 		}
   2603 		STAILQ_INSERT_TAIL(head, bf, bf_list);
   2604 	}
   2605 	return 0;
   2606 fail4:
   2607 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
   2608 fail3:
   2609 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
   2610 fail2:
   2611 	bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
   2612 fail1:
   2613 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
   2614 fail0:
   2615 	memset(dd, 0, sizeof(*dd));
   2616 	return error;
   2617 #undef DS2PHYS
   2618 }
   2619 
   2620 static void
   2621 ath_descdma_cleanup(struct ath_softc *sc,
   2622 	struct ath_descdma *dd, ath_bufhead *head)
   2623 {
   2624 	struct ath_buf *bf;
   2625 	struct ieee80211_node *ni;
   2626 
   2627 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
   2628 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
   2629 	bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
   2630 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
   2631 
   2632 	STAILQ_FOREACH(bf, head, bf_list) {
   2633 		if (bf->bf_m) {
   2634 			m_freem(bf->bf_m);
   2635 			bf->bf_m = NULL;
   2636 		}
   2637 		if (bf->bf_dmamap != NULL) {
   2638 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
   2639 			bf->bf_dmamap = NULL;
   2640 		}
   2641 		ni = bf->bf_node;
   2642 		bf->bf_node = NULL;
   2643 		if (ni != NULL) {
   2644 			/*
   2645 			 * Reclaim node reference.
   2646 			 */
   2647 			ieee80211_free_node(ni);
   2648 		}
   2649 	}
   2650 
   2651 	STAILQ_INIT(head);
   2652 	free(dd->dd_bufptr, M_ATHDEV);
   2653 	memset(dd, 0, sizeof(*dd));
   2654 }
   2655 
   2656 static int
   2657 ath_desc_alloc(struct ath_softc *sc)
   2658 {
   2659 	int error;
   2660 
   2661 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
   2662 			"rx", ath_rxbuf, 1);
   2663 	if (error != 0)
   2664 		return error;
   2665 
   2666 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
   2667 			"tx", ath_txbuf, ATH_TXDESC);
   2668 	if (error != 0) {
   2669 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2670 		return error;
   2671 	}
   2672 
   2673 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
   2674 			"beacon", 1, 1);
   2675 	if (error != 0) {
   2676 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
   2677 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2678 		return error;
   2679 	}
   2680 	return 0;
   2681 }
   2682 
   2683 static void
   2684 ath_desc_free(struct ath_softc *sc)
   2685 {
   2686 
   2687 	if (sc->sc_bdma.dd_desc_len != 0)
   2688 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
   2689 	if (sc->sc_txdma.dd_desc_len != 0)
   2690 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
   2691 	if (sc->sc_rxdma.dd_desc_len != 0)
   2692 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2693 }
   2694 
   2695 static struct ieee80211_node *
   2696 ath_node_alloc(struct ieee80211_node_table *nt)
   2697 {
   2698 	struct ieee80211com *ic = nt->nt_ic;
   2699 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   2700 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
   2701 	struct ath_node *an;
   2702 
   2703 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
   2704 	if (an == NULL) {
   2705 		/* XXX stat+msg */
   2706 		return NULL;
   2707 	}
   2708 	an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
   2709 	ath_rate_node_init(sc, an);
   2710 
   2711 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
   2712 	return &an->an_node;
   2713 }
   2714 
   2715 static void
   2716 ath_node_free(struct ieee80211_node *ni)
   2717 {
   2718 	struct ieee80211com *ic = ni->ni_ic;
   2719         struct ath_softc *sc = ic->ic_ifp->if_softc;
   2720 
   2721 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
   2722 
   2723 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
   2724 	sc->sc_node_free(ni);
   2725 }
   2726 
   2727 static u_int8_t
   2728 ath_node_getrssi(const struct ieee80211_node *ni)
   2729 {
   2730 #define	HAL_EP_RND(x, mul) \
   2731 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
   2732 	u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
   2733 	int32_t rssi;
   2734 
   2735 	/*
   2736 	 * When only one frame is received there will be no state in
   2737 	 * avgrssi so fallback on the value recorded by the 802.11 layer.
   2738 	 */
   2739 	if (avgrssi != ATH_RSSI_DUMMY_MARKER)
   2740 		rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
   2741 	else
   2742 		rssi = ni->ni_rssi;
   2743 	return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
   2744 #undef HAL_EP_RND
   2745 }
   2746 
   2747 static int
   2748 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
   2749 {
   2750 	struct ath_hal *ah = sc->sc_ah;
   2751 	int error;
   2752 	struct mbuf *m;
   2753 	struct ath_desc *ds;
   2754 
   2755 	m = bf->bf_m;
   2756 	if (m == NULL) {
   2757 		/*
   2758 		 * NB: by assigning a page to the rx dma buffer we
   2759 		 * implicitly satisfy the Atheros requirement that
   2760 		 * this buffer be cache-line-aligned and sized to be
   2761 		 * multiple of the cache line size.  Not doing this
   2762 		 * causes weird stuff to happen (for the 5210 at least).
   2763 		 */
   2764 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
   2765 		if (m == NULL) {
   2766 			DPRINTF(sc, ATH_DEBUG_ANY,
   2767 				"%s: no mbuf/cluster\n", __func__);
   2768 			sc->sc_stats.ast_rx_nombuf++;
   2769 			return ENOMEM;
   2770 		}
   2771 		bf->bf_m = m;
   2772 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
   2773 
   2774 		error = bus_dmamap_load_mbuf(sc->sc_dmat,
   2775 					     bf->bf_dmamap, m,
   2776 					     BUS_DMA_NOWAIT);
   2777 		if (error != 0) {
   2778 			DPRINTF(sc, ATH_DEBUG_ANY,
   2779 			    "%s: bus_dmamap_load_mbuf failed; error %d\n",
   2780 			    __func__, error);
   2781 			sc->sc_stats.ast_rx_busdma++;
   2782 			return error;
   2783 		}
   2784 		KASSERT(bf->bf_nseg == 1,
   2785 			("multi-segment packet; nseg %u", bf->bf_nseg));
   2786 	}
   2787 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   2788 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2789 
   2790 	/*
   2791 	 * Setup descriptors.  For receive we always terminate
   2792 	 * the descriptor list with a self-linked entry so we'll
   2793 	 * not get overrun under high load (as can happen with a
   2794 	 * 5212 when ANI processing enables PHY error frames).
   2795 	 *
   2796 	 * To insure the last descriptor is self-linked we create
   2797 	 * each descriptor as self-linked and add it to the end.  As
   2798 	 * each additional descriptor is added the previous self-linked
   2799 	 * entry is ``fixed'' naturally.  This should be safe even
   2800 	 * if DMA is happening.  When processing RX interrupts we
   2801 	 * never remove/process the last, self-linked, entry on the
   2802 	 * descriptor list.  This insures the hardware always has
   2803 	 * someplace to write a new frame.
   2804 	 */
   2805 	ds = bf->bf_desc;
   2806 	ds->ds_link = HTOAH32(bf->bf_daddr);	/* link to self */
   2807 	ds->ds_data = bf->bf_segs[0].ds_addr;
   2808 	ds->ds_vdata = mtod(m, void *);	/* for radar */
   2809 	ath_hal_setuprxdesc(ah, ds
   2810 		, m->m_len		/* buffer size */
   2811 		, 0
   2812 	);
   2813 
   2814 	if (sc->sc_rxlink != NULL)
   2815 		*sc->sc_rxlink = bf->bf_daddr;
   2816 	sc->sc_rxlink = &ds->ds_link;
   2817 	return 0;
   2818 }
   2819 
   2820 /*
   2821  * Extend 15-bit time stamp from rx descriptor to
   2822  * a full 64-bit TSF using the specified TSF.
   2823  */
   2824 static inline u_int64_t
   2825 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
   2826 {
   2827 	if ((tsf & 0x7fff) < rstamp)
   2828 		tsf -= 0x8000;
   2829 	return ((tsf &~ 0x7fff) | rstamp);
   2830 }
   2831 
   2832 /*
   2833  * Intercept management frames to collect beacon rssi data
   2834  * and to do ibss merges.
   2835  */
   2836 static void
   2837 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
   2838 	struct ieee80211_node *ni,
   2839 	int subtype, int rssi, u_int32_t rstamp)
   2840 {
   2841 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   2842 
   2843 	/*
   2844 	 * Call up first so subsequent work can use information
   2845 	 * potentially stored in the node (e.g. for ibss merge).
   2846 	 */
   2847 	sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
   2848 	switch (subtype) {
   2849 	case IEEE80211_FC0_SUBTYPE_BEACON:
   2850 		/* update rssi statistics for use by the hal */
   2851 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
   2852 		if (sc->sc_syncbeacon &&
   2853 		    ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) {
   2854 			/*
   2855 			 * Resync beacon timers using the tsf of the beacon
   2856 			 * frame we just received.
   2857 			 */
   2858 			ath_beacon_config(sc);
   2859 		}
   2860 		/* fall thru... */
   2861 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
   2862 		if (ic->ic_opmode == IEEE80211_M_IBSS &&
   2863 		    ic->ic_state == IEEE80211_S_RUN) {
   2864 			u_int64_t tsf = ath_extend_tsf(rstamp,
   2865 				ath_hal_gettsf64(sc->sc_ah));
   2866 
   2867 			/*
   2868 			 * Handle ibss merge as needed; check the tsf on the
   2869 			 * frame before attempting the merge.  The 802.11 spec
   2870 			 * says the station should change it's bssid to match
   2871 			 * the oldest station with the same ssid, where oldest
   2872 			 * is determined by the tsf.  Note that hardware
   2873 			 * reconfiguration happens through callback to
   2874 			 * ath_newstate as the state machine will go from
   2875 			 * RUN -> RUN when this happens.
   2876 			 */
   2877 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
   2878 				DPRINTF(sc, ATH_DEBUG_STATE,
   2879 				    "ibss merge, rstamp %u tsf %ju "
   2880 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
   2881 				    (uintmax_t)ni->ni_tstamp.tsf);
   2882 				(void) ieee80211_ibss_merge(ni);
   2883 			}
   2884 		}
   2885 		break;
   2886 	}
   2887 }
   2888 
   2889 /*
   2890  * Set the default antenna.
   2891  */
   2892 static void
   2893 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
   2894 {
   2895 	struct ath_hal *ah = sc->sc_ah;
   2896 
   2897 	/* XXX block beacon interrupts */
   2898 	ath_hal_setdefantenna(ah, antenna);
   2899 	if (sc->sc_defant != antenna)
   2900 		sc->sc_stats.ast_ant_defswitch++;
   2901 	sc->sc_defant = antenna;
   2902 	sc->sc_rxotherant = 0;
   2903 }
   2904 
   2905 static void
   2906 ath_rx_proc(void *arg, int npending)
   2907 {
   2908 #define	PA2DESC(_sc, _pa) \
   2909 	((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
   2910 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
   2911 	struct ath_softc *sc = arg;
   2912 	struct ath_buf *bf;
   2913 	struct ieee80211com *ic = &sc->sc_ic;
   2914 	struct ifnet *ifp = &sc->sc_if;
   2915 	struct ath_hal *ah = sc->sc_ah;
   2916 	struct ath_desc *ds;
   2917 	struct mbuf *m;
   2918 	struct ieee80211_node *ni;
   2919 	struct ath_node *an;
   2920 	int len, type, ngood;
   2921 	u_int phyerr;
   2922 	HAL_STATUS status;
   2923 	int16_t nf;
   2924 	u_int64_t tsf;
   2925 
   2926 	NET_LOCK_GIANT();		/* XXX */
   2927 
   2928 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
   2929 	ngood = 0;
   2930 	nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
   2931 	tsf = ath_hal_gettsf64(ah);
   2932 	do {
   2933 		bf = STAILQ_FIRST(&sc->sc_rxbuf);
   2934 		if (bf == NULL) {		/* NB: shouldn't happen */
   2935 			if_printf(ifp, "%s: no buffer!\n", __func__);
   2936 			break;
   2937 		}
   2938 		ds = bf->bf_desc;
   2939 		if (ds->ds_link == bf->bf_daddr) {
   2940 			/* NB: never process the self-linked entry at the end */
   2941 			break;
   2942 		}
   2943 		m = bf->bf_m;
   2944 		if (m == NULL) {		/* NB: shouldn't happen */
   2945 			if_printf(ifp, "%s: no mbuf!\n", __func__);
   2946 			break;
   2947 		}
   2948 		/* XXX sync descriptor memory */
   2949 		/*
   2950 		 * Must provide the virtual address of the current
   2951 		 * descriptor, the physical address, and the virtual
   2952 		 * address of the next descriptor in the h/w chain.
   2953 		 * This allows the HAL to look ahead to see if the
   2954 		 * hardware is done with a descriptor by checking the
   2955 		 * done bit in the following descriptor and the address
   2956 		 * of the current descriptor the DMA engine is working
   2957 		 * on.  All this is necessary because of our use of
   2958 		 * a self-linked list to avoid rx overruns.
   2959 		 */
   2960 		status = ath_hal_rxprocdesc(ah, ds,
   2961 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
   2962 #ifdef AR_DEBUG
   2963 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
   2964 			ath_printrxbuf(bf, status == HAL_OK);
   2965 #endif
   2966 		if (status == HAL_EINPROGRESS)
   2967 			break;
   2968 		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
   2969 		if (ds->ds_rxstat.rs_more) {
   2970 			/*
   2971 			 * Frame spans multiple descriptors; this
   2972 			 * cannot happen yet as we don't support
   2973 			 * jumbograms.  If not in monitor mode,
   2974 			 * discard the frame.
   2975 			 */
   2976 			if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   2977 				sc->sc_stats.ast_rx_toobig++;
   2978 				goto rx_next;
   2979 			}
   2980 			/* fall thru for monitor mode handling... */
   2981 		} else if (ds->ds_rxstat.rs_status != 0) {
   2982 			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
   2983 				sc->sc_stats.ast_rx_crcerr++;
   2984 			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
   2985 				sc->sc_stats.ast_rx_fifoerr++;
   2986 			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
   2987 				sc->sc_stats.ast_rx_phyerr++;
   2988 				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
   2989 				sc->sc_stats.ast_rx_phy[phyerr]++;
   2990 				goto rx_next;
   2991 			}
   2992 			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
   2993 				/*
   2994 				 * Decrypt error.  If the error occurred
   2995 				 * because there was no hardware key, then
   2996 				 * let the frame through so the upper layers
   2997 				 * can process it.  This is necessary for 5210
   2998 				 * parts which have no way to setup a ``clear''
   2999 				 * key cache entry.
   3000 				 *
   3001 				 * XXX do key cache faulting
   3002 				 */
   3003 				if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
   3004 					goto rx_accept;
   3005 				sc->sc_stats.ast_rx_badcrypt++;
   3006 			}
   3007 			if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
   3008 				sc->sc_stats.ast_rx_badmic++;
   3009 				/*
   3010 				 * Do minimal work required to hand off
   3011 				 * the 802.11 header for notifcation.
   3012 				 */
   3013 				/* XXX frag's and qos frames */
   3014 				len = ds->ds_rxstat.rs_datalen;
   3015 				if (len >= sizeof (struct ieee80211_frame)) {
   3016 					bus_dmamap_sync(sc->sc_dmat,
   3017 					    bf->bf_dmamap,
   3018 					    0, bf->bf_dmamap->dm_mapsize,
   3019 					    BUS_DMASYNC_POSTREAD);
   3020 					ieee80211_notify_michael_failure(ic,
   3021 					    mtod(m, struct ieee80211_frame *),
   3022 					    sc->sc_splitmic ?
   3023 					        ds->ds_rxstat.rs_keyix-32 :
   3024 					        ds->ds_rxstat.rs_keyix
   3025 					);
   3026 				}
   3027 			}
   3028 			ifp->if_ierrors++;
   3029 			/*
   3030 			 * Reject error frames, we normally don't want
   3031 			 * to see them in monitor mode (in monitor mode
   3032 			 * allow through packets that have crypto problems).
   3033 			 */
   3034 			if ((ds->ds_rxstat.rs_status &~
   3035 				(HAL_RXERR_DECRYPT|HAL_RXERR_MIC)) ||
   3036 			    sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
   3037 				goto rx_next;
   3038 		}
   3039 rx_accept:
   3040 		/*
   3041 		 * Sync and unmap the frame.  At this point we're
   3042 		 * committed to passing the mbuf somewhere so clear
   3043 		 * bf_m; this means a new sk_buff must be allocated
   3044 		 * when the rx descriptor is setup again to receive
   3045 		 * another frame.
   3046 		 */
   3047 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
   3048 		    0, bf->bf_dmamap->dm_mapsize,
   3049 		    BUS_DMASYNC_POSTREAD);
   3050 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   3051 		bf->bf_m = NULL;
   3052 
   3053 		m->m_pkthdr.rcvif = ifp;
   3054 		len = ds->ds_rxstat.rs_datalen;
   3055 		m->m_pkthdr.len = m->m_len = len;
   3056 
   3057 		sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
   3058 
   3059 #if NBPFILTER > 0
   3060 		if (sc->sc_drvbpf) {
   3061 			u_int8_t rix;
   3062 
   3063 			/*
   3064 			 * Discard anything shorter than an ack or cts.
   3065 			 */
   3066 			if (len < IEEE80211_ACK_LEN) {
   3067 				DPRINTF(sc, ATH_DEBUG_RECV,
   3068 					"%s: runt packet %d\n",
   3069 					__func__, len);
   3070 				sc->sc_stats.ast_rx_tooshort++;
   3071 				m_freem(m);
   3072 				goto rx_next;
   3073 			}
   3074 			rix = ds->ds_rxstat.rs_rate;
   3075 			sc->sc_rx_th.wr_tsf = htole64(
   3076 				ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf));
   3077 			sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
   3078 			sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
   3079 			sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf;
   3080 			sc->sc_rx_th.wr_antnoise = nf;
   3081 			sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
   3082 
   3083 			bpf_mtap2(sc->sc_drvbpf,
   3084 				&sc->sc_rx_th, sc->sc_rx_th_len, m);
   3085 		}
   3086 #endif
   3087 
   3088 		/*
   3089 		 * From this point on we assume the frame is at least
   3090 		 * as large as ieee80211_frame_min; verify that.
   3091 		 */
   3092 		if (len < IEEE80211_MIN_LEN) {
   3093 			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
   3094 				__func__, len);
   3095 			sc->sc_stats.ast_rx_tooshort++;
   3096 			m_freem(m);
   3097 			goto rx_next;
   3098 		}
   3099 
   3100 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
   3101 			ieee80211_dump_pkt(mtod(m, void *), len,
   3102 				   sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
   3103 				   ds->ds_rxstat.rs_rssi);
   3104 		}
   3105 
   3106 		m_adj(m, -IEEE80211_CRC_LEN);
   3107 
   3108 		/*
   3109 		 * Locate the node for sender, track state, and then
   3110 		 * pass the (referenced) node up to the 802.11 layer
   3111 		 * for its use.
   3112 		 */
   3113 		ni = ieee80211_find_rxnode_withkey(ic,
   3114 			mtod(m, const struct ieee80211_frame_min *),
   3115 			ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
   3116 				IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
   3117 		/*
   3118 		 * Track rx rssi and do any rx antenna management.
   3119 		 */
   3120 		an = ATH_NODE(ni);
   3121 		ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
   3122 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi);
   3123 		/*
   3124 		 * Send frame up for processing.
   3125 		 */
   3126 		type = ieee80211_input(ic, m, ni,
   3127 			ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
   3128 		ieee80211_free_node(ni);
   3129 		if (sc->sc_diversity) {
   3130 			/*
   3131 			 * When using fast diversity, change the default rx
   3132 			 * antenna if diversity chooses the other antenna 3
   3133 			 * times in a row.
   3134 			 */
   3135 			if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
   3136 				if (++sc->sc_rxotherant >= 3)
   3137 					ath_setdefantenna(sc,
   3138 						ds->ds_rxstat.rs_antenna);
   3139 			} else
   3140 				sc->sc_rxotherant = 0;
   3141 		}
   3142 		if (sc->sc_softled) {
   3143 			/*
   3144 			 * Blink for any data frame.  Otherwise do a
   3145 			 * heartbeat-style blink when idle.  The latter
   3146 			 * is mainly for station mode where we depend on
   3147 			 * periodic beacon frames to trigger the poll event.
   3148 			 */
   3149 			if (type == IEEE80211_FC0_TYPE_DATA) {
   3150 				sc->sc_rxrate = ds->ds_rxstat.rs_rate;
   3151 				ath_led_event(sc, ATH_LED_RX);
   3152 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
   3153 				ath_led_event(sc, ATH_LED_POLL);
   3154 		}
   3155 		/*
   3156 		 * Arrange to update the last rx timestamp only for
   3157 		 * frames from our ap when operating in station mode.
   3158 		 * This assumes the rx key is always setup when associated.
   3159 		 */
   3160 		if (ic->ic_opmode == IEEE80211_M_STA &&
   3161 		    ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID)
   3162 			ngood++;
   3163 rx_next:
   3164 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
   3165 	} while (ath_rxbuf_init(sc, bf) == 0);
   3166 
   3167 	/* rx signal state monitoring */
   3168 	ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
   3169 	if (ath_hal_radar_event(ah))
   3170 		TASK_RUN_OR_ENQUEUE(&sc->sc_radartask);
   3171 	if (ngood)
   3172 		sc->sc_lastrx = tsf;
   3173 
   3174 #ifdef __NetBSD__
   3175 	/* XXX Why isn't this necessary in FreeBSD? */
   3176 	if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
   3177 		ath_start(ifp);
   3178 #endif /* __NetBSD__ */
   3179 
   3180 	NET_UNLOCK_GIANT();		/* XXX */
   3181 #undef PA2DESC
   3182 }
   3183 
   3184 /*
   3185  * Setup a h/w transmit queue.
   3186  */
   3187 static struct ath_txq *
   3188 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
   3189 {
   3190 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   3191 	struct ath_hal *ah = sc->sc_ah;
   3192 	HAL_TXQ_INFO qi;
   3193 	int qnum;
   3194 
   3195 	memset(&qi, 0, sizeof(qi));
   3196 	qi.tqi_subtype = subtype;
   3197 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
   3198 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
   3199 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
   3200 	/*
   3201 	 * Enable interrupts only for EOL and DESC conditions.
   3202 	 * We mark tx descriptors to receive a DESC interrupt
   3203 	 * when a tx queue gets deep; otherwise waiting for the
   3204 	 * EOL to reap descriptors.  Note that this is done to
   3205 	 * reduce interrupt load and this only defers reaping
   3206 	 * descriptors, never transmitting frames.  Aside from
   3207 	 * reducing interrupts this also permits more concurrency.
   3208 	 * The only potential downside is if the tx queue backs
   3209 	 * up in which case the top half of the kernel may backup
   3210 	 * due to a lack of tx descriptors.
   3211 	 */
   3212 	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
   3213 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
   3214 	if (qnum == -1) {
   3215 		/*
   3216 		 * NB: don't print a message, this happens
   3217 		 * normally on parts with too few tx queues
   3218 		 */
   3219 		return NULL;
   3220 	}
   3221 	if (qnum >= N(sc->sc_txq)) {
   3222 		device_printf(&sc->sc_dev,
   3223 			"hal qnum %u out of range, max %zu!\n",
   3224 			qnum, N(sc->sc_txq));
   3225 		ath_hal_releasetxqueue(ah, qnum);
   3226 		return NULL;
   3227 	}
   3228 	if (!ATH_TXQ_SETUP(sc, qnum)) {
   3229 		struct ath_txq *txq = &sc->sc_txq[qnum];
   3230 
   3231 		txq->axq_qnum = qnum;
   3232 		txq->axq_depth = 0;
   3233 		txq->axq_intrcnt = 0;
   3234 		txq->axq_link = NULL;
   3235 		STAILQ_INIT(&txq->axq_q);
   3236 		ATH_TXQ_LOCK_INIT(sc, txq);
   3237 		sc->sc_txqsetup |= 1<<qnum;
   3238 	}
   3239 	return &sc->sc_txq[qnum];
   3240 #undef N
   3241 }
   3242 
   3243 /*
   3244  * Setup a hardware data transmit queue for the specified
   3245  * access control.  The hal may not support all requested
   3246  * queues in which case it will return a reference to a
   3247  * previously setup queue.  We record the mapping from ac's
   3248  * to h/w queues for use by ath_tx_start and also track
   3249  * the set of h/w queues being used to optimize work in the
   3250  * transmit interrupt handler and related routines.
   3251  */
   3252 static int
   3253 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
   3254 {
   3255 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   3256 	struct ath_txq *txq;
   3257 
   3258 	if (ac >= N(sc->sc_ac2q)) {
   3259 		device_printf(&sc->sc_dev, "AC %u out of range, max %zu!\n",
   3260 			ac, N(sc->sc_ac2q));
   3261 		return 0;
   3262 	}
   3263 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
   3264 	if (txq != NULL) {
   3265 		sc->sc_ac2q[ac] = txq;
   3266 		return 1;
   3267 	} else
   3268 		return 0;
   3269 #undef N
   3270 }
   3271 
   3272 /*
   3273  * Update WME parameters for a transmit queue.
   3274  */
   3275 static int
   3276 ath_txq_update(struct ath_softc *sc, int ac)
   3277 {
   3278 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
   3279 #define	ATH_TXOP_TO_US(v)		(v<<5)
   3280 	struct ieee80211com *ic = &sc->sc_ic;
   3281 	struct ath_txq *txq = sc->sc_ac2q[ac];
   3282 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
   3283 	struct ath_hal *ah = sc->sc_ah;
   3284 	HAL_TXQ_INFO qi;
   3285 
   3286 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
   3287 	qi.tqi_aifs = wmep->wmep_aifsn;
   3288 	qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
   3289 	qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
   3290 	qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
   3291 
   3292 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
   3293 		device_printf(&sc->sc_dev, "unable to update hardware queue "
   3294 			"parameters for %s traffic!\n",
   3295 			ieee80211_wme_acnames[ac]);
   3296 		return 0;
   3297 	} else {
   3298 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
   3299 		return 1;
   3300 	}
   3301 #undef ATH_TXOP_TO_US
   3302 #undef ATH_EXPONENT_TO_VALUE
   3303 }
   3304 
   3305 /*
   3306  * Callback from the 802.11 layer to update WME parameters.
   3307  */
   3308 static int
   3309 ath_wme_update(struct ieee80211com *ic)
   3310 {
   3311 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   3312 
   3313 	return !ath_txq_update(sc, WME_AC_BE) ||
   3314 	    !ath_txq_update(sc, WME_AC_BK) ||
   3315 	    !ath_txq_update(sc, WME_AC_VI) ||
   3316 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
   3317 }
   3318 
   3319 /*
   3320  * Reclaim resources for a setup queue.
   3321  */
   3322 static void
   3323 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
   3324 {
   3325 
   3326 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
   3327 	ATH_TXQ_LOCK_DESTROY(txq);
   3328 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
   3329 }
   3330 
   3331 /*
   3332  * Reclaim all tx queue resources.
   3333  */
   3334 static void
   3335 ath_tx_cleanup(struct ath_softc *sc)
   3336 {
   3337 	int i;
   3338 
   3339 	ATH_TXBUF_LOCK_DESTROY(sc);
   3340 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   3341 		if (ATH_TXQ_SETUP(sc, i))
   3342 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
   3343 }
   3344 
   3345 /*
   3346  * Defragment an mbuf chain, returning at most maxfrags separate
   3347  * mbufs+clusters.  If this is not possible NULL is returned and
   3348  * the original mbuf chain is left in it's present (potentially
   3349  * modified) state.  We use two techniques: collapsing consecutive
   3350  * mbufs and replacing consecutive mbufs by a cluster.
   3351  */
   3352 static struct mbuf *
   3353 ath_defrag(struct mbuf *m0, int how, int maxfrags)
   3354 {
   3355 	struct mbuf *m, *n, *n2, **prev;
   3356 	u_int curfrags;
   3357 
   3358 	/*
   3359 	 * Calculate the current number of frags.
   3360 	 */
   3361 	curfrags = 0;
   3362 	for (m = m0; m != NULL; m = m->m_next)
   3363 		curfrags++;
   3364 	/*
   3365 	 * First, try to collapse mbufs.  Note that we always collapse
   3366 	 * towards the front so we don't need to deal with moving the
   3367 	 * pkthdr.  This may be suboptimal if the first mbuf has much
   3368 	 * less data than the following.
   3369 	 */
   3370 	m = m0;
   3371 again:
   3372 	for (;;) {
   3373 		n = m->m_next;
   3374 		if (n == NULL)
   3375 			break;
   3376 		if (n->m_len < M_TRAILINGSPACE(m)) {
   3377 			memcpy(mtod(m, char *) + m->m_len, mtod(n, void *),
   3378 				n->m_len);
   3379 			m->m_len += n->m_len;
   3380 			m->m_next = n->m_next;
   3381 			m_free(n);
   3382 			if (--curfrags <= maxfrags)
   3383 				return m0;
   3384 		} else
   3385 			m = n;
   3386 	}
   3387 	KASSERT(maxfrags > 1,
   3388 		("maxfrags %u, but normal collapse failed", maxfrags));
   3389 	/*
   3390 	 * Collapse consecutive mbufs to a cluster.
   3391 	 */
   3392 	prev = &m0->m_next;		/* NB: not the first mbuf */
   3393 	while ((n = *prev) != NULL) {
   3394 		if ((n2 = n->m_next) != NULL &&
   3395 		    n->m_len + n2->m_len < MCLBYTES) {
   3396 			m = m_getcl(how, MT_DATA, 0);
   3397 			if (m == NULL)
   3398 				goto bad;
   3399 			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
   3400 			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
   3401 				n2->m_len);
   3402 			m->m_len = n->m_len + n2->m_len;
   3403 			m->m_next = n2->m_next;
   3404 			*prev = m;
   3405 			m_free(n);
   3406 			m_free(n2);
   3407 			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
   3408 				return m0;
   3409 			/*
   3410 			 * Still not there, try the normal collapse
   3411 			 * again before we allocate another cluster.
   3412 			 */
   3413 			goto again;
   3414 		}
   3415 		prev = &n->m_next;
   3416 	}
   3417 	/*
   3418 	 * No place where we can collapse to a cluster; punt.
   3419 	 * This can occur if, for example, you request 2 frags
   3420 	 * but the packet requires that both be clusters (we
   3421 	 * never reallocate the first mbuf to avoid moving the
   3422 	 * packet header).
   3423 	 */
   3424 bad:
   3425 	return NULL;
   3426 }
   3427 
   3428 /*
   3429  * Return h/w rate index for an IEEE rate (w/o basic rate bit).
   3430  */
   3431 static int
   3432 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
   3433 {
   3434 	int i;
   3435 
   3436 	for (i = 0; i < rt->rateCount; i++)
   3437 		if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
   3438 			return i;
   3439 	return 0;		/* NB: lowest rate */
   3440 }
   3441 
   3442 static void
   3443 ath_freetx(struct mbuf *m)
   3444 {
   3445 	struct mbuf *next;
   3446 
   3447 	do {
   3448 		next = m->m_nextpkt;
   3449 		m->m_nextpkt = NULL;
   3450 		m_freem(m);
   3451 	} while ((m = next) != NULL);
   3452 }
   3453 
   3454 static int
   3455 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
   3456     struct mbuf *m0)
   3457 {
   3458 	struct ieee80211com *ic = &sc->sc_ic;
   3459 	struct ath_hal *ah = sc->sc_ah;
   3460 	struct ifnet *ifp = &sc->sc_if;
   3461 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
   3462 	int i, error, iswep, ismcast, isfrag, ismrr;
   3463 	int keyix, hdrlen, pktlen, try0;
   3464 	u_int8_t rix, txrate, ctsrate;
   3465 	u_int8_t cix = 0xff;		/* NB: silence compiler */
   3466 	struct ath_desc *ds, *ds0;
   3467 	struct ath_txq *txq;
   3468 	struct ieee80211_frame *wh;
   3469 	u_int subtype, flags, ctsduration;
   3470 	HAL_PKT_TYPE atype;
   3471 	const HAL_RATE_TABLE *rt;
   3472 	HAL_BOOL shortPreamble;
   3473 	struct ath_node *an;
   3474 	struct mbuf *m;
   3475 	u_int pri;
   3476 
   3477 	wh = mtod(m0, struct ieee80211_frame *);
   3478 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
   3479 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
   3480 	isfrag = m0->m_flags & M_FRAG;
   3481 	hdrlen = ieee80211_anyhdrsize(wh);
   3482 	/*
   3483 	 * Packet length must not include any
   3484 	 * pad bytes; deduct them here.
   3485 	 */
   3486 	pktlen = m0->m_pkthdr.len - (hdrlen & 3);
   3487 
   3488 	if (iswep) {
   3489 		const struct ieee80211_cipher *cip;
   3490 		struct ieee80211_key *k;
   3491 
   3492 		/*
   3493 		 * Construct the 802.11 header+trailer for an encrypted
   3494 		 * frame. The only reason this can fail is because of an
   3495 		 * unknown or unsupported cipher/key type.
   3496 		 */
   3497 		k = ieee80211_crypto_encap(ic, ni, m0);
   3498 		if (k == NULL) {
   3499 			/*
   3500 			 * This can happen when the key is yanked after the
   3501 			 * frame was queued.  Just discard the frame; the
   3502 			 * 802.11 layer counts failures and provides
   3503 			 * debugging/diagnostics.
   3504 			 */
   3505 			ath_freetx(m0);
   3506 			return EIO;
   3507 		}
   3508 		/*
   3509 		 * Adjust the packet + header lengths for the crypto
   3510 		 * additions and calculate the h/w key index.  When
   3511 		 * a s/w mic is done the frame will have had any mic
   3512 		 * added to it prior to entry so m0->m_pkthdr.len above will
   3513 		 * account for it. Otherwise we need to add it to the
   3514 		 * packet length.
   3515 		 */
   3516 		cip = k->wk_cipher;
   3517 		hdrlen += cip->ic_header;
   3518 		pktlen += cip->ic_header + cip->ic_trailer;
   3519 		/* NB: frags always have any TKIP MIC done in s/w */
   3520 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
   3521 			pktlen += cip->ic_miclen;
   3522 		keyix = k->wk_keyix;
   3523 
   3524 		/* packet header may have moved, reset our local pointer */
   3525 		wh = mtod(m0, struct ieee80211_frame *);
   3526 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
   3527 		/*
   3528 		 * Use station key cache slot, if assigned.
   3529 		 */
   3530 		keyix = ni->ni_ucastkey.wk_keyix;
   3531 		if (keyix == IEEE80211_KEYIX_NONE)
   3532 			keyix = HAL_TXKEYIX_INVALID;
   3533 	} else
   3534 		keyix = HAL_TXKEYIX_INVALID;
   3535 
   3536 	pktlen += IEEE80211_CRC_LEN;
   3537 
   3538 	/*
   3539 	 * Load the DMA map so any coalescing is done.  This
   3540 	 * also calculates the number of descriptors we need.
   3541 	 */
   3542 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
   3543 				     BUS_DMA_NOWAIT);
   3544 	if (error == EFBIG) {
   3545 		/* XXX packet requires too many descriptors */
   3546 		bf->bf_nseg = ATH_TXDESC+1;
   3547 	} else if (error != 0) {
   3548 		sc->sc_stats.ast_tx_busdma++;
   3549 		ath_freetx(m0);
   3550 		return error;
   3551 	}
   3552 	/*
   3553 	 * Discard null packets and check for packets that
   3554 	 * require too many TX descriptors.  We try to convert
   3555 	 * the latter to a cluster.
   3556 	 */
   3557 	if (error == EFBIG) {		/* too many desc's, linearize */
   3558 		sc->sc_stats.ast_tx_linear++;
   3559 		m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
   3560 		if (m == NULL) {
   3561 			ath_freetx(m0);
   3562 			sc->sc_stats.ast_tx_nombuf++;
   3563 			return ENOMEM;
   3564 		}
   3565 		m0 = m;
   3566 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
   3567 					     BUS_DMA_NOWAIT);
   3568 		if (error != 0) {
   3569 			sc->sc_stats.ast_tx_busdma++;
   3570 			ath_freetx(m0);
   3571 			return error;
   3572 		}
   3573 		KASSERT(bf->bf_nseg <= ATH_TXDESC,
   3574 		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
   3575 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
   3576 		sc->sc_stats.ast_tx_nodata++;
   3577 		ath_freetx(m0);
   3578 		return EIO;
   3579 	}
   3580 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
   3581 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   3582             bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
   3583 	bf->bf_m = m0;
   3584 	bf->bf_node = ni;			/* NB: held reference */
   3585 
   3586 	/* setup descriptors */
   3587 	ds = bf->bf_desc;
   3588 	rt = sc->sc_currates;
   3589 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
   3590 
   3591 	/*
   3592 	 * NB: the 802.11 layer marks whether or not we should
   3593 	 * use short preamble based on the current mode and
   3594 	 * negotiated parameters.
   3595 	 */
   3596 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
   3597 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) {
   3598 		shortPreamble = AH_TRUE;
   3599 		sc->sc_stats.ast_tx_shortpre++;
   3600 	} else {
   3601 		shortPreamble = AH_FALSE;
   3602 	}
   3603 
   3604 	an = ATH_NODE(ni);
   3605 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
   3606 	ismrr = 0;				/* default no multi-rate retry*/
   3607 	/*
   3608 	 * Calculate Atheros packet type from IEEE80211 packet header,
   3609 	 * setup for rate calculations, and select h/w transmit queue.
   3610 	 */
   3611 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
   3612 	case IEEE80211_FC0_TYPE_MGT:
   3613 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   3614 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
   3615 			atype = HAL_PKT_TYPE_BEACON;
   3616 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
   3617 			atype = HAL_PKT_TYPE_PROBE_RESP;
   3618 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
   3619 			atype = HAL_PKT_TYPE_ATIM;
   3620 		else
   3621 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
   3622 		rix = sc->sc_minrateix;
   3623 		txrate = rt->info[rix].rateCode;
   3624 		if (shortPreamble)
   3625 			txrate |= rt->info[rix].shortPreamble;
   3626 		try0 = ATH_TXMGTTRY;
   3627 		/* NB: force all management frames to highest queue */
   3628 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
   3629 			/* NB: force all management frames to highest queue */
   3630 			pri = WME_AC_VO;
   3631 		} else
   3632 			pri = WME_AC_BE;
   3633 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
   3634 		break;
   3635 	case IEEE80211_FC0_TYPE_CTL:
   3636 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
   3637 		rix = sc->sc_minrateix;
   3638 		txrate = rt->info[rix].rateCode;
   3639 		if (shortPreamble)
   3640 			txrate |= rt->info[rix].shortPreamble;
   3641 		try0 = ATH_TXMGTTRY;
   3642 		/* NB: force all ctl frames to highest queue */
   3643 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
   3644 			/* NB: force all ctl frames to highest queue */
   3645 			pri = WME_AC_VO;
   3646 		} else
   3647 			pri = WME_AC_BE;
   3648 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
   3649 		break;
   3650 	case IEEE80211_FC0_TYPE_DATA:
   3651 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
   3652 		/*
   3653 		 * Data frames: multicast frames go out at a fixed rate,
   3654 		 * otherwise consult the rate control module for the
   3655 		 * rate to use.
   3656 		 */
   3657 		if (ismcast) {
   3658 			/*
   3659 			 * Check mcast rate setting in case it's changed.
   3660 			 * XXX move out of fastpath
   3661 			 */
   3662 			if (ic->ic_mcast_rate != sc->sc_mcastrate) {
   3663 				sc->sc_mcastrix =
   3664 					ath_tx_findrix(rt, ic->ic_mcast_rate);
   3665 				sc->sc_mcastrate = ic->ic_mcast_rate;
   3666 			}
   3667 			rix = sc->sc_mcastrix;
   3668 			txrate = rt->info[rix].rateCode;
   3669 			try0 = 1;
   3670 		} else {
   3671 			ath_rate_findrate(sc, an, shortPreamble, pktlen,
   3672 				&rix, &try0, &txrate);
   3673 			sc->sc_txrate = txrate;		/* for LED blinking */
   3674 			if (try0 != ATH_TXMAXTRY)
   3675 				ismrr = 1;
   3676 		}
   3677 		pri = M_WME_GETAC(m0);
   3678 		if (cap->cap_wmeParams[pri].wmep_noackPolicy)
   3679 			flags |= HAL_TXDESC_NOACK;
   3680 		break;
   3681 	default:
   3682 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
   3683 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
   3684 		/* XXX statistic */
   3685 		ath_freetx(m0);
   3686 		return EIO;
   3687 	}
   3688 	txq = sc->sc_ac2q[pri];
   3689 
   3690 	/*
   3691 	 * When servicing one or more stations in power-save mode
   3692 	 * multicast frames must be buffered until after the beacon.
   3693 	 * We use the CAB queue for that.
   3694 	 */
   3695 	if (ismcast && ic->ic_ps_sta) {
   3696 		txq = sc->sc_cabq;
   3697 		/* XXX? more bit in 802.11 frame header */
   3698 	}
   3699 
   3700 	/*
   3701 	 * Calculate miscellaneous flags.
   3702 	 */
   3703 	if (ismcast) {
   3704 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
   3705 	} else if (pktlen > ic->ic_rtsthreshold) {
   3706 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
   3707 		cix = rt->info[rix].controlRate;
   3708 		sc->sc_stats.ast_tx_rts++;
   3709 	}
   3710 	if (flags & HAL_TXDESC_NOACK)		/* NB: avoid double counting */
   3711 		sc->sc_stats.ast_tx_noack++;
   3712 
   3713 	/*
   3714 	 * If 802.11g protection is enabled, determine whether
   3715 	 * to use RTS/CTS or just CTS.  Note that this is only
   3716 	 * done for OFDM unicast frames.
   3717 	 */
   3718 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
   3719 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
   3720 	    (flags & HAL_TXDESC_NOACK) == 0) {
   3721 		/* XXX fragments must use CCK rates w/ protection */
   3722 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
   3723 			flags |= HAL_TXDESC_RTSENA;
   3724 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
   3725 			flags |= HAL_TXDESC_CTSENA;
   3726 		if (isfrag) {
   3727 			/*
   3728 			 * For frags it would be desirable to use the
   3729 			 * highest CCK rate for RTS/CTS.  But stations
   3730 			 * farther away may detect it at a lower CCK rate
   3731 			 * so use the configured protection rate instead
   3732 			 * (for now).
   3733 			 */
   3734 			cix = rt->info[sc->sc_protrix].controlRate;
   3735 		} else
   3736 			cix = rt->info[sc->sc_protrix].controlRate;
   3737 		sc->sc_stats.ast_tx_protect++;
   3738 	}
   3739 
   3740 	/*
   3741 	 * Calculate duration.  This logically belongs in the 802.11
   3742 	 * layer but it lacks sufficient information to calculate it.
   3743 	 */
   3744 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
   3745 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
   3746 		u_int16_t dur;
   3747 		/*
   3748 		 * XXX not right with fragmentation.
   3749 		 */
   3750 		if (shortPreamble)
   3751 			dur = rt->info[rix].spAckDuration;
   3752 		else
   3753 			dur = rt->info[rix].lpAckDuration;
   3754 		if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
   3755 			dur += dur;             /* additional SIFS+ACK */
   3756 			KASSERT(m0->m_nextpkt != NULL, ("no fragment"));
   3757 			/*
   3758 			 * Include the size of next fragment so NAV is
   3759 			 * updated properly.  The last fragment uses only
   3760 			 * the ACK duration
   3761 			 */
   3762 			dur += ath_hal_computetxtime(ah, rt,
   3763 					m0->m_nextpkt->m_pkthdr.len,
   3764 					rix, shortPreamble);
   3765 		}
   3766 		if (isfrag) {
   3767 			/*
   3768 			 * Force hardware to use computed duration for next
   3769 			 * fragment by disabling multi-rate retry which updates
   3770 			 * duration based on the multi-rate duration table.
   3771 			 */
   3772 			try0 = ATH_TXMAXTRY;
   3773 		}
   3774 		*(u_int16_t *)wh->i_dur = htole16(dur);
   3775 	}
   3776 
   3777 	/*
   3778 	 * Calculate RTS/CTS rate and duration if needed.
   3779 	 */
   3780 	ctsduration = 0;
   3781 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
   3782 		/*
   3783 		 * CTS transmit rate is derived from the transmit rate
   3784 		 * by looking in the h/w rate table.  We must also factor
   3785 		 * in whether or not a short preamble is to be used.
   3786 		 */
   3787 		/* NB: cix is set above where RTS/CTS is enabled */
   3788 		KASSERT(cix != 0xff, ("cix not setup"));
   3789 		ctsrate = rt->info[cix].rateCode;
   3790 		/*
   3791 		 * Compute the transmit duration based on the frame
   3792 		 * size and the size of an ACK frame.  We call into the
   3793 		 * HAL to do the computation since it depends on the
   3794 		 * characteristics of the actual PHY being used.
   3795 		 *
   3796 		 * NB: CTS is assumed the same size as an ACK so we can
   3797 		 *     use the precalculated ACK durations.
   3798 		 */
   3799 		if (shortPreamble) {
   3800 			ctsrate |= rt->info[cix].shortPreamble;
   3801 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
   3802 				ctsduration += rt->info[cix].spAckDuration;
   3803 			ctsduration += ath_hal_computetxtime(ah,
   3804 				rt, pktlen, rix, AH_TRUE);
   3805 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
   3806 				ctsduration += rt->info[rix].spAckDuration;
   3807 		} else {
   3808 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
   3809 				ctsduration += rt->info[cix].lpAckDuration;
   3810 			ctsduration += ath_hal_computetxtime(ah,
   3811 				rt, pktlen, rix, AH_FALSE);
   3812 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
   3813 				ctsduration += rt->info[rix].lpAckDuration;
   3814 		}
   3815 		/*
   3816 		 * Must disable multi-rate retry when using RTS/CTS.
   3817 		 */
   3818 		ismrr = 0;
   3819 		try0 = ATH_TXMGTTRY;		/* XXX */
   3820 	} else
   3821 		ctsrate = 0;
   3822 
   3823 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
   3824 		ieee80211_dump_pkt(mtod(m0, void *), m0->m_len,
   3825 			sc->sc_hwmap[txrate].ieeerate, -1);
   3826 #if NBPFILTER > 0
   3827 	if (ic->ic_rawbpf)
   3828 		bpf_mtap(ic->ic_rawbpf, m0);
   3829 	if (sc->sc_drvbpf) {
   3830 		u_int64_t tsf = ath_hal_gettsf64(ah);
   3831 
   3832 		sc->sc_tx_th.wt_tsf = htole64(tsf);
   3833 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
   3834 		if (iswep)
   3835 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
   3836 		if (isfrag)
   3837 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
   3838 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
   3839 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
   3840 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
   3841 
   3842 		bpf_mtap2(sc->sc_drvbpf,
   3843 			&sc->sc_tx_th, sc->sc_tx_th_len, m0);
   3844 	}
   3845 #endif
   3846 
   3847 	/*
   3848 	 * Determine if a tx interrupt should be generated for
   3849 	 * this descriptor.  We take a tx interrupt to reap
   3850 	 * descriptors when the h/w hits an EOL condition or
   3851 	 * when the descriptor is specifically marked to generate
   3852 	 * an interrupt.  We periodically mark descriptors in this
   3853 	 * way to insure timely replenishing of the supply needed
   3854 	 * for sending frames.  Defering interrupts reduces system
   3855 	 * load and potentially allows more concurrent work to be
   3856 	 * done but if done to aggressively can cause senders to
   3857 	 * backup.
   3858 	 *
   3859 	 * NB: use >= to deal with sc_txintrperiod changing
   3860 	 *     dynamically through sysctl.
   3861 	 */
   3862 	if (flags & HAL_TXDESC_INTREQ) {
   3863 		txq->axq_intrcnt = 0;
   3864 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
   3865 		flags |= HAL_TXDESC_INTREQ;
   3866 		txq->axq_intrcnt = 0;
   3867 	}
   3868 
   3869 	/*
   3870 	 * Formulate first tx descriptor with tx controls.
   3871 	 */
   3872 	/* XXX check return value? */
   3873 	ath_hal_setuptxdesc(ah, ds
   3874 		, pktlen		/* packet length */
   3875 		, hdrlen		/* header length */
   3876 		, atype			/* Atheros packet type */
   3877 		, ni->ni_txpower	/* txpower */
   3878 		, txrate, try0		/* series 0 rate/tries */
   3879 		, keyix			/* key cache index */
   3880 		, sc->sc_txantenna	/* antenna mode */
   3881 		, flags			/* flags */
   3882 		, ctsrate		/* rts/cts rate */
   3883 		, ctsduration		/* rts/cts duration */
   3884 	);
   3885 	bf->bf_flags = flags;
   3886 	/*
   3887 	 * Setup the multi-rate retry state only when we're
   3888 	 * going to use it.  This assumes ath_hal_setuptxdesc
   3889 	 * initializes the descriptors (so we don't have to)
   3890 	 * when the hardware supports multi-rate retry and
   3891 	 * we don't use it.
   3892 	 */
   3893 	if (ismrr)
   3894 		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
   3895 
   3896 	/*
   3897 	 * Fillin the remainder of the descriptor info.
   3898 	 */
   3899 	ds0 = ds;
   3900 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
   3901 		ds->ds_data = bf->bf_segs[i].ds_addr;
   3902 		if (i == bf->bf_nseg - 1)
   3903 			ds->ds_link = 0;
   3904 		else
   3905 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
   3906 		ath_hal_filltxdesc(ah, ds
   3907 			, bf->bf_segs[i].ds_len	/* segment length */
   3908 			, i == 0		/* first segment */
   3909 			, i == bf->bf_nseg - 1	/* last segment */
   3910 			, ds0			/* first descriptor */
   3911 		);
   3912 
   3913 		/* NB: The desc swap function becomes void,
   3914 		 * if descriptor swapping is not enabled
   3915 		 */
   3916 		ath_desc_swap(ds);
   3917 
   3918 		DPRINTF(sc, ATH_DEBUG_XMIT,
   3919 			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
   3920 			__func__, i, ds->ds_link, ds->ds_data,
   3921 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
   3922 	}
   3923 	/*
   3924 	 * Insert the frame on the outbound list and
   3925 	 * pass it on to the hardware.
   3926 	 */
   3927 	ATH_TXQ_LOCK(txq);
   3928 	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
   3929 	if (txq->axq_link == NULL) {
   3930 		ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
   3931 		DPRINTF(sc, ATH_DEBUG_XMIT,
   3932 		    "%s: TXDP[%u] = %" PRIx64 " (%p) depth %d\n", __func__,
   3933 		    txq->axq_qnum, (uint64_t)bf->bf_daddr, bf->bf_desc,
   3934 		    txq->axq_depth);
   3935 	} else {
   3936 		*txq->axq_link = HTOAH32(bf->bf_daddr);
   3937 		DPRINTF(sc, ATH_DEBUG_XMIT,
   3938 		    "%s: link[%u](%p)=%" PRIx64 " (%p) depth %d\n",
   3939 		    __func__, txq->axq_qnum, txq->axq_link,
   3940 		    (uint64_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
   3941 	}
   3942 	txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
   3943 	/*
   3944 	 * The CAB queue is started from the SWBA handler since
   3945 	 * frames only go out on DTIM and to avoid possible races.
   3946 	 */
   3947 	if (txq != sc->sc_cabq)
   3948 		ath_hal_txstart(ah, txq->axq_qnum);
   3949 	ATH_TXQ_UNLOCK(txq);
   3950 
   3951 	return 0;
   3952 }
   3953 
   3954 /*
   3955  * Process completed xmit descriptors from the specified queue.
   3956  */
   3957 static int
   3958 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
   3959 {
   3960 	struct ath_hal *ah = sc->sc_ah;
   3961 	struct ieee80211com *ic = &sc->sc_ic;
   3962 	struct ath_buf *bf;
   3963 	struct ath_desc *ds, *ds0;
   3964 	struct ieee80211_node *ni;
   3965 	struct ath_node *an;
   3966 	int sr, lr, pri, nacked;
   3967 	HAL_STATUS status;
   3968 
   3969 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
   3970 		__func__, txq->axq_qnum,
   3971 		(void *)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
   3972 		txq->axq_link);
   3973 	nacked = 0;
   3974 	for (;;) {
   3975 		ATH_TXQ_LOCK(txq);
   3976 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
   3977 		bf = STAILQ_FIRST(&txq->axq_q);
   3978 		if (bf == NULL) {
   3979 			txq->axq_link = NULL;
   3980 			ATH_TXQ_UNLOCK(txq);
   3981 			break;
   3982 		}
   3983 		ds0 = &bf->bf_desc[0];
   3984 		ds = &bf->bf_desc[bf->bf_nseg - 1];
   3985 		status = ath_hal_txprocdesc(ah, ds);
   3986 #ifdef AR_DEBUG
   3987 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
   3988 			ath_printtxbuf(bf, status == HAL_OK);
   3989 #endif
   3990 		if (status == HAL_EINPROGRESS) {
   3991 			ATH_TXQ_UNLOCK(txq);
   3992 			break;
   3993 		}
   3994 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
   3995 		ATH_TXQ_UNLOCK(txq);
   3996 
   3997 		ni = bf->bf_node;
   3998 		if (ni != NULL) {
   3999 			an = ATH_NODE(ni);
   4000 			if (ds->ds_txstat.ts_status == 0) {
   4001 				u_int8_t txant = ds->ds_txstat.ts_antenna;
   4002 				sc->sc_stats.ast_ant_tx[txant]++;
   4003 				sc->sc_ant_tx[txant]++;
   4004 				if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
   4005 					sc->sc_stats.ast_tx_altrate++;
   4006 				sc->sc_stats.ast_tx_rssi =
   4007 					ds->ds_txstat.ts_rssi;
   4008 				ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
   4009 					ds->ds_txstat.ts_rssi);
   4010 				pri = M_WME_GETAC(bf->bf_m);
   4011 				if (pri >= WME_AC_VO)
   4012 					ic->ic_wme.wme_hipri_traffic++;
   4013 				ni->ni_inact = ni->ni_inact_reload;
   4014 			} else {
   4015 				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
   4016 					sc->sc_stats.ast_tx_xretries++;
   4017 				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
   4018 					sc->sc_stats.ast_tx_fifoerr++;
   4019 				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
   4020 					sc->sc_stats.ast_tx_filtered++;
   4021 			}
   4022 			sr = ds->ds_txstat.ts_shortretry;
   4023 			lr = ds->ds_txstat.ts_longretry;
   4024 			sc->sc_stats.ast_tx_shortretry += sr;
   4025 			sc->sc_stats.ast_tx_longretry += lr;
   4026 			/*
   4027 			 * Hand the descriptor to the rate control algorithm.
   4028 			 */
   4029 			if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
   4030 			    (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
   4031 				/*
   4032 				 * If frame was ack'd update the last rx time
   4033 				 * used to workaround phantom bmiss interrupts.
   4034 				 */
   4035 				if (ds->ds_txstat.ts_status == 0)
   4036 					nacked++;
   4037 				ath_rate_tx_complete(sc, an, ds, ds0);
   4038 			}
   4039 			/*
   4040 			 * Reclaim reference to node.
   4041 			 *
   4042 			 * NB: the node may be reclaimed here if, for example
   4043 			 *     this is a DEAUTH message that was sent and the
   4044 			 *     node was timed out due to inactivity.
   4045 			 */
   4046 			ieee80211_free_node(ni);
   4047 		}
   4048 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   4049 		    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4050 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   4051 		m_freem(bf->bf_m);
   4052 		bf->bf_m = NULL;
   4053 		bf->bf_node = NULL;
   4054 
   4055 		ATH_TXBUF_LOCK(sc);
   4056 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   4057 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
   4058 		ATH_TXBUF_UNLOCK(sc);
   4059 	}
   4060 	return nacked;
   4061 }
   4062 
   4063 static inline int
   4064 txqactive(struct ath_hal *ah, int qnum)
   4065 {
   4066 	u_int32_t txqs = 1<<qnum;
   4067 	ath_hal_gettxintrtxqs(ah, &txqs);
   4068 	return (txqs & (1<<qnum));
   4069 }
   4070 
   4071 /*
   4072  * Deferred processing of transmit interrupt; special-cased
   4073  * for a single hardware transmit queue (e.g. 5210 and 5211).
   4074  */
   4075 static void
   4076 ath_tx_proc_q0(void *arg, int npending)
   4077 {
   4078 	struct ath_softc *sc = arg;
   4079 	struct ifnet *ifp = &sc->sc_if;
   4080 
   4081 	if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]) > 0){
   4082 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
   4083 	}
   4084 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
   4085 		ath_tx_processq(sc, sc->sc_cabq);
   4086 
   4087 	if (sc->sc_softled)
   4088 		ath_led_event(sc, ATH_LED_TX);
   4089 
   4090 	ath_start(ifp);
   4091 }
   4092 
   4093 /*
   4094  * Deferred processing of transmit interrupt; special-cased
   4095  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
   4096  */
   4097 static void
   4098 ath_tx_proc_q0123(void *arg, int npending)
   4099 {
   4100 	struct ath_softc *sc = arg;
   4101 	struct ifnet *ifp = &sc->sc_if;
   4102 	int nacked;
   4103 
   4104 	/*
   4105 	 * Process each active queue.
   4106 	 */
   4107 	nacked = 0;
   4108 	if (txqactive(sc->sc_ah, 0))
   4109 		nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
   4110 	if (txqactive(sc->sc_ah, 1))
   4111 		nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
   4112 	if (txqactive(sc->sc_ah, 2))
   4113 		nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
   4114 	if (txqactive(sc->sc_ah, 3))
   4115 		nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
   4116 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
   4117 		ath_tx_processq(sc, sc->sc_cabq);
   4118 	if (nacked) {
   4119 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
   4120 	}
   4121 
   4122 	if (sc->sc_softled)
   4123 		ath_led_event(sc, ATH_LED_TX);
   4124 
   4125 	ath_start(ifp);
   4126 }
   4127 
   4128 /*
   4129  * Deferred processing of transmit interrupt.
   4130  */
   4131 static void
   4132 ath_tx_proc(void *arg, int npending)
   4133 {
   4134 	struct ath_softc *sc = arg;
   4135 	struct ifnet *ifp = &sc->sc_if;
   4136 	int i, nacked;
   4137 
   4138 	/*
   4139 	 * Process each active queue.
   4140 	 */
   4141 	nacked = 0;
   4142 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   4143 		if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
   4144 			nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
   4145 	if (nacked) {
   4146 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
   4147 	}
   4148 
   4149 	if (sc->sc_softled)
   4150 		ath_led_event(sc, ATH_LED_TX);
   4151 
   4152 	ath_start(ifp);
   4153 }
   4154 
   4155 static void
   4156 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
   4157 {
   4158 	struct ath_hal *ah = sc->sc_ah;
   4159 	struct ieee80211_node *ni;
   4160 	struct ath_buf *bf;
   4161 
   4162 	/*
   4163 	 * NB: this assumes output has been stopped and
   4164 	 *     we do not need to block ath_tx_tasklet
   4165 	 */
   4166 	for (;;) {
   4167 		ATH_TXQ_LOCK(txq);
   4168 		bf = STAILQ_FIRST(&txq->axq_q);
   4169 		if (bf == NULL) {
   4170 			txq->axq_link = NULL;
   4171 			ATH_TXQ_UNLOCK(txq);
   4172 			break;
   4173 		}
   4174 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
   4175 		ATH_TXQ_UNLOCK(txq);
   4176 #ifdef AR_DEBUG
   4177 		if (sc->sc_debug & ATH_DEBUG_RESET)
   4178 			ath_printtxbuf(bf,
   4179 				ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
   4180 #endif /* AR_DEBUG */
   4181 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   4182 		m_freem(bf->bf_m);
   4183 		bf->bf_m = NULL;
   4184 		ni = bf->bf_node;
   4185 		bf->bf_node = NULL;
   4186 		if (ni != NULL) {
   4187 			/*
   4188 			 * Reclaim node reference.
   4189 			 */
   4190 			ieee80211_free_node(ni);
   4191 		}
   4192 		ATH_TXBUF_LOCK(sc);
   4193 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   4194 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
   4195 		ATH_TXBUF_UNLOCK(sc);
   4196 	}
   4197 }
   4198 
   4199 static void
   4200 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
   4201 {
   4202 	struct ath_hal *ah = sc->sc_ah;
   4203 
   4204 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
   4205 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
   4206 	    __func__, txq->axq_qnum,
   4207 	    (void *)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
   4208 	    txq->axq_link);
   4209 }
   4210 
   4211 /*
   4212  * Drain the transmit queues and reclaim resources.
   4213  */
   4214 static void
   4215 ath_draintxq(struct ath_softc *sc)
   4216 {
   4217 	struct ath_hal *ah = sc->sc_ah;
   4218 	int i;
   4219 
   4220 	/* XXX return value */
   4221 	if (!sc->sc_invalid) {
   4222 		/* don't touch the hardware if marked invalid */
   4223 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
   4224 		DPRINTF(sc, ATH_DEBUG_RESET,
   4225 		    "%s: beacon queue %p\n", __func__,
   4226 		    (void *)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
   4227 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   4228 			if (ATH_TXQ_SETUP(sc, i))
   4229 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
   4230 	}
   4231 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   4232 		if (ATH_TXQ_SETUP(sc, i))
   4233 			ath_tx_draintxq(sc, &sc->sc_txq[i]);
   4234 }
   4235 
   4236 /*
   4237  * Disable the receive h/w in preparation for a reset.
   4238  */
   4239 static void
   4240 ath_stoprecv(struct ath_softc *sc)
   4241 {
   4242 #define	PA2DESC(_sc, _pa) \
   4243 	((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
   4244 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
   4245 	struct ath_hal *ah = sc->sc_ah;
   4246 
   4247 	ath_hal_stoppcurecv(ah);	/* disable PCU */
   4248 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
   4249 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
   4250 	DELAY(3000);			/* 3ms is long enough for 1 frame */
   4251 #ifdef AR_DEBUG
   4252 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
   4253 		struct ath_buf *bf;
   4254 
   4255 		printf("%s: rx queue %p, link %p\n", __func__,
   4256 			(void *)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
   4257 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
   4258 			struct ath_desc *ds = bf->bf_desc;
   4259 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
   4260 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
   4261 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
   4262 				ath_printrxbuf(bf, status == HAL_OK);
   4263 		}
   4264 	}
   4265 #endif
   4266 	sc->sc_rxlink = NULL;		/* just in case */
   4267 #undef PA2DESC
   4268 }
   4269 
   4270 /*
   4271  * Enable the receive h/w following a reset.
   4272  */
   4273 static int
   4274 ath_startrecv(struct ath_softc *sc)
   4275 {
   4276 	struct ath_hal *ah = sc->sc_ah;
   4277 	struct ath_buf *bf;
   4278 
   4279 	sc->sc_rxlink = NULL;
   4280 	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
   4281 		int error = ath_rxbuf_init(sc, bf);
   4282 		if (error != 0) {
   4283 			DPRINTF(sc, ATH_DEBUG_RECV,
   4284 				"%s: ath_rxbuf_init failed %d\n",
   4285 				__func__, error);
   4286 			return error;
   4287 		}
   4288 	}
   4289 
   4290 	bf = STAILQ_FIRST(&sc->sc_rxbuf);
   4291 	ath_hal_putrxbuf(ah, bf->bf_daddr);
   4292 	ath_hal_rxena(ah);		/* enable recv descriptors */
   4293 	ath_mode_init(sc);		/* set filters, etc. */
   4294 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
   4295 	return 0;
   4296 }
   4297 
   4298 /*
   4299  * Update internal state after a channel change.
   4300  */
   4301 static void
   4302 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
   4303 {
   4304 	struct ieee80211com *ic = &sc->sc_ic;
   4305 	enum ieee80211_phymode mode;
   4306 	u_int16_t flags;
   4307 
   4308 	/*
   4309 	 * Change channels and update the h/w rate map
   4310 	 * if we're switching; e.g. 11a to 11b/g.
   4311 	 */
   4312 	mode = ieee80211_chan2mode(ic, chan);
   4313 	if (mode != sc->sc_curmode)
   4314 		ath_setcurmode(sc, mode);
   4315 	/*
   4316 	 * Update BPF state.  NB: ethereal et. al. don't handle
   4317 	 * merged flags well so pick a unique mode for their use.
   4318 	 */
   4319 	if (IEEE80211_IS_CHAN_A(chan))
   4320 		flags = IEEE80211_CHAN_A;
   4321 	/* XXX 11g schizophrenia */
   4322 	else if (IEEE80211_IS_CHAN_G(chan) ||
   4323 	    IEEE80211_IS_CHAN_PUREG(chan))
   4324 		flags = IEEE80211_CHAN_G;
   4325 	else
   4326 		flags = IEEE80211_CHAN_B;
   4327 	if (IEEE80211_IS_CHAN_T(chan))
   4328 		flags |= IEEE80211_CHAN_TURBO;
   4329 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
   4330 		htole16(chan->ic_freq);
   4331 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
   4332 		htole16(flags);
   4333 }
   4334 
   4335 /*
   4336  * Poll for a channel clear indication; this is required
   4337  * for channels requiring DFS and not previously visited
   4338  * and/or with a recent radar detection.
   4339  */
   4340 static void
   4341 ath_dfswait(void *arg)
   4342 {
   4343 	struct ath_softc *sc = arg;
   4344 	struct ath_hal *ah = sc->sc_ah;
   4345 	HAL_CHANNEL hchan;
   4346 
   4347 	ath_hal_radar_wait(ah, &hchan);
   4348 	if (hchan.privFlags & CHANNEL_INTERFERENCE) {
   4349 		if_printf(&sc->sc_if,
   4350 		    "channel %u/0x%x/0x%x has interference\n",
   4351 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
   4352 		return;
   4353 	}
   4354 	if ((hchan.privFlags & CHANNEL_DFS) == 0) {
   4355 		/* XXX should not happen */
   4356 		return;
   4357 	}
   4358 	if (hchan.privFlags & CHANNEL_DFS_CLEAR) {
   4359 		sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR;
   4360 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
   4361 		if_printf(&sc->sc_if,
   4362 		    "channel %u/0x%x/0x%x marked clear\n",
   4363 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
   4364 	} else
   4365 		callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc);
   4366 }
   4367 
   4368 /*
   4369  * Set/change channels.  If the channel is really being changed,
   4370  * it's done by reseting the chip.  To accomplish this we must
   4371  * first cleanup any pending DMA, then restart stuff after a la
   4372  * ath_init.
   4373  */
   4374 static int
   4375 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
   4376 {
   4377 	struct ath_hal *ah = sc->sc_ah;
   4378 	struct ieee80211com *ic = &sc->sc_ic;
   4379 	HAL_CHANNEL hchan;
   4380 
   4381 	/*
   4382 	 * Convert to a HAL channel description with
   4383 	 * the flags constrained to reflect the current
   4384 	 * operating mode.
   4385 	 */
   4386 	hchan.channel = chan->ic_freq;
   4387 	hchan.channelFlags = ath_chan2flags(ic, chan);
   4388 
   4389 	DPRINTF(sc, ATH_DEBUG_RESET,
   4390 	    "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
   4391 	    __func__,
   4392 	    ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
   4393 		sc->sc_curchan.channelFlags),
   4394 	    	sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
   4395 	    ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
   4396 	        hchan.channel, hchan.channelFlags);
   4397 	if (hchan.channel != sc->sc_curchan.channel ||
   4398 	    hchan.channelFlags != sc->sc_curchan.channelFlags) {
   4399 		HAL_STATUS status;
   4400 
   4401 		/*
   4402 		 * To switch channels clear any pending DMA operations;
   4403 		 * wait long enough for the RX fifo to drain, reset the
   4404 		 * hardware at the new frequency, and then re-enable
   4405 		 * the relevant bits of the h/w.
   4406 		 */
   4407 		ath_hal_intrset(ah, 0);		/* disable interrupts */
   4408 		ath_draintxq(sc);		/* clear pending tx frames */
   4409 		ath_stoprecv(sc);		/* turn off frame recv */
   4410 		if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
   4411 			if_printf(ic->ic_ifp, "%s: unable to reset "
   4412 			    "channel %u (%u MHz, flags 0x%x hal flags 0x%x)\n",
   4413 			    __func__, ieee80211_chan2ieee(ic, chan),
   4414 			    chan->ic_freq, chan->ic_flags, hchan.channelFlags);
   4415 			return EIO;
   4416 		}
   4417 		sc->sc_curchan = hchan;
   4418 		ath_update_txpow(sc);		/* update tx power state */
   4419 		ath_restore_diversity(sc);
   4420 		sc->sc_calinterval = 1;
   4421 		sc->sc_caltries = 0;
   4422 
   4423 		/*
   4424 		 * Re-enable rx framework.
   4425 		 */
   4426 		if (ath_startrecv(sc) != 0) {
   4427 			if_printf(&sc->sc_if,
   4428 				"%s: unable to restart recv logic\n", __func__);
   4429 			return EIO;
   4430 		}
   4431 
   4432 		/*
   4433 		 * Change channels and update the h/w rate map
   4434 		 * if we're switching; e.g. 11a to 11b/g.
   4435 		 */
   4436 		ic->ic_ibss_chan = chan;
   4437 		ath_chan_change(sc, chan);
   4438 
   4439 		/*
   4440 		 * Handle DFS required waiting period to determine
   4441 		 * if channel is clear of radar traffic.
   4442 		 */
   4443 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   4444 #define	DFS_AND_NOT_CLEAR(_c) \
   4445 	(((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS)
   4446 			if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) {
   4447 				if_printf(&sc->sc_if,
   4448 					"wait for DFS clear channel signal\n");
   4449 				/* XXX stop sndq */
   4450 				sc->sc_if.if_flags |= IFF_OACTIVE;
   4451 				callout_reset(&sc->sc_dfs_ch,
   4452 					2 * hz, ath_dfswait, sc);
   4453 			} else
   4454 				callout_stop(&sc->sc_dfs_ch);
   4455 #undef DFS_NOT_CLEAR
   4456 		}
   4457 
   4458 		/*
   4459 		 * Re-enable interrupts.
   4460 		 */
   4461 		ath_hal_intrset(ah, sc->sc_imask);
   4462 	}
   4463 	return 0;
   4464 }
   4465 
   4466 static void
   4467 ath_next_scan(void *arg)
   4468 {
   4469 	struct ath_softc *sc = arg;
   4470 	struct ieee80211com *ic = &sc->sc_ic;
   4471 	int s;
   4472 
   4473 	/* don't call ath_start w/o network interrupts blocked */
   4474 	s = splnet();
   4475 
   4476 	if (ic->ic_state == IEEE80211_S_SCAN)
   4477 		ieee80211_next_scan(ic);
   4478 	splx(s);
   4479 }
   4480 
   4481 /*
   4482  * Periodically recalibrate the PHY to account
   4483  * for temperature/environment changes.
   4484  */
   4485 static void
   4486 ath_calibrate(void *arg)
   4487 {
   4488 	struct ath_softc *sc = arg;
   4489 	struct ath_hal *ah = sc->sc_ah;
   4490 	HAL_BOOL iqCalDone;
   4491 
   4492 	sc->sc_stats.ast_per_cal++;
   4493 
   4494 	ATH_LOCK(sc);
   4495 
   4496 	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
   4497 		/*
   4498 		 * Rfgain is out of bounds, reset the chip
   4499 		 * to load new gain values.
   4500 		 */
   4501 		DPRINTF(sc, ATH_DEBUG_CALIBRATE,
   4502 			"%s: rfgain change\n", __func__);
   4503 		sc->sc_stats.ast_per_rfgain++;
   4504 		ath_reset(&sc->sc_if);
   4505 	}
   4506 	if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
   4507 		DPRINTF(sc, ATH_DEBUG_ANY,
   4508 			"%s: calibration of channel %u failed\n",
   4509 			__func__, sc->sc_curchan.channel);
   4510 		sc->sc_stats.ast_per_calfail++;
   4511 	}
   4512 	/*
   4513 	 * Calibrate noise floor data again in case of change.
   4514 	 */
   4515 	ath_hal_process_noisefloor(ah);
   4516 	/*
   4517 	 * Poll more frequently when the IQ calibration is in
   4518 	 * progress to speedup loading the final settings.
   4519 	 * We temper this aggressive polling with an exponential
   4520 	 * back off after 4 tries up to ath_calinterval.
   4521 	 */
   4522 	if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
   4523 		sc->sc_caltries = 0;
   4524 		sc->sc_calinterval = ath_calinterval;
   4525 	} else if (sc->sc_caltries > 4) {
   4526 		sc->sc_caltries = 0;
   4527 		sc->sc_calinterval <<= 1;
   4528 		if (sc->sc_calinterval > ath_calinterval)
   4529 			sc->sc_calinterval = ath_calinterval;
   4530 	}
   4531 	KASSERT(0 < sc->sc_calinterval && sc->sc_calinterval <= ath_calinterval,
   4532 		("bad calibration interval %u", sc->sc_calinterval));
   4533 
   4534 	DPRINTF(sc, ATH_DEBUG_CALIBRATE,
   4535 		"%s: next +%u (%siqCalDone tries %u)\n", __func__,
   4536 		sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
   4537 	sc->sc_caltries++;
   4538 	callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
   4539 		ath_calibrate, sc);
   4540 	ATH_UNLOCK(sc);
   4541 }
   4542 
   4543 static int
   4544 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
   4545 {
   4546 	struct ifnet *ifp = ic->ic_ifp;
   4547 	struct ath_softc *sc = ifp->if_softc;
   4548 	struct ath_hal *ah = sc->sc_ah;
   4549 	struct ieee80211_node *ni;
   4550 	int i, error;
   4551 	const u_int8_t *bssid;
   4552 	u_int32_t rfilt;
   4553 	static const HAL_LED_STATE leds[] = {
   4554 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
   4555 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
   4556 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
   4557 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
   4558 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
   4559 	};
   4560 
   4561 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
   4562 		ieee80211_state_name[ic->ic_state],
   4563 		ieee80211_state_name[nstate]);
   4564 
   4565 	callout_stop(&sc->sc_scan_ch);
   4566 	callout_stop(&sc->sc_cal_ch);
   4567 	callout_stop(&sc->sc_dfs_ch);
   4568 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
   4569 
   4570 	if (nstate == IEEE80211_S_INIT) {
   4571 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
   4572 		/*
   4573 		 * NB: disable interrupts so we don't rx frames.
   4574 		 */
   4575 		ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
   4576 		/*
   4577 		 * Notify the rate control algorithm.
   4578 		 */
   4579 		ath_rate_newstate(sc, nstate);
   4580 		goto done;
   4581 	}
   4582 	ni = ic->ic_bss;
   4583 	error = ath_chan_set(sc, ic->ic_curchan);
   4584 	if (error != 0)
   4585 		goto bad;
   4586 	rfilt = ath_calcrxfilter(sc, nstate);
   4587 	if (nstate == IEEE80211_S_SCAN)
   4588 		bssid = ifp->if_broadcastaddr;
   4589 	else
   4590 		bssid = ni->ni_bssid;
   4591 	ath_hal_setrxfilter(ah, rfilt);
   4592 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
   4593 		 __func__, rfilt, ether_sprintf(bssid));
   4594 
   4595 	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
   4596 		ath_hal_setassocid(ah, bssid, ni->ni_associd);
   4597 	else
   4598 		ath_hal_setassocid(ah, bssid, 0);
   4599 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
   4600 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
   4601 			if (ath_hal_keyisvalid(ah, i))
   4602 				ath_hal_keysetmac(ah, i, bssid);
   4603 	}
   4604 
   4605 	/*
   4606 	 * Notify the rate control algorithm so rates
   4607 	 * are setup should ath_beacon_alloc be called.
   4608 	 */
   4609 	ath_rate_newstate(sc, nstate);
   4610 
   4611 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
   4612 		/* nothing to do */;
   4613 	} else if (nstate == IEEE80211_S_RUN) {
   4614 		DPRINTF(sc, ATH_DEBUG_STATE,
   4615 			"%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
   4616 			"capinfo=0x%04x chan=%d\n"
   4617 			 , __func__
   4618 			 , ic->ic_flags
   4619 			 , ni->ni_intval
   4620 			 , ether_sprintf(ni->ni_bssid)
   4621 			 , ni->ni_capinfo
   4622 			 , ieee80211_chan2ieee(ic, ic->ic_curchan));
   4623 
   4624 		switch (ic->ic_opmode) {
   4625 		case IEEE80211_M_HOSTAP:
   4626 		case IEEE80211_M_IBSS:
   4627 			/*
   4628 			 * Allocate and setup the beacon frame.
   4629 			 *
   4630 			 * Stop any previous beacon DMA.  This may be
   4631 			 * necessary, for example, when an ibss merge
   4632 			 * causes reconfiguration; there will be a state
   4633 			 * transition from RUN->RUN that means we may
   4634 			 * be called with beacon transmission active.
   4635 			 */
   4636 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
   4637 			ath_beacon_free(sc);
   4638 			error = ath_beacon_alloc(sc, ni);
   4639 			if (error != 0)
   4640 				goto bad;
   4641 			/*
   4642 			 * If joining an adhoc network defer beacon timer
   4643 			 * configuration to the next beacon frame so we
   4644 			 * have a current TSF to use.  Otherwise we're
   4645 			 * starting an ibss/bss so there's no need to delay.
   4646 			 */
   4647 			if (ic->ic_opmode == IEEE80211_M_IBSS &&
   4648 			    ic->ic_bss->ni_tstamp.tsf != 0)
   4649 				sc->sc_syncbeacon = 1;
   4650 			else
   4651 				ath_beacon_config(sc);
   4652 			break;
   4653 		case IEEE80211_M_STA:
   4654 			/*
   4655 			 * Allocate a key cache slot to the station.
   4656 			 */
   4657 			if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
   4658 			    sc->sc_hasclrkey &&
   4659 			    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
   4660 				ath_setup_stationkey(ni);
   4661 			/*
   4662 			 * Defer beacon timer configuration to the next
   4663 			 * beacon frame so we have a current TSF to use
   4664 			 * (any TSF collected when scanning is likely old).
   4665 			 */
   4666 			sc->sc_syncbeacon = 1;
   4667 			break;
   4668 		default:
   4669 			break;
   4670 		}
   4671 		/*
   4672 		 * Let the hal process statistics collected during a
   4673 		 * scan so it can provide calibrated noise floor data.
   4674 		 */
   4675 		ath_hal_process_noisefloor(ah);
   4676 		/*
   4677 		 * Reset rssi stats; maybe not the best place...
   4678 		 */
   4679 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
   4680 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
   4681 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
   4682 	} else {
   4683 		ath_hal_intrset(ah,
   4684 			sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
   4685 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
   4686 	}
   4687 done:
   4688 	/*
   4689 	 * Invoke the parent method to complete the work.
   4690 	 */
   4691 	error = sc->sc_newstate(ic, nstate, arg);
   4692 	/*
   4693 	 * Finally, start any timers.
   4694 	 */
   4695 	if (nstate == IEEE80211_S_RUN) {
   4696 		/* start periodic recalibration timer */
   4697 		callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
   4698 			ath_calibrate, sc);
   4699 	} else if (nstate == IEEE80211_S_SCAN) {
   4700 		/* start ap/neighbor scan timer */
   4701 		callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
   4702 			ath_next_scan, sc);
   4703 	}
   4704 bad:
   4705 	return error;
   4706 }
   4707 
   4708 /*
   4709  * Allocate a key cache slot to the station so we can
   4710  * setup a mapping from key index to node. The key cache
   4711  * slot is needed for managing antenna state and for
   4712  * compression when stations do not use crypto.  We do
   4713  * it uniliaterally here; if crypto is employed this slot
   4714  * will be reassigned.
   4715  */
   4716 static void
   4717 ath_setup_stationkey(struct ieee80211_node *ni)
   4718 {
   4719 	struct ieee80211com *ic = ni->ni_ic;
   4720 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   4721 	ieee80211_keyix keyix, rxkeyix;
   4722 
   4723 	if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
   4724 		/*
   4725 		 * Key cache is full; we'll fall back to doing
   4726 		 * the more expensive lookup in software.  Note
   4727 		 * this also means no h/w compression.
   4728 		 */
   4729 		/* XXX msg+statistic */
   4730 	} else {
   4731 		/* XXX locking? */
   4732 		ni->ni_ucastkey.wk_keyix = keyix;
   4733 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
   4734 		/* NB: this will create a pass-thru key entry */
   4735 		ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
   4736 	}
   4737 }
   4738 
   4739 /*
   4740  * Setup driver-specific state for a newly associated node.
   4741  * Note that we're called also on a re-associate, the isnew
   4742  * param tells us if this is the first time or not.
   4743  */
   4744 static void
   4745 ath_newassoc(struct ieee80211_node *ni, int isnew)
   4746 {
   4747 	struct ieee80211com *ic = ni->ni_ic;
   4748 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   4749 
   4750 	ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
   4751 	if (isnew &&
   4752 	    (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
   4753 		KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
   4754 		    ("new assoc with a unicast key already setup (keyix %u)",
   4755 		    ni->ni_ucastkey.wk_keyix));
   4756 		ath_setup_stationkey(ni);
   4757 	}
   4758 }
   4759 
   4760 static int
   4761 ath_getchannels(struct ath_softc *sc, u_int cc,
   4762 	HAL_BOOL outdoor, HAL_BOOL xchanmode)
   4763 {
   4764 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
   4765 	struct ieee80211com *ic = &sc->sc_ic;
   4766 	struct ifnet *ifp = &sc->sc_if;
   4767 	struct ath_hal *ah = sc->sc_ah;
   4768 	HAL_CHANNEL *chans;
   4769 	int i, ix, nchan;
   4770 
   4771 	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
   4772 			M_TEMP, M_NOWAIT);
   4773 	if (chans == NULL) {
   4774 		if_printf(ifp, "unable to allocate channel table\n");
   4775 		return ENOMEM;
   4776 	}
   4777 	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
   4778 	    NULL, 0, NULL,
   4779 	    cc, HAL_MODE_ALL, outdoor, xchanmode)) {
   4780 		u_int32_t rd;
   4781 
   4782 		(void)ath_hal_getregdomain(ah, &rd);
   4783 		if_printf(ifp, "unable to collect channel list from hal; "
   4784 			"regdomain likely %u country code %u\n", rd, cc);
   4785 		free(chans, M_TEMP);
   4786 		return EINVAL;
   4787 	}
   4788 
   4789 	/*
   4790 	 * Convert HAL channels to ieee80211 ones and insert
   4791 	 * them in the table according to their channel number.
   4792 	 */
   4793 	for (i = 0; i < nchan; i++) {
   4794 		HAL_CHANNEL *c = &chans[i];
   4795 		u_int16_t flags;
   4796 
   4797 		ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags);
   4798 		if (ix > IEEE80211_CHAN_MAX) {
   4799 			if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n",
   4800 				ix, c->channel, c->channelFlags);
   4801 			continue;
   4802 		}
   4803 		if (ix < 0) {
   4804 			/* XXX can't handle stuff <2400 right now */
   4805 			if (bootverbose)
   4806 				if_printf(ifp, "hal channel %d (%u/%x) "
   4807 				    "cannot be handled; ignored\n",
   4808 				    ix, c->channel, c->channelFlags);
   4809 			continue;
   4810 		}
   4811 		/*
   4812 		 * Calculate net80211 flags; most are compatible
   4813 		 * but some need massaging.  Note the static turbo
   4814 		 * conversion can be removed once net80211 is updated
   4815 		 * to understand static vs. dynamic turbo.
   4816 		 */
   4817 		flags = c->channelFlags & COMPAT;
   4818 		if (c->channelFlags & CHANNEL_STURBO)
   4819 			flags |= IEEE80211_CHAN_TURBO;
   4820 		if (ic->ic_channels[ix].ic_freq == 0) {
   4821 			ic->ic_channels[ix].ic_freq = c->channel;
   4822 			ic->ic_channels[ix].ic_flags = flags;
   4823 		} else {
   4824 			/* channels overlap; e.g. 11g and 11b */
   4825 			ic->ic_channels[ix].ic_flags |= flags;
   4826 		}
   4827 	}
   4828 	free(chans, M_TEMP);
   4829 	return 0;
   4830 #undef COMPAT
   4831 }
   4832 
   4833 static void
   4834 ath_led_done(void *arg)
   4835 {
   4836 	struct ath_softc *sc = arg;
   4837 
   4838 	sc->sc_blinking = 0;
   4839 }
   4840 
   4841 /*
   4842  * Turn the LED off: flip the pin and then set a timer so no
   4843  * update will happen for the specified duration.
   4844  */
   4845 static void
   4846 ath_led_off(void *arg)
   4847 {
   4848 	struct ath_softc *sc = arg;
   4849 
   4850 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
   4851 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
   4852 }
   4853 
   4854 /*
   4855  * Blink the LED according to the specified on/off times.
   4856  */
   4857 static void
   4858 ath_led_blink(struct ath_softc *sc, int on, int off)
   4859 {
   4860 	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
   4861 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
   4862 	sc->sc_blinking = 1;
   4863 	sc->sc_ledoff = off;
   4864 	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
   4865 }
   4866 
   4867 static void
   4868 ath_led_event(struct ath_softc *sc, int event)
   4869 {
   4870 
   4871 	sc->sc_ledevent = ticks;	/* time of last event */
   4872 	if (sc->sc_blinking)		/* don't interrupt active blink */
   4873 		return;
   4874 	switch (event) {
   4875 	case ATH_LED_POLL:
   4876 		ath_led_blink(sc, sc->sc_hwmap[0].ledon,
   4877 			sc->sc_hwmap[0].ledoff);
   4878 		break;
   4879 	case ATH_LED_TX:
   4880 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
   4881 			sc->sc_hwmap[sc->sc_txrate].ledoff);
   4882 		break;
   4883 	case ATH_LED_RX:
   4884 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
   4885 			sc->sc_hwmap[sc->sc_rxrate].ledoff);
   4886 		break;
   4887 	}
   4888 }
   4889 
   4890 static void
   4891 ath_update_txpow(struct ath_softc *sc)
   4892 {
   4893 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
   4894 	struct ieee80211com *ic = &sc->sc_ic;
   4895 	struct ath_hal *ah = sc->sc_ah;
   4896 	u_int32_t txpow;
   4897 
   4898 	if (sc->sc_curtxpow != ic->ic_txpowlimit) {
   4899 		ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
   4900 		/* read back in case value is clamped */
   4901 		(void)ath_hal_gettxpowlimit(ah, &txpow);
   4902 		ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
   4903 	}
   4904 	/*
   4905 	 * Fetch max tx power level for status requests.
   4906 	 */
   4907 	(void)ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
   4908 	ic->ic_bss->ni_txpower = txpow;
   4909 }
   4910 
   4911 static void
   4912 rate_setup(struct ath_softc *sc,
   4913 	const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs)
   4914 {
   4915 	int i, maxrates;
   4916 
   4917 	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
   4918 		DPRINTF(sc, ATH_DEBUG_ANY,
   4919 			"%s: rate table too small (%u > %u)\n",
   4920 		       __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
   4921 		maxrates = IEEE80211_RATE_MAXSIZE;
   4922 	} else
   4923 		maxrates = rt->rateCount;
   4924 	for (i = 0; i < maxrates; i++)
   4925 		rs->rs_rates[i] = rt->info[i].dot11Rate;
   4926 	rs->rs_nrates = maxrates;
   4927 }
   4928 
   4929 static int
   4930 ath_rate_setup(struct ath_softc *sc, u_int mode)
   4931 {
   4932 	struct ath_hal *ah = sc->sc_ah;
   4933 	struct ieee80211com *ic = &sc->sc_ic;
   4934 	const HAL_RATE_TABLE *rt;
   4935 
   4936 	switch (mode) {
   4937 	case IEEE80211_MODE_11A:
   4938 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
   4939 		break;
   4940 	case IEEE80211_MODE_11B:
   4941 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
   4942 		break;
   4943 	case IEEE80211_MODE_11G:
   4944 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
   4945 		break;
   4946 	case IEEE80211_MODE_TURBO_A:
   4947 		/* XXX until static/dynamic turbo is fixed */
   4948 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
   4949 		break;
   4950 	case IEEE80211_MODE_TURBO_G:
   4951 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
   4952 		break;
   4953 	default:
   4954 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
   4955 			__func__, mode);
   4956 		return 0;
   4957 	}
   4958 	sc->sc_rates[mode] = rt;
   4959 	if (rt != NULL) {
   4960 		rate_setup(sc, rt, &ic->ic_sup_rates[mode]);
   4961 		return 1;
   4962 	} else
   4963 		return 0;
   4964 }
   4965 
   4966 static void
   4967 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
   4968 {
   4969 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   4970 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
   4971 	static const struct {
   4972 		u_int		rate;		/* tx/rx 802.11 rate */
   4973 		u_int16_t	timeOn;		/* LED on time (ms) */
   4974 		u_int16_t	timeOff;	/* LED off time (ms) */
   4975 	} blinkrates[] = {
   4976 		{ 108,  40,  10 },
   4977 		{  96,  44,  11 },
   4978 		{  72,  50,  13 },
   4979 		{  48,  57,  14 },
   4980 		{  36,  67,  16 },
   4981 		{  24,  80,  20 },
   4982 		{  22, 100,  25 },
   4983 		{  18, 133,  34 },
   4984 		{  12, 160,  40 },
   4985 		{  10, 200,  50 },
   4986 		{   6, 240,  58 },
   4987 		{   4, 267,  66 },
   4988 		{   2, 400, 100 },
   4989 		{   0, 500, 130 },
   4990 	};
   4991 	const HAL_RATE_TABLE *rt;
   4992 	int i, j;
   4993 
   4994 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
   4995 	rt = sc->sc_rates[mode];
   4996 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
   4997 	for (i = 0; i < rt->rateCount; i++)
   4998 		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
   4999 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
   5000 	for (i = 0; i < 32; i++) {
   5001 		u_int8_t ix = rt->rateCodeToIndex[i];
   5002 		if (ix == 0xff) {
   5003 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
   5004 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
   5005 			continue;
   5006 		}
   5007 		sc->sc_hwmap[i].ieeerate =
   5008 			rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
   5009 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
   5010 		if (rt->info[ix].shortPreamble ||
   5011 		    rt->info[ix].phy == IEEE80211_T_OFDM)
   5012 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
   5013 		/* NB: receive frames include FCS */
   5014 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
   5015 			IEEE80211_RADIOTAP_F_FCS;
   5016 		/* setup blink rate table to avoid per-packet lookup */
   5017 		for (j = 0; j < N(blinkrates)-1; j++)
   5018 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
   5019 				break;
   5020 		/* NB: this uses the last entry if the rate isn't found */
   5021 		/* XXX beware of overlow */
   5022 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
   5023 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
   5024 	}
   5025 	sc->sc_currates = rt;
   5026 	sc->sc_curmode = mode;
   5027 	/*
   5028 	 * All protection frames are transmited at 2Mb/s for
   5029 	 * 11g, otherwise at 1Mb/s.
   5030 	 */
   5031 	if (mode == IEEE80211_MODE_11G)
   5032 		sc->sc_protrix = ath_tx_findrix(rt, 2*2);
   5033 	else
   5034 		sc->sc_protrix = ath_tx_findrix(rt, 2*1);
   5035 	/* rate index used to send management frames */
   5036 	sc->sc_minrateix = 0;
   5037 	/*
   5038 	 * Setup multicast rate state.
   5039 	 */
   5040 	/* XXX layering violation */
   5041 	sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate);
   5042 	sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate;
   5043 	/* NB: caller is responsible for reseting rate control state */
   5044 #undef N
   5045 }
   5046 
   5047 #ifdef AR_DEBUG
   5048 static void
   5049 ath_printrxbuf(struct ath_buf *bf, int done)
   5050 {
   5051 	struct ath_desc *ds;
   5052 	int i;
   5053 
   5054 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
   5055 		printf("R%d (%p %" PRIx64
   5056 		    ") %08x %08x %08x %08x %08x %08x %c\n", i, ds,
   5057 		    (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
   5058 		    ds->ds_link, ds->ds_data,
   5059 		    ds->ds_ctl0, ds->ds_ctl1,
   5060 		    ds->ds_hw[0], ds->ds_hw[1],
   5061 		    !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
   5062 	}
   5063 }
   5064 
   5065 static void
   5066 ath_printtxbuf(struct ath_buf *bf, int done)
   5067 {
   5068 	struct ath_desc *ds;
   5069 	int i;
   5070 
   5071 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
   5072 		printf("T%d (%p %" PRIx64
   5073 		    ") %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
   5074 		    i, ds,
   5075 		    (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
   5076 		    ds->ds_link, ds->ds_data,
   5077 		    ds->ds_ctl0, ds->ds_ctl1,
   5078 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
   5079 		    !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
   5080 	}
   5081 }
   5082 #endif /* AR_DEBUG */
   5083 
   5084 static void
   5085 ath_watchdog(struct ifnet *ifp)
   5086 {
   5087 	struct ath_softc *sc = ifp->if_softc;
   5088 	struct ieee80211com *ic = &sc->sc_ic;
   5089 	struct ath_txq *axq;
   5090 	int i;
   5091 
   5092 	ifp->if_timer = 0;
   5093 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
   5094 		return;
   5095 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
   5096 		if (!ATH_TXQ_SETUP(sc, i))
   5097 			continue;
   5098 		axq = &sc->sc_txq[i];
   5099 		ATH_TXQ_LOCK(axq);
   5100 		if (axq->axq_timer == 0)
   5101 			;
   5102 		else if (--axq->axq_timer == 0) {
   5103 			ATH_TXQ_UNLOCK(axq);
   5104 			if_printf(ifp, "device timeout (txq %d)\n", i);
   5105 			ath_reset(ifp);
   5106 			ifp->if_oerrors++;
   5107 			sc->sc_stats.ast_watchdog++;
   5108 			break;
   5109 		} else
   5110 			ifp->if_timer = 1;
   5111 		ATH_TXQ_UNLOCK(axq);
   5112 	}
   5113 	ieee80211_watchdog(ic);
   5114 }
   5115 
   5116 /*
   5117  * Diagnostic interface to the HAL.  This is used by various
   5118  * tools to do things like retrieve register contents for
   5119  * debugging.  The mechanism is intentionally opaque so that
   5120  * it can change frequently w/o concern for compatiblity.
   5121  */
   5122 static int
   5123 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
   5124 {
   5125 	struct ath_hal *ah = sc->sc_ah;
   5126 	u_int id = ad->ad_id & ATH_DIAG_ID;
   5127 	void *indata = NULL;
   5128 	void *outdata = NULL;
   5129 	u_int32_t insize = ad->ad_in_size;
   5130 	u_int32_t outsize = ad->ad_out_size;
   5131 	int error = 0;
   5132 
   5133 	if (ad->ad_id & ATH_DIAG_IN) {
   5134 		/*
   5135 		 * Copy in data.
   5136 		 */
   5137 		indata = malloc(insize, M_TEMP, M_NOWAIT);
   5138 		if (indata == NULL) {
   5139 			error = ENOMEM;
   5140 			goto bad;
   5141 		}
   5142 		error = copyin(ad->ad_in_data, indata, insize);
   5143 		if (error)
   5144 			goto bad;
   5145 	}
   5146 	if (ad->ad_id & ATH_DIAG_DYN) {
   5147 		/*
   5148 		 * Allocate a buffer for the results (otherwise the HAL
   5149 		 * returns a pointer to a buffer where we can read the
   5150 		 * results).  Note that we depend on the HAL leaving this
   5151 		 * pointer for us to use below in reclaiming the buffer;
   5152 		 * may want to be more defensive.
   5153 		 */
   5154 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
   5155 		if (outdata == NULL) {
   5156 			error = ENOMEM;
   5157 			goto bad;
   5158 		}
   5159 	}
   5160 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
   5161 		if (outsize < ad->ad_out_size)
   5162 			ad->ad_out_size = outsize;
   5163 		if (outdata != NULL)
   5164 			error = copyout(outdata, ad->ad_out_data,
   5165 					ad->ad_out_size);
   5166 	} else {
   5167 		error = EINVAL;
   5168 	}
   5169 bad:
   5170 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
   5171 		free(indata, M_TEMP);
   5172 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
   5173 		free(outdata, M_TEMP);
   5174 	return error;
   5175 }
   5176 
   5177 static int
   5178 ath_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   5179 {
   5180 #define	IS_RUNNING(ifp) \
   5181 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
   5182 	struct ath_softc *sc = ifp->if_softc;
   5183 	struct ieee80211com *ic = &sc->sc_ic;
   5184 	struct ifreq *ifr = (struct ifreq *)data;
   5185 	int error = 0;
   5186 
   5187 	ATH_LOCK(sc);
   5188 	switch (cmd) {
   5189 	case SIOCSIFFLAGS:
   5190 		if (IS_RUNNING(ifp)) {
   5191 			/*
   5192 			 * To avoid rescanning another access point,
   5193 			 * do not call ath_init() here.  Instead,
   5194 			 * only reflect promisc mode settings.
   5195 			 */
   5196 			ath_mode_init(sc);
   5197 		} else if (ifp->if_flags & IFF_UP) {
   5198 			/*
   5199 			 * Beware of being called during attach/detach
   5200 			 * to reset promiscuous mode.  In that case we
   5201 			 * will still be marked UP but not RUNNING.
   5202 			 * However trying to re-init the interface
   5203 			 * is the wrong thing to do as we've already
   5204 			 * torn down much of our state.  There's
   5205 			 * probably a better way to deal with this.
   5206 			 */
   5207 			if (!sc->sc_invalid && ic->ic_bss != NULL)
   5208 				ath_init(sc);	/* XXX lose error */
   5209 		} else
   5210 			ath_stop_locked(ifp, 1);
   5211 		break;
   5212 	case SIOCADDMULTI:
   5213 	case SIOCDELMULTI:
   5214 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
   5215 			if (ifp->if_flags & IFF_RUNNING)
   5216 				ath_mode_init(sc);
   5217 			error = 0;
   5218 		}
   5219 		break;
   5220 	case SIOCGATHSTATS:
   5221 		/* NB: embed these numbers to get a consistent view */
   5222 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
   5223 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
   5224 		sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
   5225 		ATH_UNLOCK(sc);
   5226 		/*
   5227 		 * NB: Drop the softc lock in case of a page fault;
   5228 		 * we'll accept any potential inconsisentcy in the
   5229 		 * statistics.  The alternative is to copy the data
   5230 		 * to a local structure.
   5231 		 */
   5232 		return copyout(&sc->sc_stats,
   5233 				ifr->ifr_data, sizeof (sc->sc_stats));
   5234 	case SIOCGATHDIAG:
   5235 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
   5236 		break;
   5237 	default:
   5238 		error = ieee80211_ioctl(ic, cmd, data);
   5239 		if (error == ENETRESET) {
   5240 			if (IS_RUNNING(ifp) &&
   5241 			    ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
   5242 				ath_init(sc);	/* XXX lose error */
   5243 			error = 0;
   5244 		}
   5245 		if (error == ERESTART)
   5246 			error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0;
   5247 		break;
   5248 	}
   5249 	ATH_UNLOCK(sc);
   5250 	return error;
   5251 #undef IS_RUNNING
   5252 }
   5253 
   5254 #if NBPFILTER > 0
   5255 static void
   5256 ath_bpfattach(struct ath_softc *sc)
   5257 {
   5258 	struct ifnet *ifp = &sc->sc_if;
   5259 
   5260 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
   5261 		sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
   5262 		&sc->sc_drvbpf);
   5263 	/*
   5264 	 * Initialize constant fields.
   5265 	 * XXX make header lengths a multiple of 32-bits so subsequent
   5266 	 *     headers are properly aligned; this is a kludge to keep
   5267 	 *     certain applications happy.
   5268 	 *
   5269 	 * NB: the channel is setup each time we transition to the
   5270 	 *     RUN state to avoid filling it in for each frame.
   5271 	 */
   5272 	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
   5273 	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
   5274 	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
   5275 
   5276 	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
   5277 	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
   5278 	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
   5279 }
   5280 #endif
   5281 
   5282 /*
   5283  * Announce various information on device/driver attach.
   5284  */
   5285 static void
   5286 ath_announce(struct ath_softc *sc)
   5287 {
   5288 #define	HAL_MODE_DUALBAND	(HAL_MODE_11A|HAL_MODE_11B)
   5289 	struct ifnet *ifp = &sc->sc_if;
   5290 	struct ath_hal *ah = sc->sc_ah;
   5291 	u_int modes, cc;
   5292 
   5293 	if_printf(ifp, "mac %d.%d phy %d.%d",
   5294 		ah->ah_macVersion, ah->ah_macRev,
   5295 		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
   5296 	/*
   5297 	 * Print radio revision(s).  We check the wireless modes
   5298 	 * to avoid falsely printing revs for inoperable parts.
   5299 	 * Dual-band radio revs are returned in the 5 GHz rev number.
   5300 	 */
   5301 	ath_hal_getcountrycode(ah, &cc);
   5302 	modes = ath_hal_getwirelessmodes(ah, cc);
   5303 	if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
   5304 		if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
   5305 			printf(" 5 GHz radio %d.%d 2 GHz radio %d.%d",
   5306 				ah->ah_analog5GhzRev >> 4,
   5307 				ah->ah_analog5GhzRev & 0xf,
   5308 				ah->ah_analog2GhzRev >> 4,
   5309 				ah->ah_analog2GhzRev & 0xf);
   5310 		else
   5311 			printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
   5312 				ah->ah_analog5GhzRev & 0xf);
   5313 	} else
   5314 		printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
   5315 			ah->ah_analog5GhzRev & 0xf);
   5316 	printf("\n");
   5317 	if (bootverbose) {
   5318 		int i;
   5319 		for (i = 0; i <= WME_AC_VO; i++) {
   5320 			struct ath_txq *txq = sc->sc_ac2q[i];
   5321 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
   5322 				txq->axq_qnum, ieee80211_wme_acnames[i]);
   5323 		}
   5324 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
   5325 			sc->sc_cabq->axq_qnum);
   5326 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
   5327 	}
   5328 	if (ath_rxbuf != ATH_RXBUF)
   5329 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
   5330 	if (ath_txbuf != ATH_TXBUF)
   5331 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
   5332 #undef HAL_MODE_DUALBAND
   5333 }
   5334