Home | History | Annotate | Line # | Download | only in ic
ath.c revision 1.98.6.2
      1 /*	$NetBSD: ath.c,v 1.98.6.2 2008/06/02 13:23:18 mjf Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer,
     12  *    without modification.
     13  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
     14  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
     15  *    redistribution must be conditioned upon including a substantially
     16  *    similar Disclaimer requirement for further binary redistribution.
     17  * 3. Neither the names of the above-listed copyright holders nor the names
     18  *    of any contributors may be used to endorse or promote products derived
     19  *    from this software without specific prior written permission.
     20  *
     21  * Alternatively, this software may be distributed under the terms of the
     22  * GNU General Public License ("GPL") version 2 as published by the Free
     23  * Software Foundation.
     24  *
     25  * NO WARRANTY
     26  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     28  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
     29  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
     30  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
     31  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
     34  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     36  * THE POSSIBILITY OF SUCH DAMAGES.
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 #ifdef __FreeBSD__
     41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $");
     42 #endif
     43 #ifdef __NetBSD__
     44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.98.6.2 2008/06/02 13:23:18 mjf Exp $");
     45 #endif
     46 
     47 /*
     48  * Driver for the Atheros Wireless LAN controller.
     49  *
     50  * This software is derived from work of Atsushi Onoe; his contribution
     51  * is greatly appreciated.
     52  */
     53 
     54 #include "opt_inet.h"
     55 
     56 #ifdef __NetBSD__
     57 #include "bpfilter.h"
     58 #endif /* __NetBSD__ */
     59 
     60 #include <sys/param.h>
     61 #include <sys/reboot.h>
     62 #include <sys/systm.h>
     63 #include <sys/types.h>
     64 #include <sys/sysctl.h>
     65 #include <sys/mbuf.h>
     66 #include <sys/malloc.h>
     67 #include <sys/kernel.h>
     68 #include <sys/socket.h>
     69 #include <sys/sockio.h>
     70 #include <sys/errno.h>
     71 #include <sys/callout.h>
     72 #include <sys/bus.h>
     73 #include <sys/endian.h>
     74 
     75 #include <net/if.h>
     76 #include <net/if_dl.h>
     77 #include <net/if_media.h>
     78 #include <net/if_types.h>
     79 #include <net/if_arp.h>
     80 #include <net/if_ether.h>
     81 #include <net/if_llc.h>
     82 
     83 #include <net80211/ieee80211_netbsd.h>
     84 #include <net80211/ieee80211_var.h>
     85 
     86 #if NBPFILTER > 0
     87 #include <net/bpf.h>
     88 #endif
     89 
     90 #ifdef INET
     91 #include <netinet/in.h>
     92 #endif
     93 
     94 #include <sys/device.h>
     95 #include <dev/ic/ath_netbsd.h>
     96 
     97 #define	AR_DEBUG
     98 #include <dev/ic/athvar.h>
     99 #include <contrib/dev/ath/ah_desc.h>
    100 #include <contrib/dev/ath/ah_devid.h>	/* XXX for softled */
    101 #include "athhal_options.h"
    102 
    103 #ifdef ATH_TX99_DIAG
    104 #include <dev/ath/ath_tx99/ath_tx99.h>
    105 #endif
    106 
    107 /* unaligned little endian access */
    108 #define LE_READ_2(p)							\
    109 	((u_int16_t)							\
    110 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
    111 #define LE_READ_4(p)							\
    112 	((u_int32_t)							\
    113 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
    114 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
    115 
    116 enum {
    117 	ATH_LED_TX,
    118 	ATH_LED_RX,
    119 	ATH_LED_POLL,
    120 };
    121 
    122 #ifdef	AH_NEED_DESC_SWAP
    123 #define	HTOAH32(x)	htole32(x)
    124 #else
    125 #define	HTOAH32(x)	(x)
    126 #endif
    127 
    128 static int	ath_ifinit(struct ifnet *);
    129 static int	ath_init(struct ath_softc *);
    130 static void	ath_stop_locked(struct ifnet *, int);
    131 static void	ath_stop(struct ifnet *, int);
    132 static void	ath_start(struct ifnet *);
    133 static int	ath_media_change(struct ifnet *);
    134 static void	ath_watchdog(struct ifnet *);
    135 static int	ath_ioctl(struct ifnet *, u_long, void *);
    136 static void	ath_fatal_proc(void *, int);
    137 static void	ath_rxorn_proc(void *, int);
    138 static void	ath_bmiss_proc(void *, int);
    139 static void	ath_radar_proc(void *, int);
    140 static int	ath_key_alloc(struct ieee80211com *,
    141 			const struct ieee80211_key *,
    142 			ieee80211_keyix *, ieee80211_keyix *);
    143 static int	ath_key_delete(struct ieee80211com *,
    144 			const struct ieee80211_key *);
    145 static int	ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
    146 			const u_int8_t mac[IEEE80211_ADDR_LEN]);
    147 static void	ath_key_update_begin(struct ieee80211com *);
    148 static void	ath_key_update_end(struct ieee80211com *);
    149 static void	ath_mode_init(struct ath_softc *);
    150 static void	ath_setslottime(struct ath_softc *);
    151 static void	ath_updateslot(struct ifnet *);
    152 static int	ath_beaconq_setup(struct ath_hal *);
    153 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
    154 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
    155 static void	ath_beacon_proc(void *, int);
    156 static void	ath_bstuck_proc(void *, int);
    157 static void	ath_beacon_free(struct ath_softc *);
    158 static void	ath_beacon_config(struct ath_softc *);
    159 static void	ath_descdma_cleanup(struct ath_softc *sc,
    160 			struct ath_descdma *, ath_bufhead *);
    161 static int	ath_desc_alloc(struct ath_softc *);
    162 static void	ath_desc_free(struct ath_softc *);
    163 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
    164 static void	ath_node_free(struct ieee80211_node *);
    165 static u_int8_t	ath_node_getrssi(const struct ieee80211_node *);
    166 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
    167 static void	ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
    168 			struct ieee80211_node *ni,
    169 			int subtype, int rssi, u_int32_t rstamp);
    170 static void	ath_setdefantenna(struct ath_softc *, u_int);
    171 static void	ath_rx_proc(void *, int);
    172 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
    173 static int	ath_tx_setup(struct ath_softc *, int, int);
    174 static int	ath_wme_update(struct ieee80211com *);
    175 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
    176 static void	ath_tx_cleanup(struct ath_softc *);
    177 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
    178 			     struct ath_buf *, struct mbuf *);
    179 static void	ath_tx_proc_q0(void *, int);
    180 static void	ath_tx_proc_q0123(void *, int);
    181 static void	ath_tx_proc(void *, int);
    182 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
    183 static void	ath_draintxq(struct ath_softc *);
    184 static void	ath_stoprecv(struct ath_softc *);
    185 static int	ath_startrecv(struct ath_softc *);
    186 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
    187 static void	ath_next_scan(void *);
    188 static void	ath_calibrate(void *);
    189 static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
    190 static void	ath_setup_stationkey(struct ieee80211_node *);
    191 static void	ath_newassoc(struct ieee80211_node *, int);
    192 static int	ath_getchannels(struct ath_softc *, u_int cc,
    193 			HAL_BOOL outdoor, HAL_BOOL xchanmode);
    194 static void	ath_led_event(struct ath_softc *, int);
    195 static void	ath_update_txpow(struct ath_softc *);
    196 static void	ath_freetx(struct mbuf *);
    197 static void	ath_restore_diversity(struct ath_softc *);
    198 
    199 static int	ath_rate_setup(struct ath_softc *, u_int mode);
    200 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
    201 
    202 #if NBPFILTER > 0
    203 static void	ath_bpfattach(struct ath_softc *);
    204 #endif
    205 static void	ath_announce(struct ath_softc *);
    206 
    207 int ath_dwelltime = 200;		/* 5 channels/second */
    208 int ath_calinterval = 30;		/* calibrate every 30 secs */
    209 int ath_outdoor = AH_TRUE;		/* outdoor operation */
    210 int ath_xchanmode = AH_TRUE;		/* enable extended channels */
    211 int ath_countrycode = CTRY_DEFAULT;	/* country code */
    212 int ath_regdomain = 0;			/* regulatory domain */
    213 int ath_debug = 0;
    214 int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
    215 int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
    216 
    217 #ifdef AR_DEBUG
    218 enum {
    219 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
    220 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
    221 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
    222 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
    223 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
    224 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
    225 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
    226 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
    227 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
    228 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
    229 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
    230 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
    231 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
    232 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
    233 	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
    234 	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
    235 	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
    236 	ATH_DEBUG_LED		= 0x00100000,	/* led management */
    237 	ATH_DEBUG_FF		= 0x00200000,	/* fast frames */
    238 	ATH_DEBUG_DFS		= 0x00400000,	/* DFS processing */
    239 	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
    240 	ATH_DEBUG_ANY		= 0xffffffff
    241 };
    242 #define	IFF_DUMPPKTS(sc, m) \
    243 	((sc->sc_debug & (m)) || \
    244 	    (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
    245 #define	DPRINTF(sc, m, fmt, ...) do {				\
    246 	if (sc->sc_debug & (m))					\
    247 		printf(fmt, __VA_ARGS__);			\
    248 } while (0)
    249 #define	KEYPRINTF(sc, ix, hk, mac) do {				\
    250 	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
    251 		ath_keyprint(__func__, ix, hk, mac);		\
    252 } while (0)
    253 static	void ath_printrxbuf(struct ath_buf *bf, int);
    254 static	void ath_printtxbuf(struct ath_buf *bf, int);
    255 #else
    256 #define	IFF_DUMPPKTS(sc, m) \
    257 	((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
    258 #define	DPRINTF(m, fmt, ...)
    259 #define	KEYPRINTF(sc, k, ix, mac)
    260 #endif
    261 
    262 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
    263 
    264 int
    265 ath_attach(u_int16_t devid, struct ath_softc *sc)
    266 {
    267 	struct ifnet *ifp = &sc->sc_if;
    268 	struct ieee80211com *ic = &sc->sc_ic;
    269 	struct ath_hal *ah = NULL;
    270 	HAL_STATUS status;
    271 	int error = 0, i;
    272 
    273 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
    274 
    275 	memcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
    276 
    277 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
    278 	if (ah == NULL) {
    279 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
    280 			status);
    281 		error = ENXIO;
    282 		goto bad;
    283 	}
    284 	if (ah->ah_abi != HAL_ABI_VERSION) {
    285 		if_printf(ifp, "HAL ABI mismatch detected "
    286 			"(HAL:0x%x != driver:0x%x)\n",
    287 			ah->ah_abi, HAL_ABI_VERSION);
    288 		error = ENXIO;
    289 		goto bad;
    290 	}
    291 	sc->sc_ah = ah;
    292 
    293 	if (!prop_dictionary_set_bool(device_properties(&sc->sc_dev),
    294 	    "pmf-powerdown", false))
    295 		goto bad;
    296 
    297 	/*
    298 	 * Check if the MAC has multi-rate retry support.
    299 	 * We do this by trying to setup a fake extended
    300 	 * descriptor.  MAC's that don't have support will
    301 	 * return false w/o doing anything.  MAC's that do
    302 	 * support it will return true w/o doing anything.
    303 	 */
    304 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
    305 
    306 	/*
    307 	 * Check if the device has hardware counters for PHY
    308 	 * errors.  If so we need to enable the MIB interrupt
    309 	 * so we can act on stat triggers.
    310 	 */
    311 	if (ath_hal_hwphycounters(ah))
    312 		sc->sc_needmib = 1;
    313 
    314 	/*
    315 	 * Get the hardware key cache size.
    316 	 */
    317 	sc->sc_keymax = ath_hal_keycachesize(ah);
    318 	if (sc->sc_keymax > ATH_KEYMAX) {
    319 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
    320 			ATH_KEYMAX, sc->sc_keymax);
    321 		sc->sc_keymax = ATH_KEYMAX;
    322 	}
    323 	/*
    324 	 * Reset the key cache since some parts do not
    325 	 * reset the contents on initial power up.
    326 	 */
    327 	for (i = 0; i < sc->sc_keymax; i++)
    328 		ath_hal_keyreset(ah, i);
    329 	/*
    330 	 * Mark key cache slots associated with global keys
    331 	 * as in use.  If we knew TKIP was not to be used we
    332 	 * could leave the +32, +64, and +32+64 slots free.
    333 	 * XXX only for splitmic.
    334 	 */
    335 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
    336 		setbit(sc->sc_keymap, i);
    337 		setbit(sc->sc_keymap, i+32);
    338 		setbit(sc->sc_keymap, i+64);
    339 		setbit(sc->sc_keymap, i+32+64);
    340 	}
    341 
    342 	/*
    343 	 * Collect the channel list using the default country
    344 	 * code and including outdoor channels.  The 802.11 layer
    345 	 * is resposible for filtering this list based on settings
    346 	 * like the phy mode.
    347 	 */
    348 	error = ath_getchannels(sc, ath_countrycode,
    349 			ath_outdoor, ath_xchanmode);
    350 	if (error != 0)
    351 		goto bad;
    352 
    353 	/*
    354 	 * Setup rate tables for all potential media types.
    355 	 */
    356 	ath_rate_setup(sc, IEEE80211_MODE_11A);
    357 	ath_rate_setup(sc, IEEE80211_MODE_11B);
    358 	ath_rate_setup(sc, IEEE80211_MODE_11G);
    359 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
    360 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
    361 	/* NB: setup here so ath_rate_update is happy */
    362 	ath_setcurmode(sc, IEEE80211_MODE_11A);
    363 
    364 	/*
    365 	 * Allocate tx+rx descriptors and populate the lists.
    366 	 */
    367 	error = ath_desc_alloc(sc);
    368 	if (error != 0) {
    369 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
    370 		goto bad;
    371 	}
    372 	ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
    373 	ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE);
    374 	ATH_CALLOUT_INIT(&sc->sc_dfs_ch, CALLOUT_MPSAFE);
    375 
    376 	ATH_TXBUF_LOCK_INIT(sc);
    377 
    378 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
    379 	TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
    380 	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
    381 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
    382 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
    383 	TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc);
    384 
    385 	/*
    386 	 * Allocate hardware transmit queues: one queue for
    387 	 * beacon frames and one data queue for each QoS
    388 	 * priority.  Note that the hal handles reseting
    389 	 * these queues at the needed time.
    390 	 *
    391 	 * XXX PS-Poll
    392 	 */
    393 	sc->sc_bhalq = ath_beaconq_setup(ah);
    394 	if (sc->sc_bhalq == (u_int) -1) {
    395 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
    396 		error = EIO;
    397 		goto bad2;
    398 	}
    399 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
    400 	if (sc->sc_cabq == NULL) {
    401 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
    402 		error = EIO;
    403 		goto bad2;
    404 	}
    405 	/* NB: insure BK queue is the lowest priority h/w queue */
    406 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
    407 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
    408 			ieee80211_wme_acnames[WME_AC_BK]);
    409 		error = EIO;
    410 		goto bad2;
    411 	}
    412 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
    413 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
    414 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
    415 		/*
    416 		 * Not enough hardware tx queues to properly do WME;
    417 		 * just punt and assign them all to the same h/w queue.
    418 		 * We could do a better job of this if, for example,
    419 		 * we allocate queues when we switch from station to
    420 		 * AP mode.
    421 		 */
    422 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
    423 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
    424 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
    425 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
    426 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
    427 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
    428 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
    429 	}
    430 
    431 	/*
    432 	 * Special case certain configurations.  Note the
    433 	 * CAB queue is handled by these specially so don't
    434 	 * include them when checking the txq setup mask.
    435 	 */
    436 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
    437 	case 0x01:
    438 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
    439 		break;
    440 	case 0x0f:
    441 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
    442 		break;
    443 	default:
    444 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
    445 		break;
    446 	}
    447 
    448 	/*
    449 	 * Setup rate control.  Some rate control modules
    450 	 * call back to change the anntena state so expose
    451 	 * the necessary entry points.
    452 	 * XXX maybe belongs in struct ath_ratectrl?
    453 	 */
    454 	sc->sc_setdefantenna = ath_setdefantenna;
    455 	sc->sc_rc = ath_rate_attach(sc);
    456 	if (sc->sc_rc == NULL) {
    457 		error = EIO;
    458 		goto bad2;
    459 	}
    460 
    461 	sc->sc_blinking = 0;
    462 	sc->sc_ledstate = 1;
    463 	sc->sc_ledon = 0;			/* low true */
    464 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
    465 	ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE);
    466 	/*
    467 	 * Auto-enable soft led processing for IBM cards and for
    468 	 * 5211 minipci cards.  Users can also manually enable/disable
    469 	 * support with a sysctl.
    470 	 */
    471 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
    472 	if (sc->sc_softled) {
    473 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
    474 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
    475 	}
    476 
    477 	ifp->if_softc = sc;
    478 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
    479 	ifp->if_start = ath_start;
    480 	ifp->if_stop = ath_stop;
    481 	ifp->if_watchdog = ath_watchdog;
    482 	ifp->if_ioctl = ath_ioctl;
    483 	ifp->if_init = ath_ifinit;
    484 	IFQ_SET_READY(&ifp->if_snd);
    485 
    486 	ic->ic_ifp = ifp;
    487 	ic->ic_reset = ath_reset;
    488 	ic->ic_newassoc = ath_newassoc;
    489 	ic->ic_updateslot = ath_updateslot;
    490 	ic->ic_wme.wme_update = ath_wme_update;
    491 	/* XXX not right but it's not used anywhere important */
    492 	ic->ic_phytype = IEEE80211_T_OFDM;
    493 	ic->ic_opmode = IEEE80211_M_STA;
    494 	ic->ic_caps =
    495 		  IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
    496 		| IEEE80211_C_HOSTAP		/* hostap mode */
    497 		| IEEE80211_C_MONITOR		/* monitor mode */
    498 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
    499 		| IEEE80211_C_SHSLOT		/* short slot time supported */
    500 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
    501 		| IEEE80211_C_TXFRAG		/* handle tx frags */
    502 		;
    503 	/*
    504 	 * Query the hal to figure out h/w crypto support.
    505 	 */
    506 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
    507 		ic->ic_caps |= IEEE80211_C_WEP;
    508 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
    509 		ic->ic_caps |= IEEE80211_C_AES;
    510 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
    511 		ic->ic_caps |= IEEE80211_C_AES_CCM;
    512 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
    513 		ic->ic_caps |= IEEE80211_C_CKIP;
    514 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
    515 		ic->ic_caps |= IEEE80211_C_TKIP;
    516 		/*
    517 		 * Check if h/w does the MIC and/or whether the
    518 		 * separate key cache entries are required to
    519 		 * handle both tx+rx MIC keys.
    520 		 */
    521 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
    522 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
    523 		if (ath_hal_tkipsplit(ah))
    524 			sc->sc_splitmic = 1;
    525 	}
    526 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
    527 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
    528 	/*
    529 	 * TPC support can be done either with a global cap or
    530 	 * per-packet support.  The latter is not available on
    531 	 * all parts.  We're a bit pedantic here as all parts
    532 	 * support a global cap.
    533 	 */
    534 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
    535 		ic->ic_caps |= IEEE80211_C_TXPMGT;
    536 
    537 	/*
    538 	 * Mark WME capability only if we have sufficient
    539 	 * hardware queues to do proper priority scheduling.
    540 	 */
    541 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
    542 		ic->ic_caps |= IEEE80211_C_WME;
    543 	/*
    544 	 * Check for misc other capabilities.
    545 	 */
    546 	if (ath_hal_hasbursting(ah))
    547 		ic->ic_caps |= IEEE80211_C_BURST;
    548 
    549 	/*
    550 	 * Indicate we need the 802.11 header padded to a
    551 	 * 32-bit boundary for 4-address and QoS frames.
    552 	 */
    553 	ic->ic_flags |= IEEE80211_F_DATAPAD;
    554 
    555 	/*
    556 	 * Query the hal about antenna support.
    557 	 */
    558 	sc->sc_defant = ath_hal_getdefantenna(ah);
    559 
    560 	/*
    561 	 * Not all chips have the VEOL support we want to
    562 	 * use with IBSS beacons; check here for it.
    563 	 */
    564 	sc->sc_hasveol = ath_hal_hasveol(ah);
    565 
    566 	/* get mac address from hardware */
    567 	ath_hal_getmac(ah, ic->ic_myaddr);
    568 
    569 	if_attach(ifp);
    570 	/* call MI attach routine. */
    571 	ieee80211_ifattach(ic);
    572 	/* override default methods */
    573 	ic->ic_node_alloc = ath_node_alloc;
    574 	sc->sc_node_free = ic->ic_node_free;
    575 	ic->ic_node_free = ath_node_free;
    576 	ic->ic_node_getrssi = ath_node_getrssi;
    577 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
    578 	ic->ic_recv_mgmt = ath_recv_mgmt;
    579 	sc->sc_newstate = ic->ic_newstate;
    580 	ic->ic_newstate = ath_newstate;
    581 	ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
    582 	ic->ic_crypto.cs_key_alloc = ath_key_alloc;
    583 	ic->ic_crypto.cs_key_delete = ath_key_delete;
    584 	ic->ic_crypto.cs_key_set = ath_key_set;
    585 	ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
    586 	ic->ic_crypto.cs_key_update_end = ath_key_update_end;
    587 	/* complete initialization */
    588 	ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
    589 
    590 #if NBPFILTER > 0
    591 	ath_bpfattach(sc);
    592 #endif
    593 
    594 	sc->sc_flags |= ATH_ATTACHED;
    595 
    596 	/*
    597 	 * Setup dynamic sysctl's now that country code and
    598 	 * regdomain are available from the hal.
    599 	 */
    600 	ath_sysctlattach(sc);
    601 
    602 	ieee80211_announce(ic);
    603 	ath_announce(sc);
    604 	return 0;
    605 bad2:
    606 	ath_tx_cleanup(sc);
    607 	ath_desc_free(sc);
    608 bad:
    609 	if (ah)
    610 		ath_hal_detach(ah);
    611 	/* XXX don't get under the abstraction like this */
    612 	sc->sc_dev.dv_flags &= ~DVF_ACTIVE;
    613 	return error;
    614 }
    615 
    616 int
    617 ath_detach(struct ath_softc *sc)
    618 {
    619 	struct ifnet *ifp = &sc->sc_if;
    620 	int s;
    621 
    622 	if ((sc->sc_flags & ATH_ATTACHED) == 0)
    623 		return (0);
    624 
    625 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
    626 		__func__, ifp->if_flags);
    627 
    628 	s = splnet();
    629 	ath_stop(ifp, 1);
    630 #if NBPFILTER > 0
    631 	bpfdetach(ifp);
    632 #endif
    633 	/*
    634 	 * NB: the order of these is important:
    635 	 * o call the 802.11 layer before detaching the hal to
    636 	 *   insure callbacks into the driver to delete global
    637 	 *   key cache entries can be handled
    638 	 * o reclaim the tx queue data structures after calling
    639 	 *   the 802.11 layer as we'll get called back to reclaim
    640 	 *   node state and potentially want to use them
    641 	 * o to cleanup the tx queues the hal is called, so detach
    642 	 *   it last
    643 	 * Other than that, it's straightforward...
    644 	 */
    645 	ieee80211_ifdetach(&sc->sc_ic);
    646 #ifdef ATH_TX99_DIAG
    647 	if (sc->sc_tx99 != NULL)
    648 		sc->sc_tx99->detach(sc->sc_tx99);
    649 #endif
    650 	ath_rate_detach(sc->sc_rc);
    651 	ath_desc_free(sc);
    652 	ath_tx_cleanup(sc);
    653 	sysctl_teardown(&sc->sc_sysctllog);
    654 	ath_hal_detach(sc->sc_ah);
    655 	if_detach(ifp);
    656 	splx(s);
    657 
    658 	return 0;
    659 }
    660 
    661 void
    662 ath_suspend(struct ath_softc *sc)
    663 {
    664 	/*
    665 	 * Set the chip in full sleep mode.  Note that we are
    666 	 * careful to do this only when bringing the interface
    667 	 * completely to a stop.  When the chip is in this state
    668 	 * it must be carefully woken up or references to
    669 	 * registers in the PCI clock domain may freeze the bus
    670 	 * (and system).  This varies by chip and is mostly an
    671 	 * issue with newer parts that go to sleep more quickly.
    672 	 */
    673 	ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
    674 }
    675 
    676 bool
    677 ath_resume(struct ath_softc *sc)
    678 {
    679 	int i;
    680 	struct ath_hal *ah = sc->sc_ah;
    681 
    682 	ath_hal_setpower(ah, HAL_PM_AWAKE);
    683 
    684 	/*
    685 	 * Reset the key cache since some parts do not
    686 	 * reset the contents on initial power up.
    687 	 */
    688 	for (i = 0; i < sc->sc_keymax; i++)
    689 		ath_hal_keyreset(ah, i);
    690 
    691 	ath_hal_resettxqueue(ah, sc->sc_bhalq);
    692 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
    693 		if (ATH_TXQ_SETUP(sc, i))
    694 			ath_hal_resettxqueue(ah, i);
    695 
    696 	if (sc->sc_softled) {
    697 		ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
    698 		ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
    699 	}
    700 	return true;
    701 }
    702 
    703 /*
    704  * Interrupt handler.  Most of the actual processing is deferred.
    705  */
    706 int
    707 ath_intr(void *arg)
    708 {
    709 	struct ath_softc *sc = arg;
    710 	struct ifnet *ifp = &sc->sc_if;
    711 	struct ath_hal *ah = sc->sc_ah;
    712 	HAL_INT status;
    713 
    714 	if (!device_is_active(&sc->sc_dev)) {
    715 		/*
    716 		 * The hardware is not ready/present, don't touch anything.
    717 		 * Note this can happen early on if the IRQ is shared.
    718 		 */
    719 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
    720 		return 0;
    721 	}
    722 
    723 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
    724 		return 0;
    725 
    726 	if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
    727 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
    728 			__func__, ifp->if_flags);
    729 		ath_hal_getisr(ah, &status);	/* clear ISR */
    730 		ath_hal_intrset(ah, 0);		/* disable further intr's */
    731 		return 1; /* XXX */
    732 	}
    733 	/*
    734 	 * Figure out the reason(s) for the interrupt.  Note
    735 	 * that the hal returns a pseudo-ISR that may include
    736 	 * bits we haven't explicitly enabled so we mask the
    737 	 * value to insure we only process bits we requested.
    738 	 */
    739 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
    740 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
    741 	status &= sc->sc_imask;			/* discard unasked for bits */
    742 	if (status & HAL_INT_FATAL) {
    743 		/*
    744 		 * Fatal errors are unrecoverable.  Typically
    745 		 * these are caused by DMA errors.  Unfortunately
    746 		 * the exact reason is not (presently) returned
    747 		 * by the hal.
    748 		 */
    749 		sc->sc_stats.ast_hardware++;
    750 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
    751 		TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
    752 	} else if (status & HAL_INT_RXORN) {
    753 		sc->sc_stats.ast_rxorn++;
    754 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
    755 		TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
    756 	} else {
    757 		if (status & HAL_INT_SWBA) {
    758 			/*
    759 			 * Software beacon alert--time to send a beacon.
    760 			 * Handle beacon transmission directly; deferring
    761 			 * this is too slow to meet timing constraints
    762 			 * under load.
    763 			 */
    764 			ath_beacon_proc(sc, 0);
    765 		}
    766 		if (status & HAL_INT_RXEOL) {
    767 			/*
    768 			 * NB: the hardware should re-read the link when
    769 			 *     RXE bit is written, but it doesn't work at
    770 			 *     least on older hardware revs.
    771 			 */
    772 			sc->sc_stats.ast_rxeol++;
    773 			sc->sc_rxlink = NULL;
    774 		}
    775 		if (status & HAL_INT_TXURN) {
    776 			sc->sc_stats.ast_txurn++;
    777 			/* bump tx trigger level */
    778 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
    779 		}
    780 		if (status & HAL_INT_RX)
    781 			TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
    782 		if (status & HAL_INT_TX)
    783 			TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
    784 		if (status & HAL_INT_BMISS) {
    785 			sc->sc_stats.ast_bmiss++;
    786 			TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
    787 		}
    788 		if (status & HAL_INT_MIB) {
    789 			sc->sc_stats.ast_mib++;
    790 			/*
    791 			 * Disable interrupts until we service the MIB
    792 			 * interrupt; otherwise it will continue to fire.
    793 			 */
    794 			ath_hal_intrset(ah, 0);
    795 			/*
    796 			 * Let the hal handle the event.  We assume it will
    797 			 * clear whatever condition caused the interrupt.
    798 			 */
    799 			ath_hal_mibevent(ah, &sc->sc_halstats);
    800 			ath_hal_intrset(ah, sc->sc_imask);
    801 		}
    802 	}
    803 	return 1;
    804 }
    805 
    806 /* Swap transmit descriptor.
    807  * if AH_NEED_DESC_SWAP flag is not defined this becomes a "null"
    808  * function.
    809  */
    810 static inline void
    811 ath_desc_swap(struct ath_desc *ds)
    812 {
    813 #ifdef AH_NEED_DESC_SWAP
    814 	ds->ds_link = htole32(ds->ds_link);
    815 	ds->ds_data = htole32(ds->ds_data);
    816 	ds->ds_ctl0 = htole32(ds->ds_ctl0);
    817 	ds->ds_ctl1 = htole32(ds->ds_ctl1);
    818 	ds->ds_hw[0] = htole32(ds->ds_hw[0]);
    819 	ds->ds_hw[1] = htole32(ds->ds_hw[1]);
    820 #endif
    821 }
    822 
    823 static void
    824 ath_fatal_proc(void *arg, int pending)
    825 {
    826 	struct ath_softc *sc = arg;
    827 	struct ifnet *ifp = &sc->sc_if;
    828 
    829 	if_printf(ifp, "hardware error; resetting\n");
    830 	ath_reset(ifp);
    831 }
    832 
    833 static void
    834 ath_rxorn_proc(void *arg, int pending)
    835 {
    836 	struct ath_softc *sc = arg;
    837 	struct ifnet *ifp = &sc->sc_if;
    838 
    839 	if_printf(ifp, "rx FIFO overrun; resetting\n");
    840 	ath_reset(ifp);
    841 }
    842 
    843 static void
    844 ath_bmiss_proc(void *arg, int pending)
    845 {
    846 	struct ath_softc *sc = arg;
    847 	struct ieee80211com *ic = &sc->sc_ic;
    848 
    849 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
    850 	KASSERT(ic->ic_opmode == IEEE80211_M_STA,
    851 		("unexpect operating mode %u", ic->ic_opmode));
    852 	if (ic->ic_state == IEEE80211_S_RUN) {
    853 		u_int64_t lastrx = sc->sc_lastrx;
    854 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
    855 
    856 		DPRINTF(sc, ATH_DEBUG_BEACON,
    857 		    "%s: tsf %" PRIu64 " lastrx %" PRId64
    858 		    " (%" PRIu64 ") bmiss %u\n",
    859 		    __func__, tsf, tsf - lastrx, lastrx,
    860 		    ic->ic_bmisstimeout*1024);
    861 		/*
    862 		 * Workaround phantom bmiss interrupts by sanity-checking
    863 		 * the time of our last rx'd frame.  If it is within the
    864 		 * beacon miss interval then ignore the interrupt.  If it's
    865 		 * truly a bmiss we'll get another interrupt soon and that'll
    866 		 * be dispatched up for processing.
    867 		 */
    868 		if (tsf - lastrx > ic->ic_bmisstimeout*1024) {
    869 			NET_LOCK_GIANT();
    870 			ieee80211_beacon_miss(ic);
    871 			NET_UNLOCK_GIANT();
    872 		} else
    873 			sc->sc_stats.ast_bmiss_phantom++;
    874 	}
    875 }
    876 
    877 static void
    878 ath_radar_proc(void *arg, int pending)
    879 {
    880 	struct ath_softc *sc = arg;
    881 	struct ifnet *ifp = &sc->sc_if;
    882 	struct ath_hal *ah = sc->sc_ah;
    883 	HAL_CHANNEL hchan;
    884 
    885 	if (ath_hal_procdfs(ah, &hchan)) {
    886 		if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n",
    887 			hchan.channel, hchan.channelFlags, hchan.privFlags);
    888 		/*
    889 		 * Initiate channel change.
    890 		 */
    891 		/* XXX not yet */
    892 	}
    893 }
    894 
    895 static u_int
    896 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
    897 {
    898 #define	N(a)	(sizeof(a) / sizeof(a[0]))
    899 	static const u_int modeflags[] = {
    900 		0,			/* IEEE80211_MODE_AUTO */
    901 		CHANNEL_A,		/* IEEE80211_MODE_11A */
    902 		CHANNEL_B,		/* IEEE80211_MODE_11B */
    903 		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
    904 		0,			/* IEEE80211_MODE_FH */
    905 		CHANNEL_ST,		/* IEEE80211_MODE_TURBO_A */
    906 		CHANNEL_108G		/* IEEE80211_MODE_TURBO_G */
    907 	};
    908 	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
    909 
    910 	KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
    911 	KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
    912 	return modeflags[mode];
    913 #undef N
    914 }
    915 
    916 static int
    917 ath_ifinit(struct ifnet *ifp)
    918 {
    919 	struct ath_softc *sc = (struct ath_softc *)ifp->if_softc;
    920 
    921 	return ath_init(sc);
    922 }
    923 
    924 static int
    925 ath_init(struct ath_softc *sc)
    926 {
    927 	struct ifnet *ifp = &sc->sc_if;
    928 	struct ieee80211com *ic = &sc->sc_ic;
    929 	struct ath_hal *ah = sc->sc_ah;
    930 	HAL_STATUS status;
    931 	int error = 0;
    932 
    933 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
    934 		__func__, ifp->if_flags);
    935 
    936 	if (device_is_active(&sc->sc_dev)) {
    937 		ATH_LOCK(sc);
    938 	} else if (!pmf_device_resume_self(&sc->sc_dev))
    939 		return ENXIO;
    940 	else
    941 		ATH_LOCK(sc);
    942 
    943 	/*
    944 	 * Stop anything previously setup.  This is safe
    945 	 * whether this is the first time through or not.
    946 	 */
    947 	ath_stop_locked(ifp, 0);
    948 
    949 	/*
    950 	 * The basic interface to setting the hardware in a good
    951 	 * state is ``reset''.  On return the hardware is known to
    952 	 * be powered up and with interrupts disabled.  This must
    953 	 * be followed by initialization of the appropriate bits
    954 	 * and then setup of the interrupt mask.
    955 	 */
    956 	sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
    957 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
    958 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
    959 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
    960 			status);
    961 		error = EIO;
    962 		goto done;
    963 	}
    964 
    965 	/*
    966 	 * This is needed only to setup initial state
    967 	 * but it's best done after a reset.
    968 	 */
    969 	ath_update_txpow(sc);
    970 	/*
    971 	 * Likewise this is set during reset so update
    972 	 * state cached in the driver.
    973 	 */
    974 	ath_restore_diversity(sc);
    975 	sc->sc_calinterval = 1;
    976 	sc->sc_caltries = 0;
    977 
    978 	/*
    979 	 * Setup the hardware after reset: the key cache
    980 	 * is filled as needed and the receive engine is
    981 	 * set going.  Frame transmit is handled entirely
    982 	 * in the frame output path; there's nothing to do
    983 	 * here except setup the interrupt mask.
    984 	 */
    985 	if ((error = ath_startrecv(sc)) != 0) {
    986 		if_printf(ifp, "unable to start recv logic\n");
    987 		goto done;
    988 	}
    989 
    990 	/*
    991 	 * Enable interrupts.
    992 	 */
    993 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
    994 		  | HAL_INT_RXEOL | HAL_INT_RXORN
    995 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
    996 	/*
    997 	 * Enable MIB interrupts when there are hardware phy counters.
    998 	 * Note we only do this (at the moment) for station mode.
    999 	 */
   1000 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
   1001 		sc->sc_imask |= HAL_INT_MIB;
   1002 	ath_hal_intrset(ah, sc->sc_imask);
   1003 
   1004 	ifp->if_flags |= IFF_RUNNING;
   1005 	ic->ic_state = IEEE80211_S_INIT;
   1006 
   1007 	/*
   1008 	 * The hardware should be ready to go now so it's safe
   1009 	 * to kick the 802.11 state machine as it's likely to
   1010 	 * immediately call back to us to send mgmt frames.
   1011 	 */
   1012 	ath_chan_change(sc, ic->ic_curchan);
   1013 #ifdef ATH_TX99_DIAG
   1014 	if (sc->sc_tx99 != NULL)
   1015 		sc->sc_tx99->start(sc->sc_tx99);
   1016 	else
   1017 #endif
   1018 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   1019 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
   1020 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   1021 	} else
   1022 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   1023 done:
   1024 	ATH_UNLOCK(sc);
   1025 	return error;
   1026 }
   1027 
   1028 static void
   1029 ath_stop_locked(struct ifnet *ifp, int disable)
   1030 {
   1031 	struct ath_softc *sc = ifp->if_softc;
   1032 	struct ieee80211com *ic = &sc->sc_ic;
   1033 	struct ath_hal *ah = sc->sc_ah;
   1034 
   1035 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %d if_flags 0x%x\n",
   1036 		__func__, !device_is_enabled(&sc->sc_dev), ifp->if_flags);
   1037 
   1038 	ATH_LOCK_ASSERT(sc);
   1039 	if (ifp->if_flags & IFF_RUNNING) {
   1040 		/*
   1041 		 * Shutdown the hardware and driver:
   1042 		 *    reset 802.11 state machine
   1043 		 *    turn off timers
   1044 		 *    disable interrupts
   1045 		 *    turn off the radio
   1046 		 *    clear transmit machinery
   1047 		 *    clear receive machinery
   1048 		 *    drain and release tx queues
   1049 		 *    reclaim beacon resources
   1050 		 *    power down hardware
   1051 		 *
   1052 		 * Note that some of this work is not possible if the
   1053 		 * hardware is gone (invalid).
   1054 		 */
   1055 #ifdef ATH_TX99_DIAG
   1056 		if (sc->sc_tx99 != NULL)
   1057 			sc->sc_tx99->stop(sc->sc_tx99);
   1058 #endif
   1059 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   1060 		ifp->if_flags &= ~IFF_RUNNING;
   1061 		ifp->if_timer = 0;
   1062 		if (device_is_enabled(&sc->sc_dev)) {
   1063 			if (sc->sc_softled) {
   1064 				callout_stop(&sc->sc_ledtimer);
   1065 				ath_hal_gpioset(ah, sc->sc_ledpin,
   1066 					!sc->sc_ledon);
   1067 				sc->sc_blinking = 0;
   1068 			}
   1069 			ath_hal_intrset(ah, 0);
   1070 		}
   1071 		ath_draintxq(sc);
   1072 		if (device_is_enabled(&sc->sc_dev)) {
   1073 			ath_stoprecv(sc);
   1074 			ath_hal_phydisable(ah);
   1075 		} else
   1076 			sc->sc_rxlink = NULL;
   1077 		IF_PURGE(&ifp->if_snd);
   1078 		ath_beacon_free(sc);
   1079 		if (disable)
   1080 			pmf_device_suspend_self(&sc->sc_dev);
   1081 	}
   1082 }
   1083 
   1084 static void
   1085 ath_stop(struct ifnet *ifp, int disable)
   1086 {
   1087 	struct ath_softc *sc = ifp->if_softc;
   1088 
   1089 	ATH_LOCK(sc);
   1090 	ath_stop_locked(ifp, disable);
   1091 	ATH_UNLOCK(sc);
   1092 }
   1093 
   1094 static void
   1095 ath_restore_diversity(struct ath_softc *sc)
   1096 {
   1097 	struct ifnet *ifp = &sc->sc_if;
   1098 	struct ath_hal *ah = sc->sc_ah;
   1099 
   1100 	if (!ath_hal_setdiversity(sc->sc_ah, sc->sc_diversity) ||
   1101 	    sc->sc_diversity != ath_hal_getdiversity(ah)) {
   1102 		if_printf(ifp, "could not restore diversity setting %d\n",
   1103 		    sc->sc_diversity);
   1104 		sc->sc_diversity = ath_hal_getdiversity(ah);
   1105 	}
   1106 }
   1107 
   1108 /*
   1109  * Reset the hardware w/o losing operational state.  This is
   1110  * basically a more efficient way of doing ath_stop, ath_init,
   1111  * followed by state transitions to the current 802.11
   1112  * operational state.  Used to recover from various errors and
   1113  * to reset or reload hardware state.
   1114  */
   1115 int
   1116 ath_reset(struct ifnet *ifp)
   1117 {
   1118 	struct ath_softc *sc = ifp->if_softc;
   1119 	struct ieee80211com *ic = &sc->sc_ic;
   1120 	struct ath_hal *ah = sc->sc_ah;
   1121 	struct ieee80211_channel *c;
   1122 	HAL_STATUS status;
   1123 
   1124 	/*
   1125 	 * Convert to a HAL channel description with the flags
   1126 	 * constrained to reflect the current operating mode.
   1127 	 */
   1128 	c = ic->ic_curchan;
   1129 	sc->sc_curchan.channel = c->ic_freq;
   1130 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
   1131 
   1132 	ath_hal_intrset(ah, 0);		/* disable interrupts */
   1133 	ath_draintxq(sc);		/* stop xmit side */
   1134 	ath_stoprecv(sc);		/* stop recv side */
   1135 	/* NB: indicate channel change so we do a full reset */
   1136 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
   1137 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
   1138 			__func__, status);
   1139 	ath_update_txpow(sc);		/* update tx power state */
   1140 	ath_restore_diversity(sc);
   1141 	sc->sc_calinterval = 1;
   1142 	sc->sc_caltries = 0;
   1143 	if (ath_startrecv(sc) != 0)	/* restart recv */
   1144 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
   1145 	/*
   1146 	 * We may be doing a reset in response to an ioctl
   1147 	 * that changes the channel so update any state that
   1148 	 * might change as a result.
   1149 	 */
   1150 	ath_chan_change(sc, c);
   1151 	if (ic->ic_state == IEEE80211_S_RUN)
   1152 		ath_beacon_config(sc);	/* restart beacons */
   1153 	ath_hal_intrset(ah, sc->sc_imask);
   1154 
   1155 	ath_start(ifp);			/* restart xmit */
   1156 	return 0;
   1157 }
   1158 
   1159 /*
   1160  * Cleanup driver resources when we run out of buffers
   1161  * while processing fragments; return the tx buffers
   1162  * allocated and drop node references.
   1163  */
   1164 static void
   1165 ath_txfrag_cleanup(struct ath_softc *sc,
   1166 	ath_bufhead *frags, struct ieee80211_node *ni)
   1167 {
   1168 	struct ath_buf *bf;
   1169 
   1170 	ATH_TXBUF_LOCK_ASSERT(sc);
   1171 
   1172 	while ((bf = STAILQ_FIRST(frags)) != NULL) {
   1173 		STAILQ_REMOVE_HEAD(frags, bf_list);
   1174 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1175 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
   1176 		ieee80211_node_decref(ni);
   1177 	}
   1178 }
   1179 
   1180 /*
   1181  * Setup xmit of a fragmented frame.  Allocate a buffer
   1182  * for each frag and bump the node reference count to
   1183  * reflect the held reference to be setup by ath_tx_start.
   1184  */
   1185 static int
   1186 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
   1187 	struct mbuf *m0, struct ieee80211_node *ni)
   1188 {
   1189 	struct mbuf *m;
   1190 	struct ath_buf *bf;
   1191 
   1192 	ATH_TXBUF_LOCK(sc);
   1193 	for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
   1194 		bf = STAILQ_FIRST(&sc->sc_txbuf);
   1195 		if (bf == NULL) {       /* out of buffers, cleanup */
   1196 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
   1197 				__func__);
   1198 			sc->sc_if.if_flags |= IFF_OACTIVE;
   1199 			ath_txfrag_cleanup(sc, frags, ni);
   1200 			break;
   1201 		}
   1202 		STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
   1203 		ieee80211_node_incref(ni);
   1204 		STAILQ_INSERT_TAIL(frags, bf, bf_list);
   1205 	}
   1206 	ATH_TXBUF_UNLOCK(sc);
   1207 
   1208 	return !STAILQ_EMPTY(frags);
   1209 }
   1210 
   1211 static void
   1212 ath_start(struct ifnet *ifp)
   1213 {
   1214 	struct ath_softc *sc = ifp->if_softc;
   1215 	struct ath_hal *ah = sc->sc_ah;
   1216 	struct ieee80211com *ic = &sc->sc_ic;
   1217 	struct ieee80211_node *ni;
   1218 	struct ath_buf *bf;
   1219 	struct mbuf *m, *next;
   1220 	struct ieee80211_frame *wh;
   1221 	struct ether_header *eh;
   1222 	ath_bufhead frags;
   1223 
   1224 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
   1225 	    !device_is_active(&sc->sc_dev))
   1226 		return;
   1227 	for (;;) {
   1228 		/*
   1229 		 * Grab a TX buffer and associated resources.
   1230 		 */
   1231 		ATH_TXBUF_LOCK(sc);
   1232 		bf = STAILQ_FIRST(&sc->sc_txbuf);
   1233 		if (bf != NULL)
   1234 			STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
   1235 		ATH_TXBUF_UNLOCK(sc);
   1236 		if (bf == NULL) {
   1237 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
   1238 				__func__);
   1239 			sc->sc_stats.ast_tx_qstop++;
   1240 			ifp->if_flags |= IFF_OACTIVE;
   1241 			break;
   1242 		}
   1243 		/*
   1244 		 * Poll the management queue for frames; they
   1245 		 * have priority over normal data frames.
   1246 		 */
   1247 		IF_DEQUEUE(&ic->ic_mgtq, m);
   1248 		if (m == NULL) {
   1249 			/*
   1250 			 * No data frames go out unless we're associated.
   1251 			 */
   1252 			if (ic->ic_state != IEEE80211_S_RUN) {
   1253 				DPRINTF(sc, ATH_DEBUG_XMIT,
   1254 				    "%s: discard data packet, state %s\n",
   1255 				    __func__,
   1256 				    ieee80211_state_name[ic->ic_state]);
   1257 				sc->sc_stats.ast_tx_discard++;
   1258 				ATH_TXBUF_LOCK(sc);
   1259 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1260 				ATH_TXBUF_UNLOCK(sc);
   1261 				break;
   1262 			}
   1263 			IFQ_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
   1264 			if (m == NULL) {
   1265 				ATH_TXBUF_LOCK(sc);
   1266 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1267 				ATH_TXBUF_UNLOCK(sc);
   1268 				break;
   1269 			}
   1270 			STAILQ_INIT(&frags);
   1271 			/*
   1272 			 * Find the node for the destination so we can do
   1273 			 * things like power save and fast frames aggregation.
   1274 			 */
   1275 			if (m->m_len < sizeof(struct ether_header) &&
   1276 			   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
   1277 				ic->ic_stats.is_tx_nobuf++;	/* XXX */
   1278 				ni = NULL;
   1279 				goto bad;
   1280 			}
   1281 			eh = mtod(m, struct ether_header *);
   1282 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   1283 			if (ni == NULL) {
   1284 				/* NB: ieee80211_find_txnode does stat+msg */
   1285 				m_freem(m);
   1286 				goto bad;
   1287 			}
   1288 			if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
   1289 			    (m->m_flags & M_PWR_SAV) == 0) {
   1290 				/*
   1291 				 * Station in power save mode; pass the frame
   1292 				 * to the 802.11 layer and continue.  We'll get
   1293 				 * the frame back when the time is right.
   1294 				 */
   1295 				ieee80211_pwrsave(ic, ni, m);
   1296 				goto reclaim;
   1297 			}
   1298 			/* calculate priority so we can find the tx queue */
   1299 			if (ieee80211_classify(ic, m, ni)) {
   1300 				DPRINTF(sc, ATH_DEBUG_XMIT,
   1301 					"%s: discard, classification failure\n",
   1302 					__func__);
   1303 				m_freem(m);
   1304 				goto bad;
   1305 			}
   1306 			ifp->if_opackets++;
   1307 
   1308 #if NBPFILTER > 0
   1309 			if (ifp->if_bpf)
   1310 				bpf_mtap(ifp->if_bpf, m);
   1311 #endif
   1312 			/*
   1313 			 * Encapsulate the packet in prep for transmission.
   1314 			 */
   1315 			m = ieee80211_encap(ic, m, ni);
   1316 			if (m == NULL) {
   1317 				DPRINTF(sc, ATH_DEBUG_XMIT,
   1318 					"%s: encapsulation failure\n",
   1319 					__func__);
   1320 				sc->sc_stats.ast_tx_encap++;
   1321 				goto bad;
   1322 			}
   1323 			/*
   1324 			 * Check for fragmentation.  If this has frame
   1325 			 * has been broken up verify we have enough
   1326 			 * buffers to send all the fragments so all
   1327 			 * go out or none...
   1328 			 */
   1329 			if ((m->m_flags & M_FRAG) &&
   1330 			    !ath_txfrag_setup(sc, &frags, m, ni)) {
   1331 				DPRINTF(sc, ATH_DEBUG_ANY,
   1332 				    "%s: out of txfrag buffers\n", __func__);
   1333 				ic->ic_stats.is_tx_nobuf++;     /* XXX */
   1334 				ath_freetx(m);
   1335 				goto bad;
   1336 			}
   1337 		} else {
   1338 			/*
   1339 			 * Hack!  The referenced node pointer is in the
   1340 			 * rcvif field of the packet header.  This is
   1341 			 * placed there by ieee80211_mgmt_output because
   1342 			 * we need to hold the reference with the frame
   1343 			 * and there's no other way (other than packet
   1344 			 * tags which we consider too expensive to use)
   1345 			 * to pass it along.
   1346 			 */
   1347 			ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
   1348 			m->m_pkthdr.rcvif = NULL;
   1349 
   1350 			wh = mtod(m, struct ieee80211_frame *);
   1351 			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
   1352 			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
   1353 				/* fill time stamp */
   1354 				u_int64_t tsf;
   1355 				u_int32_t *tstamp;
   1356 
   1357 				tsf = ath_hal_gettsf64(ah);
   1358 				/* XXX: adjust 100us delay to xmit */
   1359 				tsf += 100;
   1360 				tstamp = (u_int32_t *)&wh[1];
   1361 				tstamp[0] = htole32(tsf & 0xffffffff);
   1362 				tstamp[1] = htole32(tsf >> 32);
   1363 			}
   1364 			sc->sc_stats.ast_tx_mgmt++;
   1365 		}
   1366 
   1367 	nextfrag:
   1368 		next = m->m_nextpkt;
   1369 		if (ath_tx_start(sc, ni, bf, m)) {
   1370 	bad:
   1371 			ifp->if_oerrors++;
   1372 	reclaim:
   1373 			ATH_TXBUF_LOCK(sc);
   1374 			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1375 			ath_txfrag_cleanup(sc, &frags, ni);
   1376 			ATH_TXBUF_UNLOCK(sc);
   1377 			if (ni != NULL)
   1378 				ieee80211_free_node(ni);
   1379 			continue;
   1380 		}
   1381 		if (next != NULL) {
   1382 			m = next;
   1383 			bf = STAILQ_FIRST(&frags);
   1384 			KASSERT(bf != NULL, ("no buf for txfrag"));
   1385 			STAILQ_REMOVE_HEAD(&frags, bf_list);
   1386 			goto nextfrag;
   1387 		}
   1388 
   1389 		ifp->if_timer = 1;
   1390 	}
   1391 }
   1392 
   1393 static int
   1394 ath_media_change(struct ifnet *ifp)
   1395 {
   1396 #define	IS_UP(ifp) \
   1397 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
   1398 	int error;
   1399 
   1400 	error = ieee80211_media_change(ifp);
   1401 	if (error == ENETRESET) {
   1402 		if (IS_UP(ifp))
   1403 			ath_init(ifp->if_softc);	/* XXX lose error */
   1404 		error = 0;
   1405 	}
   1406 	return error;
   1407 #undef IS_UP
   1408 }
   1409 
   1410 #ifdef AR_DEBUG
   1411 static void
   1412 ath_keyprint(const char *tag, u_int ix,
   1413 	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
   1414 {
   1415 	static const char *ciphers[] = {
   1416 		"WEP",
   1417 		"AES-OCB",
   1418 		"AES-CCM",
   1419 		"CKIP",
   1420 		"TKIP",
   1421 		"CLR",
   1422 	};
   1423 	int i, n;
   1424 
   1425 	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
   1426 	for (i = 0, n = hk->kv_len; i < n; i++)
   1427 		printf("%02x", hk->kv_val[i]);
   1428 	printf(" mac %s", ether_sprintf(mac));
   1429 	if (hk->kv_type == HAL_CIPHER_TKIP) {
   1430 		printf(" mic ");
   1431 		for (i = 0; i < sizeof(hk->kv_mic); i++)
   1432 			printf("%02x", hk->kv_mic[i]);
   1433 	}
   1434 	printf("\n");
   1435 }
   1436 #endif
   1437 
   1438 /*
   1439  * Set a TKIP key into the hardware.  This handles the
   1440  * potential distribution of key state to multiple key
   1441  * cache slots for TKIP.
   1442  */
   1443 static int
   1444 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
   1445 	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
   1446 {
   1447 #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
   1448 	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
   1449 	struct ath_hal *ah = sc->sc_ah;
   1450 
   1451 	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
   1452 		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
   1453 	KASSERT(sc->sc_splitmic, ("key cache !split"));
   1454 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
   1455 		/*
   1456 		 * TX key goes at first index, RX key at the rx index.
   1457 		 * The hal handles the MIC keys at index+64.
   1458 		 */
   1459 		memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
   1460 		KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
   1461 		if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
   1462 			return 0;
   1463 
   1464 		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
   1465 		KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
   1466 		/* XXX delete tx key on failure? */
   1467 		return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
   1468 	} else if (k->wk_flags & IEEE80211_KEY_XR) {
   1469 		/*
   1470 		 * TX/RX key goes at first index.
   1471 		 * The hal handles the MIC keys are index+64.
   1472 		 */
   1473 		memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
   1474 			k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
   1475 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
   1476 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
   1477 	}
   1478 	return 0;
   1479 #undef IEEE80211_KEY_XR
   1480 }
   1481 
   1482 /*
   1483  * Set a net80211 key into the hardware.  This handles the
   1484  * potential distribution of key state to multiple key
   1485  * cache slots for TKIP with hardware MIC support.
   1486  */
   1487 static int
   1488 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
   1489 	const u_int8_t mac0[IEEE80211_ADDR_LEN],
   1490 	struct ieee80211_node *bss)
   1491 {
   1492 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1493 	static const u_int8_t ciphermap[] = {
   1494 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
   1495 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
   1496 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
   1497 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
   1498 		(u_int8_t) -1,		/* 4 is not allocated */
   1499 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
   1500 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
   1501 	};
   1502 	struct ath_hal *ah = sc->sc_ah;
   1503 	const struct ieee80211_cipher *cip = k->wk_cipher;
   1504 	u_int8_t gmac[IEEE80211_ADDR_LEN];
   1505 	const u_int8_t *mac;
   1506 	HAL_KEYVAL hk;
   1507 
   1508 	memset(&hk, 0, sizeof(hk));
   1509 	/*
   1510 	 * Software crypto uses a "clear key" so non-crypto
   1511 	 * state kept in the key cache are maintained and
   1512 	 * so that rx frames have an entry to match.
   1513 	 */
   1514 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
   1515 		KASSERT(cip->ic_cipher < N(ciphermap),
   1516 			("invalid cipher type %u", cip->ic_cipher));
   1517 		hk.kv_type = ciphermap[cip->ic_cipher];
   1518 		hk.kv_len = k->wk_keylen;
   1519 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
   1520 	} else
   1521 		hk.kv_type = HAL_CIPHER_CLR;
   1522 
   1523 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
   1524 		/*
   1525 		 * Group keys on hardware that supports multicast frame
   1526 		 * key search use a mac that is the sender's address with
   1527 		 * the high bit set instead of the app-specified address.
   1528 		 */
   1529 		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
   1530 		gmac[0] |= 0x80;
   1531 		mac = gmac;
   1532 	} else
   1533 		mac = mac0;
   1534 
   1535 	if (hk.kv_type == HAL_CIPHER_TKIP &&
   1536 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
   1537 	    sc->sc_splitmic) {
   1538 		return ath_keyset_tkip(sc, k, &hk, mac);
   1539 	} else {
   1540 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
   1541 		return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
   1542 	}
   1543 #undef N
   1544 }
   1545 
   1546 /*
   1547  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
   1548  * each key, one for decrypt/encrypt and the other for the MIC.
   1549  */
   1550 static u_int16_t
   1551 key_alloc_2pair(struct ath_softc *sc,
   1552 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
   1553 {
   1554 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1555 	u_int i, keyix;
   1556 
   1557 	KASSERT(sc->sc_splitmic, ("key cache !split"));
   1558 	/* XXX could optimize */
   1559 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
   1560 		u_int8_t b = sc->sc_keymap[i];
   1561 		if (b != 0xff) {
   1562 			/*
   1563 			 * One or more slots in this byte are free.
   1564 			 */
   1565 			keyix = i*NBBY;
   1566 			while (b & 1) {
   1567 		again:
   1568 				keyix++;
   1569 				b >>= 1;
   1570 			}
   1571 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
   1572 			if (isset(sc->sc_keymap, keyix+32) ||
   1573 			    isset(sc->sc_keymap, keyix+64) ||
   1574 			    isset(sc->sc_keymap, keyix+32+64)) {
   1575 				/* full pair unavailable */
   1576 				/* XXX statistic */
   1577 				if (keyix == (i+1)*NBBY) {
   1578 					/* no slots were appropriate, advance */
   1579 					continue;
   1580 				}
   1581 				goto again;
   1582 			}
   1583 			setbit(sc->sc_keymap, keyix);
   1584 			setbit(sc->sc_keymap, keyix+64);
   1585 			setbit(sc->sc_keymap, keyix+32);
   1586 			setbit(sc->sc_keymap, keyix+32+64);
   1587 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
   1588 				"%s: key pair %u,%u %u,%u\n",
   1589 				__func__, keyix, keyix+64,
   1590 				keyix+32, keyix+32+64);
   1591 			*txkeyix = keyix;
   1592 			*rxkeyix = keyix+32;
   1593 			return 1;
   1594 		}
   1595 	}
   1596 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
   1597 	return 0;
   1598 #undef N
   1599 }
   1600 
   1601 /*
   1602  * Allocate a single key cache slot.
   1603  */
   1604 static int
   1605 key_alloc_single(struct ath_softc *sc,
   1606 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
   1607 {
   1608 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1609 	u_int i, keyix;
   1610 
   1611 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
   1612 	for (i = 0; i < N(sc->sc_keymap); i++) {
   1613 		u_int8_t b = sc->sc_keymap[i];
   1614 		if (b != 0xff) {
   1615 			/*
   1616 			 * One or more slots are free.
   1617 			 */
   1618 			keyix = i*NBBY;
   1619 			while (b & 1)
   1620 				keyix++, b >>= 1;
   1621 			setbit(sc->sc_keymap, keyix);
   1622 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
   1623 				__func__, keyix);
   1624 			*txkeyix = *rxkeyix = keyix;
   1625 			return 1;
   1626 		}
   1627 	}
   1628 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
   1629 	return 0;
   1630 #undef N
   1631 }
   1632 
   1633 /*
   1634  * Allocate one or more key cache slots for a uniacst key.  The
   1635  * key itself is needed only to identify the cipher.  For hardware
   1636  * TKIP with split cipher+MIC keys we allocate two key cache slot
   1637  * pairs so that we can setup separate TX and RX MIC keys.  Note
   1638  * that the MIC key for a TKIP key at slot i is assumed by the
   1639  * hardware to be at slot i+64.  This limits TKIP keys to the first
   1640  * 64 entries.
   1641  */
   1642 static int
   1643 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
   1644 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
   1645 {
   1646 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1647 
   1648 	/*
   1649 	 * Group key allocation must be handled specially for
   1650 	 * parts that do not support multicast key cache search
   1651 	 * functionality.  For those parts the key id must match
   1652 	 * the h/w key index so lookups find the right key.  On
   1653 	 * parts w/ the key search facility we install the sender's
   1654 	 * mac address (with the high bit set) and let the hardware
   1655 	 * find the key w/o using the key id.  This is preferred as
   1656 	 * it permits us to support multiple users for adhoc and/or
   1657 	 * multi-station operation.
   1658 	 */
   1659 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
   1660 		if (!(&ic->ic_nw_keys[0] <= k &&
   1661 		      k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
   1662 			/* should not happen */
   1663 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
   1664 				"%s: bogus group key\n", __func__);
   1665 			return 0;
   1666 		}
   1667 		/*
   1668 		 * XXX we pre-allocate the global keys so
   1669 		 * have no way to check if they've already been allocated.
   1670 		 */
   1671 		*keyix = *rxkeyix = k - ic->ic_nw_keys;
   1672 		return 1;
   1673 	}
   1674 
   1675 	/*
   1676 	 * We allocate two pair for TKIP when using the h/w to do
   1677 	 * the MIC.  For everything else, including software crypto,
   1678 	 * we allocate a single entry.  Note that s/w crypto requires
   1679 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
   1680 	 * not support pass-through cache entries and we map all
   1681 	 * those requests to slot 0.
   1682 	 */
   1683 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
   1684 		return key_alloc_single(sc, keyix, rxkeyix);
   1685 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1686 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
   1687 		return key_alloc_2pair(sc, keyix, rxkeyix);
   1688 	} else {
   1689 		return key_alloc_single(sc, keyix, rxkeyix);
   1690 	}
   1691 }
   1692 
   1693 /*
   1694  * Delete an entry in the key cache allocated by ath_key_alloc.
   1695  */
   1696 static int
   1697 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
   1698 {
   1699 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1700 	struct ath_hal *ah = sc->sc_ah;
   1701 	const struct ieee80211_cipher *cip = k->wk_cipher;
   1702 	u_int keyix = k->wk_keyix;
   1703 
   1704 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
   1705 
   1706 	if (!device_has_power(&sc->sc_dev)) {
   1707 		aprint_error_dev(&sc->sc_dev, "deleting keyix %d w/o power\n",
   1708 		    k->wk_keyix);
   1709 	}
   1710 
   1711 	ath_hal_keyreset(ah, keyix);
   1712 	/*
   1713 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
   1714 	 */
   1715 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1716 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
   1717 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
   1718 	if (keyix >= IEEE80211_WEP_NKID) {
   1719 		/*
   1720 		 * Don't touch keymap entries for global keys so
   1721 		 * they are never considered for dynamic allocation.
   1722 		 */
   1723 		clrbit(sc->sc_keymap, keyix);
   1724 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1725 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
   1726 		    sc->sc_splitmic) {
   1727 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
   1728 			clrbit(sc->sc_keymap, keyix+32);	/* RX key */
   1729 			clrbit(sc->sc_keymap, keyix+32+64);	/* RX key MIC */
   1730 		}
   1731 	}
   1732 	return 1;
   1733 }
   1734 
   1735 /*
   1736  * Set the key cache contents for the specified key.  Key cache
   1737  * slot(s) must already have been allocated by ath_key_alloc.
   1738  */
   1739 static int
   1740 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
   1741 	const u_int8_t mac[IEEE80211_ADDR_LEN])
   1742 {
   1743 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1744 
   1745 	if (!device_has_power(&sc->sc_dev)) {
   1746 		aprint_error_dev(&sc->sc_dev, "setting keyix %d w/o power\n",
   1747 		    k->wk_keyix);
   1748 	}
   1749 	return ath_keyset(sc, k, mac, ic->ic_bss);
   1750 }
   1751 
   1752 /*
   1753  * Block/unblock tx+rx processing while a key change is done.
   1754  * We assume the caller serializes key management operations
   1755  * so we only need to worry about synchronization with other
   1756  * uses that originate in the driver.
   1757  */
   1758 static void
   1759 ath_key_update_begin(struct ieee80211com *ic)
   1760 {
   1761 	struct ifnet *ifp = ic->ic_ifp;
   1762 	struct ath_softc *sc = ifp->if_softc;
   1763 
   1764 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
   1765 #if 0
   1766 	tasklet_disable(&sc->sc_rxtq);
   1767 #endif
   1768 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
   1769 }
   1770 
   1771 static void
   1772 ath_key_update_end(struct ieee80211com *ic)
   1773 {
   1774 	struct ifnet *ifp = ic->ic_ifp;
   1775 	struct ath_softc *sc = ifp->if_softc;
   1776 
   1777 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
   1778 	IF_UNLOCK(&ifp->if_snd);
   1779 #if 0
   1780 	tasklet_enable(&sc->sc_rxtq);
   1781 #endif
   1782 }
   1783 
   1784 /*
   1785  * Calculate the receive filter according to the
   1786  * operating mode and state:
   1787  *
   1788  * o always accept unicast, broadcast, and multicast traffic
   1789  * o maintain current state of phy error reception (the hal
   1790  *   may enable phy error frames for noise immunity work)
   1791  * o probe request frames are accepted only when operating in
   1792  *   hostap, adhoc, or monitor modes
   1793  * o enable promiscuous mode according to the interface state
   1794  * o accept beacons:
   1795  *   - when operating in adhoc mode so the 802.11 layer creates
   1796  *     node table entries for peers,
   1797  *   - when operating in station mode for collecting rssi data when
   1798  *     the station is otherwise quiet, or
   1799  *   - when scanning
   1800  */
   1801 static u_int32_t
   1802 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
   1803 {
   1804 	struct ieee80211com *ic = &sc->sc_ic;
   1805 	struct ath_hal *ah = sc->sc_ah;
   1806 	struct ifnet *ifp = &sc->sc_if;
   1807 	u_int32_t rfilt;
   1808 
   1809 	rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
   1810 	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
   1811 	if (ic->ic_opmode != IEEE80211_M_STA)
   1812 		rfilt |= HAL_RX_FILTER_PROBEREQ;
   1813 	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
   1814 	    (ifp->if_flags & IFF_PROMISC))
   1815 		rfilt |= HAL_RX_FILTER_PROM;
   1816 	if (ic->ic_opmode == IEEE80211_M_STA ||
   1817 	    ic->ic_opmode == IEEE80211_M_IBSS ||
   1818 	    state == IEEE80211_S_SCAN)
   1819 		rfilt |= HAL_RX_FILTER_BEACON;
   1820 	return rfilt;
   1821 }
   1822 
   1823 static void
   1824 ath_mode_init(struct ath_softc *sc)
   1825 {
   1826 	struct ifnet *ifp = &sc->sc_if;
   1827 	struct ieee80211com *ic = &sc->sc_ic;
   1828 	struct ath_hal *ah = sc->sc_ah;
   1829 	struct ether_multi *enm;
   1830 	struct ether_multistep estep;
   1831 	u_int32_t rfilt, mfilt[2], val;
   1832 	int i;
   1833 	uint8_t pos;
   1834 
   1835 	/* configure rx filter */
   1836 	rfilt = ath_calcrxfilter(sc, ic->ic_state);
   1837 	ath_hal_setrxfilter(ah, rfilt);
   1838 
   1839 	/* configure operational mode */
   1840 	ath_hal_setopmode(ah);
   1841 
   1842 	/* Write keys to hardware; it may have been powered down. */
   1843 	ath_key_update_begin(ic);
   1844 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
   1845 		ath_key_set(ic,
   1846 			    &ic->ic_crypto.cs_nw_keys[i],
   1847 			    ic->ic_myaddr);
   1848 	}
   1849 	ath_key_update_end(ic);
   1850 
   1851 	/*
   1852 	 * Handle any link-level address change.  Note that we only
   1853 	 * need to force ic_myaddr; any other addresses are handled
   1854 	 * as a byproduct of the ifnet code marking the interface
   1855 	 * down then up.
   1856 	 *
   1857 	 * XXX should get from lladdr instead of arpcom but that's more work
   1858 	 */
   1859 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(sc->sc_if.if_sadl));
   1860 	ath_hal_setmac(ah, ic->ic_myaddr);
   1861 
   1862 	/* calculate and install multicast filter */
   1863 	ifp->if_flags &= ~IFF_ALLMULTI;
   1864 	mfilt[0] = mfilt[1] = 0;
   1865 	ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
   1866 	while (enm != NULL) {
   1867 		void *dl;
   1868 		/* XXX Punt on ranges. */
   1869 		if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
   1870 			mfilt[0] = mfilt[1] = 0xffffffff;
   1871 			ifp->if_flags |= IFF_ALLMULTI;
   1872 			break;
   1873 		}
   1874 		dl = enm->enm_addrlo;
   1875 		val = LE_READ_4((char *)dl + 0);
   1876 		pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1877 		val = LE_READ_4((char *)dl + 3);
   1878 		pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1879 		pos &= 0x3f;
   1880 		mfilt[pos / 32] |= (1 << (pos % 32));
   1881 
   1882 		ETHER_NEXT_MULTI(estep, enm);
   1883 	}
   1884 
   1885 	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
   1886 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
   1887 		__func__, rfilt, mfilt[0], mfilt[1]);
   1888 }
   1889 
   1890 /*
   1891  * Set the slot time based on the current setting.
   1892  */
   1893 static void
   1894 ath_setslottime(struct ath_softc *sc)
   1895 {
   1896 	struct ieee80211com *ic = &sc->sc_ic;
   1897 	struct ath_hal *ah = sc->sc_ah;
   1898 
   1899 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   1900 		ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
   1901 	else
   1902 		ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
   1903 	sc->sc_updateslot = OK;
   1904 }
   1905 
   1906 /*
   1907  * Callback from the 802.11 layer to update the
   1908  * slot time based on the current setting.
   1909  */
   1910 static void
   1911 ath_updateslot(struct ifnet *ifp)
   1912 {
   1913 	struct ath_softc *sc = ifp->if_softc;
   1914 	struct ieee80211com *ic = &sc->sc_ic;
   1915 
   1916 	/*
   1917 	 * When not coordinating the BSS, change the hardware
   1918 	 * immediately.  For other operation we defer the change
   1919 	 * until beacon updates have propagated to the stations.
   1920 	 */
   1921 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
   1922 		sc->sc_updateslot = UPDATE;
   1923 	else
   1924 		ath_setslottime(sc);
   1925 }
   1926 
   1927 /*
   1928  * Setup a h/w transmit queue for beacons.
   1929  */
   1930 static int
   1931 ath_beaconq_setup(struct ath_hal *ah)
   1932 {
   1933 	HAL_TXQ_INFO qi;
   1934 
   1935 	memset(&qi, 0, sizeof(qi));
   1936 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
   1937 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
   1938 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
   1939 	/* NB: for dynamic turbo, don't enable any other interrupts */
   1940 	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
   1941 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
   1942 }
   1943 
   1944 /*
   1945  * Setup the transmit queue parameters for the beacon queue.
   1946  */
   1947 static int
   1948 ath_beaconq_config(struct ath_softc *sc)
   1949 {
   1950 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
   1951 	struct ieee80211com *ic = &sc->sc_ic;
   1952 	struct ath_hal *ah = sc->sc_ah;
   1953 	HAL_TXQ_INFO qi;
   1954 
   1955 	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
   1956 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   1957 		/*
   1958 		 * Always burst out beacon and CAB traffic.
   1959 		 */
   1960 		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
   1961 		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
   1962 		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
   1963 	} else {
   1964 		struct wmeParams *wmep =
   1965 			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
   1966 		/*
   1967 		 * Adhoc mode; important thing is to use 2x cwmin.
   1968 		 */
   1969 		qi.tqi_aifs = wmep->wmep_aifsn;
   1970 		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
   1971 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
   1972 	}
   1973 
   1974 	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
   1975 		device_printf(&sc->sc_dev, "unable to update parameters for "
   1976 			"beacon hardware queue!\n");
   1977 		return 0;
   1978 	} else {
   1979 		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
   1980 		return 1;
   1981 	}
   1982 #undef ATH_EXPONENT_TO_VALUE
   1983 }
   1984 
   1985 /*
   1986  * Allocate and setup an initial beacon frame.
   1987  */
   1988 static int
   1989 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
   1990 {
   1991 	struct ieee80211com *ic = ni->ni_ic;
   1992 	struct ath_buf *bf;
   1993 	struct mbuf *m;
   1994 	int error;
   1995 
   1996 	bf = STAILQ_FIRST(&sc->sc_bbuf);
   1997 	if (bf == NULL) {
   1998 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
   1999 		sc->sc_stats.ast_be_nombuf++;	/* XXX */
   2000 		return ENOMEM;			/* XXX */
   2001 	}
   2002 	/*
   2003 	 * NB: the beacon data buffer must be 32-bit aligned;
   2004 	 * we assume the mbuf routines will return us something
   2005 	 * with this alignment (perhaps should assert).
   2006 	 */
   2007 	m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
   2008 	if (m == NULL) {
   2009 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
   2010 			__func__);
   2011 		sc->sc_stats.ast_be_nombuf++;
   2012 		return ENOMEM;
   2013 	}
   2014 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
   2015 				     BUS_DMA_NOWAIT);
   2016 	if (error == 0) {
   2017 		bf->bf_m = m;
   2018 		bf->bf_node = ieee80211_ref_node(ni);
   2019 	} else {
   2020 		m_freem(m);
   2021 	}
   2022 	return error;
   2023 }
   2024 
   2025 /*
   2026  * Setup the beacon frame for transmit.
   2027  */
   2028 static void
   2029 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
   2030 {
   2031 #define	USE_SHPREAMBLE(_ic) \
   2032 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
   2033 		== IEEE80211_F_SHPREAMBLE)
   2034 	struct ieee80211_node *ni = bf->bf_node;
   2035 	struct ieee80211com *ic = ni->ni_ic;
   2036 	struct mbuf *m = bf->bf_m;
   2037 	struct ath_hal *ah = sc->sc_ah;
   2038 	struct ath_desc *ds;
   2039 	int flags, antenna;
   2040 	const HAL_RATE_TABLE *rt;
   2041 	u_int8_t rix, rate;
   2042 
   2043 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
   2044 		__func__, m, m->m_len);
   2045 
   2046 	/* setup descriptors */
   2047 	ds = bf->bf_desc;
   2048 
   2049 	flags = HAL_TXDESC_NOACK;
   2050 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
   2051 		ds->ds_link = HTOAH32(bf->bf_daddr);	/* self-linked */
   2052 		flags |= HAL_TXDESC_VEOL;
   2053 		/*
   2054 		 * Let hardware handle antenna switching unless
   2055 		 * the user has selected a transmit antenna
   2056 		 * (sc_txantenna is not 0).
   2057 		 */
   2058 		antenna = sc->sc_txantenna;
   2059 	} else {
   2060 		ds->ds_link = 0;
   2061 		/*
   2062 		 * Switch antenna every 4 beacons, unless the user
   2063 		 * has selected a transmit antenna (sc_txantenna
   2064 		 * is not 0).
   2065 		 *
   2066 		 * XXX assumes two antenna
   2067 		 */
   2068 		if (sc->sc_txantenna == 0)
   2069 			antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
   2070 		else
   2071 			antenna = sc->sc_txantenna;
   2072 	}
   2073 
   2074 	KASSERT(bf->bf_nseg == 1,
   2075 		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
   2076 	ds->ds_data = bf->bf_segs[0].ds_addr;
   2077 	/*
   2078 	 * Calculate rate code.
   2079 	 * XXX everything at min xmit rate
   2080 	 */
   2081 	rix = sc->sc_minrateix;
   2082 	rt = sc->sc_currates;
   2083 	rate = rt->info[rix].rateCode;
   2084 	if (USE_SHPREAMBLE(ic))
   2085 		rate |= rt->info[rix].shortPreamble;
   2086 	ath_hal_setuptxdesc(ah, ds
   2087 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
   2088 		, sizeof(struct ieee80211_frame)/* header length */
   2089 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
   2090 		, ni->ni_txpower		/* txpower XXX */
   2091 		, rate, 1			/* series 0 rate/tries */
   2092 		, HAL_TXKEYIX_INVALID		/* no encryption */
   2093 		, antenna			/* antenna mode */
   2094 		, flags				/* no ack, veol for beacons */
   2095 		, 0				/* rts/cts rate */
   2096 		, 0				/* rts/cts duration */
   2097 	);
   2098 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
   2099 	ath_hal_filltxdesc(ah, ds
   2100 		, roundup(m->m_len, 4)		/* buffer length */
   2101 		, AH_TRUE			/* first segment */
   2102 		, AH_TRUE			/* last segment */
   2103 		, ds				/* first descriptor */
   2104 	);
   2105 
   2106 	/* NB: The desc swap function becomes void,
   2107 	 * if descriptor swapping is not enabled
   2108 	 */
   2109 	ath_desc_swap(ds);
   2110 
   2111 #undef USE_SHPREAMBLE
   2112 }
   2113 
   2114 /*
   2115  * Transmit a beacon frame at SWBA.  Dynamic updates to the
   2116  * frame contents are done as needed and the slot time is
   2117  * also adjusted based on current state.
   2118  */
   2119 static void
   2120 ath_beacon_proc(void *arg, int pending)
   2121 {
   2122 	struct ath_softc *sc = arg;
   2123 	struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
   2124 	struct ieee80211_node *ni = bf->bf_node;
   2125 	struct ieee80211com *ic = ni->ni_ic;
   2126 	struct ath_hal *ah = sc->sc_ah;
   2127 	struct mbuf *m;
   2128 	int ncabq, error, otherant;
   2129 
   2130 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
   2131 		__func__, pending);
   2132 
   2133 	if (ic->ic_opmode == IEEE80211_M_STA ||
   2134 	    ic->ic_opmode == IEEE80211_M_MONITOR ||
   2135 	    bf == NULL || bf->bf_m == NULL) {
   2136 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
   2137 			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
   2138 		return;
   2139 	}
   2140 	/*
   2141 	 * Check if the previous beacon has gone out.  If
   2142 	 * not don't try to post another, skip this period
   2143 	 * and wait for the next.  Missed beacons indicate
   2144 	 * a problem and should not occur.  If we miss too
   2145 	 * many consecutive beacons reset the device.
   2146 	 */
   2147 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
   2148 		sc->sc_bmisscount++;
   2149 		DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
   2150 			"%s: missed %u consecutive beacons\n",
   2151 			__func__, sc->sc_bmisscount);
   2152 		if (sc->sc_bmisscount > 3)		/* NB: 3 is a guess */
   2153 			TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask);
   2154 		return;
   2155 	}
   2156 	if (sc->sc_bmisscount != 0) {
   2157 		DPRINTF(sc, ATH_DEBUG_BEACON,
   2158 			"%s: resume beacon xmit after %u misses\n",
   2159 			__func__, sc->sc_bmisscount);
   2160 		sc->sc_bmisscount = 0;
   2161 	}
   2162 
   2163 	/*
   2164 	 * Update dynamic beacon contents.  If this returns
   2165 	 * non-zero then we need to remap the memory because
   2166 	 * the beacon frame changed size (probably because
   2167 	 * of the TIM bitmap).
   2168 	 */
   2169 	m = bf->bf_m;
   2170 	ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
   2171 	if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
   2172 		/* XXX too conservative? */
   2173 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   2174 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
   2175 					     BUS_DMA_NOWAIT);
   2176 		if (error != 0) {
   2177 			if_printf(&sc->sc_if,
   2178 			    "%s: bus_dmamap_load_mbuf failed, error %u\n",
   2179 			    __func__, error);
   2180 			return;
   2181 		}
   2182 	}
   2183 
   2184 	/*
   2185 	 * Handle slot time change when a non-ERP station joins/leaves
   2186 	 * an 11g network.  The 802.11 layer notifies us via callback,
   2187 	 * we mark updateslot, then wait one beacon before effecting
   2188 	 * the change.  This gives associated stations at least one
   2189 	 * beacon interval to note the state change.
   2190 	 */
   2191 	/* XXX locking */
   2192 	if (sc->sc_updateslot == UPDATE)
   2193 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
   2194 	else if (sc->sc_updateslot == COMMIT)
   2195 		ath_setslottime(sc);		/* commit change to h/w */
   2196 
   2197 	/*
   2198 	 * Check recent per-antenna transmit statistics and flip
   2199 	 * the default antenna if noticeably more frames went out
   2200 	 * on the non-default antenna.
   2201 	 * XXX assumes 2 anntenae
   2202 	 */
   2203 	otherant = sc->sc_defant & 1 ? 2 : 1;
   2204 	if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
   2205 		ath_setdefantenna(sc, otherant);
   2206 	sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
   2207 
   2208 	/*
   2209 	 * Construct tx descriptor.
   2210 	 */
   2211 	ath_beacon_setup(sc, bf);
   2212 
   2213 	/*
   2214 	 * Stop any current dma and put the new frame on the queue.
   2215 	 * This should never fail since we check above that no frames
   2216 	 * are still pending on the queue.
   2217 	 */
   2218 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
   2219 		DPRINTF(sc, ATH_DEBUG_ANY,
   2220 			"%s: beacon queue %u did not stop?\n",
   2221 			__func__, sc->sc_bhalq);
   2222 	}
   2223 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   2224 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2225 
   2226 	/*
   2227 	 * Enable the CAB queue before the beacon queue to
   2228 	 * insure cab frames are triggered by this beacon.
   2229 	 */
   2230 	if (ncabq != 0 && (sc->sc_boff.bo_tim[4] & 1))	/* NB: only at DTIM */
   2231 		ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
   2232 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
   2233 	ath_hal_txstart(ah, sc->sc_bhalq);
   2234 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
   2235 	    "%s: TXDP[%u] = %" PRIx64 " (%p)\n", __func__,
   2236 	    sc->sc_bhalq, (uint64_t)bf->bf_daddr, bf->bf_desc);
   2237 
   2238 	sc->sc_stats.ast_be_xmit++;
   2239 }
   2240 
   2241 /*
   2242  * Reset the hardware after detecting beacons have stopped.
   2243  */
   2244 static void
   2245 ath_bstuck_proc(void *arg, int pending)
   2246 {
   2247 	struct ath_softc *sc = arg;
   2248 	struct ifnet *ifp = &sc->sc_if;
   2249 
   2250 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
   2251 		sc->sc_bmisscount);
   2252 	ath_reset(ifp);
   2253 }
   2254 
   2255 /*
   2256  * Reclaim beacon resources.
   2257  */
   2258 static void
   2259 ath_beacon_free(struct ath_softc *sc)
   2260 {
   2261 	struct ath_buf *bf;
   2262 
   2263 	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
   2264 		if (bf->bf_m != NULL) {
   2265 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   2266 			m_freem(bf->bf_m);
   2267 			bf->bf_m = NULL;
   2268 		}
   2269 		if (bf->bf_node != NULL) {
   2270 			ieee80211_free_node(bf->bf_node);
   2271 			bf->bf_node = NULL;
   2272 		}
   2273 	}
   2274 }
   2275 
   2276 /*
   2277  * Configure the beacon and sleep timers.
   2278  *
   2279  * When operating as an AP this resets the TSF and sets
   2280  * up the hardware to notify us when we need to issue beacons.
   2281  *
   2282  * When operating in station mode this sets up the beacon
   2283  * timers according to the timestamp of the last received
   2284  * beacon and the current TSF, configures PCF and DTIM
   2285  * handling, programs the sleep registers so the hardware
   2286  * will wakeup in time to receive beacons, and configures
   2287  * the beacon miss handling so we'll receive a BMISS
   2288  * interrupt when we stop seeing beacons from the AP
   2289  * we've associated with.
   2290  */
   2291 static void
   2292 ath_beacon_config(struct ath_softc *sc)
   2293 {
   2294 #define	TSF_TO_TU(_h,_l) \
   2295 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
   2296 #define	FUDGE	2
   2297 	struct ath_hal *ah = sc->sc_ah;
   2298 	struct ieee80211com *ic = &sc->sc_ic;
   2299 	struct ieee80211_node *ni = ic->ic_bss;
   2300 	u_int32_t nexttbtt, intval, tsftu;
   2301 	u_int64_t tsf;
   2302 
   2303 	/* extract tstamp from last beacon and convert to TU */
   2304 	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
   2305 			     LE_READ_4(ni->ni_tstamp.data));
   2306 	/* NB: the beacon interval is kept internally in TU's */
   2307 	intval = ni->ni_intval & HAL_BEACON_PERIOD;
   2308 	if (nexttbtt == 0)		/* e.g. for ap mode */
   2309 		nexttbtt = intval;
   2310 	else if (intval)		/* NB: can be 0 for monitor mode */
   2311 		nexttbtt = roundup(nexttbtt, intval);
   2312 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
   2313 		__func__, nexttbtt, intval, ni->ni_intval);
   2314 	if (ic->ic_opmode == IEEE80211_M_STA) {
   2315 		HAL_BEACON_STATE bs;
   2316 		int dtimperiod, dtimcount;
   2317 		int cfpperiod, cfpcount;
   2318 
   2319 		/*
   2320 		 * Setup dtim and cfp parameters according to
   2321 		 * last beacon we received (which may be none).
   2322 		 */
   2323 		dtimperiod = ni->ni_dtim_period;
   2324 		if (dtimperiod <= 0)		/* NB: 0 if not known */
   2325 			dtimperiod = 1;
   2326 		dtimcount = ni->ni_dtim_count;
   2327 		if (dtimcount >= dtimperiod)	/* NB: sanity check */
   2328 			dtimcount = 0;		/* XXX? */
   2329 		cfpperiod = 1;			/* NB: no PCF support yet */
   2330 		cfpcount = 0;
   2331 		/*
   2332 		 * Pull nexttbtt forward to reflect the current
   2333 		 * TSF and calculate dtim+cfp state for the result.
   2334 		 */
   2335 		tsf = ath_hal_gettsf64(ah);
   2336 		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
   2337 		do {
   2338 			nexttbtt += intval;
   2339 			if (--dtimcount < 0) {
   2340 				dtimcount = dtimperiod - 1;
   2341 				if (--cfpcount < 0)
   2342 					cfpcount = cfpperiod - 1;
   2343 			}
   2344 		} while (nexttbtt < tsftu);
   2345 		memset(&bs, 0, sizeof(bs));
   2346 		bs.bs_intval = intval;
   2347 		bs.bs_nexttbtt = nexttbtt;
   2348 		bs.bs_dtimperiod = dtimperiod*intval;
   2349 		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
   2350 		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
   2351 		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
   2352 		bs.bs_cfpmaxduration = 0;
   2353 #if 0
   2354 		/*
   2355 		 * The 802.11 layer records the offset to the DTIM
   2356 		 * bitmap while receiving beacons; use it here to
   2357 		 * enable h/w detection of our AID being marked in
   2358 		 * the bitmap vector (to indicate frames for us are
   2359 		 * pending at the AP).
   2360 		 * XXX do DTIM handling in s/w to WAR old h/w bugs
   2361 		 * XXX enable based on h/w rev for newer chips
   2362 		 */
   2363 		bs.bs_timoffset = ni->ni_timoff;
   2364 #endif
   2365 		/*
   2366 		 * Calculate the number of consecutive beacons to miss
   2367 		 * before taking a BMISS interrupt.  The configuration
   2368 		 * is specified in ms, so we need to convert that to
   2369 		 * TU's and then calculate based on the beacon interval.
   2370 		 * Note that we clamp the result to at most 10 beacons.
   2371 		 */
   2372 		bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
   2373 		if (bs.bs_bmissthreshold > 10)
   2374 			bs.bs_bmissthreshold = 10;
   2375 		else if (bs.bs_bmissthreshold <= 0)
   2376 			bs.bs_bmissthreshold = 1;
   2377 
   2378 		/*
   2379 		 * Calculate sleep duration.  The configuration is
   2380 		 * given in ms.  We insure a multiple of the beacon
   2381 		 * period is used.  Also, if the sleep duration is
   2382 		 * greater than the DTIM period then it makes senses
   2383 		 * to make it a multiple of that.
   2384 		 *
   2385 		 * XXX fixed at 100ms
   2386 		 */
   2387 		bs.bs_sleepduration =
   2388 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
   2389 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
   2390 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
   2391 
   2392 		DPRINTF(sc, ATH_DEBUG_BEACON,
   2393 			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
   2394 			, __func__
   2395 			, tsf, tsftu
   2396 			, bs.bs_intval
   2397 			, bs.bs_nexttbtt
   2398 			, bs.bs_dtimperiod
   2399 			, bs.bs_nextdtim
   2400 			, bs.bs_bmissthreshold
   2401 			, bs.bs_sleepduration
   2402 			, bs.bs_cfpperiod
   2403 			, bs.bs_cfpmaxduration
   2404 			, bs.bs_cfpnext
   2405 			, bs.bs_timoffset
   2406 		);
   2407 		ath_hal_intrset(ah, 0);
   2408 		ath_hal_beacontimers(ah, &bs);
   2409 		sc->sc_imask |= HAL_INT_BMISS;
   2410 		ath_hal_intrset(ah, sc->sc_imask);
   2411 	} else {
   2412 		ath_hal_intrset(ah, 0);
   2413 		if (nexttbtt == intval)
   2414 			intval |= HAL_BEACON_RESET_TSF;
   2415 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
   2416 			/*
   2417 			 * In IBSS mode enable the beacon timers but only
   2418 			 * enable SWBA interrupts if we need to manually
   2419 			 * prepare beacon frames.  Otherwise we use a
   2420 			 * self-linked tx descriptor and let the hardware
   2421 			 * deal with things.
   2422 			 */
   2423 			intval |= HAL_BEACON_ENA;
   2424 			if (!sc->sc_hasveol)
   2425 				sc->sc_imask |= HAL_INT_SWBA;
   2426 			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
   2427 				/*
   2428 				 * Pull nexttbtt forward to reflect
   2429 				 * the current TSF.
   2430 				 */
   2431 				tsf = ath_hal_gettsf64(ah);
   2432 				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
   2433 				do {
   2434 					nexttbtt += intval;
   2435 				} while (nexttbtt < tsftu);
   2436 			}
   2437 			ath_beaconq_config(sc);
   2438 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   2439 			/*
   2440 			 * In AP mode we enable the beacon timers and
   2441 			 * SWBA interrupts to prepare beacon frames.
   2442 			 */
   2443 			intval |= HAL_BEACON_ENA;
   2444 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
   2445 			ath_beaconq_config(sc);
   2446 		}
   2447 		ath_hal_beaconinit(ah, nexttbtt, intval);
   2448 		sc->sc_bmisscount = 0;
   2449 		ath_hal_intrset(ah, sc->sc_imask);
   2450 		/*
   2451 		 * When using a self-linked beacon descriptor in
   2452 		 * ibss mode load it once here.
   2453 		 */
   2454 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
   2455 			ath_beacon_proc(sc, 0);
   2456 	}
   2457 	sc->sc_syncbeacon = 0;
   2458 #undef UNDEF
   2459 #undef TSF_TO_TU
   2460 }
   2461 
   2462 static int
   2463 ath_descdma_setup(struct ath_softc *sc,
   2464 	struct ath_descdma *dd, ath_bufhead *head,
   2465 	const char *name, int nbuf, int ndesc)
   2466 {
   2467 #define	DS2PHYS(_dd, _ds) \
   2468 	((_dd)->dd_desc_paddr + ((char *)(_ds) - (char *)(_dd)->dd_desc))
   2469 	struct ifnet *ifp = &sc->sc_if;
   2470 	struct ath_desc *ds;
   2471 	struct ath_buf *bf;
   2472 	int i, bsize, error;
   2473 
   2474 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
   2475 	    __func__, name, nbuf, ndesc);
   2476 
   2477 	dd->dd_name = name;
   2478 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
   2479 
   2480 	/*
   2481 	 * Setup DMA descriptor area.
   2482 	 */
   2483 	dd->dd_dmat = sc->sc_dmat;
   2484 
   2485 	error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE,
   2486 	    0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0);
   2487 
   2488 	if (error != 0) {
   2489 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
   2490 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
   2491 		goto fail0;
   2492 	}
   2493 
   2494 	error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg,
   2495 	    dd->dd_desc_len, (void **)&dd->dd_desc, BUS_DMA_COHERENT);
   2496 	if (error != 0) {
   2497 		if_printf(ifp, "unable to map %u %s descriptors, error = %u\n",
   2498 		    nbuf * ndesc, dd->dd_name, error);
   2499 		goto fail1;
   2500 	}
   2501 
   2502 	/* allocate descriptors */
   2503 	error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1,
   2504 	    dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap);
   2505 	if (error != 0) {
   2506 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
   2507 			"error %u\n", dd->dd_name, error);
   2508 		goto fail2;
   2509 	}
   2510 
   2511 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc,
   2512 	    dd->dd_desc_len, NULL, BUS_DMA_NOWAIT);
   2513 	if (error != 0) {
   2514 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
   2515 			dd->dd_name, error);
   2516 		goto fail3;
   2517 	}
   2518 
   2519 	ds = dd->dd_desc;
   2520 	dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr;
   2521 	DPRINTF(sc, ATH_DEBUG_RESET,
   2522 	    "%s: %s DMA map: %p (%lu) -> %" PRIx64 " (%lu)\n",
   2523 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
   2524 	    (uint64_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
   2525 
   2526 	/* allocate rx buffers */
   2527 	bsize = sizeof(struct ath_buf) * nbuf;
   2528 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
   2529 	if (bf == NULL) {
   2530 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
   2531 			dd->dd_name, bsize);
   2532 		goto fail4;
   2533 	}
   2534 	dd->dd_bufptr = bf;
   2535 
   2536 	STAILQ_INIT(head);
   2537 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
   2538 		bf->bf_desc = ds;
   2539 		bf->bf_daddr = DS2PHYS(dd, ds);
   2540 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc,
   2541 				MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap);
   2542 		if (error != 0) {
   2543 			if_printf(ifp, "unable to create dmamap for %s "
   2544 				"buffer %u, error %u\n", dd->dd_name, i, error);
   2545 			ath_descdma_cleanup(sc, dd, head);
   2546 			return error;
   2547 		}
   2548 		STAILQ_INSERT_TAIL(head, bf, bf_list);
   2549 	}
   2550 	return 0;
   2551 fail4:
   2552 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
   2553 fail3:
   2554 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
   2555 fail2:
   2556 	bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
   2557 fail1:
   2558 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
   2559 fail0:
   2560 	memset(dd, 0, sizeof(*dd));
   2561 	return error;
   2562 #undef DS2PHYS
   2563 }
   2564 
   2565 static void
   2566 ath_descdma_cleanup(struct ath_softc *sc,
   2567 	struct ath_descdma *dd, ath_bufhead *head)
   2568 {
   2569 	struct ath_buf *bf;
   2570 	struct ieee80211_node *ni;
   2571 
   2572 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
   2573 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
   2574 	bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
   2575 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
   2576 
   2577 	STAILQ_FOREACH(bf, head, bf_list) {
   2578 		if (bf->bf_m) {
   2579 			m_freem(bf->bf_m);
   2580 			bf->bf_m = NULL;
   2581 		}
   2582 		if (bf->bf_dmamap != NULL) {
   2583 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
   2584 			bf->bf_dmamap = NULL;
   2585 		}
   2586 		ni = bf->bf_node;
   2587 		bf->bf_node = NULL;
   2588 		if (ni != NULL) {
   2589 			/*
   2590 			 * Reclaim node reference.
   2591 			 */
   2592 			ieee80211_free_node(ni);
   2593 		}
   2594 	}
   2595 
   2596 	STAILQ_INIT(head);
   2597 	free(dd->dd_bufptr, M_ATHDEV);
   2598 	memset(dd, 0, sizeof(*dd));
   2599 }
   2600 
   2601 static int
   2602 ath_desc_alloc(struct ath_softc *sc)
   2603 {
   2604 	int error;
   2605 
   2606 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
   2607 			"rx", ath_rxbuf, 1);
   2608 	if (error != 0)
   2609 		return error;
   2610 
   2611 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
   2612 			"tx", ath_txbuf, ATH_TXDESC);
   2613 	if (error != 0) {
   2614 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2615 		return error;
   2616 	}
   2617 
   2618 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
   2619 			"beacon", 1, 1);
   2620 	if (error != 0) {
   2621 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
   2622 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2623 		return error;
   2624 	}
   2625 	return 0;
   2626 }
   2627 
   2628 static void
   2629 ath_desc_free(struct ath_softc *sc)
   2630 {
   2631 
   2632 	if (sc->sc_bdma.dd_desc_len != 0)
   2633 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
   2634 	if (sc->sc_txdma.dd_desc_len != 0)
   2635 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
   2636 	if (sc->sc_rxdma.dd_desc_len != 0)
   2637 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2638 }
   2639 
   2640 static struct ieee80211_node *
   2641 ath_node_alloc(struct ieee80211_node_table *nt)
   2642 {
   2643 	struct ieee80211com *ic = nt->nt_ic;
   2644 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   2645 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
   2646 	struct ath_node *an;
   2647 
   2648 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
   2649 	if (an == NULL) {
   2650 		/* XXX stat+msg */
   2651 		return NULL;
   2652 	}
   2653 	an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
   2654 	ath_rate_node_init(sc, an);
   2655 
   2656 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
   2657 	return &an->an_node;
   2658 }
   2659 
   2660 static void
   2661 ath_node_free(struct ieee80211_node *ni)
   2662 {
   2663 	struct ieee80211com *ic = ni->ni_ic;
   2664         struct ath_softc *sc = ic->ic_ifp->if_softc;
   2665 
   2666 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
   2667 
   2668 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
   2669 	sc->sc_node_free(ni);
   2670 }
   2671 
   2672 static u_int8_t
   2673 ath_node_getrssi(const struct ieee80211_node *ni)
   2674 {
   2675 #define	HAL_EP_RND(x, mul) \
   2676 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
   2677 	u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
   2678 	int32_t rssi;
   2679 
   2680 	/*
   2681 	 * When only one frame is received there will be no state in
   2682 	 * avgrssi so fallback on the value recorded by the 802.11 layer.
   2683 	 */
   2684 	if (avgrssi != ATH_RSSI_DUMMY_MARKER)
   2685 		rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
   2686 	else
   2687 		rssi = ni->ni_rssi;
   2688 	return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
   2689 #undef HAL_EP_RND
   2690 }
   2691 
   2692 static int
   2693 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
   2694 {
   2695 	struct ath_hal *ah = sc->sc_ah;
   2696 	int error;
   2697 	struct mbuf *m;
   2698 	struct ath_desc *ds;
   2699 
   2700 	m = bf->bf_m;
   2701 	if (m == NULL) {
   2702 		/*
   2703 		 * NB: by assigning a page to the rx dma buffer we
   2704 		 * implicitly satisfy the Atheros requirement that
   2705 		 * this buffer be cache-line-aligned and sized to be
   2706 		 * multiple of the cache line size.  Not doing this
   2707 		 * causes weird stuff to happen (for the 5210 at least).
   2708 		 */
   2709 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
   2710 		if (m == NULL) {
   2711 			DPRINTF(sc, ATH_DEBUG_ANY,
   2712 				"%s: no mbuf/cluster\n", __func__);
   2713 			sc->sc_stats.ast_rx_nombuf++;
   2714 			return ENOMEM;
   2715 		}
   2716 		bf->bf_m = m;
   2717 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
   2718 
   2719 		error = bus_dmamap_load_mbuf(sc->sc_dmat,
   2720 					     bf->bf_dmamap, m,
   2721 					     BUS_DMA_NOWAIT);
   2722 		if (error != 0) {
   2723 			DPRINTF(sc, ATH_DEBUG_ANY,
   2724 			    "%s: bus_dmamap_load_mbuf failed; error %d\n",
   2725 			    __func__, error);
   2726 			sc->sc_stats.ast_rx_busdma++;
   2727 			return error;
   2728 		}
   2729 		KASSERT(bf->bf_nseg == 1,
   2730 			("multi-segment packet; nseg %u", bf->bf_nseg));
   2731 	}
   2732 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   2733 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2734 
   2735 	/*
   2736 	 * Setup descriptors.  For receive we always terminate
   2737 	 * the descriptor list with a self-linked entry so we'll
   2738 	 * not get overrun under high load (as can happen with a
   2739 	 * 5212 when ANI processing enables PHY error frames).
   2740 	 *
   2741 	 * To insure the last descriptor is self-linked we create
   2742 	 * each descriptor as self-linked and add it to the end.  As
   2743 	 * each additional descriptor is added the previous self-linked
   2744 	 * entry is ``fixed'' naturally.  This should be safe even
   2745 	 * if DMA is happening.  When processing RX interrupts we
   2746 	 * never remove/process the last, self-linked, entry on the
   2747 	 * descriptor list.  This insures the hardware always has
   2748 	 * someplace to write a new frame.
   2749 	 */
   2750 	ds = bf->bf_desc;
   2751 	ds->ds_link = HTOAH32(bf->bf_daddr);	/* link to self */
   2752 	ds->ds_data = bf->bf_segs[0].ds_addr;
   2753 	ds->ds_vdata = mtod(m, void *);	/* for radar */
   2754 	ath_hal_setuprxdesc(ah, ds
   2755 		, m->m_len		/* buffer size */
   2756 		, 0
   2757 	);
   2758 
   2759 	if (sc->sc_rxlink != NULL)
   2760 		*sc->sc_rxlink = bf->bf_daddr;
   2761 	sc->sc_rxlink = &ds->ds_link;
   2762 	return 0;
   2763 }
   2764 
   2765 /*
   2766  * Extend 15-bit time stamp from rx descriptor to
   2767  * a full 64-bit TSF using the specified TSF.
   2768  */
   2769 static inline u_int64_t
   2770 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
   2771 {
   2772 	if ((tsf & 0x7fff) < rstamp)
   2773 		tsf -= 0x8000;
   2774 	return ((tsf &~ 0x7fff) | rstamp);
   2775 }
   2776 
   2777 /*
   2778  * Intercept management frames to collect beacon rssi data
   2779  * and to do ibss merges.
   2780  */
   2781 static void
   2782 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
   2783 	struct ieee80211_node *ni,
   2784 	int subtype, int rssi, u_int32_t rstamp)
   2785 {
   2786 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   2787 
   2788 	/*
   2789 	 * Call up first so subsequent work can use information
   2790 	 * potentially stored in the node (e.g. for ibss merge).
   2791 	 */
   2792 	sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
   2793 	switch (subtype) {
   2794 	case IEEE80211_FC0_SUBTYPE_BEACON:
   2795 		/* update rssi statistics for use by the hal */
   2796 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
   2797 		if (sc->sc_syncbeacon &&
   2798 		    ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) {
   2799 			/*
   2800 			 * Resync beacon timers using the tsf of the beacon
   2801 			 * frame we just received.
   2802 			 */
   2803 			ath_beacon_config(sc);
   2804 		}
   2805 		/* fall thru... */
   2806 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
   2807 		if (ic->ic_opmode == IEEE80211_M_IBSS &&
   2808 		    ic->ic_state == IEEE80211_S_RUN) {
   2809 			u_int64_t tsf = ath_extend_tsf(rstamp,
   2810 				ath_hal_gettsf64(sc->sc_ah));
   2811 
   2812 			/*
   2813 			 * Handle ibss merge as needed; check the tsf on the
   2814 			 * frame before attempting the merge.  The 802.11 spec
   2815 			 * says the station should change it's bssid to match
   2816 			 * the oldest station with the same ssid, where oldest
   2817 			 * is determined by the tsf.  Note that hardware
   2818 			 * reconfiguration happens through callback to
   2819 			 * ath_newstate as the state machine will go from
   2820 			 * RUN -> RUN when this happens.
   2821 			 */
   2822 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
   2823 				DPRINTF(sc, ATH_DEBUG_STATE,
   2824 				    "ibss merge, rstamp %u tsf %ju "
   2825 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
   2826 				    (uintmax_t)ni->ni_tstamp.tsf);
   2827 				(void) ieee80211_ibss_merge(ni);
   2828 			}
   2829 		}
   2830 		break;
   2831 	}
   2832 }
   2833 
   2834 /*
   2835  * Set the default antenna.
   2836  */
   2837 static void
   2838 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
   2839 {
   2840 	struct ath_hal *ah = sc->sc_ah;
   2841 
   2842 	/* XXX block beacon interrupts */
   2843 	ath_hal_setdefantenna(ah, antenna);
   2844 	if (sc->sc_defant != antenna)
   2845 		sc->sc_stats.ast_ant_defswitch++;
   2846 	sc->sc_defant = antenna;
   2847 	sc->sc_rxotherant = 0;
   2848 }
   2849 
   2850 static void
   2851 ath_rx_proc(void *arg, int npending)
   2852 {
   2853 #define	PA2DESC(_sc, _pa) \
   2854 	((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
   2855 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
   2856 	struct ath_softc *sc = arg;
   2857 	struct ath_buf *bf;
   2858 	struct ieee80211com *ic = &sc->sc_ic;
   2859 	struct ifnet *ifp = &sc->sc_if;
   2860 	struct ath_hal *ah = sc->sc_ah;
   2861 	struct ath_desc *ds;
   2862 	struct mbuf *m;
   2863 	struct ieee80211_node *ni;
   2864 	struct ath_node *an;
   2865 	int len, type, ngood;
   2866 	u_int phyerr;
   2867 	HAL_STATUS status;
   2868 	int16_t nf;
   2869 	u_int64_t tsf;
   2870 
   2871 	NET_LOCK_GIANT();		/* XXX */
   2872 
   2873 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
   2874 	ngood = 0;
   2875 	nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
   2876 	tsf = ath_hal_gettsf64(ah);
   2877 	do {
   2878 		bf = STAILQ_FIRST(&sc->sc_rxbuf);
   2879 		if (bf == NULL) {		/* NB: shouldn't happen */
   2880 			if_printf(ifp, "%s: no buffer!\n", __func__);
   2881 			break;
   2882 		}
   2883 		ds = bf->bf_desc;
   2884 		if (ds->ds_link == bf->bf_daddr) {
   2885 			/* NB: never process the self-linked entry at the end */
   2886 			break;
   2887 		}
   2888 		m = bf->bf_m;
   2889 		if (m == NULL) {		/* NB: shouldn't happen */
   2890 			if_printf(ifp, "%s: no mbuf!\n", __func__);
   2891 			break;
   2892 		}
   2893 		/* XXX sync descriptor memory */
   2894 		/*
   2895 		 * Must provide the virtual address of the current
   2896 		 * descriptor, the physical address, and the virtual
   2897 		 * address of the next descriptor in the h/w chain.
   2898 		 * This allows the HAL to look ahead to see if the
   2899 		 * hardware is done with a descriptor by checking the
   2900 		 * done bit in the following descriptor and the address
   2901 		 * of the current descriptor the DMA engine is working
   2902 		 * on.  All this is necessary because of our use of
   2903 		 * a self-linked list to avoid rx overruns.
   2904 		 */
   2905 		status = ath_hal_rxprocdesc(ah, ds,
   2906 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
   2907 #ifdef AR_DEBUG
   2908 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
   2909 			ath_printrxbuf(bf, status == HAL_OK);
   2910 #endif
   2911 		if (status == HAL_EINPROGRESS)
   2912 			break;
   2913 		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
   2914 		if (ds->ds_rxstat.rs_more) {
   2915 			/*
   2916 			 * Frame spans multiple descriptors; this
   2917 			 * cannot happen yet as we don't support
   2918 			 * jumbograms.  If not in monitor mode,
   2919 			 * discard the frame.
   2920 			 */
   2921 			if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   2922 				sc->sc_stats.ast_rx_toobig++;
   2923 				goto rx_next;
   2924 			}
   2925 			/* fall thru for monitor mode handling... */
   2926 		} else if (ds->ds_rxstat.rs_status != 0) {
   2927 			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
   2928 				sc->sc_stats.ast_rx_crcerr++;
   2929 			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
   2930 				sc->sc_stats.ast_rx_fifoerr++;
   2931 			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
   2932 				sc->sc_stats.ast_rx_phyerr++;
   2933 				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
   2934 				sc->sc_stats.ast_rx_phy[phyerr]++;
   2935 				goto rx_next;
   2936 			}
   2937 			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
   2938 				/*
   2939 				 * Decrypt error.  If the error occurred
   2940 				 * because there was no hardware key, then
   2941 				 * let the frame through so the upper layers
   2942 				 * can process it.  This is necessary for 5210
   2943 				 * parts which have no way to setup a ``clear''
   2944 				 * key cache entry.
   2945 				 *
   2946 				 * XXX do key cache faulting
   2947 				 */
   2948 				if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
   2949 					goto rx_accept;
   2950 				sc->sc_stats.ast_rx_badcrypt++;
   2951 			}
   2952 			if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
   2953 				sc->sc_stats.ast_rx_badmic++;
   2954 				/*
   2955 				 * Do minimal work required to hand off
   2956 				 * the 802.11 header for notifcation.
   2957 				 */
   2958 				/* XXX frag's and qos frames */
   2959 				len = ds->ds_rxstat.rs_datalen;
   2960 				if (len >= sizeof (struct ieee80211_frame)) {
   2961 					bus_dmamap_sync(sc->sc_dmat,
   2962 					    bf->bf_dmamap,
   2963 					    0, bf->bf_dmamap->dm_mapsize,
   2964 					    BUS_DMASYNC_POSTREAD);
   2965 					ieee80211_notify_michael_failure(ic,
   2966 					    mtod(m, struct ieee80211_frame *),
   2967 					    sc->sc_splitmic ?
   2968 					        ds->ds_rxstat.rs_keyix-32 :
   2969 					        ds->ds_rxstat.rs_keyix
   2970 					);
   2971 				}
   2972 			}
   2973 			ifp->if_ierrors++;
   2974 			/*
   2975 			 * Reject error frames, we normally don't want
   2976 			 * to see them in monitor mode (in monitor mode
   2977 			 * allow through packets that have crypto problems).
   2978 			 */
   2979 			if ((ds->ds_rxstat.rs_status &~
   2980 				(HAL_RXERR_DECRYPT|HAL_RXERR_MIC)) ||
   2981 			    sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
   2982 				goto rx_next;
   2983 		}
   2984 rx_accept:
   2985 		/*
   2986 		 * Sync and unmap the frame.  At this point we're
   2987 		 * committed to passing the mbuf somewhere so clear
   2988 		 * bf_m; this means a new sk_buff must be allocated
   2989 		 * when the rx descriptor is setup again to receive
   2990 		 * another frame.
   2991 		 */
   2992 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
   2993 		    0, bf->bf_dmamap->dm_mapsize,
   2994 		    BUS_DMASYNC_POSTREAD);
   2995 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   2996 		bf->bf_m = NULL;
   2997 
   2998 		m->m_pkthdr.rcvif = ifp;
   2999 		len = ds->ds_rxstat.rs_datalen;
   3000 		m->m_pkthdr.len = m->m_len = len;
   3001 
   3002 		sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
   3003 
   3004 #if NBPFILTER > 0
   3005 		if (sc->sc_drvbpf) {
   3006 			u_int8_t rix;
   3007 
   3008 			/*
   3009 			 * Discard anything shorter than an ack or cts.
   3010 			 */
   3011 			if (len < IEEE80211_ACK_LEN) {
   3012 				DPRINTF(sc, ATH_DEBUG_RECV,
   3013 					"%s: runt packet %d\n",
   3014 					__func__, len);
   3015 				sc->sc_stats.ast_rx_tooshort++;
   3016 				m_freem(m);
   3017 				goto rx_next;
   3018 			}
   3019 			rix = ds->ds_rxstat.rs_rate;
   3020 			sc->sc_rx_th.wr_tsf = htole64(
   3021 				ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf));
   3022 			sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
   3023 			sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
   3024 			sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf;
   3025 			sc->sc_rx_th.wr_antnoise = nf;
   3026 			sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
   3027 
   3028 			bpf_mtap2(sc->sc_drvbpf,
   3029 				&sc->sc_rx_th, sc->sc_rx_th_len, m);
   3030 		}
   3031 #endif
   3032 
   3033 		/*
   3034 		 * From this point on we assume the frame is at least
   3035 		 * as large as ieee80211_frame_min; verify that.
   3036 		 */
   3037 		if (len < IEEE80211_MIN_LEN) {
   3038 			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
   3039 				__func__, len);
   3040 			sc->sc_stats.ast_rx_tooshort++;
   3041 			m_freem(m);
   3042 			goto rx_next;
   3043 		}
   3044 
   3045 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
   3046 			ieee80211_dump_pkt(mtod(m, void *), len,
   3047 				   sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
   3048 				   ds->ds_rxstat.rs_rssi);
   3049 		}
   3050 
   3051 		m_adj(m, -IEEE80211_CRC_LEN);
   3052 
   3053 		/*
   3054 		 * Locate the node for sender, track state, and then
   3055 		 * pass the (referenced) node up to the 802.11 layer
   3056 		 * for its use.
   3057 		 */
   3058 		ni = ieee80211_find_rxnode_withkey(ic,
   3059 			mtod(m, const struct ieee80211_frame_min *),
   3060 			ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
   3061 				IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
   3062 		/*
   3063 		 * Track rx rssi and do any rx antenna management.
   3064 		 */
   3065 		an = ATH_NODE(ni);
   3066 		ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
   3067 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi);
   3068 		/*
   3069 		 * Send frame up for processing.
   3070 		 */
   3071 		type = ieee80211_input(ic, m, ni,
   3072 			ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
   3073 		ieee80211_free_node(ni);
   3074 		if (sc->sc_diversity) {
   3075 			/*
   3076 			 * When using fast diversity, change the default rx
   3077 			 * antenna if diversity chooses the other antenna 3
   3078 			 * times in a row.
   3079 			 */
   3080 			if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
   3081 				if (++sc->sc_rxotherant >= 3)
   3082 					ath_setdefantenna(sc,
   3083 						ds->ds_rxstat.rs_antenna);
   3084 			} else
   3085 				sc->sc_rxotherant = 0;
   3086 		}
   3087 		if (sc->sc_softled) {
   3088 			/*
   3089 			 * Blink for any data frame.  Otherwise do a
   3090 			 * heartbeat-style blink when idle.  The latter
   3091 			 * is mainly for station mode where we depend on
   3092 			 * periodic beacon frames to trigger the poll event.
   3093 			 */
   3094 			if (type == IEEE80211_FC0_TYPE_DATA) {
   3095 				sc->sc_rxrate = ds->ds_rxstat.rs_rate;
   3096 				ath_led_event(sc, ATH_LED_RX);
   3097 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
   3098 				ath_led_event(sc, ATH_LED_POLL);
   3099 		}
   3100 		/*
   3101 		 * Arrange to update the last rx timestamp only for
   3102 		 * frames from our ap when operating in station mode.
   3103 		 * This assumes the rx key is always setup when associated.
   3104 		 */
   3105 		if (ic->ic_opmode == IEEE80211_M_STA &&
   3106 		    ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID)
   3107 			ngood++;
   3108 rx_next:
   3109 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
   3110 	} while (ath_rxbuf_init(sc, bf) == 0);
   3111 
   3112 	/* rx signal state monitoring */
   3113 	ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
   3114 	if (ath_hal_radar_event(ah))
   3115 		TASK_RUN_OR_ENQUEUE(&sc->sc_radartask);
   3116 	if (ngood)
   3117 		sc->sc_lastrx = tsf;
   3118 
   3119 #ifdef __NetBSD__
   3120 	/* XXX Why isn't this necessary in FreeBSD? */
   3121 	if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
   3122 		ath_start(ifp);
   3123 #endif /* __NetBSD__ */
   3124 
   3125 	NET_UNLOCK_GIANT();		/* XXX */
   3126 #undef PA2DESC
   3127 }
   3128 
   3129 /*
   3130  * Setup a h/w transmit queue.
   3131  */
   3132 static struct ath_txq *
   3133 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
   3134 {
   3135 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   3136 	struct ath_hal *ah = sc->sc_ah;
   3137 	HAL_TXQ_INFO qi;
   3138 	int qnum;
   3139 
   3140 	memset(&qi, 0, sizeof(qi));
   3141 	qi.tqi_subtype = subtype;
   3142 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
   3143 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
   3144 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
   3145 	/*
   3146 	 * Enable interrupts only for EOL and DESC conditions.
   3147 	 * We mark tx descriptors to receive a DESC interrupt
   3148 	 * when a tx queue gets deep; otherwise waiting for the
   3149 	 * EOL to reap descriptors.  Note that this is done to
   3150 	 * reduce interrupt load and this only defers reaping
   3151 	 * descriptors, never transmitting frames.  Aside from
   3152 	 * reducing interrupts this also permits more concurrency.
   3153 	 * The only potential downside is if the tx queue backs
   3154 	 * up in which case the top half of the kernel may backup
   3155 	 * due to a lack of tx descriptors.
   3156 	 */
   3157 	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
   3158 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
   3159 	if (qnum == -1) {
   3160 		/*
   3161 		 * NB: don't print a message, this happens
   3162 		 * normally on parts with too few tx queues
   3163 		 */
   3164 		return NULL;
   3165 	}
   3166 	if (qnum >= N(sc->sc_txq)) {
   3167 		device_printf(&sc->sc_dev,
   3168 			"hal qnum %u out of range, max %zu!\n",
   3169 			qnum, N(sc->sc_txq));
   3170 		ath_hal_releasetxqueue(ah, qnum);
   3171 		return NULL;
   3172 	}
   3173 	if (!ATH_TXQ_SETUP(sc, qnum)) {
   3174 		struct ath_txq *txq = &sc->sc_txq[qnum];
   3175 
   3176 		txq->axq_qnum = qnum;
   3177 		txq->axq_depth = 0;
   3178 		txq->axq_intrcnt = 0;
   3179 		txq->axq_link = NULL;
   3180 		STAILQ_INIT(&txq->axq_q);
   3181 		ATH_TXQ_LOCK_INIT(sc, txq);
   3182 		sc->sc_txqsetup |= 1<<qnum;
   3183 	}
   3184 	return &sc->sc_txq[qnum];
   3185 #undef N
   3186 }
   3187 
   3188 /*
   3189  * Setup a hardware data transmit queue for the specified
   3190  * access control.  The hal may not support all requested
   3191  * queues in which case it will return a reference to a
   3192  * previously setup queue.  We record the mapping from ac's
   3193  * to h/w queues for use by ath_tx_start and also track
   3194  * the set of h/w queues being used to optimize work in the
   3195  * transmit interrupt handler and related routines.
   3196  */
   3197 static int
   3198 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
   3199 {
   3200 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   3201 	struct ath_txq *txq;
   3202 
   3203 	if (ac >= N(sc->sc_ac2q)) {
   3204 		device_printf(&sc->sc_dev, "AC %u out of range, max %zu!\n",
   3205 			ac, N(sc->sc_ac2q));
   3206 		return 0;
   3207 	}
   3208 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
   3209 	if (txq != NULL) {
   3210 		sc->sc_ac2q[ac] = txq;
   3211 		return 1;
   3212 	} else
   3213 		return 0;
   3214 #undef N
   3215 }
   3216 
   3217 /*
   3218  * Update WME parameters for a transmit queue.
   3219  */
   3220 static int
   3221 ath_txq_update(struct ath_softc *sc, int ac)
   3222 {
   3223 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
   3224 #define	ATH_TXOP_TO_US(v)		(v<<5)
   3225 	struct ieee80211com *ic = &sc->sc_ic;
   3226 	struct ath_txq *txq = sc->sc_ac2q[ac];
   3227 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
   3228 	struct ath_hal *ah = sc->sc_ah;
   3229 	HAL_TXQ_INFO qi;
   3230 
   3231 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
   3232 	qi.tqi_aifs = wmep->wmep_aifsn;
   3233 	qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
   3234 	qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
   3235 	qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
   3236 
   3237 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
   3238 		device_printf(&sc->sc_dev, "unable to update hardware queue "
   3239 			"parameters for %s traffic!\n",
   3240 			ieee80211_wme_acnames[ac]);
   3241 		return 0;
   3242 	} else {
   3243 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
   3244 		return 1;
   3245 	}
   3246 #undef ATH_TXOP_TO_US
   3247 #undef ATH_EXPONENT_TO_VALUE
   3248 }
   3249 
   3250 /*
   3251  * Callback from the 802.11 layer to update WME parameters.
   3252  */
   3253 static int
   3254 ath_wme_update(struct ieee80211com *ic)
   3255 {
   3256 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   3257 
   3258 	return !ath_txq_update(sc, WME_AC_BE) ||
   3259 	    !ath_txq_update(sc, WME_AC_BK) ||
   3260 	    !ath_txq_update(sc, WME_AC_VI) ||
   3261 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
   3262 }
   3263 
   3264 /*
   3265  * Reclaim resources for a setup queue.
   3266  */
   3267 static void
   3268 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
   3269 {
   3270 
   3271 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
   3272 	ATH_TXQ_LOCK_DESTROY(txq);
   3273 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
   3274 }
   3275 
   3276 /*
   3277  * Reclaim all tx queue resources.
   3278  */
   3279 static void
   3280 ath_tx_cleanup(struct ath_softc *sc)
   3281 {
   3282 	int i;
   3283 
   3284 	ATH_TXBUF_LOCK_DESTROY(sc);
   3285 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   3286 		if (ATH_TXQ_SETUP(sc, i))
   3287 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
   3288 }
   3289 
   3290 /*
   3291  * Defragment an mbuf chain, returning at most maxfrags separate
   3292  * mbufs+clusters.  If this is not possible NULL is returned and
   3293  * the original mbuf chain is left in it's present (potentially
   3294  * modified) state.  We use two techniques: collapsing consecutive
   3295  * mbufs and replacing consecutive mbufs by a cluster.
   3296  */
   3297 static struct mbuf *
   3298 ath_defrag(struct mbuf *m0, int how, int maxfrags)
   3299 {
   3300 	struct mbuf *m, *n, *n2, **prev;
   3301 	u_int curfrags;
   3302 
   3303 	/*
   3304 	 * Calculate the current number of frags.
   3305 	 */
   3306 	curfrags = 0;
   3307 	for (m = m0; m != NULL; m = m->m_next)
   3308 		curfrags++;
   3309 	/*
   3310 	 * First, try to collapse mbufs.  Note that we always collapse
   3311 	 * towards the front so we don't need to deal with moving the
   3312 	 * pkthdr.  This may be suboptimal if the first mbuf has much
   3313 	 * less data than the following.
   3314 	 */
   3315 	m = m0;
   3316 again:
   3317 	for (;;) {
   3318 		n = m->m_next;
   3319 		if (n == NULL)
   3320 			break;
   3321 		if (n->m_len < M_TRAILINGSPACE(m)) {
   3322 			memcpy(mtod(m, char *) + m->m_len, mtod(n, void *),
   3323 				n->m_len);
   3324 			m->m_len += n->m_len;
   3325 			m->m_next = n->m_next;
   3326 			m_free(n);
   3327 			if (--curfrags <= maxfrags)
   3328 				return m0;
   3329 		} else
   3330 			m = n;
   3331 	}
   3332 	KASSERT(maxfrags > 1,
   3333 		("maxfrags %u, but normal collapse failed", maxfrags));
   3334 	/*
   3335 	 * Collapse consecutive mbufs to a cluster.
   3336 	 */
   3337 	prev = &m0->m_next;		/* NB: not the first mbuf */
   3338 	while ((n = *prev) != NULL) {
   3339 		if ((n2 = n->m_next) != NULL &&
   3340 		    n->m_len + n2->m_len < MCLBYTES) {
   3341 			m = m_getcl(how, MT_DATA, 0);
   3342 			if (m == NULL)
   3343 				goto bad;
   3344 			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
   3345 			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
   3346 				n2->m_len);
   3347 			m->m_len = n->m_len + n2->m_len;
   3348 			m->m_next = n2->m_next;
   3349 			*prev = m;
   3350 			m_free(n);
   3351 			m_free(n2);
   3352 			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
   3353 				return m0;
   3354 			/*
   3355 			 * Still not there, try the normal collapse
   3356 			 * again before we allocate another cluster.
   3357 			 */
   3358 			goto again;
   3359 		}
   3360 		prev = &n->m_next;
   3361 	}
   3362 	/*
   3363 	 * No place where we can collapse to a cluster; punt.
   3364 	 * This can occur if, for example, you request 2 frags
   3365 	 * but the packet requires that both be clusters (we
   3366 	 * never reallocate the first mbuf to avoid moving the
   3367 	 * packet header).
   3368 	 */
   3369 bad:
   3370 	return NULL;
   3371 }
   3372 
   3373 /*
   3374  * Return h/w rate index for an IEEE rate (w/o basic rate bit).
   3375  */
   3376 static int
   3377 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
   3378 {
   3379 	int i;
   3380 
   3381 	for (i = 0; i < rt->rateCount; i++)
   3382 		if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
   3383 			return i;
   3384 	return 0;		/* NB: lowest rate */
   3385 }
   3386 
   3387 static void
   3388 ath_freetx(struct mbuf *m)
   3389 {
   3390 	struct mbuf *next;
   3391 
   3392 	do {
   3393 		next = m->m_nextpkt;
   3394 		m->m_nextpkt = NULL;
   3395 		m_freem(m);
   3396 	} while ((m = next) != NULL);
   3397 }
   3398 
   3399 static int
   3400 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
   3401     struct mbuf *m0)
   3402 {
   3403 	struct ieee80211com *ic = &sc->sc_ic;
   3404 	struct ath_hal *ah = sc->sc_ah;
   3405 	struct ifnet *ifp = &sc->sc_if;
   3406 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
   3407 	int i, error, iswep, ismcast, isfrag, ismrr;
   3408 	int keyix, hdrlen, pktlen, try0;
   3409 	u_int8_t rix, txrate, ctsrate;
   3410 	u_int8_t cix = 0xff;		/* NB: silence compiler */
   3411 	struct ath_desc *ds, *ds0;
   3412 	struct ath_txq *txq;
   3413 	struct ieee80211_frame *wh;
   3414 	u_int subtype, flags, ctsduration;
   3415 	HAL_PKT_TYPE atype;
   3416 	const HAL_RATE_TABLE *rt;
   3417 	HAL_BOOL shortPreamble;
   3418 	struct ath_node *an;
   3419 	struct mbuf *m;
   3420 	u_int pri;
   3421 
   3422 	wh = mtod(m0, struct ieee80211_frame *);
   3423 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
   3424 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
   3425 	isfrag = m0->m_flags & M_FRAG;
   3426 	hdrlen = ieee80211_anyhdrsize(wh);
   3427 	/*
   3428 	 * Packet length must not include any
   3429 	 * pad bytes; deduct them here.
   3430 	 */
   3431 	pktlen = m0->m_pkthdr.len - (hdrlen & 3);
   3432 
   3433 	if (iswep) {
   3434 		const struct ieee80211_cipher *cip;
   3435 		struct ieee80211_key *k;
   3436 
   3437 		/*
   3438 		 * Construct the 802.11 header+trailer for an encrypted
   3439 		 * frame. The only reason this can fail is because of an
   3440 		 * unknown or unsupported cipher/key type.
   3441 		 */
   3442 		k = ieee80211_crypto_encap(ic, ni, m0);
   3443 		if (k == NULL) {
   3444 			/*
   3445 			 * This can happen when the key is yanked after the
   3446 			 * frame was queued.  Just discard the frame; the
   3447 			 * 802.11 layer counts failures and provides
   3448 			 * debugging/diagnostics.
   3449 			 */
   3450 			ath_freetx(m0);
   3451 			return EIO;
   3452 		}
   3453 		/*
   3454 		 * Adjust the packet + header lengths for the crypto
   3455 		 * additions and calculate the h/w key index.  When
   3456 		 * a s/w mic is done the frame will have had any mic
   3457 		 * added to it prior to entry so m0->m_pkthdr.len above will
   3458 		 * account for it. Otherwise we need to add it to the
   3459 		 * packet length.
   3460 		 */
   3461 		cip = k->wk_cipher;
   3462 		hdrlen += cip->ic_header;
   3463 		pktlen += cip->ic_header + cip->ic_trailer;
   3464 		/* NB: frags always have any TKIP MIC done in s/w */
   3465 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
   3466 			pktlen += cip->ic_miclen;
   3467 		keyix = k->wk_keyix;
   3468 
   3469 		/* packet header may have moved, reset our local pointer */
   3470 		wh = mtod(m0, struct ieee80211_frame *);
   3471 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
   3472 		/*
   3473 		 * Use station key cache slot, if assigned.
   3474 		 */
   3475 		keyix = ni->ni_ucastkey.wk_keyix;
   3476 		if (keyix == IEEE80211_KEYIX_NONE)
   3477 			keyix = HAL_TXKEYIX_INVALID;
   3478 	} else
   3479 		keyix = HAL_TXKEYIX_INVALID;
   3480 
   3481 	pktlen += IEEE80211_CRC_LEN;
   3482 
   3483 	/*
   3484 	 * Load the DMA map so any coalescing is done.  This
   3485 	 * also calculates the number of descriptors we need.
   3486 	 */
   3487 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
   3488 				     BUS_DMA_NOWAIT);
   3489 	if (error == EFBIG) {
   3490 		/* XXX packet requires too many descriptors */
   3491 		bf->bf_nseg = ATH_TXDESC+1;
   3492 	} else if (error != 0) {
   3493 		sc->sc_stats.ast_tx_busdma++;
   3494 		ath_freetx(m0);
   3495 		return error;
   3496 	}
   3497 	/*
   3498 	 * Discard null packets and check for packets that
   3499 	 * require too many TX descriptors.  We try to convert
   3500 	 * the latter to a cluster.
   3501 	 */
   3502 	if (error == EFBIG) {		/* too many desc's, linearize */
   3503 		sc->sc_stats.ast_tx_linear++;
   3504 		m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
   3505 		if (m == NULL) {
   3506 			ath_freetx(m0);
   3507 			sc->sc_stats.ast_tx_nombuf++;
   3508 			return ENOMEM;
   3509 		}
   3510 		m0 = m;
   3511 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
   3512 					     BUS_DMA_NOWAIT);
   3513 		if (error != 0) {
   3514 			sc->sc_stats.ast_tx_busdma++;
   3515 			ath_freetx(m0);
   3516 			return error;
   3517 		}
   3518 		KASSERT(bf->bf_nseg <= ATH_TXDESC,
   3519 		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
   3520 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
   3521 		sc->sc_stats.ast_tx_nodata++;
   3522 		ath_freetx(m0);
   3523 		return EIO;
   3524 	}
   3525 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
   3526 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   3527             bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
   3528 	bf->bf_m = m0;
   3529 	bf->bf_node = ni;			/* NB: held reference */
   3530 
   3531 	/* setup descriptors */
   3532 	ds = bf->bf_desc;
   3533 	rt = sc->sc_currates;
   3534 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
   3535 
   3536 	/*
   3537 	 * NB: the 802.11 layer marks whether or not we should
   3538 	 * use short preamble based on the current mode and
   3539 	 * negotiated parameters.
   3540 	 */
   3541 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
   3542 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) {
   3543 		shortPreamble = AH_TRUE;
   3544 		sc->sc_stats.ast_tx_shortpre++;
   3545 	} else {
   3546 		shortPreamble = AH_FALSE;
   3547 	}
   3548 
   3549 	an = ATH_NODE(ni);
   3550 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
   3551 	ismrr = 0;				/* default no multi-rate retry*/
   3552 	/*
   3553 	 * Calculate Atheros packet type from IEEE80211 packet header,
   3554 	 * setup for rate calculations, and select h/w transmit queue.
   3555 	 */
   3556 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
   3557 	case IEEE80211_FC0_TYPE_MGT:
   3558 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   3559 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
   3560 			atype = HAL_PKT_TYPE_BEACON;
   3561 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
   3562 			atype = HAL_PKT_TYPE_PROBE_RESP;
   3563 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
   3564 			atype = HAL_PKT_TYPE_ATIM;
   3565 		else
   3566 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
   3567 		rix = sc->sc_minrateix;
   3568 		txrate = rt->info[rix].rateCode;
   3569 		if (shortPreamble)
   3570 			txrate |= rt->info[rix].shortPreamble;
   3571 		try0 = ATH_TXMGTTRY;
   3572 		/* NB: force all management frames to highest queue */
   3573 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
   3574 			/* NB: force all management frames to highest queue */
   3575 			pri = WME_AC_VO;
   3576 		} else
   3577 			pri = WME_AC_BE;
   3578 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
   3579 		break;
   3580 	case IEEE80211_FC0_TYPE_CTL:
   3581 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
   3582 		rix = sc->sc_minrateix;
   3583 		txrate = rt->info[rix].rateCode;
   3584 		if (shortPreamble)
   3585 			txrate |= rt->info[rix].shortPreamble;
   3586 		try0 = ATH_TXMGTTRY;
   3587 		/* NB: force all ctl frames to highest queue */
   3588 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
   3589 			/* NB: force all ctl frames to highest queue */
   3590 			pri = WME_AC_VO;
   3591 		} else
   3592 			pri = WME_AC_BE;
   3593 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
   3594 		break;
   3595 	case IEEE80211_FC0_TYPE_DATA:
   3596 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
   3597 		/*
   3598 		 * Data frames: multicast frames go out at a fixed rate,
   3599 		 * otherwise consult the rate control module for the
   3600 		 * rate to use.
   3601 		 */
   3602 		if (ismcast) {
   3603 			/*
   3604 			 * Check mcast rate setting in case it's changed.
   3605 			 * XXX move out of fastpath
   3606 			 */
   3607 			if (ic->ic_mcast_rate != sc->sc_mcastrate) {
   3608 				sc->sc_mcastrix =
   3609 					ath_tx_findrix(rt, ic->ic_mcast_rate);
   3610 				sc->sc_mcastrate = ic->ic_mcast_rate;
   3611 			}
   3612 			rix = sc->sc_mcastrix;
   3613 			txrate = rt->info[rix].rateCode;
   3614 			try0 = 1;
   3615 		} else {
   3616 			ath_rate_findrate(sc, an, shortPreamble, pktlen,
   3617 				&rix, &try0, &txrate);
   3618 			sc->sc_txrate = txrate;		/* for LED blinking */
   3619 			if (try0 != ATH_TXMAXTRY)
   3620 				ismrr = 1;
   3621 		}
   3622 		pri = M_WME_GETAC(m0);
   3623 		if (cap->cap_wmeParams[pri].wmep_noackPolicy)
   3624 			flags |= HAL_TXDESC_NOACK;
   3625 		break;
   3626 	default:
   3627 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
   3628 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
   3629 		/* XXX statistic */
   3630 		ath_freetx(m0);
   3631 		return EIO;
   3632 	}
   3633 	txq = sc->sc_ac2q[pri];
   3634 
   3635 	/*
   3636 	 * When servicing one or more stations in power-save mode
   3637 	 * multicast frames must be buffered until after the beacon.
   3638 	 * We use the CAB queue for that.
   3639 	 */
   3640 	if (ismcast && ic->ic_ps_sta) {
   3641 		txq = sc->sc_cabq;
   3642 		/* XXX? more bit in 802.11 frame header */
   3643 	}
   3644 
   3645 	/*
   3646 	 * Calculate miscellaneous flags.
   3647 	 */
   3648 	if (ismcast) {
   3649 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
   3650 	} else if (pktlen > ic->ic_rtsthreshold) {
   3651 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
   3652 		cix = rt->info[rix].controlRate;
   3653 		sc->sc_stats.ast_tx_rts++;
   3654 	}
   3655 	if (flags & HAL_TXDESC_NOACK)		/* NB: avoid double counting */
   3656 		sc->sc_stats.ast_tx_noack++;
   3657 
   3658 	/*
   3659 	 * If 802.11g protection is enabled, determine whether
   3660 	 * to use RTS/CTS or just CTS.  Note that this is only
   3661 	 * done for OFDM unicast frames.
   3662 	 */
   3663 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
   3664 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
   3665 	    (flags & HAL_TXDESC_NOACK) == 0) {
   3666 		/* XXX fragments must use CCK rates w/ protection */
   3667 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
   3668 			flags |= HAL_TXDESC_RTSENA;
   3669 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
   3670 			flags |= HAL_TXDESC_CTSENA;
   3671 		if (isfrag) {
   3672 			/*
   3673 			 * For frags it would be desirable to use the
   3674 			 * highest CCK rate for RTS/CTS.  But stations
   3675 			 * farther away may detect it at a lower CCK rate
   3676 			 * so use the configured protection rate instead
   3677 			 * (for now).
   3678 			 */
   3679 			cix = rt->info[sc->sc_protrix].controlRate;
   3680 		} else
   3681 			cix = rt->info[sc->sc_protrix].controlRate;
   3682 		sc->sc_stats.ast_tx_protect++;
   3683 	}
   3684 
   3685 	/*
   3686 	 * Calculate duration.  This logically belongs in the 802.11
   3687 	 * layer but it lacks sufficient information to calculate it.
   3688 	 */
   3689 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
   3690 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
   3691 		u_int16_t dur;
   3692 		/*
   3693 		 * XXX not right with fragmentation.
   3694 		 */
   3695 		if (shortPreamble)
   3696 			dur = rt->info[rix].spAckDuration;
   3697 		else
   3698 			dur = rt->info[rix].lpAckDuration;
   3699 		if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
   3700 			dur += dur;             /* additional SIFS+ACK */
   3701 			KASSERT(m0->m_nextpkt != NULL, ("no fragment"));
   3702 			/*
   3703 			 * Include the size of next fragment so NAV is
   3704 			 * updated properly.  The last fragment uses only
   3705 			 * the ACK duration
   3706 			 */
   3707 			dur += ath_hal_computetxtime(ah, rt,
   3708 					m0->m_nextpkt->m_pkthdr.len,
   3709 					rix, shortPreamble);
   3710 		}
   3711 		if (isfrag) {
   3712 			/*
   3713 			 * Force hardware to use computed duration for next
   3714 			 * fragment by disabling multi-rate retry which updates
   3715 			 * duration based on the multi-rate duration table.
   3716 			 */
   3717 			try0 = ATH_TXMAXTRY;
   3718 		}
   3719 		*(u_int16_t *)wh->i_dur = htole16(dur);
   3720 	}
   3721 
   3722 	/*
   3723 	 * Calculate RTS/CTS rate and duration if needed.
   3724 	 */
   3725 	ctsduration = 0;
   3726 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
   3727 		/*
   3728 		 * CTS transmit rate is derived from the transmit rate
   3729 		 * by looking in the h/w rate table.  We must also factor
   3730 		 * in whether or not a short preamble is to be used.
   3731 		 */
   3732 		/* NB: cix is set above where RTS/CTS is enabled */
   3733 		KASSERT(cix != 0xff, ("cix not setup"));
   3734 		ctsrate = rt->info[cix].rateCode;
   3735 		/*
   3736 		 * Compute the transmit duration based on the frame
   3737 		 * size and the size of an ACK frame.  We call into the
   3738 		 * HAL to do the computation since it depends on the
   3739 		 * characteristics of the actual PHY being used.
   3740 		 *
   3741 		 * NB: CTS is assumed the same size as an ACK so we can
   3742 		 *     use the precalculated ACK durations.
   3743 		 */
   3744 		if (shortPreamble) {
   3745 			ctsrate |= rt->info[cix].shortPreamble;
   3746 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
   3747 				ctsduration += rt->info[cix].spAckDuration;
   3748 			ctsduration += ath_hal_computetxtime(ah,
   3749 				rt, pktlen, rix, AH_TRUE);
   3750 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
   3751 				ctsduration += rt->info[rix].spAckDuration;
   3752 		} else {
   3753 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
   3754 				ctsduration += rt->info[cix].lpAckDuration;
   3755 			ctsduration += ath_hal_computetxtime(ah,
   3756 				rt, pktlen, rix, AH_FALSE);
   3757 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
   3758 				ctsduration += rt->info[rix].lpAckDuration;
   3759 		}
   3760 		/*
   3761 		 * Must disable multi-rate retry when using RTS/CTS.
   3762 		 */
   3763 		ismrr = 0;
   3764 		try0 = ATH_TXMGTTRY;		/* XXX */
   3765 	} else
   3766 		ctsrate = 0;
   3767 
   3768 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
   3769 		ieee80211_dump_pkt(mtod(m0, void *), m0->m_len,
   3770 			sc->sc_hwmap[txrate].ieeerate, -1);
   3771 #if NBPFILTER > 0
   3772 	if (ic->ic_rawbpf)
   3773 		bpf_mtap(ic->ic_rawbpf, m0);
   3774 	if (sc->sc_drvbpf) {
   3775 		u_int64_t tsf = ath_hal_gettsf64(ah);
   3776 
   3777 		sc->sc_tx_th.wt_tsf = htole64(tsf);
   3778 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
   3779 		if (iswep)
   3780 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
   3781 		if (isfrag)
   3782 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
   3783 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
   3784 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
   3785 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
   3786 
   3787 		bpf_mtap2(sc->sc_drvbpf,
   3788 			&sc->sc_tx_th, sc->sc_tx_th_len, m0);
   3789 	}
   3790 #endif
   3791 
   3792 	/*
   3793 	 * Determine if a tx interrupt should be generated for
   3794 	 * this descriptor.  We take a tx interrupt to reap
   3795 	 * descriptors when the h/w hits an EOL condition or
   3796 	 * when the descriptor is specifically marked to generate
   3797 	 * an interrupt.  We periodically mark descriptors in this
   3798 	 * way to insure timely replenishing of the supply needed
   3799 	 * for sending frames.  Defering interrupts reduces system
   3800 	 * load and potentially allows more concurrent work to be
   3801 	 * done but if done to aggressively can cause senders to
   3802 	 * backup.
   3803 	 *
   3804 	 * NB: use >= to deal with sc_txintrperiod changing
   3805 	 *     dynamically through sysctl.
   3806 	 */
   3807 	if (flags & HAL_TXDESC_INTREQ) {
   3808 		txq->axq_intrcnt = 0;
   3809 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
   3810 		flags |= HAL_TXDESC_INTREQ;
   3811 		txq->axq_intrcnt = 0;
   3812 	}
   3813 
   3814 	/*
   3815 	 * Formulate first tx descriptor with tx controls.
   3816 	 */
   3817 	/* XXX check return value? */
   3818 	ath_hal_setuptxdesc(ah, ds
   3819 		, pktlen		/* packet length */
   3820 		, hdrlen		/* header length */
   3821 		, atype			/* Atheros packet type */
   3822 		, ni->ni_txpower	/* txpower */
   3823 		, txrate, try0		/* series 0 rate/tries */
   3824 		, keyix			/* key cache index */
   3825 		, sc->sc_txantenna	/* antenna mode */
   3826 		, flags			/* flags */
   3827 		, ctsrate		/* rts/cts rate */
   3828 		, ctsduration		/* rts/cts duration */
   3829 	);
   3830 	bf->bf_flags = flags;
   3831 	/*
   3832 	 * Setup the multi-rate retry state only when we're
   3833 	 * going to use it.  This assumes ath_hal_setuptxdesc
   3834 	 * initializes the descriptors (so we don't have to)
   3835 	 * when the hardware supports multi-rate retry and
   3836 	 * we don't use it.
   3837 	 */
   3838 	if (ismrr)
   3839 		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
   3840 
   3841 	/*
   3842 	 * Fillin the remainder of the descriptor info.
   3843 	 */
   3844 	ds0 = ds;
   3845 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
   3846 		ds->ds_data = bf->bf_segs[i].ds_addr;
   3847 		if (i == bf->bf_nseg - 1)
   3848 			ds->ds_link = 0;
   3849 		else
   3850 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
   3851 		ath_hal_filltxdesc(ah, ds
   3852 			, bf->bf_segs[i].ds_len	/* segment length */
   3853 			, i == 0		/* first segment */
   3854 			, i == bf->bf_nseg - 1	/* last segment */
   3855 			, ds0			/* first descriptor */
   3856 		);
   3857 
   3858 		/* NB: The desc swap function becomes void,
   3859 		 * if descriptor swapping is not enabled
   3860 		 */
   3861 		ath_desc_swap(ds);
   3862 
   3863 		DPRINTF(sc, ATH_DEBUG_XMIT,
   3864 			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
   3865 			__func__, i, ds->ds_link, ds->ds_data,
   3866 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
   3867 	}
   3868 	/*
   3869 	 * Insert the frame on the outbound list and
   3870 	 * pass it on to the hardware.
   3871 	 */
   3872 	ATH_TXQ_LOCK(txq);
   3873 	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
   3874 	if (txq->axq_link == NULL) {
   3875 		ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
   3876 		DPRINTF(sc, ATH_DEBUG_XMIT,
   3877 		    "%s: TXDP[%u] = %" PRIx64 " (%p) depth %d\n", __func__,
   3878 		    txq->axq_qnum, (uint64_t)bf->bf_daddr, bf->bf_desc,
   3879 		    txq->axq_depth);
   3880 	} else {
   3881 		*txq->axq_link = HTOAH32(bf->bf_daddr);
   3882 		DPRINTF(sc, ATH_DEBUG_XMIT,
   3883 		    "%s: link[%u](%p)=%" PRIx64 " (%p) depth %d\n",
   3884 		    __func__, txq->axq_qnum, txq->axq_link,
   3885 		    (uint64_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
   3886 	}
   3887 	txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
   3888 	/*
   3889 	 * The CAB queue is started from the SWBA handler since
   3890 	 * frames only go out on DTIM and to avoid possible races.
   3891 	 */
   3892 	if (txq != sc->sc_cabq)
   3893 		ath_hal_txstart(ah, txq->axq_qnum);
   3894 	ATH_TXQ_UNLOCK(txq);
   3895 
   3896 	return 0;
   3897 }
   3898 
   3899 /*
   3900  * Process completed xmit descriptors from the specified queue.
   3901  */
   3902 static int
   3903 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
   3904 {
   3905 	struct ath_hal *ah = sc->sc_ah;
   3906 	struct ieee80211com *ic = &sc->sc_ic;
   3907 	struct ath_buf *bf;
   3908 	struct ath_desc *ds, *ds0;
   3909 	struct ieee80211_node *ni;
   3910 	struct ath_node *an;
   3911 	int sr, lr, pri, nacked;
   3912 	HAL_STATUS status;
   3913 
   3914 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
   3915 		__func__, txq->axq_qnum,
   3916 		(void *)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
   3917 		txq->axq_link);
   3918 	nacked = 0;
   3919 	for (;;) {
   3920 		ATH_TXQ_LOCK(txq);
   3921 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
   3922 		bf = STAILQ_FIRST(&txq->axq_q);
   3923 		if (bf == NULL) {
   3924 			txq->axq_link = NULL;
   3925 			ATH_TXQ_UNLOCK(txq);
   3926 			break;
   3927 		}
   3928 		ds0 = &bf->bf_desc[0];
   3929 		ds = &bf->bf_desc[bf->bf_nseg - 1];
   3930 		status = ath_hal_txprocdesc(ah, ds);
   3931 #ifdef AR_DEBUG
   3932 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
   3933 			ath_printtxbuf(bf, status == HAL_OK);
   3934 #endif
   3935 		if (status == HAL_EINPROGRESS) {
   3936 			ATH_TXQ_UNLOCK(txq);
   3937 			break;
   3938 		}
   3939 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
   3940 		ATH_TXQ_UNLOCK(txq);
   3941 
   3942 		ni = bf->bf_node;
   3943 		if (ni != NULL) {
   3944 			an = ATH_NODE(ni);
   3945 			if (ds->ds_txstat.ts_status == 0) {
   3946 				u_int8_t txant = ds->ds_txstat.ts_antenna;
   3947 				sc->sc_stats.ast_ant_tx[txant]++;
   3948 				sc->sc_ant_tx[txant]++;
   3949 				if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
   3950 					sc->sc_stats.ast_tx_altrate++;
   3951 				sc->sc_stats.ast_tx_rssi =
   3952 					ds->ds_txstat.ts_rssi;
   3953 				ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
   3954 					ds->ds_txstat.ts_rssi);
   3955 				pri = M_WME_GETAC(bf->bf_m);
   3956 				if (pri >= WME_AC_VO)
   3957 					ic->ic_wme.wme_hipri_traffic++;
   3958 				ni->ni_inact = ni->ni_inact_reload;
   3959 			} else {
   3960 				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
   3961 					sc->sc_stats.ast_tx_xretries++;
   3962 				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
   3963 					sc->sc_stats.ast_tx_fifoerr++;
   3964 				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
   3965 					sc->sc_stats.ast_tx_filtered++;
   3966 			}
   3967 			sr = ds->ds_txstat.ts_shortretry;
   3968 			lr = ds->ds_txstat.ts_longretry;
   3969 			sc->sc_stats.ast_tx_shortretry += sr;
   3970 			sc->sc_stats.ast_tx_longretry += lr;
   3971 			/*
   3972 			 * Hand the descriptor to the rate control algorithm.
   3973 			 */
   3974 			if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
   3975 			    (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
   3976 				/*
   3977 				 * If frame was ack'd update the last rx time
   3978 				 * used to workaround phantom bmiss interrupts.
   3979 				 */
   3980 				if (ds->ds_txstat.ts_status == 0)
   3981 					nacked++;
   3982 				ath_rate_tx_complete(sc, an, ds, ds0);
   3983 			}
   3984 			/*
   3985 			 * Reclaim reference to node.
   3986 			 *
   3987 			 * NB: the node may be reclaimed here if, for example
   3988 			 *     this is a DEAUTH message that was sent and the
   3989 			 *     node was timed out due to inactivity.
   3990 			 */
   3991 			ieee80211_free_node(ni);
   3992 		}
   3993 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   3994 		    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   3995 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   3996 		m_freem(bf->bf_m);
   3997 		bf->bf_m = NULL;
   3998 		bf->bf_node = NULL;
   3999 
   4000 		ATH_TXBUF_LOCK(sc);
   4001 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   4002 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
   4003 		ATH_TXBUF_UNLOCK(sc);
   4004 	}
   4005 	return nacked;
   4006 }
   4007 
   4008 static inline int
   4009 txqactive(struct ath_hal *ah, int qnum)
   4010 {
   4011 	u_int32_t txqs = 1<<qnum;
   4012 	ath_hal_gettxintrtxqs(ah, &txqs);
   4013 	return (txqs & (1<<qnum));
   4014 }
   4015 
   4016 /*
   4017  * Deferred processing of transmit interrupt; special-cased
   4018  * for a single hardware transmit queue (e.g. 5210 and 5211).
   4019  */
   4020 static void
   4021 ath_tx_proc_q0(void *arg, int npending)
   4022 {
   4023 	struct ath_softc *sc = arg;
   4024 	struct ifnet *ifp = &sc->sc_if;
   4025 
   4026 	if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]) > 0){
   4027 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
   4028 	}
   4029 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
   4030 		ath_tx_processq(sc, sc->sc_cabq);
   4031 
   4032 	if (sc->sc_softled)
   4033 		ath_led_event(sc, ATH_LED_TX);
   4034 
   4035 	ath_start(ifp);
   4036 }
   4037 
   4038 /*
   4039  * Deferred processing of transmit interrupt; special-cased
   4040  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
   4041  */
   4042 static void
   4043 ath_tx_proc_q0123(void *arg, int npending)
   4044 {
   4045 	struct ath_softc *sc = arg;
   4046 	struct ifnet *ifp = &sc->sc_if;
   4047 	int nacked;
   4048 
   4049 	/*
   4050 	 * Process each active queue.
   4051 	 */
   4052 	nacked = 0;
   4053 	if (txqactive(sc->sc_ah, 0))
   4054 		nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
   4055 	if (txqactive(sc->sc_ah, 1))
   4056 		nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
   4057 	if (txqactive(sc->sc_ah, 2))
   4058 		nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
   4059 	if (txqactive(sc->sc_ah, 3))
   4060 		nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
   4061 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
   4062 		ath_tx_processq(sc, sc->sc_cabq);
   4063 	if (nacked) {
   4064 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
   4065 	}
   4066 
   4067 	if (sc->sc_softled)
   4068 		ath_led_event(sc, ATH_LED_TX);
   4069 
   4070 	ath_start(ifp);
   4071 }
   4072 
   4073 /*
   4074  * Deferred processing of transmit interrupt.
   4075  */
   4076 static void
   4077 ath_tx_proc(void *arg, int npending)
   4078 {
   4079 	struct ath_softc *sc = arg;
   4080 	struct ifnet *ifp = &sc->sc_if;
   4081 	int i, nacked;
   4082 
   4083 	/*
   4084 	 * Process each active queue.
   4085 	 */
   4086 	nacked = 0;
   4087 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   4088 		if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
   4089 			nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
   4090 	if (nacked) {
   4091 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
   4092 	}
   4093 
   4094 	if (sc->sc_softled)
   4095 		ath_led_event(sc, ATH_LED_TX);
   4096 
   4097 	ath_start(ifp);
   4098 }
   4099 
   4100 static void
   4101 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
   4102 {
   4103 	struct ath_hal *ah = sc->sc_ah;
   4104 	struct ieee80211_node *ni;
   4105 	struct ath_buf *bf;
   4106 
   4107 	/*
   4108 	 * NB: this assumes output has been stopped and
   4109 	 *     we do not need to block ath_tx_tasklet
   4110 	 */
   4111 	for (;;) {
   4112 		ATH_TXQ_LOCK(txq);
   4113 		bf = STAILQ_FIRST(&txq->axq_q);
   4114 		if (bf == NULL) {
   4115 			txq->axq_link = NULL;
   4116 			ATH_TXQ_UNLOCK(txq);
   4117 			break;
   4118 		}
   4119 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
   4120 		ATH_TXQ_UNLOCK(txq);
   4121 #ifdef AR_DEBUG
   4122 		if (sc->sc_debug & ATH_DEBUG_RESET)
   4123 			ath_printtxbuf(bf,
   4124 				ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
   4125 #endif /* AR_DEBUG */
   4126 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   4127 		m_freem(bf->bf_m);
   4128 		bf->bf_m = NULL;
   4129 		ni = bf->bf_node;
   4130 		bf->bf_node = NULL;
   4131 		if (ni != NULL) {
   4132 			/*
   4133 			 * Reclaim node reference.
   4134 			 */
   4135 			ieee80211_free_node(ni);
   4136 		}
   4137 		ATH_TXBUF_LOCK(sc);
   4138 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   4139 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
   4140 		ATH_TXBUF_UNLOCK(sc);
   4141 	}
   4142 }
   4143 
   4144 static void
   4145 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
   4146 {
   4147 	struct ath_hal *ah = sc->sc_ah;
   4148 
   4149 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
   4150 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
   4151 	    __func__, txq->axq_qnum,
   4152 	    (void *)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
   4153 	    txq->axq_link);
   4154 }
   4155 
   4156 /*
   4157  * Drain the transmit queues and reclaim resources.
   4158  */
   4159 static void
   4160 ath_draintxq(struct ath_softc *sc)
   4161 {
   4162 	struct ath_hal *ah = sc->sc_ah;
   4163 	int i;
   4164 
   4165 	/* XXX return value */
   4166 	if (device_is_active(&sc->sc_dev)) {
   4167 		/* don't touch the hardware if marked invalid */
   4168 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
   4169 		DPRINTF(sc, ATH_DEBUG_RESET,
   4170 		    "%s: beacon queue %p\n", __func__,
   4171 		    (void *)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
   4172 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   4173 			if (ATH_TXQ_SETUP(sc, i))
   4174 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
   4175 	}
   4176 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   4177 		if (ATH_TXQ_SETUP(sc, i))
   4178 			ath_tx_draintxq(sc, &sc->sc_txq[i]);
   4179 }
   4180 
   4181 /*
   4182  * Disable the receive h/w in preparation for a reset.
   4183  */
   4184 static void
   4185 ath_stoprecv(struct ath_softc *sc)
   4186 {
   4187 #define	PA2DESC(_sc, _pa) \
   4188 	((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
   4189 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
   4190 	struct ath_hal *ah = sc->sc_ah;
   4191 
   4192 	ath_hal_stoppcurecv(ah);	/* disable PCU */
   4193 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
   4194 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
   4195 	DELAY(3000);			/* 3ms is long enough for 1 frame */
   4196 #ifdef AR_DEBUG
   4197 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
   4198 		struct ath_buf *bf;
   4199 
   4200 		printf("%s: rx queue %p, link %p\n", __func__,
   4201 			(void *)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
   4202 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
   4203 			struct ath_desc *ds = bf->bf_desc;
   4204 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
   4205 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
   4206 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
   4207 				ath_printrxbuf(bf, status == HAL_OK);
   4208 		}
   4209 	}
   4210 #endif
   4211 	sc->sc_rxlink = NULL;		/* just in case */
   4212 #undef PA2DESC
   4213 }
   4214 
   4215 /*
   4216  * Enable the receive h/w following a reset.
   4217  */
   4218 static int
   4219 ath_startrecv(struct ath_softc *sc)
   4220 {
   4221 	struct ath_hal *ah = sc->sc_ah;
   4222 	struct ath_buf *bf;
   4223 
   4224 	sc->sc_rxlink = NULL;
   4225 	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
   4226 		int error = ath_rxbuf_init(sc, bf);
   4227 		if (error != 0) {
   4228 			DPRINTF(sc, ATH_DEBUG_RECV,
   4229 				"%s: ath_rxbuf_init failed %d\n",
   4230 				__func__, error);
   4231 			return error;
   4232 		}
   4233 	}
   4234 
   4235 	bf = STAILQ_FIRST(&sc->sc_rxbuf);
   4236 	ath_hal_putrxbuf(ah, bf->bf_daddr);
   4237 	ath_hal_rxena(ah);		/* enable recv descriptors */
   4238 	ath_mode_init(sc);		/* set filters, etc. */
   4239 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
   4240 	return 0;
   4241 }
   4242 
   4243 /*
   4244  * Update internal state after a channel change.
   4245  */
   4246 static void
   4247 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
   4248 {
   4249 	struct ieee80211com *ic = &sc->sc_ic;
   4250 	enum ieee80211_phymode mode;
   4251 	u_int16_t flags;
   4252 
   4253 	/*
   4254 	 * Change channels and update the h/w rate map
   4255 	 * if we're switching; e.g. 11a to 11b/g.
   4256 	 */
   4257 	mode = ieee80211_chan2mode(ic, chan);
   4258 	if (mode != sc->sc_curmode)
   4259 		ath_setcurmode(sc, mode);
   4260 	/*
   4261 	 * Update BPF state.  NB: ethereal et. al. don't handle
   4262 	 * merged flags well so pick a unique mode for their use.
   4263 	 */
   4264 	if (IEEE80211_IS_CHAN_A(chan))
   4265 		flags = IEEE80211_CHAN_A;
   4266 	/* XXX 11g schizophrenia */
   4267 	else if (IEEE80211_IS_CHAN_G(chan) ||
   4268 	    IEEE80211_IS_CHAN_PUREG(chan))
   4269 		flags = IEEE80211_CHAN_G;
   4270 	else
   4271 		flags = IEEE80211_CHAN_B;
   4272 	if (IEEE80211_IS_CHAN_T(chan))
   4273 		flags |= IEEE80211_CHAN_TURBO;
   4274 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
   4275 		htole16(chan->ic_freq);
   4276 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
   4277 		htole16(flags);
   4278 }
   4279 
   4280 /*
   4281  * Poll for a channel clear indication; this is required
   4282  * for channels requiring DFS and not previously visited
   4283  * and/or with a recent radar detection.
   4284  */
   4285 static void
   4286 ath_dfswait(void *arg)
   4287 {
   4288 	struct ath_softc *sc = arg;
   4289 	struct ath_hal *ah = sc->sc_ah;
   4290 	HAL_CHANNEL hchan;
   4291 
   4292 	ath_hal_radar_wait(ah, &hchan);
   4293 	if (hchan.privFlags & CHANNEL_INTERFERENCE) {
   4294 		if_printf(&sc->sc_if,
   4295 		    "channel %u/0x%x/0x%x has interference\n",
   4296 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
   4297 		return;
   4298 	}
   4299 	if ((hchan.privFlags & CHANNEL_DFS) == 0) {
   4300 		/* XXX should not happen */
   4301 		return;
   4302 	}
   4303 	if (hchan.privFlags & CHANNEL_DFS_CLEAR) {
   4304 		sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR;
   4305 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
   4306 		if_printf(&sc->sc_if,
   4307 		    "channel %u/0x%x/0x%x marked clear\n",
   4308 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
   4309 	} else
   4310 		callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc);
   4311 }
   4312 
   4313 /*
   4314  * Set/change channels.  If the channel is really being changed,
   4315  * it's done by reseting the chip.  To accomplish this we must
   4316  * first cleanup any pending DMA, then restart stuff after a la
   4317  * ath_init.
   4318  */
   4319 static int
   4320 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
   4321 {
   4322 	struct ath_hal *ah = sc->sc_ah;
   4323 	struct ieee80211com *ic = &sc->sc_ic;
   4324 	HAL_CHANNEL hchan;
   4325 
   4326 	/*
   4327 	 * Convert to a HAL channel description with
   4328 	 * the flags constrained to reflect the current
   4329 	 * operating mode.
   4330 	 */
   4331 	hchan.channel = chan->ic_freq;
   4332 	hchan.channelFlags = ath_chan2flags(ic, chan);
   4333 
   4334 	DPRINTF(sc, ATH_DEBUG_RESET,
   4335 	    "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
   4336 	    __func__,
   4337 	    ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
   4338 		sc->sc_curchan.channelFlags),
   4339 	    	sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
   4340 	    ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
   4341 	        hchan.channel, hchan.channelFlags);
   4342 	if (hchan.channel != sc->sc_curchan.channel ||
   4343 	    hchan.channelFlags != sc->sc_curchan.channelFlags) {
   4344 		HAL_STATUS status;
   4345 
   4346 		/*
   4347 		 * To switch channels clear any pending DMA operations;
   4348 		 * wait long enough for the RX fifo to drain, reset the
   4349 		 * hardware at the new frequency, and then re-enable
   4350 		 * the relevant bits of the h/w.
   4351 		 */
   4352 		ath_hal_intrset(ah, 0);		/* disable interrupts */
   4353 		ath_draintxq(sc);		/* clear pending tx frames */
   4354 		ath_stoprecv(sc);		/* turn off frame recv */
   4355 		if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
   4356 			if_printf(ic->ic_ifp, "%s: unable to reset "
   4357 			    "channel %u (%u MHz, flags 0x%x hal flags 0x%x)\n",
   4358 			    __func__, ieee80211_chan2ieee(ic, chan),
   4359 			    chan->ic_freq, chan->ic_flags, hchan.channelFlags);
   4360 			return EIO;
   4361 		}
   4362 		sc->sc_curchan = hchan;
   4363 		ath_update_txpow(sc);		/* update tx power state */
   4364 		ath_restore_diversity(sc);
   4365 		sc->sc_calinterval = 1;
   4366 		sc->sc_caltries = 0;
   4367 
   4368 		/*
   4369 		 * Re-enable rx framework.
   4370 		 */
   4371 		if (ath_startrecv(sc) != 0) {
   4372 			if_printf(&sc->sc_if,
   4373 				"%s: unable to restart recv logic\n", __func__);
   4374 			return EIO;
   4375 		}
   4376 
   4377 		/*
   4378 		 * Change channels and update the h/w rate map
   4379 		 * if we're switching; e.g. 11a to 11b/g.
   4380 		 */
   4381 		ic->ic_ibss_chan = chan;
   4382 		ath_chan_change(sc, chan);
   4383 
   4384 		/*
   4385 		 * Handle DFS required waiting period to determine
   4386 		 * if channel is clear of radar traffic.
   4387 		 */
   4388 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   4389 #define	DFS_AND_NOT_CLEAR(_c) \
   4390 	(((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS)
   4391 			if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) {
   4392 				if_printf(&sc->sc_if,
   4393 					"wait for DFS clear channel signal\n");
   4394 				/* XXX stop sndq */
   4395 				sc->sc_if.if_flags |= IFF_OACTIVE;
   4396 				callout_reset(&sc->sc_dfs_ch,
   4397 					2 * hz, ath_dfswait, sc);
   4398 			} else
   4399 				callout_stop(&sc->sc_dfs_ch);
   4400 #undef DFS_NOT_CLEAR
   4401 		}
   4402 
   4403 		/*
   4404 		 * Re-enable interrupts.
   4405 		 */
   4406 		ath_hal_intrset(ah, sc->sc_imask);
   4407 	}
   4408 	return 0;
   4409 }
   4410 
   4411 static void
   4412 ath_next_scan(void *arg)
   4413 {
   4414 	struct ath_softc *sc = arg;
   4415 	struct ieee80211com *ic = &sc->sc_ic;
   4416 	int s;
   4417 
   4418 	/* don't call ath_start w/o network interrupts blocked */
   4419 	s = splnet();
   4420 
   4421 	if (ic->ic_state == IEEE80211_S_SCAN)
   4422 		ieee80211_next_scan(ic);
   4423 	splx(s);
   4424 }
   4425 
   4426 /*
   4427  * Periodically recalibrate the PHY to account
   4428  * for temperature/environment changes.
   4429  */
   4430 static void
   4431 ath_calibrate(void *arg)
   4432 {
   4433 	struct ath_softc *sc = arg;
   4434 	struct ath_hal *ah = sc->sc_ah;
   4435 	HAL_BOOL iqCalDone;
   4436 
   4437 	sc->sc_stats.ast_per_cal++;
   4438 
   4439 	ATH_LOCK(sc);
   4440 
   4441 	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
   4442 		/*
   4443 		 * Rfgain is out of bounds, reset the chip
   4444 		 * to load new gain values.
   4445 		 */
   4446 		DPRINTF(sc, ATH_DEBUG_CALIBRATE,
   4447 			"%s: rfgain change\n", __func__);
   4448 		sc->sc_stats.ast_per_rfgain++;
   4449 		ath_reset(&sc->sc_if);
   4450 	}
   4451 	if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
   4452 		DPRINTF(sc, ATH_DEBUG_ANY,
   4453 			"%s: calibration of channel %u failed\n",
   4454 			__func__, sc->sc_curchan.channel);
   4455 		sc->sc_stats.ast_per_calfail++;
   4456 	}
   4457 	/*
   4458 	 * Calibrate noise floor data again in case of change.
   4459 	 */
   4460 	ath_hal_process_noisefloor(ah);
   4461 	/*
   4462 	 * Poll more frequently when the IQ calibration is in
   4463 	 * progress to speedup loading the final settings.
   4464 	 * We temper this aggressive polling with an exponential
   4465 	 * back off after 4 tries up to ath_calinterval.
   4466 	 */
   4467 	if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
   4468 		sc->sc_caltries = 0;
   4469 		sc->sc_calinterval = ath_calinterval;
   4470 	} else if (sc->sc_caltries > 4) {
   4471 		sc->sc_caltries = 0;
   4472 		sc->sc_calinterval <<= 1;
   4473 		if (sc->sc_calinterval > ath_calinterval)
   4474 			sc->sc_calinterval = ath_calinterval;
   4475 	}
   4476 	KASSERT(0 < sc->sc_calinterval && sc->sc_calinterval <= ath_calinterval,
   4477 		("bad calibration interval %u", sc->sc_calinterval));
   4478 
   4479 	DPRINTF(sc, ATH_DEBUG_CALIBRATE,
   4480 		"%s: next +%u (%siqCalDone tries %u)\n", __func__,
   4481 		sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
   4482 	sc->sc_caltries++;
   4483 	callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
   4484 		ath_calibrate, sc);
   4485 	ATH_UNLOCK(sc);
   4486 }
   4487 
   4488 static int
   4489 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
   4490 {
   4491 	struct ifnet *ifp = ic->ic_ifp;
   4492 	struct ath_softc *sc = ifp->if_softc;
   4493 	struct ath_hal *ah = sc->sc_ah;
   4494 	struct ieee80211_node *ni;
   4495 	int i, error;
   4496 	const u_int8_t *bssid;
   4497 	u_int32_t rfilt;
   4498 	static const HAL_LED_STATE leds[] = {
   4499 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
   4500 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
   4501 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
   4502 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
   4503 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
   4504 	};
   4505 
   4506 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
   4507 		ieee80211_state_name[ic->ic_state],
   4508 		ieee80211_state_name[nstate]);
   4509 
   4510 	callout_stop(&sc->sc_scan_ch);
   4511 	callout_stop(&sc->sc_cal_ch);
   4512 	callout_stop(&sc->sc_dfs_ch);
   4513 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
   4514 
   4515 	if (nstate == IEEE80211_S_INIT) {
   4516 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
   4517 		/*
   4518 		 * NB: disable interrupts so we don't rx frames.
   4519 		 */
   4520 		ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
   4521 		/*
   4522 		 * Notify the rate control algorithm.
   4523 		 */
   4524 		ath_rate_newstate(sc, nstate);
   4525 		goto done;
   4526 	}
   4527 	ni = ic->ic_bss;
   4528 	error = ath_chan_set(sc, ic->ic_curchan);
   4529 	if (error != 0)
   4530 		goto bad;
   4531 	rfilt = ath_calcrxfilter(sc, nstate);
   4532 	if (nstate == IEEE80211_S_SCAN)
   4533 		bssid = ifp->if_broadcastaddr;
   4534 	else
   4535 		bssid = ni->ni_bssid;
   4536 	ath_hal_setrxfilter(ah, rfilt);
   4537 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
   4538 		 __func__, rfilt, ether_sprintf(bssid));
   4539 
   4540 	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
   4541 		ath_hal_setassocid(ah, bssid, ni->ni_associd);
   4542 	else
   4543 		ath_hal_setassocid(ah, bssid, 0);
   4544 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
   4545 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
   4546 			if (ath_hal_keyisvalid(ah, i))
   4547 				ath_hal_keysetmac(ah, i, bssid);
   4548 	}
   4549 
   4550 	/*
   4551 	 * Notify the rate control algorithm so rates
   4552 	 * are setup should ath_beacon_alloc be called.
   4553 	 */
   4554 	ath_rate_newstate(sc, nstate);
   4555 
   4556 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
   4557 		/* nothing to do */;
   4558 	} else if (nstate == IEEE80211_S_RUN) {
   4559 		DPRINTF(sc, ATH_DEBUG_STATE,
   4560 			"%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
   4561 			"capinfo=0x%04x chan=%d\n"
   4562 			 , __func__
   4563 			 , ic->ic_flags
   4564 			 , ni->ni_intval
   4565 			 , ether_sprintf(ni->ni_bssid)
   4566 			 , ni->ni_capinfo
   4567 			 , ieee80211_chan2ieee(ic, ic->ic_curchan));
   4568 
   4569 		switch (ic->ic_opmode) {
   4570 		case IEEE80211_M_HOSTAP:
   4571 		case IEEE80211_M_IBSS:
   4572 			/*
   4573 			 * Allocate and setup the beacon frame.
   4574 			 *
   4575 			 * Stop any previous beacon DMA.  This may be
   4576 			 * necessary, for example, when an ibss merge
   4577 			 * causes reconfiguration; there will be a state
   4578 			 * transition from RUN->RUN that means we may
   4579 			 * be called with beacon transmission active.
   4580 			 */
   4581 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
   4582 			ath_beacon_free(sc);
   4583 			error = ath_beacon_alloc(sc, ni);
   4584 			if (error != 0)
   4585 				goto bad;
   4586 			/*
   4587 			 * If joining an adhoc network defer beacon timer
   4588 			 * configuration to the next beacon frame so we
   4589 			 * have a current TSF to use.  Otherwise we're
   4590 			 * starting an ibss/bss so there's no need to delay.
   4591 			 */
   4592 			if (ic->ic_opmode == IEEE80211_M_IBSS &&
   4593 			    ic->ic_bss->ni_tstamp.tsf != 0)
   4594 				sc->sc_syncbeacon = 1;
   4595 			else
   4596 				ath_beacon_config(sc);
   4597 			break;
   4598 		case IEEE80211_M_STA:
   4599 			/*
   4600 			 * Allocate a key cache slot to the station.
   4601 			 */
   4602 			if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
   4603 			    sc->sc_hasclrkey &&
   4604 			    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
   4605 				ath_setup_stationkey(ni);
   4606 			/*
   4607 			 * Defer beacon timer configuration to the next
   4608 			 * beacon frame so we have a current TSF to use
   4609 			 * (any TSF collected when scanning is likely old).
   4610 			 */
   4611 			sc->sc_syncbeacon = 1;
   4612 			break;
   4613 		default:
   4614 			break;
   4615 		}
   4616 		/*
   4617 		 * Let the hal process statistics collected during a
   4618 		 * scan so it can provide calibrated noise floor data.
   4619 		 */
   4620 		ath_hal_process_noisefloor(ah);
   4621 		/*
   4622 		 * Reset rssi stats; maybe not the best place...
   4623 		 */
   4624 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
   4625 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
   4626 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
   4627 	} else {
   4628 		ath_hal_intrset(ah,
   4629 			sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
   4630 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
   4631 	}
   4632 done:
   4633 	/*
   4634 	 * Invoke the parent method to complete the work.
   4635 	 */
   4636 	error = sc->sc_newstate(ic, nstate, arg);
   4637 	/*
   4638 	 * Finally, start any timers.
   4639 	 */
   4640 	if (nstate == IEEE80211_S_RUN) {
   4641 		/* start periodic recalibration timer */
   4642 		callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
   4643 			ath_calibrate, sc);
   4644 	} else if (nstate == IEEE80211_S_SCAN) {
   4645 		/* start ap/neighbor scan timer */
   4646 		callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
   4647 			ath_next_scan, sc);
   4648 	}
   4649 bad:
   4650 	return error;
   4651 }
   4652 
   4653 /*
   4654  * Allocate a key cache slot to the station so we can
   4655  * setup a mapping from key index to node. The key cache
   4656  * slot is needed for managing antenna state and for
   4657  * compression when stations do not use crypto.  We do
   4658  * it uniliaterally here; if crypto is employed this slot
   4659  * will be reassigned.
   4660  */
   4661 static void
   4662 ath_setup_stationkey(struct ieee80211_node *ni)
   4663 {
   4664 	struct ieee80211com *ic = ni->ni_ic;
   4665 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   4666 	ieee80211_keyix keyix, rxkeyix;
   4667 
   4668 	if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
   4669 		/*
   4670 		 * Key cache is full; we'll fall back to doing
   4671 		 * the more expensive lookup in software.  Note
   4672 		 * this also means no h/w compression.
   4673 		 */
   4674 		/* XXX msg+statistic */
   4675 	} else {
   4676 		/* XXX locking? */
   4677 		ni->ni_ucastkey.wk_keyix = keyix;
   4678 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
   4679 		/* NB: this will create a pass-thru key entry */
   4680 		ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
   4681 	}
   4682 }
   4683 
   4684 /*
   4685  * Setup driver-specific state for a newly associated node.
   4686  * Note that we're called also on a re-associate, the isnew
   4687  * param tells us if this is the first time or not.
   4688  */
   4689 static void
   4690 ath_newassoc(struct ieee80211_node *ni, int isnew)
   4691 {
   4692 	struct ieee80211com *ic = ni->ni_ic;
   4693 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   4694 
   4695 	ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
   4696 	if (isnew &&
   4697 	    (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
   4698 		KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
   4699 		    ("new assoc with a unicast key already setup (keyix %u)",
   4700 		    ni->ni_ucastkey.wk_keyix));
   4701 		ath_setup_stationkey(ni);
   4702 	}
   4703 }
   4704 
   4705 static int
   4706 ath_getchannels(struct ath_softc *sc, u_int cc,
   4707 	HAL_BOOL outdoor, HAL_BOOL xchanmode)
   4708 {
   4709 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
   4710 	struct ieee80211com *ic = &sc->sc_ic;
   4711 	struct ifnet *ifp = &sc->sc_if;
   4712 	struct ath_hal *ah = sc->sc_ah;
   4713 	HAL_CHANNEL *chans;
   4714 	int i, ix, nchan;
   4715 
   4716 	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
   4717 			M_TEMP, M_NOWAIT);
   4718 	if (chans == NULL) {
   4719 		if_printf(ifp, "unable to allocate channel table\n");
   4720 		return ENOMEM;
   4721 	}
   4722 	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
   4723 	    NULL, 0, NULL,
   4724 	    cc, HAL_MODE_ALL, outdoor, xchanmode)) {
   4725 		u_int32_t rd;
   4726 
   4727 		(void)ath_hal_getregdomain(ah, &rd);
   4728 		if_printf(ifp, "unable to collect channel list from hal; "
   4729 			"regdomain likely %u country code %u\n", rd, cc);
   4730 		free(chans, M_TEMP);
   4731 		return EINVAL;
   4732 	}
   4733 
   4734 	/*
   4735 	 * Convert HAL channels to ieee80211 ones and insert
   4736 	 * them in the table according to their channel number.
   4737 	 */
   4738 	for (i = 0; i < nchan; i++) {
   4739 		HAL_CHANNEL *c = &chans[i];
   4740 		u_int16_t flags;
   4741 
   4742 		ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags);
   4743 		if (ix > IEEE80211_CHAN_MAX) {
   4744 			if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n",
   4745 				ix, c->channel, c->channelFlags);
   4746 			continue;
   4747 		}
   4748 		if (ix < 0) {
   4749 			/* XXX can't handle stuff <2400 right now */
   4750 			if (bootverbose)
   4751 				if_printf(ifp, "hal channel %d (%u/%x) "
   4752 				    "cannot be handled; ignored\n",
   4753 				    ix, c->channel, c->channelFlags);
   4754 			continue;
   4755 		}
   4756 		/*
   4757 		 * Calculate net80211 flags; most are compatible
   4758 		 * but some need massaging.  Note the static turbo
   4759 		 * conversion can be removed once net80211 is updated
   4760 		 * to understand static vs. dynamic turbo.
   4761 		 */
   4762 		flags = c->channelFlags & COMPAT;
   4763 		if (c->channelFlags & CHANNEL_STURBO)
   4764 			flags |= IEEE80211_CHAN_TURBO;
   4765 		if (ic->ic_channels[ix].ic_freq == 0) {
   4766 			ic->ic_channels[ix].ic_freq = c->channel;
   4767 			ic->ic_channels[ix].ic_flags = flags;
   4768 		} else {
   4769 			/* channels overlap; e.g. 11g and 11b */
   4770 			ic->ic_channels[ix].ic_flags |= flags;
   4771 		}
   4772 	}
   4773 	free(chans, M_TEMP);
   4774 	return 0;
   4775 #undef COMPAT
   4776 }
   4777 
   4778 static void
   4779 ath_led_done(void *arg)
   4780 {
   4781 	struct ath_softc *sc = arg;
   4782 
   4783 	sc->sc_blinking = 0;
   4784 }
   4785 
   4786 /*
   4787  * Turn the LED off: flip the pin and then set a timer so no
   4788  * update will happen for the specified duration.
   4789  */
   4790 static void
   4791 ath_led_off(void *arg)
   4792 {
   4793 	struct ath_softc *sc = arg;
   4794 
   4795 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
   4796 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
   4797 }
   4798 
   4799 /*
   4800  * Blink the LED according to the specified on/off times.
   4801  */
   4802 static void
   4803 ath_led_blink(struct ath_softc *sc, int on, int off)
   4804 {
   4805 	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
   4806 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
   4807 	sc->sc_blinking = 1;
   4808 	sc->sc_ledoff = off;
   4809 	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
   4810 }
   4811 
   4812 static void
   4813 ath_led_event(struct ath_softc *sc, int event)
   4814 {
   4815 
   4816 	sc->sc_ledevent = ticks;	/* time of last event */
   4817 	if (sc->sc_blinking)		/* don't interrupt active blink */
   4818 		return;
   4819 	switch (event) {
   4820 	case ATH_LED_POLL:
   4821 		ath_led_blink(sc, sc->sc_hwmap[0].ledon,
   4822 			sc->sc_hwmap[0].ledoff);
   4823 		break;
   4824 	case ATH_LED_TX:
   4825 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
   4826 			sc->sc_hwmap[sc->sc_txrate].ledoff);
   4827 		break;
   4828 	case ATH_LED_RX:
   4829 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
   4830 			sc->sc_hwmap[sc->sc_rxrate].ledoff);
   4831 		break;
   4832 	}
   4833 }
   4834 
   4835 static void
   4836 ath_update_txpow(struct ath_softc *sc)
   4837 {
   4838 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
   4839 	struct ieee80211com *ic = &sc->sc_ic;
   4840 	struct ath_hal *ah = sc->sc_ah;
   4841 	u_int32_t txpow;
   4842 
   4843 	if (sc->sc_curtxpow != ic->ic_txpowlimit) {
   4844 		ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
   4845 		/* read back in case value is clamped */
   4846 		(void)ath_hal_gettxpowlimit(ah, &txpow);
   4847 		ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
   4848 	}
   4849 	/*
   4850 	 * Fetch max tx power level for status requests.
   4851 	 */
   4852 	(void)ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
   4853 	ic->ic_bss->ni_txpower = txpow;
   4854 }
   4855 
   4856 static void
   4857 rate_setup(struct ath_softc *sc,
   4858 	const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs)
   4859 {
   4860 	int i, maxrates;
   4861 
   4862 	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
   4863 		DPRINTF(sc, ATH_DEBUG_ANY,
   4864 			"%s: rate table too small (%u > %u)\n",
   4865 		       __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
   4866 		maxrates = IEEE80211_RATE_MAXSIZE;
   4867 	} else
   4868 		maxrates = rt->rateCount;
   4869 	for (i = 0; i < maxrates; i++)
   4870 		rs->rs_rates[i] = rt->info[i].dot11Rate;
   4871 	rs->rs_nrates = maxrates;
   4872 }
   4873 
   4874 static int
   4875 ath_rate_setup(struct ath_softc *sc, u_int mode)
   4876 {
   4877 	struct ath_hal *ah = sc->sc_ah;
   4878 	struct ieee80211com *ic = &sc->sc_ic;
   4879 	const HAL_RATE_TABLE *rt;
   4880 
   4881 	switch (mode) {
   4882 	case IEEE80211_MODE_11A:
   4883 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
   4884 		break;
   4885 	case IEEE80211_MODE_11B:
   4886 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
   4887 		break;
   4888 	case IEEE80211_MODE_11G:
   4889 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
   4890 		break;
   4891 	case IEEE80211_MODE_TURBO_A:
   4892 		/* XXX until static/dynamic turbo is fixed */
   4893 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
   4894 		break;
   4895 	case IEEE80211_MODE_TURBO_G:
   4896 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
   4897 		break;
   4898 	default:
   4899 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
   4900 			__func__, mode);
   4901 		return 0;
   4902 	}
   4903 	sc->sc_rates[mode] = rt;
   4904 	if (rt != NULL) {
   4905 		rate_setup(sc, rt, &ic->ic_sup_rates[mode]);
   4906 		return 1;
   4907 	} else
   4908 		return 0;
   4909 }
   4910 
   4911 static void
   4912 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
   4913 {
   4914 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   4915 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
   4916 	static const struct {
   4917 		u_int		rate;		/* tx/rx 802.11 rate */
   4918 		u_int16_t	timeOn;		/* LED on time (ms) */
   4919 		u_int16_t	timeOff;	/* LED off time (ms) */
   4920 	} blinkrates[] = {
   4921 		{ 108,  40,  10 },
   4922 		{  96,  44,  11 },
   4923 		{  72,  50,  13 },
   4924 		{  48,  57,  14 },
   4925 		{  36,  67,  16 },
   4926 		{  24,  80,  20 },
   4927 		{  22, 100,  25 },
   4928 		{  18, 133,  34 },
   4929 		{  12, 160,  40 },
   4930 		{  10, 200,  50 },
   4931 		{   6, 240,  58 },
   4932 		{   4, 267,  66 },
   4933 		{   2, 400, 100 },
   4934 		{   0, 500, 130 },
   4935 	};
   4936 	const HAL_RATE_TABLE *rt;
   4937 	int i, j;
   4938 
   4939 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
   4940 	rt = sc->sc_rates[mode];
   4941 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
   4942 	for (i = 0; i < rt->rateCount; i++)
   4943 		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
   4944 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
   4945 	for (i = 0; i < 32; i++) {
   4946 		u_int8_t ix = rt->rateCodeToIndex[i];
   4947 		if (ix == 0xff) {
   4948 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
   4949 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
   4950 			continue;
   4951 		}
   4952 		sc->sc_hwmap[i].ieeerate =
   4953 			rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
   4954 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
   4955 		if (rt->info[ix].shortPreamble ||
   4956 		    rt->info[ix].phy == IEEE80211_T_OFDM)
   4957 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
   4958 		/* NB: receive frames include FCS */
   4959 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
   4960 			IEEE80211_RADIOTAP_F_FCS;
   4961 		/* setup blink rate table to avoid per-packet lookup */
   4962 		for (j = 0; j < N(blinkrates)-1; j++)
   4963 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
   4964 				break;
   4965 		/* NB: this uses the last entry if the rate isn't found */
   4966 		/* XXX beware of overlow */
   4967 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
   4968 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
   4969 	}
   4970 	sc->sc_currates = rt;
   4971 	sc->sc_curmode = mode;
   4972 	/*
   4973 	 * All protection frames are transmited at 2Mb/s for
   4974 	 * 11g, otherwise at 1Mb/s.
   4975 	 */
   4976 	if (mode == IEEE80211_MODE_11G)
   4977 		sc->sc_protrix = ath_tx_findrix(rt, 2*2);
   4978 	else
   4979 		sc->sc_protrix = ath_tx_findrix(rt, 2*1);
   4980 	/* rate index used to send management frames */
   4981 	sc->sc_minrateix = 0;
   4982 	/*
   4983 	 * Setup multicast rate state.
   4984 	 */
   4985 	/* XXX layering violation */
   4986 	sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate);
   4987 	sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate;
   4988 	/* NB: caller is responsible for reseting rate control state */
   4989 #undef N
   4990 }
   4991 
   4992 #ifdef AR_DEBUG
   4993 static void
   4994 ath_printrxbuf(struct ath_buf *bf, int done)
   4995 {
   4996 	struct ath_desc *ds;
   4997 	int i;
   4998 
   4999 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
   5000 		printf("R%d (%p %" PRIx64
   5001 		    ") %08x %08x %08x %08x %08x %08x %02x %02x %c\n", i, ds,
   5002 		    (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
   5003 		    ds->ds_link, ds->ds_data,
   5004 		    ds->ds_ctl0, ds->ds_ctl1,
   5005 		    ds->ds_hw[0], ds->ds_hw[1],
   5006 		    ds->ds_rxstat.rs_status, ds->ds_rxstat.rs_keyix,
   5007 		    !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
   5008 	}
   5009 }
   5010 
   5011 static void
   5012 ath_printtxbuf(struct ath_buf *bf, int done)
   5013 {
   5014 	struct ath_desc *ds;
   5015 	int i;
   5016 
   5017 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
   5018 		printf("T%d (%p %" PRIx64
   5019 		    ") %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
   5020 		    i, ds,
   5021 		    (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
   5022 		    ds->ds_link, ds->ds_data,
   5023 		    ds->ds_ctl0, ds->ds_ctl1,
   5024 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
   5025 		    !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
   5026 	}
   5027 }
   5028 #endif /* AR_DEBUG */
   5029 
   5030 static void
   5031 ath_watchdog(struct ifnet *ifp)
   5032 {
   5033 	struct ath_softc *sc = ifp->if_softc;
   5034 	struct ieee80211com *ic = &sc->sc_ic;
   5035 	struct ath_txq *axq;
   5036 	int i;
   5037 
   5038 	ifp->if_timer = 0;
   5039 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
   5040 	    !device_is_active(&sc->sc_dev))
   5041 		return;
   5042 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
   5043 		if (!ATH_TXQ_SETUP(sc, i))
   5044 			continue;
   5045 		axq = &sc->sc_txq[i];
   5046 		ATH_TXQ_LOCK(axq);
   5047 		if (axq->axq_timer == 0)
   5048 			;
   5049 		else if (--axq->axq_timer == 0) {
   5050 			ATH_TXQ_UNLOCK(axq);
   5051 			if_printf(ifp, "device timeout (txq %d, "
   5052 			    "txintrperiod %d)\n", i, sc->sc_txintrperiod);
   5053 			if (sc->sc_txintrperiod > 1)
   5054 				sc->sc_txintrperiod--;
   5055 			ath_reset(ifp);
   5056 			ifp->if_oerrors++;
   5057 			sc->sc_stats.ast_watchdog++;
   5058 			break;
   5059 		} else
   5060 			ifp->if_timer = 1;
   5061 		ATH_TXQ_UNLOCK(axq);
   5062 	}
   5063 	ieee80211_watchdog(ic);
   5064 }
   5065 
   5066 /*
   5067  * Diagnostic interface to the HAL.  This is used by various
   5068  * tools to do things like retrieve register contents for
   5069  * debugging.  The mechanism is intentionally opaque so that
   5070  * it can change frequently w/o concern for compatiblity.
   5071  */
   5072 static int
   5073 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
   5074 {
   5075 	struct ath_hal *ah = sc->sc_ah;
   5076 	u_int id = ad->ad_id & ATH_DIAG_ID;
   5077 	void *indata = NULL;
   5078 	void *outdata = NULL;
   5079 	u_int32_t insize = ad->ad_in_size;
   5080 	u_int32_t outsize = ad->ad_out_size;
   5081 	int error = 0;
   5082 
   5083 	if (ad->ad_id & ATH_DIAG_IN) {
   5084 		/*
   5085 		 * Copy in data.
   5086 		 */
   5087 		indata = malloc(insize, M_TEMP, M_NOWAIT);
   5088 		if (indata == NULL) {
   5089 			error = ENOMEM;
   5090 			goto bad;
   5091 		}
   5092 		error = copyin(ad->ad_in_data, indata, insize);
   5093 		if (error)
   5094 			goto bad;
   5095 	}
   5096 	if (ad->ad_id & ATH_DIAG_DYN) {
   5097 		/*
   5098 		 * Allocate a buffer for the results (otherwise the HAL
   5099 		 * returns a pointer to a buffer where we can read the
   5100 		 * results).  Note that we depend on the HAL leaving this
   5101 		 * pointer for us to use below in reclaiming the buffer;
   5102 		 * may want to be more defensive.
   5103 		 */
   5104 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
   5105 		if (outdata == NULL) {
   5106 			error = ENOMEM;
   5107 			goto bad;
   5108 		}
   5109 	}
   5110 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
   5111 		if (outsize < ad->ad_out_size)
   5112 			ad->ad_out_size = outsize;
   5113 		if (outdata != NULL)
   5114 			error = copyout(outdata, ad->ad_out_data,
   5115 					ad->ad_out_size);
   5116 	} else {
   5117 		error = EINVAL;
   5118 	}
   5119 bad:
   5120 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
   5121 		free(indata, M_TEMP);
   5122 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
   5123 		free(outdata, M_TEMP);
   5124 	return error;
   5125 }
   5126 
   5127 static int
   5128 ath_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   5129 {
   5130 #define	IS_RUNNING(ifp) \
   5131 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
   5132 	struct ath_softc *sc = ifp->if_softc;
   5133 	struct ieee80211com *ic = &sc->sc_ic;
   5134 	struct ifreq *ifr = (struct ifreq *)data;
   5135 	int error = 0;
   5136 
   5137 	ATH_LOCK(sc);
   5138 	switch (cmd) {
   5139 	case SIOCSIFFLAGS:
   5140 		if (IS_RUNNING(ifp)) {
   5141 			/*
   5142 			 * To avoid rescanning another access point,
   5143 			 * do not call ath_init() here.  Instead,
   5144 			 * only reflect promisc mode settings.
   5145 			 */
   5146 			ath_mode_init(sc);
   5147 		} else if (ifp->if_flags & IFF_UP) {
   5148 			/*
   5149 			 * Beware of being called during attach/detach
   5150 			 * to reset promiscuous mode.  In that case we
   5151 			 * will still be marked UP but not RUNNING.
   5152 			 * However trying to re-init the interface
   5153 			 * is the wrong thing to do as we've already
   5154 			 * torn down much of our state.  There's
   5155 			 * probably a better way to deal with this.
   5156 			 */
   5157 			error = ath_init(sc);
   5158 		} else if (device_is_active(&sc->sc_dev))
   5159 			ath_stop_locked(ifp, 1);
   5160 		break;
   5161 	case SIOCADDMULTI:
   5162 	case SIOCDELMULTI:
   5163 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
   5164 			if (ifp->if_flags & IFF_RUNNING)
   5165 				ath_mode_init(sc);
   5166 			error = 0;
   5167 		}
   5168 		break;
   5169 	case SIOCGATHSTATS:
   5170 		/* NB: embed these numbers to get a consistent view */
   5171 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
   5172 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
   5173 		sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
   5174 		ATH_UNLOCK(sc);
   5175 		/*
   5176 		 * NB: Drop the softc lock in case of a page fault;
   5177 		 * we'll accept any potential inconsisentcy in the
   5178 		 * statistics.  The alternative is to copy the data
   5179 		 * to a local structure.
   5180 		 */
   5181 		return copyout(&sc->sc_stats,
   5182 				ifr->ifr_data, sizeof (sc->sc_stats));
   5183 	case SIOCGATHDIAG:
   5184 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
   5185 		break;
   5186 	default:
   5187 		error = ieee80211_ioctl(ic, cmd, data);
   5188 		if (error != ENETRESET)
   5189 			;
   5190 		else if (IS_RUNNING(ifp) &&
   5191 		         ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
   5192 			error = ath_init(sc);
   5193 		else
   5194 			error = 0;
   5195 		break;
   5196 	}
   5197 	ATH_UNLOCK(sc);
   5198 	return error;
   5199 #undef IS_RUNNING
   5200 }
   5201 
   5202 #if NBPFILTER > 0
   5203 static void
   5204 ath_bpfattach(struct ath_softc *sc)
   5205 {
   5206 	struct ifnet *ifp = &sc->sc_if;
   5207 
   5208 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
   5209 		sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
   5210 		&sc->sc_drvbpf);
   5211 	/*
   5212 	 * Initialize constant fields.
   5213 	 * XXX make header lengths a multiple of 32-bits so subsequent
   5214 	 *     headers are properly aligned; this is a kludge to keep
   5215 	 *     certain applications happy.
   5216 	 *
   5217 	 * NB: the channel is setup each time we transition to the
   5218 	 *     RUN state to avoid filling it in for each frame.
   5219 	 */
   5220 	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
   5221 	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
   5222 	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
   5223 
   5224 	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
   5225 	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
   5226 	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
   5227 }
   5228 #endif
   5229 
   5230 /*
   5231  * Announce various information on device/driver attach.
   5232  */
   5233 static void
   5234 ath_announce(struct ath_softc *sc)
   5235 {
   5236 #define	HAL_MODE_DUALBAND	(HAL_MODE_11A|HAL_MODE_11B)
   5237 	struct ifnet *ifp = &sc->sc_if;
   5238 	struct ath_hal *ah = sc->sc_ah;
   5239 	u_int modes, cc;
   5240 
   5241 	if_printf(ifp, "mac %d.%d phy %d.%d",
   5242 		ah->ah_macVersion, ah->ah_macRev,
   5243 		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
   5244 	/*
   5245 	 * Print radio revision(s).  We check the wireless modes
   5246 	 * to avoid falsely printing revs for inoperable parts.
   5247 	 * Dual-band radio revs are returned in the 5 GHz rev number.
   5248 	 */
   5249 	ath_hal_getcountrycode(ah, &cc);
   5250 	modes = ath_hal_getwirelessmodes(ah, cc);
   5251 	if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
   5252 		if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
   5253 			printf(" 5 GHz radio %d.%d 2 GHz radio %d.%d",
   5254 				ah->ah_analog5GhzRev >> 4,
   5255 				ah->ah_analog5GhzRev & 0xf,
   5256 				ah->ah_analog2GhzRev >> 4,
   5257 				ah->ah_analog2GhzRev & 0xf);
   5258 		else
   5259 			printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
   5260 				ah->ah_analog5GhzRev & 0xf);
   5261 	} else
   5262 		printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
   5263 			ah->ah_analog5GhzRev & 0xf);
   5264 	printf("\n");
   5265 	if (bootverbose) {
   5266 		int i;
   5267 		for (i = 0; i <= WME_AC_VO; i++) {
   5268 			struct ath_txq *txq = sc->sc_ac2q[i];
   5269 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
   5270 				txq->axq_qnum, ieee80211_wme_acnames[i]);
   5271 		}
   5272 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
   5273 			sc->sc_cabq->axq_qnum);
   5274 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
   5275 	}
   5276 	if (ath_rxbuf != ATH_RXBUF)
   5277 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
   5278 	if (ath_txbuf != ATH_TXBUF)
   5279 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
   5280 #undef HAL_MODE_DUALBAND
   5281 }
   5282