Home | History | Annotate | Line # | Download | only in ic
ath.c revision 1.99.4.4
      1 /*	$NetBSD: ath.c,v 1.99.4.4 2010/03/11 15:03:28 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer,
     12  *    without modification.
     13  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
     14  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
     15  *    redistribution must be conditioned upon including a substantially
     16  *    similar Disclaimer requirement for further binary redistribution.
     17  * 3. Neither the names of the above-listed copyright holders nor the names
     18  *    of any contributors may be used to endorse or promote products derived
     19  *    from this software without specific prior written permission.
     20  *
     21  * Alternatively, this software may be distributed under the terms of the
     22  * GNU General Public License ("GPL") version 2 as published by the Free
     23  * Software Foundation.
     24  *
     25  * NO WARRANTY
     26  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     28  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
     29  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
     30  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
     31  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
     34  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     36  * THE POSSIBILITY OF SUCH DAMAGES.
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 #ifdef __FreeBSD__
     41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $");
     42 #endif
     43 #ifdef __NetBSD__
     44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.99.4.4 2010/03/11 15:03:28 yamt Exp $");
     45 #endif
     46 
     47 /*
     48  * Driver for the Atheros Wireless LAN controller.
     49  *
     50  * This software is derived from work of Atsushi Onoe; his contribution
     51  * is greatly appreciated.
     52  */
     53 
     54 #include "opt_inet.h"
     55 
     56 #include <sys/param.h>
     57 #include <sys/reboot.h>
     58 #include <sys/systm.h>
     59 #include <sys/types.h>
     60 #include <sys/sysctl.h>
     61 #include <sys/mbuf.h>
     62 #include <sys/malloc.h>
     63 #include <sys/kernel.h>
     64 #include <sys/socket.h>
     65 #include <sys/sockio.h>
     66 #include <sys/errno.h>
     67 #include <sys/callout.h>
     68 #include <sys/bus.h>
     69 #include <sys/endian.h>
     70 
     71 #include <net/if.h>
     72 #include <net/if_dl.h>
     73 #include <net/if_media.h>
     74 #include <net/if_types.h>
     75 #include <net/if_arp.h>
     76 #include <net/if_ether.h>
     77 #include <net/if_llc.h>
     78 
     79 #include <net80211/ieee80211_netbsd.h>
     80 #include <net80211/ieee80211_var.h>
     81 
     82 #include <net/bpf.h>
     83 
     84 #ifdef INET
     85 #include <netinet/in.h>
     86 #endif
     87 
     88 #include <sys/device.h>
     89 #include <dev/ic/ath_netbsd.h>
     90 
     91 #define	AR_DEBUG
     92 #include <dev/ic/athvar.h>
     93 #include "ah_desc.h"
     94 #include "ah_devid.h"	/* XXX for softled */
     95 #include "opt_ah.h"
     96 
     97 #ifdef ATH_TX99_DIAG
     98 #include <dev/ath/ath_tx99/ath_tx99.h>
     99 #endif
    100 
    101 /* unaligned little endian access */
    102 #define LE_READ_2(p)							\
    103 	((u_int16_t)							\
    104 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
    105 #define LE_READ_4(p)							\
    106 	((u_int32_t)							\
    107 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
    108 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
    109 
    110 enum {
    111 	ATH_LED_TX,
    112 	ATH_LED_RX,
    113 	ATH_LED_POLL,
    114 };
    115 
    116 #ifdef	AH_NEED_DESC_SWAP
    117 #define	HTOAH32(x)	htole32(x)
    118 #else
    119 #define	HTOAH32(x)	(x)
    120 #endif
    121 
    122 static int	ath_ifinit(struct ifnet *);
    123 static int	ath_init(struct ath_softc *);
    124 static void	ath_stop_locked(struct ifnet *, int);
    125 static void	ath_stop(struct ifnet *, int);
    126 static void	ath_start(struct ifnet *);
    127 static int	ath_media_change(struct ifnet *);
    128 static void	ath_watchdog(struct ifnet *);
    129 static int	ath_ioctl(struct ifnet *, u_long, void *);
    130 static void	ath_fatal_proc(void *, int);
    131 static void	ath_rxorn_proc(void *, int);
    132 static void	ath_bmiss_proc(void *, int);
    133 static void	ath_radar_proc(void *, int);
    134 static int	ath_key_alloc(struct ieee80211com *,
    135 			const struct ieee80211_key *,
    136 			ieee80211_keyix *, ieee80211_keyix *);
    137 static int	ath_key_delete(struct ieee80211com *,
    138 			const struct ieee80211_key *);
    139 static int	ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
    140 			const u_int8_t mac[IEEE80211_ADDR_LEN]);
    141 static void	ath_key_update_begin(struct ieee80211com *);
    142 static void	ath_key_update_end(struct ieee80211com *);
    143 static void	ath_mode_init(struct ath_softc *);
    144 static void	ath_setslottime(struct ath_softc *);
    145 static void	ath_updateslot(struct ifnet *);
    146 static int	ath_beaconq_setup(struct ath_hal *);
    147 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
    148 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
    149 static void	ath_beacon_proc(void *, int);
    150 static void	ath_bstuck_proc(void *, int);
    151 static void	ath_beacon_free(struct ath_softc *);
    152 static void	ath_beacon_config(struct ath_softc *);
    153 static void	ath_descdma_cleanup(struct ath_softc *sc,
    154 			struct ath_descdma *, ath_bufhead *);
    155 static int	ath_desc_alloc(struct ath_softc *);
    156 static void	ath_desc_free(struct ath_softc *);
    157 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
    158 static void	ath_node_free(struct ieee80211_node *);
    159 static u_int8_t	ath_node_getrssi(const struct ieee80211_node *);
    160 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
    161 static void	ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
    162 			struct ieee80211_node *ni,
    163 			int subtype, int rssi, u_int32_t rstamp);
    164 static void	ath_setdefantenna(struct ath_softc *, u_int);
    165 static void	ath_rx_proc(void *, int);
    166 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
    167 static int	ath_tx_setup(struct ath_softc *, int, int);
    168 static int	ath_wme_update(struct ieee80211com *);
    169 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
    170 static void	ath_tx_cleanup(struct ath_softc *);
    171 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
    172 			     struct ath_buf *, struct mbuf *);
    173 static void	ath_tx_proc_q0(void *, int);
    174 static void	ath_tx_proc_q0123(void *, int);
    175 static void	ath_tx_proc(void *, int);
    176 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
    177 static void	ath_draintxq(struct ath_softc *);
    178 static void	ath_stoprecv(struct ath_softc *);
    179 static int	ath_startrecv(struct ath_softc *);
    180 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
    181 static void	ath_next_scan(void *);
    182 static void	ath_calibrate(void *);
    183 static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
    184 static void	ath_setup_stationkey(struct ieee80211_node *);
    185 static void	ath_newassoc(struct ieee80211_node *, int);
    186 static int	ath_getchannels(struct ath_softc *, u_int cc,
    187 			HAL_BOOL outdoor, HAL_BOOL xchanmode);
    188 static void	ath_led_event(struct ath_softc *, int);
    189 static void	ath_update_txpow(struct ath_softc *);
    190 static void	ath_freetx(struct mbuf *);
    191 static void	ath_restore_diversity(struct ath_softc *);
    192 
    193 static int	ath_rate_setup(struct ath_softc *, u_int mode);
    194 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
    195 
    196 static void	ath_bpfattach(struct ath_softc *);
    197 static void	ath_announce(struct ath_softc *);
    198 
    199 int ath_dwelltime = 200;		/* 5 channels/second */
    200 int ath_calinterval = 30;		/* calibrate every 30 secs */
    201 int ath_outdoor = AH_TRUE;		/* outdoor operation */
    202 int ath_xchanmode = AH_TRUE;		/* enable extended channels */
    203 int ath_countrycode = CTRY_DEFAULT;	/* country code */
    204 int ath_regdomain = 0;			/* regulatory domain */
    205 int ath_debug = 0;
    206 int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
    207 int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
    208 
    209 #ifdef AR_DEBUG
    210 enum {
    211 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
    212 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
    213 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
    214 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
    215 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
    216 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
    217 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
    218 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
    219 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
    220 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
    221 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
    222 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
    223 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
    224 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
    225 	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
    226 	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
    227 	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
    228 	ATH_DEBUG_LED		= 0x00100000,	/* led management */
    229 	ATH_DEBUG_FF		= 0x00200000,	/* fast frames */
    230 	ATH_DEBUG_DFS		= 0x00400000,	/* DFS processing */
    231 	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
    232 	ATH_DEBUG_ANY		= 0xffffffff
    233 };
    234 #define	IFF_DUMPPKTS(sc, m) \
    235 	((sc->sc_debug & (m)) || \
    236 	    (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
    237 #define	DPRINTF(sc, m, fmt, ...) do {				\
    238 	if (sc->sc_debug & (m))					\
    239 		printf(fmt, __VA_ARGS__);			\
    240 } while (0)
    241 #define	KEYPRINTF(sc, ix, hk, mac) do {				\
    242 	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
    243 		ath_keyprint(__func__, ix, hk, mac);		\
    244 } while (0)
    245 static	void ath_printrxbuf(struct ath_buf *bf, int);
    246 static	void ath_printtxbuf(struct ath_buf *bf, int);
    247 #else
    248 #define        IFF_DUMPPKTS(sc, m) \
    249 	((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
    250 #define        DPRINTF(m, fmt, ...)
    251 #define        KEYPRINTF(sc, k, ix, mac)
    252 #endif
    253 
    254 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
    255 
    256 int
    257 ath_attach(u_int16_t devid, struct ath_softc *sc)
    258 {
    259 	struct ifnet *ifp = &sc->sc_if;
    260 	struct ieee80211com *ic = &sc->sc_ic;
    261 	struct ath_hal *ah = NULL;
    262 	HAL_STATUS status;
    263 	int error = 0, i;
    264 
    265 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
    266 
    267 	pmf_self_suspensor_init(sc->sc_dev, &sc->sc_suspensor, &sc->sc_qual);
    268 
    269 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    270 
    271 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
    272 	if (ah == NULL) {
    273 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
    274 			status);
    275 		error = ENXIO;
    276 		goto bad;
    277 	}
    278 	if (ah->ah_abi != HAL_ABI_VERSION) {
    279 		if_printf(ifp, "HAL ABI mismatch detected "
    280 			"(HAL:0x%x != driver:0x%x)\n",
    281 			ah->ah_abi, HAL_ABI_VERSION);
    282 		error = ENXIO;
    283 		goto bad;
    284 	}
    285 	sc->sc_ah = ah;
    286 
    287 	if (!prop_dictionary_set_bool(device_properties(sc->sc_dev),
    288 	    "pmf-powerdown", false))
    289 		goto bad;
    290 
    291 	/*
    292 	 * Check if the MAC has multi-rate retry support.
    293 	 * We do this by trying to setup a fake extended
    294 	 * descriptor.  MAC's that don't have support will
    295 	 * return false w/o doing anything.  MAC's that do
    296 	 * support it will return true w/o doing anything.
    297 	 */
    298 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
    299 
    300 	/*
    301 	 * Check if the device has hardware counters for PHY
    302 	 * errors.  If so we need to enable the MIB interrupt
    303 	 * so we can act on stat triggers.
    304 	 */
    305 	if (ath_hal_hwphycounters(ah))
    306 		sc->sc_needmib = 1;
    307 
    308 	/*
    309 	 * Get the hardware key cache size.
    310 	 */
    311 	sc->sc_keymax = ath_hal_keycachesize(ah);
    312 	if (sc->sc_keymax > ATH_KEYMAX) {
    313 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
    314 			ATH_KEYMAX, sc->sc_keymax);
    315 		sc->sc_keymax = ATH_KEYMAX;
    316 	}
    317 	/*
    318 	 * Reset the key cache since some parts do not
    319 	 * reset the contents on initial power up.
    320 	 */
    321 	for (i = 0; i < sc->sc_keymax; i++)
    322 		ath_hal_keyreset(ah, i);
    323 	/*
    324 	 * Mark key cache slots associated with global keys
    325 	 * as in use.  If we knew TKIP was not to be used we
    326 	 * could leave the +32, +64, and +32+64 slots free.
    327 	 * XXX only for splitmic.
    328 	 */
    329 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
    330 		setbit(sc->sc_keymap, i);
    331 		setbit(sc->sc_keymap, i+32);
    332 		setbit(sc->sc_keymap, i+64);
    333 		setbit(sc->sc_keymap, i+32+64);
    334 	}
    335 
    336 	/*
    337 	 * Collect the channel list using the default country
    338 	 * code and including outdoor channels.  The 802.11 layer
    339 	 * is resposible for filtering this list based on settings
    340 	 * like the phy mode.
    341 	 */
    342 	error = ath_getchannels(sc, ath_countrycode,
    343 			ath_outdoor, ath_xchanmode);
    344 	if (error != 0)
    345 		goto bad;
    346 
    347 	/*
    348 	 * Setup rate tables for all potential media types.
    349 	 */
    350 	ath_rate_setup(sc, IEEE80211_MODE_11A);
    351 	ath_rate_setup(sc, IEEE80211_MODE_11B);
    352 	ath_rate_setup(sc, IEEE80211_MODE_11G);
    353 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
    354 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
    355 	/* NB: setup here so ath_rate_update is happy */
    356 	ath_setcurmode(sc, IEEE80211_MODE_11A);
    357 
    358 	/*
    359 	 * Allocate tx+rx descriptors and populate the lists.
    360 	 */
    361 	error = ath_desc_alloc(sc);
    362 	if (error != 0) {
    363 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
    364 		goto bad;
    365 	}
    366 	ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
    367 	ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE);
    368 #if 0
    369 	ATH_CALLOUT_INIT(&sc->sc_dfs_ch, CALLOUT_MPSAFE);
    370 #endif
    371 
    372 	ATH_TXBUF_LOCK_INIT(sc);
    373 
    374 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
    375 	TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
    376 	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
    377 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
    378 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
    379 	TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc);
    380 
    381 	/*
    382 	 * Allocate hardware transmit queues: one queue for
    383 	 * beacon frames and one data queue for each QoS
    384 	 * priority.  Note that the hal handles reseting
    385 	 * these queues at the needed time.
    386 	 *
    387 	 * XXX PS-Poll
    388 	 */
    389 	sc->sc_bhalq = ath_beaconq_setup(ah);
    390 	if (sc->sc_bhalq == (u_int) -1) {
    391 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
    392 		error = EIO;
    393 		goto bad2;
    394 	}
    395 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
    396 	if (sc->sc_cabq == NULL) {
    397 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
    398 		error = EIO;
    399 		goto bad2;
    400 	}
    401 	/* NB: insure BK queue is the lowest priority h/w queue */
    402 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
    403 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
    404 			ieee80211_wme_acnames[WME_AC_BK]);
    405 		error = EIO;
    406 		goto bad2;
    407 	}
    408 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
    409 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
    410 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
    411 		/*
    412 		 * Not enough hardware tx queues to properly do WME;
    413 		 * just punt and assign them all to the same h/w queue.
    414 		 * We could do a better job of this if, for example,
    415 		 * we allocate queues when we switch from station to
    416 		 * AP mode.
    417 		 */
    418 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
    419 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
    420 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
    421 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
    422 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
    423 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
    424 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
    425 	}
    426 
    427 	/*
    428 	 * Special case certain configurations.  Note the
    429 	 * CAB queue is handled by these specially so don't
    430 	 * include them when checking the txq setup mask.
    431 	 */
    432 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
    433 	case 0x01:
    434 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
    435 		break;
    436 	case 0x0f:
    437 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
    438 		break;
    439 	default:
    440 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
    441 		break;
    442 	}
    443 
    444 	/*
    445 	 * Setup rate control.  Some rate control modules
    446 	 * call back to change the anntena state so expose
    447 	 * the necessary entry points.
    448 	 * XXX maybe belongs in struct ath_ratectrl?
    449 	 */
    450 	sc->sc_setdefantenna = ath_setdefantenna;
    451 	sc->sc_rc = ath_rate_attach(sc);
    452 	if (sc->sc_rc == NULL) {
    453 		error = EIO;
    454 		goto bad2;
    455 	}
    456 
    457 	sc->sc_blinking = 0;
    458 	sc->sc_ledstate = 1;
    459 	sc->sc_ledon = 0;			/* low true */
    460 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
    461 	ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE);
    462 	/*
    463 	 * Auto-enable soft led processing for IBM cards and for
    464 	 * 5211 minipci cards.  Users can also manually enable/disable
    465 	 * support with a sysctl.
    466 	 */
    467 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
    468 	if (sc->sc_softled) {
    469 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
    470 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
    471 	}
    472 
    473 	ifp->if_softc = sc;
    474 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
    475 	ifp->if_start = ath_start;
    476 	ifp->if_stop = ath_stop;
    477 	ifp->if_watchdog = ath_watchdog;
    478 	ifp->if_ioctl = ath_ioctl;
    479 	ifp->if_init = ath_ifinit;
    480 	IFQ_SET_READY(&ifp->if_snd);
    481 
    482 	ic->ic_ifp = ifp;
    483 	ic->ic_reset = ath_reset;
    484 	ic->ic_newassoc = ath_newassoc;
    485 	ic->ic_updateslot = ath_updateslot;
    486 	ic->ic_wme.wme_update = ath_wme_update;
    487 	/* XXX not right but it's not used anywhere important */
    488 	ic->ic_phytype = IEEE80211_T_OFDM;
    489 	ic->ic_opmode = IEEE80211_M_STA;
    490 	ic->ic_caps =
    491 		  IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
    492 		| IEEE80211_C_HOSTAP		/* hostap mode */
    493 		| IEEE80211_C_MONITOR		/* monitor mode */
    494 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
    495 		| IEEE80211_C_SHSLOT		/* short slot time supported */
    496 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
    497 		| IEEE80211_C_TXFRAG		/* handle tx frags */
    498 		;
    499 	/*
    500 	 * Query the hal to figure out h/w crypto support.
    501 	 */
    502 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
    503 		ic->ic_caps |= IEEE80211_C_WEP;
    504 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
    505 		ic->ic_caps |= IEEE80211_C_AES;
    506 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
    507 		ic->ic_caps |= IEEE80211_C_AES_CCM;
    508 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
    509 		ic->ic_caps |= IEEE80211_C_CKIP;
    510 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
    511 		ic->ic_caps |= IEEE80211_C_TKIP;
    512 		/*
    513 		 * Check if h/w does the MIC and/or whether the
    514 		 * separate key cache entries are required to
    515 		 * handle both tx+rx MIC keys.
    516 		 */
    517 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
    518 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
    519 
    520 		/*
    521 		 * If the h/w supports storing tx+rx MIC keys
    522 		 * in one cache slot automatically enable use.
    523 		 */
    524 		if (ath_hal_hastkipsplit(ah) ||
    525 		    !ath_hal_settkipsplit(ah, AH_FALSE))
    526 			sc->sc_splitmic = 1;
    527 
    528 		/*
    529 		 * If the h/w can do TKIP MIC together with WME then
    530 		 * we use it; otherwise we force the MIC to be done
    531 		 * in software by the net80211 layer.
    532 		 */
    533 		if (ath_hal_haswmetkipmic(ah))
    534 			ic->ic_caps |= IEEE80211_C_WME_TKIPMIC;
    535 	}
    536 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
    537 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
    538 	/*
    539 	 * Mark key cache slots associated with global keys
    540 	 * as in use.  If we knew TKIP was not to be used we
    541 	 * could leave the +32, +64, and +32+64 slots free.
    542 	 */
    543 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
    544 		setbit(sc->sc_keymap, i);
    545 		setbit(sc->sc_keymap, i+64);
    546 		if (sc->sc_splitmic) {
    547 			setbit(sc->sc_keymap, i+32);
    548 			setbit(sc->sc_keymap, i+32+64);
    549 		}
    550 	}
    551 	/*
    552 	 * TPC support can be done either with a global cap or
    553 	 * per-packet support.  The latter is not available on
    554 	 * all parts.  We're a bit pedantic here as all parts
    555 	 * support a global cap.
    556 	 */
    557 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
    558 		ic->ic_caps |= IEEE80211_C_TXPMGT;
    559 
    560 	/*
    561 	 * Mark WME capability only if we have sufficient
    562 	 * hardware queues to do proper priority scheduling.
    563 	 */
    564 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
    565 		ic->ic_caps |= IEEE80211_C_WME;
    566 	/*
    567 	 * Check for misc other capabilities.
    568 	 */
    569 	if (ath_hal_hasbursting(ah))
    570 		ic->ic_caps |= IEEE80211_C_BURST;
    571 
    572 	/*
    573 	 * Indicate we need the 802.11 header padded to a
    574 	 * 32-bit boundary for 4-address and QoS frames.
    575 	 */
    576 	ic->ic_flags |= IEEE80211_F_DATAPAD;
    577 
    578 	/*
    579 	 * Query the hal about antenna support.
    580 	 */
    581 	sc->sc_defant = ath_hal_getdefantenna(ah);
    582 
    583 	/*
    584 	 * Not all chips have the VEOL support we want to
    585 	 * use with IBSS beacons; check here for it.
    586 	 */
    587 	sc->sc_hasveol = ath_hal_hasveol(ah);
    588 
    589 	/* get mac address from hardware */
    590 	ath_hal_getmac(ah, ic->ic_myaddr);
    591 
    592 	if_attach(ifp);
    593 	/* call MI attach routine. */
    594 	ieee80211_ifattach(ic);
    595 	/* override default methods */
    596 	ic->ic_node_alloc = ath_node_alloc;
    597 	sc->sc_node_free = ic->ic_node_free;
    598 	ic->ic_node_free = ath_node_free;
    599 	ic->ic_node_getrssi = ath_node_getrssi;
    600 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
    601 	ic->ic_recv_mgmt = ath_recv_mgmt;
    602 	sc->sc_newstate = ic->ic_newstate;
    603 	ic->ic_newstate = ath_newstate;
    604 	ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
    605 	ic->ic_crypto.cs_key_alloc = ath_key_alloc;
    606 	ic->ic_crypto.cs_key_delete = ath_key_delete;
    607 	ic->ic_crypto.cs_key_set = ath_key_set;
    608 	ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
    609 	ic->ic_crypto.cs_key_update_end = ath_key_update_end;
    610 	/* complete initialization */
    611 	ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
    612 
    613 	ath_bpfattach(sc);
    614 
    615 	sc->sc_flags |= ATH_ATTACHED;
    616 
    617 	/*
    618 	 * Setup dynamic sysctl's now that country code and
    619 	 * regdomain are available from the hal.
    620 	 */
    621 	ath_sysctlattach(sc);
    622 
    623 	ieee80211_announce(ic);
    624 	ath_announce(sc);
    625 	return 0;
    626 bad2:
    627 	ath_tx_cleanup(sc);
    628 	ath_desc_free(sc);
    629 bad:
    630 	if (ah)
    631 		ath_hal_detach(ah);
    632 	/* XXX don't get under the abstraction like this */
    633 	sc->sc_dev->dv_flags &= ~DVF_ACTIVE;
    634 	return error;
    635 }
    636 
    637 int
    638 ath_detach(struct ath_softc *sc)
    639 {
    640 	struct ifnet *ifp = &sc->sc_if;
    641 	int s;
    642 
    643 	if ((sc->sc_flags & ATH_ATTACHED) == 0)
    644 		return (0);
    645 
    646 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
    647 		__func__, ifp->if_flags);
    648 
    649 	s = splnet();
    650 	ath_stop(ifp, 1);
    651 	bpf_ops->bpf_detach(ifp);
    652 	/*
    653 	 * NB: the order of these is important:
    654 	 * o call the 802.11 layer before detaching the hal to
    655 	 *   insure callbacks into the driver to delete global
    656 	 *   key cache entries can be handled
    657 	 * o reclaim the tx queue data structures after calling
    658 	 *   the 802.11 layer as we'll get called back to reclaim
    659 	 *   node state and potentially want to use them
    660 	 * o to cleanup the tx queues the hal is called, so detach
    661 	 *   it last
    662 	 * Other than that, it's straightforward...
    663 	 */
    664 	ieee80211_ifdetach(&sc->sc_ic);
    665 #ifdef ATH_TX99_DIAG
    666 	if (sc->sc_tx99 != NULL)
    667 		sc->sc_tx99->detach(sc->sc_tx99);
    668 #endif
    669 	ath_rate_detach(sc->sc_rc);
    670 	ath_desc_free(sc);
    671 	ath_tx_cleanup(sc);
    672 	sysctl_teardown(&sc->sc_sysctllog);
    673 	ath_hal_detach(sc->sc_ah);
    674 	if_detach(ifp);
    675 	splx(s);
    676 
    677 	return 0;
    678 }
    679 
    680 void
    681 ath_suspend(struct ath_softc *sc)
    682 {
    683 #if notyet
    684 	/*
    685 	 * Set the chip in full sleep mode.  Note that we are
    686 	 * careful to do this only when bringing the interface
    687 	 * completely to a stop.  When the chip is in this state
    688 	 * it must be carefully woken up or references to
    689 	 * registers in the PCI clock domain may freeze the bus
    690 	 * (and system).  This varies by chip and is mostly an
    691 	 * issue with newer parts that go to sleep more quickly.
    692 	 */
    693 	ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
    694 #endif
    695 }
    696 
    697 bool
    698 ath_resume(struct ath_softc *sc)
    699 {
    700 	struct ath_hal *ah = sc->sc_ah;
    701 	struct ieee80211com *ic = &sc->sc_ic;
    702 	HAL_STATUS status;
    703 	int i;
    704 
    705 #if notyet
    706 	ath_hal_setpower(ah, HAL_PM_AWAKE);
    707 #else
    708 	ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status);
    709 #endif
    710 
    711 	/*
    712 	 * Reset the key cache since some parts do not
    713 	 * reset the contents on initial power up.
    714 	 */
    715 	for (i = 0; i < sc->sc_keymax; i++)
    716 		ath_hal_keyreset(ah, i);
    717 
    718 	ath_hal_resettxqueue(ah, sc->sc_bhalq);
    719 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
    720 		if (ATH_TXQ_SETUP(sc, i))
    721 			ath_hal_resettxqueue(ah, i);
    722 
    723 	if (sc->sc_softled) {
    724 		ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
    725 		ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
    726 	}
    727 	return true;
    728 }
    729 
    730 /*
    731  * Interrupt handler.  Most of the actual processing is deferred.
    732  */
    733 int
    734 ath_intr(void *arg)
    735 {
    736 	struct ath_softc *sc = arg;
    737 	struct ifnet *ifp = &sc->sc_if;
    738 	struct ath_hal *ah = sc->sc_ah;
    739 	HAL_INT status;
    740 
    741 	if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER)) {
    742 		/*
    743 		 * The hardware is not ready/present, don't touch anything.
    744 		 * Note this can happen early on if the IRQ is shared.
    745 		 */
    746 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
    747 		return 0;
    748 	}
    749 
    750 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
    751 		return 0;
    752 
    753 	if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
    754 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
    755 			__func__, ifp->if_flags);
    756 		ath_hal_getisr(ah, &status);	/* clear ISR */
    757 		ath_hal_intrset(ah, 0);		/* disable further intr's */
    758 		return 1; /* XXX */
    759 	}
    760 	/*
    761 	 * Figure out the reason(s) for the interrupt.  Note
    762 	 * that the hal returns a pseudo-ISR that may include
    763 	 * bits we haven't explicitly enabled so we mask the
    764 	 * value to insure we only process bits we requested.
    765 	 */
    766 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
    767 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
    768 	status &= sc->sc_imask;			/* discard unasked for bits */
    769 	if (status & HAL_INT_FATAL) {
    770 		/*
    771 		 * Fatal errors are unrecoverable.  Typically
    772 		 * these are caused by DMA errors.  Unfortunately
    773 		 * the exact reason is not (presently) returned
    774 		 * by the hal.
    775 		 */
    776 		sc->sc_stats.ast_hardware++;
    777 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
    778 		TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
    779 	} else if (status & HAL_INT_RXORN) {
    780 		sc->sc_stats.ast_rxorn++;
    781 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
    782 		TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
    783 	} else {
    784 		if (status & HAL_INT_SWBA) {
    785 			/*
    786 			 * Software beacon alert--time to send a beacon.
    787 			 * Handle beacon transmission directly; deferring
    788 			 * this is too slow to meet timing constraints
    789 			 * under load.
    790 			 */
    791 			ath_beacon_proc(sc, 0);
    792 		}
    793 		if (status & HAL_INT_RXEOL) {
    794 			/*
    795 			 * NB: the hardware should re-read the link when
    796 			 *     RXE bit is written, but it doesn't work at
    797 			 *     least on older hardware revs.
    798 			 */
    799 			sc->sc_stats.ast_rxeol++;
    800 			sc->sc_rxlink = NULL;
    801 		}
    802 		if (status & HAL_INT_TXURN) {
    803 			sc->sc_stats.ast_txurn++;
    804 			/* bump tx trigger level */
    805 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
    806 		}
    807 		if (status & HAL_INT_RX)
    808 			TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
    809 		if (status & HAL_INT_TX)
    810 			TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
    811 		if (status & HAL_INT_BMISS) {
    812 			sc->sc_stats.ast_bmiss++;
    813 			TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
    814 		}
    815 		if (status & HAL_INT_MIB) {
    816 			sc->sc_stats.ast_mib++;
    817 			/*
    818 			 * Disable interrupts until we service the MIB
    819 			 * interrupt; otherwise it will continue to fire.
    820 			 */
    821 			ath_hal_intrset(ah, 0);
    822 			/*
    823 			 * Let the hal handle the event.  We assume it will
    824 			 * clear whatever condition caused the interrupt.
    825 			 */
    826 			ath_hal_mibevent(ah, &sc->sc_halstats);
    827 			ath_hal_intrset(ah, sc->sc_imask);
    828 		}
    829 	}
    830 	return 1;
    831 }
    832 
    833 /* Swap transmit descriptor.
    834  * if AH_NEED_DESC_SWAP flag is not defined this becomes a "null"
    835  * function.
    836  */
    837 static inline void
    838 ath_desc_swap(struct ath_desc *ds)
    839 {
    840 #ifdef AH_NEED_DESC_SWAP
    841 	ds->ds_link = htole32(ds->ds_link);
    842 	ds->ds_data = htole32(ds->ds_data);
    843 	ds->ds_ctl0 = htole32(ds->ds_ctl0);
    844 	ds->ds_ctl1 = htole32(ds->ds_ctl1);
    845 	ds->ds_hw[0] = htole32(ds->ds_hw[0]);
    846 	ds->ds_hw[1] = htole32(ds->ds_hw[1]);
    847 #endif
    848 }
    849 
    850 static void
    851 ath_fatal_proc(void *arg, int pending)
    852 {
    853 	struct ath_softc *sc = arg;
    854 	struct ifnet *ifp = &sc->sc_if;
    855 
    856 	if_printf(ifp, "hardware error; resetting\n");
    857 	ath_reset(ifp);
    858 }
    859 
    860 static void
    861 ath_rxorn_proc(void *arg, int pending)
    862 {
    863 	struct ath_softc *sc = arg;
    864 	struct ifnet *ifp = &sc->sc_if;
    865 
    866 	if_printf(ifp, "rx FIFO overrun; resetting\n");
    867 	ath_reset(ifp);
    868 }
    869 
    870 static void
    871 ath_bmiss_proc(void *arg, int pending)
    872 {
    873 	struct ath_softc *sc = arg;
    874 	struct ieee80211com *ic = &sc->sc_ic;
    875 
    876 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
    877 	KASSERT(ic->ic_opmode == IEEE80211_M_STA,
    878 		("unexpect operating mode %u", ic->ic_opmode));
    879 	if (ic->ic_state == IEEE80211_S_RUN) {
    880 		u_int64_t lastrx = sc->sc_lastrx;
    881 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
    882 
    883 		DPRINTF(sc, ATH_DEBUG_BEACON,
    884 		    "%s: tsf %" PRIu64 " lastrx %" PRId64
    885 		    " (%" PRIu64 ") bmiss %u\n",
    886 		    __func__, tsf, tsf - lastrx, lastrx,
    887 		    ic->ic_bmisstimeout*1024);
    888 		/*
    889 		 * Workaround phantom bmiss interrupts by sanity-checking
    890 		 * the time of our last rx'd frame.  If it is within the
    891 		 * beacon miss interval then ignore the interrupt.  If it's
    892 		 * truly a bmiss we'll get another interrupt soon and that'll
    893 		 * be dispatched up for processing.
    894 		 */
    895 		if (tsf - lastrx > ic->ic_bmisstimeout*1024) {
    896 			NET_LOCK_GIANT();
    897 			ieee80211_beacon_miss(ic);
    898 			NET_UNLOCK_GIANT();
    899 		} else
    900 			sc->sc_stats.ast_bmiss_phantom++;
    901 	}
    902 }
    903 
    904 static void
    905 ath_radar_proc(void *arg, int pending)
    906 {
    907 #if 0
    908 	struct ath_softc *sc = arg;
    909 	struct ifnet *ifp = &sc->sc_if;
    910 	struct ath_hal *ah = sc->sc_ah;
    911 	HAL_CHANNEL hchan;
    912 
    913 	if (ath_hal_procdfs(ah, &hchan)) {
    914 		if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n",
    915 			hchan.channel, hchan.channelFlags, hchan.privFlags);
    916 		/*
    917 		 * Initiate channel change.
    918 		 */
    919 		/* XXX not yet */
    920 	}
    921 #endif
    922 }
    923 
    924 static u_int
    925 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
    926 {
    927 #define	N(a)	(sizeof(a) / sizeof(a[0]))
    928 	static const u_int modeflags[] = {
    929 		0,			/* IEEE80211_MODE_AUTO */
    930 		CHANNEL_A,		/* IEEE80211_MODE_11A */
    931 		CHANNEL_B,		/* IEEE80211_MODE_11B */
    932 		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
    933 		0,			/* IEEE80211_MODE_FH */
    934 		CHANNEL_ST,		/* IEEE80211_MODE_TURBO_A */
    935 		CHANNEL_108G		/* IEEE80211_MODE_TURBO_G */
    936 	};
    937 	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
    938 
    939 	KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
    940 	KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
    941 	return modeflags[mode];
    942 #undef N
    943 }
    944 
    945 static int
    946 ath_ifinit(struct ifnet *ifp)
    947 {
    948 	struct ath_softc *sc = (struct ath_softc *)ifp->if_softc;
    949 
    950 	return ath_init(sc);
    951 }
    952 
    953 static void
    954 ath_settkipmic(struct ath_softc *sc)
    955 {
    956 	struct ieee80211com *ic = &sc->sc_ic;
    957 	struct ath_hal *ah = sc->sc_ah;
    958 
    959 	if ((ic->ic_caps & IEEE80211_C_TKIP) &&
    960 	    !(ic->ic_caps & IEEE80211_C_WME_TKIPMIC)) {
    961 		if (ic->ic_flags & IEEE80211_F_WME) {
    962 			(void)ath_hal_settkipmic(ah, AH_FALSE);
    963 			ic->ic_caps &= ~IEEE80211_C_TKIPMIC;
    964 		} else {
    965 			(void)ath_hal_settkipmic(ah, AH_TRUE);
    966 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
    967 		}
    968 	}
    969 }
    970 
    971 static int
    972 ath_init(struct ath_softc *sc)
    973 {
    974 	struct ifnet *ifp = &sc->sc_if;
    975 	struct ieee80211com *ic = &sc->sc_ic;
    976 	struct ath_hal *ah = sc->sc_ah;
    977 	HAL_STATUS status;
    978 	int error = 0;
    979 
    980 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
    981 		__func__, ifp->if_flags);
    982 
    983 	if (device_is_active(sc->sc_dev)) {
    984 		ATH_LOCK(sc);
    985 	} else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
    986 	           !device_is_active(sc->sc_dev))
    987 		return 0;
    988 	else
    989 		ATH_LOCK(sc);
    990 
    991 	/*
    992 	 * Stop anything previously setup.  This is safe
    993 	 * whether this is the first time through or not.
    994 	 */
    995 	ath_stop_locked(ifp, 0);
    996 
    997 	/*
    998 	 * The basic interface to setting the hardware in a good
    999 	 * state is ``reset''.  On return the hardware is known to
   1000 	 * be powered up and with interrupts disabled.  This must
   1001 	 * be followed by initialization of the appropriate bits
   1002 	 * and then setup of the interrupt mask.
   1003 	 */
   1004 	ath_settkipmic(sc);
   1005 	sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
   1006 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
   1007 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
   1008 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
   1009 			status);
   1010 		error = EIO;
   1011 		goto done;
   1012 	}
   1013 
   1014 	/*
   1015 	 * This is needed only to setup initial state
   1016 	 * but it's best done after a reset.
   1017 	 */
   1018 	ath_update_txpow(sc);
   1019 	/*
   1020 	 * Likewise this is set during reset so update
   1021 	 * state cached in the driver.
   1022 	 */
   1023 	ath_restore_diversity(sc);
   1024 	sc->sc_calinterval = 1;
   1025 	sc->sc_caltries = 0;
   1026 
   1027 	/*
   1028 	 * Setup the hardware after reset: the key cache
   1029 	 * is filled as needed and the receive engine is
   1030 	 * set going.  Frame transmit is handled entirely
   1031 	 * in the frame output path; there's nothing to do
   1032 	 * here except setup the interrupt mask.
   1033 	 */
   1034 	if ((error = ath_startrecv(sc)) != 0) {
   1035 		if_printf(ifp, "unable to start recv logic\n");
   1036 		goto done;
   1037 	}
   1038 
   1039 	/*
   1040 	 * Enable interrupts.
   1041 	 */
   1042 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
   1043 		  | HAL_INT_RXEOL | HAL_INT_RXORN
   1044 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
   1045 	/*
   1046 	 * Enable MIB interrupts when there are hardware phy counters.
   1047 	 * Note we only do this (at the moment) for station mode.
   1048 	 */
   1049 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
   1050 		sc->sc_imask |= HAL_INT_MIB;
   1051 	ath_hal_intrset(ah, sc->sc_imask);
   1052 
   1053 	ifp->if_flags |= IFF_RUNNING;
   1054 	ic->ic_state = IEEE80211_S_INIT;
   1055 
   1056 	/*
   1057 	 * The hardware should be ready to go now so it's safe
   1058 	 * to kick the 802.11 state machine as it's likely to
   1059 	 * immediately call back to us to send mgmt frames.
   1060 	 */
   1061 	ath_chan_change(sc, ic->ic_curchan);
   1062 #ifdef ATH_TX99_DIAG
   1063 	if (sc->sc_tx99 != NULL)
   1064 		sc->sc_tx99->start(sc->sc_tx99);
   1065 	else
   1066 #endif
   1067 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   1068 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
   1069 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   1070 	} else
   1071 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   1072 done:
   1073 	ATH_UNLOCK(sc);
   1074 	return error;
   1075 }
   1076 
   1077 static void
   1078 ath_stop_locked(struct ifnet *ifp, int disable)
   1079 {
   1080 	struct ath_softc *sc = ifp->if_softc;
   1081 	struct ieee80211com *ic = &sc->sc_ic;
   1082 	struct ath_hal *ah = sc->sc_ah;
   1083 
   1084 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %d if_flags 0x%x\n",
   1085 		__func__, !device_is_enabled(sc->sc_dev), ifp->if_flags);
   1086 
   1087 	ATH_LOCK_ASSERT(sc);
   1088 	if (ifp->if_flags & IFF_RUNNING) {
   1089 		/*
   1090 		 * Shutdown the hardware and driver:
   1091 		 *    reset 802.11 state machine
   1092 		 *    turn off timers
   1093 		 *    disable interrupts
   1094 		 *    turn off the radio
   1095 		 *    clear transmit machinery
   1096 		 *    clear receive machinery
   1097 		 *    drain and release tx queues
   1098 		 *    reclaim beacon resources
   1099 		 *    power down hardware
   1100 		 *
   1101 		 * Note that some of this work is not possible if the
   1102 		 * hardware is gone (invalid).
   1103 		 */
   1104 #ifdef ATH_TX99_DIAG
   1105 		if (sc->sc_tx99 != NULL)
   1106 			sc->sc_tx99->stop(sc->sc_tx99);
   1107 #endif
   1108 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   1109 		ifp->if_flags &= ~IFF_RUNNING;
   1110 		ifp->if_timer = 0;
   1111 		if (device_is_enabled(sc->sc_dev)) {
   1112 			if (sc->sc_softled) {
   1113 				callout_stop(&sc->sc_ledtimer);
   1114 				ath_hal_gpioset(ah, sc->sc_ledpin,
   1115 					!sc->sc_ledon);
   1116 				sc->sc_blinking = 0;
   1117 			}
   1118 			ath_hal_intrset(ah, 0);
   1119 		}
   1120 		ath_draintxq(sc);
   1121 		if (device_is_enabled(sc->sc_dev)) {
   1122 			ath_stoprecv(sc);
   1123 			ath_hal_phydisable(ah);
   1124 		} else
   1125 			sc->sc_rxlink = NULL;
   1126 		IF_PURGE(&ifp->if_snd);
   1127 		ath_beacon_free(sc);
   1128 	}
   1129 	if (disable)
   1130 		pmf_device_suspend(sc->sc_dev, &sc->sc_qual);
   1131 }
   1132 
   1133 static void
   1134 ath_stop(struct ifnet *ifp, int disable)
   1135 {
   1136 	struct ath_softc *sc = ifp->if_softc;
   1137 
   1138 	ATH_LOCK(sc);
   1139 	ath_stop_locked(ifp, disable);
   1140 	ATH_UNLOCK(sc);
   1141 }
   1142 
   1143 static void
   1144 ath_restore_diversity(struct ath_softc *sc)
   1145 {
   1146 	struct ifnet *ifp = &sc->sc_if;
   1147 	struct ath_hal *ah = sc->sc_ah;
   1148 
   1149 	if (!ath_hal_setdiversity(sc->sc_ah, sc->sc_diversity) ||
   1150 	    sc->sc_diversity != ath_hal_getdiversity(ah)) {
   1151 		if_printf(ifp, "could not restore diversity setting %d\n",
   1152 		    sc->sc_diversity);
   1153 		sc->sc_diversity = ath_hal_getdiversity(ah);
   1154 	}
   1155 }
   1156 
   1157 /*
   1158  * Reset the hardware w/o losing operational state.  This is
   1159  * basically a more efficient way of doing ath_stop, ath_init,
   1160  * followed by state transitions to the current 802.11
   1161  * operational state.  Used to recover from various errors and
   1162  * to reset or reload hardware state.
   1163  */
   1164 int
   1165 ath_reset(struct ifnet *ifp)
   1166 {
   1167 	struct ath_softc *sc = ifp->if_softc;
   1168 	struct ieee80211com *ic = &sc->sc_ic;
   1169 	struct ath_hal *ah = sc->sc_ah;
   1170 	struct ieee80211_channel *c;
   1171 	HAL_STATUS status;
   1172 
   1173 	/*
   1174 	 * Convert to a HAL channel description with the flags
   1175 	 * constrained to reflect the current operating mode.
   1176 	 */
   1177 	c = ic->ic_curchan;
   1178 	sc->sc_curchan.channel = c->ic_freq;
   1179 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
   1180 
   1181 	ath_hal_intrset(ah, 0);		/* disable interrupts */
   1182 	ath_draintxq(sc);		/* stop xmit side */
   1183 	ath_stoprecv(sc);		/* stop recv side */
   1184 	ath_settkipmic(sc);		/* configure TKIP MIC handling */
   1185 	/* NB: indicate channel change so we do a full reset */
   1186 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
   1187 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
   1188 			__func__, status);
   1189 	ath_update_txpow(sc);		/* update tx power state */
   1190 	ath_restore_diversity(sc);
   1191 	sc->sc_calinterval = 1;
   1192 	sc->sc_caltries = 0;
   1193 	if (ath_startrecv(sc) != 0)	/* restart recv */
   1194 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
   1195 	/*
   1196 	 * We may be doing a reset in response to an ioctl
   1197 	 * that changes the channel so update any state that
   1198 	 * might change as a result.
   1199 	 */
   1200 	ath_chan_change(sc, c);
   1201 	if (ic->ic_state == IEEE80211_S_RUN)
   1202 		ath_beacon_config(sc);	/* restart beacons */
   1203 	ath_hal_intrset(ah, sc->sc_imask);
   1204 
   1205 	ath_start(ifp);			/* restart xmit */
   1206 	return 0;
   1207 }
   1208 
   1209 /*
   1210  * Cleanup driver resources when we run out of buffers
   1211  * while processing fragments; return the tx buffers
   1212  * allocated and drop node references.
   1213  */
   1214 static void
   1215 ath_txfrag_cleanup(struct ath_softc *sc,
   1216 	ath_bufhead *frags, struct ieee80211_node *ni)
   1217 {
   1218 	struct ath_buf *bf;
   1219 
   1220 	ATH_TXBUF_LOCK_ASSERT(sc);
   1221 
   1222 	while ((bf = STAILQ_FIRST(frags)) != NULL) {
   1223 		STAILQ_REMOVE_HEAD(frags, bf_list);
   1224 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1225 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
   1226 		ieee80211_node_decref(ni);
   1227 	}
   1228 }
   1229 
   1230 /*
   1231  * Setup xmit of a fragmented frame.  Allocate a buffer
   1232  * for each frag and bump the node reference count to
   1233  * reflect the held reference to be setup by ath_tx_start.
   1234  */
   1235 static int
   1236 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
   1237 	struct mbuf *m0, struct ieee80211_node *ni)
   1238 {
   1239 	struct mbuf *m;
   1240 	struct ath_buf *bf;
   1241 
   1242 	ATH_TXBUF_LOCK(sc);
   1243 	for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
   1244 		bf = STAILQ_FIRST(&sc->sc_txbuf);
   1245 		if (bf == NULL) {       /* out of buffers, cleanup */
   1246 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
   1247 				__func__);
   1248 			sc->sc_if.if_flags |= IFF_OACTIVE;
   1249 			ath_txfrag_cleanup(sc, frags, ni);
   1250 			break;
   1251 		}
   1252 		STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
   1253 		ieee80211_node_incref(ni);
   1254 		STAILQ_INSERT_TAIL(frags, bf, bf_list);
   1255 	}
   1256 	ATH_TXBUF_UNLOCK(sc);
   1257 
   1258 	return !STAILQ_EMPTY(frags);
   1259 }
   1260 
   1261 static void
   1262 ath_start(struct ifnet *ifp)
   1263 {
   1264 	struct ath_softc *sc = ifp->if_softc;
   1265 	struct ath_hal *ah = sc->sc_ah;
   1266 	struct ieee80211com *ic = &sc->sc_ic;
   1267 	struct ieee80211_node *ni;
   1268 	struct ath_buf *bf;
   1269 	struct mbuf *m, *next;
   1270 	struct ieee80211_frame *wh;
   1271 	struct ether_header *eh;
   1272 	ath_bufhead frags;
   1273 
   1274 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
   1275 	    !device_is_active(sc->sc_dev))
   1276 		return;
   1277 	for (;;) {
   1278 		/*
   1279 		 * Grab a TX buffer and associated resources.
   1280 		 */
   1281 		ATH_TXBUF_LOCK(sc);
   1282 		bf = STAILQ_FIRST(&sc->sc_txbuf);
   1283 		if (bf != NULL)
   1284 			STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
   1285 		ATH_TXBUF_UNLOCK(sc);
   1286 		if (bf == NULL) {
   1287 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
   1288 				__func__);
   1289 			sc->sc_stats.ast_tx_qstop++;
   1290 			ifp->if_flags |= IFF_OACTIVE;
   1291 			break;
   1292 		}
   1293 		/*
   1294 		 * Poll the management queue for frames; they
   1295 		 * have priority over normal data frames.
   1296 		 */
   1297 		IF_DEQUEUE(&ic->ic_mgtq, m);
   1298 		if (m == NULL) {
   1299 			/*
   1300 			 * No data frames go out unless we're associated.
   1301 			 */
   1302 			if (ic->ic_state != IEEE80211_S_RUN) {
   1303 				DPRINTF(sc, ATH_DEBUG_XMIT,
   1304 				    "%s: discard data packet, state %s\n",
   1305 				    __func__,
   1306 				    ieee80211_state_name[ic->ic_state]);
   1307 				sc->sc_stats.ast_tx_discard++;
   1308 				ATH_TXBUF_LOCK(sc);
   1309 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1310 				ATH_TXBUF_UNLOCK(sc);
   1311 				break;
   1312 			}
   1313 			IFQ_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
   1314 			if (m == NULL) {
   1315 				ATH_TXBUF_LOCK(sc);
   1316 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1317 				ATH_TXBUF_UNLOCK(sc);
   1318 				break;
   1319 			}
   1320 			STAILQ_INIT(&frags);
   1321 			/*
   1322 			 * Find the node for the destination so we can do
   1323 			 * things like power save and fast frames aggregation.
   1324 			 */
   1325 			if (m->m_len < sizeof(struct ether_header) &&
   1326 			   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
   1327 				ic->ic_stats.is_tx_nobuf++;	/* XXX */
   1328 				ni = NULL;
   1329 				goto bad;
   1330 			}
   1331 			eh = mtod(m, struct ether_header *);
   1332 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   1333 			if (ni == NULL) {
   1334 				/* NB: ieee80211_find_txnode does stat+msg */
   1335 				m_freem(m);
   1336 				goto bad;
   1337 			}
   1338 			if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
   1339 			    (m->m_flags & M_PWR_SAV) == 0) {
   1340 				/*
   1341 				 * Station in power save mode; pass the frame
   1342 				 * to the 802.11 layer and continue.  We'll get
   1343 				 * the frame back when the time is right.
   1344 				 */
   1345 				ieee80211_pwrsave(ic, ni, m);
   1346 				goto reclaim;
   1347 			}
   1348 			/* calculate priority so we can find the tx queue */
   1349 			if (ieee80211_classify(ic, m, ni)) {
   1350 				DPRINTF(sc, ATH_DEBUG_XMIT,
   1351 					"%s: discard, classification failure\n",
   1352 					__func__);
   1353 				m_freem(m);
   1354 				goto bad;
   1355 			}
   1356 			ifp->if_opackets++;
   1357 
   1358 			if (ifp->if_bpf)
   1359 				bpf_ops->bpf_mtap(ifp->if_bpf, m);
   1360 			/*
   1361 			 * Encapsulate the packet in prep for transmission.
   1362 			 */
   1363 			m = ieee80211_encap(ic, m, ni);
   1364 			if (m == NULL) {
   1365 				DPRINTF(sc, ATH_DEBUG_XMIT,
   1366 					"%s: encapsulation failure\n",
   1367 					__func__);
   1368 				sc->sc_stats.ast_tx_encap++;
   1369 				goto bad;
   1370 			}
   1371 			/*
   1372 			 * Check for fragmentation.  If this has frame
   1373 			 * has been broken up verify we have enough
   1374 			 * buffers to send all the fragments so all
   1375 			 * go out or none...
   1376 			 */
   1377 			if ((m->m_flags & M_FRAG) &&
   1378 			    !ath_txfrag_setup(sc, &frags, m, ni)) {
   1379 				DPRINTF(sc, ATH_DEBUG_ANY,
   1380 				    "%s: out of txfrag buffers\n", __func__);
   1381 				ic->ic_stats.is_tx_nobuf++;     /* XXX */
   1382 				ath_freetx(m);
   1383 				goto bad;
   1384 			}
   1385 		} else {
   1386 			/*
   1387 			 * Hack!  The referenced node pointer is in the
   1388 			 * rcvif field of the packet header.  This is
   1389 			 * placed there by ieee80211_mgmt_output because
   1390 			 * we need to hold the reference with the frame
   1391 			 * and there's no other way (other than packet
   1392 			 * tags which we consider too expensive to use)
   1393 			 * to pass it along.
   1394 			 */
   1395 			ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
   1396 			m->m_pkthdr.rcvif = NULL;
   1397 
   1398 			wh = mtod(m, struct ieee80211_frame *);
   1399 			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
   1400 			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
   1401 				/* fill time stamp */
   1402 				u_int64_t tsf;
   1403 				u_int32_t *tstamp;
   1404 
   1405 				tsf = ath_hal_gettsf64(ah);
   1406 				/* XXX: adjust 100us delay to xmit */
   1407 				tsf += 100;
   1408 				tstamp = (u_int32_t *)&wh[1];
   1409 				tstamp[0] = htole32(tsf & 0xffffffff);
   1410 				tstamp[1] = htole32(tsf >> 32);
   1411 			}
   1412 			sc->sc_stats.ast_tx_mgmt++;
   1413 		}
   1414 
   1415 	nextfrag:
   1416 		next = m->m_nextpkt;
   1417 		if (ath_tx_start(sc, ni, bf, m)) {
   1418 	bad:
   1419 			ifp->if_oerrors++;
   1420 	reclaim:
   1421 			ATH_TXBUF_LOCK(sc);
   1422 			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1423 			ath_txfrag_cleanup(sc, &frags, ni);
   1424 			ATH_TXBUF_UNLOCK(sc);
   1425 			if (ni != NULL)
   1426 				ieee80211_free_node(ni);
   1427 			continue;
   1428 		}
   1429 		if (next != NULL) {
   1430 			m = next;
   1431 			bf = STAILQ_FIRST(&frags);
   1432 			KASSERT(bf != NULL, ("no buf for txfrag"));
   1433 			STAILQ_REMOVE_HEAD(&frags, bf_list);
   1434 			goto nextfrag;
   1435 		}
   1436 
   1437 		ifp->if_timer = 1;
   1438 	}
   1439 }
   1440 
   1441 static int
   1442 ath_media_change(struct ifnet *ifp)
   1443 {
   1444 #define	IS_UP(ifp) \
   1445 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
   1446 	int error;
   1447 
   1448 	error = ieee80211_media_change(ifp);
   1449 	if (error == ENETRESET) {
   1450 		if (IS_UP(ifp))
   1451 			ath_init(ifp->if_softc);	/* XXX lose error */
   1452 		error = 0;
   1453 	}
   1454 	return error;
   1455 #undef IS_UP
   1456 }
   1457 
   1458 #ifdef AR_DEBUG
   1459 static void
   1460 ath_keyprint(const char *tag, u_int ix,
   1461 	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
   1462 {
   1463 	static const char *ciphers[] = {
   1464 		"WEP",
   1465 		"AES-OCB",
   1466 		"AES-CCM",
   1467 		"CKIP",
   1468 		"TKIP",
   1469 		"CLR",
   1470 	};
   1471 	int i, n;
   1472 
   1473 	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
   1474 	for (i = 0, n = hk->kv_len; i < n; i++)
   1475 		printf("%02x", hk->kv_val[i]);
   1476 	printf(" mac %s", ether_sprintf(mac));
   1477 	if (hk->kv_type == HAL_CIPHER_TKIP) {
   1478 		printf(" mic ");
   1479 		for (i = 0; i < sizeof(hk->kv_mic); i++)
   1480 			printf("%02x", hk->kv_mic[i]);
   1481 	}
   1482 	printf("\n");
   1483 }
   1484 #endif
   1485 
   1486 /*
   1487  * Set a TKIP key into the hardware.  This handles the
   1488  * potential distribution of key state to multiple key
   1489  * cache slots for TKIP.
   1490  */
   1491 static int
   1492 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
   1493 	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
   1494 {
   1495 #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
   1496 	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
   1497 	struct ath_hal *ah = sc->sc_ah;
   1498 
   1499 	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
   1500 		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
   1501 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
   1502 		if (sc->sc_splitmic) {
   1503 			/*
   1504 			 * TX key goes at first index, RX key at the rx index.
   1505 			 * The hal handles the MIC keys at index+64.
   1506 			 */
   1507 			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
   1508 			KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
   1509 			if (!ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk,
   1510 						zerobssid))
   1511 				return 0;
   1512 
   1513 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
   1514 			KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
   1515 			/* XXX delete tx key on failure? */
   1516 			return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix+32),
   1517 					hk, mac);
   1518 		} else {
   1519 			/*
   1520 			 * Room for both TX+RX MIC keys in one key cache
   1521 			 * slot, just set key at the first index; the HAL
   1522 			 * will handle the reset.
   1523 			 */
   1524 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
   1525 			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
   1526 			KEYPRINTF(sc, k->wk_keyix, hk, mac);
   1527 			return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, mac);
   1528 		}
   1529 	} else if (k->wk_flags & IEEE80211_KEY_XMIT) {
   1530 		if (sc->sc_splitmic) {
   1531 			/*
   1532 			 * NB: must pass MIC key in expected location when
   1533 			 * the keycache only holds one MIC key per entry.
   1534 			 */
   1535 			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_txmic));
   1536 		} else
   1537 			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
   1538 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
   1539 		return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, mac);
   1540 	} else if (k->wk_flags & IEEE80211_KEY_RECV) {
   1541 		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
   1542 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
   1543 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
   1544 	}
   1545 	return 0;
   1546 #undef IEEE80211_KEY_XR
   1547 }
   1548 
   1549 /*
   1550  * Set a net80211 key into the hardware.  This handles the
   1551  * potential distribution of key state to multiple key
   1552  * cache slots for TKIP with hardware MIC support.
   1553  */
   1554 static int
   1555 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
   1556 	const u_int8_t mac0[IEEE80211_ADDR_LEN],
   1557 	struct ieee80211_node *bss)
   1558 {
   1559 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1560 	static const u_int8_t ciphermap[] = {
   1561 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
   1562 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
   1563 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
   1564 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
   1565 		(u_int8_t) -1,		/* 4 is not allocated */
   1566 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
   1567 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
   1568 	};
   1569 	struct ath_hal *ah = sc->sc_ah;
   1570 	const struct ieee80211_cipher *cip = k->wk_cipher;
   1571 	u_int8_t gmac[IEEE80211_ADDR_LEN];
   1572 	const u_int8_t *mac;
   1573 	HAL_KEYVAL hk;
   1574 
   1575 	memset(&hk, 0, sizeof(hk));
   1576 	/*
   1577 	 * Software crypto uses a "clear key" so non-crypto
   1578 	 * state kept in the key cache are maintained and
   1579 	 * so that rx frames have an entry to match.
   1580 	 */
   1581 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
   1582 		KASSERT(cip->ic_cipher < N(ciphermap),
   1583 			("invalid cipher type %u", cip->ic_cipher));
   1584 		hk.kv_type = ciphermap[cip->ic_cipher];
   1585 		hk.kv_len = k->wk_keylen;
   1586 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
   1587 	} else
   1588 		hk.kv_type = HAL_CIPHER_CLR;
   1589 
   1590 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
   1591 		/*
   1592 		 * Group keys on hardware that supports multicast frame
   1593 		 * key search use a mac that is the sender's address with
   1594 		 * the high bit set instead of the app-specified address.
   1595 		 */
   1596 		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
   1597 		gmac[0] |= 0x80;
   1598 		mac = gmac;
   1599 	} else
   1600 		mac = mac0;
   1601 
   1602 	if ((hk.kv_type == HAL_CIPHER_TKIP &&
   1603 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0)) {
   1604 		return ath_keyset_tkip(sc, k, &hk, mac);
   1605 	} else {
   1606 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
   1607 		return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), &hk, mac);
   1608 	}
   1609 #undef N
   1610 }
   1611 
   1612 /*
   1613  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
   1614  * each key, one for decrypt/encrypt and the other for the MIC.
   1615  */
   1616 static u_int16_t
   1617 key_alloc_2pair(struct ath_softc *sc,
   1618 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
   1619 {
   1620 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1621 	u_int i, keyix;
   1622 
   1623 	KASSERT(sc->sc_splitmic, ("key cache !split"));
   1624 	/* XXX could optimize */
   1625 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
   1626 		u_int8_t b = sc->sc_keymap[i];
   1627 		if (b != 0xff) {
   1628 			/*
   1629 			 * One or more slots in this byte are free.
   1630 			 */
   1631 			keyix = i*NBBY;
   1632 			while (b & 1) {
   1633 		again:
   1634 				keyix++;
   1635 				b >>= 1;
   1636 			}
   1637 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
   1638 			if (isset(sc->sc_keymap, keyix+32) ||
   1639 			    isset(sc->sc_keymap, keyix+64) ||
   1640 			    isset(sc->sc_keymap, keyix+32+64)) {
   1641 				/* full pair unavailable */
   1642 				/* XXX statistic */
   1643 				if (keyix == (i+1)*NBBY) {
   1644 					/* no slots were appropriate, advance */
   1645 					continue;
   1646 				}
   1647 				goto again;
   1648 			}
   1649 			setbit(sc->sc_keymap, keyix);
   1650 			setbit(sc->sc_keymap, keyix+64);
   1651 			setbit(sc->sc_keymap, keyix+32);
   1652 			setbit(sc->sc_keymap, keyix+32+64);
   1653 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
   1654 				"%s: key pair %u,%u %u,%u\n",
   1655 				__func__, keyix, keyix+64,
   1656 				keyix+32, keyix+32+64);
   1657 			*txkeyix = keyix;
   1658 			*rxkeyix = keyix+32;
   1659 			return keyix;
   1660 		}
   1661 	}
   1662 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
   1663 	return IEEE80211_KEYIX_NONE;
   1664 #undef N
   1665 }
   1666 
   1667 /*
   1668  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
   1669  * each key, one for decrypt/encrypt and the other for the MIC.
   1670  */
   1671 static int
   1672 key_alloc_pair(struct ath_softc *sc, ieee80211_keyix *txkeyix,
   1673     ieee80211_keyix *rxkeyix)
   1674 {
   1675 #define N(a)	(sizeof(a)/sizeof(a[0]))
   1676 	u_int i, keyix;
   1677 
   1678 	KASSERT(!sc->sc_splitmic, ("key cache split"));
   1679 	/* XXX could optimize */
   1680 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
   1681 		uint8_t b = sc->sc_keymap[i];
   1682 		if (b != 0xff) {
   1683 			/*
   1684 			 * One or more slots in this byte are free.
   1685 			 */
   1686 			keyix = i*NBBY;
   1687 			while (b & 1) {
   1688 		again:
   1689 				keyix++;
   1690 				b >>= 1;
   1691 			}
   1692 			if (isset(sc->sc_keymap, keyix+64)) {
   1693 				/* full pair unavailable */
   1694 				/* XXX statistic */
   1695 				if (keyix == (i+1)*NBBY) {
   1696 					/* no slots were appropriate, advance */
   1697 					continue;
   1698 				}
   1699 				goto again;
   1700 			}
   1701 			setbit(sc->sc_keymap, keyix);
   1702 			setbit(sc->sc_keymap, keyix+64);
   1703 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
   1704 				"%s: key pair %u,%u\n",
   1705 				__func__, keyix, keyix+64);
   1706 			*txkeyix = *rxkeyix = keyix;
   1707 			return 1;
   1708 		}
   1709 	}
   1710 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
   1711 	return 0;
   1712 #undef N
   1713 }
   1714 
   1715 /*
   1716  * Allocate a single key cache slot.
   1717  */
   1718 static int
   1719 key_alloc_single(struct ath_softc *sc,
   1720 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
   1721 {
   1722 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1723 	u_int i, keyix;
   1724 
   1725 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
   1726 	for (i = 0; i < N(sc->sc_keymap); i++) {
   1727 		u_int8_t b = sc->sc_keymap[i];
   1728 		if (b != 0xff) {
   1729 			/*
   1730 			 * One or more slots are free.
   1731 			 */
   1732 			keyix = i*NBBY;
   1733 			while (b & 1)
   1734 				keyix++, b >>= 1;
   1735 			setbit(sc->sc_keymap, keyix);
   1736 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
   1737 				__func__, keyix);
   1738 			*txkeyix = *rxkeyix = keyix;
   1739 			return 1;
   1740 		}
   1741 	}
   1742 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
   1743 	return 0;
   1744 #undef N
   1745 }
   1746 
   1747 /*
   1748  * Allocate one or more key cache slots for a uniacst key.  The
   1749  * key itself is needed only to identify the cipher.  For hardware
   1750  * TKIP with split cipher+MIC keys we allocate two key cache slot
   1751  * pairs so that we can setup separate TX and RX MIC keys.  Note
   1752  * that the MIC key for a TKIP key at slot i is assumed by the
   1753  * hardware to be at slot i+64.  This limits TKIP keys to the first
   1754  * 64 entries.
   1755  */
   1756 static int
   1757 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
   1758 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
   1759 {
   1760 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1761 
   1762 	/*
   1763 	 * Group key allocation must be handled specially for
   1764 	 * parts that do not support multicast key cache search
   1765 	 * functionality.  For those parts the key id must match
   1766 	 * the h/w key index so lookups find the right key.  On
   1767 	 * parts w/ the key search facility we install the sender's
   1768 	 * mac address (with the high bit set) and let the hardware
   1769 	 * find the key w/o using the key id.  This is preferred as
   1770 	 * it permits us to support multiple users for adhoc and/or
   1771 	 * multi-station operation.
   1772 	 */
   1773 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
   1774 		if (!(&ic->ic_nw_keys[0] <= k &&
   1775 		      k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
   1776 			/* should not happen */
   1777 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
   1778 				"%s: bogus group key\n", __func__);
   1779 			return 0;
   1780 		}
   1781 		/*
   1782 		 * XXX we pre-allocate the global keys so
   1783 		 * have no way to check if they've already been allocated.
   1784 		 */
   1785 		*keyix = *rxkeyix = k - ic->ic_nw_keys;
   1786 		return 1;
   1787 	}
   1788 
   1789 	/*
   1790 	 * We allocate two pair for TKIP when using the h/w to do
   1791 	 * the MIC.  For everything else, including software crypto,
   1792 	 * we allocate a single entry.  Note that s/w crypto requires
   1793 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
   1794 	 * not support pass-through cache entries and we map all
   1795 	 * those requests to slot 0.
   1796 	 */
   1797 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
   1798 		return key_alloc_single(sc, keyix, rxkeyix);
   1799 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1800 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
   1801 		if (sc->sc_splitmic)
   1802 			return key_alloc_2pair(sc, keyix, rxkeyix);
   1803 		else
   1804 			return key_alloc_pair(sc, keyix, rxkeyix);
   1805 	} else {
   1806 		return key_alloc_single(sc, keyix, rxkeyix);
   1807 	}
   1808 }
   1809 
   1810 /*
   1811  * Delete an entry in the key cache allocated by ath_key_alloc.
   1812  */
   1813 static int
   1814 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
   1815 {
   1816 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1817 	struct ath_hal *ah = sc->sc_ah;
   1818 	const struct ieee80211_cipher *cip = k->wk_cipher;
   1819 	u_int keyix = k->wk_keyix;
   1820 
   1821 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
   1822 
   1823 	if (!device_has_power(sc->sc_dev)) {
   1824 		aprint_error_dev(sc->sc_dev, "deleting keyix %d w/o power\n",
   1825 		    k->wk_keyix);
   1826 	}
   1827 
   1828 	ath_hal_keyreset(ah, keyix);
   1829 	/*
   1830 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
   1831 	 */
   1832 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1833 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
   1834 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
   1835 	if (keyix >= IEEE80211_WEP_NKID) {
   1836 		/*
   1837 		 * Don't touch keymap entries for global keys so
   1838 		 * they are never considered for dynamic allocation.
   1839 		 */
   1840 		clrbit(sc->sc_keymap, keyix);
   1841 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1842 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
   1843 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
   1844 			if (sc->sc_splitmic) {
   1845 				/* +32 for RX key, +32+64 for RX key MIC */
   1846 				clrbit(sc->sc_keymap, keyix+32);
   1847 				clrbit(sc->sc_keymap, keyix+32+64);
   1848 			}
   1849 		}
   1850 	}
   1851 	return 1;
   1852 }
   1853 
   1854 /*
   1855  * Set the key cache contents for the specified key.  Key cache
   1856  * slot(s) must already have been allocated by ath_key_alloc.
   1857  */
   1858 static int
   1859 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
   1860 	const u_int8_t mac[IEEE80211_ADDR_LEN])
   1861 {
   1862 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1863 
   1864 	if (!device_has_power(sc->sc_dev)) {
   1865 		aprint_error_dev(sc->sc_dev, "setting keyix %d w/o power\n",
   1866 		    k->wk_keyix);
   1867 	}
   1868 	return ath_keyset(sc, k, mac, ic->ic_bss);
   1869 }
   1870 
   1871 /*
   1872  * Block/unblock tx+rx processing while a key change is done.
   1873  * We assume the caller serializes key management operations
   1874  * so we only need to worry about synchronization with other
   1875  * uses that originate in the driver.
   1876  */
   1877 static void
   1878 ath_key_update_begin(struct ieee80211com *ic)
   1879 {
   1880 	struct ifnet *ifp = ic->ic_ifp;
   1881 	struct ath_softc *sc = ifp->if_softc;
   1882 
   1883 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
   1884 #if 0
   1885 	tasklet_disable(&sc->sc_rxtq);
   1886 #endif
   1887 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
   1888 }
   1889 
   1890 static void
   1891 ath_key_update_end(struct ieee80211com *ic)
   1892 {
   1893 	struct ifnet *ifp = ic->ic_ifp;
   1894 	struct ath_softc *sc = ifp->if_softc;
   1895 
   1896 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
   1897 	IF_UNLOCK(&ifp->if_snd);
   1898 #if 0
   1899 	tasklet_enable(&sc->sc_rxtq);
   1900 #endif
   1901 }
   1902 
   1903 /*
   1904  * Calculate the receive filter according to the
   1905  * operating mode and state:
   1906  *
   1907  * o always accept unicast, broadcast, and multicast traffic
   1908  * o maintain current state of phy error reception (the hal
   1909  *   may enable phy error frames for noise immunity work)
   1910  * o probe request frames are accepted only when operating in
   1911  *   hostap, adhoc, or monitor modes
   1912  * o enable promiscuous mode according to the interface state
   1913  * o accept beacons:
   1914  *   - when operating in adhoc mode so the 802.11 layer creates
   1915  *     node table entries for peers,
   1916  *   - when operating in station mode for collecting rssi data when
   1917  *     the station is otherwise quiet, or
   1918  *   - when scanning
   1919  */
   1920 static u_int32_t
   1921 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
   1922 {
   1923 	struct ieee80211com *ic = &sc->sc_ic;
   1924 	struct ath_hal *ah = sc->sc_ah;
   1925 	struct ifnet *ifp = &sc->sc_if;
   1926 	u_int32_t rfilt;
   1927 
   1928 	rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
   1929 	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
   1930 	if (ic->ic_opmode != IEEE80211_M_STA)
   1931 		rfilt |= HAL_RX_FILTER_PROBEREQ;
   1932 	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
   1933 	    (ifp->if_flags & IFF_PROMISC))
   1934 		rfilt |= HAL_RX_FILTER_PROM;
   1935 	if (ifp->if_flags & IFF_PROMISC)
   1936 		rfilt |= HAL_RX_FILTER_CONTROL | HAL_RX_FILTER_PROBEREQ;
   1937 	if (ic->ic_opmode == IEEE80211_M_STA ||
   1938 	    ic->ic_opmode == IEEE80211_M_IBSS ||
   1939 	    state == IEEE80211_S_SCAN)
   1940 		rfilt |= HAL_RX_FILTER_BEACON;
   1941 	return rfilt;
   1942 }
   1943 
   1944 static void
   1945 ath_mode_init(struct ath_softc *sc)
   1946 {
   1947 	struct ifnet *ifp = &sc->sc_if;
   1948 	struct ieee80211com *ic = &sc->sc_ic;
   1949 	struct ath_hal *ah = sc->sc_ah;
   1950 	struct ether_multi *enm;
   1951 	struct ether_multistep estep;
   1952 	u_int32_t rfilt, mfilt[2], val;
   1953 	int i;
   1954 	uint8_t pos;
   1955 
   1956 	/* configure rx filter */
   1957 	rfilt = ath_calcrxfilter(sc, ic->ic_state);
   1958 	ath_hal_setrxfilter(ah, rfilt);
   1959 
   1960 	/* configure operational mode */
   1961 	ath_hal_setopmode(ah);
   1962 
   1963 	/* Write keys to hardware; it may have been powered down. */
   1964 	ath_key_update_begin(ic);
   1965 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
   1966 		ath_key_set(ic,
   1967 			    &ic->ic_crypto.cs_nw_keys[i],
   1968 			    ic->ic_myaddr);
   1969 	}
   1970 	ath_key_update_end(ic);
   1971 
   1972 	/*
   1973 	 * Handle any link-level address change.  Note that we only
   1974 	 * need to force ic_myaddr; any other addresses are handled
   1975 	 * as a byproduct of the ifnet code marking the interface
   1976 	 * down then up.
   1977 	 *
   1978 	 * XXX should get from lladdr instead of arpcom but that's more work
   1979 	 */
   1980 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(sc->sc_if.if_sadl));
   1981 	ath_hal_setmac(ah, ic->ic_myaddr);
   1982 
   1983 	/* calculate and install multicast filter */
   1984 	ifp->if_flags &= ~IFF_ALLMULTI;
   1985 	mfilt[0] = mfilt[1] = 0;
   1986 	ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
   1987 	while (enm != NULL) {
   1988 		void *dl;
   1989 		/* XXX Punt on ranges. */
   1990 		if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
   1991 			mfilt[0] = mfilt[1] = 0xffffffff;
   1992 			ifp->if_flags |= IFF_ALLMULTI;
   1993 			break;
   1994 		}
   1995 		dl = enm->enm_addrlo;
   1996 		val = LE_READ_4((char *)dl + 0);
   1997 		pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1998 		val = LE_READ_4((char *)dl + 3);
   1999 		pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   2000 		pos &= 0x3f;
   2001 		mfilt[pos / 32] |= (1 << (pos % 32));
   2002 
   2003 		ETHER_NEXT_MULTI(estep, enm);
   2004 	}
   2005 
   2006 	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
   2007 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
   2008 		__func__, rfilt, mfilt[0], mfilt[1]);
   2009 }
   2010 
   2011 /*
   2012  * Set the slot time based on the current setting.
   2013  */
   2014 static void
   2015 ath_setslottime(struct ath_softc *sc)
   2016 {
   2017 	struct ieee80211com *ic = &sc->sc_ic;
   2018 	struct ath_hal *ah = sc->sc_ah;
   2019 
   2020 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   2021 		ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
   2022 	else
   2023 		ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
   2024 	sc->sc_updateslot = OK;
   2025 }
   2026 
   2027 /*
   2028  * Callback from the 802.11 layer to update the
   2029  * slot time based on the current setting.
   2030  */
   2031 static void
   2032 ath_updateslot(struct ifnet *ifp)
   2033 {
   2034 	struct ath_softc *sc = ifp->if_softc;
   2035 	struct ieee80211com *ic = &sc->sc_ic;
   2036 
   2037 	/*
   2038 	 * When not coordinating the BSS, change the hardware
   2039 	 * immediately.  For other operation we defer the change
   2040 	 * until beacon updates have propagated to the stations.
   2041 	 */
   2042 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
   2043 		sc->sc_updateslot = UPDATE;
   2044 	else
   2045 		ath_setslottime(sc);
   2046 }
   2047 
   2048 /*
   2049  * Setup a h/w transmit queue for beacons.
   2050  */
   2051 static int
   2052 ath_beaconq_setup(struct ath_hal *ah)
   2053 {
   2054 	HAL_TXQ_INFO qi;
   2055 
   2056 	memset(&qi, 0, sizeof(qi));
   2057 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
   2058 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
   2059 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
   2060 	/* NB: for dynamic turbo, don't enable any other interrupts */
   2061 	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
   2062 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
   2063 }
   2064 
   2065 /*
   2066  * Setup the transmit queue parameters for the beacon queue.
   2067  */
   2068 static int
   2069 ath_beaconq_config(struct ath_softc *sc)
   2070 {
   2071 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
   2072 	struct ieee80211com *ic = &sc->sc_ic;
   2073 	struct ath_hal *ah = sc->sc_ah;
   2074 	HAL_TXQ_INFO qi;
   2075 
   2076 	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
   2077 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   2078 		/*
   2079 		 * Always burst out beacon and CAB traffic.
   2080 		 */
   2081 		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
   2082 		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
   2083 		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
   2084 	} else {
   2085 		struct wmeParams *wmep =
   2086 			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
   2087 		/*
   2088 		 * Adhoc mode; important thing is to use 2x cwmin.
   2089 		 */
   2090 		qi.tqi_aifs = wmep->wmep_aifsn;
   2091 		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
   2092 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
   2093 	}
   2094 
   2095 	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
   2096 		device_printf(sc->sc_dev, "unable to update parameters for "
   2097 			"beacon hardware queue!\n");
   2098 		return 0;
   2099 	} else {
   2100 		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
   2101 		return 1;
   2102 	}
   2103 #undef ATH_EXPONENT_TO_VALUE
   2104 }
   2105 
   2106 /*
   2107  * Allocate and setup an initial beacon frame.
   2108  */
   2109 static int
   2110 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
   2111 {
   2112 	struct ieee80211com *ic = ni->ni_ic;
   2113 	struct ath_buf *bf;
   2114 	struct mbuf *m;
   2115 	int error;
   2116 
   2117 	bf = STAILQ_FIRST(&sc->sc_bbuf);
   2118 	if (bf == NULL) {
   2119 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
   2120 		sc->sc_stats.ast_be_nombuf++;	/* XXX */
   2121 		return ENOMEM;			/* XXX */
   2122 	}
   2123 	/*
   2124 	 * NB: the beacon data buffer must be 32-bit aligned;
   2125 	 * we assume the mbuf routines will return us something
   2126 	 * with this alignment (perhaps should assert).
   2127 	 */
   2128 	m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
   2129 	if (m == NULL) {
   2130 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
   2131 			__func__);
   2132 		sc->sc_stats.ast_be_nombuf++;
   2133 		return ENOMEM;
   2134 	}
   2135 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
   2136 				     BUS_DMA_NOWAIT);
   2137 	if (error == 0) {
   2138 		bf->bf_m = m;
   2139 		bf->bf_node = ieee80211_ref_node(ni);
   2140 	} else {
   2141 		m_freem(m);
   2142 	}
   2143 	return error;
   2144 }
   2145 
   2146 /*
   2147  * Setup the beacon frame for transmit.
   2148  */
   2149 static void
   2150 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
   2151 {
   2152 #define	USE_SHPREAMBLE(_ic) \
   2153 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
   2154 		== IEEE80211_F_SHPREAMBLE)
   2155 	struct ieee80211_node *ni = bf->bf_node;
   2156 	struct ieee80211com *ic = ni->ni_ic;
   2157 	struct mbuf *m = bf->bf_m;
   2158 	struct ath_hal *ah = sc->sc_ah;
   2159 	struct ath_desc *ds;
   2160 	int flags, antenna;
   2161 	const HAL_RATE_TABLE *rt;
   2162 	u_int8_t rix, rate;
   2163 
   2164 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
   2165 		__func__, m, m->m_len);
   2166 
   2167 	/* setup descriptors */
   2168 	ds = bf->bf_desc;
   2169 
   2170 	flags = HAL_TXDESC_NOACK;
   2171 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
   2172 		ds->ds_link = HTOAH32(bf->bf_daddr);	/* self-linked */
   2173 		flags |= HAL_TXDESC_VEOL;
   2174 		/*
   2175 		 * Let hardware handle antenna switching unless
   2176 		 * the user has selected a transmit antenna
   2177 		 * (sc_txantenna is not 0).
   2178 		 */
   2179 		antenna = sc->sc_txantenna;
   2180 	} else {
   2181 		ds->ds_link = 0;
   2182 		/*
   2183 		 * Switch antenna every 4 beacons, unless the user
   2184 		 * has selected a transmit antenna (sc_txantenna
   2185 		 * is not 0).
   2186 		 *
   2187 		 * XXX assumes two antenna
   2188 		 */
   2189 		if (sc->sc_txantenna == 0)
   2190 			antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
   2191 		else
   2192 			antenna = sc->sc_txantenna;
   2193 	}
   2194 
   2195 	KASSERT(bf->bf_nseg == 1,
   2196 		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
   2197 	ds->ds_data = bf->bf_segs[0].ds_addr;
   2198 	/*
   2199 	 * Calculate rate code.
   2200 	 * XXX everything at min xmit rate
   2201 	 */
   2202 	rix = sc->sc_minrateix;
   2203 	rt = sc->sc_currates;
   2204 	rate = rt->info[rix].rateCode;
   2205 	if (USE_SHPREAMBLE(ic))
   2206 		rate |= rt->info[rix].shortPreamble;
   2207 	ath_hal_setuptxdesc(ah, ds
   2208 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
   2209 		, sizeof(struct ieee80211_frame)/* header length */
   2210 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
   2211 		, ni->ni_txpower		/* txpower XXX */
   2212 		, rate, 1			/* series 0 rate/tries */
   2213 		, HAL_TXKEYIX_INVALID		/* no encryption */
   2214 		, antenna			/* antenna mode */
   2215 		, flags				/* no ack, veol for beacons */
   2216 		, 0				/* rts/cts rate */
   2217 		, 0				/* rts/cts duration */
   2218 	);
   2219 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
   2220 	ath_hal_filltxdesc(ah, ds
   2221 		, roundup(m->m_len, 4)		/* buffer length */
   2222 		, AH_TRUE			/* first segment */
   2223 		, AH_TRUE			/* last segment */
   2224 		, ds				/* first descriptor */
   2225 	);
   2226 
   2227 	/* NB: The desc swap function becomes void, if descriptor swapping
   2228 	 * is not enabled
   2229 	 */
   2230 	ath_desc_swap(ds);
   2231 
   2232 #undef USE_SHPREAMBLE
   2233 }
   2234 
   2235 /*
   2236  * Transmit a beacon frame at SWBA.  Dynamic updates to the
   2237  * frame contents are done as needed and the slot time is
   2238  * also adjusted based on current state.
   2239  */
   2240 static void
   2241 ath_beacon_proc(void *arg, int pending)
   2242 {
   2243 	struct ath_softc *sc = arg;
   2244 	struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
   2245 	struct ieee80211_node *ni = bf->bf_node;
   2246 	struct ieee80211com *ic = ni->ni_ic;
   2247 	struct ath_hal *ah = sc->sc_ah;
   2248 	struct mbuf *m;
   2249 	int ncabq, error, otherant;
   2250 
   2251 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
   2252 		__func__, pending);
   2253 
   2254 	if (ic->ic_opmode == IEEE80211_M_STA ||
   2255 	    ic->ic_opmode == IEEE80211_M_MONITOR ||
   2256 	    bf == NULL || bf->bf_m == NULL) {
   2257 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
   2258 			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
   2259 		return;
   2260 	}
   2261 	/*
   2262 	 * Check if the previous beacon has gone out.  If
   2263 	 * not don't try to post another, skip this period
   2264 	 * and wait for the next.  Missed beacons indicate
   2265 	 * a problem and should not occur.  If we miss too
   2266 	 * many consecutive beacons reset the device.
   2267 	 */
   2268 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
   2269 		sc->sc_bmisscount++;
   2270 		DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
   2271 			"%s: missed %u consecutive beacons\n",
   2272 			__func__, sc->sc_bmisscount);
   2273 		if (sc->sc_bmisscount > 3)		/* NB: 3 is a guess */
   2274 			TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask);
   2275 		return;
   2276 	}
   2277 	if (sc->sc_bmisscount != 0) {
   2278 		DPRINTF(sc, ATH_DEBUG_BEACON,
   2279 			"%s: resume beacon xmit after %u misses\n",
   2280 			__func__, sc->sc_bmisscount);
   2281 		sc->sc_bmisscount = 0;
   2282 	}
   2283 
   2284 	/*
   2285 	 * Update dynamic beacon contents.  If this returns
   2286 	 * non-zero then we need to remap the memory because
   2287 	 * the beacon frame changed size (probably because
   2288 	 * of the TIM bitmap).
   2289 	 */
   2290 	m = bf->bf_m;
   2291 	ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
   2292 	if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
   2293 		/* XXX too conservative? */
   2294 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   2295 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
   2296 					     BUS_DMA_NOWAIT);
   2297 		if (error != 0) {
   2298 			if_printf(&sc->sc_if,
   2299 			    "%s: bus_dmamap_load_mbuf failed, error %u\n",
   2300 			    __func__, error);
   2301 			return;
   2302 		}
   2303 	}
   2304 
   2305 	/*
   2306 	 * Handle slot time change when a non-ERP station joins/leaves
   2307 	 * an 11g network.  The 802.11 layer notifies us via callback,
   2308 	 * we mark updateslot, then wait one beacon before effecting
   2309 	 * the change.  This gives associated stations at least one
   2310 	 * beacon interval to note the state change.
   2311 	 */
   2312 	/* XXX locking */
   2313 	if (sc->sc_updateslot == UPDATE)
   2314 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
   2315 	else if (sc->sc_updateslot == COMMIT)
   2316 		ath_setslottime(sc);		/* commit change to h/w */
   2317 
   2318 	/*
   2319 	 * Check recent per-antenna transmit statistics and flip
   2320 	 * the default antenna if noticeably more frames went out
   2321 	 * on the non-default antenna.
   2322 	 * XXX assumes 2 anntenae
   2323 	 */
   2324 	otherant = sc->sc_defant & 1 ? 2 : 1;
   2325 	if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
   2326 		ath_setdefantenna(sc, otherant);
   2327 	sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
   2328 
   2329 	/*
   2330 	 * Construct tx descriptor.
   2331 	 */
   2332 	ath_beacon_setup(sc, bf);
   2333 
   2334 	/*
   2335 	 * Stop any current dma and put the new frame on the queue.
   2336 	 * This should never fail since we check above that no frames
   2337 	 * are still pending on the queue.
   2338 	 */
   2339 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
   2340 		DPRINTF(sc, ATH_DEBUG_ANY,
   2341 			"%s: beacon queue %u did not stop?\n",
   2342 			__func__, sc->sc_bhalq);
   2343 	}
   2344 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   2345 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2346 
   2347 	/*
   2348 	 * Enable the CAB queue before the beacon queue to
   2349 	 * insure cab frames are triggered by this beacon.
   2350 	 */
   2351 	if (ncabq != 0 && (sc->sc_boff.bo_tim[4] & 1))	/* NB: only at DTIM */
   2352 		ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
   2353 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
   2354 	ath_hal_txstart(ah, sc->sc_bhalq);
   2355 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
   2356 	    "%s: TXDP[%u] = %" PRIx64 " (%p)\n", __func__,
   2357 	    sc->sc_bhalq, (uint64_t)bf->bf_daddr, bf->bf_desc);
   2358 
   2359 	sc->sc_stats.ast_be_xmit++;
   2360 }
   2361 
   2362 /*
   2363  * Reset the hardware after detecting beacons have stopped.
   2364  */
   2365 static void
   2366 ath_bstuck_proc(void *arg, int pending)
   2367 {
   2368 	struct ath_softc *sc = arg;
   2369 	struct ifnet *ifp = &sc->sc_if;
   2370 
   2371 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
   2372 		sc->sc_bmisscount);
   2373 	ath_reset(ifp);
   2374 }
   2375 
   2376 /*
   2377  * Reclaim beacon resources.
   2378  */
   2379 static void
   2380 ath_beacon_free(struct ath_softc *sc)
   2381 {
   2382 	struct ath_buf *bf;
   2383 
   2384 	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
   2385 		if (bf->bf_m != NULL) {
   2386 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   2387 			m_freem(bf->bf_m);
   2388 			bf->bf_m = NULL;
   2389 		}
   2390 		if (bf->bf_node != NULL) {
   2391 			ieee80211_free_node(bf->bf_node);
   2392 			bf->bf_node = NULL;
   2393 		}
   2394 	}
   2395 }
   2396 
   2397 /*
   2398  * Configure the beacon and sleep timers.
   2399  *
   2400  * When operating as an AP this resets the TSF and sets
   2401  * up the hardware to notify us when we need to issue beacons.
   2402  *
   2403  * When operating in station mode this sets up the beacon
   2404  * timers according to the timestamp of the last received
   2405  * beacon and the current TSF, configures PCF and DTIM
   2406  * handling, programs the sleep registers so the hardware
   2407  * will wakeup in time to receive beacons, and configures
   2408  * the beacon miss handling so we'll receive a BMISS
   2409  * interrupt when we stop seeing beacons from the AP
   2410  * we've associated with.
   2411  */
   2412 static void
   2413 ath_beacon_config(struct ath_softc *sc)
   2414 {
   2415 #define	TSF_TO_TU(_h,_l) \
   2416 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
   2417 #define	FUDGE	2
   2418 	struct ath_hal *ah = sc->sc_ah;
   2419 	struct ieee80211com *ic = &sc->sc_ic;
   2420 	struct ieee80211_node *ni = ic->ic_bss;
   2421 	u_int32_t nexttbtt, intval, tsftu;
   2422 	u_int64_t tsf;
   2423 
   2424 	/* extract tstamp from last beacon and convert to TU */
   2425 	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
   2426 			     LE_READ_4(ni->ni_tstamp.data));
   2427 	/* NB: the beacon interval is kept internally in TU's */
   2428 	intval = ni->ni_intval & HAL_BEACON_PERIOD;
   2429 	if (nexttbtt == 0)		/* e.g. for ap mode */
   2430 		nexttbtt = intval;
   2431 	else if (intval)		/* NB: can be 0 for monitor mode */
   2432 		nexttbtt = roundup(nexttbtt, intval);
   2433 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
   2434 		__func__, nexttbtt, intval, ni->ni_intval);
   2435 	if (ic->ic_opmode == IEEE80211_M_STA) {
   2436 		HAL_BEACON_STATE bs;
   2437 		int dtimperiod, dtimcount;
   2438 		int cfpperiod, cfpcount;
   2439 
   2440 		/*
   2441 		 * Setup dtim and cfp parameters according to
   2442 		 * last beacon we received (which may be none).
   2443 		 */
   2444 		dtimperiod = ni->ni_dtim_period;
   2445 		if (dtimperiod <= 0)		/* NB: 0 if not known */
   2446 			dtimperiod = 1;
   2447 		dtimcount = ni->ni_dtim_count;
   2448 		if (dtimcount >= dtimperiod)	/* NB: sanity check */
   2449 			dtimcount = 0;		/* XXX? */
   2450 		cfpperiod = 1;			/* NB: no PCF support yet */
   2451 		cfpcount = 0;
   2452 		/*
   2453 		 * Pull nexttbtt forward to reflect the current
   2454 		 * TSF and calculate dtim+cfp state for the result.
   2455 		 */
   2456 		tsf = ath_hal_gettsf64(ah);
   2457 		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
   2458 		do {
   2459 			nexttbtt += intval;
   2460 			if (--dtimcount < 0) {
   2461 				dtimcount = dtimperiod - 1;
   2462 				if (--cfpcount < 0)
   2463 					cfpcount = cfpperiod - 1;
   2464 			}
   2465 		} while (nexttbtt < tsftu);
   2466 		memset(&bs, 0, sizeof(bs));
   2467 		bs.bs_intval = intval;
   2468 		bs.bs_nexttbtt = nexttbtt;
   2469 		bs.bs_dtimperiod = dtimperiod*intval;
   2470 		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
   2471 		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
   2472 		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
   2473 		bs.bs_cfpmaxduration = 0;
   2474 #if 0
   2475 		/*
   2476 		 * The 802.11 layer records the offset to the DTIM
   2477 		 * bitmap while receiving beacons; use it here to
   2478 		 * enable h/w detection of our AID being marked in
   2479 		 * the bitmap vector (to indicate frames for us are
   2480 		 * pending at the AP).
   2481 		 * XXX do DTIM handling in s/w to WAR old h/w bugs
   2482 		 * XXX enable based on h/w rev for newer chips
   2483 		 */
   2484 		bs.bs_timoffset = ni->ni_timoff;
   2485 #endif
   2486 		/*
   2487 		 * Calculate the number of consecutive beacons to miss
   2488 		 * before taking a BMISS interrupt.  The configuration
   2489 		 * is specified in ms, so we need to convert that to
   2490 		 * TU's and then calculate based on the beacon interval.
   2491 		 * Note that we clamp the result to at most 10 beacons.
   2492 		 */
   2493 		bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
   2494 		if (bs.bs_bmissthreshold > 10)
   2495 			bs.bs_bmissthreshold = 10;
   2496 		else if (bs.bs_bmissthreshold <= 0)
   2497 			bs.bs_bmissthreshold = 1;
   2498 
   2499 		/*
   2500 		 * Calculate sleep duration.  The configuration is
   2501 		 * given in ms.  We insure a multiple of the beacon
   2502 		 * period is used.  Also, if the sleep duration is
   2503 		 * greater than the DTIM period then it makes senses
   2504 		 * to make it a multiple of that.
   2505 		 *
   2506 		 * XXX fixed at 100ms
   2507 		 */
   2508 		bs.bs_sleepduration =
   2509 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
   2510 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
   2511 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
   2512 
   2513 		DPRINTF(sc, ATH_DEBUG_BEACON,
   2514 			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
   2515 			, __func__
   2516 			, tsf, tsftu
   2517 			, bs.bs_intval
   2518 			, bs.bs_nexttbtt
   2519 			, bs.bs_dtimperiod
   2520 			, bs.bs_nextdtim
   2521 			, bs.bs_bmissthreshold
   2522 			, bs.bs_sleepduration
   2523 			, bs.bs_cfpperiod
   2524 			, bs.bs_cfpmaxduration
   2525 			, bs.bs_cfpnext
   2526 			, bs.bs_timoffset
   2527 		);
   2528 		ath_hal_intrset(ah, 0);
   2529 		ath_hal_beacontimers(ah, &bs);
   2530 		sc->sc_imask |= HAL_INT_BMISS;
   2531 		ath_hal_intrset(ah, sc->sc_imask);
   2532 	} else {
   2533 		ath_hal_intrset(ah, 0);
   2534 		if (nexttbtt == intval)
   2535 			intval |= HAL_BEACON_RESET_TSF;
   2536 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
   2537 			/*
   2538 			 * In IBSS mode enable the beacon timers but only
   2539 			 * enable SWBA interrupts if we need to manually
   2540 			 * prepare beacon frames.  Otherwise we use a
   2541 			 * self-linked tx descriptor and let the hardware
   2542 			 * deal with things.
   2543 			 */
   2544 			intval |= HAL_BEACON_ENA;
   2545 			if (!sc->sc_hasveol)
   2546 				sc->sc_imask |= HAL_INT_SWBA;
   2547 			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
   2548 				/*
   2549 				 * Pull nexttbtt forward to reflect
   2550 				 * the current TSF.
   2551 				 */
   2552 				tsf = ath_hal_gettsf64(ah);
   2553 				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
   2554 				do {
   2555 					nexttbtt += intval;
   2556 				} while (nexttbtt < tsftu);
   2557 			}
   2558 			ath_beaconq_config(sc);
   2559 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   2560 			/*
   2561 			 * In AP mode we enable the beacon timers and
   2562 			 * SWBA interrupts to prepare beacon frames.
   2563 			 */
   2564 			intval |= HAL_BEACON_ENA;
   2565 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
   2566 			ath_beaconq_config(sc);
   2567 		}
   2568 		ath_hal_beaconinit(ah, nexttbtt, intval);
   2569 		sc->sc_bmisscount = 0;
   2570 		ath_hal_intrset(ah, sc->sc_imask);
   2571 		/*
   2572 		 * When using a self-linked beacon descriptor in
   2573 		 * ibss mode load it once here.
   2574 		 */
   2575 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
   2576 			ath_beacon_proc(sc, 0);
   2577 	}
   2578 	sc->sc_syncbeacon = 0;
   2579 #undef UNDEF
   2580 #undef TSF_TO_TU
   2581 }
   2582 
   2583 static int
   2584 ath_descdma_setup(struct ath_softc *sc,
   2585 	struct ath_descdma *dd, ath_bufhead *head,
   2586 	const char *name, int nbuf, int ndesc)
   2587 {
   2588 #define	DS2PHYS(_dd, _ds) \
   2589 	((_dd)->dd_desc_paddr + ((char *)(_ds) - (char *)(_dd)->dd_desc))
   2590 	struct ifnet *ifp = &sc->sc_if;
   2591 	struct ath_desc *ds;
   2592 	struct ath_buf *bf;
   2593 	int i, bsize, error;
   2594 
   2595 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
   2596 	    __func__, name, nbuf, ndesc);
   2597 
   2598 	dd->dd_name = name;
   2599 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
   2600 
   2601 	/*
   2602 	 * Setup DMA descriptor area.
   2603 	 */
   2604 	dd->dd_dmat = sc->sc_dmat;
   2605 
   2606 	error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE,
   2607 	    0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0);
   2608 
   2609 	if (error != 0) {
   2610 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
   2611 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
   2612 		goto fail0;
   2613 	}
   2614 
   2615 	error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg,
   2616 	    dd->dd_desc_len, (void **)&dd->dd_desc, BUS_DMA_COHERENT);
   2617 	if (error != 0) {
   2618 		if_printf(ifp, "unable to map %u %s descriptors, error = %u\n",
   2619 		    nbuf * ndesc, dd->dd_name, error);
   2620 		goto fail1;
   2621 	}
   2622 
   2623 	/* allocate descriptors */
   2624 	error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1,
   2625 	    dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap);
   2626 	if (error != 0) {
   2627 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
   2628 			"error %u\n", dd->dd_name, error);
   2629 		goto fail2;
   2630 	}
   2631 
   2632 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc,
   2633 	    dd->dd_desc_len, NULL, BUS_DMA_NOWAIT);
   2634 	if (error != 0) {
   2635 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
   2636 			dd->dd_name, error);
   2637 		goto fail3;
   2638 	}
   2639 
   2640 	ds = dd->dd_desc;
   2641 	dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr;
   2642 	DPRINTF(sc, ATH_DEBUG_RESET,
   2643 	    "%s: %s DMA map: %p (%lu) -> %" PRIx64 " (%lu)\n",
   2644 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
   2645 	    (uint64_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
   2646 
   2647 	/* allocate rx buffers */
   2648 	bsize = sizeof(struct ath_buf) * nbuf;
   2649 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
   2650 	if (bf == NULL) {
   2651 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
   2652 			dd->dd_name, bsize);
   2653 		goto fail4;
   2654 	}
   2655 	dd->dd_bufptr = bf;
   2656 
   2657 	STAILQ_INIT(head);
   2658 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
   2659 		bf->bf_desc = ds;
   2660 		bf->bf_daddr = DS2PHYS(dd, ds);
   2661 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc,
   2662 				MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap);
   2663 		if (error != 0) {
   2664 			if_printf(ifp, "unable to create dmamap for %s "
   2665 				"buffer %u, error %u\n", dd->dd_name, i, error);
   2666 			ath_descdma_cleanup(sc, dd, head);
   2667 			return error;
   2668 		}
   2669 		STAILQ_INSERT_TAIL(head, bf, bf_list);
   2670 	}
   2671 	return 0;
   2672 fail4:
   2673 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
   2674 fail3:
   2675 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
   2676 fail2:
   2677 	bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
   2678 fail1:
   2679 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
   2680 fail0:
   2681 	memset(dd, 0, sizeof(*dd));
   2682 	return error;
   2683 #undef DS2PHYS
   2684 }
   2685 
   2686 static void
   2687 ath_descdma_cleanup(struct ath_softc *sc,
   2688 	struct ath_descdma *dd, ath_bufhead *head)
   2689 {
   2690 	struct ath_buf *bf;
   2691 	struct ieee80211_node *ni;
   2692 
   2693 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
   2694 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
   2695 	bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
   2696 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
   2697 
   2698 	STAILQ_FOREACH(bf, head, bf_list) {
   2699 		if (bf->bf_m) {
   2700 			m_freem(bf->bf_m);
   2701 			bf->bf_m = NULL;
   2702 		}
   2703 		if (bf->bf_dmamap != NULL) {
   2704 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
   2705 			bf->bf_dmamap = NULL;
   2706 		}
   2707 		ni = bf->bf_node;
   2708 		bf->bf_node = NULL;
   2709 		if (ni != NULL) {
   2710 			/*
   2711 			 * Reclaim node reference.
   2712 			 */
   2713 			ieee80211_free_node(ni);
   2714 		}
   2715 	}
   2716 
   2717 	STAILQ_INIT(head);
   2718 	free(dd->dd_bufptr, M_ATHDEV);
   2719 	memset(dd, 0, sizeof(*dd));
   2720 }
   2721 
   2722 static int
   2723 ath_desc_alloc(struct ath_softc *sc)
   2724 {
   2725 	int error;
   2726 
   2727 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
   2728 			"rx", ath_rxbuf, 1);
   2729 	if (error != 0)
   2730 		return error;
   2731 
   2732 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
   2733 			"tx", ath_txbuf, ATH_TXDESC);
   2734 	if (error != 0) {
   2735 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2736 		return error;
   2737 	}
   2738 
   2739 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
   2740 			"beacon", 1, 1);
   2741 	if (error != 0) {
   2742 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
   2743 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2744 		return error;
   2745 	}
   2746 	return 0;
   2747 }
   2748 
   2749 static void
   2750 ath_desc_free(struct ath_softc *sc)
   2751 {
   2752 
   2753 	if (sc->sc_bdma.dd_desc_len != 0)
   2754 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
   2755 	if (sc->sc_txdma.dd_desc_len != 0)
   2756 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
   2757 	if (sc->sc_rxdma.dd_desc_len != 0)
   2758 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2759 }
   2760 
   2761 static struct ieee80211_node *
   2762 ath_node_alloc(struct ieee80211_node_table *nt)
   2763 {
   2764 	struct ieee80211com *ic = nt->nt_ic;
   2765 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   2766 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
   2767 	struct ath_node *an;
   2768 
   2769 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
   2770 	if (an == NULL) {
   2771 		/* XXX stat+msg */
   2772 		return NULL;
   2773 	}
   2774 	an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
   2775 	ath_rate_node_init(sc, an);
   2776 
   2777 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
   2778 	return &an->an_node;
   2779 }
   2780 
   2781 static void
   2782 ath_node_free(struct ieee80211_node *ni)
   2783 {
   2784 	struct ieee80211com *ic = ni->ni_ic;
   2785         struct ath_softc *sc = ic->ic_ifp->if_softc;
   2786 
   2787 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
   2788 
   2789 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
   2790 	sc->sc_node_free(ni);
   2791 }
   2792 
   2793 static u_int8_t
   2794 ath_node_getrssi(const struct ieee80211_node *ni)
   2795 {
   2796 #define	HAL_EP_RND(x, mul) \
   2797 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
   2798 	u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
   2799 	int32_t rssi;
   2800 
   2801 	/*
   2802 	 * When only one frame is received there will be no state in
   2803 	 * avgrssi so fallback on the value recorded by the 802.11 layer.
   2804 	 */
   2805 	if (avgrssi != ATH_RSSI_DUMMY_MARKER)
   2806 		rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
   2807 	else
   2808 		rssi = ni->ni_rssi;
   2809 	return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
   2810 #undef HAL_EP_RND
   2811 }
   2812 
   2813 static int
   2814 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
   2815 {
   2816 	struct ath_hal *ah = sc->sc_ah;
   2817 	int error;
   2818 	struct mbuf *m;
   2819 	struct ath_desc *ds;
   2820 
   2821 	m = bf->bf_m;
   2822 	if (m == NULL) {
   2823 		/*
   2824 		 * NB: by assigning a page to the rx dma buffer we
   2825 		 * implicitly satisfy the Atheros requirement that
   2826 		 * this buffer be cache-line-aligned and sized to be
   2827 		 * multiple of the cache line size.  Not doing this
   2828 		 * causes weird stuff to happen (for the 5210 at least).
   2829 		 */
   2830 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
   2831 		if (m == NULL) {
   2832 			DPRINTF(sc, ATH_DEBUG_ANY,
   2833 				"%s: no mbuf/cluster\n", __func__);
   2834 			sc->sc_stats.ast_rx_nombuf++;
   2835 			return ENOMEM;
   2836 		}
   2837 		bf->bf_m = m;
   2838 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
   2839 
   2840 		error = bus_dmamap_load_mbuf(sc->sc_dmat,
   2841 					     bf->bf_dmamap, m,
   2842 					     BUS_DMA_NOWAIT);
   2843 		if (error != 0) {
   2844 			DPRINTF(sc, ATH_DEBUG_ANY,
   2845 			    "%s: bus_dmamap_load_mbuf failed; error %d\n",
   2846 			    __func__, error);
   2847 			sc->sc_stats.ast_rx_busdma++;
   2848 			return error;
   2849 		}
   2850 		KASSERT(bf->bf_nseg == 1,
   2851 			("multi-segment packet; nseg %u", bf->bf_nseg));
   2852 	}
   2853 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   2854 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2855 
   2856 	/*
   2857 	 * Setup descriptors.  For receive we always terminate
   2858 	 * the descriptor list with a self-linked entry so we'll
   2859 	 * not get overrun under high load (as can happen with a
   2860 	 * 5212 when ANI processing enables PHY error frames).
   2861 	 *
   2862 	 * To insure the last descriptor is self-linked we create
   2863 	 * each descriptor as self-linked and add it to the end.  As
   2864 	 * each additional descriptor is added the previous self-linked
   2865 	 * entry is ``fixed'' naturally.  This should be safe even
   2866 	 * if DMA is happening.  When processing RX interrupts we
   2867 	 * never remove/process the last, self-linked, entry on the
   2868 	 * descriptor list.  This insures the hardware always has
   2869 	 * someplace to write a new frame.
   2870 	 */
   2871 	ds = bf->bf_desc;
   2872 	ds->ds_link = HTOAH32(bf->bf_daddr);	/* link to self */
   2873 	ds->ds_data = bf->bf_segs[0].ds_addr;
   2874 	/* ds->ds_vdata = mtod(m, void *);	for radar */
   2875 	ath_hal_setuprxdesc(ah, ds
   2876 		, m->m_len		/* buffer size */
   2877 		, 0
   2878 	);
   2879 
   2880 	if (sc->sc_rxlink != NULL)
   2881 		*sc->sc_rxlink = bf->bf_daddr;
   2882 	sc->sc_rxlink = &ds->ds_link;
   2883 	return 0;
   2884 }
   2885 
   2886 /*
   2887  * Extend 15-bit time stamp from rx descriptor to
   2888  * a full 64-bit TSF using the specified TSF.
   2889  */
   2890 static inline u_int64_t
   2891 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
   2892 {
   2893 	if ((tsf & 0x7fff) < rstamp)
   2894 		tsf -= 0x8000;
   2895 	return ((tsf &~ 0x7fff) | rstamp);
   2896 }
   2897 
   2898 /*
   2899  * Intercept management frames to collect beacon rssi data
   2900  * and to do ibss merges.
   2901  */
   2902 static void
   2903 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
   2904 	struct ieee80211_node *ni,
   2905 	int subtype, int rssi, u_int32_t rstamp)
   2906 {
   2907 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   2908 
   2909 	/*
   2910 	 * Call up first so subsequent work can use information
   2911 	 * potentially stored in the node (e.g. for ibss merge).
   2912 	 */
   2913 	sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
   2914 	switch (subtype) {
   2915 	case IEEE80211_FC0_SUBTYPE_BEACON:
   2916 		/* update rssi statistics for use by the hal */
   2917 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
   2918 		if (sc->sc_syncbeacon &&
   2919 		    ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) {
   2920 			/*
   2921 			 * Resync beacon timers using the tsf of the beacon
   2922 			 * frame we just received.
   2923 			 */
   2924 			ath_beacon_config(sc);
   2925 		}
   2926 		/* fall thru... */
   2927 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
   2928 		if (ic->ic_opmode == IEEE80211_M_IBSS &&
   2929 		    ic->ic_state == IEEE80211_S_RUN) {
   2930 			u_int64_t tsf = ath_extend_tsf(rstamp,
   2931 				ath_hal_gettsf64(sc->sc_ah));
   2932 
   2933 			/*
   2934 			 * Handle ibss merge as needed; check the tsf on the
   2935 			 * frame before attempting the merge.  The 802.11 spec
   2936 			 * says the station should change it's bssid to match
   2937 			 * the oldest station with the same ssid, where oldest
   2938 			 * is determined by the tsf.  Note that hardware
   2939 			 * reconfiguration happens through callback to
   2940 			 * ath_newstate as the state machine will go from
   2941 			 * RUN -> RUN when this happens.
   2942 			 */
   2943 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
   2944 				DPRINTF(sc, ATH_DEBUG_STATE,
   2945 				    "ibss merge, rstamp %u tsf %ju "
   2946 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
   2947 				    (uintmax_t)ni->ni_tstamp.tsf);
   2948 				(void) ieee80211_ibss_merge(ni);
   2949 			}
   2950 		}
   2951 		break;
   2952 	}
   2953 }
   2954 
   2955 /*
   2956  * Set the default antenna.
   2957  */
   2958 static void
   2959 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
   2960 {
   2961 	struct ath_hal *ah = sc->sc_ah;
   2962 
   2963 	/* XXX block beacon interrupts */
   2964 	ath_hal_setdefantenna(ah, antenna);
   2965 	if (sc->sc_defant != antenna)
   2966 		sc->sc_stats.ast_ant_defswitch++;
   2967 	sc->sc_defant = antenna;
   2968 	sc->sc_rxotherant = 0;
   2969 }
   2970 
   2971 static void
   2972 ath_handle_micerror(struct ieee80211com *ic,
   2973 	struct ieee80211_frame *wh, int keyix)
   2974 {
   2975 	struct ieee80211_node *ni;
   2976 
   2977 	/* XXX recheck MIC to deal w/ chips that lie */
   2978 	/* XXX discard MIC errors on !data frames */
   2979 	ni = ieee80211_find_rxnode_withkey(ic, (const struct ieee80211_frame_min *) wh, keyix);
   2980 	if (ni != NULL) {
   2981 		ieee80211_notify_michael_failure(ic, wh, keyix);
   2982 		ieee80211_free_node(ni);
   2983 	}
   2984 }
   2985 
   2986 static void
   2987 ath_rx_proc(void *arg, int npending)
   2988 {
   2989 #define	PA2DESC(_sc, _pa) \
   2990 	((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
   2991 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
   2992 	struct ath_softc *sc = arg;
   2993 	struct ath_buf *bf;
   2994 	struct ieee80211com *ic = &sc->sc_ic;
   2995 	struct ifnet *ifp = &sc->sc_if;
   2996 	struct ath_hal *ah = sc->sc_ah;
   2997 	struct ath_desc *ds;
   2998 	struct mbuf *m;
   2999 	struct ieee80211_node *ni;
   3000 	struct ath_node *an;
   3001 	int len, ngood, type;
   3002 	u_int phyerr;
   3003 	HAL_STATUS status;
   3004 	int16_t nf;
   3005 	u_int64_t tsf;
   3006 	uint8_t rxerr_tap, rxerr_mon;
   3007 
   3008 	NET_LOCK_GIANT();		/* XXX */
   3009 
   3010 	rxerr_tap =
   3011 	    (ifp->if_flags & IFF_PROMISC) ? HAL_RXERR_CRC|HAL_RXERR_PHY : 0;
   3012 
   3013 	if (sc->sc_ic.ic_opmode == IEEE80211_M_MONITOR)
   3014 		rxerr_mon = HAL_RXERR_DECRYPT|HAL_RXERR_MIC;
   3015 	else if (ifp->if_flags & IFF_PROMISC)
   3016 		rxerr_tap |= HAL_RXERR_DECRYPT|HAL_RXERR_MIC;
   3017 
   3018 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
   3019 	ngood = 0;
   3020 	nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
   3021 	tsf = ath_hal_gettsf64(ah);
   3022 	do {
   3023 		bf = STAILQ_FIRST(&sc->sc_rxbuf);
   3024 		if (bf == NULL) {		/* NB: shouldn't happen */
   3025 			if_printf(ifp, "%s: no buffer!\n", __func__);
   3026 			break;
   3027 		}
   3028 		ds = bf->bf_desc;
   3029 		if (ds->ds_link == bf->bf_daddr) {
   3030 			/* NB: never process the self-linked entry at the end */
   3031 			break;
   3032 		}
   3033 		m = bf->bf_m;
   3034 		if (m == NULL) {		/* NB: shouldn't happen */
   3035 			if_printf(ifp, "%s: no mbuf!\n", __func__);
   3036 			break;
   3037 		}
   3038 		/* XXX sync descriptor memory */
   3039 		/*
   3040 		 * Must provide the virtual address of the current
   3041 		 * descriptor, the physical address, and the virtual
   3042 		 * address of the next descriptor in the h/w chain.
   3043 		 * This allows the HAL to look ahead to see if the
   3044 		 * hardware is done with a descriptor by checking the
   3045 		 * done bit in the following descriptor and the address
   3046 		 * of the current descriptor the DMA engine is working
   3047 		 * on.  All this is necessary because of our use of
   3048 		 * a self-linked list to avoid rx overruns.
   3049 		 */
   3050 		status = ath_hal_rxprocdesc(ah, ds,
   3051 				bf->bf_daddr, PA2DESC(sc, ds->ds_link),
   3052 				&ds->ds_rxstat);
   3053 #ifdef AR_DEBUG
   3054 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
   3055 			ath_printrxbuf(bf, status == HAL_OK);
   3056 #endif
   3057 		if (status == HAL_EINPROGRESS)
   3058 			break;
   3059 		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
   3060 		if (ds->ds_rxstat.rs_more) {
   3061 			/*
   3062 			 * Frame spans multiple descriptors; this
   3063 			 * cannot happen yet as we don't support
   3064 			 * jumbograms.  If not in monitor mode,
   3065 			 * discard the frame.
   3066 			 */
   3067 			if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   3068 				sc->sc_stats.ast_rx_toobig++;
   3069 				goto rx_next;
   3070 			}
   3071 			/* fall thru for monitor mode handling... */
   3072 		} else if (ds->ds_rxstat.rs_status != 0) {
   3073 			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
   3074 				sc->sc_stats.ast_rx_crcerr++;
   3075 			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
   3076 				sc->sc_stats.ast_rx_fifoerr++;
   3077 			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
   3078 				sc->sc_stats.ast_rx_phyerr++;
   3079 				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
   3080 				sc->sc_stats.ast_rx_phy[phyerr]++;
   3081 				goto rx_next;
   3082 			}
   3083 			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
   3084 				/*
   3085 				 * Decrypt error.  If the error occurred
   3086 				 * because there was no hardware key, then
   3087 				 * let the frame through so the upper layers
   3088 				 * can process it.  This is necessary for 5210
   3089 				 * parts which have no way to setup a ``clear''
   3090 				 * key cache entry.
   3091 				 *
   3092 				 * XXX do key cache faulting
   3093 				 */
   3094 				if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
   3095 					goto rx_accept;
   3096 				sc->sc_stats.ast_rx_badcrypt++;
   3097 			}
   3098 			if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
   3099 				sc->sc_stats.ast_rx_badmic++;
   3100 				/*
   3101 				 * Do minimal work required to hand off
   3102 				 * the 802.11 header for notifcation.
   3103 				 */
   3104 				/* XXX frag's and qos frames */
   3105 				len = ds->ds_rxstat.rs_datalen;
   3106 				if (len >= sizeof (struct ieee80211_frame)) {
   3107 					bus_dmamap_sync(sc->sc_dmat,
   3108 					    bf->bf_dmamap,
   3109 					    0, bf->bf_dmamap->dm_mapsize,
   3110 					    BUS_DMASYNC_POSTREAD);
   3111 					ath_handle_micerror(ic,
   3112 					    mtod(m, struct ieee80211_frame *),
   3113 					    sc->sc_splitmic ?
   3114 						ds->ds_rxstat.rs_keyix-32 : ds->ds_rxstat.rs_keyix);
   3115 				}
   3116 			}
   3117 			ifp->if_ierrors++;
   3118 			/*
   3119 			 * Reject error frames, we normally don't want
   3120 			 * to see them in monitor mode (in monitor mode
   3121 			 * allow through packets that have crypto problems).
   3122 			 */
   3123 
   3124 			if (ds->ds_rxstat.rs_status &~ (rxerr_tap|rxerr_mon))
   3125 				goto rx_next;
   3126 		}
   3127 rx_accept:
   3128 		/*
   3129 		 * Sync and unmap the frame.  At this point we're
   3130 		 * committed to passing the mbuf somewhere so clear
   3131 		 * bf_m; this means a new sk_buff must be allocated
   3132 		 * when the rx descriptor is setup again to receive
   3133 		 * another frame.
   3134 		 */
   3135 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
   3136 		    0, bf->bf_dmamap->dm_mapsize,
   3137 		    BUS_DMASYNC_POSTREAD);
   3138 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   3139 		bf->bf_m = NULL;
   3140 
   3141 		m->m_pkthdr.rcvif = ifp;
   3142 		len = ds->ds_rxstat.rs_datalen;
   3143 		m->m_pkthdr.len = m->m_len = len;
   3144 
   3145 		sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
   3146 
   3147 		if (sc->sc_drvbpf) {
   3148 			u_int8_t rix;
   3149 
   3150 			/*
   3151 			 * Discard anything shorter than an ack or cts.
   3152 			 */
   3153 			if (len < IEEE80211_ACK_LEN) {
   3154 				DPRINTF(sc, ATH_DEBUG_RECV,
   3155 					"%s: runt packet %d\n",
   3156 					__func__, len);
   3157 				sc->sc_stats.ast_rx_tooshort++;
   3158 				m_freem(m);
   3159 				goto rx_next;
   3160 			}
   3161 			rix = ds->ds_rxstat.rs_rate;
   3162 			sc->sc_rx_th.wr_tsf = htole64(
   3163 				ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf));
   3164 			sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
   3165 			if (ds->ds_rxstat.rs_status &
   3166 			    (HAL_RXERR_CRC|HAL_RXERR_PHY)) {
   3167 				sc->sc_rx_th.wr_flags |=
   3168 				    IEEE80211_RADIOTAP_F_BADFCS;
   3169 			}
   3170 			sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
   3171 			sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf;
   3172 			sc->sc_rx_th.wr_antnoise = nf;
   3173 			sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
   3174 
   3175 			bpf_ops->bpf_mtap2(sc->sc_drvbpf,
   3176 			    &sc->sc_rx_th, sc->sc_rx_th_len, m);
   3177 		}
   3178 
   3179 		if (ds->ds_rxstat.rs_status & rxerr_tap) {
   3180 			m_freem(m);
   3181 			goto rx_next;
   3182 		}
   3183 		/*
   3184 		 * From this point on we assume the frame is at least
   3185 		 * as large as ieee80211_frame_min; verify that.
   3186 		 */
   3187 		if (len < IEEE80211_MIN_LEN) {
   3188 			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
   3189 				__func__, len);
   3190 			sc->sc_stats.ast_rx_tooshort++;
   3191 			m_freem(m);
   3192 			goto rx_next;
   3193 		}
   3194 
   3195 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
   3196 			ieee80211_dump_pkt(mtod(m, void *), len,
   3197 				   sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
   3198 				   ds->ds_rxstat.rs_rssi);
   3199 		}
   3200 
   3201 		m_adj(m, -IEEE80211_CRC_LEN);
   3202 
   3203 		/*
   3204 		 * Locate the node for sender, track state, and then
   3205 		 * pass the (referenced) node up to the 802.11 layer
   3206 		 * for its use.
   3207 		 */
   3208 		ni = ieee80211_find_rxnode_withkey(ic,
   3209 			mtod(m, const struct ieee80211_frame_min *),
   3210 			ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
   3211 				IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
   3212 		/*
   3213 		 * Track rx rssi and do any rx antenna management.
   3214 		 */
   3215 		an = ATH_NODE(ni);
   3216 		ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
   3217 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi);
   3218 		/*
   3219 		 * Send frame up for processing.
   3220 		 */
   3221 		type = ieee80211_input(ic, m, ni,
   3222 			ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
   3223 		ieee80211_free_node(ni);
   3224 		if (sc->sc_diversity) {
   3225 			/*
   3226 			 * When using fast diversity, change the default rx
   3227 			 * antenna if diversity chooses the other antenna 3
   3228 			 * times in a row.
   3229 			 */
   3230 			if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
   3231 				if (++sc->sc_rxotherant >= 3)
   3232 					ath_setdefantenna(sc,
   3233 						ds->ds_rxstat.rs_antenna);
   3234 			} else
   3235 				sc->sc_rxotherant = 0;
   3236 		}
   3237 		if (sc->sc_softled) {
   3238 			/*
   3239 			 * Blink for any data frame.  Otherwise do a
   3240 			 * heartbeat-style blink when idle.  The latter
   3241 			 * is mainly for station mode where we depend on
   3242 			 * periodic beacon frames to trigger the poll event.
   3243 			 */
   3244 			if (type == IEEE80211_FC0_TYPE_DATA) {
   3245 				sc->sc_rxrate = ds->ds_rxstat.rs_rate;
   3246 				ath_led_event(sc, ATH_LED_RX);
   3247 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
   3248 				ath_led_event(sc, ATH_LED_POLL);
   3249 		}
   3250 		/*
   3251 		 * Arrange to update the last rx timestamp only for
   3252 		 * frames from our ap when operating in station mode.
   3253 		 * This assumes the rx key is always setup when associated.
   3254 		 */
   3255 		if (ic->ic_opmode == IEEE80211_M_STA &&
   3256 		    ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID)
   3257 			ngood++;
   3258 rx_next:
   3259 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
   3260 	} while (ath_rxbuf_init(sc, bf) == 0);
   3261 
   3262 	/* rx signal state monitoring */
   3263 	ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
   3264 #if 0
   3265 	if (ath_hal_radar_event(ah))
   3266 		TASK_RUN_OR_ENQUEUE(&sc->sc_radartask);
   3267 #endif
   3268 	if (ngood)
   3269 		sc->sc_lastrx = tsf;
   3270 
   3271 #ifdef __NetBSD__
   3272 	/* XXX Why isn't this necessary in FreeBSD? */
   3273 	if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
   3274 		ath_start(ifp);
   3275 #endif /* __NetBSD__ */
   3276 
   3277 	NET_UNLOCK_GIANT();		/* XXX */
   3278 #undef PA2DESC
   3279 }
   3280 
   3281 /*
   3282  * Setup a h/w transmit queue.
   3283  */
   3284 static struct ath_txq *
   3285 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
   3286 {
   3287 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   3288 	struct ath_hal *ah = sc->sc_ah;
   3289 	HAL_TXQ_INFO qi;
   3290 	int qnum;
   3291 
   3292 	memset(&qi, 0, sizeof(qi));
   3293 	qi.tqi_subtype = subtype;
   3294 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
   3295 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
   3296 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
   3297 	/*
   3298 	 * Enable interrupts only for EOL and DESC conditions.
   3299 	 * We mark tx descriptors to receive a DESC interrupt
   3300 	 * when a tx queue gets deep; otherwise waiting for the
   3301 	 * EOL to reap descriptors.  Note that this is done to
   3302 	 * reduce interrupt load and this only defers reaping
   3303 	 * descriptors, never transmitting frames.  Aside from
   3304 	 * reducing interrupts this also permits more concurrency.
   3305 	 * The only potential downside is if the tx queue backs
   3306 	 * up in which case the top half of the kernel may backup
   3307 	 * due to a lack of tx descriptors.
   3308 	 */
   3309 	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
   3310 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
   3311 	if (qnum == -1) {
   3312 		/*
   3313 		 * NB: don't print a message, this happens
   3314 		 * normally on parts with too few tx queues
   3315 		 */
   3316 		return NULL;
   3317 	}
   3318 	if (qnum >= N(sc->sc_txq)) {
   3319 		device_printf(sc->sc_dev,
   3320 			"hal qnum %u out of range, max %zu!\n",
   3321 			qnum, N(sc->sc_txq));
   3322 		ath_hal_releasetxqueue(ah, qnum);
   3323 		return NULL;
   3324 	}
   3325 	if (!ATH_TXQ_SETUP(sc, qnum)) {
   3326 		struct ath_txq *txq = &sc->sc_txq[qnum];
   3327 
   3328 		txq->axq_qnum = qnum;
   3329 		txq->axq_depth = 0;
   3330 		txq->axq_intrcnt = 0;
   3331 		txq->axq_link = NULL;
   3332 		STAILQ_INIT(&txq->axq_q);
   3333 		ATH_TXQ_LOCK_INIT(sc, txq);
   3334 		sc->sc_txqsetup |= 1<<qnum;
   3335 	}
   3336 	return &sc->sc_txq[qnum];
   3337 #undef N
   3338 }
   3339 
   3340 /*
   3341  * Setup a hardware data transmit queue for the specified
   3342  * access control.  The hal may not support all requested
   3343  * queues in which case it will return a reference to a
   3344  * previously setup queue.  We record the mapping from ac's
   3345  * to h/w queues for use by ath_tx_start and also track
   3346  * the set of h/w queues being used to optimize work in the
   3347  * transmit interrupt handler and related routines.
   3348  */
   3349 static int
   3350 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
   3351 {
   3352 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   3353 	struct ath_txq *txq;
   3354 
   3355 	if (ac >= N(sc->sc_ac2q)) {
   3356 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
   3357 			ac, N(sc->sc_ac2q));
   3358 		return 0;
   3359 	}
   3360 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
   3361 	if (txq != NULL) {
   3362 		sc->sc_ac2q[ac] = txq;
   3363 		return 1;
   3364 	} else
   3365 		return 0;
   3366 #undef N
   3367 }
   3368 
   3369 /*
   3370  * Update WME parameters for a transmit queue.
   3371  */
   3372 static int
   3373 ath_txq_update(struct ath_softc *sc, int ac)
   3374 {
   3375 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
   3376 #define	ATH_TXOP_TO_US(v)		(v<<5)
   3377 	struct ieee80211com *ic = &sc->sc_ic;
   3378 	struct ath_txq *txq = sc->sc_ac2q[ac];
   3379 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
   3380 	struct ath_hal *ah = sc->sc_ah;
   3381 	HAL_TXQ_INFO qi;
   3382 
   3383 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
   3384 	qi.tqi_aifs = wmep->wmep_aifsn;
   3385 	qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
   3386 	qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
   3387 	qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
   3388 
   3389 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
   3390 		device_printf(sc->sc_dev, "unable to update hardware queue "
   3391 			"parameters for %s traffic!\n",
   3392 			ieee80211_wme_acnames[ac]);
   3393 		return 0;
   3394 	} else {
   3395 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
   3396 		return 1;
   3397 	}
   3398 #undef ATH_TXOP_TO_US
   3399 #undef ATH_EXPONENT_TO_VALUE
   3400 }
   3401 
   3402 /*
   3403  * Callback from the 802.11 layer to update WME parameters.
   3404  */
   3405 static int
   3406 ath_wme_update(struct ieee80211com *ic)
   3407 {
   3408 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   3409 
   3410 	return !ath_txq_update(sc, WME_AC_BE) ||
   3411 	    !ath_txq_update(sc, WME_AC_BK) ||
   3412 	    !ath_txq_update(sc, WME_AC_VI) ||
   3413 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
   3414 }
   3415 
   3416 /*
   3417  * Reclaim resources for a setup queue.
   3418  */
   3419 static void
   3420 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
   3421 {
   3422 
   3423 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
   3424 	ATH_TXQ_LOCK_DESTROY(txq);
   3425 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
   3426 }
   3427 
   3428 /*
   3429  * Reclaim all tx queue resources.
   3430  */
   3431 static void
   3432 ath_tx_cleanup(struct ath_softc *sc)
   3433 {
   3434 	int i;
   3435 
   3436 	ATH_TXBUF_LOCK_DESTROY(sc);
   3437 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   3438 		if (ATH_TXQ_SETUP(sc, i))
   3439 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
   3440 }
   3441 
   3442 /*
   3443  * Defragment an mbuf chain, returning at most maxfrags separate
   3444  * mbufs+clusters.  If this is not possible NULL is returned and
   3445  * the original mbuf chain is left in it's present (potentially
   3446  * modified) state.  We use two techniques: collapsing consecutive
   3447  * mbufs and replacing consecutive mbufs by a cluster.
   3448  */
   3449 static struct mbuf *
   3450 ath_defrag(struct mbuf *m0, int how, int maxfrags)
   3451 {
   3452 	struct mbuf *m, *n, *n2, **prev;
   3453 	u_int curfrags;
   3454 
   3455 	/*
   3456 	 * Calculate the current number of frags.
   3457 	 */
   3458 	curfrags = 0;
   3459 	for (m = m0; m != NULL; m = m->m_next)
   3460 		curfrags++;
   3461 	/*
   3462 	 * First, try to collapse mbufs.  Note that we always collapse
   3463 	 * towards the front so we don't need to deal with moving the
   3464 	 * pkthdr.  This may be suboptimal if the first mbuf has much
   3465 	 * less data than the following.
   3466 	 */
   3467 	m = m0;
   3468 again:
   3469 	for (;;) {
   3470 		n = m->m_next;
   3471 		if (n == NULL)
   3472 			break;
   3473 		if (n->m_len < M_TRAILINGSPACE(m)) {
   3474 			memcpy(mtod(m, char *) + m->m_len, mtod(n, void *),
   3475 				n->m_len);
   3476 			m->m_len += n->m_len;
   3477 			m->m_next = n->m_next;
   3478 			m_free(n);
   3479 			if (--curfrags <= maxfrags)
   3480 				return m0;
   3481 		} else
   3482 			m = n;
   3483 	}
   3484 	KASSERT(maxfrags > 1,
   3485 		("maxfrags %u, but normal collapse failed", maxfrags));
   3486 	/*
   3487 	 * Collapse consecutive mbufs to a cluster.
   3488 	 */
   3489 	prev = &m0->m_next;		/* NB: not the first mbuf */
   3490 	while ((n = *prev) != NULL) {
   3491 		if ((n2 = n->m_next) != NULL &&
   3492 		    n->m_len + n2->m_len < MCLBYTES) {
   3493 			m = m_getcl(how, MT_DATA, 0);
   3494 			if (m == NULL)
   3495 				goto bad;
   3496 			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
   3497 			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
   3498 				n2->m_len);
   3499 			m->m_len = n->m_len + n2->m_len;
   3500 			m->m_next = n2->m_next;
   3501 			*prev = m;
   3502 			m_free(n);
   3503 			m_free(n2);
   3504 			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
   3505 				return m0;
   3506 			/*
   3507 			 * Still not there, try the normal collapse
   3508 			 * again before we allocate another cluster.
   3509 			 */
   3510 			goto again;
   3511 		}
   3512 		prev = &n->m_next;
   3513 	}
   3514 	/*
   3515 	 * No place where we can collapse to a cluster; punt.
   3516 	 * This can occur if, for example, you request 2 frags
   3517 	 * but the packet requires that both be clusters (we
   3518 	 * never reallocate the first mbuf to avoid moving the
   3519 	 * packet header).
   3520 	 */
   3521 bad:
   3522 	return NULL;
   3523 }
   3524 
   3525 /*
   3526  * Return h/w rate index for an IEEE rate (w/o basic rate bit).
   3527  */
   3528 static int
   3529 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
   3530 {
   3531 	int i;
   3532 
   3533 	for (i = 0; i < rt->rateCount; i++)
   3534 		if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
   3535 			return i;
   3536 	return 0;		/* NB: lowest rate */
   3537 }
   3538 
   3539 static void
   3540 ath_freetx(struct mbuf *m)
   3541 {
   3542 	struct mbuf *next;
   3543 
   3544 	do {
   3545 		next = m->m_nextpkt;
   3546 		m->m_nextpkt = NULL;
   3547 		m_freem(m);
   3548 	} while ((m = next) != NULL);
   3549 }
   3550 
   3551 static int
   3552 deduct_pad_bytes(int len, int hdrlen)
   3553 {
   3554 	/* XXX I am suspicious that this code, which I extracted
   3555 	 * XXX from ath_tx_start() for reuse, does the right thing.
   3556 	 */
   3557 	return len - (hdrlen & 3);
   3558 }
   3559 
   3560 static int
   3561 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
   3562     struct mbuf *m0)
   3563 {
   3564 	struct ieee80211com *ic = &sc->sc_ic;
   3565 	struct ath_hal *ah = sc->sc_ah;
   3566 	struct ifnet *ifp = &sc->sc_if;
   3567 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
   3568 	int i, error, iswep, ismcast, isfrag, ismrr;
   3569 	int keyix, hdrlen, pktlen, try0;
   3570 	u_int8_t rix, txrate, ctsrate;
   3571 	u_int8_t cix = 0xff;		/* NB: silence compiler */
   3572 	struct ath_desc *ds, *ds0;
   3573 	struct ath_txq *txq;
   3574 	struct ieee80211_frame *wh;
   3575 	u_int subtype, flags, ctsduration;
   3576 	HAL_PKT_TYPE atype;
   3577 	const HAL_RATE_TABLE *rt;
   3578 	HAL_BOOL shortPreamble;
   3579 	struct ath_node *an;
   3580 	struct mbuf *m;
   3581 	u_int pri;
   3582 
   3583 	wh = mtod(m0, struct ieee80211_frame *);
   3584 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
   3585 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
   3586 	isfrag = m0->m_flags & M_FRAG;
   3587 	hdrlen = ieee80211_anyhdrsize(wh);
   3588 	/*
   3589 	 * Packet length must not include any
   3590 	 * pad bytes; deduct them here.
   3591 	 */
   3592 	pktlen = deduct_pad_bytes(m0->m_pkthdr.len, hdrlen);
   3593 
   3594 	if (iswep) {
   3595 		const struct ieee80211_cipher *cip;
   3596 		struct ieee80211_key *k;
   3597 
   3598 		/*
   3599 		 * Construct the 802.11 header+trailer for an encrypted
   3600 		 * frame. The only reason this can fail is because of an
   3601 		 * unknown or unsupported cipher/key type.
   3602 		 */
   3603 		k = ieee80211_crypto_encap(ic, ni, m0);
   3604 		if (k == NULL) {
   3605 			/*
   3606 			 * This can happen when the key is yanked after the
   3607 			 * frame was queued.  Just discard the frame; the
   3608 			 * 802.11 layer counts failures and provides
   3609 			 * debugging/diagnostics.
   3610 			 */
   3611 			ath_freetx(m0);
   3612 			return EIO;
   3613 		}
   3614 		/*
   3615 		 * Adjust the packet + header lengths for the crypto
   3616 		 * additions and calculate the h/w key index.  When
   3617 		 * a s/w mic is done the frame will have had any mic
   3618 		 * added to it prior to entry so m0->m_pkthdr.len above will
   3619 		 * account for it. Otherwise we need to add it to the
   3620 		 * packet length.
   3621 		 */
   3622 		cip = k->wk_cipher;
   3623 		hdrlen += cip->ic_header;
   3624 		pktlen += cip->ic_header + cip->ic_trailer;
   3625 		/* NB: frags always have any TKIP MIC done in s/w */
   3626 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
   3627 			pktlen += cip->ic_miclen;
   3628 		keyix = k->wk_keyix;
   3629 
   3630 		/* packet header may have moved, reset our local pointer */
   3631 		wh = mtod(m0, struct ieee80211_frame *);
   3632 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
   3633 		/*
   3634 		 * Use station key cache slot, if assigned.
   3635 		 */
   3636 		keyix = ni->ni_ucastkey.wk_keyix;
   3637 		if (keyix == IEEE80211_KEYIX_NONE)
   3638 			keyix = HAL_TXKEYIX_INVALID;
   3639 	} else
   3640 		keyix = HAL_TXKEYIX_INVALID;
   3641 
   3642 	pktlen += IEEE80211_CRC_LEN;
   3643 
   3644 	/*
   3645 	 * Load the DMA map so any coalescing is done.  This
   3646 	 * also calculates the number of descriptors we need.
   3647 	 */
   3648 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
   3649 				     BUS_DMA_NOWAIT);
   3650 	if (error == EFBIG) {
   3651 		/* XXX packet requires too many descriptors */
   3652 		bf->bf_nseg = ATH_TXDESC+1;
   3653 	} else if (error != 0) {
   3654 		sc->sc_stats.ast_tx_busdma++;
   3655 		ath_freetx(m0);
   3656 		return error;
   3657 	}
   3658 	/*
   3659 	 * Discard null packets and check for packets that
   3660 	 * require too many TX descriptors.  We try to convert
   3661 	 * the latter to a cluster.
   3662 	 */
   3663 	if (error == EFBIG) {		/* too many desc's, linearize */
   3664 		sc->sc_stats.ast_tx_linear++;
   3665 		m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
   3666 		if (m == NULL) {
   3667 			ath_freetx(m0);
   3668 			sc->sc_stats.ast_tx_nombuf++;
   3669 			return ENOMEM;
   3670 		}
   3671 		m0 = m;
   3672 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
   3673 					     BUS_DMA_NOWAIT);
   3674 		if (error != 0) {
   3675 			sc->sc_stats.ast_tx_busdma++;
   3676 			ath_freetx(m0);
   3677 			return error;
   3678 		}
   3679 		KASSERT(bf->bf_nseg <= ATH_TXDESC,
   3680 		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
   3681 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
   3682 		sc->sc_stats.ast_tx_nodata++;
   3683 		ath_freetx(m0);
   3684 		return EIO;
   3685 	}
   3686 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
   3687 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   3688             bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
   3689 	bf->bf_m = m0;
   3690 	bf->bf_node = ni;			/* NB: held reference */
   3691 
   3692 	/* setup descriptors */
   3693 	ds = bf->bf_desc;
   3694 	rt = sc->sc_currates;
   3695 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
   3696 
   3697 	/*
   3698 	 * NB: the 802.11 layer marks whether or not we should
   3699 	 * use short preamble based on the current mode and
   3700 	 * negotiated parameters.
   3701 	 */
   3702 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
   3703 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) {
   3704 		shortPreamble = AH_TRUE;
   3705 		sc->sc_stats.ast_tx_shortpre++;
   3706 	} else {
   3707 		shortPreamble = AH_FALSE;
   3708 	}
   3709 
   3710 	an = ATH_NODE(ni);
   3711 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
   3712 	ismrr = 0;				/* default no multi-rate retry*/
   3713 	/*
   3714 	 * Calculate Atheros packet type from IEEE80211 packet header,
   3715 	 * setup for rate calculations, and select h/w transmit queue.
   3716 	 */
   3717 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
   3718 	case IEEE80211_FC0_TYPE_MGT:
   3719 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   3720 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
   3721 			atype = HAL_PKT_TYPE_BEACON;
   3722 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
   3723 			atype = HAL_PKT_TYPE_PROBE_RESP;
   3724 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
   3725 			atype = HAL_PKT_TYPE_ATIM;
   3726 		else
   3727 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
   3728 		rix = sc->sc_minrateix;
   3729 		txrate = rt->info[rix].rateCode;
   3730 		if (shortPreamble)
   3731 			txrate |= rt->info[rix].shortPreamble;
   3732 		try0 = ATH_TXMGTTRY;
   3733 		/* NB: force all management frames to highest queue */
   3734 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
   3735 			/* NB: force all management frames to highest queue */
   3736 			pri = WME_AC_VO;
   3737 		} else
   3738 			pri = WME_AC_BE;
   3739 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
   3740 		break;
   3741 	case IEEE80211_FC0_TYPE_CTL:
   3742 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
   3743 		rix = sc->sc_minrateix;
   3744 		txrate = rt->info[rix].rateCode;
   3745 		if (shortPreamble)
   3746 			txrate |= rt->info[rix].shortPreamble;
   3747 		try0 = ATH_TXMGTTRY;
   3748 		/* NB: force all ctl frames to highest queue */
   3749 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
   3750 			/* NB: force all ctl frames to highest queue */
   3751 			pri = WME_AC_VO;
   3752 		} else
   3753 			pri = WME_AC_BE;
   3754 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
   3755 		break;
   3756 	case IEEE80211_FC0_TYPE_DATA:
   3757 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
   3758 		/*
   3759 		 * Data frames: multicast frames go out at a fixed rate,
   3760 		 * otherwise consult the rate control module for the
   3761 		 * rate to use.
   3762 		 */
   3763 		if (ismcast) {
   3764 			/*
   3765 			 * Check mcast rate setting in case it's changed.
   3766 			 * XXX move out of fastpath
   3767 			 */
   3768 			if (ic->ic_mcast_rate != sc->sc_mcastrate) {
   3769 				sc->sc_mcastrix =
   3770 					ath_tx_findrix(rt, ic->ic_mcast_rate);
   3771 				sc->sc_mcastrate = ic->ic_mcast_rate;
   3772 			}
   3773 			rix = sc->sc_mcastrix;
   3774 			txrate = rt->info[rix].rateCode;
   3775 			try0 = 1;
   3776 		} else {
   3777 			ath_rate_findrate(sc, an, shortPreamble, pktlen,
   3778 				&rix, &try0, &txrate);
   3779 			sc->sc_txrate = txrate;		/* for LED blinking */
   3780 			if (try0 != ATH_TXMAXTRY)
   3781 				ismrr = 1;
   3782 		}
   3783 		pri = M_WME_GETAC(m0);
   3784 		if (cap->cap_wmeParams[pri].wmep_noackPolicy)
   3785 			flags |= HAL_TXDESC_NOACK;
   3786 		break;
   3787 	default:
   3788 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
   3789 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
   3790 		/* XXX statistic */
   3791 		ath_freetx(m0);
   3792 		return EIO;
   3793 	}
   3794 	txq = sc->sc_ac2q[pri];
   3795 
   3796 	/*
   3797 	 * When servicing one or more stations in power-save mode
   3798 	 * multicast frames must be buffered until after the beacon.
   3799 	 * We use the CAB queue for that.
   3800 	 */
   3801 	if (ismcast && ic->ic_ps_sta) {
   3802 		txq = sc->sc_cabq;
   3803 		/* XXX? more bit in 802.11 frame header */
   3804 	}
   3805 
   3806 	/*
   3807 	 * Calculate miscellaneous flags.
   3808 	 */
   3809 	if (ismcast) {
   3810 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
   3811 	} else if (pktlen > ic->ic_rtsthreshold) {
   3812 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
   3813 		cix = rt->info[rix].controlRate;
   3814 		sc->sc_stats.ast_tx_rts++;
   3815 	}
   3816 	if (flags & HAL_TXDESC_NOACK)		/* NB: avoid double counting */
   3817 		sc->sc_stats.ast_tx_noack++;
   3818 
   3819 	/*
   3820 	 * If 802.11g protection is enabled, determine whether
   3821 	 * to use RTS/CTS or just CTS.  Note that this is only
   3822 	 * done for OFDM unicast frames.
   3823 	 */
   3824 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
   3825 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
   3826 	    (flags & HAL_TXDESC_NOACK) == 0) {
   3827 		/* XXX fragments must use CCK rates w/ protection */
   3828 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
   3829 			flags |= HAL_TXDESC_RTSENA;
   3830 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
   3831 			flags |= HAL_TXDESC_CTSENA;
   3832 		if (isfrag) {
   3833 			/*
   3834 			 * For frags it would be desirable to use the
   3835 			 * highest CCK rate for RTS/CTS.  But stations
   3836 			 * farther away may detect it at a lower CCK rate
   3837 			 * so use the configured protection rate instead
   3838 			 * (for now).
   3839 			 */
   3840 			cix = rt->info[sc->sc_protrix].controlRate;
   3841 		} else
   3842 			cix = rt->info[sc->sc_protrix].controlRate;
   3843 		sc->sc_stats.ast_tx_protect++;
   3844 	}
   3845 
   3846 	/*
   3847 	 * Calculate duration.  This logically belongs in the 802.11
   3848 	 * layer but it lacks sufficient information to calculate it.
   3849 	 */
   3850 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
   3851 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
   3852 		u_int16_t dur;
   3853 		/*
   3854 		 * XXX not right with fragmentation.
   3855 		 */
   3856 		if (shortPreamble)
   3857 			dur = rt->info[rix].spAckDuration;
   3858 		else
   3859 			dur = rt->info[rix].lpAckDuration;
   3860 		if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
   3861 			dur += dur;             /* additional SIFS+ACK */
   3862 			KASSERT(m0->m_nextpkt != NULL, ("no fragment"));
   3863 			/*
   3864 			 * Include the size of next fragment so NAV is
   3865 			 * updated properly.  The last fragment uses only
   3866 			 * the ACK duration
   3867 			 */
   3868 			dur += ath_hal_computetxtime(ah, rt,
   3869 			    deduct_pad_bytes(m0->m_nextpkt->m_pkthdr.len,
   3870 			        hdrlen) -
   3871 			    deduct_pad_bytes(m0->m_pkthdr.len, hdrlen) + pktlen,
   3872 			    rix, shortPreamble);
   3873 		}
   3874 		if (isfrag) {
   3875 			/*
   3876 			 * Force hardware to use computed duration for next
   3877 			 * fragment by disabling multi-rate retry which updates
   3878 			 * duration based on the multi-rate duration table.
   3879 			 */
   3880 			try0 = ATH_TXMAXTRY;
   3881 		}
   3882 		*(u_int16_t *)wh->i_dur = htole16(dur);
   3883 	}
   3884 
   3885 	/*
   3886 	 * Calculate RTS/CTS rate and duration if needed.
   3887 	 */
   3888 	ctsduration = 0;
   3889 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
   3890 		/*
   3891 		 * CTS transmit rate is derived from the transmit rate
   3892 		 * by looking in the h/w rate table.  We must also factor
   3893 		 * in whether or not a short preamble is to be used.
   3894 		 */
   3895 		/* NB: cix is set above where RTS/CTS is enabled */
   3896 		KASSERT(cix != 0xff, ("cix not setup"));
   3897 		ctsrate = rt->info[cix].rateCode;
   3898 		/*
   3899 		 * Compute the transmit duration based on the frame
   3900 		 * size and the size of an ACK frame.  We call into the
   3901 		 * HAL to do the computation since it depends on the
   3902 		 * characteristics of the actual PHY being used.
   3903 		 *
   3904 		 * NB: CTS is assumed the same size as an ACK so we can
   3905 		 *     use the precalculated ACK durations.
   3906 		 */
   3907 		if (shortPreamble) {
   3908 			ctsrate |= rt->info[cix].shortPreamble;
   3909 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
   3910 				ctsduration += rt->info[cix].spAckDuration;
   3911 			ctsduration += ath_hal_computetxtime(ah,
   3912 				rt, pktlen, rix, AH_TRUE);
   3913 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
   3914 				ctsduration += rt->info[rix].spAckDuration;
   3915 		} else {
   3916 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
   3917 				ctsduration += rt->info[cix].lpAckDuration;
   3918 			ctsduration += ath_hal_computetxtime(ah,
   3919 				rt, pktlen, rix, AH_FALSE);
   3920 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
   3921 				ctsduration += rt->info[rix].lpAckDuration;
   3922 		}
   3923 		/*
   3924 		 * Must disable multi-rate retry when using RTS/CTS.
   3925 		 */
   3926 		ismrr = 0;
   3927 		try0 = ATH_TXMGTTRY;		/* XXX */
   3928 	} else
   3929 		ctsrate = 0;
   3930 
   3931 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
   3932 		ieee80211_dump_pkt(mtod(m0, void *), m0->m_len,
   3933 			sc->sc_hwmap[txrate].ieeerate, -1);
   3934 	if (ic->ic_rawbpf)
   3935 		bpf_ops->bpf_mtap(ic->ic_rawbpf, m0);
   3936 	if (sc->sc_drvbpf) {
   3937 		u_int64_t tsf = ath_hal_gettsf64(ah);
   3938 
   3939 		sc->sc_tx_th.wt_tsf = htole64(tsf);
   3940 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
   3941 		if (iswep)
   3942 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
   3943 		if (isfrag)
   3944 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
   3945 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
   3946 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
   3947 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
   3948 
   3949 		bpf_ops->bpf_mtap2(sc->sc_drvbpf,
   3950 		    &sc->sc_tx_th, sc->sc_tx_th_len, m0);
   3951 	}
   3952 
   3953 	/*
   3954 	 * Determine if a tx interrupt should be generated for
   3955 	 * this descriptor.  We take a tx interrupt to reap
   3956 	 * descriptors when the h/w hits an EOL condition or
   3957 	 * when the descriptor is specifically marked to generate
   3958 	 * an interrupt.  We periodically mark descriptors in this
   3959 	 * way to insure timely replenishing of the supply needed
   3960 	 * for sending frames.  Defering interrupts reduces system
   3961 	 * load and potentially allows more concurrent work to be
   3962 	 * done but if done to aggressively can cause senders to
   3963 	 * backup.
   3964 	 *
   3965 	 * NB: use >= to deal with sc_txintrperiod changing
   3966 	 *     dynamically through sysctl.
   3967 	 */
   3968 	if (flags & HAL_TXDESC_INTREQ) {
   3969 		txq->axq_intrcnt = 0;
   3970 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
   3971 		flags |= HAL_TXDESC_INTREQ;
   3972 		txq->axq_intrcnt = 0;
   3973 	}
   3974 
   3975 	/*
   3976 	 * Formulate first tx descriptor with tx controls.
   3977 	 */
   3978 	/* XXX check return value? */
   3979 	ath_hal_setuptxdesc(ah, ds
   3980 		, pktlen		/* packet length */
   3981 		, hdrlen		/* header length */
   3982 		, atype			/* Atheros packet type */
   3983 		, ni->ni_txpower	/* txpower */
   3984 		, txrate, try0		/* series 0 rate/tries */
   3985 		, keyix			/* key cache index */
   3986 		, sc->sc_txantenna	/* antenna mode */
   3987 		, flags			/* flags */
   3988 		, ctsrate		/* rts/cts rate */
   3989 		, ctsduration		/* rts/cts duration */
   3990 	);
   3991 	bf->bf_flags = flags;
   3992 	/*
   3993 	 * Setup the multi-rate retry state only when we're
   3994 	 * going to use it.  This assumes ath_hal_setuptxdesc
   3995 	 * initializes the descriptors (so we don't have to)
   3996 	 * when the hardware supports multi-rate retry and
   3997 	 * we don't use it.
   3998 	 */
   3999 	if (ismrr)
   4000 		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
   4001 
   4002 	/*
   4003 	 * Fillin the remainder of the descriptor info.
   4004 	 */
   4005 	ds0 = ds;
   4006 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
   4007 		ds->ds_data = bf->bf_segs[i].ds_addr;
   4008 		if (i == bf->bf_nseg - 1)
   4009 			ds->ds_link = 0;
   4010 		else
   4011 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
   4012 		ath_hal_filltxdesc(ah, ds
   4013 			, bf->bf_segs[i].ds_len	/* segment length */
   4014 			, i == 0		/* first segment */
   4015 			, i == bf->bf_nseg - 1	/* last segment */
   4016 			, ds0			/* first descriptor */
   4017 		);
   4018 
   4019 		/* NB: The desc swap function becomes void,
   4020 		 * if descriptor swapping is not enabled
   4021 		 */
   4022 		ath_desc_swap(ds);
   4023 
   4024 		DPRINTF(sc, ATH_DEBUG_XMIT,
   4025 			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
   4026 			__func__, i, ds->ds_link, ds->ds_data,
   4027 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
   4028 	}
   4029 	/*
   4030 	 * Insert the frame on the outbound list and
   4031 	 * pass it on to the hardware.
   4032 	 */
   4033 	ATH_TXQ_LOCK(txq);
   4034 	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
   4035 	if (txq->axq_link == NULL) {
   4036 		ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
   4037 		DPRINTF(sc, ATH_DEBUG_XMIT,
   4038 		    "%s: TXDP[%u] = %" PRIx64 " (%p) depth %d\n", __func__,
   4039 		    txq->axq_qnum, (uint64_t)bf->bf_daddr, bf->bf_desc,
   4040 		    txq->axq_depth);
   4041 	} else {
   4042 		*txq->axq_link = HTOAH32(bf->bf_daddr);
   4043 		DPRINTF(sc, ATH_DEBUG_XMIT,
   4044 		    "%s: link[%u](%p)=%" PRIx64 " (%p) depth %d\n",
   4045 		    __func__, txq->axq_qnum, txq->axq_link,
   4046 		    (uint64_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
   4047 	}
   4048 	txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
   4049 	/*
   4050 	 * The CAB queue is started from the SWBA handler since
   4051 	 * frames only go out on DTIM and to avoid possible races.
   4052 	 */
   4053 	if (txq != sc->sc_cabq)
   4054 		ath_hal_txstart(ah, txq->axq_qnum);
   4055 	ATH_TXQ_UNLOCK(txq);
   4056 
   4057 	return 0;
   4058 }
   4059 
   4060 /*
   4061  * Process completed xmit descriptors from the specified queue.
   4062  */
   4063 static int
   4064 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
   4065 {
   4066 	struct ath_hal *ah = sc->sc_ah;
   4067 	struct ieee80211com *ic = &sc->sc_ic;
   4068 	struct ath_buf *bf;
   4069 	struct ath_desc *ds, *ds0;
   4070 	struct ieee80211_node *ni;
   4071 	struct ath_node *an;
   4072 	int sr, lr, pri, nacked;
   4073 	HAL_STATUS status;
   4074 
   4075 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
   4076 		__func__, txq->axq_qnum,
   4077 		(void *)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
   4078 		txq->axq_link);
   4079 	nacked = 0;
   4080 	for (;;) {
   4081 		ATH_TXQ_LOCK(txq);
   4082 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
   4083 		bf = STAILQ_FIRST(&txq->axq_q);
   4084 		if (bf == NULL) {
   4085 			txq->axq_link = NULL;
   4086 			ATH_TXQ_UNLOCK(txq);
   4087 			break;
   4088 		}
   4089 		ds0 = &bf->bf_desc[0];
   4090 		ds = &bf->bf_desc[bf->bf_nseg - 1];
   4091 		status = ath_hal_txprocdesc(ah, ds, &ds->ds_txstat);
   4092 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
   4093 			ath_printtxbuf(bf, status == HAL_OK);
   4094 		if (status == HAL_EINPROGRESS) {
   4095 			ATH_TXQ_UNLOCK(txq);
   4096 			break;
   4097 		}
   4098 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
   4099 		ATH_TXQ_UNLOCK(txq);
   4100 
   4101 		ni = bf->bf_node;
   4102 		if (ni != NULL) {
   4103 			an = ATH_NODE(ni);
   4104 			if (ds->ds_txstat.ts_status == 0) {
   4105 				u_int8_t txant = ds->ds_txstat.ts_antenna;
   4106 				sc->sc_stats.ast_ant_tx[txant]++;
   4107 				sc->sc_ant_tx[txant]++;
   4108 				if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
   4109 					sc->sc_stats.ast_tx_altrate++;
   4110 				sc->sc_stats.ast_tx_rssi =
   4111 					ds->ds_txstat.ts_rssi;
   4112 				ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
   4113 					ds->ds_txstat.ts_rssi);
   4114 				pri = M_WME_GETAC(bf->bf_m);
   4115 				if (pri >= WME_AC_VO)
   4116 					ic->ic_wme.wme_hipri_traffic++;
   4117 				ni->ni_inact = ni->ni_inact_reload;
   4118 			} else {
   4119 				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
   4120 					sc->sc_stats.ast_tx_xretries++;
   4121 				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
   4122 					sc->sc_stats.ast_tx_fifoerr++;
   4123 				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
   4124 					sc->sc_stats.ast_tx_filtered++;
   4125 			}
   4126 			sr = ds->ds_txstat.ts_shortretry;
   4127 			lr = ds->ds_txstat.ts_longretry;
   4128 			sc->sc_stats.ast_tx_shortretry += sr;
   4129 			sc->sc_stats.ast_tx_longretry += lr;
   4130 			/*
   4131 			 * Hand the descriptor to the rate control algorithm.
   4132 			 */
   4133 			if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
   4134 			    (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
   4135 				/*
   4136 				 * If frame was ack'd update the last rx time
   4137 				 * used to workaround phantom bmiss interrupts.
   4138 				 */
   4139 				if (ds->ds_txstat.ts_status == 0)
   4140 					nacked++;
   4141 				ath_rate_tx_complete(sc, an, ds, ds0);
   4142 			}
   4143 			/*
   4144 			 * Reclaim reference to node.
   4145 			 *
   4146 			 * NB: the node may be reclaimed here if, for example
   4147 			 *     this is a DEAUTH message that was sent and the
   4148 			 *     node was timed out due to inactivity.
   4149 			 */
   4150 			ieee80211_free_node(ni);
   4151 		}
   4152 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   4153 		    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4154 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   4155 		m_freem(bf->bf_m);
   4156 		bf->bf_m = NULL;
   4157 		bf->bf_node = NULL;
   4158 
   4159 		ATH_TXBUF_LOCK(sc);
   4160 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   4161 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
   4162 		ATH_TXBUF_UNLOCK(sc);
   4163 	}
   4164 	return nacked;
   4165 }
   4166 
   4167 static inline int
   4168 txqactive(struct ath_hal *ah, int qnum)
   4169 {
   4170 	u_int32_t txqs = 1<<qnum;
   4171 	ath_hal_gettxintrtxqs(ah, &txqs);
   4172 	return (txqs & (1<<qnum));
   4173 }
   4174 
   4175 /*
   4176  * Deferred processing of transmit interrupt; special-cased
   4177  * for a single hardware transmit queue (e.g. 5210 and 5211).
   4178  */
   4179 static void
   4180 ath_tx_proc_q0(void *arg, int npending)
   4181 {
   4182 	struct ath_softc *sc = arg;
   4183 	struct ifnet *ifp = &sc->sc_if;
   4184 
   4185 	if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]) > 0){
   4186 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
   4187 	}
   4188 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
   4189 		ath_tx_processq(sc, sc->sc_cabq);
   4190 
   4191 	if (sc->sc_softled)
   4192 		ath_led_event(sc, ATH_LED_TX);
   4193 
   4194 	ath_start(ifp);
   4195 }
   4196 
   4197 /*
   4198  * Deferred processing of transmit interrupt; special-cased
   4199  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
   4200  */
   4201 static void
   4202 ath_tx_proc_q0123(void *arg, int npending)
   4203 {
   4204 	struct ath_softc *sc = arg;
   4205 	struct ifnet *ifp = &sc->sc_if;
   4206 	int nacked;
   4207 
   4208 	/*
   4209 	 * Process each active queue.
   4210 	 */
   4211 	nacked = 0;
   4212 	if (txqactive(sc->sc_ah, 0))
   4213 		nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
   4214 	if (txqactive(sc->sc_ah, 1))
   4215 		nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
   4216 	if (txqactive(sc->sc_ah, 2))
   4217 		nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
   4218 	if (txqactive(sc->sc_ah, 3))
   4219 		nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
   4220 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
   4221 		ath_tx_processq(sc, sc->sc_cabq);
   4222 	if (nacked) {
   4223 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
   4224 	}
   4225 
   4226 	if (sc->sc_softled)
   4227 		ath_led_event(sc, ATH_LED_TX);
   4228 
   4229 	ath_start(ifp);
   4230 }
   4231 
   4232 /*
   4233  * Deferred processing of transmit interrupt.
   4234  */
   4235 static void
   4236 ath_tx_proc(void *arg, int npending)
   4237 {
   4238 	struct ath_softc *sc = arg;
   4239 	struct ifnet *ifp = &sc->sc_if;
   4240 	int i, nacked;
   4241 
   4242 	/*
   4243 	 * Process each active queue.
   4244 	 */
   4245 	nacked = 0;
   4246 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   4247 		if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
   4248 			nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
   4249 	if (nacked) {
   4250 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
   4251 	}
   4252 
   4253 	if (sc->sc_softled)
   4254 		ath_led_event(sc, ATH_LED_TX);
   4255 
   4256 	ath_start(ifp);
   4257 }
   4258 
   4259 static void
   4260 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
   4261 {
   4262 	struct ath_hal *ah = sc->sc_ah;
   4263 	struct ieee80211_node *ni;
   4264 	struct ath_buf *bf;
   4265 	struct ath_desc *ds;
   4266 
   4267 	/*
   4268 	 * NB: this assumes output has been stopped and
   4269 	 *     we do not need to block ath_tx_tasklet
   4270 	 */
   4271 	for (;;) {
   4272 		ATH_TXQ_LOCK(txq);
   4273 		bf = STAILQ_FIRST(&txq->axq_q);
   4274 		if (bf == NULL) {
   4275 			txq->axq_link = NULL;
   4276 			ATH_TXQ_UNLOCK(txq);
   4277 			break;
   4278 		}
   4279 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
   4280 		ATH_TXQ_UNLOCK(txq);
   4281 		ds = &bf->bf_desc[bf->bf_nseg - 1];
   4282 		if (sc->sc_debug & ATH_DEBUG_RESET)
   4283 			ath_printtxbuf(bf,
   4284 				ath_hal_txprocdesc(ah, bf->bf_desc,
   4285 					&ds->ds_txstat) == HAL_OK);
   4286 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   4287 		m_freem(bf->bf_m);
   4288 		bf->bf_m = NULL;
   4289 		ni = bf->bf_node;
   4290 		bf->bf_node = NULL;
   4291 		if (ni != NULL) {
   4292 			/*
   4293 			 * Reclaim node reference.
   4294 			 */
   4295 			ieee80211_free_node(ni);
   4296 		}
   4297 		ATH_TXBUF_LOCK(sc);
   4298 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   4299 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
   4300 		ATH_TXBUF_UNLOCK(sc);
   4301 	}
   4302 }
   4303 
   4304 static void
   4305 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
   4306 {
   4307 	struct ath_hal *ah = sc->sc_ah;
   4308 
   4309 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
   4310 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
   4311 	    __func__, txq->axq_qnum,
   4312 	    (void *)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
   4313 	    txq->axq_link);
   4314 }
   4315 
   4316 /*
   4317  * Drain the transmit queues and reclaim resources.
   4318  */
   4319 static void
   4320 ath_draintxq(struct ath_softc *sc)
   4321 {
   4322 	struct ath_hal *ah = sc->sc_ah;
   4323 	int i;
   4324 
   4325 	/* XXX return value */
   4326 	if (device_is_active(sc->sc_dev)) {
   4327 		/* don't touch the hardware if marked invalid */
   4328 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
   4329 		DPRINTF(sc, ATH_DEBUG_RESET,
   4330 		    "%s: beacon queue %p\n", __func__,
   4331 		    (void *)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
   4332 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   4333 			if (ATH_TXQ_SETUP(sc, i))
   4334 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
   4335 	}
   4336 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   4337 		if (ATH_TXQ_SETUP(sc, i))
   4338 			ath_tx_draintxq(sc, &sc->sc_txq[i]);
   4339 }
   4340 
   4341 /*
   4342  * Disable the receive h/w in preparation for a reset.
   4343  */
   4344 static void
   4345 ath_stoprecv(struct ath_softc *sc)
   4346 {
   4347 #define	PA2DESC(_sc, _pa) \
   4348 	((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
   4349 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
   4350 	struct ath_hal *ah = sc->sc_ah;
   4351 	u_int64_t tsf;
   4352 
   4353 	ath_hal_stoppcurecv(ah);	/* disable PCU */
   4354 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
   4355 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
   4356 	DELAY(3000);			/* 3ms is long enough for 1 frame */
   4357 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
   4358 		struct ath_buf *bf;
   4359 
   4360 		printf("%s: rx queue %p, link %p\n", __func__,
   4361 			(void *)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
   4362 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
   4363 			struct ath_desc *ds = bf->bf_desc;
   4364 			tsf = ath_hal_gettsf64(sc->sc_ah);
   4365 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
   4366 				bf->bf_daddr, PA2DESC(sc, ds->ds_link),
   4367 				&ds->ds_rxstat);
   4368 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
   4369 				ath_printrxbuf(bf, status == HAL_OK);
   4370 		}
   4371 	}
   4372 	sc->sc_rxlink = NULL;		/* just in case */
   4373 #undef PA2DESC
   4374 }
   4375 
   4376 /*
   4377  * Enable the receive h/w following a reset.
   4378  */
   4379 static int
   4380 ath_startrecv(struct ath_softc *sc)
   4381 {
   4382 	struct ath_hal *ah = sc->sc_ah;
   4383 	struct ath_buf *bf;
   4384 
   4385 	sc->sc_rxlink = NULL;
   4386 	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
   4387 		int error = ath_rxbuf_init(sc, bf);
   4388 		if (error != 0) {
   4389 			DPRINTF(sc, ATH_DEBUG_RECV,
   4390 				"%s: ath_rxbuf_init failed %d\n",
   4391 				__func__, error);
   4392 			return error;
   4393 		}
   4394 	}
   4395 
   4396 	bf = STAILQ_FIRST(&sc->sc_rxbuf);
   4397 	ath_hal_putrxbuf(ah, bf->bf_daddr);
   4398 	ath_hal_rxena(ah);		/* enable recv descriptors */
   4399 	ath_mode_init(sc);		/* set filters, etc. */
   4400 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
   4401 	return 0;
   4402 }
   4403 
   4404 /*
   4405  * Update internal state after a channel change.
   4406  */
   4407 static void
   4408 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
   4409 {
   4410 	struct ieee80211com *ic = &sc->sc_ic;
   4411 	enum ieee80211_phymode mode;
   4412 	u_int16_t flags;
   4413 
   4414 	/*
   4415 	 * Change channels and update the h/w rate map
   4416 	 * if we're switching; e.g. 11a to 11b/g.
   4417 	 */
   4418 	mode = ieee80211_chan2mode(ic, chan);
   4419 	if (mode != sc->sc_curmode)
   4420 		ath_setcurmode(sc, mode);
   4421 	/*
   4422 	 * Update BPF state.  NB: ethereal et. al. don't handle
   4423 	 * merged flags well so pick a unique mode for their use.
   4424 	 */
   4425 	if (IEEE80211_IS_CHAN_A(chan))
   4426 		flags = IEEE80211_CHAN_A;
   4427 	/* XXX 11g schizophrenia */
   4428 	else if (IEEE80211_IS_CHAN_G(chan) ||
   4429 	    IEEE80211_IS_CHAN_PUREG(chan))
   4430 		flags = IEEE80211_CHAN_G;
   4431 	else
   4432 		flags = IEEE80211_CHAN_B;
   4433 	if (IEEE80211_IS_CHAN_T(chan))
   4434 		flags |= IEEE80211_CHAN_TURBO;
   4435 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
   4436 		htole16(chan->ic_freq);
   4437 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
   4438 		htole16(flags);
   4439 }
   4440 
   4441 #if 0
   4442 /*
   4443  * Poll for a channel clear indication; this is required
   4444  * for channels requiring DFS and not previously visited
   4445  * and/or with a recent radar detection.
   4446  */
   4447 static void
   4448 ath_dfswait(void *arg)
   4449 {
   4450 	struct ath_softc *sc = arg;
   4451 	struct ath_hal *ah = sc->sc_ah;
   4452 	HAL_CHANNEL hchan;
   4453 
   4454 	ath_hal_radar_wait(ah, &hchan);
   4455 	if (hchan.privFlags & CHANNEL_INTERFERENCE) {
   4456 		if_printf(&sc->sc_if,
   4457 		    "channel %u/0x%x/0x%x has interference\n",
   4458 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
   4459 		return;
   4460 	}
   4461 	if ((hchan.privFlags & CHANNEL_DFS) == 0) {
   4462 		/* XXX should not happen */
   4463 		return;
   4464 	}
   4465 	if (hchan.privFlags & CHANNEL_DFS_CLEAR) {
   4466 		sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR;
   4467 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
   4468 		if_printf(&sc->sc_if,
   4469 		    "channel %u/0x%x/0x%x marked clear\n",
   4470 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
   4471 	} else
   4472 		callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc);
   4473 }
   4474 #endif
   4475 
   4476 /*
   4477  * Set/change channels.  If the channel is really being changed,
   4478  * it's done by reseting the chip.  To accomplish this we must
   4479  * first cleanup any pending DMA, then restart stuff after a la
   4480  * ath_init.
   4481  */
   4482 static int
   4483 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
   4484 {
   4485 	struct ath_hal *ah = sc->sc_ah;
   4486 	struct ieee80211com *ic = &sc->sc_ic;
   4487 	HAL_CHANNEL hchan;
   4488 
   4489 	/*
   4490 	 * Convert to a HAL channel description with
   4491 	 * the flags constrained to reflect the current
   4492 	 * operating mode.
   4493 	 */
   4494 	hchan.channel = chan->ic_freq;
   4495 	hchan.channelFlags = ath_chan2flags(ic, chan);
   4496 
   4497 	DPRINTF(sc, ATH_DEBUG_RESET,
   4498 	    "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
   4499 	    __func__,
   4500 	    ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
   4501 		sc->sc_curchan.channelFlags),
   4502 	    	sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
   4503 	    ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
   4504 	        hchan.channel, hchan.channelFlags);
   4505 	if (hchan.channel != sc->sc_curchan.channel ||
   4506 	    hchan.channelFlags != sc->sc_curchan.channelFlags) {
   4507 		HAL_STATUS status;
   4508 
   4509 		/*
   4510 		 * To switch channels clear any pending DMA operations;
   4511 		 * wait long enough for the RX fifo to drain, reset the
   4512 		 * hardware at the new frequency, and then re-enable
   4513 		 * the relevant bits of the h/w.
   4514 		 */
   4515 		ath_hal_intrset(ah, 0);		/* disable interrupts */
   4516 		ath_draintxq(sc);		/* clear pending tx frames */
   4517 		ath_stoprecv(sc);		/* turn off frame recv */
   4518 		if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
   4519 			if_printf(ic->ic_ifp, "%s: unable to reset "
   4520 			    "channel %u (%u MHz, flags 0x%x hal flags 0x%x)\n",
   4521 			    __func__, ieee80211_chan2ieee(ic, chan),
   4522 			    chan->ic_freq, chan->ic_flags, hchan.channelFlags);
   4523 			return EIO;
   4524 		}
   4525 		sc->sc_curchan = hchan;
   4526 		ath_update_txpow(sc);		/* update tx power state */
   4527 		ath_restore_diversity(sc);
   4528 		sc->sc_calinterval = 1;
   4529 		sc->sc_caltries = 0;
   4530 
   4531 		/*
   4532 		 * Re-enable rx framework.
   4533 		 */
   4534 		if (ath_startrecv(sc) != 0) {
   4535 			if_printf(&sc->sc_if,
   4536 				"%s: unable to restart recv logic\n", __func__);
   4537 			return EIO;
   4538 		}
   4539 
   4540 		/*
   4541 		 * Change channels and update the h/w rate map
   4542 		 * if we're switching; e.g. 11a to 11b/g.
   4543 		 */
   4544 		ic->ic_ibss_chan = chan;
   4545 		ath_chan_change(sc, chan);
   4546 
   4547 #if 0
   4548 		/*
   4549 		 * Handle DFS required waiting period to determine
   4550 		 * if channel is clear of radar traffic.
   4551 		 */
   4552 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   4553 #define	DFS_AND_NOT_CLEAR(_c) \
   4554 	(((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS)
   4555 			if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) {
   4556 				if_printf(&sc->sc_if,
   4557 					"wait for DFS clear channel signal\n");
   4558 				/* XXX stop sndq */
   4559 				sc->sc_if.if_flags |= IFF_OACTIVE;
   4560 				callout_reset(&sc->sc_dfs_ch,
   4561 					2 * hz, ath_dfswait, sc);
   4562 			} else
   4563 				callout_stop(&sc->sc_dfs_ch);
   4564 #undef DFS_NOT_CLEAR
   4565 		}
   4566 #endif
   4567 
   4568 		/*
   4569 		 * Re-enable interrupts.
   4570 		 */
   4571 		ath_hal_intrset(ah, sc->sc_imask);
   4572 	}
   4573 	return 0;
   4574 }
   4575 
   4576 static void
   4577 ath_next_scan(void *arg)
   4578 {
   4579 	struct ath_softc *sc = arg;
   4580 	struct ieee80211com *ic = &sc->sc_ic;
   4581 	int s;
   4582 
   4583 	/* don't call ath_start w/o network interrupts blocked */
   4584 	s = splnet();
   4585 
   4586 	if (ic->ic_state == IEEE80211_S_SCAN)
   4587 		ieee80211_next_scan(ic);
   4588 	splx(s);
   4589 }
   4590 
   4591 /*
   4592  * Periodically recalibrate the PHY to account
   4593  * for temperature/environment changes.
   4594  */
   4595 static void
   4596 ath_calibrate(void *arg)
   4597 {
   4598 	struct ath_softc *sc = arg;
   4599 	struct ath_hal *ah = sc->sc_ah;
   4600 	HAL_BOOL iqCalDone;
   4601 
   4602 	sc->sc_stats.ast_per_cal++;
   4603 
   4604 	ATH_LOCK(sc);
   4605 
   4606 	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
   4607 		/*
   4608 		 * Rfgain is out of bounds, reset the chip
   4609 		 * to load new gain values.
   4610 		 */
   4611 		DPRINTF(sc, ATH_DEBUG_CALIBRATE,
   4612 			"%s: rfgain change\n", __func__);
   4613 		sc->sc_stats.ast_per_rfgain++;
   4614 		ath_reset(&sc->sc_if);
   4615 	}
   4616 	if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
   4617 		DPRINTF(sc, ATH_DEBUG_ANY,
   4618 			"%s: calibration of channel %u failed\n",
   4619 			__func__, sc->sc_curchan.channel);
   4620 		sc->sc_stats.ast_per_calfail++;
   4621 	}
   4622 	/*
   4623 	 * Calibrate noise floor data again in case of change.
   4624 	 */
   4625 	ath_hal_process_noisefloor(ah);
   4626 	/*
   4627 	 * Poll more frequently when the IQ calibration is in
   4628 	 * progress to speedup loading the final settings.
   4629 	 * We temper this aggressive polling with an exponential
   4630 	 * back off after 4 tries up to ath_calinterval.
   4631 	 */
   4632 	if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
   4633 		sc->sc_caltries = 0;
   4634 		sc->sc_calinterval = ath_calinterval;
   4635 	} else if (sc->sc_caltries > 4) {
   4636 		sc->sc_caltries = 0;
   4637 		sc->sc_calinterval <<= 1;
   4638 		if (sc->sc_calinterval > ath_calinterval)
   4639 			sc->sc_calinterval = ath_calinterval;
   4640 	}
   4641 	KASSERT(0 < sc->sc_calinterval && sc->sc_calinterval <= ath_calinterval,
   4642 		("bad calibration interval %u", sc->sc_calinterval));
   4643 
   4644 	DPRINTF(sc, ATH_DEBUG_CALIBRATE,
   4645 		"%s: next +%u (%siqCalDone tries %u)\n", __func__,
   4646 		sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
   4647 	sc->sc_caltries++;
   4648 	callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
   4649 		ath_calibrate, sc);
   4650 	ATH_UNLOCK(sc);
   4651 }
   4652 
   4653 static int
   4654 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
   4655 {
   4656 	struct ifnet *ifp = ic->ic_ifp;
   4657 	struct ath_softc *sc = ifp->if_softc;
   4658 	struct ath_hal *ah = sc->sc_ah;
   4659 	struct ieee80211_node *ni;
   4660 	int i, error;
   4661 	const u_int8_t *bssid;
   4662 	u_int32_t rfilt;
   4663 	static const HAL_LED_STATE leds[] = {
   4664 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
   4665 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
   4666 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
   4667 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
   4668 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
   4669 	};
   4670 
   4671 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
   4672 		ieee80211_state_name[ic->ic_state],
   4673 		ieee80211_state_name[nstate]);
   4674 
   4675 	callout_stop(&sc->sc_scan_ch);
   4676 	callout_stop(&sc->sc_cal_ch);
   4677 #if 0
   4678 	callout_stop(&sc->sc_dfs_ch);
   4679 #endif
   4680 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
   4681 
   4682 	if (nstate == IEEE80211_S_INIT) {
   4683 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
   4684 		/*
   4685 		 * NB: disable interrupts so we don't rx frames.
   4686 		 */
   4687 		ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
   4688 		/*
   4689 		 * Notify the rate control algorithm.
   4690 		 */
   4691 		ath_rate_newstate(sc, nstate);
   4692 		goto done;
   4693 	}
   4694 	ni = ic->ic_bss;
   4695 	error = ath_chan_set(sc, ic->ic_curchan);
   4696 	if (error != 0)
   4697 		goto bad;
   4698 	rfilt = ath_calcrxfilter(sc, nstate);
   4699 	if (nstate == IEEE80211_S_SCAN)
   4700 		bssid = ifp->if_broadcastaddr;
   4701 	else
   4702 		bssid = ni->ni_bssid;
   4703 	ath_hal_setrxfilter(ah, rfilt);
   4704 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
   4705 		 __func__, rfilt, ether_sprintf(bssid));
   4706 
   4707 	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
   4708 		ath_hal_setassocid(ah, bssid, ni->ni_associd);
   4709 	else
   4710 		ath_hal_setassocid(ah, bssid, 0);
   4711 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
   4712 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
   4713 			if (ath_hal_keyisvalid(ah, i))
   4714 				ath_hal_keysetmac(ah, i, bssid);
   4715 	}
   4716 
   4717 	/*
   4718 	 * Notify the rate control algorithm so rates
   4719 	 * are setup should ath_beacon_alloc be called.
   4720 	 */
   4721 	ath_rate_newstate(sc, nstate);
   4722 
   4723 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
   4724 		/* nothing to do */;
   4725 	} else if (nstate == IEEE80211_S_RUN) {
   4726 		DPRINTF(sc, ATH_DEBUG_STATE,
   4727 			"%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
   4728 			"capinfo=0x%04x chan=%d\n"
   4729 			 , __func__
   4730 			 , ic->ic_flags
   4731 			 , ni->ni_intval
   4732 			 , ether_sprintf(ni->ni_bssid)
   4733 			 , ni->ni_capinfo
   4734 			 , ieee80211_chan2ieee(ic, ic->ic_curchan));
   4735 
   4736 		switch (ic->ic_opmode) {
   4737 		case IEEE80211_M_HOSTAP:
   4738 		case IEEE80211_M_IBSS:
   4739 			/*
   4740 			 * Allocate and setup the beacon frame.
   4741 			 *
   4742 			 * Stop any previous beacon DMA.  This may be
   4743 			 * necessary, for example, when an ibss merge
   4744 			 * causes reconfiguration; there will be a state
   4745 			 * transition from RUN->RUN that means we may
   4746 			 * be called with beacon transmission active.
   4747 			 */
   4748 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
   4749 			ath_beacon_free(sc);
   4750 			error = ath_beacon_alloc(sc, ni);
   4751 			if (error != 0)
   4752 				goto bad;
   4753 			/*
   4754 			 * If joining an adhoc network defer beacon timer
   4755 			 * configuration to the next beacon frame so we
   4756 			 * have a current TSF to use.  Otherwise we're
   4757 			 * starting an ibss/bss so there's no need to delay.
   4758 			 */
   4759 			if (ic->ic_opmode == IEEE80211_M_IBSS &&
   4760 			    ic->ic_bss->ni_tstamp.tsf != 0)
   4761 				sc->sc_syncbeacon = 1;
   4762 			else
   4763 				ath_beacon_config(sc);
   4764 			break;
   4765 		case IEEE80211_M_STA:
   4766 			/*
   4767 			 * Allocate a key cache slot to the station.
   4768 			 */
   4769 			if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
   4770 			    sc->sc_hasclrkey &&
   4771 			    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
   4772 				ath_setup_stationkey(ni);
   4773 			/*
   4774 			 * Defer beacon timer configuration to the next
   4775 			 * beacon frame so we have a current TSF to use
   4776 			 * (any TSF collected when scanning is likely old).
   4777 			 */
   4778 			sc->sc_syncbeacon = 1;
   4779 			break;
   4780 		default:
   4781 			break;
   4782 		}
   4783 		/*
   4784 		 * Let the hal process statistics collected during a
   4785 		 * scan so it can provide calibrated noise floor data.
   4786 		 */
   4787 		ath_hal_process_noisefloor(ah);
   4788 		/*
   4789 		 * Reset rssi stats; maybe not the best place...
   4790 		 */
   4791 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
   4792 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
   4793 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
   4794 	} else {
   4795 		ath_hal_intrset(ah,
   4796 			sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
   4797 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
   4798 	}
   4799 done:
   4800 	/*
   4801 	 * Invoke the parent method to complete the work.
   4802 	 */
   4803 	error = sc->sc_newstate(ic, nstate, arg);
   4804 	/*
   4805 	 * Finally, start any timers.
   4806 	 */
   4807 	if (nstate == IEEE80211_S_RUN) {
   4808 		/* start periodic recalibration timer */
   4809 		callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
   4810 			ath_calibrate, sc);
   4811 	} else if (nstate == IEEE80211_S_SCAN) {
   4812 		/* start ap/neighbor scan timer */
   4813 		callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
   4814 			ath_next_scan, sc);
   4815 	}
   4816 bad:
   4817 	return error;
   4818 }
   4819 
   4820 /*
   4821  * Allocate a key cache slot to the station so we can
   4822  * setup a mapping from key index to node. The key cache
   4823  * slot is needed for managing antenna state and for
   4824  * compression when stations do not use crypto.  We do
   4825  * it uniliaterally here; if crypto is employed this slot
   4826  * will be reassigned.
   4827  */
   4828 static void
   4829 ath_setup_stationkey(struct ieee80211_node *ni)
   4830 {
   4831 	struct ieee80211com *ic = ni->ni_ic;
   4832 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   4833 	ieee80211_keyix keyix, rxkeyix;
   4834 
   4835 	if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
   4836 		/*
   4837 		 * Key cache is full; we'll fall back to doing
   4838 		 * the more expensive lookup in software.  Note
   4839 		 * this also means no h/w compression.
   4840 		 */
   4841 		/* XXX msg+statistic */
   4842 	} else {
   4843 		/* XXX locking? */
   4844 		ni->ni_ucastkey.wk_keyix = keyix;
   4845 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
   4846 		/* NB: this will create a pass-thru key entry */
   4847 		ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
   4848 	}
   4849 }
   4850 
   4851 /*
   4852  * Setup driver-specific state for a newly associated node.
   4853  * Note that we're called also on a re-associate, the isnew
   4854  * param tells us if this is the first time or not.
   4855  */
   4856 static void
   4857 ath_newassoc(struct ieee80211_node *ni, int isnew)
   4858 {
   4859 	struct ieee80211com *ic = ni->ni_ic;
   4860 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   4861 
   4862 	ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
   4863 	if (isnew &&
   4864 	    (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
   4865 		KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
   4866 		    ("new assoc with a unicast key already setup (keyix %u)",
   4867 		    ni->ni_ucastkey.wk_keyix));
   4868 		ath_setup_stationkey(ni);
   4869 	}
   4870 }
   4871 
   4872 static int
   4873 ath_getchannels(struct ath_softc *sc, u_int cc,
   4874 	HAL_BOOL outdoor, HAL_BOOL xchanmode)
   4875 {
   4876 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
   4877 	struct ieee80211com *ic = &sc->sc_ic;
   4878 	struct ifnet *ifp = &sc->sc_if;
   4879 	struct ath_hal *ah = sc->sc_ah;
   4880 	HAL_CHANNEL *chans;
   4881 	int i, ix, nchan;
   4882 
   4883 	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
   4884 			M_TEMP, M_NOWAIT);
   4885 	if (chans == NULL) {
   4886 		if_printf(ifp, "unable to allocate channel table\n");
   4887 		return ENOMEM;
   4888 	}
   4889 	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
   4890 	    NULL, 0, NULL,
   4891 	    cc, HAL_MODE_ALL, outdoor, xchanmode)) {
   4892 		u_int32_t rd;
   4893 
   4894 		(void)ath_hal_getregdomain(ah, &rd);
   4895 		if_printf(ifp, "unable to collect channel list from hal; "
   4896 			"regdomain likely %u country code %u\n", rd, cc);
   4897 		free(chans, M_TEMP);
   4898 		return EINVAL;
   4899 	}
   4900 
   4901 	/*
   4902 	 * Convert HAL channels to ieee80211 ones and insert
   4903 	 * them in the table according to their channel number.
   4904 	 */
   4905 	for (i = 0; i < nchan; i++) {
   4906 		HAL_CHANNEL *c = &chans[i];
   4907 		u_int16_t flags;
   4908 
   4909 		ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags);
   4910 		if (ix > IEEE80211_CHAN_MAX) {
   4911 			if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n",
   4912 				ix, c->channel, c->channelFlags);
   4913 			continue;
   4914 		}
   4915 		if (ix < 0) {
   4916 			/* XXX can't handle stuff <2400 right now */
   4917 			if (bootverbose)
   4918 				if_printf(ifp, "hal channel %d (%u/%x) "
   4919 				    "cannot be handled; ignored\n",
   4920 				    ix, c->channel, c->channelFlags);
   4921 			continue;
   4922 		}
   4923 		/*
   4924 		 * Calculate net80211 flags; most are compatible
   4925 		 * but some need massaging.  Note the static turbo
   4926 		 * conversion can be removed once net80211 is updated
   4927 		 * to understand static vs. dynamic turbo.
   4928 		 */
   4929 		flags = c->channelFlags & COMPAT;
   4930 		if (c->channelFlags & CHANNEL_STURBO)
   4931 			flags |= IEEE80211_CHAN_TURBO;
   4932 		if (ic->ic_channels[ix].ic_freq == 0) {
   4933 			ic->ic_channels[ix].ic_freq = c->channel;
   4934 			ic->ic_channels[ix].ic_flags = flags;
   4935 		} else {
   4936 			/* channels overlap; e.g. 11g and 11b */
   4937 			ic->ic_channels[ix].ic_flags |= flags;
   4938 		}
   4939 	}
   4940 	free(chans, M_TEMP);
   4941 	return 0;
   4942 #undef COMPAT
   4943 }
   4944 
   4945 static void
   4946 ath_led_done(void *arg)
   4947 {
   4948 	struct ath_softc *sc = arg;
   4949 
   4950 	sc->sc_blinking = 0;
   4951 }
   4952 
   4953 /*
   4954  * Turn the LED off: flip the pin and then set a timer so no
   4955  * update will happen for the specified duration.
   4956  */
   4957 static void
   4958 ath_led_off(void *arg)
   4959 {
   4960 	struct ath_softc *sc = arg;
   4961 
   4962 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
   4963 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
   4964 }
   4965 
   4966 /*
   4967  * Blink the LED according to the specified on/off times.
   4968  */
   4969 static void
   4970 ath_led_blink(struct ath_softc *sc, int on, int off)
   4971 {
   4972 	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
   4973 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
   4974 	sc->sc_blinking = 1;
   4975 	sc->sc_ledoff = off;
   4976 	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
   4977 }
   4978 
   4979 static void
   4980 ath_led_event(struct ath_softc *sc, int event)
   4981 {
   4982 
   4983 	sc->sc_ledevent = ticks;	/* time of last event */
   4984 	if (sc->sc_blinking)		/* don't interrupt active blink */
   4985 		return;
   4986 	switch (event) {
   4987 	case ATH_LED_POLL:
   4988 		ath_led_blink(sc, sc->sc_hwmap[0].ledon,
   4989 			sc->sc_hwmap[0].ledoff);
   4990 		break;
   4991 	case ATH_LED_TX:
   4992 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
   4993 			sc->sc_hwmap[sc->sc_txrate].ledoff);
   4994 		break;
   4995 	case ATH_LED_RX:
   4996 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
   4997 			sc->sc_hwmap[sc->sc_rxrate].ledoff);
   4998 		break;
   4999 	}
   5000 }
   5001 
   5002 static void
   5003 ath_update_txpow(struct ath_softc *sc)
   5004 {
   5005 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
   5006 	struct ieee80211com *ic = &sc->sc_ic;
   5007 	struct ath_hal *ah = sc->sc_ah;
   5008 	u_int32_t txpow;
   5009 
   5010 	if (sc->sc_curtxpow != ic->ic_txpowlimit) {
   5011 		ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
   5012 		/* read back in case value is clamped */
   5013 		(void)ath_hal_gettxpowlimit(ah, &txpow);
   5014 		ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
   5015 	}
   5016 	/*
   5017 	 * Fetch max tx power level for status requests.
   5018 	 */
   5019 	(void)ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
   5020 	ic->ic_bss->ni_txpower = txpow;
   5021 }
   5022 
   5023 static void
   5024 rate_setup(struct ath_softc *sc,
   5025 	const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs)
   5026 {
   5027 	int i, maxrates;
   5028 
   5029 	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
   5030 		DPRINTF(sc, ATH_DEBUG_ANY,
   5031 			"%s: rate table too small (%u > %u)\n",
   5032 		       __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
   5033 		maxrates = IEEE80211_RATE_MAXSIZE;
   5034 	} else
   5035 		maxrates = rt->rateCount;
   5036 	for (i = 0; i < maxrates; i++)
   5037 		rs->rs_rates[i] = rt->info[i].dot11Rate;
   5038 	rs->rs_nrates = maxrates;
   5039 }
   5040 
   5041 static int
   5042 ath_rate_setup(struct ath_softc *sc, u_int mode)
   5043 {
   5044 	struct ath_hal *ah = sc->sc_ah;
   5045 	struct ieee80211com *ic = &sc->sc_ic;
   5046 	const HAL_RATE_TABLE *rt;
   5047 
   5048 	switch (mode) {
   5049 	case IEEE80211_MODE_11A:
   5050 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
   5051 		break;
   5052 	case IEEE80211_MODE_11B:
   5053 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
   5054 		break;
   5055 	case IEEE80211_MODE_11G:
   5056 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
   5057 		break;
   5058 	case IEEE80211_MODE_TURBO_A:
   5059 		/* XXX until static/dynamic turbo is fixed */
   5060 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
   5061 		break;
   5062 	case IEEE80211_MODE_TURBO_G:
   5063 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
   5064 		break;
   5065 	default:
   5066 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
   5067 			__func__, mode);
   5068 		return 0;
   5069 	}
   5070 	sc->sc_rates[mode] = rt;
   5071 	if (rt != NULL) {
   5072 		rate_setup(sc, rt, &ic->ic_sup_rates[mode]);
   5073 		return 1;
   5074 	} else
   5075 		return 0;
   5076 }
   5077 
   5078 static void
   5079 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
   5080 {
   5081 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   5082 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
   5083 	static const struct {
   5084 		u_int		rate;		/* tx/rx 802.11 rate */
   5085 		u_int16_t	timeOn;		/* LED on time (ms) */
   5086 		u_int16_t	timeOff;	/* LED off time (ms) */
   5087 	} blinkrates[] = {
   5088 		{ 108,  40,  10 },
   5089 		{  96,  44,  11 },
   5090 		{  72,  50,  13 },
   5091 		{  48,  57,  14 },
   5092 		{  36,  67,  16 },
   5093 		{  24,  80,  20 },
   5094 		{  22, 100,  25 },
   5095 		{  18, 133,  34 },
   5096 		{  12, 160,  40 },
   5097 		{  10, 200,  50 },
   5098 		{   6, 240,  58 },
   5099 		{   4, 267,  66 },
   5100 		{   2, 400, 100 },
   5101 		{   0, 500, 130 },
   5102 	};
   5103 	const HAL_RATE_TABLE *rt;
   5104 	int i, j;
   5105 
   5106 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
   5107 	rt = sc->sc_rates[mode];
   5108 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
   5109 	for (i = 0; i < rt->rateCount; i++)
   5110 		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
   5111 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
   5112 	for (i = 0; i < 32; i++) {
   5113 		u_int8_t ix = rt->rateCodeToIndex[i];
   5114 		if (ix == 0xff) {
   5115 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
   5116 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
   5117 			continue;
   5118 		}
   5119 		sc->sc_hwmap[i].ieeerate =
   5120 			rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
   5121 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
   5122 		if (rt->info[ix].shortPreamble ||
   5123 		    rt->info[ix].phy == IEEE80211_T_OFDM)
   5124 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
   5125 		/* NB: receive frames include FCS */
   5126 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
   5127 			IEEE80211_RADIOTAP_F_FCS;
   5128 		/* setup blink rate table to avoid per-packet lookup */
   5129 		for (j = 0; j < N(blinkrates)-1; j++)
   5130 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
   5131 				break;
   5132 		/* NB: this uses the last entry if the rate isn't found */
   5133 		/* XXX beware of overlow */
   5134 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
   5135 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
   5136 	}
   5137 	sc->sc_currates = rt;
   5138 	sc->sc_curmode = mode;
   5139 	/*
   5140 	 * All protection frames are transmited at 2Mb/s for
   5141 	 * 11g, otherwise at 1Mb/s.
   5142 	 */
   5143 	if (mode == IEEE80211_MODE_11G)
   5144 		sc->sc_protrix = ath_tx_findrix(rt, 2*2);
   5145 	else
   5146 		sc->sc_protrix = ath_tx_findrix(rt, 2*1);
   5147 	/* rate index used to send management frames */
   5148 	sc->sc_minrateix = 0;
   5149 	/*
   5150 	 * Setup multicast rate state.
   5151 	 */
   5152 	/* XXX layering violation */
   5153 	sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate);
   5154 	sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate;
   5155 	/* NB: caller is responsible for reseting rate control state */
   5156 #undef N
   5157 }
   5158 
   5159 #ifdef AR_DEBUG
   5160 static void
   5161 ath_printrxbuf(struct ath_buf *bf, int done)
   5162 {
   5163 	struct ath_desc *ds;
   5164 	int i;
   5165 
   5166 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
   5167 		printf("R%d (%p %" PRIx64
   5168 		    ") %08x %08x %08x %08x %08x %08x %02x %02x %c\n", i, ds,
   5169 		    (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
   5170 		    ds->ds_link, ds->ds_data,
   5171 		    ds->ds_ctl0, ds->ds_ctl1,
   5172 		    ds->ds_hw[0], ds->ds_hw[1],
   5173 		    ds->ds_rxstat.rs_status, ds->ds_rxstat.rs_keyix,
   5174 		    !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
   5175 	}
   5176 }
   5177 
   5178 static void
   5179 ath_printtxbuf(struct ath_buf *bf, int done)
   5180 {
   5181 	struct ath_desc *ds;
   5182 	int i;
   5183 
   5184 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
   5185 		printf("T%d (%p %" PRIx64
   5186 		    ") %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
   5187 		    i, ds,
   5188 		    (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
   5189 		    ds->ds_link, ds->ds_data,
   5190 		    ds->ds_ctl0, ds->ds_ctl1,
   5191 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
   5192 		    !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
   5193 	}
   5194 }
   5195 #endif	/* AR_DEBUG */
   5196 
   5197 static void
   5198 ath_watchdog(struct ifnet *ifp)
   5199 {
   5200 	struct ath_softc *sc = ifp->if_softc;
   5201 	struct ieee80211com *ic = &sc->sc_ic;
   5202 	struct ath_txq *axq;
   5203 	int i;
   5204 
   5205 	ifp->if_timer = 0;
   5206 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
   5207 	    !device_is_active(sc->sc_dev))
   5208 		return;
   5209 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
   5210 		if (!ATH_TXQ_SETUP(sc, i))
   5211 			continue;
   5212 		axq = &sc->sc_txq[i];
   5213 		ATH_TXQ_LOCK(axq);
   5214 		if (axq->axq_timer == 0)
   5215 			;
   5216 		else if (--axq->axq_timer == 0) {
   5217 			ATH_TXQ_UNLOCK(axq);
   5218 			if_printf(ifp, "device timeout (txq %d, "
   5219 			    "txintrperiod %d)\n", i, sc->sc_txintrperiod);
   5220 			if (sc->sc_txintrperiod > 1)
   5221 				sc->sc_txintrperiod--;
   5222 			ath_reset(ifp);
   5223 			ifp->if_oerrors++;
   5224 			sc->sc_stats.ast_watchdog++;
   5225 			break;
   5226 		} else
   5227 			ifp->if_timer = 1;
   5228 		ATH_TXQ_UNLOCK(axq);
   5229 	}
   5230 	ieee80211_watchdog(ic);
   5231 }
   5232 
   5233 /*
   5234  * Diagnostic interface to the HAL.  This is used by various
   5235  * tools to do things like retrieve register contents for
   5236  * debugging.  The mechanism is intentionally opaque so that
   5237  * it can change frequently w/o concern for compatiblity.
   5238  */
   5239 static int
   5240 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
   5241 {
   5242 	struct ath_hal *ah = sc->sc_ah;
   5243 	u_int id = ad->ad_id & ATH_DIAG_ID;
   5244 	void *indata = NULL;
   5245 	void *outdata = NULL;
   5246 	u_int32_t insize = ad->ad_in_size;
   5247 	u_int32_t outsize = ad->ad_out_size;
   5248 	int error = 0;
   5249 
   5250 	if (ad->ad_id & ATH_DIAG_IN) {
   5251 		/*
   5252 		 * Copy in data.
   5253 		 */
   5254 		indata = malloc(insize, M_TEMP, M_NOWAIT);
   5255 		if (indata == NULL) {
   5256 			error = ENOMEM;
   5257 			goto bad;
   5258 		}
   5259 		error = copyin(ad->ad_in_data, indata, insize);
   5260 		if (error)
   5261 			goto bad;
   5262 	}
   5263 	if (ad->ad_id & ATH_DIAG_DYN) {
   5264 		/*
   5265 		 * Allocate a buffer for the results (otherwise the HAL
   5266 		 * returns a pointer to a buffer where we can read the
   5267 		 * results).  Note that we depend on the HAL leaving this
   5268 		 * pointer for us to use below in reclaiming the buffer;
   5269 		 * may want to be more defensive.
   5270 		 */
   5271 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
   5272 		if (outdata == NULL) {
   5273 			error = ENOMEM;
   5274 			goto bad;
   5275 		}
   5276 	}
   5277 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
   5278 		if (outsize < ad->ad_out_size)
   5279 			ad->ad_out_size = outsize;
   5280 		if (outdata != NULL)
   5281 			error = copyout(outdata, ad->ad_out_data,
   5282 					ad->ad_out_size);
   5283 	} else {
   5284 		error = EINVAL;
   5285 	}
   5286 bad:
   5287 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
   5288 		free(indata, M_TEMP);
   5289 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
   5290 		free(outdata, M_TEMP);
   5291 	return error;
   5292 }
   5293 
   5294 static int
   5295 ath_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   5296 {
   5297 #define	IS_RUNNING(ifp) \
   5298 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
   5299 	struct ath_softc *sc = ifp->if_softc;
   5300 	struct ieee80211com *ic = &sc->sc_ic;
   5301 	struct ifreq *ifr = (struct ifreq *)data;
   5302 	int error = 0;
   5303 
   5304 	ATH_LOCK(sc);
   5305 	switch (cmd) {
   5306 	case SIOCSIFFLAGS:
   5307 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   5308 			break;
   5309 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
   5310 		case IFF_UP|IFF_RUNNING:
   5311 			/*
   5312 			 * To avoid rescanning another access point,
   5313 			 * do not call ath_init() here.  Instead,
   5314 			 * only reflect promisc mode settings.
   5315 			 */
   5316 			ath_mode_init(sc);
   5317 			break;
   5318 		case IFF_UP:
   5319 			/*
   5320 			 * Beware of being called during attach/detach
   5321 			 * to reset promiscuous mode.  In that case we
   5322 			 * will still be marked UP but not RUNNING.
   5323 			 * However trying to re-init the interface
   5324 			 * is the wrong thing to do as we've already
   5325 			 * torn down much of our state.  There's
   5326 			 * probably a better way to deal with this.
   5327 			 */
   5328 			error = ath_init(sc);
   5329 			break;
   5330 		case IFF_RUNNING:
   5331 			ath_stop_locked(ifp, 1);
   5332 			break;
   5333 		case 0:
   5334 			break;
   5335 		}
   5336 		break;
   5337 	case SIOCADDMULTI:
   5338 	case SIOCDELMULTI:
   5339 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
   5340 			if (ifp->if_flags & IFF_RUNNING)
   5341 				ath_mode_init(sc);
   5342 			error = 0;
   5343 		}
   5344 		break;
   5345 	case SIOCGATHSTATS:
   5346 		/* NB: embed these numbers to get a consistent view */
   5347 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
   5348 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
   5349 		sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
   5350 		ATH_UNLOCK(sc);
   5351 		/*
   5352 		 * NB: Drop the softc lock in case of a page fault;
   5353 		 * we'll accept any potential inconsisentcy in the
   5354 		 * statistics.  The alternative is to copy the data
   5355 		 * to a local structure.
   5356 		 */
   5357 		return copyout(&sc->sc_stats,
   5358 				ifr->ifr_data, sizeof (sc->sc_stats));
   5359 	case SIOCGATHDIAG:
   5360 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
   5361 		break;
   5362 	default:
   5363 		error = ieee80211_ioctl(ic, cmd, data);
   5364 		if (error != ENETRESET)
   5365 			;
   5366 		else if (IS_RUNNING(ifp) &&
   5367 		         ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
   5368 			error = ath_init(sc);
   5369 		else
   5370 			error = 0;
   5371 		break;
   5372 	}
   5373 	ATH_UNLOCK(sc);
   5374 	return error;
   5375 #undef IS_RUNNING
   5376 }
   5377 
   5378 static void
   5379 ath_bpfattach(struct ath_softc *sc)
   5380 {
   5381 	struct ifnet *ifp = &sc->sc_if;
   5382 
   5383 	bpf_ops->bpf_attach(ifp, DLT_IEEE802_11_RADIO,
   5384 	    sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
   5385 	    &sc->sc_drvbpf);
   5386 
   5387 	/*
   5388 	 * Initialize constant fields.
   5389 	 * XXX make header lengths a multiple of 32-bits so subsequent
   5390 	 *     headers are properly aligned; this is a kludge to keep
   5391 	 *     certain applications happy.
   5392 	 *
   5393 	 * NB: the channel is setup each time we transition to the
   5394 	 *     RUN state to avoid filling it in for each frame.
   5395 	 */
   5396 	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
   5397 	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
   5398 	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
   5399 
   5400 	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
   5401 	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
   5402 	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
   5403 }
   5404 
   5405 /*
   5406  * Announce various information on device/driver attach.
   5407  */
   5408 static void
   5409 ath_announce(struct ath_softc *sc)
   5410 {
   5411 #define	HAL_MODE_DUALBAND	(HAL_MODE_11A|HAL_MODE_11B)
   5412 	struct ifnet *ifp = &sc->sc_if;
   5413 	struct ath_hal *ah = sc->sc_ah;
   5414 	u_int modes, cc;
   5415 
   5416 	if_printf(ifp, "mac %d.%d phy %d.%d",
   5417 		ah->ah_macVersion, ah->ah_macRev,
   5418 		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
   5419 	/*
   5420 	 * Print radio revision(s).  We check the wireless modes
   5421 	 * to avoid falsely printing revs for inoperable parts.
   5422 	 * Dual-band radio revs are returned in the 5 GHz rev number.
   5423 	 */
   5424 	ath_hal_getcountrycode(ah, &cc);
   5425 	modes = ath_hal_getwirelessmodes(ah, cc);
   5426 	if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
   5427 		if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
   5428 			printf(" 5 GHz radio %d.%d 2 GHz radio %d.%d",
   5429 				ah->ah_analog5GhzRev >> 4,
   5430 				ah->ah_analog5GhzRev & 0xf,
   5431 				ah->ah_analog2GhzRev >> 4,
   5432 				ah->ah_analog2GhzRev & 0xf);
   5433 		else
   5434 			printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
   5435 				ah->ah_analog5GhzRev & 0xf);
   5436 	} else
   5437 		printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
   5438 			ah->ah_analog5GhzRev & 0xf);
   5439 	printf("\n");
   5440 	if (bootverbose) {
   5441 		int i;
   5442 		for (i = 0; i <= WME_AC_VO; i++) {
   5443 			struct ath_txq *txq = sc->sc_ac2q[i];
   5444 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
   5445 				txq->axq_qnum, ieee80211_wme_acnames[i]);
   5446 		}
   5447 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
   5448 			sc->sc_cabq->axq_qnum);
   5449 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
   5450 	}
   5451 	if (ath_rxbuf != ATH_RXBUF)
   5452 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
   5453 	if (ath_txbuf != ATH_TXBUF)
   5454 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
   5455 #undef HAL_MODE_DUALBAND
   5456 }
   5457