athn.c revision 1.10 1 /* $NetBSD: athn.c,v 1.10 2014/07/24 19:47:15 riz Exp $ */
2 /* $OpenBSD: athn.c,v 1.83 2014/07/22 13:12:11 mpi Exp $ */
3
4 /*-
5 * Copyright (c) 2009 Damien Bergamini <damien.bergamini (at) free.fr>
6 * Copyright (c) 2008-2010 Atheros Communications Inc.
7 *
8 * Permission to use, copy, modify, and/or distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /*
22 * Driver for Atheros 802.11a/g/n chipsets.
23 */
24
25 #include <sys/cdefs.h>
26 __KERNEL_RCSID(0, "$NetBSD: athn.c,v 1.10 2014/07/24 19:47:15 riz Exp $");
27
28 #ifndef _MODULE
29 #include "athn_usb.h" /* for NATHN_USB */
30 #endif
31
32 #include <sys/param.h>
33 #include <sys/sockio.h>
34 #include <sys/mbuf.h>
35 #include <sys/kernel.h>
36 #include <sys/socket.h>
37 #include <sys/systm.h>
38 #include <sys/malloc.h>
39 #include <sys/queue.h>
40 #include <sys/callout.h>
41 #include <sys/conf.h>
42 #include <sys/cpu.h>
43 #include <sys/device.h>
44
45 #include <sys/bus.h>
46 #include <sys/endian.h>
47 #include <sys/intr.h>
48
49 #include <net/bpf.h>
50 #include <net/if.h>
51 #include <net/if_arp.h>
52 #include <net/if_dl.h>
53 #include <net/if_ether.h>
54 #include <net/if_media.h>
55 #include <net/if_types.h>
56
57 #include <netinet/in.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/in_var.h>
60 #include <netinet/ip.h>
61
62 #include <net80211/ieee80211_var.h>
63 #include <net80211/ieee80211_amrr.h>
64 #include <net80211/ieee80211_radiotap.h>
65
66 #include <dev/ic/athnreg.h>
67 #include <dev/ic/athnvar.h>
68 #include <dev/ic/arn5008.h>
69 #include <dev/ic/arn5416.h>
70 #include <dev/ic/arn9003.h>
71 #include <dev/ic/arn9280.h>
72 #include <dev/ic/arn9285.h>
73 #include <dev/ic/arn9287.h>
74 #include <dev/ic/arn9380.h>
75
76 #define Static static
77
78 #define IS_UP_AND_RUNNING(ifp) \
79 (((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING))
80
81 #ifdef ATHN_DEBUG
82 int athn_debug = 0;
83 #endif
84
85 Static int athn_clock_rate(struct athn_softc *);
86 Static const char *
87 athn_get_mac_name(struct athn_softc *);
88 Static const char *
89 athn_get_rf_name(struct athn_softc *);
90 Static int athn_init(struct ifnet *);
91 Static int athn_init_calib(struct athn_softc *,
92 struct ieee80211_channel *, struct ieee80211_channel *);
93 Static int athn_ioctl(struct ifnet *, u_long, void *);
94 Static int athn_media_change(struct ifnet *);
95 Static int athn_newstate(struct ieee80211com *, enum ieee80211_state,
96 int);
97 Static struct ieee80211_node *
98 athn_node_alloc(struct ieee80211_node_table *);
99 Static int athn_reset_power_on(struct athn_softc *);
100 Static int athn_stop_rx_dma(struct athn_softc *);
101 Static int athn_switch_chan(struct athn_softc *,
102 struct ieee80211_channel *, struct ieee80211_channel *);
103 Static void athn_calib_to(void *);
104 Static void athn_disable_interrupts(struct athn_softc *);
105 Static void athn_enable_interrupts(struct athn_softc *);
106 Static void athn_get_chanlist(struct athn_softc *);
107 Static void athn_get_chipid(struct athn_softc *);
108 Static void athn_init_dma(struct athn_softc *);
109 Static void athn_init_qos(struct athn_softc *);
110 Static void athn_init_tx_queues(struct athn_softc *);
111 Static void athn_iter_func(void *, struct ieee80211_node *);
112 Static void athn_newassoc(struct ieee80211_node *, int);
113 Static void athn_next_scan(void *);
114 Static void athn_pmf_wlan_off(device_t self);
115 Static void athn_radiotap_attach(struct athn_softc *);
116 Static void athn_start(struct ifnet *);
117 Static void athn_tx_reclaim(struct athn_softc *, int);
118 Static void athn_watchdog(struct ifnet *);
119 Static void athn_write_serdes(struct athn_softc *,
120 const struct athn_serdes *);
121
122 #ifdef ATHN_BT_COEXISTENCE
123 Static void athn_btcoex_disable(struct athn_softc *);
124 Static void athn_btcoex_enable(struct athn_softc *);
125 #endif
126
127 #ifdef unused
128 Static int32_t athn_ani_get_rssi(struct athn_softc *);
129 Static int athn_rx_abort(struct athn_softc *);
130 #endif
131
132 #ifdef notyet
133 Static void athn_ani_cck_err_trigger(struct athn_softc *);
134 Static void athn_ani_lower_immunity(struct athn_softc *);
135 Static void athn_ani_monitor(struct athn_softc *);
136 Static void athn_ani_ofdm_err_trigger(struct athn_softc *);
137 Static void athn_ani_restart(struct athn_softc *);
138 Static void athn_set_multi(struct athn_softc *);
139 #endif /* notyet */
140
141 PUBLIC int
142 athn_attach(struct athn_softc *sc)
143 {
144 struct ieee80211com *ic = &sc->sc_ic;
145 struct ifnet *ifp = &sc->sc_if;
146 size_t max_nnodes;
147 int error;
148
149 /* Read hardware revision. */
150 athn_get_chipid(sc);
151
152 if ((error = athn_reset_power_on(sc)) != 0) {
153 aprint_error_dev(sc->sc_dev, "could not reset chip\n");
154 return error;
155 }
156
157 if ((error = athn_set_power_awake(sc)) != 0) {
158 aprint_error_dev(sc->sc_dev, "could not wakeup chip\n");
159 return error;
160 }
161
162 if (AR_SREV_5416(sc) || AR_SREV_9160(sc))
163 error = ar5416_attach(sc);
164 else if (AR_SREV_9280(sc))
165 error = ar9280_attach(sc);
166 else if (AR_SREV_9285(sc))
167 error = ar9285_attach(sc);
168 #if NATHN_USB > 0
169 else if (AR_SREV_9271(sc))
170 error = ar9285_attach(sc);
171 #endif
172 else if (AR_SREV_9287(sc))
173 error = ar9287_attach(sc);
174 else if (AR_SREV_9380(sc) || AR_SREV_9485(sc))
175 error = ar9380_attach(sc);
176 else
177 error = ENOTSUP;
178 if (error != 0) {
179 aprint_error_dev(sc->sc_dev, "could not attach chip\n");
180 return error;
181 }
182
183 pmf_self_suspensor_init(sc->sc_dev, &sc->sc_suspensor, &sc->sc_qual);
184 pmf_event_register(sc->sc_dev, PMFE_RADIO_OFF, athn_pmf_wlan_off,
185 false);
186
187 /* We can put the chip in sleep state now. */
188 athn_set_power_sleep(sc);
189
190 if (!(sc->sc_flags & ATHN_FLAG_USB)) {
191 error = sc->sc_ops.dma_alloc(sc);
192 if (error != 0) {
193 aprint_error_dev(sc->sc_dev,
194 "could not allocate DMA resources\n");
195 return error;
196 }
197 /* Steal one Tx buffer for beacons. */
198 sc->sc_bcnbuf = SIMPLEQ_FIRST(&sc->sc_txbufs);
199 SIMPLEQ_REMOVE_HEAD(&sc->sc_txbufs, bf_list);
200 }
201
202 if (sc->sc_flags & ATHN_FLAG_RFSILENT) {
203 DPRINTFN(DBG_INIT, sc,
204 "found RF switch connected to GPIO pin %d\n",
205 sc->sc_rfsilent_pin);
206 }
207 DPRINTFN(DBG_INIT, sc, "%zd key cache entries\n", sc->sc_kc_entries);
208
209 /*
210 * In HostAP mode, the number of STAs that we can handle is
211 * limited by the number of entries in the HW key cache.
212 * TKIP keys consume 2 entries in the cache.
213 */
214 KASSERT(sc->sc_kc_entries / 2 > IEEE80211_WEP_NKID);
215 max_nnodes = (sc->sc_kc_entries / 2) - IEEE80211_WEP_NKID;
216 if (sc->sc_max_aid != 0) /* we have an override */
217 ic->ic_max_aid = sc->sc_max_aid;
218 if (ic->ic_max_aid > max_nnodes)
219 ic->ic_max_aid = max_nnodes;
220
221 DPRINTFN(DBG_INIT, sc, "using %s loop power control\n",
222 (sc->sc_flags & ATHN_FLAG_OLPC) ? "open" : "closed");
223 DPRINTFN(DBG_INIT, sc, "txchainmask=0x%x rxchainmask=0x%x\n",
224 sc->sc_txchainmask, sc->sc_rxchainmask);
225
226 /* Count the number of bits set (in lowest 3 bits). */
227 sc->sc_ntxchains =
228 ((sc->sc_txchainmask >> 2) & 1) +
229 ((sc->sc_txchainmask >> 1) & 1) +
230 ((sc->sc_txchainmask >> 0) & 1);
231 sc->sc_nrxchains =
232 ((sc->sc_rxchainmask >> 2) & 1) +
233 ((sc->sc_rxchainmask >> 1) & 1) +
234 ((sc->sc_rxchainmask >> 0) & 1);
235
236 if (AR_SINGLE_CHIP(sc)) {
237 aprint_normal_dev(sc->sc_dev,
238 "Atheros %s\n", athn_get_mac_name(sc));
239 aprint_verbose_dev(sc->sc_dev,
240 "rev %d (%dT%dR), ROM rev %d, address %s\n",
241 sc->sc_mac_rev,
242 sc->sc_ntxchains, sc->sc_nrxchains, sc->sc_eep_rev,
243 ether_sprintf(ic->ic_myaddr));
244 } else {
245 aprint_normal_dev(sc->sc_dev,
246 "Atheros %s, RF %s\n", athn_get_mac_name(sc),
247 athn_get_rf_name(sc));
248 aprint_verbose_dev(sc->sc_dev,
249 "rev %d (%dT%dR), ROM rev %d, address %s\n",
250 sc->sc_mac_rev,
251 sc->sc_ntxchains, sc->sc_nrxchains,
252 sc->sc_eep_rev, ether_sprintf(ic->ic_myaddr));
253 }
254
255 callout_init(&sc->sc_scan_to, 0);
256 callout_setfunc(&sc->sc_scan_to, athn_next_scan, sc);
257 callout_init(&sc->sc_calib_to, 0);
258 callout_setfunc(&sc->sc_calib_to, athn_calib_to, sc);
259
260 sc->sc_amrr.amrr_min_success_threshold = 1;
261 sc->sc_amrr.amrr_max_success_threshold = 15;
262
263 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
264 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
265 ic->ic_state = IEEE80211_S_INIT;
266
267 /* Set device capabilities. */
268 ic->ic_caps =
269 IEEE80211_C_WPA | /* 802.11i */
270 #ifndef IEEE80211_STA_ONLY
271 IEEE80211_C_HOSTAP | /* Host AP mode supported. */
272 // XXX? IEEE80211_C_APPMGT | /* Host AP power saving supported. */
273 #endif
274 IEEE80211_C_MONITOR | /* Monitor mode supported. */
275 IEEE80211_C_SHSLOT | /* Short slot time supported. */
276 IEEE80211_C_SHPREAMBLE | /* Short preamble supported. */
277 IEEE80211_C_PMGT; /* Power saving supported. */
278
279 #ifndef IEEE80211_NO_HT
280 if (sc->sc_flags & ATHN_FLAG_11N) {
281 int i, ntxstreams, nrxstreams;
282
283 /* Set HT capabilities. */
284 ic->ic_htcaps =
285 IEEE80211_HTCAP_SMPS_DIS |
286 IEEE80211_HTCAP_CBW20_40 |
287 IEEE80211_HTCAP_SGI40 |
288 IEEE80211_HTCAP_DSSSCCK40;
289 if (AR_SREV_9271(sc) || AR_SREV_9287_10_OR_LATER(sc))
290 ic->ic_htcaps |= IEEE80211_HTCAP_SGI20;
291 if (AR_SREV_9380_10_OR_LATER(sc))
292 ic->ic_htcaps |= IEEE80211_HTCAP_LDPC;
293 if (AR_SREV_9280_10_OR_LATER(sc)) {
294 ic->ic_htcaps |= IEEE80211_HTCAP_TXSTBC;
295 ic->ic_htcaps |= 1 << IEEE80211_HTCAP_RXSTBC_SHIFT;
296 }
297 ntxstreams = sc->sc_ntxchains;
298 nrxstreams = sc->sc_nrxchains;
299 if (!AR_SREV_9380_10_OR_LATER(sc)) {
300 ntxstreams = MIN(ntxstreams, 2);
301 nrxstreams = MIN(nrxstreams, 2);
302 }
303 /* Set supported HT rates. */
304 for (i = 0; i < nrxstreams; i++)
305 ic->ic_sup_mcs[i] = 0xff;
306 /* Set the "Tx MCS Set Defined" bit. */
307 ic->ic_sup_mcs[12] |= 0x01;
308 if (ntxstreams != nrxstreams) {
309 /* Set "Tx Rx MCS Set Not Equal" bit. */
310 ic->ic_sup_mcs[12] |= 0x02;
311 ic->ic_sup_mcs[12] |= (ntxstreams - 1) << 2;
312 }
313 }
314 #endif
315
316 /* Set supported rates. */
317 if (sc->sc_flags & ATHN_FLAG_11G) {
318 ic->ic_sup_rates[IEEE80211_MODE_11B] =
319 ieee80211_std_rateset_11b;
320 ic->ic_sup_rates[IEEE80211_MODE_11G] =
321 ieee80211_std_rateset_11g;
322 }
323 if (sc->sc_flags & ATHN_FLAG_11A) {
324 ic->ic_sup_rates[IEEE80211_MODE_11A] =
325 ieee80211_std_rateset_11a;
326 }
327
328 /* Get the list of authorized/supported channels. */
329 athn_get_chanlist(sc);
330
331 ifp->if_softc = sc;
332 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
333 ifp->if_init = athn_init;
334 ifp->if_ioctl = athn_ioctl;
335 ifp->if_start = athn_start;
336 ifp->if_watchdog = athn_watchdog;
337 IFQ_SET_READY(&ifp->if_snd);
338 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
339
340 if_attach(ifp);
341 ieee80211_ifattach(ic);
342
343 ic->ic_node_alloc = athn_node_alloc;
344 ic->ic_newassoc = athn_newassoc;
345 if (ic->ic_updateslot == NULL)
346 ic->ic_updateslot = athn_updateslot;
347 #ifdef notyet_edca
348 ic->ic_updateedca = athn_updateedca;
349 #endif
350 #ifdef notyet
351 ic->ic_set_key = athn_set_key;
352 ic->ic_delete_key = athn_delete_key;
353 #endif
354
355 /* Override 802.11 state transition machine. */
356 sc->sc_newstate = ic->ic_newstate;
357 ic->ic_newstate = athn_newstate;
358
359 if (sc->sc_media_change == NULL)
360 sc->sc_media_change = athn_media_change;
361 ieee80211_media_init(ic, sc->sc_media_change, ieee80211_media_status);
362
363 athn_radiotap_attach(sc);
364 return 0;
365 }
366
367 PUBLIC void
368 athn_detach(struct athn_softc *sc)
369 {
370 struct ifnet *ifp = &sc->sc_if;
371 int qid;
372
373 callout_halt(&sc->sc_scan_to, NULL);
374 callout_halt(&sc->sc_calib_to, NULL);
375
376 if (!(sc->sc_flags & ATHN_FLAG_USB)) {
377 for (qid = 0; qid < ATHN_QID_COUNT; qid++)
378 athn_tx_reclaim(sc, qid);
379
380 /* Free Tx/Rx DMA resources. */
381 sc->sc_ops.dma_free(sc);
382 }
383 /* Free ROM copy. */
384 if (sc->sc_eep != NULL) {
385 free(sc->sc_eep, M_DEVBUF);
386 sc->sc_eep = NULL;
387 }
388
389 bpf_detach(ifp);
390 ieee80211_ifdetach(&sc->sc_ic);
391 if_detach(ifp);
392
393 callout_destroy(&sc->sc_scan_to);
394 callout_destroy(&sc->sc_calib_to);
395 }
396
397 /*
398 * Attach the interface to 802.11 radiotap.
399 */
400 Static void
401 athn_radiotap_attach(struct athn_softc *sc)
402 {
403
404 bpf_attach2(&sc->sc_if, DLT_IEEE802_11_RADIO,
405 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
406 &sc->sc_drvbpf);
407
408 sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
409 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
410 sc->sc_rxtap.wr_ihdr.it_present = htole32(ATHN_RX_RADIOTAP_PRESENT);
411
412 sc->sc_txtap_len = sizeof(sc->sc_txtapu);
413 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
414 sc->sc_txtap.wt_ihdr.it_present = htole32(ATHN_TX_RADIOTAP_PRESENT);
415 }
416
417 Static void
418 athn_get_chanlist(struct athn_softc *sc)
419 {
420 struct ieee80211com *ic = &sc->sc_ic;
421 uint8_t chan;
422 size_t i;
423
424 if (sc->sc_flags & ATHN_FLAG_11G) {
425 for (i = 1; i <= 14; i++) {
426 chan = i;
427 ic->ic_channels[chan].ic_freq =
428 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
429 ic->ic_channels[chan].ic_flags =
430 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
431 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
432 }
433 }
434 if (sc->sc_flags & ATHN_FLAG_11A) {
435 for (i = 0; i < __arraycount(athn_5ghz_chans); i++) {
436 chan = athn_5ghz_chans[i];
437 ic->ic_channels[chan].ic_freq =
438 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
439 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
440 }
441 }
442 }
443
444 PUBLIC void
445 athn_rx_start(struct athn_softc *sc)
446 {
447 struct ieee80211com *ic = &sc->sc_ic;
448 uint32_t rfilt;
449
450 /* Setup Rx DMA descriptors. */
451 sc->sc_ops.rx_enable(sc);
452
453 /* Set Rx filter. */
454 rfilt = AR_RX_FILTER_UCAST | AR_RX_FILTER_BCAST | AR_RX_FILTER_MCAST;
455 #ifndef IEEE80211_NO_HT
456 /* Want Compressed Block Ack Requests. */
457 rfilt |= AR_RX_FILTER_COMPR_BAR;
458 #endif
459 rfilt |= AR_RX_FILTER_BEACON;
460 if (ic->ic_opmode != IEEE80211_M_STA) {
461 rfilt |= AR_RX_FILTER_PROBEREQ;
462 if (ic->ic_opmode == IEEE80211_M_MONITOR)
463 rfilt |= AR_RX_FILTER_PROM;
464 #ifndef IEEE80211_STA_ONLY
465 if (AR_SREV_9280_10_OR_LATER(sc) &&
466 ic->ic_opmode == IEEE80211_M_HOSTAP)
467 rfilt |= AR_RX_FILTER_PSPOLL;
468 #endif
469 }
470 athn_set_rxfilter(sc, rfilt);
471
472 /* Set BSSID mask. */
473 AR_WRITE(sc, AR_BSSMSKL, 0xffffffff);
474 AR_WRITE(sc, AR_BSSMSKU, 0xffff);
475
476 athn_set_opmode(sc);
477
478 /* Set multicast filter. */
479 AR_WRITE(sc, AR_MCAST_FIL0, 0xffffffff);
480 AR_WRITE(sc, AR_MCAST_FIL1, 0xffffffff);
481
482 AR_WRITE(sc, AR_FILT_OFDM, 0);
483 AR_WRITE(sc, AR_FILT_CCK, 0);
484 AR_WRITE(sc, AR_MIBC, 0);
485 AR_WRITE(sc, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING);
486 AR_WRITE(sc, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING);
487
488 /* XXX ANI. */
489 AR_WRITE(sc, AR_PHY_ERR_1, 0);
490 AR_WRITE(sc, AR_PHY_ERR_2, 0);
491
492 /* Disable HW crypto for now. */
493 AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_ENCRYPT_DIS | AR_DIAG_DECRYPT_DIS);
494
495 /* Start PCU Rx. */
496 AR_CLRBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
497 AR_WRITE_BARRIER(sc);
498 }
499
500 PUBLIC void
501 athn_set_rxfilter(struct athn_softc *sc, uint32_t rfilt)
502 {
503
504 AR_WRITE(sc, AR_RX_FILTER, rfilt);
505 #ifdef notyet
506 reg = AR_READ(sc, AR_PHY_ERR);
507 reg &= (AR_PHY_ERR_RADAR | AR_PHY_ERR_OFDM_TIMING |
508 AR_PHY_ERR_CCK_TIMING);
509 AR_WRITE(sc, AR_PHY_ERR, reg);
510 if (reg != 0)
511 AR_SETBITS(sc, AR_RXCFG, AR_RXCFG_ZLFDMA);
512 else
513 AR_CLRBITS(sc, AR_RXCFG, AR_RXCFG_ZLFDMA);
514 #else
515 AR_WRITE(sc, AR_PHY_ERR, 0);
516 AR_CLRBITS(sc, AR_RXCFG, AR_RXCFG_ZLFDMA);
517 #endif
518 AR_WRITE_BARRIER(sc);
519 }
520
521 PUBLIC int
522 athn_intr(void *xsc)
523 {
524 struct athn_softc *sc = xsc;
525 struct ifnet *ifp = &sc->sc_if;
526
527 if (!IS_UP_AND_RUNNING(ifp))
528 return 0;
529
530 if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
531 /*
532 * The hardware is not ready/present, don't touch anything.
533 * Note this can happen early on if the IRQ is shared.
534 */
535 return 0;
536
537 return sc->sc_ops.intr(sc);
538 }
539
540 Static void
541 athn_get_chipid(struct athn_softc *sc)
542 {
543 uint32_t reg;
544
545 reg = AR_READ(sc, AR_SREV);
546 if (MS(reg, AR_SREV_ID) == 0xff) {
547 sc->sc_mac_ver = MS(reg, AR_SREV_VERSION2);
548 sc->sc_mac_rev = MS(reg, AR_SREV_REVISION2);
549 if (!(reg & AR_SREV_TYPE2_HOST_MODE))
550 sc->sc_flags |= ATHN_FLAG_PCIE;
551 }
552 else {
553 sc->sc_mac_ver = MS(reg, AR_SREV_VERSION);
554 sc->sc_mac_rev = MS(reg, AR_SREV_REVISION);
555 if (sc->sc_mac_ver == AR_SREV_VERSION_5416_PCIE)
556 sc->sc_flags |= ATHN_FLAG_PCIE;
557 }
558 }
559
560 Static const char *
561 athn_get_mac_name(struct athn_softc *sc)
562 {
563
564 switch (sc->sc_mac_ver) {
565 case AR_SREV_VERSION_5416_PCI:
566 return "AR5416";
567 case AR_SREV_VERSION_5416_PCIE:
568 return "AR5418";
569 case AR_SREV_VERSION_9160:
570 return "AR9160";
571 case AR_SREV_VERSION_9280:
572 return "AR9280";
573 case AR_SREV_VERSION_9285:
574 return "AR9285";
575 case AR_SREV_VERSION_9271:
576 return "AR9271";
577 case AR_SREV_VERSION_9287:
578 return "AR9287";
579 case AR_SREV_VERSION_9380:
580 return "AR9380";
581 case AR_SREV_VERSION_9485:
582 return "AR9485";
583 default:
584 return "unknown";
585 }
586 }
587
588 /*
589 * Return RF chip name (not for single-chip solutions).
590 */
591 Static const char *
592 athn_get_rf_name(struct athn_softc *sc)
593 {
594
595 KASSERT(!AR_SINGLE_CHIP(sc));
596
597 switch (sc->sc_rf_rev) {
598 case AR_RAD5133_SREV_MAJOR: /* Dual-band 3T3R. */
599 return "AR5133";
600 case AR_RAD2133_SREV_MAJOR: /* Single-band 3T3R. */
601 return "AR2133";
602 case AR_RAD5122_SREV_MAJOR: /* Dual-band 2T2R. */
603 return "AR5122";
604 case AR_RAD2122_SREV_MAJOR: /* Single-band 2T2R. */
605 return "AR2122";
606 default:
607 return "unknown";
608 }
609 }
610
611 PUBLIC int
612 athn_reset_power_on(struct athn_softc *sc)
613 {
614 int ntries;
615
616 /* Set force wake. */
617 AR_WRITE(sc, AR_RTC_FORCE_WAKE,
618 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
619
620 if (!AR_SREV_9380_10_OR_LATER(sc)) {
621 /* Make sure no DMA is active by doing an AHB reset. */
622 AR_WRITE(sc, AR_RC, AR_RC_AHB);
623 }
624 /* RTC reset and clear. */
625 AR_WRITE(sc, AR_RTC_RESET, 0);
626 AR_WRITE_BARRIER(sc);
627 DELAY(2);
628 if (!AR_SREV_9380_10_OR_LATER(sc))
629 AR_WRITE(sc, AR_RC, 0);
630 AR_WRITE(sc, AR_RTC_RESET, 1);
631
632 /* Poll until RTC is ON. */
633 for (ntries = 0; ntries < 1000; ntries++) {
634 if ((AR_READ(sc, AR_RTC_STATUS) & AR_RTC_STATUS_M) ==
635 AR_RTC_STATUS_ON)
636 break;
637 DELAY(10);
638 }
639 if (ntries == 1000) {
640 DPRINTFN(DBG_INIT, sc, "RTC not waking up\n");
641 return ETIMEDOUT;
642 }
643 return athn_reset(sc, 0);
644 }
645
646 PUBLIC int
647 athn_reset(struct athn_softc *sc, int cold_reset)
648 {
649 int ntries;
650
651 /* Set force wake. */
652 AR_WRITE(sc, AR_RTC_FORCE_WAKE,
653 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
654
655 if (AR_READ(sc, AR_INTR_SYNC_CAUSE) &
656 (AR_INTR_SYNC_LOCAL_TIMEOUT | AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
657 AR_WRITE(sc, AR_INTR_SYNC_ENABLE, 0);
658 AR_WRITE(sc, AR_RC, AR_RC_HOSTIF |
659 (!AR_SREV_9380_10_OR_LATER(sc) ? AR_RC_AHB : 0));
660 }
661 else if (!AR_SREV_9380_10_OR_LATER(sc))
662 AR_WRITE(sc, AR_RC, AR_RC_AHB);
663
664 AR_WRITE(sc, AR_RTC_RC, AR_RTC_RC_MAC_WARM |
665 (cold_reset ? AR_RTC_RC_MAC_COLD : 0));
666 AR_WRITE_BARRIER(sc);
667 DELAY(50);
668 AR_WRITE(sc, AR_RTC_RC, 0);
669 for (ntries = 0; ntries < 1000; ntries++) {
670 if (!(AR_READ(sc, AR_RTC_RC) &
671 (AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD)))
672 break;
673 DELAY(10);
674 }
675 if (ntries == 1000) {
676 DPRINTFN(DBG_INIT, sc, "RTC stuck in MAC reset\n");
677 return ETIMEDOUT;
678 }
679 AR_WRITE(sc, AR_RC, 0);
680 AR_WRITE_BARRIER(sc);
681 return 0;
682 }
683
684 PUBLIC int
685 athn_set_power_awake(struct athn_softc *sc)
686 {
687 int ntries, error;
688
689 /* Do a Power-On-Reset if shutdown. */
690 if ((AR_READ(sc, AR_RTC_STATUS) & AR_RTC_STATUS_M) ==
691 AR_RTC_STATUS_SHUTDOWN) {
692 if ((error = athn_reset_power_on(sc)) != 0)
693 return error;
694 if (!AR_SREV_9380_10_OR_LATER(sc))
695 athn_init_pll(sc, NULL);
696 }
697 AR_SETBITS(sc, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
698 AR_WRITE_BARRIER(sc);
699 DELAY(50); /* Give chip the chance to awake. */
700
701 /* Poll until RTC is ON. */
702 for (ntries = 0; ntries < 4000; ntries++) {
703 if ((AR_READ(sc, AR_RTC_STATUS) & AR_RTC_STATUS_M) ==
704 AR_RTC_STATUS_ON)
705 break;
706 DELAY(50);
707 AR_SETBITS(sc, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
708 }
709 if (ntries == 4000) {
710 DPRINTFN(DBG_INIT, sc, "RTC not waking up\n");
711 return ETIMEDOUT;
712 }
713
714 AR_CLRBITS(sc, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
715 AR_WRITE_BARRIER(sc);
716 return 0;
717 }
718
719 PUBLIC void
720 athn_set_power_sleep(struct athn_softc *sc)
721 {
722
723 AR_SETBITS(sc, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
724 /* Allow the MAC to go to sleep. */
725 AR_CLRBITS(sc, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
726 if (!AR_SREV_9380_10_OR_LATER(sc))
727 AR_WRITE(sc, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
728 /*
729 * NB: Clearing RTC_RESET_EN when setting the chip to sleep mode
730 * results in high power consumption on AR5416 chipsets.
731 */
732 if (!AR_SREV_5416(sc) && !AR_SREV_9271(sc))
733 AR_CLRBITS(sc, AR_RTC_RESET, AR_RTC_RESET_EN);
734 AR_WRITE_BARRIER(sc);
735 }
736
737 PUBLIC void
738 athn_init_pll(struct athn_softc *sc, const struct ieee80211_channel *c)
739 {
740 uint32_t pll;
741
742 if (AR_SREV_9380_10_OR_LATER(sc)) {
743 if (AR_SREV_9485(sc))
744 AR_WRITE(sc, AR_RTC_PLL_CONTROL2, 0x886666);
745 pll = SM(AR_RTC_9160_PLL_REFDIV, 0x5);
746 pll |= SM(AR_RTC_9160_PLL_DIV, 0x2c);
747 }
748 else if (AR_SREV_9280_10_OR_LATER(sc)) {
749 pll = SM(AR_RTC_9160_PLL_REFDIV, 0x05);
750 if (c != NULL && IEEE80211_IS_CHAN_5GHZ(c)) {
751 if (sc->sc_flags & ATHN_FLAG_FAST_PLL_CLOCK)
752 pll = 0x142c;
753 else if (AR_SREV_9280_20(sc))
754 pll = 0x2850;
755 else
756 pll |= SM(AR_RTC_9160_PLL_DIV, 0x28);
757 }
758 else
759 pll |= SM(AR_RTC_9160_PLL_DIV, 0x2c);
760 }
761 else if (AR_SREV_9160_10_OR_LATER(sc)) {
762 pll = SM(AR_RTC_9160_PLL_REFDIV, 0x05);
763 if (c != NULL && IEEE80211_IS_CHAN_5GHZ(c))
764 pll |= SM(AR_RTC_9160_PLL_DIV, 0x50);
765 else
766 pll |= SM(AR_RTC_9160_PLL_DIV, 0x58);
767 }
768 else {
769 pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
770 if (c != NULL && IEEE80211_IS_CHAN_5GHZ(c))
771 pll |= SM(AR_RTC_PLL_DIV, 0x0a);
772 else
773 pll |= SM(AR_RTC_PLL_DIV, 0x0b);
774 }
775 DPRINTFN(DBG_INIT, sc, "AR_RTC_PLL_CONTROL=0x%08x\n", pll);
776 AR_WRITE(sc, AR_RTC_PLL_CONTROL, pll);
777 if (AR_SREV_9271(sc)) {
778 /* Switch core clock to 117MHz. */
779 AR_WRITE_BARRIER(sc);
780 DELAY(500);
781 AR_WRITE(sc, 0x50050, 0x304);
782 }
783 AR_WRITE_BARRIER(sc);
784 DELAY(100);
785 AR_WRITE(sc, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
786 AR_WRITE_BARRIER(sc);
787 }
788
789 Static void
790 athn_write_serdes(struct athn_softc *sc, const struct athn_serdes *serdes)
791 {
792 int i;
793
794 /* Write sequence to Serializer/Deserializer. */
795 for (i = 0; i < serdes->nvals; i++)
796 AR_WRITE(sc, serdes->regs[i], serdes->vals[i]);
797 AR_WRITE_BARRIER(sc);
798 }
799
800 PUBLIC void
801 athn_config_pcie(struct athn_softc *sc)
802 {
803
804 /* Disable PLL when in L0s as well as receiver clock when in L1. */
805 athn_write_serdes(sc, sc->sc_serdes);
806
807 DELAY(1000);
808 /* Allow forcing of PCIe core into L1 state. */
809 AR_SETBITS(sc, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
810
811 #ifndef ATHN_PCIE_WAEN
812 AR_WRITE(sc, AR_WA, sc->sc_workaround);
813 #else
814 AR_WRITE(sc, AR_WA, ATHN_PCIE_WAEN);
815 #endif
816 AR_WRITE_BARRIER(sc);
817 }
818
819 /*
820 * Serializer/Deserializer programming for non-PCIe devices.
821 */
822 static const uint32_t ar_nonpcie_serdes_regs[] = {
823 AR_PCIE_SERDES,
824 AR_PCIE_SERDES,
825 AR_PCIE_SERDES,
826 AR_PCIE_SERDES,
827 AR_PCIE_SERDES,
828 AR_PCIE_SERDES,
829 AR_PCIE_SERDES,
830 AR_PCIE_SERDES,
831 AR_PCIE_SERDES,
832 AR_PCIE_SERDES2,
833 };
834
835 static const uint32_t ar_nonpcie_serdes_vals[] = {
836 0x9248fc00,
837 0x24924924,
838 0x28000029,
839 0x57160824,
840 0x25980579,
841 0x00000000,
842 0x1aaabe40,
843 0xbe105554,
844 0x000e1007,
845 0x00000000
846 };
847
848 static const struct athn_serdes ar_nonpcie_serdes = {
849 __arraycount(ar_nonpcie_serdes_vals),
850 ar_nonpcie_serdes_regs,
851 ar_nonpcie_serdes_vals
852 };
853
854 PUBLIC void
855 athn_config_nonpcie(struct athn_softc *sc)
856 {
857
858 athn_write_serdes(sc, &ar_nonpcie_serdes);
859 }
860
861 PUBLIC int
862 athn_set_chan(struct athn_softc *sc, struct ieee80211_channel *curchan,
863 struct ieee80211_channel *extchan)
864 {
865 struct athn_ops *ops = &sc->sc_ops;
866 int error, qid;
867
868 /* Check that Tx is stopped, otherwise RF Bus grant will not work. */
869 for (qid = 0; qid < ATHN_QID_COUNT; qid++)
870 if (athn_tx_pending(sc, qid))
871 return EBUSY;
872
873 /* Request RF Bus grant. */
874 if ((error = ops->rf_bus_request(sc)) != 0)
875 return error;
876
877 ops->set_phy(sc, curchan, extchan);
878
879 /* Change the synthesizer. */
880 if ((error = ops->set_synth(sc, curchan, extchan)) != 0)
881 return error;
882
883 sc->sc_curchan = curchan;
884 sc->sc_curchanext = extchan;
885
886 /* Set transmit power values for new channel. */
887 ops->set_txpower(sc, curchan, extchan);
888
889 /* Release the RF Bus grant. */
890 ops->rf_bus_release(sc);
891
892 /* Write delta slope coeffs for modes where OFDM may be used. */
893 if (sc->sc_ic.ic_curmode != IEEE80211_MODE_11B)
894 ops->set_delta_slope(sc, curchan, extchan);
895
896 ops->spur_mitigate(sc, curchan, extchan);
897 /* XXX Load noisefloor values and start calibration. */
898
899 return 0;
900 }
901
902 Static int
903 athn_switch_chan(struct athn_softc *sc, struct ieee80211_channel *curchan,
904 struct ieee80211_channel *extchan)
905 {
906 int error, qid;
907
908 /* Disable interrupts. */
909 athn_disable_interrupts(sc);
910
911 /* Stop all Tx queues. */
912 for (qid = 0; qid < ATHN_QID_COUNT; qid++)
913 athn_stop_tx_dma(sc, qid);
914 for (qid = 0; qid < ATHN_QID_COUNT; qid++)
915 athn_tx_reclaim(sc, qid);
916
917 /* Stop Rx. */
918 AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
919 AR_WRITE(sc, AR_MIBC, AR_MIBC_FMC);
920 AR_WRITE(sc, AR_MIBC, AR_MIBC_CMC);
921 AR_WRITE(sc, AR_FILT_OFDM, 0);
922 AR_WRITE(sc, AR_FILT_CCK, 0);
923 athn_set_rxfilter(sc, 0);
924 error = athn_stop_rx_dma(sc);
925 if (error != 0)
926 goto reset;
927
928 #ifdef notyet
929 /* AR9280 needs a full reset. */
930 if (AR_SREV_9280(sc))
931 #endif
932 goto reset;
933
934 /* If band or bandwidth changes, we need to do a full reset. */
935 if (curchan->ic_flags != sc->sc_curchan->ic_flags ||
936 ((extchan != NULL) ^ (sc->sc_curchanext != NULL))) {
937 DPRINTFN(DBG_RF, sc, "channel band switch\n");
938 goto reset;
939 }
940 error = athn_set_power_awake(sc);
941 if (error != 0)
942 goto reset;
943
944 error = athn_set_chan(sc, curchan, extchan);
945 if (error != 0) {
946 reset: /* Error found, try a full reset. */
947 DPRINTFN(DBG_RF, sc, "needs a full reset\n");
948 error = athn_hw_reset(sc, curchan, extchan, 0);
949 if (error != 0) /* Hopeless case. */
950 return error;
951 }
952 athn_rx_start(sc);
953
954 /* Re-enable interrupts. */
955 athn_enable_interrupts(sc);
956 return 0;
957 }
958
959 PUBLIC void
960 athn_get_delta_slope(uint32_t coeff, uint32_t *exponent, uint32_t *mantissa)
961 {
962 #define COEFF_SCALE_SHIFT 24
963 uint32_t exp, man;
964
965 /* exponent = 14 - floor(log2(coeff)) */
966 for (exp = 31; exp > 0; exp--)
967 if (coeff & (1 << exp))
968 break;
969 exp = 14 - (exp - COEFF_SCALE_SHIFT);
970
971 /* mantissa = floor(coeff * 2^exponent + 0.5) */
972 man = coeff + (1 << (COEFF_SCALE_SHIFT - exp - 1));
973
974 *mantissa = man >> (COEFF_SCALE_SHIFT - exp);
975 *exponent = exp - 16;
976 #undef COEFF_SCALE_SHIFT
977 }
978
979 PUBLIC void
980 athn_reset_key(struct athn_softc *sc, int entry)
981 {
982
983 /*
984 * NB: Key cache registers access special memory area that requires
985 * two 32-bit writes to actually update the values in the internal
986 * memory. Consequently, writes must be grouped by pair.
987 */
988 AR_WRITE(sc, AR_KEYTABLE_KEY0(entry), 0);
989 AR_WRITE(sc, AR_KEYTABLE_KEY1(entry), 0);
990
991 AR_WRITE(sc, AR_KEYTABLE_KEY2(entry), 0);
992 AR_WRITE(sc, AR_KEYTABLE_KEY3(entry), 0);
993
994 AR_WRITE(sc, AR_KEYTABLE_KEY4(entry), 0);
995 AR_WRITE(sc, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
996
997 AR_WRITE(sc, AR_KEYTABLE_MAC0(entry), 0);
998 AR_WRITE(sc, AR_KEYTABLE_MAC1(entry), 0);
999
1000 AR_WRITE_BARRIER(sc);
1001 }
1002
1003 #ifdef notyet
1004 Static int
1005 athn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
1006 struct ieee80211_key *k)
1007 {
1008 struct athn_softc *sc = ic->ic_ifp->if_softc;
1009 const uint8_t *txmic, *rxmic, *key, *addr;
1010 uintptr_t entry, micentry;
1011 uint32_t type, lo, hi;
1012
1013 switch (k->k_cipher) {
1014 case IEEE80211_CIPHER_WEP40:
1015 type = AR_KEYTABLE_TYPE_40;
1016 break;
1017 case IEEE80211_CIPHER_WEP104:
1018 type = AR_KEYTABLE_TYPE_104;
1019 break;
1020 case IEEE80211_CIPHER_TKIP:
1021 type = AR_KEYTABLE_TYPE_TKIP;
1022 break;
1023 case IEEE80211_CIPHER_CCMP:
1024 type = AR_KEYTABLE_TYPE_CCM;
1025 break;
1026 default:
1027 /* Fallback to software crypto for other ciphers. */
1028 return ieee80211_set_key(ic, ni, k);
1029 }
1030
1031 if (!(k->k_flags & IEEE80211_KEY_GROUP))
1032 entry = IEEE80211_WEP_NKID + IEEE80211_AID(ni->ni_associd);
1033 else
1034 entry = k->k_id;
1035 k->k_priv = (void *)entry;
1036
1037 /* NB: See note about key cache registers access above. */
1038 key = k->k_key;
1039 if (type == AR_KEYTABLE_TYPE_TKIP) {
1040 #ifndef IEEE80211_STA_ONLY
1041 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
1042 txmic = &key[16];
1043 rxmic = &key[24];
1044 }
1045 else
1046 #endif
1047 {
1048 rxmic = &key[16];
1049 txmic = &key[24];
1050 }
1051 /* Tx+Rx MIC key is at entry + 64. */
1052 micentry = entry + 64;
1053 AR_WRITE(sc, AR_KEYTABLE_KEY0(micentry), LE_READ_4(&rxmic[0]));
1054 AR_WRITE(sc, AR_KEYTABLE_KEY1(micentry), LE_READ_2(&txmic[2]));
1055
1056 AR_WRITE(sc, AR_KEYTABLE_KEY2(micentry), LE_READ_4(&rxmic[4]));
1057 AR_WRITE(sc, AR_KEYTABLE_KEY3(micentry), LE_READ_2(&txmic[0]));
1058
1059 AR_WRITE(sc, AR_KEYTABLE_KEY4(micentry), LE_READ_4(&txmic[4]));
1060 AR_WRITE(sc, AR_KEYTABLE_TYPE(micentry), AR_KEYTABLE_TYPE_CLR);
1061 }
1062 AR_WRITE(sc, AR_KEYTABLE_KEY0(entry), LE_READ_4(&key[ 0]));
1063 AR_WRITE(sc, AR_KEYTABLE_KEY1(entry), LE_READ_2(&key[ 4]));
1064
1065 AR_WRITE(sc, AR_KEYTABLE_KEY2(entry), LE_READ_4(&key[ 6]));
1066 AR_WRITE(sc, AR_KEYTABLE_KEY3(entry), LE_READ_2(&key[10]));
1067
1068 AR_WRITE(sc, AR_KEYTABLE_KEY4(entry), LE_READ_4(&key[12]));
1069 AR_WRITE(sc, AR_KEYTABLE_TYPE(entry), type);
1070
1071 if (!(k->k_flags & IEEE80211_KEY_GROUP)) {
1072 addr = ni->ni_macaddr;
1073 lo = LE_READ_4(&addr[0]);
1074 hi = LE_READ_2(&addr[4]);
1075 lo = lo >> 1 | hi << 31;
1076 hi = hi >> 1;
1077 }
1078 else
1079 lo = hi = 0;
1080 AR_WRITE(sc, AR_KEYTABLE_MAC0(entry), lo);
1081 AR_WRITE(sc, AR_KEYTABLE_MAC1(entry), hi | AR_KEYTABLE_VALID);
1082 AR_WRITE_BARRIER(sc);
1083 return 0;
1084 }
1085
1086 Static void
1087 athn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
1088 struct ieee80211_key *k)
1089 {
1090 struct athn_softc *sc = ic->ic_ifp->if_softc;
1091 uintptr_t entry;
1092
1093 switch (k->k_cipher) {
1094 case IEEE80211_CIPHER_WEP40:
1095 case IEEE80211_CIPHER_WEP104:
1096 case IEEE80211_CIPHER_CCMP:
1097 entry = (uintptr_t)k->k_priv;
1098 athn_reset_key(sc, entry);
1099 break;
1100 case IEEE80211_CIPHER_TKIP:
1101 entry = (uintptr_t)k->k_priv;
1102 athn_reset_key(sc, entry);
1103 athn_reset_key(sc, entry + 64);
1104 break;
1105 default:
1106 /* Fallback to software crypto for other ciphers. */
1107 ieee80211_delete_key(ic, ni, k);
1108 }
1109 }
1110 #endif /* notyet */
1111
1112 PUBLIC void
1113 athn_led_init(struct athn_softc *sc)
1114 {
1115 struct athn_ops *ops = &sc->sc_ops;
1116
1117 ops->gpio_config_output(sc, sc->sc_led_pin, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1118 /* LED off, active low. */
1119 athn_set_led(sc, 0);
1120 }
1121
1122 PUBLIC void
1123 athn_set_led(struct athn_softc *sc, int on)
1124 {
1125 struct athn_ops *ops = &sc->sc_ops;
1126
1127 sc->sc_led_state = on;
1128 ops->gpio_write(sc, sc->sc_led_pin, !sc->sc_led_state);
1129 }
1130
1131 #ifdef ATHN_BT_COEXISTENCE
1132 Static void
1133 athn_btcoex_init(struct athn_softc *sc)
1134 {
1135 struct athn_ops *ops = &sc->sc_ops;
1136 uint32_t reg;
1137
1138 if (sc->sc_flags & ATHN_FLAG_BTCOEX2WIRE) {
1139 /* Connect bt_active to baseband. */
1140 AR_CLRBITS(sc, sc->sc_gpio_input_en_off,
1141 AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_DEF |
1142 AR_GPIO_INPUT_EN_VAL_BT_FREQUENCY_DEF);
1143 AR_SETBITS(sc, sc->sc_gpio_input_en_off,
1144 AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB);
1145
1146 reg = AR_READ(sc, AR_GPIO_INPUT_MUX1);
1147 reg = RW(reg, AR_GPIO_INPUT_MUX1_BT_ACTIVE,
1148 AR_GPIO_BTACTIVE_PIN);
1149 AR_WRITE(sc, AR_GPIO_INPUT_MUX1, reg);
1150 AR_WRITE_BARRIER(sc);
1151
1152 ops->gpio_config_input(sc, AR_GPIO_BTACTIVE_PIN);
1153 }
1154 else { /* 3-wire. */
1155 AR_SETBITS(sc, sc->sc_gpio_input_en_off,
1156 AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_BB |
1157 AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB);
1158
1159 reg = AR_READ(sc, AR_GPIO_INPUT_MUX1);
1160 reg = RW(reg, AR_GPIO_INPUT_MUX1_BT_ACTIVE,
1161 AR_GPIO_BTACTIVE_PIN);
1162 reg = RW(reg, AR_GPIO_INPUT_MUX1_BT_PRIORITY,
1163 AR_GPIO_BTPRIORITY_PIN);
1164 AR_WRITE(sc, AR_GPIO_INPUT_MUX1, reg);
1165 AR_WRITE_BARRIER(sc);
1166
1167 ops->gpio_config_input(sc, AR_GPIO_BTACTIVE_PIN);
1168 ops->gpio_config_input(sc, AR_GPIO_BTPRIORITY_PIN);
1169 }
1170 }
1171
1172 Static void
1173 athn_btcoex_enable(struct athn_softc *sc)
1174 {
1175 struct athn_ops *ops = &sc->sc_ops;
1176 uint32_t reg;
1177
1178 if (sc->sc_flags & ATHN_FLAG_BTCOEX3WIRE) {
1179 AR_WRITE(sc, AR_BT_COEX_MODE,
1180 SM(AR_BT_MODE, AR_BT_MODE_SLOTTED) |
1181 SM(AR_BT_PRIORITY_TIME, 2) |
1182 SM(AR_BT_FIRST_SLOT_TIME, 5) |
1183 SM(AR_BT_QCU_THRESH, ATHN_QID_AC_BE) |
1184 AR_BT_TXSTATE_EXTEND | AR_BT_TX_FRAME_EXTEND |
1185 AR_BT_QUIET | AR_BT_RX_CLEAR_POLARITY);
1186 AR_WRITE(sc, AR_BT_COEX_WEIGHT,
1187 SM(AR_BTCOEX_BT_WGHT, AR_STOMP_LOW_BT_WGHT) |
1188 SM(AR_BTCOEX_WL_WGHT, AR_STOMP_LOW_WL_WGHT));
1189 AR_WRITE(sc, AR_BT_COEX_MODE2,
1190 SM(AR_BT_BCN_MISS_THRESH, 50) |
1191 AR_BT_HOLD_RX_CLEAR | AR_BT_DISABLE_BT_ANT);
1192
1193 AR_SETBITS(sc, AR_QUIET1, AR_QUIET1_QUIET_ACK_CTS_ENABLE);
1194 AR_CLRBITS(sc, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX);
1195 AR_WRITE_BARRIER(sc);
1196
1197 ops->gpio_config_output(sc, AR_GPIO_WLANACTIVE_PIN,
1198 AR_GPIO_OUTPUT_MUX_AS_RX_CLEAR_EXTERNAL);
1199
1200 }
1201 else { /* 2-wire. */
1202 ops->gpio_config_output(sc, AR_GPIO_WLANACTIVE_PIN,
1203 AR_GPIO_OUTPUT_MUX_AS_TX_FRAME);
1204 }
1205 reg = AR_READ(sc, AR_GPIO_PDPU);
1206 reg &= ~(0x3 << (AR_GPIO_WLANACTIVE_PIN * 2));
1207 reg |= 0x2 << (AR_GPIO_WLANACTIVE_PIN * 2);
1208 AR_WRITE(sc, AR_GPIO_PDPU, reg);
1209 AR_WRITE_BARRIER(sc);
1210
1211 /* Disable PCIe Active State Power Management (ASPM). */
1212 if (sc->sc_disable_aspm != NULL)
1213 sc->sc_disable_aspm(sc);
1214
1215 /* XXX Start periodic timer. */
1216 }
1217
1218 Static void
1219 athn_btcoex_disable(struct athn_softc *sc)
1220 {
1221 struct athn_ops *ops = &sc->sc_ops;
1222
1223 ops->gpio_write(sc, AR_GPIO_WLANACTIVE_PIN, 0);
1224
1225 ops->gpio_config_output(sc, AR_GPIO_WLANACTIVE_PIN,
1226 AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1227
1228 if (sc->sc_flags & ATHN_FLAG_BTCOEX3WIRE) {
1229 AR_WRITE(sc, AR_BT_COEX_MODE,
1230 SM(AR_BT_MODE, AR_BT_MODE_DISABLED) | AR_BT_QUIET);
1231 AR_WRITE(sc, AR_BT_COEX_WEIGHT, 0);
1232 AR_WRITE(sc, AR_BT_COEX_MODE2, 0);
1233 /* XXX Stop periodic timer. */
1234 }
1235 AR_WRITE_BARRIER(sc);
1236 /* XXX Restore ASPM setting? */
1237 }
1238 #endif
1239
1240 Static void
1241 athn_iter_func(void *arg, struct ieee80211_node *ni)
1242 {
1243 struct athn_softc *sc = arg;
1244 struct athn_node *an = (struct athn_node *)ni;
1245
1246 ieee80211_amrr_choose(&sc->sc_amrr, ni, &an->amn);
1247 }
1248
1249 Static void
1250 athn_calib_to(void *arg)
1251 {
1252 extern int ticks;
1253 struct athn_softc *sc = arg;
1254 struct athn_ops *ops = &sc->sc_ops;
1255 struct ieee80211com *ic = &sc->sc_ic;
1256 int s;
1257
1258 s = splnet();
1259
1260 /* Do periodic (every 4 minutes) PA calibration. */
1261 if (AR_SREV_9285_11_OR_LATER(sc) &&
1262 !AR_SREV_9380_10_OR_LATER(sc) &&
1263 (ticks - (sc->sc_pa_calib_ticks + 240 * hz)) >= 0) {
1264 sc->sc_pa_calib_ticks = ticks;
1265 if (AR_SREV_9271(sc))
1266 ar9271_pa_calib(sc);
1267 else
1268 ar9285_pa_calib(sc);
1269 }
1270
1271 /* Do periodic (every 30 seconds) temperature compensation. */
1272 if ((sc->sc_flags & ATHN_FLAG_OLPC) &&
1273 ticks >= sc->sc_olpc_ticks + 30 * hz) {
1274 sc->sc_olpc_ticks = ticks;
1275 ops->olpc_temp_compensation(sc);
1276 }
1277
1278 #ifdef notyet
1279 /* XXX ANI. */
1280 athn_ani_monitor(sc);
1281
1282 ops->next_calib(sc);
1283 #endif
1284 if (ic->ic_fixed_rate == -1) {
1285 if (ic->ic_opmode == IEEE80211_M_STA)
1286 athn_iter_func(sc, ic->ic_bss);
1287 else
1288 ieee80211_iterate_nodes(&ic->ic_sta, athn_iter_func, sc);
1289 }
1290 callout_schedule(&sc->sc_calib_to, hz / 2);
1291 splx(s);
1292 }
1293
1294 Static int
1295 athn_init_calib(struct athn_softc *sc, struct ieee80211_channel *curchan,
1296 struct ieee80211_channel *extchan)
1297 {
1298 struct athn_ops *ops = &sc->sc_ops;
1299 int error;
1300
1301 if (AR_SREV_9380_10_OR_LATER(sc))
1302 error = ar9003_init_calib(sc);
1303 else if (AR_SREV_9285_10_OR_LATER(sc))
1304 error = ar9285_init_calib(sc, curchan, extchan);
1305 else
1306 error = ar5416_init_calib(sc, curchan, extchan);
1307 if (error != 0)
1308 return error;
1309
1310 if (!AR_SREV_9380_10_OR_LATER(sc)) {
1311 /* Do PA calibration. */
1312 if (AR_SREV_9285_11_OR_LATER(sc)) {
1313 extern int ticks;
1314 sc->sc_pa_calib_ticks = ticks;
1315 if (AR_SREV_9271(sc))
1316 ar9271_pa_calib(sc);
1317 else
1318 ar9285_pa_calib(sc);
1319 }
1320 /* Do noisefloor calibration. */
1321 ops->noisefloor_calib(sc);
1322 }
1323 if (AR_SREV_9160_10_OR_LATER(sc)) {
1324 /* Support IQ calibration. */
1325 sc->sc_sup_calib_mask = ATHN_CAL_IQ;
1326 if (AR_SREV_9380_10_OR_LATER(sc)) {
1327 /* Support temperature compensation calibration. */
1328 sc->sc_sup_calib_mask |= ATHN_CAL_TEMP;
1329 }
1330 else if (IEEE80211_IS_CHAN_5GHZ(curchan) || extchan != NULL) {
1331 /*
1332 * ADC gain calibration causes uplink throughput
1333 * drops in HT40 mode on AR9287.
1334 */
1335 if (!AR_SREV_9287(sc)) {
1336 /* Support ADC gain calibration. */
1337 sc->sc_sup_calib_mask |= ATHN_CAL_ADC_GAIN;
1338 }
1339 /* Support ADC DC offset calibration. */
1340 sc->sc_sup_calib_mask |= ATHN_CAL_ADC_DC;
1341 }
1342 }
1343 return 0;
1344 }
1345
1346 /*
1347 * Adaptive noise immunity.
1348 */
1349 #ifdef notyet
1350 Static int32_t
1351 athn_ani_get_rssi(struct athn_softc *sc)
1352 {
1353
1354 return 0; /* XXX */
1355 }
1356 #endif /* notyet */
1357
1358 #ifdef notyet
1359 Static void
1360 athn_ani_ofdm_err_trigger(struct athn_softc *sc)
1361 {
1362 struct athn_ani *ani = &sc->sc_ani;
1363 struct athn_ops *ops = &sc->sc_ops;
1364 int32_t rssi;
1365
1366 /* First, raise noise immunity level, up to max. */
1367 if (ani->noise_immunity_level < 4) {
1368 ani->noise_immunity_level++;
1369 ops->set_noise_immunity_level(sc, ani->noise_immunity_level);
1370 return;
1371 }
1372
1373 /* Then, raise our spur immunity level, up to max. */
1374 if (ani->spur_immunity_level < 7) {
1375 ani->spur_immunity_level++;
1376 ops->set_spur_immunity_level(sc, ani->spur_immunity_level);
1377 return;
1378 }
1379
1380 #ifndef IEEE80211_STA_ONLY
1381 if (sc->sc_ic.ic_opmode == IEEE80211_M_HOSTAP) {
1382 if (ani->firstep_level < 2) {
1383 ani->firstep_level++;
1384 ops->set_firstep_level(sc, ani->firstep_level);
1385 }
1386 return;
1387 }
1388 #endif
1389 rssi = athn_ani_get_rssi(sc);
1390 if (rssi > ATHN_ANI_RSSI_THR_HIGH) {
1391 /*
1392 * Beacon RSSI is high, turn off OFDM weak signal detection
1393 * or raise first step level as last resort.
1394 */
1395 if (ani->ofdm_weak_signal) {
1396 ani->ofdm_weak_signal = 0;
1397 ops->disable_ofdm_weak_signal(sc);
1398 ani->spur_immunity_level = 0;
1399 ops->set_spur_immunity_level(sc, 0);
1400 }
1401 else if (ani->firstep_level < 2) {
1402 ani->firstep_level++;
1403 ops->set_firstep_level(sc, ani->firstep_level);
1404 }
1405 }
1406 else if (rssi > ATHN_ANI_RSSI_THR_LOW) {
1407 /*
1408 * Beacon RSSI is in mid range, we need OFDM weak signal
1409 * detection but we can raise first step level.
1410 */
1411 if (!ani->ofdm_weak_signal) {
1412 ani->ofdm_weak_signal = 1;
1413 ops->enable_ofdm_weak_signal(sc);
1414 }
1415 if (ani->firstep_level < 2) {
1416 ani->firstep_level++;
1417 ops->set_firstep_level(sc, ani->firstep_level);
1418 }
1419 }
1420 else if (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) {
1421 /*
1422 * Beacon RSSI is low, if in b/g mode, turn off OFDM weak
1423 * signal detection and zero first step level to maximize
1424 * CCK sensitivity.
1425 */
1426 if (ani->ofdm_weak_signal) {
1427 ani->ofdm_weak_signal = 0;
1428 ops->disable_ofdm_weak_signal(sc);
1429 }
1430 if (ani->firstep_level > 0) {
1431 ani->firstep_level = 0;
1432 ops->set_firstep_level(sc, 0);
1433 }
1434 }
1435 }
1436 #endif /* notyet */
1437
1438 #ifdef notyet
1439 Static void
1440 athn_ani_cck_err_trigger(struct athn_softc *sc)
1441 {
1442 struct athn_ani *ani = &sc->sc_ani;
1443 struct athn_ops *ops = &sc->sc_ops;
1444 int32_t rssi;
1445
1446 /* Raise noise immunity level, up to max. */
1447 if (ani->noise_immunity_level < 4) {
1448 ani->noise_immunity_level++;
1449 ops->set_noise_immunity_level(sc, ani->noise_immunity_level);
1450 return;
1451 }
1452
1453 #ifndef IEEE80211_STA_ONLY
1454 if (sc->sc_ic.ic_opmode == IEEE80211_M_HOSTAP) {
1455 if (ani->firstep_level < 2) {
1456 ani->firstep_level++;
1457 ops->set_firstep_level(sc, ani->firstep_level);
1458 }
1459 return;
1460 }
1461 #endif
1462 rssi = athn_ani_get_rssi(sc);
1463 if (rssi > ATHN_ANI_RSSI_THR_LOW) {
1464 /*
1465 * Beacon RSSI is in mid or high range, raise first step
1466 * level.
1467 */
1468 if (ani->firstep_level < 2) {
1469 ani->firstep_level++;
1470 ops->set_firstep_level(sc, ani->firstep_level);
1471 }
1472 }
1473 else if (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) {
1474 /*
1475 * Beacon RSSI is low, zero first step level to maximize
1476 * CCK sensitivity.
1477 */
1478 if (ani->firstep_level > 0) {
1479 ani->firstep_level = 0;
1480 ops->set_firstep_level(sc, 0);
1481 }
1482 }
1483 }
1484 #endif /* notyet */
1485
1486 #ifdef notyet
1487 Static void
1488 athn_ani_lower_immunity(struct athn_softc *sc)
1489 {
1490 struct athn_ani *ani = &sc->sc_ani;
1491 struct athn_ops *ops = &sc->sc_ops;
1492 int32_t rssi;
1493
1494 #ifndef IEEE80211_STA_ONLY
1495 if (sc->sc_ic.ic_opmode == IEEE80211_M_HOSTAP) {
1496 if (ani->firstep_level > 0) {
1497 ani->firstep_level--;
1498 ops->set_firstep_level(sc, ani->firstep_level);
1499 }
1500 return;
1501 }
1502 #endif
1503 rssi = athn_ani_get_rssi(sc);
1504 if (rssi > ATHN_ANI_RSSI_THR_HIGH) {
1505 /*
1506 * Beacon RSSI is high, leave OFDM weak signal detection
1507 * off or it may oscillate.
1508 */
1509 }
1510 else if (rssi > ATHN_ANI_RSSI_THR_LOW) {
1511 /*
1512 * Beacon RSSI is in mid range, turn on OFDM weak signal
1513 * detection or lower first step level.
1514 */
1515 if (!ani->ofdm_weak_signal) {
1516 ani->ofdm_weak_signal = 1;
1517 ops->enable_ofdm_weak_signal(sc);
1518 return;
1519 }
1520 if (ani->firstep_level > 0) {
1521 ani->firstep_level--;
1522 ops->set_firstep_level(sc, ani->firstep_level);
1523 return;
1524 }
1525 }
1526 else {
1527 /* Beacon RSSI is low, lower first step level. */
1528 if (ani->firstep_level > 0) {
1529 ani->firstep_level--;
1530 ops->set_firstep_level(sc, ani->firstep_level);
1531 return;
1532 }
1533 }
1534 /*
1535 * Lower spur immunity level down to zero, or if all else fails,
1536 * lower noise immunity level down to zero.
1537 */
1538 if (ani->spur_immunity_level > 0) {
1539 ani->spur_immunity_level--;
1540 ops->set_spur_immunity_level(sc, ani->spur_immunity_level);
1541 }
1542 else if (ani->noise_immunity_level > 0) {
1543 ani->noise_immunity_level--;
1544 ops->set_noise_immunity_level(sc, ani->noise_immunity_level);
1545 }
1546 }
1547 #endif /* notyet */
1548
1549 #ifdef notyet
1550 Static void
1551 athn_ani_restart(struct athn_softc *sc)
1552 {
1553 struct athn_ani *ani = &sc->sc_ani;
1554
1555 AR_WRITE(sc, AR_PHY_ERR_1, 0);
1556 AR_WRITE(sc, AR_PHY_ERR_2, 0);
1557 AR_WRITE(sc, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING);
1558 AR_WRITE(sc, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING);
1559 AR_WRITE_BARRIER(sc);
1560
1561 ani->listen_time = 0;
1562 ani->ofdm_phy_err_count = 0;
1563 ani->cck_phy_err_count = 0;
1564 }
1565 #endif /* notyet */
1566
1567 #ifdef notyet
1568 Static void
1569 athn_ani_monitor(struct athn_softc *sc)
1570 {
1571 struct athn_ani *ani = &sc->sc_ani;
1572 uint32_t cyccnt, txfcnt, rxfcnt, phy1, phy2;
1573 int32_t cycdelta, txfdelta, rxfdelta;
1574 int32_t listen_time;
1575
1576 txfcnt = AR_READ(sc, AR_TFCNT); /* Tx frame count. */
1577 rxfcnt = AR_READ(sc, AR_RFCNT); /* Rx frame count. */
1578 cyccnt = AR_READ(sc, AR_CCCNT); /* Cycle count. */
1579
1580 if (ani->cyccnt != 0 && ani->cyccnt <= cyccnt) {
1581 cycdelta = cyccnt - ani->cyccnt;
1582 txfdelta = txfcnt - ani->txfcnt;
1583 rxfdelta = rxfcnt - ani->rxfcnt;
1584
1585 listen_time = (cycdelta - txfdelta - rxfdelta) /
1586 (athn_clock_rate(sc) * 1000);
1587 }
1588 else
1589 listen_time = 0;
1590
1591 ani->cyccnt = cyccnt;
1592 ani->txfcnt = txfcnt;
1593 ani->rxfcnt = rxfcnt;
1594
1595 if (listen_time < 0) {
1596 athn_ani_restart(sc);
1597 return;
1598 }
1599 ani->listen_time += listen_time;
1600
1601 phy1 = AR_READ(sc, AR_PHY_ERR_1);
1602 phy2 = AR_READ(sc, AR_PHY_ERR_2);
1603
1604 if (phy1 < ani->ofdm_phy_err_base) {
1605 AR_WRITE(sc, AR_PHY_ERR_1, ani->ofdm_phy_err_base);
1606 AR_WRITE(sc, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING);
1607 }
1608 if (phy2 < ani->cck_phy_err_base) {
1609 AR_WRITE(sc, AR_PHY_ERR_2, ani->cck_phy_err_base);
1610 AR_WRITE(sc, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING);
1611 }
1612 if (phy1 < ani->ofdm_phy_err_base || phy2 < ani->cck_phy_err_base) {
1613 AR_WRITE_BARRIER(sc);
1614 return;
1615 }
1616 ani->ofdm_phy_err_count = phy1 - ani->ofdm_phy_err_base;
1617 ani->cck_phy_err_count = phy2 - ani->cck_phy_err_base;
1618
1619 if (ani->listen_time > 5 * ATHN_ANI_PERIOD) {
1620 /* Check to see if we need to lower immunity. */
1621 if (ani->ofdm_phy_err_count <=
1622 ani->listen_time * ani->ofdm_trig_low / 1000 &&
1623 ani->cck_phy_err_count <=
1624 ani->listen_time * ani->cck_trig_low / 1000)
1625 athn_ani_lower_immunity(sc);
1626 athn_ani_restart(sc);
1627
1628 }
1629 else if (ani->listen_time > ATHN_ANI_PERIOD) {
1630 /* Check to see if we need to raise immunity. */
1631 if (ani->ofdm_phy_err_count >
1632 ani->listen_time * ani->ofdm_trig_high / 1000) {
1633 athn_ani_ofdm_err_trigger(sc);
1634 athn_ani_restart(sc);
1635 }
1636 else if (ani->cck_phy_err_count >
1637 ani->listen_time * ani->cck_trig_high / 1000) {
1638 athn_ani_cck_err_trigger(sc);
1639 athn_ani_restart(sc);
1640 }
1641 }
1642 }
1643 #endif /* notyet */
1644
1645 PUBLIC uint8_t
1646 athn_chan2fbin(struct ieee80211_channel *c)
1647 {
1648
1649 if (IEEE80211_IS_CHAN_2GHZ(c))
1650 return c->ic_freq - 2300;
1651 else
1652 return (c->ic_freq - 4800) / 5;
1653 }
1654
1655 PUBLIC int
1656 athn_interpolate(int x, int x1, int y1, int x2, int y2)
1657 {
1658
1659 if (x1 == x2) /* Prevents division by zero. */
1660 return y1;
1661 /* Linear interpolation. */
1662 return y1 + ((x - x1) * (y2 - y1)) / (x2 - x1);
1663 }
1664
1665 PUBLIC void
1666 athn_get_pier_ival(uint8_t fbin, const uint8_t *pierfreq, int npiers,
1667 int *lo, int *hi)
1668 {
1669 int i;
1670
1671 for (i = 0; i < npiers; i++)
1672 if (pierfreq[i] == AR_BCHAN_UNUSED ||
1673 pierfreq[i] > fbin)
1674 break;
1675 *hi = i;
1676 *lo = *hi - 1;
1677 if (*lo == -1)
1678 *lo = *hi;
1679 else if (*hi == npiers || pierfreq[*hi] == AR_BCHAN_UNUSED)
1680 *hi = *lo;
1681 }
1682
1683 Static void
1684 athn_init_dma(struct athn_softc *sc)
1685 {
1686 uint32_t reg;
1687
1688 if (!AR_SREV_9380_10_OR_LATER(sc)) {
1689 /* Set AHB not to do cacheline prefetches. */
1690 AR_SETBITS(sc, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1691 }
1692 reg = AR_READ(sc, AR_TXCFG);
1693 /* Let MAC DMA reads be in 128-byte chunks. */
1694 reg = RW(reg, AR_TXCFG_DMASZ, AR_DMASZ_128B);
1695
1696 /* Set initial Tx trigger level. */
1697 if (AR_SREV_9285(sc) || AR_SREV_9271(sc))
1698 reg = RW(reg, AR_TXCFG_FTRIG, AR_TXCFG_FTRIG_256B);
1699 else if (!AR_SREV_9380_10_OR_LATER(sc))
1700 reg = RW(reg, AR_TXCFG_FTRIG, AR_TXCFG_FTRIG_512B);
1701 AR_WRITE(sc, AR_TXCFG, reg);
1702
1703 /* Let MAC DMA writes be in 128-byte chunks. */
1704 reg = AR_READ(sc, AR_RXCFG);
1705 reg = RW(reg, AR_RXCFG_DMASZ, AR_DMASZ_128B);
1706 AR_WRITE(sc, AR_RXCFG, reg);
1707
1708 /* Setup Rx FIFO threshold to hold off Tx activities. */
1709 AR_WRITE(sc, AR_RXFIFO_CFG, 512);
1710
1711 /* Reduce the number of entries in PCU TXBUF to avoid wrap around. */
1712 if (AR_SREV_9285(sc)) {
1713 AR_WRITE(sc, AR_PCU_TXBUF_CTRL,
1714 AR9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1715 }
1716 else if (!AR_SREV_9271(sc)) {
1717 AR_WRITE(sc, AR_PCU_TXBUF_CTRL,
1718 AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1719 }
1720 AR_WRITE_BARRIER(sc);
1721
1722 /* Reset Tx status ring. */
1723 if (AR_SREV_9380_10_OR_LATER(sc))
1724 ar9003_reset_txsring(sc);
1725 }
1726
1727 PUBLIC void
1728 athn_inc_tx_trigger_level(struct athn_softc *sc)
1729 {
1730 uint32_t reg, ftrig;
1731
1732 reg = AR_READ(sc, AR_TXCFG);
1733 ftrig = MS(reg, AR_TXCFG_FTRIG);
1734 /*
1735 * NB: The AR9285 and all single-stream parts have an issue that
1736 * limits the size of the PCU Tx FIFO to 2KB instead of 4KB.
1737 */
1738 if (ftrig == ((AR_SREV_9285(sc) || AR_SREV_9271(sc)) ? 0x1f : 0x3f))
1739 return; /* Already at max. */
1740 reg = RW(reg, AR_TXCFG_FTRIG, ftrig + 1);
1741 AR_WRITE(sc, AR_TXCFG, reg);
1742 AR_WRITE_BARRIER(sc);
1743 }
1744
1745 PUBLIC int
1746 athn_stop_rx_dma(struct athn_softc *sc)
1747 {
1748 int ntries;
1749
1750 AR_WRITE(sc, AR_CR, AR_CR_RXD);
1751 /* Wait for Rx enable bit to go low. */
1752 for (ntries = 0; ntries < 100; ntries++) {
1753 if (!(AR_READ(sc, AR_CR) & AR_CR_RXE))
1754 return 0;
1755 DELAY(100);
1756 }
1757 DPRINTFN(DBG_RX, sc, "Rx DMA failed to stop\n");
1758 return ETIMEDOUT;
1759 }
1760
1761 #ifdef unused
1762 Static int
1763 athn_rx_abort(struct athn_softc *sc)
1764 {
1765 int ntries;
1766
1767 AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
1768 for (ntries = 0; ntries < 1000; ntries++) {
1769 if (MS(AR_READ(sc, AR_OBS_BUS_1), AR_OBS_BUS_1_RX_STATE) == 0)
1770 return 0;
1771 DELAY(10);
1772 }
1773 DPRINTFN(DBG_RX, sc, "Rx failed to go idle in 10ms\n");
1774 AR_CLRBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
1775 AR_WRITE_BARRIER(sc);
1776 return ETIMEDOUT;
1777 }
1778 #endif /* unused */
1779
1780 Static void
1781 athn_tx_reclaim(struct athn_softc *sc, int qid)
1782 {
1783 struct athn_txq *txq = &sc->sc_txq[qid];
1784 struct athn_tx_buf *bf;
1785
1786 /* Reclaim all buffers queued in the specified Tx queue. */
1787 /* NB: Tx DMA must be stopped. */
1788 while ((bf = SIMPLEQ_FIRST(&txq->head)) != NULL) {
1789 SIMPLEQ_REMOVE_HEAD(&txq->head, bf_list);
1790
1791 bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0,
1792 bf->bf_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1793 bus_dmamap_unload(sc->sc_dmat, bf->bf_map);
1794 m_freem(bf->bf_m);
1795 bf->bf_m = NULL;
1796 bf->bf_ni = NULL; /* Nodes already freed! */
1797
1798 /* Link Tx buffer back to global free list. */
1799 SIMPLEQ_INSERT_TAIL(&sc->sc_txbufs, bf, bf_list);
1800 }
1801 }
1802
1803 PUBLIC int
1804 athn_tx_pending(struct athn_softc *sc, int qid)
1805 {
1806
1807 return MS(AR_READ(sc, AR_QSTS(qid)), AR_Q_STS_PEND_FR_CNT) != 0 ||
1808 (AR_READ(sc, AR_Q_TXE) & (1 << qid)) != 0;
1809 }
1810
1811 PUBLIC void
1812 athn_stop_tx_dma(struct athn_softc *sc, int qid)
1813 {
1814 uint32_t tsflo;
1815 int ntries, i;
1816
1817 AR_WRITE(sc, AR_Q_TXD, 1 << qid);
1818 for (ntries = 0; ntries < 40; ntries++) {
1819 if (!athn_tx_pending(sc, qid))
1820 break;
1821 DELAY(100);
1822 }
1823 if (ntries == 40) {
1824 for (i = 0; i < 2; i++) {
1825 tsflo = AR_READ(sc, AR_TSF_L32) / 1024;
1826 AR_WRITE(sc, AR_QUIET2,
1827 SM(AR_QUIET2_QUIET_DUR, 10));
1828 AR_WRITE(sc, AR_QUIET_PERIOD, 100);
1829 AR_WRITE(sc, AR_NEXT_QUIET_TIMER, tsflo);
1830 AR_SETBITS(sc, AR_TIMER_MODE, AR_QUIET_TIMER_EN);
1831 if (AR_READ(sc, AR_TSF_L32) / 1024 == tsflo)
1832 break;
1833 }
1834 AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
1835 AR_WRITE_BARRIER(sc);
1836 DELAY(200);
1837 AR_CLRBITS(sc, AR_TIMER_MODE, AR_QUIET_TIMER_EN);
1838 AR_WRITE_BARRIER(sc);
1839
1840 for (ntries = 0; ntries < 40; ntries++) {
1841 if (!athn_tx_pending(sc, qid))
1842 break;
1843 DELAY(100);
1844 }
1845
1846 AR_CLRBITS(sc, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
1847 }
1848 AR_WRITE(sc, AR_Q_TXD, 0);
1849 AR_WRITE_BARRIER(sc);
1850 }
1851
1852 PUBLIC int
1853 athn_txtime(struct athn_softc *sc, int len, int ridx, u_int flags)
1854 {
1855 #define divround(a, b) (((a) + (b) - 1) / (b))
1856 int txtime;
1857
1858 /* XXX HT. */
1859 if (athn_rates[ridx].phy == IEEE80211_T_OFDM) {
1860 txtime = divround(8 + 4 * len + 3, athn_rates[ridx].rate);
1861 /* SIFS is 10us for 11g but Signal Extension adds 6us. */
1862 txtime = 16 + 4 + 4 * txtime + 16;
1863 }
1864 else {
1865 txtime = divround(16 * len, athn_rates[ridx].rate);
1866 if (ridx != ATHN_RIDX_CCK1 && (flags & IEEE80211_F_SHPREAMBLE))
1867 txtime += 72 + 24;
1868 else
1869 txtime += 144 + 48;
1870 txtime += 10; /* 10us SIFS. */
1871 }
1872 return txtime;
1873 #undef divround
1874 }
1875
1876 PUBLIC void
1877 athn_init_tx_queues(struct athn_softc *sc)
1878 {
1879 int qid;
1880
1881 for (qid = 0; qid < ATHN_QID_COUNT; qid++) {
1882 SIMPLEQ_INIT(&sc->sc_txq[qid].head);
1883 sc->sc_txq[qid].lastds = NULL;
1884 sc->sc_txq[qid].wait = NULL;
1885 sc->sc_txq[qid].queued = 0;
1886
1887 AR_WRITE(sc, AR_DRETRY_LIMIT(qid),
1888 SM(AR_D_RETRY_LIMIT_STA_SH, 32) |
1889 SM(AR_D_RETRY_LIMIT_STA_LG, 32) |
1890 SM(AR_D_RETRY_LIMIT_FR_SH, 10));
1891 AR_WRITE(sc, AR_QMISC(qid),
1892 AR_Q_MISC_DCU_EARLY_TERM_REQ);
1893 AR_WRITE(sc, AR_DMISC(qid),
1894 SM(AR_D_MISC_BKOFF_THRESH, 2) |
1895 AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN);
1896 }
1897
1898 /* Init beacon queue. */
1899 AR_SETBITS(sc, AR_QMISC(ATHN_QID_BEACON),
1900 AR_Q_MISC_FSP_DBA_GATED | AR_Q_MISC_BEACON_USE |
1901 AR_Q_MISC_CBR_INCR_DIS1);
1902 AR_SETBITS(sc, AR_DMISC(ATHN_QID_BEACON),
1903 SM(AR_D_MISC_ARB_LOCKOUT_CNTRL,
1904 AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL) |
1905 AR_D_MISC_BEACON_USE |
1906 AR_D_MISC_POST_FR_BKOFF_DIS);
1907 AR_WRITE(sc, AR_DLCL_IFS(ATHN_QID_BEACON),
1908 SM(AR_D_LCL_IFS_CWMIN, 0) |
1909 SM(AR_D_LCL_IFS_CWMAX, 0) |
1910 SM(AR_D_LCL_IFS_AIFS, 1));
1911
1912 /* Init CAB (Content After Beacon) queue. */
1913 AR_SETBITS(sc, AR_QMISC(ATHN_QID_CAB),
1914 AR_Q_MISC_FSP_DBA_GATED | AR_Q_MISC_CBR_INCR_DIS1 |
1915 AR_Q_MISC_CBR_INCR_DIS0);
1916 AR_SETBITS(sc, AR_DMISC(ATHN_QID_CAB),
1917 SM(AR_D_MISC_ARB_LOCKOUT_CNTRL,
1918 AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL));
1919
1920 /* Init PS-Poll queue. */
1921 AR_SETBITS(sc, AR_QMISC(ATHN_QID_PSPOLL),
1922 AR_Q_MISC_CBR_INCR_DIS1);
1923
1924 /* Init UAPSD queue. */
1925 AR_SETBITS(sc, AR_DMISC(ATHN_QID_UAPSD),
1926 AR_D_MISC_POST_FR_BKOFF_DIS);
1927
1928 if (AR_SREV_9380_10_OR_LATER(sc)) {
1929 /* Enable MAC descriptor CRC check. */
1930 AR_WRITE(sc, AR_Q_DESC_CRCCHK, AR_Q_DESC_CRCCHK_EN);
1931 }
1932 /* Enable DESC interrupts for all Tx queues. */
1933 AR_WRITE(sc, AR_IMR_S0, 0x00ff0000);
1934 /* Enable EOL interrupts for all Tx queues except UAPSD. */
1935 AR_WRITE(sc, AR_IMR_S1, 0x00df0000);
1936 AR_WRITE_BARRIER(sc);
1937 }
1938
1939 PUBLIC void
1940 athn_set_sta_timers(struct athn_softc *sc)
1941 {
1942 struct ieee80211com *ic = &sc->sc_ic;
1943 uint32_t tsfhi, tsflo, tsftu, reg;
1944 uint32_t intval, next_tbtt, next_dtim;
1945 int dtim_period, rem_dtim_count;
1946
1947 tsfhi = AR_READ(sc, AR_TSF_U32);
1948 tsflo = AR_READ(sc, AR_TSF_L32);
1949 tsftu = AR_TSF_TO_TU(tsfhi, tsflo) + AR_FUDGE;
1950
1951 /* Beacon interval in TU. */
1952 intval = ic->ic_bss->ni_intval;
1953
1954 next_tbtt = roundup(tsftu, intval);
1955 #ifdef notyet
1956 dtim_period = ic->ic_dtim_period;
1957 if (dtim_period <= 0)
1958 #endif
1959 dtim_period = 1; /* Assume all TIMs are DTIMs. */
1960
1961 #ifdef notyet
1962 int dtim_count = ic->ic_dtim_count;
1963 if (dtim_count >= dtim_period) /* Should not happen. */
1964 dtim_count = 0; /* Assume last TIM was a DTIM. */
1965 #endif
1966
1967 /* Compute number of remaining TIMs until next DTIM. */
1968 rem_dtim_count = 0; /* XXX */
1969 next_dtim = next_tbtt + rem_dtim_count * intval;
1970
1971 AR_WRITE(sc, AR_NEXT_TBTT_TIMER, next_tbtt * IEEE80211_DUR_TU);
1972 AR_WRITE(sc, AR_BEACON_PERIOD, intval * IEEE80211_DUR_TU);
1973 AR_WRITE(sc, AR_DMA_BEACON_PERIOD, intval * IEEE80211_DUR_TU);
1974
1975 /*
1976 * Set the number of consecutive beacons to miss before raising
1977 * a BMISS interrupt to 10.
1978 */
1979 reg = AR_READ(sc, AR_RSSI_THR);
1980 reg = RW(reg, AR_RSSI_THR_BM_THR, 10);
1981 AR_WRITE(sc, AR_RSSI_THR, reg);
1982
1983 AR_WRITE(sc, AR_NEXT_DTIM,
1984 (next_dtim - AR_SLEEP_SLOP) * IEEE80211_DUR_TU);
1985 AR_WRITE(sc, AR_NEXT_TIM,
1986 (next_tbtt - AR_SLEEP_SLOP) * IEEE80211_DUR_TU);
1987
1988 /* CAB timeout is in 1/8 TU. */
1989 AR_WRITE(sc, AR_SLEEP1,
1990 SM(AR_SLEEP1_CAB_TIMEOUT, AR_CAB_TIMEOUT_VAL * 8) |
1991 AR_SLEEP1_ASSUME_DTIM);
1992 AR_WRITE(sc, AR_SLEEP2,
1993 SM(AR_SLEEP2_BEACON_TIMEOUT, AR_MIN_BEACON_TIMEOUT_VAL));
1994
1995 AR_WRITE(sc, AR_TIM_PERIOD, intval * IEEE80211_DUR_TU);
1996 AR_WRITE(sc, AR_DTIM_PERIOD, dtim_period * intval * IEEE80211_DUR_TU);
1997
1998 AR_SETBITS(sc, AR_TIMER_MODE,
1999 AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN | AR_DTIM_TIMER_EN);
2000
2001 /* Set TSF out-of-range threshold (fixed at 16k us). */
2002 AR_WRITE(sc, AR_TSFOOR_THRESHOLD, 0x4240);
2003
2004 AR_WRITE_BARRIER(sc);
2005 }
2006
2007 #ifndef IEEE80211_STA_ONLY
2008 PUBLIC void
2009 athn_set_hostap_timers(struct athn_softc *sc)
2010 {
2011 struct ieee80211com *ic = &sc->sc_ic;
2012 uint32_t intval, next_tbtt;
2013
2014 /* Beacon interval in TU. */
2015 intval = ic->ic_bss->ni_intval;
2016 next_tbtt = intval;
2017
2018 AR_WRITE(sc, AR_NEXT_TBTT_TIMER, next_tbtt * IEEE80211_DUR_TU);
2019 AR_WRITE(sc, AR_NEXT_DMA_BEACON_ALERT,
2020 (next_tbtt - AR_BEACON_DMA_DELAY) * IEEE80211_DUR_TU);
2021 AR_WRITE(sc, AR_NEXT_CFP,
2022 (next_tbtt - AR_SWBA_DELAY) * IEEE80211_DUR_TU);
2023
2024 AR_WRITE(sc, AR_BEACON_PERIOD, intval * IEEE80211_DUR_TU);
2025 AR_WRITE(sc, AR_DMA_BEACON_PERIOD, intval * IEEE80211_DUR_TU);
2026 AR_WRITE(sc, AR_SWBA_PERIOD, intval * IEEE80211_DUR_TU);
2027 AR_WRITE(sc, AR_NDP_PERIOD, intval * IEEE80211_DUR_TU);
2028
2029 AR_WRITE(sc, AR_TIMER_MODE,
2030 AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN);
2031
2032 AR_WRITE_BARRIER(sc);
2033 }
2034 #endif
2035
2036 PUBLIC void
2037 athn_set_opmode(struct athn_softc *sc)
2038 {
2039 uint32_t reg;
2040
2041 switch (sc->sc_ic.ic_opmode) {
2042 #ifndef IEEE80211_STA_ONLY
2043 case IEEE80211_M_HOSTAP:
2044 reg = AR_READ(sc, AR_STA_ID1);
2045 reg &= ~AR_STA_ID1_ADHOC;
2046 reg |= AR_STA_ID1_STA_AP | AR_STA_ID1_KSRCH_MODE;
2047 AR_WRITE(sc, AR_STA_ID1, reg);
2048
2049 AR_CLRBITS(sc, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
2050 break;
2051 case IEEE80211_M_IBSS:
2052 case IEEE80211_M_AHDEMO:
2053 reg = AR_READ(sc, AR_STA_ID1);
2054 reg &= ~AR_STA_ID1_STA_AP;
2055 reg |= AR_STA_ID1_ADHOC | AR_STA_ID1_KSRCH_MODE;
2056 AR_WRITE(sc, AR_STA_ID1, reg);
2057
2058 AR_SETBITS(sc, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
2059 break;
2060 #endif
2061 default:
2062 reg = AR_READ(sc, AR_STA_ID1);
2063 reg &= ~(AR_STA_ID1_ADHOC | AR_STA_ID1_STA_AP);
2064 reg |= AR_STA_ID1_KSRCH_MODE;
2065 AR_WRITE(sc, AR_STA_ID1, reg);
2066 break;
2067 }
2068 AR_WRITE_BARRIER(sc);
2069 }
2070
2071 PUBLIC void
2072 athn_set_bss(struct athn_softc *sc, struct ieee80211_node *ni)
2073 {
2074 const uint8_t *bssid = ni->ni_bssid;
2075
2076 AR_WRITE(sc, AR_BSS_ID0, LE_READ_4(&bssid[0]));
2077 AR_WRITE(sc, AR_BSS_ID1, LE_READ_2(&bssid[4]) |
2078 SM(AR_BSS_ID1_AID, IEEE80211_AID(ni->ni_associd)));
2079 AR_WRITE_BARRIER(sc);
2080 }
2081
2082 Static void
2083 athn_enable_interrupts(struct athn_softc *sc)
2084 {
2085 uint32_t mask2;
2086
2087 athn_disable_interrupts(sc); /* XXX */
2088
2089 AR_WRITE(sc, AR_IMR, sc->sc_imask);
2090
2091 mask2 = AR_READ(sc, AR_IMR_S2);
2092 mask2 &= ~(AR_IMR_S2_TIM | AR_IMR_S2_DTIM | AR_IMR_S2_DTIMSYNC |
2093 AR_IMR_S2_CABEND | AR_IMR_S2_CABTO | AR_IMR_S2_TSFOOR);
2094 mask2 |= AR_IMR_S2_GTT | AR_IMR_S2_CST;
2095 AR_WRITE(sc, AR_IMR_S2, mask2);
2096
2097 AR_CLRBITS(sc, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
2098
2099 AR_WRITE(sc, AR_IER, AR_IER_ENABLE);
2100
2101 AR_WRITE(sc, AR_INTR_ASYNC_ENABLE, AR_INTR_MAC_IRQ);
2102 AR_WRITE(sc, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
2103
2104 AR_WRITE(sc, AR_INTR_SYNC_ENABLE, sc->sc_isync);
2105 AR_WRITE(sc, AR_INTR_SYNC_MASK, sc->sc_isync);
2106 AR_WRITE_BARRIER(sc);
2107 }
2108
2109 Static void
2110 athn_disable_interrupts(struct athn_softc *sc)
2111 {
2112
2113 AR_WRITE(sc, AR_IER, 0);
2114 (void)AR_READ(sc, AR_IER);
2115
2116 AR_WRITE(sc, AR_INTR_ASYNC_ENABLE, 0);
2117 (void)AR_READ(sc, AR_INTR_ASYNC_ENABLE);
2118
2119 AR_WRITE(sc, AR_INTR_SYNC_ENABLE, 0);
2120 (void)AR_READ(sc, AR_INTR_SYNC_ENABLE);
2121
2122 AR_WRITE(sc, AR_IMR, 0);
2123
2124 AR_CLRBITS(sc, AR_IMR_S2, AR_IMR_S2_TIM | AR_IMR_S2_DTIM |
2125 AR_IMR_S2_DTIMSYNC | AR_IMR_S2_CABEND | AR_IMR_S2_CABTO |
2126 AR_IMR_S2_TSFOOR | AR_IMR_S2_GTT | AR_IMR_S2_CST);
2127
2128 AR_CLRBITS(sc, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
2129 AR_WRITE_BARRIER(sc);
2130 }
2131
2132 Static void
2133 athn_init_qos(struct athn_softc *sc)
2134 {
2135
2136 /* Initialize QoS settings. */
2137 AR_WRITE(sc, AR_MIC_QOS_CONTROL, 0x100aa);
2138 AR_WRITE(sc, AR_MIC_QOS_SELECT, 0x3210);
2139 AR_WRITE(sc, AR_QOS_NO_ACK,
2140 SM(AR_QOS_NO_ACK_TWO_BIT, 2) |
2141 SM(AR_QOS_NO_ACK_BIT_OFF, 5) |
2142 SM(AR_QOS_NO_ACK_BYTE_OFF, 0));
2143 AR_WRITE(sc, AR_TXOP_X, AR_TXOP_X_VAL);
2144 /* Initialize TXOP for all TIDs. */
2145 AR_WRITE(sc, AR_TXOP_0_3, 0xffffffff);
2146 AR_WRITE(sc, AR_TXOP_4_7, 0xffffffff);
2147 AR_WRITE(sc, AR_TXOP_8_11, 0xffffffff);
2148 AR_WRITE(sc, AR_TXOP_12_15, 0xffffffff);
2149 AR_WRITE_BARRIER(sc);
2150 }
2151
2152 PUBLIC int
2153 athn_hw_reset(struct athn_softc *sc, struct ieee80211_channel *curchan,
2154 struct ieee80211_channel *extchan, int init)
2155 {
2156 struct ieee80211com *ic = &sc->sc_ic;
2157 struct athn_ops *ops = &sc->sc_ops;
2158 uint32_t reg, def_ant, sta_id1, cfg_led, tsflo, tsfhi;
2159 int i, error;
2160
2161 /* XXX not if already awake */
2162 if ((error = athn_set_power_awake(sc)) != 0) {
2163 aprint_error_dev(sc->sc_dev, "could not wakeup chip\n");
2164 return error;
2165 }
2166
2167 /* Preserve the antenna on a channel switch. */
2168 if ((def_ant = AR_READ(sc, AR_DEF_ANTENNA)) == 0)
2169 def_ant = 1;
2170 /* Preserve other registers. */
2171 sta_id1 = AR_READ(sc, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
2172 cfg_led = AR_READ(sc, AR_CFG_LED) & (AR_CFG_LED_ASSOC_CTL_M |
2173 AR_CFG_LED_MODE_SEL_M | AR_CFG_LED_BLINK_THRESH_SEL_M |
2174 AR_CFG_LED_BLINK_SLOW);
2175
2176 /* Mark PHY as inactive. */
2177 ops->disable_phy(sc);
2178
2179 if (init && AR_SREV_9271(sc)) {
2180 AR_WRITE(sc, AR9271_RESET_POWER_DOWN_CONTROL,
2181 AR9271_RADIO_RF_RST);
2182 DELAY(50);
2183 }
2184 if (AR_SREV_9280(sc) && (sc->sc_flags & ATHN_FLAG_OLPC)) {
2185 /* Save TSF before it gets cleared. */
2186 tsfhi = AR_READ(sc, AR_TSF_U32);
2187 tsflo = AR_READ(sc, AR_TSF_L32);
2188
2189 /* NB: RTC reset clears TSF. */
2190 error = athn_reset_power_on(sc);
2191 }
2192 else {
2193 tsfhi = tsflo = 0; /* XXX: gcc */
2194 error = athn_reset(sc, 0);
2195 }
2196 if (error != 0) {
2197 aprint_error_dev(sc->sc_dev,
2198 "could not reset chip (error=%d)\n", error);
2199 return error;
2200 }
2201
2202 /* XXX not if already awake */
2203 if ((error = athn_set_power_awake(sc)) != 0) {
2204 aprint_error_dev(sc->sc_dev, "could not wakeup chip\n");
2205 return error;
2206 }
2207
2208 athn_init_pll(sc, curchan);
2209 ops->set_rf_mode(sc, curchan);
2210
2211 if (sc->sc_flags & ATHN_FLAG_RFSILENT) {
2212 /* Check that the radio is not disabled by hardware switch. */
2213 reg = ops->gpio_read(sc, sc->sc_rfsilent_pin);
2214 if (sc->sc_flags & ATHN_FLAG_RFSILENT_REVERSED)
2215 reg = !reg;
2216 if (!reg) {
2217 aprint_error_dev(sc->sc_dev,
2218 "radio is disabled by hardware switch\n");
2219 return EPERM;
2220 }
2221 }
2222 if (init && AR_SREV_9271(sc)) {
2223 AR_WRITE(sc, AR9271_RESET_POWER_DOWN_CONTROL,
2224 AR9271_GATE_MAC_CTL);
2225 DELAY(50);
2226 }
2227 if (AR_SREV_9280(sc) && (sc->sc_flags & ATHN_FLAG_OLPC)) {
2228 /* Restore TSF if it got cleared. */
2229 AR_WRITE(sc, AR_TSF_L32, tsflo);
2230 AR_WRITE(sc, AR_TSF_U32, tsfhi);
2231 }
2232
2233 if (AR_SREV_9280_10_OR_LATER(sc))
2234 AR_SETBITS(sc, sc->sc_gpio_input_en_off, AR_GPIO_JTAG_DISABLE);
2235
2236 if (AR_SREV_9287_13_OR_LATER(sc) && !AR_SREV_9380_10_OR_LATER(sc))
2237 ar9287_1_3_enable_async_fifo(sc);
2238
2239 /* Write init values to hardware. */
2240 ops->hw_init(sc, curchan, extchan);
2241
2242 /*
2243 * Only >=AR9280 2.0 parts are capable of encrypting unicast
2244 * management frames using CCMP.
2245 */
2246 if (AR_SREV_9280_20_OR_LATER(sc)) {
2247 reg = AR_READ(sc, AR_AES_MUTE_MASK1);
2248 /* Do not mask the subtype field in management frames. */
2249 reg = RW(reg, AR_AES_MUTE_MASK1_FC0_MGMT, 0xff);
2250 reg = RW(reg, AR_AES_MUTE_MASK1_FC1_MGMT,
2251 ~(IEEE80211_FC1_RETRY | IEEE80211_FC1_PWR_MGT |
2252 IEEE80211_FC1_MORE_DATA));
2253 AR_WRITE(sc, AR_AES_MUTE_MASK1, reg);
2254 }
2255 else if (AR_SREV_9160_10_OR_LATER(sc)) {
2256 /* Disable hardware crypto for management frames. */
2257 AR_CLRBITS(sc, AR_PCU_MISC_MODE2,
2258 AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
2259 AR_SETBITS(sc, AR_PCU_MISC_MODE2,
2260 AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
2261 }
2262
2263 if (ic->ic_curmode != IEEE80211_MODE_11B)
2264 ops->set_delta_slope(sc, curchan, extchan);
2265
2266 ops->spur_mitigate(sc, curchan, extchan);
2267 ops->init_from_rom(sc, curchan, extchan);
2268
2269 /* XXX */
2270 AR_WRITE(sc, AR_STA_ID0, LE_READ_4(&ic->ic_myaddr[0]));
2271 AR_WRITE(sc, AR_STA_ID1, LE_READ_2(&ic->ic_myaddr[4]) |
2272 sta_id1 | AR_STA_ID1_RTS_USE_DEF | AR_STA_ID1_CRPT_MIC_ENABLE);
2273
2274 athn_set_opmode(sc);
2275
2276 AR_WRITE(sc, AR_BSSMSKL, 0xffffffff);
2277 AR_WRITE(sc, AR_BSSMSKU, 0xffff);
2278
2279 /* Restore previous antenna. */
2280 AR_WRITE(sc, AR_DEF_ANTENNA, def_ant);
2281
2282 AR_WRITE(sc, AR_BSS_ID0, 0);
2283 AR_WRITE(sc, AR_BSS_ID1, 0);
2284
2285 AR_WRITE(sc, AR_ISR, 0xffffffff);
2286
2287 AR_WRITE(sc, AR_RSSI_THR, SM(AR_RSSI_THR_BM_THR, 7));
2288
2289 if ((error = ops->set_synth(sc, curchan, extchan)) != 0) {
2290 aprint_error_dev(sc->sc_dev, "could not set channel\n");
2291 return error;
2292 }
2293 sc->sc_curchan = curchan;
2294 sc->sc_curchanext = extchan;
2295
2296 for (i = 0; i < AR_NUM_DCU; i++)
2297 AR_WRITE(sc, AR_DQCUMASK(i), 1 << i);
2298
2299 athn_init_tx_queues(sc);
2300
2301 /* Initialize interrupt mask. */
2302 sc->sc_imask =
2303 AR_IMR_TXDESC | AR_IMR_TXEOL |
2304 AR_IMR_RXERR | AR_IMR_RXEOL | AR_IMR_RXORN |
2305 AR_IMR_RXMINTR | AR_IMR_RXINTM |
2306 AR_IMR_GENTMR | AR_IMR_BCNMISC;
2307 if (AR_SREV_9380_10_OR_LATER(sc))
2308 sc->sc_imask |= AR_IMR_RXERR | AR_IMR_HP_RXOK;
2309 #ifndef IEEE80211_STA_ONLY
2310 if (0 && ic->ic_opmode == IEEE80211_M_HOSTAP)
2311 sc->sc_imask |= AR_IMR_MIB;
2312 #endif
2313 AR_WRITE(sc, AR_IMR, sc->sc_imask);
2314 AR_SETBITS(sc, AR_IMR_S2, AR_IMR_S2_GTT);
2315 AR_WRITE(sc, AR_INTR_SYNC_CAUSE, 0xffffffff);
2316 sc->sc_isync = AR_INTR_SYNC_DEFAULT;
2317 if (sc->sc_flags & ATHN_FLAG_RFSILENT)
2318 sc->sc_isync |= AR_INTR_SYNC_GPIO_PIN(sc->sc_rfsilent_pin);
2319 AR_WRITE(sc, AR_INTR_SYNC_ENABLE, sc->sc_isync);
2320 AR_WRITE(sc, AR_INTR_SYNC_MASK, 0);
2321 if (AR_SREV_9380_10_OR_LATER(sc)) {
2322 AR_WRITE(sc, AR_INTR_PRIO_ASYNC_ENABLE, 0);
2323 AR_WRITE(sc, AR_INTR_PRIO_ASYNC_MASK, 0);
2324 AR_WRITE(sc, AR_INTR_PRIO_SYNC_ENABLE, 0);
2325 AR_WRITE(sc, AR_INTR_PRIO_SYNC_MASK, 0);
2326 }
2327
2328 athn_init_qos(sc);
2329
2330 AR_SETBITS(sc, AR_PCU_MISC, AR_PCU_MIC_NEW_LOC_ENA);
2331
2332 if (AR_SREV_9287_13_OR_LATER(sc) && !AR_SREV_9380_10_OR_LATER(sc))
2333 ar9287_1_3_setup_async_fifo(sc);
2334
2335 /* Disable sequence number generation in hardware. */
2336 AR_SETBITS(sc, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
2337
2338 athn_init_dma(sc);
2339
2340 /* Program observation bus to see MAC interrupts. */
2341 AR_WRITE(sc, sc->sc_obs_off, 8);
2342
2343 /* Setup Rx interrupt mitigation. */
2344 AR_WRITE(sc, AR_RIMT, SM(AR_RIMT_FIRST, 2000) | SM(AR_RIMT_LAST, 500));
2345
2346 ops->init_baseband(sc);
2347
2348 if ((error = athn_init_calib(sc, curchan, extchan)) != 0) {
2349 aprint_error_dev(sc->sc_dev,
2350 "could not initialize calibration\n");
2351 return error;
2352 }
2353
2354 ops->set_rxchains(sc);
2355
2356 AR_WRITE(sc, AR_CFG_LED, cfg_led | AR_CFG_SCLK_32KHZ);
2357
2358 if (sc->sc_flags & ATHN_FLAG_USB) {
2359 if (AR_SREV_9271(sc))
2360 AR_WRITE(sc, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
2361 else
2362 AR_WRITE(sc, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
2363 }
2364 #if BYTE_ORDER == BIG_ENDIAN
2365 else {
2366 /* Default is LE, turn on swapping for BE. */
2367 AR_WRITE(sc, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
2368 }
2369 #endif
2370 AR_WRITE_BARRIER(sc);
2371
2372 return 0;
2373 }
2374
2375 Static struct ieee80211_node *
2376 athn_node_alloc(struct ieee80211_node_table *ntp)
2377 {
2378
2379 return malloc(sizeof(struct athn_node), M_DEVBUF,
2380 M_NOWAIT | M_ZERO);
2381 }
2382
2383 Static void
2384 athn_newassoc(struct ieee80211_node *ni, int isnew)
2385 {
2386 struct ieee80211com *ic = ni->ni_ic;
2387 struct athn_softc *sc = ic->ic_ifp->if_softc;
2388 struct athn_node *an = (void *)ni;
2389 struct ieee80211_rateset *rs = &ni->ni_rates;
2390 uint8_t rate;
2391 int ridx, i, j;
2392
2393 ieee80211_amrr_node_init(&sc->sc_amrr, &an->amn);
2394 /* Start at lowest available bit-rate, AMRR will raise. */
2395 ni->ni_txrate = 0;
2396
2397 for (i = 0; i < rs->rs_nrates; i++) {
2398 rate = rs->rs_rates[i] & IEEE80211_RATE_VAL;
2399
2400 /* Map 802.11 rate to HW rate index. */
2401 for (ridx = 0; ridx <= ATHN_RIDX_MAX; ridx++)
2402 if (athn_rates[ridx].rate == rate)
2403 break;
2404 an->ridx[i] = ridx;
2405 DPRINTFN(DBG_STM, sc, "rate %d index %d\n", rate, ridx);
2406
2407 /* Compute fallback rate for retries. */
2408 an->fallback[i] = i;
2409 for (j = i - 1; j >= 0; j--) {
2410 if (athn_rates[an->ridx[j]].phy ==
2411 athn_rates[an->ridx[i]].phy) {
2412 an->fallback[i] = j;
2413 break;
2414 }
2415 }
2416 DPRINTFN(DBG_STM, sc, "%d fallbacks to %d\n",
2417 i, an->fallback[i]);
2418 }
2419 }
2420
2421 Static int
2422 athn_media_change(struct ifnet *ifp)
2423 {
2424 struct athn_softc *sc = ifp->if_softc;
2425 struct ieee80211com *ic = &sc->sc_ic;
2426 uint8_t rate, ridx;
2427 int error;
2428
2429 error = ieee80211_media_change(ifp);
2430 if (error != ENETRESET)
2431 return error;
2432
2433 if (ic->ic_fixed_rate != -1) {
2434 rate = ic->ic_sup_rates[ic->ic_curmode].
2435 rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
2436 /* Map 802.11 rate to HW rate index. */
2437 for (ridx = 0; ridx <= ATHN_RIDX_MAX; ridx++)
2438 if (athn_rates[ridx].rate == rate)
2439 break;
2440 sc->sc_fixed_ridx = ridx;
2441 }
2442 if (IS_UP_AND_RUNNING(ifp)) {
2443 athn_stop(ifp, 0);
2444 error = athn_init(ifp);
2445 }
2446 return error;
2447 }
2448
2449 Static void
2450 athn_next_scan(void *arg)
2451 {
2452 struct athn_softc *sc = arg;
2453 struct ieee80211com *ic = &sc->sc_ic;
2454 int s;
2455
2456 s = splnet();
2457 if (ic->ic_state == IEEE80211_S_SCAN)
2458 ieee80211_next_scan(ic);
2459 splx(s);
2460 }
2461
2462 Static int
2463 athn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2464 {
2465 struct ifnet *ifp = ic->ic_ifp;
2466 struct athn_softc *sc = ifp->if_softc;
2467 uint32_t reg;
2468 int error;
2469
2470 callout_stop(&sc->sc_calib_to);
2471
2472 switch (nstate) {
2473 case IEEE80211_S_INIT:
2474 athn_set_led(sc, 0);
2475 break;
2476 case IEEE80211_S_SCAN:
2477 /* Make the LED blink while scanning. */
2478 athn_set_led(sc, !sc->sc_led_state);
2479 error = athn_switch_chan(sc, ic->ic_curchan, NULL);
2480 if (error != 0)
2481 return error;
2482 callout_schedule(&sc->sc_scan_to, hz / 5);
2483 break;
2484 case IEEE80211_S_AUTH:
2485 athn_set_led(sc, 0);
2486 error = athn_switch_chan(sc, ic->ic_curchan, NULL);
2487 if (error != 0)
2488 return error;
2489 break;
2490 case IEEE80211_S_ASSOC:
2491 break;
2492 case IEEE80211_S_RUN:
2493 athn_set_led(sc, 1);
2494
2495 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2496 break;
2497
2498 /* Fake a join to initialize the Tx rate. */
2499 athn_newassoc(ic->ic_bss, 1);
2500
2501 athn_set_bss(sc, ic->ic_bss);
2502 athn_disable_interrupts(sc);
2503 #ifndef IEEE80211_STA_ONLY
2504 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2505 athn_set_hostap_timers(sc);
2506 /* Enable software beacon alert interrupts. */
2507 sc->sc_imask |= AR_IMR_SWBA;
2508 }
2509 else
2510 #endif
2511 {
2512 athn_set_sta_timers(sc);
2513 /* Enable beacon miss interrupts. */
2514 sc->sc_imask |= AR_IMR_BMISS;
2515
2516 /* Stop receiving beacons from other BSS. */
2517 reg = AR_READ(sc, AR_RX_FILTER);
2518 reg = (reg & ~AR_RX_FILTER_BEACON) |
2519 AR_RX_FILTER_MYBEACON;
2520 AR_WRITE(sc, AR_RX_FILTER, reg);
2521 AR_WRITE_BARRIER(sc);
2522 }
2523 athn_enable_interrupts(sc);
2524
2525 if (sc->sc_sup_calib_mask != 0) {
2526 memset(&sc->sc_calib, 0, sizeof(sc->sc_calib));
2527 sc->sc_cur_calib_mask = sc->sc_sup_calib_mask;
2528 /* ops->do_calib(sc); */
2529 }
2530 /* XXX Start ANI. */
2531
2532 callout_schedule(&sc->sc_calib_to, hz / 2);
2533 break;
2534 }
2535
2536 return sc->sc_newstate(ic, nstate, arg);
2537 }
2538
2539 #ifdef notyet_edca
2540 PUBLIC void
2541 athn_updateedca(struct ieee80211com *ic)
2542 {
2543 #define ATHN_EXP2(x) ((1 << (x)) - 1) /* CWmin = 2^ECWmin - 1 */
2544 struct athn_softc *sc = ic->ic_ifp->if_softc;
2545 const struct ieee80211_edca_ac_params *ac;
2546 int aci, qid;
2547
2548 for (aci = 0; aci < EDCA_NUM_AC; aci++) {
2549 ac = &ic->ic_edca_ac[aci];
2550 qid = athn_ac2qid[aci];
2551
2552 AR_WRITE(sc, AR_DLCL_IFS(qid),
2553 SM(AR_D_LCL_IFS_CWMIN, ATHN_EXP2(ac->ac_ecwmin)) |
2554 SM(AR_D_LCL_IFS_CWMAX, ATHN_EXP2(ac->ac_ecwmax)) |
2555 SM(AR_D_LCL_IFS_AIFS, ac->ac_aifsn));
2556 if (ac->ac_txoplimit != 0) {
2557 AR_WRITE(sc, AR_DCHNTIME(qid),
2558 SM(AR_D_CHNTIME_DUR,
2559 IEEE80211_TXOP_TO_US(ac->ac_txoplimit)) |
2560 AR_D_CHNTIME_EN);
2561 }
2562 else
2563 AR_WRITE(sc, AR_DCHNTIME(qid), 0);
2564 }
2565 AR_WRITE_BARRIER(sc);
2566 #undef ATHN_EXP2
2567 }
2568 #endif /* notyet_edca */
2569
2570 Static int
2571 athn_clock_rate(struct athn_softc *sc)
2572 {
2573 struct ieee80211com *ic = &sc->sc_ic;
2574 int clockrate; /* MHz. */
2575
2576 if (ic->ic_curmode == IEEE80211_MODE_11A) {
2577 if (sc->sc_flags & ATHN_FLAG_FAST_PLL_CLOCK)
2578 clockrate = AR_CLOCK_RATE_FAST_5GHZ_OFDM;
2579 else
2580 clockrate = AR_CLOCK_RATE_5GHZ_OFDM;
2581 }
2582 else if (ic->ic_curmode == IEEE80211_MODE_11B) {
2583 clockrate = AR_CLOCK_RATE_CCK;
2584 }
2585 else
2586 clockrate = AR_CLOCK_RATE_2GHZ_OFDM;
2587 #ifndef IEEE80211_NO_HT
2588 if (sc->sc_curchanext != NULL)
2589 clockrate *= 2;
2590 #endif
2591 return clockrate;
2592 }
2593
2594 PUBLIC void
2595 athn_updateslot(struct ifnet *ifp)
2596 {
2597 struct athn_softc *sc = ifp->if_softc;
2598 struct ieee80211com *ic = &sc->sc_ic;
2599 int slot;
2600
2601 slot = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
2602 AR_WRITE(sc, AR_D_GBL_IFS_SLOT, slot * athn_clock_rate(sc));
2603 AR_WRITE_BARRIER(sc);
2604 }
2605
2606 Static void
2607 athn_start(struct ifnet *ifp)
2608 {
2609 struct athn_softc *sc = ifp->if_softc;
2610 struct ieee80211com *ic = &sc->sc_ic;
2611 struct ether_header *eh;
2612 struct ieee80211_node *ni;
2613 struct mbuf *m;
2614
2615 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING
2616 || !device_is_active(sc->sc_dev))
2617 return;
2618
2619 for (;;) {
2620 if (SIMPLEQ_EMPTY(&sc->sc_txbufs)) {
2621 ifp->if_flags |= IFF_OACTIVE;
2622 break;
2623 }
2624 /* Send pending management frames first. */
2625 IF_DEQUEUE(&ic->ic_mgtq, m);
2626 if (m != NULL) {
2627 ni = (void *)m->m_pkthdr.rcvif;
2628 goto sendit;
2629 }
2630 if (ic->ic_state != IEEE80211_S_RUN)
2631 break;
2632
2633 /* Encapsulate and send data frames. */
2634 IFQ_DEQUEUE(&ifp->if_snd, m);
2635 if (m == NULL)
2636 break;
2637
2638 if (m->m_len < (int)sizeof(*eh) &&
2639 (m = m_pullup(m, sizeof(*eh))) == NULL) {
2640 ifp->if_oerrors++;
2641 continue;
2642 }
2643 eh = mtod(m, struct ether_header *);
2644 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2645 if (ni == NULL) {
2646 m_freem(m);
2647 ifp->if_oerrors++;
2648 continue;
2649 }
2650
2651 bpf_mtap(ifp, m);
2652
2653 if ((m = ieee80211_encap(ic, m, ni)) == NULL)
2654 continue;
2655 sendit:
2656 bpf_mtap3(ic->ic_rawbpf, m);
2657
2658 if (sc->sc_ops.tx(sc, m, ni, 0) != 0) {
2659 ieee80211_free_node(ni);
2660 ifp->if_oerrors++;
2661 continue;
2662 }
2663
2664 sc->sc_tx_timer = 5;
2665 ifp->if_timer = 1;
2666 }
2667 }
2668
2669 Static void
2670 athn_watchdog(struct ifnet *ifp)
2671 {
2672 struct athn_softc *sc = ifp->if_softc;
2673
2674 ifp->if_timer = 0;
2675
2676 if (sc->sc_tx_timer > 0) {
2677 if (--sc->sc_tx_timer == 0) {
2678 aprint_error_dev(sc->sc_dev, "device timeout\n");
2679 /* see athn_init, no need to call athn_stop here */
2680 /* athn_stop(ifp, 0); */
2681 (void)athn_init(ifp);
2682 ifp->if_oerrors++;
2683 return;
2684 }
2685 ifp->if_timer = 1;
2686 }
2687 ieee80211_watchdog(&sc->sc_ic);
2688 }
2689
2690 #ifdef notyet
2691 Static void
2692 athn_set_multi(struct athn_softc *sc)
2693 {
2694 struct arpcom *ac = &sc->sc_ic.ic_ac;
2695 struct ifnet *ifp = &ac->ac_if;
2696 struct ether_multi *enm;
2697 struct ether_multistep step;
2698 const uint8_t *addr;
2699 uint32_t val, lo, hi;
2700 uint8_t bit;
2701
2702 if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
2703 lo = hi = 0xffffffff;
2704 goto done;
2705 }
2706 lo = hi = 0;
2707 ETHER_FIRST_MULTI(step, ac, enm);
2708 while (enm != NULL) {
2709 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, 6) != 0) {
2710 ifp->if_flags |= IFF_ALLMULTI;
2711 lo = hi = 0xffffffff;
2712 goto done;
2713 }
2714 addr = enm->enm_addrlo;
2715 /* Calculate the XOR value of all eight 6-bit words. */
2716 val = addr[0] | addr[1] << 8 | addr[2] << 16;
2717 bit = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2718 val = addr[3] | addr[4] << 8 | addr[5] << 16;
2719 bit ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2720 bit &= 0x3f;
2721 if (bit < 32)
2722 lo |= 1 << bit;
2723 else
2724 hi |= 1 << (bit - 32);
2725 ETHER_NEXT_MULTI(step, enm);
2726 }
2727 done:
2728 AR_WRITE(sc, AR_MCAST_FIL0, lo);
2729 AR_WRITE(sc, AR_MCAST_FIL1, hi);
2730 AR_WRITE_BARRIER(sc);
2731 }
2732 #endif /* notyet */
2733
2734 Static int
2735 athn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2736 {
2737 struct athn_softc *sc = ifp->if_softc;
2738 struct ieee80211com *ic = &sc->sc_ic;
2739 int s, error = 0;
2740
2741 s = splnet();
2742
2743 switch (cmd) {
2744 case SIOCSIFFLAGS:
2745 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2746 break;
2747
2748 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
2749 case IFF_UP | IFF_RUNNING:
2750 #ifdef notyet
2751 if (((ifp->if_flags ^ sc->sc_if_flags) &
2752 (IFF_ALLMULTI | IFF_PROMISC)) != 0)
2753 /* XXX: setup multi */
2754 #endif
2755 break;
2756 case IFF_UP:
2757 athn_init(ifp);
2758 break;
2759
2760 case IFF_RUNNING:
2761 athn_stop(ifp, 1);
2762 break;
2763 case 0:
2764 default:
2765 break;
2766 }
2767 sc->sc_if_flags = ifp->if_flags;
2768 break;
2769
2770 case SIOCADDMULTI:
2771 case SIOCDELMULTI:
2772 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2773 /* setup multicast filter, etc */
2774 #ifdef notyet
2775 athn_set_multi(sc);
2776 #endif
2777 error = 0;
2778 }
2779 break;
2780
2781 case SIOCS80211CHANNEL:
2782 error = ieee80211_ioctl(ic, cmd, data);
2783 if (error == ENETRESET &&
2784 ic->ic_opmode == IEEE80211_M_MONITOR) {
2785 if (IS_UP_AND_RUNNING(ifp))
2786 athn_switch_chan(sc, ic->ic_curchan, NULL);
2787 error = 0;
2788 }
2789 break;
2790
2791 default:
2792 error = ieee80211_ioctl(ic, cmd, data);
2793 }
2794
2795 if (error == ENETRESET) {
2796 error = 0;
2797 if (IS_UP_AND_RUNNING(ifp) &&
2798 ic->ic_roaming != IEEE80211_ROAMING_MANUAL) {
2799 athn_stop(ifp, 0);
2800 error = athn_init(ifp);
2801 }
2802 }
2803
2804 splx(s);
2805 return error;
2806 }
2807
2808 Static int
2809 athn_init(struct ifnet *ifp)
2810 {
2811 struct athn_softc *sc = ifp->if_softc;
2812 struct athn_ops *ops = &sc->sc_ops;
2813 struct ieee80211com *ic = &sc->sc_ic;
2814 struct ieee80211_channel *curchan, *extchan;
2815 size_t i;
2816 int error;
2817
2818 KASSERT(!cpu_intr_p());
2819
2820 if (device_is_active(sc->sc_dev)) {
2821 athn_stop(ifp, 0); /* see athn_watchdog() */
2822 } else {
2823 short flags = ifp->if_flags;
2824 ifp->if_flags &= ~IFF_UP;
2825 /* avoid recursion in athn_resume */
2826 if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
2827 !device_is_active(sc->sc_dev)) {
2828 aprint_error_dev(sc->sc_dev,
2829 "failed to power up device\n");
2830 return 0;
2831 }
2832 ifp->if_flags = flags;
2833 }
2834
2835 curchan = ic->ic_curchan;
2836 extchan = NULL;
2837
2838 /* In case a new MAC address has been configured. */
2839 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2840
2841 #ifdef openbsd_power_management
2842 /* For CardBus, power on the socket. */
2843 if (sc->sc_enable != NULL) {
2844 if ((error = sc->sc_enable(sc)) != 0) {
2845 aprint_error_dev(sc->sc_dev,
2846 "could not enable device\n");
2847 goto fail;
2848 }
2849 if ((error = athn_reset_power_on(sc)) != 0) {
2850 aprint_error_dev(sc->sc_dev,
2851 "could not power on device\n");
2852 goto fail;
2853 }
2854 }
2855 #endif
2856 if (!(sc->sc_flags & ATHN_FLAG_PCIE))
2857 athn_config_nonpcie(sc);
2858 else
2859 athn_config_pcie(sc);
2860
2861 /* Reset HW key cache entries. */
2862 for (i = 0; i < sc->sc_kc_entries; i++)
2863 athn_reset_key(sc, i);
2864
2865 ops->enable_antenna_diversity(sc);
2866
2867 #ifdef ATHN_BT_COEXISTENCE
2868 /* Configure bluetooth coexistence for combo chips. */
2869 if (sc->sc_flags & ATHN_FLAG_BTCOEX)
2870 athn_btcoex_init(sc);
2871 #endif
2872
2873 /* Configure LED. */
2874 athn_led_init(sc);
2875
2876 /* Configure hardware radio switch. */
2877 if (sc->sc_flags & ATHN_FLAG_RFSILENT)
2878 ops->rfsilent_init(sc);
2879
2880 if ((error = athn_hw_reset(sc, curchan, extchan, 1)) != 0) {
2881 aprint_error_dev(sc->sc_dev,
2882 "unable to reset hardware; reset status %d\n", error);
2883 goto fail;
2884 }
2885
2886 /* Enable Rx. */
2887 athn_rx_start(sc);
2888
2889 /* Enable interrupts. */
2890 athn_enable_interrupts(sc);
2891
2892 #ifdef ATHN_BT_COEXISTENCE
2893 /* Enable bluetooth coexistence for combo chips. */
2894 if (sc->sc_flags & ATHN_FLAG_BTCOEX)
2895 athn_btcoex_enable(sc);
2896 #endif
2897
2898 ifp->if_flags &= ~IFF_OACTIVE;
2899 ifp->if_flags |= IFF_RUNNING;
2900
2901 #ifdef notyet
2902 if (ic->ic_flags & IEEE80211_F_WEPON) {
2903 /* Configure WEP keys. */
2904 for (i = 0; i < IEEE80211_WEP_NKID; i++)
2905 athn_set_key(ic, NULL, &ic->ic_nw_keys[i]);
2906 }
2907 #endif
2908 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2909 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2910 else
2911 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2912
2913 return 0;
2914 fail:
2915 athn_stop(ifp, 1);
2916 return error;
2917 }
2918
2919 PUBLIC void
2920 athn_stop(struct ifnet *ifp, int disable)
2921 {
2922 struct athn_softc *sc = ifp->if_softc;
2923 struct ieee80211com *ic = &sc->sc_ic;
2924 int qid;
2925
2926 ifp->if_timer = sc->sc_tx_timer = 0;
2927 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2928
2929 callout_stop(&sc->sc_scan_to);
2930 /* In case we were scanning, release the scan "lock". */
2931 // ic->ic_scan_lock = IEEE80211_SCAN_UNLOCKED; /* XXX:??? */
2932
2933 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2934
2935 #ifdef ATHN_BT_COEXISTENCE
2936 /* Disable bluetooth coexistence for combo chips. */
2937 if (sc->sc_flags & ATHN_FLAG_BTCOEX)
2938 athn_btcoex_disable(sc);
2939 #endif
2940
2941 /* Disable interrupts. */
2942 athn_disable_interrupts(sc);
2943 /* Acknowledge interrupts (avoids interrupt storms). */
2944 AR_WRITE(sc, AR_INTR_SYNC_CAUSE, 0xffffffff);
2945 AR_WRITE(sc, AR_INTR_SYNC_MASK, 0);
2946
2947 for (qid = 0; qid < ATHN_QID_COUNT; qid++)
2948 athn_stop_tx_dma(sc, qid);
2949 /* XXX call athn_hw_reset if Tx still pending? */
2950 for (qid = 0; qid < ATHN_QID_COUNT; qid++)
2951 athn_tx_reclaim(sc, qid);
2952
2953 /* Stop Rx. */
2954 AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
2955 AR_WRITE(sc, AR_MIBC, AR_MIBC_FMC);
2956 AR_WRITE(sc, AR_MIBC, AR_MIBC_CMC);
2957 AR_WRITE(sc, AR_FILT_OFDM, 0);
2958 AR_WRITE(sc, AR_FILT_CCK, 0);
2959 AR_WRITE_BARRIER(sc);
2960 athn_set_rxfilter(sc, 0);
2961 athn_stop_rx_dma(sc);
2962
2963 athn_reset(sc, 0);
2964 athn_init_pll(sc, NULL);
2965 athn_set_power_awake(sc);
2966 athn_reset(sc, 1);
2967 athn_init_pll(sc, NULL);
2968
2969 athn_set_power_sleep(sc);
2970
2971 #if 0 /* XXX: shouldn't the pmf stuff take care of this? */
2972 /* For CardBus, power down the socket. */
2973 if (disable && sc->sc_disable != NULL)
2974 sc->sc_disable(sc);
2975 #endif
2976 if (disable)
2977 pmf_device_recursive_suspend(sc->sc_dev, &sc->sc_qual);
2978 }
2979
2980 Static void
2981 athn_pmf_wlan_off(device_t self)
2982 {
2983 struct athn_softc *sc = device_private(self);
2984 struct ifnet *ifp = &sc->sc_if;
2985
2986 /* Turn the interface down. */
2987 ifp->if_flags &= ~IFF_UP;
2988 athn_stop(ifp, 1);
2989 }
2990
2991 PUBLIC void
2992 athn_suspend(struct athn_softc *sc)
2993 {
2994 struct ifnet *ifp = &sc->sc_if;
2995
2996 if (ifp->if_flags & IFF_RUNNING)
2997 athn_stop(ifp, 1);
2998 }
2999
3000 PUBLIC bool
3001 athn_resume(struct athn_softc *sc)
3002 {
3003 struct ifnet *ifp = &sc->sc_if;
3004
3005 if (ifp->if_flags & IFF_UP)
3006 athn_init(ifp);
3007
3008 return true;
3009 }
3010