athn.c revision 1.10.4.4 1 /* $NetBSD: athn.c,v 1.10.4.4 2017/02/05 13:40:27 skrll Exp $ */
2 /* $OpenBSD: athn.c,v 1.83 2014/07/22 13:12:11 mpi Exp $ */
3
4 /*-
5 * Copyright (c) 2009 Damien Bergamini <damien.bergamini (at) free.fr>
6 * Copyright (c) 2008-2010 Atheros Communications Inc.
7 *
8 * Permission to use, copy, modify, and/or distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /*
22 * Driver for Atheros 802.11a/g/n chipsets.
23 */
24
25 #include <sys/cdefs.h>
26 __KERNEL_RCSID(0, "$NetBSD: athn.c,v 1.10.4.4 2017/02/05 13:40:27 skrll Exp $");
27
28 #ifndef _MODULE
29 #include "athn_usb.h" /* for NATHN_USB */
30 #endif
31
32 #include <sys/param.h>
33 #include <sys/sockio.h>
34 #include <sys/mbuf.h>
35 #include <sys/kernel.h>
36 #include <sys/socket.h>
37 #include <sys/systm.h>
38 #include <sys/malloc.h>
39 #include <sys/queue.h>
40 #include <sys/callout.h>
41 #include <sys/conf.h>
42 #include <sys/cpu.h>
43 #include <sys/device.h>
44
45 #include <sys/bus.h>
46 #include <sys/endian.h>
47 #include <sys/intr.h>
48
49 #include <net/bpf.h>
50 #include <net/if.h>
51 #include <net/if_arp.h>
52 #include <net/if_dl.h>
53 #include <net/if_ether.h>
54 #include <net/if_media.h>
55 #include <net/if_types.h>
56
57 #include <netinet/in.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/in_var.h>
60 #include <netinet/ip.h>
61
62 #include <net80211/ieee80211_var.h>
63 #include <net80211/ieee80211_amrr.h>
64 #include <net80211/ieee80211_radiotap.h>
65
66 #include <dev/ic/athnreg.h>
67 #include <dev/ic/athnvar.h>
68 #include <dev/ic/arn5008.h>
69 #include <dev/ic/arn5416.h>
70 #include <dev/ic/arn9003.h>
71 #include <dev/ic/arn9280.h>
72 #include <dev/ic/arn9285.h>
73 #include <dev/ic/arn9287.h>
74 #include <dev/ic/arn9380.h>
75
76 #define Static static
77
78 #define IS_UP_AND_RUNNING(ifp) \
79 (((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING))
80
81 #ifdef ATHN_DEBUG
82 int athn_debug = 0;
83 #endif
84
85 Static int athn_clock_rate(struct athn_softc *);
86 Static const char *
87 athn_get_mac_name(struct athn_softc *);
88 Static const char *
89 athn_get_rf_name(struct athn_softc *);
90 Static int athn_init(struct ifnet *);
91 Static int athn_init_calib(struct athn_softc *,
92 struct ieee80211_channel *, struct ieee80211_channel *);
93 Static int athn_ioctl(struct ifnet *, u_long, void *);
94 Static int athn_media_change(struct ifnet *);
95 Static int athn_newstate(struct ieee80211com *, enum ieee80211_state,
96 int);
97 Static struct ieee80211_node *
98 athn_node_alloc(struct ieee80211_node_table *);
99 Static int athn_reset_power_on(struct athn_softc *);
100 Static int athn_stop_rx_dma(struct athn_softc *);
101 Static int athn_switch_chan(struct athn_softc *,
102 struct ieee80211_channel *, struct ieee80211_channel *);
103 Static void athn_calib_to(void *);
104 Static void athn_disable_interrupts(struct athn_softc *);
105 Static void athn_enable_interrupts(struct athn_softc *);
106 Static void athn_get_chanlist(struct athn_softc *);
107 Static void athn_get_chipid(struct athn_softc *);
108 Static void athn_init_dma(struct athn_softc *);
109 Static void athn_init_qos(struct athn_softc *);
110 Static void athn_init_tx_queues(struct athn_softc *);
111 Static void athn_iter_func(void *, struct ieee80211_node *);
112 Static void athn_newassoc(struct ieee80211_node *, int);
113 Static void athn_next_scan(void *);
114 Static void athn_pmf_wlan_off(device_t self);
115 Static void athn_radiotap_attach(struct athn_softc *);
116 Static void athn_start(struct ifnet *);
117 Static void athn_tx_reclaim(struct athn_softc *, int);
118 Static void athn_watchdog(struct ifnet *);
119 Static void athn_write_serdes(struct athn_softc *,
120 const struct athn_serdes *);
121 Static void athn_softintr(void *);
122
123 #ifdef ATHN_BT_COEXISTENCE
124 Static void athn_btcoex_disable(struct athn_softc *);
125 Static void athn_btcoex_enable(struct athn_softc *);
126 #endif
127
128 #ifdef unused
129 Static int32_t athn_ani_get_rssi(struct athn_softc *);
130 Static int athn_rx_abort(struct athn_softc *);
131 #endif
132
133 #ifdef notyet
134 Static void athn_ani_cck_err_trigger(struct athn_softc *);
135 Static void athn_ani_lower_immunity(struct athn_softc *);
136 Static void athn_ani_monitor(struct athn_softc *);
137 Static void athn_ani_ofdm_err_trigger(struct athn_softc *);
138 Static void athn_ani_restart(struct athn_softc *);
139 Static void athn_set_multi(struct athn_softc *);
140 #endif /* notyet */
141
142 PUBLIC int
143 athn_attach(struct athn_softc *sc)
144 {
145 struct ieee80211com *ic = &sc->sc_ic;
146 struct ifnet *ifp = &sc->sc_if;
147 size_t max_nnodes;
148 int error;
149
150 /* Read hardware revision. */
151 athn_get_chipid(sc);
152
153 if ((error = athn_reset_power_on(sc)) != 0) {
154 aprint_error_dev(sc->sc_dev, "could not reset chip\n");
155 return error;
156 }
157
158 if ((error = athn_set_power_awake(sc)) != 0) {
159 aprint_error_dev(sc->sc_dev, "could not wakeup chip\n");
160 return error;
161 }
162
163 if (AR_SREV_5416(sc) || AR_SREV_9160(sc))
164 error = ar5416_attach(sc);
165 else if (AR_SREV_9280(sc))
166 error = ar9280_attach(sc);
167 else if (AR_SREV_9285(sc))
168 error = ar9285_attach(sc);
169 #if NATHN_USB > 0
170 else if (AR_SREV_9271(sc))
171 error = ar9285_attach(sc);
172 #endif
173 else if (AR_SREV_9287(sc))
174 error = ar9287_attach(sc);
175 else if (AR_SREV_9380(sc) || AR_SREV_9485(sc))
176 error = ar9380_attach(sc);
177 else
178 error = ENOTSUP;
179 if (error != 0) {
180 aprint_error_dev(sc->sc_dev, "could not attach chip\n");
181 return error;
182 }
183
184 pmf_self_suspensor_init(sc->sc_dev, &sc->sc_suspensor, &sc->sc_qual);
185 pmf_event_register(sc->sc_dev, PMFE_RADIO_OFF, athn_pmf_wlan_off,
186 false);
187
188 /* We can put the chip in sleep state now. */
189 athn_set_power_sleep(sc);
190
191 if (!(sc->sc_flags & ATHN_FLAG_USB)) {
192 sc->sc_soft_ih = softint_establish(SOFTINT_NET, athn_softintr,
193 sc);
194 if (sc->sc_soft_ih == NULL) {
195 aprint_error_dev(sc->sc_dev,
196 "could not establish softint\n");
197 return EINVAL;
198 }
199
200 error = sc->sc_ops.dma_alloc(sc);
201 if (error != 0) {
202 aprint_error_dev(sc->sc_dev,
203 "could not allocate DMA resources\n");
204 return error;
205 }
206 /* Steal one Tx buffer for beacons. */
207 sc->sc_bcnbuf = SIMPLEQ_FIRST(&sc->sc_txbufs);
208 SIMPLEQ_REMOVE_HEAD(&sc->sc_txbufs, bf_list);
209 }
210
211 if (sc->sc_flags & ATHN_FLAG_RFSILENT) {
212 DPRINTFN(DBG_INIT, sc,
213 "found RF switch connected to GPIO pin %d\n",
214 sc->sc_rfsilent_pin);
215 }
216 DPRINTFN(DBG_INIT, sc, "%zd key cache entries\n", sc->sc_kc_entries);
217
218 /*
219 * In HostAP mode, the number of STAs that we can handle is
220 * limited by the number of entries in the HW key cache.
221 * TKIP keys consume 2 entries in the cache.
222 */
223 KASSERT(sc->sc_kc_entries / 2 > IEEE80211_WEP_NKID);
224 max_nnodes = (sc->sc_kc_entries / 2) - IEEE80211_WEP_NKID;
225 if (sc->sc_max_aid != 0) /* we have an override */
226 ic->ic_max_aid = sc->sc_max_aid;
227 if (ic->ic_max_aid > max_nnodes)
228 ic->ic_max_aid = max_nnodes;
229
230 DPRINTFN(DBG_INIT, sc, "using %s loop power control\n",
231 (sc->sc_flags & ATHN_FLAG_OLPC) ? "open" : "closed");
232 DPRINTFN(DBG_INIT, sc, "txchainmask=0x%x rxchainmask=0x%x\n",
233 sc->sc_txchainmask, sc->sc_rxchainmask);
234
235 /* Count the number of bits set (in lowest 3 bits). */
236 sc->sc_ntxchains =
237 ((sc->sc_txchainmask >> 2) & 1) +
238 ((sc->sc_txchainmask >> 1) & 1) +
239 ((sc->sc_txchainmask >> 0) & 1);
240 sc->sc_nrxchains =
241 ((sc->sc_rxchainmask >> 2) & 1) +
242 ((sc->sc_rxchainmask >> 1) & 1) +
243 ((sc->sc_rxchainmask >> 0) & 1);
244
245 if (AR_SINGLE_CHIP(sc)) {
246 aprint_normal(": Atheros %s\n", athn_get_mac_name(sc));
247 aprint_verbose_dev(sc->sc_dev,
248 "rev %d (%dT%dR), ROM rev %d, address %s\n",
249 sc->sc_mac_rev,
250 sc->sc_ntxchains, sc->sc_nrxchains, sc->sc_eep_rev,
251 ether_sprintf(ic->ic_myaddr));
252 }
253 else {
254 aprint_normal(": Atheros %s, RF %s\n", athn_get_mac_name(sc),
255 athn_get_rf_name(sc));
256 aprint_verbose_dev(sc->sc_dev,
257 "rev %d (%dT%dR), ROM rev %d, address %s\n",
258 sc->sc_mac_rev,
259 sc->sc_ntxchains, sc->sc_nrxchains,
260 sc->sc_eep_rev, ether_sprintf(ic->ic_myaddr));
261 }
262
263 callout_init(&sc->sc_scan_to, 0);
264 callout_setfunc(&sc->sc_scan_to, athn_next_scan, sc);
265 callout_init(&sc->sc_calib_to, 0);
266 callout_setfunc(&sc->sc_calib_to, athn_calib_to, sc);
267
268 sc->sc_amrr.amrr_min_success_threshold = 1;
269 sc->sc_amrr.amrr_max_success_threshold = 15;
270
271 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
272 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
273 ic->ic_state = IEEE80211_S_INIT;
274
275 /* Set device capabilities. */
276 ic->ic_caps =
277 IEEE80211_C_WPA | /* 802.11i */
278 #ifndef IEEE80211_STA_ONLY
279 IEEE80211_C_HOSTAP | /* Host AP mode supported. */
280 // XXX? IEEE80211_C_APPMGT | /* Host AP power saving supported. */
281 #endif
282 IEEE80211_C_MONITOR | /* Monitor mode supported. */
283 IEEE80211_C_SHSLOT | /* Short slot time supported. */
284 IEEE80211_C_SHPREAMBLE | /* Short preamble supported. */
285 IEEE80211_C_PMGT; /* Power saving supported. */
286
287 #ifndef IEEE80211_NO_HT
288 if (sc->sc_flags & ATHN_FLAG_11N) {
289 int i, ntxstreams, nrxstreams;
290
291 /* Set HT capabilities. */
292 ic->ic_htcaps =
293 IEEE80211_HTCAP_SMPS_DIS |
294 IEEE80211_HTCAP_CBW20_40 |
295 IEEE80211_HTCAP_SGI40 |
296 IEEE80211_HTCAP_DSSSCCK40;
297 if (AR_SREV_9271(sc) || AR_SREV_9287_10_OR_LATER(sc))
298 ic->ic_htcaps |= IEEE80211_HTCAP_SGI20;
299 if (AR_SREV_9380_10_OR_LATER(sc))
300 ic->ic_htcaps |= IEEE80211_HTCAP_LDPC;
301 if (AR_SREV_9280_10_OR_LATER(sc)) {
302 ic->ic_htcaps |= IEEE80211_HTCAP_TXSTBC;
303 ic->ic_htcaps |= 1 << IEEE80211_HTCAP_RXSTBC_SHIFT;
304 }
305 ntxstreams = sc->sc_ntxchains;
306 nrxstreams = sc->sc_nrxchains;
307 if (!AR_SREV_9380_10_OR_LATER(sc)) {
308 ntxstreams = MIN(ntxstreams, 2);
309 nrxstreams = MIN(nrxstreams, 2);
310 }
311 /* Set supported HT rates. */
312 for (i = 0; i < nrxstreams; i++)
313 ic->ic_sup_mcs[i] = 0xff;
314 /* Set the "Tx MCS Set Defined" bit. */
315 ic->ic_sup_mcs[12] |= 0x01;
316 if (ntxstreams != nrxstreams) {
317 /* Set "Tx Rx MCS Set Not Equal" bit. */
318 ic->ic_sup_mcs[12] |= 0x02;
319 ic->ic_sup_mcs[12] |= (ntxstreams - 1) << 2;
320 }
321 }
322 #endif
323
324 /* Set supported rates. */
325 if (sc->sc_flags & ATHN_FLAG_11G) {
326 ic->ic_sup_rates[IEEE80211_MODE_11B] =
327 ieee80211_std_rateset_11b;
328 ic->ic_sup_rates[IEEE80211_MODE_11G] =
329 ieee80211_std_rateset_11g;
330 }
331 if (sc->sc_flags & ATHN_FLAG_11A) {
332 ic->ic_sup_rates[IEEE80211_MODE_11A] =
333 ieee80211_std_rateset_11a;
334 }
335
336 /* Get the list of authorized/supported channels. */
337 athn_get_chanlist(sc);
338
339 ifp->if_softc = sc;
340 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
341 if (!ifp->if_init)
342 ifp->if_init = athn_init;
343 if (!ifp->if_ioctl)
344 ifp->if_ioctl = athn_ioctl;
345 if (!ifp->if_start)
346 ifp->if_start = athn_start;
347 if (!ifp->if_watchdog)
348 ifp->if_watchdog = athn_watchdog;
349 IFQ_SET_READY(&ifp->if_snd);
350 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
351
352 if_initialize(ifp);
353 ieee80211_ifattach(ic);
354 /* Use common softint-based if_input */
355 ifp->if_percpuq = if_percpuq_create(ifp);
356 if_register(ifp);
357
358 ic->ic_node_alloc = athn_node_alloc;
359 ic->ic_newassoc = athn_newassoc;
360 if (ic->ic_updateslot == NULL)
361 ic->ic_updateslot = athn_updateslot;
362 #ifdef notyet_edca
363 ic->ic_updateedca = athn_updateedca;
364 #endif
365 #ifdef notyet
366 ic->ic_set_key = athn_set_key;
367 ic->ic_delete_key = athn_delete_key;
368 #endif
369
370 /* Override 802.11 state transition machine. */
371 sc->sc_newstate = ic->ic_newstate;
372 ic->ic_newstate = athn_newstate;
373
374 if (sc->sc_media_change == NULL)
375 sc->sc_media_change = athn_media_change;
376 ieee80211_media_init(ic, sc->sc_media_change, ieee80211_media_status);
377
378 athn_radiotap_attach(sc);
379 return 0;
380 }
381
382 PUBLIC void
383 athn_detach(struct athn_softc *sc)
384 {
385 struct ifnet *ifp = &sc->sc_if;
386 int qid;
387
388 callout_halt(&sc->sc_scan_to, NULL);
389 callout_halt(&sc->sc_calib_to, NULL);
390
391 if (!(sc->sc_flags & ATHN_FLAG_USB)) {
392 for (qid = 0; qid < ATHN_QID_COUNT; qid++)
393 athn_tx_reclaim(sc, qid);
394
395 /* Free Tx/Rx DMA resources. */
396 sc->sc_ops.dma_free(sc);
397
398 if (sc->sc_soft_ih != NULL) {
399 softint_disestablish(sc->sc_soft_ih);
400 sc->sc_soft_ih = NULL;
401 }
402 }
403 /* Free ROM copy. */
404 if (sc->sc_eep != NULL) {
405 free(sc->sc_eep, M_DEVBUF);
406 sc->sc_eep = NULL;
407 }
408
409 bpf_detach(ifp);
410 ieee80211_ifdetach(&sc->sc_ic);
411 if_detach(ifp);
412
413 callout_destroy(&sc->sc_scan_to);
414 callout_destroy(&sc->sc_calib_to);
415 }
416
417 /*
418 * Attach the interface to 802.11 radiotap.
419 */
420 Static void
421 athn_radiotap_attach(struct athn_softc *sc)
422 {
423
424 bpf_attach2(&sc->sc_if, DLT_IEEE802_11_RADIO,
425 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
426 &sc->sc_drvbpf);
427
428 sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
429 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
430 sc->sc_rxtap.wr_ihdr.it_present = htole32(ATHN_RX_RADIOTAP_PRESENT);
431
432 sc->sc_txtap_len = sizeof(sc->sc_txtapu);
433 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
434 sc->sc_txtap.wt_ihdr.it_present = htole32(ATHN_TX_RADIOTAP_PRESENT);
435 }
436
437 Static void
438 athn_get_chanlist(struct athn_softc *sc)
439 {
440 struct ieee80211com *ic = &sc->sc_ic;
441 uint8_t chan;
442 size_t i;
443
444 if (sc->sc_flags & ATHN_FLAG_11G) {
445 for (i = 1; i <= 14; i++) {
446 chan = i;
447 ic->ic_channels[chan].ic_freq =
448 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
449 ic->ic_channels[chan].ic_flags =
450 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
451 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
452 }
453 }
454 if (sc->sc_flags & ATHN_FLAG_11A) {
455 for (i = 0; i < __arraycount(athn_5ghz_chans); i++) {
456 chan = athn_5ghz_chans[i];
457 ic->ic_channels[chan].ic_freq =
458 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
459 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
460 }
461 }
462 }
463
464 PUBLIC void
465 athn_rx_start(struct athn_softc *sc)
466 {
467 struct ieee80211com *ic = &sc->sc_ic;
468 uint32_t rfilt;
469
470 /* Setup Rx DMA descriptors. */
471 sc->sc_ops.rx_enable(sc);
472
473 /* Set Rx filter. */
474 rfilt = AR_RX_FILTER_UCAST | AR_RX_FILTER_BCAST | AR_RX_FILTER_MCAST;
475 #ifndef IEEE80211_NO_HT
476 /* Want Compressed Block Ack Requests. */
477 rfilt |= AR_RX_FILTER_COMPR_BAR;
478 #endif
479 rfilt |= AR_RX_FILTER_BEACON;
480 if (ic->ic_opmode != IEEE80211_M_STA) {
481 rfilt |= AR_RX_FILTER_PROBEREQ;
482 if (ic->ic_opmode == IEEE80211_M_MONITOR)
483 rfilt |= AR_RX_FILTER_PROM;
484 #ifndef IEEE80211_STA_ONLY
485 if (AR_SREV_9280_10_OR_LATER(sc) &&
486 ic->ic_opmode == IEEE80211_M_HOSTAP)
487 rfilt |= AR_RX_FILTER_PSPOLL;
488 #endif
489 }
490 athn_set_rxfilter(sc, rfilt);
491
492 /* Set BSSID mask. */
493 AR_WRITE(sc, AR_BSSMSKL, 0xffffffff);
494 AR_WRITE(sc, AR_BSSMSKU, 0xffff);
495
496 athn_set_opmode(sc);
497
498 /* Set multicast filter. */
499 AR_WRITE(sc, AR_MCAST_FIL0, 0xffffffff);
500 AR_WRITE(sc, AR_MCAST_FIL1, 0xffffffff);
501
502 AR_WRITE(sc, AR_FILT_OFDM, 0);
503 AR_WRITE(sc, AR_FILT_CCK, 0);
504 AR_WRITE(sc, AR_MIBC, 0);
505 AR_WRITE(sc, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING);
506 AR_WRITE(sc, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING);
507
508 /* XXX ANI. */
509 AR_WRITE(sc, AR_PHY_ERR_1, 0);
510 AR_WRITE(sc, AR_PHY_ERR_2, 0);
511
512 /* Disable HW crypto for now. */
513 AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_ENCRYPT_DIS | AR_DIAG_DECRYPT_DIS);
514
515 /* Start PCU Rx. */
516 AR_CLRBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
517 AR_WRITE_BARRIER(sc);
518 }
519
520 PUBLIC void
521 athn_set_rxfilter(struct athn_softc *sc, uint32_t rfilt)
522 {
523
524 AR_WRITE(sc, AR_RX_FILTER, rfilt);
525 #ifdef notyet
526 reg = AR_READ(sc, AR_PHY_ERR);
527 reg &= (AR_PHY_ERR_RADAR | AR_PHY_ERR_OFDM_TIMING |
528 AR_PHY_ERR_CCK_TIMING);
529 AR_WRITE(sc, AR_PHY_ERR, reg);
530 if (reg != 0)
531 AR_SETBITS(sc, AR_RXCFG, AR_RXCFG_ZLFDMA);
532 else
533 AR_CLRBITS(sc, AR_RXCFG, AR_RXCFG_ZLFDMA);
534 #else
535 AR_WRITE(sc, AR_PHY_ERR, 0);
536 AR_CLRBITS(sc, AR_RXCFG, AR_RXCFG_ZLFDMA);
537 #endif
538 AR_WRITE_BARRIER(sc);
539 }
540
541 PUBLIC int
542 athn_intr(void *xsc)
543 {
544 struct athn_softc *sc = xsc;
545 struct ifnet *ifp = &sc->sc_if;
546
547 if (!IS_UP_AND_RUNNING(ifp))
548 return 0;
549
550 if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
551 /*
552 * The hardware is not ready/present, don't touch anything.
553 * Note this can happen early on if the IRQ is shared.
554 */
555 return 0;
556
557 if (!sc->sc_ops.intr_status(sc))
558 return 0;
559
560 softint_schedule(sc->sc_soft_ih);
561 return 1;
562 }
563
564 Static void
565 athn_softintr(void *xsc)
566 {
567 struct athn_softc *sc = xsc;
568 struct ifnet *ifp = &sc->sc_if;
569
570 if (!IS_UP_AND_RUNNING(ifp))
571 return;
572
573 if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
574 /*
575 * The hardware is not ready/present, don't touch anything.
576 * Note this can happen early on if the IRQ is shared.
577 */
578 return;
579
580 sc->sc_ops.intr(sc);
581 }
582
583 Static void
584 athn_get_chipid(struct athn_softc *sc)
585 {
586 uint32_t reg;
587
588 reg = AR_READ(sc, AR_SREV);
589 if (MS(reg, AR_SREV_ID) == 0xff) {
590 sc->sc_mac_ver = MS(reg, AR_SREV_VERSION2);
591 sc->sc_mac_rev = MS(reg, AR_SREV_REVISION2);
592 if (!(reg & AR_SREV_TYPE2_HOST_MODE))
593 sc->sc_flags |= ATHN_FLAG_PCIE;
594 }
595 else {
596 sc->sc_mac_ver = MS(reg, AR_SREV_VERSION);
597 sc->sc_mac_rev = MS(reg, AR_SREV_REVISION);
598 if (sc->sc_mac_ver == AR_SREV_VERSION_5416_PCIE)
599 sc->sc_flags |= ATHN_FLAG_PCIE;
600 }
601 }
602
603 Static const char *
604 athn_get_mac_name(struct athn_softc *sc)
605 {
606
607 switch (sc->sc_mac_ver) {
608 case AR_SREV_VERSION_5416_PCI:
609 return "AR5416";
610 case AR_SREV_VERSION_5416_PCIE:
611 return "AR5418";
612 case AR_SREV_VERSION_9160:
613 return "AR9160";
614 case AR_SREV_VERSION_9280:
615 return "AR9280";
616 case AR_SREV_VERSION_9285:
617 return "AR9285";
618 case AR_SREV_VERSION_9271:
619 return "AR9271";
620 case AR_SREV_VERSION_9287:
621 return "AR9287";
622 case AR_SREV_VERSION_9380:
623 return "AR9380";
624 case AR_SREV_VERSION_9485:
625 return "AR9485";
626 default:
627 return "unknown";
628 }
629 }
630
631 /*
632 * Return RF chip name (not for single-chip solutions).
633 */
634 Static const char *
635 athn_get_rf_name(struct athn_softc *sc)
636 {
637
638 KASSERT(!AR_SINGLE_CHIP(sc));
639
640 switch (sc->sc_rf_rev) {
641 case AR_RAD5133_SREV_MAJOR: /* Dual-band 3T3R. */
642 return "AR5133";
643 case AR_RAD2133_SREV_MAJOR: /* Single-band 3T3R. */
644 return "AR2133";
645 case AR_RAD5122_SREV_MAJOR: /* Dual-band 2T2R. */
646 return "AR5122";
647 case AR_RAD2122_SREV_MAJOR: /* Single-band 2T2R. */
648 return "AR2122";
649 default:
650 return "unknown";
651 }
652 }
653
654 PUBLIC int
655 athn_reset_power_on(struct athn_softc *sc)
656 {
657 int ntries;
658
659 /* Set force wake. */
660 AR_WRITE(sc, AR_RTC_FORCE_WAKE,
661 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
662
663 if (!AR_SREV_9380_10_OR_LATER(sc)) {
664 /* Make sure no DMA is active by doing an AHB reset. */
665 AR_WRITE(sc, AR_RC, AR_RC_AHB);
666 }
667 /* RTC reset and clear. */
668 AR_WRITE(sc, AR_RTC_RESET, 0);
669 AR_WRITE_BARRIER(sc);
670 DELAY(2);
671 if (!AR_SREV_9380_10_OR_LATER(sc))
672 AR_WRITE(sc, AR_RC, 0);
673 AR_WRITE(sc, AR_RTC_RESET, 1);
674
675 /* Poll until RTC is ON. */
676 for (ntries = 0; ntries < 1000; ntries++) {
677 if ((AR_READ(sc, AR_RTC_STATUS) & AR_RTC_STATUS_M) ==
678 AR_RTC_STATUS_ON)
679 break;
680 DELAY(10);
681 }
682 if (ntries == 1000) {
683 DPRINTFN(DBG_INIT, sc, "RTC not waking up\n");
684 return ETIMEDOUT;
685 }
686 return athn_reset(sc, 0);
687 }
688
689 PUBLIC int
690 athn_reset(struct athn_softc *sc, int cold_reset)
691 {
692 int ntries;
693
694 /* Set force wake. */
695 AR_WRITE(sc, AR_RTC_FORCE_WAKE,
696 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
697
698 if (AR_READ(sc, AR_INTR_SYNC_CAUSE) &
699 (AR_INTR_SYNC_LOCAL_TIMEOUT | AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
700 AR_WRITE(sc, AR_INTR_SYNC_ENABLE, 0);
701 AR_WRITE(sc, AR_RC, AR_RC_HOSTIF |
702 (!AR_SREV_9380_10_OR_LATER(sc) ? AR_RC_AHB : 0));
703 }
704 else if (!AR_SREV_9380_10_OR_LATER(sc))
705 AR_WRITE(sc, AR_RC, AR_RC_AHB);
706
707 AR_WRITE(sc, AR_RTC_RC, AR_RTC_RC_MAC_WARM |
708 (cold_reset ? AR_RTC_RC_MAC_COLD : 0));
709 AR_WRITE_BARRIER(sc);
710 DELAY(50);
711 AR_WRITE(sc, AR_RTC_RC, 0);
712 for (ntries = 0; ntries < 1000; ntries++) {
713 if (!(AR_READ(sc, AR_RTC_RC) &
714 (AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD)))
715 break;
716 DELAY(10);
717 }
718 if (ntries == 1000) {
719 DPRINTFN(DBG_INIT, sc, "RTC stuck in MAC reset\n");
720 return ETIMEDOUT;
721 }
722 AR_WRITE(sc, AR_RC, 0);
723 AR_WRITE_BARRIER(sc);
724 return 0;
725 }
726
727 PUBLIC int
728 athn_set_power_awake(struct athn_softc *sc)
729 {
730 int ntries, error;
731
732 /* Do a Power-On-Reset if shutdown. */
733 if ((AR_READ(sc, AR_RTC_STATUS) & AR_RTC_STATUS_M) ==
734 AR_RTC_STATUS_SHUTDOWN) {
735 if ((error = athn_reset_power_on(sc)) != 0)
736 return error;
737 if (!AR_SREV_9380_10_OR_LATER(sc))
738 athn_init_pll(sc, NULL);
739 }
740 AR_SETBITS(sc, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
741 AR_WRITE_BARRIER(sc);
742 DELAY(50); /* Give chip the chance to awake. */
743
744 /* Poll until RTC is ON. */
745 for (ntries = 0; ntries < 4000; ntries++) {
746 if ((AR_READ(sc, AR_RTC_STATUS) & AR_RTC_STATUS_M) ==
747 AR_RTC_STATUS_ON)
748 break;
749 DELAY(50);
750 AR_SETBITS(sc, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
751 }
752 if (ntries == 4000) {
753 DPRINTFN(DBG_INIT, sc, "RTC not waking up\n");
754 return ETIMEDOUT;
755 }
756
757 AR_CLRBITS(sc, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
758 AR_WRITE_BARRIER(sc);
759 return 0;
760 }
761
762 PUBLIC void
763 athn_set_power_sleep(struct athn_softc *sc)
764 {
765
766 AR_SETBITS(sc, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
767 /* Allow the MAC to go to sleep. */
768 AR_CLRBITS(sc, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
769 if (!AR_SREV_9380_10_OR_LATER(sc))
770 AR_WRITE(sc, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
771 /*
772 * NB: Clearing RTC_RESET_EN when setting the chip to sleep mode
773 * results in high power consumption on AR5416 chipsets.
774 */
775 if (!AR_SREV_5416(sc) && !AR_SREV_9271(sc))
776 AR_CLRBITS(sc, AR_RTC_RESET, AR_RTC_RESET_EN);
777 AR_WRITE_BARRIER(sc);
778 }
779
780 PUBLIC void
781 athn_init_pll(struct athn_softc *sc, const struct ieee80211_channel *c)
782 {
783 uint32_t pll;
784
785 if (AR_SREV_9380_10_OR_LATER(sc)) {
786 if (AR_SREV_9485(sc))
787 AR_WRITE(sc, AR_RTC_PLL_CONTROL2, 0x886666);
788 pll = SM(AR_RTC_9160_PLL_REFDIV, 0x5);
789 pll |= SM(AR_RTC_9160_PLL_DIV, 0x2c);
790 }
791 else if (AR_SREV_9280_10_OR_LATER(sc)) {
792 pll = SM(AR_RTC_9160_PLL_REFDIV, 0x05);
793 if (c != NULL && IEEE80211_IS_CHAN_5GHZ(c)) {
794 if (sc->sc_flags & ATHN_FLAG_FAST_PLL_CLOCK)
795 pll = 0x142c;
796 else if (AR_SREV_9280_20(sc))
797 pll = 0x2850;
798 else
799 pll |= SM(AR_RTC_9160_PLL_DIV, 0x28);
800 }
801 else
802 pll |= SM(AR_RTC_9160_PLL_DIV, 0x2c);
803 }
804 else if (AR_SREV_9160_10_OR_LATER(sc)) {
805 pll = SM(AR_RTC_9160_PLL_REFDIV, 0x05);
806 if (c != NULL && IEEE80211_IS_CHAN_5GHZ(c))
807 pll |= SM(AR_RTC_9160_PLL_DIV, 0x50);
808 else
809 pll |= SM(AR_RTC_9160_PLL_DIV, 0x58);
810 }
811 else {
812 pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
813 if (c != NULL && IEEE80211_IS_CHAN_5GHZ(c))
814 pll |= SM(AR_RTC_PLL_DIV, 0x0a);
815 else
816 pll |= SM(AR_RTC_PLL_DIV, 0x0b);
817 }
818 DPRINTFN(DBG_INIT, sc, "AR_RTC_PLL_CONTROL=0x%08x\n", pll);
819 AR_WRITE(sc, AR_RTC_PLL_CONTROL, pll);
820 if (AR_SREV_9271(sc)) {
821 /* Switch core clock to 117MHz. */
822 AR_WRITE_BARRIER(sc);
823 DELAY(500);
824 AR_WRITE(sc, 0x50050, 0x304);
825 }
826 AR_WRITE_BARRIER(sc);
827 DELAY(100);
828 AR_WRITE(sc, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
829 AR_WRITE_BARRIER(sc);
830 }
831
832 Static void
833 athn_write_serdes(struct athn_softc *sc, const struct athn_serdes *serdes)
834 {
835 int i;
836
837 /* Write sequence to Serializer/Deserializer. */
838 for (i = 0; i < serdes->nvals; i++)
839 AR_WRITE(sc, serdes->regs[i], serdes->vals[i]);
840 AR_WRITE_BARRIER(sc);
841 }
842
843 PUBLIC void
844 athn_config_pcie(struct athn_softc *sc)
845 {
846
847 /* Disable PLL when in L0s as well as receiver clock when in L1. */
848 athn_write_serdes(sc, sc->sc_serdes);
849
850 DELAY(1000);
851 /* Allow forcing of PCIe core into L1 state. */
852 AR_SETBITS(sc, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
853
854 #ifndef ATHN_PCIE_WAEN
855 AR_WRITE(sc, AR_WA, sc->sc_workaround);
856 #else
857 AR_WRITE(sc, AR_WA, ATHN_PCIE_WAEN);
858 #endif
859 AR_WRITE_BARRIER(sc);
860 }
861
862 /*
863 * Serializer/Deserializer programming for non-PCIe devices.
864 */
865 static const uint32_t ar_nonpcie_serdes_regs[] = {
866 AR_PCIE_SERDES,
867 AR_PCIE_SERDES,
868 AR_PCIE_SERDES,
869 AR_PCIE_SERDES,
870 AR_PCIE_SERDES,
871 AR_PCIE_SERDES,
872 AR_PCIE_SERDES,
873 AR_PCIE_SERDES,
874 AR_PCIE_SERDES,
875 AR_PCIE_SERDES2,
876 };
877
878 static const uint32_t ar_nonpcie_serdes_vals[] = {
879 0x9248fc00,
880 0x24924924,
881 0x28000029,
882 0x57160824,
883 0x25980579,
884 0x00000000,
885 0x1aaabe40,
886 0xbe105554,
887 0x000e1007,
888 0x00000000
889 };
890
891 static const struct athn_serdes ar_nonpcie_serdes = {
892 __arraycount(ar_nonpcie_serdes_vals),
893 ar_nonpcie_serdes_regs,
894 ar_nonpcie_serdes_vals
895 };
896
897 PUBLIC void
898 athn_config_nonpcie(struct athn_softc *sc)
899 {
900
901 athn_write_serdes(sc, &ar_nonpcie_serdes);
902 }
903
904 PUBLIC int
905 athn_set_chan(struct athn_softc *sc, struct ieee80211_channel *curchan,
906 struct ieee80211_channel *extchan)
907 {
908 struct athn_ops *ops = &sc->sc_ops;
909 int error, qid;
910
911 /* Check that Tx is stopped, otherwise RF Bus grant will not work. */
912 for (qid = 0; qid < ATHN_QID_COUNT; qid++)
913 if (athn_tx_pending(sc, qid))
914 return EBUSY;
915
916 /* Request RF Bus grant. */
917 if ((error = ops->rf_bus_request(sc)) != 0)
918 return error;
919
920 ops->set_phy(sc, curchan, extchan);
921
922 /* Change the synthesizer. */
923 if ((error = ops->set_synth(sc, curchan, extchan)) != 0)
924 return error;
925
926 sc->sc_curchan = curchan;
927 sc->sc_curchanext = extchan;
928
929 /* Set transmit power values for new channel. */
930 ops->set_txpower(sc, curchan, extchan);
931
932 /* Release the RF Bus grant. */
933 ops->rf_bus_release(sc);
934
935 /* Write delta slope coeffs for modes where OFDM may be used. */
936 if (sc->sc_ic.ic_curmode != IEEE80211_MODE_11B)
937 ops->set_delta_slope(sc, curchan, extchan);
938
939 ops->spur_mitigate(sc, curchan, extchan);
940 /* XXX Load noisefloor values and start calibration. */
941
942 return 0;
943 }
944
945 Static int
946 athn_switch_chan(struct athn_softc *sc, struct ieee80211_channel *curchan,
947 struct ieee80211_channel *extchan)
948 {
949 int error, qid;
950
951 /* Disable interrupts. */
952 athn_disable_interrupts(sc);
953
954 /* Stop all Tx queues. */
955 for (qid = 0; qid < ATHN_QID_COUNT; qid++)
956 athn_stop_tx_dma(sc, qid);
957 for (qid = 0; qid < ATHN_QID_COUNT; qid++)
958 athn_tx_reclaim(sc, qid);
959
960 /* Stop Rx. */
961 AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
962 AR_WRITE(sc, AR_MIBC, AR_MIBC_FMC);
963 AR_WRITE(sc, AR_MIBC, AR_MIBC_CMC);
964 AR_WRITE(sc, AR_FILT_OFDM, 0);
965 AR_WRITE(sc, AR_FILT_CCK, 0);
966 athn_set_rxfilter(sc, 0);
967 error = athn_stop_rx_dma(sc);
968 if (error != 0)
969 goto reset;
970
971 #ifdef notyet
972 /* AR9280 needs a full reset. */
973 if (AR_SREV_9280(sc))
974 #endif
975 goto reset;
976
977 /* If band or bandwidth changes, we need to do a full reset. */
978 if (curchan->ic_flags != sc->sc_curchan->ic_flags ||
979 ((extchan != NULL) ^ (sc->sc_curchanext != NULL))) {
980 DPRINTFN(DBG_RF, sc, "channel band switch\n");
981 goto reset;
982 }
983 error = athn_set_power_awake(sc);
984 if (error != 0)
985 goto reset;
986
987 error = athn_set_chan(sc, curchan, extchan);
988 if (error != 0) {
989 reset: /* Error found, try a full reset. */
990 DPRINTFN(DBG_RF, sc, "needs a full reset\n");
991 error = athn_hw_reset(sc, curchan, extchan, 0);
992 if (error != 0) /* Hopeless case. */
993 return error;
994 }
995 athn_rx_start(sc);
996
997 /* Re-enable interrupts. */
998 athn_enable_interrupts(sc);
999 return 0;
1000 }
1001
1002 PUBLIC void
1003 athn_get_delta_slope(uint32_t coeff, uint32_t *exponent, uint32_t *mantissa)
1004 {
1005 #define COEFF_SCALE_SHIFT 24
1006 uint32_t exp, man;
1007
1008 /* exponent = 14 - floor(log2(coeff)) */
1009 for (exp = 31; exp > 0; exp--)
1010 if (coeff & (1 << exp))
1011 break;
1012 exp = 14 - (exp - COEFF_SCALE_SHIFT);
1013
1014 /* mantissa = floor(coeff * 2^exponent + 0.5) */
1015 man = coeff + (1 << (COEFF_SCALE_SHIFT - exp - 1));
1016
1017 *mantissa = man >> (COEFF_SCALE_SHIFT - exp);
1018 *exponent = exp - 16;
1019 #undef COEFF_SCALE_SHIFT
1020 }
1021
1022 PUBLIC void
1023 athn_reset_key(struct athn_softc *sc, int entry)
1024 {
1025
1026 /*
1027 * NB: Key cache registers access special memory area that requires
1028 * two 32-bit writes to actually update the values in the internal
1029 * memory. Consequently, writes must be grouped by pair.
1030 */
1031 AR_WRITE(sc, AR_KEYTABLE_KEY0(entry), 0);
1032 AR_WRITE(sc, AR_KEYTABLE_KEY1(entry), 0);
1033
1034 AR_WRITE(sc, AR_KEYTABLE_KEY2(entry), 0);
1035 AR_WRITE(sc, AR_KEYTABLE_KEY3(entry), 0);
1036
1037 AR_WRITE(sc, AR_KEYTABLE_KEY4(entry), 0);
1038 AR_WRITE(sc, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
1039
1040 AR_WRITE(sc, AR_KEYTABLE_MAC0(entry), 0);
1041 AR_WRITE(sc, AR_KEYTABLE_MAC1(entry), 0);
1042
1043 AR_WRITE_BARRIER(sc);
1044 }
1045
1046 #ifdef notyet
1047 Static int
1048 athn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
1049 struct ieee80211_key *k)
1050 {
1051 struct athn_softc *sc = ic->ic_ifp->if_softc;
1052 const uint8_t *txmic, *rxmic, *key, *addr;
1053 uintptr_t entry, micentry;
1054 uint32_t type, lo, hi;
1055
1056 switch (k->k_cipher) {
1057 case IEEE80211_CIPHER_WEP40:
1058 type = AR_KEYTABLE_TYPE_40;
1059 break;
1060 case IEEE80211_CIPHER_WEP104:
1061 type = AR_KEYTABLE_TYPE_104;
1062 break;
1063 case IEEE80211_CIPHER_TKIP:
1064 type = AR_KEYTABLE_TYPE_TKIP;
1065 break;
1066 case IEEE80211_CIPHER_CCMP:
1067 type = AR_KEYTABLE_TYPE_CCM;
1068 break;
1069 default:
1070 /* Fallback to software crypto for other ciphers. */
1071 return ieee80211_set_key(ic, ni, k);
1072 }
1073
1074 if (!(k->k_flags & IEEE80211_KEY_GROUP))
1075 entry = IEEE80211_WEP_NKID + IEEE80211_AID(ni->ni_associd);
1076 else
1077 entry = k->k_id;
1078 k->k_priv = (void *)entry;
1079
1080 /* NB: See note about key cache registers access above. */
1081 key = k->k_key;
1082 if (type == AR_KEYTABLE_TYPE_TKIP) {
1083 #ifndef IEEE80211_STA_ONLY
1084 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
1085 txmic = &key[16];
1086 rxmic = &key[24];
1087 }
1088 else
1089 #endif
1090 {
1091 rxmic = &key[16];
1092 txmic = &key[24];
1093 }
1094 /* Tx+Rx MIC key is at entry + 64. */
1095 micentry = entry + 64;
1096 AR_WRITE(sc, AR_KEYTABLE_KEY0(micentry), LE_READ_4(&rxmic[0]));
1097 AR_WRITE(sc, AR_KEYTABLE_KEY1(micentry), LE_READ_2(&txmic[2]));
1098
1099 AR_WRITE(sc, AR_KEYTABLE_KEY2(micentry), LE_READ_4(&rxmic[4]));
1100 AR_WRITE(sc, AR_KEYTABLE_KEY3(micentry), LE_READ_2(&txmic[0]));
1101
1102 AR_WRITE(sc, AR_KEYTABLE_KEY4(micentry), LE_READ_4(&txmic[4]));
1103 AR_WRITE(sc, AR_KEYTABLE_TYPE(micentry), AR_KEYTABLE_TYPE_CLR);
1104 }
1105 AR_WRITE(sc, AR_KEYTABLE_KEY0(entry), LE_READ_4(&key[ 0]));
1106 AR_WRITE(sc, AR_KEYTABLE_KEY1(entry), LE_READ_2(&key[ 4]));
1107
1108 AR_WRITE(sc, AR_KEYTABLE_KEY2(entry), LE_READ_4(&key[ 6]));
1109 AR_WRITE(sc, AR_KEYTABLE_KEY3(entry), LE_READ_2(&key[10]));
1110
1111 AR_WRITE(sc, AR_KEYTABLE_KEY4(entry), LE_READ_4(&key[12]));
1112 AR_WRITE(sc, AR_KEYTABLE_TYPE(entry), type);
1113
1114 if (!(k->k_flags & IEEE80211_KEY_GROUP)) {
1115 addr = ni->ni_macaddr;
1116 lo = LE_READ_4(&addr[0]);
1117 hi = LE_READ_2(&addr[4]);
1118 lo = lo >> 1 | hi << 31;
1119 hi = hi >> 1;
1120 }
1121 else
1122 lo = hi = 0;
1123 AR_WRITE(sc, AR_KEYTABLE_MAC0(entry), lo);
1124 AR_WRITE(sc, AR_KEYTABLE_MAC1(entry), hi | AR_KEYTABLE_VALID);
1125 AR_WRITE_BARRIER(sc);
1126 return 0;
1127 }
1128
1129 Static void
1130 athn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
1131 struct ieee80211_key *k)
1132 {
1133 struct athn_softc *sc = ic->ic_ifp->if_softc;
1134 uintptr_t entry;
1135
1136 switch (k->k_cipher) {
1137 case IEEE80211_CIPHER_WEP40:
1138 case IEEE80211_CIPHER_WEP104:
1139 case IEEE80211_CIPHER_CCMP:
1140 entry = (uintptr_t)k->k_priv;
1141 athn_reset_key(sc, entry);
1142 break;
1143 case IEEE80211_CIPHER_TKIP:
1144 entry = (uintptr_t)k->k_priv;
1145 athn_reset_key(sc, entry);
1146 athn_reset_key(sc, entry + 64);
1147 break;
1148 default:
1149 /* Fallback to software crypto for other ciphers. */
1150 ieee80211_delete_key(ic, ni, k);
1151 }
1152 }
1153 #endif /* notyet */
1154
1155 PUBLIC void
1156 athn_led_init(struct athn_softc *sc)
1157 {
1158 struct athn_ops *ops = &sc->sc_ops;
1159
1160 ops->gpio_config_output(sc, sc->sc_led_pin, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1161 /* LED off, active low. */
1162 athn_set_led(sc, 0);
1163 }
1164
1165 PUBLIC void
1166 athn_set_led(struct athn_softc *sc, int on)
1167 {
1168 struct athn_ops *ops = &sc->sc_ops;
1169
1170 sc->sc_led_state = on;
1171 ops->gpio_write(sc, sc->sc_led_pin, !sc->sc_led_state);
1172 }
1173
1174 #ifdef ATHN_BT_COEXISTENCE
1175 Static void
1176 athn_btcoex_init(struct athn_softc *sc)
1177 {
1178 struct athn_ops *ops = &sc->sc_ops;
1179 uint32_t reg;
1180
1181 if (sc->sc_flags & ATHN_FLAG_BTCOEX2WIRE) {
1182 /* Connect bt_active to baseband. */
1183 AR_CLRBITS(sc, sc->sc_gpio_input_en_off,
1184 AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_DEF |
1185 AR_GPIO_INPUT_EN_VAL_BT_FREQUENCY_DEF);
1186 AR_SETBITS(sc, sc->sc_gpio_input_en_off,
1187 AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB);
1188
1189 reg = AR_READ(sc, AR_GPIO_INPUT_MUX1);
1190 reg = RW(reg, AR_GPIO_INPUT_MUX1_BT_ACTIVE,
1191 AR_GPIO_BTACTIVE_PIN);
1192 AR_WRITE(sc, AR_GPIO_INPUT_MUX1, reg);
1193 AR_WRITE_BARRIER(sc);
1194
1195 ops->gpio_config_input(sc, AR_GPIO_BTACTIVE_PIN);
1196 }
1197 else { /* 3-wire. */
1198 AR_SETBITS(sc, sc->sc_gpio_input_en_off,
1199 AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_BB |
1200 AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB);
1201
1202 reg = AR_READ(sc, AR_GPIO_INPUT_MUX1);
1203 reg = RW(reg, AR_GPIO_INPUT_MUX1_BT_ACTIVE,
1204 AR_GPIO_BTACTIVE_PIN);
1205 reg = RW(reg, AR_GPIO_INPUT_MUX1_BT_PRIORITY,
1206 AR_GPIO_BTPRIORITY_PIN);
1207 AR_WRITE(sc, AR_GPIO_INPUT_MUX1, reg);
1208 AR_WRITE_BARRIER(sc);
1209
1210 ops->gpio_config_input(sc, AR_GPIO_BTACTIVE_PIN);
1211 ops->gpio_config_input(sc, AR_GPIO_BTPRIORITY_PIN);
1212 }
1213 }
1214
1215 Static void
1216 athn_btcoex_enable(struct athn_softc *sc)
1217 {
1218 struct athn_ops *ops = &sc->sc_ops;
1219 uint32_t reg;
1220
1221 if (sc->sc_flags & ATHN_FLAG_BTCOEX3WIRE) {
1222 AR_WRITE(sc, AR_BT_COEX_MODE,
1223 SM(AR_BT_MODE, AR_BT_MODE_SLOTTED) |
1224 SM(AR_BT_PRIORITY_TIME, 2) |
1225 SM(AR_BT_FIRST_SLOT_TIME, 5) |
1226 SM(AR_BT_QCU_THRESH, ATHN_QID_AC_BE) |
1227 AR_BT_TXSTATE_EXTEND | AR_BT_TX_FRAME_EXTEND |
1228 AR_BT_QUIET | AR_BT_RX_CLEAR_POLARITY);
1229 AR_WRITE(sc, AR_BT_COEX_WEIGHT,
1230 SM(AR_BTCOEX_BT_WGHT, AR_STOMP_LOW_BT_WGHT) |
1231 SM(AR_BTCOEX_WL_WGHT, AR_STOMP_LOW_WL_WGHT));
1232 AR_WRITE(sc, AR_BT_COEX_MODE2,
1233 SM(AR_BT_BCN_MISS_THRESH, 50) |
1234 AR_BT_HOLD_RX_CLEAR | AR_BT_DISABLE_BT_ANT);
1235
1236 AR_SETBITS(sc, AR_QUIET1, AR_QUIET1_QUIET_ACK_CTS_ENABLE);
1237 AR_CLRBITS(sc, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX);
1238 AR_WRITE_BARRIER(sc);
1239
1240 ops->gpio_config_output(sc, AR_GPIO_WLANACTIVE_PIN,
1241 AR_GPIO_OUTPUT_MUX_AS_RX_CLEAR_EXTERNAL);
1242
1243 }
1244 else { /* 2-wire. */
1245 ops->gpio_config_output(sc, AR_GPIO_WLANACTIVE_PIN,
1246 AR_GPIO_OUTPUT_MUX_AS_TX_FRAME);
1247 }
1248 reg = AR_READ(sc, AR_GPIO_PDPU);
1249 reg &= ~(0x3 << (AR_GPIO_WLANACTIVE_PIN * 2));
1250 reg |= 0x2 << (AR_GPIO_WLANACTIVE_PIN * 2);
1251 AR_WRITE(sc, AR_GPIO_PDPU, reg);
1252 AR_WRITE_BARRIER(sc);
1253
1254 /* Disable PCIe Active State Power Management (ASPM). */
1255 if (sc->sc_disable_aspm != NULL)
1256 sc->sc_disable_aspm(sc);
1257
1258 /* XXX Start periodic timer. */
1259 }
1260
1261 Static void
1262 athn_btcoex_disable(struct athn_softc *sc)
1263 {
1264 struct athn_ops *ops = &sc->sc_ops;
1265
1266 ops->gpio_write(sc, AR_GPIO_WLANACTIVE_PIN, 0);
1267
1268 ops->gpio_config_output(sc, AR_GPIO_WLANACTIVE_PIN,
1269 AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1270
1271 if (sc->sc_flags & ATHN_FLAG_BTCOEX3WIRE) {
1272 AR_WRITE(sc, AR_BT_COEX_MODE,
1273 SM(AR_BT_MODE, AR_BT_MODE_DISABLED) | AR_BT_QUIET);
1274 AR_WRITE(sc, AR_BT_COEX_WEIGHT, 0);
1275 AR_WRITE(sc, AR_BT_COEX_MODE2, 0);
1276 /* XXX Stop periodic timer. */
1277 }
1278 AR_WRITE_BARRIER(sc);
1279 /* XXX Restore ASPM setting? */
1280 }
1281 #endif
1282
1283 Static void
1284 athn_iter_func(void *arg, struct ieee80211_node *ni)
1285 {
1286 struct athn_softc *sc = arg;
1287 struct athn_node *an = (struct athn_node *)ni;
1288
1289 ieee80211_amrr_choose(&sc->sc_amrr, ni, &an->amn);
1290 }
1291
1292 Static void
1293 athn_calib_to(void *arg)
1294 {
1295 extern int ticks;
1296 struct athn_softc *sc = arg;
1297 struct athn_ops *ops = &sc->sc_ops;
1298 struct ieee80211com *ic = &sc->sc_ic;
1299 int s;
1300
1301 s = splnet();
1302
1303 /* Do periodic (every 4 minutes) PA calibration. */
1304 if (AR_SREV_9285_11_OR_LATER(sc) &&
1305 !AR_SREV_9380_10_OR_LATER(sc) &&
1306 (ticks - (sc->sc_pa_calib_ticks + 240 * hz)) >= 0) {
1307 sc->sc_pa_calib_ticks = ticks;
1308 if (AR_SREV_9271(sc))
1309 ar9271_pa_calib(sc);
1310 else
1311 ar9285_pa_calib(sc);
1312 }
1313
1314 /* Do periodic (every 30 seconds) temperature compensation. */
1315 if ((sc->sc_flags & ATHN_FLAG_OLPC) &&
1316 ticks >= sc->sc_olpc_ticks + 30 * hz) {
1317 sc->sc_olpc_ticks = ticks;
1318 ops->olpc_temp_compensation(sc);
1319 }
1320
1321 #ifdef notyet
1322 /* XXX ANI. */
1323 athn_ani_monitor(sc);
1324
1325 ops->next_calib(sc);
1326 #endif
1327 if (ic->ic_fixed_rate == -1) {
1328 if (ic->ic_opmode == IEEE80211_M_STA)
1329 athn_iter_func(sc, ic->ic_bss);
1330 else
1331 ieee80211_iterate_nodes(&ic->ic_sta, athn_iter_func, sc);
1332 }
1333 callout_schedule(&sc->sc_calib_to, hz / 2);
1334 splx(s);
1335 }
1336
1337 Static int
1338 athn_init_calib(struct athn_softc *sc, struct ieee80211_channel *curchan,
1339 struct ieee80211_channel *extchan)
1340 {
1341 struct athn_ops *ops = &sc->sc_ops;
1342 int error;
1343
1344 if (AR_SREV_9380_10_OR_LATER(sc))
1345 error = ar9003_init_calib(sc);
1346 else if (AR_SREV_9285_10_OR_LATER(sc))
1347 error = ar9285_init_calib(sc, curchan, extchan);
1348 else
1349 error = ar5416_init_calib(sc, curchan, extchan);
1350 if (error != 0)
1351 return error;
1352
1353 if (!AR_SREV_9380_10_OR_LATER(sc)) {
1354 /* Do PA calibration. */
1355 if (AR_SREV_9285_11_OR_LATER(sc)) {
1356 extern int ticks;
1357 sc->sc_pa_calib_ticks = ticks;
1358 if (AR_SREV_9271(sc))
1359 ar9271_pa_calib(sc);
1360 else
1361 ar9285_pa_calib(sc);
1362 }
1363 /* Do noisefloor calibration. */
1364 ops->noisefloor_calib(sc);
1365 }
1366 if (AR_SREV_9160_10_OR_LATER(sc)) {
1367 /* Support IQ calibration. */
1368 sc->sc_sup_calib_mask = ATHN_CAL_IQ;
1369 if (AR_SREV_9380_10_OR_LATER(sc)) {
1370 /* Support temperature compensation calibration. */
1371 sc->sc_sup_calib_mask |= ATHN_CAL_TEMP;
1372 }
1373 else if (IEEE80211_IS_CHAN_5GHZ(curchan) || extchan != NULL) {
1374 /*
1375 * ADC gain calibration causes uplink throughput
1376 * drops in HT40 mode on AR9287.
1377 */
1378 if (!AR_SREV_9287(sc)) {
1379 /* Support ADC gain calibration. */
1380 sc->sc_sup_calib_mask |= ATHN_CAL_ADC_GAIN;
1381 }
1382 /* Support ADC DC offset calibration. */
1383 sc->sc_sup_calib_mask |= ATHN_CAL_ADC_DC;
1384 }
1385 }
1386 return 0;
1387 }
1388
1389 /*
1390 * Adaptive noise immunity.
1391 */
1392 #ifdef notyet
1393 Static int32_t
1394 athn_ani_get_rssi(struct athn_softc *sc)
1395 {
1396
1397 return 0; /* XXX */
1398 }
1399 #endif /* notyet */
1400
1401 #ifdef notyet
1402 Static void
1403 athn_ani_ofdm_err_trigger(struct athn_softc *sc)
1404 {
1405 struct athn_ani *ani = &sc->sc_ani;
1406 struct athn_ops *ops = &sc->sc_ops;
1407 int32_t rssi;
1408
1409 /* First, raise noise immunity level, up to max. */
1410 if (ani->noise_immunity_level < 4) {
1411 ani->noise_immunity_level++;
1412 ops->set_noise_immunity_level(sc, ani->noise_immunity_level);
1413 return;
1414 }
1415
1416 /* Then, raise our spur immunity level, up to max. */
1417 if (ani->spur_immunity_level < 7) {
1418 ani->spur_immunity_level++;
1419 ops->set_spur_immunity_level(sc, ani->spur_immunity_level);
1420 return;
1421 }
1422
1423 #ifndef IEEE80211_STA_ONLY
1424 if (sc->sc_ic.ic_opmode == IEEE80211_M_HOSTAP) {
1425 if (ani->firstep_level < 2) {
1426 ani->firstep_level++;
1427 ops->set_firstep_level(sc, ani->firstep_level);
1428 }
1429 return;
1430 }
1431 #endif
1432 rssi = athn_ani_get_rssi(sc);
1433 if (rssi > ATHN_ANI_RSSI_THR_HIGH) {
1434 /*
1435 * Beacon RSSI is high, turn off OFDM weak signal detection
1436 * or raise first step level as last resort.
1437 */
1438 if (ani->ofdm_weak_signal) {
1439 ani->ofdm_weak_signal = 0;
1440 ops->disable_ofdm_weak_signal(sc);
1441 ani->spur_immunity_level = 0;
1442 ops->set_spur_immunity_level(sc, 0);
1443 }
1444 else if (ani->firstep_level < 2) {
1445 ani->firstep_level++;
1446 ops->set_firstep_level(sc, ani->firstep_level);
1447 }
1448 }
1449 else if (rssi > ATHN_ANI_RSSI_THR_LOW) {
1450 /*
1451 * Beacon RSSI is in mid range, we need OFDM weak signal
1452 * detection but we can raise first step level.
1453 */
1454 if (!ani->ofdm_weak_signal) {
1455 ani->ofdm_weak_signal = 1;
1456 ops->enable_ofdm_weak_signal(sc);
1457 }
1458 if (ani->firstep_level < 2) {
1459 ani->firstep_level++;
1460 ops->set_firstep_level(sc, ani->firstep_level);
1461 }
1462 }
1463 else if (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) {
1464 /*
1465 * Beacon RSSI is low, if in b/g mode, turn off OFDM weak
1466 * signal detection and zero first step level to maximize
1467 * CCK sensitivity.
1468 */
1469 if (ani->ofdm_weak_signal) {
1470 ani->ofdm_weak_signal = 0;
1471 ops->disable_ofdm_weak_signal(sc);
1472 }
1473 if (ani->firstep_level > 0) {
1474 ani->firstep_level = 0;
1475 ops->set_firstep_level(sc, 0);
1476 }
1477 }
1478 }
1479 #endif /* notyet */
1480
1481 #ifdef notyet
1482 Static void
1483 athn_ani_cck_err_trigger(struct athn_softc *sc)
1484 {
1485 struct athn_ani *ani = &sc->sc_ani;
1486 struct athn_ops *ops = &sc->sc_ops;
1487 int32_t rssi;
1488
1489 /* Raise noise immunity level, up to max. */
1490 if (ani->noise_immunity_level < 4) {
1491 ani->noise_immunity_level++;
1492 ops->set_noise_immunity_level(sc, ani->noise_immunity_level);
1493 return;
1494 }
1495
1496 #ifndef IEEE80211_STA_ONLY
1497 if (sc->sc_ic.ic_opmode == IEEE80211_M_HOSTAP) {
1498 if (ani->firstep_level < 2) {
1499 ani->firstep_level++;
1500 ops->set_firstep_level(sc, ani->firstep_level);
1501 }
1502 return;
1503 }
1504 #endif
1505 rssi = athn_ani_get_rssi(sc);
1506 if (rssi > ATHN_ANI_RSSI_THR_LOW) {
1507 /*
1508 * Beacon RSSI is in mid or high range, raise first step
1509 * level.
1510 */
1511 if (ani->firstep_level < 2) {
1512 ani->firstep_level++;
1513 ops->set_firstep_level(sc, ani->firstep_level);
1514 }
1515 }
1516 else if (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) {
1517 /*
1518 * Beacon RSSI is low, zero first step level to maximize
1519 * CCK sensitivity.
1520 */
1521 if (ani->firstep_level > 0) {
1522 ani->firstep_level = 0;
1523 ops->set_firstep_level(sc, 0);
1524 }
1525 }
1526 }
1527 #endif /* notyet */
1528
1529 #ifdef notyet
1530 Static void
1531 athn_ani_lower_immunity(struct athn_softc *sc)
1532 {
1533 struct athn_ani *ani = &sc->sc_ani;
1534 struct athn_ops *ops = &sc->sc_ops;
1535 int32_t rssi;
1536
1537 #ifndef IEEE80211_STA_ONLY
1538 if (sc->sc_ic.ic_opmode == IEEE80211_M_HOSTAP) {
1539 if (ani->firstep_level > 0) {
1540 ani->firstep_level--;
1541 ops->set_firstep_level(sc, ani->firstep_level);
1542 }
1543 return;
1544 }
1545 #endif
1546 rssi = athn_ani_get_rssi(sc);
1547 if (rssi > ATHN_ANI_RSSI_THR_HIGH) {
1548 /*
1549 * Beacon RSSI is high, leave OFDM weak signal detection
1550 * off or it may oscillate.
1551 */
1552 }
1553 else if (rssi > ATHN_ANI_RSSI_THR_LOW) {
1554 /*
1555 * Beacon RSSI is in mid range, turn on OFDM weak signal
1556 * detection or lower first step level.
1557 */
1558 if (!ani->ofdm_weak_signal) {
1559 ani->ofdm_weak_signal = 1;
1560 ops->enable_ofdm_weak_signal(sc);
1561 return;
1562 }
1563 if (ani->firstep_level > 0) {
1564 ani->firstep_level--;
1565 ops->set_firstep_level(sc, ani->firstep_level);
1566 return;
1567 }
1568 }
1569 else {
1570 /* Beacon RSSI is low, lower first step level. */
1571 if (ani->firstep_level > 0) {
1572 ani->firstep_level--;
1573 ops->set_firstep_level(sc, ani->firstep_level);
1574 return;
1575 }
1576 }
1577 /*
1578 * Lower spur immunity level down to zero, or if all else fails,
1579 * lower noise immunity level down to zero.
1580 */
1581 if (ani->spur_immunity_level > 0) {
1582 ani->spur_immunity_level--;
1583 ops->set_spur_immunity_level(sc, ani->spur_immunity_level);
1584 }
1585 else if (ani->noise_immunity_level > 0) {
1586 ani->noise_immunity_level--;
1587 ops->set_noise_immunity_level(sc, ani->noise_immunity_level);
1588 }
1589 }
1590 #endif /* notyet */
1591
1592 #ifdef notyet
1593 Static void
1594 athn_ani_restart(struct athn_softc *sc)
1595 {
1596 struct athn_ani *ani = &sc->sc_ani;
1597
1598 AR_WRITE(sc, AR_PHY_ERR_1, 0);
1599 AR_WRITE(sc, AR_PHY_ERR_2, 0);
1600 AR_WRITE(sc, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING);
1601 AR_WRITE(sc, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING);
1602 AR_WRITE_BARRIER(sc);
1603
1604 ani->listen_time = 0;
1605 ani->ofdm_phy_err_count = 0;
1606 ani->cck_phy_err_count = 0;
1607 }
1608 #endif /* notyet */
1609
1610 #ifdef notyet
1611 Static void
1612 athn_ani_monitor(struct athn_softc *sc)
1613 {
1614 struct athn_ani *ani = &sc->sc_ani;
1615 uint32_t cyccnt, txfcnt, rxfcnt, phy1, phy2;
1616 int32_t cycdelta, txfdelta, rxfdelta;
1617 int32_t listen_time;
1618
1619 txfcnt = AR_READ(sc, AR_TFCNT); /* Tx frame count. */
1620 rxfcnt = AR_READ(sc, AR_RFCNT); /* Rx frame count. */
1621 cyccnt = AR_READ(sc, AR_CCCNT); /* Cycle count. */
1622
1623 if (ani->cyccnt != 0 && ani->cyccnt <= cyccnt) {
1624 cycdelta = cyccnt - ani->cyccnt;
1625 txfdelta = txfcnt - ani->txfcnt;
1626 rxfdelta = rxfcnt - ani->rxfcnt;
1627
1628 listen_time = (cycdelta - txfdelta - rxfdelta) /
1629 (athn_clock_rate(sc) * 1000);
1630 }
1631 else
1632 listen_time = 0;
1633
1634 ani->cyccnt = cyccnt;
1635 ani->txfcnt = txfcnt;
1636 ani->rxfcnt = rxfcnt;
1637
1638 if (listen_time < 0) {
1639 athn_ani_restart(sc);
1640 return;
1641 }
1642 ani->listen_time += listen_time;
1643
1644 phy1 = AR_READ(sc, AR_PHY_ERR_1);
1645 phy2 = AR_READ(sc, AR_PHY_ERR_2);
1646
1647 if (phy1 < ani->ofdm_phy_err_base) {
1648 AR_WRITE(sc, AR_PHY_ERR_1, ani->ofdm_phy_err_base);
1649 AR_WRITE(sc, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING);
1650 }
1651 if (phy2 < ani->cck_phy_err_base) {
1652 AR_WRITE(sc, AR_PHY_ERR_2, ani->cck_phy_err_base);
1653 AR_WRITE(sc, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING);
1654 }
1655 if (phy1 < ani->ofdm_phy_err_base || phy2 < ani->cck_phy_err_base) {
1656 AR_WRITE_BARRIER(sc);
1657 return;
1658 }
1659 ani->ofdm_phy_err_count = phy1 - ani->ofdm_phy_err_base;
1660 ani->cck_phy_err_count = phy2 - ani->cck_phy_err_base;
1661
1662 if (ani->listen_time > 5 * ATHN_ANI_PERIOD) {
1663 /* Check to see if we need to lower immunity. */
1664 if (ani->ofdm_phy_err_count <=
1665 ani->listen_time * ani->ofdm_trig_low / 1000 &&
1666 ani->cck_phy_err_count <=
1667 ani->listen_time * ani->cck_trig_low / 1000)
1668 athn_ani_lower_immunity(sc);
1669 athn_ani_restart(sc);
1670
1671 }
1672 else if (ani->listen_time > ATHN_ANI_PERIOD) {
1673 /* Check to see if we need to raise immunity. */
1674 if (ani->ofdm_phy_err_count >
1675 ani->listen_time * ani->ofdm_trig_high / 1000) {
1676 athn_ani_ofdm_err_trigger(sc);
1677 athn_ani_restart(sc);
1678 }
1679 else if (ani->cck_phy_err_count >
1680 ani->listen_time * ani->cck_trig_high / 1000) {
1681 athn_ani_cck_err_trigger(sc);
1682 athn_ani_restart(sc);
1683 }
1684 }
1685 }
1686 #endif /* notyet */
1687
1688 PUBLIC uint8_t
1689 athn_chan2fbin(struct ieee80211_channel *c)
1690 {
1691
1692 if (IEEE80211_IS_CHAN_2GHZ(c))
1693 return c->ic_freq - 2300;
1694 else
1695 return (c->ic_freq - 4800) / 5;
1696 }
1697
1698 PUBLIC int
1699 athn_interpolate(int x, int x1, int y1, int x2, int y2)
1700 {
1701
1702 if (x1 == x2) /* Prevents division by zero. */
1703 return y1;
1704 /* Linear interpolation. */
1705 return y1 + ((x - x1) * (y2 - y1)) / (x2 - x1);
1706 }
1707
1708 PUBLIC void
1709 athn_get_pier_ival(uint8_t fbin, const uint8_t *pierfreq, int npiers,
1710 int *lo, int *hi)
1711 {
1712 int i;
1713
1714 for (i = 0; i < npiers; i++)
1715 if (pierfreq[i] == AR_BCHAN_UNUSED ||
1716 pierfreq[i] > fbin)
1717 break;
1718 *hi = i;
1719 *lo = *hi - 1;
1720 if (*lo == -1)
1721 *lo = *hi;
1722 else if (*hi == npiers || pierfreq[*hi] == AR_BCHAN_UNUSED)
1723 *hi = *lo;
1724 }
1725
1726 Static void
1727 athn_init_dma(struct athn_softc *sc)
1728 {
1729 uint32_t reg;
1730
1731 if (!AR_SREV_9380_10_OR_LATER(sc)) {
1732 /* Set AHB not to do cacheline prefetches. */
1733 AR_SETBITS(sc, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1734 }
1735 reg = AR_READ(sc, AR_TXCFG);
1736 /* Let MAC DMA reads be in 128-byte chunks. */
1737 reg = RW(reg, AR_TXCFG_DMASZ, AR_DMASZ_128B);
1738
1739 /* Set initial Tx trigger level. */
1740 if (AR_SREV_9285(sc) || AR_SREV_9271(sc))
1741 reg = RW(reg, AR_TXCFG_FTRIG, AR_TXCFG_FTRIG_256B);
1742 else if (!AR_SREV_9380_10_OR_LATER(sc))
1743 reg = RW(reg, AR_TXCFG_FTRIG, AR_TXCFG_FTRIG_512B);
1744 AR_WRITE(sc, AR_TXCFG, reg);
1745
1746 /* Let MAC DMA writes be in 128-byte chunks. */
1747 reg = AR_READ(sc, AR_RXCFG);
1748 reg = RW(reg, AR_RXCFG_DMASZ, AR_DMASZ_128B);
1749 AR_WRITE(sc, AR_RXCFG, reg);
1750
1751 /* Setup Rx FIFO threshold to hold off Tx activities. */
1752 AR_WRITE(sc, AR_RXFIFO_CFG, 512);
1753
1754 /* Reduce the number of entries in PCU TXBUF to avoid wrap around. */
1755 if (AR_SREV_9285(sc)) {
1756 AR_WRITE(sc, AR_PCU_TXBUF_CTRL,
1757 AR9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1758 }
1759 else if (!AR_SREV_9271(sc)) {
1760 AR_WRITE(sc, AR_PCU_TXBUF_CTRL,
1761 AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1762 }
1763 AR_WRITE_BARRIER(sc);
1764
1765 /* Reset Tx status ring. */
1766 if (AR_SREV_9380_10_OR_LATER(sc))
1767 ar9003_reset_txsring(sc);
1768 }
1769
1770 PUBLIC void
1771 athn_inc_tx_trigger_level(struct athn_softc *sc)
1772 {
1773 uint32_t reg, ftrig;
1774
1775 reg = AR_READ(sc, AR_TXCFG);
1776 ftrig = MS(reg, AR_TXCFG_FTRIG);
1777 /*
1778 * NB: The AR9285 and all single-stream parts have an issue that
1779 * limits the size of the PCU Tx FIFO to 2KB instead of 4KB.
1780 */
1781 if (ftrig == ((AR_SREV_9285(sc) || AR_SREV_9271(sc)) ? 0x1f : 0x3f))
1782 return; /* Already at max. */
1783 reg = RW(reg, AR_TXCFG_FTRIG, ftrig + 1);
1784 AR_WRITE(sc, AR_TXCFG, reg);
1785 AR_WRITE_BARRIER(sc);
1786 }
1787
1788 PUBLIC int
1789 athn_stop_rx_dma(struct athn_softc *sc)
1790 {
1791 int ntries;
1792
1793 AR_WRITE(sc, AR_CR, AR_CR_RXD);
1794 /* Wait for Rx enable bit to go low. */
1795 for (ntries = 0; ntries < 100; ntries++) {
1796 if (!(AR_READ(sc, AR_CR) & AR_CR_RXE))
1797 return 0;
1798 DELAY(100);
1799 }
1800 DPRINTFN(DBG_RX, sc, "Rx DMA failed to stop\n");
1801 return ETIMEDOUT;
1802 }
1803
1804 #ifdef unused
1805 Static int
1806 athn_rx_abort(struct athn_softc *sc)
1807 {
1808 int ntries;
1809
1810 AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
1811 for (ntries = 0; ntries < 1000; ntries++) {
1812 if (MS(AR_READ(sc, AR_OBS_BUS_1), AR_OBS_BUS_1_RX_STATE) == 0)
1813 return 0;
1814 DELAY(10);
1815 }
1816 DPRINTFN(DBG_RX, sc, "Rx failed to go idle in 10ms\n");
1817 AR_CLRBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
1818 AR_WRITE_BARRIER(sc);
1819 return ETIMEDOUT;
1820 }
1821 #endif /* unused */
1822
1823 Static void
1824 athn_tx_reclaim(struct athn_softc *sc, int qid)
1825 {
1826 struct athn_txq *txq = &sc->sc_txq[qid];
1827 struct athn_tx_buf *bf;
1828
1829 /* Reclaim all buffers queued in the specified Tx queue. */
1830 /* NB: Tx DMA must be stopped. */
1831 while ((bf = SIMPLEQ_FIRST(&txq->head)) != NULL) {
1832 SIMPLEQ_REMOVE_HEAD(&txq->head, bf_list);
1833
1834 bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0,
1835 bf->bf_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1836 bus_dmamap_unload(sc->sc_dmat, bf->bf_map);
1837 m_freem(bf->bf_m);
1838 bf->bf_m = NULL;
1839 bf->bf_ni = NULL; /* Nodes already freed! */
1840
1841 /* Link Tx buffer back to global free list. */
1842 SIMPLEQ_INSERT_TAIL(&sc->sc_txbufs, bf, bf_list);
1843 }
1844 }
1845
1846 PUBLIC int
1847 athn_tx_pending(struct athn_softc *sc, int qid)
1848 {
1849
1850 return MS(AR_READ(sc, AR_QSTS(qid)), AR_Q_STS_PEND_FR_CNT) != 0 ||
1851 (AR_READ(sc, AR_Q_TXE) & (1 << qid)) != 0;
1852 }
1853
1854 PUBLIC void
1855 athn_stop_tx_dma(struct athn_softc *sc, int qid)
1856 {
1857 uint32_t tsflo;
1858 int ntries, i;
1859
1860 AR_WRITE(sc, AR_Q_TXD, 1 << qid);
1861 for (ntries = 0; ntries < 40; ntries++) {
1862 if (!athn_tx_pending(sc, qid))
1863 break;
1864 DELAY(100);
1865 }
1866 if (ntries == 40) {
1867 for (i = 0; i < 2; i++) {
1868 tsflo = AR_READ(sc, AR_TSF_L32) / 1024;
1869 AR_WRITE(sc, AR_QUIET2,
1870 SM(AR_QUIET2_QUIET_DUR, 10));
1871 AR_WRITE(sc, AR_QUIET_PERIOD, 100);
1872 AR_WRITE(sc, AR_NEXT_QUIET_TIMER, tsflo);
1873 AR_SETBITS(sc, AR_TIMER_MODE, AR_QUIET_TIMER_EN);
1874 if (AR_READ(sc, AR_TSF_L32) / 1024 == tsflo)
1875 break;
1876 }
1877 AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
1878 AR_WRITE_BARRIER(sc);
1879 DELAY(200);
1880 AR_CLRBITS(sc, AR_TIMER_MODE, AR_QUIET_TIMER_EN);
1881 AR_WRITE_BARRIER(sc);
1882
1883 for (ntries = 0; ntries < 40; ntries++) {
1884 if (!athn_tx_pending(sc, qid))
1885 break;
1886 DELAY(100);
1887 }
1888
1889 AR_CLRBITS(sc, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
1890 }
1891 AR_WRITE(sc, AR_Q_TXD, 0);
1892 AR_WRITE_BARRIER(sc);
1893 }
1894
1895 PUBLIC int
1896 athn_txtime(struct athn_softc *sc, int len, int ridx, u_int flags)
1897 {
1898 #define divround(a, b) (((a) + (b) - 1) / (b))
1899 int txtime;
1900
1901 /* XXX HT. */
1902 if (athn_rates[ridx].phy == IEEE80211_T_OFDM) {
1903 txtime = divround(8 + 4 * len + 3, athn_rates[ridx].rate);
1904 /* SIFS is 10us for 11g but Signal Extension adds 6us. */
1905 txtime = 16 + 4 + 4 * txtime + 16;
1906 }
1907 else {
1908 txtime = divround(16 * len, athn_rates[ridx].rate);
1909 if (ridx != ATHN_RIDX_CCK1 && (flags & IEEE80211_F_SHPREAMBLE))
1910 txtime += 72 + 24;
1911 else
1912 txtime += 144 + 48;
1913 txtime += 10; /* 10us SIFS. */
1914 }
1915 return txtime;
1916 #undef divround
1917 }
1918
1919 PUBLIC void
1920 athn_init_tx_queues(struct athn_softc *sc)
1921 {
1922 int qid;
1923
1924 for (qid = 0; qid < ATHN_QID_COUNT; qid++) {
1925 SIMPLEQ_INIT(&sc->sc_txq[qid].head);
1926 sc->sc_txq[qid].lastds = NULL;
1927 sc->sc_txq[qid].wait = NULL;
1928 sc->sc_txq[qid].queued = 0;
1929
1930 AR_WRITE(sc, AR_DRETRY_LIMIT(qid),
1931 SM(AR_D_RETRY_LIMIT_STA_SH, 32) |
1932 SM(AR_D_RETRY_LIMIT_STA_LG, 32) |
1933 SM(AR_D_RETRY_LIMIT_FR_SH, 10));
1934 AR_WRITE(sc, AR_QMISC(qid),
1935 AR_Q_MISC_DCU_EARLY_TERM_REQ);
1936 AR_WRITE(sc, AR_DMISC(qid),
1937 SM(AR_D_MISC_BKOFF_THRESH, 2) |
1938 AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN);
1939 }
1940
1941 /* Init beacon queue. */
1942 AR_SETBITS(sc, AR_QMISC(ATHN_QID_BEACON),
1943 AR_Q_MISC_FSP_DBA_GATED | AR_Q_MISC_BEACON_USE |
1944 AR_Q_MISC_CBR_INCR_DIS1);
1945 AR_SETBITS(sc, AR_DMISC(ATHN_QID_BEACON),
1946 SM(AR_D_MISC_ARB_LOCKOUT_CNTRL,
1947 AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL) |
1948 AR_D_MISC_BEACON_USE |
1949 AR_D_MISC_POST_FR_BKOFF_DIS);
1950 AR_WRITE(sc, AR_DLCL_IFS(ATHN_QID_BEACON),
1951 SM(AR_D_LCL_IFS_CWMIN, 0) |
1952 SM(AR_D_LCL_IFS_CWMAX, 0) |
1953 SM(AR_D_LCL_IFS_AIFS, 1));
1954
1955 /* Init CAB (Content After Beacon) queue. */
1956 AR_SETBITS(sc, AR_QMISC(ATHN_QID_CAB),
1957 AR_Q_MISC_FSP_DBA_GATED | AR_Q_MISC_CBR_INCR_DIS1 |
1958 AR_Q_MISC_CBR_INCR_DIS0);
1959 AR_SETBITS(sc, AR_DMISC(ATHN_QID_CAB),
1960 SM(AR_D_MISC_ARB_LOCKOUT_CNTRL,
1961 AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL));
1962
1963 /* Init PS-Poll queue. */
1964 AR_SETBITS(sc, AR_QMISC(ATHN_QID_PSPOLL),
1965 AR_Q_MISC_CBR_INCR_DIS1);
1966
1967 /* Init UAPSD queue. */
1968 AR_SETBITS(sc, AR_DMISC(ATHN_QID_UAPSD),
1969 AR_D_MISC_POST_FR_BKOFF_DIS);
1970
1971 if (AR_SREV_9380_10_OR_LATER(sc)) {
1972 /* Enable MAC descriptor CRC check. */
1973 AR_WRITE(sc, AR_Q_DESC_CRCCHK, AR_Q_DESC_CRCCHK_EN);
1974 }
1975 /* Enable DESC interrupts for all Tx queues. */
1976 AR_WRITE(sc, AR_IMR_S0, 0x00ff0000);
1977 /* Enable EOL interrupts for all Tx queues except UAPSD. */
1978 AR_WRITE(sc, AR_IMR_S1, 0x00df0000);
1979 AR_WRITE_BARRIER(sc);
1980 }
1981
1982 PUBLIC void
1983 athn_set_sta_timers(struct athn_softc *sc)
1984 {
1985 struct ieee80211com *ic = &sc->sc_ic;
1986 uint32_t tsfhi, tsflo, tsftu, reg;
1987 uint32_t intval, next_tbtt, next_dtim;
1988 int dtim_period, rem_dtim_count;
1989
1990 tsfhi = AR_READ(sc, AR_TSF_U32);
1991 tsflo = AR_READ(sc, AR_TSF_L32);
1992 tsftu = AR_TSF_TO_TU(tsfhi, tsflo) + AR_FUDGE;
1993
1994 /* Beacon interval in TU. */
1995 intval = ic->ic_bss->ni_intval;
1996
1997 next_tbtt = roundup(tsftu, intval);
1998 #ifdef notyet
1999 dtim_period = ic->ic_dtim_period;
2000 if (dtim_period <= 0)
2001 #endif
2002 dtim_period = 1; /* Assume all TIMs are DTIMs. */
2003
2004 #ifdef notyet
2005 int dtim_count = ic->ic_dtim_count;
2006 if (dtim_count >= dtim_period) /* Should not happen. */
2007 dtim_count = 0; /* Assume last TIM was a DTIM. */
2008 #endif
2009
2010 /* Compute number of remaining TIMs until next DTIM. */
2011 rem_dtim_count = 0; /* XXX */
2012 next_dtim = next_tbtt + rem_dtim_count * intval;
2013
2014 AR_WRITE(sc, AR_NEXT_TBTT_TIMER, next_tbtt * IEEE80211_DUR_TU);
2015 AR_WRITE(sc, AR_BEACON_PERIOD, intval * IEEE80211_DUR_TU);
2016 AR_WRITE(sc, AR_DMA_BEACON_PERIOD, intval * IEEE80211_DUR_TU);
2017
2018 /*
2019 * Set the number of consecutive beacons to miss before raising
2020 * a BMISS interrupt to 10.
2021 */
2022 reg = AR_READ(sc, AR_RSSI_THR);
2023 reg = RW(reg, AR_RSSI_THR_BM_THR, 10);
2024 AR_WRITE(sc, AR_RSSI_THR, reg);
2025
2026 AR_WRITE(sc, AR_NEXT_DTIM,
2027 (next_dtim - AR_SLEEP_SLOP) * IEEE80211_DUR_TU);
2028 AR_WRITE(sc, AR_NEXT_TIM,
2029 (next_tbtt - AR_SLEEP_SLOP) * IEEE80211_DUR_TU);
2030
2031 /* CAB timeout is in 1/8 TU. */
2032 AR_WRITE(sc, AR_SLEEP1,
2033 SM(AR_SLEEP1_CAB_TIMEOUT, AR_CAB_TIMEOUT_VAL * 8) |
2034 AR_SLEEP1_ASSUME_DTIM);
2035 AR_WRITE(sc, AR_SLEEP2,
2036 SM(AR_SLEEP2_BEACON_TIMEOUT, AR_MIN_BEACON_TIMEOUT_VAL));
2037
2038 AR_WRITE(sc, AR_TIM_PERIOD, intval * IEEE80211_DUR_TU);
2039 AR_WRITE(sc, AR_DTIM_PERIOD, dtim_period * intval * IEEE80211_DUR_TU);
2040
2041 AR_SETBITS(sc, AR_TIMER_MODE,
2042 AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN | AR_DTIM_TIMER_EN);
2043
2044 /* Set TSF out-of-range threshold (fixed at 16k us). */
2045 AR_WRITE(sc, AR_TSFOOR_THRESHOLD, 0x4240);
2046
2047 AR_WRITE_BARRIER(sc);
2048 }
2049
2050 #ifndef IEEE80211_STA_ONLY
2051 PUBLIC void
2052 athn_set_hostap_timers(struct athn_softc *sc)
2053 {
2054 struct ieee80211com *ic = &sc->sc_ic;
2055 uint32_t intval, next_tbtt;
2056
2057 /* Beacon interval in TU. */
2058 intval = ic->ic_bss->ni_intval;
2059 next_tbtt = intval;
2060
2061 AR_WRITE(sc, AR_NEXT_TBTT_TIMER, next_tbtt * IEEE80211_DUR_TU);
2062 AR_WRITE(sc, AR_NEXT_DMA_BEACON_ALERT,
2063 (next_tbtt - AR_BEACON_DMA_DELAY) * IEEE80211_DUR_TU);
2064 AR_WRITE(sc, AR_NEXT_CFP,
2065 (next_tbtt - AR_SWBA_DELAY) * IEEE80211_DUR_TU);
2066
2067 AR_WRITE(sc, AR_BEACON_PERIOD, intval * IEEE80211_DUR_TU);
2068 AR_WRITE(sc, AR_DMA_BEACON_PERIOD, intval * IEEE80211_DUR_TU);
2069 AR_WRITE(sc, AR_SWBA_PERIOD, intval * IEEE80211_DUR_TU);
2070 AR_WRITE(sc, AR_NDP_PERIOD, intval * IEEE80211_DUR_TU);
2071
2072 AR_WRITE(sc, AR_TIMER_MODE,
2073 AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN);
2074
2075 AR_WRITE_BARRIER(sc);
2076 }
2077 #endif
2078
2079 PUBLIC void
2080 athn_set_opmode(struct athn_softc *sc)
2081 {
2082 uint32_t reg;
2083
2084 switch (sc->sc_ic.ic_opmode) {
2085 #ifndef IEEE80211_STA_ONLY
2086 case IEEE80211_M_HOSTAP:
2087 reg = AR_READ(sc, AR_STA_ID1);
2088 reg &= ~AR_STA_ID1_ADHOC;
2089 reg |= AR_STA_ID1_STA_AP | AR_STA_ID1_KSRCH_MODE;
2090 AR_WRITE(sc, AR_STA_ID1, reg);
2091
2092 AR_CLRBITS(sc, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
2093 break;
2094 case IEEE80211_M_IBSS:
2095 case IEEE80211_M_AHDEMO:
2096 reg = AR_READ(sc, AR_STA_ID1);
2097 reg &= ~AR_STA_ID1_STA_AP;
2098 reg |= AR_STA_ID1_ADHOC | AR_STA_ID1_KSRCH_MODE;
2099 AR_WRITE(sc, AR_STA_ID1, reg);
2100
2101 AR_SETBITS(sc, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
2102 break;
2103 #endif
2104 default:
2105 reg = AR_READ(sc, AR_STA_ID1);
2106 reg &= ~(AR_STA_ID1_ADHOC | AR_STA_ID1_STA_AP);
2107 reg |= AR_STA_ID1_KSRCH_MODE;
2108 AR_WRITE(sc, AR_STA_ID1, reg);
2109 break;
2110 }
2111 AR_WRITE_BARRIER(sc);
2112 }
2113
2114 PUBLIC void
2115 athn_set_bss(struct athn_softc *sc, struct ieee80211_node *ni)
2116 {
2117 const uint8_t *bssid = ni->ni_bssid;
2118
2119 AR_WRITE(sc, AR_BSS_ID0, LE_READ_4(&bssid[0]));
2120 AR_WRITE(sc, AR_BSS_ID1, LE_READ_2(&bssid[4]) |
2121 SM(AR_BSS_ID1_AID, IEEE80211_AID(ni->ni_associd)));
2122 AR_WRITE_BARRIER(sc);
2123 }
2124
2125 Static void
2126 athn_enable_interrupts(struct athn_softc *sc)
2127 {
2128 uint32_t mask2;
2129
2130 athn_disable_interrupts(sc); /* XXX */
2131
2132 AR_WRITE(sc, AR_IMR, sc->sc_imask);
2133
2134 mask2 = AR_READ(sc, AR_IMR_S2);
2135 mask2 &= ~(AR_IMR_S2_TIM | AR_IMR_S2_DTIM | AR_IMR_S2_DTIMSYNC |
2136 AR_IMR_S2_CABEND | AR_IMR_S2_CABTO | AR_IMR_S2_TSFOOR);
2137 mask2 |= AR_IMR_S2_GTT | AR_IMR_S2_CST;
2138 AR_WRITE(sc, AR_IMR_S2, mask2);
2139
2140 AR_CLRBITS(sc, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
2141
2142 AR_WRITE(sc, AR_IER, AR_IER_ENABLE);
2143
2144 AR_WRITE(sc, AR_INTR_ASYNC_ENABLE, AR_INTR_MAC_IRQ);
2145 AR_WRITE(sc, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
2146
2147 AR_WRITE(sc, AR_INTR_SYNC_ENABLE, sc->sc_isync);
2148 AR_WRITE(sc, AR_INTR_SYNC_MASK, sc->sc_isync);
2149 AR_WRITE_BARRIER(sc);
2150 }
2151
2152 Static void
2153 athn_disable_interrupts(struct athn_softc *sc)
2154 {
2155
2156 AR_WRITE(sc, AR_IER, 0);
2157 (void)AR_READ(sc, AR_IER);
2158
2159 AR_WRITE(sc, AR_INTR_ASYNC_ENABLE, 0);
2160 (void)AR_READ(sc, AR_INTR_ASYNC_ENABLE);
2161
2162 AR_WRITE(sc, AR_INTR_SYNC_ENABLE, 0);
2163 (void)AR_READ(sc, AR_INTR_SYNC_ENABLE);
2164
2165 AR_WRITE(sc, AR_IMR, 0);
2166
2167 AR_CLRBITS(sc, AR_IMR_S2, AR_IMR_S2_TIM | AR_IMR_S2_DTIM |
2168 AR_IMR_S2_DTIMSYNC | AR_IMR_S2_CABEND | AR_IMR_S2_CABTO |
2169 AR_IMR_S2_TSFOOR | AR_IMR_S2_GTT | AR_IMR_S2_CST);
2170
2171 AR_CLRBITS(sc, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
2172 AR_WRITE_BARRIER(sc);
2173 }
2174
2175 Static void
2176 athn_init_qos(struct athn_softc *sc)
2177 {
2178
2179 /* Initialize QoS settings. */
2180 AR_WRITE(sc, AR_MIC_QOS_CONTROL, 0x100aa);
2181 AR_WRITE(sc, AR_MIC_QOS_SELECT, 0x3210);
2182 AR_WRITE(sc, AR_QOS_NO_ACK,
2183 SM(AR_QOS_NO_ACK_TWO_BIT, 2) |
2184 SM(AR_QOS_NO_ACK_BIT_OFF, 5) |
2185 SM(AR_QOS_NO_ACK_BYTE_OFF, 0));
2186 AR_WRITE(sc, AR_TXOP_X, AR_TXOP_X_VAL);
2187 /* Initialize TXOP for all TIDs. */
2188 AR_WRITE(sc, AR_TXOP_0_3, 0xffffffff);
2189 AR_WRITE(sc, AR_TXOP_4_7, 0xffffffff);
2190 AR_WRITE(sc, AR_TXOP_8_11, 0xffffffff);
2191 AR_WRITE(sc, AR_TXOP_12_15, 0xffffffff);
2192 AR_WRITE_BARRIER(sc);
2193 }
2194
2195 PUBLIC int
2196 athn_hw_reset(struct athn_softc *sc, struct ieee80211_channel *curchan,
2197 struct ieee80211_channel *extchan, int init)
2198 {
2199 struct ieee80211com *ic = &sc->sc_ic;
2200 struct athn_ops *ops = &sc->sc_ops;
2201 uint32_t reg, def_ant, sta_id1, cfg_led, tsflo, tsfhi;
2202 int i, error;
2203
2204 /* XXX not if already awake */
2205 if ((error = athn_set_power_awake(sc)) != 0) {
2206 aprint_error_dev(sc->sc_dev, "could not wakeup chip\n");
2207 return error;
2208 }
2209
2210 /* Preserve the antenna on a channel switch. */
2211 if ((def_ant = AR_READ(sc, AR_DEF_ANTENNA)) == 0)
2212 def_ant = 1;
2213 /* Preserve other registers. */
2214 sta_id1 = AR_READ(sc, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
2215 cfg_led = AR_READ(sc, AR_CFG_LED) & (AR_CFG_LED_ASSOC_CTL_M |
2216 AR_CFG_LED_MODE_SEL_M | AR_CFG_LED_BLINK_THRESH_SEL_M |
2217 AR_CFG_LED_BLINK_SLOW);
2218
2219 /* Mark PHY as inactive. */
2220 ops->disable_phy(sc);
2221
2222 if (init && AR_SREV_9271(sc)) {
2223 AR_WRITE(sc, AR9271_RESET_POWER_DOWN_CONTROL,
2224 AR9271_RADIO_RF_RST);
2225 DELAY(50);
2226 }
2227 if (AR_SREV_9280(sc) && (sc->sc_flags & ATHN_FLAG_OLPC)) {
2228 /* Save TSF before it gets cleared. */
2229 tsfhi = AR_READ(sc, AR_TSF_U32);
2230 tsflo = AR_READ(sc, AR_TSF_L32);
2231
2232 /* NB: RTC reset clears TSF. */
2233 error = athn_reset_power_on(sc);
2234 }
2235 else {
2236 tsfhi = tsflo = 0; /* XXX: gcc */
2237 error = athn_reset(sc, 0);
2238 }
2239 if (error != 0) {
2240 aprint_error_dev(sc->sc_dev,
2241 "could not reset chip (error=%d)\n", error);
2242 return error;
2243 }
2244
2245 /* XXX not if already awake */
2246 if ((error = athn_set_power_awake(sc)) != 0) {
2247 aprint_error_dev(sc->sc_dev, "could not wakeup chip\n");
2248 return error;
2249 }
2250
2251 athn_init_pll(sc, curchan);
2252 ops->set_rf_mode(sc, curchan);
2253
2254 if (sc->sc_flags & ATHN_FLAG_RFSILENT) {
2255 /* Check that the radio is not disabled by hardware switch. */
2256 reg = ops->gpio_read(sc, sc->sc_rfsilent_pin);
2257 if (sc->sc_flags & ATHN_FLAG_RFSILENT_REVERSED)
2258 reg = !reg;
2259 if (!reg) {
2260 aprint_error_dev(sc->sc_dev,
2261 "radio is disabled by hardware switch\n");
2262 return EPERM;
2263 }
2264 }
2265 if (init && AR_SREV_9271(sc)) {
2266 AR_WRITE(sc, AR9271_RESET_POWER_DOWN_CONTROL,
2267 AR9271_GATE_MAC_CTL);
2268 DELAY(50);
2269 }
2270 if (AR_SREV_9280(sc) && (sc->sc_flags & ATHN_FLAG_OLPC)) {
2271 /* Restore TSF if it got cleared. */
2272 AR_WRITE(sc, AR_TSF_L32, tsflo);
2273 AR_WRITE(sc, AR_TSF_U32, tsfhi);
2274 }
2275
2276 if (AR_SREV_9280_10_OR_LATER(sc))
2277 AR_SETBITS(sc, sc->sc_gpio_input_en_off, AR_GPIO_JTAG_DISABLE);
2278
2279 if (AR_SREV_9287_13_OR_LATER(sc) && !AR_SREV_9380_10_OR_LATER(sc))
2280 ar9287_1_3_enable_async_fifo(sc);
2281
2282 /* Write init values to hardware. */
2283 ops->hw_init(sc, curchan, extchan);
2284
2285 /*
2286 * Only >=AR9280 2.0 parts are capable of encrypting unicast
2287 * management frames using CCMP.
2288 */
2289 if (AR_SREV_9280_20_OR_LATER(sc)) {
2290 reg = AR_READ(sc, AR_AES_MUTE_MASK1);
2291 /* Do not mask the subtype field in management frames. */
2292 reg = RW(reg, AR_AES_MUTE_MASK1_FC0_MGMT, 0xff);
2293 reg = RW(reg, AR_AES_MUTE_MASK1_FC1_MGMT,
2294 (uint32_t)~(IEEE80211_FC1_RETRY | IEEE80211_FC1_PWR_MGT |
2295 IEEE80211_FC1_MORE_DATA));
2296 AR_WRITE(sc, AR_AES_MUTE_MASK1, reg);
2297 }
2298 else if (AR_SREV_9160_10_OR_LATER(sc)) {
2299 /* Disable hardware crypto for management frames. */
2300 AR_CLRBITS(sc, AR_PCU_MISC_MODE2,
2301 AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
2302 AR_SETBITS(sc, AR_PCU_MISC_MODE2,
2303 AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
2304 }
2305
2306 if (ic->ic_curmode != IEEE80211_MODE_11B)
2307 ops->set_delta_slope(sc, curchan, extchan);
2308
2309 ops->spur_mitigate(sc, curchan, extchan);
2310 ops->init_from_rom(sc, curchan, extchan);
2311
2312 /* XXX */
2313 AR_WRITE(sc, AR_STA_ID0, LE_READ_4(&ic->ic_myaddr[0]));
2314 AR_WRITE(sc, AR_STA_ID1, LE_READ_2(&ic->ic_myaddr[4]) |
2315 sta_id1 | AR_STA_ID1_RTS_USE_DEF | AR_STA_ID1_CRPT_MIC_ENABLE);
2316
2317 athn_set_opmode(sc);
2318
2319 AR_WRITE(sc, AR_BSSMSKL, 0xffffffff);
2320 AR_WRITE(sc, AR_BSSMSKU, 0xffff);
2321
2322 /* Restore previous antenna. */
2323 AR_WRITE(sc, AR_DEF_ANTENNA, def_ant);
2324
2325 AR_WRITE(sc, AR_BSS_ID0, 0);
2326 AR_WRITE(sc, AR_BSS_ID1, 0);
2327
2328 AR_WRITE(sc, AR_ISR, 0xffffffff);
2329
2330 AR_WRITE(sc, AR_RSSI_THR, SM(AR_RSSI_THR_BM_THR, 7));
2331
2332 if ((error = ops->set_synth(sc, curchan, extchan)) != 0) {
2333 aprint_error_dev(sc->sc_dev, "could not set channel\n");
2334 return error;
2335 }
2336 sc->sc_curchan = curchan;
2337 sc->sc_curchanext = extchan;
2338
2339 for (i = 0; i < AR_NUM_DCU; i++)
2340 AR_WRITE(sc, AR_DQCUMASK(i), 1 << i);
2341
2342 athn_init_tx_queues(sc);
2343
2344 /* Initialize interrupt mask. */
2345 sc->sc_imask =
2346 AR_IMR_TXDESC | AR_IMR_TXEOL |
2347 AR_IMR_RXERR | AR_IMR_RXEOL | AR_IMR_RXORN |
2348 AR_IMR_RXMINTR | AR_IMR_RXINTM |
2349 AR_IMR_GENTMR | AR_IMR_BCNMISC;
2350 if (AR_SREV_9380_10_OR_LATER(sc))
2351 sc->sc_imask |= AR_IMR_RXERR | AR_IMR_HP_RXOK;
2352 #ifndef IEEE80211_STA_ONLY
2353 if (0 && ic->ic_opmode == IEEE80211_M_HOSTAP)
2354 sc->sc_imask |= AR_IMR_MIB;
2355 #endif
2356 AR_WRITE(sc, AR_IMR, sc->sc_imask);
2357 AR_SETBITS(sc, AR_IMR_S2, AR_IMR_S2_GTT);
2358 AR_WRITE(sc, AR_INTR_SYNC_CAUSE, 0xffffffff);
2359 sc->sc_isync = AR_INTR_SYNC_DEFAULT;
2360 if (sc->sc_flags & ATHN_FLAG_RFSILENT)
2361 sc->sc_isync |= AR_INTR_SYNC_GPIO_PIN(sc->sc_rfsilent_pin);
2362 AR_WRITE(sc, AR_INTR_SYNC_ENABLE, sc->sc_isync);
2363 AR_WRITE(sc, AR_INTR_SYNC_MASK, 0);
2364 if (AR_SREV_9380_10_OR_LATER(sc)) {
2365 AR_WRITE(sc, AR_INTR_PRIO_ASYNC_ENABLE, 0);
2366 AR_WRITE(sc, AR_INTR_PRIO_ASYNC_MASK, 0);
2367 AR_WRITE(sc, AR_INTR_PRIO_SYNC_ENABLE, 0);
2368 AR_WRITE(sc, AR_INTR_PRIO_SYNC_MASK, 0);
2369 }
2370
2371 athn_init_qos(sc);
2372
2373 AR_SETBITS(sc, AR_PCU_MISC, AR_PCU_MIC_NEW_LOC_ENA);
2374
2375 if (AR_SREV_9287_13_OR_LATER(sc) && !AR_SREV_9380_10_OR_LATER(sc))
2376 ar9287_1_3_setup_async_fifo(sc);
2377
2378 /* Disable sequence number generation in hardware. */
2379 AR_SETBITS(sc, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
2380
2381 athn_init_dma(sc);
2382
2383 /* Program observation bus to see MAC interrupts. */
2384 AR_WRITE(sc, sc->sc_obs_off, 8);
2385
2386 /* Setup Rx interrupt mitigation. */
2387 AR_WRITE(sc, AR_RIMT, SM(AR_RIMT_FIRST, 2000) | SM(AR_RIMT_LAST, 500));
2388
2389 ops->init_baseband(sc);
2390
2391 if ((error = athn_init_calib(sc, curchan, extchan)) != 0) {
2392 aprint_error_dev(sc->sc_dev,
2393 "could not initialize calibration\n");
2394 return error;
2395 }
2396
2397 ops->set_rxchains(sc);
2398
2399 AR_WRITE(sc, AR_CFG_LED, cfg_led | AR_CFG_SCLK_32KHZ);
2400
2401 if (sc->sc_flags & ATHN_FLAG_USB) {
2402 if (AR_SREV_9271(sc))
2403 AR_WRITE(sc, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
2404 else
2405 AR_WRITE(sc, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
2406 }
2407 #if BYTE_ORDER == BIG_ENDIAN
2408 else {
2409 /* Default is LE, turn on swapping for BE. */
2410 AR_WRITE(sc, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
2411 }
2412 #endif
2413 AR_WRITE_BARRIER(sc);
2414
2415 return 0;
2416 }
2417
2418 Static struct ieee80211_node *
2419 athn_node_alloc(struct ieee80211_node_table *ntp)
2420 {
2421
2422 return malloc(sizeof(struct athn_node), M_DEVBUF,
2423 M_NOWAIT | M_ZERO);
2424 }
2425
2426 Static void
2427 athn_newassoc(struct ieee80211_node *ni, int isnew)
2428 {
2429 struct ieee80211com *ic = ni->ni_ic;
2430 struct athn_softc *sc = ic->ic_ifp->if_softc;
2431 struct athn_node *an = (void *)ni;
2432 struct ieee80211_rateset *rs = &ni->ni_rates;
2433 uint8_t rate;
2434 int ridx, i, j;
2435
2436 ieee80211_amrr_node_init(&sc->sc_amrr, &an->amn);
2437 /* Start at lowest available bit-rate, AMRR will raise. */
2438 ni->ni_txrate = 0;
2439
2440 for (i = 0; i < rs->rs_nrates; i++) {
2441 rate = rs->rs_rates[i] & IEEE80211_RATE_VAL;
2442
2443 /* Map 802.11 rate to HW rate index. */
2444 for (ridx = 0; ridx <= ATHN_RIDX_MAX; ridx++)
2445 if (athn_rates[ridx].rate == rate)
2446 break;
2447 an->ridx[i] = ridx;
2448 DPRINTFN(DBG_STM, sc, "rate %d index %d\n", rate, ridx);
2449
2450 /* Compute fallback rate for retries. */
2451 an->fallback[i] = i;
2452 for (j = i - 1; j >= 0; j--) {
2453 if (athn_rates[an->ridx[j]].phy ==
2454 athn_rates[an->ridx[i]].phy) {
2455 an->fallback[i] = j;
2456 break;
2457 }
2458 }
2459 DPRINTFN(DBG_STM, sc, "%d fallbacks to %d\n",
2460 i, an->fallback[i]);
2461 }
2462 }
2463
2464 Static int
2465 athn_media_change(struct ifnet *ifp)
2466 {
2467 struct athn_softc *sc = ifp->if_softc;
2468 struct ieee80211com *ic = &sc->sc_ic;
2469 uint8_t rate, ridx;
2470 int error;
2471
2472 error = ieee80211_media_change(ifp);
2473 if (error != ENETRESET)
2474 return error;
2475
2476 if (ic->ic_fixed_rate != -1) {
2477 rate = ic->ic_sup_rates[ic->ic_curmode].
2478 rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
2479 /* Map 802.11 rate to HW rate index. */
2480 for (ridx = 0; ridx <= ATHN_RIDX_MAX; ridx++)
2481 if (athn_rates[ridx].rate == rate)
2482 break;
2483 sc->sc_fixed_ridx = ridx;
2484 }
2485 if (IS_UP_AND_RUNNING(ifp)) {
2486 athn_stop(ifp, 0);
2487 error = athn_init(ifp);
2488 }
2489 return error;
2490 }
2491
2492 Static void
2493 athn_next_scan(void *arg)
2494 {
2495 struct athn_softc *sc = arg;
2496 struct ieee80211com *ic = &sc->sc_ic;
2497 int s;
2498
2499 s = splnet();
2500 if (ic->ic_state == IEEE80211_S_SCAN)
2501 ieee80211_next_scan(ic);
2502 splx(s);
2503 }
2504
2505 Static int
2506 athn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2507 {
2508 struct ifnet *ifp = ic->ic_ifp;
2509 struct athn_softc *sc = ifp->if_softc;
2510 uint32_t reg;
2511 int error;
2512
2513 callout_stop(&sc->sc_calib_to);
2514
2515 switch (nstate) {
2516 case IEEE80211_S_INIT:
2517 athn_set_led(sc, 0);
2518 break;
2519 case IEEE80211_S_SCAN:
2520 /* Make the LED blink while scanning. */
2521 athn_set_led(sc, !sc->sc_led_state);
2522 error = athn_switch_chan(sc, ic->ic_curchan, NULL);
2523 if (error != 0)
2524 return error;
2525 callout_schedule(&sc->sc_scan_to, hz / 5);
2526 break;
2527 case IEEE80211_S_AUTH:
2528 athn_set_led(sc, 0);
2529 error = athn_switch_chan(sc, ic->ic_curchan, NULL);
2530 if (error != 0)
2531 return error;
2532 break;
2533 case IEEE80211_S_ASSOC:
2534 break;
2535 case IEEE80211_S_RUN:
2536 athn_set_led(sc, 1);
2537
2538 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2539 break;
2540
2541 /* Fake a join to initialize the Tx rate. */
2542 athn_newassoc(ic->ic_bss, 1);
2543
2544 athn_set_bss(sc, ic->ic_bss);
2545 athn_disable_interrupts(sc);
2546 #ifndef IEEE80211_STA_ONLY
2547 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2548 athn_set_hostap_timers(sc);
2549 /* Enable software beacon alert interrupts. */
2550 sc->sc_imask |= AR_IMR_SWBA;
2551 }
2552 else
2553 #endif
2554 {
2555 athn_set_sta_timers(sc);
2556 /* Enable beacon miss interrupts. */
2557 sc->sc_imask |= AR_IMR_BMISS;
2558
2559 /* Stop receiving beacons from other BSS. */
2560 reg = AR_READ(sc, AR_RX_FILTER);
2561 reg = (reg & ~AR_RX_FILTER_BEACON) |
2562 AR_RX_FILTER_MYBEACON;
2563 AR_WRITE(sc, AR_RX_FILTER, reg);
2564 AR_WRITE_BARRIER(sc);
2565 }
2566 athn_enable_interrupts(sc);
2567
2568 if (sc->sc_sup_calib_mask != 0) {
2569 memset(&sc->sc_calib, 0, sizeof(sc->sc_calib));
2570 sc->sc_cur_calib_mask = sc->sc_sup_calib_mask;
2571 /* ops->do_calib(sc); */
2572 }
2573 /* XXX Start ANI. */
2574
2575 callout_schedule(&sc->sc_calib_to, hz / 2);
2576 break;
2577 }
2578
2579 return sc->sc_newstate(ic, nstate, arg);
2580 }
2581
2582 #ifdef notyet_edca
2583 PUBLIC void
2584 athn_updateedca(struct ieee80211com *ic)
2585 {
2586 #define ATHN_EXP2(x) ((1 << (x)) - 1) /* CWmin = 2^ECWmin - 1 */
2587 struct athn_softc *sc = ic->ic_ifp->if_softc;
2588 const struct ieee80211_edca_ac_params *ac;
2589 int aci, qid;
2590
2591 for (aci = 0; aci < EDCA_NUM_AC; aci++) {
2592 ac = &ic->ic_edca_ac[aci];
2593 qid = athn_ac2qid[aci];
2594
2595 AR_WRITE(sc, AR_DLCL_IFS(qid),
2596 SM(AR_D_LCL_IFS_CWMIN, ATHN_EXP2(ac->ac_ecwmin)) |
2597 SM(AR_D_LCL_IFS_CWMAX, ATHN_EXP2(ac->ac_ecwmax)) |
2598 SM(AR_D_LCL_IFS_AIFS, ac->ac_aifsn));
2599 if (ac->ac_txoplimit != 0) {
2600 AR_WRITE(sc, AR_DCHNTIME(qid),
2601 SM(AR_D_CHNTIME_DUR,
2602 IEEE80211_TXOP_TO_US(ac->ac_txoplimit)) |
2603 AR_D_CHNTIME_EN);
2604 }
2605 else
2606 AR_WRITE(sc, AR_DCHNTIME(qid), 0);
2607 }
2608 AR_WRITE_BARRIER(sc);
2609 #undef ATHN_EXP2
2610 }
2611 #endif /* notyet_edca */
2612
2613 Static int
2614 athn_clock_rate(struct athn_softc *sc)
2615 {
2616 struct ieee80211com *ic = &sc->sc_ic;
2617 int clockrate; /* MHz. */
2618
2619 if (ic->ic_curmode == IEEE80211_MODE_11A) {
2620 if (sc->sc_flags & ATHN_FLAG_FAST_PLL_CLOCK)
2621 clockrate = AR_CLOCK_RATE_FAST_5GHZ_OFDM;
2622 else
2623 clockrate = AR_CLOCK_RATE_5GHZ_OFDM;
2624 }
2625 else if (ic->ic_curmode == IEEE80211_MODE_11B) {
2626 clockrate = AR_CLOCK_RATE_CCK;
2627 }
2628 else
2629 clockrate = AR_CLOCK_RATE_2GHZ_OFDM;
2630 #ifndef IEEE80211_NO_HT
2631 if (sc->sc_curchanext != NULL)
2632 clockrate *= 2;
2633 #endif
2634 return clockrate;
2635 }
2636
2637 PUBLIC void
2638 athn_updateslot(struct ifnet *ifp)
2639 {
2640 struct athn_softc *sc = ifp->if_softc;
2641 struct ieee80211com *ic = &sc->sc_ic;
2642 int slot;
2643
2644 slot = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
2645 AR_WRITE(sc, AR_D_GBL_IFS_SLOT, slot * athn_clock_rate(sc));
2646 AR_WRITE_BARRIER(sc);
2647 }
2648
2649 Static void
2650 athn_start(struct ifnet *ifp)
2651 {
2652 struct athn_softc *sc = ifp->if_softc;
2653 struct ieee80211com *ic = &sc->sc_ic;
2654 struct ether_header *eh;
2655 struct ieee80211_node *ni;
2656 struct mbuf *m;
2657
2658 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING
2659 || !device_is_active(sc->sc_dev))
2660 return;
2661
2662 for (;;) {
2663 if (SIMPLEQ_EMPTY(&sc->sc_txbufs)) {
2664 ifp->if_flags |= IFF_OACTIVE;
2665 break;
2666 }
2667 /* Send pending management frames first. */
2668 IF_DEQUEUE(&ic->ic_mgtq, m);
2669 if (m != NULL) {
2670 ni = M_GETCTX(m, struct ieee80211_node *);
2671 goto sendit;
2672 }
2673 if (ic->ic_state != IEEE80211_S_RUN)
2674 break;
2675
2676 /* Encapsulate and send data frames. */
2677 IFQ_DEQUEUE(&ifp->if_snd, m);
2678 if (m == NULL)
2679 break;
2680
2681 if (m->m_len < (int)sizeof(*eh) &&
2682 (m = m_pullup(m, sizeof(*eh))) == NULL) {
2683 ifp->if_oerrors++;
2684 continue;
2685 }
2686 eh = mtod(m, struct ether_header *);
2687 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2688 if (ni == NULL) {
2689 m_freem(m);
2690 ifp->if_oerrors++;
2691 continue;
2692 }
2693
2694 bpf_mtap(ifp, m);
2695
2696 if ((m = ieee80211_encap(ic, m, ni)) == NULL)
2697 continue;
2698 sendit:
2699 bpf_mtap3(ic->ic_rawbpf, m);
2700
2701 if (sc->sc_ops.tx(sc, m, ni, 0) != 0) {
2702 ieee80211_free_node(ni);
2703 ifp->if_oerrors++;
2704 continue;
2705 }
2706
2707 sc->sc_tx_timer = 5;
2708 ifp->if_timer = 1;
2709 }
2710 }
2711
2712 Static void
2713 athn_watchdog(struct ifnet *ifp)
2714 {
2715 struct athn_softc *sc = ifp->if_softc;
2716
2717 ifp->if_timer = 0;
2718
2719 if (sc->sc_tx_timer > 0) {
2720 if (--sc->sc_tx_timer == 0) {
2721 aprint_error_dev(sc->sc_dev, "device timeout\n");
2722 /* see athn_init, no need to call athn_stop here */
2723 /* athn_stop(ifp, 0); */
2724 (void)athn_init(ifp);
2725 ifp->if_oerrors++;
2726 return;
2727 }
2728 ifp->if_timer = 1;
2729 }
2730 ieee80211_watchdog(&sc->sc_ic);
2731 }
2732
2733 #ifdef notyet
2734 Static void
2735 athn_set_multi(struct athn_softc *sc)
2736 {
2737 struct arpcom *ac = &sc->sc_ic.ic_ac;
2738 struct ifnet *ifp = &ac->ac_if;
2739 struct ether_multi *enm;
2740 struct ether_multistep step;
2741 const uint8_t *addr;
2742 uint32_t val, lo, hi;
2743 uint8_t bit;
2744
2745 if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
2746 lo = hi = 0xffffffff;
2747 goto done;
2748 }
2749 lo = hi = 0;
2750 ETHER_FIRST_MULTI(step, ac, enm);
2751 while (enm != NULL) {
2752 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, 6) != 0) {
2753 ifp->if_flags |= IFF_ALLMULTI;
2754 lo = hi = 0xffffffff;
2755 goto done;
2756 }
2757 addr = enm->enm_addrlo;
2758 /* Calculate the XOR value of all eight 6-bit words. */
2759 val = addr[0] | addr[1] << 8 | addr[2] << 16;
2760 bit = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2761 val = addr[3] | addr[4] << 8 | addr[5] << 16;
2762 bit ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2763 bit &= 0x3f;
2764 if (bit < 32)
2765 lo |= 1 << bit;
2766 else
2767 hi |= 1 << (bit - 32);
2768 ETHER_NEXT_MULTI(step, enm);
2769 }
2770 done:
2771 AR_WRITE(sc, AR_MCAST_FIL0, lo);
2772 AR_WRITE(sc, AR_MCAST_FIL1, hi);
2773 AR_WRITE_BARRIER(sc);
2774 }
2775 #endif /* notyet */
2776
2777 Static int
2778 athn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2779 {
2780 struct athn_softc *sc = ifp->if_softc;
2781 struct ieee80211com *ic = &sc->sc_ic;
2782 int s, error = 0;
2783
2784 s = splnet();
2785
2786 switch (cmd) {
2787 case SIOCSIFFLAGS:
2788 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2789 break;
2790
2791 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
2792 case IFF_UP | IFF_RUNNING:
2793 #ifdef notyet
2794 if (((ifp->if_flags ^ sc->sc_if_flags) &
2795 (IFF_ALLMULTI | IFF_PROMISC)) != 0)
2796 /* XXX: setup multi */
2797 #endif
2798 break;
2799 case IFF_UP:
2800 athn_init(ifp);
2801 break;
2802
2803 case IFF_RUNNING:
2804 athn_stop(ifp, 1);
2805 break;
2806 case 0:
2807 default:
2808 break;
2809 }
2810 sc->sc_if_flags = ifp->if_flags;
2811 break;
2812
2813 case SIOCADDMULTI:
2814 case SIOCDELMULTI:
2815 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2816 /* setup multicast filter, etc */
2817 #ifdef notyet
2818 athn_set_multi(sc);
2819 #endif
2820 error = 0;
2821 }
2822 break;
2823
2824 case SIOCS80211CHANNEL:
2825 error = ieee80211_ioctl(ic, cmd, data);
2826 if (error == ENETRESET &&
2827 ic->ic_opmode == IEEE80211_M_MONITOR) {
2828 if (IS_UP_AND_RUNNING(ifp))
2829 athn_switch_chan(sc, ic->ic_curchan, NULL);
2830 error = 0;
2831 }
2832 break;
2833
2834 default:
2835 error = ieee80211_ioctl(ic, cmd, data);
2836 }
2837
2838 if (error == ENETRESET) {
2839 error = 0;
2840 if (IS_UP_AND_RUNNING(ifp) &&
2841 ic->ic_roaming != IEEE80211_ROAMING_MANUAL) {
2842 athn_stop(ifp, 0);
2843 error = athn_init(ifp);
2844 }
2845 }
2846
2847 splx(s);
2848 return error;
2849 }
2850
2851 Static int
2852 athn_init(struct ifnet *ifp)
2853 {
2854 struct athn_softc *sc = ifp->if_softc;
2855 struct athn_ops *ops = &sc->sc_ops;
2856 struct ieee80211com *ic = &sc->sc_ic;
2857 struct ieee80211_channel *curchan, *extchan;
2858 size_t i;
2859 int error;
2860
2861 KASSERT(!cpu_intr_p());
2862
2863 if (device_is_active(sc->sc_dev)) {
2864 athn_stop(ifp, 0); /* see athn_watchdog() */
2865 } else {
2866 short flags = ifp->if_flags;
2867 ifp->if_flags &= ~IFF_UP;
2868 /* avoid recursion in athn_resume */
2869 if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
2870 !device_is_active(sc->sc_dev)) {
2871 printf("%s: failed to power up device\n",
2872 device_xname(sc->sc_dev));
2873 return 0;
2874 }
2875 ifp->if_flags = flags;
2876 }
2877
2878 curchan = ic->ic_curchan;
2879 extchan = NULL;
2880
2881 /* In case a new MAC address has been configured. */
2882 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2883
2884 #ifdef openbsd_power_management
2885 /* For CardBus, power on the socket. */
2886 if (sc->sc_enable != NULL) {
2887 if ((error = sc->sc_enable(sc)) != 0) {
2888 aprint_error_dev(sc->sc_dev,
2889 "could not enable device\n");
2890 goto fail;
2891 }
2892 if ((error = athn_reset_power_on(sc)) != 0) {
2893 aprint_error_dev(sc->sc_dev,
2894 "could not power on device\n");
2895 goto fail;
2896 }
2897 }
2898 #endif
2899 if (!(sc->sc_flags & ATHN_FLAG_PCIE))
2900 athn_config_nonpcie(sc);
2901 else
2902 athn_config_pcie(sc);
2903
2904 /* Reset HW key cache entries. */
2905 for (i = 0; i < sc->sc_kc_entries; i++)
2906 athn_reset_key(sc, i);
2907
2908 ops->enable_antenna_diversity(sc);
2909
2910 #ifdef ATHN_BT_COEXISTENCE
2911 /* Configure bluetooth coexistence for combo chips. */
2912 if (sc->sc_flags & ATHN_FLAG_BTCOEX)
2913 athn_btcoex_init(sc);
2914 #endif
2915
2916 /* Configure LED. */
2917 athn_led_init(sc);
2918
2919 /* Configure hardware radio switch. */
2920 if (sc->sc_flags & ATHN_FLAG_RFSILENT)
2921 ops->rfsilent_init(sc);
2922
2923 if ((error = athn_hw_reset(sc, curchan, extchan, 1)) != 0) {
2924 aprint_error_dev(sc->sc_dev,
2925 "unable to reset hardware; reset status %d\n", error);
2926 goto fail;
2927 }
2928
2929 /* Enable Rx. */
2930 athn_rx_start(sc);
2931
2932 /* Enable interrupts. */
2933 athn_enable_interrupts(sc);
2934
2935 #ifdef ATHN_BT_COEXISTENCE
2936 /* Enable bluetooth coexistence for combo chips. */
2937 if (sc->sc_flags & ATHN_FLAG_BTCOEX)
2938 athn_btcoex_enable(sc);
2939 #endif
2940
2941 ifp->if_flags &= ~IFF_OACTIVE;
2942 ifp->if_flags |= IFF_RUNNING;
2943
2944 #ifdef notyet
2945 if (ic->ic_flags & IEEE80211_F_WEPON) {
2946 /* Configure WEP keys. */
2947 for (i = 0; i < IEEE80211_WEP_NKID; i++)
2948 athn_set_key(ic, NULL, &ic->ic_nw_keys[i]);
2949 }
2950 #endif
2951 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2952 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2953 else
2954 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2955
2956 return 0;
2957 fail:
2958 athn_stop(ifp, 1);
2959 return error;
2960 }
2961
2962 PUBLIC void
2963 athn_stop(struct ifnet *ifp, int disable)
2964 {
2965 struct athn_softc *sc = ifp->if_softc;
2966 struct ieee80211com *ic = &sc->sc_ic;
2967 int qid;
2968
2969 ifp->if_timer = sc->sc_tx_timer = 0;
2970 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2971
2972 callout_stop(&sc->sc_scan_to);
2973 /* In case we were scanning, release the scan "lock". */
2974 // ic->ic_scan_lock = IEEE80211_SCAN_UNLOCKED; /* XXX:??? */
2975
2976 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2977
2978 #ifdef ATHN_BT_COEXISTENCE
2979 /* Disable bluetooth coexistence for combo chips. */
2980 if (sc->sc_flags & ATHN_FLAG_BTCOEX)
2981 athn_btcoex_disable(sc);
2982 #endif
2983
2984 /* Disable interrupts. */
2985 athn_disable_interrupts(sc);
2986 /* Acknowledge interrupts (avoids interrupt storms). */
2987 AR_WRITE(sc, AR_INTR_SYNC_CAUSE, 0xffffffff);
2988 AR_WRITE(sc, AR_INTR_SYNC_MASK, 0);
2989
2990 for (qid = 0; qid < ATHN_QID_COUNT; qid++)
2991 athn_stop_tx_dma(sc, qid);
2992 /* XXX call athn_hw_reset if Tx still pending? */
2993 for (qid = 0; qid < ATHN_QID_COUNT; qid++)
2994 athn_tx_reclaim(sc, qid);
2995
2996 /* Stop Rx. */
2997 AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
2998 AR_WRITE(sc, AR_MIBC, AR_MIBC_FMC);
2999 AR_WRITE(sc, AR_MIBC, AR_MIBC_CMC);
3000 AR_WRITE(sc, AR_FILT_OFDM, 0);
3001 AR_WRITE(sc, AR_FILT_CCK, 0);
3002 AR_WRITE_BARRIER(sc);
3003 athn_set_rxfilter(sc, 0);
3004 athn_stop_rx_dma(sc);
3005
3006 athn_reset(sc, 0);
3007 athn_init_pll(sc, NULL);
3008 athn_set_power_awake(sc);
3009 athn_reset(sc, 1);
3010 athn_init_pll(sc, NULL);
3011
3012 athn_set_power_sleep(sc);
3013
3014 #if 0 /* XXX: shouldn't the pmf stuff take care of this? */
3015 /* For CardBus, power down the socket. */
3016 if (disable && sc->sc_disable != NULL)
3017 sc->sc_disable(sc);
3018 #endif
3019 if (disable)
3020 pmf_device_recursive_suspend(sc->sc_dev, &sc->sc_qual);
3021 }
3022
3023 Static void
3024 athn_pmf_wlan_off(device_t self)
3025 {
3026 struct athn_softc *sc = device_private(self);
3027 struct ifnet *ifp = &sc->sc_if;
3028
3029 /* Turn the interface down. */
3030 ifp->if_flags &= ~IFF_UP;
3031 athn_stop(ifp, 1);
3032 }
3033
3034 PUBLIC void
3035 athn_suspend(struct athn_softc *sc)
3036 {
3037 struct ifnet *ifp = &sc->sc_if;
3038
3039 if (ifp->if_flags & IFF_RUNNING)
3040 athn_stop(ifp, 1);
3041 }
3042
3043 PUBLIC bool
3044 athn_resume(struct athn_softc *sc)
3045 {
3046 struct ifnet *ifp = &sc->sc_if;
3047
3048 if (ifp->if_flags & IFF_UP)
3049 athn_init(ifp);
3050
3051 return true;
3052 }
3053