athn.c revision 1.13.4.1 1 /* $NetBSD: athn.c,v 1.13.4.1 2017/04/21 16:53:46 bouyer Exp $ */
2 /* $OpenBSD: athn.c,v 1.83 2014/07/22 13:12:11 mpi Exp $ */
3
4 /*-
5 * Copyright (c) 2009 Damien Bergamini <damien.bergamini (at) free.fr>
6 * Copyright (c) 2008-2010 Atheros Communications Inc.
7 *
8 * Permission to use, copy, modify, and/or distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /*
22 * Driver for Atheros 802.11a/g/n chipsets.
23 */
24
25 #include <sys/cdefs.h>
26 __KERNEL_RCSID(0, "$NetBSD: athn.c,v 1.13.4.1 2017/04/21 16:53:46 bouyer Exp $");
27
28 #ifndef _MODULE
29 #include "athn_usb.h" /* for NATHN_USB */
30 #endif
31
32 #include <sys/param.h>
33 #include <sys/sockio.h>
34 #include <sys/mbuf.h>
35 #include <sys/kernel.h>
36 #include <sys/socket.h>
37 #include <sys/systm.h>
38 #include <sys/malloc.h>
39 #include <sys/queue.h>
40 #include <sys/callout.h>
41 #include <sys/conf.h>
42 #include <sys/cpu.h>
43 #include <sys/device.h>
44
45 #include <sys/bus.h>
46 #include <sys/endian.h>
47 #include <sys/intr.h>
48
49 #include <net/bpf.h>
50 #include <net/if.h>
51 #include <net/if_arp.h>
52 #include <net/if_dl.h>
53 #include <net/if_ether.h>
54 #include <net/if_media.h>
55 #include <net/if_types.h>
56
57 #include <netinet/in.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/in_var.h>
60 #include <netinet/ip.h>
61
62 #include <net80211/ieee80211_var.h>
63 #include <net80211/ieee80211_amrr.h>
64 #include <net80211/ieee80211_radiotap.h>
65
66 #include <dev/ic/athnreg.h>
67 #include <dev/ic/athnvar.h>
68 #include <dev/ic/arn5008.h>
69 #include <dev/ic/arn5416.h>
70 #include <dev/ic/arn9003.h>
71 #include <dev/ic/arn9280.h>
72 #include <dev/ic/arn9285.h>
73 #include <dev/ic/arn9287.h>
74 #include <dev/ic/arn9380.h>
75
76 #define Static static
77
78 #define IS_UP_AND_RUNNING(ifp) \
79 (((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING))
80
81 #ifdef ATHN_DEBUG
82 int athn_debug = 0;
83 #endif
84
85 Static int athn_clock_rate(struct athn_softc *);
86 Static const char *
87 athn_get_mac_name(struct athn_softc *);
88 Static const char *
89 athn_get_rf_name(struct athn_softc *);
90 Static int athn_init(struct ifnet *);
91 Static int athn_init_calib(struct athn_softc *,
92 struct ieee80211_channel *, struct ieee80211_channel *);
93 Static int athn_ioctl(struct ifnet *, u_long, void *);
94 Static int athn_media_change(struct ifnet *);
95 Static int athn_newstate(struct ieee80211com *, enum ieee80211_state,
96 int);
97 Static struct ieee80211_node *
98 athn_node_alloc(struct ieee80211_node_table *);
99 Static int athn_reset_power_on(struct athn_softc *);
100 Static int athn_stop_rx_dma(struct athn_softc *);
101 Static int athn_switch_chan(struct athn_softc *,
102 struct ieee80211_channel *, struct ieee80211_channel *);
103 Static void athn_calib_to(void *);
104 Static void athn_disable_interrupts(struct athn_softc *);
105 Static void athn_enable_interrupts(struct athn_softc *);
106 Static void athn_get_chanlist(struct athn_softc *);
107 Static void athn_get_chipid(struct athn_softc *);
108 Static void athn_init_dma(struct athn_softc *);
109 Static void athn_init_qos(struct athn_softc *);
110 Static void athn_init_tx_queues(struct athn_softc *);
111 Static void athn_iter_func(void *, struct ieee80211_node *);
112 Static void athn_newassoc(struct ieee80211_node *, int);
113 Static void athn_next_scan(void *);
114 Static void athn_pmf_wlan_off(device_t self);
115 Static void athn_radiotap_attach(struct athn_softc *);
116 Static void athn_start(struct ifnet *);
117 Static void athn_tx_reclaim(struct athn_softc *, int);
118 Static void athn_watchdog(struct ifnet *);
119 Static void athn_write_serdes(struct athn_softc *,
120 const struct athn_serdes *);
121 Static void athn_softintr(void *);
122
123 #ifdef ATHN_BT_COEXISTENCE
124 Static void athn_btcoex_disable(struct athn_softc *);
125 Static void athn_btcoex_enable(struct athn_softc *);
126 #endif
127
128 #ifdef unused
129 Static int32_t athn_ani_get_rssi(struct athn_softc *);
130 Static int athn_rx_abort(struct athn_softc *);
131 #endif
132
133 #ifdef notyet
134 Static void athn_ani_cck_err_trigger(struct athn_softc *);
135 Static void athn_ani_lower_immunity(struct athn_softc *);
136 Static void athn_ani_monitor(struct athn_softc *);
137 Static void athn_ani_ofdm_err_trigger(struct athn_softc *);
138 Static void athn_ani_restart(struct athn_softc *);
139 Static void athn_set_multi(struct athn_softc *);
140 #endif /* notyet */
141
142 PUBLIC int
143 athn_attach(struct athn_softc *sc)
144 {
145 struct ieee80211com *ic = &sc->sc_ic;
146 struct ifnet *ifp = &sc->sc_if;
147 size_t max_nnodes;
148 int error;
149
150 /* Read hardware revision. */
151 athn_get_chipid(sc);
152
153 if ((error = athn_reset_power_on(sc)) != 0) {
154 aprint_error_dev(sc->sc_dev, "could not reset chip\n");
155 return error;
156 }
157
158 if ((error = athn_set_power_awake(sc)) != 0) {
159 aprint_error_dev(sc->sc_dev, "could not wakeup chip\n");
160 return error;
161 }
162
163 if (AR_SREV_5416(sc) || AR_SREV_9160(sc))
164 error = ar5416_attach(sc);
165 else if (AR_SREV_9280(sc))
166 error = ar9280_attach(sc);
167 else if (AR_SREV_9285(sc))
168 error = ar9285_attach(sc);
169 #if NATHN_USB > 0
170 else if (AR_SREV_9271(sc))
171 error = ar9285_attach(sc);
172 #endif
173 else if (AR_SREV_9287(sc))
174 error = ar9287_attach(sc);
175 else if (AR_SREV_9380(sc) || AR_SREV_9485(sc))
176 error = ar9380_attach(sc);
177 else
178 error = ENOTSUP;
179 if (error != 0) {
180 aprint_error_dev(sc->sc_dev, "could not attach chip\n");
181 return error;
182 }
183
184 pmf_self_suspensor_init(sc->sc_dev, &sc->sc_suspensor, &sc->sc_qual);
185 pmf_event_register(sc->sc_dev, PMFE_RADIO_OFF, athn_pmf_wlan_off,
186 false);
187
188 /* We can put the chip in sleep state now. */
189 athn_set_power_sleep(sc);
190
191 if (!(sc->sc_flags & ATHN_FLAG_USB)) {
192 sc->sc_soft_ih = softint_establish(SOFTINT_NET, athn_softintr,
193 sc);
194 if (sc->sc_soft_ih == NULL) {
195 aprint_error_dev(sc->sc_dev,
196 "could not establish softint\n");
197 return EINVAL;
198 }
199
200 error = sc->sc_ops.dma_alloc(sc);
201 if (error != 0) {
202 aprint_error_dev(sc->sc_dev,
203 "could not allocate DMA resources\n");
204 return error;
205 }
206 /* Steal one Tx buffer for beacons. */
207 sc->sc_bcnbuf = SIMPLEQ_FIRST(&sc->sc_txbufs);
208 SIMPLEQ_REMOVE_HEAD(&sc->sc_txbufs, bf_list);
209 }
210
211 if (sc->sc_flags & ATHN_FLAG_RFSILENT) {
212 DPRINTFN(DBG_INIT, sc,
213 "found RF switch connected to GPIO pin %d\n",
214 sc->sc_rfsilent_pin);
215 }
216 DPRINTFN(DBG_INIT, sc, "%zd key cache entries\n", sc->sc_kc_entries);
217
218 /*
219 * In HostAP mode, the number of STAs that we can handle is
220 * limited by the number of entries in the HW key cache.
221 * TKIP keys consume 2 entries in the cache.
222 */
223 KASSERT(sc->sc_kc_entries / 2 > IEEE80211_WEP_NKID);
224 max_nnodes = (sc->sc_kc_entries / 2) - IEEE80211_WEP_NKID;
225 if (sc->sc_max_aid != 0) /* we have an override */
226 ic->ic_max_aid = sc->sc_max_aid;
227 if (ic->ic_max_aid > max_nnodes)
228 ic->ic_max_aid = max_nnodes;
229
230 DPRINTFN(DBG_INIT, sc, "using %s loop power control\n",
231 (sc->sc_flags & ATHN_FLAG_OLPC) ? "open" : "closed");
232 DPRINTFN(DBG_INIT, sc, "txchainmask=0x%x rxchainmask=0x%x\n",
233 sc->sc_txchainmask, sc->sc_rxchainmask);
234
235 /* Count the number of bits set (in lowest 3 bits). */
236 sc->sc_ntxchains =
237 ((sc->sc_txchainmask >> 2) & 1) +
238 ((sc->sc_txchainmask >> 1) & 1) +
239 ((sc->sc_txchainmask >> 0) & 1);
240 sc->sc_nrxchains =
241 ((sc->sc_rxchainmask >> 2) & 1) +
242 ((sc->sc_rxchainmask >> 1) & 1) +
243 ((sc->sc_rxchainmask >> 0) & 1);
244
245 if (AR_SINGLE_CHIP(sc)) {
246 aprint_normal(": Atheros %s\n", athn_get_mac_name(sc));
247 aprint_verbose_dev(sc->sc_dev,
248 "rev %d (%dT%dR), ROM rev %d, address %s\n",
249 sc->sc_mac_rev,
250 sc->sc_ntxchains, sc->sc_nrxchains, sc->sc_eep_rev,
251 ether_sprintf(ic->ic_myaddr));
252 }
253 else {
254 aprint_normal(": Atheros %s, RF %s\n", athn_get_mac_name(sc),
255 athn_get_rf_name(sc));
256 aprint_verbose_dev(sc->sc_dev,
257 "rev %d (%dT%dR), ROM rev %d, address %s\n",
258 sc->sc_mac_rev,
259 sc->sc_ntxchains, sc->sc_nrxchains,
260 sc->sc_eep_rev, ether_sprintf(ic->ic_myaddr));
261 }
262
263 callout_init(&sc->sc_scan_to, 0);
264 callout_setfunc(&sc->sc_scan_to, athn_next_scan, sc);
265 callout_init(&sc->sc_calib_to, 0);
266 callout_setfunc(&sc->sc_calib_to, athn_calib_to, sc);
267
268 sc->sc_amrr.amrr_min_success_threshold = 1;
269 sc->sc_amrr.amrr_max_success_threshold = 15;
270
271 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
272 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
273 ic->ic_state = IEEE80211_S_INIT;
274
275 /* Set device capabilities. */
276 ic->ic_caps =
277 IEEE80211_C_WPA | /* 802.11i */
278 #ifndef IEEE80211_STA_ONLY
279 IEEE80211_C_HOSTAP | /* Host AP mode supported. */
280 // XXX? IEEE80211_C_APPMGT | /* Host AP power saving supported. */
281 #endif
282 IEEE80211_C_MONITOR | /* Monitor mode supported. */
283 IEEE80211_C_SHSLOT | /* Short slot time supported. */
284 IEEE80211_C_SHPREAMBLE | /* Short preamble supported. */
285 IEEE80211_C_PMGT; /* Power saving supported. */
286
287 #ifndef IEEE80211_NO_HT
288 if (sc->sc_flags & ATHN_FLAG_11N) {
289 int i, ntxstreams, nrxstreams;
290
291 /* Set HT capabilities. */
292 ic->ic_htcaps =
293 IEEE80211_HTCAP_SMPS_DIS |
294 IEEE80211_HTCAP_CBW20_40 |
295 IEEE80211_HTCAP_SGI40 |
296 IEEE80211_HTCAP_DSSSCCK40;
297 if (AR_SREV_9271(sc) || AR_SREV_9287_10_OR_LATER(sc))
298 ic->ic_htcaps |= IEEE80211_HTCAP_SGI20;
299 if (AR_SREV_9380_10_OR_LATER(sc))
300 ic->ic_htcaps |= IEEE80211_HTCAP_LDPC;
301 if (AR_SREV_9280_10_OR_LATER(sc)) {
302 ic->ic_htcaps |= IEEE80211_HTCAP_TXSTBC;
303 ic->ic_htcaps |= 1 << IEEE80211_HTCAP_RXSTBC_SHIFT;
304 }
305 ntxstreams = sc->sc_ntxchains;
306 nrxstreams = sc->sc_nrxchains;
307 if (!AR_SREV_9380_10_OR_LATER(sc)) {
308 ntxstreams = MIN(ntxstreams, 2);
309 nrxstreams = MIN(nrxstreams, 2);
310 }
311 /* Set supported HT rates. */
312 for (i = 0; i < nrxstreams; i++)
313 ic->ic_sup_mcs[i] = 0xff;
314 /* Set the "Tx MCS Set Defined" bit. */
315 ic->ic_sup_mcs[12] |= 0x01;
316 if (ntxstreams != nrxstreams) {
317 /* Set "Tx Rx MCS Set Not Equal" bit. */
318 ic->ic_sup_mcs[12] |= 0x02;
319 ic->ic_sup_mcs[12] |= (ntxstreams - 1) << 2;
320 }
321 }
322 #endif
323
324 /* Set supported rates. */
325 if (sc->sc_flags & ATHN_FLAG_11G) {
326 ic->ic_sup_rates[IEEE80211_MODE_11B] =
327 ieee80211_std_rateset_11b;
328 ic->ic_sup_rates[IEEE80211_MODE_11G] =
329 ieee80211_std_rateset_11g;
330 }
331 if (sc->sc_flags & ATHN_FLAG_11A) {
332 ic->ic_sup_rates[IEEE80211_MODE_11A] =
333 ieee80211_std_rateset_11a;
334 }
335
336 /* Get the list of authorized/supported channels. */
337 athn_get_chanlist(sc);
338
339 ifp->if_softc = sc;
340 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
341 if (!ifp->if_init)
342 ifp->if_init = athn_init;
343 if (!ifp->if_ioctl)
344 ifp->if_ioctl = athn_ioctl;
345 if (!ifp->if_start)
346 ifp->if_start = athn_start;
347 if (!ifp->if_watchdog)
348 ifp->if_watchdog = athn_watchdog;
349 IFQ_SET_READY(&ifp->if_snd);
350 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
351
352 if_initialize(ifp);
353 ieee80211_ifattach(ic);
354 /* Use common softint-based if_input */
355 ifp->if_percpuq = if_percpuq_create(ifp);
356 if_register(ifp);
357
358 ic->ic_node_alloc = athn_node_alloc;
359 ic->ic_newassoc = athn_newassoc;
360 if (ic->ic_updateslot == NULL)
361 ic->ic_updateslot = athn_updateslot;
362 #ifdef notyet_edca
363 ic->ic_updateedca = athn_updateedca;
364 #endif
365 #ifdef notyet
366 ic->ic_set_key = athn_set_key;
367 ic->ic_delete_key = athn_delete_key;
368 #endif
369
370 /* Override 802.11 state transition machine. */
371 sc->sc_newstate = ic->ic_newstate;
372 ic->ic_newstate = athn_newstate;
373
374 if (sc->sc_media_change == NULL)
375 sc->sc_media_change = athn_media_change;
376 ieee80211_media_init(ic, sc->sc_media_change, ieee80211_media_status);
377
378 athn_radiotap_attach(sc);
379 return 0;
380 }
381
382 PUBLIC void
383 athn_detach(struct athn_softc *sc)
384 {
385 struct ifnet *ifp = &sc->sc_if;
386 int qid;
387
388 callout_halt(&sc->sc_scan_to, NULL);
389 callout_halt(&sc->sc_calib_to, NULL);
390
391 if (!(sc->sc_flags & ATHN_FLAG_USB)) {
392 for (qid = 0; qid < ATHN_QID_COUNT; qid++)
393 athn_tx_reclaim(sc, qid);
394
395 /* Free Tx/Rx DMA resources. */
396 sc->sc_ops.dma_free(sc);
397
398 if (sc->sc_soft_ih != NULL) {
399 softint_disestablish(sc->sc_soft_ih);
400 sc->sc_soft_ih = NULL;
401 }
402 }
403 /* Free ROM copy. */
404 if (sc->sc_eep != NULL) {
405 free(sc->sc_eep, M_DEVBUF);
406 sc->sc_eep = NULL;
407 }
408
409 bpf_detach(ifp);
410 ieee80211_ifdetach(&sc->sc_ic);
411 if_detach(ifp);
412
413 callout_destroy(&sc->sc_scan_to);
414 callout_destroy(&sc->sc_calib_to);
415 }
416
417 /*
418 * Attach the interface to 802.11 radiotap.
419 */
420 Static void
421 athn_radiotap_attach(struct athn_softc *sc)
422 {
423
424 bpf_attach2(&sc->sc_if, DLT_IEEE802_11_RADIO,
425 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
426 &sc->sc_drvbpf);
427
428 sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
429 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
430 sc->sc_rxtap.wr_ihdr.it_present = htole32(ATHN_RX_RADIOTAP_PRESENT);
431
432 sc->sc_txtap_len = sizeof(sc->sc_txtapu);
433 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
434 sc->sc_txtap.wt_ihdr.it_present = htole32(ATHN_TX_RADIOTAP_PRESENT);
435 }
436
437 Static void
438 athn_get_chanlist(struct athn_softc *sc)
439 {
440 struct ieee80211com *ic = &sc->sc_ic;
441 uint8_t chan;
442 size_t i;
443
444 if (sc->sc_flags & ATHN_FLAG_11G) {
445 for (i = 1; i <= 14; i++) {
446 chan = i;
447 ic->ic_channels[chan].ic_freq =
448 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
449 ic->ic_channels[chan].ic_flags =
450 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
451 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
452 }
453 }
454 if (sc->sc_flags & ATHN_FLAG_11A) {
455 for (i = 0; i < __arraycount(athn_5ghz_chans); i++) {
456 chan = athn_5ghz_chans[i];
457 ic->ic_channels[chan].ic_freq =
458 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
459 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
460 }
461 }
462 }
463
464 PUBLIC void
465 athn_rx_start(struct athn_softc *sc)
466 {
467 struct ieee80211com *ic = &sc->sc_ic;
468 uint32_t rfilt;
469
470 /* Setup Rx DMA descriptors. */
471 sc->sc_ops.rx_enable(sc);
472
473 /* Set Rx filter. */
474 rfilt = AR_RX_FILTER_UCAST | AR_RX_FILTER_BCAST | AR_RX_FILTER_MCAST;
475 #ifndef IEEE80211_NO_HT
476 /* Want Compressed Block Ack Requests. */
477 rfilt |= AR_RX_FILTER_COMPR_BAR;
478 #endif
479 rfilt |= AR_RX_FILTER_BEACON;
480 if (ic->ic_opmode != IEEE80211_M_STA) {
481 rfilt |= AR_RX_FILTER_PROBEREQ;
482 if (ic->ic_opmode == IEEE80211_M_MONITOR)
483 rfilt |= AR_RX_FILTER_PROM;
484 #ifndef IEEE80211_STA_ONLY
485 if (AR_SREV_9280_10_OR_LATER(sc) &&
486 ic->ic_opmode == IEEE80211_M_HOSTAP)
487 rfilt |= AR_RX_FILTER_PSPOLL;
488 #endif
489 }
490 athn_set_rxfilter(sc, rfilt);
491
492 /* Set BSSID mask. */
493 AR_WRITE(sc, AR_BSSMSKL, 0xffffffff);
494 AR_WRITE(sc, AR_BSSMSKU, 0xffff);
495
496 athn_set_opmode(sc);
497
498 /* Set multicast filter. */
499 AR_WRITE(sc, AR_MCAST_FIL0, 0xffffffff);
500 AR_WRITE(sc, AR_MCAST_FIL1, 0xffffffff);
501
502 AR_WRITE(sc, AR_FILT_OFDM, 0);
503 AR_WRITE(sc, AR_FILT_CCK, 0);
504 AR_WRITE(sc, AR_MIBC, 0);
505 AR_WRITE(sc, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING);
506 AR_WRITE(sc, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING);
507
508 /* XXX ANI. */
509 AR_WRITE(sc, AR_PHY_ERR_1, 0);
510 AR_WRITE(sc, AR_PHY_ERR_2, 0);
511
512 /* Disable HW crypto for now. */
513 AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_ENCRYPT_DIS | AR_DIAG_DECRYPT_DIS);
514
515 /* Start PCU Rx. */
516 AR_CLRBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
517 AR_WRITE_BARRIER(sc);
518 }
519
520 PUBLIC void
521 athn_set_rxfilter(struct athn_softc *sc, uint32_t rfilt)
522 {
523
524 AR_WRITE(sc, AR_RX_FILTER, rfilt);
525 #ifdef notyet
526 reg = AR_READ(sc, AR_PHY_ERR);
527 reg &= (AR_PHY_ERR_RADAR | AR_PHY_ERR_OFDM_TIMING |
528 AR_PHY_ERR_CCK_TIMING);
529 AR_WRITE(sc, AR_PHY_ERR, reg);
530 if (reg != 0)
531 AR_SETBITS(sc, AR_RXCFG, AR_RXCFG_ZLFDMA);
532 else
533 AR_CLRBITS(sc, AR_RXCFG, AR_RXCFG_ZLFDMA);
534 #else
535 AR_WRITE(sc, AR_PHY_ERR, 0);
536 AR_CLRBITS(sc, AR_RXCFG, AR_RXCFG_ZLFDMA);
537 #endif
538 AR_WRITE_BARRIER(sc);
539 }
540
541 PUBLIC int
542 athn_intr(void *xsc)
543 {
544 struct athn_softc *sc = xsc;
545 struct ifnet *ifp = &sc->sc_if;
546
547 if (!IS_UP_AND_RUNNING(ifp))
548 return 0;
549
550 if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
551 /*
552 * The hardware is not ready/present, don't touch anything.
553 * Note this can happen early on if the IRQ is shared.
554 */
555 return 0;
556
557 if (!sc->sc_ops.intr_status(sc))
558 return 0;
559
560 AR_WRITE(sc, AR_INTR_ASYNC_MASK, 0);
561 AR_WRITE(sc, AR_INTR_SYNC_MASK, 0);
562 AR_WRITE_BARRIER(sc);
563
564 softint_schedule(sc->sc_soft_ih);
565
566 return 1;
567 }
568
569 Static void
570 athn_softintr(void *xsc)
571 {
572 struct athn_softc *sc = xsc;
573 struct ifnet *ifp = &sc->sc_if;
574
575 if (!IS_UP_AND_RUNNING(ifp))
576 return;
577
578 if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
579 /*
580 * The hardware is not ready/present, don't touch anything.
581 * Note this can happen early on if the IRQ is shared.
582 */
583 return;
584
585 sc->sc_ops.intr(sc);
586
587 AR_WRITE(sc, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
588 AR_WRITE(sc, AR_INTR_SYNC_MASK, sc->sc_isync);
589 AR_WRITE_BARRIER(sc);
590 }
591
592 Static void
593 athn_get_chipid(struct athn_softc *sc)
594 {
595 uint32_t reg;
596
597 reg = AR_READ(sc, AR_SREV);
598 if (MS(reg, AR_SREV_ID) == 0xff) {
599 sc->sc_mac_ver = MS(reg, AR_SREV_VERSION2);
600 sc->sc_mac_rev = MS(reg, AR_SREV_REVISION2);
601 if (!(reg & AR_SREV_TYPE2_HOST_MODE))
602 sc->sc_flags |= ATHN_FLAG_PCIE;
603 }
604 else {
605 sc->sc_mac_ver = MS(reg, AR_SREV_VERSION);
606 sc->sc_mac_rev = MS(reg, AR_SREV_REVISION);
607 if (sc->sc_mac_ver == AR_SREV_VERSION_5416_PCIE)
608 sc->sc_flags |= ATHN_FLAG_PCIE;
609 }
610 }
611
612 Static const char *
613 athn_get_mac_name(struct athn_softc *sc)
614 {
615
616 switch (sc->sc_mac_ver) {
617 case AR_SREV_VERSION_5416_PCI:
618 return "AR5416";
619 case AR_SREV_VERSION_5416_PCIE:
620 return "AR5418";
621 case AR_SREV_VERSION_9160:
622 return "AR9160";
623 case AR_SREV_VERSION_9280:
624 return "AR9280";
625 case AR_SREV_VERSION_9285:
626 return "AR9285";
627 case AR_SREV_VERSION_9271:
628 return "AR9271";
629 case AR_SREV_VERSION_9287:
630 return "AR9287";
631 case AR_SREV_VERSION_9380:
632 return "AR9380";
633 case AR_SREV_VERSION_9485:
634 return "AR9485";
635 default:
636 return "unknown";
637 }
638 }
639
640 /*
641 * Return RF chip name (not for single-chip solutions).
642 */
643 Static const char *
644 athn_get_rf_name(struct athn_softc *sc)
645 {
646
647 KASSERT(!AR_SINGLE_CHIP(sc));
648
649 switch (sc->sc_rf_rev) {
650 case AR_RAD5133_SREV_MAJOR: /* Dual-band 3T3R. */
651 return "AR5133";
652 case AR_RAD2133_SREV_MAJOR: /* Single-band 3T3R. */
653 return "AR2133";
654 case AR_RAD5122_SREV_MAJOR: /* Dual-band 2T2R. */
655 return "AR5122";
656 case AR_RAD2122_SREV_MAJOR: /* Single-band 2T2R. */
657 return "AR2122";
658 default:
659 return "unknown";
660 }
661 }
662
663 PUBLIC int
664 athn_reset_power_on(struct athn_softc *sc)
665 {
666 int ntries;
667
668 /* Set force wake. */
669 AR_WRITE(sc, AR_RTC_FORCE_WAKE,
670 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
671
672 if (!AR_SREV_9380_10_OR_LATER(sc)) {
673 /* Make sure no DMA is active by doing an AHB reset. */
674 AR_WRITE(sc, AR_RC, AR_RC_AHB);
675 }
676 /* RTC reset and clear. */
677 AR_WRITE(sc, AR_RTC_RESET, 0);
678 AR_WRITE_BARRIER(sc);
679 DELAY(2);
680 if (!AR_SREV_9380_10_OR_LATER(sc))
681 AR_WRITE(sc, AR_RC, 0);
682 AR_WRITE(sc, AR_RTC_RESET, 1);
683
684 /* Poll until RTC is ON. */
685 for (ntries = 0; ntries < 1000; ntries++) {
686 if ((AR_READ(sc, AR_RTC_STATUS) & AR_RTC_STATUS_M) ==
687 AR_RTC_STATUS_ON)
688 break;
689 DELAY(10);
690 }
691 if (ntries == 1000) {
692 DPRINTFN(DBG_INIT, sc, "RTC not waking up\n");
693 return ETIMEDOUT;
694 }
695 return athn_reset(sc, 0);
696 }
697
698 PUBLIC int
699 athn_reset(struct athn_softc *sc, int cold_reset)
700 {
701 int ntries;
702
703 /* Set force wake. */
704 AR_WRITE(sc, AR_RTC_FORCE_WAKE,
705 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
706
707 if (AR_READ(sc, AR_INTR_SYNC_CAUSE) &
708 (AR_INTR_SYNC_LOCAL_TIMEOUT | AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
709 AR_WRITE(sc, AR_INTR_SYNC_ENABLE, 0);
710 AR_WRITE(sc, AR_RC, AR_RC_HOSTIF |
711 (!AR_SREV_9380_10_OR_LATER(sc) ? AR_RC_AHB : 0));
712 }
713 else if (!AR_SREV_9380_10_OR_LATER(sc))
714 AR_WRITE(sc, AR_RC, AR_RC_AHB);
715
716 AR_WRITE(sc, AR_RTC_RC, AR_RTC_RC_MAC_WARM |
717 (cold_reset ? AR_RTC_RC_MAC_COLD : 0));
718 AR_WRITE_BARRIER(sc);
719 DELAY(50);
720 AR_WRITE(sc, AR_RTC_RC, 0);
721 for (ntries = 0; ntries < 1000; ntries++) {
722 if (!(AR_READ(sc, AR_RTC_RC) &
723 (AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD)))
724 break;
725 DELAY(10);
726 }
727 if (ntries == 1000) {
728 DPRINTFN(DBG_INIT, sc, "RTC stuck in MAC reset\n");
729 return ETIMEDOUT;
730 }
731 AR_WRITE(sc, AR_RC, 0);
732 AR_WRITE_BARRIER(sc);
733 return 0;
734 }
735
736 PUBLIC int
737 athn_set_power_awake(struct athn_softc *sc)
738 {
739 int ntries, error;
740
741 /* Do a Power-On-Reset if shutdown. */
742 if ((AR_READ(sc, AR_RTC_STATUS) & AR_RTC_STATUS_M) ==
743 AR_RTC_STATUS_SHUTDOWN) {
744 if ((error = athn_reset_power_on(sc)) != 0)
745 return error;
746 if (!AR_SREV_9380_10_OR_LATER(sc))
747 athn_init_pll(sc, NULL);
748 }
749 AR_SETBITS(sc, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
750 AR_WRITE_BARRIER(sc);
751 DELAY(50); /* Give chip the chance to awake. */
752
753 /* Poll until RTC is ON. */
754 for (ntries = 0; ntries < 4000; ntries++) {
755 if ((AR_READ(sc, AR_RTC_STATUS) & AR_RTC_STATUS_M) ==
756 AR_RTC_STATUS_ON)
757 break;
758 DELAY(50);
759 AR_SETBITS(sc, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
760 }
761 if (ntries == 4000) {
762 DPRINTFN(DBG_INIT, sc, "RTC not waking up\n");
763 return ETIMEDOUT;
764 }
765
766 AR_CLRBITS(sc, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
767 AR_WRITE_BARRIER(sc);
768 return 0;
769 }
770
771 PUBLIC void
772 athn_set_power_sleep(struct athn_softc *sc)
773 {
774
775 AR_SETBITS(sc, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
776 /* Allow the MAC to go to sleep. */
777 AR_CLRBITS(sc, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
778 if (!AR_SREV_9380_10_OR_LATER(sc))
779 AR_WRITE(sc, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
780 /*
781 * NB: Clearing RTC_RESET_EN when setting the chip to sleep mode
782 * results in high power consumption on AR5416 chipsets.
783 */
784 if (!AR_SREV_5416(sc) && !AR_SREV_9271(sc))
785 AR_CLRBITS(sc, AR_RTC_RESET, AR_RTC_RESET_EN);
786 AR_WRITE_BARRIER(sc);
787 }
788
789 PUBLIC void
790 athn_init_pll(struct athn_softc *sc, const struct ieee80211_channel *c)
791 {
792 uint32_t pll;
793
794 if (AR_SREV_9380_10_OR_LATER(sc)) {
795 if (AR_SREV_9485(sc))
796 AR_WRITE(sc, AR_RTC_PLL_CONTROL2, 0x886666);
797 pll = SM(AR_RTC_9160_PLL_REFDIV, 0x5);
798 pll |= SM(AR_RTC_9160_PLL_DIV, 0x2c);
799 }
800 else if (AR_SREV_9280_10_OR_LATER(sc)) {
801 pll = SM(AR_RTC_9160_PLL_REFDIV, 0x05);
802 if (c != NULL && IEEE80211_IS_CHAN_5GHZ(c)) {
803 if (sc->sc_flags & ATHN_FLAG_FAST_PLL_CLOCK)
804 pll = 0x142c;
805 else if (AR_SREV_9280_20(sc))
806 pll = 0x2850;
807 else
808 pll |= SM(AR_RTC_9160_PLL_DIV, 0x28);
809 }
810 else
811 pll |= SM(AR_RTC_9160_PLL_DIV, 0x2c);
812 }
813 else if (AR_SREV_9160_10_OR_LATER(sc)) {
814 pll = SM(AR_RTC_9160_PLL_REFDIV, 0x05);
815 if (c != NULL && IEEE80211_IS_CHAN_5GHZ(c))
816 pll |= SM(AR_RTC_9160_PLL_DIV, 0x50);
817 else
818 pll |= SM(AR_RTC_9160_PLL_DIV, 0x58);
819 }
820 else {
821 pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
822 if (c != NULL && IEEE80211_IS_CHAN_5GHZ(c))
823 pll |= SM(AR_RTC_PLL_DIV, 0x0a);
824 else
825 pll |= SM(AR_RTC_PLL_DIV, 0x0b);
826 }
827 DPRINTFN(DBG_INIT, sc, "AR_RTC_PLL_CONTROL=0x%08x\n", pll);
828 AR_WRITE(sc, AR_RTC_PLL_CONTROL, pll);
829 if (AR_SREV_9271(sc)) {
830 /* Switch core clock to 117MHz. */
831 AR_WRITE_BARRIER(sc);
832 DELAY(500);
833 AR_WRITE(sc, 0x50050, 0x304);
834 }
835 AR_WRITE_BARRIER(sc);
836 DELAY(100);
837 AR_WRITE(sc, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
838 AR_WRITE_BARRIER(sc);
839 }
840
841 Static void
842 athn_write_serdes(struct athn_softc *sc, const struct athn_serdes *serdes)
843 {
844 int i;
845
846 /* Write sequence to Serializer/Deserializer. */
847 for (i = 0; i < serdes->nvals; i++)
848 AR_WRITE(sc, serdes->regs[i], serdes->vals[i]);
849 AR_WRITE_BARRIER(sc);
850 }
851
852 PUBLIC void
853 athn_config_pcie(struct athn_softc *sc)
854 {
855
856 /* Disable PLL when in L0s as well as receiver clock when in L1. */
857 athn_write_serdes(sc, sc->sc_serdes);
858
859 DELAY(1000);
860 /* Allow forcing of PCIe core into L1 state. */
861 AR_SETBITS(sc, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
862
863 #ifndef ATHN_PCIE_WAEN
864 AR_WRITE(sc, AR_WA, sc->sc_workaround);
865 #else
866 AR_WRITE(sc, AR_WA, ATHN_PCIE_WAEN);
867 #endif
868 AR_WRITE_BARRIER(sc);
869 }
870
871 /*
872 * Serializer/Deserializer programming for non-PCIe devices.
873 */
874 static const uint32_t ar_nonpcie_serdes_regs[] = {
875 AR_PCIE_SERDES,
876 AR_PCIE_SERDES,
877 AR_PCIE_SERDES,
878 AR_PCIE_SERDES,
879 AR_PCIE_SERDES,
880 AR_PCIE_SERDES,
881 AR_PCIE_SERDES,
882 AR_PCIE_SERDES,
883 AR_PCIE_SERDES,
884 AR_PCIE_SERDES2,
885 };
886
887 static const uint32_t ar_nonpcie_serdes_vals[] = {
888 0x9248fc00,
889 0x24924924,
890 0x28000029,
891 0x57160824,
892 0x25980579,
893 0x00000000,
894 0x1aaabe40,
895 0xbe105554,
896 0x000e1007,
897 0x00000000
898 };
899
900 static const struct athn_serdes ar_nonpcie_serdes = {
901 __arraycount(ar_nonpcie_serdes_vals),
902 ar_nonpcie_serdes_regs,
903 ar_nonpcie_serdes_vals
904 };
905
906 PUBLIC void
907 athn_config_nonpcie(struct athn_softc *sc)
908 {
909
910 athn_write_serdes(sc, &ar_nonpcie_serdes);
911 }
912
913 PUBLIC int
914 athn_set_chan(struct athn_softc *sc, struct ieee80211_channel *curchan,
915 struct ieee80211_channel *extchan)
916 {
917 struct athn_ops *ops = &sc->sc_ops;
918 int error, qid;
919
920 /* Check that Tx is stopped, otherwise RF Bus grant will not work. */
921 for (qid = 0; qid < ATHN_QID_COUNT; qid++)
922 if (athn_tx_pending(sc, qid))
923 return EBUSY;
924
925 /* Request RF Bus grant. */
926 if ((error = ops->rf_bus_request(sc)) != 0)
927 return error;
928
929 ops->set_phy(sc, curchan, extchan);
930
931 /* Change the synthesizer. */
932 if ((error = ops->set_synth(sc, curchan, extchan)) != 0)
933 return error;
934
935 sc->sc_curchan = curchan;
936 sc->sc_curchanext = extchan;
937
938 /* Set transmit power values for new channel. */
939 ops->set_txpower(sc, curchan, extchan);
940
941 /* Release the RF Bus grant. */
942 ops->rf_bus_release(sc);
943
944 /* Write delta slope coeffs for modes where OFDM may be used. */
945 if (sc->sc_ic.ic_curmode != IEEE80211_MODE_11B)
946 ops->set_delta_slope(sc, curchan, extchan);
947
948 ops->spur_mitigate(sc, curchan, extchan);
949 /* XXX Load noisefloor values and start calibration. */
950
951 return 0;
952 }
953
954 Static int
955 athn_switch_chan(struct athn_softc *sc, struct ieee80211_channel *curchan,
956 struct ieee80211_channel *extchan)
957 {
958 int error, qid;
959
960 /* Disable interrupts. */
961 athn_disable_interrupts(sc);
962
963 /* Stop all Tx queues. */
964 for (qid = 0; qid < ATHN_QID_COUNT; qid++)
965 athn_stop_tx_dma(sc, qid);
966 for (qid = 0; qid < ATHN_QID_COUNT; qid++)
967 athn_tx_reclaim(sc, qid);
968
969 /* Stop Rx. */
970 AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
971 AR_WRITE(sc, AR_MIBC, AR_MIBC_FMC);
972 AR_WRITE(sc, AR_MIBC, AR_MIBC_CMC);
973 AR_WRITE(sc, AR_FILT_OFDM, 0);
974 AR_WRITE(sc, AR_FILT_CCK, 0);
975 athn_set_rxfilter(sc, 0);
976 error = athn_stop_rx_dma(sc);
977 if (error != 0)
978 goto reset;
979
980 #ifdef notyet
981 /* AR9280 needs a full reset. */
982 if (AR_SREV_9280(sc))
983 #endif
984 goto reset;
985
986 /* If band or bandwidth changes, we need to do a full reset. */
987 if (curchan->ic_flags != sc->sc_curchan->ic_flags ||
988 ((extchan != NULL) ^ (sc->sc_curchanext != NULL))) {
989 DPRINTFN(DBG_RF, sc, "channel band switch\n");
990 goto reset;
991 }
992 error = athn_set_power_awake(sc);
993 if (error != 0)
994 goto reset;
995
996 error = athn_set_chan(sc, curchan, extchan);
997 if (error != 0) {
998 reset: /* Error found, try a full reset. */
999 DPRINTFN(DBG_RF, sc, "needs a full reset\n");
1000 error = athn_hw_reset(sc, curchan, extchan, 0);
1001 if (error != 0) /* Hopeless case. */
1002 return error;
1003 }
1004 athn_rx_start(sc);
1005
1006 /* Re-enable interrupts. */
1007 athn_enable_interrupts(sc);
1008 return 0;
1009 }
1010
1011 PUBLIC void
1012 athn_get_delta_slope(uint32_t coeff, uint32_t *exponent, uint32_t *mantissa)
1013 {
1014 #define COEFF_SCALE_SHIFT 24
1015 uint32_t exp, man;
1016
1017 /* exponent = 14 - floor(log2(coeff)) */
1018 for (exp = 31; exp > 0; exp--)
1019 if (coeff & (1 << exp))
1020 break;
1021 exp = 14 - (exp - COEFF_SCALE_SHIFT);
1022
1023 /* mantissa = floor(coeff * 2^exponent + 0.5) */
1024 man = coeff + (1 << (COEFF_SCALE_SHIFT - exp - 1));
1025
1026 *mantissa = man >> (COEFF_SCALE_SHIFT - exp);
1027 *exponent = exp - 16;
1028 #undef COEFF_SCALE_SHIFT
1029 }
1030
1031 PUBLIC void
1032 athn_reset_key(struct athn_softc *sc, int entry)
1033 {
1034
1035 /*
1036 * NB: Key cache registers access special memory area that requires
1037 * two 32-bit writes to actually update the values in the internal
1038 * memory. Consequently, writes must be grouped by pair.
1039 */
1040 AR_WRITE(sc, AR_KEYTABLE_KEY0(entry), 0);
1041 AR_WRITE(sc, AR_KEYTABLE_KEY1(entry), 0);
1042
1043 AR_WRITE(sc, AR_KEYTABLE_KEY2(entry), 0);
1044 AR_WRITE(sc, AR_KEYTABLE_KEY3(entry), 0);
1045
1046 AR_WRITE(sc, AR_KEYTABLE_KEY4(entry), 0);
1047 AR_WRITE(sc, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
1048
1049 AR_WRITE(sc, AR_KEYTABLE_MAC0(entry), 0);
1050 AR_WRITE(sc, AR_KEYTABLE_MAC1(entry), 0);
1051
1052 AR_WRITE_BARRIER(sc);
1053 }
1054
1055 #ifdef notyet
1056 Static int
1057 athn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
1058 struct ieee80211_key *k)
1059 {
1060 struct athn_softc *sc = ic->ic_ifp->if_softc;
1061 const uint8_t *txmic, *rxmic, *key, *addr;
1062 uintptr_t entry, micentry;
1063 uint32_t type, lo, hi;
1064
1065 switch (k->k_cipher) {
1066 case IEEE80211_CIPHER_WEP40:
1067 type = AR_KEYTABLE_TYPE_40;
1068 break;
1069 case IEEE80211_CIPHER_WEP104:
1070 type = AR_KEYTABLE_TYPE_104;
1071 break;
1072 case IEEE80211_CIPHER_TKIP:
1073 type = AR_KEYTABLE_TYPE_TKIP;
1074 break;
1075 case IEEE80211_CIPHER_CCMP:
1076 type = AR_KEYTABLE_TYPE_CCM;
1077 break;
1078 default:
1079 /* Fallback to software crypto for other ciphers. */
1080 return ieee80211_set_key(ic, ni, k);
1081 }
1082
1083 if (!(k->k_flags & IEEE80211_KEY_GROUP))
1084 entry = IEEE80211_WEP_NKID + IEEE80211_AID(ni->ni_associd);
1085 else
1086 entry = k->k_id;
1087 k->k_priv = (void *)entry;
1088
1089 /* NB: See note about key cache registers access above. */
1090 key = k->k_key;
1091 if (type == AR_KEYTABLE_TYPE_TKIP) {
1092 #ifndef IEEE80211_STA_ONLY
1093 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
1094 txmic = &key[16];
1095 rxmic = &key[24];
1096 }
1097 else
1098 #endif
1099 {
1100 rxmic = &key[16];
1101 txmic = &key[24];
1102 }
1103 /* Tx+Rx MIC key is at entry + 64. */
1104 micentry = entry + 64;
1105 AR_WRITE(sc, AR_KEYTABLE_KEY0(micentry), LE_READ_4(&rxmic[0]));
1106 AR_WRITE(sc, AR_KEYTABLE_KEY1(micentry), LE_READ_2(&txmic[2]));
1107
1108 AR_WRITE(sc, AR_KEYTABLE_KEY2(micentry), LE_READ_4(&rxmic[4]));
1109 AR_WRITE(sc, AR_KEYTABLE_KEY3(micentry), LE_READ_2(&txmic[0]));
1110
1111 AR_WRITE(sc, AR_KEYTABLE_KEY4(micentry), LE_READ_4(&txmic[4]));
1112 AR_WRITE(sc, AR_KEYTABLE_TYPE(micentry), AR_KEYTABLE_TYPE_CLR);
1113 }
1114 AR_WRITE(sc, AR_KEYTABLE_KEY0(entry), LE_READ_4(&key[ 0]));
1115 AR_WRITE(sc, AR_KEYTABLE_KEY1(entry), LE_READ_2(&key[ 4]));
1116
1117 AR_WRITE(sc, AR_KEYTABLE_KEY2(entry), LE_READ_4(&key[ 6]));
1118 AR_WRITE(sc, AR_KEYTABLE_KEY3(entry), LE_READ_2(&key[10]));
1119
1120 AR_WRITE(sc, AR_KEYTABLE_KEY4(entry), LE_READ_4(&key[12]));
1121 AR_WRITE(sc, AR_KEYTABLE_TYPE(entry), type);
1122
1123 if (!(k->k_flags & IEEE80211_KEY_GROUP)) {
1124 addr = ni->ni_macaddr;
1125 lo = LE_READ_4(&addr[0]);
1126 hi = LE_READ_2(&addr[4]);
1127 lo = lo >> 1 | hi << 31;
1128 hi = hi >> 1;
1129 }
1130 else
1131 lo = hi = 0;
1132 AR_WRITE(sc, AR_KEYTABLE_MAC0(entry), lo);
1133 AR_WRITE(sc, AR_KEYTABLE_MAC1(entry), hi | AR_KEYTABLE_VALID);
1134 AR_WRITE_BARRIER(sc);
1135 return 0;
1136 }
1137
1138 Static void
1139 athn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
1140 struct ieee80211_key *k)
1141 {
1142 struct athn_softc *sc = ic->ic_ifp->if_softc;
1143 uintptr_t entry;
1144
1145 switch (k->k_cipher) {
1146 case IEEE80211_CIPHER_WEP40:
1147 case IEEE80211_CIPHER_WEP104:
1148 case IEEE80211_CIPHER_CCMP:
1149 entry = (uintptr_t)k->k_priv;
1150 athn_reset_key(sc, entry);
1151 break;
1152 case IEEE80211_CIPHER_TKIP:
1153 entry = (uintptr_t)k->k_priv;
1154 athn_reset_key(sc, entry);
1155 athn_reset_key(sc, entry + 64);
1156 break;
1157 default:
1158 /* Fallback to software crypto for other ciphers. */
1159 ieee80211_delete_key(ic, ni, k);
1160 }
1161 }
1162 #endif /* notyet */
1163
1164 PUBLIC void
1165 athn_led_init(struct athn_softc *sc)
1166 {
1167 struct athn_ops *ops = &sc->sc_ops;
1168
1169 ops->gpio_config_output(sc, sc->sc_led_pin, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1170 /* LED off, active low. */
1171 athn_set_led(sc, 0);
1172 }
1173
1174 PUBLIC void
1175 athn_set_led(struct athn_softc *sc, int on)
1176 {
1177 struct athn_ops *ops = &sc->sc_ops;
1178
1179 sc->sc_led_state = on;
1180 ops->gpio_write(sc, sc->sc_led_pin, !sc->sc_led_state);
1181 }
1182
1183 #ifdef ATHN_BT_COEXISTENCE
1184 Static void
1185 athn_btcoex_init(struct athn_softc *sc)
1186 {
1187 struct athn_ops *ops = &sc->sc_ops;
1188 uint32_t reg;
1189
1190 if (sc->sc_flags & ATHN_FLAG_BTCOEX2WIRE) {
1191 /* Connect bt_active to baseband. */
1192 AR_CLRBITS(sc, sc->sc_gpio_input_en_off,
1193 AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_DEF |
1194 AR_GPIO_INPUT_EN_VAL_BT_FREQUENCY_DEF);
1195 AR_SETBITS(sc, sc->sc_gpio_input_en_off,
1196 AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB);
1197
1198 reg = AR_READ(sc, AR_GPIO_INPUT_MUX1);
1199 reg = RW(reg, AR_GPIO_INPUT_MUX1_BT_ACTIVE,
1200 AR_GPIO_BTACTIVE_PIN);
1201 AR_WRITE(sc, AR_GPIO_INPUT_MUX1, reg);
1202 AR_WRITE_BARRIER(sc);
1203
1204 ops->gpio_config_input(sc, AR_GPIO_BTACTIVE_PIN);
1205 }
1206 else { /* 3-wire. */
1207 AR_SETBITS(sc, sc->sc_gpio_input_en_off,
1208 AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_BB |
1209 AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB);
1210
1211 reg = AR_READ(sc, AR_GPIO_INPUT_MUX1);
1212 reg = RW(reg, AR_GPIO_INPUT_MUX1_BT_ACTIVE,
1213 AR_GPIO_BTACTIVE_PIN);
1214 reg = RW(reg, AR_GPIO_INPUT_MUX1_BT_PRIORITY,
1215 AR_GPIO_BTPRIORITY_PIN);
1216 AR_WRITE(sc, AR_GPIO_INPUT_MUX1, reg);
1217 AR_WRITE_BARRIER(sc);
1218
1219 ops->gpio_config_input(sc, AR_GPIO_BTACTIVE_PIN);
1220 ops->gpio_config_input(sc, AR_GPIO_BTPRIORITY_PIN);
1221 }
1222 }
1223
1224 Static void
1225 athn_btcoex_enable(struct athn_softc *sc)
1226 {
1227 struct athn_ops *ops = &sc->sc_ops;
1228 uint32_t reg;
1229
1230 if (sc->sc_flags & ATHN_FLAG_BTCOEX3WIRE) {
1231 AR_WRITE(sc, AR_BT_COEX_MODE,
1232 SM(AR_BT_MODE, AR_BT_MODE_SLOTTED) |
1233 SM(AR_BT_PRIORITY_TIME, 2) |
1234 SM(AR_BT_FIRST_SLOT_TIME, 5) |
1235 SM(AR_BT_QCU_THRESH, ATHN_QID_AC_BE) |
1236 AR_BT_TXSTATE_EXTEND | AR_BT_TX_FRAME_EXTEND |
1237 AR_BT_QUIET | AR_BT_RX_CLEAR_POLARITY);
1238 AR_WRITE(sc, AR_BT_COEX_WEIGHT,
1239 SM(AR_BTCOEX_BT_WGHT, AR_STOMP_LOW_BT_WGHT) |
1240 SM(AR_BTCOEX_WL_WGHT, AR_STOMP_LOW_WL_WGHT));
1241 AR_WRITE(sc, AR_BT_COEX_MODE2,
1242 SM(AR_BT_BCN_MISS_THRESH, 50) |
1243 AR_BT_HOLD_RX_CLEAR | AR_BT_DISABLE_BT_ANT);
1244
1245 AR_SETBITS(sc, AR_QUIET1, AR_QUIET1_QUIET_ACK_CTS_ENABLE);
1246 AR_CLRBITS(sc, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX);
1247 AR_WRITE_BARRIER(sc);
1248
1249 ops->gpio_config_output(sc, AR_GPIO_WLANACTIVE_PIN,
1250 AR_GPIO_OUTPUT_MUX_AS_RX_CLEAR_EXTERNAL);
1251
1252 }
1253 else { /* 2-wire. */
1254 ops->gpio_config_output(sc, AR_GPIO_WLANACTIVE_PIN,
1255 AR_GPIO_OUTPUT_MUX_AS_TX_FRAME);
1256 }
1257 reg = AR_READ(sc, AR_GPIO_PDPU);
1258 reg &= ~(0x3 << (AR_GPIO_WLANACTIVE_PIN * 2));
1259 reg |= 0x2 << (AR_GPIO_WLANACTIVE_PIN * 2);
1260 AR_WRITE(sc, AR_GPIO_PDPU, reg);
1261 AR_WRITE_BARRIER(sc);
1262
1263 /* Disable PCIe Active State Power Management (ASPM). */
1264 if (sc->sc_disable_aspm != NULL)
1265 sc->sc_disable_aspm(sc);
1266
1267 /* XXX Start periodic timer. */
1268 }
1269
1270 Static void
1271 athn_btcoex_disable(struct athn_softc *sc)
1272 {
1273 struct athn_ops *ops = &sc->sc_ops;
1274
1275 ops->gpio_write(sc, AR_GPIO_WLANACTIVE_PIN, 0);
1276
1277 ops->gpio_config_output(sc, AR_GPIO_WLANACTIVE_PIN,
1278 AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1279
1280 if (sc->sc_flags & ATHN_FLAG_BTCOEX3WIRE) {
1281 AR_WRITE(sc, AR_BT_COEX_MODE,
1282 SM(AR_BT_MODE, AR_BT_MODE_DISABLED) | AR_BT_QUIET);
1283 AR_WRITE(sc, AR_BT_COEX_WEIGHT, 0);
1284 AR_WRITE(sc, AR_BT_COEX_MODE2, 0);
1285 /* XXX Stop periodic timer. */
1286 }
1287 AR_WRITE_BARRIER(sc);
1288 /* XXX Restore ASPM setting? */
1289 }
1290 #endif
1291
1292 Static void
1293 athn_iter_func(void *arg, struct ieee80211_node *ni)
1294 {
1295 struct athn_softc *sc = arg;
1296 struct athn_node *an = (struct athn_node *)ni;
1297
1298 ieee80211_amrr_choose(&sc->sc_amrr, ni, &an->amn);
1299 }
1300
1301 Static void
1302 athn_calib_to(void *arg)
1303 {
1304 extern int ticks;
1305 struct athn_softc *sc = arg;
1306 struct athn_ops *ops = &sc->sc_ops;
1307 struct ieee80211com *ic = &sc->sc_ic;
1308 int s;
1309
1310 s = splnet();
1311
1312 /* Do periodic (every 4 minutes) PA calibration. */
1313 if (AR_SREV_9285_11_OR_LATER(sc) &&
1314 !AR_SREV_9380_10_OR_LATER(sc) &&
1315 (ticks - (sc->sc_pa_calib_ticks + 240 * hz)) >= 0) {
1316 sc->sc_pa_calib_ticks = ticks;
1317 if (AR_SREV_9271(sc))
1318 ar9271_pa_calib(sc);
1319 else
1320 ar9285_pa_calib(sc);
1321 }
1322
1323 /* Do periodic (every 30 seconds) temperature compensation. */
1324 if ((sc->sc_flags & ATHN_FLAG_OLPC) &&
1325 ticks >= sc->sc_olpc_ticks + 30 * hz) {
1326 sc->sc_olpc_ticks = ticks;
1327 ops->olpc_temp_compensation(sc);
1328 }
1329
1330 #ifdef notyet
1331 /* XXX ANI. */
1332 athn_ani_monitor(sc);
1333
1334 ops->next_calib(sc);
1335 #endif
1336 if (ic->ic_fixed_rate == -1) {
1337 if (ic->ic_opmode == IEEE80211_M_STA)
1338 athn_iter_func(sc, ic->ic_bss);
1339 else
1340 ieee80211_iterate_nodes(&ic->ic_sta, athn_iter_func, sc);
1341 }
1342 callout_schedule(&sc->sc_calib_to, hz / 2);
1343 splx(s);
1344 }
1345
1346 Static int
1347 athn_init_calib(struct athn_softc *sc, struct ieee80211_channel *curchan,
1348 struct ieee80211_channel *extchan)
1349 {
1350 struct athn_ops *ops = &sc->sc_ops;
1351 int error;
1352
1353 if (AR_SREV_9380_10_OR_LATER(sc))
1354 error = ar9003_init_calib(sc);
1355 else if (AR_SREV_9285_10_OR_LATER(sc))
1356 error = ar9285_init_calib(sc, curchan, extchan);
1357 else
1358 error = ar5416_init_calib(sc, curchan, extchan);
1359 if (error != 0)
1360 return error;
1361
1362 if (!AR_SREV_9380_10_OR_LATER(sc)) {
1363 /* Do PA calibration. */
1364 if (AR_SREV_9285_11_OR_LATER(sc)) {
1365 extern int ticks;
1366 sc->sc_pa_calib_ticks = ticks;
1367 if (AR_SREV_9271(sc))
1368 ar9271_pa_calib(sc);
1369 else
1370 ar9285_pa_calib(sc);
1371 }
1372 /* Do noisefloor calibration. */
1373 ops->noisefloor_calib(sc);
1374 }
1375 if (AR_SREV_9160_10_OR_LATER(sc)) {
1376 /* Support IQ calibration. */
1377 sc->sc_sup_calib_mask = ATHN_CAL_IQ;
1378 if (AR_SREV_9380_10_OR_LATER(sc)) {
1379 /* Support temperature compensation calibration. */
1380 sc->sc_sup_calib_mask |= ATHN_CAL_TEMP;
1381 }
1382 else if (IEEE80211_IS_CHAN_5GHZ(curchan) || extchan != NULL) {
1383 /*
1384 * ADC gain calibration causes uplink throughput
1385 * drops in HT40 mode on AR9287.
1386 */
1387 if (!AR_SREV_9287(sc)) {
1388 /* Support ADC gain calibration. */
1389 sc->sc_sup_calib_mask |= ATHN_CAL_ADC_GAIN;
1390 }
1391 /* Support ADC DC offset calibration. */
1392 sc->sc_sup_calib_mask |= ATHN_CAL_ADC_DC;
1393 }
1394 }
1395 return 0;
1396 }
1397
1398 /*
1399 * Adaptive noise immunity.
1400 */
1401 #ifdef notyet
1402 Static int32_t
1403 athn_ani_get_rssi(struct athn_softc *sc)
1404 {
1405
1406 return 0; /* XXX */
1407 }
1408 #endif /* notyet */
1409
1410 #ifdef notyet
1411 Static void
1412 athn_ani_ofdm_err_trigger(struct athn_softc *sc)
1413 {
1414 struct athn_ani *ani = &sc->sc_ani;
1415 struct athn_ops *ops = &sc->sc_ops;
1416 int32_t rssi;
1417
1418 /* First, raise noise immunity level, up to max. */
1419 if (ani->noise_immunity_level < 4) {
1420 ani->noise_immunity_level++;
1421 ops->set_noise_immunity_level(sc, ani->noise_immunity_level);
1422 return;
1423 }
1424
1425 /* Then, raise our spur immunity level, up to max. */
1426 if (ani->spur_immunity_level < 7) {
1427 ani->spur_immunity_level++;
1428 ops->set_spur_immunity_level(sc, ani->spur_immunity_level);
1429 return;
1430 }
1431
1432 #ifndef IEEE80211_STA_ONLY
1433 if (sc->sc_ic.ic_opmode == IEEE80211_M_HOSTAP) {
1434 if (ani->firstep_level < 2) {
1435 ani->firstep_level++;
1436 ops->set_firstep_level(sc, ani->firstep_level);
1437 }
1438 return;
1439 }
1440 #endif
1441 rssi = athn_ani_get_rssi(sc);
1442 if (rssi > ATHN_ANI_RSSI_THR_HIGH) {
1443 /*
1444 * Beacon RSSI is high, turn off OFDM weak signal detection
1445 * or raise first step level as last resort.
1446 */
1447 if (ani->ofdm_weak_signal) {
1448 ani->ofdm_weak_signal = 0;
1449 ops->disable_ofdm_weak_signal(sc);
1450 ani->spur_immunity_level = 0;
1451 ops->set_spur_immunity_level(sc, 0);
1452 }
1453 else if (ani->firstep_level < 2) {
1454 ani->firstep_level++;
1455 ops->set_firstep_level(sc, ani->firstep_level);
1456 }
1457 }
1458 else if (rssi > ATHN_ANI_RSSI_THR_LOW) {
1459 /*
1460 * Beacon RSSI is in mid range, we need OFDM weak signal
1461 * detection but we can raise first step level.
1462 */
1463 if (!ani->ofdm_weak_signal) {
1464 ani->ofdm_weak_signal = 1;
1465 ops->enable_ofdm_weak_signal(sc);
1466 }
1467 if (ani->firstep_level < 2) {
1468 ani->firstep_level++;
1469 ops->set_firstep_level(sc, ani->firstep_level);
1470 }
1471 }
1472 else if (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) {
1473 /*
1474 * Beacon RSSI is low, if in b/g mode, turn off OFDM weak
1475 * signal detection and zero first step level to maximize
1476 * CCK sensitivity.
1477 */
1478 if (ani->ofdm_weak_signal) {
1479 ani->ofdm_weak_signal = 0;
1480 ops->disable_ofdm_weak_signal(sc);
1481 }
1482 if (ani->firstep_level > 0) {
1483 ani->firstep_level = 0;
1484 ops->set_firstep_level(sc, 0);
1485 }
1486 }
1487 }
1488 #endif /* notyet */
1489
1490 #ifdef notyet
1491 Static void
1492 athn_ani_cck_err_trigger(struct athn_softc *sc)
1493 {
1494 struct athn_ani *ani = &sc->sc_ani;
1495 struct athn_ops *ops = &sc->sc_ops;
1496 int32_t rssi;
1497
1498 /* Raise noise immunity level, up to max. */
1499 if (ani->noise_immunity_level < 4) {
1500 ani->noise_immunity_level++;
1501 ops->set_noise_immunity_level(sc, ani->noise_immunity_level);
1502 return;
1503 }
1504
1505 #ifndef IEEE80211_STA_ONLY
1506 if (sc->sc_ic.ic_opmode == IEEE80211_M_HOSTAP) {
1507 if (ani->firstep_level < 2) {
1508 ani->firstep_level++;
1509 ops->set_firstep_level(sc, ani->firstep_level);
1510 }
1511 return;
1512 }
1513 #endif
1514 rssi = athn_ani_get_rssi(sc);
1515 if (rssi > ATHN_ANI_RSSI_THR_LOW) {
1516 /*
1517 * Beacon RSSI is in mid or high range, raise first step
1518 * level.
1519 */
1520 if (ani->firstep_level < 2) {
1521 ani->firstep_level++;
1522 ops->set_firstep_level(sc, ani->firstep_level);
1523 }
1524 }
1525 else if (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) {
1526 /*
1527 * Beacon RSSI is low, zero first step level to maximize
1528 * CCK sensitivity.
1529 */
1530 if (ani->firstep_level > 0) {
1531 ani->firstep_level = 0;
1532 ops->set_firstep_level(sc, 0);
1533 }
1534 }
1535 }
1536 #endif /* notyet */
1537
1538 #ifdef notyet
1539 Static void
1540 athn_ani_lower_immunity(struct athn_softc *sc)
1541 {
1542 struct athn_ani *ani = &sc->sc_ani;
1543 struct athn_ops *ops = &sc->sc_ops;
1544 int32_t rssi;
1545
1546 #ifndef IEEE80211_STA_ONLY
1547 if (sc->sc_ic.ic_opmode == IEEE80211_M_HOSTAP) {
1548 if (ani->firstep_level > 0) {
1549 ani->firstep_level--;
1550 ops->set_firstep_level(sc, ani->firstep_level);
1551 }
1552 return;
1553 }
1554 #endif
1555 rssi = athn_ani_get_rssi(sc);
1556 if (rssi > ATHN_ANI_RSSI_THR_HIGH) {
1557 /*
1558 * Beacon RSSI is high, leave OFDM weak signal detection
1559 * off or it may oscillate.
1560 */
1561 }
1562 else if (rssi > ATHN_ANI_RSSI_THR_LOW) {
1563 /*
1564 * Beacon RSSI is in mid range, turn on OFDM weak signal
1565 * detection or lower first step level.
1566 */
1567 if (!ani->ofdm_weak_signal) {
1568 ani->ofdm_weak_signal = 1;
1569 ops->enable_ofdm_weak_signal(sc);
1570 return;
1571 }
1572 if (ani->firstep_level > 0) {
1573 ani->firstep_level--;
1574 ops->set_firstep_level(sc, ani->firstep_level);
1575 return;
1576 }
1577 }
1578 else {
1579 /* Beacon RSSI is low, lower first step level. */
1580 if (ani->firstep_level > 0) {
1581 ani->firstep_level--;
1582 ops->set_firstep_level(sc, ani->firstep_level);
1583 return;
1584 }
1585 }
1586 /*
1587 * Lower spur immunity level down to zero, or if all else fails,
1588 * lower noise immunity level down to zero.
1589 */
1590 if (ani->spur_immunity_level > 0) {
1591 ani->spur_immunity_level--;
1592 ops->set_spur_immunity_level(sc, ani->spur_immunity_level);
1593 }
1594 else if (ani->noise_immunity_level > 0) {
1595 ani->noise_immunity_level--;
1596 ops->set_noise_immunity_level(sc, ani->noise_immunity_level);
1597 }
1598 }
1599 #endif /* notyet */
1600
1601 #ifdef notyet
1602 Static void
1603 athn_ani_restart(struct athn_softc *sc)
1604 {
1605 struct athn_ani *ani = &sc->sc_ani;
1606
1607 AR_WRITE(sc, AR_PHY_ERR_1, 0);
1608 AR_WRITE(sc, AR_PHY_ERR_2, 0);
1609 AR_WRITE(sc, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING);
1610 AR_WRITE(sc, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING);
1611 AR_WRITE_BARRIER(sc);
1612
1613 ani->listen_time = 0;
1614 ani->ofdm_phy_err_count = 0;
1615 ani->cck_phy_err_count = 0;
1616 }
1617 #endif /* notyet */
1618
1619 #ifdef notyet
1620 Static void
1621 athn_ani_monitor(struct athn_softc *sc)
1622 {
1623 struct athn_ani *ani = &sc->sc_ani;
1624 uint32_t cyccnt, txfcnt, rxfcnt, phy1, phy2;
1625 int32_t cycdelta, txfdelta, rxfdelta;
1626 int32_t listen_time;
1627
1628 txfcnt = AR_READ(sc, AR_TFCNT); /* Tx frame count. */
1629 rxfcnt = AR_READ(sc, AR_RFCNT); /* Rx frame count. */
1630 cyccnt = AR_READ(sc, AR_CCCNT); /* Cycle count. */
1631
1632 if (ani->cyccnt != 0 && ani->cyccnt <= cyccnt) {
1633 cycdelta = cyccnt - ani->cyccnt;
1634 txfdelta = txfcnt - ani->txfcnt;
1635 rxfdelta = rxfcnt - ani->rxfcnt;
1636
1637 listen_time = (cycdelta - txfdelta - rxfdelta) /
1638 (athn_clock_rate(sc) * 1000);
1639 }
1640 else
1641 listen_time = 0;
1642
1643 ani->cyccnt = cyccnt;
1644 ani->txfcnt = txfcnt;
1645 ani->rxfcnt = rxfcnt;
1646
1647 if (listen_time < 0) {
1648 athn_ani_restart(sc);
1649 return;
1650 }
1651 ani->listen_time += listen_time;
1652
1653 phy1 = AR_READ(sc, AR_PHY_ERR_1);
1654 phy2 = AR_READ(sc, AR_PHY_ERR_2);
1655
1656 if (phy1 < ani->ofdm_phy_err_base) {
1657 AR_WRITE(sc, AR_PHY_ERR_1, ani->ofdm_phy_err_base);
1658 AR_WRITE(sc, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING);
1659 }
1660 if (phy2 < ani->cck_phy_err_base) {
1661 AR_WRITE(sc, AR_PHY_ERR_2, ani->cck_phy_err_base);
1662 AR_WRITE(sc, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING);
1663 }
1664 if (phy1 < ani->ofdm_phy_err_base || phy2 < ani->cck_phy_err_base) {
1665 AR_WRITE_BARRIER(sc);
1666 return;
1667 }
1668 ani->ofdm_phy_err_count = phy1 - ani->ofdm_phy_err_base;
1669 ani->cck_phy_err_count = phy2 - ani->cck_phy_err_base;
1670
1671 if (ani->listen_time > 5 * ATHN_ANI_PERIOD) {
1672 /* Check to see if we need to lower immunity. */
1673 if (ani->ofdm_phy_err_count <=
1674 ani->listen_time * ani->ofdm_trig_low / 1000 &&
1675 ani->cck_phy_err_count <=
1676 ani->listen_time * ani->cck_trig_low / 1000)
1677 athn_ani_lower_immunity(sc);
1678 athn_ani_restart(sc);
1679
1680 }
1681 else if (ani->listen_time > ATHN_ANI_PERIOD) {
1682 /* Check to see if we need to raise immunity. */
1683 if (ani->ofdm_phy_err_count >
1684 ani->listen_time * ani->ofdm_trig_high / 1000) {
1685 athn_ani_ofdm_err_trigger(sc);
1686 athn_ani_restart(sc);
1687 }
1688 else if (ani->cck_phy_err_count >
1689 ani->listen_time * ani->cck_trig_high / 1000) {
1690 athn_ani_cck_err_trigger(sc);
1691 athn_ani_restart(sc);
1692 }
1693 }
1694 }
1695 #endif /* notyet */
1696
1697 PUBLIC uint8_t
1698 athn_chan2fbin(struct ieee80211_channel *c)
1699 {
1700
1701 if (IEEE80211_IS_CHAN_2GHZ(c))
1702 return c->ic_freq - 2300;
1703 else
1704 return (c->ic_freq - 4800) / 5;
1705 }
1706
1707 PUBLIC int
1708 athn_interpolate(int x, int x1, int y1, int x2, int y2)
1709 {
1710
1711 if (x1 == x2) /* Prevents division by zero. */
1712 return y1;
1713 /* Linear interpolation. */
1714 return y1 + ((x - x1) * (y2 - y1)) / (x2 - x1);
1715 }
1716
1717 PUBLIC void
1718 athn_get_pier_ival(uint8_t fbin, const uint8_t *pierfreq, int npiers,
1719 int *lo, int *hi)
1720 {
1721 int i;
1722
1723 for (i = 0; i < npiers; i++)
1724 if (pierfreq[i] == AR_BCHAN_UNUSED ||
1725 pierfreq[i] > fbin)
1726 break;
1727 *hi = i;
1728 *lo = *hi - 1;
1729 if (*lo == -1)
1730 *lo = *hi;
1731 else if (*hi == npiers || pierfreq[*hi] == AR_BCHAN_UNUSED)
1732 *hi = *lo;
1733 }
1734
1735 Static void
1736 athn_init_dma(struct athn_softc *sc)
1737 {
1738 uint32_t reg;
1739
1740 if (!AR_SREV_9380_10_OR_LATER(sc)) {
1741 /* Set AHB not to do cacheline prefetches. */
1742 AR_SETBITS(sc, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1743 }
1744 reg = AR_READ(sc, AR_TXCFG);
1745 /* Let MAC DMA reads be in 128-byte chunks. */
1746 reg = RW(reg, AR_TXCFG_DMASZ, AR_DMASZ_128B);
1747
1748 /* Set initial Tx trigger level. */
1749 if (AR_SREV_9285(sc) || AR_SREV_9271(sc))
1750 reg = RW(reg, AR_TXCFG_FTRIG, AR_TXCFG_FTRIG_256B);
1751 else if (!AR_SREV_9380_10_OR_LATER(sc))
1752 reg = RW(reg, AR_TXCFG_FTRIG, AR_TXCFG_FTRIG_512B);
1753 AR_WRITE(sc, AR_TXCFG, reg);
1754
1755 /* Let MAC DMA writes be in 128-byte chunks. */
1756 reg = AR_READ(sc, AR_RXCFG);
1757 reg = RW(reg, AR_RXCFG_DMASZ, AR_DMASZ_128B);
1758 AR_WRITE(sc, AR_RXCFG, reg);
1759
1760 /* Setup Rx FIFO threshold to hold off Tx activities. */
1761 AR_WRITE(sc, AR_RXFIFO_CFG, 512);
1762
1763 /* Reduce the number of entries in PCU TXBUF to avoid wrap around. */
1764 if (AR_SREV_9285(sc)) {
1765 AR_WRITE(sc, AR_PCU_TXBUF_CTRL,
1766 AR9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1767 }
1768 else if (!AR_SREV_9271(sc)) {
1769 AR_WRITE(sc, AR_PCU_TXBUF_CTRL,
1770 AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1771 }
1772 AR_WRITE_BARRIER(sc);
1773
1774 /* Reset Tx status ring. */
1775 if (AR_SREV_9380_10_OR_LATER(sc))
1776 ar9003_reset_txsring(sc);
1777 }
1778
1779 PUBLIC void
1780 athn_inc_tx_trigger_level(struct athn_softc *sc)
1781 {
1782 uint32_t reg, ftrig;
1783
1784 reg = AR_READ(sc, AR_TXCFG);
1785 ftrig = MS(reg, AR_TXCFG_FTRIG);
1786 /*
1787 * NB: The AR9285 and all single-stream parts have an issue that
1788 * limits the size of the PCU Tx FIFO to 2KB instead of 4KB.
1789 */
1790 if (ftrig == ((AR_SREV_9285(sc) || AR_SREV_9271(sc)) ? 0x1f : 0x3f))
1791 return; /* Already at max. */
1792 reg = RW(reg, AR_TXCFG_FTRIG, ftrig + 1);
1793 AR_WRITE(sc, AR_TXCFG, reg);
1794 AR_WRITE_BARRIER(sc);
1795 }
1796
1797 PUBLIC int
1798 athn_stop_rx_dma(struct athn_softc *sc)
1799 {
1800 int ntries;
1801
1802 AR_WRITE(sc, AR_CR, AR_CR_RXD);
1803 /* Wait for Rx enable bit to go low. */
1804 for (ntries = 0; ntries < 100; ntries++) {
1805 if (!(AR_READ(sc, AR_CR) & AR_CR_RXE))
1806 return 0;
1807 DELAY(100);
1808 }
1809 DPRINTFN(DBG_RX, sc, "Rx DMA failed to stop\n");
1810 return ETIMEDOUT;
1811 }
1812
1813 #ifdef unused
1814 Static int
1815 athn_rx_abort(struct athn_softc *sc)
1816 {
1817 int ntries;
1818
1819 AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
1820 for (ntries = 0; ntries < 1000; ntries++) {
1821 if (MS(AR_READ(sc, AR_OBS_BUS_1), AR_OBS_BUS_1_RX_STATE) == 0)
1822 return 0;
1823 DELAY(10);
1824 }
1825 DPRINTFN(DBG_RX, sc, "Rx failed to go idle in 10ms\n");
1826 AR_CLRBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
1827 AR_WRITE_BARRIER(sc);
1828 return ETIMEDOUT;
1829 }
1830 #endif /* unused */
1831
1832 Static void
1833 athn_tx_reclaim(struct athn_softc *sc, int qid)
1834 {
1835 struct athn_txq *txq = &sc->sc_txq[qid];
1836 struct athn_tx_buf *bf;
1837
1838 /* Reclaim all buffers queued in the specified Tx queue. */
1839 /* NB: Tx DMA must be stopped. */
1840 while ((bf = SIMPLEQ_FIRST(&txq->head)) != NULL) {
1841 SIMPLEQ_REMOVE_HEAD(&txq->head, bf_list);
1842
1843 bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0,
1844 bf->bf_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1845 bus_dmamap_unload(sc->sc_dmat, bf->bf_map);
1846 m_freem(bf->bf_m);
1847 bf->bf_m = NULL;
1848 bf->bf_ni = NULL; /* Nodes already freed! */
1849
1850 /* Link Tx buffer back to global free list. */
1851 SIMPLEQ_INSERT_TAIL(&sc->sc_txbufs, bf, bf_list);
1852 }
1853 }
1854
1855 PUBLIC int
1856 athn_tx_pending(struct athn_softc *sc, int qid)
1857 {
1858
1859 return MS(AR_READ(sc, AR_QSTS(qid)), AR_Q_STS_PEND_FR_CNT) != 0 ||
1860 (AR_READ(sc, AR_Q_TXE) & (1 << qid)) != 0;
1861 }
1862
1863 PUBLIC void
1864 athn_stop_tx_dma(struct athn_softc *sc, int qid)
1865 {
1866 uint32_t tsflo;
1867 int ntries, i;
1868
1869 AR_WRITE(sc, AR_Q_TXD, 1 << qid);
1870 for (ntries = 0; ntries < 40; ntries++) {
1871 if (!athn_tx_pending(sc, qid))
1872 break;
1873 DELAY(100);
1874 }
1875 if (ntries == 40) {
1876 for (i = 0; i < 2; i++) {
1877 tsflo = AR_READ(sc, AR_TSF_L32) / 1024;
1878 AR_WRITE(sc, AR_QUIET2,
1879 SM(AR_QUIET2_QUIET_DUR, 10));
1880 AR_WRITE(sc, AR_QUIET_PERIOD, 100);
1881 AR_WRITE(sc, AR_NEXT_QUIET_TIMER, tsflo);
1882 AR_SETBITS(sc, AR_TIMER_MODE, AR_QUIET_TIMER_EN);
1883 if (AR_READ(sc, AR_TSF_L32) / 1024 == tsflo)
1884 break;
1885 }
1886 AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
1887 AR_WRITE_BARRIER(sc);
1888 DELAY(200);
1889 AR_CLRBITS(sc, AR_TIMER_MODE, AR_QUIET_TIMER_EN);
1890 AR_WRITE_BARRIER(sc);
1891
1892 for (ntries = 0; ntries < 40; ntries++) {
1893 if (!athn_tx_pending(sc, qid))
1894 break;
1895 DELAY(100);
1896 }
1897
1898 AR_CLRBITS(sc, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
1899 }
1900 AR_WRITE(sc, AR_Q_TXD, 0);
1901 AR_WRITE_BARRIER(sc);
1902 }
1903
1904 PUBLIC int
1905 athn_txtime(struct athn_softc *sc, int len, int ridx, u_int flags)
1906 {
1907 #define divround(a, b) (((a) + (b) - 1) / (b))
1908 int txtime;
1909
1910 /* XXX HT. */
1911 if (athn_rates[ridx].phy == IEEE80211_T_OFDM) {
1912 txtime = divround(8 + 4 * len + 3, athn_rates[ridx].rate);
1913 /* SIFS is 10us for 11g but Signal Extension adds 6us. */
1914 txtime = 16 + 4 + 4 * txtime + 16;
1915 }
1916 else {
1917 txtime = divround(16 * len, athn_rates[ridx].rate);
1918 if (ridx != ATHN_RIDX_CCK1 && (flags & IEEE80211_F_SHPREAMBLE))
1919 txtime += 72 + 24;
1920 else
1921 txtime += 144 + 48;
1922 txtime += 10; /* 10us SIFS. */
1923 }
1924 return txtime;
1925 #undef divround
1926 }
1927
1928 PUBLIC void
1929 athn_init_tx_queues(struct athn_softc *sc)
1930 {
1931 int qid;
1932
1933 for (qid = 0; qid < ATHN_QID_COUNT; qid++) {
1934 SIMPLEQ_INIT(&sc->sc_txq[qid].head);
1935 sc->sc_txq[qid].lastds = NULL;
1936 sc->sc_txq[qid].wait = NULL;
1937 sc->sc_txq[qid].queued = 0;
1938
1939 AR_WRITE(sc, AR_DRETRY_LIMIT(qid),
1940 SM(AR_D_RETRY_LIMIT_STA_SH, 32) |
1941 SM(AR_D_RETRY_LIMIT_STA_LG, 32) |
1942 SM(AR_D_RETRY_LIMIT_FR_SH, 10));
1943 AR_WRITE(sc, AR_QMISC(qid),
1944 AR_Q_MISC_DCU_EARLY_TERM_REQ);
1945 AR_WRITE(sc, AR_DMISC(qid),
1946 SM(AR_D_MISC_BKOFF_THRESH, 2) |
1947 AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN);
1948 }
1949
1950 /* Init beacon queue. */
1951 AR_SETBITS(sc, AR_QMISC(ATHN_QID_BEACON),
1952 AR_Q_MISC_FSP_DBA_GATED | AR_Q_MISC_BEACON_USE |
1953 AR_Q_MISC_CBR_INCR_DIS1);
1954 AR_SETBITS(sc, AR_DMISC(ATHN_QID_BEACON),
1955 SM(AR_D_MISC_ARB_LOCKOUT_CNTRL,
1956 AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL) |
1957 AR_D_MISC_BEACON_USE |
1958 AR_D_MISC_POST_FR_BKOFF_DIS);
1959 AR_WRITE(sc, AR_DLCL_IFS(ATHN_QID_BEACON),
1960 SM(AR_D_LCL_IFS_CWMIN, 0) |
1961 SM(AR_D_LCL_IFS_CWMAX, 0) |
1962 SM(AR_D_LCL_IFS_AIFS, 1));
1963
1964 /* Init CAB (Content After Beacon) queue. */
1965 AR_SETBITS(sc, AR_QMISC(ATHN_QID_CAB),
1966 AR_Q_MISC_FSP_DBA_GATED | AR_Q_MISC_CBR_INCR_DIS1 |
1967 AR_Q_MISC_CBR_INCR_DIS0);
1968 AR_SETBITS(sc, AR_DMISC(ATHN_QID_CAB),
1969 SM(AR_D_MISC_ARB_LOCKOUT_CNTRL,
1970 AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL));
1971
1972 /* Init PS-Poll queue. */
1973 AR_SETBITS(sc, AR_QMISC(ATHN_QID_PSPOLL),
1974 AR_Q_MISC_CBR_INCR_DIS1);
1975
1976 /* Init UAPSD queue. */
1977 AR_SETBITS(sc, AR_DMISC(ATHN_QID_UAPSD),
1978 AR_D_MISC_POST_FR_BKOFF_DIS);
1979
1980 if (AR_SREV_9380_10_OR_LATER(sc)) {
1981 /* Enable MAC descriptor CRC check. */
1982 AR_WRITE(sc, AR_Q_DESC_CRCCHK, AR_Q_DESC_CRCCHK_EN);
1983 }
1984 /* Enable DESC interrupts for all Tx queues. */
1985 AR_WRITE(sc, AR_IMR_S0, 0x00ff0000);
1986 /* Enable EOL interrupts for all Tx queues except UAPSD. */
1987 AR_WRITE(sc, AR_IMR_S1, 0x00df0000);
1988 AR_WRITE_BARRIER(sc);
1989 }
1990
1991 PUBLIC void
1992 athn_set_sta_timers(struct athn_softc *sc)
1993 {
1994 struct ieee80211com *ic = &sc->sc_ic;
1995 uint32_t tsfhi, tsflo, tsftu, reg;
1996 uint32_t intval, next_tbtt, next_dtim;
1997 int dtim_period, rem_dtim_count;
1998
1999 tsfhi = AR_READ(sc, AR_TSF_U32);
2000 tsflo = AR_READ(sc, AR_TSF_L32);
2001 tsftu = AR_TSF_TO_TU(tsfhi, tsflo) + AR_FUDGE;
2002
2003 /* Beacon interval in TU. */
2004 intval = ic->ic_bss->ni_intval;
2005
2006 next_tbtt = roundup(tsftu, intval);
2007 #ifdef notyet
2008 dtim_period = ic->ic_dtim_period;
2009 if (dtim_period <= 0)
2010 #endif
2011 dtim_period = 1; /* Assume all TIMs are DTIMs. */
2012
2013 #ifdef notyet
2014 int dtim_count = ic->ic_dtim_count;
2015 if (dtim_count >= dtim_period) /* Should not happen. */
2016 dtim_count = 0; /* Assume last TIM was a DTIM. */
2017 #endif
2018
2019 /* Compute number of remaining TIMs until next DTIM. */
2020 rem_dtim_count = 0; /* XXX */
2021 next_dtim = next_tbtt + rem_dtim_count * intval;
2022
2023 AR_WRITE(sc, AR_NEXT_TBTT_TIMER, next_tbtt * IEEE80211_DUR_TU);
2024 AR_WRITE(sc, AR_BEACON_PERIOD, intval * IEEE80211_DUR_TU);
2025 AR_WRITE(sc, AR_DMA_BEACON_PERIOD, intval * IEEE80211_DUR_TU);
2026
2027 /*
2028 * Set the number of consecutive beacons to miss before raising
2029 * a BMISS interrupt to 10.
2030 */
2031 reg = AR_READ(sc, AR_RSSI_THR);
2032 reg = RW(reg, AR_RSSI_THR_BM_THR, 10);
2033 AR_WRITE(sc, AR_RSSI_THR, reg);
2034
2035 AR_WRITE(sc, AR_NEXT_DTIM,
2036 (next_dtim - AR_SLEEP_SLOP) * IEEE80211_DUR_TU);
2037 AR_WRITE(sc, AR_NEXT_TIM,
2038 (next_tbtt - AR_SLEEP_SLOP) * IEEE80211_DUR_TU);
2039
2040 /* CAB timeout is in 1/8 TU. */
2041 AR_WRITE(sc, AR_SLEEP1,
2042 SM(AR_SLEEP1_CAB_TIMEOUT, AR_CAB_TIMEOUT_VAL * 8) |
2043 AR_SLEEP1_ASSUME_DTIM);
2044 AR_WRITE(sc, AR_SLEEP2,
2045 SM(AR_SLEEP2_BEACON_TIMEOUT, AR_MIN_BEACON_TIMEOUT_VAL));
2046
2047 AR_WRITE(sc, AR_TIM_PERIOD, intval * IEEE80211_DUR_TU);
2048 AR_WRITE(sc, AR_DTIM_PERIOD, dtim_period * intval * IEEE80211_DUR_TU);
2049
2050 AR_SETBITS(sc, AR_TIMER_MODE,
2051 AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN | AR_DTIM_TIMER_EN);
2052
2053 /* Set TSF out-of-range threshold (fixed at 16k us). */
2054 AR_WRITE(sc, AR_TSFOOR_THRESHOLD, 0x4240);
2055
2056 AR_WRITE_BARRIER(sc);
2057 }
2058
2059 #ifndef IEEE80211_STA_ONLY
2060 PUBLIC void
2061 athn_set_hostap_timers(struct athn_softc *sc)
2062 {
2063 struct ieee80211com *ic = &sc->sc_ic;
2064 uint32_t intval, next_tbtt;
2065
2066 /* Beacon interval in TU. */
2067 intval = ic->ic_bss->ni_intval;
2068 next_tbtt = intval;
2069
2070 AR_WRITE(sc, AR_NEXT_TBTT_TIMER, next_tbtt * IEEE80211_DUR_TU);
2071 AR_WRITE(sc, AR_NEXT_DMA_BEACON_ALERT,
2072 (next_tbtt - AR_BEACON_DMA_DELAY) * IEEE80211_DUR_TU);
2073 AR_WRITE(sc, AR_NEXT_CFP,
2074 (next_tbtt - AR_SWBA_DELAY) * IEEE80211_DUR_TU);
2075
2076 AR_WRITE(sc, AR_BEACON_PERIOD, intval * IEEE80211_DUR_TU);
2077 AR_WRITE(sc, AR_DMA_BEACON_PERIOD, intval * IEEE80211_DUR_TU);
2078 AR_WRITE(sc, AR_SWBA_PERIOD, intval * IEEE80211_DUR_TU);
2079 AR_WRITE(sc, AR_NDP_PERIOD, intval * IEEE80211_DUR_TU);
2080
2081 AR_WRITE(sc, AR_TIMER_MODE,
2082 AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN);
2083
2084 AR_WRITE_BARRIER(sc);
2085 }
2086 #endif
2087
2088 PUBLIC void
2089 athn_set_opmode(struct athn_softc *sc)
2090 {
2091 uint32_t reg;
2092
2093 switch (sc->sc_ic.ic_opmode) {
2094 #ifndef IEEE80211_STA_ONLY
2095 case IEEE80211_M_HOSTAP:
2096 reg = AR_READ(sc, AR_STA_ID1);
2097 reg &= ~AR_STA_ID1_ADHOC;
2098 reg |= AR_STA_ID1_STA_AP | AR_STA_ID1_KSRCH_MODE;
2099 AR_WRITE(sc, AR_STA_ID1, reg);
2100
2101 AR_CLRBITS(sc, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
2102 break;
2103 case IEEE80211_M_IBSS:
2104 case IEEE80211_M_AHDEMO:
2105 reg = AR_READ(sc, AR_STA_ID1);
2106 reg &= ~AR_STA_ID1_STA_AP;
2107 reg |= AR_STA_ID1_ADHOC | AR_STA_ID1_KSRCH_MODE;
2108 AR_WRITE(sc, AR_STA_ID1, reg);
2109
2110 AR_SETBITS(sc, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
2111 break;
2112 #endif
2113 default:
2114 reg = AR_READ(sc, AR_STA_ID1);
2115 reg &= ~(AR_STA_ID1_ADHOC | AR_STA_ID1_STA_AP);
2116 reg |= AR_STA_ID1_KSRCH_MODE;
2117 AR_WRITE(sc, AR_STA_ID1, reg);
2118 break;
2119 }
2120 AR_WRITE_BARRIER(sc);
2121 }
2122
2123 PUBLIC void
2124 athn_set_bss(struct athn_softc *sc, struct ieee80211_node *ni)
2125 {
2126 const uint8_t *bssid = ni->ni_bssid;
2127
2128 AR_WRITE(sc, AR_BSS_ID0, LE_READ_4(&bssid[0]));
2129 AR_WRITE(sc, AR_BSS_ID1, LE_READ_2(&bssid[4]) |
2130 SM(AR_BSS_ID1_AID, IEEE80211_AID(ni->ni_associd)));
2131 AR_WRITE_BARRIER(sc);
2132 }
2133
2134 Static void
2135 athn_enable_interrupts(struct athn_softc *sc)
2136 {
2137 uint32_t mask2;
2138
2139 athn_disable_interrupts(sc); /* XXX */
2140
2141 AR_WRITE(sc, AR_IMR, sc->sc_imask);
2142
2143 mask2 = AR_READ(sc, AR_IMR_S2);
2144 mask2 &= ~(AR_IMR_S2_TIM | AR_IMR_S2_DTIM | AR_IMR_S2_DTIMSYNC |
2145 AR_IMR_S2_CABEND | AR_IMR_S2_CABTO | AR_IMR_S2_TSFOOR);
2146 mask2 |= AR_IMR_S2_GTT | AR_IMR_S2_CST;
2147 AR_WRITE(sc, AR_IMR_S2, mask2);
2148
2149 AR_CLRBITS(sc, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
2150
2151 AR_WRITE(sc, AR_IER, AR_IER_ENABLE);
2152
2153 AR_WRITE(sc, AR_INTR_ASYNC_ENABLE, AR_INTR_MAC_IRQ);
2154 AR_WRITE(sc, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
2155
2156 AR_WRITE(sc, AR_INTR_SYNC_ENABLE, sc->sc_isync);
2157 AR_WRITE(sc, AR_INTR_SYNC_MASK, sc->sc_isync);
2158 AR_WRITE_BARRIER(sc);
2159 }
2160
2161 Static void
2162 athn_disable_interrupts(struct athn_softc *sc)
2163 {
2164
2165 AR_WRITE(sc, AR_IER, 0);
2166 (void)AR_READ(sc, AR_IER);
2167
2168 AR_WRITE(sc, AR_INTR_ASYNC_ENABLE, 0);
2169 (void)AR_READ(sc, AR_INTR_ASYNC_ENABLE);
2170
2171 AR_WRITE(sc, AR_INTR_SYNC_ENABLE, 0);
2172 (void)AR_READ(sc, AR_INTR_SYNC_ENABLE);
2173
2174 AR_WRITE(sc, AR_IMR, 0);
2175
2176 AR_CLRBITS(sc, AR_IMR_S2, AR_IMR_S2_TIM | AR_IMR_S2_DTIM |
2177 AR_IMR_S2_DTIMSYNC | AR_IMR_S2_CABEND | AR_IMR_S2_CABTO |
2178 AR_IMR_S2_TSFOOR | AR_IMR_S2_GTT | AR_IMR_S2_CST);
2179
2180 AR_CLRBITS(sc, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
2181 AR_WRITE_BARRIER(sc);
2182 }
2183
2184 Static void
2185 athn_init_qos(struct athn_softc *sc)
2186 {
2187
2188 /* Initialize QoS settings. */
2189 AR_WRITE(sc, AR_MIC_QOS_CONTROL, 0x100aa);
2190 AR_WRITE(sc, AR_MIC_QOS_SELECT, 0x3210);
2191 AR_WRITE(sc, AR_QOS_NO_ACK,
2192 SM(AR_QOS_NO_ACK_TWO_BIT, 2) |
2193 SM(AR_QOS_NO_ACK_BIT_OFF, 5) |
2194 SM(AR_QOS_NO_ACK_BYTE_OFF, 0));
2195 AR_WRITE(sc, AR_TXOP_X, AR_TXOP_X_VAL);
2196 /* Initialize TXOP for all TIDs. */
2197 AR_WRITE(sc, AR_TXOP_0_3, 0xffffffff);
2198 AR_WRITE(sc, AR_TXOP_4_7, 0xffffffff);
2199 AR_WRITE(sc, AR_TXOP_8_11, 0xffffffff);
2200 AR_WRITE(sc, AR_TXOP_12_15, 0xffffffff);
2201 AR_WRITE_BARRIER(sc);
2202 }
2203
2204 PUBLIC int
2205 athn_hw_reset(struct athn_softc *sc, struct ieee80211_channel *curchan,
2206 struct ieee80211_channel *extchan, int init)
2207 {
2208 struct ieee80211com *ic = &sc->sc_ic;
2209 struct athn_ops *ops = &sc->sc_ops;
2210 uint32_t reg, def_ant, sta_id1, cfg_led, tsflo, tsfhi;
2211 int i, error;
2212
2213 /* XXX not if already awake */
2214 if ((error = athn_set_power_awake(sc)) != 0) {
2215 aprint_error_dev(sc->sc_dev, "could not wakeup chip\n");
2216 return error;
2217 }
2218
2219 /* Preserve the antenna on a channel switch. */
2220 if ((def_ant = AR_READ(sc, AR_DEF_ANTENNA)) == 0)
2221 def_ant = 1;
2222 /* Preserve other registers. */
2223 sta_id1 = AR_READ(sc, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
2224 cfg_led = AR_READ(sc, AR_CFG_LED) & (AR_CFG_LED_ASSOC_CTL_M |
2225 AR_CFG_LED_MODE_SEL_M | AR_CFG_LED_BLINK_THRESH_SEL_M |
2226 AR_CFG_LED_BLINK_SLOW);
2227
2228 /* Mark PHY as inactive. */
2229 ops->disable_phy(sc);
2230
2231 if (init && AR_SREV_9271(sc)) {
2232 AR_WRITE(sc, AR9271_RESET_POWER_DOWN_CONTROL,
2233 AR9271_RADIO_RF_RST);
2234 DELAY(50);
2235 }
2236 if (AR_SREV_9280(sc) && (sc->sc_flags & ATHN_FLAG_OLPC)) {
2237 /* Save TSF before it gets cleared. */
2238 tsfhi = AR_READ(sc, AR_TSF_U32);
2239 tsflo = AR_READ(sc, AR_TSF_L32);
2240
2241 /* NB: RTC reset clears TSF. */
2242 error = athn_reset_power_on(sc);
2243 }
2244 else {
2245 tsfhi = tsflo = 0; /* XXX: gcc */
2246 error = athn_reset(sc, 0);
2247 }
2248 if (error != 0) {
2249 aprint_error_dev(sc->sc_dev,
2250 "could not reset chip (error=%d)\n", error);
2251 return error;
2252 }
2253
2254 /* XXX not if already awake */
2255 if ((error = athn_set_power_awake(sc)) != 0) {
2256 aprint_error_dev(sc->sc_dev, "could not wakeup chip\n");
2257 return error;
2258 }
2259
2260 athn_init_pll(sc, curchan);
2261 ops->set_rf_mode(sc, curchan);
2262
2263 if (sc->sc_flags & ATHN_FLAG_RFSILENT) {
2264 /* Check that the radio is not disabled by hardware switch. */
2265 reg = ops->gpio_read(sc, sc->sc_rfsilent_pin);
2266 if (sc->sc_flags & ATHN_FLAG_RFSILENT_REVERSED)
2267 reg = !reg;
2268 if (!reg) {
2269 aprint_error_dev(sc->sc_dev,
2270 "radio is disabled by hardware switch\n");
2271 return EPERM;
2272 }
2273 }
2274 if (init && AR_SREV_9271(sc)) {
2275 AR_WRITE(sc, AR9271_RESET_POWER_DOWN_CONTROL,
2276 AR9271_GATE_MAC_CTL);
2277 DELAY(50);
2278 }
2279 if (AR_SREV_9280(sc) && (sc->sc_flags & ATHN_FLAG_OLPC)) {
2280 /* Restore TSF if it got cleared. */
2281 AR_WRITE(sc, AR_TSF_L32, tsflo);
2282 AR_WRITE(sc, AR_TSF_U32, tsfhi);
2283 }
2284
2285 if (AR_SREV_9280_10_OR_LATER(sc))
2286 AR_SETBITS(sc, sc->sc_gpio_input_en_off, AR_GPIO_JTAG_DISABLE);
2287
2288 if (AR_SREV_9287_13_OR_LATER(sc) && !AR_SREV_9380_10_OR_LATER(sc))
2289 ar9287_1_3_enable_async_fifo(sc);
2290
2291 /* Write init values to hardware. */
2292 ops->hw_init(sc, curchan, extchan);
2293
2294 /*
2295 * Only >=AR9280 2.0 parts are capable of encrypting unicast
2296 * management frames using CCMP.
2297 */
2298 if (AR_SREV_9280_20_OR_LATER(sc)) {
2299 reg = AR_READ(sc, AR_AES_MUTE_MASK1);
2300 /* Do not mask the subtype field in management frames. */
2301 reg = RW(reg, AR_AES_MUTE_MASK1_FC0_MGMT, 0xff);
2302 reg = RW(reg, AR_AES_MUTE_MASK1_FC1_MGMT,
2303 (uint32_t)~(IEEE80211_FC1_RETRY | IEEE80211_FC1_PWR_MGT |
2304 IEEE80211_FC1_MORE_DATA));
2305 AR_WRITE(sc, AR_AES_MUTE_MASK1, reg);
2306 }
2307 else if (AR_SREV_9160_10_OR_LATER(sc)) {
2308 /* Disable hardware crypto for management frames. */
2309 AR_CLRBITS(sc, AR_PCU_MISC_MODE2,
2310 AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
2311 AR_SETBITS(sc, AR_PCU_MISC_MODE2,
2312 AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
2313 }
2314
2315 if (ic->ic_curmode != IEEE80211_MODE_11B)
2316 ops->set_delta_slope(sc, curchan, extchan);
2317
2318 ops->spur_mitigate(sc, curchan, extchan);
2319 ops->init_from_rom(sc, curchan, extchan);
2320
2321 /* XXX */
2322 AR_WRITE(sc, AR_STA_ID0, LE_READ_4(&ic->ic_myaddr[0]));
2323 AR_WRITE(sc, AR_STA_ID1, LE_READ_2(&ic->ic_myaddr[4]) |
2324 sta_id1 | AR_STA_ID1_RTS_USE_DEF | AR_STA_ID1_CRPT_MIC_ENABLE);
2325
2326 athn_set_opmode(sc);
2327
2328 AR_WRITE(sc, AR_BSSMSKL, 0xffffffff);
2329 AR_WRITE(sc, AR_BSSMSKU, 0xffff);
2330
2331 /* Restore previous antenna. */
2332 AR_WRITE(sc, AR_DEF_ANTENNA, def_ant);
2333
2334 AR_WRITE(sc, AR_BSS_ID0, 0);
2335 AR_WRITE(sc, AR_BSS_ID1, 0);
2336
2337 AR_WRITE(sc, AR_ISR, 0xffffffff);
2338
2339 AR_WRITE(sc, AR_RSSI_THR, SM(AR_RSSI_THR_BM_THR, 7));
2340
2341 if ((error = ops->set_synth(sc, curchan, extchan)) != 0) {
2342 aprint_error_dev(sc->sc_dev, "could not set channel\n");
2343 return error;
2344 }
2345 sc->sc_curchan = curchan;
2346 sc->sc_curchanext = extchan;
2347
2348 for (i = 0; i < AR_NUM_DCU; i++)
2349 AR_WRITE(sc, AR_DQCUMASK(i), 1 << i);
2350
2351 athn_init_tx_queues(sc);
2352
2353 /* Initialize interrupt mask. */
2354 sc->sc_imask =
2355 AR_IMR_TXDESC | AR_IMR_TXEOL |
2356 AR_IMR_RXERR | AR_IMR_RXEOL | AR_IMR_RXORN |
2357 AR_IMR_RXMINTR | AR_IMR_RXINTM |
2358 AR_IMR_GENTMR | AR_IMR_BCNMISC;
2359 if (AR_SREV_9380_10_OR_LATER(sc))
2360 sc->sc_imask |= AR_IMR_RXERR | AR_IMR_HP_RXOK;
2361 #ifndef IEEE80211_STA_ONLY
2362 if (0 && ic->ic_opmode == IEEE80211_M_HOSTAP)
2363 sc->sc_imask |= AR_IMR_MIB;
2364 #endif
2365 AR_WRITE(sc, AR_IMR, sc->sc_imask);
2366 AR_SETBITS(sc, AR_IMR_S2, AR_IMR_S2_GTT);
2367 AR_WRITE(sc, AR_INTR_SYNC_CAUSE, 0xffffffff);
2368 sc->sc_isync = AR_INTR_SYNC_DEFAULT;
2369 if (sc->sc_flags & ATHN_FLAG_RFSILENT)
2370 sc->sc_isync |= AR_INTR_SYNC_GPIO_PIN(sc->sc_rfsilent_pin);
2371 AR_WRITE(sc, AR_INTR_SYNC_ENABLE, sc->sc_isync);
2372 AR_WRITE(sc, AR_INTR_SYNC_MASK, 0);
2373 if (AR_SREV_9380_10_OR_LATER(sc)) {
2374 AR_WRITE(sc, AR_INTR_PRIO_ASYNC_ENABLE, 0);
2375 AR_WRITE(sc, AR_INTR_PRIO_ASYNC_MASK, 0);
2376 AR_WRITE(sc, AR_INTR_PRIO_SYNC_ENABLE, 0);
2377 AR_WRITE(sc, AR_INTR_PRIO_SYNC_MASK, 0);
2378 }
2379
2380 athn_init_qos(sc);
2381
2382 AR_SETBITS(sc, AR_PCU_MISC, AR_PCU_MIC_NEW_LOC_ENA);
2383
2384 if (AR_SREV_9287_13_OR_LATER(sc) && !AR_SREV_9380_10_OR_LATER(sc))
2385 ar9287_1_3_setup_async_fifo(sc);
2386
2387 /* Disable sequence number generation in hardware. */
2388 AR_SETBITS(sc, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
2389
2390 athn_init_dma(sc);
2391
2392 /* Program observation bus to see MAC interrupts. */
2393 AR_WRITE(sc, sc->sc_obs_off, 8);
2394
2395 /* Setup Rx interrupt mitigation. */
2396 AR_WRITE(sc, AR_RIMT, SM(AR_RIMT_FIRST, 2000) | SM(AR_RIMT_LAST, 500));
2397
2398 ops->init_baseband(sc);
2399
2400 if ((error = athn_init_calib(sc, curchan, extchan)) != 0) {
2401 aprint_error_dev(sc->sc_dev,
2402 "could not initialize calibration\n");
2403 return error;
2404 }
2405
2406 ops->set_rxchains(sc);
2407
2408 AR_WRITE(sc, AR_CFG_LED, cfg_led | AR_CFG_SCLK_32KHZ);
2409
2410 if (sc->sc_flags & ATHN_FLAG_USB) {
2411 if (AR_SREV_9271(sc))
2412 AR_WRITE(sc, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
2413 else
2414 AR_WRITE(sc, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
2415 }
2416 #if BYTE_ORDER == BIG_ENDIAN
2417 else {
2418 /* Default is LE, turn on swapping for BE. */
2419 AR_WRITE(sc, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
2420 }
2421 #endif
2422 AR_WRITE_BARRIER(sc);
2423
2424 return 0;
2425 }
2426
2427 Static struct ieee80211_node *
2428 athn_node_alloc(struct ieee80211_node_table *ntp)
2429 {
2430
2431 return malloc(sizeof(struct athn_node), M_DEVBUF,
2432 M_NOWAIT | M_ZERO);
2433 }
2434
2435 Static void
2436 athn_newassoc(struct ieee80211_node *ni, int isnew)
2437 {
2438 struct ieee80211com *ic = ni->ni_ic;
2439 struct athn_softc *sc = ic->ic_ifp->if_softc;
2440 struct athn_node *an = (void *)ni;
2441 struct ieee80211_rateset *rs = &ni->ni_rates;
2442 uint8_t rate;
2443 int ridx, i, j;
2444
2445 ieee80211_amrr_node_init(&sc->sc_amrr, &an->amn);
2446 /* Start at lowest available bit-rate, AMRR will raise. */
2447 ni->ni_txrate = 0;
2448
2449 for (i = 0; i < rs->rs_nrates; i++) {
2450 rate = rs->rs_rates[i] & IEEE80211_RATE_VAL;
2451
2452 /* Map 802.11 rate to HW rate index. */
2453 for (ridx = 0; ridx <= ATHN_RIDX_MAX; ridx++)
2454 if (athn_rates[ridx].rate == rate)
2455 break;
2456 an->ridx[i] = ridx;
2457 DPRINTFN(DBG_STM, sc, "rate %d index %d\n", rate, ridx);
2458
2459 /* Compute fallback rate for retries. */
2460 an->fallback[i] = i;
2461 for (j = i - 1; j >= 0; j--) {
2462 if (athn_rates[an->ridx[j]].phy ==
2463 athn_rates[an->ridx[i]].phy) {
2464 an->fallback[i] = j;
2465 break;
2466 }
2467 }
2468 DPRINTFN(DBG_STM, sc, "%d fallbacks to %d\n",
2469 i, an->fallback[i]);
2470 }
2471 }
2472
2473 Static int
2474 athn_media_change(struct ifnet *ifp)
2475 {
2476 struct athn_softc *sc = ifp->if_softc;
2477 struct ieee80211com *ic = &sc->sc_ic;
2478 uint8_t rate, ridx;
2479 int error;
2480
2481 error = ieee80211_media_change(ifp);
2482 if (error != ENETRESET)
2483 return error;
2484
2485 if (ic->ic_fixed_rate != -1) {
2486 rate = ic->ic_sup_rates[ic->ic_curmode].
2487 rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
2488 /* Map 802.11 rate to HW rate index. */
2489 for (ridx = 0; ridx <= ATHN_RIDX_MAX; ridx++)
2490 if (athn_rates[ridx].rate == rate)
2491 break;
2492 sc->sc_fixed_ridx = ridx;
2493 }
2494 if (IS_UP_AND_RUNNING(ifp)) {
2495 athn_stop(ifp, 0);
2496 error = athn_init(ifp);
2497 }
2498 return error;
2499 }
2500
2501 Static void
2502 athn_next_scan(void *arg)
2503 {
2504 struct athn_softc *sc = arg;
2505 struct ieee80211com *ic = &sc->sc_ic;
2506 int s;
2507
2508 s = splnet();
2509 if (ic->ic_state == IEEE80211_S_SCAN)
2510 ieee80211_next_scan(ic);
2511 splx(s);
2512 }
2513
2514 Static int
2515 athn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2516 {
2517 struct ifnet *ifp = ic->ic_ifp;
2518 struct athn_softc *sc = ifp->if_softc;
2519 uint32_t reg;
2520 int error;
2521
2522 callout_stop(&sc->sc_calib_to);
2523
2524 switch (nstate) {
2525 case IEEE80211_S_INIT:
2526 athn_set_led(sc, 0);
2527 break;
2528 case IEEE80211_S_SCAN:
2529 /* Make the LED blink while scanning. */
2530 athn_set_led(sc, !sc->sc_led_state);
2531 error = athn_switch_chan(sc, ic->ic_curchan, NULL);
2532 if (error != 0)
2533 return error;
2534 callout_schedule(&sc->sc_scan_to, hz / 5);
2535 break;
2536 case IEEE80211_S_AUTH:
2537 athn_set_led(sc, 0);
2538 error = athn_switch_chan(sc, ic->ic_curchan, NULL);
2539 if (error != 0)
2540 return error;
2541 break;
2542 case IEEE80211_S_ASSOC:
2543 break;
2544 case IEEE80211_S_RUN:
2545 athn_set_led(sc, 1);
2546
2547 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2548 break;
2549
2550 /* Fake a join to initialize the Tx rate. */
2551 athn_newassoc(ic->ic_bss, 1);
2552
2553 athn_set_bss(sc, ic->ic_bss);
2554 athn_disable_interrupts(sc);
2555 #ifndef IEEE80211_STA_ONLY
2556 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2557 athn_set_hostap_timers(sc);
2558 /* Enable software beacon alert interrupts. */
2559 sc->sc_imask |= AR_IMR_SWBA;
2560 }
2561 else
2562 #endif
2563 {
2564 athn_set_sta_timers(sc);
2565 /* Enable beacon miss interrupts. */
2566 sc->sc_imask |= AR_IMR_BMISS;
2567
2568 /* Stop receiving beacons from other BSS. */
2569 reg = AR_READ(sc, AR_RX_FILTER);
2570 reg = (reg & ~AR_RX_FILTER_BEACON) |
2571 AR_RX_FILTER_MYBEACON;
2572 AR_WRITE(sc, AR_RX_FILTER, reg);
2573 AR_WRITE_BARRIER(sc);
2574 }
2575 athn_enable_interrupts(sc);
2576
2577 if (sc->sc_sup_calib_mask != 0) {
2578 memset(&sc->sc_calib, 0, sizeof(sc->sc_calib));
2579 sc->sc_cur_calib_mask = sc->sc_sup_calib_mask;
2580 /* ops->do_calib(sc); */
2581 }
2582 /* XXX Start ANI. */
2583
2584 callout_schedule(&sc->sc_calib_to, hz / 2);
2585 break;
2586 }
2587
2588 return sc->sc_newstate(ic, nstate, arg);
2589 }
2590
2591 #ifdef notyet_edca
2592 PUBLIC void
2593 athn_updateedca(struct ieee80211com *ic)
2594 {
2595 #define ATHN_EXP2(x) ((1 << (x)) - 1) /* CWmin = 2^ECWmin - 1 */
2596 struct athn_softc *sc = ic->ic_ifp->if_softc;
2597 const struct ieee80211_edca_ac_params *ac;
2598 int aci, qid;
2599
2600 for (aci = 0; aci < EDCA_NUM_AC; aci++) {
2601 ac = &ic->ic_edca_ac[aci];
2602 qid = athn_ac2qid[aci];
2603
2604 AR_WRITE(sc, AR_DLCL_IFS(qid),
2605 SM(AR_D_LCL_IFS_CWMIN, ATHN_EXP2(ac->ac_ecwmin)) |
2606 SM(AR_D_LCL_IFS_CWMAX, ATHN_EXP2(ac->ac_ecwmax)) |
2607 SM(AR_D_LCL_IFS_AIFS, ac->ac_aifsn));
2608 if (ac->ac_txoplimit != 0) {
2609 AR_WRITE(sc, AR_DCHNTIME(qid),
2610 SM(AR_D_CHNTIME_DUR,
2611 IEEE80211_TXOP_TO_US(ac->ac_txoplimit)) |
2612 AR_D_CHNTIME_EN);
2613 }
2614 else
2615 AR_WRITE(sc, AR_DCHNTIME(qid), 0);
2616 }
2617 AR_WRITE_BARRIER(sc);
2618 #undef ATHN_EXP2
2619 }
2620 #endif /* notyet_edca */
2621
2622 Static int
2623 athn_clock_rate(struct athn_softc *sc)
2624 {
2625 struct ieee80211com *ic = &sc->sc_ic;
2626 int clockrate; /* MHz. */
2627
2628 if (ic->ic_curmode == IEEE80211_MODE_11A) {
2629 if (sc->sc_flags & ATHN_FLAG_FAST_PLL_CLOCK)
2630 clockrate = AR_CLOCK_RATE_FAST_5GHZ_OFDM;
2631 else
2632 clockrate = AR_CLOCK_RATE_5GHZ_OFDM;
2633 }
2634 else if (ic->ic_curmode == IEEE80211_MODE_11B) {
2635 clockrate = AR_CLOCK_RATE_CCK;
2636 }
2637 else
2638 clockrate = AR_CLOCK_RATE_2GHZ_OFDM;
2639 #ifndef IEEE80211_NO_HT
2640 if (sc->sc_curchanext != NULL)
2641 clockrate *= 2;
2642 #endif
2643 return clockrate;
2644 }
2645
2646 PUBLIC void
2647 athn_updateslot(struct ifnet *ifp)
2648 {
2649 struct athn_softc *sc = ifp->if_softc;
2650 struct ieee80211com *ic = &sc->sc_ic;
2651 int slot;
2652
2653 slot = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
2654 AR_WRITE(sc, AR_D_GBL_IFS_SLOT, slot * athn_clock_rate(sc));
2655 AR_WRITE_BARRIER(sc);
2656 }
2657
2658 Static void
2659 athn_start(struct ifnet *ifp)
2660 {
2661 struct athn_softc *sc = ifp->if_softc;
2662 struct ieee80211com *ic = &sc->sc_ic;
2663 struct ether_header *eh;
2664 struct ieee80211_node *ni;
2665 struct mbuf *m;
2666
2667 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING
2668 || !device_is_active(sc->sc_dev))
2669 return;
2670
2671 for (;;) {
2672 if (SIMPLEQ_EMPTY(&sc->sc_txbufs)) {
2673 ifp->if_flags |= IFF_OACTIVE;
2674 break;
2675 }
2676 /* Send pending management frames first. */
2677 IF_DEQUEUE(&ic->ic_mgtq, m);
2678 if (m != NULL) {
2679 ni = M_GETCTX(m, struct ieee80211_node *);
2680 goto sendit;
2681 }
2682 if (ic->ic_state != IEEE80211_S_RUN)
2683 break;
2684
2685 /* Encapsulate and send data frames. */
2686 IFQ_DEQUEUE(&ifp->if_snd, m);
2687 if (m == NULL)
2688 break;
2689
2690 if (m->m_len < (int)sizeof(*eh) &&
2691 (m = m_pullup(m, sizeof(*eh))) == NULL) {
2692 ifp->if_oerrors++;
2693 continue;
2694 }
2695 eh = mtod(m, struct ether_header *);
2696 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2697 if (ni == NULL) {
2698 m_freem(m);
2699 ifp->if_oerrors++;
2700 continue;
2701 }
2702
2703 bpf_mtap(ifp, m);
2704
2705 if ((m = ieee80211_encap(ic, m, ni)) == NULL)
2706 continue;
2707 sendit:
2708 bpf_mtap3(ic->ic_rawbpf, m);
2709
2710 if (sc->sc_ops.tx(sc, m, ni, 0) != 0) {
2711 ieee80211_free_node(ni);
2712 ifp->if_oerrors++;
2713 continue;
2714 }
2715
2716 sc->sc_tx_timer = 5;
2717 ifp->if_timer = 1;
2718 }
2719 }
2720
2721 Static void
2722 athn_watchdog(struct ifnet *ifp)
2723 {
2724 struct athn_softc *sc = ifp->if_softc;
2725
2726 ifp->if_timer = 0;
2727
2728 if (sc->sc_tx_timer > 0) {
2729 if (--sc->sc_tx_timer == 0) {
2730 aprint_error_dev(sc->sc_dev, "device timeout\n");
2731 /* see athn_init, no need to call athn_stop here */
2732 /* athn_stop(ifp, 0); */
2733 (void)athn_init(ifp);
2734 ifp->if_oerrors++;
2735 return;
2736 }
2737 ifp->if_timer = 1;
2738 }
2739 ieee80211_watchdog(&sc->sc_ic);
2740 }
2741
2742 #ifdef notyet
2743 Static void
2744 athn_set_multi(struct athn_softc *sc)
2745 {
2746 struct arpcom *ac = &sc->sc_ic.ic_ac;
2747 struct ifnet *ifp = &ac->ac_if;
2748 struct ether_multi *enm;
2749 struct ether_multistep step;
2750 const uint8_t *addr;
2751 uint32_t val, lo, hi;
2752 uint8_t bit;
2753
2754 if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
2755 lo = hi = 0xffffffff;
2756 goto done;
2757 }
2758 lo = hi = 0;
2759 ETHER_FIRST_MULTI(step, ac, enm);
2760 while (enm != NULL) {
2761 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, 6) != 0) {
2762 ifp->if_flags |= IFF_ALLMULTI;
2763 lo = hi = 0xffffffff;
2764 goto done;
2765 }
2766 addr = enm->enm_addrlo;
2767 /* Calculate the XOR value of all eight 6-bit words. */
2768 val = addr[0] | addr[1] << 8 | addr[2] << 16;
2769 bit = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2770 val = addr[3] | addr[4] << 8 | addr[5] << 16;
2771 bit ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2772 bit &= 0x3f;
2773 if (bit < 32)
2774 lo |= 1 << bit;
2775 else
2776 hi |= 1 << (bit - 32);
2777 ETHER_NEXT_MULTI(step, enm);
2778 }
2779 done:
2780 AR_WRITE(sc, AR_MCAST_FIL0, lo);
2781 AR_WRITE(sc, AR_MCAST_FIL1, hi);
2782 AR_WRITE_BARRIER(sc);
2783 }
2784 #endif /* notyet */
2785
2786 Static int
2787 athn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2788 {
2789 struct athn_softc *sc = ifp->if_softc;
2790 struct ieee80211com *ic = &sc->sc_ic;
2791 int s, error = 0;
2792
2793 s = splnet();
2794
2795 switch (cmd) {
2796 case SIOCSIFFLAGS:
2797 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2798 break;
2799
2800 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
2801 case IFF_UP | IFF_RUNNING:
2802 #ifdef notyet
2803 if (((ifp->if_flags ^ sc->sc_if_flags) &
2804 (IFF_ALLMULTI | IFF_PROMISC)) != 0)
2805 /* XXX: setup multi */
2806 #endif
2807 break;
2808 case IFF_UP:
2809 athn_init(ifp);
2810 break;
2811
2812 case IFF_RUNNING:
2813 athn_stop(ifp, 1);
2814 break;
2815 case 0:
2816 default:
2817 break;
2818 }
2819 sc->sc_if_flags = ifp->if_flags;
2820 break;
2821
2822 case SIOCADDMULTI:
2823 case SIOCDELMULTI:
2824 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2825 /* setup multicast filter, etc */
2826 #ifdef notyet
2827 athn_set_multi(sc);
2828 #endif
2829 error = 0;
2830 }
2831 break;
2832
2833 case SIOCS80211CHANNEL:
2834 error = ieee80211_ioctl(ic, cmd, data);
2835 if (error == ENETRESET &&
2836 ic->ic_opmode == IEEE80211_M_MONITOR) {
2837 if (IS_UP_AND_RUNNING(ifp))
2838 athn_switch_chan(sc, ic->ic_curchan, NULL);
2839 error = 0;
2840 }
2841 break;
2842
2843 default:
2844 error = ieee80211_ioctl(ic, cmd, data);
2845 }
2846
2847 if (error == ENETRESET) {
2848 error = 0;
2849 if (IS_UP_AND_RUNNING(ifp) &&
2850 ic->ic_roaming != IEEE80211_ROAMING_MANUAL) {
2851 athn_stop(ifp, 0);
2852 error = athn_init(ifp);
2853 }
2854 }
2855
2856 splx(s);
2857 return error;
2858 }
2859
2860 Static int
2861 athn_init(struct ifnet *ifp)
2862 {
2863 struct athn_softc *sc = ifp->if_softc;
2864 struct athn_ops *ops = &sc->sc_ops;
2865 struct ieee80211com *ic = &sc->sc_ic;
2866 struct ieee80211_channel *curchan, *extchan;
2867 size_t i;
2868 int error;
2869
2870 KASSERT(!cpu_intr_p());
2871
2872 if (device_is_active(sc->sc_dev)) {
2873 athn_stop(ifp, 0); /* see athn_watchdog() */
2874 } else {
2875 short flags = ifp->if_flags;
2876 ifp->if_flags &= ~IFF_UP;
2877 /* avoid recursion in athn_resume */
2878 if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
2879 !device_is_active(sc->sc_dev)) {
2880 printf("%s: failed to power up device\n",
2881 device_xname(sc->sc_dev));
2882 return 0;
2883 }
2884 ifp->if_flags = flags;
2885 }
2886
2887 curchan = ic->ic_curchan;
2888 extchan = NULL;
2889
2890 /* In case a new MAC address has been configured. */
2891 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2892
2893 #ifdef openbsd_power_management
2894 /* For CardBus, power on the socket. */
2895 if (sc->sc_enable != NULL) {
2896 if ((error = sc->sc_enable(sc)) != 0) {
2897 aprint_error_dev(sc->sc_dev,
2898 "could not enable device\n");
2899 goto fail;
2900 }
2901 if ((error = athn_reset_power_on(sc)) != 0) {
2902 aprint_error_dev(sc->sc_dev,
2903 "could not power on device\n");
2904 goto fail;
2905 }
2906 }
2907 #endif
2908 if (!(sc->sc_flags & ATHN_FLAG_PCIE))
2909 athn_config_nonpcie(sc);
2910 else
2911 athn_config_pcie(sc);
2912
2913 /* Reset HW key cache entries. */
2914 for (i = 0; i < sc->sc_kc_entries; i++)
2915 athn_reset_key(sc, i);
2916
2917 ops->enable_antenna_diversity(sc);
2918
2919 #ifdef ATHN_BT_COEXISTENCE
2920 /* Configure bluetooth coexistence for combo chips. */
2921 if (sc->sc_flags & ATHN_FLAG_BTCOEX)
2922 athn_btcoex_init(sc);
2923 #endif
2924
2925 /* Configure LED. */
2926 athn_led_init(sc);
2927
2928 /* Configure hardware radio switch. */
2929 if (sc->sc_flags & ATHN_FLAG_RFSILENT)
2930 ops->rfsilent_init(sc);
2931
2932 if ((error = athn_hw_reset(sc, curchan, extchan, 1)) != 0) {
2933 aprint_error_dev(sc->sc_dev,
2934 "unable to reset hardware; reset status %d\n", error);
2935 goto fail;
2936 }
2937
2938 /* Enable Rx. */
2939 athn_rx_start(sc);
2940
2941 /* Enable interrupts. */
2942 athn_enable_interrupts(sc);
2943
2944 #ifdef ATHN_BT_COEXISTENCE
2945 /* Enable bluetooth coexistence for combo chips. */
2946 if (sc->sc_flags & ATHN_FLAG_BTCOEX)
2947 athn_btcoex_enable(sc);
2948 #endif
2949
2950 ifp->if_flags &= ~IFF_OACTIVE;
2951 ifp->if_flags |= IFF_RUNNING;
2952
2953 #ifdef notyet
2954 if (ic->ic_flags & IEEE80211_F_WEPON) {
2955 /* Configure WEP keys. */
2956 for (i = 0; i < IEEE80211_WEP_NKID; i++)
2957 athn_set_key(ic, NULL, &ic->ic_nw_keys[i]);
2958 }
2959 #endif
2960 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2961 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2962 else
2963 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2964
2965 return 0;
2966 fail:
2967 athn_stop(ifp, 1);
2968 return error;
2969 }
2970
2971 PUBLIC void
2972 athn_stop(struct ifnet *ifp, int disable)
2973 {
2974 struct athn_softc *sc = ifp->if_softc;
2975 struct ieee80211com *ic = &sc->sc_ic;
2976 int qid;
2977
2978 ifp->if_timer = sc->sc_tx_timer = 0;
2979 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2980
2981 callout_stop(&sc->sc_scan_to);
2982 /* In case we were scanning, release the scan "lock". */
2983 // ic->ic_scan_lock = IEEE80211_SCAN_UNLOCKED; /* XXX:??? */
2984
2985 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2986
2987 #ifdef ATHN_BT_COEXISTENCE
2988 /* Disable bluetooth coexistence for combo chips. */
2989 if (sc->sc_flags & ATHN_FLAG_BTCOEX)
2990 athn_btcoex_disable(sc);
2991 #endif
2992
2993 /* Disable interrupts. */
2994 athn_disable_interrupts(sc);
2995 /* Acknowledge interrupts (avoids interrupt storms). */
2996 AR_WRITE(sc, AR_INTR_SYNC_CAUSE, 0xffffffff);
2997 AR_WRITE(sc, AR_INTR_SYNC_MASK, 0);
2998
2999 for (qid = 0; qid < ATHN_QID_COUNT; qid++)
3000 athn_stop_tx_dma(sc, qid);
3001 /* XXX call athn_hw_reset if Tx still pending? */
3002 for (qid = 0; qid < ATHN_QID_COUNT; qid++)
3003 athn_tx_reclaim(sc, qid);
3004
3005 /* Stop Rx. */
3006 AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
3007 AR_WRITE(sc, AR_MIBC, AR_MIBC_FMC);
3008 AR_WRITE(sc, AR_MIBC, AR_MIBC_CMC);
3009 AR_WRITE(sc, AR_FILT_OFDM, 0);
3010 AR_WRITE(sc, AR_FILT_CCK, 0);
3011 AR_WRITE_BARRIER(sc);
3012 athn_set_rxfilter(sc, 0);
3013 athn_stop_rx_dma(sc);
3014
3015 athn_reset(sc, 0);
3016 athn_init_pll(sc, NULL);
3017 athn_set_power_awake(sc);
3018 athn_reset(sc, 1);
3019 athn_init_pll(sc, NULL);
3020
3021 athn_set_power_sleep(sc);
3022
3023 #if 0 /* XXX: shouldn't the pmf stuff take care of this? */
3024 /* For CardBus, power down the socket. */
3025 if (disable && sc->sc_disable != NULL)
3026 sc->sc_disable(sc);
3027 #endif
3028 if (disable)
3029 pmf_device_recursive_suspend(sc->sc_dev, &sc->sc_qual);
3030 }
3031
3032 Static void
3033 athn_pmf_wlan_off(device_t self)
3034 {
3035 struct athn_softc *sc = device_private(self);
3036 struct ifnet *ifp = &sc->sc_if;
3037
3038 /* Turn the interface down. */
3039 ifp->if_flags &= ~IFF_UP;
3040 athn_stop(ifp, 1);
3041 }
3042
3043 PUBLIC void
3044 athn_suspend(struct athn_softc *sc)
3045 {
3046 struct ifnet *ifp = &sc->sc_if;
3047
3048 if (ifp->if_flags & IFF_RUNNING)
3049 athn_stop(ifp, 1);
3050 }
3051
3052 PUBLIC bool
3053 athn_resume(struct athn_softc *sc)
3054 {
3055 struct ifnet *ifp = &sc->sc_if;
3056
3057 if (ifp->if_flags & IFF_UP)
3058 athn_init(ifp);
3059
3060 return true;
3061 }
3062