athn.c revision 1.18 1 /* $NetBSD: athn.c,v 1.18 2018/06/26 06:48:00 msaitoh Exp $ */
2 /* $OpenBSD: athn.c,v 1.83 2014/07/22 13:12:11 mpi Exp $ */
3
4 /*-
5 * Copyright (c) 2009 Damien Bergamini <damien.bergamini (at) free.fr>
6 * Copyright (c) 2008-2010 Atheros Communications Inc.
7 *
8 * Permission to use, copy, modify, and/or distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /*
22 * Driver for Atheros 802.11a/g/n chipsets.
23 */
24
25 #include <sys/cdefs.h>
26 __KERNEL_RCSID(0, "$NetBSD: athn.c,v 1.18 2018/06/26 06:48:00 msaitoh Exp $");
27
28 #ifndef _MODULE
29 #include "athn_usb.h" /* for NATHN_USB */
30 #endif
31
32 #include <sys/param.h>
33 #include <sys/sockio.h>
34 #include <sys/mbuf.h>
35 #include <sys/kernel.h>
36 #include <sys/socket.h>
37 #include <sys/systm.h>
38 #include <sys/malloc.h>
39 #include <sys/queue.h>
40 #include <sys/callout.h>
41 #include <sys/conf.h>
42 #include <sys/cpu.h>
43 #include <sys/device.h>
44
45 #include <sys/bus.h>
46 #include <sys/endian.h>
47 #include <sys/intr.h>
48
49 #include <net/bpf.h>
50 #include <net/if.h>
51 #include <net/if_arp.h>
52 #include <net/if_dl.h>
53 #include <net/if_ether.h>
54 #include <net/if_media.h>
55 #include <net/if_types.h>
56
57 #include <netinet/in.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/in_var.h>
60 #include <netinet/ip.h>
61
62 #include <net80211/ieee80211_var.h>
63 #include <net80211/ieee80211_amrr.h>
64 #include <net80211/ieee80211_radiotap.h>
65
66 #include <dev/ic/athnreg.h>
67 #include <dev/ic/athnvar.h>
68 #include <dev/ic/arn5008.h>
69 #include <dev/ic/arn5416.h>
70 #include <dev/ic/arn9003.h>
71 #include <dev/ic/arn9280.h>
72 #include <dev/ic/arn9285.h>
73 #include <dev/ic/arn9287.h>
74 #include <dev/ic/arn9380.h>
75
76 #define Static static
77
78 #define IS_UP_AND_RUNNING(ifp) \
79 (((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING))
80
81 #ifdef ATHN_DEBUG
82 int athn_debug = 0;
83 #endif
84
85 Static int athn_clock_rate(struct athn_softc *);
86 Static const char *
87 athn_get_mac_name(struct athn_softc *);
88 Static const char *
89 athn_get_rf_name(struct athn_softc *);
90 Static int athn_init(struct ifnet *);
91 Static int athn_init_calib(struct athn_softc *,
92 struct ieee80211_channel *, struct ieee80211_channel *);
93 Static int athn_ioctl(struct ifnet *, u_long, void *);
94 Static int athn_media_change(struct ifnet *);
95 Static int athn_newstate(struct ieee80211com *, enum ieee80211_state,
96 int);
97 Static struct ieee80211_node *
98 athn_node_alloc(struct ieee80211_node_table *);
99 Static int athn_reset_power_on(struct athn_softc *);
100 Static int athn_stop_rx_dma(struct athn_softc *);
101 Static int athn_switch_chan(struct athn_softc *,
102 struct ieee80211_channel *, struct ieee80211_channel *);
103 Static void athn_calib_to(void *);
104 Static void athn_disable_interrupts(struct athn_softc *);
105 Static void athn_enable_interrupts(struct athn_softc *);
106 Static void athn_get_chanlist(struct athn_softc *);
107 Static void athn_get_chipid(struct athn_softc *);
108 Static void athn_init_dma(struct athn_softc *);
109 Static void athn_init_qos(struct athn_softc *);
110 Static void athn_init_tx_queues(struct athn_softc *);
111 Static void athn_iter_func(void *, struct ieee80211_node *);
112 Static void athn_newassoc(struct ieee80211_node *, int);
113 Static void athn_next_scan(void *);
114 Static void athn_pmf_wlan_off(device_t self);
115 Static void athn_radiotap_attach(struct athn_softc *);
116 Static void athn_start(struct ifnet *);
117 Static void athn_tx_reclaim(struct athn_softc *, int);
118 Static void athn_watchdog(struct ifnet *);
119 Static void athn_write_serdes(struct athn_softc *,
120 const struct athn_serdes *);
121 Static void athn_softintr(void *);
122
123 #ifdef ATHN_BT_COEXISTENCE
124 Static void athn_btcoex_disable(struct athn_softc *);
125 Static void athn_btcoex_enable(struct athn_softc *);
126 #endif
127
128 #ifdef unused
129 Static int32_t athn_ani_get_rssi(struct athn_softc *);
130 Static int athn_rx_abort(struct athn_softc *);
131 #endif
132
133 #ifdef notyet
134 Static void athn_ani_cck_err_trigger(struct athn_softc *);
135 Static void athn_ani_lower_immunity(struct athn_softc *);
136 Static void athn_ani_monitor(struct athn_softc *);
137 Static void athn_ani_ofdm_err_trigger(struct athn_softc *);
138 Static void athn_ani_restart(struct athn_softc *);
139 Static void athn_set_multi(struct athn_softc *);
140 #endif /* notyet */
141
142 PUBLIC int
143 athn_attach(struct athn_softc *sc)
144 {
145 struct ieee80211com *ic = &sc->sc_ic;
146 struct ifnet *ifp = &sc->sc_if;
147 size_t max_nnodes;
148 int error;
149
150 /* Read hardware revision. */
151 athn_get_chipid(sc);
152
153 if ((error = athn_reset_power_on(sc)) != 0) {
154 aprint_error_dev(sc->sc_dev, "could not reset chip\n");
155 return error;
156 }
157
158 if ((error = athn_set_power_awake(sc)) != 0) {
159 aprint_error_dev(sc->sc_dev, "could not wakeup chip\n");
160 return error;
161 }
162
163 if (AR_SREV_5416(sc) || AR_SREV_9160(sc))
164 error = ar5416_attach(sc);
165 else if (AR_SREV_9280(sc))
166 error = ar9280_attach(sc);
167 else if (AR_SREV_9285(sc))
168 error = ar9285_attach(sc);
169 #if NATHN_USB > 0
170 else if (AR_SREV_9271(sc))
171 error = ar9285_attach(sc);
172 #endif
173 else if (AR_SREV_9287(sc))
174 error = ar9287_attach(sc);
175 else if (AR_SREV_9380(sc) || AR_SREV_9485(sc))
176 error = ar9380_attach(sc);
177 else
178 error = ENOTSUP;
179 if (error != 0) {
180 aprint_error_dev(sc->sc_dev, "could not attach chip\n");
181 return error;
182 }
183
184 pmf_self_suspensor_init(sc->sc_dev, &sc->sc_suspensor, &sc->sc_qual);
185 pmf_event_register(sc->sc_dev, PMFE_RADIO_OFF, athn_pmf_wlan_off,
186 false);
187
188 /* We can put the chip in sleep state now. */
189 athn_set_power_sleep(sc);
190
191 if (!(sc->sc_flags & ATHN_FLAG_USB)) {
192 sc->sc_soft_ih = softint_establish(SOFTINT_NET, athn_softintr,
193 sc);
194 if (sc->sc_soft_ih == NULL) {
195 aprint_error_dev(sc->sc_dev,
196 "could not establish softint\n");
197 return EINVAL;
198 }
199
200 error = sc->sc_ops.dma_alloc(sc);
201 if (error != 0) {
202 aprint_error_dev(sc->sc_dev,
203 "could not allocate DMA resources\n");
204 return error;
205 }
206 /* Steal one Tx buffer for beacons. */
207 sc->sc_bcnbuf = SIMPLEQ_FIRST(&sc->sc_txbufs);
208 SIMPLEQ_REMOVE_HEAD(&sc->sc_txbufs, bf_list);
209 }
210
211 if (sc->sc_flags & ATHN_FLAG_RFSILENT) {
212 DPRINTFN(DBG_INIT, sc,
213 "found RF switch connected to GPIO pin %d\n",
214 sc->sc_rfsilent_pin);
215 }
216 DPRINTFN(DBG_INIT, sc, "%zd key cache entries\n", sc->sc_kc_entries);
217
218 /*
219 * In HostAP mode, the number of STAs that we can handle is
220 * limited by the number of entries in the HW key cache.
221 * TKIP keys consume 2 entries in the cache.
222 */
223 KASSERT(sc->sc_kc_entries / 2 > IEEE80211_WEP_NKID);
224 max_nnodes = (sc->sc_kc_entries / 2) - IEEE80211_WEP_NKID;
225 if (sc->sc_max_aid != 0) /* we have an override */
226 ic->ic_max_aid = sc->sc_max_aid;
227 if (ic->ic_max_aid > max_nnodes)
228 ic->ic_max_aid = max_nnodes;
229
230 DPRINTFN(DBG_INIT, sc, "using %s loop power control\n",
231 (sc->sc_flags & ATHN_FLAG_OLPC) ? "open" : "closed");
232 DPRINTFN(DBG_INIT, sc, "txchainmask=0x%x rxchainmask=0x%x\n",
233 sc->sc_txchainmask, sc->sc_rxchainmask);
234
235 /* Count the number of bits set (in lowest 3 bits). */
236 sc->sc_ntxchains =
237 ((sc->sc_txchainmask >> 2) & 1) +
238 ((sc->sc_txchainmask >> 1) & 1) +
239 ((sc->sc_txchainmask >> 0) & 1);
240 sc->sc_nrxchains =
241 ((sc->sc_rxchainmask >> 2) & 1) +
242 ((sc->sc_rxchainmask >> 1) & 1) +
243 ((sc->sc_rxchainmask >> 0) & 1);
244
245 if (AR_SINGLE_CHIP(sc)) {
246 aprint_normal(": Atheros %s\n", athn_get_mac_name(sc));
247 aprint_verbose_dev(sc->sc_dev,
248 "rev %d (%dT%dR), ROM rev %d, address %s\n",
249 sc->sc_mac_rev,
250 sc->sc_ntxchains, sc->sc_nrxchains, sc->sc_eep_rev,
251 ether_sprintf(ic->ic_myaddr));
252 }
253 else {
254 aprint_normal(": Atheros %s, RF %s\n", athn_get_mac_name(sc),
255 athn_get_rf_name(sc));
256 aprint_verbose_dev(sc->sc_dev,
257 "rev %d (%dT%dR), ROM rev %d, address %s\n",
258 sc->sc_mac_rev,
259 sc->sc_ntxchains, sc->sc_nrxchains,
260 sc->sc_eep_rev, ether_sprintf(ic->ic_myaddr));
261 }
262
263 callout_init(&sc->sc_scan_to, 0);
264 callout_setfunc(&sc->sc_scan_to, athn_next_scan, sc);
265 callout_init(&sc->sc_calib_to, 0);
266 callout_setfunc(&sc->sc_calib_to, athn_calib_to, sc);
267
268 sc->sc_amrr.amrr_min_success_threshold = 1;
269 sc->sc_amrr.amrr_max_success_threshold = 15;
270
271 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
272 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
273 ic->ic_state = IEEE80211_S_INIT;
274
275 /* Set device capabilities. */
276 ic->ic_caps =
277 IEEE80211_C_WPA | /* 802.11i */
278 #ifndef IEEE80211_STA_ONLY
279 IEEE80211_C_HOSTAP | /* Host AP mode supported. */
280 // XXX? IEEE80211_C_APPMGT | /* Host AP power saving supported. */
281 #endif
282 IEEE80211_C_MONITOR | /* Monitor mode supported. */
283 IEEE80211_C_SHSLOT | /* Short slot time supported. */
284 IEEE80211_C_SHPREAMBLE | /* Short preamble supported. */
285 IEEE80211_C_PMGT; /* Power saving supported. */
286
287 #ifndef IEEE80211_NO_HT
288 if (sc->sc_flags & ATHN_FLAG_11N) {
289 int i, ntxstreams, nrxstreams;
290
291 /* Set HT capabilities. */
292 ic->ic_htcaps =
293 IEEE80211_HTCAP_SMPS_DIS |
294 IEEE80211_HTCAP_CBW20_40 |
295 IEEE80211_HTCAP_SGI40 |
296 IEEE80211_HTCAP_DSSSCCK40;
297 if (AR_SREV_9271(sc) || AR_SREV_9287_10_OR_LATER(sc))
298 ic->ic_htcaps |= IEEE80211_HTCAP_SGI20;
299 if (AR_SREV_9380_10_OR_LATER(sc))
300 ic->ic_htcaps |= IEEE80211_HTCAP_LDPC;
301 if (AR_SREV_9280_10_OR_LATER(sc)) {
302 ic->ic_htcaps |= IEEE80211_HTCAP_TXSTBC;
303 ic->ic_htcaps |= 1 << IEEE80211_HTCAP_RXSTBC_SHIFT;
304 }
305 ntxstreams = sc->sc_ntxchains;
306 nrxstreams = sc->sc_nrxchains;
307 if (!AR_SREV_9380_10_OR_LATER(sc)) {
308 ntxstreams = MIN(ntxstreams, 2);
309 nrxstreams = MIN(nrxstreams, 2);
310 }
311 /* Set supported HT rates. */
312 for (i = 0; i < nrxstreams; i++)
313 ic->ic_sup_mcs[i] = 0xff;
314 /* Set the "Tx MCS Set Defined" bit. */
315 ic->ic_sup_mcs[12] |= 0x01;
316 if (ntxstreams != nrxstreams) {
317 /* Set "Tx Rx MCS Set Not Equal" bit. */
318 ic->ic_sup_mcs[12] |= 0x02;
319 ic->ic_sup_mcs[12] |= (ntxstreams - 1) << 2;
320 }
321 }
322 #endif
323
324 /* Set supported rates. */
325 if (sc->sc_flags & ATHN_FLAG_11G) {
326 ic->ic_sup_rates[IEEE80211_MODE_11B] =
327 ieee80211_std_rateset_11b;
328 ic->ic_sup_rates[IEEE80211_MODE_11G] =
329 ieee80211_std_rateset_11g;
330 }
331 if (sc->sc_flags & ATHN_FLAG_11A) {
332 ic->ic_sup_rates[IEEE80211_MODE_11A] =
333 ieee80211_std_rateset_11a;
334 }
335
336 /* Get the list of authorized/supported channels. */
337 athn_get_chanlist(sc);
338
339 ifp->if_softc = sc;
340 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
341 if (!ifp->if_init)
342 ifp->if_init = athn_init;
343 if (!ifp->if_ioctl)
344 ifp->if_ioctl = athn_ioctl;
345 if (!ifp->if_start)
346 ifp->if_start = athn_start;
347 if (!ifp->if_watchdog)
348 ifp->if_watchdog = athn_watchdog;
349 IFQ_SET_READY(&ifp->if_snd);
350 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
351
352 error = if_initialize(ifp);
353 if (error != 0) {
354 aprint_error_dev(sc->sc_dev, "if_initialize failed(%d)\n",
355 error);
356 pmf_event_deregister(sc->sc_dev, PMFE_RADIO_OFF,
357 athn_pmf_wlan_off, false);
358 callout_destroy(&sc->sc_scan_to);
359 callout_destroy(&sc->sc_calib_to);
360 return error;
361 }
362 ieee80211_ifattach(ic);
363 /* Use common softint-based if_input */
364 ifp->if_percpuq = if_percpuq_create(ifp);
365 if_register(ifp);
366
367 ic->ic_node_alloc = athn_node_alloc;
368 ic->ic_newassoc = athn_newassoc;
369 if (ic->ic_updateslot == NULL)
370 ic->ic_updateslot = athn_updateslot;
371 #ifdef notyet_edca
372 ic->ic_updateedca = athn_updateedca;
373 #endif
374 #ifdef notyet
375 ic->ic_set_key = athn_set_key;
376 ic->ic_delete_key = athn_delete_key;
377 #endif
378
379 /* Override 802.11 state transition machine. */
380 sc->sc_newstate = ic->ic_newstate;
381 ic->ic_newstate = athn_newstate;
382
383 if (sc->sc_media_change == NULL)
384 sc->sc_media_change = athn_media_change;
385 ieee80211_media_init(ic, sc->sc_media_change, ieee80211_media_status);
386
387 athn_radiotap_attach(sc);
388 return 0;
389 }
390
391 PUBLIC void
392 athn_detach(struct athn_softc *sc)
393 {
394 struct ifnet *ifp = &sc->sc_if;
395 int qid;
396
397 callout_halt(&sc->sc_scan_to, NULL);
398 callout_halt(&sc->sc_calib_to, NULL);
399
400 if (!(sc->sc_flags & ATHN_FLAG_USB)) {
401 for (qid = 0; qid < ATHN_QID_COUNT; qid++)
402 athn_tx_reclaim(sc, qid);
403
404 /* Free Tx/Rx DMA resources. */
405 sc->sc_ops.dma_free(sc);
406
407 if (sc->sc_soft_ih != NULL) {
408 softint_disestablish(sc->sc_soft_ih);
409 sc->sc_soft_ih = NULL;
410 }
411 }
412 /* Free ROM copy. */
413 if (sc->sc_eep != NULL) {
414 free(sc->sc_eep, M_DEVBUF);
415 sc->sc_eep = NULL;
416 }
417
418 bpf_detach(ifp);
419 ieee80211_ifdetach(&sc->sc_ic);
420 if_detach(ifp);
421
422 callout_destroy(&sc->sc_scan_to);
423 callout_destroy(&sc->sc_calib_to);
424
425 pmf_event_deregister(sc->sc_dev, PMFE_RADIO_OFF, athn_pmf_wlan_off,
426 false);
427 }
428
429 /*
430 * Attach the interface to 802.11 radiotap.
431 */
432 Static void
433 athn_radiotap_attach(struct athn_softc *sc)
434 {
435
436 bpf_attach2(&sc->sc_if, DLT_IEEE802_11_RADIO,
437 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
438 &sc->sc_drvbpf);
439
440 sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
441 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
442 sc->sc_rxtap.wr_ihdr.it_present = htole32(ATHN_RX_RADIOTAP_PRESENT);
443
444 sc->sc_txtap_len = sizeof(sc->sc_txtapu);
445 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
446 sc->sc_txtap.wt_ihdr.it_present = htole32(ATHN_TX_RADIOTAP_PRESENT);
447 }
448
449 Static void
450 athn_get_chanlist(struct athn_softc *sc)
451 {
452 struct ieee80211com *ic = &sc->sc_ic;
453 uint8_t chan;
454 size_t i;
455
456 if (sc->sc_flags & ATHN_FLAG_11G) {
457 for (i = 1; i <= 14; i++) {
458 chan = i;
459 ic->ic_channels[chan].ic_freq =
460 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
461 ic->ic_channels[chan].ic_flags =
462 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
463 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
464 }
465 }
466 if (sc->sc_flags & ATHN_FLAG_11A) {
467 for (i = 0; i < __arraycount(athn_5ghz_chans); i++) {
468 chan = athn_5ghz_chans[i];
469 ic->ic_channels[chan].ic_freq =
470 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
471 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
472 }
473 }
474 }
475
476 PUBLIC void
477 athn_rx_start(struct athn_softc *sc)
478 {
479 struct ieee80211com *ic = &sc->sc_ic;
480 uint32_t rfilt;
481
482 /* Setup Rx DMA descriptors. */
483 sc->sc_ops.rx_enable(sc);
484
485 /* Set Rx filter. */
486 rfilt = AR_RX_FILTER_UCAST | AR_RX_FILTER_BCAST | AR_RX_FILTER_MCAST;
487 #ifndef IEEE80211_NO_HT
488 /* Want Compressed Block Ack Requests. */
489 rfilt |= AR_RX_FILTER_COMPR_BAR;
490 #endif
491 rfilt |= AR_RX_FILTER_BEACON;
492 if (ic->ic_opmode != IEEE80211_M_STA) {
493 rfilt |= AR_RX_FILTER_PROBEREQ;
494 if (ic->ic_opmode == IEEE80211_M_MONITOR)
495 rfilt |= AR_RX_FILTER_PROM;
496 #ifndef IEEE80211_STA_ONLY
497 if (AR_SREV_9280_10_OR_LATER(sc) &&
498 ic->ic_opmode == IEEE80211_M_HOSTAP)
499 rfilt |= AR_RX_FILTER_PSPOLL;
500 #endif
501 }
502 athn_set_rxfilter(sc, rfilt);
503
504 /* Set BSSID mask. */
505 AR_WRITE(sc, AR_BSSMSKL, 0xffffffff);
506 AR_WRITE(sc, AR_BSSMSKU, 0xffff);
507
508 athn_set_opmode(sc);
509
510 /* Set multicast filter. */
511 AR_WRITE(sc, AR_MCAST_FIL0, 0xffffffff);
512 AR_WRITE(sc, AR_MCAST_FIL1, 0xffffffff);
513
514 AR_WRITE(sc, AR_FILT_OFDM, 0);
515 AR_WRITE(sc, AR_FILT_CCK, 0);
516 AR_WRITE(sc, AR_MIBC, 0);
517 AR_WRITE(sc, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING);
518 AR_WRITE(sc, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING);
519
520 /* XXX ANI. */
521 AR_WRITE(sc, AR_PHY_ERR_1, 0);
522 AR_WRITE(sc, AR_PHY_ERR_2, 0);
523
524 /* Disable HW crypto for now. */
525 AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_ENCRYPT_DIS | AR_DIAG_DECRYPT_DIS);
526
527 /* Start PCU Rx. */
528 AR_CLRBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
529 AR_WRITE_BARRIER(sc);
530 }
531
532 PUBLIC void
533 athn_set_rxfilter(struct athn_softc *sc, uint32_t rfilt)
534 {
535
536 AR_WRITE(sc, AR_RX_FILTER, rfilt);
537 #ifdef notyet
538 reg = AR_READ(sc, AR_PHY_ERR);
539 reg &= (AR_PHY_ERR_RADAR | AR_PHY_ERR_OFDM_TIMING |
540 AR_PHY_ERR_CCK_TIMING);
541 AR_WRITE(sc, AR_PHY_ERR, reg);
542 if (reg != 0)
543 AR_SETBITS(sc, AR_RXCFG, AR_RXCFG_ZLFDMA);
544 else
545 AR_CLRBITS(sc, AR_RXCFG, AR_RXCFG_ZLFDMA);
546 #else
547 AR_WRITE(sc, AR_PHY_ERR, 0);
548 AR_CLRBITS(sc, AR_RXCFG, AR_RXCFG_ZLFDMA);
549 #endif
550 AR_WRITE_BARRIER(sc);
551 }
552
553 PUBLIC int
554 athn_intr(void *xsc)
555 {
556 struct athn_softc *sc = xsc;
557 struct ifnet *ifp = &sc->sc_if;
558
559 if (!IS_UP_AND_RUNNING(ifp))
560 return 0;
561
562 if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
563 /*
564 * The hardware is not ready/present, don't touch anything.
565 * Note this can happen early on if the IRQ is shared.
566 */
567 return 0;
568
569 if (!sc->sc_ops.intr_status(sc))
570 return 0;
571
572 AR_WRITE(sc, AR_INTR_ASYNC_MASK, 0);
573 AR_WRITE(sc, AR_INTR_SYNC_MASK, 0);
574 AR_WRITE_BARRIER(sc);
575
576 softint_schedule(sc->sc_soft_ih);
577
578 return 1;
579 }
580
581 Static void
582 athn_softintr(void *xsc)
583 {
584 struct athn_softc *sc = xsc;
585 struct ifnet *ifp = &sc->sc_if;
586
587 if (!IS_UP_AND_RUNNING(ifp))
588 return;
589
590 if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
591 /*
592 * The hardware is not ready/present, don't touch anything.
593 * Note this can happen early on if the IRQ is shared.
594 */
595 return;
596
597 sc->sc_ops.intr(sc);
598
599 AR_WRITE(sc, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
600 AR_WRITE(sc, AR_INTR_SYNC_MASK, sc->sc_isync);
601 AR_WRITE_BARRIER(sc);
602 }
603
604 Static void
605 athn_get_chipid(struct athn_softc *sc)
606 {
607 uint32_t reg;
608
609 reg = AR_READ(sc, AR_SREV);
610 if (MS(reg, AR_SREV_ID) == 0xff) {
611 sc->sc_mac_ver = MS(reg, AR_SREV_VERSION2);
612 sc->sc_mac_rev = MS(reg, AR_SREV_REVISION2);
613 if (!(reg & AR_SREV_TYPE2_HOST_MODE))
614 sc->sc_flags |= ATHN_FLAG_PCIE;
615 }
616 else {
617 sc->sc_mac_ver = MS(reg, AR_SREV_VERSION);
618 sc->sc_mac_rev = MS(reg, AR_SREV_REVISION);
619 if (sc->sc_mac_ver == AR_SREV_VERSION_5416_PCIE)
620 sc->sc_flags |= ATHN_FLAG_PCIE;
621 }
622 }
623
624 Static const char *
625 athn_get_mac_name(struct athn_softc *sc)
626 {
627
628 switch (sc->sc_mac_ver) {
629 case AR_SREV_VERSION_5416_PCI:
630 return "AR5416";
631 case AR_SREV_VERSION_5416_PCIE:
632 return "AR5418";
633 case AR_SREV_VERSION_9160:
634 return "AR9160";
635 case AR_SREV_VERSION_9280:
636 return "AR9280";
637 case AR_SREV_VERSION_9285:
638 return "AR9285";
639 case AR_SREV_VERSION_9271:
640 return "AR9271";
641 case AR_SREV_VERSION_9287:
642 return "AR9287";
643 case AR_SREV_VERSION_9380:
644 return "AR9380";
645 case AR_SREV_VERSION_9485:
646 return "AR9485";
647 default:
648 return "unknown";
649 }
650 }
651
652 /*
653 * Return RF chip name (not for single-chip solutions).
654 */
655 Static const char *
656 athn_get_rf_name(struct athn_softc *sc)
657 {
658
659 KASSERT(!AR_SINGLE_CHIP(sc));
660
661 switch (sc->sc_rf_rev) {
662 case AR_RAD5133_SREV_MAJOR: /* Dual-band 3T3R. */
663 return "AR5133";
664 case AR_RAD2133_SREV_MAJOR: /* Single-band 3T3R. */
665 return "AR2133";
666 case AR_RAD5122_SREV_MAJOR: /* Dual-band 2T2R. */
667 return "AR5122";
668 case AR_RAD2122_SREV_MAJOR: /* Single-band 2T2R. */
669 return "AR2122";
670 default:
671 return "unknown";
672 }
673 }
674
675 PUBLIC int
676 athn_reset_power_on(struct athn_softc *sc)
677 {
678 int ntries;
679
680 /* Set force wake. */
681 AR_WRITE(sc, AR_RTC_FORCE_WAKE,
682 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
683
684 if (!AR_SREV_9380_10_OR_LATER(sc)) {
685 /* Make sure no DMA is active by doing an AHB reset. */
686 AR_WRITE(sc, AR_RC, AR_RC_AHB);
687 }
688 /* RTC reset and clear. */
689 AR_WRITE(sc, AR_RTC_RESET, 0);
690 AR_WRITE_BARRIER(sc);
691 DELAY(2);
692 if (!AR_SREV_9380_10_OR_LATER(sc))
693 AR_WRITE(sc, AR_RC, 0);
694 AR_WRITE(sc, AR_RTC_RESET, 1);
695
696 /* Poll until RTC is ON. */
697 for (ntries = 0; ntries < 1000; ntries++) {
698 if ((AR_READ(sc, AR_RTC_STATUS) & AR_RTC_STATUS_M) ==
699 AR_RTC_STATUS_ON)
700 break;
701 DELAY(10);
702 }
703 if (ntries == 1000) {
704 DPRINTFN(DBG_INIT, sc, "RTC not waking up\n");
705 return ETIMEDOUT;
706 }
707 return athn_reset(sc, 0);
708 }
709
710 PUBLIC int
711 athn_reset(struct athn_softc *sc, int cold_reset)
712 {
713 int ntries;
714
715 /* Set force wake. */
716 AR_WRITE(sc, AR_RTC_FORCE_WAKE,
717 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
718
719 if (AR_READ(sc, AR_INTR_SYNC_CAUSE) &
720 (AR_INTR_SYNC_LOCAL_TIMEOUT | AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
721 AR_WRITE(sc, AR_INTR_SYNC_ENABLE, 0);
722 AR_WRITE(sc, AR_RC, AR_RC_HOSTIF |
723 (!AR_SREV_9380_10_OR_LATER(sc) ? AR_RC_AHB : 0));
724 }
725 else if (!AR_SREV_9380_10_OR_LATER(sc))
726 AR_WRITE(sc, AR_RC, AR_RC_AHB);
727
728 AR_WRITE(sc, AR_RTC_RC, AR_RTC_RC_MAC_WARM |
729 (cold_reset ? AR_RTC_RC_MAC_COLD : 0));
730 AR_WRITE_BARRIER(sc);
731 DELAY(50);
732 AR_WRITE(sc, AR_RTC_RC, 0);
733 for (ntries = 0; ntries < 1000; ntries++) {
734 if (!(AR_READ(sc, AR_RTC_RC) &
735 (AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD)))
736 break;
737 DELAY(10);
738 }
739 if (ntries == 1000) {
740 DPRINTFN(DBG_INIT, sc, "RTC stuck in MAC reset\n");
741 return ETIMEDOUT;
742 }
743 AR_WRITE(sc, AR_RC, 0);
744 AR_WRITE_BARRIER(sc);
745 return 0;
746 }
747
748 PUBLIC int
749 athn_set_power_awake(struct athn_softc *sc)
750 {
751 int ntries, error;
752
753 /* Do a Power-On-Reset if shutdown. */
754 if ((AR_READ(sc, AR_RTC_STATUS) & AR_RTC_STATUS_M) ==
755 AR_RTC_STATUS_SHUTDOWN) {
756 if ((error = athn_reset_power_on(sc)) != 0)
757 return error;
758 if (!AR_SREV_9380_10_OR_LATER(sc))
759 athn_init_pll(sc, NULL);
760 }
761 AR_SETBITS(sc, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
762 AR_WRITE_BARRIER(sc);
763 DELAY(50); /* Give chip the chance to awake. */
764
765 /* Poll until RTC is ON. */
766 for (ntries = 0; ntries < 4000; ntries++) {
767 if ((AR_READ(sc, AR_RTC_STATUS) & AR_RTC_STATUS_M) ==
768 AR_RTC_STATUS_ON)
769 break;
770 DELAY(50);
771 AR_SETBITS(sc, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
772 }
773 if (ntries == 4000) {
774 DPRINTFN(DBG_INIT, sc, "RTC not waking up\n");
775 return ETIMEDOUT;
776 }
777
778 AR_CLRBITS(sc, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
779 AR_WRITE_BARRIER(sc);
780 return 0;
781 }
782
783 PUBLIC void
784 athn_set_power_sleep(struct athn_softc *sc)
785 {
786
787 AR_SETBITS(sc, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
788 /* Allow the MAC to go to sleep. */
789 AR_CLRBITS(sc, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
790 if (!AR_SREV_9380_10_OR_LATER(sc))
791 AR_WRITE(sc, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
792 /*
793 * NB: Clearing RTC_RESET_EN when setting the chip to sleep mode
794 * results in high power consumption on AR5416 chipsets.
795 */
796 if (!AR_SREV_5416(sc) && !AR_SREV_9271(sc))
797 AR_CLRBITS(sc, AR_RTC_RESET, AR_RTC_RESET_EN);
798 AR_WRITE_BARRIER(sc);
799 }
800
801 PUBLIC void
802 athn_init_pll(struct athn_softc *sc, const struct ieee80211_channel *c)
803 {
804 uint32_t pll;
805
806 if (AR_SREV_9380_10_OR_LATER(sc)) {
807 if (AR_SREV_9485(sc))
808 AR_WRITE(sc, AR_RTC_PLL_CONTROL2, 0x886666);
809 pll = SM(AR_RTC_9160_PLL_REFDIV, 0x5);
810 pll |= SM(AR_RTC_9160_PLL_DIV, 0x2c);
811 }
812 else if (AR_SREV_9280_10_OR_LATER(sc)) {
813 pll = SM(AR_RTC_9160_PLL_REFDIV, 0x05);
814 if (c != NULL && IEEE80211_IS_CHAN_5GHZ(c)) {
815 if (sc->sc_flags & ATHN_FLAG_FAST_PLL_CLOCK)
816 pll = 0x142c;
817 else if (AR_SREV_9280_20(sc))
818 pll = 0x2850;
819 else
820 pll |= SM(AR_RTC_9160_PLL_DIV, 0x28);
821 }
822 else
823 pll |= SM(AR_RTC_9160_PLL_DIV, 0x2c);
824 }
825 else if (AR_SREV_9160_10_OR_LATER(sc)) {
826 pll = SM(AR_RTC_9160_PLL_REFDIV, 0x05);
827 if (c != NULL && IEEE80211_IS_CHAN_5GHZ(c))
828 pll |= SM(AR_RTC_9160_PLL_DIV, 0x50);
829 else
830 pll |= SM(AR_RTC_9160_PLL_DIV, 0x58);
831 }
832 else {
833 pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
834 if (c != NULL && IEEE80211_IS_CHAN_5GHZ(c))
835 pll |= SM(AR_RTC_PLL_DIV, 0x0a);
836 else
837 pll |= SM(AR_RTC_PLL_DIV, 0x0b);
838 }
839 DPRINTFN(DBG_INIT, sc, "AR_RTC_PLL_CONTROL=0x%08x\n", pll);
840 AR_WRITE(sc, AR_RTC_PLL_CONTROL, pll);
841 if (AR_SREV_9271(sc)) {
842 /* Switch core clock to 117MHz. */
843 AR_WRITE_BARRIER(sc);
844 DELAY(500);
845 AR_WRITE(sc, 0x50050, 0x304);
846 }
847 AR_WRITE_BARRIER(sc);
848 DELAY(100);
849 AR_WRITE(sc, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
850 AR_WRITE_BARRIER(sc);
851 }
852
853 Static void
854 athn_write_serdes(struct athn_softc *sc, const struct athn_serdes *serdes)
855 {
856 int i;
857
858 /* Write sequence to Serializer/Deserializer. */
859 for (i = 0; i < serdes->nvals; i++)
860 AR_WRITE(sc, serdes->regs[i], serdes->vals[i]);
861 AR_WRITE_BARRIER(sc);
862 }
863
864 PUBLIC void
865 athn_config_pcie(struct athn_softc *sc)
866 {
867
868 /* Disable PLL when in L0s as well as receiver clock when in L1. */
869 athn_write_serdes(sc, sc->sc_serdes);
870
871 DELAY(1000);
872 /* Allow forcing of PCIe core into L1 state. */
873 AR_SETBITS(sc, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
874
875 #ifndef ATHN_PCIE_WAEN
876 AR_WRITE(sc, AR_WA, sc->sc_workaround);
877 #else
878 AR_WRITE(sc, AR_WA, ATHN_PCIE_WAEN);
879 #endif
880 AR_WRITE_BARRIER(sc);
881 }
882
883 /*
884 * Serializer/Deserializer programming for non-PCIe devices.
885 */
886 static const uint32_t ar_nonpcie_serdes_regs[] = {
887 AR_PCIE_SERDES,
888 AR_PCIE_SERDES,
889 AR_PCIE_SERDES,
890 AR_PCIE_SERDES,
891 AR_PCIE_SERDES,
892 AR_PCIE_SERDES,
893 AR_PCIE_SERDES,
894 AR_PCIE_SERDES,
895 AR_PCIE_SERDES,
896 AR_PCIE_SERDES2,
897 };
898
899 static const uint32_t ar_nonpcie_serdes_vals[] = {
900 0x9248fc00,
901 0x24924924,
902 0x28000029,
903 0x57160824,
904 0x25980579,
905 0x00000000,
906 0x1aaabe40,
907 0xbe105554,
908 0x000e1007,
909 0x00000000
910 };
911
912 static const struct athn_serdes ar_nonpcie_serdes = {
913 __arraycount(ar_nonpcie_serdes_vals),
914 ar_nonpcie_serdes_regs,
915 ar_nonpcie_serdes_vals
916 };
917
918 PUBLIC void
919 athn_config_nonpcie(struct athn_softc *sc)
920 {
921
922 athn_write_serdes(sc, &ar_nonpcie_serdes);
923 }
924
925 PUBLIC int
926 athn_set_chan(struct athn_softc *sc, struct ieee80211_channel *curchan,
927 struct ieee80211_channel *extchan)
928 {
929 struct athn_ops *ops = &sc->sc_ops;
930 int error, qid;
931
932 /* Check that Tx is stopped, otherwise RF Bus grant will not work. */
933 for (qid = 0; qid < ATHN_QID_COUNT; qid++)
934 if (athn_tx_pending(sc, qid))
935 return EBUSY;
936
937 /* Request RF Bus grant. */
938 if ((error = ops->rf_bus_request(sc)) != 0)
939 return error;
940
941 ops->set_phy(sc, curchan, extchan);
942
943 /* Change the synthesizer. */
944 if ((error = ops->set_synth(sc, curchan, extchan)) != 0)
945 return error;
946
947 sc->sc_curchan = curchan;
948 sc->sc_curchanext = extchan;
949
950 /* Set transmit power values for new channel. */
951 ops->set_txpower(sc, curchan, extchan);
952
953 /* Release the RF Bus grant. */
954 ops->rf_bus_release(sc);
955
956 /* Write delta slope coeffs for modes where OFDM may be used. */
957 if (sc->sc_ic.ic_curmode != IEEE80211_MODE_11B)
958 ops->set_delta_slope(sc, curchan, extchan);
959
960 ops->spur_mitigate(sc, curchan, extchan);
961 /* XXX Load noisefloor values and start calibration. */
962
963 return 0;
964 }
965
966 Static int
967 athn_switch_chan(struct athn_softc *sc, struct ieee80211_channel *curchan,
968 struct ieee80211_channel *extchan)
969 {
970 int error, qid;
971
972 /* Disable interrupts. */
973 athn_disable_interrupts(sc);
974
975 /* Stop all Tx queues. */
976 for (qid = 0; qid < ATHN_QID_COUNT; qid++)
977 athn_stop_tx_dma(sc, qid);
978 for (qid = 0; qid < ATHN_QID_COUNT; qid++)
979 athn_tx_reclaim(sc, qid);
980
981 /* Stop Rx. */
982 AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
983 AR_WRITE(sc, AR_MIBC, AR_MIBC_FMC);
984 AR_WRITE(sc, AR_MIBC, AR_MIBC_CMC);
985 AR_WRITE(sc, AR_FILT_OFDM, 0);
986 AR_WRITE(sc, AR_FILT_CCK, 0);
987 athn_set_rxfilter(sc, 0);
988 error = athn_stop_rx_dma(sc);
989 if (error != 0)
990 goto reset;
991
992 #ifdef notyet
993 /* AR9280 needs a full reset. */
994 if (AR_SREV_9280(sc))
995 #endif
996 goto reset;
997
998 /* If band or bandwidth changes, we need to do a full reset. */
999 if (curchan->ic_flags != sc->sc_curchan->ic_flags ||
1000 ((extchan != NULL) ^ (sc->sc_curchanext != NULL))) {
1001 DPRINTFN(DBG_RF, sc, "channel band switch\n");
1002 goto reset;
1003 }
1004 error = athn_set_power_awake(sc);
1005 if (error != 0)
1006 goto reset;
1007
1008 error = athn_set_chan(sc, curchan, extchan);
1009 if (error != 0) {
1010 reset: /* Error found, try a full reset. */
1011 DPRINTFN(DBG_RF, sc, "needs a full reset\n");
1012 error = athn_hw_reset(sc, curchan, extchan, 0);
1013 if (error != 0) /* Hopeless case. */
1014 return error;
1015 }
1016 athn_rx_start(sc);
1017
1018 /* Re-enable interrupts. */
1019 athn_enable_interrupts(sc);
1020 return 0;
1021 }
1022
1023 PUBLIC void
1024 athn_get_delta_slope(uint32_t coeff, uint32_t *exponent, uint32_t *mantissa)
1025 {
1026 #define COEFF_SCALE_SHIFT 24
1027 uint32_t exp, man;
1028
1029 /* exponent = 14 - floor(log2(coeff)) */
1030 for (exp = 31; exp > 0; exp--)
1031 if (coeff & (1 << exp))
1032 break;
1033 exp = 14 - (exp - COEFF_SCALE_SHIFT);
1034
1035 /* mantissa = floor(coeff * 2^exponent + 0.5) */
1036 man = coeff + (1 << (COEFF_SCALE_SHIFT - exp - 1));
1037
1038 *mantissa = man >> (COEFF_SCALE_SHIFT - exp);
1039 *exponent = exp - 16;
1040 #undef COEFF_SCALE_SHIFT
1041 }
1042
1043 PUBLIC void
1044 athn_reset_key(struct athn_softc *sc, int entry)
1045 {
1046
1047 /*
1048 * NB: Key cache registers access special memory area that requires
1049 * two 32-bit writes to actually update the values in the internal
1050 * memory. Consequently, writes must be grouped by pair.
1051 */
1052 AR_WRITE(sc, AR_KEYTABLE_KEY0(entry), 0);
1053 AR_WRITE(sc, AR_KEYTABLE_KEY1(entry), 0);
1054
1055 AR_WRITE(sc, AR_KEYTABLE_KEY2(entry), 0);
1056 AR_WRITE(sc, AR_KEYTABLE_KEY3(entry), 0);
1057
1058 AR_WRITE(sc, AR_KEYTABLE_KEY4(entry), 0);
1059 AR_WRITE(sc, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
1060
1061 AR_WRITE(sc, AR_KEYTABLE_MAC0(entry), 0);
1062 AR_WRITE(sc, AR_KEYTABLE_MAC1(entry), 0);
1063
1064 AR_WRITE_BARRIER(sc);
1065 }
1066
1067 #ifdef notyet
1068 Static int
1069 athn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
1070 struct ieee80211_key *k)
1071 {
1072 struct athn_softc *sc = ic->ic_ifp->if_softc;
1073 const uint8_t *txmic, *rxmic, *key, *addr;
1074 uintptr_t entry, micentry;
1075 uint32_t type, lo, hi;
1076
1077 switch (k->k_cipher) {
1078 case IEEE80211_CIPHER_WEP40:
1079 type = AR_KEYTABLE_TYPE_40;
1080 break;
1081 case IEEE80211_CIPHER_WEP104:
1082 type = AR_KEYTABLE_TYPE_104;
1083 break;
1084 case IEEE80211_CIPHER_TKIP:
1085 type = AR_KEYTABLE_TYPE_TKIP;
1086 break;
1087 case IEEE80211_CIPHER_CCMP:
1088 type = AR_KEYTABLE_TYPE_CCM;
1089 break;
1090 default:
1091 /* Fallback to software crypto for other ciphers. */
1092 return ieee80211_set_key(ic, ni, k);
1093 }
1094
1095 if (!(k->k_flags & IEEE80211_KEY_GROUP))
1096 entry = IEEE80211_WEP_NKID + IEEE80211_AID(ni->ni_associd);
1097 else
1098 entry = k->k_id;
1099 k->k_priv = (void *)entry;
1100
1101 /* NB: See note about key cache registers access above. */
1102 key = k->k_key;
1103 if (type == AR_KEYTABLE_TYPE_TKIP) {
1104 #ifndef IEEE80211_STA_ONLY
1105 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
1106 txmic = &key[16];
1107 rxmic = &key[24];
1108 }
1109 else
1110 #endif
1111 {
1112 rxmic = &key[16];
1113 txmic = &key[24];
1114 }
1115 /* Tx+Rx MIC key is at entry + 64. */
1116 micentry = entry + 64;
1117 AR_WRITE(sc, AR_KEYTABLE_KEY0(micentry), LE_READ_4(&rxmic[0]));
1118 AR_WRITE(sc, AR_KEYTABLE_KEY1(micentry), LE_READ_2(&txmic[2]));
1119
1120 AR_WRITE(sc, AR_KEYTABLE_KEY2(micentry), LE_READ_4(&rxmic[4]));
1121 AR_WRITE(sc, AR_KEYTABLE_KEY3(micentry), LE_READ_2(&txmic[0]));
1122
1123 AR_WRITE(sc, AR_KEYTABLE_KEY4(micentry), LE_READ_4(&txmic[4]));
1124 AR_WRITE(sc, AR_KEYTABLE_TYPE(micentry), AR_KEYTABLE_TYPE_CLR);
1125 }
1126 AR_WRITE(sc, AR_KEYTABLE_KEY0(entry), LE_READ_4(&key[ 0]));
1127 AR_WRITE(sc, AR_KEYTABLE_KEY1(entry), LE_READ_2(&key[ 4]));
1128
1129 AR_WRITE(sc, AR_KEYTABLE_KEY2(entry), LE_READ_4(&key[ 6]));
1130 AR_WRITE(sc, AR_KEYTABLE_KEY3(entry), LE_READ_2(&key[10]));
1131
1132 AR_WRITE(sc, AR_KEYTABLE_KEY4(entry), LE_READ_4(&key[12]));
1133 AR_WRITE(sc, AR_KEYTABLE_TYPE(entry), type);
1134
1135 if (!(k->k_flags & IEEE80211_KEY_GROUP)) {
1136 addr = ni->ni_macaddr;
1137 lo = LE_READ_4(&addr[0]);
1138 hi = LE_READ_2(&addr[4]);
1139 lo = lo >> 1 | hi << 31;
1140 hi = hi >> 1;
1141 }
1142 else
1143 lo = hi = 0;
1144 AR_WRITE(sc, AR_KEYTABLE_MAC0(entry), lo);
1145 AR_WRITE(sc, AR_KEYTABLE_MAC1(entry), hi | AR_KEYTABLE_VALID);
1146 AR_WRITE_BARRIER(sc);
1147 return 0;
1148 }
1149
1150 Static void
1151 athn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
1152 struct ieee80211_key *k)
1153 {
1154 struct athn_softc *sc = ic->ic_ifp->if_softc;
1155 uintptr_t entry;
1156
1157 switch (k->k_cipher) {
1158 case IEEE80211_CIPHER_WEP40:
1159 case IEEE80211_CIPHER_WEP104:
1160 case IEEE80211_CIPHER_CCMP:
1161 entry = (uintptr_t)k->k_priv;
1162 athn_reset_key(sc, entry);
1163 break;
1164 case IEEE80211_CIPHER_TKIP:
1165 entry = (uintptr_t)k->k_priv;
1166 athn_reset_key(sc, entry);
1167 athn_reset_key(sc, entry + 64);
1168 break;
1169 default:
1170 /* Fallback to software crypto for other ciphers. */
1171 ieee80211_delete_key(ic, ni, k);
1172 }
1173 }
1174 #endif /* notyet */
1175
1176 PUBLIC void
1177 athn_led_init(struct athn_softc *sc)
1178 {
1179 struct athn_ops *ops = &sc->sc_ops;
1180
1181 ops->gpio_config_output(sc, sc->sc_led_pin, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1182 /* LED off, active low. */
1183 athn_set_led(sc, 0);
1184 }
1185
1186 PUBLIC void
1187 athn_set_led(struct athn_softc *sc, int on)
1188 {
1189 struct athn_ops *ops = &sc->sc_ops;
1190
1191 sc->sc_led_state = on;
1192 ops->gpio_write(sc, sc->sc_led_pin, !sc->sc_led_state);
1193 }
1194
1195 #ifdef ATHN_BT_COEXISTENCE
1196 Static void
1197 athn_btcoex_init(struct athn_softc *sc)
1198 {
1199 struct athn_ops *ops = &sc->sc_ops;
1200 uint32_t reg;
1201
1202 if (sc->sc_flags & ATHN_FLAG_BTCOEX2WIRE) {
1203 /* Connect bt_active to baseband. */
1204 AR_CLRBITS(sc, sc->sc_gpio_input_en_off,
1205 AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_DEF |
1206 AR_GPIO_INPUT_EN_VAL_BT_FREQUENCY_DEF);
1207 AR_SETBITS(sc, sc->sc_gpio_input_en_off,
1208 AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB);
1209
1210 reg = AR_READ(sc, AR_GPIO_INPUT_MUX1);
1211 reg = RW(reg, AR_GPIO_INPUT_MUX1_BT_ACTIVE,
1212 AR_GPIO_BTACTIVE_PIN);
1213 AR_WRITE(sc, AR_GPIO_INPUT_MUX1, reg);
1214 AR_WRITE_BARRIER(sc);
1215
1216 ops->gpio_config_input(sc, AR_GPIO_BTACTIVE_PIN);
1217 }
1218 else { /* 3-wire. */
1219 AR_SETBITS(sc, sc->sc_gpio_input_en_off,
1220 AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_BB |
1221 AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB);
1222
1223 reg = AR_READ(sc, AR_GPIO_INPUT_MUX1);
1224 reg = RW(reg, AR_GPIO_INPUT_MUX1_BT_ACTIVE,
1225 AR_GPIO_BTACTIVE_PIN);
1226 reg = RW(reg, AR_GPIO_INPUT_MUX1_BT_PRIORITY,
1227 AR_GPIO_BTPRIORITY_PIN);
1228 AR_WRITE(sc, AR_GPIO_INPUT_MUX1, reg);
1229 AR_WRITE_BARRIER(sc);
1230
1231 ops->gpio_config_input(sc, AR_GPIO_BTACTIVE_PIN);
1232 ops->gpio_config_input(sc, AR_GPIO_BTPRIORITY_PIN);
1233 }
1234 }
1235
1236 Static void
1237 athn_btcoex_enable(struct athn_softc *sc)
1238 {
1239 struct athn_ops *ops = &sc->sc_ops;
1240 uint32_t reg;
1241
1242 if (sc->sc_flags & ATHN_FLAG_BTCOEX3WIRE) {
1243 AR_WRITE(sc, AR_BT_COEX_MODE,
1244 SM(AR_BT_MODE, AR_BT_MODE_SLOTTED) |
1245 SM(AR_BT_PRIORITY_TIME, 2) |
1246 SM(AR_BT_FIRST_SLOT_TIME, 5) |
1247 SM(AR_BT_QCU_THRESH, ATHN_QID_AC_BE) |
1248 AR_BT_TXSTATE_EXTEND | AR_BT_TX_FRAME_EXTEND |
1249 AR_BT_QUIET | AR_BT_RX_CLEAR_POLARITY);
1250 AR_WRITE(sc, AR_BT_COEX_WEIGHT,
1251 SM(AR_BTCOEX_BT_WGHT, AR_STOMP_LOW_BT_WGHT) |
1252 SM(AR_BTCOEX_WL_WGHT, AR_STOMP_LOW_WL_WGHT));
1253 AR_WRITE(sc, AR_BT_COEX_MODE2,
1254 SM(AR_BT_BCN_MISS_THRESH, 50) |
1255 AR_BT_HOLD_RX_CLEAR | AR_BT_DISABLE_BT_ANT);
1256
1257 AR_SETBITS(sc, AR_QUIET1, AR_QUIET1_QUIET_ACK_CTS_ENABLE);
1258 AR_CLRBITS(sc, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX);
1259 AR_WRITE_BARRIER(sc);
1260
1261 ops->gpio_config_output(sc, AR_GPIO_WLANACTIVE_PIN,
1262 AR_GPIO_OUTPUT_MUX_AS_RX_CLEAR_EXTERNAL);
1263
1264 }
1265 else { /* 2-wire. */
1266 ops->gpio_config_output(sc, AR_GPIO_WLANACTIVE_PIN,
1267 AR_GPIO_OUTPUT_MUX_AS_TX_FRAME);
1268 }
1269 reg = AR_READ(sc, AR_GPIO_PDPU);
1270 reg &= ~(0x3 << (AR_GPIO_WLANACTIVE_PIN * 2));
1271 reg |= 0x2 << (AR_GPIO_WLANACTIVE_PIN * 2);
1272 AR_WRITE(sc, AR_GPIO_PDPU, reg);
1273 AR_WRITE_BARRIER(sc);
1274
1275 /* Disable PCIe Active State Power Management (ASPM). */
1276 if (sc->sc_disable_aspm != NULL)
1277 sc->sc_disable_aspm(sc);
1278
1279 /* XXX Start periodic timer. */
1280 }
1281
1282 Static void
1283 athn_btcoex_disable(struct athn_softc *sc)
1284 {
1285 struct athn_ops *ops = &sc->sc_ops;
1286
1287 ops->gpio_write(sc, AR_GPIO_WLANACTIVE_PIN, 0);
1288
1289 ops->gpio_config_output(sc, AR_GPIO_WLANACTIVE_PIN,
1290 AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1291
1292 if (sc->sc_flags & ATHN_FLAG_BTCOEX3WIRE) {
1293 AR_WRITE(sc, AR_BT_COEX_MODE,
1294 SM(AR_BT_MODE, AR_BT_MODE_DISABLED) | AR_BT_QUIET);
1295 AR_WRITE(sc, AR_BT_COEX_WEIGHT, 0);
1296 AR_WRITE(sc, AR_BT_COEX_MODE2, 0);
1297 /* XXX Stop periodic timer. */
1298 }
1299 AR_WRITE_BARRIER(sc);
1300 /* XXX Restore ASPM setting? */
1301 }
1302 #endif
1303
1304 Static void
1305 athn_iter_func(void *arg, struct ieee80211_node *ni)
1306 {
1307 struct athn_softc *sc = arg;
1308 struct athn_node *an = (struct athn_node *)ni;
1309
1310 ieee80211_amrr_choose(&sc->sc_amrr, ni, &an->amn);
1311 }
1312
1313 Static void
1314 athn_calib_to(void *arg)
1315 {
1316 extern int ticks;
1317 struct athn_softc *sc = arg;
1318 struct athn_ops *ops = &sc->sc_ops;
1319 struct ieee80211com *ic = &sc->sc_ic;
1320 int s;
1321
1322 s = splnet();
1323
1324 /* Do periodic (every 4 minutes) PA calibration. */
1325 if (AR_SREV_9285_11_OR_LATER(sc) &&
1326 !AR_SREV_9380_10_OR_LATER(sc) &&
1327 (ticks - (sc->sc_pa_calib_ticks + 240 * hz)) >= 0) {
1328 sc->sc_pa_calib_ticks = ticks;
1329 if (AR_SREV_9271(sc))
1330 ar9271_pa_calib(sc);
1331 else
1332 ar9285_pa_calib(sc);
1333 }
1334
1335 /* Do periodic (every 30 seconds) temperature compensation. */
1336 if ((sc->sc_flags & ATHN_FLAG_OLPC) &&
1337 ticks >= sc->sc_olpc_ticks + 30 * hz) {
1338 sc->sc_olpc_ticks = ticks;
1339 ops->olpc_temp_compensation(sc);
1340 }
1341
1342 #ifdef notyet
1343 /* XXX ANI. */
1344 athn_ani_monitor(sc);
1345
1346 ops->next_calib(sc);
1347 #endif
1348 if (ic->ic_fixed_rate == -1) {
1349 if (ic->ic_opmode == IEEE80211_M_STA)
1350 athn_iter_func(sc, ic->ic_bss);
1351 else
1352 ieee80211_iterate_nodes(&ic->ic_sta, athn_iter_func, sc);
1353 }
1354 callout_schedule(&sc->sc_calib_to, hz / 2);
1355 splx(s);
1356 }
1357
1358 Static int
1359 athn_init_calib(struct athn_softc *sc, struct ieee80211_channel *curchan,
1360 struct ieee80211_channel *extchan)
1361 {
1362 struct athn_ops *ops = &sc->sc_ops;
1363 int error;
1364
1365 if (AR_SREV_9380_10_OR_LATER(sc))
1366 error = ar9003_init_calib(sc);
1367 else if (AR_SREV_9285_10_OR_LATER(sc))
1368 error = ar9285_init_calib(sc, curchan, extchan);
1369 else
1370 error = ar5416_init_calib(sc, curchan, extchan);
1371 if (error != 0)
1372 return error;
1373
1374 if (!AR_SREV_9380_10_OR_LATER(sc)) {
1375 /* Do PA calibration. */
1376 if (AR_SREV_9285_11_OR_LATER(sc)) {
1377 extern int ticks;
1378 sc->sc_pa_calib_ticks = ticks;
1379 if (AR_SREV_9271(sc))
1380 ar9271_pa_calib(sc);
1381 else
1382 ar9285_pa_calib(sc);
1383 }
1384 /* Do noisefloor calibration. */
1385 ops->noisefloor_calib(sc);
1386 }
1387 if (AR_SREV_9160_10_OR_LATER(sc)) {
1388 /* Support IQ calibration. */
1389 sc->sc_sup_calib_mask = ATHN_CAL_IQ;
1390 if (AR_SREV_9380_10_OR_LATER(sc)) {
1391 /* Support temperature compensation calibration. */
1392 sc->sc_sup_calib_mask |= ATHN_CAL_TEMP;
1393 }
1394 else if (IEEE80211_IS_CHAN_5GHZ(curchan) || extchan != NULL) {
1395 /*
1396 * ADC gain calibration causes uplink throughput
1397 * drops in HT40 mode on AR9287.
1398 */
1399 if (!AR_SREV_9287(sc)) {
1400 /* Support ADC gain calibration. */
1401 sc->sc_sup_calib_mask |= ATHN_CAL_ADC_GAIN;
1402 }
1403 /* Support ADC DC offset calibration. */
1404 sc->sc_sup_calib_mask |= ATHN_CAL_ADC_DC;
1405 }
1406 }
1407 return 0;
1408 }
1409
1410 /*
1411 * Adaptive noise immunity.
1412 */
1413 #ifdef notyet
1414 Static int32_t
1415 athn_ani_get_rssi(struct athn_softc *sc)
1416 {
1417
1418 return 0; /* XXX */
1419 }
1420 #endif /* notyet */
1421
1422 #ifdef notyet
1423 Static void
1424 athn_ani_ofdm_err_trigger(struct athn_softc *sc)
1425 {
1426 struct athn_ani *ani = &sc->sc_ani;
1427 struct athn_ops *ops = &sc->sc_ops;
1428 int32_t rssi;
1429
1430 /* First, raise noise immunity level, up to max. */
1431 if (ani->noise_immunity_level < 4) {
1432 ani->noise_immunity_level++;
1433 ops->set_noise_immunity_level(sc, ani->noise_immunity_level);
1434 return;
1435 }
1436
1437 /* Then, raise our spur immunity level, up to max. */
1438 if (ani->spur_immunity_level < 7) {
1439 ani->spur_immunity_level++;
1440 ops->set_spur_immunity_level(sc, ani->spur_immunity_level);
1441 return;
1442 }
1443
1444 #ifndef IEEE80211_STA_ONLY
1445 if (sc->sc_ic.ic_opmode == IEEE80211_M_HOSTAP) {
1446 if (ani->firstep_level < 2) {
1447 ani->firstep_level++;
1448 ops->set_firstep_level(sc, ani->firstep_level);
1449 }
1450 return;
1451 }
1452 #endif
1453 rssi = athn_ani_get_rssi(sc);
1454 if (rssi > ATHN_ANI_RSSI_THR_HIGH) {
1455 /*
1456 * Beacon RSSI is high, turn off OFDM weak signal detection
1457 * or raise first step level as last resort.
1458 */
1459 if (ani->ofdm_weak_signal) {
1460 ani->ofdm_weak_signal = 0;
1461 ops->disable_ofdm_weak_signal(sc);
1462 ani->spur_immunity_level = 0;
1463 ops->set_spur_immunity_level(sc, 0);
1464 }
1465 else if (ani->firstep_level < 2) {
1466 ani->firstep_level++;
1467 ops->set_firstep_level(sc, ani->firstep_level);
1468 }
1469 }
1470 else if (rssi > ATHN_ANI_RSSI_THR_LOW) {
1471 /*
1472 * Beacon RSSI is in mid range, we need OFDM weak signal
1473 * detection but we can raise first step level.
1474 */
1475 if (!ani->ofdm_weak_signal) {
1476 ani->ofdm_weak_signal = 1;
1477 ops->enable_ofdm_weak_signal(sc);
1478 }
1479 if (ani->firstep_level < 2) {
1480 ani->firstep_level++;
1481 ops->set_firstep_level(sc, ani->firstep_level);
1482 }
1483 }
1484 else if (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) {
1485 /*
1486 * Beacon RSSI is low, if in b/g mode, turn off OFDM weak
1487 * signal detection and zero first step level to maximize
1488 * CCK sensitivity.
1489 */
1490 if (ani->ofdm_weak_signal) {
1491 ani->ofdm_weak_signal = 0;
1492 ops->disable_ofdm_weak_signal(sc);
1493 }
1494 if (ani->firstep_level > 0) {
1495 ani->firstep_level = 0;
1496 ops->set_firstep_level(sc, 0);
1497 }
1498 }
1499 }
1500 #endif /* notyet */
1501
1502 #ifdef notyet
1503 Static void
1504 athn_ani_cck_err_trigger(struct athn_softc *sc)
1505 {
1506 struct athn_ani *ani = &sc->sc_ani;
1507 struct athn_ops *ops = &sc->sc_ops;
1508 int32_t rssi;
1509
1510 /* Raise noise immunity level, up to max. */
1511 if (ani->noise_immunity_level < 4) {
1512 ani->noise_immunity_level++;
1513 ops->set_noise_immunity_level(sc, ani->noise_immunity_level);
1514 return;
1515 }
1516
1517 #ifndef IEEE80211_STA_ONLY
1518 if (sc->sc_ic.ic_opmode == IEEE80211_M_HOSTAP) {
1519 if (ani->firstep_level < 2) {
1520 ani->firstep_level++;
1521 ops->set_firstep_level(sc, ani->firstep_level);
1522 }
1523 return;
1524 }
1525 #endif
1526 rssi = athn_ani_get_rssi(sc);
1527 if (rssi > ATHN_ANI_RSSI_THR_LOW) {
1528 /*
1529 * Beacon RSSI is in mid or high range, raise first step
1530 * level.
1531 */
1532 if (ani->firstep_level < 2) {
1533 ani->firstep_level++;
1534 ops->set_firstep_level(sc, ani->firstep_level);
1535 }
1536 }
1537 else if (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) {
1538 /*
1539 * Beacon RSSI is low, zero first step level to maximize
1540 * CCK sensitivity.
1541 */
1542 if (ani->firstep_level > 0) {
1543 ani->firstep_level = 0;
1544 ops->set_firstep_level(sc, 0);
1545 }
1546 }
1547 }
1548 #endif /* notyet */
1549
1550 #ifdef notyet
1551 Static void
1552 athn_ani_lower_immunity(struct athn_softc *sc)
1553 {
1554 struct athn_ani *ani = &sc->sc_ani;
1555 struct athn_ops *ops = &sc->sc_ops;
1556 int32_t rssi;
1557
1558 #ifndef IEEE80211_STA_ONLY
1559 if (sc->sc_ic.ic_opmode == IEEE80211_M_HOSTAP) {
1560 if (ani->firstep_level > 0) {
1561 ani->firstep_level--;
1562 ops->set_firstep_level(sc, ani->firstep_level);
1563 }
1564 return;
1565 }
1566 #endif
1567 rssi = athn_ani_get_rssi(sc);
1568 if (rssi > ATHN_ANI_RSSI_THR_HIGH) {
1569 /*
1570 * Beacon RSSI is high, leave OFDM weak signal detection
1571 * off or it may oscillate.
1572 */
1573 }
1574 else if (rssi > ATHN_ANI_RSSI_THR_LOW) {
1575 /*
1576 * Beacon RSSI is in mid range, turn on OFDM weak signal
1577 * detection or lower first step level.
1578 */
1579 if (!ani->ofdm_weak_signal) {
1580 ani->ofdm_weak_signal = 1;
1581 ops->enable_ofdm_weak_signal(sc);
1582 return;
1583 }
1584 if (ani->firstep_level > 0) {
1585 ani->firstep_level--;
1586 ops->set_firstep_level(sc, ani->firstep_level);
1587 return;
1588 }
1589 }
1590 else {
1591 /* Beacon RSSI is low, lower first step level. */
1592 if (ani->firstep_level > 0) {
1593 ani->firstep_level--;
1594 ops->set_firstep_level(sc, ani->firstep_level);
1595 return;
1596 }
1597 }
1598 /*
1599 * Lower spur immunity level down to zero, or if all else fails,
1600 * lower noise immunity level down to zero.
1601 */
1602 if (ani->spur_immunity_level > 0) {
1603 ani->spur_immunity_level--;
1604 ops->set_spur_immunity_level(sc, ani->spur_immunity_level);
1605 }
1606 else if (ani->noise_immunity_level > 0) {
1607 ani->noise_immunity_level--;
1608 ops->set_noise_immunity_level(sc, ani->noise_immunity_level);
1609 }
1610 }
1611 #endif /* notyet */
1612
1613 #ifdef notyet
1614 Static void
1615 athn_ani_restart(struct athn_softc *sc)
1616 {
1617 struct athn_ani *ani = &sc->sc_ani;
1618
1619 AR_WRITE(sc, AR_PHY_ERR_1, 0);
1620 AR_WRITE(sc, AR_PHY_ERR_2, 0);
1621 AR_WRITE(sc, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING);
1622 AR_WRITE(sc, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING);
1623 AR_WRITE_BARRIER(sc);
1624
1625 ani->listen_time = 0;
1626 ani->ofdm_phy_err_count = 0;
1627 ani->cck_phy_err_count = 0;
1628 }
1629 #endif /* notyet */
1630
1631 #ifdef notyet
1632 Static void
1633 athn_ani_monitor(struct athn_softc *sc)
1634 {
1635 struct athn_ani *ani = &sc->sc_ani;
1636 uint32_t cyccnt, txfcnt, rxfcnt, phy1, phy2;
1637 int32_t cycdelta, txfdelta, rxfdelta;
1638 int32_t listen_time;
1639
1640 txfcnt = AR_READ(sc, AR_TFCNT); /* Tx frame count. */
1641 rxfcnt = AR_READ(sc, AR_RFCNT); /* Rx frame count. */
1642 cyccnt = AR_READ(sc, AR_CCCNT); /* Cycle count. */
1643
1644 if (ani->cyccnt != 0 && ani->cyccnt <= cyccnt) {
1645 cycdelta = cyccnt - ani->cyccnt;
1646 txfdelta = txfcnt - ani->txfcnt;
1647 rxfdelta = rxfcnt - ani->rxfcnt;
1648
1649 listen_time = (cycdelta - txfdelta - rxfdelta) /
1650 (athn_clock_rate(sc) * 1000);
1651 }
1652 else
1653 listen_time = 0;
1654
1655 ani->cyccnt = cyccnt;
1656 ani->txfcnt = txfcnt;
1657 ani->rxfcnt = rxfcnt;
1658
1659 if (listen_time < 0) {
1660 athn_ani_restart(sc);
1661 return;
1662 }
1663 ani->listen_time += listen_time;
1664
1665 phy1 = AR_READ(sc, AR_PHY_ERR_1);
1666 phy2 = AR_READ(sc, AR_PHY_ERR_2);
1667
1668 if (phy1 < ani->ofdm_phy_err_base) {
1669 AR_WRITE(sc, AR_PHY_ERR_1, ani->ofdm_phy_err_base);
1670 AR_WRITE(sc, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING);
1671 }
1672 if (phy2 < ani->cck_phy_err_base) {
1673 AR_WRITE(sc, AR_PHY_ERR_2, ani->cck_phy_err_base);
1674 AR_WRITE(sc, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING);
1675 }
1676 if (phy1 < ani->ofdm_phy_err_base || phy2 < ani->cck_phy_err_base) {
1677 AR_WRITE_BARRIER(sc);
1678 return;
1679 }
1680 ani->ofdm_phy_err_count = phy1 - ani->ofdm_phy_err_base;
1681 ani->cck_phy_err_count = phy2 - ani->cck_phy_err_base;
1682
1683 if (ani->listen_time > 5 * ATHN_ANI_PERIOD) {
1684 /* Check to see if we need to lower immunity. */
1685 if (ani->ofdm_phy_err_count <=
1686 ani->listen_time * ani->ofdm_trig_low / 1000 &&
1687 ani->cck_phy_err_count <=
1688 ani->listen_time * ani->cck_trig_low / 1000)
1689 athn_ani_lower_immunity(sc);
1690 athn_ani_restart(sc);
1691
1692 }
1693 else if (ani->listen_time > ATHN_ANI_PERIOD) {
1694 /* Check to see if we need to raise immunity. */
1695 if (ani->ofdm_phy_err_count >
1696 ani->listen_time * ani->ofdm_trig_high / 1000) {
1697 athn_ani_ofdm_err_trigger(sc);
1698 athn_ani_restart(sc);
1699 }
1700 else if (ani->cck_phy_err_count >
1701 ani->listen_time * ani->cck_trig_high / 1000) {
1702 athn_ani_cck_err_trigger(sc);
1703 athn_ani_restart(sc);
1704 }
1705 }
1706 }
1707 #endif /* notyet */
1708
1709 PUBLIC uint8_t
1710 athn_chan2fbin(struct ieee80211_channel *c)
1711 {
1712
1713 if (IEEE80211_IS_CHAN_2GHZ(c))
1714 return c->ic_freq - 2300;
1715 else
1716 return (c->ic_freq - 4800) / 5;
1717 }
1718
1719 PUBLIC int
1720 athn_interpolate(int x, int x1, int y1, int x2, int y2)
1721 {
1722
1723 if (x1 == x2) /* Prevents division by zero. */
1724 return y1;
1725 /* Linear interpolation. */
1726 return y1 + ((x - x1) * (y2 - y1)) / (x2 - x1);
1727 }
1728
1729 PUBLIC void
1730 athn_get_pier_ival(uint8_t fbin, const uint8_t *pierfreq, int npiers,
1731 int *lo, int *hi)
1732 {
1733 int i;
1734
1735 for (i = 0; i < npiers; i++)
1736 if (pierfreq[i] == AR_BCHAN_UNUSED ||
1737 pierfreq[i] > fbin)
1738 break;
1739 *hi = i;
1740 *lo = *hi - 1;
1741 if (*lo == -1)
1742 *lo = *hi;
1743 else if (*hi == npiers || pierfreq[*hi] == AR_BCHAN_UNUSED)
1744 *hi = *lo;
1745 }
1746
1747 Static void
1748 athn_init_dma(struct athn_softc *sc)
1749 {
1750 uint32_t reg;
1751
1752 if (!AR_SREV_9380_10_OR_LATER(sc)) {
1753 /* Set AHB not to do cacheline prefetches. */
1754 AR_SETBITS(sc, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1755 }
1756 reg = AR_READ(sc, AR_TXCFG);
1757 /* Let MAC DMA reads be in 128-byte chunks. */
1758 reg = RW(reg, AR_TXCFG_DMASZ, AR_DMASZ_128B);
1759
1760 /* Set initial Tx trigger level. */
1761 if (AR_SREV_9285(sc) || AR_SREV_9271(sc))
1762 reg = RW(reg, AR_TXCFG_FTRIG, AR_TXCFG_FTRIG_256B);
1763 else if (!AR_SREV_9380_10_OR_LATER(sc))
1764 reg = RW(reg, AR_TXCFG_FTRIG, AR_TXCFG_FTRIG_512B);
1765 AR_WRITE(sc, AR_TXCFG, reg);
1766
1767 /* Let MAC DMA writes be in 128-byte chunks. */
1768 reg = AR_READ(sc, AR_RXCFG);
1769 reg = RW(reg, AR_RXCFG_DMASZ, AR_DMASZ_128B);
1770 AR_WRITE(sc, AR_RXCFG, reg);
1771
1772 /* Setup Rx FIFO threshold to hold off Tx activities. */
1773 AR_WRITE(sc, AR_RXFIFO_CFG, 512);
1774
1775 /* Reduce the number of entries in PCU TXBUF to avoid wrap around. */
1776 if (AR_SREV_9285(sc)) {
1777 AR_WRITE(sc, AR_PCU_TXBUF_CTRL,
1778 AR9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1779 }
1780 else if (!AR_SREV_9271(sc)) {
1781 AR_WRITE(sc, AR_PCU_TXBUF_CTRL,
1782 AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1783 }
1784 AR_WRITE_BARRIER(sc);
1785
1786 /* Reset Tx status ring. */
1787 if (AR_SREV_9380_10_OR_LATER(sc))
1788 ar9003_reset_txsring(sc);
1789 }
1790
1791 PUBLIC void
1792 athn_inc_tx_trigger_level(struct athn_softc *sc)
1793 {
1794 uint32_t reg, ftrig;
1795
1796 reg = AR_READ(sc, AR_TXCFG);
1797 ftrig = MS(reg, AR_TXCFG_FTRIG);
1798 /*
1799 * NB: The AR9285 and all single-stream parts have an issue that
1800 * limits the size of the PCU Tx FIFO to 2KB instead of 4KB.
1801 */
1802 if (ftrig == ((AR_SREV_9285(sc) || AR_SREV_9271(sc)) ? 0x1f : 0x3f))
1803 return; /* Already at max. */
1804 reg = RW(reg, AR_TXCFG_FTRIG, ftrig + 1);
1805 AR_WRITE(sc, AR_TXCFG, reg);
1806 AR_WRITE_BARRIER(sc);
1807 }
1808
1809 PUBLIC int
1810 athn_stop_rx_dma(struct athn_softc *sc)
1811 {
1812 int ntries;
1813
1814 AR_WRITE(sc, AR_CR, AR_CR_RXD);
1815 /* Wait for Rx enable bit to go low. */
1816 for (ntries = 0; ntries < 100; ntries++) {
1817 if (!(AR_READ(sc, AR_CR) & AR_CR_RXE))
1818 return 0;
1819 DELAY(100);
1820 }
1821 DPRINTFN(DBG_RX, sc, "Rx DMA failed to stop\n");
1822 return ETIMEDOUT;
1823 }
1824
1825 #ifdef unused
1826 Static int
1827 athn_rx_abort(struct athn_softc *sc)
1828 {
1829 int ntries;
1830
1831 AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
1832 for (ntries = 0; ntries < 1000; ntries++) {
1833 if (MS(AR_READ(sc, AR_OBS_BUS_1), AR_OBS_BUS_1_RX_STATE) == 0)
1834 return 0;
1835 DELAY(10);
1836 }
1837 DPRINTFN(DBG_RX, sc, "Rx failed to go idle in 10ms\n");
1838 AR_CLRBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
1839 AR_WRITE_BARRIER(sc);
1840 return ETIMEDOUT;
1841 }
1842 #endif /* unused */
1843
1844 Static void
1845 athn_tx_reclaim(struct athn_softc *sc, int qid)
1846 {
1847 struct athn_txq *txq = &sc->sc_txq[qid];
1848 struct athn_tx_buf *bf;
1849
1850 /* Reclaim all buffers queued in the specified Tx queue. */
1851 /* NB: Tx DMA must be stopped. */
1852 while ((bf = SIMPLEQ_FIRST(&txq->head)) != NULL) {
1853 SIMPLEQ_REMOVE_HEAD(&txq->head, bf_list);
1854
1855 bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0,
1856 bf->bf_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1857 bus_dmamap_unload(sc->sc_dmat, bf->bf_map);
1858 m_freem(bf->bf_m);
1859 bf->bf_m = NULL;
1860 bf->bf_ni = NULL; /* Nodes already freed! */
1861
1862 /* Link Tx buffer back to global free list. */
1863 SIMPLEQ_INSERT_TAIL(&sc->sc_txbufs, bf, bf_list);
1864 }
1865 }
1866
1867 PUBLIC int
1868 athn_tx_pending(struct athn_softc *sc, int qid)
1869 {
1870
1871 return MS(AR_READ(sc, AR_QSTS(qid)), AR_Q_STS_PEND_FR_CNT) != 0 ||
1872 (AR_READ(sc, AR_Q_TXE) & (1 << qid)) != 0;
1873 }
1874
1875 PUBLIC void
1876 athn_stop_tx_dma(struct athn_softc *sc, int qid)
1877 {
1878 uint32_t tsflo;
1879 int ntries, i;
1880
1881 AR_WRITE(sc, AR_Q_TXD, 1 << qid);
1882 for (ntries = 0; ntries < 40; ntries++) {
1883 if (!athn_tx_pending(sc, qid))
1884 break;
1885 DELAY(100);
1886 }
1887 if (ntries == 40) {
1888 for (i = 0; i < 2; i++) {
1889 tsflo = AR_READ(sc, AR_TSF_L32) / 1024;
1890 AR_WRITE(sc, AR_QUIET2,
1891 SM(AR_QUIET2_QUIET_DUR, 10));
1892 AR_WRITE(sc, AR_QUIET_PERIOD, 100);
1893 AR_WRITE(sc, AR_NEXT_QUIET_TIMER, tsflo);
1894 AR_SETBITS(sc, AR_TIMER_MODE, AR_QUIET_TIMER_EN);
1895 if (AR_READ(sc, AR_TSF_L32) / 1024 == tsflo)
1896 break;
1897 }
1898 AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
1899 AR_WRITE_BARRIER(sc);
1900 DELAY(200);
1901 AR_CLRBITS(sc, AR_TIMER_MODE, AR_QUIET_TIMER_EN);
1902 AR_WRITE_BARRIER(sc);
1903
1904 for (ntries = 0; ntries < 40; ntries++) {
1905 if (!athn_tx_pending(sc, qid))
1906 break;
1907 DELAY(100);
1908 }
1909
1910 AR_CLRBITS(sc, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
1911 }
1912 AR_WRITE(sc, AR_Q_TXD, 0);
1913 AR_WRITE_BARRIER(sc);
1914 }
1915
1916 PUBLIC int
1917 athn_txtime(struct athn_softc *sc, int len, int ridx, u_int flags)
1918 {
1919 #define divround(a, b) (((a) + (b) - 1) / (b))
1920 int txtime;
1921
1922 /* XXX HT. */
1923 if (athn_rates[ridx].phy == IEEE80211_T_OFDM) {
1924 txtime = divround(8 + 4 * len + 3, athn_rates[ridx].rate);
1925 /* SIFS is 10us for 11g but Signal Extension adds 6us. */
1926 txtime = 16 + 4 + 4 * txtime + 16;
1927 }
1928 else {
1929 txtime = divround(16 * len, athn_rates[ridx].rate);
1930 if (ridx != ATHN_RIDX_CCK1 && (flags & IEEE80211_F_SHPREAMBLE))
1931 txtime += 72 + 24;
1932 else
1933 txtime += 144 + 48;
1934 txtime += 10; /* 10us SIFS. */
1935 }
1936 return txtime;
1937 #undef divround
1938 }
1939
1940 PUBLIC void
1941 athn_init_tx_queues(struct athn_softc *sc)
1942 {
1943 int qid;
1944
1945 for (qid = 0; qid < ATHN_QID_COUNT; qid++) {
1946 SIMPLEQ_INIT(&sc->sc_txq[qid].head);
1947 sc->sc_txq[qid].lastds = NULL;
1948 sc->sc_txq[qid].wait = NULL;
1949 sc->sc_txq[qid].queued = 0;
1950
1951 AR_WRITE(sc, AR_DRETRY_LIMIT(qid),
1952 SM(AR_D_RETRY_LIMIT_STA_SH, 32) |
1953 SM(AR_D_RETRY_LIMIT_STA_LG, 32) |
1954 SM(AR_D_RETRY_LIMIT_FR_SH, 10));
1955 AR_WRITE(sc, AR_QMISC(qid),
1956 AR_Q_MISC_DCU_EARLY_TERM_REQ);
1957 AR_WRITE(sc, AR_DMISC(qid),
1958 SM(AR_D_MISC_BKOFF_THRESH, 2) |
1959 AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN);
1960 }
1961
1962 /* Init beacon queue. */
1963 AR_SETBITS(sc, AR_QMISC(ATHN_QID_BEACON),
1964 AR_Q_MISC_FSP_DBA_GATED | AR_Q_MISC_BEACON_USE |
1965 AR_Q_MISC_CBR_INCR_DIS1);
1966 AR_SETBITS(sc, AR_DMISC(ATHN_QID_BEACON),
1967 SM(AR_D_MISC_ARB_LOCKOUT_CNTRL,
1968 AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL) |
1969 AR_D_MISC_BEACON_USE |
1970 AR_D_MISC_POST_FR_BKOFF_DIS);
1971 AR_WRITE(sc, AR_DLCL_IFS(ATHN_QID_BEACON),
1972 SM(AR_D_LCL_IFS_CWMIN, 0) |
1973 SM(AR_D_LCL_IFS_CWMAX, 0) |
1974 SM(AR_D_LCL_IFS_AIFS, 1));
1975
1976 /* Init CAB (Content After Beacon) queue. */
1977 AR_SETBITS(sc, AR_QMISC(ATHN_QID_CAB),
1978 AR_Q_MISC_FSP_DBA_GATED | AR_Q_MISC_CBR_INCR_DIS1 |
1979 AR_Q_MISC_CBR_INCR_DIS0);
1980 AR_SETBITS(sc, AR_DMISC(ATHN_QID_CAB),
1981 SM(AR_D_MISC_ARB_LOCKOUT_CNTRL,
1982 AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL));
1983
1984 /* Init PS-Poll queue. */
1985 AR_SETBITS(sc, AR_QMISC(ATHN_QID_PSPOLL),
1986 AR_Q_MISC_CBR_INCR_DIS1);
1987
1988 /* Init UAPSD queue. */
1989 AR_SETBITS(sc, AR_DMISC(ATHN_QID_UAPSD),
1990 AR_D_MISC_POST_FR_BKOFF_DIS);
1991
1992 if (AR_SREV_9380_10_OR_LATER(sc)) {
1993 /* Enable MAC descriptor CRC check. */
1994 AR_WRITE(sc, AR_Q_DESC_CRCCHK, AR_Q_DESC_CRCCHK_EN);
1995 }
1996 /* Enable DESC interrupts for all Tx queues. */
1997 AR_WRITE(sc, AR_IMR_S0, 0x00ff0000);
1998 /* Enable EOL interrupts for all Tx queues except UAPSD. */
1999 AR_WRITE(sc, AR_IMR_S1, 0x00df0000);
2000 AR_WRITE_BARRIER(sc);
2001 }
2002
2003 PUBLIC void
2004 athn_set_sta_timers(struct athn_softc *sc)
2005 {
2006 struct ieee80211com *ic = &sc->sc_ic;
2007 uint32_t tsfhi, tsflo, tsftu, reg;
2008 uint32_t intval, next_tbtt, next_dtim;
2009 int dtim_period, rem_dtim_count;
2010
2011 tsfhi = AR_READ(sc, AR_TSF_U32);
2012 tsflo = AR_READ(sc, AR_TSF_L32);
2013 tsftu = AR_TSF_TO_TU(tsfhi, tsflo) + AR_FUDGE;
2014
2015 /* Beacon interval in TU. */
2016 intval = ic->ic_bss->ni_intval;
2017
2018 next_tbtt = roundup(tsftu, intval);
2019 #ifdef notyet
2020 dtim_period = ic->ic_dtim_period;
2021 if (dtim_period <= 0)
2022 #endif
2023 dtim_period = 1; /* Assume all TIMs are DTIMs. */
2024
2025 #ifdef notyet
2026 int dtim_count = ic->ic_dtim_count;
2027 if (dtim_count >= dtim_period) /* Should not happen. */
2028 dtim_count = 0; /* Assume last TIM was a DTIM. */
2029 #endif
2030
2031 /* Compute number of remaining TIMs until next DTIM. */
2032 rem_dtim_count = 0; /* XXX */
2033 next_dtim = next_tbtt + rem_dtim_count * intval;
2034
2035 AR_WRITE(sc, AR_NEXT_TBTT_TIMER, next_tbtt * IEEE80211_DUR_TU);
2036 AR_WRITE(sc, AR_BEACON_PERIOD, intval * IEEE80211_DUR_TU);
2037 AR_WRITE(sc, AR_DMA_BEACON_PERIOD, intval * IEEE80211_DUR_TU);
2038
2039 /*
2040 * Set the number of consecutive beacons to miss before raising
2041 * a BMISS interrupt to 10.
2042 */
2043 reg = AR_READ(sc, AR_RSSI_THR);
2044 reg = RW(reg, AR_RSSI_THR_BM_THR, 10);
2045 AR_WRITE(sc, AR_RSSI_THR, reg);
2046
2047 AR_WRITE(sc, AR_NEXT_DTIM,
2048 (next_dtim - AR_SLEEP_SLOP) * IEEE80211_DUR_TU);
2049 AR_WRITE(sc, AR_NEXT_TIM,
2050 (next_tbtt - AR_SLEEP_SLOP) * IEEE80211_DUR_TU);
2051
2052 /* CAB timeout is in 1/8 TU. */
2053 AR_WRITE(sc, AR_SLEEP1,
2054 SM(AR_SLEEP1_CAB_TIMEOUT, AR_CAB_TIMEOUT_VAL * 8) |
2055 AR_SLEEP1_ASSUME_DTIM);
2056 AR_WRITE(sc, AR_SLEEP2,
2057 SM(AR_SLEEP2_BEACON_TIMEOUT, AR_MIN_BEACON_TIMEOUT_VAL));
2058
2059 AR_WRITE(sc, AR_TIM_PERIOD, intval * IEEE80211_DUR_TU);
2060 AR_WRITE(sc, AR_DTIM_PERIOD, dtim_period * intval * IEEE80211_DUR_TU);
2061
2062 AR_SETBITS(sc, AR_TIMER_MODE,
2063 AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN | AR_DTIM_TIMER_EN);
2064
2065 /* Set TSF out-of-range threshold (fixed at 16k us). */
2066 AR_WRITE(sc, AR_TSFOOR_THRESHOLD, 0x4240);
2067
2068 AR_WRITE_BARRIER(sc);
2069 }
2070
2071 #ifndef IEEE80211_STA_ONLY
2072 PUBLIC void
2073 athn_set_hostap_timers(struct athn_softc *sc)
2074 {
2075 struct ieee80211com *ic = &sc->sc_ic;
2076 uint32_t intval, next_tbtt;
2077
2078 /* Beacon interval in TU. */
2079 intval = ic->ic_bss->ni_intval;
2080 next_tbtt = intval;
2081
2082 AR_WRITE(sc, AR_NEXT_TBTT_TIMER, next_tbtt * IEEE80211_DUR_TU);
2083 AR_WRITE(sc, AR_NEXT_DMA_BEACON_ALERT,
2084 (next_tbtt - AR_BEACON_DMA_DELAY) * IEEE80211_DUR_TU);
2085 AR_WRITE(sc, AR_NEXT_CFP,
2086 (next_tbtt - AR_SWBA_DELAY) * IEEE80211_DUR_TU);
2087
2088 AR_WRITE(sc, AR_BEACON_PERIOD, intval * IEEE80211_DUR_TU);
2089 AR_WRITE(sc, AR_DMA_BEACON_PERIOD, intval * IEEE80211_DUR_TU);
2090 AR_WRITE(sc, AR_SWBA_PERIOD, intval * IEEE80211_DUR_TU);
2091 AR_WRITE(sc, AR_NDP_PERIOD, intval * IEEE80211_DUR_TU);
2092
2093 AR_WRITE(sc, AR_TIMER_MODE,
2094 AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN);
2095
2096 AR_WRITE_BARRIER(sc);
2097 }
2098 #endif
2099
2100 PUBLIC void
2101 athn_set_opmode(struct athn_softc *sc)
2102 {
2103 uint32_t reg;
2104
2105 switch (sc->sc_ic.ic_opmode) {
2106 #ifndef IEEE80211_STA_ONLY
2107 case IEEE80211_M_HOSTAP:
2108 reg = AR_READ(sc, AR_STA_ID1);
2109 reg &= ~AR_STA_ID1_ADHOC;
2110 reg |= AR_STA_ID1_STA_AP | AR_STA_ID1_KSRCH_MODE;
2111 AR_WRITE(sc, AR_STA_ID1, reg);
2112
2113 AR_CLRBITS(sc, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
2114 break;
2115 case IEEE80211_M_IBSS:
2116 case IEEE80211_M_AHDEMO:
2117 reg = AR_READ(sc, AR_STA_ID1);
2118 reg &= ~AR_STA_ID1_STA_AP;
2119 reg |= AR_STA_ID1_ADHOC | AR_STA_ID1_KSRCH_MODE;
2120 AR_WRITE(sc, AR_STA_ID1, reg);
2121
2122 AR_SETBITS(sc, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
2123 break;
2124 #endif
2125 default:
2126 reg = AR_READ(sc, AR_STA_ID1);
2127 reg &= ~(AR_STA_ID1_ADHOC | AR_STA_ID1_STA_AP);
2128 reg |= AR_STA_ID1_KSRCH_MODE;
2129 AR_WRITE(sc, AR_STA_ID1, reg);
2130 break;
2131 }
2132 AR_WRITE_BARRIER(sc);
2133 }
2134
2135 PUBLIC void
2136 athn_set_bss(struct athn_softc *sc, struct ieee80211_node *ni)
2137 {
2138 const uint8_t *bssid = ni->ni_bssid;
2139
2140 AR_WRITE(sc, AR_BSS_ID0, LE_READ_4(&bssid[0]));
2141 AR_WRITE(sc, AR_BSS_ID1, LE_READ_2(&bssid[4]) |
2142 SM(AR_BSS_ID1_AID, IEEE80211_AID(ni->ni_associd)));
2143 AR_WRITE_BARRIER(sc);
2144 }
2145
2146 Static void
2147 athn_enable_interrupts(struct athn_softc *sc)
2148 {
2149 uint32_t mask2;
2150
2151 athn_disable_interrupts(sc); /* XXX */
2152
2153 AR_WRITE(sc, AR_IMR, sc->sc_imask);
2154
2155 mask2 = AR_READ(sc, AR_IMR_S2);
2156 mask2 &= ~(AR_IMR_S2_TIM | AR_IMR_S2_DTIM | AR_IMR_S2_DTIMSYNC |
2157 AR_IMR_S2_CABEND | AR_IMR_S2_CABTO | AR_IMR_S2_TSFOOR);
2158 mask2 |= AR_IMR_S2_GTT | AR_IMR_S2_CST;
2159 AR_WRITE(sc, AR_IMR_S2, mask2);
2160
2161 AR_CLRBITS(sc, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
2162
2163 AR_WRITE(sc, AR_IER, AR_IER_ENABLE);
2164
2165 AR_WRITE(sc, AR_INTR_ASYNC_ENABLE, AR_INTR_MAC_IRQ);
2166 AR_WRITE(sc, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
2167
2168 AR_WRITE(sc, AR_INTR_SYNC_ENABLE, sc->sc_isync);
2169 AR_WRITE(sc, AR_INTR_SYNC_MASK, sc->sc_isync);
2170 AR_WRITE_BARRIER(sc);
2171 }
2172
2173 Static void
2174 athn_disable_interrupts(struct athn_softc *sc)
2175 {
2176
2177 AR_WRITE(sc, AR_IER, 0);
2178 (void)AR_READ(sc, AR_IER);
2179
2180 AR_WRITE(sc, AR_INTR_ASYNC_ENABLE, 0);
2181 (void)AR_READ(sc, AR_INTR_ASYNC_ENABLE);
2182
2183 AR_WRITE(sc, AR_INTR_SYNC_ENABLE, 0);
2184 (void)AR_READ(sc, AR_INTR_SYNC_ENABLE);
2185
2186 AR_WRITE(sc, AR_IMR, 0);
2187
2188 AR_CLRBITS(sc, AR_IMR_S2, AR_IMR_S2_TIM | AR_IMR_S2_DTIM |
2189 AR_IMR_S2_DTIMSYNC | AR_IMR_S2_CABEND | AR_IMR_S2_CABTO |
2190 AR_IMR_S2_TSFOOR | AR_IMR_S2_GTT | AR_IMR_S2_CST);
2191
2192 AR_CLRBITS(sc, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
2193 AR_WRITE_BARRIER(sc);
2194 }
2195
2196 Static void
2197 athn_init_qos(struct athn_softc *sc)
2198 {
2199
2200 /* Initialize QoS settings. */
2201 AR_WRITE(sc, AR_MIC_QOS_CONTROL, 0x100aa);
2202 AR_WRITE(sc, AR_MIC_QOS_SELECT, 0x3210);
2203 AR_WRITE(sc, AR_QOS_NO_ACK,
2204 SM(AR_QOS_NO_ACK_TWO_BIT, 2) |
2205 SM(AR_QOS_NO_ACK_BIT_OFF, 5) |
2206 SM(AR_QOS_NO_ACK_BYTE_OFF, 0));
2207 AR_WRITE(sc, AR_TXOP_X, AR_TXOP_X_VAL);
2208 /* Initialize TXOP for all TIDs. */
2209 AR_WRITE(sc, AR_TXOP_0_3, 0xffffffff);
2210 AR_WRITE(sc, AR_TXOP_4_7, 0xffffffff);
2211 AR_WRITE(sc, AR_TXOP_8_11, 0xffffffff);
2212 AR_WRITE(sc, AR_TXOP_12_15, 0xffffffff);
2213 AR_WRITE_BARRIER(sc);
2214 }
2215
2216 PUBLIC int
2217 athn_hw_reset(struct athn_softc *sc, struct ieee80211_channel *curchan,
2218 struct ieee80211_channel *extchan, int init)
2219 {
2220 struct ieee80211com *ic = &sc->sc_ic;
2221 struct athn_ops *ops = &sc->sc_ops;
2222 uint32_t reg, def_ant, sta_id1, cfg_led, tsflo, tsfhi;
2223 int i, error;
2224
2225 /* XXX not if already awake */
2226 if ((error = athn_set_power_awake(sc)) != 0) {
2227 aprint_error_dev(sc->sc_dev, "could not wakeup chip\n");
2228 return error;
2229 }
2230
2231 /* Preserve the antenna on a channel switch. */
2232 if ((def_ant = AR_READ(sc, AR_DEF_ANTENNA)) == 0)
2233 def_ant = 1;
2234 /* Preserve other registers. */
2235 sta_id1 = AR_READ(sc, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
2236 cfg_led = AR_READ(sc, AR_CFG_LED) & (AR_CFG_LED_ASSOC_CTL_M |
2237 AR_CFG_LED_MODE_SEL_M | AR_CFG_LED_BLINK_THRESH_SEL_M |
2238 AR_CFG_LED_BLINK_SLOW);
2239
2240 /* Mark PHY as inactive. */
2241 ops->disable_phy(sc);
2242
2243 if (init && AR_SREV_9271(sc)) {
2244 AR_WRITE(sc, AR9271_RESET_POWER_DOWN_CONTROL,
2245 AR9271_RADIO_RF_RST);
2246 DELAY(50);
2247 }
2248 if (AR_SREV_9280(sc) && (sc->sc_flags & ATHN_FLAG_OLPC)) {
2249 /* Save TSF before it gets cleared. */
2250 tsfhi = AR_READ(sc, AR_TSF_U32);
2251 tsflo = AR_READ(sc, AR_TSF_L32);
2252
2253 /* NB: RTC reset clears TSF. */
2254 error = athn_reset_power_on(sc);
2255 }
2256 else {
2257 tsfhi = tsflo = 0; /* XXX: gcc */
2258 error = athn_reset(sc, 0);
2259 }
2260 if (error != 0) {
2261 aprint_error_dev(sc->sc_dev,
2262 "could not reset chip (error=%d)\n", error);
2263 return error;
2264 }
2265
2266 /* XXX not if already awake */
2267 if ((error = athn_set_power_awake(sc)) != 0) {
2268 aprint_error_dev(sc->sc_dev, "could not wakeup chip\n");
2269 return error;
2270 }
2271
2272 athn_init_pll(sc, curchan);
2273 ops->set_rf_mode(sc, curchan);
2274
2275 if (sc->sc_flags & ATHN_FLAG_RFSILENT) {
2276 /* Check that the radio is not disabled by hardware switch. */
2277 reg = ops->gpio_read(sc, sc->sc_rfsilent_pin);
2278 if (sc->sc_flags & ATHN_FLAG_RFSILENT_REVERSED)
2279 reg = !reg;
2280 if (!reg) {
2281 aprint_error_dev(sc->sc_dev,
2282 "radio is disabled by hardware switch\n");
2283 return EPERM;
2284 }
2285 }
2286 if (init && AR_SREV_9271(sc)) {
2287 AR_WRITE(sc, AR9271_RESET_POWER_DOWN_CONTROL,
2288 AR9271_GATE_MAC_CTL);
2289 DELAY(50);
2290 }
2291 if (AR_SREV_9280(sc) && (sc->sc_flags & ATHN_FLAG_OLPC)) {
2292 /* Restore TSF if it got cleared. */
2293 AR_WRITE(sc, AR_TSF_L32, tsflo);
2294 AR_WRITE(sc, AR_TSF_U32, tsfhi);
2295 }
2296
2297 if (AR_SREV_9280_10_OR_LATER(sc))
2298 AR_SETBITS(sc, sc->sc_gpio_input_en_off, AR_GPIO_JTAG_DISABLE);
2299
2300 if (AR_SREV_9287_13_OR_LATER(sc) && !AR_SREV_9380_10_OR_LATER(sc))
2301 ar9287_1_3_enable_async_fifo(sc);
2302
2303 /* Write init values to hardware. */
2304 ops->hw_init(sc, curchan, extchan);
2305
2306 /*
2307 * Only >=AR9280 2.0 parts are capable of encrypting unicast
2308 * management frames using CCMP.
2309 */
2310 if (AR_SREV_9280_20_OR_LATER(sc)) {
2311 reg = AR_READ(sc, AR_AES_MUTE_MASK1);
2312 /* Do not mask the subtype field in management frames. */
2313 reg = RW(reg, AR_AES_MUTE_MASK1_FC0_MGMT, 0xff);
2314 reg = RW(reg, AR_AES_MUTE_MASK1_FC1_MGMT,
2315 (uint32_t)~(IEEE80211_FC1_RETRY | IEEE80211_FC1_PWR_MGT |
2316 IEEE80211_FC1_MORE_DATA));
2317 AR_WRITE(sc, AR_AES_MUTE_MASK1, reg);
2318 }
2319 else if (AR_SREV_9160_10_OR_LATER(sc)) {
2320 /* Disable hardware crypto for management frames. */
2321 AR_CLRBITS(sc, AR_PCU_MISC_MODE2,
2322 AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
2323 AR_SETBITS(sc, AR_PCU_MISC_MODE2,
2324 AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
2325 }
2326
2327 if (ic->ic_curmode != IEEE80211_MODE_11B)
2328 ops->set_delta_slope(sc, curchan, extchan);
2329
2330 ops->spur_mitigate(sc, curchan, extchan);
2331 ops->init_from_rom(sc, curchan, extchan);
2332
2333 /* XXX */
2334 AR_WRITE(sc, AR_STA_ID0, LE_READ_4(&ic->ic_myaddr[0]));
2335 AR_WRITE(sc, AR_STA_ID1, LE_READ_2(&ic->ic_myaddr[4]) |
2336 sta_id1 | AR_STA_ID1_RTS_USE_DEF | AR_STA_ID1_CRPT_MIC_ENABLE);
2337
2338 athn_set_opmode(sc);
2339
2340 AR_WRITE(sc, AR_BSSMSKL, 0xffffffff);
2341 AR_WRITE(sc, AR_BSSMSKU, 0xffff);
2342
2343 /* Restore previous antenna. */
2344 AR_WRITE(sc, AR_DEF_ANTENNA, def_ant);
2345
2346 AR_WRITE(sc, AR_BSS_ID0, 0);
2347 AR_WRITE(sc, AR_BSS_ID1, 0);
2348
2349 AR_WRITE(sc, AR_ISR, 0xffffffff);
2350
2351 AR_WRITE(sc, AR_RSSI_THR, SM(AR_RSSI_THR_BM_THR, 7));
2352
2353 if ((error = ops->set_synth(sc, curchan, extchan)) != 0) {
2354 aprint_error_dev(sc->sc_dev, "could not set channel\n");
2355 return error;
2356 }
2357 sc->sc_curchan = curchan;
2358 sc->sc_curchanext = extchan;
2359
2360 for (i = 0; i < AR_NUM_DCU; i++)
2361 AR_WRITE(sc, AR_DQCUMASK(i), 1 << i);
2362
2363 athn_init_tx_queues(sc);
2364
2365 /* Initialize interrupt mask. */
2366 sc->sc_imask =
2367 AR_IMR_TXDESC | AR_IMR_TXEOL |
2368 AR_IMR_RXERR | AR_IMR_RXEOL | AR_IMR_RXORN |
2369 AR_IMR_RXMINTR | AR_IMR_RXINTM |
2370 AR_IMR_GENTMR | AR_IMR_BCNMISC;
2371 if (AR_SREV_9380_10_OR_LATER(sc))
2372 sc->sc_imask |= AR_IMR_RXERR | AR_IMR_HP_RXOK;
2373 #ifndef IEEE80211_STA_ONLY
2374 if (0 && ic->ic_opmode == IEEE80211_M_HOSTAP)
2375 sc->sc_imask |= AR_IMR_MIB;
2376 #endif
2377 AR_WRITE(sc, AR_IMR, sc->sc_imask);
2378 AR_SETBITS(sc, AR_IMR_S2, AR_IMR_S2_GTT);
2379 AR_WRITE(sc, AR_INTR_SYNC_CAUSE, 0xffffffff);
2380 sc->sc_isync = AR_INTR_SYNC_DEFAULT;
2381 if (sc->sc_flags & ATHN_FLAG_RFSILENT)
2382 sc->sc_isync |= AR_INTR_SYNC_GPIO_PIN(sc->sc_rfsilent_pin);
2383 AR_WRITE(sc, AR_INTR_SYNC_ENABLE, sc->sc_isync);
2384 AR_WRITE(sc, AR_INTR_SYNC_MASK, 0);
2385 if (AR_SREV_9380_10_OR_LATER(sc)) {
2386 AR_WRITE(sc, AR_INTR_PRIO_ASYNC_ENABLE, 0);
2387 AR_WRITE(sc, AR_INTR_PRIO_ASYNC_MASK, 0);
2388 AR_WRITE(sc, AR_INTR_PRIO_SYNC_ENABLE, 0);
2389 AR_WRITE(sc, AR_INTR_PRIO_SYNC_MASK, 0);
2390 }
2391
2392 athn_init_qos(sc);
2393
2394 AR_SETBITS(sc, AR_PCU_MISC, AR_PCU_MIC_NEW_LOC_ENA);
2395
2396 if (AR_SREV_9287_13_OR_LATER(sc) && !AR_SREV_9380_10_OR_LATER(sc))
2397 ar9287_1_3_setup_async_fifo(sc);
2398
2399 /* Disable sequence number generation in hardware. */
2400 AR_SETBITS(sc, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
2401
2402 athn_init_dma(sc);
2403
2404 /* Program observation bus to see MAC interrupts. */
2405 AR_WRITE(sc, sc->sc_obs_off, 8);
2406
2407 /* Setup Rx interrupt mitigation. */
2408 AR_WRITE(sc, AR_RIMT, SM(AR_RIMT_FIRST, 2000) | SM(AR_RIMT_LAST, 500));
2409
2410 ops->init_baseband(sc);
2411
2412 if ((error = athn_init_calib(sc, curchan, extchan)) != 0) {
2413 aprint_error_dev(sc->sc_dev,
2414 "could not initialize calibration\n");
2415 return error;
2416 }
2417
2418 ops->set_rxchains(sc);
2419
2420 AR_WRITE(sc, AR_CFG_LED, cfg_led | AR_CFG_SCLK_32KHZ);
2421
2422 if (sc->sc_flags & ATHN_FLAG_USB) {
2423 if (AR_SREV_9271(sc))
2424 AR_WRITE(sc, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
2425 else
2426 AR_WRITE(sc, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
2427 }
2428 #if BYTE_ORDER == BIG_ENDIAN
2429 else {
2430 /* Default is LE, turn on swapping for BE. */
2431 AR_WRITE(sc, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
2432 }
2433 #endif
2434 AR_WRITE_BARRIER(sc);
2435
2436 return 0;
2437 }
2438
2439 Static struct ieee80211_node *
2440 athn_node_alloc(struct ieee80211_node_table *ntp)
2441 {
2442
2443 return malloc(sizeof(struct athn_node), M_DEVBUF,
2444 M_NOWAIT | M_ZERO);
2445 }
2446
2447 Static void
2448 athn_newassoc(struct ieee80211_node *ni, int isnew)
2449 {
2450 struct ieee80211com *ic = ni->ni_ic;
2451 struct athn_softc *sc = ic->ic_ifp->if_softc;
2452 struct athn_node *an = (void *)ni;
2453 struct ieee80211_rateset *rs = &ni->ni_rates;
2454 uint8_t rate;
2455 int ridx, i, j;
2456
2457 ieee80211_amrr_node_init(&sc->sc_amrr, &an->amn);
2458 /* Start at lowest available bit-rate, AMRR will raise. */
2459 ni->ni_txrate = 0;
2460
2461 for (i = 0; i < rs->rs_nrates; i++) {
2462 rate = rs->rs_rates[i] & IEEE80211_RATE_VAL;
2463
2464 /* Map 802.11 rate to HW rate index. */
2465 for (ridx = 0; ridx <= ATHN_RIDX_MAX; ridx++)
2466 if (athn_rates[ridx].rate == rate)
2467 break;
2468 an->ridx[i] = ridx;
2469 DPRINTFN(DBG_STM, sc, "rate %d index %d\n", rate, ridx);
2470
2471 /* Compute fallback rate for retries. */
2472 an->fallback[i] = i;
2473 for (j = i - 1; j >= 0; j--) {
2474 if (athn_rates[an->ridx[j]].phy ==
2475 athn_rates[an->ridx[i]].phy) {
2476 an->fallback[i] = j;
2477 break;
2478 }
2479 }
2480 DPRINTFN(DBG_STM, sc, "%d fallbacks to %d\n",
2481 i, an->fallback[i]);
2482 }
2483 }
2484
2485 Static int
2486 athn_media_change(struct ifnet *ifp)
2487 {
2488 struct athn_softc *sc = ifp->if_softc;
2489 struct ieee80211com *ic = &sc->sc_ic;
2490 uint8_t rate, ridx;
2491 int error;
2492
2493 error = ieee80211_media_change(ifp);
2494 if (error != ENETRESET)
2495 return error;
2496
2497 if (ic->ic_fixed_rate != -1) {
2498 rate = ic->ic_sup_rates[ic->ic_curmode].
2499 rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
2500 /* Map 802.11 rate to HW rate index. */
2501 for (ridx = 0; ridx <= ATHN_RIDX_MAX; ridx++)
2502 if (athn_rates[ridx].rate == rate)
2503 break;
2504 sc->sc_fixed_ridx = ridx;
2505 }
2506 if (IS_UP_AND_RUNNING(ifp)) {
2507 athn_stop(ifp, 0);
2508 error = athn_init(ifp);
2509 }
2510 return error;
2511 }
2512
2513 Static void
2514 athn_next_scan(void *arg)
2515 {
2516 struct athn_softc *sc = arg;
2517 struct ieee80211com *ic = &sc->sc_ic;
2518 int s;
2519
2520 s = splnet();
2521 if (ic->ic_state == IEEE80211_S_SCAN)
2522 ieee80211_next_scan(ic);
2523 splx(s);
2524 }
2525
2526 Static int
2527 athn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2528 {
2529 struct ifnet *ifp = ic->ic_ifp;
2530 struct athn_softc *sc = ifp->if_softc;
2531 uint32_t reg;
2532 int error;
2533
2534 callout_stop(&sc->sc_calib_to);
2535
2536 switch (nstate) {
2537 case IEEE80211_S_INIT:
2538 athn_set_led(sc, 0);
2539 break;
2540 case IEEE80211_S_SCAN:
2541 /* Make the LED blink while scanning. */
2542 athn_set_led(sc, !sc->sc_led_state);
2543 error = athn_switch_chan(sc, ic->ic_curchan, NULL);
2544 if (error != 0)
2545 return error;
2546 callout_schedule(&sc->sc_scan_to, hz / 5);
2547 break;
2548 case IEEE80211_S_AUTH:
2549 athn_set_led(sc, 0);
2550 error = athn_switch_chan(sc, ic->ic_curchan, NULL);
2551 if (error != 0)
2552 return error;
2553 break;
2554 case IEEE80211_S_ASSOC:
2555 break;
2556 case IEEE80211_S_RUN:
2557 athn_set_led(sc, 1);
2558
2559 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2560 break;
2561
2562 /* Fake a join to initialize the Tx rate. */
2563 athn_newassoc(ic->ic_bss, 1);
2564
2565 athn_set_bss(sc, ic->ic_bss);
2566 athn_disable_interrupts(sc);
2567 #ifndef IEEE80211_STA_ONLY
2568 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2569 athn_set_hostap_timers(sc);
2570 /* Enable software beacon alert interrupts. */
2571 sc->sc_imask |= AR_IMR_SWBA;
2572 }
2573 else
2574 #endif
2575 {
2576 athn_set_sta_timers(sc);
2577 /* Enable beacon miss interrupts. */
2578 sc->sc_imask |= AR_IMR_BMISS;
2579
2580 /* Stop receiving beacons from other BSS. */
2581 reg = AR_READ(sc, AR_RX_FILTER);
2582 reg = (reg & ~AR_RX_FILTER_BEACON) |
2583 AR_RX_FILTER_MYBEACON;
2584 AR_WRITE(sc, AR_RX_FILTER, reg);
2585 AR_WRITE_BARRIER(sc);
2586 }
2587 athn_enable_interrupts(sc);
2588
2589 if (sc->sc_sup_calib_mask != 0) {
2590 memset(&sc->sc_calib, 0, sizeof(sc->sc_calib));
2591 sc->sc_cur_calib_mask = sc->sc_sup_calib_mask;
2592 /* ops->do_calib(sc); */
2593 }
2594 /* XXX Start ANI. */
2595
2596 callout_schedule(&sc->sc_calib_to, hz / 2);
2597 break;
2598 }
2599
2600 return sc->sc_newstate(ic, nstate, arg);
2601 }
2602
2603 #ifdef notyet_edca
2604 PUBLIC void
2605 athn_updateedca(struct ieee80211com *ic)
2606 {
2607 #define ATHN_EXP2(x) ((1 << (x)) - 1) /* CWmin = 2^ECWmin - 1 */
2608 struct athn_softc *sc = ic->ic_ifp->if_softc;
2609 const struct ieee80211_edca_ac_params *ac;
2610 int aci, qid;
2611
2612 for (aci = 0; aci < EDCA_NUM_AC; aci++) {
2613 ac = &ic->ic_edca_ac[aci];
2614 qid = athn_ac2qid[aci];
2615
2616 AR_WRITE(sc, AR_DLCL_IFS(qid),
2617 SM(AR_D_LCL_IFS_CWMIN, ATHN_EXP2(ac->ac_ecwmin)) |
2618 SM(AR_D_LCL_IFS_CWMAX, ATHN_EXP2(ac->ac_ecwmax)) |
2619 SM(AR_D_LCL_IFS_AIFS, ac->ac_aifsn));
2620 if (ac->ac_txoplimit != 0) {
2621 AR_WRITE(sc, AR_DCHNTIME(qid),
2622 SM(AR_D_CHNTIME_DUR,
2623 IEEE80211_TXOP_TO_US(ac->ac_txoplimit)) |
2624 AR_D_CHNTIME_EN);
2625 }
2626 else
2627 AR_WRITE(sc, AR_DCHNTIME(qid), 0);
2628 }
2629 AR_WRITE_BARRIER(sc);
2630 #undef ATHN_EXP2
2631 }
2632 #endif /* notyet_edca */
2633
2634 Static int
2635 athn_clock_rate(struct athn_softc *sc)
2636 {
2637 struct ieee80211com *ic = &sc->sc_ic;
2638 int clockrate; /* MHz. */
2639
2640 if (ic->ic_curmode == IEEE80211_MODE_11A) {
2641 if (sc->sc_flags & ATHN_FLAG_FAST_PLL_CLOCK)
2642 clockrate = AR_CLOCK_RATE_FAST_5GHZ_OFDM;
2643 else
2644 clockrate = AR_CLOCK_RATE_5GHZ_OFDM;
2645 }
2646 else if (ic->ic_curmode == IEEE80211_MODE_11B) {
2647 clockrate = AR_CLOCK_RATE_CCK;
2648 }
2649 else
2650 clockrate = AR_CLOCK_RATE_2GHZ_OFDM;
2651 #ifndef IEEE80211_NO_HT
2652 if (sc->sc_curchanext != NULL)
2653 clockrate *= 2;
2654 #endif
2655 return clockrate;
2656 }
2657
2658 PUBLIC void
2659 athn_updateslot(struct ifnet *ifp)
2660 {
2661 struct athn_softc *sc = ifp->if_softc;
2662 struct ieee80211com *ic = &sc->sc_ic;
2663 int slot;
2664
2665 slot = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
2666 AR_WRITE(sc, AR_D_GBL_IFS_SLOT, slot * athn_clock_rate(sc));
2667 AR_WRITE_BARRIER(sc);
2668 }
2669
2670 Static void
2671 athn_start(struct ifnet *ifp)
2672 {
2673 struct athn_softc *sc = ifp->if_softc;
2674 struct ieee80211com *ic = &sc->sc_ic;
2675 struct ether_header *eh;
2676 struct ieee80211_node *ni;
2677 struct mbuf *m;
2678
2679 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING
2680 || !device_is_active(sc->sc_dev))
2681 return;
2682
2683 for (;;) {
2684 if (SIMPLEQ_EMPTY(&sc->sc_txbufs)) {
2685 ifp->if_flags |= IFF_OACTIVE;
2686 break;
2687 }
2688 /* Send pending management frames first. */
2689 IF_DEQUEUE(&ic->ic_mgtq, m);
2690 if (m != NULL) {
2691 ni = M_GETCTX(m, struct ieee80211_node *);
2692 goto sendit;
2693 }
2694 if (ic->ic_state != IEEE80211_S_RUN)
2695 break;
2696
2697 /* Encapsulate and send data frames. */
2698 IFQ_DEQUEUE(&ifp->if_snd, m);
2699 if (m == NULL)
2700 break;
2701
2702 if (m->m_len < (int)sizeof(*eh) &&
2703 (m = m_pullup(m, sizeof(*eh))) == NULL) {
2704 ifp->if_oerrors++;
2705 continue;
2706 }
2707 eh = mtod(m, struct ether_header *);
2708 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2709 if (ni == NULL) {
2710 m_freem(m);
2711 ifp->if_oerrors++;
2712 continue;
2713 }
2714
2715 bpf_mtap(ifp, m, BPF_D_OUT);
2716
2717 if ((m = ieee80211_encap(ic, m, ni)) == NULL)
2718 continue;
2719 sendit:
2720 bpf_mtap3(ic->ic_rawbpf, m, BPF_D_OUT);
2721
2722 if (sc->sc_ops.tx(sc, m, ni, 0) != 0) {
2723 ieee80211_free_node(ni);
2724 ifp->if_oerrors++;
2725 continue;
2726 }
2727
2728 sc->sc_tx_timer = 5;
2729 ifp->if_timer = 1;
2730 }
2731 }
2732
2733 Static void
2734 athn_watchdog(struct ifnet *ifp)
2735 {
2736 struct athn_softc *sc = ifp->if_softc;
2737
2738 ifp->if_timer = 0;
2739
2740 if (sc->sc_tx_timer > 0) {
2741 if (--sc->sc_tx_timer == 0) {
2742 aprint_error_dev(sc->sc_dev, "device timeout\n");
2743 /* see athn_init, no need to call athn_stop here */
2744 /* athn_stop(ifp, 0); */
2745 (void)athn_init(ifp);
2746 ifp->if_oerrors++;
2747 return;
2748 }
2749 ifp->if_timer = 1;
2750 }
2751 ieee80211_watchdog(&sc->sc_ic);
2752 }
2753
2754 #ifdef notyet
2755 Static void
2756 athn_set_multi(struct athn_softc *sc)
2757 {
2758 struct arpcom *ac = &sc->sc_ic.ic_ac;
2759 struct ifnet *ifp = &ac->ac_if;
2760 struct ether_multi *enm;
2761 struct ether_multistep step;
2762 const uint8_t *addr;
2763 uint32_t val, lo, hi;
2764 uint8_t bit;
2765
2766 if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
2767 lo = hi = 0xffffffff;
2768 goto done;
2769 }
2770 lo = hi = 0;
2771 ETHER_FIRST_MULTI(step, ac, enm);
2772 while (enm != NULL) {
2773 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, 6) != 0) {
2774 ifp->if_flags |= IFF_ALLMULTI;
2775 lo = hi = 0xffffffff;
2776 goto done;
2777 }
2778 addr = enm->enm_addrlo;
2779 /* Calculate the XOR value of all eight 6-bit words. */
2780 val = addr[0] | addr[1] << 8 | addr[2] << 16;
2781 bit = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2782 val = addr[3] | addr[4] << 8 | addr[5] << 16;
2783 bit ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2784 bit &= 0x3f;
2785 if (bit < 32)
2786 lo |= 1 << bit;
2787 else
2788 hi |= 1 << (bit - 32);
2789 ETHER_NEXT_MULTI(step, enm);
2790 }
2791 done:
2792 AR_WRITE(sc, AR_MCAST_FIL0, lo);
2793 AR_WRITE(sc, AR_MCAST_FIL1, hi);
2794 AR_WRITE_BARRIER(sc);
2795 }
2796 #endif /* notyet */
2797
2798 Static int
2799 athn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2800 {
2801 struct athn_softc *sc = ifp->if_softc;
2802 struct ieee80211com *ic = &sc->sc_ic;
2803 int s, error = 0;
2804
2805 s = splnet();
2806
2807 switch (cmd) {
2808 case SIOCSIFFLAGS:
2809 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2810 break;
2811
2812 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
2813 case IFF_UP | IFF_RUNNING:
2814 #ifdef notyet
2815 if (((ifp->if_flags ^ sc->sc_if_flags) &
2816 (IFF_ALLMULTI | IFF_PROMISC)) != 0)
2817 /* XXX: setup multi */
2818 #endif
2819 break;
2820 case IFF_UP:
2821 athn_init(ifp);
2822 break;
2823
2824 case IFF_RUNNING:
2825 athn_stop(ifp, 1);
2826 break;
2827 case 0:
2828 default:
2829 break;
2830 }
2831 sc->sc_if_flags = ifp->if_flags;
2832 break;
2833
2834 case SIOCADDMULTI:
2835 case SIOCDELMULTI:
2836 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2837 /* setup multicast filter, etc */
2838 #ifdef notyet
2839 athn_set_multi(sc);
2840 #endif
2841 error = 0;
2842 }
2843 break;
2844
2845 case SIOCS80211CHANNEL:
2846 error = ieee80211_ioctl(ic, cmd, data);
2847 if (error == ENETRESET &&
2848 ic->ic_opmode == IEEE80211_M_MONITOR) {
2849 if (IS_UP_AND_RUNNING(ifp))
2850 athn_switch_chan(sc, ic->ic_curchan, NULL);
2851 error = 0;
2852 }
2853 break;
2854
2855 default:
2856 error = ieee80211_ioctl(ic, cmd, data);
2857 }
2858
2859 if (error == ENETRESET) {
2860 error = 0;
2861 if (IS_UP_AND_RUNNING(ifp) &&
2862 ic->ic_roaming != IEEE80211_ROAMING_MANUAL) {
2863 athn_stop(ifp, 0);
2864 error = athn_init(ifp);
2865 }
2866 }
2867
2868 splx(s);
2869 return error;
2870 }
2871
2872 Static int
2873 athn_init(struct ifnet *ifp)
2874 {
2875 struct athn_softc *sc = ifp->if_softc;
2876 struct athn_ops *ops = &sc->sc_ops;
2877 struct ieee80211com *ic = &sc->sc_ic;
2878 struct ieee80211_channel *curchan, *extchan;
2879 size_t i;
2880 int error;
2881
2882 KASSERT(!cpu_intr_p());
2883
2884 if (device_is_active(sc->sc_dev)) {
2885 athn_stop(ifp, 0); /* see athn_watchdog() */
2886 } else {
2887 short flags = ifp->if_flags;
2888 ifp->if_flags &= ~IFF_UP;
2889 /* avoid recursion in athn_resume */
2890 if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
2891 !device_is_active(sc->sc_dev)) {
2892 printf("%s: failed to power up device\n",
2893 device_xname(sc->sc_dev));
2894 return 0;
2895 }
2896 ifp->if_flags = flags;
2897 }
2898
2899 curchan = ic->ic_curchan;
2900 extchan = NULL;
2901
2902 /* In case a new MAC address has been configured. */
2903 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2904
2905 #ifdef openbsd_power_management
2906 /* For CardBus, power on the socket. */
2907 if (sc->sc_enable != NULL) {
2908 if ((error = sc->sc_enable(sc)) != 0) {
2909 aprint_error_dev(sc->sc_dev,
2910 "could not enable device\n");
2911 goto fail;
2912 }
2913 if ((error = athn_reset_power_on(sc)) != 0) {
2914 aprint_error_dev(sc->sc_dev,
2915 "could not power on device\n");
2916 goto fail;
2917 }
2918 }
2919 #endif
2920 if (!(sc->sc_flags & ATHN_FLAG_PCIE))
2921 athn_config_nonpcie(sc);
2922 else
2923 athn_config_pcie(sc);
2924
2925 /* Reset HW key cache entries. */
2926 for (i = 0; i < sc->sc_kc_entries; i++)
2927 athn_reset_key(sc, i);
2928
2929 ops->enable_antenna_diversity(sc);
2930
2931 #ifdef ATHN_BT_COEXISTENCE
2932 /* Configure bluetooth coexistence for combo chips. */
2933 if (sc->sc_flags & ATHN_FLAG_BTCOEX)
2934 athn_btcoex_init(sc);
2935 #endif
2936
2937 /* Configure LED. */
2938 athn_led_init(sc);
2939
2940 /* Configure hardware radio switch. */
2941 if (sc->sc_flags & ATHN_FLAG_RFSILENT)
2942 ops->rfsilent_init(sc);
2943
2944 if ((error = athn_hw_reset(sc, curchan, extchan, 1)) != 0) {
2945 aprint_error_dev(sc->sc_dev,
2946 "unable to reset hardware; reset status %d\n", error);
2947 goto fail;
2948 }
2949
2950 /* Enable Rx. */
2951 athn_rx_start(sc);
2952
2953 /* Enable interrupts. */
2954 athn_enable_interrupts(sc);
2955
2956 #ifdef ATHN_BT_COEXISTENCE
2957 /* Enable bluetooth coexistence for combo chips. */
2958 if (sc->sc_flags & ATHN_FLAG_BTCOEX)
2959 athn_btcoex_enable(sc);
2960 #endif
2961
2962 ifp->if_flags &= ~IFF_OACTIVE;
2963 ifp->if_flags |= IFF_RUNNING;
2964
2965 #ifdef notyet
2966 if (ic->ic_flags & IEEE80211_F_WEPON) {
2967 /* Configure WEP keys. */
2968 for (i = 0; i < IEEE80211_WEP_NKID; i++)
2969 athn_set_key(ic, NULL, &ic->ic_nw_keys[i]);
2970 }
2971 #endif
2972 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2973 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2974 else
2975 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2976
2977 return 0;
2978 fail:
2979 athn_stop(ifp, 1);
2980 return error;
2981 }
2982
2983 PUBLIC void
2984 athn_stop(struct ifnet *ifp, int disable)
2985 {
2986 struct athn_softc *sc = ifp->if_softc;
2987 struct ieee80211com *ic = &sc->sc_ic;
2988 int qid;
2989
2990 ifp->if_timer = sc->sc_tx_timer = 0;
2991 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2992
2993 callout_stop(&sc->sc_scan_to);
2994 /* In case we were scanning, release the scan "lock". */
2995 // ic->ic_scan_lock = IEEE80211_SCAN_UNLOCKED; /* XXX:??? */
2996
2997 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2998
2999 #ifdef ATHN_BT_COEXISTENCE
3000 /* Disable bluetooth coexistence for combo chips. */
3001 if (sc->sc_flags & ATHN_FLAG_BTCOEX)
3002 athn_btcoex_disable(sc);
3003 #endif
3004
3005 /* Disable interrupts. */
3006 athn_disable_interrupts(sc);
3007 /* Acknowledge interrupts (avoids interrupt storms). */
3008 AR_WRITE(sc, AR_INTR_SYNC_CAUSE, 0xffffffff);
3009 AR_WRITE(sc, AR_INTR_SYNC_MASK, 0);
3010
3011 for (qid = 0; qid < ATHN_QID_COUNT; qid++)
3012 athn_stop_tx_dma(sc, qid);
3013 /* XXX call athn_hw_reset if Tx still pending? */
3014 for (qid = 0; qid < ATHN_QID_COUNT; qid++)
3015 athn_tx_reclaim(sc, qid);
3016
3017 /* Stop Rx. */
3018 AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
3019 AR_WRITE(sc, AR_MIBC, AR_MIBC_FMC);
3020 AR_WRITE(sc, AR_MIBC, AR_MIBC_CMC);
3021 AR_WRITE(sc, AR_FILT_OFDM, 0);
3022 AR_WRITE(sc, AR_FILT_CCK, 0);
3023 AR_WRITE_BARRIER(sc);
3024 athn_set_rxfilter(sc, 0);
3025 athn_stop_rx_dma(sc);
3026
3027 athn_reset(sc, 0);
3028 athn_init_pll(sc, NULL);
3029 athn_set_power_awake(sc);
3030 athn_reset(sc, 1);
3031 athn_init_pll(sc, NULL);
3032
3033 athn_set_power_sleep(sc);
3034
3035 #if 0 /* XXX: shouldn't the pmf stuff take care of this? */
3036 /* For CardBus, power down the socket. */
3037 if (disable && sc->sc_disable != NULL)
3038 sc->sc_disable(sc);
3039 #endif
3040 if (disable)
3041 pmf_device_recursive_suspend(sc->sc_dev, &sc->sc_qual);
3042 }
3043
3044 Static void
3045 athn_pmf_wlan_off(device_t self)
3046 {
3047 struct athn_softc *sc = device_private(self);
3048 struct ifnet *ifp = &sc->sc_if;
3049
3050 /* Turn the interface down. */
3051 ifp->if_flags &= ~IFF_UP;
3052 athn_stop(ifp, 1);
3053 }
3054
3055 PUBLIC void
3056 athn_suspend(struct athn_softc *sc)
3057 {
3058 struct ifnet *ifp = &sc->sc_if;
3059
3060 if (ifp->if_flags & IFF_RUNNING)
3061 athn_stop(ifp, 1);
3062 }
3063
3064 PUBLIC bool
3065 athn_resume(struct athn_softc *sc)
3066 {
3067 struct ifnet *ifp = &sc->sc_if;
3068
3069 if (ifp->if_flags & IFF_UP)
3070 athn_init(ifp);
3071
3072 return true;
3073 }
3074