athn.c revision 1.24 1 /* $NetBSD: athn.c,v 1.24 2020/11/15 12:33:53 mlelstv Exp $ */
2 /* $OpenBSD: athn.c,v 1.83 2014/07/22 13:12:11 mpi Exp $ */
3
4 /*-
5 * Copyright (c) 2009 Damien Bergamini <damien.bergamini (at) free.fr>
6 * Copyright (c) 2008-2010 Atheros Communications Inc.
7 *
8 * Permission to use, copy, modify, and/or distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /*
22 * Driver for Atheros 802.11a/g/n chipsets.
23 */
24
25 #include <sys/cdefs.h>
26 __KERNEL_RCSID(0, "$NetBSD: athn.c,v 1.24 2020/11/15 12:33:53 mlelstv Exp $");
27
28 #ifndef _MODULE
29 #include "athn_usb.h" /* for NATHN_USB */
30 #endif
31
32 #include <sys/param.h>
33 #include <sys/sockio.h>
34 #include <sys/mbuf.h>
35 #include <sys/kernel.h>
36 #include <sys/socket.h>
37 #include <sys/systm.h>
38 #include <sys/malloc.h>
39 #include <sys/queue.h>
40 #include <sys/callout.h>
41 #include <sys/conf.h>
42 #include <sys/cpu.h>
43 #include <sys/device.h>
44
45 #include <sys/bus.h>
46 #include <sys/endian.h>
47 #include <sys/intr.h>
48
49 #include <net/bpf.h>
50 #include <net/if.h>
51 #include <net/if_arp.h>
52 #include <net/if_dl.h>
53 #include <net/if_ether.h>
54 #include <net/if_media.h>
55 #include <net/if_types.h>
56
57 #include <netinet/in.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/in_var.h>
60 #include <netinet/ip.h>
61
62 #include <net80211/ieee80211_var.h>
63 #include <net80211/ieee80211_amrr.h>
64 #include <net80211/ieee80211_radiotap.h>
65
66 #include <dev/ic/athnreg.h>
67 #include <dev/ic/athnvar.h>
68 #include <dev/ic/arn5008.h>
69 #include <dev/ic/arn5416.h>
70 #include <dev/ic/arn9003.h>
71 #include <dev/ic/arn9280.h>
72 #include <dev/ic/arn9285.h>
73 #include <dev/ic/arn9287.h>
74 #include <dev/ic/arn9380.h>
75
76 #define Static static
77
78 #define IS_UP_AND_RUNNING(ifp) \
79 (((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING))
80
81 #ifdef ATHN_DEBUG
82 int athn_debug = 0;
83 #endif
84
85 Static int athn_clock_rate(struct athn_softc *);
86 Static const char *
87 athn_get_mac_name(struct athn_softc *);
88 Static const char *
89 athn_get_rf_name(struct athn_softc *);
90 Static int athn_init(struct ifnet *);
91 Static int athn_init_calib(struct athn_softc *,
92 struct ieee80211_channel *, struct ieee80211_channel *);
93 Static int athn_ioctl(struct ifnet *, u_long, void *);
94 Static int athn_media_change(struct ifnet *);
95 Static int athn_newstate(struct ieee80211com *, enum ieee80211_state,
96 int);
97 Static struct ieee80211_node *
98 athn_node_alloc(struct ieee80211_node_table *);
99 Static int athn_reset_power_on(struct athn_softc *);
100 Static int athn_stop_rx_dma(struct athn_softc *);
101 Static int athn_switch_chan(struct athn_softc *,
102 struct ieee80211_channel *, struct ieee80211_channel *);
103 Static void athn_calib_to(void *);
104 Static void athn_disable_interrupts(struct athn_softc *);
105 Static void athn_enable_interrupts(struct athn_softc *);
106 Static void athn_get_chanlist(struct athn_softc *);
107 Static void athn_get_chipid(struct athn_softc *);
108 Static void athn_init_dma(struct athn_softc *);
109 Static void athn_init_qos(struct athn_softc *);
110 Static void athn_init_tx_queues(struct athn_softc *);
111 Static void athn_iter_func(void *, struct ieee80211_node *);
112 Static void athn_newassoc(struct ieee80211_node *, int);
113 Static void athn_next_scan(void *);
114 Static void athn_pmf_wlan_off(device_t self);
115 Static void athn_radiotap_attach(struct athn_softc *);
116 Static void athn_start(struct ifnet *);
117 Static void athn_tx_reclaim(struct athn_softc *, int);
118 Static void athn_watchdog(struct ifnet *);
119 Static void athn_write_serdes(struct athn_softc *,
120 const struct athn_serdes *);
121 Static void athn_softintr(void *);
122
123 #ifdef ATHN_BT_COEXISTENCE
124 Static void athn_btcoex_disable(struct athn_softc *);
125 Static void athn_btcoex_enable(struct athn_softc *);
126 #endif
127
128 #ifdef unused
129 Static int32_t athn_ani_get_rssi(struct athn_softc *);
130 Static int athn_rx_abort(struct athn_softc *);
131 #endif
132
133 #ifdef notyet
134 Static void athn_ani_cck_err_trigger(struct athn_softc *);
135 Static void athn_ani_lower_immunity(struct athn_softc *);
136 Static void athn_ani_monitor(struct athn_softc *);
137 Static void athn_ani_ofdm_err_trigger(struct athn_softc *);
138 Static void athn_ani_restart(struct athn_softc *);
139 #endif /* notyet */
140 Static void athn_set_multi(struct athn_softc *);
141
142 PUBLIC int
143 athn_attach(struct athn_softc *sc)
144 {
145 struct ieee80211com *ic = &sc->sc_ic;
146 struct ifnet *ifp = &sc->sc_if;
147 size_t max_nnodes;
148 int error;
149
150 /* Read hardware revision. */
151 athn_get_chipid(sc);
152
153 if ((error = athn_reset_power_on(sc)) != 0) {
154 aprint_error_dev(sc->sc_dev, "could not reset chip\n");
155 return error;
156 }
157
158 if ((error = athn_set_power_awake(sc)) != 0) {
159 aprint_error_dev(sc->sc_dev, "could not wakeup chip\n");
160 return error;
161 }
162
163 if (AR_SREV_5416(sc) || AR_SREV_9160(sc))
164 error = ar5416_attach(sc);
165 else if (AR_SREV_9280(sc))
166 error = ar9280_attach(sc);
167 else if (AR_SREV_9285(sc))
168 error = ar9285_attach(sc);
169 #if NATHN_USB > 0
170 else if (AR_SREV_9271(sc))
171 error = ar9285_attach(sc);
172 #endif
173 else if (AR_SREV_9287(sc))
174 error = ar9287_attach(sc);
175 else if (AR_SREV_9380(sc) || AR_SREV_9485(sc))
176 error = ar9380_attach(sc);
177 else
178 error = ENOTSUP;
179 if (error != 0) {
180 aprint_error_dev(sc->sc_dev, "could not attach chip\n");
181 return error;
182 }
183
184 pmf_self_suspensor_init(sc->sc_dev, &sc->sc_suspensor, &sc->sc_qual);
185 pmf_event_register(sc->sc_dev, PMFE_RADIO_OFF, athn_pmf_wlan_off,
186 false);
187
188 /* We can put the chip in sleep state now. */
189 athn_set_power_sleep(sc);
190
191 if (!(sc->sc_flags & ATHN_FLAG_USB)) {
192 sc->sc_soft_ih = softint_establish(SOFTINT_NET, athn_softintr,
193 sc);
194 if (sc->sc_soft_ih == NULL) {
195 aprint_error_dev(sc->sc_dev,
196 "could not establish softint\n");
197 return EINVAL;
198 }
199
200 error = sc->sc_ops.dma_alloc(sc);
201 if (error != 0) {
202 aprint_error_dev(sc->sc_dev,
203 "could not allocate DMA resources\n");
204 return error;
205 }
206 /* Steal one Tx buffer for beacons. */
207 sc->sc_bcnbuf = SIMPLEQ_FIRST(&sc->sc_txbufs);
208 SIMPLEQ_REMOVE_HEAD(&sc->sc_txbufs, bf_list);
209 }
210
211 if (sc->sc_flags & ATHN_FLAG_RFSILENT) {
212 DPRINTFN(DBG_INIT, sc,
213 "found RF switch connected to GPIO pin %d\n",
214 sc->sc_rfsilent_pin);
215 }
216 DPRINTFN(DBG_INIT, sc, "%zd key cache entries\n", sc->sc_kc_entries);
217
218 /*
219 * In HostAP mode, the number of STAs that we can handle is
220 * limited by the number of entries in the HW key cache.
221 * TKIP keys consume 2 entries in the cache.
222 */
223 KASSERT(sc->sc_kc_entries / 2 > IEEE80211_WEP_NKID);
224 max_nnodes = (sc->sc_kc_entries / 2) - IEEE80211_WEP_NKID;
225 if (sc->sc_max_aid != 0) /* we have an override */
226 ic->ic_max_aid = sc->sc_max_aid;
227 if (ic->ic_max_aid > max_nnodes)
228 ic->ic_max_aid = max_nnodes;
229
230 DPRINTFN(DBG_INIT, sc, "using %s loop power control\n",
231 (sc->sc_flags & ATHN_FLAG_OLPC) ? "open" : "closed");
232 DPRINTFN(DBG_INIT, sc, "txchainmask=0x%x rxchainmask=0x%x\n",
233 sc->sc_txchainmask, sc->sc_rxchainmask);
234
235 /* Count the number of bits set (in lowest 3 bits). */
236 sc->sc_ntxchains =
237 ((sc->sc_txchainmask >> 2) & 1) +
238 ((sc->sc_txchainmask >> 1) & 1) +
239 ((sc->sc_txchainmask >> 0) & 1);
240 sc->sc_nrxchains =
241 ((sc->sc_rxchainmask >> 2) & 1) +
242 ((sc->sc_rxchainmask >> 1) & 1) +
243 ((sc->sc_rxchainmask >> 0) & 1);
244
245 if (AR_SINGLE_CHIP(sc)) {
246 aprint_normal(": Atheros %s\n", athn_get_mac_name(sc));
247 aprint_verbose_dev(sc->sc_dev,
248 "rev %d (%dT%dR), ROM rev %d, address %s\n",
249 sc->sc_mac_rev,
250 sc->sc_ntxchains, sc->sc_nrxchains, sc->sc_eep_rev,
251 ether_sprintf(ic->ic_myaddr));
252 } else {
253 aprint_normal(": Atheros %s, RF %s\n", athn_get_mac_name(sc),
254 athn_get_rf_name(sc));
255 aprint_verbose_dev(sc->sc_dev,
256 "rev %d (%dT%dR), ROM rev %d, address %s\n",
257 sc->sc_mac_rev,
258 sc->sc_ntxchains, sc->sc_nrxchains,
259 sc->sc_eep_rev, ether_sprintf(ic->ic_myaddr));
260 }
261
262 callout_init(&sc->sc_scan_to, 0);
263 callout_setfunc(&sc->sc_scan_to, athn_next_scan, sc);
264 callout_init(&sc->sc_calib_to, 0);
265 callout_setfunc(&sc->sc_calib_to, athn_calib_to, sc);
266
267 sc->sc_amrr.amrr_min_success_threshold = 1;
268 sc->sc_amrr.amrr_max_success_threshold = 15;
269
270 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
271 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
272 ic->ic_state = IEEE80211_S_INIT;
273
274 /* Set device capabilities. */
275 ic->ic_caps =
276 IEEE80211_C_WPA | /* 802.11i */
277 #ifndef IEEE80211_STA_ONLY
278 IEEE80211_C_HOSTAP | /* Host AP mode supported. */
279 // XXX? IEEE80211_C_APPMGT | /* Host AP power saving supported. */
280 #endif
281 IEEE80211_C_MONITOR | /* Monitor mode supported. */
282 IEEE80211_C_SHSLOT | /* Short slot time supported. */
283 IEEE80211_C_SHPREAMBLE | /* Short preamble supported. */
284 IEEE80211_C_PMGT; /* Power saving supported. */
285
286 #ifndef IEEE80211_NO_HT
287 if (sc->sc_flags & ATHN_FLAG_11N) {
288 int i, ntxstreams, nrxstreams;
289
290 /* Set HT capabilities. */
291 ic->ic_htcaps =
292 IEEE80211_HTCAP_SMPS_DIS |
293 IEEE80211_HTCAP_CBW20_40 |
294 IEEE80211_HTCAP_SGI40 |
295 IEEE80211_HTCAP_DSSSCCK40;
296 if (AR_SREV_9271(sc) || AR_SREV_9287_10_OR_LATER(sc))
297 ic->ic_htcaps |= IEEE80211_HTCAP_SGI20;
298 if (AR_SREV_9380_10_OR_LATER(sc))
299 ic->ic_htcaps |= IEEE80211_HTCAP_LDPC;
300 if (AR_SREV_9280_10_OR_LATER(sc)) {
301 ic->ic_htcaps |= IEEE80211_HTCAP_TXSTBC;
302 ic->ic_htcaps |= 1 << IEEE80211_HTCAP_RXSTBC_SHIFT;
303 }
304 ntxstreams = sc->sc_ntxchains;
305 nrxstreams = sc->sc_nrxchains;
306 if (!AR_SREV_9380_10_OR_LATER(sc)) {
307 ntxstreams = MIN(ntxstreams, 2);
308 nrxstreams = MIN(nrxstreams, 2);
309 }
310 /* Set supported HT rates. */
311 for (i = 0; i < nrxstreams; i++)
312 ic->ic_sup_mcs[i] = 0xff;
313 /* Set the "Tx MCS Set Defined" bit. */
314 ic->ic_sup_mcs[12] |= 0x01;
315 if (ntxstreams != nrxstreams) {
316 /* Set "Tx Rx MCS Set Not Equal" bit. */
317 ic->ic_sup_mcs[12] |= 0x02;
318 ic->ic_sup_mcs[12] |= (ntxstreams - 1) << 2;
319 }
320 }
321 #endif
322
323 /* Set supported rates. */
324 if (sc->sc_flags & ATHN_FLAG_11G) {
325 ic->ic_sup_rates[IEEE80211_MODE_11B] =
326 ieee80211_std_rateset_11b;
327 ic->ic_sup_rates[IEEE80211_MODE_11G] =
328 ieee80211_std_rateset_11g;
329 }
330 if (sc->sc_flags & ATHN_FLAG_11A) {
331 ic->ic_sup_rates[IEEE80211_MODE_11A] =
332 ieee80211_std_rateset_11a;
333 }
334
335 /* Get the list of authorized/supported channels. */
336 athn_get_chanlist(sc);
337
338 ifp->if_softc = sc;
339 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
340 if (!ifp->if_init)
341 ifp->if_init = athn_init;
342 if (!ifp->if_ioctl)
343 ifp->if_ioctl = athn_ioctl;
344 if (!ifp->if_start)
345 ifp->if_start = athn_start;
346 if (!ifp->if_watchdog)
347 ifp->if_watchdog = athn_watchdog;
348 IFQ_SET_READY(&ifp->if_snd);
349 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
350
351 error = if_initialize(ifp);
352 if (error != 0) {
353 aprint_error_dev(sc->sc_dev, "if_initialize failed(%d)\n",
354 error);
355 pmf_event_deregister(sc->sc_dev, PMFE_RADIO_OFF,
356 athn_pmf_wlan_off, false);
357 callout_destroy(&sc->sc_scan_to);
358 callout_destroy(&sc->sc_calib_to);
359 return error;
360 }
361 ieee80211_ifattach(ic);
362 /* Use common softint-based if_input */
363 ifp->if_percpuq = if_percpuq_create(ifp);
364 if_register(ifp);
365
366 ic->ic_node_alloc = athn_node_alloc;
367 ic->ic_newassoc = athn_newassoc;
368 if (ic->ic_updateslot == NULL)
369 ic->ic_updateslot = athn_updateslot;
370 #ifdef notyet_edca
371 ic->ic_updateedca = athn_updateedca;
372 #endif
373 #ifdef notyet
374 ic->ic_set_key = athn_set_key;
375 ic->ic_delete_key = athn_delete_key;
376 #endif
377
378 /* Override 802.11 state transition machine. */
379 sc->sc_newstate = ic->ic_newstate;
380 ic->ic_newstate = athn_newstate;
381
382 if (sc->sc_media_change == NULL)
383 sc->sc_media_change = athn_media_change;
384 ieee80211_media_init(ic, sc->sc_media_change, ieee80211_media_status);
385
386 athn_radiotap_attach(sc);
387 return 0;
388 }
389
390 PUBLIC void
391 athn_detach(struct athn_softc *sc)
392 {
393 struct ifnet *ifp = &sc->sc_if;
394 int qid;
395
396 callout_halt(&sc->sc_scan_to, NULL);
397 callout_halt(&sc->sc_calib_to, NULL);
398
399 if (!(sc->sc_flags & ATHN_FLAG_USB)) {
400 for (qid = 0; qid < ATHN_QID_COUNT; qid++)
401 athn_tx_reclaim(sc, qid);
402
403 /* Free Tx/Rx DMA resources. */
404 sc->sc_ops.dma_free(sc);
405
406 if (sc->sc_soft_ih != NULL) {
407 softint_disestablish(sc->sc_soft_ih);
408 sc->sc_soft_ih = NULL;
409 }
410 }
411 /* Free ROM copy. */
412 if (sc->sc_eep != NULL) {
413 free(sc->sc_eep, M_DEVBUF);
414 sc->sc_eep = NULL;
415 }
416
417 bpf_detach(ifp);
418 ieee80211_ifdetach(&sc->sc_ic);
419 if_detach(ifp);
420
421 callout_destroy(&sc->sc_scan_to);
422 callout_destroy(&sc->sc_calib_to);
423
424 pmf_event_deregister(sc->sc_dev, PMFE_RADIO_OFF, athn_pmf_wlan_off,
425 false);
426 }
427
428 /*
429 * Attach the interface to 802.11 radiotap.
430 */
431 Static void
432 athn_radiotap_attach(struct athn_softc *sc)
433 {
434
435 bpf_attach2(&sc->sc_if, DLT_IEEE802_11_RADIO,
436 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
437 &sc->sc_drvbpf);
438
439 sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
440 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
441 sc->sc_rxtap.wr_ihdr.it_present = htole32(ATHN_RX_RADIOTAP_PRESENT);
442
443 sc->sc_txtap_len = sizeof(sc->sc_txtapu);
444 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
445 sc->sc_txtap.wt_ihdr.it_present = htole32(ATHN_TX_RADIOTAP_PRESENT);
446 }
447
448 Static void
449 athn_get_chanlist(struct athn_softc *sc)
450 {
451 struct ieee80211com *ic = &sc->sc_ic;
452 uint8_t chan;
453 size_t i;
454
455 if (sc->sc_flags & ATHN_FLAG_11G) {
456 for (i = 1; i <= 14; i++) {
457 chan = i;
458 ic->ic_channels[chan].ic_freq =
459 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
460 ic->ic_channels[chan].ic_flags =
461 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
462 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
463 }
464 }
465 if (sc->sc_flags & ATHN_FLAG_11A) {
466 for (i = 0; i < __arraycount(athn_5ghz_chans); i++) {
467 chan = athn_5ghz_chans[i];
468 ic->ic_channels[chan].ic_freq =
469 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
470 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
471 }
472 }
473 }
474
475 PUBLIC void
476 athn_rx_start(struct athn_softc *sc)
477 {
478 struct ieee80211com *ic = &sc->sc_ic;
479 uint32_t rfilt;
480
481 /* Setup Rx DMA descriptors. */
482 sc->sc_ops.rx_enable(sc);
483
484 /* Set Rx filter. */
485 rfilt = AR_RX_FILTER_UCAST | AR_RX_FILTER_BCAST | AR_RX_FILTER_MCAST;
486 #ifndef IEEE80211_NO_HT
487 /* Want Compressed Block Ack Requests. */
488 rfilt |= AR_RX_FILTER_COMPR_BAR;
489 #endif
490 rfilt |= AR_RX_FILTER_BEACON;
491 if (ic->ic_opmode != IEEE80211_M_STA) {
492 rfilt |= AR_RX_FILTER_PROBEREQ;
493 if (ic->ic_opmode == IEEE80211_M_MONITOR)
494 rfilt |= AR_RX_FILTER_PROM;
495 #ifndef IEEE80211_STA_ONLY
496 if (AR_SREV_9280_10_OR_LATER(sc) &&
497 ic->ic_opmode == IEEE80211_M_HOSTAP)
498 rfilt |= AR_RX_FILTER_PSPOLL;
499 #endif
500 }
501 athn_set_rxfilter(sc, rfilt);
502
503 /* Set BSSID mask. */
504 AR_WRITE(sc, AR_BSSMSKL, 0xffffffff);
505 AR_WRITE(sc, AR_BSSMSKU, 0xffff);
506
507 athn_set_opmode(sc);
508
509 /* Set multicast filter. */
510 AR_WRITE(sc, AR_MCAST_FIL0, 0xffffffff);
511 AR_WRITE(sc, AR_MCAST_FIL1, 0xffffffff);
512
513 AR_WRITE(sc, AR_FILT_OFDM, 0);
514 AR_WRITE(sc, AR_FILT_CCK, 0);
515 AR_WRITE(sc, AR_MIBC, 0);
516 AR_WRITE(sc, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING);
517 AR_WRITE(sc, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING);
518
519 /* XXX ANI. */
520 AR_WRITE(sc, AR_PHY_ERR_1, 0);
521 AR_WRITE(sc, AR_PHY_ERR_2, 0);
522
523 /* Disable HW crypto for now. */
524 AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_ENCRYPT_DIS | AR_DIAG_DECRYPT_DIS);
525
526 /* Start PCU Rx. */
527 AR_CLRBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
528 AR_WRITE_BARRIER(sc);
529 }
530
531 PUBLIC void
532 athn_set_rxfilter(struct athn_softc *sc, uint32_t rfilt)
533 {
534
535 AR_WRITE(sc, AR_RX_FILTER, rfilt);
536 #ifdef notyet
537 reg = AR_READ(sc, AR_PHY_ERR);
538 reg &= (AR_PHY_ERR_RADAR | AR_PHY_ERR_OFDM_TIMING |
539 AR_PHY_ERR_CCK_TIMING);
540 AR_WRITE(sc, AR_PHY_ERR, reg);
541 if (reg != 0)
542 AR_SETBITS(sc, AR_RXCFG, AR_RXCFG_ZLFDMA);
543 else
544 AR_CLRBITS(sc, AR_RXCFG, AR_RXCFG_ZLFDMA);
545 #else
546 AR_WRITE(sc, AR_PHY_ERR, 0);
547 AR_CLRBITS(sc, AR_RXCFG, AR_RXCFG_ZLFDMA);
548 #endif
549 AR_WRITE_BARRIER(sc);
550 }
551
552 PUBLIC int
553 athn_intr(void *xsc)
554 {
555 struct athn_softc *sc = xsc;
556 struct ifnet *ifp = &sc->sc_if;
557
558 if (!IS_UP_AND_RUNNING(ifp))
559 return 0;
560
561 if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
562 /*
563 * The hardware is not ready/present, don't touch anything.
564 * Note this can happen early on if the IRQ is shared.
565 */
566 return 0;
567
568 if (!sc->sc_ops.intr_status(sc))
569 return 0;
570
571 AR_WRITE(sc, AR_INTR_ASYNC_MASK, 0);
572 AR_WRITE(sc, AR_INTR_SYNC_MASK, 0);
573 AR_WRITE_BARRIER(sc);
574
575 softint_schedule(sc->sc_soft_ih);
576
577 return 1;
578 }
579
580 Static void
581 athn_softintr(void *xsc)
582 {
583 struct athn_softc *sc = xsc;
584 struct ifnet *ifp = &sc->sc_if;
585
586 if (!IS_UP_AND_RUNNING(ifp))
587 return;
588
589 if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
590 /*
591 * The hardware is not ready/present, don't touch anything.
592 * Note this can happen early on if the IRQ is shared.
593 */
594 return;
595
596 sc->sc_ops.intr(sc);
597
598 AR_WRITE(sc, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
599 AR_WRITE(sc, AR_INTR_SYNC_MASK, sc->sc_isync);
600 AR_WRITE_BARRIER(sc);
601 }
602
603 Static void
604 athn_get_chipid(struct athn_softc *sc)
605 {
606 uint32_t reg;
607
608 reg = AR_READ(sc, AR_SREV);
609 if (MS(reg, AR_SREV_ID) == 0xff) {
610 sc->sc_mac_ver = MS(reg, AR_SREV_VERSION2);
611 sc->sc_mac_rev = MS(reg, AR_SREV_REVISION2);
612 if (!(reg & AR_SREV_TYPE2_HOST_MODE))
613 sc->sc_flags |= ATHN_FLAG_PCIE;
614 } else {
615 sc->sc_mac_ver = MS(reg, AR_SREV_VERSION);
616 sc->sc_mac_rev = MS(reg, AR_SREV_REVISION);
617 if (sc->sc_mac_ver == AR_SREV_VERSION_5416_PCIE)
618 sc->sc_flags |= ATHN_FLAG_PCIE;
619 }
620 }
621
622 Static const char *
623 athn_get_mac_name(struct athn_softc *sc)
624 {
625
626 switch (sc->sc_mac_ver) {
627 case AR_SREV_VERSION_5416_PCI:
628 return "AR5416";
629 case AR_SREV_VERSION_5416_PCIE:
630 return "AR5418";
631 case AR_SREV_VERSION_9160:
632 return "AR9160";
633 case AR_SREV_VERSION_9280:
634 return "AR9280";
635 case AR_SREV_VERSION_9285:
636 return "AR9285";
637 case AR_SREV_VERSION_9271:
638 return "AR9271";
639 case AR_SREV_VERSION_9287:
640 return "AR9287";
641 case AR_SREV_VERSION_9380:
642 return "AR9380";
643 case AR_SREV_VERSION_9485:
644 return "AR9485";
645 default:
646 return "unknown";
647 }
648 }
649
650 /*
651 * Return RF chip name (not for single-chip solutions).
652 */
653 Static const char *
654 athn_get_rf_name(struct athn_softc *sc)
655 {
656
657 KASSERT(!AR_SINGLE_CHIP(sc));
658
659 switch (sc->sc_rf_rev) {
660 case AR_RAD5133_SREV_MAJOR: /* Dual-band 3T3R. */
661 return "AR5133";
662 case AR_RAD2133_SREV_MAJOR: /* Single-band 3T3R. */
663 return "AR2133";
664 case AR_RAD5122_SREV_MAJOR: /* Dual-band 2T2R. */
665 return "AR5122";
666 case AR_RAD2122_SREV_MAJOR: /* Single-band 2T2R. */
667 return "AR2122";
668 default:
669 return "unknown";
670 }
671 }
672
673 PUBLIC int
674 athn_reset_power_on(struct athn_softc *sc)
675 {
676 int ntries;
677
678 /* Set force wake. */
679 AR_WRITE(sc, AR_RTC_FORCE_WAKE,
680 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
681
682 if (!AR_SREV_9380_10_OR_LATER(sc)) {
683 /* Make sure no DMA is active by doing an AHB reset. */
684 AR_WRITE(sc, AR_RC, AR_RC_AHB);
685 }
686 /* RTC reset and clear. */
687 AR_WRITE(sc, AR_RTC_RESET, 0);
688 AR_WRITE_BARRIER(sc);
689 DELAY(2);
690 if (!AR_SREV_9380_10_OR_LATER(sc))
691 AR_WRITE(sc, AR_RC, 0);
692 AR_WRITE(sc, AR_RTC_RESET, 1);
693
694 /* Poll until RTC is ON. */
695 for (ntries = 0; ntries < 1000; ntries++) {
696 if ((AR_READ(sc, AR_RTC_STATUS) & AR_RTC_STATUS_M) ==
697 AR_RTC_STATUS_ON)
698 break;
699 DELAY(10);
700 }
701 if (ntries == 1000) {
702 DPRINTFN(DBG_INIT, sc, "RTC not waking up\n");
703 return ETIMEDOUT;
704 }
705 return athn_reset(sc, 0);
706 }
707
708 PUBLIC int
709 athn_reset(struct athn_softc *sc, int cold_reset)
710 {
711 int ntries;
712
713 /* Set force wake. */
714 AR_WRITE(sc, AR_RTC_FORCE_WAKE,
715 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
716
717 if (AR_READ(sc, AR_INTR_SYNC_CAUSE) &
718 (AR_INTR_SYNC_LOCAL_TIMEOUT | AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
719 AR_WRITE(sc, AR_INTR_SYNC_ENABLE, 0);
720 AR_WRITE(sc, AR_RC, AR_RC_HOSTIF |
721 (!AR_SREV_9380_10_OR_LATER(sc) ? AR_RC_AHB : 0));
722 } else if (!AR_SREV_9380_10_OR_LATER(sc))
723 AR_WRITE(sc, AR_RC, AR_RC_AHB);
724
725 AR_WRITE(sc, AR_RTC_RC, AR_RTC_RC_MAC_WARM |
726 (cold_reset ? AR_RTC_RC_MAC_COLD : 0));
727 AR_WRITE_BARRIER(sc);
728 DELAY(50);
729 AR_WRITE(sc, AR_RTC_RC, 0);
730 for (ntries = 0; ntries < 1000; ntries++) {
731 if (!(AR_READ(sc, AR_RTC_RC) &
732 (AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD)))
733 break;
734 DELAY(10);
735 }
736 if (ntries == 1000) {
737 DPRINTFN(DBG_INIT, sc, "RTC stuck in MAC reset\n");
738 return ETIMEDOUT;
739 }
740 AR_WRITE(sc, AR_RC, 0);
741 AR_WRITE_BARRIER(sc);
742 return 0;
743 }
744
745 PUBLIC int
746 athn_set_power_awake(struct athn_softc *sc)
747 {
748 int ntries, error;
749
750 /* Do a Power-On-Reset if shutdown. */
751 if ((AR_READ(sc, AR_RTC_STATUS) & AR_RTC_STATUS_M) ==
752 AR_RTC_STATUS_SHUTDOWN) {
753 if ((error = athn_reset_power_on(sc)) != 0)
754 return error;
755 if (!AR_SREV_9380_10_OR_LATER(sc))
756 athn_init_pll(sc, NULL);
757 }
758 AR_SETBITS(sc, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
759 AR_WRITE_BARRIER(sc);
760 DELAY(50); /* Give chip the chance to awake. */
761
762 /* Poll until RTC is ON. */
763 for (ntries = 0; ntries < 4000; ntries++) {
764 if ((AR_READ(sc, AR_RTC_STATUS) & AR_RTC_STATUS_M) ==
765 AR_RTC_STATUS_ON)
766 break;
767 DELAY(50);
768 AR_SETBITS(sc, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
769 }
770 if (ntries == 4000) {
771 DPRINTFN(DBG_INIT, sc, "RTC not waking up\n");
772 return ETIMEDOUT;
773 }
774
775 AR_CLRBITS(sc, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
776 AR_WRITE_BARRIER(sc);
777 return 0;
778 }
779
780 PUBLIC void
781 athn_set_power_sleep(struct athn_softc *sc)
782 {
783
784 AR_SETBITS(sc, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
785 /* Allow the MAC to go to sleep. */
786 AR_CLRBITS(sc, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
787 if (!AR_SREV_9380_10_OR_LATER(sc))
788 AR_WRITE(sc, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
789 /*
790 * NB: Clearing RTC_RESET_EN when setting the chip to sleep mode
791 * results in high power consumption on AR5416 chipsets.
792 */
793 if (!AR_SREV_5416(sc) && !AR_SREV_9271(sc))
794 AR_CLRBITS(sc, AR_RTC_RESET, AR_RTC_RESET_EN);
795 AR_WRITE_BARRIER(sc);
796 }
797
798 PUBLIC void
799 athn_init_pll(struct athn_softc *sc, const struct ieee80211_channel *c)
800 {
801 uint32_t pll;
802
803 if (AR_SREV_9380_10_OR_LATER(sc)) {
804 if (AR_SREV_9485(sc))
805 AR_WRITE(sc, AR_RTC_PLL_CONTROL2, 0x886666);
806 pll = SM(AR_RTC_9160_PLL_REFDIV, 0x5);
807 pll |= SM(AR_RTC_9160_PLL_DIV, 0x2c);
808 } else if (AR_SREV_9280_10_OR_LATER(sc)) {
809 pll = SM(AR_RTC_9160_PLL_REFDIV, 0x05);
810 if (c != NULL && IEEE80211_IS_CHAN_5GHZ(c)) {
811 if (sc->sc_flags & ATHN_FLAG_FAST_PLL_CLOCK)
812 pll = 0x142c;
813 else if (AR_SREV_9280_20(sc))
814 pll = 0x2850;
815 else
816 pll |= SM(AR_RTC_9160_PLL_DIV, 0x28);
817 } else
818 pll |= SM(AR_RTC_9160_PLL_DIV, 0x2c);
819 } else if (AR_SREV_9160_10_OR_LATER(sc)) {
820 pll = SM(AR_RTC_9160_PLL_REFDIV, 0x05);
821 if (c != NULL && IEEE80211_IS_CHAN_5GHZ(c))
822 pll |= SM(AR_RTC_9160_PLL_DIV, 0x50);
823 else
824 pll |= SM(AR_RTC_9160_PLL_DIV, 0x58);
825 } else {
826 pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
827 if (c != NULL && IEEE80211_IS_CHAN_5GHZ(c))
828 pll |= SM(AR_RTC_PLL_DIV, 0x0a);
829 else
830 pll |= SM(AR_RTC_PLL_DIV, 0x0b);
831 }
832 DPRINTFN(DBG_INIT, sc, "AR_RTC_PLL_CONTROL=0x%08x\n", pll);
833 AR_WRITE(sc, AR_RTC_PLL_CONTROL, pll);
834 if (AR_SREV_9271(sc)) {
835 /* Switch core clock to 117MHz. */
836 AR_WRITE_BARRIER(sc);
837 DELAY(500);
838 AR_WRITE(sc, 0x50050, 0x304);
839 }
840 AR_WRITE_BARRIER(sc);
841 DELAY(100);
842 AR_WRITE(sc, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
843 AR_WRITE_BARRIER(sc);
844 }
845
846 Static void
847 athn_write_serdes(struct athn_softc *sc, const struct athn_serdes *serdes)
848 {
849 int i;
850
851 /* Write sequence to Serializer/Deserializer. */
852 for (i = 0; i < serdes->nvals; i++)
853 AR_WRITE(sc, serdes->regs[i], serdes->vals[i]);
854 AR_WRITE_BARRIER(sc);
855 }
856
857 PUBLIC void
858 athn_config_pcie(struct athn_softc *sc)
859 {
860
861 /* Disable PLL when in L0s as well as receiver clock when in L1. */
862 athn_write_serdes(sc, sc->sc_serdes);
863
864 DELAY(1000);
865 /* Allow forcing of PCIe core into L1 state. */
866 AR_SETBITS(sc, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
867
868 #ifndef ATHN_PCIE_WAEN
869 AR_WRITE(sc, AR_WA, sc->sc_workaround);
870 #else
871 AR_WRITE(sc, AR_WA, ATHN_PCIE_WAEN);
872 #endif
873 AR_WRITE_BARRIER(sc);
874 }
875
876 /*
877 * Serializer/Deserializer programming for non-PCIe devices.
878 */
879 static const uint32_t ar_nonpcie_serdes_regs[] = {
880 AR_PCIE_SERDES,
881 AR_PCIE_SERDES,
882 AR_PCIE_SERDES,
883 AR_PCIE_SERDES,
884 AR_PCIE_SERDES,
885 AR_PCIE_SERDES,
886 AR_PCIE_SERDES,
887 AR_PCIE_SERDES,
888 AR_PCIE_SERDES,
889 AR_PCIE_SERDES2,
890 };
891
892 static const uint32_t ar_nonpcie_serdes_vals[] = {
893 0x9248fc00,
894 0x24924924,
895 0x28000029,
896 0x57160824,
897 0x25980579,
898 0x00000000,
899 0x1aaabe40,
900 0xbe105554,
901 0x000e1007,
902 0x00000000
903 };
904
905 static const struct athn_serdes ar_nonpcie_serdes = {
906 __arraycount(ar_nonpcie_serdes_vals),
907 ar_nonpcie_serdes_regs,
908 ar_nonpcie_serdes_vals
909 };
910
911 PUBLIC void
912 athn_config_nonpcie(struct athn_softc *sc)
913 {
914
915 athn_write_serdes(sc, &ar_nonpcie_serdes);
916 }
917
918 PUBLIC int
919 athn_set_chan(struct athn_softc *sc, struct ieee80211_channel *curchan,
920 struct ieee80211_channel *extchan)
921 {
922 struct athn_ops *ops = &sc->sc_ops;
923 int error, qid;
924
925 /* Check that Tx is stopped, otherwise RF Bus grant will not work. */
926 for (qid = 0; qid < ATHN_QID_COUNT; qid++)
927 if (athn_tx_pending(sc, qid))
928 return EBUSY;
929
930 /* Request RF Bus grant. */
931 if ((error = ops->rf_bus_request(sc)) != 0)
932 return error;
933
934 ops->set_phy(sc, curchan, extchan);
935
936 /* Change the synthesizer. */
937 if ((error = ops->set_synth(sc, curchan, extchan)) != 0)
938 return error;
939
940 sc->sc_curchan = curchan;
941 sc->sc_curchanext = extchan;
942
943 /* Set transmit power values for new channel. */
944 ops->set_txpower(sc, curchan, extchan);
945
946 /* Release the RF Bus grant. */
947 ops->rf_bus_release(sc);
948
949 /* Write delta slope coeffs for modes where OFDM may be used. */
950 if (sc->sc_ic.ic_curmode != IEEE80211_MODE_11B)
951 ops->set_delta_slope(sc, curchan, extchan);
952
953 ops->spur_mitigate(sc, curchan, extchan);
954 /* XXX Load noisefloor values and start calibration. */
955
956 return 0;
957 }
958
959 Static int
960 athn_switch_chan(struct athn_softc *sc, struct ieee80211_channel *curchan,
961 struct ieee80211_channel *extchan)
962 {
963 int error, qid;
964
965 /* Disable interrupts. */
966 athn_disable_interrupts(sc);
967
968 /* Stop all Tx queues. */
969 for (qid = 0; qid < ATHN_QID_COUNT; qid++)
970 athn_stop_tx_dma(sc, qid);
971 for (qid = 0; qid < ATHN_QID_COUNT; qid++)
972 athn_tx_reclaim(sc, qid);
973
974 /* Stop Rx. */
975 AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
976 AR_WRITE(sc, AR_MIBC, AR_MIBC_FMC);
977 AR_WRITE(sc, AR_MIBC, AR_MIBC_CMC);
978 AR_WRITE(sc, AR_FILT_OFDM, 0);
979 AR_WRITE(sc, AR_FILT_CCK, 0);
980 athn_set_rxfilter(sc, 0);
981 error = athn_stop_rx_dma(sc);
982 if (error != 0)
983 goto reset;
984
985 #ifdef notyet
986 /* AR9280 needs a full reset. */
987 if (AR_SREV_9280(sc))
988 #endif
989 goto reset;
990
991 /* If band or bandwidth changes, we need to do a full reset. */
992 if (curchan->ic_flags != sc->sc_curchan->ic_flags ||
993 ((extchan != NULL) ^ (sc->sc_curchanext != NULL))) {
994 DPRINTFN(DBG_RF, sc, "channel band switch\n");
995 goto reset;
996 }
997 error = athn_set_power_awake(sc);
998 if (error != 0)
999 goto reset;
1000
1001 error = athn_set_chan(sc, curchan, extchan);
1002 if (error != 0) {
1003 reset: /* Error found, try a full reset. */
1004 DPRINTFN(DBG_RF, sc, "needs a full reset\n");
1005 error = athn_hw_reset(sc, curchan, extchan, 0);
1006 if (error != 0) /* Hopeless case. */
1007 return error;
1008 }
1009 athn_rx_start(sc);
1010
1011 /* Re-enable interrupts. */
1012 athn_enable_interrupts(sc);
1013 return 0;
1014 }
1015
1016 PUBLIC void
1017 athn_get_delta_slope(uint32_t coeff, uint32_t *exponent, uint32_t *mantissa)
1018 {
1019 #define COEFF_SCALE_SHIFT 24
1020 uint32_t exp, man;
1021
1022 /* exponent = 14 - floor(log2(coeff)) */
1023 for (exp = 31; exp > 0; exp--)
1024 if (coeff & (1U << exp))
1025 break;
1026 exp = 14 - (exp - COEFF_SCALE_SHIFT);
1027
1028 /* mantissa = floor(coeff * 2^exponent + 0.5) */
1029 man = coeff + (1 << (COEFF_SCALE_SHIFT - exp - 1));
1030
1031 *mantissa = man >> (COEFF_SCALE_SHIFT - exp);
1032 *exponent = exp - 16;
1033 #undef COEFF_SCALE_SHIFT
1034 }
1035
1036 PUBLIC void
1037 athn_reset_key(struct athn_softc *sc, int entry)
1038 {
1039
1040 /*
1041 * NB: Key cache registers access special memory area that requires
1042 * two 32-bit writes to actually update the values in the internal
1043 * memory. Consequently, writes must be grouped by pair.
1044 */
1045 AR_WRITE(sc, AR_KEYTABLE_KEY0(entry), 0);
1046 AR_WRITE(sc, AR_KEYTABLE_KEY1(entry), 0);
1047
1048 AR_WRITE(sc, AR_KEYTABLE_KEY2(entry), 0);
1049 AR_WRITE(sc, AR_KEYTABLE_KEY3(entry), 0);
1050
1051 AR_WRITE(sc, AR_KEYTABLE_KEY4(entry), 0);
1052 AR_WRITE(sc, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
1053
1054 AR_WRITE(sc, AR_KEYTABLE_MAC0(entry), 0);
1055 AR_WRITE(sc, AR_KEYTABLE_MAC1(entry), 0);
1056
1057 AR_WRITE_BARRIER(sc);
1058 }
1059
1060 #ifdef notyet
1061 Static int
1062 athn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
1063 struct ieee80211_key *k)
1064 {
1065 struct athn_softc *sc = ic->ic_ifp->if_softc;
1066 const uint8_t *txmic, *rxmic, *key, *addr;
1067 uintptr_t entry, micentry;
1068 uint32_t type, lo, hi;
1069
1070 switch (k->k_cipher) {
1071 case IEEE80211_CIPHER_WEP40:
1072 type = AR_KEYTABLE_TYPE_40;
1073 break;
1074 case IEEE80211_CIPHER_WEP104:
1075 type = AR_KEYTABLE_TYPE_104;
1076 break;
1077 case IEEE80211_CIPHER_TKIP:
1078 type = AR_KEYTABLE_TYPE_TKIP;
1079 break;
1080 case IEEE80211_CIPHER_CCMP:
1081 type = AR_KEYTABLE_TYPE_CCM;
1082 break;
1083 default:
1084 /* Fallback to software crypto for other ciphers. */
1085 return ieee80211_set_key(ic, ni, k);
1086 }
1087
1088 if (!(k->k_flags & IEEE80211_KEY_GROUP))
1089 entry = IEEE80211_WEP_NKID + IEEE80211_AID(ni->ni_associd);
1090 else
1091 entry = k->k_id;
1092 k->k_priv = (void *)entry;
1093
1094 /* NB: See note about key cache registers access above. */
1095 key = k->k_key;
1096 if (type == AR_KEYTABLE_TYPE_TKIP) {
1097 #ifndef IEEE80211_STA_ONLY
1098 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
1099 txmic = &key[16];
1100 rxmic = &key[24];
1101 } else
1102 #endif
1103 {
1104 rxmic = &key[16];
1105 txmic = &key[24];
1106 }
1107 /* Tx+Rx MIC key is at entry + 64. */
1108 micentry = entry + 64;
1109 AR_WRITE(sc, AR_KEYTABLE_KEY0(micentry), LE_READ_4(&rxmic[0]));
1110 AR_WRITE(sc, AR_KEYTABLE_KEY1(micentry), LE_READ_2(&txmic[2]));
1111
1112 AR_WRITE(sc, AR_KEYTABLE_KEY2(micentry), LE_READ_4(&rxmic[4]));
1113 AR_WRITE(sc, AR_KEYTABLE_KEY3(micentry), LE_READ_2(&txmic[0]));
1114
1115 AR_WRITE(sc, AR_KEYTABLE_KEY4(micentry), LE_READ_4(&txmic[4]));
1116 AR_WRITE(sc, AR_KEYTABLE_TYPE(micentry), AR_KEYTABLE_TYPE_CLR);
1117 }
1118 AR_WRITE(sc, AR_KEYTABLE_KEY0(entry), LE_READ_4(&key[ 0]));
1119 AR_WRITE(sc, AR_KEYTABLE_KEY1(entry), LE_READ_2(&key[ 4]));
1120
1121 AR_WRITE(sc, AR_KEYTABLE_KEY2(entry), LE_READ_4(&key[ 6]));
1122 AR_WRITE(sc, AR_KEYTABLE_KEY3(entry), LE_READ_2(&key[10]));
1123
1124 AR_WRITE(sc, AR_KEYTABLE_KEY4(entry), LE_READ_4(&key[12]));
1125 AR_WRITE(sc, AR_KEYTABLE_TYPE(entry), type);
1126
1127 if (!(k->k_flags & IEEE80211_KEY_GROUP)) {
1128 addr = ni->ni_macaddr;
1129 lo = LE_READ_4(&addr[0]);
1130 hi = LE_READ_2(&addr[4]);
1131 lo = lo >> 1 | hi << 31;
1132 hi = hi >> 1;
1133 } else
1134 lo = hi = 0;
1135 AR_WRITE(sc, AR_KEYTABLE_MAC0(entry), lo);
1136 AR_WRITE(sc, AR_KEYTABLE_MAC1(entry), hi | AR_KEYTABLE_VALID);
1137 AR_WRITE_BARRIER(sc);
1138 return 0;
1139 }
1140
1141 Static void
1142 athn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
1143 struct ieee80211_key *k)
1144 {
1145 struct athn_softc *sc = ic->ic_ifp->if_softc;
1146 uintptr_t entry;
1147
1148 switch (k->k_cipher) {
1149 case IEEE80211_CIPHER_WEP40:
1150 case IEEE80211_CIPHER_WEP104:
1151 case IEEE80211_CIPHER_CCMP:
1152 entry = (uintptr_t)k->k_priv;
1153 athn_reset_key(sc, entry);
1154 break;
1155 case IEEE80211_CIPHER_TKIP:
1156 entry = (uintptr_t)k->k_priv;
1157 athn_reset_key(sc, entry);
1158 athn_reset_key(sc, entry + 64);
1159 break;
1160 default:
1161 /* Fallback to software crypto for other ciphers. */
1162 ieee80211_delete_key(ic, ni, k);
1163 }
1164 }
1165 #endif /* notyet */
1166
1167 PUBLIC void
1168 athn_led_init(struct athn_softc *sc)
1169 {
1170 struct athn_ops *ops = &sc->sc_ops;
1171
1172 ops->gpio_config_output(sc, sc->sc_led_pin, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1173 /* LED off, active low. */
1174 athn_set_led(sc, 0);
1175 }
1176
1177 PUBLIC void
1178 athn_set_led(struct athn_softc *sc, int on)
1179 {
1180 struct athn_ops *ops = &sc->sc_ops;
1181
1182 sc->sc_led_state = on;
1183 ops->gpio_write(sc, sc->sc_led_pin, !sc->sc_led_state);
1184 }
1185
1186 #ifdef ATHN_BT_COEXISTENCE
1187 Static void
1188 athn_btcoex_init(struct athn_softc *sc)
1189 {
1190 struct athn_ops *ops = &sc->sc_ops;
1191 uint32_t reg;
1192
1193 if (sc->sc_flags & ATHN_FLAG_BTCOEX2WIRE) {
1194 /* Connect bt_active to baseband. */
1195 AR_CLRBITS(sc, sc->sc_gpio_input_en_off,
1196 AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_DEF |
1197 AR_GPIO_INPUT_EN_VAL_BT_FREQUENCY_DEF);
1198 AR_SETBITS(sc, sc->sc_gpio_input_en_off,
1199 AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB);
1200
1201 reg = AR_READ(sc, AR_GPIO_INPUT_MUX1);
1202 reg = RW(reg, AR_GPIO_INPUT_MUX1_BT_ACTIVE,
1203 AR_GPIO_BTACTIVE_PIN);
1204 AR_WRITE(sc, AR_GPIO_INPUT_MUX1, reg);
1205 AR_WRITE_BARRIER(sc);
1206
1207 ops->gpio_config_input(sc, AR_GPIO_BTACTIVE_PIN);
1208 } else { /* 3-wire. */
1209 AR_SETBITS(sc, sc->sc_gpio_input_en_off,
1210 AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_BB |
1211 AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB);
1212
1213 reg = AR_READ(sc, AR_GPIO_INPUT_MUX1);
1214 reg = RW(reg, AR_GPIO_INPUT_MUX1_BT_ACTIVE,
1215 AR_GPIO_BTACTIVE_PIN);
1216 reg = RW(reg, AR_GPIO_INPUT_MUX1_BT_PRIORITY,
1217 AR_GPIO_BTPRIORITY_PIN);
1218 AR_WRITE(sc, AR_GPIO_INPUT_MUX1, reg);
1219 AR_WRITE_BARRIER(sc);
1220
1221 ops->gpio_config_input(sc, AR_GPIO_BTACTIVE_PIN);
1222 ops->gpio_config_input(sc, AR_GPIO_BTPRIORITY_PIN);
1223 }
1224 }
1225
1226 Static void
1227 athn_btcoex_enable(struct athn_softc *sc)
1228 {
1229 struct athn_ops *ops = &sc->sc_ops;
1230 uint32_t reg;
1231
1232 if (sc->sc_flags & ATHN_FLAG_BTCOEX3WIRE) {
1233 AR_WRITE(sc, AR_BT_COEX_MODE,
1234 SM(AR_BT_MODE, AR_BT_MODE_SLOTTED) |
1235 SM(AR_BT_PRIORITY_TIME, 2) |
1236 SM(AR_BT_FIRST_SLOT_TIME, 5) |
1237 SM(AR_BT_QCU_THRESH, ATHN_QID_AC_BE) |
1238 AR_BT_TXSTATE_EXTEND | AR_BT_TX_FRAME_EXTEND |
1239 AR_BT_QUIET | AR_BT_RX_CLEAR_POLARITY);
1240 AR_WRITE(sc, AR_BT_COEX_WEIGHT,
1241 SM(AR_BTCOEX_BT_WGHT, AR_STOMP_LOW_BT_WGHT) |
1242 SM(AR_BTCOEX_WL_WGHT, AR_STOMP_LOW_WL_WGHT));
1243 AR_WRITE(sc, AR_BT_COEX_MODE2,
1244 SM(AR_BT_BCN_MISS_THRESH, 50) |
1245 AR_BT_HOLD_RX_CLEAR | AR_BT_DISABLE_BT_ANT);
1246
1247 AR_SETBITS(sc, AR_QUIET1, AR_QUIET1_QUIET_ACK_CTS_ENABLE);
1248 AR_CLRBITS(sc, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX);
1249 AR_WRITE_BARRIER(sc);
1250
1251 ops->gpio_config_output(sc, AR_GPIO_WLANACTIVE_PIN,
1252 AR_GPIO_OUTPUT_MUX_AS_RX_CLEAR_EXTERNAL);
1253
1254 } else { /* 2-wire. */
1255 ops->gpio_config_output(sc, AR_GPIO_WLANACTIVE_PIN,
1256 AR_GPIO_OUTPUT_MUX_AS_TX_FRAME);
1257 }
1258 reg = AR_READ(sc, AR_GPIO_PDPU);
1259 reg &= ~(0x3 << (AR_GPIO_WLANACTIVE_PIN * 2));
1260 reg |= 0x2 << (AR_GPIO_WLANACTIVE_PIN * 2);
1261 AR_WRITE(sc, AR_GPIO_PDPU, reg);
1262 AR_WRITE_BARRIER(sc);
1263
1264 /* Disable PCIe Active State Power Management (ASPM). */
1265 if (sc->sc_disable_aspm != NULL)
1266 sc->sc_disable_aspm(sc);
1267
1268 /* XXX Start periodic timer. */
1269 }
1270
1271 Static void
1272 athn_btcoex_disable(struct athn_softc *sc)
1273 {
1274 struct athn_ops *ops = &sc->sc_ops;
1275
1276 ops->gpio_write(sc, AR_GPIO_WLANACTIVE_PIN, 0);
1277
1278 ops->gpio_config_output(sc, AR_GPIO_WLANACTIVE_PIN,
1279 AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1280
1281 if (sc->sc_flags & ATHN_FLAG_BTCOEX3WIRE) {
1282 AR_WRITE(sc, AR_BT_COEX_MODE,
1283 SM(AR_BT_MODE, AR_BT_MODE_DISABLED) | AR_BT_QUIET);
1284 AR_WRITE(sc, AR_BT_COEX_WEIGHT, 0);
1285 AR_WRITE(sc, AR_BT_COEX_MODE2, 0);
1286 /* XXX Stop periodic timer. */
1287 }
1288 AR_WRITE_BARRIER(sc);
1289 /* XXX Restore ASPM setting? */
1290 }
1291 #endif
1292
1293 Static void
1294 athn_iter_func(void *arg, struct ieee80211_node *ni)
1295 {
1296 struct athn_softc *sc = arg;
1297 struct athn_node *an = (struct athn_node *)ni;
1298
1299 ieee80211_amrr_choose(&sc->sc_amrr, ni, &an->amn);
1300 }
1301
1302 Static void
1303 athn_calib_to(void *arg)
1304 {
1305 extern int ticks;
1306 struct athn_softc *sc = arg;
1307 struct athn_ops *ops = &sc->sc_ops;
1308 struct ieee80211com *ic = &sc->sc_ic;
1309 int s;
1310
1311 s = splnet();
1312
1313 /* Do periodic (every 4 minutes) PA calibration. */
1314 if (AR_SREV_9285_11_OR_LATER(sc) &&
1315 !AR_SREV_9380_10_OR_LATER(sc) &&
1316 (ticks - (sc->sc_pa_calib_ticks + 240 * hz)) >= 0) {
1317 sc->sc_pa_calib_ticks = ticks;
1318 if (AR_SREV_9271(sc))
1319 ar9271_pa_calib(sc);
1320 else
1321 ar9285_pa_calib(sc);
1322 }
1323
1324 /* Do periodic (every 30 seconds) temperature compensation. */
1325 if ((sc->sc_flags & ATHN_FLAG_OLPC) &&
1326 ticks >= sc->sc_olpc_ticks + 30 * hz) {
1327 sc->sc_olpc_ticks = ticks;
1328 ops->olpc_temp_compensation(sc);
1329 }
1330
1331 #ifdef notyet
1332 /* XXX ANI. */
1333 athn_ani_monitor(sc);
1334
1335 ops->next_calib(sc);
1336 #endif
1337 if (ic->ic_fixed_rate == -1) {
1338 if (ic->ic_opmode == IEEE80211_M_STA)
1339 athn_iter_func(sc, ic->ic_bss);
1340 else
1341 ieee80211_iterate_nodes(&ic->ic_sta, athn_iter_func, sc);
1342 }
1343 callout_schedule(&sc->sc_calib_to, hz / 2);
1344 splx(s);
1345 }
1346
1347 Static int
1348 athn_init_calib(struct athn_softc *sc, struct ieee80211_channel *curchan,
1349 struct ieee80211_channel *extchan)
1350 {
1351 struct athn_ops *ops = &sc->sc_ops;
1352 int error;
1353
1354 if (AR_SREV_9380_10_OR_LATER(sc))
1355 error = ar9003_init_calib(sc);
1356 else if (AR_SREV_9285_10_OR_LATER(sc))
1357 error = ar9285_init_calib(sc, curchan, extchan);
1358 else
1359 error = ar5416_init_calib(sc, curchan, extchan);
1360 if (error != 0)
1361 return error;
1362
1363 if (!AR_SREV_9380_10_OR_LATER(sc)) {
1364 /* Do PA calibration. */
1365 if (AR_SREV_9285_11_OR_LATER(sc)) {
1366 extern int ticks;
1367 sc->sc_pa_calib_ticks = ticks;
1368 if (AR_SREV_9271(sc))
1369 ar9271_pa_calib(sc);
1370 else
1371 ar9285_pa_calib(sc);
1372 }
1373 /* Do noisefloor calibration. */
1374 ops->noisefloor_calib(sc);
1375 }
1376 if (AR_SREV_9160_10_OR_LATER(sc)) {
1377 /* Support IQ calibration. */
1378 sc->sc_sup_calib_mask = ATHN_CAL_IQ;
1379 if (AR_SREV_9380_10_OR_LATER(sc)) {
1380 /* Support temperature compensation calibration. */
1381 sc->sc_sup_calib_mask |= ATHN_CAL_TEMP;
1382 } else if (IEEE80211_IS_CHAN_5GHZ(curchan) || extchan != NULL) {
1383 /*
1384 * ADC gain calibration causes uplink throughput
1385 * drops in HT40 mode on AR9287.
1386 */
1387 if (!AR_SREV_9287(sc)) {
1388 /* Support ADC gain calibration. */
1389 sc->sc_sup_calib_mask |= ATHN_CAL_ADC_GAIN;
1390 }
1391 /* Support ADC DC offset calibration. */
1392 sc->sc_sup_calib_mask |= ATHN_CAL_ADC_DC;
1393 }
1394 }
1395 return 0;
1396 }
1397
1398 /*
1399 * Adaptive noise immunity.
1400 */
1401 #ifdef notyet
1402 Static int32_t
1403 athn_ani_get_rssi(struct athn_softc *sc)
1404 {
1405
1406 return 0; /* XXX */
1407 }
1408 #endif /* notyet */
1409
1410 #ifdef notyet
1411 Static void
1412 athn_ani_ofdm_err_trigger(struct athn_softc *sc)
1413 {
1414 struct athn_ani *ani = &sc->sc_ani;
1415 struct athn_ops *ops = &sc->sc_ops;
1416 int32_t rssi;
1417
1418 /* First, raise noise immunity level, up to max. */
1419 if (ani->noise_immunity_level < 4) {
1420 ani->noise_immunity_level++;
1421 ops->set_noise_immunity_level(sc, ani->noise_immunity_level);
1422 return;
1423 }
1424
1425 /* Then, raise our spur immunity level, up to max. */
1426 if (ani->spur_immunity_level < 7) {
1427 ani->spur_immunity_level++;
1428 ops->set_spur_immunity_level(sc, ani->spur_immunity_level);
1429 return;
1430 }
1431
1432 #ifndef IEEE80211_STA_ONLY
1433 if (sc->sc_ic.ic_opmode == IEEE80211_M_HOSTAP) {
1434 if (ani->firstep_level < 2) {
1435 ani->firstep_level++;
1436 ops->set_firstep_level(sc, ani->firstep_level);
1437 }
1438 return;
1439 }
1440 #endif
1441 rssi = athn_ani_get_rssi(sc);
1442 if (rssi > ATHN_ANI_RSSI_THR_HIGH) {
1443 /*
1444 * Beacon RSSI is high, turn off OFDM weak signal detection
1445 * or raise first step level as last resort.
1446 */
1447 if (ani->ofdm_weak_signal) {
1448 ani->ofdm_weak_signal = 0;
1449 ops->disable_ofdm_weak_signal(sc);
1450 ani->spur_immunity_level = 0;
1451 ops->set_spur_immunity_level(sc, 0);
1452 } else if (ani->firstep_level < 2) {
1453 ani->firstep_level++;
1454 ops->set_firstep_level(sc, ani->firstep_level);
1455 }
1456 } else if (rssi > ATHN_ANI_RSSI_THR_LOW) {
1457 /*
1458 * Beacon RSSI is in mid range, we need OFDM weak signal
1459 * detection but we can raise first step level.
1460 */
1461 if (!ani->ofdm_weak_signal) {
1462 ani->ofdm_weak_signal = 1;
1463 ops->enable_ofdm_weak_signal(sc);
1464 }
1465 if (ani->firstep_level < 2) {
1466 ani->firstep_level++;
1467 ops->set_firstep_level(sc, ani->firstep_level);
1468 }
1469 } else if (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) {
1470 /*
1471 * Beacon RSSI is low, if in b/g mode, turn off OFDM weak
1472 * signal detection and zero first step level to maximize
1473 * CCK sensitivity.
1474 */
1475 if (ani->ofdm_weak_signal) {
1476 ani->ofdm_weak_signal = 0;
1477 ops->disable_ofdm_weak_signal(sc);
1478 }
1479 if (ani->firstep_level > 0) {
1480 ani->firstep_level = 0;
1481 ops->set_firstep_level(sc, 0);
1482 }
1483 }
1484 }
1485 #endif /* notyet */
1486
1487 #ifdef notyet
1488 Static void
1489 athn_ani_cck_err_trigger(struct athn_softc *sc)
1490 {
1491 struct athn_ani *ani = &sc->sc_ani;
1492 struct athn_ops *ops = &sc->sc_ops;
1493 int32_t rssi;
1494
1495 /* Raise noise immunity level, up to max. */
1496 if (ani->noise_immunity_level < 4) {
1497 ani->noise_immunity_level++;
1498 ops->set_noise_immunity_level(sc, ani->noise_immunity_level);
1499 return;
1500 }
1501
1502 #ifndef IEEE80211_STA_ONLY
1503 if (sc->sc_ic.ic_opmode == IEEE80211_M_HOSTAP) {
1504 if (ani->firstep_level < 2) {
1505 ani->firstep_level++;
1506 ops->set_firstep_level(sc, ani->firstep_level);
1507 }
1508 return;
1509 }
1510 #endif
1511 rssi = athn_ani_get_rssi(sc);
1512 if (rssi > ATHN_ANI_RSSI_THR_LOW) {
1513 /*
1514 * Beacon RSSI is in mid or high range, raise first step
1515 * level.
1516 */
1517 if (ani->firstep_level < 2) {
1518 ani->firstep_level++;
1519 ops->set_firstep_level(sc, ani->firstep_level);
1520 }
1521 } else if (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) {
1522 /*
1523 * Beacon RSSI is low, zero first step level to maximize
1524 * CCK sensitivity.
1525 */
1526 if (ani->firstep_level > 0) {
1527 ani->firstep_level = 0;
1528 ops->set_firstep_level(sc, 0);
1529 }
1530 }
1531 }
1532 #endif /* notyet */
1533
1534 #ifdef notyet
1535 Static void
1536 athn_ani_lower_immunity(struct athn_softc *sc)
1537 {
1538 struct athn_ani *ani = &sc->sc_ani;
1539 struct athn_ops *ops = &sc->sc_ops;
1540 int32_t rssi;
1541
1542 #ifndef IEEE80211_STA_ONLY
1543 if (sc->sc_ic.ic_opmode == IEEE80211_M_HOSTAP) {
1544 if (ani->firstep_level > 0) {
1545 ani->firstep_level--;
1546 ops->set_firstep_level(sc, ani->firstep_level);
1547 }
1548 return;
1549 }
1550 #endif
1551 rssi = athn_ani_get_rssi(sc);
1552 if (rssi > ATHN_ANI_RSSI_THR_HIGH) {
1553 /*
1554 * Beacon RSSI is high, leave OFDM weak signal detection
1555 * off or it may oscillate.
1556 */
1557 } else if (rssi > ATHN_ANI_RSSI_THR_LOW) {
1558 /*
1559 * Beacon RSSI is in mid range, turn on OFDM weak signal
1560 * detection or lower first step level.
1561 */
1562 if (!ani->ofdm_weak_signal) {
1563 ani->ofdm_weak_signal = 1;
1564 ops->enable_ofdm_weak_signal(sc);
1565 return;
1566 }
1567 if (ani->firstep_level > 0) {
1568 ani->firstep_level--;
1569 ops->set_firstep_level(sc, ani->firstep_level);
1570 return;
1571 }
1572 } else {
1573 /* Beacon RSSI is low, lower first step level. */
1574 if (ani->firstep_level > 0) {
1575 ani->firstep_level--;
1576 ops->set_firstep_level(sc, ani->firstep_level);
1577 return;
1578 }
1579 }
1580 /*
1581 * Lower spur immunity level down to zero, or if all else fails,
1582 * lower noise immunity level down to zero.
1583 */
1584 if (ani->spur_immunity_level > 0) {
1585 ani->spur_immunity_level--;
1586 ops->set_spur_immunity_level(sc, ani->spur_immunity_level);
1587 } else if (ani->noise_immunity_level > 0) {
1588 ani->noise_immunity_level--;
1589 ops->set_noise_immunity_level(sc, ani->noise_immunity_level);
1590 }
1591 }
1592 #endif /* notyet */
1593
1594 #ifdef notyet
1595 Static void
1596 athn_ani_restart(struct athn_softc *sc)
1597 {
1598 struct athn_ani *ani = &sc->sc_ani;
1599
1600 AR_WRITE(sc, AR_PHY_ERR_1, 0);
1601 AR_WRITE(sc, AR_PHY_ERR_2, 0);
1602 AR_WRITE(sc, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING);
1603 AR_WRITE(sc, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING);
1604 AR_WRITE_BARRIER(sc);
1605
1606 ani->listen_time = 0;
1607 ani->ofdm_phy_err_count = 0;
1608 ani->cck_phy_err_count = 0;
1609 }
1610 #endif /* notyet */
1611
1612 #ifdef notyet
1613 Static void
1614 athn_ani_monitor(struct athn_softc *sc)
1615 {
1616 struct athn_ani *ani = &sc->sc_ani;
1617 uint32_t cyccnt, txfcnt, rxfcnt, phy1, phy2;
1618 int32_t cycdelta, txfdelta, rxfdelta;
1619 int32_t listen_time;
1620
1621 txfcnt = AR_READ(sc, AR_TFCNT); /* Tx frame count. */
1622 rxfcnt = AR_READ(sc, AR_RFCNT); /* Rx frame count. */
1623 cyccnt = AR_READ(sc, AR_CCCNT); /* Cycle count. */
1624
1625 if (ani->cyccnt != 0 && ani->cyccnt <= cyccnt) {
1626 cycdelta = cyccnt - ani->cyccnt;
1627 txfdelta = txfcnt - ani->txfcnt;
1628 rxfdelta = rxfcnt - ani->rxfcnt;
1629
1630 listen_time = (cycdelta - txfdelta - rxfdelta) /
1631 (athn_clock_rate(sc) * 1000);
1632 } else
1633 listen_time = 0;
1634
1635 ani->cyccnt = cyccnt;
1636 ani->txfcnt = txfcnt;
1637 ani->rxfcnt = rxfcnt;
1638
1639 if (listen_time < 0) {
1640 athn_ani_restart(sc);
1641 return;
1642 }
1643 ani->listen_time += listen_time;
1644
1645 phy1 = AR_READ(sc, AR_PHY_ERR_1);
1646 phy2 = AR_READ(sc, AR_PHY_ERR_2);
1647
1648 if (phy1 < ani->ofdm_phy_err_base) {
1649 AR_WRITE(sc, AR_PHY_ERR_1, ani->ofdm_phy_err_base);
1650 AR_WRITE(sc, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING);
1651 }
1652 if (phy2 < ani->cck_phy_err_base) {
1653 AR_WRITE(sc, AR_PHY_ERR_2, ani->cck_phy_err_base);
1654 AR_WRITE(sc, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING);
1655 }
1656 if (phy1 < ani->ofdm_phy_err_base || phy2 < ani->cck_phy_err_base) {
1657 AR_WRITE_BARRIER(sc);
1658 return;
1659 }
1660 ani->ofdm_phy_err_count = phy1 - ani->ofdm_phy_err_base;
1661 ani->cck_phy_err_count = phy2 - ani->cck_phy_err_base;
1662
1663 if (ani->listen_time > 5 * ATHN_ANI_PERIOD) {
1664 /* Check to see if we need to lower immunity. */
1665 if (ani->ofdm_phy_err_count <=
1666 ani->listen_time * ani->ofdm_trig_low / 1000 &&
1667 ani->cck_phy_err_count <=
1668 ani->listen_time * ani->cck_trig_low / 1000)
1669 athn_ani_lower_immunity(sc);
1670 athn_ani_restart(sc);
1671
1672 } else if (ani->listen_time > ATHN_ANI_PERIOD) {
1673 /* Check to see if we need to raise immunity. */
1674 if (ani->ofdm_phy_err_count >
1675 ani->listen_time * ani->ofdm_trig_high / 1000) {
1676 athn_ani_ofdm_err_trigger(sc);
1677 athn_ani_restart(sc);
1678 } else if (ani->cck_phy_err_count >
1679 ani->listen_time * ani->cck_trig_high / 1000) {
1680 athn_ani_cck_err_trigger(sc);
1681 athn_ani_restart(sc);
1682 }
1683 }
1684 }
1685 #endif /* notyet */
1686
1687 PUBLIC uint8_t
1688 athn_chan2fbin(struct ieee80211_channel *c)
1689 {
1690
1691 if (IEEE80211_IS_CHAN_2GHZ(c))
1692 return c->ic_freq - 2300;
1693 else
1694 return (c->ic_freq - 4800) / 5;
1695 }
1696
1697 PUBLIC int
1698 athn_interpolate(int x, int x1, int y1, int x2, int y2)
1699 {
1700
1701 if (x1 == x2) /* Prevents division by zero. */
1702 return y1;
1703 /* Linear interpolation. */
1704 return y1 + ((x - x1) * (y2 - y1)) / (x2 - x1);
1705 }
1706
1707 PUBLIC void
1708 athn_get_pier_ival(uint8_t fbin, const uint8_t *pierfreq, int npiers,
1709 int *lo, int *hi)
1710 {
1711 int i;
1712
1713 for (i = 0; i < npiers; i++)
1714 if (pierfreq[i] == AR_BCHAN_UNUSED ||
1715 pierfreq[i] > fbin)
1716 break;
1717 *hi = i;
1718 *lo = *hi - 1;
1719 if (*lo == -1)
1720 *lo = *hi;
1721 else if (*hi == npiers || pierfreq[*hi] == AR_BCHAN_UNUSED)
1722 *hi = *lo;
1723 }
1724
1725 Static void
1726 athn_init_dma(struct athn_softc *sc)
1727 {
1728 uint32_t reg;
1729
1730 if (!AR_SREV_9380_10_OR_LATER(sc)) {
1731 /* Set AHB not to do cacheline prefetches. */
1732 AR_SETBITS(sc, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1733 }
1734 reg = AR_READ(sc, AR_TXCFG);
1735 /* Let MAC DMA reads be in 128-byte chunks. */
1736 reg = RW(reg, AR_TXCFG_DMASZ, AR_DMASZ_128B);
1737
1738 /* Set initial Tx trigger level. */
1739 if (AR_SREV_9285(sc) || AR_SREV_9271(sc))
1740 reg = RW(reg, AR_TXCFG_FTRIG, AR_TXCFG_FTRIG_256B);
1741 else if (!AR_SREV_9380_10_OR_LATER(sc))
1742 reg = RW(reg, AR_TXCFG_FTRIG, AR_TXCFG_FTRIG_512B);
1743 AR_WRITE(sc, AR_TXCFG, reg);
1744
1745 /* Let MAC DMA writes be in 128-byte chunks. */
1746 reg = AR_READ(sc, AR_RXCFG);
1747 reg = RW(reg, AR_RXCFG_DMASZ, AR_DMASZ_128B);
1748 AR_WRITE(sc, AR_RXCFG, reg);
1749
1750 /* Setup Rx FIFO threshold to hold off Tx activities. */
1751 AR_WRITE(sc, AR_RXFIFO_CFG, 512);
1752
1753 /* Reduce the number of entries in PCU TXBUF to avoid wrap around. */
1754 if (AR_SREV_9285(sc)) {
1755 AR_WRITE(sc, AR_PCU_TXBUF_CTRL,
1756 AR9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1757 } else if (!AR_SREV_9271(sc)) {
1758 AR_WRITE(sc, AR_PCU_TXBUF_CTRL,
1759 AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1760 }
1761 AR_WRITE_BARRIER(sc);
1762
1763 /* Reset Tx status ring. */
1764 if (AR_SREV_9380_10_OR_LATER(sc))
1765 ar9003_reset_txsring(sc);
1766 }
1767
1768 PUBLIC void
1769 athn_inc_tx_trigger_level(struct athn_softc *sc)
1770 {
1771 uint32_t reg, ftrig;
1772
1773 reg = AR_READ(sc, AR_TXCFG);
1774 ftrig = MS(reg, AR_TXCFG_FTRIG);
1775 /*
1776 * NB: The AR9285 and all single-stream parts have an issue that
1777 * limits the size of the PCU Tx FIFO to 2KB instead of 4KB.
1778 */
1779 if (ftrig == ((AR_SREV_9285(sc) || AR_SREV_9271(sc)) ? 0x1f : 0x3f))
1780 return; /* Already at max. */
1781 reg = RW(reg, AR_TXCFG_FTRIG, ftrig + 1);
1782 AR_WRITE(sc, AR_TXCFG, reg);
1783 AR_WRITE_BARRIER(sc);
1784 }
1785
1786 PUBLIC int
1787 athn_stop_rx_dma(struct athn_softc *sc)
1788 {
1789 int ntries;
1790
1791 AR_WRITE(sc, AR_CR, AR_CR_RXD);
1792 /* Wait for Rx enable bit to go low. */
1793 for (ntries = 0; ntries < 100; ntries++) {
1794 if (!(AR_READ(sc, AR_CR) & AR_CR_RXE))
1795 return 0;
1796 DELAY(100);
1797 }
1798 DPRINTFN(DBG_RX, sc, "Rx DMA failed to stop\n");
1799 return ETIMEDOUT;
1800 }
1801
1802 #ifdef unused
1803 Static int
1804 athn_rx_abort(struct athn_softc *sc)
1805 {
1806 int ntries;
1807
1808 AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
1809 for (ntries = 0; ntries < 1000; ntries++) {
1810 if (MS(AR_READ(sc, AR_OBS_BUS_1), AR_OBS_BUS_1_RX_STATE) == 0)
1811 return 0;
1812 DELAY(10);
1813 }
1814 DPRINTFN(DBG_RX, sc, "Rx failed to go idle in 10ms\n");
1815 AR_CLRBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
1816 AR_WRITE_BARRIER(sc);
1817 return ETIMEDOUT;
1818 }
1819 #endif /* unused */
1820
1821 Static void
1822 athn_tx_reclaim(struct athn_softc *sc, int qid)
1823 {
1824 struct athn_txq *txq = &sc->sc_txq[qid];
1825 struct athn_tx_buf *bf;
1826
1827 /* Reclaim all buffers queued in the specified Tx queue. */
1828 /* NB: Tx DMA must be stopped. */
1829 while ((bf = SIMPLEQ_FIRST(&txq->head)) != NULL) {
1830 SIMPLEQ_REMOVE_HEAD(&txq->head, bf_list);
1831
1832 bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0,
1833 bf->bf_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1834 bus_dmamap_unload(sc->sc_dmat, bf->bf_map);
1835 m_freem(bf->bf_m);
1836 bf->bf_m = NULL;
1837 bf->bf_ni = NULL; /* Nodes already freed! */
1838
1839 /* Link Tx buffer back to global free list. */
1840 SIMPLEQ_INSERT_TAIL(&sc->sc_txbufs, bf, bf_list);
1841 }
1842 }
1843
1844 PUBLIC int
1845 athn_tx_pending(struct athn_softc *sc, int qid)
1846 {
1847
1848 return MS(AR_READ(sc, AR_QSTS(qid)), AR_Q_STS_PEND_FR_CNT) != 0 ||
1849 (AR_READ(sc, AR_Q_TXE) & (1 << qid)) != 0;
1850 }
1851
1852 PUBLIC void
1853 athn_stop_tx_dma(struct athn_softc *sc, int qid)
1854 {
1855 uint32_t tsflo;
1856 int ntries, i;
1857
1858 AR_WRITE(sc, AR_Q_TXD, 1 << qid);
1859 for (ntries = 0; ntries < 40; ntries++) {
1860 if (!athn_tx_pending(sc, qid))
1861 break;
1862 DELAY(100);
1863 }
1864 if (ntries == 40) {
1865 for (i = 0; i < 2; i++) {
1866 tsflo = AR_READ(sc, AR_TSF_L32) / 1024;
1867 AR_WRITE(sc, AR_QUIET2,
1868 SM(AR_QUIET2_QUIET_DUR, 10));
1869 AR_WRITE(sc, AR_QUIET_PERIOD, 100);
1870 AR_WRITE(sc, AR_NEXT_QUIET_TIMER, tsflo);
1871 AR_SETBITS(sc, AR_TIMER_MODE, AR_QUIET_TIMER_EN);
1872 if (AR_READ(sc, AR_TSF_L32) / 1024 == tsflo)
1873 break;
1874 }
1875 AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
1876 AR_WRITE_BARRIER(sc);
1877 DELAY(200);
1878 AR_CLRBITS(sc, AR_TIMER_MODE, AR_QUIET_TIMER_EN);
1879 AR_WRITE_BARRIER(sc);
1880
1881 for (ntries = 0; ntries < 40; ntries++) {
1882 if (!athn_tx_pending(sc, qid))
1883 break;
1884 DELAY(100);
1885 }
1886
1887 AR_CLRBITS(sc, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
1888 }
1889 AR_WRITE(sc, AR_Q_TXD, 0);
1890 AR_WRITE_BARRIER(sc);
1891 }
1892
1893 PUBLIC int
1894 athn_txtime(struct athn_softc *sc, int len, int ridx, u_int flags)
1895 {
1896 #define divround(a, b) (((a) + (b) - 1) / (b))
1897 int txtime;
1898
1899 /* XXX HT. */
1900 if (athn_rates[ridx].phy == IEEE80211_T_OFDM) {
1901 txtime = divround(8 + 4 * len + 3, athn_rates[ridx].rate);
1902 /* SIFS is 10us for 11g but Signal Extension adds 6us. */
1903 txtime = 16 + 4 + 4 * txtime + 16;
1904 } else {
1905 txtime = divround(16 * len, athn_rates[ridx].rate);
1906 if (ridx != ATHN_RIDX_CCK1 && (flags & IEEE80211_F_SHPREAMBLE))
1907 txtime += 72 + 24;
1908 else
1909 txtime += 144 + 48;
1910 txtime += 10; /* 10us SIFS. */
1911 }
1912 return txtime;
1913 #undef divround
1914 }
1915
1916 PUBLIC void
1917 athn_init_tx_queues(struct athn_softc *sc)
1918 {
1919 int qid;
1920
1921 for (qid = 0; qid < ATHN_QID_COUNT; qid++) {
1922 SIMPLEQ_INIT(&sc->sc_txq[qid].head);
1923 sc->sc_txq[qid].lastds = NULL;
1924 sc->sc_txq[qid].wait = NULL;
1925 sc->sc_txq[qid].queued = 0;
1926
1927 AR_WRITE(sc, AR_DRETRY_LIMIT(qid),
1928 SM(AR_D_RETRY_LIMIT_STA_SH, 32) |
1929 SM(AR_D_RETRY_LIMIT_STA_LG, 32) |
1930 SM(AR_D_RETRY_LIMIT_FR_SH, 10));
1931 AR_WRITE(sc, AR_QMISC(qid),
1932 AR_Q_MISC_DCU_EARLY_TERM_REQ);
1933 AR_WRITE(sc, AR_DMISC(qid),
1934 SM(AR_D_MISC_BKOFF_THRESH, 2) |
1935 AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN);
1936 }
1937
1938 /* Init beacon queue. */
1939 AR_SETBITS(sc, AR_QMISC(ATHN_QID_BEACON),
1940 AR_Q_MISC_FSP_DBA_GATED | AR_Q_MISC_BEACON_USE |
1941 AR_Q_MISC_CBR_INCR_DIS1);
1942 AR_SETBITS(sc, AR_DMISC(ATHN_QID_BEACON),
1943 SM(AR_D_MISC_ARB_LOCKOUT_CNTRL,
1944 AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL) |
1945 AR_D_MISC_BEACON_USE |
1946 AR_D_MISC_POST_FR_BKOFF_DIS);
1947 AR_WRITE(sc, AR_DLCL_IFS(ATHN_QID_BEACON),
1948 SM(AR_D_LCL_IFS_CWMIN, 0) |
1949 SM(AR_D_LCL_IFS_CWMAX, 0) |
1950 SM(AR_D_LCL_IFS_AIFS, 1));
1951
1952 /* Init CAB (Content After Beacon) queue. */
1953 AR_SETBITS(sc, AR_QMISC(ATHN_QID_CAB),
1954 AR_Q_MISC_FSP_DBA_GATED | AR_Q_MISC_CBR_INCR_DIS1 |
1955 AR_Q_MISC_CBR_INCR_DIS0);
1956 AR_SETBITS(sc, AR_DMISC(ATHN_QID_CAB),
1957 SM(AR_D_MISC_ARB_LOCKOUT_CNTRL,
1958 AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL));
1959
1960 /* Init PS-Poll queue. */
1961 AR_SETBITS(sc, AR_QMISC(ATHN_QID_PSPOLL),
1962 AR_Q_MISC_CBR_INCR_DIS1);
1963
1964 /* Init UAPSD queue. */
1965 AR_SETBITS(sc, AR_DMISC(ATHN_QID_UAPSD),
1966 AR_D_MISC_POST_FR_BKOFF_DIS);
1967
1968 if (AR_SREV_9380_10_OR_LATER(sc)) {
1969 /* Enable MAC descriptor CRC check. */
1970 AR_WRITE(sc, AR_Q_DESC_CRCCHK, AR_Q_DESC_CRCCHK_EN);
1971 }
1972 /* Enable DESC interrupts for all Tx queues. */
1973 AR_WRITE(sc, AR_IMR_S0, 0x00ff0000);
1974 /* Enable EOL interrupts for all Tx queues except UAPSD. */
1975 AR_WRITE(sc, AR_IMR_S1, 0x00df0000);
1976 AR_WRITE_BARRIER(sc);
1977 }
1978
1979 PUBLIC void
1980 athn_set_sta_timers(struct athn_softc *sc)
1981 {
1982 struct ieee80211com *ic = &sc->sc_ic;
1983 uint32_t tsfhi, tsflo, tsftu, reg;
1984 uint32_t intval, next_tbtt, next_dtim;
1985 int dtim_period, rem_dtim_count;
1986
1987 tsfhi = AR_READ(sc, AR_TSF_U32);
1988 tsflo = AR_READ(sc, AR_TSF_L32);
1989 tsftu = AR_TSF_TO_TU(tsfhi, tsflo) + AR_FUDGE;
1990
1991 /* Beacon interval in TU. */
1992 intval = ic->ic_bss->ni_intval;
1993
1994 next_tbtt = roundup(tsftu, intval);
1995 #ifdef notyet
1996 dtim_period = ic->ic_dtim_period;
1997 if (dtim_period <= 0)
1998 #endif
1999 dtim_period = 1; /* Assume all TIMs are DTIMs. */
2000
2001 #ifdef notyet
2002 int dtim_count = ic->ic_dtim_count;
2003 if (dtim_count >= dtim_period) /* Should not happen. */
2004 dtim_count = 0; /* Assume last TIM was a DTIM. */
2005 #endif
2006
2007 /* Compute number of remaining TIMs until next DTIM. */
2008 rem_dtim_count = 0; /* XXX */
2009 next_dtim = next_tbtt + rem_dtim_count * intval;
2010
2011 AR_WRITE(sc, AR_NEXT_TBTT_TIMER, next_tbtt * IEEE80211_DUR_TU);
2012 AR_WRITE(sc, AR_BEACON_PERIOD, intval * IEEE80211_DUR_TU);
2013 AR_WRITE(sc, AR_DMA_BEACON_PERIOD, intval * IEEE80211_DUR_TU);
2014
2015 /*
2016 * Set the number of consecutive beacons to miss before raising
2017 * a BMISS interrupt to 10.
2018 */
2019 reg = AR_READ(sc, AR_RSSI_THR);
2020 reg = RW(reg, AR_RSSI_THR_BM_THR, 10);
2021 AR_WRITE(sc, AR_RSSI_THR, reg);
2022
2023 AR_WRITE(sc, AR_NEXT_DTIM,
2024 (next_dtim - AR_SLEEP_SLOP) * IEEE80211_DUR_TU);
2025 AR_WRITE(sc, AR_NEXT_TIM,
2026 (next_tbtt - AR_SLEEP_SLOP) * IEEE80211_DUR_TU);
2027
2028 /* CAB timeout is in 1/8 TU. */
2029 AR_WRITE(sc, AR_SLEEP1,
2030 SM(AR_SLEEP1_CAB_TIMEOUT, AR_CAB_TIMEOUT_VAL * 8) |
2031 AR_SLEEP1_ASSUME_DTIM);
2032 AR_WRITE(sc, AR_SLEEP2,
2033 SM(AR_SLEEP2_BEACON_TIMEOUT, AR_MIN_BEACON_TIMEOUT_VAL));
2034
2035 AR_WRITE(sc, AR_TIM_PERIOD, intval * IEEE80211_DUR_TU);
2036 AR_WRITE(sc, AR_DTIM_PERIOD, dtim_period * intval * IEEE80211_DUR_TU);
2037
2038 AR_SETBITS(sc, AR_TIMER_MODE,
2039 AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN | AR_DTIM_TIMER_EN);
2040
2041 /* Set TSF out-of-range threshold (fixed at 16k us). */
2042 AR_WRITE(sc, AR_TSFOOR_THRESHOLD, 0x4240);
2043
2044 AR_WRITE_BARRIER(sc);
2045 }
2046
2047 #ifndef IEEE80211_STA_ONLY
2048 PUBLIC void
2049 athn_set_hostap_timers(struct athn_softc *sc)
2050 {
2051 struct ieee80211com *ic = &sc->sc_ic;
2052 uint32_t intval, next_tbtt;
2053
2054 /* Beacon interval in TU. */
2055 intval = ic->ic_bss->ni_intval;
2056 next_tbtt = intval;
2057
2058 AR_WRITE(sc, AR_NEXT_TBTT_TIMER, next_tbtt * IEEE80211_DUR_TU);
2059 AR_WRITE(sc, AR_NEXT_DMA_BEACON_ALERT,
2060 (next_tbtt - AR_BEACON_DMA_DELAY) * IEEE80211_DUR_TU);
2061 AR_WRITE(sc, AR_NEXT_CFP,
2062 (next_tbtt - AR_SWBA_DELAY) * IEEE80211_DUR_TU);
2063
2064 AR_WRITE(sc, AR_BEACON_PERIOD, intval * IEEE80211_DUR_TU);
2065 AR_WRITE(sc, AR_DMA_BEACON_PERIOD, intval * IEEE80211_DUR_TU);
2066 AR_WRITE(sc, AR_SWBA_PERIOD, intval * IEEE80211_DUR_TU);
2067 AR_WRITE(sc, AR_NDP_PERIOD, intval * IEEE80211_DUR_TU);
2068
2069 AR_WRITE(sc, AR_TIMER_MODE,
2070 AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN);
2071
2072 AR_WRITE_BARRIER(sc);
2073 }
2074 #endif
2075
2076 PUBLIC void
2077 athn_set_opmode(struct athn_softc *sc)
2078 {
2079 uint32_t reg;
2080
2081 switch (sc->sc_ic.ic_opmode) {
2082 #ifndef IEEE80211_STA_ONLY
2083 case IEEE80211_M_HOSTAP:
2084 reg = AR_READ(sc, AR_STA_ID1);
2085 reg &= ~AR_STA_ID1_ADHOC;
2086 reg |= AR_STA_ID1_STA_AP | AR_STA_ID1_KSRCH_MODE;
2087 AR_WRITE(sc, AR_STA_ID1, reg);
2088
2089 AR_CLRBITS(sc, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
2090 break;
2091 case IEEE80211_M_IBSS:
2092 case IEEE80211_M_AHDEMO:
2093 reg = AR_READ(sc, AR_STA_ID1);
2094 reg &= ~AR_STA_ID1_STA_AP;
2095 reg |= AR_STA_ID1_ADHOC | AR_STA_ID1_KSRCH_MODE;
2096 AR_WRITE(sc, AR_STA_ID1, reg);
2097
2098 AR_SETBITS(sc, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
2099 break;
2100 #endif
2101 default:
2102 reg = AR_READ(sc, AR_STA_ID1);
2103 reg &= ~(AR_STA_ID1_ADHOC | AR_STA_ID1_STA_AP);
2104 reg |= AR_STA_ID1_KSRCH_MODE;
2105 AR_WRITE(sc, AR_STA_ID1, reg);
2106 break;
2107 }
2108 AR_WRITE_BARRIER(sc);
2109 }
2110
2111 PUBLIC void
2112 athn_set_bss(struct athn_softc *sc, struct ieee80211_node *ni)
2113 {
2114 const uint8_t *bssid = ni->ni_bssid;
2115
2116 AR_WRITE(sc, AR_BSS_ID0, LE_READ_4(&bssid[0]));
2117 AR_WRITE(sc, AR_BSS_ID1, LE_READ_2(&bssid[4]) |
2118 SM(AR_BSS_ID1_AID, IEEE80211_AID(ni->ni_associd)));
2119 AR_WRITE_BARRIER(sc);
2120 }
2121
2122 Static void
2123 athn_enable_interrupts(struct athn_softc *sc)
2124 {
2125 uint32_t mask2;
2126
2127 athn_disable_interrupts(sc); /* XXX */
2128
2129 AR_WRITE(sc, AR_IMR, sc->sc_imask);
2130
2131 mask2 = AR_READ(sc, AR_IMR_S2);
2132 mask2 &= ~(AR_IMR_S2_TIM | AR_IMR_S2_DTIM | AR_IMR_S2_DTIMSYNC |
2133 AR_IMR_S2_CABEND | AR_IMR_S2_CABTO | AR_IMR_S2_TSFOOR);
2134 mask2 |= AR_IMR_S2_GTT | AR_IMR_S2_CST;
2135 AR_WRITE(sc, AR_IMR_S2, mask2);
2136
2137 AR_CLRBITS(sc, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
2138
2139 AR_WRITE(sc, AR_IER, AR_IER_ENABLE);
2140
2141 AR_WRITE(sc, AR_INTR_ASYNC_ENABLE, AR_INTR_MAC_IRQ);
2142 AR_WRITE(sc, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
2143
2144 AR_WRITE(sc, AR_INTR_SYNC_ENABLE, sc->sc_isync);
2145 AR_WRITE(sc, AR_INTR_SYNC_MASK, sc->sc_isync);
2146 AR_WRITE_BARRIER(sc);
2147 }
2148
2149 Static void
2150 athn_disable_interrupts(struct athn_softc *sc)
2151 {
2152
2153 AR_WRITE(sc, AR_IER, 0);
2154 (void)AR_READ(sc, AR_IER);
2155
2156 AR_WRITE(sc, AR_INTR_ASYNC_ENABLE, 0);
2157 (void)AR_READ(sc, AR_INTR_ASYNC_ENABLE);
2158
2159 AR_WRITE(sc, AR_INTR_SYNC_ENABLE, 0);
2160 (void)AR_READ(sc, AR_INTR_SYNC_ENABLE);
2161
2162 AR_WRITE(sc, AR_IMR, 0);
2163
2164 AR_CLRBITS(sc, AR_IMR_S2, AR_IMR_S2_TIM | AR_IMR_S2_DTIM |
2165 AR_IMR_S2_DTIMSYNC | AR_IMR_S2_CABEND | AR_IMR_S2_CABTO |
2166 AR_IMR_S2_TSFOOR | AR_IMR_S2_GTT | AR_IMR_S2_CST);
2167
2168 AR_CLRBITS(sc, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
2169 AR_WRITE_BARRIER(sc);
2170 }
2171
2172 Static void
2173 athn_init_qos(struct athn_softc *sc)
2174 {
2175
2176 /* Initialize QoS settings. */
2177 AR_WRITE(sc, AR_MIC_QOS_CONTROL, 0x100aa);
2178 AR_WRITE(sc, AR_MIC_QOS_SELECT, 0x3210);
2179 AR_WRITE(sc, AR_QOS_NO_ACK,
2180 SM(AR_QOS_NO_ACK_TWO_BIT, 2) |
2181 SM(AR_QOS_NO_ACK_BIT_OFF, 5) |
2182 SM(AR_QOS_NO_ACK_BYTE_OFF, 0));
2183 AR_WRITE(sc, AR_TXOP_X, AR_TXOP_X_VAL);
2184 /* Initialize TXOP for all TIDs. */
2185 AR_WRITE(sc, AR_TXOP_0_3, 0xffffffff);
2186 AR_WRITE(sc, AR_TXOP_4_7, 0xffffffff);
2187 AR_WRITE(sc, AR_TXOP_8_11, 0xffffffff);
2188 AR_WRITE(sc, AR_TXOP_12_15, 0xffffffff);
2189 AR_WRITE_BARRIER(sc);
2190 }
2191
2192 PUBLIC int
2193 athn_hw_reset(struct athn_softc *sc, struct ieee80211_channel *curchan,
2194 struct ieee80211_channel *extchan, int init)
2195 {
2196 struct ieee80211com *ic = &sc->sc_ic;
2197 struct athn_ops *ops = &sc->sc_ops;
2198 uint32_t reg, def_ant, sta_id1, cfg_led, tsflo, tsfhi;
2199 int i, error;
2200
2201 /* XXX not if already awake */
2202 if ((error = athn_set_power_awake(sc)) != 0) {
2203 aprint_error_dev(sc->sc_dev, "could not wakeup chip\n");
2204 return error;
2205 }
2206
2207 /* Preserve the antenna on a channel switch. */
2208 if ((def_ant = AR_READ(sc, AR_DEF_ANTENNA)) == 0)
2209 def_ant = 1;
2210 /* Preserve other registers. */
2211 sta_id1 = AR_READ(sc, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
2212 cfg_led = AR_READ(sc, AR_CFG_LED) & (AR_CFG_LED_ASSOC_CTL_M |
2213 AR_CFG_LED_MODE_SEL_M | AR_CFG_LED_BLINK_THRESH_SEL_M |
2214 AR_CFG_LED_BLINK_SLOW);
2215
2216 /* Mark PHY as inactive. */
2217 ops->disable_phy(sc);
2218
2219 if (init && AR_SREV_9271(sc)) {
2220 AR_WRITE(sc, AR9271_RESET_POWER_DOWN_CONTROL,
2221 AR9271_RADIO_RF_RST);
2222 DELAY(50);
2223 }
2224 if (AR_SREV_9280(sc) && (sc->sc_flags & ATHN_FLAG_OLPC)) {
2225 /* Save TSF before it gets cleared. */
2226 tsfhi = AR_READ(sc, AR_TSF_U32);
2227 tsflo = AR_READ(sc, AR_TSF_L32);
2228
2229 /* NB: RTC reset clears TSF. */
2230 error = athn_reset_power_on(sc);
2231 } else {
2232 tsfhi = tsflo = 0; /* XXX: gcc */
2233 error = athn_reset(sc, 0);
2234 }
2235 if (error != 0) {
2236 aprint_error_dev(sc->sc_dev,
2237 "could not reset chip (error=%d)\n", error);
2238 return error;
2239 }
2240
2241 /* XXX not if already awake */
2242 if ((error = athn_set_power_awake(sc)) != 0) {
2243 aprint_error_dev(sc->sc_dev, "could not wakeup chip\n");
2244 return error;
2245 }
2246
2247 athn_init_pll(sc, curchan);
2248 ops->set_rf_mode(sc, curchan);
2249
2250 if (sc->sc_flags & ATHN_FLAG_RFSILENT) {
2251 /* Check that the radio is not disabled by hardware switch. */
2252 reg = ops->gpio_read(sc, sc->sc_rfsilent_pin);
2253 if (sc->sc_flags & ATHN_FLAG_RFSILENT_REVERSED)
2254 reg = !reg;
2255 if (!reg) {
2256 aprint_error_dev(sc->sc_dev,
2257 "radio is disabled by hardware switch\n");
2258 return EPERM;
2259 }
2260 }
2261 if (init && AR_SREV_9271(sc)) {
2262 AR_WRITE(sc, AR9271_RESET_POWER_DOWN_CONTROL,
2263 AR9271_GATE_MAC_CTL);
2264 DELAY(50);
2265 }
2266 if (AR_SREV_9280(sc) && (sc->sc_flags & ATHN_FLAG_OLPC)) {
2267 /* Restore TSF if it got cleared. */
2268 AR_WRITE(sc, AR_TSF_L32, tsflo);
2269 AR_WRITE(sc, AR_TSF_U32, tsfhi);
2270 }
2271
2272 if (AR_SREV_9280_10_OR_LATER(sc))
2273 AR_SETBITS(sc, sc->sc_gpio_input_en_off, AR_GPIO_JTAG_DISABLE);
2274
2275 if (AR_SREV_9287_13_OR_LATER(sc) && !AR_SREV_9380_10_OR_LATER(sc))
2276 ar9287_1_3_enable_async_fifo(sc);
2277
2278 /* Write init values to hardware. */
2279 ops->hw_init(sc, curchan, extchan);
2280
2281 /*
2282 * Only >=AR9280 2.0 parts are capable of encrypting unicast
2283 * management frames using CCMP.
2284 */
2285 if (AR_SREV_9280_20_OR_LATER(sc)) {
2286 reg = AR_READ(sc, AR_AES_MUTE_MASK1);
2287 /* Do not mask the subtype field in management frames. */
2288 reg = RW(reg, AR_AES_MUTE_MASK1_FC0_MGMT, 0xff);
2289 reg = RW(reg, AR_AES_MUTE_MASK1_FC1_MGMT,
2290 (uint32_t)~(IEEE80211_FC1_RETRY | IEEE80211_FC1_PWR_MGT |
2291 IEEE80211_FC1_MORE_DATA));
2292 AR_WRITE(sc, AR_AES_MUTE_MASK1, reg);
2293 } else if (AR_SREV_9160_10_OR_LATER(sc)) {
2294 /* Disable hardware crypto for management frames. */
2295 AR_CLRBITS(sc, AR_PCU_MISC_MODE2,
2296 AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
2297 AR_SETBITS(sc, AR_PCU_MISC_MODE2,
2298 AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
2299 }
2300
2301 if (ic->ic_curmode != IEEE80211_MODE_11B)
2302 ops->set_delta_slope(sc, curchan, extchan);
2303
2304 ops->spur_mitigate(sc, curchan, extchan);
2305 ops->init_from_rom(sc, curchan, extchan);
2306
2307 /* XXX */
2308 AR_WRITE(sc, AR_STA_ID0, LE_READ_4(&ic->ic_myaddr[0]));
2309 AR_WRITE(sc, AR_STA_ID1, LE_READ_2(&ic->ic_myaddr[4]) |
2310 sta_id1 | AR_STA_ID1_RTS_USE_DEF | AR_STA_ID1_CRPT_MIC_ENABLE);
2311
2312 athn_set_opmode(sc);
2313
2314 AR_WRITE(sc, AR_BSSMSKL, 0xffffffff);
2315 AR_WRITE(sc, AR_BSSMSKU, 0xffff);
2316
2317 /* Restore previous antenna. */
2318 AR_WRITE(sc, AR_DEF_ANTENNA, def_ant);
2319
2320 AR_WRITE(sc, AR_BSS_ID0, 0);
2321 AR_WRITE(sc, AR_BSS_ID1, 0);
2322
2323 AR_WRITE(sc, AR_ISR, 0xffffffff);
2324
2325 AR_WRITE(sc, AR_RSSI_THR, SM(AR_RSSI_THR_BM_THR, 7));
2326
2327 if ((error = ops->set_synth(sc, curchan, extchan)) != 0) {
2328 aprint_error_dev(sc->sc_dev, "could not set channel\n");
2329 return error;
2330 }
2331 sc->sc_curchan = curchan;
2332 sc->sc_curchanext = extchan;
2333
2334 for (i = 0; i < AR_NUM_DCU; i++)
2335 AR_WRITE(sc, AR_DQCUMASK(i), 1 << i);
2336
2337 athn_init_tx_queues(sc);
2338
2339 /* Initialize interrupt mask. */
2340 sc->sc_imask =
2341 AR_IMR_TXDESC | AR_IMR_TXEOL |
2342 AR_IMR_RXERR | AR_IMR_RXEOL | AR_IMR_RXORN |
2343 AR_IMR_RXMINTR | AR_IMR_RXINTM |
2344 AR_IMR_GENTMR | AR_IMR_BCNMISC;
2345 if (AR_SREV_9380_10_OR_LATER(sc))
2346 sc->sc_imask |= AR_IMR_RXERR | AR_IMR_HP_RXOK;
2347 #ifndef IEEE80211_STA_ONLY
2348 if (0 && ic->ic_opmode == IEEE80211_M_HOSTAP)
2349 sc->sc_imask |= AR_IMR_MIB;
2350 #endif
2351 AR_WRITE(sc, AR_IMR, sc->sc_imask);
2352 AR_SETBITS(sc, AR_IMR_S2, AR_IMR_S2_GTT);
2353 AR_WRITE(sc, AR_INTR_SYNC_CAUSE, 0xffffffff);
2354 sc->sc_isync = AR_INTR_SYNC_DEFAULT;
2355 if (sc->sc_flags & ATHN_FLAG_RFSILENT)
2356 sc->sc_isync |= AR_INTR_SYNC_GPIO_PIN(sc->sc_rfsilent_pin);
2357 AR_WRITE(sc, AR_INTR_SYNC_ENABLE, sc->sc_isync);
2358 AR_WRITE(sc, AR_INTR_SYNC_MASK, 0);
2359 if (AR_SREV_9380_10_OR_LATER(sc)) {
2360 AR_WRITE(sc, AR_INTR_PRIO_ASYNC_ENABLE, 0);
2361 AR_WRITE(sc, AR_INTR_PRIO_ASYNC_MASK, 0);
2362 AR_WRITE(sc, AR_INTR_PRIO_SYNC_ENABLE, 0);
2363 AR_WRITE(sc, AR_INTR_PRIO_SYNC_MASK, 0);
2364 }
2365
2366 athn_init_qos(sc);
2367
2368 AR_SETBITS(sc, AR_PCU_MISC, AR_PCU_MIC_NEW_LOC_ENA);
2369
2370 if (AR_SREV_9287_13_OR_LATER(sc) && !AR_SREV_9380_10_OR_LATER(sc))
2371 ar9287_1_3_setup_async_fifo(sc);
2372
2373 /* Disable sequence number generation in hardware. */
2374 AR_SETBITS(sc, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
2375
2376 athn_init_dma(sc);
2377
2378 /* Program observation bus to see MAC interrupts. */
2379 AR_WRITE(sc, sc->sc_obs_off, 8);
2380
2381 /* Setup Rx interrupt mitigation. */
2382 AR_WRITE(sc, AR_RIMT, SM(AR_RIMT_FIRST, 2000) | SM(AR_RIMT_LAST, 500));
2383
2384 ops->init_baseband(sc);
2385
2386 if ((error = athn_init_calib(sc, curchan, extchan)) != 0) {
2387 aprint_error_dev(sc->sc_dev,
2388 "could not initialize calibration\n");
2389 return error;
2390 }
2391
2392 ops->set_rxchains(sc);
2393
2394 AR_WRITE(sc, AR_CFG_LED, cfg_led | AR_CFG_SCLK_32KHZ);
2395
2396 if (sc->sc_flags & ATHN_FLAG_USB) {
2397 if (AR_SREV_9271(sc))
2398 AR_WRITE(sc, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
2399 else
2400 AR_WRITE(sc, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
2401 }
2402 #if BYTE_ORDER == BIG_ENDIAN
2403 else {
2404 /* Default is LE, turn on swapping for BE. */
2405 AR_WRITE(sc, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
2406 }
2407 #endif
2408 AR_WRITE_BARRIER(sc);
2409
2410 return 0;
2411 }
2412
2413 Static struct ieee80211_node *
2414 athn_node_alloc(struct ieee80211_node_table *ntp)
2415 {
2416
2417 return malloc(sizeof(struct athn_node), M_DEVBUF,
2418 M_NOWAIT | M_ZERO);
2419 }
2420
2421 Static void
2422 athn_newassoc(struct ieee80211_node *ni, int isnew)
2423 {
2424 struct ieee80211com *ic = ni->ni_ic;
2425 struct athn_softc *sc = ic->ic_ifp->if_softc;
2426 struct athn_node *an = (void *)ni;
2427 struct ieee80211_rateset *rs = &ni->ni_rates;
2428 uint8_t rate;
2429 int ridx, i, j;
2430
2431 ieee80211_amrr_node_init(&sc->sc_amrr, &an->amn);
2432 /* Start at lowest available bit-rate, AMRR will raise. */
2433 ni->ni_txrate = 0;
2434
2435 for (i = 0; i < rs->rs_nrates; i++) {
2436 rate = rs->rs_rates[i] & IEEE80211_RATE_VAL;
2437
2438 /* Map 802.11 rate to HW rate index. */
2439 for (ridx = 0; ridx <= ATHN_RIDX_MAX; ridx++)
2440 if (athn_rates[ridx].rate == rate)
2441 break;
2442 an->ridx[i] = ridx;
2443 DPRINTFN(DBG_STM, sc, "rate %d index %d\n", rate, ridx);
2444
2445 /* Compute fallback rate for retries. */
2446 an->fallback[i] = i;
2447 for (j = i - 1; j >= 0; j--) {
2448 if (athn_rates[an->ridx[j]].phy ==
2449 athn_rates[an->ridx[i]].phy) {
2450 an->fallback[i] = j;
2451 break;
2452 }
2453 }
2454 DPRINTFN(DBG_STM, sc, "%d fallbacks to %d\n",
2455 i, an->fallback[i]);
2456 }
2457 }
2458
2459 Static int
2460 athn_media_change(struct ifnet *ifp)
2461 {
2462 struct athn_softc *sc = ifp->if_softc;
2463 struct ieee80211com *ic = &sc->sc_ic;
2464 uint8_t rate, ridx;
2465 int error;
2466
2467 error = ieee80211_media_change(ifp);
2468 if (error != ENETRESET)
2469 return error;
2470
2471 if (ic->ic_fixed_rate != -1) {
2472 rate = ic->ic_sup_rates[ic->ic_curmode].
2473 rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
2474 /* Map 802.11 rate to HW rate index. */
2475 for (ridx = 0; ridx <= ATHN_RIDX_MAX; ridx++)
2476 if (athn_rates[ridx].rate == rate)
2477 break;
2478 sc->sc_fixed_ridx = ridx;
2479 }
2480 if (IS_UP_AND_RUNNING(ifp)) {
2481 athn_stop(ifp, 0);
2482 error = athn_init(ifp);
2483 }
2484 return error;
2485 }
2486
2487 Static void
2488 athn_next_scan(void *arg)
2489 {
2490 struct athn_softc *sc = arg;
2491 struct ieee80211com *ic = &sc->sc_ic;
2492 int s;
2493
2494 s = splnet();
2495 if (ic->ic_state == IEEE80211_S_SCAN)
2496 ieee80211_next_scan(ic);
2497 splx(s);
2498 }
2499
2500 Static int
2501 athn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2502 {
2503 struct ifnet *ifp = ic->ic_ifp;
2504 struct athn_softc *sc = ifp->if_softc;
2505 uint32_t reg;
2506 int error;
2507
2508 callout_stop(&sc->sc_calib_to);
2509
2510 switch (nstate) {
2511 case IEEE80211_S_INIT:
2512 athn_set_led(sc, 0);
2513 break;
2514 case IEEE80211_S_SCAN:
2515 /* Make the LED blink while scanning. */
2516 athn_set_led(sc, !sc->sc_led_state);
2517 error = athn_switch_chan(sc, ic->ic_curchan, NULL);
2518 if (error != 0)
2519 return error;
2520 callout_schedule(&sc->sc_scan_to, hz / 5);
2521 break;
2522 case IEEE80211_S_AUTH:
2523 athn_set_led(sc, 0);
2524 error = athn_switch_chan(sc, ic->ic_curchan, NULL);
2525 if (error != 0)
2526 return error;
2527 break;
2528 case IEEE80211_S_ASSOC:
2529 break;
2530 case IEEE80211_S_RUN:
2531 athn_set_led(sc, 1);
2532
2533 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2534 break;
2535
2536 /* Fake a join to initialize the Tx rate. */
2537 athn_newassoc(ic->ic_bss, 1);
2538
2539 athn_set_bss(sc, ic->ic_bss);
2540 athn_disable_interrupts(sc);
2541 #ifndef IEEE80211_STA_ONLY
2542 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2543 athn_set_hostap_timers(sc);
2544 /* Enable software beacon alert interrupts. */
2545 sc->sc_imask |= AR_IMR_SWBA;
2546 } else
2547 #endif
2548 {
2549 athn_set_sta_timers(sc);
2550 /* Enable beacon miss interrupts. */
2551 sc->sc_imask |= AR_IMR_BMISS;
2552
2553 /* Stop receiving beacons from other BSS. */
2554 reg = AR_READ(sc, AR_RX_FILTER);
2555 reg = (reg & ~AR_RX_FILTER_BEACON) |
2556 AR_RX_FILTER_MYBEACON;
2557 AR_WRITE(sc, AR_RX_FILTER, reg);
2558 AR_WRITE_BARRIER(sc);
2559 }
2560 athn_enable_interrupts(sc);
2561
2562 if (sc->sc_sup_calib_mask != 0) {
2563 memset(&sc->sc_calib, 0, sizeof(sc->sc_calib));
2564 sc->sc_cur_calib_mask = sc->sc_sup_calib_mask;
2565 /* ops->do_calib(sc); */
2566 }
2567 /* XXX Start ANI. */
2568
2569 callout_schedule(&sc->sc_calib_to, hz / 2);
2570 break;
2571 }
2572
2573 return sc->sc_newstate(ic, nstate, arg);
2574 }
2575
2576 #ifdef notyet_edca
2577 PUBLIC void
2578 athn_updateedca(struct ieee80211com *ic)
2579 {
2580 #define ATHN_EXP2(x) ((1 << (x)) - 1) /* CWmin = 2^ECWmin - 1 */
2581 struct athn_softc *sc = ic->ic_ifp->if_softc;
2582 const struct ieee80211_edca_ac_params *ac;
2583 int aci, qid;
2584
2585 for (aci = 0; aci < EDCA_NUM_AC; aci++) {
2586 ac = &ic->ic_edca_ac[aci];
2587 qid = athn_ac2qid[aci];
2588
2589 AR_WRITE(sc, AR_DLCL_IFS(qid),
2590 SM(AR_D_LCL_IFS_CWMIN, ATHN_EXP2(ac->ac_ecwmin)) |
2591 SM(AR_D_LCL_IFS_CWMAX, ATHN_EXP2(ac->ac_ecwmax)) |
2592 SM(AR_D_LCL_IFS_AIFS, ac->ac_aifsn));
2593 if (ac->ac_txoplimit != 0) {
2594 AR_WRITE(sc, AR_DCHNTIME(qid),
2595 SM(AR_D_CHNTIME_DUR,
2596 IEEE80211_TXOP_TO_US(ac->ac_txoplimit)) |
2597 AR_D_CHNTIME_EN);
2598 } else
2599 AR_WRITE(sc, AR_DCHNTIME(qid), 0);
2600 }
2601 AR_WRITE_BARRIER(sc);
2602 #undef ATHN_EXP2
2603 }
2604 #endif /* notyet_edca */
2605
2606 Static int
2607 athn_clock_rate(struct athn_softc *sc)
2608 {
2609 struct ieee80211com *ic = &sc->sc_ic;
2610 int clockrate; /* MHz. */
2611
2612 if (ic->ic_curmode == IEEE80211_MODE_11A) {
2613 if (sc->sc_flags & ATHN_FLAG_FAST_PLL_CLOCK)
2614 clockrate = AR_CLOCK_RATE_FAST_5GHZ_OFDM;
2615 else
2616 clockrate = AR_CLOCK_RATE_5GHZ_OFDM;
2617 } else if (ic->ic_curmode == IEEE80211_MODE_11B) {
2618 clockrate = AR_CLOCK_RATE_CCK;
2619 } else
2620 clockrate = AR_CLOCK_RATE_2GHZ_OFDM;
2621 #ifndef IEEE80211_NO_HT
2622 if (sc->sc_curchanext != NULL)
2623 clockrate *= 2;
2624 #endif
2625 return clockrate;
2626 }
2627
2628 PUBLIC void
2629 athn_updateslot(struct ifnet *ifp)
2630 {
2631 struct athn_softc *sc = ifp->if_softc;
2632 struct ieee80211com *ic = &sc->sc_ic;
2633 int slot;
2634
2635 slot = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
2636 AR_WRITE(sc, AR_D_GBL_IFS_SLOT, slot * athn_clock_rate(sc));
2637 AR_WRITE_BARRIER(sc);
2638 }
2639
2640 Static void
2641 athn_start(struct ifnet *ifp)
2642 {
2643 struct athn_softc *sc = ifp->if_softc;
2644 struct ieee80211com *ic = &sc->sc_ic;
2645 struct ether_header *eh;
2646 struct ieee80211_node *ni;
2647 struct mbuf *m;
2648
2649 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING
2650 || !device_is_active(sc->sc_dev))
2651 return;
2652
2653 for (;;) {
2654 if (SIMPLEQ_EMPTY(&sc->sc_txbufs)) {
2655 ifp->if_flags |= IFF_OACTIVE;
2656 break;
2657 }
2658 /* Send pending management frames first. */
2659 IF_DEQUEUE(&ic->ic_mgtq, m);
2660 if (m != NULL) {
2661 ni = M_GETCTX(m, struct ieee80211_node *);
2662 goto sendit;
2663 }
2664 if (ic->ic_state != IEEE80211_S_RUN)
2665 break;
2666
2667 /* Encapsulate and send data frames. */
2668 IFQ_DEQUEUE(&ifp->if_snd, m);
2669 if (m == NULL)
2670 break;
2671
2672 if (m->m_len < (int)sizeof(*eh) &&
2673 (m = m_pullup(m, sizeof(*eh))) == NULL) {
2674 if_statinc(ifp, if_oerrors);
2675 continue;
2676 }
2677 eh = mtod(m, struct ether_header *);
2678 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2679 if (ni == NULL) {
2680 m_freem(m);
2681 if_statinc(ifp, if_oerrors);
2682 continue;
2683 }
2684
2685 bpf_mtap(ifp, m, BPF_D_OUT);
2686
2687 if ((m = ieee80211_encap(ic, m, ni)) == NULL)
2688 continue;
2689 sendit:
2690 bpf_mtap3(ic->ic_rawbpf, m, BPF_D_OUT);
2691
2692 if (sc->sc_ops.tx(sc, m, ni, 0) != 0) {
2693 ieee80211_free_node(ni);
2694 if_statinc(ifp, if_oerrors);
2695 continue;
2696 }
2697
2698 sc->sc_tx_timer = 5;
2699 ifp->if_timer = 1;
2700 }
2701 }
2702
2703 Static void
2704 athn_watchdog(struct ifnet *ifp)
2705 {
2706 struct athn_softc *sc = ifp->if_softc;
2707
2708 ifp->if_timer = 0;
2709
2710 if (sc->sc_tx_timer > 0) {
2711 if (--sc->sc_tx_timer == 0) {
2712 aprint_error_dev(sc->sc_dev, "device timeout\n");
2713 /* see athn_init, no need to call athn_stop here */
2714 /* athn_stop(ifp, 0); */
2715 (void)athn_init(ifp);
2716 if_statinc(ifp, if_oerrors);
2717 return;
2718 }
2719 ifp->if_timer = 1;
2720 }
2721 ieee80211_watchdog(&sc->sc_ic);
2722 }
2723
2724 Static void
2725 athn_set_multi(struct athn_softc *sc)
2726 {
2727 struct ethercom *ec = &sc->sc_ec;
2728 struct ifnet *ifp = &ec->ec_if;
2729 struct ether_multi *enm;
2730 struct ether_multistep step;
2731 const uint8_t *addr;
2732 uint32_t val, lo, hi;
2733 uint8_t bit;
2734
2735 if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
2736 lo = hi = 0xffffffff;
2737 goto done2;
2738 }
2739 lo = hi = 0;
2740 ETHER_LOCK(ec);
2741 ETHER_FIRST_MULTI(step, ec, enm);
2742 while (enm != NULL) {
2743 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, 6) != 0) {
2744 ifp->if_flags |= IFF_ALLMULTI;
2745 lo = hi = 0xffffffff;
2746 goto done;
2747 }
2748 addr = enm->enm_addrlo;
2749 /* Calculate the XOR value of all eight 6-bit words. */
2750 val = addr[0] | addr[1] << 8 | addr[2] << 16;
2751 bit = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2752 val = addr[3] | addr[4] << 8 | addr[5] << 16;
2753 bit ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2754 bit &= 0x3f;
2755 if (bit < 32)
2756 lo |= 1 << bit;
2757 else
2758 hi |= 1 << (bit - 32);
2759 ETHER_NEXT_MULTI(step, enm);
2760 }
2761 done:
2762 ETHER_UNLOCK(ec);
2763 done2:
2764 AR_WRITE(sc, AR_MCAST_FIL0, lo);
2765 AR_WRITE(sc, AR_MCAST_FIL1, hi);
2766 AR_WRITE_BARRIER(sc);
2767 }
2768
2769 Static int
2770 athn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2771 {
2772 struct athn_softc *sc = ifp->if_softc;
2773 struct ieee80211com *ic = &sc->sc_ic;
2774 int s, error = 0;
2775
2776 s = splnet();
2777
2778 switch (cmd) {
2779 case SIOCSIFFLAGS:
2780 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2781 break;
2782
2783 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
2784 case IFF_UP | IFF_RUNNING:
2785 #ifdef notyet
2786 if (((ifp->if_flags ^ sc->sc_if_flags) &
2787 (IFF_ALLMULTI | IFF_PROMISC)) != 0)
2788 /* XXX: setup multi */
2789 #endif
2790 break;
2791 case IFF_UP:
2792 athn_init(ifp);
2793 break;
2794
2795 case IFF_RUNNING:
2796 athn_stop(ifp, 1);
2797 break;
2798 case 0:
2799 default:
2800 break;
2801 }
2802 sc->sc_if_flags = ifp->if_flags;
2803 break;
2804
2805 case SIOCADDMULTI:
2806 case SIOCDELMULTI:
2807 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2808 /* setup multicast filter, etc */
2809 athn_set_multi(sc);
2810 error = 0;
2811 }
2812 break;
2813
2814 case SIOCS80211CHANNEL:
2815 error = ieee80211_ioctl(ic, cmd, data);
2816 if (error == ENETRESET &&
2817 ic->ic_opmode == IEEE80211_M_MONITOR) {
2818 if (IS_UP_AND_RUNNING(ifp))
2819 athn_switch_chan(sc, ic->ic_curchan, NULL);
2820 error = 0;
2821 }
2822 break;
2823
2824 default:
2825 error = ieee80211_ioctl(ic, cmd, data);
2826 }
2827
2828 if (error == ENETRESET) {
2829 error = 0;
2830 if (IS_UP_AND_RUNNING(ifp) &&
2831 ic->ic_roaming != IEEE80211_ROAMING_MANUAL) {
2832 athn_stop(ifp, 0);
2833 error = athn_init(ifp);
2834 }
2835 }
2836
2837 splx(s);
2838 return error;
2839 }
2840
2841 Static int
2842 athn_init(struct ifnet *ifp)
2843 {
2844 struct athn_softc *sc = ifp->if_softc;
2845 struct athn_ops *ops = &sc->sc_ops;
2846 struct ieee80211com *ic = &sc->sc_ic;
2847 struct ieee80211_channel *curchan, *extchan;
2848 size_t i;
2849 int error;
2850
2851 KASSERT(!cpu_intr_p());
2852
2853 if (device_is_active(sc->sc_dev)) {
2854 athn_stop(ifp, 0); /* see athn_watchdog() */
2855 } else {
2856 short flags = ifp->if_flags;
2857 ifp->if_flags &= ~IFF_UP;
2858 /* avoid recursion in athn_resume */
2859 if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
2860 !device_is_active(sc->sc_dev)) {
2861 printf("%s: failed to power up device\n",
2862 device_xname(sc->sc_dev));
2863 return 0;
2864 }
2865 ifp->if_flags = flags;
2866 }
2867
2868 curchan = ic->ic_curchan;
2869 extchan = NULL;
2870
2871 /* In case a new MAC address has been configured. */
2872 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2873
2874 #ifdef openbsd_power_management
2875 /* For CardBus, power on the socket. */
2876 if (sc->sc_enable != NULL) {
2877 if ((error = sc->sc_enable(sc)) != 0) {
2878 aprint_error_dev(sc->sc_dev,
2879 "could not enable device\n");
2880 goto fail;
2881 }
2882 if ((error = athn_reset_power_on(sc)) != 0) {
2883 aprint_error_dev(sc->sc_dev,
2884 "could not power on device\n");
2885 goto fail;
2886 }
2887 }
2888 #endif
2889 if (!(sc->sc_flags & ATHN_FLAG_PCIE))
2890 athn_config_nonpcie(sc);
2891 else
2892 athn_config_pcie(sc);
2893
2894 /* Reset HW key cache entries. */
2895 for (i = 0; i < sc->sc_kc_entries; i++)
2896 athn_reset_key(sc, i);
2897
2898 ops->enable_antenna_diversity(sc);
2899
2900 #ifdef ATHN_BT_COEXISTENCE
2901 /* Configure bluetooth coexistence for combo chips. */
2902 if (sc->sc_flags & ATHN_FLAG_BTCOEX)
2903 athn_btcoex_init(sc);
2904 #endif
2905
2906 /* Configure LED. */
2907 athn_led_init(sc);
2908
2909 /* Configure hardware radio switch. */
2910 if (sc->sc_flags & ATHN_FLAG_RFSILENT)
2911 ops->rfsilent_init(sc);
2912
2913 if ((error = athn_hw_reset(sc, curchan, extchan, 1)) != 0) {
2914 aprint_error_dev(sc->sc_dev,
2915 "unable to reset hardware; reset status %d\n", error);
2916 goto fail;
2917 }
2918
2919 /* Enable Rx. */
2920 athn_rx_start(sc);
2921
2922 /* Enable interrupts. */
2923 athn_enable_interrupts(sc);
2924
2925 #ifdef ATHN_BT_COEXISTENCE
2926 /* Enable bluetooth coexistence for combo chips. */
2927 if (sc->sc_flags & ATHN_FLAG_BTCOEX)
2928 athn_btcoex_enable(sc);
2929 #endif
2930
2931 ifp->if_flags &= ~IFF_OACTIVE;
2932 ifp->if_flags |= IFF_RUNNING;
2933
2934 #ifdef notyet
2935 if (ic->ic_flags & IEEE80211_F_WEPON) {
2936 /* Configure WEP keys. */
2937 for (i = 0; i < IEEE80211_WEP_NKID; i++)
2938 athn_set_key(ic, NULL, &ic->ic_nw_keys[i]);
2939 }
2940 #endif
2941 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2942 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2943 else
2944 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2945
2946 return 0;
2947 fail:
2948 athn_stop(ifp, 1);
2949 return error;
2950 }
2951
2952 PUBLIC void
2953 athn_stop(struct ifnet *ifp, int disable)
2954 {
2955 struct athn_softc *sc = ifp->if_softc;
2956 struct ieee80211com *ic = &sc->sc_ic;
2957 int qid;
2958
2959 ifp->if_timer = sc->sc_tx_timer = 0;
2960 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2961
2962 callout_stop(&sc->sc_scan_to);
2963 /* In case we were scanning, release the scan "lock". */
2964 // ic->ic_scan_lock = IEEE80211_SCAN_UNLOCKED; /* XXX:??? */
2965
2966 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2967
2968 #ifdef ATHN_BT_COEXISTENCE
2969 /* Disable bluetooth coexistence for combo chips. */
2970 if (sc->sc_flags & ATHN_FLAG_BTCOEX)
2971 athn_btcoex_disable(sc);
2972 #endif
2973
2974 /* Disable interrupts. */
2975 athn_disable_interrupts(sc);
2976 /* Acknowledge interrupts (avoids interrupt storms). */
2977 AR_WRITE(sc, AR_INTR_SYNC_CAUSE, 0xffffffff);
2978 AR_WRITE(sc, AR_INTR_SYNC_MASK, 0);
2979
2980 for (qid = 0; qid < ATHN_QID_COUNT; qid++)
2981 athn_stop_tx_dma(sc, qid);
2982 /* XXX call athn_hw_reset if Tx still pending? */
2983 for (qid = 0; qid < ATHN_QID_COUNT; qid++)
2984 athn_tx_reclaim(sc, qid);
2985
2986 /* Stop Rx. */
2987 AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
2988 AR_WRITE(sc, AR_MIBC, AR_MIBC_FMC);
2989 AR_WRITE(sc, AR_MIBC, AR_MIBC_CMC);
2990 AR_WRITE(sc, AR_FILT_OFDM, 0);
2991 AR_WRITE(sc, AR_FILT_CCK, 0);
2992 AR_WRITE_BARRIER(sc);
2993 athn_set_rxfilter(sc, 0);
2994 athn_stop_rx_dma(sc);
2995
2996 athn_reset(sc, 0);
2997 athn_init_pll(sc, NULL);
2998 athn_set_power_awake(sc);
2999 athn_reset(sc, 1);
3000 athn_init_pll(sc, NULL);
3001
3002 athn_set_power_sleep(sc);
3003
3004 #if 0 /* XXX: shouldn't the pmf stuff take care of this? */
3005 /* For CardBus, power down the socket. */
3006 if (disable && sc->sc_disable != NULL)
3007 sc->sc_disable(sc);
3008 #endif
3009 if (disable)
3010 pmf_device_recursive_suspend(sc->sc_dev, &sc->sc_qual);
3011 }
3012
3013 Static void
3014 athn_pmf_wlan_off(device_t self)
3015 {
3016 struct athn_softc *sc = device_private(self);
3017 struct ifnet *ifp = &sc->sc_if;
3018
3019 /* Turn the interface down. */
3020 ifp->if_flags &= ~IFF_UP;
3021 athn_stop(ifp, 1);
3022 }
3023
3024 PUBLIC void
3025 athn_suspend(struct athn_softc *sc)
3026 {
3027 struct ifnet *ifp = &sc->sc_if;
3028
3029 if (ifp->if_flags & IFF_RUNNING)
3030 athn_stop(ifp, 1);
3031 }
3032
3033 PUBLIC bool
3034 athn_resume(struct athn_softc *sc)
3035 {
3036 struct ifnet *ifp = &sc->sc_if;
3037
3038 if (ifp->if_flags & IFF_UP)
3039 athn_init(ifp);
3040
3041 return true;
3042 }
3043