athn.c revision 1.3 1 /* $NetBSD: athn.c,v 1.3 2013/04/06 14:57:38 martin Exp $ */
2 /* $OpenBSD: athn.c,v 1.75 2013/01/14 09:50:31 jsing Exp $ */
3
4 /*-
5 * Copyright (c) 2009 Damien Bergamini <damien.bergamini (at) free.fr>
6 * Copyright (c) 2008-2010 Atheros Communications Inc.
7 *
8 * Permission to use, copy, modify, and/or distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /*
22 * Driver for Atheros 802.11a/g/n chipsets.
23 */
24
25 #include <sys/cdefs.h>
26 __KERNEL_RCSID(0, "$NetBSD: athn.c,v 1.3 2013/04/06 14:57:38 martin Exp $");
27
28 #ifndef _MODULE
29 #include "athn_usb.h" /* for NATHN_USB */
30 #endif
31
32 #include <sys/param.h>
33 #include <sys/sockio.h>
34 #include <sys/mbuf.h>
35 #include <sys/kernel.h>
36 #include <sys/socket.h>
37 #include <sys/systm.h>
38 #include <sys/malloc.h>
39 #include <sys/queue.h>
40 #include <sys/callout.h>
41 #include <sys/conf.h>
42 #include <sys/device.h>
43
44 #include <sys/bus.h>
45 #include <sys/endian.h>
46 #include <sys/intr.h>
47
48 #include <net/bpf.h>
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/if_dl.h>
52 #include <net/if_ether.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55
56 #include <netinet/in.h>
57 #include <netinet/in_systm.h>
58 #include <netinet/in_var.h>
59 #include <netinet/ip.h>
60
61 #include <net80211/ieee80211_var.h>
62 #include <net80211/ieee80211_amrr.h>
63 #include <net80211/ieee80211_radiotap.h>
64
65 #include <dev/ic/athnreg.h>
66 #include <dev/ic/athnvar.h>
67 #include <dev/ic/arn5008.h>
68 #include <dev/ic/arn5416.h>
69 #include <dev/ic/arn9003.h>
70 #include <dev/ic/arn9280.h>
71 #include <dev/ic/arn9285.h>
72 #include <dev/ic/arn9287.h>
73 #include <dev/ic/arn9380.h>
74
75 #define Static static
76
77 #define IS_UP_AND_RUNNING(ifp) \
78 (((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING))
79
80 #ifdef ATHN_DEBUG
81 int athn_debug = 0;
82 #endif
83
84 Static int athn_clock_rate(struct athn_softc *);
85 Static const char *
86 athn_get_mac_name(struct athn_softc *);
87 Static const char *
88 athn_get_rf_name(struct athn_softc *);
89 Static int athn_init(struct ifnet *);
90 Static int athn_init_calib(struct athn_softc *,
91 struct ieee80211_channel *, struct ieee80211_channel *);
92 Static int athn_ioctl(struct ifnet *, u_long, void *);
93 Static int athn_media_change(struct ifnet *);
94 Static int athn_newstate(struct ieee80211com *, enum ieee80211_state,
95 int);
96 Static struct ieee80211_node *
97 athn_node_alloc(struct ieee80211_node_table *);
98 Static int athn_reset_power_on(struct athn_softc *);
99 Static int athn_stop_rx_dma(struct athn_softc *);
100 Static int athn_switch_chan(struct athn_softc *,
101 struct ieee80211_channel *, struct ieee80211_channel *);
102 Static void athn_calib_to(void *);
103 Static void athn_disable_interrupts(struct athn_softc *);
104 Static void athn_enable_interrupts(struct athn_softc *);
105 Static void athn_get_chanlist(struct athn_softc *);
106 Static void athn_get_chipid(struct athn_softc *);
107 Static void athn_init_dma(struct athn_softc *);
108 Static void athn_init_qos(struct athn_softc *);
109 Static void athn_init_tx_queues(struct athn_softc *);
110 Static void athn_iter_func(void *, struct ieee80211_node *);
111 Static void athn_newassoc(struct ieee80211_node *, int);
112 Static void athn_next_scan(void *);
113 Static void athn_radiotap_attach(struct athn_softc *);
114 Static void athn_start(struct ifnet *);
115 Static void athn_tx_reclaim(struct athn_softc *, int);
116 Static void athn_watchdog(struct ifnet *);
117 Static void athn_write_serdes(struct athn_softc *,
118 const struct athn_serdes *);
119
120 #ifdef ATHN_BT_COEXISTENCE
121 Static void athn_btcoex_enable(struct athn_softc *);
122 Static void athn_btcoex_disable(struct athn_softc *);
123 #endif
124
125 #ifdef unused
126 Static int32_t athn_ani_get_rssi(struct athn_softc *);
127 Static int athn_rx_abort(struct athn_softc *);
128 #endif
129
130 #ifdef notyet
131 Static void athn_ani_monitor(struct athn_softc *);
132 Static void athn_ani_ofdm_err_trigger(struct athn_softc *);
133 Static void athn_ani_cck_err_trigger(struct athn_softc *);
134 Static void athn_ani_lower_immunity(struct athn_softc *);
135 Static void athn_ani_restart(struct athn_softc *);
136 Static void athn_set_multi(struct athn_softc *);
137 #endif /* notyet */
138
139 Static void athn_pmf_wlan_off(device_t self);
140
141
142 PUBLIC int
143 athn_attach(struct athn_softc *sc)
144 {
145 struct ieee80211com *ic = &sc->sc_ic;
146 struct ifnet *ifp = &sc->sc_if;
147 size_t max_nnodes;
148 int error;
149
150 /* Read hardware revision. */
151 athn_get_chipid(sc);
152
153 if ((error = athn_reset_power_on(sc)) != 0) {
154 aprint_error_dev(sc->sc_dev, "could not reset chip\n");
155 return error;
156 }
157
158 if ((error = athn_set_power_awake(sc)) != 0) {
159 aprint_error_dev(sc->sc_dev, "could not wakeup chip\n");
160 return error;
161 }
162
163 if (AR_SREV_5416(sc) || AR_SREV_9160(sc))
164 error = ar5416_attach(sc);
165 else if (AR_SREV_9280(sc))
166 error = ar9280_attach(sc);
167 else if (AR_SREV_9285(sc))
168 error = ar9285_attach(sc);
169 #if NATHN_USB > 0
170 else if (AR_SREV_9271(sc))
171 error = ar9285_attach(sc);
172 #endif
173 else if (AR_SREV_9287(sc))
174 error = ar9287_attach(sc);
175 else if (AR_SREV_9380(sc) || AR_SREV_9485(sc))
176 error = ar9380_attach(sc);
177 else
178 error = ENOTSUP;
179 if (error != 0) {
180 aprint_error_dev(sc->sc_dev, "could not attach chip\n");
181 return error;
182 }
183
184 pmf_self_suspensor_init(sc->sc_dev, &sc->sc_suspensor, &sc->sc_qual);
185 pmf_event_register(sc->sc_dev, PMFE_RADIO_OFF, athn_pmf_wlan_off,
186 false);
187
188 /* We can put the chip in sleep state now. */
189 athn_set_power_sleep(sc);
190
191 if (!(sc->sc_flags & ATHN_FLAG_USB)) {
192 error = sc->sc_ops.dma_alloc(sc);
193 if (error != 0) {
194 aprint_error_dev(sc->sc_dev,
195 "could not allocate DMA resources\n");
196 return error;
197 }
198 /* Steal one Tx buffer for beacons. */
199 sc->sc_bcnbuf = SIMPLEQ_FIRST(&sc->sc_txbufs);
200 SIMPLEQ_REMOVE_HEAD(&sc->sc_txbufs, bf_list);
201 }
202
203 if (sc->sc_flags & ATHN_FLAG_RFSILENT) {
204 DPRINTFN(DBG_INIT, sc,
205 "found RF switch connected to GPIO pin %d\n",
206 sc->sc_rfsilent_pin);
207 }
208 DPRINTFN(DBG_INIT, sc, "%zd key cache entries\n", sc->sc_kc_entries);
209
210 /*
211 * In HostAP mode, the number of STAs that we can handle is
212 * limited by the number of entries in the HW key cache.
213 * TKIP keys consume 2 entries in the cache.
214 */
215 KASSERT(sc->sc_kc_entries / 2 > IEEE80211_WEP_NKID);
216 max_nnodes = (sc->sc_kc_entries / 2) - IEEE80211_WEP_NKID;
217 if (sc->sc_max_aid != 0) /* we have an override */
218 ic->ic_max_aid = sc->sc_max_aid;
219 if (ic->ic_max_aid > max_nnodes)
220 ic->ic_max_aid = max_nnodes;
221
222 DPRINTFN(DBG_INIT, sc, "using %s loop power control\n",
223 (sc->sc_flags & ATHN_FLAG_OLPC) ? "open" : "closed");
224 DPRINTFN(DBG_INIT, sc, "txchainmask=0x%x rxchainmask=0x%x\n",
225 sc->sc_txchainmask, sc->sc_rxchainmask);
226
227 /* Count the number of bits set (in lowest 3 bits). */
228 sc->sc_ntxchains =
229 ((sc->sc_txchainmask >> 2) & 1) +
230 ((sc->sc_txchainmask >> 1) & 1) +
231 ((sc->sc_txchainmask >> 0) & 1);
232 sc->sc_nrxchains =
233 ((sc->sc_rxchainmask >> 2) & 1) +
234 ((sc->sc_rxchainmask >> 1) & 1) +
235 ((sc->sc_rxchainmask >> 0) & 1);
236
237 if (AR_SINGLE_CHIP(sc)) {
238 aprint_normal(": Atheros %s\n", athn_get_mac_name(sc));
239 aprint_verbose_dev(sc->sc_dev,
240 "rev %d (%dT%dR), ROM rev %d, address %s\n",
241 sc->sc_mac_rev,
242 sc->sc_ntxchains, sc->sc_nrxchains, sc->sc_eep_rev,
243 ether_sprintf(ic->ic_myaddr));
244 }
245 else {
246 aprint_normal(": Atheros %s, RF %s\n", athn_get_mac_name(sc),
247 athn_get_rf_name(sc));
248 aprint_verbose_dev(sc->sc_dev,
249 "rev %d (%dT%dR), ROM rev %d, address %s\n",
250 sc->sc_mac_rev,
251 sc->sc_ntxchains, sc->sc_nrxchains,
252 sc->sc_eep_rev, ether_sprintf(ic->ic_myaddr));
253 }
254
255 callout_init(&sc->sc_scan_to, 0);
256 callout_setfunc(&sc->sc_scan_to, athn_next_scan, sc);
257 callout_init(&sc->sc_calib_to, 0);
258 callout_setfunc(&sc->sc_calib_to, athn_calib_to, sc);
259
260 sc->sc_amrr.amrr_min_success_threshold = 1;
261 sc->sc_amrr.amrr_max_success_threshold = 15;
262
263 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
264 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
265 ic->ic_state = IEEE80211_S_INIT;
266
267 /* Set device capabilities. */
268 ic->ic_caps =
269 IEEE80211_C_WPA | /* 802.11i */
270 #ifndef IEEE80211_STA_ONLY
271 IEEE80211_C_HOSTAP | /* Host AP mode supported. */
272 // XXX? IEEE80211_C_APPMGT | /* Host AP power saving supported. */
273 #endif
274 IEEE80211_C_MONITOR | /* Monitor mode supported. */
275 IEEE80211_C_SHSLOT | /* Short slot time supported. */
276 IEEE80211_C_SHPREAMBLE | /* Short preamble supported. */
277 IEEE80211_C_PMGT; /* Power saving supported. */
278
279 #ifndef IEEE80211_NO_HT
280 if (sc->sc_flags & ATHN_FLAG_11N) {
281 int i, ntxstreams, nrxstreams;
282
283 /* Set HT capabilities. */
284 ic->ic_htcaps =
285 IEEE80211_HTCAP_SMPS_DIS |
286 IEEE80211_HTCAP_CBW20_40 |
287 IEEE80211_HTCAP_SGI40 |
288 IEEE80211_HTCAP_DSSSCCK40;
289 if (AR_SREV_9271(sc) || AR_SREV_9287_10_OR_LATER(sc))
290 ic->ic_htcaps |= IEEE80211_HTCAP_SGI20;
291 if (AR_SREV_9380_10_OR_LATER(sc))
292 ic->ic_htcaps |= IEEE80211_HTCAP_LDPC;
293 if (AR_SREV_9280_10_OR_LATER(sc)) {
294 ic->ic_htcaps |= IEEE80211_HTCAP_TXSTBC;
295 ic->ic_htcaps |= 1 << IEEE80211_HTCAP_RXSTBC_SHIFT;
296 }
297 ntxstreams = sc->sc_ntxchains;
298 nrxstreams = sc->sc_nrxchains;
299 if (!AR_SREV_9380_10_OR_LATER(sc)) {
300 ntxstreams = MIN(ntxstreams, 2);
301 nrxstreams = MIN(nrxstreams, 2);
302 }
303 /* Set supported HT rates. */
304 for (i = 0; i < nrxstreams; i++)
305 ic->ic_sup_mcs[i] = 0xff;
306 /* Set the "Tx MCS Set Defined" bit. */
307 ic->ic_sup_mcs[12] |= 0x01;
308 if (ntxstreams != nrxstreams) {
309 /* Set "Tx Rx MCS Set Not Equal" bit. */
310 ic->ic_sup_mcs[12] |= 0x02;
311 ic->ic_sup_mcs[12] |= (ntxstreams - 1) << 2;
312 }
313 }
314 #endif
315
316 /* Set supported rates. */
317 if (sc->sc_flags & ATHN_FLAG_11G) {
318 ic->ic_sup_rates[IEEE80211_MODE_11B] =
319 ieee80211_std_rateset_11b;
320 ic->ic_sup_rates[IEEE80211_MODE_11G] =
321 ieee80211_std_rateset_11g;
322 }
323 if (sc->sc_flags & ATHN_FLAG_11A) {
324 ic->ic_sup_rates[IEEE80211_MODE_11A] =
325 ieee80211_std_rateset_11a;
326 }
327
328 /* Get the list of authorized/supported channels. */
329 athn_get_chanlist(sc);
330
331 ifp->if_softc = sc;
332 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
333 ifp->if_init = athn_init;
334 ifp->if_ioctl = athn_ioctl;
335 ifp->if_start = athn_start;
336 ifp->if_watchdog = athn_watchdog;
337 IFQ_SET_READY(&ifp->if_snd);
338 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
339
340 if_attach(ifp);
341 ieee80211_ifattach(ic);
342
343 ic->ic_node_alloc = athn_node_alloc;
344 ic->ic_newassoc = athn_newassoc;
345 if (ic->ic_updateslot == NULL)
346 ic->ic_updateslot = athn_updateslot;
347 #ifdef notyet_edca
348 ic->ic_updateedca = athn_updateedca;
349 #endif
350 #ifdef notyet
351 ic->ic_set_key = athn_set_key;
352 ic->ic_delete_key = athn_delete_key;
353 #endif
354
355 /* Override 802.11 state transition machine. */
356 sc->sc_newstate = ic->ic_newstate;
357 ic->ic_newstate = athn_newstate;
358
359 if (sc->sc_media_change == NULL)
360 sc->sc_media_change = athn_media_change;
361 ieee80211_media_init(ic, sc->sc_media_change, ieee80211_media_status);
362
363 athn_radiotap_attach(sc);
364 return 0;
365 }
366
367 PUBLIC void
368 athn_detach(struct athn_softc *sc)
369 {
370 struct ifnet *ifp = &sc->sc_if;
371 int qid;
372
373 callout_halt(&sc->sc_scan_to, NULL);
374 callout_halt(&sc->sc_calib_to, NULL);
375
376 if (!(sc->sc_flags & ATHN_FLAG_USB)) {
377 for (qid = 0; qid < ATHN_QID_COUNT; qid++)
378 athn_tx_reclaim(sc, qid);
379
380 /* Free Tx/Rx DMA resources. */
381 sc->sc_ops.dma_free(sc);
382 }
383 /* Free ROM copy. */
384 if (sc->sc_eep != NULL) {
385 free(sc->sc_eep, M_DEVBUF);
386 sc->sc_eep = NULL;
387 }
388
389 bpf_detach(ifp);
390 ieee80211_ifdetach(&sc->sc_ic);
391 if_detach(ifp);
392
393 callout_destroy(&sc->sc_scan_to);
394 callout_destroy(&sc->sc_calib_to);
395 }
396
397 /*
398 * Attach the interface to 802.11 radiotap.
399 */
400 Static void
401 athn_radiotap_attach(struct athn_softc *sc)
402 {
403
404 bpf_attach2(&sc->sc_if, DLT_IEEE802_11_RADIO,
405 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
406 &sc->sc_drvbpf);
407
408 sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
409 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
410 sc->sc_rxtap.wr_ihdr.it_present = htole32(ATHN_RX_RADIOTAP_PRESENT);
411
412 sc->sc_txtap_len = sizeof(sc->sc_txtapu);
413 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
414 sc->sc_txtap.wt_ihdr.it_present = htole32(ATHN_TX_RADIOTAP_PRESENT);
415 }
416
417 Static void
418 athn_get_chanlist(struct athn_softc *sc)
419 {
420 struct ieee80211com *ic = &sc->sc_ic;
421 uint8_t chan;
422 size_t i;
423
424 if (sc->sc_flags & ATHN_FLAG_11G) {
425 for (i = 1; i <= 14; i++) {
426 chan = i;
427 ic->ic_channels[chan].ic_freq =
428 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
429 ic->ic_channels[chan].ic_flags =
430 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
431 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
432 }
433 }
434 if (sc->sc_flags & ATHN_FLAG_11A) {
435 for (i = 0; i < __arraycount(athn_5ghz_chans); i++) {
436 chan = athn_5ghz_chans[i];
437 ic->ic_channels[chan].ic_freq =
438 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
439 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
440 }
441 }
442 }
443
444 PUBLIC void
445 athn_rx_start(struct athn_softc *sc)
446 {
447 struct ieee80211com *ic = &sc->sc_ic;
448 uint32_t rfilt;
449
450 /* Setup Rx DMA descriptors. */
451 sc->sc_ops.rx_enable(sc);
452
453 /* Set Rx filter. */
454 rfilt = AR_RX_FILTER_UCAST | AR_RX_FILTER_BCAST | AR_RX_FILTER_MCAST;
455 #ifndef IEEE80211_NO_HT
456 /* Want Compressed Block Ack Requests. */
457 rfilt |= AR_RX_FILTER_COMPR_BAR;
458 #endif
459 rfilt |= AR_RX_FILTER_BEACON;
460 if (ic->ic_opmode != IEEE80211_M_STA) {
461 rfilt |= AR_RX_FILTER_PROBEREQ;
462 if (ic->ic_opmode == IEEE80211_M_MONITOR)
463 rfilt |= AR_RX_FILTER_PROM;
464 #ifndef IEEE80211_STA_ONLY
465 if (AR_SREV_9280_10_OR_LATER(sc) &&
466 ic->ic_opmode == IEEE80211_M_HOSTAP)
467 rfilt |= AR_RX_FILTER_PSPOLL;
468 #endif
469 }
470 athn_set_rxfilter(sc, rfilt);
471
472 /* Set BSSID mask. */
473 AR_WRITE(sc, AR_BSSMSKL, 0xffffffff);
474 AR_WRITE(sc, AR_BSSMSKU, 0xffff);
475
476 athn_set_opmode(sc);
477
478 /* Set multicast filter. */
479 AR_WRITE(sc, AR_MCAST_FIL0, 0xffffffff);
480 AR_WRITE(sc, AR_MCAST_FIL1, 0xffffffff);
481
482 AR_WRITE(sc, AR_FILT_OFDM, 0);
483 AR_WRITE(sc, AR_FILT_CCK, 0);
484 AR_WRITE(sc, AR_MIBC, 0);
485 AR_WRITE(sc, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING);
486 AR_WRITE(sc, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING);
487
488 /* XXX ANI. */
489 AR_WRITE(sc, AR_PHY_ERR_1, 0);
490 AR_WRITE(sc, AR_PHY_ERR_2, 0);
491
492 /* Disable HW crypto for now. */
493 AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_ENCRYPT_DIS | AR_DIAG_DECRYPT_DIS);
494
495 /* Start PCU Rx. */
496 AR_CLRBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
497 AR_WRITE_BARRIER(sc);
498 }
499
500 PUBLIC void
501 athn_set_rxfilter(struct athn_softc *sc, uint32_t rfilt)
502 {
503
504 AR_WRITE(sc, AR_RX_FILTER, rfilt);
505 #ifdef notyet
506 reg = AR_READ(sc, AR_PHY_ERR);
507 reg &= (AR_PHY_ERR_RADAR | AR_PHY_ERR_OFDM_TIMING |
508 AR_PHY_ERR_CCK_TIMING);
509 AR_WRITE(sc, AR_PHY_ERR, reg);
510 if (reg != 0)
511 AR_SETBITS(sc, AR_RXCFG, AR_RXCFG_ZLFDMA);
512 else
513 AR_CLRBITS(sc, AR_RXCFG, AR_RXCFG_ZLFDMA);
514 #else
515 AR_WRITE(sc, AR_PHY_ERR, 0);
516 AR_CLRBITS(sc, AR_RXCFG, AR_RXCFG_ZLFDMA);
517 #endif
518 AR_WRITE_BARRIER(sc);
519 }
520
521 PUBLIC int
522 athn_intr(void *xsc)
523 {
524 struct athn_softc *sc = xsc;
525 struct ifnet *ifp = &sc->sc_if;
526
527 if (!IS_UP_AND_RUNNING(ifp))
528 return 0;
529
530 return sc->sc_ops.intr(sc);
531 }
532
533 Static void
534 athn_get_chipid(struct athn_softc *sc)
535 {
536 uint32_t reg;
537
538 reg = AR_READ(sc, AR_SREV);
539 if (MS(reg, AR_SREV_ID) == 0xff) {
540 sc->sc_mac_ver = MS(reg, AR_SREV_VERSION2);
541 sc->sc_mac_rev = MS(reg, AR_SREV_REVISION2);
542 if (!(reg & AR_SREV_TYPE2_HOST_MODE))
543 sc->sc_flags |= ATHN_FLAG_PCIE;
544 }
545 else {
546 sc->sc_mac_ver = MS(reg, AR_SREV_VERSION);
547 sc->sc_mac_rev = MS(reg, AR_SREV_REVISION);
548 if (sc->sc_mac_ver == AR_SREV_VERSION_5416_PCIE)
549 sc->sc_flags |= ATHN_FLAG_PCIE;
550 }
551 }
552
553 Static const char *
554 athn_get_mac_name(struct athn_softc *sc)
555 {
556
557 switch (sc->sc_mac_ver) {
558 case AR_SREV_VERSION_5416_PCI:
559 return "AR5416";
560 case AR_SREV_VERSION_5416_PCIE:
561 return "AR5418";
562 case AR_SREV_VERSION_9160:
563 return "AR9160";
564 case AR_SREV_VERSION_9280:
565 return "AR9280";
566 case AR_SREV_VERSION_9285:
567 return "AR9285";
568 case AR_SREV_VERSION_9271:
569 return "AR9271";
570 case AR_SREV_VERSION_9287:
571 return "AR9287";
572 case AR_SREV_VERSION_9380:
573 return "AR9380";
574 case AR_SREV_VERSION_9485:
575 return "AR9485";
576 default:
577 return "unknown";
578 }
579 }
580
581 /*
582 * Return RF chip name (not for single-chip solutions).
583 */
584 Static const char *
585 athn_get_rf_name(struct athn_softc *sc)
586 {
587
588 KASSERT(!AR_SINGLE_CHIP(sc));
589
590 switch (sc->sc_rf_rev) {
591 case AR_RAD5133_SREV_MAJOR: /* Dual-band 3T3R. */
592 return "AR5133";
593 case AR_RAD2133_SREV_MAJOR: /* Single-band 3T3R. */
594 return "AR2133";
595 case AR_RAD5122_SREV_MAJOR: /* Dual-band 2T2R. */
596 return "AR5122";
597 case AR_RAD2122_SREV_MAJOR: /* Single-band 2T2R. */
598 return "AR2122";
599 default:
600 return "unknown";
601 }
602 }
603
604 PUBLIC int
605 athn_reset_power_on(struct athn_softc *sc)
606 {
607 int ntries;
608
609 /* Set force wake. */
610 AR_WRITE(sc, AR_RTC_FORCE_WAKE,
611 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
612
613 if (!AR_SREV_9380_10_OR_LATER(sc)) {
614 /* Make sure no DMA is active by doing an AHB reset. */
615 AR_WRITE(sc, AR_RC, AR_RC_AHB);
616 }
617 /* RTC reset and clear. */
618 AR_WRITE(sc, AR_RTC_RESET, 0);
619 AR_WRITE_BARRIER(sc);
620 DELAY(2);
621 if (!AR_SREV_9380_10_OR_LATER(sc))
622 AR_WRITE(sc, AR_RC, 0);
623 AR_WRITE(sc, AR_RTC_RESET, 1);
624
625 /* Poll until RTC is ON. */
626 for (ntries = 0; ntries < 1000; ntries++) {
627 if ((AR_READ(sc, AR_RTC_STATUS) & AR_RTC_STATUS_M) ==
628 AR_RTC_STATUS_ON)
629 break;
630 DELAY(10);
631 }
632 if (ntries == 1000) {
633 DPRINTFN(DBG_INIT, sc, "RTC not waking up\n");
634 return ETIMEDOUT;
635 }
636 return athn_reset(sc, 0);
637 }
638
639 PUBLIC int
640 athn_reset(struct athn_softc *sc, int cold_reset)
641 {
642 int ntries;
643
644 /* Set force wake. */
645 AR_WRITE(sc, AR_RTC_FORCE_WAKE,
646 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
647
648 if (AR_READ(sc, AR_INTR_SYNC_CAUSE) &
649 (AR_INTR_SYNC_LOCAL_TIMEOUT | AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
650 AR_WRITE(sc, AR_INTR_SYNC_ENABLE, 0);
651 AR_WRITE(sc, AR_RC, AR_RC_HOSTIF |
652 (!AR_SREV_9380_10_OR_LATER(sc) ? AR_RC_AHB : 0));
653 }
654 else if (!AR_SREV_9380_10_OR_LATER(sc))
655 AR_WRITE(sc, AR_RC, AR_RC_AHB);
656
657 AR_WRITE(sc, AR_RTC_RC, AR_RTC_RC_MAC_WARM |
658 (cold_reset ? AR_RTC_RC_MAC_COLD : 0));
659 AR_WRITE_BARRIER(sc);
660 DELAY(50);
661 AR_WRITE(sc, AR_RTC_RC, 0);
662 for (ntries = 0; ntries < 1000; ntries++) {
663 if (!(AR_READ(sc, AR_RTC_RC) &
664 (AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD)))
665 break;
666 DELAY(10);
667 }
668 if (ntries == 1000) {
669 DPRINTFN(DBG_INIT, sc, "RTC stuck in MAC reset\n");
670 return ETIMEDOUT;
671 }
672 AR_WRITE(sc, AR_RC, 0);
673 AR_WRITE_BARRIER(sc);
674 return 0;
675 }
676
677 PUBLIC int
678 athn_set_power_awake(struct athn_softc *sc)
679 {
680 int ntries, error;
681
682 /* Do a Power-On-Reset if shutdown. */
683 if ((AR_READ(sc, AR_RTC_STATUS) & AR_RTC_STATUS_M) ==
684 AR_RTC_STATUS_SHUTDOWN) {
685 if ((error = athn_reset_power_on(sc)) != 0)
686 return error;
687 if (!AR_SREV_9380_10_OR_LATER(sc))
688 athn_init_pll(sc, NULL);
689 }
690 AR_SETBITS(sc, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
691 AR_WRITE_BARRIER(sc);
692 DELAY(50); /* Give chip the chance to awake. */
693
694 /* Poll until RTC is ON. */
695 for (ntries = 0; ntries < 4000; ntries++) {
696 if ((AR_READ(sc, AR_RTC_STATUS) & AR_RTC_STATUS_M) ==
697 AR_RTC_STATUS_ON)
698 break;
699 DELAY(50);
700 AR_SETBITS(sc, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
701 }
702 if (ntries == 4000) {
703 DPRINTFN(DBG_INIT, sc, "RTC not waking up\n");
704 return ETIMEDOUT;
705 }
706
707 AR_CLRBITS(sc, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
708 AR_WRITE_BARRIER(sc);
709 return 0;
710 }
711
712 PUBLIC void
713 athn_set_power_sleep(struct athn_softc *sc)
714 {
715
716 AR_SETBITS(sc, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
717 /* Allow the MAC to go to sleep. */
718 AR_CLRBITS(sc, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
719 if (!AR_SREV_9380_10_OR_LATER(sc))
720 AR_WRITE(sc, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
721 /*
722 * NB: Clearing RTC_RESET_EN when setting the chip to sleep mode
723 * results in high power consumption on AR5416 chipsets.
724 */
725 if (!AR_SREV_5416(sc) && !AR_SREV_9271(sc))
726 AR_CLRBITS(sc, AR_RTC_RESET, AR_RTC_RESET_EN);
727 AR_WRITE_BARRIER(sc);
728 }
729
730 PUBLIC void
731 athn_init_pll(struct athn_softc *sc, const struct ieee80211_channel *c)
732 {
733 uint32_t pll;
734
735 if (AR_SREV_9380_10_OR_LATER(sc)) {
736 if (AR_SREV_9485(sc))
737 AR_WRITE(sc, AR_RTC_PLL_CONTROL2, 0x886666);
738 pll = SM(AR_RTC_9160_PLL_REFDIV, 0x5);
739 pll |= SM(AR_RTC_9160_PLL_DIV, 0x2c);
740 }
741 else if (AR_SREV_9280_10_OR_LATER(sc)) {
742 pll = SM(AR_RTC_9160_PLL_REFDIV, 0x05);
743 if (c != NULL && IEEE80211_IS_CHAN_5GHZ(c)) {
744 if (sc->sc_flags & ATHN_FLAG_FAST_PLL_CLOCK)
745 pll = 0x142c;
746 else if (AR_SREV_9280_20(sc))
747 pll = 0x2850;
748 else
749 pll |= SM(AR_RTC_9160_PLL_DIV, 0x28);
750 }
751 else
752 pll |= SM(AR_RTC_9160_PLL_DIV, 0x2c);
753 }
754 else if (AR_SREV_9160_10_OR_LATER(sc)) {
755 pll = SM(AR_RTC_9160_PLL_REFDIV, 0x05);
756 if (c != NULL && IEEE80211_IS_CHAN_5GHZ(c))
757 pll |= SM(AR_RTC_9160_PLL_DIV, 0x50);
758 else
759 pll |= SM(AR_RTC_9160_PLL_DIV, 0x58);
760 }
761 else {
762 pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
763 if (c != NULL && IEEE80211_IS_CHAN_5GHZ(c))
764 pll |= SM(AR_RTC_PLL_DIV, 0x0a);
765 else
766 pll |= SM(AR_RTC_PLL_DIV, 0x0b);
767 }
768 DPRINTFN(DBG_INIT, sc, "AR_RTC_PLL_CONTROL=0x%08x\n", pll);
769 AR_WRITE(sc, AR_RTC_PLL_CONTROL, pll);
770 if (AR_SREV_9271(sc)) {
771 /* Switch core clock to 117MHz. */
772 AR_WRITE_BARRIER(sc);
773 DELAY(500);
774 AR_WRITE(sc, 0x50050, 0x304);
775 }
776 AR_WRITE_BARRIER(sc);
777 DELAY(100);
778 AR_WRITE(sc, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
779 AR_WRITE_BARRIER(sc);
780 }
781
782 Static void
783 athn_write_serdes(struct athn_softc *sc, const struct athn_serdes *serdes)
784 {
785 int i;
786
787 /* Write sequence to Serializer/Deserializer. */
788 for (i = 0; i < serdes->nvals; i++)
789 AR_WRITE(sc, serdes->regs[i], serdes->vals[i]);
790 AR_WRITE_BARRIER(sc);
791 }
792
793 PUBLIC void
794 athn_config_pcie(struct athn_softc *sc)
795 {
796
797 /* Disable PLL when in L0s as well as receiver clock when in L1. */
798 athn_write_serdes(sc, sc->sc_serdes);
799
800 DELAY(1000);
801 /* Allow forcing of PCIe core into L1 state. */
802 AR_SETBITS(sc, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
803
804 #ifndef ATHN_PCIE_WAEN
805 AR_WRITE(sc, AR_WA, sc->sc_workaround);
806 #else
807 AR_WRITE(sc, AR_WA, ATHN_PCIE_WAEN);
808 #endif
809 AR_WRITE_BARRIER(sc);
810 }
811
812 /*
813 * Serializer/Deserializer programming for non-PCIe devices.
814 */
815 static const uint32_t ar_nonpcie_serdes_regs[] = {
816 AR_PCIE_SERDES,
817 AR_PCIE_SERDES,
818 AR_PCIE_SERDES,
819 AR_PCIE_SERDES,
820 AR_PCIE_SERDES,
821 AR_PCIE_SERDES,
822 AR_PCIE_SERDES,
823 AR_PCIE_SERDES,
824 AR_PCIE_SERDES,
825 AR_PCIE_SERDES2,
826 };
827
828 static const uint32_t ar_nonpcie_serdes_vals[] = {
829 0x9248fc00,
830 0x24924924,
831 0x28000029,
832 0x57160824,
833 0x25980579,
834 0x00000000,
835 0x1aaabe40,
836 0xbe105554,
837 0x000e1007,
838 0x00000000
839 };
840
841 static const struct athn_serdes ar_nonpcie_serdes = {
842 __arraycount(ar_nonpcie_serdes_vals),
843 ar_nonpcie_serdes_regs,
844 ar_nonpcie_serdes_vals
845 };
846
847 PUBLIC void
848 athn_config_nonpcie(struct athn_softc *sc)
849 {
850
851 athn_write_serdes(sc, &ar_nonpcie_serdes);
852 }
853
854 PUBLIC int
855 athn_set_chan(struct athn_softc *sc, struct ieee80211_channel *curchan,
856 struct ieee80211_channel *extchan)
857 {
858 struct athn_ops *ops = &sc->sc_ops;
859 int error, qid;
860
861 /* Check that Tx is stopped, otherwise RF Bus grant will not work. */
862 for (qid = 0; qid < ATHN_QID_COUNT; qid++)
863 if (athn_tx_pending(sc, qid))
864 return EBUSY;
865
866 /* Request RF Bus grant. */
867 if ((error = ops->rf_bus_request(sc)) != 0)
868 return error;
869
870 ops->set_phy(sc, curchan, extchan);
871
872 /* Change the synthesizer. */
873 if ((error = ops->set_synth(sc, curchan, extchan)) != 0)
874 return error;
875
876 sc->sc_curchan = curchan;
877 sc->sc_curchanext = extchan;
878
879 /* Set transmit power values for new channel. */
880 ops->set_txpower(sc, curchan, extchan);
881
882 /* Release the RF Bus grant. */
883 ops->rf_bus_release(sc);
884
885 /* Write delta slope coeffs for modes where OFDM may be used. */
886 if (sc->sc_ic.ic_curmode != IEEE80211_MODE_11B)
887 ops->set_delta_slope(sc, curchan, extchan);
888
889 ops->spur_mitigate(sc, curchan, extchan);
890 /* XXX Load noisefloor values and start calibration. */
891
892 return 0;
893 }
894
895 Static int
896 athn_switch_chan(struct athn_softc *sc, struct ieee80211_channel *curchan,
897 struct ieee80211_channel *extchan)
898 {
899 int error, qid;
900
901 /* Disable interrupts. */
902 athn_disable_interrupts(sc);
903
904 /* Stop all Tx queues. */
905 for (qid = 0; qid < ATHN_QID_COUNT; qid++)
906 athn_stop_tx_dma(sc, qid);
907 for (qid = 0; qid < ATHN_QID_COUNT; qid++)
908 athn_tx_reclaim(sc, qid);
909
910 /* Stop Rx. */
911 AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
912 AR_WRITE(sc, AR_MIBC, AR_MIBC_FMC);
913 AR_WRITE(sc, AR_MIBC, AR_MIBC_CMC);
914 AR_WRITE(sc, AR_FILT_OFDM, 0);
915 AR_WRITE(sc, AR_FILT_CCK, 0);
916 athn_set_rxfilter(sc, 0);
917 error = athn_stop_rx_dma(sc);
918 if (error != 0)
919 goto reset;
920
921 #ifdef notyet
922 /* AR9280 needs a full reset. */
923 if (AR_SREV_9280(sc))
924 #endif
925 goto reset;
926
927 /* If band or bandwidth changes, we need to do a full reset. */
928 if (curchan->ic_flags != sc->sc_curchan->ic_flags ||
929 ((extchan != NULL) ^ (sc->sc_curchanext != NULL))) {
930 DPRINTFN(DBG_RF, sc, "channel band switch\n");
931 goto reset;
932 }
933 error = athn_set_power_awake(sc);
934 if (error != 0)
935 goto reset;
936
937 error = athn_set_chan(sc, curchan, extchan);
938 if (error != 0) {
939 reset: /* Error found, try a full reset. */
940 DPRINTFN(DBG_RF, sc, "needs a full reset\n");
941 error = athn_hw_reset(sc, curchan, extchan, 0);
942 if (error != 0) /* Hopeless case. */
943 return error;
944 }
945 athn_rx_start(sc);
946
947 /* Re-enable interrupts. */
948 athn_enable_interrupts(sc);
949 return 0;
950 }
951
952 PUBLIC void
953 athn_get_delta_slope(uint32_t coeff, uint32_t *exponent, uint32_t *mantissa)
954 {
955 #define COEFF_SCALE_SHIFT 24
956 uint32_t exp, man;
957
958 /* exponent = 14 - floor(log2(coeff)) */
959 for (exp = 31; exp > 0; exp--)
960 if (coeff & (1 << exp))
961 break;
962 exp = 14 - (exp - COEFF_SCALE_SHIFT);
963
964 /* mantissa = floor(coeff * 2^exponent + 0.5) */
965 man = coeff + (1 << (COEFF_SCALE_SHIFT - exp - 1));
966
967 *mantissa = man >> (COEFF_SCALE_SHIFT - exp);
968 *exponent = exp - 16;
969 #undef COEFF_SCALE_SHIFT
970 }
971
972 PUBLIC void
973 athn_reset_key(struct athn_softc *sc, int entry)
974 {
975
976 /*
977 * NB: Key cache registers access special memory area that requires
978 * two 32-bit writes to actually update the values in the internal
979 * memory. Consequently, writes must be grouped by pair.
980 */
981 AR_WRITE(sc, AR_KEYTABLE_KEY0(entry), 0);
982 AR_WRITE(sc, AR_KEYTABLE_KEY1(entry), 0);
983
984 AR_WRITE(sc, AR_KEYTABLE_KEY2(entry), 0);
985 AR_WRITE(sc, AR_KEYTABLE_KEY3(entry), 0);
986
987 AR_WRITE(sc, AR_KEYTABLE_KEY4(entry), 0);
988 AR_WRITE(sc, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
989
990 AR_WRITE(sc, AR_KEYTABLE_MAC0(entry), 0);
991 AR_WRITE(sc, AR_KEYTABLE_MAC1(entry), 0);
992
993 AR_WRITE_BARRIER(sc);
994 }
995
996 #ifdef notyet
997 Static int
998 athn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
999 struct ieee80211_key *k)
1000 {
1001 struct athn_softc *sc = ic->ic_ifp->if_softc;
1002 const uint8_t *txmic, *rxmic, *key, *addr;
1003 uintptr_t entry, micentry;
1004 uint32_t type, lo, hi;
1005
1006 switch (k->k_cipher) {
1007 case IEEE80211_CIPHER_WEP40:
1008 type = AR_KEYTABLE_TYPE_40;
1009 break;
1010 case IEEE80211_CIPHER_WEP104:
1011 type = AR_KEYTABLE_TYPE_104;
1012 break;
1013 case IEEE80211_CIPHER_TKIP:
1014 type = AR_KEYTABLE_TYPE_TKIP;
1015 break;
1016 case IEEE80211_CIPHER_CCMP:
1017 type = AR_KEYTABLE_TYPE_CCM;
1018 break;
1019 default:
1020 /* Fallback to software crypto for other ciphers. */
1021 return ieee80211_set_key(ic, ni, k);
1022 }
1023
1024 if (!(k->k_flags & IEEE80211_KEY_GROUP))
1025 entry = IEEE80211_WEP_NKID + IEEE80211_AID(ni->ni_associd);
1026 else
1027 entry = k->k_id;
1028 k->k_priv = (void *)entry;
1029
1030 /* NB: See note about key cache registers access above. */
1031 key = k->k_key;
1032 if (type == AR_KEYTABLE_TYPE_TKIP) {
1033 #ifndef IEEE80211_STA_ONLY
1034 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
1035 txmic = &key[16];
1036 rxmic = &key[24];
1037 }
1038 else
1039 #endif
1040 {
1041 rxmic = &key[16];
1042 txmic = &key[24];
1043 }
1044 /* Tx+Rx MIC key is at entry + 64. */
1045 micentry = entry + 64;
1046 AR_WRITE(sc, AR_KEYTABLE_KEY0(micentry), LE_READ_4(&rxmic[0]));
1047 AR_WRITE(sc, AR_KEYTABLE_KEY1(micentry), LE_READ_2(&txmic[2]));
1048
1049 AR_WRITE(sc, AR_KEYTABLE_KEY2(micentry), LE_READ_4(&rxmic[4]));
1050 AR_WRITE(sc, AR_KEYTABLE_KEY3(micentry), LE_READ_2(&txmic[0]));
1051
1052 AR_WRITE(sc, AR_KEYTABLE_KEY4(micentry), LE_READ_4(&txmic[4]));
1053 AR_WRITE(sc, AR_KEYTABLE_TYPE(micentry), AR_KEYTABLE_TYPE_CLR);
1054 }
1055 AR_WRITE(sc, AR_KEYTABLE_KEY0(entry), LE_READ_4(&key[ 0]));
1056 AR_WRITE(sc, AR_KEYTABLE_KEY1(entry), LE_READ_2(&key[ 4]));
1057
1058 AR_WRITE(sc, AR_KEYTABLE_KEY2(entry), LE_READ_4(&key[ 6]));
1059 AR_WRITE(sc, AR_KEYTABLE_KEY3(entry), LE_READ_2(&key[10]));
1060
1061 AR_WRITE(sc, AR_KEYTABLE_KEY4(entry), LE_READ_4(&key[12]));
1062 AR_WRITE(sc, AR_KEYTABLE_TYPE(entry), type);
1063
1064 if (!(k->k_flags & IEEE80211_KEY_GROUP)) {
1065 addr = ni->ni_macaddr;
1066 lo = LE_READ_4(&addr[0]);
1067 hi = LE_READ_2(&addr[4]);
1068 lo = lo >> 1 | hi << 31;
1069 hi = hi >> 1;
1070 }
1071 else
1072 lo = hi = 0;
1073 AR_WRITE(sc, AR_KEYTABLE_MAC0(entry), lo);
1074 AR_WRITE(sc, AR_KEYTABLE_MAC1(entry), hi | AR_KEYTABLE_VALID);
1075 AR_WRITE_BARRIER(sc);
1076 return 0;
1077 }
1078
1079 Static void
1080 athn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
1081 struct ieee80211_key *k)
1082 {
1083 struct athn_softc *sc = ic->ic_ifp->if_softc;
1084 uintptr_t entry;
1085
1086 switch (k->k_cipher) {
1087 case IEEE80211_CIPHER_WEP40:
1088 case IEEE80211_CIPHER_WEP104:
1089 case IEEE80211_CIPHER_CCMP:
1090 entry = (uintptr_t)k->k_priv;
1091 athn_reset_key(sc, entry);
1092 break;
1093 case IEEE80211_CIPHER_TKIP:
1094 entry = (uintptr_t)k->k_priv;
1095 athn_reset_key(sc, entry);
1096 athn_reset_key(sc, entry + 64);
1097 break;
1098 default:
1099 /* Fallback to software crypto for other ciphers. */
1100 ieee80211_delete_key(ic, ni, k);
1101 }
1102 }
1103 #endif /* notyet */
1104
1105 PUBLIC void
1106 athn_led_init(struct athn_softc *sc)
1107 {
1108 struct athn_ops *ops = &sc->sc_ops;
1109
1110 ops->gpio_config_output(sc, sc->sc_led_pin, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1111 /* LED off, active low. */
1112 athn_set_led(sc, 0);
1113 }
1114
1115 PUBLIC void
1116 athn_set_led(struct athn_softc *sc, int on)
1117 {
1118 struct athn_ops *ops = &sc->sc_ops;
1119
1120 sc->sc_led_state = on;
1121 ops->gpio_write(sc, sc->sc_led_pin, !sc->sc_led_state);
1122 }
1123
1124 #ifdef ATHN_BT_COEXISTENCE
1125 Static void
1126 athn_btcoex_init(struct athn_softc *sc)
1127 {
1128 struct athn_ops *ops = &sc->sc_ops;
1129 uint32_t reg;
1130
1131 if (sc->sc_flags & ATHN_FLAG_BTCOEX2WIRE) {
1132 /* Connect bt_active to baseband. */
1133 AR_CLRBITS(sc, sc->sc_gpio_input_en_off,
1134 AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_DEF |
1135 AR_GPIO_INPUT_EN_VAL_BT_FREQUENCY_DEF);
1136 AR_SETBITS(sc, sc->sc_gpio_input_en_off,
1137 AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB);
1138
1139 reg = AR_READ(sc, AR_GPIO_INPUT_MUX1);
1140 reg = RW(reg, AR_GPIO_INPUT_MUX1_BT_ACTIVE,
1141 AR_GPIO_BTACTIVE_PIN);
1142 AR_WRITE(sc, AR_GPIO_INPUT_MUX1, reg);
1143 AR_WRITE_BARRIER(sc);
1144
1145 ops->gpio_config_input(sc, AR_GPIO_BTACTIVE_PIN);
1146 }
1147 else { /* 3-wire. */
1148 AR_SETBITS(sc, sc->sc_gpio_input_en_off,
1149 AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_BB |
1150 AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB);
1151
1152 reg = AR_READ(sc, AR_GPIO_INPUT_MUX1);
1153 reg = RW(reg, AR_GPIO_INPUT_MUX1_BT_ACTIVE,
1154 AR_GPIO_BTACTIVE_PIN);
1155 reg = RW(reg, AR_GPIO_INPUT_MUX1_BT_PRIORITY,
1156 AR_GPIO_BTPRIORITY_PIN);
1157 AR_WRITE(sc, AR_GPIO_INPUT_MUX1, reg);
1158 AR_WRITE_BARRIER(sc);
1159
1160 ops->gpio_config_input(sc, AR_GPIO_BTACTIVE_PIN);
1161 ops->gpio_config_input(sc, AR_GPIO_BTPRIORITY_PIN);
1162 }
1163 }
1164
1165 Static void
1166 athn_btcoex_enable(struct athn_softc *sc)
1167 {
1168 struct athn_ops *ops = &sc->sc_ops;
1169 uint32_t reg;
1170
1171 if (sc->sc_flags & ATHN_FLAG_BTCOEX3WIRE) {
1172 AR_WRITE(sc, AR_BT_COEX_MODE,
1173 SM(AR_BT_MODE, AR_BT_MODE_SLOTTED) |
1174 SM(AR_BT_PRIORITY_TIME, 2) |
1175 SM(AR_BT_FIRST_SLOT_TIME, 5) |
1176 SM(AR_BT_QCU_THRESH, ATHN_QID_AC_BE) |
1177 AR_BT_TXSTATE_EXTEND | AR_BT_TX_FRAME_EXTEND |
1178 AR_BT_QUIET | AR_BT_RX_CLEAR_POLARITY);
1179 AR_WRITE(sc, AR_BT_COEX_WEIGHT,
1180 SM(AR_BTCOEX_BT_WGHT, AR_STOMP_LOW_BT_WGHT) |
1181 SM(AR_BTCOEX_WL_WGHT, AR_STOMP_LOW_WL_WGHT));
1182 AR_WRITE(sc, AR_BT_COEX_MODE2,
1183 SM(AR_BT_BCN_MISS_THRESH, 50) |
1184 AR_BT_HOLD_RX_CLEAR | AR_BT_DISABLE_BT_ANT);
1185
1186 AR_SETBITS(sc, AR_QUIET1, AR_QUIET1_QUIET_ACK_CTS_ENABLE);
1187 AR_CLRBITS(sc, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX);
1188 AR_WRITE_BARRIER(sc);
1189
1190 ops->gpio_config_output(sc, AR_GPIO_WLANACTIVE_PIN,
1191 AR_GPIO_OUTPUT_MUX_AS_RX_CLEAR_EXTERNAL);
1192
1193 }
1194 else { /* 2-wire. */
1195 ops->gpio_config_output(sc, AR_GPIO_WLANACTIVE_PIN,
1196 AR_GPIO_OUTPUT_MUX_AS_TX_FRAME);
1197 }
1198 reg = AR_READ(sc, AR_GPIO_PDPU);
1199 reg &= ~(0x3 << (AR_GPIO_WLANACTIVE_PIN * 2));
1200 reg |= 0x2 << (AR_GPIO_WLANACTIVE_PIN * 2);
1201 AR_WRITE(sc, AR_GPIO_PDPU, reg);
1202 AR_WRITE_BARRIER(sc);
1203
1204 /* Disable PCIe Active State Power Management (ASPM). */
1205 if (sc->sc_disable_aspm != NULL)
1206 sc->sc_disable_aspm(sc);
1207
1208 /* XXX Start periodic timer. */
1209 }
1210
1211 Static void
1212 athn_btcoex_disable(struct athn_softc *sc)
1213 {
1214 struct athn_ops *ops = &sc->sc_ops;
1215
1216 ops->gpio_write(sc, AR_GPIO_WLANACTIVE_PIN, 0);
1217
1218 ops->gpio_config_output(sc, AR_GPIO_WLANACTIVE_PIN,
1219 AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1220
1221 if (sc->sc_flags & ATHN_FLAG_BTCOEX3WIRE) {
1222 AR_WRITE(sc, AR_BT_COEX_MODE,
1223 SM(AR_BT_MODE, AR_BT_MODE_DISABLED) | AR_BT_QUIET);
1224 AR_WRITE(sc, AR_BT_COEX_WEIGHT, 0);
1225 AR_WRITE(sc, AR_BT_COEX_MODE2, 0);
1226 /* XXX Stop periodic timer. */
1227 }
1228 AR_WRITE_BARRIER(sc);
1229 /* XXX Restore ASPM setting? */
1230 }
1231 #endif
1232
1233 Static void
1234 athn_iter_func(void *arg, struct ieee80211_node *ni)
1235 {
1236 struct athn_softc *sc = arg;
1237 struct athn_node *an = (struct athn_node *)ni;
1238
1239 ieee80211_amrr_choose(&sc->sc_amrr, ni, &an->amn);
1240 }
1241
1242 Static void
1243 athn_calib_to(void *arg)
1244 {
1245 extern int ticks;
1246 struct athn_softc *sc = arg;
1247 struct athn_ops *ops = &sc->sc_ops;
1248 struct ieee80211com *ic = &sc->sc_ic;
1249 int s;
1250
1251 s = splnet();
1252
1253 /* Do periodic (every 4 minutes) PA calibration. */
1254 if (AR_SREV_9285_11_OR_LATER(sc) &&
1255 !AR_SREV_9380_10_OR_LATER(sc) &&
1256 ticks >= sc->sc_pa_calib_ticks + 240 * hz) {
1257 sc->sc_pa_calib_ticks = ticks;
1258 if (AR_SREV_9271(sc))
1259 ar9271_pa_calib(sc);
1260 else
1261 ar9285_pa_calib(sc);
1262 }
1263
1264 /* Do periodic (every 30 seconds) temperature compensation. */
1265 if ((sc->sc_flags & ATHN_FLAG_OLPC) &&
1266 ticks >= sc->sc_olpc_ticks + 30 * hz) {
1267 sc->sc_olpc_ticks = ticks;
1268 ops->olpc_temp_compensation(sc);
1269 }
1270
1271 #ifdef notyet
1272 /* XXX ANI. */
1273 athn_ani_monitor(sc);
1274
1275 ops->next_calib(sc);
1276 #endif
1277 if (ic->ic_fixed_rate == -1) {
1278 if (ic->ic_opmode == IEEE80211_M_STA)
1279 athn_iter_func(sc, ic->ic_bss);
1280 else
1281 ieee80211_iterate_nodes(&ic->ic_sta, athn_iter_func, sc);
1282 }
1283 callout_schedule(&sc->sc_calib_to, hz / 2);
1284 splx(s);
1285 }
1286
1287 Static int
1288 athn_init_calib(struct athn_softc *sc, struct ieee80211_channel *curchan,
1289 struct ieee80211_channel *extchan)
1290 {
1291 struct athn_ops *ops = &sc->sc_ops;
1292 int error;
1293
1294 if (AR_SREV_9380_10_OR_LATER(sc))
1295 error = ar9003_init_calib(sc);
1296 else if (AR_SREV_9285_10_OR_LATER(sc))
1297 error = ar9285_init_calib(sc, curchan, extchan);
1298 else
1299 error = ar5416_init_calib(sc, curchan, extchan);
1300 if (error != 0)
1301 return error;
1302
1303 if (!AR_SREV_9380_10_OR_LATER(sc)) {
1304 /* Do PA calibration. */
1305 if (AR_SREV_9285_11_OR_LATER(sc)) {
1306 extern int ticks;
1307 sc->sc_pa_calib_ticks = ticks;
1308 if (AR_SREV_9271(sc))
1309 ar9271_pa_calib(sc);
1310 else
1311 ar9285_pa_calib(sc);
1312 }
1313 /* Do noisefloor calibration. */
1314 ops->noisefloor_calib(sc);
1315 }
1316 if (AR_SREV_9160_10_OR_LATER(sc)) {
1317 /* Support IQ calibration. */
1318 sc->sc_sup_calib_mask = ATHN_CAL_IQ;
1319 if (AR_SREV_9380_10_OR_LATER(sc)) {
1320 /* Support temperature compensation calibration. */
1321 sc->sc_sup_calib_mask |= ATHN_CAL_TEMP;
1322 }
1323 else if (IEEE80211_IS_CHAN_5GHZ(curchan) || extchan != NULL) {
1324 /*
1325 * ADC gain calibration causes uplink throughput
1326 * drops in HT40 mode on AR9287.
1327 */
1328 if (!AR_SREV_9287(sc)) {
1329 /* Support ADC gain calibration. */
1330 sc->sc_sup_calib_mask |= ATHN_CAL_ADC_GAIN;
1331 }
1332 /* Support ADC DC offset calibration. */
1333 sc->sc_sup_calib_mask |= ATHN_CAL_ADC_DC;
1334 }
1335 }
1336 return 0;
1337 }
1338
1339 /*
1340 * Adaptive noise immunity.
1341 */
1342 #ifdef notyet
1343 Static int32_t
1344 athn_ani_get_rssi(struct athn_softc *sc)
1345 {
1346
1347 return 0; /* XXX */
1348 }
1349 #endif /* notyet */
1350
1351 #ifdef notyet
1352 Static void
1353 athn_ani_ofdm_err_trigger(struct athn_softc *sc)
1354 {
1355 struct athn_ani *ani = &sc->sc_ani;
1356 struct athn_ops *ops = &sc->sc_ops;
1357 int32_t rssi;
1358
1359 /* First, raise noise immunity level, up to max. */
1360 if (ani->noise_immunity_level < 4) {
1361 ani->noise_immunity_level++;
1362 ops->set_noise_immunity_level(sc, ani->noise_immunity_level);
1363 return;
1364 }
1365
1366 /* Then, raise our spur immunity level, up to max. */
1367 if (ani->spur_immunity_level < 7) {
1368 ani->spur_immunity_level++;
1369 ops->set_spur_immunity_level(sc, ani->spur_immunity_level);
1370 return;
1371 }
1372
1373 #ifndef IEEE80211_STA_ONLY
1374 if (sc->sc_ic.ic_opmode == IEEE80211_M_HOSTAP) {
1375 if (ani->firstep_level < 2) {
1376 ani->firstep_level++;
1377 ops->set_firstep_level(sc, ani->firstep_level);
1378 }
1379 return;
1380 }
1381 #endif
1382 rssi = athn_ani_get_rssi(sc);
1383 if (rssi > ATHN_ANI_RSSI_THR_HIGH) {
1384 /*
1385 * Beacon RSSI is high, turn off OFDM weak signal detection
1386 * or raise first step level as last resort.
1387 */
1388 if (ani->ofdm_weak_signal) {
1389 ani->ofdm_weak_signal = 0;
1390 ops->disable_ofdm_weak_signal(sc);
1391 ani->spur_immunity_level = 0;
1392 ops->set_spur_immunity_level(sc, 0);
1393 }
1394 else if (ani->firstep_level < 2) {
1395 ani->firstep_level++;
1396 ops->set_firstep_level(sc, ani->firstep_level);
1397 }
1398 }
1399 else if (rssi > ATHN_ANI_RSSI_THR_LOW) {
1400 /*
1401 * Beacon RSSI is in mid range, we need OFDM weak signal
1402 * detection but we can raise first step level.
1403 */
1404 if (!ani->ofdm_weak_signal) {
1405 ani->ofdm_weak_signal = 1;
1406 ops->enable_ofdm_weak_signal(sc);
1407 }
1408 if (ani->firstep_level < 2) {
1409 ani->firstep_level++;
1410 ops->set_firstep_level(sc, ani->firstep_level);
1411 }
1412 }
1413 else if (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) {
1414 /*
1415 * Beacon RSSI is low, if in b/g mode, turn off OFDM weak
1416 * signal detection and zero first step level to maximize
1417 * CCK sensitivity.
1418 */
1419 if (ani->ofdm_weak_signal) {
1420 ani->ofdm_weak_signal = 0;
1421 ops->disable_ofdm_weak_signal(sc);
1422 }
1423 if (ani->firstep_level > 0) {
1424 ani->firstep_level = 0;
1425 ops->set_firstep_level(sc, 0);
1426 }
1427 }
1428 }
1429 #endif /* notyet */
1430
1431 #ifdef notyet
1432 Static void
1433 athn_ani_cck_err_trigger(struct athn_softc *sc)
1434 {
1435 struct athn_ani *ani = &sc->sc_ani;
1436 struct athn_ops *ops = &sc->sc_ops;
1437 int32_t rssi;
1438
1439 /* Raise noise immunity level, up to max. */
1440 if (ani->noise_immunity_level < 4) {
1441 ani->noise_immunity_level++;
1442 ops->set_noise_immunity_level(sc, ani->noise_immunity_level);
1443 return;
1444 }
1445
1446 #ifndef IEEE80211_STA_ONLY
1447 if (sc->sc_ic.ic_opmode == IEEE80211_M_HOSTAP) {
1448 if (ani->firstep_level < 2) {
1449 ani->firstep_level++;
1450 ops->set_firstep_level(sc, ani->firstep_level);
1451 }
1452 return;
1453 }
1454 #endif
1455 rssi = athn_ani_get_rssi(sc);
1456 if (rssi > ATHN_ANI_RSSI_THR_LOW) {
1457 /*
1458 * Beacon RSSI is in mid or high range, raise first step
1459 * level.
1460 */
1461 if (ani->firstep_level < 2) {
1462 ani->firstep_level++;
1463 ops->set_firstep_level(sc, ani->firstep_level);
1464 }
1465 }
1466 else if (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) {
1467 /*
1468 * Beacon RSSI is low, zero first step level to maximize
1469 * CCK sensitivity.
1470 */
1471 if (ani->firstep_level > 0) {
1472 ani->firstep_level = 0;
1473 ops->set_firstep_level(sc, 0);
1474 }
1475 }
1476 }
1477 #endif /* notyet */
1478
1479 #ifdef notyet
1480 Static void
1481 athn_ani_lower_immunity(struct athn_softc *sc)
1482 {
1483 struct athn_ani *ani = &sc->sc_ani;
1484 struct athn_ops *ops = &sc->sc_ops;
1485 int32_t rssi;
1486
1487 #ifndef IEEE80211_STA_ONLY
1488 if (sc->sc_ic.ic_opmode == IEEE80211_M_HOSTAP) {
1489 if (ani->firstep_level > 0) {
1490 ani->firstep_level--;
1491 ops->set_firstep_level(sc, ani->firstep_level);
1492 }
1493 return;
1494 }
1495 #endif
1496 rssi = athn_ani_get_rssi(sc);
1497 if (rssi > ATHN_ANI_RSSI_THR_HIGH) {
1498 /*
1499 * Beacon RSSI is high, leave OFDM weak signal detection
1500 * off or it may oscillate.
1501 */
1502 }
1503 else if (rssi > ATHN_ANI_RSSI_THR_LOW) {
1504 /*
1505 * Beacon RSSI is in mid range, turn on OFDM weak signal
1506 * detection or lower first step level.
1507 */
1508 if (!ani->ofdm_weak_signal) {
1509 ani->ofdm_weak_signal = 1;
1510 ops->enable_ofdm_weak_signal(sc);
1511 return;
1512 }
1513 if (ani->firstep_level > 0) {
1514 ani->firstep_level--;
1515 ops->set_firstep_level(sc, ani->firstep_level);
1516 return;
1517 }
1518 }
1519 else {
1520 /* Beacon RSSI is low, lower first step level. */
1521 if (ani->firstep_level > 0) {
1522 ani->firstep_level--;
1523 ops->set_firstep_level(sc, ani->firstep_level);
1524 return;
1525 }
1526 }
1527 /*
1528 * Lower spur immunity level down to zero, or if all else fails,
1529 * lower noise immunity level down to zero.
1530 */
1531 if (ani->spur_immunity_level > 0) {
1532 ani->spur_immunity_level--;
1533 ops->set_spur_immunity_level(sc, ani->spur_immunity_level);
1534 }
1535 else if (ani->noise_immunity_level > 0) {
1536 ani->noise_immunity_level--;
1537 ops->set_noise_immunity_level(sc, ani->noise_immunity_level);
1538 }
1539 }
1540 #endif /* notyet */
1541
1542 #ifdef notyet
1543 Static void
1544 athn_ani_restart(struct athn_softc *sc)
1545 {
1546 struct athn_ani *ani = &sc->sc_ani;
1547
1548 AR_WRITE(sc, AR_PHY_ERR_1, 0);
1549 AR_WRITE(sc, AR_PHY_ERR_2, 0);
1550 AR_WRITE(sc, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING);
1551 AR_WRITE(sc, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING);
1552 AR_WRITE_BARRIER(sc);
1553
1554 ani->listen_time = 0;
1555 ani->ofdm_phy_err_count = 0;
1556 ani->cck_phy_err_count = 0;
1557 }
1558 #endif /* notyet */
1559
1560 #ifdef notyet
1561 Static void
1562 athn_ani_monitor(struct athn_softc *sc)
1563 {
1564 struct athn_ani *ani = &sc->sc_ani;
1565 uint32_t cyccnt, txfcnt, rxfcnt, phy1, phy2;
1566 int32_t cycdelta, txfdelta, rxfdelta;
1567 int32_t listen_time;
1568
1569 txfcnt = AR_READ(sc, AR_TFCNT); /* Tx frame count. */
1570 rxfcnt = AR_READ(sc, AR_RFCNT); /* Rx frame count. */
1571 cyccnt = AR_READ(sc, AR_CCCNT); /* Cycle count. */
1572
1573 if (ani->cyccnt != 0 && ani->cyccnt <= cyccnt) {
1574 cycdelta = cyccnt - ani->cyccnt;
1575 txfdelta = txfcnt - ani->txfcnt;
1576 rxfdelta = rxfcnt - ani->rxfcnt;
1577
1578 listen_time = (cycdelta - txfdelta - rxfdelta) /
1579 (athn_clock_rate(sc) * 1000);
1580 }
1581 else
1582 listen_time = 0;
1583
1584 ani->cyccnt = cyccnt;
1585 ani->txfcnt = txfcnt;
1586 ani->rxfcnt = rxfcnt;
1587
1588 if (listen_time < 0) {
1589 athn_ani_restart(sc);
1590 return;
1591 }
1592 ani->listen_time += listen_time;
1593
1594 phy1 = AR_READ(sc, AR_PHY_ERR_1);
1595 phy2 = AR_READ(sc, AR_PHY_ERR_2);
1596
1597 if (phy1 < ani->ofdm_phy_err_base) {
1598 AR_WRITE(sc, AR_PHY_ERR_1, ani->ofdm_phy_err_base);
1599 AR_WRITE(sc, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING);
1600 }
1601 if (phy2 < ani->cck_phy_err_base) {
1602 AR_WRITE(sc, AR_PHY_ERR_2, ani->cck_phy_err_base);
1603 AR_WRITE(sc, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING);
1604 }
1605 if (phy1 < ani->ofdm_phy_err_base || phy2 < ani->cck_phy_err_base) {
1606 AR_WRITE_BARRIER(sc);
1607 return;
1608 }
1609 ani->ofdm_phy_err_count = phy1 - ani->ofdm_phy_err_base;
1610 ani->cck_phy_err_count = phy2 - ani->cck_phy_err_base;
1611
1612 if (ani->listen_time > 5 * ATHN_ANI_PERIOD) {
1613 /* Check to see if we need to lower immunity. */
1614 if (ani->ofdm_phy_err_count <=
1615 ani->listen_time * ani->ofdm_trig_low / 1000 &&
1616 ani->cck_phy_err_count <=
1617 ani->listen_time * ani->cck_trig_low / 1000)
1618 athn_ani_lower_immunity(sc);
1619 athn_ani_restart(sc);
1620
1621 }
1622 else if (ani->listen_time > ATHN_ANI_PERIOD) {
1623 /* Check to see if we need to raise immunity. */
1624 if (ani->ofdm_phy_err_count >
1625 ani->listen_time * ani->ofdm_trig_high / 1000) {
1626 athn_ani_ofdm_err_trigger(sc);
1627 athn_ani_restart(sc);
1628 }
1629 else if (ani->cck_phy_err_count >
1630 ani->listen_time * ani->cck_trig_high / 1000) {
1631 athn_ani_cck_err_trigger(sc);
1632 athn_ani_restart(sc);
1633 }
1634 }
1635 }
1636 #endif /* notyet */
1637
1638 PUBLIC uint8_t
1639 athn_chan2fbin(struct ieee80211_channel *c)
1640 {
1641
1642 if (IEEE80211_IS_CHAN_2GHZ(c))
1643 return c->ic_freq - 2300;
1644 else
1645 return (c->ic_freq - 4800) / 5;
1646 }
1647
1648 PUBLIC int
1649 athn_interpolate(int x, int x1, int y1, int x2, int y2)
1650 {
1651
1652 if (x1 == x2) /* Prevents division by zero. */
1653 return y1;
1654 /* Linear interpolation. */
1655 return y1 + ((x - x1) * (y2 - y1)) / (x2 - x1);
1656 }
1657
1658 PUBLIC void
1659 athn_get_pier_ival(uint8_t fbin, const uint8_t *pierfreq, int npiers,
1660 int *lo, int *hi)
1661 {
1662 int i;
1663
1664 for (i = 0; i < npiers; i++)
1665 if (pierfreq[i] == AR_BCHAN_UNUSED ||
1666 pierfreq[i] > fbin)
1667 break;
1668 *hi = i;
1669 *lo = *hi - 1;
1670 if (*lo == -1)
1671 *lo = *hi;
1672 else if (*hi == npiers || pierfreq[*hi] == AR_BCHAN_UNUSED)
1673 *hi = *lo;
1674 }
1675
1676 Static void
1677 athn_init_dma(struct athn_softc *sc)
1678 {
1679 uint32_t reg;
1680
1681 if (!AR_SREV_9380_10_OR_LATER(sc)) {
1682 /* Set AHB not to do cacheline prefetches. */
1683 AR_SETBITS(sc, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1684 }
1685 reg = AR_READ(sc, AR_TXCFG);
1686 /* Let MAC DMA reads be in 128-byte chunks. */
1687 reg = RW(reg, AR_TXCFG_DMASZ, AR_DMASZ_128B);
1688
1689 /* Set initial Tx trigger level. */
1690 if (AR_SREV_9285(sc) || AR_SREV_9271(sc))
1691 reg = RW(reg, AR_TXCFG_FTRIG, AR_TXCFG_FTRIG_256B);
1692 else if (!AR_SREV_9380_10_OR_LATER(sc))
1693 reg = RW(reg, AR_TXCFG_FTRIG, AR_TXCFG_FTRIG_512B);
1694 AR_WRITE(sc, AR_TXCFG, reg);
1695
1696 /* Let MAC DMA writes be in 128-byte chunks. */
1697 reg = AR_READ(sc, AR_RXCFG);
1698 reg = RW(reg, AR_RXCFG_DMASZ, AR_DMASZ_128B);
1699 AR_WRITE(sc, AR_RXCFG, reg);
1700
1701 /* Setup Rx FIFO threshold to hold off Tx activities. */
1702 AR_WRITE(sc, AR_RXFIFO_CFG, 512);
1703
1704 /* Reduce the number of entries in PCU TXBUF to avoid wrap around. */
1705 if (AR_SREV_9285(sc)) {
1706 AR_WRITE(sc, AR_PCU_TXBUF_CTRL,
1707 AR9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1708 }
1709 else if (!AR_SREV_9271(sc)) {
1710 AR_WRITE(sc, AR_PCU_TXBUF_CTRL,
1711 AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1712 }
1713 AR_WRITE_BARRIER(sc);
1714
1715 /* Reset Tx status ring. */
1716 if (AR_SREV_9380_10_OR_LATER(sc))
1717 ar9003_reset_txsring(sc);
1718 }
1719
1720 PUBLIC void
1721 athn_inc_tx_trigger_level(struct athn_softc *sc)
1722 {
1723 uint32_t reg, ftrig;
1724
1725 reg = AR_READ(sc, AR_TXCFG);
1726 ftrig = MS(reg, AR_TXCFG_FTRIG);
1727 /*
1728 * NB: The AR9285 and all single-stream parts have an issue that
1729 * limits the size of the PCU Tx FIFO to 2KB instead of 4KB.
1730 */
1731 if (ftrig == ((AR_SREV_9285(sc) || AR_SREV_9271(sc)) ? 0x1f : 0x3f))
1732 return; /* Already at max. */
1733 reg = RW(reg, AR_TXCFG_FTRIG, ftrig + 1);
1734 AR_WRITE(sc, AR_TXCFG, reg);
1735 AR_WRITE_BARRIER(sc);
1736 }
1737
1738 PUBLIC int
1739 athn_stop_rx_dma(struct athn_softc *sc)
1740 {
1741 int ntries;
1742
1743 AR_WRITE(sc, AR_CR, AR_CR_RXD);
1744 /* Wait for Rx enable bit to go low. */
1745 for (ntries = 0; ntries < 100; ntries++) {
1746 if (!(AR_READ(sc, AR_CR) & AR_CR_RXE))
1747 return 0;
1748 DELAY(100);
1749 }
1750 DPRINTFN(DBG_RX, sc, "Rx DMA failed to stop\n");
1751 return ETIMEDOUT;
1752 }
1753
1754 #ifdef unused
1755 Static int
1756 athn_rx_abort(struct athn_softc *sc)
1757 {
1758 int ntries;
1759
1760 AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
1761 for (ntries = 0; ntries < 1000; ntries++) {
1762 if (MS(AR_READ(sc, AR_OBS_BUS_1), AR_OBS_BUS_1_RX_STATE) == 0)
1763 return 0;
1764 DELAY(10);
1765 }
1766 DPRINTFN(DBG_RX, sc, "Rx failed to go idle in 10ms\n");
1767 AR_CLRBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
1768 AR_WRITE_BARRIER(sc);
1769 return ETIMEDOUT;
1770 }
1771 #endif /* unused */
1772
1773 Static void
1774 athn_tx_reclaim(struct athn_softc *sc, int qid)
1775 {
1776 struct athn_txq *txq = &sc->sc_txq[qid];
1777 struct athn_tx_buf *bf;
1778
1779 /* Reclaim all buffers queued in the specified Tx queue. */
1780 /* NB: Tx DMA must be stopped. */
1781 while ((bf = SIMPLEQ_FIRST(&txq->head)) != NULL) {
1782 SIMPLEQ_REMOVE_HEAD(&txq->head, bf_list);
1783
1784 bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0,
1785 bf->bf_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1786 bus_dmamap_unload(sc->sc_dmat, bf->bf_map);
1787 m_freem(bf->bf_m);
1788 bf->bf_m = NULL;
1789 bf->bf_ni = NULL; /* Nodes already freed! */
1790
1791 /* Link Tx buffer back to global free list. */
1792 SIMPLEQ_INSERT_TAIL(&sc->sc_txbufs, bf, bf_list);
1793 }
1794 }
1795
1796 PUBLIC int
1797 athn_tx_pending(struct athn_softc *sc, int qid)
1798 {
1799
1800 return MS(AR_READ(sc, AR_QSTS(qid)), AR_Q_STS_PEND_FR_CNT) != 0 ||
1801 (AR_READ(sc, AR_Q_TXE) & (1 << qid)) != 0;
1802 }
1803
1804 PUBLIC void
1805 athn_stop_tx_dma(struct athn_softc *sc, int qid)
1806 {
1807 uint32_t tsflo;
1808 int ntries, i;
1809
1810 AR_WRITE(sc, AR_Q_TXD, 1 << qid);
1811 for (ntries = 0; ntries < 40; ntries++) {
1812 if (!athn_tx_pending(sc, qid))
1813 break;
1814 DELAY(100);
1815 }
1816 if (ntries == 40) {
1817 for (i = 0; i < 2; i++) {
1818 tsflo = AR_READ(sc, AR_TSF_L32) / 1024;
1819 AR_WRITE(sc, AR_QUIET2,
1820 SM(AR_QUIET2_QUIET_DUR, 10));
1821 AR_WRITE(sc, AR_QUIET_PERIOD, 100);
1822 AR_WRITE(sc, AR_NEXT_QUIET_TIMER, tsflo);
1823 AR_SETBITS(sc, AR_TIMER_MODE, AR_QUIET_TIMER_EN);
1824 if (AR_READ(sc, AR_TSF_L32) / 1024 == tsflo)
1825 break;
1826 }
1827 AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
1828 AR_WRITE_BARRIER(sc);
1829 DELAY(200);
1830 AR_CLRBITS(sc, AR_TIMER_MODE, AR_QUIET_TIMER_EN);
1831 AR_WRITE_BARRIER(sc);
1832
1833 for (ntries = 0; ntries < 40; ntries++) {
1834 if (!athn_tx_pending(sc, qid))
1835 break;
1836 DELAY(100);
1837 }
1838
1839 AR_CLRBITS(sc, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
1840 }
1841 AR_WRITE(sc, AR_Q_TXD, 0);
1842 AR_WRITE_BARRIER(sc);
1843 }
1844
1845 PUBLIC int
1846 athn_txtime(struct athn_softc *sc, int len, int ridx, u_int flags)
1847 {
1848 #define divround(a, b) (((a) + (b) - 1) / (b))
1849 int txtime;
1850
1851 /* XXX HT. */
1852 if (athn_rates[ridx].phy == IEEE80211_T_OFDM) {
1853 txtime = divround(8 + 4 * len + 3, athn_rates[ridx].rate);
1854 /* SIFS is 10us for 11g but Signal Extension adds 6us. */
1855 txtime = 16 + 4 + 4 * txtime + 16;
1856 }
1857 else {
1858 txtime = divround(16 * len, athn_rates[ridx].rate);
1859 if (ridx != ATHN_RIDX_CCK1 && (flags & IEEE80211_F_SHPREAMBLE))
1860 txtime += 72 + 24;
1861 else
1862 txtime += 144 + 48;
1863 txtime += 10; /* 10us SIFS. */
1864 }
1865 return txtime;
1866 #undef divround
1867 }
1868
1869 PUBLIC void
1870 athn_init_tx_queues(struct athn_softc *sc)
1871 {
1872 int qid;
1873
1874 for (qid = 0; qid < ATHN_QID_COUNT; qid++) {
1875 SIMPLEQ_INIT(&sc->sc_txq[qid].head);
1876 sc->sc_txq[qid].lastds = NULL;
1877 sc->sc_txq[qid].wait = NULL;
1878 sc->sc_txq[qid].queued = 0;
1879
1880 AR_WRITE(sc, AR_DRETRY_LIMIT(qid),
1881 SM(AR_D_RETRY_LIMIT_STA_SH, 32) |
1882 SM(AR_D_RETRY_LIMIT_STA_LG, 32) |
1883 SM(AR_D_RETRY_LIMIT_FR_SH, 10));
1884 AR_WRITE(sc, AR_QMISC(qid),
1885 AR_Q_MISC_DCU_EARLY_TERM_REQ);
1886 AR_WRITE(sc, AR_DMISC(qid),
1887 SM(AR_D_MISC_BKOFF_THRESH, 2) |
1888 AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN);
1889 }
1890
1891 /* Init beacon queue. */
1892 AR_SETBITS(sc, AR_QMISC(ATHN_QID_BEACON),
1893 AR_Q_MISC_FSP_DBA_GATED | AR_Q_MISC_BEACON_USE |
1894 AR_Q_MISC_CBR_INCR_DIS1);
1895 AR_SETBITS(sc, AR_DMISC(ATHN_QID_BEACON),
1896 SM(AR_D_MISC_ARB_LOCKOUT_CNTRL,
1897 AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL) |
1898 AR_D_MISC_BEACON_USE |
1899 AR_D_MISC_POST_FR_BKOFF_DIS);
1900 AR_WRITE(sc, AR_DLCL_IFS(ATHN_QID_BEACON),
1901 SM(AR_D_LCL_IFS_CWMIN, 0) |
1902 SM(AR_D_LCL_IFS_CWMAX, 0) |
1903 SM(AR_D_LCL_IFS_AIFS, 1));
1904
1905 /* Init CAB (Content After Beacon) queue. */
1906 AR_SETBITS(sc, AR_QMISC(ATHN_QID_CAB),
1907 AR_Q_MISC_FSP_DBA_GATED | AR_Q_MISC_CBR_INCR_DIS1 |
1908 AR_Q_MISC_CBR_INCR_DIS0);
1909 AR_SETBITS(sc, AR_DMISC(ATHN_QID_CAB),
1910 SM(AR_D_MISC_ARB_LOCKOUT_CNTRL,
1911 AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL));
1912
1913 /* Init PS-Poll queue. */
1914 AR_SETBITS(sc, AR_QMISC(ATHN_QID_PSPOLL),
1915 AR_Q_MISC_CBR_INCR_DIS1);
1916
1917 /* Init UAPSD queue. */
1918 AR_SETBITS(sc, AR_DMISC(ATHN_QID_UAPSD),
1919 AR_D_MISC_POST_FR_BKOFF_DIS);
1920
1921 if (AR_SREV_9380_10_OR_LATER(sc)) {
1922 /* Enable MAC descriptor CRC check. */
1923 AR_WRITE(sc, AR_Q_DESC_CRCCHK, AR_Q_DESC_CRCCHK_EN);
1924 }
1925 /* Enable DESC interrupts for all Tx queues. */
1926 AR_WRITE(sc, AR_IMR_S0, 0x00ff0000);
1927 /* Enable EOL interrupts for all Tx queues except UAPSD. */
1928 AR_WRITE(sc, AR_IMR_S1, 0x00df0000);
1929 AR_WRITE_BARRIER(sc);
1930 }
1931
1932 PUBLIC void
1933 athn_set_sta_timers(struct athn_softc *sc)
1934 {
1935 struct ieee80211com *ic = &sc->sc_ic;
1936 uint32_t tsfhi, tsflo, tsftu, reg;
1937 uint32_t intval, next_tbtt, next_dtim;
1938 int dtim_period, dtim_count, rem_dtim_count;
1939
1940 tsfhi = AR_READ(sc, AR_TSF_U32);
1941 tsflo = AR_READ(sc, AR_TSF_L32);
1942 tsftu = AR_TSF_TO_TU(tsfhi, tsflo) + AR_FUDGE;
1943
1944 /* Beacon interval in TU. */
1945 intval = ic->ic_bss->ni_intval;
1946
1947 next_tbtt = roundup(tsftu, intval);
1948 #ifdef notyet
1949 dtim_period = ic->ic_dtim_period;
1950 if (dtim_period <= 0)
1951 #endif
1952 dtim_period = 1; /* Assume all TIMs are DTIMs. */
1953
1954 #ifdef notyet
1955 dtim_count = ic->ic_dtim_count;
1956 if (dtim_count >= dtim_period) /* Should not happen. */
1957 #endif
1958 dtim_count = 0; /* Assume last TIM was a DTIM. */
1959
1960 /* Compute number of remaining TIMs until next DTIM. */
1961 rem_dtim_count = 0; /* XXX */
1962 next_dtim = next_tbtt + rem_dtim_count * intval;
1963
1964 AR_WRITE(sc, AR_NEXT_TBTT_TIMER, next_tbtt * IEEE80211_DUR_TU);
1965 AR_WRITE(sc, AR_BEACON_PERIOD, intval * IEEE80211_DUR_TU);
1966 AR_WRITE(sc, AR_DMA_BEACON_PERIOD, intval * IEEE80211_DUR_TU);
1967
1968 /*
1969 * Set the number of consecutive beacons to miss before raising
1970 * a BMISS interrupt to 10.
1971 */
1972 reg = AR_READ(sc, AR_RSSI_THR);
1973 reg = RW(reg, AR_RSSI_THR_BM_THR, 10);
1974 AR_WRITE(sc, AR_RSSI_THR, reg);
1975
1976 AR_WRITE(sc, AR_NEXT_DTIM,
1977 (next_dtim - AR_SLEEP_SLOP) * IEEE80211_DUR_TU);
1978 AR_WRITE(sc, AR_NEXT_TIM,
1979 (next_tbtt - AR_SLEEP_SLOP) * IEEE80211_DUR_TU);
1980
1981 /* CAB timeout is in 1/8 TU. */
1982 AR_WRITE(sc, AR_SLEEP1,
1983 SM(AR_SLEEP1_CAB_TIMEOUT, AR_CAB_TIMEOUT_VAL * 8) |
1984 AR_SLEEP1_ASSUME_DTIM);
1985 AR_WRITE(sc, AR_SLEEP2,
1986 SM(AR_SLEEP2_BEACON_TIMEOUT, AR_MIN_BEACON_TIMEOUT_VAL));
1987
1988 AR_WRITE(sc, AR_TIM_PERIOD, intval * IEEE80211_DUR_TU);
1989 AR_WRITE(sc, AR_DTIM_PERIOD, dtim_period * intval * IEEE80211_DUR_TU);
1990
1991 AR_SETBITS(sc, AR_TIMER_MODE,
1992 AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN | AR_DTIM_TIMER_EN);
1993
1994 /* Set TSF out-of-range threshold (fixed at 16k us). */
1995 AR_WRITE(sc, AR_TSFOOR_THRESHOLD, 0x4240);
1996
1997 AR_WRITE_BARRIER(sc);
1998 }
1999
2000 #ifndef IEEE80211_STA_ONLY
2001 PUBLIC void
2002 athn_set_hostap_timers(struct athn_softc *sc)
2003 {
2004 struct ieee80211com *ic = &sc->sc_ic;
2005 uint32_t intval, next_tbtt;
2006
2007 /* Beacon interval in TU. */
2008 intval = ic->ic_bss->ni_intval;
2009 next_tbtt = intval;
2010
2011 AR_WRITE(sc, AR_NEXT_TBTT_TIMER, next_tbtt * IEEE80211_DUR_TU);
2012 AR_WRITE(sc, AR_NEXT_DMA_BEACON_ALERT,
2013 (next_tbtt - AR_BEACON_DMA_DELAY) * IEEE80211_DUR_TU);
2014 AR_WRITE(sc, AR_NEXT_CFP,
2015 (next_tbtt - AR_SWBA_DELAY) * IEEE80211_DUR_TU);
2016
2017 AR_WRITE(sc, AR_BEACON_PERIOD, intval * IEEE80211_DUR_TU);
2018 AR_WRITE(sc, AR_DMA_BEACON_PERIOD, intval * IEEE80211_DUR_TU);
2019 AR_WRITE(sc, AR_SWBA_PERIOD, intval * IEEE80211_DUR_TU);
2020 AR_WRITE(sc, AR_NDP_PERIOD, intval * IEEE80211_DUR_TU);
2021
2022 AR_WRITE(sc, AR_TIMER_MODE,
2023 AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN);
2024
2025 AR_WRITE_BARRIER(sc);
2026 }
2027 #endif
2028
2029 PUBLIC void
2030 athn_set_opmode(struct athn_softc *sc)
2031 {
2032 uint32_t reg;
2033
2034 switch (sc->sc_ic.ic_opmode) {
2035 #ifndef IEEE80211_STA_ONLY
2036 case IEEE80211_M_HOSTAP:
2037 reg = AR_READ(sc, AR_STA_ID1);
2038 reg &= ~AR_STA_ID1_ADHOC;
2039 reg |= AR_STA_ID1_STA_AP | AR_STA_ID1_KSRCH_MODE;
2040 AR_WRITE(sc, AR_STA_ID1, reg);
2041
2042 AR_CLRBITS(sc, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
2043 break;
2044 case IEEE80211_M_IBSS:
2045 case IEEE80211_M_AHDEMO:
2046 reg = AR_READ(sc, AR_STA_ID1);
2047 reg &= ~AR_STA_ID1_STA_AP;
2048 reg |= AR_STA_ID1_ADHOC | AR_STA_ID1_KSRCH_MODE;
2049 AR_WRITE(sc, AR_STA_ID1, reg);
2050
2051 AR_SETBITS(sc, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
2052 break;
2053 #endif
2054 default:
2055 reg = AR_READ(sc, AR_STA_ID1);
2056 reg &= ~(AR_STA_ID1_ADHOC | AR_STA_ID1_STA_AP);
2057 reg |= AR_STA_ID1_KSRCH_MODE;
2058 AR_WRITE(sc, AR_STA_ID1, reg);
2059 break;
2060 }
2061 AR_WRITE_BARRIER(sc);
2062 }
2063
2064 PUBLIC void
2065 athn_set_bss(struct athn_softc *sc, struct ieee80211_node *ni)
2066 {
2067 const uint8_t *bssid = ni->ni_bssid;
2068
2069 AR_WRITE(sc, AR_BSS_ID0, LE_READ_4(&bssid[0]));
2070 AR_WRITE(sc, AR_BSS_ID1, LE_READ_2(&bssid[4]) |
2071 SM(AR_BSS_ID1_AID, IEEE80211_AID(ni->ni_associd)));
2072 AR_WRITE_BARRIER(sc);
2073 }
2074
2075 Static void
2076 athn_enable_interrupts(struct athn_softc *sc)
2077 {
2078 uint32_t mask2;
2079
2080 athn_disable_interrupts(sc); /* XXX */
2081
2082 AR_WRITE(sc, AR_IMR, sc->sc_imask);
2083
2084 mask2 = AR_READ(sc, AR_IMR_S2);
2085 mask2 &= ~(AR_IMR_S2_TIM | AR_IMR_S2_DTIM | AR_IMR_S2_DTIMSYNC |
2086 AR_IMR_S2_CABEND | AR_IMR_S2_CABTO | AR_IMR_S2_TSFOOR);
2087 mask2 |= AR_IMR_S2_GTT | AR_IMR_S2_CST;
2088 AR_WRITE(sc, AR_IMR_S2, mask2);
2089
2090 AR_CLRBITS(sc, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
2091
2092 AR_WRITE(sc, AR_IER, AR_IER_ENABLE);
2093
2094 AR_WRITE(sc, AR_INTR_ASYNC_ENABLE, AR_INTR_MAC_IRQ);
2095 AR_WRITE(sc, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
2096
2097 AR_WRITE(sc, AR_INTR_SYNC_ENABLE, sc->sc_isync);
2098 AR_WRITE(sc, AR_INTR_SYNC_MASK, sc->sc_isync);
2099 AR_WRITE_BARRIER(sc);
2100 }
2101
2102 Static void
2103 athn_disable_interrupts(struct athn_softc *sc)
2104 {
2105
2106 AR_WRITE(sc, AR_IER, 0);
2107 (void)AR_READ(sc, AR_IER);
2108
2109 AR_WRITE(sc, AR_INTR_ASYNC_ENABLE, 0);
2110 (void)AR_READ(sc, AR_INTR_ASYNC_ENABLE);
2111
2112 AR_WRITE(sc, AR_INTR_SYNC_ENABLE, 0);
2113 (void)AR_READ(sc, AR_INTR_SYNC_ENABLE);
2114
2115 AR_WRITE(sc, AR_IMR, 0);
2116
2117 AR_CLRBITS(sc, AR_IMR_S2, AR_IMR_S2_TIM | AR_IMR_S2_DTIM |
2118 AR_IMR_S2_DTIMSYNC | AR_IMR_S2_CABEND | AR_IMR_S2_CABTO |
2119 AR_IMR_S2_TSFOOR | AR_IMR_S2_GTT | AR_IMR_S2_CST);
2120
2121 AR_CLRBITS(sc, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
2122 AR_WRITE_BARRIER(sc);
2123 }
2124
2125 Static void
2126 athn_init_qos(struct athn_softc *sc)
2127 {
2128
2129 /* Initialize QoS settings. */
2130 AR_WRITE(sc, AR_MIC_QOS_CONTROL, 0x100aa);
2131 AR_WRITE(sc, AR_MIC_QOS_SELECT, 0x3210);
2132 AR_WRITE(sc, AR_QOS_NO_ACK,
2133 SM(AR_QOS_NO_ACK_TWO_BIT, 2) |
2134 SM(AR_QOS_NO_ACK_BIT_OFF, 5) |
2135 SM(AR_QOS_NO_ACK_BYTE_OFF, 0));
2136 AR_WRITE(sc, AR_TXOP_X, AR_TXOP_X_VAL);
2137 /* Initialize TXOP for all TIDs. */
2138 AR_WRITE(sc, AR_TXOP_0_3, 0xffffffff);
2139 AR_WRITE(sc, AR_TXOP_4_7, 0xffffffff);
2140 AR_WRITE(sc, AR_TXOP_8_11, 0xffffffff);
2141 AR_WRITE(sc, AR_TXOP_12_15, 0xffffffff);
2142 AR_WRITE_BARRIER(sc);
2143 }
2144
2145 PUBLIC int
2146 athn_hw_reset(struct athn_softc *sc, struct ieee80211_channel *curchan,
2147 struct ieee80211_channel *extchan, int init)
2148 {
2149 struct ieee80211com *ic = &sc->sc_ic;
2150 struct athn_ops *ops = &sc->sc_ops;
2151 uint32_t reg, def_ant, sta_id1, cfg_led, tsflo, tsfhi;
2152 int i, error;
2153
2154 /* XXX not if already awake */
2155 if ((error = athn_set_power_awake(sc)) != 0) {
2156 aprint_error_dev(sc->sc_dev, "could not wakeup chip\n");
2157 return error;
2158 }
2159
2160 /* Preserve the antenna on a channel switch. */
2161 if ((def_ant = AR_READ(sc, AR_DEF_ANTENNA)) == 0)
2162 def_ant = 1;
2163 /* Preserve other registers. */
2164 sta_id1 = AR_READ(sc, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
2165 cfg_led = AR_READ(sc, AR_CFG_LED) & (AR_CFG_LED_ASSOC_CTL_M |
2166 AR_CFG_LED_MODE_SEL_M | AR_CFG_LED_BLINK_THRESH_SEL_M |
2167 AR_CFG_LED_BLINK_SLOW);
2168
2169 /* Mark PHY as inactive. */
2170 ops->disable_phy(sc);
2171
2172 if (init && AR_SREV_9271(sc)) {
2173 AR_WRITE(sc, AR9271_RESET_POWER_DOWN_CONTROL,
2174 AR9271_RADIO_RF_RST);
2175 DELAY(50);
2176 }
2177 if (AR_SREV_9280(sc) && (sc->sc_flags & ATHN_FLAG_OLPC)) {
2178 /* Save TSF before it gets cleared. */
2179 tsfhi = AR_READ(sc, AR_TSF_U32);
2180 tsflo = AR_READ(sc, AR_TSF_L32);
2181
2182 /* NB: RTC reset clears TSF. */
2183 error = athn_reset_power_on(sc);
2184 }
2185 else {
2186 tsfhi = tsflo = 0; /* XXX: gcc */
2187 error = athn_reset(sc, 0);
2188 }
2189 if (error != 0) {
2190 aprint_error_dev(sc->sc_dev,
2191 "could not reset chip (error=%d)\n", error);
2192 return error;
2193 }
2194
2195 /* XXX not if already awake */
2196 if ((error = athn_set_power_awake(sc)) != 0) {
2197 aprint_error_dev(sc->sc_dev, "could not wakeup chip\n");
2198 return error;
2199 }
2200
2201 athn_init_pll(sc, curchan);
2202 ops->set_rf_mode(sc, curchan);
2203
2204 if (sc->sc_flags & ATHN_FLAG_RFSILENT) {
2205 /* Check that the radio is not disabled by hardware switch. */
2206 reg = ops->gpio_read(sc, sc->sc_rfsilent_pin);
2207 if (sc->sc_flags & ATHN_FLAG_RFSILENT_REVERSED)
2208 reg = !reg;
2209 if (!reg) {
2210 aprint_error_dev(sc->sc_dev,
2211 "radio is disabled by hardware switch\n");
2212 return EPERM;
2213 }
2214 }
2215 if (init && AR_SREV_9271(sc)) {
2216 AR_WRITE(sc, AR9271_RESET_POWER_DOWN_CONTROL,
2217 AR9271_GATE_MAC_CTL);
2218 DELAY(50);
2219 }
2220 if (AR_SREV_9280(sc) && (sc->sc_flags & ATHN_FLAG_OLPC)) {
2221 /* Restore TSF if it got cleared. */
2222 AR_WRITE(sc, AR_TSF_L32, tsflo);
2223 AR_WRITE(sc, AR_TSF_U32, tsfhi);
2224 }
2225
2226 if (AR_SREV_9280_10_OR_LATER(sc))
2227 AR_SETBITS(sc, sc->sc_gpio_input_en_off, AR_GPIO_JTAG_DISABLE);
2228
2229 if (AR_SREV_9287_13_OR_LATER(sc) && !AR_SREV_9380_10_OR_LATER(sc))
2230 ar9287_1_3_enable_async_fifo(sc);
2231
2232 /* Write init values to hardware. */
2233 ops->hw_init(sc, curchan, extchan);
2234
2235 /*
2236 * Only >=AR9280 2.0 parts are capable of encrypting unicast
2237 * management frames using CCMP.
2238 */
2239 if (AR_SREV_9280_20_OR_LATER(sc)) {
2240 reg = AR_READ(sc, AR_AES_MUTE_MASK1);
2241 /* Do not mask the subtype field in management frames. */
2242 reg = RW(reg, AR_AES_MUTE_MASK1_FC0_MGMT, 0xff);
2243 reg = RW(reg, AR_AES_MUTE_MASK1_FC1_MGMT,
2244 ~(IEEE80211_FC1_RETRY | IEEE80211_FC1_PWR_MGT |
2245 IEEE80211_FC1_MORE_DATA));
2246 AR_WRITE(sc, AR_AES_MUTE_MASK1, reg);
2247 }
2248 else if (AR_SREV_9160_10_OR_LATER(sc)) {
2249 /* Disable hardware crypto for management frames. */
2250 AR_CLRBITS(sc, AR_PCU_MISC_MODE2,
2251 AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
2252 AR_SETBITS(sc, AR_PCU_MISC_MODE2,
2253 AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
2254 }
2255
2256 if (ic->ic_curmode != IEEE80211_MODE_11B)
2257 ops->set_delta_slope(sc, curchan, extchan);
2258
2259 ops->spur_mitigate(sc, curchan, extchan);
2260 ops->init_from_rom(sc, curchan, extchan);
2261
2262 /* XXX */
2263 AR_WRITE(sc, AR_STA_ID0, LE_READ_4(&ic->ic_myaddr[0]));
2264 AR_WRITE(sc, AR_STA_ID1, LE_READ_2(&ic->ic_myaddr[4]) |
2265 sta_id1 | AR_STA_ID1_RTS_USE_DEF | AR_STA_ID1_CRPT_MIC_ENABLE);
2266
2267 athn_set_opmode(sc);
2268
2269 AR_WRITE(sc, AR_BSSMSKL, 0xffffffff);
2270 AR_WRITE(sc, AR_BSSMSKU, 0xffff);
2271
2272 /* Restore previous antenna. */
2273 AR_WRITE(sc, AR_DEF_ANTENNA, def_ant);
2274
2275 AR_WRITE(sc, AR_BSS_ID0, 0);
2276 AR_WRITE(sc, AR_BSS_ID1, 0);
2277
2278 AR_WRITE(sc, AR_ISR, 0xffffffff);
2279
2280 AR_WRITE(sc, AR_RSSI_THR, SM(AR_RSSI_THR_BM_THR, 7));
2281
2282 if ((error = ops->set_synth(sc, curchan, extchan)) != 0) {
2283 aprint_error_dev(sc->sc_dev, "could not set channel\n");
2284 return error;
2285 }
2286 sc->sc_curchan = curchan;
2287 sc->sc_curchanext = extchan;
2288
2289 for (i = 0; i < AR_NUM_DCU; i++)
2290 AR_WRITE(sc, AR_DQCUMASK(i), 1 << i);
2291
2292 athn_init_tx_queues(sc);
2293
2294 /* Initialize interrupt mask. */
2295 sc->sc_imask =
2296 AR_IMR_TXDESC | AR_IMR_TXEOL |
2297 AR_IMR_RXERR | AR_IMR_RXEOL | AR_IMR_RXORN |
2298 AR_IMR_RXMINTR | AR_IMR_RXINTM |
2299 AR_IMR_GENTMR | AR_IMR_BCNMISC;
2300 if (AR_SREV_9380_10_OR_LATER(sc))
2301 sc->sc_imask |= AR_IMR_RXERR | AR_IMR_HP_RXOK;
2302 #ifndef IEEE80211_STA_ONLY
2303 if (0 && ic->ic_opmode == IEEE80211_M_HOSTAP)
2304 sc->sc_imask |= AR_IMR_MIB;
2305 #endif
2306 AR_WRITE(sc, AR_IMR, sc->sc_imask);
2307 AR_SETBITS(sc, AR_IMR_S2, AR_IMR_S2_GTT);
2308 AR_WRITE(sc, AR_INTR_SYNC_CAUSE, 0xffffffff);
2309 sc->sc_isync = AR_INTR_SYNC_DEFAULT;
2310 if (sc->sc_flags & ATHN_FLAG_RFSILENT)
2311 sc->sc_isync |= AR_INTR_SYNC_GPIO_PIN(sc->sc_rfsilent_pin);
2312 AR_WRITE(sc, AR_INTR_SYNC_ENABLE, sc->sc_isync);
2313 AR_WRITE(sc, AR_INTR_SYNC_MASK, 0);
2314 if (AR_SREV_9380_10_OR_LATER(sc)) {
2315 AR_WRITE(sc, AR_INTR_PRIO_ASYNC_ENABLE, 0);
2316 AR_WRITE(sc, AR_INTR_PRIO_ASYNC_MASK, 0);
2317 AR_WRITE(sc, AR_INTR_PRIO_SYNC_ENABLE, 0);
2318 AR_WRITE(sc, AR_INTR_PRIO_SYNC_MASK, 0);
2319 }
2320
2321 athn_init_qos(sc);
2322
2323 AR_SETBITS(sc, AR_PCU_MISC, AR_PCU_MIC_NEW_LOC_ENA);
2324
2325 if (AR_SREV_9287_13_OR_LATER(sc) && !AR_SREV_9380_10_OR_LATER(sc))
2326 ar9287_1_3_setup_async_fifo(sc);
2327
2328 /* Disable sequence number generation in hardware. */
2329 AR_SETBITS(sc, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
2330
2331 athn_init_dma(sc);
2332
2333 /* Program observation bus to see MAC interrupts. */
2334 AR_WRITE(sc, sc->sc_obs_off, 8);
2335
2336 /* Setup Rx interrupt mitigation. */
2337 AR_WRITE(sc, AR_RIMT, SM(AR_RIMT_FIRST, 2000) | SM(AR_RIMT_LAST, 500));
2338
2339 ops->init_baseband(sc);
2340
2341 if ((error = athn_init_calib(sc, curchan, extchan)) != 0) {
2342 aprint_error_dev(sc->sc_dev,
2343 "could not initialize calibration\n");
2344 return error;
2345 }
2346
2347 ops->set_rxchains(sc);
2348
2349 AR_WRITE(sc, AR_CFG_LED, cfg_led | AR_CFG_SCLK_32KHZ);
2350
2351 if (sc->sc_flags & ATHN_FLAG_USB) {
2352 if (AR_SREV_9271(sc))
2353 AR_WRITE(sc, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
2354 else
2355 AR_WRITE(sc, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
2356 }
2357 #if BYTE_ORDER == BIG_ENDIAN
2358 else {
2359 /* Default is LE, turn on swapping for BE. */
2360 AR_WRITE(sc, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
2361 }
2362 #endif
2363 AR_WRITE_BARRIER(sc);
2364
2365 return 0;
2366 }
2367
2368 Static struct ieee80211_node *
2369 athn_node_alloc(struct ieee80211_node_table *ntp)
2370 {
2371
2372 return malloc(sizeof(struct athn_node), M_DEVBUF,
2373 M_NOWAIT | M_ZERO);
2374 }
2375
2376 Static void
2377 athn_newassoc(struct ieee80211_node *ni, int isnew)
2378 {
2379 struct ieee80211com *ic = ni->ni_ic;
2380 struct athn_softc *sc = ic->ic_ifp->if_softc;
2381 struct athn_node *an = (void *)ni;
2382 struct ieee80211_rateset *rs = &ni->ni_rates;
2383 uint8_t rate;
2384 int ridx, i, j;
2385
2386 ieee80211_amrr_node_init(&sc->sc_amrr, &an->amn);
2387 /* Start at lowest available bit-rate, AMRR will raise. */
2388 ni->ni_txrate = 0;
2389
2390 for (i = 0; i < rs->rs_nrates; i++) {
2391 rate = rs->rs_rates[i] & IEEE80211_RATE_VAL;
2392
2393 /* Map 802.11 rate to HW rate index. */
2394 for (ridx = 0; ridx <= ATHN_RIDX_MAX; ridx++)
2395 if (athn_rates[ridx].rate == rate)
2396 break;
2397 an->ridx[i] = ridx;
2398 DPRINTFN(DBG_STM, sc, "rate %d index %d\n", rate, ridx);
2399
2400 /* Compute fallback rate for retries. */
2401 an->fallback[i] = i;
2402 for (j = i - 1; j >= 0; j--) {
2403 if (athn_rates[an->ridx[j]].phy ==
2404 athn_rates[an->ridx[i]].phy) {
2405 an->fallback[i] = j;
2406 break;
2407 }
2408 }
2409 DPRINTFN(DBG_STM, sc, "%d fallbacks to %d\n",
2410 i, an->fallback[i]);
2411 }
2412 }
2413
2414 Static int
2415 athn_media_change(struct ifnet *ifp)
2416 {
2417 struct athn_softc *sc = ifp->if_softc;
2418 struct ieee80211com *ic = &sc->sc_ic;
2419 uint8_t rate, ridx;
2420 int error;
2421
2422 error = ieee80211_media_change(ifp);
2423 if (error != ENETRESET)
2424 return error;
2425
2426 if (ic->ic_fixed_rate != -1) {
2427 rate = ic->ic_sup_rates[ic->ic_curmode].
2428 rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
2429 /* Map 802.11 rate to HW rate index. */
2430 for (ridx = 0; ridx <= ATHN_RIDX_MAX; ridx++)
2431 if (athn_rates[ridx].rate == rate)
2432 break;
2433 sc->sc_fixed_ridx = ridx;
2434 }
2435 if (IS_UP_AND_RUNNING(ifp)) {
2436 athn_stop(ifp, 0);
2437 error = athn_init(ifp);
2438 }
2439 return error;
2440 }
2441
2442 Static void
2443 athn_next_scan(void *arg)
2444 {
2445 struct athn_softc *sc = arg;
2446 struct ieee80211com *ic = &sc->sc_ic;
2447 int s;
2448
2449 s = splnet();
2450 if (ic->ic_state == IEEE80211_S_SCAN)
2451 ieee80211_next_scan(ic);
2452 splx(s);
2453 }
2454
2455 Static int
2456 athn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2457 {
2458 struct ifnet *ifp = ic->ic_ifp;
2459 struct athn_softc *sc = ifp->if_softc;
2460 uint32_t reg;
2461 int error;
2462
2463 callout_stop(&sc->sc_calib_to);
2464
2465 switch (nstate) {
2466 case IEEE80211_S_INIT:
2467 athn_set_led(sc, 0);
2468 break;
2469 case IEEE80211_S_SCAN:
2470 /* Make the LED blink while scanning. */
2471 athn_set_led(sc, !sc->sc_led_state);
2472 error = athn_switch_chan(sc, ic->ic_curchan, NULL);
2473 if (error != 0)
2474 return error;
2475 callout_schedule(&sc->sc_scan_to, hz / 5);
2476 break;
2477 case IEEE80211_S_AUTH:
2478 athn_set_led(sc, 0);
2479 error = athn_switch_chan(sc, ic->ic_curchan, NULL);
2480 if (error != 0)
2481 return error;
2482 break;
2483 case IEEE80211_S_ASSOC:
2484 break;
2485 case IEEE80211_S_RUN:
2486 athn_set_led(sc, 1);
2487
2488 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2489 break;
2490
2491 /* Fake a join to initialize the Tx rate. */
2492 athn_newassoc(ic->ic_bss, 1);
2493
2494 athn_set_bss(sc, ic->ic_bss);
2495 athn_disable_interrupts(sc);
2496 #ifndef IEEE80211_STA_ONLY
2497 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2498 athn_set_hostap_timers(sc);
2499 /* Enable software beacon alert interrupts. */
2500 sc->sc_imask |= AR_IMR_SWBA;
2501 }
2502 else
2503 #endif
2504 {
2505 athn_set_sta_timers(sc);
2506 /* Enable beacon miss interrupts. */
2507 sc->sc_imask |= AR_IMR_BMISS;
2508
2509 /* Stop receiving beacons from other BSS. */
2510 reg = AR_READ(sc, AR_RX_FILTER);
2511 reg = (reg & ~AR_RX_FILTER_BEACON) |
2512 AR_RX_FILTER_MYBEACON;
2513 AR_WRITE(sc, AR_RX_FILTER, reg);
2514 AR_WRITE_BARRIER(sc);
2515 }
2516 athn_enable_interrupts(sc);
2517
2518 if (sc->sc_sup_calib_mask != 0) {
2519 memset(&sc->sc_calib, 0, sizeof(sc->sc_calib));
2520 sc->sc_cur_calib_mask = sc->sc_sup_calib_mask;
2521 /* ops->do_calib(sc); */
2522 }
2523 /* XXX Start ANI. */
2524
2525 callout_schedule(&sc->sc_calib_to, hz / 2);
2526 break;
2527 }
2528
2529 return sc->sc_newstate(ic, nstate, arg);
2530 }
2531
2532 #ifdef notyet_edca
2533 PUBLIC void
2534 athn_updateedca(struct ieee80211com *ic)
2535 {
2536 #define ATHN_EXP2(x) ((1 << (x)) - 1) /* CWmin = 2^ECWmin - 1 */
2537 struct athn_softc *sc = ic->ic_ifp->if_softc;
2538 const struct ieee80211_edca_ac_params *ac;
2539 int aci, qid;
2540
2541 for (aci = 0; aci < EDCA_NUM_AC; aci++) {
2542 ac = &ic->ic_edca_ac[aci];
2543 qid = athn_ac2qid[aci];
2544
2545 AR_WRITE(sc, AR_DLCL_IFS(qid),
2546 SM(AR_D_LCL_IFS_CWMIN, ATHN_EXP2(ac->ac_ecwmin)) |
2547 SM(AR_D_LCL_IFS_CWMAX, ATHN_EXP2(ac->ac_ecwmax)) |
2548 SM(AR_D_LCL_IFS_AIFS, ac->ac_aifsn));
2549 if (ac->ac_txoplimit != 0) {
2550 AR_WRITE(sc, AR_DCHNTIME(qid),
2551 SM(AR_D_CHNTIME_DUR,
2552 IEEE80211_TXOP_TO_US(ac->ac_txoplimit)) |
2553 AR_D_CHNTIME_EN);
2554 }
2555 else
2556 AR_WRITE(sc, AR_DCHNTIME(qid), 0);
2557 }
2558 AR_WRITE_BARRIER(sc);
2559 #undef ATHN_EXP2
2560 }
2561 #endif /* notyet_edca */
2562
2563 Static int
2564 athn_clock_rate(struct athn_softc *sc)
2565 {
2566 struct ieee80211com *ic = &sc->sc_ic;
2567 int clockrate; /* MHz. */
2568
2569 if (ic->ic_curmode == IEEE80211_MODE_11A) {
2570 if (sc->sc_flags & ATHN_FLAG_FAST_PLL_CLOCK)
2571 clockrate = AR_CLOCK_RATE_FAST_5GHZ_OFDM;
2572 else
2573 clockrate = AR_CLOCK_RATE_5GHZ_OFDM;
2574 }
2575 else if (ic->ic_curmode == IEEE80211_MODE_11B) {
2576 clockrate = AR_CLOCK_RATE_CCK;
2577 }
2578 else
2579 clockrate = AR_CLOCK_RATE_2GHZ_OFDM;
2580 #ifndef IEEE80211_NO_HT
2581 if (sc->sc_curchanext != NULL)
2582 clockrate *= 2;
2583 #endif
2584 return clockrate;
2585 }
2586
2587 PUBLIC void
2588 athn_updateslot(struct ifnet *ifp)
2589 {
2590 struct athn_softc *sc = ifp->if_softc;
2591 struct ieee80211com *ic = &sc->sc_ic;
2592 int slot;
2593
2594 slot = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
2595 AR_WRITE(sc, AR_D_GBL_IFS_SLOT, slot * athn_clock_rate(sc));
2596 AR_WRITE_BARRIER(sc);
2597 }
2598
2599 Static void
2600 athn_start(struct ifnet *ifp)
2601 {
2602 struct athn_softc *sc = ifp->if_softc;
2603 struct ieee80211com *ic = &sc->sc_ic;
2604 struct ether_header *eh;
2605 struct ieee80211_node *ni;
2606 struct mbuf *m;
2607
2608 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2609 return;
2610
2611 for (;;) {
2612 if (SIMPLEQ_EMPTY(&sc->sc_txbufs)) {
2613 ifp->if_flags |= IFF_OACTIVE;
2614 break;
2615 }
2616 /* Send pending management frames first. */
2617 IF_DEQUEUE(&ic->ic_mgtq, m);
2618 if (m != NULL) {
2619 ni = (void *)m->m_pkthdr.rcvif;
2620 goto sendit;
2621 }
2622 if (ic->ic_state != IEEE80211_S_RUN)
2623 break;
2624
2625 /* Encapsulate and send data frames. */
2626 IFQ_DEQUEUE(&ifp->if_snd, m);
2627 if (m == NULL)
2628 break;
2629
2630 if (m->m_len < (int)sizeof(*eh) &&
2631 (m = m_pullup(m, sizeof(*eh))) == NULL) {
2632 ifp->if_oerrors++;
2633 continue;
2634 }
2635 eh = mtod(m, struct ether_header *);
2636 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2637 if (ni == NULL) {
2638 m_freem(m);
2639 ifp->if_oerrors++;
2640 continue;
2641 }
2642
2643 bpf_mtap(ifp, m);
2644
2645 if ((m = ieee80211_encap(ic, m, ni)) == NULL)
2646 continue;
2647 sendit:
2648 bpf_mtap3(ic->ic_rawbpf, m);
2649
2650 if (sc->sc_ops.tx(sc, m, ni, 0) != 0) {
2651 ieee80211_free_node(ni);
2652 ifp->if_oerrors++;
2653 continue;
2654 }
2655
2656 sc->sc_tx_timer = 5;
2657 ifp->if_timer = 1;
2658 }
2659 }
2660
2661 Static void
2662 athn_watchdog(struct ifnet *ifp)
2663 {
2664 struct athn_softc *sc = ifp->if_softc;
2665
2666 ifp->if_timer = 0;
2667
2668 if (sc->sc_tx_timer > 0) {
2669 if (--sc->sc_tx_timer == 0) {
2670 aprint_error_dev(sc->sc_dev, "device timeout\n");
2671 athn_stop(ifp, 1);
2672 (void)athn_init(ifp);
2673 ifp->if_oerrors++;
2674 return;
2675 }
2676 ifp->if_timer = 1;
2677 }
2678 ieee80211_watchdog(&sc->sc_ic);
2679 }
2680
2681 #ifdef notyet
2682 Static void
2683 athn_set_multi(struct athn_softc *sc)
2684 {
2685 struct arpcom *ac = &sc->sc_ic.ic_ac;
2686 struct ifnet *ifp = &ac->ac_if;
2687 struct ether_multi *enm;
2688 struct ether_multistep step;
2689 const uint8_t *addr;
2690 uint32_t val, lo, hi;
2691 uint8_t bit;
2692
2693 if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
2694 lo = hi = 0xffffffff;
2695 goto done;
2696 }
2697 lo = hi = 0;
2698 ETHER_FIRST_MULTI(step, ac, enm);
2699 while (enm != NULL) {
2700 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, 6) != 0) {
2701 ifp->if_flags |= IFF_ALLMULTI;
2702 lo = hi = 0xffffffff;
2703 goto done;
2704 }
2705 addr = enm->enm_addrlo;
2706 /* Calculate the XOR value of all eight 6-bit words. */
2707 val = addr[0] | addr[1] << 8 | addr[2] << 16;
2708 bit = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2709 val = addr[3] | addr[4] << 8 | addr[5] << 16;
2710 bit ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2711 bit &= 0x3f;
2712 if (bit < 32)
2713 lo |= 1 << bit;
2714 else
2715 hi |= 1 << (bit - 32);
2716 ETHER_NEXT_MULTI(step, enm);
2717 }
2718 done:
2719 AR_WRITE(sc, AR_MCAST_FIL0, lo);
2720 AR_WRITE(sc, AR_MCAST_FIL1, hi);
2721 AR_WRITE_BARRIER(sc);
2722 }
2723 #endif /* notyet */
2724
2725 Static int
2726 athn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2727 {
2728 struct athn_softc *sc = ifp->if_softc;
2729 struct ieee80211com *ic = &sc->sc_ic;
2730 int s, error = 0;
2731
2732 s = splnet();
2733
2734 switch (cmd) {
2735 case SIOCSIFFLAGS:
2736 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2737 break;
2738
2739 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
2740 case IFF_UP | IFF_RUNNING:
2741 #ifdef notyet
2742 if (((ifp->if_flags ^ sc->sc_if_flags) &
2743 (IFF_ALLMULTI | IFF_PROMISC)) != 0)
2744 /* XXX: setup multi */
2745 #endif
2746 break;
2747 case IFF_UP:
2748 athn_init(ifp);
2749 break;
2750
2751 case IFF_RUNNING:
2752 athn_stop(ifp, 1);
2753 break;
2754 case 0:
2755 default:
2756 break;
2757 }
2758 sc->sc_if_flags = ifp->if_flags;
2759 break;
2760
2761 case SIOCADDMULTI:
2762 case SIOCDELMULTI:
2763 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2764 /* setup multicast filter, etc */
2765 #ifdef notyet
2766 athn_set_multi(sc);
2767 #endif
2768 error = 0;
2769 }
2770 break;
2771
2772 case SIOCS80211CHANNEL:
2773 error = ieee80211_ioctl(ic, cmd, data);
2774 if (error == ENETRESET &&
2775 ic->ic_opmode == IEEE80211_M_MONITOR) {
2776 if (IS_UP_AND_RUNNING(ifp))
2777 athn_switch_chan(sc, ic->ic_curchan, NULL);
2778 error = 0;
2779 }
2780 break;
2781
2782 default:
2783 error = ieee80211_ioctl(ic, cmd, data);
2784 }
2785
2786 if (error == ENETRESET) {
2787 error = 0;
2788 if (IS_UP_AND_RUNNING(ifp) &&
2789 ic->ic_roaming != IEEE80211_ROAMING_MANUAL) {
2790 athn_stop(ifp, 0);
2791 error = athn_init(ifp);
2792 }
2793 }
2794
2795 splx(s);
2796 return error;
2797 }
2798
2799 Static int
2800 athn_init(struct ifnet *ifp)
2801 {
2802 struct athn_softc *sc = ifp->if_softc;
2803 struct athn_ops *ops = &sc->sc_ops;
2804 struct ieee80211com *ic = &sc->sc_ic;
2805 struct ieee80211_channel *curchan, *extchan;
2806 size_t i;
2807 int error;
2808
2809 if (device_is_active(sc->sc_dev))
2810 athn_stop(ifp, 0); /* XXX: necessary? */
2811 else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
2812 !device_is_active(sc->sc_dev))
2813 return 0;
2814
2815 curchan = ic->ic_curchan;
2816 extchan = NULL;
2817
2818 /* In case a new MAC address has been configured. */
2819 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2820
2821 #ifdef openbsd_power_management
2822 /* For CardBus, power on the socket. */
2823 if (sc->sc_enable != NULL) {
2824 if ((error = sc->sc_enable(sc)) != 0) {
2825 aprint_error_dev(sc->sc_dev,
2826 "could not enable device\n");
2827 goto fail;
2828 }
2829 if ((error = athn_reset_power_on(sc)) != 0) {
2830 aprint_error_dev(sc->sc_dev,
2831 "could not power on device\n");
2832 goto fail;
2833 }
2834 }
2835 #endif
2836 if (!(sc->sc_flags & ATHN_FLAG_PCIE))
2837 athn_config_nonpcie(sc);
2838 else
2839 athn_config_pcie(sc);
2840
2841 /* Reset HW key cache entries. */
2842 for (i = 0; i < sc->sc_kc_entries; i++)
2843 athn_reset_key(sc, i);
2844
2845 ops->enable_antenna_diversity(sc);
2846
2847 #ifdef ATHN_BT_COEXISTENCE
2848 /* Configure bluetooth coexistence for combo chips. */
2849 if (sc->sc_flags & ATHN_FLAG_BTCOEX)
2850 athn_btcoex_init(sc);
2851 #endif
2852
2853 /* Configure LED. */
2854 athn_led_init(sc);
2855
2856 /* Configure hardware radio switch. */
2857 if (sc->sc_flags & ATHN_FLAG_RFSILENT)
2858 ops->rfsilent_init(sc);
2859
2860 if ((error = athn_hw_reset(sc, curchan, extchan, 1)) != 0) {
2861 aprint_error_dev(sc->sc_dev,
2862 "unable to reset hardware; reset status %d\n", error);
2863 goto fail;
2864 }
2865
2866 /* Enable Rx. */
2867 athn_rx_start(sc);
2868
2869 /* Enable interrupts. */
2870 athn_enable_interrupts(sc);
2871
2872 #ifdef ATHN_BT_COEXISTENCE
2873 /* Enable bluetooth coexistence for combo chips. */
2874 if (sc->sc_flags & ATHN_FLAG_BTCOEX)
2875 athn_btcoex_enable(sc);
2876 #endif
2877
2878 ifp->if_flags &= ~IFF_OACTIVE;
2879 ifp->if_flags |= IFF_RUNNING;
2880
2881 #ifdef notyet
2882 if (ic->ic_flags & IEEE80211_F_WEPON) {
2883 /* Configure WEP keys. */
2884 for (i = 0; i < IEEE80211_WEP_NKID; i++)
2885 athn_set_key(ic, NULL, &ic->ic_nw_keys[i]);
2886 }
2887 #endif
2888 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2889 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2890 else
2891 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2892
2893 return 0;
2894 fail:
2895 athn_stop(ifp, 1);
2896 return error;
2897 }
2898
2899 PUBLIC void
2900 athn_stop(struct ifnet *ifp, int disable)
2901 {
2902 struct athn_softc *sc = ifp->if_softc;
2903 struct ieee80211com *ic = &sc->sc_ic;
2904 int qid;
2905
2906 ifp->if_timer = sc->sc_tx_timer = 0;
2907 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2908
2909 callout_stop(&sc->sc_scan_to);
2910 /* In case we were scanning, release the scan "lock". */
2911 // ic->ic_scan_lock = IEEE80211_SCAN_UNLOCKED; /* XXX:??? */
2912
2913 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2914
2915 #ifdef ATHN_BT_COEXISTENCE
2916 /* Disable bluetooth coexistence for combo chips. */
2917 if (sc->sc_flags & ATHN_FLAG_BTCOEX)
2918 athn_btcoex_disable(sc);
2919 #endif
2920
2921 /* Disable interrupts. */
2922 athn_disable_interrupts(sc);
2923 /* Acknowledge interrupts (avoids interrupt storms). */
2924 AR_WRITE(sc, AR_INTR_SYNC_CAUSE, 0xffffffff);
2925 AR_WRITE(sc, AR_INTR_SYNC_MASK, 0);
2926
2927 for (qid = 0; qid < ATHN_QID_COUNT; qid++)
2928 athn_stop_tx_dma(sc, qid);
2929 /* XXX call athn_hw_reset if Tx still pending? */
2930 for (qid = 0; qid < ATHN_QID_COUNT; qid++)
2931 athn_tx_reclaim(sc, qid);
2932
2933 /* Stop Rx. */
2934 AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
2935 AR_WRITE(sc, AR_MIBC, AR_MIBC_FMC);
2936 AR_WRITE(sc, AR_MIBC, AR_MIBC_CMC);
2937 AR_WRITE(sc, AR_FILT_OFDM, 0);
2938 AR_WRITE(sc, AR_FILT_CCK, 0);
2939 AR_WRITE_BARRIER(sc);
2940 athn_set_rxfilter(sc, 0);
2941 athn_stop_rx_dma(sc);
2942
2943 athn_reset(sc, 0);
2944 athn_init_pll(sc, NULL);
2945 athn_set_power_awake(sc);
2946 athn_reset(sc, 1);
2947 athn_init_pll(sc, NULL);
2948
2949 athn_set_power_sleep(sc);
2950
2951 #if 0 /* XXX: shouldn't the pmf stuff take care of this? */
2952 /* For CardBus, power down the socket. */
2953 if (disable && sc->sc_disable != NULL)
2954 sc->sc_disable(sc);
2955 #endif
2956 if (disable)
2957 pmf_device_recursive_suspend(sc->sc_dev, &sc->sc_qual);
2958 }
2959
2960 Static void
2961 athn_pmf_wlan_off(device_t self)
2962 {
2963 struct athn_softc *sc = device_private(self);
2964 struct ifnet *ifp = &sc->sc_if;
2965
2966 /* Turn the interface down. */
2967 ifp->if_flags &= ~IFF_UP;
2968 athn_stop(ifp, 1);
2969 }
2970
2971 PUBLIC void
2972 athn_suspend(struct athn_softc *sc)
2973 {
2974 struct ifnet *ifp = &sc->sc_if;
2975
2976 if (ifp->if_flags & IFF_RUNNING)
2977 athn_stop(ifp, 1);
2978 }
2979
2980 PUBLIC int
2981 athn_resume(struct athn_softc *sc)
2982 {
2983 struct ifnet *ifp = &sc->sc_if;
2984
2985 if (ifp->if_flags & IFF_UP)
2986 return athn_init(ifp);
2987 return 0;
2988 }
2989