athrate-amrr.c revision 1.2 1 /*-
2 * Copyright (c) 2004 INRIA
3 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer,
11 * without modification.
12 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
13 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
14 * redistribution must be conditioned upon including a substantially
15 * similar Disclaimer requirement for further binary redistribution.
16 * 3. Neither the names of the above-listed copyright holders nor the names
17 * of any contributors may be used to endorse or promote products derived
18 * from this software without specific prior written permission.
19 *
20 * Alternatively, this software may be distributed under the terms of the
21 * GNU General Public License ("GPL") version 2 as published by the Free
22 * Software Foundation.
23 *
24 * NO WARRANTY
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
28 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
29 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
30 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
33 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
35 * THE POSSIBILITY OF SUCH DAMAGES.
36 *
37 */
38
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD: src/sys/dev/ath/ath_rate/amrr/amrr.c,v 1.4 2005/01/24 19:32:10 sam Exp $");
41
42 /*
43 * AMRR rate control. See:
44 * http://www-sop.inria.fr/rapports/sophia/RR-5208.html
45 * "IEEE 802.11 Rate Adaptation: A Practical Approach" by
46 * Mathieu Lacage, Hossein Manshaei, Thierry Turletti
47 */
48 #include "opt_inet.h"
49
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/sysctl.h>
53 #include <sys/kernel.h>
54 #include <sys/lock.h>
55 #include <sys/errno.h>
56
57 #include <machine/bus.h>
58
59 #include <sys/socket.h>
60
61 #include <net/if.h>
62 #include <net/if_media.h>
63 #include <net/if_arp.h>
64 #include <net/if_ether.h> /* XXX for ether_sprintf */
65
66 #include <net80211/ieee80211_var.h>
67
68 #include <net/bpf.h>
69
70 #ifdef INET
71 #include <netinet/in.h>
72 #endif
73
74 #include <dev/ic/athvar.h>
75 #include <dev/ic/athrate-amrr.h>
76 #include <contrib/dev/ic/athhal_desc.h>
77
78 #define AMRR_DEBUG
79 #ifdef AMRR_DEBUG
80 #define DPRINTF(sc, _fmt, ...) do { \
81 if (sc->sc_debug & 0x10) \
82 printf(_fmt, __VA_ARGS__); \
83 } while (0)
84 #else
85 #define DPRINTF(sc, _fmt, ...)
86 #endif
87
88 static int ath_rateinterval = 1000; /* rate ctl interval (ms) */
89 static int ath_rate_max_success_threshold = 10;
90 static int ath_rate_min_success_threshold = 1;
91
92 static void ath_ratectl(void *);
93 static void ath_rate_update(struct ath_softc *, struct ieee80211_node *,
94 int rate);
95 static void ath_rate_ctl_start(struct ath_softc *, struct ieee80211_node *);
96 static void ath_rate_ctl(void *, struct ieee80211_node *);
97
98 void
99 ath_rate_node_init(struct ath_softc *sc, struct ath_node *an)
100 {
101 /* NB: assumed to be zero'd by caller */
102 ath_rate_update(sc, &an->an_node, 0);
103 }
104
105 void
106 ath_rate_node_cleanup(struct ath_softc *sc, struct ath_node *an)
107 {
108 }
109
110 void
111 ath_rate_findrate(struct ath_softc *sc, struct ath_node *an,
112 int shortPreamble, size_t frameLen,
113 u_int8_t *rix, int *try0, u_int8_t *txrate)
114 {
115 struct amrr_node *amn = ATH_NODE_AMRR(an);
116
117 *rix = amn->amn_tx_rix0;
118 *try0 = amn->amn_tx_try0;
119 if (shortPreamble)
120 *txrate = amn->amn_tx_rate0sp;
121 else
122 *txrate = amn->amn_tx_rate0;
123 }
124
125 void
126 ath_rate_setupxtxdesc(struct ath_softc *sc, struct ath_node *an,
127 struct ath_desc *ds, int shortPreamble, u_int8_t rix)
128 {
129 struct amrr_node *amn = ATH_NODE_AMRR(an);
130
131 ath_hal_setupxtxdesc(sc->sc_ah, ds
132 , amn->amn_tx_rate1sp, amn->amn_tx_try1 /* series 1 */
133 , amn->amn_tx_rate2sp, amn->amn_tx_try2 /* series 2 */
134 , amn->amn_tx_rate3sp, amn->amn_tx_try3 /* series 3 */
135 );
136 }
137
138 void
139 ath_rate_tx_complete(struct ath_softc *sc, struct ath_node *an,
140 const struct ath_desc *ds, const struct ath_desc *ds0)
141 {
142 struct amrr_node *amn = ATH_NODE_AMRR(an);
143 int sr = ds->ds_txstat.ts_shortretry;
144 int lr = ds->ds_txstat.ts_longretry;
145 int retry_count = sr + lr;
146
147 amn->amn_tx_try0_cnt++;
148 if (retry_count == 1) {
149 amn->amn_tx_try1_cnt++;
150 } else if (retry_count == 2) {
151 amn->amn_tx_try1_cnt++;
152 amn->amn_tx_try2_cnt++;
153 } else if (retry_count == 3) {
154 amn->amn_tx_try1_cnt++;
155 amn->amn_tx_try2_cnt++;
156 amn->amn_tx_try3_cnt++;
157 } else if (retry_count > 3) {
158 amn->amn_tx_try1_cnt++;
159 amn->amn_tx_try2_cnt++;
160 amn->amn_tx_try3_cnt++;
161 amn->amn_tx_failure_cnt++;
162 }
163 }
164
165 void
166 ath_rate_newassoc(struct ath_softc *sc, struct ath_node *an, int isnew)
167 {
168 if (isnew)
169 ath_rate_ctl_start(sc, &an->an_node);
170 }
171
172 static void
173 node_reset (struct amrr_node *amn)
174 {
175 amn->amn_tx_try0_cnt = 0;
176 amn->amn_tx_try1_cnt = 0;
177 amn->amn_tx_try2_cnt = 0;
178 amn->amn_tx_try3_cnt = 0;
179 amn->amn_tx_failure_cnt = 0;
180 amn->amn_success = 0;
181 amn->amn_recovery = 0;
182 amn->amn_success_threshold = ath_rate_min_success_threshold;
183 }
184
185
186 /**
187 * The code below assumes that we are dealing with hardware multi rate retry
188 * I have no idea what will happen if you try to use this module with another
189 * type of hardware. Your machine might catch fire or it might work with
190 * horrible performance...
191 */
192 static void
193 ath_rate_update(struct ath_softc *sc, struct ieee80211_node *ni, int rate)
194 {
195 struct ath_node *an = ATH_NODE(ni);
196 struct amrr_node *amn = ATH_NODE_AMRR(an);
197 const HAL_RATE_TABLE *rt = sc->sc_currates;
198 u_int8_t rix;
199
200 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
201
202 DPRINTF(sc, "%s: set xmit rate for %s to %dM\n",
203 __func__, ether_sprintf(ni->ni_macaddr),
204 ni->ni_rates.rs_nrates > 0 ?
205 (ni->ni_rates.rs_rates[rate] & IEEE80211_RATE_VAL) / 2 : 0);
206
207 ni->ni_txrate = rate;
208 /* XXX management/control frames always go at the lowest speed */
209 an->an_tx_mgtrate = rt->info[0].rateCode;
210 an->an_tx_mgtratesp = an->an_tx_mgtrate | rt->info[0].shortPreamble;
211 /*
212 * Before associating a node has no rate set setup
213 * so we can't calculate any transmit codes to use.
214 * This is ok since we should never be sending anything
215 * but management frames and those always go at the
216 * lowest hardware rate.
217 */
218 if (ni->ni_rates.rs_nrates > 0) {
219 amn->amn_tx_rix0 = sc->sc_rixmap[
220 ni->ni_rates.rs_rates[rate] & IEEE80211_RATE_VAL];
221 amn->amn_tx_rate0 = rt->info[amn->amn_tx_rix0].rateCode;
222 amn->amn_tx_rate0sp = amn->amn_tx_rate0 |
223 rt->info[amn->amn_tx_rix0].shortPreamble;
224 if (sc->sc_mrretry) {
225 amn->amn_tx_try0 = 1;
226 amn->amn_tx_try1 = 1;
227 amn->amn_tx_try2 = 1;
228 amn->amn_tx_try3 = 1;
229 if (--rate >= 0) {
230 rix = sc->sc_rixmap[
231 ni->ni_rates.rs_rates[rate]&IEEE80211_RATE_VAL];
232 amn->amn_tx_rate1 = rt->info[rix].rateCode;
233 amn->amn_tx_rate1sp = amn->amn_tx_rate1 |
234 rt->info[rix].shortPreamble;
235 } else {
236 amn->amn_tx_rate1 = amn->amn_tx_rate1sp = 0;
237 }
238 if (--rate >= 0) {
239 rix = sc->sc_rixmap[
240 ni->ni_rates.rs_rates[rate]&IEEE80211_RATE_VAL];
241 amn->amn_tx_rate2 = rt->info[rix].rateCode;
242 amn->amn_tx_rate2sp = amn->amn_tx_rate2 |
243 rt->info[rix].shortPreamble;
244 } else {
245 amn->amn_tx_rate2 = amn->amn_tx_rate2sp = 0;
246 }
247 if (rate > 0) {
248 /* NB: only do this if we didn't already do it above */
249 amn->amn_tx_rate3 = rt->info[0].rateCode;
250 amn->amn_tx_rate3sp =
251 an->an_tx_mgtrate | rt->info[0].shortPreamble;
252 } else {
253 amn->amn_tx_rate3 = amn->amn_tx_rate3sp = 0;
254 }
255 } else {
256 amn->amn_tx_try0 = ATH_TXMAXTRY;
257 /* theorically, these statements are useless because
258 * the code which uses them tests for an_tx_try0 == ATH_TXMAXTRY
259 */
260 amn->amn_tx_try1 = 0;
261 amn->amn_tx_try2 = 0;
262 amn->amn_tx_try3 = 0;
263 amn->amn_tx_rate1 = amn->amn_tx_rate1sp = 0;
264 amn->amn_tx_rate2 = amn->amn_tx_rate2sp = 0;
265 amn->amn_tx_rate3 = amn->amn_tx_rate3sp = 0;
266 }
267 }
268 node_reset (amn);
269 }
270
271 /*
272 * Set the starting transmit rate for a node.
273 */
274 static void
275 ath_rate_ctl_start(struct ath_softc *sc, struct ieee80211_node *ni)
276 {
277 #define RATE(_ix) (ni->ni_rates.rs_rates[(_ix)] & IEEE80211_RATE_VAL)
278 struct ieee80211com *ic = &sc->sc_ic;
279 int srate;
280
281 KASSERT(ni->ni_rates.rs_nrates > 0, ("no rates"));
282 if (ic->ic_fixed_rate == -1) {
283 /*
284 * No fixed rate is requested. For 11b start with
285 * the highest negotiated rate; otherwise, for 11g
286 * and 11a, we start "in the middle" at 24Mb or 36Mb.
287 */
288 srate = ni->ni_rates.rs_nrates - 1;
289 if (sc->sc_curmode != IEEE80211_MODE_11B) {
290 /*
291 * Scan the negotiated rate set to find the
292 * closest rate.
293 */
294 /* NB: the rate set is assumed sorted */
295 for (; srate >= 0 && RATE(srate) > 72; srate--)
296 ;
297 KASSERT(srate >= 0, ("bogus rate set"));
298 }
299 } else {
300 /*
301 * A fixed rate is to be used; ic_fixed_rate is an
302 * index into the supported rate set. Convert this
303 * to the index into the negotiated rate set for
304 * the node. We know the rate is there because the
305 * rate set is checked when the station associates.
306 */
307 const struct ieee80211_rateset *rs =
308 &ic->ic_sup_rates[ic->ic_curmode];
309 int r = rs->rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
310 /* NB: the rate set is assumed sorted */
311 srate = ni->ni_rates.rs_nrates - 1;
312 for (; srate >= 0 && RATE(srate) != r; srate--)
313 ;
314 KASSERT(srate >= 0,
315 ("fixed rate %d not in rate set", ic->ic_fixed_rate));
316 }
317 ath_rate_update(sc, ni, srate);
318 #undef RATE
319 }
320
321 static void
322 ath_rate_cb(void *arg, struct ieee80211_node *ni)
323 {
324 struct ath_softc *sc = arg;
325
326 ath_rate_update(sc, ni, 0);
327 }
328
329 /*
330 * Reset the rate control state for each 802.11 state transition.
331 */
332 void
333 ath_rate_newstate(struct ath_softc *sc, enum ieee80211_state state)
334 {
335 struct amrr_softc *asc = (struct amrr_softc *) sc->sc_rc;
336 struct ieee80211com *ic = &sc->sc_ic;
337 struct ieee80211_node *ni;
338
339 if (state == IEEE80211_S_INIT) {
340 callout_stop(&asc->timer);
341 return;
342 }
343 if (ic->ic_opmode == IEEE80211_M_STA) {
344 /*
345 * Reset local xmit state; this is really only
346 * meaningful when operating in station mode.
347 */
348 ni = ic->ic_bss;
349 if (state == IEEE80211_S_RUN) {
350 ath_rate_ctl_start(sc, ni);
351 } else {
352 ath_rate_update(sc, ni, 0);
353 }
354 } else {
355 /*
356 * When operating as a station the node table holds
357 * the AP's that were discovered during scanning.
358 * For any other operating mode we want to reset the
359 * tx rate state of each node.
360 */
361 ieee80211_iterate_nodes(&ic->ic_sta, ath_rate_cb, sc);
362 ath_rate_update(sc, ic->ic_bss, 0);
363 }
364 if (ic->ic_fixed_rate == -1 && state == IEEE80211_S_RUN) {
365 int interval;
366 /*
367 * Start the background rate control thread if we
368 * are not configured to use a fixed xmit rate.
369 */
370 interval = ath_rateinterval;
371 if (ic->ic_opmode == IEEE80211_M_STA)
372 interval /= 2;
373 callout_reset(&asc->timer, (interval * hz) / 1000,
374 ath_ratectl, &sc->sc_if);
375 }
376 }
377
378 /*
379 * Examine and potentially adjust the transmit rate.
380 */
381 static void
382 ath_rate_ctl(void *arg, struct ieee80211_node *ni)
383 {
384 struct ath_softc *sc = arg;
385 struct amrr_node *amn = ATH_NODE_AMRR(ATH_NODE (ni));
386 int old_rate;
387
388 #define is_success(amn) \
389 (amn->amn_tx_try1_cnt < (amn->amn_tx_try0_cnt/10))
390 #define is_enough(amn) \
391 (amn->amn_tx_try0_cnt > 10)
392 #define is_failure(amn) \
393 (amn->amn_tx_try1_cnt > (amn->amn_tx_try0_cnt/3))
394 #define is_max_rate(ni) \
395 ((ni->ni_txrate + 1) >= ni->ni_rates.rs_nrates)
396 #define is_min_rate(ni) \
397 (ni->ni_txrate == 0)
398
399 old_rate = ni->ni_txrate;
400
401 DPRINTF (sc, "cnt0: %d cnt1: %d cnt2: %d cnt3: %d -- threshold: %d\n",
402 amn->amn_tx_try0_cnt,
403 amn->amn_tx_try1_cnt,
404 amn->amn_tx_try2_cnt,
405 amn->amn_tx_try3_cnt,
406 amn->amn_success_threshold);
407 if (is_success (amn) && is_enough (amn)) {
408 amn->amn_success++;
409 if (amn->amn_success == amn->amn_success_threshold &&
410 !is_max_rate (ni)) {
411 amn->amn_recovery = 1;
412 amn->amn_success = 0;
413 ni->ni_txrate++;
414 DPRINTF (sc, "increase rate to %d\n", ni->ni_txrate);
415 } else {
416 amn->amn_recovery = 0;
417 }
418 } else if (is_failure (amn)) {
419 amn->amn_success = 0;
420 if (!is_min_rate (ni)) {
421 if (amn->amn_recovery) {
422 /* recovery failure. */
423 amn->amn_success_threshold *= 2;
424 amn->amn_success_threshold = min (amn->amn_success_threshold,
425 (u_int)ath_rate_max_success_threshold);
426 DPRINTF (sc, "decrease rate recovery thr: %d\n", amn->amn_success_threshold);
427 } else {
428 /* simple failure. */
429 amn->amn_success_threshold = ath_rate_min_success_threshold;
430 DPRINTF (sc, "decrease rate normal thr: %d\n", amn->amn_success_threshold);
431 }
432 amn->amn_recovery = 0;
433 ni->ni_txrate--;
434 } else {
435 amn->amn_recovery = 0;
436 }
437
438 }
439 if (is_enough (amn) || old_rate != ni->ni_txrate) {
440 /* reset counters. */
441 amn->amn_tx_try0_cnt = 0;
442 amn->amn_tx_try1_cnt = 0;
443 amn->amn_tx_try2_cnt = 0;
444 amn->amn_tx_try3_cnt = 0;
445 amn->amn_tx_failure_cnt = 0;
446 }
447 if (old_rate != ni->ni_txrate) {
448 ath_rate_update(sc, ni, ni->ni_txrate);
449 }
450 }
451
452 static void
453 ath_ratectl(void *arg)
454 {
455 struct ifnet *ifp = arg;
456 struct ath_softc *sc = ifp->if_softc;
457 struct amrr_softc *asc = (struct amrr_softc *) sc->sc_rc;
458 struct ieee80211com *ic = &sc->sc_ic;
459 int interval;
460
461 if (ifp->if_flags & IFF_RUNNING) {
462 sc->sc_stats.ast_rate_calls++;
463
464 if (ic->ic_opmode == IEEE80211_M_STA)
465 ath_rate_ctl(sc, ic->ic_bss); /* NB: no reference */
466 else
467 ieee80211_iterate_nodes(&ic->ic_sta, ath_rate_ctl, sc);
468 }
469 interval = ath_rateinterval;
470 if (ic->ic_opmode == IEEE80211_M_STA)
471 interval /= 2;
472 callout_reset(&asc->timer, (interval * hz) / 1000,
473 ath_ratectl, &sc->sc_if);
474 }
475
476 static void
477 ath_rate_sysctlattach(struct ath_softc *sc)
478 {
479 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
480 struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
481
482 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
483 "rate_interval", CTLFLAG_RW, &ath_rateinterval, 0,
484 "rate control: operation interval (ms)");
485 /* XXX bounds check values */
486 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
487 "max_sucess_threshold", CTLFLAG_RW,
488 &ath_rate_max_success_threshold, 0, "");
489 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
490 "min_sucess_threshold", CTLFLAG_RW,
491 &ath_rate_min_success_threshold, 0, "");
492 }
493
494 struct ath_ratectrl *
495 ath_rate_attach(struct ath_softc *sc)
496 {
497 struct amrr_softc *asc;
498
499 asc = malloc(sizeof(struct amrr_softc), M_DEVBUF, M_NOWAIT|M_ZERO);
500 if (asc == NULL)
501 return NULL;
502 asc->arc.arc_space = sizeof(struct amrr_node);
503 callout_init(&asc->timer, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
504 ath_rate_sysctlattach(sc);
505
506 return &asc->arc;
507 }
508
509 void
510 ath_rate_detach(struct ath_ratectrl *arc)
511 {
512 struct amrr_softc *asc = (struct amrr_softc *) arc;
513
514 callout_drain(&asc->timer);
515 free(asc, M_DEVBUF);
516 }
517