atw.c revision 1.103 1 /* $NetBSD: atw.c,v 1.103 2005/12/29 22:01:43 dyoung Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.103 2005/12/29 22:01:43 dyoung Exp $");
45
46 #include "bpfilter.h"
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/callout.h>
51 #include <sys/mbuf.h>
52 #include <sys/malloc.h>
53 #include <sys/kernel.h>
54 #include <sys/socket.h>
55 #include <sys/ioctl.h>
56 #include <sys/errno.h>
57 #include <sys/device.h>
58 #include <sys/time.h>
59
60 #include <machine/endian.h>
61
62 #include <uvm/uvm_extern.h>
63
64 #include <net/if.h>
65 #include <net/if_dl.h>
66 #include <net/if_media.h>
67 #include <net/if_ether.h>
68
69 #include <net80211/ieee80211_netbsd.h>
70 #include <net80211/ieee80211_var.h>
71 #include <net80211/ieee80211_radiotap.h>
72
73 #if NBPFILTER > 0
74 #include <net/bpf.h>
75 #endif
76
77 #include <machine/bus.h>
78 #include <machine/intr.h>
79
80 #include <dev/ic/atwreg.h>
81 #include <dev/ic/rf3000reg.h>
82 #include <dev/ic/si4136reg.h>
83 #include <dev/ic/atwvar.h>
84 #include <dev/ic/smc93cx6var.h>
85
86 /* XXX TBD open questions
87 *
88 *
89 * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
90 * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
91 * handle this for me?
92 *
93 */
94 /* device attachment
95 *
96 * print TOFS[012]
97 *
98 * device initialization
99 *
100 * clear ATW_FRCTL_MAXPSP to disable max power saving
101 * set ATW_TXBR_ALCUPDATE to enable ALC
102 * set TOFS[012]? (hope not)
103 * disable rx/tx
104 * set ATW_PAR_SWR (software reset)
105 * wait for ATW_PAR_SWR clear
106 * disable interrupts
107 * ack status register
108 * enable interrupts
109 *
110 * rx/tx initialization
111 *
112 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
113 * allocate and init descriptor rings
114 * write ATW_PAR_DSL (descriptor skip length)
115 * write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
116 * write ATW_NAR_SQ for one/both transmit descriptor rings
117 * write ATW_NAR_SQ for one/both transmit descriptor rings
118 * enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
119 *
120 * rx/tx end
121 *
122 * stop DMA
123 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
124 * flush tx w/ ATW_NAR_HF
125 *
126 * scan
127 *
128 * initialize rx/tx
129 *
130 * BSS join: (re)association response
131 *
132 * set ATW_FRCTL_AID
133 *
134 * optimizations ???
135 *
136 */
137
138 #define ATW_REFSLAVE /* slavishly do what the reference driver does */
139
140 #define VOODOO_DUR_11_ROUNDING 0x01 /* necessary */
141 #define VOODOO_DUR_2_4_SPECIALCASE 0x02 /* NOT necessary */
142 int atw_voodoo = VOODOO_DUR_11_ROUNDING;
143
144 int atw_pseudo_milli = 1;
145 int atw_magic_delay1 = 100 * 1000;
146 int atw_magic_delay2 = 100 * 1000;
147 /* more magic multi-millisecond delays (units: microseconds) */
148 int atw_nar_delay = 20 * 1000;
149 int atw_magic_delay4 = 10 * 1000;
150 int atw_rf_delay1 = 10 * 1000;
151 int atw_rf_delay2 = 5 * 1000;
152 int atw_plcphd_delay = 2 * 1000;
153 int atw_bbp_io_enable_delay = 20 * 1000;
154 int atw_bbp_io_disable_delay = 2 * 1000;
155 int atw_writewep_delay = 1000;
156 int atw_beacon_len_adjust = 4;
157 int atw_dwelltime = 200;
158 int atw_xindiv2 = 0;
159
160 #ifdef ATW_DEBUG
161 int atw_debug = 0;
162
163 #define ATW_DPRINTF(x) if (atw_debug > 0) printf x
164 #define ATW_DPRINTF2(x) if (atw_debug > 1) printf x
165 #define ATW_DPRINTF3(x) if (atw_debug > 2) printf x
166 #define DPRINTF(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) printf x
167 #define DPRINTF2(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
168 #define DPRINTF3(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
169
170 static void atw_dump_pkt(struct ifnet *, struct mbuf *);
171 static void atw_print_regs(struct atw_softc *, const char *);
172
173 /* Note well: I never got atw_rf3000_read or atw_si4126_read to work. */
174 # ifdef ATW_BBPDEBUG
175 static void atw_rf3000_print(struct atw_softc *);
176 static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
177 # endif /* ATW_BBPDEBUG */
178
179 # ifdef ATW_SYNDEBUG
180 static void atw_si4126_print(struct atw_softc *);
181 static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
182 # endif /* ATW_SYNDEBUG */
183
184 #else
185 #define ATW_DPRINTF(x)
186 #define ATW_DPRINTF2(x)
187 #define ATW_DPRINTF3(x)
188 #define DPRINTF(sc, x) /* nothing */
189 #define DPRINTF2(sc, x) /* nothing */
190 #define DPRINTF3(sc, x) /* nothing */
191 #endif
192
193 /* ifnet methods */
194 int atw_init(struct ifnet *);
195 int atw_ioctl(struct ifnet *, u_long, caddr_t);
196 void atw_start(struct ifnet *);
197 void atw_stop(struct ifnet *, int);
198 void atw_watchdog(struct ifnet *);
199
200 /* Device attachment */
201 void atw_attach(struct atw_softc *);
202 int atw_detach(struct atw_softc *);
203
204 /* Rx/Tx process */
205 int atw_add_rxbuf(struct atw_softc *, int);
206 void atw_idle(struct atw_softc *, u_int32_t);
207 void atw_rxdrain(struct atw_softc *);
208 void atw_txdrain(struct atw_softc *);
209
210 /* Device (de)activation and power state */
211 void atw_disable(struct atw_softc *);
212 int atw_enable(struct atw_softc *);
213 void atw_power(int, void *);
214 void atw_reset(struct atw_softc *);
215 void atw_shutdown(void *);
216
217 /* Interrupt handlers */
218 void atw_linkintr(struct atw_softc *, u_int32_t);
219 void atw_rxintr(struct atw_softc *);
220 void atw_txintr(struct atw_softc *);
221
222 /* 802.11 state machine */
223 static int atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
224 static void atw_next_scan(void *);
225 static void atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
226 struct ieee80211_node *, int, int, u_int32_t);
227 static int atw_tune(struct atw_softc *);
228
229 /* Device initialization */
230 static void atw_bbp_io_init(struct atw_softc *);
231 static void atw_cfp_init(struct atw_softc *);
232 static void atw_cmdr_init(struct atw_softc *);
233 static void atw_ifs_init(struct atw_softc *);
234 static void atw_nar_init(struct atw_softc *);
235 static void atw_response_times_init(struct atw_softc *);
236 static void atw_rf_reset(struct atw_softc *);
237 static void atw_test1_init(struct atw_softc *);
238 static void atw_tofs0_init(struct atw_softc *);
239 static void atw_tofs2_init(struct atw_softc *);
240 static void atw_txlmt_init(struct atw_softc *);
241 static void atw_wcsr_init(struct atw_softc *);
242
243 /* Key management */
244 static int atw_key_delete(struct ieee80211com *, const struct ieee80211_key *);
245 static int atw_key_set(struct ieee80211com *, const struct ieee80211_key *,
246 const u_int8_t[IEEE80211_ADDR_LEN]);
247 static void atw_key_update_begin(struct ieee80211com *);
248 static void atw_key_update_end(struct ieee80211com *);
249
250 /* RAM/ROM utilities */
251 static void atw_clear_sram(struct atw_softc *);
252 static void atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
253 static int atw_read_srom(struct atw_softc *);
254
255 /* BSS setup */
256 static void atw_predict_beacon(struct atw_softc *);
257 static void atw_start_beacon(struct atw_softc *, int);
258 static void atw_write_bssid(struct atw_softc *);
259 static void atw_write_ssid(struct atw_softc *);
260 static void atw_write_sup_rates(struct atw_softc *);
261 static void atw_write_wep(struct atw_softc *);
262
263 /* Media */
264 static int atw_media_change(struct ifnet *);
265
266 static void atw_filter_setup(struct atw_softc *);
267
268 /* 802.11 utilities */
269 static uint64_t atw_get_tsft(struct atw_softc *);
270 static inline uint32_t atw_last_even_tsft(uint32_t, uint32_t,
271 uint32_t);
272 static struct ieee80211_node *atw_node_alloc(struct ieee80211_node_table *);
273 static void atw_node_free(struct ieee80211_node *);
274 static void atw_change_ibss(struct atw_softc *);
275
276 /*
277 * Tuner/transceiver/modem
278 */
279 static void atw_bbp_io_enable(struct atw_softc *, int);
280
281 /* RFMD RF3000 Baseband Processor */
282 static int atw_rf3000_init(struct atw_softc *);
283 static int atw_rf3000_tune(struct atw_softc *, u_int);
284 static int atw_rf3000_write(struct atw_softc *, u_int, u_int);
285
286 /* Silicon Laboratories Si4126 RF/IF Synthesizer */
287 static void atw_si4126_tune(struct atw_softc *, u_int);
288 static void atw_si4126_write(struct atw_softc *, u_int, u_int);
289
290 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
291 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
292
293 const char *atw_tx_state[] = {
294 "STOPPED",
295 "RUNNING - read descriptor",
296 "RUNNING - transmitting",
297 "RUNNING - filling fifo", /* XXX */
298 "SUSPENDED",
299 "RUNNING -- write descriptor",
300 "RUNNING -- write last descriptor",
301 "RUNNING - fifo full"
302 };
303
304 const char *atw_rx_state[] = {
305 "STOPPED",
306 "RUNNING - read descriptor",
307 "RUNNING - check this packet, pre-fetch next",
308 "RUNNING - wait for reception",
309 "SUSPENDED",
310 "RUNNING - write descriptor",
311 "RUNNING - flush fifo",
312 "RUNNING - fifo drain"
313 };
314
315 int
316 atw_activate(struct device *self, enum devact act)
317 {
318 struct atw_softc *sc = (struct atw_softc *)self;
319 int rv = 0, s;
320
321 s = splnet();
322 switch (act) {
323 case DVACT_ACTIVATE:
324 rv = EOPNOTSUPP;
325 break;
326
327 case DVACT_DEACTIVATE:
328 if_deactivate(&sc->sc_if);
329 break;
330 }
331 splx(s);
332 return rv;
333 }
334
335 /*
336 * atw_enable:
337 *
338 * Enable the ADM8211 chip.
339 */
340 int
341 atw_enable(struct atw_softc *sc)
342 {
343
344 if (ATW_IS_ENABLED(sc) == 0) {
345 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
346 printf("%s: device enable failed\n",
347 sc->sc_dev.dv_xname);
348 return (EIO);
349 }
350 sc->sc_flags |= ATWF_ENABLED;
351 }
352 return (0);
353 }
354
355 /*
356 * atw_disable:
357 *
358 * Disable the ADM8211 chip.
359 */
360 void
361 atw_disable(struct atw_softc *sc)
362 {
363 if (!ATW_IS_ENABLED(sc))
364 return;
365 if (sc->sc_disable != NULL)
366 (*sc->sc_disable)(sc);
367 sc->sc_flags &= ~ATWF_ENABLED;
368 }
369
370 /* Returns -1 on failure. */
371 static int
372 atw_read_srom(struct atw_softc *sc)
373 {
374 struct seeprom_descriptor sd;
375 uint32_t test0, fail_bits;
376
377 (void)memset(&sd, 0, sizeof(sd));
378
379 test0 = ATW_READ(sc, ATW_TEST0);
380
381 switch (sc->sc_rev) {
382 case ATW_REVISION_BA:
383 case ATW_REVISION_CA:
384 fail_bits = ATW_TEST0_EPNE;
385 break;
386 default:
387 fail_bits = ATW_TEST0_EPNE|ATW_TEST0_EPSNM;
388 break;
389 }
390 if ((test0 & fail_bits) != 0) {
391 printf("%s: bad or missing/bad SROM\n", sc->sc_dev.dv_xname);
392 return -1;
393 }
394
395 switch (test0 & ATW_TEST0_EPTYP_MASK) {
396 case ATW_TEST0_EPTYP_93c66:
397 ATW_DPRINTF(("%s: 93c66 SROM\n", sc->sc_dev.dv_xname));
398 sc->sc_sromsz = 512;
399 sd.sd_chip = C56_66;
400 break;
401 case ATW_TEST0_EPTYP_93c46:
402 ATW_DPRINTF(("%s: 93c46 SROM\n", sc->sc_dev.dv_xname));
403 sc->sc_sromsz = 128;
404 sd.sd_chip = C46;
405 break;
406 default:
407 printf("%s: unknown SROM type %d\n", sc->sc_dev.dv_xname,
408 MASK_AND_RSHIFT(test0, ATW_TEST0_EPTYP_MASK));
409 return -1;
410 }
411
412 sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
413
414 if (sc->sc_srom == NULL) {
415 printf("%s: unable to allocate SROM buffer\n",
416 sc->sc_dev.dv_xname);
417 return -1;
418 }
419
420 (void)memset(sc->sc_srom, 0, sc->sc_sromsz);
421
422 /* ADM8211 has a single 32-bit register for controlling the
423 * 93cx6 SROM. Bit SRS enables the serial port. There is no
424 * "ready" bit. The ADM8211 input/output sense is the reverse
425 * of read_seeprom's.
426 */
427 sd.sd_tag = sc->sc_st;
428 sd.sd_bsh = sc->sc_sh;
429 sd.sd_regsize = 4;
430 sd.sd_control_offset = ATW_SPR;
431 sd.sd_status_offset = ATW_SPR;
432 sd.sd_dataout_offset = ATW_SPR;
433 sd.sd_CK = ATW_SPR_SCLK;
434 sd.sd_CS = ATW_SPR_SCS;
435 sd.sd_DI = ATW_SPR_SDO;
436 sd.sd_DO = ATW_SPR_SDI;
437 sd.sd_MS = ATW_SPR_SRS;
438 sd.sd_RDY = 0;
439
440 if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
441 printf("%s: could not read SROM\n", sc->sc_dev.dv_xname);
442 free(sc->sc_srom, M_DEVBUF);
443 return -1;
444 }
445 #ifdef ATW_DEBUG
446 {
447 int i;
448 ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
449 for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
450 if (((i % 8) == 0) && (i != 0)) {
451 ATW_DPRINTF(("\n\t"));
452 }
453 ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
454 }
455 ATW_DPRINTF(("\n"));
456 }
457 #endif /* ATW_DEBUG */
458 return 0;
459 }
460
461 #ifdef ATW_DEBUG
462 static void
463 atw_print_regs(struct atw_softc *sc, const char *where)
464 {
465 #define PRINTREG(sc, reg) \
466 ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
467 sc->sc_dev.dv_xname, reg, ATW_READ(sc, reg)))
468
469 ATW_DPRINTF2(("%s: %s\n", sc->sc_dev.dv_xname, where));
470
471 PRINTREG(sc, ATW_PAR);
472 PRINTREG(sc, ATW_FRCTL);
473 PRINTREG(sc, ATW_TDR);
474 PRINTREG(sc, ATW_WTDP);
475 PRINTREG(sc, ATW_RDR);
476 PRINTREG(sc, ATW_WRDP);
477 PRINTREG(sc, ATW_RDB);
478 PRINTREG(sc, ATW_CSR3A);
479 PRINTREG(sc, ATW_TDBD);
480 PRINTREG(sc, ATW_TDBP);
481 PRINTREG(sc, ATW_STSR);
482 PRINTREG(sc, ATW_CSR5A);
483 PRINTREG(sc, ATW_NAR);
484 PRINTREG(sc, ATW_CSR6A);
485 PRINTREG(sc, ATW_IER);
486 PRINTREG(sc, ATW_CSR7A);
487 PRINTREG(sc, ATW_LPC);
488 PRINTREG(sc, ATW_TEST1);
489 PRINTREG(sc, ATW_SPR);
490 PRINTREG(sc, ATW_TEST0);
491 PRINTREG(sc, ATW_WCSR);
492 PRINTREG(sc, ATW_WPDR);
493 PRINTREG(sc, ATW_GPTMR);
494 PRINTREG(sc, ATW_GPIO);
495 PRINTREG(sc, ATW_BBPCTL);
496 PRINTREG(sc, ATW_SYNCTL);
497 PRINTREG(sc, ATW_PLCPHD);
498 PRINTREG(sc, ATW_MMIWADDR);
499 PRINTREG(sc, ATW_MMIRADDR1);
500 PRINTREG(sc, ATW_MMIRADDR2);
501 PRINTREG(sc, ATW_TXBR);
502 PRINTREG(sc, ATW_CSR15A);
503 PRINTREG(sc, ATW_ALCSTAT);
504 PRINTREG(sc, ATW_TOFS2);
505 PRINTREG(sc, ATW_CMDR);
506 PRINTREG(sc, ATW_PCIC);
507 PRINTREG(sc, ATW_PMCSR);
508 PRINTREG(sc, ATW_PAR0);
509 PRINTREG(sc, ATW_PAR1);
510 PRINTREG(sc, ATW_MAR0);
511 PRINTREG(sc, ATW_MAR1);
512 PRINTREG(sc, ATW_ATIMDA0);
513 PRINTREG(sc, ATW_ABDA1);
514 PRINTREG(sc, ATW_BSSID0);
515 PRINTREG(sc, ATW_TXLMT);
516 PRINTREG(sc, ATW_MIBCNT);
517 PRINTREG(sc, ATW_BCNT);
518 PRINTREG(sc, ATW_TSFTH);
519 PRINTREG(sc, ATW_TSC);
520 PRINTREG(sc, ATW_SYNRF);
521 PRINTREG(sc, ATW_BPLI);
522 PRINTREG(sc, ATW_CAP0);
523 PRINTREG(sc, ATW_CAP1);
524 PRINTREG(sc, ATW_RMD);
525 PRINTREG(sc, ATW_CFPP);
526 PRINTREG(sc, ATW_TOFS0);
527 PRINTREG(sc, ATW_TOFS1);
528 PRINTREG(sc, ATW_IFST);
529 PRINTREG(sc, ATW_RSPT);
530 PRINTREG(sc, ATW_TSFTL);
531 PRINTREG(sc, ATW_WEPCTL);
532 PRINTREG(sc, ATW_WESK);
533 PRINTREG(sc, ATW_WEPCNT);
534 PRINTREG(sc, ATW_MACTEST);
535 PRINTREG(sc, ATW_FER);
536 PRINTREG(sc, ATW_FEMR);
537 PRINTREG(sc, ATW_FPSR);
538 PRINTREG(sc, ATW_FFER);
539 #undef PRINTREG
540 }
541 #endif /* ATW_DEBUG */
542
543 /*
544 * Finish attaching an ADMtek ADM8211 MAC. Called by bus-specific front-end.
545 */
546 void
547 atw_attach(struct atw_softc *sc)
548 {
549 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
550 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
551 };
552 struct ieee80211com *ic = &sc->sc_ic;
553 struct ifnet *ifp = &sc->sc_if;
554 int country_code, error, i, nrate, srom_major;
555 u_int32_t reg;
556 static const char *type_strings[] = {"Intersil (not supported)",
557 "RFMD", "Marvel (not supported)"};
558
559 sc->sc_txth = atw_txthresh_tab_lo;
560
561 SIMPLEQ_INIT(&sc->sc_txfreeq);
562 SIMPLEQ_INIT(&sc->sc_txdirtyq);
563
564 #ifdef ATW_DEBUG
565 atw_print_regs(sc, "atw_attach");
566 #endif /* ATW_DEBUG */
567
568 /*
569 * Allocate the control data structures, and create and load the
570 * DMA map for it.
571 */
572 if ((error = bus_dmamem_alloc(sc->sc_dmat,
573 sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
574 1, &sc->sc_cdnseg, 0)) != 0) {
575 printf("%s: unable to allocate control data, error = %d\n",
576 sc->sc_dev.dv_xname, error);
577 goto fail_0;
578 }
579
580 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
581 sizeof(struct atw_control_data), (caddr_t *)&sc->sc_control_data,
582 BUS_DMA_COHERENT)) != 0) {
583 printf("%s: unable to map control data, error = %d\n",
584 sc->sc_dev.dv_xname, error);
585 goto fail_1;
586 }
587
588 if ((error = bus_dmamap_create(sc->sc_dmat,
589 sizeof(struct atw_control_data), 1,
590 sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
591 printf("%s: unable to create control data DMA map, "
592 "error = %d\n", sc->sc_dev.dv_xname, error);
593 goto fail_2;
594 }
595
596 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
597 sc->sc_control_data, sizeof(struct atw_control_data), NULL,
598 0)) != 0) {
599 printf("%s: unable to load control data DMA map, error = %d\n",
600 sc->sc_dev.dv_xname, error);
601 goto fail_3;
602 }
603
604 /*
605 * Create the transmit buffer DMA maps.
606 */
607 sc->sc_ntxsegs = ATW_NTXSEGS;
608 for (i = 0; i < ATW_TXQUEUELEN; i++) {
609 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
610 sc->sc_ntxsegs, MCLBYTES, 0, 0,
611 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
612 printf("%s: unable to create tx DMA map %d, "
613 "error = %d\n", sc->sc_dev.dv_xname, i, error);
614 goto fail_4;
615 }
616 }
617
618 /*
619 * Create the receive buffer DMA maps.
620 */
621 for (i = 0; i < ATW_NRXDESC; i++) {
622 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
623 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
624 printf("%s: unable to create rx DMA map %d, "
625 "error = %d\n", sc->sc_dev.dv_xname, i, error);
626 goto fail_5;
627 }
628 }
629 for (i = 0; i < ATW_NRXDESC; i++) {
630 sc->sc_rxsoft[i].rxs_mbuf = NULL;
631 }
632
633 switch (sc->sc_rev) {
634 case ATW_REVISION_AB:
635 case ATW_REVISION_AF:
636 sc->sc_sramlen = ATW_SRAM_A_SIZE;
637 break;
638 case ATW_REVISION_BA:
639 case ATW_REVISION_CA:
640 sc->sc_sramlen = ATW_SRAM_B_SIZE;
641 break;
642 }
643
644 /* Reset the chip to a known state. */
645 atw_reset(sc);
646
647 if (atw_read_srom(sc) == -1)
648 return;
649
650 sc->sc_rftype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
651 ATW_SR_RFTYPE_MASK);
652
653 sc->sc_bbptype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
654 ATW_SR_BBPTYPE_MASK);
655
656 if (sc->sc_rftype > sizeof(type_strings)/sizeof(type_strings[0])) {
657 printf("%s: unknown RF\n", sc->sc_dev.dv_xname);
658 return;
659 }
660 if (sc->sc_bbptype > sizeof(type_strings)/sizeof(type_strings[0])) {
661 printf("%s: unknown BBP\n", sc->sc_dev.dv_xname);
662 return;
663 }
664
665 printf("%s: %s RF, %s BBP", sc->sc_dev.dv_xname,
666 type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
667
668 /* XXX There exists a Linux driver which seems to use RFType = 0 for
669 * MARVEL. My bug, or theirs?
670 */
671
672 reg = LSHIFT(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
673
674 switch (sc->sc_rftype) {
675 case ATW_RFTYPE_INTERSIL:
676 reg |= ATW_SYNCTL_CS1;
677 break;
678 case ATW_RFTYPE_RFMD:
679 reg |= ATW_SYNCTL_CS0;
680 break;
681 case ATW_RFTYPE_MARVEL:
682 break;
683 }
684
685 sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
686 sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
687
688 reg = LSHIFT(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
689
690 switch (sc->sc_bbptype) {
691 case ATW_BBPTYPE_INTERSIL:
692 reg |= ATW_BBPCTL_TWI;
693 break;
694 case ATW_BBPTYPE_RFMD:
695 reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
696 ATW_BBPCTL_CCA_ACTLO;
697 break;
698 case ATW_BBPTYPE_MARVEL:
699 break;
700 case ATW_C_BBPTYPE_RFMD:
701 printf("%s: ADM8211C MAC/RFMD BBP not supported yet.\n",
702 sc->sc_dev.dv_xname);
703 break;
704 }
705
706 sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
707 sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
708
709 /*
710 * From this point forward, the attachment cannot fail. A failure
711 * before this point releases all resources that may have been
712 * allocated.
713 */
714 sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
715
716 ATW_DPRINTF((" SROM MAC %04x%04x%04x",
717 htole16(sc->sc_srom[ATW_SR_MAC00]),
718 htole16(sc->sc_srom[ATW_SR_MAC01]),
719 htole16(sc->sc_srom[ATW_SR_MAC10])));
720
721 srom_major = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_FORMAT_VERSION],
722 ATW_SR_MAJOR_MASK);
723
724 if (srom_major < 2)
725 sc->sc_rf3000_options1 = 0;
726 else if (sc->sc_rev == ATW_REVISION_BA) {
727 sc->sc_rf3000_options1 =
728 MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CR28_CR03],
729 ATW_SR_CR28_MASK);
730 } else
731 sc->sc_rf3000_options1 = 0;
732
733 sc->sc_rf3000_options2 = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
734 ATW_SR_CR29_MASK);
735
736 country_code = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
737 ATW_SR_CTRY_MASK);
738
739 #define ADD_CHANNEL(_ic, _chan) do { \
740 _ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B; \
741 _ic->ic_channels[_chan].ic_freq = \
742 ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
743 } while (0)
744
745 /* Find available channels */
746 switch (country_code) {
747 case COUNTRY_MMK2: /* 1-14 */
748 ADD_CHANNEL(ic, 14);
749 /*FALLTHROUGH*/
750 case COUNTRY_ETSI: /* 1-13 */
751 for (i = 1; i <= 13; i++)
752 ADD_CHANNEL(ic, i);
753 break;
754 case COUNTRY_FCC: /* 1-11 */
755 case COUNTRY_IC: /* 1-11 */
756 for (i = 1; i <= 11; i++)
757 ADD_CHANNEL(ic, i);
758 break;
759 case COUNTRY_MMK: /* 14 */
760 ADD_CHANNEL(ic, 14);
761 break;
762 case COUNTRY_FRANCE: /* 10-13 */
763 for (i = 10; i <= 13; i++)
764 ADD_CHANNEL(ic, i);
765 break;
766 default: /* assume channels 10-11 */
767 case COUNTRY_SPAIN: /* 10-11 */
768 for (i = 10; i <= 11; i++)
769 ADD_CHANNEL(ic, i);
770 break;
771 }
772
773 /* Read the MAC address. */
774 reg = ATW_READ(sc, ATW_PAR0);
775 ic->ic_myaddr[0] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB0_MASK);
776 ic->ic_myaddr[1] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB1_MASK);
777 ic->ic_myaddr[2] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB2_MASK);
778 ic->ic_myaddr[3] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB3_MASK);
779 reg = ATW_READ(sc, ATW_PAR1);
780 ic->ic_myaddr[4] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB4_MASK);
781 ic->ic_myaddr[5] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB5_MASK);
782
783 if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
784 printf(" could not get mac address, attach failed\n");
785 return;
786 }
787
788 printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
789
790 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
791 ifp->if_softc = sc;
792 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
793 IFF_NOTRAILERS;
794 ifp->if_ioctl = atw_ioctl;
795 ifp->if_start = atw_start;
796 ifp->if_watchdog = atw_watchdog;
797 ifp->if_init = atw_init;
798 ifp->if_stop = atw_stop;
799 IFQ_SET_READY(&ifp->if_snd);
800
801 ic->ic_ifp = ifp;
802 ic->ic_phytype = IEEE80211_T_DS;
803 ic->ic_opmode = IEEE80211_M_STA;
804 ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
805 IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR;
806
807 nrate = 0;
808 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
809 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
810 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
811 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
812 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
813
814 /*
815 * Call MI attach routines.
816 */
817
818 if_attach(ifp);
819 ieee80211_ifattach(ic);
820
821 sc->sc_newstate = ic->ic_newstate;
822 ic->ic_newstate = atw_newstate;
823
824 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
825 ic->ic_recv_mgmt = atw_recv_mgmt;
826
827 sc->sc_node_free = ic->ic_node_free;
828 ic->ic_node_free = atw_node_free;
829
830 sc->sc_node_alloc = ic->ic_node_alloc;
831 ic->ic_node_alloc = atw_node_alloc;
832
833 ic->ic_crypto.cs_key_delete = atw_key_delete;
834 ic->ic_crypto.cs_key_set = atw_key_set;
835 ic->ic_crypto.cs_key_update_begin = atw_key_update_begin;
836 ic->ic_crypto.cs_key_update_end = atw_key_update_end;
837
838 /* possibly we should fill in our own sc_send_prresp, since
839 * the ADM8211 is probably sending probe responses in ad hoc
840 * mode.
841 */
842
843 /* complete initialization */
844 ieee80211_media_init(ic, atw_media_change, ieee80211_media_status);
845 callout_init(&sc->sc_scan_ch);
846
847 #if NBPFILTER > 0
848 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
849 sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
850 #endif
851
852 /*
853 * Make sure the interface is shutdown during reboot.
854 */
855 sc->sc_sdhook = shutdownhook_establish(atw_shutdown, sc);
856 if (sc->sc_sdhook == NULL)
857 printf("%s: WARNING: unable to establish shutdown hook\n",
858 sc->sc_dev.dv_xname);
859
860 /*
861 * Add a suspend hook to make sure we come back up after a
862 * resume.
863 */
864 sc->sc_powerhook = powerhook_establish(atw_power, sc);
865 if (sc->sc_powerhook == NULL)
866 printf("%s: WARNING: unable to establish power hook\n",
867 sc->sc_dev.dv_xname);
868
869 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
870 sc->sc_rxtap.ar_ihdr.it_len = sizeof(sc->sc_rxtapu);
871 sc->sc_rxtap.ar_ihdr.it_present = ATW_RX_RADIOTAP_PRESENT;
872
873 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
874 sc->sc_txtap.at_ihdr.it_len = sizeof(sc->sc_txtapu);
875 sc->sc_txtap.at_ihdr.it_present = ATW_TX_RADIOTAP_PRESENT;
876
877 ieee80211_announce(ic);
878 return;
879
880 /*
881 * Free any resources we've allocated during the failed attach
882 * attempt. Do this in reverse order and fall through.
883 */
884 fail_5:
885 for (i = 0; i < ATW_NRXDESC; i++) {
886 if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
887 continue;
888 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
889 }
890 fail_4:
891 for (i = 0; i < ATW_TXQUEUELEN; i++) {
892 if (sc->sc_txsoft[i].txs_dmamap == NULL)
893 continue;
894 bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
895 }
896 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
897 fail_3:
898 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
899 fail_2:
900 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
901 sizeof(struct atw_control_data));
902 fail_1:
903 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
904 fail_0:
905 return;
906 }
907
908 static struct ieee80211_node *
909 atw_node_alloc(struct ieee80211_node_table *nt)
910 {
911 struct atw_softc *sc = (struct atw_softc *)nt->nt_ic->ic_ifp->if_softc;
912 struct ieee80211_node *ni = (*sc->sc_node_alloc)(nt);
913
914 DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
915 return ni;
916 }
917
918 static void
919 atw_node_free(struct ieee80211_node *ni)
920 {
921 struct atw_softc *sc = (struct atw_softc *)ni->ni_ic->ic_ifp->if_softc;
922
923 DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
924 ether_sprintf(ni->ni_bssid)));
925 (*sc->sc_node_free)(ni);
926 }
927
928
929 static void
930 atw_test1_reset(struct atw_softc *sc)
931 {
932 switch (sc->sc_rev) {
933 case ATW_REVISION_BA:
934 if (1 /* XXX condition on transceiver type */) {
935 ATW_SET(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MONITOR);
936 }
937 break;
938 case ATW_REVISION_CA:
939 ATW_CLR(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MASK);
940 break;
941 default:
942 break;
943 }
944 }
945
946 /*
947 * atw_reset:
948 *
949 * Perform a soft reset on the ADM8211.
950 */
951 void
952 atw_reset(struct atw_softc *sc)
953 {
954 int i;
955 uint32_t lpc;
956
957 ATW_WRITE(sc, ATW_NAR, 0x0);
958 DELAY(atw_nar_delay);
959
960 /* Reference driver has a cryptic remark indicating that this might
961 * power-on the chip. I know that it turns off power-saving....
962 */
963 ATW_WRITE(sc, ATW_FRCTL, 0x0);
964
965 ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
966
967 for (i = 0; i < 50000 / atw_pseudo_milli; i++) {
968 if ((ATW_READ(sc, ATW_PAR) & ATW_PAR_SWR) == 0)
969 break;
970 DELAY(atw_pseudo_milli);
971 }
972
973 /* ... and then pause 100ms longer for good measure. */
974 DELAY(atw_magic_delay1);
975
976 DPRINTF2(sc, ("%s: atw_reset %d iterations\n", sc->sc_dev.dv_xname, i));
977
978 if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
979 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
980
981 /*
982 * Initialize the PCI Access Register.
983 */
984 sc->sc_busmode = ATW_PAR_PBL_8DW;
985
986 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
987 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
988 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
989
990 atw_test1_reset(sc);
991
992 /* Turn off maximum power saving, etc. */
993 ATW_WRITE(sc, ATW_FRCTL, 0x0);
994
995 DELAY(atw_magic_delay2);
996
997 /* Recall EEPROM. */
998 ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
999
1000 DELAY(atw_magic_delay4);
1001
1002 lpc = ATW_READ(sc, ATW_LPC);
1003
1004 DPRINTF(sc, ("%s: ATW_LPC %#08x\n", __func__, lpc));
1005
1006 /* A reset seems to affect the SRAM contents, so put them into
1007 * a known state.
1008 */
1009 atw_clear_sram(sc);
1010
1011 memset(sc->sc_bssid, 0xff, sizeof(sc->sc_bssid));
1012 }
1013
1014 static void
1015 atw_clear_sram(struct atw_softc *sc)
1016 {
1017 memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
1018 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
1019 /* XXX not for revision 0x20. */
1020 atw_write_sram(sc, 0, sc->sc_sram, sc->sc_sramlen);
1021 }
1022
1023 /* TBD atw_init
1024 *
1025 * set MAC based on ic->ic_bss->myaddr
1026 * write WEP keys
1027 * set TX rate
1028 */
1029
1030 /* Tell the ADM8211 to raise ATW_INTR_LINKOFF if 7 beacon intervals pass
1031 * without receiving a beacon with the preferred BSSID & SSID.
1032 * atw_write_bssid & atw_write_ssid set the BSSID & SSID.
1033 */
1034 static void
1035 atw_wcsr_init(struct atw_softc *sc)
1036 {
1037 uint32_t wcsr;
1038
1039 wcsr = ATW_READ(sc, ATW_WCSR);
1040 wcsr &= ~(ATW_WCSR_BLN_MASK|ATW_WCSR_LSOE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
1041 wcsr |= LSHIFT(7, ATW_WCSR_BLN_MASK);
1042 ATW_WRITE(sc, ATW_WCSR, wcsr); /* XXX resets wake-up status bits */
1043
1044 DPRINTF(sc, ("%s: %s reg[WCSR] = %08x\n",
1045 sc->sc_dev.dv_xname, __func__, ATW_READ(sc, ATW_WCSR)));
1046 }
1047
1048 /* Turn off power management. Set Rx store-and-forward mode. */
1049 static void
1050 atw_cmdr_init(struct atw_softc *sc)
1051 {
1052 uint32_t cmdr;
1053 cmdr = ATW_READ(sc, ATW_CMDR);
1054 cmdr &= ~ATW_CMDR_APM;
1055 cmdr |= ATW_CMDR_RTE;
1056 cmdr &= ~ATW_CMDR_DRT_MASK;
1057 cmdr |= ATW_CMDR_DRT_SF;
1058
1059 ATW_WRITE(sc, ATW_CMDR, cmdr);
1060 }
1061
1062 static void
1063 atw_tofs2_init(struct atw_softc *sc)
1064 {
1065 uint32_t tofs2;
1066 /* XXX this magic can probably be figured out from the RFMD docs */
1067 #ifndef ATW_REFSLAVE
1068 tofs2 = LSHIFT(4, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
1069 LSHIFT(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1070 LSHIFT(8, ATW_TOFS2_PWR1PAPE_MASK) | /* 8 us */
1071 LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
1072 LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1073 LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
1074 LSHIFT(4, ATW_TOFS2_PWR1PE2_MASK) | /* 4 us */
1075 LSHIFT(5, ATW_TOFS2_PWR0TXPE_MASK); /* 5 us */
1076 #else
1077 /* XXX new magic from reference driver source */
1078 tofs2 = LSHIFT(8, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
1079 LSHIFT(8, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1080 LSHIFT(1, ATW_TOFS2_PWR1PAPE_MASK) | /* 8 us */
1081 LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
1082 LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1083 LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
1084 LSHIFT(1, ATW_TOFS2_PWR1PE2_MASK) | /* 4 us */
1085 LSHIFT(8, ATW_TOFS2_PWR0TXPE_MASK); /* 5 us */
1086 #endif
1087 ATW_WRITE(sc, ATW_TOFS2, tofs2);
1088 }
1089
1090 static void
1091 atw_nar_init(struct atw_softc *sc)
1092 {
1093 ATW_WRITE(sc, ATW_NAR, ATW_NAR_SF|ATW_NAR_PB);
1094 }
1095
1096 static void
1097 atw_txlmt_init(struct atw_softc *sc)
1098 {
1099 ATW_WRITE(sc, ATW_TXLMT, LSHIFT(512, ATW_TXLMT_MTMLT_MASK) |
1100 LSHIFT(1, ATW_TXLMT_SRTYLIM_MASK));
1101 }
1102
1103 static void
1104 atw_test1_init(struct atw_softc *sc)
1105 {
1106 uint32_t test1;
1107
1108 test1 = ATW_READ(sc, ATW_TEST1);
1109 test1 &= ~(ATW_TEST1_DBGREAD_MASK|ATW_TEST1_CONTROL);
1110 /* XXX magic 0x1 */
1111 test1 |= LSHIFT(0x1, ATW_TEST1_DBGREAD_MASK) | ATW_TEST1_CONTROL;
1112 ATW_WRITE(sc, ATW_TEST1, test1);
1113 }
1114
1115 static void
1116 atw_rf_reset(struct atw_softc *sc)
1117 {
1118 /* XXX this resets an Intersil RF front-end? */
1119 /* TBD condition on Intersil RFType? */
1120 ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
1121 DELAY(atw_rf_delay1);
1122 ATW_WRITE(sc, ATW_SYNRF, 0);
1123 DELAY(atw_rf_delay2);
1124 }
1125
1126 /* Set 16 TU max duration for the contention-free period (CFP). */
1127 static void
1128 atw_cfp_init(struct atw_softc *sc)
1129 {
1130 uint32_t cfpp;
1131
1132 cfpp = ATW_READ(sc, ATW_CFPP);
1133 cfpp &= ~ATW_CFPP_CFPMD;
1134 cfpp |= LSHIFT(16, ATW_CFPP_CFPMD);
1135 ATW_WRITE(sc, ATW_CFPP, cfpp);
1136 }
1137
1138 static void
1139 atw_tofs0_init(struct atw_softc *sc)
1140 {
1141 /* XXX I guess that the Cardbus clock is 22MHz?
1142 * I am assuming that the role of ATW_TOFS0_USCNT is
1143 * to divide the bus clock to get a 1MHz clock---the datasheet is not
1144 * very clear on this point. It says in the datasheet that it is
1145 * possible for the ADM8211 to accomodate bus speeds between 22MHz
1146 * and 33MHz; maybe this is the way? I see a binary-only driver write
1147 * these values. These values are also the power-on default.
1148 */
1149 ATW_WRITE(sc, ATW_TOFS0,
1150 LSHIFT(22, ATW_TOFS0_USCNT_MASK) |
1151 ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
1152 }
1153
1154 /* Initialize interframe spacing: 802.11b slot time, SIFS, DIFS, EIFS. */
1155 static void
1156 atw_ifs_init(struct atw_softc *sc)
1157 {
1158 uint32_t ifst;
1159 /* XXX EIFS=0x64, SIFS=110 are used by the reference driver.
1160 * Go figure.
1161 */
1162 ifst = LSHIFT(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
1163 LSHIFT(22 * 5 /* IEEE80211_DUR_DS_SIFS */ /* # of 22MHz cycles */,
1164 ATW_IFST_SIFS_MASK) |
1165 LSHIFT(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
1166 LSHIFT(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
1167
1168 ATW_WRITE(sc, ATW_IFST, ifst);
1169 }
1170
1171 static void
1172 atw_response_times_init(struct atw_softc *sc)
1173 {
1174 /* XXX More magic. Relates to ACK timing? The datasheet seems to
1175 * indicate that the MAC expects at least SIFS + MIRT microseconds
1176 * to pass after it transmits a frame that requires a response;
1177 * it waits at most SIFS + MART microseconds for the response.
1178 * Surely this is not the ACK timeout?
1179 */
1180 ATW_WRITE(sc, ATW_RSPT, LSHIFT(0xffff, ATW_RSPT_MART_MASK) |
1181 LSHIFT(0xff, ATW_RSPT_MIRT_MASK));
1182 }
1183
1184 /* Set up the MMI read/write addresses for the baseband. The Tx/Rx
1185 * engines read and write baseband registers after Rx and before
1186 * Tx, respectively.
1187 */
1188 static void
1189 atw_bbp_io_init(struct atw_softc *sc)
1190 {
1191 uint32_t mmiraddr2;
1192
1193 /* XXX The reference driver does this, but is it *really*
1194 * necessary?
1195 */
1196 switch (sc->sc_rev) {
1197 case ATW_REVISION_AB:
1198 case ATW_REVISION_AF:
1199 mmiraddr2 = 0x0;
1200 break;
1201 default:
1202 mmiraddr2 = ATW_READ(sc, ATW_MMIRADDR2);
1203 mmiraddr2 &=
1204 ~(ATW_MMIRADDR2_PROREXT|ATW_MMIRADDR2_PRORLEN_MASK);
1205 break;
1206 }
1207
1208 switch (sc->sc_bbptype) {
1209 case ATW_BBPTYPE_INTERSIL:
1210 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1211 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1212 mmiraddr2 |= ATW_MMIRADDR2_INTERSIL;
1213 break;
1214 case ATW_BBPTYPE_MARVEL:
1215 /* TBD find out the Marvel settings. */
1216 break;
1217 case ATW_BBPTYPE_RFMD:
1218 default:
1219 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1220 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1221 mmiraddr2 |= ATW_MMIRADDR2_RFMD;
1222 break;
1223 }
1224 ATW_WRITE(sc, ATW_MMIRADDR2, mmiraddr2);
1225 ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1226 }
1227
1228 /*
1229 * atw_init: [ ifnet interface function ]
1230 *
1231 * Initialize the interface. Must be called at splnet().
1232 */
1233 int
1234 atw_init(struct ifnet *ifp)
1235 {
1236 struct atw_softc *sc = ifp->if_softc;
1237 struct ieee80211com *ic = &sc->sc_ic;
1238 struct atw_txsoft *txs;
1239 struct atw_rxsoft *rxs;
1240 int i, error = 0;
1241
1242 if ((error = atw_enable(sc)) != 0)
1243 goto out;
1244
1245 /*
1246 * Cancel any pending I/O. This also resets.
1247 */
1248 atw_stop(ifp, 0);
1249
1250 DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
1251 __func__, ieee80211_chan2ieee(ic, ic->ic_curchan),
1252 ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags));
1253
1254 atw_wcsr_init(sc);
1255
1256 atw_cmdr_init(sc);
1257
1258 /* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
1259 *
1260 * XXX Set transmit power for ATIM, RTS, Beacon.
1261 */
1262 ATW_WRITE(sc, ATW_PLCPHD, LSHIFT(10, ATW_PLCPHD_SIGNAL_MASK) |
1263 LSHIFT(0xb0, ATW_PLCPHD_SERVICE_MASK));
1264
1265 atw_tofs2_init(sc);
1266
1267 atw_nar_init(sc);
1268
1269 atw_txlmt_init(sc);
1270
1271 atw_test1_init(sc);
1272
1273 atw_rf_reset(sc);
1274
1275 atw_cfp_init(sc);
1276
1277 atw_tofs0_init(sc);
1278
1279 atw_ifs_init(sc);
1280
1281 /* XXX Fall asleep after one second of inactivity.
1282 * XXX A frame may only dribble in for 65536us.
1283 */
1284 ATW_WRITE(sc, ATW_RMD,
1285 LSHIFT(1, ATW_RMD_PCNT) | LSHIFT(0xffff, ATW_RMD_RMRD_MASK));
1286
1287 atw_response_times_init(sc);
1288
1289 atw_bbp_io_init(sc);
1290
1291 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1292
1293 if ((error = atw_rf3000_init(sc)) != 0)
1294 goto out;
1295
1296 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1297 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
1298 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1299
1300 /*
1301 * Initialize the transmit descriptor ring.
1302 */
1303 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1304 for (i = 0; i < ATW_NTXDESC; i++) {
1305 sc->sc_txdescs[i].at_ctl = 0;
1306 /* no transmit chaining */
1307 sc->sc_txdescs[i].at_flags = 0 /* ATW_TXFLAG_TCH */;
1308 sc->sc_txdescs[i].at_buf2 =
1309 htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1310 }
1311 /* use ring mode */
1312 sc->sc_txdescs[ATW_NTXDESC - 1].at_flags |= htole32(ATW_TXFLAG_TER);
1313 ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1314 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1315 sc->sc_txfree = ATW_NTXDESC;
1316 sc->sc_txnext = 0;
1317
1318 /*
1319 * Initialize the transmit job descriptors.
1320 */
1321 SIMPLEQ_INIT(&sc->sc_txfreeq);
1322 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1323 for (i = 0; i < ATW_TXQUEUELEN; i++) {
1324 txs = &sc->sc_txsoft[i];
1325 txs->txs_mbuf = NULL;
1326 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1327 }
1328
1329 /*
1330 * Initialize the receive descriptor and receive job
1331 * descriptor rings.
1332 */
1333 for (i = 0; i < ATW_NRXDESC; i++) {
1334 rxs = &sc->sc_rxsoft[i];
1335 if (rxs->rxs_mbuf == NULL) {
1336 if ((error = atw_add_rxbuf(sc, i)) != 0) {
1337 printf("%s: unable to allocate or map rx "
1338 "buffer %d, error = %d\n",
1339 sc->sc_dev.dv_xname, i, error);
1340 /*
1341 * XXX Should attempt to run with fewer receive
1342 * XXX buffers instead of just failing.
1343 */
1344 atw_rxdrain(sc);
1345 goto out;
1346 }
1347 } else
1348 ATW_INIT_RXDESC(sc, i);
1349 }
1350 sc->sc_rxptr = 0;
1351
1352 /*
1353 * Initialize the interrupt mask and enable interrupts.
1354 */
1355 /* normal interrupts */
1356 sc->sc_inten = ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1357 ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1358
1359 /* abnormal interrupts */
1360 sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1361 ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1362 ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1363
1364 sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1365 ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1366 sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1367 sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1368 ATW_INTR_TRT;
1369
1370 sc->sc_linkint_mask &= sc->sc_inten;
1371 sc->sc_rxint_mask &= sc->sc_inten;
1372 sc->sc_txint_mask &= sc->sc_inten;
1373
1374 ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1375 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1376
1377 DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1378 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_IER), sc->sc_inten));
1379
1380 /*
1381 * Give the transmit and receive rings to the ADM8211.
1382 */
1383 ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1384 ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1385
1386 sc->sc_txthresh = 0;
1387 sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1388 sc->sc_txth[sc->sc_txthresh].txth_opmode;
1389
1390 /* common 802.11 configuration */
1391 ic->ic_flags &= ~IEEE80211_F_IBSSON;
1392 switch (ic->ic_opmode) {
1393 case IEEE80211_M_STA:
1394 break;
1395 case IEEE80211_M_AHDEMO: /* XXX */
1396 case IEEE80211_M_IBSS:
1397 ic->ic_flags |= IEEE80211_F_IBSSON;
1398 /*FALLTHROUGH*/
1399 case IEEE80211_M_HOSTAP: /* XXX */
1400 break;
1401 case IEEE80211_M_MONITOR: /* XXX */
1402 break;
1403 }
1404
1405 switch (ic->ic_opmode) {
1406 case IEEE80211_M_AHDEMO:
1407 case IEEE80211_M_HOSTAP:
1408 #ifndef IEEE80211_NO_HOSTAP
1409 ic->ic_bss->ni_intval = ic->ic_lintval;
1410 ic->ic_bss->ni_rssi = 0;
1411 ic->ic_bss->ni_rstamp = 0;
1412 #endif /* !IEEE80211_NO_HOSTAP */
1413 break;
1414 default: /* XXX */
1415 break;
1416 }
1417
1418 sc->sc_wepctl = 0;
1419
1420 atw_write_ssid(sc);
1421 atw_write_sup_rates(sc);
1422 atw_write_wep(sc);
1423
1424 ic->ic_state = IEEE80211_S_INIT;
1425
1426 /*
1427 * Set the receive filter. This will start the transmit and
1428 * receive processes.
1429 */
1430 atw_filter_setup(sc);
1431
1432 /*
1433 * Start the receive process.
1434 */
1435 ATW_WRITE(sc, ATW_RDR, 0x1);
1436
1437 /*
1438 * Note that the interface is now running.
1439 */
1440 ifp->if_flags |= IFF_RUNNING;
1441 ifp->if_flags &= ~IFF_OACTIVE;
1442
1443 /* send no beacons, yet. */
1444 atw_start_beacon(sc, 0);
1445
1446 if (ic->ic_opmode == IEEE80211_M_MONITOR)
1447 error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1448 else
1449 error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1450 out:
1451 if (error) {
1452 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1453 sc->sc_tx_timer = 0;
1454 ifp->if_timer = 0;
1455 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1456 }
1457 #ifdef ATW_DEBUG
1458 atw_print_regs(sc, "end of init");
1459 #endif /* ATW_DEBUG */
1460
1461 return (error);
1462 }
1463
1464 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1465 * 0: MAC control of RF3000/Si4126.
1466 *
1467 * Applies power, or selects RF front-end? Sets reset condition.
1468 *
1469 * TBD support non-RFMD BBP, non-SiLabs synth.
1470 */
1471 static void
1472 atw_bbp_io_enable(struct atw_softc *sc, int enable)
1473 {
1474 if (enable) {
1475 ATW_WRITE(sc, ATW_SYNRF,
1476 ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
1477 DELAY(atw_bbp_io_enable_delay);
1478 } else {
1479 ATW_WRITE(sc, ATW_SYNRF, 0);
1480 DELAY(atw_bbp_io_disable_delay); /* shorter for some reason */
1481 }
1482 }
1483
1484 static int
1485 atw_tune(struct atw_softc *sc)
1486 {
1487 int rc;
1488 u_int chan;
1489 struct ieee80211com *ic = &sc->sc_ic;
1490
1491 chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
1492 if (chan == IEEE80211_CHAN_ANY)
1493 panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1494
1495 if (chan == sc->sc_cur_chan)
1496 return 0;
1497
1498 DPRINTF(sc, ("%s: chan %d -> %d\n", sc->sc_dev.dv_xname,
1499 sc->sc_cur_chan, chan));
1500
1501 atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1502
1503 atw_si4126_tune(sc, chan);
1504 if ((rc = atw_rf3000_tune(sc, chan)) != 0)
1505 printf("%s: failed to tune channel %d\n", sc->sc_dev.dv_xname,
1506 chan);
1507
1508 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1509 DELAY(atw_nar_delay);
1510 ATW_WRITE(sc, ATW_RDR, 0x1);
1511
1512 if (rc == 0)
1513 sc->sc_cur_chan = chan;
1514
1515 return rc;
1516 }
1517
1518 #ifdef ATW_SYNDEBUG
1519 static void
1520 atw_si4126_print(struct atw_softc *sc)
1521 {
1522 struct ifnet *ifp = &sc->sc_if;
1523 u_int addr, val;
1524
1525 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1526 return;
1527
1528 for (addr = 0; addr <= 8; addr++) {
1529 printf("%s: synth[%d] = ", sc->sc_dev.dv_xname, addr);
1530 if (atw_si4126_read(sc, addr, &val) == 0) {
1531 printf("<unknown> (quitting print-out)\n");
1532 break;
1533 }
1534 printf("%05x\n", val);
1535 }
1536 }
1537 #endif /* ATW_SYNDEBUG */
1538
1539 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1540 *
1541 * The RF/IF synthesizer produces two reference frequencies for
1542 * the RF2948B transceiver. The first frequency the RF2948B requires
1543 * is two times the so-called "intermediate frequency" (IF). Since
1544 * a SAW filter on the radio fixes the IF at 374MHz, I program the
1545 * Si4126 to generate IF LO = 374MHz x 2 = 748MHz. The second
1546 * frequency required by the transceiver is the radio frequency
1547 * (RF). This is a superheterodyne transceiver; for f(chan) the
1548 * center frequency of the channel we are tuning, RF = f(chan) -
1549 * IF.
1550 *
1551 * XXX I am told by SiLabs that the Si4126 will accept a broader range
1552 * of XIN than the 2-25MHz mentioned by the datasheet, even *without*
1553 * XINDIV2 = 1. I've tried this (it is necessary to double R) and it
1554 * works, but I have still programmed for XINDIV2 = 1 to be safe.
1555 */
1556 static void
1557 atw_si4126_tune(struct atw_softc *sc, u_int chan)
1558 {
1559 u_int mhz;
1560 u_int R;
1561 u_int32_t gpio;
1562 u_int16_t gain;
1563
1564 #ifdef ATW_SYNDEBUG
1565 atw_si4126_print(sc);
1566 #endif /* ATW_SYNDEBUG */
1567
1568 if (chan == 14)
1569 mhz = 2484;
1570 else
1571 mhz = 2412 + 5 * (chan - 1);
1572
1573 /* Tune IF to 748MHz to suit the IF LO input of the
1574 * RF2494B, which is 2 x IF. No need to set an IF divider
1575 * because an IF in 526MHz - 952MHz is allowed.
1576 *
1577 * XIN is 44.000MHz, so divide it by two to get allowable
1578 * range of 2-25MHz. SiLabs tells me that this is not
1579 * strictly necessary.
1580 */
1581
1582 if (atw_xindiv2)
1583 R = 44;
1584 else
1585 R = 88;
1586
1587 /* Power-up RF, IF synthesizers. */
1588 atw_si4126_write(sc, SI4126_POWER,
1589 SI4126_POWER_PDIB|SI4126_POWER_PDRB);
1590
1591 /* set LPWR, too? */
1592 atw_si4126_write(sc, SI4126_MAIN,
1593 (atw_xindiv2) ? SI4126_MAIN_XINDIV2 : 0);
1594
1595 /* Set the phase-locked loop gain. If RF2 N > 2047, then
1596 * set KP2 to 1.
1597 *
1598 * REFDIF This is different from the reference driver, which
1599 * always sets SI4126_GAIN to 0.
1600 */
1601 gain = LSHIFT(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1602
1603 atw_si4126_write(sc, SI4126_GAIN, gain);
1604
1605 /* XIN = 44MHz.
1606 *
1607 * If XINDIV2 = 1, IF = N/(2 * R) * XIN. I choose N = 1496,
1608 * R = 44 so that 1496/(2 * 44) * 44MHz = 748MHz.
1609 *
1610 * If XINDIV2 = 0, IF = N/R * XIN. I choose N = 1496, R = 88
1611 * so that 1496/88 * 44MHz = 748MHz.
1612 */
1613 atw_si4126_write(sc, SI4126_IFN, 1496);
1614
1615 atw_si4126_write(sc, SI4126_IFR, R);
1616
1617 #ifndef ATW_REFSLAVE
1618 /* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1619 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1620 * which has no RF1!
1621 */
1622 atw_si4126_write(sc, SI4126_RF1R, R);
1623
1624 atw_si4126_write(sc, SI4126_RF1N, mhz - 374);
1625 #endif
1626
1627 /* N/R * XIN = RF. XIN = 44MHz. We desire RF = mhz - IF,
1628 * where IF = 374MHz. Let's divide XIN to 1MHz. So R = 44.
1629 * Now let's multiply it to mhz. So mhz - IF = N.
1630 */
1631 atw_si4126_write(sc, SI4126_RF2R, R);
1632
1633 atw_si4126_write(sc, SI4126_RF2N, mhz - 374);
1634
1635 /* wait 100us from power-up for RF, IF to settle */
1636 DELAY(100);
1637
1638 gpio = ATW_READ(sc, ATW_GPIO);
1639 gpio &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
1640 gpio |= LSHIFT(1, ATW_GPIO_EN_MASK);
1641
1642 if ((sc->sc_if.if_flags & IFF_LINK1) != 0 && chan != 14) {
1643 /* Set a Prism RF front-end to a special mode for channel 14?
1644 *
1645 * Apparently the SMC2635W needs this, although I don't think
1646 * it has a Prism RF.
1647 */
1648 gpio |= LSHIFT(1, ATW_GPIO_O_MASK);
1649 }
1650 ATW_WRITE(sc, ATW_GPIO, gpio);
1651
1652 #ifdef ATW_SYNDEBUG
1653 atw_si4126_print(sc);
1654 #endif /* ATW_SYNDEBUG */
1655 }
1656
1657 /* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
1658 * diversity.
1659 *
1660 * !!!
1661 * !!! Call this w/ Tx/Rx suspended, atw_idle(, ATW_NAR_ST|ATW_NAR_SR).
1662 * !!!
1663 */
1664 static int
1665 atw_rf3000_init(struct atw_softc *sc)
1666 {
1667 int rc = 0;
1668
1669 atw_bbp_io_enable(sc, 1);
1670
1671 /* CCA is acquisition sensitive */
1672 rc = atw_rf3000_write(sc, RF3000_CCACTL,
1673 LSHIFT(RF3000_CCACTL_MODE_BOTH, RF3000_CCACTL_MODE_MASK));
1674
1675 if (rc != 0)
1676 goto out;
1677
1678 /* enable diversity */
1679 rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1680
1681 if (rc != 0)
1682 goto out;
1683
1684 /* sensible setting from a binary-only driver */
1685 rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1686 LSHIFT(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1687
1688 if (rc != 0)
1689 goto out;
1690
1691 /* magic from a binary-only driver */
1692 rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1693 LSHIFT(0x38, RF3000_LOGAINCAL_CAL_MASK));
1694
1695 if (rc != 0)
1696 goto out;
1697
1698 rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1699
1700 if (rc != 0)
1701 goto out;
1702
1703 /* XXX Reference driver remarks that Abocom sets this to 50.
1704 * Meaning 0x50, I think.... 50 = 0x32, which would set a bit
1705 * in the "reserved" area of register RF3000_OPTIONS1.
1706 */
1707 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, sc->sc_rf3000_options1);
1708
1709 if (rc != 0)
1710 goto out;
1711
1712 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, sc->sc_rf3000_options2);
1713
1714 if (rc != 0)
1715 goto out;
1716
1717 out:
1718 atw_bbp_io_enable(sc, 0);
1719 return rc;
1720 }
1721
1722 #ifdef ATW_BBPDEBUG
1723 static void
1724 atw_rf3000_print(struct atw_softc *sc)
1725 {
1726 struct ifnet *ifp = &sc->sc_if;
1727 u_int addr, val;
1728
1729 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1730 return;
1731
1732 for (addr = 0x01; addr <= 0x15; addr++) {
1733 printf("%s: bbp[%d] = \n", sc->sc_dev.dv_xname, addr);
1734 if (atw_rf3000_read(sc, addr, &val) != 0) {
1735 printf("<unknown> (quitting print-out)\n");
1736 break;
1737 }
1738 printf("%08x\n", val);
1739 }
1740 }
1741 #endif /* ATW_BBPDEBUG */
1742
1743 /* Set the power settings on the BBP for channel `chan'. */
1744 static int
1745 atw_rf3000_tune(struct atw_softc *sc, u_int chan)
1746 {
1747 int rc = 0;
1748 u_int32_t reg;
1749 u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
1750
1751 txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1752 lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1753 lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1754
1755 /* odd channels: LSB, even channels: MSB */
1756 if (chan % 2 == 1) {
1757 txpower &= 0xFF;
1758 lpf_cutoff &= 0xFF;
1759 lna_gs_thresh &= 0xFF;
1760 } else {
1761 txpower >>= 8;
1762 lpf_cutoff >>= 8;
1763 lna_gs_thresh >>= 8;
1764 }
1765
1766 #ifdef ATW_BBPDEBUG
1767 atw_rf3000_print(sc);
1768 #endif /* ATW_BBPDEBUG */
1769
1770 DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1771 "lna_gs_thresh %02x\n",
1772 sc->sc_dev.dv_xname, chan, txpower, lpf_cutoff, lna_gs_thresh));
1773
1774 atw_bbp_io_enable(sc, 1);
1775
1776 if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1777 LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1778 goto out;
1779
1780 if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1781 goto out;
1782
1783 if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1784 goto out;
1785
1786 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1787
1788 if (rc != 0)
1789 goto out;
1790
1791 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1792
1793 if (rc != 0)
1794 goto out;
1795
1796 #ifdef ATW_BBPDEBUG
1797 atw_rf3000_print(sc);
1798 #endif /* ATW_BBPDEBUG */
1799
1800 out:
1801 atw_bbp_io_enable(sc, 0);
1802
1803 /* set beacon, rts, atim transmit power */
1804 reg = ATW_READ(sc, ATW_PLCPHD);
1805 reg &= ~ATW_PLCPHD_SERVICE_MASK;
1806 reg |= LSHIFT(LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK),
1807 ATW_PLCPHD_SERVICE_MASK);
1808 ATW_WRITE(sc, ATW_PLCPHD, reg);
1809 DELAY(atw_plcphd_delay);
1810
1811 return rc;
1812 }
1813
1814 /* Write a register on the RF3000 baseband processor using the
1815 * registers provided by the ADM8211 for this purpose.
1816 *
1817 * Return 0 on success.
1818 */
1819 static int
1820 atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
1821 {
1822 u_int32_t reg;
1823 int i;
1824
1825 reg = sc->sc_bbpctl_wr |
1826 LSHIFT(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1827 LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1828
1829 for (i = 20000 / atw_pseudo_milli; --i >= 0; ) {
1830 ATW_WRITE(sc, ATW_BBPCTL, reg);
1831 DELAY(2 * atw_pseudo_milli);
1832 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1833 break;
1834 }
1835
1836 if (i < 0) {
1837 printf("%s: BBPCTL still busy\n", sc->sc_dev.dv_xname);
1838 return ETIMEDOUT;
1839 }
1840 return 0;
1841 }
1842
1843 /* Read a register on the RF3000 baseband processor using the registers
1844 * the ADM8211 provides for this purpose.
1845 *
1846 * The 7-bit register address is addr. Record the 8-bit data in the register
1847 * in *val.
1848 *
1849 * Return 0 on success.
1850 *
1851 * XXX This does not seem to work. The ADM8211 must require more or
1852 * different magic to read the chip than to write it. Possibly some
1853 * of the magic I have derived from a binary-only driver concerns
1854 * the "chip address" (see the RF3000 manual).
1855 */
1856 #ifdef ATW_BBPDEBUG
1857 static int
1858 atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
1859 {
1860 u_int32_t reg;
1861 int i;
1862
1863 for (i = 1000; --i >= 0; ) {
1864 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1865 break;
1866 DELAY(100);
1867 }
1868
1869 if (i < 0) {
1870 printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1871 sc->sc_dev.dv_xname);
1872 return ETIMEDOUT;
1873 }
1874
1875 reg = sc->sc_bbpctl_rd | LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1876
1877 ATW_WRITE(sc, ATW_BBPCTL, reg);
1878
1879 for (i = 1000; --i >= 0; ) {
1880 DELAY(100);
1881 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1882 break;
1883 }
1884
1885 ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1886
1887 if (i < 0) {
1888 printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1889 sc->sc_dev.dv_xname, reg);
1890 return ETIMEDOUT;
1891 }
1892 if (val != NULL)
1893 *val = MASK_AND_RSHIFT(reg, ATW_BBPCTL_DATA_MASK);
1894 return 0;
1895 }
1896 #endif /* ATW_BBPDEBUG */
1897
1898 /* Write a register on the Si4126 RF/IF synthesizer using the registers
1899 * provided by the ADM8211 for that purpose.
1900 *
1901 * val is 18 bits of data, and val is the 4-bit address of the register.
1902 *
1903 * Return 0 on success.
1904 */
1905 static void
1906 atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
1907 {
1908 uint32_t bits, mask, reg;
1909 const int nbits = 22;
1910
1911 KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
1912 KASSERT((val & ~PRESHIFT(SI4126_TWI_DATA_MASK)) == 0);
1913
1914 bits = LSHIFT(val, SI4126_TWI_DATA_MASK) |
1915 LSHIFT(addr, SI4126_TWI_ADDR_MASK);
1916
1917 reg = ATW_SYNRF_SELSYN;
1918 /* reference driver: reset Si4126 serial bus to initial
1919 * conditions?
1920 */
1921 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1922 ATW_WRITE(sc, ATW_SYNRF, reg);
1923
1924 for (mask = BIT(nbits - 1); mask != 0; mask >>= 1) {
1925 if ((bits & mask) != 0)
1926 reg |= ATW_SYNRF_SYNDATA;
1927 else
1928 reg &= ~ATW_SYNRF_SYNDATA;
1929 ATW_WRITE(sc, ATW_SYNRF, reg);
1930 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_SYNCLK);
1931 ATW_WRITE(sc, ATW_SYNRF, reg);
1932 }
1933 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1934 ATW_WRITE(sc, ATW_SYNRF, 0x0);
1935 }
1936
1937 /* Read 18-bit data from the 4-bit address addr in Si4126
1938 * RF synthesizer and write the data to *val. Return 0 on success.
1939 *
1940 * XXX This does not seem to work. The ADM8211 must require more or
1941 * different magic to read the chip than to write it.
1942 */
1943 #ifdef ATW_SYNDEBUG
1944 static int
1945 atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
1946 {
1947 u_int32_t reg;
1948 int i;
1949
1950 KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
1951
1952 for (i = 1000; --i >= 0; ) {
1953 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1954 break;
1955 DELAY(100);
1956 }
1957
1958 if (i < 0) {
1959 printf("%s: start atw_si4126_read, SYNCTL busy\n",
1960 sc->sc_dev.dv_xname);
1961 return ETIMEDOUT;
1962 }
1963
1964 reg = sc->sc_synctl_rd | LSHIFT(addr, ATW_SYNCTL_DATA_MASK);
1965
1966 ATW_WRITE(sc, ATW_SYNCTL, reg);
1967
1968 for (i = 1000; --i >= 0; ) {
1969 DELAY(100);
1970 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1971 break;
1972 }
1973
1974 ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1975
1976 if (i < 0) {
1977 printf("%s: atw_si4126_read wrote %#08x, SYNCTL still busy\n",
1978 sc->sc_dev.dv_xname, reg);
1979 return ETIMEDOUT;
1980 }
1981 if (val != NULL)
1982 *val = MASK_AND_RSHIFT(ATW_READ(sc, ATW_SYNCTL),
1983 ATW_SYNCTL_DATA_MASK);
1984 return 0;
1985 }
1986 #endif /* ATW_SYNDEBUG */
1987
1988 /* XXX is the endianness correct? test. */
1989 #define atw_calchash(addr) \
1990 (ether_crc32_le((addr), IEEE80211_ADDR_LEN) & BITS(5, 0))
1991
1992 /*
1993 * atw_filter_setup:
1994 *
1995 * Set the ADM8211's receive filter.
1996 */
1997 static void
1998 atw_filter_setup(struct atw_softc *sc)
1999 {
2000 struct ieee80211com *ic = &sc->sc_ic;
2001 struct ethercom *ec = &sc->sc_ec;
2002 struct ifnet *ifp = &sc->sc_if;
2003 int hash;
2004 u_int32_t hashes[2];
2005 struct ether_multi *enm;
2006 struct ether_multistep step;
2007
2008 /* According to comments in tlp_al981_filter_setup
2009 * (dev/ic/tulip.c) the ADMtek AL981 does not like for its
2010 * multicast filter to be set while it is running. Hopefully
2011 * the ADM8211 is not the same!
2012 */
2013 if ((ifp->if_flags & IFF_RUNNING) != 0)
2014 atw_idle(sc, ATW_NAR_SR);
2015
2016 sc->sc_opmode &= ~(ATW_NAR_PR|ATW_NAR_MM);
2017 ifp->if_flags &= ~IFF_ALLMULTI;
2018
2019 /* XXX in scan mode, do not filter packets. Maybe this is
2020 * unnecessary.
2021 */
2022 if (ic->ic_state == IEEE80211_S_SCAN ||
2023 (ifp->if_flags & IFF_PROMISC) != 0) {
2024 sc->sc_opmode |= ATW_NAR_PR;
2025 goto allmulti;
2026 }
2027
2028 hashes[0] = hashes[1] = 0x0;
2029
2030 /*
2031 * Program the 64-bit multicast hash filter.
2032 */
2033 ETHER_FIRST_MULTI(step, ec, enm);
2034 while (enm != NULL) {
2035 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2036 ETHER_ADDR_LEN) != 0)
2037 goto allmulti;
2038
2039 hash = atw_calchash(enm->enm_addrlo);
2040 hashes[hash >> 5] |= 1 << (hash & 0x1f);
2041 ETHER_NEXT_MULTI(step, enm);
2042 sc->sc_opmode |= ATW_NAR_MM;
2043 }
2044 ifp->if_flags &= ~IFF_ALLMULTI;
2045 goto setit;
2046
2047 allmulti:
2048 sc->sc_opmode |= ATW_NAR_MM;
2049 ifp->if_flags |= IFF_ALLMULTI;
2050 hashes[0] = hashes[1] = 0xffffffff;
2051
2052 setit:
2053 ATW_WRITE(sc, ATW_MAR0, hashes[0]);
2054 ATW_WRITE(sc, ATW_MAR1, hashes[1]);
2055 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2056 DELAY(atw_nar_delay);
2057 ATW_WRITE(sc, ATW_RDR, 0x1);
2058
2059 DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", sc->sc_dev.dv_xname,
2060 ATW_READ(sc, ATW_NAR), sc->sc_opmode));
2061 }
2062
2063 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
2064 * a beacon's BSSID and SSID against the preferred BSSID and SSID
2065 * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
2066 * no beacon with the preferred BSSID and SSID in the number of
2067 * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
2068 */
2069 static void
2070 atw_write_bssid(struct atw_softc *sc)
2071 {
2072 struct ieee80211com *ic = &sc->sc_ic;
2073 u_int8_t *bssid;
2074
2075 bssid = ic->ic_bss->ni_bssid;
2076
2077 ATW_WRITE(sc, ATW_BSSID0,
2078 LSHIFT(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
2079 LSHIFT(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
2080 LSHIFT(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
2081 LSHIFT(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
2082
2083 ATW_WRITE(sc, ATW_ABDA1,
2084 (ATW_READ(sc, ATW_ABDA1) &
2085 ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
2086 LSHIFT(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
2087 LSHIFT(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
2088
2089 DPRINTF(sc, ("%s: BSSID %s -> ", sc->sc_dev.dv_xname,
2090 ether_sprintf(sc->sc_bssid)));
2091 DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
2092
2093 memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
2094 }
2095
2096 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
2097 * 16-bit word.
2098 */
2099 static void
2100 atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
2101 {
2102 u_int i;
2103 u_int8_t *ptr;
2104
2105 memcpy(&sc->sc_sram[ofs], buf, buflen);
2106
2107 KASSERT(ofs % 2 == 0 && buflen % 2 == 0);
2108
2109 KASSERT(buflen + ofs <= sc->sc_sramlen);
2110
2111 ptr = &sc->sc_sram[ofs];
2112
2113 for (i = 0; i < buflen; i += 2) {
2114 ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
2115 LSHIFT((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
2116 DELAY(atw_writewep_delay);
2117
2118 ATW_WRITE(sc, ATW_WESK,
2119 LSHIFT((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
2120 DELAY(atw_writewep_delay);
2121 }
2122 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
2123
2124 if (sc->sc_if.if_flags & IFF_DEBUG) {
2125 int n_octets = 0;
2126 printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
2127 sc->sc_dev.dv_xname, buflen, ofs, sc->sc_wepctl);
2128 for (i = 0; i < buflen; i++) {
2129 printf(" %02x", ptr[i]);
2130 if (++n_octets % 24 == 0)
2131 printf("\n");
2132 }
2133 if (n_octets % 24 != 0)
2134 printf("\n");
2135 }
2136 }
2137
2138 static int
2139 atw_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
2140 {
2141 struct atw_softc *sc = ic->ic_ifp->if_softc;
2142 u_int keyix = k->wk_keyix;
2143
2144 DPRINTF(sc, ("%s: delete key %u\n", __func__, keyix));
2145
2146 if (keyix >= IEEE80211_WEP_NKID)
2147 return 0;
2148 if (k->wk_keylen != 0)
2149 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2150
2151 return 1;
2152 }
2153
2154 static int
2155 atw_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
2156 const u_int8_t mac[IEEE80211_ADDR_LEN])
2157 {
2158 struct atw_softc *sc = ic->ic_ifp->if_softc;
2159
2160 DPRINTF(sc, ("%s: set key %u\n", __func__, k->wk_keyix));
2161
2162 if (k->wk_keyix >= IEEE80211_WEP_NKID)
2163 return 0;
2164
2165 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2166
2167 return 1;
2168 }
2169
2170 static void
2171 atw_key_update_begin(struct ieee80211com *ic)
2172 {
2173 #ifdef ATW_DEBUG
2174 struct ifnet *ifp = ic->ic_ifp;
2175 struct atw_softc *sc = ifp->if_softc;
2176 #endif
2177
2178 DPRINTF(sc, ("%s:\n", __func__));
2179 }
2180
2181 static void
2182 atw_key_update_end(struct ieee80211com *ic)
2183 {
2184 struct ifnet *ifp = ic->ic_ifp;
2185 struct atw_softc *sc = ifp->if_softc;
2186
2187 DPRINTF(sc, ("%s:\n", __func__));
2188
2189 if ((sc->sc_flags & ATWF_WEP_SRAM_VALID) != 0)
2190 return;
2191 if (ATW_IS_ENABLED(sc) == 0)
2192 return;
2193 atw_idle(sc, ATW_NAR_SR | ATW_NAR_ST);
2194 atw_write_wep(sc);
2195 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2196 DELAY(atw_nar_delay);
2197 ATW_WRITE(sc, ATW_RDR, 0x1);
2198 }
2199
2200 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
2201 static void
2202 atw_write_wep(struct atw_softc *sc)
2203 {
2204 struct ieee80211com *ic = &sc->sc_ic;
2205 /* SRAM shared-key record format: key0 flags key1 ... key12 */
2206 u_int8_t buf[IEEE80211_WEP_NKID]
2207 [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
2208 u_int32_t reg;
2209 int i;
2210
2211 sc->sc_wepctl = 0;
2212 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
2213
2214 memset(&buf[0][0], 0, sizeof(buf));
2215
2216 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2217 if (ic->ic_nw_keys[i].wk_keylen > 5) {
2218 buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
2219 } else if (ic->ic_nw_keys[i].wk_keylen != 0) {
2220 buf[i][1] = ATW_WEP_ENABLED;
2221 } else {
2222 buf[i][1] = 0;
2223 continue;
2224 }
2225 buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
2226 memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
2227 ic->ic_nw_keys[i].wk_keylen - 1);
2228 }
2229
2230 reg = ATW_READ(sc, ATW_MACTEST);
2231 reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2232 reg &= ~ATW_MACTEST_KEYID_MASK;
2233 reg |= LSHIFT(ic->ic_def_txkey, ATW_MACTEST_KEYID_MASK);
2234 ATW_WRITE(sc, ATW_MACTEST, reg);
2235
2236 if ((ic->ic_flags & IEEE80211_F_PRIVACY) != 0)
2237 sc->sc_wepctl |= ATW_WEPCTL_WEPENABLE;
2238
2239 switch (sc->sc_rev) {
2240 case ATW_REVISION_AB:
2241 case ATW_REVISION_AF:
2242 /* Bypass WEP on Rx. */
2243 sc->sc_wepctl |= ATW_WEPCTL_WEPRXBYP;
2244 break;
2245 default:
2246 break;
2247 }
2248
2249 atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
2250 sizeof(buf));
2251
2252 sc->sc_flags |= ATWF_WEP_SRAM_VALID;
2253 }
2254
2255 static void
2256 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2257 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2258 {
2259 struct atw_softc *sc = (struct atw_softc *)ic->ic_ifp->if_softc;
2260
2261 /* The ADM8211A answers probe requests. TBD ADM8211B/C. */
2262 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_REQ)
2263 return;
2264
2265 (*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2266
2267 switch (subtype) {
2268 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2269 case IEEE80211_FC0_SUBTYPE_BEACON:
2270 if (ic->ic_opmode == IEEE80211_M_IBSS &&
2271 ic->ic_state == IEEE80211_S_RUN) {
2272 if (le64toh(ni->ni_tstamp.tsf) >= atw_get_tsft(sc))
2273 (void)ieee80211_ibss_merge(ni);
2274 }
2275 break;
2276 default:
2277 break;
2278 }
2279 return;
2280 }
2281
2282 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2283 * In ad hoc mode, the SSID is written to the beacons sent by the
2284 * ADM8211. In both ad hoc and infrastructure mode, beacons received
2285 * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2286 * indications.
2287 */
2288 static void
2289 atw_write_ssid(struct atw_softc *sc)
2290 {
2291 struct ieee80211com *ic = &sc->sc_ic;
2292 /* 34 bytes are reserved in ADM8211 SRAM for the SSID, but
2293 * it only expects the element length, not its ID.
2294 */
2295 u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
2296
2297 memset(buf, 0, sizeof(buf));
2298 buf[0] = ic->ic_bss->ni_esslen;
2299 memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2300
2301 atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf,
2302 roundup(1 + ic->ic_bss->ni_esslen, 2));
2303 }
2304
2305 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2306 * In ad hoc mode, the supported rates are written to beacons sent by the
2307 * ADM8211.
2308 */
2309 static void
2310 atw_write_sup_rates(struct atw_softc *sc)
2311 {
2312 struct ieee80211com *ic = &sc->sc_ic;
2313 /* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2314 * supported rates
2315 */
2316 u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
2317
2318 memset(buf, 0, sizeof(buf));
2319
2320 buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2321
2322 memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2323 ic->ic_bss->ni_rates.rs_nrates);
2324
2325 atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2326 }
2327
2328 /* Start/stop sending beacons. */
2329 void
2330 atw_start_beacon(struct atw_softc *sc, int start)
2331 {
2332 struct ieee80211com *ic = &sc->sc_ic;
2333 uint16_t chan;
2334 uint32_t bcnt, bpli, cap0, cap1, capinfo;
2335 size_t len;
2336
2337 if (ATW_IS_ENABLED(sc) == 0)
2338 return;
2339
2340 /* start beacons */
2341 len = sizeof(struct ieee80211_frame) +
2342 8 /* timestamp */ + 2 /* beacon interval */ +
2343 2 /* capability info */ +
2344 2 + ic->ic_bss->ni_esslen /* SSID element */ +
2345 2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2346 3 /* DS parameters */ +
2347 IEEE80211_CRC_LEN;
2348
2349 bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2350 cap0 = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
2351 cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2352
2353 ATW_WRITE(sc, ATW_BCNT, bcnt);
2354 ATW_WRITE(sc, ATW_CAP1, cap1);
2355
2356 if (!start)
2357 return;
2358
2359 /* TBD use ni_capinfo */
2360
2361 capinfo = 0;
2362 if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
2363 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2364 if (ic->ic_flags & IEEE80211_F_PRIVACY)
2365 capinfo |= IEEE80211_CAPINFO_PRIVACY;
2366
2367 switch (ic->ic_opmode) {
2368 case IEEE80211_M_IBSS:
2369 len += 4; /* IBSS parameters */
2370 capinfo |= IEEE80211_CAPINFO_IBSS;
2371 break;
2372 case IEEE80211_M_HOSTAP:
2373 /* XXX 6-byte minimum TIM */
2374 len += atw_beacon_len_adjust;
2375 capinfo |= IEEE80211_CAPINFO_ESS;
2376 break;
2377 default:
2378 return;
2379 }
2380
2381 /* set listen interval
2382 * XXX do software units agree w/ hardware?
2383 */
2384 bpli = LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2385 LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval, ATW_BPLI_LI_MASK);
2386
2387 chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
2388
2389 bcnt |= LSHIFT(len, ATW_BCNT_BCNT_MASK);
2390 cap0 |= LSHIFT(chan, ATW_CAP0_CHN_MASK);
2391 cap1 |= LSHIFT(capinfo, ATW_CAP1_CAPI_MASK);
2392
2393 ATW_WRITE(sc, ATW_BCNT, bcnt);
2394 ATW_WRITE(sc, ATW_BPLI, bpli);
2395 ATW_WRITE(sc, ATW_CAP0, cap0);
2396 ATW_WRITE(sc, ATW_CAP1, cap1);
2397
2398 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2399 sc->sc_dev.dv_xname, bcnt));
2400
2401 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2402 sc->sc_dev.dv_xname, cap1));
2403 }
2404
2405 /* Return the 32 lsb of the last TSFT divisible by ival. */
2406 static inline uint32_t
2407 atw_last_even_tsft(uint32_t tsfth, uint32_t tsftl, uint32_t ival)
2408 {
2409 /* Following the reference driver's lead, I compute
2410 *
2411 * (uint32_t)((((uint64_t)tsfth << 32) | tsftl) % ival)
2412 *
2413 * without using 64-bit arithmetic, using the following
2414 * relationship:
2415 *
2416 * (0x100000000 * H + L) % m
2417 * = ((0x100000000 % m) * H + L) % m
2418 * = (((0xffffffff + 1) % m) * H + L) % m
2419 * = ((0xffffffff % m + 1 % m) * H + L) % m
2420 * = ((0xffffffff % m + 1) * H + L) % m
2421 */
2422 return ((0xFFFFFFFF % ival + 1) * tsfth + tsftl) % ival;
2423 }
2424
2425 static uint64_t
2426 atw_get_tsft(struct atw_softc *sc)
2427 {
2428 int i;
2429 uint32_t tsfth, tsftl;
2430 for (i = 0; i < 2; i++) {
2431 tsfth = ATW_READ(sc, ATW_TSFTH);
2432 tsftl = ATW_READ(sc, ATW_TSFTL);
2433 if (ATW_READ(sc, ATW_TSFTH) == tsfth)
2434 break;
2435 }
2436 return ((uint64_t)tsfth << 32) | tsftl;
2437 }
2438
2439 /* If we've created an IBSS, write the TSF time in the ADM8211 to
2440 * the ieee80211com.
2441 *
2442 * Predict the next target beacon transmission time (TBTT) and
2443 * write it to the ADM8211.
2444 */
2445 static void
2446 atw_predict_beacon(struct atw_softc *sc)
2447 {
2448 #define TBTTOFS 20 /* TU */
2449
2450 struct ieee80211com *ic = &sc->sc_ic;
2451 uint64_t tsft;
2452 uint32_t ival, past_even, tbtt, tsfth, tsftl;
2453 union {
2454 uint64_t word;
2455 uint8_t tstamp[8];
2456 } u;
2457
2458 if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2459 ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2460 (ic->ic_flags & IEEE80211_F_SIBSS))) {
2461 tsft = atw_get_tsft(sc);
2462 u.word = htole64(tsft);
2463 (void)memcpy(&ic->ic_bss->ni_tstamp, &u.tstamp[0],
2464 sizeof(ic->ic_bss->ni_tstamp));
2465 } else
2466 tsft = le64toh(ic->ic_bss->ni_tstamp.tsf);
2467
2468 ival = ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2469
2470 tsftl = tsft & 0xFFFFFFFF;
2471 tsfth = tsft >> 32;
2472
2473 /* We sent/received the last beacon `past' microseconds
2474 * after the interval divided the TSF timer.
2475 */
2476 past_even = tsftl - atw_last_even_tsft(tsfth, tsftl, ival);
2477
2478 /* Skip ten beacons so that the TBTT cannot pass before
2479 * we've programmed it. Ten is an arbitrary number.
2480 */
2481 tbtt = past_even + ival * 10;
2482
2483 ATW_WRITE(sc, ATW_TOFS1,
2484 LSHIFT(1, ATW_TOFS1_TSFTOFSR_MASK) |
2485 LSHIFT(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2486 LSHIFT(MASK_AND_RSHIFT(tbtt - TBTTOFS * IEEE80211_DUR_TU,
2487 ATW_TBTTPRE_MASK), ATW_TOFS1_TBTTPRE_MASK));
2488 #undef TBTTOFS
2489 }
2490
2491 static void
2492 atw_next_scan(void *arg)
2493 {
2494 struct atw_softc *sc = arg;
2495 struct ieee80211com *ic = &sc->sc_ic;
2496 int s;
2497
2498 /* don't call atw_start w/o network interrupts blocked */
2499 s = splnet();
2500 if (ic->ic_state == IEEE80211_S_SCAN)
2501 ieee80211_next_scan(ic);
2502 splx(s);
2503 }
2504
2505 /* Synchronize the hardware state with the software state. */
2506 static int
2507 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2508 {
2509 struct ifnet *ifp = ic->ic_ifp;
2510 struct atw_softc *sc = ifp->if_softc;
2511 enum ieee80211_state ostate;
2512 int error = 0;
2513
2514 ostate = ic->ic_state;
2515 callout_stop(&sc->sc_scan_ch);
2516
2517 switch (nstate) {
2518 case IEEE80211_S_AUTH:
2519 case IEEE80211_S_ASSOC:
2520 error = atw_tune(sc);
2521 break;
2522 case IEEE80211_S_INIT:
2523 callout_stop(&sc->sc_scan_ch);
2524 sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2525 atw_start_beacon(sc, 0);
2526 break;
2527 case IEEE80211_S_SCAN:
2528 error = atw_tune(sc);
2529 callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2530 atw_next_scan, sc);
2531 break;
2532 case IEEE80211_S_RUN:
2533 error = atw_tune(sc);
2534 atw_write_bssid(sc);
2535 atw_write_ssid(sc);
2536 atw_write_sup_rates(sc);
2537
2538 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2539 ic->ic_opmode == IEEE80211_M_MONITOR)
2540 break;
2541
2542 /* set listen interval
2543 * XXX do software units agree w/ hardware?
2544 */
2545 ATW_WRITE(sc, ATW_BPLI,
2546 LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2547 LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval,
2548 ATW_BPLI_LI_MASK));
2549
2550 DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n", sc->sc_dev.dv_xname,
2551 ATW_READ(sc, ATW_BPLI)));
2552
2553 atw_predict_beacon(sc);
2554
2555 switch (ic->ic_opmode) {
2556 case IEEE80211_M_AHDEMO:
2557 case IEEE80211_M_HOSTAP:
2558 case IEEE80211_M_IBSS:
2559 atw_start_beacon(sc, 1);
2560 break;
2561 case IEEE80211_M_MONITOR:
2562 case IEEE80211_M_STA:
2563 break;
2564 }
2565
2566 break;
2567 }
2568 return (error != 0) ? error : (*sc->sc_newstate)(ic, nstate, arg);
2569 }
2570
2571 /*
2572 * atw_add_rxbuf:
2573 *
2574 * Add a receive buffer to the indicated descriptor.
2575 */
2576 int
2577 atw_add_rxbuf(struct atw_softc *sc, int idx)
2578 {
2579 struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2580 struct mbuf *m;
2581 int error;
2582
2583 MGETHDR(m, M_DONTWAIT, MT_DATA);
2584 if (m == NULL)
2585 return (ENOBUFS);
2586
2587 MCLGET(m, M_DONTWAIT);
2588 if ((m->m_flags & M_EXT) == 0) {
2589 m_freem(m);
2590 return (ENOBUFS);
2591 }
2592
2593 if (rxs->rxs_mbuf != NULL)
2594 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2595
2596 rxs->rxs_mbuf = m;
2597
2598 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2599 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2600 BUS_DMA_READ|BUS_DMA_NOWAIT);
2601 if (error) {
2602 printf("%s: can't load rx DMA map %d, error = %d\n",
2603 sc->sc_dev.dv_xname, idx, error);
2604 panic("atw_add_rxbuf"); /* XXX */
2605 }
2606
2607 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2608 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2609
2610 ATW_INIT_RXDESC(sc, idx);
2611
2612 return (0);
2613 }
2614
2615 /*
2616 * Release any queued transmit buffers.
2617 */
2618 void
2619 atw_txdrain(struct atw_softc *sc)
2620 {
2621 struct atw_txsoft *txs;
2622
2623 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2624 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2625 if (txs->txs_mbuf != NULL) {
2626 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2627 m_freem(txs->txs_mbuf);
2628 txs->txs_mbuf = NULL;
2629 }
2630 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2631 sc->sc_txfree += txs->txs_ndescs;
2632 }
2633
2634 KASSERT((sc->sc_if.if_flags & IFF_RUNNING) == 0 ||
2635 !(SIMPLEQ_EMPTY(&sc->sc_txfreeq) ||
2636 sc->sc_txfree != ATW_NTXDESC));
2637 sc->sc_if.if_flags &= ~IFF_OACTIVE;
2638 sc->sc_tx_timer = 0;
2639 }
2640
2641 /*
2642 * atw_stop: [ ifnet interface function ]
2643 *
2644 * Stop transmission on the interface.
2645 */
2646 void
2647 atw_stop(struct ifnet *ifp, int disable)
2648 {
2649 struct atw_softc *sc = ifp->if_softc;
2650 struct ieee80211com *ic = &sc->sc_ic;
2651
2652 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2653
2654 /* Disable interrupts. */
2655 ATW_WRITE(sc, ATW_IER, 0);
2656
2657 /* Stop the transmit and receive processes. */
2658 sc->sc_opmode = 0;
2659 ATW_WRITE(sc, ATW_NAR, 0);
2660 DELAY(atw_nar_delay);
2661 ATW_WRITE(sc, ATW_TDBD, 0);
2662 ATW_WRITE(sc, ATW_TDBP, 0);
2663 ATW_WRITE(sc, ATW_RDB, 0);
2664
2665 atw_txdrain(sc);
2666
2667 if (disable) {
2668 atw_rxdrain(sc);
2669 atw_disable(sc);
2670 }
2671
2672 /*
2673 * Mark the interface down and cancel the watchdog timer.
2674 */
2675 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2676 sc->sc_tx_timer = 0;
2677 ifp->if_timer = 0;
2678
2679 if (!disable)
2680 atw_reset(sc);
2681 }
2682
2683 /*
2684 * atw_rxdrain:
2685 *
2686 * Drain the receive queue.
2687 */
2688 void
2689 atw_rxdrain(struct atw_softc *sc)
2690 {
2691 struct atw_rxsoft *rxs;
2692 int i;
2693
2694 for (i = 0; i < ATW_NRXDESC; i++) {
2695 rxs = &sc->sc_rxsoft[i];
2696 if (rxs->rxs_mbuf == NULL)
2697 continue;
2698 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2699 m_freem(rxs->rxs_mbuf);
2700 rxs->rxs_mbuf = NULL;
2701 }
2702 }
2703
2704 /*
2705 * atw_detach:
2706 *
2707 * Detach an ADM8211 interface.
2708 */
2709 int
2710 atw_detach(struct atw_softc *sc)
2711 {
2712 struct ifnet *ifp = &sc->sc_if;
2713 struct atw_rxsoft *rxs;
2714 struct atw_txsoft *txs;
2715 int i;
2716
2717 /*
2718 * Succeed now if there isn't any work to do.
2719 */
2720 if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2721 return (0);
2722
2723 callout_stop(&sc->sc_scan_ch);
2724
2725 ieee80211_ifdetach(&sc->sc_ic);
2726 if_detach(ifp);
2727
2728 for (i = 0; i < ATW_NRXDESC; i++) {
2729 rxs = &sc->sc_rxsoft[i];
2730 if (rxs->rxs_mbuf != NULL) {
2731 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2732 m_freem(rxs->rxs_mbuf);
2733 rxs->rxs_mbuf = NULL;
2734 }
2735 bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2736 }
2737 for (i = 0; i < ATW_TXQUEUELEN; i++) {
2738 txs = &sc->sc_txsoft[i];
2739 if (txs->txs_mbuf != NULL) {
2740 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2741 m_freem(txs->txs_mbuf);
2742 txs->txs_mbuf = NULL;
2743 }
2744 bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2745 }
2746 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2747 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2748 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2749 sizeof(struct atw_control_data));
2750 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2751
2752 shutdownhook_disestablish(sc->sc_sdhook);
2753 powerhook_disestablish(sc->sc_powerhook);
2754
2755 if (sc->sc_srom)
2756 free(sc->sc_srom, M_DEVBUF);
2757
2758 return (0);
2759 }
2760
2761 /* atw_shutdown: make sure the interface is stopped at reboot time. */
2762 void
2763 atw_shutdown(void *arg)
2764 {
2765 struct atw_softc *sc = arg;
2766
2767 atw_stop(&sc->sc_if, 1);
2768 }
2769
2770 int
2771 atw_intr(void *arg)
2772 {
2773 struct atw_softc *sc = arg;
2774 struct ifnet *ifp = &sc->sc_if;
2775 u_int32_t status, rxstatus, txstatus, linkstatus;
2776 int handled = 0, txthresh;
2777
2778 #ifdef DEBUG
2779 if (ATW_IS_ENABLED(sc) == 0)
2780 panic("%s: atw_intr: not enabled", sc->sc_dev.dv_xname);
2781 #endif
2782
2783 /*
2784 * If the interface isn't running, the interrupt couldn't
2785 * possibly have come from us.
2786 */
2787 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2788 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
2789 return (0);
2790
2791 for (;;) {
2792 status = ATW_READ(sc, ATW_STSR);
2793
2794 if (status)
2795 ATW_WRITE(sc, ATW_STSR, status);
2796
2797 #ifdef ATW_DEBUG
2798 #define PRINTINTR(flag) do { \
2799 if ((status & flag) != 0) { \
2800 printf("%s" #flag, delim); \
2801 delim = ","; \
2802 } \
2803 } while (0)
2804
2805 if (atw_debug > 1 && status) {
2806 const char *delim = "<";
2807
2808 printf("%s: reg[STSR] = %x",
2809 sc->sc_dev.dv_xname, status);
2810
2811 PRINTINTR(ATW_INTR_FBE);
2812 PRINTINTR(ATW_INTR_LINKOFF);
2813 PRINTINTR(ATW_INTR_LINKON);
2814 PRINTINTR(ATW_INTR_RCI);
2815 PRINTINTR(ATW_INTR_RDU);
2816 PRINTINTR(ATW_INTR_REIS);
2817 PRINTINTR(ATW_INTR_RPS);
2818 PRINTINTR(ATW_INTR_TCI);
2819 PRINTINTR(ATW_INTR_TDU);
2820 PRINTINTR(ATW_INTR_TLT);
2821 PRINTINTR(ATW_INTR_TPS);
2822 PRINTINTR(ATW_INTR_TRT);
2823 PRINTINTR(ATW_INTR_TUF);
2824 PRINTINTR(ATW_INTR_BCNTC);
2825 PRINTINTR(ATW_INTR_ATIME);
2826 PRINTINTR(ATW_INTR_TBTT);
2827 PRINTINTR(ATW_INTR_TSCZ);
2828 PRINTINTR(ATW_INTR_TSFTF);
2829 printf(">\n");
2830 }
2831 #undef PRINTINTR
2832 #endif /* ATW_DEBUG */
2833
2834 if ((status & sc->sc_inten) == 0)
2835 break;
2836
2837 handled = 1;
2838
2839 rxstatus = status & sc->sc_rxint_mask;
2840 txstatus = status & sc->sc_txint_mask;
2841 linkstatus = status & sc->sc_linkint_mask;
2842
2843 if (linkstatus) {
2844 atw_linkintr(sc, linkstatus);
2845 }
2846
2847 if (rxstatus) {
2848 /* Grab any new packets. */
2849 atw_rxintr(sc);
2850
2851 if (rxstatus & ATW_INTR_RDU) {
2852 printf("%s: receive ring overrun\n",
2853 sc->sc_dev.dv_xname);
2854 /* Get the receive process going again. */
2855 ATW_WRITE(sc, ATW_RDR, 0x1);
2856 break;
2857 }
2858 }
2859
2860 if (txstatus) {
2861 /* Sweep up transmit descriptors. */
2862 atw_txintr(sc);
2863
2864 if (txstatus & ATW_INTR_TLT)
2865 DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2866 sc->sc_dev.dv_xname));
2867
2868 if (txstatus & ATW_INTR_TRT)
2869 DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2870 sc->sc_dev.dv_xname));
2871
2872 /* If Tx under-run, increase our transmit threshold
2873 * if another is available.
2874 */
2875 txthresh = sc->sc_txthresh + 1;
2876 if ((txstatus & ATW_INTR_TUF) &&
2877 sc->sc_txth[txthresh].txth_name != NULL) {
2878 /* Idle the transmit process. */
2879 atw_idle(sc, ATW_NAR_ST);
2880
2881 sc->sc_txthresh = txthresh;
2882 sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2883 sc->sc_opmode |=
2884 sc->sc_txth[txthresh].txth_opmode;
2885 printf("%s: transmit underrun; new "
2886 "threshold: %s\n", sc->sc_dev.dv_xname,
2887 sc->sc_txth[txthresh].txth_name);
2888
2889 /* Set the new threshold and restart
2890 * the transmit process.
2891 */
2892 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2893 DELAY(atw_nar_delay);
2894 ATW_WRITE(sc, ATW_RDR, 0x1);
2895 /* XXX Log every Nth underrun from
2896 * XXX now on?
2897 */
2898 }
2899 }
2900
2901 if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
2902 if (status & ATW_INTR_TPS)
2903 printf("%s: transmit process stopped\n",
2904 sc->sc_dev.dv_xname);
2905 if (status & ATW_INTR_RPS)
2906 printf("%s: receive process stopped\n",
2907 sc->sc_dev.dv_xname);
2908 (void)atw_init(ifp);
2909 break;
2910 }
2911
2912 if (status & ATW_INTR_FBE) {
2913 printf("%s: fatal bus error\n", sc->sc_dev.dv_xname);
2914 (void)atw_init(ifp);
2915 break;
2916 }
2917
2918 /*
2919 * Not handled:
2920 *
2921 * Transmit buffer unavailable -- normal
2922 * condition, nothing to do, really.
2923 *
2924 * Early receive interrupt -- not available on
2925 * all chips, we just use RI. We also only
2926 * use single-segment receive DMA, so this
2927 * is mostly useless.
2928 *
2929 * TBD others
2930 */
2931 }
2932
2933 /* Try to get more packets going. */
2934 atw_start(ifp);
2935
2936 return (handled);
2937 }
2938
2939 /*
2940 * atw_idle:
2941 *
2942 * Cause the transmit and/or receive processes to go idle.
2943 *
2944 * XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2945 * process in STSR if I clear SR or ST after the process has already
2946 * ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2947 * do not seem to be too reliable. Perhaps I have the sense of the
2948 * Rx bits switched with the Tx bits?
2949 */
2950 void
2951 atw_idle(struct atw_softc *sc, u_int32_t bits)
2952 {
2953 u_int32_t ackmask = 0, opmode, stsr, test0;
2954 int i, s;
2955
2956 s = splnet();
2957
2958 opmode = sc->sc_opmode & ~bits;
2959
2960 if (bits & ATW_NAR_SR)
2961 ackmask |= ATW_INTR_RPS;
2962
2963 if (bits & ATW_NAR_ST) {
2964 ackmask |= ATW_INTR_TPS;
2965 /* set ATW_NAR_HF to flush TX FIFO. */
2966 opmode |= ATW_NAR_HF;
2967 }
2968
2969 ATW_WRITE(sc, ATW_NAR, opmode);
2970 DELAY(atw_nar_delay);
2971
2972 for (i = 0; i < 1000; i++) {
2973 stsr = ATW_READ(sc, ATW_STSR);
2974 if ((stsr & ackmask) == ackmask)
2975 break;
2976 DELAY(10);
2977 }
2978
2979 ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
2980
2981 if ((stsr & ackmask) == ackmask)
2982 goto out;
2983
2984 test0 = ATW_READ(sc, ATW_TEST0);
2985
2986 if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
2987 (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
2988 printf("%s: transmit process not idle [%s]\n",
2989 sc->sc_dev.dv_xname,
2990 atw_tx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_TS_MASK)]);
2991 printf("%s: bits %08x test0 %08x stsr %08x\n",
2992 sc->sc_dev.dv_xname, bits, test0, stsr);
2993 }
2994
2995 if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
2996 (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
2997 DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
2998 sc->sc_dev.dv_xname,
2999 atw_rx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_RS_MASK)]));
3000 DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
3001 sc->sc_dev.dv_xname, bits, test0, stsr));
3002 }
3003 out:
3004 if ((bits & ATW_NAR_ST) != 0)
3005 atw_txdrain(sc);
3006 splx(s);
3007 return;
3008 }
3009
3010 /*
3011 * atw_linkintr:
3012 *
3013 * Helper; handle link-status interrupts.
3014 */
3015 void
3016 atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
3017 {
3018 struct ieee80211com *ic = &sc->sc_ic;
3019
3020 if (ic->ic_state != IEEE80211_S_RUN)
3021 return;
3022
3023 if (linkstatus & ATW_INTR_LINKON) {
3024 DPRINTF(sc, ("%s: link on\n", sc->sc_dev.dv_xname));
3025 sc->sc_rescan_timer = 0;
3026 } else if (linkstatus & ATW_INTR_LINKOFF) {
3027 DPRINTF(sc, ("%s: link off\n", sc->sc_dev.dv_xname));
3028 if (ic->ic_opmode != IEEE80211_M_STA)
3029 return;
3030 sc->sc_rescan_timer = 3;
3031 sc->sc_if.if_timer = 1;
3032 }
3033 }
3034
3035 static inline int
3036 atw_hw_decrypted(struct atw_softc *sc, struct ieee80211_frame_min *wh)
3037 {
3038 if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0)
3039 return 0;
3040 if ((wh->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3041 return 0;
3042 return (sc->sc_wepctl & ATW_WEPCTL_WEPRXBYP) == 0;
3043 }
3044
3045 /*
3046 * atw_rxintr:
3047 *
3048 * Helper; handle receive interrupts.
3049 */
3050 void
3051 atw_rxintr(struct atw_softc *sc)
3052 {
3053 static int rate_tbl[] = {2, 4, 11, 22, 44};
3054 struct ieee80211com *ic = &sc->sc_ic;
3055 struct ieee80211_node *ni;
3056 struct ieee80211_frame_min *wh;
3057 struct ifnet *ifp = &sc->sc_if;
3058 struct atw_rxsoft *rxs;
3059 struct mbuf *m;
3060 u_int32_t rxstat;
3061 int i, len, rate, rate0;
3062 u_int32_t rssi, rssi0;
3063
3064 for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
3065 rxs = &sc->sc_rxsoft[i];
3066
3067 ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3068
3069 rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
3070 rssi0 = le32toh(sc->sc_rxdescs[i].ar_rssi);
3071 rate0 = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_RXDR_MASK);
3072
3073 if (rxstat & ATW_RXSTAT_OWN)
3074 break; /* We have processed all receive buffers. */
3075
3076 DPRINTF3(sc,
3077 ("%s: rx stat %08x rssi0 %08x buf1 %08x buf2 %08x\n",
3078 sc->sc_dev.dv_xname,
3079 rxstat, rssi0,
3080 le32toh(sc->sc_rxdescs[i].ar_buf1),
3081 le32toh(sc->sc_rxdescs[i].ar_buf2)));
3082
3083 /*
3084 * Make sure the packet fits in one buffer. This should
3085 * always be the case.
3086 */
3087 if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
3088 (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
3089 printf("%s: incoming packet spilled, resetting\n",
3090 sc->sc_dev.dv_xname);
3091 (void)atw_init(ifp);
3092 return;
3093 }
3094
3095 /*
3096 * If an error occurred, update stats, clear the status
3097 * word, and leave the packet buffer in place. It will
3098 * simply be reused the next time the ring comes around.
3099 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
3100 * error.
3101 */
3102
3103 if ((rxstat & ATW_RXSTAT_ES) != 0 &&
3104 ((sc->sc_ec.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
3105 (rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_SFDE |
3106 ATW_RXSTAT_SIGE | ATW_RXSTAT_CRC16E |
3107 ATW_RXSTAT_RXTOE | ATW_RXSTAT_CRC32E |
3108 ATW_RXSTAT_ICVE)) != 0)) {
3109 #define PRINTERR(bit, str) \
3110 if (rxstat & (bit)) \
3111 printf("%s: receive error: %s\n", \
3112 sc->sc_dev.dv_xname, str)
3113 ifp->if_ierrors++;
3114 PRINTERR(ATW_RXSTAT_DE, "descriptor error");
3115 PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
3116 PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
3117 PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
3118 PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
3119 PRINTERR(ATW_RXSTAT_CRC32E, "FCS error");
3120 PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
3121 #undef PRINTERR
3122 ATW_INIT_RXDESC(sc, i);
3123 continue;
3124 }
3125
3126 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3127 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3128
3129 /*
3130 * No errors; receive the packet. Note the ADM8211
3131 * includes the CRC in promiscuous mode.
3132 */
3133 len = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_FL_MASK);
3134
3135 /*
3136 * Allocate a new mbuf cluster. If that fails, we are
3137 * out of memory, and must drop the packet and recycle
3138 * the buffer that's already attached to this descriptor.
3139 */
3140 m = rxs->rxs_mbuf;
3141 if (atw_add_rxbuf(sc, i) != 0) {
3142 ifp->if_ierrors++;
3143 ATW_INIT_RXDESC(sc, i);
3144 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3145 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3146 continue;
3147 }
3148
3149 ifp->if_ipackets++;
3150 if (sc->sc_opmode & ATW_NAR_PR)
3151 len -= IEEE80211_CRC_LEN;
3152 m->m_pkthdr.rcvif = ifp;
3153 m->m_pkthdr.len = m->m_len = MIN(m->m_ext.ext_size, len);
3154
3155 if (rate0 >= sizeof(rate_tbl) / sizeof(rate_tbl[0]))
3156 rate = 0;
3157 else
3158 rate = rate_tbl[rate0];
3159
3160 /* The RSSI comes straight from a register in the
3161 * baseband processor. I know that for the RF3000,
3162 * the RSSI register also contains the antenna-selection
3163 * bits. Mask those off.
3164 *
3165 * TBD Treat other basebands.
3166 */
3167 if (sc->sc_bbptype == ATW_BBPTYPE_RFMD)
3168 rssi = rssi0 & RF3000_RSSI_MASK;
3169 else
3170 rssi = rssi0;
3171
3172 #if NBPFILTER > 0
3173 /* Pass this up to any BPF listeners. */
3174 if (sc->sc_radiobpf != NULL) {
3175 struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
3176
3177 tap->ar_rate = rate;
3178 tap->ar_chan_freq = ic->ic_curchan->ic_freq;
3179 tap->ar_chan_flags = ic->ic_curchan->ic_flags;
3180
3181 /* TBD verify units are dB */
3182 tap->ar_antsignal = (int)rssi;
3183 /* TBD tap->ar_flags */
3184
3185 bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3186 tap->ar_ihdr.it_len, m);
3187 }
3188 #endif /* NPBFILTER > 0 */
3189
3190 wh = mtod(m, struct ieee80211_frame_min *);
3191 ni = ieee80211_find_rxnode(ic, wh);
3192 if (atw_hw_decrypted(sc, wh)) {
3193 wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
3194 DPRINTF(sc, ("%s: hw decrypted\n", __func__));
3195 }
3196 ieee80211_input(ic, m, ni, (int)rssi, 0);
3197 ieee80211_free_node(ni);
3198 }
3199
3200 /* Update the receive pointer. */
3201 sc->sc_rxptr = i;
3202 }
3203
3204 /*
3205 * atw_txintr:
3206 *
3207 * Helper; handle transmit interrupts.
3208 */
3209 void
3210 atw_txintr(struct atw_softc *sc)
3211 {
3212 #define TXSTAT_ERRMASK (ATW_TXSTAT_TUF | ATW_TXSTAT_TLT | ATW_TXSTAT_TRT | \
3213 ATW_TXSTAT_TRO | ATW_TXSTAT_SOFBR)
3214 #define TXSTAT_FMT "\20\31ATW_TXSTAT_SOFBR\32ATW_TXSTAT_TRO\33ATW_TXSTAT_TUF" \
3215 "\34ATW_TXSTAT_TRT\35ATW_TXSTAT_TLT"
3216
3217 static char txstat_buf[sizeof("ffffffff<>" TXSTAT_FMT)];
3218 struct ifnet *ifp = &sc->sc_if;
3219 struct atw_txsoft *txs;
3220 u_int32_t txstat;
3221
3222 DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3223 sc->sc_dev.dv_xname, sc->sc_flags));
3224
3225 /*
3226 * Go through our Tx list and free mbufs for those
3227 * frames that have been transmitted.
3228 */
3229 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3230 ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3231 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3232
3233 #ifdef ATW_DEBUG
3234 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3235 int i;
3236 printf(" txsoft %p transmit chain:\n", txs);
3237 ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3238 txs->txs_ndescs - 1,
3239 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3240 for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3241 printf(" descriptor %d:\n", i);
3242 printf(" at_status: 0x%08x\n",
3243 le32toh(sc->sc_txdescs[i].at_stat));
3244 printf(" at_flags: 0x%08x\n",
3245 le32toh(sc->sc_txdescs[i].at_flags));
3246 printf(" at_buf1: 0x%08x\n",
3247 le32toh(sc->sc_txdescs[i].at_buf1));
3248 printf(" at_buf2: 0x%08x\n",
3249 le32toh(sc->sc_txdescs[i].at_buf2));
3250 if (i == txs->txs_lastdesc)
3251 break;
3252 }
3253 }
3254 #endif
3255
3256 txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3257 if (txstat & ATW_TXSTAT_OWN)
3258 break;
3259
3260 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3261
3262 sc->sc_txfree += txs->txs_ndescs;
3263
3264 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3265 0, txs->txs_dmamap->dm_mapsize,
3266 BUS_DMASYNC_POSTWRITE);
3267 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3268 m_freem(txs->txs_mbuf);
3269 txs->txs_mbuf = NULL;
3270
3271 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3272
3273 KASSERT(!(SIMPLEQ_EMPTY(&sc->sc_txfreeq) ||
3274 sc->sc_txfree == 0));
3275 ifp->if_flags &= ~IFF_OACTIVE;
3276
3277 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3278 (txstat & TXSTAT_ERRMASK) != 0) {
3279 bitmask_snprintf(txstat & TXSTAT_ERRMASK, TXSTAT_FMT,
3280 txstat_buf, sizeof(txstat_buf));
3281 printf("%s: txstat %s %d\n", sc->sc_dev.dv_xname,
3282 txstat_buf,
3283 MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK));
3284 }
3285
3286 /*
3287 * Check for errors and collisions.
3288 */
3289 if (txstat & ATW_TXSTAT_TUF)
3290 sc->sc_stats.ts_tx_tuf++;
3291 if (txstat & ATW_TXSTAT_TLT)
3292 sc->sc_stats.ts_tx_tlt++;
3293 if (txstat & ATW_TXSTAT_TRT)
3294 sc->sc_stats.ts_tx_trt++;
3295 if (txstat & ATW_TXSTAT_TRO)
3296 sc->sc_stats.ts_tx_tro++;
3297 if (txstat & ATW_TXSTAT_SOFBR) {
3298 sc->sc_stats.ts_tx_sofbr++;
3299 }
3300
3301 if ((txstat & ATW_TXSTAT_ES) == 0)
3302 ifp->if_collisions +=
3303 MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK);
3304 else
3305 ifp->if_oerrors++;
3306
3307 ifp->if_opackets++;
3308 }
3309
3310 /*
3311 * If there are no more pending transmissions, cancel the watchdog
3312 * timer.
3313 */
3314 if (txs == NULL) {
3315 KASSERT((ifp->if_flags & IFF_OACTIVE) == 0);
3316 sc->sc_tx_timer = 0;
3317 }
3318 #undef TXSTAT_ERRMASK
3319 #undef TXSTAT_FMT
3320 }
3321
3322 /*
3323 * atw_watchdog: [ifnet interface function]
3324 *
3325 * Watchdog timer handler.
3326 */
3327 void
3328 atw_watchdog(struct ifnet *ifp)
3329 {
3330 struct atw_softc *sc = ifp->if_softc;
3331 struct ieee80211com *ic = &sc->sc_ic;
3332
3333 ifp->if_timer = 0;
3334 if (ATW_IS_ENABLED(sc) == 0)
3335 return;
3336
3337 if (sc->sc_rescan_timer) {
3338 if (--sc->sc_rescan_timer == 0)
3339 (void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3340 }
3341 if (sc->sc_tx_timer) {
3342 if (--sc->sc_tx_timer == 0 &&
3343 !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3344 printf("%s: transmit timeout\n", ifp->if_xname);
3345 ifp->if_oerrors++;
3346 (void)atw_init(ifp);
3347 atw_start(ifp);
3348 }
3349 }
3350 if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3351 ifp->if_timer = 1;
3352 ieee80211_watchdog(ic);
3353 }
3354
3355 #ifdef ATW_DEBUG
3356 static void
3357 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3358 {
3359 struct atw_softc *sc = ifp->if_softc;
3360 struct mbuf *m;
3361 int i, noctets = 0;
3362
3363 printf("%s: %d-byte packet\n", sc->sc_dev.dv_xname,
3364 m0->m_pkthdr.len);
3365
3366 for (m = m0; m; m = m->m_next) {
3367 if (m->m_len == 0)
3368 continue;
3369 for (i = 0; i < m->m_len; i++) {
3370 printf(" %02x", ((u_int8_t*)m->m_data)[i]);
3371 if (++noctets % 24 == 0)
3372 printf("\n");
3373 }
3374 }
3375 printf("%s%s: %d bytes emitted\n",
3376 (noctets % 24 != 0) ? "\n" : "", sc->sc_dev.dv_xname, noctets);
3377 }
3378 #endif /* ATW_DEBUG */
3379
3380 /*
3381 * atw_start: [ifnet interface function]
3382 *
3383 * Start packet transmission on the interface.
3384 */
3385 void
3386 atw_start(struct ifnet *ifp)
3387 {
3388 struct atw_softc *sc = ifp->if_softc;
3389 struct ieee80211_key *k;
3390 struct ieee80211com *ic = &sc->sc_ic;
3391 struct ieee80211_node *ni;
3392 struct ieee80211_frame_min *whm;
3393 struct ieee80211_frame *wh;
3394 struct atw_frame *hh;
3395 struct mbuf *m0, *m;
3396 struct atw_txsoft *txs, *last_txs;
3397 struct atw_txdesc *txd;
3398 int do_encrypt, npkt, rate;
3399 bus_dmamap_t dmamap;
3400 int ctl, error, firsttx, nexttx, lasttx = -1, first, ofree, seg;
3401
3402 DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3403 sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
3404
3405 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3406 return;
3407
3408 /*
3409 * Remember the previous number of free descriptors and
3410 * the first descriptor we'll use.
3411 */
3412 ofree = sc->sc_txfree;
3413 firsttx = sc->sc_txnext;
3414
3415 DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3416 sc->sc_dev.dv_xname, ofree, firsttx));
3417
3418 /*
3419 * Loop through the send queue, setting up transmit descriptors
3420 * until we drain the queue, or use up all available transmit
3421 * descriptors.
3422 */
3423 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3424 sc->sc_txfree != 0) {
3425
3426 /*
3427 * Grab a packet off the management queue, if it
3428 * is not empty. Otherwise, from the data queue.
3429 */
3430 IF_DEQUEUE(&ic->ic_mgtq, m0);
3431 if (m0 != NULL) {
3432 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
3433 m0->m_pkthdr.rcvif = NULL;
3434 } else if (ic->ic_state != IEEE80211_S_RUN)
3435 break; /* send no data until associated */
3436 else {
3437 IFQ_DEQUEUE(&ifp->if_snd, m0);
3438 if (m0 == NULL)
3439 break;
3440 #if NBPFILTER > 0
3441 if (ifp->if_bpf != NULL)
3442 bpf_mtap(ifp->if_bpf, m0);
3443 #endif /* NBPFILTER > 0 */
3444 ni = ieee80211_find_txnode(ic,
3445 mtod(m0, struct ether_header *)->ether_dhost);
3446 if (ni == NULL) {
3447 ifp->if_oerrors++;
3448 break;
3449 }
3450 if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
3451 ieee80211_free_node(ni);
3452 ifp->if_oerrors++;
3453 break;
3454 }
3455 }
3456
3457 rate = MAX(ieee80211_get_rate(ic), 2);
3458
3459 whm = mtod(m0, struct ieee80211_frame_min *);
3460
3461 do_encrypt = ((whm->i_fc[1] & IEEE80211_FC1_WEP) != 0) ? 1 : 0;
3462 if (do_encrypt)
3463 k = &ic->ic_nw_keys[ic->ic_def_txkey];
3464 else
3465 k = NULL;
3466
3467 if (ieee80211_compute_duration(whm, k, m0->m_pkthdr.len,
3468 ic->ic_flags, ic->ic_fragthreshold, rate,
3469 &txs->txs_d0, &txs->txs_dn, &npkt, 0) == -1) {
3470 DPRINTF2(sc, ("%s: fail compute duration\n", __func__));
3471 m_freem(m0);
3472 break;
3473 }
3474
3475 /* XXX Misleading if fragmentation is enabled. Better
3476 * to fragment in software?
3477 */
3478 *(uint16_t *)whm->i_dur = htole16(txs->txs_d0.d_rts_dur);
3479
3480 #if NBPFILTER > 0
3481 /*
3482 * Pass the packet to any BPF listeners.
3483 */
3484 if (ic->ic_rawbpf != NULL)
3485 bpf_mtap((caddr_t)ic->ic_rawbpf, m0);
3486
3487 if (sc->sc_radiobpf != NULL) {
3488 struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
3489
3490 tap->at_rate = rate;
3491 tap->at_chan_freq = ic->ic_curchan->ic_freq;
3492 tap->at_chan_flags = ic->ic_curchan->ic_flags;
3493
3494 /* TBD tap->at_flags */
3495
3496 bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3497 tap->at_ihdr.it_len, m0);
3498 }
3499 #endif /* NBPFILTER > 0 */
3500
3501 M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3502
3503 if (ni != NULL)
3504 ieee80211_free_node(ni);
3505
3506 if (m0 == NULL) {
3507 ifp->if_oerrors++;
3508 break;
3509 }
3510
3511 /* just to make sure. */
3512 m0 = m_pullup(m0, sizeof(struct atw_frame));
3513
3514 if (m0 == NULL) {
3515 ifp->if_oerrors++;
3516 break;
3517 }
3518
3519 hh = mtod(m0, struct atw_frame *);
3520 wh = &hh->atw_ihdr;
3521
3522 /* Copy everything we need from the 802.11 header:
3523 * Frame Control; address 1, address 3, or addresses
3524 * 3 and 4. NIC fills in BSSID, SA.
3525 */
3526 if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3527 if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3528 panic("%s: illegal WDS frame",
3529 sc->sc_dev.dv_xname);
3530 memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3531 } else
3532 memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3533
3534 *(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
3535
3536 /* initialize remaining Tx parameters */
3537 memset(&hh->u, 0, sizeof(hh->u));
3538
3539 hh->atw_rate = rate * 5;
3540 /* XXX this could be incorrect if M_FCS. _encap should
3541 * probably strip FCS just in case it sticks around in
3542 * bridged packets.
3543 */
3544 hh->atw_service = 0x00; /* XXX guess */
3545 hh->atw_paylen = htole16(m0->m_pkthdr.len -
3546 sizeof(struct atw_frame));
3547
3548 hh->atw_fragthr = htole16(ic->ic_fragthreshold);
3549 hh->atw_rtylmt = 3;
3550 hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3551 if (do_encrypt) {
3552 hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
3553 hh->atw_keyid = ic->ic_def_txkey;
3554 }
3555
3556 hh->atw_head_plcplen = htole16(txs->txs_d0.d_plcp_len);
3557 hh->atw_tail_plcplen = htole16(txs->txs_dn.d_plcp_len);
3558 if (txs->txs_d0.d_residue)
3559 hh->atw_head_plcplen |= htole16(0x8000);
3560 if (txs->txs_dn.d_residue)
3561 hh->atw_tail_plcplen |= htole16(0x8000);
3562 hh->atw_head_dur = htole16(txs->txs_d0.d_rts_dur);
3563 hh->atw_tail_dur = htole16(txs->txs_dn.d_rts_dur);
3564
3565 /* never fragment multicast frames */
3566 if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
3567 hh->atw_fragthr = htole16(ic->ic_fragthreshold);
3568 } else if (sc->sc_flags & ATWF_RTSCTS) {
3569 hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3570 }
3571
3572 #ifdef ATW_DEBUG
3573 hh->atw_fragnum = 0;
3574
3575 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3576 printf("%s: dst = %s, rate = 0x%02x, "
3577 "service = 0x%02x, paylen = 0x%04x\n",
3578 sc->sc_dev.dv_xname, ether_sprintf(hh->atw_dst),
3579 hh->atw_rate, hh->atw_service, hh->atw_paylen);
3580
3581 printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3582 "dur1 = 0x%04x, dur2 = 0x%04x, "
3583 "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3584 sc->sc_dev.dv_xname, hh->atw_fc[0], hh->atw_fc[1],
3585 hh->atw_tail_plcplen, hh->atw_head_plcplen,
3586 hh->atw_tail_dur, hh->atw_head_dur);
3587
3588 printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3589 "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3590 sc->sc_dev.dv_xname, hh->atw_hdrctl,
3591 hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3592
3593 printf("%s: keyid = %d\n",
3594 sc->sc_dev.dv_xname, hh->atw_keyid);
3595
3596 atw_dump_pkt(ifp, m0);
3597 }
3598 #endif /* ATW_DEBUG */
3599
3600 dmamap = txs->txs_dmamap;
3601
3602 /*
3603 * Load the DMA map. Copy and try (once) again if the packet
3604 * didn't fit in the alloted number of segments.
3605 */
3606 for (first = 1;
3607 (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3608 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
3609 first = 0) {
3610 MGETHDR(m, M_DONTWAIT, MT_DATA);
3611 if (m == NULL) {
3612 printf("%s: unable to allocate Tx mbuf\n",
3613 sc->sc_dev.dv_xname);
3614 break;
3615 }
3616 if (m0->m_pkthdr.len > MHLEN) {
3617 MCLGET(m, M_DONTWAIT);
3618 if ((m->m_flags & M_EXT) == 0) {
3619 printf("%s: unable to allocate Tx "
3620 "cluster\n", sc->sc_dev.dv_xname);
3621 m_freem(m);
3622 break;
3623 }
3624 }
3625 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
3626 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3627 m_freem(m0);
3628 m0 = m;
3629 m = NULL;
3630 }
3631 if (error != 0) {
3632 printf("%s: unable to load Tx buffer, "
3633 "error = %d\n", sc->sc_dev.dv_xname, error);
3634 m_freem(m0);
3635 break;
3636 }
3637
3638 /*
3639 * Ensure we have enough descriptors free to describe
3640 * the packet.
3641 */
3642 if (dmamap->dm_nsegs > sc->sc_txfree) {
3643 /*
3644 * Not enough free descriptors to transmit
3645 * this packet. Unload the DMA map and
3646 * drop the packet. Notify the upper layer
3647 * that there are no more slots left.
3648 *
3649 * XXX We could allocate an mbuf and copy, but
3650 * XXX it is worth it?
3651 */
3652 bus_dmamap_unload(sc->sc_dmat, dmamap);
3653 m_freem(m0);
3654 break;
3655 }
3656
3657 /*
3658 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3659 */
3660
3661 /* Sync the DMA map. */
3662 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3663 BUS_DMASYNC_PREWRITE);
3664
3665 /* XXX arbitrary retry limit; 8 because I have seen it in
3666 * use already and maybe 0 means "no tries" !
3667 */
3668 ctl = htole32(LSHIFT(8, ATW_TXCTL_TL_MASK));
3669
3670 DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3671 sc->sc_dev.dv_xname, rate * 5));
3672 ctl |= htole32(LSHIFT(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3673
3674 /*
3675 * Initialize the transmit descriptors.
3676 */
3677 for (nexttx = sc->sc_txnext, seg = 0;
3678 seg < dmamap->dm_nsegs;
3679 seg++, nexttx = ATW_NEXTTX(nexttx)) {
3680 /*
3681 * If this is the first descriptor we're
3682 * enqueueing, don't set the OWN bit just
3683 * yet. That could cause a race condition.
3684 * We'll do it below.
3685 */
3686 txd = &sc->sc_txdescs[nexttx];
3687 txd->at_ctl = ctl |
3688 ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3689
3690 txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3691 txd->at_flags =
3692 htole32(LSHIFT(dmamap->dm_segs[seg].ds_len,
3693 ATW_TXFLAG_TBS1_MASK)) |
3694 ((nexttx == (ATW_NTXDESC - 1))
3695 ? htole32(ATW_TXFLAG_TER) : 0);
3696 lasttx = nexttx;
3697 }
3698
3699 IASSERT(lasttx != -1, ("bad lastx"));
3700 /* Set `first segment' and `last segment' appropriately. */
3701 sc->sc_txdescs[sc->sc_txnext].at_flags |=
3702 htole32(ATW_TXFLAG_FS);
3703 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3704
3705 #ifdef ATW_DEBUG
3706 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3707 printf(" txsoft %p transmit chain:\n", txs);
3708 for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3709 printf(" descriptor %d:\n", seg);
3710 printf(" at_ctl: 0x%08x\n",
3711 le32toh(sc->sc_txdescs[seg].at_ctl));
3712 printf(" at_flags: 0x%08x\n",
3713 le32toh(sc->sc_txdescs[seg].at_flags));
3714 printf(" at_buf1: 0x%08x\n",
3715 le32toh(sc->sc_txdescs[seg].at_buf1));
3716 printf(" at_buf2: 0x%08x\n",
3717 le32toh(sc->sc_txdescs[seg].at_buf2));
3718 if (seg == lasttx)
3719 break;
3720 }
3721 }
3722 #endif
3723
3724 /* Sync the descriptors we're using. */
3725 ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3726 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3727
3728 /*
3729 * Store a pointer to the packet so we can free it later,
3730 * and remember what txdirty will be once the packet is
3731 * done.
3732 */
3733 txs->txs_mbuf = m0;
3734 txs->txs_firstdesc = sc->sc_txnext;
3735 txs->txs_lastdesc = lasttx;
3736 txs->txs_ndescs = dmamap->dm_nsegs;
3737
3738 /* Advance the tx pointer. */
3739 sc->sc_txfree -= dmamap->dm_nsegs;
3740 sc->sc_txnext = nexttx;
3741
3742 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3743 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3744
3745 last_txs = txs;
3746 }
3747
3748 if (sc->sc_txfree != ofree) {
3749 DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3750 sc->sc_dev.dv_xname, lasttx, firsttx));
3751 /*
3752 * Cause a transmit interrupt to happen on the
3753 * last packet we enqueued.
3754 */
3755 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3756 ATW_CDTXSYNC(sc, lasttx, 1,
3757 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3758
3759 /*
3760 * The entire packet chain is set up. Give the
3761 * first descriptor to the chip now.
3762 */
3763 sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3764 ATW_CDTXSYNC(sc, firsttx, 1,
3765 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3766
3767 /* Wake up the transmitter. */
3768 ATW_WRITE(sc, ATW_TDR, 0x1);
3769
3770 if (txs == NULL || sc->sc_txfree == 0)
3771 ifp->if_flags |= IFF_OACTIVE;
3772
3773 /* Set a watchdog timer in case the chip flakes out. */
3774 sc->sc_tx_timer = 5;
3775 ifp->if_timer = 1;
3776 }
3777 }
3778
3779 /*
3780 * atw_power:
3781 *
3782 * Power management (suspend/resume) hook.
3783 */
3784 void
3785 atw_power(int why, void *arg)
3786 {
3787 struct atw_softc *sc = arg;
3788 struct ifnet *ifp = &sc->sc_if;
3789 int s;
3790
3791 DPRINTF(sc, ("%s: atw_power(%d,)\n", sc->sc_dev.dv_xname, why));
3792
3793 s = splnet();
3794 switch (why) {
3795 case PWR_STANDBY:
3796 /* XXX do nothing. */
3797 break;
3798 case PWR_SUSPEND:
3799 atw_stop(ifp, 0);
3800 if (sc->sc_power != NULL)
3801 (*sc->sc_power)(sc, why);
3802 break;
3803 case PWR_RESUME:
3804 if (ifp->if_flags & IFF_UP) {
3805 if (sc->sc_power != NULL)
3806 (*sc->sc_power)(sc, why);
3807 atw_init(ifp);
3808 }
3809 break;
3810 case PWR_SOFTSUSPEND:
3811 case PWR_SOFTSTANDBY:
3812 case PWR_SOFTRESUME:
3813 break;
3814 }
3815 splx(s);
3816 }
3817
3818 /*
3819 * atw_ioctl: [ifnet interface function]
3820 *
3821 * Handle control requests from the operator.
3822 */
3823 int
3824 atw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3825 {
3826 struct atw_softc *sc = ifp->if_softc;
3827 struct ifreq *ifr = (struct ifreq *)data;
3828 int s, error = 0;
3829
3830 /* XXX monkey see, monkey do. comes from wi_ioctl. */
3831 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
3832 return ENXIO;
3833
3834 s = splnet();
3835
3836 switch (cmd) {
3837 case SIOCSIFFLAGS:
3838 if (ifp->if_flags & IFF_UP) {
3839 if (ATW_IS_ENABLED(sc)) {
3840 /*
3841 * To avoid rescanning another access point,
3842 * do not call atw_init() here. Instead,
3843 * only reflect media settings.
3844 */
3845 atw_filter_setup(sc);
3846 } else
3847 error = atw_init(ifp);
3848 } else if (ATW_IS_ENABLED(sc))
3849 atw_stop(ifp, 1);
3850 break;
3851 case SIOCADDMULTI:
3852 case SIOCDELMULTI:
3853 error = (cmd == SIOCADDMULTI) ?
3854 ether_addmulti(ifr, &sc->sc_ec) :
3855 ether_delmulti(ifr, &sc->sc_ec);
3856 if (error == ENETRESET) {
3857 if (ifp->if_flags & IFF_RUNNING)
3858 atw_filter_setup(sc); /* do not rescan */
3859 error = 0;
3860 }
3861 break;
3862 default:
3863 error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
3864 if (error == ENETRESET) {
3865 if (ATW_IS_ENABLED(sc))
3866 error = atw_init(ifp);
3867 else
3868 error = 0;
3869 }
3870 break;
3871 }
3872
3873 /* Try to get more packets going. */
3874 if (ATW_IS_ENABLED(sc))
3875 atw_start(ifp);
3876
3877 splx(s);
3878 return (error);
3879 }
3880
3881 static int
3882 atw_media_change(struct ifnet *ifp)
3883 {
3884 int error;
3885
3886 error = ieee80211_media_change(ifp);
3887 if (error == ENETRESET) {
3888 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
3889 (IFF_RUNNING|IFF_UP))
3890 atw_init(ifp); /* XXX lose error */
3891 error = 0;
3892 }
3893 return error;
3894 }
3895