atw.c revision 1.106 1 /* $NetBSD: atw.c,v 1.106 2006/02/18 22:07:11 dyoung Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.106 2006/02/18 22:07:11 dyoung Exp $");
45
46 #include "bpfilter.h"
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/callout.h>
51 #include <sys/mbuf.h>
52 #include <sys/malloc.h>
53 #include <sys/kernel.h>
54 #include <sys/socket.h>
55 #include <sys/ioctl.h>
56 #include <sys/errno.h>
57 #include <sys/device.h>
58 #include <sys/time.h>
59
60 #include <machine/endian.h>
61
62 #include <uvm/uvm_extern.h>
63
64 #include <net/if.h>
65 #include <net/if_dl.h>
66 #include <net/if_media.h>
67 #include <net/if_ether.h>
68
69 #include <net80211/ieee80211_netbsd.h>
70 #include <net80211/ieee80211_var.h>
71 #include <net80211/ieee80211_radiotap.h>
72
73 #if NBPFILTER > 0
74 #include <net/bpf.h>
75 #endif
76
77 #include <machine/bus.h>
78 #include <machine/intr.h>
79
80 #include <dev/ic/atwreg.h>
81 #include <dev/ic/rf3000reg.h>
82 #include <dev/ic/si4136reg.h>
83 #include <dev/ic/atwvar.h>
84 #include <dev/ic/smc93cx6var.h>
85
86 /* XXX TBD open questions
87 *
88 *
89 * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
90 * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
91 * handle this for me?
92 *
93 */
94 /* device attachment
95 *
96 * print TOFS[012]
97 *
98 * device initialization
99 *
100 * clear ATW_FRCTL_MAXPSP to disable max power saving
101 * set ATW_TXBR_ALCUPDATE to enable ALC
102 * set TOFS[012]? (hope not)
103 * disable rx/tx
104 * set ATW_PAR_SWR (software reset)
105 * wait for ATW_PAR_SWR clear
106 * disable interrupts
107 * ack status register
108 * enable interrupts
109 *
110 * rx/tx initialization
111 *
112 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
113 * allocate and init descriptor rings
114 * write ATW_PAR_DSL (descriptor skip length)
115 * write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
116 * write ATW_NAR_SQ for one/both transmit descriptor rings
117 * write ATW_NAR_SQ for one/both transmit descriptor rings
118 * enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
119 *
120 * rx/tx end
121 *
122 * stop DMA
123 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
124 * flush tx w/ ATW_NAR_HF
125 *
126 * scan
127 *
128 * initialize rx/tx
129 *
130 * BSS join: (re)association response
131 *
132 * set ATW_FRCTL_AID
133 *
134 * optimizations ???
135 *
136 */
137
138 #define ATW_REFSLAVE /* slavishly do what the reference driver does */
139
140 #define VOODOO_DUR_11_ROUNDING 0x01 /* necessary */
141 #define VOODOO_DUR_2_4_SPECIALCASE 0x02 /* NOT necessary */
142 int atw_voodoo = VOODOO_DUR_11_ROUNDING;
143
144 int atw_pseudo_milli = 1;
145 int atw_magic_delay1 = 100 * 1000;
146 int atw_magic_delay2 = 100 * 1000;
147 /* more magic multi-millisecond delays (units: microseconds) */
148 int atw_nar_delay = 20 * 1000;
149 int atw_magic_delay4 = 10 * 1000;
150 int atw_rf_delay1 = 10 * 1000;
151 int atw_rf_delay2 = 5 * 1000;
152 int atw_plcphd_delay = 2 * 1000;
153 int atw_bbp_io_enable_delay = 20 * 1000;
154 int atw_bbp_io_disable_delay = 2 * 1000;
155 int atw_writewep_delay = 1000;
156 int atw_beacon_len_adjust = 4;
157 int atw_dwelltime = 200;
158 int atw_xindiv2 = 0;
159
160 #ifdef ATW_DEBUG
161 int atw_debug = 0;
162
163 #define ATW_DPRINTF(x) if (atw_debug > 0) printf x
164 #define ATW_DPRINTF2(x) if (atw_debug > 1) printf x
165 #define ATW_DPRINTF3(x) if (atw_debug > 2) printf x
166 #define DPRINTF(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) printf x
167 #define DPRINTF2(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
168 #define DPRINTF3(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
169
170 static void atw_dump_pkt(struct ifnet *, struct mbuf *);
171 static void atw_print_regs(struct atw_softc *, const char *);
172
173 /* Note well: I never got atw_rf3000_read or atw_si4126_read to work. */
174 # ifdef ATW_BBPDEBUG
175 static void atw_rf3000_print(struct atw_softc *);
176 static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
177 # endif /* ATW_BBPDEBUG */
178
179 # ifdef ATW_SYNDEBUG
180 static void atw_si4126_print(struct atw_softc *);
181 static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
182 # endif /* ATW_SYNDEBUG */
183
184 #else
185 #define ATW_DPRINTF(x)
186 #define ATW_DPRINTF2(x)
187 #define ATW_DPRINTF3(x)
188 #define DPRINTF(sc, x) /* nothing */
189 #define DPRINTF2(sc, x) /* nothing */
190 #define DPRINTF3(sc, x) /* nothing */
191 #endif
192
193 /* ifnet methods */
194 int atw_init(struct ifnet *);
195 int atw_ioctl(struct ifnet *, u_long, caddr_t);
196 void atw_start(struct ifnet *);
197 void atw_stop(struct ifnet *, int);
198 void atw_watchdog(struct ifnet *);
199
200 /* Device attachment */
201 void atw_attach(struct atw_softc *);
202 int atw_detach(struct atw_softc *);
203
204 /* Rx/Tx process */
205 int atw_add_rxbuf(struct atw_softc *, int);
206 void atw_idle(struct atw_softc *, u_int32_t);
207 void atw_rxdrain(struct atw_softc *);
208 void atw_txdrain(struct atw_softc *);
209
210 /* Device (de)activation and power state */
211 void atw_disable(struct atw_softc *);
212 int atw_enable(struct atw_softc *);
213 void atw_power(int, void *);
214 void atw_reset(struct atw_softc *);
215 void atw_shutdown(void *);
216
217 /* Interrupt handlers */
218 void atw_linkintr(struct atw_softc *, u_int32_t);
219 void atw_rxintr(struct atw_softc *);
220 void atw_txintr(struct atw_softc *);
221
222 /* 802.11 state machine */
223 static int atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
224 static void atw_next_scan(void *);
225 static void atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
226 struct ieee80211_node *, int, int, u_int32_t);
227 static int atw_tune(struct atw_softc *);
228
229 /* Device initialization */
230 static void atw_bbp_io_init(struct atw_softc *);
231 static void atw_cfp_init(struct atw_softc *);
232 static void atw_cmdr_init(struct atw_softc *);
233 static void atw_ifs_init(struct atw_softc *);
234 static void atw_nar_init(struct atw_softc *);
235 static void atw_response_times_init(struct atw_softc *);
236 static void atw_rf_reset(struct atw_softc *);
237 static void atw_test1_init(struct atw_softc *);
238 static void atw_tofs0_init(struct atw_softc *);
239 static void atw_tofs2_init(struct atw_softc *);
240 static void atw_txlmt_init(struct atw_softc *);
241 static void atw_wcsr_init(struct atw_softc *);
242
243 /* Key management */
244 static int atw_key_delete(struct ieee80211com *, const struct ieee80211_key *);
245 static int atw_key_set(struct ieee80211com *, const struct ieee80211_key *,
246 const u_int8_t[IEEE80211_ADDR_LEN]);
247 static void atw_key_update_begin(struct ieee80211com *);
248 static void atw_key_update_end(struct ieee80211com *);
249
250 /* RAM/ROM utilities */
251 static void atw_clear_sram(struct atw_softc *);
252 static void atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
253 static int atw_read_srom(struct atw_softc *);
254
255 /* BSS setup */
256 static void atw_predict_beacon(struct atw_softc *);
257 static void atw_start_beacon(struct atw_softc *, int);
258 static void atw_write_bssid(struct atw_softc *);
259 static void atw_write_ssid(struct atw_softc *);
260 static void atw_write_sup_rates(struct atw_softc *);
261 static void atw_write_wep(struct atw_softc *);
262
263 /* Media */
264 static int atw_media_change(struct ifnet *);
265
266 static void atw_filter_setup(struct atw_softc *);
267
268 /* 802.11 utilities */
269 static uint64_t atw_get_tsft(struct atw_softc *);
270 static inline uint32_t atw_last_even_tsft(uint32_t, uint32_t,
271 uint32_t);
272 static struct ieee80211_node *atw_node_alloc(struct ieee80211_node_table *);
273 static void atw_node_free(struct ieee80211_node *);
274
275 /*
276 * Tuner/transceiver/modem
277 */
278 static void atw_bbp_io_enable(struct atw_softc *, int);
279
280 /* RFMD RF3000 Baseband Processor */
281 static int atw_rf3000_init(struct atw_softc *);
282 static int atw_rf3000_tune(struct atw_softc *, u_int);
283 static int atw_rf3000_write(struct atw_softc *, u_int, u_int);
284
285 /* Silicon Laboratories Si4126 RF/IF Synthesizer */
286 static void atw_si4126_tune(struct atw_softc *, u_int);
287 static void atw_si4126_write(struct atw_softc *, u_int, u_int);
288
289 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
290 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
291
292 const char *atw_tx_state[] = {
293 "STOPPED",
294 "RUNNING - read descriptor",
295 "RUNNING - transmitting",
296 "RUNNING - filling fifo", /* XXX */
297 "SUSPENDED",
298 "RUNNING -- write descriptor",
299 "RUNNING -- write last descriptor",
300 "RUNNING - fifo full"
301 };
302
303 const char *atw_rx_state[] = {
304 "STOPPED",
305 "RUNNING - read descriptor",
306 "RUNNING - check this packet, pre-fetch next",
307 "RUNNING - wait for reception",
308 "SUSPENDED",
309 "RUNNING - write descriptor",
310 "RUNNING - flush fifo",
311 "RUNNING - fifo drain"
312 };
313
314 static inline int
315 is_running(struct ifnet *ifp)
316 {
317 return (ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP);
318 }
319
320 int
321 atw_activate(struct device *self, enum devact act)
322 {
323 struct atw_softc *sc = (struct atw_softc *)self;
324 int rv = 0, s;
325
326 s = splnet();
327 switch (act) {
328 case DVACT_ACTIVATE:
329 rv = EOPNOTSUPP;
330 break;
331
332 case DVACT_DEACTIVATE:
333 if_deactivate(&sc->sc_if);
334 break;
335 }
336 splx(s);
337 return rv;
338 }
339
340 /*
341 * atw_enable:
342 *
343 * Enable the ADM8211 chip.
344 */
345 int
346 atw_enable(struct atw_softc *sc)
347 {
348
349 if (ATW_IS_ENABLED(sc) == 0) {
350 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
351 printf("%s: device enable failed\n",
352 sc->sc_dev.dv_xname);
353 return (EIO);
354 }
355 sc->sc_flags |= ATWF_ENABLED;
356 }
357 return (0);
358 }
359
360 /*
361 * atw_disable:
362 *
363 * Disable the ADM8211 chip.
364 */
365 void
366 atw_disable(struct atw_softc *sc)
367 {
368 if (!ATW_IS_ENABLED(sc))
369 return;
370 if (sc->sc_disable != NULL)
371 (*sc->sc_disable)(sc);
372 sc->sc_flags &= ~ATWF_ENABLED;
373 }
374
375 /* Returns -1 on failure. */
376 static int
377 atw_read_srom(struct atw_softc *sc)
378 {
379 struct seeprom_descriptor sd;
380 uint32_t test0, fail_bits;
381
382 (void)memset(&sd, 0, sizeof(sd));
383
384 test0 = ATW_READ(sc, ATW_TEST0);
385
386 switch (sc->sc_rev) {
387 case ATW_REVISION_BA:
388 case ATW_REVISION_CA:
389 fail_bits = ATW_TEST0_EPNE;
390 break;
391 default:
392 fail_bits = ATW_TEST0_EPNE|ATW_TEST0_EPSNM;
393 break;
394 }
395 if ((test0 & fail_bits) != 0) {
396 printf("%s: bad or missing/bad SROM\n", sc->sc_dev.dv_xname);
397 return -1;
398 }
399
400 switch (test0 & ATW_TEST0_EPTYP_MASK) {
401 case ATW_TEST0_EPTYP_93c66:
402 ATW_DPRINTF(("%s: 93c66 SROM\n", sc->sc_dev.dv_xname));
403 sc->sc_sromsz = 512;
404 sd.sd_chip = C56_66;
405 break;
406 case ATW_TEST0_EPTYP_93c46:
407 ATW_DPRINTF(("%s: 93c46 SROM\n", sc->sc_dev.dv_xname));
408 sc->sc_sromsz = 128;
409 sd.sd_chip = C46;
410 break;
411 default:
412 printf("%s: unknown SROM type %d\n", sc->sc_dev.dv_xname,
413 MASK_AND_RSHIFT(test0, ATW_TEST0_EPTYP_MASK));
414 return -1;
415 }
416
417 sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
418
419 if (sc->sc_srom == NULL) {
420 printf("%s: unable to allocate SROM buffer\n",
421 sc->sc_dev.dv_xname);
422 return -1;
423 }
424
425 (void)memset(sc->sc_srom, 0, sc->sc_sromsz);
426
427 /* ADM8211 has a single 32-bit register for controlling the
428 * 93cx6 SROM. Bit SRS enables the serial port. There is no
429 * "ready" bit. The ADM8211 input/output sense is the reverse
430 * of read_seeprom's.
431 */
432 sd.sd_tag = sc->sc_st;
433 sd.sd_bsh = sc->sc_sh;
434 sd.sd_regsize = 4;
435 sd.sd_control_offset = ATW_SPR;
436 sd.sd_status_offset = ATW_SPR;
437 sd.sd_dataout_offset = ATW_SPR;
438 sd.sd_CK = ATW_SPR_SCLK;
439 sd.sd_CS = ATW_SPR_SCS;
440 sd.sd_DI = ATW_SPR_SDO;
441 sd.sd_DO = ATW_SPR_SDI;
442 sd.sd_MS = ATW_SPR_SRS;
443 sd.sd_RDY = 0;
444
445 if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
446 printf("%s: could not read SROM\n", sc->sc_dev.dv_xname);
447 free(sc->sc_srom, M_DEVBUF);
448 return -1;
449 }
450 #ifdef ATW_DEBUG
451 {
452 int i;
453 ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
454 for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
455 if (((i % 8) == 0) && (i != 0)) {
456 ATW_DPRINTF(("\n\t"));
457 }
458 ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
459 }
460 ATW_DPRINTF(("\n"));
461 }
462 #endif /* ATW_DEBUG */
463 return 0;
464 }
465
466 #ifdef ATW_DEBUG
467 static void
468 atw_print_regs(struct atw_softc *sc, const char *where)
469 {
470 #define PRINTREG(sc, reg) \
471 ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
472 sc->sc_dev.dv_xname, reg, ATW_READ(sc, reg)))
473
474 ATW_DPRINTF2(("%s: %s\n", sc->sc_dev.dv_xname, where));
475
476 PRINTREG(sc, ATW_PAR);
477 PRINTREG(sc, ATW_FRCTL);
478 PRINTREG(sc, ATW_TDR);
479 PRINTREG(sc, ATW_WTDP);
480 PRINTREG(sc, ATW_RDR);
481 PRINTREG(sc, ATW_WRDP);
482 PRINTREG(sc, ATW_RDB);
483 PRINTREG(sc, ATW_CSR3A);
484 PRINTREG(sc, ATW_TDBD);
485 PRINTREG(sc, ATW_TDBP);
486 PRINTREG(sc, ATW_STSR);
487 PRINTREG(sc, ATW_CSR5A);
488 PRINTREG(sc, ATW_NAR);
489 PRINTREG(sc, ATW_CSR6A);
490 PRINTREG(sc, ATW_IER);
491 PRINTREG(sc, ATW_CSR7A);
492 PRINTREG(sc, ATW_LPC);
493 PRINTREG(sc, ATW_TEST1);
494 PRINTREG(sc, ATW_SPR);
495 PRINTREG(sc, ATW_TEST0);
496 PRINTREG(sc, ATW_WCSR);
497 PRINTREG(sc, ATW_WPDR);
498 PRINTREG(sc, ATW_GPTMR);
499 PRINTREG(sc, ATW_GPIO);
500 PRINTREG(sc, ATW_BBPCTL);
501 PRINTREG(sc, ATW_SYNCTL);
502 PRINTREG(sc, ATW_PLCPHD);
503 PRINTREG(sc, ATW_MMIWADDR);
504 PRINTREG(sc, ATW_MMIRADDR1);
505 PRINTREG(sc, ATW_MMIRADDR2);
506 PRINTREG(sc, ATW_TXBR);
507 PRINTREG(sc, ATW_CSR15A);
508 PRINTREG(sc, ATW_ALCSTAT);
509 PRINTREG(sc, ATW_TOFS2);
510 PRINTREG(sc, ATW_CMDR);
511 PRINTREG(sc, ATW_PCIC);
512 PRINTREG(sc, ATW_PMCSR);
513 PRINTREG(sc, ATW_PAR0);
514 PRINTREG(sc, ATW_PAR1);
515 PRINTREG(sc, ATW_MAR0);
516 PRINTREG(sc, ATW_MAR1);
517 PRINTREG(sc, ATW_ATIMDA0);
518 PRINTREG(sc, ATW_ABDA1);
519 PRINTREG(sc, ATW_BSSID0);
520 PRINTREG(sc, ATW_TXLMT);
521 PRINTREG(sc, ATW_MIBCNT);
522 PRINTREG(sc, ATW_BCNT);
523 PRINTREG(sc, ATW_TSFTH);
524 PRINTREG(sc, ATW_TSC);
525 PRINTREG(sc, ATW_SYNRF);
526 PRINTREG(sc, ATW_BPLI);
527 PRINTREG(sc, ATW_CAP0);
528 PRINTREG(sc, ATW_CAP1);
529 PRINTREG(sc, ATW_RMD);
530 PRINTREG(sc, ATW_CFPP);
531 PRINTREG(sc, ATW_TOFS0);
532 PRINTREG(sc, ATW_TOFS1);
533 PRINTREG(sc, ATW_IFST);
534 PRINTREG(sc, ATW_RSPT);
535 PRINTREG(sc, ATW_TSFTL);
536 PRINTREG(sc, ATW_WEPCTL);
537 PRINTREG(sc, ATW_WESK);
538 PRINTREG(sc, ATW_WEPCNT);
539 PRINTREG(sc, ATW_MACTEST);
540 PRINTREG(sc, ATW_FER);
541 PRINTREG(sc, ATW_FEMR);
542 PRINTREG(sc, ATW_FPSR);
543 PRINTREG(sc, ATW_FFER);
544 #undef PRINTREG
545 }
546 #endif /* ATW_DEBUG */
547
548 /*
549 * Finish attaching an ADMtek ADM8211 MAC. Called by bus-specific front-end.
550 */
551 void
552 atw_attach(struct atw_softc *sc)
553 {
554 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
555 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
556 };
557 struct ieee80211com *ic = &sc->sc_ic;
558 struct ifnet *ifp = &sc->sc_if;
559 int country_code, error, i, nrate, srom_major;
560 u_int32_t reg;
561 static const char *type_strings[] = {"Intersil (not supported)",
562 "RFMD", "Marvel (not supported)"};
563
564 sc->sc_txth = atw_txthresh_tab_lo;
565
566 SIMPLEQ_INIT(&sc->sc_txfreeq);
567 SIMPLEQ_INIT(&sc->sc_txdirtyq);
568
569 #ifdef ATW_DEBUG
570 atw_print_regs(sc, "atw_attach");
571 #endif /* ATW_DEBUG */
572
573 /*
574 * Allocate the control data structures, and create and load the
575 * DMA map for it.
576 */
577 if ((error = bus_dmamem_alloc(sc->sc_dmat,
578 sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
579 1, &sc->sc_cdnseg, 0)) != 0) {
580 printf("%s: unable to allocate control data, error = %d\n",
581 sc->sc_dev.dv_xname, error);
582 goto fail_0;
583 }
584
585 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
586 sizeof(struct atw_control_data), (caddr_t *)&sc->sc_control_data,
587 BUS_DMA_COHERENT)) != 0) {
588 printf("%s: unable to map control data, error = %d\n",
589 sc->sc_dev.dv_xname, error);
590 goto fail_1;
591 }
592
593 if ((error = bus_dmamap_create(sc->sc_dmat,
594 sizeof(struct atw_control_data), 1,
595 sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
596 printf("%s: unable to create control data DMA map, "
597 "error = %d\n", sc->sc_dev.dv_xname, error);
598 goto fail_2;
599 }
600
601 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
602 sc->sc_control_data, sizeof(struct atw_control_data), NULL,
603 0)) != 0) {
604 printf("%s: unable to load control data DMA map, error = %d\n",
605 sc->sc_dev.dv_xname, error);
606 goto fail_3;
607 }
608
609 /*
610 * Create the transmit buffer DMA maps.
611 */
612 sc->sc_ntxsegs = ATW_NTXSEGS;
613 for (i = 0; i < ATW_TXQUEUELEN; i++) {
614 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
615 sc->sc_ntxsegs, MCLBYTES, 0, 0,
616 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
617 printf("%s: unable to create tx DMA map %d, "
618 "error = %d\n", sc->sc_dev.dv_xname, i, error);
619 goto fail_4;
620 }
621 }
622
623 /*
624 * Create the receive buffer DMA maps.
625 */
626 for (i = 0; i < ATW_NRXDESC; i++) {
627 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
628 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
629 printf("%s: unable to create rx DMA map %d, "
630 "error = %d\n", sc->sc_dev.dv_xname, i, error);
631 goto fail_5;
632 }
633 }
634 for (i = 0; i < ATW_NRXDESC; i++) {
635 sc->sc_rxsoft[i].rxs_mbuf = NULL;
636 }
637
638 switch (sc->sc_rev) {
639 case ATW_REVISION_AB:
640 case ATW_REVISION_AF:
641 sc->sc_sramlen = ATW_SRAM_A_SIZE;
642 break;
643 case ATW_REVISION_BA:
644 case ATW_REVISION_CA:
645 sc->sc_sramlen = ATW_SRAM_B_SIZE;
646 break;
647 }
648
649 /* Reset the chip to a known state. */
650 atw_reset(sc);
651
652 if (atw_read_srom(sc) == -1)
653 return;
654
655 sc->sc_rftype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
656 ATW_SR_RFTYPE_MASK);
657
658 sc->sc_bbptype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
659 ATW_SR_BBPTYPE_MASK);
660
661 if (sc->sc_rftype > sizeof(type_strings)/sizeof(type_strings[0])) {
662 printf("%s: unknown RF\n", sc->sc_dev.dv_xname);
663 return;
664 }
665 if (sc->sc_bbptype > sizeof(type_strings)/sizeof(type_strings[0])) {
666 printf("%s: unknown BBP\n", sc->sc_dev.dv_xname);
667 return;
668 }
669
670 printf("%s: %s RF, %s BBP", sc->sc_dev.dv_xname,
671 type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
672
673 /* XXX There exists a Linux driver which seems to use RFType = 0 for
674 * MARVEL. My bug, or theirs?
675 */
676
677 reg = LSHIFT(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
678
679 switch (sc->sc_rftype) {
680 case ATW_RFTYPE_INTERSIL:
681 reg |= ATW_SYNCTL_CS1;
682 break;
683 case ATW_RFTYPE_RFMD:
684 reg |= ATW_SYNCTL_CS0;
685 break;
686 case ATW_RFTYPE_MARVEL:
687 break;
688 }
689
690 sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
691 sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
692
693 reg = LSHIFT(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
694
695 switch (sc->sc_bbptype) {
696 case ATW_BBPTYPE_INTERSIL:
697 reg |= ATW_BBPCTL_TWI;
698 break;
699 case ATW_BBPTYPE_RFMD:
700 reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
701 ATW_BBPCTL_CCA_ACTLO;
702 break;
703 case ATW_BBPTYPE_MARVEL:
704 break;
705 case ATW_C_BBPTYPE_RFMD:
706 printf("%s: ADM8211C MAC/RFMD BBP not supported yet.\n",
707 sc->sc_dev.dv_xname);
708 break;
709 }
710
711 sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
712 sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
713
714 /*
715 * From this point forward, the attachment cannot fail. A failure
716 * before this point releases all resources that may have been
717 * allocated.
718 */
719 sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
720
721 ATW_DPRINTF((" SROM MAC %04x%04x%04x",
722 htole16(sc->sc_srom[ATW_SR_MAC00]),
723 htole16(sc->sc_srom[ATW_SR_MAC01]),
724 htole16(sc->sc_srom[ATW_SR_MAC10])));
725
726 srom_major = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_FORMAT_VERSION],
727 ATW_SR_MAJOR_MASK);
728
729 if (srom_major < 2)
730 sc->sc_rf3000_options1 = 0;
731 else if (sc->sc_rev == ATW_REVISION_BA) {
732 sc->sc_rf3000_options1 =
733 MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CR28_CR03],
734 ATW_SR_CR28_MASK);
735 } else
736 sc->sc_rf3000_options1 = 0;
737
738 sc->sc_rf3000_options2 = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
739 ATW_SR_CR29_MASK);
740
741 country_code = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
742 ATW_SR_CTRY_MASK);
743
744 #define ADD_CHANNEL(_ic, _chan) do { \
745 _ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B; \
746 _ic->ic_channels[_chan].ic_freq = \
747 ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
748 } while (0)
749
750 /* Find available channels */
751 switch (country_code) {
752 case COUNTRY_MMK2: /* 1-14 */
753 ADD_CHANNEL(ic, 14);
754 /*FALLTHROUGH*/
755 case COUNTRY_ETSI: /* 1-13 */
756 for (i = 1; i <= 13; i++)
757 ADD_CHANNEL(ic, i);
758 break;
759 case COUNTRY_FCC: /* 1-11 */
760 case COUNTRY_IC: /* 1-11 */
761 for (i = 1; i <= 11; i++)
762 ADD_CHANNEL(ic, i);
763 break;
764 case COUNTRY_MMK: /* 14 */
765 ADD_CHANNEL(ic, 14);
766 break;
767 case COUNTRY_FRANCE: /* 10-13 */
768 for (i = 10; i <= 13; i++)
769 ADD_CHANNEL(ic, i);
770 break;
771 default: /* assume channels 10-11 */
772 case COUNTRY_SPAIN: /* 10-11 */
773 for (i = 10; i <= 11; i++)
774 ADD_CHANNEL(ic, i);
775 break;
776 }
777
778 /* Read the MAC address. */
779 reg = ATW_READ(sc, ATW_PAR0);
780 ic->ic_myaddr[0] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB0_MASK);
781 ic->ic_myaddr[1] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB1_MASK);
782 ic->ic_myaddr[2] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB2_MASK);
783 ic->ic_myaddr[3] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB3_MASK);
784 reg = ATW_READ(sc, ATW_PAR1);
785 ic->ic_myaddr[4] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB4_MASK);
786 ic->ic_myaddr[5] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB5_MASK);
787
788 if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
789 printf(" could not get mac address, attach failed\n");
790 return;
791 }
792
793 printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
794
795 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
796 ifp->if_softc = sc;
797 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
798 IFF_NOTRAILERS;
799 ifp->if_ioctl = atw_ioctl;
800 ifp->if_start = atw_start;
801 ifp->if_watchdog = atw_watchdog;
802 ifp->if_init = atw_init;
803 ifp->if_stop = atw_stop;
804 IFQ_SET_READY(&ifp->if_snd);
805
806 ic->ic_ifp = ifp;
807 ic->ic_phytype = IEEE80211_T_DS;
808 ic->ic_opmode = IEEE80211_M_STA;
809 ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
810 IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR;
811
812 nrate = 0;
813 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
814 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
815 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
816 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
817 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
818
819 /*
820 * Call MI attach routines.
821 */
822
823 if_attach(ifp);
824 ieee80211_ifattach(ic);
825
826 sc->sc_newstate = ic->ic_newstate;
827 ic->ic_newstate = atw_newstate;
828
829 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
830 ic->ic_recv_mgmt = atw_recv_mgmt;
831
832 sc->sc_node_free = ic->ic_node_free;
833 ic->ic_node_free = atw_node_free;
834
835 sc->sc_node_alloc = ic->ic_node_alloc;
836 ic->ic_node_alloc = atw_node_alloc;
837
838 ic->ic_crypto.cs_key_delete = atw_key_delete;
839 ic->ic_crypto.cs_key_set = atw_key_set;
840 ic->ic_crypto.cs_key_update_begin = atw_key_update_begin;
841 ic->ic_crypto.cs_key_update_end = atw_key_update_end;
842
843 /* possibly we should fill in our own sc_send_prresp, since
844 * the ADM8211 is probably sending probe responses in ad hoc
845 * mode.
846 */
847
848 /* complete initialization */
849 ieee80211_media_init(ic, atw_media_change, ieee80211_media_status);
850 callout_init(&sc->sc_scan_ch);
851
852 #if NBPFILTER > 0
853 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
854 sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
855 #endif
856
857 /*
858 * Make sure the interface is shutdown during reboot.
859 */
860 sc->sc_sdhook = shutdownhook_establish(atw_shutdown, sc);
861 if (sc->sc_sdhook == NULL)
862 printf("%s: WARNING: unable to establish shutdown hook\n",
863 sc->sc_dev.dv_xname);
864
865 /*
866 * Add a suspend hook to make sure we come back up after a
867 * resume.
868 */
869 sc->sc_powerhook = powerhook_establish(atw_power, sc);
870 if (sc->sc_powerhook == NULL)
871 printf("%s: WARNING: unable to establish power hook\n",
872 sc->sc_dev.dv_xname);
873
874 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
875 sc->sc_rxtap.ar_ihdr.it_len = sizeof(sc->sc_rxtapu);
876 sc->sc_rxtap.ar_ihdr.it_present = ATW_RX_RADIOTAP_PRESENT;
877
878 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
879 sc->sc_txtap.at_ihdr.it_len = sizeof(sc->sc_txtapu);
880 sc->sc_txtap.at_ihdr.it_present = ATW_TX_RADIOTAP_PRESENT;
881
882 ieee80211_announce(ic);
883 return;
884
885 /*
886 * Free any resources we've allocated during the failed attach
887 * attempt. Do this in reverse order and fall through.
888 */
889 fail_5:
890 for (i = 0; i < ATW_NRXDESC; i++) {
891 if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
892 continue;
893 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
894 }
895 fail_4:
896 for (i = 0; i < ATW_TXQUEUELEN; i++) {
897 if (sc->sc_txsoft[i].txs_dmamap == NULL)
898 continue;
899 bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
900 }
901 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
902 fail_3:
903 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
904 fail_2:
905 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
906 sizeof(struct atw_control_data));
907 fail_1:
908 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
909 fail_0:
910 return;
911 }
912
913 static struct ieee80211_node *
914 atw_node_alloc(struct ieee80211_node_table *nt)
915 {
916 struct atw_softc *sc = (struct atw_softc *)nt->nt_ic->ic_ifp->if_softc;
917 struct ieee80211_node *ni = (*sc->sc_node_alloc)(nt);
918
919 DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
920 return ni;
921 }
922
923 static void
924 atw_node_free(struct ieee80211_node *ni)
925 {
926 struct atw_softc *sc = (struct atw_softc *)ni->ni_ic->ic_ifp->if_softc;
927
928 DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
929 ether_sprintf(ni->ni_bssid)));
930 (*sc->sc_node_free)(ni);
931 }
932
933
934 static void
935 atw_test1_reset(struct atw_softc *sc)
936 {
937 switch (sc->sc_rev) {
938 case ATW_REVISION_BA:
939 if (1 /* XXX condition on transceiver type */) {
940 ATW_SET(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MONITOR);
941 }
942 break;
943 case ATW_REVISION_CA:
944 ATW_CLR(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MASK);
945 break;
946 default:
947 break;
948 }
949 }
950
951 /*
952 * atw_reset:
953 *
954 * Perform a soft reset on the ADM8211.
955 */
956 void
957 atw_reset(struct atw_softc *sc)
958 {
959 int i;
960 uint32_t lpc;
961
962 ATW_WRITE(sc, ATW_NAR, 0x0);
963 DELAY(atw_nar_delay);
964
965 /* Reference driver has a cryptic remark indicating that this might
966 * power-on the chip. I know that it turns off power-saving....
967 */
968 ATW_WRITE(sc, ATW_FRCTL, 0x0);
969
970 ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
971
972 for (i = 0; i < 50000 / atw_pseudo_milli; i++) {
973 if ((ATW_READ(sc, ATW_PAR) & ATW_PAR_SWR) == 0)
974 break;
975 DELAY(atw_pseudo_milli);
976 }
977
978 /* ... and then pause 100ms longer for good measure. */
979 DELAY(atw_magic_delay1);
980
981 DPRINTF2(sc, ("%s: atw_reset %d iterations\n", sc->sc_dev.dv_xname, i));
982
983 if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
984 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
985
986 /*
987 * Initialize the PCI Access Register.
988 */
989 sc->sc_busmode = ATW_PAR_PBL_8DW;
990
991 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
992 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
993 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
994
995 atw_test1_reset(sc);
996
997 /* Turn off maximum power saving, etc. */
998 ATW_WRITE(sc, ATW_FRCTL, 0x0);
999
1000 DELAY(atw_magic_delay2);
1001
1002 /* Recall EEPROM. */
1003 ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
1004
1005 DELAY(atw_magic_delay4);
1006
1007 lpc = ATW_READ(sc, ATW_LPC);
1008
1009 DPRINTF(sc, ("%s: ATW_LPC %#08x\n", __func__, lpc));
1010
1011 /* A reset seems to affect the SRAM contents, so put them into
1012 * a known state.
1013 */
1014 atw_clear_sram(sc);
1015
1016 memset(sc->sc_bssid, 0xff, sizeof(sc->sc_bssid));
1017 }
1018
1019 static void
1020 atw_clear_sram(struct atw_softc *sc)
1021 {
1022 memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
1023 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
1024 /* XXX not for revision 0x20. */
1025 atw_write_sram(sc, 0, sc->sc_sram, sc->sc_sramlen);
1026 }
1027
1028 /* TBD atw_init
1029 *
1030 * set MAC based on ic->ic_bss->myaddr
1031 * write WEP keys
1032 * set TX rate
1033 */
1034
1035 /* Tell the ADM8211 to raise ATW_INTR_LINKOFF if 7 beacon intervals pass
1036 * without receiving a beacon with the preferred BSSID & SSID.
1037 * atw_write_bssid & atw_write_ssid set the BSSID & SSID.
1038 */
1039 static void
1040 atw_wcsr_init(struct atw_softc *sc)
1041 {
1042 uint32_t wcsr;
1043
1044 wcsr = ATW_READ(sc, ATW_WCSR);
1045 wcsr &= ~(ATW_WCSR_BLN_MASK|ATW_WCSR_LSOE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
1046 wcsr |= LSHIFT(7, ATW_WCSR_BLN_MASK);
1047 ATW_WRITE(sc, ATW_WCSR, wcsr); /* XXX resets wake-up status bits */
1048
1049 DPRINTF(sc, ("%s: %s reg[WCSR] = %08x\n",
1050 sc->sc_dev.dv_xname, __func__, ATW_READ(sc, ATW_WCSR)));
1051 }
1052
1053 /* Turn off power management. Set Rx store-and-forward mode. */
1054 static void
1055 atw_cmdr_init(struct atw_softc *sc)
1056 {
1057 uint32_t cmdr;
1058 cmdr = ATW_READ(sc, ATW_CMDR);
1059 cmdr &= ~ATW_CMDR_APM;
1060 cmdr |= ATW_CMDR_RTE;
1061 cmdr &= ~ATW_CMDR_DRT_MASK;
1062 cmdr |= ATW_CMDR_DRT_SF;
1063
1064 ATW_WRITE(sc, ATW_CMDR, cmdr);
1065 }
1066
1067 static void
1068 atw_tofs2_init(struct atw_softc *sc)
1069 {
1070 uint32_t tofs2;
1071 /* XXX this magic can probably be figured out from the RFMD docs */
1072 #ifndef ATW_REFSLAVE
1073 tofs2 = LSHIFT(4, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
1074 LSHIFT(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1075 LSHIFT(8, ATW_TOFS2_PWR1PAPE_MASK) | /* 8 us */
1076 LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
1077 LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1078 LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
1079 LSHIFT(4, ATW_TOFS2_PWR1PE2_MASK) | /* 4 us */
1080 LSHIFT(5, ATW_TOFS2_PWR0TXPE_MASK); /* 5 us */
1081 #else
1082 /* XXX new magic from reference driver source */
1083 tofs2 = LSHIFT(8, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
1084 LSHIFT(8, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1085 LSHIFT(1, ATW_TOFS2_PWR1PAPE_MASK) | /* 8 us */
1086 LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
1087 LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1088 LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
1089 LSHIFT(1, ATW_TOFS2_PWR1PE2_MASK) | /* 4 us */
1090 LSHIFT(8, ATW_TOFS2_PWR0TXPE_MASK); /* 5 us */
1091 #endif
1092 ATW_WRITE(sc, ATW_TOFS2, tofs2);
1093 }
1094
1095 static void
1096 atw_nar_init(struct atw_softc *sc)
1097 {
1098 ATW_WRITE(sc, ATW_NAR, ATW_NAR_SF|ATW_NAR_PB);
1099 }
1100
1101 static void
1102 atw_txlmt_init(struct atw_softc *sc)
1103 {
1104 ATW_WRITE(sc, ATW_TXLMT, LSHIFT(512, ATW_TXLMT_MTMLT_MASK) |
1105 LSHIFT(1, ATW_TXLMT_SRTYLIM_MASK));
1106 }
1107
1108 static void
1109 atw_test1_init(struct atw_softc *sc)
1110 {
1111 uint32_t test1;
1112
1113 test1 = ATW_READ(sc, ATW_TEST1);
1114 test1 &= ~(ATW_TEST1_DBGREAD_MASK|ATW_TEST1_CONTROL);
1115 /* XXX magic 0x1 */
1116 test1 |= LSHIFT(0x1, ATW_TEST1_DBGREAD_MASK) | ATW_TEST1_CONTROL;
1117 ATW_WRITE(sc, ATW_TEST1, test1);
1118 }
1119
1120 static void
1121 atw_rf_reset(struct atw_softc *sc)
1122 {
1123 /* XXX this resets an Intersil RF front-end? */
1124 /* TBD condition on Intersil RFType? */
1125 ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
1126 DELAY(atw_rf_delay1);
1127 ATW_WRITE(sc, ATW_SYNRF, 0);
1128 DELAY(atw_rf_delay2);
1129 }
1130
1131 /* Set 16 TU max duration for the contention-free period (CFP). */
1132 static void
1133 atw_cfp_init(struct atw_softc *sc)
1134 {
1135 uint32_t cfpp;
1136
1137 cfpp = ATW_READ(sc, ATW_CFPP);
1138 cfpp &= ~ATW_CFPP_CFPMD;
1139 cfpp |= LSHIFT(16, ATW_CFPP_CFPMD);
1140 ATW_WRITE(sc, ATW_CFPP, cfpp);
1141 }
1142
1143 static void
1144 atw_tofs0_init(struct atw_softc *sc)
1145 {
1146 /* XXX I guess that the Cardbus clock is 22MHz?
1147 * I am assuming that the role of ATW_TOFS0_USCNT is
1148 * to divide the bus clock to get a 1MHz clock---the datasheet is not
1149 * very clear on this point. It says in the datasheet that it is
1150 * possible for the ADM8211 to accomodate bus speeds between 22MHz
1151 * and 33MHz; maybe this is the way? I see a binary-only driver write
1152 * these values. These values are also the power-on default.
1153 */
1154 ATW_WRITE(sc, ATW_TOFS0,
1155 LSHIFT(22, ATW_TOFS0_USCNT_MASK) |
1156 ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
1157 }
1158
1159 /* Initialize interframe spacing: 802.11b slot time, SIFS, DIFS, EIFS. */
1160 static void
1161 atw_ifs_init(struct atw_softc *sc)
1162 {
1163 uint32_t ifst;
1164 /* XXX EIFS=0x64, SIFS=110 are used by the reference driver.
1165 * Go figure.
1166 */
1167 ifst = LSHIFT(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
1168 LSHIFT(22 * 5 /* IEEE80211_DUR_DS_SIFS */ /* # of 22MHz cycles */,
1169 ATW_IFST_SIFS_MASK) |
1170 LSHIFT(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
1171 LSHIFT(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
1172
1173 ATW_WRITE(sc, ATW_IFST, ifst);
1174 }
1175
1176 static void
1177 atw_response_times_init(struct atw_softc *sc)
1178 {
1179 /* XXX More magic. Relates to ACK timing? The datasheet seems to
1180 * indicate that the MAC expects at least SIFS + MIRT microseconds
1181 * to pass after it transmits a frame that requires a response;
1182 * it waits at most SIFS + MART microseconds for the response.
1183 * Surely this is not the ACK timeout?
1184 */
1185 ATW_WRITE(sc, ATW_RSPT, LSHIFT(0xffff, ATW_RSPT_MART_MASK) |
1186 LSHIFT(0xff, ATW_RSPT_MIRT_MASK));
1187 }
1188
1189 /* Set up the MMI read/write addresses for the baseband. The Tx/Rx
1190 * engines read and write baseband registers after Rx and before
1191 * Tx, respectively.
1192 */
1193 static void
1194 atw_bbp_io_init(struct atw_softc *sc)
1195 {
1196 uint32_t mmiraddr2;
1197
1198 /* XXX The reference driver does this, but is it *really*
1199 * necessary?
1200 */
1201 switch (sc->sc_rev) {
1202 case ATW_REVISION_AB:
1203 case ATW_REVISION_AF:
1204 mmiraddr2 = 0x0;
1205 break;
1206 default:
1207 mmiraddr2 = ATW_READ(sc, ATW_MMIRADDR2);
1208 mmiraddr2 &=
1209 ~(ATW_MMIRADDR2_PROREXT|ATW_MMIRADDR2_PRORLEN_MASK);
1210 break;
1211 }
1212
1213 switch (sc->sc_bbptype) {
1214 case ATW_BBPTYPE_INTERSIL:
1215 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1216 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1217 mmiraddr2 |= ATW_MMIRADDR2_INTERSIL;
1218 break;
1219 case ATW_BBPTYPE_MARVEL:
1220 /* TBD find out the Marvel settings. */
1221 break;
1222 case ATW_BBPTYPE_RFMD:
1223 default:
1224 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1225 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1226 mmiraddr2 |= ATW_MMIRADDR2_RFMD;
1227 break;
1228 }
1229 ATW_WRITE(sc, ATW_MMIRADDR2, mmiraddr2);
1230 ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1231 }
1232
1233 /*
1234 * atw_init: [ ifnet interface function ]
1235 *
1236 * Initialize the interface. Must be called at splnet().
1237 */
1238 int
1239 atw_init(struct ifnet *ifp)
1240 {
1241 struct atw_softc *sc = ifp->if_softc;
1242 struct ieee80211com *ic = &sc->sc_ic;
1243 struct atw_txsoft *txs;
1244 struct atw_rxsoft *rxs;
1245 int i, error = 0;
1246
1247 if ((error = atw_enable(sc)) != 0)
1248 goto out;
1249
1250 /*
1251 * Cancel any pending I/O. This also resets.
1252 */
1253 atw_stop(ifp, 0);
1254
1255 DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
1256 __func__, ieee80211_chan2ieee(ic, ic->ic_curchan),
1257 ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags));
1258
1259 atw_wcsr_init(sc);
1260
1261 atw_cmdr_init(sc);
1262
1263 /* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
1264 *
1265 * XXX Set transmit power for ATIM, RTS, Beacon.
1266 */
1267 ATW_WRITE(sc, ATW_PLCPHD, LSHIFT(10, ATW_PLCPHD_SIGNAL_MASK) |
1268 LSHIFT(0xb0, ATW_PLCPHD_SERVICE_MASK));
1269
1270 atw_tofs2_init(sc);
1271
1272 atw_nar_init(sc);
1273
1274 atw_txlmt_init(sc);
1275
1276 atw_test1_init(sc);
1277
1278 atw_rf_reset(sc);
1279
1280 atw_cfp_init(sc);
1281
1282 atw_tofs0_init(sc);
1283
1284 atw_ifs_init(sc);
1285
1286 /* XXX Fall asleep after one second of inactivity.
1287 * XXX A frame may only dribble in for 65536us.
1288 */
1289 ATW_WRITE(sc, ATW_RMD,
1290 LSHIFT(1, ATW_RMD_PCNT) | LSHIFT(0xffff, ATW_RMD_RMRD_MASK));
1291
1292 atw_response_times_init(sc);
1293
1294 atw_bbp_io_init(sc);
1295
1296 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1297
1298 if ((error = atw_rf3000_init(sc)) != 0)
1299 goto out;
1300
1301 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1302 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
1303 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1304
1305 /*
1306 * Initialize the transmit descriptor ring.
1307 */
1308 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1309 for (i = 0; i < ATW_NTXDESC; i++) {
1310 sc->sc_txdescs[i].at_ctl = 0;
1311 /* no transmit chaining */
1312 sc->sc_txdescs[i].at_flags = 0 /* ATW_TXFLAG_TCH */;
1313 sc->sc_txdescs[i].at_buf2 =
1314 htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1315 }
1316 /* use ring mode */
1317 sc->sc_txdescs[ATW_NTXDESC - 1].at_flags |= htole32(ATW_TXFLAG_TER);
1318 ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1319 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1320 sc->sc_txfree = ATW_NTXDESC;
1321 sc->sc_txnext = 0;
1322
1323 /*
1324 * Initialize the transmit job descriptors.
1325 */
1326 SIMPLEQ_INIT(&sc->sc_txfreeq);
1327 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1328 for (i = 0; i < ATW_TXQUEUELEN; i++) {
1329 txs = &sc->sc_txsoft[i];
1330 txs->txs_mbuf = NULL;
1331 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1332 }
1333
1334 /*
1335 * Initialize the receive descriptor and receive job
1336 * descriptor rings.
1337 */
1338 for (i = 0; i < ATW_NRXDESC; i++) {
1339 rxs = &sc->sc_rxsoft[i];
1340 if (rxs->rxs_mbuf == NULL) {
1341 if ((error = atw_add_rxbuf(sc, i)) != 0) {
1342 printf("%s: unable to allocate or map rx "
1343 "buffer %d, error = %d\n",
1344 sc->sc_dev.dv_xname, i, error);
1345 /*
1346 * XXX Should attempt to run with fewer receive
1347 * XXX buffers instead of just failing.
1348 */
1349 atw_rxdrain(sc);
1350 goto out;
1351 }
1352 } else
1353 ATW_INIT_RXDESC(sc, i);
1354 }
1355 sc->sc_rxptr = 0;
1356
1357 /*
1358 * Initialize the interrupt mask and enable interrupts.
1359 */
1360 /* normal interrupts */
1361 sc->sc_inten = ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1362 ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1363
1364 /* abnormal interrupts */
1365 sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1366 ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1367 ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1368
1369 sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1370 ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1371 sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1372 sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1373 ATW_INTR_TRT;
1374
1375 sc->sc_linkint_mask &= sc->sc_inten;
1376 sc->sc_rxint_mask &= sc->sc_inten;
1377 sc->sc_txint_mask &= sc->sc_inten;
1378
1379 ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1380 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1381
1382 DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1383 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_IER), sc->sc_inten));
1384
1385 /*
1386 * Give the transmit and receive rings to the ADM8211.
1387 */
1388 ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1389 ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1390
1391 sc->sc_txthresh = 0;
1392 sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1393 sc->sc_txth[sc->sc_txthresh].txth_opmode;
1394
1395 /* common 802.11 configuration */
1396 ic->ic_flags &= ~IEEE80211_F_IBSSON;
1397 switch (ic->ic_opmode) {
1398 case IEEE80211_M_STA:
1399 break;
1400 case IEEE80211_M_AHDEMO: /* XXX */
1401 case IEEE80211_M_IBSS:
1402 ic->ic_flags |= IEEE80211_F_IBSSON;
1403 /*FALLTHROUGH*/
1404 case IEEE80211_M_HOSTAP: /* XXX */
1405 break;
1406 case IEEE80211_M_MONITOR: /* XXX */
1407 break;
1408 }
1409
1410 switch (ic->ic_opmode) {
1411 case IEEE80211_M_AHDEMO:
1412 case IEEE80211_M_HOSTAP:
1413 #ifndef IEEE80211_NO_HOSTAP
1414 ic->ic_bss->ni_intval = ic->ic_lintval;
1415 ic->ic_bss->ni_rssi = 0;
1416 ic->ic_bss->ni_rstamp = 0;
1417 #endif /* !IEEE80211_NO_HOSTAP */
1418 break;
1419 default: /* XXX */
1420 break;
1421 }
1422
1423 sc->sc_wepctl = 0;
1424
1425 atw_write_ssid(sc);
1426 atw_write_sup_rates(sc);
1427 atw_write_wep(sc);
1428
1429 ic->ic_state = IEEE80211_S_INIT;
1430
1431 /*
1432 * Set the receive filter. This will start the transmit and
1433 * receive processes.
1434 */
1435 atw_filter_setup(sc);
1436
1437 /*
1438 * Start the receive process.
1439 */
1440 ATW_WRITE(sc, ATW_RDR, 0x1);
1441
1442 /*
1443 * Note that the interface is now running.
1444 */
1445 ifp->if_flags |= IFF_RUNNING;
1446 ifp->if_flags &= ~IFF_OACTIVE;
1447
1448 /* send no beacons, yet. */
1449 atw_start_beacon(sc, 0);
1450
1451 if (ic->ic_opmode == IEEE80211_M_MONITOR)
1452 error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1453 else
1454 error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1455 out:
1456 if (error) {
1457 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1458 sc->sc_tx_timer = 0;
1459 ifp->if_timer = 0;
1460 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1461 }
1462 #ifdef ATW_DEBUG
1463 atw_print_regs(sc, "end of init");
1464 #endif /* ATW_DEBUG */
1465
1466 return (error);
1467 }
1468
1469 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1470 * 0: MAC control of RF3000/Si4126.
1471 *
1472 * Applies power, or selects RF front-end? Sets reset condition.
1473 *
1474 * TBD support non-RFMD BBP, non-SiLabs synth.
1475 */
1476 static void
1477 atw_bbp_io_enable(struct atw_softc *sc, int enable)
1478 {
1479 if (enable) {
1480 ATW_WRITE(sc, ATW_SYNRF,
1481 ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
1482 DELAY(atw_bbp_io_enable_delay);
1483 } else {
1484 ATW_WRITE(sc, ATW_SYNRF, 0);
1485 DELAY(atw_bbp_io_disable_delay); /* shorter for some reason */
1486 }
1487 }
1488
1489 static int
1490 atw_tune(struct atw_softc *sc)
1491 {
1492 int rc;
1493 u_int chan;
1494 struct ieee80211com *ic = &sc->sc_ic;
1495
1496 chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
1497 if (chan == IEEE80211_CHAN_ANY)
1498 panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1499
1500 if (chan == sc->sc_cur_chan)
1501 return 0;
1502
1503 DPRINTF(sc, ("%s: chan %d -> %d\n", sc->sc_dev.dv_xname,
1504 sc->sc_cur_chan, chan));
1505
1506 atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1507
1508 atw_si4126_tune(sc, chan);
1509 if ((rc = atw_rf3000_tune(sc, chan)) != 0)
1510 printf("%s: failed to tune channel %d\n", sc->sc_dev.dv_xname,
1511 chan);
1512
1513 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1514 DELAY(atw_nar_delay);
1515 ATW_WRITE(sc, ATW_RDR, 0x1);
1516
1517 if (rc == 0)
1518 sc->sc_cur_chan = chan;
1519
1520 return rc;
1521 }
1522
1523 #ifdef ATW_SYNDEBUG
1524 static void
1525 atw_si4126_print(struct atw_softc *sc)
1526 {
1527 struct ifnet *ifp = &sc->sc_if;
1528 u_int addr, val;
1529
1530 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1531 return;
1532
1533 for (addr = 0; addr <= 8; addr++) {
1534 printf("%s: synth[%d] = ", sc->sc_dev.dv_xname, addr);
1535 if (atw_si4126_read(sc, addr, &val) == 0) {
1536 printf("<unknown> (quitting print-out)\n");
1537 break;
1538 }
1539 printf("%05x\n", val);
1540 }
1541 }
1542 #endif /* ATW_SYNDEBUG */
1543
1544 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1545 *
1546 * The RF/IF synthesizer produces two reference frequencies for
1547 * the RF2948B transceiver. The first frequency the RF2948B requires
1548 * is two times the so-called "intermediate frequency" (IF). Since
1549 * a SAW filter on the radio fixes the IF at 374MHz, I program the
1550 * Si4126 to generate IF LO = 374MHz x 2 = 748MHz. The second
1551 * frequency required by the transceiver is the radio frequency
1552 * (RF). This is a superheterodyne transceiver; for f(chan) the
1553 * center frequency of the channel we are tuning, RF = f(chan) -
1554 * IF.
1555 *
1556 * XXX I am told by SiLabs that the Si4126 will accept a broader range
1557 * of XIN than the 2-25MHz mentioned by the datasheet, even *without*
1558 * XINDIV2 = 1. I've tried this (it is necessary to double R) and it
1559 * works, but I have still programmed for XINDIV2 = 1 to be safe.
1560 */
1561 static void
1562 atw_si4126_tune(struct atw_softc *sc, u_int chan)
1563 {
1564 u_int mhz;
1565 u_int R;
1566 u_int32_t gpio;
1567 u_int16_t gain;
1568
1569 #ifdef ATW_SYNDEBUG
1570 atw_si4126_print(sc);
1571 #endif /* ATW_SYNDEBUG */
1572
1573 if (chan == 14)
1574 mhz = 2484;
1575 else
1576 mhz = 2412 + 5 * (chan - 1);
1577
1578 /* Tune IF to 748MHz to suit the IF LO input of the
1579 * RF2494B, which is 2 x IF. No need to set an IF divider
1580 * because an IF in 526MHz - 952MHz is allowed.
1581 *
1582 * XIN is 44.000MHz, so divide it by two to get allowable
1583 * range of 2-25MHz. SiLabs tells me that this is not
1584 * strictly necessary.
1585 */
1586
1587 if (atw_xindiv2)
1588 R = 44;
1589 else
1590 R = 88;
1591
1592 /* Power-up RF, IF synthesizers. */
1593 atw_si4126_write(sc, SI4126_POWER,
1594 SI4126_POWER_PDIB|SI4126_POWER_PDRB);
1595
1596 /* set LPWR, too? */
1597 atw_si4126_write(sc, SI4126_MAIN,
1598 (atw_xindiv2) ? SI4126_MAIN_XINDIV2 : 0);
1599
1600 /* Set the phase-locked loop gain. If RF2 N > 2047, then
1601 * set KP2 to 1.
1602 *
1603 * REFDIF This is different from the reference driver, which
1604 * always sets SI4126_GAIN to 0.
1605 */
1606 gain = LSHIFT(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1607
1608 atw_si4126_write(sc, SI4126_GAIN, gain);
1609
1610 /* XIN = 44MHz.
1611 *
1612 * If XINDIV2 = 1, IF = N/(2 * R) * XIN. I choose N = 1496,
1613 * R = 44 so that 1496/(2 * 44) * 44MHz = 748MHz.
1614 *
1615 * If XINDIV2 = 0, IF = N/R * XIN. I choose N = 1496, R = 88
1616 * so that 1496/88 * 44MHz = 748MHz.
1617 */
1618 atw_si4126_write(sc, SI4126_IFN, 1496);
1619
1620 atw_si4126_write(sc, SI4126_IFR, R);
1621
1622 #ifndef ATW_REFSLAVE
1623 /* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1624 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1625 * which has no RF1!
1626 */
1627 atw_si4126_write(sc, SI4126_RF1R, R);
1628
1629 atw_si4126_write(sc, SI4126_RF1N, mhz - 374);
1630 #endif
1631
1632 /* N/R * XIN = RF. XIN = 44MHz. We desire RF = mhz - IF,
1633 * where IF = 374MHz. Let's divide XIN to 1MHz. So R = 44.
1634 * Now let's multiply it to mhz. So mhz - IF = N.
1635 */
1636 atw_si4126_write(sc, SI4126_RF2R, R);
1637
1638 atw_si4126_write(sc, SI4126_RF2N, mhz - 374);
1639
1640 /* wait 100us from power-up for RF, IF to settle */
1641 DELAY(100);
1642
1643 gpio = ATW_READ(sc, ATW_GPIO);
1644 gpio &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
1645 gpio |= LSHIFT(1, ATW_GPIO_EN_MASK);
1646
1647 if ((sc->sc_if.if_flags & IFF_LINK1) != 0 && chan != 14) {
1648 /* Set a Prism RF front-end to a special mode for channel 14?
1649 *
1650 * Apparently the SMC2635W needs this, although I don't think
1651 * it has a Prism RF.
1652 */
1653 gpio |= LSHIFT(1, ATW_GPIO_O_MASK);
1654 }
1655 ATW_WRITE(sc, ATW_GPIO, gpio);
1656
1657 #ifdef ATW_SYNDEBUG
1658 atw_si4126_print(sc);
1659 #endif /* ATW_SYNDEBUG */
1660 }
1661
1662 /* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
1663 * diversity.
1664 *
1665 * !!!
1666 * !!! Call this w/ Tx/Rx suspended, atw_idle(, ATW_NAR_ST|ATW_NAR_SR).
1667 * !!!
1668 */
1669 static int
1670 atw_rf3000_init(struct atw_softc *sc)
1671 {
1672 int rc = 0;
1673
1674 atw_bbp_io_enable(sc, 1);
1675
1676 /* CCA is acquisition sensitive */
1677 rc = atw_rf3000_write(sc, RF3000_CCACTL,
1678 LSHIFT(RF3000_CCACTL_MODE_BOTH, RF3000_CCACTL_MODE_MASK));
1679
1680 if (rc != 0)
1681 goto out;
1682
1683 /* enable diversity */
1684 rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1685
1686 if (rc != 0)
1687 goto out;
1688
1689 /* sensible setting from a binary-only driver */
1690 rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1691 LSHIFT(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1692
1693 if (rc != 0)
1694 goto out;
1695
1696 /* magic from a binary-only driver */
1697 rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1698 LSHIFT(0x38, RF3000_LOGAINCAL_CAL_MASK));
1699
1700 if (rc != 0)
1701 goto out;
1702
1703 rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1704
1705 if (rc != 0)
1706 goto out;
1707
1708 /* XXX Reference driver remarks that Abocom sets this to 50.
1709 * Meaning 0x50, I think.... 50 = 0x32, which would set a bit
1710 * in the "reserved" area of register RF3000_OPTIONS1.
1711 */
1712 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, sc->sc_rf3000_options1);
1713
1714 if (rc != 0)
1715 goto out;
1716
1717 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, sc->sc_rf3000_options2);
1718
1719 if (rc != 0)
1720 goto out;
1721
1722 out:
1723 atw_bbp_io_enable(sc, 0);
1724 return rc;
1725 }
1726
1727 #ifdef ATW_BBPDEBUG
1728 static void
1729 atw_rf3000_print(struct atw_softc *sc)
1730 {
1731 struct ifnet *ifp = &sc->sc_if;
1732 u_int addr, val;
1733
1734 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1735 return;
1736
1737 for (addr = 0x01; addr <= 0x15; addr++) {
1738 printf("%s: bbp[%d] = \n", sc->sc_dev.dv_xname, addr);
1739 if (atw_rf3000_read(sc, addr, &val) != 0) {
1740 printf("<unknown> (quitting print-out)\n");
1741 break;
1742 }
1743 printf("%08x\n", val);
1744 }
1745 }
1746 #endif /* ATW_BBPDEBUG */
1747
1748 /* Set the power settings on the BBP for channel `chan'. */
1749 static int
1750 atw_rf3000_tune(struct atw_softc *sc, u_int chan)
1751 {
1752 int rc = 0;
1753 u_int32_t reg;
1754 u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
1755
1756 txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1757 lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1758 lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1759
1760 /* odd channels: LSB, even channels: MSB */
1761 if (chan % 2 == 1) {
1762 txpower &= 0xFF;
1763 lpf_cutoff &= 0xFF;
1764 lna_gs_thresh &= 0xFF;
1765 } else {
1766 txpower >>= 8;
1767 lpf_cutoff >>= 8;
1768 lna_gs_thresh >>= 8;
1769 }
1770
1771 #ifdef ATW_BBPDEBUG
1772 atw_rf3000_print(sc);
1773 #endif /* ATW_BBPDEBUG */
1774
1775 DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1776 "lna_gs_thresh %02x\n",
1777 sc->sc_dev.dv_xname, chan, txpower, lpf_cutoff, lna_gs_thresh));
1778
1779 atw_bbp_io_enable(sc, 1);
1780
1781 if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1782 LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1783 goto out;
1784
1785 if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1786 goto out;
1787
1788 if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1789 goto out;
1790
1791 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1792
1793 if (rc != 0)
1794 goto out;
1795
1796 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1797
1798 if (rc != 0)
1799 goto out;
1800
1801 #ifdef ATW_BBPDEBUG
1802 atw_rf3000_print(sc);
1803 #endif /* ATW_BBPDEBUG */
1804
1805 out:
1806 atw_bbp_io_enable(sc, 0);
1807
1808 /* set beacon, rts, atim transmit power */
1809 reg = ATW_READ(sc, ATW_PLCPHD);
1810 reg &= ~ATW_PLCPHD_SERVICE_MASK;
1811 reg |= LSHIFT(LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK),
1812 ATW_PLCPHD_SERVICE_MASK);
1813 ATW_WRITE(sc, ATW_PLCPHD, reg);
1814 DELAY(atw_plcphd_delay);
1815
1816 return rc;
1817 }
1818
1819 /* Write a register on the RF3000 baseband processor using the
1820 * registers provided by the ADM8211 for this purpose.
1821 *
1822 * Return 0 on success.
1823 */
1824 static int
1825 atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
1826 {
1827 u_int32_t reg;
1828 int i;
1829
1830 reg = sc->sc_bbpctl_wr |
1831 LSHIFT(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1832 LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1833
1834 for (i = 20000 / atw_pseudo_milli; --i >= 0; ) {
1835 ATW_WRITE(sc, ATW_BBPCTL, reg);
1836 DELAY(2 * atw_pseudo_milli);
1837 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1838 break;
1839 }
1840
1841 if (i < 0) {
1842 printf("%s: BBPCTL still busy\n", sc->sc_dev.dv_xname);
1843 return ETIMEDOUT;
1844 }
1845 return 0;
1846 }
1847
1848 /* Read a register on the RF3000 baseband processor using the registers
1849 * the ADM8211 provides for this purpose.
1850 *
1851 * The 7-bit register address is addr. Record the 8-bit data in the register
1852 * in *val.
1853 *
1854 * Return 0 on success.
1855 *
1856 * XXX This does not seem to work. The ADM8211 must require more or
1857 * different magic to read the chip than to write it. Possibly some
1858 * of the magic I have derived from a binary-only driver concerns
1859 * the "chip address" (see the RF3000 manual).
1860 */
1861 #ifdef ATW_BBPDEBUG
1862 static int
1863 atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
1864 {
1865 u_int32_t reg;
1866 int i;
1867
1868 for (i = 1000; --i >= 0; ) {
1869 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1870 break;
1871 DELAY(100);
1872 }
1873
1874 if (i < 0) {
1875 printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1876 sc->sc_dev.dv_xname);
1877 return ETIMEDOUT;
1878 }
1879
1880 reg = sc->sc_bbpctl_rd | LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1881
1882 ATW_WRITE(sc, ATW_BBPCTL, reg);
1883
1884 for (i = 1000; --i >= 0; ) {
1885 DELAY(100);
1886 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1887 break;
1888 }
1889
1890 ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1891
1892 if (i < 0) {
1893 printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1894 sc->sc_dev.dv_xname, reg);
1895 return ETIMEDOUT;
1896 }
1897 if (val != NULL)
1898 *val = MASK_AND_RSHIFT(reg, ATW_BBPCTL_DATA_MASK);
1899 return 0;
1900 }
1901 #endif /* ATW_BBPDEBUG */
1902
1903 /* Write a register on the Si4126 RF/IF synthesizer using the registers
1904 * provided by the ADM8211 for that purpose.
1905 *
1906 * val is 18 bits of data, and val is the 4-bit address of the register.
1907 *
1908 * Return 0 on success.
1909 */
1910 static void
1911 atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
1912 {
1913 uint32_t bits, mask, reg;
1914 const int nbits = 22;
1915
1916 KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
1917 KASSERT((val & ~PRESHIFT(SI4126_TWI_DATA_MASK)) == 0);
1918
1919 bits = LSHIFT(val, SI4126_TWI_DATA_MASK) |
1920 LSHIFT(addr, SI4126_TWI_ADDR_MASK);
1921
1922 reg = ATW_SYNRF_SELSYN;
1923 /* reference driver: reset Si4126 serial bus to initial
1924 * conditions?
1925 */
1926 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1927 ATW_WRITE(sc, ATW_SYNRF, reg);
1928
1929 for (mask = BIT(nbits - 1); mask != 0; mask >>= 1) {
1930 if ((bits & mask) != 0)
1931 reg |= ATW_SYNRF_SYNDATA;
1932 else
1933 reg &= ~ATW_SYNRF_SYNDATA;
1934 ATW_WRITE(sc, ATW_SYNRF, reg);
1935 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_SYNCLK);
1936 ATW_WRITE(sc, ATW_SYNRF, reg);
1937 }
1938 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1939 ATW_WRITE(sc, ATW_SYNRF, 0x0);
1940 }
1941
1942 /* Read 18-bit data from the 4-bit address addr in Si4126
1943 * RF synthesizer and write the data to *val. Return 0 on success.
1944 *
1945 * XXX This does not seem to work. The ADM8211 must require more or
1946 * different magic to read the chip than to write it.
1947 */
1948 #ifdef ATW_SYNDEBUG
1949 static int
1950 atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
1951 {
1952 u_int32_t reg;
1953 int i;
1954
1955 KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
1956
1957 for (i = 1000; --i >= 0; ) {
1958 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1959 break;
1960 DELAY(100);
1961 }
1962
1963 if (i < 0) {
1964 printf("%s: start atw_si4126_read, SYNCTL busy\n",
1965 sc->sc_dev.dv_xname);
1966 return ETIMEDOUT;
1967 }
1968
1969 reg = sc->sc_synctl_rd | LSHIFT(addr, ATW_SYNCTL_DATA_MASK);
1970
1971 ATW_WRITE(sc, ATW_SYNCTL, reg);
1972
1973 for (i = 1000; --i >= 0; ) {
1974 DELAY(100);
1975 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1976 break;
1977 }
1978
1979 ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1980
1981 if (i < 0) {
1982 printf("%s: atw_si4126_read wrote %#08x, SYNCTL still busy\n",
1983 sc->sc_dev.dv_xname, reg);
1984 return ETIMEDOUT;
1985 }
1986 if (val != NULL)
1987 *val = MASK_AND_RSHIFT(ATW_READ(sc, ATW_SYNCTL),
1988 ATW_SYNCTL_DATA_MASK);
1989 return 0;
1990 }
1991 #endif /* ATW_SYNDEBUG */
1992
1993 /* XXX is the endianness correct? test. */
1994 #define atw_calchash(addr) \
1995 (ether_crc32_le((addr), IEEE80211_ADDR_LEN) & BITS(5, 0))
1996
1997 /*
1998 * atw_filter_setup:
1999 *
2000 * Set the ADM8211's receive filter.
2001 */
2002 static void
2003 atw_filter_setup(struct atw_softc *sc)
2004 {
2005 struct ieee80211com *ic = &sc->sc_ic;
2006 struct ethercom *ec = &sc->sc_ec;
2007 struct ifnet *ifp = &sc->sc_if;
2008 int hash;
2009 u_int32_t hashes[2];
2010 struct ether_multi *enm;
2011 struct ether_multistep step;
2012
2013 /* According to comments in tlp_al981_filter_setup
2014 * (dev/ic/tulip.c) the ADMtek AL981 does not like for its
2015 * multicast filter to be set while it is running. Hopefully
2016 * the ADM8211 is not the same!
2017 */
2018 if ((ifp->if_flags & IFF_RUNNING) != 0)
2019 atw_idle(sc, ATW_NAR_SR);
2020
2021 sc->sc_opmode &= ~(ATW_NAR_PR|ATW_NAR_MM);
2022 ifp->if_flags &= ~IFF_ALLMULTI;
2023
2024 /* XXX in scan mode, do not filter packets. Maybe this is
2025 * unnecessary.
2026 */
2027 if (ic->ic_state == IEEE80211_S_SCAN ||
2028 (ifp->if_flags & IFF_PROMISC) != 0) {
2029 sc->sc_opmode |= ATW_NAR_PR;
2030 goto allmulti;
2031 }
2032
2033 hashes[0] = hashes[1] = 0x0;
2034
2035 /*
2036 * Program the 64-bit multicast hash filter.
2037 */
2038 ETHER_FIRST_MULTI(step, ec, enm);
2039 while (enm != NULL) {
2040 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2041 ETHER_ADDR_LEN) != 0)
2042 goto allmulti;
2043
2044 hash = atw_calchash(enm->enm_addrlo);
2045 hashes[hash >> 5] |= 1 << (hash & 0x1f);
2046 ETHER_NEXT_MULTI(step, enm);
2047 sc->sc_opmode |= ATW_NAR_MM;
2048 }
2049 ifp->if_flags &= ~IFF_ALLMULTI;
2050 goto setit;
2051
2052 allmulti:
2053 sc->sc_opmode |= ATW_NAR_MM;
2054 ifp->if_flags |= IFF_ALLMULTI;
2055 hashes[0] = hashes[1] = 0xffffffff;
2056
2057 setit:
2058 ATW_WRITE(sc, ATW_MAR0, hashes[0]);
2059 ATW_WRITE(sc, ATW_MAR1, hashes[1]);
2060 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2061 DELAY(atw_nar_delay);
2062 ATW_WRITE(sc, ATW_RDR, 0x1);
2063
2064 DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", sc->sc_dev.dv_xname,
2065 ATW_READ(sc, ATW_NAR), sc->sc_opmode));
2066 }
2067
2068 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
2069 * a beacon's BSSID and SSID against the preferred BSSID and SSID
2070 * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
2071 * no beacon with the preferred BSSID and SSID in the number of
2072 * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
2073 */
2074 static void
2075 atw_write_bssid(struct atw_softc *sc)
2076 {
2077 struct ieee80211com *ic = &sc->sc_ic;
2078 u_int8_t *bssid;
2079
2080 bssid = ic->ic_bss->ni_bssid;
2081
2082 ATW_WRITE(sc, ATW_BSSID0,
2083 LSHIFT(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
2084 LSHIFT(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
2085 LSHIFT(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
2086 LSHIFT(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
2087
2088 ATW_WRITE(sc, ATW_ABDA1,
2089 (ATW_READ(sc, ATW_ABDA1) &
2090 ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
2091 LSHIFT(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
2092 LSHIFT(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
2093
2094 DPRINTF(sc, ("%s: BSSID %s -> ", sc->sc_dev.dv_xname,
2095 ether_sprintf(sc->sc_bssid)));
2096 DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
2097
2098 memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
2099 }
2100
2101 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
2102 * 16-bit word.
2103 */
2104 static void
2105 atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
2106 {
2107 u_int i;
2108 u_int8_t *ptr;
2109
2110 memcpy(&sc->sc_sram[ofs], buf, buflen);
2111
2112 KASSERT(ofs % 2 == 0 && buflen % 2 == 0);
2113
2114 KASSERT(buflen + ofs <= sc->sc_sramlen);
2115
2116 ptr = &sc->sc_sram[ofs];
2117
2118 for (i = 0; i < buflen; i += 2) {
2119 ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
2120 LSHIFT((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
2121 DELAY(atw_writewep_delay);
2122
2123 ATW_WRITE(sc, ATW_WESK,
2124 LSHIFT((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
2125 DELAY(atw_writewep_delay);
2126 }
2127 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
2128
2129 if (sc->sc_if.if_flags & IFF_DEBUG) {
2130 int n_octets = 0;
2131 printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
2132 sc->sc_dev.dv_xname, buflen, ofs, sc->sc_wepctl);
2133 for (i = 0; i < buflen; i++) {
2134 printf(" %02x", ptr[i]);
2135 if (++n_octets % 24 == 0)
2136 printf("\n");
2137 }
2138 if (n_octets % 24 != 0)
2139 printf("\n");
2140 }
2141 }
2142
2143 static int
2144 atw_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
2145 {
2146 struct atw_softc *sc = ic->ic_ifp->if_softc;
2147 u_int keyix = k->wk_keyix;
2148
2149 DPRINTF(sc, ("%s: delete key %u\n", __func__, keyix));
2150
2151 if (keyix >= IEEE80211_WEP_NKID)
2152 return 0;
2153 if (k->wk_keylen != 0)
2154 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2155
2156 return 1;
2157 }
2158
2159 static int
2160 atw_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
2161 const u_int8_t mac[IEEE80211_ADDR_LEN])
2162 {
2163 struct atw_softc *sc = ic->ic_ifp->if_softc;
2164
2165 DPRINTF(sc, ("%s: set key %u\n", __func__, k->wk_keyix));
2166
2167 if (k->wk_keyix >= IEEE80211_WEP_NKID)
2168 return 0;
2169
2170 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2171
2172 return 1;
2173 }
2174
2175 static void
2176 atw_key_update_begin(struct ieee80211com *ic)
2177 {
2178 #ifdef ATW_DEBUG
2179 struct ifnet *ifp = ic->ic_ifp;
2180 struct atw_softc *sc = ifp->if_softc;
2181 #endif
2182
2183 DPRINTF(sc, ("%s:\n", __func__));
2184 }
2185
2186 static void
2187 atw_key_update_end(struct ieee80211com *ic)
2188 {
2189 struct ifnet *ifp = ic->ic_ifp;
2190 struct atw_softc *sc = ifp->if_softc;
2191
2192 DPRINTF(sc, ("%s:\n", __func__));
2193
2194 if ((sc->sc_flags & ATWF_WEP_SRAM_VALID) != 0)
2195 return;
2196 if (ATW_IS_ENABLED(sc) == 0)
2197 return;
2198 atw_idle(sc, ATW_NAR_SR | ATW_NAR_ST);
2199 atw_write_wep(sc);
2200 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2201 DELAY(atw_nar_delay);
2202 ATW_WRITE(sc, ATW_RDR, 0x1);
2203 }
2204
2205 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
2206 static void
2207 atw_write_wep(struct atw_softc *sc)
2208 {
2209 struct ieee80211com *ic = &sc->sc_ic;
2210 /* SRAM shared-key record format: key0 flags key1 ... key12 */
2211 u_int8_t buf[IEEE80211_WEP_NKID]
2212 [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
2213 u_int32_t reg;
2214 int i;
2215
2216 sc->sc_wepctl = 0;
2217 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
2218
2219 memset(&buf[0][0], 0, sizeof(buf));
2220
2221 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2222 if (ic->ic_nw_keys[i].wk_keylen > 5) {
2223 buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
2224 } else if (ic->ic_nw_keys[i].wk_keylen != 0) {
2225 buf[i][1] = ATW_WEP_ENABLED;
2226 } else {
2227 buf[i][1] = 0;
2228 continue;
2229 }
2230 buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
2231 memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
2232 ic->ic_nw_keys[i].wk_keylen - 1);
2233 }
2234
2235 reg = ATW_READ(sc, ATW_MACTEST);
2236 reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2237 reg &= ~ATW_MACTEST_KEYID_MASK;
2238 reg |= LSHIFT(ic->ic_def_txkey, ATW_MACTEST_KEYID_MASK);
2239 ATW_WRITE(sc, ATW_MACTEST, reg);
2240
2241 if ((ic->ic_flags & IEEE80211_F_PRIVACY) != 0)
2242 sc->sc_wepctl |= ATW_WEPCTL_WEPENABLE;
2243
2244 switch (sc->sc_rev) {
2245 case ATW_REVISION_AB:
2246 case ATW_REVISION_AF:
2247 /* Bypass WEP on Rx. */
2248 sc->sc_wepctl |= ATW_WEPCTL_WEPRXBYP;
2249 break;
2250 default:
2251 break;
2252 }
2253
2254 atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
2255 sizeof(buf));
2256
2257 sc->sc_flags |= ATWF_WEP_SRAM_VALID;
2258 }
2259
2260 static void
2261 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2262 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2263 {
2264 struct atw_softc *sc = (struct atw_softc *)ic->ic_ifp->if_softc;
2265
2266 /* The ADM8211A answers probe requests. TBD ADM8211B/C. */
2267 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_REQ)
2268 return;
2269
2270 (*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2271
2272 switch (subtype) {
2273 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2274 case IEEE80211_FC0_SUBTYPE_BEACON:
2275 if (ic->ic_opmode == IEEE80211_M_IBSS &&
2276 ic->ic_state == IEEE80211_S_RUN) {
2277 if (le64toh(ni->ni_tstamp.tsf) >= atw_get_tsft(sc))
2278 (void)ieee80211_ibss_merge(ni);
2279 }
2280 break;
2281 default:
2282 break;
2283 }
2284 return;
2285 }
2286
2287 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2288 * In ad hoc mode, the SSID is written to the beacons sent by the
2289 * ADM8211. In both ad hoc and infrastructure mode, beacons received
2290 * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2291 * indications.
2292 */
2293 static void
2294 atw_write_ssid(struct atw_softc *sc)
2295 {
2296 struct ieee80211com *ic = &sc->sc_ic;
2297 /* 34 bytes are reserved in ADM8211 SRAM for the SSID, but
2298 * it only expects the element length, not its ID.
2299 */
2300 u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
2301
2302 memset(buf, 0, sizeof(buf));
2303 buf[0] = ic->ic_bss->ni_esslen;
2304 memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2305
2306 atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf,
2307 roundup(1 + ic->ic_bss->ni_esslen, 2));
2308 }
2309
2310 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2311 * In ad hoc mode, the supported rates are written to beacons sent by the
2312 * ADM8211.
2313 */
2314 static void
2315 atw_write_sup_rates(struct atw_softc *sc)
2316 {
2317 struct ieee80211com *ic = &sc->sc_ic;
2318 /* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2319 * supported rates
2320 */
2321 u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
2322
2323 memset(buf, 0, sizeof(buf));
2324
2325 buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2326
2327 memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2328 ic->ic_bss->ni_rates.rs_nrates);
2329
2330 atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2331 }
2332
2333 /* Start/stop sending beacons. */
2334 void
2335 atw_start_beacon(struct atw_softc *sc, int start)
2336 {
2337 struct ieee80211com *ic = &sc->sc_ic;
2338 uint16_t chan;
2339 uint32_t bcnt, bpli, cap0, cap1, capinfo;
2340 size_t len;
2341
2342 if (ATW_IS_ENABLED(sc) == 0)
2343 return;
2344
2345 /* start beacons */
2346 len = sizeof(struct ieee80211_frame) +
2347 8 /* timestamp */ + 2 /* beacon interval */ +
2348 2 /* capability info */ +
2349 2 + ic->ic_bss->ni_esslen /* SSID element */ +
2350 2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2351 3 /* DS parameters */ +
2352 IEEE80211_CRC_LEN;
2353
2354 bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2355 cap0 = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
2356 cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2357
2358 ATW_WRITE(sc, ATW_BCNT, bcnt);
2359 ATW_WRITE(sc, ATW_CAP1, cap1);
2360
2361 if (!start)
2362 return;
2363
2364 /* TBD use ni_capinfo */
2365
2366 capinfo = 0;
2367 if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
2368 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2369 if (ic->ic_flags & IEEE80211_F_PRIVACY)
2370 capinfo |= IEEE80211_CAPINFO_PRIVACY;
2371
2372 switch (ic->ic_opmode) {
2373 case IEEE80211_M_IBSS:
2374 len += 4; /* IBSS parameters */
2375 capinfo |= IEEE80211_CAPINFO_IBSS;
2376 break;
2377 case IEEE80211_M_HOSTAP:
2378 /* XXX 6-byte minimum TIM */
2379 len += atw_beacon_len_adjust;
2380 capinfo |= IEEE80211_CAPINFO_ESS;
2381 break;
2382 default:
2383 return;
2384 }
2385
2386 /* set listen interval
2387 * XXX do software units agree w/ hardware?
2388 */
2389 bpli = LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2390 LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval, ATW_BPLI_LI_MASK);
2391
2392 chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
2393
2394 bcnt |= LSHIFT(len, ATW_BCNT_BCNT_MASK);
2395 cap0 |= LSHIFT(chan, ATW_CAP0_CHN_MASK);
2396 cap1 |= LSHIFT(capinfo, ATW_CAP1_CAPI_MASK);
2397
2398 ATW_WRITE(sc, ATW_BCNT, bcnt);
2399 ATW_WRITE(sc, ATW_BPLI, bpli);
2400 ATW_WRITE(sc, ATW_CAP0, cap0);
2401 ATW_WRITE(sc, ATW_CAP1, cap1);
2402
2403 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2404 sc->sc_dev.dv_xname, bcnt));
2405
2406 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2407 sc->sc_dev.dv_xname, cap1));
2408 }
2409
2410 /* Return the 32 lsb of the last TSFT divisible by ival. */
2411 static inline uint32_t
2412 atw_last_even_tsft(uint32_t tsfth, uint32_t tsftl, uint32_t ival)
2413 {
2414 /* Following the reference driver's lead, I compute
2415 *
2416 * (uint32_t)((((uint64_t)tsfth << 32) | tsftl) % ival)
2417 *
2418 * without using 64-bit arithmetic, using the following
2419 * relationship:
2420 *
2421 * (0x100000000 * H + L) % m
2422 * = ((0x100000000 % m) * H + L) % m
2423 * = (((0xffffffff + 1) % m) * H + L) % m
2424 * = ((0xffffffff % m + 1 % m) * H + L) % m
2425 * = ((0xffffffff % m + 1) * H + L) % m
2426 */
2427 return ((0xFFFFFFFF % ival + 1) * tsfth + tsftl) % ival;
2428 }
2429
2430 static uint64_t
2431 atw_get_tsft(struct atw_softc *sc)
2432 {
2433 int i;
2434 uint32_t tsfth, tsftl;
2435 for (i = 0; i < 2; i++) {
2436 tsfth = ATW_READ(sc, ATW_TSFTH);
2437 tsftl = ATW_READ(sc, ATW_TSFTL);
2438 if (ATW_READ(sc, ATW_TSFTH) == tsfth)
2439 break;
2440 }
2441 return ((uint64_t)tsfth << 32) | tsftl;
2442 }
2443
2444 /* If we've created an IBSS, write the TSF time in the ADM8211 to
2445 * the ieee80211com.
2446 *
2447 * Predict the next target beacon transmission time (TBTT) and
2448 * write it to the ADM8211.
2449 */
2450 static void
2451 atw_predict_beacon(struct atw_softc *sc)
2452 {
2453 #define TBTTOFS 20 /* TU */
2454
2455 struct ieee80211com *ic = &sc->sc_ic;
2456 uint64_t tsft;
2457 uint32_t ival, past_even, tbtt, tsfth, tsftl;
2458 union {
2459 uint64_t word;
2460 uint8_t tstamp[8];
2461 } u;
2462
2463 if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2464 ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2465 (ic->ic_flags & IEEE80211_F_SIBSS))) {
2466 tsft = atw_get_tsft(sc);
2467 u.word = htole64(tsft);
2468 (void)memcpy(&ic->ic_bss->ni_tstamp, &u.tstamp[0],
2469 sizeof(ic->ic_bss->ni_tstamp));
2470 } else
2471 tsft = le64toh(ic->ic_bss->ni_tstamp.tsf);
2472
2473 ival = ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2474
2475 tsftl = tsft & 0xFFFFFFFF;
2476 tsfth = tsft >> 32;
2477
2478 /* We sent/received the last beacon `past' microseconds
2479 * after the interval divided the TSF timer.
2480 */
2481 past_even = tsftl - atw_last_even_tsft(tsfth, tsftl, ival);
2482
2483 /* Skip ten beacons so that the TBTT cannot pass before
2484 * we've programmed it. Ten is an arbitrary number.
2485 */
2486 tbtt = past_even + ival * 10;
2487
2488 ATW_WRITE(sc, ATW_TOFS1,
2489 LSHIFT(1, ATW_TOFS1_TSFTOFSR_MASK) |
2490 LSHIFT(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2491 LSHIFT(MASK_AND_RSHIFT(tbtt - TBTTOFS * IEEE80211_DUR_TU,
2492 ATW_TBTTPRE_MASK), ATW_TOFS1_TBTTPRE_MASK));
2493 #undef TBTTOFS
2494 }
2495
2496 static void
2497 atw_next_scan(void *arg)
2498 {
2499 struct atw_softc *sc = arg;
2500 struct ieee80211com *ic = &sc->sc_ic;
2501 int s;
2502
2503 /* don't call atw_start w/o network interrupts blocked */
2504 s = splnet();
2505 if (ic->ic_state == IEEE80211_S_SCAN)
2506 ieee80211_next_scan(ic);
2507 splx(s);
2508 }
2509
2510 /* Synchronize the hardware state with the software state. */
2511 static int
2512 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2513 {
2514 struct ifnet *ifp = ic->ic_ifp;
2515 struct atw_softc *sc = ifp->if_softc;
2516 enum ieee80211_state ostate;
2517 int error = 0;
2518
2519 ostate = ic->ic_state;
2520 callout_stop(&sc->sc_scan_ch);
2521
2522 switch (nstate) {
2523 case IEEE80211_S_AUTH:
2524 case IEEE80211_S_ASSOC:
2525 atw_write_bssid(sc);
2526 error = atw_tune(sc);
2527 break;
2528 case IEEE80211_S_INIT:
2529 callout_stop(&sc->sc_scan_ch);
2530 sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2531 atw_start_beacon(sc, 0);
2532 break;
2533 case IEEE80211_S_SCAN:
2534 error = atw_tune(sc);
2535 callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2536 atw_next_scan, sc);
2537 break;
2538 case IEEE80211_S_RUN:
2539 error = atw_tune(sc);
2540 atw_write_bssid(sc);
2541 atw_write_ssid(sc);
2542 atw_write_sup_rates(sc);
2543
2544 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2545 ic->ic_opmode == IEEE80211_M_MONITOR)
2546 break;
2547
2548 /* set listen interval
2549 * XXX do software units agree w/ hardware?
2550 */
2551 ATW_WRITE(sc, ATW_BPLI,
2552 LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2553 LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval,
2554 ATW_BPLI_LI_MASK));
2555
2556 DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n", sc->sc_dev.dv_xname,
2557 ATW_READ(sc, ATW_BPLI)));
2558
2559 atw_predict_beacon(sc);
2560
2561 switch (ic->ic_opmode) {
2562 case IEEE80211_M_AHDEMO:
2563 case IEEE80211_M_HOSTAP:
2564 case IEEE80211_M_IBSS:
2565 atw_start_beacon(sc, 1);
2566 break;
2567 case IEEE80211_M_MONITOR:
2568 case IEEE80211_M_STA:
2569 break;
2570 }
2571
2572 break;
2573 }
2574 return (error != 0) ? error : (*sc->sc_newstate)(ic, nstate, arg);
2575 }
2576
2577 /*
2578 * atw_add_rxbuf:
2579 *
2580 * Add a receive buffer to the indicated descriptor.
2581 */
2582 int
2583 atw_add_rxbuf(struct atw_softc *sc, int idx)
2584 {
2585 struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2586 struct mbuf *m;
2587 int error;
2588
2589 MGETHDR(m, M_DONTWAIT, MT_DATA);
2590 if (m == NULL)
2591 return (ENOBUFS);
2592
2593 MCLGET(m, M_DONTWAIT);
2594 if ((m->m_flags & M_EXT) == 0) {
2595 m_freem(m);
2596 return (ENOBUFS);
2597 }
2598
2599 if (rxs->rxs_mbuf != NULL)
2600 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2601
2602 rxs->rxs_mbuf = m;
2603
2604 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2605 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2606 BUS_DMA_READ|BUS_DMA_NOWAIT);
2607 if (error) {
2608 printf("%s: can't load rx DMA map %d, error = %d\n",
2609 sc->sc_dev.dv_xname, idx, error);
2610 panic("atw_add_rxbuf"); /* XXX */
2611 }
2612
2613 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2614 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2615
2616 ATW_INIT_RXDESC(sc, idx);
2617
2618 return (0);
2619 }
2620
2621 /*
2622 * Release any queued transmit buffers.
2623 */
2624 void
2625 atw_txdrain(struct atw_softc *sc)
2626 {
2627 struct atw_txsoft *txs;
2628
2629 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2630 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2631 if (txs->txs_mbuf != NULL) {
2632 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2633 m_freem(txs->txs_mbuf);
2634 txs->txs_mbuf = NULL;
2635 }
2636 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2637 sc->sc_txfree += txs->txs_ndescs;
2638 }
2639
2640 KASSERT((sc->sc_if.if_flags & IFF_RUNNING) == 0 ||
2641 !(SIMPLEQ_EMPTY(&sc->sc_txfreeq) ||
2642 sc->sc_txfree != ATW_NTXDESC));
2643 sc->sc_if.if_flags &= ~IFF_OACTIVE;
2644 sc->sc_tx_timer = 0;
2645 }
2646
2647 /*
2648 * atw_stop: [ ifnet interface function ]
2649 *
2650 * Stop transmission on the interface.
2651 */
2652 void
2653 atw_stop(struct ifnet *ifp, int disable)
2654 {
2655 struct atw_softc *sc = ifp->if_softc;
2656 struct ieee80211com *ic = &sc->sc_ic;
2657
2658 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2659
2660 /* Disable interrupts. */
2661 ATW_WRITE(sc, ATW_IER, 0);
2662
2663 /* Stop the transmit and receive processes. */
2664 sc->sc_opmode = 0;
2665 ATW_WRITE(sc, ATW_NAR, 0);
2666 DELAY(atw_nar_delay);
2667 ATW_WRITE(sc, ATW_TDBD, 0);
2668 ATW_WRITE(sc, ATW_TDBP, 0);
2669 ATW_WRITE(sc, ATW_RDB, 0);
2670
2671 atw_txdrain(sc);
2672
2673 if (disable) {
2674 atw_rxdrain(sc);
2675 atw_disable(sc);
2676 }
2677
2678 /*
2679 * Mark the interface down and cancel the watchdog timer.
2680 */
2681 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2682 sc->sc_tx_timer = 0;
2683 ifp->if_timer = 0;
2684
2685 if (!disable)
2686 atw_reset(sc);
2687 }
2688
2689 /*
2690 * atw_rxdrain:
2691 *
2692 * Drain the receive queue.
2693 */
2694 void
2695 atw_rxdrain(struct atw_softc *sc)
2696 {
2697 struct atw_rxsoft *rxs;
2698 int i;
2699
2700 for (i = 0; i < ATW_NRXDESC; i++) {
2701 rxs = &sc->sc_rxsoft[i];
2702 if (rxs->rxs_mbuf == NULL)
2703 continue;
2704 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2705 m_freem(rxs->rxs_mbuf);
2706 rxs->rxs_mbuf = NULL;
2707 }
2708 }
2709
2710 /*
2711 * atw_detach:
2712 *
2713 * Detach an ADM8211 interface.
2714 */
2715 int
2716 atw_detach(struct atw_softc *sc)
2717 {
2718 struct ifnet *ifp = &sc->sc_if;
2719 struct atw_rxsoft *rxs;
2720 struct atw_txsoft *txs;
2721 int i;
2722
2723 /*
2724 * Succeed now if there isn't any work to do.
2725 */
2726 if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2727 return (0);
2728
2729 callout_stop(&sc->sc_scan_ch);
2730
2731 ieee80211_ifdetach(&sc->sc_ic);
2732 if_detach(ifp);
2733
2734 for (i = 0; i < ATW_NRXDESC; i++) {
2735 rxs = &sc->sc_rxsoft[i];
2736 if (rxs->rxs_mbuf != NULL) {
2737 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2738 m_freem(rxs->rxs_mbuf);
2739 rxs->rxs_mbuf = NULL;
2740 }
2741 bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2742 }
2743 for (i = 0; i < ATW_TXQUEUELEN; i++) {
2744 txs = &sc->sc_txsoft[i];
2745 if (txs->txs_mbuf != NULL) {
2746 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2747 m_freem(txs->txs_mbuf);
2748 txs->txs_mbuf = NULL;
2749 }
2750 bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2751 }
2752 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2753 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2754 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2755 sizeof(struct atw_control_data));
2756 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2757
2758 shutdownhook_disestablish(sc->sc_sdhook);
2759 powerhook_disestablish(sc->sc_powerhook);
2760
2761 if (sc->sc_srom)
2762 free(sc->sc_srom, M_DEVBUF);
2763
2764 return (0);
2765 }
2766
2767 /* atw_shutdown: make sure the interface is stopped at reboot time. */
2768 void
2769 atw_shutdown(void *arg)
2770 {
2771 struct atw_softc *sc = arg;
2772
2773 atw_stop(&sc->sc_if, 1);
2774 }
2775
2776 int
2777 atw_intr(void *arg)
2778 {
2779 struct atw_softc *sc = arg;
2780 struct ifnet *ifp = &sc->sc_if;
2781 u_int32_t status, rxstatus, txstatus, linkstatus;
2782 int handled = 0, txthresh;
2783
2784 #ifdef DEBUG
2785 if (ATW_IS_ENABLED(sc) == 0)
2786 panic("%s: atw_intr: not enabled", sc->sc_dev.dv_xname);
2787 #endif
2788
2789 /*
2790 * If the interface isn't running, the interrupt couldn't
2791 * possibly have come from us.
2792 */
2793 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2794 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
2795 return (0);
2796
2797 for (;;) {
2798 status = ATW_READ(sc, ATW_STSR);
2799
2800 if (status)
2801 ATW_WRITE(sc, ATW_STSR, status);
2802
2803 #ifdef ATW_DEBUG
2804 #define PRINTINTR(flag) do { \
2805 if ((status & flag) != 0) { \
2806 printf("%s" #flag, delim); \
2807 delim = ","; \
2808 } \
2809 } while (0)
2810
2811 if (atw_debug > 1 && status) {
2812 const char *delim = "<";
2813
2814 printf("%s: reg[STSR] = %x",
2815 sc->sc_dev.dv_xname, status);
2816
2817 PRINTINTR(ATW_INTR_FBE);
2818 PRINTINTR(ATW_INTR_LINKOFF);
2819 PRINTINTR(ATW_INTR_LINKON);
2820 PRINTINTR(ATW_INTR_RCI);
2821 PRINTINTR(ATW_INTR_RDU);
2822 PRINTINTR(ATW_INTR_REIS);
2823 PRINTINTR(ATW_INTR_RPS);
2824 PRINTINTR(ATW_INTR_TCI);
2825 PRINTINTR(ATW_INTR_TDU);
2826 PRINTINTR(ATW_INTR_TLT);
2827 PRINTINTR(ATW_INTR_TPS);
2828 PRINTINTR(ATW_INTR_TRT);
2829 PRINTINTR(ATW_INTR_TUF);
2830 PRINTINTR(ATW_INTR_BCNTC);
2831 PRINTINTR(ATW_INTR_ATIME);
2832 PRINTINTR(ATW_INTR_TBTT);
2833 PRINTINTR(ATW_INTR_TSCZ);
2834 PRINTINTR(ATW_INTR_TSFTF);
2835 printf(">\n");
2836 }
2837 #undef PRINTINTR
2838 #endif /* ATW_DEBUG */
2839
2840 if ((status & sc->sc_inten) == 0)
2841 break;
2842
2843 handled = 1;
2844
2845 rxstatus = status & sc->sc_rxint_mask;
2846 txstatus = status & sc->sc_txint_mask;
2847 linkstatus = status & sc->sc_linkint_mask;
2848
2849 if (linkstatus) {
2850 atw_linkintr(sc, linkstatus);
2851 }
2852
2853 if (rxstatus) {
2854 /* Grab any new packets. */
2855 atw_rxintr(sc);
2856
2857 if (rxstatus & ATW_INTR_RDU) {
2858 printf("%s: receive ring overrun\n",
2859 sc->sc_dev.dv_xname);
2860 /* Get the receive process going again. */
2861 ATW_WRITE(sc, ATW_RDR, 0x1);
2862 break;
2863 }
2864 }
2865
2866 if (txstatus) {
2867 /* Sweep up transmit descriptors. */
2868 atw_txintr(sc);
2869
2870 if (txstatus & ATW_INTR_TLT)
2871 DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2872 sc->sc_dev.dv_xname));
2873
2874 if (txstatus & ATW_INTR_TRT)
2875 DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2876 sc->sc_dev.dv_xname));
2877
2878 /* If Tx under-run, increase our transmit threshold
2879 * if another is available.
2880 */
2881 txthresh = sc->sc_txthresh + 1;
2882 if ((txstatus & ATW_INTR_TUF) &&
2883 sc->sc_txth[txthresh].txth_name != NULL) {
2884 /* Idle the transmit process. */
2885 atw_idle(sc, ATW_NAR_ST);
2886
2887 sc->sc_txthresh = txthresh;
2888 sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2889 sc->sc_opmode |=
2890 sc->sc_txth[txthresh].txth_opmode;
2891 printf("%s: transmit underrun; new "
2892 "threshold: %s\n", sc->sc_dev.dv_xname,
2893 sc->sc_txth[txthresh].txth_name);
2894
2895 /* Set the new threshold and restart
2896 * the transmit process.
2897 */
2898 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2899 DELAY(atw_nar_delay);
2900 ATW_WRITE(sc, ATW_RDR, 0x1);
2901 /* XXX Log every Nth underrun from
2902 * XXX now on?
2903 */
2904 }
2905 }
2906
2907 if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
2908 if (status & ATW_INTR_TPS)
2909 printf("%s: transmit process stopped\n",
2910 sc->sc_dev.dv_xname);
2911 if (status & ATW_INTR_RPS)
2912 printf("%s: receive process stopped\n",
2913 sc->sc_dev.dv_xname);
2914 (void)atw_init(ifp);
2915 break;
2916 }
2917
2918 if (status & ATW_INTR_FBE) {
2919 printf("%s: fatal bus error\n", sc->sc_dev.dv_xname);
2920 (void)atw_init(ifp);
2921 break;
2922 }
2923
2924 /*
2925 * Not handled:
2926 *
2927 * Transmit buffer unavailable -- normal
2928 * condition, nothing to do, really.
2929 *
2930 * Early receive interrupt -- not available on
2931 * all chips, we just use RI. We also only
2932 * use single-segment receive DMA, so this
2933 * is mostly useless.
2934 *
2935 * TBD others
2936 */
2937 }
2938
2939 /* Try to get more packets going. */
2940 atw_start(ifp);
2941
2942 return (handled);
2943 }
2944
2945 /*
2946 * atw_idle:
2947 *
2948 * Cause the transmit and/or receive processes to go idle.
2949 *
2950 * XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2951 * process in STSR if I clear SR or ST after the process has already
2952 * ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2953 * do not seem to be too reliable. Perhaps I have the sense of the
2954 * Rx bits switched with the Tx bits?
2955 */
2956 void
2957 atw_idle(struct atw_softc *sc, u_int32_t bits)
2958 {
2959 u_int32_t ackmask = 0, opmode, stsr, test0;
2960 int i, s;
2961
2962 s = splnet();
2963
2964 opmode = sc->sc_opmode & ~bits;
2965
2966 if (bits & ATW_NAR_SR)
2967 ackmask |= ATW_INTR_RPS;
2968
2969 if (bits & ATW_NAR_ST) {
2970 ackmask |= ATW_INTR_TPS;
2971 /* set ATW_NAR_HF to flush TX FIFO. */
2972 opmode |= ATW_NAR_HF;
2973 }
2974
2975 ATW_WRITE(sc, ATW_NAR, opmode);
2976 DELAY(atw_nar_delay);
2977
2978 for (i = 0; i < 1000; i++) {
2979 stsr = ATW_READ(sc, ATW_STSR);
2980 if ((stsr & ackmask) == ackmask)
2981 break;
2982 DELAY(10);
2983 }
2984
2985 ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
2986
2987 if ((stsr & ackmask) == ackmask)
2988 goto out;
2989
2990 test0 = ATW_READ(sc, ATW_TEST0);
2991
2992 if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
2993 (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
2994 printf("%s: transmit process not idle [%s]\n",
2995 sc->sc_dev.dv_xname,
2996 atw_tx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_TS_MASK)]);
2997 printf("%s: bits %08x test0 %08x stsr %08x\n",
2998 sc->sc_dev.dv_xname, bits, test0, stsr);
2999 }
3000
3001 if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
3002 (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
3003 DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
3004 sc->sc_dev.dv_xname,
3005 atw_rx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_RS_MASK)]));
3006 DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
3007 sc->sc_dev.dv_xname, bits, test0, stsr));
3008 }
3009 out:
3010 if ((bits & ATW_NAR_ST) != 0)
3011 atw_txdrain(sc);
3012 splx(s);
3013 return;
3014 }
3015
3016 /*
3017 * atw_linkintr:
3018 *
3019 * Helper; handle link-status interrupts.
3020 */
3021 void
3022 atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
3023 {
3024 struct ieee80211com *ic = &sc->sc_ic;
3025
3026 if (ic->ic_state != IEEE80211_S_RUN)
3027 return;
3028
3029 if (linkstatus & ATW_INTR_LINKON) {
3030 DPRINTF(sc, ("%s: link on\n", sc->sc_dev.dv_xname));
3031 sc->sc_rescan_timer = 0;
3032 } else if (linkstatus & ATW_INTR_LINKOFF) {
3033 DPRINTF(sc, ("%s: link off\n", sc->sc_dev.dv_xname));
3034 if (ic->ic_opmode != IEEE80211_M_STA)
3035 return;
3036 sc->sc_rescan_timer = 3;
3037 sc->sc_if.if_timer = 1;
3038 }
3039 }
3040
3041 static inline int
3042 atw_hw_decrypted(struct atw_softc *sc, struct ieee80211_frame_min *wh)
3043 {
3044 if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0)
3045 return 0;
3046 if ((wh->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3047 return 0;
3048 return (sc->sc_wepctl & ATW_WEPCTL_WEPRXBYP) == 0;
3049 }
3050
3051 /*
3052 * atw_rxintr:
3053 *
3054 * Helper; handle receive interrupts.
3055 */
3056 void
3057 atw_rxintr(struct atw_softc *sc)
3058 {
3059 static int rate_tbl[] = {2, 4, 11, 22, 44};
3060 struct ieee80211com *ic = &sc->sc_ic;
3061 struct ieee80211_node *ni;
3062 struct ieee80211_frame_min *wh;
3063 struct ifnet *ifp = &sc->sc_if;
3064 struct atw_rxsoft *rxs;
3065 struct mbuf *m;
3066 u_int32_t rxstat;
3067 int i, len, rate, rate0;
3068 u_int32_t rssi, rssi0;
3069
3070 for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
3071 rxs = &sc->sc_rxsoft[i];
3072
3073 ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3074
3075 rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
3076 rssi0 = le32toh(sc->sc_rxdescs[i].ar_rssi);
3077 rate0 = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_RXDR_MASK);
3078
3079 if (rxstat & ATW_RXSTAT_OWN)
3080 break; /* We have processed all receive buffers. */
3081
3082 DPRINTF3(sc,
3083 ("%s: rx stat %08x rssi0 %08x buf1 %08x buf2 %08x\n",
3084 sc->sc_dev.dv_xname,
3085 rxstat, rssi0,
3086 le32toh(sc->sc_rxdescs[i].ar_buf1),
3087 le32toh(sc->sc_rxdescs[i].ar_buf2)));
3088
3089 /*
3090 * Make sure the packet fits in one buffer. This should
3091 * always be the case.
3092 */
3093 if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
3094 (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
3095 printf("%s: incoming packet spilled, resetting\n",
3096 sc->sc_dev.dv_xname);
3097 (void)atw_init(ifp);
3098 return;
3099 }
3100
3101 /*
3102 * If an error occurred, update stats, clear the status
3103 * word, and leave the packet buffer in place. It will
3104 * simply be reused the next time the ring comes around.
3105 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
3106 * error.
3107 */
3108
3109 if ((rxstat & ATW_RXSTAT_ES) != 0 &&
3110 ((sc->sc_ec.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
3111 (rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_SFDE |
3112 ATW_RXSTAT_SIGE | ATW_RXSTAT_CRC16E |
3113 ATW_RXSTAT_RXTOE | ATW_RXSTAT_CRC32E |
3114 ATW_RXSTAT_ICVE)) != 0)) {
3115 #define PRINTERR(bit, str) \
3116 if (rxstat & (bit)) \
3117 printf("%s: receive error: %s\n", \
3118 sc->sc_dev.dv_xname, str)
3119 ifp->if_ierrors++;
3120 PRINTERR(ATW_RXSTAT_DE, "descriptor error");
3121 PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
3122 PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
3123 PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
3124 PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
3125 PRINTERR(ATW_RXSTAT_CRC32E, "FCS error");
3126 PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
3127 #undef PRINTERR
3128 ATW_INIT_RXDESC(sc, i);
3129 continue;
3130 }
3131
3132 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3133 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3134
3135 /*
3136 * No errors; receive the packet. Note the ADM8211
3137 * includes the CRC in promiscuous mode.
3138 */
3139 len = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_FL_MASK);
3140
3141 /*
3142 * Allocate a new mbuf cluster. If that fails, we are
3143 * out of memory, and must drop the packet and recycle
3144 * the buffer that's already attached to this descriptor.
3145 */
3146 m = rxs->rxs_mbuf;
3147 if (atw_add_rxbuf(sc, i) != 0) {
3148 ifp->if_ierrors++;
3149 ATW_INIT_RXDESC(sc, i);
3150 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3151 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3152 continue;
3153 }
3154
3155 ifp->if_ipackets++;
3156 if (sc->sc_opmode & ATW_NAR_PR)
3157 len -= IEEE80211_CRC_LEN;
3158 m->m_pkthdr.rcvif = ifp;
3159 m->m_pkthdr.len = m->m_len = MIN(m->m_ext.ext_size, len);
3160
3161 if (rate0 >= sizeof(rate_tbl) / sizeof(rate_tbl[0]))
3162 rate = 0;
3163 else
3164 rate = rate_tbl[rate0];
3165
3166 /* The RSSI comes straight from a register in the
3167 * baseband processor. I know that for the RF3000,
3168 * the RSSI register also contains the antenna-selection
3169 * bits. Mask those off.
3170 *
3171 * TBD Treat other basebands.
3172 */
3173 if (sc->sc_bbptype == ATW_BBPTYPE_RFMD)
3174 rssi = rssi0 & RF3000_RSSI_MASK;
3175 else
3176 rssi = rssi0;
3177
3178 #if NBPFILTER > 0
3179 /* Pass this up to any BPF listeners. */
3180 if (sc->sc_radiobpf != NULL) {
3181 struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
3182
3183 tap->ar_rate = rate;
3184 tap->ar_chan_freq = ic->ic_curchan->ic_freq;
3185 tap->ar_chan_flags = ic->ic_curchan->ic_flags;
3186
3187 /* TBD verify units are dB */
3188 tap->ar_antsignal = (int)rssi;
3189 /* TBD tap->ar_flags */
3190
3191 bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3192 tap->ar_ihdr.it_len, m);
3193 }
3194 #endif /* NPBFILTER > 0 */
3195
3196 wh = mtod(m, struct ieee80211_frame_min *);
3197 ni = ieee80211_find_rxnode(ic, wh);
3198 if (atw_hw_decrypted(sc, wh)) {
3199 wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
3200 DPRINTF(sc, ("%s: hw decrypted\n", __func__));
3201 }
3202 ieee80211_input(ic, m, ni, (int)rssi, 0);
3203 ieee80211_free_node(ni);
3204 }
3205
3206 /* Update the receive pointer. */
3207 sc->sc_rxptr = i;
3208 }
3209
3210 /*
3211 * atw_txintr:
3212 *
3213 * Helper; handle transmit interrupts.
3214 */
3215 void
3216 atw_txintr(struct atw_softc *sc)
3217 {
3218 #define TXSTAT_ERRMASK (ATW_TXSTAT_TUF | ATW_TXSTAT_TLT | ATW_TXSTAT_TRT | \
3219 ATW_TXSTAT_TRO | ATW_TXSTAT_SOFBR)
3220 #define TXSTAT_FMT "\20\31ATW_TXSTAT_SOFBR\32ATW_TXSTAT_TRO\33ATW_TXSTAT_TUF" \
3221 "\34ATW_TXSTAT_TRT\35ATW_TXSTAT_TLT"
3222
3223 static char txstat_buf[sizeof("ffffffff<>" TXSTAT_FMT)];
3224 struct ifnet *ifp = &sc->sc_if;
3225 struct atw_txsoft *txs;
3226 u_int32_t txstat;
3227
3228 DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3229 sc->sc_dev.dv_xname, sc->sc_flags));
3230
3231 /*
3232 * Go through our Tx list and free mbufs for those
3233 * frames that have been transmitted.
3234 */
3235 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3236 ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3237 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3238
3239 #ifdef ATW_DEBUG
3240 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3241 int i;
3242 printf(" txsoft %p transmit chain:\n", txs);
3243 ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3244 txs->txs_ndescs - 1,
3245 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3246 for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3247 printf(" descriptor %d:\n", i);
3248 printf(" at_status: 0x%08x\n",
3249 le32toh(sc->sc_txdescs[i].at_stat));
3250 printf(" at_flags: 0x%08x\n",
3251 le32toh(sc->sc_txdescs[i].at_flags));
3252 printf(" at_buf1: 0x%08x\n",
3253 le32toh(sc->sc_txdescs[i].at_buf1));
3254 printf(" at_buf2: 0x%08x\n",
3255 le32toh(sc->sc_txdescs[i].at_buf2));
3256 if (i == txs->txs_lastdesc)
3257 break;
3258 }
3259 }
3260 #endif
3261
3262 txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3263 if (txstat & ATW_TXSTAT_OWN)
3264 break;
3265
3266 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3267
3268 sc->sc_txfree += txs->txs_ndescs;
3269
3270 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3271 0, txs->txs_dmamap->dm_mapsize,
3272 BUS_DMASYNC_POSTWRITE);
3273 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3274 m_freem(txs->txs_mbuf);
3275 txs->txs_mbuf = NULL;
3276
3277 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3278
3279 KASSERT(!(SIMPLEQ_EMPTY(&sc->sc_txfreeq) ||
3280 sc->sc_txfree == 0));
3281 ifp->if_flags &= ~IFF_OACTIVE;
3282
3283 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3284 (txstat & TXSTAT_ERRMASK) != 0) {
3285 bitmask_snprintf(txstat & TXSTAT_ERRMASK, TXSTAT_FMT,
3286 txstat_buf, sizeof(txstat_buf));
3287 printf("%s: txstat %s %d\n", sc->sc_dev.dv_xname,
3288 txstat_buf,
3289 MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK));
3290 }
3291
3292 /*
3293 * Check for errors and collisions.
3294 */
3295 if (txstat & ATW_TXSTAT_TUF)
3296 sc->sc_stats.ts_tx_tuf++;
3297 if (txstat & ATW_TXSTAT_TLT)
3298 sc->sc_stats.ts_tx_tlt++;
3299 if (txstat & ATW_TXSTAT_TRT)
3300 sc->sc_stats.ts_tx_trt++;
3301 if (txstat & ATW_TXSTAT_TRO)
3302 sc->sc_stats.ts_tx_tro++;
3303 if (txstat & ATW_TXSTAT_SOFBR) {
3304 sc->sc_stats.ts_tx_sofbr++;
3305 }
3306
3307 if ((txstat & ATW_TXSTAT_ES) == 0)
3308 ifp->if_collisions +=
3309 MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK);
3310 else
3311 ifp->if_oerrors++;
3312
3313 ifp->if_opackets++;
3314 }
3315
3316 /*
3317 * If there are no more pending transmissions, cancel the watchdog
3318 * timer.
3319 */
3320 if (txs == NULL) {
3321 KASSERT((ifp->if_flags & IFF_OACTIVE) == 0);
3322 sc->sc_tx_timer = 0;
3323 }
3324 #undef TXSTAT_ERRMASK
3325 #undef TXSTAT_FMT
3326 }
3327
3328 /*
3329 * atw_watchdog: [ifnet interface function]
3330 *
3331 * Watchdog timer handler.
3332 */
3333 void
3334 atw_watchdog(struct ifnet *ifp)
3335 {
3336 struct atw_softc *sc = ifp->if_softc;
3337 struct ieee80211com *ic = &sc->sc_ic;
3338
3339 ifp->if_timer = 0;
3340 if (ATW_IS_ENABLED(sc) == 0)
3341 return;
3342
3343 if (sc->sc_rescan_timer) {
3344 if (--sc->sc_rescan_timer == 0)
3345 (void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3346 }
3347 if (sc->sc_tx_timer) {
3348 if (--sc->sc_tx_timer == 0 &&
3349 !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3350 printf("%s: transmit timeout\n", ifp->if_xname);
3351 ifp->if_oerrors++;
3352 (void)atw_init(ifp);
3353 atw_start(ifp);
3354 }
3355 }
3356 if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3357 ifp->if_timer = 1;
3358 ieee80211_watchdog(ic);
3359 }
3360
3361 #ifdef ATW_DEBUG
3362 static void
3363 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3364 {
3365 struct atw_softc *sc = ifp->if_softc;
3366 struct mbuf *m;
3367 int i, noctets = 0;
3368
3369 printf("%s: %d-byte packet\n", sc->sc_dev.dv_xname,
3370 m0->m_pkthdr.len);
3371
3372 for (m = m0; m; m = m->m_next) {
3373 if (m->m_len == 0)
3374 continue;
3375 for (i = 0; i < m->m_len; i++) {
3376 printf(" %02x", ((u_int8_t*)m->m_data)[i]);
3377 if (++noctets % 24 == 0)
3378 printf("\n");
3379 }
3380 }
3381 printf("%s%s: %d bytes emitted\n",
3382 (noctets % 24 != 0) ? "\n" : "", sc->sc_dev.dv_xname, noctets);
3383 }
3384 #endif /* ATW_DEBUG */
3385
3386 /*
3387 * atw_start: [ifnet interface function]
3388 *
3389 * Start packet transmission on the interface.
3390 */
3391 void
3392 atw_start(struct ifnet *ifp)
3393 {
3394 struct atw_softc *sc = ifp->if_softc;
3395 struct ieee80211_key *k;
3396 struct ieee80211com *ic = &sc->sc_ic;
3397 struct ieee80211_node *ni;
3398 struct ieee80211_frame_min *whm;
3399 struct ieee80211_frame *wh;
3400 struct atw_frame *hh;
3401 struct mbuf *m0, *m;
3402 struct atw_txsoft *txs, *last_txs;
3403 struct atw_txdesc *txd;
3404 int do_encrypt, npkt, rate;
3405 bus_dmamap_t dmamap;
3406 int ctl, error, firsttx, nexttx, lasttx = -1, first, ofree, seg;
3407
3408 DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3409 sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
3410
3411 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3412 return;
3413
3414 /*
3415 * Remember the previous number of free descriptors and
3416 * the first descriptor we'll use.
3417 */
3418 ofree = sc->sc_txfree;
3419 firsttx = sc->sc_txnext;
3420
3421 DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3422 sc->sc_dev.dv_xname, ofree, firsttx));
3423
3424 /*
3425 * Loop through the send queue, setting up transmit descriptors
3426 * until we drain the queue, or use up all available transmit
3427 * descriptors.
3428 */
3429 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3430 sc->sc_txfree != 0) {
3431
3432 /*
3433 * Grab a packet off the management queue, if it
3434 * is not empty. Otherwise, from the data queue.
3435 */
3436 IF_DEQUEUE(&ic->ic_mgtq, m0);
3437 if (m0 != NULL) {
3438 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
3439 m0->m_pkthdr.rcvif = NULL;
3440 } else if (ic->ic_state != IEEE80211_S_RUN)
3441 break; /* send no data until associated */
3442 else {
3443 IFQ_DEQUEUE(&ifp->if_snd, m0);
3444 if (m0 == NULL)
3445 break;
3446 #if NBPFILTER > 0
3447 if (ifp->if_bpf != NULL)
3448 bpf_mtap(ifp->if_bpf, m0);
3449 #endif /* NBPFILTER > 0 */
3450 ni = ieee80211_find_txnode(ic,
3451 mtod(m0, struct ether_header *)->ether_dhost);
3452 if (ni == NULL) {
3453 ifp->if_oerrors++;
3454 break;
3455 }
3456 if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
3457 ieee80211_free_node(ni);
3458 ifp->if_oerrors++;
3459 break;
3460 }
3461 }
3462
3463 rate = MAX(ieee80211_get_rate(ic), 2);
3464
3465 whm = mtod(m0, struct ieee80211_frame_min *);
3466
3467 do_encrypt = ((whm->i_fc[1] & IEEE80211_FC1_WEP) != 0) ? 1 : 0;
3468 if (do_encrypt)
3469 k = &ic->ic_nw_keys[ic->ic_def_txkey];
3470 else
3471 k = NULL;
3472
3473 if (ieee80211_compute_duration(whm, k, m0->m_pkthdr.len,
3474 ic->ic_flags, ic->ic_fragthreshold, rate,
3475 &txs->txs_d0, &txs->txs_dn, &npkt, 0) == -1) {
3476 DPRINTF2(sc, ("%s: fail compute duration\n", __func__));
3477 m_freem(m0);
3478 break;
3479 }
3480
3481 /* XXX Misleading if fragmentation is enabled. Better
3482 * to fragment in software?
3483 */
3484 *(uint16_t *)whm->i_dur = htole16(txs->txs_d0.d_rts_dur);
3485
3486 #if NBPFILTER > 0
3487 /*
3488 * Pass the packet to any BPF listeners.
3489 */
3490 if (ic->ic_rawbpf != NULL)
3491 bpf_mtap((caddr_t)ic->ic_rawbpf, m0);
3492
3493 if (sc->sc_radiobpf != NULL) {
3494 struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
3495
3496 tap->at_rate = rate;
3497 tap->at_chan_freq = ic->ic_curchan->ic_freq;
3498 tap->at_chan_flags = ic->ic_curchan->ic_flags;
3499
3500 /* TBD tap->at_flags */
3501
3502 bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3503 tap->at_ihdr.it_len, m0);
3504 }
3505 #endif /* NBPFILTER > 0 */
3506
3507 M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3508
3509 if (ni != NULL)
3510 ieee80211_free_node(ni);
3511
3512 if (m0 == NULL) {
3513 ifp->if_oerrors++;
3514 break;
3515 }
3516
3517 /* just to make sure. */
3518 m0 = m_pullup(m0, sizeof(struct atw_frame));
3519
3520 if (m0 == NULL) {
3521 ifp->if_oerrors++;
3522 break;
3523 }
3524
3525 hh = mtod(m0, struct atw_frame *);
3526 wh = &hh->atw_ihdr;
3527
3528 /* Copy everything we need from the 802.11 header:
3529 * Frame Control; address 1, address 3, or addresses
3530 * 3 and 4. NIC fills in BSSID, SA.
3531 */
3532 if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3533 if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3534 panic("%s: illegal WDS frame",
3535 sc->sc_dev.dv_xname);
3536 memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3537 } else
3538 memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3539
3540 *(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
3541
3542 /* initialize remaining Tx parameters */
3543 memset(&hh->u, 0, sizeof(hh->u));
3544
3545 hh->atw_rate = rate * 5;
3546 /* XXX this could be incorrect if M_FCS. _encap should
3547 * probably strip FCS just in case it sticks around in
3548 * bridged packets.
3549 */
3550 hh->atw_service = 0x00; /* XXX guess */
3551 hh->atw_paylen = htole16(m0->m_pkthdr.len -
3552 sizeof(struct atw_frame));
3553
3554 hh->atw_fragthr = htole16(ic->ic_fragthreshold);
3555 hh->atw_rtylmt = 3;
3556 hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3557 if (do_encrypt) {
3558 hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
3559 hh->atw_keyid = ic->ic_def_txkey;
3560 }
3561
3562 hh->atw_head_plcplen = htole16(txs->txs_d0.d_plcp_len);
3563 hh->atw_tail_plcplen = htole16(txs->txs_dn.d_plcp_len);
3564 if (txs->txs_d0.d_residue)
3565 hh->atw_head_plcplen |= htole16(0x8000);
3566 if (txs->txs_dn.d_residue)
3567 hh->atw_tail_plcplen |= htole16(0x8000);
3568 hh->atw_head_dur = htole16(txs->txs_d0.d_rts_dur);
3569 hh->atw_tail_dur = htole16(txs->txs_dn.d_rts_dur);
3570
3571 /* never fragment multicast frames */
3572 if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
3573 hh->atw_fragthr = htole16(ic->ic_fragthreshold);
3574 } else if (sc->sc_flags & ATWF_RTSCTS) {
3575 hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3576 }
3577
3578 #ifdef ATW_DEBUG
3579 hh->atw_fragnum = 0;
3580
3581 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3582 printf("%s: dst = %s, rate = 0x%02x, "
3583 "service = 0x%02x, paylen = 0x%04x\n",
3584 sc->sc_dev.dv_xname, ether_sprintf(hh->atw_dst),
3585 hh->atw_rate, hh->atw_service, hh->atw_paylen);
3586
3587 printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3588 "dur1 = 0x%04x, dur2 = 0x%04x, "
3589 "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3590 sc->sc_dev.dv_xname, hh->atw_fc[0], hh->atw_fc[1],
3591 hh->atw_tail_plcplen, hh->atw_head_plcplen,
3592 hh->atw_tail_dur, hh->atw_head_dur);
3593
3594 printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3595 "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3596 sc->sc_dev.dv_xname, hh->atw_hdrctl,
3597 hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3598
3599 printf("%s: keyid = %d\n",
3600 sc->sc_dev.dv_xname, hh->atw_keyid);
3601
3602 atw_dump_pkt(ifp, m0);
3603 }
3604 #endif /* ATW_DEBUG */
3605
3606 dmamap = txs->txs_dmamap;
3607
3608 /*
3609 * Load the DMA map. Copy and try (once) again if the packet
3610 * didn't fit in the alloted number of segments.
3611 */
3612 for (first = 1;
3613 (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3614 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
3615 first = 0) {
3616 MGETHDR(m, M_DONTWAIT, MT_DATA);
3617 if (m == NULL) {
3618 printf("%s: unable to allocate Tx mbuf\n",
3619 sc->sc_dev.dv_xname);
3620 break;
3621 }
3622 if (m0->m_pkthdr.len > MHLEN) {
3623 MCLGET(m, M_DONTWAIT);
3624 if ((m->m_flags & M_EXT) == 0) {
3625 printf("%s: unable to allocate Tx "
3626 "cluster\n", sc->sc_dev.dv_xname);
3627 m_freem(m);
3628 break;
3629 }
3630 }
3631 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
3632 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3633 m_freem(m0);
3634 m0 = m;
3635 m = NULL;
3636 }
3637 if (error != 0) {
3638 printf("%s: unable to load Tx buffer, "
3639 "error = %d\n", sc->sc_dev.dv_xname, error);
3640 m_freem(m0);
3641 break;
3642 }
3643
3644 /*
3645 * Ensure we have enough descriptors free to describe
3646 * the packet.
3647 */
3648 if (dmamap->dm_nsegs > sc->sc_txfree) {
3649 /*
3650 * Not enough free descriptors to transmit
3651 * this packet. Unload the DMA map and
3652 * drop the packet. Notify the upper layer
3653 * that there are no more slots left.
3654 *
3655 * XXX We could allocate an mbuf and copy, but
3656 * XXX it is worth it?
3657 */
3658 bus_dmamap_unload(sc->sc_dmat, dmamap);
3659 m_freem(m0);
3660 break;
3661 }
3662
3663 /*
3664 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3665 */
3666
3667 /* Sync the DMA map. */
3668 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3669 BUS_DMASYNC_PREWRITE);
3670
3671 /* XXX arbitrary retry limit; 8 because I have seen it in
3672 * use already and maybe 0 means "no tries" !
3673 */
3674 ctl = htole32(LSHIFT(8, ATW_TXCTL_TL_MASK));
3675
3676 DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3677 sc->sc_dev.dv_xname, rate * 5));
3678 ctl |= htole32(LSHIFT(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3679
3680 /*
3681 * Initialize the transmit descriptors.
3682 */
3683 for (nexttx = sc->sc_txnext, seg = 0;
3684 seg < dmamap->dm_nsegs;
3685 seg++, nexttx = ATW_NEXTTX(nexttx)) {
3686 /*
3687 * If this is the first descriptor we're
3688 * enqueueing, don't set the OWN bit just
3689 * yet. That could cause a race condition.
3690 * We'll do it below.
3691 */
3692 txd = &sc->sc_txdescs[nexttx];
3693 txd->at_ctl = ctl |
3694 ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3695
3696 txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3697 txd->at_flags =
3698 htole32(LSHIFT(dmamap->dm_segs[seg].ds_len,
3699 ATW_TXFLAG_TBS1_MASK)) |
3700 ((nexttx == (ATW_NTXDESC - 1))
3701 ? htole32(ATW_TXFLAG_TER) : 0);
3702 lasttx = nexttx;
3703 }
3704
3705 IASSERT(lasttx != -1, ("bad lastx"));
3706 /* Set `first segment' and `last segment' appropriately. */
3707 sc->sc_txdescs[sc->sc_txnext].at_flags |=
3708 htole32(ATW_TXFLAG_FS);
3709 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3710
3711 #ifdef ATW_DEBUG
3712 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3713 printf(" txsoft %p transmit chain:\n", txs);
3714 for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3715 printf(" descriptor %d:\n", seg);
3716 printf(" at_ctl: 0x%08x\n",
3717 le32toh(sc->sc_txdescs[seg].at_ctl));
3718 printf(" at_flags: 0x%08x\n",
3719 le32toh(sc->sc_txdescs[seg].at_flags));
3720 printf(" at_buf1: 0x%08x\n",
3721 le32toh(sc->sc_txdescs[seg].at_buf1));
3722 printf(" at_buf2: 0x%08x\n",
3723 le32toh(sc->sc_txdescs[seg].at_buf2));
3724 if (seg == lasttx)
3725 break;
3726 }
3727 }
3728 #endif
3729
3730 /* Sync the descriptors we're using. */
3731 ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3732 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3733
3734 /*
3735 * Store a pointer to the packet so we can free it later,
3736 * and remember what txdirty will be once the packet is
3737 * done.
3738 */
3739 txs->txs_mbuf = m0;
3740 txs->txs_firstdesc = sc->sc_txnext;
3741 txs->txs_lastdesc = lasttx;
3742 txs->txs_ndescs = dmamap->dm_nsegs;
3743
3744 /* Advance the tx pointer. */
3745 sc->sc_txfree -= dmamap->dm_nsegs;
3746 sc->sc_txnext = nexttx;
3747
3748 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3749 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3750
3751 last_txs = txs;
3752 }
3753
3754 if (sc->sc_txfree != ofree) {
3755 DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3756 sc->sc_dev.dv_xname, lasttx, firsttx));
3757 /*
3758 * Cause a transmit interrupt to happen on the
3759 * last packet we enqueued.
3760 */
3761 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3762 ATW_CDTXSYNC(sc, lasttx, 1,
3763 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3764
3765 /*
3766 * The entire packet chain is set up. Give the
3767 * first descriptor to the chip now.
3768 */
3769 sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3770 ATW_CDTXSYNC(sc, firsttx, 1,
3771 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3772
3773 /* Wake up the transmitter. */
3774 ATW_WRITE(sc, ATW_TDR, 0x1);
3775
3776 if (txs == NULL || sc->sc_txfree == 0)
3777 ifp->if_flags |= IFF_OACTIVE;
3778
3779 /* Set a watchdog timer in case the chip flakes out. */
3780 sc->sc_tx_timer = 5;
3781 ifp->if_timer = 1;
3782 }
3783 }
3784
3785 /*
3786 * atw_power:
3787 *
3788 * Power management (suspend/resume) hook.
3789 */
3790 void
3791 atw_power(int why, void *arg)
3792 {
3793 struct atw_softc *sc = arg;
3794 struct ifnet *ifp = &sc->sc_if;
3795 int s;
3796
3797 DPRINTF(sc, ("%s: atw_power(%d,)\n", sc->sc_dev.dv_xname, why));
3798
3799 s = splnet();
3800 switch (why) {
3801 case PWR_STANDBY:
3802 /* XXX do nothing. */
3803 break;
3804 case PWR_SUSPEND:
3805 atw_stop(ifp, 0);
3806 if (sc->sc_power != NULL)
3807 (*sc->sc_power)(sc, why);
3808 break;
3809 case PWR_RESUME:
3810 if (ifp->if_flags & IFF_UP) {
3811 if (sc->sc_power != NULL)
3812 (*sc->sc_power)(sc, why);
3813 atw_init(ifp);
3814 }
3815 break;
3816 case PWR_SOFTSUSPEND:
3817 case PWR_SOFTSTANDBY:
3818 case PWR_SOFTRESUME:
3819 break;
3820 }
3821 splx(s);
3822 }
3823
3824 /*
3825 * atw_ioctl: [ifnet interface function]
3826 *
3827 * Handle control requests from the operator.
3828 */
3829 int
3830 atw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3831 {
3832 struct atw_softc *sc = ifp->if_softc;
3833 struct ifreq *ifr = (struct ifreq *)data;
3834 int s, error = 0;
3835
3836 /* XXX monkey see, monkey do. comes from wi_ioctl. */
3837 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
3838 return ENXIO;
3839
3840 s = splnet();
3841
3842 switch (cmd) {
3843 case SIOCSIFFLAGS:
3844 if (ifp->if_flags & IFF_UP) {
3845 if (ATW_IS_ENABLED(sc)) {
3846 /*
3847 * To avoid rescanning another access point,
3848 * do not call atw_init() here. Instead,
3849 * only reflect media settings.
3850 */
3851 atw_filter_setup(sc);
3852 } else
3853 error = atw_init(ifp);
3854 } else if (ATW_IS_ENABLED(sc))
3855 atw_stop(ifp, 1);
3856 break;
3857 case SIOCADDMULTI:
3858 case SIOCDELMULTI:
3859 error = (cmd == SIOCADDMULTI) ?
3860 ether_addmulti(ifr, &sc->sc_ec) :
3861 ether_delmulti(ifr, &sc->sc_ec);
3862 if (error == ENETRESET) {
3863 if (ifp->if_flags & IFF_RUNNING)
3864 atw_filter_setup(sc); /* do not rescan */
3865 error = 0;
3866 }
3867 break;
3868 default:
3869 error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
3870 if (error == ENETRESET || error == ERESTART) {
3871 if (is_running(ifp))
3872 error = atw_init(ifp);
3873 else
3874 error = 0;
3875 }
3876 break;
3877 }
3878
3879 /* Try to get more packets going. */
3880 if (ATW_IS_ENABLED(sc))
3881 atw_start(ifp);
3882
3883 splx(s);
3884 return (error);
3885 }
3886
3887 static int
3888 atw_media_change(struct ifnet *ifp)
3889 {
3890 int error;
3891
3892 error = ieee80211_media_change(ifp);
3893 if (error == ENETRESET) {
3894 if (is_running(ifp))
3895 error = atw_init(ifp);
3896 else
3897 error = 0;
3898 }
3899 return error;
3900 }
3901