atw.c revision 1.107 1 /* $NetBSD: atw.c,v 1.107 2006/02/18 22:12:01 dyoung Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.107 2006/02/18 22:12:01 dyoung Exp $");
45
46 #include "bpfilter.h"
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/callout.h>
51 #include <sys/mbuf.h>
52 #include <sys/malloc.h>
53 #include <sys/kernel.h>
54 #include <sys/socket.h>
55 #include <sys/ioctl.h>
56 #include <sys/errno.h>
57 #include <sys/device.h>
58 #include <sys/time.h>
59
60 #include <machine/endian.h>
61
62 #include <uvm/uvm_extern.h>
63
64 #include <net/if.h>
65 #include <net/if_dl.h>
66 #include <net/if_media.h>
67 #include <net/if_ether.h>
68
69 #include <net80211/ieee80211_netbsd.h>
70 #include <net80211/ieee80211_var.h>
71 #include <net80211/ieee80211_radiotap.h>
72
73 #if NBPFILTER > 0
74 #include <net/bpf.h>
75 #endif
76
77 #include <machine/bus.h>
78 #include <machine/intr.h>
79
80 #include <dev/ic/atwreg.h>
81 #include <dev/ic/rf3000reg.h>
82 #include <dev/ic/si4136reg.h>
83 #include <dev/ic/atwvar.h>
84 #include <dev/ic/smc93cx6var.h>
85
86 /* XXX TBD open questions
87 *
88 *
89 * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
90 * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
91 * handle this for me?
92 *
93 */
94 /* device attachment
95 *
96 * print TOFS[012]
97 *
98 * device initialization
99 *
100 * clear ATW_FRCTL_MAXPSP to disable max power saving
101 * set ATW_TXBR_ALCUPDATE to enable ALC
102 * set TOFS[012]? (hope not)
103 * disable rx/tx
104 * set ATW_PAR_SWR (software reset)
105 * wait for ATW_PAR_SWR clear
106 * disable interrupts
107 * ack status register
108 * enable interrupts
109 *
110 * rx/tx initialization
111 *
112 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
113 * allocate and init descriptor rings
114 * write ATW_PAR_DSL (descriptor skip length)
115 * write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
116 * write ATW_NAR_SQ for one/both transmit descriptor rings
117 * write ATW_NAR_SQ for one/both transmit descriptor rings
118 * enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
119 *
120 * rx/tx end
121 *
122 * stop DMA
123 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
124 * flush tx w/ ATW_NAR_HF
125 *
126 * scan
127 *
128 * initialize rx/tx
129 *
130 * BSS join: (re)association response
131 *
132 * set ATW_FRCTL_AID
133 *
134 * optimizations ???
135 *
136 */
137
138 #define ATW_REFSLAVE /* slavishly do what the reference driver does */
139
140 #define VOODOO_DUR_11_ROUNDING 0x01 /* necessary */
141 #define VOODOO_DUR_2_4_SPECIALCASE 0x02 /* NOT necessary */
142 int atw_voodoo = VOODOO_DUR_11_ROUNDING;
143
144 int atw_pseudo_milli = 1;
145 int atw_magic_delay1 = 100 * 1000;
146 int atw_magic_delay2 = 100 * 1000;
147 /* more magic multi-millisecond delays (units: microseconds) */
148 int atw_nar_delay = 20 * 1000;
149 int atw_magic_delay4 = 10 * 1000;
150 int atw_rf_delay1 = 10 * 1000;
151 int atw_rf_delay2 = 5 * 1000;
152 int atw_plcphd_delay = 2 * 1000;
153 int atw_bbp_io_enable_delay = 20 * 1000;
154 int atw_bbp_io_disable_delay = 2 * 1000;
155 int atw_writewep_delay = 1000;
156 int atw_beacon_len_adjust = 4;
157 int atw_dwelltime = 200;
158 int atw_xindiv2 = 0;
159
160 #ifdef ATW_DEBUG
161 int atw_debug = 0;
162
163 #define ATW_DPRINTF(x) if (atw_debug > 0) printf x
164 #define ATW_DPRINTF2(x) if (atw_debug > 1) printf x
165 #define ATW_DPRINTF3(x) if (atw_debug > 2) printf x
166 #define DPRINTF(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) printf x
167 #define DPRINTF2(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
168 #define DPRINTF3(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
169
170 static void atw_dump_pkt(struct ifnet *, struct mbuf *);
171 static void atw_print_regs(struct atw_softc *, const char *);
172
173 /* Note well: I never got atw_rf3000_read or atw_si4126_read to work. */
174 # ifdef ATW_BBPDEBUG
175 static void atw_rf3000_print(struct atw_softc *);
176 static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
177 # endif /* ATW_BBPDEBUG */
178
179 # ifdef ATW_SYNDEBUG
180 static void atw_si4126_print(struct atw_softc *);
181 static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
182 # endif /* ATW_SYNDEBUG */
183
184 #else
185 #define ATW_DPRINTF(x)
186 #define ATW_DPRINTF2(x)
187 #define ATW_DPRINTF3(x)
188 #define DPRINTF(sc, x) /* nothing */
189 #define DPRINTF2(sc, x) /* nothing */
190 #define DPRINTF3(sc, x) /* nothing */
191 #endif
192
193 /* ifnet methods */
194 int atw_init(struct ifnet *);
195 int atw_ioctl(struct ifnet *, u_long, caddr_t);
196 void atw_start(struct ifnet *);
197 void atw_stop(struct ifnet *, int);
198 void atw_watchdog(struct ifnet *);
199
200 /* Device attachment */
201 void atw_attach(struct atw_softc *);
202 int atw_detach(struct atw_softc *);
203
204 /* Rx/Tx process */
205 int atw_add_rxbuf(struct atw_softc *, int);
206 void atw_idle(struct atw_softc *, u_int32_t);
207 void atw_rxdrain(struct atw_softc *);
208 void atw_txdrain(struct atw_softc *);
209
210 /* Device (de)activation and power state */
211 void atw_disable(struct atw_softc *);
212 int atw_enable(struct atw_softc *);
213 void atw_power(int, void *);
214 void atw_reset(struct atw_softc *);
215 void atw_shutdown(void *);
216
217 /* Interrupt handlers */
218 void atw_linkintr(struct atw_softc *, u_int32_t);
219 void atw_rxintr(struct atw_softc *);
220 void atw_txintr(struct atw_softc *);
221
222 /* 802.11 state machine */
223 static int atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
224 static void atw_next_scan(void *);
225 static void atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
226 struct ieee80211_node *, int, int, u_int32_t);
227 static int atw_tune(struct atw_softc *);
228
229 /* Device initialization */
230 static void atw_bbp_io_init(struct atw_softc *);
231 static void atw_cfp_init(struct atw_softc *);
232 static void atw_cmdr_init(struct atw_softc *);
233 static void atw_ifs_init(struct atw_softc *);
234 static void atw_nar_init(struct atw_softc *);
235 static void atw_response_times_init(struct atw_softc *);
236 static void atw_rf_reset(struct atw_softc *);
237 static void atw_test1_init(struct atw_softc *);
238 static void atw_tofs0_init(struct atw_softc *);
239 static void atw_tofs2_init(struct atw_softc *);
240 static void atw_txlmt_init(struct atw_softc *);
241 static void atw_wcsr_init(struct atw_softc *);
242
243 /* Key management */
244 static int atw_key_delete(struct ieee80211com *, const struct ieee80211_key *);
245 static int atw_key_set(struct ieee80211com *, const struct ieee80211_key *,
246 const u_int8_t[IEEE80211_ADDR_LEN]);
247 static void atw_key_update_begin(struct ieee80211com *);
248 static void atw_key_update_end(struct ieee80211com *);
249
250 /* RAM/ROM utilities */
251 static void atw_clear_sram(struct atw_softc *);
252 static void atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
253 static int atw_read_srom(struct atw_softc *);
254
255 /* BSS setup */
256 static void atw_predict_beacon(struct atw_softc *);
257 static void atw_start_beacon(struct atw_softc *, int);
258 static void atw_write_bssid(struct atw_softc *);
259 static void atw_write_ssid(struct atw_softc *);
260 static void atw_write_sup_rates(struct atw_softc *);
261 static void atw_write_wep(struct atw_softc *);
262
263 /* Media */
264 static int atw_media_change(struct ifnet *);
265
266 static void atw_filter_setup(struct atw_softc *);
267
268 /* 802.11 utilities */
269 static uint64_t atw_get_tsft(struct atw_softc *);
270 static inline uint32_t atw_last_even_tsft(uint32_t, uint32_t,
271 uint32_t);
272 static struct ieee80211_node *atw_node_alloc(struct ieee80211_node_table *);
273 static void atw_node_free(struct ieee80211_node *);
274
275 /*
276 * Tuner/transceiver/modem
277 */
278 static void atw_bbp_io_enable(struct atw_softc *, int);
279
280 /* RFMD RF3000 Baseband Processor */
281 static int atw_rf3000_init(struct atw_softc *);
282 static int atw_rf3000_tune(struct atw_softc *, u_int);
283 static int atw_rf3000_write(struct atw_softc *, u_int, u_int);
284
285 /* Silicon Laboratories Si4126 RF/IF Synthesizer */
286 static void atw_si4126_tune(struct atw_softc *, u_int);
287 static void atw_si4126_write(struct atw_softc *, u_int, u_int);
288
289 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
290 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
291
292 const char *atw_tx_state[] = {
293 "STOPPED",
294 "RUNNING - read descriptor",
295 "RUNNING - transmitting",
296 "RUNNING - filling fifo", /* XXX */
297 "SUSPENDED",
298 "RUNNING -- write descriptor",
299 "RUNNING -- write last descriptor",
300 "RUNNING - fifo full"
301 };
302
303 const char *atw_rx_state[] = {
304 "STOPPED",
305 "RUNNING - read descriptor",
306 "RUNNING - check this packet, pre-fetch next",
307 "RUNNING - wait for reception",
308 "SUSPENDED",
309 "RUNNING - write descriptor",
310 "RUNNING - flush fifo",
311 "RUNNING - fifo drain"
312 };
313
314 static inline int
315 is_running(struct ifnet *ifp)
316 {
317 return (ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP);
318 }
319
320 int
321 atw_activate(struct device *self, enum devact act)
322 {
323 struct atw_softc *sc = (struct atw_softc *)self;
324 int rv = 0, s;
325
326 s = splnet();
327 switch (act) {
328 case DVACT_ACTIVATE:
329 rv = EOPNOTSUPP;
330 break;
331
332 case DVACT_DEACTIVATE:
333 if_deactivate(&sc->sc_if);
334 break;
335 }
336 splx(s);
337 return rv;
338 }
339
340 /*
341 * atw_enable:
342 *
343 * Enable the ADM8211 chip.
344 */
345 int
346 atw_enable(struct atw_softc *sc)
347 {
348
349 if (ATW_IS_ENABLED(sc) == 0) {
350 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
351 printf("%s: device enable failed\n",
352 sc->sc_dev.dv_xname);
353 return (EIO);
354 }
355 sc->sc_flags |= ATWF_ENABLED;
356 /* Power may have been removed, and WEP keys thus
357 * reset.
358 */
359 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
360 }
361 return (0);
362 }
363
364 /*
365 * atw_disable:
366 *
367 * Disable the ADM8211 chip.
368 */
369 void
370 atw_disable(struct atw_softc *sc)
371 {
372 if (!ATW_IS_ENABLED(sc))
373 return;
374 if (sc->sc_disable != NULL)
375 (*sc->sc_disable)(sc);
376 sc->sc_flags &= ~ATWF_ENABLED;
377 }
378
379 /* Returns -1 on failure. */
380 static int
381 atw_read_srom(struct atw_softc *sc)
382 {
383 struct seeprom_descriptor sd;
384 uint32_t test0, fail_bits;
385
386 (void)memset(&sd, 0, sizeof(sd));
387
388 test0 = ATW_READ(sc, ATW_TEST0);
389
390 switch (sc->sc_rev) {
391 case ATW_REVISION_BA:
392 case ATW_REVISION_CA:
393 fail_bits = ATW_TEST0_EPNE;
394 break;
395 default:
396 fail_bits = ATW_TEST0_EPNE|ATW_TEST0_EPSNM;
397 break;
398 }
399 if ((test0 & fail_bits) != 0) {
400 printf("%s: bad or missing/bad SROM\n", sc->sc_dev.dv_xname);
401 return -1;
402 }
403
404 switch (test0 & ATW_TEST0_EPTYP_MASK) {
405 case ATW_TEST0_EPTYP_93c66:
406 ATW_DPRINTF(("%s: 93c66 SROM\n", sc->sc_dev.dv_xname));
407 sc->sc_sromsz = 512;
408 sd.sd_chip = C56_66;
409 break;
410 case ATW_TEST0_EPTYP_93c46:
411 ATW_DPRINTF(("%s: 93c46 SROM\n", sc->sc_dev.dv_xname));
412 sc->sc_sromsz = 128;
413 sd.sd_chip = C46;
414 break;
415 default:
416 printf("%s: unknown SROM type %d\n", sc->sc_dev.dv_xname,
417 MASK_AND_RSHIFT(test0, ATW_TEST0_EPTYP_MASK));
418 return -1;
419 }
420
421 sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
422
423 if (sc->sc_srom == NULL) {
424 printf("%s: unable to allocate SROM buffer\n",
425 sc->sc_dev.dv_xname);
426 return -1;
427 }
428
429 (void)memset(sc->sc_srom, 0, sc->sc_sromsz);
430
431 /* ADM8211 has a single 32-bit register for controlling the
432 * 93cx6 SROM. Bit SRS enables the serial port. There is no
433 * "ready" bit. The ADM8211 input/output sense is the reverse
434 * of read_seeprom's.
435 */
436 sd.sd_tag = sc->sc_st;
437 sd.sd_bsh = sc->sc_sh;
438 sd.sd_regsize = 4;
439 sd.sd_control_offset = ATW_SPR;
440 sd.sd_status_offset = ATW_SPR;
441 sd.sd_dataout_offset = ATW_SPR;
442 sd.sd_CK = ATW_SPR_SCLK;
443 sd.sd_CS = ATW_SPR_SCS;
444 sd.sd_DI = ATW_SPR_SDO;
445 sd.sd_DO = ATW_SPR_SDI;
446 sd.sd_MS = ATW_SPR_SRS;
447 sd.sd_RDY = 0;
448
449 if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
450 printf("%s: could not read SROM\n", sc->sc_dev.dv_xname);
451 free(sc->sc_srom, M_DEVBUF);
452 return -1;
453 }
454 #ifdef ATW_DEBUG
455 {
456 int i;
457 ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
458 for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
459 if (((i % 8) == 0) && (i != 0)) {
460 ATW_DPRINTF(("\n\t"));
461 }
462 ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
463 }
464 ATW_DPRINTF(("\n"));
465 }
466 #endif /* ATW_DEBUG */
467 return 0;
468 }
469
470 #ifdef ATW_DEBUG
471 static void
472 atw_print_regs(struct atw_softc *sc, const char *where)
473 {
474 #define PRINTREG(sc, reg) \
475 ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
476 sc->sc_dev.dv_xname, reg, ATW_READ(sc, reg)))
477
478 ATW_DPRINTF2(("%s: %s\n", sc->sc_dev.dv_xname, where));
479
480 PRINTREG(sc, ATW_PAR);
481 PRINTREG(sc, ATW_FRCTL);
482 PRINTREG(sc, ATW_TDR);
483 PRINTREG(sc, ATW_WTDP);
484 PRINTREG(sc, ATW_RDR);
485 PRINTREG(sc, ATW_WRDP);
486 PRINTREG(sc, ATW_RDB);
487 PRINTREG(sc, ATW_CSR3A);
488 PRINTREG(sc, ATW_TDBD);
489 PRINTREG(sc, ATW_TDBP);
490 PRINTREG(sc, ATW_STSR);
491 PRINTREG(sc, ATW_CSR5A);
492 PRINTREG(sc, ATW_NAR);
493 PRINTREG(sc, ATW_CSR6A);
494 PRINTREG(sc, ATW_IER);
495 PRINTREG(sc, ATW_CSR7A);
496 PRINTREG(sc, ATW_LPC);
497 PRINTREG(sc, ATW_TEST1);
498 PRINTREG(sc, ATW_SPR);
499 PRINTREG(sc, ATW_TEST0);
500 PRINTREG(sc, ATW_WCSR);
501 PRINTREG(sc, ATW_WPDR);
502 PRINTREG(sc, ATW_GPTMR);
503 PRINTREG(sc, ATW_GPIO);
504 PRINTREG(sc, ATW_BBPCTL);
505 PRINTREG(sc, ATW_SYNCTL);
506 PRINTREG(sc, ATW_PLCPHD);
507 PRINTREG(sc, ATW_MMIWADDR);
508 PRINTREG(sc, ATW_MMIRADDR1);
509 PRINTREG(sc, ATW_MMIRADDR2);
510 PRINTREG(sc, ATW_TXBR);
511 PRINTREG(sc, ATW_CSR15A);
512 PRINTREG(sc, ATW_ALCSTAT);
513 PRINTREG(sc, ATW_TOFS2);
514 PRINTREG(sc, ATW_CMDR);
515 PRINTREG(sc, ATW_PCIC);
516 PRINTREG(sc, ATW_PMCSR);
517 PRINTREG(sc, ATW_PAR0);
518 PRINTREG(sc, ATW_PAR1);
519 PRINTREG(sc, ATW_MAR0);
520 PRINTREG(sc, ATW_MAR1);
521 PRINTREG(sc, ATW_ATIMDA0);
522 PRINTREG(sc, ATW_ABDA1);
523 PRINTREG(sc, ATW_BSSID0);
524 PRINTREG(sc, ATW_TXLMT);
525 PRINTREG(sc, ATW_MIBCNT);
526 PRINTREG(sc, ATW_BCNT);
527 PRINTREG(sc, ATW_TSFTH);
528 PRINTREG(sc, ATW_TSC);
529 PRINTREG(sc, ATW_SYNRF);
530 PRINTREG(sc, ATW_BPLI);
531 PRINTREG(sc, ATW_CAP0);
532 PRINTREG(sc, ATW_CAP1);
533 PRINTREG(sc, ATW_RMD);
534 PRINTREG(sc, ATW_CFPP);
535 PRINTREG(sc, ATW_TOFS0);
536 PRINTREG(sc, ATW_TOFS1);
537 PRINTREG(sc, ATW_IFST);
538 PRINTREG(sc, ATW_RSPT);
539 PRINTREG(sc, ATW_TSFTL);
540 PRINTREG(sc, ATW_WEPCTL);
541 PRINTREG(sc, ATW_WESK);
542 PRINTREG(sc, ATW_WEPCNT);
543 PRINTREG(sc, ATW_MACTEST);
544 PRINTREG(sc, ATW_FER);
545 PRINTREG(sc, ATW_FEMR);
546 PRINTREG(sc, ATW_FPSR);
547 PRINTREG(sc, ATW_FFER);
548 #undef PRINTREG
549 }
550 #endif /* ATW_DEBUG */
551
552 /*
553 * Finish attaching an ADMtek ADM8211 MAC. Called by bus-specific front-end.
554 */
555 void
556 atw_attach(struct atw_softc *sc)
557 {
558 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
559 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
560 };
561 struct ieee80211com *ic = &sc->sc_ic;
562 struct ifnet *ifp = &sc->sc_if;
563 int country_code, error, i, nrate, srom_major;
564 u_int32_t reg;
565 static const char *type_strings[] = {"Intersil (not supported)",
566 "RFMD", "Marvel (not supported)"};
567
568 sc->sc_txth = atw_txthresh_tab_lo;
569
570 SIMPLEQ_INIT(&sc->sc_txfreeq);
571 SIMPLEQ_INIT(&sc->sc_txdirtyq);
572
573 #ifdef ATW_DEBUG
574 atw_print_regs(sc, "atw_attach");
575 #endif /* ATW_DEBUG */
576
577 /*
578 * Allocate the control data structures, and create and load the
579 * DMA map for it.
580 */
581 if ((error = bus_dmamem_alloc(sc->sc_dmat,
582 sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
583 1, &sc->sc_cdnseg, 0)) != 0) {
584 printf("%s: unable to allocate control data, error = %d\n",
585 sc->sc_dev.dv_xname, error);
586 goto fail_0;
587 }
588
589 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
590 sizeof(struct atw_control_data), (caddr_t *)&sc->sc_control_data,
591 BUS_DMA_COHERENT)) != 0) {
592 printf("%s: unable to map control data, error = %d\n",
593 sc->sc_dev.dv_xname, error);
594 goto fail_1;
595 }
596
597 if ((error = bus_dmamap_create(sc->sc_dmat,
598 sizeof(struct atw_control_data), 1,
599 sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
600 printf("%s: unable to create control data DMA map, "
601 "error = %d\n", sc->sc_dev.dv_xname, error);
602 goto fail_2;
603 }
604
605 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
606 sc->sc_control_data, sizeof(struct atw_control_data), NULL,
607 0)) != 0) {
608 printf("%s: unable to load control data DMA map, error = %d\n",
609 sc->sc_dev.dv_xname, error);
610 goto fail_3;
611 }
612
613 /*
614 * Create the transmit buffer DMA maps.
615 */
616 sc->sc_ntxsegs = ATW_NTXSEGS;
617 for (i = 0; i < ATW_TXQUEUELEN; i++) {
618 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
619 sc->sc_ntxsegs, MCLBYTES, 0, 0,
620 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
621 printf("%s: unable to create tx DMA map %d, "
622 "error = %d\n", sc->sc_dev.dv_xname, i, error);
623 goto fail_4;
624 }
625 }
626
627 /*
628 * Create the receive buffer DMA maps.
629 */
630 for (i = 0; i < ATW_NRXDESC; i++) {
631 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
632 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
633 printf("%s: unable to create rx DMA map %d, "
634 "error = %d\n", sc->sc_dev.dv_xname, i, error);
635 goto fail_5;
636 }
637 }
638 for (i = 0; i < ATW_NRXDESC; i++) {
639 sc->sc_rxsoft[i].rxs_mbuf = NULL;
640 }
641
642 switch (sc->sc_rev) {
643 case ATW_REVISION_AB:
644 case ATW_REVISION_AF:
645 sc->sc_sramlen = ATW_SRAM_A_SIZE;
646 break;
647 case ATW_REVISION_BA:
648 case ATW_REVISION_CA:
649 sc->sc_sramlen = ATW_SRAM_B_SIZE;
650 break;
651 }
652
653 /* Reset the chip to a known state. */
654 atw_reset(sc);
655
656 if (atw_read_srom(sc) == -1)
657 return;
658
659 sc->sc_rftype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
660 ATW_SR_RFTYPE_MASK);
661
662 sc->sc_bbptype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
663 ATW_SR_BBPTYPE_MASK);
664
665 if (sc->sc_rftype > sizeof(type_strings)/sizeof(type_strings[0])) {
666 printf("%s: unknown RF\n", sc->sc_dev.dv_xname);
667 return;
668 }
669 if (sc->sc_bbptype > sizeof(type_strings)/sizeof(type_strings[0])) {
670 printf("%s: unknown BBP\n", sc->sc_dev.dv_xname);
671 return;
672 }
673
674 printf("%s: %s RF, %s BBP", sc->sc_dev.dv_xname,
675 type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
676
677 /* XXX There exists a Linux driver which seems to use RFType = 0 for
678 * MARVEL. My bug, or theirs?
679 */
680
681 reg = LSHIFT(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
682
683 switch (sc->sc_rftype) {
684 case ATW_RFTYPE_INTERSIL:
685 reg |= ATW_SYNCTL_CS1;
686 break;
687 case ATW_RFTYPE_RFMD:
688 reg |= ATW_SYNCTL_CS0;
689 break;
690 case ATW_RFTYPE_MARVEL:
691 break;
692 }
693
694 sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
695 sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
696
697 reg = LSHIFT(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
698
699 switch (sc->sc_bbptype) {
700 case ATW_BBPTYPE_INTERSIL:
701 reg |= ATW_BBPCTL_TWI;
702 break;
703 case ATW_BBPTYPE_RFMD:
704 reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
705 ATW_BBPCTL_CCA_ACTLO;
706 break;
707 case ATW_BBPTYPE_MARVEL:
708 break;
709 case ATW_C_BBPTYPE_RFMD:
710 printf("%s: ADM8211C MAC/RFMD BBP not supported yet.\n",
711 sc->sc_dev.dv_xname);
712 break;
713 }
714
715 sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
716 sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
717
718 /*
719 * From this point forward, the attachment cannot fail. A failure
720 * before this point releases all resources that may have been
721 * allocated.
722 */
723 sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
724
725 ATW_DPRINTF((" SROM MAC %04x%04x%04x",
726 htole16(sc->sc_srom[ATW_SR_MAC00]),
727 htole16(sc->sc_srom[ATW_SR_MAC01]),
728 htole16(sc->sc_srom[ATW_SR_MAC10])));
729
730 srom_major = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_FORMAT_VERSION],
731 ATW_SR_MAJOR_MASK);
732
733 if (srom_major < 2)
734 sc->sc_rf3000_options1 = 0;
735 else if (sc->sc_rev == ATW_REVISION_BA) {
736 sc->sc_rf3000_options1 =
737 MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CR28_CR03],
738 ATW_SR_CR28_MASK);
739 } else
740 sc->sc_rf3000_options1 = 0;
741
742 sc->sc_rf3000_options2 = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
743 ATW_SR_CR29_MASK);
744
745 country_code = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
746 ATW_SR_CTRY_MASK);
747
748 #define ADD_CHANNEL(_ic, _chan) do { \
749 _ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B; \
750 _ic->ic_channels[_chan].ic_freq = \
751 ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
752 } while (0)
753
754 /* Find available channels */
755 switch (country_code) {
756 case COUNTRY_MMK2: /* 1-14 */
757 ADD_CHANNEL(ic, 14);
758 /*FALLTHROUGH*/
759 case COUNTRY_ETSI: /* 1-13 */
760 for (i = 1; i <= 13; i++)
761 ADD_CHANNEL(ic, i);
762 break;
763 case COUNTRY_FCC: /* 1-11 */
764 case COUNTRY_IC: /* 1-11 */
765 for (i = 1; i <= 11; i++)
766 ADD_CHANNEL(ic, i);
767 break;
768 case COUNTRY_MMK: /* 14 */
769 ADD_CHANNEL(ic, 14);
770 break;
771 case COUNTRY_FRANCE: /* 10-13 */
772 for (i = 10; i <= 13; i++)
773 ADD_CHANNEL(ic, i);
774 break;
775 default: /* assume channels 10-11 */
776 case COUNTRY_SPAIN: /* 10-11 */
777 for (i = 10; i <= 11; i++)
778 ADD_CHANNEL(ic, i);
779 break;
780 }
781
782 /* Read the MAC address. */
783 reg = ATW_READ(sc, ATW_PAR0);
784 ic->ic_myaddr[0] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB0_MASK);
785 ic->ic_myaddr[1] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB1_MASK);
786 ic->ic_myaddr[2] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB2_MASK);
787 ic->ic_myaddr[3] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB3_MASK);
788 reg = ATW_READ(sc, ATW_PAR1);
789 ic->ic_myaddr[4] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB4_MASK);
790 ic->ic_myaddr[5] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB5_MASK);
791
792 if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
793 printf(" could not get mac address, attach failed\n");
794 return;
795 }
796
797 printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
798
799 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
800 ifp->if_softc = sc;
801 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
802 IFF_NOTRAILERS;
803 ifp->if_ioctl = atw_ioctl;
804 ifp->if_start = atw_start;
805 ifp->if_watchdog = atw_watchdog;
806 ifp->if_init = atw_init;
807 ifp->if_stop = atw_stop;
808 IFQ_SET_READY(&ifp->if_snd);
809
810 ic->ic_ifp = ifp;
811 ic->ic_phytype = IEEE80211_T_DS;
812 ic->ic_opmode = IEEE80211_M_STA;
813 ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
814 IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR;
815
816 nrate = 0;
817 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
818 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
819 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
820 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
821 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
822
823 /*
824 * Call MI attach routines.
825 */
826
827 if_attach(ifp);
828 ieee80211_ifattach(ic);
829
830 sc->sc_newstate = ic->ic_newstate;
831 ic->ic_newstate = atw_newstate;
832
833 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
834 ic->ic_recv_mgmt = atw_recv_mgmt;
835
836 sc->sc_node_free = ic->ic_node_free;
837 ic->ic_node_free = atw_node_free;
838
839 sc->sc_node_alloc = ic->ic_node_alloc;
840 ic->ic_node_alloc = atw_node_alloc;
841
842 ic->ic_crypto.cs_key_delete = atw_key_delete;
843 ic->ic_crypto.cs_key_set = atw_key_set;
844 ic->ic_crypto.cs_key_update_begin = atw_key_update_begin;
845 ic->ic_crypto.cs_key_update_end = atw_key_update_end;
846
847 /* possibly we should fill in our own sc_send_prresp, since
848 * the ADM8211 is probably sending probe responses in ad hoc
849 * mode.
850 */
851
852 /* complete initialization */
853 ieee80211_media_init(ic, atw_media_change, ieee80211_media_status);
854 callout_init(&sc->sc_scan_ch);
855
856 #if NBPFILTER > 0
857 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
858 sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
859 #endif
860
861 /*
862 * Make sure the interface is shutdown during reboot.
863 */
864 sc->sc_sdhook = shutdownhook_establish(atw_shutdown, sc);
865 if (sc->sc_sdhook == NULL)
866 printf("%s: WARNING: unable to establish shutdown hook\n",
867 sc->sc_dev.dv_xname);
868
869 /*
870 * Add a suspend hook to make sure we come back up after a
871 * resume.
872 */
873 sc->sc_powerhook = powerhook_establish(atw_power, sc);
874 if (sc->sc_powerhook == NULL)
875 printf("%s: WARNING: unable to establish power hook\n",
876 sc->sc_dev.dv_xname);
877
878 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
879 sc->sc_rxtap.ar_ihdr.it_len = sizeof(sc->sc_rxtapu);
880 sc->sc_rxtap.ar_ihdr.it_present = ATW_RX_RADIOTAP_PRESENT;
881
882 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
883 sc->sc_txtap.at_ihdr.it_len = sizeof(sc->sc_txtapu);
884 sc->sc_txtap.at_ihdr.it_present = ATW_TX_RADIOTAP_PRESENT;
885
886 ieee80211_announce(ic);
887 return;
888
889 /*
890 * Free any resources we've allocated during the failed attach
891 * attempt. Do this in reverse order and fall through.
892 */
893 fail_5:
894 for (i = 0; i < ATW_NRXDESC; i++) {
895 if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
896 continue;
897 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
898 }
899 fail_4:
900 for (i = 0; i < ATW_TXQUEUELEN; i++) {
901 if (sc->sc_txsoft[i].txs_dmamap == NULL)
902 continue;
903 bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
904 }
905 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
906 fail_3:
907 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
908 fail_2:
909 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
910 sizeof(struct atw_control_data));
911 fail_1:
912 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
913 fail_0:
914 return;
915 }
916
917 static struct ieee80211_node *
918 atw_node_alloc(struct ieee80211_node_table *nt)
919 {
920 struct atw_softc *sc = (struct atw_softc *)nt->nt_ic->ic_ifp->if_softc;
921 struct ieee80211_node *ni = (*sc->sc_node_alloc)(nt);
922
923 DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
924 return ni;
925 }
926
927 static void
928 atw_node_free(struct ieee80211_node *ni)
929 {
930 struct atw_softc *sc = (struct atw_softc *)ni->ni_ic->ic_ifp->if_softc;
931
932 DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
933 ether_sprintf(ni->ni_bssid)));
934 (*sc->sc_node_free)(ni);
935 }
936
937
938 static void
939 atw_test1_reset(struct atw_softc *sc)
940 {
941 switch (sc->sc_rev) {
942 case ATW_REVISION_BA:
943 if (1 /* XXX condition on transceiver type */) {
944 ATW_SET(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MONITOR);
945 }
946 break;
947 case ATW_REVISION_CA:
948 ATW_CLR(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MASK);
949 break;
950 default:
951 break;
952 }
953 }
954
955 /*
956 * atw_reset:
957 *
958 * Perform a soft reset on the ADM8211.
959 */
960 void
961 atw_reset(struct atw_softc *sc)
962 {
963 int i;
964 uint32_t lpc;
965
966 ATW_WRITE(sc, ATW_NAR, 0x0);
967 DELAY(atw_nar_delay);
968
969 /* Reference driver has a cryptic remark indicating that this might
970 * power-on the chip. I know that it turns off power-saving....
971 */
972 ATW_WRITE(sc, ATW_FRCTL, 0x0);
973
974 ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
975
976 for (i = 0; i < 50000 / atw_pseudo_milli; i++) {
977 if ((ATW_READ(sc, ATW_PAR) & ATW_PAR_SWR) == 0)
978 break;
979 DELAY(atw_pseudo_milli);
980 }
981
982 /* ... and then pause 100ms longer for good measure. */
983 DELAY(atw_magic_delay1);
984
985 DPRINTF2(sc, ("%s: atw_reset %d iterations\n", sc->sc_dev.dv_xname, i));
986
987 if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
988 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
989
990 /*
991 * Initialize the PCI Access Register.
992 */
993 sc->sc_busmode = ATW_PAR_PBL_8DW;
994
995 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
996 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
997 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
998
999 atw_test1_reset(sc);
1000
1001 /* Turn off maximum power saving, etc. */
1002 ATW_WRITE(sc, ATW_FRCTL, 0x0);
1003
1004 DELAY(atw_magic_delay2);
1005
1006 /* Recall EEPROM. */
1007 ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
1008
1009 DELAY(atw_magic_delay4);
1010
1011 lpc = ATW_READ(sc, ATW_LPC);
1012
1013 DPRINTF(sc, ("%s: ATW_LPC %#08x\n", __func__, lpc));
1014
1015 /* A reset seems to affect the SRAM contents, so put them into
1016 * a known state.
1017 */
1018 atw_clear_sram(sc);
1019
1020 memset(sc->sc_bssid, 0xff, sizeof(sc->sc_bssid));
1021 }
1022
1023 static void
1024 atw_clear_sram(struct atw_softc *sc)
1025 {
1026 memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
1027 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
1028 /* XXX not for revision 0x20. */
1029 atw_write_sram(sc, 0, sc->sc_sram, sc->sc_sramlen);
1030 }
1031
1032 /* TBD atw_init
1033 *
1034 * set MAC based on ic->ic_bss->myaddr
1035 * write WEP keys
1036 * set TX rate
1037 */
1038
1039 /* Tell the ADM8211 to raise ATW_INTR_LINKOFF if 7 beacon intervals pass
1040 * without receiving a beacon with the preferred BSSID & SSID.
1041 * atw_write_bssid & atw_write_ssid set the BSSID & SSID.
1042 */
1043 static void
1044 atw_wcsr_init(struct atw_softc *sc)
1045 {
1046 uint32_t wcsr;
1047
1048 wcsr = ATW_READ(sc, ATW_WCSR);
1049 wcsr &= ~(ATW_WCSR_BLN_MASK|ATW_WCSR_LSOE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
1050 wcsr |= LSHIFT(7, ATW_WCSR_BLN_MASK);
1051 ATW_WRITE(sc, ATW_WCSR, wcsr); /* XXX resets wake-up status bits */
1052
1053 DPRINTF(sc, ("%s: %s reg[WCSR] = %08x\n",
1054 sc->sc_dev.dv_xname, __func__, ATW_READ(sc, ATW_WCSR)));
1055 }
1056
1057 /* Turn off power management. Set Rx store-and-forward mode. */
1058 static void
1059 atw_cmdr_init(struct atw_softc *sc)
1060 {
1061 uint32_t cmdr;
1062 cmdr = ATW_READ(sc, ATW_CMDR);
1063 cmdr &= ~ATW_CMDR_APM;
1064 cmdr |= ATW_CMDR_RTE;
1065 cmdr &= ~ATW_CMDR_DRT_MASK;
1066 cmdr |= ATW_CMDR_DRT_SF;
1067
1068 ATW_WRITE(sc, ATW_CMDR, cmdr);
1069 }
1070
1071 static void
1072 atw_tofs2_init(struct atw_softc *sc)
1073 {
1074 uint32_t tofs2;
1075 /* XXX this magic can probably be figured out from the RFMD docs */
1076 #ifndef ATW_REFSLAVE
1077 tofs2 = LSHIFT(4, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
1078 LSHIFT(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1079 LSHIFT(8, ATW_TOFS2_PWR1PAPE_MASK) | /* 8 us */
1080 LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
1081 LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1082 LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
1083 LSHIFT(4, ATW_TOFS2_PWR1PE2_MASK) | /* 4 us */
1084 LSHIFT(5, ATW_TOFS2_PWR0TXPE_MASK); /* 5 us */
1085 #else
1086 /* XXX new magic from reference driver source */
1087 tofs2 = LSHIFT(8, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
1088 LSHIFT(8, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1089 LSHIFT(1, ATW_TOFS2_PWR1PAPE_MASK) | /* 8 us */
1090 LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
1091 LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1092 LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
1093 LSHIFT(1, ATW_TOFS2_PWR1PE2_MASK) | /* 4 us */
1094 LSHIFT(8, ATW_TOFS2_PWR0TXPE_MASK); /* 5 us */
1095 #endif
1096 ATW_WRITE(sc, ATW_TOFS2, tofs2);
1097 }
1098
1099 static void
1100 atw_nar_init(struct atw_softc *sc)
1101 {
1102 ATW_WRITE(sc, ATW_NAR, ATW_NAR_SF|ATW_NAR_PB);
1103 }
1104
1105 static void
1106 atw_txlmt_init(struct atw_softc *sc)
1107 {
1108 ATW_WRITE(sc, ATW_TXLMT, LSHIFT(512, ATW_TXLMT_MTMLT_MASK) |
1109 LSHIFT(1, ATW_TXLMT_SRTYLIM_MASK));
1110 }
1111
1112 static void
1113 atw_test1_init(struct atw_softc *sc)
1114 {
1115 uint32_t test1;
1116
1117 test1 = ATW_READ(sc, ATW_TEST1);
1118 test1 &= ~(ATW_TEST1_DBGREAD_MASK|ATW_TEST1_CONTROL);
1119 /* XXX magic 0x1 */
1120 test1 |= LSHIFT(0x1, ATW_TEST1_DBGREAD_MASK) | ATW_TEST1_CONTROL;
1121 ATW_WRITE(sc, ATW_TEST1, test1);
1122 }
1123
1124 static void
1125 atw_rf_reset(struct atw_softc *sc)
1126 {
1127 /* XXX this resets an Intersil RF front-end? */
1128 /* TBD condition on Intersil RFType? */
1129 ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
1130 DELAY(atw_rf_delay1);
1131 ATW_WRITE(sc, ATW_SYNRF, 0);
1132 DELAY(atw_rf_delay2);
1133 }
1134
1135 /* Set 16 TU max duration for the contention-free period (CFP). */
1136 static void
1137 atw_cfp_init(struct atw_softc *sc)
1138 {
1139 uint32_t cfpp;
1140
1141 cfpp = ATW_READ(sc, ATW_CFPP);
1142 cfpp &= ~ATW_CFPP_CFPMD;
1143 cfpp |= LSHIFT(16, ATW_CFPP_CFPMD);
1144 ATW_WRITE(sc, ATW_CFPP, cfpp);
1145 }
1146
1147 static void
1148 atw_tofs0_init(struct atw_softc *sc)
1149 {
1150 /* XXX I guess that the Cardbus clock is 22MHz?
1151 * I am assuming that the role of ATW_TOFS0_USCNT is
1152 * to divide the bus clock to get a 1MHz clock---the datasheet is not
1153 * very clear on this point. It says in the datasheet that it is
1154 * possible for the ADM8211 to accomodate bus speeds between 22MHz
1155 * and 33MHz; maybe this is the way? I see a binary-only driver write
1156 * these values. These values are also the power-on default.
1157 */
1158 ATW_WRITE(sc, ATW_TOFS0,
1159 LSHIFT(22, ATW_TOFS0_USCNT_MASK) |
1160 ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
1161 }
1162
1163 /* Initialize interframe spacing: 802.11b slot time, SIFS, DIFS, EIFS. */
1164 static void
1165 atw_ifs_init(struct atw_softc *sc)
1166 {
1167 uint32_t ifst;
1168 /* XXX EIFS=0x64, SIFS=110 are used by the reference driver.
1169 * Go figure.
1170 */
1171 ifst = LSHIFT(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
1172 LSHIFT(22 * 5 /* IEEE80211_DUR_DS_SIFS */ /* # of 22MHz cycles */,
1173 ATW_IFST_SIFS_MASK) |
1174 LSHIFT(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
1175 LSHIFT(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
1176
1177 ATW_WRITE(sc, ATW_IFST, ifst);
1178 }
1179
1180 static void
1181 atw_response_times_init(struct atw_softc *sc)
1182 {
1183 /* XXX More magic. Relates to ACK timing? The datasheet seems to
1184 * indicate that the MAC expects at least SIFS + MIRT microseconds
1185 * to pass after it transmits a frame that requires a response;
1186 * it waits at most SIFS + MART microseconds for the response.
1187 * Surely this is not the ACK timeout?
1188 */
1189 ATW_WRITE(sc, ATW_RSPT, LSHIFT(0xffff, ATW_RSPT_MART_MASK) |
1190 LSHIFT(0xff, ATW_RSPT_MIRT_MASK));
1191 }
1192
1193 /* Set up the MMI read/write addresses for the baseband. The Tx/Rx
1194 * engines read and write baseband registers after Rx and before
1195 * Tx, respectively.
1196 */
1197 static void
1198 atw_bbp_io_init(struct atw_softc *sc)
1199 {
1200 uint32_t mmiraddr2;
1201
1202 /* XXX The reference driver does this, but is it *really*
1203 * necessary?
1204 */
1205 switch (sc->sc_rev) {
1206 case ATW_REVISION_AB:
1207 case ATW_REVISION_AF:
1208 mmiraddr2 = 0x0;
1209 break;
1210 default:
1211 mmiraddr2 = ATW_READ(sc, ATW_MMIRADDR2);
1212 mmiraddr2 &=
1213 ~(ATW_MMIRADDR2_PROREXT|ATW_MMIRADDR2_PRORLEN_MASK);
1214 break;
1215 }
1216
1217 switch (sc->sc_bbptype) {
1218 case ATW_BBPTYPE_INTERSIL:
1219 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1220 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1221 mmiraddr2 |= ATW_MMIRADDR2_INTERSIL;
1222 break;
1223 case ATW_BBPTYPE_MARVEL:
1224 /* TBD find out the Marvel settings. */
1225 break;
1226 case ATW_BBPTYPE_RFMD:
1227 default:
1228 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1229 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1230 mmiraddr2 |= ATW_MMIRADDR2_RFMD;
1231 break;
1232 }
1233 ATW_WRITE(sc, ATW_MMIRADDR2, mmiraddr2);
1234 ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1235 }
1236
1237 /*
1238 * atw_init: [ ifnet interface function ]
1239 *
1240 * Initialize the interface. Must be called at splnet().
1241 */
1242 int
1243 atw_init(struct ifnet *ifp)
1244 {
1245 struct atw_softc *sc = ifp->if_softc;
1246 struct ieee80211com *ic = &sc->sc_ic;
1247 struct atw_txsoft *txs;
1248 struct atw_rxsoft *rxs;
1249 int i, error = 0;
1250
1251 if ((error = atw_enable(sc)) != 0)
1252 goto out;
1253
1254 /*
1255 * Cancel any pending I/O. This also resets.
1256 */
1257 atw_stop(ifp, 0);
1258
1259 DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
1260 __func__, ieee80211_chan2ieee(ic, ic->ic_curchan),
1261 ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags));
1262
1263 atw_wcsr_init(sc);
1264
1265 atw_cmdr_init(sc);
1266
1267 /* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
1268 *
1269 * XXX Set transmit power for ATIM, RTS, Beacon.
1270 */
1271 ATW_WRITE(sc, ATW_PLCPHD, LSHIFT(10, ATW_PLCPHD_SIGNAL_MASK) |
1272 LSHIFT(0xb0, ATW_PLCPHD_SERVICE_MASK));
1273
1274 atw_tofs2_init(sc);
1275
1276 atw_nar_init(sc);
1277
1278 atw_txlmt_init(sc);
1279
1280 atw_test1_init(sc);
1281
1282 atw_rf_reset(sc);
1283
1284 atw_cfp_init(sc);
1285
1286 atw_tofs0_init(sc);
1287
1288 atw_ifs_init(sc);
1289
1290 /* XXX Fall asleep after one second of inactivity.
1291 * XXX A frame may only dribble in for 65536us.
1292 */
1293 ATW_WRITE(sc, ATW_RMD,
1294 LSHIFT(1, ATW_RMD_PCNT) | LSHIFT(0xffff, ATW_RMD_RMRD_MASK));
1295
1296 atw_response_times_init(sc);
1297
1298 atw_bbp_io_init(sc);
1299
1300 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1301
1302 if ((error = atw_rf3000_init(sc)) != 0)
1303 goto out;
1304
1305 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1306 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
1307 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1308
1309 /*
1310 * Initialize the transmit descriptor ring.
1311 */
1312 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1313 for (i = 0; i < ATW_NTXDESC; i++) {
1314 sc->sc_txdescs[i].at_ctl = 0;
1315 /* no transmit chaining */
1316 sc->sc_txdescs[i].at_flags = 0 /* ATW_TXFLAG_TCH */;
1317 sc->sc_txdescs[i].at_buf2 =
1318 htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1319 }
1320 /* use ring mode */
1321 sc->sc_txdescs[ATW_NTXDESC - 1].at_flags |= htole32(ATW_TXFLAG_TER);
1322 ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1323 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1324 sc->sc_txfree = ATW_NTXDESC;
1325 sc->sc_txnext = 0;
1326
1327 /*
1328 * Initialize the transmit job descriptors.
1329 */
1330 SIMPLEQ_INIT(&sc->sc_txfreeq);
1331 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1332 for (i = 0; i < ATW_TXQUEUELEN; i++) {
1333 txs = &sc->sc_txsoft[i];
1334 txs->txs_mbuf = NULL;
1335 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1336 }
1337
1338 /*
1339 * Initialize the receive descriptor and receive job
1340 * descriptor rings.
1341 */
1342 for (i = 0; i < ATW_NRXDESC; i++) {
1343 rxs = &sc->sc_rxsoft[i];
1344 if (rxs->rxs_mbuf == NULL) {
1345 if ((error = atw_add_rxbuf(sc, i)) != 0) {
1346 printf("%s: unable to allocate or map rx "
1347 "buffer %d, error = %d\n",
1348 sc->sc_dev.dv_xname, i, error);
1349 /*
1350 * XXX Should attempt to run with fewer receive
1351 * XXX buffers instead of just failing.
1352 */
1353 atw_rxdrain(sc);
1354 goto out;
1355 }
1356 } else
1357 ATW_INIT_RXDESC(sc, i);
1358 }
1359 sc->sc_rxptr = 0;
1360
1361 /*
1362 * Initialize the interrupt mask and enable interrupts.
1363 */
1364 /* normal interrupts */
1365 sc->sc_inten = ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1366 ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1367
1368 /* abnormal interrupts */
1369 sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1370 ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1371 ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1372
1373 sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1374 ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1375 sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1376 sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1377 ATW_INTR_TRT;
1378
1379 sc->sc_linkint_mask &= sc->sc_inten;
1380 sc->sc_rxint_mask &= sc->sc_inten;
1381 sc->sc_txint_mask &= sc->sc_inten;
1382
1383 ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1384 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1385
1386 DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1387 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_IER), sc->sc_inten));
1388
1389 /*
1390 * Give the transmit and receive rings to the ADM8211.
1391 */
1392 ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1393 ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1394
1395 sc->sc_txthresh = 0;
1396 sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1397 sc->sc_txth[sc->sc_txthresh].txth_opmode;
1398
1399 /* common 802.11 configuration */
1400 ic->ic_flags &= ~IEEE80211_F_IBSSON;
1401 switch (ic->ic_opmode) {
1402 case IEEE80211_M_STA:
1403 break;
1404 case IEEE80211_M_AHDEMO: /* XXX */
1405 case IEEE80211_M_IBSS:
1406 ic->ic_flags |= IEEE80211_F_IBSSON;
1407 /*FALLTHROUGH*/
1408 case IEEE80211_M_HOSTAP: /* XXX */
1409 break;
1410 case IEEE80211_M_MONITOR: /* XXX */
1411 break;
1412 }
1413
1414 switch (ic->ic_opmode) {
1415 case IEEE80211_M_AHDEMO:
1416 case IEEE80211_M_HOSTAP:
1417 #ifndef IEEE80211_NO_HOSTAP
1418 ic->ic_bss->ni_intval = ic->ic_lintval;
1419 ic->ic_bss->ni_rssi = 0;
1420 ic->ic_bss->ni_rstamp = 0;
1421 #endif /* !IEEE80211_NO_HOSTAP */
1422 break;
1423 default: /* XXX */
1424 break;
1425 }
1426
1427 sc->sc_wepctl = 0;
1428
1429 atw_write_ssid(sc);
1430 atw_write_sup_rates(sc);
1431 atw_write_wep(sc);
1432
1433 ic->ic_state = IEEE80211_S_INIT;
1434
1435 /*
1436 * Set the receive filter. This will start the transmit and
1437 * receive processes.
1438 */
1439 atw_filter_setup(sc);
1440
1441 /*
1442 * Start the receive process.
1443 */
1444 ATW_WRITE(sc, ATW_RDR, 0x1);
1445
1446 /*
1447 * Note that the interface is now running.
1448 */
1449 ifp->if_flags |= IFF_RUNNING;
1450 ifp->if_flags &= ~IFF_OACTIVE;
1451
1452 /* send no beacons, yet. */
1453 atw_start_beacon(sc, 0);
1454
1455 if (ic->ic_opmode == IEEE80211_M_MONITOR)
1456 error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1457 else
1458 error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1459 out:
1460 if (error) {
1461 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1462 sc->sc_tx_timer = 0;
1463 ifp->if_timer = 0;
1464 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1465 }
1466 #ifdef ATW_DEBUG
1467 atw_print_regs(sc, "end of init");
1468 #endif /* ATW_DEBUG */
1469
1470 return (error);
1471 }
1472
1473 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1474 * 0: MAC control of RF3000/Si4126.
1475 *
1476 * Applies power, or selects RF front-end? Sets reset condition.
1477 *
1478 * TBD support non-RFMD BBP, non-SiLabs synth.
1479 */
1480 static void
1481 atw_bbp_io_enable(struct atw_softc *sc, int enable)
1482 {
1483 if (enable) {
1484 ATW_WRITE(sc, ATW_SYNRF,
1485 ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
1486 DELAY(atw_bbp_io_enable_delay);
1487 } else {
1488 ATW_WRITE(sc, ATW_SYNRF, 0);
1489 DELAY(atw_bbp_io_disable_delay); /* shorter for some reason */
1490 }
1491 }
1492
1493 static int
1494 atw_tune(struct atw_softc *sc)
1495 {
1496 int rc;
1497 u_int chan;
1498 struct ieee80211com *ic = &sc->sc_ic;
1499
1500 chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
1501 if (chan == IEEE80211_CHAN_ANY)
1502 panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1503
1504 if (chan == sc->sc_cur_chan)
1505 return 0;
1506
1507 DPRINTF(sc, ("%s: chan %d -> %d\n", sc->sc_dev.dv_xname,
1508 sc->sc_cur_chan, chan));
1509
1510 atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1511
1512 atw_si4126_tune(sc, chan);
1513 if ((rc = atw_rf3000_tune(sc, chan)) != 0)
1514 printf("%s: failed to tune channel %d\n", sc->sc_dev.dv_xname,
1515 chan);
1516
1517 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1518 DELAY(atw_nar_delay);
1519 ATW_WRITE(sc, ATW_RDR, 0x1);
1520
1521 if (rc == 0)
1522 sc->sc_cur_chan = chan;
1523
1524 return rc;
1525 }
1526
1527 #ifdef ATW_SYNDEBUG
1528 static void
1529 atw_si4126_print(struct atw_softc *sc)
1530 {
1531 struct ifnet *ifp = &sc->sc_if;
1532 u_int addr, val;
1533
1534 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1535 return;
1536
1537 for (addr = 0; addr <= 8; addr++) {
1538 printf("%s: synth[%d] = ", sc->sc_dev.dv_xname, addr);
1539 if (atw_si4126_read(sc, addr, &val) == 0) {
1540 printf("<unknown> (quitting print-out)\n");
1541 break;
1542 }
1543 printf("%05x\n", val);
1544 }
1545 }
1546 #endif /* ATW_SYNDEBUG */
1547
1548 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1549 *
1550 * The RF/IF synthesizer produces two reference frequencies for
1551 * the RF2948B transceiver. The first frequency the RF2948B requires
1552 * is two times the so-called "intermediate frequency" (IF). Since
1553 * a SAW filter on the radio fixes the IF at 374MHz, I program the
1554 * Si4126 to generate IF LO = 374MHz x 2 = 748MHz. The second
1555 * frequency required by the transceiver is the radio frequency
1556 * (RF). This is a superheterodyne transceiver; for f(chan) the
1557 * center frequency of the channel we are tuning, RF = f(chan) -
1558 * IF.
1559 *
1560 * XXX I am told by SiLabs that the Si4126 will accept a broader range
1561 * of XIN than the 2-25MHz mentioned by the datasheet, even *without*
1562 * XINDIV2 = 1. I've tried this (it is necessary to double R) and it
1563 * works, but I have still programmed for XINDIV2 = 1 to be safe.
1564 */
1565 static void
1566 atw_si4126_tune(struct atw_softc *sc, u_int chan)
1567 {
1568 u_int mhz;
1569 u_int R;
1570 u_int32_t gpio;
1571 u_int16_t gain;
1572
1573 #ifdef ATW_SYNDEBUG
1574 atw_si4126_print(sc);
1575 #endif /* ATW_SYNDEBUG */
1576
1577 if (chan == 14)
1578 mhz = 2484;
1579 else
1580 mhz = 2412 + 5 * (chan - 1);
1581
1582 /* Tune IF to 748MHz to suit the IF LO input of the
1583 * RF2494B, which is 2 x IF. No need to set an IF divider
1584 * because an IF in 526MHz - 952MHz is allowed.
1585 *
1586 * XIN is 44.000MHz, so divide it by two to get allowable
1587 * range of 2-25MHz. SiLabs tells me that this is not
1588 * strictly necessary.
1589 */
1590
1591 if (atw_xindiv2)
1592 R = 44;
1593 else
1594 R = 88;
1595
1596 /* Power-up RF, IF synthesizers. */
1597 atw_si4126_write(sc, SI4126_POWER,
1598 SI4126_POWER_PDIB|SI4126_POWER_PDRB);
1599
1600 /* set LPWR, too? */
1601 atw_si4126_write(sc, SI4126_MAIN,
1602 (atw_xindiv2) ? SI4126_MAIN_XINDIV2 : 0);
1603
1604 /* Set the phase-locked loop gain. If RF2 N > 2047, then
1605 * set KP2 to 1.
1606 *
1607 * REFDIF This is different from the reference driver, which
1608 * always sets SI4126_GAIN to 0.
1609 */
1610 gain = LSHIFT(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1611
1612 atw_si4126_write(sc, SI4126_GAIN, gain);
1613
1614 /* XIN = 44MHz.
1615 *
1616 * If XINDIV2 = 1, IF = N/(2 * R) * XIN. I choose N = 1496,
1617 * R = 44 so that 1496/(2 * 44) * 44MHz = 748MHz.
1618 *
1619 * If XINDIV2 = 0, IF = N/R * XIN. I choose N = 1496, R = 88
1620 * so that 1496/88 * 44MHz = 748MHz.
1621 */
1622 atw_si4126_write(sc, SI4126_IFN, 1496);
1623
1624 atw_si4126_write(sc, SI4126_IFR, R);
1625
1626 #ifndef ATW_REFSLAVE
1627 /* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1628 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1629 * which has no RF1!
1630 */
1631 atw_si4126_write(sc, SI4126_RF1R, R);
1632
1633 atw_si4126_write(sc, SI4126_RF1N, mhz - 374);
1634 #endif
1635
1636 /* N/R * XIN = RF. XIN = 44MHz. We desire RF = mhz - IF,
1637 * where IF = 374MHz. Let's divide XIN to 1MHz. So R = 44.
1638 * Now let's multiply it to mhz. So mhz - IF = N.
1639 */
1640 atw_si4126_write(sc, SI4126_RF2R, R);
1641
1642 atw_si4126_write(sc, SI4126_RF2N, mhz - 374);
1643
1644 /* wait 100us from power-up for RF, IF to settle */
1645 DELAY(100);
1646
1647 gpio = ATW_READ(sc, ATW_GPIO);
1648 gpio &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
1649 gpio |= LSHIFT(1, ATW_GPIO_EN_MASK);
1650
1651 if ((sc->sc_if.if_flags & IFF_LINK1) != 0 && chan != 14) {
1652 /* Set a Prism RF front-end to a special mode for channel 14?
1653 *
1654 * Apparently the SMC2635W needs this, although I don't think
1655 * it has a Prism RF.
1656 */
1657 gpio |= LSHIFT(1, ATW_GPIO_O_MASK);
1658 }
1659 ATW_WRITE(sc, ATW_GPIO, gpio);
1660
1661 #ifdef ATW_SYNDEBUG
1662 atw_si4126_print(sc);
1663 #endif /* ATW_SYNDEBUG */
1664 }
1665
1666 /* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
1667 * diversity.
1668 *
1669 * !!!
1670 * !!! Call this w/ Tx/Rx suspended, atw_idle(, ATW_NAR_ST|ATW_NAR_SR).
1671 * !!!
1672 */
1673 static int
1674 atw_rf3000_init(struct atw_softc *sc)
1675 {
1676 int rc = 0;
1677
1678 atw_bbp_io_enable(sc, 1);
1679
1680 /* CCA is acquisition sensitive */
1681 rc = atw_rf3000_write(sc, RF3000_CCACTL,
1682 LSHIFT(RF3000_CCACTL_MODE_BOTH, RF3000_CCACTL_MODE_MASK));
1683
1684 if (rc != 0)
1685 goto out;
1686
1687 /* enable diversity */
1688 rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1689
1690 if (rc != 0)
1691 goto out;
1692
1693 /* sensible setting from a binary-only driver */
1694 rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1695 LSHIFT(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1696
1697 if (rc != 0)
1698 goto out;
1699
1700 /* magic from a binary-only driver */
1701 rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1702 LSHIFT(0x38, RF3000_LOGAINCAL_CAL_MASK));
1703
1704 if (rc != 0)
1705 goto out;
1706
1707 rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1708
1709 if (rc != 0)
1710 goto out;
1711
1712 /* XXX Reference driver remarks that Abocom sets this to 50.
1713 * Meaning 0x50, I think.... 50 = 0x32, which would set a bit
1714 * in the "reserved" area of register RF3000_OPTIONS1.
1715 */
1716 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, sc->sc_rf3000_options1);
1717
1718 if (rc != 0)
1719 goto out;
1720
1721 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, sc->sc_rf3000_options2);
1722
1723 if (rc != 0)
1724 goto out;
1725
1726 out:
1727 atw_bbp_io_enable(sc, 0);
1728 return rc;
1729 }
1730
1731 #ifdef ATW_BBPDEBUG
1732 static void
1733 atw_rf3000_print(struct atw_softc *sc)
1734 {
1735 struct ifnet *ifp = &sc->sc_if;
1736 u_int addr, val;
1737
1738 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1739 return;
1740
1741 for (addr = 0x01; addr <= 0x15; addr++) {
1742 printf("%s: bbp[%d] = \n", sc->sc_dev.dv_xname, addr);
1743 if (atw_rf3000_read(sc, addr, &val) != 0) {
1744 printf("<unknown> (quitting print-out)\n");
1745 break;
1746 }
1747 printf("%08x\n", val);
1748 }
1749 }
1750 #endif /* ATW_BBPDEBUG */
1751
1752 /* Set the power settings on the BBP for channel `chan'. */
1753 static int
1754 atw_rf3000_tune(struct atw_softc *sc, u_int chan)
1755 {
1756 int rc = 0;
1757 u_int32_t reg;
1758 u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
1759
1760 txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1761 lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1762 lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1763
1764 /* odd channels: LSB, even channels: MSB */
1765 if (chan % 2 == 1) {
1766 txpower &= 0xFF;
1767 lpf_cutoff &= 0xFF;
1768 lna_gs_thresh &= 0xFF;
1769 } else {
1770 txpower >>= 8;
1771 lpf_cutoff >>= 8;
1772 lna_gs_thresh >>= 8;
1773 }
1774
1775 #ifdef ATW_BBPDEBUG
1776 atw_rf3000_print(sc);
1777 #endif /* ATW_BBPDEBUG */
1778
1779 DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1780 "lna_gs_thresh %02x\n",
1781 sc->sc_dev.dv_xname, chan, txpower, lpf_cutoff, lna_gs_thresh));
1782
1783 atw_bbp_io_enable(sc, 1);
1784
1785 if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1786 LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1787 goto out;
1788
1789 if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1790 goto out;
1791
1792 if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1793 goto out;
1794
1795 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1796
1797 if (rc != 0)
1798 goto out;
1799
1800 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1801
1802 if (rc != 0)
1803 goto out;
1804
1805 #ifdef ATW_BBPDEBUG
1806 atw_rf3000_print(sc);
1807 #endif /* ATW_BBPDEBUG */
1808
1809 out:
1810 atw_bbp_io_enable(sc, 0);
1811
1812 /* set beacon, rts, atim transmit power */
1813 reg = ATW_READ(sc, ATW_PLCPHD);
1814 reg &= ~ATW_PLCPHD_SERVICE_MASK;
1815 reg |= LSHIFT(LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK),
1816 ATW_PLCPHD_SERVICE_MASK);
1817 ATW_WRITE(sc, ATW_PLCPHD, reg);
1818 DELAY(atw_plcphd_delay);
1819
1820 return rc;
1821 }
1822
1823 /* Write a register on the RF3000 baseband processor using the
1824 * registers provided by the ADM8211 for this purpose.
1825 *
1826 * Return 0 on success.
1827 */
1828 static int
1829 atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
1830 {
1831 u_int32_t reg;
1832 int i;
1833
1834 reg = sc->sc_bbpctl_wr |
1835 LSHIFT(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1836 LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1837
1838 for (i = 20000 / atw_pseudo_milli; --i >= 0; ) {
1839 ATW_WRITE(sc, ATW_BBPCTL, reg);
1840 DELAY(2 * atw_pseudo_milli);
1841 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1842 break;
1843 }
1844
1845 if (i < 0) {
1846 printf("%s: BBPCTL still busy\n", sc->sc_dev.dv_xname);
1847 return ETIMEDOUT;
1848 }
1849 return 0;
1850 }
1851
1852 /* Read a register on the RF3000 baseband processor using the registers
1853 * the ADM8211 provides for this purpose.
1854 *
1855 * The 7-bit register address is addr. Record the 8-bit data in the register
1856 * in *val.
1857 *
1858 * Return 0 on success.
1859 *
1860 * XXX This does not seem to work. The ADM8211 must require more or
1861 * different magic to read the chip than to write it. Possibly some
1862 * of the magic I have derived from a binary-only driver concerns
1863 * the "chip address" (see the RF3000 manual).
1864 */
1865 #ifdef ATW_BBPDEBUG
1866 static int
1867 atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
1868 {
1869 u_int32_t reg;
1870 int i;
1871
1872 for (i = 1000; --i >= 0; ) {
1873 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1874 break;
1875 DELAY(100);
1876 }
1877
1878 if (i < 0) {
1879 printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1880 sc->sc_dev.dv_xname);
1881 return ETIMEDOUT;
1882 }
1883
1884 reg = sc->sc_bbpctl_rd | LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1885
1886 ATW_WRITE(sc, ATW_BBPCTL, reg);
1887
1888 for (i = 1000; --i >= 0; ) {
1889 DELAY(100);
1890 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1891 break;
1892 }
1893
1894 ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1895
1896 if (i < 0) {
1897 printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1898 sc->sc_dev.dv_xname, reg);
1899 return ETIMEDOUT;
1900 }
1901 if (val != NULL)
1902 *val = MASK_AND_RSHIFT(reg, ATW_BBPCTL_DATA_MASK);
1903 return 0;
1904 }
1905 #endif /* ATW_BBPDEBUG */
1906
1907 /* Write a register on the Si4126 RF/IF synthesizer using the registers
1908 * provided by the ADM8211 for that purpose.
1909 *
1910 * val is 18 bits of data, and val is the 4-bit address of the register.
1911 *
1912 * Return 0 on success.
1913 */
1914 static void
1915 atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
1916 {
1917 uint32_t bits, mask, reg;
1918 const int nbits = 22;
1919
1920 KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
1921 KASSERT((val & ~PRESHIFT(SI4126_TWI_DATA_MASK)) == 0);
1922
1923 bits = LSHIFT(val, SI4126_TWI_DATA_MASK) |
1924 LSHIFT(addr, SI4126_TWI_ADDR_MASK);
1925
1926 reg = ATW_SYNRF_SELSYN;
1927 /* reference driver: reset Si4126 serial bus to initial
1928 * conditions?
1929 */
1930 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1931 ATW_WRITE(sc, ATW_SYNRF, reg);
1932
1933 for (mask = BIT(nbits - 1); mask != 0; mask >>= 1) {
1934 if ((bits & mask) != 0)
1935 reg |= ATW_SYNRF_SYNDATA;
1936 else
1937 reg &= ~ATW_SYNRF_SYNDATA;
1938 ATW_WRITE(sc, ATW_SYNRF, reg);
1939 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_SYNCLK);
1940 ATW_WRITE(sc, ATW_SYNRF, reg);
1941 }
1942 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1943 ATW_WRITE(sc, ATW_SYNRF, 0x0);
1944 }
1945
1946 /* Read 18-bit data from the 4-bit address addr in Si4126
1947 * RF synthesizer and write the data to *val. Return 0 on success.
1948 *
1949 * XXX This does not seem to work. The ADM8211 must require more or
1950 * different magic to read the chip than to write it.
1951 */
1952 #ifdef ATW_SYNDEBUG
1953 static int
1954 atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
1955 {
1956 u_int32_t reg;
1957 int i;
1958
1959 KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
1960
1961 for (i = 1000; --i >= 0; ) {
1962 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1963 break;
1964 DELAY(100);
1965 }
1966
1967 if (i < 0) {
1968 printf("%s: start atw_si4126_read, SYNCTL busy\n",
1969 sc->sc_dev.dv_xname);
1970 return ETIMEDOUT;
1971 }
1972
1973 reg = sc->sc_synctl_rd | LSHIFT(addr, ATW_SYNCTL_DATA_MASK);
1974
1975 ATW_WRITE(sc, ATW_SYNCTL, reg);
1976
1977 for (i = 1000; --i >= 0; ) {
1978 DELAY(100);
1979 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1980 break;
1981 }
1982
1983 ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1984
1985 if (i < 0) {
1986 printf("%s: atw_si4126_read wrote %#08x, SYNCTL still busy\n",
1987 sc->sc_dev.dv_xname, reg);
1988 return ETIMEDOUT;
1989 }
1990 if (val != NULL)
1991 *val = MASK_AND_RSHIFT(ATW_READ(sc, ATW_SYNCTL),
1992 ATW_SYNCTL_DATA_MASK);
1993 return 0;
1994 }
1995 #endif /* ATW_SYNDEBUG */
1996
1997 /* XXX is the endianness correct? test. */
1998 #define atw_calchash(addr) \
1999 (ether_crc32_le((addr), IEEE80211_ADDR_LEN) & BITS(5, 0))
2000
2001 /*
2002 * atw_filter_setup:
2003 *
2004 * Set the ADM8211's receive filter.
2005 */
2006 static void
2007 atw_filter_setup(struct atw_softc *sc)
2008 {
2009 struct ieee80211com *ic = &sc->sc_ic;
2010 struct ethercom *ec = &sc->sc_ec;
2011 struct ifnet *ifp = &sc->sc_if;
2012 int hash;
2013 u_int32_t hashes[2];
2014 struct ether_multi *enm;
2015 struct ether_multistep step;
2016
2017 /* According to comments in tlp_al981_filter_setup
2018 * (dev/ic/tulip.c) the ADMtek AL981 does not like for its
2019 * multicast filter to be set while it is running. Hopefully
2020 * the ADM8211 is not the same!
2021 */
2022 if ((ifp->if_flags & IFF_RUNNING) != 0)
2023 atw_idle(sc, ATW_NAR_SR);
2024
2025 sc->sc_opmode &= ~(ATW_NAR_PR|ATW_NAR_MM);
2026 ifp->if_flags &= ~IFF_ALLMULTI;
2027
2028 /* XXX in scan mode, do not filter packets. Maybe this is
2029 * unnecessary.
2030 */
2031 if (ic->ic_state == IEEE80211_S_SCAN ||
2032 (ifp->if_flags & IFF_PROMISC) != 0) {
2033 sc->sc_opmode |= ATW_NAR_PR;
2034 goto allmulti;
2035 }
2036
2037 hashes[0] = hashes[1] = 0x0;
2038
2039 /*
2040 * Program the 64-bit multicast hash filter.
2041 */
2042 ETHER_FIRST_MULTI(step, ec, enm);
2043 while (enm != NULL) {
2044 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2045 ETHER_ADDR_LEN) != 0)
2046 goto allmulti;
2047
2048 hash = atw_calchash(enm->enm_addrlo);
2049 hashes[hash >> 5] |= 1 << (hash & 0x1f);
2050 ETHER_NEXT_MULTI(step, enm);
2051 sc->sc_opmode |= ATW_NAR_MM;
2052 }
2053 ifp->if_flags &= ~IFF_ALLMULTI;
2054 goto setit;
2055
2056 allmulti:
2057 sc->sc_opmode |= ATW_NAR_MM;
2058 ifp->if_flags |= IFF_ALLMULTI;
2059 hashes[0] = hashes[1] = 0xffffffff;
2060
2061 setit:
2062 ATW_WRITE(sc, ATW_MAR0, hashes[0]);
2063 ATW_WRITE(sc, ATW_MAR1, hashes[1]);
2064 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2065 DELAY(atw_nar_delay);
2066 ATW_WRITE(sc, ATW_RDR, 0x1);
2067
2068 DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", sc->sc_dev.dv_xname,
2069 ATW_READ(sc, ATW_NAR), sc->sc_opmode));
2070 }
2071
2072 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
2073 * a beacon's BSSID and SSID against the preferred BSSID and SSID
2074 * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
2075 * no beacon with the preferred BSSID and SSID in the number of
2076 * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
2077 */
2078 static void
2079 atw_write_bssid(struct atw_softc *sc)
2080 {
2081 struct ieee80211com *ic = &sc->sc_ic;
2082 u_int8_t *bssid;
2083
2084 bssid = ic->ic_bss->ni_bssid;
2085
2086 ATW_WRITE(sc, ATW_BSSID0,
2087 LSHIFT(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
2088 LSHIFT(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
2089 LSHIFT(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
2090 LSHIFT(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
2091
2092 ATW_WRITE(sc, ATW_ABDA1,
2093 (ATW_READ(sc, ATW_ABDA1) &
2094 ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
2095 LSHIFT(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
2096 LSHIFT(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
2097
2098 DPRINTF(sc, ("%s: BSSID %s -> ", sc->sc_dev.dv_xname,
2099 ether_sprintf(sc->sc_bssid)));
2100 DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
2101
2102 memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
2103 }
2104
2105 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
2106 * 16-bit word.
2107 */
2108 static void
2109 atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
2110 {
2111 u_int i;
2112 u_int8_t *ptr;
2113
2114 memcpy(&sc->sc_sram[ofs], buf, buflen);
2115
2116 KASSERT(ofs % 2 == 0 && buflen % 2 == 0);
2117
2118 KASSERT(buflen + ofs <= sc->sc_sramlen);
2119
2120 ptr = &sc->sc_sram[ofs];
2121
2122 for (i = 0; i < buflen; i += 2) {
2123 ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
2124 LSHIFT((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
2125 DELAY(atw_writewep_delay);
2126
2127 ATW_WRITE(sc, ATW_WESK,
2128 LSHIFT((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
2129 DELAY(atw_writewep_delay);
2130 }
2131 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
2132
2133 if (sc->sc_if.if_flags & IFF_DEBUG) {
2134 int n_octets = 0;
2135 printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
2136 sc->sc_dev.dv_xname, buflen, ofs, sc->sc_wepctl);
2137 for (i = 0; i < buflen; i++) {
2138 printf(" %02x", ptr[i]);
2139 if (++n_octets % 24 == 0)
2140 printf("\n");
2141 }
2142 if (n_octets % 24 != 0)
2143 printf("\n");
2144 }
2145 }
2146
2147 static int
2148 atw_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
2149 {
2150 struct atw_softc *sc = ic->ic_ifp->if_softc;
2151 u_int keyix = k->wk_keyix;
2152
2153 DPRINTF(sc, ("%s: delete key %u\n", __func__, keyix));
2154
2155 if (keyix >= IEEE80211_WEP_NKID)
2156 return 0;
2157 if (k->wk_keylen != 0)
2158 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2159
2160 return 1;
2161 }
2162
2163 static int
2164 atw_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
2165 const u_int8_t mac[IEEE80211_ADDR_LEN])
2166 {
2167 struct atw_softc *sc = ic->ic_ifp->if_softc;
2168
2169 DPRINTF(sc, ("%s: set key %u\n", __func__, k->wk_keyix));
2170
2171 if (k->wk_keyix >= IEEE80211_WEP_NKID)
2172 return 0;
2173
2174 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2175
2176 return 1;
2177 }
2178
2179 static void
2180 atw_key_update_begin(struct ieee80211com *ic)
2181 {
2182 #ifdef ATW_DEBUG
2183 struct ifnet *ifp = ic->ic_ifp;
2184 struct atw_softc *sc = ifp->if_softc;
2185 #endif
2186
2187 DPRINTF(sc, ("%s:\n", __func__));
2188 }
2189
2190 static void
2191 atw_key_update_end(struct ieee80211com *ic)
2192 {
2193 struct ifnet *ifp = ic->ic_ifp;
2194 struct atw_softc *sc = ifp->if_softc;
2195
2196 DPRINTF(sc, ("%s:\n", __func__));
2197
2198 if ((sc->sc_flags & ATWF_WEP_SRAM_VALID) != 0)
2199 return;
2200 if (ATW_IS_ENABLED(sc) == 0)
2201 return;
2202 atw_idle(sc, ATW_NAR_SR | ATW_NAR_ST);
2203 atw_write_wep(sc);
2204 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2205 DELAY(atw_nar_delay);
2206 ATW_WRITE(sc, ATW_RDR, 0x1);
2207 }
2208
2209 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
2210 static void
2211 atw_write_wep(struct atw_softc *sc)
2212 {
2213 struct ieee80211com *ic = &sc->sc_ic;
2214 /* SRAM shared-key record format: key0 flags key1 ... key12 */
2215 u_int8_t buf[IEEE80211_WEP_NKID]
2216 [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
2217 u_int32_t reg;
2218 int i;
2219
2220 sc->sc_wepctl = 0;
2221 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
2222
2223 memset(&buf[0][0], 0, sizeof(buf));
2224
2225 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2226 if (ic->ic_nw_keys[i].wk_keylen > 5) {
2227 buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
2228 } else if (ic->ic_nw_keys[i].wk_keylen != 0) {
2229 buf[i][1] = ATW_WEP_ENABLED;
2230 } else {
2231 buf[i][1] = 0;
2232 continue;
2233 }
2234 buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
2235 memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
2236 ic->ic_nw_keys[i].wk_keylen - 1);
2237 }
2238
2239 reg = ATW_READ(sc, ATW_MACTEST);
2240 reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2241 reg &= ~ATW_MACTEST_KEYID_MASK;
2242 reg |= LSHIFT(ic->ic_def_txkey, ATW_MACTEST_KEYID_MASK);
2243 ATW_WRITE(sc, ATW_MACTEST, reg);
2244
2245 if ((ic->ic_flags & IEEE80211_F_PRIVACY) != 0)
2246 sc->sc_wepctl |= ATW_WEPCTL_WEPENABLE;
2247
2248 switch (sc->sc_rev) {
2249 case ATW_REVISION_AB:
2250 case ATW_REVISION_AF:
2251 /* Bypass WEP on Rx. */
2252 sc->sc_wepctl |= ATW_WEPCTL_WEPRXBYP;
2253 break;
2254 default:
2255 break;
2256 }
2257
2258 atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
2259 sizeof(buf));
2260
2261 sc->sc_flags |= ATWF_WEP_SRAM_VALID;
2262 }
2263
2264 static void
2265 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2266 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2267 {
2268 struct atw_softc *sc = (struct atw_softc *)ic->ic_ifp->if_softc;
2269
2270 /* The ADM8211A answers probe requests. TBD ADM8211B/C. */
2271 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_REQ)
2272 return;
2273
2274 (*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2275
2276 switch (subtype) {
2277 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2278 case IEEE80211_FC0_SUBTYPE_BEACON:
2279 if (ic->ic_opmode == IEEE80211_M_IBSS &&
2280 ic->ic_state == IEEE80211_S_RUN) {
2281 if (le64toh(ni->ni_tstamp.tsf) >= atw_get_tsft(sc))
2282 (void)ieee80211_ibss_merge(ni);
2283 }
2284 break;
2285 default:
2286 break;
2287 }
2288 return;
2289 }
2290
2291 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2292 * In ad hoc mode, the SSID is written to the beacons sent by the
2293 * ADM8211. In both ad hoc and infrastructure mode, beacons received
2294 * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2295 * indications.
2296 */
2297 static void
2298 atw_write_ssid(struct atw_softc *sc)
2299 {
2300 struct ieee80211com *ic = &sc->sc_ic;
2301 /* 34 bytes are reserved in ADM8211 SRAM for the SSID, but
2302 * it only expects the element length, not its ID.
2303 */
2304 u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
2305
2306 memset(buf, 0, sizeof(buf));
2307 buf[0] = ic->ic_bss->ni_esslen;
2308 memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2309
2310 atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf,
2311 roundup(1 + ic->ic_bss->ni_esslen, 2));
2312 }
2313
2314 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2315 * In ad hoc mode, the supported rates are written to beacons sent by the
2316 * ADM8211.
2317 */
2318 static void
2319 atw_write_sup_rates(struct atw_softc *sc)
2320 {
2321 struct ieee80211com *ic = &sc->sc_ic;
2322 /* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2323 * supported rates
2324 */
2325 u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
2326
2327 memset(buf, 0, sizeof(buf));
2328
2329 buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2330
2331 memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2332 ic->ic_bss->ni_rates.rs_nrates);
2333
2334 atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2335 }
2336
2337 /* Start/stop sending beacons. */
2338 void
2339 atw_start_beacon(struct atw_softc *sc, int start)
2340 {
2341 struct ieee80211com *ic = &sc->sc_ic;
2342 uint16_t chan;
2343 uint32_t bcnt, bpli, cap0, cap1, capinfo;
2344 size_t len;
2345
2346 if (ATW_IS_ENABLED(sc) == 0)
2347 return;
2348
2349 /* start beacons */
2350 len = sizeof(struct ieee80211_frame) +
2351 8 /* timestamp */ + 2 /* beacon interval */ +
2352 2 /* capability info */ +
2353 2 + ic->ic_bss->ni_esslen /* SSID element */ +
2354 2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2355 3 /* DS parameters */ +
2356 IEEE80211_CRC_LEN;
2357
2358 bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2359 cap0 = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
2360 cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2361
2362 ATW_WRITE(sc, ATW_BCNT, bcnt);
2363 ATW_WRITE(sc, ATW_CAP1, cap1);
2364
2365 if (!start)
2366 return;
2367
2368 /* TBD use ni_capinfo */
2369
2370 capinfo = 0;
2371 if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
2372 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2373 if (ic->ic_flags & IEEE80211_F_PRIVACY)
2374 capinfo |= IEEE80211_CAPINFO_PRIVACY;
2375
2376 switch (ic->ic_opmode) {
2377 case IEEE80211_M_IBSS:
2378 len += 4; /* IBSS parameters */
2379 capinfo |= IEEE80211_CAPINFO_IBSS;
2380 break;
2381 case IEEE80211_M_HOSTAP:
2382 /* XXX 6-byte minimum TIM */
2383 len += atw_beacon_len_adjust;
2384 capinfo |= IEEE80211_CAPINFO_ESS;
2385 break;
2386 default:
2387 return;
2388 }
2389
2390 /* set listen interval
2391 * XXX do software units agree w/ hardware?
2392 */
2393 bpli = LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2394 LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval, ATW_BPLI_LI_MASK);
2395
2396 chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
2397
2398 bcnt |= LSHIFT(len, ATW_BCNT_BCNT_MASK);
2399 cap0 |= LSHIFT(chan, ATW_CAP0_CHN_MASK);
2400 cap1 |= LSHIFT(capinfo, ATW_CAP1_CAPI_MASK);
2401
2402 ATW_WRITE(sc, ATW_BCNT, bcnt);
2403 ATW_WRITE(sc, ATW_BPLI, bpli);
2404 ATW_WRITE(sc, ATW_CAP0, cap0);
2405 ATW_WRITE(sc, ATW_CAP1, cap1);
2406
2407 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2408 sc->sc_dev.dv_xname, bcnt));
2409
2410 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2411 sc->sc_dev.dv_xname, cap1));
2412 }
2413
2414 /* Return the 32 lsb of the last TSFT divisible by ival. */
2415 static inline uint32_t
2416 atw_last_even_tsft(uint32_t tsfth, uint32_t tsftl, uint32_t ival)
2417 {
2418 /* Following the reference driver's lead, I compute
2419 *
2420 * (uint32_t)((((uint64_t)tsfth << 32) | tsftl) % ival)
2421 *
2422 * without using 64-bit arithmetic, using the following
2423 * relationship:
2424 *
2425 * (0x100000000 * H + L) % m
2426 * = ((0x100000000 % m) * H + L) % m
2427 * = (((0xffffffff + 1) % m) * H + L) % m
2428 * = ((0xffffffff % m + 1 % m) * H + L) % m
2429 * = ((0xffffffff % m + 1) * H + L) % m
2430 */
2431 return ((0xFFFFFFFF % ival + 1) * tsfth + tsftl) % ival;
2432 }
2433
2434 static uint64_t
2435 atw_get_tsft(struct atw_softc *sc)
2436 {
2437 int i;
2438 uint32_t tsfth, tsftl;
2439 for (i = 0; i < 2; i++) {
2440 tsfth = ATW_READ(sc, ATW_TSFTH);
2441 tsftl = ATW_READ(sc, ATW_TSFTL);
2442 if (ATW_READ(sc, ATW_TSFTH) == tsfth)
2443 break;
2444 }
2445 return ((uint64_t)tsfth << 32) | tsftl;
2446 }
2447
2448 /* If we've created an IBSS, write the TSF time in the ADM8211 to
2449 * the ieee80211com.
2450 *
2451 * Predict the next target beacon transmission time (TBTT) and
2452 * write it to the ADM8211.
2453 */
2454 static void
2455 atw_predict_beacon(struct atw_softc *sc)
2456 {
2457 #define TBTTOFS 20 /* TU */
2458
2459 struct ieee80211com *ic = &sc->sc_ic;
2460 uint64_t tsft;
2461 uint32_t ival, past_even, tbtt, tsfth, tsftl;
2462 union {
2463 uint64_t word;
2464 uint8_t tstamp[8];
2465 } u;
2466
2467 if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2468 ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2469 (ic->ic_flags & IEEE80211_F_SIBSS))) {
2470 tsft = atw_get_tsft(sc);
2471 u.word = htole64(tsft);
2472 (void)memcpy(&ic->ic_bss->ni_tstamp, &u.tstamp[0],
2473 sizeof(ic->ic_bss->ni_tstamp));
2474 } else
2475 tsft = le64toh(ic->ic_bss->ni_tstamp.tsf);
2476
2477 ival = ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2478
2479 tsftl = tsft & 0xFFFFFFFF;
2480 tsfth = tsft >> 32;
2481
2482 /* We sent/received the last beacon `past' microseconds
2483 * after the interval divided the TSF timer.
2484 */
2485 past_even = tsftl - atw_last_even_tsft(tsfth, tsftl, ival);
2486
2487 /* Skip ten beacons so that the TBTT cannot pass before
2488 * we've programmed it. Ten is an arbitrary number.
2489 */
2490 tbtt = past_even + ival * 10;
2491
2492 ATW_WRITE(sc, ATW_TOFS1,
2493 LSHIFT(1, ATW_TOFS1_TSFTOFSR_MASK) |
2494 LSHIFT(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2495 LSHIFT(MASK_AND_RSHIFT(tbtt - TBTTOFS * IEEE80211_DUR_TU,
2496 ATW_TBTTPRE_MASK), ATW_TOFS1_TBTTPRE_MASK));
2497 #undef TBTTOFS
2498 }
2499
2500 static void
2501 atw_next_scan(void *arg)
2502 {
2503 struct atw_softc *sc = arg;
2504 struct ieee80211com *ic = &sc->sc_ic;
2505 int s;
2506
2507 /* don't call atw_start w/o network interrupts blocked */
2508 s = splnet();
2509 if (ic->ic_state == IEEE80211_S_SCAN)
2510 ieee80211_next_scan(ic);
2511 splx(s);
2512 }
2513
2514 /* Synchronize the hardware state with the software state. */
2515 static int
2516 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2517 {
2518 struct ifnet *ifp = ic->ic_ifp;
2519 struct atw_softc *sc = ifp->if_softc;
2520 enum ieee80211_state ostate;
2521 int error = 0;
2522
2523 ostate = ic->ic_state;
2524 callout_stop(&sc->sc_scan_ch);
2525
2526 switch (nstate) {
2527 case IEEE80211_S_AUTH:
2528 case IEEE80211_S_ASSOC:
2529 atw_write_bssid(sc);
2530 error = atw_tune(sc);
2531 break;
2532 case IEEE80211_S_INIT:
2533 callout_stop(&sc->sc_scan_ch);
2534 sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2535 atw_start_beacon(sc, 0);
2536 break;
2537 case IEEE80211_S_SCAN:
2538 error = atw_tune(sc);
2539 callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2540 atw_next_scan, sc);
2541 break;
2542 case IEEE80211_S_RUN:
2543 error = atw_tune(sc);
2544 atw_write_bssid(sc);
2545 atw_write_ssid(sc);
2546 atw_write_sup_rates(sc);
2547
2548 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2549 ic->ic_opmode == IEEE80211_M_MONITOR)
2550 break;
2551
2552 /* set listen interval
2553 * XXX do software units agree w/ hardware?
2554 */
2555 ATW_WRITE(sc, ATW_BPLI,
2556 LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2557 LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval,
2558 ATW_BPLI_LI_MASK));
2559
2560 DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n", sc->sc_dev.dv_xname,
2561 ATW_READ(sc, ATW_BPLI)));
2562
2563 atw_predict_beacon(sc);
2564
2565 switch (ic->ic_opmode) {
2566 case IEEE80211_M_AHDEMO:
2567 case IEEE80211_M_HOSTAP:
2568 case IEEE80211_M_IBSS:
2569 atw_start_beacon(sc, 1);
2570 break;
2571 case IEEE80211_M_MONITOR:
2572 case IEEE80211_M_STA:
2573 break;
2574 }
2575
2576 break;
2577 }
2578 return (error != 0) ? error : (*sc->sc_newstate)(ic, nstate, arg);
2579 }
2580
2581 /*
2582 * atw_add_rxbuf:
2583 *
2584 * Add a receive buffer to the indicated descriptor.
2585 */
2586 int
2587 atw_add_rxbuf(struct atw_softc *sc, int idx)
2588 {
2589 struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2590 struct mbuf *m;
2591 int error;
2592
2593 MGETHDR(m, M_DONTWAIT, MT_DATA);
2594 if (m == NULL)
2595 return (ENOBUFS);
2596
2597 MCLGET(m, M_DONTWAIT);
2598 if ((m->m_flags & M_EXT) == 0) {
2599 m_freem(m);
2600 return (ENOBUFS);
2601 }
2602
2603 if (rxs->rxs_mbuf != NULL)
2604 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2605
2606 rxs->rxs_mbuf = m;
2607
2608 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2609 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2610 BUS_DMA_READ|BUS_DMA_NOWAIT);
2611 if (error) {
2612 printf("%s: can't load rx DMA map %d, error = %d\n",
2613 sc->sc_dev.dv_xname, idx, error);
2614 panic("atw_add_rxbuf"); /* XXX */
2615 }
2616
2617 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2618 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2619
2620 ATW_INIT_RXDESC(sc, idx);
2621
2622 return (0);
2623 }
2624
2625 /*
2626 * Release any queued transmit buffers.
2627 */
2628 void
2629 atw_txdrain(struct atw_softc *sc)
2630 {
2631 struct atw_txsoft *txs;
2632
2633 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2634 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2635 if (txs->txs_mbuf != NULL) {
2636 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2637 m_freem(txs->txs_mbuf);
2638 txs->txs_mbuf = NULL;
2639 }
2640 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2641 sc->sc_txfree += txs->txs_ndescs;
2642 }
2643
2644 KASSERT((sc->sc_if.if_flags & IFF_RUNNING) == 0 ||
2645 !(SIMPLEQ_EMPTY(&sc->sc_txfreeq) ||
2646 sc->sc_txfree != ATW_NTXDESC));
2647 sc->sc_if.if_flags &= ~IFF_OACTIVE;
2648 sc->sc_tx_timer = 0;
2649 }
2650
2651 /*
2652 * atw_stop: [ ifnet interface function ]
2653 *
2654 * Stop transmission on the interface.
2655 */
2656 void
2657 atw_stop(struct ifnet *ifp, int disable)
2658 {
2659 struct atw_softc *sc = ifp->if_softc;
2660 struct ieee80211com *ic = &sc->sc_ic;
2661
2662 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2663
2664 /* Disable interrupts. */
2665 ATW_WRITE(sc, ATW_IER, 0);
2666
2667 /* Stop the transmit and receive processes. */
2668 sc->sc_opmode = 0;
2669 ATW_WRITE(sc, ATW_NAR, 0);
2670 DELAY(atw_nar_delay);
2671 ATW_WRITE(sc, ATW_TDBD, 0);
2672 ATW_WRITE(sc, ATW_TDBP, 0);
2673 ATW_WRITE(sc, ATW_RDB, 0);
2674
2675 atw_txdrain(sc);
2676
2677 if (disable) {
2678 atw_rxdrain(sc);
2679 atw_disable(sc);
2680 }
2681
2682 /*
2683 * Mark the interface down and cancel the watchdog timer.
2684 */
2685 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2686 sc->sc_tx_timer = 0;
2687 ifp->if_timer = 0;
2688
2689 if (!disable)
2690 atw_reset(sc);
2691 }
2692
2693 /*
2694 * atw_rxdrain:
2695 *
2696 * Drain the receive queue.
2697 */
2698 void
2699 atw_rxdrain(struct atw_softc *sc)
2700 {
2701 struct atw_rxsoft *rxs;
2702 int i;
2703
2704 for (i = 0; i < ATW_NRXDESC; i++) {
2705 rxs = &sc->sc_rxsoft[i];
2706 if (rxs->rxs_mbuf == NULL)
2707 continue;
2708 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2709 m_freem(rxs->rxs_mbuf);
2710 rxs->rxs_mbuf = NULL;
2711 }
2712 }
2713
2714 /*
2715 * atw_detach:
2716 *
2717 * Detach an ADM8211 interface.
2718 */
2719 int
2720 atw_detach(struct atw_softc *sc)
2721 {
2722 struct ifnet *ifp = &sc->sc_if;
2723 struct atw_rxsoft *rxs;
2724 struct atw_txsoft *txs;
2725 int i;
2726
2727 /*
2728 * Succeed now if there isn't any work to do.
2729 */
2730 if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2731 return (0);
2732
2733 callout_stop(&sc->sc_scan_ch);
2734
2735 ieee80211_ifdetach(&sc->sc_ic);
2736 if_detach(ifp);
2737
2738 for (i = 0; i < ATW_NRXDESC; i++) {
2739 rxs = &sc->sc_rxsoft[i];
2740 if (rxs->rxs_mbuf != NULL) {
2741 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2742 m_freem(rxs->rxs_mbuf);
2743 rxs->rxs_mbuf = NULL;
2744 }
2745 bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2746 }
2747 for (i = 0; i < ATW_TXQUEUELEN; i++) {
2748 txs = &sc->sc_txsoft[i];
2749 if (txs->txs_mbuf != NULL) {
2750 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2751 m_freem(txs->txs_mbuf);
2752 txs->txs_mbuf = NULL;
2753 }
2754 bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2755 }
2756 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2757 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2758 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2759 sizeof(struct atw_control_data));
2760 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2761
2762 shutdownhook_disestablish(sc->sc_sdhook);
2763 powerhook_disestablish(sc->sc_powerhook);
2764
2765 if (sc->sc_srom)
2766 free(sc->sc_srom, M_DEVBUF);
2767
2768 return (0);
2769 }
2770
2771 /* atw_shutdown: make sure the interface is stopped at reboot time. */
2772 void
2773 atw_shutdown(void *arg)
2774 {
2775 struct atw_softc *sc = arg;
2776
2777 atw_stop(&sc->sc_if, 1);
2778 }
2779
2780 int
2781 atw_intr(void *arg)
2782 {
2783 struct atw_softc *sc = arg;
2784 struct ifnet *ifp = &sc->sc_if;
2785 u_int32_t status, rxstatus, txstatus, linkstatus;
2786 int handled = 0, txthresh;
2787
2788 #ifdef DEBUG
2789 if (ATW_IS_ENABLED(sc) == 0)
2790 panic("%s: atw_intr: not enabled", sc->sc_dev.dv_xname);
2791 #endif
2792
2793 /*
2794 * If the interface isn't running, the interrupt couldn't
2795 * possibly have come from us.
2796 */
2797 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2798 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
2799 return (0);
2800
2801 for (;;) {
2802 status = ATW_READ(sc, ATW_STSR);
2803
2804 if (status)
2805 ATW_WRITE(sc, ATW_STSR, status);
2806
2807 #ifdef ATW_DEBUG
2808 #define PRINTINTR(flag) do { \
2809 if ((status & flag) != 0) { \
2810 printf("%s" #flag, delim); \
2811 delim = ","; \
2812 } \
2813 } while (0)
2814
2815 if (atw_debug > 1 && status) {
2816 const char *delim = "<";
2817
2818 printf("%s: reg[STSR] = %x",
2819 sc->sc_dev.dv_xname, status);
2820
2821 PRINTINTR(ATW_INTR_FBE);
2822 PRINTINTR(ATW_INTR_LINKOFF);
2823 PRINTINTR(ATW_INTR_LINKON);
2824 PRINTINTR(ATW_INTR_RCI);
2825 PRINTINTR(ATW_INTR_RDU);
2826 PRINTINTR(ATW_INTR_REIS);
2827 PRINTINTR(ATW_INTR_RPS);
2828 PRINTINTR(ATW_INTR_TCI);
2829 PRINTINTR(ATW_INTR_TDU);
2830 PRINTINTR(ATW_INTR_TLT);
2831 PRINTINTR(ATW_INTR_TPS);
2832 PRINTINTR(ATW_INTR_TRT);
2833 PRINTINTR(ATW_INTR_TUF);
2834 PRINTINTR(ATW_INTR_BCNTC);
2835 PRINTINTR(ATW_INTR_ATIME);
2836 PRINTINTR(ATW_INTR_TBTT);
2837 PRINTINTR(ATW_INTR_TSCZ);
2838 PRINTINTR(ATW_INTR_TSFTF);
2839 printf(">\n");
2840 }
2841 #undef PRINTINTR
2842 #endif /* ATW_DEBUG */
2843
2844 if ((status & sc->sc_inten) == 0)
2845 break;
2846
2847 handled = 1;
2848
2849 rxstatus = status & sc->sc_rxint_mask;
2850 txstatus = status & sc->sc_txint_mask;
2851 linkstatus = status & sc->sc_linkint_mask;
2852
2853 if (linkstatus) {
2854 atw_linkintr(sc, linkstatus);
2855 }
2856
2857 if (rxstatus) {
2858 /* Grab any new packets. */
2859 atw_rxintr(sc);
2860
2861 if (rxstatus & ATW_INTR_RDU) {
2862 printf("%s: receive ring overrun\n",
2863 sc->sc_dev.dv_xname);
2864 /* Get the receive process going again. */
2865 ATW_WRITE(sc, ATW_RDR, 0x1);
2866 break;
2867 }
2868 }
2869
2870 if (txstatus) {
2871 /* Sweep up transmit descriptors. */
2872 atw_txintr(sc);
2873
2874 if (txstatus & ATW_INTR_TLT)
2875 DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2876 sc->sc_dev.dv_xname));
2877
2878 if (txstatus & ATW_INTR_TRT)
2879 DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2880 sc->sc_dev.dv_xname));
2881
2882 /* If Tx under-run, increase our transmit threshold
2883 * if another is available.
2884 */
2885 txthresh = sc->sc_txthresh + 1;
2886 if ((txstatus & ATW_INTR_TUF) &&
2887 sc->sc_txth[txthresh].txth_name != NULL) {
2888 /* Idle the transmit process. */
2889 atw_idle(sc, ATW_NAR_ST);
2890
2891 sc->sc_txthresh = txthresh;
2892 sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2893 sc->sc_opmode |=
2894 sc->sc_txth[txthresh].txth_opmode;
2895 printf("%s: transmit underrun; new "
2896 "threshold: %s\n", sc->sc_dev.dv_xname,
2897 sc->sc_txth[txthresh].txth_name);
2898
2899 /* Set the new threshold and restart
2900 * the transmit process.
2901 */
2902 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2903 DELAY(atw_nar_delay);
2904 ATW_WRITE(sc, ATW_RDR, 0x1);
2905 /* XXX Log every Nth underrun from
2906 * XXX now on?
2907 */
2908 }
2909 }
2910
2911 if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
2912 if (status & ATW_INTR_TPS)
2913 printf("%s: transmit process stopped\n",
2914 sc->sc_dev.dv_xname);
2915 if (status & ATW_INTR_RPS)
2916 printf("%s: receive process stopped\n",
2917 sc->sc_dev.dv_xname);
2918 (void)atw_init(ifp);
2919 break;
2920 }
2921
2922 if (status & ATW_INTR_FBE) {
2923 printf("%s: fatal bus error\n", sc->sc_dev.dv_xname);
2924 (void)atw_init(ifp);
2925 break;
2926 }
2927
2928 /*
2929 * Not handled:
2930 *
2931 * Transmit buffer unavailable -- normal
2932 * condition, nothing to do, really.
2933 *
2934 * Early receive interrupt -- not available on
2935 * all chips, we just use RI. We also only
2936 * use single-segment receive DMA, so this
2937 * is mostly useless.
2938 *
2939 * TBD others
2940 */
2941 }
2942
2943 /* Try to get more packets going. */
2944 atw_start(ifp);
2945
2946 return (handled);
2947 }
2948
2949 /*
2950 * atw_idle:
2951 *
2952 * Cause the transmit and/or receive processes to go idle.
2953 *
2954 * XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2955 * process in STSR if I clear SR or ST after the process has already
2956 * ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2957 * do not seem to be too reliable. Perhaps I have the sense of the
2958 * Rx bits switched with the Tx bits?
2959 */
2960 void
2961 atw_idle(struct atw_softc *sc, u_int32_t bits)
2962 {
2963 u_int32_t ackmask = 0, opmode, stsr, test0;
2964 int i, s;
2965
2966 s = splnet();
2967
2968 opmode = sc->sc_opmode & ~bits;
2969
2970 if (bits & ATW_NAR_SR)
2971 ackmask |= ATW_INTR_RPS;
2972
2973 if (bits & ATW_NAR_ST) {
2974 ackmask |= ATW_INTR_TPS;
2975 /* set ATW_NAR_HF to flush TX FIFO. */
2976 opmode |= ATW_NAR_HF;
2977 }
2978
2979 ATW_WRITE(sc, ATW_NAR, opmode);
2980 DELAY(atw_nar_delay);
2981
2982 for (i = 0; i < 1000; i++) {
2983 stsr = ATW_READ(sc, ATW_STSR);
2984 if ((stsr & ackmask) == ackmask)
2985 break;
2986 DELAY(10);
2987 }
2988
2989 ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
2990
2991 if ((stsr & ackmask) == ackmask)
2992 goto out;
2993
2994 test0 = ATW_READ(sc, ATW_TEST0);
2995
2996 if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
2997 (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
2998 printf("%s: transmit process not idle [%s]\n",
2999 sc->sc_dev.dv_xname,
3000 atw_tx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_TS_MASK)]);
3001 printf("%s: bits %08x test0 %08x stsr %08x\n",
3002 sc->sc_dev.dv_xname, bits, test0, stsr);
3003 }
3004
3005 if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
3006 (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
3007 DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
3008 sc->sc_dev.dv_xname,
3009 atw_rx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_RS_MASK)]));
3010 DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
3011 sc->sc_dev.dv_xname, bits, test0, stsr));
3012 }
3013 out:
3014 if ((bits & ATW_NAR_ST) != 0)
3015 atw_txdrain(sc);
3016 splx(s);
3017 return;
3018 }
3019
3020 /*
3021 * atw_linkintr:
3022 *
3023 * Helper; handle link-status interrupts.
3024 */
3025 void
3026 atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
3027 {
3028 struct ieee80211com *ic = &sc->sc_ic;
3029
3030 if (ic->ic_state != IEEE80211_S_RUN)
3031 return;
3032
3033 if (linkstatus & ATW_INTR_LINKON) {
3034 DPRINTF(sc, ("%s: link on\n", sc->sc_dev.dv_xname));
3035 sc->sc_rescan_timer = 0;
3036 } else if (linkstatus & ATW_INTR_LINKOFF) {
3037 DPRINTF(sc, ("%s: link off\n", sc->sc_dev.dv_xname));
3038 if (ic->ic_opmode != IEEE80211_M_STA)
3039 return;
3040 sc->sc_rescan_timer = 3;
3041 sc->sc_if.if_timer = 1;
3042 }
3043 }
3044
3045 static inline int
3046 atw_hw_decrypted(struct atw_softc *sc, struct ieee80211_frame_min *wh)
3047 {
3048 if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0)
3049 return 0;
3050 if ((wh->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3051 return 0;
3052 return (sc->sc_wepctl & ATW_WEPCTL_WEPRXBYP) == 0;
3053 }
3054
3055 /*
3056 * atw_rxintr:
3057 *
3058 * Helper; handle receive interrupts.
3059 */
3060 void
3061 atw_rxintr(struct atw_softc *sc)
3062 {
3063 static int rate_tbl[] = {2, 4, 11, 22, 44};
3064 struct ieee80211com *ic = &sc->sc_ic;
3065 struct ieee80211_node *ni;
3066 struct ieee80211_frame_min *wh;
3067 struct ifnet *ifp = &sc->sc_if;
3068 struct atw_rxsoft *rxs;
3069 struct mbuf *m;
3070 u_int32_t rxstat;
3071 int i, len, rate, rate0;
3072 u_int32_t rssi, rssi0;
3073
3074 for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
3075 rxs = &sc->sc_rxsoft[i];
3076
3077 ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3078
3079 rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
3080 rssi0 = le32toh(sc->sc_rxdescs[i].ar_rssi);
3081 rate0 = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_RXDR_MASK);
3082
3083 if (rxstat & ATW_RXSTAT_OWN)
3084 break; /* We have processed all receive buffers. */
3085
3086 DPRINTF3(sc,
3087 ("%s: rx stat %08x rssi0 %08x buf1 %08x buf2 %08x\n",
3088 sc->sc_dev.dv_xname,
3089 rxstat, rssi0,
3090 le32toh(sc->sc_rxdescs[i].ar_buf1),
3091 le32toh(sc->sc_rxdescs[i].ar_buf2)));
3092
3093 /*
3094 * Make sure the packet fits in one buffer. This should
3095 * always be the case.
3096 */
3097 if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
3098 (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
3099 printf("%s: incoming packet spilled, resetting\n",
3100 sc->sc_dev.dv_xname);
3101 (void)atw_init(ifp);
3102 return;
3103 }
3104
3105 /*
3106 * If an error occurred, update stats, clear the status
3107 * word, and leave the packet buffer in place. It will
3108 * simply be reused the next time the ring comes around.
3109 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
3110 * error.
3111 */
3112
3113 if ((rxstat & ATW_RXSTAT_ES) != 0 &&
3114 ((sc->sc_ec.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
3115 (rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_SFDE |
3116 ATW_RXSTAT_SIGE | ATW_RXSTAT_CRC16E |
3117 ATW_RXSTAT_RXTOE | ATW_RXSTAT_CRC32E |
3118 ATW_RXSTAT_ICVE)) != 0)) {
3119 #define PRINTERR(bit, str) \
3120 if (rxstat & (bit)) \
3121 printf("%s: receive error: %s\n", \
3122 sc->sc_dev.dv_xname, str)
3123 ifp->if_ierrors++;
3124 PRINTERR(ATW_RXSTAT_DE, "descriptor error");
3125 PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
3126 PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
3127 PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
3128 PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
3129 PRINTERR(ATW_RXSTAT_CRC32E, "FCS error");
3130 PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
3131 #undef PRINTERR
3132 ATW_INIT_RXDESC(sc, i);
3133 continue;
3134 }
3135
3136 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3137 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3138
3139 /*
3140 * No errors; receive the packet. Note the ADM8211
3141 * includes the CRC in promiscuous mode.
3142 */
3143 len = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_FL_MASK);
3144
3145 /*
3146 * Allocate a new mbuf cluster. If that fails, we are
3147 * out of memory, and must drop the packet and recycle
3148 * the buffer that's already attached to this descriptor.
3149 */
3150 m = rxs->rxs_mbuf;
3151 if (atw_add_rxbuf(sc, i) != 0) {
3152 ifp->if_ierrors++;
3153 ATW_INIT_RXDESC(sc, i);
3154 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3155 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3156 continue;
3157 }
3158
3159 ifp->if_ipackets++;
3160 if (sc->sc_opmode & ATW_NAR_PR)
3161 len -= IEEE80211_CRC_LEN;
3162 m->m_pkthdr.rcvif = ifp;
3163 m->m_pkthdr.len = m->m_len = MIN(m->m_ext.ext_size, len);
3164
3165 if (rate0 >= sizeof(rate_tbl) / sizeof(rate_tbl[0]))
3166 rate = 0;
3167 else
3168 rate = rate_tbl[rate0];
3169
3170 /* The RSSI comes straight from a register in the
3171 * baseband processor. I know that for the RF3000,
3172 * the RSSI register also contains the antenna-selection
3173 * bits. Mask those off.
3174 *
3175 * TBD Treat other basebands.
3176 */
3177 if (sc->sc_bbptype == ATW_BBPTYPE_RFMD)
3178 rssi = rssi0 & RF3000_RSSI_MASK;
3179 else
3180 rssi = rssi0;
3181
3182 #if NBPFILTER > 0
3183 /* Pass this up to any BPF listeners. */
3184 if (sc->sc_radiobpf != NULL) {
3185 struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
3186
3187 tap->ar_rate = rate;
3188 tap->ar_chan_freq = ic->ic_curchan->ic_freq;
3189 tap->ar_chan_flags = ic->ic_curchan->ic_flags;
3190
3191 /* TBD verify units are dB */
3192 tap->ar_antsignal = (int)rssi;
3193 /* TBD tap->ar_flags */
3194
3195 bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3196 tap->ar_ihdr.it_len, m);
3197 }
3198 #endif /* NPBFILTER > 0 */
3199
3200 wh = mtod(m, struct ieee80211_frame_min *);
3201 ni = ieee80211_find_rxnode(ic, wh);
3202 if (atw_hw_decrypted(sc, wh)) {
3203 wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
3204 DPRINTF(sc, ("%s: hw decrypted\n", __func__));
3205 }
3206 ieee80211_input(ic, m, ni, (int)rssi, 0);
3207 ieee80211_free_node(ni);
3208 }
3209
3210 /* Update the receive pointer. */
3211 sc->sc_rxptr = i;
3212 }
3213
3214 /*
3215 * atw_txintr:
3216 *
3217 * Helper; handle transmit interrupts.
3218 */
3219 void
3220 atw_txintr(struct atw_softc *sc)
3221 {
3222 #define TXSTAT_ERRMASK (ATW_TXSTAT_TUF | ATW_TXSTAT_TLT | ATW_TXSTAT_TRT | \
3223 ATW_TXSTAT_TRO | ATW_TXSTAT_SOFBR)
3224 #define TXSTAT_FMT "\20\31ATW_TXSTAT_SOFBR\32ATW_TXSTAT_TRO\33ATW_TXSTAT_TUF" \
3225 "\34ATW_TXSTAT_TRT\35ATW_TXSTAT_TLT"
3226
3227 static char txstat_buf[sizeof("ffffffff<>" TXSTAT_FMT)];
3228 struct ifnet *ifp = &sc->sc_if;
3229 struct atw_txsoft *txs;
3230 u_int32_t txstat;
3231
3232 DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3233 sc->sc_dev.dv_xname, sc->sc_flags));
3234
3235 /*
3236 * Go through our Tx list and free mbufs for those
3237 * frames that have been transmitted.
3238 */
3239 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3240 ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3241 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3242
3243 #ifdef ATW_DEBUG
3244 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3245 int i;
3246 printf(" txsoft %p transmit chain:\n", txs);
3247 ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3248 txs->txs_ndescs - 1,
3249 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3250 for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3251 printf(" descriptor %d:\n", i);
3252 printf(" at_status: 0x%08x\n",
3253 le32toh(sc->sc_txdescs[i].at_stat));
3254 printf(" at_flags: 0x%08x\n",
3255 le32toh(sc->sc_txdescs[i].at_flags));
3256 printf(" at_buf1: 0x%08x\n",
3257 le32toh(sc->sc_txdescs[i].at_buf1));
3258 printf(" at_buf2: 0x%08x\n",
3259 le32toh(sc->sc_txdescs[i].at_buf2));
3260 if (i == txs->txs_lastdesc)
3261 break;
3262 }
3263 }
3264 #endif
3265
3266 txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3267 if (txstat & ATW_TXSTAT_OWN)
3268 break;
3269
3270 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3271
3272 sc->sc_txfree += txs->txs_ndescs;
3273
3274 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3275 0, txs->txs_dmamap->dm_mapsize,
3276 BUS_DMASYNC_POSTWRITE);
3277 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3278 m_freem(txs->txs_mbuf);
3279 txs->txs_mbuf = NULL;
3280
3281 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3282
3283 KASSERT(!(SIMPLEQ_EMPTY(&sc->sc_txfreeq) ||
3284 sc->sc_txfree == 0));
3285 ifp->if_flags &= ~IFF_OACTIVE;
3286
3287 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3288 (txstat & TXSTAT_ERRMASK) != 0) {
3289 bitmask_snprintf(txstat & TXSTAT_ERRMASK, TXSTAT_FMT,
3290 txstat_buf, sizeof(txstat_buf));
3291 printf("%s: txstat %s %d\n", sc->sc_dev.dv_xname,
3292 txstat_buf,
3293 MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK));
3294 }
3295
3296 /*
3297 * Check for errors and collisions.
3298 */
3299 if (txstat & ATW_TXSTAT_TUF)
3300 sc->sc_stats.ts_tx_tuf++;
3301 if (txstat & ATW_TXSTAT_TLT)
3302 sc->sc_stats.ts_tx_tlt++;
3303 if (txstat & ATW_TXSTAT_TRT)
3304 sc->sc_stats.ts_tx_trt++;
3305 if (txstat & ATW_TXSTAT_TRO)
3306 sc->sc_stats.ts_tx_tro++;
3307 if (txstat & ATW_TXSTAT_SOFBR) {
3308 sc->sc_stats.ts_tx_sofbr++;
3309 }
3310
3311 if ((txstat & ATW_TXSTAT_ES) == 0)
3312 ifp->if_collisions +=
3313 MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK);
3314 else
3315 ifp->if_oerrors++;
3316
3317 ifp->if_opackets++;
3318 }
3319
3320 /*
3321 * If there are no more pending transmissions, cancel the watchdog
3322 * timer.
3323 */
3324 if (txs == NULL) {
3325 KASSERT((ifp->if_flags & IFF_OACTIVE) == 0);
3326 sc->sc_tx_timer = 0;
3327 }
3328 #undef TXSTAT_ERRMASK
3329 #undef TXSTAT_FMT
3330 }
3331
3332 /*
3333 * atw_watchdog: [ifnet interface function]
3334 *
3335 * Watchdog timer handler.
3336 */
3337 void
3338 atw_watchdog(struct ifnet *ifp)
3339 {
3340 struct atw_softc *sc = ifp->if_softc;
3341 struct ieee80211com *ic = &sc->sc_ic;
3342
3343 ifp->if_timer = 0;
3344 if (ATW_IS_ENABLED(sc) == 0)
3345 return;
3346
3347 if (sc->sc_rescan_timer) {
3348 if (--sc->sc_rescan_timer == 0)
3349 (void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3350 }
3351 if (sc->sc_tx_timer) {
3352 if (--sc->sc_tx_timer == 0 &&
3353 !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3354 printf("%s: transmit timeout\n", ifp->if_xname);
3355 ifp->if_oerrors++;
3356 (void)atw_init(ifp);
3357 atw_start(ifp);
3358 }
3359 }
3360 if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3361 ifp->if_timer = 1;
3362 ieee80211_watchdog(ic);
3363 }
3364
3365 #ifdef ATW_DEBUG
3366 static void
3367 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3368 {
3369 struct atw_softc *sc = ifp->if_softc;
3370 struct mbuf *m;
3371 int i, noctets = 0;
3372
3373 printf("%s: %d-byte packet\n", sc->sc_dev.dv_xname,
3374 m0->m_pkthdr.len);
3375
3376 for (m = m0; m; m = m->m_next) {
3377 if (m->m_len == 0)
3378 continue;
3379 for (i = 0; i < m->m_len; i++) {
3380 printf(" %02x", ((u_int8_t*)m->m_data)[i]);
3381 if (++noctets % 24 == 0)
3382 printf("\n");
3383 }
3384 }
3385 printf("%s%s: %d bytes emitted\n",
3386 (noctets % 24 != 0) ? "\n" : "", sc->sc_dev.dv_xname, noctets);
3387 }
3388 #endif /* ATW_DEBUG */
3389
3390 /*
3391 * atw_start: [ifnet interface function]
3392 *
3393 * Start packet transmission on the interface.
3394 */
3395 void
3396 atw_start(struct ifnet *ifp)
3397 {
3398 struct atw_softc *sc = ifp->if_softc;
3399 struct ieee80211_key *k;
3400 struct ieee80211com *ic = &sc->sc_ic;
3401 struct ieee80211_node *ni;
3402 struct ieee80211_frame_min *whm;
3403 struct ieee80211_frame *wh;
3404 struct atw_frame *hh;
3405 struct mbuf *m0, *m;
3406 struct atw_txsoft *txs, *last_txs;
3407 struct atw_txdesc *txd;
3408 int do_encrypt, npkt, rate;
3409 bus_dmamap_t dmamap;
3410 int ctl, error, firsttx, nexttx, lasttx = -1, first, ofree, seg;
3411
3412 DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3413 sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
3414
3415 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3416 return;
3417
3418 /*
3419 * Remember the previous number of free descriptors and
3420 * the first descriptor we'll use.
3421 */
3422 ofree = sc->sc_txfree;
3423 firsttx = sc->sc_txnext;
3424
3425 DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3426 sc->sc_dev.dv_xname, ofree, firsttx));
3427
3428 /*
3429 * Loop through the send queue, setting up transmit descriptors
3430 * until we drain the queue, or use up all available transmit
3431 * descriptors.
3432 */
3433 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3434 sc->sc_txfree != 0) {
3435
3436 /*
3437 * Grab a packet off the management queue, if it
3438 * is not empty. Otherwise, from the data queue.
3439 */
3440 IF_DEQUEUE(&ic->ic_mgtq, m0);
3441 if (m0 != NULL) {
3442 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
3443 m0->m_pkthdr.rcvif = NULL;
3444 } else if (ic->ic_state != IEEE80211_S_RUN)
3445 break; /* send no data until associated */
3446 else {
3447 IFQ_DEQUEUE(&ifp->if_snd, m0);
3448 if (m0 == NULL)
3449 break;
3450 #if NBPFILTER > 0
3451 if (ifp->if_bpf != NULL)
3452 bpf_mtap(ifp->if_bpf, m0);
3453 #endif /* NBPFILTER > 0 */
3454 ni = ieee80211_find_txnode(ic,
3455 mtod(m0, struct ether_header *)->ether_dhost);
3456 if (ni == NULL) {
3457 ifp->if_oerrors++;
3458 break;
3459 }
3460 if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
3461 ieee80211_free_node(ni);
3462 ifp->if_oerrors++;
3463 break;
3464 }
3465 }
3466
3467 rate = MAX(ieee80211_get_rate(ic), 2);
3468
3469 whm = mtod(m0, struct ieee80211_frame_min *);
3470
3471 do_encrypt = ((whm->i_fc[1] & IEEE80211_FC1_WEP) != 0) ? 1 : 0;
3472 if (do_encrypt)
3473 k = &ic->ic_nw_keys[ic->ic_def_txkey];
3474 else
3475 k = NULL;
3476
3477 if (ieee80211_compute_duration(whm, k, m0->m_pkthdr.len,
3478 ic->ic_flags, ic->ic_fragthreshold, rate,
3479 &txs->txs_d0, &txs->txs_dn, &npkt, 0) == -1) {
3480 DPRINTF2(sc, ("%s: fail compute duration\n", __func__));
3481 m_freem(m0);
3482 break;
3483 }
3484
3485 /* XXX Misleading if fragmentation is enabled. Better
3486 * to fragment in software?
3487 */
3488 *(uint16_t *)whm->i_dur = htole16(txs->txs_d0.d_rts_dur);
3489
3490 #if NBPFILTER > 0
3491 /*
3492 * Pass the packet to any BPF listeners.
3493 */
3494 if (ic->ic_rawbpf != NULL)
3495 bpf_mtap((caddr_t)ic->ic_rawbpf, m0);
3496
3497 if (sc->sc_radiobpf != NULL) {
3498 struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
3499
3500 tap->at_rate = rate;
3501 tap->at_chan_freq = ic->ic_curchan->ic_freq;
3502 tap->at_chan_flags = ic->ic_curchan->ic_flags;
3503
3504 /* TBD tap->at_flags */
3505
3506 bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3507 tap->at_ihdr.it_len, m0);
3508 }
3509 #endif /* NBPFILTER > 0 */
3510
3511 M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3512
3513 if (ni != NULL)
3514 ieee80211_free_node(ni);
3515
3516 if (m0 == NULL) {
3517 ifp->if_oerrors++;
3518 break;
3519 }
3520
3521 /* just to make sure. */
3522 m0 = m_pullup(m0, sizeof(struct atw_frame));
3523
3524 if (m0 == NULL) {
3525 ifp->if_oerrors++;
3526 break;
3527 }
3528
3529 hh = mtod(m0, struct atw_frame *);
3530 wh = &hh->atw_ihdr;
3531
3532 /* Copy everything we need from the 802.11 header:
3533 * Frame Control; address 1, address 3, or addresses
3534 * 3 and 4. NIC fills in BSSID, SA.
3535 */
3536 if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3537 if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3538 panic("%s: illegal WDS frame",
3539 sc->sc_dev.dv_xname);
3540 memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3541 } else
3542 memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3543
3544 *(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
3545
3546 /* initialize remaining Tx parameters */
3547 memset(&hh->u, 0, sizeof(hh->u));
3548
3549 hh->atw_rate = rate * 5;
3550 /* XXX this could be incorrect if M_FCS. _encap should
3551 * probably strip FCS just in case it sticks around in
3552 * bridged packets.
3553 */
3554 hh->atw_service = 0x00; /* XXX guess */
3555 hh->atw_paylen = htole16(m0->m_pkthdr.len -
3556 sizeof(struct atw_frame));
3557
3558 hh->atw_fragthr = htole16(ic->ic_fragthreshold);
3559 hh->atw_rtylmt = 3;
3560 hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3561 if (do_encrypt) {
3562 hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
3563 hh->atw_keyid = ic->ic_def_txkey;
3564 }
3565
3566 hh->atw_head_plcplen = htole16(txs->txs_d0.d_plcp_len);
3567 hh->atw_tail_plcplen = htole16(txs->txs_dn.d_plcp_len);
3568 if (txs->txs_d0.d_residue)
3569 hh->atw_head_plcplen |= htole16(0x8000);
3570 if (txs->txs_dn.d_residue)
3571 hh->atw_tail_plcplen |= htole16(0x8000);
3572 hh->atw_head_dur = htole16(txs->txs_d0.d_rts_dur);
3573 hh->atw_tail_dur = htole16(txs->txs_dn.d_rts_dur);
3574
3575 /* never fragment multicast frames */
3576 if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
3577 hh->atw_fragthr = htole16(ic->ic_fragthreshold);
3578 } else if (sc->sc_flags & ATWF_RTSCTS) {
3579 hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3580 }
3581
3582 #ifdef ATW_DEBUG
3583 hh->atw_fragnum = 0;
3584
3585 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3586 printf("%s: dst = %s, rate = 0x%02x, "
3587 "service = 0x%02x, paylen = 0x%04x\n",
3588 sc->sc_dev.dv_xname, ether_sprintf(hh->atw_dst),
3589 hh->atw_rate, hh->atw_service, hh->atw_paylen);
3590
3591 printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3592 "dur1 = 0x%04x, dur2 = 0x%04x, "
3593 "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3594 sc->sc_dev.dv_xname, hh->atw_fc[0], hh->atw_fc[1],
3595 hh->atw_tail_plcplen, hh->atw_head_plcplen,
3596 hh->atw_tail_dur, hh->atw_head_dur);
3597
3598 printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3599 "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3600 sc->sc_dev.dv_xname, hh->atw_hdrctl,
3601 hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3602
3603 printf("%s: keyid = %d\n",
3604 sc->sc_dev.dv_xname, hh->atw_keyid);
3605
3606 atw_dump_pkt(ifp, m0);
3607 }
3608 #endif /* ATW_DEBUG */
3609
3610 dmamap = txs->txs_dmamap;
3611
3612 /*
3613 * Load the DMA map. Copy and try (once) again if the packet
3614 * didn't fit in the alloted number of segments.
3615 */
3616 for (first = 1;
3617 (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3618 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
3619 first = 0) {
3620 MGETHDR(m, M_DONTWAIT, MT_DATA);
3621 if (m == NULL) {
3622 printf("%s: unable to allocate Tx mbuf\n",
3623 sc->sc_dev.dv_xname);
3624 break;
3625 }
3626 if (m0->m_pkthdr.len > MHLEN) {
3627 MCLGET(m, M_DONTWAIT);
3628 if ((m->m_flags & M_EXT) == 0) {
3629 printf("%s: unable to allocate Tx "
3630 "cluster\n", sc->sc_dev.dv_xname);
3631 m_freem(m);
3632 break;
3633 }
3634 }
3635 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
3636 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3637 m_freem(m0);
3638 m0 = m;
3639 m = NULL;
3640 }
3641 if (error != 0) {
3642 printf("%s: unable to load Tx buffer, "
3643 "error = %d\n", sc->sc_dev.dv_xname, error);
3644 m_freem(m0);
3645 break;
3646 }
3647
3648 /*
3649 * Ensure we have enough descriptors free to describe
3650 * the packet.
3651 */
3652 if (dmamap->dm_nsegs > sc->sc_txfree) {
3653 /*
3654 * Not enough free descriptors to transmit
3655 * this packet. Unload the DMA map and
3656 * drop the packet. Notify the upper layer
3657 * that there are no more slots left.
3658 *
3659 * XXX We could allocate an mbuf and copy, but
3660 * XXX it is worth it?
3661 */
3662 bus_dmamap_unload(sc->sc_dmat, dmamap);
3663 m_freem(m0);
3664 break;
3665 }
3666
3667 /*
3668 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3669 */
3670
3671 /* Sync the DMA map. */
3672 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3673 BUS_DMASYNC_PREWRITE);
3674
3675 /* XXX arbitrary retry limit; 8 because I have seen it in
3676 * use already and maybe 0 means "no tries" !
3677 */
3678 ctl = htole32(LSHIFT(8, ATW_TXCTL_TL_MASK));
3679
3680 DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3681 sc->sc_dev.dv_xname, rate * 5));
3682 ctl |= htole32(LSHIFT(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3683
3684 /*
3685 * Initialize the transmit descriptors.
3686 */
3687 for (nexttx = sc->sc_txnext, seg = 0;
3688 seg < dmamap->dm_nsegs;
3689 seg++, nexttx = ATW_NEXTTX(nexttx)) {
3690 /*
3691 * If this is the first descriptor we're
3692 * enqueueing, don't set the OWN bit just
3693 * yet. That could cause a race condition.
3694 * We'll do it below.
3695 */
3696 txd = &sc->sc_txdescs[nexttx];
3697 txd->at_ctl = ctl |
3698 ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3699
3700 txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3701 txd->at_flags =
3702 htole32(LSHIFT(dmamap->dm_segs[seg].ds_len,
3703 ATW_TXFLAG_TBS1_MASK)) |
3704 ((nexttx == (ATW_NTXDESC - 1))
3705 ? htole32(ATW_TXFLAG_TER) : 0);
3706 lasttx = nexttx;
3707 }
3708
3709 IASSERT(lasttx != -1, ("bad lastx"));
3710 /* Set `first segment' and `last segment' appropriately. */
3711 sc->sc_txdescs[sc->sc_txnext].at_flags |=
3712 htole32(ATW_TXFLAG_FS);
3713 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3714
3715 #ifdef ATW_DEBUG
3716 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3717 printf(" txsoft %p transmit chain:\n", txs);
3718 for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3719 printf(" descriptor %d:\n", seg);
3720 printf(" at_ctl: 0x%08x\n",
3721 le32toh(sc->sc_txdescs[seg].at_ctl));
3722 printf(" at_flags: 0x%08x\n",
3723 le32toh(sc->sc_txdescs[seg].at_flags));
3724 printf(" at_buf1: 0x%08x\n",
3725 le32toh(sc->sc_txdescs[seg].at_buf1));
3726 printf(" at_buf2: 0x%08x\n",
3727 le32toh(sc->sc_txdescs[seg].at_buf2));
3728 if (seg == lasttx)
3729 break;
3730 }
3731 }
3732 #endif
3733
3734 /* Sync the descriptors we're using. */
3735 ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3736 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3737
3738 /*
3739 * Store a pointer to the packet so we can free it later,
3740 * and remember what txdirty will be once the packet is
3741 * done.
3742 */
3743 txs->txs_mbuf = m0;
3744 txs->txs_firstdesc = sc->sc_txnext;
3745 txs->txs_lastdesc = lasttx;
3746 txs->txs_ndescs = dmamap->dm_nsegs;
3747
3748 /* Advance the tx pointer. */
3749 sc->sc_txfree -= dmamap->dm_nsegs;
3750 sc->sc_txnext = nexttx;
3751
3752 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3753 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3754
3755 last_txs = txs;
3756 }
3757
3758 if (sc->sc_txfree != ofree) {
3759 DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3760 sc->sc_dev.dv_xname, lasttx, firsttx));
3761 /*
3762 * Cause a transmit interrupt to happen on the
3763 * last packet we enqueued.
3764 */
3765 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3766 ATW_CDTXSYNC(sc, lasttx, 1,
3767 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3768
3769 /*
3770 * The entire packet chain is set up. Give the
3771 * first descriptor to the chip now.
3772 */
3773 sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3774 ATW_CDTXSYNC(sc, firsttx, 1,
3775 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3776
3777 /* Wake up the transmitter. */
3778 ATW_WRITE(sc, ATW_TDR, 0x1);
3779
3780 if (txs == NULL || sc->sc_txfree == 0)
3781 ifp->if_flags |= IFF_OACTIVE;
3782
3783 /* Set a watchdog timer in case the chip flakes out. */
3784 sc->sc_tx_timer = 5;
3785 ifp->if_timer = 1;
3786 }
3787 }
3788
3789 /*
3790 * atw_power:
3791 *
3792 * Power management (suspend/resume) hook.
3793 */
3794 void
3795 atw_power(int why, void *arg)
3796 {
3797 struct atw_softc *sc = arg;
3798 struct ifnet *ifp = &sc->sc_if;
3799 int s;
3800
3801 DPRINTF(sc, ("%s: atw_power(%d,)\n", sc->sc_dev.dv_xname, why));
3802
3803 s = splnet();
3804 switch (why) {
3805 case PWR_STANDBY:
3806 /* XXX do nothing. */
3807 break;
3808 case PWR_SUSPEND:
3809 atw_stop(ifp, 0);
3810 if (sc->sc_power != NULL)
3811 (*sc->sc_power)(sc, why);
3812 break;
3813 case PWR_RESUME:
3814 if (ifp->if_flags & IFF_UP) {
3815 if (sc->sc_power != NULL)
3816 (*sc->sc_power)(sc, why);
3817 atw_init(ifp);
3818 }
3819 break;
3820 case PWR_SOFTSUSPEND:
3821 case PWR_SOFTSTANDBY:
3822 case PWR_SOFTRESUME:
3823 break;
3824 }
3825 splx(s);
3826 }
3827
3828 /*
3829 * atw_ioctl: [ifnet interface function]
3830 *
3831 * Handle control requests from the operator.
3832 */
3833 int
3834 atw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3835 {
3836 struct atw_softc *sc = ifp->if_softc;
3837 struct ifreq *ifr = (struct ifreq *)data;
3838 int s, error = 0;
3839
3840 /* XXX monkey see, monkey do. comes from wi_ioctl. */
3841 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
3842 return ENXIO;
3843
3844 s = splnet();
3845
3846 switch (cmd) {
3847 case SIOCSIFFLAGS:
3848 if (ifp->if_flags & IFF_UP) {
3849 if (ATW_IS_ENABLED(sc)) {
3850 /*
3851 * To avoid rescanning another access point,
3852 * do not call atw_init() here. Instead,
3853 * only reflect media settings.
3854 */
3855 atw_filter_setup(sc);
3856 } else
3857 error = atw_init(ifp);
3858 } else if (ATW_IS_ENABLED(sc))
3859 atw_stop(ifp, 1);
3860 break;
3861 case SIOCADDMULTI:
3862 case SIOCDELMULTI:
3863 error = (cmd == SIOCADDMULTI) ?
3864 ether_addmulti(ifr, &sc->sc_ec) :
3865 ether_delmulti(ifr, &sc->sc_ec);
3866 if (error == ENETRESET) {
3867 if (ifp->if_flags & IFF_RUNNING)
3868 atw_filter_setup(sc); /* do not rescan */
3869 error = 0;
3870 }
3871 break;
3872 default:
3873 error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
3874 if (error == ENETRESET || error == ERESTART) {
3875 if (is_running(ifp))
3876 error = atw_init(ifp);
3877 else
3878 error = 0;
3879 }
3880 break;
3881 }
3882
3883 /* Try to get more packets going. */
3884 if (ATW_IS_ENABLED(sc))
3885 atw_start(ifp);
3886
3887 splx(s);
3888 return (error);
3889 }
3890
3891 static int
3892 atw_media_change(struct ifnet *ifp)
3893 {
3894 int error;
3895
3896 error = ieee80211_media_change(ifp);
3897 if (error == ENETRESET) {
3898 if (is_running(ifp))
3899 error = atw_init(ifp);
3900 else
3901 error = 0;
3902 }
3903 return error;
3904 }
3905