atw.c revision 1.116 1 /* $NetBSD: atw.c,v 1.116 2006/04/06 05:47:23 dyoung Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.116 2006/04/06 05:47:23 dyoung Exp $");
45
46 #include "bpfilter.h"
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/callout.h>
51 #include <sys/mbuf.h>
52 #include <sys/malloc.h>
53 #include <sys/kernel.h>
54 #include <sys/socket.h>
55 #include <sys/ioctl.h>
56 #include <sys/errno.h>
57 #include <sys/device.h>
58 #include <sys/time.h>
59 #include <lib/libkern/libkern.h>
60
61 #include <machine/endian.h>
62
63 #include <uvm/uvm_extern.h>
64
65 #include <net/if.h>
66 #include <net/if_dl.h>
67 #include <net/if_media.h>
68 #include <net/if_ether.h>
69
70 #include <net80211/ieee80211_netbsd.h>
71 #include <net80211/ieee80211_var.h>
72 #include <net80211/ieee80211_radiotap.h>
73
74 #if NBPFILTER > 0
75 #include <net/bpf.h>
76 #endif
77
78 #include <machine/bus.h>
79 #include <machine/intr.h>
80
81 #include <dev/ic/atwreg.h>
82 #include <dev/ic/rf3000reg.h>
83 #include <dev/ic/si4136reg.h>
84 #include <dev/ic/atwvar.h>
85 #include <dev/ic/smc93cx6var.h>
86
87 /* XXX TBD open questions
88 *
89 *
90 * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
91 * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
92 * handle this for me?
93 *
94 */
95 /* device attachment
96 *
97 * print TOFS[012]
98 *
99 * device initialization
100 *
101 * clear ATW_FRCTL_MAXPSP to disable max power saving
102 * set ATW_TXBR_ALCUPDATE to enable ALC
103 * set TOFS[012]? (hope not)
104 * disable rx/tx
105 * set ATW_PAR_SWR (software reset)
106 * wait for ATW_PAR_SWR clear
107 * disable interrupts
108 * ack status register
109 * enable interrupts
110 *
111 * rx/tx initialization
112 *
113 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
114 * allocate and init descriptor rings
115 * write ATW_PAR_DSL (descriptor skip length)
116 * write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
117 * write ATW_NAR_SQ for one/both transmit descriptor rings
118 * write ATW_NAR_SQ for one/both transmit descriptor rings
119 * enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
120 *
121 * rx/tx end
122 *
123 * stop DMA
124 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
125 * flush tx w/ ATW_NAR_HF
126 *
127 * scan
128 *
129 * initialize rx/tx
130 *
131 * BSS join: (re)association response
132 *
133 * set ATW_FRCTL_AID
134 *
135 * optimizations ???
136 *
137 */
138
139 #define ATW_REFSLAVE /* slavishly do what the reference driver does */
140
141 #define VOODOO_DUR_11_ROUNDING 0x01 /* necessary */
142 #define VOODOO_DUR_2_4_SPECIALCASE 0x02 /* NOT necessary */
143 int atw_voodoo = VOODOO_DUR_11_ROUNDING;
144
145 int atw_pseudo_milli = 1;
146 int atw_magic_delay1 = 100 * 1000;
147 int atw_magic_delay2 = 100 * 1000;
148 /* more magic multi-millisecond delays (units: microseconds) */
149 int atw_nar_delay = 20 * 1000;
150 int atw_magic_delay4 = 10 * 1000;
151 int atw_rf_delay1 = 10 * 1000;
152 int atw_rf_delay2 = 5 * 1000;
153 int atw_plcphd_delay = 2 * 1000;
154 int atw_bbp_io_enable_delay = 20 * 1000;
155 int atw_bbp_io_disable_delay = 2 * 1000;
156 int atw_writewep_delay = 1000;
157 int atw_beacon_len_adjust = 4;
158 int atw_dwelltime = 200;
159 int atw_xindiv2 = 0;
160
161 #ifdef ATW_DEBUG
162 int atw_debug = 0;
163
164 #define ATW_DPRINTF(x) if (atw_debug > 0) printf x
165 #define ATW_DPRINTF2(x) if (atw_debug > 1) printf x
166 #define ATW_DPRINTF3(x) if (atw_debug > 2) printf x
167 #define DPRINTF(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) printf x
168 #define DPRINTF2(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
169 #define DPRINTF3(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
170
171 static void atw_dump_pkt(struct ifnet *, struct mbuf *);
172 static void atw_print_regs(struct atw_softc *, const char *);
173
174 /* Note well: I never got atw_rf3000_read or atw_si4126_read to work. */
175 # ifdef ATW_BBPDEBUG
176 static void atw_rf3000_print(struct atw_softc *);
177 static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
178 # endif /* ATW_BBPDEBUG */
179
180 # ifdef ATW_SYNDEBUG
181 static void atw_si4126_print(struct atw_softc *);
182 static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
183 # endif /* ATW_SYNDEBUG */
184
185 #else
186 #define ATW_DPRINTF(x)
187 #define ATW_DPRINTF2(x)
188 #define ATW_DPRINTF3(x)
189 #define DPRINTF(sc, x) /* nothing */
190 #define DPRINTF2(sc, x) /* nothing */
191 #define DPRINTF3(sc, x) /* nothing */
192 #endif
193
194 /* ifnet methods */
195 int atw_init(struct ifnet *);
196 int atw_ioctl(struct ifnet *, u_long, caddr_t);
197 void atw_start(struct ifnet *);
198 void atw_stop(struct ifnet *, int);
199 void atw_watchdog(struct ifnet *);
200
201 /* Device attachment */
202 void atw_attach(struct atw_softc *);
203 int atw_detach(struct atw_softc *);
204
205 /* Rx/Tx process */
206 int atw_add_rxbuf(struct atw_softc *, int);
207 void atw_idle(struct atw_softc *, u_int32_t);
208 void atw_rxdrain(struct atw_softc *);
209 void atw_txdrain(struct atw_softc *);
210
211 /* Device (de)activation and power state */
212 void atw_disable(struct atw_softc *);
213 int atw_enable(struct atw_softc *);
214 void atw_power(int, void *);
215 void atw_reset(struct atw_softc *);
216 void atw_shutdown(void *);
217
218 /* Interrupt handlers */
219 void atw_linkintr(struct atw_softc *, u_int32_t);
220 void atw_rxintr(struct atw_softc *);
221 void atw_txintr(struct atw_softc *);
222
223 /* 802.11 state machine */
224 static int atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
225 static void atw_next_scan(void *);
226 static void atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
227 struct ieee80211_node *, int, int, u_int32_t);
228 static int atw_tune(struct atw_softc *);
229
230 /* Device initialization */
231 static void atw_bbp_io_init(struct atw_softc *);
232 static void atw_cfp_init(struct atw_softc *);
233 static void atw_cmdr_init(struct atw_softc *);
234 static void atw_ifs_init(struct atw_softc *);
235 static void atw_nar_init(struct atw_softc *);
236 static void atw_response_times_init(struct atw_softc *);
237 static void atw_rf_reset(struct atw_softc *);
238 static void atw_test1_init(struct atw_softc *);
239 static void atw_tofs0_init(struct atw_softc *);
240 static void atw_tofs2_init(struct atw_softc *);
241 static void atw_txlmt_init(struct atw_softc *);
242 static void atw_wcsr_init(struct atw_softc *);
243
244 /* Key management */
245 static int atw_key_delete(struct ieee80211com *, const struct ieee80211_key *);
246 static int atw_key_set(struct ieee80211com *, const struct ieee80211_key *,
247 const u_int8_t[IEEE80211_ADDR_LEN]);
248 static void atw_key_update_begin(struct ieee80211com *);
249 static void atw_key_update_end(struct ieee80211com *);
250
251 /* RAM/ROM utilities */
252 static void atw_clear_sram(struct atw_softc *);
253 static void atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
254 static int atw_read_srom(struct atw_softc *);
255
256 /* BSS setup */
257 static void atw_predict_beacon(struct atw_softc *);
258 static void atw_start_beacon(struct atw_softc *, int);
259 static void atw_write_bssid(struct atw_softc *);
260 static void atw_write_ssid(struct atw_softc *);
261 static void atw_write_sup_rates(struct atw_softc *);
262 static void atw_write_wep(struct atw_softc *);
263
264 /* Media */
265 static int atw_media_change(struct ifnet *);
266
267 static void atw_filter_setup(struct atw_softc *);
268
269 /* 802.11 utilities */
270 static uint64_t atw_get_tsft(struct atw_softc *);
271 static inline uint32_t atw_last_even_tsft(uint32_t, uint32_t,
272 uint32_t);
273 static struct ieee80211_node *atw_node_alloc(struct ieee80211_node_table *);
274 static void atw_node_free(struct ieee80211_node *);
275
276 /*
277 * Tuner/transceiver/modem
278 */
279 static void atw_bbp_io_enable(struct atw_softc *, int);
280
281 /* RFMD RF3000 Baseband Processor */
282 static int atw_rf3000_init(struct atw_softc *);
283 static int atw_rf3000_tune(struct atw_softc *, u_int);
284 static int atw_rf3000_write(struct atw_softc *, u_int, u_int);
285
286 /* Silicon Laboratories Si4126 RF/IF Synthesizer */
287 static void atw_si4126_tune(struct atw_softc *, u_int);
288 static void atw_si4126_write(struct atw_softc *, u_int, u_int);
289
290 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
291 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
292
293 const char *atw_tx_state[] = {
294 "STOPPED",
295 "RUNNING - read descriptor",
296 "RUNNING - transmitting",
297 "RUNNING - filling fifo", /* XXX */
298 "SUSPENDED",
299 "RUNNING -- write descriptor",
300 "RUNNING -- write last descriptor",
301 "RUNNING - fifo full"
302 };
303
304 const char *atw_rx_state[] = {
305 "STOPPED",
306 "RUNNING - read descriptor",
307 "RUNNING - check this packet, pre-fetch next",
308 "RUNNING - wait for reception",
309 "SUSPENDED",
310 "RUNNING - write descriptor",
311 "RUNNING - flush fifo",
312 "RUNNING - fifo drain"
313 };
314
315 static inline int
316 is_running(struct ifnet *ifp)
317 {
318 return (ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP);
319 }
320
321 int
322 atw_activate(struct device *self, enum devact act)
323 {
324 struct atw_softc *sc = (struct atw_softc *)self;
325 int rv = 0, s;
326
327 s = splnet();
328 switch (act) {
329 case DVACT_ACTIVATE:
330 rv = EOPNOTSUPP;
331 break;
332
333 case DVACT_DEACTIVATE:
334 if_deactivate(&sc->sc_if);
335 break;
336 }
337 splx(s);
338 return rv;
339 }
340
341 /*
342 * atw_enable:
343 *
344 * Enable the ADM8211 chip.
345 */
346 int
347 atw_enable(struct atw_softc *sc)
348 {
349
350 if (ATW_IS_ENABLED(sc) == 0) {
351 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
352 printf("%s: device enable failed\n",
353 sc->sc_dev.dv_xname);
354 return (EIO);
355 }
356 sc->sc_flags |= ATWF_ENABLED;
357 /* Power may have been removed, and WEP keys thus
358 * reset.
359 */
360 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
361 }
362 return (0);
363 }
364
365 /*
366 * atw_disable:
367 *
368 * Disable the ADM8211 chip.
369 */
370 void
371 atw_disable(struct atw_softc *sc)
372 {
373 if (!ATW_IS_ENABLED(sc))
374 return;
375 if (sc->sc_disable != NULL)
376 (*sc->sc_disable)(sc);
377 sc->sc_flags &= ~ATWF_ENABLED;
378 }
379
380 /* Returns -1 on failure. */
381 static int
382 atw_read_srom(struct atw_softc *sc)
383 {
384 struct seeprom_descriptor sd;
385 uint32_t test0, fail_bits;
386
387 (void)memset(&sd, 0, sizeof(sd));
388
389 test0 = ATW_READ(sc, ATW_TEST0);
390
391 switch (sc->sc_rev) {
392 case ATW_REVISION_BA:
393 case ATW_REVISION_CA:
394 fail_bits = ATW_TEST0_EPNE;
395 break;
396 default:
397 fail_bits = ATW_TEST0_EPNE|ATW_TEST0_EPSNM;
398 break;
399 }
400 if ((test0 & fail_bits) != 0) {
401 printf("%s: bad or missing/bad SROM\n", sc->sc_dev.dv_xname);
402 return -1;
403 }
404
405 switch (test0 & ATW_TEST0_EPTYP_MASK) {
406 case ATW_TEST0_EPTYP_93c66:
407 ATW_DPRINTF(("%s: 93c66 SROM\n", sc->sc_dev.dv_xname));
408 sc->sc_sromsz = 512;
409 sd.sd_chip = C56_66;
410 break;
411 case ATW_TEST0_EPTYP_93c46:
412 ATW_DPRINTF(("%s: 93c46 SROM\n", sc->sc_dev.dv_xname));
413 sc->sc_sromsz = 128;
414 sd.sd_chip = C46;
415 break;
416 default:
417 printf("%s: unknown SROM type %d\n", sc->sc_dev.dv_xname,
418 SHIFTOUT(test0, ATW_TEST0_EPTYP_MASK));
419 return -1;
420 }
421
422 sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
423
424 if (sc->sc_srom == NULL) {
425 printf("%s: unable to allocate SROM buffer\n",
426 sc->sc_dev.dv_xname);
427 return -1;
428 }
429
430 (void)memset(sc->sc_srom, 0, sc->sc_sromsz);
431
432 /* ADM8211 has a single 32-bit register for controlling the
433 * 93cx6 SROM. Bit SRS enables the serial port. There is no
434 * "ready" bit. The ADM8211 input/output sense is the reverse
435 * of read_seeprom's.
436 */
437 sd.sd_tag = sc->sc_st;
438 sd.sd_bsh = sc->sc_sh;
439 sd.sd_regsize = 4;
440 sd.sd_control_offset = ATW_SPR;
441 sd.sd_status_offset = ATW_SPR;
442 sd.sd_dataout_offset = ATW_SPR;
443 sd.sd_CK = ATW_SPR_SCLK;
444 sd.sd_CS = ATW_SPR_SCS;
445 sd.sd_DI = ATW_SPR_SDO;
446 sd.sd_DO = ATW_SPR_SDI;
447 sd.sd_MS = ATW_SPR_SRS;
448 sd.sd_RDY = 0;
449
450 if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
451 printf("%s: could not read SROM\n", sc->sc_dev.dv_xname);
452 free(sc->sc_srom, M_DEVBUF);
453 return -1;
454 }
455 #ifdef ATW_DEBUG
456 {
457 int i;
458 ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
459 for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
460 if (((i % 8) == 0) && (i != 0)) {
461 ATW_DPRINTF(("\n\t"));
462 }
463 ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
464 }
465 ATW_DPRINTF(("\n"));
466 }
467 #endif /* ATW_DEBUG */
468 return 0;
469 }
470
471 #ifdef ATW_DEBUG
472 static void
473 atw_print_regs(struct atw_softc *sc, const char *where)
474 {
475 #define PRINTREG(sc, reg) \
476 ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
477 sc->sc_dev.dv_xname, reg, ATW_READ(sc, reg)))
478
479 ATW_DPRINTF2(("%s: %s\n", sc->sc_dev.dv_xname, where));
480
481 PRINTREG(sc, ATW_PAR);
482 PRINTREG(sc, ATW_FRCTL);
483 PRINTREG(sc, ATW_TDR);
484 PRINTREG(sc, ATW_WTDP);
485 PRINTREG(sc, ATW_RDR);
486 PRINTREG(sc, ATW_WRDP);
487 PRINTREG(sc, ATW_RDB);
488 PRINTREG(sc, ATW_CSR3A);
489 PRINTREG(sc, ATW_TDBD);
490 PRINTREG(sc, ATW_TDBP);
491 PRINTREG(sc, ATW_STSR);
492 PRINTREG(sc, ATW_CSR5A);
493 PRINTREG(sc, ATW_NAR);
494 PRINTREG(sc, ATW_CSR6A);
495 PRINTREG(sc, ATW_IER);
496 PRINTREG(sc, ATW_CSR7A);
497 PRINTREG(sc, ATW_LPC);
498 PRINTREG(sc, ATW_TEST1);
499 PRINTREG(sc, ATW_SPR);
500 PRINTREG(sc, ATW_TEST0);
501 PRINTREG(sc, ATW_WCSR);
502 PRINTREG(sc, ATW_WPDR);
503 PRINTREG(sc, ATW_GPTMR);
504 PRINTREG(sc, ATW_GPIO);
505 PRINTREG(sc, ATW_BBPCTL);
506 PRINTREG(sc, ATW_SYNCTL);
507 PRINTREG(sc, ATW_PLCPHD);
508 PRINTREG(sc, ATW_MMIWADDR);
509 PRINTREG(sc, ATW_MMIRADDR1);
510 PRINTREG(sc, ATW_MMIRADDR2);
511 PRINTREG(sc, ATW_TXBR);
512 PRINTREG(sc, ATW_CSR15A);
513 PRINTREG(sc, ATW_ALCSTAT);
514 PRINTREG(sc, ATW_TOFS2);
515 PRINTREG(sc, ATW_CMDR);
516 PRINTREG(sc, ATW_PCIC);
517 PRINTREG(sc, ATW_PMCSR);
518 PRINTREG(sc, ATW_PAR0);
519 PRINTREG(sc, ATW_PAR1);
520 PRINTREG(sc, ATW_MAR0);
521 PRINTREG(sc, ATW_MAR1);
522 PRINTREG(sc, ATW_ATIMDA0);
523 PRINTREG(sc, ATW_ABDA1);
524 PRINTREG(sc, ATW_BSSID0);
525 PRINTREG(sc, ATW_TXLMT);
526 PRINTREG(sc, ATW_MIBCNT);
527 PRINTREG(sc, ATW_BCNT);
528 PRINTREG(sc, ATW_TSFTH);
529 PRINTREG(sc, ATW_TSC);
530 PRINTREG(sc, ATW_SYNRF);
531 PRINTREG(sc, ATW_BPLI);
532 PRINTREG(sc, ATW_CAP0);
533 PRINTREG(sc, ATW_CAP1);
534 PRINTREG(sc, ATW_RMD);
535 PRINTREG(sc, ATW_CFPP);
536 PRINTREG(sc, ATW_TOFS0);
537 PRINTREG(sc, ATW_TOFS1);
538 PRINTREG(sc, ATW_IFST);
539 PRINTREG(sc, ATW_RSPT);
540 PRINTREG(sc, ATW_TSFTL);
541 PRINTREG(sc, ATW_WEPCTL);
542 PRINTREG(sc, ATW_WESK);
543 PRINTREG(sc, ATW_WEPCNT);
544 PRINTREG(sc, ATW_MACTEST);
545 PRINTREG(sc, ATW_FER);
546 PRINTREG(sc, ATW_FEMR);
547 PRINTREG(sc, ATW_FPSR);
548 PRINTREG(sc, ATW_FFER);
549 #undef PRINTREG
550 }
551 #endif /* ATW_DEBUG */
552
553 /*
554 * Finish attaching an ADMtek ADM8211 MAC. Called by bus-specific front-end.
555 */
556 void
557 atw_attach(struct atw_softc *sc)
558 {
559 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
560 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
561 };
562 struct ieee80211com *ic = &sc->sc_ic;
563 struct ifnet *ifp = &sc->sc_if;
564 int country_code, error, i, nrate, srom_major;
565 u_int32_t reg;
566 static const char *type_strings[] = {"Intersil (not supported)",
567 "RFMD", "Marvel (not supported)"};
568
569 sc->sc_txth = atw_txthresh_tab_lo;
570
571 SIMPLEQ_INIT(&sc->sc_txfreeq);
572 SIMPLEQ_INIT(&sc->sc_txdirtyq);
573
574 #ifdef ATW_DEBUG
575 atw_print_regs(sc, "atw_attach");
576 #endif /* ATW_DEBUG */
577
578 /*
579 * Allocate the control data structures, and create and load the
580 * DMA map for it.
581 */
582 if ((error = bus_dmamem_alloc(sc->sc_dmat,
583 sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
584 1, &sc->sc_cdnseg, 0)) != 0) {
585 printf("%s: unable to allocate control data, error = %d\n",
586 sc->sc_dev.dv_xname, error);
587 goto fail_0;
588 }
589
590 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
591 sizeof(struct atw_control_data), (caddr_t *)&sc->sc_control_data,
592 BUS_DMA_COHERENT)) != 0) {
593 printf("%s: unable to map control data, error = %d\n",
594 sc->sc_dev.dv_xname, error);
595 goto fail_1;
596 }
597
598 if ((error = bus_dmamap_create(sc->sc_dmat,
599 sizeof(struct atw_control_data), 1,
600 sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
601 printf("%s: unable to create control data DMA map, "
602 "error = %d\n", sc->sc_dev.dv_xname, error);
603 goto fail_2;
604 }
605
606 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
607 sc->sc_control_data, sizeof(struct atw_control_data), NULL,
608 0)) != 0) {
609 printf("%s: unable to load control data DMA map, error = %d\n",
610 sc->sc_dev.dv_xname, error);
611 goto fail_3;
612 }
613
614 /*
615 * Create the transmit buffer DMA maps.
616 */
617 sc->sc_ntxsegs = ATW_NTXSEGS;
618 for (i = 0; i < ATW_TXQUEUELEN; i++) {
619 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
620 sc->sc_ntxsegs, MCLBYTES, 0, 0,
621 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
622 printf("%s: unable to create tx DMA map %d, "
623 "error = %d\n", sc->sc_dev.dv_xname, i, error);
624 goto fail_4;
625 }
626 }
627
628 /*
629 * Create the receive buffer DMA maps.
630 */
631 for (i = 0; i < ATW_NRXDESC; i++) {
632 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
633 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
634 printf("%s: unable to create rx DMA map %d, "
635 "error = %d\n", sc->sc_dev.dv_xname, i, error);
636 goto fail_5;
637 }
638 }
639 for (i = 0; i < ATW_NRXDESC; i++) {
640 sc->sc_rxsoft[i].rxs_mbuf = NULL;
641 }
642
643 switch (sc->sc_rev) {
644 case ATW_REVISION_AB:
645 case ATW_REVISION_AF:
646 sc->sc_sramlen = ATW_SRAM_A_SIZE;
647 break;
648 case ATW_REVISION_BA:
649 case ATW_REVISION_CA:
650 sc->sc_sramlen = ATW_SRAM_B_SIZE;
651 break;
652 }
653
654 /* Reset the chip to a known state. */
655 atw_reset(sc);
656
657 if (atw_read_srom(sc) == -1)
658 return;
659
660 sc->sc_rftype = SHIFTOUT(sc->sc_srom[ATW_SR_CSR20],
661 ATW_SR_RFTYPE_MASK);
662
663 sc->sc_bbptype = SHIFTOUT(sc->sc_srom[ATW_SR_CSR20],
664 ATW_SR_BBPTYPE_MASK);
665
666 if (sc->sc_rftype >= __arraycount(type_strings)) {
667 printf("%s: unknown RF\n", sc->sc_dev.dv_xname);
668 return;
669 }
670 if (sc->sc_bbptype >= __arraycount(type_strings)) {
671 printf("%s: unknown BBP\n", sc->sc_dev.dv_xname);
672 return;
673 }
674
675 printf("%s: %s RF, %s BBP", sc->sc_dev.dv_xname,
676 type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
677
678 /* XXX There exists a Linux driver which seems to use RFType = 0 for
679 * MARVEL. My bug, or theirs?
680 */
681
682 reg = SHIFTIN(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
683
684 switch (sc->sc_rftype) {
685 case ATW_RFTYPE_INTERSIL:
686 reg |= ATW_SYNCTL_CS1;
687 break;
688 case ATW_RFTYPE_RFMD:
689 reg |= ATW_SYNCTL_CS0;
690 break;
691 case ATW_RFTYPE_MARVEL:
692 break;
693 }
694
695 sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
696 sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
697
698 reg = SHIFTIN(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
699
700 switch (sc->sc_bbptype) {
701 case ATW_BBPTYPE_INTERSIL:
702 reg |= ATW_BBPCTL_TWI;
703 break;
704 case ATW_BBPTYPE_RFMD:
705 reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
706 ATW_BBPCTL_CCA_ACTLO;
707 break;
708 case ATW_BBPTYPE_MARVEL:
709 break;
710 case ATW_C_BBPTYPE_RFMD:
711 printf("%s: ADM8211C MAC/RFMD BBP not supported yet.\n",
712 sc->sc_dev.dv_xname);
713 break;
714 }
715
716 sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
717 sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
718
719 /*
720 * From this point forward, the attachment cannot fail. A failure
721 * before this point releases all resources that may have been
722 * allocated.
723 */
724 sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
725
726 ATW_DPRINTF((" SROM MAC %04x%04x%04x",
727 htole16(sc->sc_srom[ATW_SR_MAC00]),
728 htole16(sc->sc_srom[ATW_SR_MAC01]),
729 htole16(sc->sc_srom[ATW_SR_MAC10])));
730
731 srom_major = SHIFTOUT(sc->sc_srom[ATW_SR_FORMAT_VERSION],
732 ATW_SR_MAJOR_MASK);
733
734 if (srom_major < 2)
735 sc->sc_rf3000_options1 = 0;
736 else if (sc->sc_rev == ATW_REVISION_BA) {
737 sc->sc_rf3000_options1 =
738 SHIFTOUT(sc->sc_srom[ATW_SR_CR28_CR03],
739 ATW_SR_CR28_MASK);
740 } else
741 sc->sc_rf3000_options1 = 0;
742
743 sc->sc_rf3000_options2 = SHIFTOUT(sc->sc_srom[ATW_SR_CTRY_CR29],
744 ATW_SR_CR29_MASK);
745
746 country_code = SHIFTOUT(sc->sc_srom[ATW_SR_CTRY_CR29],
747 ATW_SR_CTRY_MASK);
748
749 #define ADD_CHANNEL(_ic, _chan) do { \
750 _ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B; \
751 _ic->ic_channels[_chan].ic_freq = \
752 ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
753 } while (0)
754
755 /* Find available channels */
756 switch (country_code) {
757 case COUNTRY_MMK2: /* 1-14 */
758 ADD_CHANNEL(ic, 14);
759 /*FALLTHROUGH*/
760 case COUNTRY_ETSI: /* 1-13 */
761 for (i = 1; i <= 13; i++)
762 ADD_CHANNEL(ic, i);
763 break;
764 case COUNTRY_FCC: /* 1-11 */
765 case COUNTRY_IC: /* 1-11 */
766 for (i = 1; i <= 11; i++)
767 ADD_CHANNEL(ic, i);
768 break;
769 case COUNTRY_MMK: /* 14 */
770 ADD_CHANNEL(ic, 14);
771 break;
772 case COUNTRY_FRANCE: /* 10-13 */
773 for (i = 10; i <= 13; i++)
774 ADD_CHANNEL(ic, i);
775 break;
776 default: /* assume channels 10-11 */
777 case COUNTRY_SPAIN: /* 10-11 */
778 for (i = 10; i <= 11; i++)
779 ADD_CHANNEL(ic, i);
780 break;
781 }
782
783 /* Read the MAC address. */
784 reg = ATW_READ(sc, ATW_PAR0);
785 ic->ic_myaddr[0] = SHIFTOUT(reg, ATW_PAR0_PAB0_MASK);
786 ic->ic_myaddr[1] = SHIFTOUT(reg, ATW_PAR0_PAB1_MASK);
787 ic->ic_myaddr[2] = SHIFTOUT(reg, ATW_PAR0_PAB2_MASK);
788 ic->ic_myaddr[3] = SHIFTOUT(reg, ATW_PAR0_PAB3_MASK);
789 reg = ATW_READ(sc, ATW_PAR1);
790 ic->ic_myaddr[4] = SHIFTOUT(reg, ATW_PAR1_PAB4_MASK);
791 ic->ic_myaddr[5] = SHIFTOUT(reg, ATW_PAR1_PAB5_MASK);
792
793 if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
794 printf(" could not get mac address, attach failed\n");
795 return;
796 }
797
798 printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
799
800 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
801 ifp->if_softc = sc;
802 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
803 IFF_NOTRAILERS;
804 ifp->if_ioctl = atw_ioctl;
805 ifp->if_start = atw_start;
806 ifp->if_watchdog = atw_watchdog;
807 ifp->if_init = atw_init;
808 ifp->if_stop = atw_stop;
809 IFQ_SET_READY(&ifp->if_snd);
810
811 ic->ic_ifp = ifp;
812 ic->ic_phytype = IEEE80211_T_DS;
813 ic->ic_opmode = IEEE80211_M_STA;
814 ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
815 IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR;
816
817 nrate = 0;
818 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
819 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
820 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
821 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
822 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
823
824 /*
825 * Call MI attach routines.
826 */
827
828 if_attach(ifp);
829 ieee80211_ifattach(ic);
830
831 sc->sc_newstate = ic->ic_newstate;
832 ic->ic_newstate = atw_newstate;
833
834 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
835 ic->ic_recv_mgmt = atw_recv_mgmt;
836
837 sc->sc_node_free = ic->ic_node_free;
838 ic->ic_node_free = atw_node_free;
839
840 sc->sc_node_alloc = ic->ic_node_alloc;
841 ic->ic_node_alloc = atw_node_alloc;
842
843 ic->ic_crypto.cs_key_delete = atw_key_delete;
844 ic->ic_crypto.cs_key_set = atw_key_set;
845 ic->ic_crypto.cs_key_update_begin = atw_key_update_begin;
846 ic->ic_crypto.cs_key_update_end = atw_key_update_end;
847
848 /* possibly we should fill in our own sc_send_prresp, since
849 * the ADM8211 is probably sending probe responses in ad hoc
850 * mode.
851 */
852
853 /* complete initialization */
854 ieee80211_media_init(ic, atw_media_change, ieee80211_media_status);
855 callout_init(&sc->sc_scan_ch);
856
857 #if NBPFILTER > 0
858 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
859 sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
860 #endif
861
862 /*
863 * Make sure the interface is shutdown during reboot.
864 */
865 sc->sc_sdhook = shutdownhook_establish(atw_shutdown, sc);
866 if (sc->sc_sdhook == NULL)
867 printf("%s: WARNING: unable to establish shutdown hook\n",
868 sc->sc_dev.dv_xname);
869
870 /*
871 * Add a suspend hook to make sure we come back up after a
872 * resume.
873 */
874 sc->sc_powerhook = powerhook_establish(atw_power, sc);
875 if (sc->sc_powerhook == NULL)
876 printf("%s: WARNING: unable to establish power hook\n",
877 sc->sc_dev.dv_xname);
878
879 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
880 sc->sc_rxtap.ar_ihdr.it_len = htole16(sizeof(sc->sc_rxtapu));
881 sc->sc_rxtap.ar_ihdr.it_present = htole32(ATW_RX_RADIOTAP_PRESENT);
882
883 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
884 sc->sc_txtap.at_ihdr.it_len = htole16(sizeof(sc->sc_txtapu));
885 sc->sc_txtap.at_ihdr.it_present = htole32(ATW_TX_RADIOTAP_PRESENT);
886
887 ieee80211_announce(ic);
888 return;
889
890 /*
891 * Free any resources we've allocated during the failed attach
892 * attempt. Do this in reverse order and fall through.
893 */
894 fail_5:
895 for (i = 0; i < ATW_NRXDESC; i++) {
896 if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
897 continue;
898 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
899 }
900 fail_4:
901 for (i = 0; i < ATW_TXQUEUELEN; i++) {
902 if (sc->sc_txsoft[i].txs_dmamap == NULL)
903 continue;
904 bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
905 }
906 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
907 fail_3:
908 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
909 fail_2:
910 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
911 sizeof(struct atw_control_data));
912 fail_1:
913 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
914 fail_0:
915 return;
916 }
917
918 static struct ieee80211_node *
919 atw_node_alloc(struct ieee80211_node_table *nt)
920 {
921 struct atw_softc *sc = (struct atw_softc *)nt->nt_ic->ic_ifp->if_softc;
922 struct ieee80211_node *ni = (*sc->sc_node_alloc)(nt);
923
924 DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
925 return ni;
926 }
927
928 static void
929 atw_node_free(struct ieee80211_node *ni)
930 {
931 struct atw_softc *sc = (struct atw_softc *)ni->ni_ic->ic_ifp->if_softc;
932
933 DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
934 ether_sprintf(ni->ni_bssid)));
935 (*sc->sc_node_free)(ni);
936 }
937
938
939 static void
940 atw_test1_reset(struct atw_softc *sc)
941 {
942 switch (sc->sc_rev) {
943 case ATW_REVISION_BA:
944 if (1 /* XXX condition on transceiver type */) {
945 ATW_SET(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MONITOR);
946 }
947 break;
948 case ATW_REVISION_CA:
949 ATW_CLR(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MASK);
950 break;
951 default:
952 break;
953 }
954 }
955
956 /*
957 * atw_reset:
958 *
959 * Perform a soft reset on the ADM8211.
960 */
961 void
962 atw_reset(struct atw_softc *sc)
963 {
964 int i;
965 uint32_t lpc;
966
967 ATW_WRITE(sc, ATW_NAR, 0x0);
968 DELAY(atw_nar_delay);
969
970 /* Reference driver has a cryptic remark indicating that this might
971 * power-on the chip. I know that it turns off power-saving....
972 */
973 ATW_WRITE(sc, ATW_FRCTL, 0x0);
974
975 ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
976
977 for (i = 0; i < 50000 / atw_pseudo_milli; i++) {
978 if ((ATW_READ(sc, ATW_PAR) & ATW_PAR_SWR) == 0)
979 break;
980 DELAY(atw_pseudo_milli);
981 }
982
983 /* ... and then pause 100ms longer for good measure. */
984 DELAY(atw_magic_delay1);
985
986 DPRINTF2(sc, ("%s: atw_reset %d iterations\n", sc->sc_dev.dv_xname, i));
987
988 if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
989 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
990
991 /*
992 * Initialize the PCI Access Register.
993 */
994 sc->sc_busmode = ATW_PAR_PBL_8DW;
995
996 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
997 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
998 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
999
1000 atw_test1_reset(sc);
1001
1002 /* Turn off maximum power saving, etc. */
1003 ATW_WRITE(sc, ATW_FRCTL, 0x0);
1004
1005 DELAY(atw_magic_delay2);
1006
1007 /* Recall EEPROM. */
1008 ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
1009
1010 DELAY(atw_magic_delay4);
1011
1012 lpc = ATW_READ(sc, ATW_LPC);
1013
1014 DPRINTF(sc, ("%s: ATW_LPC %#08x\n", __func__, lpc));
1015
1016 /* A reset seems to affect the SRAM contents, so put them into
1017 * a known state.
1018 */
1019 atw_clear_sram(sc);
1020
1021 memset(sc->sc_bssid, 0xff, sizeof(sc->sc_bssid));
1022 }
1023
1024 static void
1025 atw_clear_sram(struct atw_softc *sc)
1026 {
1027 memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
1028 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
1029 /* XXX not for revision 0x20. */
1030 atw_write_sram(sc, 0, sc->sc_sram, sc->sc_sramlen);
1031 }
1032
1033 /* TBD atw_init
1034 *
1035 * set MAC based on ic->ic_bss->myaddr
1036 * write WEP keys
1037 * set TX rate
1038 */
1039
1040 /* Tell the ADM8211 to raise ATW_INTR_LINKOFF if 7 beacon intervals pass
1041 * without receiving a beacon with the preferred BSSID & SSID.
1042 * atw_write_bssid & atw_write_ssid set the BSSID & SSID.
1043 */
1044 static void
1045 atw_wcsr_init(struct atw_softc *sc)
1046 {
1047 uint32_t wcsr;
1048
1049 wcsr = ATW_READ(sc, ATW_WCSR);
1050 wcsr &= ~(ATW_WCSR_BLN_MASK|ATW_WCSR_LSOE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
1051 wcsr |= SHIFTIN(7, ATW_WCSR_BLN_MASK);
1052 ATW_WRITE(sc, ATW_WCSR, wcsr); /* XXX resets wake-up status bits */
1053
1054 DPRINTF(sc, ("%s: %s reg[WCSR] = %08x\n",
1055 sc->sc_dev.dv_xname, __func__, ATW_READ(sc, ATW_WCSR)));
1056 }
1057
1058 /* Turn off power management. Set Rx store-and-forward mode. */
1059 static void
1060 atw_cmdr_init(struct atw_softc *sc)
1061 {
1062 uint32_t cmdr;
1063 cmdr = ATW_READ(sc, ATW_CMDR);
1064 cmdr &= ~ATW_CMDR_APM;
1065 cmdr |= ATW_CMDR_RTE;
1066 cmdr &= ~ATW_CMDR_DRT_MASK;
1067 cmdr |= ATW_CMDR_DRT_SF;
1068
1069 ATW_WRITE(sc, ATW_CMDR, cmdr);
1070 }
1071
1072 static void
1073 atw_tofs2_init(struct atw_softc *sc)
1074 {
1075 uint32_t tofs2;
1076 /* XXX this magic can probably be figured out from the RFMD docs */
1077 #ifndef ATW_REFSLAVE
1078 tofs2 = SHIFTIN(4, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
1079 SHIFTIN(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1080 SHIFTIN(8, ATW_TOFS2_PWR1PAPE_MASK) | /* 8 us */
1081 SHIFTIN(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
1082 SHIFTIN(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1083 SHIFTIN(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
1084 SHIFTIN(4, ATW_TOFS2_PWR1PE2_MASK) | /* 4 us */
1085 SHIFTIN(5, ATW_TOFS2_PWR0TXPE_MASK); /* 5 us */
1086 #else
1087 /* XXX new magic from reference driver source */
1088 tofs2 = SHIFTIN(8, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
1089 SHIFTIN(8, ATW_TOFS2_PWR0PAPE_MASK) | /* 8 us */
1090 SHIFTIN(1, ATW_TOFS2_PWR1PAPE_MASK) | /* 1 us */
1091 SHIFTIN(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
1092 SHIFTIN(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1093 SHIFTIN(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
1094 SHIFTIN(1, ATW_TOFS2_PWR1PE2_MASK) | /* 1 us */
1095 SHIFTIN(8, ATW_TOFS2_PWR0TXPE_MASK); /* 8 us */
1096 #endif
1097 ATW_WRITE(sc, ATW_TOFS2, tofs2);
1098 }
1099
1100 static void
1101 atw_nar_init(struct atw_softc *sc)
1102 {
1103 ATW_WRITE(sc, ATW_NAR, ATW_NAR_SF|ATW_NAR_PB);
1104 }
1105
1106 static void
1107 atw_txlmt_init(struct atw_softc *sc)
1108 {
1109 ATW_WRITE(sc, ATW_TXLMT, SHIFTIN(512, ATW_TXLMT_MTMLT_MASK) |
1110 SHIFTIN(1, ATW_TXLMT_SRTYLIM_MASK));
1111 }
1112
1113 static void
1114 atw_test1_init(struct atw_softc *sc)
1115 {
1116 uint32_t test1;
1117
1118 test1 = ATW_READ(sc, ATW_TEST1);
1119 test1 &= ~(ATW_TEST1_DBGREAD_MASK|ATW_TEST1_CONTROL);
1120 /* XXX magic 0x1 */
1121 test1 |= SHIFTIN(0x1, ATW_TEST1_DBGREAD_MASK) | ATW_TEST1_CONTROL;
1122 ATW_WRITE(sc, ATW_TEST1, test1);
1123 }
1124
1125 static void
1126 atw_rf_reset(struct atw_softc *sc)
1127 {
1128 /* XXX this resets an Intersil RF front-end? */
1129 /* TBD condition on Intersil RFType? */
1130 ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
1131 DELAY(atw_rf_delay1);
1132 ATW_WRITE(sc, ATW_SYNRF, 0);
1133 DELAY(atw_rf_delay2);
1134 }
1135
1136 /* Set 16 TU max duration for the contention-free period (CFP). */
1137 static void
1138 atw_cfp_init(struct atw_softc *sc)
1139 {
1140 uint32_t cfpp;
1141
1142 cfpp = ATW_READ(sc, ATW_CFPP);
1143 cfpp &= ~ATW_CFPP_CFPMD;
1144 cfpp |= SHIFTIN(16, ATW_CFPP_CFPMD);
1145 ATW_WRITE(sc, ATW_CFPP, cfpp);
1146 }
1147
1148 static void
1149 atw_tofs0_init(struct atw_softc *sc)
1150 {
1151 /* XXX I guess that the Cardbus clock is 22 MHz?
1152 * I am assuming that the role of ATW_TOFS0_USCNT is
1153 * to divide the bus clock to get a 1 MHz clock---the datasheet is not
1154 * very clear on this point. It says in the datasheet that it is
1155 * possible for the ADM8211 to accomodate bus speeds between 22 MHz
1156 * and 33 MHz; maybe this is the way? I see a binary-only driver write
1157 * these values. These values are also the power-on default.
1158 */
1159 ATW_WRITE(sc, ATW_TOFS0,
1160 SHIFTIN(22, ATW_TOFS0_USCNT_MASK) |
1161 ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
1162 }
1163
1164 /* Initialize interframe spacing: 802.11b slot time, SIFS, DIFS, EIFS. */
1165 static void
1166 atw_ifs_init(struct atw_softc *sc)
1167 {
1168 uint32_t ifst;
1169 /* XXX EIFS=0x64, SIFS=110 are used by the reference driver.
1170 * Go figure.
1171 */
1172 ifst = SHIFTIN(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
1173 SHIFTIN(22 * 5 /* IEEE80211_DUR_DS_SIFS */ /* # of 22 MHz cycles */,
1174 ATW_IFST_SIFS_MASK) |
1175 SHIFTIN(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
1176 SHIFTIN(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
1177
1178 ATW_WRITE(sc, ATW_IFST, ifst);
1179 }
1180
1181 static void
1182 atw_response_times_init(struct atw_softc *sc)
1183 {
1184 /* XXX More magic. Relates to ACK timing? The datasheet seems to
1185 * indicate that the MAC expects at least SIFS + MIRT microseconds
1186 * to pass after it transmits a frame that requires a response;
1187 * it waits at most SIFS + MART microseconds for the response.
1188 * Surely this is not the ACK timeout?
1189 */
1190 ATW_WRITE(sc, ATW_RSPT, SHIFTIN(0xffff, ATW_RSPT_MART_MASK) |
1191 SHIFTIN(0xff, ATW_RSPT_MIRT_MASK));
1192 }
1193
1194 /* Set up the MMI read/write addresses for the baseband. The Tx/Rx
1195 * engines read and write baseband registers after Rx and before
1196 * Tx, respectively.
1197 */
1198 static void
1199 atw_bbp_io_init(struct atw_softc *sc)
1200 {
1201 uint32_t mmiraddr2;
1202
1203 /* XXX The reference driver does this, but is it *really*
1204 * necessary?
1205 */
1206 switch (sc->sc_rev) {
1207 case ATW_REVISION_AB:
1208 case ATW_REVISION_AF:
1209 mmiraddr2 = 0x0;
1210 break;
1211 default:
1212 mmiraddr2 = ATW_READ(sc, ATW_MMIRADDR2);
1213 mmiraddr2 &=
1214 ~(ATW_MMIRADDR2_PROREXT|ATW_MMIRADDR2_PRORLEN_MASK);
1215 break;
1216 }
1217
1218 switch (sc->sc_bbptype) {
1219 case ATW_BBPTYPE_INTERSIL:
1220 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1221 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1222 mmiraddr2 |= ATW_MMIRADDR2_INTERSIL;
1223 break;
1224 case ATW_BBPTYPE_MARVEL:
1225 /* TBD find out the Marvel settings. */
1226 break;
1227 case ATW_BBPTYPE_RFMD:
1228 default:
1229 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1230 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1231 mmiraddr2 |= ATW_MMIRADDR2_RFMD;
1232 break;
1233 }
1234 ATW_WRITE(sc, ATW_MMIRADDR2, mmiraddr2);
1235 ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1236 }
1237
1238 /*
1239 * atw_init: [ ifnet interface function ]
1240 *
1241 * Initialize the interface. Must be called at splnet().
1242 */
1243 int
1244 atw_init(struct ifnet *ifp)
1245 {
1246 struct atw_softc *sc = ifp->if_softc;
1247 struct ieee80211com *ic = &sc->sc_ic;
1248 struct atw_txsoft *txs;
1249 struct atw_rxsoft *rxs;
1250 int i, error = 0;
1251
1252 if ((error = atw_enable(sc)) != 0)
1253 goto out;
1254
1255 /*
1256 * Cancel any pending I/O. This also resets.
1257 */
1258 atw_stop(ifp, 0);
1259
1260 DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
1261 __func__, ieee80211_chan2ieee(ic, ic->ic_curchan),
1262 ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags));
1263
1264 atw_wcsr_init(sc);
1265
1266 atw_cmdr_init(sc);
1267
1268 /* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
1269 *
1270 * XXX Set transmit power for ATIM, RTS, Beacon.
1271 */
1272 ATW_WRITE(sc, ATW_PLCPHD, SHIFTIN(10, ATW_PLCPHD_SIGNAL_MASK) |
1273 SHIFTIN(0xb0, ATW_PLCPHD_SERVICE_MASK));
1274
1275 atw_tofs2_init(sc);
1276
1277 atw_nar_init(sc);
1278
1279 atw_txlmt_init(sc);
1280
1281 atw_test1_init(sc);
1282
1283 atw_rf_reset(sc);
1284
1285 atw_cfp_init(sc);
1286
1287 atw_tofs0_init(sc);
1288
1289 atw_ifs_init(sc);
1290
1291 /* XXX Fall asleep after one second of inactivity.
1292 * XXX A frame may only dribble in for 65536us.
1293 */
1294 ATW_WRITE(sc, ATW_RMD,
1295 SHIFTIN(1, ATW_RMD_PCNT) | SHIFTIN(0xffff, ATW_RMD_RMRD_MASK));
1296
1297 atw_response_times_init(sc);
1298
1299 atw_bbp_io_init(sc);
1300
1301 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1302
1303 if ((error = atw_rf3000_init(sc)) != 0)
1304 goto out;
1305
1306 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1307 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
1308 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1309
1310 /*
1311 * Initialize the transmit descriptor ring.
1312 */
1313 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1314 for (i = 0; i < ATW_NTXDESC; i++) {
1315 sc->sc_txdescs[i].at_ctl = 0;
1316 /* no transmit chaining */
1317 sc->sc_txdescs[i].at_flags = 0 /* ATW_TXFLAG_TCH */;
1318 sc->sc_txdescs[i].at_buf2 =
1319 htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1320 }
1321 /* use ring mode */
1322 sc->sc_txdescs[ATW_NTXDESC - 1].at_flags |= htole32(ATW_TXFLAG_TER);
1323 ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1324 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1325 sc->sc_txfree = ATW_NTXDESC;
1326 sc->sc_txnext = 0;
1327
1328 /*
1329 * Initialize the transmit job descriptors.
1330 */
1331 SIMPLEQ_INIT(&sc->sc_txfreeq);
1332 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1333 for (i = 0; i < ATW_TXQUEUELEN; i++) {
1334 txs = &sc->sc_txsoft[i];
1335 txs->txs_mbuf = NULL;
1336 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1337 }
1338
1339 /*
1340 * Initialize the receive descriptor and receive job
1341 * descriptor rings.
1342 */
1343 for (i = 0; i < ATW_NRXDESC; i++) {
1344 rxs = &sc->sc_rxsoft[i];
1345 if (rxs->rxs_mbuf == NULL) {
1346 if ((error = atw_add_rxbuf(sc, i)) != 0) {
1347 printf("%s: unable to allocate or map rx "
1348 "buffer %d, error = %d\n",
1349 sc->sc_dev.dv_xname, i, error);
1350 /*
1351 * XXX Should attempt to run with fewer receive
1352 * XXX buffers instead of just failing.
1353 */
1354 atw_rxdrain(sc);
1355 goto out;
1356 }
1357 } else
1358 ATW_INIT_RXDESC(sc, i);
1359 }
1360 sc->sc_rxptr = 0;
1361
1362 /*
1363 * Initialize the interrupt mask and enable interrupts.
1364 */
1365 /* normal interrupts */
1366 sc->sc_inten = ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1367 ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1368
1369 /* abnormal interrupts */
1370 sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1371 ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1372 ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1373
1374 sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1375 ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1376 sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1377 sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1378 ATW_INTR_TRT;
1379
1380 sc->sc_linkint_mask &= sc->sc_inten;
1381 sc->sc_rxint_mask &= sc->sc_inten;
1382 sc->sc_txint_mask &= sc->sc_inten;
1383
1384 ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1385 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1386
1387 DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1388 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_IER), sc->sc_inten));
1389
1390 /*
1391 * Give the transmit and receive rings to the ADM8211.
1392 */
1393 ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1394 ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1395
1396 sc->sc_txthresh = 0;
1397 sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1398 sc->sc_txth[sc->sc_txthresh].txth_opmode;
1399
1400 /* common 802.11 configuration */
1401 ic->ic_flags &= ~IEEE80211_F_IBSSON;
1402 switch (ic->ic_opmode) {
1403 case IEEE80211_M_STA:
1404 break;
1405 case IEEE80211_M_AHDEMO: /* XXX */
1406 case IEEE80211_M_IBSS:
1407 ic->ic_flags |= IEEE80211_F_IBSSON;
1408 /*FALLTHROUGH*/
1409 case IEEE80211_M_HOSTAP: /* XXX */
1410 break;
1411 case IEEE80211_M_MONITOR: /* XXX */
1412 break;
1413 }
1414
1415 switch (ic->ic_opmode) {
1416 case IEEE80211_M_AHDEMO:
1417 case IEEE80211_M_HOSTAP:
1418 #ifndef IEEE80211_NO_HOSTAP
1419 ic->ic_bss->ni_intval = ic->ic_lintval;
1420 ic->ic_bss->ni_rssi = 0;
1421 ic->ic_bss->ni_rstamp = 0;
1422 #endif /* !IEEE80211_NO_HOSTAP */
1423 break;
1424 default: /* XXX */
1425 break;
1426 }
1427
1428 sc->sc_wepctl = 0;
1429
1430 atw_write_ssid(sc);
1431 atw_write_sup_rates(sc);
1432 atw_write_wep(sc);
1433
1434 ic->ic_state = IEEE80211_S_INIT;
1435
1436 /*
1437 * Set the receive filter. This will start the transmit and
1438 * receive processes.
1439 */
1440 atw_filter_setup(sc);
1441
1442 /*
1443 * Start the receive process.
1444 */
1445 ATW_WRITE(sc, ATW_RDR, 0x1);
1446
1447 /*
1448 * Note that the interface is now running.
1449 */
1450 ifp->if_flags |= IFF_RUNNING;
1451 ifp->if_flags &= ~IFF_OACTIVE;
1452
1453 /* send no beacons, yet. */
1454 atw_start_beacon(sc, 0);
1455
1456 if (ic->ic_opmode == IEEE80211_M_MONITOR)
1457 error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1458 else
1459 error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1460 out:
1461 if (error) {
1462 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1463 sc->sc_tx_timer = 0;
1464 ifp->if_timer = 0;
1465 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1466 }
1467 #ifdef ATW_DEBUG
1468 atw_print_regs(sc, "end of init");
1469 #endif /* ATW_DEBUG */
1470
1471 return (error);
1472 }
1473
1474 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1475 * 0: MAC control of RF3000/Si4126.
1476 *
1477 * Applies power, or selects RF front-end? Sets reset condition.
1478 *
1479 * TBD support non-RFMD BBP, non-SiLabs synth.
1480 */
1481 static void
1482 atw_bbp_io_enable(struct atw_softc *sc, int enable)
1483 {
1484 if (enable) {
1485 ATW_WRITE(sc, ATW_SYNRF,
1486 ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
1487 DELAY(atw_bbp_io_enable_delay);
1488 } else {
1489 ATW_WRITE(sc, ATW_SYNRF, 0);
1490 DELAY(atw_bbp_io_disable_delay); /* shorter for some reason */
1491 }
1492 }
1493
1494 static int
1495 atw_tune(struct atw_softc *sc)
1496 {
1497 int rc;
1498 u_int chan;
1499 struct ieee80211com *ic = &sc->sc_ic;
1500
1501 chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
1502 if (chan == IEEE80211_CHAN_ANY)
1503 panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1504
1505 if (chan == sc->sc_cur_chan)
1506 return 0;
1507
1508 DPRINTF(sc, ("%s: chan %d -> %d\n", sc->sc_dev.dv_xname,
1509 sc->sc_cur_chan, chan));
1510
1511 atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1512
1513 atw_si4126_tune(sc, chan);
1514 if ((rc = atw_rf3000_tune(sc, chan)) != 0)
1515 printf("%s: failed to tune channel %d\n", sc->sc_dev.dv_xname,
1516 chan);
1517
1518 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1519 DELAY(atw_nar_delay);
1520 ATW_WRITE(sc, ATW_RDR, 0x1);
1521
1522 if (rc == 0)
1523 sc->sc_cur_chan = chan;
1524
1525 return rc;
1526 }
1527
1528 #ifdef ATW_SYNDEBUG
1529 static void
1530 atw_si4126_print(struct atw_softc *sc)
1531 {
1532 struct ifnet *ifp = &sc->sc_if;
1533 u_int addr, val;
1534
1535 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1536 return;
1537
1538 for (addr = 0; addr <= 8; addr++) {
1539 printf("%s: synth[%d] = ", sc->sc_dev.dv_xname, addr);
1540 if (atw_si4126_read(sc, addr, &val) == 0) {
1541 printf("<unknown> (quitting print-out)\n");
1542 break;
1543 }
1544 printf("%05x\n", val);
1545 }
1546 }
1547 #endif /* ATW_SYNDEBUG */
1548
1549 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1550 *
1551 * The RF/IF synthesizer produces two reference frequencies for
1552 * the RF2948B transceiver. The first frequency the RF2948B requires
1553 * is two times the so-called "intermediate frequency" (IF). Since
1554 * a SAW filter on the radio fixes the IF at 374 MHz, I program the
1555 * Si4126 to generate IF LO = 374 MHz x 2 = 748 MHz. The second
1556 * frequency required by the transceiver is the radio frequency
1557 * (RF). This is a superheterodyne transceiver; for f(chan) the
1558 * center frequency of the channel we are tuning, RF = f(chan) -
1559 * IF.
1560 *
1561 * XXX I am told by SiLabs that the Si4126 will accept a broader range
1562 * of XIN than the 2-25 MHz mentioned by the datasheet, even *without*
1563 * XINDIV2 = 1. I've tried this (it is necessary to double R) and it
1564 * works, but I have still programmed for XINDIV2 = 1 to be safe.
1565 */
1566 static void
1567 atw_si4126_tune(struct atw_softc *sc, u_int chan)
1568 {
1569 u_int mhz;
1570 u_int R;
1571 u_int32_t gpio;
1572 u_int16_t gain;
1573
1574 #ifdef ATW_SYNDEBUG
1575 atw_si4126_print(sc);
1576 #endif /* ATW_SYNDEBUG */
1577
1578 if (chan == 14)
1579 mhz = 2484;
1580 else
1581 mhz = 2412 + 5 * (chan - 1);
1582
1583 /* Tune IF to 748 MHz to suit the IF LO input of the
1584 * RF2494B, which is 2 x IF. No need to set an IF divider
1585 * because an IF in 526 MHz - 952 MHz is allowed.
1586 *
1587 * XIN is 44.000 MHz, so divide it by two to get allowable
1588 * range of 2-25 MHz. SiLabs tells me that this is not
1589 * strictly necessary.
1590 */
1591
1592 if (atw_xindiv2)
1593 R = 44;
1594 else
1595 R = 88;
1596
1597 /* Power-up RF, IF synthesizers. */
1598 atw_si4126_write(sc, SI4126_POWER,
1599 SI4126_POWER_PDIB|SI4126_POWER_PDRB);
1600
1601 /* set LPWR, too? */
1602 atw_si4126_write(sc, SI4126_MAIN,
1603 (atw_xindiv2) ? SI4126_MAIN_XINDIV2 : 0);
1604
1605 /* Set the phase-locked loop gain. If RF2 N > 2047, then
1606 * set KP2 to 1.
1607 *
1608 * REFDIF This is different from the reference driver, which
1609 * always sets SI4126_GAIN to 0.
1610 */
1611 gain = SHIFTIN(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1612
1613 atw_si4126_write(sc, SI4126_GAIN, gain);
1614
1615 /* XIN = 44 MHz.
1616 *
1617 * If XINDIV2 = 1, IF = N/(2 * R) * XIN. I choose N = 1496,
1618 * R = 44 so that 1496/(2 * 44) * 44 MHz = 748 MHz.
1619 *
1620 * If XINDIV2 = 0, IF = N/R * XIN. I choose N = 1496, R = 88
1621 * so that 1496/88 * 44 MHz = 748 MHz.
1622 */
1623 atw_si4126_write(sc, SI4126_IFN, 1496);
1624
1625 atw_si4126_write(sc, SI4126_IFR, R);
1626
1627 #ifndef ATW_REFSLAVE
1628 /* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1629 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1630 * which has no RF1!
1631 */
1632 atw_si4126_write(sc, SI4126_RF1R, R);
1633
1634 atw_si4126_write(sc, SI4126_RF1N, mhz - 374);
1635 #endif
1636
1637 /* N/R * XIN = RF. XIN = 44 MHz. We desire RF = mhz - IF,
1638 * where IF = 374 MHz. Let's divide XIN to 1 MHz. So R = 44.
1639 * Now let's multiply it to mhz. So mhz - IF = N.
1640 */
1641 atw_si4126_write(sc, SI4126_RF2R, R);
1642
1643 atw_si4126_write(sc, SI4126_RF2N, mhz - 374);
1644
1645 /* wait 100us from power-up for RF, IF to settle */
1646 DELAY(100);
1647
1648 gpio = ATW_READ(sc, ATW_GPIO);
1649 gpio &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
1650 gpio |= SHIFTIN(1, ATW_GPIO_EN_MASK);
1651
1652 if ((sc->sc_if.if_flags & IFF_LINK1) != 0 && chan != 14) {
1653 /* Set a Prism RF front-end to a special mode for channel 14?
1654 *
1655 * Apparently the SMC2635W needs this, although I don't think
1656 * it has a Prism RF.
1657 */
1658 gpio |= SHIFTIN(1, ATW_GPIO_O_MASK);
1659 }
1660 ATW_WRITE(sc, ATW_GPIO, gpio);
1661
1662 #ifdef ATW_SYNDEBUG
1663 atw_si4126_print(sc);
1664 #endif /* ATW_SYNDEBUG */
1665 }
1666
1667 /* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
1668 * diversity.
1669 *
1670 * !!!
1671 * !!! Call this w/ Tx/Rx suspended, atw_idle(, ATW_NAR_ST|ATW_NAR_SR).
1672 * !!!
1673 */
1674 static int
1675 atw_rf3000_init(struct atw_softc *sc)
1676 {
1677 int rc = 0;
1678
1679 atw_bbp_io_enable(sc, 1);
1680
1681 /* CCA is acquisition sensitive */
1682 rc = atw_rf3000_write(sc, RF3000_CCACTL,
1683 SHIFTIN(RF3000_CCACTL_MODE_BOTH, RF3000_CCACTL_MODE_MASK));
1684
1685 if (rc != 0)
1686 goto out;
1687
1688 /* enable diversity */
1689 rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1690
1691 if (rc != 0)
1692 goto out;
1693
1694 /* sensible setting from a binary-only driver */
1695 rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1696 SHIFTIN(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1697
1698 if (rc != 0)
1699 goto out;
1700
1701 /* magic from a binary-only driver */
1702 rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1703 SHIFTIN(0x38, RF3000_LOGAINCAL_CAL_MASK));
1704
1705 if (rc != 0)
1706 goto out;
1707
1708 rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1709
1710 if (rc != 0)
1711 goto out;
1712
1713 /* XXX Reference driver remarks that Abocom sets this to 50.
1714 * Meaning 0x50, I think.... 50 = 0x32, which would set a bit
1715 * in the "reserved" area of register RF3000_OPTIONS1.
1716 */
1717 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, sc->sc_rf3000_options1);
1718
1719 if (rc != 0)
1720 goto out;
1721
1722 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, sc->sc_rf3000_options2);
1723
1724 if (rc != 0)
1725 goto out;
1726
1727 out:
1728 atw_bbp_io_enable(sc, 0);
1729 return rc;
1730 }
1731
1732 #ifdef ATW_BBPDEBUG
1733 static void
1734 atw_rf3000_print(struct atw_softc *sc)
1735 {
1736 struct ifnet *ifp = &sc->sc_if;
1737 u_int addr, val;
1738
1739 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1740 return;
1741
1742 for (addr = 0x01; addr <= 0x15; addr++) {
1743 printf("%s: bbp[%d] = \n", sc->sc_dev.dv_xname, addr);
1744 if (atw_rf3000_read(sc, addr, &val) != 0) {
1745 printf("<unknown> (quitting print-out)\n");
1746 break;
1747 }
1748 printf("%08x\n", val);
1749 }
1750 }
1751 #endif /* ATW_BBPDEBUG */
1752
1753 /* Set the power settings on the BBP for channel `chan'. */
1754 static int
1755 atw_rf3000_tune(struct atw_softc *sc, u_int chan)
1756 {
1757 int rc = 0;
1758 u_int32_t reg;
1759 u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
1760
1761 txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1762 lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1763 lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1764
1765 /* odd channels: LSB, even channels: MSB */
1766 if (chan % 2 == 1) {
1767 txpower &= 0xFF;
1768 lpf_cutoff &= 0xFF;
1769 lna_gs_thresh &= 0xFF;
1770 } else {
1771 txpower >>= 8;
1772 lpf_cutoff >>= 8;
1773 lna_gs_thresh >>= 8;
1774 }
1775
1776 #ifdef ATW_BBPDEBUG
1777 atw_rf3000_print(sc);
1778 #endif /* ATW_BBPDEBUG */
1779
1780 DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1781 "lna_gs_thresh %02x\n",
1782 sc->sc_dev.dv_xname, chan, txpower, lpf_cutoff, lna_gs_thresh));
1783
1784 atw_bbp_io_enable(sc, 1);
1785
1786 if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1787 SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1788 goto out;
1789
1790 if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1791 goto out;
1792
1793 if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1794 goto out;
1795
1796 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1797
1798 if (rc != 0)
1799 goto out;
1800
1801 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1802
1803 if (rc != 0)
1804 goto out;
1805
1806 #ifdef ATW_BBPDEBUG
1807 atw_rf3000_print(sc);
1808 #endif /* ATW_BBPDEBUG */
1809
1810 out:
1811 atw_bbp_io_enable(sc, 0);
1812
1813 /* set beacon, rts, atim transmit power */
1814 reg = ATW_READ(sc, ATW_PLCPHD);
1815 reg &= ~ATW_PLCPHD_SERVICE_MASK;
1816 reg |= SHIFTIN(SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK),
1817 ATW_PLCPHD_SERVICE_MASK);
1818 ATW_WRITE(sc, ATW_PLCPHD, reg);
1819 DELAY(atw_plcphd_delay);
1820
1821 return rc;
1822 }
1823
1824 /* Write a register on the RF3000 baseband processor using the
1825 * registers provided by the ADM8211 for this purpose.
1826 *
1827 * Return 0 on success.
1828 */
1829 static int
1830 atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
1831 {
1832 u_int32_t reg;
1833 int i;
1834
1835 reg = sc->sc_bbpctl_wr |
1836 SHIFTIN(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1837 SHIFTIN(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1838
1839 for (i = 20000 / atw_pseudo_milli; --i >= 0; ) {
1840 ATW_WRITE(sc, ATW_BBPCTL, reg);
1841 DELAY(2 * atw_pseudo_milli);
1842 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1843 break;
1844 }
1845
1846 if (i < 0) {
1847 printf("%s: BBPCTL still busy\n", sc->sc_dev.dv_xname);
1848 return ETIMEDOUT;
1849 }
1850 return 0;
1851 }
1852
1853 /* Read a register on the RF3000 baseband processor using the registers
1854 * the ADM8211 provides for this purpose.
1855 *
1856 * The 7-bit register address is addr. Record the 8-bit data in the register
1857 * in *val.
1858 *
1859 * Return 0 on success.
1860 *
1861 * XXX This does not seem to work. The ADM8211 must require more or
1862 * different magic to read the chip than to write it. Possibly some
1863 * of the magic I have derived from a binary-only driver concerns
1864 * the "chip address" (see the RF3000 manual).
1865 */
1866 #ifdef ATW_BBPDEBUG
1867 static int
1868 atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
1869 {
1870 u_int32_t reg;
1871 int i;
1872
1873 for (i = 1000; --i >= 0; ) {
1874 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1875 break;
1876 DELAY(100);
1877 }
1878
1879 if (i < 0) {
1880 printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1881 sc->sc_dev.dv_xname);
1882 return ETIMEDOUT;
1883 }
1884
1885 reg = sc->sc_bbpctl_rd | SHIFTIN(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1886
1887 ATW_WRITE(sc, ATW_BBPCTL, reg);
1888
1889 for (i = 1000; --i >= 0; ) {
1890 DELAY(100);
1891 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1892 break;
1893 }
1894
1895 ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1896
1897 if (i < 0) {
1898 printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1899 sc->sc_dev.dv_xname, reg);
1900 return ETIMEDOUT;
1901 }
1902 if (val != NULL)
1903 *val = SHIFTOUT(reg, ATW_BBPCTL_DATA_MASK);
1904 return 0;
1905 }
1906 #endif /* ATW_BBPDEBUG */
1907
1908 /* Write a register on the Si4126 RF/IF synthesizer using the registers
1909 * provided by the ADM8211 for that purpose.
1910 *
1911 * val is 18 bits of data, and val is the 4-bit address of the register.
1912 *
1913 * Return 0 on success.
1914 */
1915 static void
1916 atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
1917 {
1918 uint32_t bits, mask, reg;
1919 const int nbits = 22;
1920
1921 KASSERT((addr & ~SHIFTOUT_MASK(SI4126_TWI_ADDR_MASK)) == 0);
1922 KASSERT((val & ~SHIFTOUT_MASK(SI4126_TWI_DATA_MASK)) == 0);
1923
1924 bits = SHIFTIN(val, SI4126_TWI_DATA_MASK) |
1925 SHIFTIN(addr, SI4126_TWI_ADDR_MASK);
1926
1927 reg = ATW_SYNRF_SELSYN;
1928 /* reference driver: reset Si4126 serial bus to initial
1929 * conditions?
1930 */
1931 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1932 ATW_WRITE(sc, ATW_SYNRF, reg);
1933
1934 for (mask = __BIT(nbits - 1); mask != 0; mask >>= 1) {
1935 if ((bits & mask) != 0)
1936 reg |= ATW_SYNRF_SYNDATA;
1937 else
1938 reg &= ~ATW_SYNRF_SYNDATA;
1939 ATW_WRITE(sc, ATW_SYNRF, reg);
1940 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_SYNCLK);
1941 ATW_WRITE(sc, ATW_SYNRF, reg);
1942 }
1943 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1944 ATW_WRITE(sc, ATW_SYNRF, 0x0);
1945 }
1946
1947 /* Read 18-bit data from the 4-bit address addr in Si4126
1948 * RF synthesizer and write the data to *val. Return 0 on success.
1949 *
1950 * XXX This does not seem to work. The ADM8211 must require more or
1951 * different magic to read the chip than to write it.
1952 */
1953 #ifdef ATW_SYNDEBUG
1954 static int
1955 atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
1956 {
1957 u_int32_t reg;
1958 int i;
1959
1960 KASSERT((addr & ~SHIFTOUT_MASK(SI4126_TWI_ADDR_MASK)) == 0);
1961
1962 for (i = 1000; --i >= 0; ) {
1963 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1964 break;
1965 DELAY(100);
1966 }
1967
1968 if (i < 0) {
1969 printf("%s: start atw_si4126_read, SYNCTL busy\n",
1970 sc->sc_dev.dv_xname);
1971 return ETIMEDOUT;
1972 }
1973
1974 reg = sc->sc_synctl_rd | SHIFTIN(addr, ATW_SYNCTL_DATA_MASK);
1975
1976 ATW_WRITE(sc, ATW_SYNCTL, reg);
1977
1978 for (i = 1000; --i >= 0; ) {
1979 DELAY(100);
1980 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1981 break;
1982 }
1983
1984 ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1985
1986 if (i < 0) {
1987 printf("%s: atw_si4126_read wrote %#08x, SYNCTL still busy\n",
1988 sc->sc_dev.dv_xname, reg);
1989 return ETIMEDOUT;
1990 }
1991 if (val != NULL)
1992 *val = SHIFTOUT(ATW_READ(sc, ATW_SYNCTL),
1993 ATW_SYNCTL_DATA_MASK);
1994 return 0;
1995 }
1996 #endif /* ATW_SYNDEBUG */
1997
1998 /* XXX is the endianness correct? test. */
1999 #define atw_calchash(addr) \
2000 (ether_crc32_le((addr), IEEE80211_ADDR_LEN) & __BITS(5, 0))
2001
2002 /*
2003 * atw_filter_setup:
2004 *
2005 * Set the ADM8211's receive filter.
2006 */
2007 static void
2008 atw_filter_setup(struct atw_softc *sc)
2009 {
2010 struct ieee80211com *ic = &sc->sc_ic;
2011 struct ethercom *ec = &sc->sc_ec;
2012 struct ifnet *ifp = &sc->sc_if;
2013 int hash;
2014 u_int32_t hashes[2];
2015 struct ether_multi *enm;
2016 struct ether_multistep step;
2017
2018 /* According to comments in tlp_al981_filter_setup
2019 * (dev/ic/tulip.c) the ADMtek AL981 does not like for its
2020 * multicast filter to be set while it is running. Hopefully
2021 * the ADM8211 is not the same!
2022 */
2023 if ((ifp->if_flags & IFF_RUNNING) != 0)
2024 atw_idle(sc, ATW_NAR_SR);
2025
2026 sc->sc_opmode &= ~(ATW_NAR_PR|ATW_NAR_MM);
2027 ifp->if_flags &= ~IFF_ALLMULTI;
2028
2029 /* XXX in scan mode, do not filter packets. Maybe this is
2030 * unnecessary.
2031 */
2032 if (ic->ic_state == IEEE80211_S_SCAN ||
2033 (ifp->if_flags & IFF_PROMISC) != 0) {
2034 sc->sc_opmode |= ATW_NAR_PR;
2035 goto allmulti;
2036 }
2037
2038 hashes[0] = hashes[1] = 0x0;
2039
2040 /*
2041 * Program the 64-bit multicast hash filter.
2042 */
2043 ETHER_FIRST_MULTI(step, ec, enm);
2044 while (enm != NULL) {
2045 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2046 ETHER_ADDR_LEN) != 0)
2047 goto allmulti;
2048
2049 hash = atw_calchash(enm->enm_addrlo);
2050 hashes[hash >> 5] |= 1 << (hash & 0x1f);
2051 ETHER_NEXT_MULTI(step, enm);
2052 sc->sc_opmode |= ATW_NAR_MM;
2053 }
2054 ifp->if_flags &= ~IFF_ALLMULTI;
2055 goto setit;
2056
2057 allmulti:
2058 sc->sc_opmode |= ATW_NAR_MM;
2059 ifp->if_flags |= IFF_ALLMULTI;
2060 hashes[0] = hashes[1] = 0xffffffff;
2061
2062 setit:
2063 ATW_WRITE(sc, ATW_MAR0, hashes[0]);
2064 ATW_WRITE(sc, ATW_MAR1, hashes[1]);
2065 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2066 DELAY(atw_nar_delay);
2067 ATW_WRITE(sc, ATW_RDR, 0x1);
2068
2069 DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", sc->sc_dev.dv_xname,
2070 ATW_READ(sc, ATW_NAR), sc->sc_opmode));
2071 }
2072
2073 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
2074 * a beacon's BSSID and SSID against the preferred BSSID and SSID
2075 * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
2076 * no beacon with the preferred BSSID and SSID in the number of
2077 * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
2078 */
2079 static void
2080 atw_write_bssid(struct atw_softc *sc)
2081 {
2082 struct ieee80211com *ic = &sc->sc_ic;
2083 u_int8_t *bssid;
2084
2085 bssid = ic->ic_bss->ni_bssid;
2086
2087 ATW_WRITE(sc, ATW_BSSID0,
2088 SHIFTIN(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
2089 SHIFTIN(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
2090 SHIFTIN(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
2091 SHIFTIN(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
2092
2093 ATW_WRITE(sc, ATW_ABDA1,
2094 (ATW_READ(sc, ATW_ABDA1) &
2095 ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
2096 SHIFTIN(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
2097 SHIFTIN(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
2098
2099 DPRINTF(sc, ("%s: BSSID %s -> ", sc->sc_dev.dv_xname,
2100 ether_sprintf(sc->sc_bssid)));
2101 DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
2102
2103 memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
2104 }
2105
2106 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
2107 * 16-bit word.
2108 */
2109 static void
2110 atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
2111 {
2112 u_int i;
2113 u_int8_t *ptr;
2114
2115 memcpy(&sc->sc_sram[ofs], buf, buflen);
2116
2117 KASSERT(ofs % 2 == 0 && buflen % 2 == 0);
2118
2119 KASSERT(buflen + ofs <= sc->sc_sramlen);
2120
2121 ptr = &sc->sc_sram[ofs];
2122
2123 for (i = 0; i < buflen; i += 2) {
2124 ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
2125 SHIFTIN((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
2126 DELAY(atw_writewep_delay);
2127
2128 ATW_WRITE(sc, ATW_WESK,
2129 SHIFTIN((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
2130 DELAY(atw_writewep_delay);
2131 }
2132 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
2133
2134 if (sc->sc_if.if_flags & IFF_DEBUG) {
2135 int n_octets = 0;
2136 printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
2137 sc->sc_dev.dv_xname, buflen, ofs, sc->sc_wepctl);
2138 for (i = 0; i < buflen; i++) {
2139 printf(" %02x", ptr[i]);
2140 if (++n_octets % 24 == 0)
2141 printf("\n");
2142 }
2143 if (n_octets % 24 != 0)
2144 printf("\n");
2145 }
2146 }
2147
2148 static int
2149 atw_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
2150 {
2151 struct atw_softc *sc = ic->ic_ifp->if_softc;
2152 u_int keyix = k->wk_keyix;
2153
2154 DPRINTF(sc, ("%s: delete key %u\n", __func__, keyix));
2155
2156 if (keyix >= IEEE80211_WEP_NKID)
2157 return 0;
2158 if (k->wk_keylen != 0)
2159 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2160
2161 return 1;
2162 }
2163
2164 static int
2165 atw_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
2166 const u_int8_t mac[IEEE80211_ADDR_LEN])
2167 {
2168 struct atw_softc *sc = ic->ic_ifp->if_softc;
2169
2170 DPRINTF(sc, ("%s: set key %u\n", __func__, k->wk_keyix));
2171
2172 if (k->wk_keyix >= IEEE80211_WEP_NKID)
2173 return 0;
2174
2175 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2176
2177 return 1;
2178 }
2179
2180 static void
2181 atw_key_update_begin(struct ieee80211com *ic)
2182 {
2183 #ifdef ATW_DEBUG
2184 struct ifnet *ifp = ic->ic_ifp;
2185 struct atw_softc *sc = ifp->if_softc;
2186 #endif
2187
2188 DPRINTF(sc, ("%s:\n", __func__));
2189 }
2190
2191 static void
2192 atw_key_update_end(struct ieee80211com *ic)
2193 {
2194 struct ifnet *ifp = ic->ic_ifp;
2195 struct atw_softc *sc = ifp->if_softc;
2196
2197 DPRINTF(sc, ("%s:\n", __func__));
2198
2199 if ((sc->sc_flags & ATWF_WEP_SRAM_VALID) != 0)
2200 return;
2201 if (ATW_IS_ENABLED(sc) == 0)
2202 return;
2203 atw_idle(sc, ATW_NAR_SR | ATW_NAR_ST);
2204 atw_write_wep(sc);
2205 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2206 DELAY(atw_nar_delay);
2207 ATW_WRITE(sc, ATW_RDR, 0x1);
2208 }
2209
2210 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
2211 static void
2212 atw_write_wep(struct atw_softc *sc)
2213 {
2214 #if 0
2215 struct ieee80211com *ic = &sc->sc_ic;
2216 u_int32_t reg;
2217 int i;
2218 #endif
2219 /* SRAM shared-key record format: key0 flags key1 ... key12 */
2220 u_int8_t buf[IEEE80211_WEP_NKID]
2221 [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
2222
2223 sc->sc_wepctl = 0;
2224 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
2225
2226 memset(&buf[0][0], 0, sizeof(buf));
2227
2228 #if 0
2229 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2230 if (ic->ic_nw_keys[i].wk_keylen > 5) {
2231 buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
2232 } else if (ic->ic_nw_keys[i].wk_keylen != 0) {
2233 buf[i][1] = ATW_WEP_ENABLED;
2234 } else {
2235 buf[i][1] = 0;
2236 continue;
2237 }
2238 buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
2239 memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
2240 ic->ic_nw_keys[i].wk_keylen - 1);
2241 }
2242
2243 reg = ATW_READ(sc, ATW_MACTEST);
2244 reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2245 reg &= ~ATW_MACTEST_KEYID_MASK;
2246 reg |= SHIFTIN(ic->ic_def_txkey, ATW_MACTEST_KEYID_MASK);
2247 ATW_WRITE(sc, ATW_MACTEST, reg);
2248
2249 if ((ic->ic_flags & IEEE80211_F_PRIVACY) != 0)
2250 sc->sc_wepctl |= ATW_WEPCTL_WEPENABLE;
2251
2252 switch (sc->sc_rev) {
2253 case ATW_REVISION_AB:
2254 case ATW_REVISION_AF:
2255 /* Bypass WEP on Rx. */
2256 sc->sc_wepctl |= ATW_WEPCTL_WEPRXBYP;
2257 break;
2258 default:
2259 break;
2260 }
2261 #endif
2262
2263 atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
2264 sizeof(buf));
2265
2266 sc->sc_flags |= ATWF_WEP_SRAM_VALID;
2267 }
2268
2269 static void
2270 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2271 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2272 {
2273 struct atw_softc *sc = (struct atw_softc *)ic->ic_ifp->if_softc;
2274
2275 /* The ADM8211A answers probe requests. TBD ADM8211B/C. */
2276 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_REQ)
2277 return;
2278
2279 (*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2280
2281 switch (subtype) {
2282 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2283 case IEEE80211_FC0_SUBTYPE_BEACON:
2284 if (ic->ic_opmode == IEEE80211_M_IBSS &&
2285 ic->ic_state == IEEE80211_S_RUN) {
2286 if (le64toh(ni->ni_tstamp.tsf) >= atw_get_tsft(sc))
2287 (void)ieee80211_ibss_merge(ni);
2288 }
2289 break;
2290 default:
2291 break;
2292 }
2293 return;
2294 }
2295
2296 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2297 * In ad hoc mode, the SSID is written to the beacons sent by the
2298 * ADM8211. In both ad hoc and infrastructure mode, beacons received
2299 * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2300 * indications.
2301 */
2302 static void
2303 atw_write_ssid(struct atw_softc *sc)
2304 {
2305 struct ieee80211com *ic = &sc->sc_ic;
2306 /* 34 bytes are reserved in ADM8211 SRAM for the SSID, but
2307 * it only expects the element length, not its ID.
2308 */
2309 u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
2310
2311 memset(buf, 0, sizeof(buf));
2312 buf[0] = ic->ic_bss->ni_esslen;
2313 memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2314
2315 atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf,
2316 roundup(1 + ic->ic_bss->ni_esslen, 2));
2317 }
2318
2319 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2320 * In ad hoc mode, the supported rates are written to beacons sent by the
2321 * ADM8211.
2322 */
2323 static void
2324 atw_write_sup_rates(struct atw_softc *sc)
2325 {
2326 struct ieee80211com *ic = &sc->sc_ic;
2327 /* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2328 * supported rates
2329 */
2330 u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
2331
2332 memset(buf, 0, sizeof(buf));
2333
2334 buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2335
2336 memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2337 ic->ic_bss->ni_rates.rs_nrates);
2338
2339 atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2340 }
2341
2342 /* Start/stop sending beacons. */
2343 void
2344 atw_start_beacon(struct atw_softc *sc, int start)
2345 {
2346 struct ieee80211com *ic = &sc->sc_ic;
2347 uint16_t chan;
2348 uint32_t bcnt, bpli, cap0, cap1, capinfo;
2349 size_t len;
2350
2351 if (ATW_IS_ENABLED(sc) == 0)
2352 return;
2353
2354 /* start beacons */
2355 len = sizeof(struct ieee80211_frame) +
2356 8 /* timestamp */ + 2 /* beacon interval */ +
2357 2 /* capability info */ +
2358 2 + ic->ic_bss->ni_esslen /* SSID element */ +
2359 2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2360 3 /* DS parameters */ +
2361 IEEE80211_CRC_LEN;
2362
2363 bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2364 cap0 = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
2365 cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2366
2367 ATW_WRITE(sc, ATW_BCNT, bcnt);
2368 ATW_WRITE(sc, ATW_CAP1, cap1);
2369
2370 if (!start)
2371 return;
2372
2373 /* TBD use ni_capinfo */
2374
2375 capinfo = 0;
2376 if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
2377 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2378 if (ic->ic_flags & IEEE80211_F_PRIVACY)
2379 capinfo |= IEEE80211_CAPINFO_PRIVACY;
2380
2381 switch (ic->ic_opmode) {
2382 case IEEE80211_M_IBSS:
2383 len += 4; /* IBSS parameters */
2384 capinfo |= IEEE80211_CAPINFO_IBSS;
2385 break;
2386 case IEEE80211_M_HOSTAP:
2387 /* XXX 6-byte minimum TIM */
2388 len += atw_beacon_len_adjust;
2389 capinfo |= IEEE80211_CAPINFO_ESS;
2390 break;
2391 default:
2392 return;
2393 }
2394
2395 /* set listen interval
2396 * XXX do software units agree w/ hardware?
2397 */
2398 bpli = SHIFTIN(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2399 SHIFTIN(ic->ic_lintval / ic->ic_bss->ni_intval, ATW_BPLI_LI_MASK);
2400
2401 chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
2402
2403 bcnt |= SHIFTIN(len, ATW_BCNT_BCNT_MASK);
2404 cap0 |= SHIFTIN(chan, ATW_CAP0_CHN_MASK);
2405 cap1 |= SHIFTIN(capinfo, ATW_CAP1_CAPI_MASK);
2406
2407 ATW_WRITE(sc, ATW_BCNT, bcnt);
2408 ATW_WRITE(sc, ATW_BPLI, bpli);
2409 ATW_WRITE(sc, ATW_CAP0, cap0);
2410 ATW_WRITE(sc, ATW_CAP1, cap1);
2411
2412 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2413 sc->sc_dev.dv_xname, bcnt));
2414
2415 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2416 sc->sc_dev.dv_xname, cap1));
2417 }
2418
2419 /* Return the 32 lsb of the last TSFT divisible by ival. */
2420 static inline uint32_t
2421 atw_last_even_tsft(uint32_t tsfth, uint32_t tsftl, uint32_t ival)
2422 {
2423 /* Following the reference driver's lead, I compute
2424 *
2425 * (uint32_t)((((uint64_t)tsfth << 32) | tsftl) % ival)
2426 *
2427 * without using 64-bit arithmetic, using the following
2428 * relationship:
2429 *
2430 * (0x100000000 * H + L) % m
2431 * = ((0x100000000 % m) * H + L) % m
2432 * = (((0xffffffff + 1) % m) * H + L) % m
2433 * = ((0xffffffff % m + 1 % m) * H + L) % m
2434 * = ((0xffffffff % m + 1) * H + L) % m
2435 */
2436 return ((0xFFFFFFFF % ival + 1) * tsfth + tsftl) % ival;
2437 }
2438
2439 static uint64_t
2440 atw_get_tsft(struct atw_softc *sc)
2441 {
2442 int i;
2443 uint32_t tsfth, tsftl;
2444 for (i = 0; i < 2; i++) {
2445 tsfth = ATW_READ(sc, ATW_TSFTH);
2446 tsftl = ATW_READ(sc, ATW_TSFTL);
2447 if (ATW_READ(sc, ATW_TSFTH) == tsfth)
2448 break;
2449 }
2450 return ((uint64_t)tsfth << 32) | tsftl;
2451 }
2452
2453 /* If we've created an IBSS, write the TSF time in the ADM8211 to
2454 * the ieee80211com.
2455 *
2456 * Predict the next target beacon transmission time (TBTT) and
2457 * write it to the ADM8211.
2458 */
2459 static void
2460 atw_predict_beacon(struct atw_softc *sc)
2461 {
2462 #define TBTTOFS 20 /* TU */
2463
2464 struct ieee80211com *ic = &sc->sc_ic;
2465 uint64_t tsft;
2466 uint32_t ival, past_even, tbtt, tsfth, tsftl;
2467 union {
2468 uint64_t word;
2469 uint8_t tstamp[8];
2470 } u;
2471
2472 if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2473 ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2474 (ic->ic_flags & IEEE80211_F_SIBSS))) {
2475 tsft = atw_get_tsft(sc);
2476 u.word = htole64(tsft);
2477 (void)memcpy(&ic->ic_bss->ni_tstamp, &u.tstamp[0],
2478 sizeof(ic->ic_bss->ni_tstamp));
2479 } else
2480 tsft = le64toh(ic->ic_bss->ni_tstamp.tsf);
2481
2482 ival = ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2483
2484 tsftl = tsft & 0xFFFFFFFF;
2485 tsfth = tsft >> 32;
2486
2487 /* We sent/received the last beacon `past' microseconds
2488 * after the interval divided the TSF timer.
2489 */
2490 past_even = tsftl - atw_last_even_tsft(tsfth, tsftl, ival);
2491
2492 /* Skip ten beacons so that the TBTT cannot pass before
2493 * we've programmed it. Ten is an arbitrary number.
2494 */
2495 tbtt = past_even + ival * 10;
2496
2497 ATW_WRITE(sc, ATW_TOFS1,
2498 SHIFTIN(1, ATW_TOFS1_TSFTOFSR_MASK) |
2499 SHIFTIN(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2500 SHIFTIN(SHIFTOUT(tbtt - TBTTOFS * IEEE80211_DUR_TU,
2501 ATW_TBTTPRE_MASK), ATW_TOFS1_TBTTPRE_MASK));
2502 #undef TBTTOFS
2503 }
2504
2505 static void
2506 atw_next_scan(void *arg)
2507 {
2508 struct atw_softc *sc = arg;
2509 struct ieee80211com *ic = &sc->sc_ic;
2510 int s;
2511
2512 /* don't call atw_start w/o network interrupts blocked */
2513 s = splnet();
2514 if (ic->ic_state == IEEE80211_S_SCAN)
2515 ieee80211_next_scan(ic);
2516 splx(s);
2517 }
2518
2519 /* Synchronize the hardware state with the software state. */
2520 static int
2521 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2522 {
2523 struct ifnet *ifp = ic->ic_ifp;
2524 struct atw_softc *sc = ifp->if_softc;
2525 enum ieee80211_state ostate;
2526 int error = 0;
2527
2528 ostate = ic->ic_state;
2529 callout_stop(&sc->sc_scan_ch);
2530
2531 switch (nstate) {
2532 case IEEE80211_S_AUTH:
2533 case IEEE80211_S_ASSOC:
2534 atw_write_bssid(sc);
2535 error = atw_tune(sc);
2536 break;
2537 case IEEE80211_S_INIT:
2538 callout_stop(&sc->sc_scan_ch);
2539 sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2540 atw_start_beacon(sc, 0);
2541 break;
2542 case IEEE80211_S_SCAN:
2543 error = atw_tune(sc);
2544 callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2545 atw_next_scan, sc);
2546 break;
2547 case IEEE80211_S_RUN:
2548 error = atw_tune(sc);
2549 atw_write_bssid(sc);
2550 atw_write_ssid(sc);
2551 atw_write_sup_rates(sc);
2552
2553 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2554 ic->ic_opmode == IEEE80211_M_MONITOR)
2555 break;
2556
2557 /* set listen interval
2558 * XXX do software units agree w/ hardware?
2559 */
2560 ATW_WRITE(sc, ATW_BPLI,
2561 SHIFTIN(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2562 SHIFTIN(ic->ic_lintval / ic->ic_bss->ni_intval,
2563 ATW_BPLI_LI_MASK));
2564
2565 DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n", sc->sc_dev.dv_xname,
2566 ATW_READ(sc, ATW_BPLI)));
2567
2568 atw_predict_beacon(sc);
2569
2570 switch (ic->ic_opmode) {
2571 case IEEE80211_M_AHDEMO:
2572 case IEEE80211_M_HOSTAP:
2573 case IEEE80211_M_IBSS:
2574 atw_start_beacon(sc, 1);
2575 break;
2576 case IEEE80211_M_MONITOR:
2577 case IEEE80211_M_STA:
2578 break;
2579 }
2580
2581 break;
2582 }
2583 return (error != 0) ? error : (*sc->sc_newstate)(ic, nstate, arg);
2584 }
2585
2586 /*
2587 * atw_add_rxbuf:
2588 *
2589 * Add a receive buffer to the indicated descriptor.
2590 */
2591 int
2592 atw_add_rxbuf(struct atw_softc *sc, int idx)
2593 {
2594 struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2595 struct mbuf *m;
2596 int error;
2597
2598 MGETHDR(m, M_DONTWAIT, MT_DATA);
2599 if (m == NULL)
2600 return (ENOBUFS);
2601
2602 MCLGET(m, M_DONTWAIT);
2603 if ((m->m_flags & M_EXT) == 0) {
2604 m_freem(m);
2605 return (ENOBUFS);
2606 }
2607
2608 if (rxs->rxs_mbuf != NULL)
2609 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2610
2611 rxs->rxs_mbuf = m;
2612
2613 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2614 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2615 BUS_DMA_READ|BUS_DMA_NOWAIT);
2616 if (error) {
2617 printf("%s: can't load rx DMA map %d, error = %d\n",
2618 sc->sc_dev.dv_xname, idx, error);
2619 panic("atw_add_rxbuf"); /* XXX */
2620 }
2621
2622 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2623 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2624
2625 ATW_INIT_RXDESC(sc, idx);
2626
2627 return (0);
2628 }
2629
2630 /*
2631 * Release any queued transmit buffers.
2632 */
2633 void
2634 atw_txdrain(struct atw_softc *sc)
2635 {
2636 struct atw_txsoft *txs;
2637
2638 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2639 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2640 if (txs->txs_mbuf != NULL) {
2641 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2642 m_freem(txs->txs_mbuf);
2643 txs->txs_mbuf = NULL;
2644 }
2645 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2646 sc->sc_txfree += txs->txs_ndescs;
2647 }
2648
2649 KASSERT((sc->sc_if.if_flags & IFF_RUNNING) == 0 ||
2650 !(SIMPLEQ_EMPTY(&sc->sc_txfreeq) ||
2651 sc->sc_txfree != ATW_NTXDESC));
2652 sc->sc_if.if_flags &= ~IFF_OACTIVE;
2653 sc->sc_tx_timer = 0;
2654 }
2655
2656 /*
2657 * atw_stop: [ ifnet interface function ]
2658 *
2659 * Stop transmission on the interface.
2660 */
2661 void
2662 atw_stop(struct ifnet *ifp, int disable)
2663 {
2664 struct atw_softc *sc = ifp->if_softc;
2665 struct ieee80211com *ic = &sc->sc_ic;
2666
2667 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2668
2669 /* Disable interrupts. */
2670 ATW_WRITE(sc, ATW_IER, 0);
2671
2672 /* Stop the transmit and receive processes. */
2673 sc->sc_opmode = 0;
2674 ATW_WRITE(sc, ATW_NAR, 0);
2675 DELAY(atw_nar_delay);
2676 ATW_WRITE(sc, ATW_TDBD, 0);
2677 ATW_WRITE(sc, ATW_TDBP, 0);
2678 ATW_WRITE(sc, ATW_RDB, 0);
2679
2680 atw_txdrain(sc);
2681
2682 if (disable) {
2683 atw_rxdrain(sc);
2684 atw_disable(sc);
2685 }
2686
2687 /*
2688 * Mark the interface down and cancel the watchdog timer.
2689 */
2690 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2691 sc->sc_tx_timer = 0;
2692 ifp->if_timer = 0;
2693
2694 if (!disable)
2695 atw_reset(sc);
2696 }
2697
2698 /*
2699 * atw_rxdrain:
2700 *
2701 * Drain the receive queue.
2702 */
2703 void
2704 atw_rxdrain(struct atw_softc *sc)
2705 {
2706 struct atw_rxsoft *rxs;
2707 int i;
2708
2709 for (i = 0; i < ATW_NRXDESC; i++) {
2710 rxs = &sc->sc_rxsoft[i];
2711 if (rxs->rxs_mbuf == NULL)
2712 continue;
2713 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2714 m_freem(rxs->rxs_mbuf);
2715 rxs->rxs_mbuf = NULL;
2716 }
2717 }
2718
2719 /*
2720 * atw_detach:
2721 *
2722 * Detach an ADM8211 interface.
2723 */
2724 int
2725 atw_detach(struct atw_softc *sc)
2726 {
2727 struct ifnet *ifp = &sc->sc_if;
2728 struct atw_rxsoft *rxs;
2729 struct atw_txsoft *txs;
2730 int i;
2731
2732 /*
2733 * Succeed now if there isn't any work to do.
2734 */
2735 if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2736 return (0);
2737
2738 callout_stop(&sc->sc_scan_ch);
2739
2740 ieee80211_ifdetach(&sc->sc_ic);
2741 if_detach(ifp);
2742
2743 for (i = 0; i < ATW_NRXDESC; i++) {
2744 rxs = &sc->sc_rxsoft[i];
2745 if (rxs->rxs_mbuf != NULL) {
2746 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2747 m_freem(rxs->rxs_mbuf);
2748 rxs->rxs_mbuf = NULL;
2749 }
2750 bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2751 }
2752 for (i = 0; i < ATW_TXQUEUELEN; i++) {
2753 txs = &sc->sc_txsoft[i];
2754 if (txs->txs_mbuf != NULL) {
2755 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2756 m_freem(txs->txs_mbuf);
2757 txs->txs_mbuf = NULL;
2758 }
2759 bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2760 }
2761 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2762 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2763 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2764 sizeof(struct atw_control_data));
2765 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2766
2767 shutdownhook_disestablish(sc->sc_sdhook);
2768 powerhook_disestablish(sc->sc_powerhook);
2769
2770 if (sc->sc_srom)
2771 free(sc->sc_srom, M_DEVBUF);
2772
2773 return (0);
2774 }
2775
2776 /* atw_shutdown: make sure the interface is stopped at reboot time. */
2777 void
2778 atw_shutdown(void *arg)
2779 {
2780 struct atw_softc *sc = arg;
2781
2782 atw_stop(&sc->sc_if, 1);
2783 }
2784
2785 int
2786 atw_intr(void *arg)
2787 {
2788 struct atw_softc *sc = arg;
2789 struct ifnet *ifp = &sc->sc_if;
2790 u_int32_t status, rxstatus, txstatus, linkstatus;
2791 int handled = 0, txthresh;
2792
2793 #ifdef DEBUG
2794 if (ATW_IS_ENABLED(sc) == 0)
2795 panic("%s: atw_intr: not enabled", sc->sc_dev.dv_xname);
2796 #endif
2797
2798 /*
2799 * If the interface isn't running, the interrupt couldn't
2800 * possibly have come from us.
2801 */
2802 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2803 !device_is_active(&sc->sc_dev))
2804 return (0);
2805
2806 for (;;) {
2807 status = ATW_READ(sc, ATW_STSR);
2808
2809 if (status)
2810 ATW_WRITE(sc, ATW_STSR, status);
2811
2812 #ifdef ATW_DEBUG
2813 #define PRINTINTR(flag) do { \
2814 if ((status & flag) != 0) { \
2815 printf("%s" #flag, delim); \
2816 delim = ","; \
2817 } \
2818 } while (0)
2819
2820 if (atw_debug > 1 && status) {
2821 const char *delim = "<";
2822
2823 printf("%s: reg[STSR] = %x",
2824 sc->sc_dev.dv_xname, status);
2825
2826 PRINTINTR(ATW_INTR_FBE);
2827 PRINTINTR(ATW_INTR_LINKOFF);
2828 PRINTINTR(ATW_INTR_LINKON);
2829 PRINTINTR(ATW_INTR_RCI);
2830 PRINTINTR(ATW_INTR_RDU);
2831 PRINTINTR(ATW_INTR_REIS);
2832 PRINTINTR(ATW_INTR_RPS);
2833 PRINTINTR(ATW_INTR_TCI);
2834 PRINTINTR(ATW_INTR_TDU);
2835 PRINTINTR(ATW_INTR_TLT);
2836 PRINTINTR(ATW_INTR_TPS);
2837 PRINTINTR(ATW_INTR_TRT);
2838 PRINTINTR(ATW_INTR_TUF);
2839 PRINTINTR(ATW_INTR_BCNTC);
2840 PRINTINTR(ATW_INTR_ATIME);
2841 PRINTINTR(ATW_INTR_TBTT);
2842 PRINTINTR(ATW_INTR_TSCZ);
2843 PRINTINTR(ATW_INTR_TSFTF);
2844 printf(">\n");
2845 }
2846 #undef PRINTINTR
2847 #endif /* ATW_DEBUG */
2848
2849 if ((status & sc->sc_inten) == 0)
2850 break;
2851
2852 handled = 1;
2853
2854 rxstatus = status & sc->sc_rxint_mask;
2855 txstatus = status & sc->sc_txint_mask;
2856 linkstatus = status & sc->sc_linkint_mask;
2857
2858 if (linkstatus) {
2859 atw_linkintr(sc, linkstatus);
2860 }
2861
2862 if (rxstatus) {
2863 /* Grab any new packets. */
2864 atw_rxintr(sc);
2865
2866 if (rxstatus & ATW_INTR_RDU) {
2867 printf("%s: receive ring overrun\n",
2868 sc->sc_dev.dv_xname);
2869 /* Get the receive process going again. */
2870 ATW_WRITE(sc, ATW_RDR, 0x1);
2871 break;
2872 }
2873 }
2874
2875 if (txstatus) {
2876 /* Sweep up transmit descriptors. */
2877 atw_txintr(sc);
2878
2879 if (txstatus & ATW_INTR_TLT)
2880 DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2881 sc->sc_dev.dv_xname));
2882
2883 if (txstatus & ATW_INTR_TRT)
2884 DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2885 sc->sc_dev.dv_xname));
2886
2887 /* If Tx under-run, increase our transmit threshold
2888 * if another is available.
2889 */
2890 txthresh = sc->sc_txthresh + 1;
2891 if ((txstatus & ATW_INTR_TUF) &&
2892 sc->sc_txth[txthresh].txth_name != NULL) {
2893 /* Idle the transmit process. */
2894 atw_idle(sc, ATW_NAR_ST);
2895
2896 sc->sc_txthresh = txthresh;
2897 sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2898 sc->sc_opmode |=
2899 sc->sc_txth[txthresh].txth_opmode;
2900 printf("%s: transmit underrun; new "
2901 "threshold: %s\n", sc->sc_dev.dv_xname,
2902 sc->sc_txth[txthresh].txth_name);
2903
2904 /* Set the new threshold and restart
2905 * the transmit process.
2906 */
2907 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2908 DELAY(atw_nar_delay);
2909 ATW_WRITE(sc, ATW_RDR, 0x1);
2910 /* XXX Log every Nth underrun from
2911 * XXX now on?
2912 */
2913 }
2914 }
2915
2916 if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
2917 if (status & ATW_INTR_TPS)
2918 printf("%s: transmit process stopped\n",
2919 sc->sc_dev.dv_xname);
2920 if (status & ATW_INTR_RPS)
2921 printf("%s: receive process stopped\n",
2922 sc->sc_dev.dv_xname);
2923 (void)atw_init(ifp);
2924 break;
2925 }
2926
2927 if (status & ATW_INTR_FBE) {
2928 printf("%s: fatal bus error\n", sc->sc_dev.dv_xname);
2929 (void)atw_init(ifp);
2930 break;
2931 }
2932
2933 /*
2934 * Not handled:
2935 *
2936 * Transmit buffer unavailable -- normal
2937 * condition, nothing to do, really.
2938 *
2939 * Early receive interrupt -- not available on
2940 * all chips, we just use RI. We also only
2941 * use single-segment receive DMA, so this
2942 * is mostly useless.
2943 *
2944 * TBD others
2945 */
2946 }
2947
2948 /* Try to get more packets going. */
2949 atw_start(ifp);
2950
2951 return (handled);
2952 }
2953
2954 /*
2955 * atw_idle:
2956 *
2957 * Cause the transmit and/or receive processes to go idle.
2958 *
2959 * XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2960 * process in STSR if I clear SR or ST after the process has already
2961 * ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2962 * do not seem to be too reliable. Perhaps I have the sense of the
2963 * Rx bits switched with the Tx bits?
2964 */
2965 void
2966 atw_idle(struct atw_softc *sc, u_int32_t bits)
2967 {
2968 u_int32_t ackmask = 0, opmode, stsr, test0;
2969 int i, s;
2970
2971 s = splnet();
2972
2973 opmode = sc->sc_opmode & ~bits;
2974
2975 if (bits & ATW_NAR_SR)
2976 ackmask |= ATW_INTR_RPS;
2977
2978 if (bits & ATW_NAR_ST) {
2979 ackmask |= ATW_INTR_TPS;
2980 /* set ATW_NAR_HF to flush TX FIFO. */
2981 opmode |= ATW_NAR_HF;
2982 }
2983
2984 ATW_WRITE(sc, ATW_NAR, opmode);
2985 DELAY(atw_nar_delay);
2986
2987 for (i = 0; i < 1000; i++) {
2988 stsr = ATW_READ(sc, ATW_STSR);
2989 if ((stsr & ackmask) == ackmask)
2990 break;
2991 DELAY(10);
2992 }
2993
2994 ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
2995
2996 if ((stsr & ackmask) == ackmask)
2997 goto out;
2998
2999 test0 = ATW_READ(sc, ATW_TEST0);
3000
3001 if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
3002 (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
3003 printf("%s: transmit process not idle [%s]\n",
3004 sc->sc_dev.dv_xname,
3005 atw_tx_state[SHIFTOUT(test0, ATW_TEST0_TS_MASK)]);
3006 printf("%s: bits %08x test0 %08x stsr %08x\n",
3007 sc->sc_dev.dv_xname, bits, test0, stsr);
3008 }
3009
3010 if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
3011 (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
3012 DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
3013 sc->sc_dev.dv_xname,
3014 atw_rx_state[SHIFTOUT(test0, ATW_TEST0_RS_MASK)]));
3015 DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
3016 sc->sc_dev.dv_xname, bits, test0, stsr));
3017 }
3018 out:
3019 if ((bits & ATW_NAR_ST) != 0)
3020 atw_txdrain(sc);
3021 splx(s);
3022 return;
3023 }
3024
3025 /*
3026 * atw_linkintr:
3027 *
3028 * Helper; handle link-status interrupts.
3029 */
3030 void
3031 atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
3032 {
3033 struct ieee80211com *ic = &sc->sc_ic;
3034
3035 if (ic->ic_state != IEEE80211_S_RUN)
3036 return;
3037
3038 if (linkstatus & ATW_INTR_LINKON) {
3039 DPRINTF(sc, ("%s: link on\n", sc->sc_dev.dv_xname));
3040 sc->sc_rescan_timer = 0;
3041 } else if (linkstatus & ATW_INTR_LINKOFF) {
3042 DPRINTF(sc, ("%s: link off\n", sc->sc_dev.dv_xname));
3043 if (ic->ic_opmode != IEEE80211_M_STA)
3044 return;
3045 sc->sc_rescan_timer = 3;
3046 sc->sc_if.if_timer = 1;
3047 }
3048 }
3049
3050 static inline int
3051 atw_hw_decrypted(struct atw_softc *sc, struct ieee80211_frame_min *wh)
3052 {
3053 if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0)
3054 return 0;
3055 if ((wh->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3056 return 0;
3057 return (sc->sc_wepctl & ATW_WEPCTL_WEPRXBYP) == 0;
3058 }
3059
3060 /*
3061 * atw_rxintr:
3062 *
3063 * Helper; handle receive interrupts.
3064 */
3065 void
3066 atw_rxintr(struct atw_softc *sc)
3067 {
3068 static int rate_tbl[] = {2, 4, 11, 22, 44};
3069 struct ieee80211com *ic = &sc->sc_ic;
3070 struct ieee80211_node *ni;
3071 struct ieee80211_frame_min *wh;
3072 struct ifnet *ifp = &sc->sc_if;
3073 struct atw_rxsoft *rxs;
3074 struct mbuf *m;
3075 u_int32_t rxstat;
3076 int i, len, rate, rate0;
3077 u_int32_t rssi, rssi0;
3078
3079 for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
3080 rxs = &sc->sc_rxsoft[i];
3081
3082 ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3083
3084 rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
3085 rssi0 = le32toh(sc->sc_rxdescs[i].ar_rssi);
3086 rate0 = SHIFTOUT(rxstat, ATW_RXSTAT_RXDR_MASK);
3087
3088 if (rxstat & ATW_RXSTAT_OWN)
3089 break; /* We have processed all receive buffers. */
3090
3091 DPRINTF3(sc,
3092 ("%s: rx stat %08x rssi0 %08x buf1 %08x buf2 %08x\n",
3093 sc->sc_dev.dv_xname,
3094 rxstat, rssi0,
3095 le32toh(sc->sc_rxdescs[i].ar_buf1),
3096 le32toh(sc->sc_rxdescs[i].ar_buf2)));
3097
3098 /*
3099 * Make sure the packet fits in one buffer. This should
3100 * always be the case.
3101 */
3102 if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
3103 (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
3104 printf("%s: incoming packet spilled, resetting\n",
3105 sc->sc_dev.dv_xname);
3106 (void)atw_init(ifp);
3107 return;
3108 }
3109
3110 /*
3111 * If an error occurred, update stats, clear the status
3112 * word, and leave the packet buffer in place. It will
3113 * simply be reused the next time the ring comes around.
3114 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
3115 * error.
3116 */
3117
3118 if ((rxstat & ATW_RXSTAT_ES) != 0 &&
3119 ((sc->sc_ec.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
3120 (rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_SFDE |
3121 ATW_RXSTAT_SIGE | ATW_RXSTAT_CRC16E |
3122 ATW_RXSTAT_RXTOE | ATW_RXSTAT_CRC32E |
3123 ATW_RXSTAT_ICVE)) != 0)) {
3124 #define PRINTERR(bit, str) \
3125 if (rxstat & (bit)) \
3126 printf("%s: receive error: %s\n", \
3127 sc->sc_dev.dv_xname, str)
3128 ifp->if_ierrors++;
3129 PRINTERR(ATW_RXSTAT_DE, "descriptor error");
3130 PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
3131 PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
3132 PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
3133 PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
3134 PRINTERR(ATW_RXSTAT_CRC32E, "FCS error");
3135 PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
3136 #undef PRINTERR
3137 ATW_INIT_RXDESC(sc, i);
3138 continue;
3139 }
3140
3141 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3142 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3143
3144 /*
3145 * No errors; receive the packet. Note the ADM8211
3146 * includes the CRC in promiscuous mode.
3147 */
3148 len = SHIFTOUT(rxstat, ATW_RXSTAT_FL_MASK);
3149
3150 /*
3151 * Allocate a new mbuf cluster. If that fails, we are
3152 * out of memory, and must drop the packet and recycle
3153 * the buffer that's already attached to this descriptor.
3154 */
3155 m = rxs->rxs_mbuf;
3156 if (atw_add_rxbuf(sc, i) != 0) {
3157 ifp->if_ierrors++;
3158 ATW_INIT_RXDESC(sc, i);
3159 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3160 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3161 continue;
3162 }
3163
3164 ifp->if_ipackets++;
3165 if (sc->sc_opmode & ATW_NAR_PR)
3166 len -= IEEE80211_CRC_LEN;
3167 m->m_pkthdr.rcvif = ifp;
3168 m->m_pkthdr.len = m->m_len = MIN(m->m_ext.ext_size, len);
3169
3170 if (rate0 >= sizeof(rate_tbl) / sizeof(rate_tbl[0]))
3171 rate = 0;
3172 else
3173 rate = rate_tbl[rate0];
3174
3175 /* The RSSI comes straight from a register in the
3176 * baseband processor. I know that for the RF3000,
3177 * the RSSI register also contains the antenna-selection
3178 * bits. Mask those off.
3179 *
3180 * TBD Treat other basebands.
3181 */
3182 if (sc->sc_bbptype == ATW_BBPTYPE_RFMD)
3183 rssi = rssi0 & RF3000_RSSI_MASK;
3184 else
3185 rssi = rssi0;
3186
3187 #if NBPFILTER > 0
3188 /* Pass this up to any BPF listeners. */
3189 if (sc->sc_radiobpf != NULL) {
3190 struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
3191
3192 tap->ar_rate = rate;
3193 tap->ar_chan_freq = htole16(ic->ic_curchan->ic_freq);
3194 tap->ar_chan_flags = htole16(ic->ic_curchan->ic_flags);
3195
3196 /* TBD verify units are dB */
3197 tap->ar_antsignal = (int)rssi;
3198 /* TBD tap->ar_flags */
3199
3200 bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3201 tap->ar_ihdr.it_len, m);
3202 }
3203 #endif /* NPBFILTER > 0 */
3204
3205 wh = mtod(m, struct ieee80211_frame_min *);
3206 ni = ieee80211_find_rxnode(ic, wh);
3207 #if 0
3208 if (atw_hw_decrypted(sc, wh)) {
3209 wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
3210 DPRINTF(sc, ("%s: hw decrypted\n", __func__));
3211 }
3212 #endif
3213 ieee80211_input(ic, m, ni, (int)rssi, 0);
3214 ieee80211_free_node(ni);
3215 }
3216
3217 /* Update the receive pointer. */
3218 sc->sc_rxptr = i;
3219 }
3220
3221 /*
3222 * atw_txintr:
3223 *
3224 * Helper; handle transmit interrupts.
3225 */
3226 void
3227 atw_txintr(struct atw_softc *sc)
3228 {
3229 #define TXSTAT_ERRMASK (ATW_TXSTAT_TUF | ATW_TXSTAT_TLT | ATW_TXSTAT_TRT | \
3230 ATW_TXSTAT_TRO | ATW_TXSTAT_SOFBR)
3231 #define TXSTAT_FMT "\20\31ATW_TXSTAT_SOFBR\32ATW_TXSTAT_TRO\33ATW_TXSTAT_TUF" \
3232 "\34ATW_TXSTAT_TRT\35ATW_TXSTAT_TLT"
3233
3234 static char txstat_buf[sizeof("ffffffff<>" TXSTAT_FMT)];
3235 struct ifnet *ifp = &sc->sc_if;
3236 struct atw_txsoft *txs;
3237 u_int32_t txstat;
3238
3239 DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3240 sc->sc_dev.dv_xname, sc->sc_flags));
3241
3242 /*
3243 * Go through our Tx list and free mbufs for those
3244 * frames that have been transmitted.
3245 */
3246 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3247 ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3248 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3249
3250 #ifdef ATW_DEBUG
3251 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3252 int i;
3253 printf(" txsoft %p transmit chain:\n", txs);
3254 ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3255 txs->txs_ndescs - 1,
3256 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3257 for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3258 printf(" descriptor %d:\n", i);
3259 printf(" at_status: 0x%08x\n",
3260 le32toh(sc->sc_txdescs[i].at_stat));
3261 printf(" at_flags: 0x%08x\n",
3262 le32toh(sc->sc_txdescs[i].at_flags));
3263 printf(" at_buf1: 0x%08x\n",
3264 le32toh(sc->sc_txdescs[i].at_buf1));
3265 printf(" at_buf2: 0x%08x\n",
3266 le32toh(sc->sc_txdescs[i].at_buf2));
3267 if (i == txs->txs_lastdesc)
3268 break;
3269 }
3270 }
3271 #endif
3272
3273 txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3274 if (txstat & ATW_TXSTAT_OWN)
3275 break;
3276
3277 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3278
3279 sc->sc_txfree += txs->txs_ndescs;
3280
3281 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3282 0, txs->txs_dmamap->dm_mapsize,
3283 BUS_DMASYNC_POSTWRITE);
3284 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3285 m_freem(txs->txs_mbuf);
3286 txs->txs_mbuf = NULL;
3287
3288 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3289
3290 KASSERT(!(SIMPLEQ_EMPTY(&sc->sc_txfreeq) ||
3291 sc->sc_txfree == 0));
3292 ifp->if_flags &= ~IFF_OACTIVE;
3293
3294 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3295 (txstat & TXSTAT_ERRMASK) != 0) {
3296 bitmask_snprintf(txstat & TXSTAT_ERRMASK, TXSTAT_FMT,
3297 txstat_buf, sizeof(txstat_buf));
3298 printf("%s: txstat %s %d\n", sc->sc_dev.dv_xname,
3299 txstat_buf,
3300 SHIFTOUT(txstat, ATW_TXSTAT_ARC_MASK));
3301 }
3302
3303 /*
3304 * Check for errors and collisions.
3305 */
3306 if (txstat & ATW_TXSTAT_TUF)
3307 sc->sc_stats.ts_tx_tuf++;
3308 if (txstat & ATW_TXSTAT_TLT)
3309 sc->sc_stats.ts_tx_tlt++;
3310 if (txstat & ATW_TXSTAT_TRT)
3311 sc->sc_stats.ts_tx_trt++;
3312 if (txstat & ATW_TXSTAT_TRO)
3313 sc->sc_stats.ts_tx_tro++;
3314 if (txstat & ATW_TXSTAT_SOFBR) {
3315 sc->sc_stats.ts_tx_sofbr++;
3316 }
3317
3318 if ((txstat & ATW_TXSTAT_ES) == 0)
3319 ifp->if_collisions +=
3320 SHIFTOUT(txstat, ATW_TXSTAT_ARC_MASK);
3321 else
3322 ifp->if_oerrors++;
3323
3324 ifp->if_opackets++;
3325 }
3326
3327 /*
3328 * If there are no more pending transmissions, cancel the watchdog
3329 * timer.
3330 */
3331 if (txs == NULL) {
3332 KASSERT((ifp->if_flags & IFF_OACTIVE) == 0);
3333 sc->sc_tx_timer = 0;
3334 }
3335 #undef TXSTAT_ERRMASK
3336 #undef TXSTAT_FMT
3337 }
3338
3339 /*
3340 * atw_watchdog: [ifnet interface function]
3341 *
3342 * Watchdog timer handler.
3343 */
3344 void
3345 atw_watchdog(struct ifnet *ifp)
3346 {
3347 struct atw_softc *sc = ifp->if_softc;
3348 struct ieee80211com *ic = &sc->sc_ic;
3349
3350 ifp->if_timer = 0;
3351 if (ATW_IS_ENABLED(sc) == 0)
3352 return;
3353
3354 if (sc->sc_rescan_timer) {
3355 if (--sc->sc_rescan_timer == 0)
3356 (void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3357 }
3358 if (sc->sc_tx_timer) {
3359 if (--sc->sc_tx_timer == 0 &&
3360 !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3361 printf("%s: transmit timeout\n", ifp->if_xname);
3362 ifp->if_oerrors++;
3363 (void)atw_init(ifp);
3364 atw_start(ifp);
3365 }
3366 }
3367 if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3368 ifp->if_timer = 1;
3369 ieee80211_watchdog(ic);
3370 }
3371
3372 #ifdef ATW_DEBUG
3373 static void
3374 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3375 {
3376 struct atw_softc *sc = ifp->if_softc;
3377 struct mbuf *m;
3378 int i, noctets = 0;
3379
3380 printf("%s: %d-byte packet\n", sc->sc_dev.dv_xname,
3381 m0->m_pkthdr.len);
3382
3383 for (m = m0; m; m = m->m_next) {
3384 if (m->m_len == 0)
3385 continue;
3386 for (i = 0; i < m->m_len; i++) {
3387 printf(" %02x", ((u_int8_t*)m->m_data)[i]);
3388 if (++noctets % 24 == 0)
3389 printf("\n");
3390 }
3391 }
3392 printf("%s%s: %d bytes emitted\n",
3393 (noctets % 24 != 0) ? "\n" : "", sc->sc_dev.dv_xname, noctets);
3394 }
3395 #endif /* ATW_DEBUG */
3396
3397 /*
3398 * atw_start: [ifnet interface function]
3399 *
3400 * Start packet transmission on the interface.
3401 */
3402 void
3403 atw_start(struct ifnet *ifp)
3404 {
3405 struct atw_softc *sc = ifp->if_softc;
3406 struct ieee80211_key *k;
3407 struct ieee80211com *ic = &sc->sc_ic;
3408 struct ieee80211_node *ni;
3409 struct ieee80211_frame_min *whm;
3410 struct ieee80211_frame *wh;
3411 struct atw_frame *hh;
3412 struct mbuf *m0, *m;
3413 struct atw_txsoft *txs, *last_txs;
3414 struct atw_txdesc *txd;
3415 int npkt, rate;
3416 bus_dmamap_t dmamap;
3417 int ctl, error, firsttx, nexttx, lasttx = -1, first, ofree, seg;
3418
3419 DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3420 sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
3421
3422 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3423 return;
3424
3425 /*
3426 * Remember the previous number of free descriptors and
3427 * the first descriptor we'll use.
3428 */
3429 ofree = sc->sc_txfree;
3430 firsttx = sc->sc_txnext;
3431
3432 DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3433 sc->sc_dev.dv_xname, ofree, firsttx));
3434
3435 /*
3436 * Loop through the send queue, setting up transmit descriptors
3437 * until we drain the queue, or use up all available transmit
3438 * descriptors.
3439 */
3440 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3441 sc->sc_txfree != 0) {
3442
3443 /*
3444 * Grab a packet off the management queue, if it
3445 * is not empty. Otherwise, from the data queue.
3446 */
3447 IF_DEQUEUE(&ic->ic_mgtq, m0);
3448 if (m0 != NULL) {
3449 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
3450 m0->m_pkthdr.rcvif = NULL;
3451 } else if (ic->ic_state != IEEE80211_S_RUN)
3452 break; /* send no data until associated */
3453 else {
3454 IFQ_DEQUEUE(&ifp->if_snd, m0);
3455 if (m0 == NULL)
3456 break;
3457 #if NBPFILTER > 0
3458 if (ifp->if_bpf != NULL)
3459 bpf_mtap(ifp->if_bpf, m0);
3460 #endif /* NBPFILTER > 0 */
3461 ni = ieee80211_find_txnode(ic,
3462 mtod(m0, struct ether_header *)->ether_dhost);
3463 if (ni == NULL) {
3464 ifp->if_oerrors++;
3465 break;
3466 }
3467 if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
3468 ieee80211_free_node(ni);
3469 ifp->if_oerrors++;
3470 break;
3471 }
3472 }
3473
3474 rate = MAX(ieee80211_get_rate(ni), 2);
3475
3476 whm = mtod(m0, struct ieee80211_frame_min *);
3477
3478 if ((whm->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3479 k = NULL;
3480 else if ((k = ieee80211_crypto_encap(ic, ni, m0)) == NULL) {
3481 m_freem(m0);
3482 ieee80211_free_node(ni);
3483 ifp->if_oerrors++;
3484 break;
3485 }
3486
3487 if (ieee80211_compute_duration(whm, k, m0->m_pkthdr.len,
3488 ic->ic_flags, ic->ic_fragthreshold, rate,
3489 &txs->txs_d0, &txs->txs_dn, &npkt, 0) == -1) {
3490 DPRINTF2(sc, ("%s: fail compute duration\n", __func__));
3491 m_freem(m0);
3492 break;
3493 }
3494
3495 /* XXX Misleading if fragmentation is enabled. Better
3496 * to fragment in software?
3497 */
3498 *(uint16_t *)whm->i_dur = htole16(txs->txs_d0.d_rts_dur);
3499
3500 #if NBPFILTER > 0
3501 /*
3502 * Pass the packet to any BPF listeners.
3503 */
3504 if (ic->ic_rawbpf != NULL)
3505 bpf_mtap((caddr_t)ic->ic_rawbpf, m0);
3506
3507 if (sc->sc_radiobpf != NULL) {
3508 struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
3509
3510 tap->at_rate = rate;
3511 tap->at_chan_freq = htole16(ic->ic_curchan->ic_freq);
3512 tap->at_chan_flags = htole16(ic->ic_curchan->ic_flags);
3513
3514 /* TBD tap->at_flags */
3515
3516 bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3517 tap->at_ihdr.it_len, m0);
3518 }
3519 #endif /* NBPFILTER > 0 */
3520
3521 M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3522
3523 if (ni != NULL)
3524 ieee80211_free_node(ni);
3525
3526 if (m0 == NULL) {
3527 ifp->if_oerrors++;
3528 break;
3529 }
3530
3531 /* just to make sure. */
3532 m0 = m_pullup(m0, sizeof(struct atw_frame));
3533
3534 if (m0 == NULL) {
3535 ifp->if_oerrors++;
3536 break;
3537 }
3538
3539 hh = mtod(m0, struct atw_frame *);
3540 wh = &hh->atw_ihdr;
3541
3542 /* Copy everything we need from the 802.11 header:
3543 * Frame Control; address 1, address 3, or addresses
3544 * 3 and 4. NIC fills in BSSID, SA.
3545 */
3546 if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3547 if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3548 panic("%s: illegal WDS frame",
3549 sc->sc_dev.dv_xname);
3550 memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3551 } else
3552 memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3553
3554 *(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
3555
3556 /* initialize remaining Tx parameters */
3557 memset(&hh->u, 0, sizeof(hh->u));
3558
3559 hh->atw_rate = rate * 5;
3560 /* XXX this could be incorrect if M_FCS. _encap should
3561 * probably strip FCS just in case it sticks around in
3562 * bridged packets.
3563 */
3564 hh->atw_service = 0x00; /* XXX guess */
3565 hh->atw_paylen = htole16(m0->m_pkthdr.len -
3566 sizeof(struct atw_frame));
3567
3568 hh->atw_fragthr = htole16(ic->ic_fragthreshold);
3569 hh->atw_rtylmt = 3;
3570 hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3571 #if 0
3572 if (do_encrypt) {
3573 hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
3574 hh->atw_keyid = ic->ic_def_txkey;
3575 }
3576 #endif
3577
3578 hh->atw_head_plcplen = htole16(txs->txs_d0.d_plcp_len);
3579 hh->atw_tail_plcplen = htole16(txs->txs_dn.d_plcp_len);
3580 if (txs->txs_d0.d_residue)
3581 hh->atw_head_plcplen |= htole16(0x8000);
3582 if (txs->txs_dn.d_residue)
3583 hh->atw_tail_plcplen |= htole16(0x8000);
3584 hh->atw_head_dur = htole16(txs->txs_d0.d_rts_dur);
3585 hh->atw_tail_dur = htole16(txs->txs_dn.d_rts_dur);
3586
3587 /* never fragment multicast frames */
3588 if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
3589 hh->atw_fragthr = htole16(ic->ic_fragthreshold);
3590 } else if (sc->sc_flags & ATWF_RTSCTS) {
3591 hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3592 }
3593
3594 #ifdef ATW_DEBUG
3595 hh->atw_fragnum = 0;
3596
3597 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3598 printf("%s: dst = %s, rate = 0x%02x, "
3599 "service = 0x%02x, paylen = 0x%04x\n",
3600 sc->sc_dev.dv_xname, ether_sprintf(hh->atw_dst),
3601 hh->atw_rate, hh->atw_service, hh->atw_paylen);
3602
3603 printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3604 "dur1 = 0x%04x, dur2 = 0x%04x, "
3605 "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3606 sc->sc_dev.dv_xname, hh->atw_fc[0], hh->atw_fc[1],
3607 hh->atw_tail_plcplen, hh->atw_head_plcplen,
3608 hh->atw_tail_dur, hh->atw_head_dur);
3609
3610 printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3611 "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3612 sc->sc_dev.dv_xname, hh->atw_hdrctl,
3613 hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3614
3615 printf("%s: keyid = %d\n",
3616 sc->sc_dev.dv_xname, hh->atw_keyid);
3617
3618 atw_dump_pkt(ifp, m0);
3619 }
3620 #endif /* ATW_DEBUG */
3621
3622 dmamap = txs->txs_dmamap;
3623
3624 /*
3625 * Load the DMA map. Copy and try (once) again if the packet
3626 * didn't fit in the alloted number of segments.
3627 */
3628 for (first = 1;
3629 (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3630 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
3631 first = 0) {
3632 MGETHDR(m, M_DONTWAIT, MT_DATA);
3633 if (m == NULL) {
3634 printf("%s: unable to allocate Tx mbuf\n",
3635 sc->sc_dev.dv_xname);
3636 break;
3637 }
3638 if (m0->m_pkthdr.len > MHLEN) {
3639 MCLGET(m, M_DONTWAIT);
3640 if ((m->m_flags & M_EXT) == 0) {
3641 printf("%s: unable to allocate Tx "
3642 "cluster\n", sc->sc_dev.dv_xname);
3643 m_freem(m);
3644 break;
3645 }
3646 }
3647 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
3648 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3649 m_freem(m0);
3650 m0 = m;
3651 m = NULL;
3652 }
3653 if (error != 0) {
3654 printf("%s: unable to load Tx buffer, "
3655 "error = %d\n", sc->sc_dev.dv_xname, error);
3656 m_freem(m0);
3657 break;
3658 }
3659
3660 /*
3661 * Ensure we have enough descriptors free to describe
3662 * the packet.
3663 */
3664 if (dmamap->dm_nsegs > sc->sc_txfree) {
3665 /*
3666 * Not enough free descriptors to transmit
3667 * this packet. Unload the DMA map and
3668 * drop the packet. Notify the upper layer
3669 * that there are no more slots left.
3670 *
3671 * XXX We could allocate an mbuf and copy, but
3672 * XXX it is worth it?
3673 */
3674 bus_dmamap_unload(sc->sc_dmat, dmamap);
3675 m_freem(m0);
3676 break;
3677 }
3678
3679 /*
3680 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3681 */
3682
3683 /* Sync the DMA map. */
3684 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3685 BUS_DMASYNC_PREWRITE);
3686
3687 /* XXX arbitrary retry limit; 8 because I have seen it in
3688 * use already and maybe 0 means "no tries" !
3689 */
3690 ctl = htole32(SHIFTIN(8, ATW_TXCTL_TL_MASK));
3691
3692 DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3693 sc->sc_dev.dv_xname, rate * 5));
3694 ctl |= htole32(SHIFTIN(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3695
3696 /*
3697 * Initialize the transmit descriptors.
3698 */
3699 for (nexttx = sc->sc_txnext, seg = 0;
3700 seg < dmamap->dm_nsegs;
3701 seg++, nexttx = ATW_NEXTTX(nexttx)) {
3702 /*
3703 * If this is the first descriptor we're
3704 * enqueueing, don't set the OWN bit just
3705 * yet. That could cause a race condition.
3706 * We'll do it below.
3707 */
3708 txd = &sc->sc_txdescs[nexttx];
3709 txd->at_ctl = ctl |
3710 ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3711
3712 txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3713 txd->at_flags =
3714 htole32(SHIFTIN(dmamap->dm_segs[seg].ds_len,
3715 ATW_TXFLAG_TBS1_MASK)) |
3716 ((nexttx == (ATW_NTXDESC - 1))
3717 ? htole32(ATW_TXFLAG_TER) : 0);
3718 lasttx = nexttx;
3719 }
3720
3721 IASSERT(lasttx != -1, ("bad lastx"));
3722 /* Set `first segment' and `last segment' appropriately. */
3723 sc->sc_txdescs[sc->sc_txnext].at_flags |=
3724 htole32(ATW_TXFLAG_FS);
3725 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3726
3727 #ifdef ATW_DEBUG
3728 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3729 printf(" txsoft %p transmit chain:\n", txs);
3730 for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3731 printf(" descriptor %d:\n", seg);
3732 printf(" at_ctl: 0x%08x\n",
3733 le32toh(sc->sc_txdescs[seg].at_ctl));
3734 printf(" at_flags: 0x%08x\n",
3735 le32toh(sc->sc_txdescs[seg].at_flags));
3736 printf(" at_buf1: 0x%08x\n",
3737 le32toh(sc->sc_txdescs[seg].at_buf1));
3738 printf(" at_buf2: 0x%08x\n",
3739 le32toh(sc->sc_txdescs[seg].at_buf2));
3740 if (seg == lasttx)
3741 break;
3742 }
3743 }
3744 #endif
3745
3746 /* Sync the descriptors we're using. */
3747 ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3748 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3749
3750 /*
3751 * Store a pointer to the packet so we can free it later,
3752 * and remember what txdirty will be once the packet is
3753 * done.
3754 */
3755 txs->txs_mbuf = m0;
3756 txs->txs_firstdesc = sc->sc_txnext;
3757 txs->txs_lastdesc = lasttx;
3758 txs->txs_ndescs = dmamap->dm_nsegs;
3759
3760 /* Advance the tx pointer. */
3761 sc->sc_txfree -= dmamap->dm_nsegs;
3762 sc->sc_txnext = nexttx;
3763
3764 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3765 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3766
3767 last_txs = txs;
3768 }
3769
3770 if (sc->sc_txfree != ofree) {
3771 DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3772 sc->sc_dev.dv_xname, lasttx, firsttx));
3773 /*
3774 * Cause a transmit interrupt to happen on the
3775 * last packet we enqueued.
3776 */
3777 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3778 ATW_CDTXSYNC(sc, lasttx, 1,
3779 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3780
3781 /*
3782 * The entire packet chain is set up. Give the
3783 * first descriptor to the chip now.
3784 */
3785 sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3786 ATW_CDTXSYNC(sc, firsttx, 1,
3787 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3788
3789 /* Wake up the transmitter. */
3790 ATW_WRITE(sc, ATW_TDR, 0x1);
3791
3792 if (txs == NULL || sc->sc_txfree == 0)
3793 ifp->if_flags |= IFF_OACTIVE;
3794
3795 /* Set a watchdog timer in case the chip flakes out. */
3796 sc->sc_tx_timer = 5;
3797 ifp->if_timer = 1;
3798 }
3799 }
3800
3801 /*
3802 * atw_power:
3803 *
3804 * Power management (suspend/resume) hook.
3805 */
3806 void
3807 atw_power(int why, void *arg)
3808 {
3809 struct atw_softc *sc = arg;
3810 struct ifnet *ifp = &sc->sc_if;
3811 int s;
3812
3813 DPRINTF(sc, ("%s: atw_power(%d,)\n", sc->sc_dev.dv_xname, why));
3814
3815 s = splnet();
3816 switch (why) {
3817 case PWR_STANDBY:
3818 /* XXX do nothing. */
3819 break;
3820 case PWR_SUSPEND:
3821 atw_stop(ifp, 0);
3822 if (sc->sc_power != NULL)
3823 (*sc->sc_power)(sc, why);
3824 break;
3825 case PWR_RESUME:
3826 if (ifp->if_flags & IFF_UP) {
3827 if (sc->sc_power != NULL)
3828 (*sc->sc_power)(sc, why);
3829 atw_init(ifp);
3830 }
3831 break;
3832 case PWR_SOFTSUSPEND:
3833 case PWR_SOFTSTANDBY:
3834 case PWR_SOFTRESUME:
3835 break;
3836 }
3837 splx(s);
3838 }
3839
3840 /*
3841 * atw_ioctl: [ifnet interface function]
3842 *
3843 * Handle control requests from the operator.
3844 */
3845 int
3846 atw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3847 {
3848 struct atw_softc *sc = ifp->if_softc;
3849 struct ifreq *ifr = (struct ifreq *)data;
3850 int s, error = 0;
3851
3852 /* XXX monkey see, monkey do. comes from wi_ioctl. */
3853 if (!device_is_active(&sc->sc_dev))
3854 return ENXIO;
3855
3856 s = splnet();
3857
3858 switch (cmd) {
3859 case SIOCSIFFLAGS:
3860 if (ifp->if_flags & IFF_UP) {
3861 if (ATW_IS_ENABLED(sc)) {
3862 /*
3863 * To avoid rescanning another access point,
3864 * do not call atw_init() here. Instead,
3865 * only reflect media settings.
3866 */
3867 atw_filter_setup(sc);
3868 } else
3869 error = atw_init(ifp);
3870 } else if (ATW_IS_ENABLED(sc))
3871 atw_stop(ifp, 1);
3872 break;
3873 case SIOCADDMULTI:
3874 case SIOCDELMULTI:
3875 error = (cmd == SIOCADDMULTI) ?
3876 ether_addmulti(ifr, &sc->sc_ec) :
3877 ether_delmulti(ifr, &sc->sc_ec);
3878 if (error == ENETRESET) {
3879 if (ifp->if_flags & IFF_RUNNING)
3880 atw_filter_setup(sc); /* do not rescan */
3881 error = 0;
3882 }
3883 break;
3884 default:
3885 error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
3886 if (error == ENETRESET || error == ERESTART) {
3887 if (is_running(ifp))
3888 error = atw_init(ifp);
3889 else
3890 error = 0;
3891 }
3892 break;
3893 }
3894
3895 /* Try to get more packets going. */
3896 if (ATW_IS_ENABLED(sc))
3897 atw_start(ifp);
3898
3899 splx(s);
3900 return (error);
3901 }
3902
3903 static int
3904 atw_media_change(struct ifnet *ifp)
3905 {
3906 int error;
3907
3908 error = ieee80211_media_change(ifp);
3909 if (error == ENETRESET) {
3910 if (is_running(ifp))
3911 error = atw_init(ifp);
3912 else
3913 error = 0;
3914 }
3915 return error;
3916 }
3917